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Preface

This is a book about algorithms for performing arithmetic, and their imple-
mentation on modern computers. We are concerned with software more than
hardware — we do not cover computer architecture or the design of computer
hardware since good books are already available on these topics. Instead we
focus on algorithms for efficiently performing arithmetic operations such as
addition, multiplication and division, and their connections to topics such as
modular arithmetic, greatest common divisors, the Fast Fourier Transform
(FFT), and the computation of special functions.

The algorithms that we present are mainly intended for arbitrary-precision
arithmetic. That is, they are not limited by the computer wordsize of 32 or
64 bits, only by the memory and time available for the computation. We
consider both integer and real (floating-point) computations.

The book is divided into four main chapters, plus an appendix. Chapter 1
covers integer arithmetic. This has, of course, been considered in many other
books and papers. However, there has been much recent progress, inspired in
part by the application to public key cryptography, so most of the published
books are now partly out of date or incomplete. Our aim has been to present
the latest developments in a concise manner.

Chapter 2 is concerned with the FFT and modular arithmetic, and their
applications to computer arithmetic. We consider different number represen-
tations, fast algorithms for multiplication, division and exponentiation, and
the use of the Chinese Remainder Theorem (CRT).

Chapter 3 covers floating-point arithmetic. Our concern is with high-
precision floating-point arithmetic, implemented in software if the precision
provided by the hardware (typically IEEE standard 64-bit arithmetic) is in-
adequate. The algorithms described in this chapter focus on correct rounding,
extending the IEEE standard to arbitrary precision.

Chapter 4 deals with the computation, to arbitrary precision, of functions
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such as sqrt, exp, ln, sin, cos, and more generally functions defined by power
series or continued fractions. We also consider the computation of certain
constants, such as π and (Euler’s constant) γ. Of course, the computation of
special functions is a huge topic so we have had to be selective. In particular,
we have concentrated on methods that are efficient and suitable for arbitrary-
precision computations.

For details that are omitted we give pointers in the Notes and References
sections of each chapter, and in the bibliography. Finally, the Appendix
contains pointers to implementations, useful web sites, mailing lists, and so
on.

The book is intended for anyone interested in the design and implemen-
tation of efficient algorithms for computer arithmetic, and more generally
efficient numerical algorithms. We did our best to present algorithms that
are ready to implement in your favorite language, while keeping a high-level
description.

Although the book is not specifically intended as a textbook, it could be
used in a graduate course in mathematics or computer science, and for this
reason, as well as to cover topics that could not be discussed at length in the
text, we have included exercises at the end of each chapter. For solutions to
the exercises, please contact the authors.

We thank the French National Institute for Research in Computer Science
and Control (INRIA), the Australian National University (ANU), and the
Australian Research Council (ARC), for their support. The book could not
have been written without the contributions of many friends and colleagues,
too numerous to mention here, but acknowledged in the text and in the Notes
and References sections at the end of each chapter.

Finally, we thank Erin Brent, who first suggested writing the book, and
our wives Judy-anne and Marie, for their patience and encouragement.

This is a preliminary version — there are still a few sections to be com-
pleted. We welcome comments and corrections. Please send them to either
of the authors.

Richard Brent and Paul Zimmermann
MCA@rpbrent.com

Paul.Zimmermann@inria.fr

Canberra and Nancy, June 2008
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Notation

C set of complex numbers
N set of natural numbers (nonnegative integers)
Q set of rational numbers
R set of real numbers
Z set of integers
Z/nZ ring of residues modulo n
Cn set of (real or complex) functions with n continuous derivatives

in the region of interest

ℜ(z) real part of a complex number z
ℑ(z) imaginary part of a complex number z
z̄ conjugate of the complex number z
|z| Euclidean norm of the complex number z

β “word” base (usually 232 or 264)
n number of base β digits in integer or in floating-point

significand, depending on the context
ε “machine precision” 1

2β1−n

η smallest positive subnormal number
◦(x) rounding of real number x
ulp(x) for a floating-point number x, one unit in the last place

M(n) time to multiply n-bit integers or polynomials of degree n− 1,
depending on the context

M(m, n) time to multiply an m-bit integer by an n-bit integer
D(n) time to divide a 2n-bit integer by an n-bit integer
D(m, n) time to divide an m-bit integer by an n-bit integer

9
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sign(n) +1 if n > 0, −1 if n < 0, and 0 if n = 0
r := a mod b integer remainder (0 ≤ r < b)
q := a div b integer quotient (0 ≤ a− qb < b)
i ∧ j bitwise and of integers i and j,

or logical and of two Boolean expressions
i⊕ j bitwise exclusive-or of integers i and j
i≪ k integer i multiplied by 2k

i≫ k quotient of division of integer i by 2k

ν(n) 2-valuation: largest k such that 2k divides n (ν(0) =∞)
σ(e) length of the shortest addition chain to compute e
φ(n) Euler’s totient function, #{m : 0 < m ≤ n ∧ (m, n) = 1}
deg(A) for a polynomial A, the degree of A
ord(A) for a power series A =

∑
j ajz

j , ord(A) = min{j : aj 6= 0}
(note the special case ord(0) = +∞)

log, ln natural logarithm
log2, lg base-2 logarithm
nbits(n) ⌊lg(n)⌋+ 1 if n > 0, 0 if n = 0

t[a, b] or [a, b]t vector

(
a
b

)

f(n) = O(g(n)) ∃c, n0 such that |f(n)| ≤ cg(n) for all n ≥ n0

f(n) = Θ(g(n)) f(n) = O(g(n)) and g(n) = O(f(n))

[a, b; c, d] 2× 2 matrix

(
a b
c d

)

xxx.yyyρ a number xxx.yyy written in base ρ;
for example, the decimal number 3.25 is 11.012 in binary



Chapter 1

Integer Arithmetic

In this Chapter our main topic is integer arithmetic. However,
we shall see that many algorithms for polynomial arithmetic are
similar to the corresponding algorithms for integer arithmetic,
but simpler due to the lack of carries in polynomial arithmetic.
Consider for example addition: the sum of two polynomials of
degree n always has degree n at most, whereas the sum of two
n-digit integers may have n + 1 digits. Thus we often describe
algorithms for polynomials as an aid to understanding the corre-
sponding algorithms for integers.

1.1 Representation and Notations

We consider in this Chapter algorithms working on integers. We shall distin-
guish between the logical — or mathematical — representation of an integer,
and its physical representation on a computer. Our algorithms are intended
for “large” integers — they are not restricted to integers that can be repre-
sented in a single computer word.

Several physical representations are possible. We consider here only the
most common one, namely a dense representation in a fixed base. Choose
an integral base β > 1. (In case of ambiguity, β will be called the internal
base.) A positive integer A is represented by the length n and the digits ai

of its base β expansion:

A = an−1β
n−1 + · · ·+ a1β + a0,

11
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where 0 ≤ ai ≤ β − 1, and an−1 is sometimes assumed to be non-zero.
Since the base β is usually fixed in a given program, only the length n
and the integers (ai)0≤i<n need to be stored. Some common choices for β
are 232 on a 32-bit computer, or 264 on a 64-bit machine; other possible
choices are respectively 109 and 1019 for a decimal representation, or 253

when using double precision floating-point registers. Most algorithms given
in this Chapter work in any base; the exceptions are explicitly mentioned.

We assume that the sign is stored separately from the absolute value,
which is known as the “sign-magnitude” representation. Zero is an important
special case; to simplify the algorithms we assume that n = 0 if A = 0, and
in most cases we assume that this case is treated separately.

Except when explicitly mentioned, we assume that all operations are off-
line, i.e., all inputs (resp. outputs) are completely known at the beginning
(resp. end) of the algorithm. Different models include on-line — also called
lazy — algorithms, and relaxed algorithms.

1.2 Addition and Subtraction

As an explanatory example, here is an algorithm for integer addition. In the
algorithm, d is a carry bit.

Our algorithms are given in a language which mixes mathematical nota-
tion and syntax similar to that found in many high-level computer languages.
It should be straightforward to translate into a language such as C. The line
numbers are included in case we need to refer to individual lines in the de-
scription or analysis of the algorithm.

� �� �
1 Algorithm IntegerAddition .

2 Input : A =
∑n−1

0 aiβ
i , B =

∑n−1
0 biβ

i , carry−in 0 ≤ din ≤ 1

3 Output : C :=
∑n−1

0 ciβ
i and 0 ≤ d ≤ 1 such that A + B + din = dβn + C

4 d← din

5 for i from 0 to n− 1 do
6 s← ai + bi + d
7 ci ← s mod β
8 d← s div β
9 Return C, d .


 	� �

Let T be the number of different values taken by the data type represent-
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ing the coefficients ai, bi. (Clearly β ≤ T but equality does not necessarily
hold, e.g., β = 109 and T = 232.) At step 6, the value of s can be as large as
2β−1, which is not representable if β = T . Several workarounds are possible:
either use a machine instruction that gives the possible carry of ai + bi; or
use the fact that, if a carry occurs in ai + bi, then the computed sum — if
performed modulo T — equals t := ai + bi − T < ai; thus comparing t and
ai will determine if a carry occurred. A third solution is to keep a bit in
reserve, taking β ≤ ⌈T/2⌉.

The subtraction code is very similar. Step 6 simply becomes s ← ai −
bi − d, where d ∈ {0, 1} is the borrow of the subtraction, and −β ≤ s < β.
The other steps are unchanged, with the invariant A−B − din = −dβn + C.

Addition and subtraction of n-word integers costs O(n), which is negli-
gible compared to the multiplication cost. However, it is worth trying to
reduce the constant factor implicit in this O(n) cost; indeed, we shall see in
§1.3 that “fast” multiplication algorithms are obtained by replacing multi-
plications by additions (usually more additions than the multiplications that
they replace). Thus, the faster the additions are, the smaller the thresholds
for changing over to the “fast” algorithms will be.

1.3 Multiplication

A nice application of large integer multiplication is the Kronecker-Schönhage
trick , also called segmentation or substitution by some authors. Assume we
want to multiply two polynomials A(x) and B(x) with non-negative integer
coefficients (see Ex. 1.8.1 for negative coefficients). Assume both polynomials
have degree less than n, and coefficients are bounded by ρ. Now take a power
X = βk of the base β, nρ2 < X, and multiply the integers a = A(X) and
b = B(X) obtained by evaluating A and B at x = X. If C(x) = A(x)B(x) =∑

cix
i, we clearly have C(X) =

∑
ciX

i. Now since the ci are bounded by
nρ2 < X, the coefficients ci can be retrieved by simply “reading” blocks of k
words in C(X). Assume for example one wants to compute

(6x5 + 6x4 + 4x3 + 9x2 + x + 3)(7x4 + x3 + 2x2 + x + 7),

with degree less than n = 6, and coefficients bounded by ρ = 9. One can
thus take X = 103 > nρ2, and perform the integer multiplication:

6006004009001003× 7001002001007 = 42048046085072086042070010021,
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from which one can read the product 42x9 + 48x8 + 46x7 + 85x6 + 72x5 +
86x4 + 42x3 + 70x2 + 10x + 21.

Conversely, suppose we want to multiply two integers a =
∑

0≤i<n aiβ
i

and b =
∑

0≤j<n bjβ
j . Multiply the polynomials A(x) =

∑
0≤i<n aix

i and

B(x) =
∑

0≤j<n bjx
j, obtaining a polynomial C(x), then evaluate C(x) at

x = β to obtain ab. Note that the coefficients of C(x) may be larger than β,
in fact they may be up to about nβ2. For example with a = 123 and b = 456
with β = 10, we obtain A(x) = x2 + 2x + 3, B(x) = 4x2 + 5x + 6, whose
product is C(x) = 4x4 + 13x3 + 28x2 + 27x + 18, and C(10) = 56088. These
examples demonstrate the analogy between operations on polynomials and
integers, and also show the limits of the analogy.

A common and very useful notation is to let M(n) denote the time to mul-
tiply n-bit integers, or polynomials of degree n−1, depending on the context.
In the polynomial case, we assume that the cost of multiplying coefficients is
constant; this is known as the arithmetic complexity model, whereas the bit
complexity model also takes into account the cost of multiplying coefficients,
and thus their bit-size.

1.3.1 Naive Multiplication

� �� �
1 Algorithm BasecaseMultiply .

2 Input : A =
∑m−1

0 aiβ
i , B =

∑n−1
0 bjβ

j

3 Output : C = AB :=
∑m+n−1

0 ckβ
k

4 C ← A · b0

5 for j from 1 to n− 1 do
6 C ← C + βj(A · bj)
7 Return C .


 	� �

Theorem 1.3.1 Algorithm BasecaseMultiply computes the product AB
correctly, and uses Θ(mn) word operations.

The multiplication by βj at step 6 is trivial with the chosen dense represen-
tation: it simply requires shifting by j words towards the most significant
words. The main operation in algorithm BasecaseMultiply is the compu-
tation of A·bj and its accumulation into C at step 6. Since all fast algorithms
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rely on multiplication, the most important operation to optimize in multiple-
precision software is thus the multiplication of an array of m words by one
word, with accumulation of the result in another array of m + 1 words.

Since multiplication with accumulation usually makes extensive use of the
pipeline, it is best to give it arrays that are as long as possible, which means
that A rather than B should be the operand of larger size (i.e., m ≥ n).

1.3.2 Karatsuba’s Algorithm

In the following, n0 ≥ 2 denotes the threshold between naive multiplication
and Karatsuba’s algorithm, which is used for n0-word and larger inputs. The
optimal “Karatsuba threshold” n0 can vary from 10 to 100 words depending
on the processor, and the relative efficiency of the word multiplication and
addition (see Ex. 1.8.5).

� �� �
1 Algorithm KaratsubaMultiply .

2 Input : A =
∑n−1

0 aiβ
i , B =

∑n−1
0 bjβ

j

3 Output : C = AB :=
∑2n−1

0 ckβ
k

4 i f n < n0 then re turn BasecaseMultiply(A, B)
5 k ← ⌈n/2⌉
6 (A0, B0) := (A, B) mod βk , (A1, B1) := (A, B) div βk

7 sA ← sign(A0 −A1) , sB ← sign(B0 −B1)
8 C0 ← KaratsubaMultiply(A0, B0)
9 C1 ← KaratsubaMultiply(A1, B1)

10 C2 ← KaratsubaMultiply(|A0 −A1|, |B0 −B1|)
11 Return C := C0 + (C0 + C1 − sAsBC2)β

k + C1β
2k .


 	� �

Theorem 1.3.2 Algorithm KaratsubaMultiply computes the product AB
correctly, using K(n) = O(nα) word multiplications, with α = log2 3 ≈ 1.585.

Proof. Since sA|A0−A1| = A0−A1, and similarly for B, sAsB|A0−A1||B0−
B1| = (A0 − A1)(B0 −B1), thus C = A0B0 + (A0B1 + A1B0)β

k + A1B1β
2k.

Since A0, B0, |A0−A1| and |B0−B1| have (at most) ⌈n/2⌉ words, and A1

and B1 have (at most) ⌊n/2⌋ words, the number K(n) of word multiplications
satisfies the recurrence K(n) = n2 for n < n0, and K(n) = 2K(⌈n/2⌉) +
K(⌊n/2⌋) for n ≥ n0. Assume 2ℓ−1n0 < n ≤ 2ℓn0 with ℓ ≥ 1, then K(n)
is the sum of three K(j) values with j ≤ 2l−1n0, . . . , thus of 3l K(j) with
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j ≤ n0. Thus K(n) ≤ 3lmax(K(n0), (n0 − 1)2), which gives K(n) ≤ Cnα

with C = 31−log2 n0max(K(n0), (n0 − 1)2).

Different variants of Karatsuba’s algorithm exist; this variant is known as
the subtractive version. Another classical one is the additive version, which
uses A0 + A1 and B0 + B1 instead of |A0 −A1| and |B0 −B1|. However, the
subtractive version is more convenient for integer arithmetic, since it avoids
the possible carries in A0 + A1 and B0 + B1, which require either an extra
word in those sums, or extra additions.

The efficiency of an implementation of Karatsuba’s algorithm depends
heavily on memory usage. It is quite important to avoid allocating memory
for the intermediate results |A0−A1|, |B0−B1|, C0, C1, and C2 at each step
(although modern compilers are quite good at optimising code and removing
unnecessary memory references). One possible solution is to allow a large
temporary storage of m words, used both for the intermediate results and for
the recursive calls. It can be shown that an auxiliary space of m = 2n words
— or even m = n in the polynomial case — is sufficient (see Ex. 1.8.6).

Since the third product C2 is used only once, it may be faster to have
two auxiliary routines KaratsubaAddmul and KaratsubaSubmul that
accumulate their result, calling themselves recursively, together with Karat-
subaMultiply (see Ex. 1.8.8).

The above version uses ∼ 4n additions (or subtractions): 2× n
2

to compute
|A0−A1| and |B0−B1|, then n to add C0 and C1, again n to add or subtract
C2, and n to add (C0 +C1− sAsBC2)β

k to C0 +C1β
2k. An improved scheme

uses only ∼ 7
2
n additions (see Ex. 1.8.7).

Most fast multiplication algorithms can be viewed as evaluation/interpo-
lation algorithms, from a polynomial point of view. Karatsuba’s algorithm
regards the inputs as polynomials A0 + A1x and B0 + B1x evaluated at
x = βk; since their product C(x) is of degree 2, Lagrange’s interpolation the-
orem says that it is sufficient to evaluate it at three points. The subtractive
version evaluates C(x) at x = 0,−1,∞, whereas the additive version uses
x = 0,+1,∞.1

1.3.3 Toom-Cook Multiplication

Karatsuba’s idea readily generalizes to what is known as Toom-Cook r-way
multiplication. Write the inputs as a0 + · · ·+ar−1x

r−1 and b0 + · · ·+br−1x
r−1,

1Evaluating C(x) at ∞ means computing the product A1B1 of the leading coefficients.
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with x = βk, and k = ⌈n/r⌉. Since their product C(x) is of degree 2r − 2,
it suffices to evaluate it at 2r − 1 distinct points to be able to recover C(x),
and in particular C(βk).

Most references, when describing subquadratic multiplication algorithms,
only describe Karatsuba and FFT-based algorithms. Nevertheless, the Toom-
Cook algorithm is quite interesting in practice.

Toom-Cook r-way reduces one n-word product to 2r−1 products of ⌈n/r⌉
words. This gives an asymptotic complexity of O(nν) with ν = log(2r−1)

log r
.

However, the constant hidden by the big-O notation depends strongly on
the evaluation and interpolation formulæ, which in turn depend on the cho-
sen points. One possibility is to take −(r − 1), . . . ,−1, 0, 1, . . . , (r − 1) as
evaluation points.

The case r = 2 corresponds to Karatsuba’s algorithm (§1.3.2). The
case r = 3 is known as Toom-Cook 3-way, sometimes simply called “the
Toom-Cook algorithm”. The following algorithm uses evaluation points
0, 1,−1, 2,∞, and tries to optimize the evaluation and interpolation formulæ.

� �� �
1 Algorithm ToomCook3 .
2 Input : two i n t e g e r s 0 ≤ A, B < βn .
3 Output : AB := c0 + c1β

k + c2β
2k + c3β

3k + c4β
4k with k = ⌈n/3⌉ .

4 i f n < 3 then re turn KaratsubaMultiply(A, B)
5 Write A = a0 + a1x + a2x

2 , B = b0 + b1x + b2x
2 with x = βk .

6 v0 ← ToomCook3(a0, b0)
7 v1 ← ToomCook3(a02 + a1, b02 + b1) where a02 ← a0 + a2, b02 ← b0 + b2

8 v−1 ← ToomCook3(a02 − a1, b02 − b1)
9 v2 ← ToomCook3(a0 + 2a1 + 4a2, b0 + 2b1 + 4b2)

10 v∞ ← ToomCook3(a2, b2)
11 t1 ← (3v0 + 2v−1 + v2)/6− 2v∞ , t2 ← (v1 + v−1)/2
12 c0 ← v0 , c1 ← v1 − t1 , c2 ← t2 − v0 − v∞ , c3 ← t1 − t2 , c4 ← v∞


 	� �

The divisions at step 11 are exact; if β is a power of two, the division
by 6 can be done using a division by 2 — which consists of a single shift —
followed by a division by 3 (§1.4.7).

For higher order Toom-Cook implementations see [135], which considers
the 4-way and 5-way variants, together with squaring. Toom-Cook r-way
has to invert a (2r− 1)× (2r− 1) Vandermonde matrix with parameters the
evaluation points; if one chooses consecutive integer points, the determinant
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of that matrix contains all primes up to 2r−2. This proves that the division
by 3 can not be avoided for Toom-Cook 3-way with consecutive integer points
(see Ex. 1.8.12 for a generalization of this result).

1.3.4 Fast Fourier Transform (FFT)

Most subquadratic multiplication algorithms can be seen as evaluation-inter-
polation algorithms. They mainly differ in the number of evaluation points,
and the values of those points. However the evaluation and interpolation
formulæ become intricate in Toom-Cook r-way for large r, since they involve
O(r2) scalar operations. The Fast Fourier Transform (FFT) is a way to per-
form evaluation and interpolation in an efficient way for some special points
(roots of unity) and special values of r. This explains why multiplication
algorithms of the best asymptotic complexity are based on the Fast Fourier
Transform.

There are different flavours of FFT multiplication, depending on the ring
where the operations are performed. Schönhage-Strassen’s algorithm [116],
with a complexity of O(n log n log log n), works in the ring Z/(2n + 1)Z; since
it is based on modular computations, we describe it in Chapter 2.

Other commonly used algorithms work with floating-point complex num-
bers [81, Section 4.3.3.C]; one drawback is that, due to the inexact nature of
floating-point computations, a careful error analysis is required to guarantee
the correctness of the implementation, assuming an underlying arithmetic
with rigorous error bounds (cf Chapter 3).

We say that multiplication is in the FFT range if n is large and the
multiplication algorithm satisfies and M(2n) ∼ M(n). For example, this is
true if the Schönhage-Strassen multiplication algorithm is used, but not if
the classical algorithm or Karatsuba’s algorithm is used.

1.3.5 Unbalanced Multiplication

The subquadratic algorithms considered so far (Karatsuba and Toom-Cook)
work with equal-size operands. How do we efficiently multiply integers of
different sizes with a subquadratic algorithm? This case is important in
practice but is rarely considered in the literature. Assume the larger operand
has size m, and the smaller has size n ≤ m, and denote by M(m,n) the
corresponding multiplication cost.
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When m is an exact multiple of n, say m = kn, a trivial strategy is to
cut the larger operand into k pieces, giving M(kn, n) = kM(n) + O(kn).
However, this is not always the best strategy, see Ex. 1.8.14.

When m is not an exact multiple of n, different strategies are possible.
Consider for example Karatsuba multiplication, and let K(m,n) be the num-
ber of word-products for an m× n product. Take for example m = 5, n = 3.
A natural idea is to pad the smallest operand to the size of the largest one.
However there are several ways to perform this padding, as shown in the
Figure, where the “Karatsuba cut” is represented by a double column:

a4 a3 a2 a1 a0

b2 b1 b0

A×B

a4 a3 a2 a1 a0

b2 b1 b0

A× (βB)

a4 a3 a2 a1 a0

b2 b1 b0

A× (β2B)

The first strategy leads to two products of size 3, i.e., 2K(3, 3), the second one
to K(2, 1)+K(3, 2)+K(3, 3), and the third one to K(2, 2)+K(3, 1)+K(3, 3),
which give respectively 14, 15, 13 word products.

However, whenever m/2 ≤ n ≤ m, any such “padding strategy” will
require K(⌈m/2⌉, ⌈m/2⌉) for the product of the differences (or sums) of the
low and high parts from the operands, due to a “wrap around” effect when
subtracting the parts from the smaller operand; this will ultimately lead to
a cost similar to that of an m × m product. The “odd-even scheme” (see
also Ex. 1.8.11) avoids this wrap around. Here is an example of Algorithm
OddEvenKaratsuba for m = 3 and n = 2. Take A = a2x

2 + a1x + a0

� �� �
1 Algorithm OddEvenKaratsuba .

2 Input : A =
∑m−1

0 aix
i , B =

∑n−1
0 bjx

j , m ≥ n
3 Output : A ·B
4 i f n = 1 then re turn

∑m−1
0 aib0x

i

5 k ← ⌈m
2 ⌉ , ℓ← ⌈n

2 ⌋
6 Write A = A0(x

2) + xA1(x
2) , B = B0(x

2) + xB1(x
2)

7 A0 ← A mod xk , A1 ← A div xk

8 C0 ← OddEvenKaratsuba(A0, B0)
9 C1 ← OddEvenKaratsuba(A0 + A1, B0 + B1)

10 C2 ← OddEvenKaratsuba(A1, B1)
11 Return C0(x

2) + x(C1 − C0 − C2)(x
2) + x2C2(x

2) .

 	� �

and B = b1x + b0. This yields A0 = a2x + a0, A1 = a1, B0 = b0, B1 = b1,
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thus C0 = (a2x + a0)b0, C1 = (a2x + a0 + a1)(b0 + b1), C2 = a1b1. We thus
get K(3, 2) = 2K(2, 1) + K(1) = 5 with the odd-even scheme. The general
recurrence for the odd-even scheme is:

K(m,n) = 2K(⌈m/2⌉, ⌈n/2⌉) + K(⌊m/2⌋, ⌊n/2⌋),
instead of

K(m,n) = 2K(⌈m/2⌉, ⌈m/2⌉) + K(⌊m/2⌋, n− ⌈m/2⌉)
for the classical strategy, assuming n > m/2. The second parameter in K(·, ·)
only depend on the smaller size n for the odd-even scheme.

As for the classical strategy, there are several ways of padding with the
odd-even scheme. Consider m = 5, n = 3, and write A := a4x

4+a3x
3+a2x

2+
a1x+a0 = xA1(x

2)+A0(x
2), with A1(x) = a3x+a1, A0(x) = a4x

2 +a2x+a0;
and B := b2x

2 + b1x + b0 = xB1(x
2) + B0(x

2), with B1(x) = b1, B0(x) =
b2x+b0. Without padding, we write AB = x2(A1B1)(x

2)+x((A0 +A1)(B0 +
B1) − A1B1 − A0B0)(x

2) + (A0B0)(x
2), which gives K(5, 3) = K(2, 1) +

2K(3, 2) = 12. With padding, we consider xB = xB′
1(x

2) + B′
0(x

2), with
B′

1(x) = b2x + b0, B′
0 = b1x. This gives K(2, 2) = 3 for A1B

′
1, K(3, 2) = 5

for (A0 +A1)(B
′
0 +B′

1), and K(3, 1) = 3 for A0B
′
0 — taking into account the

fact that B′
0 has only one non-zero coefficient — thus a total of 11 only.

1.3.6 Squaring

In many applications, a significant proportion of the multiplications have
equal operands, i.e., are squarings. Hence it is worth tuning a special squar-
ing implementation as much as the implementation of multiplication itself,
bearing in mind that the best possible speedup is two (see Ex. 1.8.15).

For naive multiplication, Algorithm BasecaseMultiply (§1.3.1) can be
modified to obtain a theoretical speedup of two, since only about half of the
products aibj need to be computed.

Subquadratic algorithms like Karatsuba and Toom-Cook r-way can be
specialized for squaring too. In general, the threshold obtained is larger than
the corresponding multiplication threshold.

1.3.7 Multiplication by a Constant

It often happens that one integer is used in several consecutive multipli-
cations, or is fixed for a complete calculation. If this constant multiplier is
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small, i.e., less than the base β, not much speedup can be obtained compared
to the usual product. We thus consider here a “large” constant multiplier.

When using evaluation-interpolation algorithms, like Karatsuba or Toom-
Cook (see §1.3.2–1.3.3), one may store the results of the evaluation for that
fixed multiplicand. If one assumes that an interpolation is as expensive as
one evaluation, this may give a speedup of up to 3/2.

Special-purpose algorithms also exist. These algorithms differ from clas-
sical multiplication algorithms because they take into account the value of
the given constant multiplier, and not only its size in bits or digits. They
also differ in the model of complexity used. For example, Bernstein’s algo-
rithm [15], which is used by several compilers to compute addresses in data
structure records, considers as basic operation x, y → 2ix ± y, with a cost
assumed to be independent of the integer i.

For example Bernstein’s algorithm computes 20061x in five steps:

x1 := 31x = 25x− x
x2 := 93x = 21x1 + x1

x3 := 743x = 23x2 − x
x4 := 6687x = 23x3 + x3

20061x = 21x4 + x4.

See [87] for a comparison of different algorithms for the problem of multipli-
cation by an integer constant.

1.4 Division

Division is the next operation to consider after multiplication. Optimizing
division is almost as important as optimizing multiplication, since division
is usually more expensive, thus the speedup obtained on division will be
more significant. (On the other hand, one usually performs more multipli-
cations than divisions.) One strategy is to avoid divisions when possible, or
replace them by multiplications. An example is when the same divisor is
used for several consecutive operations; one can then precompute its inverse
(see §2.3.1).

We distinguish several kinds of division: full division computes both quo-
tient and remainder, while in some cases only the quotient (for example when
dividing two floating-point mantissas) or remainder (when multiplying two
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residues modulo n) is needed. Then we discuss exact division — when the
remainder is known to be zero — and the problem of dividing by a constant.

1.4.1 Naive Division

In all division algorithms, we will consider normalized divisors. We say that
B :=

∑n−1
0 bjβ

j is normalized when its most significant word bn−1 satisfies
bn−1 ≥ β/2. This is a stricter condition (for β > 2) than simply requiring
that bn−1 be nonzero.

� �� �
1 Algorithm BasecaseDivRem .

2 Input : A =
∑n+m−1

0 aiβ
i , B =

∑n−1
0 bjβ

j , B normal ized
3 Output : quot i ent Q and remainder R o f A d iv ided by B .
4 i f A ≥ βmB then qm ← 1 , A← A− βmB else qm ← 0
5 for j from m− 1 downto 0 do
6 q∗j ← ⌊(an+jβ + an+j−1)/bn−1⌋ { quo t i en t s e l e c t i o n s t ep }
7 qj ← min(q∗j , β − 1)

8 A← A− qjβ
jB

9 while A < 0 do
10 qj ← qj − 1
11 A← A + βjB
12 Return Q =

∑m
0 qjβ

j , R = A .

 	� �

(Note: in the above algorithm, ai denotes the current value of the i-th word
of A, after the possible changes at steps 8 and 11.)

If B is not normalized, we can compute A′ = 2kA and B′ = 2kB so that
B′ is normalized, then divide A′ by B′ giving A′ = Q′B′+R′; the quotient and
remainder of the division of A by B are respectively Q := Q′ and R := R′/2k,
the latter division being exact.

Theorem 1.4.1 Algorithm BasecaseDivRem correctly computes the quo-
tient and remainder of the division of A by a normalized B, in O(nm) word
operations.

Proof. First prove that the invariant A < βj+1B holds at step 5. This holds
trivially for j = m− 1: B being normalized, A < 2βmB initially.

First consider the case qj = q∗j : then qjbn−1 ≥ an+jβ + an+j−1 − bn−1 + 1,
thus

A− qjβ
jB ≤ (bn−1 − 1)βn+j−1 + (A mod βn+j−1),
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which ensures that the new an+j vanishes, and an+j−1 < bn−1, thus A < βjB
after step 8. Now A may become negative after step 8, but since qjbn−1 ≤
an+jβ + an+j−1 :

A− qjβ
jB > (an+jβ + an+j−1)β

n+j−1 − qj(bn−1β
n−1 + βn−1)βj ≥ −qjβ

n+j−1.

Therefore A−qjβ
jB+2βjB ≥ (2bn−1−qj)β

n+j−1 > 0, which proves that the
while-loop at steps 9-11 is performed at most twice [81, Theorem 4.3.1.B].
When the while-loop is entered, A may increase only by βjB at a time, hence
A < βjB at exit.

In the case qj 6= q∗j , i.e., q∗j ≥ β, we have before the while-loop: A <
βj+1B − (β − 1)βjB = βjB, thus the invariant holds. If the while-loop is
entered, the same reasoning as above holds.

We conclude that when the for-loop ends, 0 ≤ A < B holds, and since
(
∑m

j qjβ
j)B + A is invariant through the algorithm, the quotient Q and

remainder R are correct.
The most expensive step is step 8, which costs O(n) operations for qjB

(the multiplication by βj is simply a word-shift); the total cost is O(nm).

Here is an example of algorithm BasecaseDivRem for the inputs
A = 766970544842443844 and B = 862664913, with β = 1000: which gives
quotient Q = 889071217 and remainder R = 778334723.

j A qj A− qjBβj after correction
2 766 970 544 842 443 844 889 61 437 185 443 844 no change
1 61 437 185 443 844 071 187 976 620 844 no change
0 187 976 620 844 218 −84 330 190 778 334 723

Algorithm BasecaseDivRem simplifies when A < βmB: remove step 4,
and change m into m− 1 in the return value Q. However, the more general
form we give is more convenient for a computer implementation, and will be
used below.

A possible variant when q∗j ≥ β is to let qj = β; then A − qjβ
jB at step

8 reduces to a single subtraction of B shifted by j + 1 words. However in
this case the while-loop will be performed at least once, which corresponds
to the identity A− (β − 1)βjB = A− βj+1B + βjB.

If instead of having B normalized, i.e., bn ≥ β/2, one has bn ≥ β/k, there
can be up to k iterations of the while-loop (and step 4 has to be modified).
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A drawback of algorithm BasecaseDivRem is that the test A < 0 at
line 9 is true with non-negligible probability, therefore branch prediction
algorithms available on modern processors will fail, resulting in wasted cycles.
A workaround is to compute a more accurate partial quotient, and therefore
decrease the proportion of corrections to almost zero (see Ex. 1.8.18).

1.4.2 Divisor Preconditioning

Sometimes the quotient selection — step 6 of Algorithm BasecaseDivRem
— is quite expensive compared to the total cost, especially for small sizes.
Indeed, some processors do not have a machine instruction for the division
of two words by one word; one way to compute q∗j is then to precompute a
one-word approximation of the inverse of bn−1, and to multiply it by an+jβ +
an+j−1.

Svoboda’s algorithm [123] makes the quotient selection trivial, after pre-
conditioning the divisor. The main idea is that if bn−1 equals the base β in
Algorithm BasecaseDivRem, then the quotient selection is easy, since it
suffices to take q∗j = an+j. (In addition, q∗j ≤ β − 1 is then always fulfilled,
thus step 7 of BasecaseDivRem can be avoided, and q∗j replaced by qj.)

� �� �
1 Algorithm SvobodaDivision .

2 Input : A =
∑n+m−1

0 aiβ
i , B =

∑n−1
0 bjβ

j normalized , A < βmB
3 Output : quot i ent Q and remainder R o f A d iv ided by B .
4 k ← ⌈βn+1/B⌉
5 B′ ← kB = βn+1 +

∑n−1
0 b′jβ

j

6 for j from m− 1 downto 1 do
7 qj ← an+j

8 A← A− qjβ
j−1B′

9 i f A < 0 do
10 qj ← qj − 1
11 A← A + βj−1B′

12 Q′ =
∑m−1

1 qjβ
j , R′ = A

13 (q0, R)← (R′ div B, R′ mod B)
14 Return Q = kQ′ + q0 , R .


 	� �

The division at step 13 can be performed with BasecaseDivRem; it gives
a single word since A has n + 1 words.



Modern Computer Arithmetic, §1.4 25

With the example of section §1.4.1, Svoboda’s algorithm would give k =
1160, B′ = 1000691299080:

j A qj A− qjB
′βj after correction

2 766 970 544 842 443 844 766 441 009 747 163 844 no change
1 441 009 747 163 844 441 −295 115 730 436 705 575 568 644

We thus get Q′ = 766440 and R′ = 705575568644. The final division of
Step 13 gives R′ = 817B +778334723, thus we get Q = 1160 ·766440+817 =
889071217, and R = 778334723, as in §1.4.1.

Svoboda’s algorithm is especially interesting when only the remainder is
needed, since then one can avoid the “deconditioning” Q = kQ′ + q0. Note
that when only the quotient is needed, dividing A′ = kA by B′ = kB yields
it.

1.4.3 Divide and Conquer Division

The base-case division from §1.4.1 determines the quotient word by word. A
natural idea is to try getting several words at a time, for example replacing
the quotient selection step in Algorithm BasecaseDivRem by:

q∗j ← ⌊
an+jβ

3 + an+j−1β
2 + an+j−2β + an+j−3

bn−1β + bn−2

⌋.

Since q∗j has then two words, fast multiplication algorithms (§1.3) might
speed up the computation of qjB at step 8 of Algorithm BasecaseDivRem.

More generally, the most significant half of the quotient — say Q1, of k
words — mainly depends on the k most significant words of the dividend
and divisor. Once a good approximation to Q1 is known, fast multiplication
algorithms can be used to compute the partial remainder A − Q1B. The
second idea of the divide and conquer division algorithm below is to compute
the corresponding remainder together with the partial quotient Q1; in such
a way, one only has to subtract the product of Q1 by the low part of the
divisor, before computing the low part of the quotient.

In Algorithm RecursiveDivRem, one may replace the condition m < 2
at step 4 by m < T for any integer T ≥ 2. In practice, T is usually in the
range 50 to 200.

One can not require A < βmB here, since this condition may not be
satisfied in the recursive calls. Consider for example A = 5517, B = 56
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� �� �
1 Algorithm RecursiveDivRem .

2 Input : A =
∑n+m−1

0 aiβ
i , B =

∑n−1
0 bjβ

j , B normalized , n ≥ m
3 Output : quot i ent Q and remainder R o f A d iv ided by B .
4 i f m < 2 then re turn BasecaseDivRem(A, B)
5 k ← ⌊m

2 ⌋ , B1 ← B div βk , B0 ← B mod βk

6 (Q1, R1)← RecursiveDivRem(A div β2k, B1)
7 A′ ← R1β

2k + (A mod β2k)−Q1B0β
k

8 while A′ < 0 do Q1 ← Q1 − 1 , A′ ← A′ + βkB
9 (Q0, R0)← RecursiveDivRem(A′ div βk, B1)

10 A′′ ← R0β
k + (A′ mod βk)−Q0B0

11 while A′′ < 0 do Q0 ← Q0 − 1 , A′′ ← A′′ + B
12 Return Q := Q1β

k + Q0 , R := A′′ .

 	� �

with β = 10: the first recursive call will divide 55 by 5, which yields a
two-digit quotient 11. Even A ≤ βmB is not recursively fulfilled; consider
A = 55170000 with B = 5517: the first recursive call will divide 5517 by 55.
The weakest possible condition is that the n most significant words of A do
not exceed those of B, i.e., A < βm(B + 1). In that case, the quotient is
bounded by βm + ⌊βm−1

B
⌋, which yields βm + 1 in the case n = m (compare

Ex. 1.8.17). See also Ex. 1.8.20.

Theorem 1.4.2 Algorithm RecursiveDivRem is correct, and uses D(n+
m,n) operations, where D(n + m,n) = 2D(n, n−m/2) + 2M(m/2) + O(n).
In particular D(n) := D(2n, n) satisfies D(n) = 2D(n/2)+2M(n/2)+O(n),
which gives D(n) ∼ 1

2α−1−1
M(n) for M(n) ∼ nα, α > 1.

Proof. We first check the assumption for the recursive calls: B1 is normal-
ized since it has the same most significant word than B.

After step 6, we have A = (Q1B1 +R1)β
2k +(A mod β2k), thus after step

7: A′ = A − Q1β
kB, which still holds after step 8. After step 9, we have

A′ = (Q0B1 + R0)β
k + (A′ mod βk), thus after step 10: A′′ = A′ − Q0B,

which still holds after step 11. At step 12 we thus have A = QB + R.
A div β2k has m+n−2k words, while B1 has n−k words, thus 0 ≤ Q1 <

2βm−k and 0 ≤ R1 < B1 < βn−k. Thus at step 7, −2βm+k < A′ < βkB.
Since B is normalized, the while-loop at step 8 is performed at most four
times (this can happen only when n = m). At step 9 we have 0 ≤ A′ < βkB,
thus A′ div βk has at most n words.
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It follows 0 ≤ Q0 < 2βk and 0 ≤ R0 < B1 < βn−k. Hence at step 10,
−2β2k < A′′ < B, and after at most four iterations at step 11, we have
0 ≤ A′′ < B.

Theorem 1.4.2 gives D(n) ∼ 2M(n) for Karatsuba multiplication, and
D(n) ∼ 2.63 . . .M(n) for Toom-Cook 3-way; in the FFT range, see Ex. 1.8.21.

The same idea as in Ex. 1.8.18 applies: to decrease the probability that
the estimated quotients Q1 and Q0 are too large, use one extra word of the
truncated dividend and divisors in the recursive calls to RecursiveDivRem.

A graphical view of Algorithm RecursiveDivRem in the case m = n
is given in Fig. 1.1, which represents the multiplication Q · B: one first
computes the lower left corner in D(n/2) (step 6), second the lower right
corner in M(n/2) (step 7), third the upper left corner in D(n/2) (step 9),
and finally the upper right corner in M(n/2) (step 10).

quotient Q

divisor B

M(n/2)

M(n/2)

M(n/4)

M(n/4)

M(n/4)

M(n/4)

M( n
8
)

M( n
8
)

M( n
8
)

M( n
8
)

M( n
8
)

M( n
8
)

M( n
8
)

M( n
8
)

Figure 1.1: Divide and conquer division: a graphical view (most significant
parts at the lower left corner).

Unbalanced Division

The condition n ≥ m in Algorithm RecursiveDivRem means that the
dividend A is at most twice as large as the divisor B.
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When A is more than twice as large as B (m > n with the above nota-
tions), a possible strategy (see Ex. 1.8.22) computes n words of the quotient
at a time. This reduces to the base-case algorithm, replacing β by βn.

� �� �
1 Algorithm UnbalancedDivision .

2 Input : A =
∑n+m−1

0 aiβ
i , B =

∑n−1
0 bjβ

j , B normalized , m > n .
3 Output : quot i ent Q and remainder R o f A d iv ided by B .
4 Q← 0
5 while m > n do
6 (q, r)← RecursiveDivRem(A div βm−n, B) { 2n by n d i v i s i o n }
7 Q← Qβn + q
8 A← rβm−n + A mod βm−n

9 m← m− n
10 (q, r)← RecursiveDivRem(A, B)
11 Return Q := Qβm + q , R := r .


 	� �

1.4.4 Newton’s Method

Newton’s iteration gives the division algorithm with best asymptotic com-
plexity. One basic component of Newton’s iteration is the computation of
an approximate inverse. We refer here to Chapter 4. The p-adic version of
Newton’s method, also called Hensel lifting, is used in §1.4.5 for the exact
division.

1.4.5 Exact Division

A division is exact when the remainder is zero. This happens for example
when normalizing a fraction a/b: one divides both a and b by their greatest
common divisor, and both divisions are exact. If the remainder is known a
priori to be zero, this information is useful to speed up the computation of
the quotient. Two strategies are possible:

• use classical MSB (most significant bits first) division algorithms, with-
out computing the lower part of the remainder. Here, one has to take
care of rounding errors, in order to guarantee the correctness of the
final result; or
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• use LSB (least significant bits first) algorithms. If the quotient is known
to be less than βn, computing a/b mod βn will reveal it.

In both strategies, subquadratic algorithms can be used too. We describe
here the least significant bit algorithm, using Hensel lifting — which can be
seen as a p-adic version of Newton’s method:

� �� �
1 Algorithm ExactDivision .

2 Input : A =
∑n−1

0 aiβ
i , B =

∑n−1
0 bjβ

j

3 Output : quot i ent Q = A/B mod βn

4 C ← 1/b0 mod β
5 for i from ⌈log2 n⌉ − 1 downto 1 do
6 k ← ⌈n/2i⌉
7 C ← C + C(1−BC) mod βk

8 Q← AC mod βk

9 Q← Q + C(A−BQ) mod βn


 	� �

Algorithm ExactDivision uses the Karp-Markstein trick: lines 4-7 com-
pute 1/B mod β⌈n/2⌉, while the two last lines incorporate the dividend to
obtain A/B mod βn. Note that the middle product (§3.3.2) can be used in
lines 7 and 9, to speed up the computation of 1−BC and A−BQ respectively.

Finally, another gain is obtained using both strategies simultaneously:
compute the most significant n/2 bits of the quotient using the MSB strategy,
and the least n/2 bits using the LSB one. Since an exact division of size n is
replaced by two exact divisions of size n/2, this gives a speedup up to 2 for
quadratic algorithms (see Ex. 1.8.25).

1.4.6 Only Quotient or Remainder Wanted

When both the quotient and remainder of a division are needed, it is best
to compute them simultaneously. This may seem to be a trivial statement,
nevertheless some high-level languages provide both div and mod, but no
single instruction to compute both quotient and remainder.

Once the quotient is known, the remainder can be recovered by a single
multiplication as a − qb; on the other hand, when the remainder is known,
the quotient can be recovered by an exact division as (a− r)/b (§1.4.5).

However, it often happens that only one of the quotient or remainder is
needed. For example, the division of two floating-point numbers reduces to
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the quotient of their fractions (see Chapter 3). Conversely, the multiplica-
tion of two numbers modulo n reduces to the remainder of their product
after division by n (see Chapter 2). In such cases, one may wonder if faster
algorithms exist.

For a dividend of 2n words and a divisor of n words, a significant speedup
— up to two for quadratic algorithms — can be obtained when only the
quotient is needed, since one does not need to update the low n words of the
current remainder (step 8 of Algorithm BasecaseDivRem).

It seems difficult to get a similar speedup when only the remainder is
required. One possibility is to use Svoboda’s algorithm, but this requires
some precomputation, so is only useful when several divisions are performed
with the same divisor. The idea is the following: precompute a multiple
B1 of B, having 3n/2 words, the n/2 most significant words being βn/2.
Then reducing A mod B1 reduces to a single n/2 × n multiplication. Once
A is reduced into A1 of 3n/2 words by Svoboda’s algorithm in 2M(n/2),
use RecursiveDivRem on A1 and B, which costs D(n/2) + M(n/2). The
total cost is thus 3M(n/2) + D(n/2), instead of 2M(n/2) + 2D(n/2) for a
full division with RecursiveDivRem. This gives 5

3
M(n) for Karatsuba and

2.04M(n) for Toom-Cook 3-way. A similar algorithm is described in §2.3.2
(Subquadratic Montgomery Reduction) with further optimizations.

1.4.7 Division by a Constant

As for multiplication, division by a constant c is an important special case.
It arises for example in Toom-Cook multiplication, where one has to perform
an exact division by 3 (§1.3.3). We assume here that we want to divide a
multiprecision number by a one-word constant. One could of course use a
classical division algorithm (§1.4.1). Algorithm ConstantDivide performs
a modular division:

A + bβn = cQ,

where the “carry” b will be zero when the division is exact.

Theorem 1.4.3 The output of Algorithm ConstantDivide satisfies A +
bβn = cQ.

Proof. We show that after step i, 0 ≤ i < n, we have Ai+bβi+1 = cQi, where
Ai :=

∑i
j=0 aiβ

i and Qi :=
∑i

j=0 qiβ
i. For i = 0, this is a0 + bβ = cq0, which

is exactly line 10: since q0 = a0/c mod β, q0c− a0 is divisible by β. Assume
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� �� �
1 Algorithm ConstantDivide .

2 Input : A =
∑n−1

0 aiβ
i , 0 ≤ c < β .

3 Output : Q =
∑n−1

0 qiβ
i and 0 ≤ b < c such that A + bβn = cQ

4 d← 1/c mod β
5 b← 0
6 for i from 0 to n− 1 do
7 i f b ≤ ai then (x, b′)← (ai − b, 0)
8 else (x, b′)← (ai − b + β, 1)
9 qi ← dx mod β

10 b′′ ← qic−x
β

11 b← b′ + b′′

12 Return
∑n−1

0 qiβ
i , b .


 	� �

now that Ai−1 + bβi = cQi−1 holds for 1 ≤ i < n. We have ai − b + b′β = x,
then x + b′′β = cqi, thus Ai + (b′ + b′′)βi+1 = Ai−1 + βi(ai + b′β + b′′β) =
cQi−1 − bβi + βi(x + b− b′β + b′β + b′′β) = cQi−1 + βi(x + b′′β) = cQi.

Remark: at line 10, since 0 ≤ x < β, b′′ can also be obtained as ⌊qic/β⌋.
Algorithm ConstantDivide is just a special case of Hensel’s division,

which is the topic of the next section.

1.4.8 Hensel’s Division

Classical division consists in cancelling the most significant part of the div-
idend by a multiple of the divisor, while Hensel’s division cancels the least
significant part (Fig. 1.2). Given a dividend A of 2n words and a divisor B
of n words, the classical or MSB (most significant bit) division computes a
quotient Q and a remainder R such that A = QB + R, while Hensel’s or
LSB (least significant bit) division computes a LSB-quotient Q′ and a LSB-
remainder R′ such that A = Q′B + R′βn. While the MSB division requires
the most significant bit of B to be set, the LSB division requires B to be
relatively prime to the word base β, i.e., B to be odd for β a power of two.

The LSB-quotient is uniquely defined by Q′ = A/B mod βn, with 0 ≤
Q′ < βn. This in turn uniquely defines the LSB-remainder R′ = (A −
Q′B)β−n, with −B < R′ < βn.

Most MSB-division variants (naive, with preconditioning, divide and con-
quer, Newton’s iteration) have their LSB-counterpart. For example the
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Q′B
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Figure 1.2: Classical/MSB division (left) vs Hensel/LSB division (right).

LSB preconditioning consists in using a multiple of the divisor such that
kB ≡ 1 mod β, and Newton’s iteration is called Hensel lifting in the LSB
case. The exact division algorithm described at the end of §1.4.5 uses both
MSB- and LSB-division simultaneously. One important difference is that
LSB-division does not need any correction step, since the carries go in the
direction opposite to the cancelled bits.

When only the remainder is wanted, Hensel’s division is usually known
as Montgomery reduction (see §2.3.2).

1.5 Roots

1.5.1 Square Root

The “paper and pencil” method once taught at school to extract square roots
is very similar to “paper and pencil” division. It decomposes an integer m
of the form s2 + r, taking two digits of m at a time, and finding one digit of
s for each two digits of m. It is based on the following idea: if m = s2 + r
is the current decomposition, when taking two more digits of the root-end2,
we have a decomposition of the form 100m + r′ = 100s2 + 100r + r′ with
0 ≤ r′ < 100. Since (10s + t)2 = 100s2 + 20st + t2, a good approximation to
the next digit t can be found by dividing 10r by 2s.

Algorithm SqrtRem generalizes this idea to a power βℓ of the internal
base close to m1/4: one obtains a divide and conquer algorithm, which is in
fact an error-free variant of Newton’s method (cf Chapter 4):

2Input of the root operation, like the divid-end for division.
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� �� �
1 Algorithm SqrtRem .
2 Input : m = an−1β

n−1 + · · ·+ a1β + a0 with an−1 6= 0
3 Output : (s, r) such that s2 ≤ m = s2 + r < (s + 1)2

4 l ← ⌊n−1
4 ⌋

5 i f l = 0 then re turn BasecaseSqrtRem(m)
6 wr i t e m = a3β

3l + a2β
2l + a1β

l + a0 with 0 ≤ a2, a1, a0 < βl

7 (s′, r′)← SqrtRem(a3β
l + a2)

8 (q, u)←DivRem(r′βl + a1, 2s′)
9 s← s′βl + q

10 r ← uβl + a0 − q2

11 i f r < 0 then
12 r ← r + 2s− 1
13 s← s− 1
14 Return (s, r)


 	� �

Theorem 1.5.1 Algorithm SqrtRem correctly returns the integer square
root s and remainder r of the input m, and has complexity R(2n) ∼ R(n) +
D(n) + S(n) where D(n) and S(n) are the complexities of the division with
remainder and squaring respectively. This gives R(n) ∼ 1

2
n2 with naive

multiplication, R(n) ∼ 4
3
K(n) with Karatsuba’s multiplication, assuming

S(n) ∼ 2
3
M(n).

As an example, assume Algorithm SqrtRem is called on m = 123456789
with β = 10. One has n = 9, l = 2, a3 = 123, a2 = 45, a1 = 67, and a0 = 89.
The recursive call for a3β

l + a2 = 12345 yields s′ = 111 and r′ = 24. The
DivRem call yields q = 11 and u = 25, which gives s = 11111 and r = 2468.

Another nice way to compute the integer square root of an integer n,
i.e., ⌊n1/2⌋, is Algorithm SqrtInt, which is an all-integer version of Newton’s
method (§4.2).

Still with input 123456789, we successively get s = 61728395, 30864198,
15432100,7716053,3858034, 1929032, 964547, 482337, 241296, 120903, 60962,
31493, 17706, 12339, 11172, 11111, 11111. The convergence is slow because
the initial value of s is much too large. However, any initial value greater or
equal to n1/2 works (see the proof of Algorithm RootInt below): starting
from s = 12000, one gets s = 11144 then s = 11111.
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� �� �
1 Algorithm SqrtInt .
2 Input : an i n t e g e r n ≥ 1 .

3 Output : s = ⌊n1/2⌋ .
4 u← n
5 repeat
6 s← u
7 t← s + ⌊n/s⌋
8 u← ⌊t/2⌋
9 until u ≥ s

10 Return s

 	� �

1.5.2 k-th Root

The idea of algorithm SqrtRem for the integer square root can be general-
ized to any power: if the current decomposition is n = n′βk + n′′βk−1 + n′′′,
first compute a k-th root of n′, say n′ = sk + r, then divide rβ + n′′ by ksk−1

to get an approximation of the next root digit t, and correct it if needed. Un-
fortunately the computation of the remainder, which is easy for the square
root, involves O(k) terms for the k-th root, and this method may be slower
than Newton’s method with floating-point arithmetic (§4.2.3).

Similarly, algorithm SqrtInt can be generalized to the k-th root:

� �� �
1 Algorithm RootInt .
2 Input : i n t e g e r s n ≥ 1 , and k ≥ 2

3 Output : s = ⌊n1/k⌋
4 u← n
5 repeat
6 s← u
7 t← (k − 1)s + ⌊n/sk−1⌋
8 u← ⌊t/k⌋
9 until u ≥ s

10 Return s

 	� �

Theorem 1.5.2 Algorithm RootInt terminates and returns ⌊n1/k⌋.
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Proof. As long as u < s in line 9, the sequence of s-values is decreasing, thus
it suffices to consider what happens when u ≥ s. First it is easy so see that
u ≥ s implies n ≥ sk. Consider now the function f(t) := [(k−1)t+n/tk−1]/k
for t > 0; its derivative is negative for t < n1/k, and positive for t > n1/k,
thus f(t) ≥ f(n1/k) = n1/k. This proves that s ≥ ⌊n1/k⌋. Together with
s ≤ n1/k, this proves that s = ⌊n1/k⌋ at the end of the algorithm.

Note that any initial value ≥ ⌊n1/k⌋ works. This also proves the correctness
of Algorithm SqrtInt which is just the special case k = 2.

1.5.3 Exact Root

When a k-th root is known to be exact, there is of course no need to com-
pute exactly the final remainder in “exact root” algorithms, which saves
some computation time. However, one has to check that the remainder is
sufficiently small that the computed root is correct.

When a root is known to be exact, one may also try to compute it starting
from the least significant bits, as for exact division. Indeed, if sk = n, then
sk = n mod βℓ for any integer ℓ. However, in the case of exact division, the
equation a = qb mod βℓ has only one solution q as soon as b is relatively
prime to β. Here, the equation sk = n mod βℓ may have several solutions,
so the lifting process is not unique. For example, x2 = 1 mod 23 has four
solutions 1, 3, 5, 7.

Suppose we have sk = n mod βℓ, and we want to lift to βℓ+1. This implies
(s + tβℓ)k = n + n′βℓ mod βℓ+1 where 0 ≤ t, n′ < β. Thus

kt = n′ +
n− sk

βℓ
mod β.

This equation has a unique solution t when k is relatively prime to β. For
example we can extract cube roots in this way for β a power of two. When
k is relatively prime to β, we can also compute the root simultaneously from
the most significant and least significant ends, as for the exact division.

Unknown Exponent

Assume now that one wants to check if a given integer n is an exact power,
without knowing the corresponding exponent. For example, many factoriza-
tion algorithms fail when given an exact power, therefore this case has to
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be checked first. Algorithm IsPower detects exact powers, and returns the
largest corresponding exponent. To quickly detect non-k-th powers at step 5,

� �� �
1 Algorithm IsPower .
2 Input : a p o s i t i v e i n t e g e r n .
3 Output : k ≥ 2 when n i s an exact k−th power , 1 otherwi se .
4 for k from ⌊log2 n⌋ downto 2 do
5 i f n i s a k−th power , r e turn k
6 Return 1 .


 	� �

one may use modular algorithms when k is relatively prime to the base β
(see above).
Remark: in Algorithm IsPower, one can limit the search to prime expo-
nents k, but then the algorithm does not necessarily return the largest expo-
nent, and we might have to call it again. For example, taking n = 117649,
the algorithm will first return 3 because 117649 = 493, and when called again
with 49 it will return 2.

1.6 Greatest Common Divisor

Many algorithms for computing gcds may be found in the literature. We can
distinguish between the following (non-exclusive) types:

• left-to-right (MSB) versus right-to-left (LSB) algorithms: in the former
the actions depend on the most significant bits, while in the latter the
actions depend on the least significant bits;

• naive algorithms: these O(n2) algorithms consider one word of each
operand at a time, trying to guess from them the first quotients; we
count in this class algorithms considering double-size words, namely
Lehmer’s algorithm and Sorenson’s k-ary reduction in the left-to-right
and right-to-left cases respectively; algorithms not in that class consider
a number of words that depends on the input size n, and are often
subquadratic;

• subtraction-only algorithms: these algorithms trade divisions for sub-
tractions, at the cost of more iterations;
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• plain versus extended algorithms: the former just compute the gcd of
the inputs, while the latter express the gcd as a linear combination of
the inputs.

1.6.1 Naive GCD

For completeness we mention Euclid’s algorithm for finding the gcd of two
non-negative integers u, v:

while v 6= 0 do (u, v)← (v, u mod v); Return u.

Euclid’s algorithm is discussed in many textbooks, e.g., [81], and we do not
recommend it in its simplest form, except for testing purposes. Indeed, it is
a slow way to compute a gcd, except for very small inputs.

Double-Digit Gcd. A first improvement comes from Lehmer’s observa-
tion: the first few quotients in Euclid’s algorithm usually can be determined
from the two most significant words of the inputs. This avoids expensive di-
visions that give small quotients most of the time (see [81, §4.5.3]). Consider
for example a = 427, 419, 669, 081 and b = 321, 110, 693, 270 with 3-digit
words. The first quotients are 1, 3, 48, . . . Now if we consider the most signif-
icant words, namely 427 and 321, we get the quotients 1, 3, 35, . . .. If we stop
after the first two quotients, we see that we can replace the initial inputs by
a− b and −3a + 4b, which gives 106, 308, 975, 811 and 2, 183, 765, 837.

Lehmer’s algorithm determines cofactors from the most significant words
of the input integers. Those cofactors usually have size only half a word. The
DoubleDigitGcd algorithm — which should be called “double-word” —
uses the two most significant words instead, which gives cofactors t, u, v, w of
one full-word each. This is optimal for the computation of the four products
ta, ub, va, wb. With the above example, if we consider 427, 419 and 321, 110,
we find that the first five quotients agree, so we can replace a, b by −148a +
197b and 441a− 587b, i.e., 695, 550, 202 and 97, 115, 231.

The subroutine HalfBezout takes as input two 2-word integers, performs
Euclid’s algorithm until the smallest remainder fits in one word, and returns
the corresponding matrix [t, u; v, w].

Binary Gcd. A better algorithm than Euclid’s, though still having O(n2)
complexity, is the binary algorithm. It differs from Euclid’s algorithm in two
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� �� �
1 Algorithm DoubleDigitGcd .
2 Input : a := an−1β

n−1 + · · ·+ a0 , b := bm−1β
m−1 + · · ·+ b0 .

3 Output : gcd(a, b) .
4 i f b = 0 then re turn a
5 i f m < 2 then re turn BasecaseGcd(a, b)
6 i f a < b or n > m then re turn DoubleDigitGcd(b, a mod b)
7 (t, u, v, w)←HalfBezout(an−1β + an−2, bn−1β + bn−2)
8 Return DoubleDigitGcd(|ta + ub|, |va + wb|) .


 	� �

ways: it consider least significant bits first, and it avoids divisions, except for
divisions by two (which can be implemented as shifts on a binary computer).

� �� �
1 Algorithm BinaryGcd .
2 Input : a, b > 0 .
3 Output : gcd(a, b) .
4 i← 0
5 while a mod 2 = b mod 2 = 0 do
6 (i, a, b)← (i + 1, a/2, b/2)
7 while a mod 2 = 0 do
8 a← a/2
9 while b mod 2 = 0 do

10 b← b/2
11 while a 6= b do
12 (a, b)← (|a− b|, min(a, b))
13 repeat a← a/2 until a mod 2 6= 0
14 Return 2i · a .


 	� �

Sorenson’s k-ary reduction

The binary algorithm is based on the fact that if a and b are both odd, then
a − b is even, and we can remove a factor of two since 2 does not divide
gcd(a, b). Sorenson’s k-ary reduction is a generalization of that idea: given
a and b odd, we try to find small integers u, v such that ua− vb is divisible
by a large power of two.

Theorem 1.6.1 [130] If a, b > 0 and m > 1 with gcd(a,m) = gcd(b,m) = 1,
there exist u, v, 0 < |u|, v <

√
m such that ua ≡ vb mod m.
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Algorithm ReducedRatMod finds such a pair (u, v); it is a simple variation

� �� �
1 Algorithm ReducedRatMod .
2 Input : a, b > 0 , m > 1 with gcd(a, m) = gcd(b, m) = 1
3 Output : (u, v) such that 0 < |u|, v <

√
m and ua ≡ vb mod m

4 c← a/b mod m
5 (u1, v1)← (0, m)
6 (u2, v2)← (1, c)
7 while v2 ≥

√
m do

8 q ← ⌊v1/v2⌋
9 (u1, u2)← (u2, u1 − qu2)

10 (v1, v2)← (v2, v1 − qv2)
11 re turn (u2, v2) .


 	� �

of the extended Euclidean algorithm; indeed, the ui are denominators from
the continued fraction expansion of c/m.

When m is a prime power, the inversion 1/b mod m at line 4 of Algorithm
ReducedRatMod can be performed efficiently using Hensel lifting (§2.4).

Given two integers a, b of say n words, Algorithm ReducedRatMod
with m = β2 will yields two integers u, v such that vb − ua is a multiple of
β2. Since u, v have at most one-word each, a′ = (vb − ua)/β2 has at most
n − 1 words — plus possible one bit — therefore with b′ = b mod a′ one
obtains gcd(a, b) = gcd(a′, b′), where both a′ and b′ have one word less. This
yields a LSB variant of the double-digit (MSB) algorithm.

1.6.2 Extended GCD

Algorithm ExtendedGcd (Table 1.6.2) solves the extended greatest common
divisor problem: given two integers a and b, it computes their gcd g, and
also two integers u and v (called Bézout coefficients or sometimes cofactors or
multipliers) such that g = ua+vb. If a0 and b0 are the input numbers, and a, b
the current values, the following invariants hold at the start of each iteration
of the while loop (step 6) and after the while loop (step 12): a = ua0 + vb0,
and b = wa0 + xb0.

An important special case is modular inversion (see Chapter 2): given an
integer n, one wants to compute 1/a mod n for a relatively prime to n. One
then simply runs algorithm ExtendedGcd with input a and b = n: this
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� �� �
1 Algorithm ExtendedGcd .
2 Input : i n t e g e r s a and b .
3 Output : i n t e g e r s (g, u, v) such that g = gcd(a, b) = ua + vb .
4 (u, w)← (1, 0)
5 (v, x)← (0, 1)
6 while b 6= 0 do
7 (q, r)← DivRem(a, b)
8 (a, b)← (b, r)
9 (u, w)← (w, u− qw)

10 (v, x)← (x, v − qx)
11 Return (a, u, v) .


 	� �

yields u and v with ua + vn = 1, thus 1/a ≡ u mod n. Since v is not needed
here, we can simply avoid computing v and x, by removing lines 5 and 10.

It may also be worthwhile to compute only u in the general case, as the
cofactor v can be recovered from v = (g − ua)/b; this division is exact (see
§1.4.5).

All known algorithms for subquadratic gcd rely on an extended gcd sub-
routine, so we discuss the subquadratic extended gcd in the next section.

1.6.3 Half GCD, Divide and Conquer GCD

Designing a subquadratic integer gcd algorithm that is both mathematically
correct and efficient in practice appears to be quite a challenging problem.

A first remark is that, starting from n-bit inputs, there are O(n) terms in
the remainder sequence r0 = a, r1 = b, . . . , ri+1 = ri−1 mod ri, . . . , and the
size of ri decreases linearly with i. Thus computing all the partial remainders
ri leads to a quadratic cost, and a fast algorithm should avoid this.

However, the partial quotients qi = ri−1 div ri are usually small: the main
idea is thus to compute them without computing the partial remainders. This
can be seen as a generalization of the DoubleDigitGcd algorithm: instead
of considering a fixed base β, adjust it so that the inputs have four “big
words”. The cofactor-matrix returned by the HalfBezout subroutine will
then reduce the input size to about 3n/4. A second call with the remaining
two most significant “big words” of the new remainders will reduce their
size to half the input size. This gives rise to the HalfGcd algorithm. Note
that there are several possible definitions of the half-gcd. Given two n-bit
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1 Algorithm HalfGcd .
2 Input : a ≥ b > 0

3 Output : a 2× 2 matrix R and a′, b′ such that [a′ b′]t = R [a b]t

4 I f a i s smal l , use ExtendedGcd .
5 n← nbits(a) , k ← ⌊n/2⌋
6 a := a12

k + a0 , b := b12
k + b0

7 S, a2, b2 ← HalfGcd(a1, b1)
8 a′ ← a22

k + S11a0 + S12b0

9 b′ ← b22
k + S21a0 + S22b0

10 ℓ← ⌊k/2⌋
11 a′ := a′12

ℓ + a′0 , b′ := b′12
ℓ + b0

12 T, a′2, b
′
2 ← HalfGcd(a′1, b

′
1)

13 a′′ ← a′22
ℓ + T11a

′
0 + T12b

′
0

14 b′′ ← b′22
ℓ + T21a

′
0 + T22b

′
0

15 Return S · T , a′′, b′′ .

 	� �

integers a and b, HalfGcd returns two consecutive elements a′, b′ of their
remainder sequence with bit-size about n/2, (the different definitions differ
in the exact stopping criterion). In some cases, it is convenient also to return
the unimodular matrix R such that [a′ b′]t = R [a b]t, where R has entries of
bit-size n/2.

Let H(n) be the complexity of HalfGcd for inputs of n bits: a1 and b1

have n/2 bits, thus the coefficients of S and a2, b2 have n/4 bits. Thus a′, b′

have 3n/4 bits, a′
1, b

′
1 have n/2 bits, a′

0, b
′
0 have n/4 bits, the coefficients of T

and a′
2, b

′
2 have n/4 bits, and a′′, b′′ have n/2 bits. We have H(n) ∼ 2H(n/2)+

4M(n/4, n/2) + 4M(n/4) + 8M(n/4), i.e., H(n) ∼ 2H(n/2) + 20M(n/4). If
we do not need the final matrix S ·T , then we have H∗(n) ∼ H(n)−8M(n/4).
For the plain gcd, which simply calls HalfGcd until b is sufficiently small to
call a naive algorithm, the corresponding cost G(n) satisfies G(n) = H∗(n)+
G(n/2).

An application of the half gcd per se is the integer reconstruction problem.
Assume one wants to compute a rational p/q where p and q are known to be
bounded by some constant c. Instead of computing with rationals, one may
perform all computations modulo some integer n > c2. Hence one will end
up with p/q ≡ m mod n, and the problem is now to find the unknown p and
q from the known integer m. To do this, one starts an extended gcd from m
and n, and one stops as soon as the current a and u are smaller than c: since
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naive Karatsuba Toom-Cook FFT
H(n) 2.5 6.67 9.52 5 log2 n
H∗(n) 2.0 5.78 8.48 5 log2 n
G(n) 2.67 8.67 13.29 10 log2 n

Table 1.1: Cost of HalfGcd: H(n) with the cofactor matrix, H∗(n) without
the cofactor matrix, G(n) the plain gcd, all in units of the multiplication cost
M(n), for naive multiplication, Karatsuba, Toom-Cook and FFT.

we have a = um + vn, this gives m ≡ −a/u mod n. This is exactly what is
called a half-gcd; a subquadratic version is given above.

Subquadratic Binary GCD

The binary gcd can also be made fast, i.e., subquadratic in n. The basic idea
is to mimic the left-to-right version, by defining an appropriate right-to-left
division (Algorithm BinaryDivide).

� �� �
1 Algorithm BinaryDivide .
2 Input : a, b ∈ Z with ν(b)− ν(a) = j > 0
3 Output : |q| < 2j and r = a + q2−jb such that ν(b) < ν(r)
4 b′ ← 2−jb
5 q ← −a/b′ mod 2j+1

6 i f q ≥ 2j then q ← q − 2j+1

7 Return q, r = a + q2−jb .

 	� �

The integer q is the binary quotient of a and b, and r is the binary
remainder.

This right-to-left division defines a right-to-left remainder sequence a0 =
a, a1 = b, . . . , where ai+1 =BinaryRemainder(ai−1, ai), and ν(ai+1) <
ν(ai). It can be shown that this sequence eventually reaches ai+1 = 0 for
some index i. Assuming ν(a) = 0, then gcd(a, b) is the odd part of ai.
Indeed, in Algorithm BinaryDivide, if some odd prime divides both a and
b, it certainly divides 2−jb which is an integer, and thus it divides a + q2−jb.
Reciprocally, if some odd prime divides both b and r, it divides also 2−jb,
thus it divides a = r − q2−jb; this shows that no spurious factor appears,
unlike in other gcd algorithms.
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Example: let a = 935 and b = 714. We have ν(b) = ν(a)+1, thus Algorithm
BinaryDivide computes b′ = 357, q = 1, and a2 = a + q2−jb = 1292. The
next step gives a3 = 1360, then a4 = 1632, a5 = 2176, a6 = 0. Since
2176 = 27 · 17, we conclude that the gcd of 935 and 714 is 17.

The corresponding gcd algorithm is quite similar to Algorithm HalfGcd,
except it selects the low significant parts for the recursive calls, and uses
BinaryDivide instead of the classical division. See the references in §1.9
for more details.

1.7 Base Conversion

Since computers usually work with binary numbers, and human prefer deci-
mal representations, input/output base conversions are needed. In a typical
computation, there will be only few conversions, compared to the total num-
ber of operations, thus optimizing conversions is less important. However,
when working with huge numbers, naive conversion algorithms — which sev-
eral software packages have — may slow down the whole computation.

In this section we consider that numbers are represented internally in
base β — usually a power of 2 — and externally in base B — say a power of
10. When both bases are commensurable, i.e., both are powers of a common
integer, like 8 and 16, conversions of n-digit numbers can be performed in
O(n) operations. We assume here that β and B are not commensurable.

One might think that only one algorithm is needed, since input and output
are symmetric by exchanging bases β and B. Unfortunately, this is not true,
since computations are done in base β only (see Ex. 1.8.29).

1.7.1 Quadratic Algorithms

Algorithms IntegerInput and IntegerOutput respectively read and write
n-word integers, both with a complexity of O(n2).

1.7.2 Subquadratic Algorithms

Fast conversions routines are obtained using a “divide and conquer” strategy.
For integer input, if the given string decomposes as S = Shi ||Slo where Slo

has k digits in base B, then

Input(S,B) = Input(Shi, B)Bk + Input(Slo, B),
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� �� �
1 Algorithm IntegerInput .
2 Input : a s t r i n g S = sm−1 . . . s1s0 o f d i g i t s in base B
3 Output : the va lue A o f the i n t e g e r r epre s ent ed by S
4 A← 0
5 for i from m− 1 downto 0 do
6 A← BA + val(si)
7 Return A .


 	� �
� �� �

1 Algorithm IntegerOutput .

2 Input : A =
∑n−1

0 aiβ
i

3 Output : a s t r i n g S o f charac te r s , r ep r e s en t i ng A in base B
4 m← 0
5 while A 6= 0
6 sm ← char(A mod B)
7 A← A div B
8 m← m + 1
9 Return S = sm−1 . . . s1s0 .


 	� �

where Input(S,B) is the value obtained when reading the string S in the
external base B. Algorithm FastIntegerInput shows a possible way to
implement this: If the output A has n words, algorithm FastIntegerInput
has complexity O(M(n) log n), more precisely ∼ 1

2
M(n/2) lg n for n a power

of two in the FFT range (see Ex. 1.8.26).
For integer output, a similar algorithm can be designed, replacing multi-

plications by divisions. Namely, if A = AhiB
k + Alo, then

Output(A,B) = Output(Ahi, B) ||Output(Alo, B),

where Output(A,B) is the string resulting from writing the integer A in the
external base B, S1 ||S0 denotes the concatenation of S1 and S0, and it is
assumed that Output(Alo, B) has exactly k digits, after possibly padding
with leading zeros.

If the input A has n words, algorithm FastIntegerOutput has complex-
ity O(M(n) log n), more precisely ∼ 1

2
D(n/2) lg n for n a power of two in the

FFT range, where D(n/2) is the cost of dividing an n-word integer by an
n/2-word integer. Depending on the cost ratio between multiplication and
division, integer output may thus be 2 to 5 times slower than integer input;
see however Ex. 1.8.27.
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� �� �
1 Algorithm FastIntegerInput .
2 Input : a s t r i n g S = sm−1 . . . s1s0 o f d i g i t s in base B
3 Output : the va lue A o f the i n t e g e r r epre s ent ed by S
4 ℓ← [val(s0), val(s1), . . . , val(sm−1)]
5 (b, k)← (B, m)
6 while k > 1 do
7 i f k even then ℓ← [ℓ1 + bℓ2, ℓ3 + bℓ4, . . . , ℓk−1 + bℓk]
8 else ℓ← [ℓ1 + bℓ2, ℓ3 + bℓ4, . . . , ℓk]
9 (b, k)← (b2, ⌈k/2⌉)

10 Return ℓ1 .

 	� �

� �� �
1 Algorithm FastIntegerOutput .

2 Input : A =
∑n−1

0 aiβ
i

3 Output : a s t r i n g S o f charac te r s , r ep r e s en t i ng A in base B
4 i f A < B then char(A)
5 else
6 f i nd k such that B2k−2 ≤ A < B2k

7 (Q, R)← DivRem(A, Bk)
8 r ← FastIntegerOutput(R)

9 FastIntegerOutput(Q)||0k−len(r)||r

 	� �

1.8 Exercises

Exercise 1.8.1 Extend the Kronecker-Schönhage trick from the beginning of §1.3
to negative coefficients, assuming the coefficients are in the range [−ρ, ρ].

Exercise 1.8.2 (Harvey [68]) For multiplying two polynomials of degree less
than n, with non-negative integer coefficients bounded above by ρ, the Kronecker-
Schönhage trick performs one integer multiplication of size about 2n lg ρ, assuming
n is small compared to ρ. Show that it is possible to perform two integer multipli-
cations of size n lg ρ instead, and even four integer multiplications of size 1

2n lg ρ.

Exercise 1.8.3 Assume your processor provides an instruction fmaa(a, b, c, d) re-
turning h, l such that ab + c + d = hβ + l where 0 ≤ a, b, c, d, l, h < β. Rewrite
Algorithm BasecaseMultiply using fmaa.

Exercise 1.8.4 (Hanrot) Prove that for n0 = 2, the number K(n) of word prod-
ucts in Karatsuba’s algorithm as defined in Th. 1.3.2 is non-decreasing (caution:
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this is no longer true with a larger threshold, for example with n0 = 8 we have
K(7) = 49 whereas K(8) = 48). Plot the graph of K(n)

nlog2 3 with a logarithmic scale

for n, for 27 ≤ n ≤ 210, and find experimentally where the maximum appears.

Exercise 1.8.5 (Ryde) Assume the basecase multiply costs M(n) = an2 + bn,
and that Karatsuba’s algorithm costs K(n) = 3K(n/2) + cn. Show that dividing
a by two increases the Karatsuba threshold n0 by a factor of two, and on the
contrary decreasing b and c decreases n0.

Exercise 1.8.6 (Maeder [90], Thomé) Show that an auxiliary memory of 2n+
o(n) words is enough to implement Karatsuba’s algorithm in-place, for a n × n
product. In the polynomial case, even prove that an auxiliary space of n coefficients
is enough, in addition to the n + n coefficients of the input polynomials, and the
2n − 1 coefficients of the product. [It is allowed to use the 2n result words, but
not to destroy the n + n input words.]

Exercise 1.8.7 (Quercia, McLaughlin) Modify Alg. KaratsubaMultiply to
use only ∼ 7

2n additions/subtractions. [Hint: decompose C0, C1 and C2 in two
parts.]

Exercise 1.8.8 Design an in-place version of Algorithm KaratsubaMultiply
(see Ex. 1.8.6) that accumulates the result in c0, . . . , c2n−1, and returns a carry
bit.

Exercise 1.8.9 (Vuillemin [129]) Design a program or circuit to compute a
3 × 2 product in 4 multiplications. Then use it to perform a 6 × 6 product in
16 multiplications. How does this compare asymptotically with Karatsuba and
Toom-Cook 3-way?

Exercise 1.8.10 (Weimerskirch, Paar) Extend the Karatsuba trick to com-

pute an n×n product in n(n+1)
2 multiplications and (5n−2)(n−1)

2 additions/subtrac-
tions. For which n does this win?

Exercise 1.8.11 (Hanrot) In Algorithm OddEvenKaratsuba, in case both m
and n are odd, one combines the larger parts A0 and B0 together, and the smaller
parts A1 and B1 together. Find a way to get instead:

K(m, n) = K(⌈m/2⌉, ⌊n/2⌋) + K(⌊m/2⌋, ⌈n/2⌉) + K(⌈m/2⌉, ⌈n/2⌉).

Exercise 1.8.12 Prove that if 5 integer evaluation points are used for Toom-Cook
3-way, the division by 3 can not be avoided. Does this remain true if only 4 integer
points are used together with ∞?
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Exercise 1.8.13 (Quercia, Harvey) In Toom-Cook 3-way, take as evaluation
point 2w instead of 2 (§1.3.3), where w is the number of bits per word (usually
w = 32 or 64). Which division is then needed? Same question for the evaluation
point 2w/2.

Exercise 1.8.14 For multiplication of two numbers of size kn and n respectively,
for an integer k ≥ 2, show that the trivial strategy which performs k multiplica-
tions, each n× n, is not always the best possible.

Exercise 1.8.15 (Karatsuba, Zuras [135]) Assuming the multiplication has
superlinear cost, show that the speedup of squaring with respect to multiplica-
tion can not exceed 2.

Exercise 1.8.16 (Thomé, Quercia) Multiplication and the middle product are
just special cases of linear forms programs: consider two set of inputs a1, . . . , an

and b1, . . . , bm, and a set of outputs c1, . . . , ck that are sums of products of aibj .
For such a given problem, what is the least number of multiplies required? As an
example, can we compute x = au + cw, y = av + bw, z = bu + cv in less than 6
multiplies? Same question for x = au− cw, y = av − bw, z = bu− cv.

Exercise 1.8.17 In algorithm BasecaseDivRem (§1.4.1), prove that q∗j ≤ β+1.
Can this bound be reached? In the case q∗j ≥ β, prove that the while-loop at steps
9-11 is executed at most once. Prove that the same holds for Svoboda’s algorithm
(§1.4.2), i.e., that A ≥ 0 after step 11.

Exercise 1.8.18 (Granlund, Möller) In algorithm BasecaseDivRem, esti-
mate the probability that A < 0 is true at line 9, assuming the remainder rj from
the division of an+jβ + an+j−1 by bn−1 is uniformly distributed in [0, bn−1 − 1],
A mod βn+j−1 is uniformly distributed in [0, βn+j−1− 1], and B mod βn−1 is uni-
formly distributed in [0, βn−1−1]. Then replace the computation of q∗j by a division
of the three most significant words of A by the two most significant words of B.
Prove the algorithm is still correct; what is the maximal number of corrections,
and the probability that A < 0 holds?

Exercise 1.8.19 (Montgomery [101]) Let 0 < b < β, and 0 ≤ a4, . . . , a0 < β.
Prove that a4(β

4 mod b) + · · · + a1(β mod b) + a0 < β2, as long as b < β/3. Use
that fact to design an efficient algorithm dividing A = an−1β

n−1 + · · · + a0 by b.
Does that algorithm extend to division by the least significant digits?

Exercise 1.8.20 In Algorithm RecursiveDivRem, find inputs that require 1,
2, 3 or 4 corrections in step 11. [Hint: consider β = 2]. Prove that when n = m
and A < βm(B + 1), at most two corrections occur.
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Exercise 1.8.21 Find the complexity of Algorithm RecursiveDivRem in the
FFT range.

Exercise 1.8.22 Consider the division of A of kn words by B of n words, with
integer k ≥ 3, and the alternate strategy that consists in extending the divisor with
zeros so that it has half the size of the dividend. Show this is always slower than
Algorithm UnbalancedDivision [assuming the division has superlinear cost].

Exercise 1.8.23 An important special base of division is when the divisor is of
the form bk. This is useful for example for the output routine (§1.7). Can one
design a fast algorithm for that case?

Exercise 1.8.24 (Sedoglavic) Does the Kronecker-Schönhage trick to reduce
polynomial multiplication to integer multiplication (§1.3) also work — in an ef-
ficient way — for division? Assume for example you want to divide a degree-2n
polynomial A(x) by a monic degree-n polynomial B(x), both having integer coef-
ficients bounded by ρ.

Exercise 1.8.25 Design an algorithm that performs an exact division of a 4n-bit
integer by a 2n-bit integer, with a quotient of 2n bits, using the idea from the last
paragraph of §1.4.5. Prove that your algorithm is correct.

Exercise 1.8.26 Find a formula T (n) for the asymptotic complexity of Algorithm
FastIntegerInput when n = 2k (§1.7.2), and show that, for general n, it is within
a factor of two of T (n). [Hint: consider the binary expansion of n]. Design another
subquadratic algorithm that works top-down: is is faster?

Exercise 1.8.27 Show that asymptotically, the output routine can be made as
fast as the input routine FastIntegerInput. [Hint: use Bernstein’s scaled remain-
der tree and the middle product.] Experiment with it on your favorite multiple-
precision software.

Exercise 1.8.28 If the internal base β and the external one B share a common
divisor — as in the case β = 2l and B = 10 — show how one can exploit this to
speed up the subquadratic input and output routines.

Exercise 1.8.29 Assume you are given two n-digit integers in base 10, but you
have fast arithmetic in base 2 only. Can you multiply them in O(M(n))?
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1.9 Notes and References

“Online” algorithms are considered in many books and papers, see for ex-
ample the book by Borodin and El-Yaniv [18]. “Relaxed” algorithms were
introduced by van der Hoeven. For references and a discussion of the differ-
ences between “lazy”, “zealous” and “relaxed” algorithms, see [128].

An example of implementation with “guard bits” to avoid overflow prob-
lems in the addition (§1.2) is the block-wise modular arithmetic from Lenstra
and Dixon on the MasPar [53], where they used β = 230 with 32-bit words.

The fact that polynomial multiplication reduces to integer multiplication
is attributed to Kronecker, and was rediscovered by Schönhage [113]. Nice
applications of the Kronecker-Schönhage trick are given in [120]. Very little
is known about the average complexity of Karatsuba’s algorithm. What is
clear is that no simple asymptotic equivalent can be obtained, since the ratio
K(n)/nα does not converge. See Ex. 1.8.4.

A very good description of Toom-Cook algorithms can be found in [51,
Section 9.5.1], in particular how to symbolically generate the evaluation and
interpolation formulæ. Bodrato and Zanoni show that the Toom-Cook 3-
way interpolation scheme from §1.3.3 is near from optimal — for the points
0, 1,−1, 2,∞; they also exhibit efficient 4-way and 5-way schemes [17].

The odd-even scheme is described in [66], and was independently discov-
ered by Andreas Enge.

The exact division algorithm starting from least significant bits is due to
Jebelean [74], who also invented with Krandick the “bidirectional” algorithm
[82]. The Karp-Markstein trick to speed up Newton’s iteration (or Hensel
lifting over p-adic numbers) is described in [79]. The “recursive division” in
§1.4.3 is from [41], although previous but not-so-detailed ideas can be found
in [97] and [76]. The definition of Hensel’s division used here is due to Shand
and Vuillemin [117], who also point out the duality with Euclidean division.

Algorithm SqrtRem (§1.5.1) was first described in [134], and proven in
[16]. Algorithm SqrtInt is described in [46]; its generalization to k-th roots
(Algorithm RootInt) is due to Keith Briggs. The detection of exact powers
is discussed in [46] and especially in [7, 13].

The classical (quadratic) Euclidean algorithm has been considered by
many authors — a good reference is Knuth [81]. The binary gcd is almost
as old as the classical Euclidean algorithm — Knuth [81] has traced it back
to a first-century AD Chinese text, though it was rediscovered several times
in the 20th century. The binary gcd has been analysed by Brent [24, 30],
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Knuth [81], Maze [91] and Vallée [127]. A parallel (systolic) version that runs
in O(n) time using O(n) processors was given by Brent and Kung [35].

The double-digit gcd is due to Jebelean [75]. The k-ary gcd reduction is
due to Sorenson [119], and was improved and implemented in GNU MP by
Weber, who also invented Algorithm ReducedRatMod [130].

The first subquadratic gcd algorithm was published by Knuth [80], but
his analysis was suboptimal — he gave O(n(log n)5(log log n)) —, and the
correct complexity was given by Schönhage [111]: for this reason the algo-
rithm is sometimes called the Knuth-Schönhage algorithm. A description for
the polynomial case can be found in [2], and a detailed but incorrect one for
the integer case in [133]. The subquadratic binary gcd given here is due to
Stehlé and Zimmermann [122].



Chapter 2

The FFT and Modular
Arithmetic

In this Chapter our main topic is modular arithmetic, i.e., how
to compute efficiently modulo a given integer N . In most appli-
cations, the modulus N is fixed, and special-purpose algorithms
benefit from some precomputations depending on N only, that
speed up arithmetic modulo N .

In this Chapter, unless explicitly stated, we consider that the
modulus N occupies n words in the word-base β, i.e., βn−1 ≤
N < βn.

2.1 Representation

We consider in this section the different possible representations of residues
modulo N . As in Chapter 1, we consider mainly dense representations.

2.1.1 Classical Representation

The classical representation stores a residue (class) a as an integer 0 ≤ a < N .
Residues are thus always fully reduced, i.e., in canonical form.

Another non-redundant form consists in choosing a symmetric represen-
tation, say −N/2 ≤ a < N/2. This form might save some reductions in
additions or subtractions (see §2.2). Negative numbers might be stored ei-
ther with a separate sign, or with a two’s-complement representation.
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Since N takes n words in base β, an alternative redundant representation
consists in choosing 0 ≤ a < βn to represent a residue class. If the under-
lying arithmetic is word-based, this will yield no slowdown compared to the
canonical form. An advantage of this representation is that when adding
two residues, it suffices to compare their sum with βn, and the result of this
comparison is simply given by the carry bit of the addition (see Algorithm
IntegerAddition in §1.2), instead of comparing the sum with N .

2.1.2 Montgomery’s Form

Montgomery’s form is another representation widely used when several mod-
ular operations have to be performed modulo the same integer N (additions,
subtractions, modular multiplications). It implies a small overhead to con-
vert — if needed — from the classical representation to Montgomery’s and
vice-versa, but this overhead is often more than compensated by the speedup
obtained in the modular multiplication.

The main idea is to represent a residue a by a′ = aR mod N , where R =
βn, and N takes n words in base β. Thus Montgomery is not concerned with
the physical representation of a residue class, but with the meaning associated
to a given physical representation. (As a consequence, the different choices
mentioned above for the physical representation are all possible.) Addition
and subtraction are unchanged, but (modular) multiplication translates to a
different, much simpler, algorithm (§2.3.2).

In most applications using Montgomery’s form, all inputs are first con-
verted to Montgomery’s form, using a′ = aR mod N , then all computations
are performed in Montgomery’s form, and finally all outputs are converted
back — if needed — to the classical form, using a = a′/R mod N . We need
to assume that (R,N) = 1, or equivalently that (β,N) = 1, to ensure the
existence of 1/R mod N . This is not usually a problem because β is a power
of two and N can be assumed to be odd.

2.1.3 Residue Number Systems

In a Residue Number System, a residue a is represented by a list of residues
ai modulo Ni, where the moduli Ni are coprime and their product is N . The
integers ai can be efficiently computed from a using a remainder tree, and
the unique integer 0 ≤ a < N = N1N2 · · · are computed from the ai by an
Explicit Chinese Remainder Theorem (§2.6). The residue number system is
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classical (MSB) p-adic (LSB)
Euclidean division Hensel division, Montgomery reduction

Svoboda’s algorithm Montgomery-Svoboda
Euclidean gcd binary gcd

Newton’s method Hensel lifting

Figure 2.1: Equivalence between LSB and MSB algorithms.

interesting since addition and multiplication can be performed in parallel on
each small residue ai. However this representation requires that N factors
into convenient moduli N1, N2, . . ., which is not always the case (see however
§2.8).

2.1.4 MSB vs LSB Algorithms

Many classical (most significant bits first or MSB) algorithms have a p-adic
(least significant bit first or LSB) equivalent form. Thus several algorithms
in this Chapter are just LSB-variants of algorithms discussed in Chapter 1
(see Fig. 2.1).

2.1.5 Link with Polynomials

As in Chapter 1, a strong link exists between modular arithmetic and arith-
metic on polynomials. One way of implementing finite fields Fq with q = pn

is to work with polynomials in Fp[x], which are reduced modulo a monic irre-
ducible polynomial f(x) ∈ Fp[x] of degree n. In this case modular reduction
happens both at the coefficient level — i.e., in Fp — and at the polynomial
level, i.e., modulo f(x).

Some algorithms work in the ring (Z/nZ)[x], where n is a composite
integer. An important case is Schönhage-Strassen’s multiplication algorithm,
where n has the form 2ℓ + 1.

In both cases — Fp[x] and (Z/nZ)[x] —, the Kronecker-Schönhage trick
(§1.3) can be applied efficiently. Indeed, since the coefficients are known to be
bounded, by p and n respectively, and thus have a fixed size, the segmentation
is quite efficient. If polynomials have degree d and coefficients are bounded
by n, one obtains O(M(d log n)) operations, instead of M(d)M(log n) with
the classical approach. Also, the implementation is simpler, because we only
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have to implement fast arithmetic for large integers instead of fast arithmetic
at both the polynomial level and the coefficient level (see also Ex. 1.8.2).

2.2 Addition and Subtraction

The addition of two residues in classical representation is done as follows:
� �� �

1 Algorithm ModularAdd .
2 Input : r e s i du e s a, b with 0 ≤ a, b < N .
3 Output : c = a + b mod N .
4 c← a + b
5 i f c ≥ N then
6 c← c−N


 	� �

Assuming a and b are uniformly distributed in [0, N − 1], the subtraction
c ← c − N is performed with probability (1 − 1/N)/2. If we use instead a
symmetric representation in [−N/2, N/2), the probability that we need to
add or subtract N drops to 1/4 + O(1/N2)at the cost of an additional test.
This extra test might be expensive for small N — say one or two words —
but will be relatively cheap as long as N uses say a dozen words.

2.3 Multiplication

Modular multiplication consists in computing A ·B mod N , where A and B
are residues modulo N , which has n words in base β. We assume here that A
and B have at most n words, and in some cases that they are fully reduced,
i.e., 0 ≤ A,B < N .

The naive algorithm first computes C = AB, which has at most 2n words,
and then reduces C modulo N . When the modulus N is not fixed, the best
known algorithms are those presented in Chapter 1 (§1.4.6). We consider here
better algorithms that benefit from an invariant modulus. These algorithms
are allowed to perform precomputations depending on N only. The cost of the
precomputations is not taken into account: it is assumed negligible for many
modular reductions. However, we assume that the amount of precomputed
data uses only linear space, i.e., O(log N) memory.

Algorithms with precomputations include Barrett’s algorithm (§2.3.1),
which computes an approximation of the inverse of the modulus, thus trading
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division for multiplication; Montgomery’s algorithm, which corresponds to
Hensel’s division with remainder only (§1.4.8), and its subquadratic variant,
which is the MSB-variant of Barrett’s algorithm; and finally Mihailescu’s
algorithm (§2.3.3).

2.3.1 Barrett’s Algorithm

Barrett’s algorithm [6] is interesting when many divisions have to be made
with the same divisor; this is the case when one performs computations mod-
ulo a fixed integer. The idea is to precompute an approximation of the divisor
inverse. In such a way, an approximation of the quotient is obtained with just
one multiplication, and the corresponding remainder after a second multipli-
cation. A small number of corrections suffice to convert those approximations
into exact values. For sake of simplicity, we describe Barrett’s algorithm in
base β; however, β might be replaced by any integer, in particular 2n or βn.

� �� �
1 Algorithm BarrettDivRem .
2 Input : i n t e g e r s A , B with 0 ≤ A < β2 , β/2 < B < β .
3 Output : quot i ent Q and remainder R o f A d iv ided by B .
4 I ← ⌊β2/B⌋ [ precomputation ]
5 Q← ⌊A1I/β⌋ where A = A1β + A0 with 0 ≤ A0 < β
6 R← A−QB
7 while R ≥ B do
8 (Q, R)← (Q + 1, R−B)
9 Return (Q, R) .


 	� �

Theorem 2.3.1 Algorithm BarrettDivRem is correct and step 8 is per-
formed at most 3 times.

Proof. Since A = QB+R is invariant in the algorithm, we just need to prove
that 0 ≤ R < B at the end. We first consider the value of Q,R before the
while-loop. Since β/2 < B < β, we have β < β2/B < 2β, thus β ≤ I < 2β.
We have Q ≤ A1I/β ≤ A1β/B ≤ A/B. This ensures that R is nonnegative.
Now I > β2/B − 1, which gives

IB > β2 −B. (2.1)

Similarly, Q > A1I/β − 1 gives

βQ > A1I − β. (2.2)
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This yields βQB > A1IB−βB > A1(β
2−B)−βB = β(A−A0)−B(β+A1) >

βA− 4βB since A0 < β < 2B and A1 < β. We conclude that A < B(Q+4),
thus at most 3 corrections are needed.

The bound of 3 corrections is tight: it is obtained for A = 1980, B = 36,
n = 6. For this example I = 113, A1 = 30, Q = 52, R = 108 = 3B.

The multiplications at steps 5 and 6 may be replaced by short products,
more precisely that of step 5 by a high short product, and that of step 6 by
a low short product (see §3.3).

Complexity of Barrett’s Algorithm

If the multiplications at steps 5 and 6 are performed using full products,
Barrett’s algorithm costs 2M(n) for a divisor of size n. In the FFT range, this
costs might be lowered to 1.5M(n) using the “wrap-around trick” (§3.4.1);
moreover, if the forward transforms of I and B are stored, the cost decreases
to M(n), assuming one FFT equals three transforms.

2.3.2 Montgomery’s Multiplication

Montgomery’s algorithm is very efficient to perform modular arithmetic mod-
ulo a fixed modulus N . The main idea is to replace a residue A mod N
by A′ = λA mod N , where A′ is the “Montgomery form” corresponding to
the residue A. Addition and subtraction are unchanged, since λA + λB ≡
λ(A + B) mod N . The multiplication of two residues in Montgomery form
does not give exactly what we want: (λA)(λB) 6= λ(AB) mod N . The trick
is to replace the classical modular multiplication by “Montgomery’s multi-
plication”:

MontgomeryMul(A′, B′) =
A′B′

λ
mod N.

For some values of λ, MontgomeryMul(A′, B′) can be easily computed, in
particular for λ = βn, where N uses n words in base β. Fig. 2.2 presents
a quadratic algorithm (REDC) to compute MontgomeryMul(A’, B’) in that
case, and a subquadratic reduction (FastREDC) is given in Fig. 2.3.

Another view of Montgomery’s algorithm for λ = βn is to consider that
it computes the remainder of Hensel’s division (§1.4.8).

Theorem 2.3.2 Algorithm REDC is correct.
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� �� �
1 Algorithm REDC .
2 Input : 0 ≤ C < β2n , N < βn , µ← −N−1 mod β , (β, N) = 1
3 Output : 0 ≤ R < βn such that R = Cβ−n mod N
4 for i from 0 to n− 1 do
5 qi ← µci mod β
6 C ← C + qiNβi

7 R← Cβ−n

8 i f R ≥ βn then re turn R−N else re turn R .

 	� �

Figure 2.2: Montgomery multiplication (quadratic non-interleaved version).
The ci form the current base-β decomposition of C, i.e., the ci are defined
by C =

∑2n−1
0 ciβ

i .

Proof. We first prove that R ≡ Cβ−n mod N : C is only modified in line 6,
which does not change C mod N , thus at line 7 we have R ≡ Cβ−n mod N ,
which remains true in the last line.

Assume that for a given i, we have C ≡ 0 mod βi when entering step 5.
Then since qi ≡ −ci/N mod β, we have C + qiNβi ≡ 0 mod βi+1 at the next
step, so ci = 0. Thus when one exits the for-loop, C is a multiple of βn, thus
R is an integer at step 7.

Still at step 7, we have C < β2n + (β − 1)N(1 + β + · · · + βn−1) =
β2n + N(βn − 1) thus R < βn + N , and R −N < βn.

Compared to classical division (Algorithm BasecaseDivRem, §1.4.1),
Montgomery’s algorithm has two significant advantages: the quotient selec-
tion is performed by a multiplication modulo the word base β, which is more
efficient than a division by the most significant word bn−1 of the divisor as in
BasecaseDivRem; and there is no repair step inside the for-loop — there
is only one at the very end.

For example, with inputs C = 766970544842443844, N = 862664913,
and β = 1000, Algorithm REDC precomputes µ = 23, then we have q0 = 412,
which yields C = C + 412N = 766970900260388000; then q1 = 924, which
yields C = C + 924Nβ = 767768002640000000; then q2 = 720, which yields
C = C + 720Nβ2 = 1388886740000000000. At step 7, R = 1388886740, and
since R ≥ β3, one returns R −N = 526221827.

Since Montgomery’s algorithm — i.e., Hensel’s division with remainder
only — can be viewed as an LSB variant of the classical division, Svoboda’s
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� �� �
1 Algorithm FastREDC .
2 Input : 0 ≤ C < β2 , N < β , µ← −1/N mod β
3 Output : 0 ≤ R < β such that R = C/β mod N
4 Q← µC mod β
5 R← (C + QN)/β
6 i f R ≥ β then re turn R−N else re turn R .


 	� �

Figure 2.3: Subquadratic Montgomery multiplication.

divisor preconditioning (§1.4.2) also translates to the LSB context. More
precisely, in Algorithm REDC, one wants to modify the divisor N so that
the “quotient selection” q ← µci mod β at step 5 becomes trivial. A natural
choice is to have µ = 1, which corresponds to N ≡ −1 mod β. The multiplier
k used in Svoboda division is thus here simply the parameter µ in REDC. The
Montgomery-Svoboda algorithm obtained works as follows:

1. first compute N ′ = µN , with N ′ < βn+1;

2. then perform the n− 1 first loops of REDC, replacing µ by 1, and N by
N ′;

3. perform a last classical loop with µ and N , and the last steps from
REDC.

The quotient selection with Montgomery-Svoboda’s algorithm thus simply
consists in “reading” the word of weight βi in the divisor C.

For the above example, one gets N ′ = 19841292999, q0 is the least signif-
icant word of C, i.e., q0 = 844, then C = C + 844N ′ = 766987290893735000;
then q1 = 735 and C = C + 735N ′β = 781570641248000000; the last step
gives q2 = 704, and C = C + 704Nβ2 = 1388886740000000000, which is the
same value that we found above after the for-loop.

Subquadratic Montgomery Reduction

A subquadratic version of REDC is obtained by taking n = 1 in Algorithm
REDC, and considering β as a “giant base” (alternatively, replace β by βn

below):
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This is exactly the 2-adic counterpart of Barrett’s subquadratic algorithm:
steps 4-5 might be performed by a low short product and a high short product
respectively.

When combined with Karatsuba’s multiplication , assuming the products
of steps 4-5 are full products, the reduction requires 2 multiplications of size
n, i.e., 6 multiplications of size n/2 (n denotes the size of N , β being a giant
base).

With some additional precomputation, the reduction might be performed
with 5 multiplications of size n/2, assuming n is even. This is simply
Montgomery-Svoboda’s algorithm with N having two big words in base βn/2:

� �� �
1 Algorithm MontgomerySvoboda2 .

2 Input : 0 ≤ C < β2n , N < βn , µ← −1/N mod βn/2 , N ′ = µN
3 Output : 0 ≤ R < βn such that R = C/βn mod N

4 q0 ← C mod βn/2

5 C ← (C + q0N
′)/βn/2

6 q1 ← µC mod βn/2

7 R← (C + q1N)/βn/2

8 i f R ≥ βn then re turn R−N else re turn R .

 	� �

The cost of the algorithm is M(n, n/2) to compute q0N
′ (even if N ′ has in

principle 3n/2 words, we know N ′ = Hβn/2− 1 with H < βn, thus it suffices
to multiply q0 by H), M(n/2) to compute µC mod βn/2, and again M(n, n/2)
to compute q1N , thus a total of 5M(n/2) if each n×(n/2) product is realized
by two (n/2)× (n/2) products.

The algorithm is quite similar to the one described at the end of §1.4.6,
where the cost was 3M(n/2) + D(n/2) for a division of 2n by n with re-
mainder only. The main difference here is that, thanks to Montgomery’s
form, the last classical division D(n/2) in Svoboda’s algorithm is replaced
by multiplications of total cost 2M(n/2), which is usually faster.

Algorithm MontgomerySvoboda2 can be extended as follows. The
value C obtained after step 5 has 3n/2 words, i.e., an excess of n/2 words. In-
stead of reducing that excess with REDC, one could reduce it using Svoboda’s
technique with µ′ = −1/N mod βn/4, and N ′′ = µ′N . This would reduce the
low n/4 words from C at the cost of M(n, n/4), and a last REDC step would
reduce the final excess of n/4, which would give D(2n, n) = M(n, n/2) +
M(n, n/4)+M(n/4)+M(n, n/4). This “folding” process can be generalized
to D(2n, n) = M(n, n/2) + · · · + M(n, n/2k) + M(n/2k) + M(n, n/2k). If
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Algorithm Karatsuba Toom-Cook 3-way Toom-Cook 4-way
D(n) 2M(n) 2.63M(n) 3.10M(n)

1-folding 1.67M(n) 1.81M(n) 1.89M(n)
2-folding 1.67M(n) 1.91M(n) 2.04M(n)
3-folding 1.74M(n) 2.06M(n) 2.25M(n)

Figure 2.4: Theoretical complexity of subquadratic REDC with 1-, 2- and
3−folding, for different multiplication algorithms.

M(n, n/2k) reduces to 2kM(n/2k), this gives:

D(n) = 2M(n/2) + 4M(n/4) + · · ·+ 2k−1M(n/2k−1) + (2k+1 + 1)M(n/2k).

Unfortunately, the resulting multiplications are more and more unbalanced,
moreover one needs to store k precomputed multiples N′, N′′, . . . of N , each
requiring at least n words (if one does not store the low part of those constants
which all equal −1). Fig. 2.4 shows that the single-folding algorithm is the
best one.

Exercise 2.7.3 discusses further possible improvements in Montgomery-
Svoboda’s algorithm, which achieve D(n) = 1.58M(n) in the case of
Karatsuba multiplication.

2.3.3 Mihailescu’s Algorithm

Mihailescu’s algorithm assumes one can perform fast multiplication modulo
both 2n− 1 and 2n + 1, for sufficiently many values of n. This assumption is
true for example with Schönhage-Strassen’s algorithm: the original version
multiplies two numbers modulo 2n +1, but discarding the “twist” operations
before and after the Fourier transforms computes their product modulo 2n−1.
(This has to be done at the top level only: the recursive operations compute
modulo 2n′

+ 1 in both cases.)
The key idea in Mihailescu’s algorithm is to perform a Montgomery re-

duction AB/R with R not being equal to a power βn of the word base,
but with R = βn − 1. Modulo the latter value, efficient convolution can be
performed using FFT.

Theorem 2.3.3 Algorithm MultiplyMihailescu computes ABβ−n mod N
correctly, in ≈ 1.5M(n) operations, assuming multiplication modulo 2n ± 1
costs 1

2
M(n), or 3 Fourier transforms of size n.
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� �� �
1 Algorithm MultiplyMihailescu .
2 Input : A, B with 0 ≤ A, B < N < βn

3 Output : AB/(2n − 1) mod N
4 Assumes : µ = N−1 mod (2n − 1) i s precomputed
5 c← AB mod (2n − 1)
6 d← AB mod (2n + 1)
7 γ ← cµ mod (2n − 1)
8 δ ← γN mod (2n + 1)
9 Return (δ − d)/2 mod (2n + 1)


 	� �

Proof. Let AB = h(2n−1)+ℓ. We want AB/(2n−1) = h+ℓ/(2n−1) mod N .
Then step 5 gets c = ℓ and step 6 computes d = ℓ − 2h mod (2n + 1). Now
γ = ℓ/N mod (2n − 1), thus γN = ℓ + (2n − 1)τ for τ ≥ 0, which gives
τ ≡ −ℓ/(2n−1) mod N . This yields δ = ℓ−2τ , and finally (δ−d)/2 = h−τ .

The cost of the algorithm is mainly that of the four convolutions AB mod
(2n±1), cµ mod (2n−1) and γN mod (2n+1), which cost 4

2
M(n) altogether.

However in cµ mod (2n − 1) and γN mod (2n + 1), the operands µ and N
are invariant, therefore their Fourier transform can be precomputed, which
saves 1

3
M(n). A further saving of 1

6
M(n) is obtained by keeping d and δ in

Fourier space in steps 6 and 8, performing the subtraction d− δ in Fourier
space, and performing only one inverse transform for step 9. This finally
gives (2− 1

3
− 1

6
)M(n) = 1.5M(n).

The 1.5M(n) cost of Mihailescu’s algorithm is quite surprising, since it
means that a modular multiplication can be performed faster than two mul-
tiplications. In other words, since a modular multiplication is basically a
multiplication followed by a division, this means that the “division” can be
performed for the cost of half a multiplication!

2.3.4 Special Moduli

For special moduli N faster algorithms may exist. Ideal is N = βn±1. This is
precisely the kind of modulus used in the Schönhage-Strassen algorithm based
on the Fast Fourier Transform (FFT). In the FFT range, a multiplication
modulo βn± 1 is used to perform the product of two integers of at most n/2
words, and a multiplication modulo βn ± 1 costs M(n/2) ≤ 1

2
M(n).
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However in most applications the modulus cannot be chosen, and there is
no reason for it to have a special form. We refer to §2.8 for further information
about special moduli.

2.3.5 Fast Multiplication Over GF(2)[x]

The finite field GF(2) is quite important in cryptography and number theory.
An alternative notation for GF(2) is F2. Usually one considers polynomials
over GF(2), i.e., elements of GF(2)[x], also called binary polynomials:

A =
d−1∑

i=0

aix
i,

where ai ∈ GF(2) can be represented by a bit, either 0 or 1. The computer
representation of a binary polynomial of degree d− 1 is thus similar to that
of an integer of d bits. It is natural to ask how fast one can multiply such bi-
nary polynomials. Since multiplication over GF(2)[x] is essentially the same
as integer multiplication, but without the carries, multiplying two degree-d
binary polynomials should be faster than multiplying two d-bit integers. In
practice, this is not the case, the main reason being that modern processors
do not provide a multiply instruction over GF(2)[x] at the word level. We
describe here fast multiplication algorithms over GF(2)[x]: a base-case al-
gorithm, a Toom-Cook 3-way variant, and an algorithm due to Schönhage
using the Fast Fourier Transform.

The Base Case

If the multiplication over GF(2)[x] at the word level is not provided by the
processor, one should implement it in software. Consider a 64-bit computer
for example. One needs a routine multiplying two 64-bit words — interpreted
as two binary polynomials of degree at most 63 — and returning the product
as two 64-bit words, being the lower and upper part of the product. We show
here how to efficiently implement such a routine using word-level operations.

For an integer i, write π(i) the binary polynomial corresponding to i,
and for a polynomial p, write ν(p) the integer corresponding to p. We have
for example π(0) = 0, π(1) = 1, π(2) = x, π(3) = x + 1, π(4) = x2, and
ν(x4 + 1) = 17, . . .
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� �� �
1 Algorithm GF2MulBaseCase .
2 Input : nonnegat ive i n t e g e r s 0 ≤ a, b < 2w = β (word base ) .
3 Output : nonnegat ive i n t e g e r s ℓ, h with π(a)π(b) = π(h)xw + π(ℓ) .
4 Parameter : a s l i c e s i z e k , and n = ⌈w/k⌉ .
5 Compute As = ν(π(a)π(s) mod xw) for a l l 0 ≤ s < 2k .

6 Write b in base 2k : b = b0 + b12
k + · · ·+ bn−12

(n−1)k where 0 ≤ bj < 2k .
7 h← 0, ℓ← Abn−1

8 for i from n− 2 downto 0 do
9 h2w + ℓ← (h2w + ℓ)≪ k

10 ℓ← ℓ⊕Abi

11 u = b, m← (2k−1 − 1)2nk−1
2k−1

mod 2w

12 for j from 1 to k − 1 do { r epa i r s t e p }
13 u← (u≫ 1) ∧m
14 i f b i t w − j o f a i s set , then h← h⊕ u


 	� �

(Line 9 means that h2w + ℓ is shifted by k bits to the left, the low w bits are
stored in ℓ, and the upper bits in h.)

Consider for example the multiplication of a = (110010110)2 — which
represents the polynomial x8 + x7 + x4 + x2 + x — by b = (100000101)2

— which represents the polynomial x8 + x2 + 1 — with w = 9 and k = 3.
Step 5 will compute A0 = 0, A1 = a = (110010110)2, A2 = xa mod x9 =
x8+x5+x3+x2, A3 = (x+1)a mod x9 = x7+x5+x4+x3+x, A4 = x6+x4+x3,
A5 = x8+x7+x6+x3+x2+x, A6 = x8+x6+x5+x4+x2, A7 = x7+x6+x5+x.

The decomposition of b in step 6 gives b0 = 5, b1 = 0, b2 = 4. We thus
have n = 3, h = (000000000)2, ℓ = A4 = (001011000)2. After step 9 for
i = 1, we have h = (000000001)2, ℓ = (011000000)2, and after step 10, ℓ is
unchanged since b1 = 0 and A0 = 0. Now for i = 0, after step 9 we have h =
(000001011)2, ℓ = (000000000)2, and after step 10, ℓ = A5 = (111001110)2.

Steps 12 to 14 form a “repair” loop. This is necessary because some upper
bits from a are discarded during creation of the table A. More precisely,
bit w − j of a is discarded in As whenever w − j + deg(π(s)) ≥ w, i.e.,
deg(π(s)) ≥ j; in the above example the most significant bit of a is discarded
in A2 to A7, and the second most significant bit is discarded in A4 to A7.
Thus if bit w− j of a is set, for each monomial xt in some π(s) with t ≥ j, or
equivalently for each set bit 2t in some bi, one should add the corresponding
bit product. This can be performed in parallel for all concerned bits of b using
a binary mask. Step 11 computes u = (100000101)2, m = (011011011)2.
(The mask m prevents bits from a given set of k consecutive bits from carrying
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� �� �
1 Algorithm GF2ToomCook3 .

2 Input : b inary polynomia l s A =
∑n−1

i=0 aix
i , B =

∑n−1
i=0 bix

i

3 Output : C = AB = c0 + c1X + c2X
2 + c3X

3 + c4X
4

4 Let X = xk where k = ⌈n/3⌉
5 Write A = a0 + a1X + a2X

2 , B = b0 + b1X + b2X
2 , deg(ai), deg(bi) < k

6 c0 ← a0b0

7 c4 ← a2b2

8 v1 ← (a0 + a1 + a2)(b0 + b1 + b2)
9 vx ← (a0 + a1x + a2x

2)(b0 + b1x + b2x
2)

10 v1/x ← (a0x
2 + a1x + a2)(b0x

2 + b1x + b2)

11 w1 ← v1 − c0 − c4

12 wx ← (vx − c0 − c4x
4)/x

13 w1/x ← (v1/x − c0x
4 − c4)/x

14 t← (wx + w1/x)/(1 + x2)

15 c2 ← w1 + t
16 c1 ← (w1/x + c2x + t)/(1 + x2)

17 c3 ← t + c1

 	� �

over to the next set.) Then for j = 1 in step 13 we have u = (010000010)2,
and since bit 8 of a was set, h becomes h ⊕ u = (010001001)2. For j =
2 we have u = (001000001)2, and since bit 7 of a is also set, h becomes
h ⊕ u = (011001000)2. This corresponds to the correct product π(a)π(b) =
x16 + x15 + x12 + x8 + x7 + x6 + x3 + x2 + x.

The complication of repair steps could be avoided by the use of double-
length registers, but this would be significantly slower.

Toom-Cook 3-Way

Karatsuba’s algorithm requires only 3 evaluation points, for which one usu-
ally chooses 0, 1, and ∞. Since Toom-Cook 3-way requires 5 evaluation
points, one may think at first glance that it is not possible to find so many
points in GF(2). The idea to overcome this difficulty is to use the tran-
scendental variable x — and combinations of it — as evaluation points. An
example is given in Algorithm GF2ToomCook3. With C = c0 + c1X +
c2X

2 + c3X
3 + c4X

4, we have v1 = A(1)B(1) = C(1) = c0 + c1 + c2 + c3 + c4,
thus w1 = c1 + c2 + c3. Similarly, we have vx = c0 + c1x + c2x

2 + c3x
3 + c4x

4,
thus wx = c1 + c2x + c3x

2, and w1/x = c1x
2 + c2x + c3. Then t = c1 + c3,
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which gives c2 as w1 + t; (w1/x + c2x+ t)/(1+x2) gives c1, and t+ c1 gives c3.
The exact divisions by 1 + x2 can be implemented efficiently by Hensel’s

division (§1.4.8), since we know the remainder is zero. More precisely, if T (x)
has degree < n, Hensel’s division yields:

T (x) = Q(x)(1 + x2) + R(x)xn, (2.3)

where Q(x) of degree less than n is defined uniquely by Q(x) = T (x)/(1 +
x2) mod xn, and deg R(x) < 2. This division can be performed word-by-
word, from the least to the most significant word of T (x) (as in Algorithm
ConstantDivide from §1.4.7).

Assume that the number w of bits per word is a power of 2, say w = 32.
One uses the identity:

1

1 + x2
= (1− x2)(1− x4)(1− x8)(1− x16) mod x32.

(Of course, the “−” signs in this identity can be replaced by “+” signs when
the base field is GF(2), and we will do this from now on.) Hensel’s division
of a word t(x) of T (x) by 1 + x2 writes

t(x) = q(x)(1 + x2) + r(x)xw, (2.4)

where deg(q) < w and deg(r) < 2, then (1 + x2)(1 + x4)(1 + x8)(1 +
x16) · · · t(x) = q(x) mod xw. The remainder r(x) is simply formed by the two
most significant bits of q(x), since dividing (2.4) by xw yields q(x) div xw−2 =
r(x). This remainder is then added to the following word of T (x), and the
last remainder is known to be zero.

Using the Fast Fourier Transform

The algorithm described in this section multiplies two polynomials of degree
n from GF(2)[x] in time O(n log n log log n), using the Fast Fourier Transform
(FFT).

The normal FFT requires 2k-th roots of unity, so does not work in
GF(2)[x] where these roots of unity fail to exist. The solution is to replace
powers of 2 by powers of 3.

Assume we want to multiply two polynomials of GF(2)[x]/(xN +1), where
N = KM , and K is a power of 3. Write the polynomials a, b (of degree less
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than N) that are to be multiplied as follows:

a =

K−1∑

i=0

aix
iM , b =

K−1∑

i=0

bix
iM ,

where the ai, bi are polynomials of degree less than M .
Consider the ai as elements of RN ′ = GF(2)[x]/(x2N ′

+ xN ′

+ 1), for an
integer N ′ = KM ′/3. Let ω = xM ′ ∈ RN ′. Clearly we have 1+ωK/3+ω2K/3 =
0, and ωK = 1 in RN ′.

The Fourier transform of (a0, a1, . . . , aK−1) is (â0, â1, . . . , âK−1) where

âi =
K−1∑

j=0

ωijaj,

and similarly for (b0, b1, . . . , bK−1). The pointwise product of (â0, . . . , âK−1)
by (b̂0, . . . , b̂K−1) gives (ĉ0, . . . , ĉK−1) where

ĉi =

(
K−1∑

j=0

ωijaj

)(
K−1∑

k=0

ωikbk

)
.

Now the inverse transform of (ĉ0, . . . , ĉK−1) is defined as (c0, . . . , cK−1)
where:

cℓ =
K−1∑

i=0

ω−ℓiĉi.

(Note that since ωK = 1, we have ω−λ = ω−λ mod K , or ω−1 = ωK−1 =
xM ′(K−1).) This gives:

cℓ =
K−1∑

i=0

ω−ℓi

(
K−1∑

j=0

ωijaj

)(
K−1∑

k=0

ωikbk

)

=
K−1∑

j=0

K−1∑

k=0

ajbk

K−1∑

i=0

ωi(j+k−ℓ).

Write t := j + k − ℓ. If t 6= 0 mod K, then
∑K−1

i=0 ωit = ωKt+1
ωt+1

= 0 since

ωK = 1 but ωt 6= 1. If t = 0 mod K, then ωit = 1; since −K < j+k−ℓ < 2K,
this happens only for j+k−ℓ ∈ {0,K}. In that case the sum

∑K−1
i=0 ωi(j+k−ℓ)

equals K, i.e., 1 modulo 2 (remember K is a power of 3).
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We thus have for 0 ≤ ℓ ≤ K − 1:

cℓ =

[
∑

j+k=ℓ

ajbk +
∑

j+k=ℓ+K

ajbk

]
mod (x2N ′

+ xN ′

+ 1).

If N ′ ≥ M , cℓ =
∑

j+k=ℓ ajbk +
∑

j+k=ℓ+K ajbk, and the polynomial c =
∑K−1

ℓ=0 cℓx
ℓM thus equals ab mod (xN + 1).

Like Schönhage-Strassen’s integer multiplication, this algorithm can be
used recursively. Indeed, the pointwise products mod x2N ′

+ xN ′

+ 1 can
be performed mod x3N ′

+ 1, therefore a multiplication mod xN + 1 reduces
to about K products mod x3N/K + 1, assuming N ′ = M . This yields the
asymptotic complexity of O(N log N log log N).

In practice usually the algorithm is used only once: a multiplication of
two degree-N/2 polynomials can be performed with K products of degree
≈ 2N/K polynomials.

Example: consider N = 3 · 5, with K = 3, M = 5, N ′ = 5, M ′ = 5,

a = x14 + x13 + x12 + x11 + x10 + x8 + x6 + x5 + x4 + x3 + x2 + 1,

b = x13 + x11 + x8 + x7 + x6 + x2.

We have (a0, a1, a2) = (x4 + x3 + x2 + 1, x3 + x + 1, x4 + x3 + x2 + x + 1),
(b0, b1, b2) = (x2, x3 + x2 + x, x3 + x). In the Fourier domain, we perform
computations modulo x10 + x5 + 1, and ω = x5, which gives

(â0, â1, â2) = (x3 + 1, x9 + x7 + x, x9 + x7 + x4 + x2 + x),

(b̂0, b̂1, b̂2) = (0, x7 + x3 + x2 + x, x7 + x3 + x),

(ĉ0, ĉ1, ĉ2) = (0, x7 + x6 + x3, x6 + x3),

(c0, c1, c2) = (x7, x6 + x3 + x2, x7 + x6 + x3 + x2),

and

c0 + xMc1 + x2Mc2 = x13 + x12 + x11 + x8 + x2 + x mod (x15 + 1).

We describe how the Fast Fourier Transform is performed. We want to
compute efficiently

âi =
K−1∑

j=0

ωijaj,
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where K = 3k. Define FFT(ω, (a0, . . . , aK−1)) = (â0, . . . , âK−1). For 0 ≤ ℓ <
K/3 we define

a′ = FFT(ω3, (a0, a3, . . . , aK/3−3)),

a′′ = FFT(ω3, (a1, a4, . . . , aK/3−2)),

a′′′ = FFT(ω3, (a2, a5, . . . , aK/3−1)),

i.e.,

a′
ℓ =

K/3−1∑

j=0

ω3ℓja3j, a′′
ℓ =

K/3−1∑

j=0

ω3ℓja3j+1, a′′′
ℓ =

K/3−1∑

j=0

ω3ℓja3j+2

thus we have for 0 ≤ ℓ < K/3:

âℓ = a′
ℓ + ωℓa′′

ℓ + ω2ℓa′′′
ℓ ,

âℓ+K/3 = a′
ℓ + ωℓ+K/3a′′

ℓ + ω2ℓ+2K/3a′′′
ℓ ,

âℓ+2K/3 = a′
ℓ + ωℓ+2K/3a′′

ℓ + ω2ℓ+4K/3a′′′
ℓ .

This group of operations is the equivalent of the “butterfly” operation
(a← a + b, b← a + ωb) in the classical FFT.

2.4 Division and Inversion

We have seen above that modular multiplication reduces to integer division,
since to compute ab mod N , the classical method consists in dividing ab by
N as ab = qN + r, then ab ≡ r mod N . In the same vein, modular division
reduces to an integer (extended) gcd. More precisely, the division a/b mod N
is usually computed as a · (1/b) mod N , thus a modular inverse is followed
by a modular multiplication. We therefore concentrate on modular inversion
in this section.

We have seen in Chapter 1 that computing an extended gcd is expensive,
both for small sizes where it usually costs several multiplications, or for large
sizes where it costs O(M(n) log n). Therefore modular inversions should be
avoided if possible; we explain at the end of this section how this can be
done.

Table 2.4 gives Algorithm ModularInverse, which is just Algorithm
ExtendedGcd (§1.6.2) with (a, b) → (b,N) and the lines computing the
cofactors of N omitted. Algorithm ModularInverse is the naive version of
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� �� �
1 Algorithm ModularInverse .
2 Input : i n t e g e r s b and N , b prime to N .
3 Output : i n t e g e r u = 1/b mod N .
4 (u, w)← (1, 0) , c← N
5 while c 6= 0 do
6 (q, r)←DivRem(b, c)
7 (b, c)← (c, r)
8 (u, w)← (w, u− qw)
9 Return u .


 	� �

modular inversion, with complexity O(n2) if N takes n words in base β. The
subquadratic O(M(n) log n) algorithm is based on the HalfGcd algorithm
(§1.6.3).

When the modulus N has a special form, faster algorithms may exist. In
particular for N = pk, O(M(n) algorithms exist, based on Hensel’s lifting,
which can be seen as the p-adic variant of Newton’s method (§4.2). To
compute 1/b mod N , we use the iteration of (4.4):

xj+1 = xj + xj(1− bxj) mod pk.

Assume xj approximates 1/b to “p-adic precision” ℓ, i.e., bxj ≡ 1+εpℓ. Then
bxj+1 = bxj(2 − bxj) = (1 + εpℓ)(1 − εpℓ) = 1 − ε2p2ℓ. Therefore xk+1 is an
approximation of 1/b to double precision (in the p-adic sense).

As an example, assume one wants to compute the inverse of an odd integer
b modulo 232. The initial approximation x0 = 1 satisfies x0 = 1/b mod 2, thus
five iterations are enough. The first iteration is x1 ← x0+x0(1−bx0) mod 22,
which simplifies to x1 ← 2−b mod 4 since x0 = 1. Now whether b ≡ 1 mod 4
or b ≡ 3 mod 4, we have 2 − b ≡ b mod 4, thus one can start directly the
second iteration with x1 = b:

x2 ← b(2− b2) mod 24

x3 ← x2(2− bx2) mod 28

x4 ← x3(2− bx3) mod 216

x5 ← x4(2− bx4) mod 232

Consider for example b = 17. The above algorithm yields x2 = 1, x3 = 241,
x4 = 61681 and x5 = 4042322161. Of course, any computation mod pℓ might
be computed modulo pk for k ≥ ℓ, in particular all above computations might
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be performed modulo 232. On a 32-bit computer, arithmetic on basic integer
types is usually performed modulo 232, thus the reduction comes for free, and
one will usually write in the C language (using unsigned variables):

x2 = b * (2 - b * b); x3 = x2 * (2 - b * x2);

x4 = x3 * (2 - b * x3); x5 = x4 * (2 - b * x4);

Another way to perform modular division when the modulus has a special
form is Hensel’s division (§1.4.8). For a modulus N = βn, given two integers
A,B, we compute Q and R such that

A = QB + Rβn.

Therefore we have A/B ≡ Q mod βn. While Montgomery’s modular multi-
plication only needs the remainder R of Hensel’s division, modular division
needs the quotient Q, thus Hensel’s division plays a central role in modular
arithmetic modulo βn.

2.4.1 Several Inversions at Once

A modular inversion, which reduces to an extended gcd (§1.6.2), is usually
much more expensive than a multiplication. This is true not only in the FFT
range, where a gcd takes time Θ(M(n) log n), but also for smaller numbers.
When several inversions are to be performed modulo the same number, the
following algorithm is usually faster:

� �� �
1 Algorithm MultipleInversion .
2 Input : 0 < x1, . . . , xk < N
3 Output : y1 = 1/x1 mod N, . . . , yk = 1/xk mod N
4 z1 ← x1

5 for i from 2 to k do
6 zi ← zi−1xi mod N
7 q ← 1/zk mod N
8 for i from k downto 2 do
9 yi ← qzi−1 mod N

10 q ← qxi mod N
11 y1 ← q


 	� �

Proof. We have zi ≡ x1x2 . . . xi mod N , thus at the beginning of step i
(line 8), q ≡ (x1 . . . xi)

−1 mod N , which indeed gives yi ≡ 1/xi mod N .
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This algorithm uses only one modular inversion, and 3(k − 1) modular mul-
tiplications. Thus it is faster than k inversions when a modular inversion is
more than three times as expensive as a product. Fig. 2.5 shows a recursive
variant of the algorithm, with the same number of modular multiplications:
one for each internal node when going up the (product) tree, and two for
each internal node when going down the (remainder) tree. This recursive
variant might be performed in parallel in O(log k) operations using k proces-
sors, however the total memory usage is Θ(k log k) residues, instead of O(k)
for the linear algorithm MultipleInversion.
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1
x1x2x3x4

1
x1x2

1
x3x4

1/x1 1/x2 1/x3 1/x4

Figure 2.5: A recursive variant of Algorithm MultipleInversion. First
go up the tree, building x1x2 mod N from x1 and x2 in the left branch,
x3x4 mod N in the right branch, and x1x2x3x4 mod N at the root of the
tree. Then invert the root of the tree. Finally go down the tree, multiplying

1
x1x2x3x4

by the stored value x3x4 to get 1
x1x2

, and so on.

A dual case is when there are several moduli but the number to invert is
fixed. Say we want to compute 1/x mod N1, . . . , 1/x mod Nk. We illustrate
a possible algorithm in the case k = 4. First compute N = N1 . . . Nk using a
product tree like that in Fig. 2.5, for example first compute N1N2 and N3N4,
then multiply both to get N = (N1N2)(N3N4). Then compute y = 1/x mod
N , and go down the tree, while reducing the residue at each node. In our
example we compute z = y mod (N1N2) in the left branch, then z mod N1

yields 1/x mod N1. An important difference between this algorithm and the
algorithm illustrated in Fig. 2.5 is that here, the numbers grow while going
up the tree. Thus, depending on the sizes of x and the Nj, this algorithm
might be of theoretical interest only.
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2.5 Exponentiation

Modular exponentiation is the most time-consuming mathematical operation
in several cryptographic algorithms. The well-known RSA algorithm is based
on the fact that computing

c = ae mod N (2.5)

is relatively easy, but recovering a from c, e and N is difficult, especially when
N has at least two large prime factors. The discrete logarithm problem is
similar: here c, a and N are given, and one looks for e satisfying (2.5).

When the exponent e is fixed (or known to be small), an optimal sequence
of squarings and multiplications might be computed in advance. This is
related to the classical addition chain problem: What is the smallest chain
of additions to reach the integer e, starting from 1? For example if e = 15,
a possible chain is:

1, 1 + 1 = 2, 1 + 2 = 3, 1 + 3 = 4, 3 + 4 = 7, 7 + 7 = 14, 1 + 14 = 15.

The length of a chain is defined to be the number of additions needed to
compute it. Thus this chain has length 6 (not 7). An addition chain readily
translates to an exponentiation chain:

a, a · a = a2, a · a2 = a3, a · a3 = a4, a3 · a4 = a7, a7 · a7 = a14, a · a14 = a15.

A shorter chain for e = 15 is:

1, 1 + 1 = 2, 2 + 2 = 3, 2 + 3 = 5, 5 + 5 = 10, 5 + 10 = 15.

This chain is the shortest possible for e = 15, so we write σ(15) = 5, where
in general σ(e) denotes the length of the shortest addition chain for e. In
the case where e is small, and an addition chain of shortest length σ(e)
is known for e, computing ae mod N may be performed in σ(e) modular
multiplications.

When e is large and (a,N) = 1, then e might be reduced modulo φ(N),
where φ(N) is Euler’s totient function, i.e., the number of integers in [1, N ]
which are relatively prime to N . This is because aφ(N) ≡ 1 mod N whenever
(a,N) = 1 (Fermat’s little theorem).

Since φ(N) is a multiplicative function, it is easy to compute φ(N) if we
know the prime factorisation of N . For example,

φ(1001) = φ(7 · 11 · 13) = (7− 1)(11− 1)(13− 1) = 720,
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and 2009 ≡ 569 mod 720, so 172009 ≡ 17569 mod 1001.
Assume now that e is smaller than φ(N). Since a lower bound on the

length σ(e) of the addition chain for e is lg e, this yields a lower bound
(lg e)M(n) for the modular exponentiation, where n is the size of N . When
e is of size n, a modular exponentiation costs O(nM(n)), which is much more
than the cost of operations considered in Chapter 1, with O(M(n) log n) for
the more expensive ones there. The different algorithms presented in this
section save only a constant factor compared to binary exponentiation.

2.5.1 Binary Exponentiation

A simple (and not far from optimal) algorithm for modular exponentiation is
“binary exponentiation”. Two variants exist: left-to-right and right-to-left.
We give the former in Algorithm LeftToRightBinaryExp and leave the
latter as an exercise for the reader.

� �� �
1 Algorithm LeftToRightBinaryExp .
2 Input : a, e, N p o s i t i v e i n t e g e r s
3 Output : x = ae mod N
4 Let (eℓeℓ−1 . . . e1e0) be the binary r ep r e s en t a t i on o f e
5 x← a
6 for i = ℓ− 1 downto 0 do
7 x← x2 mod N
8 i f ei = 1 then x← ax mod N


 	� �

Left-to-right binary exponentiation has two advantages over right-to-left ex-
ponentiation:

• it requires only one auxiliary variable, instead of two for the right-to-
left exponentiation: one to store successive values of a2i

, and one to
store the result;

• in the case where a is small, the multiplications ax at step 8 always
involve a small operand.

If e is a random integer of n bits, step 8 will be performed on average
n/2 times, thus the average cost of Algorithm LeftToRightBinaryExp
is 3

2
ℓM(n).

Example: for the exponent e = 3499211612, which is

(11010000100100011011101101011100)2
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in binary, Algorithm LeftToRightBinaryExp performs 31 squarings and
15 multiplications (one for each 1-bit, except the most significant one).

2.5.2 Base 2k Exponentiation

Compared to binary exponentiation, base 2k exponentiation reduces the
number of multiplications ax mod N (Algorithm LeftToRightBinaryExp,
step 8). The idea is to precompute small powers of a mod N :

� �� �
1 Algorithm BaseKExp .
2 Input : a, e, N p o s i t i v e i n t e g e r s
3 Output : x = ae mod N
4 Precompute a2 then t[i] := ai mod N for 1 ≤ i < 2k

5 Let (eℓeℓ−1 . . . e1e0) be the base 2k r ep r e s en t a t i on o f e
6 x← t[eℓ]
7 for i = ℓ− 1 downto 0 do

8 x← x2k

mod N
9 i f ei 6= 0 then x← t[ei]x mod N


 	� �

The precomputation cost is (2k−2)M(n), and if the digits ei are random and
uniformly distributed in [0, 2k− 1], then step 9 is performed with probability
1 − 2−k. If e has n bits, the number of loops is about n/k. Ignoring the
squares at step 8 whose total cost depends on kℓ ≈ n (independent of k), the
total expected cost in terms of multiplications modulo N is:

2k − 2 +
n

k
(1− 2−k).

For k = 1 this formula gives n/2; for k = 2 it gives 3
8
n+2, which is faster for

n ≥ 16; for k = 3 it gives 7
24

n + 6, which is faster than the k = 2 formula for
n ≥ 48. When n is large, the optimal value of k is when k22k ≈ n/ log 2. A
disadvantage of this algorithm is its memory usage, since Θ(2k) precomputed
entries have to be stored.
Example: consider the exponent e = 3499211612. Algorithm BaseKExp
performs 31 squarings independently of k, thus we count multiplications only.
For k = 2, we have e = (3100210123231130)4: and Algorithm BaseKExp
performs one multiplication to precompute a2, and 11 multiplications for
the non-zero digits of e in base 4 (except the leading one). For k = 3, we
have e = (32044335534)8, and the algorithm performs 6 multiplications to
precompute a2, a3, . . . , a7, and 9 multiplications in step 9.
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This example shows two facts. First, if some digits — here 6 and 7 — do
not appear in the base-2k representation of e, we do not need to precompute
the corresponding powers of a. Second, when a digit is even, say ei = 2,
instead of doing 3 squarings and multiplying by a2, one could do 2 squarings,
multiply by a, and perform a last squaring. This leads to the following
algorithm:

� �� �
1 Algorithm BaseKExpOdd .
2 Input : a, e, N p o s i t i v e i n t e g e r s
3 Output : x = ae mod N
4 Precompute t[i] := ai mod N for i odd , 1 ≤ i < 2k ,
5 Let (eℓeℓ−1 . . . e1e0) be the base 2k r ep r e s en t a t i on o f e
6 x← t[eℓ]
7 for i = ℓ− 1 downto 0 do
8 wr i t e ei = 2md with d odd ( i f ei = 0 then m = d = 0)

9 x← x2k−m

mod N
10 i f ei 6= 0 then x← t[d]x mod N
11 x← x2m

mod N

 	� �

The correctness of steps 9-11 follows from:

x2k

a2md = (x2k−m

ad)2m

.

On our example, with k = 3, this algorithm performs only 4 multiplications
to precompute a2 then a3, a5, a7, and 9 multiplications in step 10.

2.5.3 Sliding Window and Redundant Representation

The “sliding window” algorithm is a straightforward generalization of Algo-
rithm BaseKExpOdd. Instead of cutting the exponent into fixed parts of k
bits each, the idea is to divide it into windows, where two adjacent windows
might be separated by a block of zero or more 0-bits. The decomposition
starts from the least significant bits, for example with e = 3499211612, in
binary:

1︸︷︷︸
e8

101︸︷︷︸
e7

00 001︸︷︷︸
e6

001︸︷︷︸
e5

00 011︸︷︷︸
e4

011︸︷︷︸
e3

101︸︷︷︸
e2

101︸︷︷︸
e1

0 111︸︷︷︸
e0

00.

Here there are 9 windows (indicated by e8, ..., e0 above) and we perform
only 8 multiplications, an improvement of one multiplication over Algorithm
BaseKExpOdd. On average, the sliding window algorithm leads to about
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⌈ n
k+1
⌉ windows instead of ⌈n

k
⌉ with (fixed windows and) base-2k exponentia-

tion.

Another possible improvement may be feasible when division is possible
(and cheap) in the underlying group. For example, if we encounter three
consecutive ones, say 111, in the binary representation of e, we may replace
some bits by −1, denoted by 1̄, as in 1001̄. We have thus replaced three
multiplications by one multiplication and one division, in other words x7 =
x8 · x−1. On our running example, this gives:

e = 110100001001001001̄0001̄001̄01̄001̄00,

which has only 10 non-zero digits, apart from the leading one, instead of 15
with bits 0 and 1 only. The redundant representation with bits 0, 1 and
1̄ is called the Booth representation. It is a special case of the Avizienis
signed-digit redundant representation. Signed-digit representations exist in
any base.

For simplicity we have not distinguished between the cost of multiplica-
tion and the cost of squaring (when the two operands in the multiplication
are known to be equal), but this distinction is significant in some applications
(e.g., elliptic curve cryptography). Note that, when the underlying group op-
eration is denoted by addition rather than multiplication, as is usually the
case for groups defined over elliptic curves, then the discussion above applies
with “multiplication” replaced by “addition”, “division” by “subtraction”,
and “squaring” by “doubling”.

2.6 Chinese Remainder Theorem

In applications where integer or rational results are expected, it is often
worthwhile to use a “residue number system” (as in §2.1.3) and perform all
computations modulo several small primes. The final result is then recov-
ered via the Chinese Remainder Theorem (CRT) For such applications, it is
important to have fast conversion routines from integer to modular represen-
tation, and vice versa.

The integer to modular conversion problem is the following: given an
integer x, and several prime moduli mi, 1 ≤ i ≤ n, how to efficiently compute
xi = x mod mi, for 1 ≤ i ≤ n? This is exactly the remainder tree problem,
which is discussed in §2.4.1 (see also Ex. 1.8.27).



Modern Computer Arithmetic, §2.7 77

The converse CRT reconstruction problem is the following: given the
xi, how to efficiently reconstruct the unique integer x, 0 ≤ x < M =
m1m2 · · ·mk, such that x = xi mod mi, for 1 ≤ i ≤ k? It suffices to
solve this problem for k = 2, and use the solution recursively. Assume
that x ≡ a1 mod m1, and x ≡ a2 mod m2. Write x = λm1 + µm2. Then
µm2 ≡ a1 mod m1, and λm2 ≡ a2 mod m2. Assume we have computed an ex-
tended gcd of m1 and m2, i.e., we know integers u, v such that um1+vm2 = 1.
We deduce µ ≡ va1 mod m1, and λ ≡ ua2 mod m2. Thus

x← (ua2 mod m2)m1 + (va1 mod m1)m2.

This gives x < 2m1m2. If x ≥ m1m2 then set x← x−m1m2 to ensure that
0 ≤ x < m1m2.

2.7 Exercises

Exercise 2.7.1 Show that, if a symmetric representation in [−N/2, N/2) is used
in Algorithm ModularAdd (§2.2), then the probability that we need to add or
subtract N is 1/4 if N is even, and (1 − 1/N2)/4 if N is odd (assuming in both
cases that a and b are uniformly distributed).

Exercise 2.7.2 Modify Algorithm GF2MulBaseCase (§2.3.5, The Base Case)
to use a table of size 2⌈k/2⌉ instead of 2k, with only a small slowdown.

Exercise 2.7.3 Write down the complexity of Montgomery-Svoboda’s algorithm
(§2.3.2) for k steps. For k = 3, use relaxed Karatsuba multiplication [128] to save
one M(n/3) product.

Exercise 2.7.4 Assume you have an FFT algorithm computing products modulo
2n + 1. Prove that, with some preconditioning, you can perform a division of a
2n-bit integer by an n-bit integer as fast as 1.5 multiplications of n bits by n bits.

Exercise 2.7.5 Assume you know p(x) mod (xn1 + 1) and p(x) mod (xn2 + 1),
where p(x) ∈ GF(2)[x] has degree n− 1, and n1 > n2. Up to which value of n can
you uniquely reconstruct p? Design a corresponding algorithm.

Exercise 2.7.6 Analyze the complexity of the algorithm outlined at the end
of §2.4.1 to compute 1/x mod N1, . . . , 1/x mod Nk, when all the Ni have size
n, and x has size ℓ. For which values of n, ℓ is it faster than the naive
algorithm which computes all modular inverses separately? [Assume M(n)
is quasi-linear, and neglect multiplication constants.]
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Exercise 2.7.7 Write a RightToLeftBinaryExp algorithm and compare
it with Algorithm LeftToRightBinaryExp of §2.5.1.

Exercise 2.7.8 Analyze the complexity of the CRT reconstruction algo-
rithm outlined in §2.6 for M = m1m2 · · ·mk, with M having size n, and
the mi of size n/k each. [Assume M(n) ≈ n log n for simplicity.]

2.8 Notes and References

Several number theoretic algorithms make heavy use of modular arithmetic,
in particular integer factorization algorithms (for example: Pollard’s ρ algo-
rithm and the elliptic curve method).

Another important application of modular arithmetic in computer algebra
is computing the roots of a univariate polynomial over a finite field, which
requires efficient arithmetic over Fp[x].

We say in §2.1.3 that residue number systems can only be used when N
factors into N1N2 . . .; this is not quite true, since Bernstein shows in [11] how
to perform modular arithmetic using a residue number system.

Some examples of efficient use of the Kronecker-Schönhage trick are given
by Steel [120].

The basecase multiplication algorithm from (§2.3.5, The Base Case) (with
repair step) is a generalization of an algorithm published in NTL (Number
Theory Library) by Shoup. The Toom-Cook 3-way algorithm from §2.3.5
was designed by the second author, after discussions with Michel Quercia,
who proposed the exact division by 1 + x2; an implementation in NTL has
been available on the web page of the second author since 2004. The Fast
Fourier Transform multiplication algorithm is due to Schönhage [112].

The original description of Montgomery’s REDC algorithm is [100]. It is
now widely used in several applications. However only a few authors con-
sidered using a reduction factor which is not of the form βn, among them
McLaughlin [92] and Mihailescu [96]. The folding optimization of REDC de-
scribed in §2.3.2 (Subquadratic Montgomery Reduction) is an LSB-extension
of the algorithm described in the context of Barrett’s algorithm by Hasen-
plaugh, Gaubatz and Gopal [69].

The description of Mihailescu’s algorithm [96] in §2.3.3 is inspired by
David Harvey.

Many authors have proposed FFT algorithms, or improvements of such
algorithms. Some references are Aho, Hopcroft and Ullman [2]; Borodin and
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Munro [19], who describe the polynomial approach; Van Loan [89] for the
linear algebra approach; and Pollard [107] for the FFT over finite fields. In
Bernstein [10, §23] the reader will find some historical remarks and several
nice applications of the FFT.

Recently Fürer [59] has proposed an integer multiplication algorithm
that is asymptotically faster than the Schönhage-Strassen algorithm. Fürer’s
algorithm almost achieves the conjecture best possible Θ(n log n) running
time.

Concerning special moduli, Percival considers in [106] the case N = a± b
where both a and b are highly composite; this is a generalization of the case
N = βn ± 1.

The statement in §2.3.5 that modern processors do not provide a multiply
instruction over GF(2)[x] was correct when written in 2008, but the situation
may soon change, as Intel plans to introduce such an instruction (PCMULQDQ)

on its “Westmere” chips scheduled for release in 2009.
The description in §2.3.5 of fast multiplication algorithms over GF(2)[x] is

based on the paper [33], which gives an extensive study of algorithms for fast
arithmetic over GF(2)[x]. For an application to factorisation of polynomials
over GF(2), see [39].

The FFT algorithm described in §2.3.5 (Using the Fast Fourier Trans-
form) is due to Schönhage [112] and is implemented in the gf2x package [32].
Many FFT algorithms and variants are described by Arndt in [4]: Walsh
transform, Haar transform, Hartley transform, number theoretic transform
(NTT).

Algorithm MultipleInversion is due to Montgomery [99].
Modular exponentiation algorithms are described in much detail in the

Handbook of Applied Cryptography by Menezes, van Oorschot and Vanstone
[93, Chapter 14]. A detailed description of the best theoretical algorithms,
with due credit, can be found in [12].

A quadratic algorithm for CRT reconstruction is discussed in [46]; Möller
gives some improvements in the case of a small number of small moduli known
in advance [98]. The explicit Chinese Remainder Theorem and its applica-
tions to modular exponentiation are discussed by Bernstein and Sorenson in
[14].
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Chapter 3

Floating-Point Arithmetic

This Chapter discusses the basic operations — addition, sub-
traction, multiplication, division, square root, conversion — on
arbitrary precision floating-point numbers, as Chapter 1 does for
arbitrary precision integers. More advanced functions like ele-
mentary and special functions are covered in Chapter 4. This
Chapter largely follows the IEEE 754 standard, and extends it
in a natural way to arbitrary precision; deviations from IEEE
754 are explicitly mentioned. Topics not discussed here include:
hardware implementations, fixed-precision implementations, spe-
cial representations.

3.1 Representation

The classical non-redundant representation of a floating-point number x in
radix β > 1 is the following (other representations are discussed in §3.8):

x = (−1)s ·m · βe, (3.1)

where (−1)s, s ∈ {0, 1}, is the sign, m ≥ 0 is the significand , and the integer
e is the exponent of x. In addition, a positive integer n defines the precision
of x, which means that the significand m contains at most n significant digits
in radix β.

An important special case is m = 0 representing zero x. In this case
the sign s and exponent e are irrelevant and may be used to encode other
information (see for example §3.1.3).

81



82 Modern Computer Arithmetic, version 0.2 of June 26, 2008

For m 6= 0, several semantics are possible; the most common ones are:

• β−1 ≤ m < 1, then βe−1 ≤ |x| < βe. In this case m is an integer
multiple of β−n. We say that the unit in the last place of x is βe−n, and
we write ulp(x) = βe−n. For example x = 3.1416 with radix β = 10 is
encoded by m = 0.31416 and e = 1. This is the convention we will use
in this Chapter;

• 1 ≤ m < β, then β ≤ |x| < βe+1, and ulp(x) = βe+1−n. With radix ten
the number x = 3.1416 is encoded by m = 3.1416 and e = 0. This is
the convention adopted in the IEEE 754 standard.

• we can also use an integer significand βn−1 ≤ m < βn, then βe+n−1 ≤
|x| < βe+n, and ulp(x) = βe. With radix ten the number x = 3.1416 is
encoded by m = 31416 and e = −4.

Note that in the above three cases, there is only one possible representation
of a non-zero floating-point number: we have a canonical representation. In
some applications, it is useful to remove the lower bound on nonzero m,
which in the three cases above gives respectively 0 < m < 1, 0 < m < β, and
0 < m < βn, with m an integer multiple of βe−n, βe+1−n, and 1 respectively.
In this case, there is no longer a canonical representation. For example, with
an integer significand and a precision of 5 digits, the number 3.1400 is encoded
by (m = 31400, e = −4), (m = 03140, e = −3), and (m = 00314, e = −2) in
the three cases. However, this non-canonical representation has the drawback
that the most significant non-zero digit of the significand is not known in
advance. The unique encoding with a non-zero most significant digit, i.e.,
(m = 31400, e = −4) here, is called the normalised — or simply normal —
encoding.

The significand is also called mantissa or fraction. The above examples
demonstrate that the different significand semantics correspond to different
positions of the decimal (or radix β) point, or equivalently to different biases
of the exponent. We assume in this Chapter that both the radix β and the
significand semantics are implicit for a given implementation, thus are not
physically encoded.

3.1.1 Radix Choice

Most floating-point implementations use radix β = 2 or a power of two,
because this is convenient and efficient on binary computers. For a radix β
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which is not a power of 2, two choices are possible:

• store the significand in base β, or more generally in base βk for an
integer k ≥ 1. Each digit in base βk requires ⌈k lg β⌉ bits. With such a
choice, individual digits can be accessed easily. With β = 10 and k = 1,
this is the “Binary Coded Decimal” or BCD encoding: each decimal
digit is represented by 4 bits, with a memory loss of about 17% (since
lg(10)/4 ≈ 0.83). A more compact choice is radix 103, where 3 decimal
digits are stored in 10 bits, instead of in 12 bits with the BCD format.
This yields a memory loss of only 0.34% (since lg(1000)/10 ≈ 0.9966);

• store the significand in binary. This idea is used in Intel’s Binary-
Integer Decimal (BID) encoding, and in one of the two decimal en-
codings in the revision of the IEEE 754 standard. Individual digits
cannot be directly accessed, but one can use efficient binary hardware
or software to perform operations on the significand.

In arbitrary precision, a drawback of the binary encoding is that, during the
addition of two numbers, it is not easy to detect if the significand exceeds the
maximum value βn−1 (when considered as an integer) and thus if rounding is
required. Either βn is precomputed, which is only realistic if all computations
involve the same precision n, or it is computed on the fly, which might result
in O(M(n) log n) complexity (see Chapter 1).

3.1.2 Exponent Range

In principle, one might consider an unbounded exponent. In other words,
the exponent e might be encoded by an arbitrary precision integer (Chap-
ter 1). This has the great advantage that no underflow or overflow would
occur (see below). However, in most applications, an exponent encoded in
32 bits is more than enough: this enables one to represent values up to about
10646456993. A result exceeding this value most probably corresponds to an
error in the algorithm or the implementation. In addition, using arbitrary
precision integers for the exponent induces an extra overhead that slows down
the implementation in the average case, and it requires more memory to store
each number.

Thus, in practice the exponent usually has a limited range emin ≤ e ≤
emax. We say that a floating-point number is representable if it can repre-
sented in the form (−1)s ·m·βe with emin ≤ e ≤ emax. The set of representable
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numbers clearly depends on the significand semantics. For the convention we
use here, i.e., β−1 ≤ m < 1, the smallest positive floating-point number is
βemin−1, and the largest is βemax(1− β−n).

Other conventions for the significand yield different exponent ranges. For
example the IEEE 754 double precision format — called binary64 in the
IEEE 754 revision — has emin = −1022, emax = 1023 for a significand in
[1, 2); this corresponds to emin = −1021, emax = 1024 for a significand in
[1/2, 1), and emin = −1074, emax = 971 for an integer significand in [252, 253).

3.1.3 Special Values

With a bounded exponent range, if one wants a complete arithmetic, one
needs some special values to represent very large and very small values. Very
small values are naturally flushed to zero, which is a special number in the
sense that its significand is m = 0, which is not normalised. For very large
values, it is natural to introduce two special values −∞ and +∞, which en-
code large non-representable values. Since we have two infinities, it is natural
to have two zeros −0 and +0, for example 1/(−∞) = −0 and 1/(+∞) = +0.
This is the IEEE 754 choice. Another possibility would be to have only one
infinity ∞ and one zero 0, forgetting the sign in both cases.

An additional special value is Not a Number (NaN), which either repre-
sents an uninitialised value, or is the result of an invalid operation like

√
−1

or (+∞)− (+∞). Some implementations distinguish between different kinds
of NaN, in particular IEEE 754 defines signalling and quiet NaNs.

3.1.4 Subnormal Numbers

Subnormal numbers are required by the IEEE 754 standard, to allow what is
called gradual underflow between the smallest (in absolute value) non-zero
normalised numbers and zero. We first explain what subnormal numbers are;
then we will see why they are not necessary in arbitrary precision.

Assume we have an integer significand in [βn−1, βn) where n is the pre-
cision, and an exponent in [emin, emax]. Write η = βemin . The two smallest
positive normalised numbers are x = βn−1η and y = (βn−1 + 1)η. The dif-
ference y − x equals η, which is tiny compared to the difference between 0
and x, which is βn−1η. In particular, y − x cannot be represented exactly
as a normalised number, and will be rounded to zero in rounded to nearest
mode. This has the unfortunate consequence that instructions like:
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if (y <> x) then

z = 1.0 / (y - x);

will produce a “division by zero” error within 1.0 / (y - x).
Subnormal numbers solve this problem. The idea is to relax the condition

βn−1 ≤ m for the exponent emin. In other words, we include all numbers of
the form m·βemin for 1 ≤ m < βn−1 in the set of valid floating-point numbers.
One could also permit m = 0, and then zero would be a subnormal number,
but we continue to regard zero as a special case.

Subnormal numbers are all integer multiples of η, with a multiplier 1 ≤
m < βn−1. The difference between x = βn−1η and y = (βn−1 + 1)η is now
representable, since it equals η, the smallest positive subnormal number.
More generally, all floating-point numbers are multiples of η, likewise for
their sum or difference (in other words. operations in the subnormal domain
correspond to fixed-point arithmetic). If the sum or difference is non-zero, it
has magnitude at least η, thus cannot be rounded to zero. Thus the “division
by zero” problem mentioned above does not occur with subnormal numbers.

In the IEEE 754 double precision format — called binary64 in the IEEE
754 revision — the smallest positive normal number is 2−1022, and the small-
est positive subnormal number is 2−1074. In arbitrary precision, subnormal
numbers seldom occur, since usually the exponent range is huge compared
to the expected exponents in a given application. Thus the only reason
for implementing subnormal numbers in arbitrary precision is to provide an
extension of IEEE 754 arithmetic. Of course, if the exponent range is un-
bounded, then there is absolutely no need for subnormal numbers, because
any nonzero floating-point number can be normalised.

3.1.5 Encoding

The encoding of a floating-point number x = (−1)s · m · βe is the way the
values s, m and e are stored in the computer. Remember that β is implicit,
i.e., is considered fixed for a given implementation; as a consequence, we do
not consider here mixed radix operations involving numbers with different
radices β and β′.

We have already seen that there are several ways to encode the significand
m when β is not a power of two: in base-βk or in binary. For normal numbers
in radix 2, i.e., 2n−1 ≤ m < 2n, the leading bit of the significand is necessarily
1, thus one might choose not the encode it in memory, to gain an extra bit of
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precision. This is called the implicit leading bit, and it is the choice made in
the IEEE 754 formats. For example the double precision format has a sign
bit, an exponent field of 11 bits, and a significand of 53 bits, with only 52
bits stored, which gives a total of 64 stored bits:

sign exponent significand
(1 bit) (11 bits) (52 bits, plus implicit leading bit)

A nice consequence of this particular encoding is the following. Let x be
a double precision number, neither subnormal, ±∞, NaN, nor the largest
normal number. Consider the 64-bit encoding of x as a 64-bit integer, with
the sign bit in the most significant bit, the exponent bits in the next signifi-
cant bits, and the explicit part of the significand in the low significant bits.
Adding 1 to this 64-bit integer yields the next double precision number to
x, away from zero. Indeed, if the significand m is smaller than 253 − 1, m
becomes m + 1 which is smaller than 253. If m = 253 − 1, then the lowest
52 bits are all set, and a carry occurs between the significand field and the
exponent field. Since the significand field becomes zero, the new significand
is 252, taking into account the implicit leading bit. This corresponds to a
change from (253−1) ·2e to 252 ·2e+1, which is exactly the next number away
from zero. Thanks to this consequence of the encoding, an integer compari-
son of two words (ignoring the actual type of the operands) should give the
same result as a floating-point comparison, so it is possible to sort normal
floating-point numbers as if they were integers of the same length (64-bit for
double precision).

In arbitrary precision, saving one bit is not as crucial as in fixed (small)
precision, where one is constrained by the word size (usually 32 or 64 bits).
Thus, in arbitrary precision, it is easier and preferable to encode the whole
significand. Also, note that having an “implicit bit” is not possible in radix
β > 2, since for a normal number the most significant digit might take several
values, from 1 to β − 1.

When the significand occupies several words, it can be stored in a linked
list, or in an array (with a separate size field). Lists are easier to extend, but
accessing arrays is usually more efficient because fewer memory references
are required in the inner loops.

The sign s is most easily encoded as a separate bit field, with a non-
negative significand. Other possibilities are to have a signed significand,
using either 1’s complement or 2’s complement, but in the latter case a
special encoding is required for zero, if it is desired to distinguish +0 from
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−0. Finally, the exponent might be encoded as a signed word (for example,
type long in the C language).

3.1.6 Precision: Local, Global, Operation, Operand

The different operands of a given operation might have different precisions,
and the result of that operation might be desired with yet another precision.
There are several ways to address this issue.

• The precision, say n is attached to a given operation. In this case,
operands with a smaller precision are automatically converted to preci-
sion n. Operands with a larger precision might either be left unchanged,
or rounded to precision n. In the former case, the code implementing
the operation must be able to handle operands with different precisions.
In the latter case, the rounding mode to shorten the operands must be
specified. Note that this rounding mode might differ from that of the
operation itself, and that operand rounding might yield large errors.
Consider for example a = 1.345 and b = 1.234567 with a precision of 4
digits. If b is taken as exact, the exact value of a− b equals 0.110433,
which when rounded to nearest becomes 0.1104. If b is first rounded to
nearest to 4 digits, we get b′ = 1.235, and a − b′ = 0.1100 is rounded
to itself.

• The precision n is attached to each variable. Here again two cases may
occur. If the operation destination is part of the operation inputs, as
in sub (c, a, b), which means c ← ◦(a − b), then the precision of
the result operand c is known, thus the rounding precision is known in
advance. Alternatively, if no precision is given for the result, one might
choose the maximal (or minimal) precision from the input operands, or
use a global variable, or request an extra precision parameter for the
operation, as in c = sub (a, b, n).

Of course, all these different semantics are non-equivalent, and may yield
different results. In the following, we consider the case where each variable,
including the destination variable, has its own precision, and no pre-rounding
or post-rounding occurs. In other words, the operands are considered exact
to their full precision.

Rounding is considered in detail in §3.1.9. Here we define what we mean
by the correct rounding of a function.
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Definition 3.1.1 Let a, b, . . . be floating-point numbers, f be a mathematical
function, n ≥ 1 be an integer, and ◦ a rounding mode. We say that c is the
correct rounding of f(a, b, . . .), and we write c = ◦(f(a, b, . . .)), if c is the
floating-point number closest from f(a, b, . . .) according to the given rounding
mode. (In case several numbers are at the same distance of f(a, b, . . .), the
rounding mode must define in a deterministic way which one is “the closest”.)

3.1.7 Link to Integers

Most floating-point operations reduce to arithmetic on the significands, which
can be considered as integers as seen in the beginning of this section. There-
fore efficient arbitrary precision floating-point arithmetic requires efficient
underlying integer arithmetic (see Chapter 1).

Conversely, floating-point numbers might be useful for the implementa-
tion of arbitrary precision integer arithmetic. For example, one might use
hardware floating-point numbers to represent an arbitrary precision integer.
Indeed, since a double precision floating-point has 53 bits of precision, it can
represent an integer up to 253 − 1, and an integer A can be represented as:
A = an−1β

n−1 + · · · + aiβ
i + · · · + a1β + a0, where β = 253, and the ai are

stored in double precision numbers. Such an encoding was popular when
most processors were 32-bit, and some had relatively slow integer operations
in hardware. Now that most computers are 64-bit, this encoding is obsolete.

Floating-point expansions are a variant of the above. Instead of storing
ai and having βi implicit, the idea is to directly store aiβ

i. Of course, this
only works for relatively small i, i.e., whenever aiβ

i does not exceed the
format range. For example, for IEEE 754 double precision and β = 253, the
maximal precision is 1024 bits. (Alternatively, one might represent an integer
as a multiple of the smallest positive number 2−1074, with a corresponding
maximal precision of 2098 bits.)

Hardware floating-point numbers might also be used to implement the
Fast Fourier Transform (FFT), using complex numbers with floating-point
real and imaginary part (see §3.3.1).

3.1.8 Ziv’s Algorithm and Error Analysis

A rounding boundary is a point at which the rounding function ◦(x) is dis-
continuous.
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In fixed precision, for basic arithmetic operations, it is sometimes possi-
ble to design one-pass algorithms that directly compute a correct rounding.
However, in arbitrary precision, or for elementary or special functions, the
classical method is to use Ziv’s algorithm:

1. we are given an input x, a target precision n, and a rounding mode;

2. compute an approximation y with precision m > n, and a correspond-
ing error bound ε such that |y − f(x)| ≤ ε;

3. if [y−ε, y+ε] contains a rounding boundary, increase m and go to Step
2;

4. output the rounding of y, according to the given mode.

The error bound ε at Step 2 might be computed either a priori, i.e., from
x and n only, or dynamically, i.e., from the different intermediate values
computed by the algorithm. A dynamic bound will usually be tighter, but
will require extra computations (however, those computations might be done
in low precision).

Depending on the mathematical function to be implemented, one might
prefer an absolute or a relative error analysis. When computing a relative
error bound, at least two techniques are available: one might express the
errors in terms of units in the last place (ulps), or one might express them in
terms of true relative error. It is of course possible in a given analysis to mix
both kinds of errors, but in general one loses a constant factor — the radix
β — when converting from one kind of relative error to the other kind.

Another important distinction is forward vs backward error analysis. As-
sume we want to compute y = f(x). Because the input is rounded, and/or
because of rounding errors during the computation, we might actually com-
pute y′ ≈ f(x′). Forward error analysis will bound |y′−y| if we have a bound
on |x′ − x| and on the rounding errors that occur during the computation.

Backward error analysis works in the other direction. If the computed
value is y′, then backward error analysis will give us a number δ such that,
for some x′ in the ball |x′ − x| ≤ δ, we have y′ = f(x′). This means that the
error is no worse than might have been caused by an error of δ in the input
value. Note that, if the problem is ill-conditioned, δ might be small even if
|y′ − y| is large.
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In our error analyses, we assume that no overflow or underflow occurs,
or equivalently that the exponent range is unbounded, unless the contrary is
explicitly stated.

3.1.9 Rounding

There are several possible definitions of rounding. For example probabilistic
rounding — also called stochastic rounding — chooses at random a rounding
towards +∞ or −∞ for each operation. The IEEE 754 standard defines four
rounding modes: towards zero, +∞, −∞ and to nearest (with ties broken
to even). Another useful mode is “rounding away”, which rounds in the
opposite direction from zero: a positive number is rounded towards +∞,
and a negative number towards −∞. If the sign of the result is known, all
IEEE 754 rounding modes might be converted to either rounding to nearest,
rounding towards zero, or rounding away.

Theorem 3.1.1 Consider a binary floating-point system with radix β and
precision n. Let u be the rounding to nearest of some real x, then the following
inequalities hold:

|u− x| ≤ 1

2
ulp(u)

|u− x| ≤ 1

2
β1−n|u|

|u− x| ≤ 1

2
β1−n|x|.

Proof. For x = 0, necessarily u = 0, and the statement holds. Without loss
of generality, we can assume u and x positive. The first inequality is the
definition of rounding to nearest, and the second one follows from ulp(u) ≤
β1−nu. (In the case β = 2, it gives |u− x| ≤ 2−n|u|.) For the last inequality,
we distinguish two cases: if u ≤ x, it follows from the second inequality. If
x < u, then if x and u have the same exponent, i.e., βe−1 ≤ x < u < βe, then
1
2
ulp(u) = 1

2
βe−n ≤ 1

2
β1−nx. The only remaining case is βe−1 ≤ x < u = βe.

Since the floating-point number preceding βe is βe(1 − β−n), and x was
rounded to nearest, we have |u− x| ≤ 1

2
βe−n here too.

In order to round according to a given rounding mode, one proceeds as
follows:
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1. first round as if the exponent range was unbounded, with the given
rounding mode;

2. if the rounded result is within the exponent range, return this value;

3. otherwise raise the “underflow” or “overflow” exception, and return ±0
or ±∞ accordingly.

For example, assume radix 10 with precision 4, emax = 3, with x = 0.9234·103,
y = 0.7656 · 102. The exact sum x + y equals 0.99996 · 103. With rounding
towards zero, we obtain 0.9999 · 103, which is representable, so there is no
overflow. With rounding to nearest, x + y rounds to 0.1000 · 104 with an
unbounded exponent range, which exceeds emax = 3, thus we get +∞ as
result, with an overflow. In this model, the overflow depends not only on
the operands, but also on the rounding mode. This is consistent with IEEE
754, which requires that a number larger or equal to (1 − 2−n)2emax rounds
to +∞.

The “round to nearest” mode from IEEE 754 rounds the result of an
operation to the nearest representable number. In case the result of an
operation is exactly in the middle of two consecutive numbers, the one with
its least significant bit zero is chosen (remember IEEE 754 only considers
radix 2). For example 1.10112 is rounded with a precision of 4 bits to 1.1102,
as is 1.11012. However this rule does not readily extend to an arbitrary radix.
Consider for example radix ρ = 3, a precision of 4 digits, and the number
1212.111 . . .3. Both 1212.3 and 1220.3 end in an even digit. The natural
extension is to require the whole significand to be even, when interpreted
as an integer in [ρn−1, βn − 1]. In this setting, (1212.111 . . .)3 rounds to
(1212)3 = 5010. (Note that ρn is an odd number here.)

Assume we want to correctly round to n bits a real number whose binary
expansion is 2e ·0.1b1 . . . bnbn+1 . . . It is enough to know the values of r = bn+1

— called the round bit — and that of the sticky bit s, which is 0 when
bn+2bn+3 . . . is identically zero, and 1 otherwise. Table 3.1 shows how to
correctly round given r, s, and the given rounding mode; rounding to ±∞
being converted to rounding to zero or away, according to the sign of the
number. The entry “bn” is for round to nearest in the case of a tie: if bn = 0
it will be unchanged, but if bn = 1 we add 1 (thus changing bn to 0).

In general, we do not have an infinite expansion, but a finite approxima-
tion y of an unknown real value x. For example, y might be the result of an
arithmetic operation such as division, or an approximation to the value of a
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r s to zero to nearest away
0 0 0 0 0
0 1 0 0 1
1 0 0 bn 1
1 1 0 1 1

Table 3.1: Rounding rules according to the round bit r and the sticky bit s:
a “0” entry means truncate (round to zero), a “1” means round away from
zero (add 1 to the truncated significand).

transcendental function such as exp. The following problem arises: given the
approximation y, and a bound on the error |y−x|, is it possible to determine
the correct rounding of x? Algorithm RoundingPossible returns true if
and only if it is possible.

� �� �
1 Algorithm RoundingPossible .
2 Input : a floating-point number y = 0.1y2 . . . ym , a precision n ≤ m ,
3 an e r r o r bound ε = 2−k , a rounding mode ◦
4 Output : true when ◦n(x) can be determined for |y − x| < ε
5 I f k ≤ n + 1 then re turn false
6 I f ◦ i s to nea r e s t then ℓ← n + 1 else ℓ← n
7 I f ◦ i s to nea r e s t and yℓ = yℓ+1 then re turn true
8 I f yℓ+1 = yℓ+2 = . . . = yk then re turn false
9 Return true .


 	� �

Proof. Since rounding is monotonic, it is possible to determine ◦(x) exactly
when ◦(y−2−k) = ◦(y+2−k), or in other words when the interval [y−2−k, y+
2−k] contains no rounding boundary. The rounding boundaries for rounding
to nearest in precision n are those for directed rounding in precision n + 1.

If k ≤ n + 1, then the interval [−2−k, 2−k] has width at least 2−n, thus
contains one rounding boundary: it is not possible to round correctly. In case
of rounding to nearest, if the round bit and the following bit are equal —
thus 00 or 11 — and the error is after the round bit (k > n+1), it is possible
to round correctly. Otherwise it is only possible when yℓ+1, yℓ+2, . . . , yk are
not all identical.
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The Double Rounding Problem

When a given real value x is first rounded to precision m, then to precision
n < m, we say that a “double rounding” occurs. The “double rounding
problem” happens when this value differs from the direct rounding of x to
the smaller precision n, assuming the same rounding mode is used in all
cases:

◦n(◦m(x)) 6= ◦n(x).

The double rounding problem does not occur for the directed rounding
modes. For those rounding modes, the rounding boundaries at the larger
precision m refine those at the smaller precision n, thus all real values x that
round to the same value y at precision m also round to the same value at
precision n, namely ◦n(y).

Consider the decimal value x = 3.14251. Rounding to nearest to 5 digits,
one gets y = 3.1425; rounding y to nearest-even to 4 digits, one gets 3.142,
whereas the direct rounding of x would give 3.143.

With rounding to nearest mode, the double rounding problem only occurs
when the second rounding involves the even-rule, i.e., the value y = ◦m(x)
is a rounding boundary at precision n. Indeed, otherwise y is at distance at
least one ulp (in precision m) of a rounding boundary at precision n, and
since |y − x| is bounded by half an ulp (in precision m), all possible values
for x round to the same value in precision n.

Note that the double rounding problem does not occur with all ways of
breaking ties for rounding to nearest (Ex. 3.7.2).

3.1.10 Strategies

To determine correct rounding of f(x) with n bits of precision, the best
strategy is usually to first compute an approximation y of f(x) with a working
precision of m = n + h bits, with h relatively small. Several strategies are
possible in Ziv’s algorithm (§3.1.8) when this first approximation y is not
accurate enough, or too close to a rounding boundary.

• Compute the exact value of f(x), and round it to the target precision n.
This is possible for a basic operation, for example f(x) = x2, or more
generally f(x, y) = x+y or x×y. Some elementary functions may yield
an exact representable output too, for example

√
2.25 = 1.5. An “exact

result” test after the first approximation avoids possibly unnecessary
further computations.
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• Repeat the computation with a larger working precision m′ = n +
h′. Assuming that the digits of f(x) behave “randomly” and that
|f ′(x)/f(x)| is not too large, using h′ ≈ lg n is enough to guarantee
that rounding is possible with probability 1−O( 1

n
). If rounding is still

not possible, because the h′ last digits of the approximation encode
0 or 2h′ − 1, one can increase the working precision and try again.
A check for exact results guarantees that this process will eventually
terminate, provided the algorithm used has the property that it gives
the exact result if this result is representable and the working precision
is high enough. For example, the square root algorithm should return
the exact result if it is representable (see Algorithm FPSqrt in § 3.5,
and also exercise 3.7.3).

3.2 Addition, Subtraction, Comparison

Addition and subtraction of floating-point numbers operate from the most
significant digits, whereas the integer addition and subtraction start from the
least significant digits. Thus completely different algorithms are involved. In
addition, in the floating-point case, part or all of the inputs might have no
impact on the output, except in the rounding phase.

In summary, floating-point addition and subtraction are more difficult to
implement than integer addition/subtraction for two reasons:

• scaling due to the exponents requires shifting the significands before
adding or subtracting them. In principle one could perform all opera-
tions using only integer operations, but this would require huge integers,
for example when adding 1 and 2−1000.

• as the carries are propagated from least to most significant digits, one
may have to look at arbitrarily low input digits to guarantee correct
rounding.

In this section, we distinguish between “addition”, where both operands
to be added have the same sign, and “subtraction”, where the operands to
be added have different signs (we assume a sign-magnitude representation).
The case of one or both operands zero is treated separately; in the description
below we assume that all operands are nonzero.
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3.2.1 Floating-Point Addition

Algorithm FPadd adds two binary floating-point numbers b and c of the
same sign. More precisely, it computes the correct rounding of b + c, with
respect to the given rounding mode ◦. For the sake of simplicity, we assume
b and c are positive, b ≥ c > 0. It will also be convenient to scale b and c so
that 2n−1 ≤ b < 2n and 2m−1 ≤ c < 2m, where n is the desired precision of
the output, and m ≤ n. Of course, if the inputsb and c to Algorithm FPadd
are scaled by 2k, then the output must be scaled by 2−k. We assume that
the rounding mode is to nearest, towards zero, or away from zero (rounding
to ±∞ reduces to rounding towards zero or away from zero, depending on
the sign of the operands).

� �� �
1 Algorithm FPadd .
2 Input : b ≥ c > 0 two binary f l o a t i n g−po int numbers ,
3 a p r e c i s i o n n such that 2n−1 ≤ b < 2n ,
4 and a rounding mode ◦ .
5 Output: a floating-point number a o f p r e c i s i o n n and s c a l e e
6 such that a · 2e = ◦(b + c)
7 Sp l i t b i n t o bh + bℓ where bh conta in s the n most s i g n i f i c a n t
8 b i t s o f b .
9 Sp l i t c i n t o ch + cℓ where ch conta in s the most

10 s i g n i f i c a n t b i t s o f c , and ulp(ch) = ulp(bh) .
11 ah ← bh + ch, e← 0
12 (c, r, s)← bℓ + cℓ

13 (a, t)← ah + c + round(◦, r, s)
14 e← 0
15 i f a ≥ 2n then
16 a← round2(◦, a mod 2, t) , \quad e← e + 1
17 i f a = 2n then (a, e)← (a/2, e + 1)
18 Return (a, e) .


 	� �

The values of round(◦, r, s) and round2(◦, a mod 2, t) are given in Ta-
ble 3.2. At step 12, the notation (c, r, s)← bl + cl means that c is the carry
bit of bl + cl, r the round bit, and s the sticky bit: c, r, and s are in {0, 1}.
For rounding to nearest, t is a ternary value, which is respectively positive,
zero, or negative when a is smaller than, equal to, or larger than the exact
sum b + c.
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◦ r s round(◦, r, s) t := sign(b + c− a)
zero any any 0
away any any 0 if r = s = 0, 1 otherwise

nearest 0 any 0 +s
nearest 1 0 0/1 (even rounding) +1/−1
nearest 1 6= 0 1 −1

◦ a mod 2 t round2(◦, a mod 2, t)
any 0 any a/2
zero 1 (a− 1)/2
away 1 (a + 1)/2

nearest 1 0 (a− 1)/2 if even, (a + 1)/2 otherwise
nearest 1 ±1 (a + t)/2

Table 3.2: Rounding rules for addition.

Theorem 3.2.1 Algorithm FPadd is correct.

Proof. Without loss of generality, we can assume that 2n−1 ≤ b < 2n and
2m−1 ≤ c < 2m, with m ≤ n. With this assumption, bh and ch are the
integer parts of b and c, bl and cl their fractional parts. Since b ≥ c, we have
ch ≤ bh and 2n−1 ≤ bh ≤ 2n − 1, thus 2n−1 ≤ ah ≤ 2n+1 − 2, and at step 13,
2n−1 ≤ a ≤ 2n+1. If a < 2n, a is the correct rounding of b + c. Otherwise, we
face the “double rounding” problem: rounding a down to n bits will give the
correct result, except when a is odd and rounding is to nearest. In that case,
we need to know if the first rounding was exact, and if not in which direction
it was rounded; this information is represented by the ternary value t. After
the second rounding, we have 2n−1 ≤ a ≤ 2n.

Note that the exponent ea of the result lies between eb (the exponent of b,
here we considered the case eb = n) and eb +2. Thus no underflow can occur
in an addition. The case ea = eb + 2 can occur only when the destination
precision is less than that of the operands.

3.2.2 Floating-Point Subtraction

Floating-point subtraction is very similar to addition; with the difference
that cancellation can occur. Consider for example the subtraction 6.77823−
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5.98771. The most significant digit of both operands disappeared in the
result 0.79052. This cancellation can be dramatic, as in 6.7782357934 −
6.7782298731 = 0.0000059203, where six digits were cancelled.

Two approaches are possible, assuming n result digits are wanted, and
the exponent difference between the inputs is d.

• Subtract from the most n significant digits of the larger operand (in
absolute value) the n − d significant digits of the smaller operand. If
the result has n − e digits with e > 0, restart with n + e digits from
the larger operand and (n + e)− d from the smaller one.

• Alternatively, predict the number e of cancelled digits in the subtrac-
tion, and directly subtract the (n+ e)− d most significant digits of the
smaller operand from the n+e most significant digits of the larger one.

Note that in the first case, we might have e = n, i.e., all most significant
digits cancel, thus the process might need to be repeated several times.

The first step in the second phase is usually called leading zero detection.
Note that the number e of cancelled digits might depend on the rounding
mode. For example 6.778 − 5.7781 with a 3-digit result yields 0.999 with
rounding toward zero, and 1.00 with rounding to nearest. Therefore in a real
implementation, the exact definition of e has to be made more precise.

Finally, in practice one will consider n+g and (n+g)−d digits instead of
n and n− d, where the g “guard digits” will prove useful (i) either to decide
of the final rounding, (ii) and/or to avoid another loop in case e ≤ g.

Sterbenz’s Theorem

Sterbenz’s Theorem is an important result concerning floating-point subtrac-
tion (of operands of same sign). It states that the rounding error is zero in
some important cases. More precisely:

Theorem 3.2.2 (Sterbenz) If x and y are two floating-point numbers of
same precision n, such that y lies in the interval [x/2, 2x], then y−x is exactly
representable in precision n.

Proof. The case x = y = 0 is trivial, so assume that x 6= 0. Since y lies
in [x/2, 2x], x and y must have the same sign, We assume without loss of
generality that x and y are positive.
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Assume x ≤ y ≤ 2x (the same reasoning applies for x/2 ≤ y < x,
i.e., y ≤ x ≤ 2y, which is symmetric in x, y). Then since x ≤ y, we have
ulp(x) ≤ ulp(y), thus y is an integer multiple of ulp(x). It follows that y−x is
an integer multiple of ulp(x) too, and since 0 ≤ y−x ≤ x, y−x is necessarily
representable with the precision of x.

It is important to note that Sterbenz’s Theorem applies for any radix β; the
constant 2 in [x/2, 2x] has nothing to do with the radix.

3.3 Multiplication

Multiplication of floating-point numbers is called a short product. This re-
flects the fact that in some cases, the low part of the full product of the
significands has no impact — except maybe for the rounding — on the final
result. Consider the multiplication xy, where x = ℓ · βe, and y = m · βf .
Then ◦(x · y) = ◦(ℓ ·m)βe+f , thus it suffices to consider the case where x = ℓ
and y = m are integers, and the product is rounded at some weight βg for
g ≥ 0. Either the integer product ℓ ·m is computed exactly, using one of the
algorithms from Chapter 1, and then rounded; or the upper part is computed
directly using a “short product algorithm”, with correct rounding. The
different cases that can occur are depicted in Fig. 3.1.

An interesting question is: how many consecutive identical bits can occur
after the round bit? Without loss of generality, we can rephrase this question
as follows. Given two odd integers of at most n bits, what is the longest run of
identical bits in their product? (In the case of an even significand, one might
write it m = ℓ·2e with ℓ odd.) There is no a priori bound except the trivial one
of 2n−2 for the number of zeros, and 2n−1 for the number of ones. Consider
with a precision 5 bits for example, 27×19 = (1000000001)2. More generally
such a case corresponds to a factorisation of 22n−1 + 1 into two integers of n
bits, for example 258513× 132913 = 235 + 1. For consecutive ones, the value
2n is not possible since 22n − 1 cannot factor into two integers of at most n
bits. Therefore the maximal runs have 2n− 1 ones, for example 217× 151 =
(111111111111111)2 for n = 8. A larger example is 849583×647089 = 239−1.

The exact product of two floating-point numbers m · βe and m′ · βe′ is
(mm′) · βe+e′ . Therefore, if no underflow or overflow occurs, the problem
reduces to the multiplication of the significands m and m′. See Algorithm
FPmultiply.
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Figure 3.1: Different multiplication scenarios, according to the input and
output precisions. The rectangle corresponds to the full product of the inputs
x and y (most significand digits bottom left), the triangle to the wanted short
product. Case (a), no rounding is necessary, the product being exact; case
(b): the full product needs to be rounded, but the inputs should not be; case
(c): the input with the larger precision might be truncated before performing
a short product; case (d): both inputs might be truncated.

The product at step 4 of FPmultiply is a short product, i.e., a product
whose most significant part only is wanted, as discussed at the start of this
Section. In the quadratic range, it can be computed in about half the time of
a full product. In the Karatsuba and Toom-Cook ranges, Mulders’ algorithm
can gain 10% to 20%; however due to carries, using this algorithm for floating-
point computations is tricky. Lastly, in the FFT range, no better algorithm
is known than computing the full product mm′, and then rounding it.

Hence our advice is to perform a full product of m and m′, possibly after
truncating them to n + g digits if they have more than n + g digits. Here g
(the number of guard digits) should be positive (see Exercise 3.7.4).

It seems wasteful to multiply n-bit operands, producing a 2n-bit product,



100 Modern Computer Arithmetic, version 0.2 of June 26, 2008

� �� �
1 Algorithm FPmultiply .

2 Input : x = m · βe , x′ = m′ · βe′ , a p r e c i s i o n n , a rounding mode ◦
3 Output : ◦(xx′) rounded to p r e c i s i o n n
4 m′′ ← ◦(mm′) rounded to p r e c i s i o n n

5 Return m′′ · βe+e′ .

 	� �

only to discard the low-order n bits. Algorithm ShortProduct computes
an approximation to the short product without computing the 2n-bit full
product.

Error analysis of the short product. Consider two n-word normalised
significands A and B that we multiply using a short product algorithm, where
the notation FullProduct(A,B, n) means the full integer product A · B.

� �� �
1 Algorithm ShortProduct .
2 Input : i n t e g e r s A, B , and n , with 0 ≤ A, B < βn

3 Output : an approximation o f AB div βn

4 i f n ≤ n0 then re turn FullProduct(A, B) div βn

5 choose k ≥ n/2 , ℓ← n− k
6 C1 ← FullProduct(A div βℓ, B div βℓ) div βk−ℓ

7 C2 ← ShortProduct(A mod βℓ, B div βk, ℓ)
8 C3 ← ShortProduct(A div βk, B mod βℓ, ℓ)
9 Return C1 + C2 + C3 .


 	� �

Theorem 3.3.1 The value C ′ returned by Algorithm ShortProduct differs
from the exact short product C = AB div βn by at most 3(n− 1):

C ′ ≤ C ≤ C ′ + 3(n− 1).

Proof. First since A,B are nonnegative, and all roundings are truncations,
the inequality C ′ ≤ C easily follows.

Let A =
∑

i aiβ
i and B =

∑
j bjβ

j, where 0 ≤ ai, bj < β. The possible
errors come from: (i) the neglected aibj terms, i.e., parts C ′

2, C
′
3, C4 of Fig. 3.2,

(ii) the truncation while computing C1, (iii) the error in the recursive calls
for C2 and C3.
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Figure 3.2: Graphical view of Algorithm ShortProduct: the computed
parts are C1, C2, C3, and the neglected parts are C ′

2, C
′
3, C4 (most significant

part bottom left).

We first prove that the algorithm accumulates all products aibj with
i + j ≥ n − 1. This corresponds to all terms on and below the diagonal
in Fig. 3.2. The most significant neglected terms are the bottom-left terms
from C2 and C3, respectively aℓ−1bk−1 and ak−1bℓ−1. Their contribution is at
most 2(β − 1)2βn−2. The neglected terms from the next diagonal contribute
to at most 4(β − 1)2βn−3, and so on. The total contribution of neglected
terms is thus bounded by:

(β − 1)2βn[2β−2 + 4β−3 + 6β−4 + · · · ] < 2βn

(the inequality is strict since the sum is finite).

The truncation error in C1 is at most βn, thus the maximal difference
ε(n) between C and C ′ satisfies:

ε(n) < 3 + 2ε(⌊n/2⌋),

which gives ε(n) < 3(n− 1), since ε(1) = 0.

Question: is the upper bound C ′ +(n− 1) attained? Can the theorem be
improved?

Remark: if one of the operands was truncated before applying algorithm
ShortProduct, simply add one unit to the upper bound (the truncated part
is less than 1, thus its product by the other operand is bounded by βn).
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3.3.1 Integer Multiplication via Complex FFT

To multiply n-bit integers, it may be advantageous to use the Fast Fourier
Tranform (FFT for short, see §1.3.4). Note that the FFT computes the cyclic
convolution z = x ∗ y defined by

zk =
∑

0≤j<N

xjyk−j mod N for 0 ≤ k < N.

In order to use the FFT for integer multiplication, we have to pad the input
vectors with zeros, thus increasing the length of the transform from N to
2N .

FFT algorithms fall into two classes: those using number theoretical prop-
erties, and those based on complex floating-point computations. The latter,
while not always giving the best known asymptotic complexity, have good
practical behaviour, because they take advantage of the efficiency of floating-
point hardware. The drawback of the complex floating-point FFT (complex
FFT for short) is that, being based on floating-point computations, it re-
quires a rigorous error analysis. However, in some contexts where occasional
errors are not disastrous, one may accept a small probability of error if this
speeds up the computation. For example, in the context of integer factorisa-
tion, a small probability of error is acceptable because the result (a purported
factorisation) can easily be checked and discarded if incorrect.

The following theorem provides a tight error analysis of the complex FFT:

Theorem 3.3.2 The FFT allows computation of the cyclic convolution z =
x ∗ y of two vectors of length N = 2n of complex values such that

||z′ − z||∞ < ||x|| · ||y|| · ((1 + ε)3n(1 + ε
√

5)3n+1(1 + µ)3n − 1), (3.2)

where || · || and || · ||∞ denote the Euclidean and infinity norms respectively, ε
is such that |(a± b)′− (a± b)| < ε|a± b|, |(ab)′− (ab)| < ε|ab| for all machine

floats a, b, µ > |(wk)′ − (wk)|, 0 ≤ k < N , w = e
2πi
N , and (·)′ refers to the

computed (stored) value of · for each expression.

For the IEEE 754 double precision format, with rounding to nearest, we
have ε = 2−53, and if the wk are correctly rounded, we can take µ = ε/

√
2.

For a fixed FFT size N = 2n, Eq. (3.2) enables one to compute a bound
B on the coefficients of x and y, such that ||z′ − z||∞ < 1/2, which enables
one to uniquely round the coefficients of z′ to an integer. Table 3.3 gives
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n b m
2 24 48
3 23 92
4 22 176
5 22 352
6 21 672
7 20 1280
8 20 2560
9 19 4864
10 19 9728

n b m
12 17 34816
13 17 69632
14 16 131072
15 16 262144
16 15 491520
17 15 983040
18 14 1835008
19 14 3670016
20 13 6815744

Table 3.3: Maximal number b of bits per IEEE 754 double-precision floating-
point number binary64 (53-bit significand), and maximal m for a plain m×m
bit integer product, for a given FFT size 2n, with signed coefficients.

b = lg B, the number of bits that can be used in a 64-bit floating-point word,
if we wish to perform m-bit multiplication exactly (in fact m = 2n−1b). It
is assumed that the FFT is performed with signed coefficients in the range
[−2b−1,+2b−1) – see [50, pg. 161].

Note that Theorem 3.3.2 is a worst-case result; with rounding to nearest
we expect the error to be smaller due to cancellation – see Exercise 3.7.9.

3.3.2 The Middle Product

Given two integers of 2n and n bits respectively, their “middle product” con-
sists of the n middle bits of their product (see Fig 3.3). The middle product

y

x

@
@

@
@

@

@
@

@
@

@

Figure 3.3: The middle product of y of 2n bits and x of n bits is the middle
region.

might be computed using two short products, one (low) short product be-
tween the high part of y and x, and one (high) short product between the low
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part of y and x. However there are algorithms to compute a 2n × n middle
product with the same M(n) complexity as an n× n full product (see §3.8).

Several applications may benefit from an efficient middle product. One
of those applications is Newton’s method (§4.2). Consider for example the
reciprocal iteration (§4.2.2) xj+1 = xj + xj(1− xjy). If xj has n bits, to get
2n accurate bits in xj+1, one has to consider 2n bits from y. The product xjy
then has 3n bits, but if xj is accurate to n bits, the n most significant bits
of xjy cancel with 1, and the n least significant bits can be ignored in this
iteration. Thus what is wanted is exactly the middle product of xj and y.

Payne and Hanek Argument Reduction

Another application of the middle product is Payne and Hanek argument
reduction. Assume x = m · 2e is a floating-point number with a significand
1
2
≤ m < 1 of n bits and a large exponent e (say n = 53 and e = 1024 to

fix the ideas). We want to compute sin x with a precision of n bits. The
classical argument reduction works as follows: first compute k = ⌊x/π⌉, then
compute the reduced argument

x′ = x− kπ. (3.3)

About e bits will be cancelled in the subtraction x − (kπ), thus we need to
compute kπ with a precision of at least e + n bits to get an accuracy of at
least n bits for x′. Assuming 1/π has been precomputed to precision e, the
computation of k costs M(e, n), and the multiplication kπ costs M(e + n),
thus the total cost is about M(e) when e≫ n. The key idea of Payne and

y

x

1/π

@
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@

@

@
@

@
@

@

Figure 3.4: A graphical view of Payne and Hanek algorithm.

Hanek algorithm is to rewrite Eq. (3.3) as follows:

x′ = π(
x

π
− k). (3.4)

If the significand of x has n≪ e bits, only about 2n bits from the expansion
of 1/π will effectively contribute to the n most significant bits of x′, namely
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the bits of weight 2−e−n to 2−e+n. Let y be the corresponding 2n-bit part
of 1/π. Payne and Hanek’s algorithm works as follows: first multiply the
n-bit significand of x by y, keep the n middle bits, and multiply by a n-bit
approximation of π. The total cost is M(2n, n) + M(n), or even 2M(n) if
the middle product is performed in time M(n).

3.4 Reciprocal and Division

As for integer operations (§1.4), one should try as much as possible to trade
floating-point divisions for multiplications, since the cost of a floating-point
multiplication is theoretically smaller than the cost for a division by a con-
stant factor (usually 2 up to 5 depending on the algorithm used). In practice,
the ratio might not even be constant, as some implementations provide divi-
sion with cost Θ(M(n) log n) or Θ(n2).

When several divisions have to be performed with the same divisor, a well-
known trick is to first compute the reciprocal of the divisor (§3.4.1); then each
division reduces to a multiplications by the reciprocal. A small drawback is
that each division incurs two rounding errors (one for the reciprocal and
one for multiplication by the reciprocal) instead of one, so we can no longer
guarantee a correctly rounded result. For example, in base ten with six digits,
3.0/3.0 might evaluate to 0.999999 = 3.0× 0.333333.

The cases of a single division, or several divisions with a varying divisor,
are considered in § 3.4.2.

3.4.1 Reciprocal

We describe here algorithms that compute an approximate reciprocal of a
positive floating-point number a, using integer-only operations (see Chap-
ter 1). Those integer operations simulate floating-point computations, but
all roundings are made explicit. The number a is represented by an inte-
ger A of n words in radix β: a = β−nA, and we assume βn/2 ≤ A, such
that 1/2 ≤ a < 1. (This does not cover all cases for β ≥ 3, however if
βn−1 ≤ A < βn/2, multiplying A by some appropriate integer k < β will
reduce to that case, then it suffices to multiply by k the reciprocal of ka.)

We first perform an error analysis of Newton’s method (§4.2) assuming
all computations are done with infinite precision, thus neglecting roundoff
errors.
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Lemma 3.4.1 Let 1/2 ≤ a < 1, ρ = 1/a, x > 0, and x′ = x + x(1 − ax).
Then:

0 ≤ ρ− x′ ≤ x2

θ3
(ρ− x)2,

for some θ ∈ [min(x, ρ),max(x, ρ)].

Proof. Newton’s iteration is based on approximating the function by its
tangent. Let f(t) = a−1/t, with ρ the root of f . The second-order expansion
of f at t = ρ with explicit remainder is:

f(ρ) = f(x) + (ρ− x)f ′(x) +
(ρ− x)2

2
f ′′(θ),

for some θ ∈ [min(x, ρ),max(x, ρ)]. Since f(ρ) = 0, this simplifies to

ρ = x− f(x)

f ′(x)
− (ρ− x)2

2

f ′′(θ)

f ′(x)
. (3.5)

Substituting f(t) = a− 1/t, f ′(t) = 1/t2 and f ′′(t) = −2/t3, it follows that:

ρ = x + x(1− ax) +
x2

θ3
(ρ− x)2,

which proves the claim.

Algorithm ApproximateReciprocal computes an approximate recipro-
cal. The input A is assumed to be normalised, i.e., βn/2 ≤ A < βn. The
output integer X is an approximation to β2n/A.� �� �

1 Algorithm ApproximateReciprocal .

2 Input : A =
∑n−1

i=0 aiβ
i , with 0 ≤ ai < β and β/2 ≤ an−1 .

3 Output : X = βn +
∑n−1

i=0 xiβ
i with 0 ≤ xi < β .

4 i f n ≤ 2 then re turn ⌈β2n/A⌉ − 1
5 else
6 ℓ← ⌊n−1

2 ⌋ , h← n− ℓ

7 Ah ←
∑h−1

i=0 aℓ+iβ
i

8 Xh ← ApproximateReciprocal(Ah)
9 T ← AXh

10 while T ≥ βn+h do
11 (Xh, T )← (Xh − 1, T −A)
12 T ← βn+h − T
13 Tm ← ⌊Tβ−ℓ⌋
14 U ← TmXh

15 Return Xhβh + ⌊Uβℓ−2h⌋ .

 	� �
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Lemma 3.4.2 If β is a power of two satisfying β ≥ 8, the output X of
Algorithm ApproximateReciprocal satisfies:

AX < β2n < A(X + 2).

Proof. For n ≤ 2 the algorithm returns X = ⌊β2n

A
⌋, except when A = βn/2

where it returns X = 2βn − 1. In all cases we have AX < β2n ≤ A(X + 1),
thus the lemma holds.

Now consider n ≥ 3. We have ℓ = ⌊n−1
2
⌋ and h = n − ℓ, thus n = h + ℓ

and h > ℓ. The algorithm first computes an approximate reciprocal of the
upper h words of A, and then updates it to n words using Newton’s iteration.

After the recursive call at line 8, we have by induction

AhXh < β2h < Ah(Xh + 2). (3.6)

After the product T ← AXh and the while-loop at steps 10-11, we still have
T = AXh, where T and Xh may have new values, and in addition T < βn+h.
We also have βn+h < T +2A; we prove the latter by distinguishing two cases.
Either we entered the while-loop, then since the value of T decreases by A at
each loop, the previous value T + A was necessarily larger or equal to βn+h.
If we didn’t enter the while-loop, the value of T is the original one T = AXh.
Multiplying Eq. (3.6) by βℓ gives: βn+h < Ahβ

ℓ(Xh + 2) ≤ A(Xh + 2) =
T + 2A. We thus have:

T < βn+h < T + 2A.

It follows T > βn+h − 2A > βn+h − 2βn. As a consequence, the value of
βn+h−T computed at step 12 cannot exceed 2βn−1. The last lines compute
the product TmXh, where Tm is the upper part of T , and put its ℓ most
significant words in the low part Xℓ of the result X.

Now let us perform the error analysis. Compared to Lemma 3.4.1, x
stands for Xhβ

−h, a stands for Aβ−n, and x′ stands for Xβ−n. The while-
loop ensures that we start from an approximation x < 1/a, i.e., AXh < βn+h.
Then Lemma 3.4.1 guarantees that x ≤ x′ ≤ 1/a if x′ is computed with
infinite precision. Here we have x ≤ x′, since X = Xhβ

h +Xℓ, where Xℓ ≥ 0.
The only differences with infinite precision are:

• the low ℓ words from 1− ax — here T at line 12 — are neglected, and
only its upper part (1− ax)h — here Tm — is considered;

• the low 2h− ℓ words from x(1− ax)h are neglected.
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Those two approximations make the computed value of x′ smaller or equal
to the one which would be computed with infinite precision, thus we have for
the computed value x′:

x ≤ x′ ≤ 1/a.

The mathematical error is bounded from Lemma 3.4.1 by x2

θ3 (ρ − x)2 <

4β−2h since x2

θ3 ≤ 1 and |ρ−x| < 2β−h. The truncation from 1−ax, which is
multiplied by x < 2, produces an error less than 2β−2h. Finally the truncation
of x(1− ax)h produces an error less than β−n. The final result is thus:

x′ ≤ ρ < x′ + 6β−2h + β−n.

Assuming 6β−2h ≤ β−n, which holds as soon as β ≥ 6 since 2h > n, this
simplifies to:

x′ ≤ ρ < x′ + 2β−n,

which gives with x′ = Xβ−n and ρ = βn/A:

X ≤ β2n

A
< X + 2.

Since β is assumed to be a power of two, equality can hold only when A is
a power of two itself, i.e., A = βn/2. In that case there is only one value
of Xh that is possible for the recursive call, namely Xh = 2βh − 1. In that
case T = βn+h − βn/2 before the while-loop, which is not entered. Then
βn+h − T = βn/2, which multiplied by Xh gives (again) βn+h − βn/2, whose
h most significant words are β − 1. Thus Xℓ = βℓ − 1, and X = 2βn − 1:
equality does not occur either in that case.

Remark. The Lemma might be extended to the case βn−1 ≤ A < βn or
to a radix β which is not a power of two. However we prefer to state this
restricted Lemma with simple bounds.

Complexity Analysis. Let I(n) be the cost to invert an n-word number
using Algorithm ApproximateReciprocal. If we neglect the linear costs,
we have I(n) ≈ I(n/2) + M(n, n/2) + M(n/2), where M(n, n/2) is the cost
of an n × (n/2) product — the product AXh at step 9 — and M(n/2) the
cost of an (n/2) × (n/2) product — the product TmXh at step 14. If the
n × (n/2) product is performed via two (n/2) × (n/2) products, we have
I(n) ≈ I(n/2)+3M(n/2), which yields M(n) in the quadratic range, 3

2
M(n)

in the Karatsuba range, ≈ 1.704M(n) in the Toom-Cook 3-way range, and
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3M(n) in the FFT range. In the FFT range, an n× (n/2) product might be
directly computed by an FFT of length 3n/2 words, which therefore amounts
to M(3n/4); in that case the complexity decreases to 2.5M(n).

The wrap-around trick. We know describe a slight modification of
Algorithm ApproximateReciprocal which yields a complexity 2M(n). In
the product AXh at step 9, Eq. (3.6) tells that the result approaches βn+h,
more precisely:

βn+h − 2βn < AXh < βn+h + 2βn. (3.7)

Assume we use an FFT algorithm such as the Schönhage-Strassen algo-
rithm that computes products modulo βm+1, for some integer m ∈ (n, n+h).
Let AXh = Uβm + V with 0 ≤ V < βm. It follows from Eq. (3.7) that
U = βn+h−m or U = βn+h−m − 1. Let T = AXh mod (βm + 1) be the value
computed by the FFT. We have T = V −U or T = V −U+(βm+1). It follows
that AXh = T + U(βm + 1) or AXh = T + (U − 1)(βm + 1). Taking into ac-
count the two possible values of U , we have AXh = T +(βn+h−m−ε)(βm +1)
where ε ∈ {0, 1, 2}. Since β ≥ 6, βm > 4βn, thus only one value of ε yields a
value of AXh in the interval [βn+h − 2βn, βn+h + 2βn].

We thus replace step 9 in Algorithm ApproximateReciprocal by the
following code:

Compute T = AXh mod (βm + 1) using an FFT with m > n
T ← T + βn+h + βn+h−m { case ε = 0 }
while T ≥ βn+h + 2βn do

T ← T − (βm + 1)

Assuming one can take m close to n, the cost of the product AXh is only
about that of an FFT of length n, that is M(n/2).

3.4.2 Division

In this section we consider the case where the divisor changes between suc-
cessive operations, so no precomputation involving the divisor can be per-
formed. We first show that the number of consecutive zeros in the result is
bounded by the divisor length, then we consider the division algorithm and
its complexity. Lemma 3.4.3 analyses the case where the division operands
are truncated, because they have a larger precision than desired in the re-
sult. Finally we discuss “short division” and the error analysis of Barrett’s
algorithm.
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A floating-point division reduces to an integer division as follows. Assume
dividend a = ℓ · βe and divisor d = m · βf , where ℓ,m are integers. Then
a
d

= ℓ
m

βe−f . If k bits of the quotient are needed, we first determine a scaling

factor g such that βk−1 ≤ | ℓβg

m
| < βk, and we divide ℓβg — truncated if

needed — by m. The following theorem gives a bound on the number of
consecutive zeros after the integer part of the quotient of ⌊ℓβg⌋ by m.

Theorem 3.4.1 Assume we divide an m-digit positive integer by an n-digit
positive integer in radix β, with m ≥ n. Then the quotient is either exact,
or its radix β expansion admits at most n− 1 consecutive zeros or ones after
the digit of weight β0.

Proof. We first consider consecutive zeros. If the expansion of the quotient
q admits n or more consecutive zeros after the binary point, we can write
q = q1 + β−nq0, where q1 is an integer and 0 ≤ q0 < 1. If q0 = 0, then
the quotient is exact. Otherwise, if a is the dividend and d is the divisor,
one should have a = q1d + β−nq0d. However, a and q1d are integers, and
0 < β−nq0d < 1, so β−nq0d cannot be an integer, so we have a contradiction.

For consecutive ones, the proof is similar: write q = q1 − β−nq0, with
0 ≤ q0 ≤ 1. Since d < βn, we still have 0 ≤ β−nq0d < 1.

The following algorithm performs the division of two n-digit floating-point
numbers. The key idea is to approximate the inverse of the divisor to half
precision only, at the expense of additional steps. (At step 7, the notation

� �� �
1 Algorithm Divide .
2 Input : n−d i g i t floating-point numbers c and d , with n even
3 Output : an approximation o f c/d

4 Write d = d1β
n/2 + d0 with 0 ≤ d1, d0 < βn/2

5 r ← ApproximateReciprocal(d1, n/2)
6 q0 ← cr truncated to n/2 d i g i t s
7 e←MP (q0, d)
8 q ← q0 − re


 	� �

MP (q0, d) denotes the middle product of q0 and d, i.e., the n/2 middle digits
of that product.) At step 5, r is an approximation to 1/d1, and thus to
1/d, with precision n/2 digits. Therefore at step 6, q0 approximates c/d to
about n/2 digits, and the upper n/2 digits of q0d at step 7 agree with those
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of c. The value e computed at step 7 thus equals q0d − c to precision n/2.
It follows that re ≈ e/d agrees with q0 − c/d to precision n/2; hence the
correction term added in the last step.

In the FFT range, the cost of Algorithm Divide is 5
2
M(n): step 5 costs

2M(n/2) ≈ M(n) with the wrap-around trick, and steps 6-8 each cost
M(n/2) — using a fast middle product algorithm for step 7. By way of
comparison, if we computed a full precision inverse as in Barrett’s algorithm
(see below), the cost would be 7

2
M(n).

In the Karatsuba range, Algorithm Divide costs 3
2
M(n), and is useful

provided the middle product of step 7 is performed with cost M(n/2). In
the quadratic range, Algorithm Divide costs 2M(n), and a classical division
should be preferred.

When the requested precision for the output is smaller than that of the
inputs of a division, one has to truncate the inputs, in order to avoid some
unnecessarily expensive computation. Assume for example that one wants
to divide two numbers of 10, 000 bits, with a 10-bit quotient. To apply the
following lemma, just replace β by an appropriate value such that A1 and
B1 have about 2n and n digits respectively, where n is the wanted number
of digits for the quotient; for example one might have µ = βk to truncate k
words.

Lemma 3.4.3 Let A and B be two positive integers, and µ ≥ 2 a positive
integer. Let Q = ⌊A/B⌋, A1 = ⌊A/µ⌋, B1 = ⌊B/µ⌋, Q1 = ⌊A1/B1⌋. If
A/B ≤ 2B1, then

Q ≤ Q1 ≤ Q + 2.

The condition A/B ≤ 2B1 is quite natural: it says that the truncated divisor
B1 should have essentially at least as many digits as the wanted quotient.

Proof. Let A1 = Q1B1 + R1. We have A = A1µ + A0, B = B1µ + B0, thus

A

B
=

A1µ + A0

B1µ + B0

≤ A1µ + A0

B1µ
= Q1 +

R1µ + A0

B1µ
.

Since R1 < B1 and A0 < µ, R1µ + A0 < B1µ, thus A/B < Q1 + 1. Taking
the floor of each side proves, since Q1 is an integer, that Q ≤ Q1.

Now consider the second inequality. For given truncated parts A1 and
B1, and thus given Q1, the worst case is when A is minimal, say A = A1β,
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and B is maximal, say B = B1β + (β − 1). In this case we have:
∣∣∣∣
A1

B1

− A

B

∣∣∣∣ =

∣∣∣∣
A1

B1

− A1β

B1β + (β − 1)

∣∣∣∣ =

∣∣∣∣
A1(β − 1)

B1(B1β + β − 1)

∣∣∣∣ .

The numerator equals A − A1 ≤ A, and the denominator equals B1B, thus
the difference A1/B1 − A/B is bounded by A/(B1B) ≤ 2, and so is the
difference between Q and Q1.

The following algorithm is useful in the Karatsuba and Toom-Cook range.
The key idea is that, when dividing a 2n-digit number by an n-digit number,
some work that is necessary for a full 2n-digit division can be avoided (see
Fig. 3.5).

� �� �
1 Algorithm ShortDivision .
2 Input : 0 ≤ A < β2n , βn/2 ≤ B < βn

3 Output : an approximation o f A/B
4 i f n ≤ n0 then re turn ⌊A/B⌋
5 choose k ≥ n/2 , ℓ← n− k
6 (A1, A0)← (A div β2ℓ, A mod β2ℓ)
7 (B1, B0)← (B div βℓ, B mod βℓ)
8 (Q1, R1)←DivRem(A1, B1)
9 A′ ← R1β

2ℓ + A0 −Q1B0β
ℓ

10 Q0 ←ShortDivision(A′ div βk, B div βk)
11 Return Q1β

ℓ + Q0 .

 	� �

Theorem 3.4.2 The approximate quotient Q′ returned by ShortDivision

differs at most by 2 lg n from the exact quotient Q = ⌊A/B⌋, more precisely:

Q ≤ Q′ ≤ Q + 2 lg n.

Proof. If n ≤ n0, Q = Q′ so the statement holds. Assume n > n0. We
have A = A1β

2ℓ + A0 and B = B1β
ℓ + B0, thus since A1 = Q1B1 + R1,

A = (Q1B1+R1)β
2ℓ+A0 = Q1Bβℓ+A′, with A′ < βn+ℓ. Let A′ = A′

1β
k+A′

0,
and B = B′

1β
k+B′

0, with 0 ≤ A′
0, B

′
0 < βk, and A′

1 < β2ℓ. From Lemma 3.4.3,
the exact quotient of A′ div βk by B div βk is greater or equal to that of A′

by B, thus by induction Q0 ≥ A′/B. Since A/B = Q1β
ℓ + A′/B, this proves

that Q′ ≥ Q.
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Now by induction Q0 ≤ A′

1

B′

1

+2 lg ℓ, and
A′

1

B′

1

≤ A′/B+2 (from Lemma 3.4.3

again, whose hypothesis A′/B ≤ 2B′
1 is satisfied, since A′ < B1β

2ℓ, thus
A′/B ≤ βl ≤ 2B′

1), so Q0 ≤ A′/B + 2 lg n, and Q′ ≤ A/B + 2 lg n.

M(n/2)

M(n/4)

M(n/4)

M(n/4)

M( n
8
)

M( n
8
)

M( n
8
)

M( n
8
)

M( n
8
)

M( n
8
)

M( n
8
)

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

M ∗(n/2)M(n
4 )

M(n
4 )

M∗(n
4 )

M( n
8
)

M( n
8
)

M( n
8
)

M( n
8
)

M( n
8
)

M( n
8
)

M∗( n
8
)

Figure 3.5: Divide and conquer short division: a graphical view. Left: with
plain multiplication; right: with short multiplication. See also Fig. 1.1.

Barrett’s division algorithm

Here we consider division using Barrett’s algorithm (§2.3.1) and provide a
rigorous error bound. This algorithm is useful when the same divisor is used
several times; otherwise Algorithm Divide is faster (see Exercise 3.7.12).
Assume we want to divide a by b of n bits, with a quotient of n bits. Barrett’s
algorithm is as follows:

1. Compute the reciprocal r of b to n bits [rounding to nearest]

2. q ← ◦n(a× r) [rounding to nearest]

The cost of the algorithm in the FFT range is 3M(n): 2M(n) to compute
the reciprocal with the wrap-around trick, and M(n) for the product a× r.

Lemma 3.4.4 At step 2 of Barrett’s algorithm, we have |a− bq| ≤ 3
2
|b|.
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Proof. By scaling a and b, we can assume that b and q are integers,
2n−1 ≤ b, q < 2n, thus a < 22n. We have r = 1

b
+ ε with |ε| ≤ 1

2
ulp(2−n) =

2−2n. Also q = ar + ε′ with |ε′| ≤ 1
2
ulp(q) = 1

2
since q has n bits. Thus

q = a(1
b

+ ε) + ε′ = a
b

+ aε + ε′, and |bq − a| = |b||aε + ε′| ≤ 3
2
|b|.

As a consequence, q differs by at most one unit in last place from the n-bit
quotient of a and b, rounded to nearest.

Lemma 3.4.4 can be applied as follows: to perform several divisions with
a precision of n bits with the same divisor, precompute a reciprocal with
n + g bits, and use the above algorithm with a working precision of n + g
bits. If the last g bits of q are neither 000 . . . 00x nor 111 . . . 11x (where x
stands for 0 or 1), then rounding q down to n bits will yield ◦n(a/b) for a
directed rounding mode.

3.5 Square Root

Algorithm FPSqrt computes a floating-point square root, using as subrou-
tine Algorithm SqrtRem to determine an integer square root (with remain-
der). It assumes an integer significand m, and a directed rounding mode (see
Exercise 3.7.13 for rounding to nearest).

� �� �
1 Algorithm FPSqrt .
2 Input : x = m · 2e , a t a r g e t p r e c i s i o n n , a rounding mode ◦
3 Output : y = ◦n(

√
x)

4 I f e i s odd , (m′, f)← (2m, e− 1) , else (m′, f)← (m, e)
5 I f m′ has l e s s than 2n− 1 b i t s , then (m′, f)← (m′22ℓ, f − 2ℓ)
6 Write m′ := m12

2k + m0 , m1 having 2n or 2n− 1 b i t s , 0 ≤ m0 < 22k

7 (s, r)← SqrtRem(m1)

8 I f round to ze ro or down or r = m0 = 0 , re turn s · 2k+f/2

9 else re turn (s + 1) · 2k+f/2 .

 	� �

Theorem 3.5.1 Algorithm FPSqrt returns the square root of x, correctly-
rounded.

Proof. Since m1 has 2n or 2n − 1 bits, s has exactly n bits, and we have
x ≥ s222k+f , thus

√
x ≥ s2k+f/2. On the other hand, SqrtRem ensures that
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r ≤ 2s, thus x2−f = (s2+r)22k+m0 < s2+r+1 ≤ (s+1)2. Since y := s·2k+f/2

and y+ = (s + 1) · 2k+f/2 are two consecutive n-bit floating-point numbers,
this concludes the proof.

Note: in the case s = 2n − 1, s + 1 = 2n is still representable with n bits,
and y+ is in the upper binade.

An different method is to use a subroutine computing an approximation
to a reciprocal square root (§3.5.1), as follows:

� �� �
1 Algorithm FPSqrt2 .
2 Input : an n−b i t f l o a t i n g−po int number x
3 Output : a n−b i t approximation y o f

√
x

4 r ←ApproximateRecSquareRoot(x)
5 t← ◦n/2(hr)

6 u← x− t2

7 Return t + r
2u


 	� �

Step 5 costs M(n/2). Since the n/2 most significant bits of t2 are known to
match those of x in step 6, we can perform a transform mod xn/2 − 1 in the
FFT range, hence step 6 costs M(n/4). Finally step 7 costs M(n/2). In the
FFT range, with a cost of 7

2
M(n/2) for ApproximateRecSquareRoot(x)

(§3.5.1), the total cost is 3M(n). (See §3.8 for faster algorithms.)

3.5.1 Reciprocal Square Root

In this section we describe an algorithm to compute the reciprocal square
root a−1/2 of a floating-point number a, with a rigorous error bound.

Lemma 3.5.1 Let a, x > 0, ρ = a−1/2, and x′ = x + x
2
(1− ax2). Then

0 ≤ ρ− x′ ≤ 3

2

x3

θ4
(ρ− x)2,

for some θ ∈ [min(x, ρ),max(x, ρ)].

Proof. The proof is very similar to that of Lemma 3.4.1. Here we use
f(t) = a− 1/t2, with ρ the root of f . Eq. (3.5) translates to:

ρ = x +
x

2
(1− ax2) +

3

2

x3

θ4
(ρ− x)2,

which proves the Lemma.
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� �� �
1 Algorithm ApproximateRecSquareRoot .
2 Input : i n t e g e r A with βn ≤ A < 4βn

3 Output : i n t e g e r X , βn/2 ≤ X < βn

4 i f n ≤ 2 then re turn min(βn − 1, ⌊βn/
√

Aβ−n⌋)
5 else
6 ℓ← ⌊n−1

2 ⌋ , h← n− ℓ
7 Ah ← ⌊Aβ−ℓ⌋
8 Xh ←ApproximateRecSquareRoot(Ah)
9 T ← A(X2

h)
10 Th ← ⌊Tβ−n⌋
11 Tℓ ← β2h − Th

12 U ← TℓXh

13 Return min(βn − 1, Xhβℓ + ⌊Uβℓ−2h/2⌉) .

 	� �

Note: even if AhX
2
h ≤ β3h at line 8, we might have AX2

h > βn+2h at line 9,
which might cause Tℓ to be negative.

Lemma 3.5.2 As long as β ≥ 38, if X is the value returned by Algorithm
ApproximateRecSquareRoot, a = Aβ−n, and x = Xβ−n, then
1/2 ≤ x < 1 and

|x− a−1/2| ≤ 2β−n.

Proof. We have 1 ≤ a < 4. Since X is bounded by βn− 1 at lines 4 and 13,
we have x, xh < 1, with xh = Xhβ

−h. We prove the statement by induction.
It is true for n ≤ 2. Now assume the value Xh at step 8 satisfies:

|xh − a
−1/2
h | ≤ β−h,

where ah = Ahβ
−h. We have three sources of error, that we will bound in

this order:

1. the rounding errors in lines 10 and 13;

2. the mathematical error given by Lemma 3.5.1, which would occur even
if all computations were exact;

3. the error coming from the fact we use Ah instead of A in the recursive
call at step 8.
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At step 9 we have exactly:

t := Tβ−n−2h = ax2
h,

which gives |th−ax2
h| < β−2h with th := Thβ

−2h, and in turn |tℓ−(1−ax2
h)| <

β−2h with tℓ := Tℓβ
−2h. At step 12, it follows |u−xh(1−ax2

h)| < β−2h, where
u = Uβ−3h. Thus finally |x − [xh + xh

2
(1 − ax2

h)]| < 1
2
β−2h + 1

2
β−n, taking

into account the rounding error in the last step.
Now we apply Lemma 3.5.1 to x→ xh, x′ → x, to bound the mathemat-

ical error, assuming no rounding error occurs:

0 ≤ a−1/2 − x ≤ 3

2

x3
h

θ4
(a−1/2 − xh)

2,

which gives1 |a−1/2 − x| ≤ 3.04(a−1/2 − xh)
2. Now |a−1/2 − a

−1/2
h | ≤

1
2
|a− ah|ν−3/2 for ν ∈ [min(ah, a),max(ah, a)], thus |a−1/2 − a

−1/2
h | ≤ β−h/2.

Together with the induction hypothesis |xh − a
−1/2
h | ≤ 2β−h, it follows that

|a−1/2 − xh| ≤ 5
2
β−h. Thus |a−1/2 − x| ≤ 19β−2h.

The total error is thus bounded by:

|a−1/2 − x| ≤ 3/2β−n + 19β−2h.

Since 2h ≥ n + 1, we see that 19β−2h ≤ 1/2β−n for β ≥ 38, and the proof
follows.

Let R(n) be the cost of ApproximateRecSquareRoot for an n-bit
input. We have h, ℓ ≈ n/2, thus the recursive call costs R(n/2), step 9 costs
M(n/2) to compute X2

h, and M(n) for the product A(X2
h) — or M(3n/4)

in the FFT range using the wrap-around trick described in §3.4.1, since we
know the upper n/2 bits of the product gives 1 — and again M(n/2) for
step 12. We get R(n) = R(n/2) + 2M(n) — R(n/2) + 7

4
M(n) in the FFT

range —, which yields R(n) = 4M(n) — 7
2
M(n) in the FFT range.

The above algorithm is not the optimal one in the FFT range, especially
when using an FFT algorithm with cheap point-wise products (like the com-
plex FFT, see §3.3.1). Indeed, Algorithm ApproximateRecSquareRoot
uses the following form of Newton’s iteration:

x′ = x +
x

2
(1− ax2).

1Since θ ∈ [xh, a−1/2] and |xh − a−1/2| ≤ 5

2
β−h, we have θ ≥ xh − 5

2
β−h, thus

xh/θ ≤ 1+5β−h/(2θ) ≤ 1+5β−h (remember θ ∈ [xh, a−1/2]), and it follows that θ ≥ 1/2.
For β ≥ 38, since h ≥ 2, we have 1+5β−h ≤ 1.0035, thus 3

2
x3

h/θ4 ≤ (3/(2θ))1.00353 ≤ 3.04.
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It might be better to write:

x′ = x +
1

2
(x− ax3).

Indeed, the product x3 might be computed with a single FFT transform of
length 3n/2, replacing the point-wise products x̂2

i by x̂3
i , with a total cost

of about 3
4
M(n). Moreover, the same idea can be used for the full product

ax3 of 5n/2 bits, but whose n/2 upper bits match those of x, thus with the
wrap-around trick a transform of length 2n is enough, with a cost of M(n)
for the last iteration, and a total cost of 2M(n) for the reciprocal square root.
With that result, Algorithm FPSqrt2 costs 2.25M(n) only.

3.6 Conversion

Since most software tools work in radix 2 or 2k, and humans usually enter
or read floating-point numbers in radix 10 or 10k, conversions are needed
from one radix to the other one. Most applications perform only very few
conversions, in comparison to other arithmetic operations, thus the efficiency
of the conversions is rarely critical2. The main issue here is therefore more
correctness than efficiency. Correctness of floating-point conversions is not
an easy task, as can be seen from the past bugs in Microsoft Excel3.

The algorithms described in this section use as subroutine the integer-
conversion algorithms from Chapter 1. As a consequence, their efficiency
depends on the efficiency of the integer-conversion algorithms.

3.6.1 Floating-Point Output

In this section we follow the convention of using small letters for parameters
related to the internal radix b, and capitals for parameters related to the
external radix B. Consider the problem of printing a floating-point number,
represented internally in radix b (say b = 2) in an external radix B (say
B = 10). We distinguish here two kinds of floating-point output:

2An important exception is the computation of billions of digits of constants like π, log 2,
where a quadratic conversion routine would be far too slow.

3In Excel 2007, the product 850×77.1 prints as 100, 000 instead of 65, 535; this is really
an output bug, since if one multiplies “100, 000” by 2, one gets 131, 070. An input bug
occurred in Excel 3.0 to 7.0, where the input 1.40737488355328 gave 0.64.
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• fixed-format output, where the output precision is given by the user,
and we want the output value to be correctly rounded according to the
given rounding mode. This is the usual method when values are to be
used by humans, for example to fill a table of results. In that case the
input and output precision may be very different: for example one may
want to print 1000 digits of 2/3, which uses only one digit internally
in radix 3. Conversely, one may want to print only a few digits of a
number accurate to 1000 bits.

• free-format output, where we want the output value, when read with
correct rounding (usually to nearest), to give back the initial number.
Here the minimal number of printed digits may depend on the input
number. This kind of output is useful when storing data in a file, while
guaranteeing that reading the data back will produce exactly the same
internal numbers, or for exchanging data between different programs.

In other words, if we denote by x the number we want to print, and X the
printed value, the fixed-format output requires |x − X| < ulp(X), and the
free-format output requires |x−X| < ulp(x) for directed rounding. Replace
< ulp(·) by ≤ 1

2
ulp(·) for rounding to nearest.

� �� �
1 Algorithm PrintFixed .
2 Input : x = f · be−p with f, e, p i n t e g e r s , bp−1 ≤ |f | < bp ,
3 ex t e rna l rad ix B and p r e c i s i o n P , rounding mode ◦
4 Output : X = F ·BE−P with F, E i n t e g e r s , BP−1 ≤ |F | < BP ,
5 such that X = ◦(x) in rad ix B and p r e c i s i o n P
6 λ← o(log b/log B)
7 E ← 1 + ⌊(e− 1)λ⌋
8 q ← ⌈P/λ⌉
9 y ← ◦(xBP−E) with p r e c i s i o n q

10 I f one cannot round y to an in t ege r , i n c r e a s e q and goto 9
11 F ← Integer(y, ◦) .
12 I f |F | ≥ BP then E ← E + 1 and goto 9 .
13 Return F, E .


 	� �

Some comments on Algorithm PrintFixed:

• it assumes that we have precomputed values of λB = o( log b
log B

) for any

possible external radix B (the internal radix b is assumed to be fixed for
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a given implementation). Assuming the input exponent e is bounded,
it is possible — see Exercise 3.7.15 — to choose these values precisely
enough that

E = 1 +

⌊
(e− 1)

log b

log B

⌋
, (3.8)

thus the value of λ at step 6 is simply read from a table.

• the difficult part is step 9, where one has to perform the exponentiation
BP−E — remember all computations are done in the internal radix b
— and multiply the result by x. Since we expect an integer of q digits
in step 11, there is no need to use a precision of more than q digits
in these computations, but a rigorous bound on the rounding errors is
required, so as to be able to correctly round y.

• in step 10, “one can round y to an integer” means that the interval
containing all possible values of xBP−E — including the rounding errors
while approaching xBP−E, and the error while rounding to precision
q — contains no rounding boundary (if ◦ is a directed rounding, it
should contain no integer; if ◦ is rounding to nearest, it should contain
no half-integer).

Theorem 3.6.1 Algorithm PrintFixed is correct.

Proof. First assume that the algorithm finishes. Eq. (3.8) implies BE−1 ≤
be−1, thus |x|BP−E ≥ BP−1, which implies that |F | ≥ BP−1 at step 11. Thus
BP−1 ≤ |F | < BP at the end of the algorithm. Now, printing x gives F ·Ba

iff printing xBk gives F · Ba+k for any integer k. Thus it suffices to check
that printing xBP−E gives F , which is clear by construction.

The algorithm terminates because at step 9, xBP−E , if not an integer,
cannot be arbitrarily close to an integer. If P − E ≥ 0, let k be the number
of digits of BP−E in radix b, then xBP−E can be represented exactly with
p + k digits. If P − E < 0, let g = BE−P , of k digits in radix b. Assume
f/g = n+ε with n integer; then f−gn = gε. If ε is not zero, gε is a non-zero
integer, thus |ε| ≥ 1/g ≥ 2−k.

The case |F | ≥ BP at step 12 can occur for two reasons: either |x|BP−E ≥
BP , thus its rounding also satisfies this inequality; or |x|BP−E < BP , but
its rounding equals BP (this can only occur for rounding away from zero or
to nearest). In the former case we have |x|BP−E ≥ BP−1 at the next pass
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in step 9, while in the latter case the rounded value F equals BP−1 and the
algorithm terminates.

Now consider free-format output. For a directed rounding mode we want
|x − X| < ulp(x) knowing |x − X| < ulp(X). Similarly for rounding to
nearest, if we replace ulp by 1

2
ulp.

It is easy to see that a sufficient condition is that ulp(X) ≤ ulp(x), or
equivalently BE−P ≤ be−p in Algorithm PrintFixed (with P not fixed at
input, which explain the “free-format” name). To summarise, we have

be−1 ≤ |x| < be, BE−1 ≤ |X| < BE .

Since |x| < be, and X is the rounding of x, we must have BE−1 ≤ be. It
follows that BE−P ≤ beB1−P , and the above sufficient condition becomes:

P ≥ 1 + p
log b

log B
.

For example, with b = 2 and B = 10, p = 53 gives P ≥ 17, and p = 24 gives
P ≥ 9. As a consequence, if a double-precision IEEE 754 binary floating-
point number is printed with at least 17 significant decimal digits, it can be
read back without any discrepancy, assuming input and output are performed
with correct rounding to nearest (or directed rounding, with appropriately
chosen directions).

3.6.2 Floating-Point Input

The problem of floating-point input is the following. Given a floating-point
number X with a significand of P digits in some radix B (say B = 10), a
precision p and a given rounding mode, we want to correctly round X to a
floating-point number x with p digits in the internal radix b (say b = 2).

At first glance, this problem looks very similar to the floating-point output
problem, and one might think it suffices to apply Algorithm PrintFixed,
simply exchanging (b, p, e, f) and (B,P,E, F ). Unfortunately, this is not
the case. The difficulty is that, in Algorithm PrintFixed, all arithmetic
operations are performed in the internal radix b, and we do not have such
operations in radix B (see however Ex. 1.8.29).
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3.7 Exercises

Exercise 3.7.1 Determine exactly for which IEEE 754 double precision numbers
does the trick described in §3.1.5 work, to get the next number away from zero.

Exercise 3.7.2 (Kidder, Boldo) Assume a binary representation. The “round-
ing to odd” mode [22, 84, 126] is defined as follows: in case the exact value is not
representable, it rounds to the unique adjacent number with an odd significand.
(“Von Neumann rounding” [22] omits the test for the exact value being repre-
sentable or not, and rounds to odd in all nonzero cases.) Note that overflow
never occurs during rounding to odd. Prove that if y = round(x, p + k, odd) and
z = round(y, p, nearest even), and k > 1, then z = round(x, p, nearest even), i.e.,
the double-rounding problem does not occur.

Exercise 3.7.3 Show that, if
√

a is computed using Newton’s iteration for a−1/2:

x′ = x +
3

2
(1− ax2)

(see §3.5.1) and the identity
√

a = a× a−1/2 with rounding mode “round towards
zero”, then it might never be possible to determine the correctly rounded value of√

a, regardless of the number of additional “guard” digits used in the computation.

Exercise 3.7.4 How does truncating the operands of a multiplication to n + g
digits (as suggested in §3.3) affect the accuracy of the result? Considering the
cases g = 1 and g > 1 separately, what could happen if the same strategy were
used for subtraction?

Exercise 3.7.5 Is the bound of Theorem 3.3.1 optimal?

Exercise 3.7.6 Adapt Mulders’ short product algorithm [102] to floating-point
numbers. In case the first rounding fails, can you compute additional digits without
starting again from scratch?

Exercise 3.7.7 If a balanced ternary system is used, that is radix 3 with possible
digits {0,±1}, then “round to nearest” is equivalent to truncation.

Exercise 3.7.8 (Percival) One computes the product of two complex floating
point numbers z0 = a0 + ib0 and z1 = a1 + ib1 in the following way: xa = ◦(a0a1),
xb = ◦(b0b1), ya = ◦(a0b1), yb = ◦(a1b0), z = ◦(xa − xb) + ◦(ya + yb) · i. All
computations being done in precision n, with rounding to nearest, compute an
error bound of the form |z − z0z1| ≤ c2−n|z0z1|. What is the best possible c?
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Exercise 3.7.9 Show that, if µ = O(ε) and nε≪ 1, the bound in Theorem 3.3.2
simplifies to

||z′ − z||∞ = O(|x| · |y| · nε).

If the rounding errors cancel we expect the error in each component of z′ to be
O(|x|·|y|·n1/2ε). The error ||z′−z||∞ could be larger since it is a maximum of N =
2n component errors. Using your favourite implementation of the FFT, compare
the worst-case error bound given by Theorem 3.3.2 with the error ||z′ − z||∞ that
occurs in practice.

Exercise 3.7.10 (Enge) Design an algorithm that correctly rounds the product
of two complex floating-point numbers with 3 multiplications only. [Hint: assume
all operands and the result have n-bit significand.]

Exercise 3.7.11 Write a computer program to check the entries of Table 3.3 are
correct and optimal.

Exercise 3.7.12 To perform k divisions with the same divisor, which of Algo-
rithm Divide and of Barrett’s algorithm is the fastest one?

Exercise 3.7.13 Adapt Algorithm FPSqrt to the rounding to nearest mode.

Exercise 3.7.14 Prove that for any n-bit floating-point numbers (x, y) 6= (0, 0),
and if all computations are correctly rounded, with the same rounding mode, the
result of x/

√
x2 + y2 lies in [−1, 1], except in a special case. What is this special

case?

Exercise 3.7.15 Show that the computation of E in Algorithm PrintFixed,

step 7, is correct — i.e., E = 1 +
⌊
(e− 1) log b

log B

⌋
— as long as there is no integer n

such that
∣∣∣ n
e−1

log B
log b − 1

∣∣∣ < ε, where ε is the relative precision when computing λ:

λ = log B
log b (1 + θ) with |θ| ≤ ε. For a fixed range of exponents −emax ≤ e ≤ emax,

deduce a working precision ε. Application: for b = 2, and emax = 231, compute
the required precision for 3 ≤ B ≤ 36.

Exercise 3.7.16 (Lefèvre) The IEEE 754 standard requires binary to decimal
conversions to be correctly rounded in the range m · 10n for |m| ≤ 1017 − 1 and
|n| ≤ 27 in double precision. Find the hardest-to-print double precision number
in that range (with rounding to nearest for example). Write a C program that
outputs double precision numbers in that range, and compare it to the sprintf

C-language function of your system. Same question for a conversion from the
IEEE 754R binary64 format (significand of 53 bits, 2−1074 ≤ |x| < 21024) to the
decimal64 format (significand of 16 decimal digits).
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Exercise 3.7.17 Same question as the above, for the decimal to binary conver-
sion, and the atof C-language function.

3.8 Notes and References

In her PhD [94, Chapter V], Valérie Ménissier-Morain discusses alternatives
to the classical non-redundant representation considered here: continued
fractions and redundant representations. She also considers in Chapter III
the theory of computable reals, their representation by B-adic numbers, and
the computation of algebraic or transcendental functions.

Nowadays most computers use radix two, but other choices (for example
radix 16) were popular in the past, before the widespread adoption of the
IEEE 754 standard. A discussion of the best choice of radix is given in [22].

The main reference for floating-point arithmetic is the IEEE 754 standard
[3], which defines four binary formats: single precision, single extended (dep-
recated), double precision, and double extended. The IEEE 854 standard [45]
defines radix-independent arithmetic, and mainly decimal arithmetic. Both
standards are replaced by the revision of IEEE 754 (approved by the IEEE
Standards Committee on June 12, 2008).

The rule regarding the precision of a result given possibly differing preci-
sions of operands was considered in [29, 71].

Floating-point expansions were introduced by Priest [108]. They are
mainly useful for a small numbers of summands, mainly two or three, and
when the main operations are additions or subtractions. For a larger number
of summands the combinatorial logic becomes complex, even for addition.
Also, except for simple cases, it seems difficult to obtain correct rounding
with expansions.

Some good references on error analysis of floating-point algorithms are the
books by Higham [70] and Muller [103]. Older references include Wilkinson’s
classics [131, 132].

Collins, Krandick and Lefèvre proposed algorithms for multiple-precision
floating-point addition [47, 88].

The problem of leading zero anticipation and detection in hardware is
classical; see [110] for a comparison of different methods.

The idea of having a “short product” together with correct rounding
was studied by Krandick and Johnson [83] in 1993, where they attribute
the term “short product” to Knuth. They considered both the schoolbook
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and the Karatsuba domains. In 2000 Mulders [102] invented an improved
“short product” algorithm based on Karatsuba multiplication, and also a
“short division” algorithm. The problem of consecutive zeros or ones — also
called runs of zeros or ones — has been studied by several authors in the
context of computer arithmetic: Iordache and Matula [73] studied division
(Theorem 3.4.1), square root, and reciprocal square root. Muller and Lang
[86] generalised their results to algebraic functions.

A description of the Fast Fourier Transform (FFT) using complexfloating-
point numbers can be found in Knuth [81]. See also the asymptotically faster
algorithm by Fürer [59]. Many variations of the FFT are discussed in
the books by Crandall [49, 50]. For further references, see the Notes and
References section of Chapter 2.

Theorem 3.3.2 is from Percival [106]: previous rigorous error analyses
of complex FFT gave very pessimistic bounds. Note that the proof given
in [106] is incorrect, but we have a correct proof (see [37] and Ex. 3.7.8).

The concept of “middle product” for power series is discussed in [65].
Bostan, Lecerf and Schost have shown it can be seen as a special case of
“Tellegen’s principle”, and have generalised it to operations other than multi-
plication [21]. The link between usual multiplication and the middle product
using trilinear forms was mentioned by Victor Pan in [104] for the mul-
tiplication of two complex numbers: “The duality technique enables us to
extend any successful bilinear algorithms to two new ones for the new prob-
lems, sometimes quite different from the original problem · · · ” A detailed
and comprehensive description of the Payne and Hanek argument reduction
method can be found in [103].

The 2M(n) reciprocal algorithm — with the wrap-around trick — of
§ 3.4.1, is due to Schönhage, Grotefeld and Vetter. [115], It can be improved,
as noticed by Bernstein [9]. If we keep the FFT-transform of x, we can save
1
3
M(n) (assuming the term-to-term products have negligible cost), which

gives 5
3
M(n). Bernstein also proposes a “messy” 3

2
M(n) algorithm [9].

Schönhage’s 3
2
M(n) algorithm is better [114]. The idea is to write Newton’s

iteration as x′ = 2x − ax2. If x is accurate to n/2 bits, then ax2 has (in
theory) 2n bits, but we know the upper n/2 bits cancel with x, and we are
not interested in the low n bits. Thus we can perform one modular FFT of
size 3n/2, which amounts to cost M(3n/4). See also [48] for the roundoff
error analysis when using a floating-point multiplier.

Bernstein in [9] obtains faster square root algorithms in the FFT domain,
by caching some Fourier transforms, more precisely he gets 11

6
M(n) for the
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square root, and 5
2
M(n) for the simultaneous computation of x1/2 and x−1/2.

Classical floating-point conversion algorithms are due to Steele and White
[121], Gay [60], and Clinger [44]; most of these authors assume fixed precision.
Mike Cowlishaw maintains an extensive bibliography of conversion to and
from decimal arithmetic (see §5.3). What we call “free-format” output is
called “idempotent conversion” by Kahan [77]; see also Knuth [81, exercise
4.4-18].

Algebraic Complexity Theory by Bürgisser, Clausen and Shokrollahi [40]
is an excellent book on topics including lower bounds, fast multiplication of
numbers and polynomials, and Strassen-like algorithms for matrix multipli-
cation.

There is a large literature on interval arithmetic, which is outside the
scope of this chapter. A good entry point is the Interval Computations web
page (see the Appendix). See also the recent book by Kulisch [85].

This chapter does not consider complex arithmetic, except where relevant
for its use in the FFT. An algorithm for the complex (floating-point) square
root, which allows correct rounding, is given in [55].



Chapter 4

Newton’s Method and Function
Evaluation

In this Chapter we consider various applications of Newton’s
method, which can be used to compute reciprocals, square roots,
and more generally algebraic and functional inverse functions.
We then consider unrestricted algorithms for computing elemen-
tary and special functions. The algorithms of this Chapter are
presented at a higher level than in Chapter 3. Rounding issues
are not discussed, apart from a few exceptions where they are
significant. A full and detailed analysis of one special function
might be the subject of an entire chapter!

4.1 Introduction

This Chapter is concerned with algorithms for computing elementary and
special functions, although the methods apply more generally. First we con-
sider Newton’s method, which is useful for computing inverse functions. For
example, if we have an algorithm for computing y = log x, then Newton’s
method can be used to compute x = exp y (see §4.2.5). However, Newton’s
method has many other applications. In fact we already mentioned Newton’s
method in Chapters 1–3, but here we consider it in more detail.

After considering Newton’s method, we go on to consider various meth-
ods for computing elementary and special functions. These methods in-
clude power series (§4.4), asymptotic expansions (§4.5), continued fractions
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(§4.6), recurrence relations (§4.7), the arithmetic-geometric mean (§4.8), bi-
nary splitting (§4.9), and contour integration (§4.10). The methods that we
consider are unrestricted in the sense that there is no restriction on the at-
tainable precision — in particular, it is not limited to the precision of IEEE
standard 32-bit or 64-bit floating-point arithmetic. Of course, this depends
on the availability of a suitable software package for performing floating-point
arithmetic on operands of arbitrary precision, as discussed in Chapter 3.

Unless stated explicitly, we do not consider rounding issues in this Chap-
ter; it is assumed that methods described in Chapter 3 are used. Also, to
simplify the exposition, we assume a binary radix, although most of the con-
tent might be extended to any radix. We recall that n denotes the precision
— hence in bits — of the wanted approximation; in most cases the abso-
lute computed value will be in the neighbourhood of 1, thus we want an
approximation to within 2−n.

4.2 Newton’s Method

Newton’s method is a major tool in arbitrary precision arithmetic. We have
already seen it or its p-adic counterpart, namely Hensel’s lifting, in previous
Chapters (see for example Algorithm ExactDivision in §1.4.5, or the algo-
rithm to compute a modular inverse in §2.4, or the algorithms to compute
a floating-point reciprocal or reciprocal square root in §3.4.1 and §3.5.1).
Newton’s method is also useful in small precision: most modern processors
only implement multiplication in hardware, and division and square root
are microcoded, using Newton’s method. This Section discusses Newton’s
method is more detail, in the context of floating-point computations, for the
computation of inverse roots (§4.2.1), reciprocals (§4.2.2), reciprocal square
roots (§4.2.3), formal power series (§4.2.4), and functional inverse functions
(§4.2.5). We also discuss higher order Newton-like methods (§4.2.6).

Newton’s Method via Linearisation

Recall that a function f of a real variable is said to have a zero ζ if f(ζ) = 0.
Similarly for functions several real (or complex) variables. If f is differen-
tiable in a neighbourhood of ζ, and f ′(ζ) 6= 0, then ζ is said to be a simple
zero. In the case of several variables, ζ is a simple zero if the Jacobian matrix
evaluated at ζ is nonsingular.
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Newton’s method for approximating a simple zero ζ of f is based on the
idea of making successive linear approximations to f(x) a the neighbourhood
of ζ. Suppose that x0 is an initial approximation, and that f(x) has two
continuous derivatives in the region of interest. From Taylor’s theorem1

f(ζ) = f(x0) + (ζ − x0)f
′(x0) +

(ζ − x0)
2

2
f ′′(ξ) (4.1)

for some point ξ in an interval including {ζ, x0}. Since f(ζ) = 0, we see that

x1 = x0 − f(x0)/f
′(x0)

is an approximation to ζ, and

x1 − ζ = O
(
|x0 − ζ|2

)
.

Provided x0 is sufficiently close to ζ, we will have

|x1 − ζ| ≤ |x0 − ζ|/2 < 1.

This motivates the definition of Newton’s method as the iteration

xj+1 = xj −
f(xj)

f ′(xj)
, j = 0, 1, . . . (4.2)

Provided |x0− ζ| is sufficiently small, we expect xn to converge to ζ and the
order of convergence will be at least 2, that is

|en+1| ≤ K|en|2

for some constant K independent of n, where en = xn − ζ is the error after
n iterations.

A more careful analysis [125] — see also Lemma 3.4.1 — shows that

en+1 =
f ′′(ζ)

2f ′(ζ)
en

2 + O
(
en

3
)
,

provided f ∈ C3 near ζ. Thus, the order of convergence is exactly 2 if
f ′′(ζ) 6= 0 and e0 is sufficiently small but nonzero. (Such an iteration is also
said to be quadratically convergent.)

1We use Taylor’s theorem at x0, since this yields a formula in terms of derivatives at
x0 which is known, instead of at ζ, which is unknown.
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4.2.1 Newton’s Method for Inverse Roots

Consider applying Newton’s method to the function

f(x) = y − x−m,

where m is a positive integer constant, and (for the moment) y is a nonzero
constant. Since f ′(x) = mx−(m+1), Newton’s iteration simplifies to

xj+1 = xj + xj(1− xm
j y)/m. (4.3)

This iteration converges to ζ = y−1/m provided the initial approximation x0

is sufficiently close to ζ. It is perhaps surprising that (4.3) does not involve
divisions, except for a division by the integer constant m. Thus, we can easily
compute reciprocals (the case m = 1) and reciprocal square roots (the case
m = 2) by Newton’s method. These cases are sufficiently important that we
discuss them separately in the following subsections.

4.2.2 Newton’s Method for Reciprocals

Taking m = 1 in (4.3), we obtain the iteration

xj+1 = xj + xj(1− xjy) (4.4)

which we expect to converge to 1/y provided x0 is a sufficiently good approx-
imation. To see what “sufficiently good” means, define

uj = 1− xjy.

Note that uj → 0 if and only if xj → 1/y. Multiplying each side of (4.4) by
y, we get

1− uj+1 = (1− uj)(1 + uj),

which simplifies to
uj+1 = u2

j . (4.5)

Thus
uj = (u0)

2j

. (4.6)

We see that the iteration converges if and only if |u0| < 1, which (for real x0

and y) is equivalent to the condition x0y ∈ (0, 2). Second-order convergence
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is reflected in the double exponential with exponent 2 on the right-hand-side
of (4.6).

The iteration (4.4) is sometimes implemented in hardware to compute
reciprocals of floating-point numbers, see for example [79]. The sign and
exponent of the floating-point number are easily handled, so we can assume
that y ∈ [0.5, 1.0) (recall we assume a binary radix in this Chapter). The
initial approximation x0 is found by table lookup, where the table is indexed
by the first few bits of y. Since the order of convergence is two, the number
of correct bits approximately doubles at each iteration. Thus, we can predict
in advance how many iterations are required. Of course, this assumes that
the table is initialised correctly2.

Computational Issues

At first glance, it seems better to replace Eq. 4.4 by

xj+1 = xj(2− xjy),

which looks simpler. However, although those two forms are mathematically
equivalent, they are not computationally equivalent. Indeed, in Eq. 4.4, if
xj approximates 1/y to within n/2 bits, then 1 − xjy = O(2−n/2), and the
product of xj by 1 − xjy might be computed with a precision of n/2 bits
only. In the above — apparently simpler — form, 2 − xjy = 1 + O(2−n/2),
thus the product of xj by 2− xjy has to be performed with a full precision
of n bits.

As a general rule, it is usually better to keep apart the terms of different
order in Newton’s iteration, and to not try to factor common expressions
(see however the discussion about the 2M(n) reciprocal algorithm in §3.8).

4.2.3 Newton’s Method for (Reciprocal) Square Roots

Taking m = 2 in (4.3), we obtain the iteration

xj+1 = xj + xj(1− x2
jy)/2, (4.7)

2In the case of the infamous Pentium fdiv bug [64], a lookup table used for division
was initialised incorrectly, and the division was occasionally inaccurate. Although the
algorithm used in the Pentium did not involve Newton’s method, the moral is the same –
tables must be initialised correctly.
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which we expect to converge to y−1/2 provided x0 is a sufficiently good ap-
proximation.

If we want to compute y1/2, we can do this in one multiplication after
first computing y−1/2, since

y1/2 = y × y−1/2.

This method does not involve any divisions (except by 2). In contrast, if we
apply Newton’s method to the function f(x) = x2 − y, we obtain Heron’s3

iteration (see Algorithm SqrtInt in §1.5.1)

xj+1 =
1

2

(
xj +

y

xj

)
(4.8)

for the square root of y. This requires a division by xj at iteration j, so it is
essentially different from the iteration (4.7). Although both iterations have
second-order convergence, we expect (4.7) to be more efficient (however this
might depend on the relative cost of division with respect to multiplication).

4.2.4 Newton’s Method for Formal Power Series

(This section is not required for function evaluation, however it gives a com-
plementary point of view on Newton’s method.)

Newton’s method can be applied to find roots of functions defined by
formal power series as well as of functions of a real or complex variable. For
simplicity we consider formal power series of the form

A(z) = a0 + a1z + a2z
2 + · · ·

where ai ∈ R (or any field of characteristic zero) and ord(A) = 0, i.e., a0 6= 0.
For example, if we replace y in (4.4) by 1 − z, and take initial approxi-

mation x0 = 1, we obtain a quadratically-convergent iteration for the formal
power series

(1− z)−1 =
∞∑

n=0

zn.

In the case of formal power series, “quadratically convergent” means that
ord(ej) → +∞ like 2j. In our example, with the notations of §4.2.2, u0 =

3Heron of Alexandria, circa 10–75 AD.
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1− x0y = z, so uj = z2j

and

xj =
1− uj

1− z
=

1

1− z
+ O

(
z2j
)

.

Some operations on formal power series have no analogue for integers.
For example, given a formal power series A(z) =

∑
j≥0 ajz

j, we can define
the formal derivative

A′(z) =
∑

j>0

jajz
j−1 = a1 + 2a2z + 3a3z

2 + · · · ,

and the integral ∑

j≥0

aj

j + 1
xj+1,

but there is no useful analogue for multiple-precision integers
n∑

j=0

ajβ
j.

4.2.5 Newton’s Method for Functional Inverses

Given a function g(x), its functional inverse h(x) satisfies g(h(x)) = x, which
is also denoted h(x) := g(−1)(x). For example g(x) = log x and h(x) = expx
are functional inverses, or g(x) = tanx and h(x) = arctanx. Using the
function f(x) = y − g(x) in Eq. (4.2), one gets a root ζ of f , i.e., a value
such that g(ζ) = y, or ζ = g(−1)(y):

xj+1 = xj +
y − g(xj)

g′(xj)
.

Since this iteration only involves g and g′, it provides an efficient way to
evaluate h(y), assuming that g(xj) and g′(xj) can be efficiently computed.
Moreover if the complexity of evaluating g′ is less or equal to that of g, we get
a means to evaluate the functional inverse h of g within the same complexity.

As an example, if one has an efficient implementation of the logarithm,
a similarly efficient implementation of the exponential is deduced as follows.
Consider the root ey of the function f(x) = y − log x, which yields the
iteration:

xj+1 = xj + xj(y − log xj),

and in turn the following algorithm (for sake of simplicity, we consider here
only one Newton iteration):
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� �� �
1 Algorithm LiftExp .
2 Input : xj , (n/2)−b i t approximation to exp(y) .
3 Output : xj+1 , n−b i t approximation to exp(y) .
4 t← log xj [ computed to n−b i t accuracy ]
5 u← y − t [ computed to (n/2)−b i t accuracy ]
6 v ← xju [ computed to (n/2)−b i t accuracy ]
7 xj+1 ← xj + v


 	� �

4.2.6 Higher Order Newton-like Methods

The classical Newton’s method is based on a linear approximation of f(x)
around f(x0). If one consider a higher order approximation, one get a higher
order method. Consider for example an order 2 approximation. Eq. 4.1
becomes:

f(ζ) = f(x0) + (ζ − x0)f
′(x0) +

(ζ − x0)
2

2
f ′′(x0) +

(ζ − x0)
3

6
f ′′′(ξ).

Since f(ζ) = 0, and neglecting the 3rd-order term, one gets:

ζ = x0 −
f(x0)

f ′(x0)
− (ζ − x0)

2

2

f ′′(x0)

f ′(x0)
+ O((ζ − x0)

3).

One difficulty here is that ζ is not known in the second-order term. Let
ζ = x0 − f(x0)

f ′(x0)
+ ν, where ν is the second-order error term. Replacing in the

above equation yields the iteration:

xj+1 = xj −
f(xj)

f ′(xj)
− f(xj)

2f ′′(xj)

2f ′(xj)3
.

For the computation of the reciprocal with f(x) = y − 1/x (§4.2.2), this
yields

xj+1 = xj + xj(1− xjy) + xj(1− xjy)2.

For the computation of expx using functional inversion (§4.2.5), one gets:

xj+1 = x0 + x0(y − log x0) +
1

2
x0(y − log x0)

2.
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4.3 Argument Reduction

Argument reduction is a classical method to improve the efficiency of the
evaluation of mathematical functions. The key idea is to reduce the initial
problem to a domain where the function is easier to evaluate. More precisely,
given f(x) to evaluate, one proceeds in three steps:

• argument reduction: x is transformed into a reduced argument x′;

• evaluation: f(x′) is evaluated;

• reconstruction: f(x) is computed from f(x′) using a functional identity.

In some cases the argument reduction or the reconstruction is trivial, for
example x′ = x/2 in radix 2, or f(x) ≈ f(x′) (some examples will illustrate
that below). It might also be that the evaluation step uses a different function
g(x′) instead of f(x′); for example sin(x + π/2) = cos(x), thus with f = sin
and x′ = x− π/2, we have g = cos.

Note that argument reduction is only possible when a functional identity
relies f(x) and f(x′) — or g(x′). The elementary functions have addition
formulae such as

exp(x + y) = exp(x) exp(y),

log(xy) = log(x) + log(y),

sin(x + y) = sin(x) cos(y) + cos(x) sin(y),

tan(x + y) =
tan(x) + tan(y)

1− tan(x) tan(y)
.

We can use these formulæ to reduce the argument so that power series con-
verge more rapidly. Usually we take x = y to get doubling formulae such
as

exp(2x) = exp(x)2, (4.9)

though occasionally tripling formulae such as

sin(3x) = 3 sin(x)− 4 sin3(x)

might be useful (indeed, sin(2x) = 2 sinx cos x involves two auxiliary func-
tions, see however §4.9.1). Unfortunately, such functional identities do not
exist for every function; for example, no argument reduction is known for the
error function.

One usually distinguishes two kinds of argument reduction:
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• multiplicative argument reduction where x′ = x/ck for some real con-
stant c and some integer k. This occurs for the computation of expx
when using the doubling formula exp(2x) = (expx)2;

• additive argument reduction where x′ = x− kc, for some real constant
c and some integer k. This occurs in particular when f(x) is periodic,
for example for the sine and cosine functions with c = 2π.

Note that for a given function, the two kinds of argument reduction might
be available. For example, for sinx, one might either use the tripling formula
sin(3x) = 3 sinx− 4 sin3 x, or alternatively sin(x + 2kπ) = sinx.

4.3.1 Repeated Use of Doubling Formulæ

If we apply the doubling formula for exp k times, we get

exp(x) = exp(x/2k)2k

.

Thus, if |x| = O(1), we can reduce the problem of evaluating exp(x) to that
of evaluating exp(x/2k), where the argument is now O(2−k). The extra cost
is the k squarings that we need to get the final result from exp(x/2k).

There is a trade-off here and k should be chosen to minimise the total
time. If the obvious method for power series evaluation is used, then the
optimal k is of order

√
n and the overall time is O(n1/2M(n)). (We’ll see

soon that there are faster ways to evaluate power series, so this is not the
best possible result.)

We assumed here that |x| = Θ(1). A more careful analysis shows that
the optimal k depends on the order of magnitude of x (see Ex. 4.13.4).

4.3.2 Loss of Precision

For some power series, especially those with alternate signs, a loss of precision
might occur due to a cancellation between successive terms. An extreme
example is expx for x < 0. Assume for example we want 10 significant digits
of exp(−10). The first ten terms xk/k! are:

1.,−10., 50.,−166.6666667, 416.6666667,−833.3333333, 1388.888889,
−1984.126984, 2480.158730,−2755.731922.
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If we add the first 51 terms with a working precision of 10 digits, we get an
approximation of exp(−10) that is accurate to about 3 digits only!

In that case we might use

exp(x) = 1/ exp(−x)

instead to avoid cancellation in the power series summation. In other cases
an alternate power series without sign changes might exist.

4.3.3 Guard Digits

Care has to be taken to use the right number of guard digits, and/or the
right working precision. Consider once again our running example of expx,
with reduced argument x/2k. Since x/2k is O(2−k), when we sum the power
series 1 + x/2k + · · · from left to right, we “lose” about k bits of precision.
Indeed, if x/2k + · · · is accurate to n bits, then 1 + x/2k + · · · is accurate
to n + k bits, but if we use the same working precision n, one will obtain n
correct bits only. After squaring k times in the reconstruction step, about k
bits will be lost due to rounding errors, thus the final accuracy will be n− k
only. If one would sum the power series in reverse order instead, and use a
working precision of n + k when adding 1 and x/2k + · · · , one would obtain
an accuracy of n + k bits before the k squarings, and of n bits finally.

Another way to avoid this loss of precision is to evaluate expm1(x/2k),
where the function expm1 is defined by

expm1(x) = exp(x)− 1

and has a doubling formula that avoids loss of significance when |x| is small.
See Exercises 4.13.6–4.13.8.

4.3.4 Doubling versus Tripling Formula

It is more efficient to do argument reduction via the doubling formula (4.9)
for exp than the tripling formula for sinh:

sinh(3x) = sinh(x)(3 + 4 sinh2(x)),

because it takes one multiplication and one squaring (which may be cheaper)
to apply the tripling formula, but only two squarings to apply the doubling
formula twice (and 3 < 22).
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4.4 Power Series

Once argument reduction has been applied, whenever possible (§4.3), one
is usually faced with the evaluation of a power series. The elementary and
special functions have power series expansions such as:

exp x =
∑

j≥0

xj

j!
,

log(1 + x) =
∑

j≥0

(−1)jxj+1

j + 1
,

arctanx =
∑

j≥0

(−1)jx2j+1

2j + 1
,

sinh x =
∑

j≥0

x2j+1

(2j + 1)!
,

This section discusses several techniques to recommend or to avoid. We use
the following notations: x is the evaluation point, n is the wanted precision,
and d is the order of the power series, or the degree of the corresponding
polynomial.

If f(x) is analytic in a neighbourhood of some point c, an obvious method
to consider for the evaluation of f(x) is summation of the Taylor series

f(x) =
d−1∑

j=0

(x− c)j f (j)(c)/j! + Rd(x, c).

As a simple but instructive example we consider the evaluation of exp(x)
for |x| ≤ 1, using

exp(x) =
d−1∑

j=0

xj/j! + Rd(x), (4.10)

where |Rd(x)| ≤ |x|d exp(|x|)/d! ≤ e/d!.

Using Stirling’s approximation for d!, we see that d ≥ K(n) ∼ n/ lg n
is sufficient to ensure that |Rd(x)| = O(2−n). Thus the time required to
evaluate (4.10) with Horner’s rule is O(nM(n)/ log n).
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In practice it is convenient to sum the series in the forward direction
(j = 0, 1, . . . , d− 1). The terms Tj = xj/j! and partial sums

Sj =

j∑

i=0

Ti

may be generated by the recurrence Tj = x × Tj−1/j, Sj = Sj−1 + Tj, and
the summation terminated when |Td| < 2−n/e. Thus, it is not necessary to
estimate d in advance, as it would be if the series were summed by Horner’s
rule in the backward direction (j = d−1, d−2, . . . , 0) (see however Ex. 4.13.3).

We now consider the effect of rounding errors, under the assumption that
floating-point operations are correctly rounded, i.e., satisfy

◦(x op y) = (x op y)(1 + δ),

where |δ| ≤ ε and “op” = “+”, “−”, “×” or “/”. Here ε = 1
2
β1−n is the

“machine precision” or “working precision”. Let T̂j be the computed value
of Tj , etc. Thus

|T̂j − Tj| / |Tj | ≤ 2jε + O(ε2)

and

|Ŝd − Sd| ≤ deε +
d∑

j=1

2jε|Tj|+ O(ε2)

≤ (d + 2)eε + O(ε2) = O(nε).

Thus, to get |Ŝd − Sd| = O(2−n) it is sufficient that ε = O(2−n/n), i.e.,
we need to work with about logβ n guard digits. This is not a significant
overhead if (as we assume) the number of digits may vary dynamically. We
can sum with j increasing (the forward direction) or decreasing (the backward
direction). A slightly better error bound is obtainable for summation in the
backward direction, but this method has the disadvantage that the number
of terms d has to be decided in advance. If we sum in the forward direction
then d can be determined dynamically by checking if |Tj | is small enough
(assuming, of course, that |Tj | is decreasing rapidly, which should be true if
appropriate argument reduction is used).

In practice it is inefficient to keep the working precision ε fixed. We can
profitably reduce it when computing Tj from Tj−1 if |Tj−1| ≪ 1, without
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significantly increasing the error bound. We can also vary the working preci-
sion when accumulating the sum, provided that it is computed in the forward
direction.

It is instructive to consider the effect of relaxing our restriction that
|x| ≤ 1. First suppose that x is large and positive. Since |Tj | > |Tj−1|
when j < |x|, it is clear that the number of terms required in the sum (4.10)
is at least of order |x|. Thus, the method is slow for large |x| (see §4.3 for
faster methods in this case, if applicable).

If |x| is large and x is negative, the situation is even worse. From Stirling’s
approximation we have

max
j≥0
|Tj | ≃

exp |x|√
2π|x|

,

but the result is exp(−|x|), so about 2|x|/ log β guard digits are required to
compensate for what Lehmer called “catastrophic cancellation” [57]. Since
exp(x) = 1/ exp(−x), this problem may easily be avoided, but the corre-
sponding problem is not always so easily avoided for other analytic functions.

Here is a less trivial example where power series expansions are useful.
To compute the error function

erf(x) = 2π−1/2

∫ x

0

e−u2

du,

we may use the series

erf(x) = 2π−1/2

∞∑

j=0

(−1)j x2j+1

j!(2j + 1)
(4.11)

or

erf(x) = 2π−1/2 exp(−x2)
∞∑

j=0

2j x2j+1

1 · 3 · 5 · · · (2j + 1)
. (4.12)

The series (4.12) is preferable to (4.11) for moderate |x| because it involves
no cancellation. For large |x| neither series is satisfactory, because Ω(x2)
terms are required, and it is preferable to use the asymptotic expansion or
continued fraction for erfc(x) = 1− erf(x): see §§4.5–4.6.

In the following subsections we consider different methods to evaluate
power series. We generally ignore the effect of rounding errors, but the results
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obtained above are typical. For an example of an extremely detailed error
analysis of an “unrestricted” algorithm, see [43]. Here unrestricted means
that there is no a priori bound on |x|, the precision or the exponent range.

Power Series to Avoid

In some cases the coefficients in the series are nontrivial to evaluate. For
example,

tanx =
∑

j≥1

Tj

(2j − 1)!
x2j−1,

where the constants Tj are called tangent numbers and can be expressed in
terms of Bernoulli numbers. In such cases it is best to avoid direct power
series evaluation.

For example, to evaluate tanx we can use Newton’s method on the inverse
function (arctan, see §4.2.5), or we can use tanx = sin x/ cosx.

Thus, we’ll assume for the moment that we have a power series
∑

j≥0 ajx
j

where aj+1/aj is a rational function R(j) of j, and hence it is easy to evaluate
a0, a1, a2, . . . sequentially. For example, in the case of exp x,

aj+1

aj

=
j!

(j + 1)!
=

1

j + 1
.

In general, our assumptions cover hypergeometric functions.

The Radius of Convergence

If the elementary function is an entire function (e.g., exp, sin) then the power
series converges in the whole complex plane. In this case the degree of the
denominator of R(j) = aj+1/aj is greater than that of the numerator.

In other cases (such as log, arctan) the function is not entire and the power
series only converges in a disk in the complex plane because the function has
a singularity on the boundary of this disk. In fact log(x) has a singularity
at the origin, which is why we consider the power series for log(1 + x). This
power series has radius of convergence 1.

Similarly, the power series for arctan(x) has radius of convergence 1 be-
cause arctan(x) has a singularity on the unit circle (even though it is uni-
formly bounded for all real x).
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4.4.1 Direct Power Series Evaluation

Using periodicity (in the cases of sin, cos) or argument reduction techniques
(§4.3), we can assume that we want to evaluate a power series

∑
j≥0 ajx

j

where |x| ≤ 1/2 and the radius of convergence of the series is at least 1.

As before, assume that aj+1/aj is a rational function of j, and hence easy
to evaluate.

To sum the series with error O(2−n) it is sufficient to take n+O(1) terms,
so the time required is

O(nM(n)).

If the function is entire, then the series converges faster and the time is
reduced to

O

(
nM(n)

log n

)
.

However, we can do much better by carrying the argument reduction
further!

4.4.2 Power Series With Argument Reduction

By applying argument reduction k + O(1) times, we can ensure that the
argument x satisfies (say for expx)

|x| < 2−k.

Then, to obtain n-bit accuracy we only need to sum O(n/k) terms in the
power series. Assuming that a step of argument reduction is O(M(n)), which
is true for the elementary functions, the total cost is

O ((k + n/k)M(n)) .

Indeed, the argument reduction and/or reconstruction requires O(k) steps of
O(M(n)), and the evaluation of the power series of order n/k costs n/kM(n);
so choosing k ∼ n1/2 gives cost

O
(
n1/2M(n)

)
.
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Examples

For example, this applies to the evaluation of exp(x) using

exp(x) = exp(x/2)2,

to log1p(x) = log(1 + x) using

log1p(x) = 2 log1p

(
x

1 +
√

1 + x

)
,

and to arctan(x) using

arctanx = 2 arctan

(
x

1 +
√

1 + x2

)
.

Note that in the last two cases each step of the argument reduction requires
a square root, but this can be done with cost O(M(n)) by Newton’s method
(§3.5). Thus in all three cases the overall cost is

O
(
n1/2M(n)

)
,

although the implicit constant might be smaller for exp than for log1p or
arctan.

Using Symmetries

A not-so-well-known idea is to evaluate log(1 + x) using the power series

log

(
1 + y

1− y

)
= 2

∑

j≥0

y2j+1

2j + 1

with y defined by (1+y)/(1−y) = 1+x, i.e., y = x/(2+x). This saves half the
terms and also reduces the argument, since y < x/2 if x > 0. Unfortunately
this nice idea can be applied only once. For another example, see Ex. 4.13.9.

4.4.3 The Rectangular Series Splitting

Once we determine how many terms in the power series are required for the
desired accuracy, the problem reduces to evaluating a truncated power series,
i.e., a polynomial.



144 Modern Computer Arithmetic, version 0.2 of June 26, 2008

Let P (x) =
∑

0≤j<d ajx
j be the polynomial one wants to evaluate. In the

general case x is a floating-point number of n bits, and we aim at an accuracy
of n bits for P (x). However the coefficients aj , or their ratios R(j) = aj+1/aj,
are usually small integer or rational numbers of O(log n) bits. A scalar multi-
plication involves one coefficient aj and the variable x — or more generally an
n-bit floating-point number —, whereas a nonscalar multiplication involves
two powers of x — or more generally two n-bit floating-point numbers. Scalar
multiplications are cheaper because aj are small rationals of size O(log n),
whereas x and its powers have O(n) bits. It is possible to evaluate P (x) with
O(
√

n) nonscalar multiplications (plus O(n) scalar multiplications and O(n)
additions, using O(

√
n) storage). The same idea applies, more generally, to

evaluation of hypergeometric functions.

The Classical Splitting

Suppose d = jk, define y = xk, and write

P (x) =

j−1∑

ℓ=0

yℓPℓ(x) where Pℓ(x) =
k−1∑

m=0

akℓ+m xm.

One first computes the powers x2, x3, . . . , xk−1, xk = y, then the polynomials
Pℓ(x) are evaluated by simply multiplying akℓ+m and the precomputed xm

— it is very important not to use Horner’s rule with respect to x here, since
it would imply expensive nonscalar multiplications — and finally P (x) is
computed from the Pℓ(x) using Horner’s rule with respect to y. To see the
idea geometrically, write P (x) as

y0 [a0 + a1x + a2x
2 + · · · + ak−1x

k−1] +
y1 [ak + ak+1x + ak+2x

2 + · · · + a2k−1x
k−1] +

y2 [a2k + a2k+1x + a2k+2x
2 + · · · + a3k−1x

k−1] +
...

...
...

yj−1 [a(j−1)k + a(j−1)k+1x + a(j−1)k+2x
2 + · · · + ajk−1x

k−1]

where y = xk. The terms in square brackets are the polynomials P0(x),
P1(x), . . . , Pj−1(x).

As an example, consider d = 12, with j = 3 and k = 4. This would give
P0(x) = a0 + a1x + a2x

2 + a3x
3, P1(x) = a4 + a5x + a6x

2 + a7x
3, P2(x) =

a8+a9x+a10x
2+a11x

3, then P (x) = P0(x)+yP1(x)+y2P2(x), where y = x4.
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Here we need to compute x2, x3, x4, which requires three nonscalar products,
and we need two nonscalar products to evaluate P (x), thus a total of five
nonscalar products, instead of d−2 = 10 with a naive application of Horner’s
rule on P (x).

The Modular Splitting

An alternate splitting is the following, which corresponds to transpose the
matrix of coefficients above, swap j and k, and interchange the powers of x
and y. It might also be viewed as a generalized odd-even scheme (§1.3.5).
Still suppose d = jk, and write with y = xj:

P (x) =

j−1∑

ℓ=0

xℓPℓ(x
j) where Pℓ(y) =

k−1∑

m=0

ajm+ℓ ym.

First compute y = xj, y2, y3, . . . , yk−1. Now the polynomials Pℓ(y) can be
evaluated using only scalar multiplications of the form ajm+ℓy

m.
To see the idea geometrically, write P (x) as

x0 [a0 + ajy + a2jy
2 + · · · ] +

x1 [a1 + aj+1y + a2j+1y
2 + · · · ] +

x2 [a2 + aj+2y + a2j+2y
2 + · · · ] +

...
...

...
xj−1 [aj−1 + a2j−1y + a3j−1y

2 + · · · ]

where y = xj. We traverse the first row of the array, then the second row,
then the third, . . ., finally the j-th row, accumulating sums S0, S1, . . . , Sj−1

(one for each row). At the end of this process Sℓ = Pℓ(y) and we only have
to evaluate

P (x) =

j−1∑

ℓ=0

xℓSℓ.

The complexity of that scheme is almost the same (see Ex. 4.13.10). With
d = 12 — j = 3 and k = 4 — this would give P0(y) = a0 + a3y + a6y

2 + a9y
3,

P1(y) = a1 + a4y + a7y
2 + a10y

3, P2(y) = a2 + a5y + a8y
2 + a11y

3. We
first compute y = x3, y2 and y3, then we evaluate P0(y) in three scalar
multiplications a3y, a6y

2, and a9y
3 and three additions, similarly for P1 and

P2, and finally we evaluate P (x) using

P (x) = P0(y) + xP1(y) + x2P2(y),
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(here we might use Horner’s rule). In this example, we have a total of six
nonscalar multiplications: four to compute y and its powers, and two to
evaluate P (x).

Complexity of the Rectangular Series Splitting

To evaluate a polynomial P (x) of degree d − 1 = jk − 1, the rectangu-
lar series splitting takes O(j + k) nonscalar multiplications — each costing
O(M(n)) — and O(jk) scalar multiplications. The scalar multiplications in-
volve multiplication and/or division of a multiple-precision number by small
integers. Assume that these multiplications and/or divisions take time c(d)n
(see Ex. 4.13.11 for a justification of this fact). The constant c(d) accounts for
the fact that the involved scalars — the coefficients aj or the ratios aj+1/aj

— have a size depending on the degree d of P (x). In practice we can safely
regard c(d) as constant.

Choosing j ∼ k ∼ d1/2 we get overall time

O(d1/2M(n) + dn · c(d)). (4.13)

If the degree d of P (x) is of the same order as the precision n of x, this is
not an improvement on the bound O(n1/2M(n)) that we obtained already
by argument reduction and power series evaluation (§4.4.2). However, we
can do argument reduction before applying the rectangular series splitting.
Applying ∼ n1/3 steps of argument halving, we can take d ∼ n2/3 and get
overall time

O(n1/3M(n) + n5/3c(n)).

The Slowly Growing Function c(n)

The scalar multiplications involve multiplication and/or division of an n-bit
multiple-precision number by “small” integers. Here “small” means O(d),
i.e., integers with O(log d) digits. Suppose that these multiplications and/or
divisions take time c(n)n (since d = O(n), we can replace c(d) by c(n)).
There are three cases:

1. The small integers fit in one word. Then c(n) = O(1) is a constant.
This is the case that occurs in practice.

2. If the small integers do not fit in one word, they certainly fit in O(log n)
words, so a straightforward implementation gives c(n) = O(log n).
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3. If we split the n-digit numbers into O(n/ log n) blocks each of O(log n)
bits, and apply O(n logα n) multiplication (or division using Newton’s
method) within each block, we get c(n) = O(logα log n).

Remark 1. Cases 2 and 3 should never occur in practice, because if n is
so large that Case 1 does not apply then we should be using asymptotically
faster algorithms (e.g., those based on the AGM) instead of power series
evaluation.

We saw that the rectangular series splitting takes time

T (n) = O(n1/3M(n) + n5/3c(n)).

However this analysis does not take into account the cost of argument re-
duction, which is O(n

d
M(n)) to get a polynomial of degree d. The total

complexity is thus:

T (n) = O(
n

d
M(n) + d1/2M(n) + dn c(n)).

Which term dominates? There are two cases:

1. M(n) ≫ n4/3c(n). Here the minimum is obtained when the first two
terms are equal, i.e., for d ∼ n2/3, which yields T (n) = O(n1/3M(n)).
This case applies if we use classical or Karatsuba multiplication, since
lg 3 > 4/3, or even Toom-Cook 3-, 4-, 5-, 6-way.

2. M(n) ≪ n4/3c(n). Here the minimum is obtained when the first and
the last terms are equal. The optimal value of d is then

√
M(n)/c(n),

and we get an improved bound Θ(n
√

M(n)c(n)) ≫ n3/2. We can not
approach the O(n1+ε) that is achievable with AGM-based methods, so
we probably should not be using the rectangular series splitting (or any
method based on power series evaluation) for such large n.

4.5 Asymptotic Expansions

As seen in §4.4, the series (4.11) and (4.12) are not satisfactory for large |x|,
since they require Ω(x2) terms. For example, to evaluate erf(1000) with an
accuracy of 6 digits, Eq. (4.11) requires at least 2, 718, 279 terms! Instead,
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we may use an asymptotic expansion. In the case of the error function, the
complementary error function erfcx = 1− erf x satisfies

erfcx ≈ e−x2

√
πx

(
1 +

k∑

j=1

(−1)j (2j)!

j!(4x2)j

)
, (4.14)

with the error bounded in absolute value by the next term and of the same
sign. In the x = 1000 case, the term j = 1 of the sum equals −0.5 · 10−6,
thus e−x2

/(
√

πx) is an approximation of erfcx with an accuracy of 6 digits.
For such a function where both a power series for — at x = 0 — and an

asymptotic expansion — at x = ∞ — are available, we might want to use
the former or the later, depending on the value of the argument and on the
wanted precision. We study here in detail the case of the error function.

Here the sum in (4.14) is divergent — its j-th term behaves roughly like
jj

ejx2j — thus we need that its smallest term is O(2−n) to be able to deduce
an n-bit approximation of erfcx. Its minimum is obtained for j ≈ x2, and
is of order e−x2

, thus we need x >
√

n log 2. For example for n = 106

bits this yields x > 833. However, since erfcx is small for large x, says
erfc x ≈ 2−k, we need only m = n − k correct bits of erfcx to get n correct
bits of erf x = 1− erfcx.

� �� �
1 Algorithm Erf .
2 Input : f l o a t i n g−po int number x , i n t e g e r n
3 Output : an approximation o f erf(x) to n b i t s
4 m← ⌈n− (x2 + log x + 1

2 log π)/(log 2)⌉
5 I f m < n/2 then
6 t← erfc(x) with (4.14) and p r e c i s i o n m
7 Return 1− t
8 Else compute erf(x) with the power s e r i e s (4.11)


 	� �

In Algorithm Erf, the number of terms needed if Eq. (4.11) is used is the
unique positive root j0 of j(log j−2 log x−1) = n log 2, whereas if Eq. (4.14)
is used, it is the smallest j∞ of the two positive roots of j(2 log x + 1− j) =
m log 2. Fig. 4.1 shows that j∞ is always smaller than j0, thus whenever the
asymptotic expansion can be used, it should be. (The condition m < n/2 in
the algorithm comes from m ≈ n−x2/(log 2) and the inequality x >

√
m log 2

which ensures m bits from the asymptotic expansion.)
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For example for x = 800 and a precision of one million bits, Eq. (4.11) re-
quires about j0 = 2, 339, 601 terms. Eq. (4.14) tells us that erfcx ≈ 2−923335,
thus we need only m = 76665 bits of precision for erfcx; in that case
Eq. (4.14) requires only about j∞ = 10, 375 terms.

–600000

–400000

–200000

0

200000

400000

600000

800000

500000 1e+06 1.5e+06 2e+06 2.5e+06

j

Figure 4.1: Graph of j(log j − 2 log x − 1) for 0 ≤ j ≤ 2, 500, 000, x = 800,
together with the lines n log 2 and −m log 2 for n = 106 and m = 76665.

Another example near the boundary: For x = 589, still with n = 106, we
have m = 499, 489, which gives j0 = 1, 497, 924, and j∞ = 325, 092.

4.6 Continued Fractions

[This section to be completed]

Examples: Ei, erf, Bessel functions. Cf Section 6 of [28], and new book
Handbook of Continued Fractions for Special Functions [52].

Ei x = expx
1

x + 1
1+ 1

x+ 2

1+ 2

x+ 3
1+···

.

erf x =
2xe−z2

√
π

1

1− 2x2

3+ 4x2

5− 6x2

7+ 8x2

9− 10x2

11+···

.
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4.7 Recurrence Relations

[This section to be completed]
Linear and/or nonlinear recurrence relations (an example of nonlinear is

considered in §4.8). Example: Bessel functions (cf Section 7 of [28]):

Jν−1(x) + Jν+1(x) =
2ν

x
Jν(x),

or for the Bessel-Clifford function4 Cn(x) =
∑

j≥0
xk

k!(k+n)!
which is related to

the Bessel I function by Cn(x) = x−n/2In(2
√

x):

xCn+2(x) + (n + 1)Cn+1(x) = Cn(x).

This also leads to a continued fraction for Qn(x) = Cn+1(x)/Cn(x).

4.8 Arithmetic-Geometric Mean

The fastest known methods for very large precision n are based on the
arithmetic-geometric mean (AGM) iteration of Gauss. The AGM is another
nonlinear recurrence, important enough to treat separately. Its complex-
ity is O(M(n) log n); the implicit constant here can be quite large, so other
methods are better for small n.

Given (a0, b0), the AGM iteration is defined by

(aj+1, bj+1) =

(
aj + bj

2
,
√

ajbj

)
.

For simplicity we’ll only consider real, positive starting values (a0, b0) here
(see §3.8).

The AGM iteration converges quadratically to a limit which we’ll denote
by AGM(a0, b0).

Why the AGM is Useful

The AGM is useful because:

4http://en.wikipedia.org/wiki/Bessel-Clifford_function
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1. It converges quadratically. Eventually the number of correct digits
doubles at each iteration, so only O(log n) iterations are required.

2. Each iteration takes time O(M(n)) because the square root can be
computed in time O(M(n)) by Newton’s method (see §3.5 and §4.2.3).

3. If we take suitable starting values (a0, b0), the result AGM(a0, b0) can be
used to compute logarithms (directly) and other elementary functions
(less directly), as well as constants such as π and log 2.

4.8.1 Elliptic Integrals

The theory of the AGM iteration is intimately linked to the theory of elliptic
integrals.

The complete elliptic integral of the first kind is

K(k) =

∫ π/2

0

dθ√
1− k2 sin2 θ

=

∫ 1

0

dt√
(1− t2)(1− k2t2)

,

and the complete elliptic integral of the second kind is

E(k) =

∫ π/2

0

√
1− k2 sin2 θ dθ =

∫ 1

0

√
1− k2t2

1− t2
dt,

where k ∈ [0, 1] is called the modulus and k′ =
√

1− k2 is the complementary
modulus. It is traditional (though confusing) to write K ′(k) for K(k′) and
E ′(k) for E(k′).

The Connection With Elliptic Integrals

Gauss discovered that
1

AGM(1, k)
=

2

π
K ′(k). (4.15)

This identity can be used to compute the elliptic integral K rapidly via the
AGM iteration. We can also use it to compute logarithms.

From the definition

K(k) =

∫ π/2

0

dθ√
1− k2 sin2 θ

,
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we see that K(k) has a series expansion that converges for |k| < 1 (in fact
K(k) = π

2
F (1

2
, 1

2
; 1; k2) is a hypergeometric function). For small k we have

K(k) =
π

2

(
1 +

k2

4
+ O(k4)

)
. (4.16)

It can also be shown [20, (1.3.10)] that

K ′(k) =
2

π
ln

(
4

k

)
K(k)− k2

4
+ O(k4). (4.17)

4.8.2 First AGM Algorithm for the Logarithm

From these formulæ we easily get

π/2

AGM(1, k)
= log

4

k
(1 + O(k2)).

Thus, if x = 4/k is large, we have

log(x) =
π/2

AGM(1, 4/x)

(
1 + O

(
1

x2

))
.

If x ≥ 2n/2, we can compute log(x) to precision n using the AGM iteration.
It takes about 2 lg(n) iterations to converge if x ∈ [2n/2, 2n].

Note that we need the constant π, which could be computed by using
our formula twice with slightly different arguments x1 and x2, then taking
differences. More efficient is to use the Brent-Salamin algorithm, which is
based on the AGM and the Legendre relation

EK ′ + E ′K −KK ′ =
π

2
.

Argument Expansion

If x is not large enough, we can compute

log(2kx) = k log 2 + log x

by the AGM method (assuming the constant log 2 is known). Alternatively,
if x > 1, we can square x enough times and compute

log
(
x2k
)

= 2k log(x).

This method with x = 2 gives a way of computing log 2.
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The Error Term

The O(k2) error term in the formula

π/2

AGM(1, k)
= log

(
4

k

)
(1 + O(k2))

is a nuisance. [20, p.11, ex. 4(c)] gives a rigorous bound
∣∣∣∣

π/2

AGM(1, k)
− log

(
4

k

)∣∣∣∣ ≤ 4k2(8− log k)

for all k ∈ (0, 1], and the bound can be sharpened to 0.37k2(2.4− log(k)) if
k ∈ (0, 0.5].

The error O(k2| log k|) makes it difficult to accelerate convergence by
using a larger value of k (i.e., a smaller value of x = 4/k). There is an exact
formula which is much more elegant and avoids this problem. Before giving
this formula we need to define some theta functions and show how they can
be used to parameterise the AGM iteration.

4.8.3 Theta Functions

The theta functions that we need are θ2(q), θ3(q) and θ4(q), defined for |q| < 1
by

θ2(q) =
+∞∑

n=−∞

q(n+1/2)2 = 2q1/4

+∞∑

n=0

qn(n+1),

θ3(q) =
+∞∑

n=−∞

qn2

= 1 + 2
+∞∑

n=1

qn2

, (4.18)

θ4(q) = θ3(−q) = 1 + 2
+∞∑

n=1

(−1)nqn2

. (4.19)

Note that the defining power series are sparse so it is easy to compute θ2(q)
and θ3(q) for small q. Unfortunately, the fast method from §4.4.3 does not
help to speed up the computation.

The asymptotically fastest methods to compute theta functions use the
AGM. However, we won’t follow this trail because it would lead us in cir-
cles! (We want to use theta functions to give starting values for the AGM
iteration.)
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Theta Function Identities

There are many identities involving theta functions (see [20, Chapter 2]).
Two that are of interest to us are:

θ2
3(q) + θ2

4(q)

2
= θ2

3(q
2)

and
θ3(q)θ4(q) = θ2

4(q
2)

which may be written as
√

θ2
3(q)θ

2
4(q) = θ2

4(q
2)

to show the connection with the AGM:

AGM(θ2
3(q) , θ2

4(q)) = AGM(θ2
3(q

2) , θ2
4(q

2)) = · · ·
= AGM(θ2

3(q
2k

) , θ2
4(q

2k

)) = · · · = 1

for any |q| < 1. (The limit is 1 because q2k

converges to 0, thus both θ3 and
θ4 converge to 1.) Apart from scaling, the AGM iteration is parameterised
by (θ2

3(q
2k

), θ2
4(q

2k

)) for k = 0, 1, 2, . . .

The Scaling Factor

Since AGM(θ2
3(q) , θ2

4(q)) = 1, and AGM(λa, λb) = λ AGM(a, b), scaling gives

AGM(1, k′) =
1

θ2
3(q)

if

k′ =
θ2
4(q)

θ2
3(q)

.

Equivalently, since θ4
2 + θ4

4 = θ4
3 (Jacobi),

k =
θ2
2(q)

θ2
3(q)

.

However, we know that

1

AGM(1, k′)
=

2

π
K(k),
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so
K(k) =

π

2
θ2
3(q). (4.20)

Thus, the theta functions are closely related to elliptic integrals. In the
theory q is usually called the nome associated with the modulus k.

From q to k and k to q

We saw that

k =
θ2
2(q)

θ2
3(q)

,

which gives k in terms of q. There is also a nice inverse formula which gives
q in terms of k:

q = exp(−πK ′(k)/K(k)),

or equivalently

log

(
1

q

)
=

πK ′(k)

K(k)
. (4.21)

For a proof see [20, §2.3].

Sasaki and Kanada’s Formula

Substituting (4.15) and (4.20) with k = θ2
2(q)/θ

2
3(q) in (4.21) gives Sasaki

and Kanada’s elegant formula:

log

(
1

q

)
=

π

AGM(θ2
2(q) , θ2

3(q))
. (4.22)

4.8.4 Second AGM Algorithm for the Logarithm

Suppose x ≫ 1. Let q = 1/x, compute θ2(q
4) and θ3(q

4) from their defin-
ing series (4.18) and (4.19), then compute AGM(θ2

2(q
4), θ2

3(q
4)). Sasaki and

Kanada’s formula (with q replaced by q4 to avoid the q1/4 term in the defi-
nition of θ2(q)) gives

log(x) =
π/4

AGM(θ2
2(q

4) , θ2
3(q

4))
.

There is a trade-off between increasing x (by squaring or multiplication by a
power of 2, cf “Argument Expansion” above) and taking longer to compute
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θ2(q
4) and θ3(q

4) from their series. In practice it seems good to increase x so
that q = 1/x is small enough that O(q36) terms are negligible. Then we can
use

θ2(q
4) = 2

(
q + q9 + q25 + O(q49)

)
,

θ3(q
4) = 1 + 2

(
q4 + q16 + O(q36)

)
.

We need x ≥ 2n/36 which is much better than the requirement x ≥ 2n/2 for
the first AGM algorithm. We save about four AGM iterations at the cost of
a few multiplications.

Implementation Notes

Since

AGM(θ2
2 , θ2

3) =
AGM(θ2

2 + θ2
3, 2θ2θ3)

2
,

we can avoid the first square root in the AGM iteration. Also, it only takes
two nonscalar multiplications to compute 2θ2θ3 and θ2

2 + θ2
3 from θ2 and θ3:

u = (θ2 + θ3)
2, v = θ2θ3, then 2v and u− 2v are the wanted values.

Constants

Using Bernstein algorithm (see §3.8), an n-bit square root takes time 11
6
M(n),

thus one AGM iteration takes time 17
6
M(n).

The AGM algorithms require 2 lg(n) + O(1) AGM iterations. The total
time to compute log(x) by the AGM is ∼ 17

3
lg(n)M(n).

Drawbacks of the AGM

1. The AGM iteration is not self-correcting, so we have to work with full
precision (plus any necessary guard digits) throughout. In contrast,
when using Newton’s method or evaluating power series, many of the
computations can be performed with reduced precision.

2. The AGM with real arguments gives log(x) directly. To obtain exp(x)
we need to apply Newton’s method (§4.2.5). To evaluate trigonometric
functions such as sin(x), cos(x), arctan(x) we need to work with com-
plex arguments, which increases the constant hidden in the “O” time
bound. Alternatively, we can use Landen transformations for incom-
plete elliptic integrals, but this gives even larger constants.
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3. Because it converges so fast, it is difficult to speed up the AGM. At
best we can save O(1) iterations.

4.8.5 The Complex AGM

In some cases the asymptotically fastest algorithms require the use of complex
arithmetic to produce a real result. It would be nice to avoid this because
complex arithmetic is significantly slower than real arithmetic.

Examples where we seem to need complex arithmetic to get the asymp-
totically fastest algorithms are:

1. arctan(x), arcsin(x), arccos(x) via the AGM using e.g.,

arctan(x) = ℑ(log(1 + ix)).

2. tan(x), sin(x), cos(x) using Newton’s method and the above, or

cos(x) + i sin(x) = exp(ix),

where the complex exponential is computed by Newton’s method from
the complex logarithm, similarly as in §4.2.5 for the real case.

The theory that we outlined for the AGM iteration and AGM algorithms
for log(z) can be extended without problems to complex z /∈ (−∞, 0], pro-
vided we always choose the square root with positive real part.

A complex multiplication takes three real multiplications (using Karat-
suba’s trick), and a complex squaring takes two real multiplications. One can
ever do better in the FFT domain, if one assumes that one multiplication of
cost M(n) is equivalent to three Fourier transforms. In that model a squaring
costs 2

3
M(n). A complex multiplication (a+ib)(c+id) = (ac−bd)+i(ad+bc)

requires four forward and two backward transforms, thus costs 2M(n). A
complex squaring (a+ ib)2 = (a+ b)(a− b)+ i(2ab) requires two forward and
two backward transforms, thus costs 4

3
M(n). Taking this into account, we

get the following asymptotic upper bounds (0.666 should read 0.666 . . ., and
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so on):

Operation real complex
squaring 0.666M(n) 1.333M(n)
multiplication M(n) 2M(n)
division 2.0833M(n) 6.5M(n)
square root 1.8333M(n) 6.333M(n)
AGM iteration 2.8333M(n) 8.333M(n)
log via AGM 5.666 lg(n)M(n) 16.666 lg(n)M(n)

(4.23)

See §4.14 for details about the algorithms giving those constants.

4.9 Binary Splitting

Since the asymptotically fastest algorithms for arctan, sin, cos etc have a
large constant hidden in their time bound O(M(n) log n) (see paragraph
“Drawbacks of the AGM” in §4.8.4), it is interesting to look for other algo-
rithms that may be competitive for a large range of precisions even if not
asymptotically optimal. One such algorithm (or class of algorithms) is based
on binary splitting or the closely related FEE method (see §4.14). The time
complexity of these algorithms is usually

O((log n)αM(n))

for some constant α ≥ 1 depending on how fast the relevant power series
converges, and also on the multiplication algorithm (classical, Karatsuba or
quasi-linear).

The Idea

Suppose we want to compute arctan(x) for rational x = p/q, where p and q
are small integers and |x| ≤ 1/2. The Taylor series gives

arctan

(
p

q

)
≈

∑

0≤j≤n/2

(−1)jp2j+1

(2j + 1)q2j+1
.

The finite sum, if computed exactly, gives a rational approximation P/Q to
arctan(p/q), and

log |Q| = O(n log n).
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(Note: the series for exp converges faster, so in this case log |Q| = O(n).)

The finite sum can be computed by “divide and conquer”: sum the first
half to get P1/Q1 say, and the second half to get P2/Q2, then

P

Q
=

P1

Q1
+

P2

Q2
=

P1Q2 + P2Q1

Q1Q2
.

The rationals P1/Q1 and P2/Q2 are computed by a recursive application of
the same method, hence the term “binary splitting”. If used with quadratic
multiplication, this way of computing P/Q does not help; however, fast mul-
tiplication speeds up the balanced products P1Q2, P2Q1, and Q1Q2.

Complexity

The overall time complexity is

O

(
∑

j

M(
n

2k
) log

n

2k
)

)
= O((log n)αM(n)),

where α = 2 in the FFT range; multiplication; in general α ≤ 2.

We can save a little by working to precision n rather than n log n at the
top levels; for classical or Karatsuba multiplication this reduces α to 1, but
we still have α = 2 for quasi-linear multiplication.

In practice the multiplication algorithm would not be fixed but would
depend on the size of the integers being multiplied. The complexity depends
on the algorithm that is used at the top levels.

Repeated Application of the Idea

If x ∈ (0, 0.5) and we want to compute arctan(x), we can approximate x by a
rational p/q and compute arctan(p/q) as a first approximation to arctan(x),
say p/q ≤ x < (p + 1)/q. Now

tan(arctan(x)− arctan(p/q)) =
x− p/q

1 + px/q
,

so

arctan(x) = arctan(p/q) + arctan(δ)
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where

δ =
x− p/q

1 + px/q
=

qx− p

q + px
.

We can apply the same idea to approximate arctan(δ), until eventually we get
a sufficiently accurate approximation to arctan(x). Note that |δ| < |x−p/q|,
so it is easy to ensure that the process converges.

Complexity of Repeated Application

If we use a sequence of about lg n rationals p1/q1, p2/q2, . . ., where

qi = 22i

,

then the computation of each arctan(pi/qi) takes time O((log n)αM(n)) and
the overall time to compute arctan(x) is

O((log n)α+1M(n)).

Indeed, we have 0 ≤ pi < 22i−1

, thus pi has at most 2i−1 bits, and pi/qi as
a rational has value O(22−i

) and size O(2i). The exponent α + 1 is 2 or 3.
Although this is not asymptotically as fast as AGM-based algorithms, the
implicit constants for binary splitting are small and the idea is useful for
quite large n (at least 106 decimal places).

Generalisations

The idea of binary splitting can be generalised. For example, the Chudnovsky
brothers gave a “bit-burst” algorithm which applies to fast evaluation of
solutions of linear differential equations. This is described in §4.9.2

4.9.1 A Binary Splitting Algorithm for sin, cos

In [25, Theorem 6.2], Brent claims an O(M(n) log2 n) algorithm for expx
and sin x, however the proof only details the case of the exponential, and
ends by “the proof of (6.28) is similar”. Most probably the author had in
mind deducing sinx from a complex computation of exp(ix) = cos x+ i sinx.
Algorithm SinCos is a variation of Brent’s algorithm for expx that computes
simultaneously sinx and cosx, and in such a way avoids computations with
complex numbers. The simultaneous computation of sinx and cosx might
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� �� �
1 Algorithm SinCos .
2 Input : f l o a t i n g−po int |x| < 1/2 , i n t e g e r n
3 Output : an approximation o f sinx and cosx with e r r o r O(2−n)

4 Write x =
∑k

i=0 pi · 2−2i+1

where 0 ≤ pi < 22i

and k = ⌈lg n⌉ − 1

5 Let xj =
∑k

i=j pi · 2−2i+1

and yi = pi · 2−2i+1

6 (Sk+1, Ck+1)← (0, 1)
7 For j = k, k − 1, . . . , 1, 0
8 Compute sin yi and cos yi us ing binary s p l i t t i n g
9 Sj ← sin yiCj+1 + cos yiSj+1, Cj ← cos yiCj+1 + sin yiSj+1

10 Return (S0, C0)

 	� �

be useful, for example to compute tanx. At step 5 of Algorithm SinCos, we
have xj = yi +xj+1, thus sin xj = sin yi cosxj+1 +cos yi sinxj+1, and similarly
for cosxj, which are the formulæ used at step 9. Step 8 uses the binary
splitting algorithm described above for arctan(p/q): yi is a small rational, or
is small itself, so that all needed powers do not exceed n bits in size. This
algorithm has the same complexity O(M(n) log2 n) as Brent’s algorithm for
exp x.

4.9.2 The Bit-Burst Algorithm

The binary-splitting algorithms described above for arctanx, exp x, sin x
rely on a functional equation: tan(x + y) = (x + y)/(1− xy), exp(x + y) =
exp(x) exp(y), sin(x + y) = sin x cos y + sin y cosx. We describe here a more
general algorithm, called “bit-burst”, which does not require such a func-
tional equation. This algorithm applies to the so-called “D-finite” functions.

A function f(x) is said to be D-finite — or holonomic — iff it satisfies
a linear differential equation with polynomial coefficients in x. Equivalently,
the Taylor coefficients uk of f satisfy a linear recurrence with polynomial
coefficients in k. For example, the exp, log, sin, cos functions are D-finite,
but tan is not. An important subclass of D-finite functions are the hyper-
geometric functions, whose Taylor coefficients satisfy an homogeneous re-
currence of order 1: uk+1/uk = R(k) where R(k) is a rational function of
k (see §4.4). However, D-finite functions are much more general than hy-
pergeometric functions; in particular the ratio of two consecutive terms in
a hypergeometric series has size O(log k) — as a rational —, but might be
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much larger for D-finite functions (see Ex. 4.13.14).

Theorem 4.9.1 If f is D-finite and has no singularities on a finite, closed
interval [A,B], where A < 0 < B and f(0) = 0, then f(x) can be computed
to an accuracy of n bits for any n-bit floating-point number x ∈ [A,B] in
time O(M(n) log3 n).

Note: the condition f(0) = 0 is just a technical condition to simplify the
proof of the theorem; f(0) can be any value that can be computed to n bits
in time O(M(n) log3 n).

Proof. Without loss of generality, we assume 0 ≤ x < 1 < B; the binary
expansion of x can then be written x = 0.b1b2 . . . bn. Define r1 = 0.b1,
r2 = 0.0b2b3, r3 = 0.000b4b5b6b7 (the same decomposition was already used
in §4.9.1): r1 consists of the first bit of the binary expansion of x, r2 consists
of the next two bits, r3 the next four bits, and so on. We thus have x =
r1 + r2 + . . . + rk where 2k−1 ≤ n < 2k.

Define xi = r1 + · · · + ri with x0 = 0. The idea of the algorithm is
to translate the Taylor series of f from xi to xi+1, which since f is D-finite
reduces to translating the recurrence. The condition that f has no singularity
in [0, x] ⊂ [A,B] ensures that the translated recurrence is well-defined. We
define f0(t) = f(t), f1(t) = f0(r1+t), f2(t) = f1(r2+t), . . . , fi(t) = fi−1(ri+t)
for i ≤ k. We have fi(t) = f(xi + t), and fk(t) = f(x+ t) since xk = x. Thus
we are looking for fk(0) = f(x).

Let f∗
i (t) = fi(t)−fi(0) be the non-constant part of the Taylor expansion

of fi. We have f∗
i (ri+1) = fi(ri+1) − fi(0) = fi+1(0) − fi(0) since fi+1(t) =

fi(ri+1 + t). Thus f∗
0 (r1) + · · · + f∗

k−1(rk) = (f1(0)− f0(0)) + · · · + (fk(0)−
fk−1(0)) = fk(0)− f0(0) = f(x)− f(0). Since f(0) = 0, this gives:

f(x) =
k−1∑

i=0

f∗
i (ri+1).

To conclude the proof, we will show that each term f∗
i (ri+1) can be evaluated

to n bits in O(M(n) log2 n).
The rational ri+1 has numerator of at most 2i bits, and

0 ≤ ri+1 < 21−2i

.

Thus, to evaluate f∗
i (ri+1) to n bits, n/2i + O(log n) terms of the Taylor

expansion of f∗
i (t) are enough.
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We now use the fact that f is D-finite. Assume f satisfies the following
linear differential equation with polynomial coefficients5:

cm(t)f (m)(t) + · · ·+ c1(t)f
′(t) + c0(t)f(t) = 0.

Substituting xi + t for t, we obtain a differential equation for fi:

cm(xi + t)f
(m)
i (t) + · · ·+ c1(xi + t)f ′

i(t) + c0(xi + t)fi(t) = 0.

From this latter equation we deduce (see §4.14) a linear recurrence for the
Taylor coefficients of fi(t), of the same order than that for f(t). The coef-
ficients in the recurrence for fi(t) have O(2i) bits, since xi = r1 + · · · + ri

has O(2i) bits. It follows that the ℓ-th Taylor coefficient from fi(t) has size
O(ℓ(2i + log ℓ)) — the ℓ log ℓ term comes from the polynomials in ℓ in the
recurrence]. Since ℓ goes to n/2i + O(log n) at most, this is O(n log n).

However we do not want to evaluate the ℓ-th Taylor coefficient uℓ of fi(t),
but the series

sℓ =
ℓ∑

j=1

ujr
j
i+1.

Noticing that uℓ = (sℓ− sℓ−1)/r
ℓ
i+1, and substituting that value in the recur-

rence for (uℓ), say of order d, we obtain a recurrence of order d + 1 for (sℓ).
Putting this latter recurrence in matrix form Sℓ = MℓSℓ−1, where Sℓ is the
vector (sℓ, sℓ−1, sℓ−d+1), we obtain

Sℓ = MℓMℓ−1 · · ·MdSd−1, (4.24)

where the matrix product MℓMℓ−1 · · ·Md can be evaluated in O(M(n) log2 n)
using binary splitting.

We illustrate the above theorem with the arc-tangent function, which
satisfies the differential equation:

f ′(t)(1 + t2) = 1.

This equation evaluates at xi + t into f ′
i(t)(1 + (xi + t)2) = 1 for fi(t) =

f(xi + t), which gives the recurrence

(1 + x2
i )ℓuℓ + 2xi(ℓ− 1)uℓ−1 + (ℓ− 2)uℓ−2 = 0

5If f satisfies a non-homogeneous differential equation, say E(t, f(t), f ′(t), . . .) = b(t),
where b(t) is polynomial in t, a differentiation of (deg b) + 1 times yields an homogeneous
equation.
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for the Taylor coefficients uℓ of fi. This recurrence translates to

(1 + x2
i )ℓvℓ + 2xiri+1(ℓ− 1)vℓ−1 + r2

i+1(ℓ− 2)vℓ−2 = 0

for vℓ = uℓr
ℓ
i+1, and to

(1+x2
i )ℓ(sℓ− sℓ−1)+2xiri+1(ℓ− 1)(sℓ−1− sℓ−2)+ r2

i+1(ℓ− 2)(sℓ−2− sℓ−3) = 0

for sℓ =
∑ℓ

j=1 vj. This recurrence of order 3 is then put in matrix form, and
Eq. (4.24) enables one to efficiently compute sℓ ≈ fi(ri + 1)− fi(0) using the
multiplication of 3× 3 matrices and fast integer multiplication.

4.10 Contour Integration

[This section to be completed]
Example (Bernoulli numbers):

z

ez − 1
+

z

2
.

4.11 Other Special Functions

[This section to be completed]
Γ(x), Ψ(x), ζ(x), ζ(1

2
+ iy), etc. Bombieri conjecture re evaluation of ζ(s)

on critical line. Borwein algorithm for ζ(s) with small ℑ(s). (reference?)

4.12 Constants

[This section to be completed]
Ex: exp, π, γ [36], etc. Cf http://cr.yp.to/1987/bernstein.html for

π and e. Cf also [62].

4.13 Exercises

Exercise 4.13.1 If A(x) =
∑

j≥0 ajx
j is a formal power series over R with a0 = 1,

show that log(A(x)) can be computed with error O(xn) in time O(M(n)), where
M(n) is the time required to multiply two polynomials of degree n−1. (Assume a
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reasonable smoothness condition on the growth of M(n) as a function of n.) [Hint:
(d/dx) log(A(x)) = A′(x)/A(x).] Does a similar result hold for n-bit numbers if x
is replaced by 1/2?

Exercise 4.13.2 (Schost) Assume one wants to compute 1/s(x) mod xn, for
s(x) a power series. Design an algorithm using an odd-even scheme (§1.3.5), and
estimate its complexity in the FFT range.

Exercise 4.13.3 Design a Horner-like algorithm evaluating a series
∑k

j≥0 ajx
j in

the forward direction.

Exercise 4.13.4 Assume one wants n bits of expx for x of order 2j , with the
repeated use of the doubling formula (§4.3.1), and the naive method to evaluate
power series. What is the best reduced argument x/2k in terms of n and j?
[Consider both cases j > 0 and j < 0.]

Exercise 4.13.5 Assuming one can compute n bits of log x in time T (n) ≫
M(n) ≫ n, where M(n) satisfies a reasonable smoothness condition, show how
to compute expx in time ∼ T (n).

Exercise 4.13.6 Care has to be taken to use enough guard digits when computing
exp(x) by argument reduction followed by the power series (4.10). If x is of order
unity and k steps of argument reduction are used to compute exp(x) via

exp(x) =
(
exp(x/2k)

)2k

,

show that about k bits of precision will be lost (so it is necessary to use about k
guard bits).

Exercise 4.13.7 Show that the problem analysed in Ex. 4.13.6 can be avoided if
we work with the function

expm1(x) = exp(x)− 1 =
∞∑

1

xj

j!

which satisfies the doubling formula

expm1(2x) = expm1(x)(2 + expm1(x)).
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Exercise 4.13.8 Prove the reduction formula

log1p(x) = 2 log1p

(
x

1 +
√

1 + x

)

where the function log1p(x) is defined by

log1p(x) = log(1 + x).

Explain why it might be desirable to work with log1p instead of log in order to
avoid loss of precision (here in the argument reduction rather than in the recon-
struction like in Ex. 4.13.6). Note however that argument reduction for log1p is
more expensive than that for expm1, because of the square root.

Exercise 4.13.9 (White) Show that exp(x) can be computed via sinh(x) using
the formula

exp(x) = sinh(x) +

√
1 + sinh2(x).

Since

sinh(x) =
ex − e−x

2
=
∑

k≥0

x2k+1

(2k + 1)!

this saves computing about half the terms in the power series for exp(x) (at the
expense of one square root). How would you modify this method for negative
arguments x?

Exercise 4.13.10 Count precisely the number of nonscalar products necessary
for the two variants of the rectangular series splitting (§4.4.3).

Exercise 4.13.11 A drawback of the rectangular series splitting as presented in
§4.4.3 is that the coefficients — akℓ+m in the classical splitting, or ajm+ℓ in the
modular splitting — involved in the scalar multiplications might become large.
Indeed, they are typically a product of factorials, and thus have size O(d log d).
Assuming ai+1/ai are small rationals, propose an alternate way of evaluating P (x).

Exercise 4.13.12 Deduce from Eq. (4.16) and (4.17) an expansion of log(4/k)
with error term O(k4 log(4/k)). Use any means to figure out an effective bound on
the O() term. Deduce an algorithm requiring x ≥ 2n/4 only to get n bits of log x.

Exercise 4.13.13 Improve the constants at the end of §4.8.5.

Exercise 4.13.14 (Salvy) Is the function exp(x) + x/(1− x2) D-finite?
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4.14 Notes and References

One of the main references for special functions is the “Handbook of Mathe-
matical Functions” by Abramowitz & Stegun [1]. Another more recent book
is that of Nico Temme [124]. A large part of the content of this Chapter comes
from [28], and was already implemented in the MP package [27].

Some details about the use of Newton’s method in modern processors
can be found in [72]. The idea of first computing y−1/2, then multiplying by
y to get y1/2 (§4.2.3) was pushed further by Karp and Markstein [79], who
perform this at the penultimate iteration, and modify the last iteration of
Newton’s method for y−1/2 to directly get y1/2 (see §1.4.5 for an example of
the Karp-Markstein trick for the division). For more on Newton’s method
for power series, we refer to [23, 34, 38, 81].

The rectangular series splitting to evaluate a power series with O(
√

n)
nonscalar multiplications (§4.4.3) was first published by Paterson and Stock-
meyer in 1973 [105]. It was then rediscovered in the context of multiple-
precision evaluation of elementary functions by Smith in 1991 [118, §8.7],
who gave the name “concurrent series” (note that Smith proposed the mod-
ular splitting of the series, whereas the classical splitting seems slightly bet-
ter). Smith already noticed that the simultaneous use of this fast technique
and argument reduction yields O(n1/3M(n)) algorithms. Earlier, Estrin had
found in 1960 a similar technique with n/2 nonscalar multiplications, but
O(log n) parallel complexity [56].

Formula (4.14) is from [1], formulæ 7.1.23 and 7.1.24.
Some references about the Arithmetic-Geometric Mean (AGM) are Brent

[23, 26, 31], the Borweins’ book [20], Arndt and Haenel [5], and Bernstein
[8], who gives a survey of the different AGM algorithms from the literature
to compute the logarithm. For an extension of the AGM to complex starting
values, see Borwein & Borwein [20, pp. 15–16]. The use of the exact formula
(4.22) to compute log x was first suggested by Sasaki and Kanada (see [20,
(7.2.5)], but beware the typo). See [26] about Landen transformations, and
[23] about more efficient methods; note that the constants given in those
papers might be improved using faster square root algorithms (Chapter 3).
The use of the complex AGM is discussed in [54].

The constants from (4.8.5) are obtained as follows. We assume we are in
the FFT domain, and one Fourier transform costs 1

3
M(n). The 2.0833M(n)

cost for real division is from [67]. The complex division uses the “faster”

algorithm from [23, Section 11] which computes t+iu
v+iw

as (t+iu)(v−iw)
v2+w2 , with one
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complex multiplication for (t+ iu)(v− iw), two squarings for v2 and w2, one
reciprocal, and two real multiplications; noting that v2 + w2 can be com-
puted in M(n) by sharing the backward transform, and using Schönhage’s
1.5M(n) algorithm for the reciprocal, we get a total cost of 6.5M(n). The
1.8333M(n) cost for the real square root is from [9]. The complex square
root uses Friedland’s algorithm [58]:

√
x + iy = w + iy/(2w) where w =√

(|x|+
√

x2 + y2)/2; as for the complex division, x2 + y2 costs M(n), then

we compute its square root in 1.8333M(n), and we use Bernstein’s 2.5M(n)
algorithm [9] to compute simultaneously w1/2 and w−1/2, which we multiply
by y in M(n), which gives a total of 6.333M(n). The cost of one AGM it-
eration is simply the sum of the multiplication cost and of the square root
cost, while the logarithm via the AGM costs 2 lg(n) AGM iterations.

There is quite a controversy in the literature about “binary splitting” and
the “FEE method” of E. A. Karatsuba [78]. We choose the name “binary
splitting” because it is more descriptive, and let the reader replace it by
“FEE method” if he/she prefers. Whatever its name, the idea is quite old,
since Brent in [25, Theorem 6.2] gave in 1976 a binary splitting algorithm
to compute expx in O(M(n) log2 n). The CLN library implements several
functions with binary splitting [63], and is thus quite efficient for precisions
of a million bits or more. The “bit-burst” algorithm was invented by David
and Gregory Chudnovsky [42].

For more about D-finite functions, see for example the Maple gfun pack-
age [109], which allows — among other things — to deduce the recurrence
of the Taylor coefficients of f(x) from its differential equation.



Chapter 5

Appendix: Implementations
and Pointers

5.1 Software Tools

5.1.1 CLN

CLN (Class Library for Numbers, http://www.ginac.de/CLN/) is a library
for efficient computations with all kinds of numbers in arbitrary precision.
It was written by Bruno Haible, and is currently maintained by Richard
Kreckel. It is written in C++ and distributed under the GNU General Public
License (GPL). CLN provides some elementary and special functions, and
fast arithmetic on large numbers, in particular it implements Schönhage-
Strassen multiplication, and the binary splitting algorithm [63]. CLN can be
configured to use GMP low-level mpn routines, which “is known to be quite
a boost for CLN’s performance”.

5.1.2 GNU MP

The GNU MP library is the main reference for arbitrary-precision arithmetic.
It has been developed by Torbjörn Granlund and other contributors since
1993 (the first public version, GMP 1.3.2, was released in May 1993, and
indicates that work on GMP started in 1991). GNU MP (GMP for short)
implements several of the algorithms described in this book. In particular,
we recommend reading Chapter Algorithms of the GMP reference manual
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[61]. GMP is written in the C language, is released under the GNU Lesser
General Public License (LGPL), and is available from gmplib.org.

GMP’s mpz class implements arbitrary-precision integers (corresponding
to Ch. 1), while the mpf class implements arbitrary-precision floating-point
numbers (corresponding to Ch. 3). The performance of GMP comes mostly
from its low-level mpn class, which is well designed and highly optimized in
assembly code for many architectures. As of version 4.2.2, mpz implements
different multiplication algorithms (schoolbook, Karatsuba, Toom-Cook 3-
way, and Schönhage-Strassen); however its division routine implements Algo-
rithm RecursiveDivRem (§1.4.3) and has thus complexity O(M(n) log n)
instead of O(M(n)), and so does its square root, which implements Algorithm
SqrtRem, since it relies on division. GMP 4.2.2 does not implement elemen-
tary nor special functions (Ch. 4), and neither provides modular arithmetic
with invariant divisor (Ch. 2).

5.1.3 MPFR

[This section to be completed]

5.1.4 ZEN

[This section to be completed]

5.2 Mailing Lists

5.2.1 The BNIS Mailing List

The BNIS mailing-list was created by Dan Bernstein for “Anything of inter-
est to implementors of large-integer arithmetic packages”. It has low traffic
(a few messages per year only). See http://cr.yp.to/lists.html to sub-
scribe. An archive of this list is available at http://www.nabble.com/cr.

yp.to---bnis-f846.html.

5.2.2 The GMP Lists

There are four mailing-lists associated to GMP: gmp-bugs for bug reports;
gmp-announce for important announcements about GMP, in particular new
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releases; gmp-discuss for general discussions about GMP; gmp-devel for
technical discussions between GMP developers. We recommend subscription
to gmp-announce (very low traffic) and to gmp-discuss (medium to high
traffic), and to gmp-devel if you are interested about the internals of GMP.

5.3 On-Line Documents

The Wolfram Functions Site (http://functions.wolfram.com/) contains a
lot of information about mathematical functions (definition, specific values,
general characteristics, representations as series, limits, integrals, continued
fractions, differential equations, transformations, and so on).

The Encyclopedia of Special Functions (http://algo.inria.fr/esf/) is
another nice web site, whose originality is that all formulæ are automatically
generated from very few data that uniquely define the corresponding function
in a general class [95].

A huge set of informations about interval arithmetic can be found on the
Interval Computations page (http://www.cs.utep.edu/interval-comp/)
(introduction, software, languages, books, courses, information about the
interval arithmetic community, applications).

Mike Cowlishaw maintains an extensive bibliography of conversion to
and from decimal arithmetic at http://www2.hursley.ibm.com/decimal/

decbibconversion.html.
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[59] Martin Fürer. Faster integer multiplication. In David S. Johnson and Uriel
Feige, editors, Proceedings of the 39th Annual ACM Symposium on Theory
of Computing (STOC), San Diego, California, USA, pages 57–66. ACM,
2007. [79, 125]

[60] David M. Gay. Correctly rounded binary-decimal and decimal-binary con-
versions. Numerical Analysis Manuscript 90-10, AT&T Bell Laboratories,
November 1990. [126]

[61] GNU MP: The GNU Multiple Precision Arithmetic Library, 4.2.2 edition,
2007. http://gmplib.org/. [170]

[62] Xavier Gourdon and Pascal Sebah. Numbers, constants and compu-
tation. http://numbers.computation.free.fr/Constants/constants.

html. [164]

[63] Bruno Haible and Thomas Papanikolaou. Fast multiprecision evaluation of
series of rational numbers. In J. P. Buhler, editor, Proceedings of the 3rd



Modern Computer Arithmetic, §5.3 179

Algorithmic Number Theory Symposium (ANTS-III), volume 1423 of Lecture
Notes in Computer Science, pages 338–350, 1998. [168, 169]

[64] Tom R. Halfhill. The truth behind the Pentium bug. Byte, March 1995.
[131]

[65] Guillaume Hanrot, Michel Quercia, and Paul Zimmermann. The Middle
Product Algorithm, I. Speeding up the division and square root of power
series. Applicable Algebra in Engineering, Communication and Computing,
14(6):415–438, 2004. [125]

[66] Guillaume Hanrot and Paul Zimmermann. A long note on Mulders’ short
product. Journal of Symbolic Computation, 37:391–401, 2004. [49]

[67] Guillaume Hanrot and Paul Zimmermann. Newton iteration revisited. http:
//www.loria.fr/~zimmerma/papers/fastnewton.ps.gz, 2004. 2 pages.
[167]

[68] David Harvey. Faster polynomial multiplication via multipoint Kronecker
substitution. http://arxiv.org/abs/0712.4046, 2007. 14 pages. [45]

[69] William Hasenplaugh, Gunnar Gaubatz, and Vinodh Gopal. Fast modular
reduction. In Proceedings of the 18th Symposium on Computer Arithmetic,
pages 225–229, Montpellier, France, 2007. IEEE Computer Society Press.
[78]

[70] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
second edition, 2002. [124]

[71] Thomas E. Hull. The use of controlled precision. In John K. Reid, editor, The
Relationship Between Numerical Computation and Programming Languages,
pages 71–84. North Holland, 1982. [124]

[72] Intel. Division, square root and remainder algorithms for the Intel(r) Ita-
nium(tm) architecture, 2003. Application Note, ftp://download.intel.

com/software/opensource/divsqrt.pdf, 120 pages. [167]

[73] Cristina Iordache and David W. Matula. On infinitely precise rounding for
division, square root, reciprocal and square root reciprocal. In Proceedings of
the 14th IEEE Symposium on Computer Arithmetic, pages 233–240. IEEE
Computer Society, 1999. [125]

[74] Tudor Jebelean. An algorithm for exact division. Journal of Symbolic Com-
putation, 15:169–180, 1993. [49]



180 Modern Computer Arithmetic, version 0.2 of June 26, 2008

[75] Tudor Jebelean. A double-digit Lehmer-Euclid algorithm for finding the
GCD of long integers. Journal of Symbolic Computation, 19:145–157, 1995.
[50]

[76] Tudor Jebelean. Practical integer division with Karatsuba complexity. In
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