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Preface

These notes provide an account of lectures given at a Regional Conference on
Approximation Theory and Numerical Analysis that was sponsored by the Confer-
ence Board of the Mathematical Sciences and supported financially by the National
Science Foundation. The host institution was the University of Alaska in Fairbanks,
which provided not only all facilities but also additional financial support. Profes-
sor Gary Gislason organized the conference with the help of his colleagues in the
Department of Mathematics. It is a pleasure to thank them publicly for the com-
fortable arrangements they made, their warm hospitality, and the efficient running
of the conference.

My principal objective in the lectures and in these notes was to describe the
current status of several branches of multivariate approximation theory and, if pos-
sible, to entice more mathematicians into undertaking research on these matters.
I especially had in mind the topics of best approximation, algorithms, and projec-
tion operators, since these topics are rife with challenging problems. As part of the
survey, I tried to point out the many gaps in the current body of knowledge and to
furnish copious references.

The central theme is the perennial problem of “best approximation,” usually
formulated in a normed linear space whose elements are functions of several real
variables. First we ask, “What subclasses of functions are suitable for approximat-
ing other functions?” Here interest focuses naturally on functions that are simple
combinations of univariate functions. The important tensor-product subspaces play
the principal rôle here because of their simple linear structure. One chapter is de-
voted to introductory material on the tensor product of Banach spaces, as seen from
the perspective of approximation theory.

I extend my thanks to all the participants in the conference, for they cheerfully
suffered the lectures and offered interesting points of view in addition to stimulating
questions.

The manuscript was put into camera-ready form by Ms. Jan Duffy and Ms.
Margaret Combs of the Mathematics Department, University of Texas. (The type-
setting system used was TEX.) I am very much indebted to Mss. Duffy and Combs
for their painstaking work, and their unfailing good judgment in matters æsthetic.

Austin, April 1986 E.W. Cheney

1



CHAPTER 1

Introduction

One of the principal preoccupations in approximation theory is the study of
the following generic problem. A Banach space X is given; its elements are entities
that one may wish to approximate. In X a linear subspace U is prescribed; its
elements are the objects which will be used for approximation. (Sometimes these
are called the approximants.) If x is an element of X and u an element of U,
then we interpret u as an approximation to x. The quality of this approximation
is measured by ‖x − u‖. The interesting problem of optimal approximation or
best approximation now arises in a natural way: for a fixed x, find an element
u in U for which ‖x− u‖ is as small as possible. To make this more precise, define
the distance from x to U by the equation

dist (x, U) = inf
u∈U

‖x− u‖.

If this infimum is attained by one or more elements of U, then these elements
are called best approximations of x in U. Thus, a member u of U is a best
approximation of x if and only if

‖x− u‖ = dist (x, U).

Classical approximation theory has dealt largely with the approximation of
functions of one (real or complex) variable. For specific choices of X and U, the
theory answers questions concerning the existence of best approximations, their
unicity, their characterization and computation. Typical spaces that play the rôle
of X are C(S), L1(S), L2(S). Typical subspaces that play the rôle of U are the
polynomials of degree at most n, the trigonometric polynomials of order n, and
spaces of spline functions with fixed knots.

The problems described above are classified as linear since the sets of approx-
imants are linear subspaces. (However, the determination of best approximations is
usually a nonlinear problem.) Some familiar examples of nonlinear sets of approx-
imants are rational functions, splines with variable knots, and various constrained
sets of polynomials.

Multivariate approximation theory concerns the approximation of functions of
several real or complex variables. In some intuitive sense, multivariate functions
should be more complicated than univariate functions, in general. One must ex-
pect, for instance, that a multivariate function will be more expensive to compute.
This expectation is borne out by experience in solving partial differential equations
numerically. If f(s, t) is a solution of a partial differential equation, one might re-
quire approximate values of f for 100 different values of s and 100 different values
of t. Thus 10,000 computations will be required to give f(s, t) for all combinations
of discrete values of s and t. If there are n independent variables instead of just 2,
the corresponding number of points in IRn would be 100n. So the cost of computing
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a function would seem to be an exponential function of the number of variables.
This is the first of a number of features that distinguish multivariate approxima-
tion theory from its univariate counterpart. In this introductory chapter, some
of the other differences between univariate and multivariate approximation will be
enumerated and elaborated. Each of these differences gives rise to a direction of
investigation that has made the subject of multivariate approximation a fertile field
for interesting research.

The subject of interpolation changes in its emphasis as we pass from univari-
ate to multivariate approximation, for reasons to be discussed now. In univariate
interpolation, say on an interval [a, b], the subspaces ideal for interpolation are the
so-called Haar subspaces. An n-dimensional vector space H of functions defined
on a domain S is called a Haar space if each nonzero element of H has at most
n− 1 zeros in S. An equivalent property is this: for any n distinct points in S, say
s1, · · · , sn, and for any real numbers λ1, · · · , λn there corresponds an element h ∈ H
such that

(1) h(si) = λi (1 ≤ i ≤ n).

Since H is of dimension n, the element h is necessarily unique. Equation (1), of
course, expresses the interpolation property. The important theorem of Mairhuber
[1956] states that the space C(S), of continuous real-valued functions on a compact
Hausdorff space S, contains a Haar subspace of dimension 2 or greater only if S is
homeomorphic to a subset of the circumference of a circle. This means that interpo-
lation, as we have described it above, is possible only on one-dimensional topological
spaces. For domains in higher dimensions, IR2, IR3, · · · , the Haar property is too
severe a restriction. The issue here is a matter of the order in which we list the
quantifiers in our definitions. For interpolation by a Haar subspace of dimension n,
any set of n points is a satisfactory set of “nodes” for interpolation. If, however,
we specify the set of nodes first and then seek a suitable subspace for interpolation,
many possibilities exist. For example, the method of Shepard interpolation is par-
ticularly attractive. In order to describe this, let us begin by recalling the classical
Lagrange interpolation formula. If s1, · · · , sn are distinct points in IR then we define

(2) Lx =

n
∑

i=1

x(si)`i, `i(s) =

n
∏

j=1
j 6=i

(s− sj)/(si − sj).

The functions `i are polynomials known as the cardinal functions in the process.
They have the characteristic property `i(sj) = δij . The linear operator L produces,
from a given function x, a polynomial Lx, which has the interpolation property:
(Lx)(si) = x(si). What makes this process work is the fact that the function φ
defined by

φ(s, t) = s− t

has the property

(3) φ(s, t) = 0 if and only if s = t.

With any function having property (3), an interpolation process can be defined by

(4) Ax =

n
∑

i=1

x(si)hi , hi(s) =

n
∏

j=1
j 6=i

φ(s, sj)/φ(si, sj).



This is the basic idea of Shepard interpolation (Shepard [1968]). Many choices
are possible for the function φ, and there are no constraints engendered by the
topological nature of S. If S is a metric space, with metric d, an elegant choice for
φ is d.

Shepard’s method also includes the following refinement. Suppose that φ is a
nonnegative function; i.e., we replace assumption (3) by

(5) φ(s, t) > 0 if s 6= t and φ(s, s) = 0 for all s.

Now define functions gi by the equation

gi(s) =

n
∏

j=1
j 6=i

φ(s, sj).

Next, let gi = gi/
∑n
j=1 gj , and define an operator B by

Bx =

n
∑

i=1

x(si)gi.

One verifies readily these properties of B:

(6) gi(sj) = δij ,

(7) gi(s) > 0 if s is not a node,

(8)

n
∑

i=1

gi = 1,

(9) B ≥ 0; i .e., x ≥ 0 =⇒ Bx ≥ 0.

(10) If x is a constant function then Bx = x.

The special case of Shepard interpolation in IRk in which φ is the square of
the Euclidean metric is especially favorable, since the basis elements gi are then
analytic functions. Properties (9) and (10) above are “shape-preserving” attributes
of the operator B.

The reader who wishes to learn more about Shepard interpolation should con-
sult these additional sources: Barnhill [1977], Barnhill, Dube and Little [1983],
Farwig [1984], Gordon and Wixom [1978], and Schumaker [1976].

A third distinctive feature of multivariate approximation theory is the common
occurrence of infinite-dimensional subspaces for approximants. One example of this
arises in approximating a function of two variables by the sum of two functions of
one variable:

f(s, t) ≈ x(s) + y(t).



We might assume that f is a continuous function on a Cartesian product S×T and
that x and y are continuous functions on S and T respectively. Since x ranges over
C(S) and y ranges over C(T ), the approximating subspace is an immense linear
subspace in C(S × T ). It is obviously infinite dimensional, if S ∪ T is infinite.

Another type of infinite dimensional subspace, which turns out to be quite
useful in computer-aided design and in solving integral equations, is involved in this
approximation problem:

(11) f(s, t) ≈ x0(s) + tx1(s) + t2x2(s) + · · · + tnxn(s).

The function on the right in this equation is sometimes called a pseudo-polynomial.

For each fixed s it is a polynomial in t, but the coefficients xi can be allowed to be
arbitrary continuous functions in s.

A fourth distinctive aspect of multivariate approximation theory is the presence
of unusual Banach spaces and unusual norms. More will be said about this in
subsequent chapters, but one example here will be typical. In a linear integral
equation, an operator of the following type will usually be present:

(Lx)(s) =

∫

S

f(s, σ)x(σ) dσ.

If the kernel function f is continuous, then L will be an operator from C(S) into
C(S). (Here we assume that S is a compact Hausdorff space with a Borel measure.)
The norm of L is given by the formula

‖L‖ = sup
s

∫

|f(s, σ)| dσ.

The expression on the right is a norm for f, and it is obviously a mixture of the
supremum-norm and the L1-norm. One approach to the numerical solution of
integral equations such as

Lx = b or Lx− λx = b

is to replace the kernel f by an approximate kernel of separable form:

k(s, σ) =

n
∑

i=1

ui(s)vi(σ).

In doing so, the quantity that should be minimized is

sup
s

∫

|f(s, σ) − k(s, σ)| dσ.

The appropriate setting for this approximation is the space C(S,L1(S)) consisting
of all continuous maps from S into L1(S).

This last observation leads to the subject of tensor-products of Banach spaces.
Indeed, there is a natural identification (isometry)

C[S,L1(S)] ' C(S) ⊗λ L1(S),



the object on the right being the tensor-product of two familiar spaces completed
with a particular crossnorm, λ. Chapter II provides an introduction to this impor-
tant topic.

Another type of space that occurs naturally is of the form L1(S, Y ), where S
is a measure space and Y is a Banach space. The new space consists of Bochner
integrable maps from S into Y. The Bochner integrable maps, in turn, are defined
to be limits of simple functions, and a simple function from S to Y is one of the
form

f(s) =

n
∑

i=1

χ
Ai

(s)yi

where Ai are measurable sets in S, χ denotes a characteristic function, and yi ∈ Y.
More about these spaces will be found in later chapters.

Now we come to another distinctive feature of multivariate approximations:
the crucial rôle played by the geometry of the domain. We illustrate with a two
variable problem. Let D be a compact domain in IR2. The projections of D onto the
two coordinate axes are denoted by S and T. We contemplate the approximation
of an f ∈ C(D) by an element of C(S) plus an element of C(T ) :

f(s, t) ≈ x(s) + y(t).

The existence of an optimal pair (x, y) in this problem depends strongly upon the
geometry of D. If D = S×T then existence is assured. If, however, D is defined as

D = {(s, t) : 0 ≤ 1
2s ≤ t ≤ s ≤ 1},

then some functions f will not possess best approximations. See von Golitschek
[1984].

The strong influence of the geometry is also a familiar phenomenon in the
numerical solution of partial differential equations. One has only to think of the
Dirichlet problem on a circle or on an L-shaped region to appreciate the profound
influence of the domain.

Another obvious difference between univariate and multivariate approximation
is that in the latter, our “building blocks” will undoubtedly be univariate functions,
combined in appropriate ways for the problem at hand. Among the various schemata
that have been used for bivariate approximation are the following:

f(s, t) ≈ φ(x(s) + y(t)),

f(s, t) ≈
n

∑

i=1

xi(s)yi(t),

f(s, t) ≈
n

∑

i=1

gi(s)yi(t) +

m
∑

i=1

hi(t)xi(s),

f(s, t) ≈
n

∑

i=1

φi(g(s) + h(t)).



All of these approximating functions are elementary combinations of univariate
functions.

Often, the approximating forms that are useful are suggested by partial differ-
ential equations. Thus the general pseudopolynomial in two variables

v(s, t) =

m−1
∑

i=0

xi(s)t
i +

n−1
∑

i=0

yi(t)s
i

is the generic element in the null space of the partial differential operator

D ≡ ∂m

∂tm
· ∂n

∂sn
.

This observation could be useful in solving a partial differential equation of the form
Du = b subject to boundary conditions, since one could start with any solution u of
the equation Du = b and add to it a pseudopolynomial of the form v in an attempt
to satisfy the boundary conditions with v + u.

Another well-known example is the wave equation, uss = utt. After making the
change of variables ξ = s+ t and η = s− t we arrive at the equation uξη = 0, whose
solution is any function of the form

u = x(ξ) + y(η) = x(s+ t) + y(s− t).

Thus the approximation problem

f(s, t) ≈ x(s) + y(t)

arises when a function is to be approximated by a solution of the wave equation.
Another feature of multivariate approximation is that linear projection op-

erators play a more important rôle. There are several reasons for this. First,
algorithms for computing best approximations of multivariate functions are in a
relatively primitive state, and consequently projections provide some of the best
practical procedures for approximation. Second, the algebraic and lattice-theoretic
structure of projections is well understood, and there is no difficulty in combining
univariate projections in various ways to produce useful multivariate projections,
especially when a tensor-product type of operator is practical. By contrast, it is not
known how to combine univariate proximity maps (best approximation operators)
in order to create multivariate proximity maps. Although the alternating algorithm
(or Diliberto-Straus algorithm) is an exception to this statement, its applicability
is strictly limited.

In this long catalog of differences between the univariate and multivariate theo-
ries, the final point is that proximinality (existence of best approximations) becomes
a rather difficult question in multivariate approximation. An example of an open
question in this area is this: Does each continuous function on the unit square of
IR2 possess a best approximation of the following form, with xi and yi continuous?

x0(s) + x1(s)t+ y0(t) + y1(t)s

In the previous discussion, we have alluded to the use of univariate functions
in approximating multivariate functions. Is there a sound basis for expecting this



to be possible? The answer to this is “Yes” and is to be found in some of the
most enlightening theorems of analysis. Let us begin with the classical Weierstrass
Approximation Theorem, which asserts that any continuous real-valued function
defined on a compact interval of the real line can be approximated uniformly to
arbitrary precision by a polynomial. This theorem can be said to motivate the
study of polynomial approximations in one variable.

For functions of several variables, the Stone-Weierstrass Theorem is useful. If
Q is a compact Hausdorff space, then a subalgebra A of the real space C(Q) will be
dense in C(Q) provided that A separates the points of Q and contains the function
1. An immediate corollary of this is that the polynomials in two variables form
a dense set in C(Q) whenever Q is a compact subset of IR2. Polynomials in two
variables are built up in an obvious way from univariate functions. Similarly, the
functions of the form (s, t) 7→ ∑n

i=1 xi(s)yi(t), with continuous functions xi and yi
constitute a dense set in C(Q).

When univariate functions are to be combined by functional composition, the
theorem of Kolmogorov is pertinent. We discuss his theorem next, starting with
the concept of a nomographic function. The latter is a bivariate function which
can be expressed in the form

φ(s, t) = g(x(s) + y(t))

for appropriate continuous functions g, x, y. Note that these three functions are
univariate. Some common functions are nomographic; for example, if 0 < a <
b < ∞, then the function f(s, t) = st is nomographic on [a, b] × [a, b]. This is
demonstrated by the equation

st = exp(log s+ log t).

On the other hand, the same function is not nomographic on [0, 1]× [0, 1]. This nice
example comes from Buck’s paper [1968-a].

If we denote by N the set of nomographic functions on I2, where I = [0, 1],
then we can say that N is a proper subset of C(I2). As for sums of two or more
nomographic functions, we obviously have

N ⊂ N + N ⊂ N + N + N ⊂ · · · ⊂ C(I2).

Kolmogorov’s Theorem asserts that this chain of inclusions is finite, for

C(I2) = N + N + N + N + N ,

i.e., each continuous function on the square is a sum of 5 nomographic functions.
This remarkable theorem provides a solution to the 13th problem in Hilbert’s famous
list [1901]. For an up-to-date account of the status of Hilbert’s problems, including
the 13th, see Lorentz’s article in Browder’s survey [1976].

Kolmogorov’s Theorem has undergone various refinements since its publica-
tion [1957]. These can be found in Lorentz [1966]. Perhaps the most memorable
refinement is this one:



THEOREM. There exist five functions, g1, · · · , g5, which are continuous on [0, 1],
such that to each continuous function f defined on the square [0, 1] × [0, 1] there

corresponds a continuous function φ satisfying

f(s, t) =

5
∑

i=1

φ(gi(s) +
√

2 gi(t)).

Thus, the functions g1, · · · , g5 are universal functions, and it is only φ which
depends on f.



CHAPTER 2

Tensor Products

Let us begin with the abstract definition, and then look at some concrete
realizations that will be useful in approximation theory. We start with two Banach
spaces, X and Y. From these we construct “expressions” of the form

∑n
i=1 xi ⊗ yi,

where n ∈ IN, xi ∈ X, and yi ∈ Y. (The integer n is not restricted.) In the set of
all “expressions” we introduce an equivalence relation and then make the set into
a vector space with appropriate definitions.

If the elements of X are functions defined on a set S and if the elements of Y
are functions defined on a set T, then the “expression”

∑

xi⊗ yi can be interpreted
as a function on S × T, namely the function

(s, t) 7→
n

∑

i=1

xi(s)yi(t).

For the purposes of approximation theory this is the principal interpretation given
to “expressions.” However, the abstract theory proceeds in a way that makes no
assumptions about the nature of the elements in X and Y.

The set of all expressions is denoted by X ⊗ Y ; this is the algebraic tensor

product of X and Y. An equivalence relation in X ⊗ Y is defined as follows: we
write

(1)

n
∑

i=1

xi ⊗ yi '
m

∑

j=1

uj ⊗ vj

if and only if

(2)
n

∑

i=1

〈φ, xi〉〈ψ, yi〉 =
m

∑

j=1

〈φ, uj〉〈ψ, vj〉

for all φ ∈ X∗ and for all ψ ∈ Y ∗. (The notation X∗ denotes the Banach-space
conjugate of X.)

The perceptive reader will see that what we are doing is forcing the elements
of X and Y to be functions, indeed functions on X∗ and Y ∗, by the mental exercise
of thinking

x(φ) = 〈φ, x〉 (x ∈ X,φ ∈ X∗).

Thus the two expressions in (1) are to be regarded as equivalent if they represent
the same function on X∗ × Y ∗ as defined in (2).

If (1), and hence (2), are true for a pair of expressions then from (2) we can
write

(3)

〈

ψ,

n
∑

i=1

〈φ, xi〉yi
〉

=

〈

ψ,

m
∑

j=1

〈φ, uj〉vj
〉

.

9



Since this is true for all ψ ∈ Y ∗ we infer that

(4)

n
∑

i=1

〈φ, xi〉yi =

m
∑

j=1

〈φ, uj〉vj (φ ∈ X∗).

This argument is reversible, and so (4) could have been adopted as the definition of
equivalence. From (4) we perceive another interpretation to be given any expression
∑

xi⊗yi; namely, it can be thought of as a linear operator acting on X∗ and taking
values in Y. Thus the equation

(5)

( n
∑

i=1

xi ⊗ yi

)

(φ) =

n
∑

i=1

〈φ, xi〉yi (φ ∈ X∗)

defines the action of the expression when that expression is interpreted as an op-
erator. This operator is linear and continuous. The continuity can be verified by
showing that the operator is bounded:

∥

∥

∥

∥

(

∑

xi ⊗ yi

)

(φ)

∥

∥

∥

∥

=

∥

∥

∥

∥

∑

〈φ, xi〉yi
∥

∥

∥

∥

≤
∑

‖φ‖ ‖xi‖ ‖yi‖.

Because of (4), we can say that two expressions are equivalent if they define the
same operator from X∗ to Y. Henceforth, ' is written as an ordinary equality.

In the abstract theory, an expression
∑n

i=1 xi ⊗ yi is given the basic interpre-
tation as a bounded linear operator from X∗ to Y, hence an element of L(X∗, Y ).
The algebraic structure given to X ⊗ Y is derived from this interpretation. Thus
addition must be defined by

n
∑

i=1

xi ⊗ yi +

m
∑

i=n+1

xi ⊗ yi =

m
∑

i=1

xi ⊗ yi

because for any φ ∈ X∗,

n
∑

i=1

〈φ, xi〉yi +

m
∑

i=n+1

〈φ, xi〉yi =

m
∑

i=1

〈φ, xi〉yi.

Scalar multiplication is defined by

λ

n
∑

i=1

xi ⊗ yi =

n
∑

i=1

λxi ⊗ yi =

n
∑

i=1

xi ⊗ (λyi).

The 0-element has many representations, among them 0 ⊗ 0, x⊗ 0, and 0 ⊗ y.

LEMMA. In X⊗Y, every expression which is not equivalent to 0⊗0 is equivalent

to an expression
∑n

i=1 xi ⊗ yi in which {x1, · · · , xn} and {y1, · · · , yn} are linearly

independent sets.

Proof. Given any nonzero element z in X⊗Y, let ∑n
i=1 xi⊗yi be an expression

for z having a minimum number of summands. Then the sets of xi’s and yi’s are



independent. To prove this, suppose that one xi is a linear combination of the
others, say x1 =

∑n
i=2 λixi. Then

n
∑

i=1

xi ⊗ yi =

( n
∑

i=2

λixi

)

⊗ y1 +
n

∑

i=2

(xi ⊗ yi)

=

n
∑

i=2

xi ⊗ λiy1 +

n
∑

i=2

(xi ⊗ yi)

=

n
∑

i=2

xi ⊗ (λiy1 + yi).

This equation contradicts the assumed minimality of n. The argument is valid for
n > 1. If n = 1, and a dependency exists, then either x1 = 0 or y1 = 0, whence
z = 0 ⊗ 0.

After the algebraic tensor product of two Banach spaces has been constructed,
we can consider giving it a norm. There are many ways in which this can be done,
and we begin with the simplest. Since X ⊗ Y can be interpreted as a subspace of
L(X∗, Y ), the norm on the latter space induces a norm on the former. This norm
is denoted by λ because it turns out to be the least norm in a certain class. By the
preceding remarks, its definition must be

λ

( n
∑

i=1

xi ⊗ yi

)

= sup

{
∥

∥

∥

∥

n
∑

i=1

〈φ, xi〉yi
∥

∥

∥

∥

: φ ∈ X∗, ‖φ‖ = 1

}

.

Let us illustrate these matters by taking the tensor product of two continuous
function spaces, and giving it the norm λ. If S is a compact Hausdorff space, let
C(S) denote the Banach space of continuous real-valued functions on S, normed by
‖x‖ = maxs |x(s)|. Let C(T ) be another such space. If xi ∈ C(S) and yi ∈ C(T )
then, with φ running over the unit cell in C(S)∗, we have

λ

( n
∑

i=1

xi ⊗ yi

)

= sup
φ

∥

∥

∥

∥

n
∑

i=1

〈φ, xi〉yi
∥

∥

∥

∥

= sup
φ

sup
t

∣

∣

∣

∣

n
∑

i=1

〈φ, xi〉yi(t)
∣

∣

∣

∣

= sup
t

sup
φ

∣

∣

∣

∣

〈

φ,

n
∑

i=1

yi(t)xi

〉
∣

∣

∣

∣

= sup
t

∥

∥

∥

∥

n
∑

i=1

yi(t)xi

∥

∥

∥

∥

= sup
t

sup
s

∣

∣

∣

∣

n
∑

i=1

yi(t)xi(s)

∣

∣

∣

∣

.

Hence, if the expression z =
∑n
i=1 xi ⊗ yi is interpreted as an element of C(S × T ),

its standard supremum norm is the same as λ(z), which is in turn the norm of z
when z is regarded as a linear operator from C(S)∗ to C(T ).



The norm λ has a useful property, called the crossnorm property: for any
Banach spaces X and Y and any elements x, y,

λ(x⊗ y) = ‖x‖ ‖y‖.

(This follows easily from the definition of λ.)
If a norm α has been introduced into X ⊗Y, the resulting normed linear space

is usually incomplete. Its completion is denoted by X ⊗α Y. We illustrate again
with C(S) ⊗ C(T ).

THEOREM. C(S) ⊗λ C(T ) = C(S × T ).
Proof. The equality asserted here means that C(S) ⊗λ C(T ) is isometrically

isomorphic to C(S × T ). We have already seen that there is a natural linear em-
bedding of C(S) ⊗ C(T ) in C(S × T ), and that when the λ-norm is used, this
embedding is isometric. The completion, C(S) ⊗λ C(T ), is then nothing but the
closure of C(S)⊗C(T ) in the space C(S×T ). But an easy application of the Stone-
Weierstrass Theorem shows that C(S)⊗C(T ) is dense in C(S×T ). Hence equality
follows.

A more general theorem of Grothendieck states that C(S) ⊗λ X = C(S,X)
for any Banach space X. For the proof, see, for example, Semadeni [1971]. The
space C(S,X) has as its elements all continuous maps f : S → X, normed by
‖f‖ = sups ‖f(s)‖. It is a Banach space.

If one of the spaces X and Y is finite-dimensional, then X ⊗α Y is more
easily described, and no completion is necessary. For definiteness suppose that X is
finite-dimensional and that {b1, · · · , bn} is a basis. Then each expression in X ⊗ Y
is equivalent to an expression

∑n
i=1 bi ⊗ yi, as is seen with elementary algebraic

manipulations.
LEMMA. If X is finite-dimensional and if α is a crossnorm on X ⊗ Y which

satisfies λ ≤ α, then X ⊗ Y is complete in the metric defined by the α-norm.

Proof. Select φ1, · · · , φn in X∗ so that φi(bj) = δij . Let [zk] be a sequence in
X ⊗ Y which is α-Cauchy. Then write zk =

∑n
i=1 bi ⊗ yki. For 1 ≤ j ≤ n we have

‖ykj‖ =

∥

∥

∥

∥

n
∑

i=1

〈φj , bi〉yki
∥

∥

∥

∥

= ‖zk(φj)‖ ≤ λ(zk)‖φj‖ ≤ α(zk)‖φj‖.

In this calculation, zk has been interpreted as an element of L(X∗, Y ). A similar
calculation shows that [ykj ]

∞
k=1 is Cauchy for each j. Since Y is a Banach space,

limk ykj = yj exists. Putting z =
∑n

i=1 bi ⊗ yi we shall see that limxk = z. Indeed,

α(zk − z) = α

[ n
∑

i=1

bi ⊗ (yki − yi)

]

≤
n

∑

i=1

α[bi ⊗ (yki − yi)] =

n
∑

i=1

‖bi‖ ‖yki − yi‖.

Another important crossnorm is denoted by γ (because it turns out to be the
greatest crossnorm). Its definition is

γ(z) = inf

{ n
∑

i=1

‖xi‖ ‖yi‖ : z =

n
∑

i=1

xi ⊗ yi

}

.

The infimum is taken with respect to all possible representations of z ∈ X ⊗ Y.
It is clear that an infimum is essential, for otherwise γ(z) would depend on the



representation of z. If z 6= 0, then γ(z) > 0 by the following reasoning. Let φ be
any element of norm 1 in X∗. We shall interpret z as an operator in L(X∗, Y ). If
z =

∑n
i=1 xi ⊗ yi, then

‖z(φ)‖ =

∥

∥

∥

∥

n
∑

i=1

〈φ, xi〉yi
∥

∥

∥

∥

≤
n

∑

i=1

‖xi‖ ‖yi‖.

By taking an infimum over all representations of z we get γ(z) ≥ ‖z(φ)‖. By taking
a supremum in φ we get γ(z) ≥ λ(z).

Let us prove that γ is a crossnorm. Suppose that x⊗ y =
∑n

i=1 xi ⊗ yi. Select
φ ∈ X∗ such that ‖φ‖ = 1 and 〈φ, x〉 = ‖x‖. Then

‖x‖ ‖y‖ = 〈φ, x〉‖y‖ = ‖〈φ, x〉y‖ =

∥

∥

∥

∥

n
∑

i=1

〈φ, xi〉yi
∥

∥

∥

∥

≤
n

∑

i=1

‖xi‖ ‖yi‖.

Hence γ(x⊗ y) = ‖x‖ ‖y‖.
An important application of the γ-norm is contained in the next result, due to

Dunford and Schatten [1946].
THEOREM. If S and T are σ-finite measure spaces, then

L1(S) ⊗γ L1(T ) = L1(S × T ).

Proof. Let z =
∑n

i=1 xi ⊗ yi, where xi ∈ L1(S) and yi ∈ L1(T ). With z we
associate an element f ∈ L1(S × T ) by writing

f(s, t) =

n
∑

i=1

xi(s)yi(t).

The function f depends on z and not upon its representation – a fact which we do
not stop to prove. By Fubini’s Theorem,

‖f‖ =

∫∫

|f(s, t)| ds dt ≤
∫∫ n

∑

i=1

|xi(s)| |yi(t)| ds dt =

n
∑

i=1

‖xi‖ ‖yi‖.

This proves that ‖f‖ ≤ γ(z). In the special case that
∑n

i=1 xi = 1, and xixj = 0
for i 6= j, we can see that ‖f‖ ≥ γ(z). Indeed, in this case the xi are characteristic
functions of a measurable partition of S, and therefore

∫∫
∣

∣

∣

∣

n
∑

i=1

xi(s)yi(t)

∣

∣

∣

∣

dt ds =
n

∑

i=1

∫

xi(s) ds

∫

|yi(t)| dt

=

n
∑

i=1

‖xi‖ ‖yi‖ ≥ γ(z).

The functions of the special type just described form a dense set in L1(S ×T ), and
this remark completes the proof.



A more general theorem exists here as in the analogous situation involving
C(S × T ), namely, L1(S) ⊗γ X = L1(S,X) for any Banach space X. The space
L1(S,X) is defined as the space of all Bochner integrable maps f : S → X, with
norm

‖f‖ =

∫

S

‖f(s)‖X ds.

The theory of these spaces is expounded in Diestel and Uhl [1977], and an intro-
ductory account is given in Light and Cheney [1985].

The theory of tensor product spaces has a number of isomorphism theorems
as highlights; several of these have already been mentioned. Another one, of great
importance in approximation theory, is this:

THEOREM. (X ⊗γ Y )∗ = L(X,Y ∗).
Proof. We define T : (X ⊗γ Y )∗ → L(X,Y ∗) by putting

(6) 〈(Tθ)(x), y〉 = 〈θ, x⊗ y〉, θ ∈ (X ⊗γ Y )∗, x ∈ X, y ∈ Y.

It is easy to see that for each θ, T θ is a linear map from X onto Y ∗. Furthermore,
Tθ is bounded because

‖Tθ‖ = sup
‖x‖=1

‖(Tθ)(x)‖

= sup
‖x‖=1

sup
‖y‖=1

|〈(Tθ)x, y〉|

= sup
γ(x⊗y)=1

|〈θ, x⊗ y〉| ≤ ‖θ‖.

Hence Tθ ∈ L(X,Y ∗). From Eq. (6) we see that T is injective, because if Tθ = 0
then the left side in (6) is 0 for all x and y. Consequently the right side is zero for
all dyads x⊗ y, and so θ = 0.

In order to prove that T is surjective, let A ∈ L(X,Y ∗). Define θ on X ⊗ Y as
follows. If z ∈ X⊗Y, let one of its representations be z =

∑n
i=1 xi⊗yi. Put 〈θ, z〉 =

∑n
i=1〈Axi, yi〉. We shall see that 〈θ, z〉 does not depend on this representation. We

have

|〈θ, z〉| ≤
∣

∣

∣

∣

n
∑

i=1

〈Axi, yi〉
∣

∣

∣

∣

≤
n

∑

i=1

|〈Axi, yi〉|

≤ ‖A‖
n

∑

i=1

‖xi‖ ‖yi‖.

By taking an infimum over all the representations of z we obtain

|〈θ, z〉| ≤ ‖A‖γ(z).

Thus if z ' 0×0, then γ(z) = 0 and θ(z) = 0. These considerations show that θ can
be extended to X ⊗γ Y and that ‖θ‖ ≤ ‖A‖. Since Tθ = A, we have proved that
T is surjective. Putting the various inequalities together, we see that ‖Tθ‖ = ‖θ‖;
hence T is an isometric isomorphism.



The applications of the preceding theorem in approximation theory are espe-
cially interesting. Since the space L(X,Y ∗) is the conjugate of a Banach space, it
has a natural weak*-topology. In some contexts this topology is called the weak*-

operator topology. Convergence of a net Aν in this topology is described as follows:
Aν → 0 in the weak*-operator topology of L(X,Y ∗) means that 〈Aνx, y〉 → 0 for
all x ∈ X and y ∈ Y. By the Alaoglu Theorem, each bounded subset of L(X,Y ∗) is
pre-compact in this topology. It follows that a set that is closed in this topology is
automatically proximinal. As an example of this principle, we have:

THEOREM. For every Banach space X and for each finite-dimensional subspace

U in X there is a projection of least norm from X onto U.
Proof. The family of all projections P : X→→U is closed in the weak*-operater

topology. Indeed, if Pν is a net of such projections and if Pν → A in this topology
then for each u ∈ U, Au = limν Pνu = u. Here we reason that U is a conjugate
space because it is finite-dimensional, and its weak*-topology coincides with its
norm topology. See Isbell and Semadeni [1963] or Blatter and Cheney [1971].

If X and Y are Hilbert spaces, we can introduce an inner product in X ⊗Y by
the following definition: if z =

∑n
i=1 xi⊗yi ∈ X⊗Y and w =

∑m
j=1 uj⊗vj ∈ X⊗Y,

then

〈z, w〉 =

n
∑

i=1

m
∑

j=1

〈xi, uj〉〈yi, vj〉.

It must be proved, of course, that this definition is independent of the representa-
tions chosen for z and w, and that the resulting bilinear form is a genuine inner
product. If we define

β(z) =
√

〈z, z〉, z ∈ X ⊗ Y,

then the function β is a crossnorm, and finally we have the following isomorphism
theorem.

THEOREM. L2(S) ⊗β L2(T ) = L2(S × T ).
The details of this topic can be found in Light and Cheney [1985].



CHAPTER 3

Applications to Integral Equations
and Matrix Scaling

Integral equations have motivated functional analysis since its inception, and
they serve as motivation for certain branches of approximation theory as well.

Consider the following integral equation

(1) x(t) = q(t) + λ

∫

S

f(s, t)x(s) ds (t ∈ S).

This is an example of a linear Fredholm integral equation. The functions q
and f are prescribed, and the function x is to be determined. Various settings are
possible, but let us start by assuming that q ∈ C(S), f ∈ C(S × S), and x ∈ C(S).
The best way to think of Eq. (1) is in the form

(2) x = q + λAx

in which an integral operator A has been introduced by defining

(3) (Ax)(t) =

∫

S

f(s, t)x(s) ds.

In specific instances, S is often an interval in IR, but it can be a more general space,
such as any topological space in which a Borel measure has been introduced. Notice
that Eq. (2) can be written as

(4) (I − λA)x = q.

A general theorem of functional analysis asserts that if ‖A‖ < ∞ and if |λ| is
sufficiently small, then a unique solution exists. It can be computed by the Neumann
series:

(5) x = (I − λA)−1q =

∞
∑

n=0

(λA)nq.

The exact hypothesis required is that |λ| < ‖A‖−1, where

‖A‖ = sup{‖Ax‖ : x ∈ C(S), ‖x‖ ≤ 1}
= sup

x
sup
t

|(Ax)(t)|

= sup
t

sup
x

∣

∣

∣

∣

∫

S

f(s, t)x(s) ds

∣

∣

∣

∣

= sup
t

∫

S

|f(s, t)| ds.
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This calculation is valid if S is a compact Hausdorff space and if the measure
employed is a regular Borel measure.

If the kernel, f, of the integral operator is of the special form

(6) f(s, t) =
n

∑

j=1

uj(s)vj(t),

then it is said to be “separable” or “degenerate.” From our viewpoint, this means
that f is already displayed as a simple combination of univariate functions. An
elementary method for solving an integral equation with degenerate kernel proceeds
as follows. Upon substituting (6) in the integral equation (1), we obtain

(7)

x(t) = q(t) + λ

∫

S

n
∑

j=1

uj(s)vj(t)x(s) ds

= q(t) + λ

n
∑

j=1

vj(t)

∫

S

uj(s)x(s) ds.

After introducing the abbreviation

〈y, x〉 =

∫

S

y(s)x(s) ds

we can write (7) in the form

(8) x = q + λ

n
∑

j=1

〈uj , x〉vj .

This shows that if there exists a solution, x, then x − q must lie in the subspace
spanned by {v1, · · · , vn}. We therefore put cj = 〈x, uj〉, and arrive at

ci = 〈x, ui〉 = 〈q, ui〉 + λ
n

∑

j=1

cj〈vj , ui〉 (1 ≤ i ≤ n)

whence
n

∑

j=1

[

δij − λ〈vj , ui〉
]

cj = 〈q, ui〉 (1 ≤ i ≤ n).

In matrix terms this equation has the form

(9) (I − λB)c = b

and for all sufficiently small λ a unique solution will exist. Finally, we note that if
c is a solution of (9), then the function x defined by

x = q +

n
∑

j=1

cjvj



will be a solution of the integral equation (9). Thus in the case of a separable kernel,
the Fredholm integral equation (1) is equivalent to a system of n linear equations
in n unknowns.

If the kernel f in Eq. (1) is not separable, we can approximate it by a separable
kernel and solve the resulting equation by the method outlined above. This tactic
produces an approximate solution of the original integral equation. The quality of
the approximation is easily assessed in the following manner. We start with two
invertible operators A and B (on any Banach space), and observe that

‖A−1 −B−1‖ = ‖A−1(B −A)B−1‖ ≤ ‖A−1‖ ‖B −A‖ ‖B−1‖.

From this we conclude that

(10) ‖(I −A)−1 − (I −B)−1‖ ≤ ‖(I −A)−1‖ ‖A−B‖ ‖(I −B)−1‖.

Now suppose that x is a solution of Eq. (4). Let Ã be a perturbation of A, and let
x̃ be a solution of

(11) (I − λÃ)x̃ = q.

Then from Eq. (10) we obtain

‖x− x̃‖ = ‖(I − λA)−1q − (I − λÃ)−1q‖
≤ ‖(I − λA)−1‖ ‖λA− λÃ‖ ‖(I − λÃ)−1‖ ‖q‖.

This proves that if Ã converges to A, then x̃ will converge to x. It also suggests
that, if we are going to replace A by Ã and solve (11), then ‖A− Ã‖ should be as
small as possible. These remarks are valid for operator equations in any Banach
space. If we work in the space C(S) with integral operators, the original kernel f
and the separable kernel f̃ should have the property that the quantity

‖A− Ã‖ = sup
t∈S

∫

S

|f(s, t) − f̃(s, t)| ds

is small. The appropriate setting for this problem is the space C(S,L1(S)).
The preceding discussion suggests a related problem of approximating a given

function f ∈ C(S × T ) by a function of the form

f̃(s, t) =

n
∑

i=1

ui(s)vi(t)

where ui ∈ C(S) and vi ∈ C(T ). If n is fixed and if ui and vi are not further
restricted, then this problem of best approximation is one that has not yet been
solved. There do exist reasonable methods based upon projections that produce
good approximations, but the underlying extremal problem remains unsolved.

Let us interrupt our discussion of integral equations to indicate how the best
approximation problem

f(s, t) ≈
n

∑

i=1

ui(s)vi(t)



leads to a problem in n-widths. Recall that the n-width of a set K in a Banach
space X is the number

dn(K) = inf
U

sup
x∈K

dist(x, U)

in which the infimum is taken over all n-dimensional subspaces U in X. If a certain
n-dimensional subspace U achieves the indicated infimum, then U is termed an
optimal subspace for approximating the members of K. (See Pinkus [1985] for the
theory of n-widths.)

In the problem at hand, the manifold of admissible approximating functions is

Mn =

{

n
∑

i=1

ui ⊗ vi : ui ∈ C(S), vi ∈ C(T )

}

.

It is not a linear manifold, but rather a Grassmann manifold. The distance from f
to Mn can be expressed as follows:

dist(f,Mn) = inf
u1···un

inf
v1···vn

∥

∥

∥

∥

f −
n

∑

i=1

ui ⊗ vi

∥

∥

∥

∥

= inf
U

dist
[

f, U ⊗ C(T )
]

= inf
U

sup
t

dist(f t, U)

= dn(K),

where K is the compact subset of C(S) consisting of the sections f t as t ranges over
T. Thus the approximation problem will be solved if we can determine an optimal
subspace U in the n-width problem. The converse is true also, as is shown by the
above calculation.

If the setting of the approximation problem is shifted to L2(S × S), the sit-
uation changes, and some early work of Schmidt [1907] becomes pertinent. Sup-
pose then that we desire to approximate a function f ∈ L2(S × S) by a function
∑n

i=1 ui(s)vi(t), where n is fixed, ui ∈ L2(S), and vi ∈ L2(S). This is the problem
that Schmidt solved, and we shall outline his solution here.

Before delving into the details of Schmidt’s work, we recall some elementary
approximation theory in Hilbert space. Suppose that z and v are elements of a
Hilbert space, and that we desire to approximate z by a scalar multiple of v. We
then calculate as follows:

‖z − λv‖2 = 〈z − λv, z − λv〉 = 〈z, z〉 − 2λ〈z, v〉 + λ2〈v, v〉.

In this problem, no generality is lost if it be assumed that ‖v‖ = 1. Having made
that assumption, we will have

‖z − λv‖2 = λ2 − 2λ〈z, v〉 + 〈z, v〉2 + 〈z, z〉 − 〈z, v〉2

=
[

λ− 〈z, v〉
]2

+ ‖z‖2 − 〈z, v〉2.

This shows that the best value of λ is λ = 〈z, v〉, and that when this optimal λ is
used, the squared error is

‖z‖2 − 〈z, v〉2.



If v is the first element in an orthonormal sequence, [v1, v2, v3, · · ·] then we can
repeat this process in the following way. In Step 2, we approximate z − 〈z, v1〉v1 as
well as possible by a multiple of v2. The correct coefficient is (because of orthogo-
nality)

λ =
〈

z − 〈z, v1〉v1, v2
〉

= 〈z, v2〉.
Thus, we can compute the optimal coefficients one by one or all at once. The
recursive method is of course the only one available if the orthonormal system [vi]
is not known at the beginning but is being determined one step at a time in the same
process. The coefficients being developed are nothing but the generalized Fourier
coefficients of z with respect to the given orthonormal system.

In order to understand Schmidt’s result, let us examine the case when n = 1.
We seek functions u and v ∈ L2(S) which minimize the squared-norm:

(12)

∫∫

[

f(s, t) − u(s)v(t)
]2
dt ds.

Let us suppose for the moment that the function v is fixed. There is no loss of
generality in assuming that ‖v‖ = 1; for the term uv can be written as (αu)(v/α)
with any nonzero real number α. Using the sections of f given by fs(t) = f(s, t),
we interpret (12) as

(13)

∫

‖fs − u(s)v‖2 ds.

Since v is fixed and of norm 1, the real number u(s) that minimizes ‖fs − u(s)v‖
is the Fourier coefficient of fs with respect to v :

(14) u(s) = 〈fs, v〉 =

∫

f(s, t)v(t) dt = (Av)(s).

Here A is the integral operator defined by the kernel f ; i.e.,

(15) (Ax)(s) =

∫

f(s, t)x(t) dt, x ∈ L2(S).

When u is defined by (14), the value of the squared error in (13) becomes

(16)

∫

[

‖fs‖2 − 〈fs, v〉2
]

ds = ‖f‖2 − ‖Av‖2.

This calculation shows us how to choose v; namely, v must maximize the expression
‖Av‖2 subject to the constraint that ‖v‖ = 1. Equivalently, we seek v, uncon-
strained, to maximize

〈Av,Av〉/〈v, v〉.
This quotient is the same as the Rayleigh quotient of A∗A :

〈A∗Av, v〉/〈v, v〉.

It is known that this quotient attains its supremum, that the supremum is the
leading eigenvalue of A∗A, and that the maximizing vector v is an eigenvector of



A∗A corresponding to this largest eigenvalue. Since A∗A is self-adjoint, positive,
and compact, its eigenvalues form a sequence tending downward to zero. We denote
this sequence by λ1 ≥ λ2 ≥ · · · , repeating each eigenvalue a number of times equal to
its geometric multiplicity. The corresponding eigenvectors vi form an orthonormal
sequence. Putting ui = Avi, we can now state Schmidt’s Theorem.

THEOREM. The best L2-approximation of f by a function of the form
∑n

i=1 ui(s)vi(t),
where n is given and ui ∈ L2(S), vi ∈ L2(T ), is achieved by letting vi be eigenvectors

of A∗A, as described above, and by putting ui = Avi.
Now it must be recognized that Schmidt’s solution to the approximation prob-

lem is often impractical. Suppose, for example, that we were going to use Schmidt’s
method to approximate the kernel of an integral equation by a separable kernel, in
order to obtain an approximate solution of the integral equation (by the technique
outlined previously). In applying Schmidt’s method we must find eigenvectors of the
operator A∗A; this problem is at least as difficult as the original integral equation!

An alternative approach in the setting of Hilbert space is to start with any
orthonormal sequence [y1, y2, · · ·] in L2(S) and to search for an approximation of
the form

f(s, t) ≈
n

∑

i=1

xi(s)yi(t)

where the yi are now prescribed. It is clear that for each s, we must have xi(s) =
〈fs, yi〉 = Ayi, and so this procedure is quite straightforward. It should be noted,
however, that for the numerical solution we must address the problem of integration
buried in the innocent-looking inner product by which xi(s) is defined. If this
integration is effected with a quadrature rule, it is not clear that we have gained
any advantage over the traditional method of introducing a quadrature formula
immediately in the integral equation. In this traditional procedure, the integral
equation is transformed thereby to an approximate form:

x(s) = q(s) + λ

m
∑

j=1

wjf(s, tj)x(tj).

The weights wj and the nodes tj are specified by the quadrature formula. Evaluating
both sides of the equation at ti, we obtain

x(ti) = q(ti) + λ

m
∑

j=1

wjf(ti, tj)x(tj) (1 ≤ i ≤ m).

The values of x at the nodes are recovered by solving m linear equations in m
unknowns. Intermediate values of x(t) are obtained by interpolation between the
nodal values x(ti).

The problem of approximation in the L1-norm for the schema

f(s, t) ≈
n

∑

i=1

ui(s)vi(t)

has recently received some attention by Micchelli and Pinkus [1977]. They proved a
beautiful theorem that is applicable when f is strictly totally positive. That means
that f is continuous and that

det f(si, tj) > 0 if s1 < · · · < sm and t1 < · · · < tm.



THEOREM. Let f be strictly totally positive in the square 0 ≤ s ≤ 1, 0 ≤ t ≤ 1.
Then the miminum value of

∫ 1

0

∫ 1

0

∣

∣

∣

∣

f(s, t) −
n

∑

i=1

ui(s)vi(t)

∣

∣

∣

∣

ds dt

as ui and vi range over L1[0, 1] is attained by functions of the form ui(s) = f(s, ti)
and vi(t) =

∑n
j=1 cijf(sj , t).

In the paper cited, Micchelli and Pinkus describe the special points (si, tj)
and the coefficients cij . Their theorem shows, incidentally, that the solution to the
problem is continuous in spite of the fact that ui and vi are permitted to range over
L1[0, 1].

Further references on these best approximation problems are Brown [1982-b]
and Deutsch, Mach and Saatkamp [1981].

We turn now to a problem in the scaling (or “preconditioning”) of matrices
that can be solved by turning it into an approximation problem and applying an
effective algorithm. Let A be an m×n matrix. A row scaling of A consists of our
dividing each row of A by a positive number:

aij → aij/ri (1 ≤ i ≤ m, 1 ≤ j ≤ n).

This can be effected by multiplying A on the left by the diagonal matrix

R = diag(r−1
1 , r−1

2 , · · · , r−1
m ).

Similarly, a column scaling divides the jth column of A by a positive number cj ,
for j = 1, · · · , n. This is accomplished by multiplying A on the right by the diagonal
matrix

C = diag(c−1
1 , c−1

2 , · · · , c−1
n ).

If both types of scaling are employed, the result is the matrix B = RAC in which
bij = aij/ricj .

In many numerical problems where matrices are employed it is very easy to use
B instead of A. For example, in solving a system of linear equations Ax = u, the row
scaling corresponds to multiplying the ith equation by r−1

i ; hence we compensate
by multiplying the right-hand side ui by r−1

i also. The column scaling corresponds
to a change of variable, yj = cjxj .

In the numerical problems, the purpose of scaling is to improve the conditioning
of the computation; hence the term “preconditioning.” There are many measures
of the conditioning of a matrix B. One of these is the quantity

γ = max {|bij/bµν | : bµν 6= 0} .

If the scaling parameters ri and cj are to produce a matrix B with a minimal value
of γ, and if this minimum γ is denoted by e2δ, then we are led to demand that

e−δ ≤ |bij | ≤ eδ (bij 6= 0).

In terms of the original matrix A, this means that

e−δ ≤ |aij/ricj | ≤ eδ (aij 6= 0).



Using overbars to denote natural logarithms of the quantities, we have

−δ ≤ |āij | − r̄i − c̄j ≤ δ (aij 6= 0).

Here we are seeking to approximate the bivariate function |āij | by a sum of two
univariate functions r̄i and c̄j . The appropriate norm is a maximum norm:

∥

∥|ā| − r̄ − c̄
∥

∥

D
= max

(i,j)∈D

∣

∣|āij | − r̄i − c̄j
∣

∣

where D =
{

(i, j) : aij 6= 0
}

.
Von Golitschek [1980-a] has developed an efficient algorithm for solving such

problems. It is essentially the discrete version of his algorithm for the approximation
of functions on continua. A simple case of this algorithm is described later (Chapter
6). The reader should consult von Golitschek [1980-a, 1980-b, 1980-c], Fulkerson and
Wolfe [1962], Bauer [1963, 1969], Rothblum and Schneider [1980, 1982], Osborne
[1960], Curtis and Reid [1972], Eaves et al. [1985], von Golitschek, Rothblum, and
Schneider [1983], von Golitschek and Schneider [1984], Marshall and Olkin [1968],
and Tomlin [1975].



CHAPTER 4

Approximation by Projections

We have alluded previously to the difficulties inherent in finding best approxi-
mations, especially in the case of multivariate functions. More of these difficulties
will appear in later chapters, and they will give added urgency to the question of
whether, in general, we can find “good” approximations with modest effort. In a
wide variety of problems the answer is “Yes,” and linear projection operators are
the principal weapons in our arsenal for solving this problem.

We define a projection to be a bounded linear idempotent operator P defined
on a normed linear space X. Idempotent means that the operator satisfies the
equation P 2 = P. In order that this equation be meaningful, the range of P must
be a subspace of X. Let V be the range of P . If v ∈ V then v = Px for some x ∈ X,
and therefore

Pv = P 2x = Px = v.

Thus every point of V is a fixed point of P. Conversely if x is a fixed point of P
then x = Px and obviously x is in the range, V. To summarize:

P (X) = {x : Px = x}.

This equation shows that the range of P is automatically closed (a property not
possessed by bounded linear operators generally).

A projection P : X→→V can be used to provide approximations. The basic
inequality governing the error when Px is used as an approximation to x is

(1) ‖x− Px‖ ≤ ‖I − P‖dist (x, V ).

This inequality is proved by letting v be an arbitrary element of V and writing

‖x− Px‖ = ‖(x− v) − P (x− v)‖ = ‖(I − P )(x− v)‖ ≤ ‖I − P‖ ‖x− v‖.

Then we take an infimum as v ranges over V.
An important type of projection is the Lagrange interpolation operator. Let

S be a compact Hausdorff space, and V an n-dimensional subspace in C(S). Let
s1, · · · , sn be n points of S with the property that the set of point evaluation func-
tionals {ŝ1, · · · , ŝn} is total over V. We mean by this that if v is an element of V
and v(si) = 0 for 1 ≤ i ≤ n, then v = 0. With this assumption in effect, there exist
elements v1, · · · , vn in V such that vi(sj) = δij . Then the “Lagrange” interpolating
projection P is defined by

(2) Px =

n
∑

i=1

x(si)vi, x ∈ C(S).
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It is clear that Px ∈ V and that Px interpolates x at s1, · · · , sn. That is, (Px)(si) =
x(si). We prefer to write this as ŝi(Px) = ŝi(x), or better still as

ŝi ◦ P = ŝi (1 ≤ i ≤ n).

We shall return to this phenomenon presently.
Recall now the definition of the adjoint of a linear operator. If A : X → Y is

a bounded linear operator acting between normed spaces X and Y, then A∗ : Y ∗ →
X∗ is the adjoint of A, defined by the equation

A∗φ = φ ◦A, φ ∈ Y ∗.

This means of course that (A∗φ)(x) = φ(Ax) for all x ∈ X and for all φ ∈ Y ∗. This
relationship is more easily remembered in the notation of duality:

〈Ax, φ〉 = 〈x,A∗φ〉.

Returning to the Lagrange operator, we have observed that

Pv = v

P ∗φ = φ

for all v ∈ V,

for all φ in the linear span of {ŝ1, · · · , ŝn}.

Since P ∗ is also a projection with an n-dimensional range, its range is exactly the
linear span of {ŝ1, · · · , ŝn}. This is the subspace of C(S)∗ consisting of all functionals
which have the form

φ =

n
∑

i=1

λiŝi, (λ1, · · · , λn) ∈ IRn

where s1, · · · , sn are the points fixed at the beginning of the discussion.
The equation P ∗φ = φ asserts that the value of the functional φ at x is the

same as its value at Px. This is the interpolation property. The situation that has
just been described for the Lagrange operator is true of all projections. Here is the
formal result:

THEOREM. A projection of a normed space onto a subspace is uniquely deter-

mined by the range of its adjoint.

Proof. Suppose that P : X→→V and Q : X→→V are projections and that
range (P ∗) = range (Q∗). We show that P = Q. Observe that for any x, Qx is in
the range of Q, which is the range of P. Therefore Qx is a fixed point of P. Thus
PQx = Qx and PQ = Q. Similarly, Q∗P ∗ = P ∗. Hence

Q∗ = (PQ)∗ = Q∗P ∗ = P ∗.

If x ∈ X and φ ∈ X∗, then

φ(Px) = (P ∗φ)(x) = (Q∗φ)(x) = φ(Qx).

Since φ and x are arbitrary, P = Q.



As another illustration of this theory, consider an “orthogonal” projection of
L2[a, b] onto an n-dimensional subspace V. Select an orthonormal base {v1, · · · , vn}
for V. Thus

〈vi, vj〉 =

∫ b

a

vi(s)vj(s) ds = δij .

The orthogonal projection of L2[a, b] onto V can be defined by

(3) Px =

n
∑

i=1

〈x, vi〉vi.

It is clear that V is the range of P. The range of P ∗ is spanned by the n functionals
φi defined by

φi(x) = 〈x, vi〉.

Each of the foregoing examples is subsumed under the following general consid-
erations. Let V be an n-dimensional subspace of a normed linear space X, and let
Φ be an n-dimensional subspace of X∗. If Φ is total over V then there is a unique
projection P such that P (X) = V and P ∗(X∗) = Φ. The projection P has the
interpolation property φ(Px) = φ(x) for all x ∈ X and all φ ∈ Φ.

Because of inequality (1), the projections of X onto V which are most useful
for approximation are those for which ‖I − P‖ is small. Since ‖I − P‖ ≤ 1 + ‖P‖,
attention usually focuses on the problem of making ‖P‖ as small as possible. In
the case of finite-dimensional subspaces in C(S), assuming that S is free of isolated
points, the minimizations of ‖P‖ and of ‖I−P‖ are the same because of Daugavet’s
Equation:

(4) ‖I − P‖ = 1 + ‖P‖.

See Daugavet [1963], Cheney and Price [1970], or Foias and Singer [1965]. The same
equation is valid for projections of finite rank on the space L1[a, b]. See Babenko and
Pichugov [1981]. Equation (4) is not just a curiosity; it implies, for example, that a
finite-dimensional proper subspace in C[a, b] cannot possess a linear proximity map.

If a projection P is defined from C(S) onto a subspace V, then there is an
elementary procedure for extending P to C(S × T ). The formula for the extended
projection P is

(5) (Pz)(s, t) = (Pzt)(s).

Here z ∈ C(S × T ), and its sections are defined by

zt(s) = z(s, t) = zs(t).

As an example of how this works, consider the Lagrange interpolating projection
from Eq. (2). The extended map is defined in this concrete case by

(6) (Pz)(s, t) =

n
∑

i=1

z(si, t)vi(s).



Thus P maps C(S × T ) into the subspace of all functions of the form

(s, t) 7→
n

∑

i=1

yi(t)vi(s), yi ∈ C(T ).

This subspace is properly denoted by V ⊗C(T ), and indeed the construction of P ,
in either the general formula (5) or the specific case (6), can be best described in
the language of tensor products.

Consider then two bounded linear maps A : X → X and B : Y → Y. There is
a natural construction of an operator A⊗B on X ⊗ Y. We define

(7) (A⊗B)

( m
∑

i=1

xi ⊗ yi

)

=

m
∑

i=1

Axi ⊗Byi.

This definition is independent of the representation of elements in X ⊗ Y, as is
easily proved. So far, this is purely algebraic. If a crossnorm α has been prescribed
on X ⊗ Y, then X ⊗α Y (being the completion of the normed space) is a Banach
space, and we would like to extend A⊗B to be a continuous linear map of X ⊗α Y
into X ⊗α Y. The existence of such an extension depends upon the boundedness of
A⊗B on the dense set X ⊗ Y. To make this work smoothly, we assume that α has
an additional property, viz.,

(8) α

( m
∑

i=1

Axi ⊗Byi

)

≤ ‖A‖ ‖B‖α
( m

∑

i=1

xi ⊗ yi

)

for all operators A : X → X, all operators B : Y → Y, and all elements of X ⊗ Y.
If the crossnorm α has the property (8), it is said to be a uniform crossnorm. In
the presence of the uniform property of α, it is clear that as an operator on X ⊗ Y
(with norm α), A⊗B is bounded (continuous) and

‖A⊗B‖ = sup
{

α
[

(A⊗B)z
]

: z ∈ X ⊗ Y, α(z) ≤ 1
}

≤ ‖A‖ ‖B‖.

In fact, equality holds here, as we can see by selecting xn ∈ X and yn ∈ Y such
that ‖xn‖ = ‖yn‖ = 1, lim ‖Axn‖ = ‖A‖, and lim ‖Byn‖ = ‖B‖. Then

α
[

(A⊗B)(xn ⊗ yn)
]

= α(Axn ⊗Byn) = ‖Axn‖ ‖Byn‖ → ‖A‖ ‖B‖.

Finally, the extension of A ⊗ B to a continuous linear map A ⊗α B on X ⊗α Y is
accomplished with a standard theorem of functional analysis. See Treves [1967].

Returning to the Lagrange projection P and its extension P in Eq. (5) we see
that P = P ⊗λ I because these operators have the same effect on each dyad x⊗ y.
Indeed,

[

P (x⊗ y)
]

(s, t) =
[

P (y(t)x)
]

(s) = y(t)(Px)(s),
[

(P ⊗ I)(x⊗ y)
]

(s, t) =
[

(Px) ⊗ (Iy)
]

(s, t) = y(t)(Px)(s).

A fact that we do not stop to prove is that λ is a uniform crossnorm. The same is
true of γ and β, which were introduced in Chapter 2.



THEOREM. Let P be a projection of X onto U and let Q be a projection of Y
onto V. If α is a uniform crossnorm on X⊗Y then P⊗αQ is a projection of X⊗αY
onto U ⊗α V.

Proof. Clearly P ⊗Q maps X ⊗ Y onto U ⊗ V. Hence P ⊗α Q maps X ⊗α Y
onto U ⊗α V. The latter is the closure of U ⊗V in X⊗α Y. If u ∈ U and v ∈ V then
(P ⊗Q)(u⊗ v) = u⊗ v. Hence P ⊗α Q is a projection onto U ⊗α V.

This theorem is nicely illustrated by two interpolating projections, P : C(S)→→U
and Q : C(T )→→V. If P interpolates functions at nodes s1, · · · , sn and if Q inter-
polates functions at points t1, . . . , tm, then P ⊗Q interpolates (bivariate) functions
at all the mesh points (si, tj).

Now we wish to consider another method for combining projections to form
new ones. If P : X→→U and Q : X→→V are projections defined on a linear space
X, we construct their Boolean sums by the equations

(9) P ⊕Q = P +Q− PQ, Q⊕ P = Q+ P −QP.

These are (in general) different operators and are (in general) not projections. How-
ever, we have this result:

THEOREM. In order that P ⊕Q be a projection of X onto U +V it is necessary

and sufficient that PQP = QP.
Proof. Obviously P ⊕Q maps X into U + V. If v ∈ V then

(10) (P ⊕Q)v = Pv +Qv − PQv = Pv + v − Pv = v.

If PQP = QP then for any x,

(11) (P ⊕Q)Px = P 2x+QPx− PQPx = Px.

By (10) and (11), P ⊕Q leaves invariant each element of U+V. Conversely, if P ⊕Q
leaves invariant each element of U then QPx = PQPx by (11).

In the literature, the ranges of P and P ∗ are sometimes referred to as the
“function invariance set” and the “interpolation precision set.” In applications,
one of these sets may be prescribed, and then a projection may be sought con-
forming to that prescription. As an example of this, suppose that we wish to
construct a projection whose interpolation precision set is the vector sum of two
subspaces F and G in X∗. The solution is the Boolean sum P ⊕Q, provided that
P ∗(X∗) = F, Q∗(X∗) = G, and QPQ = QP. Many theorems of this type are given
in Gordon and Cheney [1978].

To illustrate these methods, let us find a function which interpolates a given
function on the perimeter of the unit square in the st-plane. Lagrange interpolation
with two nodes, 0 and 1, is given by

(Px)(s) = x(0)(1 − s) + x(1)s.

Here x is any element of C(S), and S = {s : 0 ≤ s ≤ 1}. Similarly, in C(T ), with
T = {t : 0 ≤ t ≤ 1} we have

(Qy)(t) = y(0)(1 − t) + y(1)t.



The extensions of these maps to C(S × T ) are then defined by

(Pz)(s, t) = z(0, t)(1 − s) + z(1, t)s,

(Qz)(s, t) = z(s, 0)(1 − t) + z(s, 1)t.

The projections P and Q commute with each other, and their Boolean sum provides
an interpolant on the perimeter of the square

[

(P ⊕Q)z
]

(s, t) = z(0,t)(1 − s) + z(1, t)s+ z(s, 0)(1 − t)

+ z(s, 1)t−
[

z(0, 0)(1 − t) + z(0, 1)t
]

(1 − s)

−
[

z(1, 0)(1 − t) + z(1, 1)t
]

s.

The operator used here can also be described as (P⊗I)⊕(I⊗Q), where the identity
operators are defined on C(T ) and C(S) respectively.

This example illustrates one of the general results about projections, namely
the following one.

THEOREM. Let P : X→→U and Q : Y →→V be projections of normed spaces

onto subspaces. For any uniform crossnorm α on X ⊗ Y, P ⊗α I commutes with

I ⊗α Q. The Boolean sum (P ⊗α I) ⊕ (I ⊗α Q) is a projection of X ⊗α Y onto

U ⊗α Y +X ⊗α Q.
Proof. It is only necessary to prove the commutativity. Testing this on a dyad

z = x⊗ y, we have

(P ⊗ I)(I ⊗Q)z = (P ⊗ I)(x⊗Qy) = Px⊗Qy.

The result is the same if we reverse the order of multiplication. Now we appeal to
the fact that the dyads form a fundamental set in X ⊗α Y. (That is, their linear
combinations are dense in the space.)

It is an interesting consequence of this theorem that under the hypotheses
given, U ⊗α Y +X ⊗α V is a closed (even complemented) subspace in X ⊗α Y. The
vector sum of two closed subspaces in a Banach space is not closed, in general.

The preceding theorem provides the best practical means for obtaining approx-
imations to elements of X ⊗α Y by elements of the subspace

W = U ⊗α Y +X ⊗α V.

As has been pointed out previously, projections P having the property ‖I−P‖ = 1
are ideal since they produce best approximations. However, it is very rare for the
proximity map (“best approximation operator”) onto a subspace to be linear, and
the expectation that ‖I − P‖ will be close to 1 is usually unrealistic. In Hilbert
space, the orthogonal projection onto a subspace is at the same time a proximity
map, and I − P is also an orthogonal projection having norm 1. For Boolean sums
we have the following very satisfactory theorem which includes the Hilbert space
case.

THEOREM. Let P : X→→U and Q : X→→V be linear proximity maps mapping

a Banach space X onto subspaces U and V. If PQP = QP then P ⊕Q is a linear

proximity map of X onto U + V.



Proof. We noted previously that when PQP = QP, P⊕Q will be a projection
onto U + V. The fact that the Boolean sum is a proximity map follows when we
write

‖I − (P ⊕Q)‖ = ‖(I − P )(I −Q)‖ ≤ ‖I − P‖ ‖I −Q‖ = 1.

For tensor product spaces, we have the following consequence of the preceding
results.

THEOREM. Let P : X→→U and Q : Y →→V be linear proximity maps. If α is a

uniform crossnorm on X⊗Y, then the projections P⊗αI, I⊗αQ, and their Boolean

sum are linear proximity maps of X⊗αY onto U⊗αY, X⊗αV, and U⊗αY +X⊗αV
respectively. (These three subspaces are therefore proximinal.)

Another example of the Boolean sum construction which is important in ap-
plications is interpolation on a triangle. The problem is to define an interpolating
projection for the perimeter of a triangle. We take a standard triangle as shown in
Figure 1.

t

(0, 1) (1 − t, t)

(0, t) (s, 1 − s)

(0, 0) (s, 0) (1, 0) s

Fig. 1.

We need two operators, which interpolate linearly on horizontal and vertical seg-
ments. These are defined as follows:

(Pz)(s, t) = z(s, 0)
1 − s− t

1 − s
+ z(s, 1 − s)

t

1 − s
,

(Qz)(s, t) = z(0, t)
1 − t− s

1 − t
+ z(1 − t, t)

s

1 − t
.

The function Pz interpolates z on the hypotenuse and horizontal leg of the triangle.
The graph of Pz is a ruled surface. Similar remarks apply to Q. One can verify that
although PQ 6= QP, the weaker condition QPQ = QP holds. Hence by a theorem
analogous to the one proved above, P ⊕Q is a projection which accomplishes inter-
polation on the entire perimeter of the triangle. These ideas originated in Barnhill,
Birkhoff, and Gordon [1973]. See also the survey Barnhill [1976]. Projections that
interpolate other data (such as derivatives) on the boundary of a triangle can also
be found in Barnhill’s survey, which lists 50 references on these topics.

The study of minimal projections on tensor-product subspaces has only recently
begun. A result of Jameson and Pinkus [1983] is the following theorem:

THEOREM. Let S and T be compact Hausdorff spaces containing infinitely many

points. Then the projection constant of C(S) + C(T ) in C(S × T ) is 3.



A minimal projection in this situation can be constructed as follows. Select
(s0, t0) ∈ S × T and define P on C(S) by Px = x(s0) · 1. (Here 1 denotes the
unit function.) Similarly, let Qy = y(t0) · 1 for y ∈ C(T ). Then the Boolean sum
(P ⊗ I) ⊕ (I ⊗Q) is a projection of norm 3 from C(S × T ) onto C(S) + C(T ).

Franchetti and Cheney [1984] proved this extension:

THEOREM. If S and T are as before and G and H are finite-dimensional sub-

spaces containing constants in C(S) and C(T ) respectively then the projection con-

stant of G⊗ C(T ) + C(S) ⊗H in C(S × T ) is at least 3.

Halton and Light [1985-a] proved this result:

THEOREM. Let S and T be finite and nonatomic measure spaces. Let G and

H be finite-dimensional subspaces containing the constant functions in L1(S) and

L1(T ), respectively. Then the projection constant of L1(S) ⊗ H + G ⊗ L1(T ) in

L1(S × T ) is at least 3.

A minimal projection of Lp(S × T ) onto Lp(S) + Lp(T ) can be constructed as
follows. Define P on Lp(S) and Q on Lp(T ) by

Px =

∫

x(s)ds, Qy =

∫

y(t)dt.

Then (P ⊗ I) ⊕ (I ⊗ Q) is the minimal projection sought. Here we have assumed
for simplicity that S and T have measure 1. This result has been proved by Halton
and Light [1985b].

An interesting open problem here is whether spaces of the type

W = X ⊗H +G⊗ Y

always possess minimal projections from X ⊗α Y, it being assumed that G and H
are finite-dimensional subspaces.

For practical purposes it would be very advantageous if the following were true:

CONJECTURE. For every projection L : X ⊗α Y →→W (as above) there are

projections P : X→→G and Q : Y →→H such that

‖(P ⊗ I) ⊕ (I ⊗Q)‖ ≤ ‖L‖.

Further references on the use of projections to obtain multivariate approximations
are Delvos [1975], Delvos and Kösters [1975], Delvos and Malinka [1974], Delvos
and Schempp [1983], Gordon [1969-a, 1969-b, 1971], Gordon and Hall [1973], and
Haussman and Zeller [1980, 1983, 1984].



CHAPTER 5

The Problem of Proximinality

A subspace U in a Banach space X is said to be proximinal if each x ∈ X
possesses at least one best approximation in U. If U is proximinal, then there exists
a map A : X → U, called a proximity map, such that

‖x−Ax‖ = dist (x, U).

One must expect in general that A will be nonlinear and discontinuous.
Every finite-dimensional subspace in an arbitrary Banach space is proximinal,

and therefore the interesting problems emerge only when one contemplates infinite-
dimensional subspaces. In multivariate approximation, the obvious starting point
is the investigation of tensor product subspaces. Let us begin with C(S × T ) and
consider subspaces of the form C(S) ⊗ V, in which V is a proximinal subspace of
C(T ). We ask, is C(S)⊗ V proximinal? The answer is generally “No,” even if V is
one-dimensional. One hypothesis on V that ensures the proximinality of C(S)⊗V is
that there exist a continuous proximity map A : C(T )→→V. A more general theorem
is true, however, and it reads as follows. (See Franchetti and Cheney [1981-a].)

THEOREM. Let S be a compact Hausdorff space, and let V be a subspace in a

normed space Y. If there is a continuous proximity map from Y onto V, then there

exists a continuous proximity map of C(S, Y ) onto C(S, V ). In particular, the latter

is proximinal.

Proof. If A : Y →→V is a continuous proximity map, define Ā : C(S, Y ) →
C(S, V ) by the equation

Āf = A ◦ f.

Then for all s ∈ S and for all g ∈ C(S, V ) we have

‖f(s) − (Āf)(s)‖ = ‖f(s) −A(f(s))‖ ≤ ‖f(s) − g(s)‖.

This shows that for all g ∈ C(S, V ),

‖f − Āf‖ ≤ ‖f − g‖.

The continuity of Ā is most easily proved by contradiction. Suppose that a net
fα → f exists in C(S, Y ) with ‖A◦fα−A◦f‖ ≥ ε. By compactness we may assume
that sα → s. By the continuity of A at f(s), there is a positive δ such that for
y ∈ Y,

‖y − f(s)‖ < δ =⇒ ‖Ay −A(f(s))‖ < ε/2.

By the continuity of f at s, there is an index α such that

‖f(sα) − f(s)‖ < δ/2 and ‖fα − f‖ < δ/2.
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By the triangle inequality, ‖fα(sα) − f(s)‖ < δ. Therefore

‖A(fα(sα)) −A(f(s))‖ < ε/2 and ‖A(f(sα)) −A(f(s))‖ < ε/2.

Hence we arrive at the contradiction ‖A(fα(sα)) −A(f(sα))‖ < ε.
Because of the isometric isomorphism C(S, Y ) = C(S) ⊗λ Y, this theorem

applies to C(S)⊗λV as a subspace of C(S)⊗λY. In particular, we have the following
important corollary.

THEOREM. If V is a finite-dimensional Haar subspace in C(T ), then there exists

a continuous proximity map of C(S × T ) onto C(S) ⊗ V. The latter is therefore

proximinal.

Proof. Use the preceding theorem and the old result that a finite-

dimensional Haar subspace in C(T ) has a continuous proximity map.
It has been recently proved by Li Wu of Hangzhou University (private com-

munication) that the existence of a continuous proximity map from C(T ) onto the
finite-dimensional subspace V is necessary and sufficient for the proximinality of
C(S) ⊗ V in C(S × T ). An example showing the non-proximinality of C(S) ⊗ V
can be found in Franchetti and Cheney [1981-a]. It seems to be an open problem
whether the proximinality of C(S, V ) in C(S, Y ) implies the existence of a contin-
uous proximity map from Y onto V. A theorem having a strong negative character
is as follows:

THEOREM. If S and T are compact intervals in IR, then there exists no finite-

dimensional subspace V ⊂ L1(T ) for which V 6= 0 and C(S, V ) is proximinal in

C(S,L1(T )).
This theorem means, for example, that in general we cannot find best approx-

imations of the form

z(s, t) ≈
n

∑

i=1

xi(s)vi(t)

if v1, · · · , vn are prescribed in L1(T ) and x1, · · · , xn are sought in C(S) so as to
minimize the expression

sup
a≤s≤b

∫ b

a

∣

∣

∣

∣

z(s, t) −
n

∑

i=1

xi(s)vi(t)

∣

∣

∣

∣

dt.

In order to recover a positive result in this setting, we confine our attention to
continuous functions, as in the following theorem.

THEOREM. Let S and T be compact real intervals. Let H be an n-dimensional

Haar subspace in C(T ). Then there exists a continuous map Ā : C(S × T ) →
C(S)⊗H such that N(z− Āz) ≤ N(z−w) for all z ∈ C(S×T ) and w ∈ C(S)⊗H.
Here N is the norm N(z) = sups∈S

∫

T
|z(s, t)| dt.

Proof. By a theorem of Dunham Jackson (Singer [1970, p. 236] or Cheney
[1965]), each element of C(T ) has a unique best L1-approximation in H. By a
general theorem in approximation theory (Singer [1970, p. 251]), the L1-proximity
map A : C(T ) → H is continuous in the topology of the L1-norm in C(T ). Since
the supremum norm is stronger than the L1-norm on C(T ) and equivalent to
the L1-norm on H, A is continuous in the supremum norm. The extended map
Ā : C(S × T ) → C(S) ⊗H defined by (Āz)(s, t) = (Azs)(t) is continuous by argu-
ments used above, and produces the approximations as described.



The preceding theorem guarantees the existence of a solution to the approxi-
mation problem of minimizing

sup
s∈S

∫

T

∣

∣

∣

∣

z(s, t) −
n

∑

i=1

hi(t)xi(s)

∣

∣

∣

∣

dt

by an appropriate choice of x1, · · · , xn in C(S), provided that z ∈ C(S × T ) and
hi ∈ C(T ). A more general result along the same lines is proved in the same way.

THEOREM. Let S and T be compact Hausdorff spaces. Let ∆ be a norm on C(T )
such that ∆(x) ≤ ‖x‖∞ for all x ∈ C(T ). Let H be a finite-dimensional subspace

of C(T ) which has the Chebyshev property with respect to the norm ∆. Then there

is a mapping Ā : C(S × T )→→C(S) ⊗ H which is sup-norm continuous and is a

proximity map for the norm

‖z‖∆ = sup
s∈S

∆(zs), z ∈ C(S × T ).

Further references on approximation in spaces C(S,X) are Buck [1974], Amir
and Deutsch [1979], Singer [1970, 1974], and Brown [1982-a].

An approximating subspace in C(S × T ) recommended to us by the study of
projections is of the form

(1) W = C(S) ⊗H +G⊗ C(T )

in which H and G are finite-dimensional subspaces in C(T ) and C(S) respectively.
We saw in Chapter 4 that it is easy to construct projections onto W starting with
projections P : C(S)→→G and Q : C(T )→→H. The Boolean sum projection con-
structed for W has norm no greater than

‖P‖ + ‖Q‖ + ‖P‖ ‖Q‖.

If this bound is small, then the problem of finding good approximations in W is
solved. The more difficult problem of the existence of best approximations has not
yet been completely solved. The most satisfactory result to date is the following
sufficient condition given by Respess and Cheney [1982-a]. (It is known as the
“Sitting Duck Theorem.”)

THEOREM. If there exist a continuous proximity map of C(S) onto G and a

Lipschitzian proximity map of C(T ) onto H, then the subspace W in Eq. (1) is

proximinal in C(S × T ).
The first interesting case of this type of approximation was studied by Diliberto

and Straus [1951]. They considered

W0 = C(S) + C(T ).

More properly, we should write

W0 = C(S) ⊗ Π0(T ) + Π0(S) ⊗ C(T )

where Π0 denotes the subspace of constant functions on the given domain. This
problem is of special importance because it illustrates the simplest nontrivial case



of proximinality and because a completely constructive proof of proximinality is
possible by means of the algorithm which Diliberto and Straus devised. (See the
next chapter for a discussion of this algorithm.) We note also that the elements of
W are basic functions from which nomographic functions

(s, t) 7→ h
(

x(s) + y(t)
)

, h ∈ C(IR)

are constructed.
If we pass now to more general subspaces W, the first case in which proximi-

nality is still an open question is

W1 = C(S) ⊗ Π1(T ) + Π1(S) ⊗ C(T ).

The elements of W are then pseudopolynomials of the form

w(s, t) = x0(s) + x1(s)t+ y0(t) + y1(t)s.

It is not known whether this subspace is proximinal in C(S×T ), if we take S and T
to be compact real intervals. What is relatively easy to prove is that the subspace

`∞(S) ⊗G+H ⊗ `∞(T )

is proximinal in `∞(S × T ) whenever G and H are finite-dimensional subspaces
in `∞(S) and `∞(T ), respectively. The space `∞(S) is the Banach space of all
bounded functions on the set S, normed by ‖x‖ = sups∈S |x(s)|. This theorem can
be found in von Golitschek and Cheney [1983-a]. A consequence of it is that each
z ∈ C(S × T ) has a best approximation in

`∞(S) ⊗ Πm(T ) + Πn(S) ⊗ `∞(T ).

Among these best approximations one would hope to find one that is continuous,
but it is not known whether this is possible, even when m = n = 1. A positive result
from the paper just cited states that among the best approximations to z in

`∞(S) ⊗ Π1(T ) + Π1(S) ⊗ `∞(T ),

there exists one that is continuous on the interior of S×T. A review of the work in
this field would strongly suggest a conjecture that the subspace W1 defined above
is not proximinal in C(S × T ).

For practical purposes, the following theorem gives important information
about these problems.

THEOREM. Let S and T be compact spaces, and let G and H be finite-dimensional

subspaces in C(S) and C(T ), respectively. For any f ∈ C(S × T ), the distances to

G⊗ `∞(T ) + `∞(S) ⊗H and G⊗ C(T ) + C(S) ⊗H

are the same.
Thus, no improvement of the accuracy in this approximation is obtained by

allowing discontinuous coefficient functions, if the function being approximated is
continuous.



The proof of the theorem just cited is an easy consequence of the following
lemma from von Golitschek and Cheney [1983-a].

LEMMA. Let S be a paracompact space, and H a closed subspace in a Banach

space X. For any f ∈ C(S,X),

dist(f, C(S,H)) = dist(f, `∞(S,H)).

Proof. The space `∞(S,H) consists of all maps u : S → H for which

‖u‖ = sup
s

‖u(x)‖ <∞.

Since C(S,H) ⊂ `∞(S,H), the inequality

dist(f, `∞(S,H)) ≤ dist(f, C(S,H))

is obvious. Now let ρ > dist(f, `∞(S,H)). We will find u ∈ C(S,H) such that
‖f − u‖ ≤ ρ. For each s ∈ S, define

Φ(s) =
{

h ∈ H : ‖f(s) − h‖ ≤ ρ
}

.

It is clear that Φ(s) is nonvoid, closed, and convex in H. It will be shown that the
set-valued map Φ is lower semicontinuous. To this end, let O be an open set in H,
and put

O∗ = {s ∈ S : Φ(s) ∩ O 6= }.
In order to prove that O∗ is open, let s ∈ O∗. Then there is an h ∈ O such
that ‖f(s) − h‖ ≤ ρ. By the definition of ρ there exists v ∈ `∞(S,H) such that
‖f − v‖ < ρ. By convexity, there is a point h′ in O (on the line segment joining h to
v(s)) such that ‖f(s)−h′‖ < ρ. Since f is continuous, there is a neighborhood N of
s such that ‖f(σ)−f(s)‖ < ρ−‖f(s)−h′‖ for all σ ∈ N . Then ‖f(σ)−h′‖ < ρ and
h′ ∈ Φ(σ) when σ ∈ N . Hence σ ∈ O∗, N ⊂ O∗, and O∗ is open. It follows that Φ is
lower semicontinuous. By the Michael Selection Theorem (Holmes [1972]), there is
a continuous map u : S → H for which u(s) ∈ Φ(s) for all s. Thus ‖f(s)−u(s)‖ ≤ ρ.
Since u is obviously bounded, u ∈ C(S,H).

Presumably the existence of best approximations in a subspace such as W1 can
be proved if the function being approximated is subject to stronger hypotheses than
that of simple continuity. This idea has yet to be fully explored.

Proximinality questions like the ones just raised are interesting in spaces other
than C(S × T ). As is well known, proximinality of closed subspaces becomes a
triviality in the presence of uniform convexity. Thus in Lp(S×T ), with 1 < p <∞,
the subspace

Lp(S) ⊗H +G⊗ Lp(T )

will be proximinal provided that there is a uniform crossnormαp for which Lp(S)⊗αp

Lp(T ) = Lp(S × T ). (The uniform crossnorm is needed in order to prove that the
subspace in question is closed.) Fortunately, there exist such crossnorms. They
are called the “p-nuclear”norms, and their practical properties were developed by
Saphar [1970], Chevet [1969], and Persson [1969]. See Light and Cheney [1985] for
the parts of this theory needed in these approximation problems.



Another space of special importance in approximation theory is L1(S×T ). As a
sample of the proximinality theorems involving this space, we give a result of Light
and Cheney [1981]. For more general results, particularly one of Khalil [1983], see
Chapter 2 of Light and Cheney [1985].

THEOREM. If S and T are σ-finite measure spaces, and if H is a finite-dimensional

subspace of L1(T ), then L1(S) ⊗H is proximinal in L1(S × T ).
Proof. Let f ∈ L1(S × T ). By the Fubini Theorem, fs ∈ L1(T ) for almost all

s ∈ S. We redefine f on a set of measure 0 so that fs ∈ L1(T ) for all s. Define

Φ(s) =
{

h ∈ H : ‖fs − h‖1 = dist1(fs,H)
}

.

Clearly Φ(s) is a nonempty closed subset of H. In order to use the measurable
selection theorem, we must prove that Φ is measurable, as a set-valued map. This
means that for any compact set K in H, the set

K∗ = {s ∈ S : Φ(s) ∩K 6= }

should be measurable in S. Another form for K∗ is

K∗ =
{

s ∈ S : inf
h∈K

‖fs − h‖1 = dist1(fs,H)
}

.

Thus the measurability of K∗ will follow from the measurability of all mappings of
the following type, where B ⊂ H :

s 7→ inf
h∈B

‖fs − h‖1.

To prove that this is measurable, select a countable dense set [hi] in B. Then

inf
h∈B

‖fs − h‖1 = inf
i
‖fs − hi‖1.

The map is measurable since it is the infimum of a countable family of measurable
maps. By the measurable selection theorem quoted below, there exist measurable
maps xj : S → IR, j = 1, · · · , n such that

∑n
j=1 xj(s)hj is a best L1-approximation

to fs in H for each s. Here {h1, · · · , hn} is any basis for H. In order to verify
that xj ∈ L1(S), select elements ψi in L∞(T ) such that

∫

ψi(t)hj(t)dt = δij . Put
v(s, t) =

∑n
j=1 xj(s)hj(t). Then

‖xi‖1 =

∫

|xi(s)|ds =

∫
∣

∣

∣

∣

∫

v(s, t)ψi(t)dt

∣

∣

∣

∣

ds ≤ ‖v‖1 ‖ψi‖∞.

Thus v ∈ L1(S) ⊗H, and we have for any u ∈ L1(S) ⊗H,

‖f − v‖1 =

∫∫

|f(s, t) − v(s, t)|ds dt

=

∫

‖fs − vs‖1 dt

≤
∫

‖fs − us‖1 dt = ‖f − u‖1.



MEASURABLE SELECTION THEOREM. If Φ is a measurable set-valued map of a

measurable space S into the family of closed nonvoid subsets of a finite-dimensional

Banach space X, then there exists a function f : S → X such that f(s) ∈ Φ(s)
for all s ∈ S and f−1(O) is measurable for each open O in X. (See Parthasarathy
[1972] and references cited therein.)

We state without proof some further results on proximinality. The first three
can be found in Light and Cheney [1985].

THEOREM. Let S be a measure space of finite measure. Let H be a reflexive

subspace in a Banach space X. Then L1(S,H) is proximinal in L1(S,X).
This is the theorem of Khalil previously alluded to. The space L1(S,X) consists

of all Bochner integrable maps from S to X. The elementary theory of these spaces
is developed in Chapter 10 of Light and Cheney [1985]. The book by Diestel and
Uhl [1977] gives more complete information.

THEOREM. Let S and T be finite measure spaces. Let G and H be finite-

dimensional subspaces in L1(S) and L1(T ), respectively. Then G⊗L1(T )+L1(S)⊗
H is proximinal in L1(S × T ).

THEOREM. Let S and T be σ-finite measure spaces. Let G and H be finite-

dimensional subspaces in L∞(S) and L∞(T ), respectively. Then G ⊗ L∞(T ) +
L∞(S) ⊗H is proximinal in L∞(S × T ).

The following theorem is due to Darst, Legg, and Townsend [1983]. Theorems
of this type are applicable in certain problems of prediction theory.

THEOREM. Let (S,A, µ) be a finite measure space, and let B be a sub-σ-algebra
of A. Let X be any uniformly convex space. Then L∞(S,B, µ,X) is proximinal in

L∞(S,A, µ,X).



CHAPTER 6

Algorithms

In this subject, we mean by an algorithm any procedure or “recipe” for pro-
ducing approximations. In this broad sense, Lagrange interpolation, Shepard in-
terpolation, and orthogonal expansions are algorithms. Indeed, any projection op-
erator can be regarded as an algorithm. Projections, of course, do not generally
produce best approximations; algorithms for the latter are usually more difficult to
invent, and are less efficient computationally.

At the practical level, an algorithm must be judged by such criteria as ease of
programming, speed of computation, stability and accuracy of computation. Two
algorithms that are equally attractive in theory may differ markedly in their nu-
merical properties. For an example of this, consider two projections into Πn, one
given by Lagrange interpolation and another given by an orthogonal expansion:

(1) Px =

n
∑

i=0

x(si)`i, `i(sj) = δij ,

(2) Qx =

n
∑

i=0

〈x, ui〉ui, 〈ui, uj〉 = δij .

Theoretically, these are quite similar: each involves a basis for Πn and an accom-
panying system of “biorthogonal” functionals. Notice, however, that a functional
of the type x 7→ 〈x, ui〉 is much more difficult to compute than one of the type
x 7→ x(si), since the former involves an integration. Numerically such an integra-
tion will be effected with a quadrature formula, which, in turn, will be based upon
functionals of the form x 7→ x(si).

Algorithms for best approximation will usually be iterative in nature, and each
step in the procedure will often involve roughly as much work as a single linear
projection process. Thus, the Remez Second Algorithm can be interpreted as a
sequence of Lagrange interpolation processes, or as a sequence of linear projections
similar to ordinary interpolation. The major exception to these general observations
occurs in the case of quadratic norms – the Hilbert-space case. Here, the best
approximation operator onto a linear subspace is a linear projection. In the finite-
dimensional case, it is of the type illustrated by the operator Q in Eq. (2).

Let us proceed now to subspaces in tensor product spaces. We have already
seen that, for producing best approximations in a subspace C(S)⊗H, when H is a
subspace of C(T ), there will be no theoretical difficulties if H is a finite-dimensional
Haar subspace (see Chapter 5). Thus, if A is the proximity map of C(T ) onto H,
then one proximity map of C(S × T ) onto C(S) ⊗H is defined by

(Āf)(s, t) = (Afs)(t).

43



In terms of a basis {h1, · · · , hm} for H, Ā is given by

(Āf)(s, t) =

m
∑

j=1

xj(s) hj(t)

where, for each s,
∑m
j=1 xj(s)hj is the unique best approximation of fs in H. The

theory assures us that the functions xj determined point-by-point in this manner
are continuous.

In a practical realization of this algorithm, one could select a discrete subset
{s1, · · · , sN} in S, and determine the functions xj only on this discrete set. Then,
by a spline-interpolation procedure, the xj-functions could be extended to all of S.
The resulting function will not be a best approximation, but a near substitute for
it. If this strategy has been adopted, then the resulting approximation will lie in
a subspace G⊗H, where G is now a finite-dimensional subspace of splines having
knots s1, · · · , sN . In this roundabout way, then, we are led again to consider the
general question of best approximation in C(S × T ) by elements of a prescribed
subspace G ⊗ H, both G and H being finite-dimensional. Since G ⊗ H is also
finite-dimensional, the exchange algorithm or the Remez First Algorithm can be
used.

It should be noted that the operator Ā defined in the previous paragraphs is
not the only proximity map of C(S × T ) onto C(S) ⊗H. The subspace C(S) ⊗H
never has the Chebyshev property (except in degenerate cases), and so there is much
latitude in the choice of best approximations. The map Ā selects the optimal one of
these, since it minimizes the norm of each section fs− (Af)s. It is not necessary to
do this. The theorem governing this situation is as follows (Franchetti and Cheney
[1981-a]).

THEOREM. Let H be a subspace of a Banach space Y, f an element of C(S, Y ),
and g an element of C(S,H). In order that g be a best approximation of f in C(S,H)
it is necessary and sufficient that there exist a point s0 such that

‖f − g‖ = dist
(

f(s0), H
)

.

Proof. A lemma of Buck [1974] asserts that

(3) dist
(

f, C(S,H)
)

= sup
s

dist
(

f(s), H
)

.

Let s0 be a point of S such that

dist
(

f(s0), H
)

= dist
(

f, C(S,H)
)

.

If g is a best approximation of f then

‖f − g‖ = dist
(

f, C(S,H)
)

= dist
(

f(s0), H
)

.

For the converse, let σ be a point such that ‖f − g‖ = dist
(

f(σ), H
)

. By (3),

‖f − g‖ ≤ dist
(

f, C(S,H)
)

.
It is clear that if g and s0 have the property

‖f − g‖ = dist
(

f(s0), H
)

,



then g(s0) is a best approximation of f(s0) in H. Thus, in principle, there need
be only one s0 where g(s0) is a solution to an extremal problem. For all the other
points it is merely necessary to secure the weaker requirement

‖f(s) − g(s)‖ ≤ ‖f(s0) − g(s0)‖.

For the more interesting and versatile subspaces

C(S) ⊗H +G⊗ C(T ),

there exist no general algorithms for producing minimizing sequences. The sole ex-
ception to this is the Diliberto-Straus algorithm for producing best approximations
in

W0 = C(S) + C(T ).

Their algorithm proceeds as follows. Let f be an element of C(S × T ) whose best
approximation in C(S)+C(T ) is sought. A process of “alternating proximity maps”
is used. Observe that we can construct best approximations of f in C(S) and C(T )
by these processes:

(4) (Af)(s, t) = 1
2 max
σ∈S

f(σ, t) + 1
2 min
σ∈S

f(σ, t),

(5) (Bf)(s, t) = 1
2 max
τ∈T

f(s, τ) + 1
2 min
τ∈T

f(s, τ).

It is clear that Af is really a function of t alone, or, more precisely, is constant in
s. Thus Af ∈ C(T ). Similarly, Bf ∈ C(S). The alternating process constructs the
sequence

(6) f0 = f, f2n+1 = f2n −Af2n, f2n+2 = f2n+1 −Bf2n+1.

By successively subtracting from f certain elements of C(S) and C(T ) we can expect
to reduce the norm of the residual functions fn to an absolute minimum. The first
significant result in the theory asserts that, indeed,

lim
n→∞

‖fn‖ = dist (f,W0).

This was proved already by Diliberto and Straus. The second significant result was
proved by Aumann [1958], who was apparently unaware of Diliberto and Straus’
work. He established the convergence of the sequence [fn]. Since the definition of
the algorithm ensures that f − fn ∈W0 for all n, and since W0 is closed, it follows
that f− lim fn is a best approximation of f in W0. The algorithm therefore provides
a constructive proof that W0 is proximinal.

Golomb [1959] noticed that the theory of Diliberto and Straus could be applied
to any pair of proximity maps A and B in any normed space provided that a certain
property called “centrality” was possessed by A and B. That property, for A, is
expressed by the equation

‖x−Ax +Ay‖ = ‖x−Ax−Ay‖,



assumed valid for all x and y. The particular maps A and B in Eq. (4) and (5)
are indeed central proximity maps. Also, any orthogonal projection on an inner-
product space is a central proximity map. If a central proximity map B : Y→→H is
given, then a central proximity map B̄ : C(S, Y )→→C(S,H) is constructed by the
definition

B̄f = B ◦ f.
This construction is, in fact, used in Eqs. (4) and (5).

The main theorem in Golomb’s theory states that ifA : X→→U andB : X→→V
are central proximity maps and if U + V is closed, then the Diliberto-Straus algo-
rithm given in Eq. (6) produces a sequence [fn] such that

‖fn‖ ↓ dist (f, U + V ).

This is valid in any Banach space X. In order to draw the conclusion that the
sequence [fn] converges, one can add uniform convexity of X as a hypothesis. These
matters are expounded in Chapter 4 of Light and Cheney [1985].

A paper by Light [1980] reveals that central proximity maps are rare. For
example, a Haar subspace of dimension 2 or more in C[a, b] does not have a central
proximity map. The constant functions in Lp[a, b] have a central proximity map
only if p = 2.

Further negative results were established by Dyn [1980] and by von Golitschek
and Cheney [1983-b]. The work of these three authors shows that if G and H
are Haar subspaces in C(I) with I = [a, b], dimG ≥ 1, and dimH ≥ 2, then
the Diliberto-Straus algorithm fails when applied to the subspaces G ⊗ C(I) and
H ⊗ C(I). This means that the sequence [fn] obtained by alternately subtracting
best approximations may have the property

lim ‖fn‖ > dist (f,W )

where W is the vector sum of G⊗ C(I) and C(I) ⊗H.
If the topological space T is a disjoint union ofm closed sets, then the functions

which are constant on these closed sets form an m-dimensional subspace H in C(T ).
One can visualize this as a subspace of 0-degree spline functions. Such a subspace
possesses a central proximity map. Figure 2 shows how this map is defined.
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Fig. 2.

If S is also disconnected and has, say, n components, then a similar subspace G
of dimension n exists in C(S). The generalized Diliberto-Straus algorithm now is
completely successful. With each f ∈ C(S ×T ) we associate a convergent sequence
[fk] such that f − lim fk is a best approximation of f in

Z = C(S) ⊗H +G⊗ C(T ).



Therefore the algorithm gives a constructive proof of proximinality of Z. These
matters have been dealt with by Respess and Cheney [1982-b].

Because of its natural and elegant character, the algorithm we have called by
the names of Diliberto and Straus has been used in many diverse situations. Its
use in Hilbert space predates the work of Diliberto and Straus by almost 20 years,
having been exploited by von Neumann to obtain the orthogonal projection onto
the closure of the sum of two subspaces. Von Neumann proved that if P and Q
are orthogonal projections of a Hilbert space onto subspaces U and V, respectively,
then the projection of an element f onto U + V is given by f − lim fn, where [fn]
comes from the algorithm. In this situation, the algorithm has been known as the
alternating algorithm. The formulae are

f0 = f, f2n+1 = f2n − Pf2n, f2n+2 = f2n+1 −Qf2n+1.

These are, of course, the same as those used in the Diliberto-Straus algorithm. In
Hilbert space, the algorithm is effective for any pair of closed subspaces, while in
C(S) or C(S × T ) it is effective only for very special pairs of subspaces. More
recent work by Sullivan [1975], Atlestam and Sullivan [1976], Deutsch [1984], and
Franchetti and Light [1984] has led to various generalizations of von Neumann’s
theorem, such as this one:

THEOREM. Let X and its conjugate be uniformly convex Banach spaces. If U, V
and U + V are closed subspaces in X, then the alternating algorithm produces best

approximations in U + V.
A new algorithm having many favorable features has recently been developed

by von Golitschek [1984]. His algorithm finds best approximations to elements of
C(D), D ⊂ S × T, by functions of the form

(7) z(s, t) = φ
[

x(s)h(t) + y(t)g(s)
]

in which φ, g, and h are prescribed continuous functions, and the functions x and y
are at our disposal. It is assumed that

g ∈ C(S), h ∈ C(T ), φ ∈ C(IR), g > 0, h > 0, and φ−1 ∈ C(IR).

We will outline von Golitschek’s results as they apply to the simpler problem

f(s, t) ≈ x(s) + y(t),

for in this case the analogy to the Diliberto-Straus algorithm will be more apparent.
This procedure is iterative and uses the following formulae, in which α is a parameter
lying in the interval 0 ≤ α ≤ ‖f‖. Ideally, we would set α = dist (f,W0), where
W0 = C(S) + C(T ).



























x0(s) = 0 y0(t) = inf
s

[

f(s, t) + α
]

xn(s) = xn+1(s) ∨ sup
t

[

f(s, t) − α− yn−1(t)
]

. If ‖xn‖ > 4‖f‖, STOP.

yn(t) = yn−1(t) ∧ inf
s

[

f(s, t) + α− xn(s)
]

. If yn = yn−1, STOP.



In these formulae ∨ and ∧ denote the larger and the smaller of two numbers. It is
already clear from these formulae that

0 = x0 ≤ x1 ≤ x2 ≤ · · · and y0 ≥ y1 ≥ y2 ≥ · · · .

Another favorable property of the functions xn and yn is that they have the same
modulus of continuity as f ; thus the sequences [xn] and [yn] are equicontinuous. The
uniform convergence of these sequences will therefore depend solely upon whether
they are bounded in C(S) and C(T ). Here are the three principal results concerning
the algorithm:

THEOREM 1. If the inequality α > dist (f,W0) is true then the iteration termi-

nates with yn = yn−1 for some n. When this occurs, ‖f − xn − yn‖ ≤ α.
THEOREM 2. The inequality α < dist (f,W0) is true if and only if the iteration

terminates with ‖xn‖ > 4‖f‖ for some n.
THEOREM 3. If α = dist (f,W0), then either the algorithm terminates as in

Theorem 1 or else it produces a sequence [xn + yn] that converges uniformly to a

best approximation of f in W0.



CHAPTER 7

Simultaneous Approximation
and Chebyshev Centers

Simultaneous approximation is concerned with the optimal approximation of
sets of functions, rather than just single functions. In the literature, the problem
of approximating just two functions simultaneously has been considered at length,
and even this case is of great interest. In fact, the approxmation of a set of elements
can sometimes be reduced to the approximation of a pair of elements, as will be
seen later.

As before, we begin with a normed linear space X and a subspace U of “ap-
proximants.” (In the problem now to be described, the case U = X is interesting
and important.) Let a subset K be given in X. We desire to approximate all the
elements of K simultaneously by a single element of U. For any u ∈ U, the quality
of this approximation is measured by supx∈K ‖x− u‖. The optimization problem is
then to select u ∈ U so as to make this deviation as small as possible. The quantity

inf
u∈U

sup
x∈K

‖x− u‖

measures the best that we can hope to achieve; it is called the Chebyshev radius

of K relative to U, and is denoted by r(K;U). We see at once that the Chebyshev
radius of K relative to U is the infimum of the radii of all the cells with centers in
U that contain K.

The existence problem for optimal simultaneous approximations has received
much attention, starting with Garkavi [1961]. The (possibly empty) set of solutions
to our problem is

E(K;U) =
{

u ∈ U : sup
x∈K

‖x− u‖ = r(K;U)
}

.

This is called the Chebyshev center of K relative to U. The existence question
is now whether E(K;U) is empty or not.

In the theory of simultaneous approximation, the case when U = X is of
fundamental importance. In this special situation, the simpler notation r(K), E(K)
is used. These are called the Chebyshev radius and the Chebyshev center of
K, respectively.

As a sample of what can be proved without much effort, we cite the following
theorem:

THEOREM 1. The Chebyshev center of a compact set K in a space C(S) is the

same as the Chebyshev center of a pair of functions, namely, v1(s) = maxx∈K x(s)
and v2(s) = minx∈K x(s).

Since the Chebyshev center of this pair {v1, v2} contains their average, we see
that the center of K is the set of all u ∈ C(S) that satisfy

max {‖u− v1‖, ‖u− v2‖} ≤ 1
2‖v1 − v2‖.
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This condition, in turn, can be simplified to read

(1) v1 − r ≤ u ≤ v2 + r, u ∈ C(S)

where r is the Chebyshev radius and equals 1
2‖v1 − v2‖.

For a bounded subset B in C(S) similar results are known. The definitions of
v1 and v2 must be modified to read

(2)

v1(s) = inf
N

sup
t∈N

sup
x∈B

x(t),

v2(s) = sup
N

inf
t∈N

inf
x∈B

x(t),

in which N runs over all the neighborhoods of s. The functions v1 and v2 are
upper and lower semicontinuous, respectively. The reader is referred to Holmes
[1972, p. 186], and Franchetti and Cheney [1981-b] for the following theorem, in
which C(S) denotes the space of all bounded continuous real-valued functions on
an arbitrary topological space S.

THEOREM 2. The Chebyshev center of a bounded set in C(S) is nonempty. If S
is a normal space, the center of a bounded set B is defined by inequality (1) above,

with v1 and v2 defined in (2).
The proof is an interesting application of the Hahn-Tong Theorem, which states

that if f1 and f2 are, respectively, upper semicontinuous and lower semicontinuous
real-valued functions on a normal topological space, and if f1 ≤ f2, then there
is a continuous f between f1 and f2. See Semadeni [1971, p. 100]. Now, letting
f1 = v1 − r and f2 = v2 + r, we conclude that inequality (1) is valid for some
continuous u. The assertion that E(B) is nonempty whenever B is bounded in
C(S) can thus be proved when S is normal. Then one uses Kakutani’s Theorem
which asserts that every abstract M -space with unit is (isometric to) a C(T ) with T
compact and Hausdorff. Hence any Banach space property of spaces C(T ), with T
compact Hausdorff, is shared by all abstract M -spaces, in particular, spaces C(S)
where S is not compact.

Now we consider one source of simultaneous approximation problems. Let
z ∈ C(S × T ). We ask, “How well can z be approximated by an element of C(S)?”
If x ∈ C(S) then the deviation between z and x is

‖z − x‖ = sup
t∈T

sup
s∈S

|z(s, t) − x(s)| = sup
t

‖zt − x‖.

The notation zt indicates the element of C(S) whose value at s is z(s, t). Obviously,
x should be chosen as an element in the Chebyshev center of the set

K = {zt : t ∈ T }.

This is a compact set in C(S). According to Theorem 1 and the comments accom-
panying it, one best approximant is the function u defined by

u(s) = 1
2 max
t∈T

z(s, t) + 1
2 min
t∈T

z(s, t).

If one desires to approximate z by an element of a prescribed subspace U in
C(S), then the best approximations (if they exist) are precisely the elements of the
relative Chebyshev center E(K;U), if it is nonvoid.



Before we proceed too far into this subject, it is important to point out that
every simultaneous approximation problem can be turned into an ordinary approxi-
mation problem (in a different space). One method for doing so, given in Franchetti
and Cheney [1981-b], is as follows. Suppose that we seek the simultaneous approxi-
mations of a bounded set S in a Banach space X by elements chosen from a subset
U in X. Consider the Banach space C(S,X) of all bounded continuous maps f from
S into X, normed by

‖f‖ = sup
s∈S

‖f(s)‖.

For each u ∈ U, define u ∈ C(S,X) by putting u(s) = u. Let U = {u : u ∈ U}.
Define also e ∈ C(S,X) by putting e(s) = s. For each u ∈ U we have

‖e− u‖ = sup
s∈S

‖e(s) − u(s)‖ = sup
s∈S

‖s− u‖.

Consequently, the simultaneous approximation of S by U in X is equivalent to the
approximation of e by U in C(S,X). These remarks do not make the problem any
easier but perhaps add to the motivation for studying approximation theory in the
spaces C(S,X).

Returning now to relative Chebyshev centers in C(S), we mention another way
of turning the simultaneous approximation problem into an approximation involving
a single function. Let B be a bounded set in C(S), with S compact Hausdorff. In
addition to the functions v1 and v2 defined previously in Eq. (2), we put

w = 1
2 (v1 − v2), c = 1

2 (v1 + v2).

It was proved by Diaz and McLaughlin [1969-b] that

(3) r(B;U) = inf
u∈U

‖w + |c− u|‖.

Furthermore, the elements of U that solve the minimization problem (3) are in
E(B;U), and each element of E(B;U) solves (3). The problem in (3) is a Chebyshev
approximation problem with an additive weight function.

Within the same sphere of ideas is a result of Smith and Ward [1975]. They
proved that

r(B;U) = r(B) + dist
(

E(B), U
)

and that E(B;U) is nonempty if and only if dist(x, U) attains its infimum as x
ranges over E(B). Since this is a Banach-space result, it must be valid in all abstract
M -spaces. Hence it is true for all spaces C(S), whether S is compact or not. (Smith
and Ward proved the theorem for S paracompact.) An example in IR2 using the
`∞-metric is shown in Figure 3.

E(B)
B U

r(B)

dist
(

E(B), U
)



Fig. 3. Relative Chebyshev center.

An important existence theorem for relative Chebyshev centers was proved by
Smith and Ward [1975-a]:

THEOREM. If S is compact Hausdorff, if U is a closed subalgebra of C(S) and

if B is a bounded subset of C(S), then the relative Chebyshev center E(B;U) is

nonempty.

For a generalization of this theorem, see Amir, Mach and Saatkamp [1982].
In spaces other than C(S), a number of results have been obtained, of which a

few are listed here.
THEOREM. The Chebyshev center of a bounded set in a uniformly convex Banach

space consists of precisely one point (Garkavi [1962]).
THEOREM. Let X be a Banach space whose canonical image in X∗∗ is norm-1

complemented. Then every bounded set in X has a nonempty Chebyshev center

(Garkavi [1962]).
THEOREM. In Hilbert space, the Chebyshev center of a hypercircle is its element

of least norm. (A hypercircle is the intersection of a closed linear manifold with
a ball centered at the origin) Golomb and Weinberger [1959].

THEOREM. If X is any normed linear space, then every bounded set in X∗ has

a nonempty Chebyshev center (Garkavi [1962]).
THEOREM. If X is an abstract L-space, then every bounded set in X has a

nonempty Chebyshev center (Prolla [1983]).
THEOREM. If X is a Banach space in which each bounded set has a nonempty

center, then the same is true of any norm-1 complemented subspace of X.
In much of the theory of Chebyshev centers, the results concerning centers of

bounded sets are weaker than those for compact sets. If U is a subspace in a Banach
space X such that E(K;U) 6= for all compact sets K in X, then U is said to have
property “EK.” Property “EO” is similar but for all bounded sets B in K. These
properties are like ordinary proximinality for U, except that they pertain to the
simultaneous approximation problem. We have these implications, for a subspace
U :

EO =⇒ EK =⇒ proximinality.

In general these implications are not reversible. Zamyatin [1973] proved that the
first of these is not reversible, and Feng [1986] proved that even in C(S) the second
is not. Here is a theorem characterizing the EK-subspaces in C(S). (See Franchetti
and Cheney [1986].)

THEOREM. In order that a subspace U in C(S) have property EK it is necessary

and sufficient that U be proximinal in C(S × T ) for every compact Hausdorff space

T.
A similar theorem is true for property EO; in this case U must be proximinal

in C(S×T ) for all topological spaces T. In both theorems, S is compact Hausdorff.
Another characterization from the same paper is this:
THEOREM. A proximinal subspace U in C(S) has property EK if and only if

dist(x, U) attains its infimum on each “interval” [a, b] where a ∈ C(S), b ∈ C(S),
and mins

[

b(s) − a(s)
]

= 0.
This theorem follows from the result of Smith and Ward cited earlier, together

with the remark that the Chebyshev centers of compact sets in C(S) are precisely
the intervals of the type described in the theorem.



In order to illustrate how the theory of Chebyshev centers can assist in prov-
ing theorems about ordinary proximinality, we consider the common technique of
introducing changes of variable in approximation problems. For example, practical

problems may lead to the use of approximating functions of the form
∑n

i=0 ai
[

f(s)
]i
,

which is nothing but a polynomial in the variable f(s). A general theorem about
proximinality in such problems is this:

THEOREM. Let S and T be compact Hausdorff spaces. Let V be a subspace

having property EK in C(T ). Let f : S → T be continuous and open. Then the set

of functions {v ◦ f : v ∈ V } is proximinal in C(S).
The subspaces of finite co-dimension have received special attention in spaces

C(S). Here is a beautiful theorem of Garkavi [1973]:
THEOREM. A subspace of finite co-dimension in C(S) has property EK if and

only if it is proximinal.

In contrast to this, Zamyatin [1973] has proved:
THEOREM. In order that a subspace U of finite co-dimension in C(S) have prop-

erty EO it is necessary and sufficient that each element of U⊥ have finite support.

From these two theorems it is clear that some hyperplanes in C(S) have prop-
erty EK but not property EO.

Further references on the problem of Chebyshev centers are Amir and Ziegler
[1980-a, 1980-b, 1981], Blatt [1973], Bosznay [1978], Brondsted [1976], Carroll
[1972], Chui, Rahman, Sahney and Smith [1978], Diaz and McLaughlin [1969-a],
Dierieck [1976], Dunham [1967], Franchetti [1977], Gillotte and McLaughlin [1976],
Hall [1976], Holland, Sahney, and Tzimbalario [1976], Kadets and Zamyatin [1968],
Laurent and Tuan [1970], Lin [1974], Mach [1979-a, 1979-b, 1982], Milman [1977],
Sahney and Singh [1982], and Owens [1983].



CHAPTER 8

Multivariate Interpolation

In Chapter 1, we pointed out some differences between univariate and mul-
tivariate interpolation, and we described the method of Shepard interpolation as
being representative of the procedures available for the multivariate case. Here we
will describe some other methods that are useful and have been the subject of re-
cent research. The discussion relies heavily on Micchelli’s survey [1986], which is
recommended for further reading.

First, it should be pointed out that interpolation on a Cartesian grid presents
no challenge, since the tensor product of two univariate interpolation operators is
a bivariate interpolation operator. Thus, if an operator A interpolates at points
s1, · · · , sn and if an operator B interpolates at t1, · · · , tm then A ⊗ B will interpo-
late at all grid points (si, tj). This statement generalizes to the interpolation of
functionals other than point-evaluations. The formal result is as follows.

THEOREM 1. Let A and B be linear operators in L(X,X) and L(Y, Y ), respec-

tively. Let α be a uniform crossnorm. If A∗φ = φ and B∗ψ = ψ for a pair of

functionals φ ∈ X∗, ψ ∈ Y ∗, then for all z ∈ X ⊗α Y ,

(1) (φ⊗ ψ)(A⊗α B)(z) = (φ ⊗ ψ)(z) .

Specializing to ordinary polynomials, we see that interpolation on a Cartesian
grid

{

(si, tj) : 0 ≤ i ≤ n, 0 ≤ j ≤ m
}

is uniquely possible by a polynomial of the form

(2) p(s, t) =

n
∑

ν=0

m
∑

µ=0

aνµs
νtµ .

The uniqueness follows from two facts: that the interpolation on the gridwork of
(n+1)(m+1) points is possible, and that the dimension of the subspace being used
for interpolation is also (n+ 1)(m+ 1). Let us elaborate this second point.

The polynomial subspace that figures in this tensor-product scheme is Πn⊗Πm.
According to the definition of a tensor product, the elements of this space are finite
sums of the form

p(s, t) =
∑

ui(s)vi(t) (ui ∈ Πn , vi ∈ Πm) .

By simple linear algebra these elements are representable as in Eq. (2). The dimen-
sion of this space is (n+ 1)(m+ 1), by the general theory of tensor products.

The polynomial subspace which is usually denoted by Πm(IR2) consists pre-
cisely of all polynomials having the form

(3) p(s, t) =
∑

i+j≤m

aijs
itj =

m
∑

i=0

si
m−i
∑

j=0

aijt
j .
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The following theorem and proof are adapted from Micchelli [1986].
THEOREM 2. Interpolation to arbitrary data by an element of Πm(IR2) is

uniquely possible on a set N of (m + 1)(m + 2)/2 nodes if there exist m + 1 lines

L0, · · · , Lm whose union contains N and that have the property that each Li contains

exactly i+ 1 nodes.

Proof. The sets N ∩ Li are pairwise disjoint, for if they were not, we would
have a strict inequality in the following calculation, where n = 1

2 (m+ 1)(m+ 2):

n = #N ≤
m

∑

i=0

#(N ∩ Li) = 1 + 2 + · · · + (m+ 1) = n .

Since the number of coefficients in the polynomial

p(s, t) =
∑

i+j≤m

aijs
itj

is n and the number of nodes is n, it suffices to prove that if p | N = 0 then p = 0.
For each i, let `i be a element of Π1(IR

2) such that Li = {x : `i(x) = 0}. Observe
that p2 + `2m has m+ 1 zeros because #(N ∩ `m) = m+ 1. By Bézout’s Theorem
(below) we conclude that p contains `m as a factor. In the same way, (p/`m)2+`2m−1

has m zeros, and by Bézout’s Theorem, p/`m contains `m−1 as a factor. Continuing
the argument, we conclude that p is a scalar multiple of `1 · · · `m. Since p vanishes
on N ∩ `0 while `1 · · · `m does not, p = 0.

BÉZOUT’S THEOREM. If p ∈ Πn(IR
2) and q ∈ Πm(IR2), and if p2 + q2 has more

than nm zeros, then p and q have a nonconstant factor in common. (See Hartshorne
[1977].)

Another special distribution of nodes for which interpolation is possible is given
in this theorem of Chung and Yao [1977]:

THEOREM. Interpolation to arbitrary data on a node set N in IRn is uniquely

possible with elements from Πm(IRn) if #N =
(

n+m
m

)

and if there is associated

with each node x a set S(x) that is a union of m hyperplanes and has the property

x ∈ S(y) ⇔ x 6= y, for x and y in N .

For computing interpolating functions it is important to have efficient algo-
rithms that are easily programmed. The Newton algorithm for univariate poly-
nomial interpolation is the epitome of such algorithms. We can summarize it by
saying that if a polynomial p interpolates to a function f at nodes x1, · · · , xr−1 then
a polynomial that interpolates f at nodes x1, · · · , xr can be found in the form

p(x) + c

r−1
∏

i=1

(x− xi) .

The abstract embodiment of this principle can be stated in the following terms.
LetX be a set and f a real-valued function onX . Let N be a set of points (“nodes”)
in X . Let h be a real-valued function on X , and put

Z = {x ∈ X : h(x) = 0} .

If p interpolates f on N ∩ Z and if q interpolates (f − p)/h on N \ Z, then p+ qh
interpolates f on N .



The Newton algorithm as described above becomes an instance of this abstract
formulation when X = IR, h =

∏r−1
i=1 (x− xi), and q is the constant

q =
[

f(xr) − p(xr)
]/

h(xr) .

This abstract version of the Newton algorithm enables us to divide an interpo-
lation problem into two smaller problems. (Here “smallness” refers to the number of
interpolation conditions.) In the above discussion, the subproblems involve the de-
termination of p and q. Procedures such as this are often fundamental to successful
algorithms.

As Micchelli points out, this strategy is completely successful in the interpo-
lation problem of Theorem 2. We let `m denote an element of Π1(IR

2) whose zero
set, Z(`m), is the line Lm. Let pm be an element of Πm(IR2); this solves the easy
problem of interpolating f on N ∩Lm. Let qm−1 be an element of Πm−1(IR

2) which
interpolates (f − pm)/`m on N \ Z(`m). If this process is applied m times, the
solution takes on successively the following forms:

pm + `mqm−1 = pm + `m(pm−1 + `m−1qm−2)

= pm + `m
(

pm−1 + `m−1(pm−2 + `m−2qm−3)
)

· · · · · · · · ·

=

m
∑

i=1

pi

m
∏

j=i+1

`j .

The interpolation problem of Theorem 2 can be solved by another type of
polynomial in two variables. Using the previous notation, we set up an interpolating
function of the form

ro + `0r1 + `0`1r2 + `0`1`2r3 + · · · + (`0 · · · `m−1)rm

where `i ∈ Π1(IR
2) and ri ∈ Πi(IR

2). The polynomials r0, r1, · · · are determined
(in that order) by imposing the interpolation conditions on N ∩ L0, N ∩ L1, etc.
Each ri can be of the special form ri = gi ◦ ` for an appropriate ` ∈ Π1(IR

2) and
gi ∈ Πi(IR). This is because each ri is called upon to solve an interpolation only on
the i+ 1 points which compose N ∩ Li. The affine function ` should separate the
points of N (i.e., should be one-to-one from N to IR).

For polynomial interpolation at n nodes not regularly distributed in IR2, it can
argued that the probability of encountering a singular system of linear equations is
zero. Hence one can select a set of n monomials sµtν and attempt to solve for the
coefficients in the equation

(4)
∑

µ

∑

ν

aµνs
µ
i t
ν
i = λi, 1 ≤ i ≤ n

where (si, ti) are the nodes. With probability 1, this system is nonsingular. How-
ever, it may be nearly-singular, and in any event, for large n the solution of Eq. (4)
may be a formidable task. Furthermore, polynomials are not suitable for all prob-
lems involving the representation of data. Hence we require other, more general,
interpolation schemes.



Interpolation at nodes having no exploitable pattern is referred to as the case
of “scattered data.” The method of Shepard, outlined in Chapter 1, is applicable
to this problem.

Another important method was introduced by Hardy [1971]; it uses functions
called “multiquadrics.” Franke [1982-b] and others have found this method to be
very satisfactory. Here, the interpolating function has the form

g(s, t) =

n
∑

j=1

cj
[

(s− sj)
2 + (t− tj)

2 + r2
]1/2

,

in which (sj , tj) are the nodes of interpolation and r is a parameter at our disposal.
There is one basis function for each node. In order to interpolate a function f at
the nodes we have to solve the linear system

n
∑

j=1

cj
[

(si − sj)
2 + (ti − tj)

2 + r2
]1/2

= f(si, ti) (1 ≤ i ≤ n) .

Micchelli proved [1985] that the coefficient matrix in this system is non-singular,
provided that all the nodes are different from each other.

Determining an optimal value of the parameter r (practically or theoretically)
is an interesting problem. Hardy [1971] suggested r = 0.815d, where d is the mean
distance between nodes. Other rules-of-thumb have been suggested, all depending
upon the geometry of the node set.

A closely related type of interpolating function, called a “thin-plate spline,”
was introduced by Harder and Desmarais [1972]. It has the form

g(s, t) =

n
∑

j=1

cjρk(s, t) log ρk(s, t) ρk(s, t) = (s− sk)
2 + (t− tk)

2 .

See also Duchon [1976], Meinguet [1979-a] and the references cited by Franke [1982-
b].

Several “local” versions of Shepard’s method have been proposed. This term
has an informal meaning that the subspace of functions being used for interpolation
has a basis consisting of functions with small supports. When this is the case, the
linear system of equations that must be solved to obtain the interpolant will have a
sparse coefficient matrix. Furthermore, and this is more important, the evaluation
of the interpolant at an arbitrary point will be much simpler because only a few of
the basis functions will be different from zero at that point.

A simple local Shepard method for nodes x1, · · · , xn in IR2 (or higher dimen-
sional space) employs basis functions g1, · · · , gn of the form

gi(x) = r−µi
(

ri − |x− xi|
)µ

+
.

(The subscript + indicates that gi(x) = 0 if |x−xi| ≤ ri.) The numbers µ and ri are
parameters at our disposal. If ri is defined to be the distance from xi to its nearest
neighboring node, then gi(xj) = δij , and the Shepard interpolant for a function f
is simply

∑n
i=1 f(xi)gi. Increased smoothness of gi is obtained by raising the value

of µ. See Franke [1985] for further remarks about this topic.
Further references on multivariate interpolation are Carlson and Fritsch [1985],

Ciarlet and Raviart [1971, 1972], Franke [1977, 1982-a, 1982-b, 1985], Hakopian
[1982], Haussmann [1970, 1972], Kergin [1980], Meinguet [1970, 1979-a, 1979-b],
Micchelli [1980], Schumaker [1976], and Tarwater [1985].
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F.J. DELVOS AND H.-W. KÖSTERS [1975], On the variational characterization of bivari-
ate interpolation methods, Math. Z. 145, pp. 129–137.

F.J. DELVOS AND G. MALINKA [1974], Das Blending-Schema von Spline Systemen,
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