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Preface

Approximate solutions to many problems that cannot be solved analytically, arise
from numerical and other approximation techniques. In this book, the numerical
methods and algorithms are developed for approximating such solutions. It also
includes some methods of computation that yield exact results.

This book is appropriate as a text for a course in computational methods as well as
areference for researchers who need such methods in their work. The book contains
a presentation of some well-known approximation methods that are scattered
throughout existing literature as well as techniques that are obscure such as Chio’s
method for evaluating a determinant in ch. 5 and Namias’ extension of the Stirling
approximation to the gamma function for large argument in Appendix 3. Material
that seems to be original is also presented; such as evaluating integrals using
Parseval’s theorem for periodic functions, beta and gamma functions, and Heaviside
operator methods, along with solving integral equations with singular kernels and
numerical evaluation of Cauchy principle value integrals.

To provide the reader with concrete applications of these methods, the book
relies heavily on illustrative examples. I have provided a table of examples (like a
table of contents) with descriptive titles to give the reader quick access to these
illustrations.

This manuscript was prepared using Microsoft Word and MathType. MathType
is an equation editor developed and marketed by Design Science Co. of Long
Beach, California. Because of constraints encountered using these programs, it is
sometimes necessary to position a mathematical expression in a sentence that does
not fit on the same line as the text in that sentence. Such expressions have been
placed on a separate line, centered on the page. They should be read as if they were
text within the sentence. These expressions are distinguished from equations in that
they are in the center of the page, they do not contain an “equal” (=), “not equal”
(#), or “inequality” (>, <, etc.) symbol and are not designated with an equation
number. Equations are displayed starting close to or at the left margin, have one
or more equal, not equal or inequality symbols, and are identified by an equation
number. An example of this “out of line” part of a sentence can be found at the
bottom of page 133.
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Chapter 1
INTERPOLATION and CURVE FITTING

Discrete data

Often one is presented with numerical values of a function f(x) at specified values
of x. Experimental results are often presented in a table as a set of discrete data
points. When data is presented in this way, the values of the function at points not
given in the table must be found by some numerical technique.

Table 1.1 is a numerical representation of a function f(x) at five different values
of x.

x fx)
0.0 0.50
1.1 1.10
1.8 2.10
24 2.90
3.7 4.00

Table 1.1 Sample data table

Values of f(x) at points x < 0.0 and x > 3.7 are called extrapolated values. For
points 0.0 <x <3.7, values of f(x) are called interpolated values of the data.
Methods of finding interpolated values of f(x) that we will develop in this chapter
can also be used to predict extrapolated values of f(x), but extrapolated values are
often unreliable.

Graphical interpolation

A most straightforward approach to interpolation is to construct an approximate
graph of the function and read the values of f(x) from the graph.

H. Cohen, Numerical Approximation Methods, DOI 10.1007/978-1-4419-9837-8_1, 1
© Springer Science+Business Media, LLC 2011



2 1 INTERPOLATION and CURVE FITTING

Example 1.1: Interpolated values by graphing

The graph of Fig. 1.1 is a reasonable estimate of the data of Table 1.1.

Fix)
404

351

301

25T

| [~
1 1 1 1 1 1 1 1
0.5 10 1.5 20 25 30 35 40
Fig. 1.1 Graph of the data in Table 1.1
We see from the graph that
f(3.4) ~ 3.5 (1.1H)DO

1.1 Lagrange and Lagrange-Like Interpolation

Polynomial interpolation

One widely used analytic method of interpolating is by means of a polynomial.
This technique involves approximating f(x) by a polynomial over the range of x
values. If one has N data points, one can interpolate by approximating f(x) by a
polynomial of order N—1.

The method consists of expressing f(x) as a polynomial with N undetermined

coefficients. As such, the polynomial has N terms in powers of x; xo, X, xz, o M

f(x) =Ag+Ax+ ...+ Ay xV! (1.2)

Then, at each given value of x = x; in the data table, one substitutes the values of x;
and f (x;) into eq. 1.2. This results in a set of N equations in the N undetermined
coefficients {Ag, ..., An_1}.
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Example 1.2: Polynomial interpolation

For the five data points in Table 1.1, we approximate f(x) by the fourth order
polynomial

F(x) = Ag + Arx + Apx® 4+ Asx® + Agx? (1.3)

substituting the five data points into the expression yields

A = 0.50 (1.4a)
Ao+ L1A; + (1.1)%4; + (1.1)°A3 + (1.1)*44 = 1.10 (1.4b)
Ao+ 1.8A; + (1.8)%4; + (1.8)°A; + (1.8)*4, = 2.10 (1.4c)
Ag+ 244, + (2.4)%A; + (2.4)°A; + (2.4)* 44 = 2.90 (1.4d)
and
Ao+ 3.7A; + (3.7)%A2 + (3.7)°A3 + (3.7)* A4 = 4.00 (1.4e)

Solving this set of equations for {A, A, Ay, A3, A4}, we obtain
f(x) =~ 0.50 — 0.67x + 1.57x* — 0.47x> + 0.04x* (1.5)

from which
f(3.4) ~3.81 (1.6)0

It is possible to achieve the same order polynomial interpolation as that of eq. 1.2
without having to solve for coefficients of various powers of x. To accomplish this,
we consider the N—1 order polynomial

(x —x1)(x = x2) e (x = X)) (6 — Xpg1) oo (X — )

x) = (1.7)
A0 = =)ok = m) o= ) 5k — 55k — )
where {xi, ..., xy} is the set of N different x values in the data table.
We see that
E I (1.82)
Xp) = .8a
Hi 0 ntk

This can be expressed as a quantity called the Kroenecker delta symbol which is
defined by

| k=
Stn = 4 (1.8b)
0 k#n
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Thus, p(x,), as given in eq. 1.7, satisfies
e (Xn) = O

Using this property,

:uk(xn)f<xn) :f(x”)ék" - {f(gk) l]z; Z
Writing
@) =" w()f ()

k=1

we see that this expression guarantees that

M=

lim f(x) =

X—Xp

k=1

i (en)f () =D S f (0e) = f(x)
k=1

(1.8¢)

(1.9)

(1.10)

(1.11)

the condition that is required to find the coefficients of the polynomial of eq. 1.2.
The polynomial interpolation of eq. 1.10 is called a Lagrange polynomial

interpolation.
Example 1.3: Lagrange interpolation

Labeling the points in Table 1.1 by x; through x5, we have

(x — 1.10)(x — 1.80)(x — 2.40)(x — 3.70)

0 = (5,00 = 1.10)(0.00 = 1.80)(0.00 — 2.40)(0.00 — 3.70)

(x — 0.00)(x — 1.80)(x — 2.40)(x — 3.70)

Ha(x) = (1.10 — 0.00)(1.10 — 1.80)(1.10 — 2.40)(1.10 — 3.70)

(x — 0.00)(x — 1.10)(x — 2.40)(x — 3.70)

H3(x) = (

(x — 0.00)(x — 1.10)(x — 1.80)(x — 3.70)

1.80 — 0.00)(1.80 — 1.10)(1.80 — 2.40)(1.80 — 3.70)

:u4(x) = (

and

(x — 0.00)(x — 1.10)(x — 1.80)(x — 2.40)

2.40 — 0.00)(2.40 — 1.10)(2.40 — 1.80)(2.40 — 3.70)

#50) = (370~ 0.00)(3.70 = 1.10)(3.70 — 1.80)(3.70 — 2.40)

(1.12a)

(1.12b)

(1.12¢)

(1.12d)

(1.12e)
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From eqs. 1.12 we obtain
{(3.4)} = {-0.06, 0.63,—1.63, 1.54, 0.53} (1.13)
and, eq. 1.11 yields

f(3.4) ~ 3381 (1.14)0

It is occasionally useful to approximate a function by polynomial interpolation
using special polynomials, the properties of which are well studied and appear in
the literature. Examples of such polynomials are:

» Legendre polynomials denoted by Px(x), defined for —1 <x < 1.
» Laguerre polynomials denoted by Ly(x), defined for 0 <x < oo.
» Hermite polynomials denoted by Hy(x), defined for —oo <x < oco.

(For properties of these and other special functions, see, for example, Cohen, H.,
1992, Table 6.2, p. 281, pp. 288-386.)
Let Zx(x) be a special polynomial. Then

_ )
H(x) = = 0Z0 00 (1.15)

is a polynomial of order N—1 that has the property
Wi (Xn) = Ok (1.8¢)

It is straightforward to see that the polynomial of eq. 1.15 is identical to that given
ineq. 1.7.

Lagrange-like (general functional) interpolation

Let the x dependence of f(x) arise via a function ¢ (x). For example,

. 1
) =5 (1.16)
can be written in terms of
1
q(x) = - (1.17a)
X

as

) =) (1.17b)
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One can generalize the Lagrange polynomial interpolation to interpolation over
a function ¢ (x) as

() = 760 = (). [a(0) (e 1)a) ~ glre)]-ax) —qlon)] 1o
lg(a) = q(x)]---[q(a) — gla—)]lg(a) = g(a)]-- [g(a) — glw)]
with the condition that g(x;) # q(x,,,) if x; # x,,,.
We see that as the functions g (x) of eq. 1.7,
Vk(xn) = 5/(11 (1.19)
Therefore, the Lagrange-like interpolation of f(x) using g(x) is given by
N
f@) =fla@] =Y w)fxn) (1.20)
k=1
Example 1.4: Lagrange-like interpolation
We consider the interpolation of
1

by a Lagrange polynomial interpolation and by a Lagrange-like interpolation using
eqgs. 1.17, with

q(x)=- (1.17a)

The data table for f(x) for various values of x is shown in Table 1.2.

x fo=x7"
03 6.08581
1.2 0.76073
2.7 0.22540
4.9 0.09220

Table 1.2 Values of x>/? for various values of x

The Lagrange polynomial interpolation of this data is

4
o= D w(x)f (x) (1.21a)

with p(x) given by eq. 1.7. The Lagrange-like interpolation is written as

4
ey D of () (1.21b)

k=1

with vi(x) given by eq. 1.18 with g (x) = 1/x.
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The interpolated results at x=0.2 and x =3.5 are given in Table 1.3.

Lagrange Lagrange-like Exact values
X polynomial in 1/x of 1/x*?
0.2 7.03069 9.49406 11.18034
3.5 1.33971 0.15332 0.15272

Table 1.3 Interpolated values of 1/x*? using polynomial and 1/x interpolations

As can be seen, for both large and small values of x, the Lagrange-like interpolation
over 1/x yields a better estimate of the values of 1/x*? than does the Lagrange
polynomial interpolation. [

This example illustrates that one must have a sense of how the data behaves
(something like 1/x in this example) to determine the function g(x) # x over which
the preferred interpolation is generated.

1.2 Spline Interpolation

If a set of points do not lie on a straight line, any straight line can contain no more
than two data points. A flexible device called a spline, which is used to make
architectural and engineering drawings, can be bent so that more than two
noncolinear points can be connected by placing those noncolinear points along
the edge of the spline.

To describe the mathematical equivalent of this, is called spline interpolation,
we begin by dividing the range of points [x, xy] into intervals of widths x;; —x;
and defining specified groups of intervals as segments (Fig. 1.2).

2 range %
segment ———————
<« interval —=|=— mterval — <« interval =
* ® @ T w @ * w » x
[ |
A1 uy Xga1 Tp+2 Fpan-l Tipen A

Fig. 1.2 Definitions of range, segment, and interval

Spline interpolations are obtained by fitting a function over a specified segment
by a Lagrange or Lagrange-like interpolation. To illustrate, we will use a set of
five points as an example.
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Cardinal spline interpolation

The simplest spline interpolation involves approximating f(x) by some constant
over each interval between consecutive points. Thus, each segment consists of one
interval.

One common choice is to take f(x) to be its value at the midpoint of each
interval;

F) 2 f S + xe41)) Ef(xk+£> X < x < Xpqt (1.22a)

A second common option is to take the value of the function to be the average of f(x)
over each interval;

FO) =3[ ) +f ()] xa <x<xq (1.22b)

This approximation of f(x) by a constant over each interval is the simplest
interpolation one can construct. It is called a cardinal spline. It results in a graph
like the one shown in Fig. 1.3a.

One obvious problem with the cardinal spline is that it defines f (x) as a function
that is discontinuous at each of the data points {x;}. Therefore, for this interpola-
tion, the first derivative of f (x) is undefined.

Linear spline interpolation

The next higher order spline interpolation approximates f(x) by a straight line
between two adjacent points (Fig. 1.3b). This is described mathematically by

fO) =x+ B xx <x < X1 (1.23)

Each pair of constants {oy, ff;} is determined by the values of f(x) at the end
points of the interval, x; and x;,; as

o :M (1.242)

X1 — Xk

and

FOen) =f o) xrnf () — xf ()

Xk+1 — Xk Xk+1 — Xk

B =f () — xx (1.24b)
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¢
) ¢« S |
' Lo ! H
— L | |
e« . « /1 &
T & , N I ; | |
Z ’ ; - T |
' ! \ ' ! | I | | I
—+— — —— ——x
Xy Xy Fy X 1Ty R B g
(@) (b)

[ S S

Fig. 1.3 (a) Cardinal spline interpolation. (b) Linear spline interpolation.
(¢) Quadratic spline interpolation

Clearly f(x) is continuous at each point x;, but its first derivative is discontinuous at
these points.

Since a cardinal and a linear spline interpolations involve connecting two
neighboring points x; and x;,{, each interval is defined by these two neighboring
points. Therefore, these spline interpolations can be constructed no matter how
many points are in the data set.

Quadratic spline interpolation

The quadratic spline interpolation is constructed by writing the function as a
second order polynomial between sets of three successive points. This is described
mathematically by

f) = w® + B +y i <x <X (1.25)
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That is, a quadratic spline is constructed by fitting f(x) to a parabolic section over
three consecutive points. The constants {oy, B, yx} are determined from the values
of f(xp), flxrs1), and f(xp42), respectively. A representative graph of function
interpolated by a quadratic spline is shown in Fig. 1.3c. We see that for the
quadratic spline, a segment consists of two intervals.

The parabolas connect the sets of points {x, X, X3}, {x3, X4, X5}, etc. Therefore,
one can construct a quadratic spline interpolation for an entire data set, if there are
an odd number N of points in the data set. Then, there will be N—1 intervals and
(N-1)/2 segments in the data set, each segment comprised of three data points.

Cubic spline interpolation

To construct a cubic spline interpolation, one fits a cubic polynomial to the data in
subsets containing four consecutive data points, {xi, x», X3, X4}, {x4, X5, X6, X7}, €tc.
Therefore, one can construct a cubic spline interpolation over the entire data set, if it
contains N points with (N—1)/3 an integer. Then, there will be (N —1)/3 segments,
each segment containing three intervals.

With this pattern as a guide, we see that to construct a spline interpolation with a
polynomial of order p using the entire data set, the data set must contain pn + 1
(n=1,2,...), with each of the n intervals containing p + 1 points.

Higher order splines

We can see that the higher the order of the spline interpolation, and therefore the
higher the order of the polynomial one uses to fit a subset of points, the more
difficult it becomes to solve for the coefficients of that polynomial.

An easier way to generate the interpolating polynomial is to use the Lagrange
interpolation over each segment. For example, for a quadratic spline interpolation
over the segment defined by xy, x41, and x,,, instead of writing

fx) = +Bx+7 0 <x<xepo (1.25)
in this interval x; <x <x;4,, one could express f(x) as
F) = e ()f () + per ()f (i) + sy (0 (x42) (1.26)
where

(o — X)) (x — Xiy2)
Xk — Xk+1)(xk - Xk+2)

Hye(x) = ( (1.272)
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(X — x) (X — xg12)

Xyt — X)) (X1 — Xii2)

Py (X) = ( (1.27b)

and

(X — ) (X — xg1)

X2 — Xk)(xk+2 - Xk+1)

ey (X) = ( (1.27¢)

Or, if one knows that the x dependence of f(x) is in the form f [¢(x)], one can
construct a Lagrange-like quadratic spline interpolation as

F () = () (o) + Vit (OF (oet) + Vi (0 (Ke42) (1.28)

for x; <x < Xxppn, With

~la(x) = qlas)]llg(x) = g(xesa)] .

Vk(x) B [Cl(Xk - Q(xk+1)][61(xk) - Cl(xk+z)] (1232)
 [g(x) = qe)llg(x) — qlxra)]

10 = ) = gl Cuerr) — 4(52)] (1:290)

and

b — 1900 = q()]lg(x) — q(xi)]
kr2(x) [9(cr2) — gl [9(kr2) — g(xern )] (1.29¢)

Example 1.5: Spline interpolation
Using the five data points in Table 1.1,

(a) a linear spline interpolation is given by

f(x) = 0.54546x + 0.50000 0.0 <x < 1.1 (1.30a)

f(x) =1.42857x — 047143 1.1 <x<1.8 (1.30b)

f(x) =1.33333x — 0.30000 1.8 <x<24 (1.30c)
and

f(x) =0.84615x 4 0.86923 2.4 <x <37 (1.30d)

(b) a quadratic spline interpolation is given by

f(x) = 0.49062x* — 0.00577x + 0.50000 0.0 <x < 1.8 (1.31a)
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and
f(x) = —0.25641x% 4 2.41026x — 1.40770 1.8 <x < 3.7 (1.31b)
Using the linear spline approximation, we find
f(1.5) =1.67170 (1.32a)

and with the quadratic spline approximation

£(1.5) = 1.59524 (1.32b)01

1.3 Interpolation by Pade Approximants

If a function f(x) is analytic over some domain, it can be approximated by a Pade
(pronounced “Pah-day”’) approximant developed in Appendix 1;

)N

vy 20 +pi(x = x0) + pa(x = x0)” + ... + py (¥ — X0

) - (A1.9)
1+ qi(x —x0) + @2(x —x0)" + ... + qu(x — x0)

A particular Pade approximation is defined by the determination of the M + N + 1
coefficients {p;, gx}. As noted in Appendix 1, the most accurate Pade
approximations to f(x) are those for which M =N or M =N-1. These contain
2N +1 (for M = N) or 2N (for M = N-1) coefficients to be determined. Therefore, if
a data set contains 2N + 1 (an odd number of) data points, the function f(x) that the
data describes is best approximated by f*"*(x). For a data set with 2N (an even
number of ) points, the best approximation to f(x) will be achieved using """ "1(x).

Since there are N roots of the denominator polynomial, there are at most N
singularities (infinities) of the Pade Approximant which may not be singularities of
the original function. In that case, in order for the Pade Approximant to be a good
approximation to f(x), it is essential that the data set not contain any values of x that
are near the singularities of the Pade Approximant.

Example 1.6: Interpolation by Pade Approximant

Table 1.4 contains discrete data points for the exponential function.

X f)=¢€"
-1.2 0.301

0.5 1.649

1.4 4.055

Table 1.4 Data for e*
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To fit the data in Table 1.4, we note that there are only three points in the data set.
Thus, taking xo =0, we fit f(x) to the diagonal Pade Approximant

1] () = PO T P1IX AlS
) =Bl @413)

To determine py, p1, and g, we require that the Pade Approximant and the function
have the same value at the three values of x in the table. Therefore, we have

po — 1.2p;
—-12)=0301 =——— (1.33a)
f-12) (0~ 1241)
po +0.5p;
05)=1649=—"""— 1.33b
and
po + L.4p;
1.4) =4.055 ="—+—— 1.33¢
f(14) (o Ty (1330)
Solving for py, p;, and ¢, we obtain
. 1.062 + 0.514x
e =500z (1.342)
For example, this predicts
[ 1 [171] _
el =2.628 (1.34b)

which differs from the exact value by about 3%. Considering that this Pade
Approximant is of fairly low order, this is a very reasonable result. 0

1.4 Operator Interpolation for Equally Spaced Data

If the values of x are spaced equally, then we define
h= Xk+1 — Xk (135)

where / is the same constant for all k. For equal spacing, we can develop an
operator interpolation by defining two operators.
The raising operator E is defined such that

Ef (i) = f (xit1) (1.36a)
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and the difference operator A is defined by
Af (x) =f (o) — f (k) (1.36b)
From eq. 1.36a, we have
Af(xi) = Ef (a) —f (o) = (E — 1)f () (1.37)
Thus, the difference operator is related to the raising operator by
A=E—-1 (1.38)

Consider successive applications of E operating on f(x;). We have

Ef(x1) =f(x2) = f(x1 + h) (1.39a)
E*f(x1) = Ef(x2) = f(x3) = f(x1 + 2h) (1.39b)
E*f(x1) = f(x1 + 3h) (1.39¢)

and so on. Thus, for any integer n > 1,

E"f(x1) = f(x1 + nh) (1.394d)
Since n is an integer, f(x; + nh) is one of the values of the function given in the
data set. To interpolate to a point that is not in the data set, we replace n by a

non-integer value « and define the value of x at which we wish to find f(x) by
x=x; +ah (1.40)
Then, generalizing from eq. 1.39d and using the relation between E and A, we have
f(x) =f(x; +ah) = E*f(x;) = (1 +A)f(x)) (1.41a)

We then expand the operator (1 +A)* in a binomial series to obtain

Flx) = <1 +oah+ “(“27 Dy 2= 13)!(“ “Dp s ...)f(xl) (1.41b)

This expansion cannot be carried out indefinitely. To determine the number of

terms in the expansion can be used, let us assume that the data set contains N values
f(xp), ..., f(xy). We then consider

Af(x1) = f(x2) — f(x1) (1.42a)
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Nf(x1) = M (x2) — Af (x1) = f(x3) = 2 (x2) +f(x1) (1.42b)
Nf(x1) = f(xa) = 3f (x3) + 3F (x2) —f(x1) (1.42¢)

and so on.

We see that for each £, Akf(xl) contains f(x;,1). Thus, AN 'f (x1) contains f (xy), . . .,
f(xn+1)- Since the values of f(x) at x > x, are not specified, we cannot keep powers
of A that yield f(x,) with p >N. Thus, k cannot be larger than N—1. Therefore, we
approximate f(x) by

(=1 o, Az Delz=(N=2)) vy

Fx) ~ <1+aA+“ S TR >f(x1) (1.43)

The patterns developed in eqs. 1.42 also give us a recurrence relation for
determining Akf(xl). We note that the coefficients of the various f(x;) =f; in
eqs. 1.42 are the coefficients of the binomial expansion. As such, we consider the
binomial expansion of (f— 1)*. Then, for each power p, we make the replacement

TP = fps (1.44)
This yields the expression for A'f;.
For example, with f ®=1
(F =1 = =2 +f° = fs =2 +fi = &% (1.45q)

and

=1 = =3+ +f° ~fi=3(+3H~fi=A%  (145b)
Comparing eqs. 1.45 with eqs. 1.42b and 1.42c, we see that this recurrence relation
yields the correct expressions for A (x)).
Example 1.7: Operator interpolation

We consider the values of the exponential function at equally spaced values of x,
given in Table 1.5.

X f)y=e*
0.0 1.00000
0.1 1.10517
0.2 1.22140
0.3 1.34986
0.4 1.49182

Table 1.5 Tabulated values of ¢* at equally spaced values of x
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To find €% we note that x1=0and 27=0.1. With
x=033=x;+ah (1.46)
we obtain
o=3.30 (1.47)
Therefore, we must expand (1 +A)*? in a binomial expansion. Since there are

five points in the data set, we keep only terms up to A* in the expansion. Thus, the
operator interpolation of ¢** is given by

033 (3.3)(2.3) ., (3.3)(2.3)(1.3) 54
e ~|14+33A+ o A+ Al A
(1.48)
3.3)(2.3)(1.3)(0.3
4 (33)(2.3)(A3)( )A“fl
41
With
/i = 1.00000 (1.49a)
Afi =f, — fi = 0.10517 (1.49b)
Nfi = fs = 22 +fi = 0.01106 (1.49¢)
Nfi =f1 = 3fs 4+ 3 — fi = 0.00116 (1.49d)
and
Ay = fs — 4fs + 6fs — 4f> + f = 0.00012 (1.49)
we obtain from eq. 1.48 that
"33 ~ 1.39097 (1.50)
which agrees with the exact value to five decimal places. O
Operator interpolation using a Taylor series
Defining
k d'f (x)
Dfi = (1.51)
dx*

X=X1
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The Taylor series expansion of f(x; +«h) can be written as

o khk
) =fa +oh) =S 2D, (1.52)

|
k=0 k!

To express the differential operator D in terms of the raising and lowering
operators E and A, we expand

o) n
Efi = fisr = fu+ h) = Z—, (153)
=0
or
-y hnD” 1.54
B =D ' (154)

Therefore, the raising operator can be written as

[e%¢) hn
E=Y —D"'=¢" (1.55a)
; n!
from which
1 1 A A3
_ 1 n+1 A"
= Z( 1) - (1.55b)

Referring to eq. 1.52, the Taylor series involves various powers of D operating
on f]. As argued earlier, since the powers of D are expressed as a sums of
terms involving powers of A, we can only keep terms in A up to a power determined
by the number of entries in the data table. For a data set with N entries, we only keep
powers of D, and therefore powers of A, in the expansion of eq. 1.55b, so that each
term in the Taylor expansion only has terms up to and including AV™".

Example 1.8: Interpolation using a Taylor series with operators to approxi-
mate derivatives

We again consider the data given in Table 1.5 for f(x) =¢". Since this data set
contains five entries, we will keep terms in eq. 1.55b up to A*. These terms will
come from the terms in a Taylor expansion up to D*. Therefore, we first approxi-
mate the expression in eq. 1.52 as

khk . h2 ) 3h'5 ; 4h 4
f(x)”: k' Df _( +OChD+TD +TD +TD )fl (156)
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Referring to eq. 1.55b, we keep powers of A up to A*. Then, the terms in eq. 1.56
can be written as

A2 A AY
~ (A== - 1.
hDfy ( 5+ 4)f1 (1.57a)
A2 AP A% 11
2n2¢£ ~ = =2 = ~ 2 A3 Iy G
thl_(A > +3 4>f1_(A A+12A>f1 (1.57b)
313 AN A ’ 3 1
and
A2 A AR?
WD, ~ (A—7+?—7> fi ~ A*f (1.57d)

From these, we obtain
£(0.33) = 03 ~

1 1 1 2
£ +o<(Afl R Ty TS 1) +

O (A2, A3p %4-
2(Afl Af1+3A 1)

O(3 3 3 4 OC4 4
+€ (Afl —EA 1) +ﬁA 1 ~ 1.39080 (158)

which differs from the exact value by 0.01%. O

1.5 Curve Fitting by the Method of Least Squares

Curve fitting is another method of determining a functional form for a given set
of data. When the data is expected to fit a specific function based on theory, one
can determine the best fit of the data to that expected function using the method of
least squares.

For example, let the theory of a particular phenomenon predict that f,(x)
describes a straight line. Because there are always uncertainties in measuring
f(x), the measured data may not lie on a straight line. Figure 1.4 is a representation
of such data. The method of least squares is a technique for determining the “best”
expected curve that represents the data. The line in Fig. 1.4 represents the
“best” linear fit to that data.
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Jix)

&« Best straight line fit
to the data

x

Fig. 1.4 Data for f(x) vs. x that is predicted by theory to be a straight line

Least squares method

Let f,(x) describe the curve predicted by theory. Then, theory predicts that at
X =2xy, flx)=fmlx). Let f; be the measured value of f(x) at the point x;. The
deviation (or error) of f; from f(x;) is

& = f(xe) — fi (1.59)

which, in general, will not be zero (Fig. 1.5).

r

Fig. 1.5 Error between f(x;) predicted by theory and the measured value f;

The method of finding the “best” curve is to construct the curve f(x) that is
expected from theory using undetermined constants. Those coefficients are then
adjusted so that the square of the rms error

N
S => [flx) - £l (1.60)

1 k=1

E

N
k=

is a minimum. This is accomplished by setting the partial derivatives of E with
respect to each of the undetermined coefficients to zero. This is the method of least
squares.
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For example, if theory predicts that f(x) varies linearly with x, we would model
this system as

fx) =ax+pB (1.61)

then minimize

o + B — fil? (1.62)
1

N
E:
k=

with respect to o and fi. We do this by setting

6E N N N N
5 = 2 o+ B—fi] =2 [cx S ABd w— Zxkfk] =0 (1.63a)
k=1 k=1 k=1 k=1

and

8E N N N N

5= 23 o+ B—fi] = Z[aZkarﬁZl - ka] =0  (1.63b)
ﬁ k= k=1 k=1 k=1

1

These are the linear equations for o and f3, the coefficients of which are determined
from the measured values of x; and f; and from

l=14+14+..+1=N (1.64)

M=

=~
Il

1

If we were to fit f(x) vs. x data to a quadratic, we would model f(x) as
fx) = + x4y (1.65)

and minimize

[0 + Bre +7 —fi] (1.66)
1

N
E:
k=

with respect to , f8, and y. This would result in a set of three equations which are
linear in these three parameters.

Example 1.9: Least squares method for a mass—spring system

From Hooke’s law for a mass M on a spring with spring constant %,

Mg = kx (1.672)



1.5 Curve Fitting by the Method of Least Squares

21

theory predicts that the displacement from equilibrium of an object of mass
M suspended on a spring will increase linearly with increasing mass (Fig. 1.6);

x=5m

. (1.67b)

——,|¢—x:0
l

Ad

Fig. 1.6 Displacement from equilibrium of a mass suspended on a spring

The data of Table 1.6 represent the measured values of masses needed to cause
corresponding displacements of an object suspended on a spring

M X
2.1 1.2
4.2 23
9.4 5.7
123 8.1

Table 1.6 Data for displacement of a mass on a spring

To fit this data to a straight line, we minimize

E =

Then, with

4
oo + B — M (1.68)
k=1
4
> x; =104.83 (1.69a)
k=1
4
Zxk =17.30 (1.69b)
k=1
4
Zkak = 165.39 (1.69¢)

k=1
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and
4
ZMk =28.00 (1.69d)
k=1
eqs. 1.64 become
104.830: + 17.30 = 165.39 (1.70a)
and
17.300 4 4 = 28.00 (1.70b)

from which, o = 1.476 and § = 0.616. With these values, the square of the rms error
for the linear fit is

4
Elinear = Z [1.48x 4 0.62 — M;]* = 0.330 (1.7D)0
=1
We note two differences between a least squares fit of data to a specific curve and
the various interpolation approximations that were introduced earlier.

» With a Lagrange, Lagrange-like, spline interpolation or Pade Approximant, f'(x)
is forced to have the measured values f(x;) at each x; in the data set.

For a least squares fit to a function f(x), none of the measured values f(x;) are
required to lie on the curve defined by f(x).

» For a spline interpolation, one must have a specific number of points in the data
set in order to achieve a given spline interpolation. For example, for a quadratic
spline, one must have an odd number of points in the data set. The number of
points in the data set determines the spline interpolation used to model f(x).
For a Lagrange polynomial or Lagrange-like interpolation, the number of factors
in 1 (x) (eq. 1.7) or vi(x) (eq. 1.18) is determined by the number of points in the
data set.

Using the least squares criterion, one chooses the type of curve that the data is to
fit and that curve is independent of the number of points in the data set.

Justification for the least squares method

As stated above, the correct method for fitting data to a particular function f(x) is to
minimize

E

N N
S =Y [flw) £l (1.61)
k=1

k=1

with respect to coefficients used to define f(x).
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Usually, a “best” curve is one for which there will be as much positive error as
there is negative error. That is, a general rule for a “best” curve is

N N
Eo=> a=> [fx)—x]=0 (1.72)
k=1 k=1

Thus, adding errors does not tell us anything about how large or small an overall
error is for a given curve.

The method of least squares removes the negative signs on individual errors by
squaring each error. But there are other ways to eliminate these negative signs. For
example, one could define an error as

N N N
Ev="lal =Y 1F @) —fil = YV Ifw) — 7 (1.73)
1 k=1 k=1

=

or

[f () — £l (1.73b)

1

Ey4

N

4
Dk =
k=1

again, minimizing each expression for £ with respect to the parameters used to
define f(x).

To get a sense of the correct approach, we consider the simple problem of
determining the average value of a set of N numbers {f(x;)}. The “curve” defined
by the average value of f(x) is the horizontal straight line given by

N
k=

f(x) = constant = fu,, (1.74)

Then, the constant f,,,, is the only parameter defining the horizontal line. If we use
eq. 1.73a to find the best horizontal line fit to f(x) =f,,,, We minimize

N N
El = Z |f(xk) _favg| = Z [f(xk) _favg]2 (175&)
k=1 k=1

with respect to f,,,. Then

N N
OE, N~ fO) —fae > sign[f(x) —fae] =0 (1.75b)

afavg k=1 [f(x/») _favg] ? k=1

Clearly, this is not how one defines the average value of a set of data points.
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If we minimize

N
Ev=Y () —fue)* (1.76)
k=1
we obtain the expression
OE. al
5 L= a3 ) — ) =0 (1.77a)
fm’g =1

With eq. 1.65, this yields f,,, as the solution to the cubic equation

fmgN 3f avg Zf Xk +3fmg Zf Xx) Z (Xk) =0

(1.77b)
—1
This too is an incorrect definition of f,,
However, minimizing
N
E="" [f(x) = fr]’ (1.78)
k=1
we obtain
OF N N N
8f = _22 [f(xk) _favg] =-2 Zf(xk) _favg Zl
avg k=1 k=1 k=1
N
_ _2(zf< ) o ) o (1.79)
k=1
This results in
| &
e = — : 1.80
fong = 37 2 ) (1.80)

which is the correct definition of f,,,,,

Fitting data to non-polynomial curves

It is not necessary to model a function in terms of a polynomial. Just as with
interpolations, one can use any appropriate function g(x) to define a least squares fit
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If one knows that the x dependence of f(x) is introduced in the form of a function
q(x), one could model f(x) in the form

f(x) = ag(x) + pg*(x) + .... (1.81)

and minimize

N
E=Y"[aqlx) + B () + . — fi] (1.82)
k=1

with respect to the parameters o, f3, . ..
Example 1.10: Least squares fit with a general function g(x)

Theory predicts that the data in Table 1.7 decreases with increasing x as a quadratic
in 1/x.

x S
1.3 542
2.2 4.28
3.7 3.81
4.9 3.62

Table 1.7 Data with inverse power of x decrease

To find the best fit of this data, we define

) :‘Hﬁ%”% (1.83)
Minimizing
4 11 :
E= ; [OC-Fﬁx—k‘FVx_]%_fk] (1.84)
by
8_E:224:[a+[gl+yl_fk]0 (1.85a)
oo —~ B
@zzil{ﬁﬁiﬂi_ﬁ(] ~0 (1.85b)
B "= x o X
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and
O )y [ p—+ f} 0
= Bl PV — iy —fi
N G
we obtain
4 4 4
By Y=
=1 =Yk =t
4 4 4 4
1 1 1 fr
DILSTDWIEIIED
k=1"k k=1"k =1 % =17k
and

This results in
4.0000 4 1.6988 + 0.913y = 17.130
1.698a + 0.9138 4 0.577y = 7.883
and
091300 + 0.5778 + 0.400y = 4.520

from which o« =3.261, f=1.480, and y = 1,722. With these values

4 2

1.480 1.722

E=> |3261+ +—5=—fi| =0.001
= Xk Xk

Problems

(1.85¢)

(1.86a)

(1.86b)

(1.86¢)

(1.87a)

(1.87b)

(1.87¢)

(1.88)0

1. Table P1.1 lists three values of f(x) =x*>—2¢". Estimate the value of f(0.65)

using a Lagrange polynomial interpolation.
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X f)y=x*=2¢>
0.50 -0.963
0.75 —0.382
1.00 0.264

Table P1.1 Selected values of x> —2¢™

2. Tables P1.2 contain selected data for an exponential function, a sine function,
and a fractional power function.

(@) (b) (c)

X e/ X sin (x/2) X x?
0.50 0.8825 /5 0.3090 1.1 1.1537
1.20 0.4868 /3 0.5000 23 3.4881
1.81 0.1944 n/2 0.7071 4.5 9.5459
2.25 0.0796 T 1.0000 6.2 15.4349

Table P1.2 Values of common functions at selected values of x

(a) For each data set, using just the numerical values, approximate the function
by a Lagrange (polynomial) interpolation. Use that approximation to esti-
mate the value of the function at the midpoints of each of the intervals
(x1, X2), (x2, x3), and (x3, x4).

(b) For each data set, using just the numerical values, approximate the function
by a Lagrange-like interpolation over the function specified below.

For the data in Table (a): construct two Lagrange-like interpolations;
one with ¢(x) = ¢, the second with g(x) = e ™.
For Table (b): construct a Lagrange-like interpolation with ¢(x) = sinx.
For Table (c): construct a Lagrange-like interpolation using ¢(x) = x%.
Use each approximation to estimate the value of the function at the
midpoints of each of the intervals (x, x3), (X2, X3), and (x3, x4).

3. Tables P1.3 contain selected data for an exponential function, a sine function,
and a fractional power function.

(a) For each table, approximate the function by a linear spline interpolation.
Use that approximation to estimate the value of the function at the
midpoints of each of the intervals (xq, x3), (x3, X3), (X3, X4), and (x4, Xs).

(b) For each table, approximate the function by a quadratic spline interpola-
tion. Use that approximation to estimate the value of the function at the
midpoints of each of the intervals (x, x3), (X2, X3), (x3, X4), and (x4, Xs).

(c) Give a brief explanation of the reason why the data in these tables CAN-
NOT be approximated using a cubic spline interpolation.
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() (b) (c)

X /2 X sin (x/2) X 2
0.50 0.885 /5 0.3090 1.1 1.1537
1.20 0.4868 n/3 0.5000 2.3 3.4881
1.81 0.1944 /2 0.7071 4.5 9.5459
2.25 0.0796 27/3 0.8660 5.6 13.2520
2.70 0.0261 T 1.0000 6.2 15.4349

Table P1.3 Values of common functions at selected values of x

4. Tables P1.4 contain selected data for an exponential function, a sine function,
and a fractional power function.

(a) For each table, approximate the function by an operator interpolation. Use
that approximation to estimate the value of the function at the midpoints of
each of the intervals (x;, x5), (X2, x3), and (x3, X4).

(b) For each table, approximate the function by a Taylor series interpolation
using operators to estimate derivatives. Use that approximation to estimate
the value of the function at the midpoints of each of the intervals (x;, x,),
(22, x3), and (x3, X4).

(a) (b) (c)

x e /2 x sin(x/2) X X2
0.50 0.8825 /6 0.2588 1.5 1.8371
1.00 0.6065 Sn/6 0.9659 2.5 3.9529
1.50 0.3247 971t/6 0.7071 3.5 6.5479
2.00 0.1353 137/6 —0.2588 4.5 9.5459

Table P1.4 Values of common functions at selected values of x

5. There are four data points in Table P1.4c. What is the most accurate Pade
Approximant for representing this data? For this Pade Approximant, write out
the equations satisfied by the undetermined coefficients.

6. What is the best Pade Approximant for representing the three data points in
Table P1.1?7 Find the values of the coefficients of this Pade approximants and
use this result to determine f(0.6) and £(0.9).

7. Construct an operator interpolation approximation for each of the functions for
which numerical data is given in Tables P1.4. Using this interpolation, estimate
the value of each function at the midpoint of the interval between x, and x3.

8. Construct a Taylor series interpolation with operator approximation of the
derivatives for each of the functions for which numerical data is given in
Tables P1.4. Using this interpolation, estimate the value of each function at
the midpoint of the interval between x, and x3.
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9. Fit the data in Table P1.5 to a parabola in ¢. Determine the square of the rms error.

t S(t)=21+3¢
1.5 9.95
2.5 24.25
4.1 56.90
6.0 118.35

Table P1.5 Distance and time data for the
motion in one dimension of a particle with
constant acceleration

10. The data in Table P1.6 are supposed to represent the straight line defined by
f(x)=4.5x—1.5. Determine the best linear fit to this data. Compare the slope
and intercept to the correct values.

x Jx)
-1.2 -7.01
-0.3 -2.95

0.9 2.62
2.1 7.83

Table P1.6 Data for points on a straight line
f(x)=4.5x-1.5

11. Table P1.7 contains data for f(x) = 2sin(xn/2) + 1.

x f)
0.6 -0.895
1.1 0.011
14 2.990
1.9 0.691

Table P1.7 Data for f(x) = 2sin(x7/2) + 1

Determine the best fit to this data in the form f(x) = asin(xn/2) + f§ and find
the squared rms error for this fit.






Chapter 2
ZEROS of a FUNCTION

In this chapter, we present methods for finding the zeros of f{x)

when f(x) is a polynomial. By the time one has finished high school, the methods
for finding the roots of first- and second order polynomials have been learned.
It is well known that it is not possible to solve for the roots of a polynomial in f(x)
in terms of the coefficients of x for a polynomial of order N > 5. (This was first
proven by Niels Henrik Abel in 1826. For a version of Abel’s proof in English,
see Pesic, P., 2003.) As such, we restrict this discussion to polynomials of third
and fourth order.

when f(x) is presented in tabular form giving specific values of f at specified
values of x.

when f{x) is given in closed form (which is applicable to both non-polynomial
functions and polynomials of any order).

2.1 Roots of a Cubic Polynomial

There are N roots of a polynomial of order N. If two or more of the roots have the
same value, these are repeated roots.

Let
Chp g +r=0 2.1

Factoring

Grouping the first and second terms of eq. 2.1, we write this equation as

x2(x+p>+q(x+;) =0 (2.2)

H. Cohen, Numerical Approximation Methods, DOI 10.1007/978-1-4419-9837-8_2, 31
© Springer Science+Business Media, LLC 2011
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It r=pq 2.3)

then eq. 2.2 can be written in factored form as
(P +4q)x+p)=0 2.4)

If we group the first and third terms, eq. 2.2 can be expressed in the form
r
x(x2 + q) +p (x2 —|—]—)> =0 2.5

Again, if
r=pq 2.3

eq. 2.5 can again be expressed as
(P +q)(x+p)=0 24

Thus, to find the roots of a cubic polynomial by this method of factoring, one must
only ascertain that, with the coefficient of = 1, eq. 2.3 is satisfied. Then, the roots
of eq. 2.4 are found straightforwardly.

This factoring approach can be applied to higher order polynomials. However,
the constraints [as that of eq. 2.3] become more unwieldy and more unlikely. We
leave such analysis to the reader.

Cardan’s method

Cardan’ s method for finding the solutions to eq. 2.1 begins by making the substitution

x:y—%’ (2.6)

This results in the reduced cubic equation

V+Py+0=0 2.7
where
2
p=qg-2 (2.82)
3
and
2 3
o= _Pi_, (2.8b)
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Defining
y=u-+v 2.9)
eq. 2.7 becomes
w4V + w+v)Buw+P)+Q=0 (2.10)
If we substitute
P
=—— 2.11
v e (2.11)
into eq. 2.10, then we obtain
P3
6 3
——=0 2.12
W+ 0u’ — 5 (2.122)

Likewise, if we substitute for « in eq. 2.10, we find

6 ;s PP
—-—=0 2.12b
Vo - (2.120)
Eqs. 2.12 are quadratic equations for x> and v, respectively, the solutions to
which are
5] Qi\/Q2+4P3 (2.13a)
w=-{- — .
2 27
and

s_1(_ ap?
v _2< 0+4/0% + 27> (2.13b)

Since u and v are not the same, we take

3
w =%<—Q+ \/ 02 +%> (2.14a)

and

s_ oo ap?
V= ( 0 Q2+27> (2.14b)
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Then
3
1 / 4p3
and
L
1 4pP3\ |°
vy, = W, [2 (—Q —1/0% + 27)1 (2.15b)
where
w, = /3 (2.16)

with n = 0, 1, 2 are the three cube roots of 1. They are

wy =1 (2.17a)

o) = _1%“/5 . 2.17b)
and

o = _1%\@ — o} 2.17¢)

Therefore, the three solutions to eqgs. 2.14 are

1
3 3
u = wy E <Q+ \/Q2+421;>1 (2.182)

and

1
1 4p3\ |
- 2 _o— 2.
Vi = o [2< 0 0+ 27)] (2.18b)
The roots of eq. 2.1 are given by
x:u—l—v—%? (2.19)

Since there are three solutions for u and three solutions for v, there are
nine different combinations of # + v. To determine which expressions for # and v
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form the solutions of eq. 2.1, we see from eqs. 2.11 and 2.18 that the product u,,v;
must satisfy

P P
mVk = —Op0p = = — = 2.20
Up Vi O 3 (2.20)
Thus, we must choose those cube roots of 1 that satisfy
o, =1 2.21)
Since only
wowy = 1 (2.22a)
and
W1y = W = 1 (222b)
the three roots of the cubic equation of eq. 2.1 are
_ 4
Xoo = Up +vo — 3 (2.23a)
P
X1 =u;p +vy — 3 (2.23b)
and
_ 4
X1 = Up + vy — g (2.23¢)
We see from eqs. 2.18 that if the discriminant satisfies
4p3
2
—=0 2.24
0+ (2.24)

then u; = v; and u, = v,, from which x,; = x;,. That is, if the discriminant is zero,
there are only two distinct roots. If all three roots are repeated, then in addition to
requiring the discriminant to be zero, we also require

Ugp=Vo=U] =V] = Up =V (2.25)

Since wg # w; # w5, this also requires

0=0 (2.26a)
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With the discriminant being zero, this leads to

P=0 (2.26b)
and
uy=v =0 2.27)
Then
X0 = X1z = xo1 = 5 (2.28)

This result can also be obtained by noting that with egs. 2.8, P = Q = 0 allows us
to write the cubic equation in the form

(x +1§)3 -0 (2.29)

If p, ¢, and r (and therefore P and Q) are real, and the discriminant is negative,

egs. 2.15 can be written as
1 : 4p3
Up =y |=| -0 +iy /0> +— (2.30a)

W=

2 27
and
1
= : 0—iy/|0*+ 4P 3 =u (2.30b)
Vi = On |5 i > =u .
Then
Xop = Hg + Vo Jg’ = uo + 1 Jg’ — 2Re(ut9) Jg’ (2.31a)
X12 = WUy + WV —%7 = WUy + (}JTIAE; —13—7 = ZRC((,L)]M()) —13—7 (231b)
and
X21 = oy + 1V —%7 = wolUpy + COEM(); —g = 2Re(w2u0) —g (2.31¢)

Thus, when the discriminant is negative, all three roots are real.
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If the P and Q are real and the discriminant is positive, o and v, are real.
Therefore,

Xoo = o + Vo —’5) (2.32)
o p ¥ 14
X123 = O1Ug + WV —§—w1u0+wlv0 —3 (2.32b)
and
14 % P *
X1 = Wolgy + w1vy — g = WUy + w1vo — g =X (2.32¢)

That is, when the discriminant is positive, the polynomial has one real root and
two complex roots, which are conjugates of one another.

Example 2.1: Roots of a cubic polynomial using Cardan’s method

The solutions to
X =32 —10x+24=0 (2.33a)
are x = {2, -3, 4). Referring to eq. 2.6, we obtain the reduced equation
Y =13y +12=0 (2.33b)
Referring to eqgs. 2.13, the discriminant for this cubic equation is

3 3
LRI ) ((E)

= —181.48148<0 2.34
27 < (2.34)

Therefore, the polynomial of eq. 2.33a has three real roots. From eqs 2.31, they are

1
Xoo = 2Re (1) Jg’ =2Re [(6 + i6.73575)3} +1 (2.35a)
1 3 1
X12 = 2Re(w1 1) ,%’ =2Re K 5t 1\2[) (—6+ i6.73575)3} +1  (235b)

and

1 V3 1
X21 = 2Re(wsig) — g = 2Re K— 5 z§> (—6 + i6.73575)3} +1 (2350
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Since Re(—6 + i6.73575) < 0 and Im(—6 + i6.73575) > 0, the argument of
this complex number is in the second quadrant. Therefore, we write

6.73575

1 i _
(=6 4 i6.73575)3 = 208167 = (“F5)] = 1.50000 + 11.44338  (2.36)

From this we obtain the correct results {xgg, X12, X271} = {4, -3,2}. 0

Hyperbolic function method
Following Namias, V., (1985), we begin with the identity
4sinh*(0) + 3sinh(0) — sinh(30) = 0 (2.37)

which has the same form as the reduced cubic equation

VY +Py+0=0 2.8)
Therefore, we take
¥’ + Py + Q = J(4sinh’(0) + 3sinh(0) — sinh(30)) (2.38)
and identify
v} = 4Jsinh*(0) (2.39a)
Py = 3/sinh(6) (2.39b)
and
Q = —/sinh(36) (2.39¢)

From the ratio of eqs. 2.39a and 2.39b, we have
4P
V= ?sinhzé) (2.40a)

from which

y= iz\/f sinh(0) (2.40b)
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Taking the positive square root, we substitute this into eq. 2.39b to obtain

p3
r=2/> (2.41a)

from which eq. 2.39c yields

27
— sinh(36) = sinh(36 + in) = e (2.41b)
2VP3
If we take the negative square root, we have
P3
=-20/—= 242
g 27 (242
and
. Qo /27
sinh(30) = S\ (2.42b)

With 0 found from either eq. 2.41b or 2.42b, y is given by eq. 2.40b.

Since sinh(36) and sinh(30 4 in) are unchanged by adding 2kmi, for some
integer k, to the arguments of these hyperbolic sine functions, the values of y
obtained from eq. 2.41b are given by

V= 2\/1; sinh <6+ (ZkJ;l)m) (2.43a)

The values of y found using eq. 2.42b are

P ki
Ve = 2\@ sinh (0 n %) (2.43b)

Thus, we have six possible solutions to the cubic equation. By substituting each
solution into the cubic equation, the three solutions that are not roots are eliminated
trivially.

Example 2.2: Roots of a cubic polynomial using a hyperbolic function

We consider the reduced cubic equation
¥ +x+10=0 (2.44)

which has solutions x = —2, 1 &+ 2i.
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With P = 1, Q = 10, eqgs. 2.41b and 2.42b yield,

- sinh1g5x/2_7) +%7'c

and

0 sinh’l(S\/ﬁ)
S —

respectively. Then, from eq. 2.43a, we obtain

2
Xo = —%sinh(e) =-2

and
sinh(6)
V3

*

X1, X| =

+icosh(f) =14 2i
Using eq. 2.43b, we find

2
Xo = —=sinh(0) =2

V3
and

sinh(6)
V3

*
X1, Xy = —

+icosh(f) = —1 £ 2i

(2.45a)

(2.45b)

(2.46a)

(2.46b)

(2.47a)

(2.47b)

It is trivial to demonstrate that the values of eqs. 2.47 are not the roots of the

polynomial of eq. 2.44 and that those of eqs. 2.46 are those roots. [

Trigonometric function method

If all three roots of a cubic polynomial are known to be real, it is possible to

determine them using the trigonometric identity
4cos’ (0) — 3cos(6) — cos(30) = 0
This too has the same form as the reduced cubic equation

V+Py+0=0

(2.48)

2.8)
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Therefore, if we set
V+Py+0Q= /1(40053(0) — 3cos(0) — cos(30)) (2.49)

we can make the associations

y® = J4cos’(0) (2.50a)

Py = —3/cos(0) (2.50b)
and

Q = —Jcos(30) (2.50¢)

Taking the square root of ratio of eqs. 2.50a and 2.50b we obtain

y= j:Z\/_TPcos(H) (2.51)

With the positive square root, we substitute this into eq. 2.50b to obtain

/_P3

from which eq. 2.50c yields

cos(30) :% _P—ZJ (2.52b)

If we take the negative square root, we have

_p3
2=2M3; (2.53)

and

-27

= (2.54)

—cos(30) = cos(n — 30) =

IO

We find the values of 0 from egs. 2.52b and 2.54. Then, for each 0, we determine y
from eq. 2.51.

Adding 2kn (k = 0, 1, 2) to the arguments of cos(360) and cos(w — 36) does not
change their values. Thus, we can add integer multiples of 27/3 to the values of 6
found above to obtain the y values
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—p 2k
¥k =24/ 5-cos <9+ %) (2.55)

for the positive square root in eq. 2.51. For the negative square root, we have

[—P T 27k —P (2k+1)n
. — 2 _— —_ _ = _ _—— .
Vi 3 cos (3 0+ 3 ) 2 3 cos( 3 0) (2.55b)

As with the analysis using hyperbolic functions, we have six possible solutions
to the cubic equation, three of which are eliminated trivially by substitution.
If 0 is real, then —1 < cos(30), cos(n — 30) < 1 which requires

)
—1 g%,/P—JS | (2.56a)

4p3
24 —<0 2.56b
0*+5= < (2.56b)

from which

The left side of this inequality is the discriminant in the Cardan solution and this
condition results in all three roots being real.
If this discriminant is zero, then

Q0 /=27
== ==1 2.57
2V P3 2.57)
from which we can take
2nk 2n 4rw
0+—=40,—, — 2.58
RO asso
or
(2k+ 1)n 2n 4n
———0=40,—, — 2.58b
3 303 ( )
Referring to eq. 2.51, these results yield
ye = {2P,—P,—P} (2.59)

Example 2.3: Roots of a cubic polynomial using a trigonometric function

We consider

X2 —=3x2—10x+24=0 (2.33a)



2.2 Roots of a Quartic/Biquadratic Polynomial 43

which has solutions 2, -3, and 4. The reduced cubic equation for this is

V' —13y+12=0 (2.33b)

12 /=27
COS(36 + 27[/() = 7 T33 (2603)
12 /=2
cos((2k + 1)m — 30) = ER /T; (2.60b)

From the three values of 6 obtained from eq. 2.60a, we find from eq. 2.55a that
x = {5, =2, 0} which do not satisfy eq. 2.33a. Using the values of 6 given by
eq. 2.60b, we obtain x = {4, -3, 2} which are the correct roots.

Therefore,

and

2.2 Roots of a Quartic/Biquadratic Polynomial

The general form of the quartic (also called the biguadratic) equation is
4 3 2 _
X' +px +gx*+rx+s=0 (2.61)

Such an equation can have four real roots, two real and two complex roots, or four
complex roots.

Ferrari’s method

Ferrari’s method for finding the roots of a quartic polynomial is like the method of
completing the square. One determines the values of o, f3, and y such that

2
A pl g s+ (x+ ) = (xz —l—gx—i—y) (2.62)
It is straightforward to show that «, 8, and 7y satisfy

-4 (2.63a)



44 2 ZEROS of a FUNCTION

20 —py = —r (2.63b)
and
pr=7"—s (2.63c¢)

Equating the product o’f* from eqs. 2.63a and 2.63c to «’f” obtained from
eq. 2.63b, we find

2 2
ey (), gs _(sp"+1r7)\ _ 4
P -1+ (B s/+<2 . 0 (5.64)

Three values of y are then obtained using one of the methods described in Sect. 2.1.
For each of these values, we obtain corresponding values of o and f§ from egs. 2.63a
and 2.63c.

Adding (ax + f)* to both sides of eq. 2.61, we obtain

2
(x2 n gx n y) = (ax + ) (2.65a)

the solutions to which are given by
24 gx fy=+(x+p) (2.65b)

Not all solutions to eq. 2.65b will be solutions to the original quartic equation. Each
value of x must be tested in eq. 2.61.

Example 2.4: Roots of a quartic polynomial by Ferrari’s method

For the quartic equation
X =23 —12@ +10x+3=0 (2.66)
(see Conkwright, N., 1941, p. 79) we write
K =28 — 122 + 100+ 3+ (o + B)° = (E —x+79)’ 2.67)
where y satisfies

P +6y2 -8y —32=0 (2.68)

The values y that satisfy eq. 2.68 are

p =2, f2<1 + \/5) (2.692)
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and for each of these three values

a=t/12+2y (2.69a)
and
p==xvy>-3 (2.69b)
We obtain
7=-2, a=%3, f==1 (2.70a)
y:—2(1+\/§), a:i\/m, ﬁzim (2.70b)
and

y=-2(1-V5), 2= £1/9+4V5, =421 -8V5 (2.70¢)

Since there are many values of o, 3, and 7, there are many values of x. Those that
satisfy eq. 2.66 are

x=-3 1, (2i\6) 2.71)

These are the roots of the polynomial of eq. 2.66. O

Descarte’s method

To use the Descarte method for determining the roots of a fourth order polynomial,
we begin by obtaining the reduced quartic equation, the quartic equation without a
y* term. This is achieved by substituting

p
=y—= 2.72
x=y-7 (2.72)
in eq. 2.61 to obtain
Y +PY+0y+R=0 (2.73)

We then write this reduced quartic equation in factored form

VY AP2 Oy +R= (P +y/7+0)(? —yv7+B) =0 (2.74a)
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Multiplying this factored form, we have

Y (a+ B=7)y* + VB —a)y+af=0 (2.74b)

Comparing this to eq. 2.73, we obtain

a+p—y=P (2.75a)
ViIB—a)=0 (2.75b)
and
of =R (2.75¢)
from which
_1 ,_ 9
o= 3 (P +y \/3_’> (2.76a)
and
1 0 )
=—|P+y+— 2.76b
B 2 ( y 7 ( )

Substituting these into eq. 2.75c, we obtain
P 2Py + (PP —4R)y — 0> =0 (2.77)

which we solve by one of the methods described earlier. We determine o and f for
each value of y, then, from eq. 2.74a, we find the values of y that satisfy

Y4y +a=0 (2.78a)
and
V= +p=0 (2.78b)

Each value of y is then tested in eq. 2.73 to determine if it is a root of the reduced
quartic equation.

Example 2.5: Roots of a quartic polynomial by Descarte’s method

The quartic equation

=22 48x—-3=0 (2.79)
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(see Conkwright, N., 1941, pp. 83, 84) is in reduced form. Eq. 2.74 for this equation is

-4 416y —64=0 (2.80)
which has solutions
y=4 (2.81a)
and
y = di = 4"/ (2.81b)
from which we obtain
y=4 a=-1, =3 (2.82a)
y =4, o= (—1 12 2e*"”/4), = (—1 Y2t 2e*f“/4) (2.82b)
and
v = —4i, o= (—1 —2i— 2ein/4), B = (—1 i+ 2e"“/4) (2.82¢)

The solutions to the quadratic equations of eqs. 2.78 are then found for each set
of values of «, f3, and y. Each solution is then tested to see if it satisfies the quartic
equation. We find the solutions to eq. 2.79 to be

x=—-1+v2, 1+iV2 (2.83)0

2.3 Regula Falsi and Newton—-Raphson Methods

The regula falsi (false position) and the Newton—Raphson methods are iterative
techniques that approximate a zero of any function f(x) given in closed form.

Regula falsi method

For the regula falsi method, one begins by testing f(x) to identify two points x = a
and x = b such that f{a) and f(b) have opposite signs indicating that there is at least
one zero between a and b. f(x) is then approximated by the linear expression

f(x) = aOx + p© (2.84)
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(2. /) (a.fia))

fixg)

i

%p
Fixgre (2.712) \ (2.78)
(a) (b)

Fig. 2.1 Approximation to the zero of f(x)

where
20 :W (2.852)

and
g0 9 (b) —bf() (2.85b)

The first estimate of a zero, found by setting f(x) = 0 in eq. 2.84, is given by

B af(b) — bf(a)

Xo=— @ = 7(b) —f(a) (2.86)
If fixp) and f(a) have opposite signs as in Fig. 2.1a, we then take
d=a (2.87a)
and
b = xo (2.87b)
If f(xo) and f(b) are of opposite sign as in Fig. 2.1b, we set
d =x (2.87¢)

and

b =b (2.87d)
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We then apply the regula falsi method with @’ and b’ to obtain the next iteration of
the zero as

_df () = bf(d)

X = (2.88)
: fv) —fld)
After p iterations of this process we have
@) (p)) = p®IF (alP)
X =0 f (b)) — b7f (o)) (2.89)

The process is continued until two successive approximations, x,, and x,,., have
the same value to a required level of accuracy.

Example 2.6: The regula falsi method
For

flx)=¢"-3 (2.90)

the exact solution (to five decimal places) is

x = In(3) = 1.09861 (2.91)
We note that
£(0.5) = —3 = —1.35128 (2.92a)
and
f(1.5) = €' —3 =1.48169 (2.92b)

are of opposite sign indicating that a zero of f(x) lies in the interval 0.5 < x < 1.5.
Starting with @ = 0.5 and b = 1.5, the first approximation to the zero of f(x) is
obtained from

_0.5£(1.5) — 1.5£(0.5)
F(1.5) —£(0.5)

X0 = = 0.97698 (2.93)

Since £(0.97698) = —0.34357 < 0 and f(1.5) = 1.48169 > 0, we take
d = xo =0.97698 (2.94a)
and

=b=15 (2.94b)
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From this, we generate the second approximation

0.97698f(1.5) — 1.5£(0.97698)
~ f(1.5) —£(0.97698)

x| = = 1.07543 (2.95)

The correct value, 1.09861, accurate to five decimals, is obtained after seven
iterations of this method. O

Newton-Raphson method

Like the regula falsi technique, the Newton—Raphson method approximates f(x) by
a linear expression. But for the Newton—Raphson method, that linear expression is
given by the first two terms in its Taylor series expansion about some starting point
a chosen by the user;

fx) = f(a) +f(a)(x —a) (2.96)

The first approximation to the zero is found by setting f(x) = 0 which yields

f(a)
Xo=a— (2973)
f'(a)
Replacing a by xy, the next iteration is given by
X| =Xp — f/(io) (2.97b)
(xo)
or, after p iterations,
(%)
Xpil = Xp — 2.98
p+1 P fl (_Xp) ( )

Again, the process is continued until x, and x,,; have the same value to some
predefined level of accuracy.

A potential problem can occur using the Newton—Raphson method. If the one of
the iterations produces a value x; that is at or near an extremum of f(x), then at that
point

fl) =0 (2.99)

If f(x;) # 0 in eq. 2.98, the estimate of x;,; becomes a very large number, and
convergence of the method to the zero of f(x) is destroyed.
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A modification of the Newton—Raphson method that avoids this problem is to
select a starting point a that is far from an extremum of f(x) so that f/(a) is distinctly
different from zero. Then eq. 2.98 is replaced by

f (x,,)
f'(a)

This tends to converge to the zero of f(x) more slowly than that given in eq. 2.98,
but it avoids the problem.

Xpp1 = Xp — (2.100)

Example 2.7: The Newton—Raphson method

As in example 2.6, we again consider finding the zero of
flx)y=¢€¢"-3 (2.90)

Using eq. 2.98, this involves iterations of

e —3
X1 =X ——— (2.101)
With a starting value a = 1, we obtain
) -3
w=a-2 =172 110364 (2.102a)
ed e
from which
Yo _ 3 61.10364 -3
X1 = X9 — T 1.10364 — e = 1.09862 (2.102b)

After four iterations, we obtain the correct result to five decimal places, 1.09861.
Using the less precise eq. 2.100 with a = 1, we generate approximations to the zero
of f(x) from

e —3 er—3
= X, —
ed P e

(2.103)

Xp+1 = Xp —

we find that 63 iterations of eq. 2.103 are needed to obtain agreement with the exact
value to five decimal places. O

2.4 Zeros by Interpolation for Discrete Data

In ch. 1, it was noted that when f (x) is represented by discrete data points (presented
as a table of data), an approximation to the function can be created from such data
by interpolation.
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If f(x) changes sign at least once over the entire range of x, this indicates that
there is at least one zero of f(x). To form an interpolated function, we pick two
points in the range of x, x;, and xy, and form a polynomial representation of f(x)
given by

)= m(0)f (x) (1.11)
k=1

where ((x) is the (N—1)th order polynomial

(v —x1) e (6 = 201 ) (0 = Xpe) e (X — x)

Xk —xl)...(xk —kal)(xk —xk+1)...(xk —XN) (17)

:uk(x) = (

If it is known (for example, from theory) that the x dependence of f(x) arises
through an expression g(x), then f(x) can be interpolated by

=
Na?

I
=
)
)

[
(]

#elq (o) (i) (1.20)
[y

where 1 [g(x)] is the (N—1)th order polynomial in ¢

1 [g(x)] la(x) — ‘1()61)]-'-{61()6) — q(x—1)]lg(x) — q(xis1)].--[q(x) — qloxw)]

lg(xe) = q(en)].lg () — g1l () — g(oesr)]---[g(x) — gloan)]
(1.18)

If there is an indication of one zero, x; and xy should be the first and last x values
in the table. If there are multiple (two or more) zeros, each zero is found separately
and x; and xy should be chosen as values of x on opposite sides of each zero.

To determine each zero of the polynomial form of f(x), we define

y=f(x) (2.104a)

When the x dependence of f(x) arises through the expression g(x), we write

y =fla(x)] (2.104b)

The values of x that are the zeros of f(x) are found by setting y = 0 in eqgs. 2.104.
The interpolations of the inverses of these definitions are given by

N
=) =D w O T on) = Y m)x (2.105a)
k=1
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for the polynomial f(x), and, if it is known that the x dependence of f(x) arises
through ¢g(x),

q() =17 0) = Dm0 o) =D m)a(x) (2.105b)
k=1

where

we(y) =
0= =) =fir) O = fir1) (v = fn-1)y = fv)
(fe = 1) (i = f2) (e = fee1) (e = i) - (fic = fv—1) (Fie — fv)

(2.106)

The zero of f(x) is found by setting y = 0 in an interpolation representation
given in one of the eqs. 2.105. For the polynomial interpolation

xo=f0)=Y m 0=

k=1

Nl fioSemiferr oSy
O =G —fn e — o G (2.107a)

and, when the x dependence of f(x) arises through the expression g(x),

qx0) =£71(0) = Y m(0)q(x) =

M=

k=1

Nl fiodifirt v
SR e (e Ry ey R

(2.107b)

Example 2.8: Single zero by interpolation

The data in Table 2.1 are values of f(x), where x is an angle expressed in degrees.

The fact that x represents an angle and values of the magnitude of f(x) are less
than one, it is reasonable to consider that f(x) somehow depends on x through sin(x)
and/or cos(x). As an educated guess, we attempt to interpolate over

q(x) = sin(x) (2.108)

From eq. 2.105b, the zero of f(x) arises from

sin(xg) = Y  p;(0)sin(xy) (2.109)

M-
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x (%) Sx)
10 -0.42764
20 —0.29998
30 —0.14645
40 0.00153
50 0.17047
60 0.30593
70 0.41092
80 0.47730
90 0.50000

Table 2.1 Table of data points

N
sin xo Z,uk sin xk
k=1
N
DY Jufic et I sin () (2.110)

= (fi = fi)--(fe = fiet) (fic = fresr) - (fi — fiv)
From this we obtain
Xo = 39.04699° (2.111)

Using a polynomial interpolation, eq. 2.107a yields

N
X0 =Y 1 (0)x (2.112)
k=1
from which we find
Xo = 38.55133° (2.113)

Although it is assumed that we do not know it, the data in Table 2.1 was obtained
from

f(x) =sin*?(x) -1 (2.114)

from which, the zero of f(x) is given by
Xo = sin~! (.52/3) — 39.04721° 2.115)
Comparing this exact value to the results given in eqs. 2.113 and 2.115, we see

that the polynomial interpolation yields a reasonable estimate of the zero of f(x),
but interpolation over sin(x) results in an estimate that is more accurate. [
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Example 2.9: Multiple zeros by interpolation

The data given in Table 2.2 are numerical values of

f(x) =e* —Te +10 = (¢ —2)(e* — 5) (2.116)
x fix)
0.25 2.66054
0.50 1.17723
0.75 -0.33731
1.00 -1.63892
1.25 -2.24991
1.50 -1.28629
1.75 2.83323
2.00 12.87476
2.25 33.60298

Table 2.2 Tabulated values of the
function of f(x) = ¢ — 7¢* + 10

which has two zeros at
{x0,x1} = {€n(2),4n(5)} = {0.69315, 1.60944 } (2.117)

To apply the regula falsi method, we see from Table 2.2 that the two zeros which
we call xy and x;. We see from Table 2.2 that these zeros occur within the intervals
Xo € (0.50, 0.75) and x; € (1.50, 1.75). We apply the method over the first interval to
find x¢ and independently, x; is found by applying the method over the second
interval.

Using the Newton—Raphson approach, we determine x, by choosing a starting
point a within the first interval. A convenient choice is the data point in the table
that is closest to that zero. For this example, that point would be

a=0.75 (2.118)

Independently, x; is found using a starting point closest to the zero in the second
interval, which for this example is

d =150 (2.119)

To obtain xy and x; using interpolation, we note that for xy € [0.25, 1.25] the
values of f(x) monotonically decrease, and for x; € [1.25, 2.25] f(x) is increasing
monotonically. Thus, [0.25, 1.25] is the recommended interval over which one
should interpolate to find xo and [1.25, 2.25] should be used to determine x;.

Since we have already discussed the application of these methods to find each
zero, we leave this problem for the reader to solve (see problem 7). O
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2.5 Roots of a Polynomial by Root Squaring Methods

A real polynomial is one for which the coefficient of each power of x is real. Such a
polynomial can have both real and complex roots. For a real polynomial, the
complex roots must occur in conjugate pairs. That is, only a product of factors
containing complex roots of the form

(x — rem) (x — ref"g) =x*—2rcos+ 1P =x>+px+q (2.120)

yields an expression with real coefficients p and ¢. Thus, a real polynomial that has
real and complex roots can be written as

f(x) =R(x)(® + pix + ql)M‘ (¥ + pox + qz)MZ...(x2 + pax + q,,)M" (2.121)

where R(x) is a real polynomial, the roots of which are all the real roots of f(x). That
is, the roots of each factor (x* + ppx + gp) 1 < k < n are complex.

If the number of real roots of f(x) is the same as the order of f(x), then f(x) does
not have complex roots and R(x) = f(x). If the number of real roots is less than the
order of f(x), then f(x) has an even number of complex roots and R(x) # f(x).

All roots are real

Let f(x) be a polynomial of order N with real roots {x, x5, . . ., xy}. Then f(x) can be
written in the form

F) = —x)(x—x2)...(x —xy_1)(x — xn) (2.122a)
which is equivalent to
f) =N +ax . fay x+ay (2.122b)

where ay, the coefficient of s , has been taken to be 1.
It is well known that the coefficients of the various powers of x are related to
the roots of f(x) by

N
—a; = Zxk =(x1 +x+ ... +xn) (2.123a)
=1

N
a = E X Xm

k,m=1
m>k

= (X1XQ + XxX1x3 4+ ... F X107 + X0x3 + X0X4 + ... X3X4 + ... —I—XN,lXN)
(2.123b)
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N
—az = E X XmXpy = (xlxz)C3 =+ X1XoXg + ... + X1 XXN + X1 X3X8 + X1 X3X5

kmn=1
n>m>k

FooFxp3xN F o XX3X F e X2 XN 1 XY)

(2.123¢)
N N
(=1 ay = Il x (2.123d)
(see, for example, Conkwright, N., 1941, p. 29).
The polynomial g(x) with roots {—xy, —x5, ..., =Xy} can be written as
glx) = (x4x)x+x)...(x+xy_1)(x+xy) = (—I)Nf(—x) (2.124a)
or equivalently as
g) = —a XM+ L+ (1) ay (2.124b)
The product of these polynomials can, therefore, be expressed as
F0)gx) = (x —x1)(x +x1)(x — x2) (x + x2) ... (x — xn) (x + xn)
= (=) (= x3) .. (= xy) (2.125a)

That is, f(x)g(x) is an even polynomial of order 2N, the roots of which are the
squares of the roots of f(x). This product can also be expressed as

fx)g(x) =
(& + a4 a2 ) (& - a2 (1) ay)
= () 45 ()" by () + by (2.125b)
where
by = —(af — 2ay) (2.126a)
by = a3 — 2aya3 + 2a4 (2.126b)
by = —(a3 — 2azas + 2ajas — 2ag) (2.126¢)

and so on. The general coefficient for the new polynomial is given by
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by = (_1)"(a§ st + 2 2ss — o+ (—1)k2a2k) 2.127)

It is obvious that for 2k > N, for k—m < 0 and for kK + m > N, the coefficients a,;,
Qj_m» OT Ay, are meaningless and should be ignored (set to zero). A simple way to
write code for such a process is to define the coefficients a,, such that

ap=1 (2.128a)
and
a,=0 n<0 and n>N (2.128b)

Since the roots of f(x)g(x) are the squares of the roots of f(x), then from
eqgs. 2.125 and 2.126,

N
— b = ng (2.129a)
k=1
N
by = Z X, (2.129b)
k,m=1
m>k
N
—by= Y xox (2.129¢)
km,n=1
H,Z£>k
N
(=1)"by = JLEY (2.129d)

Root squaring methods involve iterations of this procedure. For example,
coefficients ¢, are generated from the coefficients b, and the fourth powers of the
roots of f(x) are related to the ¢, by

N
o =3 (2.130a)
k=1
N
=Y xx (2.130b)
k,m=1
m>k

and so on.
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After p iterations of this process, the sums involving the 2 power of the roots are
given by

N
B =37 (2.131a)
k=1

N

pY = 3 a2 (2.131b)

k,m=1
m>k

and so on.
To allow for multiple or repeated roots, we write f(x) in the form

) = (x = x)M (x = x2)" o (x = x,) M (2.132a)

where the multiplicities of the roots My, M>, ..., M, satisfy

ZMk =N (2.132b)
k=1
If M, = 1, then x; is called a simple root.
Let {xy, ..., x,} be the different real roots of f(x), ordered by size so that
g |>[x2[>...> x| (2.133)

After p iterations of the root squaring process described in egs. 2.125, we obtain
a polynomial of the form

$(x) = (&) + 7 (@) 4 Y (2.134)
which has N roots
Mixy', Mox3, ..., Myx, )

For p large enough, the sum of these roots will be dominated by the term involving
the root with the largest magnitude. Thus, we can approximate this sum by

N
— B = ng” ~ Mx¥ (2.135a)
k=1
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Therefore, the largest root is given approximately by

B 1z
¥~ + (- M%) (2.135b)

The two values, &, come from taking the real values of (1)1/ 7,

The number of iterations needed for an acceptable level of accuracy (the rate of
convergence of iteration process) will depend on the multiplicity M,. For any
M, > 1, there will be some power p such that

M/ ~1 (2.136)

to a required level of accuracy. For example, if five decimal place accuracy is
required, then for each M, in the range 2 < M; < 10, the number of iterations
needed to satisfy eq. 2.136 is 20 < p < 22.

We see that eq. 2.135b will yield the value of x;, but not the value of M. Thus,
for this approach to be useful, one must know the values of the multiplicities
beforehand.

Graeffe root squaring method

If all multiplicities are 1, and thus, all roots are simple roots, the method is called
the Graeffe root squaring method (Graeffe, H.K., 1837). When all multiplicities
are 1, we see from eqs. 2.129a and 2.129b that the second largest root can be found
from

ﬂ(p> 1/2r
X~ + (— %) (2.137a)
Bi

and from eqs. 2.129b and 2.129c, we obtain

ﬁ(p) 1/2’1
X3~ £ (- %) (2.137b)

2

and so on.
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Example 2.10: Simple roots by the Graeffe root squaring method
The cubic polynomial of example 2.1
¥ =37 —10x+24=0 (2.33a)

has roots 2, -3, and 4.
With

{ao,al,az,a3} = {1,—2,—10,24} (2138)

and taking a coefficient to be zero if its index is less than O or greater than 4, we
refer to eq. 2.127 to obtain

by = —(a} — 2a5) = —29 (2.139a)
by = di —2a1a3 + 2a4 = a5 — 2a a3 = 244 (2.139b)

and
by = —(a3 — 2apa4 + 2ayas — 2a¢) = —a3 = —576 (2.139¢)

If we know that all the roots are simple, the first iteration of the Graeffe process
predicts the roots to be

X1 >~ £+/—b; = £5.38517 (2.140a)

b

X =+ /fbf2 — 42.90065 (2.140b)
|
b3

Xy =y [ = 153644 (2.140¢)
2

The constants for the second iteration are

and

¢y = —(bj —2by) = —353 (2.141a)
2 = b} — 2b,by = 26128 (2.141b)
and

c3 = —b3 = 331776 (2.141c)
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from which
X1~ £/—cy = +4.33455 (2.142a)
Xy = :}:14/ _e_ +2.93314 (2.142b)
1
and

vy = 4= 3 = +1.88771 (2.142¢)
&)

As can be seen, the magnitudes of the Graeffe approximated roots are
approaching the correct values.
After five iterations, we obtain

x1 >~ £4.00001 (2.143a)

Xy = £2.99999 (2.143b)
and

x3 = £2.00000 (2.143c)

By testing all six values of x in eq. 2.33a, we find that the correct roots are
{4.00001, —2.99999, 2.00000}, and we must discard the other three values
{—4.00001, 2.99999, —2.00000}. O

For problems where the multiplicities of the roots are not known, we present a
modified Graeffe method which will yield the root and multiplicity quickly.

Let xy, the root with the largest magnitude, be a multiple root with a multiplicity
M. We note that after p iterations, we have

S md = g7 =M (2.144a)
k=1
and after p + 1 iterations,
n o+l (P+1) x2p+1 _ 2% 2P
S Mg == B = M = Mix (2.144b)
k=1
Then,
T

7B(lp) = M = X] (2.145a)



2.5 Roots of a Polynomial by Root Squaring Methods 63

which is independent of M. Therefore,

_ gD 1/
X~ i( l(p) ) (2.145b)
M1

Once x; is determined to a required level of accuracy, M; is found from
eq. 2.144b to be
pr

2p+1
X1

M, ~ (2.146)

which must converge to a positive integer.
Once the integer value of M is established, the second largest root can be
determined from the approximations

N
_ ﬂ(lf’) _ M]X%p = le%p ~ szgp (2.147a)
m=2
and
_ ﬁgpm — M = M (2.147b)

Taking the ratio of these equations, we have

v =BV — M

5 - (2.148a)
—B M
which yields
(p+1) i\ /¥
— -M
Xy ~ i( b — il ) (2.148b)
*ﬁl - M1X1
With this value, the multiplicity of x, is given by eq. 2.147b to be
(p+1) o+l
- -M
My~ h My (2.149)
R
Example 2.11: Multiple roots by root squaring
The polynomial
flx) =2 —8x* +21x — 18 (2.150)

has roots {3, 3, 2}.
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Referring to eqs. 2.126 or eq. 2.127, the coefficients for the first iteration are

{80, B0} = {-22,153, 324}
The second iteration yields coefficients
{8,555} = {-178,9153, 104976}
and for the third iteration, we obtain
{ﬁ(f),ﬂ(f), (3‘”} = {—13378,4640953, — 11019960576}
Applying eqgs. 2.145b and 2.146, the first iteration yields

1
-

—ai X]

22

=x; ~— = 2.75000
8

with the multiplicity of this root given by

)
P _ ~ 2.90909

M = - ~
T2 (2757

The second iteration yields

—pP 178
A B A ()

with an estimated multiplicity of

_p@
= B _ 178 ~ 2.71910

M =
T T (2.84445)°

From the third iteration, we obtain
Yo w1538 g a3y
frng — = X1 =~ = .
1 X ! 178

R UL
K (2.94437)°

with multiplicity

M, ~ 2.36837

(2.151a)

(2.151b)

(2.151¢)

(2.152a)

(2.152b)

(2.153a)

(2.153b)

(2.154a)

(2.154b)
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We see that x; is converging to +3, and M, is converging to 2. We find that six
iterations of this process yield the correct root and multiplicity accurate to five
decimal places. The values of the coefficients for this iteration are

{ﬁﬁ“,ﬁf’,ﬁ_@} = {~6.86737 x 10%,1.17902 x 10°', —2.17491 x 10%}
(2.155)

Since these numbers are so large, one must be alert to the possibility of computer
memory overflow problems. Testing the values of x; in eq. 2.150, we discard those
that are not roots. The correct results are

x1 = 3.00000 (2.156a)
and
M, = 2.00000 (2.156b)

To determine the value of the third root and its multiplicity, we set x; = 3 and
M, = 2 in eqs. 2.148b and 2.149 to obtain

2 (1) o\ /2
— -M 22 — 18
X3 —xy = ( Bi 1x1> — < > =2 (2.157a)

—al—Mlxl 8—06

and

_p) 2 .
M; = (M) _ <22 18) — (2.157b)

2
X3 4

All higher iterations yield the same values of x3 = 2 and M3 = 1. O

Complex roots

As noted above, if some of the roots of a real polynomial f(x) are complex, f(x) can
be written in the form

M M M,
fO) =R®)(+pix+aq)  (C+px+q) (F+px+qa) " (2117)
The real roots of f(x) are the roots of R(x). They can be found by methods we have
introduced in this chapter (the Newton—Raphson method, for example). Thus, we

can specify the polynomial

R(x) = (x — Xpy1)o(x —xn) = X"+ X 4 L, (2.158)
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The coefficients of R(x) are determined from these real roots of f(x) by

N
n=-> x (2.159a)

k=n+1

N
=Y X (2.159b)
k=n+1
m=n+2
m>k

and so on.
The complex roots of f(x) are the roots of the polynomial

% = (C +pix+ 611)Ml (o + pox + Clz)Mzm(X2 + P + ‘in)M” (2.160)

If the order of f(x) differs from that of R(x) by two, then f(x) has one conjugate
pair of complex roots of multiplicity one. Then R(x) can be written as

R(x)=(x—x3)(x—xny) =" 2+ 2 4y (2.161)
with
N
r=—) X (2.162a)
=3
N
r= ) Xk (2.162b)
k=3
m=4
m>k
etc. Then
f(x) 2
— = 2.163
R() X +px+gq ( )

To find p and g we note that

O _ o

RO " e (2.164a)
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and

anN-—1 an
R'(0) =
(0) PR

_f'0) _ f(0)

o R(0) R(0)

d [f (X)}

P:a W

The conjugate pair of complex roots of f(x) are then found from

¥ 4+px+qg=0
Since these roots are complex, we know that
2
p- —4g<0

Therefore, the complex roots are given by

1
Xt =§(fpii\/4qu2)

67

(2.164b)

(2.165)

(2.166a)

(2.166b)

Example 2.12: One conjugate pair of complex roots of multiplicity one

The polynomial

flx) =x* =7 +21x% — 37x 4 30

(2.167)

has two real roots, {3, 2} found by one of the methods described earlier. Therefore,
f(x) has one conjugate pair of complex roots of multiplicity one. To find them, we

form
Rx)=(x—=3)(x—2) =2 —5x+6
With r; = —5 and r, = 6, we see from eqs. 2.164 that

7614_30

= —~_5
1 r 6
and
as ag 37 30
= =— — — _5 —
P= T2 T T3l Y

Therefore, referring to eq. 2.166b, we have

1
xi:§<2j:i\/20—4> — 142

(2.168)

(2.1692)

(2.169b)

(2.170)0
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If the orders of f(x) and R(x) differ by four, then f(x) has either two different
conjugate pairs of complex roots, each of multiplicity one, or it has one conjugate

pair of roots of multiplicity two.

If £ (x) has two different conjugate pairs of complex roots of multiplicity one, it is

of the form
£ = RO6)(2 + pix + 1) (2 + por + ) 171
where
R(x) = (N 12 4 4 ryegx® + rveex® + rvesX 4 ry_a) (2.171b)
Then
% = (x2 +p1x—|—ql)(x2 +p2x+q2) =
A (pr4+p)F + (@ + @+ pip)Y + (@p2+ ep)x+ 12 (2.172)
where
f0) _ ay
= 7 - N 2.173
q192 R(O) 7w ( a)
d [f(x) anN-1  ANIN-5
= |2 = — = 2.173b
QP2+ qop1 = - [R ol e L ( )
1d [f(x)
q1 + g2+ pap1 = A2 [m »
. 2
= vz IN-IIN-s  ONTN6 | ONN-s (2.173¢)
I'N—4 T'N_4 N4 I'N—4
and
1 & [f (X)}
P2+tp =753 55 =
6 dx3 |[R(x)||,_o
ayN-3 AN-2IN—5 AN-1IN-6 ANTN-7 aN—lrj%/,5 ANTN-6TN-5 aNrg%/,5
I'N—4 T 1%/74 "[%174 T 1%774 T 1%/74 r 1%/74 T ;‘/74
(2.173d)

It is very cumbersome to solve such a set of equations. (For example, by eliminating

P1, P2, and g, we obtain a sixth order equation for ¢;.)
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If there is one conjugate pair of complex roots of multiplicity two, then f(x) can
be expressed as

F) =R+ pr+4)° =
(N v rvea) (F +px+ q)2 2174

Then p and ¢ are given by

» [0 an
=t = (2.175a)
TTRO) T v
from which
g=+,]2 (2.175b)
IN—4
and
d f(x) anN-—1 an
i A = - ry_ 2.175
P~ [R(X) o v 2179
which yields

1 e fay-
p=t-, /2 4(“” LN ;~N5> (2.175d)
2V ay \Irn—4  Ty_4

Therefore, when f(x) has one pair of conjugate complex roots, it is fairly straight-
forward to find that conjugate pair.

When the orders of f(x) and R(x) differ by four, one can use eqs. 2.173 to
determine whether the complex roots are two distinct conjugate pairs of multiplicity
one, or one conjugate pair of multiplicity two.

If there is one conjugate pair of multiplicity two, one of the values of p and one
of the values of ¢ found from eqs. 2.175b and 2.175d must also satisfy eqs. 2.173c
and 2.173d with p; = p, = p and q; = ¢» = ¢, respectively That is, one of these
solutions for p and one for ¢ must also satisfy

- - 2
__Aan-2 A4N-1'N-5 ANIN-6  ANT'N_s

2
2q+p° = ) — +— (2.176a)
I'N—4 TN-4 TN-4 TN-4
and

. 2 . 3

) _ aN-3  danN-2I'N-5 AN-1IN-6 GNVN—7+61N—1IN,5+aNiN—6VN—5 anry_s
P= 7 2 2 2 r r o

N-4 N—4 N—4 N—4 N—4 N—4 N—4

(2.176b)



70 2 ZEROS of a FUNCTION

If one value of p and one value of ¢ found from eqs. 2.175b and 2.175d do not
satisfy eqs. 2.176, there are two conjugate pairs of complex roots of multiplicity one.

Example 2.13: One conjugate pair of complex roots of multiplicity two

We construct the sixth order polynomial
Flx) = x® — 9x° +40x* — 114x° + 209x* — 245x + 150 (2.177)
by taking
2 2
fx)=(*=2x+5)"(x=3)(x—2) (2.178)

That is, as in example 2.12, f(x) has two real roots {3, 2} and

R(x)=(x—3)(x—2)=x*—5x+6 (2.127)
Thus, we have
{a1,a2,a3,a4,as,a6} = {—9,40,—114,209, —245,150} (2.179a)
and
{ri,rn} ={-5,6} (2.179b)
Then, from eqs. 2.175 with ay = rg = 1, with g, = r, = 0 for k < 0 and with
r,=0fork > 2,
q:i\/(::j:i\/i?:iS (2.180a)
and

| [r2fas aq 1 [6 [—245 150
I e o L D A e S Y W B s T
P 2\/;(@ 2 ”) V150l 36 Y ( )

Referring to eq. 2.173c we have

ay asry aelo (16]‘%

ra 13 ry ra
209 (—245)(=5) (150)(1)  (150)(—5)
:?_ 62 - 62 + 63 =14 (218121)

and

14
2q+p2—:t10+4—{ 6 (2.181b)
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From eq. 2.173d,

T4 U Ty Ty Ty 3 4
_ (—114) B (209)(-5) B (—245)(1) B (150)(0)
6 62 62 62
(—245)(=5)* | (150)(1)(=5)  (150)(=5)°
+ & +2 & - o =—4 (2.182a)
and
2p = +4 (2.182b)

The results of eqs. 2.180 and eqs. 2.181 and 2.182 tell us that there is one
conjugate pair of complex roots of multiplicity two. Therefore, there are four
possible quadratic factors, from which we obtain the complex roots. They are:

o XX4+2x+5
¢« X*—2x+5

o X24+2x-5

o X2-2x-5.

Since the discriminants in the solutions of
¥+2x—5=0 (2.183a)

are positive, these factors do not yield complex roots. Therefore, the complex roots
of multiplicity two are found from

¥ E+24+5=0 (2.183b)

The solutions to eq. 2.183b are
x==£1+2i (2.184)
By testing each of these solutions in the original polynomial, we find that x =

—1 = 2i are not roots of f(x). Therefore, x = 1 £ 2i are the two complex roots of
multiplicity two. O

Problems

1. Find the solution to

(a) X =4’ 4+2x—8=0
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10.

11.

2 ZEROS of a FUNCTION

(b) 6 +3%+2x+1=0

by factoring.

. Find the roots of x* 4 9x? 4 23x + 15 = 0 using Cardan’s method.
. Find the three real roots of x> + 9x* + 23x + 15 = 0 using the method based on

the trigonometric identity of eq. 2.37.

. (a) Derive an identity that relates sin(30), sin(0), and sin’(0) analogous to the

identity given in eq. 2.37.
(b) From the result of part (a), find the trigonometric solution to a cubic
equation for which all roots are real.

. (a) Derive an expression that relates cosh(3¢), cosh(¢)), and cosh®(¢).

(b) From the result of part (a), find the hyperbolic solution to a cubic equation
for which all roots are real.

. Find the solution to x* — 6x 4 12x2 — 14x 4 3 = 0 by Ferrari’s method.

Hint: One of the roots of y* — 67% + 18y — 20 = 0is y = 2 + /29

. Find the solution to x* — 3x?> — 6x — 2 = 0 by Descarte’s method.

Hint: One of the roots of 3 — 6)? 4+ 17y — 36 = 0is y = 2 + 2i\/2

. Find the two zeros of the function represented numerically in Table 2.2 by

(a) the regula falsi method to three decimal place accuracy
(b) the Newton—Raphson method to three decimal place accuracy
(c) interpolating over intervals surrounding each of the zeros.

. All the roots of f(x) = x* — 13x® + 62x> — 128x + 96 are real. Use the root

squaring method to find the roots of f(x) and their multiplicities.

The polynomial f(x) = x* — 2x* + 3x* — 2x + 2 has no real roots. Use root
squaring methods to determine the roots of f(x) and their multiplicities.

The polynomial £ (x) = x> + 3x* + 4x> — 4x — 4 has one real root of multiplicity
1. Use root squaring methods to find the roots of f(x) and their multiplicities.



Chapter 3
SERIES

3.1 Definitions and Convergence

We consider a sum of terms written as

N
S(z) = Z 01(2) = 0y (2) + Opg1(2) + ... + on(2) (3.1

n=ng

When ng and N are both finite integers, S(z) is a finite sum or simply a sum. If ng
and N are not both finite integers (that is ny = —oo and/or N = 00), then S(z) is
called an infinite series or simply a series.

When a series S(z) is finite for some value of z, S(z) is said to converge
to (or is convergent at) z. If S(z) is infinite at z, the series diverges (or is
divergent at) z.

One requirement for the convergence of S(z) at z is

lim 6,(z) =0 (3.2)

n—o0

This is not a sufficient condition, but it is a necessary one.
When the terms in S(z) are of the form

0n(z) = cn(z — 20)" (3.3)

the series is called a power series. The coefficient c,, is independent of z, and z is a
specified value of z in the domain of S(z).

H. Cohen, Numerical Approximation Methods, DOI 10.1007/978-1-4419-9837-8_3, 73
© Springer Science+Business Media, LLC 2011
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Taking ny = 0, such a series
S(z)=> enlz—2)" =
n=0

S 1 d”S(Z) n __ > S<n)(z ) n
Z; ( dz" )z—zo(z B ZO) - Z l’l' : (Z B ZO) (34)

n=0 n=0

is called a Taylor series expanded about zy. A Taylor series with zy = 0 is called
a MacLaurin series.

Two types of series that one encounters frequently are absolute and alternating
series. An absolute series is one in which all terms have the same sign.'

An absolute series is of the form

S(z) =Y _lon(2)] (3.52)
n=0

An alternating series is one for which the signs of the terms alternate. It is of the
form

S(z) =) (=1)"ou(2)] (3.5b)

NgE

i
=3

n

Example 3.1: Absolute and alternating power series

The MacLaurin series for ¢ is

X _n
~ Z
& = Z;a (3.6)
The series on the right side of eq. 3.6 converges (to ¢°) for all finite values of z. If z is
positive (z = |z[), then
00 n 2 3
ezzzﬁ:1+|z|+ﬂ+ﬂ+ (3.72)
— n! 2! 31 '
is an absolute series. If z is negative (z = —|z|), then
00 n 2 3
EZZZ(—l)HHZI—M—Q—ﬂ—ﬂ—l— (3.7b)
n! 2! 31 ’

n=0

is an alternating series.

! There is no loss of generality in taking all terms to be positive. If all terms in S(z) are negative,
then the series in which all terms are positive converges to —S(z).
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The geometric series

1—z

1 o0
—ZZ”:1+2+22+Z3+... (3.82)
n=0

is convergent for |z| < 1. For positive values of z, this is an absolute series. When
z is negative, the series is the alternating series

1 2 3 - ny_n
=1- — .= —1 3.8b
= T H R = S 1 (3.8b)

The logarithm series

2 3

En(l—i—z):Z(—l)"H%:Z—%—F%— 3.9)

n=1

also converges for |z| < 1.Itis an alternating series if z is positive, and for negative z,
it is an absolute series for —n(1-|z|).

The series
00 22n+l Z3 ZS
inz = )= 4 3.10
Sz n;( T T TR (3.10)
and
[e9) 2n 2 4
_ A S A A
cosz—;( 1) (2n)!—1 TRTRE (3.11)

converge for all finite values of z and are alternating series for both positive
and negative values of z. [

There are many tests for convergence of an infinite series discussed in the
literature (see, for example, Cohen, H., 1992, pp. 125-134). Three of the most
commonly used tests, which are discussed in Appendix 2, are

 the Cauchy integral test for an absolute series
 the limit test of eq. 3.2 for the alternating series
» the Cauchy ratio test for any series.

Referring to eq. 3.2, if a series is to converge, there is some value of the
summation index n such that when n > N,

(0041 (2)[<|on(2)] (A2.2)
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We write
N—1 00
S(z) =Y _ou(z) + > 0u(z) = Si(2) + Sa2(2) (3.12)
n=ny n=N

Since S;(z) is a finite sum, it has a well-defined value and thus does not affect
whether S(z) converges or not. That is, the convergence or divergence of S(z) is
determined entirely by whether S,(z) is finite or not.

Cauchy integral test for an absolute series

By treating the summation index as a continuous variable, the Cauchy envelope
integral is

JOO (o (n,2)|dn

N

As shown in Appendix 2, for an absolute series,

ro lo(n, z)|dn<S,(z)<|on(z)| + Joo |o(n,z)|dn A2.9)
N N

Therefore, if the envelope integral is finite, S;(z), and thus S(z), is less than a finite
value (its upper bound) and therefore converges. If this integral is infinite, S,(z)
greater than oo (its lower bound) and thus diverges.

Limit test for an alternating series

It is also shown in Appendix 2 that for some large index N,
lon (z)| — lon41(2)[<S2(2)<|on(2)] (A2.14)

For S,(z), and therefore for S(z) to converge, we require only that these bounds of
S»(z) be finite. But a necessary condition for the convergence of a series is

lim o,(z) =0 (32

n—oo

Thus, this limit test is the requirement for convergence of an alternating series.
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Cauchy ratio test for an any series

It is also shown in Appendix 2 that if the Cauchy ratio, defined by

pn(2) = UQV;EZ()Z) (A2.15a)
satisfies
O<A}Erolo pn(z)<1 (3.13a)
S»(z), and therefore S(z), converges. If
lim py(z) =1 (3.13b)

N—oo

the convergence or divergence of S,(z), and thus S(z), cannot be determined by the
ratio test. If

lim py(z)>1 (3.13¢)

N—o0

S»(z), and thus S(z), is divergent.

Example 3.2: Convergence tests

The Riemann zeta function is defined by the series

o0

— 1
@)= — (3.14)

n=1
where z can be a complex number. For this discussion, we take z to be real. With

1
Oy =— (3.15)

n?

the Cauchy ratio test yields

Z

lim =1 1
N (N 1) (.16

for all z. Thus, we cannot determine the convergence or divergence of the Riemann
zeta series using the Cauchy ratio test.
Since the series is an absolute series, the Cauchy integral is

1 : ) 71
> - z
J —dn = (z—=Dn="t, (3.17)

v tn(n) |2 2=1
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From this, we deduce that if z < 1, the envelope integral is infinite and ¢(z)
diverges. For z > 1, the envelope integral is finite, so ¢(z) converges.
For the alternating series

S(z) = i(_{)n (3.18)

we have
| 0 z>0
Jim o= 1 z=0 (3.19)
oo z<0.

Thus, the series converges for z > 0, and diverges when z < 0. O

3.2 Summing a Series

To sum a series means to find the closed form of the function S(z) that the series
represents. If the terms in an infinite series do not contain a variable z, the
series sums to a number. Some examples of the summing of series are shown in
example 3.1.

Example 3.3: Simple summing of series

One technique for summing a series is to recognize that it has terms that are like the
terms in a familiar series. Then, summing that series involves simply writing down
the result

Referring to eq. 3.6,

00 1 00 n
;2%' Z(;) B (3.20a)

and from eq. 3.9, we have

o0 1 s z" |
—1 n+lT: -1 n+1< > —£n<l —|——> (320b)D
e n e (G .

If the series one is trying to sum is not in a recognizable form, it may be possible
to manipulate that series into a familiar form. There is no prescription for doing
this, but through examples, we will indicate some guidelines about what to look for
in deciding how to manipulate the series.
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Algebraic manipulation

Example 3.4: Algebraic manipulation to sum a series

We note that the series

1

5= G Z{M T

n—() 2n + 3 2n+ 4 n=0
1 1 1 1 1
5 6 7 8

(3.21a)

1
3 4

contains terms like those in the logarithm series of eq. 3.9. Since the first terms in
the logarithm series are 1 and —1/2, we write

00 (3.21b)0
= () <D= (4 )y - 5= n(2) 5
-\ &= n| 2 =l 2 2
Example 3.5: Algebraic manipulation to sum a series
Terms in the series
o] ZZn-H
S(z)=>_ e (3.22a)

n=1
contain 1/n! which, referring to eq. 3.6, suggests that we try to manipulate S(z) to

look like a series for an exponential function.
Writing S(z) as

o0 1 2\ "
1 +2;a (%) ] (3.22b)

we obtain

S(z) = z[e?" - 1} (3.23)0
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Manipulations using integration

To manipulate terms in a series using differentiation and/or integration, the series
must depend on a variable. In some examples in which the series does not depend
on a variable, we begin with a series that does contain a variable, perform the
calculus operations, and then assign a value to the variable.

When a power series contain factors involving the summation index in the
denominator of the terms, one looks to integrating a known series.

Example 3.6: Integration to sum a series

The terms in the series

= 1
B Zn(n—F 1)2" (3:24)

n=1

contain terms in 1/n instead of 1/n! or 1/(2n)! or 1/(2n + 1)! or terms in which

the only dependence on n occurs in 1/2". This suggests that we try to manipulate

a logarithm series. However, referring to eq. 3.9, we see that S has a factor of

(n + 1) in the denominator that does not exist in the terms in the logarithm series.
Replacing z by —z in eq. 3.9, we see that

2 o 7N

—En(l—z)—z—&— + —|— - (3.25)

n=1

Thus, to obtain a factor of (n + 1) in the denominator of the terms of the
logarithm series, we consider

J[ tn(1 - z)]d :in’; =(1=2)[n(1 —z) — 1] (3.26)

We evaluate the constant of integration by noting that each term in the integrated
series contains at least two factors of z. Therefore, setting z = 0, the series is zero

and we obtain C = —1. Thus, eq. 3.26 can be written as
o n 1— 1
P _(1-2 (1 —z2)+ - (3.27a)
“~n(n+1) z z

Setting z = 1/2, we find

- 1
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Example 3.7: Integration to sum a series

The factor 1/n! suggests that to sum the series

) on
= D (3.28)

we manipulate the series for e® given in eq. 3.6.
To obtain the factor (n + 2) in the denominator, we must integrate z
Thus, we consider

n+1

n+2

o0
Jzezdz =(z—1)e Z o C (3.29a)

n=0 }’l
Again, by setting z = 0, we obtain C; = —1, so that

e n+2

-1 +1= Zm (3.29b)

n=1

We obtain the factor (n +4) by integrating z"*>. Therefore, we multiply
eq. 3.29b by z and integrate to obtain

2 o0 Zn+4

Jz[(z— 1)e* +1])dz = (* —3z+3)ez_|_z_:

2 ;meCz (3.30)

With C, = 3, found by setting z = 0, we have

_ 3 3 0 n
(2 =3+ 3) Z (3.31)
74 — (n+2)(n+4)n
Then, with z = 2, we obtain
S 2" *—1
=3 =° (3.32)0

(n+2)(n+4)n! 16

n=1

Summing a series using differentiation

Since derivatives of a power series yield factors of the summation index in the
numerator, differentiation is an appropriate manipulation when there are such
factors in the numerator of the power series we are trying to sum.
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Example 3.8: Differentiation to sum a series

Since the series

S i y (n+2)(2n + 3)n?"

3.33
420 1 1)! (3.33a)

n=

contains the factors 1/(2n + 1)! and (-1)", we look to manipulating the series
for sinz given in eq. 3.10. The factors of (n + 2) and (2n + 3) in the numerator
suggest that we manipulate a known series using differentiation.

The terms in the series for sinz contain only odd powers of z. Differentiating
an odd power of z cannot yield the factor (n + 2). But we note that the factor (n + 2)
can be written as (2n + 4)/2 and that 4" = 2%". Therefore, we write the series as

- (2n +4)(2n + 3) /m\ 2
S=2 U= ma T ) (.33

From eq. 3.10, we have

3. %
Psinz = n;( 1) D) (3.34)
Therefore,
d2 3as
dzgzismz) = (62 — 2°)sinz + 6z%cosz
i . 2n+4)(2n +3)22 i 2 (2n+4)(2n+3)2" (335)
=z
= 2n+ 1) e (2n+ 1)!
Setting z = m/2, this becomes
= (2n+4)(2n + 3) /m\2n ™\4 12 =
S = —(—) =(3n——~|5=——= 3.36)0
nz:; Qn+ 1) \2 <” 8)n2 2 @39
Example 3.9: Differentiation to sum a series
The terms in the series
(n+1)(n+3)
S = Ziy (3.37)

n=0
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do not contain factors involving » in the denominator. The geometric series given
in eq. 3.8, which converges for |z| < 1, has this property. Therefore, with the factor
1/3", this suggests that we manipulate the geometric series in z, then set z = 1/3.

To obtain the factors (n + 1) and (n + 3) in the numerator of terms in the geometric
series, we must differentiate z"*' and z™*>. Therefore, we multiply the geometric series
by 2> and take one derivative to obtain the factor (n + 3). We then obtain (n + 1) by
dividing by z then taking a second derivative. The result is

dfld/( 2 3—z =
AR (| R ) DR URS ERCES

1—Z P

With z = 1/3, we find

S = Z +3) _ =9 (3.39)00

n
n=0 3

Summing a series using integration and differentiation

When the terms of a series contain factors involving the summation index in both
the numerator and denominator, we may be able to sum such a series using
integration and differentiation.

Example 3.10: Integration and differentiation to sum a series

For the series

21‘1

S = i (3.40)

n:O

the factor 1/n! suggests that we manipulate the exponential series of eq. 3.6. The
factor (n + 2) in the numerator is obtained from a derivative of z"** and (n + 3) in
the denominator is obtained by integrating z"**. Therefore, we consider

o n+3

J {zjz (zze‘—)} dz = ¢é° (23 — 22427~ +C (3.41)

n=!

By setting z = 0, we find the constant of integration to be C = —2. Therefore,

o 3242242

Z Z_': ez ZrE )+ (3.42)
Z

n:O
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Withz = 2,

X (n+2)2" 3 +1
=> — = 43)0
S n:O(n+3) n! 4 (3.43)

Example 3.11: Differentiation and integration to sum a series
The factors (=1)" and 1/(2n)! in

— c n (2’1 + 3) ‘[‘[2"
Si;(_l) (n+ 1)(2n)! 4 (3.44)

suggest manipulations of cosz given in eq. 3.11. The factor (2n + 3) in the numera-

tor is obtained by differentiating z*"*>. To obtain (n + 1) in the denominator

suggests that we integrate z”. But the series for cosz only contains terms in z*".

Therefore, we write
(n+1)=132n+2) (3.45a)
and
4n = 2% (3.45b)

Then, the series of eq. 3.44 can be written as

= . (2n+3 ™"
S = 2’; (—1) m (E) (3.46)

We then consider

Jé % [z’cosz]dz = zsinz + (2% + 1)cosz

2t (3.47)

B > 2(2n+3) z
~ 2V G @ C

Taking z = 0, we find C = 1. Then, setting z = n/2, we have

T - . 2 (2n4+3) 1 /w20t
2 _;(_1) (2n+2) (2n)! () (3.482)
from which
— > B "(2’1—+3)L n 2n_ _i
S_n;( Y (2n+2) (2n)!(2) =2-7 (3.48b)0



3.2 Summing a Series 85

Bernoulli numbers and the Riemann zeta series

Bernoulli numbers B,, are defined by the series

B\Z ( T n ] ( )
It is straightforward to see that
s — 1 .

Thus, Fg is analytic at z = 0, so it can be expanded in the MacLaurin series

- dkFB Zk
Fgp(z) = <> — (3.51a)
; dzx* ) k!
Comparing this to the series of eq. 3.49, we have
dr z
b= ()|,
FT Ak e 1

The Bernoulli numbers can be determined using a recurrence relation. From the
binomial expansion, we have

(3.51b)

n—1 ]

n n o__ _ n: k
(B+1)"—B _0_;7](!(”_@!3 (3.52)

We then make the replacement
B — B, (3.53a)

to obtain an expression for B,,_; in terms of Bernoulli numbers of lower index

B, 1= Z k('lz - 1,2; (3.53b)

From eq. 3.51b [or equivalently eq. 3.50] we see that

By =1 (3.542)
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n B,
0 1
1 -12
2 1/6
4 -1/30
6 1/42
8 -1/30
10 5/66

Table 3.1 Short table of non-zero
Bernoulli numbers

and from eq. 3.51b

mzi(z ) Cim [E2 122
dz\e —1)|_y =0 | (e —1)

z—|—%zz+...—z—22 __l (3.54b)
(z+..) '

lim

z—0

2

Using eq. 3.51b or eq. 3.53Db, it is straightforward to show that for integers m > 1,
Boms1 =0 (3.55)

That is, all odd index Bernoulli numbers except B are zero.
It can be shown (see Cohen, H., 1992, pp. 153—-155) that the Bernoulli numbers
of even index are related to the Riemann zeta function of even integers by

(2n)!
(277.')2"

Bo = (1) 2 2y = 2 S L Gse)
k=1

(2n)?

Therefore, once one determines the value of the Bernoulli numbers from eq. 3.51b
or eq. 3.53b, one can sum the Riemann zeta series {(2n) exactly.

Table 3.1 below is a short list of non-zero Bernoulli numbers of the index n
for 0 < n < 10 generated from either eq. 3.51b or eq. 3.53b.

Example 3.12: The Riemann zeta series and Bernoulli numbers

We see from Table 3.1 that
B, =— (3.57a)
and

By— —— (3.57b)
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Therefore, from eq. 3.56, we have

S N
W= z=7¢ (3.582)
=1
and
<1

In Problem 9, part (a), the reader will determine the exact value of the Riemann
series {(6). O

Euler numbers and summing an alternating series

Euler numbers are defined by the MacLaurin series for

00 2k

Fi(z) = sec(z) = Z Ezk (3.59)
k=

Clearly, Fg(z) is singular for z an odd multiple of /2. We note that eq. 3.59 defines
Euler numbers of even index only.
From the MacLaurin series for Fg(z),

> dAFE Zk
Fi(z) = ; ( — ) o (3.60a)
we have
dk
Ey = (—1) (45l (3.60b)
dzk -0

The Euler numbers can also be obtained from a recurrence relation similar to that
satisfied by the Bernoulli numbers. From the binomial expansion we have

(E+1)"+ (E - 1)":0:216'”"4!'[1“*1)”*"]15" (3.61)
23 !

and making the replacement

E—E, (3.62a)
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we obtain

B 1 n—2 n! ek
Ei==3 3 i h [1+ (1] (3.620)

! !
En= _% £ k'(nn— %! [1 —( Uk]E" - kz_g k'(nn— o (3.63)
k odd
Referring to eq. 3.60D, it is straightforward that
E =0 (3.64a)
Therefore, from eq. 3.63 we have
Ey=3E; =0 (3.64b)
from which eq. 3.63 yields
Es =5E,+10E;3 =0 (3.64c¢)

and so on. In this way, it is straightforward to show that all odd index Euler numbers
are zero.

Euler numbers of even index are found from either eq. 3.60b or eq. 3.62b.
Table 3.2 below is a short list of values of even index Euler numbers.

As shown by Cohen, H., 1992, pp. 160162, the Euler numbers are related to the
alternating series

2n+1

>V g~ O

k=0

Ea, (3.65)

Therefore, this alternating series can be summed exactly in terms of known values
of Euler numbers.

2n E,,
0 1

2 -1

4 5

6 —61
8 1,385
10 -50,521

Table 3.2 Short table of even index
Euler numbers



3.3 Approximating the Sum of a Convergent Series 89

Example 3.13: Summing an alternating series and Euler numbers

Using the values of the Euler numbers given in Table 3.2, we have

- oz
- (3.66a)
; 2k + 1) 4
and
o0 7.53
—1 — (3.66b)
2; (2k + 1)3 32

In Problem 9, part (b), the reader will determine the exact value of the alternating
series of eq. 3.65 forn = 2. O

3.3 Approximating the Sum of a Convergent Series

If a convergent series cannot be summed exactly, there are methods by which the
value of a series can be approximated. In Appendix 2, it was noted that a series can
be written as a finite sum plus a remainder series as

S(z) = Z a.(z) + ian(z) =S1(2) + S2(2) (A2.1)

Since S;(z) is a finite sum, its exact value can be determined. Therefore, we
approximate S(z) by estimating the value of S,(2).

Truncating a series

Since S(z) converges, for some value(s) of z, we can choose S,(z) (by choosing N)
so that the magnitudes of the terms in S,(z) decrease with increasing index n so that
ignoring the remainder series results in a small error. Then, S(z) is approximated by
the finite sum S(z). This approach is called truncating the series.

Example 3.14: Approximating a series by truncation

From eq. 3.6, the series for e'?is

d=>

:0

I\)I'—‘

= 1.64872 (3.67)
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The finite sum approximation

l\)\'—‘

3
1
Z _1+ ia L reasss (3.68a)
242 8 48

compares reasonably well with the exact value.
We can improve the accuracy, we take more terms in the finite sum. For
example,

NI'—‘

25: I S S L S YT o ] (3.68b)
<2l 128 48 t3sa 3820 '

Thus, for the exponential series, for relatively small values of z, truncation yields
fairly accurate results with a finite sum of just a few terms.

However, if z is large, a large number of terms are required to achieve accurate
results. For example, for z = 5, the finite sum

3
5" 25 125
O~y = =145+ +—-=3933333 (3.69a)
= n! 2 6
is an extremely poor approximation to
= 148.41316 (3.69b)

To achieve the value given in eq. 3.69b to five decimals requires a finite sum of 23
terms. [

Approximation to the value of an absolute series

It is shown in Appendix 2 that for an absolute series, the bounds on the remainder
series S,(z) are given in terms of the envelope integral by

JOO lo(n, z)|dn<Sa2(z)<|on(z)| + ro |o(n,z)|dn A2.9)
N N

Therefore, if the envelope integral can be evaluated in closed form, or accurately
approximated by some method such as numerical integration, then S,(z) can
be approximated by some average of the upper and lower bounds as

S2(z) = a|ou(2)] + aJ;O lo(n,z)|dn + (1 — o) J;O |o(n,z)|dn
= J:,o |o(n, z)|dn + o|6,(z)] (3.70)
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with 0 < o < 1. Unless there is information specifying the value of o, it is
reasonable to take it to be 1/2. Then, S»(z) is approximated by

$2(z) ~ Yon(2)] + J lo(n, z)|dn 3.7
N

Example 3.15: Estimate of an absolute series

We note that

o0 o0
1
§=y — —
11 1
=1-5+3—gt=n(l+2)._ =n(2) =0.69315 (3.72)
Writing this as
4 1
§=y — 45 3.73
;(2n+1)(2n+2)+2 (3.73)
we have
4 1 1 1 1 11
=N 4 — - =064563 (3.74
;(2n+1)(2n+2) 2t37 3t 91 (3.742)

which is not very accurate. The approximation to S, given in eq. 3.71 is

1 1 = 1
S :— d
2 (2><5+ )(2><5+2)+J5 ntr2nt2)™"

L L2 2 0.04720 (3.74b)
~ 264 2" )= :

Adding this to S; we obtain
S ~ 0.69292 (3.75)

which differs from the exact value by about 0.03%. O
Example 3.16: Estimate of an absolute series

In example 3.14, it is shown that for large positive values of z (z = 5), the
exponential series is poorly approximated by truncating the series with a small
number of terms for S,(z). It is possible to estimate the exponential series by a finite
sum with a small number of terms added to the approximation given in eq. 3.71.
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As such, we consider

5 N—1 5n 00 5n N—1 gn
S= =3 =+ =) =45 (3.76)
n=0 """ n=N """ n=0 """
with
5N oosn

Clearly, this integral cannot be evaluated in closed form. However, it can be
evaluated numerically.
As shown in Appendix 3, for “large” n, the Stirling approximation for n! is

nl ~n"e "V2mn (A3.54)

An improved approximation given by Namias, V., (1986), pp. 25-29, is

nl = eI o\ s ) (A3.58)
For example, the exact value of 5! is 120. Using eq. A3.54, we have

5! ~ 5%¢7y/10m = 118.01917 (3.78a)

The approximation to 5! using the Namias expression yields

51 ~ 576731/ 10me(1/00~1/4500041/3937500) — 12000000 (3.78b)

Thus, eq. A3.58 provides an accurate approximation to n! for n > 5.

In ch. 4, we demonstrate that an integral can be approximated numerically by
a sum over discrete points. One such method, called an N point Gauss Legendre
quadrature sum, approximates an integral as

1 N
J F(x)dx ~ ) " wiF (x;) (3.79)
-1 k=1

where the numbers w; and x; are given in ch. 4, Table 4.1.
To use this method to evaluate the integral in eq. 3.77, we use the transformation

n(x) = (3.80)
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Taking N = 5, we obtain

4
Sil
S, = Z;H = 65.37500 (3.81)
Then
155 1 Sn(,\‘) 1
S~ 8 +==+ J -
'T2s (0! (14 x)?

10 ()

=~ 65.37500 + 13.02083 + IOZwk G0l (1 +Xk)2 ~ 148.19159 (3.82)

which differs from the exact value e’ by 0.15%. O

Approximation to the value of an alternating series

In Appendix 2, it is shown that when S(z) is an alternating series, the remainder
series is bounded by

ow ()| — lows1(2) <82 (2) <[ow () (A2.14)

where N must be even.

As with an absolute series, the value of S,(z) is somewhere between the bounds,
and unless there is some information to suggest otherwise, it is reasonable to take
S»(z) to be the average of the upper and lower bounds;

S2(z) =~ |on(2)] —%|0N+1(z)| (3.83)

Example 3.17: Estimate of an alternating series

Referring to eq. 3.10, we recognize that

00 22,7 1 00 22n+1 in(2
s=% (D' =5 S (-1 _SIn2) _ 45465 (3.84)

£ Qn+1) 24 2n+1)! 2
Taking
: . 2 4
=) (-1)'=——=1--=0.33333 3.85
S22 V' gm (85
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This is a poor approximation to the exact value of S. Thus, truncation at the n = 1
term is not a good estimate of this series. The remainder series is

o~ . = 21 =0.12698 3.85b
S2—|O'2|—§‘O'3|—§—§ﬁ— . ( )

Adding this to S; we obtain
S ~0.46032 (3.86)

which is fairly accurate, particularly since S, is approximated by only two terms.
This result differs from the exact value by about 1.25%. O

Pade Approximant

A Pade Approximant introduced in Appendix 1 can be used to approximate a
function represented by an infinite power series. The general form of a Pade
Approximant is the ratio of polynomials;

PN(Z)

SP) = Oum(2)

(3.87)

where Py(z) and Qy,(z) are polynomials in z of order N and M, respectively.

Since Qy(z) is an Mth order polynomial, it has M roots (some of which may be
repeated roots). Therefore, there are up to M possible points at which the Pade
Approximant may be singular. Since S(z) is not singular, the Pade Approximant can
approximate S(z) only at points that are not roots of Qy,(z).

It is discussed in Appendix 1 that the Pade Approximant is most accurate for
M = Nor M = N—1. Taking M = N, we consider approximating

S(z) =Y et (3.88)
n=0

by

_Po+piz+paz 4+ pat
T4 qiz+ g2+ .+ gy

SINN () (3.89)

where the sets of coefficients {p;} and {g;} are found by requiring the Pade
Approximant and the infinite series to be identical for all powers of z up to z2".
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Thus, S(z) — S™ M(z) is a power series in which the lowest power of z is 2N + 1.
Such a power series is denoted by O(z*"*"). This requirement can be written as

o0
(1 +qiz+ @+ .+ qNZN) chz" — (po +piz+prt + .. +pNZN)
n=0
o0

= Z 2" =02V (3.90)
n=2N+1
Example 3.18: Estimate of a series by Pade Approximant

Let us approximate the logarithm series

2 Z3 Z4 75

S(z):—én(l—z)zz+§+§+z+§+... (3.91)
by
+piz 4 paz?
§R2(g) = PO T PIET Doz 3.92
( ) 1+qg1z+ C]zZ2 ( )
We find the coefficients by requiring that
2 22 Z3 Z4 Z5 ) 5
(1+ g1z + ¢22) R Rt (po+piz+p2?) =0(2°) (3.93)
Thus, the coefficients of z°, z, 2, z°, and z* must be zero. From this we have
Po=0 (3.94a)
1-p1=0 (3.94b)
%4_ gi—p>=0 (3.94¢)
%+ %611 —g2=0 (3.944)
and
i3 +302=0 (3.94e)
from which we obtain
29 z—172
(—tn(1 -2 =2 (3.95)

S l-z+i?

This Pade Approximant has singularities at z = 4.73205 and 1.26795, both of
which are outside the range of convergence of the series. Thus, eq. 3.95 should yield
reasonably accurate approximations to the logarithm function at all z € [-1, 1).
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Substituting z = 1/2 in eq. 3.95, the [2,2] Pade Approximant yields

(—tn(1 —1)** = 0.69231 (3.96a)
The 4th order finite sum
‘1
i@ => 5 = 0.68229 (3.96b)

n=1
is somewhat less accurate than the [2,2] Pade Approximant in approximating

—tn(1-1) =0.69315 (3.97)0

3.4 Fourier Series

A function that is periodic with period T has the property
S(z+T)=58(2) (3.98)

A Fourier series is an infinite series representing a periodic function. The
Fourier exponential series is of the form

F(z)= > fe"” (3.99)
n=-—00
where
2
= ?” (3.100)

For any integer N,

Z +NT Z f inw(z+NT) Z fneinwzei2nnN (3101)

n=—00 n=-—00

Since n and N are integers, their product is an integer, and
e?™N — cos(2nnN) + isin(2nnN) = 1 (3.102)

Therefore,

F(z+NT) = Z fe"r = (3.103)

n=—00
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Let m and n be integers, and let the beginning of an interval be zo. When n = m,

20+T ) 20+T
J oMWz pmimwz g J dz=T (310421)
A} 20

Referring to egs. 3.100 and 3.102, if n # m,

z0+T )
J ol g—imwz g
20
ei(nfm)wzoei(nfm)wT _ ei(nfm)wz() ei(nfm)wzo _ ei(nfm)w./"g
. = . =0
i(n—m)w i(n—m)w

(3.104b)

To find the coefficients f, of the Fourier exponential series, we consider

1

1 JZMTF(z) i g — Z , JHHT e dz = (3-105)
T ' o |
Z0 n=—00 0

Another form of the Fourier series for a periodic function, the Fourier
sine—cosine series, is given by

F(z) = i [A,cos(nwz) 4+ Bysin(nwz)]

=Ao+ i [Ancos(nwz) 4+ Bysin(nwz)] (3.106)

n=1

Since the two forms of the Fourier series are equivalent, it is straightforward to
show that

Ao = fo (3.107a)
Av=fo+fn n>0 (3.107b)
and
B, =i(f, —f.) n>0 (3.107¢c)
or
fo= 4o (3.1082)
fi =%A,—iB,) n>0 (3.108b)
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and

fon=XA,+iB,) n>0 (3.108¢)

B |—

Convergence of a Fourier series

The Fourier series for a periodic function F(z) will converge if:

* F(z) does not have an infinite number of discontinuities over one period. This
means that F(z) can have discontinuities at a finite number of points. It cannot be
discontinuous over an extended range of z.

e F(z) does not have an infinite number of maxima and minima over one period.

. LZUMT |F(z)|dz must be finite.

For a detailed discussion of these conditions, the reader is referred to Spiegel, M.,
(1973), pp. 35-37.

Example 3.19. Fourier series for a square wave and summing a series.

The square wave of period T shown in Fig. 3.1 is defined by

#(z)
H
1 1
aril -y I 2
-H
Fig. 3.1 Square wave of period T
+H nT<z<(n+3)T
F(z) = . (n+3) (3.109)
—-H (n+YT<z<(n+1)T

With z, = 0, the coefficients of the Fourier exponential series is given by

N . T/2 . T .
fi== J F(z)e "*dz = — J He™"*dz + J —He "% dz (3.110a)
T Jo T |Jo /2
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from which we obtain

0 n=20, even

fn=19 2H (3.110b)
— n odd
inm

Therefore, the Fourier exponential series is

2H eiwz efiwz e3i<uz 6731’(0: eSiwz 6751‘(0:
F(z) =—
) inKl —1>+(3+—3>+<5+—5)+}

4H |sin(w sin(3w sin(Sw
_4H [sin(0z) | sin(oz) | sin(Sz)
m 1 3 5
_4H >~ sinf(2n + 1)wz] (3.111)
n = (2n+1)
If this Fourier series is approximated by a finite sum,
4H X sin wz]
=y (3.112)
Y

n=0

we obtain the graphs shown in Fig. 3.2 for N = 3, 10, and 100.

3 erms 10 terms

100 terms

(c)

Fig. 3.2 Partial sum approximations to the Fourier series for a square wave
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We notice that, for a large enough number of terms, the partial sum is a
reasonable approximation to the square wave. However, there is a spike in the
curve at the points of discontinuity. This is known at the Gibbs phenomenon. As
noted by Mathews, J., and Walker, R. L., (1970), pp. 98, 120, the spikes are no
larger than about 18% of the height of the square wave. These spikes result from the
fact that the finite sum, which is a continuous function, is approximating a function
with discontinuities. [

As an example of a practical application of a Fourier sum, there exist electronic
devices that can generate wave forms in various shapes. Commercial AC electricity
is a sine wave of some fundamental frequency. Circuits can be designed that
create sinusoidal AC electricity of frequencies that are integer multiples of the
fundamental. These wave forms are combined by finite sums to create
approximations to square waves, triangular (saw tooth) waves, etc. (See problem
14 of Mathews, J., 1992, p. 306.)

Parseval’s theorem

Let F(z) and G(z) be two periodic functions that have the same period 7. The
average of their product over one period is defined by

(FG) = % JZO+T F(2)G(z)dz (3.113)

Substituting the two Fourier series

F(z)= Y fe"” (3.114a)
and
G(z) = Z gne™” (3.114b)
eq. 3.113 becomes
1 00 z0+T )
(FG) = = > fngmj elrtmez gy (3.115)
=00 20

n=—00
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With

w=— (3.100)

we obtain

Z0+T ) i(n+m)2m _ 1 T —
J ‘67:{ men (3.116)

el(n+m)wzdz _ el(n+m)w40
inemo |0 m#-n

Thus, only one term in the sum over m is non-zero, and eq. 3.115 becomes

Z Jng-n = fogo + Z fn8-n+ ang n

n=-—00 n=-—00

= fogo + Z (fog—n +f-ngn) (3.117)

n=1

This is the generalized Parseval theorem.
If G(z) = F(z), this becomes

(F?) =f5 +2 fufn (3.1184a)

n=1

Referring to eqs. 3.108, Parseval’s theorem expressed in terms of the coefficients
of the sine—cosine series is

l\)l'—‘

Z (A2 + B?) (3.118b)

Example 3.20: Summing a series using Parseval’s theorem

Applying this to the square wave of example 3.19, we see from eq. 3.111 that the
coefficients of the cosine series are

A, =0 (3.119a)
and the coefficients of the sine series are

4H 1
By=— —— 3.119b
n (2n+1) ( )
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The average of [F (z)]2 over one period is
1 (" 1
=1 | Pere—; [

and from Parseval’s theorem we have

T/2 T
J H?dz + J H*dz| = H? (3.120a)
0 T/2

8 H? &
— (3.120b)
T n:() Zn +
Equating these, we can sum the series
0 2
=y — (3.121)0

n:0 2n +1

Problems

1. Using the Cauchy ratio test, determine the convergence or divergence of the
oo

U S S
series nZ::zn )

2. Using the Cauchy integral test, determine the values of p for which the series

=

n=21 X fnp(n) 00

3. For what values of p does the series § = nz::z (-1) ()
0 1

4. Use algebraic manipulation to sum the series S =
& P ,,gl(n+2)(n+3)(n+4)

1
Zi(n+2)(n+3)(n+4)

o)
6. Use calculus manipulation to sum the series S(z) = 3 n’e™"

forp >0,p=0,and p < 0.

converges.

" converge?

18

5. Use calculus manipulation to sum the series S =

> n
7. Use calculus manipulation to sum the series S = —1)'—n"
P PN PP
00 1 2\ "
8. Use calculus manipulation to sum the series § = HZ:% (-1)" % (71I_6)

9. (a) Sum the Riemann zeta series {(6).
(b) Sum the alternating series of eq. 3.65 for n = 2.

10. For the absolute series S = > n?e™"
n=0
(a) Approximate this series by the finite sum S; = Z n*e™"
n=0
(b) Approximate this series by the finite sum of part (a) plus an estimate of the

remainder series.
Compare each of the results of parts (a) and (b) to the exact value
obtained in problem 6.
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11.

12.

13.

14.

[e%¢} 2’1
For the alternating series § = > (—1)" —
n=0 n:
5 on
(a) Approximate this series by the finite sum §; = >_ (—1)" —
n=0 n.

(b) Approximate this series by the finite sum of part (a) plus an estimate of the
remainder series.
Compare each of the results of parts (a) and (b) to the exact value of S.

(a) Find the [2,2] Pade Approximants for each of the series
00 n Z’l
(D $(z) = 2 (=1)" 7and

n=0
(2) S(z) = i n*e "
n=0

(b) For each series, compare the value of the [2,2] Pade Approximant and the 4th
order finite sum at z = 1/2 to their exact values [see eq. 3.6 and Problem 6].

For the square wave defined in example 3.19, take zo = —7/4

(a) Find the Fourier series for F(z).
(b) Determine the sum of a series obtained by applying Parseval’s theorem for
this Fourier series.

(a) Find the Fourier series for the periodic linear function defined by
F(z)=z —mn<z<m

(b) Graph the finite sum approximation consisting of the first 15 terms of this
Fourier series o 1

¢) Use Parseval’s theorem to sum the series S = —1)'——






Chapter 4
INTEGRATION

In this chapter, we present methods for approximating an integral that cannot be
evaluated exactly.

4.1 Expanding the Integrand in a Series

One approach is to expand the integrand in a series, each term of which can be
integrated exactly. One then integrates that series term by term.

Example 4.1: Integration by expanding the integrand in a series

The integral

1
I= J e dx “.1)
0

cannot be evaluated exactly. Referring to eq. 3.6, we write

e & 2k
e :k;(—l) 0 4.2)
Then,
o0 1
1= (-1 ——— (4.3)
; (2k + 1)k!

This series can then be approximated using one of the techniques presented
inch. 3.0

H. Cohen, Numerical Approximation Methods, DOI 10.1007/978-1-4419-9837-8_4, 105
© Springer Science+Business Media, LLC 2011
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Example 4.2: Integration by expanding the integrand in a series

Let f(x) be a periodic function of period T = 27/, and let us evaluate

JzT/3f(x)dx

0

As shown in eq. 3.99, f (x) can be expanded in a Fourier exponential series

f) = cue™ (4.4)
where, from eq. 3.105,
1 xXo+T )
Cp =~ J f(x)e—mwxdx (45)
T ),
Then
27/3 00 2T/3 0 imn/3
[ — d — . l}'l(UXd — n
. fx)dx ,,:,DCC Jo " dx ;c B
(4.6)0
2T S ein41r/3 -1 e—in41r/3 -1
=3 ; {L” ino " inw }

4.2 Euler-MacLaurin Approximation

The Euler—-MacLaurin approximation is designed to estimate an integral of the form
1

I = J fx)dx “.7)
0

When the limits of the integral are not 0 and 1, a transformation of integration
variable can be made to obtain an integral from O to 1.
Let us consider a general integral of the form

b
JEJF@@ 4.8)

a

with @ and b constants.



4.2 Euler-MacLaurin Approximation

1. If a and b are finite numbers, we make the substitution
y=((b—-ax+a
Then
1 1
J= Jo (b—a)F[(b—a)x + dldx = Jof(x)dx

2. Let a be finite and non-zero and b = oo. The substitution

a
y==
X

yields
1 a a 1
J= L ;F(—) dx = J F(x)dx

X 0

3. For a = 0 and b = oo, the substitution

= tan (xz)
r= 2
results in
L o T n !
J = L 5 5ec (xE)F[tanGcz)} dx = Lf(x) dx
4. When a = —oo and b = oo, we substitute
i
— tan((2x — 1 —)
y an(( x—=1)5
Then

1

J= Jl nsec? ((2x — 1)%)F{tan((2x - 1)g>}dx = J F(x)dx

0 0

Thus, we see that any integral can be cast into the form

/= Jl F(x)dx

0

107

(4.9)

(4.10)

(4.11)

(4.12)

4.13)

(4.14)

(4.15)

(4.16)

4.7)
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To develop the Euler—MacLaurin method, we develop a set of properties of
the Bernoulli functions denoted by f,(s). Like the Bernoulli numbers introduced in
ch. 3, the Bernoulli functions are defined from the coefficients of Z* in the series

=" Bils) % 4.17)

One of the properties is obtained by setting s = 0 to obtain

k

o= A0y (@.18)
2 |

(=]

Referring to eq. 3.49, we see that ¢“/(¢’~1) is the generator of the Bernoulli
numbers. Therefore,

B(0) = By (4.19)
Setting s = 1 in eq. 4.17, we obtain

z 0 k

= ——=> A5 (4.20)

eZ—lze—Z—l

Again, referring to eq. 3.49, we see that

R S R VI
=2 B =) (DB 4.21)
€= =0 : k=0 '
Equating these results, we have
e Zk 0 . Zk
D B 5= (1B 4.22)
k=0 " k=0 :
from which
Bi(1) = (—1)"By (4.23)
From

o[ ze” | " FoTe ] & z 494
sl =1 _Z/k(s)ﬁ_zez—l _Zﬁk(s)W (4.24)
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we obtain

00 k

k=0 =1
Equating terms in like powers of z, the term containing z° yields
Bo(s) =0 = By(s) = constant
Setting s = 0, and referring to eq. 4.19 that
Bo(s) = constant = B,(0) = By = 1

With f'o = 0, eq. 4.25 becomes

%) Zk oo ) Zk
;ﬁk—l(s) k—1)! = ;ﬁk(s)ﬁ

from which
Bils) =kBia(s) k=1
Therefore, with eq. 4.26b, we have, for example,
B\(s) = Bols) = Bo = 1
from which
Bi(s)=s+C

To evaluate the constant of integration C, we set s = 0 to obtain

so that

By the same process, we obtain

Bals) =8 — s+ ¢

and so on. Table 4.1 contains a short list of Bernoulli functions.

Al E <
Zﬁk(s)? = Zﬁkq(s) *—1)! = PBo(s) + Z:B,k(s)
R !

7k

k!
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(4.25)

(4.26a)

(4.26b)

(4.27)

(4.28)

(4.292)

(4.29b)

(4.30)

(4.31a)

(4.31b)
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n Bn(s)

0|1

—_

s—1/2

s2—s + 1/6

$=3s2 + 52

s*2s% + $2-1/30

$-55*12 + 553/3-s/6

$%-3s° + 55%2—5°/2 + 1/42

775812 + 1512-7516 + s/6

8457 + 145°/3-75*/3 + 25%/3-1/30

Nl e RN I e Y B N B R )

29582 + 657-215°/5 + 25°-3s/10

s19-58° + 155%/2-75° + 55*-35%/2 + 5/66

—_
]

Table 4.1 A short list of Bernoulli functions

4 INTEGRATION

We begin the development of the Euler—MacLaurin approximation by noting

from eq. 4.29a that

Bi(x) =1
Therefore, we can write eq. 4.7 as
l /
I= Lf(x)ﬁl(x)dx
With u = f(x) and dv = f;(x)dx, integration by parts yields

1

1= [F(1)B,(1) - F(0)B,(0)] —j £ (¥)dx

0

Referring to eqs. 4.19, 4.23, and 4.28, we have

and

Bi() =5 Bax)
Therefore, eq. 4.34 becomes

1

1= 3L 1) =5 | W

(4.32)

(4.33)

(4.34)

(4.352)

(4.35b)

(4.35¢)

(4.36)
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We again integrate by parts, taking u = f'(x) and dv = f5(x)dx. With (1) =
B-(0) = B, = 1/6, this becomes

I =

N =

F1) +£O) = 5 [P () =70 = 5; | Fpsoar @sn

After integrating by parts N times, the result is

=50 470 =D G [ )~ o)
1
- (2]1V>! J0f<2N> () By () (4.38)

where £ (x) represents the mth derivative of f(x).
Table 4.2 is a short list of non-zero Bernoulli numbers divided by the factorial of
the index.

n B,/n!

0 | 1.00000
—0.50000

2 | 0.08333

4 | —1.38889 x 107°
6

8

—_—

3.30688 x 107
-8.62720 x 1077
10 | 2.08768 x 107®

Table 4.2 A short list of the
non-zero Bernoulli numbers of
index 0 < n < 10 divided by n!

We note that B,,,/(2n)! decreases with increasing n. Therefore, for N large enough, it
is expected that the remainder integral in eq. 4.38 is a small correction and can be
ignored. Then, the Euler—MacLaurin approximation to the integral of eq. 4.7 is

T +F O] o [FE 0 =] @)
k=1 !

Example 4.3: The Euler—-MacLaurin approximation to an integral

(a) We consider

1
I= J e'dx = e = 1.71828 (4.40)
0
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Using the first three non-zero terms in the Euler—MacLaurin approximation,

we have
1 B> By
I~5(e+1)=Zr(e=1)—r(e—1)
= 1.85914 — 0.14318 + 0.00239 = 1.71835 4.41)
(b) For
1 ro : dy = (4.42)
= —y:— .
2 (1+y)"7 3
we substitute
2
y== (4.43)
X
Then
L) 1/2 2\ B,/—4 4 B, [—48 48
I=| — v+ =+ =) -2+ ==
L(x+2)2x 2<32+22> 2!(33+23> 4!(35+25>
=0.36111 — 0.02932 + 0.00181 = 0.33360 (4.44)

We see that both of these integrals are well approximated by the
Euler—-MacLaurin technique. 0

The Euler—MacLaurin scheme approximates an integral by a sum that involves
the derivatives of the integrand. Quadrature methods do not involve derivatives of
the integrand. They approximate an integral as

a

b N
J F@)dx = " wif () (4.45)
k=1

The numbers wy and x;, are the weights and abscissae (or abscissas) for that N-point
quadrature rule, respectively.

4.3 Newton-Cotes Quadratures

Newton-Cotes quadrature rules are based on the interpretation that the integral of a
function over the limits [a, b] is the area under the functional curve between these
limits. With the range of integration divided into segments, made up of intervals
each of width h as shown in Fig. 4.1. If the range of integration is divided by N
equally spaced points {xy, ..., xy}, this common width is given by

(b—a)
(N-1)

h =X —xp = = constant (4.46)
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7) L
RS
= range 5
= segment —————>
== interval === interval - = interval —
et
a=x 'k F4l Ter2 Fean-l Teaen p=x,

Fig. 4.1 The range [a, b] is divided into segments comprised of equally spaced intervals

Each Newton-Cotes quadrature rule is developed by approximating the
integrand f(x) by a particular spline interpolation over each segment. Then

Xk+n
I~ Z J finterpolated (x)dx

segments Xk .
polynomial

Xp+nAx
= Z J finterpolated ()

segments Xk

polynomial (4.47)
where 7 is the number of intervals that make up a segment for that spline interpola-

tion. The abscissae are the points x; in each segment and the weights are obtained
from integration of the spline interpolated polynomial over a segment.

Rectangular quadrature rule

As discussed in ch. 1, the simplest spline interpolation is the cardinal spline, in
which the function is approximated by a constant over an interval. One choice for
this constant is

f;'nterpolated = f (%(xk + Xi+1 ))QE f(x_k) (1 22(1)

A second option is

ﬁnterpolated(x) = %[f(xk) +f(xk+1)] Xk S X S Xk+1 (1 22b)

Thus, the cardinal spline forms rectangles between adjacent points as shown in
Fig. 4.2. For this reason, the Newton-Cotes quadrature for this spline interpolation
is called the rectangular quadrature rule (or simply the rectangular rule).
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J(x) f(x =2l Ef(xk) +f(xx+lﬂ
— % or
Jx) =1z
X
% T

Fig. 4.2 Rectangles formed by approximating f(x) by a cardinal spline

We note that since the cardinal spline is defined between two consecutive points,
the intervals are the same as the segments. Therefore, there are N — 1 segments for
the N-point rectangular Newton-Cotes rule.

Using the approximation of eq. 1.22a, the integral given by the sum of areas of
the rectangles is

I h[f(7) +£(5) + ... +F(na) +f(wa)] (4.48a)

Thus, all the weights of this rectangular rule are 1 and the abscissae are the
midpoints of the segments. Approximating f(x) by the cardinal spline given in
eq. 1.22b, we obtain

I 3[f(x) +f(x2)]h + 5[f (x2) +f (x3)]h +
+%[f(XN 2) 4+ f(ev—1)]h + 3 f (ev—1) + f ()R
= [3f(x) +F(x2) +£(x3) + oo +f(ov—2) +f(an—1) +3f(xw)]h - (4.48b)

We see that the weights of this rectangular rule are given by

h k=1,N
wy = (4.49)
h 2<k<N-1

and the abscissae are the points that define the rectangular segments7.

Trapezoidal rule

If the function is approximated by a linear spline between two adjacent points, then,
for xp < x < g,

fintemolated (x) = ((x__wf(xk) =+ Mf(xk-‘rl)
Xk Xk+1) (X1 — 1)
_ ) —f(xk)]x N et (or1) = Xeen f ()] (4.50)

h h
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f(x) m:emai‘azea‘

Ny

ey

| | d
X T

Fig. 4.3 Trapezoid formed by approximating f(x) by a linear spline

which describes the trapezoid shown in Fig. 4.3.
The area of such a trapezoid is given by

Xt 1 X +Ax
A= IVk fimerpolated (x)dx = JXk finterpolated ()C )dx ( 45 1

=3 () +f (xxg1) )1

and the sum of these areas over all segments results in

I3 [f o) + f(e)]h+ 5[ f (e2) + f (x3)]h + ..
-t %[f(XNfz) +f(xan-1)]h + %[f(fol) +f(xn)|h
= [%f(xl) +F(x2) +F(x3) + oo +F (v2) + fav—1) +3f(w) | (4.48b)

That is, the trapezoidal rule is identical to the rectangular rule generated by taking
the average of f(x) over one segment. As such, the rectangular rule will mean that
generated by approximating f{x) by its value at the midpoint of a segment.

We note that for this trapezoidal rule, each segment is comprised of one interval.
Therefore, the range [a, b] can be divided into any number of segments. This is not
true for higher order quadrature rules.

Simpson’s 1/3 rule

Simpson’s 1/3 rule is obtained by approximating f(x) by a quadratic spline, which
requires fitting the function to a parabola over three consecutive points. That is, for
X < x < Xgyp, We have

(x — 1) (x — xp12)

(xx — Xp01) (% — xk+2)f(xk)+
(X — xk)(x — xk+2)

(k1 — x) (1 — xk+2)f(xk+l) +

finterpolared (X) =

(o — 2) (o — X1
(Xkr2 — X)) (Xy2 — Xag1)

f(Xi42) (4.52)
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With

Xpvo — X = 2h (4.53)
eq. 4.52 becomes

finterpolated(x) = (x — Mkt lz)h(;c - Xk+2)f(xk) - (x — Xk)](:zc — xk+2)f(xk+1)
(% — X)) (X — Xeq1)

2h?

+ flg2) <x <X (4.54)

The area under such a parabola is given by

X2 X +2h
Ak = J ﬁnt@rpolated (X) dx = J ﬁnterpolated (x)dx

Xk Xk

= hlf () +4f (1) + f (2] (4.55)

Summing these areas, we obtain
I~ g[(f(xl) 4 () 4 () + (F(3) + 4F (k) + £ (x3)) + -]
[f(x1) + 4f (x2) + 21 (x3) + 4f (xa) + 2f (x5) + . ...
+ o A2 (ov—2) + 4 (xv—1) + £ ()] (4.56)

W]

which is Simpson’s 1/3 rule.

Since segments are defined by three points containing two intervals, each
segment begins and ends at a point with an odd index and is two intervals wide.
Therefore, to apply this quadrature rule, one must divide [a, b] using an odd number
of points, or equivalently an even number of intervals.

Note also that for each x; (k odd) except for x; and xy, there are two terms
containing f(x;) coming from the end of a segment which is the beginning of the
next segment. Therefore, all odd index f(x;) except for f(x) and f(xy) are multiplied
by 2, and all even index f(x;) are multiplied by 4. From this, we see that the weights
for Simpson’s 1/3 rule are given by

%h k=1N
Wi = %h 2<k<N-—1 keven
_%h 3<k<N-2 kodd (4.57)
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Simpson’s 3/8 rule

When f(x) is interpolated by a cubic spline, then for x; < x < x4,3,

(X = X)) (X — X2 (X — xut3)
X — X1 ) (X — Xi2) (X — X443)
(= x) (X = Xg2) (X — Xg43)
(Xk+1 - xk)(xk+l - Xk+2)(xk+1 - Xk+3)f(Xk+1)
(2 — 2 (¢ = xgq1) (X — Xx43)
(Xk+2 - Xk)(xk+2 - Xk+1)(xk+2 - Xk+3)
(¢ = x) (X — Xy 1) (X — Xpy2)
- (xk+3 - Xk)<xk+3 - xk+1)(xk+3 - xk+2)f(Xk+3)
(x - Xk+1)(x - Xk+2)(x - Xk+3)

ﬁnterpolated(-x) = (

f (xk+2)

_ — 5
L - _;£:Z>(x = %43) )
Cmw) —legl)(x = %43) p )
(x —x)(x —g;y)(x = %42) g ) (4.58)

The area under this cubic polynomial is given by

Xp+3h
A cubic = J ﬁnterpolated (X) dx

Xk

= 2MFC0) + Fw) + FCea) + o 3)] (4.59)

This results in the Simpson’s 3/8 rule

= AL ) )+ 2 )+
we+ 2f (v-3) + 3f (v—2) + 3f (ev—1) + £ ()] (4.60)

The reader can easily deduce the weights of this quadrature rule.
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Higher order Newton-Cotes quadrature rules

A fourth order spline interpolation of f(x) over segments defined by five points
defining four intervals results in Hardy’s quadrature rule

h(7 27 11 27 14
I=< Ef(xl) +1—Of(xz) + ?f(xa) +Ef(x41) +Ef(X5) + -

14 27 11 27 7
R Ef(xzv—ét) + Ef(xzv—a) + ?f(XN—z) + 1_0f(xN_1) + Bf(XN)

(4.61a)
and Weddle’s quadrature rule
I =hF(0) + 5 () +(x5) + 67 (x)
+f(xs) + 5 (x6) + 2f (x7) + - -~
4 2f (v-6) + 5 (xv—s) +f (n-a) + 6f (xn-3)
+f(v-2) + 5f (av—1) +f (xn) ] (4.61b)

is obtained from a sixth order spline interpolation of f(x) over segments defined by
seven points divided into six intervals.

These higher order quadrature rules are rarely used. If one does not obtain
acceptable accuracy for a given number of segments using a low order quadrature
rule (Simpson’s 1/3 rule is often satisfactory), then rather than use a higher order
quadrature it is more common to use one of these lower order rules and divide [a, b]
into a larger number of segments.

Example 4.4: Evaluation of an integral by Newton-Cotes quadratures

We evaluate

3
J] T dx = In(2) = 0.69315 (4.62)

using the rectangular, trapezoidal, and Simpson’s 1/3 rule.

Since Simpson’s 1/3 rule requires the range [1, 3] to be divided into an even
number of intervals using an odd number of points, we will first consider using five
abscissa points {1.0, 1.5, 2.0, 2.5, 3.0}. This will produce four segments for
the rectangular and trapezoidal rules and two segments for the Simpson’s 1/3 rule.

(a) The midpoints of the intervals are {1.25, 1.75, 2.25, 2.75}. Therefore, with
h = 0.5, the rectangular rule of eq. 4.48a yields

1 1 1 1

I1~05
(11125  (I+175) (14225 (1+2.75)

=0.69122 (4.63a)
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(b) The trapezoidal rule yields

3 11 1 1 1 11
Jl(1+x)dx2 '5<§(1+1)+(1+1.5)+(1+2)+(1+2.5)+§(1+3)>

— 0.69702 (4.63b)

(c) For the Simpson’s 1/3 rule, we obtain

3 e 0.5 1 4 2 4 1
Jl (1+x) x‘?((1+1)+(1+1.5)+(1+2)+(1+2.5)+(1+3)>
= 0.69325 (4.63c)

As expected, the Simpson’s 1/3 rule yields a more accurate approximation than
rectangular or trapezoidal quadrature rules.

(d) For the Simpson’s 3/8 rule, we would have to use 3N — 1 points to divide [1, 3]
into N segments. With Weddle’s rule, we would have to use 6N — 1 points to
produce N segments.

These higher order rules are rarely used. As mentioned earlier, most often one
would use Simpson’s 1/3 rule and divide the range [1, 3] into a larger number of
segments. By increasing the number of segments (and intervals), each segment
(interval) is narrowed, and f(x) is better approximated by fi,erpotarea(X)-

For example, taking # = 0.25, using nine abscissae {1, 1.25, ..., 2.75, 3} to
divide [1, 3] into three segments, the Simpson’s 1/3 rule yields

0250 1 4 2 4 2
3 \(1+1) (14125 (1+15) (1+1.75)  (1+2)
4 2 4 i
—0.69316 (4.64
+(1+2.25)+(1+2.5)+(1+2.75)+(1+3)) (4.64)

Thus, the Simpson’s 1/3 rule using two segments is accurate to 0.015%. With three
segments the accuracy is improved to 0.001%. O

Accuracy of Newton-Cotes quadrature rules

Let a Newton-Cotes quadrature rule be developed by approximating f(x) by a
polynomial of order N — 1 over each segment divided into N — 1 intervals. Then

b X +H(N—1)h N
I= J f(X)dX =~ Z J ﬁnterpolated(x)dx = Z ka(xk) (4653)
k=1

a segments ¥ Xk
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The exact value of this integral can also be written as

b X +(N—1)h
1= J fde= > J f(x)dx (4.65b)

a segments v Xk
Clearly, if f(x) is a polynomial of order N — 1,
fimerpolated (X) :f(x) (466)

at all points within each segment. Therefore, a Newton-Cotes quadrature rule yields
an exact value of the integral of a polynomial, if the order of that polynomial is less
than or equal to the order of the spline interpolation polynomial used to obtain the
quadrature rule. Thus, for example, Simpson’s 1/3 rule yields the exact value of

b
| e
if f(x) is a constant, a linear function or a second order polynomial.

Example 4.5: Accuracy of the integral of a polynomial using Simpson’s 1/3 rule

The segment for Simpson’s 1/3 rule is made up of two intervals and is defined by a
second order spline polynomial interpolation over each segment. Therefore,

h = X1 — Xk = Xpy2 — X1 = 5(Xk2 — Xk) (4.67a)
Thus,
X1 = X + 3002 — X) = Sz + %) (4.67b)
For
Fo =1 (4.68)

the integral over one segment is

Nk+2 X+2
J fx)dx = J dx = Xp10 — Xp (4.69a)

Xk Xk

and the quadrature rule over one segment yields this exact result:

A Gor) + 4f Qogr) +f (2
= %[1 +4+ 1]%(Xk+2 — Xp) = X2 — Xk (4.69b)

With
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flx)=x (4.70)

the integral is given by

"Xk+2
J xdx = 1(xg,, — x7) (4.71a)

Xk
and, with eq. 4.67b, the quadrature sum is

e + At + xea)h = oo+ 2(Xg2 + x) + X252 — %)

=30 = %) @.71b)
which is the exact result given in eq. 4.71a.
If
flx) =+ (4.72)
the integral is
Xk+2
J dx = %(x,%,ﬂ — xi) (4.73a)
Xk

which is identical to the quadrature sum

S+ Axi ey + xo)h = 3 v + 2] (e — )
= 5002 —x7) (4.73b)

Thus we see that the Simpson’s 1/3 rule yields exact results for integrands that are
zeroth order, first order, and second order polynomials.
We consider the integral of

Xk+2
J Kx =1(xt, — xi) (4.74)

Xk

over one segment. If we were to use Simpson’s 3/8 rule, that quadrature sum would
yield this result.
The quadrature sum for Simpson’s 1/3 rule yields

1 X2 + 260\ 3
3 [x,f * 4(%) + xiﬂ] h =52+ X%+ Xep2X + )
T TR Ul T T ) 75)

That is, because of the arithmetic involved, Simpson’s 1/3 rule also yields an exact
value of the integral of a third order polynomial, the same level of accuracy as the
Simpson’s 3/8 rule. For this reason, the 3/8 rule is rarely if ever used.
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In Problem 3, the reader will demonstrate that Simpson’s 1/3 rule does not yield
an exact value for an integral of x*. O

From the general statement about their accuracy, we can get a sense of the error
involved in using Newton-Cotes quadrature rules.

Let a quadrature rule yield an exact value for the integral of a polynomial of
order M (or lower). We expand the integrand in a Taylor series about some point
within the range of integration. Expanding about a < xy < b, we have

(x —xo)* + i O x0) (x — xo)" (4.76)

The error in approximating the integral by a Newton-Cotes quadrature sum is
defined as

b (k)
_ J Z f9(x) (x— xo)kdx 4.77)

Since the quadrature sum is the exact value of the integral of the polynomial of
order M (or lower), the terms in the second line of eq. 4.77 are identical. Therefore,

h 0 (k) '
E=- L k%;rlf k(!XO) - xo)kdx
o0 (k)
== > ,m (b= x0)"" = (a = x0)*"" (4.78)
k=M+1"

If f®(xo)/k! decreases rapidly enough with increasing k, a reasonable estimate of
the error can be obtained by taking the first few terms in the sum in eq. 4.78.

Example 4.6: Error in using Simpson’s 1/3 rule

Since Simpson’s 1/3 rule is accurate up to a third order polynomial, the leading term
in the error is proportional to the fourth derivative of the integrand. That is, M = 4
in eq. 4.78.

We consider the integral

1
[ = J ¢dx =2(ye — 1) = 1.2974425 (4.79)
0
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The Simpson’s 1/3 quadrature rule, using two segments, is

1
I~ "2 + 40512 4 260372 1 40732 4 ¢1/2| = 1.2974443 (4.80)

Therefore, the error involved using the 1/3 quadrature rule is
E~18x10%=14x10"*% (4.81)

Taking xo = 0, the first term in the error as given in eq. 4.78, is

e i[0+4(25)5+2(5)5+4(75)5+1} 1
=255\ 12 ' ‘ ' 6

=33x107=1.6x107% (4.82)

Taking additional terms in the sum in eq. 4.78 would bring the error closer to
1.8 x 10°%. O

By increasing the number of segments within [a, b], the smaller each segment is
and the better f(x) is approximated by the polynomial f;,/e;poiarea(X). Therefore, by
increasing the number of segments, one increases the accuracy of a Newton-Cotes
quadrature approximation of an integral.

4.4 Gaussian Quadratures

It was shown above that if f{x) is a polynomial, the order of which is less than or equal
to the interpolation polynomial used to approximate f(x) over one segment, then the
Newton-Cotes quadrature sum is the exact value of the integral. Gaussian quadra-
ture rules are defined by requiring that if f(x) is a polynomial of some order, then

b N
J p()f (X)dx = " wif (i) (4.83)
k=1

a

is exact. Based on the values of a and b, that polynomial f(x) satisfying eq. 4.83 is a
specific orthogonal polynomial, sometimes referred to as a special function. The
function p(x), which is unique to each special orthogonal polynomial, is called the
weighting function. We denote these polynomials of orders M and N as Qy,(x) and
On(x). They satisfy the property

I'n'. N=M

b
L p(X)On (x)Ou (x)dx = Tnowy = { 0 N£M (4.84)

When N = M, the integral is a non-zero constant 'y called the normalization
constant. When N # M the integral is zero. This property is called orthogonality
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of the polynomials. Together, the property of eq. 4.84 is called the orthonormality
condition.

In this presentation, we will develop the three most commonly used Gaussian
quadrature rules, based on three sets of orthogonal polynomials, Legendre
polynomials, Laguerre polynomials, and Hermite polynomials. As will be
demonstrated, these three quadrature rules can be used to evaluate any type of
integral.

Weights and abscissae of a Gaussian quadrature rule

To get a sense of how the weights and abscissae of a Gaussian quadrature rule are
found, let us consider approximating an integral by a two point rule given by

b
|| st = wif ) + ) (4.85)

a

Since there are four quantities to be determined, wy, x;, w,, and x,, four equations
are required. Therefore, these weights and abscissae are found by requiring that
eq. 4.85 be exact for the four lowest powers of x,

f)={1Lx,xx} (4.86)
This results in the equations
b
wi +wy = | p(x)dx = Fo(a,b) (4.87a)
b
wixy + waxa = | xp(x)dx = Fy(a,b) (4.87b)
a
b
wlx% + wzxg = | P?p(x)dx = Fy(a,b) (4.87¢)
and
b
wix) 4+ wox; = J X’ p(x)dx = F3(a, b) (4.87d)

where the quantities Fy(a,b) are known constants. Clearly, it is very difficult to
solve this set of highly nonlinear equations for {w, w,} and {x;, x,}. Thus, some
method other than solving a system of equations is needed to determine the sets of
weights and abscissae.
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Using the above example as a guide, we see that since an N-point Gaussian
quadrature rule is defined by N abscissae and N weights, we must determine 2N
quantities by requiring that the integrals of the lowest 2N — 1 powers of x be given
exactly by the N-point Gaussian quadrature sum.

To find these quantities, let

On(x) = (x —x1)(x — x2) ... (x — xv) (4.88)

be a polynomial of order N formed from {xi, xp, ..., xy}, the abscissae of the
quadrature rule. Let Ry/(x) be a polynomial of order M, with0 < M < N — 1. Then
Ry (x)On(x) is a polynomial, the order of which is between N and 2N — 1. Since the
quadrature sum is an exact value of the integral,

J: P ()R (x)On (x)dx = IZN; wiRw (1) On (xx ) dx (4.89)
But each x; is a root of Ox(x). Therefore,
On(i) =0 1<k<N (4.90)
from which
b
L ()R (1) (x)dx = 0 (491)

Since Ry, (x) and Qn(x) are polynomials of different order, eq. 4.91 is an orthogo-
nality relation as that given in eq. 4.84. Thus, R),(x) must be a member of the same
set of orthogonal polynomials as Qn(x). That is,

Ry (x) = Om(x) (4.92)

with M < N.
Since Qp(x) is a different polynomial from Qp(x), the roots of Q(x)
are different from those of Qx(x). Therefore,

Ou(x) #0 (4.93)

To find the N weights of the Gaussian quadrature rule, we define the set of N — 1
order polynomials
On(x)
wx) = —-7—— (4.94)
) o)

where x; is one of the roots of Qpn(x). It is straightforward to see that for any
abscissa point x,,,,
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i p(3) = ) = e lim (RS = i = { 0 kim 9

Let Sy_1(x) to be a polynomial of order N — 1. Since Sy_;(x) and p(x) are
polynomials of order N — 1, the interpolation

N
Sv-1(0) =D (x)Sy-1 (%) (4.96)
k=1

is an exact representation of Sy_;(x). Because Sy_;(x) is a polynomial of order
less than 2N — 1,

b N
J p(x)Sn—1(x)dx = Z Wi Sn—1(xx) (4.97)

a k=1

is exact. Substituting eq. 4.96 into the integral of eq. 4.97, we obtain

ZWkSN 1)C/< ZSN 1Xk J ),uk(x)dx (498)

Equating the coefficients of Sy_;(x;), the weights of the quadrature rule are given by

7 b 7 1 b QN (X)
wy = L p(X) e (x)dx = 0000 J p(x) G—x) dx (4.99)

Gauss-Legendre quadratures

Properties of Legendre polynomials needed for the development of
Gauss—Legendre quadratures are:

Weighting Function:
px)=1 (4.100a)

Orthonormality:

=—0mm (4.100b)
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Summation representation of Legendre polynomials:

(e-1)/2 . '
Z (71)/(]{' (2[ 2k) xé—Zk ¢ odd

1 — (L= k) (£ —2k)!
Pe(x) = o /f ’
: (2¢ — 2k)! Ik
(—D* xt ¢ even (4.100c¢)
= k(€ —k)! (€ —2k)!
Five lowest order polynomials:
Po(x) =1 Pi(x)=x Py(x) =1(3x* - 1
o) 1 1) 2(x) =3 ) (4.100d)

P3(x) =1(5x = 3x)  Pu(x) =1(35x* — 3027 +3)

The derivation of these and other properties of Legendre polynomials can be found
in the literature (see, for example, Cohen, H., 1992, pp. 288-299).

Since p(x) =1 and x ¢ [-1, 1] for Legendre polynomials, the N-point
Gauss—Legendre quadrature rule is

1 N
J 1 FE)de = wif(x) (4.101)
- k=1

where {x;} are the zeros of the Legendre polynomial Py(x) and the weights {w;},
found using eq. 4.99, are given by

1 ! PN(X)
_ d 4.102
"k Py (xx) J—l(x_xk) ) ( )

Example 4.7: Abscissae and weights for a two point Gauss-Legendre
quadrature rule

From
Py(x) =13 —1) (4.100d)

the abscissae of the two point Gauss—Legendre quadrature rule are

1
Xip = iﬁ = 1+0.57735 (4.103a)
and the weights are given by
p ! Jl 23 =1 100000 (4.103b)0
W) = Wy = X = 1. .
3x (1/V3) Joi (xF1/v3)

In Table 4.3, we present abscissae and weights for 5-, 10-, and 20-point
Gauss—Legendre quadrature rules.
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X w
N=5
0.00000 0.56889
+0.53847 0.47863
+0.90618 0.23693
N=10
+0.14887 0.29552
+0.43340 0.26927
+0.67941 0.21909
+0.86506 0.14945
+0.97391 0.06667
N =20
+0.07653 0.15275
+0.22779 0.14917
+0.37371 0.14210
+0.51087 0.13169
£0.63605 0.11819
+0.74633 0.10193
+0.83912 0.08328
+0.91223 0.06267
+0.96397 0.04060
+0.99313 0.01761

Tables 4.3 Gauss—Legendre quadrature points

For a more complete compilation of Legendre quadrature data, the reader is referred
to Stroud, A.H., and Secrest, D., (1966), pp. 100-151.

We note that integrals that are approximated by Gauss—Legendre quadratures are
integrated between symmetric limits [-1, 1]. If the integrand of such an integral is
an odd function f,;(x),

1
J foda(x)dx =0 (4.104a)
-1

We see from Table 4.3 that the abscissae of every even order Gauss—Legendre
quadrature rule occur in pairs, one positive, one negative, and for each pair, the
weights of the positive and negative points are the same. Each odd order rule also
contains positive and negative pairs of non-zero abscissae with a common weight
plus the point x = 0. Since an odd function is zero for zero argument, every
Gauss—Legendre quadrature rule satisfies

N
Zwkfodd(xk) = Wo fodd(0) + Wi [foaa(x1) + foaa(—x)] + ... =0 (4.104b)
=
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That is, the integral of an odd function over [-1, 1] is given exactly by every
Gauss—Legendre quadrature rule; it is zero.

Example 4.8: Approximating an integral by a Gauss-Legendre quadrature sum

To approximate

2
J cos’ydy = }(2 + sin4 — sin2) = 0.08348 (4.105)
1

by a Gauss—Legendre quadrature rule, the limits must be transformed to [-1, 1].
To do this, we take

y=3(x+3) (4.106)

Then
2 1 1 1 N
J cos’ydy = = J cos® (3(x +3))dx ~ = Z weeos® ((x +3)) (4.107)
1 2 ) 2

Referring to example 4.7 and Table 4.3, we approximate this integral using 2, 5, 10,
and 20 point Gauss—Legendre rules. The results are given in Table 4.4. O

Quadrature sum
N of eq. 4.107 9Y0Error
2 0.08524 2.1 x 10°
0.08347 2.8 x 107
10 0.08348 42 x 107
20 0.08348 42 x 107

Table 4.4 Results for the approximation of the integral
of eq. 4.105 using Gauss—Legendre quadrature rules

From Table 4.4, we conclude that an integral between finite limits of an
integrand that is analytic over the range of integration is well approximated by
transforming the range of integration to [-1, 1] and using a Gauss—Legendre
quadrature sum of reasonable size.

Gauss-Laguerre quadratures

Properties of Laguerre polynomials needed for the development of Gauss—Laguerre
quadratures are:

Weighting Function:

px) =€ (4.108a)
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Orthonormality:

J e Ly (X)L (x)dx = O (4.108b)
0

Summation representation of Laguerre polynomials:
k I’l' k
Ly(x)=> (-1 —5———x (4.108c¢)

Five lowest order polynomials:

Lo(x) =1 Li(x)=1-x Ly(x) =% —2x + 1

(4.108d)
Ly(x) = =& +3¢¥% = 3x + 1 Ly(x) = 4x* — 27 + 3% —dx + 1

(For the derivation of these and other properties of Laguerre polynomials see
Cohen, H., 1992, pp. 320-324.)
The N-point Gauss—Laguerre quadrature rule is

00 N
J e f(x)dx ~ Z wif (xx) (4.109)

0 k=1

where {x;} are the zeros of the Nth order Laguerre polynomial. The weights
{wy} are found from eq. 4.99 to be

1 < Ly(x)
Wi —m JO e (x_Xk) dx (4110)

n

Example 4.9: Abscissae and weights for a two-point Gauss-Laguerre
quadrature rule

The zeros of
Ly(x) =% —2x +1 (4.108d)
are

xi2 =24 V2 =3.41421, 0.58579 (4.111a)

and the weights are given by

x © (e 2et
1 J e Lz(x) dx — 1 J e (2 X+ )dx
0 (x —x12) +v2 Jo (x—2FV2)
0.14645

(>
= | e (x=2+V2)dx= 4.111b)0
+2v/2 Jo ( ) {0.85355 ( )

Wwip =
Ly(x12)
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X w we”
N=5
0.26356 0.52176 x 10° 0.67909
1.41340 0.39867 x 10° 1.63849
3.59643 0.75942 x 107" 2.76944
7.08581 0.36118 x 107 431566
12.64080 0.23370 x 107 7.21919
N =10
0.13779 0.30844 x 10° 0.35401
0.72945 0.40112 x 10° 0.83190
1.80834 0.21807 x 10° 1.33029
3.40143 0.62087 x 107! 1.86306
5.55250 0.95015 x 107 2.45026
8.33015 0.75301 x 107 3.12276
11.84379 0.28259 x 107 3.93415
16.27926 0.42493 x 10°° 4.99241
21.99659 0.18396 x 107® 6.57220
29.92070 0.99118 x 1072 9.78470
N =20
0.07054 0.16875 x 10° 0.18108
0.37212 0.29125 x 10° 0.42256
0.91658 0.26669 x 10° 0.66691
1.70731 0.16600 x 10° 0.91535
2.74920 0.74826 x 107" 1.16954
4.04893 0.24964 x 107! 1.43135
5.61517 0.62026 x 1072 1.70298
7.45902 0.11450 x 1072 1.98702
9.59439 0.15574 x 107 228664
12.03880 0.15401 x 107 2.60583
14.81429 0.10865 x 107 2.94978
17.94890 0.53301 x 107 3.32540
21.47879 0.17580 x 107® 3.74226
25.45170 0.37255 x 107'° 421424
29.93255 0.47675 x 1072 476252
35.01343 0.33728 x 107" 5.42173
40.83306 0.11550 x 107' 6.25401
47.61999 0.15395 x 107" 7.38731
55.81080 0.52864 x 107 9.15133
66.52442 0.16565 x 1077 12.89339

Table 4.5 Gauss-Laguerre quadrature points

131
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The third column in Table 4.5 is a list of the values of {(we*);}. These data
are used when the integrand does not explicitly contain the weighting factor ™.
Then the Gauss—Laguerre rule can be written as

00 00 N
J fx)dx = L e (e'f (x))dx ~ Z wie™f (x) (4.112)
k=1

0

For a more complete compilation of Gauss—Laguerre quadrature data, the reader
is referred to Stroud, A.H., and Secrest, D., (1966), pp. 254-274, or Abramowitz, M.,
and Stegun, ., (1964), p. 923.

Example 4.10: Approximating various integrals by Gauss-Laguerre
quadratures

(a) We consider the integral

el

oo

1
(e +1)°

(4.113)

0

Since this integrand contains e~ explicitly, the integral is in the form of
eq. 4.109. Therefore, the Laguerre quadrature approximation to this integral
is given by

o0 e N 1
——dx ~ E Wy —————x 4.114)
L (cx+1) (et )

Results obtained using 2, 5, 10, and 20 point Gauss—Laguerre quadrature rules
is given in Table 4.6.

Quadrature sum
N of eq. 4.114 9oError
2 0.35917 42 % 10°
5 0.37544 12 x 107!
10 0.37501 1.5 x 107
20 0.37500 53 x 107°

Table 4.6 Results for the approximation of the integral
of eq. 4.113 using Gauss—Laguerre quadrature rules

(b) The integrand of
o _xz 1 o0 —\‘2 2 1
xe tdx==| e dx*)== (4.115)
0 2 Jo 2

does not contain the Gauss—Laguerre weighting factor, ¢~ explicitly. To evalu-
ate this by the Gauss—Laguerre rule, we write
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e 2 > 2
J xe Vdx = J e ™ (e"xe_" )dx
0 0

In Table 4.7, we present results for 2-, 5-, 10-, and 20-point Gauss—Laguerre
approximations to this integral.

N
o~ Z (wie™ e (4.116)

k=1

Quadrature sum
N of eq. 4.116 9oError
2 0.63744 2.8 x 10
5 0.48113 3.8 x 10°
10 0.49578 8.4 x 107!
20 0.49988 24 % 107

Table 4.7 Results for the approximation of the integral
of eq. 4.115 using Gauss—Laguerre quadrature rules

(c) We consider

o 1
J 4y = 1.00000 4.117)
0o (1+x)

As in part (b), we can approximate this by a Gauss—Laguerre rule by writing

00 N
J Z wie) ———— (4.118)
k=1

0 (1+x +x;<)

The results for this approximation are shown in Table 4.8. O

Quadrature sum
N of eq. 4.118 YoError
2 0.83817 1.6 x 10
0.94254 5.7 x 10°
10 0.97261 2.7 x 10°
20 0.98663 1.3 x 10°

Table 4.8 Results for the approximation of the integral

of eq. 4.117 using Gauss—Laguerre quadrature rules

Referring to the discussion of sect. 4.1, it is possible to transform an integral
between 0 to oo to an integral from —1 to 1. This would allow us to use the
Gauss—Legendre rule to evaluate an integral of the form

JOO F(y)dy
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This transformation is achieved by defining x’ as
4.
x=—tan 'y —1
Y

The integral can then be approximated by

00 T 1
J F(y)dy:ZJ F[2(1 +x)] sec?[Z(1 + x)]dx
0 ~1

Zka 1+ )] sec? [5(1 + x;)]

4.119)

(4.120)

where the weights {w;} and abscissae {x;} in eq. 4.120 are those of a

Gauss—Legendre rule.

Example 4.11: Approximating the integrals of Example 4.10 by Gauss—-Legendre

quadratures

(a) Making the substitution given in eq. 4.119, the integral of eq. 4.113 can be

approximated by

00 ey
[
(e +1)
1 -3

J o tan[(14+)] {eﬂan[ i(+9] | 1} sec [ (1 +x)]dx

&~

N
T Z o tan[5(1-+x) { —tan[5(14+x)] | 1} %sec (1 4 xi)]
=1

4>:1

4.121)

Results using 2-, 5-, 10-, and 20-point Gauss—Legendre quadrature rules are

given in Table 4.9.

Quadrature sum
N of eq. 4.121 Y%Error
2 0.47105 2.6 x 10
0.38821 3.5 x 10°
10 0.37539 1.0 x 107
20 0.37500 48 x 107

Table 4.9 Results for the approximation of the integral
of eq. 4.113 using Gauss—Legendre quadrature rules
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(b) With the transformation of eq. 4.119, the integral of eq. 4.117 becomes
J ye_yzdy =
0
T 1 2z 1
=2 J tan [Z(1 + x)]e ™" [1+9] g2 [2(1 + x)]dx (4.122)
-1

Zwktan (14x0)]e —tan? [{(1-+30)] g 2[2(1 +x)]

Table 4.10 lists the approximation of this integral by various Gauss—Legendre
quadrature rules.

Quadrature sum
N of eq. 4.122 90Error
2 0.27371 4.5 x 10
5 0.49123 1.8 x 10°
10 0.49931 1.4 x 107"
20 1.00000 2.7 x 107

Table 4.10 Results for the approximation of the integral
of eq. 4.115 using Gauss—Legendre quadrature rules

(c) Transformating the integral of eq. 4.117, we obtain

<1 _wt sec(F(1+)

J (1+y)? dy_4j 1 [14 tan(%(1 + x))]2
& sec? (l—i—xk))
PR

1 + tan(%(1 +xk))]2

A8

dx

(4.123)

The results of these Gauss—Legendre quadrature rules are given in Table 4.11. O

Quadrature sum
N of eq. 4.123 YError
2 0.97191 2.8 x 10°
5 0.99997 2.6 x 107
10 1.00000 8.5 x 107°°
20 1.00000 8.5 x 107°

Table 4.11 Results for the approximation of the integral
of eq. 4.115 using Gauss—-Legendre quadrature rules
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The results given in Tables 4.6—4.11 suggest the following conclusions about

Gauss—Laguerre quadrature rules:

Comparing the errors in Tables 4.6 and 4.9, we conclude that when the integrand
explicitly contains ¢, the integral over [0, co] converges to the correct result
quickly (i.e., with relatively small quadrature rules yielding accurate results)
when approximated by a Gauss—Laguerre quadrature rule. Although it would not
make sense to do so, one could also transform the integral to the range [-1, 1]
and use a comparable sized Gauss—Legendre quadratures to obtain a result that is
about as accurate as that obtained with a Gauss—Laguerre rule.

From Tables 4.7 and 4.10, we conclude that when the integrand does not
explicitly contain ¢, but when the integrand satisfies

lim f(x)e* = 0 (4.124)

X—00

the integral over [0, co] converges somewhat slowly to the correct result (i.e.,
requires a relatively large Gauss—Laguerre quadrature sum to obtain accurate
results). If the integral is transformed to the range [-1, 1] and Gauss—Legendre
quadrature rule is used, the integral converges to the correct value more quickly.
Comparing the results given in Tables 4.8 and 4.11, they suggest that when the
integrand does not explicitly contain ¢, and when the integrand satisfies

lim f(x)e" = oo (4.125)

X—00

approximating the integral over [0, co] by a Gauss—Laguerre quadrature sum
converges very slowly to the correct result. If the integral is transformed to the
range [-1, 1] and a Gauss-Legendre quadrature rule is used, the integral
converges to the correct value much more quickly.

Gauss—Hermite quadrature rules

Properties of Hermite polynomials used in the development of Gauss—Hermite
quadratures are:

Weighting function:

p(x) =e (4.1262)

Orthonormality:

[ ¢ Hy (X)H (x)dx = 2" nI\/TS (4.126b)

J =00
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Summation representation of Hermite polynomials:

n/2 |
; (—=1)* (k')(nni—Zk)‘ (2x)"*  neven
H,(x) = (n-1)/2 r (4.126¢)
> (-1 m 2x)"* n odd
Five lowest order polynomials:
Ho(x) =1 Hi(x) = 2x Hy(x) = 4x* =2

; N (4.126d)
H;(x) = 8x° — 12x Hy(x) = 16x" — 48x" 4+ 12

(The derivation of these and other properties of Hermite polynomials are given by
Cohen, H., (1992), pp. 330-336.)
The N-point Gauss—Hermite quadrature rule is given by

—00

00 N
J e”‘zf(x)dx ~ Z wi f (xi) (4.127)
=1

The abscissae {x;} are the zeros of the Hermite polynomials and the weights {w;}
are given by

__ [P e )
e H}(/(xk) Jfoo ¢ (x— Xk)dx (4.128)

Example 4.12: Abscissae and weights for a two point Gauss—Hermite quadra-
ture rule

The roots of
Hy(x) = 4x* =2 (4.126d)

which are the abscissae of the two-point Gauss—Hermite quadrature rule, are given by

1
X2 = +—— = 40.70711 (4.1292)

V2

The corresponding weights are

W1 =Wy =

V2 [ 42 —2
%J e (W =2) VT eee23 (4.129b)0

L hry) T2

Table 4.12 contains quadrature data for 5-, 10-, and 20-point Gauss—Hermite
quadratures.
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X w we®
N=35
0.00000 0.94531 x 10° 0.94531
+0.95857 0.39362 x 10° 0.98658
+2.02018 0.19953 x 107! 1.18149
N=10
40.34290 0.61086 0.68708
+1.03661 0.24014 0.70330
+1.75668 0.33874 x 107" 0.74144
+2.53273 0.13436 x 1072 0.82067
+3.43616 0.76404 x 107 1.02545
N =20
+0.24534 0.46224 x 10° 0.49092
+0.73747 0.28668 x 10° 0.49834
+1.23408 0.10902 x 10° 0.49992
+1.73854 0.24811 x 107" 0.50968
+2.25497 0.32438 x 1072 0.52408
+2.78881 0.22834 x 107 0.54485
+3.34785 0.78026 x 107 0.57526
+3.94476 0.10861 x 107° 0.62228
+4.60368 0.43993 x 107 0.70433
+5.38748 0.22294 x 107'? 0.89859

Table 4.12 Abscissae

Gauss—Hermite quadrature points

and weights for 5,

10, and 20 point

A more complete set of Gauss—Hermite quadratures can be found by Stroud, A .H.,
and Secrest, D., (1966), pp. 218-252, and Abramowitz, M., and Stegun, 1., (1964),

p. 924.

As with the Gauss—Laguerre quadratures, the table for the Gauss—Hermite

quadratures contains a third column of quantities,

2

we"

If the integrand does not explicitly contain the weighting factor

o

the integral can be written and approximated by a Gauss—Hermite quadrature as

—00

JOC fx)dx = J

N
e (exzf(x)> dx ~ Z wke"if(xk)
=1

(4.130)
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Above we discussed the fact that the integral

1
J Joda(x)dx =0 (4.104a)
—1

is given exactly by any Gauss—Legendre rule. Likewise, because Gauss—Hermite
quadratures contain pairs of points, one positive, one negative, with a common
weight (and one point that is zero for odd order quadratures), the integrals

J ¢ foaa(x)dx =0 (4.131a)
and
J Foda(x)dx =0 (4.131b)
are given exactly by
N
> Wifoaa() =0 (4.132a)
k=1
and
N 2
Wi foaa(Xi) = 0 (4.132b)
k=1
respectively.

Example 4.13: Approximating an integral using Gauss—-Hermite quadratures

(a) We consider

o 1> 7(%1)2 1
J e Ye " dx:e4j e \"12) dy = \/med ~ 2.27588 (4.133)

—00 —00

Since the weighting function appears explicitly in the integrand, the
Gauss—Hermite quadrature rule for this integral is given by

00 N
J e e dy ~ > wie™ (4.134)
0 k=1

The results of approximating this integral by various Gauss—Hermite quadrature
sums is given in Table 4.13.
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Quadrature sum
N of eq. 4.134 YoError
2 2.23434 1.8 x 10°
2.27587 9.5 x 107
10 2.27588 42 x 107°
20 2.27588 42 x 107°

Table 4.13 Approximations to the integral of eq. 4.133
by various Gauss—Hermite quadrature sums

To evaluate the integral
I = J e dx = 2J e ax (4.135)

we substitute
_ 4
y=x (4.136)

Then, referring to eq. A3.1 of Appendix 3,

U sy, ]
I==| y/™e?dy==-T(1.25) (4.137)
2 J, 2

Although this gamma function cannot be evaluated exactly, we have
established methods for obtaining approximate values of it. Using the Stirling
approximation for the I'" function given in Appendix 3, eq. A3.58 for N large,
we have

I(N+p+1)=(N+p) ~

(4.138a)
(N +p)<N+P>e—(N+P) \/27‘[(1\7 +p) e('z(/\]/+ﬂ) - 360(/\}+p)3 + ]26()(IIV+[J)S>

Then, from the iteration property of the gamma function, we have

N _
~ (N +p) +pe (Wtp) Vv 277:(N +p) 8(12(1\1’+n) - 360(1\;+p)3 + 1260(Alz+p)5) (4.138b)
(N+p)(N+p—1)..(1+p)

With p = 0.25, we find that for N > 5, we obtain

I'(1.25) ~ 0.90640 (4.138c)
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(This result can also be found in tables of gamma functions such as Abramowitz,
M., and Stegun, L., (1964), p. 267-270.) Thus, the integral of eq. 4.137 is

{o¢)
I= J e dx ~ 0.45320 (4.139)

Approximating this integral by a Gauss—Hermite quadrature rule, we have

N
Z ke"kx e xk (4140)
k=1

the values of which, for various values of NV, are given in Table 4.14.

Quadrature sum
N of eq. 4.140 %Error
2 0.56897 2.6 x 10!
0.71612 5.8 x 10
10 0.53164 1.7 x 10
20 0.44993 7.2 x 107

Table 4.14 Approximations to the integral of eq. 4.139
by various Gauss—Hermite quadrature sums

(c) By substituting

X = tan¢ (4.141)

it is straightforward to show that

o
J ——dx =1 =157080 (4.142)
—00 (Xz + 1) 2

To use a Gauss—Hermite quadrature rule, we write this integral as
2

00 \" N
J e Z 1)2 (4.143)

—0 (X2 —+ 1

Results using various Gauss—Hermite quadrature rules are given in Table 4.15. O
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Quadrature sum
N of eq. 4.143 YoError
2 1.29879 1.7 x 10
1.57272 1.2 x 107!
10 1.55823 8.0 x 107!
20 1.56754 2.1 x 107!

Table 4.15 Approximations to the integral of eq. 4.142
by various Gauss—Hermite quadrature sums

It is also possible to evaluate integrals over [-oo, oco] by Gauss—Legendre
quadratures. To do so, we make the substitution

x= gtan’ly 4.144)
v

Then
Jicf(y)dy = g Jllf {tan(gx)} sec? (gx) dx
=3 sfon () e ()

where {w,} and {x,} are the weights and abscissae of a Gauss—Legendre quadrature
rule.

(4.145)

Example 4.14: Evaluation of the integrals of Example 4.13 by Gauss—-Legendre
quadratures

(a) To approximate
© 2 1
J e Ve dy = \/met ~2.27588 (4.133)

using a Gauss—Legendre rule, we make the substitution given in eq. 4.144 to
obtain

> 1
J Ve dy = z J sec? <Ex) o~ ltan(3) +tan? (30)] 1y
; y 2 (4.146)
N .
= g Z WkSe(;2 (g Xk) 67[tan(%xk)+tan2 (%XL)]

In Table 4.16, we present the results obtained for approximating this integral by
various Legendre quadrature sums.
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Quadrature sum
N of eq. 4.146 YoError
2 3.12413 3.7 x 10
2.52670 1.1 x 10"
10 227769 8.0 x 1072
20 227549 1.7 x 1072

Table 4.16 Approximations to the integral of eq. 4.133
by various Gauss—Legendre quadrature sums

(b) With the transformation of eq. 4.144, the integral of eq. 4.135 becomes

00 1
J_oc yle Y dy = g J_l sec? (gx) tan* (gx) et (39) gy

1 (4.147)
= 5T(1.25) = 0.45320

Approximating the integral over [-1, 1] by a Gauss—Legendre quadrature rule,
this becomes

00 N
J N y4€7y4dy ~ g ; wesec? (gxk) tan* (gxk) et (3%) (4.148)

The results of this approximation by various Gauss—Legendre quadrature sums
is given in Table 4.17.

Quadrature sum
N of eq. 4.148 9oError
2 1.53082 24 x 10°
5 1.09482 1.4 x 10
10 0.39580 1.3 x 10
20 0.44771 1.2 x 10°

Table 4.17 Approximations to the integral of eq. 4.135
by various Gauss—Legendre quadrature sums

(c) Transforming

o 1
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to the interval [-1, 1] and approximating the resulting integral by a
Gauss—Legendre quadrature rule, we have

o 1 n (! 2 (T & s (T
Jioo Wdy =3 J\71 cos (§x> dx ~ > ;wkcos (EXk) 4.149)

Table 4.18 shows the results of this approximation for various Gauss—Legendre
quadrature rules. O

Quadrature sum
N of eq. 4.149 YoError
2 1.19283 2.4 x 10!
5 1.57084 3.1 x 107
10 1.57080 2.9 x 107
20 1.57080 6.9 x 107°

Table 4.18 Approximations to the integral of eq. 4.142
by various Gauss—Legendre quadrature sums

The results presented in Tables 4.13—4.18 suggest the following conclusions
about Gauss—Hermite quadrature rules:

o Comparing the results given in Tables 4.13 and 4.16, we see that when the
integrand contains the weighting factor exp(—x?) explicitly, convergence to
the correct value with Hermite quadrature rules is quite rapid (errors become
quite small for low order quadrature rules) but converge to the exact value more
slowly with Legendre quadratures.

» From the results given in Tables 4.14 and 4.17, we see that when

lim e f(x) =0 4.124)

X—00

is satisfied, the value of the integral converges to the correct result faster with
Gauss—Hermite quadratures than with Gauss—Legendre rules, even though the
integrand does not contain exp(—x?) explicitly.

e A comparison of the results given in Tables 4.15 and 4.18 indicate that when

lim e f(x) = oo (4.125)

X—00

transforming the limits to [-1, 1] and using Gauss—Legendre quadratures yields
more rapid convergence to the correct value than when Gauss—Hermite
quadratures are used.
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When f(x) is infinite at xy € [a, b], care must be exercised in numerically

approximating
b
J f(x)dx
Weak singularities

If

lim f(x) = oo

X—X0
and

lim (x — xo)f (x) =0

X—X0

(4.150a)

(4.150b)

the singularity of f(x) at x, is called a weak singularity. Examples of such functions

that arise in applied problems are

~ L(x)
|x — xo|”

fx) O<p<l1

and

f(x) = L(x)tn(|x = xo|)

where L(x) is analytic at all x in the range of integration.
To evaluate the integral of such a function, we write

b

P, [PLO L)
L|x—xo|de‘L PR ‘”J
and

b
J L(x)fn|x — xo|ldx =
b

b
J [L(x) — L(xo)]n|x — xo|dx + L(xo) J In|x — xo|dx

a a

a |x - X0|p

(4.151a)

(4.151b)

(4.152a)

(4.152b)
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with a < xg < b. Because L(x) is analytic at all x € [a, b], each term in the
Taylor series of L(x) — L(xo) contains a factor (x — xp)" with n > 1. Therefore,
referring to eq. 4.150b,

fim L L0 [L(x) — L(x0)]n|x — xo| = 0 (4.153)

X—Xo \x — X()|p X—Xo

Thus, the first integrals on the right hand sides of eq. 4.152b can be approximated by
quadrature sums

PL(x) = L(x0) , _~~_ L(x) = L(xo)
L - dx ~ ; e (4.154a)
and
b N
J [L(x) — L(x0)]€n|x — xo|dx ~ Z wi[L(xx) — L(xo)]ln|xe — x0|  (4.154b)
=1

a

where the kth term in the sum is zero if xy = x;.
The second integrals on the right hand sides of eqs. 4.152 can be evaluated
exactly as

b 1 X0 1 b 1
—dx:J —dx+J — _dv=
L lx — xol” a ¢ —xol” o X = xol”

X | ( ) P+ (b—x0)' " 1
J pdx+J pelr =" =
o (x0—x) x (X — X0) (1-p)
and
b %o b
L n|x — xo|dx = L tn(xo — x)dx + LO fn(x — xo)dx (4.155b)

= (xo —a)[fn(xg —a) — 1]+ (b — x0)[¢n(b — xp) — 1]

Example 4.15: Evaluation of the integral of a function with a weak singularity

It is straightforward to show that

1 0.2 1
J #cbczj derj S N—
—1 \/|x—0‘2| 1v0.2 —x 02vVx—0.2 (4.156)
2.8
=-04v1.2+ ?VO. = 0.39662
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To evaluate this integral by the method described above, we write

1 1 1
X x—0.2 1
—dx:J 7dx+0.2j ——dx (4.157)
J1\/|x—0.2| —14/]x—0.2] —14/]x—0.2]
Then, using a ten-point Gauss—Legendre quadrature rule to approximate
ox-02 “ X —0.2
————dx~ Wy ——— = —0.42529 (4.158a)
J1\/|x—0.2| ; v xe —0.2]
and with
02| ———=dx=02 J —dx+J 4dx}
J1\/|x0.2| l: _1v0.2 —x 02vVx—0.2
= 04[V12+ V08| = 0.79595 (4.158b)
we obtain
! X
J —————=dx ~ 0.37066 (4.159)
—14/]x—0.2]

which is in reasonably good agreement with the exact value. O

As the reader will show in Problem 9, this approach also yields a reasonable
result when the integrand contains a logarithmic infinity.

Cauchy or pole singularity

When f(x) can be written as

flx) = (4.160)

with L(x) analytic at xq, the singularity of f(x) at xq is called a simple pole. 1t is
occasionally referred to as a Cauchy singularity. The integral of f(x) that is well
defined is the Cauchy principal value integral, which is given by

[ e[ e | ]

with ¢ > 0. From this definition, we see that the integration accesses all x from a to b
except xp.
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As we did with weakly singular integrands, we write this integral as

L CP o C) R C0) PR (B S
PL (x — x0) e = L (x — x0) dx +L(xo)P L (x—xo)d (4.162)

Since
lim M :L,(XO) (4.163)

x—=x (X —Xxp)
the integrand of the first integral on the right side of eq. 4.162 is analytic at x,,.

Therefore, this integral is not a principal value integral and it can be approximated
using a Gauss quadrature rule as

[E=Lbal, 5", Lo —Lbol] e

a (X - XO) —1 (Xk - X())
with

[L(xx) — L(xo)]

(e — x0) ~ '(xo) (4.164b)

when |x; — xo| is less than some small value ¢ defined by the user.
The second integral on the right side of eq. 4.162 is evaluated as

b 1 X0 —¢& 1 b l
PJ ———dx =1lim U —dx—i—J 7dx}
a (x - X()) =0 | ), (x - XU) Xo+eé (X - )C())

= lg% |:€I’l|x - x0|2078+£n|x xO|X0+s:|

T & b—XO i b—X()

Therefore,

P r Lo T Jb 09 = LGl 1 () (b - ’“’)

o (x— « (x—x0) Xo—a

)C
N
b —
~ Zwk{ :| +L(X())£ ( XO)
— (¥ — xo) Xo —a

(4.166)

Example 4.16: Evaluation of a Cauchy principal value integral

Using partial fractions, it is straightforward to show that

! 1 ~ (2tan"'2 — — 4/n(3))
PL - 7

= —0.31304 (4.167)
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Clearly, the pole singularity of this integrand is at
X =

1 (4.168)

Therefore, we write

PJI L -

(@2 +4)(x - N

! 1 1 1 1-1

Jil — (x_%)dx+€n(%+1>><
! 1 4 1 4

[ v wlwpe e

(x2 +4) (i +4)
Since the remaining integral contains no singularities, it can be approximated by a
Gauss—Legendre quadrature rule as

1
G+4)

(4.169)

PJI ;dx”iw{ ! _i} L2003 @17
@+ -y k(x%+4) 17) (v —3) 17 .

Again, if one of the abscissa points is equal to or is very close to 1/2, the integrand is

(1 _df 1 4 BNZAS
L (2) = [<x2 T 17} s (17) (4.1706)

The results for various Gauss—Legendre quadrature rules are given in Table 4.19. O

Approximate value
N of the integral YoError
2 -0.31280 7.9 x 107
5 -0.31304 1.2 x 107
10 -0.31304 6.2 x 1071
20 —0.31304 93 x 10710

Table 4.19 Approximation to the principal value integral of
eq. 4.167 using various Legendre quadrature rules

Another technique for evaluating principal value integrals relies on two
properties of the Gauss—Legendre quadratures:

« The abscissae, which range over [-1, 1], are symmetric about x = 0. For each
abscissa +x; with weight wy, there is an abscissa —x; with the same weight wy.

» For any Legendre polynomial of order N, Py(%1) # 0. Therefore, +1 and —1 are
never abscissae of any Legendre quadrature rule.
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Since L(x) is analytic at xq, let x be a point close enough to xy that we can
approximate L(x) = L(xg). When x approaches xy from x > xq, the sign of the
integrand is opposite the sign when x approaches x, from x < xo. With

|x —xo| = ¢ (4.171)

we see that with ¢ small

X > Xo (4.172a)

and

(XL_(X))CO) ~ L (Z‘O) X< X (4.172b)

Taking L(xg) > 0 for the sake of discussion, the behavior of L(xo)/(x—x() at
points near x, is shown in Fig. 4.4.

Fig. 4.4 f(x)/(x—x() near x,

To evaluate

b L(x)
PJa (X _XO) dx

we divide the range [a, b] into three segments. If x is closer to a than to b, we divide
[a, b] as shown in Fig. 4.5a. If xj is closer to b than to a, [a, b] is segmented as
shown in Fig. 4.5b.
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byacix 2Xg—i9—a

’exﬂ— t - ‘L f;.—xn & —x 4)‘
]
a

x 2;(['— 2 b b 2;{0_&, X Ezl,
(a) (b)

Fig. 4.5 (a, b) Dividing the interval [a, b] into three segments

Such divisions yield segments on either side of xy with equal widths.

The integrals over the two segments separated by x, are then transformed to
integrals over [-1, 1] and approximated by the same Gauss—Legendre quadrature
rule. The third segment can be approximated by any numerical integration method
the user chooses. However, it is often convenient to use one quadrature rule for all
three segments.

Referring to Fig. 4.5a, with x, closer to a, we write

Pr L)y

« (x —x0)

X0 —& L 2)&’07(1 L b L
lim J ) et tim J () et J O g @173
e=0 (X - X()) e=0 Jyote ()C - xO) 2x9—a (x - Xo)

a

Substituting
x= (xoz_a) (z— 1) +x0 (4.174a)
we obtain
L § lf.sL 1 _ -1
lim J ) v = tim J Lo —a)z—1) +x0] (4.174b)
=0 J,  (x—xp) e—0 J_ (z—1)
With
XZM(Z—FU—I—XO (4.1752)
we have
2x0—a L 1 L 1 _ 1
lim J ®) 4y = lim J o —a)(z+ 1) 2] (4.175b)
e20 Jxpte (x —xo) e=0 J_14e (z+1)
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Substituting
X = (b—Z;o—i—a>(Z+ 1)+ (xo — a) (4.176a)
we obtain
b
J 2x—a (XL—(X?)CO) b=

[5(b —2x0 +a)(z + 1) + (2x0 — a)]
%(b —2xo+a)(z+ 1)+ (xo — a)

1 : L
Yb —2x) + a) J dz (4.176b)
—1

We see that the singularity at x = x( in the integral of eq. 4.174a has been
transformed to the singularity at z = 1 in eq. 4.174b. Likewise the singularity at
X = X in the integral of eq. 4.175a has been transformed to the singularity at
z =-11ineq. 4.175a.

Approximating these integrals by the same N-point Gauss—Legendre quadrature
sum, we see from Fig. 4.6 that for the approximation

—£

Fig. 4.6 Points on two sides of x, for which the integrands have opposite signs

Jl"L[%(xo—a)(z—l +X0 Zwk L[3(x0 — a) (i — 1) + xo

. (z—1) (xx—1)

(4.177a)

the quadrature point nearest to z = 1 is xy. This k = N term in the quadrature sum is

, L[Yxo — a)(xy — 1) + x| ~w L(xp)
! (o = 1) TR

(4.177b)
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Likewise, for

lim Jl L[%(xo—a)(z—i—l)—i—xo] 5
T e+ 1) (4.1784)
N L[%(XO — a)(xk —+ 1) + X()] ’
=3
e (Xk + 1)
the point in this quadrature sum closest to —1 is x;. Since x; = —xy and w; = wy,
the k = 1 term in this sum can be written as
Llixo —a)(x; + 1) +x L L
R (G ) B ) S 2.0 (4.178b)
(1 + 1) (—xy + 1) (v — 1)

Therefore, the X = N term in the quadrature sum of eq. 4.177a and the k = 1 term in
the sum of eq. 4.178a add to zero, which mimics the elimination of the point x = x,
implied by the principal value. Thus, the principle value integral can be
approximated by

J dx—z Wi %xo—a(xk—1)+xo]I

( (e — 1)
N

xo —a)(x + 1) —|—x0} |
Z (2 + 1) |

L[Y(b —2x0 + a)(xx + 1) + (2x0 — a)]

(b —2x0+a)(xx + 1) + (xo — a) (4.179)

N
1(b—2x0 +a) Zwk
=1

(Sl

Example 4.17: Evaluating a principal value integral by dividing the range into
three segments and using a Gauss—-Legendre quadrature

Using the integral of example 4.16, we write

! 1 0 1
PJ( 4><x——>‘b‘_J1<x2+4><x—%>”“+

1

1
dx +P J —————dx (4.180)

1/2 1
PJo (2 +4)(x = 3) 12 (P +4)(x —3)

We transform each of these three integrals to integrals over [-1, 1] using the
transformation

x=%(z— 1) (4.181a)
for the first integral,

x=1z+41) (4.181b)
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for the second integral, and
x=1%z+3) (4.181c)
for the third. Then

1

1 1 !
gl ¥ (R

1 1 1 |
PJ* (%(z+ 1)?* +4) (z— 1)dz +PJ_1 (l_lé(z +3)? +4) (z+ 1)dz -

N 1
Zwk +

=1 (%(xk -1+ 4) (v —2)

1 1
n (4.182)

(Bl + 17 +4) o= 1) (flw+37 +4) (s + 1)

Results using various Gauss—Legendre rules are given in Table 4.20. O

Approximation to the
N integral of eq. 4.180 9oError
2 -0.31126 5.7 x 10°
5 —0.31304 3.4 x 107
10 —0.31304 8.1 x 107"
20 -0.31304 45 % 107°

Table 4.20 Approximation to the principal value integral of
eq. 4.167 using various Legendre quadrature rules

4.6 Monte Carlo Integration

The Monte Carlo method of integration is based on the interpretation of an integral
as the area under a functional curve. The method requires that the user have
computer software that contains a random number generator.

Integral of a function of one variable

Let f(x) be integrated over [a, b] and let f,,,, be the maximum value of f{x) in that
range. We construct a rectangle of width b—a and height H > f,,,, so that the area of
the rectangle is larger than the area under the curve.
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Fig. 4.7 A rectangle enclosing the area under the curve f{x)

To integrate by the Monte Carlo method, one generates a large sample of pairs of
random numbers. For each pair, one number is used to define x € [a, b] the other to
define y ¢ [0, H].

As noted in Fig. 4.7, some of the points (x, y) are on or under the curve f{(x) and
some are above the curve. The integral is found by using the statistical identity that
for a large sample of random pairs (x, y)

area under f(x) number of points on/under f(x)

~ 4.183
area of the rectangle  total number of points generated ( 2)

Since the area under f(x) is the integral being evaluated, and the area of the rectangle
is (b — a) x H, we have

be(x)dx _ [ number of points on/under f(x) « (b—a)H (4.183b)

u total number of points generated

An efficient method of determining the maximum of f{x) in the interval [a, b] is
to find the zeros of df/dx (perhaps numerically using one of the methods described
in ch. 2). If none of these maxima are at the end points of [a, b], one must compare
these values to f(a) and f(b).

Example 4.18: Monte Carlo integration

Let us evaluate

2
J (1 4 x%)dx = 6.00000 (4.184)
0

by the Monte Carlo method outlined above.
Since fix) = (1 + x°) increases with increasing x, we determine that the maxi-
mum of f{x) in the interval [0, 2] is given by

(14+x), =9 (4.185)

max



156 4 INTEGRATION

This means that we must construct a rectangle with horizontal sides extending over
x € [0, 2] and with vertical sides extending over y € [0, 9].

Table 4.21 presents results for five trial runs, generating 10,000 random pairs in
each trial. The results given in Table 4.21 are very stable. We find that increasing
the number of points does not affect these results. For example, using 40,000
random points results in values of the integral of the same size as those in
Table 4.21, with an average value of the integral from five trials of 5.97940. O

Monte Carlo value of the
Trial integral of eq. 4.184 9oError
1 5.97241 46 x 107
2 5.98047 33 x 107"
3 6.02102 3.5 x 107"
4 5.96609 5.7 x 107
5 5.97064 4.9 x 107!
Average 5.98213 4.4 x 107

Table 4.21 Average of five trials of a program to evaluate the
integral of eq. 4.184 by the Monte Carlo method

Integral of a function of two or more variables

The Monte Carlo method can easily be extended to multiple integrals. For example,
to evaluate

x=b py=d
I :J J f(x, y)dxdy (4.186)

x=a Jy=c

one must define a three dimensional rectangular box in the space defined by x, y,
and z = f(x,y) with sides defined by x € [a, b], y € [c, d], and z € [0, H], where H is as
large or larger than the maximum of f(x,y). One then generates a large sample of
triplets of random numbers to define x, y, and z. Then

volume under the surface z =f(x,y) _

volume of the rectangular box
number of points under the surface z = f(x,y)

4.187
total number of points (x,y,z) generated ( )

from which

Jx_b Jy_d S (x,y)dxdy ~

x=a Jy=c

number of points under the surface z = f(x,y)

b—a)d—c)H 4.188
total number of points (x,y,z) generated x(b-a)d=c) ( )
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4.7 Evaluating Integrals Using the Gamma and Beta Functions

As shown in Appendix 3, the gamma and beta functions are defined by integrals.
Therefore, an integral that can be cast into a form of one of these functions can be
evaluated or approximated using the properties of that function.

Integrals telated to the gamma function

The gamma function has an integral representation given by

Tp+1)= r@ Ze~*dz Re(p)>0 (A3.1)
0

Therefore, an integral that can be cast into this form can be described in terms of the
gamma function, and, if it cannot be evaluated exactly, its value can be estimated by
approximating the gamma function.

Example 4.19: An integral related to a gamma function

Generalizing the integral discussed in example 4.13(b), we consider

I(m,n) = J X"e ™ 'dx m>0, n>0 (4.189)
0
Substituting
1
x=zn (4.190)
this becomes
1 [ m+l 1 1
I(m,n) =~ J s e Tids = —F(m + ) (4.191)
nJo n n

If (m + 1)/n is a positive integer or a half integer, this can be evaluated exactly.
Otherwise, one must use an approximate value of the I' function found by the
Stirling approximation, MacLaurin series approximation, a Gauss—Laguerre quad-
rature sum, or values presented in the literature. O

Integrals related to the beta function

Three integral representations of f(p,q) are given in Appendix 3;

/2
B(p,q) zzj cos®~10sin®~10d0 p>0, ¢>0 (A3.20)
0
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B(p,q) :J W (1 —u)'du p>0, ¢>0 (A3.21)
0
and
T 0. ¢>0 A3.26
Q) =| ——— >0, g> .
B(p,q) L TSkl q ( )

Integrals that can be cast into one of these forms can be evaluated exactly or can be
approximated using

T'(p)T(q)
B(p.q) = Bla,p) = =+ (A3.21)
(p,q) = B(ap) T(p+q)
Example 4.20: Integrals related to a beta function
(a) We consider
! 1
I,=| ——————dx 4.192
Joxl/g(l —x)/2 ( )

Comparing this to the definition of the f§ function given in eq. A3.26, we have

1 7
S ——>0 4.193
P g7 P=g” ( a)
and
5 7
—l=—-= = 4.1
q B =q D >0 (4.193b)
Therefore,
rr(L
L=pG ) =TT @199
(3

Referring to the tables in Abramowitz, M., and Stegun, 1., (1964), pp. 268 and
269, we find

7\ 8
r(§> =T (1) ~ 108965 (4.1952)
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By a linear interpolation between I'(1.580) and I'(1.585), which are given in the
tables, we estimate that

7\ 12
r(ﬁ> = T (1f) = 1.52871 (4.195b)

and a linear interpolation between I'(1.455) and I'(1.460) yields an estimate

35
r <ﬂ) — I'(11}) ~ 0.88561 (4.195¢)

From these values, we have

1
1

(b) We consider

/2
I, = J v/ tanx dx (4.197)

0

We see from eq. A3.20 that /,, is in the form of f(p, ¢) with

2p—1:—%:>p:%>0 (4.1982)
and
1 3
2q—1=§=>q:Z>O (4.198b)
Therefore,
ITErE 1
h=403 =5 B = 5TOrE @.199)

This product of gamma functions can be determined in two equivalent ways.
From the identity

T

IN-p)T(p-N+1)=(-)""——— A3.29
N =pIT(p =N +1) = ()" o (43.29)

we set N = 1 and p = 1/4. Then, this becomes
rOre) =—- =2 (4.200)
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Equivalently, from the Legendre duplication formula

L@+ Dl(q+3) r
Fagil)  — (A3.36b)

we set ¢ = 1/4. Then

r%@ _ ;r%@ - wa0n

from which
rre) ==v2 (4.202)

From this result, we have

/2
J Vianx dx = % (4.203)0]
0

As in the above example, we see that for certain values of p and ¢,

B(p,q) = B(q,p) = ="~ (A3.21)

can determined exactly. This is possible when

« the exact value of each gamma function can be determined. This occurs when the
arguments of the gamma function are positive integers and/or half integers.

e p+ gisaninteger N with N > 1. Then I'(p + ¢) = (N — 1)! and the numerator
is '(p)I'(N — p). The exact value of I'(p)['(V — p) can be determined from

(N -p)T(p—N+1)=(-)"" ) (A3.29)
where,
I'p)=p-1)(p-2)..p—N+1DI'p-N+1) (4.204)
Therefore,
B(p’pr):(71)N+1(17—1)(17—2)---(P—N+1) m (4.205)

(N-1)! sin(7p)
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e p and g can be written in terms of an integer N > 1 as

_N+2
b=
and
N
1=
Then

(222"

161

(4.206a)

(4.206b)

(4.207)

If N is even, then (N + 2)/4 and N/4 are half integers and (N + 1)/2 is a half
integer. The exact values of these three I functions can be determined. If N is odd, it

can be expressed in terms of an integer M as 2M + 1. Then,

p(VH2 V) TR
4 4 M!

With

oM -1

the Legendre duplication formula

Mg+ DM +Y _Va

I(2g+1) 2%

becomes

r<2M+3>r(2M+1> :zﬁ M+

4 4

ox)

Then eq. 4.208 becomes

B(N_—i—z N) _VAr(M+))

4 4 z(M—%) (M!) %

(1)

(4.208)

(4.209)

(A3.36b)

(4.210)

4.211)

Since N/2 is an odd integer, the exact value of I'(N/2), and therefore the exact value

of BI(N + 2)/4, N/4] can be determined. O
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4.8 Integration Using Heaviside Operators

The Heaviside operator D, is defined as a shorthand notation for the derivative.
That is,

d
D, =— 4.212
T dy ( )

With this definition, it is possible to evaluate integrals (and solve many types of
differential equations) by treating D, as if it was an algebraic quantity (see, for
example, Kells, L., 1954, pp. 74 et. seq.).

If P(z) is a function that is analytic at z;, its Taylor series representation is
given by

P(z) = i . 0) (z — z0)* (4.213a)

By replacing the algebraic quantity z by the operator D, we obtain the operator
function

> pk)
P(D,) =Y kfzo) (Dx — z0)* (4.213b)
k=0 :

An integral, being the inverse operation of a derivative, can be expressed in
Heaviside operator form as

J f(x)dx =D 'f(x) (4.214a)

from which the definite integral is

b
J f(x)dx = D;'f ()| (4.214b)

a

Integral of an integrand containing e**

A linear exponential function is one in which the exponent is linear in the variable.
It is of the form ¢** where p is a constant. The integral of a function with a linear
exponential is of the form

Je“xF(x)dx = D, '[e"F(x)] @215)
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Consider
D[ F(x)] = e [D.F(x) + uF (x)] = e [D, + jlF(x)
D[eF()] = e[, + ul*F(x)
D[ F(x)] = D, + ' F(x)

Therefore, if the function P(z) has a Taylor series

we can write

Therefore,
Je‘“’F(x)dx = e [D, + ) 'F(x) = <

The geometric series for —1 < z < 1 is given by

P(z) = {1+11 = i(_l)kzk

0 e

Therefore, eq. 4.218 can be written

~ (=1
Je‘“F (x)dx = — Z ~——D\F(x)
M= M
If F(x) is a finite polynomial of order N,
N
Fx) = fulr—x)"
m=0

163

(4.216a)

(4.216b)

(4.216¢)

(4.213a)

(4.217)

(4.218)

(4.219)

(4.220)

(4.221)

then the derivative D,* operating on F(x) will be zero for k > N and an exact result
can be obtained. If F(x) is not a polynomial, it is possible that it can be
approximated by a polynomial by truncating its Taylor series as in eq. 4.221.

Then, the series in eq. 4.220 becomes a finite sum.
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Example 4.21: Integral of a product of an exponential and a polynomial by
Heaviside methods

Using the Heaviside operator, we consider the integral
= J ey = D! [¢5] = e [(D+ ) ')

DN\ ', em D, D2\, e[, 2x 2
=(1+—=) ¥=—[(1-—+F|¥=—|¥-"+5
Il 1 TR It poop

This solution does not include the constant of integration. Therefore, the complete
solution is the expression given in eq. 4.222 plus a constant. [

(4.222)

Integral of an integrand containing cos(px) and/or sin(px)
Integrals of the form
I. = Jcos(,ux)F(x)dx (4.223a)
and
I, = Jsin(,ux)F(x)dx (4.223b)

are evaluate in essentially the same way as those containing an exponential
(see eq. 4.215).
If F(x) is real, then eqs. 4.224 can be written as

I. =Re Je””F(x)dx (4.2242)

and

I, =Im J " F (x)dx (4.224b)
and if F(x) is imaginary (F(x) = iG(x) with G(x) real), then
I, = Tm JeWF(x)dx (4.225a)

and

.= Re Jeiwp(x)dx (4.225b)
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If F(x) is complex, then

iux —ipx
I — J%F(x)dx (4.226a)
and
iux _ ,—ipx
I = J(ez,e)F(x)dx (4.226b)
l

Example 4.22: Integral of a product of a sine and a polynomial by Heaviside
methods

We consider the sine integral
I(p) = JSin(ux)xzdx = ImJei‘L“xzdx =ImD_' [e”“xz]

B o ol pltex _& D\ , (2.227a)
= Ime™ |(D, + in)” x| =Im|— l——+—5|x
i\ )

from which we have

L) =1 e (o, 2x 2
= 1m X _—— =
A i woou?

—Im [(icos(,wc) + sin(ux)) <x2 - ;% + 2%)]
_ % {_ ( 2 _ %) cos(4ex) + Zﬂ—xsin(,ux)} (4.227b)

The complete solution is obtained by adding a constant of integration to
this result. O

Problems

Problems 1, 2, 5, and 6 refer to the following integrals:
3

M I = J xe'dx = (x — 1)e** = 40.90683
1
3

an Iy = J xe'dx = (x — l)ex|3_oc: 40.17107
—00 o0
o 1 -1
(IH) IH[ = 3 dx = 5 =0.12500
0 (24x) 224x)7,
V) Iy = | e ax = ¥ — 0.88623

% 2
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1. Use the first three non-zero terms in the Euler—-MacLaurin approximation
method to estimate the value of each of the above integrals.

2. For each of the integrals above, transform the range of integration to [0, 2].
Then approximate each integral by

(a) a trapezoidal rule using two segments. Repeat the procedure using three
segments.

(b) a Simpson’s 1/3 rule using two segments. Repeat the procedure using three
segments.

(c) a Simpson’s 3/8 rule using two segments.

For each integral, approximated by each of these Newton-Cotes quadratures,
estimate the error from the term that contains the lowest derivative of f(x).

3. Prove that Simpson’s 1/3 rule does not yield an exact value of
f: dx=1(b° - a)

4. Develop the Newton-Cotes quadrature rule for the integral of a function that is
approximated by a fifth order polynomial over each segment. Specify the
number of intervals that make up one segment and determine the weights of
the quadrature rule.

5. For

(a) Iy, transform the range of integration to [0, oco] and approximate the
integral using a 4-point Gauss—Laguerre quadrature.

(b) Iy, transform the range of integration to [-1, 1] and approximate the
integral using a 4-point Gauss—Legendre quadrature.

6. For Ilv,

(a) approximate the integral using a 4-point Gauss—Hermite quadrature.
(b) transform the range of integration to [—1, 1] and approximate the integral
using a 4-point Gauss—Legendre quadrature.

7. Find an approximate value of I'(3) = [ x!/*¢~"dx using

(a) a two point Gauss—Laguerre quadrature rule.
(b) a five-point Gauss—Laguerre quadrature rule.

8. (a) Evaluate
'l
J xtn|x — 0.2|dx
-1

exactly
(b) Estimate the value of this integral by writing

1 1

I
J xlnlx —0.2|dx = J (x —0.2)¢n|x — 0.2|dx + O.ZJ In|x — 0.2|dx
-1 -1

then approximating the first integral by a four-point Gauss—Legendre quad-
rature rule and evaluating the second integral exactly.
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4 2
o(x—1)
(a) by writing the integral as J dx+ P J
o(x—1) o(x—1)
first integral by a 4-point Gauss—Legendre quadrature.
(b) by dividing the range [0, 4] into three segments, two of which are separated

by xo = 1 and are the same width. Use a 4-point Gauss—Legendre quadra-
ture to estimate the integrals over each of the three segments.

9. Estimate PJ dx =12+ (n(3) = 13.09861

42_1 4

dx and estimating the

10. The polynomials G(x) have the following properties:

Weighting function:

Orthogonality and normalization:

2n
ﬁémk k 7& 0

J‘ Gi(x)G(x) e —
-1 némk k=20

V1—x?
Summation representation:

2 —n—1)!
Gilx) = ; (_1)"W 2052k even

(k=1)2
_ § : n (k —n- 1)' —2n
Gk(.X) = 2 (—1) m(zx)k 2 k odd

Five lowest order polynomials:

Go(x) =1 Gi(x) =2x Gy(x) =2x" — 1
Gs(x) =87 —2x Ga(x) = 16x* — 161 +2

(a) Find the abscissae and weights for a two point and four point rule.
2

X
V1—x2

ture rule and (b) four-point quadrature rule.

1
(b) Find the exact value of I = J dx with the (a) two-point quadra-
-1
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11.

12.

13.

14.
15.

16.
17.

18.

4 INTEGRATION

Assume the random number generator in the computer language you use
generates integers between 0 and an integer N that you specify. Write a
computer program to approximate the following integral by the Monte Carlo
methods.

4
J eVidx = 2¢% = 14.77811
1

If N is a positive integer, determine the exact value of
o0 OO 1

J J (x +3)* (xy)" "2~ ey
0 Jo

> 35
Find the exact value of J xdyde~ ) dxdy integrated over the first quadrant of
the x—y plane. 0

2 1 7
Find the exact value of J cos4¢psind ¢ d¢p
0

(a) Estimate the value of I'(0.8) by the first three terms in the MacLaurin series
for /n[I"(1-0.2)].

(b) Estimate the value of I'(0.8) by assuming that I'(5.8) is reasonably well
approximated by the Stirling approximation

(c) Use either of these results to estimate the value of fol u02(1 — u)4'8du
o0

1

Estimate the value of J

———5——dx
o (1+x)""V/x

Use the Heaviside differential operator methods to evaluate
(a) jol e Fdx
(b) [} ¥cos(2x)dx

By approximating 1/(1 + x) by the first terms of its MacLaurin series, use
1 —Xx
e

Heaviside methods to approximate J dx

0 (1 +X)



Chapter 5
DETERMINANTS AND MATRICES

5.1 Evaluation of a Determinant

It is assumed that the reader has been introduced to the fundamental properties of
determinants. Appendix 4 presents many of these properties that will be used to
develop methods of evaluating determinants.

If adeterminantisa2 x 2ora3 X 3 array, it can be evaluated by multiplication
along diagonals as shown in eqgs. 5.1 and 5.2.

ap  ap

A2 =
azy ax

= aj1axn — aaz (5.1

and
app ap as
= (anaxas; + anaxaz + aizazazn)

A3 =|an axn ax
—(azanas + anaziass + anaxnan) (5.2)

aszp ds dss
For arrays larger than 3 x 3, multiplication along diagonals yields incorrect

results, and other techniques must be used. All these other methods are designed to
reduce the order of an N x N determinant to one of lower order.

Laplace expansion

The methods we will develop for evaluating determinants of order larger than
3 x 3 depend on an operation called Laplace expansion about any element. Let

H. Cohen, Numerical Approximation Methods, DOI 10.1007/978-1-4419-9837-8_5, 169
© Springer Science+Business Media, LLC 2011
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ap oo ai(n—1) Aain Ai(n+1) oo a\N
[ ] L] [ ]
° ° °
Am-1)1 ®® Adm-1)(n-1) 4m-1)n Am-1)(n+1) ©® dm-1)N
Ay =| am oo Am(n—1) Amn Am(n+1) oo amN (5.3)
Am+1)1 ®® Amt1)(n—-1) Am+n Amt1)(n+1)  ®® Ami1)N
[ ] ° [ ]
° ° °
ani oo AN(n—1) ANn AN(n+1) oo AanN

By eliminating the mth row and nth column from this determinant, we obtain the
(N —1) x (N — 1) determinant M,,,, called the m—n minor of the element a,,,:

ar oo Ai(n-1) A1 (n+1) oo ain
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
M. = Am-1)1 ®® A(m-1)(n—1) Ym-1)(n+1) ®® dm—1)N (5.4)
m Am+1)1 ®®  A(mi1)(n—1) Dm+1)(n+1) ®®  dm+1)N '
[ ] [ ] [ ] [ ]
[ ] [} [ ] [ ]
any oo AN(n-1) aN(n+1) b AanN

The Laplace expansion of Ay is a sum involving these minors. The m—n cofactor of
A, also called the m—n signed minor of a,,,, is defined by

cof (@) = (=1)"" M, (5.5)

The determinant can then be written as a sum over the row indices for a fixed
column index or a sum over column indices for a given row index:

N N
AN = Zamncof(amn) = Zamncof(amn) (56)
m=1 n=1

Then, one is left with a sum of (N — 1) x (N — 1) determinants. One repeats this
process until all determinants in the sum are of order 3 x 3. The 3 x 3
determinants are then evaluated by multiplication along diagonals as in eq. 5.2.

Example 5.1: Laplace expansion of a determinant

The Laplace expansion about the elements in the second row of

(5.7)

—_ N WO
I ST SRR
O N =
[OSIEN I NSOV
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is given by
513 01 3
A= 3(=1)*"2 5 7|42(-1)*"2 5 7
4 9 3 19 3
05 3 05 1
+7(=1)72 2 7|+4(=1)""2 2 5
1 4 3 1 4 9
= (—3)(—224) + (2)(40) + (=7)(23) + (4)(—59) = 355 (5.8)0

It is clear that this can be a very cumbersome operation, particularly when the order
of Ay is larger than 4.

However, we see that in this example, @;; = 0. Therefore, expansion about the
first row or the first column results in evaluating three minor determinants instead of
four.

With this as a guide, it is clear that if all but one of the elements in any one row or
any one column of Ay were zero, the Laplace expansion would result in a single
(N-1) x (N-1) determinant. It is possible to accomplish this by manipulating the
elements of Ay to replace all but one of the elements in any row or any column. As
stated in Appendix 4, (A4.10), a determinant is unchanged if a multiple of any one
row is added to another row, or a multiple of any one column is added to another
column.

With this property, it is possible to manipulate a determinant so that all but one
of the elements in the any specified column are zero. For example, we can
manipulate Ay into the form

o e oy 0 oyppr)  ee oy
021 @@ On_1) U2n  O2(nt1) ®®  Oon
Ay — | %31 *® %Be-D 0 o3(0p1) e o3y (5.9)
[ ] [ ] [ ) [ ) [ )
[ ] [ ] [ ) [ ) [ )
0 anpe1) e® ony

ON1 @@ ON(p—1)

with o, # 0.
To achieve this, for each row defined by the index k with k # 2, we multiply a5,
by a constant C;, such that

iy + Craz, =0 k#£2 (5.10)

We define the row in which the element will be non-zero [row, in the determinant
of eq. 5.9] as the working row. The operations performed to cast Ay in the form
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given in eq. 5.9, which replace each ay,, (for 1 < m < N and k # working row) by
Aim + Ck X a(working row),ms are denoted by

rowy — rowy + Ci X (working row) (5.11)

Identical operations can be performed with columns to obtain a determinant in
which all elements but one are zero in a specified row.
Expanding Ay of eq. 5.9 around column 7, the Laplace expansion of eq. 5.6 is

N
AN =) tunCOf () = 02ncof (c12y) (5.12)

m=1

Thus, Ay is reduced to a single (N—1) x (N—1) determinant.

Example 5.2: Manipulating elements of a 4 x 4 determinant to reduce it to a
single 3 x 3 determinant

We again consider

5.7)

— N WO
E-N SR SRRV |
R, IEN By
W3 bW

Since ay; is already zero, we manipulate the elements so as to change A into a
determinant for which all elements in the first row except a;3 are zero. To do so, we
add a multiple of each element in the third column to the corresponding elements in
the other columns such that the elements in the first row of those other columns is
zero. Thus, the third column is the working column. We perform the operations
coly — coly — 5 X col; and coly — coly — 3 X cols. With these operations, we
obtain

0O o0 1 0
3 =33 7 17

A= 2’ 23 5 3 (5.13)
1 —41 9 -24

The Laplace expansion of this determinant about the elements of the first row
results in

3 -33 —17
A=1x(-1)'"2 —23 -3 (5.14)
1 —41 —24

This can now be evaluated as given in eq. 5.2 to obtain A = 355. O
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Pivotal condensation

Pivotal condensation (Chio, F., 1853) is a method of reducing an N x N determi-
nant to a single (N—1) x (N-1) determinant without manipulating the elements of
Ap. Although any element can be used as the pivotal element, (see, for example,
Fuller, L., and Logan, J.,.1975), for ease of use it is recommended that a;; be the
pivotal element.

The only requirement necessary for this method is at a;; # 0. If a;; = 0,
then one can exchange the first row (or the first column) with another row (or
column) so that the (1,1) element is not zero. Then Ay — — Ay [see Appendix 4,
eqgs. A4.2]. Or, one can replace the first row (or column) with the sum of the first
row (or column) and another row (or column). Then Ay does not change sign [see
Appendix 4, eqs. A4.10].

Then with ay; # 0, we multiply

a dapp dajz ee 4y
az; dx dxz O djyN
A= a1 asx dazs e e dzy (5.15)

[ )
ayiy danz danN3 e e dayy

by a, M1 to obtain

ay diz diz e e a4y
ay; dxp 4z e d)y

allvlqA:azlle as; azx asx e e axy (5.16a)
[}

[
a1 danz2 dans e e dayn

We multiply one factor of a;; into each row except for row, to obtain

aj an ags L4 aiN
dajlazr  dpldyy  apldzz @ e djjdsN
ajl"l’lA — |anaz apazxp  apnaz e e apdzy (5.16b)

[ ]
ajlaNy dapanz  dpldys ® @ djjdnn

We then perform the following operations on this determinant:
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Fow, — Frow, — dzy X row

rows — rows — azy X rowq

Fowy — rowy — dy1 X rowq

to obtain

N-1, _
ay, A=

a ap as

o O

(allazz - 6112(121) (61116123 - a13f121)

(61110132 - 6112031) (61116133 - 013031)

0 (anan: —anan) (anans — aizan)

L4 aiN
o (allazzv - alNa21)

L4 (dlld3N - alNa31)

L4 (allaNN - Cluvam)

(5.17a)
(5.17b)

(5.17¢)

(5.18)

We note that the quantities in the parentheses are 2 x 2 determinants.

For example,

(011022 - alzazl) =
(61111133 - 4136131) =
and
(aniany — aivany) =
Therefore, we can write eq. 5.18 as
aii ag aps
0 ail  dnz apn a3
dazr  dxn azy  ax3
AIA = ap  dap apn a3
1 asy  as asy  dasjs
0 ai  apn aip a3
ani  anz anyi  ans

aii
az]

apy
asig

ar
ani

apn
an
aps
ass
aiN
AanNN
e ain
a a
oo 11 IN
azy daxN
a a
oo 11 IN
asy  dsny
a a
. 11 IN
a1  AannN

(5.19a)

(5.19b)

(5.19¢)

(5.20)
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a, dn 4
%azz s
a4y 4y Ay
Ayy Ay Ayy

(a)
ay Gy Gy

a‘\'}

()

N1 aN2

CC

LC

LC

LC

an

Dy

iy

aNN

a5 Gy Oy
Ay Uyy Uy
(b)

a:\’ 3

(d)

NN
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Fig. 5.1 Patterns for 2 x 2 determinants that are the elements of the single (N—1) x (N-1)
determinant reduced from an N x N determinant by the method of pivotal condensation: The (a)
(1,1) element, (b) (1,2) element, (¢) (2,1) element, (d) (N-1, N-1) element of the reduced
determinant

Performing an expansion of this determinant about the first column, we obtain

ay  an

d an

1 ap  an

A= 2| |as axn
11

ap  ap

aNy  anz

ai

as

aj
asi

aip
ani

aps ar
LN )

ans an

a a
13 . 11

ass asy

a a
13 oo 11

ans a1

aiN

a)N

aiN
asn

aiN
AanNN

(5.21)

Thus, a determinant of order N x N can be reduced to a single (N — 1) x (N-1)
determinant by evaluating 2 x 2 determinants. All that is needed is that the reader
becomes familiar with the pattern of evaluating those 2 x 2 determinants. Some of
the patterns are shown in Fig. 5.1.
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Example 5.3: Reducing a 4 x 4 determinant to a single 3 x 3 determinant by
pivotal condensation

Since a;; = O for the determinant

5.7)

— N WO
E-N SR SRV |
O N J =
W3 B~ W

we manipulate A to cast this determinant into a form with the (1,1) element is
not zero. Taking

row| — row; + row, (5.22)
Then
3 7 8 7
a=3 2 13 (5.23)
1 4 9 3

Using pivotal condensation, this can be written as

38| (37
3787 3713
A 3274 1
2257 32|22 (25| |27
1493 370 13 8] 137 5.24)0
1 4] |1 9] |1
1—15—3—9
=—| -8 —1 7 |=355
9
5 19 2
Triangularization

All the elements below the main diagonal of a determinant in upper triangular form
are zero. Such a determinant is of the form

ayp dpp aipz e e dpy
0 ap a3 ee ay
A=|0 0 a3 ee azy (5.25a)
[ ) [ ]
[ )
0 0 0 O AanN
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If all the elements above the main diagonal are zero, the determinant is in lower
triangular form

ar 0 0 0

azy  an 0 0
A=|ax an ax 0 (5.25b)

[ ) [ ] [ )

[ ) [ )

ayy dan2 d4anNs e e dnN

The value of a determinant in triangular form is the product of the diagonal
elements:

N
A = Tay, (5.26)

n=1

This is found straightforwardly by expanding the determinant around the elements
in successive columns.

For example, if the determinant is in upper triangular form, we first expand about
elements of the column headed by a;; to obtain

azy dzy © O d)N
asy dsy © O a3y

A =ay 0 au ee ay (5.27a)
[ )

Se e OOS
¥

0 0 0 AaAnNN

The second expansion, about the column headed by a,, yields

a

(%)

3 d34 dzs e e d3y

0 auy ags oo ayy
A=apan| 0 0 ass ee asy (5.27b)
[ ) [ ]
[ ]
0 0 0 0 AanN

and so on eventually obtaining eq. 5.26.

If the determinant is in lower triangular form, the first expansion is about the
elements in the column footed by ayy. The second expansion is about the elements
in column footed by ag_1)x-1), and so on.

Therefore, if a determinant can be triangularized, it can be evaluated without
successive reductions to one or more 3 x 3 determinants.

Triangularization is accomplished using the property that a determinant
is unchanged, if a multiple of any row (or column) is added to any other row
(or column) [Appendix 4, eq. A4.10].

To triangularize the determinant, we use each successive row as a working row,
and replace all the elements in a given column by zero by adding to that row, a
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multiple of the working row. For example, to upper triangularize a determinant, we
first replace all elements in the first column (except a;;), by zero by using row; as
the working row and performing the manipulations

ar
rowy — rowy — Arowl k>2 (5.28a)
aii

Then, using row, as the working row, we perform the replacements

row, — row, — Lrow, k>3 (5.28b)
an

and so on.

We see that at each step, the resulting diagonal element in the working row must
be non-zero. If @;;, = 0, one must interchange the working row with some other row
with row index > k. If the triangularized form of a determinant has one or more
zeros on the diagonal, the determinant is zero.

Example 5.4: Triangularizing a determinant

We consider the determinant

23 110
4 6 0 1 1
A=11 0 4 6 2 (5.29)
01 1 5 2
6 2 1 1 1

To “zero out” the elements of the first column, we use row, as the working row and
perform the following manipulations:

rowy — row, — 2rowq (5.30a)
rows — rows — %mwl (5.30b)
and
rows — rows — 3row; (5.30¢)
to obtain
2 3 1 1 0
o 0 -2 -1 1
A=10 —% % % 2 (5.31)
0 1 1 5 2
o -7 -2 -2 1
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We see that the (2,2) element of this resultant determinant is zero. To obtain a
second row without a (2,2) element of zero, we make the interchange

TOW) < Fowy (5.32)
so that
2 3 1 1 0
0 1 1 5 2
A=—-0 -3 I 4 2 (5.33)
o 0 -2 -1 1
o -7 -2 -2 1
Then, with
rows — rows + %rowz (5.34a)
and
rows — rows -+ Trow, (5.34b)
eq. 5.33 becomes
2 3 1 1 0
0 1 1 5 2
A=—0 0 5 13 5 (5.35)
0o 0 -2 -1 1
0 0 -5 =33 15
With
rows — rowy + %}’OW3 (5.36a)
and
rows — rows + rows (5.36b)
we obtain
2 3 1 1 0
0 1 1 5 2
A=—-0 0 5 13 5 (5.37)
0 0 O 25—1 3
0 0 0 —-20 20
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Then

100
rows — rows + HI‘OW4

casts A into the upper triangular determinant

231 1 0
011 5 2
A=—0 0 5 13 5
000 % 3
000 0 -2

from which

a=-e0e(3)(-5) =5

Cramer’s Rule

(5.38)

(5.39)

(5.40)0

One application using determinants arises in the solution of a set of N simultaneous

linear equations of the form
apxy +apxy + ... +aiNiy = ¢

a) X1 + anxy + ... + anxy = ¢

ani1Xi1 + anaxz + ... + aynxy = ¢y

Let A be the determinant of the coefficients, and consider

ayjp app ee a4 apxy dapp ee

day daxp e  dj)N a Xy dz ee
X]A = X1 . = .
[ ] [ )

ayy aN2 ee  dayy anyiXy any ee

(5.41a)
(5.41b)
(5.41¢)
aN
aan (5.42)
AaNN

Since a determinant is zero if all the elements in any two columns are identical, a
determinant with column 1 replaced by any other column is zero. That is, for

2 <k<N,
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dy dip e dpy
dyr  dxp  ®®  d)N

. =0 (5.43)
[ ]
anr  dn2 e®  dnN
Therefore,
aix  diz e  diN aiXe diz  ®®  diN
N N
Q.  dyp e d)N Xk dzp  ®®  doN
E Xk| o = E . =0 (5.44a)
k=2 ° k=2 °
Aank  dn2  ®®  dnN aNiXr dayz e dnN
and thus
anxy dapz ee  dapy ayXe dip e diN
azi Xy dzp ee  dyy N |axxiy axn ee axy
XA = +E
[ ) [ )
° k=21 o
aNiXy dnz ee  dann aNiXy dyz e dnN
N
Yoauxi ap ee ay
k=1
c a e
N 1 12 IN
Do ayxip an ee ay 2 ap ee ay
= | k=1 = EAI (544b)
° [}
° [}
N CN anz ®®  dayny
Zakak ayz ®e  dynN
k=1

That is, A; is the determinant of the coefficients with col; replaced by a column of
the inhomogeneous quantities on the right sides of eqs. 5.41. Therefore, in general,
to solve for x; by Cramer’s rule, we obtain the determinant A, by replacing col; by a
column of these inhomogeneous quantities. Then

Xk A

(5.45)

If the coefficient determinant is zero, there is no solution to the set of linear
inhomogeneous equations.

Example 5.5: Cramer’s rule for linear inhomogeneous equations

Let us solve for {xy, x,, x3} by Cramer’s rule, for

Sx1+2x +x3 =2 (5.46a)
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2x1 — 3xp +3x3 = 1 (5.46b)
and
Txy +4dxy —2x3 = =5 (5.46¢)
With
5 2 1
A=12 -3 3 |=49 (5.47)
7 4 =2
2 1
Al=|1 =3 = —49 (5.48a)
-5 4 =2
5 2 1
Ay =12 1 =98 (5.48b)
7 -5 =2
and
5 2
Az =12 =3 1 | =147 (5.48¢)
7 4 -5

We see from eq. 5.47 that since A # 0, a solution exists, and from eqs. 5.48 that
solution is

{x1,x02,x3} = {-1,2,3} (5.49)0

5.2 Matrices

It is assumed that the reader knows how to add, subtract, and multiply matrices, is
aware of the property that the determinant of a product of matrices is the product of
the individual determinants, and knows that the trace or spur of a matrix is the sum
of its diagonal elements.
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Matrix inversion

The unit or identity matrix has a 1 for each element along the main diagonal and
0 for each element not on the main diagonal. We denote this unit matrix as /.
The inverse of a matrix, denoted by A~ satisfies

AAT' ' =A"TA =1 (5.50)

A standard approach for inverting a matrix, given extensively in the literature, is
to replace each element of A by its cofactor [see eqs. 5.4 and 5.5] to form the
cofactor matrix C. One then forms C’, the transpose of the cofactor matrix
(obtained by interchanging the rows and columns of the matrix). Then

CT

ATl =
Al

(5.51)

(See, for example, Cohen, H., 1992, pp. 439, 440.) If the determinant of A is zero,
then A is said to be a singular matrix which has no inverse.

Example 5.6: Matrix inversion

It is straightforward to ascertain that for

5 2 1
A=1[12 -3 3 (5.52a)
7 4 =2
the determinant of A is
5 2 1
[Al=12 -3 3 |=49 (5.52b)
7 4 =2
Thus, A is not singular and A" exists.
The cofactor matrix of A is
-3 3 _2 3 2 -3
4 =2 7 =2 7 4
2 1 5 1 5 2 6 2
=114 = 7 -2 “l7 o4 |78 T 6
9 —-13 -19
2 1 _5 1 5 2
-3 3 2 3 2 -3

(5.53a)
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from which
-6 8 9
cl=1[25 —-17 -13 (5.53b)
29 -6 -—19
Therefore,
1 -6 8 9
A*:E 25 —17 —13 (5.54)
29 -6 -—19
It is straightforward to verify that
1 5 2 1 -6 8 9 1 00
AA’I:E 2 -3 3 25 =17 =13 | ={0 1 0 (5.55a)
7 4 =2 29 -6 -19 0 0 1

and

-6 8 9 5 2 1 1
A'A=—| 25 —-17 -13 2 -3 3 ]=10
0

00
1 0 (5.55b)0
29 -6 -19 7 4 =2 0 1

Gauss-Jordan elimination method for A™

It is easy to see that this approach to finding A~' can be quite cumbersome for large
matrices. The Gauss—Jordan elimination method, an arithmetically simpler method
for determining A™', involves performing the following manipulations of all
elements in a row (or column) of a matrix:

1. One can add a constant multiple of the elements in any row (or column) to the
corresponding elements of any other row (or column).

2. One can multiply each element in any row (or column) by a constant.

3. One can interchange any two rows (or columns).

These manipulations of the elements of a matrix A can be achieved
by premultiplying (for manipulation of elements in rows) or postmultiplying
(for manipulation of elements in columns) by a matrix M. To describe these
manipulations in context, we will use 5 X 5 matrices as examples.
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Let

app dapz a4z dy
az; dyp a3z Az
A= a3y axn a asy
g1 d4p  A43  A44
das;  dsp ds3  ds4

ais
azs
ass
ays
ass

185

(5.56)

(1) To create a matrix M that adds a multiple of each element in row, to the
corresponding element of row,, we start with the unit matrix and replace
the O in the (p, g) off-diagonal element with A. Thus, when the adding matrix

s

I
cooc o~
cCo~r~O
co~oco
o~ ococo
— oo oo

premultiplies A of eq. 5.56, it produces

1 0 00O ap ap aiz ais  ais
01 00O ary ap a3 axy  ax;
MQA = o412 1 00 asy dzp dzz dzyg  dss
00 010 ay1 A a4z Qs Ass
0 00 01 as; asy asy ass ass
apy apn a3 aia
a1 an an a
= | asi+4an an+lan azx+ias az + Aax
as ag as 44
asy asp as; ass

(5.57)

(5.58)

That is, premultiplying A by M, of eq. 5.57 generates the transformation

rows — rows + Arow,

(5.59)

Transformations of this type allow one to diagonalize the matrix A by

transforming its off-diagonal elements to zero. [

(2) To multiply every element in row, by the constant A, we start with the unit
matrix and replace the 1 in the (p, p) element by 4. Thus, when the multiplica-

tion matrix
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3
Il
cococo~
coo~oO0
co~oo

premultiplies A of eq. 5.56, it produces

1.0 0 0 O ar
040 00 ar
MmA = 0 01 0O as
00 010 as
0 0 0 0 1 asy
ai aip ais a4

ia21 )uazg /1023 ia24
- asy asy ass asq
(23] asg ass (2%

asi ass ass asy4
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S = O OO

ap
an
asy
as

ass

ais
/la25
ass
ass

ass

—_ o O OO

aps
ans
ass
ass

ass

ag
a4
aszq
agq

asa

ais
azs
ass
ags

ass

(5.60)

(5.61)

That is, premultiplying A by M,, of eq. 5.60 generates the transformation

rowy — Arown

(5.62)

Transformations of this type allow one to transform an arithmetically cumber-
some number to a number that is easier to work with, (e.g., to convert diagonal

elements to 1).

(3) To interchange all the element in row, and row,, we start with the unit matrix.
We replace the 1 in the (p, p) and (g, ¢) elements by 0, and the 0 in the (p, ¢) and
(¢, p) elements by 1. Therefore, when the interchange matrix

I
cococo~
o—~ocoo
co~oo

premultiplies A of eq. 5.56, it produces

S oo~ O

—_ o O oo

(5.63)



5.2 Matrices 187

a apz a3 a4 dais
dy; dpp dyz dz4 Ags
asy dsy dsz dzs  dszs

aq1 Q4 443 A44 445

§

I
o o o o~
© - o o o
o o~ o o
o o o~ O
- o © o o

dsy dsp ds3 ds4  dAss

aiy dpp a3 dis  as
a4 d4y Q43 d44  d4s

= | a3 axn ax au ass (5.64)
azy Ay d3 dys  drs

dsy dsy ds3 ds4  dss

That is, premultiplying A by M; of eq. 5.63 generates the transformation
roOwy < rows (5.65)

Such a transformation is needed when one of the diagonal elements in some row
is zero and one cannot perform a transformation as in (I) with zero as that
element.

Let a product of several such matrices M premultiplying A convert A into the unit
matrix:

M{MyM3.. MyA = (MiMyMs3..My1)A = 1 (5.66)
Therefore,
M \MoM5..My1 = A™! (5.67)

That is, the same set of manipulations that convert A to the unit matrix will convert
the unit matrix to A~

If one postmultiplies A by a product of several of these matrices, one
manipulates the columns of A. By the same analysis as above, performing the
same manipulations on the columns of the unit matrix converts it to A™".

If we premultiply A by one set of M matrices and postmultiply A by another set,

MMy MyAMy. 1My My.p = 1 (5.68)

it is not possible to write this as a product of matrices M multiplying / that can be
identified as A", Therefore, one cannot manipulate both rows and columns in using
the Gauss—Jordan method. Either one manipulates rows only or one manipulates
columns only.
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Example 5.7: Matrix inversion by the Gauss—-Jordan method

We again consider the nonsingular matrix

5 2 1
A=|2 -3 3 (5.52a)
7 4 =2

When applying the Gauss—Jordan method it is convenient to write the matrix A to
be inverted and the unit matrix side by side, then manipulate the rows of these matrices
as if the two were combined into one six column matrix. If one wishes to manipulate
the columns of A and /, an equivalent approach is to write / directly beneath A and
manipulate the columns of the two matrices as if they were a single six row matrix.

We write

5 2 1 1 00
A=12 -3 3 1={0 1 0 (5.69)
7 4 -2 00 1

and perform the following manipulations on the rows of these matrices:
Using row; as the working row, we take

2
rowy — row, — growl (5.70a)
and
7
rows — rows — growl (5.70b)
to obtain
5 2 1 1 00
A-|0 -3 % 1|3 10 (5.71)
0§ -7 1o

Then, with row, as the working row, we replace

1
rowy — rowy + 1—91‘0wz (5.72a)

and

rows — rows + Erowz (5.72b)
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We find
45 15
5 0 3% I
19 13 2
A—=10 -5 % L= =
49 29
0 0 -3 -5

Finally, with rows as the working row, we perform

n 45
- N o
rowj rowq 4910W3
and
247
row, — rowp + %I’OW3
We find
5 0 0 -3
A — —15—9 0 1 — _%
49
0O O -5 _%

We then perform

row; — 5 rowq

row, — —ErOW2
and
19
rows — — —row
3 49 3
Then
1 0 0
A—- |10 1 0} =1
0 0 1
and

-6 8 9

Sl — Tls

40
49

323
245

6
19

1
1—-— |25 —-17 —-13| =471
749

29 -6 -—19

Referring to eq. 5.54, we see that the matrix of eq. 5.77b is A™'. O

45
49

247
245

189

(5.73)

(5.74a)

(5.74b)

(5.75)

(5.76a)

(5.76b)

(5.76¢)

(5.77a)

(5.77b)
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Gauss—Jordan method to solve a set of simultaneous equations

A set of simultaneous linear equations of the form given in eqs. 5.41 can be solved
by matrix inversion. By defining N x 1 matrices (which are also referred to as
column vectors), containing the unknown values x,,

x|
X
X = (5.78a)

XN
and the known constants ¢,

C1
&)
C= N (5.78b)
[ ]
CN

and with a N x N matrix containing the coefficients of the unknowns x,,

aip dapz ee 4N
a dxp e dp)N
A= |, (5.78¢)
[ )

ayiy danz ®e dany

egs. 5.41 can be written as

AX =C (5.79a)
from which
X=A"'C (5.79b)
With
M \MoMs..My1 = A™! (5.67)

eq. 5.79b becomes

X = MiMaMs..My1C = MiM>M;...MyC (5.80)
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These M matrices multiplying C perform the same manipulations on the rows (the
elements) of C that the Gauss—Jordan operations perform on the rows of A to invert
it. Therefore, by placing A and C side by side to create a quasi-N x (N + 1) matrix,
then manipulating the rows of this N x (N + 1) matrix to convert A to /, the
(N + 1)th column is converted to the column vector of solutions.

Example 5.8: Solution to a set of linear equations by Gauss—Jordan
manipulations

We consider the set of equations

Sx+2y+z=9 (5.81a)
2x—=3y+3z=10 (5.81b)

and
Tx+4y —2z=238 (5.81¢c)

Writing these equations in matrix form, we have

5 2 1 X 9
2 -3 3 y| =110 (5.82)
7 4 =2 z 8

We see from example 5.7 that the operations

2
rowy — row, — growl (5.70a)
7
rows — rows — growl (5.70b)
10
row; — row; + 1—91‘0wz (5.72a)
rows — rows + 1—9r0wz (5.72b)
45
row; — row; + ErOW3 (5.74a)
247
row, — row, + %1‘0W3 (5.74b)
1
row; — growl (5.76a)
Fowy — — —Tow> (5.76b)

19
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and

19
rows — — Erowg (5.76¢)

transform the coefficient matrix into the unit matrix. Performing these operations on
the rows (elements) of the column

9
cC=1|10 (5.83)
8
we obtain
X 2
=1 -1 (5.84)0
1

Choleski-Turing method

The same manipulations that are performed in the Gauss—Jordan method of
inverting a matrix A can also cast A into an upper or lower triangular form.
Let a product of M matrices premultiplying the matrix equation

AX =C (5.79a)

transform A into an upper triangular or lower triangular matrix. Thus, either

app ap aps oo ain X1
0 ax» an oo an X2
M\M;y..M,AX = : : :
0 0 0 aw-nw-1 aw-1n AN-1
0 0 0 o0 any XN
71
72
=MM,.M,C=T = : (5.85a)
YN-1
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or
ang 0 LN J 0 0 X1
an| [25%) o0 0 0 Xo
M\M,..M,AX = . . .
[ ] [ ] °
an-11 an-12 ®® awn-nw-1) 0 XN-1
ani anz oo AN(N-1) AanNn AN
%
V2
- ’ ’ / _ °
=M\My . M,C=T"=| ¢ (5.85b)
YN-1
VN

If we upper triangularize the coefficient matrix as in eq. 5.85a we see that by
multiplying the X column by the last row of the triangular coefficient matrix, we
obtain

ANNXN = VN (5.86a)

from which we find the value of xy. Then we multiply the (N—1)th row into the X
column to obtain

AN-1)(N-1)AN—1 T AN-1)NN = Vy_1 (5.86b)
With the value of xy that was determined in eq. 5.86a this yields the value of xy_;.
Continuing this process for each row, we obtain equations containing only one
unknown xy.
If the coefficient matrix is lower triangularized as in eq. 5.85b, we begin by
multiplying the first row into X to obtain
anxy =y, (5.87a)
to solve for x;. Then, multiplying the second row into X yields
arixy + anx; =, (5.87b)
which, with eq. 5.87a yields the value of x,, and so on. This is the Choleski-Turing

method of solving a set of simultaneous equations using the same manipulations
specified for inverting a matrix by the Gauss—Jordan method.
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Example 5.9: Solution to a set of linear equations by the Choleski-Turing
method

We again consider the set of equations of example 5.8, given in matrix form as

s 2 1 x 9
2 -3 3 y|l =110 (5.82)
7 4 —2)\, 8

Referring to example 5.7, we see that using row; as the working row, the
manipulations

FOWy — row, — growl (5.70a)
and
7
rows — rowsz — growl (5.70b)
yield
5 2 1 9
A— 10 —15—9 % C— % (5.88)
N 3
Then, with
6
rows — rows + 1—9}‘0W2 (5.72b)
we obtain
5 2 1 9
A— 10 —% 15—3 C — 35—2 (5.89)
4
0 0 -3 -

Multiplying the third row of this modified A into the X column, we have

49 49

Then multiplying the second row into the X column, we obtain

19 13 19 13 32
_Z T, =_Z == =—1 5.90b
Syt YT ==Y ( )
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and multiplication of the first row into X yields

Sx4+2y+z=5x—-24+1=9=>x=2 (5.90c)01

Eigenvalues and eigenvectors of a real symmetric
matrix by the power method

When an N X N matrix A multiplies a N X 1 column matrix Y, the result is an
N x 1 column matrix Z:

AY =7 591
If
Z1 Y1
4] ¥2
o | =71 (5.92)
[ ) [
IN N

eq. 5.91 becomes an eigenvalue equation, where 1 is an eigenvalue of the matrix A
and Y is the eigenvector corresponding to A. An eigenvalue and its corresponding
eigenvector are sometimes referred to as an eigenpair.

The eigenvalues of a matrix are (in general, complex) numbers. But in
applications to physical problems, where the eigenvalues represent measurable
quantities, these eigenvalues are real, and their eigenvectors are naturally orthogo-
nal. That means that for 4,, # 4,

yl,n

T * * * y2,n
YmY’l = (yl,m y2,m il yN,m) (] 0 (593)

[ ]

YN .n

If two or more eigenvalues have the same value, they are degenerate
eigenvalues. The corresponding eigenvectors of degenerate eigenvalues are
not naturally orthogonal, but can be made so by an orthogonalization scheme
(see, for example the Gram—Schmidt method in Cohen, H., 1992, p. 458).

If a matrix is unchanged by transposing it and complex conjugating all its
elements, it is a hermitean matrix. If A is hermitean, all its eigenvalues are real
and its eigenvectors are orthogonal (for nondegenerate eigenvalues) or can be made
orthogonal (for eigenvalues that are degenerate). A special case of a hermitean
matrix is one for all its elements are real, and the matrix and its transpose are
identical. Such a matrix is a real symmetric matrix.
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Let A be a hermitean matrix for which all eigenvalues are nondegenerate. Let the
eigenvalues 1, 45, .. ., Ay be ordered such that

|21]>|22]>...> | AN (5.94)

Because the eigenvectors are mutually orthogonal, any vector X, containing N
elements can be written as a linear combination of the eigenvectors:

N
Xo=Y om¥n (5.95)
m=1

To determine the eigenpairs by the power method, one begins by choosing an
arbitrary vector X such as the unit vector

(5.96)

<

f=}

I
— 0 @ — =

It may happen that the chosen X, may be orthogonal to one or more of the
eigenvectors. Then one will not obtain all the eigenpairs of the matrix. When this
occurs, one must choose another X, and repeat the process to find those eigenpairs
that were not obtained with the first choice.

It may also occur that A = 0 is an eigenvalue. This will be the eigenvalue with
the smallest magnitude. For this eigenvalue, the determinant of A will be zero, so
one can test a priori to determine if one of the eigenvalues of A is zero.

Referring to eq. 5.95 let us assume that we choose an X, that is not orthogonal to
Y, so that, with A* the product of k factors of A, we can write

AkXO = (O(];LIIY] + O(z/léYz + o @ +O(N}"1]iIYN)

1k

/’{k
= )v]; <O(1Y1 + o /1—1% Yo+ e o 4oy //;—IZYN> (5.97)
1 1

Since 4 is the largest eigenvalue, we see that for & large, |/4,,/4 |k < < 1form > 2.
Thus, for some large k (chosen to achieve a required level of precision), eq. 5.97 can
be approximated by

AfXy ~ Moy, (5.98a)

With one additional multiplication by A we have

AIXy ~ 2y, (5.98b)
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Combining eqs. 5.98a and 5.98b, we obtain
A(AXo) ~ 21 (A"Xo) (5.99)

This implies that Y, is given approximately as some multiple of A*X,. We express
this as

Y, ~ pAFX, (5.100)

where f is a constant of proportionality that cannot be determined from the
eigenvalue equation. Once this eigenvector A*X, is determined to a required level
of precision, 4; is obtained easily from eq. 5.99.

To obtain an approximation to /4,, the second largest eigenvalue, we must
determine f§ by normalizing P(A*X,) to 1. We do this by imposing the condition

Y:[Yl = |[3|2(AkX0)T (A*Xo) =1 (5.101)

With Y; normalized to 1, we construct the matrix

B EA—)”YIY}L (5.102)

We see that

BY] :AY1 — )LIYIYj-Yl = i]Y] — llyl =0 (5]033)

and for the eigenvectors Y,,, m > 1,

BY,, = AY,, — 1Y, Y:f Yo = Jon¥om (5.103b)

That is, all the eigenvalues of A are also the eigenvalues of B except for A;.
The largest eigenvalue of A has been replaced by O for B. As such, the largest
eigenvalue for B is A,, and the above process is carried out with B to find this
eigenvalue.

Example 5.10: Power method for approximating the eigenpairs of a real
symmetric matrix

We consider the real symmetric matrix

(5.104)

s

Il
~r O
oo
o E=2FN

Solving the characteristic equation
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A—ill=| 0 1—-42 0 |=(6-2*(1-21)—16(1—2)=0 (5.105)

we obtain the eigenvalues {4, 45, 43} = {10, 2, 1}.
Starting with the unit vector

1
1 (5.106)

Xo

we obtain

100
1 (5.107b)
100

A%X,

10
AXp=1[ 1 (5.107a)

and so on. With k iterations,

10 1
AXo=1 1 | =10| 107* (5.108a)
104 1
which, when normalized to 1 is
1 1
Yy ~——— | 107F (5.108b)
V2+107%
After a large enough number of iterations so that we can take 10 22 0, we have
1 1
Yi~—|0 (5.109a)
V21
from which we obtain
AY, = 10Y; (5.109b)

Thus,

21~ 10 (5.110)
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We see that for this example, Y| and 4, are exact.
To obtain the second largest eigenvalue, we define

6 0 4 1
B:A—AIYIYJL: 0 1 0f—-10=f{0](L O 1)
4 0 6 1
6 0 4 1 0 1 1 0 -1
=0 1 0]-5/0 O O]=] 0 1 O (5.111)
4 0 6 1 0 1 -1 0 1
Then, with
1
Xo=11 (5.106)
1
it is straightforward to show that for k£ > 2,
21\'71 0 _2/(71
BF = 0 1 0 (5.112)
72/(71 0 2k71
Therefore, for all k > 2,
BXo=|1]| =12 (5.113)
From
AY, =Y, (5.114)
we see that
0
=11 (5.115a)
0
is an eigenvector corresponding to
=1 (5.115b)

To determine the third eigenpair, we form
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; 1 -1 0
C=B-/Yh¥, = 0 1 0 |—-[1](0 1 0)
-1 0 1 0
1 0 —1
=1 0 0 0 (5.116)
-1 0 1
With
2k71 0 _2k71
=1 o 0o o0 (5.117)
_21(71 0 2k71
we see that
1 0
ckfi1)=1{o (5.118)
1 0

This can be interpreted as X, being an eigenvector corresponding to the eigenvalue
A = 0. But since it is straightforward that the determinant of A is non-zero, 4 = 0 is
not an eigenvalue of A. Thus, we have only found two eigenpairs.

To find the third eigenpair, we take another choice for X,. We choose

1
Xo=10 (5.119)
0
We find that
1 | 1.00032 | 1
A0 =—Fs ~—— 1|0 (5.120)
o) Sx107\ 099968 ) Sx107\4

Comparing this to the results presented in eqs. 5.109, we see that when normalized,
this is the eigenvector Y| corresponding to A; = 10. After normalizing this to 1, we
again form

B=A—/11Y1Y:[: 0 1 O (5.121)

and note that
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k=1 k-1 1 1
B*X, = 0 1 0 0] =2 0 (5.122)
—k=1 g k-l 0 -1

After normalizing, we see that this eigenvector is

1 1
Y; = ﬁ _01 (5.123)
and since
AY3; =2Y; (5.124)
Y3 is the eigenvector for
A3=2 (5.125)

It is straightforward to show that by forming the matrix C, we would obtain the
eigenvalue A, = 1 and its corresponding eigenvector.
We note that the unit vector

Xo (5.106)

is orthogonal to

Y; = — 0 5.123
3 7 0 ( )

That is the reason we are unable to determine the eigenpair A3, Y5 of egs. 5.123 and
5.125 by taking X, to be the unit vector. [

Eigenvalues and eigenvectors of a real symmetric matrix

Matrices A and A’ are related by a similarity transformation if

A =571AS (5.126a)
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or equivalently,
A=SAST! (5.126b)
Eigenvalues and eigenvectors of A are defined by
A-41)X,=0 (5.127)
From eq. 5.126b, we can write this as
S(A = 2,1)87IX, =S(A' = 4, 1)X, =0 (5.128a)
from which
(A= 21)X. =0 (5.128b)

Thus, two matrices, related by a similarity transformation S have the same
eigenvalues, and their eigenvectors are related by

X =85 (5.129)
The elements of a real orthogonal matrix S that describes a “rotation through an
angle ¢ in the p—¢ plane (p # ¢)” are obtained by starting with the unit matrix, then
replacing the elements 1 in the pp and ¢gq locations by
Spp = Sqq = COSP (5.130a)
and replacing the elements 0 in the pg and gp locations by

Spg = —Sqp = Sing (5.130b)

For example, a 5 x 5 real orthogonal matrix describing a two dimensional
“rotation in the 2—4 plane” through an angle ¢, is of the form

1 0 0 0 O
0 cos¢p O sing O
S=10 0 1 0 0 (5.131)
0 —sing 0 cos¢p O
0 0 0 0 1

Such a matrix satisfies

SsT=8Ts =1 (5.132)
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Let A be a real symmetric matrix, so that its elements satisfy
Apn * = Ay = Ay (5.133)

A can be diagonalized by the similarity transformation given in eq. 5.126a, if
the columns of S are the elements of the eigenvectors of A. For example, let the
eigenvectors of a 3 x 3 matrix A be

X11
X, =[x (5.134a)
X13

X, = | xm (5.134b)

)
X23

and

X31
Xg3 = X32 (5 1340)
X33

with each vector normalized to 1 and the vectors mutually orthogonal to one
another. Such vectors are said to be orthonormalized. They satisfy

T 1 m=n
X;, Xo, = Omn = (5.135a)
m 0 m # n
from which
Xy X H 0 =1 (5.135b)

Using the 3 x 3 matrix to illustrate, the orthogonal transformation STAS results in a
diagonal matrix if S is of the form

X111 X21  X31
S=1x2 x» x| =X X X;) (5.136)
X113 X23 X33

where X,, (n = 1, 2, 3) is a column eigenvector of A forming the nth column of the
matrix S.
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We consider the transformation STAS. Since the columns of S are the
eigenvectors of A, we have

AS = (AX] AX2 AX@) = (/lle /lzXz /13X3) (5137)
Premultiplying this by
X1
st =1 x¢ (5.138)

X

where X, is a row eigenvector of A forming the nth row of the matrix S”. Using the
orthonormality of the eigenvectors, this yields

Xi
STAS = | XJ [(MiX1 ZXa 73X3)
X}
XTXy XTXo  A3XTXs 1 0 0
= AX3X: WXIX, BXiXs | =|0 4 0 (5.139)
WXEXy MXIXy  2aXEXs 0 0 /s

Jacobi method

The Jacobi method for diagonalizing a real symmetric matrix consists of applying
several similarity transformations to minimize the off-diagonal elements. This
is done by applying an orthogonal transformation that will transform two
off-diagonal elements to zero. When the method is applied by hand, it is most
efficient to choose the off-diagonal element(s) with the largest magnitude to
transform to zero (the number with the smallest possible magnitude). Performing
the computations with a computer, one can follow a pattern such as transforming
ai» and a,; to zero, then transforming a3 and a;; to zero, and so on. Each
transformation may destroy the zeros created by the previous transformation,
but as will be noted below, that is unimportant. This process is continued until all
off-diagonal elements are small enough that they can be approximated by zero.
Then the matrix is approximately diagonal, and the diagonal elements are
approximations of the eigenvalues.

Let S be the orthogonal matrix that transforms a,,, and a,, to zero. It is of the
form
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1 ee 0 o0 0 ee 0
[} [ ) [ ) [ ]
[ ] L) L) [ ]
0O ee cosp ee sing ee 0| —row,
S — [ ] L) L) [ ]
e ° ° ° (5.140)
0 ee —sing ee cosp ee 0 |« row,
[} [ ) [ ) [ ]
[ ] L] L) [ ]
0O ee 0 o0 0 oo |
T col, T coly
The similarity transformation
A =STAS (5.126a)

leaves all elements of A unchanged except a,,,, a,,, and a,, = a,,. These become

a,:?p = appcos2qb + aqqsinz(/) + 2ap4singcosg (5.141a)
a’qq = a,,,,sin2¢ + aqqcosz(ﬁ — 2a,4singcos¢ (5.141b)
and
a;,q = a/q[, = (a,,,, — aqq)sin¢cos¢ — dpg (coszqﬁ — sin2¢) (5.141¢)
Setting
a,, =a, =0 (5.142)

the angle ¢ is given by

tan(2¢)) 24 (5.143)
(app — agq)
with
— oo < tan(2¢) < oo (5.144a)
or equivalently
T n
—aS<¢<g (5.144b)
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It is straightforward to show from (5.141) that

(40) () = (@) + ) +2an)* G199
Therefore,
() 4 () > () + ()’ (5.1462)
and
(d) "+ () > ()’ (5.146b)

Thus, with each iteration, the magnitudes of the diagonal terms get larger
(eq. 5.146a) and the off-diagonal terms get small relative to the diagonal terms
(eq. 5.144b).

Therefore, after M such orthogonal transformations, we have

d, 0 0
0 ay, ee 0
A= (STST L SESTVA(SISySuiSu) = | o & . (5.147)
[ ) [ ] [ ] ,.
0 0 ee ay

where the zeros represent off-diagonal elements that are ignorably small relative to
the diagonal elements. In this diagonal form, the eigenvalues are given by

!

Ay = a (5.148)

mm

The corresponding orthonormal eigenvectors are the columns of

X111 X211 @@ Xy
X12 X2 @@ XN

XIN XoN ® @ XNy

S= 51S2...SM,15M = (5149)

Example 5.11: Jacobi method for approximating the eigenpairs of a real
symmetric matrix

We consider the matrix

3
2 1 (5.150)
1
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Using the Newton—Raphson method, we solve the characteristic equation
4 -4 3 -2
3 2—-4 1 |==-2472-25=0 (5.151)
-2 1 1-4
to obtain eigenvalues {4, 4, 43} =2 (6.38720, 2.30839, —1.69559}.
Writing the eigenvalue equation in the form
4 — 4 3 -2 X
3 2—-4 1 x| =0 (5.152)
-2 1 1-4 X3

we solve these equations for x, and x3 in terms of x; to obtain the general form of the
orthonormalized eigenvector

1 1
=/ (5.153)
VI+p+03\ p,
where
X7 (1= A)(7=22)
=—"= 2 154
nETToa-e-n " (5.1542)
and
_% (7-24)
A e ) (5-1548)
From this, we have
0.82859
Xess720 = | 0.51841 (5.155a)
—0.21138
0.52622
X 169550 = | —0.59228 (5.155b)
0.61016
and
0.19112
Xo30839 = | —0.61681 (5.155¢)

—0.76356
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We follow the pattern of transforming the off-diagonal elements to zero in
the order (1,2), (1,3), and then (2,3). We repeat the method outlined above until
the magnitudes of all off-diagonal elements are less than a small number (which we
have chosen as 107~ for this example).

For the first iteration, we transform a;, and a,; to zero by the similarity
transformation

cos(35.78°)  sin(35.78°) 0
S}, = | —sin(35.78°) cos(35.78°) 0 (5.156a)
0 0 1
to obtain
6.16227 0 ~1.03777
A= 0 ~0.16227  1.98066 (5.156b)
—1.03777  1.98066 1

We then use the similarity transformation

cos(—10.95°) 0 sin(—10.95°)
Sy = 0 1 0 (5.157a)
—sin(—10.95°) 0 cos(—10.95°)

to obtain
6.36309 —0.37628 0
A" = —0.37628 —0.16227 1.94459 (5.157b)
0 1.94459  0.79918
Then, with
1 0 0
S§3: 0 cos(—38.06°) sin(—38.06°) (5.158a)
0 —sin(—38.06°) cos(—38.06°)
we find

6.36309 —0.29628 —0.23195
A" = —0.29628 —1.68467 0 (5.158b)
—0.23195 0 2.32158

We find that we must apply two additional sets of such similarity
transformations (a total of nine similarity transformations in all) to obtain the
diagonalized matrix
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6.38719 0 0
A®) = 0 —1.69558 0 (5.159)
0 0 2.30838

with

S = 8335%3%25%35%35%25;33%3512

0.82859 —0.52622 —0.19112
0.51841 0.59228 0.61681 (5.160)
—0.21138 —-0.61016  0.76356

From the diagonalized form of A given in eq. 5.159, the eigenvalues of A are
{6.38719, —1.69558, 2.30838}, and from the columns of S of eq. 5.160, the
corresponding eigenvectors are

0.82859
X6‘3g72() = 0.51841 (5155(1)
—0.21138

—0.52622
X_ 169550 = | 0.59228 (5.155b)
—0.61016

and

—0.19112
X2.30339 = 0.61681 (51556')
0.76356

which are the eigenvectors found above (except for a meaningless multiplier of —1
for the vectors X71.69559 and X2.30839)* O

Because the similarity transformations used in the Jacobi method destroys
off-diagonal zeros determined in a previous iteration of the method, convergence
to a diagonal form can be very slow.

Eigenvalues of a symmetric tridiagonal matrix

A symmetric tridiagonal matrix is one for which the elements along the main
diagonal and those along the diagonals just above and just below the main diagonal
do not have to be zero. All other elements are zero. Such a matrix is of the form
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o By O 0 oo 0
ﬂ] o ﬂz 0 LN J 0

r=| 0 P e 0 (5.161)

[ ]
[ J
0 0 ee fy, ova Py,
0 0 0 eeo fy, o

The eigenvalues are then the roots of the Nth order polynomial

o -4 B 0 0 oo 0
ﬁ] Oy — )u ﬁz O L 0
0 i oz —A P ) 0
PN(A) = °
[ ]
0 0 oo  fy, ay-1—4 Py
0 0 0 o0 Pn_1 oy — A
N-1
= (=)D qumd” (5.162)
m=0

To determine the coefficients gy ,,, we define

)

~

Po( 1 (5.163a)

and

Pl(/l) =

2

— 2 (5.163b)

From these we consider

Py(4) = m=to b = (= ) — 1) = B3
Bi % — A
= (02 — 2)P1(2) — B1Po(4) (5.164a)
and
o — A Bl 0
Py(A)=| B o — 4 B>
0 By az—4

= (o3 — A) (o2 — A) (o1 — 2) — Br(oz — 2) — B30 — 2)
= (a3 = 2) [P2(2) + ] = Bilon = 2) = B3 (o0 — 4)
= (o3 — A)P2(2) — B3P1(2) (5.164b)
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We note that P»(/) is related to P;(4) and Po(/) in the same way that P5(A) is
related to P,(A) and P(A). For k < N, we define

o — A B 0 0 oo 0
Bl O(Z - )L ﬁz O LS 0
0 By w3 —74 P oo 0
Pi(A) = ° (5.165)
[}
0 0 oo o =4 Py
0 0 0 L) Br_i O — 4
Expanding this determinant about the last row (or column), we obtain
o — A I 0 X 0
I b —A Py o0 0
Pr(A) = (o — ) :
0 oo [z mo2—4 Py
0 0 oo ﬁk72 Og—1 — A
o =24 B 0 oo 0
B w—~4 B oo 0
— By : (5.166a)
0 oo ﬁk—3 Olp—2 — A 0
0 0 ee Bz B

Expanding the second determinant about the last column, this becomes

-4 B 0 oo 0
B w—~4 B oo 0
Pr(2) = (o — ) :
0 oo i3 woa—4 P
0 0 o0 ﬁk72 Ok—1 — A
o — A b oo 0
N A
B
[ ]
0 LN ﬁk73 Og—2 — A

= (o — APi1(2) — B Pia(2) (5.166b)
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We note that if we define P_ (1) to be zero, this recurrence relation is valid for
k=1.

To generate Py(4), we start with k = 1 to generate P(4) from Py(4), then P,(1)
from P (1) and Py(/), and so on, until we have obtained Py(4).

The sequence {P (1)} is called a Sturm sequence. Properties of Sturm sequences
are discussed in many places in the literature (see, for example, Patel, V., 1994,
pp- 455-457).

Referring to eq. 5.162, the eigenvalues are found using one of the methods
developed in ch. 2 for finding the roots of a polynomial. To apply these techniques,
we must have the functional form of Ppy(/). Thus, we must determine the
coefficients gy,,,. Expressing P (1) as

k—1
Pe(d) = (=12 + > qems" (5.167)
m=0

the recurrence relation of eq. 5.166b becomes

k—1 k=2
(D D qemd” = (D) Y qermd”
m=0 m=0

k=2 k=3
— (D) g = B ()T = B D qkamd™ (5.168)

m=0 m=0

We first note that the terms (—1)*A* cancel. We also point out that the smallest
power of /. in the sum involving A”*" is A" and the largest power of A in the last sum
is 2573, Therefore, we separate out all terms involving 70, )% and 2% from the
sums, and write

k-1 k-3

Z Q™ = qroi’ + Z Q™+ Qa2+ g ! (5.169a)
m=0 m=1

k=2 =3

Z 1" = Qo102 + Z Q1"+ Gt j2 A (5.169b)
m=0 m=1

k=2 k1 ,

z:f]kq,mim+1 = Z Q-1 —1 A"

m=0 m'=1

=3

Z Q11 2"+ Gt 22T+ G g 2! (5.169c¢)
m=1

(where ' has been renamed as m), and



5.2 Matrices 213

k=3 k=3
> i = G20l + Y aeaml” (5.169d)
m=0 m=1

After canceling the terms (—1)* 1X, eq. 5.168 can be written as
k=3

Geo?’ + Y qemi™ + qri2 T + qei A

m=1

-3
= o (=" g1 0+ Z Gt A"+ iy j 222

m=1

3

k-1 k2 m

— Qk-1p2A  — Qr-1p3A  — E Qh—1,m—14
m=1

k=3
- ﬁifl(_])k)hkiz - ﬁiflfIk—z,oiO - ﬁi,l Z Gr—2mA" (5.170)

m=1

With goo = 1, we equate coefficients of corresponding powers of / to obtain
m=0,k>2: qeo=ouqi-10 — Bi1q-20 (5.171a)
m=k=2,k>2: qu2=%dgioii2—qies — (1)B (5.171b)
m=k—1,k>2 qu1=(-D"ou —q 1x2 (5.171c)

and

1<m<k—=3, k>4 Gm=%UG1m— Gptm1—PoGi2m (5.171d)

If we take 0 < m < k and use the conventions that for any indices  and s,

Grs= (1) r=s (5.172a)

qrs =0 s>r (5.172b)
and

qrs =0 r<0ors<0 (5.172¢)

we note that the recurrence relation for the coefficients given in eq. 5.171d
reproduces those of eqs. 5.171a, 5.171b and 5.171c.
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Therefore, we generate the coefficients for Py(4) with 0 < m < k using eq. 5.171d
only, subject to the constraints of eqs. 5.172. When k = N, we obtain the
coefficients of Py(4) from which we can then find the eigenvalues of the tridiagonal
matrix T, which are the eigenvalues of the original matrix A.

Unlike the Jacobi approach, the methods of Givens and of Householder trans-
form a symmetric matrix to tridiagonal form by similarity transformations that do
not destroy zeros obtained in previous iterations.

Givens method

The Givens method for tridiagonalizing a real symmetric matrix involves applying
a sequence of similarity transformations comprised of orthogonal matrices that first
transforms a;3 — 0, then a transformation to take a¢14 — O, ... then a;y — 0, then
aze — 0, then as — O, ..., then finally a transformation that takes a;n_) — 0.
This process results in A being cast into tridiagonal form.

The orthogonal matrix § that transforms a,,, and a,, to zero is given by

1 ee 0 s 0 ee 0
[ ] [} ° °
[ () ° °
0 ee cos¢p ee sing ee 0| rowp 1
S = o L] [ ] [ ]
: * y . (5.173)
0 ee —sing ee cosp ee 0| 70w,
[} [} 'Y °
[ ] (] ° °
0 o0 O o0 O PR 1
T colpyy T coly
where
9pq
tang = — (5.174)
A(p+1)
Then,
A =STAS (5.126a)

transforms a,, = a,, to zero.
After M such transformations, the tridiagonal form of A is



5.2 Matrices 215
T = (S3;Shy_1---S357)A(S1S2...Sm-15m)

op B 0 e 0

Bi wm P, ee 0 (5.175)
=10 B, o3 ee 0
° By-1

0 ee 0 By o

The eigenvalues are then found by the method described above.
Unlike the Jacobi method, since the orthogonal transformation matrix

Sr = S182...Su-1Su (5.176)
does not diagonalize A, the columns of Sy are not the eigenvectors corresponding to
the eigenvalues. Each eigenvector X, corresponding to the eigenvalue 4; must be
found by solving N — 1 of the homogeneous linear equations

(@i — Z)Xeg + anxez + ... Fawxy =0 (5.177a)

ayxg + (6112 - ik)xk,z + ... +anany=0 (5.177b)

for N—1, x values in terms of one x. A normalization condition imposed by the user
determines the value of the remaining x.

Householder method

Tridiagonalizing a real symmetric matrix A by the Householder method involves a
applying a sequence of similarity transformations with orthogonal matrices, each of
which zeros out the required elements in a specific row and column of A.

The first orthogonal transformation matrix, §;, replaces the (1,3) = (3,1),
14 =@1, ..., 1,N)=(,1) elements by zeros. To determine S;, an
(N-1) x (N-1) matrix Y ; is defined such that

1
0

s;=10 Z (5.178)
[ ]
[ ]
0

In this form, SITA S does not affect ay;.
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Tridiagonalization is achieved by constructing ) ; so that the (1,2) and (2,1)
elements of A are replaced by a non-zero value, and the (1,3) = (3,1), ...,
(1I,N) = (N,1), elements in the first row and first column, are zero. To achieve
this, we define a column vector

a1
as]
V= o (5.179)
[ ]
ani
and determine ) ; such that
1
0
ZiVi=ni| o | =mu (5.180)
[ ]
0

where u, is the unit column with N—1 elements. With this condition, the similarity
transformation by §; will replace the (1,2) and (2,1) elements with a non-zero value
obtained from n; and replace the (1,3) through (1,N) and (3,1) through (V,1)
elements with zeros.

Consider

V) (EVh) = wduluy =n? = VIZIE Y, (5.181)
Since S is an orthogonal matrix, ) ; must be orthogonal. Therefore,
Ty =1 (5.182)
Thus, from eq. 5.181, we have
N
n% = VITVI = a%z + a% + ...+ afN = Za%m (5.183)
m=2
To determine Y ;, we define a column vector

wi
w:
wi=| ) (5.184)
[ ]

WN-1

from which we define
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T =1-2W,Wi

1 0 0 w1
0 1 e 0 %)
e o o o2 ° (wi wy ee wy ) (5.185)
e o o o °
0 0 e 1 WN-1

Since ) ; must be orthogonal,

52 =1 =1—(1—2w, Wl (1 —2w,wh)’
=1—(1-2W,W]) (1 —2W,W]) = | —4W, W] + 4w, (W{W)W] (5.186)

To have the last two terms in eq. 5.186 cancel, we must require that
wWiw, =1 (5.187)

With eq. 5.185, eq. 5.180 becomes

(1 —2W,W)Vi = muy (5.188a)
from which
W (WIVY) = Vi — g = oy (5.188b)
Defining the number ¢ by
2(wivy) = % (5.189)
eq. 5.188b becomes
W) = co, (5.190)

and since W is normalized to 1,

¢? = (5.191)

Therefore,

T =1-221 (5.192)
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With this form of Y, and renaming a;; as o, we have

o

B

sTas; = | 0
[ ]

[ ]

0

By
by

by

To tridiagonalize the second row and column elements, we define

S =

S e O O~

0 ee O
by; e e by
by; e e by =A (5.193)
.
by bin e e byy
0 0 e 0
1 0 e 0
0 (5.194)
° 2
°
0

where ), is an (N-2) x (N-2) matrix. Then, with the columns containing

(N-2) elements

Vo, =

Wy =

and
1753
we have
where
2
n
Then, with

b3
b
2 (5.195a)
[ ]
bno
1
0
. (5.195b)
[ )
0
V2 — NalUy (5195C)
N
> b, (5.195d)
m=3
T
(5100)
= (5.196)
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we obtain

op f; 0 ee O
Bi o2 B, ee 0
STAS, = | 0 P2 bz e baw | —p, (5.197)

[ ]
[ ]
0 0 by ee by

We note that the quantities b, of A, do not have the same values as the b, of A;.
We are simply using the same notation for these elements as place holders for
quantities that change value under the transformation.

It is straightforward to generalize this process. The kth orthogonal matrix is
given by

1 0 0 O e 0
0O 1 0 00 0
[ ]
[ ]
Si=10 e 01 0O oo 0| «— row (5.198)
0 0
° ° Zi
[ ] [ ]
0 0

where ) ; is an (N-k) x (N—k) matrix. The column vectors with (N—k) elements are

b1y
b :
ve=| 0 (5.199a)
[ ]
bk
1
0
u. = | o (5.199Db)
[ )
0
and
Wy = Vk — N Uy (5199C)
where
N
n = Z b}, (5.199d)

m=k+1
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Then, with
o)
Ti=1-2— (5.200)
Wy W
we have
o B 0 0 0 0
ﬁl O(z ﬁz 0 0 O
[ ] [ ) [ ]
[ ] [ ] [ ]
[ )
SiA1Sc=| 0 oo B, o B, 0 = A (5.201)
0 ee 0 B burnusy ®® buiin
L] [ ] [ ] [ ] L]
[ ] [ ] [ ) [ ) [ ]
0O eo 0 0 bN<k+1) o0 by

Example 5.12: Givens and Householder methods for approximating the
eigenpairs of a real symmetric matrix

It is straightforward to show that the characteristic equation for the eigenvalues of

2 1 4 -1
A= i ; _34 % (5.202)
-1 2 1 3
is
=223 — 4522 + 1144136 =0 (5.203)

Using one of the techniques for solving such an equation introduced in ch. 2, we
find that the eigenvalues are given by

{1,242, 23, A4} = {—6.74074,—0.89500, 4.00000, 5.63573} (5.204)

The corresponding eigenvectors

Xk, 1

X, = | 2 (5.205)
Xk 3

X4

can be found from the simultaneous equations
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2 — 1 4 -1 Xkl
i : _3)"( B 43_ i ? i’k‘j =0 (5.206)
-1 2 1 3— A Xi4
which can be expressed in the form
(2 = A)xry +xe2 + 44Xz = Xga (5.207a)
Xt 4 (1= Zi)xes 4 3x3 = —2x04 (5.207b)
Ay 4 3x50 — (4 + A)xes = —Xea (5.207¢)
and
—xp1 + 2x0 + X053 = (3 — M )ea (5.207d)

Since there are only three independent equations in this set, we solve, for
example, eqs. 5.207a, 5.207b, and 5.207c for x; ;, Xz, and x; 3 in terms of xy 4.
This set of equations can be expressed as

(2 — ik) 1 4 Xk, 1 1
1 (1 —A) 3 Xe2 | =xpa| —2 (5.208)
4 3 —(4 + /Lk) Xk,3 -1

Normalizing the eigenvectors to 1 to determine x; 4, we obtain

X1, Xo, X3, X4} =

0.38012 0.43553 —0.60999 0.54197
0.27324 —0.75002 0.15250 0.58272 (5.209)
—0.88061 |’ | —0.00327 | | —0.15250 |’ | 0.44862
0.07333 0.49777 0.76249 0.40675

To determine the characteristic equation, we first cast the matrix A of eq. 5.202
into tridiagonal form, then use the recurrence relations of eq. 5.171d with the
constraints given in eqs. 5.172 to find the coefficients of the various powers of A.

(a) To tridiagonalize this matrix by the Givens’ method, we systematically trans-
form the (1,3) and (3,1) elements, then the (1,4) and (4,1) elements then the
(2,4) and (4,2) elements to zero.

The (1,3) and (3,1) elements are transformed to zero by a similarity trans-
formation via the orthogonal matrix
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1 0 0 0
| 0 cosp, sing; O
Si= 0 —sing, cosp; O (5:210)
0 0 0 1
where ¢ is given by
4
tang, = — 2 — 2 (5.211)
arn 1
Then
2.00000 4.12311 0.00000 —1.00000
T _ 4.12311 —2.29412 —-3.82353 1.45521
Ar=SIASt=1 (00000 -3.82353 —0.70588 —1.69775 | 212
—1.00000 1.45521 —1.69775 3.00000
The (1,4) and (4,1) elements are transformed to zero by
1 0 0 0
10 cos¢p, O sing,
S, = 0 0 1 0 (5.213)
0 —sing, 0 cos¢p,
where, from eq. 5.212,
b4 1.00000
t =—— = 214
andy = = = 1231 (5219
Then
2.00000 4.24264 0.00000 0.00000
T | 424264 —-2.66667 —3.31564  0.08085
A =54852=1 600000 —331564 —0.70588 —2.55113 | 21
0.00000 0.08085 —2.55113 3.37255
To transform the (2,4) and (4,2) elements to zero, we take
1 0 0 0
0 1 0 0
5= 10 o cos¢;  sing; (5.216)
0 0 —sing; cosg;
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where ¢35 is found from

Co4 0.08085
N3 = = T 331564 G217
We obtain the tridiagonal form
2.00000 4.24264  0.00000  0.00000
Ay — S§A2S3 _ 4.24264 —2.66667 —3.31662  0.00000 (5.218)

0.00000 —-3.31662 —0.57912 —2.64748
0.00000 0.00000 —2.64748  3.24577

(b) To tridiagonalize the matrix of eq. 5.202 by the Householder’s method, we refer

to eq. 5.179 and define
1
Vi=| 4 (5.219a)
-1

n = /VIV, =3v2 (5.219b)

where, from eq. 5.183,

Then, from eq. 5.188b
1
o= 4 | =-3v2|0] = 4 (5.219¢)
0

From this, eq. 5.192 becomes

100 5 1-3V2
=01 0" r 4 (1-3v2 4 —1)
—6V2
0o o 1) (6-6v2) B
0.23570  0.94281  —0.23570
= | 094281 —0.16301 0.29075 (5.219d)

—0.23570  0.29075 0.92731
Therefore, with

1 0 0 0

0 023570 094281 —0.23570
0 0.94281 —0.16301 0.29075
0 —0.23570 0.29075 0.92731

S, =7 (5.220)
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we obtain
2 4.24264 0 0
O T i) et
0 —0.91484 3.25873  1.55090
From A, we have
G
from which
ny = V/3.187967 + 0.914842 = 3.31663 (5.222b)
Then
o= (2 () - (o) o
so that
2= (Lo osen) 52220
Therefore
1 0 0 0
52 = 8 (1) 0.92121 70.207583 (5:223)
0 0 —-0.27583 -0.96121
and we obtain
2.00000 4.24264 0 0
= | VU Wil s aens | 629
0 0 —2.64748  3.24579

This is the same tridiagonal form of A obtained in eq. 5.218 by the Givens method.

It is straightforward to prove that, except for the signs of the off-diagonal
elements, the reduction of a symmetric matrix to tridiagonal form is independent
of the method used (see Fox, L., 1965, pp. 251-252).
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With
o = Ax(k,k) k=1,2,3,4 (5.225a)
and
Br=As(k,k+1) k=1,2,3 (5.225b)

eq. 5.171d, constrained by eqs. 5.172, becomes

goo =1 (5.226a)
410 = %1900 — qo.1 — Pog-10 = 21go0 = 2.00000 (5.226b)
gi1 = (=1)" = =1.00000 (5.226¢)
420 = %2410 — qo—1 — Pidoo = %2q10 — Brgoo = —23.33333 (5.226d)
G21 = %411 — 10 — Biqo1 = %q11 — q1,0 = 0.66667 (5.226¢)
@22 = (—1)* = 1.00000 (5.226f)
430 = 93020 — 2.1 — B3q10 = %3920 — P3q1,0 — 8.48709 (5.226g)
@31 = %3qa1 — qro — Paqia = 33.94725 (5.226h)
G2 = 03q22 — o1 — Poqin = 03qan — a1 = —1.24579 (5.226i)
¢33 = (—1)° = =1.00000 (5.226])
4a0 = 04G30 — G531 — Paq20 = %aq30 — fig20 = 136.00000 (5.226k)
a1 = %aq31 — q30 — f3q21 = 114.00000 (5.2260)
qar = %q32 — q31 — P3q22 = —45.00000 (5.226m)
q43 = %4433 — 432 — ﬁ%ng = 04qg33 — q3p = —2.00000 (5.226n)

qas = (—=1)* = 1.00000 (5.226p)
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From these results, we find that the characteristic polynomial is

3
Py(2) =24 qund" =i =227 — 4577 + 1144 + 136 (5.227)
m=0

which is identical to the polynomial given in eq. 5.202. O

OR method for nonsymmetric matrices

To find the eigenvalues of a real, nonsymmetric matrix A, a commonly used
approach is the QR method, developed by Francis, J., 1961 and 1962. This method
involves factoring A as the

A=O0R (5.228)
where R is an upper triangular matrix

i riz2 r3 ee I
Yoo I3 @@ Ipy

R = 33 e e I3y (5.229)
O [ ) [ 1)
[ )
I'NN

and Q is the product of orthogonal matrices S.
We choose orthogonal matrices Sy, S5, ... Sy such that

Sl e eeSISTA =R (5.230)

The matrix Q is defined as
O=S51S, 0005y (5.231)

so that eq. 5.230 becomes
Q"A =R (5.232)

Since Q is an orthogonal matrix,
or=07! (5.233)
Therefore, eq. 5.232 can be written as

R=0"'A (5.234)
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After determining Q and R, we define a new matrix A’ by
A" =RQ (5.235a)
Substituting for R from eq. 5.232, this becomes
A'=071A0 (5.235b)
Since A and A’ are related by this orthogonal similarity transformation, they have
the same eigenvalues.
To find the eigenvalues of a real matrix Ag, we first determine Q; such that
O1A) =R, (5.236)
is an upper triangular matrix. We then define
A =R0 (5.237)
This process is continued by factoring A; as
Al =R, (5.238a)
so that R, is an upper triangular matrix found from
R, = 07A, (5.238b)
From Q5 and R, we then define
Ay =Ry0» (5.239)
This iterative process is continued until
Ay = ROy (5.240)

is an upper triangular matrix to some level of precision. That is, for large enough K

K K K K

“(11) “52) a§3) oo agN)

(K) (K) (K)

Ay dy3 @@ dyy

Ag ~ a9 ee o (5.241)

O [ ] [ ]

[ ] [ ]

K

ayy

As noted earlier, by expanding
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(K) (K) (K) (K)
ay — 4 apy a3 oo ay
B e
A — 21| = ® _ K 5.242
|Ax — Al] ay —/A eoe agz) ( a)
() [ ] [ ]
[ ] [ ]
a](vlfv) — 2

about the elements of the first column of each cofactor, we obtain
Ax — 21| = (aﬁ’f) - A)( ) _ ;v) coe (a,(v’;) - ;L) (5.242b)

Thus, the diagonal elements of an upper (or lower) triangular matrix are its
eigenvalues.

As shown in Wilkinsonm, J.H., 1965, pp. 216-219, when the eigenvalues of A
are real, this process converges to

K K K

A “52) a(13) a(lN)

h ay ay
Ax = 2 %) (5.243)

O ° °

[ ] [ ]

AN

with

|41]>|A2]> o o & >[iy] (5.244)

Jacobi/Givens QR method

One method for determining Q as defined in eq. 5.228 is to create rotation matrices
S with elements cos¢ and sin¢g such as the matrices used in the Jacobi or the Givens
method of tridiagonalization [see eq. 5.140 or 5.173]. This approach for determin-
ing Q will be referred to as the Jacobi/Givens QR approach. At each step in the
process, the angle ¢ is chosen to transform one of the elements below the main
diagonal to zero.

Householder QR method

We can also adapt the Householder approach for tridiagonalizing a symmetric
matrix to a method of triangularizing a nonsymmetric N X N matrix Ao.
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To do this, we define a vector V| containing the N elements in the first column of
Ay (instead of N-1 elements as we do when tridiagonalizing a matrix by the

Householder method):

api
azg

V= .
[ ]
ani

Following the steps outlined in eq. 5.178 through eq. 5.192, we have

N
2 2
ny = § a1

k=1

from which we define

0)1:‘/17}‘111/{1:‘/17}11

S e O —

With this, we obtain the N x N orthogonal matrix

ool

T
W] Wy

si=1-2

where / is the N x N identity matrix. Then
by by biz ee by

by by ee by
by bz ee by

[y

Il
>

STAg =

S e OO

bvay byz e e byy

We then form a vector with N — 1 elements

(5.245)

(5.246)

(5.247)

(5.248)

(5.249)

(5.250)
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from which we define the N — 1 component vector

1
0
Wy = Vs — motty = Vy — 1 ‘.) (5.251)
[ )
0
where
N
n = szz (5.252)
=
Then, forming
1 0 e O
0
S5=1e s! (5.253)
[ ]
0
with
T
sT=1-22% (5.254)
Wy 3
such that
bit by ci3 ee ciy
Cp C3 @@ ()N
ST'B = 0 e e v ¢ (5.255)

S e OO

[ ]
[ ]
0 CN3 ® e (NN
This process is continued until the resulting matrix has been transformed into

OlAg = Sy...STAg =R, (5.256)

where R, is an upper triangular matrix. Then
0, =S8...5v (5.257)

and

A =R,0 (5.258)
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This procedure is then applied to A; to determine A, and so on. After a number of
iterations, one obtains A, that is an upper triangular matrix to an acceptable level of
precision.

Example 5.13: Eigenvalues using the QR method

It is easy to verify that the matrix

3 0 -1
A= 1 5 =2 (5.259)
-2 0 2

has eigenvalues (5, 4, 1).

(a) To determine these eigenvalues using the Jacobi/Givens QR method, we begin
by zeroing out the (2,1) element by premultiplying A by

cosg,, —sing,; 0
ST = | sing,, cospy O (5.260)
0 0 1

_1 (a2 -1 1
= —t Z2l) —t _ 5.261
d)21 an ( 11) an <3> ( )

3.16228 1.58114 —1.58114
STA=B= 0 474342 —158114 (5.262)
—2.00000 0 2.00000

with

This yields

The (3,1) element of B is transformed to zero by multiplying B by

cosz; 0  —sings,
St = 0 1 0 (5.263)

sing3; 0 cosgy,

where

b —2.00000
¢31 = —tan71 (bji) = 7tan71 (316228) (5264)

We obtain

3.74166 1.33631 —2.40535
SB=SySHA=C= 0 4.74342 —1.58114 (5.265)
0 084515 0.84515
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The (3,2) element is transformed to zero by multiplying C by

1 0 0
S, =10 cospy, —sings, (5.266)
0 sing;, cosgs,
with
1t _1/( 0.84515
=— =) = — _ 5.267
¢3 = —tan (c22> tan (—1.58114 (5:267)

From these computations, we find

3.74166 1.33631 —2.40535

R, = 0 4.81812 —1.40837 (5.268)
0 0 1.10940
and
. 0.80178  —0.22237 0.55470
01 = (S5,55,85) =S1S13853 = | 026726 0.96362 0
—0.53452  0.14825  0.83205
(5.269)

From these results, we have

4.64286  0.09905 0.07412
A =R0; =1 2.04050 4.43407 —1.17184 (5.270)
—0.59300 0.16447 0.92308

We repeat this process until Ax = RgQy is an upper triangular matrix. We
find that the QR process converges quite slowly for the matrix of eq. 5.259.
After 60 iterations, we obtain

5.00010 —2.12126 —0.70709
Ago = | 4.58382 x 1077 3.99990 —1.00001 (5.271)
—1.59750 x 107> 3.86748 x 10> 0.99999

If we accept these (2,1), (3,1), and (3,2) elements as zero, this can be taken to be
in lower triangular form, and the eigenvalues, in descending magnitude order,
are (5.00010, 3.99990, 0.99999).
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(b) Using the Householder QR approach, we define

3
Vi = 1 (5.272)
-2
With
n =+v32+124+22=+14 (5.273)
we construct
3 1 3—-+14
w| = V] —nu = 1 —V 141 0 = 1 (5274)
-2 0 -2
from which
T
ST =1-221%0
w; W
1 00 5 3—-+V14
01 0]|-— 1 (3-V14 1 -2)
_ 2 12492
00 1 (B3-V14) +12+2 5

0.80178  0.26726 —0.53452
= | 026726 0.63964 0.72071 (5.275)
—0.53452 0.72013 —0.44143

Thus,
3.74166 1.33631 —2.40535
STA=B = 0 3.19822 —0.10512 (5.276)
0 3.60357 —1.78976

From the second column of B we form

3.19822
V2= (3.60357> (5:277)
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so that
ny = \/3.198222 +3.60357° = 4.81812 (5.278)
This yields
1 —1.61991
w2 =V2 = ”2<0) - ( 3.60357 > (5.279)
From this,
1 0 O
st=10 %, (5.280)
0
where
T
Ay (0.66379  0.74792
Z=1 ngwz B (0.74792 —0.66379 (5:281)
Thus,
1 0 0
Sg =10 0.66379 0.74792 (5.282)
0 0.74792 —0.66379
and
A} =SIB = S3S1A,
4.64286  9.90536 x 1072 7.41249 x 1072
= 2.04050 4.43407 —1.17184 (5.283)
—0.59300 0.16447 0.92308
After 60 iterations of this process, we find
5.00000 —2.12132 —-0.70711
Ago = | 825632 x 1077 4.00000 —1.00000 (5.284)
0 0 1.00000

Comparing this matrix to Agg found by the Jacobi/Givens QR technique [see
eq. 5.271], we see that the Householder OR method yields somewhat more accurate
results for a given number of iterations. O
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Problems
1. Evaluate
21 0 1 2 2 4 1 2 1
221 10 1 2 0 1 1
@A=1(2 0 1 1 2 ®A=]|0 2 3 1 3
1 21 0 2 1 1 3 1 1
o1 2 1 2 31 2 21

by the method of pivotal condensation.

2. Manipulate the determinant of Problem 1(a) into upper triangular form and the
determinant of Problem 1(b) into lower triangular form.

3. Use Cramer’s rule to find the solutions to

x—y—2z43t=3
2x+y+3z4+t=-2

—X+y+z—t=6
3x4+y—z4t=0

3 5 1
4. Find the cofactor matrix of A= | 2 0 3 | and use this cofactor matrix to
7 1 4

determine A~'. Confirm that the matrix you determined to be A" is the inverse
of A.

3 51
5. (a) Use the Gauss—Jordan method to determine the inverseof A = | 2 0 3
Compare your result to that found in Problem 4. 7 1 4

(b) Use this inverse matrix to find the solution to the set of equations

3x+5y+z=0
2x+3z=-9
Tx+y+4z=-23

6. Solve the set of equations given in Problem 5(b) using the Choleski-Turing
method by

(a) upper triangularizing the coefficient matrix
(b) lower triangularizing the coefficient matrix
4 3 =2
7. Find the three eigenpairsof A= | 3 2 1 by the power method.
-2 1 1



236

8.

10.

11.

5 DETERMINANTS AND MATRICES

6 4 3
The matrix A = | 4 6 3 | has eigenvalues 13, 4, and 2.
3 3 7

(a) Find the eigenvectors normalized to 1.

(b) Use three sets of iterations of the Jacobi method as in example 5.11
(9 transformations in total) to diagonalize A. Estimate the eigenvalues
and the orthonormal eigenvectors of A by the Jacobi method.

2 -1 1 4
. -1 3 1 2 |. -
Cast the matrix A = 1 1 s 3 into tridiagonal form by

4 2 =3 6

(a) the Givens method

(b) the Householder method
Use the method of example 5.12 to find the characteristic equation for the
eigenvalues of this matrix.

Find an approximation to the real eigenvalues, accurate to three decimal

12 3 1
places,of A= | —9 —2 —3 | by transforming A into an upper triangular
4 6 2

form by

(a) the Jacobi/Givens QR method
(b) the Householder QR method

If a matrix that has real eigenvalues is transformed by an orthogonal transfor-
mation into lower triangular form, its eigenvalues are given by its diagonal
elements. Develop the

(a) Jacobi/Givens QR method
(b) Householder OR method for transforming a matrix into lower triangular
form.



Chapter 6
ORDINARY FIRST ORDER DIFFERENTIAL
EQUATIONS

The general form of an ordinary first order differential equation is

d
F(x0 ) =Py =0 6.

Differential equations that can be written in the form

dy _
o =fy) (6.2)

have solution given by

W@Zﬁ%ﬂﬂw+c ©6.3)

The integral is called the particular solution. This particular solution plus the
constant of integration is the complete solution to the differential equation.

To determine the value of the constant of integration C, a value y, at a specified
Xo must be given in the form

¥(x0) = yo 6.4)

This constraint is given as part of the problem. If a condition like that given in
eq. 6.4 is not given, C is arbitrary.
If eq. 6.2 is of the form

dy

—+Px)y=f(x 6.5

2t Py = £ () (65)
H. Cohen, Numerical Approximation Methods, DOI 10.1007/978-1-4419-9837-8_6, 237
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the solution in a closed form can be achieved by multiplying this differential
equation by

,U(X) _ ejP(x)zix‘ (66)

which is called an integrating factor. Then

ejP(x)dx% + ejP(x)va(x)y _ ejP(x)dxf(x) (6.72)

can be written as

e oJ PWdse () (6.7b)
the solution to which is
y(x)=e" Jpeax Jefp(x)‘kf(x)dx +C (6.8)
with the constant of integration given by
C = y(xo) — [e_ [P Jef P(x)dxf(x)dx] (6.9)
X=x

Therefore, in principle, the solution to eq. 6.5 can be obtained in closed form. In
practice, it might be necessary to approximate

JP (x)dx and/or J f (x)ej Pl e

This could be achieved, for example, by expanding the integrands in Taylor series
about xp, truncated at some power of (x — x) that will yield acceptable accuracy.

6.1 Taylor Series Approximation

Single step Taylor series method

Since y(xg) is specified, we know that y(x) is analytic at x,. Therefore, it can be
expanded in a Taylor series about this point. The Taylor series method involves
approximating y(x) at some value of x by a truncated Taylor series in the form
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y(x) =
(N) (6.10)
(x —x0)* + .. —|—yT(!xo)(x—xo)

¥y (x0)
2!

y(x0) +¥'(x0) (x — x0) + N

where y(k)(xo) represents the kth derivative of y evaluated at x.

With y(xo) given as in eq. 6.4, y'(xo) is obtained from the differential equation
and the higher derivatives are found from derivatives of the differential equation.
For example, setting x = x,, we have

¥ (x0) = £ (x0,y0) (6.112)
of oOf d of 0
Y (x0) = [3]; 8§ dﬂ R {_f ff( )] . (6.11b)
y=> y=>Y
and
of 0 of of
y///(xo) = {8 |: / ff( )] }x—xo {f( ) |:8J;C+aj;yl(x):| }x—xo (6.11c)
Y=XYo Y=Yo

As can be seen, finding these higher derivatives can become cumbersome very
quickly.

Example 6.1: Single step Taylor series method

The solution to

d
& 2yt |y <1 (6.12a)
dx

subject to
y(0) =3 (6.12b)
can be obtained straightforwardly. The result is

3

y(x) = ) (6.13)

Therefore, the exact solution at x = 0.3 is

¥(0.3) =

97500 = 308325 (6.14)

Approximating y(x) by the first four terms of a Taylor series expansion about
x = 0, we have

y'(0) 5 ¥"(0) ;5
TR T

y(x) 2 y(0) +y'(0)x + (6.15)
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With
y(0) =3 (6.12b)
Y(0)=[¥y]—9=0 (6.162)
y=3
Y'(0) =2[xy* + %] —o =20+ ] g =0 (6.16b)
y=3 y=3
and
y"(0) =2 [y2 +dny +a%y? + xzyy”] X=0
=3
(6.16¢)
=2y +6x’y’ +3x%%]  _ (=18
y=3
The Taylor series, up to the x> term is
18 4 3
y(x) =3+ =3(1+x) (6.17a)

3!

These are the first two terms in the MacLaurin series for the exact solution given in
eq. 6.13. From this we obtain

(0.3) ~ 3.08100 (6.17b)

which is accurate to approximately two decimal places. O

Multiple step Taylor series method

If the point xy at which y is to be evaluated (0.3 in the above example) is not very
close to the initial point x(, a higher degree of accuracy can be obtained by taking
more terms in the Taylor series. But as noted above, computing higher derivatives
can be a cumbersome task.

To avoid having to compute these higher derivatives, we can improve the
accuracy of the results by using a multistep process with a small number of terms
in the Taylor series.

The first expansion about x is used to determine a value of y at a point x; close to
Xo. For example, with a Taylor series of three terms, we take

y'(x0)

o (x1 —x0)* (6.182)

(1) 2 y(x0) + ¥ (x0) (x1 — x0) +
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We then expand y(x) about x; to obtain an accurate approximation to y(x;) as

Y'(x)

— (- xi)? (6.18b)

y(x2) = y(xr) + (x1) (2 —x1) +

The values of y'(x;) and y”(x;) are obtained from the differential equation
and its derivative. This process is repeated until we obtain an approximation to

Yw).
Example 6.2: Multiple step Taylor series method

It was shown in example 6.1 that for

d
o 2yt x<1 (6.12a)
dx

with
y(0)=3 (6.12b)
first four terms in the Taylor expansion about x = 0 yields
y(x) =3(1 —I—x3) (6.17a)

To solve eq. 6.12a at x = 0.3 using a two step Taylor expansion, we first expand
about x = 0 to obtain y(0.15). In example 6.1, it was shown that expansion about
x = 0 yields eq. 6.17a. Thus, the first iteration yields

¥(0.15) ~ 3[1 + (.15%)] ~3.01013 (6.19)
This result is then used to obtain y(0.30). From the differential equation, we have

Y(0.15) = [*y*] ,_o15 = 0.20387 (6.20a)
y =3.01013

Derivatives of the differential equation yields

Y'(0.15) =2[xy* +x%y*] , _ 15 =~ 2.74587 (6.20b)
y =3.01013

and
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y"(0.15) =2[y* + 67y + 32| . _ 15 =~ 19.23193 (6.20c)
y =3.01013
Then
¥(0.30) ~
3(0.15) +y/(0.15) % (.15) +y”(20,'1) « (15)? +ym(3?'1) « (15)°
~ 3.08241 . ' (6.21)

We note that by using the multiple step method, we obtain the solution to the
differential equation at more than one point. In this example, we have determined
values of y(x) at three values of x;

(0.00) 3.00000
y(x) = [ y(0.15) | = | 3.01013 (6.22a)
¥(0.30) 3.08241

which is a fairly good approximation to

ye.mC[(O-OO) 3.00000
yexu(rt(x) = Yexact(o-ls) = | 3.01016 (6.22b)
Yexact(0.30) 3.08325

Because we have values of y at more than one value of x, we can construct an
interpolation representation of y(x). With a polynomial interpolation, we have

0 =G 50— O o A7)
+ ((;C - 8;%__' 1155)) ¥(.30) (6.23)
With the values given in eq. 6.22a, we obtain
¥(0.25) =~ 3.05141 (6.24)

which is a reasonable estimate of the exact value of 3.04762.

The results can be improved by a multi-step Taylor series of more than two steps.
Doing so results in a larger number of y-values from which a higher order interpo-
lation polynomial can be constructed. O
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6.2 Picard Method

Single step Picard method

The solution to the first order ordinary differential equation can be written

X

Y@) = y(x0) + j FIV )y (6.25)

X0

Since the x dependence of the integrand arising from y(x) is not known, the
integral cannot, in general, be evaluated exactly. The Picard method involves
approximating y(x') in f[/, y(x')] by a constant y.. Then, at xy, we have

XN

y(w) =~ yo + J F ye)ax (6.26)

Xo

This resulting integral involves integration of the explicit x dependence of f(x,y)
only. If the integral cannot be evaluated exactly, one of the numerical techniques
presented in ch. 4 can be used to approximate it.

Since y is the only value of y that is known, the most reasonable choice for y, is
Yo- Then, to determine y at xy, eq. 6.25 becomes

XN

y(w) =~ yo + J f(xX',yo)ax' (6.27)

X0

Example 6.3: Single step Picard method

We again consider

d
2 2yt x<1 (6.12a)
dx

subject to
y(0) =3 (6.12b)

With xo = 0 and xy = 0.3, we have

03 (0.3)°
¥(0.30) ~ y(0) + J *3%dx =3 + 93" =3.08100 (6.28)

0

which is not a very accurate approximation to the exact value of 3.08325. O
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Multiple step Picard method

The accuracy of the results obtained by the Picard method can be improved by using
multiple steps of the method. We divide [xy, xy] into several smaller intervals
defined by {xg, x1,. .., Xy _1, Xy}. It is not necessary for these points to be equally
spaced, but most often

h = Xi+1 — Xk (135)

is taken to be the same value for all %.
For each interval [x;, x;41] we take y. in f{x,y.) to be y, and determine y,; from

"Xk+1

Vi1 =Yk + J £,y )dx (6.29)

Xk
We begin by taking £ = 0 in eq. 6.29 and obtain y, as
X1

Y1~ yo+ J £ (x, yo)dx (6.30a)

X0

With y, given in eq. 6.4, we set k = 1 in eq. 6.29 to determine

X2

2=y + J Flx,y1)dx (6.30b)

X1
and so on. This process is continued until we obtain yy from

XN
YN = YN-1 +J f e, yv-1)dx (6.30¢)

AN—1

Since the Picard method produces values of y(x) at more than one value of x,
then as we noted in the discussion of the multiple step Taylor series method, we
can use interpolation techniques to obtain values of y(x) at points not in the set
{Xo, X1y ooy XN}.

Example 6.4: Multiple step Picard method

We again find an approximate solution to

d
D_ 2y x<1 (6.12a)
dx

subject to

y(0) =3 (6.12b)
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With xo = 0 and xy = 0.3, we take & = 0.15. Then

0.15 3
0.15
¥(0.15) = y(0) + J 23%dx =3+ 9% =3.01013
0

which compares well with the exact value of 3.01016. From this

0.30
¥(0.3) = y(0.15) + J x*(3.01013)%dx =
0.15

,[03)° = (0.15)°]

3.01013 + (3.01013) = 3.08148
Thus, the solution we obtain is
¥(0.00) 3.00000
y(x) = | »(0.15) | ~ | 3.01013
¥(0.30) 3.08148
which is a reasonable approximation to
Yexacr (0.00) 3.00000
Yeract(X) = | Yeraer(0.15) | = | 3.01016
Yexact(0.30) 3.08325

245

(6.31a)

(6.31b)

(6.32)

(6.22b)

As noted above, the values given in eq. 6.32 can be used to construct an inter-
polation representation of y(x) to obtain an approximate solution at any value of x. [

6.3 Runge-Kutta Method

Single step Runge—Kutta method

To solve

a :f(x7y)

subject to

y(x0) = yo

(6.2)

6.4
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at xy, by the single step Runge—Kutta method, we compute the values of the four
Runge—Kutta parameters

Ry = f(x0,y0)h (6.33a)
. 1 1
Ry =f (X() + §h7}’0 + §R1>h (6.33b)
1 1
R3 Ef(JCO + EhJo + §R2>h (6.33¢)
and
Ry =f(xo + h,yo + R3)h (6.33d)
where
h=xy—xo (6.34)

y(xy) is then given by the Runge—Kutta rule

1
Y(0ow) = yo + ¢ [Ri + 2Rz + 2R3 + Ra] (6.35)

Example 6.5: Single step Runge-Kutta method

As in previous examples, we consider the differential equation

d
D2y y<1 (6.12a)
dx

with
y(0) =3 (6.12b)

To determine y(0.3) using a single step Runge—Kutta method, we take 7 = 0.3,
and define

Ry = [xoyo*h =0 (6.36a)

[\

Ry = Kxo + lh) (yo + ;m)] zh = [(0.15)(3)]%0.3 = 0.06075 (6.36b)

2
Ry = [(xo + %h) (yo + %Rz)} h = [(0.15)(3.06075)20.3 = 0.06324 (6.36¢)
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and

Ry = [(xo + 1) (yo + R3)]*h = [(0.3)(3.06324)]%0.3 = 0.25335 (6.36d)

Then, referring to eq. 6.34,

1
¥(0.3) = yo + ¢ [Ry + 2Ry + 2Rs + Ry] = 3.08356 (6.37)

which is reasonably close to the exact value of 3.08325. O

Multiple step Runge-Kutta method

As with the Taylor and Picard methods, the multiple step Runge—Kutta method
involves dividing the interval [xg, xy] into several smaller intervals. We then apply
the Runge—Kutta method over the interval [xy, x;] to find y;. From this, the
Runge—Kutta scheme applied to the interval [xy, x,] yields y,, and so on.

Example 6.6: Multiple step Runge—-Kutta method

As before, we consider

d
2 2yt |y <1 (6.12a)
dx

subject to
y(0)=3 (6.12b)

with & = 0.15. The value of y(0.15) is determined by calculating

Ry = [xoyo’h =0 (6.382)
2
R, = [(xo + %h)(yo + %Rl)] h = [(0.075)(3)]*(.15) = 0.00759 (6.38b)

2
Ry = {(xo + %h)()’o +;R2)] h = [(.075)(3.00380)]*(.15) = 0.00761 (6.38¢)

and

Ry = [(x0 + h)(yo + R3)]*h = [(-15)(3.00761)]*(.15) = 0.03053 (6.38d)
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from which
1
y(OIS) =Yy + 8 [R] + 2Ry + 2R3 + R4} = 3.01016 (6.39)

This result is then used to determine y(0.3) by a second application of the
Runge—Kutta method. With x; = 0.15, we generate the set of Runge—Kutta
parameters

Ry = [xuyi)*h = [(.15)(3.01016)]*(.15) = 0.03058 (6.40a)

2
Ry = [(xl + %h)(yl + %Rl)} h = [(.225)(3.0545)*(.15) = 0.06951  (6.40b)

Ry = [(x1 + 1h)(y1 + IRZ)} 2h = [(.225)(3.04492)]*(.15) = 0.07041  (6.40c)

2 2
and

Ry = [(x1 + 1) (y1 4+ R3))*h = [(.3)(3.08057)]*(.15) = 0.12811 (6.40d)
Then

1
3(0.3) = y1 + ¢ [R1 + 2Ry +2R; + Rq] = 3.08324 (6.41)

which is quite accurate. O

Runge-Kutta method and numerical integration

To solve eq. 6.2 by the single step Picard method, we approximate the value of y in
the integrand f{x, y) by yo and evaluate the integral of f(x’, yo) to obtain

XN

y(w) =~ yo + J F( yo)dx’ (6.27)

X0

We evaluate this integral by the Simpson’s 1/3 rule given in eq. 4.56 with two
intervals to make one segment of width & = xy — xo. Therefore, the width of one
interval is /2 and the approximation to eq. 6.27 by Simpson’s 1/3 rule becomes

1
y(xn) = y(xo) + % |:f(x();)’0) +4f(xo + %h,yo) + f(xo + A, y0) (6.42)
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To relate this to the Runge—Kutta method, we take y in f(x, y) be the constant y,,.
Then, the Runge—Kutta parameters are

Ry = f(x0,y0)h (6.43a)
1
Ry =f(xo+ S yo)h (6.43b)
1
R3 = f(xo + Eh,yo)h =R (6.43c)
and
Ry =f(x+h,yo)h (6.43d)

and the Runge—Kutta solution is

h
y(x) =yo+—

1
= |F(0,30) + 4 (¥ + 5, 30) +£ (0 + . 30) (6.44)

This is identical to the Simpson’s 1/3 rule approximation given in eq. 6.42.

6.4 Finite Difference Methods

To solve differential equations using the method of finite differences, we divide the
domain [xg, xy] into N equally spaced intervals and take

h= Xi41 — Xk (135)

to have a fixed value independent of &.

Euler finite difference approximation to y'(xy)

In chapter 1, we defined a difference operator A such that

Ay(xe) = y(xes1) — (k) = Yis1 — Wk (1.36b)

from which, the derivative operator was found to be

D

d 1 1 & A"
o= (14 4) zz 1)"*! (1.55b)
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Approximating this series by the n = 1 term, we obtain

1 —
V() =y e Ay = LK (6.45)
h h
which is the Euler finite difference approximation of y'(x;).
The Taylor series for y(x;.;) is given by
/ h2 h3 ///
Vi1 = Y0k +h) = v+ by e g (6.46a)
from which
Vi1 — Yk h h*
- =y, + 2'yk Al —yi + .. (6.46b)

Ignoring the terms containing /2 on the right side of eq. 6.46b, we see that
approximating y'(x;) by the Euler finite difference (y;,; — yu)/h is equivalent to
ignoring terms of order 4? and higher in the Taylor series for y,;.

Milne finite difference approximation to y'(x;)

The Taylor series for y(x;_;) is

h2 h3
Vi1 = y(xx — h) =yk—hy;(+§y;</ —gy;”+... (6.47)
Subtracting eqs. 6.46a and 6.47 we have
h ///
Vir1 = Vi1 + 2hy, +2— Al Ve (6.48a)

Ignoring terms of order /2 and higher, we obtain

;o Ykl T Vi1
~— 6.48b
This is the Milne finite difference approximation of y'(x;). It is as accurate as the

Taylor series for ys.; up to order 4> and is therefore more accurate than the Euler
finite difference approximation.
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Euler finite difference solution

By approximating y’(x;) by the Euler finite difference, the Euler finite difference
equation at x; is given by

Vil — Yk,

; ~ f (o, yi) (6.492)
which we write as
Vi1 2 Vi + hf (e, ye) (6.49b)
where
h = Xpa1 — X (1.35)

To determine y(xy), we divide [xg, xy] into several small intervals defined by
{x0, X1, ..., xy}. We thentake k = 0,1, ..., N — 1 to obtain

y1 22 Yo + hf (o0, o) (6.50a)
y2 >~ y1 + hf (x1,y1) (6.50b)
y3 =y + hf (x2,¥2) (6.50¢)
IN =2 Yn—1 + B (Xn—1,Yn-1) (6.50d)

Example 6.7: Euler finite difference solution

To solve
% = x|« (6.12a)
with
y(0) =3 (6.12b)
we take h = 0.15, to obtain
¥(0.15) = y; = yo + h(xoy0)* = 3 +0.15(0 % 3)* = 3 (6.51a)
Then
¥(0.3) =y, = yi + h(x1y1)* = 3 +0.15(.15 % 3)* = 3.03038 (6.51b)

which is not very accurate.
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As discussed earlier, with these three values of y; we can approximate y(x) at any
value of x € [0.0,0.3] by an interpolation scheme. [

Milne finite difference solution

To apply the Milne finite difference method, we approximate the differential
equation as

Vit = Y1 + 2hy, = yi—1 + 2hf (xi, yx) (6.52)

Setting k = 0, eq. 6.52 becomes

y1 = y_1 + 2hf (x0, o) (6.53a)

Since x_; = xo — h is outside [xy, xy], any approximation to y_; yields an
extrapolated value of y, which, as noted in ch. 1, is unreliable. It is preferable to
use an approximation of y at a value of x within [xq, xy].

For k = 1, eq. 6.52 becomes

Y2 =~ yo + 2hf (x1,y1) (6.53b)

The value of y, is unknown and must be determined independently of the finite
difference method. For example, since the Milne finite difference approximation is
identical to the Taylor series expansion up to 4% a reasonable approach is to
approximate y; by the truncated Taylor series

1
yi = y(xo + h) =~ yo + yoh + 3 yoh? (6.54)

where yo' and y,” are obtained from the differential equation and its derivative.
The Picard approach yields a value of y; as

X

yi=yo+ J f(x, yo)dx (6.30a)

Xo

which requires that the integral be evaluated exactly or approximated accurately by
some numerical method.
The Runge—Kutta scheme yields a value of y; as

1
n=yteg [Ri + 2R, + 2R3 + R4] (6.34)
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and the Euler finite difference method approximates y; as

Y1 = Yo + hf (xo,y0) (6.50a)

However, since this is not as accurate as the Taylor series estimate given in eq. 6.54,
we will not consider it in approximating y;.

Example 6.8: Milne finite difference solution

As above, we solve the differential equation

d
Do <l (6.12a)
dx

subject to
y(0)=3 (6.12b)

at x = 0.3. With & = 0.1 (and thus, x; = 0.1), we find the value of y(0.3) in two
steps, given by

¥(0.2) = y2 = yo + 2h(xiy1)? (6.552)

from which

¥(0.3) = y3 = y1 + 2h(x2y2)’ (6.55b)

Approximating y; by a Taylor series truncated at 4%, we obtain

0.1)
yi =3+ 0.1(xop0)* + % (2xo0y5 + 2x5y;) = 3 (6.56)

With the Picard approximation, we have

0.1
Y1~y + J ¥ x y3dx = 3.00300 (6.57)
0

and with the Runge—Kutta method, we find
Ry =0.1 x (xoy0)> =0 (6.582)
Ry =0.1 x [(x0 + O.OS)yO]2 = 0.00225 (6.58b)

R3 = 0.1 x [(xo + 0.05)(yo + 0.001125)]> = 0.00225 (6.58¢)
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and

Ry = 0.1 x [(xo + 0.1)(yo + 0.00225)]* = 0.00901 (6.58d)

from which

1
Y1~ yo+ 5 [0 42 x 0.00225 + 2 x 0.00225 + 0.00901] = 3.00301 (6.59)

With the value of y; obtained from the Runge—Kutta method, we have

¥(0.2) = yy = 3+ 2(.1)(.1 x 3.00301)* = 3.01804 (6.60)

Then, from eq. 6.55b, we obtain

¥(0.3) = y3 = 3.00301 + 2(0.1)(0.2 x 3.01804)% = 3.07588 (6.61)

which is in fair agreement with the exact result, 3.08325.

The accuracy of the solution is improved by applying the multistep Milne
finite difference approximation for smaller values of & and thus a larger number
of steps.

6.5 Predictor-Corrector Methods

Predictors—corrector methods consists of a pair of equations with which the
accuracy of numerical solutions to

dy _
subject to
y(x0) = Yo (6.4)

can be improved.
Let y(xx11) = yis1 be approximated by some multistep approximation (such as
the Picard method). In general, y,,; is found from some expression that depends on

the values of {xi, ..., x4} and {yy, ..., y;} and is of the form
Vi1 = P(X1, X2, 000 X013 01,32, -5 Y1) (6.62a)
P(x1, ..., Xia15 V15 - - -» Yy 18 called the predictor of y;,. The corrector equation

for y., is of the form
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WD = C(1, X2, ooy Xty X115 Y2 o Vs VoY) (6.62b)

We point out that the predictor P must not depend on y,; and the corrector C must
depend on y;,.
The predictor equation is usually one that is well established [such as the Picard
estimate of eq. 6.29]. The corrector C is a function developed by the user.
Corrections to each predicted value are achieved by iterations of eq. 6.62b in
the index m. The predicted value of y;,; given in eq. 6.62a serves as y”;,, in the
argument of the corrector function to generate

y,(:gl = C(xX1,X2, cey Xy Xkt 15 V1,5, V2, ...,yk,yls(_)g]) (6.63a)

The second correction to y,,; is then obtained from

y,(i)l = C(X1,X2, cvey Xky Xk 13 V15 V25 ...,ykaylsi)]) (6.63b)

and so on. This process is repeated until

(m+1) (m)
yk'il _Yk'L
(m+1)
k+1

<e (6.64)

where ¢ is a small number chosen by the user that defines the required level of
accuracy.

Picard predictor and corrector

For each value of the index k > 0, the Picard predictor is obtained by replacing y.
in eq. 6.26 by y;. Then

Xk+1

Vi1 =Yk + J £, yi)dx (6.29)

Xk

with the value of y,, given by the constraint of eq. 6.4.

A reasonable Picard corrector is one developed by choosing some expression
for y. in f{x,y.) that involves y;,;. A simple example of such a corrector is one in
which y. is replaced by a linear combination of y, and y;,, to obtain

Xk+1
1
}’;(:ﬁ =~ Vi + J

Xk

F s G+ o) (6.65)
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A reasonable choice is to take

v=f= % (6.66)

so that y. is approximated by the average of y(x) over the interval [x;, x;41]. Then
this Picard corrector equation becomes

Xk+1
1
ygﬁ = Vi + J

1 m
f [x, 5 0n+ y,ﬁjl)] dx (6.67)
X
where y, is the most accurate value of y(x;) obtained from the previous prediction
and correction, and the value of y(o)k,,] is the value of y;, obtained from predictor.
Thus, for example, with the value of y(O)kH obtained from eq. 6.29, the first

correction is given by

(1) e 1 0)
Vig1 = Vi + f Xﬁ Ok + yiqr) | dx (6.68a)

Xk

Then

Xk+1 1
Wh = +J f[x,z(yk +y£‘21)]dx (6.68b)

X
and so on. This correction process is terminated when

+1
)’1(:-7-1 = )ﬁ@l
(m+1)
Vi1

<e (6.64)

where the small value of ¢ is chosen by the user.
Example 6.9: Picard predictor—corrector method

We again consider

d
& 2yt ¥ <1 (6.12a)
dx

constrained by
y(0)=3 (6.12b)

The Picard predictor equation for this example is

Xk+1 X3, —X3 y2
Y+l = Yk + J Xypdx =y + M = }’2’(21 (6.69)

Xk
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and, using the corrector defined by eq. 6.68, the Picard corrector is

3 .3 m \?
(xk+l xk) Ykt g
12

yi’ﬁ” =y +

(6.70)

Taking h = 0.15, we predict the value of y; from eq. 6.29 as

0 B (.15)°
y(15) =y =y = yo + J (w0)’dr =3+ 952 301013 (671)
0

Corrections to this value are obtained from iterations of eq. 6.70:

15 2 3
(mt1) _ 21 (m) _ 5, (15) (m))?
% —y0+J0 x [2(yo+yl )} dx =3+ (3+y1 ) 6.72)

With m = 0, we obtain

15)° 2
W=z % (3+5”) =301016 (6.732)
from which
15)° 2
yW=34 ( 12> (3 +y§‘)) —3.01016 (6.73b)

Comparing y;‘* to y,'", we find that

2 1
=y
2
"

~6.6%10714 (6.74)

which indicates that the result of eq. 6.73b is an extremely precise corrected value
of y(0.15).
Using this most precise value of y;, we predict

.30
3 =it J (xyr ) dx
15

30° — .15°

=3.01016 + 3.010162( 3

) = 3.08152 (6.75)
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The corrected values of y, are obtained from

(m+1) N N E
b2 = )’1+J $ —(}’1+)’2 ) dx =
15 2

[(.30)3 - (.15)3}

m))?
— (3.01016 4y ) (6.76)

3.01016 +
With four iterations, we obtain

¥ = y(0.30) = 3.08326 (6.77)

which compares very well with the exact value of 3.08325. O

Picard Rectangular and Trapezoidal Predictor—Correctors

When the Picard integral

JXM f(x,ye)dx

Xk

cannot be evaluated exactly, predictor—corrector methods can be developed using
one of the quadrature rules developed in ch. 4. Then the predictor equation
becomes

k+1
Yert = Ve + Y wif (6, ve) (6.78)

n=k

and, taking y. to be the average of y, and y,,, the corrector equation is
(m+1) \- ! ()
W =Y waf {xn, 3 (yk + yk’il)] (6.79)
n=k

We note that, in general, the predictor and corrector of eqgs. 6.78 and 6.79,
involve sums over points in the interval [x;, x;1]. Unless the quadrature rule
accesses only x; and x;,;, it will be necessary to obtain approximations to y at
points within the interval [x;, x;.;]. The only quadrature rules we have discussed
that access only x; and x;,; are the two simplest Newton-Cotes rules, the two
rectangular rules and the trapezoidal rule given in eqs. 4.48. For that reason, we
approximate the integral by one of these quadrature sums.
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Using the midpoint rectangular rule of eq. 4.48a, eqs. 6.78, and 6.79 become

1
Yit1 =Yk +hf [E (X + X1 )7)’/(] (6.80a)

and

n 1 m
Y1(<+T1) =w+hf {5 (k4 X415 500 + y£+)1)] (6.80b)

These equations comprise the rectangular predictor—correctors.

As noted, the trapezoidal rule of eq. 4.48b is identical to the average function
rectangular quadrature. This quadrature rule yields the predictor and correction
equations

1
Vi+1 =Yk + EhV(Xk7Yk) + f (X1, 900 (6.81a)

and

m 1 1 m 1 m
y1(<+?> =+ Eh [f (xkai (ke + y,((+)1)> +f(x1¢+1,§ (v + y,ﬁﬁl))} (6.81b)

We refer to this as the trapezoidal predictor—correctors.
Example 6.10: Rectangular and trapezoidal predictor—correctors

We apply the rectangular and trapezoidal predictor—correctors to

d
D2y x<1 (6.12a)
dx

subject to
y(0)=3 (6.12b)

In the following, we define the level of accuracy by taking ¢ = 107°.

(a) From eqs. 6.80, the predictor obtained for the midpoint rectangular rule is

h
YVk+1 = Yk + 2 (o + xk+1)2y,3 (6.82a)
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and the rectangular corrector is given by

1 h 2 m 2
Y;(:S J =y + 1 (X + Xp41) <Yk + YJ(<+I)1)

With 2 = 0.15 and xy = 0.30, the predicted values of y are

(0.00) 3.00000
y=|v0.15) | = [ 3.00759
(0.30) 3.07630

After four iterations, the corrector of eq. 6.82b yields

3.00000
y= | 3.00761
3.07792

which are not very accurate.
(b) From egs. 6.81, the predictor for the trapezoidal rule is

h
yert = it 5 | () + (o3
and the corrector is

(m+1) h, o, 2 m \?
Vg1 =Ykt 3 (xk +xk+1) (yk +y/(<+1)

The values, given by the trapezoidal predictor, are

¥(0.00) 3.00000
y= | »(0.15) | = [ 3.01519
¥(0.30) 3.09198

and four iterations of the trapezoidal corrector yields

3.00000
y=| 3.01526
3.09399

(6.82b)

(6.83)

(6.84)

(6.852)

(6.85b)

(6.86)

(6.87)

which are only slightly more accurate than the values obtained with the
rectangular predictor—corrector. These inaccuracies arise from the use of a

rudimentary quadrature rule to approximate the integral.
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Predictors and correctors using different algorithms

It is not necessary to use a corrector equation based on the same algorithm as the
predictor. By using an algorithm for the corrector that is different from the predictor
algorithm, we get a sense of the importance of using an accurate predictor and the
importance of the accuracy of the corrector.

Example 6.11: Picard, rectangular, and trapezoidal predictors and correctors

Referring to examples 6.11 and 6.12, we apply correctors that are based on
algorithms, some of which are different from the predictor algorithm. We obtain
the results shown below.

3.00000 3.00000
YPicara = | 3-01013 Ypicard = | 301016 (6.882)
predicted 3.08152 corrected 3.08326

3.00000 3.00000

Yrectangular = | 300759 | Ypjcqrq = | 3.01016 (6.88b)
predicted 3.07897 corrected 3.08326
3.00000 3.00000

Y trapezoidal = | 301519 | Ypicgra = | 3:01016 (6.88¢)
predicted 3.08661 corrected 3.08326
3.00000 3.00000

Ypicard = | 301013 | Yyocranguiar = | 3:00761 (6.89a)
predicted 3.07885 corrected 3.07792
3.00000 3.00000

Yrectangular = 3.00759 Yrectangular = 3.00761 (6.89b)
predicted 3.07630 corrected 3.07792
3.00000 3.00000

Ytrapezoidal = 3.01519 Yrectangular = 3.00761 (6.89¢)
predicted 3.08394 corrected 3.07792
3.00000 3.00000

Ypicard = | 301013 | Yyanesoidar = | 3:01526 (6.90a)

predicted 3.08686 corrected 3.09399
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3.00000 3.00000

Yrectangular = 3.00759 Ytrapezoidal = 3.01526 (6.90b)
predicted 3.08686 corrected 3.09399
3.00000 3.00000

Ytrapezoidal = 3.01519 Ytrapezoidal =~ 3.01526 (6.90c)
predicted 3.09198 corrected 3.09399

Comparing the results given in eqs. 6.88—6.90 to

3.00000
Yexace = | 3.01016 (6.22b)
3.08325

we see that the Picard corrector yields more accurate results than either the
rectangular or trapezoidal correctors, no matter which predicted value is used.
This is more easily illustrated in terms of the fractional errors defined by

Ycorrected — Yexact

E

6.91)

yexacr

at each value of x (0.15 and 0.30) for each of these predictor—corrector pairs. For
each of the three predictors with the Picard corrector, the largest fractional error is
3.5 x 107" This maximum fractional error for the rectangular corrector and the
trapezoidal corrector are 1.7 x 10~ and 3.5 x 107", respectively, independent of
which predictor is used. O

Adams-Bashforth—-Moulton predictors and correctors

The Adams—Bashforth—Moulton methods are developed by approximating f(x,y) by
a Lagrange interpolation over the points Xy, X1, . . ., X, to obtain the predictor of
Vi+1- The corrector is then obtained by representing f{x,y) by a second Lagrange
interpolation over the points Xy, X, ..., X, The values of p and ¢, which
determine the order of the interpolating polynomial, are chosen by the user. By
approximating f{x,y) by polynomials, it is straightforward to evaluate the integrals
of these polynomials exactly.

Although it is not required, for most predictors and correctors of this type, the
order of the interpolating polynomial for the predictor and the one for the corrector
are the same. In this way, the levels of precision of the predictor are the same as the
order of the corrector polynomial. We will use such interpolations in our discussion.
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The predictor is defined by interpolating f{x,y) over {x;_p, Xi_p+1, - - ., Xx} in the
form

F6y) = () fi + sy () fem1 + oo 4 1y (X) frp

P
= e a () fion (6.92a)
n=0
To obtain the corrector, we interpolate OVer {X_pi1, Xjp+2, - - -» Xgs1} @S

flxy) = ﬂk+l(x)fk<-}:? + e (Ofe + -+ :ukfprl(‘x)fk—P-H

14
= 1t A+ i (st (6.92b)

n=1

where the functions p(x) are polynomials expressed in the form given in eq. 1.7.
The predicted values, y;,, are then given by the integral of these interpolated
forms of f{x,y) in eq. 6.92a:

Xk+1

)4
Ye+1 =Yk + kafn J Wy (x)dx (6.93a)
n=0

X

The corrected values are found by integrating the interpolated forms of f(x,y) in
eq. 6.92b;

X1

+1 )4
My (X)dx + ka+17n J P 1—n () dx (6.93b)
n=1

X
. X

i = e+ J

Xi

For example, for p = 2, the interpolating polynomials are second order, and the
representation of f(x,y) has three terms. The predictor is obtained by integrating

(r—x2)(x—x1)

f(x,y(x)) :( — — fk+
X — Xp—2) (% — Xe—1)
(X —xg—2) (X —xg) (r—xe1) (x = xz)
(1 —xe2) (g — ) <! + 2 — o) (s 7xk)fk—2 (6.94a)

and the corrector is found from

()C — Xk_l)(x — xk) )
(ee1 — X 1) (ee1 — xz) fimt
(o — 1) (x — x11) n (x — x3) (x — xp41)
(o = 1) (0 = X1 ¢ (k—1 — x) (g1 — X))

flxy) =~

feer (6.94b)
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Since only y.4; (and therefore f;,) is corrected by iterating the corrector equation
in m, only f;,; has a superscript (m).
Writing each factor in the denominator of eq. 6.94b in the form

(Xk,y — xk,n) = (I’l — f)h (695)

and integrating f(x,y) given in eq. 6.94a, the Adams—Bashforth—-Moulton predictor
is

2 Xk+1 h
et 2+ D fica [ (= yic+ 13 (236~ 1651 +5fi2) (696)
n=0

Xk

From the integral of eq. 6.89b, the Adams—Bashforth—-Moulton corrector is

2 Xiet1
1
y/iriJlr ) >~y + Z fk+lfn J :uk+l—n(x)dx

n=0 Xk

h m
=n+ 33 (SfM + 8fi _fk—l) (6.96b)

We note that the predictor of y,,; given in eq. 6.96a contains f;_», fi_1, and f;
which depend on x;_,, x;_;, and x; and on y;_5, yx_1, and y,. Therefore, to predict a
value for y;,1, we must know the values of y;, y;_;, and y,_,. We see that for k = 0
and k£ = 1, some of these y values are outside the range [yo, yy]. To avoid using
these extrapolated values, we begin with k£ = 2. Then, the value of y with the
smallest index that we can determine from eq. 6.96a is

h
3=yt (23f> — 161 + 5fo) (6.97a)

We find y, and therefore f;, from the initial condition. But we must approximate y;
and y, by some other method such as a truncated Taylor series. Once we have
values for y; and y,, and we then predict y;, we can then predict y, as

h
Ye=ys o (23f3 — 16/, +511) (6.97b)

and so on.

Using a similar argument, if an Adams—Bashforth—-Moulton corrector is devel-
oped using an interpolating polynomial of order 2, the corrector depends on f_,
fo and fiq. (and thus y;_q, v, and y;, ;). Again, to insure that we only use y values at
points within the domain of y, we must start with £k = 1. Thus, from eq. 6.96b, we
have correctors of the form



6.5 Predictor—Corrector Methods 265

m+1 h m

yg+>zy1+ﬁ(5f2< ) 48, ffo) (6.984)
m h m

W oy, 4 5 (5f3< ) 485 —fl) (6.98b)

etc. We note that since the value of y; cannot be corrected using this corrector, we
must determine its value by a method other than the predictor.

Source code for this and other types of Adams—Bashforth—-Moulton methods,
written in C, can be found at http://mymathlib.webtrellis.net/diffeq/adams_top.html

Example 6.12: Adams-Bashforth-Moulton predictor-corrector

We apply the Adams—Bashforth—-Moulton method to the differential equation

d
o_ x2y2 (6.12a)
dx
subject to
y(0) =3 (6.12b)

with p = 2. The predictor of eq. 6.96a is

h
Vir1 = Yk + 2 (23307 — 1633y + 5xi_o¥i o] (6.99)
Starting with k£ = 2, we obtain y; from

h
B=nt [23:3y3 — 16x7y7 + 5x3y5 ] (6.100)

where the values of y; and y, must be obtained by some method such as a truncated
Taylor series, Runge—Kutta approach, etc. Once we have found these values, we
can determine ys, Vg, - . -

For example, with example 6.6 as our guide, we use a multistep Runge—Kutta
scheme with 42 = 0.1 to predict the values of y; and y,, then eq. 6.100 to predict a
value of y3. We find

Yo (0.0) 3.00000

0.1 3.00300
v ¥(0.2) 3.02419
3 ¥(0.3) 3.08229


http://mymathlib.webtrellis.net/diffeq/adams_top.html
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The Adams—Bashforth—Moulton corrector for these values of y is given by
approximating f(x,y) by

) ) (X — x—1) (x — ) -(m)
Xy Yk—15Yks Y =
f( V=15 Yk Yyt (k1 — Xe—1) (e —Xk)le

(X — x5 1)(x — xiq1) 7 (o = x) (¥ — Xey1) fior (6.102)
(o — x—1) (0% — X1) (k=1 — X) (X1 — Xpe1)
from which
Xk+1
y/(:ﬁl) & Y+ J f(xv}’k—laka)’l(:i)l)dx
Xk
oy (s g 6.103
Vet 13 fer1 + 8fk — fi (6.103)

Starting with £ = 1, the corrector equation can be applied to the predicted values of
v, and y3, but not to the predicted value of y,. We have

yg RS i +ﬁ (5(X2yg >) +8(xiy1)* — (Xo)’o)2> (6.104a)
and
m h m 2
WY 2 o+ 25 (SGead™) +8(xay2)? = (1)) (6.104b)

After several iterations, we obtain

3.00000

| 3.00300 6.105
Y= | 3.020426 '

3.08355

to a level of precision defined by ¢ = 107°. O

Problems

The analytic solution to

subject to y(0) = 1is y(x) =2¢* —x — 1
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e

*

© 0 N

11.

12.

13.

From this solution, we see that
v(0.5) = 1.79744

As specified in each problem below, find an approximation to this solution.

. Use a single step Taylor series expansion about x = 0 to find y(0.5), keeping

terms up to 4* = (0.5-0)°.

Use a two step iteration of a Taylor series expansion. Use the first iteration to
determine y(0.25) expanding about x = 0, and a second iteration expanding
about x = 0.25 to determine y(0.5). For each iteration, keep terms in each
Taylor series up to h”.

Use a single step Picard method to find y(0.50).

Use a two step iteration of the Picard method to find y(0.50), using the first
iteration to determine a value of y(0.25).

Use a single step Runge—Kutta method to find y(0.50).

Use a two-step iteration of the Runge—Kutta method to find y(0.50), using the
first iteration to determine a value of y(0.25).

Use the Euler finite difference approximation to find y(0.50) taking & = 0.25.
Use the Milne finite difference approximation to find y(0.5) taking 47 = 0.25.

. Use the Milne finite difference approximation to determine y(0.3) taking = 0.1.
10.

(a) Develop a corrector for the Picard method by replacing y, by y"’,, in the
integral of eq. 6.67. That is, in eq. 6.67, take & = 0, f = 1.

(b) Determine corrected values of y(0.25) and y(0.50) to a level of precision
of 107,

(a) Develop a predictor—corrector method based on the Euler finite difference
approximation to a first order differential equation.

(b) Use this predictor—corrector method to find the solution to the differential
equation above at x = 0.25 and x = 0.50 to a level of precision of 107>,

(a) Develop a predictor—corrector method based on the Milne finite difference
approximation to a first order differential equation.

(b) Use this predictor—corrector method to find the solution to the differential
equation above. Use the Runge—Kutta approximation to predict y(0.25),
and fr;)m this, find a corrected value of y(0.50), to a level of precision
of 10,

(a) Develop a predictor for the Adams—Bashforth—-Moulton method with third
order (four term) polynomial interpolation using a Taylor series truncated
at the 4” term to find y; and y,.

(b) To a level of precision of 107, find a solution to the differential equation
above, at x = 0.25, and at x = 0.50, using a third order interpolated
Adams—Bashforth—-Moulton corrector.
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14. (a) Develop a predictor for the Adams—Bashforth—-Moulton method using a
second order (three term) interpolation over ¢* [see eq. 1.18 with
q(x) = ¢"]. Use a Taylor series truncated at the h? term to find y1 and y,.
(b) To a level of precision of 107, find a solution to the differential equation
above, at x = 0.25 and x = 0.50, using a three term Adams—Bash-
forth—Moulton corrector, interpolated over e”.



Chapter 7
ORDINARY SECOND ORDER
DIFFERENTIAL EQUATIONS

The general form of an ordinary second order differential equation is

F(x,y,y',y") =0 (7.1)

Many physical systems are described by second order differential equations of
the form

V' +P(x)y + Q(x)y =f(x,y,)) (7.2)

We will restrict our discussion to numerical solutions to this type of equation.

7.1 [Initial and Boundary Conditions

To find the complete solution to a first-order differential equation, it was necessary
to specify one value of y at a specific value of x. For a second order differential
equation, there are two constants of integration, requiring two independent conditions
to determine the complete solution. For many differentials that describe physical
phenomena, those are in the form of either initial conditions or boundary conditions.

Initial conditions

Initial conditions are expressed in the form

y(x0) = yo = constant
Y (x0) =y, = constant (7.3)

H. Cohen, Numerical Approximation Methods, DOI 10.1007/978-1-4419-9837-8_7, 269
© Springer Science+Business Media, LLC 2011
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These conditions are so named because they specify the values of y(x) and
y'(x) at xo, the starting or initial point of the problem. In applied problems described
by differential equations constrained by initial conditions, x often represents an
instant of time, with x, defining the instant at which the values of y are first
measured.

Boundary conditions

In many applied problems, the values of y(x), y'(x), or a combination of y(x) and
y'(x) are specified at the spatial boundaries of the problem. When the domain of y
is defined by a < x < b, then a and b are the boundaries of the physical system.
For differential equations that describe such problems, y(x) and/or y'(x) satisfy one
of three types of boundary conditions:

» Dirichlet boundary conditions specify the values of y(x) at the boundaries. These
conditions are given by

a) = = constant
{y() Ya (7.43)

y(b) =y, = constant

» Neumann boundary conditions specify the values of y'(x) at the boundaries. They
are of the form

constant
(7.4b)
= constant

* Gauss or mixed boundary conditions specify the values of a linear combination
of y(x) and y'(x) at the boundaries. They are given in the form

{ Jy(a) + wy'(a) = v, = constant (7.40)

2y(b) + W' (b) = vy, = constant

When the constants A and u are non-zero, we divide by /, and rename the
constants u, v,, and v, to write these conditions in the form

(7.4d)
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7.2 Taylor Series Approximations for Equations
Subject to Initial Conditions

If a second order differential equation is subject to the initial conditions of eq. 7.3,
y(x) is analytic at xo. Then one can approximate y(x) by a truncated Taylor series
expanded about x:

y(x) =

n (k) x)
y(xo0) + ¥ (x0) (x — x0) + ... + y(xo)

k!

¥ (xo)
n!

(x —x0)" = (x—x0)" (6.5

k=0

The initial conditions specify the values of y(xo) and y'(xp). From the differential
equation given in eq. 7.2, we have

¥"(x0) = f(x0,¥0,¥5) — P(x0)yy — Q(x0)yo (7.52)

Higher derivatives are obtained from derivatives of the differential equation.
For example,

0 0 0
y///(xo) — <aj;‘+a:};yl +a§y”> A
— P(x0)y" (x0) = [P'(x0) + Q(x0)] Yo — Q' (x0)y0 (7.5b)

Example 7.1: Taylor series approximations for an equation subject to initial
conditions

The solution to
V' =2y —y =y ™ (7.6a)

subject to the initial conditions

¥(0)
7.6b
{y'(m - 7o)
is
y(x) = €° (1.7

Approximating the solution by a Taylor series expanded about xy = 0 keeping
terms up to x4, we have

1 1 1
¥(x) 2 3(0) + Y/ (0)x + 555" (01 +303"(0)¢ + 1y (0" (7:8)

iy
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The coefficients of the first two terms are given by the initial conditions. From the
differential equation we have

Y'(0) = {yze** + 2y + y} =2 (7.92)

y'(0) =

[ +2xy +y}

ax
[ =2 L opye ™ 43y + ny"} =0 (7.9b)

and
" o i 2 a2 ; —x2 / "
y"(0) ==- —2xy e ™ +2yy'e™ + 3y + 2xy
K—Zy2 —8xyy + 42?2 + 2y + 2yy”)e_)‘2 +5y" + 2xy’”} = 12 (7.9¢)

xX=

x=0

so that

4

Y@ =1+ +% (7.10)

These are, of course, the first three non-zero terms in the MacLaurin series for the
exponential solution. From this, we obtain

¥(0.50) ~ 1.28125 (7.11a)

which is a reasonable estimate of

(0.50) = ¢ = 1.28403 (7.11b)

A more accurate approximation is obtained if a multistep Taylor series is used.
For example, to generate a two step Taylor series at x = 0.50, we use the truncated
Taylor series about x = 0 to determine the values of y(0.25) and y'(0.25). From
eq. 7.10, we have

4
3(0.25) ~ [1 T +x—} = 1.06445 (7.12a)
x=0.25

and

Y(0.25) = [2x +24°] . = 053125 (7.12b)

x=0.25
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Then, from the differential equation and its derivatives (see egs. 7.9), we have

Y'(0.25) = [y%—xz 4oy + y} = 239449 (7.12¢)

x=0.

y"(0.25) = [2(—xy2 Fyy)e ™ +3y + 2xy”}  =332125 (7.12d)

x=0.2.

and

¥"(0.25) = [ (—Zy2 —8xyy +4xy? 42y + Zyy”) e +5y" +20"] 5
—16.02694 (7.12¢)

With such values, we can now express the Taylor series about x = 0.25, truncated
at the (x — 0.25)* term as

"(0.25
y(x) =~ [y(O.ZS) +'(0.25)(x — 0.25) + % (x—0.25)°
(0.25 "(0.25
+y<37,)(x—0.25)3 +%(x—0.25)4 (7.13)
from which we obtain
v(0.50) ~ 1.28335 (7.14)

which is more accurate than the result obtained using the single step Taylor series
approach. O

7.3 Runge-Kutta Approximations for Equations
Subject to Initial Conditions

The Runge—Kutta method was introduced in ch. 6 to approximate the solution to a

first-order differential equation. It can also be used to estimate the solution of a

second order differential equation by expressing it as two first-order equations.
For

Y A+ P@)Y +Q)y =f(x,y,)) (7.2)

constrained by the initial conditions
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) =0 (7.3)
y (x0> =Y

we define the first-order differential equation for y(x),
Y (x) = w(x) (7.15a)

With this definition, the second order differential equation for y(x) given in eq. 7.2
can be written as a first order equation for w(x):

Y'(x) = w(x) =f(x,5,)) = P(x)w — Q(x)y = G(x,y,w) (7.15b)

The initial conditions for y(x) become

{ y(x0) = yo (7.16)

The Runge—Kutta method for solving a second order differential equation
involves defining two sets of Runge—Kutta parameters, R and S. With the values
of yo and wy given by initial conditions, we determine the value of R,. With R, we
ﬁndSl.ThenSl :>R2 = S2 = ... :>R4 = S4.

Referring to eq. 7.15a, we begin with

R, = yl()(())h = W()C())]’l (7173)

S1, the Runge—Kutta parameter for the first-order equation for w(x) given in
eq. 7.15b is

S1 = G(xo,y0,wo)h = [f(x0,y0, wo) — P(x0)wo — Q(x0)yo)h (7.17b)

From these, we determine

1
R, = (Wo +§S1>h (7.17¢)
and
S—Gx+1h +RW+IS h =
2= 0 ) Yo R 0 7°1 =
1 1
|:f(xO+2h Yo + = Rl,Wo-‘rZS) PXO+ h(W0+ Sl)

—0(xo +%h)(yo +%R1)}h (7.17d)
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Then
1
R; = (wo + ESZ)h (7.17e)
and
1 1
S3 = <xo +=h,yo + 2R27W0 + 252>h
1 1 1
|:f(x0+2/’1 Yo + = RQ,W()+252) PX()+ (W0+§S2)
1 1
—Qxo +5h)(yo + ERz)} h (7.17f)
Then
Ry = (wo + S3)h (7.172)
and

Sy = G()CO + h,yo + R3,wo + S3)h =
[f (xo + h,yo + R3, wo + S3) — P(xo + h)(wo + S3)
—0(xo +h)(yo +R3)|h (7.17h)

From these parameters, we obtain
1
y(x) = y(X() + h) =yo+ 6 [R] + 2R, + 2R3 + R4] (7.18a)

and

1
w(x) =y (xo +h) = wo + ¢ [S1 4282 4283 + 4] (7.18b)

Example 7.2: Runge-Kutta approximations for an equation subject to initial
conditions

We again consider
Y —2xy —y =yl ™ (7.6a)

subject to

{ 0) =y =1 7.6b)
w 0
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the solution to which is
y(x) = ¢ 7.7)
From this solution, we have the exact values
(0.50) = €39 = 1.28403 (7.11b)
and
w(0.50) = y/(0.50) = 2(0.50)¢®%)" = 1.28403 (7.19)
The corresponding pair of first-order equations for eq. 7.6a are
Y (x) = w(x) (7.20a)
and

/

w = yze*)‘2 +2xw+y (7.20b)

With xo = 0 and & = 0.5, the R and S parameters are

S, = [y%e"‘% + 2x0wo +yo]h — 1.00000 (7.21b)
1
R, = [wo + 531} h = 0.25000 (7.21¢)
S, = 1k 2*("0+%”)2+2 ) 20 4 (o+2r, ) |
2= y021€ on W021 }’021
= 1.09471 (7.21d)
1
R; = |:W() + 552} h = 0.27368 (7.21e)
L )’ 1 1 1
S3 = )’0+§R2 e\ 12 Xo-i-ih W0+552 + )’0+§R2 h

=1.29381 (7.21f)
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Ry = [wo + S3]h = 0.64691 (7.21g)

and

o = (30 4+ Rs e 0 4 2y 4 )y +83) + (0 + Ro)]
= 1.91545 (7.21h)
Then,
1

v(0.50) ~ yo + 3 [R1 + 2R, 4+ 2R3 + R4] = 1.28238 (7.22a)

and

1

W(O.SO) ~ wo + 5 [Sl + 28, + 283 + S4] = 1.28208 (7.22b)

To develop a multiple step Runge—Kutta process, we take 4 = 0.25 and apply
the above process to find y(0.25) and w(0.25). Then setting xo = 0.25, yo = y(0.25),
and wo = w(0.25), and applying the Runge—Kutta method to find y(0.50) and
w(0.50), we obtain

¥(0.50) ~ 1.28382 (7.23a)

and
w(0.50) ~ 1.28378 (7.23b)
Comparing eqs. 7.14 and 7.23a to the exact value given in eq. 7.11b, we see that

the two step Runge—Kutta approach is slightly more accurate than the two step
truncated Taylor series of example 7.1. O

7.4 Finite Difference Approximate Solutions for Equations
Subject to Initial Conditions

Euler finite differences
As developed in ch. 6, the Euler finite difference approximation to y’ is given by

V=~ yk+_1h_ Yk (6.39)
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From this, the Euler approximation to y”(x) is obtained by

dzy

dy| _ay
dx?

o dx

1
)’”k =~ 7 (}’lk+1 - y,k)
1

X

V42 = 2Yk1 + Yk
~ = [Vk2 = yer1) = D1 —yu)] = % (7.24)

S

Since the accuracy of the Euler approximation to y;’ is the same as the accuracy of
the Taylor series for y(x) expanded about x; up to order A, the approximation to y;”
given in eq. 7.24 is also accurate up to order A.

Milne finite differences

The Milne finite difference approximation to y'(x) is

/ o Ykl — Vi1
¥ () ~ 5 (6.49)

To obtain the Milne approximation to y,”, we consider the Taylor series
1
Yirr = y(Xx +h) =y + Y+ 5y;;hz + ... (6.40)
and
o —h) = _/h l//h2_ 6.42
Vet = Y0 = h) =y = yph + 2 ych” — .. (6.42)

Adding these equations and truncating these Taylor series at the term containing /2,
we have

Vi1 + Yio1 = 2y + yih? (7.25)
from which, the Milne approximation to y,” is

] — 2 _
Ve~ Vi1 hyzk + Yk-1 (7.26)

Since the Taylor series is truncated at the W term, eq. 7.26 is as accurate as the
Taylor series up to order /°.
One might consider approximating a Milne approximation to y;” from

/ /

noo Ykl — Vi1
~o A o Rl 7.27
Vi o (7.27)
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Referring to

;Y1 — Y1
, 6.44
Yk " ( )

the Milne approximation to y;” can be expressed as

v 1 {<Yk+2“Yk)__ <Yk“}%—2>} _ Ykt2 = 20k Y2

Yk =g 2 2h an (7.28)

This approximation requires determining values of y at xz.,, Xz, and x;_,, which is a
wider range of x than is accessed in eq. 7.26, with no improvement in the accuracy
of the approximated y;”. As such, eq. 7.28 is never used to approximate y;”.

To determine the solution to

V' +Px)y + 0y =f(x,y,) (7.2)

with given initial conditions

}:(xo) = J’f) (7.3)
¥ (x0) =Y

we substitute the finite difference approximations to y;’ and y;” into eq. 7.2. We use
the notation

P = P(x) (7.29a)
Or = 0(x) (7.29b)

and
Jo = F 00y, ') (7.29¢)

Since it is specified by the initial conditions, we do not approximate y,’ by finite
differences. y,’ is only approximated by finite differences for k > 0.

Euler and Milne finite difference equations

For k = 0, with y given by initial conditions, the Euler finite difference equation
for eq. 7.2 is given by

Y2 —2y1+ Yo

” + Poyy + Qoyo = f(x0,0,¥0) = fo (7.30a)
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For k > 0, y/ must be approximated by finite differences. Then the Euler approxi-
mation to eq. 7.2 is

-2 + — W
Yi+2 hyzk+1 Yk n Pk)’k+1h Yk Ok =fi (7.30b)
Eq. 7.30a can be written
1 2 1 ,
2 T Q0 Yo =3y 43752 =fo = Poyy (7.31a)

and eq. 7.30b can be rearranged as

1 P, P 2 1
ﬁ_WJer i+ 7R yk+1+ﬁ)’k+2

Vi1 — Y\ _
—f(xlw)’k,T) =fi (7.31b)

To determine y, from eq. 7.31a, it is necessary to obtain an approximate value of
y1 from the initial conditions. Referring to eq. 6.44,

yi = yo + hyg (7.32)

Then eq. 7.31a becomes

1 1 2\,
(Qo - E)YO toay2=fo- <P0 - Z))’o (7.33)

from which we obtain y,. With the values of y; and y, we find y; from eq. 7.31b,
then use that result to determine y, and so on. This process is repeated until we
obtain a value for yy = y(xy).

Using the Milne approximations to y, and y.”, the Milne finite difference
equation to eq. 7.2 for k = 1 is given by

yzh+y%r Oy1 =f(x1,y1,¥0) — P1y (7.34a)
and for £ > 1, the Milne finite difference equation is

Yir1 — 2y + yi1 Yit1 — V-1
P
2 T,

O =1 (xk,yk,y"“z%) (7.34b)

We write these equations as
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1 2 1
Yo + (Q1 - ﬁ)yl + L =f(x,y1,50) — P1yy (7.35a)

and

1 Pk 2 1 Pk
72 YVi—1 + Qk—ﬁ Yi+ E_Fﬂ Vi+1

YVi+1 _)’k—l)
= chas L L 7.35b
(v 2 (7.35b)

To obtain y, from eq. 7.35a, we must have an estimate of the value of y;. Since
the Milne approximation is as accurate as a Taylor series truncated at 4%, we use the
differential equation at x, to determine y,” and approximate y, by

1 1
Y1 2 yo + hyy + Ehz)’g = yo + yoh + Ehz (fo — Poy'y — Qoo) (7.36)

Then, from eq. 7.35a, the equation for y, becomes
1 P Y2 = yo) Py 1 2
—+—| = — = — — — 7.37
y2<h2+2h> f(xhyla o) Pl ) Pl @ (7.37)

Example 7.3: Finite difference approximations for an equation subject to
initial conditions

We again consider

Y =2y —y= yze_)‘2 (7.6a)
subject to
Yo =
7.6b
{ylo =0 ( )
the solution to which is
y(x) = e 7.7)

(a) For the Euler approximation, we find y; from the initial conditions to be

yi~yo+hyy=yo=1 (7.38)
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The Euler finite difference approximation to eq. 7.6a is given by

_9 L —
Vi+2 Z;H e zxkkah Wy o et (7.392)

from which
Vg = thl%eﬂ‘f +2(1 4 hxg)yesr + (h2 — 2hx; — 1)yk (7.39b)

To determine y(0.50), with 2 = 0.10, we set k = 0 in eq. 7.39b. With y,
given by eq. 7.38, we obtain

2 =y(0.2) = Ky2e ™% 4+ 2(1 + hxo)ys + (h* = 2hxg — 1) yp = 1.02000 (7.40a)
Then, for k = 1, we have

y3=y(0.3) ~ hzy%e""% +2(14+hxy)y, + (h2 —2hx| — 1)y1
= (1)2e +2(1 + (.1)2) (1.02000) + ((.1)2 (1)) - 1)
=1.06030 (7.40b)
With k = 2, we find
yq = 1.12241 (7.40¢c)
and finally, setting kK = 3, we obtain
ys = y(0.50) = 1.20912 (7.40d)
Comparing this to the exact value of 1.28403, we see that this result is not
very accurate.
The accuracy of the result can be improved by taking smaller values of A.
For 4 = 0.01, we obtain
¥(0.50) ~ 1.27542 (7.41a)
and with 2 = 0.001, we find
¥(0.50) ~ 1.28315 (7.41b)

(b) The Milne finite difference equation for eq. 7.6a is

Vi1 — 29k + Yi—1 Vi1 — V-1 2 @
7 — 2x; o — Yk = ype 'k (7.42a)
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from which

W2yZe ™+ (2 + )y — (1 + hx)yes
YVi+1 =
(1 — hxk)

(7.42b)

We immediately see that we must choose each x; and an interval size / such
that the denominator is never zero for any x € [xo, Xy].

We begin the process with k = 1 so that we do not include the extrapolated
value y_;. This yields

B hzy%e""% + (24 1)y — (1 + hxy)yo
- (1 — h)C1>

2 (7.43)

To obtain an independent value of y,, we use the Taylor series truncated at
h*. We obtain

1
Y1 = yo + hyy + Ehzyff =1+r (7.44)

With this analysis, for # = 0.10, we obtain

v(0.50) ~ 1.28253 (7.45a)
With 2 = 0.01, we find

¥(0.50) ~ 1.28401 (7.45b)

which is a fairly accurate result. O

7.5 Finite Difference Approximations for Equations
Subject to Boundary Conditions

All linear terms in y and y' in

V' +P(x)y + 0(x)y =f(x,y,)) (7.2)

are included in Q(x)y and P(x)y, respectively. Therefore, when eq. 7.2 is
approximated by a finite difference equation, f(x, y, ¥') contains only nonlinear
terms in y and y'.

Solving simultaneous equations obtained from finite difference approximations
that contain nonlinear terms in the unknowns is always a difficult task. The only
way to avoid this nonlinearity in the unknowns is to impose the restriction that
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flxy,y) =f(x) (7.46)

Therefore, our discussion and examples will be restricted to differential
equations of the form

Y '+ P(x)y + Q(x)y = f(x) (7.47)

Referring to eq. 7.4a, boundary conditions are given by specifying the values of
y(xp) and y(xy), or y'(xp) and y'(xy), or a linear combination of y(xg) y'(xo) and the
same linear combination of y(xy) and y'(xy), where xy and xy define the boundaries
of the problem and y(x) is defined for x € [xg, xn].

Finite difference solution to equations constrained
by Dirichlet boundary conditions

Let eq. 7.47 be constrained by Dirichlet boundary conditions of the form

Xo) = Yo = constant
y(x0) = yo (7 4a)
y(xy) = ynv = constant
With yo and yy given, we must solve for the N — 1 unknowns {y, ..., yn_1}.

Referring to eq. 7.30b, the Euler finite difference approximation to eq. 7.47 can
be written as

1 Py Pr 2 1
(h2 -t Qk))’k + (h ﬁ))’kﬂ + o2V =fx) = fi (7.31b)
With yy and yy given by the boundary conditions, we take 0 < k < N -2 to
generate the following set of linear equations for {y, ..., yv_1}:
Po 2 1 1 PO
——— —v=fo—|=5—— 7.48
<h hz))’l 2=/ (hz h +Qo>yO (7.48a)
1 P P 2 1
— —y = 7.48b
<h2 —+ Q1>y1 + (h h2>y2 +273 fi ( )

I Py Py 2 1 X
— — 2+ —=YyN_1 =fn- 7.48
(h2 y T O 3))’N 3+( Y hz))’N 2+ -1 =i (7.48c)

1 P P 2 1
(ﬁ 2 4o 2))’1\/ 2+ ( 1\;1 2 h_z)le = fn—2 N (7.48d)
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The Milne finite difference equation for eq. 7.47 is

-2 _ — Vi
Vi1 );k + Yi-1 —|—Pkyk+1 Vi1 O =1 (7.49)
h 2h
which we write as
1 Py 2 1 Py
— 7.49b
(h2 zh))’k 1+ (Qk ))’k + (h2 2h)yk+1 =fk ( )
Taking 1 < k < N-1, we obtain the following N—1 linear equations for {yy, ...,
AJYAREE
2 1 P 1 P
=fi—|—= 7.50
<Q1 h2>yl + <h2 + )Y2 fi <h2 2h)Y0 (7.50a)

1 P, 2 1 P,
(ﬁ - ﬂ))ﬁ + (Qz )yz + (h2 2h> =fH (7.50b)
1 _ P 2 1P
(hz - ;h2>YN—3 + (QN—Z - hz))’N—z + <h2+ gh2>)7N 1 =fnv-2 (7.50c)
1 PN—I 2 1 PN_1
(hz_ I ))’N 2+ <QN1 _hz>)’Nl+ =fv-1— <hz+2h>yN (7.50d)

Example 7.4: Finite difference approximations for an equation subject to
Dirichlet boundary conditions

The solution to
y' —2xy =2y =0 (7.51a)

constrained by the Dirichlet boundary conditions

y(0)=1
7.51b
{yu) —e (7210
is
yx)=¢" 0<x<1 (7.52)

With 7 = 0.25, xo = 0, and x4, = 1. We therefore solve for {y;, y,, y3} by finite
difference methods, and compare the solutions to

¥(0.25) Vi 1.06449
Yerar = | v(0.50) | = | y» | = [ 1.28403 (7.53a)
(0.75) v 1.75505
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If we take h = 0.10, then xo = 0 and x;o = 1 and we solve for {y;, ..., Yo}.
We compare those results to

¥(0.10) ) 1.01001
v(0.20) ¥2 1.04081
¥(0.30) v3 1.09417
¥(0.40) 4 1.17351
Yower = | v(0.50) | = | ys | = | 1.28403 (7.53b)
v(0.60) Yo 1.43333
¥(0.70) 1 1.63232
v(0.80) Vs 1.89648
¥(0.90) ) 2.24791

(a) Using the Euler finite difference approximations with 4 = 0.25, eqgs. 7.48

become
— 32y, + 16y, = —14 (k=0) (7.54a)
16y, — 34y, + 16y =0 (k=1) (7.54b)
and
18y, — 36y; == —16e = —43.49251 (k=2) (7.54c¢)

The solution to this set of equations is

¥ ¥(0.25) 1.16889
Y=y | =1]y050 ] = 146278 (7.55)
¥3 ¥(0.75) 1.93951

Referring to eq. 7.53a we see that the Euler finite difference solutions are not
very accurate.
With 4 = 0.10, we obtain

i ¥(0.1) 1.02836
2 ¥(0.2) 1.07673
V3 v(0.3) 1.14663
V4 v(0.4) 1.24086
Y=y |=|y05) | = 136367 (7.56)
Y6 ¥(0.6) 1.52113
y7 ¥(0.7) 1.72161
Vs 3(0.8) 1.97657
Yo ¥(0.9) 230165
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Comparing these to the exact values given in eq. 7.53b, as expected, a smaller
step size h yields a more accurate solution.
(b) For h = 0.25, the Milne finite difference equations for {yy, y,, y3} are

— 34y, + 15y, = —17 (k=1) (7.57a)
18y — 34y, + 14y; =0 (k=2) (7.57b)
and
19y, — 34y; = —13e = —35.33766 (k = 3) (7.57¢)
from which we obtain
Vi ¥(0.25) 1.06978
Y=y | =1y050) | =1 129150 (7.58)
y3 ¥(0.75) 1.76106

Comparing this to the exact values given in eq. 7.53a, we see that is a more
accurate result than that obtained using the Euler finite difference with the same
step size h. O

When boundary conditions other than Dirichlet conditions are imposed, in addi-
tion to y, with 1 < k < N-1, y, and yy are unknown. Therefore, we must solve for
N + 1 unknown quantities {yy, ..., yy} and thus, must generate N + 1 equations.

Finite difference solution to equations constrained
by Neumann boundary conditions

Let

y' +Px)y + Qx)y = f(x) (7.47)

be subject to Neumann boundary conditions

Y (x0) =y = constant
y'(xy) =y'y = constant (7.59)

With Neumann conditions, the Euler finite difference equations for eq. 7.47 are

Y2 —2y1+ Yo

” + Qoyo = fo — Poyj (7.60a)
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Yir2 — 2Vt + Yk

—i—Pkyk+1 — + 0wk =fi (1<k<N-2) (7.60b)

n? h
— 29 + Yy — v
YN+ ;zN WLy po %4_ ON_1YN-1 = fy_1 (7.60c)

and

YN+2 — 2yn11 + N

2 +Onyy = v — Py (7.60d)

Egs. 7.60c and 7.60d contain yy.; and yy., which are values outside the domain
of y. We can approximate yy.; from the Euler finite difference approximation to the
Neumann boundary condition at xy. With

Vi =~ w (7.61a)

we obtain

YN+1 YN+ hyy (7.61b)

Substituting this into eq. 7.60c we have

/
FOvowt =fu =2 (7.62)

—YN + IN-1 Py, YN — YN—1 !

h? h

We cannot use the boundary conditions to approximate a value of yy,,. We could
approximate yy,, by a Taylor series truncated at the term in the first power of &

w2 = y(on + 2h) ~ yy + 2hyy (7.63)

Substituting this and eq. 7.61b into the Euler finite difference approximation to yy”,
this approximation results in

Yl ~0 (7.64)

which, in general, is not a valid approximation to y,”. Thus, there is no reliable
estimate of yy,, and eq. 7.60d cannot be used.

This leaves us with N equations to determine N + 1 unknown y values. We
therefore, must have one more independent equation. We obtain this from the
Neumann boundary condition at x:

V) = yl%y" (7.65)
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Then, with eqs. 7.65, 7.60b, and 7.62,

— Yo +y1 = hy, (7.66a)

1 P 2 1
(ﬁ - 7]{4— Qk)yk - <ﬁ _Pk>)’k+l +oa Ve =fi 0<k<N-2 (7.66b)

and
Py 1 Py 1 ¥y
=+ |- - =fn-1 —— 7.66
(QN 1= +h2>)’N 1+ ( 7 h2>)71v In-1 A (7.66¢)
are the N + 1 independent equations needed to determine {y, ..., yy} using Euler

finite differences.
The Milne finite difference equations for eq. 7.47 are given by

— 2504y
W + Qoyo = fo — Poyy (7.672)
Vi1 — 2Vk + Yk—1 Vel — Yi—1 _
and

YN+l — 29N +YN-1
2

+ Onyn = fv — Pnyy (7.67¢c)

We see that egs. 7.67a and 7.67¢ contain y_; and yy,; values outside the domain
of y. Reliable approximations of these y values are found from the Milne finite
difference approximations to the Neumann boundary conditions by writing

/ Nyl —Y-1

Yo = h (7.68a)
from which
y_1 =~ y1 — 2hy, (7.68b)
and
y;v ~ YN4+1 — YN-1 (7.68¢)

2h

which yields

YN41 2 Yn—1 + 2hy)y (7.68d)
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Then, eq. 7.67a can be written as

2 2 . 2
(Qo - ﬁ)yo toan=f- <P0 - E))’E) (7.69a)

and eq. 7.67c becomes
2 2 i 2
N + (QN - h—z)yzv =fv— <P1v +E>y§\, (7.69b)

For 1 < k < N-1, the Milne finite difference approximations to eq. 7.67b, written
in the form

L _& o -2yt (L4 = (7.70)
2 2n) ! ETR )R\ Ty )R TR '

which, along with egs. 7.69, are the N + 1 equations needed to solve for {yy, ..., yn}-

Example 7.5: Finite difference approximations for an equation subject to
Neumann boundary conditions

We again consider the differential equation
y'—2xy =2y =0 (751a)
which is satisfied by
yx)=e" 0<x<1 (7.52)

The Neumann boundary conditions that yield this solution are

y'(0) =y, =0
y' (1) =y'y =2e ~ 5.43656 (7.71)

We take 4 = 0.25, and solve for the set {yy, . .., y4}. The exact solution for this
set, given by eq. 7.52, is

1.00000
1.06449
Yexaer = | 1.28403 (7.72)
1.75505
2.71828
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(a) Referring to eqs. 7.66, the Euler finite difference equations are

—Yo+y =0 (7.73a)
Tyo — 16y1 + 8y, =0 (7.73b)
8y1 — 17y, +8y3 =0 (7.73¢)
9y, —18y3 +8ys =0 (7.73d)
and
10y; — 11ys = —4e = —10.07313 (7.73e)

The solution to this set of equations is

Yo ¥(0.00) 1.64998
Vi ¥(0.25) 1.64998

Y= |y | =|»050) | =] 185623 (7.74)
3 ¥(0.75) 2.29451
4 ¥(1.00) 3.07438

Comparing these to the exact values, it is clear that they are quite inaccurate,
particularly the value of y,. Dirichlet conditions specify the exact values of y,
and yy but for Neumann (and later Gauss) conditions, these values of y are
obtained from finite difference of the boundary conditions. The inaccuracy in
these approximations adds to the inaccuracy inherent in the finite difference
approximations to the differential equation.

Substituting the exact values for y, and y, into eq. 7.73a we obtain

— Yo+ y1 = 0.06449 (7.75a)

Thus, eq. 7.73a is a poor approximation to the exact value of —yy + y;.
Similarly, substituting the exact values of y; and y, into eq. 7.73e, we have

10y; — 11ys = —12.35058 (7.75b)

indicating that 10y; — 11y, is inaccurately approximated by eq. 7.73e.
(b) Using Milne finite differences with 2 = 0.25, we refer to eqs. 7.69 and 7.70 to
obtain

—17y0 4+ 16y, =0 (7.76a)
17y — 34y; + 15y, =0 (7.76b)
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Oy1 =17y, +7y; =0 (7.76¢)
19y, —34y3 + 13y, =0 (7.76d)

and
16y3 — 17y4 = —6e = —16.30969 (7.76e)

The solution to this set of equations is found to be

(0.00) 0.92828
(0.25) 0.98630
Y =] y(050) | = | 1.18356 (7.77)
¥(0.75) 1.60626
(1.00) 247117

which compares reasonably well with the exact values given in eq. 7.72.

Thus, as expected, the Milne finite difference methods are more accurate
than Euler schemes for solving second order differential equations with
Neumann boundary conditions. To get a sense of how much better the Milne
approach is, we compare the solutions obtained by these methods to the exact y
values at the points specified in eq. 7.72. The percent errors from the exact
values by the two finite difference methods for each y are

65% 7%
55% 7%
%Errorguer = | 45% SErroryime = | 8% (7.78)
31% 8%
13% 9%

From these results, it is clear that one should use Milne rather than Euler
finite differences when solving an equation subject to Neumann boundary
conditions. [

Finite difference solution to equations constrained
by Gauss boundary conditions

The finite difference techniques used to find the solution to

Y+ P(x)y 4+ O(x)y = f(x) (7.47)
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subject to Gauss (mixed) boundary conditions

/ = vy + uy's =
{ y(x0) + py'(x0) = yo + 'y = vo (7.79)

y(w) + wy'(xw) = yv + 'y = vy

are the same as those developed for equations subject to Neumann conditions with
yo replaced by (vo — yo)/u and yy/' replaced by (vy — yn)/1.

As with equations subject to Neumann boundary conditions, we do not use
the Euler finite difference equation for k = N because it contains yy., which cannot
be estimated from the boundary condition at xy. In addition, as discussed above
[see eq. 7.64], a Taylor series truncated at / yields an unrealistic result for yy/. Thus,
we discard the Euler finite difference equation for k = N and are left with N
equations to determine the set of N + 1 y values. The Euler approximation to the
Gauss boundary condition at xg, written in the form

)’0(1 - %) + 1 % = (7.80)

augments this set of equations, giving us the necessary N + 1 equations.
The Euler approximation to yy,; is found from the Gauss boundary condition
at xy:

N+ Hy—NHh_ W VN (7.81a)
from which
h hv
YN+ =N (1 - ) +—= (7.81b)
I I

With this, the Euler finite difference equation for k = N-1 becomes

1 Py 1 I Py
le(hz_ i +QN1>+yN<_h2_’uh+ h>

v
= fy_1 — #—2 (7.82)

The Euler finite difference equations for 0 < £ < N-2

V2 — 2Vi1 + Yk +Pkyk+1 -

Yk
=fr .8
n a0k =l (7.83)

along with eqs. 7.80 and 7.83 are the N + 1 independent equations used to solve for
{Yos - - syt
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The Milne finite difference approximations to eq. 7.47 for 0 < k < N are given by

— Dyp 4+ y_ P P
Migyuryo 0o ——2) =f — v, (7.84a)

h u u

Vi1 — 2Yk + Yk—1 Vi1 — Yi—1 _
7 tPh—— =+ 0 =f 1<k<N-1 (7.84b)
and
-2 B P P

et = D v (QN _ :) I = fr — NHVN (7.84¢)

The approximation to y_; is obtained from the Milne finite difference form of
the Gauss boundary condition at x,

Y1 — Y1

Yo + W =0 (7.85a)
which yields
2h
ya=yter (yo — vo) (7.85b)

Substituting this into eq. 7.84a, we obtain

2 2 P() 2 PO 2VO
B W1 Loy 7.86
yo(yh 2t Qo ,U) Y1, fo . +/1h (7.86)

Yn+1 1s obtained from the Milne approximation to the Gauss boundary condition
at xy:

A p L ;hy Nl = wy (7.87a)

from which
2h
YN+1 = YN-1+ ; (vw —yn) (7.87b)

With this, eq. 7.84c becomes

2
YN-175 T IN <QN ————— —> =fv— -— (7.88)
h I
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Eqgs. 7.86, 7.84b, and 7.88 are the N + 1 equations needed to solve for the set
{)’0, s yN}

Example 7.6: Finite difference approximations for an equation subject to
Gauss boundary conditions

The equation
y' —2xy =2y =0 (751a)
with
yx)=e" 0<x<1 (7.52)

can be subjected to the Gauss boundary conditions

yo+yo=1
v+ ¥y = 3¢ = 8.15485 (7.89)

As noted in example 7.5, the exact values obtained using # = 0.25 are given by

1.00000
1.06449
Yeraer = | 1.28403 (7.72)
1.75505
2.71828

(a) The Euler finite difference approximations to eqs. 7.86, 7.84b, and 7.88 are

—3yo+4y =1 (7.90a)
Tyo — 16y; + 8y, =0 (7.90b)
8y1 — 17y, +8y3 =0 (7.90c)
9y, —18y3 +8ys =0 (7.90d)

and

10y; — 13y; = —6e = —16.30969 (7.90¢)
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The solution to this set of equations is

Yo ¥(0.00) 4.01430
Y1 v(0.25) 3.26073
Y=y |=|y050) | =] 300894 (7.91)
y3 ¥(0.75) 3.13327
V4 ¥(1.00) 3.66480

which is highly inaccurate.

As discussed for the equation subject to Neumann conditions, the cause of
this inaccuracy is the failure of the Euler approximation to yield acceptable
estimates of the boundary conditions. Substituting the exact values of yy and y,
from eq. 7.72 into eq. 7.90a, we have

— 3yo + 4y = 1.25796 (7.92a)
Therefore, eq. 7.90a is an inaccurate approximation to the exact value of
—3yo + 4y;. Likewise, substituting the exact values of y; and y, into eq. 7.90e,
we obtain

10y; — 13y, = —17.78714 (7.92b)

Thus, eq. 7.90e is not a very accurate estimate of 10y3 — 13y,.
(b) The Milne finite difference approximations to eqs. 7.86, 7.84b, and 7.88 are

— 13yy + 16y, =4 (7.93a)
17yy — 34y1 + 15y, = 0 (7.93b)
9y, = 17y2+7y; =0 (7.93¢)
19y, —34y3 + 13y, =0 (7.93d)
and
16y; — 20y, = —9¢ = —24.46454 (7.93¢)

The solution to these equations is found to be

Yo 0.71458
i 0.83059

Y=y |=] 107283 (7.94)
V3 1.53753

Vs 2.45325
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Although these results are not very accurate, it is clear that unlike the results
obtained using Euler finite differences, they are reasonable approximations to
the solution and can be improved by using a smaller value of 4. O

Once again, this example illustrates the fact that the Milne finite difference
approximation yields more reliable and more accurate results for second order
differential equations constrained by boundary conditions and should always be
used rather than Euler methods.

7.6 Shooting Method for Equations Subject to Dirichlet
Boundary Conditions

The shooting method is used to solve

y' +Px)y + 0(x)y =f(x,y,y) (7.2)

constrained by Dirichlet boundary conditions

{ ¥(¥0) = Yo (7 4a)

y(w) = yn

Let u(x) be the particular solution and v(x) be the homogeneous solution to
eq. 7.2. That is, u(x) satisfies

U+ P + Q(x)u =f(x,y,y) (7.95a)
and v(x) is the solution to
V4 P(x)V 4+ Q(x)y =0 (7.95b)
Subtracting eq. 7.95a from eq. 7.2, we obtain
v =w)"+PEO -1 +0X)(y—u) =0 (7.96)

Comparing this to eq. 7.95b, we see that since y(x) — u(x) is a solution to the
homogeneous equation, it must be proportional to v(x). Therefore,

y(x) = u(x) + ov(x) (7.97)
With this relation, we see from eq. 7.95a that u(x) satisfies

W'+ P+ Qx)u=f(x,u+ov,u +au') (7.98)
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But u(x) cannot depend on the proportionality constant .. The only way to eliminate
dependence on « is to require that f{x, y, y') be independent of y and y’. Thus, as
with finite difference methods, the shooting method is applicable to equations of
the form

Yy +P(x)y + 0(x)y =f(x) (7.47)
If y'(x9) = yo were known, we could also solve this differential equation using
the methods described earlier for equations subject to initial conditions. The goal of
the shooting method is to solve the boundary value problem by solving it as initial
value problem.
The initial conditions for u(x) and v(x) are obtained from eq. 7.97 by setting
Yo = u(xo) + av(xo) = up + avo (7.99a)
and

yo = i (x0) + o' (x0) = ug + vy (7.99b)

Since « and y,’ are undetermined, we choose v(x) such that

Yo = Ug (7.100a)
and
y(’) = (7.100b)
This results in
{ o = Jo (7.101a)
Vo =
and
/
uogp= 0
{ , (7.101b)
Vo= 1

The equations for u(x) and v(x), constrained by these initial conditions, can be
solved by techniques such as the truncated Taylor series, Runge—Kutta or finite
difference method, from which we determine {u, ..., uy} and {vy, ..., vy}. Then, if
vy # 0, the Dirichlet boundary condition for y(xy) becomes

Uy + ovy = yy (7.102a)



7.6  Shooting Method for Equations Subject to Dirichlet Boundary Conditions 299

Since uy and vy are known and yy is specified by the boundary condition, we have

o=N "M (7.102b)
VN
With this value of o, we determine all y values from
yvi=ur+ovy 1<k<N-—-1 (7.103)

Example 7.7: Shooting method for an equation subject to Dirichlet boundary
conditions

We consider the equation
Y —xy —xy = —4e* (7.104)

constrained by the Dirichlet boundary conditions

y(1) =2¢7!
{ y(3) = 6e* (7.105)
the solution to which is
yx)=2xe™ 1<x<3 (7.106)
For this example, eq. 7.95a is
W' —xu —xu=—4e™* (7.107)
subject to
{ u(1) = 2¢™"!
(1) =0 (7.108)
and eq. 7.95b is
Vi—exv—xv=0 (7.109)

subject to

v(1)=0
V(1) =1 (7.110)
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We solve for as u(x) and v(x) by using a four step Runge—Kutta scheme with
h = 0.5 (as in Sect. 7.3). We obtain

u(1.5) 0.66833
u(2.0) 0.53788
U= = (7.111a)
u(2.5) 0.39752
u(3.0) 0.23582
and
v(1.5) 0.51869
v(2.0) 1.84930
V= = (7.111b)
v(2.5) 6.70887
v(3.0) 29.84624
from which we find
V= o =2.10757 x 107° (7.112)
Then, from eq. 7.103, we have
y(1.5) 0.66942
2.0 0.54178
y= |20 _ (7.113)
¥(2.5) 0.41166
¥(3.0) 0.29872
This compares quite well with the exact values obtained from eq. 7.106:
0.66940
0.54134
Yevaer = (7.114)0O
0.41042
0.29872

In examples 7.4-7.7, we presented finite difference methods for finding y(x) at
{x0, ..., xy} when y(x) is constrained by boundary conditions. To determine
approximate values of y at points not in the set {xy, ..., Xy}, one can use interpola-
tion methods over y(xy), . . ., y(xn).
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7.7 Frobenius Approximations

Ordinary, regular singular, and irregular singular points

There are two independent solutions, y;(x) and y,(x), to equations of the form
Y+ Py + Q()y =f(x) (7.47)
The complete solution to such an equation is
y(x) = cryi(x) + caya(x) (7.115)

where ¢ and ¢, are determined by either initial or boundary conditions.
The Frobenius solution is in the form of an infinite series

= alr—x) (7.116)
k=0

The parameter s, which allows for the possibility that y(x) may be singular at x,
is called the index of the solution.
If P(x) and Q(x) can be written as the following series

_ P +ZPI<X_X0)k (7.117a)

P(x) = G—x)

and

q-2 q-1 = k
= — 7.117b
00 = T it o 2 W) (7.117b)

then, if P(x) is singular, its singularity is a simple pole and if Q(x) is singular, its
singularity is a simple pole or a second order pole.

If f{x) is analytic at x; and if the three constants, p_1, g_;, and g_, are zero so that
P(x) and Q(x) are analytic at xq, then xq is an ordinary point. If xq is a regular
singular point, then at least one of these constants is non-zero and (x—xo)zf(x) must
be analytic at xo. Another way to define a regular singularity is that at least one of
the functions P(x) and Q(x) is singular at xy, and (x—xo)P(x), (x—xo)zQ(x), and
(x—=x0)*f(x) are analytic at xo. If P(x), O(x), and/or f(x) have singularities at x,
other than as expressed in eqs. 7.117, then x, is called an irregular singular point.

Fuch’s theorem states that if xq is an ordinary point, both y;(x) and y,(x) given in
eq. 7.115 can be found in series form. If x is a regular singular point, then it is
guaranteed at least one of the solutions, y;(x) or y,(x) can be found in series form.
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If x¢ is an irregular singular point, there is no guarantee that a Frobenius solution
exists. An expanded discussion of these details about Fuchs’ theorem can be found
in the literature (see, for example, Cohen, H., 1992, pp. 241-243 and pp. 248-250).

The Frobenius approximation is obtained by truncating the Frobenius series of
eq. 7.116 to obtain

Y) 2> (s — xo)* (7.118)

xo Is an Ordinary Point

When x is an ordinary point, y(x) is analytic at xo and it is always possible to take
both independent values of s to be zero. Then, the Frobenius solution is

(7.119)

<
—
=
Il
[
o
=
=
|
=
(=}
=
-~

k=0

When xq is an ordinary point, eqs. 7.117 become

P(x) =Y pulx —xo)" (7.120a)

0(x) = gulx —xp)" (7.120b)
and
@) = fily = x0)* (7.120¢)

Then, the series form of the differential equation is

L
E cxk(k — 1) (x — x0)* E cxpm(x — x0)™ E Ccxm(x — x0)™*

mO mO

=2 flx—xo)t (7.121)
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We equate coefficients of corresponding powers of (x—x,) to obtain an equation
relating a coefficient of some larger index to terms involving coefficients of smaller
indices. Such an equation is called a recurrence relation. To obtain the Frobenius
approximation, we generate coefficients up to ¢y and truncate the Frobenius series
atk=N

Example 7.8: Frobenius approximation with x, an ordinary point

The inhomogeneous differential equation
Y —xy +xy = 2e" (7.122)

constrained by the initial conditions

y(0)=0
Y(0) =1 (7.123)

has solution
y(x) = xe* (7.124)

Since x = 0 is an ordinary point for this equation, the Frobenius series is
written as

X)=> axt (7.125)
k=0
With
2 ¥
= 7.126
=> 5 (7.126)

k=0

we substitute eq. 7.125 into eq. 7.122 to obtain

Z crk(k — 1 Z ek + Z ckx i};— (7.127a)
k=0

Writing this as

2c2+chk —1 chkx —l—ZC)H(Jrl

X x*
HZE

k=1

=2

] (7.127b)
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we equate the coefficients of x° to obtain
=1 (7.128)

Then, eq. 7.127b becomes

chk —1)x chkxk—i-chx = i%}; (7.129a)
k=1 """

On the left hand side of this equation, we set k' = k-2 in the first series and
k' = k+1 in the third series. Then, after renaming &’ as & (ignoring the primes on k'),
eq. 7.129a can be written as

k

i [(k+2)(k + 1)cpin — keg + cpq]xf =2 ZOC:% (7.129b)
k=1 k=1"
Thus, the recurrence relation for this example is given by
1 2
Crp2 = m [k' + ke — ckl} k>1 (7.130)
The 6th order Frobenius approximation to this solution is
y(x) ~co+ c1x + cx? + C3X3 + et + csxs + c6x6 (7.131)
Applying the initial conditions of eq. 7.123 we have
c=0 (7.132a)
and
cp =1 (7.132b)
Then, along with
=1 (7.128)
we set | < k < 4ineq. 7.130 to obtain
1 1
3 :6[2+cl — o] =5 (7.133a)

14+ 2c — 1 1
N S .133b
c4 12 3! (7.133b)
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1
C5 = 20 |:3 + 3C3 — C‘z:| = E (7133C)
and
11 1
Ce = 30 {12 +4cy — ] =35 (7.133d)

Therefore, the Frobenius approximation to this solution, up to x6, is

3 x4 XS x6 x2 3 x4 xS
o~ 1 7.134
y(x) ~ x+x+2|+3+4,+5 <+x+2+3+ +5,) (7.134)

We recognize this as the first six non-zero terms in the MacLaurin expansion
of xe”.
This Frobenius approximation at x = (0.25, 0.50, 0.75, 1.00) is

¥(0.25) 0.32101
¥(0.50) 0.82435
Y = = (7.135a)
¥(0.75) 1.58754
y(1.00) 2.71667
which, as expected, agrees very well with
0.32101
Yeract = 082436 (7.135b)0
’ 1.58775
2.71828

Xg is a regular singular point

When xg is a regular singular point, y(x) will have a singularity at xo. Referring to
the singularity structure of P(x), Q(x), and f(x) given in eqs. 7.117, we multiply the
differential equation of eq. 7.47 by (x — xo)>. Defining

U(x) = (x — x0)P(x) (7.136a)

V(x) = (x — x0)*0(x) (7.136b)
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and
F(x) = (x — x0)*f (%) (7.136¢)
eq. 7.47 is written as
(r = x0)"y" + (x = x0)U )Y +V(x)y = F(x) (7.137)
where U(x), V(x), and F(x) are not singular at x,.
With
y(x) = Xm: c(x — xo)F™ (7.118)
k=0

U) = il —xp)* (7.138a)
k=0
V(x) = i ve(x — x0)* (7.138b)
k=0
and
F(x) = i dp(x — xo)* ™ (7.138¢)
k=0

Substituting eqs. 7.138 into eq. 7.137, the differential equation in series form is

ch (k+s)(k+s5—1)(x —x0)™ + Z Cett (K + ) (x = x0)F"H
=0

k=0
m=0
+ z Cevm(x — x0)F T Zqﬁk x —xo)k* (7.139)
k=0
m=0

The lowest power of (x — xg) in each series is (x — x¢)* arising from the k = 0
and m = 0 terms in each series. This yields
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co[s(s — 1) + pos + vo] = ¢y (7.140a)

We see that since ¢ is not known, we cannot solve this for values of s unless
¢o = 0. Then

cols(s = 1) + pps +vo] =0 (7.1400b)
yields

1

s = 5 [(1 — o) £/ (1 = M0)2 - 4V0} (7.141)

This equation for s is referred to as the indicial equation, at least one solution of
which is non-zero.

Recurrence relations for the coefficients ¢, are found by equating the coefficients
of like powers of (x —xp) that are greater than s. Following the analysis by
Cohen, H., (1992), pp. 248-250,

bi— 3 chonlin(k —mt5) + ]

m=1
= k> 1 7.142
CT Ut kts— 1) tuk+s) tvo (7.142)

Let the two independent values of the index of solution s be defined as s; and s,.
If s; — s, is not an integer, the two solutions are those obtained from the coefficients
of eq. 7.142 with s = s, and with s = s,. Let

Si—SH2=n (7.143a)
with n a positive integer. When
S=8§ =S8 —n (7.143b)
eq. 7.142 becomes
k

¢y — Y Chom[ly(k —m 451 — 1) + vy

m=1
k= 7.144a
* (k+s1—n)k+s1—n—1)4+ uy(k+s1 —n)+ v ( )

Setting k = n, this becomes

k
¢k - Z Ck—m[:um(sl - m) + Vm]

m=1
o = (7.144b)
si(s1 — 1) 4 pos1 + vo
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Referring to eq. 7.140b, since s, is a solution to the indicial equation, the denominator
of this expression is zero. If the numerator is not zero, ¢, is undefined and there will be
only one Frobenius solution, a series multiplied by an overall constant. We designate
this series solution as y;(x). In that case, the second solution is given by

j\mdx

eJ o

y2(x) = y1(x) J—de (7.145)
[y1(x)]

(see Cohen, H., 1992, pp. 250-252).
If the numerator of eq. 7.144b is zero, ¢, is arbitrary, and the second solution in
series form, which multiplies c,,, exists.

Example 7.9: Frobenius approximation with x( a regular singular point

The half order Bessel equation is given by

1 1
V4+—y+(1l——])y=0 (7.146a)
X 4x2

Referring to eqs. 7.117, we see that x = 0 is a regular singular point.
Multiplying eq. 7.146a by x?, this Bessel equation can be written as

1
2+ xy + (x2 _ Z)y -0 (7.146b)

If we constrain y(x) by

y(0)=0
y(n/6) =1 (7.147)

y(x) = BV (7.148)
With
y(x) = i e (7.149)
k=0

eq. 7.146b becomes
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crlk+8)(k+5— D 43 e (k4 sk s — = ekt
I D DL ELE T D ol

+ i e st = ZOC: cr [ (k+5)* — ﬂ s 4 i 2 =
=0

k=0 k=0

Writing this as
2 1 2 1 +1
cols ——xy—l—cl (s+1) —ny

(o} 1 o0
+Zc [/H—s —Z]ﬂc+‘v+kz_;ckxk+”2 =0

k=2

309

(7.150a)

(7.150b)

we see that the first two terms are the only ones involving x* and x**'. Therefore,

1
Co [sz — ZJ =0
and
1
[(er 1) Z] =0
from which
s— 1
2
co = indeterminant
c1=0
or
s— L
2
¢o and c¢; indeterminant
or

(7.151a)

(7.151b)

(7.152a)

(7.152b)

(7.152¢)

(7.153a)

(7.153b)

(7.154a)
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=0 (7.154b)
c1 = indeterminant (7.154¢)

Since any two independent values of s will yield the two solutions to a second-
order equation, we take

s=d5, =0 (7.155)

It is straightforward to demonstrate that the solution obtained for s = -3/2
duplicates the s = —1/2 solution.
The first two terms in eq. 7.150b are zero and eq. 7.150b becomes

o0

1 = .
Z Cr |:(k + S)Z _ Z:| Xk+s T Z ck_xk+s‘+2 —
k=0

k=2

1 v, = g
Z Cirin |:(k/ +s+ 2)2 _ 4:| xk +5+2 + chxk+s+2 —

k=0 k=0

- 2 1 52

D> Sk |k+s+2) —7| e K2 =0 (7.156)
K'=0

Thus, the recurrence relation for the coefficients c; are

—
Chy2 = ——————5— (7.157)
(k+s+2)"—1
For s = 1/2, the recurrence relation is
—Ck —Ck
Ck+2 = = (7158)
* k+3> -1 (k+2)(k+3)
from which we obtain
—¢
2= 3—‘0 (7.159a)
S 7.159b
== (7139
cg=—2 % (7.159¢)
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—es
= =0 7.159d
ST x5 ( )
and
—Cy4 —Co
= = 15
“©“TIxe6 7 (7.15%)

Therefore, the Frobenius approximation to the s = 1/2 solution, up to x°, is

RS A
y1j2(x )~cOx‘/2[1 “3its ﬂ (7.160a)
By identical analysis, the s = —1/2 solution is approximated by
24
~1/2 X X
Yo~ cpx Y {15+ﬂ—a] (7.160b)

The reader may recognize the terms in the s = 1/2 approximation as the first four
non-zero terms in the series representation of

yijlx) = co% (7.161a)
and the terms in the s = —1/2 approximation are the first four non-zero terms of
cosx
yoi2(x) = cgﬁ (7.161b)
The approximation to the complete solution is given by
4 .6 2 .4 .6
SO V1 PR S S ) PO V-1 PR S e
y(x) == cox {1 Al —|—5' 7'] + cpx 1 3 —|—4' al (7.162)

We see that the solution multiplying ¢’ is not defined at x = 0. Therefore, the only
way the constraint at x = 0 can be satisfied if

¢, =0 (7.163)
Then

2y xﬁ]zco{ 2 ox )(_7] (7.164)

~ep2]] XX
y) = cox {1 35T

o is determined by
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i 1 /m2 1 /m4+ 1 /m\b6
2 6[“5(3) +51(5) 7 () } =1 (7.165)
from which
12 x4 x6
y(x) ~ 1.44720x"/ [1—§+§—ﬂ (7.166)

Therefore, for example, we obtain
y(n/9) ~ 0.83777 (7.167)

which differs from the exact value by 1.6 x 10°%. O

Problems

The differential equation y” 4 2xy’ — 6y = 2x has solution y = x + x> when
constrained by

(I) Initial conditions {

/

(II) Dirichlet boundary condltlons

¥
¥
(III) Neumann boundary conditions Y
y
I(O

(IV) Gauss boundary conditions { "

) —
) —
In Problems 1, 2, 3, 5, 6, 7, and 9, solve the above differential equation by the

method specified. For each problem, compare your approximate answer to the exact
value of y at the specified value of x. To make the comparison, use

|esttmated value — exact value|

%Error * 100

exact value

1. Find the approximate solution to the above differential equation subject to the
initial conditions given above, by

(a) a single step Taylor series expansion about x = 0 to find y(0.5), keeping
terms up to the term containing the third derivative of y.

(b) atwo step Taylor series expansion; first about x = 0 to find y(0.25), then an
expansion about x = 0.25 to determine y(0.5). Keep terms in each expan-
sion up to the term containing the third derivative of y.
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2. Find the approximate solution to the above differential equation subject to the
initial conditions given above, by

(a) a single step Runge—Kutta technique to find y(0.5).

(b) a two step Runge—Kutta technique; first apply the Runge—Kutta method
to find y(0.25), then a second application of the Runge—Kutta method to
determine y(0.5).

3. Find the approximate solution to the above differential equation subject to the
initial conditions given above, by finite difference methods. For # = 0.2, find
¥(0.6) using

(a) Euler finite difference approximations.
(b) Milne finite difference approximations.

4. Find the approximate solution to the above differential equation subject to
the Dirichlet conditions given above, by the shooting method. With 42 = 0.1,
find y(0.2) by solving the inhomogeneous equation for u(x) using a two step
Runge—Kutta method, and by finding the homogeneous solution v(x) using a
two step Taylor series up to h*. Compare the approximate value of y'(0) found
by the shooting method to the exact value y'(0) = 1.

5. Find the approximate solution to the above differential equation subject to the
Dirichlet conditions given above, by finite difference methods. For h = 0.2,
find y(0.6) using

(a) Euler finite difference approximations.
(b) Milne finite difference approximations.

6. Find the approximate solution to the above differential equation subject to the
Neumann conditions given above, by finite difference methods. For 7 = 0.2,
find y(0.6) using

(a) Euler finite difference approximations.
(b) Milne finite difference approximations.

7. Find the approximate solution to the above differential equation subject to the
Gauss conditions given above, by finite difference methods. For 2 = 0.2, find
¥(0.6) using

(a) Euler finite difference approximations.
(b) Milne finite difference approximations.

8. Develop a single step Runge—Kutta method for a third order differential
equation y” 4+ P(x)y" + Q(x)y + R(x)y = g(x,y,y’,y") subject to the initial
conditions
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9.

10.

11.

12.

13.
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Taking & = 0.25, use the shooting method to find the solution to the second-
order differential equation above, subject to the stated Dirichlet conditions

y(0) =0

y(1)=2
In addition to comparing the results to the exact value, compare the value of
y'(0) estimated by the shooting method to the exact value given above.

Find the terms up to x° of the Frobenius approximation to the differential
equation y” — 2xy’ — 2y = 0 subject to the initial conditions

y(0) =1
Y (0)=0
Find the terms up to x° of the Frobenius approximation to the differential

equation of example 7.8, eq. 7.124, constrained by the Dirichlet boundary
conditions

The two differential equations y” + 2xy' — 2x%y = —2¢ ™ and y + 2xy'+
2y = 0 have solution y = ¢

ary conditions

* when constrained by either the Dirichlet bound-

or the initial conditions

Find the Frobenius approximation up to x° for each of these differential
equations, constrained by each of these sets of conditions, and compare this
approximation to the exact values at x = {0.25, 0.50, 0.75, 1.00}.
Approximate the solution to the Bessel differential equation of zero order y” +
1y +y = 0 subject to

by the first four non-zero terms in the Frobenius series.



Chapter 8
PARTIAL DIFFERENTIAL EQUATIONS

Many of the partial differential equations that describe physical systems involve
derivatives with respect to space variables (x,y,z) or with respect to space and time
variables (x,y,z,f). Such equations include the diffusion equation which describes
the spread (diffusion) of energy throughout a material medium with diffusion
factor K

0 t
WEDED 2y (1.2, = flx.y.2.0 (8.12)
the wave equation which describes the propagation of a wave traveling at speed ¢

0? t
%_CZV%p(xayazvt) :f(xvyvzvt) (81b)
and Poisson’s equation which describes the electrostatic potential at any point in
space due to a distribution of charge, the properties of which are embodied in p(x,y,z),
the charge density (charge per unit volume).

V(ny,z) = 202D (8.10)
0

For simplicity, we will restrict our discussion to partial differential equations in
two variables (x, ) or (x, y).
The generalized form of the diffusion equation in one space dimension

oy 0%y
E—P(X, I)W:f(x, t) (823)

is an example of a parabolic equation.
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A general form of the wave equation in one space dimension

321ﬁ 821//
W—P(XJ)WZJC(XJ) (8.2b)

is an example of a hyperbolic equation, and Poisson’s equation in two space
dimensions is an example of an elliptic equation

2
RO, 5 Y+ 5(5y)

0%y
— =f(x, 8.2¢c
72 fxy) (8.2¢)
One can remember the designations of these types of equations by treating the
partial derivative operators as coordinates 0,, 0., and ay. Then, the “operator

coordinate” forms of eqs. 8.2 can be written as

e 0,~PO’>+f
« 02~ PO2+f
« ROZ+S0)°=~f

The first of these describes a parabola in a space defined by “coordinates” 0, and 0,,
the second could represent a hyperbola in such “coordinates”, and the third could be
viewed as the equation of an ellipse in “coordinates™ 0, and 0,.

8.1 Initial and Boundary Conditions

As noted in ch. 7, the time part of a solution is constrained by initial condition(s),
and the space part of a solution is constrained by boundary conditions.

For ordinary differential equations, these constraints are given as specific values
of the solution. For partial differential equations, what we refer to as initial
conditions are generally given as functions of (x, y, z) and what we call boundary
conditions are specified as functions of ¢.

Since a parabolic equation contains a first-order time derivative, its solution is
constrained by a single initial condition of the form

V(x, t0) = Ip(x) (8.3a)

A hyperbolic equation contains a second time derivative. Thus, its solution is
subject to two initial conditions: one given in eq. 8.3a and a second expressed as
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Because an elliptic equation contains no time derivatives, its solutions are subject
only to boundary conditions.

All three types of equations contain second order derivatives with respect to
space variables. Thus, their solutions are always constrained by a two boundary
conditions.

For the solutions to the parabolic and hyperbolic equations, the boundary
conditions are expressed in the one of three forms. Dirichlet boundary conditions
are written as

WX, 1)y, = Dos () (8.4a)
Neumann boundary conditions are expressed as

(axlfa();, I)>x_x0,x, = Nos (1) (8.4b)

and Gauss boundary conditions are of the form

v+ =60 .40

The Dirichlet boundary conditions that constrain the solution to an elliptic
equation are written as

Xo0,f,Y) = Dy, ,
W (xo.r,) () (8.5)
lﬁ(x, y(’7f) = Dmf (x)
Neumann boundary conditions are expressed as
W (x,y)
AR =N,
< ox )y =N »)
' (8.5b)
Oy y=Yo.s o
and Gauss boundary conditions are of the form
o (x,
‘//(XO,fv y) + Py (%) = Gxo.,f (y)
R (8.5¢)
Sc
W (x,y
v +1,( ) =6,
Y Y=Yo.f
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8.2 Taylor Series Approximations

As noted in ch. 7, a Taylor series is not appropriate for approximating an
ordinary differential equation constrained by boundary conditions. Therefore,
when the solution to a partial differential equation is subject to initial conditions,
so that y is analytic at #,, we can develop a Taylor series expansion in the time
variable about ¢, as

_ ) ¢
lﬂ(x7t)f:t//(x,ro)+(t—to)<%—lf> rl élt‘)) (%—f) (8.6)

The boundary conditions only define the values of the spatial variables over
which the solution is defined, and the truncated Taylor series is an expression for
Y(x, f) within those boundaries.

The coefficients of various powers of (¢—f() are found from the initial conditions
and from derivatives of the differential equation evaluate at .

Parabolic equations

The solution to the parabolic equation is constrained by a single initial condition

zﬁ(x, lo) :IQ(X) (8.3a)

Writing the parabolic equation for ¥/(x,f) equation in the form

S/ 0%y
n =f(x,t) + P(x, t)ﬁ (8.7)

we set t = ty to obtain

o (x s
< lﬁéz,f)>t0 :f(x7t0)+P(x,t0)%

d2]0 (X)
dx?

=f(x,10) + P(x,10) (8.8a)
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From the time derivative of eq. 8.7, we obtain

O\ [of OP & 029/
(W),O_E“LEW“LPiW ]
_[of  oP O D 0%y
—_WEW“W(”PW)L

- (%) +<5_P> Ch) p O )

Ot Ot dx? Ox?
82])()(, I()) dzl()(x) d4]0(x)
#P(m) s U P ] (e

Coefficients of higher powers of (z—f,) are found by taking higher derivatives of
the differential equation at #y. Obtaining the coefficient of (—to)%, as in eq. 8.8b, is
fairly straightforward but somewhat cumbersome. The calculation of the
coefficients of (t—t)* for k > 2 can become quite unwieldy.

Example 8.1: Taylor series approximation for the solution to a diffusion
equation

In an ideal medium (imperfections in the medium are ignored), the diffusion
equation describes how heat energy, for example, distributes throughout the
medium. If that medium is a thin heat conducting rod, the equation describes a
problem in one space dimension.

The equation that describes the diffusion of thermal energy in a one dimensional
medium at all points except at heat source is given by

8‘#()@ t) _ 82|//(x7 t)
TR K 2 (8.9a)

where K is the thermal diffusion parameter of the medium, which we take to be
constant. Taking K = 1, we find an approximate solution to

N (x, 1) _ 02 (x, 1)

ot Ox? (8.95)
Subjecting y/(x,f) to the initial condition
Y(x,0) =1Ih(x) = (8.10)
and the Dirichlet boundary conditions
W(0,1) = Do(r) = ¢'
{wu,t) — D) = e e
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the solution to eq. 8.9b is
Y(x,t) =e™ (8.12)

We point out that the boundary conditions define the range of x values. Thus, the
thin rod in this example has a length 1. The initial condition(s) define the instant
at which we begin measuring (x,f), which, in this example, is #, = 0.

Then, the Taylor series approximation up to order /%, obtained from eq. 8.3a
and eqs. 8.8, is

N By 1, (0%
W(x,t) = Y(x,0) + t<E> . + 5? (W) B (8.13)

Setting = 0 in eq. 8.9b, we have

4 OM(x,0) d’lo(x)
<3f>,0: oz diz =e (8.14a)

and from the derivatives of eq. 8.9b, we obtain

(5). - 5G] - 5.

%Y (x,0 d*I .
() S o

Therefore, eq. 8.13 becomes

2
(1) ~ (x,0) +’(af;/z/),_0 *21!’2(80;0,_0 . {1 +t+21!t2} e (8.15)

The terms in the bracket are recognized as the first three terms in the MacLaurin
series for ¢'. Therefore, eq. 8.15 is a reasonable approximation to the exact solution

Ylx,0) =™ (8.12)
Thus, for example, this approximation yields
¥(x,0.50) ~ 1.62500e " (8.16a)

which is a reasonable approximation to the exact value

W e (£,0.50) = (03079 — 1 6487207 (8.16b)
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One can improve the accuracy by using a series with higher order terms in ¢ or by
using a multistep Taylor approximation.
For example, to obtain a fourth-order Taylor sum, we require

O\ _[02 (9%N] (9% 0 (9%
o), o |0x2\or )| _, \oxxoat\ox2)),_,
9% 9% oy FY(x,0) dh(x)
<a_a_E> oo T ae ¢ (8.172)

and

a4l// o 82 8%/, 783$(X,0)7d8]0(x)7 .
(G0 = [o(GH)] -T2 =Tt

With these and eqs. 8.14, we obtain

Ay 1, (0% 1 (0% 1, (0%
v w0 () ent(5) () e (5

_ 1 2 1 3 1 41 —x
= {1+t+it +§t —l—mt }e (8.18)

The sum of terms in the bracket is recognized as the approximation to the
MacLaurin series for ¢’ up to ¢*. This yields the approximation

W(x,0.50) ~ 1.64844¢~F (8.19)

To develop a two step Taylor series approximation up to order r* to find
¥ (x,0.50), we begin with 7o = 0 and take ¢ = 0.25. With the series approximation
up to > given in eq. 8.15, we obtain

W(x,0.25) ~ 1.28125¢~F (8.20)
This becomes the initial condition for the second iteration.

With ¢ty = 0.25 and ¢t = 0.50, and using eqs. 8.14 for the time derivatives of
Y (x,t), we obtain

By (.50 — .25) (9%
xﬁ(x,O.SO):w(x,0.25)+(.50—.25)<—> g (22
Ot ) 925 2 O ) 025
- . d*y(x,0.25) .25% d*y(x,0.25)
= 1281257 + (25)— "+ - o

= 1.64160¢ (8.21)
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Comparing this result to the exact value
¥ (x,0.50) = ™0 = 1.64872¢ 8.17)

we see that it is more accurate than the result found using a single step Taylor series
up to 7, but is less accurate than the single step Taylor series up to .0

Hyperbolic equations

Referring to eq. 8.2b, the coefficients of (¢ — 10)° and (7 — 5)" in the Taylor series
for the solution of a hyperbolic equation are given by the two initial conditions of
egs. 8.3. The coefficient of (¢ — #o)* is found by setting ¢ = f, in the differential
equation to obtain

0% (x, &2
(1/35;0) - = f(x,t0) + P(x,19) digx) (8.22)
Then,
lﬁ(x,t):Io(x)+(t—to)ll(x)+(f 2;0) [f(x,to)-i—P(x,to)%] +.. (8.23)

The coefficients of higher powers of (¢ — o) are found by taking derivatives of
the hyperbolic equation. For example, the coefficients of (¢ — #o)° and (1 — #o)* are
found from

(2259) - [(2),  (2), 22 e i)

or Ot Ot dx? O0x2

@), () Lt ene2] o

and

% N I*P\ d’Iy(x) 4o P\ d’I(x)
o), o ), dx? ot), dx?

dZP(X, lo) dzl()(x> dP(x, lo) d310(x)

+P(x o) ( dx? T 2 dx dx3

+P(x, 9) d%(x))] (8.24b)

dx*
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Example 8.2: Taylor series approximation for the solution to a wave equation

We consider the wave equation for a wave that is propagated in a source-free
vacuum in one dimension (e.g., radiation propagated down a narrow evacuated
wave guide). Then, eq. 8.1b can be written as

82‘#0@ t) _ C2 azw(xv [)
OF2 Ox?

=0 (8.25)

where c is the propagation speed of the wave.
With ¢ = 1 we subject Y/(x,?) to the initial conditions

lﬁ(x, 0) = ]()(X) =e "

o) o
and the Dirichlet boundary conditions

{ ¥(0,1) = Do(1) = e[, .10
Y(1,6)=Dy(r) =™

The solution to the wave equation with such constraints is the same as the solution
to the diffusion equation of example 8.1:

Y(x,r) =e™* (8.12)

From the initial conditions and

>y PY(x,0) _ d’h(x)
(W),oz oz dzz =e (8.27)

we obtain the second order Taylor series approximation given by

2
W(x, 1) =~ ¥(x,0) —|—t<aalf> Jr%tz <%;2p> = [1 +t+21'12} e (8.15)
=0 : :

t=0

To obtain a fourth-order series approximation, we differentiate the wave equa-

tion to obtain
a3y 0% [0y a1 (x) Ly
(), =ae (o), == (8250

and

(w) 8_2(32‘//) TGO _ Tl _ (8.28b)
t=0

ot ,:Ozaxz ra ox4  dx*
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0 0?2
o 0.

1 5(0% 1 aw 1 1 1 -
ww)

As with the analysis given in example 8.1, the terms in the bracket are the first five
terms in the MacLaurin series for ¢’.00

We can also develop a multistep Taylor approximation to the hyperbolic equa-
tion. To develop such a two step Taylor approximation, we use the initial conditions
to obtain Yr(x,ty + h,) [for example, eqs. 8.15 or 8.18]. Then, the second iteration
will be of the form

Ylx,t) = (x,t0 + 2hy)

:w@mHJm+h—(m+hHCMgJ» h+m (8.29)

An approximate value of the first term in this series is obtained from the
truncated Taylor series expanded about 7 [egs. 8.15 or 8.18, for example]. Since
the second term involves the derivative of i/ at a time other than #,, it cannot
be obtained from the differential equation or from one of the initial conditions.
Therefore, it must be approximated by the derivative of the Taylor series approxi-
mation developed in the first step. This introduces an addition inaccuracy in the
approximation. This process is left as an exercise for the reader (see Problem 2 at
the end of this chapter).

Elliptic equations

Since an elliptic equation depends only on space variables x and y, we try to develop
a Taylor series approximation to the solution is a sum of terms in powers of

hy=x—
o (8.30)
hyEy_yO

For example, to expand ¥/(x,y) about (x, yo) in a Taylor series quadratic in £,
(that is, we keep terms up to hxz, hy2, and h.h,), we begin with

2
W(x,y) = p(x,30) + by (Wg;’ 2 )) ol (%yﬁ’y)) (8.31a)
Yo : Yo
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and

2
Y(x,y) = Y(xo,y) + hy <a¢g;,y)) o %hﬁ (W) . (8.31b)

Setting x = X in eq. 8.31a, we have

N (xo,y) 1o (0%Y(x0,y)
¥(x0,y) = Y(x0,y0) + hy (T;) . + 5h§ (T;)yo (8.32a)

From derivatives of eq. 8.31a, we also obtain

8lp<x1y) ~ 8‘#()@}’0) azlp(x’y) 1 2 aSlp(xvy)
( Ox )XO( Ox )XU—’_hy( Ox0y )XO7y0+Ehy< Ox0y? )xo,yo

(8.32b)
and
@zlﬁ(x,y) ~ 82‘//(x7)’0) +h 83W(x7y>
Ox X0,Y0 ; Oxc? o0 ’ axzay X0,Y0
Lo (0%(x,y)
e e s 8.32
3 y( ox2oy* ) (8:32¢)
We substitute these into eq. 8.31b and keep terms up to second order in / to obtain
N (x,y0) N (x0,y) 15 (9%(x,y0)
l//(xvy) — lp(x(byo) +h‘<< Ox N +hy ay +2!hx 2
0 Yo X0
15 (9%Y(x,y) 0%y (x,y)
—h(—5 hehy | ——=- 8.33
+ 2! y( Oy? >y0 + Aty ( Ox0Oy )xoyo (8.33)
If the solution is constrained by the Dirichlet boundary conditions
W(Xa}’O) = D)’O(‘x)
X, =D, (x
lﬁ( )’f) )/( ) (8.34)
‘/J<x0ay) = on(y)
¥ (xr,y) = Dy (y)
eq. 8.33 can be written
dD,, (x) dD,, (5)
Y(x,y) ~ ¥ (x0,y0) + hx {;}L +hy {d;
0 Yo
1, [d*Dy,(x) d*Dy,(y) %Y (x,y)
e J2 | hoh, [ ——222 8.
T X{ dx? L, i { dy? ]yo " y( Oxdy >x[,ﬁy0 (8.35)
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That is, exact expressions can be obtained from these boundary conditions for all
the terms on the right hand side of eq. 8.33 except for the last term

Y (x,y)
fy ( Ox0y > -

Therefore, with Dirichlet conditions, ¥/(x,y) can only be approximated by the
generally inaccurate Taylor series approximation

lp(xay) =~ l//(x0+hxay0+h_\') +h’n(al//('x’yo)) +h) (i?l//(xmy)

o 5 )yo (8.36)

If the solution is constrained by Neumann conditions

81//()(7))0)

o =M
aW(X;yf) =Ny, (x)
Ox (8.37)
W (xo,y) _ Ny (9) '
gy "
alp(va)’) _
Ty =N, )

eq. 8.33 can be expressed as

Y(x,y) = W(x0,y0) + helNx, (vo) + yNy, (x0)

1 2 8N\0(X) 1 2 8Nxo(y) aNxo(y)
+ 2!hx< e x0+ T B y0+hxhy o ). (8.38a)

or equivalently,

lﬁ()ﬂy) = ‘//(XOJ’O) + thXO(y()) + hyNyo(XO)

1 ONy, (x) 1 ON, (v) ONy, (x)
—h[ =2 —h (== hehy | —2222 8.38b
T J‘< Ox )",04_2! y( Oy y0+ o/ ( )

Since (xg,yo) cannot be determined from the Neumann boundary conditions, we
cannot determine this Taylor sum.

It is straightforward to show that if y(x, y) is subject to Gauss boundary
conditions, then the derivatives of (x, y) at the boundaries can be expressed
in terms of Y(x,y0), but Y(xg,yo) cannot be determined. Thus, ¥(x,y) cannot
be estimated by eq. 8.33 for Gauss boundary conditions. Therefore, some
approach other than a truncated Taylor series is used to approximate the solution
to an elliptic equation.
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8.3 Runge-Kutta Approximations

As the truncated Taylor series approach, the approximate solution to a partial
differential equation is achieved by the Runge—Kutta method when the solution is
subject to initial conditions. And as described above for the Taylor series approxi-
mation, because the Runge—Kutta method yields an approximate solution that is a
function of the space variables, the boundary conditions only define the domain of
that solution.

Parabolic equations

We again consider the parabolic equation of the form

o _ %y _
E_f(x’t)+P(X7I)W:F(x>t7w) (839)
with the initial condition given by
Y(x,t0) = Io(x) (8.3a)

Referring to eqs. 7.17 and eq. 7.18, the Runge—Kutta parameters, which, for a
partial differential equation, are functions of x, are

azw(x7 10):| hr

R0 = Flsto p0) = | o) + Plsto) 05

= [f (x,70) + P(x, to)dz)och)} hy (8.40a)

Ro) = Pt 3 hblsi0)+ 3 110

(o ) s ) 2 s i)

Ra) = F (10 3 B ) +3 Rl

= [f (x, fo +% h,) + P(x, fo +% ht) j—; <Io(x) +% Rz(x)ﬂ e (8.40c)

and

R4(x) = F(x,to + hy,(x, 1) + R3(x))
2
- [ £ to 4+ ) + P, to 4+ ) 55 (Io(x) + R (x))] hy (8.40d)
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Then,

W to+ h) = Io(x) + é IRy (x) + 2R (x) + 2R3(x) + Ra(x)] 841

Example 8.3: Single step Runge-Kutta approximation for the solution to a
diffusion equation

As in example 8.1, we consider

N (x,1) O*(x, 1)

o 0x? (8.96)
With (x,t) subject to the initial condition
Y(x,0) =Ih(x) = e (8.10)
and the Dirichlet boundary conditions
0,t) = Dy(t) = €'
i
the solution is given by
Ylx,r) =e (8.12)

To find (x,0.50) by the Runge—Kutta method, with 4, = 0.50, we refer to
egs. 8.40 to obtain

02 (x,10) d?Io(x)

Ri(x) = 0o, —0.5¢" 42
() = b5 055 = 0.5¢ (8.422)
5 1

d [()(X) +§R1()€) J2 1
Ra(x) = hy - =055 (e" +3 0.5e-“> —0.625¢™"  (8.42b)

d2(1 () +LR (x))

0 A 2 2/ —x —x
d?(e~ + 3125¢ .

Ry(x) = I, dx22 _osdle J;xf 3¢7) 0656250 (8.420)
and

d?(Io(x) + R3(x)) _o Sdz(e’x + 0.65625¢7%)

Rafx)=h dx? dx?

= 0.82813¢™" (8.42d)

Then, from eq. 8.41,

1
Y(x,0.50) = ¢ + (0.5 +2 x 0.625 + 2 x 0.65625 + 0.82813)e ™"
— 1.64844¢" (8.43a)
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which is a reasonable approximation to the exact result
Woraer(%,0.50) = 700 = 1.64872¢ (8.43b)

The accuracy of this result is improved by using a multiple step Runge—Kutta
scheme. Taking fy = 0 and h, = 0.25, the Runge—Kutta parameters for finding
Y (x,0.25) are

R (x) =0.25¢ (8.44a)

R (x) = 0.28125¢ (8.44b)

R (x) = 0.28516¢ (8.44c¢)
and

R (x) = 0.32129¢* (8.44d)

Then, from eq. 8.41, we obtain
W(x,0.25) ~ 1.28402¢™F (8.45)

With (x,tg) = ¥(x,0.25), the Runge—Kutta parameters at # = 0.50 are then given
by

R (x) = 0.32100¢ (8.462)

R (x) = 0.36113¢ (8.46b)

R (x) = 0.36615¢ (8.46¢)
and

R (x) = 0.41254¢ (8.46d)
from which

¥(x,0.50) ~ 1.64870¢ (8.47)

Comparing this result to that obtained by the single step Runge—Kutta method
and to the exact result (eqs. 8.43), we see that the two step process yields a
noticeable improvement in the accuracy of the results. O
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Hyperbolic equation

We again consider the hyperbolic equation in the form

0%y O™y

= fn ) + Pl) S = Flx )

with the initial conditions given by

Y(x,t0) = Io(x)
(%) =1

Using the analysis presented in ch. 7, sec. 7.3 as a guide, we define

w(x, 1) = o

Then the hyperbolic equation can be expressed as

2

0~y
:f(xvt) +P(X71)W = F(X,l‘,lﬂ)
and the initial conditions become

Y(x,t0) = Io(x)
w(x, 1) = I (x)

The Runge—Kutta R and S parameters are given by

Ri(x) = w(x,t0)h, = I (x)hy

S1(x) = F(x,t0,¥(x,00)) = {f(x, to) + P(x, 1)
Ry(x) = {w(x, f) —l—% Sl(x)] hy = [11 (x) —|—% Sl(x)] hy

S( ) F(X to-f—;h,,l//(x,lo)-i-%R[(X))

(8.48)

8.3)

(8.49)

(8.50)

8.51)

(8.52a)

(8.52b)

(8.52¢)

[ (x o+ h,) +P(x o+ h)jzz (10( )+%R1(x)>]ht (8.52d)

o s

(8.52¢)
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1 1
S3(X) =F x7t0+§ht7lp(x7[0)+§R2(x)

= [ f <x, fo +% h,) +P (x, fo +% h,) j—; (10 (x) + % Rz(x))] ho (8.52f)
Ra(x) = [1(x) + S3(x)]e (8.52¢)
and

S4(x) = F(x,t0 + hy, Y(x, 1) + R3(x))
2

= |f(x, 0+ ) + P(x,to + I) i

(Io(x) + R3(x)) | Ae (8.52h)

From these parameters, the solutions for y/(x,t) and w(x,t) at t = ty + h; are

W to+ h) = Io(x) + % Ry(x) + 2R (x) + 2Rs (x) + Re()]  (8.53)
and
w(x, to + hy) (awé? 0) \
— L)+ é 151 () + 25(x) + 255 (x) + S4 ()] (8.53b)

Example 8.4: Single step Runge—Kutta approximation for the solution to a
wave equation

As in example 8.2, we consider the wave equation with ¢ = 1 and #, = 0.5:

Y (x,1)  9%Y(x,1)
o2 o

=0 (8.54)

With y/(x,f) subject to the initial conditions

Y(x,0) =Ih(x) =e

8.26
(5r) =nt=e 020
9/ o
and the Dirichlet boundary conditions
(0.1 = Dofr) = ¢ 61
Y(1,6) =Dy(1) = ! '

the solution is given by

Ylx,1) =" (8.12)
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From eqs. 8.52, the Runge—Kutta parameters are given by

Ri(x) = I, (x)h, = 0.5¢* (8.552)
S (x) = dz}tgx) h = 0.5 d;i;x —0.5¢7 (8.55b)
Rao(x) = :11 (%) +% S| (x)] hy = 0.5[¢™ + 0.25¢ "] = 0.625¢ (8.55¢)
S2(x) = :Io(x) + % R, (x)] hy = 0.5[e™ +0.25¢™"] = 0.625¢~ (8.55d)
Rs(x) = :11 () +% Sz(x)] hy = 0.5~ +0.3125¢~] = 0.65625¢ (8.55¢)

1
2 _
d <1°(x) +2R2(x)> o d2eT + 3125¢7)
. =0.

S3(x) = - 5 = 0.65625¢™ (8.55)
Ry(x) = [I1(x) + S3(x)] s = 0.5[e™ + 0.65625¢ "] = 0.82813¢ (8.55g)
and
d2(1I R d2(e™ + 0.65625¢ ,
Sa(r) = LU +Rs) - gd7(eT + <) _ 0.82813¢" (8.55h)
dx? dx?
from which

.1
U(x,0.5) ~ e + 3 e (0.5 4+ 0.625 + 0.65625 + 0.82813) = 1.64844¢™ (8.56)

and

w(x,0.5) = (%lf

= 1.64844¢ " (8.57a)

I .
) ~e '+ 5 e (0.5 4 0.625 4 0.65625 + 0.82813)
=0.5

Comparing these to
Y oract(%,0.50) = 1.64872¢ (8.42b)
and

Weraer (1,0.50) = 1.64872¢ ™ (8.57b)
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we see that these results are fairly accurate and can be improved by using a multiple
step Runge—Kutta scheme. It is straightforward to do so and is left as an exercise for
the reader (see Problem 4). O

Elliptic equation

As the Taylor series approximation, the Runge—Kutta method is only applicable to
differential equations with solution subject to initial conditions. Thus, since it is
only constrained by boundary conditions, the Taylor series and Runge—Kutta
methods are not appropriate for estimating the solution to an elliptic equation.

8.4 Finite Difference Methods

When approximating a solution by finite differences, we will be determining y/(x,r) at

x = {xp, X1, ..., xy}and t = {1y, 11, ..., 1} for the parabolic and hyperbolic equations,

and Y (x,y) at x = {xq, X1, ..., xy} and y = {yo, y1, - - -, yar} for the elliptic equation.

We will express these values in the form of the solution tables shown in Table 8.1.
The entries in these tables will be designated using the obvious notation

Y (ks tm) = Wi (8.58a)

for the solution to a parabolic or hyperbolic equation, and

¥ (X%, Ym) = Wi (8.58b)
for an elliptic equation.
X = Xp X = X L X = Xy
t=1
t=1
t=1Iy

Table 8.1a Form of the solution table for parabolic and hyperbolic

equations
X = Xp X = X e X = XN
Y =Yo
Yy =M1
Y =Im

Table 8.1b Form of the solution table for elliptic equations
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The Euler finite difference approximations to first and second derivatives are

6(#()(/0 t) !//k,erl - l//k,m
( or = I (8.59a)
8‘11 (X, tm) lnbkwtl,m - lpk,m
( o . ~ I (8.59b)
82$(Xk, t) l//k,m-',-Z - 21//k,m+l - lpk,m
< 2 )t ~ 2 (8.59¢)
and
azllj(x7 tm) lpk+2,m - 2wk+l‘m + lpk,m
The corresponding Milne finite difference approximations are
0P (x4, 1) Vimi1 = Yim-1
(781 o= — o I (8.60a)
a‘// (X, tm) lkarl m lrbkfl m
~ : : 8.60b
( Ox . 2h, ( )
O (1) Yimir = 2Wem — Vi
—_— ~— ’ ’ 8.60:
(~5 ) 2 (8600
and
82‘//(){7 tm) wafl,m - 2wk,m + lpkfl,m
( o ) . ~ 2 (8.60d)

Parabolic equations subject to Dirichlet boundary conditions

The parabolic equation is subject to a single initial condition

lﬁ(x, lo) :IQ(X) (8.3a)

from which the entries in the first row of the solution table are given by

‘//k,O :Io(xk) (861)
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Referring to eq. 8.4a, the entries in the first and last columns of the solution table
are given by the Dirichlet boundary conditions

{ wO,m =D,, (trn)

(8.62)
lpN,m = DXN (tm)
Euler finite differences
The Euler finite difference approximation to eq. 8.2b is
m+1 m 82 X, I
Vimn ZVin _p, 4 py, (L) (8.63)
hy Ox .

With the initial condition, the elements in the second row of the solution table,
defined by t = 1, are

= h
Vi1 = Vo + e o2

for + P <d210 (x)> HA] (8.64)

Jea + P <M>x_xj

= ]O(Xk) + ht dx2

The elements in the third and higher rows are obtained by replacing spatial
derivatives by finite difference approximations. Since the elements in the first and
last columns are specified by the Dirichlet conditions, we take 1 < k < N-1 in

lﬁk+2,m - 2wk-‘rl,m + lpk,m
h2

lkarH—l - ‘/jlo,m

h, = fk,m + Pk,m

(8.65a)

which we write as

Py Py, P,
lpk,nH»l = l//k,m + hl‘ |:fk,m + /’l21 lpk+2,m -2 hzm lkarlAm + W2 : lpk,m:| (865b)
X X X

Starting with m = 1, we have

Py P Py
Yo=Y+l |:fk,1 + h—z"//k+2,1 - 27‘//k+1,1 +?lﬁk,1} (8.66)
X X X
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which gives us elements in the third row (¢ = ;) in terms of elements in the first and
second rows.

We note that for k = N — 1, the second term in the bracket involves Yy, 1
which is outside the boundaries for x. Since the Euler finite differences are as
accurate as a Taylor series truncated at the first power of A,, we might consider
approximating

0
Unirn =Wy + b (%) . (8.67)

Because Yy, is given by the Dirichlet boundary conditions, but (Oy/0x)y, is
not, we cannot obtain a value of Y/, ; from eq. 8.67. Thus, we cannot complete the
solution table for the parabolic equation using Euler finite difference methods.

Milne finite differences

The Milne finite difference approximation to the parabolic equation is

Vicim = 2Wim +¥i1m
h3

lpk,erl - lpk,mfl

=Jkm P m
2h, Jem + P,

(8.68)

With the first row of the solution table (m = 0) defined by the initial condition,
we see that with m = 1 we obtain

Vi — Vo
k2 ThO Py
2h, Jin +Pra

Viia — 2% + ¥
2

(8.69)

which involves unknown values of y in the second (m = 1) and third (m = 2)
rows. Thus, eq. 8.69 cannot be used to find elements in the second row of the
solution table.

But the Milne finite difference approximation is as accurate as a Taylor
series up to h,z. Therefore, we can determine the unfilled entries in the second
row using

2
W(x, ) =~ y(x,t0) + he (awg’ t)>t—r0 +% hy (%ﬁjﬂ‘)) 1=t

= Io(x) + Iy (8'/’ (,1) ) . i (‘W) . (8.70)

Ot 2 or
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To evaluate the time derivatives, we refer to eqs. 8.8 to obtain

0 , dzl

and

(7). =[O - () () e (F57)
+P(x, 1) (% dz;gﬂ)” + P2, 10) %}

=1

(8.71b)
Then, eq. 8.70 becomes
W t1) = Wiy = To(xi) + he[ f (i, to) + Pk, o)1 () |
) (i)
+P(x,1) (dzd(z)>1 (x) + P*(x, )} (x )] - (8.72)

1=ty

Thus, the partially filled solution table for a parabolic equation constrained by
the Dirichlet boundary conditions is that shown in Table 8.2.

X =Xy X =X o X =Xy
t=1o Woo8.61) | ¥10(8.61) e Wno(8.61)
=1 V0,1(8.62) | 1.1(8.72) e Vn.1(8.62)
=1y Wo.m(8.62) VUn(8.62)

Table 8.2 Partial solution table for a parabolic equation constrained
by a single initial condition and Dirichlet boundary conditions

The notations ¥/, o(8.61), Yon.(8.62) and ¥ ,,,(8.72) indicate that these values of
are obtained from the equation number in each parentheses
A second way to estimate Y/, ; is to set m = 0 in eq. 8.68 to obtain

Vit — Vi ~ fuo+ Pro Yis10 — 2W§,0 + V10
2, 2

(8.73)

From the second order Taylor sum, we have

o0 (s, 1 (0% (e
Vi1 =Y — M <W) + Ehzz <%> (8.74)
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Substituting this into eq. 8.73, we obtain

Vi —Vio +l N (xx, 1) e (9%, 1)
2h, 2 ot — 4 or =t
Vir10 = 2V + Y10
2

= Ji0 + Pro (8.75)

where the derivatives are given in eqs. 8.71.
The unfilled entries in Table 8.2, defined by 1 < k < N-land2 < m < M, are
found from

lpk,erl - lpk,mfl P l//k+1.m - 2lpk,m + lpkfl,m
—LTkm

5 , - = fim (8.76)
t X

which we express in the form
Vicim = 2Wim T Wiim
2
= Zhrfk,m + lpk,m—l + 2CPk,m (Wk—o—l,m - 2‘//1(,,;1 + lpk—l.m) (876b)

kpk,erl = wk,mfl +2hy fk,m + Pk,m

where

h
2
X

C

(8.77)

S

We see that for given values of k and m in eq. 8.76b, each entry in the row
labeled by m + 1 is given in terms of entries in rows defined by m and m—1.

Example 8.5: Finite difference approximation for the solution to a diffusion
equation with Dirichlet boundary conditions

We again consider

N(x1) O (x,1)

ot o 0 8.54)
constrained by the initial condition
Y(x,0) =lo(x) =€ (8.10)
and the Dirichlet boundary conditions
W(0,1) = Do(t) = €
{wmo—Dmo—al ¢
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the solution to which is
Y(x, ) =e™* 8.12)
from which we generate the table of exact values shown in Table 8.3.
x = 0.00 x =025 x =050 x =075 x = 1.00
t =0.00 1.00000 0.77880 0.60653 0.47237 0.36788
t =0.20 1.22140 0.95123 0.74082 0.57695 0.44933
t =0.40 1.49182 1.16183 0.90484 0.70469 0.54881
t = 0.60 1.82212 1.41907 1.10517 0.86071 0.67032
t = 0.80 2.22554 1.73325 1.34986 1.05127 0.81873
t = 1.00 2.71828 2.11700 1.64872 1.28403 1.00000
Table 8.3 Table of exact values for e
The Milne finite difference approximation to eq. 8.54 is
lpk,erl = wk.mfl + 2C(wk+l,m - 2lpk,m + l7bk71,m) (878)
With
Yo =lolxy) = e (8.79a)
O (xy, t 0%y (x,0
(L( b )> = (7‘”2’ )> = Il(q) = e (8.79b)
ot t=0 Ox xk
and
<821p(xk,z)> _(82[3¢(x7t)/8t],_0>
or? =0 Ox? “
d*y(x, 0))
=(——=) =L"(xx)=e™ (8.79c¢)
( d'x4 Xk
we obtain
/’12
Vg = (1 +h + 3’) e (8.80)
Taking A, = 0.25 and &, = 0.20, with the Dirichlet boundary conditions
Yom ="
e (8.81)
l//N‘m =e"

and the initial condition and eq. 8.80, we produce the partial solution shown

in Table 8.4(a).
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x =0.00 x =025 x = 0.50 x =0.75 x = 1.00
t = 0.00 1.00000 0.77880 0.60653 0.47237 0.36788
t=0.20 1.22140 0.95014 0.73997 0.57629 0.44933
t =040 1.49182 0.54881
t = 0.60 1.82212 0.67032
t =0.80 2.22554 0.81873
t = 1.00 2.71828 1.00000
Table 8.4a Partial solution table for the diffusion equation
Setting m = 1, eq. 8.77 becomes
Vo = Vo +2C (Wi — 201 + 1) (8.82)

With 1 < k < N-1, this yields the unfilled entries in the third row of the table from
the entries in the first and second rows. We continue this process setting m = 2, 3,
4, and 5 to generate the complete solution table for this differential equation given
in Table 8.4(b).

x = 0.00 x=0.25 x = 0.50 x=0.75 x = 1.00
t =0.00 1.00000 0.77880 0.60653 0.47237 0.36788
t=0.20 1.22140 0.95014 0.73997 0.57629 0.44933
t =040 1.49182 1.16982 0.90407 0.70739 0.54881
t =0.60 1.82212 1.31016 1.18207 0.82012 0.67032
t =0.80 2.22554 3.62661 -0.59266 2.06511 0.81873
t=1.00 2.71828 —34.66001 45.19519 —24.16649 1.00000

Table 8.4b Complete solution table for the diffusion equation

Comparing this to the exact results given in Table 8.3, it is obvious that this
solution table is completely incorrect. The entries at times later than 7y, = 0 and at
distances away from x, = 0 and x = 1 are meaningless and unstable (they are very
large, some are negative and they vary wildly). O

Such meaningless and unstable behavior in the solution of a parabolic equation
is well known (see, for example, Forsythe, G., and Wasow, W., 1960, pp. 27, 92 or
Strikwerda, J., 1989, p. 120). These straightforward finite difference methods yield
stable results for the parabolic equation only when C < 1/2 (see, for example,
Kunz, K., 1957, pp. 328-332). Clearly, the values of %, and A, used to generate
Table 8.4(b) in the above example do not satisfy this condition.

The Crank-Nicolson modification

A commonly used approach to deal with this instability and inaccuracy was developed
by Crank, J., and Nicolson, P., (1947). The method approximates the space derivative
by the Milne finite difference averaged over the time interval [7,,_1, #,,41] as
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((‘Vlﬁ(x, t)) N
ot )

1 Victmer = 2Wemer T Vi tm i Vicim1 = 2Wem—1 Vi1 ma
2 h? h?

1
=20 [(Visrmer F Yasimo1) — 2(‘//k,m+1 +Vim1) + (lpkq,mﬂ Vi imo1)]

(8.83)

Each term in

(8.59d)

8ZW(X7 t) ~ lkarl,m - 2lpk,m + l/jkfl,m
o2 ). h2

contains Y1 Wims and Y1 .. Each such ¢,,,, m = k + 1, k, k — 1) is the first
term in a Taylor series in powers of %,. Therefore, each term is as accurate as a
Taylor series truncated at /2,°. However, with the Crank—Nicolson approximation,
the truncated Taylor series for each combination in eq. 8.83 is

2
% (wn‘mﬂ + lpn‘mfl) = % l/Dn.,m + hf (W(XYHZ)> + 1//12 <alp(xmt)>

Ot 2! or
N (x, 1) 1, (0% (xn, 1)
+ l//n,m hl‘ ( 8t ),m + 2 hf 812 "
_ 1 2 82‘/’()511’ t)
= Vum t35h (T . (8.84)

which is as accurate as the Taylor series up to 4,%. This modification makes the
solution unconditionally stable.

There are other methods for achieving this stability. See, for example, the Jacobi
and the Gauss—Seidel methods by Smith, G.D., 1965, pp. 25-28.

As noted in example 8.5, the first row and the first and last columns of the
solution table are obtained from the initial and Dirichlet boundary conditions, and
the entries in the second row (columns 1 through N—1) are found from the truncated
Taylor series. With the Crank—Nicolson approximation, the entries in the higher
index rows for 1 < k < N-1 are found from

l//k,erl = l//k.mfl + 2ht |:fkm +

Pim (Vicimet = 2Wemit T Wicimir Yarima1 — 2Wima1 T Vi1 mo1
—m +

(8.85a)



342 8 PARTIAL DIFFERENTIAL EQUATIONS

which, with eq. 8.77, we write as

- CPk:mwk+l,m+l + (1 + 2CPk,m)Wk,m+1 - CPkAmlpk—l,rrH—l -

2hlfk7m + lpkx,m—l + CPk,m (wkﬁ—l,m—l - 2l:bk,m—l + l/jk—l,m—l) (885b)
With 1 < k£ < N-1, this yields a set of N—1 coupled equations for the N—1 values of
{l//I,m+ls B ‘/IN—I,m+1 }

Example 8.6: Finite difference approximation for the solution to a diffusion
equation with Dirichlet boundary conditions using the Crank—Nicolson modi-
fication

We again consider

N (x,0) 01 (x, 1)
o o

(8.90)

with (x,f) constrained as in example 8.5.
With the Crank—Nicolson approximation to 0*)/0x?, the finite difference
approximation to eq. 8.9b is

lpl@,m+] = lkan—l +
hy

7 [('Pkﬂ,mﬂ =2 i + lpkfl,mﬂ) + (lkarl.m—l =2+ lpkfl,mfl)}
(8.862)
which we write in the form
Clpkfl,erl - (2C + l)lpk.,erl + Clpk+1,m+l =
- C(‘//kfl,mfl + wk+l,m71) + (2C = DYy (8.86b)

As shown in partial solution Table 8.4(a), the values of i in the first two rows are
obtained from the initial conditions and a truncated Taylor series. Thus, with
h, = 0.20, h, = 0.25, using eq. 8.86b, we generate a set of three coupled equations

for { Y1 me1> Yo me1s W3 mer ), starting with m = 1.
Starting with m = 1, for 1 < k < 3, we have

h
— (2C+ 1)‘//17,”4_1 +h_£lp2.m+l =
= C(opmr + Va1 +Vomer) + 2C = DY,y = o1 (8.872)

C¥i i1 — 2C+ D i + CVs i =
—C(1pmr +V3) + 2C =15, | =00 (8.87b)
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and

ClpZ.,erl - (ZC + 1)‘//3,m+1 =
- C(lp4,m+1 + ¥y + W4,m—1) +2C -3, 1 =3,

343

(8.87¢)

where all oy, are determined from known entries in the solution table. These

equations yield the complete solution table given in Table 8.5.

x = 0.00 x =025 x = 0.50 x =075 x =100
t =0.00 1.00000 0.77880 0.60653 0.47237 0.36788
t=0.20 1.22140 0.95014 0.73997 0.57629 0.44933
t =040 1.49182 1.16378 0.90710 0.70625 0.54881
t = 0.60 1.82212 1.42176 1.10769 0.86263 0.67032
t =0.80 2.22554 1.73544 1.35260 1.05317 0.81873
t =1.00 2.71828 2.11941 1.65228 1.28631 1.00000

Table 8.5 Complete solution table to the diffusion equation with Dirichlet boundary conditions,

using the Crank—Nicolson modification to 0%/0x*

Comparing these results to the exact values given in Table 8.3, we see that the

Crank—Nicolson modification yields stable and accurate results. [J

Hyperbolic equations subject to Dirichlet boundary conditions

The Milne finite difference approximation to the hyperbolic equation

0%y o,
W 7P(x7t)ﬁ :.f()(,[)

without the Crank—Nicolson modification is given by

Vims1 = 2Wim + Wim _ Vicim = 2Wim +Wiim
h? h3

Ppm = fk,m

With the Crank—Nicolson modification, eq. 8.2b is approximated by

lpk,erl - 2‘//k,m + l//k,mfl . Pk,m lkarl.,mJﬁl - 21//k,m+l + l//kfl,erl
2 2 h2

+l//k+1,m—1 - 2!01;;1—1 + ‘//k—l,m—l] — fom
X

We express these as

Vimer = Clim + CPenWVisim+ (2= CPim) Wi+ CPiatli_ 1 m

(8.2b)

(8.882)

(8.88b)

—Yimo1

(8.892)
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and
(o4 C’
- ?Pk,mlpkﬂ,nhtl + (1 + C/Pk.,m)'pk,nhtl - ?Pk,mlpkfl,m+l
C/
= Wlfim + 2im = Vimr + ?Pk,m (‘//k+1,m—1 =2 + ‘Pk-l,m—l) (8.89b)
where
/’12
C' = h—’z (8.90)

As will be illustrated by example, the Milne finite difference approximation to
the hyperbolic equation, with the Crank—Nicolson modification, yields accurate
results, but without the Crank—Nicolson scheme, the results are highly inaccurate.
Thus, it is necessary that we use the Crank—Nicolson scheme for the hyperbolic
equation.

As we discussed for the parabolic equation, the first and last columns of the
solution table for the hyperbolic equation are obtained from the Dirichlet boundary
conditions

=D, (tn
l//0,m 0( ) ( s 62)
lrbN‘m = Dy (tm)
and the entries in the first row of the table are given by the initial condition
Vo = To(x) (8.61)

Entries in the second row are obtained from the truncated Taylor series, which,
from both initial conditions, is given by

"

1
Wi, 1) =Wy 2 Io(xn) + hidy (i) + 5 R |f (ks to) + P(xi, to)ly(x) | (8.91)

Therefore, the partial solution table for the hyperbolic equation subject to Dirichlet
boundary conditions is given by Table 8.6

X = Xo X =X o X = XN
t=1 W0,0(8.61) | Y10(8.61) e Yno(8.61)
t=1 $0.1(8.62) | 11(8.91) o ¥n.1(8.62)
=1y Yom(8.62) YN m(8.62)

Table 8.6 Partial solution table for a hyperbolic equation constrained
by two initial conditions and Dirichlet boundary conditions

The unfilled entries are obtained from either of eqgs. 8.88 with 1 < k < N-1,
1 <m< M-1.
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Example 8.7: Finite difference approximation for the solution to a wave
equation with Dirichlet boundary conditions

We again consider the source-free, one dimensional wave equation with wave
velocity ¢ = 1.

MY (x,1) B 0% (x,1)

=0 8.54
or? Ox? ( )

Imposing the initial and Dirichlet boundary conditions

Y (x,0) =Ih(x) =€

(W) _=h () = e (8.26)
and

fronoo-e,
the solution is
Vo =€ (8.12)

Without the Crank—Nicolson modification, the Milne finite difference approxi-
mation to eq. 8.54 is given by

lrbk.erl - Zl/jk,m + [//k.,mfl B warl,m - 2l//k,m + lpkfl.,m

3 B =0 (8.92a)
which we express in the form
Vimr = CWiiim + 200 = CWipy + CV = Vi (8.92b)
where
/’12
/)
C = h_tz (8.90)

As with the parabolic equation, the entries in the first and last columns of the
solution table are given by

{w om = €7 (8.81)

l//N,m = etmil
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and the entries in the first and second rows are found from

Yro=e ™

1 : (8.93)
Yy = (1 +h + 5 hf) e

Thus, the partial solution table, which is identical to Table 8.4(a), is given by
Table 8.7(a).

x = 0.00 x =0.25 x = 0.50 x=0.75 x = 1.00
t =0.00 1.00000 0.77880 0.60653 0.47237 0.36788
t=0.20 1.22140 0.95014 0.73997 0.57629 0.44933
t =040 1.49183 0.54881
t =0.60 1.82212 0.67032
t =0.80 2.22554 0.81873
t=1.00 2.71828 1.00000

Table 8.7a Partial solution table for a wave equation

The unfilled entries are found by taking 1 < k < 3and 1 < m < 4ineq. 8.92b.
The complete solution table is given in Table 8.7(b).

x = 0.00 x =025 x=0.50 x = 0.75 x = 1.00
t=0.00 1.00000 0.77880 0.60653 0.47237 0.36788
t=0.20 1.22140 0.95014 0.73997 0.57629 0.44933
t =0.40 1.49183 1.60028 1.24521 0.97010 0.54881
t =0.60 1.82212 2.49082 237772 1.71863 0.67032
t=0.80 2.22554 3.53697 4.05750 3.07404 0.81873
t=1.00 2.71828 4.87814 6.04804 5.07617 1.00000

Table 8.7b Complete solution table for a wave equation constrained by Dirichlet boundary
conditions without the Crank—Nicolson modification

Comparing this to the exact values given in Table 8.3, we see that at times ¢,, for
m > 1, and at points x = {xy, Xxp, X3}, the solutions are completely incorrect. The
reason for this is identical to that presented to explain the inaccuracies in the
solution to the diffusion equation without the Crank—Nicolson modification.
Thus, the Crank—Nicolson correction must be used to obtain accurate results for
the hyperbolic as well as the parabolic equation.

With the Crank—Nicolson modification,

0% (x,1) N
Ox? i -

U [Vistmir = 2Wimir T ¥icimer - Yirime1 = 2Wma1 + Wi me1
= +
2 n2 h2

(8.83)
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the finite difference approximation to the wave equation above is
l//k,mwtl - 2lpk,m + lpk‘mfl ~
h? o

(lﬁk+1,m+1 =2 lpk—l,erl) + (lkarl,m—] = 2%y ‘//k—1,m—1)
2h2

(8.94a)

Separating terms with the time index m + 1 from all other terms, we express
this as

C’ C’
7¢k+1,m+1 — (1 4+ s + Elpkfl,mel =

C’ , C’
- 21//k,m - kawtl,mfl + (1 +C )Wk7m71 - Tlpkfl,mfl (894b)
Setting k = 1, 2, 3, in eq. 8.94b, we obtain
C/
E‘ﬁz,mﬂ —(I+CWry oy =
' ' o
- 7‘//2,m—1 +(T4+CWy oy — ?¢07m—] —2¢y, — ?Wo,mﬂ = Lm (8.95a)

c c

7¢3,m+1 — (14 C W +?wl,m+l =

C/ C/
- 5‘//3,mfl + (1 + Cl)‘//Z,mfl - ?lpl,mfl - 21//2,m = 02.m (895b)
and

CI
— (1 +C W34 +El//2,m+l =
C’ c’ C’
— 7lﬁ4,m71 + (1 +CWrs ey — E%,mq =25, — ?l//4,m+1 = 3m (8.95¢)

where, for a given m, the quantities oy ,, are given in terms of known entries in the
solution table. These equations yield the complete solution given in Table 8.7(c).

x = 0.00 x =025 x = 0.50 x=0.75 x = 1.00
t=0.00 1.00000 0.77880 0.60653 0.47237 0.36788
t=0.20 1.22140 0.95014 0.73997 0.57629 0.44933
t =0.40 1.49183 1.16082 0.90387 0.70400 0.54881
t = 0.60 1.82212 1.41936 1.10504 0.86072 0.67032
t =0.80 222554 1.73554 1.35154 1.05260 0.81873
t =1.00 2.71828 2.12129 1.65324 1.28705 1.00000

Table 8.7c Complete solution table for a wave equation
with the Crank-Nicolson modification to 0%//0x>
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Comparing these to the exact results given in Table 8.3, we see that with the
Crank—Nicolson modification, we obtain an accurate numerical solution to the
wave equation. [

Elliptic equations subject to Dirichlet boundary conditions

For the elliptic equation

Oy %y
R(xay)W+S(x7y)a—y2:f(x7y) (826‘)

constrained by the Dirichlet boundary conditions

lp anym) = lp07m = D.X’(](ym)

(
w(xl\ﬁym) = le,m :D»\'N(y’”) (8.96)
lp(Xk,yo) = l/jk,O = DYO (xk)
‘ﬁ(kaM) = wk,M = D)’M (xk)
the partial solution table is that given in Table 8.8.
X = Xp X = X1 o X = Xy
Y =Yo ¥0,0(8.96) | ¥1,0(8.96) c Yn.0(8.96)
Yy =N }0.1(8.96) ¥n.1(8.96)
Y =m Yom(8.96) | i (8.96) b v .m(8.96)
Table 8.8 Partial solution table for an elliptic equation subjected to
Dirichlet boundary conditions
The unknowns {1 1, - - Uno1,15 Wi2s -+ o Wne12s - oo Winots - - Ynoim-1 } are

obtained from the finite difference approximation to eq. 8.2c. Without the
Crank—Nicolson modification, this finite difference equation is

Rk.m Sk‘n
h—j (lpk-o—lﬁm - zlpk,m + lpk—lm) + h—21 (wk,m+l - 2Wk7m + lpk,m—l) :fk,m (8.97a)
X y

With the Crank—Nicolson modification applied to both derivatives, the finite
difference approximation to eq. 8.2c is

Rip
ﬁ [(Wk+1,m+1 = 2Y i Wk—l,erl) + (WkJrl,mfl = 2%y l/jkfl,mfl)jl
X

Skm
+ zkihz [(lrbk+l,nz+l - 2¢k+1,m + lkarl,mfl) + (lpkfl,mJﬁl - 2’wkfl,m + l//kfl,mfl):l
y

= fim (8.97b)
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The unfilled entries are found from these expressions for 1 < k < N-1 and
1 <m< M-1.

Example 8.8: Finite difference approximation for the solution to a Poisson
equation with Dirichlet boundary conditions

The Poisson equation in two dimensions

%y 9% .
o oy T2 (8.98)
when constrained by the Dirichlet boundary conditions
lpOA,m - l//(07ym> = on(ym) = e
l'bN-,m = lp(laym) = DXN(ym) — ¢¥m 1 .
Vio = W(x,0) =Dy, (x) = e ™ )
Vem = Wi, 1) = Dy, (xp) = €'
has solution
Yxy)=e" (8.100)

Thus, with 4, = 0.25 and A, = 0.20, the exact values are the same as those in
Table 8.3, where, of course, the entries that were labeled by ¢ are here labeled by y.
This exact solution table is given in Table 8.9.

=000 | =025 | x%=050 | x=075 | x,=100
Yo = 0.00 1.00000 0.77880 0.60653 0.47237 0.36788
yi =020 1.22140 0.95123 0.74082 0.57695 0.44933
y2 = 0.40 1.49182 1.16184 0.90484 0.70469 0.54881
y3 = 0.60 1.82212 1.41907 1.10518 0.86071 0.67032
ya = 0.80 2.22554 1.73325 1.34986 1.05128 0.81873
ys = 1.00 2.71828 2.11701 1.64873 1.28403 1.00000

Table 8.9 Table of exact results for a Poisson equation

The partial solution table, obtained from the boundary conditions, is given in

Table 8.10.

xo = 0.00 x; = 0.25 x; = 0.50 x3 = 0.75 x4 = 1.00
yo = 0.00 1.00000 0.77880 0.60653 0.47237 0.36788
y1 = 0.20 1.22140 0.44933
y, = 0.40 1.49182 0.54881
y3 = 0.60 1.82212 0.67032
y4 = 0.80 2.22554 0.81873
ys = 1.00 2.71828 2.11701 1.64873 1.28403 1.00000

Table 8.10 Partial solution table for a Poisson equation subject to Dirichlet boundary conditions
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We see from this table that we must solve for the twelve unknown quantities ..
Multiplying by /,> and defining

- N

' = (8.101)

s
=N

the finite difference approximation to eq. 8.98 without the Crank—Nicolson modifi-
cation is

C” (lpkwtl,m - 2’lrbk.,m + l//kfl,m) =+ (wk‘erl - 2’lrbk,m =+ lpk,mfl) = 2h§€ym_Xk
(8.102a)

With the Crank—Nicolson modification, the approximation to eq. 8.98 can be
written as

c’ [(l//kJrl,erl =2 i lpk—l.erl) + (‘Pkﬂ,mq =2 + lﬂkq,mq)]
+ [(l//k-&-l#m-&-l - 21//k+1,m + lpk-*—l,m—l) + (wk—lﬁm-&-l - 2’l//k—l,m + l//k—l.,m—l”
= 4h3e’n (8.102b)

Referring to Table 8.10, we see that for all 0 < m < 5, V), and Y4, are known
entries in the first and last columns of the solution table. Likewise, for all 0 < k < 4,
Vo and ;. s are known entries in the first and last rows. Therefore, setting 1 < k < 3
and 1 < m < 4ineach of the finite difference equations given in egs. 8.102, we obtain
sets of twelve coupled equations for the twelve unknown values of /..

The complete table for the solution to eq. 8.98 without the Crank—Nicolson
modification is given in Table 8.11(a), and the complete solution table with the
Crank—Nicolson approximation is shown in Table 8.11(b).

Xxo = 0.00 x; =025 X, = 0.50 x3 = 0.75 x4 = 1.00
Yo = 0.00 1.00000 0.77880 0.60653 0.47237 0.36788
y1 =020 1.22140 0.94767 0.73681 0.57418 0.44933
y2 = 0.40 1.49182 1.15631 0.89853 0.70034 0.54881
y3 = 0.60 1.82212 1.41290 1.09821 0.85591 0.67032
ya = 0.80 222554 1.72834 1.34451 1.04756 0.81873
ys = 1.00 2.71828 2.11701 1.64873 1.28403 1.00000

Table 8.11a Complete solution table for a Poisson equation with Dirichlet boundary conditions
without the Crank—Nicolson modification
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xo = 0.00 x; =025 X, = 0.50 x3 = 0.75 x4 = 1.00
Yo = 0.00 1.00000 0.77880 0.60653 0.47237 0.36788
y1 = 0.20 1.22140 0.94941 0.73880 0.57454 0.44933
yo = 0.40 1.49182 1.15823 0.90153 0.70207 0.54881
y3 = 0.60 1.82212 1.41499 1.10095 0.85843 0.67032
yq = 0.80 222554 1.73061 1.34607 1.04912 0.81873
ys = 1.00 2.71828 2.11701 1.64873 1.28403 1.00000

Table 8.11b Complete solution table for a Poisson equation with Dirichlet boundary conditions
with the Crank—Nicolson modification

Comparing these two results to the exact values in Table 8.9, we see that while
both solutions are acceptable, those obtained using the Crank—Nicolson modifica-
tion are somewhat more accurate.

To more easily illustrate this, in Table 8.12, we present the percent difference
from the exact value of each calculated solution, using a double vertical line to
separate this percent difference for the values obtained without the Crank—Nicolson
given in egs. 8.102, we obtain from those found with the Crank—Nicolson scheme
(egs. 8.103).

X =000 | x5 =025 =050 | x3=075 Xy = 1.00
Yo = 0.00

y1 = 0.20 0.37110.19 0.54110.27 0.48110.41

5 = 0.40 0.48110.31 0.70110.37 0.62110.37

y3 = 0.60 0.43110.29 0.63110.38 0.56110.26

y4 = 0.80 0.28110.15 0.40110.28 0.35110.20

ys = 1.00

Table 8.12 Percent difference of the approximate solution from the exact value withoutllwith the
Crank—Nicolson modification

Since the entries in the first and last rows and first and last columns of the
solution table are given by Dirichlet boundary conditions, these values are exact.
Therefore, their percent differences are zero and are not shown in the table. We note
that for this example, the results obtained using the Crank—Nicolson modification
are roughly twice as accurate as those determined without the modification. O

The analysis for solving the three types of equations when subjected to Neumann
boundary conditions is essentially the same as when Gauss boundary conditions are
imposed. Therefore, we will present the analysis involving both sets of boundary
conditions together.
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Parabolic equations subject to Neumann and Gauss boundary conditions

We now consider the case for which the constraints on the solution to

N %y
5 =f(x,t) + P(x,1) == o 8.7)
are the single initial condition
W(x,t0) = Io(x) (8.3a)
and either the Neumann boundary conditions
W\
< ax )Xo B NXO(I) 8 103
W)y (1030
o ), "
or the Gauss conditions
WA
W00 +9 () =Gyl
X0
(8.103b)
0
v+ (20) =600

As before, entries in the first row of the solution table are given by the initial
condition of eq. 8.3a:

Yo = lo(xx) (8.61)

and those in the second row are obtained from the Taylor series, which we truncate
2
at h;

V(1) = To () + he [ f (s t0) + P (o, 10)1g (i) |
[ (85) () s (P2

+5 h?
d?P(x, 1
+P(Xk7 IO) (%) [g(xk) + Pz(xk, lo)lg//(xk)‘| (8.72)
Xk

When s(x,t) is subject to Neumann or Gauss boundary conditions, the entries in
the first and last columns of the solution table are not specified. Thus, the partial
solution table is that of Table 8.13.
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X = Xo X =X e X = Xy
t=1 1/00,0(8'61) w1,0(861) A l//N‘0(861)

t=1n V0,1(8.72) V1,1(8.72) o Yn1(8.72)

Table 8.13 Partial solution table for a parabolic equations with solu-
tion constrained by Neumann boundary conditions

Using the Crank—Nicolson modification, the Milne finite difference approxima-
tion to the parabolic equation is

= CPrmWiiimer + (1+ 2CPk,m)l//k,m+l = CPrm¥i1min
= 2htfk7m + l//k‘mfl + CPkﬁm (l//k+1,m—1 - 2l//k,mfl + lpkfl,mfl) (885b)

where

C

| =

(8.77)

To obtain the remaining entries in the first and last columns, we set &k = 0
and k = N in eq. 8.85b to obtain

- CPO,m‘//lA,m-&-l + (1 + 2CPO,m)‘/jO,m+1 - CPO-,mlp—l‘m+l
= 2hlf0,m + lpO,mfl + CPO,m (lme—l - 2‘#07”171 + lpfl,mfl) (81043')

and

—CPN YNt + (1 + 2CPNA,m)le,m+1 — CPN N1 i1
= 2hefvm + Un e + CPNn Uyt — 2UNmt + Un—tme1) (8.104b)

The values of Y/_; ,,,.-1 and Yy, 41 are values of Y outside the boundaries of x,
which can be related to values of iy within the boundaries using the boundary
conditions

For any u, the Milne finite difference approximation to the Neumann boundary
conditions are

lp N lp—
Nxo (t,u) = NO,H = % (8.105a)
X

from which

Vo1, =V, — 2hNoy (8.105b)
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and

Ny (ty) = Nyy =~ W (8.106a)

which yields

YNt = Un-1y T 20Ny (8.106b)

We set u =m + 1 and ¢ = m—1 in eq. 8.106b and substitute the results into
eq. 8.104a to obtain

- 2CP0-,m‘//1,m+l + (1 + 2CP0M)‘100,m+1 = [thfO,m + l//O,mfl
+2CPoum (W1 m1 = Woun-1) — 2hCPom(Nogms1 + Nom—1)] (8.107a)

Setting u = m + 1 and ¢ = m — 1 in eq. 8.106b, eq. 8.104b becomes

(1 + ZCPN,m)le,m+l - 2’CPN-,m‘//Nfl,erl = [thfN,m + l»DN,mfl
+2CPN,m(wN—l,m—l - leﬁm—l) + 2thPN,m (NNJnJrl ""NNAmfl)] (8107b)

To obtain the approximate values of Y_; , and Yy, , from the Gauss boundary
conditions, we take

l//lﬂu - lp—],,u

Go(ty) = Gop =W, +7—"5—" (8.108a)
2h,
from which
2h, 2h,
Vo=Vt 7%,# - TGO,;; (8.108b)
and

lpN+1.,u - le“u

1
T (8.1092)

Gy (tu) =Gy =y, +7

which yields

2h, 2h,
Yniin = Uno1p _7%}“’# —l—TGN,# (8.109b)
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Substituting eqs. 8.108b and 8.109b into eq. 8.85b with u = m + 1 and with
W =m — 1, we obtain

hy
(1 +2CPom — 2CPom y >W0m+l 2CPO.,m‘,Dl,rthl =
|:2h[f07n7 + 2CPO.,m¢17mf] + (1 - 2CP[)m + 2CP[)m )lpom 1
hy
—2CPoym— » = (Gom+1 + Gom—1) (8.110a)
and
hy
= 2CPNm N1 1 T ( + 2CPyym + 2CPy y)lem-‘rl =
20 fnm + 2CPN Ny 1 + (1 —2CPNm —2CPyN >¢NW, 1
hy

+2CPym— N = (GNmi1 + Gym-1) (8.110b)

The entries in each row of the solution table labeled by m > 1 are found by
generating N—1 equations from eq. 8.85b with 1 < k < N-1 and the two equations
at the boundaries [egs. 8.107 for Neumann boundary conditions and eqs. 8.110 for
Gauss conditions]. These comprise the N + 1 equations needed to find the
unknowns {Wom, - - sWnml-

Example 8.9: Finite difference approximation for the solution to a diffusion
equation with Neumann and Gauss boundary conditions

We again consider the differential equation

N (x, 1) _ 02 (x, 1)

ot ox? (8.95)
To obtain the solution
Ylx,t) =e™ (8.12)
we constrain Y/(x,t) by the initial condition
Y(x,0) =Io(x) =™ (8.10)

Again, we take b, = 0.20, h, = 0.25sothat 0 < k < 4and 0 < m < 5. From
Yro=e™

1
¢k1_<1+ht+ n?

(8.93)
)

the partial solution table is given in Table 8.14
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x = 0.00 x =025 x =0.50 x =075 x = 1.00
t = 0.00 1.00000 0.77880 0.60653 0.47237 0.36788
t=0.20 1.22000 0.95014 0.73997 0.57629 0.44881
t =040
t = 0.60
t=0.80
t = 1.00

Table 8.14 Partial solution table for a parabolic equation using the Crank—Nicolson modification

(a) When the solution is constrained by the Neumann boundary conditions

(&//{()i, t))x_o — No(t) = —¢

(8.111)
8‘//()57 t) t—1
N~ 7 — N t) = —
( 8)( x=1 N( ) ¢
the set of equations for {0 n+1, - - -» Ya.m+1}, Obtained from eqs. 8.85b and 8.107 are
(1+2C)Wo i1 — 201 s
=WYom 1 +2C(W 11— Yom 1) — 20C(e™ + &™) = o, (8.112a)
= Cg i + (1 + 200 iy — C¥p s
=Y+ C(Wlm—l —2Yy o + lpOA,m—l) = m (8.112b)
- Clpl,erl + (l + 2C)¢2,m+1 - Clp3,m+1
=Yy + C(‘ﬁlmfl =251 + lpl,mfl) = 0m (8.112¢)
= CYs i + (1 + 2005 001 — C¥g i
= l/Ifﬁ‘mfl + C(lp4.,mfl - 2l//3,m71 + lpZ,mfl) = 03m (8112d)
and
- 2CW37m+1 + (1 + 2C)¢47m+1
= Va1 +2C(Wa 1 — Wamr) +20C(em 7 4T = ay,,  (8.112e)

Solving these equations for each 1 < m < 5 we obtain the complete solution
given in Table 8.15(a).
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x =0.00 x =025 x = 0.50 x =0.75 x = 1.00
t = 0.00 1.00000 0.77880 0.60653 0.47237 0.36788
t=0.20 1.22000 0.95014 0.73997 0.57629 0.44881
t =040 1.48800 1.16250 0.90796 0.70952 0.55552
t = 0.60 1.81678 1.41901 1.10807 0.86567 0.67750
t=0.80 2.22538 1.73676 1.35662 1.06060 0.82986
t = 1.00 2.71707 2.12041 1.65611 1.29453 1.01274

Table 8.15a Complete solution table for a diffusion equation with Neumann boundary conditions

using the Crank—Nicolson modification

A comparison of these results with the exact values given in Table 8.3 shows
that the solution is stable and is slightly less accurate than those found for the
diffusion equation constrained by Dirichlet boundary conditions. This is to be
expected since Neumann boundary conditions are approximated by finite
differences to obtain the values of { at the boundaries, whereas these exact

values of y are specified by the Dirichlet boundary conditions.

(b) The solution to the diffusion equation of eq. 8.9b given in eq. 8.12 is obtained

with the Gauss boundary conditions

W (0,1) (%) =Gl = 2¢

(1,0 - <%>x4 = Gy (1) = 2¢'"

The five equations for {Yo,s1, --.» Wamer), obtained from eq
egs. 8.110, are

[1 + 2C(1 + hx)]lljo,m+l - 2Cl//17m+1
=[1 =2C(1 = h)Wo,m 1 +2CY, 1 +2Ch2e" " + 2" 1] = ag,

- ClpO,erl + (1 + 2C)W17m+1 - Cl//2,m+1 =
Vimo1 + C(%,mq =20 g + Wo,mq) = Uim

— CYy i1 + (1L + 200041 — Cifr3 i1 =
Yoo + C(%,mq =25 + llll,mfl) = 03m

= CYs s + (1 +20W5 11 — Cy g =
CYs g + C(W,mq —2Y3,1 + Wszl) = 03m

(8.113)

. 8.84b and

(8.114a)

(8.114b)

(8.114c)

(8.114d)
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and

- 2CW.%,m-&—l + [1 + 2C(1 - hx)]l//4,m+l =
2005,y + [1 = 2C(1 = h) gy — 2Che[2e"1 71 4 2671 = 1y,
(8.114e)

For each value of 1 < m < 4, the solution to this set of equations yields the
complete solution table given in Table 8.15(b).

x = 0.00 x =025 x = 0.50 x =075 x = 1.00
t =0.00 1.00000 0.77880 0.60653 0.47237 0.36788
t=0.20 1.22000 0.95014 0.73997 0.57629 0.44881
t =040 1.48999 1.16434 0.91023 0.71293 0.56113
t = 0.60 1.81968 1.42141 1.11071 0.86937 0.68342
t=0.80 2.23087 1.74382 1.36630 1.07451 0.85020
t = 1.00 2.72356 2.12868 1.66725 1.31037 1.03592

Table 8.15b Complete solution table for a diffusion equation with Gauss boundary conditions
using the Crank—Nicolson modification

Comparing these results to the exact values given in Table 8.3, we see that the
solution is stable, and not quite as accurate as when Dirichlet or Neumann
conditions are applied. Again, this is due to the fact that for the Neumann and
Gauss conditions, Y and 0y/0x are approximated at the boundaries by finite
differences. O

Hyperbolic equations subject to Neumann and Gauss boundary conditions

When the solution to the hyperbolic equation

2 2
A ey (8.20)

is subject to the two initial conditions

lﬁ(x, l‘o) = [()(X)

(w> e 8.3)
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entries in the first two rows of the solution table are given by the initial conditions
Yo = o(xe) (8.61)
and

"

Y (ks 1) = Yy = lo(xn) + heli (xx) +% hy [P(XkJO)[o(xk) — [l to)|  (891)

But, as noted for the parabolic equation, when the solution to the hyperbolic
equation is subject to Neumann or Gauss boundary conditions, all other entries in
the first and last columns must be approximated by finite differences. Thus, the
partial solution table is shown in Table 8.16.

X = Xpo X = X1 o X = XN
1=1y Yo0(8.61) | ho.(8.61) . Yon(8.61)

t=1n V0,1(8.91) ¥1.1(8.91) e Wn,1(8.92)

t:tM

Table 8.16 Partial solution table for a hyperbolic equation with
solution constrained by Neumann or Gauss boundary conditions

With the Crank—Nicolson modification, the Milne finite difference approxima-
tion to the hyperbolic equation is

(o4 , C
- ?Pk,ml/jk+l,m+l + (1 + CPkﬁm)‘pk,mH - ?Pk.mlpk—l,m—o—l
C/
= hfsz,m + 2 = Vi + ?Pk,m (‘//k+1,m71 =2y + lqu,rnq) (8.89b)
where, as before
/’12
/)
C' = h—’2 (8.90)

To determine the unfilled entries in the first and last columns, we set k = 0 and
k = N in eq. 8.89b to obtain

(o4 (o4
- ?Po.m%.mﬂ + (1 4+ C'Pom)Womer — 7P07m¢71,m+1
!

C
= ht2f0,m + 2lp().,m - !//O,mfl + EPOJN (lljl,mfl - 2lp().,mfl + [//71.,m71) (8115&)
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and
C’ C
- ?PNM‘//NJrl,erI + (1 +CPyw)¥y s — ?PN,m‘//N—l,mH
2 C
=Rfvm+ 29N — Yy + ?PN.m ($N+1,m71 = 2Nt lPNfl,mfl)

(8.115b)
To obtain expressions for ¥_; ,,+1 and Yy4q m+1, We use the finite difference

approximation to the boundary conditions.
When the solution is constrained by the Neumann boundary conditions

8.103
WO\ o (8109
Ox oW
XN

we have shown that for any u,

Vo1, =i, — 2hNoy (8.105b)
and

Unstp = ¥n-1p T 20Ny (8.106b)

With ¢ = m+1 and u = m—1, we substitute these into eqs. 8.115 to obtain

(C/P()‘m + 1)w0,m+1 - C,PO,mlpl,erl = [hzzf()m + 2l//(),m - lp(),mfl
+C,P0,m¢1,m—1 - C,POﬁmpom_] - C,POA,mhx (NO,m—l + NO,erl)] (81163)

and

- C,PN,ml//N—l,erl + (C’PN’,,, + 1)le,m+1 = [htsz,m +2UNm = YN
+C,PN7mle_17m_1 - C/PN,m‘//N,m_l + C/PN.mhx (NN,m—l “V‘NN.m+])}

(8.116b)
When the solution is subject to Gauss boundary conditions,
o (x,t
v + (220 6.0
x X
! (8.111)

o) +5(He0) =6
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For any u, the finite difference approximation to these yields

2h, 2h,
Vo=Vt 7 Yo — TGO‘,; (8.108b)
and
2h, 2h,
Unitp = Ynoipw — TlPN,ﬂ + TGN,;; (8.109b)

Then, for 4 = m + 1 and u = m-1, eqgs. 8.116 become

C'P
— <C/P0,m +1 me)l/IOerl + C'Poytly iy =

c'P mllx
|:h[2f0,m - 2lp()A,m + (C,POJN + 1 + ,Z )Wo m—1 ClPOJnW],m—l

C'Po mhy
- L (GO,m+1 + G07m—1>:| (81173)

and

C'Pp mhy
C'PNm¥N_1mi1 — <C/PN,m +1- +> YN =

C'Py mhy
hzsz,m - CIPN,mle—l,mfl = 2N (C/PN,m +1+ L)

_ C,PN.m hx

+ Vot
(Gymir + GN,ml):l (8.117b)

The complete solution table is obtained by taking 1 < k < N-1 and m > 1 in
eq. 8.89b and using eqs. 8.116 when Neumann or conditions apply, or eqs. 8.117
when Gauss conditions are imposed.

Example 8.10: Finite difference approximation for the solution to a wave
equation with Neumann or Gauss boundary conditions

We again consider the wave equation

0M(x,t)  0M(x,1)
o2 o

=0 (8.54)

with solution

Y(x1) =e™" 8.12)
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which is constrained by the initial conditions

Y(x,0) =Ih(x) ="

(P0) - o

As before, we take h, = 0.20, h, = 0.25sothat0 < k <4and 0 < m < 5.
The entries in the first and second rows of the solution table are obtained from

(8.26)

Yo =lolxk) = e

1 (8.92)
lpk,] ~ <1 + ht + Ehtz) eka

The partial solution table for this wave equation is identical to the partial
solution table for the diffusion equation of example 8.9 (Table 8.14) which is
reproduced as Table 8.17.

x = 0.00 x =025 x=0.50 x = 0.75 x = 1.00
t =0.00 1.00000 0.77880 0.60653 0.47237 0.36788
t=0.20 1.22000 0.95014 0.73997 0.57629 0.44881
t =0.40
t = 0.60
t=0.80
t = 1.00

Table 8.17 Partial solution table for a wave equation with Neumann or Gauss boundary
conditions using the Crank—Nicolson modification

(a) When the solution is constrained by the Neumann boundary conditions

(W)M = Ny(f) = —e'!

(8.111)

the five equations for {41, - - -» Yam+1}, Obtained by setting 1 < k£ < 3 in
eq. 8.89b and using egs. 8.116, are

- (l + C/)lpo,erl + C/lpl,nH»l =

- 2’lrb()m + (Cl + 1)lp0,m71 - C/l//],mfl - Cth(etmil + e l) = %o,m (81183)
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(o4 (o4
?¢0,m+l — (1 +CWry +7W2,m+1 =
(o4 (o4
- 2‘#1,m - 7¢0,m—1 + (Cl + 1)W17m—1 - 7W27m—1 = Oim (8.118b)
C’ C’
?l//l,m-‘rl - (1 + Cl)¢2,m+l +?‘//3,m+1 =
C , (o4
- 2%2./'1 - Elljl,mfl + (C + 1)'«#2”,,1 - 71113,mfl =0m (8118C)
C’ C’
?¢2,m+1 — (1 +CWr3 1 +7¢4,m+1 =
C’ C’
=25, — ?'//2,%1 +(C'+ 13, — ?W,mq = 03m (8.118d)

and

Cllp37m+1 - (1 + Cl)lp4,m+1 =
= Wy = CVYs g+ (C 4+ Dy + Clhy(em 7 e 7 =0, (8.118e)

Solving this set of equations for 1 < m < 4, we obtain the solution table given
in Table 8.18(a).

x = 0.00 x =025 x = 0.50 x =0.75 x = 1.00
t =0.00 1.00000 0.77880 0.60653 0.47237 0.36788
t=0.20 1.22000 0.95014 0.73997 0.57629 0.44881
t =0.40 1.54588 1.17164 0.90523 0.70017 0.52779
t =0.60 1.96939 1.46245 1.11242 0.84694 0.61683
t =0.80 2.47459 1.84138 1.37572 1.02402 0.73433
t=1.00 3.06407 2.31627 1.71142 1.24830 0.89732

Table 8.18a Complete solution table for a wave equation with Neumann boundary conditions
using the Crank—Nicolson scheme

A comparison of these results with the exact values given in Table 8.3 shows
that the solution is reasonable and not as accurate as those obtained for the wave
equation constrained by Dirichlet boundary conditions. Again this reduction
in accuracy results from the fact that the values of i at the boundaries are

approximate.
(b) When the solution is subjected to Gauss boundary conditions
W (x, 1)
0,t) — | ——= = Go(t) = 2¢'
b0.0— (P50) = Guf =26

(8.113)
v - (Pl)  — i =2
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s Wamer} form > 1 are

—(C+ 1+ Ch gt +CYy iy =
- 2lp0,m - C,‘plﬁm—l + (C/ +1+ Clhx)lpoﬁm—l - ZCIhX(et"H + efmﬂ) = Olo,m

Cl

Cl

?lpo,qul — (L +CWr +7¢2,m+1 =

-2

Cl
?l//l,m+l -

C/
- 2lpZ,m - ?‘pl,mfl +

Cl

C/

Vim— ?'//O,mq + (L +CWry oy — ?lpz,mq = dim

71112,m+1 - (1 + C/)lrb3,m+1 +

- 2lp3,m -

and

Cl
2

CYspi = (C'1=Ch )Wy iy =
2y +(C+ 1 =Ch )y — C3,y +2Ch, (etm*]_l + er—l)

= U4,m

C/

Cl

(1 + Cl)wZ,erl +?‘//3,m+1 =

C/

C/
E¢4,m+1 =

C/

A+CWapy — E‘//a,mq = dom

1+C _= =
M= o,m= M= k
Yom1 + (L +CWs 0y 2W4m | =03,

(8.119a)

(8.119b)

(8.119c¢)

(8.119d)

(8.119)

The solution to these equations yields the complete solution shown in Table 8.18(b).

x = 0.00 x =025 x =0.50 x =075 x = 1.00
t =0.00 1.00000 0.77880 0.60653 0.47237 0.36788
t=0.20 1.22000 0.95014 0.73997 0.57629 0.44881
t =040 1.59348 1.18110 0.90610 0.69519 0.50143
t = 0.60 2.08133 1.49656 1.11617 0.82657 0.53975
t=0.80 2.62692 1.91440 1.38444 0.97231 0.58789
t = 1.00 3.21808 2.42610 1.72301 1.14878 0.66780

Table 8.18b Complete solution table for a wave equation with Gauss boundary conditions using

the Crank—Nicolson approximation

A comparison of these results with the exact values given in Table 8.3 shows that
the solution is less accurate than the results obtained when Dirichlet or Neumann
conditions are applied for the same reasons discussed earlier. O
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Elliptic equations subject to Neumann boundary conditions

When the solution to the elliptic equation

o™y oy
R(XJ)@*'S(XJ)W—J‘(X’Y) (8.2¢)
is subject to Neumann boundary conditions
Wy _
< Ox X0 a NXO (y) (8 120 )
.120a
WEIN -y
ox ). w
and
<8¢(x, y)) N, ()
ay Yo
(8.120b)

none of the boundary values of i are specified. Thus, the partial solution table with
Neumann boundary conditions is an empty table, and all  values {{/q, - . ., Ynar}
must be determined by finite difference methods.

With the Crank—Nicolson modification, the finite difference approximation
to eq. 8.2c is

Rim
# [(¢k+1,m+1 =2 i '//kfl,erl) + (¢k+1,m71 =2y + lnbk—l,mfl)}'f'

Skm
ﬁ [(l//k—o—l.m+l - 2lpk+l,m + l//IcJ'-l,nz—l) + (‘/lk—l,m-ﬁ—l - 2lpk—l.m + l//k—l,m—l)]
y

:fk,m
(8.97b)

with0 < k< Nand 0 < m < M.
For k = 0, m = 0, eq. 8.97b becomes

% (Y0 =20+ 1)+ (Wi — 20 +¥ )]+

So.0

2_h§ [(lﬁl,l —2¢0+ lpl,fl) + (‘//71,1 =210+ Wflﬁl)]

= foo (8.121a)
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With &k = N, m = 0, we have

R
% [(‘//N+1,1 =2y, + ‘prl,l) + (‘//N+1,71 =2y + lefl,fl)]"_

S
% [(¢N+1.1 AN ¢N+1,71) —+ (¢N71,1 —2Yy 10+ lefl,fl)]
Y

=/no (8.121b)
Setting k = 0, m = M, eq. 8.97b is

R
% (Va1 = 200pn + Vi) + Wi = o +Vm0) ]+

S
% [(lpl,M+l =2y + wl,M—l) =+ (Wfl,thl =2yt l//71,M71)]
y

= fom (8.121¢)

and with k = N, m = M, we obtain

R
—21\2124 [(WNH,MH_ 29N pgr t ‘PNA,MH) + (‘//N+1,M71 = 2Nt l//Nfl,Mfl)]'i_
X

S
% [(¢N+1,M+1 = 2Nam Tt le«H,Mfl) + (wN—l,M+1 —2Yn_mt WN—I,Mfl)]
Y

=fvm
(8.121d)

These expressions contain values of \ at x_y, xy41, y_1, and yuz,; which are
outside the boundaries of x and y. They can be related to values of i/ within these
boundaries using the Neumann boundary conditions.

With
alﬁ(xvyWI) lplm - lP71 m
( Ox o n(y ) 2h, ( a)
we obtain
lpfl,m =~ lplﬁm - ZhXNx’o(ym) (8122]))
and with

31//(X»ym) o ~ lpNJrl,m - l//N—l,m
(T N =Ny, (Ym) — o (8.123a)
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we have
Wit = Vot + 20Ny, (Ym) (8.123b)
Likewise,
(8‘//(5;'»)’)>y0 Ny (5) = Via 2_h;//k,1 (8.124a)
yields
Vi1 =V — 2hyNy, (xx) (8.124b)
and from
(a‘pgyk’y )>YM — Ny () = Pt~ Voot 2;;”““ (8.125a)
we obtain
Vi1 = Y1 + 2hyNy, (i) (8.125b)

Egs. 8.122b, 8.123b, 8.124b, and 8.125b are unique expressions for values of s
at points (x, y) such that one of these variables is within its prescribed boundary and
the other is outside its boundary.

Eqgs. 8.121 also contain terms involving ¥_; _1, Yn+1-1, V_1.0+1, and Y1 az41-
These are values of i at points that are outside the boundaries of both x and y.

Since the Neumann boundary functions given in eq. 8.120 are given in closed
form, they can be evaluated at x_i, xy.1, Y_1, and yus1. Therefore, we can use
egs. 8.122b, 8.123b, 8.124b, and 8.125b to relate these values of y at points (x, y)
for which both x and y are outside their boundaries to values of i at points within
those boundaries.

For example, we first set m = —1 in eq. 8.120b to obtain

Yo=Y — 2Ny (y-1) (8.126a)
Then setting £k = 1 in eq. 8.124b, we have
lp]A,—] = lpl,] - ZhyNyo(xl) (8.126b)
With this, eq. 8.126a becomes

Yo =Yg — 2N (y-1) — 2hyNy, (x1) (8.127a)
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If we first set k = —1 in eq. 8.124b, then set m = 1 in eq. 8.122b, we obtain
lp—lﬁ—] = l//1,1 — 2heNyy (y1) — 2Ry Ny, (x-1) (8.127b)

which differs from the expression for _; _; in eq. 8.127a.
With identical analysis, using eqs. 8.123b and 8.124b in different order, we find
different expressions

Y11 =Unoia + 20Ny (y-1) — 2hyNy, (xnv-1) (8.128a)
and
Unir 1 = Yy + 20Ny, (v1) — 2Ny, (xv1) (8.128b)
Applying this analysis to eqs. 8.122b and 8.125b results in
Vot = Wi = 20Ny (Y1) + 20Ny, (1) (8.129a)
and
Y oim = Vi — 20Ny (Yy-1) 4 20Ny, (x_1) (8.129b)
Using eqgs. 8.123b and 8.125b in this way, we obtain
Uniimir = Unoim—1 + 20N (Y1) + 2hyNy, (xv—1) (8.130a)

and

le+l,M+1 = lefl,M—l + 21Ny, (Ym-1) + 2hyNy,, (Xn41) (8.130b)

Thus, at points where both x and y are outside their defined boundaries, using the
same Neumann boundary conditions in different order results in different
expressions for Y. Thus, these values of y are not uniquely determined by the
Neumann boundary conditions.

When finding the finite difference solutions to an elliptic equation subject to
Dirichlet boundary conditions, we found that approximating the derivatives by
Milne finite differences without the Crank—Nicolson modification led to reasonably
accurate results (see example 8.8).

Without the Crank—Nicolson modification, the finite difference approximation
to eq. 8.2c is

Rk.m Sk,m
h—j (‘/lk-&-l,m - 2‘//k,m + lrbk—l,m) + 7 (lpk,m+l - 2lpk,m + l//k,m—l) :f/ﬂm (8.131)
y

X
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With the pairs of values (k,m) = {(0,0), (N,0), (0,M), (N,M)}, we obtain the
equations

R S
=0 (% 0~ 2Yoo + l//71,0) + % (WOJ —2Yp0 + l//O,fl) = foo (8.132a)
y
R S
T Wveno = 2o ¥vor0) +5 (s = o +ht) =fvo (81320

R Som
— (lpl = Wom +V_1m) + h2 (l//0M+1 2om + Wom-1) =fom (8.132¢)

and

RN M SN M
—== (Yyi1m =2yt ¥y ) + e (e 2+ Unm1) =fvm
y

(8.132d)

,X

We note that there are no terms in these equations involving s at a point that is
outside the boundaries of both x and y. The quantities ¥_; o, Yo_1, Wn+1.0 YNt
V_1.m> Yomst, Wner s and Yy gy are values of i at points beyond the boundary
of only one of the variables. These are obtained in terms of / at points within the
boundaries of both variables from eqs. 8.122b, 8.123b, 8.124b, and 8.125b.

Referring to eq. 8.122b, we have

Voo = — 21Ny, (y0) (8.133a)
and
Voim = Wiy — 2Ny (ym) (8.133b)
From eq. 8.123b, we obtain
Uni10 = Wn_10 + 20Ny, (Vo) (8.134a)
and
Uniim = Un_am + 20N, (hm) (8.134b)
Eq. 8.124b yields

Yo—1 = Wo1 — 2hyNy,(x0) (8.1352)
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and
le,—l = ‘//N,l — 2hyNy, (xn)
With eq. 8.125b, we obtain

Yomsr = Wom—1 + 2hyNy,, (x0)

and

l//N,M+1 = '//N,M—l + 2hyNy,, (xn)

With these, egs. 8.132 can be written as

So.0
h—i(ZWIO 2Yg0) + h2 (2%1 2g) =

ZNVO( )R() 0 + ZNyO (.XO)S0,0

foo + I, I, = Boo
Rnp Sno
e (2‘//1\] 1,0 2%’,0) 2 (2%\/1 2%/.0) =
X y
fvo— 2Ns, 00)Ryo + 2 (220) S0 = Bno
Iy h,
Rom So.m

e (2W1M ZWO,M) h2 (Z‘I’OMI Z%M):

Four + 2Ny, (ym)Roy 2NyM( 0)Som
: Iy h,

= ﬁo,M

and

R
NM —== (W — 2Uwm) +

2Ny, (ym)Rvm 2Ny, (XN)SN,M =B
hx h)’ B

X

fam —

These equations, along with

Rk m Sk.m

X

fk,m = Bk,m

S
)+ NM (Wnm1 —2wm) =

T2 (‘ﬁHl m— W+ ‘pk—l,m) + hT (‘//k,m+1 = 2U + !Dk,m—l) =
y

(8.135b)

(8.136a)

(8.136b)

(8.137a)

(8.137b)

(8.137¢)

(8.137d)

(8.133)

with (k,m) # {(0,0), (N,0), (0,M), (N,M)}, are the coupled equations needed to

solve for {Vo0, - .-, Ynar}-
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We express these (N + 1) x (M + 1) equations in matrix form as

AY =B (8.138)
where
Yoo Boo
Youm Bowm
¥ = W}O p= |’ L0 (8.139)
[ ] [ ]
Vim ﬁ1,M
le.M BN,M

and A is the matrix of coefficients of the unknown s values.
Referring to eq. 8.128a, the non-zero elements in the first row of A are

2Roo 2S00 <@ m)
2 02 0 2 2

h? hy h? hy

We see from this that the sum of the elements in the first row of A is zero.

Likewise, from eq. 8.137b, the non-zero elements in the (N + 1)th row of A are

2 2 2 12
h? hy h? hy

2Ryo  28np ) (RN,O SN,O)

Thus the elements in this row also sum to zero.

From eqs. 8.137c and 8.137d, it is straightforward to verify that the elements in
the rows of A defined by k = 0, m = M and by k = N, m = M also sum to zero.
And, referring to eq. 8.131, in the kth row of A for 1 < m < M-1, with 1 < k <
N-1, the non-zero elements are

Rk,m Sk,m Rk,m Sk,m Rk.m Sk,m
202 202

—km o Pkm - ZkmoSkme A [ Z2km
AT AT A TE *

The elements in each of these rows also sum to zero.

Thus, when the set of equations for {0, - - ., Yy} is expressed in matrix form,
the coefficient matrix has the property that the elements in every row sum to zero.
It is shown in Appendix 5 that such a matrix is singular. Therefore, the elliptic
equation without the Crank—Nicolson modification cannot be solved by Milne finite
difference methods.
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The reader will demonstrate in Problem 9 that if we take the Milne finite
difference approximation to the elliptic equation with the Crank—Nicolson modifi-
cation, and use the averages of eqgs. 8.127a and 8.127b through eqs. 8.130a and
8.130b to approximate the values of ¥y i, Ynii 1, Y_1mr1, and Yyiq a4 the
coefficient matrix is again one for which the sum of the elements in every row is
zero. Thus, we conclude that the elliptic equation, subject to Neumann boundary
conditions, cannot be solved by finite difference methods.

Elliptic equations with Gauss boundary conditions

When the elliptic equation of eq. 8.2c is subject to Gauss boundary conditions

W (X0, ym) + 7 (W) = Gy (Ym)
Voo (B g
and
¥ (x,y0) +7, (%ﬁ) = Gy, ()
Y0 (8.140b)

lp(xlmyM) +’Vy (81//(8)(:;7)))) = GyM(xk)
wm

these constraints do not specify values of i/ at the boundaries. Therefore, as with
Neumann boundary conditions, the partial solution table is empty and all i values
{Y00, - - -, Yy} must be determined from the finite difference equations.

The finite difference approximation to the elliptic equation with the
Crank—Nicolson modification is

R m
ﬁ [(lﬂkﬂ,mﬂ =2 i l//kfl,m+l) + (lpkﬂ,mq =2y lpk—l,mfl)}Jr

S
% [(lﬁkﬂ,mﬂ — 2Wiim t l//k+1,m—1) + (l//kfl,m+1 =2yt lpkflmfl)]
2

= fk,m
(8.97b)

Setting (k, m) = {(0, 0), (N, 0), (0, M), (N, M)} in eq. 8.97b we obtain eqs. 8.121,
which contain V_; _, Y1 -1o Y1 pe1, and Yo prer-
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From the finite difference approximations to the Gauss boundary conditions,
we have

2h 2h,

Vot = Vi + = Vom == G lom) (8.141a)

and
UNttm = WNim — 2y—hxlﬁzv,m + %G,w(}’m) (8.141b)

From eq. 8.140b, we find
Dt =+ gy~ 22 () (8.1410)
Yy Yy

and
Vi = Vipr = 2’? Vim + %Gm (%) (8.141d)
To obtain an approximation to _; _;, we first set m = —1 in eq. 8.141a, then

use eq. 8.141c to estimate v, _; and yo_;. This results in

2h 2h, 4h.h
Yo=Y+ =0+ — VYo +——V
1,—1 1,1 7, 1.0 " 0,1 = 0,0
2h 2h, 4hh
- y—yGyo(xl) — =Gy (y-1) = Gy, (x0) (8.142a)
y x xly

Using eq. 8.141c with k = —1 first, then using eq. 8.141a to obtain /_; ; and
W_1.0, we have

2h, 2h, 4h.h,
Vo=Vttt Yo Y
1,—1 1,1 7, 1,0 ”n 0,1 Vil 0,0
2h, 2h, 4h.h
— =Gy (x1) = =Gy (1) =Gy (y0) (8.142b)
Yy Vs Vx¥y

As we found with the Neumann boundary conditions, Milne approximations to
the Gauss boundary conditions yield an approximation to y_; _; that is not unique.
As such, we consider the Milne approximation without the Crank—Nicolson modi-
fication, which is

Rin Sk,
h_21 (Wkﬂ,m = 2%+ qu,m) + h—zm (‘/’k,m+1 =20 + Wk,mfl) = fim (8.97a)
y

X
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or, with
=2 (8.101)

we write this as

[C,,Rk.m‘pkﬂ,m + C”Rk,m‘pk—l,m + Sk,m‘pk.,mﬂ + Sk,m‘pk,m—l
—2(C"Rim + Skm)Wim] = 5 fim (8.143)

Using eqs. 8.141, we see that for (k, m) = (0, 0), eq. 8.143 becomes
|:2C”R(),()lp]’0 + 2503()!,00’1

hy h
-2 (C”Ro,o + 800 — C"Royp f — 80,0 y—y> %,o]

X y

hy hy
= h2f0 0 + 2C”R()0 ’y_GXO (yo) + 2S00 . Vn (X()) ﬁOO (8.1448.)

X y

With (k, m) = (N, 0), we obtain

|:2C”RN,Ol//N1,0 + 28w 0¥

X

h h,
-2 (C”RN,() + Sno + C"RN,() y—x —Sno V—)> WN,O‘|
Y

h, h
= I3 fyo — 2C" RNOTGxN (vo) + 2SN°77 Gy, (xn) = By (8.144b)

x y

Setting (k, m) = (0, M), we find
{2CHRO7MW1,M + 2Som¥o m-1

hy h,
-2 (C//RO,M +Som — C"Rom . —+ So.m y_)> lpO,M‘|

X y

hy h
= h)zy,fo’M + 2C//R07M ’))_GXO (yM) - ZSO,M y_yGJ’M (X()) = ﬁO,M (8144C)
X y
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and with (k, m) = (N, M), we have
|:2C”RN-,M'70N1,M + 2Sv ¥y -1

h, h
-2 (C”RN,M +Svm + C"Rym y_ + Svm y—y> le,M‘|
: y

X

h h
= hivaM - 2CNRN7My—XGxN (yM) - ZSN,My_yGyM(xN) = ﬁN,M (8144d)

y

The equations for ¥, ,, with (k, m) # {(0, 0), (N, 0), (0, M), (N, M)} are obtained
directly from

[C”Rk,mlpk%m + C”Rk,mlﬁk_lﬁm + SkmW i mi1 + SkmW i m-1

—2(C"Rim + Skm)Wim) = Wofim = Bm (8.145)
We again write the equations for {, ..., Yy} in matrix form
A¥Y =B (8.140)

where W and B are the column vectors given in eq. 8.139. Referring to eq. 8.144a,
we see that the non-zero elements in the first row of A are

h, h,
2C"Ro, 2S00, — (C”Ro,o + 800 — C"Rop o So,0 “/‘)
X y

We see that the sum of these terms, and thus the sum of the elements in the first
row of A, is not zero. Identical analysis of eqs. 8.144b, 8.144c, and 8.144d
yields elements of A in other rows, the sums of which are also non-zero. Therefore,
A is not singular, and it is possible to obtain a solution to the coupled equations for
(W00r - Unar).

Thus, since the Gauss boundary conditions contain a term s added to the
derivative and the Neumann conditions do not, the elliptic equation with Gauss
boundary conditions can be solved by finite difference methods whereas the elliptic
equation with Neumann conditions cannot.

Example 8.11: Finite difference approximation for the solution to a Poisson
equation with Gauss boundary conditions

We again consider
0% 0%y

e + 8—)72 =27 (8.98)
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which, when constrained by the Gauss boundary conditions

¥ (0,y) + 2(%) o Go(y) = —¢

O (x,y)

(8.146a)
v +2( ) G0y =

and

(8.146b)

has solution
Y(xy)=e"" (8.100)

With A, = 0.25 and &, = 0.20 (and therefore 0 <k <4 and 0 < m <5),
eq. 8.145b becomes

C”lprhtl,m + C”lpnfl,m - 2(C/,1)l//n,m + lpn,mJﬁl + lpn,mfl = 2h§eymixn (8147)

We use the finite difference approximation to the boundary conditions

Yot = Vi + Ao, + hee™ (8.148a)
Usm = Wam— iy, — hee™! (8.148b)
Vi1 =Yy + Ao — 3hye™ (8.148c¢)
and
Vo = Wia — s + 3hye' ™ (8.148d)

to relate values of i at points outside the x or y boundary to values at points within
that boundary.

With eq. 8.146 and eqs. 8.147, we generate the set of 30 equations for the
unknowns {00, ..., Y05, --- Yap, ---, Yas}, the solution to which is given in
Table 8.19.
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x = 0.00 x =025 x =0.50 x =075 x = 1.00
y = 0.00 1.03427 0.81193 0.63856 0.50291 0.39630
y = 0.20 1.25040 0.97986 0.76886 0.60393 0.47466
y = 0.40 1.51505 1.18579 0.92892 0.72829 0.57133
y = 0.60 1.83939 1.43833 1.12539 0.88108 0.69021
y = 0.80 2.23702 1.74799 1.36634 1.06851 0.83611
y = 1.00 2.72464 2.12760 1.66164 1.29817 1.01480

Table 8.19 Solution table for Poisson’s equation subject to Gauss boundary conditions without
the Crank—Nicolson modification

Comparing these to the exact values given in Table 8.3, we see that, unlike to
solution constrained by Dirichlet boundary conditions, these results are accurate to
only a few decimal places, but the results are reasonable and stable. Again, this
inaccuracy stems from the fact that we find approximate values of  at the
boundaries from approximations of the Gauss boundary conditions. [

Problems

0? 0
1. The parabolic differential equation XW -7 % = 2x*¢" subject to initial
X

condition ¥(x, 1) = ¢* and the Neumann boundary conditions

Ny o
(5) x=1 -
8‘# 2t
(a) x=2 -

(I) What Dirichlet boundary conditions constrain this solution?
(II) Find y(x,t) at t = 2 for x = {1.00, 1.25, 1.50, 1.75, 2.00} by

has solution Y (x, 1) = ¢

(a) a single step Taylor series in ¢ of 2nd order in (¢—1).
(b) a single step Taylor series in ¢ of 4th order in (z-1).
(c) atwo step Taylor series of 2nd order in (z-1).
In each case, compare your results to the exact solution.

. oW 10%Y . .
2. The wave equation —— —— —— = 0 subject to the Dirichlet boundary
ox2 4 of

conditions

¥(0,¢) = sin(2mnz)
Y(1,t) = —sin(2nr)
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and the initial conditions

¥(x,0) = sin(nx)

<W(§; t)>t_0 = 2ncos(nx)

has solution ¥(x, 7) = sin(nx + 27r)

(D What Neumann boundary conditions constrain this solution?
(II) Find yr(x,t) at t = 0.5 for x = {0.00, 0.25, 0.50, 0.75, 1.00} by

(a) single step Taylor series in ¢ of 2nd order in .
(b) a single step Taylor series in ¢ of 4th order in .

(IIT) Use the results of part II(b) to develop a two step Taylor series of 2nd
order in ¢. Use that result to determine (x,f) at ¢t = 0.5 at the values of
X given above.
In each case, compare your results to the exact solution.

0? 0 !
3. The parabolic differential equation xa—f — tzg = 2x*¢" subject to initial
X

condition ¥/(x, 1) = ¢* and the Neumann boundary conditions

oy o
(a) x=1 -

&)
Ox x=2
has solution ¥/(x,t) = e

Find y(x,) at t = 2 for x = {1.00, 1.25, 1.50, 1.75, 2.00} by

(a) a single step Runge—Kutta scheme.
(b) a two step Runge—Kutta scheme.
In each case, compare your results to the exact solution.

o 10%

4. The wave equation ——- —— —5- =0 subject to the Dirichlet boundary
- ox2 4 0
conditions

W(0,1) = sin(2mt)
V(1,t) = —sin(2nr)

and the initial conditions

W(x,0) = sin(nx)

<W(§; f)>t_0 = 27cos(7x)

has solution ¥/(x, t) = sin(mx + 27r)
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Find y(x,t) at t = 0.5 for x = {0.00, 0.25, 0.50, 0.75, 1.00} by

(a) a single step Runge—Kutta scheme.
(b) atwo step Runge—Kutta scheme.
In each case, compare your results to the exact solution.

0? 0
5. The parabolic equation xa—f — tz% = 2xt“e
Y(x,1) = ¢* and the Dirichlet boundary conditions

2" subject to initial condition

has solution ¥/(x, ) = e
For h, = 0.25 and h, = 0.20, use Milne finite differences to determine the
solution table for this differential equation for 1 < x < 2,1 <t < 2.

(a) Without the Crank—Nicolson modification.
(b) With the Crank—Nicolson modification.

In each case, compare your results to the exact solution table.
PY_p e

6. The parabolic equation x = 2xt“e" subject to initial condition

W(x,1) = ¢* and the N eumann bounda.ry conditions

o o
(ax)xl -

3.
Ox x=2
has solution ¥/(x,t) = ¥

For h, = 0.25 and &, = 0.20, use Milne finite differences to determine the
solution table for this differential equation for 1 <x < 2,1 <t < 2,

(a) Without the Crank—Nicolson modification.
(b) With the Crank—Nicolson modification.
In each case, compare your results to the exact solution.

% 19% . .
7. The wave equation — — - —— = 0 subject to the Dirichlet boundary
ox2 4 o

conditions

W(0,1) = sin(2mt)
V(1,t) = —sin(2xr)

and the initial conditions

V(x,0) = sin(nx)

(lﬁ(;; ’)>I_0 = 2mcos(mx)

has solution ¥(x, 7) = sin(nx + 2nr)
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For h, = 0.25 and &, = 0.20, use Milne finite differences to determine the
solution table for this differential equation for 0 < x < 1,0 <t < 1.

(a) Without the Crank—Nicolson modification.
(b) With the Crank—Nicolson modification.
In each case, compare your results to the exact solution.
0% 10%

8. The wave equation 2 dR 0 subject to the Gauss boundary conditions

1 (oY L
W (0,1) + - (5) o sin(27t) + cos(2t)

v(l,1) +% (%ﬁ) - = —sin(2nt) — cos(2nt)

and the initial conditions

W(x,0) = sin(nx)

<lﬁ(;ta f)>10 = 2mcos(mx)

has solution ¥(x, 7) = sin(nx + 2nr)
For h, = 0.25 and &, = 0.20, use Milne finite differences to determine the
solution table for this differential equation for 0 < x < 1,0 < < 1.

(a) Without the Crank—Nicolson modification.
(b) With the Crank—Nicolson modification.
In each case, compare your results to the exact solution.

. - . %y o*
9. Show that a solution to the elliptic equation R(x,y) = + S(x,y) = = f(x,y)
: Ox? 0y?
subject to
o
(ax) =Ny ()
X0
4
<a> = Ny ()
XN
and

() 0

cannot be obtained using Milne finite difference approximations with the
Crank—Nicolson modification.
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10.

11.

2 92
Show that a solution to the elliptic equation R(x,y)%—lerS(x y) af
0 0 " 4
T(x, y)a—l//+ Ulx, y) v —f(x y) subject to

(%) LT Ny (y)
@i) L Ny (v)

and

cannot be obtained using Milne finite difference methods, either with or
without the Crank—Nicolson modification.

The .ejlliptic equation WJraa—lf* 2 subject to the Gauss boundary
conditions
alp(X,y) 2
0 =
W( ,y)+< o ),
alp(xay) 2
1 = 3
W( ,y)+< ) N
and
v (200)
20—

has solution ¥ (x,y) = x> + y?
For h, = 0.25 and h, = 0.20, use Milne finite differences to determine the
solution table for this differential equation for0 < x < 1,0 <y < 1.

(a) Without the Crank—Nicolson modification.
(b) With the Crank—Nicolson modification.
In each case, compare your results to the exact solution.
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12. The time dependent Schroedinger equation in one dimension

V1) 12 0% (x,1)
h——t=———"—
ot 2m  Ox?
behavior of a particle of mass m under the influence of a potential energy function
V(x). Write down the Milne finite difference approximation to this equation with

the Crank—Nicolson modification.

+ V(x){(x, 1) describes the quantum mechanical



Chapter 9
LINEAR INTEGRAL EQUATIONS
IN ONE VARIABLE

The general form of an integral equation for the unknown function of one variable

Y(x) is

b(x)

AW = @) +7 [ ey ©.10

When J[x, y, Y(y)] is of the form K(x, y){(y), eq. 9.1a is the linear integral equation
b(x)

AW = olo) 52| Kl ©.1b)

where A(x), ¥o(x), a(x), b(x), and K(x, y) are known functions and 4 is a specified
constant. Y/o(x) is referred to as the inhomogeneous function and K(x,y) is the kernel
of the equation.

If both limits a and b are constants, the integral equation is called a Fredholm
integral equation. If a is constant and b(x) = x, the integral equation is the Volterra
equation.

Except when K(x, y) is one of a few special cases, there are no techniques for
solving eqgs. 9.1 in a closed form. As such, for many integral equations, numerical
and other approximation methods are essential for estimating y/(x).

9.1 Fredholm Equations of the First Kind
with Non-singular Kernel

If A(x) = 0 for all x € [a, b], the Fredholm equation of the first kind is of the form

b

Yolx) = zj K (e, ) (3)dy ©.2)

a

where K(x, y) is analytic at all x and y in [a, b].

H. Cohen, Numerical Approximation Methods, DOI 10.1007/978-1-4419-9837-8_9, 383
© Springer Science+Business Media, LLC 2011
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Solution by Quadrature Sum

One commonly used approach for solving Fredholm equations is to approximate the
integral by a quadrature sum

b N
|| Ky = S wak 5 m ) 3) 93)
m=1

a

With this, eq. 9.2 becomes

N
Vo) = 2D WK (%, yu )Y () 9.4)
m=1

Setting x to each abscissa point in the set {y;}, and using the notation

Kk, Ym) = Kim 9.5)

we obtain a set of coupled equations, the matrix form of which is

o) wiKi1 e e wyKiy W(y1)
: = : : : (9.62)
Wolyw) wiKy; e e wyKyy W(yn)

It is straightforward to obtain the solution as

-1

¥(yi) wiKip e e wyKiy Yov)

° 1 ° ° °

N = 7 o o . (9.6b)
¥ (yn) wiKy; e e wyKyy Yolow)

If one of the abscissa points (e.g., y,) is such that K,,,,, = 0, then all the elements
in the nth row of the coefficient matrix are zero. Thus, the determinant of the matrix
of eq. 9.6a is

W1K11 LS WNKIN
[ ] [ ]
[ ] [ )
WIK(nfl)l b WNK(nfl)N
0 0 0 ee¢ 0O O 0 =0 9.7
wiK i oo WNK i)
[ ] [ )
[ ] [ )
wiKn1 L] wyKny




9.1 Fredholm Equations of the First Kind with Non-singular Kernel 385

Therefore, the kernel matrix is singular. Thus, one must choose a quadrature rule
such that K,,,,, is non-zero for all abscissae of the quadrature rule.

Example 9.1: Solution to a Fredholm equation of the first kind by
quadratures

Since the solution to the Fredholm equation of the first kind

1
J @Y (y)dy = ¢ — e (9.82)
-1
is
Yx) = e (9.8b)

Using a quadrature rule to approximate the integral

1 N
J xe N (y)dy = wixe U () ©9)
k=1

0

we see that for x = 0, the kernel xe” (-9 is zero. Thus, if we use a Gauss—Legendre
quadrature rule (the most appropriate for an integral from —1 to 1), we must choose
an even order rule, so that x = 0 is not one of the abscissa.

To obtain a sense of the accuracy obtained using an even order Gauss—Legendre
rule, we approximate the integral as in eq. 9.9 by a six-point quadrature. We obtain

(0.93247) —4.00895
¥(0.66121) 2.49535
(0.23862) —7.24554 0,100
= .10a
¥ (—0.23862) —11.67704
¥(—0.66121) 9.36377
¥(—0.93247) —25.87992
The exact values at these points are given by
WV e (0.93247) 0.39358
Y evaet (0.66121) 0.51623
0.23862 0.78771
l/jexact( ) _ (910b)
W prer(—0.23862) 1.26950
W prer(—0.66121) 1.93713
W raer(—0.93247) 2.54078
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Clearly, the results presented in eq. 9.10a do not represent ¢ . They are highly
inaccurate and oscillate wildly from point to point. In addition, the results are not
improved by using a larger quadrature set to approximate to the integral. [

This example illustrates the well known fact that the Fredholm integral of the
first kind is an ill-conditioned problem (see, for example, Baker, C., et. al., 1964).

There are several methods presented in the literature for smoothing these results.
For example, the Galerkin approach involves choosing the value of x at which the
solution is to be obtained and approximating Y/(y) by a sum over known basis
functions ¢(y), which are chosen by the user. Then, with

N
DEDINA) .11a)
k=1

the error parameter

o(a) =

is minimized (for example, by the method of least squares, minimizing with respect
to the coefficients a;). Excellent treatments of such approaches are given by
Twomey, S., 1963, Baker, C., et. al., 1964, Hanson, R., 1971, and Hansen, P., 1992.

2
(9.11b)

-3 a [k J (5, ) e )y

k=1

Series approximation
If K(x, y) and o(x) are analytic at all points in [a, b], then (x) is also analytic
everywhere in [a, b]. If xq € [a, b], we can (x) as

Y(x) =Y crlx = xp)* (9.12a)

k=0

that is valid at all x in [a, b]. A truncated series

i) = clx —xp)* (9.12b)

yields an approximate solution to eq. 9.2.
Substituting eq. 9.12b into eq. 9.2, we obtain

N N
)~y e J y—x0)'dy =12 cdi(x) (9.13)
k=0 a

k=0
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Because the integrand is a known function, the integral /;(x) can be evaluated
in a closed form or can be accurately approximated by some quadrature rule.
Therefore, I;(x) is known at every x.

To determine the coefficients cy,. Yo(x) and each I;(x) are expanded in their
Taylor series and we equate the coefficients of corresponding powers of (x—xy)
up to (x—xo)N .

Using an approach that is suggested by the Galerkin method, a more convenient
way to develop the series method is to write K(x, y), ¥/o(x), and y/(x) as sums over
orthogonal polynomials, where the polynomials used depend on the limits of the
integral.

Referring to ch. 4, if x and y vary over [0, oo] and if yy(x) and K(x, y) can be
written as

K(x,y) =e’L(x,y) (9.14a)
and
ho(x) = e Qo(x) (9.14b)
such that
ylirglo e ’L(x,y) =0 (9.15a)
and
\li»nolo e Q(x) =0 (9.15b)

then one might expand these functions as a series involving Laguerre polynomials.
Likewise, if —oco < x and y < oo, and if K(x,y) and y/o(x) can be written as

K(x,y) = e L(x,y) (9.162)

and
Yo(x) = e Qo(x) (9.16b)

with
Jim e YL(x,y) =0 9.17a)

and
lim e Q(x) =0 (9.17b)

X—00
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one might write the series for these functions in terms of the Hermite polynomials.
If x and y vary over finite limits @ and b, one can transform this interval to [-1, 1]
and write the series for /o(x) and K(x, y) in terms of Legendre polynomials.

It was shown in ch. 4, eqs. 4.9 through 4.16, which for any limits of integration
(finite or infinite) any integral can be converted to one integrated over [-1, 1].
It was also shown that if the exponential factors for x € [0, co] or x € [-00,00]
are not explicitly part of the integrand, one usually achieves accurate results
by transforming integrals over an infinite domain to [-1, 1] and using a
Gauss—Legendre quadrature. Thus, for a kernel and/or inhomogeneous term that
does not contain the exponential explicitly, one should consider transforming the
integral to [-1, 1] and expanding the functions over Legendre polynomials. This
is an example of what Baker calls expansion methods (Baker, C. T. H., 1977,
pp- 205-214).

Legendre polynomials form an infinite set of mutually orthogonal polynomial
functions over the interval [-1, 1] such that

1
2
J_l Pn(X)Pm(X)dX = ménm (4100b)

As such, we transform the domains of ¥/, o, and K to x, y € [-1, 1] then expand the
unknown function, the inhomogeneous function and the kernel as

Y(x) = i cxPr(x) (9.18a)
k=0
Yolx) = ¢iPi(x) (9.18b)
k=0
and
K(x,y) = tynPr(0)Pu(y) (9.18¢)
k=0
m=0

from which we determine the coefficients

1
g =20 | wtron (9.19)

and

2k+1)2m+1) (1 !
L :%J ]J K@ 3Py ()P (y)dcy (9.19b)



9.1 Fredholm Equations of the First Kind with Non-singular Kernel 389

Then, the Fredholm equation of the first kind becomes

> > | -3 -

¢kPk(x) = /‘kanPk(x)J Pm y ﬂknzcnpk 75:7#1

=0 k:(()) -1 1‘:,% 2m + 1)
=0 "0

- 2
= D FnCmPr(xX) o (9-20)
; (2m+1)
m=0
Equating the coefficients of the various Legendre polynomials, we obtain
¢, = f: 2 L€, (9.21a)
k — mo(zm_"_l) km“m .

Approximating the infinite series by a finite sum, we obtain a finite set of linear
equations

N
2
b = Z mﬂmcm (9.21b)

m=0

In this way, the only integrals we may have to approximate by quadratures are those
of egs. 9.19, which are integrals of known functions. It has been shown in ch. 4 that
when the integrand is analytic over the range of integration, quadrature rules
usually yield accurate results for such integrals. And approximating an infinite
series by a finite sum is equivalent to approximating a function by a truncated
Taylor sum. Such an approximation of an analytic function has been shown to be
quite accurate. Thus, as will be seen, this method yields stable and accurate results.
We define the N x N matrix A with elements

o = ﬁ#m 9.22)
and the column vectors
ol
F= : (9.23a)
bn

and
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C1
[ ]

C= (9.23b)

CN

to write eq. 9.21b as a matrix equation which is solved straightforwardly by matrix
inversion.

Once one has obtained values of the coefficients c;, one can determine the
approximation to Y/(x) at any x in the domain of .

Example 9.2: Solution to a Fredholm equation of the first kind by series
expansion

We again consider

1
J e (y)dy = eF — e (9.8a)
-1
the solution to which is
Y(x)=e (9.8b)
from which
VY eraer (1.0) 0.36788
W exaer(0-5) 0.60653
lpexact (00) = 1.00000 (924)
lpexact(_O'S) 1.64872
lp«fz,\‘act(il-o) 2.71828

Taking five terms in the sums of eqs. 9.18, the approximations to y/(x), o(x), and
K(x, y) are

4
P(x) =Y crPr(x) (9.252)

k=0

4

Yo(x) = > ¢iPi(x) (9.25b)

k=0

and
4
K(@y) = tPr(x)Pu(y) (9.25¢)
k=0

m=0
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We note that /o(x) given in eq. 9.8a is an odd function. Referring to eq. 9.19a,
since the integral is evaluated over symmetric limits, ¢q, ¢, and ¢4 are zero since
their integrands are odd functions. The non-zero coefficients are

1 1
R R S
-1 —1

and

70 7

$3 =1 J (¢ — e )P3(x)dx = - J (€ —e™)(5x" —3x)dx
2 —1 4 —1
_ 7(37671 _ 561) (926]3)

Rather than write down all 25 coefficients p,,;, we present two as examples:

15 !

1 i 1
, 15 (s
Moy = J lez(x)J le}('_x)Pl(y)dydx§ J x(3x2 -1) J 1 Y ydydx

-1
2 —x)e” 179 — xe(179)]

(1—x?

dx (9.27a)

15 [(
-7 Lx(3x2 —1)

and

63 | S 63 (! . 5
Haz :ZJ le4(x)J leY( 7“)P3(y)dydx=aJA l)((35)( —30x" +3)x

(L 6 15 15 )
(I-x) (1-x? (1-x°* (1-x*

s 16 15 s
(I-x) (1-x? (1-x° (1-x?*

Such integrals cannot be evaluated in closed form.

It is straightforward to show that these integrands are not singular at x = 1.
Therefore, they are well approximated by quadrature sums. In this example, we
approximate them using a 20-point Gauss—Legendre quadrature rule.

For this five polynomial series approximation, we obtain

dydx (9.27b)

¥(1.0) 0.36251
¥(0.5) 0.60773
¥ =] 00 |=/|099%665 (9.28)
¥(—0.5) 1.65340
¥(~1.0) 2.70208
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The accuracy of these results is indicated by their percent differences from the exact
values given in eq. 9.24. These differences are

A(1.0) 1.5%
A(0.5) 0.2%
A0.0) | =] 03% (9.29)
A(—0.5) 0.3%
A(~1.0) 0.6%

which indicates that this five term series approximation yields a fairly accurate
approximation to the solution to a Fredholm equation of the first kind. O

9.2 Fredholm Equations of the Second Kind
with Non-singular Kernel

Referring to eq. 9.1, when A(x) is non-zero for all x € [a, b], we can divide the
Fredholm equation by A(x), rename the inhomogeneous function and kernel as

Yo(x)
AO(X) — Yo () (9.30)
and
K(x,y)

to obtain the Fredholm equation of the second kind

b

W) = o) + 7 j K(ey)W()dy 9.32)

a

Solution by quadrature sum

We approximate the integral of eq. 9.32 by a quadrature sum to obtain

N
) 2 o () + 4> WK (6, Y)W () 9.33)
m=1
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With at least one value of Y/(y;) non-zero, we set x to each of the quadrature points
in the set {y,,}, to obtain

Y1) Yo(r1) wiK; e e wyKiy ¥ (y1)
: _ : ) : : : (9.34)
¥ (yn) Wo(ow) wiKyi e e wyKyy Y(yw)

which is solved straightforwardly by matrix inversion.
An approximation to ¥/(x) at any x can then be obtained by substituting these
values of Y/(y,) into the sum in eq. 9.33.

Example 9.3: Solution to a Fredholm equation of the second Kkind by
quadratures

The solution to

y) =e' - Jl xe" 'y (y)dy (9.35)
—1

Yx)=e" (9.8b)

Using a four-point Gauss—Legendre quadrature rule, the integral equation is
approximated by

4
Y(x) ~ e — Z wmxey”’<1"">1//(ym) (9.36a)
m=1

Setting x to each y,,, this becomes

4
lp(yk) ~ el — Zmekeym(liy‘()‘//(ym) (936b)
m=1

We define the 4 x 4 kernel matrix with elements
Aiom = Wiyt 1) (9.37)

Then, eq. 9.36b can be expressed as

¥ (y1) eV wiy et 1) e 0 wyy e (1) ¥ (y1)
° ° ° ° L
. =l .- . . . (9.38)

lﬁ()q) et W1y4e}’1(l—y4) oo W4y4ey4(1—}’4) W(ﬂ)
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the solution to which is given by

‘//<YI) leleyl(l*)’l) o0 W4y1€y4(17y1) el
N . . o BCED)
lﬁ(ﬂ) W1y4ey1(l—y4) o0 W4y4e)’4(1—)’4) et
From this, we obtain
(0.86114) 0.42268
(0.33998) 0.71178
Y= = (9.402)
¥(—0.33998) 1.40492
¥(—0.86114) 2.36585
Comparing this to
Y erar(0.86114) 0.42268
_(0.33998 0.71178
Weraer = Vewaal - (9.40b)
W oraer(—0.33998) 1.40492
lpexact(_o-861 l4> 2.36586

we see that the method of quadratures yields an extremely accurate result. The
largest of the 4% differences from the exact values is 1.3 x 107,

To obtain values of /(x) at any value of x, we substitute the values given in
eq. 9.40a into the sum of eq. 9.36a. From this we find

¥(1.0) 0.36788
¥(0.5) 0.60653
¥(0.0) | = | 0.00000 (9.41)
¥(—0.5) 1.64872
¥(—1.0) 2.71828

which is identical to the exact values of {/(x) atx = {1.0,0.5,0.0,-0.5,—1.0} to five
decimals. The largest percent difference from the exact values is 7.4 x 107. [
Approximating {s(y) by spline interpolation

Another approach is to approximate y/(y) by a constant in the Fredholm integral.
To do so, we divide [a, b] into small segments, writing the integral as
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b N—1 pxpy
J K(x, ) (y)dy = ZJ K (x, )y (y)dy (9.42)
a m=0 Y Xm
where
Xo=a (9.43a)
and
Xy =>b (9.43b)

We note that the points x,, are chosen by the user and are not necessarily abscissae
of a quadrature rule.

Although it is not necessary to do so, for the sake of simplicity, we take these
small intervals to be evenly spaced by defining

Xm+1 — Xm = Ax (94‘4)

with Ax independent of m. By taking Ax to be small enough, we can approximate
W (y) over each segment x,, < y < x,,, by the constant

Y (y) = o (xm) + BY (Ximi1) (9.45)

where o and f§ are chosen by the user. This is a cardinal spline interpolation over
[%2» Xm+1]. Unless there is some reason to choose otherwise, a reasonable choice
would be to take

1
=== 9.46
o=y 5 (9.46)
With these values for o and f, the Fredholm equation of the second kind

becomes

Xm-+1

V [w(xm>+w<xm+l>]j K(x,y)dy

[ (om) + W (oms1) [ (%) (9-47)

where

In(x) = J K(x,y)dy (9.48)
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Then, with 0 < k < N-1, we set x = {xg, ..., Xny_1} to obtain
PR
Ylw) = o (i) + 5 > W om) + Y1) ()
m=0

= olx) + % {o(xi) (xo) + [o(xx) + 11 () ] (1) +
oo [Iv-a () + Iv-1 (i) W (ov—1) + Iy—1 ()Y (v ) } (9.49)

which yields a set of simultaneous linear equations for the set {y/(x;)}.

Example 9.4: Solution to a Fredholm equation of the second kind by a cardinal
spline interpolation

The integral equation

1
Y(x) =1 +J xe Y=y (y)dy (9.50a)
(

has solution
Y(x) =¢' (9.50b)

For simplicity of illustration, we obtain the solution atx = {0, 1/3,2/3, 1} taking
Ax = 1/3. Then, with 1 = /5 = 1 and with xg = 0, xy = x3 = 1, and

x[1 — e~ (=93]

13 S R
Iy(x) = J xe ¥y = (1—x) (9.51a)
0 X
g x=1
—(1=x)/3 _ ,—2(1-x)/3
2/3 xle ¢ ] x#1
L(x) = J xe gy = (1—-x) (9.51b)
173 o x=1
3
and
—2(1-%)/3 _ ,—(1-x)
| x[e e ] YA
h(x) = J xe (1= gy = (1—=x) 9.51c)
2/3 X R
3
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eq. 9.49, for this example, is

1 2, 1

1= 3000)$(0) =5 10(0) + 1 OG) ~5 110) + OG- 1(0Wp(1) =1

(9.52b)

33045 |G+ 1) |w)+ | 1-31 D)~ 51C) [y B -3 nGwn =1

(9.52¢)
1
—5 (MY (0) =5 () +L (Y (G) —5 [ (1) + LW ) + {1 ——12(1)]¢(1):1
(9.52d)
We obtain
¥ (0) 1.00000
w(d) | [ 140497
v || 1.96740 (9.532)
w(1) 2.74895
Comparing these results to
Vexaer (0) 1.00000
Veer®) | | 1.39561
Ve ® | | 194773 (9.53b)
Yerace(1) 2.71828

we see that the method yields reasonably accurate results. O

We note that this approach is not applicable to Fredholm equations of the first
kind. Writing the Fredholm integral as

b N=1 ey
| Koty =3 [ ko (9.42)

a k= Xk
and approximating y/(y) as

1

Y(y) ~5

W) + ¥ es)] <y <xe (9.54)
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the Fredholm integral of the first kind becomes

—1

W (k) + W (oves1) e (x) (9.55a)

~
=

L

Yo(x) =~ )

W () + (e 1) [ (X)) (9.55b)

Expressing these equations in matrix form, we obtain the solution
¥ =M"¥, (9.56)
where the matrix M is given by

M=
Io(x1) [To(x1) +1i(x1)] ee [Iy_o(x1)+Iv—1(x1)] In—1(x1)

9.57)
To(xe)  [o(xe) +11(xx)] ee [In_o(xg)+Iyv—1(xk)] In—1(xz)

N>

Io(xy) [lo(xn) +11(xn)] e [Iy-a(xn) +1In-1(xn)] In-1(xw)

Using the Gauss—Jordan elimination method for finding M! (see ch. 5), we can
cast M into a form such that two columns are identical. Thus, M is singular.
We demonstrate this by example.

Example 9.5: Matrix for a Fredholm equation of the first kind is singular

The 4 x 4 matrix M is given by

(50 ] pand o
X2 X2) +11(x2 1(x2) +12(x2 2(X2
M= 2 Ig(m) [12()(3) +11(x3)] L) +1a(xs)] a(xs) ©.58)
Lo(xs)  [To(xa) + 11 (xa)]  [11(xa) +12(xs)]  12(x4)

Performing the Gauss—Jordan operations on the columns of M,
col, — col, — col (9.59a)
and

cols — cols — coly (9.59b)
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we obtain
(1 1 )
A To(xa) ©Ii(x) Ii(x2) ILp(xo
M5 il Bis) B () ©-60)
1()()(4) 11()(4) 11(X4) 12(X4)

Since the second and third columns of this matrix are identical, M is singular. O

Interpolation of the kernel

Another approach to solving the Fredholm equation of the second kind is to
interpolate the kernel over the interval of integration.
We approximate

K(x,y) = > KX, ym)vm(y) (9.61)

[q(x) —q(x1)].-.[q(x) = q(x—1)][g(x) = qQxes1)]--[q(x) — gxn)]

o)~ 0)a() — G ] laG) —aG)]

where g(x) is some function appropriate to the kernel being represented. Then, the
Fredholm equation of the second kind becomes

N b
0 = (o) + 23" K ) [ w01y 9.62)
m=1 a
We define
b
B EJ Vi (V)Y (v)dy (9.63)

so that eq. 9.62 is written as

N
Y(x) = Yo(x) + 4> K, ym)B (9.64)
m=1
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Substituting this into eq. 9.63, we have

b N
B = J vie(y) [Wo()’) + )»ZK(y,ym)ﬁm] dy (9.65)
a m=1
With
b
0 = J (3o (¥)ely (9.662)
and
b
o EJ v (K3, ym)dy (9.66b)

eq. 9.65 can be written as the set of linear equations

N
Be=o+2> Tinb, (9.67)
m=1

The solution for the set {f;} is found by standard methods. Then, {(x) at any x is
given by eq. 9.64.

Example 9.6: Solution to a Fredholm equation of the second kind by interpo-
lation of the kernel

We again consider

Y(x) = — Jl xe’ Iy (y)dy (9.35)
-1

which has solution
Yx)=e 9.8)

Since the kernel is an exponential function with a non-negative exponent for x €
[-1, 1], we choose

q(y) =€ (9.68)

in the interpolating function v;(y) in eq. 1.18. We then interpolate the kernel over
the nine points {—1, —-0.75, ..., 0.75, 1} to obtain

1 ] — et — e

1
oy = J v (y)dy = J e
-1

Zp et — eer][e — etkn]LL

dy (9.69a)
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and

dy (9.69b)

! ! Y — %] [e¥ — %]
r = x”,(l—y) d :J X,,,(l—y) “.[e o
km J_lye Vk(y) y _lye “,[e"k—ex"*‘][e"k—exﬂl]m

Although these integrals for o and I',, can be evaluated in closed form, to save
ourselves effort, we evaluate them numerically using a 20-point Gauss—Legendre
rule.

Solving for the set {f;} and substituting these values into eq. 9.64, we obtain

¥(—1.00) 2.71800
¥(—0.75) 2.11678
Y(-025) | _ | 1.283% 0700
$¥(0.25) 0.77881
¥(0.75) 0.47217
¥(1.00) 0.36809
which is an accurate approximation to
Y erae(—1.00) 2.71828
VY eracee(—0.75) 2.11700
Vewa(=0-25) | _ | 128402 P
V¥ eraei(0:25) 0.77880
Y eraei(0.75) 0.47237
W eraer (1.00) 0.36788

Expansion in orthogonal polynomials

As discussed for Fredholm equations of the first kind, we can solve equations
of the second kind by expanding (x), Yo(x), and K(x,y) in series involving
orthogonal polynomials. If, for example, we transform the domain of these
functions to [-1, 1], then expand these functions in terms of Legendre polynomials,
we have

Y(x) =Y cxPi(x) (9.18a)
k=0
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Yolx) = ¢pPr(x) (9.18b)
k=0
and
K@y) =D nPr(0)Pu(y) (9.18¢)
k=0
m=0

Using the orthogonality condition for Legendre polynomials eq. 4.100b, the
Fredholm equation of the second kind can be expressed as

[o.¢] o0 o0
2
;C’kpk()() = kz_; ¢kPk(x) + Z ,lem(/'mP]((X)m (971)
= = k=0
m=0
Thus, the set of linear equations for the coefficients set {c,} are
= ¢+ i# ¢ (9.72a)
‘ ¢ m=0 (2m + l) Hion Cm '
which we approximate by the finite sum
N2
= mCm 9.72b
Ck (rbk + ,;) (Zm + 1) Hiem© ( )
Solving for the set {c;}, we obtain the approximate solution
N
() = > ePi(x) (9.73)
k=0

Example 9.7: Solution to a Fredholm equation of the second kind by series
expansion

We again consider

1
Y(x) =e" — J_l xe’ 1=y (y)dy (9.35)
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which has solution

Ylx)=e™
With
4
Yx) =Y aPil()
k=0
4
€X ~ Z (kal\ ()C)
k=0
and

k=0
m=0
we solve the matrix equation
Co ev g ® @ FHos
o [ ] L]
- - L] ]
, 2
C4 e 2y @@ Gy

403

(9.8b)

(9.74a)

(9.74b)

(9.74c¢)

9.75)

for the coefficients c;. Substituting these into eq. 9.74a, we can approximate (x) at

any x € [-1,1]. We find

¥(1.00) 0.34486
(0.50) 0.61254
(0.00) = | 0.99804
¥ (—0.50) 1.64621
W (—1.00) 2.70190
which compares reasonably well with
W oxact (1.00) 0.36788
W exact (0.50) 0.60653
Y eracs (0.00) = | 1.00000
Y oraes(—0.50) 1.64872
Y oraes(—1.00) 2.71828

except at x = 1.00, where the largest error is 6.3%. 0

(9.76a)

(9.76b)
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Neumann series

The Neumann series in A for the inhomogeneous Fredholm equation is obtained by
replacing Y(y) in the integral of eq. 9.32 by

b

boly) + zj K(y. 2 (2)dz

a
to obtain

b

K(x,y) [wy) i j K(y, z)np(z)dz} dy =

a

W(x) = () + AJ
b

b b
K(x,y)%(y)dy+izj J K(x,y)K(y,2)(z)dydz ~ (9.77)

adJa

Wo(x) + AJ

a

Repeating this process ad infinitum, we obtain the Neumann series in 4,

b b
K (e y)o(y)dy + 22 j j K (e, )K (v, 2)o(2)dydz

adJa

+ Jh Jb Jb K(x,)K (3, 2K (2, w)rg (w)dvdzdw + ..

adJa
o0

= Yp(x) + Y A" u(x) (9.78)

m=1

where

b b b
L (x) EJ J ) J K(x,y)K(y,z) o ® K(t,u)yo(u)dydz e e didu 9.79)

m integrals

If the value of Z is such that the infinite series of eq. 9.78 converges (see, for
example, the Cauchy ratio test for convergence, Cohen, H., 1992, pp. 128-129),
we can approximate the Neumann series by truncating it to obtain

N
() = o () + D A () (9.80)
m=1

As discussed in Appendix 1, such a series in 1 also allows us to create a Pade
Approximant, a diagonal form of which, should be more accurate than the truncated
Neumann series.
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Example 9.8: Neumann series for an inhomogeneous Fredholm equation of the
second kind

It is straightforward to show that the solution to

W) = e — Jll xe 0  (y)dy ©81)
is
Y(x)=e (9.82)
Writing eq. 9.81 as
Y(x) = e/d — /ljll xe?1=9/54 (y)dy (9.83)

the three term Neumann sum is

1 Lol
Y(x) ~ e/ — /IJ xe? 15335 dy 4 AZJ J x93y (015675 gy 7
~1J-1

-1

(9.84)
With
! Sx
I(x) = J x? I Pevgy = = [e(z_wj — e_(z_"')/s} (9.85a)
-1 (2-x)
and
1 gl
L(x) = J J xe?1=9/3y 200156215 gy
—1J1
Ly
— _ 7 =9/ [6(2*Y)/5 _ e*(Z*y)/S} dy 9.85b
J—l (2-y) ( )

(which, at a given x, we approximate by a quadrature sum), we obtain an approxi-
mation to {(x) at any x € [-1, 1]. With 4 = 1/5, we obtain

W) els — L [o@0/5 _ (205
(2—-x)

LY amas[eas -
+g lme s |:€ T —e i|dy (986)
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To approximate the integrals 7,(x) of eq. 9.79, we use a 20-point
Gauss—Legendre quadrature rule. Setting x = {-0.75, —-0.25, 0.25, 0.75}, we find

¥(—0.75) 1.13651
W(—0.25) 1.04559
v(0.25) | | 0.95420
¥(0.75) 0.86155

Vorner(—0.75) 1.16183
Vewer(—0.25) | | 1.05127
¥ exaer(0-25) 0.95123
W exaer(0.75) 0.86071

The [2, 2] Pade Approximant is found by requiring that

Po(x) + Ap1(x)

VR =T i (x)

be identical to

Yo (x) = Yo (x) + A1 (x) + 21a(x)

This results in

gy o+ (1) = v 7]

3 b(x)
1-— e

From this, we obtain

W(—0.75) 1.14092
W(—0.25) 1.04632
w(025) | | 095397
¥(0.75) 0.86152

which, as expected, is slightly more accurate than the Neumann series. [

(9.87a)

(9.87b)

(9.88)

(9.89)

(9.90)

(9.91)
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9.3 Eigensolutions of Fredholm Equations of the Second Kind
with Non-singular Kernel

When o(x) = 0 for all x ¢ [a, b], the Fredholm equation of the second kind
becomes the homogeneous Fredholm equation
b
b = 2 [ Kley)io)ds 992)

a

which only has solutions for specific values of A. The eigenvalue of the kernel is 1/
and ,;(x), the solution to eq. 9.92 for that specific value of 4, is the corresponding
eigenfunction of the kernel.

Solution by quadratures

Using a N-point quadrature rule to approximate the integral, eq. 9.92 becomes

N
Y)Y WK ()Y () (9.93)
m=1

Setting x in this expression to each quadrature point in the set {y;}, eq. 9.93 can be
written in matrix form as

wiK;p e e wyKiy W(y1)
Ll . * =0 9.94)
° [ L4
wiKyr e e wyKyy W (yn)

The eigenvalues of the kernel are obtained from

(1 — JVWIKH) o0 —WNKU\/
L] [ ]
. . =0 (9.95)
—W1KN1 L (l — )vaKNN)

An approximation to the corresponding eigenfunctions are obtained by solving
(N — 1) of the equations of eq. 9.94 for (N — 1) values (y;) in terms of one of the
Y quantities. For example, we can solve for each y(y,) for £k > 2 in terms of
Y(y1). Thus, the value of each ratio y(y;)/y(y;) is known and eq. 9.93 can be
expressed as
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Y, (x) =
AWK (e, y )y, (1) + waK (x, y2)8;(v2) + - + wyK (%, y8 ¥, ()]
W, (v2) v, ()
v, () ¥,(n)

woK (x,y2) + ... +

= A (1) (wiK (x, y1) + wyK (x,yn)|  (9.96)

The undetermined coefficient 1/,(y;) is obtained from a normalization condition
defined by the user.

Example 9.9: Eigensolution by quadratures

Let us consider

1

W) = zj Y (y)dy ©.97)

0

We transform the Gauss-Legendre data to points over the interval [0, 1]
(as described in ch. 4). These are

, 1 +y[71’1]
y[O,I] _ k

3 5 (9.98a)

and

o) wi !
W[k 1 _ "

2 (9.98b)

Approximating the integral in eq. 9.97 by a three-point quadrature rule we obtain

3
W) =AY wie™ () (9.99)
m=1

Setting x to each of the points {y;, y,, y3}, we have

1 —wpe?r —dwye? — w3’ /8
—Aw @1 = Awpe??? —Awsed Y, | =0 (9.100a)
_ iwle}'sw _ )VWQE)WZ 1 — iW3 PAENE lp3

The values of A, found from

1— ;LWley]yl _iWZeM,Vz —iW3€y‘y3
—w @t 1 — Awpe???r —Jwse?s | =0 (9.100b)
—w e —wne¥3? 1 — Awze?3s
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are given by
{J1, 72, A3} = {0.73908, 9.43870, 290.88072} (9.101)

Referring to eq. 9.96, the corresponding eigenfunctions are

W, (x) = ¥ [0.20530¢% 38730 1+ 0.25994030000 4 0.13009¢%11270%] (9.102a)
W, (x) = Y7 [2.62186¢" 55730 — 1.05829¢030000 — 2 81603¢%1127] (9.102b)

W, (x) = ¥} [80.80020¢ 55730 —199.9501 1%390%0% 1 122.19328e*1127%%] * (9.102c)

As noted in example 3.4 of Baker, C. T. H., 1977, p. 177, it has been shown that
A1, the smallest value of A for this kernel, is bounded by

0.73888 < 1< 0.73926 (9.103)

Our result is consistent with this. O

Eigensolution of a degenerate kernel

A kernel that can be written as

K(x,y) = » Ax(x)Bi(y) (9.104)

-
1~

is called a degenerate kernel. The eigensolutions for such a kernel can be deter-
mined exactly.
With eq. 9.104, the homogeneous Fredholm equation becomes

N
:AZAA J dy—}ZAk (9.105)
=1

Substituting this expression for /(y) into

b
B = j Buy)W(y)dy (9.106)
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eq. 9.105 becomes

b= iZﬁmJ Bi(y)Am(y)dy = AZukm m (9.107)

This set of equations only has solution for specific values A (the inverses of
which are the eigenvalues of the kernel). Referring to eq. 9.105, the elements of the
set { ﬁk) "} yield the corresponding eigenfunction given by

N
() = 2> BiAc(x) (9.108)
k=1

Example 9.10: Eigensolution to a Fredholm equation of the second kind with a
degenerate kernel

Writing
1 1 1
0 = 2| (w0 = i [ o+ [ o] = i
(9.109)
we define
1
By = L Y (y)dy (9.110a)
and
1
By = JO W (y)dy (9.110b)
Substituting ¥(y) given in eq. 9.109 into eqs. 9.110, we obtain
[ Bi
o= [ W+ sl =2 ) ©.111)

and

1
o= slBi+ play = A[ﬁ+@] ©.111b)
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from which
1
e =2(14+— 9.112
- ( ﬂ) O-112)
With
1 1
= _ (- = +
By = (Ai 2)/31 (9.113)

the eigenfunctions are given by eq. 9.109 to be

11
Yo = i {x—k;——i} 9.114)0
L+

Approximate eigensolutions by interpolating the kernel

When a nondegenerate kernel has an infinite number of eigensolutions to eq. 9.92,
any finite approximation method will yield a finite subset of such solutions.

Referring to the discussion given in example 9.6, we interpolate the kernel over a
set of points {y;} selected by the user. We write

K(x,y) = > K y)v(y) (9.61)
k=1
where
) = an)]--la(y) = ae-)lla(y) — qee1)]---la(y) — q(yw)]
Vk()’) =

[ae) — qO)]--lgO) — qOr-D)]lgk) — qOrs1)]--[gOk) — q(yw)]
(1.18)

In this way, the kernel is approximated by a degenerate kernel, and the homoge-
neous Fredholm equation becomes

N b
b =YK | W)y ©.115)

As before, we define

b
B = J V() (y)dy (9.63)
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with which eq. 9.115 can be written as

M=

Y(x)=21) K(x,x)p 9.116)

k=1

This is an approximation to the eigenfunction corresponding to 4.
Using the expression of eq. 9.116 for y/(y), eq. 9.63 becomes

B = /lmi Ub Vk()’)K(varn)d)’} B (9.117)

With

b
Ty = J V(WK (y, X )dy (9.66b)

a

eq. 9.117 is the eigenvalue equation

N
Be=2>_ Tinby (9.118)

m=1

The eigenvalues and the values of the f§; are determined from eq. 9.118 by
standard methods (see, for example, matrix methods of Jacobi, Givens and House-
holder introduced in ch. 5). The corresponding eigenfunctions are then given by
eq. 9.116.

The accuracy of the interpolation of eq. 9.61, which can be determined indepen-
dently of the method used to find the eigenpairs, will be a measure of the accuracy
of the results.

Example 9.11: Eigensolution by interpolation of the kernel

We again consider

1

Vi) = AJ Y (y)dy 9.97)

0

Since the kernel is an exponential function of y with a non-negative exponent for
x € [0, 1], we choose

qy) = ¢ (9.68)

as the interpolation function in v;(y). For the purpose of illustration, we interpolate
the kernel over the three points {y;, y», y3} = {0, .5, 1}. As such, we will determine
three eigensolutions of the kernel.

The level of accuracy of the interpolation of the kernel is represented in
Table 9.1.
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y Interpolated Exact
0.1 1.03884 1.04081
0.2 1.08043 1.08329
0.3 1.12479 1.12750
0.4 1.17183 1.17351
0.5 1.22140 1.22140
0.6 1.27324 1.27125
0.7 1.32693 1.32313
0.8 1.38187 1.37713
0.9 1.43722 1.43333

Table 9.1 Interpolated values of ¢ at x = 0.4
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In generating this table for x = 0.4, the largest percent difference between the
interpolated and exact values of the kernel is 0.34%. Thus, the accuracy of the

eigensolutions is expected to be at this level.

With £, r, and s taking on the values 1, 2, and 3, and with r # s # k, we have

e = ev]le — et

ek — e%r][er — e%]

1 1
L = J e i(y)dy = J e [ dy
0

0

e(2+m) 1 ell+am) 1 e n
|:( (2+Xm) ) - (eXr + eX.\-) ( (l+xnz) ) + elrﬂh (" Xm )

e — et — ]

where
(gxm _ l) _ 1
X B
for x,, = 0.
From
0.15473 0.13579 0.10060
[l —A'| = |1 — 4| 0.68639 0.90912 1.21862 =0
0.15888 0.25253 0.39906
we obtain

(A1, 72, 73) = (0.73874, 9.46937, 273.84781)

Referring to eq. 9.116, the corresponding eigenfunctions are

Wy (x) = B4 | K(x,0) + &K(X,O.S) + &K(x, 1)
P P

= $,[0.73874 4 5.37741¢"* + 1.54551¢"]

(9.119)

(9.120)

(9.121)

(9.122)

(9.123a)
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Vo (x) = Bila {K()@ 0) +§—?K(x70.5) +g—jK(x, 1)}

= [9.46937 + 1.02738¢%> — 6.01102e“'] (9.123b)
and

Us(x) = 143 {K(x, 0) + %K(X,O.S) + %K(X’ 1)]

= B, [273.84781 — 423.54533¢"" 4 160.46100¢" | (9.123c)

where f; is determined by a user-defined normalization condition.
Again, we see that ,, the smallest value of /, is consistent with

0.73888 < 1< 0.73926 9.103)

as noted in example 3.4 of Baker , C. T. H., 1977, p. 177. O

9.4 Volterra Equations with Non-singular Kernel

The general form of a linear Volterra integral equation of the first kind is

dolx) = ﬂ»j L(x,3)0(y)dy (0.124)

a

and the Volterra equation of the second kind is

W) = o) + Aj Koy (3)dy (9.125)

a

where K(x, y) is analytic at all x and at all y < x.
Since the integral is zero when x = a, we note from eq. 9.124 that in order for the
equation of the first kind to have a solution, ¢o(x) must satisfy
¢Pola) =0 (9.126a)

The solution to the Volterra equation of the second kind satisfies

Y(a) = y(a) (9.126b)
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Converting the Volterra equation of the first kind
into the Volterra equation of the second kind

Differentiating the Volterra of the first kind, we have

“OL(x,y)

$o) = 2| FE 2y )y + L) ©9.1272)

If L(x,x) = 0 for every x, this becomes a Volterra equation of the first kind.
If L(x, x) # O for all x, this can be written as

W(x) = [ﬁi(?) - xJ - (xl 5 aLg;, y) W (y)dy (9.127b)
Defining
bo() _
i ((;’ = Yo(x) (9.128a)
and
1 OL(x,y) _
“od o = K(x,y) (9.128b)
eq. 9.127b becomes
W) = o) + 2 | KCx3w )y 9.125)

which is a Volterra equation of the second kind.
Thus, we can solve a Volterra equation of the first kind by solving the equivalent
Volterra equation of the second kind.

Example 9.12: Converting a Volterra equation of the first kind to a Volterra
equation of the second kind

The solution to

xet = J Y (y)dy (9.129)
is

Y(x) = e (9.50b)
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With

Py(x) = (1 -+ x)¢*
and
Lix,x)=¢" =1

eq. 9.129 becomes

wm=u+maffwﬂwmw

0

It is a trivial exercise to show that

is the solution to eq. 9.132. O

(9.130)

(9.131)

(9.132)

(9.50b)

Taylor series approximation for the Volterra equation of the second kind

The Taylor series for y/(x) expanded around a is

D) = (@) +(a) (x—a) o0 (@) (x— )P 379" (@) (v~ ) .

The first term in the series is

Y(a) = yo(a)

and from the derivative of y/(x) given in eq. 9.125, we have

V) = b + 22 | K

52D () + 2K (5, 0 ()

Thus

V' (a) = Yy(a) + K (a,a)y(a) = Yyla) + AK (a,a)Py(a)

(9.133)

(9.126b)

(9.134a)

(9.134b)
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The derivative of y/(x) given in eq. 9.134a yields

X 92
0@ =i + 4| STy gay +
IK (x, y) 9K (x,y) /
2 e ylep(x) + 4 oy y:xlﬁ(x) + AK (x, X))y (x)
from which
" n a 9 aa )
vior =@+ 2 o+ 2K

+ K (a,a)}/(a)

where V//(a) is given in eq. 9.134b.
Example 9.13: Solution to a Volterra equation by Taylor series
The solution to

X

lun:1+x+fewwww@

is

Vo) =g +5 5
With

Yo(0) =1
and

K(0,0) =1
eq. 9.134b yields

Y'(0) =2
and from eq. 9.135b

Y"(a) =3

Therefore,

D) = Y (0) 0 (O + 378 (01 = 1+ 20454

417

(9.135a)

(9.136)

(9.137)

(9.138a)

(9.138b)

(9.139a)

(9.139b)

(9.140)
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We compare this to the MacLaurin expansion of the solution given in eq. 9.137,

2

3 4x 3,
lpexact() 4+2x+4( + 2x +7+ ):1+ZX+§X + ... (9141)

Thus, the Taylor series approximation is identical to the series representation of the
known solution up to x*. [

Approximating {s(y) by a spline interpolation

As we did for the Fredholm equation, we develop an approach in which we
approximate ¥/(y) by a constant in the Volterra integral. We begin by denoting
the limits of the integral [a, x] as [xq, xy]. To approximate the solution to the
Volterra equation at xy, we divide [x(, xy] into small segments, writing the integral
in the Volterra equation as

XN N—=1 pxpi1
J K(xN,y)lﬁ(y)dy:ZJ K (v, ) (y)dy (9.142)

Xo m=0 Y Xm

where, as before, for convenience, we take these intervals to be evenly spaced of
width Ax.

By taking Ax to be small enough, we can approximate {/(y) over each segment
X <y < Xiy1 by the constant

() = o (xXm) + Pb (Xms1) (9.45)

where o and f§, chosen by the user, are here taken to be 1/2 as note in eq. 9.46. Then
eq. 9.142 becomes

XN 1 N— X1
| ) EZ )+ 0] [ Kloddy ©.143)
Xo =0 Xin
Defining
“Xm+1
ow) = | Kl p)ds (9.144)

the Volterra equation of the second kind becomes

N—-1
Y(xn) ~ Yolaw) += Z () + W (e 1) o () (9.145)

=0
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Referring to eq. 9.126b,

¥ (x0) = ¥(a) = o(a) (9.146)

Then, eq. 9.145 becomes

(1 - %bvl(%z))lﬂ(xzv) = Yo(ay) + %‘po(a)IO(xNH

%W(Xl)lo(xzv) + (1) + ()]l () + ..o
+ (ev-2) + Y (av—1)[Iv-2(xn) + ¥ (ev—1) -1 (xw)

To determine the set {/(x;)}, we begin with x = x| in the Volterra equation to
obtain

X1

Y = Yolar) Hj

X0

K, y)p(y)dy = ho(x1) + % [Wo(xo) + ¥ (x1)llo(x1)
(9.148)

from which

(1 —i]o(xl))lﬂ(xl) ~ lpo(xl)(1 +§10(x1)> (9.149)

Then, with (x;) given by eq. 9.149, we set x = x, in the Volterra equation to
obtain

X1

W) = Yolr) + AJ

Xo

X2

K (s 3 (y)dly + zj K (23 (3)dy

X1

~ Yolea) + 5 W)+ )lloCe) + S ) +d )l (e) (9150

Then, (x»,) is found from

(1500 Jta) = o)+ 5 60+ b o)+ 5 e) 9.150)

and so on.
Example 9.14: Solution to a Volterra equation of the second kind
As noted earlier,

Yx) =1 +x+ J M (y)dy (9.136)
0
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has solution

+ %eb‘ (9.137)

For simplicity of illustration, we obtain the solution at x = 0.9 taking Ax = 0.3.
Then, with xo = 0 and xy = x3 = 0.9, and

¥ (x0) = o(0) =1 (9.152)

we obtain (x3) from eq. 9.147 in terms of y(x;) and y(x,). These quantities are
determined from eqs. 9.149 and 9.151.
Approximating y/(y) by

[W(Xm) + W(merl)] Xm S y S Xm+1 (9153)

N —

Y (y) =~

eq. 9.145 becomes

W0xs) = o) + 3 [ (x0) + o)

W) Yl () + 5 W) +lslbls)  (9.154)

from which

[1 = 12<x3>} V() = Wro(os)+

% Wo(xo)lo(x3) +% To(x3) + 11 (x3)]r (x1) +% [I1(x3) + L(x3)]y(x2)  (9.154b)

From eq. 9.149, y(x,) is given by

[1 — % Io(m)] W(xr) =~ Wo(xr) +% Vo (xo)o(xy) (9.155)

and with this value of ¥(x;), eq. 9.151 yields

{1 - % I (Xz)] W(x2) = (x2) +%¢O(XO)[O(X2) +% [To(x2) + 11 (x2)]r (x1)

(9.156)
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With
XK1 "Xie+1
L () = J K(xm,y)dy = J e dy = et (e — gk 9.157)
X Xk
we obtain

¥(0.3) 1.78764
v(0.6) | = | 3.11604 (9.158a)
(0.9) 5.44382

Comparing these to

Veraet(0-3) 1.76659
lpexact (06) = 3.04009 (9158[))
W exaer(0-9) 5.23724

we see that this method yields a reasonably accurate approximate solution. [

9.5 Fredholm Equations with Weakly Singular Kernel

A weakly singular kernel satisfies

limK(x,y) = o0 (9.159a)
yox
and
lim (x — y)K(x,y) =0 (9.1590b)
y—x

Equations of this type, which arises in applied problems, are of the form

b
Y(x) = Yo (x) +AJ |I;(f’;v|)p Y()dy 0<p<l (9.160a)
and
b
0 = o) + 2 [ Ley)enbe = 50y (9.160b)

where L(x, y) is analytic at all x and y in [a, b].



422 9 LINEAR INTEGRAL EQUATIONS IN ONE VARIABLE

An example of such an equation is the Kirkwood—Riseman formula, from which
one determines the viscosity and the translational diffusion constants of
macromolecules:

R R I e ©.161)

(see Kirkwood, J. G., and Riseman, J., 1948).

Lagrange interpolation methods

To approximate the solution to either of eq. 9.160 by Lagrange-like interpolation,
we write

M
~ > Y (ym)vmly (9.162)
m=1

where

o (y) = I =40)--(a) =40 1)(G0) = gOn11))-(40) ~ alyw))
" (@Om) =q(1))--(q(ym) = qOm=-1))(@m) = 4(Ym+1))---(¢(Vm) — ()
1.18)
With this approximation of /(y), egs. 9.160 become
lﬁ( +/“le m J |)p m( )dy O<p<1 (9.163a)
and
M b
V() = Yo(0) + 4> p(x) J L(x,y)fnx — y|vu(y)dy (9.163b)
m=1 a
Setting x to each y, we obtain
_ . b L(yk7y)
YOm) = woe) + 7 ¥(m) J =5 Vm(y)dy (9.163c)
m=1 a |yk y|

and
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M b
W) = Yok) + 4 Y ¥(vm) J L(yx,y)enlyx = y[vm(y)dy (9.163d)

m=1 a
Depending on L(x, y), the integrals in eqgs. 9.163c and 9.163d are then evaluated in
closed form or are approximated numerically by quadrature sums.

Referring to ch. 4, eqs. 4.152-4.155, when approximating these integrals by
quadrature sums, the singularity structure of the integrand should be “smoothed
out” by writing

J”L(yk,y)vm(y) J— Jh Lk Y)vin () = Lk i) vin (00)] iy
« =yl a lye — I

b
+ L()’ka)"m()’k)J !

——=dy 9.164a
a |yk _y|p ( )

and

b b
J L(5t:3)Vm(y) e — yldy =J Lk, Y)¥m () — Lo 1)V )} enlye — yldy
b

+ L(Yka)’k)vm(Yk)J Lnlye — yldy (9.164b)

With
Vi (V&) = Orm (1.19)

eq. 9.164 become

JbL(yk,y)vm(y)d J” LOwY)n0) = L0k Yot
« =yl a lye — yI”

b

+ L(YkaYk)éka

——dy 9.165a
a Yk _y|p ( )

and
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b b
Ju%wmwwm—ﬂ@=Ju@“wmw—u%nwm@m—ﬂ@

a a
b

+ L(Yk7Yk)5kn1J nlye — yldy (9.165b)

a

The first integrals on the right sides of eqs. 9.165 are approximated by quadrature
sums. If, for a small parameter ¢, a quadrature point y, satisfies

lyw — il <& (9.166)

that term in the quadrature sum is taken to be zero.
The second integrals on the right sides of egs. 9.165 can be evaluated in closed
form as follows:

b 1 X 1 b 1 _ 1-p _ 1—p
P S S

T M A Nk =p
(9.167a)
and
b X b
J In|x — y|dy = J In(x —y)dy + J In(y — x)dy =
(x—a)ln(x —a)+ (b —x)n(b — xj —(b—a) (9.167b)

Unless one has a sense of the behavior of y/(y), and so has a sense of the
interpolating function ¢(y), it is reasonable to use polynomial interpolation by
taking ¢(y) = y and interpolating with

=910 = Y1)y = Yms1) - (y — ¥n) 1.7)

vm(y) (ym — yl)...(ym - mel)()’m - yn1+l)"'(ym _yN)

Example 9.15: Solution to a Fredholm equation with a weakly singular kernel
using Lagrange interpolation

It is straightforward to show that the solution to

1 ex—y
J ——=(y)dy (9.168)
~1y/ =yl

N —

W(x) = e]‘[1 V12 -/ —x)} +

is



9.5 Fredholm Equations with Weakly Singular Kernel 425

Y(x) = e (9.50b)
Approximating 1 (y) by
M
= Y om)vnly (9.162)
o
eq. 9.168 becomes
Loy L evl)
W) =1 =1+ = V(T =] +2e";w(ym)Jlmdy (9.169)

To illustrate, we take the somewhat crude interpolation over five points
y = {-1.0,-0.5, 0.0, 0.5, 1.0}. Then, eq. 9.169a becomes

5

Y = [1 = V/(T+2) - /(1=)] —&—%eXZW(ym) Jl%d)} (9.169b)

With v,,(y) the polynomial given in eq. 1.7, we then set x to each point in the set
{ym} = {-1.0,-0.5, 0.0, 0.5, 1.0} and evaluate

m=1

J b ev(y) <l J Lm0 —e ol J IR
|X1< 1 |xi —y| -1/ i — |
_yvm yn 5km] —y
~ w, +2e 0 | V1 +xr+/1—x 9.170
Z g /|xk_yn| km|: k /(:| ( )
We obtain
VY (—1.0) 0.36751
v(-0.5 0.60603
(0.0) =1 1.00058 (9.171a)
¥ (0.5) 1.65099
V(1.0 2.72063

which compares well with the exact result ¢* given by
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Y erae(—1.0) 0.36788
Y eraer(—0.5) 0.60653
Yeaer(0.0) | = | 1.00000 (9.171b)
Y eraci(0.5) 1.64872
Y eraer(1.0) 2.71828

The largest error in these results is 0.13%.
The results given in eq. 9.171a can then be substituted into eq. 9.169b to yield
values for (x) at any x. O

As the reader will show in Problem 14, a second approach using Lagrange
(or Lagrange-like) interpolation is to write

b b
J Lo W) ZL X, Y W (i J ") (9.172a)

a Ix—yl” lx — yl”

and

b M b
| Lok =slay = > L ymwO) | vu)tal =slay - 1720

a m=1

If the interpolation functions v,,(y) are polynomials of order M, they can be written
as sums of powers of y with oy, = 1. That is,

b M r
(9.173a)
Jm—yw 3 J|x -7
and
b M b
J v (¥)n|xe — y|dy :Za,.J Y en|x; — y|dy (9.173b)
a —0 a

can be evaluated in closed form.
Writing

b r X r b r
Yy Yy y
dy = J dy + J dy 9.174)
L e — yl” a (=) «(y=x)7
we make the substitutions

(x—y)P =2 yelax] (9.175a)
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and
(y—x) =21 ye|xb] (9.175b)
to obtain
b r
Yy
2 Ay =
Ja |.X - y|l’ Y
(x=a)’" r (b—x)'? -
g U (= 2) a1 +J (x+2) z‘f/p‘fldz] (9.176)
0 0

Another approach using polynomial interpolation is to write

’ L(x,y)
L |x _ y|17 l//(}’)d
Ja |x —y|P Y()dy +Lx, )Ja —yP ¥ (y)dy (9.177)

Since the integrand of the first integral is finite (zero) at y = x, the first integral is
well approximated by the N-point quadrature sum

b —L(x,x < X yk) — L{x, x
[ Ly ) gy o 3 BBy ) o

|x_y|p k=1 |X_yk|p

To evaluate the second integral, we interpolate i/(y) over a subset (which can be
the entire set) of the quadrature abscissae {y,}. That is, we interpolate over the
points {Y,,} € {y«}. Then, the second integral is approximated by

b " ,
J 7|xjy|pw(y)dy ~ Zlﬁ(Ym)J ;'"(y) dy (9.179)

with M < N. Writing

yM —|—clyM’1 + ...
Y = Y1) e. (Yo = Yo t) ¥ — Youi1) . (Yo — Yar)

Vm(y) = (9.180)

the integrals in eq. 9.179 can be evaluated in closed form as described above.
The approximation to the integral equation then becomes

V() = Yoo+
N X ) — X, X M b v

23 =Ty 4 S ) [ 222y s
k=1 |x y| m=1 a |x y|

With {/(Y,,)} € {{/(y,,)}, this can be solved by standard methods.
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In practice, we find that it is best to choose a quadrature rule that contains
abscissae {Y,,} that are approximately equally spaced over [a, b].

Example 9.16: Solution to a Fredholm equation with a weakly singular kernel
using Lagrange interpolation

We again consider

ww=fb—¢u+m—¢u<ﬂ+%L;i3¥ww@ (9.168)

e =yl
which has solution
Y(x) =e' (9.50b)
The approximation of eq. 9.181 for this equation is

v = eI = VT2 - VT =9+
I L e —e 1 d by )
'Y wp—————Y () + =€ lp(Ym)J —dy (9.182)
2 ; =yl 2 ,; 1/ =yl

The quadrature set used to evaluate the first integral is selected based on the
points over which ys(y) is interpolated in the second integral. If the interval [-1,1] is
divided into four segments of approximately equal widths, the five points should be
approximately {—1.0, 0.5, 0.0, 0.5, 1.0}. Since 0.0 is one of these points, we look
for an odd order quadrature rule for which 0.0 is one of the abscissae and that has
abscissae close £1.0 and +0.5.

Referring to Stroud, A.H., and Secrest, D., 1966, p. 101, the 17 point
Gauss—Legendre quadrature abscissae and weights are shown in Table 9.2.

N =17
X w

0.00000 0.17945
+0.17848 0.17656
+0.35123 0.16800
+0.51269 0.15405
+0.65767 0.13514
+0.78151 0.11188
+0.88024 0.06504
+0.95068 0.05546
+0.99057 0.02415

Table 9.2 Seventeen point Gauss—
Legendre quadrature data
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We use this quadrature rule to evaluate the first integral, and the points
{Yn}; = {—0.99058, —0.51260, 0.00000, 0.51260, 0.99058 } (9.183)

from this quadrature set to interpolate ¥/(y) in the second integral. Then eq. 9.182
becomes

O=Y1)e0 =Y )y = Yiuy1)-.(y — Yr)

Vm(Y) = 9.185)
(y) (Ym_Yl)"'(Ym_mel)(Ym—Yn1+1)...(Yn1—YM) (
Results at a sample of the 17 abscissae are
1(0.99058) 2.69145
(0.78151) 2.18359
¥(0.51269) 1.66886
(0.17848) 1.19523
(9.186a)
1(0.00000) 1.00031
W (—0.51269) 0.59916
(—0.88024) 0.41431
¥(—0.99058) 0.37118
which is a reasonably accurate approximation to
exact (0-99058) 2.69278
eract(0.78151) 2.18478
exacr(0-51269) 1.66978
0.17848 1.19540
‘/jexa(t( ) (9186b)
W exacr(0.00000) 1.00000
Y oraes(—0.51269) 0.59888
W eraci(—0.88024) 0.41468
W oxacs (—0.99058) 0.37136

The largest error in these results is 0.09% with an average error of 0.05%. This
indicates that this approach is a bit more accurate than the method described in
example 9.15. O
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Spline Interpolation Methods

To apply spline interpolation methods, we subdivide [a, b] into several segments,
writing eqs. 9.160 as

M o
R “m+1 L ,
Y (x) = tho(x) + 4 ZJ x(f yy 2 ¥(y)dy (9.187a)
m=1“Zm
and
M Zm+1
00 =) + 23" [ L)l o)y 9.187b)
m=1 "Zm
where
z1=a (9.188a)
and
M =b (9.188b)

As before, the segments can be equally spaced, or defined by some other method
such as taking a subset of the abscissae of a Gaussian quadrature rule. Then, over
each segment, /(y) is approximated by a constant. Unlike the approximation of
eq. 9.45, here we approximate (y) by

lﬁ(y) = lp(fxzm + ﬁzm+1) = lp(ym) Zm < Ym < Zmti (9.189)

where, unless there is a reason to do otherwise, we take y,, to be the midpoint of the
mth segment. Then, setting x to each y,, egs. 9.187 become

M Zm+1 L
W) = o) + 4 ¥(ym) J m(yf’ yy |),, (9.190a)
m=1 Zm ¢
and
M Zm+1
W) = Yoe) + 2 Y ¥(vm) J L(yk,y)nlyr — y|dy (9.190b)
m=1 Zm

which are solved by standard techniques.
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Example 9.17: Solution of a Fredholm equation with a weakly singular kernel
using spline interpolation

We again consider

W) = e[l = 0~ VT3] 45 L %wy)dy 9.168)

which has solution
Y(x) =¢' (9.50b)

We define N segments by the points {zj, ..., zy,;} from which we determine the
points at which we will determine y/(y) at

Vi EE(Zk+Zk+l) 9.191)

Then eq. 9.168 is approximated by

N Zmi1 Vi—
W) =€ 1=/ (T30 - VT3 +%Zlﬁ(ym)J \/eyf_yy'dy (9.192)
m=1 Zm -

As noted above, we could approximate each of the integrals by “smoothing out”
the singularity at y = y, in the integrands by writing

Zm+1 ey/;*y Zm+1 eykfy _ 1 Zm+1 1
[ [y [T e
2 Ve =l o V=Y ERERVAN

Ye—Yn __ 1 Zm+1 1
Z Wy + J =y (9.193)
Ve =yal )z

o V=l
and easily evaluating the second integral for each of the cases y, > z,41, Zpe1 >
Y, 2 Zmt1, and yi < z,,,.
To illustrate another approach, we have evaluated the integrals for these three
cases by expanding the exponential in a Taylor series to approximate

oy
2

4

Zntl @VkY 1 [#mt (yk _ )
gy~ —J TV gy (9.194)
Jznz V |yk 7y| ;n' Zm V |yk - |

A sample of the results we obtain are given below.
For N = 10 segments, we find
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Y(=9) 0.51386
(=5 0.67232 01950
= .195a
y(.1) 1.00968
V(.9) 2.08540
which is a poor approximation to

l//exact(_-g) 0.40657

Y exaer (-1 1.10517 :

VY eraet(:9) 2.45960

These results differ from the exact values by an average of 13.2% with a maximum
error of 26.4%.
For N = 20 segments, we obtain

Y(—.95) 0.49036
¥ (—.55) 0.64835
Y(.05) | =] 0.97569 (9.196a)
¥ (.45) 1.33916
¥(.85) 2.24827
the exact values of which are
Y eraer(—-95) 0.38674
VY eract(—55) 0.57695
Veraer(05) | = | 105127 (9.196b)
W exaer(:45) 1.56831
VY oraer (-85) 2.58571

The average and maximum errors of these results are 12.6% and 26.8%,
respectively.

These results indicate that this cardinal spline interpolation method converges
very slowly. Thus, the results of the Lagrange interpolation method are much more
accurate for interpolation over a small set of points. [

Schlitt’s method

A method, proposed by Schlitt, D.W., (1968), involves “smoothing out” the singu-
larity by subtracting and adding the unknown function i/(x) to obtain
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b b
) =)+ [ 520~ wlay + 200 [ 52y wa0m)
With
_ " LOy)
J(x) = L =7 dy (9.198)

eq. 9.197 becomes

L(x,y)
v —yI”

YL = AT ()] = o) + zj W0) — vy (9.199)

If Y(x) is analytic at all y € [a, b], Y(y) — Y(x) can be expanded in a Taylor series,
all terms of which contain (x — y)" with n > 1. Therefore, the integrand of the
integral on the right hand side of eq. 9.199 can be approximated by a quadrature
sum. With x set to each point in the abscissae set, we obtain

VOO = 2700)] = () +ﬂz|y SO )~ pOn)] 92000

m#k

where, because p < 1, all terms in the series for [/(y) — ¥(x))/|x — y|” have posi-
tive powers of (x — y). Therefore, the m = k term in the sum is zero.
This results in the set of equations

—yul’
m#k m#k

N
V() 1—U<yk>+iz|yky"—’y’" Z|y y"’y’”ﬁpw ) = o)
m=1

(9.200b)

the solution to which is obtained by standard methods. An example of this is left as
an exercise for the reader (see Problem 16).
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9.6 Fredholm Equations with Kernels Containing
a Pole Singularity

Integral equations in which the kernel has a pole (or Cauchy) singularity are of the
form

b X
Y (x) = Yo(x) + iJ é(_’zy))l) YO)dy a<z<b (9.201)

where the subscript P indicates that the integral is a principal value integral. z can
either be a constant or a function of x.

When the singularity is at a constant value of y, it is called a fixed pole.
An example of such an equation is the Lippmann—Schwinger equation for the
scattering wave function of a non-relativistic particle (Lippmann, B., and
Schwinger, J., 1950). With E a constant related to the energy of the incident
particle, the form of this equation is

Y(x) = o(x) — % J:C % Y (y)dy (9.202a)

An integral equation with a Cauchy kernel that is developed from quantum field
theory is the Omnes equation (Omnes, R., 1958)

W) = bl + 1 | G (9:202)

With x a variable, a pole singularity at y = x is a variable or movable pole.

Solution to an equation with a fixed pole

Referring to the Lippmann—Schwinger equation, we note that when we approximate
integrals by quadrature sums, a semi-infinite interval [a, co] suggests that we might
use Laguerre quadratures. However, as noted in ch. 4, unless the integrand of an
integral explicitly contains ¢, using a Gauss—Laguerre quadrature is less reliable
than transforming the range of integration to [—-1, 1] and using a Gauss—Legendre
quadrature. As such, with z = constant, we consider eq. 9.201 in the form

! X
Y(x) =o(x) + 4 J_1 (I;(_’Zy ;P Yy()dy—1<z<1 (9.203)
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To accurately approximate the solution to this integral equation, we write
eq. 9.203 as

() = v x) +AJ_1W

Y (y)dy + AL(x, z) J_l

(9.204)

Since the integrand of the first integral is no longer singular, the integral is well
approximated by a Gauss—Legendre quadrature sum

) Ll L) £
J,l (y — Z) ‘ﬁ(J’)dy = mz::l m (Ym — Z) lp(ym) (9.205)

To approximate the second integral, we express (y) by an interpolating
polynomial

Y)Y v () (9.162)

where M < N and the set {Y,,} over which the interpolation is constructed is a
subset (possibly the entire set) of {y,,}, the quadrature abscissae.

We note that {Y,,} being a subset of the abscissae of the N-point quadrature rule
are some of the zeros of the Legendre polynomial Py(y). Thus, referring to eq. 1.15,
we can express the interpolating function as

n(y) = — 5o (9.206)

and the second integral of eq. 9.204 becomes

! 1 N % Y (Ym) ! Pn(y)
J—l (v — Plﬂ(y)dy B ,;P}v(ym) J—l (v—2)ply— Ym)dy
Y,

)
S Y(,) 1 Jl { Pn(y) — Pn(y)
=1 }V(Ym) Yn—2) )0 [Yu—y) (—Y)

P] dy (9.207)

The advantage of this form of the second integral is that each term can be
expressed in terms of the Legendre function of the second kind, Qy, many properties
of which are well established (see, for example, Cohen, H., 1992, pp. 299-306 and
pp- 370-371). The Neumann representation of Qy is given by
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1

1t PyO)
Cn () _5J_1 (z—)

dy (9.208)

Then, eq. 9.207 can be written as

b B lﬁ Yin) — On(2)]
L 2 Z Y,,, > (9.209)

Combining the results given in eqs. 9.204 and 9.208, the approximated integral
equation is

e HZwm T

l,b m QN ) QN(Z)]
Z (Y — 2)

— 2]L(x (9.210)

which is then solved by standard methods.
If z has a value close to one of the quadrature abscissae y,,, such that for some
small ¢

[ym — z|<e (9.211)
that term in the first sum is replaced by

[L(x,ym) — L(x,2)] _ OL(x,y)
(Ym = 2) Iy |y

(9.212)

If y,,, is also one of the interpolation points Y,,, that term in the second sum is
replaced by

[On (Yn) — On(2)]
(Y —2)

— 0y(2) (9.213)

From the author’s experience, it is found that the most accurate method of
approximating the Py(y), Q(¥), PA(y), and Qy(y) is from the recurrence relations
satisfied by these functions. The Legendre polynomials satisfy

(04 2)Pea(y) = ¥(20+3)Prii(y) + (L + 1)Pe(y) = 0 (9.214a)
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for £ > 0. Taking one derivative of this expression, we obtain

(£ +2)Py5 () = (20 + 3Py, (3) + (L+ DPY(y) = 20+ 3)Pra(y) (9.214b)

By substituting the expression of eq. 9.214a into the Neumann expression for Qn(z)
we obtain

(z+z)Jl P‘*“(y)dy_(zzﬁ)f Mdy—i—(ﬁ—&-l)r Py 4y

(z=Y)p —1(E=Y)p (z=Y)p
(9.215a)
Referring to eq. 9.210, this can be written as
1
—z)P
20420 - (204+3) [ LDy,
o E=y)
1
— (20 + S)ZJ Pri(y)dy +2(£+1)Qu(z) =0 (9.215b)
-1
The Legendre polynomials satisfy the orthonormalization condition
: 2
Pi(y)Pn(y)dy = ———=0im 9.216
L () Pm(y)dy TEE (9:216)
Therefore, with
Py(z) =1 (9.217)
and ¢ > 0, we obtain
1 _ P 1
| O 2Pl fj Po0)Pei()dy =0 (©9218)
o (Z=y)p -1

Thus, from eq. 9.215b, the Legendre function of the second kind satisfies

(0 +2)Qe2(y) = y(20+3)Qrs1(y) + (£ +1)Qu(y) =0 (9.219a)

and from the first derivative of this expression,

¢+ 2)Q,é‘+2(Y) —y(20+ 3)Q;+1(Y) + £+ 1)le()’) = (204 3)Q¢y1(y) (9.219b)
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Example 9.18: Solution to a Fredholm equation with a fixed pole singularity in
the kernel using interpolation

(a) The solution to the Lippmann—Schwinger type of equation

YR S d 9.220
b =26+ s | Yo 0220
2°p
is
(x) = & (9.500)

i 1 ! [e(-"’”fe(""%)] =9 (1 1
Y (x)=2e ‘en(3)L (y_l) w(y)dy'ﬁn(ﬂjl(y_l) Y(y)dy (9.221)
2 2°p

Using the 17-point Gauss-Legendre quadrature rule with abscissae {y,,} to
approximate the first integral, we obtain

1 [euav) _ e(“’ﬂ 17 elr=ym) _ e(x—%)}
J T VOdy~ > W TV 0m) 9.222)
—1 (y _ 5) m=1 (ym — E)

Approximating (y) in the second integral by a polynomial over{Y,,}, an M-
point subset of {y,,}, we have

on(}
J. (yj%)w(y)dy ~ —2:21255;2) [Q”(Y(:m Q;) ;)

SRGENCE

where C,, is 0 if y,, is not in the subset {Y,,} and is 1 if y,, isin {Y,,}. Setting x to
each quadrature point in the set {y;}, eq. 9.221 is approximated by
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s [emym) _ em;)}
— DYk
m= ym

2

1
) 217:1 C Plplf?y)) [Q”((y: - 1Q)<2>} (9.224)
2

With {Y,,} = {y.},sothatall C,, = 1, we solve eq. 9.224 by matrix inversion.
We obtain results that are essentially the exact values of {(x). Each of the
computed values of Y(x) differ from that value of ¢* by a difference of
1.3 x 1073%.We do find that the accuracy of the results are sensitive to the
points over which y(y) is interpolated. For example, if {Y,,} = {y1, ¥3, - .-, V15,
y17} (the odd index points of {y,,}), a sample of typical results are

|:e()’k_ym) _ e()‘k%)}

1 17
bow) = 26" + 7y | D o i
"2
1) N 1 [Q”(Ym) - Qw(;)]
-2 Yk—7, i .
R PR R
2
1 17 {e(ﬂ'ym) _ e(yﬁ%)
=2 + m W; Wi o 1) U (m)
m 2
! {Qw(m - Qw(l)}
_ Ze(yk* 2)C,,, , 1 5 ow) o
Py (ym) (ym — 1)

Solving this by standard methods, we obtain
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1(0.99058) 2.08635
¥(0.51269) 1.29373
¥(0.00000) | = | 0.77479 (9.226a)
¥(—0.65767) 0.40139
¥(—0.95068) 0.29944
which differs from
W erace(0.99058) 2.69278
W eracr(0.51269) 1.66978
V¥ 010:(0.00000) | = | 1.00000 (9.226b)
Y exaer (—0.65767) 0.51806
WY e (—0.95068) 0.38648

by approximately 22.5%.This example suggests that accurate results are only
obtained by interpolating over the entire quadrature set. [J

Solution to an equation with a variable pole

We consider an integral equation with a kernel that has a variable pole by setting
z = x in eq. 9.201 to obtain

Y(x) =ho(x) + 4 L %wwy —-1<x<1 (9.227a)

As we did with the integral equation with a kernel with a fixed pole, we write
eq. 9.227a as

_ [ L0y) = L)) b
o) = ol + 4 | Iy oy i) | vy
(9.227b)
then approximate the first integral by the quadrature sum
bL(ry) — Lix,x L(x,ym) = L, %)]
| W Y)dy ~ Zwm ) 0228)

For the second integral, we refer to the results of example 9.18 and interpolate /(y)
over the entire set of quadrature abscissae {y,,} as
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V) =D im0 (m) 9.162)
m=1

We again construct the interpolating functions in terms of Legendre polynomials as

v (y) = = ym) PN o) (9.206)
Then,
b N Y [ Py ()
oo VM= oot
SYm) L N[ PND)
B m— 1P}V()’m> Um _X)J [(ym -y) (X_Y)P:|dy
_ ZEM: lﬁ( ) [QN(ym)_QN(x)] (9229)

m= 1P}V(ym) (ym - X)

Combining the results given in eqs. 9.228 and 9.229, the approximated integral
equation is

o) =t 1 L)y
— 2)L(x, x) ZN: , QN Om) = Ov ()] (9.230)
ol N (Ym — x)

By setting x to each y, of the quadrature abscissae, we obtain a set of N linear
equations for y/(y;) which is solved by standard methods. Again, the values of the
Legendre functions are found from the recurrence relations of eqgs. 9.214 and 9.219.
The m = k terms in the two sums must be replaced by

[L(Yks Ym) = L(yx, yi)] . OL(y,y)
(ym - yk) ady —

(9.231a)

and

[ON(Ym) — On(1)]
(Ym = yx)

— Oy(n) (9.231b)
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Example 9.19: Solution to a Fredholm equation with a variable pole singularity
in the kernel using interpolation

The solution to the Omnes type of equation

L )
w(x)ze)“[1+en<i+xﬂ+Jl e W (y)dy (9.232)

- X (=)
is
Y(x)=¢' (9.50b)

We write eq. 9.232 as

V) = e [1 +En<i ”)] +J11Wlﬁ(y)dy+Jll : !

—x (y—x)

(9.233a)

Using the 17-point Gauss—Legendre quadrature rule again, this integral equation
is approximated by

Yy =e* {1 s <1+)’k>}

1=y
17
2
m=1

Ok=ym) _ 1} L, 1 [017(ym) — O17(x)]

On o) Plm) . Oy VO

(9.233b)

WI'H I:e

We again obtain highly accurate results. The average difference of the 17 values
from the corresponding exact values is 5.5 x 107'*% and the individual difference
of each value of Y/(y;) is of this order of magnitude. O

Problems

_ (14x)
1. The homogeneous Fredholm integral equation of the first kind ——— =

1 (1+x)
J e Y (y)dy has solution y(x) = e
0

Transform the range of integration to [-1, 1] and expand y/o(x), ¥/(x), and K(x,y)

in series over Legendre polynomials. From this, find the approximate solution

2

to the above equation by approximating (x) ~ > f,Pn.(x) at x = {0.20,
m=0

0.60, 1.00}. Compare this approximate solution to the exact values at these

points
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o0
2. The Fredholm integral equation of the first kind T J e Y (y)dy
. e 1+ x2 _

has solution ¥/(x) = e b

(a) Expand each of o(x), ¥(x), and K(x,y) in three term series over
approximations Hermite polynomials. From this, find the approximate
solution for ¥ (x) at x = {2, 10, 50}.

(b) Transform the range of integration to [—1, 1] and expand y/o(x), ¥(x), and K
(x,y) in series over Legendre polynomials. From this, find the approximate

solution to the above equation for a three term series approximation to y/(x)
4

atx = {2, 10, 50}. At these points, determine the values of 1 — 2+ % the

first three terms in the MacLaurin series for the solution. Compare these
values to the results of parts (a) and (b).

: 1
3. The solution to the integral equation ¥/ (x) = 1 — sin(mx) + J xcos(mxy )y (y)dy
isy(x) =1 T 0
Find an approximate solution to this equation using

(a) a 3-point Gauss—-Legendre quadrature rule
(b) a three term Neumann series in 4, then setting A = 1
(¢) a 3-point interpolation of xcos(nxy) of the form xcos(mxy) ~

3
> xcos(mxy)vi(y) over the points y = {0.0, 0.5, 1.0}. With ¢(y) =

(@0) = 40 (@0) — a))

(q(ve) = a(v:)) (@) — q(ys))
r, and s taking the values 1, 2, and 3, and with k # r # s.

with k,

cos(my) interpolate using vi(y) =

. 1

4. The solution to the integral equation (x) = 1 — Zsin(mx) + J xcos(mxy)y (y)dy
isy(x) =1 T -1
Find an approximate solution to this equation by expanding the functions s and
Yo and the kernel K(x, y) in series over the three lowest order Legendre
polynomials as in example 9.5.

5. Find the exact solution to (x) = x + fol (3x + y)¥(y)dy using the fact that the
kernel is degenerate.

6. Find the two exact eigensolutions to /(x) = A fol sin[n(x + y) |y (y)dy

7. Find approximations to the eigensolutions of the homogeneous Fredholm
equation of the second kind given in Problem 6 by

(a) approximating the integral by a 3-point Gauss—Legendre quadrature rule.
(b) Interpolating the kernel over the points y = {0.0, 0.5, 1.0} as described in
example 9.9, using ¢(y) = sin(ny)

8. Find the Volterra integral equation of the second kind ¥(x)=
Wolx) + J ¢ (y)dy that has the same solution as the Volterra equation of
0 X
the first kind J N (y)dy = e(ef — 1)
0
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9.

10.

11.

12.

13.

14.

15.

9 LINEAR INTEGRAL EQUATIONS IN ONE VARIABLE

Find the first three non-zero terms in the Taylor series for y/(x) which satisfies
Y(x) = x* + JA x*y*Y(y)dy which has solution v, (x) = xes"

Use the methood of approximating y/(y) by the constant oj(x;) + By(xpeq) for
the Volterra integral equation y(x) = 1+ x + r "y (y)dy the solution to
which is ¥(x) = ! +i4 éez" ’

4 2 4
Find the approximate solution to this equation at x = 0.15 for
(@a=0p=1
b)ya=p=12

() a=1/3,=2/3

d) a=2/3,=1/3

(a) Show that the solution to the Volterra equation i (x) = x> — J a W (y)dy is
Y(x) =x Y

(b) By approximating (y) by the constant [{/(x;) + ¥(xz.1)]/2, estimate this
solution at x = 1.15 with Ax = 0.05.

Approximate the solution to ¥(x) = [x — V1T +x(8® —4x+3)— V1 —x
15 (!
(8x* +4x+3)] + 5 J Ll//(y)dy by approximating (x) by a poly-

—14/|x =yl

nomial Lagrange interpolation. Compare your result to the analytic solution
Y = x.
One can show that the solution to ¥(x) = €*[3 — (1 +x)¢n(1 4+ x) — (1 +x)
1
(1 )+ | ety is wo) = e
1

Using the Lagrange polynomial interpolation of y/(y) over the three points {1,
0, 1}, obtain an approximate solution to the above equation. Use these approxi-
mate values to estimate y/(-0.5) and y(0.5).

By approximating ¢y(y) by a Lagrange polynomial interpolation over the
three points {-1, 0, 1}, obtain an approximate solution to ¥ (x)=

e 3= (1+x)ln(1+x)— (14+x)n(l+x)) +J 1 e in|x — yly(y)dy

Compare your results to the exact values (x) :_ex at these three points.
Approximate the solution to ¥(x) = [x —v1 —|—x(8x2 —4x+ 3) —V1—x

1
(8x2+4x+3)]+§J ald

“1y/ =yl
[ = VI F (8% —4x +3) — VI —x(8 + 4x +3)] + 5 [ (j‘%‘ Y (y)dy+

15, ! 1
7x2J ﬁlﬁ(y)dy then estimating the value of the first integral by a
1/ x—y

Gauss—Legendre quadrature rule, and interpolating () in the second integral
by a polynomial Lagrange interpolation over four points that are a subset of

Y (y)dy by writing this equation as (x) =

—
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16.

17.

18.

the quadrature abscissae and are close to {—1, —1/3, 1/3, 1}. Compare your
approximate results to the analytic solution y/(x) = x.
Use the Schlitt method described above to approximate the solution to y/(x) =

M- /(T +x) - /(1= Lt e d
e[ \/( x) \/( x)}“‘zfqm‘ﬁ()’) Y
Compare your results to the analytic solution /(x) = e".

1
The integral equation ¥(x) = an)x +J iyl
W) = x 1 (y 2)P

Approximate the solution to this integral equation by interpolating (y) as

N
YO) = 32 Y 0m)n(y) with v (y) = 55— where Py(y) is the Legendre
m=1 N "

Y(y)dy has solution

polynomial of order N. Take N = 5.

. . 2, (1+x ! Xy
The integral equation ¥ (x) = x {1 —2x+x En( )} + J W (y)dy
has solution v (x) = x I=x (=)
Approximate the solution to this integral equation by interpolating (y) as

3 . Ps(y
BO) = 3 blmvals) with v (3) = 50
m=1 Ps()’m)(y —Ym)
Legendre polynomial of order N.

where Pn(y) is the






Appendix 1
PADE APPROXIMANTS

When f(x) is defined at all x in a specified domain, it is said to be analytic in that
domain. Then, f(x) can be represented by an infinite Taylor series

X1 [/a
f(x)zza(ﬁ:) - (x — xo)f (A1)

k=0

where x( is some point within the domain of analyticity.
In the domain of analyticity, f(x) can also be represented by an infinitely
continued fraction:

Al(X7X0)
B (x — xo)
CI(X—XO)

Di(x —x
Do + 1(x — xo)

f(x):Ao+

(A1.2)

By +
Co +

This infinitely continued fraction can be approximated by truncating the pro-
cess at some level. Such a truncated continued fraction is identical to a Pade
(pronounced “Pah-day”) Approximant (Pade, H., 1892).

For example, if the process in eq. A1.2 is truncated at the 2nd (or B) level, then
f(x) can be approximated by

F(x) ~ Ao + Ai(x — x0) _ AoBo + (ApB1 + Ay)(x — x0)

Bo-l—B](X—X()) BO+B1(x—x0)
_ Po+pi(x —xo) (A1.3)
q0 + q1(x — xo)
H. Cohen, Numerical Approximation Methods, DOI 10.1007/978-1-4419-9837-8, 447

© Springer Science+Business Media, LLC 2011
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We note that truncating the infinitely continued fraction at the B-level results in the
ratio of two first-order polynomials. This is called the [1,1] Pade Approximant of f
(x). It is denoted by f[l’l](x). If the process in eq. A1.2 is truncated at the 3rd (C-)
level, then

A(x — xo)
B (x — xo)
C() =+ C] (X — X())

_ Po+pi(x—x0) +pax — xo)°
qo + q1(x — xo)

Flx) ~Ap+
By +

= 21 (x) (A1.4)

and truncating the infinitely continued fraction at the 4th (D-) level yields the [2,2]
Pade Approximant

Ai(x —xo)

B (x — xo)
Ci(x —x0)

Do + Dy (x — xo)

_ P+ P1(x = %) + pa(x — x0)° — 7221y (ALS5)
q0 + q1(x — x0) + g2 (x — x0)2

f(x) = Ao+

By +
Co +

and so on. (One can easily verify that truncating the continued fraction at the 5th
(E-) level results in the [3,2] Pade Approximant.)

Thus, a truncated continued fraction results in a ratio of polynomials such that
if the order of the numerator polynomial is N, the order of the polynomial in
the denominator is either N or N — 1. If the continued fraction is truncated at the
nth level, we obtain a [n/2, n/2] Pade Approximant if n is even (called the diagonal
Pade Approximant) or a [(n + 1)/2, (n—1)/2] Pade Approximant (called the
off-diagonal Pade Approximant) if n is odd.

The definition of the Pade Approximant can be generalized as the ratio of any
two polynomials. Let M and N be any two positive integers. Then

f[N,M] (x) = Po + p1(x —xo) + p2(x — )Co)2 + . v — XU)N

5 i (A1.6)
qo + q1(x —x0) + q2(x —x0)” + ... + gm(x — xo)
is the [N, M] Pade Approximant. If M = N or M = N-1, f™™ M is equivalent
to a truncated continued fraction. If M # N and M # N-1, this non-diagonal
Pade Approximant does not represent a truncated continued fraction and is less
accurate an approximation to f(x) than the diagonal or off-diagonal Approximant.
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(For a discussion of the convergence of a Pade Approximant, see Chisholm, J. S. R.,
1973, pp. 11-21.) Therefore, within the domain of analyticity, the most accurate
Pade Approximants are

AN () _ ot pi(x—xo) +po(x —x0)> + oo + py(x — x0)"
qo + q1(x — x0) + qa(x —xo)z + .o+ gn(x — x0)

(Al.72)

and

FVN-1](py = PO +p1(x = x0) +pa(x = x0)° + ... + pvlx — x0)"
C]0+C]1(X*X0)+42(X*X0)2+~--+QN—1(X*X0)

1 (AL7b)

We will, therefore, focus our attention on these.

There are M zeros in the Mth order denominator polynomial. These zeros are
singularities of fV"™)(x), but since f*V*!(x) is an approximation to a function that is
analytic in some domain of analyticity, these zeros must be outside that domain.
(For discussions about Pade Approximants in the domain in which f(x) is singular,
see Baker, G., 1975, pp. 123-126 or Nuttall, J., 1977, pp. 101-109.) To specify the
Pade Approximant, we must determine the coefficients of the various powers of
x — xo. We note that since f*V"*(x) is required not to have a singularity at x = xo, go
cannot be zero. Therefore, we can divide numerator and denominator by g to obtain

@—l—&(x — Xo) +12(x—x0)2 + ... —1—@()( —xo)"

f[N,M] (X) _ 490 q0 q0 q0
1—|—@(x—x0)+@(x—x0)2+...+q—M(x—xo)M

qo0 qo 90

_po' +p1'(x —x0) +po'(x —x0)> + .. +py' (= x0)"
L+ (x = x0) + 2/ (x — x0)° + ... + qu’ (x — x0)"

(A1.8)

Because these undetermined constants can be denoted by p’ and ¢’ or by p and ¢, we
can ignore the “prime” marks and denote the constants by p and g. Thus, eq. A1.8 is
equivalent to eqs. A1.7 with gy = 1. Therefore, the most general form of the [N, M]
Pade Approximant is

£ () = PO +p1(x = x0) +pa(x = x0)° + o+ pu(xr —x0)" _ Pu(x) (AL9)

L+ q1(x —x0) + ga(x — xo)z + o+ gulx —xo)M -~ Qu(x)

Methods for determining the p and ¢ coefficients will be described at the places
in the text where application of the Pade Approximant is presented.






Appendix 2
INFINITE SERIES CONVERGENCE TESTS

We divide a series S(z) into a finite sum, S(z) and a remainder series S,(z) such that,
with ng and N finite integers and ny < N—1,

N—1 00
S(z) = Z on(z) + Z on(z) = $1(2) + $2(2) (A2.1)

We choose N such that
|ont1(2)|<|oW(z)] (A2.2)

foralln > N.

Cauchy integral test for an absolute series

Let S(z) be an absolute series. For the sake of discussion, we take all ¢,(z) to be
positive. We note that for any two successive terms,

An=(n+1)—n=1 (A2.3)

Therefore, we can write S,(z) as
[o.¢]
$2(z) = ou(z)An (A2.4)
=N

Then, for some fixed z, Fig. A2.la illustrates rectangles of height oy (2),
0n4+2(2), ... each of width An = 1. The solid line represents the envelope curve
for a(n,z) treating n as a variable.
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Fig. A2.1 (a)&(b) A repre- o
sentation of ¢, and its LV
envelope curve envelope
Threl Curve
Oz T — T~
Tpia3 4+ — — — - — - —
ST na -~
M W+l N+Z N+3 N+
(a)
T
envelope
Tl T " Curve
Oz | ] T
ans | | 1 T
\x
N M+l M+2 W+3 M+4
(b)
The area under the envelope curve is given by
00
Acnvelope (2) = J a(n,z)dn (A2.5)
N
The area under the rectangles of Fig. A2.1a is
Are('tanglesa (Z) = ON+1 (Z)An + ont2 (Z)An =+ ...
oo
= Z on(2) = S2(z) — on(2) (A2.6)
n=N+1

We now consider the rectangles shown in Fig. A2.1b. We note that the
rectangles are of heights on(z), on4+1(2), ... and widths An = 1. The envelope
curve is the same as that of Fig. A2.1a.

The area of the rectangles of Fig. A2.1b are given by

Avectangles,(2) = on(2)An + on41 (2)An + ..

= i o'n(z) = SZ(Z) (A27)
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We see that in Fig. A2.1a, the area of the rectangles is less than the area under the
envelope curve. Thus,

$2(z) — on(z)< JOO a(n,z)dn (A2.82)
N

It is clear from Fig. A2.1b that the area of the rectangles is greater than the area
under the envelope curve. Therefore,

Sy(z)> JOC a(n,z)dn (A2.8b)
N

These inequalities place bounds on S,(z)

Joo a(n,z)dn<S;(z)<on(z) + JOO a(n,z)dn (A2.9)
N N

Therefore, if the envelope integral is finite, S>(z) is finite and S(z) converges.
If the envelope integral is infinite, S,(z) is infinite and the series diverges.

Limit test for an alternating series

For an alternating series, we must start the sum for S,(z) with N an even integer.
This guarantees that the first term in the remainder series is positive. Then, S>(z) can
be written as

82(z) = lon(2)| — lon+1(2)| + [on+2(2)[ — |ow43(z)| + - (A2.102)
which we group as
$2(2) = llow(2)] = lon+1 ()} + [low+2(2)] = lows3(2)[] + --- (A2.10b)
Since N has been chosen so that
041 (2)]<|on(2)] (A2.2)
for all |o,(z)|in S,(z), the difference in each bracket is positive. Therefore,
$2(2)>low(2)] = lows1 (2)] (A2.11)
We next group the terms in S,(z) as

$2(2) = low(2)| = llows1 ()] = lows2 )] = llowsa @) — lowaa(@)] = -+ (A2.12)
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Again, the differences in the brackets are positive, so that
S2(z)<|on(2)] (A2.13)
Therefore, the bounds on S,(z) are given by
lon (z)| — |on+1(2)[<S2(2)<|on(2)] (A2.14)
Since a necessary condition for S(z) to converge is

lim ¢,(z) =0 (A2.2)

n—oo

and this condition will restrict S>(z) to be between two small (ultimately zero)
bounds, this is the only condition necessary for convergence of an alternating series.

Cauchy ratio test for any series

The Cauchy ratio is defined by

p, = Ini1(2) (A2.15a)
on(z)
and its limiting value is defined by
p = lim p, (A2.15b)

Taking N large enough that the Cauchy ratio is essentially its limiting value,
we write

SQ(Z) = GN(Z) + O'N+1(Z) + O'N+2(Z) + O'N+3(Z) =+ ...

= on(z) + pon(2) + p’an(2) + plon(2) + ...
=on(Z)[L+p+p"+p +..] (A2.16)
If p < 1, the series in the bracket converges to 1/(1 — p), and S»(z) converges. If

p > 1, the series in the bracket diverges, and if p = 1, the convergence or diver-
gence of the series in the bracket is unknown. This is the Cauchy ratio test.



Appendix 3
GAMMA AND BETA FUNCTIONS

A3.1 Definitions of the Gamma and Beta Functions

Gamma function

A common definition of the I" function is given by
I'p+1) = J e ?dz  Re(p)>—1 (A3.1)
0
Integrating this by parts, we have

Fp+1)= —zpe*"|86+pJ #e™?dz = pI'(p) (A3.2)
0

where the integrated term is zero for Re(p) > 0. Eq. A3.2 is referred to as the
iterative property of the I' function.
For p a positive integer N, we use this iterative property of I'(p) to obtain

T(N+1)=N(N—-1)(N—2)..3x2x 1 x (1) (A3.32)

Setting p = 0 in eq. A3.1 we obtain

(1) = J eidz =1 (A3.3b)
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Therefore, eq. A3.3a becomes
I'N+1)=N! (A3.4)

From this result, I'(p) has been defined as the generalized factorial. That is, when
p is not an integer, the meaning of p! is I'(p + 1).

Gamma function of half integer order

Referring to eq. A3.1, we define

(%)' = 1"(%) = J:O e idz (A3.5a)

Substituting z = X2, this becomes

1 SR
<2)! :2J e dz (A3.5b)

0

We integrate by parts, setting # = x and dv = xe "dx. Then

1 S
(§>' = L e dx (A3.6)

To evaluate this integral, we note that the integral is unchanged if x is replaced

by y. Thus,
1 e 2
(_)! ~["era (A3.7)
2 0

The product of the integrals in eqs. A3.6 and A3.7 is

2 00 00
{(l) !] _ J J e ) dxdy (A3.8)
2 o Jo

The region of integration of eq. A3.8 is the first quadrant of the x—y plane.
As seen in Fig. A3.1, dA,, = dxdy is the area element in Cartesian coordinates.
Transforming to circular coordinates r and 0, we write

x = rcosf (A3.9a)
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Fig. A3.1 The first quadrant of the x—y plane

and a Cartesian area element Fig. A3.2 Area element in circular
coordinates
and
y=rsinf (A3.9b)

Referring to Fig. A3.2, the infinitesimal area element in circular coordinates
is given by

dA,p = (dr)(rd0) = rdrd0 (A3.10)
and the first quadrant is described by

0<r<o0,0<0< (A3.11)

SIS |

Therefore,

1 2 /2 00 )
[(—) !] = J d@J e " rdr (A3.12)
2 0 0

which can be integrated easily to obtain

1 '2 T
[(5)] -z (A3.13a)

<1> VT (A3.13b)

Therefore,
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For other half integer factorials, we use the iterative property of the I" function.
We have, for example,

5 7 531 1 15
(z)!r@zzf(z)mﬁ (A319)
and
N\, V& _1[ 1\/ 3\( 5
(5)! =372 (‘z) (‘5) (‘5)! (A3
from which

(_ §>; _4ym (A3.15b)

Beta function

From the integral representation of the I' function given in eq. A3.1, we consider

C(p)T(q) = J:O J:O Wi e~ dudy - Re(p)>0, Re(q)>0 (A3.16)
With
x=1u (A3.17a)
and
y =" (A3.17b)

eq. A3.16 becomes

oo OO
r(p)r(q):4j J P2 o= (O gy (A3.18)
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which we view as an integral over the first quadrant of the x—y plane in Cartesian
coordinates. Referring to eq. A3.9a and A3.10 and Fig. A3.2, we transform to

circular coordinates to obtain

b

L(p)(g) =4 JZ COSZP719sin2q*19d9J 2021, g
0 0

Substituting z = r2, this becomes

b

z 00
I'(p)T'(q) =2 Jz coszP’lﬁsinz‘f’IHdHJ Prile™dz
0 0

z

2
=2T'(p+gq) J cos?~10sin®~10d0
0

The beta function is defined by
%
pp,q) = ZJ cos?~10sin®~10d0
0

and we see from (A3.19b) that

Bp,q) = %
Clearly,
Bp.q) = Ba.p)
Substituting
u = cos*0

eq. A3.20 becomes
1
e W (T
0

A third representation of the f§ function is obtained by setting

X
1+x

u =

(A3.192)

(A3.19b)

(A3.20)

(A3.21)

(A3.22)

(A3.23)

(A3.24)

(A3.25)
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The result is

-1

B(p,q) = JOO ( il (A3.26)

———dx
o (1+x)PH

where, in eqs. A3.20, A3.21, A3.24 and A3.25, it is understood that these definitions
of B(p, ¢) are valid for Re(p) > 0 and Re(g) > 0.
Let N > 1 be an integer and p < N be noninteger. If ¢ = N — p, then

X1

B(p;N —p) = J:c mdx (A3.27)

Using contour methods, as shown in Cohen, H., 2007, pp. 208-211

L(p)I'(N —p)
N—_—p)=—"\v ©
B(p,N —p) V)
I'(p) T
= (=1)"*! A3.28
(=1 (N—-DT'(p — N + 1) sin(np) ( )
from which we have
C(N—p)T(p—N+1) = (—1)¥" T A3.29
(N=-p)L(p—N+1)=(-1) sn(p) ( )
Thus,
lim C(N = p)L(p =N + 1) = T(N)T(1 = N) = (-1 oo (A3.30)
[)*}
Setting N = 1, 2, ..., we see that gamma functions of zero and negative integers are
+o00 as shown in Fig. A3.3.
Legendre duplication formula
From eqs. A3.21 and A3.24, we have
1 C(p))*
B(p.p) = J N1 = x)P e = (A3.31)
L R R )
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Substituting

this becomes

Fig. A3.3 T'(p) for—oc0o < p < 0

We then set

to obtain

[F<p)]2 1 Jl u71/2(1 _ M)p_ldu _
0

() 2!
_I(re) _ re)

CTp+Y) T+

Vr

1
22p—1

(v

I T
1 1 | | 1

| I 1 1 | 41—

] 1 I 1 |

1 1 1 ! !

S I A W

] 1 I 1 I

1 1 1 ! |

1 | 1 ! 2

| 1 1 I |

| 1 I 1 |

AV A

| | 1 I |

N I S S L 1
5 -4 -3 -2 -1 1 2 3 4
1 I 1 ! ! — -1
1 1 1 1 |

1 | 1 : :

1R T B VR
1 I 1 ! !

1 | 1 | !

1 I 1 ! ! — -3
1 | 1 | !

1 | 1 1 :

I .[\—4
1 | 1 ! !

[ | 1 1 !

1
2

)
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(A3.32)

(A3.33)

(A3.34)

(A3.35)
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or

TpTp+3) V=
rep)  2%!

(A3.362)

This is referred to as the Legendre duplication formula. Another useful form for this
expression is obtained by setting p = g + 1/2. Then

Mg+ Dl(g+Y) V=

TogTD =2 (A3.36b)

A3.2 Approximations to the Gamma Function

Series approximation to I'(p)

When p is not an integer or half integer, the value of the I' function cannot be
determined exactly. If p is small, one method is to develop a MacLaurin series in
powers of p and approximate the I' function by truncating this series.

To develop this series, we begin with the Euler limit representation of the
I' function,

I(p) = lim {'"”p(,, . 1)’7.1.!.(17 + m)}

(For a derivation of this, the reader is referred to Cohen, H., 1992, p. 268.)
With I'(1) = 1, we begin with

(A3.37)

(alF(p+ 1)) = taT(1)] + 3 [W" e+ )q . (A3.382)

n=1

Since I'(1) = 1, this becomes

C(p+ 1)) = f: {W} 7 P iw")(l)”— (A3.38b)

The functions

d"n(p+1)

l//(”)(er 1) = o (A3.39)

are called the digamma function (n = 1) and polygamma functions (n > 1).
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From the Euler limit representation of eq. A3.37

i !
(n[C(p+1)] = lim |én( ! o )}
All(p+1)] = lim ”( P+ Dp+2)-p+m+1)
= lim |(p + 1)fn(m) + n(m!) — Zﬁn(p +k+1)
m—00 i =0
= lim |(p + 1)én(m) + n(m!) =Y In(p + k) (A3.40)
m—00 i =
Thus, the digamma function is given by
l/,(1)(1] +1)= M = lim |¢n(m) — Y ! (A3.41a)
dp m—ee k=1 (p +K)
from which
1
Yy (1) = lim [@n(m) - ZE] = —y = —0.5772156 (A3.41b)
m—oo =

The constant y is called the Euler—Mascheroni constant.
To see that y is finite, we note that the series is an absolute series. Therefore,
by taking

m 1 N—1 1 m 1
lim —= —+ lim -=85+9; (A3.42)
mooo ik ik meee Ik
S, is bounded by
m 1 m l
n}gl;c JN %dk<52< N + W}grgo JN Edk (A3.43a)

As noted in ch. 3, eq. 3.71, by taking the average of its upper and lower bounds, S,
can be approximated by

1
Sy ~ N + lim ¢n(m) — ¢n(N) (A3.43b)

N m—o
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Table A3.1 Values of polygamma functions

> YO RO RO yOys!
-0.57722 0.82247 -0.40069 0.27058 -0.27039
yO)/6! Y7 y®(1)/8! YO(1)/9! y1o1y/10!
0.16956 -0.14405 0.12551 -0.11133 0.10001
Therefore,
N—1 1
YyW(1) ~ Lim |ln(m) =y ——— + n(N) — n(m)
m—o0 = k 2
N—1 1 1
= - —4+——tn(N)| = — A3.44
>t gm0 = (344

Its value, which can be approximated by taking a “large” finite value for N in
eq. A3.44. For N = 500 we obtain

y = 0.5772153.... (A3.45)
which is an accurate approximation to 9. (An aid to remembering the value of the
Euler—Mascheroni constant is that tan(30°) = 0.5773503....)

The polygamma functions are found by taking various derivatives of eq. A3.41a.
Referring to eq. A3.39 for n > 2, we obtain

(P+ n+l

(A3.46)

which is finite forp > 0, n > 2.
Using the approximation of ch. 3, eq. 3.71, the digamma functions are
approximated as

Yy (1) = —y (A3.47a)
and

1

n+1

: +—+— 1 A3.47b
Zk” (n—1)N"1 " ¢ )

A small sample of values of y “’(1)/n! is given in Table A3.1.
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Stirling’s approximation to I'(p)

If p is large, an approximation to I'(p) can be obtained using a technique called
the method of steepest descent. Starting with

I'p+1)=p!'= J e dz (A3.D)
0
we make the substitution
x=1 (A3.48)
p
to obtain
(o) o0
p! =prt! [ xPe Prdx = pPt! J e Pl gy (A3.49)
Jo 0
Since x—¢n(x)> 0 for all x > 0,
——

will be small for large values of p. Therefore, the largest contribution to the integral

comes from the region around the minimum of x — ¢n(x)and the contribution of the

integrand to the integral will be small at points x away from this minimum.
Defining

x=1+49¢ (A3.50)

so that d¢ [-1, oo]. It is straightforward to show that the minimum of the exponent is
atx = 1 or at 6 = 0. In terms of J this exponent is

x—4tnx)=(1+0)—tn(1+06)=(1+09)— {5—522+5;—...]
2

— 9 3
_1+7+0(5) (A3.51)

Since p is large, we assume that the terms of order 0° will contribute very little to
the integral compared with the contribution from the 6* term. Therefore, we ignore
the contribution from O(J *) and approximate eq. A3.49 by

pl ~ pPt! J e P12 g5 — pl’“ﬂj e /245 (A3.52a)
-1

-1
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In addition, since p is large, the contribution to the integral from values of J in the
interval —oo < § < —1 is negligible. Thus, without significant error, we extend the
range of integration, writing

Pl ~ pﬁ“e—"J e P245 (A3.52b)
Substituting
5 %’ —y (A3.53)

eq. A3.52b becomes

2 (> 2 ™
pl~pPtle” \AJ e dy =prtle” \ﬁzjo e dy =pPe\/2mp (A3.54)

—00

This is Stirling’s approximation to I'(p) for large p.

Namias’ extension of the stirling approximation

A more accurate approximation, also attributed to Stirling, is derived from the
Legendre duplication formula given in eq. A3.36a. As shown by Namias, V., 1986

pl ~pPe™® \/%ekzl_2 (A3.55a)
where the coefficients gy satisfy the recurrence relation
k-1 om 1
2~ 1)a 'm:l 1) =30 (A3.55b)
Fork =1,
0 m
;mam =0 (A3.56)
Therefore,
a, = L (A3.57a)
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Then, with £ = 2, we obtain

1/1
ap 7(6 al)

In this way, we find

~ 360

467

(A3.57b)

(A3.57¢)

(A3.57d)

(A3.57¢)

and so on. Thus, the modified Stirling approximation, developed by Namias, is

1 1 1

Lol L
~ —p (12ﬁ 360p3 ' 1260p° )
pl~pleP\/2mpe

(A3.58)

The Stirling approximation of eqs. A3.54 and A3.58 can also be used to
approximate I'(1 + p) for small values of p. To illustrate, let N be an integer
large enough that I'(V + 1 + p) is well approximated by eq. A3.54. Then,

T(N + 1+p) = (N +p)" e M)\ /2n(N +p)

Using the iterative property of the I" function, we have

(N +p)N e ™) /2n(N + p)
~(N+p)(N+p—1)..(1+p)C(1+p)

from which

_(N+p)"* e W) /27(N + p)

r(1+p)~ (N+p)N+p—1)..(1+p)

(A3.59a)

(A3.59b)

(A3.60)






Appendix 4
PROPERTIES OF DETERMINANTS

Some of the properties we will use to develop method of evaluating a determinant
are given below. Derivations of these properties are presented elsewhere in the
literature; see, for example, Cohen, H., 1992, pp. 423, 424.

« If all elements in any two rows are interchanged, or if all elements in any two
columns are interchanged, the resulting determinant is —A. Thus, if

aii an oo aiN
a a oo aN
[ ) [ )
= Ay (A4.1)
[ ) [ )
an-1y1  4nN-12 ®® dN-1)N
ani an? oo anN
then, with the interchange row; < rowy_;
an-1n1  4nN-12 ®® dAN-I)N
azy ax oo asn
[ ] [ ]
= —Ay (A4.2a)
[ ] [ ]
apn a oo aN
any ana oo ann
and with the interchange col, < coly
ap aN hdd an
azl asN oo an
* * | =-Ay (A4.2D)
[ ] [ ]
aN-11  AN-1)N ®®  d(N-1)2
ani anN oo an?
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is zero. Thus

aip  an
a a4
[ ]
[ ]
a  an
any  anz
and
ai ai
ag apg
[ ]
[ ]
an-1n1  4N-1
ani ani

)1

Appendix 4 PROPERTIES OF DETERMINANTS

If any two rows are identical or if any two columns are identical, the determinant

aiN
asn
*l=0 (Ad.3a)
[ )
aiN
ANN
aiN
asN
* =0 (A4.3b)
[ ]
A(N-1)N
AanN

If a determinant is multiplied by a constant, it is the same as multiplying every

element is any row by that constant, or every element in any column by that

constant. Thus,

and

an L4 aiN
Cayy, e Cay
* (A4.42)
[ ]
amn-12 ®® 4N-1)N
ann [ 1) anNN
app, ee  Cayy
ap ee  Cay
[ ]
. (A4.4b)
an-12 e Canw_w
any  ee  Cany
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A corollary to this is that if there is a common multiple of all the elements in any
row, or a common multiple of all the elements in any column, that common
multiple can be factored out of the determinant. Thus,

Cayy Ca;; ee  Capy an
as) ap ee  axyy az)
° ° —cl
[ ] [ ] [ ]
an-11  4dn-12 ®® dN-1)N am-1)1
ani an2 oo AaNN ani
and
an Carp e  ayy an
as1 Cay  ee  ay asi
[ ] [ ] Y
=C
[ ] [ ] o
an-1n1 Caw_1p e an_1n AN-1)1
ani Cayy; e ayy any

an oo aiN
an oo asN
* (A4.52)
ain-12 ®® 4d(N-1)N
anz oo AanN
an o0 ai|N
an 144 axN
[ )
[ )
aNn-12 ®® d4d(N-1)N
anz o0 AaAnNN
(A4.5b)

Lettwo N x N determinants have (N — 1) rows in common and have one row in

which one or more of the elements are different. Or let two N x N determinants
have (N — 1) columns in common and have one column in which one or more
of the elements are different. The sum of these determinants is a determinant
with the (N — 1) common rows, or the (N — 1) common columns, and the row
or column that is not the same replaced by the sums of the elements in that row or

column. Thus, if

ar
az

am-11
ani

and

a

ain
asn
(A4.1)
A(N-1)N
AnNN

aiN
boy
(A4.6)
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then,
an ap oo aiy
(a1 +b21) (an +byp) ee (aw + bw)
Ay +By = ° * (A4.7)
[ ] [ ]
am-1)1 anN-1)2 b A(N-1)N
ant ana oo aNN
If
apy b  ee ay
azy by  ee  ay
[ ] [ ]
By=| ° : (A4.8)
am-1)1 b(N—l)2 ®®  A(N-I)N
ani bvay  ee  apy
then
an (a2 + b12) e  ayy
asi (ax + bx) oo ayy
Av+By=| ° : (A4.9)
av-11  (aw-12 +bw-12) *® an-_1y
ani (an2 + bwo) e apy

e A determinant is unchanged if each element in a row is replaced by the sum of
that element and a constant multiple of the corresponding element in any other
row. The determinant is also unchanged if each element in a column is replaced
by the sum of that element and a constant multiple of the corresponding element
in any other column. Thus, if

ar ap oo aiN
ary an oo ain
Ay = : : (A4.1)
anN-11  dN-12 ®® AN-1)N

ani anz LA anN
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then
ar an oo ain
(a1 +Canr) (axn + Caiy) ee  (aw + Caiy)
Ay = * ° (A4.10a)
[ ) [ ]
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Appendix 5

PROOF OF THE SINGULARITY
OF A MATRIX

First Proof

Let A be a matrix of L rows and columns:

ayp dapp ee aj
dazy dxp e dp

A= ° e o o (AS5.1)
[ ) [ ) [ ) [ )

apy ary ee  dap

such that the elements in each row (denoted by k) have the property that

L
Z ay =0 (A5.2)
(=1

To show that such a matrix is singular, we use the well-known property that the
value of a determinant is unchanged when the elements in any one column are
replaced by the original elements in that column added to a constant multiple of any
other column. (See, for example, Cohen, H., 1992, pp. 424-425.) Thus, the value of
a determinant of order L x L is unchanged when we perform the following
operations on the first column of the determinant:

col'") = coly + col (A5.3a)
then

col<12> = col<11> + cols = coly + coly + colz
° (A5.3b)
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and finally

col(lL71> = col;

(L—

Appendix 5 PROOF OF THE SINGULARITY OF A MATRIX

2 + col;, = coly + coly + ... + col, 1 + coly,

(A5.3c)

Thus, for each row k of the determinant, the element in the first column, a;, is

replaced by

!’
ay =ap +ap+...+tag = 0

Therefore, the original determinant has the same value as

S e e OO

ap
any
[ )

[ ]
ar—1)2

arp

ayrL—u) air
ax(L—1) ar,
[ ] [ ]
[ ] [ ] = 0
a(L-1)(L-1) 4AL-1)L
arL-1) arr

As such, the original matrix is singular.

Second Proof

We note the following properties of a matrix:

(A5.4)

(AS.5)

» Indiagonal form, all off-diagonal elements of a matrix are zero, and the elements
along the diagonal are its eigenvalues.
 If a matrix is diagonalized by a similarity transformation, the determinant of the
diagonalized form of the matrix (the product of its eigenvalues) is the same as
the determinant of the original matrix (see, for example, Cohen, H., 1992, p. 455).

Let V be a column vector with 1 for each of its L components:

(A5.6)
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Then
L
> au
=1
L . 0
=1 * 0
i [ ]
) 0
L
Z are
=1
This can be written as
1 1
al V=] ! (A5.8)
1 1

with 2 = 0. That is, V is an eigenvector of A with eigenvalue of zero. Since at least
one of its eigenvalues is zero, the determinant of A is zero.
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Index

A
Absolute series, 74
approximation using Cauchy envelope
integral, 90
convergence of, 75
Adams-Bashforth-Moulton
predictor/corrector, 262
Alternating series, 74
approximation, 93
convergence of, 77
Approximating the sum of a convergent
series, 89-96
Approximating a series by Pade
Approximant, 94

B
Bernoulli functions, 108
Bernoulli numbers, 85
and the Riemann zeta series, 86
Beta function, 458
integrals related to, 157
relation to the gamma function, 459
Biquadratic (see quartic) polynomial,
roots of, 43
Boundary conditions, 270
for a second order partial differential
equation, 317

C
Cardan’s method for the roots of a cubic
polynomial, 32
Cardinal spline interpolation, 8
Cauchy integral test, 76
convergence of an absolute series, 451
Cauchy (pole) singularity, 147

Cauchy principle value integral, 147—154
Cauchy ratio, 77
Cauchy ratio test, 77, 454
Choleski-Turing method for inverting a
matrix, 192
Complex roots of a polynomial, 65
Convergence of a series, 73
Cramer’s rule, 180
Crank-Nicolson modification for
a hyperbolic partial differential
equation, 346
a parabolic partial differential equation,
Cubic polynomial, roots of
Cardan’s method, 32
hyperbolic function method, 38
trigonometric function method, 40
Cubic spline interpolation, 10

D
Degenerate kernel, 409

340

Descartes” method for the roots of a quartic

polynomial, 45
Determinant, some properties of, 469
Diagonal Pade Approximant, 448
Diffusion equation, 315
Digamma, polygamma functions, 462
Dirichlet boundary conditions, 270, 317
and finite difference approximation for
an ordinary second order
differential equation, 284
for an elliptic equation, 348
for a hyperbolic equation, 343

and the shooting method for an ordinary

second order differential
equation, 297
Divergence of a series, 73
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E
Eigensolutions of a homogeneous Fredholm
equation, 407
by quadratures, 407
Eigensolutions for a Freholm equation with
a degenerate kernel, 409
Eigensolutions for a Fredholm equation by
interpolating the kernel, 411
Eigenvalues of a matrix by the QR
method, 226
Eigenvalues of a real symmetric matrix
by the power method, 195
Eigenvalues of a tridiagonal matrix, 209
by the Givens method, 214
by the Householder method, 215
Eigensolutions of a real symmetric
matrix, 201
by the Jacobi method, 204
Elliptic equation, 317
with Dirichlet boundary conditions, 348
with Gauss boundary condi tions, 372
with Neumann boundary conditions, 365
and the Runge-Kutta method, 333
Euler finite difference approximation to
y’, 249
y”, 278
Euler finite difference solution to first order
differential equation, 251
Euler numbers, 87
and summing an alternating series, 89
Euler-MacLaurin approximation, 106
Euler-Mascheroni constant, 463
Evaluation of a determinant, 169—182
by Laplace expansion, 169
by pivotal condensation, 173
by triangularization, 176
Extrapolated values of discrete data, 1

F
Ferrari’s method for the roots of a quartic
polynomial, 43
Finite difference approximation
to a parabolic equation with Dirichlet
boundary conditions, 334
to an ordinary first order differential
equation, 251
to an ordinary second order differential
equation with initial conditions, 277
Dirichlet boundary conditions, 284
Neumann boundary conditions, 287
Gauss boundary conditions, 292
to partial differential equations, 333-377

Index

First order differential equation
integrating factor for, 238
particular solution, 237
Fixed pole, 434
Fourier series, 96-102
convergence of, 98
exponential series, 96
for a square wave, 98
sine/cosine series, 97
Fredholm equation, 383
of the first kind, 383
and orthogonal polynomials, 387
series approximation, 386
solution by quadratures, 384
of the second kind, 392
interpolating the kernel, 399
Neumann series for, 404
and orthogonal polynomials, 401
solution by quadratures, 392
solution by spline interpolation, 394
with a kernel containing a pole
singularity, 434
with a weakly singular kernel, 421
Schlitt’s method, 432
solution by Lagrange polynomial
interpolation, 422
solution by Lagrange-like
interpolation, 426
solution by spline interpolation, 430
Frobenius approximation for a
second order differential equation, 301-312
with a regular singular point, 305
with all points ordinary points, 302

G
Gamma function, 455
approximations to, 462467
Euler limit representation, 462
extension of the Stirling approximation
for, 466
integrals related to, 157
iterative property, 455
of half order, 456
series approximation for, 462
Stirling approximation for, 465
Gauss boundary conditions, 270, 317
finite difference approximation for an
ordinary second order differential
equation, 292
elliptic equation, 372
hyperbolic equation, 358
parabolic equation, 352



Index

Gauss-Hermite quadrature points, 138
Gauss-Hermite quadratures, 136
Gauss-Jordan elimination method
for matrix inversion, 184
solution to a set of simultaneous
equations, 190
Gauss-Laguerre quadrature points, 131
Gauss-Laguerre quadratures, 129
Gauss-Legendre quadrature points, 128
Gauss-Legendre quadratures, 126
Gaussian quadratures, 123—-144
weights and abscissae of, 124
Gibbs phenomenon, 100
Givens method for the eigenvalues of a
tridiagonal matrix, 214
Givens/Jacobi QR method, 228
Graeff root squaring method, 60
Graphical interpolation, 1

H
Half order Bessel equation, 308
Hardy’s quadrature rule, 118
Heaviside operator, 162
and the evaluation of integrals, 162
Hermite polynomials, 137
Homogeneous Fredholm equation, 407
Householder method for the eigenvalues
of a tridiagonal matrix, 215
Householder QR method, 228
Hyperbolic equation, 322
with Dirichlet boundary conditions, 343
with Neumann or Gauss boundary
conditions, 358
Runge-Kutta approximation to, 330
Hyperbolic function method for the roots
of a cubic polynomial, 39

I

Infinitely continued fraction, 447

Inhomogeneous function in an integral
equation, 383

Initial conditions, 269
for a second order partial differential

equation, 316

Integral of a function with a weak
singularity, 145

Integration using the Heaviside
operator, 162

Integrals related to
the beta function, 157
the gamma function, 157

Integrating factor for a first order differential
equation, 238

Interpolated values for discrete data, 1

Interpolation, zeros in discrete data, 51

Irregular singular point, 302

J

Jacobi method for the eigenpairs of a
real symmetric matrix, 204

Jacobi/Givens QR method, 228

K
Kernel of an integral equation, 383
Kroenecker delta symbol, 3

L
Lagrange polynomial interpolation, 2
Lagrange-like interpolation, 5
Laguerre polynomials, properties of, 129
Laplace expansion of a determinant, 169
Least squares method, 19

justification for, 22

non-polynomial curve fitting, 24
Legendre duplication formula, 460
Legendre function of the second

kind, 436

Neumann representation of, 435
Legendre polynomials, properties of, 126
Limit test for an alternating series, 76, 453
Linear spline interpolation, 8
Lippmann-Schwinger equation, 434

solution by interpolation, 434

M

MacLaurin series, 74

Matrix inversion, 183
Choleski-Turing method, 192
Gauss-Jordan elimination method, 184

Milne finite difference approximation to
y’, 250
y”, 278
and solution to first order differential

equation, 252

Mixed boundary conditions, 270

Monte Carlo integration, 154

Movable (variable) pole, 434

Multiple step Runge—Kutta method for a
first order differential equation, 247
second order differential equation, 273
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Multiple step Taylor series
approximation for a first order differential
equation, 240

N
Neumann boundary conditions, 270, 317
and the finite difference
approximation to an ordinary
second order differential
equation, 287
and the elliptic equation, 365
and the hyperbolic equation, 358
and the parabolic equation, 352
Neumann series for a Fredholm
equation of the second
kind, 404
Newton-Cotes quadratures, 112
accuracy of, 119
Hardy’s rule, 118
rectangular rule, 113
Simpson’s 1/3 rule, 115
Simpson’s 3/8 rule, 117
trapezoidal rule, 114
Weddle’s rule, 118
Newton-Raphson method for the
zero of a function, 50

(0]
Off diagonal Pade Approximant, 448
Omnes equation, 434

solution by interpolation, 440
Operator interpolation, 13

using a Taylor series, 16
Ordinary point, 301

P
Pade Approximant, 447
approximation of a series, 94
diagonal, 448
for discrete data, 12
interpolation by, 12
off diagonal, 448
Parabolic equation, 318
with Dirichlet boundary conditions, 334
Crank-Nicolson modification, 340
finite difference approximation, 335
with Neumann or Gauss boundary
conditions, 352
Runge-Kutta approximation, 327
Parseval’s theorem, 100

Index

Partial differential equation, finite difference
method, 333-377

Particular solution to a first order differential
equation, 237

Picard method for the solution to a first
order differential equation, 243

Picard predictor/corrector, 255
rectangular, 258
trapezoidal, 258

Pivotal condensation, 173

Poisson’s equation, 315

Pole (Cauchy) singularity, 147

Polygamma and digamma functions, 462

Polynomial interpolation, 2

Power method for eigenvalues of a real
symmetric matrix, 195

Predictor/corrector methods for a
first order differential equation,
254-266

Principle value integral, 147, 149

Q

OR method for the eigenvalues of
a matrix, 226

Quadratic spline interpolation, 9

Quartic polynomial, roots of, 43

R

Rectangular rule, 113

Regula-falsi method, 47

Regular singular point, 301

Riemann zeta series, 86
and Bernoulli numbers, 85

Root squaring method, 60
all roots real, 56

Roots of a cubic polynomial, 31
Cardan’s method, 32
hyperbolic function method, 38
trigonometric function method, 40

Roots of a polynomial, complex, 65

Roots of a quartic polynomial, 43
Descarte’s method, 45
Ferrari’s method, 43

Runge-Kutta approximations, 327-333
elliptic equation, 333
hyperbolic equation, 330
parabolic equation, 327
first order differential equations, 245
second order differential equation

with initial conditions, 273

relation to Simpson’s 1/3 rule, 249
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S
Schlitt’s method for a Fredholm equation
with a weakly singular kernel, 432
Series
absolute, 74
alternating, 74
convergence/divergence of, 73
Shooting method, 297
Simpson’s 1/3 rule, 115
Simpson’s 3/8 rule, 117
Singular function, integral of, 145
Singular matrix, 183
Solution tables, 333
Special functions, 5
Spline interpolation, 7-12
cardinal spline, 8
cubic spline, 10
linear spline, 8
quadratic spline, 9
Stirling’s approximation, 92, 465
Namias’ extension of, 92, 466
Summing a series, 78—89
algebraic manipulation, 79
manipulation by differentiation, 81
manipulation by integration, 80
manipulation by integration and
differentiation, 83
using Parseval’s theorem, 101
Summing an alternating series and Euler
numbers, 89

T
Taylor series, 74

approximation for a hyperbolic equation

with initial conditions, 322

approximation for a parabolic equation with

initial conditions, 318

approximation to the solution
of a first order differential
equation, 238
approximation to the solution of a
second order differential
equation with initial
conditions, 271
Trapezoidal rule, 114
Triangularization of a determinant, 176
Tridiagonal matrix, 209
Trigonometric function method
for the roots of a cubic
polynomial, 40
Truncated series, 89

v
Variable (movable) pole, 434
Volterra equation, 383
of the first kind, 414
of the second kind, 414
approximate solution by
Taylor series, 416
spline interpolation, 418

w

Wave equation, 315

Weak singularity, 145
Weakly singular kernel, 421
Weddle’s rule, 119

Z
Zeros of a function represented by discrete
data, 51
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