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Preface

The Society for the Foundations of Computational Mathematics sup-
ports fundamental research in computational mathematics and its ap-
plications, interpreted in the broadest sense. As part of its endeavour
to promote research across a wide spectrum of subjects concerned with
computation, the Society regularly organises conferences and specialist
workshops which bring together leading researchers working in diverse
fields that impinge on various aspects of computation. Major conferences
of the Society were held in Park City (1995), Rio de Janeiro (1997),
Oxford (1999), and Minneapolis (2002).

The next FoCM conference will take place at the University of
Santander in Spain in July 2005. More information about FoCM is avail-
able from the website http://www.focm.net.

The conference in Minneapolis on 5-14 August 2002 was attended by
several hundred scientists. Workshops were held in eighteen fields which
included: the foundations of the numerical solution of partial differential
equations, geometric integration and computational mechanics, learning
theory, optimization, special functions, approximation theory, computa-
tional algebraic geometry, computational number theory, multiresolution
and adaptivity, numerical linear algebra, quantum computing, compu-
tational dynamics, geometrical modelling and animation, image and sig-
nal processing, stochastic computation, symbolic analysis, complexity
and information-based complexity theory. In addition to the workshops,
eighteen plenary lectures, concerned with a broad spectrum of topics
connected to computational mathematics, were delivered by some of
the world’s foremost researchers. This volume is a collection of articles,
based on the plenary talks presented at FoCM 2002. The topics covered
in the lectures — ranging from the applications of computational math-
ematics in geometry and algebra to optimization theory, from quantum
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complexity to the numerical solution of partial differential equations,
from numerical linear algebra to Morse theory — reflect the breadth of
research within computational mathematics as well as the richness and
fertility of interactions between seemingly unrelated branches of pure
and applied mathematics.

We hope that the volume will be of interest to researchers in the field
of computational mathematics but also to non-experts who wish to gain
insight into the state of the art in this active and significant field.

Like previous FoCM conferences, the Minneapolis gathering proved
itself as a unique meeting point of researchers in computational math-
ematics and of theoreticians in mathematics and in computer sciences.
While presenting plenary talks by foremost world authorities and main-
taining the highest technical level in the workshops, the emphasis, like
in Park City, Rio de Janeiro and Oxford, was on multidisciplinary in-
teraction across subjects and disciplines, in an informal and friendly
atmosphere. It is only fair to say that for many of us the opportunity of
meeting colleagues from different subject-areas and identifying the wide-
ranging, and often surprising, common denominator to our research was
a real journey of discovery.

We wish to express our gratitude to the local organisers and adminis-
trative staff of our hosts, the Institute of Mathematics and Its Applica-
tions and the Department of Mathematics at the University of Minnesota
at Minneapolis, for making FoCM 2002 such a success. We also wish to
thank the National Science Foundation, the Digital Technology Center
in Minneapolis, IBM, the Office of Naval Research, the Number Theory
Foundation and the American Institute of Mathematics for their gen-
erous sponsorship and support. Above all, however, we wish to express
our gratitude to all participants of FoCM 2002 for attending the meeting
and making it such an exciting, productive and scientifically stimulating
event.
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Some Fundamental Issues in Computational
Mathematics

Ronald DeVore
Department of Mathematics
University of South Carolina

Columbia, SC 29208
Email: devore@math.sc.edu

Abstract

We enter a discussion as to what constitutes the ‘foundations of compu-
tational mathematics’. While not giving a definition, we give examples
from image/signal processing and numerical computation where foun-
dational issues have helped to ‘correctly’ formulate problems and guide
their solution.

1.1 The question

While past chair of the organization Foundations of Computational
Mathematics (FOCM), I was frequently asked what is the meaning of
‘foundations of computational mathematics’. Most people understand
what computational mathematics is. So the question really centers
around the meaning of ‘foundations’ in this context. Even though I have
thought about this quite a while, I would not dare to try to give a precise
definition of foundations – I am sure it would be picked apart. However,
I would like in this presentation to give some examples where the ad-
herence to fundamental questions has helped to shape the formulation
of computational issues and more importantly contributed to their so-
lution. The examples I choose in signal/image processing and numerical
methods for PDEs are of course related to my own research. I am sure

0 This work has been supported by the Office of Naval Research Contract Nr. N0014-
91-J1343, the Army Research Office Contract Nr. DAAD 19-02-1-0028, and the
National Science Foundation Grant DMS0221642.
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2 R. DeVore

there are many other stories of the type I put forward that are waiting
to be told.

The first of the three examples that I will discuss is that of image
compression. This subject has grown rapidly over the last decade with
an important infusion of ideas from mathematics especially the theories
of wavelets and nonlinear approximation. The main topic to be addressed
here is how we can decide which algorithms for compression are optimal.

A somewhat related topic will concern Analog to Digital (A/D) con-
version of signals. This is an area that is important in consumer electron-
ics. The story here centers around trying to understand why engineers
do A/D conversion in the way they do, which by the way is very coun-
terintuitive to what a first mathematical analysis would suggest.

Finally, I discuss adaptive methods for solving PDEs. This is an ex-
tremely important area of numerical computation in our quest to solve
large problems to higher and higher resolution. The question to be an-
swered is how can we know when an adaptive method is optimal in its
performance.

1.2 Image compression

Digital signal processing has revolutionized the storage and transmission
of audio and video signals as well as still images, in consumer electronics
and in more scientific settings (such as medical imaging). The main
advantage of digital signal processing is its robustness: although all the
operations have to be implemented with, of necessity, not quite ideal
hardware, the a priori knowledge that all correct outcomes must lie in a
very restricted set of well separated numbers makes it possible to recover
them by rounding off appropriately.

Every day, millions of digitized images are created, stored, and trans-
mitted over the Internet or using other mediums. A grey scale image
is an array (matrix) of pixel values. It is already important to have a
mathematical model for what these pixel values represent. We shall view
the pixel array as arising in the following fashion. We have a light inten-
sity function f defined on a continuum Ω. For simplicity we assume that
Ω := [0, 1]2 and that f takes values in [0, 1) (the latter can be achieved
by simple renormalization). Digitization corresponds to two operations:
averaging and quantization. We take a tiling of Ω into squares Q and
associate to each square Q the average intensity

fQ :=
1
|Q|

∫
I

f(x) dx,
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where |Q| denotes the Lebesgue measure of Q. The pixel values pQ are
derived from the numbers fQ ∈ [0, 1) by quantization. We write fQ in
its binary expansion

fQ =
∞∑
j=1

bj(fQ)2−j

and define the pixel value pQ :=
∑m

j=1 bj(fQ)2−j . Typical choices of m
are m = 8 (one byte per pixel) or m = 16. The array I := I(f) := (pQ)
of pixel values is a digitization of f . The accuracy at which I resolves f

depends on the fineness of the tiling and the accuracy of the quantization
(i.e. size of m). We do not really know f . We only see it through the
digitized image I(f). In practice, the pixel values pQ are corrupted by
noise but we shall ignore this in our discussion since we are aiming in a
different direction.

We see that a digitized image in its raw form is described by mN bits
where N is the number of squares in the tiling. Lossy compression seeks
to significantly reduce this number of bits used to represent f at the
expense of some loss in the fidelity of resolution. Hopefully, this loss of
fidelity is not perceptible. There are two parts to a lossy compression
scheme. The encoder assigns to each pixel array I a bitstream B(I). A
decoder gives the recipe for changing any given bitstream B back into a
pixel array. After encoding and then decoding the resulting pixel values
p̄Q will generally not be the same as the original pQ. Some fidelity is lost.

One can imagine, given the practical importance of the compression
problem, that there are a ton of encoding/decoding schemes. How can
one decide from this myriad of choices which is the best? Engineers have
introduced a number called the PSNR (Peak Signal to Noise Ratio)
which measures the performance of a given encoding/decoding on a
given digitized image I. It is not necessary to give its precise definition
here but simply mention that it measures the least squares distortion
((#I)−1

∑
Q[pQ − p̄Q]2)1/2 as a function of the number of bits. Here

#(I) is the number of pixels. A new encoding scheme is tested by its
performance (PSNR) on a few test images – the Lena image being the
most widely used.

Now, there is a fundamental question here. Should the quality of a
compression algorithm be determined by its PSNR performance on a
few test images? Given a collection of 2k images, we can encode them
all with k bits per image by simply enumerating them in binary. So on
a mathematical level this test of performance is quite unsatisfactory.

What has any of this to do with “foundations of computational
mathematics”. Well, we cannot have a decidable competition among
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compression algorithms without a clear and precise formulation of the
compression problem. This is a foundations question that rests on two
issues that we must clarify. The first is the metric we are going to use
to compare two images (for example, the original and the compressed
image). The second is the class of images we wish to compress. We shall
briefly discuss these issues.

1.2.1 The metric

We have already mentioned the PSNR which is based on the �2 metric.
In our view of images as functions, this corresponds to the L2(Ω) func-
tion metric. Is this the obvious choice? By no means. This choice seems
to be more a matter of convenience and tradition. It is easy to solve
optimization problems in the L2 metric.

Certainly the choice of metric must depend on the intended applica-
tion. In some targeted applications such as feature extraction and image
registration, the least squares metric is clearly not appropriate and is
better replaced by metrics such as L∞ or maximum gradient.

Most compression is directed at producing visually pleasing images
which cannot be distinguished from the original by the human eye. Thus,
we can speak about the metric of the human visual system. The prob-
lem is that this vague notion is useless mathematically. Our goal would
be to derive a mathematical metric which is a good model for the hu-
man visual system. There are some mathematical models for human
vision which may be useful in directing our pursuit but little is agreed
upon.

So, at this stage, we are left with using simple mathematical metrics
such as the Lp(Ω) norms, 0 < p ≤ ∞, or certain smoothness norms.
The point we wish to make here is not so much as to which metric is
better but rather that any serious mathematical comparison of compres-
sion algorithms must at the outset agree on the metric used to measure
distortion. Once this is decided we can go further.

1.2.2 Model classes of images

Once we have chosen a mathematical metric in which to measure
distance between images, the question turns to describing the class of
images that we wish to compress. This is a subject that spurs many
interesting debates. We will touch on this only briefly and in a very
prejudicial way.
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There are two main models for images: the stochastic and the deter-
ministic. Stochastic models are deeply embedded in the engineering and
information theory communities influenced in a large part by Shannon’s
theory for optimal encoding. Deterministic models take the view we have
presented of an image as a function defined on a continuum. We have
begun by assuming only that an image is a bounded function. This is
too broad of a class of functions to serve as the description of the images
we wish to compress. Images have more structure.

One deterministic view of an image function f is that it is a sum
of fundamental components corresponding to edges, texture, and noise.
For example the famous model of Mumford and Shah [17] views the
image as a sum f = u + v of a component u of Bounded Variation
(BV) and a component v in L2. The component u is not an arbitrary
BV function but rather has gradient given by a measure supported on a
one dimensional set (corresponding to the edges in the image) and an L1

part (corresponding to smooth regions in the image). The L2 component
v captures deviations from this model.

There are many variants of the Mumford–Shah model. These are beau-
tifully described in the lecture notes of Meyer [14] – a must read. We
wish to pick up on only one point of Meyer’s exposition. Even when one
settles on the functional nature of the two components u and v in the
image, there are infinitely many ways to write f = u + v depending on
how much energy one wishes to put in each of these components. This
is completely analogous to K-functional decompositions used in proving
theorems on interpolation of operators. One needs to look at this totality
of all such decompositions to truly understand f . For example, consider
the case where we simply look for decompositions of f = u + v where
u ∈ BV and v ∈ L2. We can give a quantitative description of these
decompositions through the K-functional

K(f, t) := K(f, t;L2,BV) := inf
f=u+v

‖v‖L2 + t|u|BV, t > 0, (1.1)

where the | · |BV is the BV seminorm. For any fixed t > 0, the optimal
decomposition in (1.1) tries to balance the two terms. Thus for t small
it puts more energy into the BV component and less into the L2 com-
ponent. The rate of decrease in K(f, t) as t → 0 tells how nice f is with
respect to this model.

The role of the K-functional is to distinguish between images.
Certainly some images are more complex than others and more apt to
be more difficult to compress. The rate at which a K-functional tends to



6 R. DeVore

0 as t → 0 measures this complexity. Thus, we can use the K-functional
to separate images into classes Kα which are compact sets in our chosen
metric. When classical metrics such as Lp norms are used, then these
classes correspond to finite balls in smoothness spaces. In other words,
using appropriate K-functionals, we can obtain a strata of image classes
Kα reflecting the complexity of images.

1.2.3 Optimal encoding and Kolmogorov entropy

Suppose now that we have decided on the metric to be used to measure
the distortion between two images and suppose we also have our model
classes Kα for the classification of images. We shall assume that the
metric is given by a quasi-norm ‖ · ‖ := ‖ · ‖X on a topological linear
space X. Each of the sets K = Kα is assumed to be a compact subset
in the topology given by ‖ · ‖.

Recall that an encoder E for K is a mapping that sends each f ∈ K

into a bitstream B(f) := BE(f). Associated to E is a decoder D which
takes any bitstream B and associates to it an element DB from X.
Thus given f ∈ K, f̄ := DEf = D(BE(f)) is the compressed image
given by this encoding-decoding pair. This means that the distortion in
the performance of this encoding on a given f is

dE(f) := ‖f − f̄‖ = ‖f −DEf‖. (1.2)

Of course, we are interested in the performance of this encoding not on
just one element f ∈ K but on the entire class. This leads us to define
the distortion for the class K by

dE(K) := sup
f∈K

dE(f). (1.3)

This distortion also depends on the decoder which we do not indi-
cate. (One could become more specific here by always choosing for the
given encoder E and set K the best decoder in the sense of minimiz-
ing the distortion (1.2).) To measure the complexity of the encoding we
use

#(E) := #(E(K)) := sup
f∈K

#(B(f)) (1.4)

which is the maximum number of bits that E assigns to any of the
elements of K.

We are interested in a competition among encoders/decoders to deter-
mine the optimal possible encoding of these classes. Suppose that we are
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given a bit budget n; this means we are willing to allocate a maximum
of n bits in the encoding of any of the elements of K. Then,

dn(K) := inf
#(E)≤n

dE(K) (1.5)

is the minimal distortion that can be obtained for the class K with this
bit budget n.

There is a mathematical description, called Kolmogorov entropy, that
completely determines the optimal performance that is possible for an
encoding of a given class K. Since K is compact in ‖ · ‖, for any given
ε there is a collection of balls B(fi, ε), i = 1, . . . , N , of radius ε centered
at fi ∈ X, such that

K ⊂
N⋃
i=1

B(fi, ε). (1.6)

The smallest number Nε(K) of balls that provide such a cover is called
the covering number of K. The Kolmogorov entropy of K (in the topol-
ogy of X) is then given by

Hε(K) := logNε(K) (1.7)

where here and later log always refers to the logarithm to the base 2.
We fix K and think of Hε(K) is a function of ε. It gives a measure of the
massivity of K. The slower Hε(K) tends to infinity as ε → 0 the more
thin is the set K.

We can reverse the roles of ε and the entropy Hε(K). Namely, given
a positive integer n, let

εn(K) := inf{ε : Hε(K) ≤ n}. (1.8)

The εn(K) are called the entropy numbers of K; they tend to zero as
n → ∞. The faster they tend to zero, the smaller the set K. Notice that
an asymptotic behavior Hε(K) = O(ε−1/α) is equivalent to εn(K) =
O(n−α).

The two notions of optimal distortion and entropy numbers are iden-
tical:

εn(K) = dn(K). (1.9)

The proof is easy. Suppose E is an optimal encoder using n bits (if
no such optimal encoder exists one modifies the following argument
slightly). For each bitstream B = B(f), f ∈ K, let fB := D(B) which is
an element of X. Then, taking ε = dn(K), we have f ∈ B(fB , ε). Since
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there are at most 2n distinct bitstreams B(f), f ∈ K, we obtain that
Hε ≤ n and hence εn(K) ≤ ε = dn(K). We can reverse this inequality
as follows. Suppose that n is given and ε = εn(K). We assume that
Hε(K) ≤ n. (We actually only know Hρ(K) ≤ n for all ρ > ε so that
our assumption is not necessarily valid but we can easily modify the
argument when εn(K) is not attained.) Let B(fi, ε), i = 1, . . . , Hε(K),
be a minimal covering for K with balls of radius ε. We associate to each
i the binary bits in the binary representation of i. We define the encoder
E as follows. If f ∈ K, we choose a ball B(fi, ε) that contains f (this is
possible because these balls cover K) and we assign to f the bits in the
binary representation of i. The decoder takes the bitstream, calculates
the integer i which has these bits in its binary expansion, and assigns
the decoded element to be the center of the ball Bi. This encoding has
distortion ≤ ε = εn(K) and so we have dn(K) ≤ εn(K).

The above discussion shows that the construction of an optimal en-
coder with distortion ε for the set K is the same as finding a minimal
covering for K by balls of radius ε. Unfortunately, such coverings are
usually impossible to find. For this reason, and others illuminated be-
low, this approach is not very practical for encoding. On the other hand,
it gives us a benchmark for the performance of encoders. If we could find
an encoder which is nearly optimal for all the classes K of interest to us,
then we could rest assured that we have done the job in the context in
which we have framed the problem. We shall discuss in the next section
how one could construct an encoder with these properties for a large
collection of compact sets in standard metrics like Lp, 1 ≤ p ≤ ∞.

1.2.4 Wavelet bases and compact subsets of Lp

A set K is compact in Lp provided that the modulus of smoothness

ω(f, t)p := sup
|h|≤t

‖∆h(f, ·)‖Lp(Ω), t > 0 (1.10)

for all of the elements f ∈ K have a continuous majorant ωK

sup
f∈K

ω(f, t)p ≤ ωK(t) (1.11)

where ωK(0) = 0. The rate at which ωK tends to zero at 0 measures the
compactness of K. Thus the natural compact sets in Lp are described
by common smoothness conditions. This leads to the Sobolev and Besov
smoothness spaces. For example, the Besov spaces are defined by con-
ditions on the higher order moduli of smoothness of f ∈ Lp. We denote



1. Some Fundamental Issues 9

these Besov spaces by Bs
q(Lp(Ω)) where p is the Lp space in which we are

measuring smoothness. The parameter s > 0 gives the order of smooth-
ness much like the number of derivatives. The parameter 0 < q ≤ ∞ is
a fine tuning parameter which makes subtle distinctions between these
spaces. We do not make a precise description of these spaces at this
juncture but we shall give a description of these spaces in a moment
using wavelet bases.

The reader is probably by now quite familiar with wavelet bases. We
shall limit ourselves to a few remarks which will serve to describe our
notation. When working on the domain R, a wavelet basis is given by
the shifted dilates ψλ := ψ(2j · −k), λ = (j, k), of one fixed function
ψ. When moving to R

d, one needs the shifted dilates of a collection ψe

of 2d − 1 functions; the parameter e is usually indexed on the set E of
nonzero vertices of the unit cube [0, 1]d. Thus the wavelets are indexed
by three parameters λ = (j, k, e) indicated frequency (j), location (k)
and type (e). When working on a finite domain, two adjustments need to
be made. The first is that the range of j is from j0 ≤ j < ∞. The coarsest
level j = j0 corresponds to scaling functions; all other j correspond to
the actual wavelets. For notational convenience, we shall take j0 = 0 in
what follows. The second adjustment is that near the boundary some
massaging has to be made in defining ψλ.

Thus, a wavelet basis on a finite domain Ω in R
d is a collection Ψ =

{ψλ : λ ∈ J } of functions ψλ. The indices λ encode scale, spatial location
and the type of the wavelet ψλ. We will denote by |λ| the scale associated
with ψλ. We shall only consider compactly supported wavelets, i.e., the
supports of the wavelets scale as follows

Sλ := suppψλ, c02−|λ| ≤ diamSλ ≤ C02−|λ|, (1.12)

with c0 and C0 > 0 absolute constants. The index set J has the follow-
ing structure J = Jφ ∪ Jψ where Jφ is finite and indexes the scaling
functions on the fixed coarsest level 0. Jψ indexes the “true wavelets”
ψλ with |λ| > 0. From compactness of the supports we know that at
each level, the set Jj := {λ ∈ J : |λ| = j} is finite. In fact, one has
#Jj ∼ 2jd with constants depending on the underlying domain.

There is a natural tree structure associated to wavelet bases. A node
in this tree corresponds to all λ = (j, k, e), e ∈ E, with j, k fixed. In the
case the domain is R

d, each such node has 2d children corresponding
to the indices (j + 1, 2(k + e)) where e ∈ {0, 1}d. In other words, the
children all occur on the next dyadic level. In the case of Haar functions,
the supports of the wavelets corresponding to children are contained
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in those corresponding to a given parent. This is modified on domains
because only some of the indices are used on the domain.

Wavelet bases have many remarkable properties. The first that we
want to pick up on is that Ψ is an unconditional basis for many function
spaces X. Consider first the case that X = L2(Ω). Then every f ∈ L2(Ω)
has a unique expansion f =

∑
fλψλ and there exist some constants c

and C independent of f such that

c‖(fλ)λ∈J ‖�2 ≤ ‖
∑
λ∈J

fλψλ‖L2(Ω) ≤ C‖(fλ)λ∈J ‖�2 . (1.13)

In the case of Lp spaces, p 	= 2, the norm ‖f‖Lp(Ω) is not so direct and
must be made through the square function. However, if we normalize
the basis in Lp, ‖ψλ‖Lp(Ω) = 1, then the space Bp of functions f =∑

λ∈J fλψλ satisfying

‖f‖Bp
:= ‖(fλ)‖�p (1.14)

is very close to Lp(Ω) and can be used as a poor man’s substitute in many
instances. By the way, Bp is an example of a Besov space Bp = B0

p(Lp)
where the smoothness order is zero.

Besov spaces in general have a simple description in terms of wavelet
coefficients. If f =

∑
λ∈J fλψλ with the ψλ normalized in Lp, ‖ψλ‖Lp(Ω) =

1, then

‖h‖Bs
q (Lp(Ω)) :=


(∑∞

j=0 2jsq
(∑

|λ|=j |fλ|p
)q/p

)1/q

, 0 < q < ∞,

supj≥0 2js
(∑

|λ|=j |fλ|p
)1/p

, q = ∞.

(1.15)

Suppose that we fix 1 ≤ p ≤ ∞ and agree to measure the distortion
of images in the Lp(Ω) norm. Which of the Besov spaces are embedded
in Lp(Ω) and which are compactly embedded? This is easily answered
by the Sobolev embedding theorem. The unit ball of the Besov space
Bs

q(Lτ (Ω)) is a compact subset if and only if 1
τ < s

d − 1
p . Notice that

this condition does not depend on q. When 1
τ = s

d − 1
p (the so-called

critical line in the Sobolev embedding) then the Besov space Bs
q(Lτ (Ω))

is embedded in Lp(Ω) for small enough q but these embeddings are not
compact.



1. Some Fundamental Issues 11

1.2.5 Near optimal encoding in Lp, 1 ≤ p ≤ ∞
Let us fix the metric of interest to us to be one of the Lp norms with
1 ≤ p ≤ ∞. If we derive metrics that seem better measures of distortion
for images then we would try to repeat the exercise of this section for
these metrics.

We seek an encoder E with the following properties. First the encoder
should be applicable to any function in Lp; such an encoder is said to
be universal. We would like the encoder to give an infinite bitstream;
giving more bits from the infinite bitsream would give a finer resolution
of f . Such an encoder is called progressive. Finally, we would like the
encoder to be near optimal for the compact sets that are unit balls of
the Besov spaces in the following sense. If Enf denotes the first n bits
of Ef , then we would like that for each such compact set K we have

‖DnEnf − f‖Lp(Ω) ≤ CKεn(K), f ∈ K, n = 1, 2, . . . , (1.16)

with CK a constant depending only on K. This means that for these
compact sets the encoder performs (save for the constant CK) as well as
any encoder.

It is quite amazing that there is a simple construction of encoders
with these three desirable properties using wavelet decompositions. To
describe these encoders, it is useful to keep in mind the case when the
metric is L2 and the wavelet basis is an orthonormal system. The general
case follows the same principles but the proofs are not as transparent.
Suppose then that X = L2(Ω) and f ∈ X with ‖f‖X ≤ 1 has an
orthogonal wavelet expansion f =

∑
λ∈J fλψλ. To start the encoding,

we would like to choose a few terms from this wavelet expansion which
best represent f . The best choice we can make is to choose the largest
terms since the remainder is always the sum of squares of the remaining
coefficients.

Suppose η > 0 and Λη := Λη(f) := {λ : |fλ| ≥ η} is the set of coeffi-
cients obtained by thresholding the wavelet coefficients at the threshold
η. Note that Λη = ∅ when η > 1. We would like to encode the infor-
mation about the set Λη and the coefficients fλ, λ ∈ Λη. There are two
issues to overcome. The first is that it is necessary to encode the posi-
tions of the indices in Λη. At first glance, these positions could occur
anywhere which would cost possibly an arbitrarily large bit budget to
encode them. But it turns out that for the sets K on which we want
optimality of the encoding, namely K a unit ball of a Besov space, these
positions align themselves at low frequencies. In fact, it can be proved [5]
that whenever f ∈ K one can find a tree T which contains Λη and is of
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comparable size to Λη. This motivates us to define for each f ∈ L2(Ω),
Tη = Tη(f) as the smallest tree which contains Λη(f). What we gain in
going to a tree structure (which could be avoided at the expense of more
complications and less elegance) is that it is easy to encode the positions
of a tree using at most 2#(Tη) bits. Indeed, one simply encodes the tree
from its roots by assigning a bit 1 if the child of a current member λ of
Tη is in Tη and zero otherwise; see [6, 5] for details.

The second issue to overcome is how to encode the coefficients fλ for
λ ∈ Tη. To encode just one real number we need an infinite number
of bits. The way around this is the idea of quantization. In the present
context, the (scalar) quantization is easy. Any real number y with |y| ≤ 1
has a binary representation

y = (−1)s(y)
∞∑
i=0

bi(y)2−i (1.17)

with the bi(y) ∈ {0, 1} and the sign bit s(y) defined as 0 if y > 0 and 1
otherwise. Receiving the bits s(f), b0(f), . . . , bm(f), we can approximate
y by the partial sum ȳ = (−1)s(y)

∑m
i=0 bi(y)2

−i with accuracy

|y − ȳ| ≤ 2−m. (1.18)

We apply this quantization to the coefficients fλ, λ ∈ Tη. How should
we choose m? Well in keeping with the strategy for thresholding, we
would only want the residual y − ȳ to be under the threshold η. Thus,
if η = 2−k, we would choose the quantization so that m = k.

There is only one other thing to note before we define our encoding.
If η is a current threshold level and η′ < η is a new threshold then the
tree Tη′ is a growing of the tree Tη. Keeping this in mind, let us take
thresholds ηk = 2−k, k = 0, 1, . . . and obtain the corresponding trees
T k := Tηk

, k = 0, 1, . . . . To each f ∈ L2(Ω), we assign the following
bitstream:

P0(f), S0(f), B0(f), P1(f), S1(f), B1(f), B1,0(f), . . . (1.19)

Here, P0(f) denotes the bits needed to encode the positions in the tree
T 0(f). The bits S0(f) are the sign bits of the coefficients corresponding
to indices in T 0(f). The set B0(f) gives the first bits b0(fλ) of the
coefficients fλ corresponding to the λ ∈ T 0. When we advance k to the
value 1, we assign in P1 the bits needed to encode the new positions, i.e.
the positions in T 1 \T 0. Then S1(f) are the sign bits for the coefficients
corresponding to these new positions. The bits B1(f) are the b1 bits
(which correspond to 2−1 in the binary expansion) of the coefficients
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corresponding to these new positions. Note that each new coefficient has
absolute value ≤ 1/2 so the bit b0 = 0 for these coefficients. The set
B1,0(f) gives the second bit (i.e. the b1 bit) in the binary expansion of
the fλ, λ ∈ T 0. The reason we add these bits is so that each coefficient,
whether it is from T 0 or T 1 is resolved to the same accuracy (i.e. accuracy
1/2 at this stage). The process continues as we increase k. We send
position bits to identify the new positions, a sign bit and a lead bit for
each coefficient corresponding to a new position, and then one bit from
the binary expansion of all the old positions.

We denote by E the mapping which takes a given f ∈ L2(Ω) into the
bitstream (1.19). For each k ≥ 0, we let Ek be the encoder obtained
from E by truncating at stage k. Thus Ek(f) is the finite bitstream

P0(f), S0(f), B0(f), . . . , Pk(f), Sk(f), Bk(f), Bk,0(f), . . . , Bk,k−1(f)

(1.20)

Let us say a few words about the decoding of such a bitstream. When a
receiver obtains a bitstream of the form (1.20), he knows the first bits will
give the positions of a tree of wavelet indices. From the form of the tree
encoding, he will know when the bits of P0 have ended; see [5]. At this
stage he knows the number of elements in the tree T 0. He therefore knows
the next #(T 0) bits will give the signs of the corresponding coefficients
and the following #(T 0) bits will be the binary bits for position 0 in the
binary expansion of each of these coefficients. Then, the process repeats
itself at level 1.

The encoder E has all of the properties we want. It is universal, i.e.
defined for each f ∈ L2(Ω). It is progressive: as we receive more bits
we get a finer resolution of f . Finally it is near optimal in the following
sense. If K is the unit ball of any of the Besov spaces which are compactly
embedded into L2(Ω), then for any k the encoder Ek is near optimal in
the sense of (1.16).

While we have discussed the encoder E in the context of measuring
distortion in L2, the same ideas apply when distortion is measured in
Lp for any 1 ≤ p ≤ ∞. The only alteration necessary is to work with
the wavelet decomposition with wavelets normalized in Lp(Ω) which of
course alters the coefficients as well.

1.3 Analog to Digital (A/D) conversion

As we have previously observed, the digital format is preferred for rep-
resenting signals because of its robustness. However, many signals are
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not digital but rather analog in nature; audio signals, for instance, cor-
respond to functions f(t), modeling rapid pressure oscillations, which
depend on the “continuous” time t (i.e. t ranges over R or an interval
in R, and not over a discrete set), and the range of f typically also fills
an interval in R. For this reason, the first step in any digital processing
of such signals must consist in a conversion of the analog signal to the
digital world, usually abbreviated as A/D conversion. Note that at the
end of the chain, after the signal has been processed, stored, retrieved,
transmitted, . . . , all in digital form, it needs to be reconverted to an
analog signal that can be understood by a human hearing system; we
thus need a D/A conversion there.

There are many proposed algorithms for A/D conversion. As in our
discussion the last section, we would like to understand how we could
decide which of these algorithms is optimal for encoding/decoding. As in
that case, we have two initial issues: determine the metric to be used to
measure distortion and the class of signals that are to be encoded. The
metric issue is quite similar to that for images except now the human
visual system is replaced by the human auditory system. In fact such
considerations definitely play a role in the design of good algorithms
but as of yet we are aware of no mathematical metric which is used to
model the auditory system in the mathematical analysis of the encoding
problem. The two metrics usually utilized in distortion analysis are the
L2(R) and L∞(R) norms.

Concerning model classes for auditory signals, it is customary to model
audio signals by bandlimited functions, i.e. functions f ∈ L2(R) for which
the Fourier transform

f̂(ξ) =
1√
2π

∫ ∞

−∞
f(t)e−iξtdt

vanishes outside an interval |ξ| ≤ Ω. The bandlimited model is justified
by the observation that for the audio signals of interest to us, observed
over realistic intervals time intervals [−T, T ], ‖χ|ξ|>Ω(χ|t|≤T f)∧‖2 is neg-
ligible compared with ‖χ|ξ|≤Ω(χ|t|≤T f)∧‖2 for Ω  2π · 20, 000 Hz.

So in proceeding further, let us agree that we shall use either the L2

or L∞ metric and the class of functions we shall consider are those that
are bounded and bandlimited. We define S to be the collection of all
functions in L2 ∩ L∞ whose L2 norm is ≤ 1 and L∞ norm is ≤ a < 1
with a > 0 fixed and whose Fourier transform vanishes outside of [−π, π].
The choice of a and π are arbitrary; indeed given any f ∈ L2∩L∞ which
is bandlimited, we can dilate f and then multiply by a constant to arrive
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at an element of S. Thus any encoders derived for S can easily be applied
to general f .

The class S has a lot of structure. There is a well-known sampling
theorem that says that any function f ∈ S is completely determined by
its values on Z. Indeed, we can recover f from the formula

f(t) =
∑
n∈Z

f(n)
sin(t− n)
(t− n)

=
∑
n∈Z

f(n)sinc(t− n) . (1.21)

This formula is usually referred to as the Shannon-Whitaker formula.
The sampling rate of 1 (called the Nyquist rate) arises because f̂ vanishes
outside of [−π, π]. The sinc functions appearing on the right side of
(1.21) form an orthonormal system in L2. Changing the support interval
from [−π, π] to [−Aπ,Aπ] would correspond to Nyquist sampling rate
of 1/A.

The proof of (1.21) is simple and instructive. We can write

f̂ = F · χ (1.22)

where F :=
∑

k∈Z
f(·+2kπ) is the periodization of f̂ and χ is the charac-

teristic function of [−π, π]. The Fourier coefficients of F are F̂ (n) = f(n)
and so F =

∑
n∈Z

f(n)einω. Substituting that into (1.22) and inverting
the Fourier transform we obtain (1.21) because the inverse Fourier trans-
form of χ is the sinc function.

With the formula (1.21) in hand, it seems that our quest for an optimal
encoder is a no brainer. We should simply quantize the Nyquist samples
f(n). Given a real number y ∈ (−1, 1), we can write as before

y = (−1)s(y)
∞∑
i=1

bi(y)2−i (1.23)

where (−1)s(y), s(y) ∈ {0, 1}, is the sign of y and the bi are the binary
bits of |y|. If we pick a number m > 0, the quantized values

ȳ = (−1)s(y)
m∑
i=1

bi(y)2−i (1.24)

can be described by m bits and |y − ȳ| ≤ 2−m. If we apply this to
the samples f(n), n ∈ Z, we have an encoding of f that uses m bits
per Nyquist sample. Encoders built on this simple idea are called Pulse
Code Modulation (PCM). However, they are not the encoders of choice
in A/D conversion. Our excursion into this topic in this section is to
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understand why this is the case. Can we explain mathematically why
engineers do not prefer PCM and better yet to explain the advantages
of what they do prefer.

To begin the story, we have to dig a bit deeper into what we really
mean by an encoding of a signal. The formula (1.21) requires an infinite
number of samples to recover f and therefore apparently an infinite
number of bits. Of course, we cannot compute, store, or transmit an
infinite bitstream. But fortunately, we only want to recover f on a finite
time interval which we shall take to be [0, T ]. Even then, the contribution
of samples far away from [0, T ] is large. Indeed, if we incur a fixed error
δ in representing each sample, then the total error on [0, T ] is possibly
infinite since the sinc functions decay so slowly:

∑
n∈Z

|sinc(t−n)| = ∞.
There is a way around this by sampling the function f at a slightly

higher rate. Let λ > 1 and let gλ be a C∞ function such that ĝλ = 1 on
[−π, π] and ĝλ vanishes outside of [−λπ, λπ]. Returning to our derivation
of (1.21), using ĝλ in place of χ, we obtain the representation

f(t) =
1
λ

∑
n∈Z

f
(n

λ

)
gλ

(
t− n

λ

)
. (1.25)

Because g is smooth with fast decay, this series now converges absolutely
and uniformly; moreover if the f

(
n
λ

)
is replaced by f̃n = f

(
n
λ

)
+ εn in

(1.25), with |εn| < ε, then the difference between the approximation
f̃(x) and f(x) can be bounded uniformly:

|f(t) − f̃(t)| ≤ ε
1
λ

∑
n∈Z

∣∣∣g (
t− n

λ

)∣∣∣ ≤ εCg (1.26)

where Cg = λ−1‖g′‖L1 + ‖g‖L1 does not depend on T . Oversampling
thus buys the freedom of using reconstruction formulas, like (1.25), that
weigh the different samples in a much more localized way than (1.21)
(only the f

(
n
λ

)
with

∣∣t− n
λ

∣∣ “small” contribute significantly). In prac-
tice, it is customary to sample audio signals at a rate that is about 10 or
20% higher than the Nyquist rate; for high quality audio, a traditional
sampling rate is 44,000 Hz.

One can show that the above idea of sampling slightly higher than the
Nyquist rate and then quantizing the samples using binary expansion
peforms at the Kolmogorov entropy rate for the class S (at least when
T is large). This was first proved in [13] and later repeated in [10]. We
spare the details and refer the reader to either of these two papers. So it
seems now that the matter of encoding is closed by using such a modified
PCM encoding. But I have surprising news: engineers do not prefer this
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method in practice. In fact they prefer another class of encoders known
as Sigma Delta Modulation which we shall describe below. The mystery
we still want to uncover is why they prefer these methods.

To explain the Sigma-Delta story, we return to the idea of oversam-
pling which is at the heart of these encoders. We have seen the benefits
of slight oversampling: sampling slightly higher than the Nyquist rate
and giving several bits for each sample performs at Kolmogorov entropy
rates. Sigma-Delta encoders go to the other extreme. They sample at a
rate λ > 1 which is very large but then allot only one bit to each sample.
Thus, to each sample f(nλ ) they assign a single bit qλn ∈ {−1, 1}. On the
surface this is very counter intuitive. If we think of that one bit as giving
an approximation to the sample f(nλ ) then we cannot do very well. In
fact the best we can do is give the sign of the sample. But the Sigma-
Delta encoders do not do this. Rather, they make their bit assignment
to f(nλ ) based on the past samples f(mλ ), m < n, and the bits that have
already been assigned to them.

Let us describe this in more detail by considering the simplest of
these encoders. We introduce an auxiliary sequence (un)n∈Z (sometimes
described as giving the “internal state” of the Sigma-Delta encoder)
iteratively defined by

un = un−1 + f
(n

λ

)
− qλn

qλn = sign
(
un−1 + f

(n

λ

))
,

(1.27)

and with an “initial condition” u0 = 0. The qλn are the single bit we
assign to each sample. In circuit implementation, the range of n in (1.27)
is n ≥ 1. However, for theoretical reasons, we view (1.27) as defining
the un and qn for all n. At first glance, this means the un are defined
implicitly for n < 0. However, it is possible to write un and qn directly
in terms of un+1 and fn+1 when n < 0; see [9].

The role of the auxiliary sequence (un) is to track the difference be-
tween the running sums of the f(nλ ) and those of the qλn. It is easy to
see that the choice for qλn used in (1.27) keeps the difference of these
running sums to be ≤ 1. For this, one proves simply by induction that
the |un| ≤ 1, for all n ∈ Z.

Of course, we need to describe how we decode the bit stream qλn. For
this we use (1.25) with f(nλ ) replaced by qλn:

f̄ :=
1
λ

∑
n∈Z

qλngλ(n− n

λ
). (1.28)
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At this point, we have no information about the accuracy at which f̄

represents f . However, simple estimates are available using summation
by parts. For any t ∈ R, we have∣∣∣∣∣f(t) − 1

λ

∑
n

qλngλ

(
t− n

λ

)∣∣∣∣∣
=

1
λ

∣∣∣∣∣∑
n

(
f

(n

λ

)
− qλn

)
gλ

(
t− n

λ

)∣∣∣∣∣
=

1
λ

∣∣∣∣∣∑
n

un

(
gλ

(
t− n

λ

)
− gλ

(
t− n + 1

λ

))∣∣∣∣∣
≤ 1

λ

∑
n

∣∣∣∣gλ (
t− n

λ

)
− gλ

(
t− n + 1

λ

)∣∣∣∣
≤ 1

λ

∑
n

t−n
λ∫

t−n+1
λ

|g′λ(y)|dy =
1
λ
‖g′λ‖L1 ≤ C

λ
.

where we have used the fact that |un| ≤ 1, for all n ∈ Z.
There is good news and bad news in the last estimate. The good news

is that we see that f̄ approximates f better and better as the sampling
rate λ increases. The bad news is that this decay O( 1

λ ) is far inferior
to the exponential rate provided by PCM. Indeed, for an investment of
m bits per Nyquist sample PCM provides distortion O(2−m) whereas
for an investment of λ bits per Nyquist sample, Sigma-Delta provides
distortion O(1/λ). So at this stage, we still have no clue why Sigma-Delta
Modulators are preferred in practice.

It is possible to improve the rate distortion for Sigma-Delta encoding
by using higher order methods. In [9], a family of such encoders were
constructed. The encoder of order k is proven to give rate distortion
O(λ−k). If one allows k to depend on λ, one can derive error bounds
of the order O(2−(log λ)2) – still far short of the exponential decay of
PCM. The pursuit of higher performing encoders has led to a series of
interesting questions concerning the optimal distortion possible using
single bit encoders. The best known bound (e−.07λ) for such encoders
was given by Güntürk [12], Calderbank and Daubechies [4] show that
it is not possible to obtain the rate (2−λ) of PCM. In any case, none
of these new methods are used in practical encoding and they do not
explain the penchant for the classical Sigma-Delta methods.

A couple of years ago, Ingrid Daubechies, Sinan Güntürk, and I were
guests of Vinay Vaishampayan at Shannon Labs of AT&T for a one
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month think tank directed at understanding the preferences for Sigma-
Delta Modulation. Shannon Labs is an oasis for Digital Signal Processing
and its circuit implementation. We were fortunate to have many lunch
with experts in Sigma-Delta methods asking them for their intuition
why these methods are preferred in practice. This would be followed
by an afternoon to put a mathematical justification behind their ideas.
Usually, these exercises ended in futility but what became eventually
clear is that the circuit implementation of Sigma-Delta Modulation is at
the heart of the matter.

The hardware implementation of encoders such as PCM or Sigma-
Delta Modulation requires building circuits for the various mathematical
operations and the application of quantizers Q such as the sign function
used in (1.27). Our mathematical analysis thus far has assumed that
these operations are made exactly. Of course, this is far from the case in
circuit implementation.

Let us suppose for example that the sign function used in (1.27) is
replaced at iteration n by a non-ideal quantizer

Qn(x) = sign(x) for |x| ≥ τ

|Qn(x)| ≤ 1 for |x| < τ.
(1.29)

Thus, the quantizer Qn gives the right value of sign when |x| ≥ τ but may
not when |x| < τ . Here τ would depend on the precision of the circuit
which of course is related to the dollar investment we want to make
in manufacturing such circuits. Note that we allow the quantization to
vary with each application but require the overall precision τ . When we
implement the Sigma-Delta recursion with this circuitry, we would not
compute the qλn of (1.27) but rather a new sequence q̄n given by{

ūn = ūn−1 + f
(
n
λ

)
− q̄n

q̄n = Qn

(
ūn−1 + f

(
n
λ

))
,

(1.30)

Thus, the error analysis given above is sort of irrelevant and needs to
be replaced by one involving the q̄n. Recall that our analysis above rested
on showing the state variables un are uniformly bounded. It turns out
that in the scenario the new state variables ūn are then still bounded,
uniformly, independently of the detailed behavior of Qn, as long as (1.29)
is satisfied. Namely, we have

Remark 1.1 Let f ∈ S, let ūn, q̄n be as defined in (1.30), and let Qn

satisfy (1.29) for all n. Then |ūn| ≤ 1 + τ for all n ≥ 0.

We refer the reader to [9] for the simple proof. Note that the remark
holds regardless of how large τ is; even τ � 1 is allowed.
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We now use the inaccurate bits q̄n to calculate f̄ : The same summation
by parts argument that derived (1.29) can be applied to derive the new
error estimate:

|f(t) − f̄(t)| ≤ (1 + τ)‖g′λ‖L1

λ
. (1.31)

Thus, except for the fact that the constants increase slightly, the
bounds on the accuracy of the encoder does not change. The precision
that can be attained is not limited by the circuit imperfection: by choos-
ing λ sufficiently large, the approximation error can be made arbitrarily
small.

The same is definitely not true for the binary expansion-type schemes
such as PCM. To see this, let us see how we quantize to obtain the
binary bits of a number y ∈ (−1, 1). To find the sign bit of y, we use the
quantizer Q as before. But to find the remaining bits, we would use

Q1(z) :=
{

0, z ≤ 1
1, z > 1.

(1.32)

Once the sign bit b0 is found then, we define u1 := 2b0y = 2|y|. The
bit b1 is given by b1 := Q1(u1). Then the remaining bits are computed
recursively as follows: if ui and bi have been defined, we let

ui+1 := 2(ui − bi) (1.33)

and

bi+1 := Q1(ui+1). (1.34)

In circuit implementations, the quantization would not be exact. Sup-
pose for example, we use an imprecise quantizer (1.29) to find the sign
bit of y. Then, taking a y ∈ (−τ, τ), we may have the sign bit of y in-
correct. Therefore, ȳ and y do not even agree in sign so |ȳ− y| could be
as large as τ no matter how the remaining bits are computed. The mis-
take made by the imperfect quantizer cannot be recovered by computing
more bits, in contrast to the self-correcting property of the Sigma-Delta
scheme.

So there it is! This is a definite advantage in Sigma-Delta Modulation
when compared with PCM. In order to obtain good precision overall with
the binary quantizer, one must therefore impose very strict requirements
on τ , which would make such quantizers very expensive in practice (or
even impossible if τ is too small). On the other hand [10], Sigma-Delta
encoders are robust under such imperfections of the quantizer, allowing
for good precision even if cheap quantizers are used (corresponding to
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less stringent restrictions on τ). It is our understanding that it is this
feature that makes Sigma-Delta schemes so successful in practice.

We have shown again where the understanding and formulation of fun-
damental questions in computation is vital to understanding numerical
methods. In this case of A/D conversion, it not only gives an understand-
ing of the advantages of the current state of the art encoders, it also leads
us to a myriad of questions at the heart of the matter [9, 10, 12]. We
shall pick up on just one of these.

We have seen that oversampling and one bit quantization allow error
correction in the encoding but the bit distortion rate in the encoding is
not very good. On the other hand, PCM has excellent distortion rate
(exponential) but no error correction. It is natural to ask whether we
can have the best of both worlds: exponential decay in distortion and
error correction. The key to answering this question lies in the world of
redundancy. We have seen the effect of the redundancy in the Sigma-
Delta Modulation which allowed for error correction. It turns out that
other types of redundancy can be utilized in PCM encoders. The essen-
tial idea is to replace the binary representation of a real number y by a
redundant representation.

Let 1 < β < 2 and γ := 1/β. Then each y ∈ [0, 1] has a representation

y =
∞∑
i=1

biγ
i (1.35)

with

bi ∈ {0, 1}. (1.36)

In fact there are many such representations. The main observation that
we shall utilize below is that no matter what bits bi, i = 1, . . . ,m, have
been assigned, then, as long as

y − γm+1

1 − γ
≤

m∑
i=1

biγ
i ≤ y, (1.37)

there is a bit assignment (bk)k>m, which, when used with the previously
assigned bits, will exactly recover y.

We shall use this observation in an analogous fashion to the algorithm
for finding the binary bits of real numbers, with the added feature of
quantization error correction.

These encoders have a certain offset parameter µ whose purpose is
to make sure that even when there is an imprecise implementation
of the encoder, the bits assigned will satisfy (1.37); as shown below,
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introducing µ corresponds to carrying out the decision to set a bit to 1
only when the input is well past its minimum threshold. We let Q1 be
the quantizer of (1.32).

The beta-encoder with offset µ. Let µ > 0 and 1 < β < 2. For
y ∈ [0, 1], we define u1 := βy and b1 := Q1(u1−µ). In general, if ui and
bi have been defined, we let

ui+1 := β(ui − bi), bi+1 := Q1(ui+1 − µ). (1.38)

It then follows that

y −
m∑
i=1

biγ
i = y −

m∑
i=1

γi(ui − γui+1)

= y − γu1 + γm+1um+1 ≤ γm+1‖u‖l∞ , (1.39)

showing that we have exponential precision in our reconstruction, pro-
vided the |ui| are uniformly bounded. It is easy to prove [10] that we
do indeed have such a uniform bound. Let’s analyze the error correcting
abilities of these encoders when the quantization is imprecise.

Suppose that in place of the quantizer Q1, we use at each iteration in
the beta-encoder the imprecise quantizer

Q̃1(z) :=


0, z ≤ 1 − τ

1, z > 1 + τ

∈ {0, 1}, z ∈ (−τ, τ).
(1.40)

In place of the bits bi(y), we shall obtain inaccurate bits b̃i(y) which are
defined recursively by ũ1 := βy, b̃1 := Q̃1(ũ1 − µ) and more generally,

ũi+1 := β(ũi − b̃i), b̃i+1 := Q̃1(ũi+1 − µ). (1.41)

Theorem 1.1 Let δ > 0 and y ∈ [0, 1). Suppose that in the beta-encoding
of y, the quantizer Q̃1 is used in place of Q1 at each occurrence, with
the values of τ possibly varying but always satisfying |τ | ≤ δ. If µ ≥ δ

and β satisfies

1 < β ≤ 2 + µ + δ

1 + µ + δ
, (1.42)

then for each m ≥ 1, ỹm :=
∑m

k=1 b̃kγ
k satisfies

|y − ỹm| ≤ Cγm, m = 1, 2, . . . , (1.43)

with C = 1 + µ + δ.

The simple proof of this theorem is given in [10].
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The beta encoder can be used in place of binary encoder in a PCM
type encoding. We sample at slightly higher than Nyquist rate, i.e., λ
is slightly larger than one. For each sample f(n/λ), we use the beta
encoder to determine m bits in the beta expansion of this sample. The
corresponding bitstream will therefore assign slightly more than m bits
per Nyquist sample. Decoding these bits gives an approximation f̄n to
f(n/λ). Even if the quantization is not exact, we will have the accuracy

|f(n/λ) − f̄n| ≤ Cβm.

Therefore, the signal f̄ reconstructed using these bits will have exponen-
tial accuracy as well:

|f(t) − f̄(t)| ≤ Cβm, t ∈ R. (1.44)

1.4 Adaptive methods for PDEs

The third and last topic we wish to engage concerns the numerical
computation of solutions to PDEs. Given such an equation, how can
we decide if a given numerical method is best possible? We shall see
that there are three intertwining ingredients here: approximation the-
ory, regularity theorems for PDEs, and analysis of the given numerical
method.

Any numerical method can be viewed as a form of approximation.
In classical Finite Element Methods (FEM), the approximation tool is
piecewise polynomials subordinate to partitions of the domain for the
PDE. The role of approximation theory is to tell us what we can expect
as a best performance using such an approximation tool. It assumes that
the solution is known to us in its analysis of performance and therefore
does not apply directly to our unknown solution. The usual form of
an approximation theorem is to characterize precisely which functions
are approximated with a specified order by the approximation tool. For
example, if n is the number of parameters used in the approximation,
then the typical theorem says that a function can be (best) approxi-
mated with an error O(n−s) if and only if f is in a certain smoothness
space As.

To use such approximation theorems as a gauge of the performance
of the numerical method, we need to know in which smoothness space
As the solution lies. That is, we want to know the largest s such that
the solution u is in As. This is the role of regularity theorems for PDEs.
The correct form for these theorems is a statement that says whenever
the forcing data of the problem has certain properties then the solution
lies in As for certain values of s.
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The approximation and regularity theory tells us the optimal perfor-
mance we can expect for our numerical method. However, they do not
give us an actual numerical method since they usually use full informa-
tion about u which is not available to us. So the third leg is to construct
numerical methods which perform at this optimal performance. This
entails not only the construction of the numerical method but also a
rigorous analysis to establish its convergent rates.

We shall illustrate this trifecta by considering a very simple problem:
the solution of Laplace’s equation on a polygonal domain Ω in R

2. Here
we shall consider numerical methods of two distinct types. The first
proceeds by specifying in advance the numerical method to be used. In
the case of Finite Element Methods this means that a sequence (Pn)
of triangulations of Ω are prescribed in advance. Typically, Pn+1 is a
uniform refinement of Pn. The solution u of the PDE is approximated
by a piecewise polynomial subordinate to the partition Pn. When higher
accuracy in the approximation is needed then n is increased.

There is a second class of numerical methods which does not set the
full numerical scheme in advance but rather makes decisions on the run.
In the case of Finite Element Methods, after an approximation to u

has been made, the method examines the residual to decide what the
new triangulation should be. Typically, some triangular cells are refined
and others are not. These methods are called adaptive methods and we
shall be interested in answering two question about their performance.
The first is whether they provide any advantage over their non-adaptive
counterparts? The second is how can we decide when an adaptive method
is optimal?

1.4.1 Elliptic problems

We shall restrict our discussion to the Poisson problem

−∆u = f in Ω, u = 0 on ∂Ω, (1.45)

where Ω is a polygonal domain in R
2 and ∂Ω is its boundary. Our goal is

to draw out the type of questions that should be asked when evaluating
a numerical method for such elliptic problems.

In order to be able to work with the least smoothness requirements on
approximations to u it is best to formulate (1.45), not in classical terms,
but rather in its weak formulation. For this we introduce the Sobolev
space H1

0 (Ω) of functions which vanish on the boundary ∂Ω of Ω and
have weak derivatives of first order in L2(Ω). The weak formulation of
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(1.45) is to find u ∈ H1
0 (Ω) such that

a(u,w) = (f, w), w ∈ H1
0 (Ω), (1.46)

where a(y, w) := (∇y,∇w), with (y, w) = (y, w)Ω :=
∫
Ω

ywdx, is a

quadratic form on H1
0 (Ω). Here f can be any distribution in H−1(Ω).

We use the notation

|||w|||2 := a(w,w) = ‖∇w‖2
L2(Ω) (1.47)

to denote the energy norm which is the natural norm in which to measure
the performance of numerical methods. By Poincaré’s inequality there
exists a constant cΩ, depending on Ω, such that for any w ∈ H1

0 (Ω),

cΩ‖w‖H1(Ω) ≤ |||w||| ≤ ‖w‖H1(Ω), (1.48)

where ‖w‖2
H1(Ω) = ‖w‖2

L2(Ω) + ‖∇w‖2
L2(Ω).

1.4.2 Newest vertex subdivision

The numerical methods we shall discuss are those which approximate the
solution u of (1.46) by piecewise linear functions on triangular partitions
of the polygonal domain Ω. The partitions are generated by refining
triangles according to a fixed rule. While the following discussion applies
to a variety of refinement rules we shall specify the method of subdivision
to be newest vertex bisection since this will allow us a nice comparison
when we discuss adaptive methods. The book of Verfürth [18] and the
research article of Mitchell [15] describe this subdivision method and
give some of its properties. The article [1] gives finer results on newest
vertex bisection.

Let P0 = {∆} be an initial partition of Ω into a set of triangular cells.
To each edge associated to this partition we assign a label of 0 or 1. We
do this labelling in such a way that exactly one edge of any triangle has
a label 0 and all other edges have a label 1 (such a labelling is always
possible although it is nontrivial to prove; see [1]). For any triangle ∆
of P0, the vertex v(∆) opposite the side of this triangle labelled as 0 is
called its newest vertex. The edge in ∆ opposite to v(∆) will be denoted
by E(∆).

We have described how to assign to any triangle ∆ ∈ P0 a newest
vertex. Other triangles will arise by subdivision. We now describe the
rule for subdividing triangles and how to assign a newest vertex to each
triangle that arises by subdivision. If ∆ is such a triangle and if v(∆) is
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the newest vertex that has already been assigned then the subdivision of
∆ consists of splitting ∆ into two new triangles by inserting the diagonal
that connects the newest vertex to the bisecting point of the edge E(∆)
opposite the newest vertex. Thus the cell produces two new cells and
their newest vertex (assigned to each new triangular cell) is by definition
the midpoint of E(∆).

The partitions which arise when using newest vertex bisection satisfy
a uniform minimal angle condition. This is established by showing that
all triangles that arise in newest vertex bisection can be classified into a
set of similarity classes depending only on the initial partition P0 (see
Mitchell).

We can represent newest vertex bisection by an infinite binary tree
T∗ (which we call the master tree). The master tree T∗ consists of all
triangular cells which can be obtained by a sequence of subdivisions. The
roots of the master tree are the triangular cells in P0. When a cell ∆ is
subdivided, it produces two new cells which are called the children of ∆
and ∆ is their parent. It is very important to note that, no matter how a
cell arises in a subdivision process, its associated newest vertex is unique
and only depends on the initial assignment of the newest vertices in P0.
This means that the children of ∆ are uniquely determined and do not
depend on how ∆ arose in the subdivision process, i.e., it does not depend
on the preceding sequence of subdivisions. The reason for this is that
any subdivision only assigns newest vertices for the new triangular cells
produced by the subdivision and does not alter any previous assignment.
It follows that T∗ is unique and does not depend at all on the order of
subdivisions.

The generation of a triangular cell ∆ is the number g(∆) of ancestors it
has in the master tree. Thus cells in P0 have generation 0, their children
have generation 1 and so on. The generation of a cell is also the number
of subdivisions necessary to create this cell from its corresponding root
cell in P0.

There is a simple way to keep track of the newest vertices for triangular
cells that arise in newest vertex bisection by giving a rule that labels any
edges that arise from the subdivision process. There will be two main
properties of this labelling. The first is that each triangular cell will have
sides with labels (i, i, i − 1) for some positive integer i. The second is
that the newest vertex for this cell will be the vertex opposite the side
with lowest label. Certainly the edges in P0 have such a labelling as we
have just shown.

Suppose that a triangular cell ∆ ∈ P0 has sides which have been
labelled (i, i, i−1) and the newest vertex for this cell is the one opposite
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the side labelled i−1. When this cell is subdivided (using newest vertex
bisection) the side labelled i − 1 is bisected and we label each of the
two new sides i + 1. We also label the bisector by i + 1, i.e. the new
edge connecting the newest vertex of ∆ with the midpoint of the edge
E(∆) labelled by i − 1. Thus each new triangle now has sides labelled
(i, i + 1, i + 1) with the newest vertex opposite the side with the lowest
label. We note the important fact that if a cell has label (i + 1, i + 1, i)
then it is of generation i (i.e. it has been obtained from a cell in P0 by
i subdivisions). Therefore, specifying that the generation of the cell is i

is the same as specifying that its label is (i + 1, i + 1, i).
A subtree T ⊂ T∗ is a collection of triangular cells ∆ ∈ T∗ with the

following two properties: (i) whenever ∆ ∈ T then its sibling is also in
the tree; (ii) when ∆ ⊂ ∆′ are both in the tree then each triangular cell
∆̄ ∈ T∗ with ∆ ⊂ ∆̄ ⊂ ∆′ is also in T . The roots of T are all the cells
∆ ∈ T whose parents are not in T . We say that T is proper if it has
the same roots as T∗, i.e., it contains all ∆ ∈ P0. If T ⊂ T∗ is a finite
subtree, we say ∆ ∈ T is a leaf of T if T contains none of the children
of ∆. We denote by L(T ) the collection of all leaves of T . For a proper
subtree T , we define N(T ) to be the number of subdivisions made to
produce T .

Any partition P = Pn which is obtained by the application of an
adaptive procedure based on newest vertex bisection can be associated
to a proper subtree T = T (P ) of T∗ consisting of all triangular cells that
were created during the algorithm, i.e. all of the cells in P0, . . . , Pn. The
set of leaves L(T ) form the final partition P = Pn.

We shall say that T = T (P ) and P are admissible if P has no hanging
nodes. We denote the class of all proper trees by T and all admissible
trees by T a. We also let Tn be the set of all proper trees T with N(T ) = n

and by T a
n the corresponding class of admissible trees from Tn. We denote

by P the class of all partitions P that can be generated by newest vertex
bisection and by Pa the set of all admissible partitions. Similarly, Pn

and Pa
n are the subclasses of those partitions that are obtained from P0

by using n subdivisions. There is a precise identification between Pn and
Tn. Any P ∈ Pn can be given by a tree, i.e. P = P (T ) for some T ∈ Tn.
Conversely any T ∈ Tn determines a P = P (T ) in Pn. The same can be
said about admissible partitions and trees.

1.4.3 Standard finite element methods

As mentioned before, in this type of numerical approximation, a sequence
of partitions P0, . . . , Pn, . . . is set in advance. In our case of newest vertex
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bisection, we start with P0 and refine every triangular cell in P0 (using
newest vertex bisection) to obtain P1, and continue in this way, refining
every cell in a given Pn to obtain the next partition Pn+1. The partition
Pn has the following properties. The triangular cells in Pn satisfy a
minimal angle condition. Each angle is greater than a fixed positive
constant c0 which is independent of n (it depends only on the initial
partition P0). The partition Pn has no hanging nodes; this follows from
the fact that every triangular cell is refined in moving from Pn to Pn+1.
It follows that all triangular cells in Pn have comparable size. Their area
is proportional to 2−n and their diameter is proportional to 2−n/2.

Let Sn := SPn be the space of continuous piecewise linear functions
subordinate to the partition Pn which vanish on the boundary of Ω.
These spaces are nested: Sn ⊂ Sn+1, n = 0, 1, . . . . To numerically solve
(1.45) we consider the Galerkin approximation to u from Sn. It is deter-
mined by the system of equations

a(un, w) = (f, w), w ∈ Sn. (1.49)

The solution un to this system minimizes the approximation in the en-
ergy norm:

|||u− un||| = inf
S∈Sn

|||u− S|||. (1.50)

In other words, given that we decided to measure the error in the energy
norm and given that we have decided to use elements from Sn for the
approximation, there is no question that we have found in un the best
approximation to u that we can possibly obtain.

The role of approximation theory and regularity theory in this context
is to explain what rate of approximation we can expect to obtain for a
given right hand side f . The approximation theory says that we obtain
an approximation rate

|||u− un||| = O(2−ns/2), n = 1, 2, . . . , (1.51)

if and only if u is in the Besov space Bs+1
∞ (L2(Ω)). That is u should

have s orders of smoothness more than the H1 smoothness. Given the
solution u to (1.45), we define sL = sL(u) to be the maximum of all
s > 1 such that u ∈ Bs

∞(L2(Ω)). Here the subscript L indicates we are
analyzing a linear approximation method; we will give a similar analysis
for nonlinear (adaptive) methods.

Regularity theorems would tell us sufficient conditions on the right
hand sides f for u to have a given Besov smoothness. In other words,
they would give information on sL(u). For example, if we know that
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f ∈ L2(Ω) then u will at worst be in B
3/2
∞ (L2(Ω). The worst behavior

occurs for general Lipschitz domains. In our case of a polygonal domain
the smoothness one can obtain depends on the angles corresponding to
the boundary. In other words, for f ∈ L2(Ω), the best we can say is that
sL ≥ 3/2.

The point we wish to drive home here is that we know everything we
could possibly want to know about our numerical method. We know it
is the best method for approximating the solution by the approximation
tools (piecewise linear functions) in the chosen metric (energy norm). We
also know conditions on f sufficient to guarantee a given approximation
rate and these sufficient conditions cannot be improved.

1.4.4 Adaptive finite element methods

We want to contrast the satisfying situation of the previous section with
that for adaptive methods. Such methods do not set down the partitions
Pn in advance but rather generate them in an adaptive fashion that
depends very much on the solution u and the previous computations.
We begin this part of the discussion by giving the form of a typical
adaptive algorithm.

The starting point is, as before, the partition P0. Given that the par-
tition Pk has already been constructed, the algorithm computes the
Galerkin solution uk from SPk

. It examines uk = uPk
and makes a deci-

sion whether or not to subdivide a given cell in Pk. In other words, the
algorithm marks certain triangular cells ∆ ∈ Pk for subdivision. We shall
denote by Mk the collection of marked cells in Pk. These marked cells
are subdivided using the newest vertex bisection. This process, however,
creates hanging nodes. To remove the hanging nodes, a certain collection
M′

k of additional cells are subdivided. The result after these two sets of
subdivisions is the partition Pk+1. The partitions Pn, n = 1, 2, . . . , have
no hanging nodes and as noted earlier satisfy a minimal angle condition
independent of n.

One of the keys to the success of such adaptive algorithms is the mark-
ing strategy, i.e. how to effectively choose which cells in Pk to subdivide.
The idea is to choose only cells where the error u − uk is large (these
would correspond to where the solution u is not smooth). Unfortunately,
we do not know u (we are only seeing u through the computations uk)
so we do not know this local error. One uses in the place of the actual
local error what are called local error estimators. The subject of local
error estimators is a long and important one that we shall not enter
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into in this discussion. The reader may consult the the paper of Morin,
Nochetto, and Siebert [16] for a discussion relevant to the present prob-
lem of Laplace’s equation in two space dimensions. We mention only one
important fact. The local error estimators allow one to compute accu-
rate bounds for the global error |||u− un||| from the knowledge of f and
un. This is done through the residual ∆(u− un) = f − ∆(un).

1.4.5 Judging the performance of adaptive methods

The main question we wish to address is how can we evaluate the per-
formance of adaptive algorithms. Is there such a thing as an optimal
or near optimal adaptive algorithm? This question is in the same spirit
as the questions on image compression and A/D conversion. But there
is a significant difference. In the other cases, the function to be en-
coded/approximated was completely known to us. In the PDE case, we
only know u through our numerical approximations.

To begin the discussion, let us understand what approximants are
available to us when we use adaptive methods. We have noted earlier
that a partition P generated by an adaptive method can be associated to
finite trees T (P ). As before, given any admissible partition P , we define
SP to be the space of piecewise linear functions which vanish on the
boundary of Ω and are subordinate to P . For any function w ∈ H1

0 (Ω)
and any such partition P , we define

E(w,SP ) := inf
S∈SP

|||w − S||| = |||u− uP |||, (1.52)

where uP is the Galerkin approximation to u. This is the smallest error
we can achieve by approximating u in the energy norm by the elements
of SP .

How should we measure the complexity of an adaptively generated
partition P . The most reasonable measure would be the number of com-
putations used to create P . This turns out to be closely related to the
number of subdivisions n = N(T (P )) used in the creation of P . As we
shall see later, for certain specific adaptive algorithms, we can bound the
number of computations used to create P and to compute uP by Cn.

With these remarks in mind, we define

σn(u) := inf
P∈Pn

E(w,SP ) (1.53)

which is the best error we can possibly achieve in approximating w by
using n subdivisions. It is unreasonable to expect any adaptive algorithm
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to perform exactly the same as σn(w). However, we may expect the same
asymptotic behavior. To quantify this, we introduce for any s > 0, the
class As of functions w ∈ H1

0 (Ω) such that

σn(w) ≤ Mn−s, n = 1, 2, . . . . (1.54)

The smallest M for which (1.54) is satisfied is the norm in As:

‖w‖As := sup
n≥0

nsσn(w). (1.55)

We have a similar measure of approximation when we restrict ourselves
to admissible partitions. Namely,

σa
n(w) := inf

P∈Pa
n

E(w,SP )H1(Ω) (1.56)

now measures the best nonlinear approximation error obtained from ad-
missible partitions and Ȧs := Ȧs(H1

0 (Ω)) consists of all w which satisfy

σa
n(w) ≤ Mn−s, n = 1, 2, . . . . (1.57)

The smallest M for which (1.57) holds serves to define the norm ‖w‖Ȧs .
It is shown in [1] that the two spaces As are the same (see the discussion
in §1.4.7); so we do not make a distinction between them in going further.

1.4.6 The role of regularity theorems

It is of interest to know which functions are in As. In [2], it is shown
that for a certain range of s (depending on the fact we are analyzing
approximation by piecewise linear functions), we have

As/2 ≈ Bs
p(Lp(Ω)),

1
p

=
s− 1

2
+

1
2
. (1.58)

The nebulous notation (≈) used in this context means that there are
certain embeddings between Besov spaces and the space As. We do not
want to get into the details (see [2]) but only work on this heuristic level.
The spaces in (1.58) lie on the Sobolev embedding line for H1(Ω) so they
are very weak regularity conditions.

We can obtain a priori information on the possible performance of
adaptive methods by knowing regularity theorems for the above scale
of Besov spaces. For each u, let sNL := sNL(u) be the maximum of all
of the s such that u ∈ Bs

p(Lp(Ω)), 1
p = s−1

2 + 1
2 . The larger the value of

sNL, the better performance we can hope for an adaptive algorithm. In
particular, we would like to know if sNL is larger than the corresponding
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value sL for standard Finite Element Methods as discussed in §1.4.3. We
emphasize that the above scale of Besov spaces that occur in describing
the approximation rates for adaptive approximation are quite different
from the scale of Besov spaces appearing in the linear case of standard
Finite Element Methods. For a given s > 0 both require smoothness
of order s but this smoothness is measured in different ways. In the
standard case, the smoothness is relative to L2 but in the adaptive case
the smoothness is relative to an Lp which depends on s and gets smaller
as s gets larger. The Besov space in the adaptive case is much larger
than in the standard case and therefore more likely to contain u.

Let us take a simple example. We assume that the right side f is a
function in L2(Ω) and we ask what is the approximation error we can
expect to receive if we invest n triangular cells to the approximation. As
we have already described in §1.4.3, from this assumption on f we can
always conclude that f ∈ Bs

∞(L2(Ω) for s = 3/2 and depending on the
corners in the domain s could even be larger but never bigger than s = 2.
Thus, 3/2 ≤ sL ≤ 2. This means that in general we cannot expect more
than an approximation rate O(2

−n(sL−1)
2 ) when using standard finite

element methods with 2n triangular cells; see (1.51).
What is the situation for sNL? To determine sNL we need new reg-

ularity theorems that infer regularity in the new scale of Besov spaces
Bs

p(Lp(Ω)), with 1
p

= s−1
2

+ 1
2
. Regularity theorems of this type were

proved in [8, 7]. For example, in the case of f ∈ L2(Ω), it is shown that
sNL ≥ 2 (see [8]). This means that for an investment of n triangular
cells we should always obtain an error like O(n−1/2). This shows that
potentially an adaptive method can perform much better than a stan-
dard Finite Element Method. If the standard method gives an error ε

using a partition with n triangular cells, we might be able to obtain
an error as small as ε2 using the same number of cells in an adaptive
method.

1.4.7 The performance of adaptive methods

The above analysis is all well and good but it provides us no information
about specific numerical methods and does not even answer the question
of whether such numerical methods converge. In fact, it was not until
very recently that truly adaptive numerical methods were constructed
and proven to converge (Dörfler [11], and Morin, Nochetto, Siebert [16])
and this convergence is only established for simple problems and special
methods of subdivision. We are much more ambitious and would like
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to construct adaptive methods which perform at the optimal theoretical
approximation rate.

Suppose we have an adaptive algorithm in hand that we have some-
how constructed. Given an error tolerance ε > 0, we run the adaptive
algorithm until we achieve an error < ε. We shall say that an algorithm
is near optimal for s provided that whenever u ∈ As the number N of
subdivisions used by the adaptive algorithm used to produce this error
satisfies

N ≤ C|u|Asε−1/s, 0 < ε < 1. (1.59)

This means that the adaptive algorithm performs at the optimal rate on
the class As. The question of course is whether we can find an adaptive
algorithm with this near optimal performance.

An adaptive algorithm with near optimal performance for solving
(1.45) was constructed in [1]. Not only does this algorithm have op-
timality in terms of the number of subdivisions used but it is also shown
that the number of computations N(comp) needed to find uPn

satisfies

N(comp) ≤ Cε−1/s, 0 < ε < 1. (1.60)

We shall not describe the algorithm of [1] in detail but instead give
a brief overview of the algorithm and then pick up on details for the
two core results that allow the proof of near optimality. The algorithm
proceeds by setting error tolerances εk := 2−k and generating partitions
Pk, k = 1, 2, . . . , in which the error is guaranteed to be < εk. We stop at
the first integer n where the error (which we can measure a posteriori)
is ≤ ε. For sure, when

2−n ≤ ε (1.61)

this is the case. But the error bound ε may actually be attained for an
earlier value of k.

The construction of Pk from Pk−1 consists of several subiterations
taking an admissible partition Pk−1,j to a new admissible partition
Pk−1,j+1. Here, Pk−1,0 = Pk−1 and Pk is then found by coarsening a
partition Pk−1,K where K is a fixed integer. Each subiteration (send-
ing Pk−1,j to Pk−1,j+1) consists of the general strategy of marking cells,
subdividing, further markings and subdividing to remove hanging nodes.
The markings are made using the local error estimators found in [16] and
marking enough cells so as to capture a fraction of the global error (this
is known as bulk chasing). It was shown in [16] that such an iteration
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reduces the error in the energy norm. The role of K (which is a fixed
integer) is to guarantee that after the coarsening step we have

|||u− uPk
||| ≤ 2−1|||u− uPk−1 ||| ≤ εk = 2−k. (1.62)

Of course, (1.62) guarantees the algorithm converges but gives little
information about convergence rates because we have said nothing about
how many subdivisions were needed to construct Pk. However, a deeper
analysis of the algorithm shows that it is near optimal, in the sense
described above, for the range 0 < s < 1/2 (we cannot expect to exceed
this range because we are using piecewise linear functions to approximate
in the H1(Ω) norm).

The proof of near optimality rests on two fundamental results. The
first of these concerns the number of subdivisions necessary to remove
hanging nodes at a given iteration of the algorithm. It is necessary to
have such an estimate to be sure that the number of triangular cells does
not explode when the hanging nodes are removed. Suppose that we have
a sequence of partitions P̃k, k = 1, . . . ,m, where each P̃k+1 is obtained
from P̃k by marking a set M̃k, subdividing these cells, and then apply a
further set of markings M̃′

k and subdivisions to remove hanging nodes.
The fundamental result proved in [1] shows that

#(P̃m) ≤ #(P̃0) + C2(#(M̃0) + · · · + #(M̃m−1)). (1.63)

This means that the number of markings used to remove hanging nodes
is bounded by a multiple of the number of original markings. This is used
in the adaptive finite element method to show, among other things, that

#(Pk) ≤ C#(Pk−1) (1.64)

with C an absolute constant.
The proof of (1.63) does not proceed, as one might expect, by an

induction step which bound #(M̃′
k) by C#(M̃k). Rather one needs to

keep track of the entire history in the creation of new cells, tracing this
history back to earlier cells that were subdivided; see [1] for details.

The second core result that is needed to keep control on the number
of triangular cells and arrive at an estimate like (1.16) is that of coars-
ening. Without this step, we would not arrive (1.59). The coarsening
step proceeds as follows. After constructing the set Pk,K , we compute a
Galerkin approximation vk := uPk,K

to u from SPk,K
which satisfies

|||u− vk||| ≤ γεk+1 (1.65)

with γ a small fixed positive constant. The choice of γ influences the
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choice of K above. The function vk is known to us and the coarsening
algorithm uses information about this function to create a smaller par-
tition Pk+1 ⊂ Pk,K such that vk can be approximated by an element of
SPk+1 to accuracy αεk where again 0 < α < 1 is a fixed constant that is
chosen appropriate to the discussion that follows. The property gained
by the coarsening step is that Pk+1 satisfies

#(Pk+1) ≤ C0|u|Asε
−1/s
k (1.66)

with C0 an absolute constant. It is then shown that the Galerkin ap-
proximation uk+1 = uPk+1 satisfies

|||u− uk+1||| ≤
εk
2

= εk+1. (1.67)

This estimate together with the control on the size of the partition Pk+1

given in (1.66) combine to show that the algorithm is near optimal.
It is vital in the coarsening algorithm to keep a control on the number

of computations needed to find Pk+1. This is in fact the deeper aspect of
the coarsening algorithm. Normally to find a near optimal tree approx-
imation with n nodes, one might expect to have to do exponential in n

computations since there are that many trees with n nodes. It is shown
in [3] that the number of computations can be limited to O(n) by using
a clever adaptive strategy.

References

[1] Binev, P., Dahmen, W. and DeVore, R. (2002). Adaptive finite element
methods with convergence rates, IMI Preprint Series 12 (University of
South Carolina).

[2] Binev, P., Dahmen, W., DeVore, R. and Petrushev, P. (2002). Approxi-
mation Classes for Adaptive Methods, Serdica Math. J. 28, 391–416.

[3] Binev, P. and DeVore, R. (2002). Fast computation in tree approximation,
IMI Preprint Series 11 (University of South Carolina).

[4] Calderbank, R. and Daubechies, I. (2002). The Pros and Cons of Democ-
racy IEEE Transactions in Information Theory 48, 1721–1725.

[5] Cohen, A., Dahmen, W., Daubechies, I. and DeVore, R. (2001). Tree
approximation and encoding, ACHA 11, 192–226.

[6] Cohen, A., Daubechies, I., Guleryuz, O. and Orchard, M. (2002). On the
importance of combining non-linear approximation with coding strategies,
IEEE Transactions in Information Theory 48, 1895–1921.

[7] Dahlke, S. (1999). Besov regularity for elliptic boundary value problems
on polygonal domains, Appl. Math. Lett. 12, 31–36.

[8] Dahlke, S. and DeVore, R. (1997). Besov regularity for elliptic boundary
value problems, Comm. Partial Differential Equations 22, 1–16.



36 R. DeVore

[9] Daubechies, I. and DeVore, R. Reconstructing a bandlimited function
from very coarsely quantized data: A family of stable sigma-delta modu-
lators of arbitrary order, Annals of Mathematics, to appear.

[10] Daubechies, I., DeVore, R., Gunturk, C.S. and Vaishampayan, V.
Exponential Precision in A/D Conversion with an Imperfect Quantizer,
preprint.

[11] Dörfler, W. (1996). A convergent adaptive algorithm for Poisson’s equa-
tion, SIAM J. Numer. Anal. 33, 1106–1124.
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Abstract

The Jacobi set of two Morse functions defined on a common d-manifold is
the set of critical points of the restrictions of one function to the level sets
of the other function. Equivalently, it is the set of points where the gra-
dients of the functions are parallel. For a generic pair of Morse functions,
the Jacobi set is a smoothly embedded 1-manifold. We give a polynomial-
time algorithm that computes the piecewise linear analog of the Jacobi
set for functions specified at the vertices of a triangulation, and we gen-
eralize all results to more than two but at most d Morse functions.

2.1 Introduction

This paper is a mathematical and algorithmic study of multiple Morse
functions, and in particular of their Jacobi sets. As we will see, this set
is related to the Lagrange multiplier method in multi-variable calculus
of which our algorithm may be viewed as a discrete analog.

Motivation. Natural phenomena are frequently modeled using contin-
uous functions, and having two or more such functions defined on the
same domain is a fairly common scenario in the sciences. Consider for
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example oceanography where researchers study the distribution of vari-
ous attributes of water, with the goal to shed light on the ocean dynamics
and gain insight into global climate changes [4]. One such attribute is
temperature, another is salinity, an important indicator of water density.
The temperature distribution is often studied within a layer of constant
salinity, because water tends to mix along but not between these layers.
Mathematically, we may think of temperature and salinity as two con-
tinuous functions on a common portion of three-dimensional space. A
layer is determined by a level surface of the salinity function, and we are
interested in the temperature function restricted to that surface. This
is a continuous function on a two-dimensional domain, whose critical
points are generically minima, saddles, and maxima. In this paper, we
study the paths these critical points take when the salinity value varies.
As it turns out, these paths are also the paths the critical points of the
salinity function take if we restrict it to the level surfaces of the tem-
perature function. More generally, we study the relationship between
continuous functions defined on a common manifold by analyzing the
critical points within level set restrictions.

Sometimes it is useful to make up auxiliary functions to study the
properties of given ones. Consider for example a function that varies
with time, such as the gravitational potential generated by the sun,
planets, and moons in our solar system [18]. At the critical points of
that potential, the gravitational forces are at an equilibrium. The plan-
ets and moons move relative to each other and the sun, which implies
that the critical points move, appear, and disappear. To study such a
time-varying function, we introduce another, whose value at any point
in space-time is the time. The paths of the critical points of the gravita-
tional potential are then the Jacobi set of the two functions defined on
a common portion of space-time.

Results. The main object of study in this paper is the Jacobi set J =
J(f0, f1, . . . , fk) of k + 1 ≤ d Morse functions on a common d-manifold.
By definition, this is the set of critical points of f0 restricted to the
intersection of the level sets of f1 to fk. We observe that J is symmetric
in the k + 1 functions because it is the set of points at which the k + 1
gradient vectors are linearly dependent. In the simplest non-trivial case,
we have two Morse functions on a common 2-manifold. In this case, the
Jacobi set J = J(f, g) = J(g, f) is generically a collection of pairwise
disjoint smooth curves that are free of any self-intersections. Fig. 2.1
illustrates the concept for two Morse functions on the two-dimensional
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Fig. 2.1. The two partially bold and partially dotted longitudinal circles form
the Jacobi set of f, g : M → R, where M is the torus and f and g map a point
x ∈ M to the Cartesian coordinates of its orthogonal projection on a plane
parallel to the longitudes.

torus. The Jacobi set of a generic collection of k + 1 Morse functions is
a submanifold of dimension k, provided d > 2k − 2. The first time this
inequality fails is for d = k + 1 = 4. In this case, the Jacobi set is a
3-manifold except at a discrete set of points.

We describe an algorithm that computes an approximation of the
Jacobi set for k+1 piecewise linear functions that are interpolated from
values given at the vertices. In the absence of smoothness, it simulates
genericity and differentiability and computes J as a subcomplex of the
triangulation. The algorithm is combinatorial (as opposed to numerical)
in nature and reduces the computations to testing the criticality of the
k-simplices in the triangulation. Whether or not a simplex is considered
critical depends on its local topology. By using Betti numbers to express
that topology, we get an algorithm that works for triangulated manifolds
and runs in time that is polynomial in the number of simplices. Assuming
the links have sizes bounded from above by a constant, the running time
is proportional to the number of simplices.

Related prior work. The work in this paper fits within the general
area of singularities of smooth mappings, which was pioneered by Hassler
Whitney about half a century ago; see e.g. [19]. In this body of work,
the fold of a mapping from a d-dimensional manifold M

d to a (k + 1)-
dimensional manifold N

k+1 is the image of the set of points at which
the matrix of partial derivatives has less than full rank. In this paper,
we consider (k + 1)-tuple of Morse functions, which are special smooth
mappings in which the range is the (k+1)-dimensional Euclidean space,
R

k+1. The fold of such a special mapping is the image of the Jacobi
set. Our restriction to Euclidean space is deliberate as it furnishes the
framework needed for our algorithm.
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Whitney considered the case of a mapping between surfaces and stud-
ied mappings where d is small relative to k. A classic theorem in differ-
ential topology is the Whitney Embedding Theorem which states that
a closed, orientable manifold of dimension n can always be embedded in
R

2n. Thom extended the work of Whitney, studying the spaces of jets
(two functions have the same k-jet at p if their partial derivatives of
order k or less are equal). The Thom Transversality Theorem, together
with the Thom-Boardman stratification of C∞ functions on M, give
characterizations of the singularities of generic functions [11]. Mather
studied singularities from a more algebro-geometric point of view and
proved the equivalence of several definitions of stability for a map (a
concept not used in this work). In particular he provided the appropri-
ate framework to reconstruct a map from its restrictions to the strata
of the Thom-Boardman stratification.

In a completely different context, Nicola Wolpert used Jacobi curves
to develop exact and efficient algorithms for intersecting quadratic sur-
faces in R

3 [20]. She does so by reducing the problem to computing the
arrangement of the intersection curves projected to R

2. Any such curve
can be written as the zero set of a smooth function R

2 → R, and any
pair defines another curve, namely the Jacobi set of the two functions.
Wolpert refers to them as Jacobi curves and uses them to resolve tan-
gential and almost tangential intersections. To be consistent with her
terminology, we decided to modify that name and to refer to our more
general concept as Jacobi sets.

Outline. §2.2 reviews background material from differential and combi-
natorial topology. §2.3 introduces the Jacobi set of two Morse functions.
§2.4 describes an algorithm that computes this set for piecewise linear
data. §2.5 generalizes the results to three or more Morse functions. §2.6
discusses a small selection of applications. §2.7 concludes the paper.

2.2 Background

This paper contains results for smooth and for piecewise linear functions.
We need background from Morse theory [15, 16] for smooth functions
and from combinatorial and algebraic topology [1, 17] for designing an
algorithm that works on piecewise linear data.

Morse functions. Let M be a smooth and compact d-manifold without
boundary. The differential of a smooth map f : M → R at a point x of
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the manifold is a linear map dfx : TMx → R mapping the tangent space
at x to R. A point x ∈ M is critical if dfx is the zero map; otherwise, it
is regular. Let 〈, 〉 be a Riemannian metric, i.e. an inner product in the
tangent spaces that varies smoothly on M. Since each vector in TMx

is the tangent vector to a curve c in M through x, the gradient ∇f

can be defined by the formula 〈∂c/∂t,∇f〉 = ∂(f ◦ c)/∂t, for every c. It
is always possible to choose coordinates xi so that the tangent vectors
∂

∂xi
(x) are orthonormal with respect to the Riemannian metric. For such

coordinates, the gradient is given by the familiar formula

∇f(x) =
[
∂f

∂x1
(x),

∂f

∂x2
(x), . . . ,

∂f

∂xd
(x)

]
.

We compute in local coordinates the Hessian of f :

Hf (x) =


∂2f
∂x2

1
(x) . . . ∂2f

∂xd∂x1
(x)

...
. . .

...
∂2f

∂x1∂xd
(x) . . . ∂2f

∂x2
d
(x)

 ,

which is a symmetric bi-linear form on the tangent space TMx. A critical
point p is non-degenerate if the Hessian is non-singular at p. The Morse
Lemma states that near a non-degenerate critical point p, it is possible
to choose local coordinates so that the function takes the form

f(x1, . . . , xd) = f(p) ± x2
1 ± . . .± x2

d.

The number of minus signs is the index of p; it equals the number of
negative eigenvalues of Hf (p). The existence of these local coordinates
implies that non-degenerate critical points are isolated. The function f

is a called a Morse function if

(i) all its critical points are non-degenerate, and
(ii) f(p) �= f(q) for all critical points p �= q.

Transversality and stratification. Let F : X → Y be a smooth map
between two manifolds, and let U ⊆ Y be a smooth submanifold. The
map F is transversal to U if for every y ∈ U and every x ∈ F−1(y), we
have dFx(TXx)+TUy = TYy. In words, the basis vectors of the image of
the tangent space of X at x under the derivative together with the basis
vectors of the tangent space of U at y = F (x) span the tangent space of
Y at y. The Transversality Theorem of differential topology asserts that
if F is transversal to U then F−1(U) is a smooth submanifold of X and
the co-dimension of F−1(U) in X is the same as that of U in Y [12].
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A continuous family connecting two Morse functions necessarily goes
through transitions at which the function violates conditions (i) and
(ii) of a Morse function. We are interested in the minimum number of
violations that cannot be avoided. For this purpose, consider the infinite-
dimensional Hilbert space C∞(M) of smooth functions M → R. There is
a stratification C∞(M) = C0 ⊃ C1 ⊃ C2, in which C0 − C1 is the set of
Morse functions, C1−C2 is the set of functions that violate either condi-
tion (i) or (ii) exactly once, and C2 is the set of remaining functions. The
set C0−C1 is a submanifold of co-dimension 0, C1−C2 is a submanifold
of co-dimension 1, and C2 has co-dimension 2. As an illustration of how
we use the stratification, take two Morse functions f and g and consider
the 1-parameter family of functions hλ = f + λg : M → R. We can
perturb one of the functions such that

• f and f + g are both Morse,
• all hλ belong to C0 − C2, and
• the 1-parameter family is transversal to C1 − C2.

If follows that hλ belongs to C1−C2 for only a discrete collection of values
for λ. We use this later to prove the transversality of certain maps, which
will then put us into the position to apply the Transversality Theorem.

Triangulations. A k-simplex is the convex hull of k + 1 affinely inde-
pendent points. Given two simplices σ and τ , we write τ ≤ σ if τ is a
face of σ. A simplicial complex is a finite collection K of simplices that
is closed under the face relation such that the intersection of any two
simplices is either empty or a face of both. A subcomplex of K is a subset
that itself is a simplicial complex. The closure of a subset L ⊆ K is the
smallest subcomplex ClL ⊆ K that contains L. The star of a simplex
τ ∈ K is the collection of simplices that contain τ , and the link is the
collection of faces of simplices in the closure of the star that are disjoint
from τ :

St τ = {σ ∈ K | τ ≤ σ},
Lk τ = {υ ∈ Cl St τ | υ ∩ τ = ∅}.

The vertex set of K is denoted by VertK. The underlying space is the
union of simplices: ||K || =

⋃
σ∈K σ. The interior of a simplex σ is the

set of points that belong to σ but not to any proper face of σ. Note
that each point of ||K || belongs to the interior of exactly one simplex
in K. We specify a piecewise linear continuous function by its values
at the vertices. To describe this construction, let ϕ : VertK → R be a
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function defined on the vertex set. Each point x ∈ ||K || has barycentric
coordinates αu = αu(x) ∈ R such that

∑
αuu = x,

∑
αu = 1, and

αu = 0 unless u is a vertex of the simplex whose interior contains x. The
linear extension of ϕ is the function f : ||K || → R defined by f(x) =∑

u αu(x)ϕ(x). It is continuous because the maps αu are continuous.
The simplicial complex K is a triangulation of a manifold M if there

is a homeomorphism ||K || → M. In this case, the link of every k-simplex
triangulates a sphere of dimension d−k−1. We will extend the concept
of a critical point from smooth to piecewise linear functions using sub-
complexes of links. Assuming f(u) �= f(v) for any two vertices u �= v in
K, the lower star of u consists of all simplices in the star that have u

as their highest vertex, and the lower link is the portion of the link that
bounds the lower star. Note that both the link and the lower link are
always complexes.

Homology groups and Betti numbers. In the piecewise linear case,
we use the topology of the lower link to define whether or not we consider
a vertex critical, and we express that topology using ranks of homology
groups for Z2 coefficients. To explain this, let K be a simplicial complex.
A k-chain is a subset of the k-simplices, and adding two k-chains means
taking their symmetric difference. The set of k-chains together with ad-
dition forms the group of k-chains, denoted as Ck. The boundary of a
k-simplex is the set of its (k−1)-simplices. This defines a boundary homo-
morphism ∂k : Ck → Ck−1 obtained by mapping a k-chain to the sum of
boundaries of its k-simplices. Since we aim at reduced homology groups,
we extend the list of non-trivial chain groups by adding C−1 = Z2 and
defining the boundary of a vertex as ∂0(u) = 1. The boundary homo-
morphisms connect the chain groups as illustrated in Fig. 2.2. A k-cycle
is a k-chain with zero boundary, and a k-boundary is the boundary of
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Fig. 2.2. The chain complex formed by the chain groups and the connecting
boundary homomorphisms.



44 H. Edelsbrunner and J. Harer

a (k + 1)-chain. The corresponding groups are nested subgroups of the
group of k-chains: Bk ≤ Zk ≤ Ck. The k-th reduced homology group is
the quotient defined by the k-cycles and the k-boundaries: H̃k = Zk|Bk.
The k-th reduced Betti number is the rank of the k-th reduced homology
group: β̃k = rank H̃k. Since we add modulo 2, all groups are finite and β̃k

is the binary logarithm of the size of H̃k. The reduced homology groups
differ from the more common non-reduced versions only in dimensions
0 and −1. Specifically, β̃0 is one less than the number of components,
unless the complex is empty, in which case β̃0 = 0, and β̃−1 = 0 unless
the complex is empty, in which case β̃−1 = 1.

The main reason for preferring reduced over non-reduced homology
groups is their simpler correspondence to spheres. The (d− 1)-sphere is
the set of points at unit distance from the origin of the d-dimensional
Euclidean space: S

d−1 = {x ∈ R
d | ‖x‖ = 1}. To triangulate S

d−1 we
may take the set of proper faces of a d-simplex. Note that S

−1 is the
empty set, which is triangulated by the empty complex. The (d − 1)-
sphere has only one non-zero reduced Betti number, namely β̃d−1 = 1,
and this is true for all d ≥ 0. In contrast, the reduced Betti numbers of
a point all vanish.

2.3 Jacobi sets of two functions

In this section, we consider the Jacobi set of a pair of Morse functions
defined on the same manifold.

Definition of Jacobi sets. Let M be a smooth d-manifold and choose a
Riemannian metric so that we can define gradients. We assume d ≥ 2 and
consider two generic Morse functions, f, g : M → R. We are interested in
the restrictions of f to the level sets of g. For a regular value t ∈ R, the
level set Mt = g−1(t) is a smooth (d − 1)-manifold, and the restriction
of f to this level set is a Morse function ft : Mt → R. The Jacobi set
J = J(f, g) is the closure of the set of critical points of such level set
restrictions:

J = cl {x ∈ M | x is critical point of ft}, (2.1)

for some regular value t ∈ R. The closure operation adds the critical
points of f restricted to level sets at critical values t as well as the critical
points of g, which form singularities in these level sets. Fig. 2.3 illustrates
the definition by showing J for two smooth functions defined on the
two-dimensional plane. Think of the picture as a cone-like mountain
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Fig. 2.3. The functions f and g are represented by their dotted and solid level
curves. The Jacobi set is drawn in bold solid lines. The birth-death points and
the critical points of the two functions are marked.

indicated by the (dotted) level curves of f , and imagine an animation
during which the (solid) level curves of g glide over that mountain. For
example, on the left we see a circle expanding outwards on a slope, and
we observe a maximum moving uphill and a minimum moving downhill
from the starting point, which is a minimum of g.

Consider the gradient of the two functions at a point x: ∇f(x),∇g(x) ∈
R

d. Let t = g(x). Then the gradient of ft at x ∈ Mt = g−1(t) is the
projection of ∇f(x) onto the tangent space of Mt at x. It follows that
∇ft(x) = 0 iff the two gradient vectors are parallel. In other words,

J = {x ∈ M | ∇f(x) + λ∇g(x) = 0 or

λ∇f(x) + ∇g(x) = 0}, (2.2)

for some λ ∈ R. The first relation in (2.2) misses the cases in which
∇g(x) = 0 and ∇f(x) �= 0. The only reason for the second relation is
to capture these cases. The description of J in (2.2) is symmetric in f

and g: J(f, g) = J(g, f). We therefore call the points of J simultaneous
critical points of f and g. Note that ∇f + λ∇g is the gradient of the
function f+λg. Equation (2.2) thus implies yet another characterization
of the Jacobi set:

J = {x ∈ M | x is critical point of

f + λg or of λf + g}, (2.3)
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for some λ ∈ R. This formulation should be compared with the Lagrange
multiplier method in which λ is treated as an indeterminant.

Critical curves. Generically, ft has a discrete collection of critical
points, and these points sweep out J as t varies. It follows that J is
a one-dimensional set. We strengthen this observation and prove that
the Jacobi set is a smoothly embedded 1-manifold in M. This follows
form the stratification of the Jacobi set described in [11], which we will
sketch in §2.5. For completeness, we give a direct proof that avoids the
more advanced concepts needed to prove the more general result.

Smooth Embedding Theorem. Generically, the Jacobi set of two
Morse functions f, g : M → R is a smoothly embedded
1-manifold in M.

Proof Assume M is a d-manifold, for d ≥ 2, and consider the functions
F,G : M × R → R

d that map a point x ∈ M and a parameter λ ∈ R to
the gradients of f + λg and λf + g:

F (x, λ) = ∇f(x) + λ∇g(x),

G(x, λ) = λ∇f(x) + ∇g(x).

By (2.2), a point x belongs to J iff there is a λ ∈ R such that F (x, λ) = 0
or G(x, λ) = 0. Letting ΓF = F−1(0) and ΓG = G−1(0), we get J by
projecting onto M:

ΓF ⊆ M × R

↓ ↓
JF ⊆ M

and
ΓG ⊆ M × R

↓ ↓
JG ⊆ M.

We have J = JF ∪ JG, where JF is J minus the discrete set of points
where ∇g(p) = 0, and JG is J minus the points where ∇f(p) = 0. We
prove that F is transversal to 0 or, equivalently, that for every (p, λ) ∈
F−1(0), the derivative of F at (p, λ) has rank d. We compute dF(p,λ) =
[Hf+λg(p),∇g(p)], where the Hessian is a d-by-d matrix. As mentioned
in §2.2, we can assume that all functions hλ = f + λg are in C0 − C1,
except for a discrete number, which are in C1−C2. The former have only
non-degenerate critical points, so the Hessian itself already has rank d.
Let λ0 be a value for which hλ0 is not Morse. If there are two critical
points sharing the same function value, then the Hessian is still invertible
and there is nothing else to show. Otherwise, there is a single birth-death
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point p0, and we write c0 = hλ0(p0). There exist local coordinates such
that p0 = (0, 0, . . . , 0), λ0 = 0, and

hλ(p) = c0 + x3
1 − λx1 ± x2

2 ± . . .± x2
d

= λ(−x1) + (c0 + x3
1 ± x2

2 ± . . .± x2
d)

in a neighborhood of (p0, λ0). Note that this implies g(p) = −x1. We
can write the Hessian and the gradient explicitly and get

dF(p0,λ0) =


0 0 . . . 0 −1
0 ±2 . . . 0 0
...

...
. . .

...
...

0 0 . . . ±2 0

 .

This matrix has rank d. Since 0 ∈ R
d has co-dimension d, the Transver-

sality Theorem now implies that ΓF = F−1(0) is a smooth 1-manifold
in M×R. We still need to prove that the projection of this 1-manifold is
smoothly embedded in M. Let π : ΓF → J be defined by π(p, λ) = p. We
show that π is one-to-one and dπ(p,λ) �= 0 for all (p, λ) ∈ ΓF . If π(p, λ) =
π(p′, λ′) then p = p′ and ∇f(p)+λ∇g(p) = ∇f(p)+λ′∇g(p) = 0. Since
∇g(p) �= 0 on ΓF , λ = λ′ so the projection is injective. To prove that the
derivative dπ of π is non-zero, note that the tangent line to ΓF at (p, λ) is
the kernel of dF(p,λ) = [Hf+λg(p),∇g(p)]. If dπ is zero at (p, λ), then this
tangent line must be vertical, spanned by the vector v = (0, . . . , 0, 1).
But since ∇g(p) �= 0, v cannot be in the kernel of dF (p, λ).

By symmetry, everything we proved for F also holds for G. This con-
cludes our proof that generically, J is a smoothly embedded 1-manifold
in M.

2.4 Algorithm

In this section, we describe an algorithm that computes an approxi-
mation of the Jacobi set of two Morse functions from approximations
of these functions. We begin by laying out our general philosophy and
follow up by describing the details of the algorithm.

General approach. In applications, we never have smooth functions
but usually non-smooth functions that approximate smooth functions.
We choose not to think of the non-smooth functions as approximations
of smooth functions. Quite the opposite, we think of the non-smooth
functions as being approximated by smooth functions. The relatively
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simple smooth case then becomes the guiding intuition in designing the
algorithm that constructs what one may call the Jacobi set of the non-
smooth functions. To be more specific, let K be a triangulation of a
d-manifold M and let ϕ,ψ : VertK → R be two functions defined at
the vertices. We obtain f, g : ||K || → R as piecewise linear extensions of
ϕ and ψ. We imagine that both piecewise linear functions are limits of
series of smooth functions: limn→∞ fn = f and limn→∞ gn = g. For each
n, the Jacobi set Jn = J(fn, gn) is perfectly well defined, and we aim
at constructing the Jacobi set of f and g as the limit of the Jn. Along
the way, we will take some liberties in resolving the ambiguities in what
this means exactly. As a guiding principle, we resolve ambiguities in a
way consistent with the corresponding smooth concepts that arise in
the imagined smooth approximations of f and g. We call this principle
the simulation of differentiability and combine it with the simulation
of simplicity [9] to put ourselves within the realm of generic smooth
functions.

After constructing the Jacobi set of f and g, we may need to resolve
the result into something whose structure is consistent with that of its
smooth counterpart. Most importantly, the algorithm will generally con-
struct a one-dimensional subcomplex J of K in which edges have positive
integer multiplicities. We will prove that J can be unfolded into a union
of disjoint closed curves in which all edges have multiplicity one. In other
words, we can indeed think of J = || J || as the limit of a series of smoothly
embedded 1-manifolds.

Edge selection. We compute J by tracing the critical points of the
1-parameter family of functions hλ = f + λg. In the piecewise linear
limit, the set of critical points is generically a collection of vertices.
With varying λ, the critical points move to other vertices and, in the
limit, that movement happens along the edges of K and at infinite speed.
Instead of keeping track of the critical points and their movements, we
construct J as the union of edges along which the critical points move.
In other words, we decide for each edge how many critical points move
from one endpoint to the other, and we let J be the collection of edges
for which this number is positive. We then make J a subcomplex by
adding the endpoints of the edges to the set. Note that we do not have
to repeat the construction for the family λf+g. By definition, the Jacobi
set is the underlying space of this subcomplex: J = || J ||.

Let uv be an edge of K, and let λ = λuv be the moment at which
the function values at u and v are the same. At this moment, we have
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hλ(u) = hλ(v) and therefore λuv = [f(v) − f(u)]/[g(u) − g(v)]. In order
for a critical point to travel along the edge from u to v or vice versa, the
entire edge must be critical for λ = λuv. We express this condition by
considering the link of u, which is a triangulation of the (d− 1)-sphere.
Let l be the restriction of hλuv

to that link.

Critical Edge Lemma. The edge uv belongs to J iff v is a critical
point of l. Moreover, the multiplicity of uv in J is the multiplicity
of v as a critical point of l.

We describe shortly how we decide whether or not a vertex is critical
and, if it is critical, how we compute its multiplicity. For both operations,
it suffices to look at the lower link of v in the link of u. Note that the
link of v in the link of u is the same as the link of uv in K, and that
l is defined at all vertices of this link as well as at v. We can therefore
construct the lower link of uv as the subcomplex induced by the vertices
w whose function values are smaller than that of v. We denote this lower
link as Lkuv and note that it is the same as the lower link of v in the
link of u. This formulation makes it obvious that the test of the edge
uv is symmetric in u and v. We implement the Critical Edge Lemma as
follows:

integer isJacobi(Edge uv)
λ = [f(v) − f(u)]/[g(u) − g(v)];
Lkuv = {τ ∈ Lkuv | w ≤ τ =⇒ hλ(w) < hλ(v)};
return isCritical(Lkuv).

As described shortly, Function isCritical returns 0 if the lower link
of uv is that of a regular point, and it returns the multiplicity of the
criticality otherwise.

Criticality and multiplicity. The smooth analogue of a vertex link is
a sufficiently small sphere drawn around a point x of the manifold M. If
M is a d-manifold the dimension of that sphere is d − 1. The analogue
of the lower link is the portion of that sphere where the value of the
function is less than or equal to the value at x. assuming smoothness,
the topology of this portion is the same for all sufficiently small spheres,
and assuming a Morse function, it has either the homotopy type of a
point or that of a sphere. In the former case, x is regular, and in the
latter case, x is critical. The dimension of the sphere is one less than the
index of x. This suggests we use the reduced Betti numbers of the lower
link to classify vertices in a triangulation as shown in Table 2.1. The
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β̃−1 β̃0 β̃1 β̃2 . . .

regular 0 0 0 0 . . .

0 1 0 0 0 . . .
1 0 1 0 0 . . .
2 0 0 1 0 . . .
3 0 0 0 1 . . .
. . . . . . . . . . . . . . . . . .

Table 2.1. Classification of vertices into regular points and simple
critical points (identified by their index) using the reduced Betti

numbers of the lower link.

uRuL

Fig. 2.4. A 2-sphere with two (shaded) oceans and two continents is cut to
form two 2-spheres, whose structures are those of a simple index-1 critical
point on the left and a simple index-2 critical point on the right.

multiplicity of a vertex u is the sum of reduced Betti numbers of its lower
link: µ(u) =

∑
k≥0 β̃k−1. Table 2.1 shows only the regular point, which

has multiplicity 0, and the simple critical points, which have multiplicity
1. All other points may be thought of as accumulations of µ ≥ 2 simple
critical points. In small dimensions, it is easy to effectively unfold such
a point into µ simple critical points. We illustrate this for a vertex u in
the triangulation of a 3-manifold. Its link is a 2-sphere. We refer to the
components of the lower link as oceans and to the components of the
complement as continents. Because the multiplicity is at least 2, we have
µ(u) = β̃0 + β̃1 ≥ 2. There are β̃0 + 1 oceans and β̃1 + 1 continents. As
illustrated in Fig. 2.4, we cut the link along a circle that passes through
exactly one ocean and one continent and meets each in a single interval.
Next we replace u by two vertices uL and uR and connect them to the
respective side of the link and to each other. We have β̃0L + β̃0R = β̃0

and β̃1L + β̃1R = β̃1. To guarantee progress, we cut such that β̃0L + β̃1L

and β̃0R + β̃1R are both less than µ. This implies that both are at least
one, which is equivalent to avoiding the creation of regular points and of
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minima and maxima. We repeat the process until all vertices are simple
critical points. This happens after β̃0 + β̃1 − 1 splits, which generate β̃0

simple critical points of index 1 and β̃1 simple critical points of index 2.
In summary, we compute the multiplicity of a vertex by summing the
reduced Betti numbers of its lower link:

integer isCritical(Complex L)
foreach k ≥ 0 do compute β̃k−1 of L endfor;
return

∑
k≥0 β̃k−1.

To compute the reduced Betti numbers, we may use the Smith normal
form algorithm described in [17]. For coefficients modulo 2, this amounts
to doing Gaussian elimination on the incidence matrices, which takes a
time cubic in the number of simplices in L. Even for integer coefficients,
the worst-case running time is polynomial in the number of simplices
[13]. For manifolds of dimension d ≤ 5, we get the lower links as sub-
complexes of spheres of dimension d − 2 ≤ 3. For these we can use the
significantly faster incremental algorithm of [7], whose running time is
ever so slightly larger than proportional to the number of simplices in
the link.

Post-processing. The second step amounts to unfolding the union of
edges to a 1-manifold. Define the degree of a vertex u as the number of
edges in J that share u, where we count each edge with its multiplicity.
We use the fact that every vertex has even degree. This is suggested by
our analysis of J in the smooth case but needs a direct proof, which is
given below using an elementary parity argument. For good piecewise
linear approximations of smooth functions, most vertices will have degree
zero. If u has degree 2 or higher, we glue the incident selected edges in
pairs. For d = 2, this is done so that glued pairs do not cross at u.

Even Degree Lemma. The degree of every vertex in J is even.

Proof We consider a vertex u and the family of functions hλ = f + λg.
For λ = ±∞, µ(u) is independent of f and the same at both extremes.
We increase λ continuously from −∞ to +∞. Each time we pass a value
λ = λuv, the status of the neighbor v changes from inside to outside the
lower link of u, or vice versa. The effect of this change on the type of
u depends on the type of v in the restriction of hλ to Lku. Specifically,
the multiplicity of u either increases or decreases by the multiplicity of
v in the lower link of u. For example, if v is regular then the change
has no effect, and if v is a simple critical point then it either increases
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or decreases µ(u) by one. The number of operations, each counted with
multiplicity of v, is equal to the degree of u. Since we start and end with
the same multiplicity of u, we add and subtract equally often, which
implies that the degree is even.

2.5 Jacobi sets of k + 1 functions

We generalize the results of §2.3 and §2.4 from two to three or more
functions defined on the same manifold.

Smooth case. Let M be a smooth d-manifold and choose a Riemannian
metric. Consider k + 1 ≤ d Morse functions f0, f1, . . . , fk on M, and
write Φ = (f0, f1, . . . , fk) : M → R

k+1. The generic intersection of the
level sets of j ≤ d of the fi is a (d − j)-dimensional smooth manifold.
Let t = (t0, . . . , t̂�, . . . , tk) be a k-vector of image values, where the hat
indicates that t� is not in the vector. Generically, the intersection of the
corresponding level sets is a smooth (d−k)-manifold: Mt =

⋂
i�=� f

−1
i (ti),

and the restriction f�t of f� to Mt is a Morse function. We call a critical
point of this restriction a simultaneous critical point of Φ. The Jacobi
set J = J(Φ) is the closure of the set of simultaneous critical points:

J = cl {x ∈ M | x is critical point of f�t}, (2.4)

for some index � and some k-vector t. Generically, the k gradients ∇fi
at a point x ∈ Mt span the k-dimensional linear subspace of vectors
normal to Mt at x, and x is a critical point of f�t iff ∇f�(x) belongs to
this linear subspace. This means that a direct definition of the Jacobi
set is:

J = {x ∈ M | rank dΦx ≤ k}, (2.5)

where dΦx is the d-by-(k + 1) matrix whose columns are the gradients
of f0 to fk at x. Equation (2.5) is symmetric in the components of Φ,
which implies that J is independent of the ordering of the fi. The linear
dependence of the k+1 gradient vectors implies that for each x ∈ J there
is a gradient that can be written as a linear combination of the others:
∇f�(x) +

∑
i�=� λi∇fi(x) = 0. Since the combination of gradients is the

gradient of the corresponding combination of functions, this implies

J = {x ∈ M | x is crit. pt. of f� +
∑
i�=�

λifi}, (2.6)

for some index � and some parameters λi. Generically, J is swept out
by a k-parameter family of discrete points. It follows that J is a set of
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dimension k. Unfortunately, J is not always a submanifold of M. Fol-
lowing [11], we define Sr = {x ∈ M | rank dΦx = k + 1 − r}. Clearly,
J is the disjoint union of the Sr for r ≥ 1. The Transversality Theorem
explained in §2.2 and the Thom Transversality Theorem [11] page 54
imply that Sr is a submanifold of M of co-dimension r(r + d − k − 1)
for each r, not necessarily a closed submanifold, however. Furthermore
the closure of each Sr is the union Sr ∪ Sr+1 ∪ . . . , however it is not
necessarily a manifold. In particular, J = clS1 is a manifold whenever
S2 (and therefore every Sr for r ≥ 2) is empty. This happens as long as
d < r(r + d− k − 1), for r = 2, since a negative co-dimension implies it
is empty. This inequality is equivalent to d > 2k − 2, and the first time
it fails is for a map from a 4-manifold to R

4.

Algorithm. Let K be a triangulation of the d-manifold M and let ϕi :
VertK → R be a function defined at the vertices, for 0 ≤ i ≤ k. We
obtain fi : ||K || → R as the piecewise linear extension of ϕi, for each i.
As in the case of k + 1 = 2 functions, we think of the fi as limits of
smooth functions and construct a k-dimensional subcomplex J ⊆ K as
the limit of the Jacobi sets of these smooth functions. Specifically, we
compute the multiplicity of every k-simplex in K and define J as the
collection of k-simplices with positive multiplicity plus the collection of
faces of these k-simplices. By definition, the Jacobi set is the underlying
space of this subcomplex: J = || J ||.

As suggested by (2.6), we introduce a k-parameter family of functions
hλ = f� +

∑
i�=� λifi, where λ = [λ0, . . . , λ̂�, . . . , λk]. Next, we consider

a k-simplex σ with vertices u0, u1, . . . , uk in K and let λσ be the k-
vector such that hλσ

(u0) = hλσ
(u1) = . . . = hλσ

(uk). The link of σ is
a triangulated (d− k − 1)-sphere, and as before we construct the lower
link as the subcomplex induced by the vertices w with function values
smaller than those of the vertices of σ. Whether or not σ belongs to J

depends on the topology or, more precisely, the reduced Betti numbers
of the lower link:

integer isJacobi(k-Simplex σ)
compute λ = λσ;
Lkσ = {τ ∈ Lkσ | w ≤ τ =⇒ hλ(w) < hλ(u0)};
return isCritical(Lkσ).

Function isCritical is the same as in §2.4. It is possibly surprising
that the criticality test gets easier the more functions we have, simply
because the dimension of the link decreases with increasing k.
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2.6 Towards applications

Different applications provide data in different ways and require differ-
ent adaptations of the algorithm. To illustrate the broad potential of
the results presented in this paper, we discuss a few applications while
emphasizing the diversity of questions they raise.

Contours. Let M be a smoothly embedded 2-manifold in R
3 and a ∈

S
2 an arbitrary but fixed viewing direction. The contour is the set of

points x ∈ M for which the viewing direction belongs to the tangent
plane: a ∈ TMx. We introduce two functions, f, g : M → R, defined by
f(x) = 〈x, b〉 and g(x) = 〈x, c〉, where b, c ∈ S

2 are directions orthogonal
to a. Assuming c �= ±b, f(x) and g(x) are coordinates of the projection
of x along the viewing direction. As illustrated in Fig. 2.1, the Jacobi
set of f and g is exactly the contour of M, and the projection of the
contour is the fold of the two maps. Note that J = J(f, g) is a smoothly
embedded 1-manifold in M, whereas the fold can have singularities such
as cusps and self-intersections.

Suppose M is given by an approximating simplicial complex K in
R

3. The algorithm described in §2.4 amounts to selecting the edges in
K for which the plane parallel to a that passes through the edge has
both incident triangles on one side. It has been observed experimen-
tally that J approximates the contour geometrically but not necessarily
topologically. Specifically, we can improve the geometric accuracy of the
approximation by subdividing K. In the process, spurious cycles of the
Jacobi set get smaller but they may not disappear, not even in the limit
[5]. This ‘topological noise’ is an artifact of the piecewise linear approx-
imation and particularly common in hyperbolic regions, such as around
the inner longitudinal circle of the torus in Fig. 2.1. We pose the exten-
sion of the methods in [8] for measuring topological noise to Jacobi sets
as an open problem.

Protein interaction. An energy potential is a type of smooth function
common in the sciences. The corresponding force relates to the potential
like the gradient relates to the smooth function. As an example, consider
the forces that are studied in the context of protein interaction, such as
electrostatics and van der Waals. The van der Waals potential decays
rapidly, possibly proportional to the sixth power of the distance to the
source, while the electrostatic potential decays much slower, proportional
to the distance. It is thus believed that the electrostatic potential influ-
ences the interaction at an early stage, while the proteins are relatively
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far apart, by steering them towards each other. Once in close contact,
the van der Waals force takes over, which may be the reason why stable
interactions require a good amount of local shape complementarity [10].
It would be interesting to put this hypothesis to a computational test in
which we can visualize the relationship between different energy poten-
tials through their Jacobi sets. Maybe the hypothesis is more true for
some and less for other proteins. On top of visualizing the relationship, it
would be useful to quantify the agreement and disagreement between the
potentials. It is not entirely clear how to go about constructing such a
test. The natural domain for the mentioned potentials is R

3, but it might
be more convenient to use two-dimensional domains, such as molecular
surfaces [6] and interfaces between proteins [2].

Solar system. Similar to the electrostatic potential, the gravitational
potential exerted by a heavenly body decays at a rate that is proportional
to the distance. At any moment in time, the gravitational force acting
on a point in our solar system depends on its mass and the distance
from the sun, the planets and the moons. Let M = R

3 × R represent
space-time in our solar system and let g : M → R be the gravita-
tional potential obtained by adding the contributions of the sun, the
planets and the moons. The function is smooth except at the centers
of the bodies, where g goes to infinity. At a fixed time t, we have a
map from R

3 to R, which generically has four types of critical points.
These points trace out curves, which we model as the Jacobi set of
g and a second function f that maps every space-time point (x, t) ∈
R

3 × R to its time: f(x, t) = t. Every level set of f is the gravita-
tional potential at some fixed moment in time, so it should be ob-
vious that J(f, g) is indeed the 1-manifold traced out by the critical
points.

The Lagrange points used by NASA in planning the flight paths of
their space-crafts are related to these curves but more complicated be-
cause they are defined in terms of the interaction between the gravi-
tational force and the momentum of the moving space-craft. It would
be interesting to see whether the Lagrange points can also be modeled
using the framework of Jacobi sets.

2.7 Discussion

The main contribution of this paper is an algorithm that constructs the
Jacobi set of a collection of piecewise linear continuous functions on a
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common triangulated manifold. The crucial concept in the definition of
the Jacobi set is the notion of a critical point of a piecewise linear func-
tion. Our decision to use reduced Betti numbers was in part guided by
computational convenience and feasibility. The weaker definition based
on the Euler characteristic of the lower link used by Banchoff [3] is also
possible but misses important portions of the set. The stronger definition
that requires the thickened lower link of a regular point be homeomor-
phic to a ball leads to an undecidable recognition problem for links of
dimension 5 or higher [14].

We conclude this section with a list of open questions raised by the
work presented in this paper. This list does not include the questions
stated in earlier sections.

• The algorithm in §2.4 may be applied more generally than just to
manifolds, such as for example to homology manifolds. By definition,
these cannot be distinguished from manifolds if we classify links using
homology. What is the most general class of simplicial complexes for
which our algorithm is meaningful?

• Initial computational experiments indicate that coarse triangulations
lead to poor approximations of the Jacobi set. This suggests we need
an adaptive meshing method that locally refines the triangulation de-
pending on the available information on the Jacobi set.

• Definition (2.5) of Jacobi sets extends to the case of k + 1 > d Morse
functions. According to [11], J has co-dimension k − d + 2 and thus
dimension 2d − k − 2. What is the significance of the Jacobi set of
k + 1 > d Morse functions for scientific applications?

• Finally, it would be interesting to explore whether the methods of this
paper can be extended to more general vector fields, in particular to
smooth vector fields that are not gradient fields.
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Abstract

The discretization of integral operators corresponding to non-local kernel
functions typically gives rise to densely populated matrices. In order to
be able to treat these matrices in an efficient manner, they have to be
compressed, e.g., by panel clustering algorithms, multipole expansions
or wavelet techniques.

By choosing the correct panel clustering approach, the resulting ap-
proximation of the matrix can be written in the form of a so-called
H2-matrix. The H2-matrix representation can be computed for fairly
general kernel functions by a black box algorithm that requires only
pointwise evaluations of the kernel function.

Although this technique leads to good results, the expansion system
tends to contain a certain level of redundancy that leads to an unnec-
essarily high complexity for the memory requirements and the matrix-
vector multiplication. We present two variants of the original method
that can compress the matrix even further. Both methods work on the
fly, i.e., it is not necessary to keep the original H2-matrix in memory,
and both methods perform an algebraic compression, so that the black
box character of the algorithm is preserved.
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3.1 Introduction

3.1.1 Model problem

We consider integral operators of the form

K[u](x) =
∫
Γ

κ(x, y)u(y) dy (x ∈ Γ), (3.1)

where u is a suitable function defined on the boundary Γ of a domain
Ω ⊆ R

d, where κ(·, ·) is a kernel function defined on R
d × R

d, possibly
with a singularity at the diagonal {(x, x) : x ∈ R

d}. Discretizing this
operator by a Galerkin method leads to a matrix K ∈ R

I×I defined by

Kij :=
∫
Γ

∫
Γ

κ(x, y)Φj(y)Φi(x) dy dx (i, j ∈ I), (3.2)

where (Φi)i∈I is the set of basis functions. Typical kernel function κ(·, ·)
(e.g., from BEM applications) have non-local support, therefore the ma-
trix K will be densely populated. If we store K in the typical two-
dimensional array, we will need N2 units of memory (N := #I),
and obviously this complexity is not acceptable for high-dimensional
problems.

3.1.2 Compression techniques

There are different techniques for reducing the complexity: We can use
the fast Fourier transform to diagonalize K if this matrix has Toeplitz
structure. This leads to a complexity of O(N logN), but the Toeplitz
structure occurs only in special situations.

Due to these restrictions, more general techniques have been devel-
oped that replace the matrix K by data-sparse approximations K̃ hav-
ing a complexity of O(N logλ N) (where λ depends on the choice of the
method): The panel clustering method [9] replaces the kernel function
locally by separable functions, e.g., Taylor expansions or polynomial
interpolants. The multipole approach [10] uses a more sophisticated ex-
pansion of the kernel function that is more efficient, but requires the
analytical expansion formulae for each kernel under consideration. Fi-
nally, we can use the wavelet compression technique [5] provided we are
willing to use wavelet discretizations and can construct suitable wavelet
spaces for the domain Γ.

The main advantage of the panel clustering technique is that it is
relatively simple, that it can be applied to a large number of practical
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problems and that it can be implemented as a black box method. The
main disadvantage is that the standard implementations are based on
an approximation of the kernel function in d-dimensional subdomains,
even if Γ is only (d− 1)-dimensional.

If we want to perform not only matrix-vector multiplications, but also
matrix-matrix additions, multiplications or even the inversion of matri-
ces efficiently, most of the techniques mentioned before can not be ap-
plied directly. The method of hierarchical matrices (H-matrices) [6, 7, 1]
generalizes the concept of separable expansions in order to find a repre-
sentation of matrices that makes it possible to perform the sophisticated
arithmetic operations mentioned above with complexity O(N logλN),
where λ depends on the type of operation. H2-matrices [8, 3, 4] are a
refinement of H-matrices that introduce an additional hierarchical struc-
ture in order to reach the optimal complexity O(N) for the matrix-vector
multiplication.

3.1.3 Adaptive panel clustering method

Our goal is to find a panel clustering algorithm that “automatically”
finds improved expansion systems without sacrificing the black box char-
acter and general applicability of the original method.

The idea is to start with a representation of the boundary element ma-
trix by an H2-matrix constructed by means of polynomial interpolation
of the kernel function and then apply an algebraic optimization that re-
moves superfluous functions from the expansion system while controlling
the approximation error. Due to this additional optimization, setting up
the optimized H2-matrix has a higher complexity than in the standard
case, but the complexity of the matrix-vector multiplication is reduced
significantly.

Another advantage of using standard interpolation as the basis of our
method is that the total approximation error of the adaptive method is
a combination of the well-known interpolation error and the user-defined
error bound of the algebraic optimization procedure.

3.1.4 Organization of this paper

This paper is organized in five sections: In the current section, we will
introduce a model problem and discuss some of the related algorithms.
The next section is devoted to the definition of the H2-approximation
of the matrix corresponding to the model problem. The third section
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describes two techniques for compressing the original H2-approximation,
and the fourth section contains numerical experiments that demonstrate
that the compression rates achieved by our techniques are much better
than those of standard methods.

3.2 Approximation of integral operators by H2-matrices

In this section, we give a short introduction to H2-matrices and a sim-
ple method for using them to approximate matrices corresponding to
integral operators (cf. [3]).

3.2.1 Interpolation

Due to reasons that will become clear later on, we cannot hope to find
a global approximation of the matrix K. Therefore we consider only
a submatrix corresponding to a block τ × σ, where τ, σ ⊆ I (recall
that I is the index set corresponding to the finite element space). Let
Bτ , Bσ ⊆ R

d be axis-parallel boxes satisfying

supp Φi ⊆ Bτ , supp Φj ⊆ Bσ (i ∈ τ, j ∈ σ).

The boxes Bτ and Bσ will be called the bounding boxes corresponding
to τ and σ.

Now we need to find a separable approximation of the kernel function
κ(·, ·) on Bτ×Bσ. The simplest possible approach is to use interpolation:
We fix an m-th order d-dimensional interpolation operator

I : C([−1, 1]d) → Qd,m,

where Qd,m denotes the set of d-dimensional polynomials of order m.
For any d-dimensional axis-parallel box B, we introduce the transformed
interpolation operator

IB : C(B) → Qd,m, u �→ (I[u ◦ Ψ]) ◦ Ψ−1,

where Ψ is the standard affine mapping from [−1, 1]d to B.
The approximation of κ(·, ·) on the domain Bτ ×Bσ is given by

κ̃τ,σ := (IBτ ⊗ IBσ

)κ ∈ Q2d,m.

If we denote the interpolation points corresponding to IBτ

and IBσ

by
(xτ

ν)ν∈K and (xσ
µ)µ∈K and the corresponding Lagrange polynomials by
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(Lτ
ν)ν∈K and (Lσ

µ)µ∈K , we have

IBτ

u =
∑
ν∈K

u(xτ
ν)Lτ

ν , IBσ

v =
∑
µ∈K

v(xσ
µ)Lσ

µ

and therefore

κ̃τ,σ(x, y) = ((IBτ ⊗ IBσ

)κ)(x, y) =
∑
ν∈K

∑
µ∈K

κ(xτ
ν , x

σ
µ)Lτ

ν(x)Lσ
µ(y),

i.e., in κ̃τ,σ(·, ·), we have found a separable approximation of κ(·, ·). Re-
placing κ(x, y) by κ̃τ,σ(x, y) in (3.2) leads to the approximated matrix
entries

K̃ij :=
∫
Γ

∫
Γ

κ̃1,2(x, y)Φj(y)Φi(x) dy dx

=
∑
ν∈K

∑
µ∈K

κ(x1
ν , x

2
µ)

∫
Γ

L1
ν(x)Φi(x) dx

∫
Γ

L2
µ(y)Φj(y) dy

= (V1S1,2V2�)ij (3.3)

for i ∈ τ and j ∈ σ, where

V1
iν :=

∫
Γ

L1
ν(x)Φi(x), V2

jµ :=
∫
Γ

L2
µ(y)Φj(y) and S1,2

νµ := κ(x1
ν , x

2
µ).

This factorized form can be evaluated in O(k#τ +k#σ+k2) operations
for k := #K and is therefore much more efficient than the standard
form if k is significantly smaller than N .

3.2.2 Approximation error

Let us now take a look at the error introduced by replacing κ by its
approximation κ̃1,2. For tensor product interpolation, error estimates of
the form

‖κ− κ̃1,2‖∞,B1×B2 ≤ Cin(m)
cm1

(m + 1)!
diam(B1 ×B2)m+1

×
2d∑
p=1

‖∂m+1
p κ‖∞,B1×B2 (3.4)

hold, where c1 ∈ R>0 is a constant and Cin(m) is a polynomial in m

(cf. [3]). In order to make use of this estimate, we need a bound for
the derivatives of κ. Typical kernel functions are asymptotically smooth,
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i.e., they have a singularity of order g ∈ N0 at x = y and satisfy the
inequality

|∂α
x ∂

β
y κ(x, y)| ≤ Capx(α + β)!(c0‖x− y‖)−g−|α|−|β| (3.5)

for some constants Capx, c0 ∈ R>0. Combining this inequality with (3.4),
we find

‖κ− κ̃τ,σ‖∞,Bτ×Bσ

≤ Cin(m)Capx

(
c1 diam(Bτ ×Bσ)
c0 dist(Bτ , Bσ)

)m+1

dist(Bτ , Bσ)−g.

This estimate implies that we can expect good convergence only if the
diameter of Bτ ×Bσ can be bounded by the distance of the boxes, i.e.,
if Bτ and Bσ satisfy an admissibility condition of the type

diam(Bτ ×Bσ) ≤ η dist(Bτ , Bσ) (3.6)

for some parameter η ∈ R>0. If this inequality holds, we find

‖κ− κ̃τ,σ‖∞,Bτ×Bσ ≤ Cin(m)Capx

(
c1η

c0

)m+1

dist(Bτ , Bσ)−g, (3.7)

i.e., we have exponential convergence in m if η < c0/c1 holds.

Remark 3.1 The Newton kernel κ(x, y) = 1/‖x − y‖ satisfies (3.5)
with c0 = 1. Tensor product Chebyshev interpolation satisfies (3.4) with
c1 = 1/4. This implies that η ∈ (0, 4) guarantees exponential convergence
of the kernel approximation.

3.2.3 Local approximation

The admissibility condition (3.6) implies dist(Bτ , Bσ) > 0, so we cannot
expect to find a global approximation of the form (3.3) for the entire
matrix. Instead, we split the matrix into suitable blocks and approximate
each block separately.

In order to get an efficient algorithm, we use a hierarchical approach to
construct the block decomposition: We organize the degrees of freedom
in the form of a cluster tree, i.e., a tree with root I and the property
that if a node τ ⊆ I is not a leaf, it is the disjoint union of all of its sons.
The nodes of a cluster tree will be called clusters.

For a given cluster tree TI, we denote the set of clusters by TI and
the set of sons for a given cluster τ ∈ TI by sons(τ). We fix a bounding
box Bτ for each cluster τ ∈ TI.
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We can use the admissibility condition (3.6) in combination with the
cluster tree to construct the desired partition of the matrix: A pair (τ, σ)
is called admissible, if condition (3.6) holds. We start with (I, I) and split
a cluster pair as long as it is not admissible. This leads to the following
algorithm:

procedure subdivide(τ , σ, var P);
begin

if (τ, σ) is admissible then P := P ∪ {(τ, σ)}
else if sons(τ) = ∅ or sons(σ) = ∅ then P := P ∪ {(τ, σ)}
else

for τ ′ ∈ sons(τ) do
for σ′ ∈ sons(σ) do

subdivide(τ ′, σ′, P)
end;

procedure divide(var P);
begin

P := ∅; subdivide(I, I, P )
end;

This algorithm gives us a set P satisfying

I × I =
⋃

(τ,σ)∈P

τ × σ,

i.e., a partition of the index set I × I corresponding to the matrix K.
Obviously, an entry (τ, σ) can only appear in P if either it is admissible
or if τ or σ is a leaf. This distinction is represented by the splitting

Pfar := {(τ, σ) ∈ P : (τ, σ) is admissible}, Pnear := P \ Pfar

of P into admissible and non-admissible blocks. The non-admissible
blocks are stored without compression, while we apply our approxima-
tion scheme to the admissible blocks.

3.2.4 Compressed representation

For each cluster τ , we denote the interpolation points and Lagrange poly-
nomials corresponding to IBτ

by (xτ
ν)ν∈K and (Lτ

ν)ν∈K and introduce
the matrix Vτ ∈ R

τ×K by setting

Vτ
iν :=

∫
Γ

Lτ
ν(x)Φi(x) dx (i ∈ τ, ν ∈ K). (3.8)
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The family (Vτ )τ∈TI
is called a cluster basis. Let (τ, σ) ∈ Pfar. We

replace the kernel function κ by its interpolant

κ̃τ,σ := (IBτ ⊗ IBσ

)κ =
∑
ν∈K

∑
µ∈K

κ(xτ
ν , x

σ
µ)Lτ

ν(x)Lσ
µ(y)

and get the approximate matrix K̃τ,σ ∈ R
τ×σ defined by

K̃τ,σ
ij :=

∑
ν∈K

∑
µ∈K

κ(xτ
ν , x

σ
µ)

∫
Γ

Lτ
ν(x)Φi(x) dx

∫
Γ

Lσ
µ(y)Φj(y) dy

= (VτSτ,σVσ�)ij (3.9)

for i ∈ τ , j ∈ σ, where Sτ,σ ∈ R
K×K is given by

Sτ,σ
ν,µ := κ(xτ

ν , x
σ
µ) (ν, µ ∈ K). (3.10)

The approximation K̃ ∈ R
I×I of the matrix K is given by

K̃ij :=

{
(VτSτ,σVσ�)ij if (i, j) ∈ τ × σ for (τ, σ) ∈ Pfar,

Kij otherwise,
(i, j ∈ I).

3.2.5 Fast matrix-vector multiplication

Now that we have derived a compact approximation of the matrix K,
we consider the efficient computation of the product of K̃ and a given
vector u ∈ R

I.
The straightforward method is to loop over all blocks (τ, σ) ∈ P and

multiply them by u. This approach is not optimal, since we have to
perform the multiplication by Vσ� for each single block of the form
(τ, σ) ∈ Pfar. In order to remove this redundancy, we split the matrix-
vector multiplication into four parts:

(i) Forward transformation: Compute ûσ := Vσ�u|σ for all σ ∈
TI.

(ii) Multiplication: Compute v̂τ :=
∑

σ,(τ,σ)∈Pfar
Sτ,σûσ for all τ ∈

TI.
(iii) Backward transformation: Initialize the output vector v by

zero and add up the contributions of all clusters: v|τ := v|τ +
Vτ v̂τ .

(iv) Nearfield: Add the uncompressed parts: v|τ := K|τ×σu|σ for all
(τ, σ) ∈ Pnear.

This approach is more efficient than the naive method, but can be im-
proved even further: Let τ ∈ TI be a node that is not a leaf. Let
τ ′ ∈ sons(τ). Since our interpolation operators are projections onto



66 S. Börm and W. Hackbusch

Qd,m, we find that

Lτ
ν = IBτ′

Lτ
ν =

∑
ν′∈K

Lτ
ν(x

τ ′

ν′)Lτ ′

ν′ holds for all ν ∈ K.

For a given index i ∈ τ ′, this implies

Vτ
iν =

∫
Γ

Lτ
ν(x)Φi(x) dx

=
∑
ν′∈K

Lτ
ν(x

τ ′

ν′)
∫
Γ

Lτ ′

ν′(x)Φi(x) dx = (Vτ ′
Bτ ′,τ )iν , (3.11)

where Bτ ′,τ ∈ R
K×K is defined by

Bτ ′,τ
ν′ν := Lτ

ν(x
τ ′

ν′) (ν, ν′ ∈ K). (3.12)

The equation (3.11) describes an essential property of the basis: The
restriction of Vτ to the subset τ ′ belongs to the range of Vτ ′

, the cluster
bases are nested.

Using this property, we can derive recursive procedures for performing
the first and third step of the matrix-vector multiplication:

procedure fastforward(σ, u, var (ûσ)σ∈TI
);

begin

if sons(σ) = ∅ then ûσ := Vσ�u|σ
else

for σ′ ∈ sons(σ) do begin

fastforward(σ′, u, û);

ûσ := ûσ + Bσ′,σ�
ûσ′

end

end;

procedure fastbackward(τ , var v, (v̂τ )τ∈TI
);

begin

if sons(τ) = ∅ then v|τ := V τ v̂τ
else

for τ ′ ∈ sons(τ) do begin

v̂τ ′ := v̂τ ′ + Bτ ′,τ v̂τ ;
fastbackward(τ ′, v, v̂)

end

end;

In order to stress the similarities of both procedures, we have not in-
cluded the necessary initialization: Before calling the fast forward trans-
formation, the output coefficients (ûσ)σ∈TI

have to be set to zero.
The advantage of the recursive procedures is that we have to store the

matrices Vτ only for the leaves of the cluster tree. For all other clusters,
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it is sufficient to store the small transfer matrices Bτ ′,τ . This leads to a
significant reduction in the storage complexity.

Remark 3.2 (Complexity) In typical situations, building the matrices
Bτ ′,τ , Vτ and Sτ,σ can be done in O(Nmd) operations. The matrix-
vector multiplication based on the recursive procedures requires O(Nmd)
operations, too (cf. [3]).

3.3 Orthonormalization

Our approximation is created by a d-dimensional interpolation operator,
but enters the computations only in the form of boundary integrals over
a (d − 1)-dimensional surface. Therefore we can expect that the used
expansion system is too rich and that it should be possible to construct
reduced expansion systems, e.g., harmonic polynomials if κ(·, ·) is the
kernel function corresponding to the Laplace equation. We do this by
applying algebraic algorithms to the original H2-matrix.

The algebraic equivalent of the continuous expansion system is the
cluster basis (Vτ )τ∈TI

(cf. (3.8)), which can be considered to represent
the Galerkin discretizations of the expansion functions.

Therefore, our goal is to find a reduced cluster basis (Ṽτ )τ∈TI
and

then to find an approximation of the original H2-matrix in terms of the
new basis.

3.3.1 Orthonormalized cluster basis

Let us fix a cluster τ ∈ TI, and let ν ∈ K. If the basis function Lτ
ν is

redundant, its Galerkin projection can be represented in terms of the
projections of the remaining basis functions, therefore we can represent
the ν-th column of Vτ in terms of the other columns, and this implies
that Vτ is rank-deficient.

This suggests a simple method for the elimination of redundant expan-
sion functions: We try to orthonormalize Vτ , i.e., to find a rank k̃τ ∈ N

and matrix Qτ ∈ R
K×k̃τ

such that Ṽτ := VτQτ ∈ R
τ×k̃τ

is orthogonal.
The orthogonality of Ṽτ is equivalent to

I = Ṽτ
�
Ṽτ = Qτ�(Vτ�Vτ )Qτ . (3.13)

A matrix Qτ satisfying this condition can be found by different algo-
rithms. We use the Schur decomposition

P�GP = D
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of the positive semidefinite symmetric matrix G := Vτ�Vτ , where P ∈
R

K×k is a square orthogonal matrix (recall that K is the index set
corresponding to the original expansion system and k is its cardinality),
D ∈ R

k×k is diagonal and the entries of D are ordered in a monotonously
increasing sequence.

If all the diagonal entries of D were positive, we could set Qτ :=
PD−1/2 and find

Qτ�(Vτ�Vτ )Qτ = D−1/2P�GPD−1/2 = D−1/2DD−1/2 = I,

so we would have found a solution for (3.13).
For rank-deficient matrices Vτ , D will have zero entries, so we have

to modify our approach. The idea is to choose those entries of D that
are larger than a given threshold ε ∈ R>0: We set

k̃τ := min{l ∈ {1, . . . , k} :
k∑

p=l+1

Dpp ≤ ε}

and use D† ∈ R
k×k̃τ

given by

D†
ij =

{
D−1/2

ij if i = j,

0 otherwise
(i ∈ {1, . . . , k}, j ∈ {1, . . . , k̃τ})

in order to define

Ṽτ := VτPD†.

This implies

Ṽτ Ṽτ� = VτP(D†)2P�Vτ�

and therefore

Vτ�Ṽτ Ṽτ�Vτ = GP(D†)2P�G = PD(D†)2DP�.

Due to orthogonality, the best approximation of Vτ in the range of Ṽτ

is given by Ṽτ Ṽτ�Vτ and satisfies the error estimate

‖Vτ − Ṽτ Ṽτ�Vτ‖2
F = tr(Vτ�Vτ − Vτ�Ṽτ Ṽτ�Vτ )

= tr(P(D − D(D†)2D)P�)

= tr(D − D(D†)2D) ≤ ε.
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3.3.2 Nested basis

Applying the straightforward orthonormalization described above to all
clusters τ ∈ TI will give us a reduced basis, but this basis will no longer
be nested, i.e., (3.11) will no longer hold, so we would not be able to use
the fast matrix-vector multiplication algorithm.

Therefore we have to introduce a further modification: Let τ ∈ TI be
a cluster with sons(τ) 	= ∅. Due to (3.11), we have

Vτ |τ ′×K = Vτ ′
Bτ ′,τ for all τ ′ ∈ sons(τ). (3.14)

We want to find a reduced matrix Ṽτ satisfying a similar equation for
reduced transfer matrices B̃τ ′,τ .

Suppose we have already computed Ṽτ ′
for all τ ′ ∈ sons(τ) of τ . We

approximate Vτ ′
in (3.14) in terms of Ṽτ ′

, i.e., we apply the orthogonal
projection to the range of Ṽτ ′

to both sides of the equation:

Ṽτ ′
Ṽτ ′�

Vτ |τ ′×K = Ṽτ ′
Ṽτ ′�

Vτ ′
Bτ ′,τ .

Let Wτ ′
:= Ṽτ ′�Vτ ′

, and let V̂τ ∈ R
τ×K be defined by

V̂τ |τ ′×K := Ṽτ ′
Wτ ′

Bτ ′,τ (3.15)

for all τ ′ ∈ sons(τ). V̂τ is well-defined since the sons τ ′ ∈ sons(τ) are
disjoint and their union is τ .

The matrix V̂τ is the orthogonal projection of Vτ onto the space
spanned by the ranges of the matrices Ṽτ ′

corresponding to the sons of
τ , i.e. V̂τ is the best approximation of Vτ we can get without giving up
nestedness.

Now we can apply the same orthogonalization procedure as before to
V̂τ instead of Vτ in order to find a matrix Qτ satisfying

I = Ṽτ
�
Ṽτ = Qτ�(V̂τ

�
V̂τ )Qτ .

The matrix Ṽτ is given by

Ṽτ := V̂τQτ ,

and this implies

Ṽτ |τ ′×k̃τ = V̂τ |τ ′×KQτ = Ṽτ ′
Wτ ′

Bτ ′,τQτ = Ṽτ ′
B̃τ ′,τ

for B̃τ ′,τ := Wτ ′
Bτ ′,τQτ , i.e., the new cluster basis (Ṽτ )τ∈TI

is nested
(cf. (3.11)).
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The Gram matrix V̂τ
�
V̂τ used in the computation of B̃τ ′,τ can be

constructed by means of the equation

V̂τ
�
V̂τ =

∑
τ ′∈sons(τ)

Bτ ′,τ�Wτ ′�
Ṽτ ′�

Ṽτ ′
Wτ ′

Bτ ′,τ

=
∑

τ ′∈sons(τ)

Bτ ′,τ�Wτ ′�
Wτ ′

Bτ ′,τ

due to the orthogonality of Ṽτ ′
.

By splitting the matrix Wτ and using the nestedness of the bases
(Vτ )τ∈TI

and (Ṽτ )τ∈TI
, we find that the matrix Wτ can be represented

in the form

Wτ = Ṽτ�Vτ =
∑

τ ′∈sons(τ)

B̃τ ′,τ�Ṽτ ′�
Vτ ′

Bτ ′,τ

=
∑

τ ′∈sons(τ)

B̃τ ′,τ�Wτ ′
Bτ ′,τ ; (3.16)

Hence this computation requires only the matrices Wτ ′
corresponding

to the sons τ ′ of τ and the transfer matrices Bτ ′,τ and B̃τ ′,τ .
The following algorithm computes the matrices Ṽτ for leaves τ ∈ TI

and the transfer matrices B̃τ ′,τ for the remaining clusters τ ∈ TI with
τ ′ ∈ sons(τ):

procedure orthonormalize(τ);
begin

if sons(τ) = ∅ then begin

G := Vτ�Vτ ; {Build Gram matrix}
Find Qτ with Qτ�GQτ = I;

Ṽτ := VτQτ ; {New basis for τ}
Wτ := Ṽτ�

Vτ {Update transformation matrix}
end else begin

for τ ′ ∈ sons(τ) do orthonormalize(τ ′); {Recursion}
G := 0; {Build projected Gram matrix}
for τ ′ ∈ sons(τ) do G := G + Bτ′,τ�

Wτ ′�
Wτ′

Bτ′,τ ;

Find Qτ with Qτ�GQτ = I;

for τ ′ ∈ sons(τ) do B̃τ ′,τ := Wτ ′
Bτ ′,τQτ ; {New basis for τ}

Wτ := 0; {Update transformation matrix}
for τ ′ ∈ sons(τ) do Wτ := Wτ + B̃τ ′,τ�

Wτ ′
Bτ ′,τ

end

end;

This procedure is local, i.e., only the matrix Vτ is needed for the com-
putation if τ is a leaf, and only the matrices Bτ ′,τ for τ ′ ∈ sons(τ) are
needed if τ is not a leaf. By using temporary variables that are initialized
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at the beginning of the procedure (cf. (3.8) and (3.12)), we do not need
to store the entire original cluster basis.

3.3.3 Conversion of the coefficient matrices

Let (τ, σ) ∈ Pfar. The submatrix corresponding to this block of an H2-
matrix is given in the form VτSτ,σVσ� (cf. (3.9)).

In order to find a representation of this block with respect to the new
cluster basis (Ṽτ )τ∈TI

, we once more use the orthogonal projection and
get

Ṽτ Ṽτ�VτSτ,σVσ�ṼσṼσ�
= Ṽτ S̃τ,σṼσ�

as the best approximation with

S̃τ,σ := Ṽτ�VτSτ,σVσ�Ṽσ = WτSτ,σWσ�,

so we need only the matrices (Wτ )τ∈TI
computed as a byproduct in the

basis orthonormalization algorithm.

3.3.4 Complete algebraic recompression

The orthogonalization algorithm considers only the expansion system
itself, but not the kernel function we intend to approximate. Therefore
we can expect improved results if we include the coefficient matrices Sτ,σ

in addition to the cluster basis.
This is done by the algorithm introduced in [2] for dense and hier-

archical matrices. Since H2-matrices are a specialization of hierarchical
matrices, we could convert the H2-matrix representation into the form
of an H-matrix representation and apply the algorithm from [2] directly.
For the conversion, we would have to compute the matrices (Vτ )τ∈TI

for all clusters τ ∈ TI, not only for the leaves, i.e., we could not benefit
from the more compact recursive representation based on (3.11).

Instead of computing the matrices (Vτ )τ∈TI
in advance and using

them to expand the factorized form VτSτ,σVσ� of the H2-matrix blocks
to the form used in the H-matrix conversion algorithm, we keep the
blocks factorized as long as possible and expand them during the course
of the recursion: We use the set of blocks related to ancestors of τ given
by

Aτ := {σ ∈ TI : ∃τ0 ∈ TI : τ ⊆ τ0, (τ0, σ) ∈ Pfar}

and store the intermediate results of the transformation of these blocks
in a family (Cτ,σ)σ∈Aτ of auxiliary matrices. After a suitable basis for a
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cluster has been found, all the blocks are transformed into the new basis
and the results are stored in another family (Ĉτ,σ)σ∈Aτ of auxiliary
matrices. This leads to the following algorithm:

procedure recompression(τ , Aτ );
begin

if sons(τ) = ∅ then for σ ∈ Aτ do Ĉτ,σ := Cτ,σ {Leaves: No conversion}
else begin

Let sons(τ) = {τ1, . . . , τs};
for i := 1 to s do begin {Compute ancestor blocks}

Rτi := {σ ∈ TI : (τi, σ) ∈ Pfar}; Aτi := Aτ ∪Rτi ;
for σ ∈ Aτ do Cτi,σ := Bτi,τCτ,σ;
for σ ∈ Rτi do Cτi,σ := Sτi,σ;
recompression(τi, A

τi) {Determine cluster basis for sons}
end;
for i := 1 to s do {Compute Gram matrix for all sons}

for j := 1 to s do begin

Gij := 0;

for σ ∈ Aτ do Gij := Gij + Ĉτi,σ
�
TσĈτj ,σ

end;

Find an orthogonal k̃τ -column matrix Q = (Q�
1 , . . . ,Q�

s )� maximizing∥∥∥∥∥∥∥
(
Q�

1 , . . . ,Q
�
s

) G11 . . . G1s

...
. . .

...
Gs1 . . . Gss


∥∥∥∥∥∥∥
F

.

for i := 1 do s do begin {Convert blocks to the new basis}
B̃τi,τ := Qi;

for σ ∈ Aτ do Ĉτ,σ := B̃τ�
Cτ,σ

end

end

end;

The matrices (Tσ)σ∈TI
appearing in this procedure are defined by Tσ :=

Vσ�Vσ and can be computed by a recursion similar to (3.16).

3.4 Numerical Experiments

For our experiments, we consider the kernel function

κ(x, y) :=
1

4π‖x− y‖

corresponding to the three-dimensional single layer potential operator.
The domain Ω is the unit ball in R

3 and therefore Γ is the unit sphere
in three dimensions.
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N original orthogonalized recompressed

Build/s MVM/s Build/s MVM/s Build/s MVM/s

512 4.33 0.07 5.42 0.01 6.17 0.01
2048 20.16 0.48 25.83 0.09 30.46 0.04
8192 83.50 1.71 108.24 0.45 223.51 0.24

32768 333.25 6.87 435.54 1.78 1163.62 1.02
131072 1315.24 27.05 1718.66 7.42 5683.39 4.08
524288 27366.03 16.07

Table 3.1. Time in seconds for setup and matrix-vector multiplication

We approximate Γ by a regular triangulation consisting of plane tri-
angles and use piecewise constant basis functions for our Galerkin dis-
cretization.

The original discretization is performed for an interpolation order of
4, and we choose ε = 10−4 as the threshold for the algebraic compression
algorithm.

We will first consider the speed of our algorithms. Table 3.1 lists the
time needed1 for building the different H2-matrix approximations and
for performing the matrix-vector multiplications:
We can see that both compression techniques lead to a significant re-
duction in the time for the matrix-vector multiplication: For the simple
orthogonalization algorithm the matrix-vector multiplication is speeded
up by a factor of almost 4, while the full recompression even gives us a
factor of more than 6.

On the other hand, building the fully recompressed H2-matrix requires
much more time than building the H2-matrix with orthogonalized clus-
ter basis. This is not surprising, since the full recompression algorithm
has to consider all admissible blocks of the H2-matrix, while the orthog-
onalization algorithm works only based on the cluster basis.

In Table 3.2, we consider the amount of memory required for storing
the original and compressed H2-approximations.
The columns “orig”, “orth.” and “recomp.” give the number of bytes of
storage needed per degree of freedom. In Table 3.2, the advantage of the
full recompression method is obvious: It reduces the memory require-
ments by more than 95% compared to the original method, while the
orthogonalization algorithm reaches only 86%.

1 All computations were performed on Sun Ultra 3cu processors running at 900
MHz.
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N original orthogonalized recompressed

512 92108 6633 3527
2048 139020 15057 5015
8192 152422 19873 5848

32768 152618 21235 6171
131072 146278 20345 6138

Table 3.2. Memory requirement in bytes per degree of freedom

N original orthogonalized recompressed

512 4.53033−5 4.52851−5 4.53183−5

2048 5.08654−5 5.11205−5 5.10336−5

8192 6.63957−5 6.65225−5 6.64592−5

32768 7.22294−5 7.22293−5 7.23569−5

Table 3.3. Relative approximation error

Of course, we are not only interested in fast algorithms, we also need
the results to be sufficiently precise. We approximate the operator norm
of matrices by starting with a random vector and performing 100 steps
of the power iteration. The values of ‖K − K̃‖2/‖K‖2 are collected in
Table 3.3.

Here, the columns “orig.”, “orth.” and “recomp.” give the norm of
the difference between the densely populated matrix and the original
H2-matrix, the H2-matrix with orthogonalized cluster bases and the
recompressed H2-matrix.

Obviously, the additional errors introduced by orthogonalization and
recompression are negligible. This means that both algorithms yield a
significant reduction in the computational complexity without affecting
the precision. The compression ratio of the full recompression procedure
is much better than that of the simple orthogonalization method, but
this advantage is complemented by the significantly higher complexity.
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Abstract

A challenging question in the overlap of computer science, mathematics,
and physics, is the exploration of potential capabilities of quantum com-
puters. Milestones were the factoring algorithm of Shor (1994) and the
search algorithm of Grover (1996). So far, major research was concen-
trated on discrete and algebraic problems. Much less was known about
computational problems of analysis, including such a prominent exam-
ple as high dimensional numerical integration, which is well-studied in
the classical settings. We seek to understand how efficiently this and
related problems can be solved in the quantum model of computation
(i.e., on a quantum computer) and how the outcome compares to the
efficiency of deterministic or randomized algorithms on a classical (i.e.
non-quantum) computer. In this paper we give a survey of the state of
the art in this field, including also a brief introduction to the general
ideas of quantum computing.

4.1 Introduction

A quantum computer is a computing device based on quantum me-
chanical laws of the (sub)atomic world. The idea of such a computer
was developed by Feynman [8] in 1982. He emphasized that simulating
quantum mechanics on a classical computer is extremely hard, probably
infeasible. So why not try to simulate quantum mechanics using quan-
tum devices themselves. (Thoughts in this direction were also expressed

76
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by Manin [21] in 1980, see also [22].) In 1985 Deutsch [6] presented
a formal model of computation for quantum computing. A sensational
breakthrough of quantum computing was Shor’s [29] result of 1994: He
produced a polynomial (in the number of bits) algorithm for factoring
large integers (no polynomial classical – deterministic or randomized –
algorithm is known). Another seminal result is due to Grover [9] in 1996:
Given a function f : {0, . . . , N−1} → {0, 1} with the property that there
is a unique i0 with f(i0) = 1, the task is to find this i0. The function is
given as a black box, which means that function values are only avail-
able at request, by query calls. Classical deterministic or randomized
algorithms cannot solve this problem with less than Ω(N) queries to f .
Grover’s quantum algorithm needs O(

√
N) quantum queries (we explain

this notion later).
These developments triggered an explosion of efforts in quantum com-

puting. The challenges of quantum computing to physicists are to find
quantum systems suitable for computation, i.e., to built a quantum com-
puter. In recent years, various realizations are tested in laboratories, but
so far only a small number of system components (qubits) is possible.

What are the challenges of quantum computing to mathematicians
and computer scientists? To find more problems for which quantum al-
gorithms are better than all known classical algorithms (Shor’s result
belongs to this category). And even stronger: Find more problems for
which quantum algorithms are provably better than all possible classi-
cal algorithms (like in Grover’s result). In this vein all kinds of discrete
problems are being investigated. Furthermore, Feynman’s original idea
was realized: various quantum algorithms for quantum mechanical simu-
lations were suggested which are better than known classical algorithms
(however, no proof of superiority over all possible classical algorithms
was given for these types of numerical problems).

The study of numerical problems from the stronger point of view of
provable superiority was begun by Brassard, Høyer, Mosca, and Tapp
[5, 4]. They exhibited a quantum algorithm for computing the mean
of {0, 1}-valued sequences, provably superior to all classical algorithms.
That this algorithm is even optimal among all quantum algorithms was
shown by Nayak and Wu [23]. First ideas of how to apply quantum al-
gorithms for integration were expressed by Abrams and Williams [1].
Novak [26] carried out a first systematic study of integration, includ-
ing lower bounds and provable superiority. He considered integration of
functions from Hölder spaces. In the sequel this study was continued
and widely extended. The author considered the mean of p-summable
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sequences and integration in Lp [12] and in Sobolev spaces [13]. A quan-
tum complexity theory for continuous problems of numerical analysis,
that is, the quantum setting of information-based complexity theory,
was developed in [12]. Novak and the author [17] completed the analysis
of mean computation for p-summable sequences. Path integration was
considered by Traub and Woźniakowski [32]. First approaches towards
approximation of functions by quantum algorithms were made by
Novak, Sloan, and Woźniakowski [27] for high dimensional Hilbert func-
tion classes. The first matching bounds for approximation are given by
the author in [15], where the case of Sobolev embeddings is considered.

Complexity of numerical problems is studied in the general framework
of information-based complexity theory. By now for many important
problems of numerical analysis, including high dimensional integration
in various function spaces, matching upper and lower complexity bounds
are known for both the classical deterministic and randomized setting. It
is a challenging task to study these problems in the setting of quantum
computation. Once such results are obtained, one can compare them
to the deterministic and randomized classical ones to understand the
possible speedups by quantum algorithms.

After a short review of crucial notions from the classical determinis-
tic and randomized setting of information-based complexity theory, we
explain basic ideas of quantum computation and present the quantum
setting. Then we discuss recent results on quantum algorithms, lower
bounds, and complexity for various integration problems, like approxi-
mating the mean of p-summable sequences and the integral of functions
from Hölder and Sobolev spaces. It turns out that in many cases there is
a quadratic speed-up of quantum algorithms over classical randomized
ones, and, with increasing dimension of the integration domain, a poly-
nomial speed-up of arbitrarily large degree of quantum algorithms over
classical deterministic ones. Finally, we also give an example of a func-
tion class in which quantum integration gives an exponential speedup
over deterministic algorithms and discuss some recent new directions.

For further reading on quantum computation we recommend the sur-
veys by Aharonov [2], Ekert, Hayden, and Inamori [7], Shor [30], and the
monographs by Pittenger [28], Gruska [10], and Nielsen and Chuang [24].

For notions and results in information-based complexity theory see the
monographs by Traub, Wasilkowski, and Woźniakowski [31] and Novak
[25], and the survey by the author [11] of the randomized setting. For a
first overview of quantum complexity theory for numerical problems we
refer to Heinrich and Novak [16], while the connections to Monte Carlo
algorithms are emphasized in a survey by the author [14].
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4.2 Numerical problems in the classical settings

Let D be a non-empty set, F a set of real-valued functions on D, G a
normed space, and let

S : F → G (4.1)

be a mapping, which we refer to as the solution operator. S(f) ∈ G

represents the exact solution of our numerical problem in consideration
at input f ∈ F .

As an example, consider the computation of the mean (or, equiva-
lently – up to the weighting factor – the summation of finite sequences).
Let D = {0, . . . , N − 1} and G = R. For a function f : D → R define

S(f) = SNf =
1
N

N−1∑
i=0

f(i).

To specify the set of inputs, consider the discrete Lp-classes: For 1 ≤
p ≤ ∞, let LN

p = R
N , equipped with the norm

‖f‖LN
p

=

(
1
N

N−1∑
i=0

|f(i)|p
)1/p

if 1 ≤ p < ∞, and

‖f‖LN
∞

= max
0≤i<N

|f(i)|.

Now we let

F = B(LN
p ) = {f ∈ LN

p : ‖f‖LN
p
≤ 1}

be the unit ball of LN
p .

Our second example is multivariate integration. Here we let d ∈ N,
D = [0, 1]d, and G = R. For a Lebesgue integrable function f : [0, 1]d →
R put

S(f) = Idf :=
∫

[0,1]d

f(t)dt.

As input sets we consider two basic types of classes:

Hölder classes: For r ∈ N0 and 0 < s ≤ 1 define

F = B(F r,s
d ) = {f ∈ Cr([0, 1]d), ‖f‖∞ ≤ 1,

|∂αf(x) − ∂αf(y)| ≤ |x− y|s, |α| = r} .

Here Cr([0, 1]d) stands for the set of r times continuously differentiable
functions.
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Sobolev classes: For r, d ∈ N, and 1 ≤ p ≤ ∞, satisfying r/d > 1/p
(the Sobolev embedding condition) let

F = B(W r
p,d) = {f ∈ Lp([0, 1]d) : ‖∂αf‖Lp

≤ 1, |α| ≤ r},

where ∂α denotes the weak partial derivative.
In the classical deterministic setting we will consider the following

general form of an algorithm which uses n function values:

An(f) = ϕ(f(x1), . . . , f(xn)).

Here xi ∈ D (i = 1, . . . , n) are any points, and ϕ : R
n → G is an

arbitrary mapping (both chosen by the algorithm designer). The error
of An over F is defined as

e(S,An, F ) = sup
f∈F

‖S(f) −An(f)‖G.

The crucial quantity of complexity analysis in this setting is the deter-
ministic n-th minimal error

edet
n (S, F ) = inf

An

e(S,An, F ),

which is the minimal possible error reachable among all algorithms which
use at most n function values.

In the classical randomized setting the general form of an algorithm
which uses n function values is the following: An = (Aω

n)ω∈Ω, where

Aω
n(f) = ϕω(f(xω

1 ), . . . , f(xω
n)),

(Ω,Σ,P) is a probability space, xω
i ∈ D are random points in D, and

ϕω : R
n → G (ω ∈ Ω) is a random mapping. Then the error of An is

defined as

e(S,An, F ) = sup
f∈F

(E‖S(f) −Aω
n(f)‖2

G)1/2.

This leads to the randomized n-th minimal error

eran
n (S, F ) = inf

An

e(S,An, F ),

that is, the minimal possible (mean-square) error among all randomized
algorithms using at most n function values. So far a short overview of
the classical settings. For further reading we refer to [31, 25, 11]. In §4.4
we introduce the quantum setting.
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4.3 Quantum computation

The mathematical framework for the basic unit of quantum computing
is the two dimensional complex Hilbert space H1 := C

2. The unit sphere
of H1 serves as the state space of quantum systems with two classical
states. The classical states correspond to the elements of the unit vector
basis e0, e1 ∈ H1. Such systems are called qubits – quantum bits.
Following quantum mechanics notation, we write |0〉 instead of e0 and
|1〉 instead of e1.

A quantum computer is an m-qubit system, that is, a system of
m interacting qubits (which can be manipulated, as will be explained
below). Such a system is represented by the tensor product

Hm := H1 ⊗H1 ⊗ · · · ⊗H1︸ ︷︷ ︸
m

.

This is the 2m-dimensional complex Hilbert space, with its canonical
basis

ei0 ⊗ ei1 ⊗ · · · ⊗ eim−1 (i0, i1, . . . , im−1) ∈ {0, 1}m.

Let us introduce further notational conventions:

ei0 ⊗ ei1 ⊗ · · · ⊗ eim−1 =: |i0〉 |i1〉 . . . |im−1〉
=: |i〉

where i := (i0i1 . . . im−1)2 :=
∑m−1

k=0 ik2m−1−k.
The vectors |i〉 = |i0〉 |i1〉 . . . |im−1〉 represent the classical states. A

general state of the quantum system is given by the superposition

|ξ〉 =
2m−1∑
i=0

αi |i〉
(

2m−1∑
i=0

|αi|2 = 1

)
.

(Let us make the following notational conventions connected with the
(Dirac) notation of quantum mechanics: if |. . .〉 contains a nonnegative
integer inside, or a typical symbol denoting such a number, like i, j, k, . . . ,
we mean the canonical basis vector corresponding to this number, if |. . .〉
contains any other symbol, like |ξ〉 , |ϕ〉 , |ψ〉, we mean any vector of Hm).

How to use such m-qubit systems for computing? To explain this at
a simple example, let us first go back to classical computations, and
consider the addition of two binary numbers

(i0i1 . . . im−1)2 + (j0j1 . . . jm−1)2 = (k0k1 . . . km)2.
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A classical implementation would look as follows:

i0, . . . , im−1, j0, . . . , jm−1, 0, . . . , 0

↓
i0, . . . , im−1, j0, . . . , jm−1, k0, . . . , km

where the computation of the bits of the sum k0, . . . , km is realized using
circuits of classical gates {and, or, not, xor} in the usual way: add
the last bit, then the second last plus the carry bit etc.

How to operate m-qubit quantum systems? Which operations are
allowed? Schrödinger’s equation implies: all evolutions of a quantum
system must be represented by unitary transforms of Hm.

Quantum computing assumes that we are able to perform a
number of elementary (quantum) gates on the system

Next we present some common quantum gates. The simplest ones
are the one qubit gates. They manipulate only one component of the
tensor product H1 ⊗H1 ⊗ · · · ⊗H1. Formally, a one qubit gate is given
by a unitary operators on H1. The action on the whole tensor product
is then obtained by taking the tensor product of this operator with the
identities on the other components. An important one qubit gate is the
Hadamard gate defined by

|0〉 → |0〉 + |1〉√
2

|1〉 → |0〉 − |1〉√
2

(the values on the basis vectors define the unitary transform uniquely).
Another example is the family of phase shifts given for any fixed θ ∈
[0, 2π] by

α0 |0〉 + α1 |1〉 → α0 |0〉 + eıθα1 |1〉 .

In a similar way, two qubit gates are defined. They manipulate
two components of H1 ⊗H1 ⊗ · · · ⊗H1. We consider only one example,
the quantum xor gate (also called controlled-not gate): Its unitary
action from H1 ⊗H1 to H1 ⊗H1 is determined by

|0〉 |0〉 → |0〉 |0〉
|0〉 |1〉 → |0〉 |1〉
|1〉 |0〉 → |1〉 |1〉
|1〉 |1〉 → |1〉 |0〉
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That is, if the first bit is zero, nothing happens to the second, and if
the first is one, the second is negated (controlled not).

A basic result of quantum computing states that these gates are al-
ready enough to approximate any unitary operator on H1⊗H1⊗· · ·⊗H1;
see, e.g. [24]:

The Hadamard gate, the phase shift θ = π/4 and the xor gate form
an approximately universal system of gates – each unitary transform of
Hm can be approximated in the operator norm to each precision by a
finite composition of these gates (up to a complex factor).

Hence, if one is able to realize these basic gates in physical systems,
one can do quantum computing. Physicists are working on implementa-
tions of these gates in various quantum systems such as photons, trapped
ions, magnetic resonance systems etc.

Of course, the statement above does not yet say anything about the ef-
ficiency of such an approximation, that is, how many of these elementary
gates are needed. This is the theme of quantum complexity theory.

Let us come back to our examples and emphasize two important
aspects:
1. These gates can transform classical states into superpositions. Ex-
ample: The Hadamard gate applied to the first and then to the second
qubit

|0〉 |0〉 −→ 1
2

(|0〉 |0〉 + |0〉 |1〉 + |1〉 |0〉 + |1〉 |1〉) .

2. They act also on superpositions. Examples:
The quantum xor:

α0 |0〉 |0〉 + α1 |0〉 |1〉 + α2 |1〉 |0〉 + α3 |1〉 |1〉
↓

α0 |0〉 |0〉 + α1 |0〉 |1〉 + α2 |1〉 |1〉 + α3 |1〉 |0〉

Quantum addition of binary numbers:∑
αij |i0〉 . . . |im−1〉 |j0〉 . . . |jm−1〉 |0〉 . . . |0〉

↓∑
αij |i0〉 . . . |im−1〉 |j0〉 . . . |jm−1〉 |k0〉 . . . |km〉

That is, in the quantum world, we add all possible binary m-digit
numbers in parallel.
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So is a quantum computer an ideal parallel computer, with exponen-
tially many processors? Not exactly, it is not that easy! The point is
that we cannot access all components of the superposition. We have to
measure the quantum system, which destroys the superposition.

Quantum computing assumes that we are able to access the
results of the quantum computation process via measurement
(with respect to the canonical basis).

This means the following: Measuring a system in a (superposition)
state

|ψ〉 =
2m−1∑
i=0

αi |i〉
(

2m−1∑
i=0

|αi|2 = 1

)
results in one of the classical states:

|i〉 with probability |αi|2 (i = 0, . . . , 2m − 1).

So, returning to our example of binary addition, after measurement
we would get just

|i0〉 . . . |im−1〉 |j0〉 . . . |jm−1〉 |k0〉 . . . |km〉

with probability |αij |2. This simple example shows two typical features:
A quantum computer is indeed a powerful device due to the exponential
parallelism of computation. On the other hand, we cannot “look into”
the device to read off all parallel results. To exploit a quantum computer
properly, one has to go deeper: Some elaborate algorithmic techniques
are needed to transform the quantum state in such a way that the de-
sired final result can be obtained via measurement (with high proba-
bility). The quantum Fourier transform, phase estimation, and Grover’s
iteration are the foremost tools to reach this goal (see the references
mentioned above for details). This concludes our short introduction into
quantum computing.

4.4 The quantum setting for numerical problems

Now we become more specific and describe the formal quantum model
of computation (the general way a quantum algorithm should look like),
suited to handle numerical problems. An important issue not discussed
so far is this: How does the quantum algorithm get information about
f ∈ F? (Remember, the quantum algorithm is supposed to approximate
S(f) for each f ∈ F .) Let us first look at the binary case, that is, we are
dealing with Boolean functions f : {0, 1, . . . , 2m1 − 1} → {0, 1}.
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The classical (i.e., non-quantum) black box (also called query, or sub-
routine) maps (i, 0, k) to (i, f(i), k), that is, at request i the subroutine
writes f(i) into some memory space originally filled by 0. The entry
k ∈ {0, 1, . . . , 2m−m1−1 − 1} just represents the contents of additional
“work bits”, which are needed for the rest of the computation and which
are not touched by the query. This is the way we always describe nu-
merical algorithms – e.g. in the case of integration, it is tacitly assumed
that we have at our disposal the values of the function to integrate. The
reflection above leads us to set

|i〉 |0〉 |k〉 → |i〉 |f(i)〉 |k〉.

in the quantum case. This is, however, not yet complete – to define a
unitary operator Qf : Hm → Hm uniquely, we have to extend the map-
ping above to a bijection of classical states. A standard (and convenient,
from the point view of implementation by elementary quantum gates)
way of doing this is the following, which gives us the quantum (binary)
query:

Qf : |i〉 |j〉 |k〉 → |i〉 |j ⊕ f(i)〉 |k〉,

where ⊕ denotes addition modulo 2. This type of query is used in
Grover’s algorithm (to get information about the function f , see the
introduction). The binary quantum query model was also studied inten-
sively from the complexity point of view, see Beals, Buhrmann, Cleve,
Mosca, and de Wolf [3].

Now we consider the general case, that is, of functions f on general
domains D with values in R, as we encounter them in numerical analysis.

A quantum query is given by (m,m1,m2, τ, β), where m,m1,m2 ∈
N, m1 + m2 ≤ m,

τ : {0, . . . , 2m1 − 1} → D

and

β : R → {0, . . . , 2m2 − 1}

are any mappings. The quantum query Qf : Hm → Hm is defined as
follows, where it is convenient to consider Hm as being represented as
Hm = Hm1 ⊗Hm2 ⊗Hm−m1−m2 .

Qf : |i〉 |j〉 |k〉 → |i〉 |j ⊕ β(f(τ(i)))〉 |k〉 ,

with ⊕ standing for addition modulo 2m2 . The role of τ is to map indices
i to nodes τ(i) ∈ D, while β encodes the real number f(τ(i)) as a binary
integer β(f(τ(i))). This type of query was introduced in [12].
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For β one could take, for example,

β(x) =


0 if x < a⌊
2m2 x−a

b−a

⌋
if a ≤ x < b

2m2 − 1 if x ≥ b

if we have to deal with functions taking values in [a, b].
A quantum algorithm An (for the approximate solution of a prob-

lem of the type (4.1)) is given by

(m,m1,m2, τ, β, U0, . . . , Un, i0, ϕ)

where (m,m1,m2, τ, β) is a tuple defining a quantum query Qf as ex-
plained above, U0, . . . , Un are unitary operators on Hm, 0 ≤ i0 < 2m is
any number (describing the starting state), and ϕ : {0, . . . , 2m−1} → G

is any mapping (which produces the final output of the algorithm from
the measurement in a classical computation). The computation acts as
follows.

Quantum model of computation:

starting state:

|i0〉 ∈ Hm (a classical state)

computation:

|i0〉 → U0 |i0〉 → QfU0 |i0〉 → U1QfU0 |i0〉 → . . .

→ UnQfUn−1 . . . QfU1QfU0 |i0〉 =: |ξ〉

measurement:

|ξ〉 =
∑2m−1

i=0 αi |i〉 → |i〉 with probability |αi|2

output:

|i〉 → ϕ(i) =: An(f) ∈ G

We refer to An as a quantum algorithm with n queries, the role of
the queries being the same as the role of the function values in the
classical settings explained in §4.2. So the Qf (and only these) provide



4. Quantum Complexity 87

information about the input function f , while the unitaries U0, . . . , Un

stand for the compositions of the quantum gates applied between queries
to process the obtained information. Observe that An(f) is a random
variable, with values in the normed space G (which is always R for our
purposes of studying integration). Therefore, the error of An at input
f ∈ F is defined in the probabilistic way:

e(S,An, f) = inf {ε : Pr{‖S(f) −An(f)‖G ≤ ε} ≥ 3/4} .

Note that we specified the error probability to be not greater than 1/4.
This special choice is not essential, the number can be replaced by any
other number strictly between 0 an 1/2. The reason is that by repeating
an algorithm k times and computing the median of the results, the error
probability can be reduced to 2−ck for some c > 0 not depending on k.

The error of An over the whole class F is

e(S,An, F ) = sup
f∈F

e(S,An, f).

The crucial quantity for complexity analysis is the quantum n-th mini-
mal error

eqn(S, F ) = inf
An

e(S,An, F )

that is, the minimal error reachable among all possible quantum algo-
rithms that use not more than n quantum queries. This quantity ne-
glects all combinatory cost (number of gates, classical operations) as it
is customary in query-based complexity analysis. However, in deriving
matching upper and lower bounds, the proof of the upper ones usually
contains a concrete algorithm whose total cost can be counted and, for
all the situations studied here, except for Theorem 4.6, turn out to be
of the same order (at least up to logarithms) as the number of queries.
We therefore just state the asymptotic estimate of eq

n(S, F ), keeping in
mind these comments.

4.5 Mean computation and integration

The following result is due to Brassard, Høyer, Mosca, and Tapp [5, 4]
(upper bound) and Nayak and Wu [23] (lower bound).

Theorem 4.1 There is a constant 0 < c < 1 such that for all n and N ,
n < cN ,

eq
n(SN ,B(LN

∞)) � n−1.
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The estimate of Theorem 4.1 says two things: First, there is a quan-
tum algorithm which requires not more than n quantum queries and
computes the mean for all sequences in B(LN

∞) with error not larger
than c1n

−1, c1 > 0 a constant not depending on n and N . (Note that
we often use the same symbol for possibly different constants.) Second,
it says that no algorithm that uses not more than n quantum queries
(and maybe even an unlimited number of gates!) can have error less than
c2n

−1, with c2 > 0 another independent of n and N constant.
Let us say some words about the methods behind Theorem 4.1. The

counting algorithm of Brassard, Høyer, Mosca, and Tapp [4], originally
designed for computing the mean of {0, 1}-valued sequences, is easily
adapted to [−1, 1]-valued sequences. This algorithm provides the up-
per estimate and is based on two fundamental techniques of quantum
computing – the technique of Shor of using the quantum version of the
discrete Fourier transform for estimating eigenvalues of certain unitary
operators, and the Grover iterate, a crucial ingredient of Grover’s algo-
rithm. The counting algorithm can be implemented using O(n log2 n)
elementary quantum gates (compare the comment at the end of the
previous section).

The lower bounds come from the polynomial method [3], which states
that the success probability of a quantum algorithm is a certain polyno-
mial of degree at most the number of queries. Starting from that, Nayak
and Wu [23] use classical facts from approximation theory: the Bernstein
and Markov inequality for polynomials.

Now we want to compare Theorem 4.1 to the known result for the
classical deterministic setting. It is clear that the algorithm of direct
computation of the mean has error 0. However, it needs all the N func-
tion values. What we are particularly interested in (also in view of its
applications in high dimensional integration) is a small n and a huge N .
Here deterministic algorithms fail completely. We have, for each constant
0 < c < 1

edet
n (SN ,B(LN

∞)) � 1 (n < cN),

that is, no deterministic algorithm using essentially less than N queries
can have an error essentially better than the trivial one. In the classical
randomized setting we have

erann (SN ,B(LN
∞)) � n−1/2.

We see that randomized classical algorithms reach non-trivial error for



4. Quantum Complexity 89

n essentially less than N . However, we also see the speedup of quantum
algorithms. It is a quadratic one, like in Grover’s search algorithm.

Now we present the first result about integration.

Theorem 4.2 (Novak [26]) Let r ∈ N0, d ∈ N and 0 < s ≤ 1. Then

eq
n(Id,B(F r,s

d )) � n− r+s
d −1.

Novak uses Theorem 4.1 and tools from information-based complexity
theory. Moreover, a major ingredient in the proof is a technique from
the field of Monte Carlo algorithms – a quantum analog of separation of
the main part.

It is instructive to compare this to the classical settings: In the classical
deterministic case,

edet
n (Id,B(F r,s

d )) � n− r+s
d .

Look at this statement for d huge, or, in other words, (r + s)/d small.
Then the best convergence rate of deterministic classical algorithms is
practically negligible, while the quantum rate is smaller than n−1. Let
us consider this from the point of view of the number of queries needed
to reach error ε > 0. It is readily calculated from the above, that in the
classical deterministic setting, we need at least Ω((1/ε)d/(r+s)) queries.
Consequently, the exponent of the cost is proportional to the dimension
d. The respective number of quantum queries is Ω((1/ε)d/(r+s+d)), so
this exponent is always smaller than 1. In this sense we can say that
quantum algorithms can provide a polynomial speedup of arbitrarily
large degree over classical deterministic algorithms. In the classical ran-
domized setting we have

erann (Id,B(F r,s
d )) � n− r+s

d −1/2.

Looking also at this from the point of view of high d, we see that quantum
algorithms reach again essentially a quadratic speedup over classical
randomized algorithms. (As already mentioned, the statements for the
classical settings are known results from information-based complexity
theory, and we refer to the sources [31, 25, 11].)

After these results have been obtained, another interesting question
arose: The above are results for the L∞-norm. What about weaker norms
like the L2-norm, that is, what happens for f ∈ B(LN

2 ) and f ∈ B(W r
2 ),

or more generally f ∈ B(LN
p ), f ∈ B(W r

p )? We know that the L2-case
is the most important one for Monte Carlo algorithms, and that they
preserve the rate of the L∞-case even for the larger L2-classes. Could
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it be that for 2 ≤ p < ∞, quantum algorithms loose gradually, and
eventually, for p = 2, Monte Carlo algorithms turn out to be as good as
quantum algorithms? This problem was solved in [12]. It turns out that
there are quantum algorithms which also preserve the favorable rate of
the L∞-case (up to logarithmic factors, at least), and so, the speedup
remains also for the L2-case.

Theorem 4.3 (Heinrich [12]) Let 1 ≤ p < ∞. There is a constant c > 0
such that for all n and N , with n < cN ,

eq
n(SN ,B(LN

p )) � n−1 if 2 < p < ∞
eqn(SN ,B(LN

p )) �log n−2+2/p if 1 ≤ p ≤ 2 and n <
√
N.

We use the notation �log to indicate that the bounds are sharp up
to logarithmic factors, that is, the upper and lower bound may contain
differing terms of the form c logα n logβ N where c, α, β may depend on
the problem parameters p (and d and r later on) but do not depend on
n and N .

For comparison, in the classical deterministic setting, we have

edet
n (SN ,B(LN

p )) � 1,

and in the classical randomized setting

erann (SN ,B(LN
p )) �

{
n−1/2 if 2 ≤ p < ∞
n−1+1/p if 1 ≤ p < 2.

The new quantum algorithms are based on a suitable multilevel splitting
of sequences from LN

p , distributing queries over levels, and combining the
decay of the integral over the levels and precise error estimates for count-
ing. The proof of the lower bound combines techniques of information-
based complexity theory with the approach of Nayak and Wu [23].

Theorem 4.3 shows that so far the case of p-summable sequences for
1 ≤ p < 2 and

√
N ≤ n < N was left open. In fact, the upper bound

holds true also for that range. So is it sharp? (Since we are interested
in huge N and moderate n, this problem was at first glance a rather
academic one.) It was a certain surprise that in this case a further im-
provement of the quantum algorithms of Theorem 4.3 is possible, and
moreover, the result turned out to be a crucial ingredient to determine
the sharp order in the Sobolev case discussed below.
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Theorem 4.4 (Heinrich and Novak [17]) Let 1 ≤ p < 2. There is a
constant c > 0 such that for all n and N , with

√
N ≤ n < cN ,

eq
n(SN ,B(LN

p )) �log n−2/pN2/p−1.

The optimal algorithm contains a new element. It uses Grover’s search
algorithm to handle a certain portion of the sequence, while the rest of
it is taken care by the multilevel type algorithm developed for the proof
of Theorem 4.3.

From Theorems 4.3 and 4.4, combined with a new discretization tech-
niques, one can derive optimal quantum integration algorithms for func-
tions from Sobolev spaces. This discretization technique, which is close
in spirit to Maiorov’s technique from approximation theory [20], allows
to reduce the integration problem to a scale of discrete problems – of
mean computation in LNl

p (l = 1, . . . , k) for suitable k and Nl. This
technique is useful also in the classical randomized setting, since it can
be viewed as a multilevel variance reduction technique for Monte Carlo
integration. Applications to the study of Monte Carlo algorithms which
use few random bits will be given in [18].

Theorem 4.5 (Heinrich [13]) Let 1 ≤ p < ∞, r, d ∈ N, r/d > 1/p. Then

eqn(Id,B(W r
p,d)) �log n−r/d−1.

For comparison, in the classical deterministic setting we have

edet
n (Id,B(W r

p,d)) � n−r/d

and in the classical randomized setting

eran
n (Id,B(W r

p,d)) � n−r/d−1/2 if 2 ≤ p < ∞
erann (Id,B(W r

p,d)) � n−r/d−1+1/p if 1 ≤ p < 2.

Note the following interesting situation in the case p = 1. Quantum
algorithms are by a factor of about n−1 better than classical randomized
ones, while the latter yield no improvement over classical deterministic
ones.

4.6 Summary and further comments

For a convenient overview we summarize the presented results in a table,
including the known results about the classical settings. All rates are
sharp (up to possible logarithmic factors, which we suppress, again). We
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present the p = 1 cases separately, because of the interesting relations
between the settings.

edet
n erann eq

n

B(LN
p ), 2 ≤ p ≤ ∞

n ≤ cN 1 n−1/2 n−1

B(LN
p ), 1 ≤ p < 2

n < n−1+1/p
√
N, 1 n−2+2/p

B(LN
p ), 1 < p < 2√

N ≤ n ≤ cN 1 n−1+1/p n−2/pN2/p−1

B(LN
1 ), n <

√
N 1 1 1

B(LN
1 ),

√
N ≤ n ≤ cN 1 1 n−2N

B(F r,s
d ) n−(r+s)/d n−(r+s)/d−1/2 n−(r+s)/d−1

B(W r
p,d), 2 ≤ p ≤ ∞ n−r/d n−r/d−1/2 n−r/d−1

B(W r
p,d), 1 < p < 2 n−r/d n−r/d−1+1/p n−r/d−1

B(W r
1,d) n−r/d n−r/d n−r/d−1

As argued before, in the case of integration of Hölder functions, the
speedup of quantum over deterministic algorithms can be polynomial of
arbitrarily high degree. (Similar conclusions hold for the Sobolev case, as
long as p is large enough.) The next result shows that there are function
classes with even an exponential speedup.

Theorem 4.6 (Heinrich [12]) Let E be the set of functions f on [0, 1]
such that ‖f‖L∞ ≤ 1 and for all k ∈ N and s, t ∈ [0, 1], |s − t| ≤ 2−k

implies |f(s)− f(t)| ≤ k−1. Then any classical deterministic integration
algorithm of error 0 < ε < 1/32 has cost at least Ω

(
21/(32ε)

)
, while there

is a quantum algorithm with error ε using O(1/ε) queries and O((1/ε)2)
qubits and gates.

Another example with a similar speedup is path integration, which was
considered by Traub and Woźniakowski [32]. Many interesting problems
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are related to this topic, in particular the study of broader function
classes.

Note that in all problems considered so far the output was a sin-
gle number. This raises an interesting question to be explored: What
gain can quantum algorithms bring if the solution is not a number, but
a family of numbers, a function. The extreme case is the approxima-
tion problem – here S is the identity embedding between some function
spaces.

A first approach to approximation was made by Novak, Sloan, and
Woźniakowski [27]. They study approximation in huge-dimensional re-
producing kernel Hilbert spaces and clarify the conditions of tractability
(polynomial dependence on the dimension) in the quantum setting. An
interesting problem which is left open is to find matching upper and
lower bounds.

Tight bounds for approximation of Sobolev embeddings in the quan-
tum setting were obtained by the author [15].

An interesting numerical problem between integration and approxi-
mation is the computation of integrals depending on a (possibly multi-
dimensional) parameter. The classical randomized setting was studied
in [19]. The quantum setting was recently considered by Wiegand [33].

References

[1] Abrams, D. S. and Williams, C. P. (1999). Fast quantum algorithms
for numerical integrals and stochastic processes (Technical report,
http://arXiv.org/abs/quant-ph/9908083).

[2] Aharonov, D. (1998). Quantum computation – a review, Annual Review of
Computational Physics (World Scientific, volume VI, ed. Dietrich Stauf-
fer). See also http://arXiv.org/abs/quant-ph/9812037.

[3] Beals, R., Buhrman, H., Cleve, R., Mosca, M. and de Wolf, R. (1998).
Quantum lower bounds by polynomials, Proceedings of 39th IEEE FOCS,
352–361. See also http://arXiv.org/abs/quant-ph/9802049.

[4] Brassard, G., Høyer, P., Mosca, M. and Tapp, A. (2000). Quan-
tum amplitude amplification and estimation (Technical report,
http://arXiv.org/abs/quant-ph/0005055).

[5] Brassard, G., Høyer, P. and Tapp, A. (1998). Quantum count-
ing, Lect. Notes in Comp. Science 1443, 820–831. See also
http://arXiv.org/abs/quant-ph/9805082.

[6] Deutsch, D. (1985). Quantum theory, the Church-Turing principle and the
universal quantum computer, Proc. R. Soc. Lond., Ser. A 400, 97–117.

[7] Ekert, A., Hayden, P. and Inamori, H. (2000). Basic concepts in quantum
computation. See http://arXiv.org/abs/quant-ph/0011013.



94 S. Heinrich

[8] Feynman, R. (1982). Simulating physics with computers, Int. J. Theor.
Phys. 21, 467–488.

[9] Grover, L. (1996). A fast quantum mechanical algorithm for database
search, Proc. 28 Annual ACM Symp. on the Theory of Computing
(ACM Press New York), 212–219. See also http://arXiv.org/abs/quant-
ph/9605043.

[10] Gruska, J. (1999). Quantum Computing (McGraw-Hill, London).
[11] Heinrich, S. (1993). Random approximation in numerical analysis, Func-

tional Analysis (Bierstedt, K.D., Pietsch, A., Ruess, W.M. and Vogt, D.,
editors, Marcel Dekker), 123–171.

[12] Heinrich, S. (2002). Quantum summation with an application to inte-
gration, J. Complexity 18, 1–50. See also http://arXiv.org/abs/quant-
ph/0105116.

[13] Heinrich, S. (2003). Quantum integration in Sobolev classes, J. Complex-
ity, to appear. See also http://arXiv.org/abs/quant-ph/0112153.

[14] Heinrich, S. (2003). From Monte Carlo to Quantum Computation, Pro-
ceedings of the 3rd IMACS Seminar on Monte Carlo Methods MCM2001,
Salzburg, to appear in Mathematics and Computers in Simulation. See
also http://arXiv.org/abs/quant-ph/0112152.

[15] Heinrich, S. (2003). Quantum Approximation of Sobolev Embeddings.
Paper in preparation.

[16] Heinrich, S. and Novak, E. (2002). Optimal summation and integration
by deterministic, randomized, and quantum algorithms, Monte Carlo
and Quasi-Monte Carlo Methods 2000 (Fang, K.-T., Hickernell, F.J.
and Niederreiter, H., editors, Springer-Verlag, Berlin), 50–62. See also
http://arXiv.org/abs/quant-ph/0105114.

[17] Heinrich, S. and Novak, E. (2003). On a problem in quantum summa-
tion, J. Complexity, to appear. See also http://arXiv.org/abs/quant-ph/
0109038.

[18] Heinrich, S., Novak, E., and Pfeiffer, H. (2003). Paper in preparation.
[19] Heinrich, S. and Sindambiwe, E. (1999). Monte Carlo complexity of para-

metric integration, J. Complexity 15, 317–341
[20] Maiorov, V.E. (1975). Discretization of the problem of diameters (in Rus-

sian), Usp. Mat. Nauk 30, No. 6 (186), 179–180.
[21] Manin, Y.I. (1980). Computable and uncomputable (in Russian), Sovet-

skoye Radio, Moscow.
[22] Manin, Y.I. (1999). Classical computing, quantum computing, and Shor’s

factoring algorithm. See http://arXiv.org/abs/quant-ph/9903008.
[23] Nayak, A. and Wu, F. (1999). The quantum query complexity of approxi-

mating the median and related statistics, STOC, May 1999, 384–393. See
also http://arXiv.org/abs/quant-ph/9804066.

[24] Nielsen, M.A. and Chuang, I.L. (2000). Quantum Computation and Quan-
tum Information (Cambridge University Press).

[25] Novak, E. (1988). Deterministic and Stochastic Error Bounds in Numer-
ical Analysis, Lecture Notes in Mathematics 1349 (Springer).

[26] Novak, E. (2001). Quantum complexity of integration, J. Complexity 17,
2–16. See also http://arXiv.org/abs/quant-ph/0008124.



4. Quantum Complexity 95
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Abstract

Solving symbolically polynomial equation systems when intermediate
and final polynomials are represented in the usual dense encoding turns
out to be very inefficient: the sizes of the systems one can deal with do not
respond to realistic needs. Evaluation representations appeared in this
frame a decade ago as a new possibility to treat new families of problems.

We present a survey of the most recent complexity results for dif-
ferent polynomial problems when polynomials are encoded by evalu-
ation (straight-line) programs. We also show surprising mathematical
by-products, such as new mathematical invariants and results, that ap-
peared as a consequence of the search of good algorithms.

5.1 Introduction

There are several geometric questions that naturally arise when we are
faced to a system of polynomial multivariate equations: do the given
equations have at least a common root in an algebraic closure of the
base field? If this is so, is there a finite or infinite number of them?
What is the dimension of the solution variety? How to describe it in a
more tractable manner?

Two major lines have been proposed to answer this kind of ques-
tions: numerical analysis which responds with approximate solutions,
0 Partially supported by LACO, UMR CNRS 6090 (France) and UBACyT EX-X198

(Argentina).
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and computational algebra with its symbolic procedures giving exact
solutions. In this paper we deal with this second aspect, although the
evaluation methods we describe tend a natural bridge to the numerical
point of view.

Nowadays most usually applied symbolic algorithms rely on rewriting
techniques where the input is given by the number of variables, degree
bounds and the list of polynomials with (implicitly) all their possible
coefficients: this is the case for Gröbner bases computations and for
characteristic set descriptions (and also with some minor changes for the
more recently considered sparse systems). Unfortunately for the usual
case when the degree d of the polynomials is greater than the number
n of variables, the size of the input system is typically large, essentially
of order dn, and the degree of the polynomials describing the output
can reach dn as well, which means that writing the output requires at
least (dn)n symbols, a quantity that is exponential in the size of the
input. Moreover, it is a well-known fact that the worst-case complexity
of Gröbner bases computations is doubly exponential in n. This behavior
prevents us from considering large polynomial equation systems with
rewriting techniques.

Evaluation representations began to be strongly considered as an al-
ternative a decade ago. A first and quite näıve motivation of this point of
view is that there are polynomials that nobody writes (in dense represen-
tation) but everybody computes for specific values, like for example the
determinant of a matrix of indeterminates. As another motivation, for
the first question raised above — the effective Nullstellensatz — there
is a classic example (which gives the well-known lower bound for the
degrees of the polynomials arising in a Bézout identity, see §5.3 below)
that suggested that there are always for this question Bézout identities
composed by polynomials that behave better than expected with re-
spect to evaluation, in the sense that they can be evaluated faster than
they should. A careful development of new techniques, that I partially
describe here, proved that this intuition was right.

The consideration through evaluation methods (straight-line pro-
grams) of the stated geometric questions lets us classify their complexity
with respect not only to the usual parameters, given by the number n

of variables and the number s and degree d of the input polynomials,
but also to less usual parameters like the length L of the straight-line
program representation of the input, and the size δ of the underlying
linear algebra structure (this parameter, more precisely defined in §5.2.3
and §5.2.5 below, is nowadays called the geometric degree of the input
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polynomial system). It is shown that all considered geometric questions
behave polynomially with respect to these parameters: more precisely
there are probabilistic algorithms and straight-line program represen-
tations for the output polynomials whose complexity and lengths are
polynomial in s, n, d, δ and L.

Here is an example of such a result, for the case of a zero-dimensional
variety, which represents a core result in this philosophy; see §5.4.1 be-
low.

Theorem 5.1 Let f1, . . . , fn ∈ Q[x1, . . . , xn] be polynomials of degree
bounded by d and encoded by straight-line programs of length L, which
define a zero-dimensional variety Z ⊂ C

n. Set δ for the geometric degree
of the input polynomial system.

Then there is a bounded probability algorithm which computes (slp’s
for) a simple and tractable presentation of Z (a geometric resolution)
within complexity (ndδL)O(1).

As the parameters L and δ are in the worst case (and also in a random
case) equal to sdn (for d ≥ n) and dn respectively, but may be in some
specific cases polynomial in n, s and d, the result can be read as giving an
exponential bound in the worst case but a polynomial bound for certain
subfamilies of input polynomials.

Also, another consequence of this result is that when the input is
codified in the dense representation and its size is measured by sdn (for
d ≥ n), the length of the straight-line program representation of the out-
put is polynomial in this quantity instead of being exponential as it hap-
pens with its dense representation. Since from a straight-line program
one clearly (but not rapidly) recovers a dense representation through in-
terpolation, the result implies that the exponential behavior of the com-
plexity of these questions (when considering them classically) is all con-
tained in the final interpolation: there is no exponentiality needed before.

Another research line suggested by this classification is related to the
Bézout number: it is usual to associate to a family of s polynomials of
degrees d1, . . . , ds in n variables such that d1 ≥ · · · ≥ ds, the Bézout
number D := d1 · · · dmin{n,s}. The main property of this Bézout number
is that it bounds the geometric degree of the variety defined by the input
polynomials. However a precise definition of such a Bézout number D

should depend intimately on the representation of the input polynomials:
for polynomials of degree d encoded in dense representation, D := dn

seems to be a natural choice, while for sparse polynomials with support
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in A, D := Vol(A) seems to be the right notion of Bézout number, as
this quantity also controls the degree of the variety.

This digression is motivated by the following crucial observation: in
the computation of the resultant, the length of the input L together
with the associated Bézout number D and the number of variables n

controls the complexity. In the case of dense representation of the input
and d ≥ 2, the typical length L equals O(ndn) and D = dn while for the
sparse representation, we have L ≥ 1 and D = Vol(A). In both cases,
the complexity of computing the resultant is (nD)O(1)L. The optimal
complexity estimate should in fact be linear in D as well, although it is
not clear what is the exact dependence on n: in the linear case, that is for
n + 1 dense linear forms, L = O(n2) and D = 1 hold and the resultant
equals the determinant, which is conjectured — but still not proved —
to be computable in O(n2). In an even more general framework, the con-
jecture is that the computation of (a slp representation of) any geometric
object associated to a family of polynomials in n variables represented
in a given encoding, with associated Bézout number D and associated
length of the input L, should be linear in both D and L, and (possi-
bly) quadratic in n. Here the associated Bézout number D could be the
geometric degree of the input polynomial system.

A final comment on the contents of this paper: I only treat here re-
sults concerning upper bounds for the sequential complexity of geometric
questions. I do not consider algebraic questions like for instance the
ideal membership problem since their complexity is usually accepted to
behave essentially worse. Also, all bounds depend on the size of the un-
derlying linear algebra structure which is in the worst case of order dn

independently from the fact d ≥ n or not. In case d = 2 and n arbitrary,
the size of the input is of order n2 instead of 2n while our algorithms
are in the generic case polynomial in 2n. A completely different analysis
and novel approach are needed to deal with this case. Finally, concerning
lower bounds — a task of a different order of complexity as everybody
knows — there is a deep research actually going on: we refer to [12] and
the references given there for an overview of the most recent and striking
results on the matter.

This paper is voluntarily written in a non-technical style: for each
subject I tried to priorize ideas and natural developments over precise
definitions, proofs or full generality of results: references where these can
be found are always given. The paper is divided into six sections. §1 con-
cerns with a very quick and intuitive introduction on data structures and
algorithms, priorizing properties of the straight-line program encodings
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with respect to other encodings, and also with some preliminaries needed
for the sequel. §2 presents the effective Nullstellensatz as a motivation
of the spirit of the paper. It contains a presentation of classic upper and
lower (degree and arithmetic) bounds and a discussion on the utility
of evaluation methods with a succinct idea of an algorithm. In particu-
lar it shows how a good evaluation method combined with a deep and
non-trivial arithmetic analysis yield optimal bounds for the arithmetic
Nullstellensatz. §3 concentrates on zero-dimensional varieties, present-
ing geometric resolutions (shape lemmas descriptions) and Chow forms
and comparing both characterizations of these varieties. §4 gives the
generalizations of these notions to equidimensional varieties of arbitrary
dimension, and introduces Newton’s method to lift the information on
a good zero-dimensional fibre to the corresponding positive-dimensional
component. §5 shows an outline of a general algorithm which describes
each equidimensional component of a variety from a set description. This
algorithm is mainly the result of many other algorithms performing re-
lated tasks that were developed and improved during the last 5 years
and are somewhat discussed during the whole paper. Finally §6 gives a
couple of applications that are interesting on their own, even in a more
classical frame.

Many of the ideas and algorithms surveyed in this paper are imple-
mented in a MAGMA package, called Kronecker, developed by Grégoire
Lecerf [49].

5.2 Preliminaries

5.2.1 Data structures

The objects we deal with are polynomials in n variables with coefficients
in a field k of characteristic zero. That is

f =
∑
α

aαx
α with aα ∈ k,

where α := (α1, . . . , αn) ∈ N
n
0 and xα := xα1

1 · · ·xαn
n .

We insist on the fact that the characteristic of the base field k is
zero, for some of the techniques and results we present do not apply for
positive characteristic. The notation A

n always refers to A
n(k) , where

k is an algebraic closure of k, unless otherwise specified.
The usual dense encoding for representing such a polynomial f is

given by an a priori bound d for the degree of f and an array of the(
d+n
d

)
=

(
d+n
n

)
coefficients aα (zero coefficients as well as non-zero ones)

in a pre-established order.
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In opposition the sparse encoding only represents the non-zero coef-
ficients by means of couples (α; aα) indicating the exponent α corre-
sponding to a non-zero coefficient aα. (Another classic way of defining
sparsity is fixing the Newton polytope allowed, that is the convex hull of
the exponents corresponding to non-zero coefficients, we only consider
it here in the applications.)

In this paper we deal with a third way of representing a polynomial
f , which is called the straight-line program encoding (slp for short). The
idea of using slp as short encodings of special families of polynomials
goes back to the seventies, when it appeared in questions concerning the
probabilistic testing of polynomial identities. The first applications to
computer algebra dealt with the elimination of one variable problems [35,
41, 42]. Later there were extended to multivariate elimination problems
by Marc Giusti, Joos Heintz and their collaborators, in works that are
partly reviewed here.

There are many different slp approaches. We refer to [8] for the stan-
dard definition or to [35, 45] for other models. We only describe here the
simplest one, in a non-rigorous manner that we hope is enough for the
readability of this paper:

Definition 5.1 Given a polynomial f ∈ k[x1, . . . , xn], a slp encoding
of f is an evaluation circuit γ for f , where the only operations allowed
belong to {+,−, ·} (no divisions) and the constants a ∈ k can be used
freely.

More precisely: γ = (γ1−n, . . . , γ0, γ1, . . . , γL) where f = γL, γ1−n :=
x1, . . . , γ0 := xn and for k > 0, γk is of one of the following forms:

γk = a ∗ γj or γk = γi ∗ γj where a ∈ k, ∗ ∈ {+,−, ·} and i, j < k.

For example, the dense encoding of the polynomial f = x2d

(in 1
variable) is (1, 0, . . . , 0) for the decreasing order of monomials, its sparse
encoding equals (2d; 1) and a straight-line program encoding is for in-
stance given by the following slp γ:

γ0 = x , γ1 = γ0·γ0 = x2 , γ2 = γ1·γ1 = x22
, . . . , γd = γd−1·γd−1 = x2d

.

We specify now the lengths associated to these encodings: here we
assume that each constant of the field k has length 1. (In many concrete
situations the input polynomials have integer or rational coefficients and
thus a more realistic measure of the input is given by taking also into
account a bound for the maximum bit length of every integer allowed to
appear.) Thus the dense encoding of a polynomial f of degree bounded
by d like above has length

(
d+n
d

)
= O(dn) (at least if d ≥ n as it is usually
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the case), while the sparse encoding has length (n + 1)N where N is a
bound for the number of non-zero coefficients of f . Finally the length
of a slp γ like above is defined as L(γ) = L (note that γ1−n, . . . , γ0 are
added to the list only to handle with the variables and therefore have
no cost), and the length L(f) of f is the minimum of the lengths of γ
for γ a slp encoding f .

Coming back to the example, the length of the dense encoding of
x2d

is 2d + 1, the length of its sparse encoding is 2 while the length of
its slp encoding is bounded by d since we exhibited a slp γ for f such
that L(γ) = d. However, note that for (x+ y)2

d

(in 2 variables) one can
produce immediately a slp γ′ of length d+1 defining γ′

1 := x+y and then
squaring like in γ, while both the dense and the sparse encodings have
length

(
2d

2

)
= O(22d). This observation is an example of the following

crucial fact:

Remark 5.1 Straight-line programs behave well under linear changes of
variables (while sparsity does not).

Now let us compare dense encoding and slp encoding lengths. Every
polynomial has a standard slp encoding given essentially by its dense
encoding:

Remark 5.2 Let f ∈ k[x1, . . . , xn] be a polynomial of degree d, then

L(f) ≤ 3
(
d + n

d

)
.

Proof One shows inductively that for any r ∈ N, there is a slp of length
bounded by

(
n+r
r

)
whose intermediate results are all monomials xα with

|α| ≤ r (once one has a list of all the monomials of degree bounded by
r − 1, each one of the

(
n+r−1

r

)
homogeneous monomials of degree r is

simply obtained from one of the list multiplying by a single variable).
Finally we multiply all monomials of f by their coefficients and add them
up, that is we add 2

(
d+n
d

)
instructions to obtain a slp encoding for f .

Also, it is clear that a sparse polynomial has a “short” slp (if one knows
in advance a bound for the degree): Let f ∈ k[x1, . . . , xn], deg f ≤ d,
be a polynomial with at most N non-zero coefficients, then L(f) ≤
Nd + N − 1.

Reciprocally, if a polynomial f ∈ k[x1, . . . , xn] is represented by a slp
of length L and a bound for its degree d is known, its dense encoding is
trivially obtained within dO(n)L(f) operations, simply interpolating in
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a grid of (d+ 1)n points. Of course this is not very satisfactory since we
loose the possible benefit we had of having a short slp for f . However,
it is important to notice that polynomials with short slp’s are very rare.
This is an important classification fact:

Fix a bound d for the degree of the polynomials. In the same way that
sparse polynomials (we mean polynomials with at least one prescribed
zero coefficient) belong to the union of closed hyperplanes of the set of all
polynomials, polynomials with slp’s essentially shorter that the length
given by the standard dense encoding belong to a closed hypersurface of
the set of all polynomials; see [35] or [34] Th. 3.2:

Proposition 5.1 For every n, d and c ∈ N, there exists a hypersurface
H ⊂ A

(n+d
d ) such that

{f ∈ k[x1, . . . , xn],deg f ≤ d and L(f) ≤ (nd)c}
⇒ f =

∑
aαx

α with (aα)α ∈ H.

Roughly speaking this fact says that a random polynomial of degree
d takes essentially as much time to be evaluated than its whole number
of (zero and non-zero) monomials. Polynomials like in the statement of
Proposition 5.1 are very special, and are nowadays called smart polyno-
mials. We will show that quite amazingly the polynomials that naturally
appear when dealing with geometric questions related to polynomial
equations are smart.

A bad feature of slp encodings is that two different slp’s may encode
the same polynomial, or more simply a slp can encode the zero poly-
nomial, without our noticing. Of course, even if we know the degree of
f , evaluating in a grid of (d+ 1)n points is forbidden for too expensive.
There is in this line a remarkable result due to Heintz and Schnorr ([34]
Th. 4.4) that shows that there exist test grids (correct test sequences)
whose cardinality depend polynomially on the slp length of the polyno-
mial:

Lemma 5.1 Let F := {f ∈ k[x1, . . . , xn] : deg f ≤ d, L(f) ≤ L}. There
exists in any big enough set of k (whose size depends polynomially on d

and L) a subset A with #A = (nL)O(1) such that:

∀f ∈ F , f(a) = 0 ∀ a ∈ An ⇒ f = 0.

This is an existential result and nobody knows until now how to
exhibit economically such correct test sequences. For the design of
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probabilistic algorithms one can replace it by the Zippel-Schwartz zero
test ([68, 59]):

Lemma 5.2 Let A ⊂ k be a finite set. For any f ∈ k[x1, . . . , xn], f �= 0,
the probability that a randomly chosen a ∈ An annihilates f verifies

Pr(f(a) = 0) ≤ deg f
#A .

5.2.2 Algorithms

The formalization of our algorithms is given by the Blum-Shub-Smale
machine over k with the restriction that the only branches allowed are
comparisons to zero. Roughly speaking the algorithm is a finite sequence
of instructions performed on the input, where each instruction can be an
arithmetic operation (+,−, ·) on elements of k or a comparison to zero
and a selection of how to continue depending on the result of the com-
parison. We refer to [5] Ch. 3 and 4. The special feature here is that
most of the algorithms we refer to compute as their output slp encod-
ings instead of lists of coefficients (dense or sparse encodings). For many
of them, the input is also encoded by slp’s; see [37] Sec. 1.2 for a more
formal presentation.

In some cases we refer to bounded probability algorithms, algorithms
with special nodes that flip coins (these nodes randomly choose the fol-
lowing instruction between two possible ones with probability 1/2 for
each of them ([5] Sec. 17.1 and [37] Sec. 1.2) so that the error proba-
bility of the result of the algorithm is bounded by 1/4. In our setting
probability is introduced by choosing a random element a with equidis-
tributed probability in a set {0, 1, . . . , N−1}n where a certain polynomial
f of known degree will be specialized in order to apply Zippel-Schwartz
zero-test.

The complexity or time of the algorithm is equal to the number of
arithmetic operations performed (each arithmetic operation on k has
unit cost), comparisons, selections and flipping coins can be considered
with no cost since if they are meaningful their number is bounded by
the number of operations. Again this model can be adequate to more
realistic needs, e.g. counting bit operations in an integer setting.

5.2.3 Parameters

We adopt the following parameters to measure an input polynomial sys-
tem f1, . . . , fs ∈ k[x1, . . . , xn]: the number of variables n, a bound for
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the degrees d, the number of polynomials s, the maximum length L of
slp’s computing f1, . . . , fs and also a parameter δ which measures the
maximum dimension of the underlying linear algebra structures. This
new parameter appeared naturally during the search of good algorithms
with slp encodings, and is mentioned for the first time in [25]. It is asso-
ciated to the input polynomials and is called the geometric degree of the
input polynomial system. It is in the worst case bounded by the Bézout
number dn although it can be substantially smaller.

In case s ≤ n+1 and f1, . . . , fs is a reduced weak regular sequence, that
is, for 1 ≤ i ≤ s−1, fi+1 is not a zero-divisor modulo the ideal (f1, . . . , fi)
which is a radical ideal (this implies in particular that for 1 ≤ i ≤ s,
the variety V (f1, . . . , fi) is pure of codimension i), the parameter δ is
defined as

δ := max
1≤i≤s

deg(V (f1, . . . , fi))

where deg denotes the usual geometric affine degree of the variety.
In case the input polynomials f1, . . . , fs do not define a reduced

weak regular sequence, we perturb them performing a sufficiently generic
scalar combination: for a good choice of a1, . . . , an+1 ∈ ks (the meaning
of good choice is explained in §5.2.5 below), we define the polynomials
f̃1, . . . , f̃n+1 as

f̃1 := a11f1 + · · · + a1sfs, . . . , f̃n+1 := an+11f1 + · · · + an+1sfs,

and we define a geometric degree δ (associated to a := (a1, . . . , an+1) of
the input polynomial system as

δ(a) := max
1≤i≤n+1

deg(V (f̃1, . . . , f̃i)).

The definition given here is a simplified version of the many different
definitions of geometric degree of the input polynomial system that ap-
pear in different papers, each time adapted to their context. In particular
we only choose a geometric degree depending of the good choice a, which
is enough for our purpose, and skip the definition of the geometric degree
which is an intrinsic quantity that does not depend on the choice of a.

5.2.4 Basic linear algebra ingredients

Our algorithms rely on the possibility of performing the usual linear al-
gebra operations by means of algorithms behaving well with slp’s. For
instance the computation of (slp’s for) the coefficients of the charac-
teristic polynomial of a D × D matrix, as well as the computation of
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its adjoint and its determinant, can be done within O(D4) arithmetic
operations with no divisions and no branches [3].

Another useful fact is that a slp of length L for the computation of
a polynomial f ∈ k[x1, . . . , xn] of degree bounded by d produces easily
slp’s of length O(d2L) for the homogeneous components of any given
degree of f ; see [45] Lem. 13 and [8] Lem. 21.25.

Also, there is a classic division free algorithm known as Strassen’s
Vermeidung von Divisionen [64] which computes a slp for the quotient
of two polynomials provided it is a polynomial. More precisely

Proposition 5.2 Let f, g ∈ k[x1, . . . , xn] be polynomials encoded by slp’s
of length L such that f(0) = 1. Assume that f divides g in k[x1, . . . , xn]
and that deg g/f ≤ d. Then there is an algorithm which computes a slp
for g/f within complexity O(d2(d + L)).

The idea is simply to use that

f−1 =
1

1 − (1 − f)
=

∑
k≥0

(1 − f)k

and to truncate all operations and the result at order d. This algorithm
is easily adapted to more general situations when f(a) �= 0 for a ∈ kn,
or when f �= 0 and one looks probabilistically for a ∈ kn such that
f(a) �= 0.

Finally there is a bounded probability algorithm to compute the great-
est common divisor of two multivariate polynomials encoded by slp’s
[41].

5.2.5 Input preparation

Given f1, . . . , fs ∈ k[x1, . . . , xn] which define an arbitrary variety V :=
V (f1, . . . , fs) ⊂ A

n, as many authors do we replace the original input
system by taking a linear combination of the polynomials and a change of
variables, in order to attain the good underlying linear algebra structure
we discussed partly in §5.2.3.

• In case f1, . . . , fs are not (known to be) a reduced regular sequence
we replace them by f̃1, . . . , f̃n+1 as explained in §5.2.3, for a choice of
a = (a1, . . . , an+1) ∈ k(n+1)×s such that:

– V (f̃1, . . . , f̃n+1) = V .
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– For 0 ≤ r ≤ n−1, if V (f̃1, . . . , f̃n−r) �= V , then Ir := (f̃1, . . . , f̃n−r)
is a radical ideal of dimension r outside V (that is every primary
component Q of Ir such that V (Q) �⊂ V is prime of dimension r).

These conditions imply that if a minimal equidimensional decom-
position of V is given by

V = V0 ∪ · · · ∪ Vn−1

where for 0 ≤ r ≤ n − 1, Vr is either empty or equidimensional of
dimension r, then

V (Ir) = V ′
r ∪ Vr ∪ · · · ∪ Vn−1

where V ′
r is either empty or an equidimensional variety of dimension

r (that contains in particular all the components of lower dimension
of V ).

In case the original variety V := V (f1, . . . , fs) is empty, the per-
turbed polynomials f̃1, . . . , f̃n+1 verify that for a certain t ≤ n, (f̃1, . . . ,

f̃t) is a reduced regular sequence and V (f̃1, . . . , f̃t+1) = ∅.
An important fact is that Bertini’s theorem insures that for a generic

choice of such a matrix a, the desired conditions are always attained;
see for instance [1] Sec. 4, [27] Sec. 3.2, [58] Prop. 18 and proof of
Th. 19. Moreover, the coefficients of the matrices a giving bad choices
belong to a hypersurface of degree bounded by 4(d + 1)2n; see [50]
Lem. 1 and 2 or [46] Prop. 4.3 and Cor. 4.4. This enables us to apply
Zippel-Schwartz zero test.

• We replace the variables x1, . . . , xn by new variables yk = bk1x1 +
· · · bknxn, 1 ≤ k ≤ n, such that for 0 ≤ r ≤ n − 1, the variables
y1, . . . , yr are in Noether normal position with respect to the equidi-
mensional component Wr of V (In−r) of dimension r, that is, the mor-
phism π : Wr → A

r, y �→ (y1, . . . , yr) is finite of degree degWr.

In fact we look for a more technical condition (see Assumption 5.1
below) which implies this Noether position one. Again the important
fact is that a generic choice of the new variables insures the desired
conditions. Moreover, the coefficients of the matrices b giving bad
choices belong to a hypersurface of degree bounded by n(n − 1)d2n

([46] Prop. 4.5), which enables us to apply Zippel-Schwartz zero test
again.
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5.3 The Nullstellensatz

This section discusses results on the effective Nullstellensatz that mo-
tivate the spirit of this survey paper. It also presents some complexity
aspects in more detail.

The (weak) Nullstellensatz states (for a field k with algebraic closure
k):

Let f1, . . . , fs be polynomials in k[x1, . . . , xn]. The equation system

f1(x) = 0, . . . , fs(x) = 0

has no solution in k
n

if and only if there exist g1, . . . , gs ∈ k[x1, . . . , xn]
satisfying the Bézout identity

1 = g1 f1 + · · · + gs fs. (5.1)

Upper bounds
Bounds for the degrees of polynomials gi’s satisfying Identity (5.1)

immediately yield a linear system of equations. Showing such bounds is
what is nowadays called Effective Nullstellensätze.

In 1926, Hermann [36] (see also [31], [54]) proved that in case Iden-
tity (5.1) holds, there exist g1, . . . , gs ∈ k[x1, . . . , xn] with deg gi fi ≤
2 (2d)2

n−1
. After a conjecture of Keller and Gröbner, this estimate was

dramatically improved by Brownawell [7] to deg gifi ≤ n2dn + nd in
case char (k) = 0, while Caniglia, Galligo and Heintz [9] showed that
deg gifi ≤ dn

2
holds in the general case.

These results were then independently refined by Kollár [43] and by
Fitchas and Galligo [19] to

deg gi fi ≤ max{3, d}n, (5.2)

which is optimal in case d ≥ 3. For d = 2, Sombra [62] showed that the
bound deg gifi ≤ 2n+1 holds.

A lower bound
We turn now to a lower bound estimate. The following well-known

example due to Masser and Philippon yields a lower bound for any
general degree estimate. Set

f1 := xd
1 , f2 := x1−xd

2 , . . . , fn−1 := xn−2 −xd
n−1 , fn := 1−xn−1 x

d−1
n

for any positive integers n and d. These are polynomials of degree d

in n variables. Let g1, . . . , gn ∈ Q[x1, . . . , xn] be polynomials satisfying
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Bézout identity (5.1). Specializing it at

x1 := t(d−1)dn−2
, x2 := t(d−1)dn−3

, . . . , xn−1 := td−1, xn := 1/t for t �= 0

one obtains

1 = g1(t(d−1)dn−2
, . . . , td−1, 1/t) t(d−1)dn−1

which implies that degxn
g1 ≥ (d− 1)dn−1.

In fact here is a Bézout identity with optimal degrees for these poly-
nomials:

1 = x(d−1)dn−1

n xd
1 − x(d−1)dn−1

n

(
xd

1 − (xd
2)

d
)
− · · ·

−x(d−1)dn−1

n

(
xdn−2

n−2 − (xd
n−1)

dn−2)
+

(
1 − (xn−1x

d−1
n )d

n−1)
i.e. g1 = x

(d−1)dn−1

n , g2 = −g1

(
xd−1

1 + · · · + (xd
2)

d−1
)
, . . . , gn = 1 +

xn−1x
d−1
n + · · · + (xn−1x

d−1
n )d

n−1−1.

This example immediately shows that the dense encoding of any out-
put g1, . . . , gn has length at least

(
dn−dn−1+n

n

)
, which is exponential in

the length
(
d+n
n

)
of the dense encoding of the input. Moreover, a slight

perturbation of this example — replacing xn by a linear combination of
the variables — destroys all the sparsity of the output.

However in this case there is at least one choice of smart polynomials
since a coarse computation shows that L(g1) ≤ n(d − 1) and L(gi) ≤
(n + 5i)(d− 1). Here we have used the identity:

xdi−1 + xdi−2y + · · · + yd
i−1

=
(
xd−1 + xd−2y + · · · + yd−1

)
· · ·(

xd
i−1(d−1) + xdi−1(d−2)y + · · · + yd

d−1(d−1)
)
.

Arithmetic bounds
Now let us consider the arithmetic aspects of the Nullstellensatz, that

is when the input polynomials have integer coefficients (or more generally
coefficients in a number ring). In the case of integer coefficients, the
Nullstellensatz takes the following form:

Let f1, . . . , fs ∈ Z[x1, . . . , xn] be polynomials such that the equation system

f1(x) = 0, . . . , fs(x) = 0

has no solution in C
n. Then there exist a ∈ Z \ {0} and g1, . . . , gs ∈

Z[x1, . . . , xn] satisfying the Bézout identity

a = g1 f1 + · · · + gs fs.
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Let h(f) denote the height of an arbitrary polynomial f ∈ Z[x1, . . . , xn],
defined as the logarithm of the maximum absolute value of its coeffi-
cients, and for the sequel set h := maxi h(fi). A slight modification of
Masser and Philippon example yields the lower bound h(a) ≥ dnh.

On the other hand the bound (5.2) reduces Bézout identity (5.1) to
a system of Q-linear equations, which by application of Cramer rule
gives an estimate for the height of a and the polynomials gi of type
s dn

2
(h + log s + d).

It was soon conjectured that the optimal height bound should be closer
to the mentioned lower bound than to this trivial upper bound.

Philippon [55] obtained the first sharp estimate for the denominator
a in Bézout identity: deg gi ≤ (n + 2) dn, h(a) ≤ κ(n) dn(h + d), where
κ(n) depends exponentially on n. Then the first essential progress on
height estimates for all the polynomials gi was achieved by Berenstein
and Yger who, from 1991 to 1999 [1, 2], obtained deg gi ≤ n(2n +
1)dn, h(a), h(gi) ≤ λ(n) d4n+3 (h+log s+d log d), where λ(n) is a (non-
explicit) constant which depends exponentially on n. Their proof relies
on the previous work of Philippon and on techniques from complex anal-
ysis. Using the algebraic techniques described in Paragraph “Idea of an
algorithm” below, the author and Pardo [44, 45] obtained the same kind
of estimates though less precisely. In 1998 Sombra convinced us that
the techniques were better than the obtained results and that what was
lacking was a deeper height analysis. This lead to the nowadays best and
essentially optimal arithmetic bound [46] stated in Paragraph “Compu-
tational results” below.

Idea of an algorithm
Since 1993, Heintz, Giusti and their collaborators initiated a strong

current area of research on computational issues related to the Nullstel-
lensatz [27, 20, 45, 25, 24, 30]. The fact that the polynomials gi’s sat-
isfying Bézout identity in Masser and Philippon counterexample were
smart did not seem to be a coincidence. They searched for arguments
and tools behaving well under specializations in order to generalize this
fact. A good algorithmic answer is given by the application of the dual-
ity theory for Gorenstein algebras to this setting. We refer to E. Kunz
[48] Appendix F for a complete mathematical presentation of the duality
theory.

The initial spirit of the algorithm is quite simple. It works by successive
divisions:

1 ∈ (f1, . . . , fs) ⇐⇒ fs is invertible (mod (f1, . . . fs−1))
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and more generally, once gs, . . . , gi+1 are determined

1 − gsfs − · · · − gi+1fi+1 ∈ (f1, . . . , fi) ⇐⇒
∃gi : 1 − gsfs − · · · − gi+1fi+1 ≡ gifi (mod (f1, . . . fi−1)).

To illustrate the algorithm assume now that (f1, . . . , fs) define the
empty variety, that s = n + 1 and that Ir := (f1, . . . , fn−r) is an ideal
of dimension r for 0 ≤ r ≤ n− 1.

Thus I0 := (f1, . . . , fn) is a zero-dimensional ideal, and the first step is
straight-forward: B := k[x1, . . . , xn]/I0 is a finite-dimensional k-vector
space. Therefore an inverse gn+1 for fn+1 in B can be obtained for
instance using the characteristic polynomial χn+1 of (the multiplication
by) fn+1 in B and Cayley-Hamilton theorem: χn+1(t) = tD+cD−1t

D−1+
· · · + c0 (with c0 ∈ k∗ since fn+1 is invertible) implies that we can
define

gn+1 := − 1
c0

(fD−1
n+1 + cD−1f

D−2
n+1 + · · · + c1). (5.3)

For the second recursion step, even if one can mimic the finite-
dimensional vector space argument, in the best case the frame is a
finite-rank free module B := k[x1, . . . , xn]/I1 over A := k[x1], and
the argument above fails since here c0 ∈ k[x1] does not necessarily
divide the expression in the numerator of the corresponding formula
(5.3).

The trace formula giving the duality theory of Gorenstein algebras is
the tool which enables us to generalize the previous argument to the
case when we are not in a finite vector space frame. It performs effective
divisions modulo complete intersection ideals. It was introduced in the
context of the effective Nullstellensatz in [20], and then refined in [58, 45,
47, 24, 30]. The latest optimal results for the arithmetic aspects when
the base ring is a number ring are obtained in [46].

Here we describe only the basic aspects of the theory we need to sketch
the proof.

Let Ir = (f1, . . . , fn−r) ⊂ k[x1, . . . , xn] be a reduced complete in-
tersection ideal (of dimension r), such that B := k[x1, . . . , xn]/Ir is a
finite-rank free module over A := k[x1, . . . , xr].

The dual A-module B∗ := HomA(B,A) can be seen as a B-module
with scalar multiplication defined by f · τ(g) := τ(f g) for f, g ∈ B

and τ ∈ B∗. It happens to be a free B-module of rank 1. Any of
its generators is called a trace of B. There is a canonical trace σ as-
sociated to the complete intersection Ii, and particular polynomials
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am, bm ∈ k[x1, . . . , xn] verifying the following trace formula:

∀g ∈ k[x1, . . . , xn], g ≡
∑
m

σ(gam)bm (mod Ir).

The canonical trace σ is related to the usual trace Tr of B/A by
the equality Tr (g) ≡ σ(Jg) (mod Ir) where J is the Jacobian deter-
minant of the complete intersection Ir with respect to the variables
xi+1, . . . , xn.

Now we are able to describe — at least theoretically — the second
recursion step. All steps follow the same pattern.

Let I1 = (f1, . . . , fn−1), B = k[x1, . . . , xn]/I1 and A := k[x1] be in the
hypothesis of the duality theory. Let χn(t) := tD + cD−1t

D−1 + · · · + c0
be the characteristic polynomial of fn in B/A. Observe that c0 ∈ A\{0}
since fn is not a zero-divisor modulo I1. We define

f∗
n := fD−1

n + cD−1f
D−2
n + · · · + c1,

gn := − 1
c0

∑
m

σ(f∗
n(1 − gn+1fn+1)am)bm.

Fact: gn belongs to k[x1, . . . , xn] (i.e. c0 divides the numerator) and
gnfn ≡ 1 − gn+1fn+1 (mod I1).

Proof.–

• In fact c0 |σ(f∗
n(1 − gn+1fn+1)am) in A = k[x1] for every m:

Since by hypothesis there exists q ∈ k[x1, . . . , xn] such that 1 −
gn+1fn+1 ≡ q fn (mod I1) and on the other hand f∗

n fn ≡ −c0
(mod I1), we infer that f∗

n(1−gn+1fn+1) ≡ −c0q (mod I1). Therefore

σ(f∗
n(1 − gn+1fn+1)am) = σ(−c0q am) = −c0σ(q am)

since σ is a A-morphism and c0 ∈ A.
• By the trace formula, −c0 gn ≡ f∗

n(1 − gn+1fn+1) ≡ −c0q (mod I1).
Thus c0 gn fn ≡ c0 (1 − gn+1fn+1) (mod I1). Since c0 is not a zero-
divisor modulo I1 we conclude that gnfn ≡ 1 − gn+1fn+1

(mod I1).

We finally observe that the relationship between this trace σ and the
canonical trace Tr allows to replace in the computations σ that one does
not know by Tr which is computable as a coefficient of the characteristic
polynomial. The polynomials am, bm are also easily computable.

Computational results
The foundational paper of this computational current of research on

the Nullstellensatz is the one of Giusti, Heintz and Sabia [27] followed
by [20]:
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Theorem 5.2 Let f1, . . . , fs ∈ k[x1, . . . , xn] be polynomials of degree
bounded by d. Then there is a bounded probability algorithm of size
sO(1)dO(n) which decides whether the ideal (f1, . . . , fs) is trivial or not,
and in case it is, produces slp’s of the same length for polynomials
g1, . . . , gs ∈ k[x1, . . . , xn] satisfying the Bézout identity 1 = g1 f1 + · · ·+
gs fs. The degree of these polynomials was first bounded by dO(n2) [27]
Sec. 2, Th. and then by dO(n) [20] Th. 2.

This result follows after an input preparation of the kind of the one
described in §5.2.5 in order to place the input in the hypothesis of the
duality theory, and a recursive application of the division procedure.
The canonical trace is computed as a coefficient of the characteristic
polynomial of the multiplication map in B/A. A suitable basis of the
natural zero-dimensional vector space associated to B/A is obtained
reducing to the two variables case.

Later on, the input polynomials were no more considered in their
dense encoding: the complexity bounds are now given in terms of the
lengths of the slp encoding and of the geometric degree of the input
polynomials [25] Th. 20, [24] Th. 4, Th. 21, that is what is called intrinsic
Nullstellensatz:

Theorem 5.3 Let f1, . . . , fs ∈ k[x1, . . . , xn] be polynomials of degree
bounded by d given by slp’s of length bounded by L with no common ze-
roes in k

n
. Let δ be a geometric degree of the input equation system. Then

there is a bounded probability algorithm of size (sndδL)O(1) which pro-
duces slp’s of the same length for polynomials g1, . . . , gs ∈ k[x1, . . . , xn]
satisfying the Bézout identity 1 = g1 f1 + · · ·+ gs fs. The degree of these
polynomials are bounded by n2dδ.

The proof of this theorem is based on the techniques of [27] in what
concerns the recursive divisions. The dependence on δ is due to the
precise results on the degrees of [58] and [47, 61] where bounds in terms
of δ were first computed. In order to obtain a final bound depending
polynomially on L (and not on dn) the authors introduced a formal
version of Newton’s method which produces with good complexity good
bases of the complete intersection ideals recursively considered. This
method is essential in all further developments and will be introduced
in a simple frame in §5.5.1.

Now let us add the arithmetic aspects of the Nullstellensatz.
The duality technique introduced above also yields arithmetic bounds.

That was done in [44, 45]: the slp produces an integer a and polynomials
gi’s such that deg gi ≤ (nd)c n, h(a), h(gi) ≤ (nd)c n(h + log s + d),
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where c is a universal constant. Then an arithmetic analogue of the
intrinsic Nullstellensatz was obtained in [30, 29]. To this aim the authors
introduced the notion of height of a polynomial system, the arithmetic
analogue of the geometric degree of the system. In [46] these results are
generalized and brought to an optimal form. As a consequence of this
intrinsic statement, a sparse version is obtained, recently improved by
Sombra in [63].

More precisely, the main result of [46] in its simplest form is the fol-
lowing:

Theorem 5.4 Let f1, . . . , fs ∈ Z[x1, . . . , xn] be polynomials without com-
mon zeros in C

n. Set d := maxi deg fi and h := maxi h(fi).
Then there exist a ∈ Z \ {0} and g1, . . . , gs ∈ Z[x1, . . . , xn] such that

• a = g1 f1 + · · · + gs fs,
• deg gi ≤ 4ndn,
• h(a), h(gi) ≤ 4n (n + 1) dn (h + log s + (n + 7) log(n + 1) d).

The proof of this arithmetic Nullstellensatz also relies on the trace
formula. However there is another key ingredient which is the notion of
local height of a variety defined over a number field K introduced there:

For V ⊂ A
n(Q) an equidimensional affine variety defined over K and

for an absolute value v over K, the local height hv(V ) of V at v is
defined — inspired by results of Philippon — as a Mahler measure of a
suitable normalized Chow form of V . This definition is consistent with
the Falting’s height h(V ) of V , namely:

h(V ) =
1

[K : Q]

∑
v∈MK

Nv hv(V ),

where MK denotes the set of canonical absolute values of K, and Nv

the local degree of K at v. Then the authors obtained estimations of the
local height of the trace and the norm of a polynomial f ∈ K[x1, . . . , xn]
with respect to an integral extension K[Ar] ↪→ K[V ]. There are also
local analogues of many of the global results of Bost, Gillet and Soulé
[6] and Philippon [56].

5.4 Zero-dimensional varieties

We devote this section to the description of a zero-dimensional variety
by means of two different presentations: a classic description that we
call here, following [24] Sec. 2.1, a geometric resolution of the variety
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(also known as a shape lemma presentation or a rational univariate rep-
resentation), and its Chow form (also known as the u-resultant when
associated to a system of equations). We compare both approaches.

For the whole section, Z ⊂ A
n denotes a 0-dimensional variety (that

is a finite variety) of cardinality D.

5.4.1 Geometric resolutions

Geometric resolutions were first introduced in the works of Kronecker
and König in the last years of the XIX century. Nowadays they are widely
used in computer algebra. We refer to [23] for a complete historical
account.

A geometric resolution of Z consists of an affine linear form �(x) =
u0 + u1x1 + · · · + unxn ∈ k[x1, . . . , xn] and of polynomials q ∈ k[t] and
w = (w1, . . . , wn) ∈ k[t]n (where t is a new single variable) such that:

• The affine linear form � is a primitive element of Z, that is �(ξ) �= �(ξ′)
for all ξ �= ξ′ in Z.

• The polynomial q is monic of degree D and q(�(ξ)) = 0 for all ξ ∈ Z;
that is,

q(t) =
∏
ξ∈Z

(t− �(ξ))

is the minimal polynomial of � over Z.
• For 1 ≤ i ≤ n, degwi < D and

Z = {(w1(�(ξ)), . . . , wn(�(ξ))) ; ξ ∈ Z}
=

{
(w1(τ), . . . , wn(τ)) ; τ ∈ k / q(τ) = 0

}
;

that is, w parametrizes Z by the zeroes of q.

Observe that the minimal polynomial q and the parametrization p are
uniquely determined by the variety Z and the affine linear form �. We
say that (q, w) is the geometric resolution of Z associated to �.

The existence of such a geometric resolution of Z (at least with coef-
ficients in k) is simple to show:

Let �(x) = 0 be any projection hyperplane that separates the ze-
roes of Z (any generic enough hyperplane will do), and define q(t) =∏

ξ∈Z(t − �(ξ)). Thus q is a polynomial of degree D := #Z that van-
ishes on Z. Now for 1 ≤ i ≤ n, let wi(t) be the unique polynomial of
degree strictly bounded by D which verifies that wi(�(ξ)) = ξi for every
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ξ = (ξ1, . . . , ξn) ∈ Z. Then the polynomial xi − wi(�(x)) also vanishes
on Z and it is easy to show that in fact

Z = V (q(�(x)), x1 − w1(�(x)), . . . , xn − wn(�(x))) .

The computation of a geometric resolution
The algorithm that we comment here has its beginning in [26] and

the ideas were then refined in [25] with the introduction of Newton’s
method and in [24] where the use of computable companion matrices
replaced theoretical algebraic roots. Further improvements were then
developed independently in [51, 28] and [33] where a significant speed-
up is obtained by a technique called deforestation.

Here, in order to simplify the presentation we assume that the zero-
dimensional variety Z is given as the zero set of a reduced regular se-
quence f1, . . . , fn in k[x1, . . . , xn].

Theorem 5.5 ([24] Th. 19) Let f1, . . . , fn ∈ k[x1, . . . , xn] be polynomials
of degree bounded by d and encoded by slp’s of length L. Assume that the
polynomials are a reduced regular sequence and set δ for a geometric
degree of the input polynomial system.

Then there is a bounded probability algorithm which computes (slp’s
for) a separating linear form � and a geometric resolution (q, v) of Z

associated to � within complexity (ndδL)O(1).

The algorithm has n recursive steps: it adds one equation at a time. For
simplicity one assumes that x1, . . . , xn are in Noether normal position
with respect to the ideals (f1, . . . , fi), 1 ≤ i ≤ n.

The i-th step computes from a geometric resolution of the zero-
dimensional variety

Zi := V (f1, . . . , fi) ⊂ A
i(k(x1, . . . , xn−i))

a geometric resolution of the zero-dimensional variety

Zi+1 := V (f1, . . . , fi+1) ⊂ A
i+1(k(x1, . . . , xn−i−1)).

The first input is given by the geometric resolution (q(t) := f1(x1, . . . ,

xn−1, t), w1(t) := t) of Z1 := V (f1) associated to the separating linear
form � := xn, and the last (n− 1) step computes a geometric resolution
of the zero dimensional variety Zn = Z.

The crucial point here is that the input of step i+1 cannot be simply
the output of step i, where the natural length of this output would be
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Li+1 = (ndδi)O(1)Li (where δi is the size of the underlying linear algebra
at step i), since in that case the recursion would yield an output length

Ln = (nd)O(n)(δ0 · · · δn−1)O(1)L = (ndδ)O(n)L

which does not represent any improvement with respect to other known
algorithms.

The alternative was for the first time addressed in [26] where the
authors dealt with the necessity of a compression of the input data at
each recursive step that enabled them to add Li instead of multiplying
it : Li+1 = (ndδi)O(1)L + Li. Another principal breakthrough of this
paper is that it adapted the concept of geometric resolution to a positive
dimension context, rediscovering Kronecker’s approach.

The general form of an algorithm like this one is considered in more
detail for the computation of Chow forms in §5.6, after the introduction
of Newton’s method and the use of companion matrices in some simple
cases.

5.4.2 Chow forms

Set L(U, x) := U0 + U1x1 + · · · + Unxn for a generic (affine) linear form
where U := (U0, . . . , Un) denotes a new group of variables. Typically a
specialized linear form �(x) := L(u, x) does not meet any of the points
of Z unless u ∈ A

n is a root of the following polynomial

ChZ(U) =
∏
ξ∈Z

L(U, ξ).

This polynomial is called the (normalized) Chow form of Z. It happens
to be a homogeneous polynomial in k[U ] of degree D. We refer to [60]
Sec. I.6.5 for the proof of this fact.

Thus, the main feature of the Chow form is that for any u ∈ kn+1,

ChZ(u) = 0 ⇐⇒ Z ∩ {L(u, x) = 0} �= ∅.

Chow forms → geometric resolutions
A Chow form gives straightforward a “generic” geometric resolution

and hence, by specialization, families of geometric resolutions. We de-
scribe here the procedure, essentially due to Kronecker:

The polynomial PZ(U, t) ∈ k[U, t] (where t is a single variable like
before) defined by

PZ(U, t) := (−1)DChZ(U0 − t, U1, . . . , Un) =
∏
ξ∈Z

(t− L(U, ξ))
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verifies that P (U, x) := PZ(U,L(U, x)) =
∑

α aα(x)Uα vanishes clearly
on every ξ ∈ Z. Thus, for every α, aα(ξ) = 0 for every ξ ∈ Z, which
implies in particular that ∂P (U,x)

∂Ui
also vanishes on every ξ ∈ Z.

Now for 1 ≤ i ≤ n,

∂P

∂Ui
(U, x) =

∂PZ

∂Ui
(U,L(U, x)) +

∂PZ

∂t
(U,L(U, x))xi

implies that for every ξ ∈ Z,

∂PZ

∂Ui
(U,L(U, ξ)) +

∂PZ

∂t
(U,L(U, ξ))ξi = 0.

This last equality means that for every u ∈ k
n+1

such that both
�(x) := L(u, x) verifies that �(ξ) �= �(ξ′) for all ξ �= ξ′ in Z and
∂PZ

∂t
(u, �(ξ)) �= 0 for all ξ ∈ Z (these conditions are fulfilled in a non-

empty open Zariski subset of k
n+1

), one has that

ξi = −
∂PZ

∂Ui
(u, �(ξ))

∂PZ

∂t (u, �(ξ))
.

A proper geometric resolution of Z associated to � is then given by
q(t) := PZ(u, t) and the polynomials wi(t) that one can obtain using
the discriminant �(U) of PZ(U, t) with respect to t to eliminate the
polynomial ∂PZ

∂t
(u, �(ξ)) appearing in the denominator (replacing it by

the non-zero constant �(u)).

Geometric resolutions → Chow forms:
Now let us show how to derive the Chow form from a given geometric

resolution of Z with respect to a linear form �. This simple and beautiful
construction relies on the fact that even if we do not know the coordi-
nates of each zero ξ of Z, a geometric resolution gives the information
of the zeroes altogether:

We are looking for

ChZ(U) =
∏
ξ∈Z

L(U, ξ) = |Diagξ∈Z

(
L(U, ξ)

)
|,

where |Diag( )| denotes the determinant of the diagonal matrix with the
entries under the brackets in the diagonal. But the information we have
is that of q(t) =

∏
ξ∈Z(t − �(ξ)) whose companion matrix Cq is similar

(∼) to Diagξ∈Z

(
�(ξ)

)
since �(ξ) �= �(ξ′) for ξ �= ξ′. For 1 ≤ i ≤ n, we

also have wi such that ξi = wi(�(ξ)). Thus

wi(Cq) ∼ wi

(
Diagξ∈Z

(
�(ξ)

))
∼ Diagξ∈Z

(
wi(�(ξ))

)
∼ Diagξ∈Z

(
ξi

)
.
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We infer that

L
(
U, (Id, w1(Cq), . . . , wn(Cq))

)
∼ Diagξ∈Z

(
L(U, ξ)

)
and we conclude by taking the determinant of the left hand side.

This beautiful application of companion matrices is a crucial tool that
was introduced in this context in [24] pp. 285-286 to replace each zero
in Z by their “all-together information”.

5.5 Equidimensional varieties

A variety is said to be equidimensional if all its irreducible components
have the same dimension. We recall that the degree of an equidimen-
sional variety V is defined as the number of points in the intersection of
V with a generic linear variety of codimension equal to the dimension
of V .

To simplify the presentation, we set n = r + m and we distinguish
the variables in two groups: the set of free variables y = (y1, . . . , yr)
and the set of dependent variables x = (x1, . . . , xm) of the extension
k[V ]: for that purpose we assume for the whole section that V ⊂ A

n =
A

r+m is an equidimensional variety of dimension r and degree D, defined
by polynomials in k[y1, . . . , yr, x1, . . . , xm], which satisfies the following
assumption:

Assumption 5.1 We assume that Z := V ∩ {y1 = 0, . . . , yr = 0} is a
zero-dimensional variety of cardinality #Z = deg V = D.

Assumption 5.1 implies that the variables y1, . . . , yr are in Noether
normal position with respect to V [46] Lem. 2.14. That means that if
we set A := k[y1, . . . , yr], A ∩ I(V ) = {0} holds, and that for 1 ≤
i ≤ m, there is an integral dependence equation for xi over A modulo
I(V ) ⊂ A[x1, . . . , xm]: there exists a non-zero and monic polynomial
pi ∈ A[xi]∩ I(V ). We remark that the previous condition is satisfied by
any variety under a generic linear change of variables.

5.5.1 Geometric resolutions

We present here the notions of geometric resolution of an equidimen-
sional variety of positive dimension.

Under Assumption 5.1 we can reduce easily to the zero-dimensional
case: we invert the variables y1, . . . , yr. We set K := k(y1, . . . , yr) for
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the field of fractions of A = k[y1, . . . , yr] and we consider the following
objects:

Ie := K[x1, . . . , xm] · I(V ) ⊂ K[x1, . . . , xm]

V e := V (Ie) ⊂ K
m
,

where I(V ) is the ideal of V and V (Ie) is the variety defined by Ie. V e

is a zero-dimensional variety of cardinality D = deg V and a geometric
resolution of V is (essentially) given by a geometric resolution of V e.
It does not describe the whole variety V but it describes it outside a
given hypersurface. It consists of an affine linear form � = u0 +ur+1x1 +
· · · + ur+mxm ∈ k[x1, . . . , xm] and of polynomials q ∈ A[t] and w =
(w1, . . . , wm) ∈ A[t]m such that:

• The affine linear form � is a primitive element of V e, that is �(ξ) �= �(ξ′)
for all ξ �= ξ′ in V e.

• The polynomial q, of degree D, is the monic minimal polynomial of
� with respect to the extension K ↪→ K[V e]. The Noether position
assumption guarantees that the coefficients of q belong to A [28] Sec.
3.2.

• For 1 ≤ i ≤ m, degt wi < D and � xi = wi(�) in K[V e], where � ∈ A is
the discriminant of q with respect to t. The polynomial wi also belongs
to A[t] for the same reason.

Thus, we infer that

V e =
{ (

w1(�(ξ))
�

, . . . ,
wm(�(ξ))

�

)
; ξ ∈ V e

}
=

{ (
w1(τ)
�

, . . . ,
wm(τ)

�

)
; τ ∈ K /q(τ) = 0

}
.

In particular, since q is monic in t, for every η = (η1, . . . , ηr) ∈ A
r

such that �(η) �= 0, #(V ∩ {y1 = η1, . . . , yr = ηr}) = D and the D roots
(η, ξη) ∈ A

r+n are obtained via the D different roots τη of q(η, t) = 0:

V ∩ {y1 = η1, . . . , yr = ηr}

=
{ (

η1, . . . , ηr,
w1(η, τη)

�(η)
, . . . ,

wm(η, τη)
�(η)

)
for τη s.t. q(η, τη) = 0

}
.

For simplicity of notations, we say that outside the hypersurface {� =
0} ⊂ A

r+m the variety V ⊂ A
r+m coincides with{ (

y,
w(y, τy)
�(y)

)
for τy s.t. q(y, τy) = 0

}
.
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We say that (q, w) is the geometric resolution of V associated to �. It
gives a simple description of V outside the discriminant variety. There
is another equivalent approach, more suitable algorithmically, where the
geometric resolution of V is defined outside the variety {q′ = 0} where
q′ = ∂q/∂t instead of outside the discriminant variety (cf. §5.4.2).

Observe that Assumption 5.1 implies that

Z = V ∩ {y1 = 0, . . . , yr = 0}

=
{(

0,
w(0, τ0)
�(0)

)
for τ0 s.t. q(0, τ0) = 0

}
.

Next section is crucial: it shows how the tractable information of the r-
dimensional equidimensional variety V is enclosed in the arbitrary input
equations plus the information of the zero-dimensional fibre Z. In other
terms it shows how to recover a geometric resolution of V from a geo-
metric resolution of Z, lifting the points (0, ξ0) ∈ Z to the corresponding
(y, ξy) ∈ V .

5.5.2 Dimension zero → positive dimension

Let V ⊂ A
r+m be an equidimensional variety of dimension r satisfying

Assumption 5.1 and set as usual Z := V ∩{y1 = 0, . . . , yr = 0}. Suppose
we are given a geometric resolution (qZ , wZ) of Z associated to a sepa-
rating linear form �. How can we derive from it a geometric resolution
(qV , wV ) of V ?

The major tool here is the application of Newton’s method to lift
from an “approximate zero”, that is a geometric resolution of the zero-
dimensional fibre Z, the geometric resolution of V . Newton’s method
has been applied in a similar way to recover the exact factorization
of multivariate polynomials from factorization algorithms for univariate
polynomials by E. Kaltofen in [40]. For polynomial systems it has been
previously used by W. Trinks [66] and by F. Winkler [67]. In our specific
frame it has been re-introduced by J. Heintz et al. in [25].

First let us recall Hensel’s lifting, that is, the algebraic version of
Newton’s method, in its classic presentation:

Proposition 5.3 Let p be a prime integer number, f ∈ Z[x] and ξ0 ∈ Z

such that

f(ξ0) ≡ 0 (mod p), f ′(ξ0) �≡ 0 (mod p).
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Then, for all k ∈ N, there exists ξk ∈ Z such that

f(ξk) ≡ 0 (mod p2k

), ξk ≡ ξ0 (mod p).

The existence (and also uniqueness mod p2k

) of this sequence of inte-
gers is given by the recursive application of Newton’s operator

Nf (x) = x− f(x)
f ′(x)

to the input approximate zero ξ0:

for all k ≥ 1, ξk ≡ Nf (ξk−1) (mod p2k

).

Hensel’s lifting translates directly to a constructive implicit function
theorem, that is the version we use here:

Proposition 5.4 Set A := k[y1, . . . , yr] and A[x] := A[x1, . . . , xm]. Let
V ⊂ A

r+m be an equidimensional variety of dimension r defined by a
reduced regular sequence f1, . . . , fm ⊂ A[x], and assume moreover that
V satisfies Assumption 5.1.

Set M = (y1, . . . , yr) ⊂ A for the maximal ideal associated to 0,
F (y, x) := (f1(y, x), . . . , fm(y, x)) and DxF := (∂fi/∂xj)1≤i,j≤m.

Let ξ0 ∈ A
m be such that F (y, ξ0) ∈ M (i.e. F (0, ξ0) = 0, that is

(0, ξ0) ∈ Z) and |DxF |(y, ξ0) /∈ M. Then the recursive application of

NF (xt) := xt − (DxF (y, x))−1F (y, x)t

initialized at ξ0 approximates the corresponding fiber root (y, ξy) ∈ V

with quadratic precision. That is, if Nk
F denotes the application of k

times the Newton operator, Nk
F (ξ0) tends quadratically to a m-tuple of

formal power series ξy ∈ k[[y]]m verifying:

• F (y, ξy) = 0
• ξy(0) = ξ0.

where “tends quadratically” means that F (y,Nk
F (ξ0)) ∈ M2k

.

Next section gives an idea of how to derive the polynomial qV of a
geometric resolution of V from a geometric resolution of Z:

Idea of the algorithm
We adopt the abusive notation N∞

F (ξ0) := ξy.
For the rest of the section, let V = V (f1, . . . , fm) ⊂ A

r+m be an
equidimensional variety of dimension r satisfying Assumption 5.1 which
is in the hypothesis of Proposition 5.4. We will recover the polynomial qV
of a geometric resolution of V from a geometric resolution of Z associated
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to a linear form �, lifting the roots (0, ξ0) ∈ Z to their corresponding
fiber roots (y, ξy) ∈ V (via the inversion k[[y]] ↪→ K).

Without loss of generality we identify Z with {ξ0 : f1(0, ξ0) = · · · =
fm(0, ξ0) = 0} ⊂ A

m.
We know that the total degree of qV ∈ A[t] equals D, and we observe

that � ∈ k[x1, . . . , xm] is also a separating linear form for V e.
The information we have is qZ(t) =

∏
ξ0∈Z(t− �(ξ0)) ∈ k[t] and w :=

wZ ∈ k[t] such that for every ξ0 ∈ Z, ξ0 = w(�(ξ0)) = (w1(�(ξ0)), . . . ,
w1(�(ξ0))).

Here is a very informal sketch of how things work:
By Proposition 5.4 we know that for every ξ0 ∈ Z, N∞

F (ξ0) = ξy ∈
k[[y]]m. Thus we are looking for

qV (y, t) =
∏

(y,ξy)

(t− �(ξy)) =
∏

(y,ξy)

(t− �(N∞
F (ξ0))).

As we have the a priori bound D for the degree of qV in the variables
y as well, to obtain it exactly it is enough to approximate each root ξy
by a n-tuple of power series up to order D, that is to compute �log2 D�
iterations of Newton operator on ξ0 and then to truncate the obtained
polynomial at degree D.

Of course we don’t know the roots ξ0 ∈ Z, but we are looking in fact
for the characteristic polynomial of the diagonal matrix Diagξy

(
�(ξy)

)
,

and — as at the end of §5.4 — we have the information of all ξ0 ∈ Z

together via the companion matrix C = CqZ of qZ : for 1 ≤ i ≤ m,

wi(C) ∼ Diagξ0∈Z

(
(ξ0)i

)
=⇒

N∞
F

(
w(C)

)
∼

(
Diagξ0

(
(N∞

F (ξ0))1
)
, . . . ,Diagξ0

(
(N∞

F (ξ0))m
))

∼
(
Diagξy

(
(ξy)1

)
, . . . ,Diagξy

(
(ξy)m

))
=⇒

�
(
N∞

F

(
w(C)

))
∼ Diagξy

(
�(ξy)

)
,

and we should conclude taking its characteristic polynomial which is
exactly the polynomial qV we are looking for.

Again, as we have the a priori bound D for the degree of qV , it is
enough to compute all approximations up to order D and then to trun-
cate the obtained characteristic polynomial at degree D as well.

Let us conclude with a word on the computational aspects:
We set k := �log2 D� and we compute formally polynomials g1, . . . , gm

and h corresponding to the numerators and a single denominator of the
k-th iteration of Newton operator on a m-tuple of indeterminate vari-
ables (x1, . . . , xm). We apply them on the matrices w1(C), . . . , wm(C).
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Using Cayley-Hamilton theorem we invert the matrix h(w(C)) modulo
its determinant in k[y], which is invertible as a power series. We approx-
imate the inverse by a formal power series truncated at order D. All
remaining computations are truncated at order D. The details of this
procedure can be found for instance in [32] Proof of Th. 2, which deals
with a generalization of what is presented here.

Generalizations of Newton-Hensel symbolic lifting where the strong
hypothesis made here are weakened, allowing multiplicities, are being
deeply studied by Grégoire Lecerf ([51, 28, 52, 53] and work in progress).

5.5.3 Chow forms

For a detailed mathematical account of Chow forms we refer to [60] Sec.
I.6.5, [21] Ch. 3, [15], and to [46] Sec. 1.2.2 for the specific normalization
introduced here.

Let V ⊂ A
n = A

r+m be as before an equidimensional variety of
dimension r and degree D satisfying Assumption 5.1 (although unnec-
essarily heavy here, we decided to keep for the sake of coherence the
notation y = (y1, . . . , yr) for the free variables and x = (x1, . . . , xm) for
the dependent ones, and we set n := r + m).

Generically a linear variety of codimension r+1 does not meet V . Like
in the zero-dimensional case, the condition on the coefficients of these
linear varieties to meet V is given by a polynomial called a Chow form
of V . We formalize that: For i = 0, . . . , r, let Ui = (Ui0, Ui1, . . . , Uin) be
a group of n+1 variables and set U := (U0, . . . , Ur), and L(Ui, (y, x)) :=
Ui0 + Ui1 y1 + · · · + Uin xm for the associated generic linear form in the
variables (y, x).

Define

ΦV = {(u0, . . . , ur; ξ) , ξ ∈ V, L(u0, ξ) = 0, . . . , L(ur, ξ) = 0}

⊂ (An+1)r+1 × A
n,

and denote by π : (An+1)r+1 × A
n → (An+1)r+1; (u, ξ) �→ u the canon-

ical projection. Then the Zariski closure of the image of ΦV , π(ΦV ) ⊂
(An+1)r+1, is a closed hypersurface [60] p. 66. We define the Chow form
of V as any squarefree defining equation FV ∈ k[U0, . . . , Ur] of π(ΦV ).

The main feature of the Chow form is that for every u0, . . . , ur ∈ P
n,

FV (u0, . . . , ur) = 0 ⇔ V ∩ {Lh(u0, (y, x)) = 0} ∩ · · ·
∩{Lh(ur, (y, x)) = 0} �= ∅.
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Here Lh(Ui, (y, x)) = Ui0y0 + Ui1y1 + · · · + Uinxm stands for the homo-
geneization of L and V ⊂ P

n for the projective closure of V .
A Chow form FV is a multihomogeneous polynomial of degree D in

each group of variables Ui (0 ≤ i ≤ r). The projective closure V ⊂ P
n is

uniquely determined by a Chow form of V ([60] p. 66). Moreover, it is
possible to derive equations for the variety V from a Chow form of V ([21]
Ch. 3, Cor. 2.6). In case V is irreducible, FV is a irreducible polynomial
and, in the general case, a Chow form of V of the equidimensional variety
V is the product of the Chow forms of its irreducible components.

Observe that the Chow form of an equidimensional variety is uniquely
determined up to a scalar factor. Here we follow [46] Sec. 1.2.2 and define
the (normalized) Chow form ChV by fixing the choice of this scalar factor
through the condition

ChV (e0, . . . , er) = 1,

where ei denotes the (i+1)-vector of the canonical basis of kn+1. That is
the coefficient of the monomial UD

0 0 · · ·UD
r r (the fact that this coefficient

is not zero follows from Assumption 5.1, which says in particular that
V ∩ {y0 �= 0} ∩ {y1 = 0} ∩ · · · ∩ {yr = 0} �= ∅).

Chow forms → geometric resolutions:
The procedure described in §5.4.1 is generalizable to any dimension:
We define

P(U0, t, y) := (−1)deg V ChV ((U00 − t, U01, . . . , U0n); e1 − y1e0;

. . . ; er − yre0)

For every ξ = (y, ξy) ∈ V , we observe that

P(U0, L(U0, ξ), y1, . . . , yr) = 0

since

V ∩ {L(U0, (y, x)) = L(U0, (y, ξy))} ∩ {y1 = y1} ∩ · · · ∩ {yr = yr} �= ∅.

Thus P(U0, L(U0, ξ), y1, . . . , yr) vanishes on V e. Moreover degt P =
deg V since degU0

ChV = deg V and for a generic u0, �(y, x) :=
L(u0, (y, x)) separates the zeroes of V e. Finally P is monic in t since
it can be shown that its leading coefficient is independent from y, and
ChV (−e0, e1, . . . , er) = (−1)deg V . Then we conclude like in §5.4.1.

Geometric resolutions → Chow forms
If we proceed exactly like in the pure zero-dimensional case we obtain

ChV e(U0) ∈ K[U0] in a single set of variables U0 and with extraneous
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coefficients depending on the free variables y (cf. the Chow form of [50]
Sec. 3.3).

The first polynomial although probabilistic algorithm to compute the
Chow form of an equidimensional variety satisfying Assumption 5.1 from
a geometric resolution is given in [37] Prop. 3.5. It follows from the main
technical result Main Lemma 2.3 of that paper that we discuss here in
a simplified form:

Proposition 5.5 Set A := k[y1, . . . , yr] and A[x] := A[x1, . . . , xm]. Set
n := r + m and let V ⊂ A

n be an equidimensional variety of dimen-
sion r defined by a reduced regular sequence f1, . . . , fm ⊂ A[x]. Assume
moreover that V satisfies Assumption 5.1. Suppose that a geometric res-
olution (q, w) of Z = V ∩ {y1 = 0, . . . , yr = 0} associated to a linear
form � is given, and that f1, . . . , fm are polynomials of degrees bounded
by d encoded by slp’s of length L.

Then there is a deterministic algorithm which computes (a slp for) the
Chow form ChV within complexity (ndD)O(1)L.

Idea of the proof.–
The computation of the Chow form relies on a way of writing it as a

quotient of products of Chow forms of zero-dimensional varieties with
respect to different base fields [37] Prop. 2.5:

ChV (U0, . . . , Ur) =
∏r

i=0 ChZi
(Ui)∏r

i=1 ChZi
(ei)

, (5.4)

where Z0, . . . , Zr denote the zero-dimensional varieties of degree D

defined as

Z0 := Z = V (y1, . . . , yr, f1, . . . , fm) ⊂ A
n(k)

Z1 := V (L(U0, (y, x)), y2, . . . , yr, f1, . . . , fm) ⊂ A
n(k(U0))

...

Zr := V (L(U0, (y, x)), . . . , L(Ur−1, (y, x)), f1, . . . , fm)

⊂ A
n(k(U0, . . . , Ur−1))

and ChZi
(ei) consists on specializing the group of variables Ui on the

(i + 1)-vector of the canonical basis of kn+1 (which corresponds to the
hyperplane yi).

Now fix 0 ≤ i ≤ r. Remember that as Zi is zero-dimensional, ChZi
=∏

ξU∈Zi
L(Ui, ξU ).
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It can be shown that for each (0, ξ0) ∈ Z, Proposition 5.4 centered
at (e1, . . . , ei) holds and gives back from ξ0 (an approximation of) the
unique ξU ∈ k[[U0 − e1, . . . , Ui−1 − ei]]m such that

ξU ∈ Zi and ξU (e1, . . . , ei) = ξ0.

Then we proceed like in §5.5.2 (Idea of the algorithm) to recover ChZi

which is the determinant of the diagonal matrix DiagξU∈Zi

(
L(Ui, ξU )

)
from the companion matrix Cq of q which is similar to Diagξ0∈Z

(
�(ξ0)

)
.

A final comment concerning the algorithm: in order to avoid divi-
sions in the computation of the polynomial ChV , we need to invert the
denominator in the right hand side of Identity 5.4 and replace it by
a formal power series. However as it is not directly invertible we need
to compute its order and its graded component of lowest degree. This
information also decides up to which order the approximations of the
numerator and the denominator have to be computed. This is done in
[37] Lem. 2.10.

Similar lifting ideas seemed to lead to a simpler algorithm to compute
the Chow form of the variety: the Chow form can be written as the nu-
merator of the independent term of a certain characteristic polynomial,
which can be approximated from a good fiber using Newton method.
However it is important to observe that up to now an algorithm that
approximates the power series corresponding to a quotient does not yield
an approximation of the numerator. That is the reason why the product
formula above is so useful.

5.6 Arbitrary varieties

In this section V ⊂ A
n is an arbitrary variety. Thus V can be decom-

posed in the following manner:

V = V0 ∪ · · · ∪ Vn

where for 0 ≤ r ≤ n, Vr is either empty or an equidimensional variety
of dimension r. The degree D of V is defined, following [31], as the
sum of the degrees of its irreducible, or equivalently equidimensional,
components.

We suppose that V is described as the zero set of f1, . . . , fs ∈ k[x1, . . . ,

xn] of degrees bounded by d and described by slp’s of size bounded by
L. In this section we deal with the question of producing an algorithm
which determines (slp’s for) the equidimensional components of V . These
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can be described by means of equations, or of geometric resolutions, or
by their Chow forms.

Set descriptions of the equidimensional components can be found for
instance in [14, 22] where the algorithms are for dense input representa-
tion and deterministic, with complexity of order (sdn

2
)O(1), or in [38, 39]

for a probabilistic algorithm for slp input representation of complex-
ity (sdn)O(1)L. Geometric resolution algorithms and similar ones are
given in [17] for the classic point of view and in [50, 51] for evaluation
methods.

The evaluation methods algorithms have all more or less the same
recursive structure, as in the zero-dimensional case. First they need a
preparation of the input as described in §5.2.5 or similar in order to pro-
duce a good linear algebra underlying structure. Then the algorithms
adds one equation at the time, computing at each level in the same
manner equations for what they want modulo some extraneous factors
(a consequence of the input preparation) that need to be cleaned at
some point. Here we describe roughly the algorithm of [37] which com-
putes probabilistically (a slp for) a Chow form of each equidimensional
component of V .

Idea of the algorithm
The algorithm relies on three major ingredients:

• Ingredient 1: the generalization of Proposition 5.5 presented in [37]
Main Lemma 2.3, where instead of being given a reduced regular se-
quence f1, . . . , fm we assume the weaker condition that f1, . . . , fm ∈
I(V ) and that for every ξ0 ∈ Z, the localized ideals I(V )ξ0 and
(f1, . . . , fm)ξ0 coincide.

• Ingredient 2: a bounded probability algorithm which given a Chow
form of V and a polynomial f which is not a zero-divisor modulo
I(V ) returns a Chow form of V ∩ V (f) [37] Lem. 3.8.

• Ingredient 3: a bounded probability algorithm which given a Chow
form of an equidimensional variety with some components contained
in a given hypersurface returns separated Chow forms for both parts
[37] Lem. 3.9.

Let V = V0 ∪· · ·∪Vn be the variety defined by the input polynomials.
If V �= A

n, the input preparation (§5.2.5) enables us to assume that

V (f1) = Vn−1 ∪ V ′
n−1, V (f1, f2) = (Vn−2 ∪ Vn−1) ∪ V ′

n−2

where the varieties V ′
n−1, V

′
n−2 are equidimensional varieties of
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codimension 1 and 2 respectively containing all other components of
V , and that f1 satisfies the hypothesis of Ingredient 1 for V ′

n−1. Also
V ′
n−1 ∩ V (f2) = (Vn−2 ∪ Ṽn−2) ∪ V ′

n−2 where Ṽn−2 is the remaining
equidimensional part of codimension 2 included in Vn−1.

The input of the first step is ChV (f1) = ChVn−1∪V ′
n−1

from which we
compute ChVn−1 and ChV ′

n−1
by Ingredient 3 since Vn−1 ⊂ V (f2) and no

component of V ′
n−1 does.

The latter should be the input of next step: from the Chow form of
V ′
n−1 one can compute, by Ingredient 2, the Chow form of V ′

n−1∩V (f2) =
(Vn−2 ∪ Ṽn−2) ∪ V ′

n−2 and then apply again Ingredient 3 to separate
the Chow form of Vn−2 ∪ Ṽn−2 from that of V ′

n−2 (the Chow form of
Vn−2 ∪ Ṽn−2 will be broken up in its two parts at the end by another
application of Ingredient 3). However the complexity considerations in-
troduced after Theorem 5.5 prevent that since the complexity would
explode due to the recursion.

What we do is to compress the information of V ′
n−1: from its Chow

form we obtain probabilistically a geometric resolution of the zero-di-
mensional variety Zn−1 = V ′

n−1∩V (x1, . . . , xn−1) associated to a certain
linear form, and these arrays of coefficients will be the input of next step
together with f1.

The second step begins computing again ChV ′
n−1

from the geometric
resolution of Zn−1 and f1 by application of Ingredient 1. Then it follows
as explained in the previous paragraph computing the Chow forms of
Vn−2∪ Ṽn−2 and of V ′

n−2, and again keep aside the former and compress
the information of the latter replacing it by a geometric resolution of
Zn−2 = V ′

n−2 ∩ V (x1, . . . , xn−2).
All steps follow now the same pattern. At the end of this part of the

algorithm one obtains a list of Chow forms of Vn−1, Vn−2∪Ṽn−2, . . . , V0∪
Ṽ0 where Ṽr is either empty or an equidimensional variety of dimension
r included in Vr+1 ∪ · · · ∪ Vn−1 while no irreducible component of Vr is.
The algorithm concludes extracting from these Chow forms the Chow
forms of Vn−2, . . . , V0 by application of Ingredient 3.

The final result is in a simplified form:

Theorem 5.6 ([37] Th. 1) Let f1, . . . , fs ∈ k[x1, . . . , xn] be polynomi-
als of degree bounded by d encoded by straight-line programs of length
bounded by L. Set V := V (f1, . . . , fs) ⊂ A

n and let V = V0 ∪ · · · ∪ Vn be
its minimal equidimensional decomposition. Set δ for a geometric degree
of the input polynomial system.
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Then there is a bounded probability algorithm which computes (slp’s
for) Chow forms of V0, . . . , Vn within (expected) complexity s(nd δ)O(1)L.
Its worst case complexity is s(ndn)O(1)L.

An analogous result for the description of the equidimensional com-
ponents of V by means of geometric resolutions is obtained in [50].

5.7 Applications

5.7.1 The computation of the sparse resultant

We take this application concerning the computation of a class of sparse
resultants from [37].

The classical resultant Resn,d of a system of n+1 generic homogeneous
polynomials f0, . . . , fn of degree d in n+1 variables is a polynomial in the
indeterminate coefficients Ui = (Uiα, α), 0 ≤ i ≤ n, of the polynomials
fi, that characterizes for which coefficients the system has a non-trivial
solution. This polynomial is homogeneous of degree dn in each set of
indeterminate coefficients (Ui). Clearly the number of variables and the
degree bound prevent to write (the dense encoding of) this polynomial,
unless very specific cases like the resultant of two homogeneous polyno-
mials in two variables. However a direct application of the computation
of the Chow form, more precisely of Proposition 5.5 above, shows that
a straight-line program for Resn,d can be deterministically computed
within complexity (ndn)O(1). This can be extended to compute some
classes of sparse resultants.

The sparse resultant is the basic object in sparse elimination theory
and has extensively been used as a tool for the resolution of polynomial
equation systems (see for instance [65], [57], [18]). Several effective proce-
dures were proposed to compute it (see e.g. [65], [10], [11]). Recently, C.
D’Andrea has obtained an explicit determinantal formula which extends
Macaulay’s formula to the sparse case ([16]).

From the algorithmic point of view, the main assumption of sparse
elimination theory is that computations should be substantially faster
when the input polynomials are sparse (in the sense that their New-
ton polytopes are restricted). Basically, the parameters which control
the sparsity are the number of variables n and the normalized volume
Vol(A) of the convex hull of the set A of exponents (that is n! times
its volume with respect to the Euclidean volume form of R

n). None
of the previous algorithms computing sparse resultants is completely
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satisfactory, as their predicted complexity is exponential in all or some
of these parameters (see [11] Cor. 12.8).

The precise definition of the (unmixed) sparse resultant is as follows:
Let A = {α0, . . . , αN} ⊂ Z

n be a finite set of integer vectors. We
assume here that Z

n is generated by the differences of elements in A.
For i = 0, . . . , n, let Ui be a group of variables indexed by the elements
of A, and set

fi :=
∑
α∈A

Uiα xα ∈ k[Ui][x±1
1 , . . . , x±1

n ]

for the generic Laurent polynomial with support equal to A. Let WA ⊂
(PN )n+1 × (k

∗
)n be the incidence variety of f0, . . . , fn in (k

∗
)n, that is

WA = {(ν0, . . . , νn; ξ); Fi(νi, ξ) = 0 ∀ 0 ≤ i ≤ n},

and let π : (PN )n+1×(k
∗
)n → (PN )n+1 be the canonical projection. The

variety π(WA) happens to be an irreducible variety of codimension 1 (see
[21] Ch. 8, Prop.-Defn. 1.1), and the sparse A-resultant ResA is defined
as the unique — up to a sign — irreducible polynomial in Z[U0, . . . , Un]
which defines it. It is a multihomogeneous polynomial of degree Vol(A)
in each group of variables Ui.

As this resultant coincides with the Chow form of the toric variety
associated to the input set A, the result one can obtain is the following:

Proposition 5.6 ([37] Cor. 4.2) Let A ⊂ (N0)n be a finite set which
contains {0, e1, . . . , en}. Then there is a bounded probability algorithm
which computes (a slp for) a scalar multiple of the A-resultant ResA
within (expected) complexity (nVol(A))O(1). Its worst case complexity is
(ndn)O(1), where d := max{|α| ; α ∈ A}.

In fact, this expected polynomial behavior of the complexity is out of
reach of the known and usual matrix formulations, as in all of them the
involved matrices have an exponential size.

As an example, the A-resultant ResA for

A := A(n, d)
= {0, e1, . . . , en, e1 + · · · + en, 2e1 + · · · + 2en, . . . , de1 + · · · + den}

can be computed within expected complexity (nd)O(1) since Vol(A) =
nd.

It would be desirable to extend this result in order to compute general
mixed resultants.



132 T. Krick

5.7.2 The computation of the ideal of a variety

We take this application from [4]. It is a well-known fact that unless for
very particular situations there is not yet a good complexity algorithm
to compute generators for the ideal of a variety from a set description
of the variety. Most of the known algorithms rely on Gröbner bases
computations, whose worst-case complexity is doubly exponential in the
number of variables or at least in the dimension of the variety. The result
here is the following:

Theorem 5.7 ([4] Th. 17) Let f1, . . . , fs ∈ k[x1, . . . , xn] be polynomials
of degree bounded by d which define a smooth irreducible variety V ⊂ A

n

of dimension r.
Then there is a bounded probability algorithm which computes (slp’s

for) a set of (n − r)(r + 1) generators for I(V ), of degree bounded by
deg V and within complexity s(ndn)O(1).

To give a rough idea of the algorithm we recall the notion of character-
istic polynomial of an equidimensional, in our case moreover irreducible,
variety V ⊂ A

n of dimension r and degree D:
Let as usual U0, . . . , Ur be r + 1 groups of n + 1 variables Ui :=

(Uij)0≤j≤n, and L(Ui, x) := Ui0+Ui1x1+· · ·+Uinxn. Also let (t0, . . . , tr)
be a group of r + 1 single variables. A characteristic polynomial PV ∈
k[U0, . . . , Ur][t0, . . . , tr] of V is defined as any defining equation of the
Zariski closure of the image of the map

ϕV : A
(r+1)(n+1) × V → A

(r+1)(n+1) × A
r+1,

(u0, . . . , ur; ξ) �→ (u0, . . . , ur; L(u0, ξ), . . . , L(ur, ξ))

which is a hypersurface. This is a multihomogeneous polynomial of de-
gree D in each group of variables Ui ∪ {ti}. Its degree in the group of
variables (t0, . . . , tr) is also bounded by D.

By a result of [13], the ideal I(V ) of the smooth irreducible variety V

is generated by the set of polynomials (of degree D) PV (u, L(u1, x), . . . ,
L(ur, x)) for u := (u0, . . . , ur) ∈ A

(r+1)(n+1). Moreover as I(V ) is locally
a complete intersection (generated thus by n− r polynomials), one can
show that I(V ) can globally be generated by (n − r)(r + 1) of these
polynomials.

The algorithmic aspects of this construction rely on the fact that the
characteristic polynomial can be derived from the Chow form by a simple
composition of variables ([46] Lem. 2.13), and on a careful choice of
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the localizations in order to recover a global description with bounded
probability.
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[47] Krick, T., Sabia, J. and Solernó, P. (1997). On intrinsic bounds in the
Nullstellensatz, AAECC J. 8, 125–134.

[48] Kunz, E. (1986). Kähler differentials, Adv. Lect. in Math. (Vieweg–
Verlag).

[49] Lecerf, G. (2000). Kronecker 0.16beta-2, April 2000, http://
kronecker.medicis.polytechnique.fr/.



136 T. Krick

[50] Lecerf, G. (2000). Computing an equidimensional decomposition of an
algebraic variety by means of geometric resolutions, Proc. ISSAC’2000
(ACM).

[51] Lecerf, G. (2001). Une alternative aux méthodes de réécriture pour la
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Abstract

This paper deals with the numerical solution of large scale polynomial
or rational eigenvalue problems with Hamiltonian or symplectic sym-
metry in the spectrum. Applications where such problems arise are in-
troduced briefly. It is shown how these problems may be formulated as
linear generalized eigenvalue problems that have either symmetric/skew
symmetric, skew Hamiltonian/Hamiltonian or symplectic pencils. The
presented numerical methods are designed to preserve these structures.

6.1 Introduction

In this paper we discuss numerical methods for the solution of large scale
nonlinear eigenvalue problems

P (λ)v =

(
k∑

i=0

λi−lMi

)
v = 0, (6.1)

0 The first author was supported by Deutsche Forschungsgemeinschaft within
Project: AP 72/1-1. The second author was supported by Deutsche Forschungs-
gemeinschaft within Project: ME 790/14-1 and through DFG Research Center
FZT86, ‘Mathematics for key technologies’ in Berlin.
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where l is some integer. Here, the coefficients Mi are real or complex
matrices, and if l = 0 we have a polynomial eigenvalue problem, while if
l > 0 then we have a rational eigenvalue problem. Eigenvalue problems
of this form arise in a number of applications. We will present examples
in §6.2. Typically one is interested in a small number of eigenvalues and
associated eigenvectors. Polynomial eigenvalue problems (in particular
quadratic problems) have recently received a lot of interest in the nu-
merical analysis community, see for example the recent survey [30]. In
this paper we are, in particular, interested in two special classes of such
eigenvalue problems.

The first class consists of those polynomials, where the coefficient ma-
trices are real or complex and form alternating sequences of real sym-
metric and real skew-symmetric matrices, or complex symmetric and
skew-symmetric matrices, i.e., MT

i = (−1)iMi or MT
i = (−1)i+1Mi for

i = 0, . . . , k. The matrices in this class have a nice symmetry in the
spectrum.

Proposition 6.1 ([26]) Consider the polynomial eigenvalue problem
(6.1) with alternating (real or complex) coefficients, i.e., either MT

i =
(−1)iMi or MT

i = (−1)i+1Mi for i = 0, . . . , k. Then P (λ)v = 0 if and
only if vTP (−λ) = 0.

This means that v is a right eigenvector of P associated with eigenvalue λ
if and only if vT is a left eigenvector of P associated with eigenvalue −λ.
This symmetry in the spectrum is called a Hamiltonian eigensymmetry,
i.e., the spectrum consists of quadruplets (λ,−λ, λ̄,−λ̄) in the real case
or pairs (λ,−λ) in the complex case if the eigenvalues are not purely
imaginary.

The second class of problems consists of rational eigenvalue problems
with symmetrically placed coefficients of the form

P1(κ)v =

M0 +
k∑

j=1

(
1
κj

Mj + κjMT
j

) v = 0 (6.2)

where the coefficients are again real or complex matrices with M0 = MT
0 .

The following simple result is the analogue of Proposition 6.1.

Proposition 6.2 Consider an eigenvalue problem P1(κ)v = 0 of the
form (6.2). Then P1(κ)v = 0 if and only if vTP1( 1

κ) = 0.

Proof The result follows by setting λ = κ−1 and transposing.
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We have that v is a right eigenvector of P1 associated with eigenvalue
κ if and only if vT is a left eigenvector of P1 associated with eigenvalue
1
κ
. This symmetry in the spectrum is called a symplectic eigensymmetry,

i.e., the spectrum consists of quadruplets (κ, κ−1, κ̄, κ̄−1) in the real case
or pairs (κ, κ−1) in the complex case if κ is not on the unit circle.

For the described classes of eigenvalue problems the following impor-
tant questions are of interest and only partially solved as of today.

• How can we design efficient numerical methods to compute several
eigenvalues and associated eigenvectors (possibly from the interior of
the spectrum)?

• How can we make maximal use of the symmetry structure of the co-
efficients and the symmetry of the spectrum?

In the next section we briefly describe some applications that lead to
eigenvalue problems of the described structures and discuss these struc-
tures. Unfortunately there are essentially no viable numerical methods
available, that work directly on the data of polynomial or rational eigen-
value problems to compute the desired part of the spectrum. In §6.3 we
therefore discuss the classical concept of linearization, i.e. of transform-
ing the high degree polynomial or rational problem into a linear eigen-
value problem of higher dimension. Since our problems have a specific
structure, it would be ideal if we had linearizations with analogous struc-
ture. We show how to obtain linear eigenvalue problems with the same
structures and eigensymmetries. Then in §6.4 we present numerical algo-
rithms that exploit these structures, and that guarantee that the symme-
try in the spectrum is also preserved even in finite precision arithmetic.

6.2 Applications

In order to demonstrate the importance of eigenvalue problems with
Hamiltonian or symplectic spectra we will present in this section several
applications, where such problems arise. We begin with two Hamiltonian
examples.

Example 6.1 The study of corner singularities in anisotropic elastic
materials [1, 2, 16, 19, 25, 27] leads to real quadratic eigenvalue problems
of the form

λ2M(p)v + λG(p)v + K(p)v = 0,

M = MT , G = −GT , K = KT
(6.3)
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The coefficient matrices are large and sparse, having been produced by
a finite element discretization. M is a positive definite mass matrix, and
−K is a stiffness matrix. Typically the coefficients depend on a set of
material or geometry parameters p which are varied.

Example 6.2 ([26]) The optimality conditions for the optimal control
problem to minimize the cost functional

t1∫
t0

k∑
i=0

(q(i))TQiq
(i) + uTRudt

with Qi = QT
i , i = 0, . . . , k, positive semidefinite and R = RT positive

definite, subject to the control system
k∑

i=0

Miq
(i) = Bu(t), (6.4)

with control input u(t) and initial conditions

q(i)(t0) = qi,0, i = 0, 1, . . . , k − 1, (6.5)

lead to the polynomial two-point boundary value problem
k−1∑
j=1

[
(−1)j−1Qj MT

2j

M2j 0

] [
q(2j)

µ(2j)

]
+

k−1∑
j=1

[
0 −MT

2j+1

M2j+1 0

][
q(2j+1)

µ(2j+1)

]
+

[
−Q0 MT

0

M0 −BR−1BT

] [
q

µ

]
= 0,

(6.6)

with initial conditions (6.5) and µ(i)(t1) = 0 for i = 0, . . . k− 1. Here we
have (for simpler notation) introduced the virtual coefficients Mk+1 =
Mk+2 = . . . = M2k = 0. We observe that all coefficients of derivatives
higher than k are singular. If the weighting matrices Qi are chosen to
be zero for all i ≥ k/2, then we have that all coefficients of derivatives
higher than k vanish and (after possibly multiplying the second block row
by −1) we obtain an alternating sequence of real symmetric and skew-
symmetric coefficient matrices. The solution of this polynomial boundary
value problem can then be obtained via the solution of the corresponding
polynomial eigenvalue problem.

As a special case we may study the optimal control of linear me-
chanical systems, e.g. in robotics, which are governed by a second order
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differential equation of the form

Mq̈ + Dq̇ + Kq = Bu,

where x and u are vectors of state and control variables, respectively.
The task of computing the optimal control u that minimizes the cost
functional

t1∫
t0

qTQ0q + q̇TQ1q̇ + uTRudt

leads to the system[
Q1 MT

M 0

] [
q̈

µ̈

]
+

[
0 −DT

D 0

] [
q̇

µ̇

]
+

[
−Q0 KT

K −BR−1BT

] [
q

µ

]
= 0,

which is a special case of (6.6). The substitution[
q

µ

]
= eλt

[
v

w

]
then yields the quadratic eigenvalue problem(

λ2

[
Q1 MT

M 0

]
+ λ

[
0 −DT

D 0

]
+

[
−Q0 KT

K −BR−1BT

]) [
v

w

]
= 0.

(6.7)

Other applications with similar structures arise for example in the
analysis of gyroscopic systems [13, 17] or the control of semidiscretized
(in space) parabolic partial differential equations [14, 13].

Our third example discusses an application that leads to an eigenvalue
problem with symplectic eigensymmetry.

Example 6.3 In [15] the vibration of rails under the excitation arising
from fast trains is studied. Partitioning the rail into a finite number
of pieces between two crossties, see Fig. 6.1, and using classical finite
element discretization leads under the assumption of an infinite rail to
an infinite second order system of differential equations of the form

Mẍ + Dẋ + Kx = F, (6.8)
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Fig. 6.1. Finite element model of rail

with infinite block tridiagonal coefficient matrices M,D,K, where

M =



. . . . . . 0 . . . 0

. . . Mj−1,0 Mj,1 0 . . .

0 MT
j,1 Mj,0 Mj+1,1 0

...
. . . MT

j+1,1 Mj+1,0 Mj+2,1

0 . . . 0
. . . . . .


,

x =



...
xj−1

xj

xj+1

...

 , F =



...
Fj−1

Fj

Fj+1

...

 .

The matrices D,K have the same structure with blocks Dj,0, Dj,1 and
Kj,0,Kj,1, respectively. Here Mj,0 is symmetric positive definite and
Dj,0,Kj,0 are positive semidefinite. There are several ways to approach
the solution of this problem, which presents a mixture between a differ-
ential equation (time derivatives of x) and a difference equation (space
differences in j).



6. Numerical Solution of Structured Problems 143

Since one is interested in studying the behaviour of the system under
excitation, the ansatz Fj = F̂je

iωt, xj = x̂je
iωt, where ω is the excitation

frequency, leads to a second order difference equation with variable co-
efficients. The discretized system for the x̂j is given by

AT
j,j+1x̂j−1 + Aj,j x̂j + Aj,j+1x̂j+1 = F̂j (6.9)

with the coefficient matrices

Aj,j+1 = −ω2Mj,1 + iωDj,1 + Kj,1, Aj,j = −ω2Mj,0 + iωDj,0 + Kj,0.

Observing that the system matrices vary periodically due to the identical
form of the track between two crossties we may combine the (say l = 5)
parts belonging to the rail in this space interval (see Fig. 6.1) into one
vector

yj =


x̂j

x̂j+1

...
x̂j+l


and thus obtain a constant coefficient second order difference equation

AT
1 yj−1 + A0yj + A1yj+1 = Gj (6.10)

with the coefficient matrices

A0 =


Aj,j Aj,j+1

AT
j+1,j+2 Aj+1,j+1 Aj+1,j+2

. . . . . . . . .
AT

j+l−1,j+l Aj+l−1,j+l−1 Aj+l−1,j+l

AT
j+l,j+l+1 Aj+l,j+l

 ,

A1 =



0 0 . . . . . . 0

0
. . . . . .
. . . . . . . . .

0 0 . . . . . . 0
Aj+l,j+l+1 0 . . . . . . 0

 .

For this system we make the ansatz yj+1 = κyj , which leads to the
rational eigenvalue problem(

1
κ
AT

1 + A0 + κA1

)
y = 0.
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Note that, since in general A1 is singular, this is necessarily a second
order discrete time descriptor system.

We have seen in this section that several applications lead to polyno-
mial or rational eigenvalue problems with particular symmetry struc-
tures. In the interest of efficiency and stability, any good numerical
method for solving problems of this type should preserve and exploit
these structures.

6.3 Linearization

The classical approach to solving a k-th degree polynomial eigenvalue
problem of dimension m is to linearize it, [12], i.e. to transform it to
an equivalent first-degree equation Ax − λBx = 0 of dimension km.
There are many different such linearizations with very different numer-
ical properties, see [26, 29]. Since the problems that we have presented
in §6.2 have a specific symmetry structure we will demonstrate now how
we can preserve this structure in the linearization. For problems with
alternating coefficients the following result has been shown in [26].

Theorem 6.1 Consider the polynomial eigenvalue problem P (λ)v = 0
given by (6.1) with either MT

i = (−1)iMi or MT
i = (−1)i+1Mi and with

Mk nonsingular. Then the pencil A− λB ∈ C
mk,mk, where

A =



−M0 0 0 0 · · · 0
0 −M2 −M3 −M4 · · · −Mk

0 M3 M4 0
0 −M4 0
...

...
...

0 ±Mk 0 0 · · · 0


(6.11)

and

B =



M1 M2 M3 · · · Mk−1 Mk

−M2 −M3 −M4 · · · −Mk 0
M3 M4 0 0

−M4 0 0
...

...
...

±Mk 0 0 · · · 0 0


, (6.12)

has the same eigenvalues as P . Here ±Mk is shorthand for (−1)k−1Mk.
If MT

i = (−1)iMi, then A is symmetric and B is skew symmetric. If
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MT
i = (−1)i+1Mi, then B is symmetric and A is skew symmetric. If

P (λ)v = 0, then
[
vT λvT · · · λk−1vT

]T
is an eigenvector of A− λB.

It is obvious that the pencil A − λB specified by (6.11) and (6.12)
is a linear eigenvalue problem, with alternating coefficients and thus by
Proposition 6.1 we again have the Hamiltonian symmetry of the spec-
trum. If the dimension of A − λB is even then multiplying by J , we
obtain a skew Hamiltonian/Hamiltonian pencil

λH1 −H2 (6.13)

with (JH1)T = −JH1 skew Hamiltonian and (JH2)T = JH2 Hamilto-
nian.

Example 6.4 If we apply Theorem 6.1 to the quadratic eigenvalue
problem (6.3), we obtain the symmetric/skew-symmetric pencil[

−K 0
0 −M

]
− λ

[
G M

−M 0

]
.

If we then multiply by −J , we obtain the skew Hamiltonian/Hamiltonian
pencil [

0 M

−K 0

]
− λ

[
M 0
G M

]
.

This is essentially the linearization that was used in [25].

To get a similar linearization in the symplectic case (6.2) is more
difficult. First of all we have to discuss what is the analgoue to skew
Hamiltonian/Hamiltonian pencils as in (6.13). Note that the discrete
time analogue to Hamiltonian matrices are the symplectic matrices S,
which satisfy STJS = J . See [22, 23, 24] for an analysis of the anal-
ogy. When it comes to pencils there are two well studied generaliza-
tions of Hamiltonian matrices, the Hamiltonian pencils λH1 −H2 such
that HT

1 JH2 = HT
2 JH1 and the skew Hamiltonian/Hamiltonian pencils

(6.13).
The analogue to the Hamiltonian pencils are the symplectic pencils

λS1 − S2 such that ST
1 JS1 = ST

2 JS1 which are obtained from a Cayley
transformation of Hamiltonian pencils [23, 24].

To see what is the analogue to skew Hamiltonian/Hamiltonian pencils,
we perform a Cayley transformation λ = κ−1

κ+1 with a skew Hamiltonian/
Hamiltonian pencil λH1 −H2. Reordering the pencil we obtain a pencil
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κ(H1 −H2) − (H1 + H2) =: κW1 −W2 with the property that

W2 = JWT
1 JT , (6.14)

i.e. we have a pencil of the form

κS − JSTJT .

We call such pencils proper symplectic pencils.
For problems of the form (6.2) it is much more difficult to a obtain

appropriate linearizations. For the second order case of Example 6.3, i.e.,

(κ−1AT
1 + A0 + κA1)y = 0. (6.15)

we may set κz = AT
1 y and obtain the linear problem

(κS1 + S2)
[
y

z

]
:= (κ

[
A1 0
0 I

]
+

[
A0 I

−AT
1 0

]
)
[
y

z

]
= 0. (6.16)

We immediately obtain that this linearization preserves the symplec-
ticity of the spectrum.

Proposition 6.3 The pencil κS1+S2 from (6.16) is a symplectic pencil,
i.e. S1JS

T
1 = S2JS

T
2 . The pencil κS1+S2 is regular, i.e., its determinant

does not vanish identically, if and only if the rational pencil κ−1AT
1 +

A0 + κA1 is regular.

Proof The proof of symplecticity follows by direct calculation. For the
regularity observe that if the dimension of A0 is n, then

det(κS1 + S2) = κndet(κ−1AT
1 + A0 + κA1).

Note that it is not needed that the matrix A1 is invertible to obtain
a symplectic pencil, i.e. this linearization applies to Example 6.3. If,
however, S1 is invertible then clearly S−1

1 S2 is a symplectic matrix. If
A1 is singular with rank defect n − r then the pencil (6.16) has n − r

eigenvalues at 0 and n − r eigenvalues at ∞ and hence the pairing is
preserved. For more details on symplectic pencils see [11, 23].

To obtain a proper symplectic linearization we make use of the fact
that a block partitioning of (6.14) gives a pencil of the form

κ

[
A1,1 A1,2

A2,1 A2,2

]
−

[
AT

1,1 −AT
1,2

−AT
2,1 AT

1,1

]
. (6.17)
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We can easily obtain such a linearization for (6.15) as

κ

[
A1 A1

−A1 AT
1 −A0

]
−

[
A1 −A0 −AT

1

AT
1 AT

1

]
. (6.18)

This is easily seen by a multiplication of (6.17) by
[
κx

x

]
and setting this

to be zero, yields the pencils

(κ2A1,1 + κ(A1,2 −AT
2,2) + AT

1,2)x = 0

(κ2(−A2,1) + κ(−A2,2 −AT
2,1) + AT

1,1)x = 0

which yields two copies of (6.15) if we choose the blocks as in (6.18).
It is much more difficult to obtain a linearization which is a symplectic

pencil or a proper symplectic pencil for higher order rational problems
of the form (6.2).

6.4 Numerical methods to preserve the structures

Motivated by the fact that a numerical method to solve the eigenvalue
problem should preserve existing structures as much as possible, we have
shown in the previous section how to transform polynomial or rational
eigenvalue problems to linear generalized eigenvalue problems with the
same structure.

To these problems we may then apply structure preserving meth-
ods. The development of such methods for problems with Hamiltonian
or symplectic eigensymmetry has been an important research topic for
many years, see [11, 23] and even though much progress has been made
for problems with Hamiltonian eigensymmetry, see [4, 8, 9] for small
scale methods and [1, 5, 7, 6, 25, 26, 32] for large scale problems, com-
pletely satisfactory methods, i.e. methods which are backward stable
and completely structure preserving, are not yet available. This holds
for both the Hamiltonian and symplectic cases.

Recently several structure-preserving Krylov subspace methods have
been developed [1, 5, 6, 25, 26, 32]. Each of these requires that the
Hamiltonian or symplectic pencil be reduced further to a Hamiltonian
or symplectic matrix. This can be done efficiently in many cases. For
example, consider the skew-symmetric/symmetric pencil in Example 6.4.
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Since [
G M

−M 0

]
=

[
I 0
0 M

] [
I − 1

2G

0 I

] [
0 I

−I 0

] [
I 0

1
2G I

] [
I 0
0 M

]
,

that pencil is equivalent to the Hamiltonian matrix

H = J

[
I 1

2G

0 I

] [
K 0
0 M−1

] [
I 0

−1
2
G I

]
,

as is shown in [25]. There is no need to assemble the matrix H, nor is
there any need to compute M−1 explicitly. We just need to compute and
use the Cholesky decomposition of M . Notice also that

H−1 =
[

I 0
1
2G 0

] [
K−1 0

0 M

] [
I − 1

2
G

0 I

]
JT ,

so H−1, which is also Hamiltonian, is no less accessible than H itself.
This is important; if one wants the eigenvalues of H that are closest to
the origin, one had better work with H−1.

Often we prefer to shift before we invert. If we know that the eigen-
values of interest lie near τ , we might prefer to work with (H − τI)−1.
However, the shift destroys the Hamiltonian structure, so we need ways
to effect shifts while preserving the structure. One simple remedy is to
work with the matrix

(H − τI)−1(H + τI)−1,

which is not Hamiltonian but skew Hamiltonian. If τ is neither real nor
purely imaginary, we prefer to work with the skew-Hamiltonian

(H − τI)−1(H − τI)−1(H + τI)−1(H + τI)−1,

in order to stay within the real number system.
If we wish to use a shift and keep the Hamiltonian structure, we can

work with the Hamiltonian matrix

H−1(H − τI)−1(H + τI)−1

or

H(H − τI)−1(H + τI)−1,

for example.
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Another possibility is to work with the Cayley transform

(H − τI)−1(H + τI), (6.19)

which is symplectic. Of course, the Cayley transform can also be
used to transform a symplectic problem to one that is Hamiltonian.
Structure-preserving Krylov subspace methods exist for each of these
structures.

In practice a Krylov subspace method is never run to completion, but
if it were, it would effect a similarity transformation that transforms the
operator to a condensed form such as upper Hessenberg or tridiagonal.
The transforming matrix is the matrix whose columns are the vectors
that were generated by the process. Since in actuality a Krylov subspace
method is not run to completion, it only effects a partial similarity trans-
form.

Whether A is Hamiltonian, skew Hamiltonian, or symplectic, the struc-
ture is preserved under a symplectic similarity transformation. That is,
if S is symplectic, then S−1AS is Hamiltonian as A is, and so on. If we
write S = [S1 S2 ], where S1 and S2 are both 2n × n, then the sym-
plectic property STJS = J implies that ST

1 JS1 = 0, ST
2 JS2 = 0, and

ST
1 JS2 = I. Recall that a subspace of R

n is called isotropic if xTJy = 0
for all x and y in the subspace. The condition ST

i JSi = 0 implies that
the space spanned by the columns of Si is isotropic, and so are all of its
subspaces.

A Krylov subspace method will preserve Hamiltonian, skew-
Hamiltonian, or symplectic structure if it generates a symplectic sim-
ilarity transformation when run to completion. To achieve this it must
generate vectors that span isotropic subspaces.

The skew-Hamiltonian form is easiest to preserve, since Krylov sub-
spaces generated by skew-Hamiltonian operators are automatically
isotropic [25]. Consequently the standard Arnoldi and unsymmetric
Lanczos processes preserve the structure automatically in theory. In
practice the isotropy is steadily eroded by roundoff errors, so it must
be enforced by an additional orthogonalization step. In the context of
the Arnoldi process, this means that the vector qj+1 generated on step
j must be made orthogonal to Jq1, . . . , Jqj as well as q1, . . . , qj .

All of our algorithms employ short Arnoldi or Lanczos runs with re-
peated implicit restarts in the spirit of Sorensen’s implicitly restarted
Arnoldi (IRA) process [21, 28]. The skew-Hamiltonian implicitly-
restarted Arnoldi (SHIRA) algorithm [25] is a variant of IRA that in-
cludes the extra orthogonalization to enforce isotropy. SHIRA has been
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used in [1] for the efficient computation of corner singularities in three-
dimensional anisotropic elastic structures.

A skew-Hamiltonian implicitly-restarted Lanczos (SHIRL) process can
be built on the same principle. So far we have not pursued this possibility.

For the Hamiltonian case an essentially new algorithm was needed.
Benner and Faßbender [5] developed a Hamiltonian Lanczos process
with implicit restarts. This process has to preserve structure in both
phases. In the Lanczos phase it must build isotropic subspaces, and in
the restart phase it must preserve the isotropy. The latter is done by us-
ing the SR algorithm to effect the restarts, instead of the QR algorithm,
which is used in IRA and SHIRA. In the algorithm of [5] there are sev-
eral parameters that can be chosen freely, resulting in different variants
of the algorithm. One particularly simple parameter choice leads to a
simplified algorithm that uses the HR algorithm, which is much simpler
than the SR algorithm, to do the restarts. This Hamiltonian implicitly
restarted Lanczos (HIRL) process is outlined in [32]. HIRL has been ap-
plied successfully to the corner singularity problems of Example 6.1. It is
roughly as fast and accurate as SHIRA. Since it produces both left and
right eigenvectors, along with the eigenvalues, it is also able to compute
residuals, as well as condition numbers for the eigenvalues.

There have been analogous developments for the symplectic case.
Benner and Faßbender [6] developed a symplectic implicitly restarted
Lanczos process that uses the symplectic SR algorithm for the restarts.
Just as in the Hamiltonian case, it is possible to choose the parameters
so that the algorithm takes a simple form that allows for restarts by
the simpler HR algorithm. The resulting symplectic implicitly restarted
Lanczos (SIRL) algorithm is outlined in [32]. SIRL has been tested on
the singularity problems of Example 6.1, transformed to symplectic form
by a Cayley transform (6.19). The algorithm was as accurate as HIRL
and SHIRA but less efficient. The effectiveness of SIRL on symplectic
problems of the types outlined in Example 6.3 has not yet been tested.

6.5 Numerical example

For a numerical test of some of the methods mentioned we investigate
the following problem which originates from [3, 19]. Consider a specimen
in form of a brick with a crack as illustrated in Fig. 6.2. The (homoge-
neous) material has Poisson ratio ν = 0.32, the Young modulus does not
influence the result and can be set arbitrarily. The stress concentration
near the point O where the crack intersects the surface of the brick can
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ξ

O

Fig. 6.2. Illustration of the crack example

be investigated within the linear elasticity framework, as long as the
material is brittle, see e.g. [18, 19, 20]. The stress field is derived from
the displacement field which can be represented by a regular part and
several singular terms of the form krαu(ϕ, θ) where (r, ϕ, θ) are spherical
coordinates centered in the point of interest, k is called stress intensity
factor, and α is the characteristic (singular) exponent with the associ-
ated mode u. These terms are singular when Reα < 1 and Reα �= 0.

Mathematically, the pair (α, u) is eigenpair of a quadratic operator
pencil [16, 19]. Approximation by the finite element method leads to a
finite-dimensional problem, an eigenvalue problem for a quadratic matrix
pencil, see [2] for discretization error estimates. After substitution λ =
α+0.5 this problem has the more convenient form (6.3), see Example 6.1
in §6.2. Fig. 6.3 displays the real part of the (approximated) eigenvalues
from the strip 0 < Reα < 1 for the whole possible range of the angle
ξ between the crack and the surface. A crack in progress has curved
shape and the angle between the crack and the surface adjusts such
that the corresponding eigenvalue α has real part 0.5, in our case ξ ∈
{67◦, 101◦, 124◦} where the angles are rounded to integer values. Which
angle actually appears depends on the load applied. For the computation
of the 2 or 3 eigenvalues of interest we computed 9 eigenvalues. Note
that α = 0 (λ = 0.5) and α = 1 (λ = 1.5) are both triple eigenvalues
corresponding to rigid body motion and without theoretical interest. We
compare HIRL (with shift τ = 0.0) and SHIRA with shift values τ = 1.0
(useful shift in the middle of the strip of interest 0.5 < Reλ < 1.5) and
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Fig. 6.3. Real part of the interesting eigenvalues against the angle ξ between
the crack and the surface of the brick

τ = 0.0. As a benchmark we include also a simple method that does not
exploit the structure of the problem and that computes in general also
eigenvalues in the left half of the complex plane if not an appropriate
shift is applied; therefore we compute 18 eigenvalues in the case τ = 0.0.
For this test we chose ξ = 120◦ where the three eigenvalues of interest
are well separated. The total computing times with various discretization
parameters are displayed in Figure 6.4 where N is the size of the matrices
K, G, and M . Note that the times include the assembly of the matrices
which is independent of the solution methods used.

To evaluate the algorithms we give some implementational details.
The implementation of the SHIRA algorithm is based on the ARPACK
package [21]. Only a slight modification is made to enforce isotropy,
as discussed in §6.4. To apply the operator, we have to solve systems
with the sparse matrices. In the case of SHIRA this matrix is in general
(τ �= 0) non-symmetric and we use the LU-decomposition from version
2.0 of the package SuperLU [10]. In the case of HIRL we can use a
Cholesky decomposition. After some comparisons we decided to use the
TAUCS package for this [31]. The simple method mentioned above is
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Fig. 6.4. Computing time for the crack with ξ = 120◦ and various discretiza-
tion parameters

the application of ARPACK to the matrix (H − τI)−1 which has no
structure. Again, we used version 2.0 of the package SuperLU for the
factorization necessary. In all cases we used a stopping tolerance of 10−12

for the Krylov iteration. The tests were carried out on an Intel Pentium
4 CPU with 1.60 GHz, 1 GB main memory and 256 kB cache.

We conclude that SHIRA is a competitive algorithm to compute eigen-
values of quadratic skew-Hamiltonian/Hamiltonian pencils. HIRL in the
current implementation is much slower which can be traced back to a
much larger number of iterations in comparison with SHIRA that cannot
be explained satisfactorily at this time. We are still analyzing all kinds
of tolerances used in both the SHIRA and the HIRL packages. The sim-
ple method applied with the optimal shift is superior; the number of
solves is nearly equal to that of SHIRA with the same shift, but some
overhead, e.g. due to the additional reorthogonalization, does not oc-
cur. In extreme cases, however, we expect more stability with structure
preserving methods like SHIRA.

Note that the comparison of HIRL with the other methods is not quite
fair, since HIRL computes eigenvectors and both SHIRA and the simple
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method do not. If eigenvectors are desired these methods (in the current
implementation) apply one step of inverse iteration which needs another
LU factorization for each eigenvector.

A second strength of HIRL is that it computes both right and left
eigenvectors, and this allows the computation of a condition number for
each eigenvalue. Since we have eigenvectors to go with the eigenvalues,
we can also compute residuals. If the residual is tiny and the condition
number is good, the eigenvalue is guaranteed accurate.

6.6 Conclusion

We have discussed the numerical solution of large scale polynomial or
rational eigenvalue problems with a Hamiltonian or symplectic symme-
try in the spectrum. Several applications are presented that lead to such
structures. We discuss recent developments in numerical methods and
presented numerical examples.

Acknowledgments

The major work in coding the algorithms was done by Cornelia Pester,
TU Chemnitz, Germany. This help is gratefully acknowledged.

References

[1] Apel, T., Mehrmann, V. and Watkins, D. (2002). Structured eigenvalue
methods for the computation of corner singularities in 3D anisotropic
elastic structures, Comp. Meth. Appl. Mech. Eng. 191, 4459–4473.
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Lamé system, Rostocker Math. Kolloq. 51, 5–24.

[17] Lancaster, P. (1999). Strongly stable gyroscopic systems, Electr. J. Linear
Algebra 5, 53–66.

[18] Lawn, B. (1993). Fracture of Brittle Solids, Cambridge Solid State Science
Series (Cambridge University Press).

[19] Leguillon, D. (1993). Computation of 3d-singularities in elasticity,
Boundary value problems and integral equations in nonsmooth domains
(Costabel, M. et al., editor) Volume 167 of Lect. Notes Pure Appl. Math.
(New York, Marcel Dekker), 161–170. (Proceedings of the conference, held
at the CIRM, Luminy, France, May 3-7, 1993.)

[20] Leguillon, D. and Sanchez-Palencia, E. (1999). On 3d cracks inter-
secting a free surface in laminated composites, Int. J. Fracture 99,
25–40.

[21] Lehoucq, R.B., Sorensen, D.C. and Yang, C. (1998) ARPACK Users’
Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly
Restarted Arnoldi Methods (SIAM, Philadelphia).

[22] Mehl, C. (1998). Compatible Lie and Jordan algebras and applications to
structured matrices and pencils (PhD thesis, Fakultät für Mathematik,
TU Chemnitz, 09107 Chemnitz (FRG)).



156 T. Apel, V. Mehrmann, and D. Watkins

[23] Mehrmann, V. (1991). The Autonomous Linear Quadratic Control Prob-
lem, Theory and Numerical Solution, Lecture Notes in Control and
Information Sciences 163 (Springer-Verlag, Heidelberg, July 1991).

[24] Mehrmann, V. (1996). A step toward a unified treatment of continuous
and discrete time control problems, Linear Algebra Appl. 241–243, 749–
779.

[25] Mehrmann, V. and Watkins, D. (2001). Structure-preserving methods
for computing eigenpairs of large sparse skew-Hamiltoninan/Hamiltonian
pencils, SIAM J. Sci. Comput. 22, 1905–1925.

[26] Mehrmann, V. and Watkins, D. (2002). Polynomial eigenvalue problems
with Hamiltonian structure, Electr. Trans. Num. Anal. 13, 106–118.

[27] Schmitz, H., Volk, K. and Wendland, W.L. (1993). On three-dimensional
singularities of elastic fields near vertices, Numer. Methods Partial Differ.
Equations 9, 323–337.

[28] Sorensen, D.C. (1992). Implicit application of polynomial filters in a
k-step Arnoldi method, SIAM J. Matrix Anal. Appl. 13, 357–385.

[29] Tisseur, F. (2000). Backward error analysis of polynomial eigenvalue prob-
lems, Linear Algebra Appl. 309, 339–361.

[30] Tisseur, F. and Meerbergen, K. (2001). The quadratic eigenvalue problem,
SIAM Rev. 43, 234–286.

[31] Toledo, S. (2001–02). TAUCS. A library of sparse linear solvers. See
http://www.math. tau.ac.il/s̃toledo/taucs/.

[32] Watkins, D.S. (2002). On Hamiltonian and symplectic Lanczos processes,
Linear Algebra Appl., to appear.



7

Detecting Infeasibility in
Infeasible–Interior-Point Methods for

Optimization
Michael J. Todd

School of Operations Research and Industrial Engineering
Cornell University

Ithaca, New York 14853, USA
Email: miketodd@cs.cornell.edu

Abstract

We study interior-point methods for optimization problems in the case of
infeasibility or unboundedness. While many such methods are designed
to search for optimal solutions even when they do not exist, we show
that they can be viewed as implicitly searching for well-defined optimal
solutions to related problems whose optimal solutions give certificates of
infeasibility for the original problem or its dual. Our main development
is in the context of linear programming, but we also discuss extensions
to more general convex programming problems.

7.1 Introduction

The modern study of optimization began with G.B. Dantzig’s formu-
lation of the linear programming problem and his development of the
simplex method in 1947. Over the more than five decades since then,
the sizes of instances that could be handled grew from a few tens (in
numbers of variables and of constraints) into the hundreds of thou-
sands and even millions. During the same interval, many extensions
were made, both to integer and combinatorial optimization and to non-
linear programming. Despite a variety of proposed alternatives, the sim-
plex method remained the workhorse algorithm for linear programming,
even after its non-polynomial nature in the worst case was revealed. In
1979, L.G. Khachiyan showed how the ellipsoid method of D.B. Yudin
0 This work was supported in part by NSF through grant DMS-0209457 and ONR

through grant N00014-02-1-0057.
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and A.S. Nemirovskii could be applied to yield a polynomial-time al-
gorithm for linear programming, but it was not a practical method for
large-scale problems. These developments are well described in Dantzig’s
and Schrijver’s books [4, 25] and the edited collection [18] on optimiza-
tion.

In 1985, Karmarkar [9] proposed a new polynomial-time method for
linear programming which did lead to practically useful algorithms, and
this led to a veritable industry of developing so-called interior-point
methods for linear programming problems and certain extensions. One
highlight was the introduction of the concept of self-concordant barrier
functions and the resulting development of polynomial-time interior-
point methods for a large class of convex nonlinear programming prob-
lems by Nesterov and Nemirovskii [19]. Efficient codes for linear
programming were developed, but at the same time considerable im-
provements to the simplex method were made, so that now both ap-
proaches are viable for very large-scale instances arising in practice: see
Bixby [3]. These advances are described for example in the books of
Renegar and S. Wright [24, 33] and the survey articles of M. Wright,
Todd, and Forsgren et al. [32, 26, 27, 5].

Despite their very nice theoretical properties, interior-point meth-
ods do not deal very gracefully with infeasible or unbounded instances.
The simplex method (a finite, combinatorial algorithm) first determines
whether a linear programming instance is feasible: if not, it produces
a so-called certificate of infeasibility (see §7.2.4). Then it determines
whether the instance is unbounded (in which case it generates a certifi-
cate of infeasibility for the dual problem, see §7.2), and if not, produces
optimal solutions for the original problem (called the primal) and its
dual. By contrast, most interior-point methods (infinite iterative algo-
rithms) assume that the instance has an optimal solution: if not, they
usually give iterates that diverge to infinity, from which certificates of
infeasibility can often be obtained, but without much motivation or
theory. Our goal is to have a interior-point method that, in the case
that optimal solutions exist, will converge to such solutions; but if not,
it should produce in the limit a certificate of infeasibility for the pri-
mal or dual problem. Moreover, the algorithm should achieve this goal
without knowing the status of the original problem, and in just one
‘pass.’

The aim of this paper is to show that infeasible-interior-point meth-
ods, while apparently striving only for optimal solutions, can be viewed
in the infeasible or unbounded case as implicitly searching for certificates
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of infeasibility. Indeed, under suitable conditions, the ‘real’ iterates pro-
duced by such an algorithm correspond to ‘shadow’ iterates that are
generated by another interior-point method applied to a related linear
programming problem whose optimal solution gives the desired certifi-
cate of infeasibility. Hence in some sense these algorithms do achieve our
goal. Our main development is in the context of linear programming,
but we also discuss extensions to more general convex programming
problems.

§7.2 discusses linear programming problems. We define the dual prob-
lem, give optimality conditions, describe a generic primal-dual feasible-
interior-point method, and discuss certificates of infeasibility. In §7.3, we
describe a very attractive theoretical approach (Ye, Todd, and Mizuno
[35]) to handling infeasibility in interior-point methods. The original
problem and its dual are embedded in a larger self-dual problem which
always has a feasible solution. Moreover, suitable optimal solutions of
the larger problem can be processed to yield either optimal solutions to
the original problem and its dual or a certificate of infeasibility to one
of these. This approach seems to satisfy all our goals, but it does have
some practical disadvantages, which we discuss.

The heart of the paper is §7.4, where we treat so-called infeasible-
interior-point methods. Our main results are Theorems 7.4–7.7, which
relate an interior-point iteration in the ‘real’ universe to one applied
to a corresponding iterate in a ‘shadow’ universe, where the goal is to
obtain a certificate of infeasibility. Thus we see that, in the case of pri-
mal or dual infeasibility, the methods can be viewed not as pursuing a
chimera (optimal solutions to the primal and dual problems, which do
not exist), but as implicitly following a well-defined path to optimal so-
lutions to related problems that yield infeasibility certificates. This helps
to explain the observed practical success of such methods in detecting
infeasibility.

In §7.5 we discuss convergence issues. While §7.4 provides a conceptual
framework for understanding the behavior of infeasible-interior-point
methods in case of infeasibility, we do not have rules for choosing the
parameters involved in the algorithm (in particular, step sizes) in such
a way as to guarantee good progress in both the original problem and
its dual and a suitable related problem and its dual as appropriate. We
obtain results on the iterates produced by such algorithms and a con-
vergence result (Theorem 7.8) for the method of Kojima, Megiddo, and
Mizuno [10], showing that it does produce approximate certificates of
infeasibility under suitable conditions.
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§7.6 studies a number of interior-point methods for more general con-
vex conic programming problems, showing (Theorem 7.9) that the re-
sults of §7.4 remain true in these settings also. We make some concluding
remarks in §7.7.

7.2 Linear programming

For most of the paper, we confine ourselves to linear programming. Thus
we consider the standard-form primal problem

(P ) minimize cTx,

Ax = b, x ≥ 0,

of minimizing a linear function of the nonnegative variables x subject
to linear equality constraints (any linear programming problem can be
rewritten in this form). Closely related, and defined from the same data,
is the dual problem

(D) maximize bT y,

AT y + s = c, s ≥ 0.

Here A, an m × n matrix, b ∈ R
m, and c ∈ R

n form the data; x ∈ R
n

and (y, s) ∈ R
m × R

n are the variables of the problems. For simplicity,
and without real loss of generality, we henceforth assume that A has full
row rank.

7.2.1 Optimality conditions

If x is feasible in (P ) and (y, s) in (D), then we obtain the weak duality
inequality

cTx− bT y = (AT y + s)Tx− (Ax)T y = sTx ≥ 0, (7.1)

so that the objective value corresponding to a feasible primal solution
is at least as large as that corresponding to a feasible dual solution. It
follows that, if we have feasible solutions with equal objective values,
or equivalently with sTx = 0, then these solutions are optimal in their
respective problems. Since s ≥ 0 and x ≥ 0, sTx = 0 in fact implies the
seemingly stronger conditions that sjxj = 0 for all j = 1, . . . , n, called
complementary slackness. We therefore have the following optimality
conditions:

AT y + s = c, s ≥ 0,
(OC) Ax = b, x ≥ 0,

SXe = 0,
(7.2)
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where S ( resp., X) denotes the diagonal matrix of order n containing
the components of s ( resp., x) down its diagonal, and e ∈ R

n denotes the
vector of ones. These conditions are in fact necessary as well as sufficient
for optimality (strong duality: see [25]).

7.2.2 The central path

The optimality conditions above consist of m+2n mildly nonlinear equa-
tions in m+2n variables, along with extra inequalities. Hence Newton’s
method seems ideal to approximate a solution, but since this necessar-
ily has zero components, the nonnegativities cause problems. Newton’s
method is better suited to the following perturbed system, called the
central path equations:

AT y + s = c, (s > 0)
(CPEν) Ax = b, (x > 0)

SXe = νe,

(7.3)

for ν > 0, because if it does have a positive solution, then we can keep
the iterates positive by using line searches, i.e., by employing a damped
Newton method. This is the basis of primal-dual path-following methods:
a few (often just one) iterations of a damped Newton method are applied
to (CPEν) for a given ν > 0, and then ν is decreased and the process
continued. See, e.g., Wright [33]. We will give more details of such a
method in the next subsection.

For future reference, we record the changes necessary if (P ) also in-
cludes free variables. Suppose the original problem and its dual are

(P̂ ) minimize cTx + dT z,

Ax + Bz = b, x ≥ 0,

and

(D̂) maximize bT y,

AT y + s = c, s ≥ 0,
BT y = d.

Here B is an m × p matrix and z ∈ R
p a free primal variable. Assume

that B has full column rank and [A,B] full row rank, again without real
loss of generality. The original problems are retrieved if B is empty.
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The optimality conditions are then

AT y + s = c, s ≥ 0,
(ÔC) BT y = d,

Ax + Bz = b, x ≥ 0,
SXe = 0,

(7.4)

and the central path equations

AT y + s = c, (s > 0)
(ĈPEν) BT y = d,

Ax + Bz = b, (x > 0)
SXe = νe.

(7.5)

If (7.5) has a solution, then (P̂ ) and (D̂) must have strictly feasible
solutions, where the variables that are required to be nonnegative (x and
s) are in fact positive. Further, the converse is true (see [33]):

Theorem 7.1 Suppose (P̂ ) and (D̂) have strictly feasible solutions.
Then, for every positive ν, there is a unique solution (x(ν), z(ν), y(ν),
s(ν)) to (7.5). These solutions, for all ν > 0, form a smooth path, and
as ν approaches 0, (x(ν), z(ν)) and (y(ν), s(ν)) converge to optimal solu-
tions to (P̂ ) and (D̂) respectively. Moreover, for every ν > 0, (x(ν), z(ν))
is the unique solution to the primal barrier problem

min cTx + dT z − ν
∑
j

lnxj , Ax + Bz = b, x > 0,

and (y(ν), s(ν)) the unique solution to the dual barrier problem

max bT y + ν
∑
j

ln sj , AT y + s = c, BT y = d, s > 0.

We call {(x(ν), z(ν)) : ν > 0} the primal central path, {(y(ν), s(ν)) :
ν > 0} the dual central path, and {(x(ν), z(ν), y(ν), s(ν)) : ν > 0} the
primal-dual central path.

7.2.3 A generic primal-dual feasible-interior-point method

Here we describe a simple interior-point method, leaving out the details
of initialization and termination. We suppose we are solving (P̂ ) and (D̂),
and that B has full column and [A,B] full row rank. Let the current
strictly feasible iterates be (x, z) for (P̂ ) and (y, s) for (D̂), and let
µ denote sTx/n. The next iterate is obtained by approximating the
point on the central path corresponding to ν := σµ for some σ ∈ [0, 1]
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by taking a damped Newton step. Thus the search direction is found
by linearizing the central path equations at the current point, so that
(∆x,∆z,∆y,∆s) satisfies the Newton system

AT∆y + ∆s = c−AT y − s = 0,
(NS) BT∆y = d−BT y = 0,

A∆x + B∆z = b−Ax−Bz = 0,
S∆x + X∆s = νe− SXe.

(7.6)

Since X and S are positive definite diagonal matrices, our assumptions
on A and B imply that this system has a unique solution. We then
update our current iterate to

x+ := x + αP∆x, z+ := z + αP∆z,

y+ := y + αD∆y, s+ := s + αD∆s,

where αP > 0 and αD > 0 are chosen so that x+ and s+ are also positive.
This concludes the iteration.

We wish to give as much flexibility to our algorithm as possible, so we
will not describe rules for choosing the parameter σ and the step sizes
αP and αD in detail. However, let us mention that, if the initial iterate
is suitably close to the central path, then we can choose σ := 1−0.1/

√
n

and αP = αD = 1 and the next iterate will be strictly feasible and
also suitably close to the central path. Thus these parameters can be
chosen at every iteration, and this leads to a polynomial (but very slow)
method; practical methods choose much smaller values for σ on most
iterations. Finally, if αP = αD, then the duality gap sT+x+ at the next
iterate is smaller than the current one by the factor 1 − αP (1 − σ), so
we would like to choose σ small and the α’s large. The choice of these
parameters is discussed in [33].

7.2.4 Certificates of infeasibility

In the previous subsection, we assumed that feasible, and even strictly
feasible, solutions existed, and were available to the algorithm. However,
it is possible that no such feasible solutions exist (often because the
problem was badly formulated), and we would like to know that this
is the case. Here we revert to the original problems (P ) and (D), or
equivalently we assume that the matrix B is null.

It is clear that, if we have (ȳ, s̄) with AT ȳ+ s̄ = 0, s̄ ≥ 0, and bT ȳ > 0,
then (P ) can have no feasible solution x, for if so we would have

0 ≥ −s̄Tx = (AT ȳ)Tx = (Ax)T ȳ = bT ȳ > 0,
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a contradiction. The well-known Farkas Lemma [25] asserts that this
condition is necessary as well as sufficient:

Theorem 7.2 The problem (P ) is infeasible iff there exists (ȳ, s̄) with

AT ȳ + s̄ = 0, s̄ ≥ 0, and bT ȳ > 0. (7.7)

We call such a (ȳ, s̄) a certificate of infeasibility for (P ).
There is a similar result for dual infeasibility:

Theorem 7.3 The problem (D) is infeasible iff there exists x̃ with

Ax̃ = 0, x̃ ≥ 0, and cT x̃ < 0. (7.8)

We call such an x̃ a certificate of infeasibility for (D). It can be shown
that, if (P ) is feasible, the infeasibility of (D) is equivalent to (P ) being
unbounded, i.e., having feasible solutions of arbitrarily low objective
function value: indeed, arbitrary positive multiples of a solution x̃ to
(7.8) can be added to any feasible solution to (P ). Similarly, if (D) is
feasible, the infeasibility of (P ) is equivalent to (D) being unbounded,
i.e., having feasible solutions of arbitrarily high objective function value.

Below we are interested in cases where the inequalities of (7.7) or
(7.8) hold strictly: in this case we shall say that (P ) or (D) is strictly
infeasible. It is not hard to show, using linear programming duality,
that (P ) is strictly infeasible iff it is infeasible and, for every b̃, the set
{x : Ax = b̃, x ≥ 0} is either empty or bounded, and similarly for (D).
Note that, if (P ) is strictly infeasible, then (D) is strictly feasible (and
unbounded), because we can add any large multiple of a strictly feasible
solution to (7.7) to the point (0, c); similarly, if (D) is strictly infeasible,
then (P ) is strictly feasible (and unbounded), because we can we can
add any large multiple of a strictly feasible solution to (7.8) to a point
x with Ax = b. Finally, we remark that, if (P ) is infeasible but not
strictly infeasible, then an arbitrarily small perturbation to A renders
(P ) strictly infeasible, and similarly for (D).

7.3 The Self-dual homogeneous approach

As we mentioned in the introduction, our goal is a practical interior-point
method which, when (P ) and (D) are feasible, gives iterates approaching
optimality for both problems; and when either is infeasible, yields a
suitable certificate of infeasibility in the limit. Here we show how this can
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be done via a homogenization technique due to Ye, Todd, and Mizuno
[35], based on work of Goldman and Tucker [6].

First consider the Goldman-Tucker system

s = − AT y + cτ ≥ 0,
Ax − bτ = 0,

κ = − cTx + bT y ≥ 0,
x ≥ 0, y free τ ≥ 0.

(7.9)

This system is ‘self-dual’ in that the coefficient matrix is skew-symmetric,
and the inequality constraints correspond to nonnegative variables while
the equality constraints correspond to unrestricted variables. The sys-
tem is homogeneous, but we are interested in nontrivial solutions. Note
that any solution (because of the skew-symmetry) has sTx + κτ = 0,
and the nonnegativity then implies that sTx = 0 and κτ = 0. If τ

is positive (and hence κ zero), then scaling (x, y, s) by τ gives feasible
solutions to (P ) and (D) satisfying cTx = bT y, and because of weak
duality, these solutions are necessarily optimal. On the other hand, if κ
is positive (and hence τ zero), then either bT y is positive, which with
AT y + s = 0, s ≥ 0 implies that (P ) is infeasible, or cTx is negative,
which with Ax = 0, x ≥ 0 implies that (P ) is infeasible (or both). Thus
this self-dual system attacks both the optimality and the infeasibility
problem together. However, it is not clear how to apply an interior-point
method directly to this system.

Hence consider the linear programming problem

(HLP ) min h̄θ

s = − AT y + cτ − c̄θ ≥ 0,
Ax − bτ + b̄θ = 0,

κ = − cTx + bT y + ḡθ ≥ 0,
c̄Tx − b̄T y − ḡτ = −h̄,

x ≥ 0, y free, τ ≥ 0, θ free,

where

b̄ := bτ0 −Ax0, c̄ := cτ0 −AT y0 − s0,

ḡ := cTx0 − bT y0 + κ0, h̄ := (s0)Tx0 + κ0τ0,

for some initial x0 > 0, y0, s0 > 0, τ0 > 0, and κ0 > 0. Here we
have added an extra artificial column to the Goldman-Tucker inequality
system so that (x0, y0, s0, τ0, θ0, s0, κ0) is strictly feasible. To keep the
skew symmetry, we also need to add an extra row. Finally, the objective
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function is to minimize the artificial variable θ, so as to obtain a feasible
solution to (7.9).

Because of the skew symmetry, (HLP ) is self-dual, i.e., equivalent to
its dual, and this implies that its optimal value is attained and is zero.
We can therefore apply a feasible-interior-point method to (HLP ) to
obtain in the limit a solution to (7.9). Further, it can be shown (see
Güler and Ye [7]) that many path-following methods will converge to a
strictly complementary solution, where either τ or κ is positive, and thus
we can extract either optimal solutions to (P ) and (D) or a certificate
of infeasibility, as desired.

This technique seems to address all our concerns, since it unequivo-
cally determines the status of the primal-dual pair of linear programming
problems. However, it does have some disadvantages. First, it appears
that (HLP ) is of considerably higher dimension than (P ), and thus
that the linear system that must be solved at every iteration to obtain
the search direction is of twice the dimension as that for (P ). However,
as long as we initialize the algorithm with corresponding solutions for
(HLP ) and its (equivalent) dual, we can use the self-duality to show
that in fact the linear system that needs to be solved has only a few
extra rows and columns compared to that for (P ). Second, (HLP ) links
together the original primal and dual problems through the variables
θ, τ , and κ, so equal step sizes must be taken in the primal and dual
problems. This is definitely a drawback, since in many applications, one
of the feasible regions is ‘fat,’ so that a step size of one can be taken
without losing feasibility, while the other is ‘thin’ and necessitates quite
small steps. There are methods allowing different step sizes [30, 34], but
they are more complicated. Thirdly, only in the limit is feasibility at-
tained, while the method of the next section allows early termination
with often feasible, but not optimal, solutions.

7.4 Infeasible-interior-point methods

For the reasons just given, many codes take a simpler and more direct
approach to the unavailability of initial strictly feasible solutions to (P )
and (D). Lustig et al. [12, 13] proceed almost as in §7.2.3, taking a New-
ton step towards the (feasible) central path, but now from a point that
may not be feasible for the primal or the dual. We call a triple (x, y, s)
with x and s positive, but where x and/or (y, s) may not satisfy the
linear equality constraints of (P ) and (D), an infeasible interior point.
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We describe this algorithm (the infeasible-interior-point (IIP) method)
precisely in the next subsection. Because its aim is to find a point on
the central path, it is far from clear how this method will behave when
applied to a pair of problems where either the primal or the dual is
infeasible. We would like it to produce a certificate of infeasibility, but
there seems little reason why it should. However, in practice, the method
is amazingly successful in producing certificates of infeasibility by just
scaling the iterates generated, and we wish to understand why this is.
In the following subsection, we suppose that (P ) is strictly infeasible,
and we show that the IIP method is in fact implicitly searching for a
certificate of primal infeasibility by taking damped Newton steps. Then
we outline the analysis for dual strictly infeasible problems, omitting
details.

7.4.1 The primal-dual infeasible-interior-point method

The algorithm described here is almost identical to the generic feasible
algorithm outlined in §7.2.3. The only changes are to account for the fact
that the iterates are typically infeasible interior points. For future refer-
ence, we again assume we wish to solve the more general problems (P̂ )
and (D̂), for which an infeasible interior point is a quadruple (x, z, y, s)
with x and s positive.

We start at such a point (x0, z0, y0, s0). (We use subscripts for both
iteration indices and components, but the latter only rarely: no confusion
should arise.) At some iteration, we have a (possibly) infeasible interior
point (x, z, y, s) := (xk, zk, yk, sk) and, as in the feasible algorithm, we
attempt to find the point on the central path corresponding to ν := σµ,
where σ ∈ [0, 1] and µ := sTx/n, by taking a damped Newton step. The
search direction is determined from

AT∆y + ∆s = c−AT y − s,

(NS − IIP ) BT∆y = d−BT y,

A∆x + B∆z = b−Ax−Bz,

S∆x + X∆s = νe− SXe,

(7.10)

whose only difference from the system (NS) is that the first three right-
hand sides may be nonzero. (However, this does cause a considerable
difference in the theoretical analysis, which is greatly simplified by the
orthogonality of ∆s and ∆x in the feasible case.) Again, this system has
a unique solution under our assumptions. We then update our current
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iterate to

x+ := x + αP∆x, z+ := z + αP∆z,

y+ := y + αD∆y, s+ := s + αD∆s,

where αP > 0 and αD > 0 are chosen so that x+ and s+ are also positive.
This concludes the iteration. Note that, if it is possible to choose αP

equal to one, then (x+, z+) (and all subsequent primal iterates) will be
feasible in (P̂ ), and if αD equals one, (y+, s+) (and all subsequent dual
iterates) will be feasible in (D̂).

As in the feasible case, there are many strategies for choosing the
parameter σ and the step sizes αP and αD. Lustig et al. [12, 13] choose
σ close to zero and αP and αD as a large multiple (say .9995) of the
largest step to keep x and s positive respectively, except that steps larger
than 1 are not chosen. Kojima, Megiddo, and Mizuno [10] choose a
fixed σ ∈ (0, 1) and αP and αD to stay within a certain neighborhood
of the central path, to keep the complementarity sTx bounded below
by multiples of the primal and dual infeasibilities, and to decrease the
complementarity by a suitable ratio. (More details are given in §7.5.2
below.) They are thus able to prove finite convergence, either to a point
that is nearly feasible with small complementarity (and hence feasible
and nearly optimal in nearby problems), or to a large enough iterate
that one can deduce that there are no strictly feasible solutions to (P̂ )
and (D̂) in a large region.

Zhang [36], Mizuno [14], and Potra [23] provide extensions of Kojima
et al.’s results, giving polynomial bounds to generate near-optimal solu-
tions or guarantees that there are no optimal solutions in a large region.

These results are quite satisfactory when (P̂ ) and (D̂) are strictly fea-
sible, but they are not as pleasant when one of these is infeasible – we
would prefer to generate certificates of infeasibility, as in the method
of the previous section. In the rest of this section, we show that, in
the strictly infeasible case, there are ‘shadow iterates’ that seem to ap-
proximately indicate infeasibility. Thus in the primal infeasible case,
instead of thinking of (NS − IIP ) as giving Newton steps towards a
nonexistent primal-dual central path, we can think of it as providing
a step in the shadow iterates that is a damped Newton step towards
a well-defined central path for another optimization problem, which
yields a primal certificate of infeasibility. This interpretation explains in
some sense the practical success of infeasible-interior-point methods in
detecting infeasibility.
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7.4.2 The primal strictly infeasible case

Let us suppose that (P ) is strictly infeasible, so that there is a solution
to

AT ȳ + s̄ = 0, s̄ > 0, bT ȳ = 1. (7.11)

As we showed in §7.2.4, this implies that the dual problem (D) is strictly
feasible, and indeed its feasible region is unbounded. When applied to
such a primal-dual pair of problems, the IIP method usually generates
a sequence of iterates where (y, s) becomes feasible after a certain itera-
tion, and bT y tends to ∞. It is easy to see that, as the iterations progress,
Ax always remains a convex combination of its original value Ax0 and
its ‘goal’ b, but since the problem is infeasible, the weight on the first
vector must remain positive. Let us therefore make the following

Assumption 7.1 The current iterate (x, y, s) has (y, s) strictly feasible
in (D) and β := bT y > 0. In addition,

Ax = ϕAx0 + (1 − ϕ)b, x > 0, ϕ > 0.

If β = bT y is large, then (y, s)/β will be an approximate solution
to the Farkas system above. This will be part of our ‘shadow iterate,’
but since our IIP method is primal-dual, we also want a primal and
dual for our shadow iterate. We therefore turn the Farkas system into
an optimization problem, using the initial solution (x0, y0, s0). Let us
therefore consider

(D̄) max (Ax0)T ȳ
AT ȳ + s̄ = 0,
bT ȳ = 1,

s̄ ≥ 0.

We call this (D̄) since it is a homogeneous form of (D) with a normalizing
constraint and a new objective function, and regard it as a dual problem
of the form (D̂). From our assumption that (P ) is strictly infeasible, (D̄)
is strictly feasible. Its dual is

(P̄ ) min ζ̄

Ax̄ + bζ̄ = Ax0,

x̄ ≥ 0.

We will always use bars to indicate the variables of (D̄) and (P̄ ). Note
that, from our assumption on the current iterate, (x/ϕ,−(1 − ϕ)/ϕ) is
a strictly feasible solution to (P̄ ). Hence we make the
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Fig. 7.1. Comparing the real and shadow iterations: a ‘commutative diagram.’

Definition 7.1 The shadow iterate corresponding to (x, y, s) is given by

(x̄, ζ̄) :=
(
x

ϕ
,−1 − ϕ

ϕ

)
, (ȳ, s̄) :=

(
y

β
,
s

β

)
.

(We note that the primal iterate x is infeasible, while the dual iterate
(y, s) is feasible; these conditions are reversed in the shadow universe,
where (x̄, ζ̄) is feasible and (ȳ, s̄) is typically infeasible in the first equa-
tion, while satisfying the second.)

Since ϕ and β are linear functions of x and (y, s) respectively, the
transformations from the original iterates to the shadow iterates is a pro-
jective one. Projective transformations were used in Karmarkar’s original
interior-point algorithm [9], but have not been used much since, although
they are implicit in the homogeneous approach and are used in Mizuno
and Todd’s analysis [15] of such methods.

We now wish to compare the results of applying one iteration of the
IIP method from (x, y, s) for (P ) and (D), and from (x̄, ζ̄, ȳ, s̄) for (P̄ )
and (D̄).

The idea is shown in the Figure 7.1. While the step from (x, y, s) to
(x+, y+, s+) is in some sense ‘following a nonexistent central path,’ the
shadow iterates follow the central path for the strictly feasible pair (P̄ )
and (D̄). Indeed, the figure can be viewed as a ‘commutative diagram.’
Our main theorem below shows that the point (x̄+, ζ̄+, ȳ+, s̄+) can be
obtained either as the shadow iterate corresponding to the result of a
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damped Newton step for (P ) and (D) from (x, y, s), or as the result
of a damped Newton step for (P̄ ) and (D̄) from the shadow iterate
corresponding to (x, y, s).

For a chosen value for σ ∈ [0, 1], let (∆x,∆y,∆s) be the search di-
rection of the first of these, and let αP and αD be the chosen positive
step sizes, with (x+, y+, s+) being the next iterate. Then according to
the algorithm in §7.4.1, we have

AT∆y + ∆s = 0,
A∆x = b−Ax,

S∆x + X∆s = σµe− SXe

(7.12)

(note that B is empty and the dual iterate is feasible), where µ := sTx/n,
and

x+ := x + αP∆x, y+ := y + αD∆y, s+ := s + αD∆s.

The corresponding iteration for (P̄ ) and (D̄) also comes from §7.4.1,
where now B is the single column b, but we postpone stating it un-
til we have generated trial search directions from those above. Before
doing so, we note the easily derived and well-known fact that ∆y =
(AXS−1AT )−1b− σµ(AXS−1AT )−1AS−1e. Thus

∆β := bT∆y = bT (AXS−1AT )−1b− σµbT (AXS−1AT )−1AS−1e,

and it follows (since infeasibility implies that b is nonzero) that ∆β is
positive for small enough σ, depending on x and s. Henceforth, we make
the

Assumption 7.2 ∆β is positive.

From Assumption 7.1, the definition of x+, and (7.12), we find that

Ax+ = ϕ(Ax0) + (1 − ϕ)b + αP (b− ϕ(Ax0) − (1 − ϕ)b)

= ϕ+(Ax0) + (1 − ϕ+)b,

where ϕ+ := (1−αP )ϕ > 0 (since (P ) is infeasible). Also, β+ := bT y+ =
β + αD∆β > 0 from our assumptions. Hence our new shadow iterates
are

(x̄+, ζ̄+) :=
(
x+

ϕ+
,−1 − ϕ+

ϕ+

)
, (ȳ+, s̄+) :=

(
y+

β+
,
s+

β+

)
,
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with ϕ+ and β+ as above. We then find

x̄+ =
x + αP∆x

(1 − αP )ϕ

=
x

ϕ
+

(
αP

1 − αP
.
∆β

β

) (
β

ϕ∆β
(∆x + x)

)
= x̄ + ᾱP∆x̄,

where

ᾱP :=
αP

1 − αP
.
∆β

β
, ∆x̄ :=

β

ϕ∆β
(∆x + x), (7.13)

and

ζ̄+ = −1 − (1 − αP )ϕ
(1 − αP )ϕ

= −1 − ϕ

ϕ
+ ᾱP

(
− β

ϕ∆β

)
= ζ̄ + ᾱP∆ζ̄,

where

∆ζ̄ := − β

ϕ∆β
. (7.14)

Note that the choice of ᾱP and hence the scale of ∆x̄ and ∆ζ̄ is somewhat
arbitrary: the particular choice made will be justified in the following
theorem. Similarly the choice of ᾱD is somewhat arbitrary below.

We also have

ȳ+ =
y + αD∆y

β + αD∆β

=
y

β
+

(
αD∆β

β + αD∆β

) (
∆y

∆β
− y

β

)
= ȳ + ᾱD∆ȳ,

where

ᾱD :=
αD∆β

β + αD∆β
, ∆ȳ :=

∆y

∆β
− ȳ, (7.15)

and similarly

s̄+ = s̄ + ᾱD∆s̄,

where

∆s̄ :=
∆s

∆β
− s̄. (7.16)
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Theorem 7.4 The directions (∆x̄,∆ζ̄,∆ȳ,∆s̄) defined in (7.13)–(7.16)
solve the Newton system for (P̄ ) and (D̄) given below:

AT∆ȳ + ∆s̄ = −AT ȳ − s̄,

bT∆ȳ = 0,
A∆x̄ + b∆ζ̄ = 0,
S̄∆x̄ + X̄∆s̄ = σ̄µ̄e− S̄X̄e,

(7.17)

for the value

σ̄ :=
β

∆β
σ. (7.18)

Here µ̄ := s̄T x̄/n.

Proof We establish the equations of (7.17) in order. First,

AT∆ȳ + ∆s̄ = AT

(
∆y

∆β
− ȳ

)
+

(
∆s

∆β
− s̄

)
= −AT ȳ − s̄,

using the first equation of (7.12). Next,

bT∆ȳ = bT
(

∆y

∆β
− ȳ

)
= 1 − bT ȳ = 1 − bT y/β = 0

from the definition of ∆β. For the third equation,

A∆x̄ + b∆ζ̄ =
(

β

ϕ∆β

)
(A(∆x + x) − b) = 0,

using the second equation of (7.12). Finally, we find

S̄∆x̄ + X̄∆s̄ =
1
β
.

β

ϕ∆β
. (S∆x + Sx) +

1
ϕ

(
1

∆β
X∆s− 1

β
Xs

)
=

(
β

∆β

)
1
βϕ

(S∆x + X∆s + SXe) − 1
βϕ

SXe

=
(

β

∆β

) (
1
βϕ

σµe

)
− 1

βϕ
SXe

=
(

β

∆β
σ

)
µ̄e− S̄X̄e,

using the last equation of (7.12).

This theorem substantiates our main claim that, although the IIP
method in the strictly infeasible case may be aiming towards a central
path that doesn’t exist, it is in fact implicitly trying to generate cer-
tificates of infeasibility. Indeed, the shadow iterates are being generated
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by damped Newton steps for the problems (P̄ ) and (D̄), for which the
central path exists.

Since (P̄ ) and (D̄) are better behaved than (P ) and (D), and therefore
the behavior of the IIP method better understood, it is important to note
that this correspondence can be reversed, to give the iteration for (P )
and (D) from that for (P̄ ) and (D̄). So assume we are given (x̄, ζ̄, ȳ, s̄)
with Ax̄ + bζ̄ = Ax0, x̄ > 0, ζ̄ ≤ 0 and AT ȳ + s̄ = c/β, bT ȳ = 1, s̄ > 0
for some positive β. Then we can define ϕ := 1/(1 − ζ̄) ∈ (0, 1] so that
ζ̄ = −(1 − ϕ)/ϕ, and make the

Definition 7.2 The ‘real’ iterate corresponding to (x̄, ζ̄, ȳ, s̄) is given by

x := ϕx̄, (y, s) := β(ȳ, s̄).

Thus Ax = ϕ(Ax0)+(−ϕζ̄)b = ϕ(Ax0)+(1−ϕ)b, x > 0 and AT y+s =
c, s > 0.

Suppose (∆x̄,∆ζ̄,∆ȳ,∆s̄) is the solution to (7.17), and also make
the

Assumption 7.3 ∆ζ̄ is negative.

This also automatically holds if σ̄ is sufficiently small, and is in a sense
more reasonable than Assumption 7.2 since we are now presumably close
(if β is large) to a well-defined central path, and from the form of (P̄ ),
the assumption just amounts to monotonicity of the objective in the
primal shadow problem (see Mizuno et al. [16]).

We now define our new shadow iterate (x̄+, ζ̄+, ȳ+, s̄+) by taking steps
in this direction, ᾱP > 0 for (x̄, ζ̄) and ᾱD > 0 for (ȳ, s̄). (We can
assume that ᾱD is less than one, since otherwise (ȳ+, s̄+) is a certificate
of primal infeasibility for (P ) and we stop.) We set ϕ+ := 1/(1 − ζ̄+) =
1/(1− ζ̄−ᾱP∆ζ̄) (positive by Assumption 7.3) and β+ = β/(1−ᾱD) > 0
so that AT ȳ+ + s̄+ = c/β+. Then we define

x+ := ϕ+x̄+ =
x̄ + ᾱP∆x̄

1 − ζ̄ − ᾱP∆ζ̄

= x +
( −ᾱP∆ζ̄

1 − ζ̄ − ᾱP∆ζ̄

) (
∆x̄

−∆ζ̄
− x

)
=: x + αP∆x
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(i.e., αP and ∆x are defined by the expressions in parentheses in the
penultimate line);

y+ := β+ȳ+ =
βȳ + βᾱD∆ȳ

1 − ᾱD

= y +
(−ᾱDϕ∆ζ̄

1 − ᾱD

) (
β

−ϕ∆ζ̄
(∆ȳ + ȳ)

)
=: y + αD∆y;

and similarly

s+ := β+s̄+

= s +
(−ᾱDϕ∆ζ̄

1 − ᾱD

) (
β

−ϕ∆ζ̄
(∆s̄ + s̄)

)
=: s + αD∆s.

It is straightforward to check

Theorem 7.5 The directions (∆x,∆y,∆s) defined above solve the New-
ton system (7.12) for (P ) and (D) for the value σ := σ̄/(−ϕ∆ζ̄).

We note that bT∆y = β/(−ϕ∆ζ̄), which is positive under Assumption
7.3. This and (7.14) show that Assumptions 7.2 and 7.3 are equivalent.

The relationship between αP and ᾱP , αD and ᾱD, and σ and σ̄ will
be discussed further in the next section. For example, if we suspect that
(P ) is infeasible, we may want to choose αP and αD so that ᾱP and ᾱD

are close to 1, so that we are taking near-Newton steps in terms of the
shadow iterates.

7.4.3 The dual strictly infeasible case

Now we sketch the analysis for the dual strictly infeasible case, omitting
details. We suppose there is a solution to

Ax̃ = 0, x̃ > 0, cT x̃ = −1.

In this case, the IIP algorithm usually generates a sequence of iterates
where x becomes feasible after a certain iteration, and cTx tends to
−∞. AT y + s always remains a convex combination of its original value
AT y0 + s0 and its goal c. Thus we make the following
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Assumption 7.4 The current iterate (x, y, s) has x feasible in (P ) and
γ := −cTx > 0. In addition,

AT y + s = ψ(AT y0 + s0) + (1 − ψ)c, s > 0, ψ > 0.

If cTx is large and negative, then x/γ will be an approximate solution
to the Farkas system above. We formulate the optimization problem

(P̃ ) min (AT y0 + s0)T x̃
Ax̃ = 0,

−cT x̃ = 1,
x̃ ≥ 0.

((P̃ ) is a modified homogeneous form of (P ).) This is strictly feasible.
Its dual is

(D̃) max κ̃

AT ỹ − cκ̃ + s̃ = AT y0 + s0,

s̃ ≥ 0.

We will use tildes to indicate the variables of (P̃ ) and (D̃). Note that,
from our assumption on the current iterate, (y/ψ, (1 − ψ)/ψ, s/ψ) is a
strictly feasible solution to (D̃). Hence we make the

Definition 7.3 The shadow iterate corresponding to (x, y, s) is given by

x̃ := x/γ, where γ := −cTx, (ỹ, κ̃, s̃) :=
(
y

ψ
,
1 − ψ

ψ
,
s

ψ

)
.

We now wish to compare the results of applying one iteration of the IIP
method from (x, y, s) for (P ) and (D), and from (x̃, ỹ, κ̃, s̃) for (P̃ ) and
(D̃).

Let (∆x,∆y,∆s) be the search direction of the first of these, and let
αP and αD be the chosen positive step sizes, with (x+, y+, s+) being the
next iterate. Then according to the algorithm, we have

AT∆y + ∆s = c−AT y − s,

A∆x = 0,
S∆x + X∆s = σµe− SXe.

(7.19)

and

x+ := x + αP∆x, y+ := y + αD∆y, s+ := s + αD∆s,

where µ := sTx/n. The corresponding iteration for (P̃ ) and (D̃) also
comes from §7.4.1, where now A is augmented by the row −cT , but we
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postpone stating it until we have generated trial search directions from
those above. Before doing so, we note that

∆x = −(I −XS−1AT (AXS−1AT )−1A)XS−1c

+σµ(I −XS−1AT (AXS−1AT )−1A)S−1e,

and so

∆γ := −cT∆x

= [cTXS−1c− cTXS−1AT (AXS−1AT )−1AXS−1c]

−σµ(cTS−1e− cTXS−1AT (AXS−1AT )−1AS−1e),

and it follows (since dual infeasibility implies that c is not in the range
of AT ) that ∆γ is positive for small enough σ. Henceforth, we make the

Assumption 7.5 ∆γ is positive.

We find that

AT y+ + s+

= ψ(AT y0 + s0) + (1 − ψ)c + αD(c− ψ(AT y0 + s0) − (1 − ψ)c)

= ψ+(AT y0 + s0) + (1 − ψ+)c,

where ψ+ := (1 − αD)ψ > 0 (since (D) is infeasible). Also, γ+ :=
−cTx+ = γ + αP∆γ > 0 from our assumptions. Hence our new shadow
iterates are

x̃+ :=
x+

γ+
, (ỹ+, κ̃+, s̃+) := (

y+

ψ+
,
1 − ψ+

ψ+
,
s+

ψ+
).

We then obtain

x̃+ =
x + αP∆x

γ + αP∆γ

=
x

γ
+

(
αP∆γ

γ + αP∆γ

) (
∆x

∆γ
− x

γ

)
= x̃ + α̃P∆x̃,

where

α̃P :=
αP∆γ

γ + αP∆γ
, ∆x̃ :=

∆x

∆γ
− x̃. (7.20)
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We also have

ỹ+ =
y + αD∆y

(1 − αD)ψ

=
y

ψ
+

(
αD

1 − αD
.
∆γ

γ

) (
γ

ψ∆γ
(∆y + y)

)
= ỹ + α̃D∆ỹ,

where

α̃D :=
αD

1 − αD
.
∆γ

γ
, ∆ỹ :=

γ

ψ∆γ
(∆y + y). (7.21)

Similarly, s̃+ = s̃ + α̃D∆s̃, where

∆s̃ :=
γ

ψ∆γ
(∆s + s), (7.22)

and κ̃+ = κ̃ + α̃D∆κ̃, where

∆κ̃ :=
γ

ψ∆γ
. (7.23)

Theorem 7.6 The directions (∆x̃,∆ỹ,∆κ̃,∆s̃) defined in (7.20) – (7.23)
above solve the Newton system for (P̃ ) and (D̃) given below:

AT∆ỹ − c∆κ̃ + ∆s̃ = 0,
A∆x̃ = −Ax̃,

−cT∆x̃ = 0,
S̃∆x̃ + X̃∆s̃ = σ̃µ̃e− X̃S̃e,

(7.24)

for the value

σ̃ :=
γ

∆γ
σ. (7.25)

Here µ̃ := s̃T x̃/n.

This argument can also be reversed. Given (x̃, ỹ, κ̃, s̃), where we as-
sume that Ax̃ = b/γ,−cT x̃ = 1, x̃ > 0 for some positive γ and AT ỹ−cκ̃+
s̃ = AT y0+s0, s̃ > 0, and κ̃ ≥ 0, we define ψ := 1/(1+κ̃) ∈ (0, 1] so that
κ̃ = (1 − ψ)/ψ, and hence the ‘real’ iterate given by x := γx̃, (y, s) :=
ψ(ỹ, s̃). We compute the search direction from (7.24) and take steps of
size α̃P (assumed less than one, otherwise we have a certificate of dual
infeasibility) and α̃D to obtain new shadow iterates. The appropriate
requirement is

Assumption 7.6 ∆κ̃ is positive,
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which turns out to be equivalent to our previous assumption that ∆γ >

0. Then the new real iterates corresponding to the new shadow iter-
ates are obtained from the old real iterates by using the step sizes and
directions given below:

αP :=
α̃Pψ∆κ̃

1 − α̃P
, ∆x :=

γ

ψ∆κ̃
(∆x̃ + x̃),

αD :=
α̃D∆κ̃

1 + κ̃ + α̃D∆κ̃
, ∆y :=

∆ỹ

∆κ̃
− y, ∆s :=

∆s̃

∆κ̃
− s.

Again it is easy to check

Theorem 7.7 The directions (∆x,∆y,∆s) defined above solve the New-
ton system (7.19) for (P ) and (D) for the value σ := σ̄/(ψ∆κ̃).

7.5 Convergence and implications

Here we give further properties of the iterates in the infeasible case,
discuss the convergence of IIP methods in case of strict infeasibility, and
consider the implications of our equivalence between real and shadow
iterations for designing an efficient IIP method. In §7.5.1 we discuss
the boundedness of the iterates in the infeasible case, while in §7.5.2 we
consider the Kojima-Megiddo-Mizuno algorithm and convergence issues.
Finally, §7.5.3 addresses the implications of our equivalence results for
IIP methods.

7.5.1 Boundedness and unboundedness

Here we will assume that (P ) is strictly infeasible, so that there is a
solution to (7.11), which we repeat here:

AT ȳ + s̄ = 0, s̄ > 0, bT ȳ = 1.

(Similar results can be obtained in the dual strictly infeasible case.)
Note that any primal-dual IIP method has iterates (xk, yk, sk) that

satisfy

Axk = bk := ϕk(Ax0) + (1 − ϕk)b, 0 ≤ ϕk ≤ 1, (7.26)

and

AT yk + sk = ck := ψk(AT y0 + s0) + (1 − ψk)c, 0 ≤ ψk ≤ 1, (7.27)

for all k.
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Proposition 7.1 In the primal strictly infeasible case, we have

ϕk ≥ (1 + s̄Tx0)−1, s̄Txk ≤ s̄Tx0 (7.28)

for all k ≥ 0. Hence all xk’s lie in a bounded set. Further, for any b̃ with
‖b̃− b‖ < 1/‖ȳ‖, the system Ax = b̃, x ≥ 0 is infeasible.

Proof For the first part, premultiply (7.26) by −ȳT to get

s̄Txk = −ȳTAxk = ϕk(−ȳTAx0) + (1 − ϕk)(−bT ȳ)

= ϕks̄
Tx0 − 1 + ϕk

= ϕk(1 + s̄Tx0) − 1.

Since s̄Txk > 0, we obtain the lower bound on ϕk. From ϕk ≤ 1, the
upper bound on s̄Txk holds. For the second part, note that b̃T ȳ = bT ȳ+
(b̃− b)T ȳ ≥ 1−‖b̃− b‖‖ȳ‖ > 0, so that (ȳ, s̄) certifies the infeasibility of
Ax = b̃, x ≥ 0.

Proposition 7.2 Suppose that in addition the sequence {(xk, yk, sk)}
satisfies sTk xk ≤ sT0 x0 and ‖sk‖ → ∞. Then bT yk → ∞.

Proof Indeed, we have

sT0 x0 ≥ sTk xk = (ck −AT yk)Txk
= cTk xk − yTk [ϕk(Ax0) + (1 − ϕk)b]
= cTk xk − ϕk(AT yk)Tx0 − (1 − ϕk)bT yk
= cTk xk − ϕk(ck − sk)Tx0 − (1 − ϕk)bT yk
= [cTk xk − ϕkc

T
k x0] + ϕks

T
k x0 − (1 − ϕk)bT yk.

(7.29)

Now, by Proposition 7.1, the quantity in brackets remains bounded,
while ϕk ≥ (1 + s̄Tx0)−1 > 0 and sTk x0 → ∞. Thus we must have
bT yk → ∞.

7.5.2 The Kojima-Megiddo-Mizuno algorithm and convergence

Kojima, Megiddo, and Mizuno [10] (henceforth KMM) devised a partic-
ular IIP method that correctly detected infeasibility, but without gen-
erating a certificate of infeasibility in the usual sense. Here we show
that their algorithm does indeed generate certificates of infeasibility in
the limit (in the strictly infeasible case). We also see how their method
relates to the assumptions and shadow iterates we studied in §7.4.2.

KMM’s algorithm uses special rules for choosing σ, αP , and αD at
each iteration, and employs a special neighborhood: for (P ) and (D),
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this is defined to be

N := N (γ0, γP , γD, εP , εD) := N0 ∩NP ∩ND, where

N0 := {(x, y, s) ∈ R
n
++ × R

m × R
n
++ : sjxj ≥ γ0s

Tx/n, for all j},
NP := {(x, y, s) ∈ R

n
++ × R

m × R
n
++ :

‖Ax− b‖ ≤ max(εP , sTx/γP )},
ND := {(x, y, s) ∈ R

n
++ × R

m × R
n
++ :

‖AT y + s− c‖ ≤ max(εD, sTx/γD)}. (7.30)

Here εP and εD are small positive constants, and γ0 < 1, γP , and γD
are positive constants chosen so that (x0, y0, s0) ∈ N . KMM maintain
all iterates in N .

They choose parameters 0 < σ1 < σ2 < σ3 < 1. At every iteration,
σ is chosen to be σ1 to generate search directions (∆x,∆y,∆s) from
the current iterate (x, y, s) ∈ N . (In fact, it suffices for their arguments
to choose σ from the interval [σ′

1, σ
′′
1 ], possibly with different choices at

each iteration, where 0 < σ′
1 < σ′′

1 < σ2 < σ3 < 1.) Next, a step size ᾱ

is chosen as the largest α̃ ≤ 1 so that

(x + α∆x, y + α∆y, s + α∆s) ∈ N and

(s + α∆s)T (x + α∆x) ≤ [1 − α(1 − σ2)]sTx

for all α ∈ [0, α̃]. Finally, αP ≤ 1 and αD ≤ 1 are chosen so that

(x + αP∆x, y + αD∆y, s + αD∆s) ∈ N and
(s + αD∆s)T (x + αP∆x) ≤ [1 − ᾱ(1 − σ3)]sTx

(7.31)

Note that a possible choice is αP = αD = ᾱ. However, the relaxation
provided by choosing σ3 > σ2 allows other options; in particular, it might
be possible to choose one of αP and αD as 1 (thus attaining primal or
dual feasibility) while the other is necessarily small (because the dual or
primal problem is infeasible).

The algorithm is terminated whenever an iterate (x, y, s) is generated
satisfying

sTx ≤ ε0, ‖Ax− b‖ ≤ εP , and ‖AT y + s− c‖ ≤ εD (7.32)

(an approximately optimal point; more precisely, x and (y, s) are ε0-
optimal in the nearby problems where b is replaced by Ax and c by
AT y + s), or

‖(x, s)‖1 > ω∗, (7.33)

for suitable positive (small) ε0, εP , εD and (large) ω∗. KMM argue (§4
of [10]) that, in the latter case, there is no feasible solution in a large
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region of R
n
++ × R

m × R
n
++. A slight modification of their algorithm

(§5 of [10]) yields stronger conclusions, but neither version appears to
generate a certificate of infeasibility.

KMM prove (§4 of [10]) that for given positive ε0, εP , εD and ω∗, their
algorithm terminates finitely. We now show how their method can pro-
vide approximate certificates of infeasibility. Suppose that (P ) is strictly
infeasible, and that εP is chosen sufficiently small that there is no non-
negative solution to ‖Ax− b‖ ≤ εP (see Proposition 7.1).

Theorem 7.8 Suppose the KMM algorithm is applied to a primal strictly
infeasible instance, with εP chosen as above and the large norm termi-
nation criterion (7.33) disabled. Then ‖sk‖ → ∞, βk := bT yk → ∞
and there is a subsequence along which (yk/βk, sk/βk) → (ȳ, s̄), with the
latter a certificate of primal infeasibility.

Proof By our choice of εP , the algorithm cannot terminate due to (7.32),
and we have disabled the other termination criterion, so that the method
generates an infinite sequence of iterates (xk, yk, sk). KMM show that, if
‖(xk, sk)‖1 ≤ ω, for any positive ω, then there is some α > 0, depending
on ω, such that ᾱk ≥ α, and hence, by (7.31), the total complementarity
sTx decreases at least by the factor [1−α(1−σ3)] < 1 at this iteration.
On every iteration, the total complementarity does not increase. Hence,
if there is an infinite number of iterations with ‖(xk, sk)‖1 ≤ ω, sTk xk

converges to zero, and since all iterates lie in N , ‖Axk− b‖ also tends to
zero. But this contradicts strict primal infeasibility, so that there cannot
be such an infinite subsequence. This holds for any positive ω, and thus
‖(xk, sk)‖ → ∞. By Proposition 7.1, {xk} remains bounded, so ‖sk‖ →
∞. By the rules of the KMM algorithm, sTk xk ≤ sT0 x0 for all k. Hence by
Proposition 7.2, βk → ∞. From (7.29) we see that (sk/βk)Tx0 and thus
s̄k := sk/βk remain bounded, so that there is a infinite subsequence K

with limK s̄k := limk∈K,k→∞ s̄k = s̄ for some s̄ ≥ 0. Further, ȳk := yk/βk

satisfies AT ȳk = ck/βk − s̄k, which converges to −s̄ along K, since ck
remains bounded. Hence ȳk converges to ȳ := −(AAT )−1As̄ along this
subsequence. We therefore have

AT ȳ + s̄ = lim
K

(AT yk + sk)/βk

= lim
K

ck/βk = 0, s̄ ≥ 0, bT ȳ = lim
K

bT yk/βk = 1,

as desired.

While an exact certificate of infeasibility is obtained only in the limit
(except under the happy circumstance that AT ȳk ≤ 0 for some k),
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(ȳk, s̄k) is an approximate such certificate for large k, and we can con-
clude that there is no feasible x in a large region, and that a nearby
problem with slightly perturbed A matrix is primal infeasible; see Todd
and Ye [28].

The results above shed light on our assumptions in §7.4.2. Indeed, we
showed that bT yk → ∞, which justifies our supposition that β > 0 in
Assumption 7.1. As we noted in §7.4.2, Assumption 7.2 (or equivalently
7.3) holds if σ (or σ̄) is sufficiently small (depending on the current it-
erate), although this may contradict the KMM choice of σ. In practice,
even with empirical rules for choosing the parameters, the assumptions
that β > 0 and ∆β > 0 seem to hold after the first few iterations. The
main assumption left is that (y, s) is feasible, and we have not been
able to establish rules for choosing αP and αD that will assure this (it
is necessary to have αD = 1 at some iteration, unless (y0, s0) is itself
feasible). As we noted, this assumption does seem to hold in practice.
Moreover, if AT yk + sk converges to c but never equals it, then eventu-
ally ‖AT yk + sk − c‖ ≤ εD, and then KMM’s modified algorithm (§5 of
[10]) replaces c by ck = AT yk + sk, so that the dual iterates are from
now on feasible in the perturbed problem.

Finally, let us relate the neighborhood conditions for an iterate in
the ‘real’ universe to those for the corresponding shadow iterate. Let
us suppose that the current iterate (x, y, s) satisfies Assumption 7.1,
and let (x̄, ζ̄, ȳ, s̄) be the corresponding shadow iterate. We define the
neighborhood N̄ in the shadow universe using parameters γ̄0, γ̄P , γ̄D,
ε̄P , and ε̄D in the obvious way, with the centering condition involving
only the x̄- and s̄-variables, since ζ̄ is free.

Proposition 7.3 Suppose εP ≤ sTx/γP and ε̄D ≤ s̄T x̄/γ̄D. Then, if
γ̄0 = γ0 and γ̄D = (‖Ax0 − b‖/‖c‖)γP , (x, y, s) ∈ N if and only if
(x̄, ζ̄, ȳ, s̄) ∈ N̄ .

(Note that our requirements on the γ’s are natural; γ0 and γ̄0 are
dimension-free, while we expect γP to be inversely proportional to a
typical norm for Ax − b, such as ‖Ax0 − b‖, and γ̄D to be inversely
proportional to a typical norm for AT ȳ + s̄− 0, such as ‖c‖.)

Proof Since x̄ = x/ϕ and s̄ = s/β, we have s̄T x̄ = sTx/(βϕ) and µ̄ =
µ/(βϕ) where µ := sTx/n and µ̄ := s̄T x̄/n. Thus, for each
j,

s̄j x̄j ≥ γ̄0µ̄ iff sjxj/(βϕ) ≥ γ̄0µ/(βϕ) iff sjxj ≥ γ0µ.
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Next, ‖AT y + s − c‖ = 0 ≤ max(εD, sTx/γD) and ‖Ax̄ + ζ̄ − Ax0‖ =
0 ≤ max(ε̄P , s̄T x̄/γ̄P ). Finally, Ax− b = ϕ(Ax0 − b), so

ϕ‖Ax0 − b‖ = ‖Ax− b‖ ≤ max(εP , sTx/γP ) = sTx/γP

if and only if

ϕ ≤ sTx/(γP ‖Ax0 − b‖);

whereas bT ȳ − 1 = 0 and AT ȳ + s̄− 0 = c/β, so

‖c‖/β = ‖AT ȳ + s̄− 0‖ ≤ max(ε̄D, s̄T x̄/γ̄D) = s̄T x̄/γ̄D = sTx/(βϕγ̄D)

if and only if

ϕ ≤ sTx/(γ̄D‖c‖).

By our conditions on γP and γ̄D, these conditions are equivalent.

Let us summarize what we have shown (and not shown) about the
convergence of IIP methods. (Of course, analogous results for the dual
strictly infeasible case can easily be established.) Theorem 7.8 shows
that the original KMM algorithm will provide certificates of infeasibility
in the limit for strictly infeasible instances. However, our development
of §7.4.2 and §7.4.3 suggests a more ambitious goal. We would like a
strategy for choosing the centering parameter σ and the step sizes αP

and αD at each iteration so that:

(a) In case (P ) and (D) are feasible, the iterates converge to optimal
solutions to these problems;

(b) In case (P ) is strictly infeasible, the iterates become dual feasi-
ble, bT y becomes positive, and thenceforth the shadow iterates
converge to optimal solutions of (P̄ ) and (D̄), unless a certificate
of primal infeasibility is generated;

(c) In case (D) is strictly infeasible, the iterates become primal fea-
sible, cTx becomes negative, and thenceforth the shadow iterates
converge to optimal solutions of (P̃ ) and (D̃), unless a certificate
of dual infeasibility is generated.

Of course, the algorithm should proceed without knowing which case
obtains. We would further like some sort of polynomial bound on the
number of iterations required in each case.

Unfortunately, we are a long way from achieving this goal. We do not
know how to achieve dual (primal) feasibility in case (b) (case (c)). And
we do not know how to choose the parameter σ and corresponding σ̄
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and the step sizes αP and αD and corresponding ᾱP and ᾱD to achieve
simultaneously good progress in (P ) and (D) and (P̄ ) and (D̄) (which
we would like since we do not know which of cases (a) and (b) holds).
The next subsection gives some practical guidance for choosing these
parameters, without any guarantees of convergence.

7.5.3 Implications for the design of IIP methods

Suppose we are at a particular iteration of an IIP method and we suspect
that (P ) is strictly infeasible. (Similar considerations of course apply in
the dual case.) For example, we might check that ϕ (the proportion of
primal infeasibility remaining at the current iterate x) is at least .01
whereas the dual iterate (y, s) is (approximately) feasible, and β := bT y

and ∆β := bT∆y are positive. It then might make practical sense to
choose the parameters to determine the next iterates with some attention
to the (presumably better behaved) shadow iterates. Let us recall the
relationship between the parameters in the real and shadow universes:

σ̄ :=
β

∆β
σ, ᾱP :=

αP

1 − αP
.
∆β

β
, ᾱD :=

αD∆β

β + αD∆β
.

In the case that we expect, ∆β will be considerably larger than β, so
that σ̄ will be much smaller than σ. Practical rules for choosing σ might
lead to a value close to 1, since poor progress is being made in achieving
feasibility in (P ); but σ̄ may still be quite small, indicating good progress
toward optimality in (P̄ ) and (D̄). Indeed, it seems reasonable to choose
σ quite large, so that σ̄ is not too small — recall that merely achieving
feasibility in (D̄) yields a certificate of primal infeasibility; an optimal
solution is not required. Of course, ∆β itself depends on σ by the relation
above Assumption 7.2, but choosing a larger σ is likely to increase σ̄.

Having thus chosen σ, we need to choose the step size parameters
αP and αD. Because primal feasibility cannot be achieved, αP < 1, but
again, the resulting ᾱP may be much larger, indeed even bigger than
1. In such a case it seems reasonable to make αP even smaller, so that
the corresponding ᾱP = 1, using the formula above. A reverse situation
occurs for αD and ᾱD. If we limit αD to 1, the corresponding ᾱD may be
quite small, whereas we would like to have ᾱD = 1 to obtain a certificate
of infeasibility. Such a value corresponds to αD = ∞, so that it seems
reasonable to take αD as a large fraction of the distance to the boundary,
even if this exceeds 1. If it is possible to choose αD = ∞, then (∆y,∆s)
is itself a certificate of primal infeasibility.
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Modifications of this kind in the software package SDPT3 (see [31])
seem quite useful to detect infeasibility; in particular, allowing αD (αP )
to be very large when primal (dual) infeasibility is suspected usually
gives a very good certificate of primal (dual) infeasibility at the next
iteration.

7.6 Extensions to conic programming

All of our discussion so far has concentrated on the linear programming
case. In this section we show that the results of §7.4 extend to many IIP
methods for more general conic programming problems of the form

(P̌ ) minimize 〈c, x〉,
Ax = b, x ∈ K.

Here K is a closed, convex, pointed (i.e., containing no line), and solid
(with nonempty interior) cone in a finite-dimensional real vector space
E with dual E∗, and c ∈ E∗: 〈s, x〉 denotes the result of s ∈ E∗ acting on
x ∈ E. A is a surjective linear transformation from E to the dual Y ∗ of
another finite-dimensional real vector space Y , and b ∈ Y ∗. In particular,
this includes the case of semidefinite programming (SDP), where E = E∗

is the space of symmetric matrices of order n with the inner product
〈s, x〉 := Trace(sTx) and K is the positive semidefinite cone. It also
contains the case of second-order cone programming (SOCP), where
E = E∗ = R

n with the usual inner product and K = K1 × · · · × Kq,
with Ki := {xi ∈ R

ni : xi = (xi1; x̄i), xi1 ≥ ‖x̄i‖} and
∑

i ni = n. (Here
we have used Matlab notation: (u; v) is the column vector obtained by
concatenating the column vectors u and v. Hence the first component
of xi is required to be at least the Euclidean norm of the vector of the
remaining components.)

Both of these classes of optimization problems have nice theory and
wide-ranging applications: see, e.g., Ben-Tal and Nemirovski [2] or Todd
[27].

The problem dual to (P̌ ) is

(Ď) maximize 〈b, y〉,
A∗y + s = c, s ∈ K∗,

where A∗ : Y → E∗ is the adjoint transformation to A and K∗ :=
{s ∈ E∗ : 〈s, x〉 ≥ 0 for all x ∈ K} is the cone dual to K. In the two
cases above, K is self-dual, so that K∗ = K (we have identified E and
E∗).
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Given a possibly infeasible interior point (x, y, s) ∈ intK×Y × intK∗,
a primal-dual IIP method (see, e.g., [19, 20, 21, 27, 2]) takes steps
in the directions (∆x,∆y,∆s) obtained from a linear system of the
form

A∗∆y + ∆s = c−A∗y − s,

A∆x = b−Ax,

E∆x + F∆s = σg − h,

(7.34)

for certain operators E : E → V and F : E∗ → V (V is another
real vector space of the same dimension as E) and certain g, h ∈ V ,
depending on the current iterates x and s, and for a certain parameter
σ ∈ [0, 1]; compare with (7.10).

We are again interested in the case that (P̌ ) or (Ď) is infeasible, and
again we concentrate on the primal case, the dual being similar. We
note that a sufficient condition for primal infeasibility is the existence of
(ȳ, s̄) ∈ Y × E∗ with

A∗ȳ + s̄ = 0, s̄ ∈ K∗, 〈b, ȳ〉 = 1, (7.35)

but in the general nonpolyhedral case this is no longer necessary. We
will say that (P̌ ) is strictly infeasible if there is such a certificate with
s̄ ∈ intK∗ (again, this implies that (Ď) is strictly feasible). Henceforth
we suppose that (P̌ ) is strictly infeasible and that a sequence of itera-
tions from the initial infeasible interior point (x0, y0, s0) has led to the
current iterate (x, y, s) where the analogue of Assumption 7.1 holds (the
only change is that β := 〈b, y〉 is positive). We consider the Farkas-like
problem

(D̄) max 〈Ax0, ȳ〉
A∗ȳ + s̄ = 0,
〈b, ȳ〉 = 1,

s̄ ∈ K∗,

with dual

(P̄ ) min ζ̄

Ax̄ + bζ̄ = Ax0,

x̄ ∈ K.

We define the shadow iterate (x̄, ζ̄, ȳ, s̄) of (x, y, s) exactly as in Defini-
tion 7.1. We will show that, assuming E , F , g, and h depend on x and
s suitably, once again an iteration from (x, y, s) corresponds appropri-
ately to a shadow iteration from (x̄, ζ̄, ȳ, s̄). We define Ē , F̄ , ḡ, and h̄
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from the shadow iterate as their unbarred versions were defined from
(x, y, s).

Since we are assuming (y, s) feasible, our directions (∆x,∆y,∆s) solve
(7.34) with the first right-hand side replaced by zero. We again assume
that ∆β := 〈b,∆y〉 is positive. Having chosen positive step sizes αP and
αD to obtain the new iterate (x+, y+, s+), we define ᾱP , ∆x̄, ∆ζ̄, ᾱD,
∆ȳ, and ∆s̄ exactly as in §7.4.2.

Theorem 7.9 Let us suppose that E, F , g, and h and E, F , g, and h

are related in one of the following ways:
(a) Ē = E/β, F̄ = F/ϕ, ḡ = g/(βϕ), and h̄ = h/(βϕ);
(b) Ē = E , F̄ = (β/ϕ)F , ḡ = g/ϕ, and h̄ = h/ϕ; or
(c) Ē = (ϕ/β)E , F̄ = F , ḡ = g/β, and ḡ = g/β.
Suppose also that Ex = Fs = h. Then the directions (∆x̄,∆ζ̄,∆ȳ,∆s̄)

solve the Newton system for (P̄ ) and (D̄) given below:

A∗∆ȳ + ∆s̄ = −A∗ȳ − s̄,

〈b,∆ȳ〉 = 0,
A∆x̄ + b∆ζ̄ = 0,
Ē∆x̄ + F̄∆s̄ = σ̄ḡ − h̄,

(7.36)

for the value σ̄ := β
∆β

σ.

Proof The derivation is exactly as in the proof of Theorem 7.4 except
for that of the last equation. In case (a) we obtain

Ē∆x̄ + F̄∆s̄ =
1
β
E

(
β

ϕ∆β
(∆x + x)

)
+

1
ϕ
F

(
∆s

∆β
− s

β

)
=

1
ϕ∆β

(E∆x + F∆s) +
1

ϕ∆β
Ex− 1

βϕ
Fs

=
1

ϕ∆β
(σg − h) +

1
ϕ∆β

h− 1
βϕ

h

=
(

β

∆β
σ

) (
g

βϕ

)
−

(
h

βϕ

)
= σ̄ḡ − h̄,

as desired. Cases (b) and (c) are exactly the same after dividing the last
equation by β (case (b)) or ϕ (case (c)).

Note that case (a) covers any situation where E scales with s, F with
x, and g and h with both x and s. (As long as we also have Ex = Fs = h.)
This includes our previous linear programming analysis, where E = S,
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F = X, γ = µe, and h = SXe. It also includes the Alizadeh-Haeberly-
Overton [1] direction for SDP, where E is the operator v → (sv + vs)/2,
F the operator v → (vx + xv)/2, g 〈s, x〉/n times the identity, and
h = (sx+xs)/2. (We write direction instead of method here and below,
to stress that we are concerned here with the Newton system, which
defines the direction; many different methods can use this direction,
depending on their choices of the centering parameter and the step sizes.)

As a second example, the HRVW/KSH/M direction for SDP (see
[8, 11, 17]) has E the identity, F the operator v → (xvs−1 + s−1vx)/2, g
〈s, x〉/n times s−1, and h = x. It is easily seen that these choices satisfy
the conditions of case (b), as well as the extra condition. Another in-
stance of case (b) is the Nesterov-Todd (NT) direction for SDP — see [20,
21]. Here F is the operator v → wvw, where w := x1/2[x1/2sx1/2]−1/2x1/2

is the unique positive definite matrix with wsw = x, and E , g, and h are
as above. Then, if w̄s̄w̄ = x̄, it is easy to see that w̄ = (β/ϕ)1/2w, so
again the conditions are simple to check.

The dual HRVW/KSH/M direction for SDP (see [11, 17]) is an in-
stance of case (c). Here E takes v to (svx−1+x−1vs)/2, F is the identity,
g 〈s, x〉/n times x−1, and h = s.

We presented the NT direction above in the form that is most useful
for computing the directions, and only for SDP. But it is applicable in
more general self-scaled conic programming (including SOCP), using a
self-scaled barrier function, and can be given in a form as above satisfying
the conditions of case (b), or another form that conforms to case (c).

Lastly, the presentations of the HRVW/KSH/M and NT directions
for SOCP in Tsuchiya [29] use different forms of the Newton system:
and it is easy to see that these fit into case (a) of the theorem.

Let us finally note that our results on boundedness and unboundedness
in §7.5.1 also hold for general conic programming problems. The key
simple fact is that, if s ∈ intK∗, then {x ∈ K : 〈s, x〉 ≤ δ} is bounded
for any positive δ. Hence analogues of Propositions 7.1 and 7.2 hold.

7.7 Concluding remarks

We have shown that there is a surprising connection between the it-
erates of an IIP method, applied to a dual pair of problems (P ) and
(D) in the case that one of them is strictly infeasible, and those of an-
other IIP method applied to a related pair of strictly feasible problems
whose optimal solutions give a certificate of infeasibility for (P ) or (D).
This connection involves a projective transformation from the original
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setting of the problems to a ‘shadow’ universe, where the correspond-
ing iterates lie. It holds not only for linear programming, but also for a
range of methods for certain more general conic programming problems,
including semidefinite and second-order cone programming problems.
We hope that an intriguing glimpse of this connection has been pro-
vided, but it is clear that much work remains to be done to understand
the convergence of IIP methods.
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Abstract

In this note I shall briefly describe an on-going project at Utah State
University to create Maple software and Java applets for use in clas-
sification problems in geometry and algebra. The first problem we are
currently working on deals with Petrov’s remarkable classification of
all 4-dimensional local group actions which admit a Lorentz invariant
metric; the second focuses on the classification of low dimensional Lie
algebras. The software which supports our work on these two classifi-
cation problems is part of the Maple suite of software packages called
Vessiot, an integrated collection of Maple programs for computations
in differential geometry, Lie algebras and the variational calculus on jet
spaces.

8.1 Introduction

A central theme in mathematics is the classification of mathematical
objects up to a prescribed notion of equivalence. Well-known examples of
such classification problems include the classification of two dimensional
surfaces up to homeomorphism, the classification of Abelian groups up
to isomorphism, and the classification of vector field systems in the plane
up to local diffeomorphism.
From a strictly mathematical viewpoint, a classification problem may

be considered solved once a complete list of inequivalent representatives
of the mathematical objects under classification is obtained. However,
from a practical perspective, a number of important issues remain.
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• How does one locate a given mathematical object in the list of rep-
resentatives furnished by the solution of the classification problem?
This problem is especially acute if one wants to use the results of a
classification problem but one is not an expert in the area.

• Once one has located a given object in the list of representatives, how
does one find the transformation which maps the given object to its
representative?

• How can one search through the list of representatives furnished by the
solution of the classification problem to identify those representatives
with a prescribed set of properties.

The purpose of this short article is to describe some of the on-going
work with students and colleagues at Utah State University to create
websites and data-based Java applets to address some of these practi-
cal issues regarding classification problems in mathematics. I also wish
to introduce the Maple software suite Vessiot, which we have used to
perform the extensive computations needed to create the data-bases for
these websites.
The original HTML files for my lecture given during the FoCM con-

ference at the University of Minnesota, upon which these notes are
based, are available at www.math.usu.edu/∼anderson/FoCM talk. Ves-
siot, together with accompanying help files and tutorials, can be down-
loaded from the Symbolics page of the Formal Geometry and Mathemat-
ical Physics website www.math.usu.edu/∼fg mp. This page contains a
link to the Guided Tour worksheet for Vessiot which provides a good
overview of the many capabilities of this software.
The websites for the Petrov classification of spacetimes and for the

classification of Lie algebras are located at www.matti.usu.edu/Petrov

and www.matti.usu.edu/Lie. I encourage the reader to visit these two
sites and to run the Java applets contained within. While still under
construction, these applets nevertheless demonstrate the great poten-
tial of the web for disseminating the solutions to various mathematical
classification problems.

8.2 Vessiot

The Maple package Vessiot was initially conceived to provide symbolic
software for the calculus of vector fields and differential forms on jet
spaces and to implement all the various operations and procedures in
the variational bicomplex [1]. From the outset the primary motivation
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in developing this software was to create a general purpose package for
computations in differential geometry, with an emphasis on the geometry
of differential equations, which would support development of a wide
range of specialized applications.

• Vessiot contains an extensive set of commands for creating vector
fields, differential forms, tensors, transformations and so on and for the
manipulation of these objects. Mathematical objects can be created
using a simple and natural syntax with the Vessiot parsing command
and are displayed in an easy-to-read mathematical format.

• Vessiot has wide capabilities for working with multiple coordinates
systems simultaneous within a single Maple session and for construct-
ing transformations between such coordinates. This capability is in-
valuable in the transformation theory of differential equations, in the
theory of moving frames and for the classification of low dimensional
Lie algebras.

• The Vessiot environment is integrated – many commands work across
a wide range of contexts. The internal data structures upon which Ves-
siot is constructed are used to properly determine the correct context
for such commands.

• Vessiot contains a wide range of programming utilities which enable
the user to quickly write new applications.

• Vessiot contains extensive libraries of Lie algebras, vector field sys-
tems, Lorentz metrics, differential equations and their symmetries and
so on, all of which are immediately available for use.

• extensive, detailed help files are available through the Maple help com-
mand.

The main package of the Vessiot suite contains all the basic commands
for the calculus on jet spaces. These include:

• commands to create coordinate systems of independent and dependent
variables and to manipulate the associated jet spaces.

• a wide variety of commands for inputting vector fields, differential
forms, contact forms, transformations and differential equations.

• arithmetic operations for addition, scalar multiplication, and interior
and wedge products of differential forms and vector fields.

• the differential operations of exterior differentiation of forms, horizon-
tal and vertical differentiation of biforms, and Euler operators.

• the homotopy operators for the deRham complex and the variational
bicomplex.
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• commands for the composition and inverses of transformations.
• prolongation of vector fields, transformations and differential equa-
tions.

• frame procedures for performing calculations with frames other than
the coordinate frame.

• extensive linear algebra utilities for working with vector fields and
differential forms.

• Vessiot programming utilities for accessing data pertaining to coordi-
nate systems and for accessing various parts of the internal represen-
tation of all Vessiot objects.

On top of this main package a host of more specialized packages have
been developed. These include

de appls: a differential equations package which includes routines for
Noether’s theorem and for the symmetry reduction of differen-
tial equations.

eds: a rudimentary exterior differential systems package.
Frobenius: a rudimentary package for solving Frobenius systems of

differential equations.
Gelfand Dickey: a package of commands for the Gelfand Dickey trans-

form.
group actions: computations with group actions on manifolds.
invariant metrics: a package for computing curvature tensors for in-

variant metrics on homogeneous spaces.
isometries: calculates the Lie algebra of isometries of a metric.
Koszul: an extensive package of commands for general Lie algebra com-

putations.
moving frame: a package for constructing moving frames and differ-

ential invariants on jet spaces.
Mubar: a package for the classification of low dimensional Lie algebras.
Spencer: a package for tableaux computations and Spence cohomology.
tensors: an extended tensor package which allows for manipulation of

tensors on jet spaces.

The last section of this article contains a few simple illustrations of
Vessiot. They are, admittedly, a poor substitute for downloading the
program and experimenting with it.
Let me conclude this brief overview by acknowledging the many stu-

dents at Utah State University who have made essential contributions to
the development of Vessiot over the years. Bryan Croft created the ori-
gin package in Macsyma; Cinnamon Hillyard converted Bryan’s package
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to Maple and introduced many of the current data structures; Charles
Miller added multiple coordinate functionality, the user friendly out-
put routines, and the tensors package; Jeff Humphries, Florin Cantrina,
Jamie Jorgenson and Robert Berry made essential contributions to the
Lie algebra package; and the class of Math 5820 played a critical role in
the development of the Lie algebra classification package. Many thanks
also to my colleagues Mark Fels and Charles Torre for their constant
assistance with software testing and debugging.

8.3 Petrov on line

In the book Einstein Spaces, Petrov [5] gives a complete list of all in-
finitesimal group actions on a 4-dimensional manifold which preserve
a Lorentz metric. Our initial interest in Petrov’s work was as a source
of interesting group actions to illustrate our recent theoretical work on
group invariant solutions [3] and the principle of symmetric criticality
[2].
However, it is difficult to work systematically with Petrov’s classifica-

tion and it is almost impossible to positively identify even the standard
well-known metrics within Petrov’s list of metrics. With Vessiot, we were
able to easily compute many invariant properties for the group actions in
Petrov’s book and this suggested the possibility of constructing a data-
base of such properties which would allow one to systematically identify
a given metric within the Petrov classification.
Rather that describe here in detail the Petrov On Line website, it is

much easier to simply point the interested reader to the aforementioned
address. To run the Petrov on Line applet your browser will need the
current Java plugin – this will automatically be installed if necessary.
Once the applet is running, click first on the reset button and then on
the retrieve button. This returns the list of all the metrics in Petrov’s
book and then, by highlighting a particular metric, its properties are
displayed in the various fields. Click on reset, enter in a few properties,
and then click on retrieve to obtain a list of all metrics with the given
properties.
The two Vessiot tutorials Petrov On Line and isometries tutorial,

which can be downloaded from the Symbolics page of the Formal Geom-
etry and Mathematical Physics website (www.math.usu.edu/∼fg mp),
illustrate the use of Vessiot to calculate the properties of a given metric
required by Petrov On Line in order to locate the metric in Petrov’s
classification.
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8.4 Lie algebras on line

Unlike the case of semi-simple Lie algebras, a good structure theory for
solvable and nilpotent Lie algebras is unavailable. At this time the one
alternative seems simply to construct extensive tables of these algebras.
Accordingly, this appears to be another area where data-base applets
could provide a useful tool in classification.
A major difficulty in the classification of solvable Lie algebras arises

from the existence of continuous families of non-isomorphic solvable
algebras. For example, consider the class of n + 1 dimensional Lie al-
gebras with an n dimensional Abelian ideal. Such algebras are, roughly
speaking, in one-to-one correspondence with the number of inequiva-
lent Jordon canonical forms for n × n matrices. This difficulty is com-
pounded by the fact that many basic numerical invariants of Lie alge-
bras, such as the dimension of the derived algebra and dimension of the
automorphism algebra, can change as the parameters in the structure
constants for these Lie algebras vary. One can simply ignore this fact
and be content with a very coarse classification or one can develop finer
classifications by demanding that various invariants are constant within
an allowable range of parameters. We are currently completing rather
refined tables of all Lie algebras of dimensions ≤ 6 for which the di-
mensions of the derived, upper and lower series, the dimension of the
automorphism algebra, and the dimensions of the cohomology spaces
are constant.
The Lie Algebras on Line website provides a link to an extensive

data-base of properties of all Lie algebras of dimensions 3 and 4. We are
currently working to extend this data-base to algebras of dimensions 5
and 6.

8.5 Vessiot worksheets

8.5.1 Worksheet 1

In this worksheet the Vessiot user interface is illustrated. A coordinate
system, euc, with three variables [x, y, z] is defined, a few vector fields,
differential forms and tensors are created, and some elementary calcula-
tions performed.

> with(Vessiot):
> coord_init([x,y,z],[],E3);

frame name : E3
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Lot of things happen in the background when the coord init command is
executed. In particular, the coordinate vector fields Dx, Dy and Dz and one
forms dx, dy, dz are automatically defined. These are default labels for the
coordinate vector fields and differential forms. The coord init command allows
one assign custom names to these vector fields and forms, if need be.

Define a couple of vector fields.

> X:= evalV(x*D_x - y*D_y);

X := xD x − yD y

> Y:= evalV(x^2*D_z);

Y := x2D z

Compute their Lie bracket.

> Lie_bracket(X,Y);

2x2D z

Define a couple of 1-forms.

> alpha:= evalV( dx -z*dy);

α := dx − z dy

> beta:=evalV( dx +z*dz);

β := dx + z dz

Evaluate the interior product of a vector and a 1-form.

> hook(X,alpha);

z y + x

Compute the wedge product of a pair of forms.

> alpha &wedge beta;

z dx ˆdy + z dx ˆdz − z2 dy ˆdz
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Compute the Lie derivative of a form.

> Lie_derivative(Y,beta);

2 z x dx + x2 dz

Compute the exterior derivative of a form.

> ext_d(alpha);

dy ˆdz

Construct a tensor.

> with(tensors):
> T:=evalV(dx &t D_z &t D_y);

T := dx D z D y

Compute the Lie derivative of a tensor

> Lie_derivative(X,T);

2 dx D z D y

Define another coordinate system, called S3, and a transformation from S3 to

E3. This transformation defines S3 as the usual system of spherical coordi-

nates in 3-dimensions.

> coord_init([rho, theta,phi],[],S3);

frame name : S3

> Phi:=transform(S3,E3,[x=rho*cos(theta)*sin(phi),
y=rho*sin(theta)*sin(phi), z=rho*cos(phi)]);

Φ := [x = � cos(θ) sin(ϕ), y = � sin(θ) sin(ϕ), z = � cos(ϕ)]

Evaluate x2 + y2 + z2 in spherical coordinates.

> pullback(Phi, x^2+y^2+z^2);

�2
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Evaluate the 1-form dx in spherical coordinates.

> pullback(Phi, dx);

−� sin(θ) sin(ϕ) dtheta + � cos(θ) cos(ϕ) dphi

8.5.2 Worksheet 2

We define the Lagrangian L = u2
x + u2

y for Laplace’s equation uxx +
uyy = 0 in two independent variables. We check that this Lagrangian
is rotational invariant and then use Noether’s theorem to construct the
associated conservation law.
This worksheet gives a glimpse of Vessiot’s capabilities for compu-

tations in jet spaces, the calculus of variations and the geometry of
differential equations.
The default Vessiot notation for derivatives is ux = u[1, 0], uy =

u[0, 1], uxx = u[2, 0], uxy = u[1, 1], uyy = u[0, 2] and so on. Alternative
notation can be invoked.

> with(Vessiot):

> coord_init([x,y],[u],E);

frame name : E

Define the Lagrangian as a function.

> L:= u[1,0]^2 + u[0,1]^2;
L := u1, 0

2 + u0, 1
2

Define the Lagrangian as a form (or more precisely as a type (2,0) biform).

> lambda:= evalV(L * Dx &w Dy);

λ := (u1, 0
2 + u0, 1

2)Dx ˆDy

Compute the Euler-Lagrange expression of L.

> EL0(L);
[−2u2, 0 − 2u0, 2]
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Define the one-parameter group of rotations in the xy plane.

> phi:=transform(E,E, [x=x*cos(theta) + y*sin(theta),
y= -x*sin(theta) +y*cos(theta), u[0,0]=u[0,0]]);

ϕ := [x = x cos(θ) + y sin(θ), y = −x sin(θ) + y cos(θ), u0, 0 = u0, 0]

Prolong the transformation ϕ to the 1-jets.

> phi1:=pr_transform(phi,1);

ϕ1 := [x = x cos(θ) + y sin(θ), y = −x sin(θ) + y cos(θ), u0, 0 = u0, 0,

u1, 0 = cos(θ)u1, 0 + sin(θ)u0, 1, u0, 1 = −sin(θ)u1, 0 + cos(θ)u0, 1]

To check the rotational invariance of the Lagrangian form λ, show that it

remains unchanged under pullback by ϕ.

> pullback(phi1,lambda);

(u1, 0
2 + u0, 1

2)Dx ˆDy

To find the associated conservation law, first find the infinitesimal generator

for the transformation ϕ.

> X:=transform_to_vect(phi,[theta])[1];

X := yD x − xD y
> with(de_appls);

[Lie reduction, Noether1 , Noether2 , inverse td ]

> sigma:=Noether1(X,lambda);

σ := (−xu1, 0
2 + xu0, 1

2 − 2u0, 1 u1, 0 y)Dx

+(y u1, 0
2 − y u0, 1

2 − 2u1, 0 u0, 1 x)Dy

To check that σ is a conservation law for Laplace’s equation, take the hori-

zontal exterior derivative of σ and note that the result vanishes on solutions

to Laplace equations.

> check:=dH(sigma);

check := (2u2,0 u1,0 y − 2u2,0 u0,1 x− 2u0,2 u0,1 x+ 2u0,2 u1,0 y)DxˆDy
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> factor(check);

−2 (u2, 0 + u0, 2) (u0, 1 x− u1, 0 y)Dx ˆDy

To get a sense of some of the mathematics which Vessiot supports, let’s look

at the code for the command Noether1.

> op(Noether1);

proc(vector , Lagrangian)
localω, boundary form, Z, ans1 , ans2 ;

ω := dV(Lagrangian) ‘&plus‘ EL form(Lagrangian) ;
boundary form := homotopy dH(ω) ;
Z := pr vect(evol(vector), objectOrder(Lagrangian)) ;
ans1 := vert hook(Z, boundary form) ;
ans2 := total hook(total(vector), Lagrangian) ;
ans1 ‘&minus‘ ans2

end

The Noether formula for the conservation law defined by a Lagrangian
λ and an infinitesimal symmetry X is

σ = −Xtot λ+ prXev β.

Here Xtot and Xev are the total and evolutionary parts of the vector
field X, prXev is the prolongation of Xev. The form β is the boundary
term in the first variational formula

dV λ = E(λ) + dHβ,

where E(λ) is the Euler-Lagrange form of λ. The first two lines of the
code in the program Noether1 compute the boundary form β; the next
line prolongs the evolutionary part of the vector fieldX to the differential
order of β; and the last two lines compute the two terms in the formula
for the conserved form σ.

8.5.3 Worksheet 3

In this worksheet we shall demonstrate some capabilities of the Lie alge-
bra package Koszul. This package is written on top of the basic Vessiot
package and uses the same syntax and commands for manipulating vec-
tors, form etc. We shall begin with the 6 dimensional Lie algebra of
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infinitesimal symmetries of the heat equation. These vectors are conve-
niently stored in the Vessiot library Olver DE lib which contains many
of the worked problems from Olver’s book [4].

> with(Vessiot):with(Vessiot_library):with(Koszul):
with(Mubar):

> Gamma:=Olver_DE_lib([2,41])[3];

Γ := [D x , D t , u0, 0D u [0, 0] , 2 tD t + xD x , 2 tD x

−xu0, 0D u [0, 0] , 4 t2D t + 4 t xD x − (x2 + 2 t)u0, 0D u [0, 0] ]

The command vect to Lie alg will compute the structure constants for the Lie
algebra of vector fields Γ and return the result as a data structure used by
Vessiot to initialize an abstract Lie algebra.

This is one of the significant design advantages of Vessiot – one came move

effortlessly back and forth from the arena of differential geometry and vectors

fields to that of Lie algebras.

> vect_to_Lie_alg(Gamma, Lie);

[[Lie alg , Lie, [6]], [[[1, 4, 1], 1], [[1, 5, 3], −1], [[1, 6, 5], 2], [[2, 4, 2], 2],
[[2, 5, 1], 2], [[2, 6, 3], −2], [[2, 6, 4], 4], [[4, 5, 5], 1], [[4, 6, 6], 2]]]

The command Lie alg init plays much the same role as the command co-

ord init. The names e1, e2, . . . are assigned internal Vessiot representations as

vectors in the Lie algebra and the structure equations are stored in memory.

> Lie_alg_init(%);

> Lie_bracket_mult_table();

| e1 e2 e3 e4 e5 e6

−− −−− −−− −−− −−− −−− −−−
e1 | 0 0 0 e1 −e3 2e5

e2 | 0 0 0 2e2 2e1 −2e3 + 4e4

e3 | 0 0 0 0 0 0

e4 | −e1 −2e2 0 0 e5 2e6

e5 | e3 −2e1 0 −e5 0 0

e6 | −2e5 2e3 − 4e4 0 −2e6 0 0
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Define a pair of vectors in the Lie algebra and compute the Lie bracket.

> X:=evalV(e1 + 2*e4 -e6);

X := e1 + 2 e4 − e6
> Y:=evalV(e2 -e3 +3*e5);

Y := e2 − e3 + 3 e5
> Lie_bracket(X,Y);

−4 e2 − 5 e3 + 4 e4 + 6 e5

Find the center of the Lie algebra.

> center();

[e3 ]

Compute the radical of the Lie algebra (the largest solvable ideal).

> radical();

[e3 , e5 , e1 ]
> check_indecomposable();

true
> check_solvable();

false
> check_semi_simple();

false

Since the algebra is indecomposable, not solvable and not semi-simple, the

Levi decomposition is non-trivial and is now computed. The first factor is the

radical and the second factor is the semi-simple part.

> LD:=Levi_decomposition();

LD := [[e5 , e1 , e3 ], [e2 , (
−1
2
) e3 + e4 , e6 ]]
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We can take any subalgebra of a Lie algebra and initialize it as a Lie algebra

in its own right.

> subalgebra_to_Lie_algebra_data(LD[2],SS);

[[Lie alg , SS , [3]], [[[1, 2, 1], 2], [[1, 3, 2], 4], [[2, 3, 3], 2]]]
> Lie_alg_init(%);

Lie algebra : SS

The program classify Lie algebra will classify any 3 or 4 dimensional Lie

algebra in accordance with a list of such algebras made by Pavel Winternitz. In

this list the Lie algebra [3,5] denotes the algebra sl(2). We conclude that this

is the semi-simple part of the 6 dimensional Lie algebra of the 2-dimensional

heat equation.

> classify_Lie_algebra()[2];

[[winternitz , [3, 5]]]
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