Modern Computer Arithmetic

Richard P. Brent and Paul Zimmermann

Version 0.5.9 of 7 October 2010

iii
Copyright(© 2003-2010 Richard P. Brent and Paul Zimmermann

This electronic version is distributed under the terms amtlitions of the
Creative Commons license “Attribution-Noncommercial-Derivative Works
3.0". You are free to copy, distribute and transmit this baoker the following
conditions:

e Attribution. You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that ¢émelprse you or
your use of the work).

e Noncommercial. You may not use this work for commercial purposes.

e No Derivative Works. You may not alter, transform, or build upon this
work.

For any reuse or distribution, you must make clear to otherditense terms
of this work. The best way to do this is with a link to the web @d&glow. Any

of the above conditions can be waived if you get permissiomfthe copyright
holder. Nothing in this license impairs or restricts thehau’s moral rights.

For more information about the license, visit
http://creativecommons.org/licenses/by-nc-nd/3.0/

[Contents

Contents

Prefack

[Acknowledgemets
Notatah

| o

[1.1

Representation and notations

[1.2__ Addition and subtractibn

[1.3

Multiplicatio

[1.3.1 Naive multiplicatidn

[L.3.2 Karatsuba’s algoritim

[1.3.3 Toom-Cook multiplication

| - ; :EFT)
L35 nbal | multinlicatibn

[L5.6 Squaridg

[1.3.7 _ Multiplication by a constant

[L4a Divisioh

| - Visidh
[1.4.2 Divisor Dreconditionirllg

[vid visbn
[L.4.4 _Newton's method

| lvisidn

[1.4.6 Only quotient or remainder warited
[1.4.7 Division by a single word

| I diviidn

[L5 Roofs

[L5.1 _Square raot
[1.5.2 kth rock

pageiv

Contents

.1

Representatipn
[2.1.1 Classical representation

7

2.1.3 Residue number systems
|Z..’L.A_M.SBJE_LS.B_a.I.gQLiII1dWS

[2.1.5 1ink with polynomials

[2.2__Modular addition and subtraction

[2.3 The Fourier transfoim

g

rm
[0.3.3 The Sctinhage—Strassen algorithm

2.4

Modular multiplicatioh

Ei% %%E%omerv’s multiDIicatiam

2.4.4 Special moduili

| ersbn

[2.5.1 _ Several inversions at ohce

|2 6 Modular exoonentiati])n

ibn
2.6.2 Exponentiation with a lar

bﬁm@w&wﬁtlon

[2.7__Chinese remainder theofem
.8 Exercisés

2.9 Notes and references

3 Floating-point arithmetic}

[3.1

Representatipn

| - choide

28
29
29
32
33
37
37
38
39
44

47
a7
47
48
48
49
49
50
50
50
51
55
58
58
60
63
65
65
67
68
70
70
72
73
75
77

79
79
80

\Y

Contents

[3.1.2___Exponent ranbe
[3.1.3 Special valubs
[3.1.4 _Subnormal numbers
.15 Encoding
13.1.6__Precision: local, global. operation, opefand
[3.1.7 Linkto integels
[3.1.8 7Zivs algorithm and error anal;dsis
.19 Roundidg
[3.1.10 Strategies
| it I - don
[3.2.1 _ Floating-point addition
Ros loatind-poi bn
[3.3 Multiplicatiomn
er multiplication via complex EFT
[3.3.2 The middle proddct
[3.4 Reciprocal and divisibn

romTe

[3.5 Square ropt
[3.5.1 _Reciprocal square rbot
[3.6 Conversidn
B,Q,J_Elg_ali_n,g-ooint outht
|3.ﬁ.2 Floating-point inplit
B7 _ Exercisés
3.8 Notes and references

Elementary and special function evaluation
' d
14.2.1 _Newton’s method for inverse rdots

[4.2.2 Newton’s method for reciprodals

[4.2.3 Newton's method for (reciprocal) square roots

[4.2.4 Newton's method for formal power series
14.2.5 Newton's method for functional inverses
i - -li ds
4.3 Argument reduction
[43.1 Repeated use of a doubling forrhula

81
82
82
83
84
86
86
87
90
91
92
93
95
98
99
101
102
106
111
112
114
115
117
118
120

125
125
126
127
128
129
129
130
131
132
134
134
135
136

Contents Vii

4.4 Power series 136

4.4 Direct power series evaluation 140
4.4 Power series with argument redugtion 140

‘ 4.4 Rectangular series splitfing 141
/ Asymptotic expansions 144
4.6 ontinued fractiohs 150
4.7 Recurrence relatidns 152
14.7.1 _Evaluation of Bessel functions 153
MLEWW ers 154
ithmetic- ic mehn 158

14.8.1 _ Elliptic integr_a]s 158

i i ithm 159

S 160

i ithm 162
163

£5 inary sptil 163

4.9.1 A binary splitting algorithm for sin. dos 166
4.9.2 The bit-burst algorithm 167
410 _Contour integratibn 169
411 Exercises 171
[4.12 Notes and referenbes 179
©—plementalons and panie P
s 185
11 cLN 185
[5.1.2 GNU MP (GMR) 185
.13 MPED 186
[5.1.4 GNUMPER 187
i isi 187
putational algebra packa 188
Mailing 5 189
he GMP lisis 189
[5.2.2 _The MPER likt 190
5.3 On-line documedts 190
[Referencés 191

[ndek 207

Preface

This is a book about algorithms for performing arithmetioddheir imple-

mentation on modern computers. We are concerned with saftmare than

hardware — we do not cover computer architecture or the degigomputer

hardware since good books are already available on thegsstdpstead, we
focus on algorithms for efficiently performing arithmetipeyations such as
addition, multiplication, and division, and their conrieos to topics such
as modular arithmetic, greatest common divisors, the fastiér transform

(FFT), and the computation of special functions.

The algorithms that we present are mainly intended for r@yitprecision
arithmetic. That is, they are not limited by the computerdgire of32 or 64
bits, only by the memory and time available for the compatatWe consider
both integer and real (floating-point) computations.

The book is divided into four main chapters, plus one shoaptér (essen-
tially an appendix). Chaptéll 1 covers integer arithmetitisThas, of course,
been considered in many other books and papers. Howeveg, lias been
much recent progress, inspired in part by the applicatioputadic key cryp-
tography, so most of the published books are now partly odat# or incom-
plete. Our aim is to present the latest developments in as®ntanner. At the
same time, we provide a self-contained introduction forrdeer who is not
an expert in the field.

Chapte[R is concerned with modular arithmetic and the Fd tlaeir appli-
cations to computer arithmetic. We consider different nemepresentations,
fast algorithms for multiplication, division and exponiaibn, and the use of
the Chinese remainder theorem (CRT).

Chapter[B covers floating-point arithmetic. Our concern ighvhigh-
precision floating-point arithmetic, implemented in safte if the precision
provided by the hardware (typically IEEE standasgtbit significand) is

X Preface

inadequate. The algorithms described in this chapter foousrrect round-
ing, extending the IEEE standard to arbitrary precision.

Chapte’ deals with the computation, to arbitrary preaisaf functions
such as sqgrt, exp, In, sin, cos, and more generally functlefised by power
series or continued fractions. Of course, the computatigpecial functions is
a huge topic so we have had to be selective. In particularawve boncentrated
on methods that are efficient and suitable for arbitrangigien computations.

The last chapter contains pointers to implementationsfuliseeb sites,
mailing lists, and so on. Finally, at the end there is a orge@ummary of
complexitiesvhich should be a usefalide-nemoire

The chapters are fairly self-contained, so it is possibleeta them out of
order. For example, Chapter 4 could be read before Chapt&sahd Chap-
ter 5 can be consulted at any time. Some topics, such as Newtmthod,
appear in different guises in several chapters. Crossemtes are given where
appropriate.

For details that are omitted, we give pointers in tthetes and references
sections of each chapter, as well as in the bibliography. 8ve lried, as far
as possible, to keep the main text uncluttered by footnatdseferences, so
most references are given in the Notes and referencessectio

The book is intended for anyone interested in the designraptéimentation
of efficient algorithms for computer arithmetic, and morenglly efficient
numerical algorithms. We did our best to present algoritttmas are ready to
implement in your favorite language, while keeping a highel description
and not getting too involved in low-level or machine-depemtddetails. An
alphabetical list of algorithms can be found in the index.

Although the book is not specifically intended as a textbabkpuld be
used in a graduate course in mathematics or computer sciandefor this
reason, as well as to cover topics that could not be discuesiesgth in the
text, we have included exercises at the end of each chaptereXercises vary
considerably in difficulty, from easy to small research pot§, but we have
not attempted to assign them a numerical rating. For saistio the exercises,
please contact the authors.

We welcome comments and corrections. Please send thenhév eftthe
authors.

Richard Brent and Paul Zimmermann
Canberra and Nancy
MCA@rpbrent.com
Paul.Zimmermann@inria.fr

Acknowledgements

We thank the French National Institute for Research in CdeBcience and
Control (INRIA), the Australian National University (ANU)@and the Aus-
tralian Research Council (ARC), for their support. The baokld not have
been written without the contributions of many friends anleagues, too nu-
merous to mention here, but acknowledged in the text andar\ibtes and
references sections at the end of each chapter.

We also thank those who have sent us comments on and conetli@ar-
lier versions of this book: arg Arndt, Marco Bodrato, Wolfgang Ehrhardt
(with special thanks), Steven Galbraith, Tanj Granlund, Guillaume Han-
rot, Marc Mezzarobba, Jean-Michel Muller, Denis Roegellfgdéng Schmid,
Arnold Sctonhage, Sidi Mohamed Sedjelmaci, Emmanuel Tapand Mark
Wezelenburg. Two anonymous reviewers provided very hekfggestions.
Jeremie Detrey and Anne Rix helped us in the copy-editing phase.

TheMathematics Genealogy Projegittp://www.genealogy.ams.
org/) and Don Knuth'sThe Art of Computer Programmi] were useful
resources for details of entries in the index.

We also thank the authors of tiEX program, which allowed us to pro-
duce this book, the authors of tgauplot program, and the authors of the
GNU MP library, which helped us to illustrate several altjaris with concrete
figures.

Finally, we acknowledge the contribution of Erin Brent, wirst suggested
writing the book; and thank our wives, Judy-anne and MaaietHeir patience
and encouragement.

Notation

set of complex numbers

set of extended complex numbé&isJ {oo}

set of natural numbers (nonnegative integers)

set of positive integer®\ {0}

set of rational numbers

set of real numbers

set of integers

ring of residues module

set of (real or complex) functions with continuous derivatives
in the region of interest

real part of a complex number
imaginary part of a complex number
conjugate of a complex number
Euclidean norm of a complex number
or absolute value of a scalar

Bernoullinumbersy_ -, B,2"/n! = z/(e* — 1)
scaled Bernoulli numbers;,, = Bs,,/(2n)!,

S CLz?" = (2/2)/ tanh(z/2)

tangent numbers,. 7,,22" "1 /(2n — 1)! = tan z
harmonic numbep_"_, 1/j (0if n < 0)

binomial coefficient . choosek” = n!/(k! (n — k)!)
Oif k< 0ork >n)

Xiv

a=>bmodm
q<—adivb
r «— a mod b

(a,b)

(%) or (alb)
iff

i

iV

1D J
<<k
P>k
a-b, axb
axb

v(n)

a(e)
¢(n)

Notation

“word” base (usually23? or 264) or “radix” (floating-point)
“precision”: number of basg digits in an integer or in a
floating-point significand, or a free variable

“machine precision’3'=" /2 or (in complexity bounds)
an arbitrarily small positive constant

smallest positive subnormal number

rounding of real number in precisionn (Definition[3.1)
for a floating-point numbet, one unit in the last place

time to multiplyn-bit integers, or polynomials of
degreen — 1, depending on the context

a functionf(n) such thatf(n)/M(n) — 1 asn — oo

(we sometimes lazily omit the~” if the meaning is clear)
time to multiply anm-bit integer by am-bit integer

time to divide &n-bit integer by am-bit integer,

giving quotient and remainder

time to divide anm-bit integer by am-bit integer,

giving quotient and remainder

a is a divisor ofb, that isb = ka for somek € Z

modular equalityin|(a — b)

assignment of integer quotientd¢d0 < a — gb < b)
assignment of integer remaindertd0 < r» = a — ¢b < b)
greatest common divisor afandb

Jacobi symbol¥{ odd and positive)

if and only if

bitwiseand of integersi andj,

or logicaland of two Boolean expressions
bitwiseor of integersi andy,

or logicalor of two Boolean expressions
bitwise exclusive-omwf integers: and;j
integeri multiplied by 2*

quotient of division of integei by 2*
product of scalars, b

cyclic convolution of vectors, b

2-valuation: largest such tha2” dividesn (v(0) = o)
length of the shortest addition chain to compate
Euler’s totient function#{m : 0 <m < n A (m,n) =1}

deg(A)
ord(A)

exp() ore®
()
IOgb(x)
lg(x)

1
1

[]
]

g(z)
k

og" (x)

[a,b), (a,b]
t[a,b] or [a, b]!

[a, b; ¢, d]

e
Pingiin i i P i i
SN~—" \/\/\/3\/\/\/

2

o

—~

3

S—

123456 789

Notation XV

for a polynomialA, the degree oft
for a power seriesl = 3-; a;27,
ord(A) = min{j : a; # 0} (ord(0) = 400)

exponential function
natural logarithm

baseb logarithmlin(z)/ In(b)
base2 logarithmln(z)/In(2)
logarithm to any fixed base
(log)"

= logy ()

ceiling functionmin{n € Z : n > =}
floor function,max{n € Z : n < z}
nearest integer functiony + 1/2]

+1ifn>0,-1ifn<0,and0if n =0
lg(n)] +1ifn>0,0ifn=0

closed intervalz € R : a < 2 < b} (empty ifa > b)
openintervaz € R:a < x < b} (empty ifa > b)
half-open intervalsg < x < b, a < x < b respectively

a
column vector (b)

2 x 2 matrix (a b)
c d

element of the (forward) Fourier transform of vector
element of the backward Fourier transform of veetor

Je, ng such that f(n)| < cg(n) foralln > ng
e > 0,n9 such that f(n)| > cg(n) forall n > ng

f(n) = O(g(n)) andg(n) = O(f(n))

n)/g(n) — 1asn — oo

~ T

f(n)
f(n)
f(n) (n))
g(n))
fz) -

o a;/z? = o(1/z™) asx — 400

O(yg
)
g(n) — 0asn — oo
O(yg
(

/\\H

n

T

123456789 (for large integers, we may use a space after

every third digit)

XVi

a c e .
b+ dt f+
A

PV [f(z)dz

st

> <text>

O

Notation

a numberzzz.yyy written in basep;
for example, the decimal numb&r25 is 11.015 in binary

continued fractiom/(b+ c¢/(d+¢e/(f +---)))
: . a b
determinant of a matrix, e.g.‘ e d

Cauchy principal value integral, defined by a limit
if f has a singularity ifja, b)

‘:ad—bc

concatenation of stringsandt
comment in an algorithm

end of a proof

1
Integer arithmetic

In this chapter, our main topic is integer arithmetic. Hoagwe
shall see that many algorithms for polynomial arithmete sim-

ilar to the corresponding algorithms for integer arithmehut
simpler due to the lack of carries in polynomial arithme@an-
sider for example addition: the sum of two polynomials ofréeg

n always has degree at maestwhereas the sum of twe-digit in-
tegers may have + 1 digits. Thus, we often describe algorithms
for polynomials as an aid to understanding the correspgndin
algorithms for integers.

1.1 Representation and notations

We consider in this chapter algorithms working on integ¥&vs. distinguish
between the logical — or mathematical — representation aft@ger, and its
physical representation on a computer. Our algorithmsaeaded for “large”
integers — they are not restricted to integers that can besepted in a single
computer word.

Several physical representations are possible. We canké&te only the
most common one, hamely a dense representation in a fixed ®asese an
integralbases > 1. (In case of ambiguity; will be called theinternal base.)
A positive integetA is represented by the lengthand the digits:; of its base
[expansion

A=ap 1"+ B+ a,

where0 < a; < g — 1, anda,_; is sometimes assumed to be non-zero.
Since the bas@ is usually fixed in a given program, only the lengthand
the integers(a;)o<i<n Need to be stored. Some common choices/are
232 on a32-bit computer, 0% on a64-bit machine; other possible choices

2 Integer arithmetic

are respectively0? and10'Y for a decimal representation, 213 when using
double-precision floating-point registers. Most algarithgiven in this chapter
work in any base; the exceptions are explicitly mentioned.

We assume that the sign is stored separately from the absd@iute. This
is known as the “sign-magnitude” representation. Zero isrgoortant special
case; to simplify the algorithms we assume that 0 if A = 0, and we usually
assume that this case is treated separately.

Except when explicitly mentioned, we assume that all openatareoff-line,
i.e. all inputs (resp. outputs) are completely known at tbgifning (resp. end)
of the algorithm. Different models includazy andrelaxedalgorithms, and
are discussed in the Notes and referengggj.

1.2 Addition and subtraction

As an explanatory example, here is an algorithm for integeliteon. In the
algorithm,d is acarry bit.

Our algorithms are given in a language that mixes mathealatiatation
and syntax similar to that found in many high-level compuégrguages. It
should be straightforward to translate into a language sscl. Note that
“:=" indicates a definition, and<-" indicates assignment. Line numbers are
included if we need to refer to individual lines in the deptidn or analysis of

the algorithm.

Algorithm 1.1 IntegerAddition

Input: A = Eg_l a;%, B = Z(’}_l b; 3%, carry-in0 < d;,, <1

Output: C:=>0""¢;4" and0 < d < 1 such thatd + B + dy, = d3" + C
1. d «— diy,

2: for i from 0ton — 1 do

3: s—a; +b;+d

4

5

(d,¢;) « (s div 8, s mod f3)
: returnC, d.

Let T' be the number of different values taken by the data type septag
the coefficients:;, b;. (Clearly,5 < T, but equality does not necessarily hold,
for example = 10° andT = 232)) At step[3, the value of can be as
large as23 — 1, which is not representable if = 7. Several workarounds
are possible: either use a machine instruction that givepdssible carry of
a; + b;, or use the fact that, if a carry occursdan + b;, then the computed

1.3 Multiplication 3

sum — if performed modul®@' — equalg := a; + b, — 1" < a;; thus, comparing
t anda; will determine if a carry occurred. A third solution is to kea bit in
reserve, taking < T'/2.

The subtraction code is very similar. Sfép 3 simply becosnesa; —b; +d,
whered € {—1,0} is theborrow of the subtraction, and-5 < s < . The
other steps are unchanged, with the invariant B + d;,, = dg" + C.

We use thearithmetic complexitymodel, wherecostis measured by the
number of machine instructions performed, or equivalefly to a constant
factor) thetimeon a single processor.

Addition and subtraction of-word integers cosP(n), which is negligible
compared to the multiplication cost. However, it is wortyinig to reduce the
constant factor implicit in thi®)(n) cost. We shall see iff..3 that “fast” mul-
tiplication algorithms are obtained by replacing multpliions by additions
(usually more additions than the multiplications that theglace). Thus, the
faster the additions are, the smaller will be the threshfdldshanging over to
the “fast” algorithms.

1.3 Multiplication

A nice application of large integer multiplication is tkeonecker—Saobnhage
trick, also calledsegmentatioror substitutionby some authors. Assume we
want to multiply two polynomialsA(x) and B(z), with non-negative integer
coefficients (see Exercige 1.1 for negative coefficientssuine both polyno-
mials have degree less thapand the coefficients are boundedmyNow take
apowerX = 3% > np? of the bases, and multiply the integers = A(X) and

b = B(X) obtained by evaluating andB atz = X . If C(x) = A(x)B(z) =

> cixt, we clearly havel(X) = 3 ¢; X*. Now since ther; are bounded by
np? < X, the coefficients; can be retrieved by simply “reading” blocks bf
words inC'(X). Assume for example that we want to compute

(625 + 62* + 423 + 922 + 2+ 3)(Ta* + 23 +22% + 2+ 7),

with degree less tham = 6, and coefficients bounded hy= 9. We can take
X =103 > np?, and perform the integer multiplication

6006 004 009001 003 x 7001 002001 007
= 42048046 085072086 042 070010 021,

from which we can read off the product

4229 + 482% + 462" + 852° + 7225 + 862t + 4222 + 7022 + 102 + 21.

4 Integer arithmetic

Conversely, suppose we want to multiply two integers- » ;. _,, a;3
andb =}, _, b;’. Multiply the polynomialsA(z) = 3., _,, a;z* and
B(x) = 3 y<;, bjz’, obtaining a polynomiaC’(z), then evaluate’(z) at
x = (3 to obtainab. Note that the coefficients @f (x) may be larger thag, in
fact they may be up to abouts?. For example, withu = 123, b = 456, and
B =10, we obtainA(z) = 2? + 2z + 3, B(x) = 42 + 5z + 6, with product
C(z) = 42* + 1323 4 2822 + 27z + 18, andC(10) = 56088. These examples
demonstrate the analogy between operations on polynoamdiitegers, and
also show the limits of the analogy.

A common and very useful notation is to l&f(n) denote the time to mul-
tiply n-bit integers, or polynomials of degree— 1, depending on the context.
In the polynomial case, we assume that the cost of multiglgimefficients is
constant; this is known as treithmetic complexitynodel, whereas thbit
complexitymodel also takes into account the cost of multiplying cokffits,
and thus their bit-size.

1.3.1 Naive multiplication

Algorithm 1.2 BasecaseMultiply
Input: A =S"0"a;8, B=S0""b;5
Output: C = AB =30 e *

1. C+— A-by

2: for jfrom 1ton — 1 do

3: O(—C"ﬁ‘ﬁj(AbJ)

4: returnC.

Theorem 1.1 Algorithm BasecaseMultiply computes the productAB
correctly, and use®(mn) word operations.

The multiplication by’ at sted B is trivial with the chosen dense representa-
tion; it simply requires shifting by words towards the most significant words.
The main operation in AlgorithnBasecaseMultiplyis the computation of

A - b; and its accumulation int@’ at stedB. Since all fast algorithms rely on
multiplication, the most important operation to optiminemultiple-precision
software is thus the multiplication of an array.afwords by one word, with
accumulation of the result in another arraynof- 1 words.

1.3 Multiplication 5

We sometimes call AlgorithBasecaseMultiplyschoolbook multiplication
since it is close to the “long multiplication” algorithm thased to be taught at
school.

Since multiplication with accumulation usually makes esige use of the
pipeline, it is best to give it arrays that are as long as jptessivhich means
that A rather thanB should be the operand of larger size (he> n).

1.3.2 Karatsuba’s algorithm

Karatsuba’s algorithm is a “divide and conquer” algorithon multiplication
of integers (or polynomials). The idea is to reduce a mutttion of lengthn
to three multiplications of length /2, plus some overhead that coé$n).

In the following, ng > 2 denotes the threshold between naive multiplica-
tion and Karatsuba’s algorithm, which is used fgrword and larger inputs.
The optimal “Karatsuba thresholdi, can vary from about ten to abow®0
words, depending on the processor and on the relative casutiiplication
and addition (see Exercigell.6).

Algorithm 1.3 KaratsubaMultiply
Input: A=S"0"a;8, B=30""b;
Output: C = AB := Zg”_l cnBF
if n < ng then returnBasecaseMultiply A, B)
k<« [n/2]
(Ao,B()) = (A,B) mod ﬂk, (Al,Bl) = (A,B) div ﬁk
sa < sign(Ag — A1), sp < sign(By — B1)
Cy — KaratsubaMultiply (Ao, By)
(4 « KaratsubaMultiply (A4;, By)
Cy «— KaratsubaMultiply (|4g — A1, |Bo — B1])
returnC := Cy + (Cp + C1 — SASBCQ)ﬂk + Clﬂmc.

Theorem 1.2 Algorithm KaratsubaMultiply computes the productd B
correctly, using (n) = O(n®) word multiplications, withw = 1g 3 ~ 1.585.

Proof. Sincesa|Ag — A1l = Ao — 41 andsp|By — Bi| = By — By, we
haveSASB|A0 — A1||BO — B1| = (Ao — Al)(BQ — Bl), and thusC =
AoBo+(AoB1 + A1Bo) B + A1 By 3.

SinceAy, By, |Ao— A1| and| By — By | have (at most)n /2] words, and4,
and B, have (at most)n /2] words, the numbeR (n) of word multiplications

6 Integer arithmetic

satisfies the recurrend€ (n) = n? for n < ng, andK (n) = 2K ([n/2]) +
K(|n/2)) for n > ng. Assume2‘—1ng < n < 2‘ng with £ > 1. ThenK (n)
is the sum of thred((j) values withj < 2°~!ng, so at mosB’ K(j) with
§ < ng. Thus,K (n) < 3max(K (ng), (ng — 1)?), which givesK (n) < Cn®
with C' = 317180 max (K (ng), (no — 1)?). 0

Different variants of Karatsuba'’s algorithm exist; theigat presented here
is known as thesubtractiveversion. Another classical one is thdditivever-
sion, which usesly+A4; andBy+ B, instead of A,— A, | and| By— B1 |. How-
ever, the subtractive version is more convenient for intagighmetic, since it
avoids the possible carries iy + A; and By + By, which require either an
extra word in these sums, or extra additions.

The efficiency of an implementation of Karatsuba’s algenitthepends heav-
ily on memory usage. It is important to avoid allocating meyrfor the inter-
mediate result§dy — A1, |Bo — B1|, Co, C1, andC;, at each step (although
modern compilers are quite good at optimizing code and rémgownneces-
sary memory references). One possible solution is to alltavge temporary
storage ofm words, used both for the intermediate results and for therrec
sive calls. It can be shown that an auxiliary space:wcf 2n words — or even
m = O(logn) — is sufficient (see Exercisgs1L.7 1.8).

Since the product’; is used only once, it may be faster to have auxiliary
routinesKaratsubaAddmul andKaratsubaSubmul that accumulate their re-
sults, calling themselves recursively, together viiratsubaMultiply (see
Exercisd 1.10).

The version presented here use$n additions (or subtractions): x (n/2)
to compute| 4y — A;| and|By — B4|, thenn to addC, andC4, againn to
add or subtraaf,, andn to add(Cy + C; — s455C2) 3% to Cy + C15%F. An
improved scheme uses only7n /2 additions (see Exerci§e1.9).

When considered as algorithms on polynomials, most fastiptiattion
algorithms can be viewed as evaluation/interpolation ritlgms. Karatsuba'’s
algorithm regards the inputs as polynomidls+ A« and By + B2 evaluated
atz = (¥, since their produc(x) is of degree2, Lagrange’s interpolation
theorem says that it is sufficient to evaluétér) at three points. The subtrac-
tive version evaluatEsC(:v) atz = 0,—1, 00, whereas the additive version
usesr = 0,+1, co.

1.3.3 Toom-Cook multiplication

Karatsuba’s idea readily generalizes to what is known asgnF@tookr-way
multiplication. Write the inputs ag+- - -+a,_12" ' andbg+- - - +b,_ 2" 1,

1 EvaluatingC(x) atoo means computing the produdty B; of the leading coefficients.

1.3 Multiplication 7

with z = ¥, andk = [n/r]. Since their product(z) is of degree2r — 2,

it suffices to evaluate it ar — 1 distinct points to be able to recovél(z),
and in particulaiC(3%). If r is chosen optimally, Toom—Cook multiplication
of n-word numbers takes time!+O(1/vIogn),

Most references, when describing subquadratic multiptinaalgorithms,
only describe Karatsuba and FFT-based algorithms. Neslegh, the Toom—
Cook algorithm is quite interesting in practice.

Toom—Cookr-way reduces one-word product t@2r — 1 products of about
n/r words, thus cost®(n”) with v = log(2r — 1)/ logr. However, the con-
stant hidden by the big* notation depends strongly on the evaluation and
interpolation formulae, which in turn depend on the chosdntpoOne possi-
bility is to take—(r — 1),...,—-1,0,1,...,(r — 1) as evaluation points.

The caser = 2 corresponds to Karatsuba’s algorith3.2). The case
r = 3 is known as Toom—CooR-way, sometimes simply called “the Toom—
Cook algorithm”. AlgorithmToomCook3uses the evaluation poinis1, —1,

2, 0o, and tries to optimize the evaluation and interpolatiomfoliee.

Algorithm 1.4 ToomCook3
Input: two integerd) < A, B < g"
Output: AB := cy + c1 8% + o + c38%F + ¢4 8*F with k = [n/3]
Require: athreshold:; > 3
1: if n < n; then returnKaratsubaMultiply (A, B)
write A = ag + a1z + asx?, B = by + byx + box? with z = GF.
v < ToomCook3(ag, by)
V1 — ToomCOOk3(a02+a1, b02+b1) Wherea02 «— apg+taz, boa +— bg+ba
V_q1 ToomCOOk3(a02 —ai, boa — bl)
Vg ToomCOOk3(a0 + 2a1 + 4as, by + 2b1 + 4b2)
Voo «— TOOMCO00K3(ag, bo)
t1 «— (Bug + 2v_1 + v2)/6 — 2000, ta «— (V1 +v_1)/2
Co < Vg, C| < V] —t1,C <ty — V) — Vo, C3 < L1 — t2, C4 — Vo.

© O N g RN

The divisions at stefpl 8 are exact;dfis a power of two, the division bg
can be done using a division By~ which consists of a single shift — followed
by a division by3 (see{l.4.1).

Toom-Cookr-way has to invert §2r — 1) x (2r — 1) Vandermonde matrix
with parameters the evaluation points; if we choose corisecinteger points,
the determinant of that matrix contains all primes uRto— 2. This proves
that division by (a multiple of3 cannot be avoided for Toom—Cogkway
with consecutive integer points. See Exer€isell.14 for @igdimation of this
result.

8 Integer arithmetic

1.3.4 Use of the fast Fourier transform (FFT)

Most subquadratic multiplication algorithms can be seeevaduation-inter-
polation algorithms. They mainly differ in the number of xaion points, and
the values of those points. However, the evaluation andgatation formulae
become intricate in Toom—Coakway for larger, since they involveO (r?)
scalar operations. The fast Fourier transform (FFT) is ategerform evalu-
ation and interpolation efficiently for some special poifiteots of unity) and
special values of. This explains why multiplication algorithms with the best
known asymptotic complexity are based on the FFT.

There are different flavours of FFT multiplication, depergdon the ring
where the operations are performed. The@dtage—Strassen algorithm, with
a complexity ofO(nlog nloglogn), works in the ringZ/(2™ + 1)Z. Since it
is based on modular computations, we describe it in Chapter 2

Other commonly used algorithms work with floating-point qdex num-
bers. A drawback is that, due to the inexact nature of floghiigt computa-
tions, a careful error analysis is required to guaranteedh®ctness of the im-
plementation, assuming an underlying arithmetic with mags error bounds.
See Theorem 3.6 in Chapfér 3.

We say that multiplication ign the FFT rangeif n is large and the multi-
plication algorithm satisfied/ (2n) ~ 2M (n). For example, this is true if the
Schinhage-Strassen multiplication algorithm is used, butifrtbie classical
algorithm or Karatsuba'’s algorithm is used.

1.3.5 Unbalanced multiplication

The subquadratic algorithms considered so far (KaratsndaTaom—Cook)
work with equal-size operands. How do we efficiently muitipitegers of dif-
ferent sizes with a subquadratic algorithm? This case i®itapt in practice,
but is rarely considered in the literature. Assume the laogerand has size
m, and the smaller has size< m, and denote by/ (m, n) the corresponding
multiplication cost.

If evaluation-interpolation algorithms are used, the etegiends mainly on
the size of the result, i.en + n, so we haveM (m,n) < M((m +n)/2), at
least approximately. We can do better tldii(m +n)/2) if nis much smaller
thanm, for exampleM (m, 1) = O(m).

Whenm is an exact multiple of,, saym = kn, a trivial strategy is to cut the
larger operand inté pieces, givingV/ (kn,n) = kM (n) + O(kn). However,
this is not always the best strategy, see Exefcisd 1.16.

1.3 Multiplication 9
Whenm is not an exact multiple of, several strategies are possible:

e split the two operands into an equal number of pieces of walesizes;
e or split the two operands into different numbers of pieces.

Each strategy has advantages and disadvantages. We diachss turn.

First strategy: equal number of pieces of unequal sizes
Consider for example Karatsuba multiplication, andAgtn, n) be the num-
ber of word-products for am x n product. Take for example, = 5, n = 3.
A natural idea is to pad the smaller operand to the size ofatget one. How-
ever, there are several ways to perform this padding, asrshothe following
figure, where the “Karatsuba cut” is represented by a douilemn:

as | as az | ay | ao as | as az | a1 | ap a4 | as az | air | ao
bQ b1 bo bQ b1 bo b2 bl bO
Ax B A x (BB) A x (8°B)

The left variant leads to two products of sizg.e.2K (3, 3), the middle one to
K(2,1)+K(3,2)+ K (3,3), and the right one t& (2, 2) + K (3, 1) + K (3, 3),
which give respectively4, 15, 13 word-products.

However, whenevem /2 < n < m, any such “padding variant” will re-
quire K([m/2], [m/2]) for the product of the differences (or sums) of the
low and high parts from the operands, due to a “wrap-aroufi@tewhen
subtracting the parts from the smaller operand; this wiiimately lead to a
cost similar to that of am x m product. The “odd—even scheme” of Algorithm
OddEvenKaratsuba (see also Exercige T]13) avoids this wrap-around. Here is
an example of this algorithm fon, = 3 andn = 2. TakeA = ay2? +a12 +ag
andB = byx + by. This yie'dSAo = asx + ag, A1 = a1, By = by, B1 = b1;
thus,Cy = (asz + ao)bo, Ci = (agl‘ + ag + al)(bo + bl), Cy = a1b;.

Algorithm 1.5 OddEvenKaratsuba
Input: A= Zgl_l a;zt, B = Eg_l bjzd,m>n>1
Output: A-B
if n=1thenreturn>0" " a;boa’
write A = Ag(2?) + xA1(2?), B = Bo(2?) + 2By (2?)
Cy < OddEvenKaratsuba(Ay, By)
C «+ OddEvenKaratsuba(Ag + Ay, By + Bi)
Cy «— OddEvenKaratsuba(A;, By)
returnCo(22) + z(Cy — Co — C3)(x?) + 22Ca(2?).

10 Integer arithmetic

We therefore gefk'(3,2) = 2K(2,1) + K(1) = 5 with the odd—even
scheme. The general recurrence for the odd—even scheme is

K(m,n) = 2K([m/2], [n/2]) + K(|m/2], [n/2]),
instead of
K(m,n) =2K([m/2],[m/2]) + K(|m/2],n — [m/2])

for the classical variant, assuming> m /2. We see that the second parameter
in K (-,-) only depends on the smaller sizdor the odd—even scheme.

As for the classical variant, there are several ways of papdith the odd—
even scheme. Consider = 5, n = 3, and write4 = asz* + asz® + as2® +
a1x + ap = vA1(2?) + Ag(2?), with Ay (z) = azr + a1, Ao(z) = asz® +
asx +ag; andB = byx? + bz + by = 2By (2?) + Bo(x?), with By (z) = by,
Bo(z) = baz+bo. Without padding, we writel B = 22(A; By)(2?)+x((Ag+
Al)(BO + Bl) —A1By — AoBo)(JJQ) + (AoBo)(l‘Q), which giVGSK(5, 3) =
K(2,1) + 2K(3,2) = 12. With padding, we considetB = xB}(z%) +
B{(x?), with B (z) = byx + by, B}, = byx. This givesK (2, 2) = 3 for A, B,
K(3,2) = 5for (Ag + A1)(Bj + By), andK (3,1) = 3 for AyB{, — taking
into account the fact thaB), has only one non-zero coefficient — thus, a total
of 11 only.

Note that when the variable corresponds to say = 294, Algorithm
OddEvenKaratsuba as presented above is not very practical in the integer
case, because of a problem with carries. For example, irutineds + A; we
have|m/2] carries to store. A workaround is to consideto be say3'?, in
which case we have to store only one carry bit for ten wordsead of one
carry bit per word.

The first strategy, which consists in cutting the operantisan equal num-
ber of pieces of unequal sizes, does not scale up nicely.rdsgar example
that we want to multiply a number &99 words by another number ¢b9
words, using Toom—Coadkway. With the classical variant — without padding —
and a “large” base 06333, we cut the larger operand into three piece8asf
words and the smaller one into two pieces$83 words and one small piece of
33 words. This gives four ful833 x 333 products — ignoring carries — and one
unbalanced33 x 33 product (for the evaluation at = ~o). The “odd—even”
variant cuts the larger operand into three piece338fwords, and the smaller
operand into three pieces 233 words, giving rise to five equally unbalanced
333 x 233 products, again ignoring carries.

1.3 Multiplication 11

Second strategy: different number of pieces of equal sizes

Instead of splitting unbalanced operands into an equal eurobpieces —
which are then necessarily of different sizes — an altereatirategy is to split
the operands into a different number of pieces, and use dptzdtion al-
gorithm which is naturally unbalanced. Consider again tteaxgle of multi-
plying two numbers 0099 and699 words. Assume we have a multiplication
algorithm, say Toom3, 2), which multiplies a number dfn words by another
number of2n words; this requires four products of numbers of abowtords.
Usingn = 350, we can split the larger number into two pieces366 words,
and one piece 0299 words, and the smaller number into one piece3ad
words and one piece 69 words.

Similarly, for two inputs ofL000 and500 words, we can use a Too(#; 2)
algorithm, which multiplies two numbers df, and2n words, withn = 250.
Such an algorithm requires five evaluation points; if we cgoihe same points
as for Toom3-way, then the interpolation phase can be shared betweén bot
implementations.

It seems that this second strategy is not compatible with‘dlde—even”
variant, which requires that both operands are cut into &mesnumber of
pieces. Consider for example the “odd—even” variant mogulid writes the
numbers to be multiplied ag¢ = a(8) and B = b(3) with a(t) = ag(t?) +
tap (t3)+t2ax (t3), and similarlyb(t) = bo(t3)+tby (t3) +t2bo(t3). We see that
the number of pieces of each operand is the chosen moduhes3 (eee Exer-
cise[1.11). Experimental results comparing different iplittation algorithms
are illustrated in Figure11.1.

Asymptotic complexity of unbalanced multiplication

Supposen > n andn is large. To use an evaluation-interpolation scheme,
we need to evaluate the productrat+ n points, whereas balancédby &
multiplication need®k points. Taking: ~ (m+n)/2, we see thad/ (m,n) <
M((m+n)/2)(1+ o(1)) asn — oo. On the other hand, from the discussion
above, we havd/(m,n) < [m/n]M (n). This explains the upper bound on
M (m,n) given in theSummary of complexitiext the end of the book.

1.3.6 Squaring

In many applications, a significant proportion of the muitations have equal
operands, i.e. are squarings. Hence, it is worth tuning aialpgquaring im-
plementation as much as the implementation of multiplacattself, bearing
in mind that the best possible speedup is two (see Exdrdisg. 1.

12 Integer arithmetic

4 18 32 46 60 74 88 102 116 130 144 158
4 bc
11 bc bc
18 bc bc 22
25 bc bc bc 22
32 bc bc bc bc 22
39 bc bc bc 32 32 33
46 bc bc bc 32 32 32 22
53 bc bc bc bc 32 32 32 22
60 bc bc bc bc 32 32 32 32 22
67 bc bc bc bc 42 32 32 32 33 33
74 bc bc bc bc 42 32 32 32 32 33 33
81 bc bc bc bc 32 32 32 32 32 33 33 33
88 bc bc bc bc 32 42 42 32 32 32 33 33 33
95 bc bc bc bc 42 42 42 32 32 32 33 33 33 22
102 bc bc bc bc 42 42 42 42 32 32 32 33 33 44 33
109 bc bc bc bc bc 42 42 42 42 32 32 32 33 32 44 44
116 bc bc bc bc bc 42 42 42 42 32 32 32 32 32 44 44 44
123 bc bc bc bc bc 42 42 42 42 42 32 32 32 32 44 44 44 44
130 bc bc bc bc bc 42 42 42 42 42 42 32 32 32 44 44 44 44 44
137 bc bc bc bc bc 42 42 42 42 42 42 32 32 32 33 33 44 33 33 33
144 bc bc bc bc bc 42 42 42 42 42 42 32 32 32 32 32 33 44 33 33 33
151 bc bc bc bc bc 42 42 42 42 42 42 42 32 32 32 32 33 33 33 33 33 33
158 bc bc bc bc bc bc 42 42 42 42 42 42 32 32 32 32 32 33 33 33 33 33 33

Figure 1.1 The best algorithm to multiply two numberszoéindy words
for4 < x < y < 158: bc is schoolbook multiplication22 is Karatsuba’s
algorithm,33 is Toom3, 32 is Toom+3, 2), 44 is Toom+, and42 is Toom-
(4,2). This graph was obtained on a Core 2, with GMP 5.0.0, and GCC 4.4.2.
Note that forz < (y + 3)/4, only the schoolbook multiplication is avail-
able; since we did not consider the algorithm that cuts the larger operand in
several pieces, this explains why is best for sayr = 32 andy = 158.

For naive multiplication, Algorithrh T1BasecaseMultiplycan be modified
to obtain a theoretical speedup of two, since only about dfalhe products
a;b; need to be computed.

Subquadratic algorithms like Karatsuba and Toom-Ceulay can be spe-
cialized for squaring too. In general, the threshold ol&diis larger than the
corresponding multiplication threshold. For example, oncalern64-bit com-
puter, we can expect a threshold between the naive quadqu@ring and
Karatsuba’s algorithm in th80-word range, between Karatsuba and Toom—
Cook 3-way in the100-word range, between Toom—-Co8kway and Toom—
Cook4-way in thel50-word range, and between Toom—Cobtkvay and the
FFT in the2500-word range.

The classical approach for fast squaring is to take a fadiptiohtion algo-
rithm, say Toom—Cook-way, and to replace th&- — 1 recursive products by
2r—1 recursive squarings. For example, starting from AlgorifctomCook3
we obtain five recursive squaringg, (ao + a1 + a2)?, (ap — a1 + az)?,
(ao + 2a; + 4az)?, anda3. A different approach, calledsymmetric squaring
is to allow products that are not squares in the recursive.dabr example,

1.3 Multiplication 13

mpn_mul_n
mpn_sqr -------

"
08 /N4 i B
- , i

0.6 |/

04t E

02 1

0 I I I I I
1 10 100 1000 10000 100000 1le+06

Figure 1.2 Ratio of the squaring and multiplication time for the GNU MP
library, version 5.0.0, on a Core 2 processor, up to one million words.

the square ofiy 5% + a1 + ag is c4B* + c33° + 3% + 18 + ¢o, Where
cy = a3, c3 = 2a1aa, c2 = ¢y + ¢4 — 8, ¢1 = 2a1a9, andey = a?, where
s = (ap — az + a1)(ap — a2 — ay). This formula performs two squarings,
and three normal products. Such asymmetric squaring f@enaué not asymp-
totically optimal, but might be faster in some medium rand@e to simpler
evaluation or interpolation phases.

Figure[1.2 compares the multiplication and squaring tinté wie GNU MP
library. It shows that whatever the word range, a good rutbwinb is to count
2/3 of the cost of a product for a squaring.

1.3.7 Multiplication by a constant

It often happens that the same multiplier is used in sevenas@cutive oper-
ations, or even for a complete calculation. If this constaattiplier is small,
i.e. less than the basg not much speedup can be obtained compared to the
usual product. We thus consider here a “large” constantiphielt

When using evaluation-interpolation algorithms, such amtsaba or Toom—
Cook (sedf1.3.2E1.3.B), we may store the evaluations for that fixedipligr
at the different points chosen.

14 Integer arithmetic

Special-purpose algorithms also exist. These algorithiffer drom classi-
cal multiplication algorithms because they take into aotdhevalue of the
given constant multiplier, and not only its size in bits ogiti. They also dif-
fer in the model of complexity used. For example, R. Berm&ehlgorithm
[Iﬂ], which is used by several compilers to compute addeegsdata struc-
ture records, considers as basic operation — 2z + y, with a cost assumed
to be independent of the integer

For example, Bernstein’s algorithm compu2@961x in five steps:

z:=3lx = 2z —=zx
o =93z = 2o+
rg =743z = 2319 —1
x4 = 6687 = 23154 a3
20061z = 2'ay + z4.
1.4 Division

Division is the next operation to consider after multiptioa. Optimizing di-
vision is almost as important as optimizing multiplicatiaince division is
usually more expensive, thus the speedup obtained on aivigill be more
significant. On the other hand, we usually perform more mlitttions than
divisions.

One strategy is to avoid divisions when possible, or reptaesn by multi-
plications. An example is when the same divisor is used fezrse consecutive
operations; we can then precompute its inverse {8e£€1).

We distinguish several kinds of divisiofull division computes both quo-
tient and remainder, while in other cases only the quotientexample, when
dividing two floating-point significands) or remainder (whultiplying two
residues modulm) is needed. We also discussact division— when the
remainder is known to be zero — and the problem of dividing bingle word.

1.4.1 Naive division

In all division algorithms, we assume that divisors are redined. We say that
B := g—l b;/3 is normalizedwhen its most significant wort}, _; satisfies
bn,—1 > (/2. This is a stricter condition (fof > 2) than simply requiring that
b,—1 be non-zero.

If B is not normalized, we can comput# = 2*A and B’ = 2B so

that B’ is normalized, then dividel’ by B’ giving A’ = Q'B’ + R’. The

1.4 Division 15

Algorithm 1.6 BasecaseDivRem
Input: A =S"0"""q;5, B=30""b;4, B normalizedym > 0
Output: quotient@ and remainderR of A divided by B

1. if A>pg"™Btheng, — 1,A+— A— B elseq,, — 0

2: for j from m — 1 downto 0 do

3 qj [(an+iB + antj—1)/bn-1] > quotient selection step
4 qj — min(q}-‘,ﬁ -1

5: A—A—-q;B

6: while A < 0do

7. qj < q5 —].

8: A—A+3B

9: return@ = > ' ¢;37, R = A.
(Note: in stefiBg; denotes theurrentvalue of theith word of A, which may
be modified at stefd 5 aqdl 8.)

quotient and remainder of the division dfby B are, respectively) := @Q’
andR := R’/2¥; the latter division being exact.

Theorem 1.3 Algorithm BasecaseDivRentorrectly computes the quotient
and remainder of the division of by a normalized3, in O(n(m + 1)) word
operations.

Proof. We prove that the invariamd < 371 B holds at stefp]2. This holds
trivially for j = m — 1: B being normalizedA < 25™ B initially.

First consider the casg = q;- Theng;b,—1 > anyjB+antj—1—bn—1+1,
and therefore

A= g B < (byr — 1B 4 (Amod g7,

which ensures that the new,.; vanishes, andi, ;1 < b,_1; thus,
A < (3B after stedb. Nowd may become negative after s{gp 5, but, since
¢ibn—1 < anyjf + anyj—1, we have

A= i’ B > (an4 ;B + anyj—1)B" 7 = qi(bp1B" 4+ 8B
> —q; 3"

Therefore A — q; 3 B+237B > (2b,—1 —q;)3" =1 > 0, which proves that
the while-loop at stegd B}-8 is performed at most tv@[l#@:o'rem 4.3.1.B].
When the while-loop is entered, may increase only by’ B at a time; hence,
A < 3B at exit.

16 Integer arithmetic

In the caseq; # g¢j, i.e. ¢ > [, we have before the while-loop
A < B — (8 —1)8’B = (7B, thus, the invariant holds. If the while-
loop is entered, the same reasoning as above holds.

We conclude that when the for-loop ends< A < B holds, and, since
(327" 4;87)B + A'is invariant throughout the algorithm, the quoti€ptand
remainderR are correct.

The most expensive part is sfdp 5, which casts) operations fog;; B (the
multiplication by 37 is simply a word-shift); the total cost i©(n(m + 1)).
(Form = 0, we need)(n) work if A > B, and even ifA < B to compare the
inputs in the casel = B — 1.) 0

Here is an example of algorithnBasecaseDivRemfor the inputs
A = 766970544 842443844 and B = 862664 913, with 8 = 1000, which
gives quotient) = 839071 217 and remaindeR = 778 334 723.

A qj A—q;Bp after correction

766970544 842443844 889 61437185443844 no change
61437185443844 071 187976 620 844 no change
187976620844 218 —84330190 778334723

S =N .

Algorithm BasecaseDivRensimplifies whend < 3™ B: remove stepll,
and changen into m — 1 in the return value)). However, the more general
form we give is more convenient for a computer implementatand will be
used below.

A possible variant whep; > Bis to letq; = j3; thenA — q;/3’ B at stef b
reduces to a single subtraction Bfshifted by;j + 1 words. However, in this
case the while-loop will be performed at least once, whiaesponds to the
identity A — (8 —1)3’B=A— *'B + 3B.

If instead of havingB normalized, i.eb,, > /2, we haveb,, > 3/k, there
can be up td iterations of the while-loop (and stEp 1 has to be modified).

A drawback of AlgorithmBasecaseDivRenis that the testd < 0 at line[8
is true with non-negligible probability; therefore, bréwqarediction algorithms
available on modern processors will fail, resulting in vealstycles. A work-
around is to compute a more accurate partial quotient, iardaddecrease the
proportion of corrections to almost zero (see Exerlcise)1.20

1.4.2 Divisor preconditioning

Sometimes the quotient selection — gtkp 3 of AlgoriBasecaseDivRem- is
quite expensive compared to the total cost, especiallyrfalissizes. Indeed,
some processors do not have a machine instruction for thsiativof two

1.4 Division 17

words by one word; one way to compugis then to precompute a one-word
approximation of the inverse of,_, and to multiply it bya, ;5 + an4j—1.

Svoboda’s algorithm makes the quotient selection triatier precondition-
ing the divisor. The main idea is thatdf,_, equals the basg in Algorithm
BasecaseDivRemthen the quotient selection is easy, since it suffices te tak
q; = an+;. (In addition,g; < 3 — 1is then always fulfilled; thus, stép 4 of
BasecaseDivRencan be avoided, ang replaced by;;.)

Algorithm 1.7 SvobodaDivision
Input: A = Zg+"’_1 a;3¢, B = 23—1 b;# normalized A < f™B,m > 1
Output: quotient@ and remainder of A divided by B
& ["/B]
B' — kB ="+ 4+ 307 b, B
: for j from m — 1 downto 1 do
qj < Gn4j > current value ofi, 4 ;
Ae—A—q;p 1B
if A< 0then
q—q—1
A— A4 pi—1p
Q=Yg R = A
- (g0, R) + (R’ div B, R' mod B) > usingBasecaseDivRem
return@ = kQ' + qo, R.

© o N Ok wdhR

o
= o

With the example offl.4.1, Svoboda’s algorithm would give = 1160,
B’ = 1000691299 080:

j A q; A—q;B 3 after correction
2 766970544 842443844 766 441009747 163 844 no change
1 441009747163844 441 —295115730436 705575568 644

We thus get)’ = 766440 and R’ = 705575 568 644. The final division of
step 10 givesk’ = 817B + 778334723, and we get) = 1160 - 766 440 +
817 = 889071217, andR = 778 334 723, as indL.41.

Svoboda’s algorithm is especially interesting when only thmainder is
needed, since then we can avoid the “deconditioniQg= kQ’ + qo. Note
that when only the quotient is needed, divididg = kA by B’ = kB is
another way to compute it.

18 Integer arithmetic

1.4.3 Divide and conquer division

The base-case division @f[.4.1 determines the quotient word by word. A
natural idea is to try getting several words at a time, fonapie replacing the
guotient selection step in AlgorithBBasecaseDivRenby

g — {anﬂﬂg + anyj18% 4 anyj 28+ an+j—3J
/ bnflﬁ + bp—2 .

Sinceg; has then two words, fast multiplication algorithn&.@) might speed
up the computation of; B at stef b of AlgorithnBasecaseDivRem

More generally, the most significant half of the quotient y &2, of
¢ = m — k words — mainly depends on tifemost significant words of the
dividend and divisor. Once a good approximatiorgtpis known, fast multi-
plication algorithms can be used to compute the partial ietead — Q, B5".
The second idea of the divide and conquer algorilR@cursiveDivRemis to
compute the corresponding remainder together with thégbguiotient;; in
such a way, we only have to subtract the produaDefby the low part of the
divisor, before computing the low part of the quotient.

Algorithm 1.8 RecursiveDivRem

Input: A= S0""" a3, B=50""b;4, B normalizedpn > m
Output: quotient@ and remainder of A divided by B
. if m < 2 then returnBasecaseDivRerfy, B)
.k« |m/2], By « Bdiv g%, By «+ B mod *

. (Q1, Ry) «— RecursiveDivRen(A div %%, B;)

i A" Ry 3% + (A mod 3°*) — Q1 Bo 5"

- while A’ <0doQ; «— Q, —1,A" — A"+ 3*B

. (Qo, Ro) «— RecursiveDivRenm(A’ div 8%, By)

0 A" = Rof* + (A" mod 3*) — Qo Bo

s while A” <0doQp — Qo—1,A” — A"+ B
creturn@ == Q1% 4+ Qo, R := A”.

© 0 N O U A WN P

In Algorithm RecursiveDivRem we may replace the condition < 2 at
stepl bym < T for any integefl’ > 2. In practice,I" is usually in the range
50 to 200.

We cannot required < g™ B at input, since this condition may not be
satisfied in the recursive calls. Consider for examyle: 5517, B = 56 with
(8 = 10: the first recursive call will dividés5 by 5, which yields a two-digit
quotientl1. EvenA < ™ B is not recursively fulfilled, as this example shows.
The weakest possible input condition is that theost significant words aoft

1.4 Division 19

do not exceed those @3, i.e. A < ™ (B + 1). In that case, the quotient is
bounded by3™ + | (8™ — 1)/B], which yieldsg™ + 1 in the casen = m
(compare Exercide 1.119). See also Exellcisel1.22.

Theorem 1.4 AlgorithmRecursiveDivRemis correct, and useD (n+m, n)
operations, wherd(n + m,n) = 2D(n,n —m/2) + 2M(m/2) + O(n). In
particular, D(n) := D(2n,n) satisfiesD(n) = 2D(n/2)+2M (n/2)+O(n),
which givesD(n) ~ M (n)/(2¢~t — 1) for M(n) ~ n®, a > 1.

Proof. We first check the assumption for the recursive cdllgis normalized
since it has the same most significant word tlian

After step[B, we havel = (Q;B; + R;)5% + (A mod S3ay); thus, after
sted%,4’ = A — Q,3* B, which still holds after stefgl5. After st€p 6, we have
A" = (QoB1 + Ro)B3* + (A’ mod 3F), and, after stepl74” = A’ — Qo B,
which still holds after stefp]8. At stép 9, we hade= QB + R.

A div 3%* hasm +n — 2k words, andB; hasn — k words; thusp < Q; <
2™~ Fand0 < Ry < By < 8" k. At steg4,—-2p"t* < A’ < *B. Since
B is normalized, the while-loop at stEp 5 is performed at mast fimes (this
can happen only when = m). At step[®, we hav® < A’ < "B, thus,
A’ div $* has at most words.

It follows 0 < Qo < 24* and0 < Ry < B; < 3" *. Hence, at step
[, —23%¢ < A" < B, and, after at most four iterations at sfdp 8, we have
0< A" < B. O

Theoreni 1K give® (n) ~ 2M (n) for Karatsuba multiplication, anB (n) ~
2.63M (n) for Toom—Cook3-way; in the FFT range, see Exercise 1.23.

The same idea as in Exercise_1.20 applies: to decrease thaljlity that
the estimated quotient9; and @, are too large, use one extra word of the
truncated dividend and divisors in the recursive callRézursiveDivRem

A graphical view of AlgorithmRecursiveDivRemin the casen = n is
given in Figurd_LB, which represents the multiplicat@n B: we first com-
pute the lower left corner i (n/2) (sted8), second the lower right corner in
M (n/2) (sted3), third the upper left corner in(n/2) (sted®), and finally the
upper right corner i/ (n/2) (stedT).

Unbalanced division

The conditionn > m in Algorithm RecursiveDivRemmeans that the divi-
dendA is at most twice as large as the diviser When A is more than twice

as large a3 (m > n with the notation above), a possible strategy (see Ex-
ercise 1.2U) computes words of the quotient at a time. This reduces to the
base-case algorithm, replacigdy 5.

20 Integer arithmetic

M(g)
M(n/4)
M(g)
M(n/2)
M(%)
M(n/4)
M(%)
quotient@
M(g)
M(n/4)
M(g)
M(n/2)
M(g)
M(n/4)
M(%)
divisor B

Figure 1.3 Divide and conquer division: a graphical view
(most significant parts at the lower left corner).

Algorithm 1.9 UnbalancedDivision
Input: A= 30""""a,3', B=34""b;8, Bnormalizedn > n
Output: quotient and remaindeR of A divided by B
Q<0
while m > n do
(¢,7) < RecursiveDivRem A div g™~ ", B) > 2n by n division
Q—QF"+q
A—rgm " 4+ Amod gm "
m<«—m-—n
(¢,7) < RecursiveDivRen(A4, B)
return@ := Q8™ +¢q, R :=r.

Figure[T.# compares unbalanced multiplication and divisioGNU MP.
As expected, multiplyinge words byn — x words takes the same time as
multiplying n — x words byn words. However, there is no symmetry for the
division, since dividing: words byz words forz < n/2 is more expensive,
at least for the version of GMP that we used, than dividingords byn — x
words.

1.4 Division 21

2000

1800
1600
1400
1200
1000
800
600
400

200 f}/

0 i 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

Figure 1.4 Time inl0~—° seconds for the multiplication (lower curve) of
words by1000 — x words and for the division (upper curve) b600 words
by « words, with GMP 5.0.0 on a Core 2 running at 2.83GHz.

1.4.4 Newton’s method

Newton’s iteration gives the division algorithm with besymptotic complex-
ity. One basic component of Newton’s iteration is the corapah of an ap-
proximate inverse. We refer here to Chapler 4. ptaalic version of Newton’s
method, also called Hensel lifting, is usedjili4.3 for exact division.

1.4.5 Exact division

A division is exactwhen the remainder is zero. This happens, for example,
when normalizing a fraction/b: we divide bothu andb by their greatest com-
mon divisor, and both divisions are exact. If the remainderkhown
a priori to be zero, this information is useful to speed up the contjmuta
of the quotient.

Two strategies are possible:

e use MSB (most significant bits first) division algorithmsthaut computing
the lower part of the remainder. Here, we have to take car@wfding
errors, in order to guarantee the correctness of the finaltyes

22 Integer arithmetic

e use LSB (least significant bits first) algorithms. If the dqeot is known to
be less tha™, computinga/b mod 5™ will reveal it.

Subquadratic algorithms can use both strategies. We 8eszteast significant
bit algorithm using Hensel lifting, which can be viewed gs-adic version of
Newton’s method.

Algorithm ExactDivision uses the Karp—Markstein trick: lines[1-4 compute
1/B mod p/21, while the two last lines incorporate the dividend to obtain
A/B mod ". Note that theniddle produc(§3.3:2) can be used in linE§ 4 and
[6, to speed up the computationlof- BC' andA — BQ, respectively.

Algorithm 1.10 ExactDivision
Input: A=30"a;0, B=50""b;3
Output: quotient) = A/B mod ("
Require: ged(bg, 8) =1

1: C' «— 1/by mod

2: for i from [lgn] — 1 downto 1 do

3 k — [n/2%]

4 C «— C+C(1—BC)mod *

5

6

. Q — AC mod (*
:Q — Q+ C(A— BQ) mod g™

A further gain can be obtained by using both strategies sanabusly: com-
pute the most significant/2 bits of the quotient using the MSB strategy, and
the least significant /2 bits using the LSB strategy. Since a division of size
is replaced by two divisions of size/2, this gives a speedup of up to two for
quadratic algorithms (see Exercise 1.27).

1.4.6 Only quotient or remainder wanted

When both the quotient and remainder of a division are neeitlésl,best
to compute them simultaneously. This may seem to be a trate@tement;
nevertheless, some high-level languages provide Hotrand mod, but no
single instruction to compute both quotient and remainder.

Once the quotient is known, the remainder can be recoverea sigpgle
multiplication asA — @ B; on the other hand, when the remainder is known,
the quotient can be recovered by an exact divisiopas R)/B (1.4.35).

However, it often happens that only one of the quotient oraiaedker is
needed. For example, the division of two floating-point nemslyeduces to the
quotient of their significands (see Chayter 3). Conversedymultiplication of

1.4 Division 23

two numbers moduldV reduces to the remainder of their product after divi-
sion by N (see Chaptdr]2). In such cases, we may wonder if faster tlgusi
exist.

For a dividend on words and a divisor of words, a significant speedup —
up to a factor of two for quadratic algorithms — can be obtdindien only
the quotient is needed, since we do not need to update the lwards of the
current remainder (stép 5 of AlgorithBasecaseDivRemn

It seems difficult to get a similar speedup when only the reiwhei is re-
quired. One possibility is to use Svoboda’s algorithm, Ibig tequires some
precomputation, so is only useful when several divisiomsparformed with
the same divisor. The idea is the following: precompute atipial B; of B,
having 3n/2 words, then/2 most significant words being”/2. Then re-
ducing A mod B; requires a single:/2 x n multiplication. OnceA is re-
duced toA; of 3n/2 words by Svoboda’s algorithm with cogh/ (n/2), use
RecursiveDivRemon A; and B, which costsD(n/2) + M (n/2). The to-
tal cost is thu3M (n/2) + D(n/2), instead of2M (n/2) + 2D(n/2) for a
full division with RecursiveDivRem This gives5M (n)/3 for Karatsuba and
2.04M (n) for Toom—Cook3-way, instead oM (n) and2.63M (n), respec-
tively. A similar algorithm is described if2.4.2 (Subquadratic Montgomery
Reduction) with further optimizations.

1.4.7 Division by a single word

We assume here that we want to divide a multiple precisionbsunby a
one-word integer. As for multiplication by a one-word integer, this is an
important special case. It arises for example in Toom—Coakiptfication,
where we have to perform an exact divisiondb@I.3-3). We could of course
use a classical division algorithfI.4.3). Whengcd(c, 3) = 1, Algorithm
DivideByWord might be used to compute a modular division

A+b0" = cQ,

where the “carry’d will be zero when the division is exact.

Theorem 1.5 The output of AlgDivideByWord satisfiesA + 66" = cQ.

Proof. We show that after step0 < i < n, we haved;+b5"t! = cQ;, where
A; = z;:o aiﬁi anin = Z;’:O qzﬁl Fori = 0, thisisag + bﬁ = ¢qo,
which is just lind¥; sincgy = ag/c mod (3, goc—ay is divisible by3. Assume
now thatA;_; 4+ b3* = cQ;_1 holds forl < i < n. We haven; —b+'3 = z,
sox + V'3 = cq;, thusA; + (b + b3 = A; 1 + Bi(a; +VB+V'B) =

24 Integer arithmetic

Qi1 —bB + B (x+b—bE+UE+b"B)=cQi_1+ B (x+b"p) = cQ;.

d
Algorithm 1.11 DivideByWord
Input: A =S"0""a;0,0<c< B, ged(c,f) =1
Output: Q = 23—1 ¢;3* and0 < b < csuch thatd + b3" = cQ
1: d+ 1/cmod 3 > might be precomputed

200

3: for i from Oton — 1 do
4 if b < a; then (x,0") — (a; — b,0)
5 else(x,b') «— (a; — b+ ,1)
6: q; <+ dx mod (3

7 b’ — (qic—)/

8 bt +b"

o: return>. 0" ¢;3%, b,

REMARK: at stefi ¥, sincé < z < 3, b” can also be obtained &g;¢/3].

Algorithm DivideByWord is just a special case of Hensel's division, which
is the topic of the next section; it can easily be extendedvide by integers
of a few words.

1.4.8 Hensel's division

Classical division involves cancelling the most significpart of the dividend
by a multiple of the divisor, while Hensel's division cans#te least significant
part (Figurd_1b). Given a dividend of 2n words and a divisoB3 of n words,

| A | A |

| B || B |

| QB || Q'B |

| R | R |

Figure 1.5 Classical/MSB division (left) vs Hensel/LSB division (right).

the classical or MSB (most significant bit) division commugequotient) and
aremainde? such thatA = Q B+ R, while Hensel's or LSB (least significant

1.5 Roots 25

bit) division computes a LSB-quotie’ and a LSB-remaindeR’ such that
A = Q'B+ R'S"™. While MSB division requires the most significant bit Bf
to be set, LSB division requireB to be relatively prime to the word bagk
i.e. B to be odd forg a power of two.

The LSB-quotient is uniquely defined b§’ = A/B mod 3", with
0 < @' < p™ This in turn uniquely defines the LSB-remaindBf =
(A—Q'B)p~ ", with—B < R < ™.

Most MSB-division variants (naive, with preconditionindjyide and con-
quer, Newton'’s iteration) have their LSB-counterpart. Egample, LSB pre-
conditioning involves using a multipléB of the divisor such thatkB =
1 mod 3, and Newton’s iteration is called Hensel lifting in the LS&se. The
exact division algorithm described at the end§@f4.3 uses both MSB- and
LSB-division simultaneously. One important differencehat LSB-division
does not need any correction step, since the carries go dirdaion opposite
to the cancelled bits.

When only the remainder is wanted, Hensel’s division is Ugulalown as
Montgomery reduction (s€2.4.2).

1.5 Roots

1.5.1 Square root

The “paper and pencil” method once taught at school to ex$igeare roots is
very similar to “paper and pencil” division. It decomposesiategerm of the
form s2 + r, taking two digits ofm at a time, and finding one digit of for
each two digits ofn. It is based on the following idea. th = s% + r is the
current decomposition, then taking two more digits of tiggiarent, we have a
decomposition of the form00m + ' = 10052 + 1007 47" with 0 < 7’ < 100.
Since(10s + t)? = 100s% + 20st + 2, a good approximation to the next digit
t can be found by dividing0r by 2s.

Algorithm SqrtRem generalizes this idea to a powgf of the internal base
close tom'/4: we obtain a divide and conquer algorithm, which is in fact an
error-free variant of Newton's method (cf. Chagter 4):

26 Integer arithmetic

Algorithm 1.12 SqrtRem
Input: m =a,_ 18" '+ - +aB+aowitha, 1 #0
Output: (s,7) such that? < m = s2 +r < (s + 1)?
Require: a base-case routirBasecaseSqrtRem

0 [(n—1)/4]

if £ =0 then returnBasecaseSqrtRerfm)

write m = as 3¢ + a2 8% + a1 8¢ + ag With 0 < as, a1, ag < 8¢

(s',r") — SqrtRem(as [+ as)

(q,u) «— DivRem(r'3° + ay, 2s")

s—s'B+q

r e uf’ +ao - ¢

if » < 0then

r—r+2s—1, s+ s—1
return(s, r).

Theorem 1.6 Algorithm SqgrtRem correctly returns the integer square root
s and remainderr of the inputm, and has complexityz(2n) ~ R(n) +
D(n) + S(n), where D(n) and S(n) are the complexities of the division
with remainder and squaring respectively. This giv&®) ~ n?/2 with naive
multiplication, R(n) ~ 4K (n)/3 with Karatsuba’s multiplication, assuming
S(n) ~2M(n)/3.

As an example, assume AlgorithBgrtRem is called onm = 123456 789
with 3 = 10. We haven = 9, ¢ = 2, a3 = 123, ao = 45, a; = 67, and
ap = 89. The recursive call forns3° + as = 12345 yields s’ = 111 and
r’ = 24. TheDivRem call yieldsq = 11 andu = 25, which givess = 11111
andr = 2468.

Another nice way to compute the integer square root of argérter, i.e.
|m!/?], is Algorithm Sqrtint, which is an all-integer version of Newton’s
method §4.2).

Still with input 123 456 789, we successively get= 61 728 395, 30 864 198,
15432100, 7716053, 3858034, 1929032, 964547, 482337, 241296,
120903, 60962, 31493, 17706, 12339, 11172, 11111, 11111. Convergence
is slow because the initial value ofassigned at lingl 1 is much too large. How-
ever, any initial value greater than or equalta'/? | works (see the proof of
Algorithm RootInt below): starting froms = 12 000, we gets = 11 144, then
s =11111. See Exercise 1.28.

1.5 Roots 27

Algorithm 1.13 Sqrtint

Input: an integern > 1

Output: s = [m!'/?]
Cue—m > any valueu > |m'/? | works
: repeat

1

2

3 S u

4 t—s+[m/s]
5 u— [t/2]
6: until uw > s

7: returns.

1.5.2 kth root

The idea of AlgorithnSqrtRem for the integer square root can be generalized
to any power: if the current decompositiorvis = m/* + m”’ g1 + m'”,
first compute &th root of m/, saym’ = s* + r, then divider3 + m” by
ks*~1 to get an approximation of the next root digitand correct it if needed.
Unfortunately, the computation of the remainder, whichasyefor the square
root, involvesO (k) terms for thekth root, and this method may be slower than
Newton's method with floating-point arithmeti§4.2.3).

Similarly, Algorithm Sqrtint can be generalized to thgh root (see Algo-
rithm Rootint).

Algorithm 1.14 RootInt

Input: integersm > 1, andk > 2

Output: s = |m'/*¥|
Cu—m > any valueu > |m'/* | works
. repeat

1
2
3 S—u

4: t e (k—1)s+ |m/s* 1]
5 u«— [t/k]

6: until u > s

7: returns.

Theorem 1.7 AlgorithmRootint terminates and returngm!/*|.

Proof. As long asu < s in step[®, the sequence efvalues is decreasing;
thus, it suffices to consider what happens when s. First it is easy so see that
u > simpliesm > s*, because > ks and thereforék —1)s+m/s* =1 > ks.

28 Integer arithmetic

Consider now the functioffi(t) := [(k—1)t+m/t*~1]/k for t > 0; its deriva-
tive is negative fort < m!/* and positive fort > m!/*; thus,
f(t) > f(m'*) = m'/* This proves that > |m!'/*|. Together with
s < m!/*, this proves that = |m'/*| at the end of the algorithm. 0

Note that any initial value greater than or equalto'/* | works at stejyl1.
Incidentally, we have proved the correctness of AlgoritBartint, which is
just the special case = 2 of Algorithm RootInt.

1.5.3 Exact root

When akth root is known to be exact, there is of course no need to ctenpu
exactly the final remainder in “exact root” algorithms, whgaves some com-
putation time. However, we have to check that the remainslesufficiently
small that the computed root is correct.

When a root is known to be exact, we may also try to compute iitiistg
from the least significant bits, as for exact division. Indleié s* = m, then
s = mmod B¢ for any integer’. However, in the case of exact division, the
equationa = ¢b mod ¢ has only one solutio as soon a$ is relatively
prime to3. Here, the equatios” = m mod ¢ may have several solutions,
so the lifting process is not unique. For exampté, = 1 mod 2% has four
solutionsl, 3, 5, 7.

Suppose we hawe = m mod 3¢, and we want to lift tg3 . This implies
(s +)% = m + m/B* mod B+, where0 < t,m’ < 3. Thus

m—sk

3t
This equation has a unique solutiorwhen k is relatively prime tog. For
example, we can extract cube roots in this wayda power of two. Wherk

is relatively prime tg3, we can also compute the root simultaneously from the
most significant and least significant ends, as for exacsidivi

kt=m'+

mod S.

Unknown exponent

Assume now that we want to check if a given integelis an exact power,
without knowing the corresponding exponent. For exampdees primality
testing or factorization algorithms fail when given an eéxamwer, so this has
to be checked first. AlgorithrisPower detects exact powers, and returns the
largest corresponding exponent (aif the input is not an exact power).

To quickly detect noristh powers at stelp 2, we may use modular algorithms
whenk is relatively prime to the base (see above).

1.6 Greatest common divisor 29

Algorithm 1.15 IsPower

Input: a positive integern

Output: k& > 2 whenm is an exackth power,1 otherwise
1: for k from |lgm| downto 2 do
2: if m is akth powerthen returnk

3: returnl.

REMARK: in Algorithm IsPower, we can limit the search to prime exponents
k, but then the algorithm does not necessarily return thegrgxponent, and
we might have to call it again. For example, taking= 117649, the modified
algorithm first returns because 17649 = 493, and when called again with
m = 49, it returns2.

1.6 Greatest common divisor

Many algorithms for computing gcds may be found in the liter@. We can
distinguish between the following (non-exclusive) types:

e Left-to-right (MSB) versus right-to-left (LSB) algorithenin the former the
actions depend on the most significant bits, while in thestatie actions
depend on the least significant bits.

¢ Naive algorithms: thes® (n?) algorithms consider one word of each operand
at atime, trying to guess from them the first quotients — wentuthis class
algorithms considering double-size words, namely Lehsn@dorithm and
Sorenson’s:-ary reduction in the left-to-right and right-to-left casespec-
tively; algorithms not in this class consider a number ofagothat depends
on the input sizex, and are often subquadratic.

e Subtraction-only algorithms: these algorithms tradesidris for subtrac-
tions, at the cost of more iterations.

e Plain versus extended algorithms: the former just computegcd of the
inputs, while the latter express the gcd as a linear comibimaf the inputs.

1.6.1 Naive GCD

For completeness, we mention Euclid’s algorithm for findihg gcd of two
non-negative integers, v.

Euclid’s algorithm is discussed in many textbooks, and wendorecom-
mend it in its simplest form, except for testing purposedekd, it is usually a

30 Integer arithmetic

slow way to compute a gcd. However, Euclid’s algorithm ddesasthe con-
nection between gcds and continued fractions./If has a regular continued

fraction of the form
1 1 1

u/fv=qy+ — —— —— -+,
/ g1+ g2+ g3+

then the quotients,, ¢, . . . are precisely the quotientsdiv v of the divisions
performed in Euclid’s algorithm. For more on continued fiaes, seef4.8.

Algorithm 1.16 EuclidGced
Input: u, v nonnegative integers (not both zero)
Output: ged(u,v)
while v £ 0 do
(u,v) « (v,u mod v)

returnu.

Double-Digit Ged. A first improvement comes from Lehmer’s observation:
the first few quotients in Euclid’s algorithm usually can ketedmined from
the most significant words of the inputs. This avoids expendivisions that
give small quotients most of the time (SMIM,S.S]). Consider for exam-
ple a = 427419669081 andb = 321110693 270 with 3-digit words. The
first quotients aré, 3,48, ... Now, if we consider the most significant words,
namely 427 and 321, we get the quotients$, 3,35, ... If we stop after the
first two quotients, we see that we can replace the initialispya — b and
—3a + 4b, which gives106 308 975811 and2 183 765 837.

Lehmer’s algorithm determines cofactors from the mostifigant words
of the input integers. Those cofactors usually have sizg balf a word. The
DoubleDigitGed algorithm — which should be called “double-word” — uses
thetwo most significant words instead, which gives cofactois v, w of one
full-word each, such thajcd(a, b) = ged(ta+ub, va+wb). This is optimal for
the computation of the four produdts, ub, va, wb. With the above example,
if we consider427 419 and321 110, we find that the first five quotients agree,
so we can replace, b by —148a + 197b and441a — 587b, i.e.695 550 202 and
97115 231.

The subroutineHalfBezout takes as input tw@-word integers, performs
Euclid’s algorithm until the smallest remainder fits in onerd; and returns
the corresponding matrix, u; v, w].

Binary Ged. A better algorithm than Euclid’s, though also 6f(n?) com-
plexity, is thebinary algorithm. It differs from Euclid’s algorithm in two ways:

1.6 Greatest common divisor 31

Algorithm 1.17 DoubleDigitGed
|npUt: a:= an,lﬁnfl + - 4+ap, b= bmflﬁmil + -+ by
Output: ged(a, b)
if b = 0 thenreturna
if m < 2 thenreturnBasecaseGce(, b)
if @ < born > m thenreturnDoubleDigitGed(b, @ mod b)
(t, u,v, w) — HaIfBezout(an,lﬁ + Qp—2, bnflﬁ + bn,Q)
returnDoubleDigitGed(|ta + ub|, |va 4+ wbl).

it consider least significant bits first, and it avoids diwiss, except for divi-
sions by two (which can be implemented as shifts on a binamypeder). See
Algorithm BinaryGcd. Note that the first three “while” loops can be omitted
if the inputsa andb are odd.

Algorithm 1.18 BinaryGced
Input: a,b >0
Output: ged(a, b)
t—1
while ¢ mod 2 = b mod 2 = 0 do
(t,a,b) «— (2t,a/2,b/2)
while ¢ mod 2 = 0 do
a<—a/2
while b mod 2 = 0 do
b b/2 > now a andb are both odd
while a # b do
(a,b) < (Ja — b|, min(a, b))
a — a/2v(@ > v(a) is the2-valuation ofa

returnta.

Sorenson’sk-ary reduction
The binary algorithm is based on the fact that &ndb are both odd, thea—b
is even, and we can remove a factor of two sigeé(a, b) is odd. Sorenson’s
k-ary reduction is a generalization of that idea: giveandb odd, we try to
find small integers:, v such that.a — vb is divisible by a large power of two.

Theorem 1.8 [@] If a,b > 0, m > 1 with ged(a,m) = ged(b,m) = 1,
there existu, v, 0 < |ul,v < y/m such thatua = vb mod m.

32 Integer arithmetic

Algorithm ReducedRatModfinds such a paifu, v). Itis a simple variation of
the extended Euclidean algorithm; indeed,¢hare quotients in the continued
fraction expansion of/m.

Algorithm 1.19 ReducedRatMod

Input: a,b > 0, m > 1with gcd(a,m) = ged(b,m) =1
Output: (u,v) suchthad) < |u|,v < v/m andua = vb mod m
¢ — a/bmod m

(ur,01) < (0,m)

(ug,v2) — (1,¢)

: while vy > y/m do

q « |v1/v2]

(u1,u2) — (uz,ur — quz)

(v1,02) « (v2,v1 — qu2)

return(us, va).

© N R whR

Whenm is a prime power, the inversioryb mod m at stef L of Algorithm
ReducedRatModcan be performed efficiently using Hensel liftir2(3).

Given two integers:, b of sayn words, AlgorithmReducedRatModwith
m = (32 returns two integers, v such thatb — ua is a multiple of32. Since
u, v have at most one word eaat,= (vb—ua)/3? has at most — 1 words —
plus possibly one bit — therefore with = b mod «’ we obtainged(a,b) =
ged(a’, V'), where bothe’ andb’ have about one word less tharx(a, b). This
gives an LSB variant of the double-digit (MSB) algorithm.

1.6.2 Extended GCD

Algorithm ExtendedGcdsolves theextendedgreatest common divisor prob-
lem: given two integers andb, it computes their gcg, and also two integers
u andv (calledBézout coefficientsr sometimegofactorsor multipliers) such
thatg = ua + vb.

If ay andby are the input numbers, amdb the current values, the following
invariants hold at the start of each iteration of the whilgd@and after the while
loop: a = uag + vby, andb = wag + xby. (See Exercise_1.80 for a bound on
the cofacton:.)

An important special case is modular inversion (see Ch&jtegiven an
integern, we want to computé/a mod n for a relatively prime ton. We then
simply run AlgorithmExtendedGcdwith inputa andb = n; this yieldsu and
v With wa +vn = 1, and thusl /a = v mod n. Sincev is not needed here, we
can simply avoid computing andz, by removing steps] 2 ahdl 7.

1.6 Greatest common divisor 33

Algorithm 1.20 ExtendedGcd

Input: positive integers andb

Output: integers(g, u,v) such thay = ged(a,b) = ua + vb
1: (u,w) < (1,0)
2: (v,2) « (0,1)

3: while b # 0 do

4 (¢,7) < DivRem(a, b)
5 (a,b) « (b,7)

6: (u, w) «— (w,u — quw)
7 (v,2) « (z,v — qx)
8: return(a, u,v).

It may also be worthwhile to compute onlyin the general case, as the
cofactorv can be recovered from = (g — wa)/b, this division being exact
(seef1.4.5).

All known algorithms for subquadratic gcd rely on an extehdged
subroutine, which is called recursively, so we discuss thbgsadratic
extended gcd in the next section.

1.6.3 Half binary GCD, divide and conquer GCD

Designing a subquadratic integer gcd algorithm that is lotthematically
correct and efficient in practice is a challenging problem.

A first remark is that, starting from-bit inputs, there aré®(n) terms in the
remainder sequeneg = a,r; = b, ...,r;41 = r;_1 mod r;, ..., and the size
of r; decreases linearly with Thus, computing all the partial remaindets
leads to a quadratic cost, and a fast algorithm should ab@d t

However, the partial quotients = r;_; div r; are usually small; the main
idea is thus to compute them without computing the partialaieders. This
can be seen as a generalization of ErmubleDigitGed algorithm: instead of
considering a fixed base, adjust it so that the inputs have four “big words”.
The cofactor-matrix returned by th¢alfBezout subroutine will then reduce
the input size to aboutn/4. A second call with the remaining two most
significant “big words” of the new remainders will reduceithgize to half
the input size. See Exercise 1.31.

The same method applies in the LSB case, and is in fact siniplamrn
into a correct algorithm. In this case, the termsform abinary remainder
sequencewhich corresponds to the iteration of tBaaryDivide algorithm,

34 Integer arithmetic

with starting values, b. The integey; is thebinary quotientof « andb, andr
is thebinary remainder

Algorithm 1.21 BinaryDivide
Input: a,b € Zwithv(b) —v(a) =35 >0
Output: |¢| < 27 andr = a + ¢277b such that(b) < v(r)
b — 277
q «— —a/b' mod 27+!
if ¢ > 2/ thenq « q — 27!
returng,r = a + q2~7b.

This right-to-left division defines a right-to-left remaier sequence, = «,
a; = b, ..., wherea;1; = BinaryRemainder (a;_1,a;), andv(a;+1) <
v(a;). It can be shown that this sequence eventually reachgs= 0 for some
indexi. Assumingv(a) = 0, thenged(a, b) is the odd part ofi;. Indeed, in
Algorithm BinaryDivide, if some odd prime divides botlhhandb, it certainly
divides2~7b, which is an integer, and thus it dividest ¢2~7b. Conversely, if
some odd prime divides bothandr, it divides als®2~7b, and thus it divides
a = r—q277b; this shows that no spurious factor appears, unlike in sdives o
gcd algorithms.

EXAMPLE: leta = a9 = 935 andb = a; = 714, sov(b) = v(a) + 1.

Algorithm BinaryDivide computes’ = 357, ¢ = 1, andas = a + ¢277b =

1292. The next step givess = 1360, thenay = 1632, a5 = 2176,

ag = 0. Since2176 = 27 - 17, we conclude that the gcd 685 and 714 is

17. Note that the binary remainder sequence might containtivegarms and
terms larger tham, b. For example, starting from = 19 andb = 2, we get
19,2,20, —8, 16, 0.

An asymptotically fast GCD algorithm with complexiy(M (n) logn) can
be constructed with AlgorithralalfBinaryGced .

Theorem 1.9 Givena,b € Z with v(a) = 0 andrv(b) > 0, and an integer
k > 0, AlgorithmHalfBinaryGed returns an integef < j < k and a matrix
R such that, ifc = 272 (Rl,la + Rl,gb) andd = 2_2j(R271a + R2,2b):

1. candd are integers with/(¢) = 0 andv(d) > 0;
2. ¢* = 2icandd* = 27d are two consecutive terms from the binary remain-
der sequence of, b with v(c*) < k < v(d*).

Proof. We prove the theorem by induction énIf £ = 0, the algorithm re-
turns;j = 0 and the identity matrix, thus we have= a andd = b, and the

1.6 Greatest common divisor 35

Algorithm 1.22 HalfBinaryGced

Input: a,b € Z with 0 = v(a) < v(b), a non-negative integér

Output: an integerj and a2 x 2 matrix R satisfying Theorerfi 119
1: if v(b) > k then

1 0
return
u 0,(0 1)

cky — |_k;/2J

a1 — amod 22M1+1 b phmod 22k1H+1

: j1, R — HalfBinaryGed (aq, b1, k1)

cal 27 (Ri1a+ Ri2b), b — 221 (Rg1a + Raob)
: Jo — v(b')

2 if jo 4+ j1 > kthen

returnj;, R

10: ¢, « BinaryDivide (a’,b")

11 kg Kk — (jo + Jj1)

12: ay « b/ /270 mod 22k2+1 by «— /270 mod 22k2+1
13: j2, S « HalfBinaryGced (az, b, k2)

0 20
14: returnjy + jo + jo, S % X R.
q

N

© © N O U A W

2Jo

statement is true. Now suppoke> 0, and assume that the theorem is true up
tok — 1.

The first recursive call usds < k, sincek; = |k/2] < k. After ste D, by
induction,a’1 =22 (Rl,lal +R172b1) andb’l =922 (R271a1 —|—R272b1) are
integers withv(a}) = 0 < v(b}), and2’1a}, 2714 are two consecutive terms
from the binary remainder sequencewfb;. Lemma 7 of] says that the
guotients of the remainder sequence:df coincide with those ofi;, b; up to
271q’ and2/1b’. This proves tha2’ta’, 2711’ are two consecutive terms of the
remainder sequence afb. Sincea anda; differ by a multiple of22*1+1, o/
anda) differ by a multiple of221+1-2i1 > 2 sincej; < k; by induction. It
follows thatv(a’) = 0. Similarly, b’ andd] differ by a multiple of2, and thus
jo=v()>0.

The second recursive call usks < k, since by inductionj; > 0 and we
just showedj, > 0. It easily follows thatj; + jo + j2 > 0, and thusj > 0. If
we exit at stefpl9, we have= j; < k; < k. Otherwisej = j; + jo + jo =
k — ko + j2 < k by induction.

If jo 4 j1 > k, we havev(271b') = jo + j1 > k, we exit the algorithm, and
the statement holds. Now assume+ j; < k. We compute an extra term

36 Integer arithmetic

of the remainder sequence frarh) &', which, up to multiplication by’ , is an
extra term of the remainder sequencedf. Sincer = a’ + ¢277°b, we have

v _ 9o 0 270 a’ .
r 200 ¢ v

The new terms of the remainder sequenceéaiz® andr /27, adjusted so that
v(b'/27°) = 0. The same argument as above holds for the second recursive
call, which stops when the-valuation of the sequence starting fram, by
exceedss; this corresponds to Zxvaluation larger thany + ji + ko = k for

thea, b remainder sequence. 0

Given twon-bit integersa andb, andk = n/2, HalfBinaryGed yields two
consecutive elements, d* of their binary remainder sequence with bit-size
aboutn/2 (for their odd part).

EXAMPLE: leta = 1889826 700 059 andb = 421 872 857 844, with k£ = 20.
The first recursive call witly; = 1243931, by = 1372916, k; = 10 gives

j1 = 8andR = (oo) which corresponds ta’ = 11952871683

andd’ = 10027328112, with jo = 4. The binary division yields the new
termr = 8819331648, and we havesy, = 8, ays = 52775, by = 50468.
The second recursive call givgs= 8 and.S = (oy > which finally

i s ; 1444544 1086512 i
gives;j = 20 and the matnx(319084 1093711) which corresponds to the

remainder termsg = 2899749 - 27, rg = 992790 - 27. With the samex, b
values, but witht = 41, which corresponds to the bit-size of we get as
final values of the algorithm,5s = 3 - 24! andr,s = 0, which proves that
ged(a, b) = 3.

Let H(n) be the complexity oHalfBinaryGed for inputs ofn bits and
k = n/2; a; andb; have~n/2 bits, the coefficients oR have~n/4 bits, and
a’, ' have~3n/4 bits. The remainders,, b» have~n/2 bits, the coefficients
of S have~n/4 bits, and the final values d have~n/2 bits. The main costs
are the matrix—vector product at s{€p 6, and the final matratrix product.
We obtainH (n) ~ 2H(n/2) + 4M(n/4,n) + TM(n/4), assuming we use
Strassen’s algorithm to multiply twdx 2 matrices with7 scalar products, i.e.
H(n) ~ 2H(n/2) + 17M (n/4), assuming that we compute eakh(n/4,n)
product with a single FFT transform of widfin/4, which gives cost about
M(5n/8) ~ 0.625M (n) in the FFT range. Thud{ (n) = O(M (n)logn).

For the plain gcd, we callalfBinaryGced with k = n, and instead of com-
puting the final matrix product, we multiply—2/2S by (¢',r) — the compo-
nents have-n/2 bits — to obtain the finat, d values. The first recursive call
has a,,b; of size n with k; =~ n/2, and corresponds tdi(n); the

1.7 Base conversion 37

matrix R andd’, b’ haven /2 bits, andks ~ n /2, and thus the second recursive
call corresponds to a plain gcd of sizg¢2. The costG(n) satisfiesG(n) =
H(n)+G(n/2)+4M(n/2,n)+4M(n/2) ~ H(n)+G(n/2)+ 10M(n/2).
Thus,G(n) = O(M(n)logn).

An application of the half-gcg@er sein the MSB case is theational recon-
structionproblem. Assume we want to compute a rational, wherep andgq
are known to be bounded by some constaihtstead of computing with ratio-
nals, we may perform all computations modulo some integer c>. Hence,
we will end up withp/q = m mod n, and the problem is now to find the un-
known p and ¢ from the known integefm. To do this, we start an extended
ged fromm andn, and we stop as soon as the currerndu values — as in
ExtendedGcd— are smaller than: since we have = um + wvn, this gives
m = a/u mod n. This is exactly what is called a half-gcd; a subquadratic
version in the LSB case is given above.

1.7 Base conversion

Since computers usually work with binary numbers, and hupnafer decimal
representations, input/output base conversions are de&da typical com-
putation, there are only a few conversions, compared todte humber of
operations, so optimizing conversions is less importaa thptimizing other
aspects of the computation. However, when working with hugabers, naive
conversion algorithms may slow down the whole computation.

In this section, we consider that numbers are representedhaily in base
6 — usually a power of — and externally in basB — say a power of ten. When
both bases areommensurablé.e. both are powers of a common integer, such
asf = 8 and B = 16, conversions of:-digit numbers can be performed
in O(n) operations. We assume here tltaand B are not commensurable.
We might think that only one algorithm is needed, since irmd output are
symmetric by exchanging basgsind B. Unfortunately, this is not true, since
computations are done only in basé¢see Exercisg 1.87).

1.7.1 Quadratic algorithms

Algorithms Integerlnput and IntegerOutput, respectively, read and write
n-word integers, both with a complexity 6f(n?).

38 Integer arithmetic

Algorithm 1.23 Integerinput
Input: astringS = s,,,_1 ... 8150 of digits in baseB
Output: the valueA in baseg of the integer represented I8y
A—0
for ¢ from m — 1 downto 0 do
A« BA+ val(s;) > val(s;) is the value of; in bases

returnA.

Algorithm 1.24 IntegerOutput
Input: A = ngl a; 3" >0
Output: a stringS of characters, representingjin baseB
m <« 0
while A # 0 do
$m — char(Amod B) 1 s,,: character corresponding tbmod B
A+~ AdivB
m<«—m+1
returnS = s,,,_1...5150.

1.7.2 Subquadratic algorithms

Fast conversion routines are obtained using a “divide amdjwex” strategy.
Given two stringss andt, we lets || ¢ denote the concatenation oandt. For
integer input, if the given string decomposessas- Sy; || Si, whereS), has
k digits in baseB, then

Input(S, B) = Input(Sy;, B) B* 4 Input(S,, B),

whereInput(S, B) is the value obtained when reading the strisign the
external base3. Algorithm Fastintegerinput shows one way to implement
this: if the outputA hasn words, AlgorithmFastintegerinput has complexity
O(M (n)logn), more precisely~ M (n/4)1gn for n a power of two in the
FFT range (see Exercibe 1134).

For integer output, a similar algorithm can be designedac#pg multipli-
cations by divisions. Namely, it = A,;B* + Ay, then

Output(A, B) = Output(Ap;, B) || Output(Aje, B),

whereOutput(A, B) is the string resulting from writing the integerin the
external base3, and it is assumed th&utput(A,,, B) has exactlyk digits,
after possibly padding with leading zeros.

If the input A hasn words, AlgorithmFastintegerOutput has complexity

1.8 Exercises 39

Algorithm 1.25 Fastintegerinput
Input: astringS = s,,,_1 ... 8150 of digits in baseB
Output: the valueA of the integer represented ISy
£« [val(sg),val(s1),...,val(sm—1)]
(b, k) — (B, m) > Invariant:¢ hask elementd, ..., {51
while & > 1 do
if £k eventhen? «— MO 4+ by, 0y +bls, ... 0 o+ bfk-_ﬂ
elsel «— [(0 + 001,05+ bls, ... ,Ek._l}
(b, k) « (8, Tk/2])
return’g.

Algorithm 1.26 FastintegerOutput
Input: A =30""a;f’
Output: a stringsS of characters, representingin baseB
if A< Bthen
returnchar(A)
else
find k such thatB2*—2 < A < B2
(Q, R) + DivRem(A, B¥)
r « FastintegerOutput(R)
returnFastintegerOutput(Q) || 0%~1e2(") || .,

O(M (n)logn), more precisely~ D(n/4)1gn for n a power of two in the
FFT range, wherd(n) is the cost of dividing &n-word integer by am-
word integer. Depending on the cost ratio between multipiae and division,
integer output may thus be from two to five times slower thdaagar input;
see however Exerci§e 1]35.

1.8 Exercises

Exercise 1.1 Extend the Kronecker—Sohhage trick mentioned at the begin-
ning of 1.3 to negative coefficients, assuming the coefficientsreties range
[=p, p)-

Exercise 1.2 (Harvey[@]) For multiplying two polynomials of degree less
than n, with non-negative integer coefficients bounded above pbythe
Kronecker—Sctinhage trick performs one integer multiplication of sizewtb
2nlg p, assuminge is small compared tp. Show that it is possible to perform

40 Integer arithmetic

two integer multiplications of size lg p instead, and even four integer multi-
plications of sizgn/2) g p.

Exercise 1.3 Assume your processor provides an instrucfimaa (a, b, ¢, d)
returningh, ¢ such thatub + ¢ + d = hf3 + ¢, where0 < a,b,c,d,l,h < 3.
Rewrite AlgorithmBasecaseMultiplyusingfmaa .

Exercise 1.4 (Harvey, Khachatrianet al.[@]) For A = Z;L:_ol a;3 and
B =Y~ b3, prove the formula

n—11—1 n_1 1 _—
AB =" (ai+a;)(bi + b)) B + 2> aibif =D B aib;A.
i=1 j—=0 = = =

Deduce a new algorithm for schoolbook multiplication.

Exercise 1.5 (Hanrot) Prove that the numbék (n) of word-products (as de-
fined in the proof of Thm[_1]2) in Karatsuba's algorithm is rieTreasing,
providedn, = 2. Plot the graph of< (n)/n!# 3 with a logarithmic scale fon,
for 27 < n < 2% and find experimentally where the maximum appears.

Exercise 1.6 (Ryde)Assume the basecase multiply codfgn) = an? + bn,
and that Karatsuba’s algorithm codt§n) = 3K (n/2) 4 cn. Show that divid-
ing a by two increases the Karatsuba threshajdby a factor of two, and on
the contrary decreasirigandc decreases.

Exercise 1.7 (Maeder[lﬁ], Thomé [E]) Show that an auxiliary memory
of 2n + o(n) words is enough to implement Karatsuba'’s algorithm in-pjac
for ann-wordxn-word product. In the polynomial case, prove that an auxilia
space ofn coefficients is enough, in addition to the+ n coefficients of the
input polynomials, and th2n — 1 coefficients of the product. [You can use the
2n result words, but must not destroy ther n input words.]

Exercise 1.8 (Roch@]) If Exercise[1.Y was too easy for you, design a
Karatsuba-like algorithm using onty(log n) extra space (you are allowed to
read and write in then output words, but the +n input words are read-only).

Exercise 1.9 (Quercia, McLaughlin)Modify Algorithm KaratsubaMultiply
to use only~7n/2 additions/subtractions. [Hint: decompose eactCef C4
andCs into two parts.]

Exercise 1.10Design an in-place version d&aratsubaMultiply (see Exer-
cise[1.7) that accumulates the resultdn. . ., c,,_1, and returns a carry bit.

1.8 Exercises 41

Exercise 1.11 (Vuillemin) Design an algorithm to multiply,z2+a, x+4-ag by
b1z + b using4 multiplications. Can you extend it toGax 6 product using.6
multiplications?

Exercise 1.12 (Weimerskirch, Paar)Extend the Karatsuba trick to compute
ann x n product inn(n + 1)/2 multiplications. For which: does this win
over the classical Karatsuba algorithm?

Exercise 1.13 (Hanrot) In Algorithm OddEvenKaratsuba, if both m andn
are odd, we combine the larger patg and B, together, and the smaller parts
A, and B; together. Find a way to get instead

K(m,n) = K([m/2],[n/2]) + K([m/2], [n/2]) + K([m/2], [n/2]).

Exercise 1.14Prove that if five integer evaluation points are used for Teom
Cook3-way (f1.3:3), the division by (a multiple of) three can not be aeoid
Does this remain true if only four integer points are useatogr withoo?

Exercise 1.15 (Quercia, Harvey)In Toom-Cook3-way ({1.3.3), take as eval-
uation point2” instead of2, wherew is the number of bits per word (usually
w = 32 or 64). Which division is then needed? Similarly for the evaluatio
point2%/2,

Exercise 1.16 For an integek > 2 and multiplication of two numbers of size
kn andn, show that the trivial strategy which perforrasnultiplications, each
n x n, is not the best possible in the FFT range.

Exercise 1.17 (Karatsuba, Zuras{@]) Assuming the multiplication has
superlinear cost, show that the speedup of squaring witheceégo multipli-
cation can not significantly exce@d

Exercise 1.18 (Thong, Quercia) Consider two setsA = {a,b,c,...} and
U ={u,v,w,...},and a setX = {z,y,z,...} of sums of products of el-
ements ofA and U (assumed to be in some field). We can ask “what is
the least number of multiplies required to compute all eletm®f X?”. In
general, this is a difficult problem, related to the probleha@anmputing tensor
rank, which is NP-complete (see for examplésthd |LT1|9] and the book by
Blrgisseret al. [@]). Special cases include integer/polynomial multation,
the middle product, and matrix multiplication (for matisoef fixed size). As a
specific example, can we compute= au + cw, y = av+bw, z = bu+ cvin
fewer than six multiplies? Similarly for = au—cw, y = av—bw, z = bu—cuv.

Exercise 1.191In Algorithm BasecaseDivReni{I.4.1), prove thag* < 3-+1.
Can this bound be reached? In the case> 3, prove that the while-loop at

42 Integer arithmetic

stepdBEB is executed at most once. Prove that the same bol8sdboda’s
algorithm, i.e. thatd > 0 after stefy B of Algorithn8vobodaDivision(§1.4.2).

Exercise 1.20 (Granlund, Mdller) In Algorithm BasecaseDivRemestimate
the probability thatd < 0 is true at stepl6, assuming the remaindeirom the
division of a,, 1 j 8 + an4j—1 by b,—1 is uniformly distributed in0, b, — 1],
A mod 3"+~ is uniformly distributed irf0, 377~ — 1], and B mod 3" !
is uniformly distributed irff0, 5"~ —1]. Then replace the computationgfby
a division of the three most significant words 4ty the two most significant
words of B. Prove the algorithm is still correct. What is the maximal toem
of corrections, and the probability thdt< 0?

Exercise 1.21 (Montgomer;{lﬂ]) LetO < b < B,and0 < ay,...,ap < f.
Prove thati, (3* mod b) + - - - + a1 (8 mod b) + ay < 32, providedb < 3/3.
Use this fact to design an efficient algorithm dividiAg= a,,—1 3" '+ - -+ag
by 0. Does the algorithm extend to division by the least significhgits?

Exercise 1.221n Algorithm RecursiveDivRem find inputs that requirg, 2, 3
or 4 corrections in stefpl8. [Hint: considgr= 2.] Prove that whem = m and
A < ™(B + 1), at most two corrections occur.

Exercise 1.23Find the complexity of AlgorithmRecursiveDivRemin the
FFT range.

Exercise 1.24Consider the division ofl of kn words by B of n words, with
integerk > 3, and the alternate strategy that consists of extendingittsod
with zeros so that it has half the size of the dividend. Shoat this is al-
ways slower than AlgorithrnbalancedDivision(assuming that division has
superlinear cost).

Exercise 1.25An important special base of division is when the divisorfis o
the formb*. For example, this is useful for an integer output routifieq).
Can a fast algorithm be designed for this case?

Exercise 1.26 (SedoglavicDoes the Kronecker—Sohhage trick to reduce
polynomial multiplication to integer multiplicatiorfT.3) also work — in an
efficient way — for division? Assume that you want to dividesgee2n poly-
nomial A(x) by a monic degree-polynomial B(z), both polynomials having
integer coefficients bounded by

Exercise 1.27Design an algorithm that performs an exact division dhéebit
integer by &n-bit integer, with a quotient din bits, using the idea mentioned
in the last paragraph &fL.Z.5. Prove that your algorithm is correct.

1.8 Exercises 43

Exercise 1.28Improve the initial speed of convergence of Algoriti8grtint
(4.53) by using a better starting approximation at Etep Lir épproximation
should be in the interval /m]|, [2/m]].

Exercise 1.29 (Luschny)Devise a fast algorithm for computing the binomial

coefficient
n n!
Cln, k) = (k:) ~ Kl — k)

forintegersn, k, 0 < k < n. The algorithm should use exact integer arithmetic
and compute the exact answer.

Exercise 1.30 (Shoup)Show that in AlgorithmExtendedGcd if a > b > 0,
andg = ged(a, b), then the cofacton satisfies—b/(2g) < u < b/(2g).

Exercise 1.31(a) Devise a subquadratic GCD algorithalfGed along the
lines outlined in the first three paragraphgfdf6.3 (most-significant bits first).
The input is two integere > b > 0. The output is & x 2 matrix R and
integersd’, b’ such thafa’ v']* = R[a b]'. If the inputs have size bits, then the
elements ofk should have at most/2+O(1) bits, and the outputs , b’ should
have at mos8n/4 + O(1) bits. (b) Construct a plain GCD algorithm which
callsHalfGced until the arguments are small enough to call a naive algorith
(c) Compare this approach with the useH#lfBinaryGed in §1.6.3.

Exercise 1.32 (Galbraith, Sclinhage, Steh¢) The Jacobi symbdk|b) of an
integera and a positive odd integérsatisfies(a|b) = (a mod b|b), the law
of quadratic reciprocitya|b)(bla) = (—1)(@=D(=1/1 for ¢ odd and posi-
tive, together with(—1|b) = (—1)¢=Y/2 and (2/p) = (—1)**~D/8. This
looks very much like the gcd recurrenggid(a,b) = ged(a mod b,b) and
ged(a,b) = ged(b, a). Design anO (M (n)logn) algorithm to compute the
Jacobi symbol of twar-bit integers.

Exercise 1.33Show thatB and/3 are commensurable, in the sense defined in

g1.7, iff In(B)/In(8) € Q.

Exercise 1.34Find a formulaZ’(n) for the asymptotic complexity of Algo-
rithm Fastintegerinput whenn = 2* (§1.7.2). Show that, for general the
formula is within a factor of two of '(n). [Hint: consider the binary expansion
of n.]

Exercise 1.35Show that the integer output routine can be made as fast fasym
totically) as the integer input routinBastintegerinput. Do timing experi-
ments with your favorite multiple-precision software. fitliuse D. Bernstein’s
scaled remainder treﬂZl] and the middle product.]

44 Integer arithmetic

Exercise 1.361f the internal bas¢ and the external bage share a nontrivial
common divisor — as in the cage = 2¢ and B = 10 — show how we can
exploit this to speed up the subquadratic input and outpuitnes.

Exercise 1.37 Assume you are given twe-digit integers in base ten, but you
have implemented fast arithmetic only in base two. Can yolliphuthe inte-
gers in timeO(M (n))?

1.9 Notes and references

“On-line” (as opposed to “off-line”) algorithms are coneréd in many books
and papers, see for example the book by Borodin and EI-Y@. [
“Relaxed” algorithms were introduced by van der Hoeven.reterences and
a discussion of the differences between “lazy”, “zealoasy “relaxed” algo-
rithms, see4].

An example of an implementation with “guard bits” to avoiceoilow prob-
lems in integer additiondL.2) is the block-wise modular arithmetic of Lenstra
and Dixon on the MasPar [87]. They uséd= 23° with 32-bit words.

The observation that polynomial multiplication reducesirtteger multi-
plication is due to both Kronecker and Scthage, which explains the name
“Kronecker—Schnhage trick”. More precisely, Kroneckéi_[_i46, pp. 9414942
(also ,§4]) reduced the irreducibility test for factorization of itivariate
polynomials to the univariate case, and SlmhageG] reduced the univari-
ate case to the integer case. The Kroneckeréfithge trick is improved in
Harve] (see Exercige1.2), and some nice applicatibitsare given in
Steel].

Karatsuba'’s algorithm was first published36]. Verttdiis known about
its averagecomplexity. What is clear is that no simple asymptotic eqeiva
can be obtained, since the rafign) /n® does not converge (see Exerdisd 1.5).

Andrei Toom Iﬂﬂ discovered the class of Toom—Cook algomni, and they
were discussed by Stephen Cook in his th&ls [76, pp. 51A%AEry good de-
scription of these algorithms can be found in the book by Ga#irand Pomer-
ance [[_—8_h§9.5.1]. In particular, it describes how to generate thewatadn and
interpolation formulee symbolically. Zura@?ﬁ] consiléne4-way and5-
way variants, together with squaring. Bodrato and Zar@] gBow that the
Toom—-Cook3-way interpolation scheme @fL.3.3 is close to optimal for the
points 0,1, —1, 2, oo; they also exhibit efficientt-way and5-way schemes.
Bodrato and Zanoni also introduced the To@ri-and Toom3.5 notations for
what we call Toom(3, 2) and Toom¢4, 3), these algorithms being useful for

1.9 Notes and references 45

unbalanced multiplication using a different number of pecThey noticed
that Toom({4, 2) only differs from Toom3-way in the evaluation phase, thus
most of the implementation can be shared.

The Sclibnhage—Strassen algorithm first appearem [199], ancsisrithed
in §2.3.3. Algorithms using floating-point complex numbers diszussed in
Knuth's classicm2§4.3.3.0]. See als§3.3.1.

The odd-even scheme is described in Hanrot and Zimmen@]u, [@nd
was independently discovered by Andreas Enge. The asyneragtraring for-
mula given ind1.3.6 was invented by Chung and Hasan (see their p@er [66]
for other asymmetric formulae). Exerclsell.4 was suggestédbvid Harvey,
who independently discovered the algorithm of Khachateiaal. [@].

See Lekvre] for a comparison of different algorithms for thelgem
of multiplication by an integer constant.

Svoboda'’s algorithm was introduced @211]. The exactsion algorithm
starting from least significant bits is due to Jebel@[liﬂ@belean and
Krandick invented the “bidirectional” algorithnm44]. €hKarp—Markstein
trick to speed up Newton'’s iteration (or Hensel lifting oyeadic numbers)
is described inl[137]. The “recursive division” §L.4.3 is from Burnikel and
Ziegler [61], although earlier but not-so-detailed ideas be found in Jebe-
lean], and even earlier in Moenck and Bor0166 . Teénition of
Hensel's division used here is due to Shand and Vuille [2@ho also
point out the duality with Euclidean division.

Algorithm SqrtRem (§1.5.3) was first described in Zimmerma34], and
proved correct in Bertogt al. [29]. Algorithm Sqrtint is described in Cohen
]; its generalization téth roots (AlgorithmRootint) is due to Keith Briggs.
The detection of exact powers is discussed in Bernsteirstt@rand Pila [23]
and earlier in Bernsteirﬁh?] and Cohéﬂ[??»]. It is necesdaryexample, in
the AKS primality test of Agrawal, Kayal, and Saerb [2].

The classical (quadratic) Euclidean algorithm has beesidered by many
authors —a good reference is KnLIIE[IMZ]. The Gauss—Kuzheiorer gives
the distribution of quotients in the regular continued fiat of almost all real
numbers, and hence is a good guide to the distribution ofiepuistin the Eu-
clidean algorithm for large, random inputs. Lehmer’s araialgorithm is de-
scribed in |LT§|4]. The binary gcd is almost as old as the atat&uclidean
algorithm — Knuth @2] has traced it back to a first-centuly &hinese text
Chiu Chang Suan Sh(see also Mikami|m5]). It was rediscovered several
times in the 20th century, and it is usually attributed toirS@]. The bi-
nary gcd has been analysed by Brent @ 50], Kn|u1_h|[142],9\@], and

2 According to the Gauss—Kuz’'min theoreim [1139], the probgbif a quotienty € N* is
lg(1+1/q) —1g(1 +1/(g + 1)).

46 Integer arithmetic

Vallée Ell]. A parallel (systolic) version that runs@hn) time usingO(n)
processors was given by Brent and Ku@ 53].
The double-digit gcd is due to Jebeleﬁlﬂ]. Thary gcd reduction is
due to Sorenso 5], and was improved and implemented it GIR by
Weber. Weber also invented AlgorithReducedRatMod [@], inspired by

previous work of Wang.

The first subquadratic gcd algorithm was published by Kr@l, but his
complexity analysis was suboptimal — he g&ve: log® nloglog n). The cor-
rect complexityO (n log® n loglog n) was given by Sohnhageﬂéﬂ; for this
reason the algorithm is sometimes called the Knuth&8khge algorithm.

A description for the polynomial case can be found in Aho, étoft, and
UIImag], and a detailed (but incorrect) description fbe tinteger case in
Yap]. The subquadratic binary gcd givendih6.3 is due to Stekland
Zimmermann@S]. Ndller @] compares various subquadratic algorithms,
and gives a nice algorithm without “repair steps”.

Several authors mention & n log” n log logn) algorithm for the compu-
tation of the Jacobi symbol: e.g. Eikenberry and Sore@}e{ﬁd Shallit and
SorensonO]. The earliest reference that we know is ardap8ach |[_$],
which gives the basic idea (due to Gauss [101, p. 509]). Betaé given in
the book by Bach and ShaIIE|[9, Solution of Exercise 5.52)¢eve the algo-
rithm is said to be “folklore”, with the ideas going back toddanann]
and Gauss. The existence of such an algorithm is mention&ghiinhage’s
book @@7.2.3], but without details. See also Brent and Zimmerm [
and ExercisE 1.32.

2
Modular arithmetic and the FFT

In this chapter our main topic is modular arithmetic, i.e.who
to compute efficiently modulo a given integat. In most appli-
cations, the modulug/ is fixed, and special-purpose algorithms
benefit from some precomputations, depending onlyNanto
speed up arithmetic moduly.

There is an overlap between Chagter 1 and this chapter. For ex
ample, integer division and modular multiplication aresely re-
lated. In Chaptdrll we present algorithms where no (or ordyw f
precomputations with respect to the moduNigre performed. In
this chapter, we consider algorithms which benefit from sareh
computations.

Unless explicitly stated, we consider that the modwusccupies

n words in the word-basg, i.e. 5"~ < N < g".

2.1 Representation

We consider in this section the different possible repriegiems of residues
moduloN. As in Chaptel1l, we consider mainly dense representations.

2.1.1 Classical representation

The classical representation stores a residue (clessan integed < a < N.
Residues are thus always fully reduced, i.ecamonicalform.

Another non-redundant form consists in choosing a symmetpresenta-
tion, say—N/2 < a < N/2. This form might save some reductions in addi-
tions or subtractions (sé¢.2). Negative numbers might be stored either with
a separate sign (sign-magnitude representation) or wittos-complement
representation.

48 Modular arithmetic and the FFT

Since N takesn words in base3, an alternativeedundantrepresentation
choosed) < a < 8" to represent a residue class. If the underlying arithmetic
is word-based, this will yield no slowdown compared to thaaracal form.

An advantage of this representation is that, when addingrésmlues, it suf-
fices to compare their sum & in order to decide whether the sum has to
be reduced, and the result of this comparison is simply giwethe carry bit

of the addition (see Algorithm 1.IhtegerAddition), instead of by comparing

the sum withN. However, in the case that the sum has to be reduced, one or
more further comparisons are needed.

2.1.2 Montgomery’s form

Montgomery'’s form is another representation widely useénvkeveral mod-
ular operations have to be performed modulo the same int¥g@dditions,
subtractions, modular multiplications). It implies a sheakrhead to convert —
if needed — from the classical representation to Montgoisanyd vice-versa,
but this overhead is often more than compensated by the gpedxdained in
the modular multiplication.

The main idea is to represent a residuédy o’ = aR mod N, where
R = ", and N takesn words in bases. Thus Montgomery is not concerned
with the physicalrepresentation of a residue class, but with tireaningas-
sociated to a given physical representation. (As a conseguehe different
choices mentioned above for the physical representatmalapossible.) Ad-
dition and subtraction are unchanged, but (modular) nlidépon translates
to a different, much simpler, algorithMontgomeryMul (seef2.4.2).

In most applications using Montgomery’s form, all inpute &rst converted
to Montgomery’s form, using’ = aR mod N, then all computations are per-
formed in Montgomery'’s form, and finally all outputs are certed back — if
needed — to the classical form, using= a’/R mod N. We need to assume
that(R, N) = 1, or equivalently that3, N) = 1, to ensure the existence of
1/R mod N. This is not usually a problem becauseés a power of two and
N can be assumed to be odd.

2.1.3 Residue number systems

In a residue number systefiRNS), a residue: is represented by a list of
residues:; moduloN;, where the moduliV; are coprime and their product is
N. The integers; can be efficiently computed fromusing a remainder tree,
and the unique integér< a < N = N1 N, - - - is computed from the; by an

2.1 Representation 49

explicit Chinese remainder theorefZ(1). The residue number system is inter-
esting since addition and multiplication can be perfornregarallel on each
small residuez;. This representation requires tht factors into convenient
moduli N, N, ..., which is not always the case (see howe{&8). Conver-
sion to/from the RNS representation coS\/ (n) log n), see§2. 4.

2.1.4 MSB vs LSB algorithms

Many classical (most significant bits first or MSB) algorithinave ap-adic
(least significant bits first or LSB) equivalent form. Thusesal algorithms in
this chapter are just LSB-variants of algorithms discusae@haptef]l — see
Table[Z1 below.

classical (MSB) p-adic (LSB)
Euclidean division Hensel division, Montgomery reduction
Svoboda’s algorithm Montgomery—Svoboda
Euclidean gcd binary gcd
Newton'’s method Hensel lifting

Table 2.1 Equivalence between LSB and MSB algorithms.

2.1.5 Link with polynomials

As in ChaptefL, a strong link exists between modular aritievend arith-
metic on polynomials. One way of implementing finite fiellswith ¢ = p™
elements is to work with polynomials i, [x], which are reduced modulo a
monic irreducible polynomiaf (z) € F,[z] of degreen. In this case, modular
reduction happens both at the coefficient levelKj) and at the polynomial
level (modulof (x)).

Some algorithms work in the rin@Z./NZ)|x], whereN is a composite in-
teger. An important case is the Stthage—Strassen multiplication algorithm,
whereN has the forn2¢ + 1.

In both domainsF,[z] and (Z/NZ)[z], the Kronecker-Sdnhage trick
(d1.3) can be applied efficiently. Since the coefficients amkmto be bounded,
by p and N respectively, and thus have a fixed size, the segmentatiguites
efficient. If polynomials have degreé and coefficients are bounded by,
the product coefficients are boundeddy?, and we havé) (M (dlog(Nd)))
operations, instead @ (M (d)M (log N)) with the classical approach. Also,
the implementation is simpler, because we only have to imptd fast

50 Modular arithmetic and the FFT

arithmetic for large integers instead of fast arithmetibaih the polynomial
level and the coefficient level (see also Exercisek 1.2 af)d 2.

2.2 Modular addition and subtraction

The addition of two residues in classical representatiam floa done as in
Algorithm ModularAdd .

Algorithm 2.1 ModularAdd
Input: residues:;, b with0 < a,b < N
Output: ¢=a+bmod N
c—a+b
if ¢ > N then
c«—c— N.

Assuming that: andb are uniformly distributed irZ N [0, N — 1], the sub-
tractionc <+ ¢ — N is performed with probabilitf1 — 1/N)/2. If we use
instead a symmetric representation[#N/2, N/2), the probability that we
need to add or subtradf drops tol /4 + O(1/N?) at the cost of an additional
test. This extra test might be expensive for smaH- say one or two words —
but should be relatively cheap ¥ is large enough, say at least ten words.

2.3 The Fourier transform

In this section, we introduce the discrete Fourier tramsf(@FT). An impor-
tant application of the DFT is in computing convolutions tha Convolution
Theorem In general, the convolution of two vectors can be computgEdgu
three DFTs (for details se€2.9). Here we show how to compute the DFT ef-
ficiently (via thefast Fourier transformor FFT), and show how it can be used
to multiply two n-bit integers in timeO(nlognloglogn) (the Scldnhage—
Strassen algorithm, s¢2.3.3).

2.3.1 Theoretical setting

Let R be aring,K > 2 an integer, andv a principal K'th root of unity in
R, ie. suchthat® = 1andy ['w = 0for 1 < i < K. TheFourier
transform(or forward (Fourier) transform of a vectora = [ag, a1, . .., ax 1]

2.3 The Fourier transform 51

of K elements fronR is the vectod = [ap, a1, . .., ax—1] such that
K—-1
a; = Z wa;. (2.1)
j=0

If we transform the vectoa twice, we get back to the initial vector, apart
from a multiplicative factorx” and a permutation of the elements of the vector.
Indeed, for0 <i < K

K1 K-1 K-1 K1 K—1
a; = E wa g W' g wWhay = g ap g Wit
J=0 j=0 (=0 (=0 j=0

LetT = wtf.If i+¢ # 0 mod K, i.e. ifi+¢is not0 or K, the sumz LT
vanishes since is principal. Fori + ¢ € {0, K'}, we haver = 1 and the sum
equalsK. It follows that

=K Z ayp = —4) mod K-
z+2€{0 K}
Thus, we have = Klag, ax—1,aK—2,...,a02,a01].

If we transform the vectoa twice, but uses—! instead ofv for the second
transform (which is then calledtzckward transforry) we get

K—1 K—1 K-1 K—1 K-1
a; = E wVa; = E w™ Y E wiay = E ap E (£=2)j
§=0 §=0 =0 §=0

The sumz =0
Thus, we havei = Ka,. Apart from the multiplicative factok’, the backward
transform is the inverse of the forward transform, as mightekpected from
the names.

' (=93 vanishes unlesé = i, in which case it equals’.

2.3.2 The fast Fourier transform

If evaluated naively, Eqn[{2.1) requiré¥ K2) operations to compute the
Fourier transform of a vector ok elements. Thdast Fourier transformor
FFT is an efficient way to evaluate Eqh.(2.1) using oflyK log K) oper-
ations. From now on we assume tHdtis a power of two, since this is the
most common case and simplifies the description of the FFTY&8& for the
general case).

52 Modular arithmetic and the FFT

Let us illustrate the FFT fof{ = 8. Sincew® = 1, we have reduced the
exponents modul8 in the following. We want to compute

ap = ap +ay +az +az +aq +as + as + ar,

a1 = ag +way + w2a2 + w3a3 + w4a4 + w5a5 + w6a6 + w7a7,

as = ag + w2a1 + w4a2 + wﬁag + a4 + w2a5 + w4a6 + w6a7,

a3 = ag + w3a1 + w6a2 + was + w4a4 + w7a5 + w2a6 + w5a7,

ay = ag + w4a1 +as + w4a3 + a4 + w4a5 + ag + w4a7,

as = ag + w5a1 + w2a2 + w7a3 + w4a4 “+ was + w6a6 + w3a7,

ag = ag + w6a1 + w4a2 + w2a3 + a4 + w6a5 + w4a6 + w2a7,

ay = ag + w7a1 + w6a2 + w5a3 + w4a4 + w3a5 + w2a6 + wary.

We see that we can share some computations. For exampleyrthe,st- a4
appears in four places: iy, a2, @4, andag. Let us definezg 4 = ag + a4,
a1,5 = a1 + as, aze = a2 + ag, a3,y = a3z + ar, a4 0 = ag + wiay, as1 =

ay +wlas, aga = az +wlag, ar 3 = az +wa;. Then we have, using the fact
thatw® =1

~ ~ 2 3
ap = ao,4 +ai,5 + aze + as,7, ay = a4,0 +was;1 +was2 +w’ar s,
~ 2 4 6 ~ 3 6

a2 = o4 +wars +waze +w asy, a3 =aso+w’as1 +w asz2+ wars,
~ 4 4 ~ 5 2 7

a4 = apq +w-ais +aze +w-asz, a5 = a4,0 +w’as;1 +was2 +w'ars,

7

~ 6 4 2 ~ 6 5
ag = ap4 +w ais +waze t+w-asz, ar =a40+was1+w as2+w ars.

Now the surmug 4 + a2 ¢ appears at two different places. L@ty 26 = ag4 +
4 4
2,6, 01,5,3,7 = @15+ 0a37,02,6,04 = 00,4 +W A26,03,71,5 = 15 +wW asr,
2 2 6
a4,0,6,2 = Q4,0 + W7a62, @5,1,7,3 = 5,1 + W7A73, G46,2,4,0 = Q4,0 + W 06,2,
ar.3,51 = G5,1 + w6a7,3. Then we have

ay = ap426+ 01537, a1 = Q40,62+ wass,

ay = age04+ w2a3,7,1,57 as = ag240 + w3a7,3,5,17
Ay = apa26+ w4a1,5,3,77 s = G40,6,2+ w5a5,1,7,37
g = aseo04+wlasris, Gr = as240+wiarssi.

In summary, after a first stage where we have computed ei¢grtniediary
variablesa 4 t0 a7 3, and a second stage with eight extra intermediary vari-
ablesug 42,6 t0az 3 5,1, we are able to compute the transformed vector in eight
extra steps. The total number of steps is ttis= 81g 8, where each step has
the forma «— b+ wic.

If we take a closer look, we can group operations in paira’), which have
the forma = b + w’c anda’ = b + w’**c. For example, in the first stage we
havea; 5 = a; + a5 andas; = a; + w'as; in the second stage we have

A4,0,6,2 = G4,0 +w2a6,2 anda6,274,0 = a4,0 —&—wﬁaﬁ’g. Sincew? = —1, this can

2.3 The Fourier transform 53

also be writter(a, a’) = (b + w’c, b — w’c), wherew’ ¢ needs to be computed
only once. A pair of two such operations is calleduterflyoperation.

The FFT can be performeih place Indeed, the result of the butterfly
betweeruy anday, i.€ (ao 4, a4,0) = (ao+a4, ag—aq), can overwritgao, as),
since the values af, anday are no longer needed.

Algorithm ForwardFFT is a recursive and in-place implementation of the
forward FFT. It uses an auxiliary functidsitrev(j, K'), which returns théit-
reversalof the integerj, considered as an integer lef K' bits. For example,
bitrev(j, 8) gives0,4,2,6,1,5,3,7forj =0,...,7.

Algorithm 2.2 ForwardFFT

Input: vectora = [ag, a1, ...,ax_1], w principal K'th root of unity, K’ = 2*
Output: in-place transformed vectar, bit-reversed

1: if K =2then

2 [ap, a1] < [ap + a1, a0 — a1]

3: else

4: [ao, ag, ..., (J,K,Q] «— ForwardFFT ([a07 ag, ..., (J,K,Q], w27 K/2)

5: [(Ll, as, ..., (LKfl] «— ForwardFFT ([ah asg, ..., aK,l], w27 K/2)

6: for j from 0to K/2 —1do

7 [az;, azj1] — [az; + wbitrev(j,K/2)a2j+17a2j _ wbitrev(j,K/Z)a2j+l]_
Theorem 2.1 Given an input vectora = |[ag,aq,...,ax—1], Algorithm

ForwardFFT replaces it by its Fourier transform, in bit-reverse ordén,
O(K log K) operations in the ringR.

Proof. We prove the statement by induction &1 = 2*. For K = 2, the
Fourier transform ofag, a1] is [ap + a1, ao + wa1], and the bit-reverse order
coincides with the normal order; since= —1, the statement follows. Now
assume the statement is true f@y2. Let 0 < j < K/2, and writej’
bitrev(j, K/2). Letb = [bo, ..., bk /2_1] be the vector obtained at step 4, and
¢ = [co, .-, ¢k /2—1] b€ the vector obtained at sfelp 5. By induction

K/2—-1 K/2—-1
2
bj = E w? bag,, ¢ § W agey .
=0

Sinceb; is stored atio; andc; atag;11, we compute at stédg 7

K/2—1 K/2—1

-/ 2i’p ./
as; = bj+w’ ¢; = E w Fagpt+w? g W't Qopy1 = E uﬂ ag = ajr.
— (=0

54 Modular arithmetic and the FFT

Similarly, since—w?’ = w&/2+5'

K/2—1 K/2—1

250 K/2+j' 250
asji1 = wi b agy + Wi/ Z w™ Caget1

£=0 £=0

K—-1
K/2+5)¢ o~

= w Py =Gy
=0
where we used the fact that?’’ = w2’ +5/2) Sincebitrev(2j, K) =

bitrev(j, K/2) andbitrev(2j + 1, K') = K /2 + bitrev(j, K/2), the first part
of the theorem follows. The complexity bound follows fronetfact that the
costT'(K) satisfies the recurren@ K) < 2T'(K/2) + O(K). 0

Algorithm 2.3 BackwardFFT

Input: vectora bit-reversedyw principal K'th root of unity, K’ = 2*
Output: in-place transformed vectar, normal order

1: if K = 2then

2: [ao,al] — [(IO +ay, a9 — al]

3: else

4: [a(), ~~~7aK/2—1] — BaCkW&rdFFT([a(), . aK/Q_l],w27 K/2)

5: lak /2, ax—1] < BackwardFFT ([ak /2, v ag_1],w? K/2)

6. for jfrom 0to K/2 —1do pw I =Wk
7 laj, a/a4j] — la; + w‘jaK/2+j,aj - w‘jaK/2+j].

Theorem 2.2 Given an input vectoa = [ag, ak/2, . . .,ax 1] in bit-reverse
order, AlgorithmBackwardFFT replaces it by its backward Fourier trans-
form, in normal order, iND(K log K') operations inR.

Proof. The complexity bound follows as in the proof of TheorEm] 2.ar F
the correctness result, we again use inductionkor= 2*. For K = 2, the
backward Fourier transfor@ = [ag + a1, a0 + w ™ 'a;] is exactly what the
algorithm returns, since = w=! = —1 in that case. Assume noW > 4,

a power of two. The first half, saly, of the vectora corresponds to the bit-
reversed vector of the even indices, sinderev(2j, K) = bitrev(j, K/2).
Similarly, the second half, say, corresponds to the bit-reversed vector of the
odd indices, sincbitrev(2j + 1, K) = K/2 + bitrev(j, K/2). Thus, we can
apply the theorem by induction te andc. It follows thatb is the backward
transform of lengthK’/2 with w? for the even indices (in normal order), and

2.3 The Fourier transform 55

similarly c is the backward transform of lengfi/2 for the odd indices

K/2—1 K/2—1
—2j5¢
b; = E w T agy, ¢ E w™ M ag .
=0

Sinceb; is stored ina; andc; in ag /24 ;, we have

K/2—1 K/2—1
aj =bj+wlc; = § w2 oy + w I E w” Ja2[+1

K-
g w_]eag =aj,
=0

and similarly, using-w =7 = w=5/277 andw =% = w—2(K/2+J)

K/2-1 K/2-1
—2j¢ —K/2—j —2j¢
aK)o4j = E w2 gy 4+ K270 E w a1
=0 =0
K-1
_ —(K/2+45)¢,, _
_§ W (K/2+7) ar = axc /oy j-
£=0

2.3.3 The Sclinhage-Strassen algorithm

We now describe the Sohhage—Strassef(n lognloglogn) algorithm to
multiply two integers of: bits. The heart of the algorithm is a routine to mul-
tiply two integers modul@”™ + 1.

Theorem 2.3 Given0 < A, B < 2" + 1, Algorithm FFTMulMod correctly
returnsA - B mod (2" + 1), and it cost)(n log n log log n) bit-operations if

K = 6(y/n).

Proof. The proof is by induction on, because at stép 8 we call FFTMulMod
recursively, unless’ is sufficiently small that a simpler algorithm (classical,
Karatsuba or Toom—Cook) can be used. There is no difficulistanting the
induction.

With aj,b the values at stefi§ 1 aﬂ 2, we have= 37" a;2/M and

B = Z o b;27M; thus,A - B = ZJ o' ¢;27M mod (2" + 1) with

K-1 K-1
Cj = Z agbpy, — Z apbp,. (22)
£,m=0 £,m=0

L4m=j Ldm=K+j

56 Modular arithmetic and the FFT

Algorithm 2.4 FFTMulMod
Input: 0 < A, B < 2" + 1, an integerk’ = 2* such that = MK
Output: C' = A- B mod (2" +1)
1: decompose A = Z Cla;2M with 0 <a; <2M, except that
0<ag_q<2M

2: decompose3 similarly

3: choosen’ > 2n/K + k, n’ multiple of K; let = 27'/K o = 62

4; for jfrom 0to K — 1 do

5: (aj,bj) — (#7a;,07b;) mod (2" + 1)

6: a «— ForwardFFT (a,w, K), b « ForwardFFT (b,w, K)

7: for jfrom 0to K — 1 do > call FFTMulMod

8 ¢« ajbjmod (2" +1) > recursively ifn’ is large
9: ¢ « BackwardFFT(c,w, K)

10: for j from 0to K — 1 do

11 ¢j — ¢j/(K67) mod (2% +1)
12 if¢; > (j + 1)22M then

13: cj—cj— (2" +1)

[N
~

O = Z 0 b e;2iM,

We have(j + 1 — K)22M < ¢; < (j + 1)22M, since the first sum contains
j + 1 terms, the second suid — (j + 1) terms, and at least one of andb,,,
is less thar2™ in the first sum.

Let o/ be the value ofu; after stef b = 67a; mod (2" + 1), and
similarly for b;. Using Theoreni2]1, after stép 6 we hawgi,ev(jx) =
S whal, mod (2 + 1), and similarly forb. Thus at stefl8

Chitrev(j,K) = (Z wéja) (Z w™Ib])

After sted®, using Theorem 2.2

K-1 K-1
¢ = w™ (Z weja[> (Z wmjb;n>

N

7=0 {=0 m=0
K-1 K-1
_ 2 : 1 2 : 1
=K agbm + K agbm.
£,m=0 £,m=0
fm=i L4m=K+i

The first sum equalé’ Y, _; acb,,; the second i#" 5", . aby,.

2.3 The Fourier transform 57

Sinced” = —1mod (2" + 1), after stefi Il we have

K—1 K-1
’
;= E agb,y, — E agb,, mod (2" +1).
£,m=0 £,m=0
L4+m=1i l4+m=K+1i

The correction at stdp 13 ensures thdtes in the correct interval, as given by
Eqn. [2.2).

For the complexity analysis, assume that = ©(y/n). Thus, we have
n’ = O(y/n). StepgIL anfl2 cosd(n); stepd also cost®(n) (counting the
cumulated cost for all values gf). Step[® cost®)(K log K) times the cost
of one butterfly operation mo@®" + 1), which is O(n’), thus a total of
O(Kn'log K) = O(nlogn). Step8, using the same algorithm recursively,
costs O(n'logn'loglogn’) per value ofj by the induction hypothesis,
giving a total of O(nlognloglogn). The backward FFT cost®(nlogn)
too, and the final steps coék(n), giving a total cost ofD(nlognloglogn).
The loglogn term is the depth of the recursion, each level reducintp

n' = O(y/n). .

EXAMPLE: to multiply two integers modul@2! %4857 + 1), we can takek =
210 = 1024, andn’ = 3072. We recursively comput&024 products modulo
(23072 4 1). Alternatively, we can take the smaller vallke = 512, with 512
recursive products modul@*%%® + 1).

REMARK 1: the “small” products at stép 8 (m@2*°™>+1) or mod(246%% + 1)

in our example) can be performed by the same algorithm appdieursively,
but at some point (determined by details of the implememit will be more
efficient to use a simpler algorithm, such as the classic&aratsuba algo-
rithm (seeJ1.3). In practice, the depth of recursion is a small constaspt-
cally 1 or 2. Thus, for practical purposes, thez logn term can be regarded
as a constant. For a theoretical way of avoiding likelog n term, see the
comments on &rer’s algorithm in§Z.9.

REMARK 2: if we replaced by 1 in Algorithm FFTMulMod , i.e. remove
stef®, replace st€plll by — ¢;/K mod (2" +1), and replace the condition
at ste IR by; > K -22 then we comput€’ = A- B mod (2" — 1) instead
of mod (2" + 1). This is useful in McLaughlin’s algorithnf2.4.3).

Algorithm FFTMulMod enables us to multiply two integers modys* +
1) in O(nlognloglogn) operations, for a suitableand a corresponding FFT
lengthK = 2*. Since we should hav& ~ /n and K must dividen, suitable
values ofn are the integers with the low-order half of their bits zetwre is
no shortage of such integers. To multiply two integers of asta bits, we
first choose a suitable bit size > 2n. We consider the integers as residues

58 Modular arithmetic and the FFT

modulo (2™ + 1), then AlgorithmFFTMulMod gives their integer product.
The resulting complexity i€ (n log n log log n), sincem = O(n). In practice,
thelog log n term can be regarded as a constant; theoretically, it caepbeaed
by an extremely slowly growing function (see Remar&bove).

In this book, we sometimes implicitly assume thabit integer multiplica-
tion costs the same as three FFTs of leriygthsince this is true if an FFT-based
algorithm is used for multiplication. The constant “threzin be reduced if
some of the FFTs can be precomputed and reused many timexgople if
some of the operands in the multiplications are fixed.

2.4 Modular multiplication

Modular multiplication means computing - B mod N, whereA and B are
residues moduldv. Of course, once the product= A- B has been computed,
it suffices to perform anodular reductionC' mod N, which itself reduces to
an integer division. The reader may ask why we did not covisrttpic in
g1.4. There are two reasons. First, the algorithms preséeiew benefit from
some precomputations involviny, and are thus specific to the case where
several reductions are performed with the same modulusnBiesome algo-
rithms avoid performing the full produet’ = A - B; one such example is
McLaughlin’s algorithm {2.4.3).

Algorithms with precomputations include Barrett’s algom (§2.4.1), which
computes an approximation to the inverse of the modulus,ttiading division
for multiplication; Montgomery’s algorithm, which corqgsnds to Hensel's
division with remainder only{1.4.8), and its subquadratic variant, which is
the LSB-variant of Barrett’s algorithm; and finally McLadits algorithm
(§2.4.3). The cost of the precomputations is not taken intowesg it is
assumed to be negligible if many modular reductions areopmed. How-
ever, we assume that the amount of precomputed data usetirmay; i.e.
O(log N), space.

As usual, we assume that the moduNidrasn words in base?, that A and
B have at most, words, and in some cases that they are fully reduced, i.e.
0<A B<N.

2.4.1 Barrett’s algorithm

Barrett’s algorithm is attractive when many divisions havebe made with
the same divisor; this is the case when we perform computatioodulo a
fixed integer. The idea is to precompute an approximatiorhéoiiverse of

2.4 Modular multiplication 59

the divisor. Thus, an approximation to the quotient is otdiwith just one
multiplication, and the corresponding remainder after@ed multiplication.
A small number of corrections suffice to convert the appr@tions into exact
values. For the sake of simplicity, we describe Barretigpdthm in base3,
wheres might be replaced by any integer, in particut&ror 5.

Algorithm 2.5 BarrettDivRem
Input: integersA, Bwith0 < A < 32,8/2< B < f3
Output: quotient) and remaindeR of A divided by B

. [« |3?/B] > precomputation
:Q — |A1T/3] whereA = A1+ Agwith0 < Ay < 3
- R—A-QB

: while R > B do
return(@, R).

o U b wWwN P

Theorem 2.4 Algorithm BarrettDivRem is correct and stefy]5 is performed
at most three times.

Proof. SinceA = @B + R is invariant in the algorithm, we just need to prove
that0 < R < B at the end. We first consider the value@f R before the
while-loop. Since3/2 < B < 3, we have3 < (/B < 28; thus,3 <

I < 23. We haveQ < A1/ < A18/B < A/B. This ensures thaR is
non-negative. Now > 3?/B — 1, which gives

IB > 3* - B.
Similarly, @ > AI/5 — 1 gives

pQ > Al — .

This yields3QB > A1IB — 3B > A(8%* — B) — 8B = B(A — Ap) —
B(B+ Ay) > BA—48B sinceA, < # < 2B andA; < 3. We conclude that
A < B(Q + 4); thus, at most three corrections are needed. 0

The bound of three corrections is tight: it is attained for= 1980, B = 36,
(8 = 64. In this example]/ = 113, 4; = 30, Q =52, R = 108 = 3B.

The multiplications at stefp$ 2 ahd 3 may be replaced by shodtgts, more
precisely the multiplication at stép 2 by a high short prddand that at stelg 3
by a low short product (sef8.3).

Barrett's algorithm can also be used for an unbalancedidivisvhen divid-
ing (k + 1)n words byn words fork > 2, which amounts td: divisions of

60 Modular arithmetic and the FFT

2n words by the same-word divisor. In this case, we say that the divisor is
implicitly invariant

Complexity of Barrett’s algorithm
If the multiplications at stepEl2 arld 3 are performed usinf groducts,
Barrett's algorithm cost&@M (n) for a divisor of sizen. In the FFT range,
this cost might be lowered th5M (n) using the “wrap-around trick”§8.4.3);
moreover, if the forward transforms éfand B are stored, the cost decreases
to M (n), assumingV/ (n) is the cost of three FFTs.

2.4.2 Montgomery’s multiplication

Montgomery’s algorithm is very efficient for modular aritetic modulo a
fixed modulusN. The main idea is to replace a residdenod N by A’ =
AA mod N, whereA’ is the “Montgomery form” corresponding to the residue
A, with X an integer constant such thaid(N, \) = 1. Addition and subtrac-
tion are unchanged, sincel + AB = A(A + B) mod N. The multiplication

of two residues in Montgomery form does not give exactly wivat want:
(AM)(AB) # MAB) mod N. The trick is to replace the classical modular
multiplication by “Montgomery’s multiplication”

AP

MontgomeryMul (A", B) mod N.

For some values ok, MontgomeryMul (A’, B’) can easily be computed, in
particular forA = 3", where N usesn words in base3. Algorithm[2.8 is
a quadratic algorithmREDC) to computeMontgomeryMul (A, B’) in this
case, and a subquadratic reductiBagtREDC) is given in Algorithn{2.7.

Another view of Montgomery’s algorithm fox = g is to consider that it
computes the remainder of Hensel's divisigh.@.8).

Algorithm 2.6 REDC (quadratic non-interleaved version). Theform the
current basg? decomposition o, i.e. they are defined by = 2(2)"_1 ¢t .
Input: 0<C < B, N<pB" pu+——N"1mod§g, (8,N)=1
Output: 0 < R < " suchthatR = CS~"™ mod N

1: for i from Oton — 1 do

2: q; «— pc; mod f3 > quotient selection
3: C—C+ C]l_]\[ﬁz
4: R« Cp™™ > trivial exact division

5. if R > g™ thenreturnR — N elsereturnR.

2.4 Modular multiplication 61
Theorem 2.5 AlgorithmREDC is correct.

Proof. We first prove that? = C'3~" mod N: C is only modified in stepl3,
which does not chang@ mod N; thus, at stepl4 we haveg = C3~" mod N,
and this remains true in the last step.

Assume that, for a giveiy we haveC = 0 mod /3° when entering stefg 2.
Sinceq; = —¢;/N mod 3, we haveC + ¢; N3 = 0 mod 3+! at the next
step, so the next value of is 0. Thus, on exiting the for-loog, is a multiple
of ", andR is an integer at stdg 4.

Still at step[#, we have’ < %" + (B —)N(1+ 3+ -+ p"71) =
B?" + N(B" — 1);thus,R < " + N andR — N < 3". 0

Compared to classical division (Algorithm 1BasecaseDivRen Mont-
gomery’s algorithm has two significant advantages: theignbselection is
performed by a multiplication modulo the word basewhich is more effi-
cient than a division by the most significant wdrgl_; of the divisor as in
BasecaseDivRemand there is no repair stepsidethe for-loop — the repair
step is at the very end.

For example, with input§’ = 766 970 544 842 443 844, N = 862 664 913,
andg = 1000, Algorithm REDC precomputeg = 23; then we have, = 412,
which yieldsC «— C + 412N = 766970900 260 388 000; thenq; = 924,
which yieldsC' «— C + 924N 3 = 767768 002 640 000 000; thengs = 720,
which yieldsC' «— C + 720N3? = 1388886 740000000 000. At step[4,
R = 1388886 740, and sinceR > 3%, REDC returnsR — N = 526221 827.

Since Montgomery’s algorithm —i.e. Hensel's division wigmainder only —
can be viewed as an LSB variant of classical division, Svalsodivisor pre-
conditioning (1.4.2) also translates to the LSB context. More preciselfli
gorithmREDC, we want to modify the divisoN so that the quotient selection
q « pc; mod 3 at sted R becomes trivial. The multipliérused in Svoboda
division is simply the parameterin REDC. A natural choice ig. = 1, which
corresponds taV = —1 mod S. This motivates the Montgomery—Svoboda
algorithm, which is as follows:

1. first computeN’ = uN, with N’ < 371, wherey = —1/N mod 3;

2. perform then — 1 first loops ofREDC, replacingu by 1, andN by N’;

3. perform a final classical loop with and N, and the last stepEl(@-5) from
REDC.

Quotient selection in the Montgomery—Svoboda algorithmpty involves
“reading” the word of weigh3’ in the divisorC.

For the example above, we gt = 19841292 999; qq is the least signifi-
cantword ofC', i.e. qo = 844, s0C « C+844N' = 766 987 290 893 735 000;

62 Modular arithmetic and the FFT

theng; = 735 andC «— C + 735N’ = 781570641 248 000 000. The last
step givesyy = 704 andC « C + 704N 3% = 1388886 740 000 000 000,
which is what we found previously.

Subquadratic Montgomery reduction
A subquadratic versioRastREDC of Algorithm REDC is obtained by taking
n = 1, and consideringd as a “giant base” (alternatively, replageby 5"
below):

Algorithm 2.7 FastREDC (subquadratic Montgomery reduction)
Input: 0<C < B2 N < B, —1/N mod f3
Output: 0 < R < @suchthatR = C/8 mod N

1 @« puC mod

22 R— (C+QN)/p

3. if R > GthenreturnR — N elsereturnR.

This is exactly the2-adic counterpart of Barrett’'s subquadratic algorithm;
steps IER might be performed by a low short product and a gt product,
respectively.

When combined with Karatsuba’s multiplication, assuming groducts
of stepdIER are full products, the reduction requires twdtiptications of
sizen, i.e. six multiplications of size./2 (n denotes the size a¥, 3 being a
giant base). With some additional precomputation, the aéolo might be
performed with five multiplications of size/2, assumingn is even. This is
simply the Montgomery—Svoboda algorithm with having two big words in
base3"/2. The cost of the algorithm i8/(n,n/2) to computegy N’ (even if
N’ has in principle3n /2 words, we know\N’ = H3"/? —1 with H < 3", and
thus it suffices to multiplyy, by H), M (n/2) to computenC' mod 5"/2, and

Algorithm 2.8 MontgomerySvoboda
Input: 0<C < (%", N < 3", —1/N mod /2, N’ = uN
Output: 0 < R < " such thatR = C/8™ mod N

1: qo «— C mod "/?

2. C — (C’—i—qo]\/v')/ﬁ”/2

3: q1 — pC mod /2

4 R «— (C’—&—qlN)/ﬁ”/2

5. if R > ™ thenreturnR — N elsereturnR.

2.4 Modular multiplication 63

againM (n,n/2) to computep N; thus, a total ob M (n/2) if eachn x (n/2)
product is realized by twén/2) x (n/2) products.

The algorithm is quite similar to the one described at theafi§d.4.8, where
the costwag M (n/2)+D(n/2) for a division of2n by n with remainder only.
The main difference here is that, thanks to Montgomery’'mifdhe last classi-
cal division D(n/2) in Svoboda’s algorithm is replaced by multiplications of
total cost2M (n/2), which is usually faster.

Algorithm MontgomerySvobodacan be extended as follows. The vallle
obtained after stefg 2 hads,/2 words, i.e. an excess af/2 words. Instead of
reducing that excess wWitREDC, we could reduce it using Svoboda’s tech-
nique withy’ = —1/N mod s™/*, and N” = y/N. This would reduce the
low n/4 words fromC' at the cost of\/ (n,n/4), and a lasREDC step would
reduce the final excess ef/4, which would giveD(2n,n) = M (n,n/2) +
M(n,n/4)+M (n/4)+ M (n,n/4). This “folding” process can be generalized
to D(2n,n) = M(n,n/2) + -+ + M(n,n/2%) + M(n/2%) + M(n,n/2%).

If M (n,n/2%) reduces t@* M (n/2*), this gives

D(n) = 2M (n/2)+4M (n/4)+- - -+25" M (n/28 =)+ (281 4-1) M (n/25).

Unfortunately, the resulting multiplications become mared more unbal-
anced, and we need to stdrgorecomputed multipled’’, N” ... of N, each
requiring at least: words. Tabl€Z]2 shows that the single-folding algorithm is
the best one.

Algorithm | Karatsuba Toom-Cookway Toom—-Cookl-way

D(n) 2.00M (n) 2.63M (n) 3.10M (n)
1-folding 1.67M(n) 1.81M (n) 1.89M (n)
2-folding | 1.67M(n) 1.91M (n) 2.04M (n)
3-folding 1.74M (n) 2.06M (n) 2.25M (n)

Table 2.2 Theoretical complexity of subquadratic REDC with2- and
3-folding, for different multiplication algorithms.

Exercisd 2.6 discusses further possible improvementssivibntgomery—
Svoboda algorithm, achievin®(n) ~ 1.58M(n) in the case of Karatsuba
multiplication.

2.4.3 McLaughlin’s algorithm

McLaughlin’s algorithm assumes we can perform fast muétgilon modulo
both2™ — 1 and2™ + 1, for sufficiently many values af. This assumption is

64 Modular arithmetic and the FFT

true for example with the Sémhage—Strassen algorithm: the original version
multiplies two numbers modul®™ + 1, but discarding the “twist” operations
before and after the Fourier transforms computes theirymogiodulo2™ — 1.
(This has to be done at the top level only: the recursive dip@icompute
modulo2™ + 1 in both cases. See Remark 2 on page 57.)

The key idea in McLaughlin’s algorithm is to avoid the classi“multiply
and divide” method for modular multiplication. Insteadsasiing thatV is
relatively prime to2” — 1, it determinesAB/(2" — 1) mod N with convo-
lutions modulo2™ + 1, which can be performed in an efficient way using the
FFT.

Algorithm 2.9 MultMcLaughlin

Input: A, Bwith0 < A,B< N <2" u=—N"1mod (2" — 1)
Output: AB/(2" — 1) mod N

: m«— ABpmod (2" — 1)

S «— (AB+mN) mod (2" + 1)

w «— —S mod (2" 4+ 1)

if 2|w thens «— w/2 elses — (w+2" +1)/2

if AB+mN = smod2thent « selset « s+2" +1

if £ < N thenreturnt elsereturnt — N.

o a M whR

Theorem 2.6 Algorithm MultMcLaughlin computesAB/(2"™ — 1) mod N
correctly, in~ 1.5M (n) operations, assuming multiplication modud + 1
costs~ M (n/2), or the same a8 Fourier transforms of size.

Proof. Stef1 is similar to stdg 1 of AlgorithifastREDC, with 3 replaced by
2" —1. Itfollows thatAB +mN = 0 mod (2" — 1), therefore we havel B +
mN = k(2" —1) with 0 < k < 2N. Sted2 computeS = —2k mod (2" +1),
then stefB gives) = 2k mod (2" + 1), ands = k mod (2" + 1) in step4.
Now, since0 < k < 2"*!, the values does not uniquely determirie whose
missing bit is determined from the least significant bit frdiB +m N (stef®).
Finally, the last step reduceés= k£ moduloN.

The cost of the algorithm is mainly that of the four multiplimnsAB mod
(2" +1), (AB)p mod (2" —1) andmN mod (2" + 1), which cosM (n/2)
altogether. However, ifAB)u mod (2" — 1) andmN mod (2" + 1), the
operandg: and N are invariant, therefore their Fourier transforms can lee pr
computed, which savex\/ (n/2)/3 altogether. A further saving d¥/ (n/2)/3
is obtained since we perform only one backward Fourier foansin sted 2.
Accounting for the savings gives — 2/3 — 1/3)M(n/2) = 3M(n/2) ~
1.5M(?”L). O

2.5 Modular division and inversion 65

The~1.5M (n) cost of McLaughlin’s algorithm is quite surprising, sinte i
means that a modular multiplication can be performed fakgm two multi-
plications. In other words, since a modular multiplicatisrbasically a mul-
tiplication followed by a division, this means that (at leasthis case) the
“division” can be performed for half the cost of a multiplin!

2.4.4 Special moduli

For special moduliV faster algorithms may exist. The ideal caseNis=
6™ £ 1. This is precisely the kind of modulus used in the &uage—Strassen
algorithm based on the fast Fourier transform (FFT). In th& Fange, a mul-
tiplication modulos™ + 1 is used to perform the product of two integers of
at mostn /2 words, and a multiplication modul@™ + 1 costs~ M (n/2) ~
For example, in elliptic curve cryptography (ECC), we altraig/ays use a
special modulus, for example a pseudo-Mersenne prime2like— 264 — 1
or 2256 9224 4 9192 4 996 _ 1 However, in most applications the modulus
can not be chosen, and there is no reason for it to have a kfmraia
We refer to§2.9 for further information about special moduli.

2.5 Modular division and inversion

We have seen above that modular multiplication reducestémyén division,
since to computeb mod N, the classical method consists of dividimgby NV
to obtainab = gN +r, thenab = r mod N. Inthe same vein, modular division
reduces to an (extended) integer gcd. More precisely, thsial /b mod N
is usually computed as- (1/b) mod N, thus a modular inverse is followed by
a modular multiplication. We concentrate on modular ink@Tén this section.
We have seen in Chapter 1 that computing an extended gcd énsixp,
both for small sizes, where it usually costs the same asaawveittiplications,
and for large sizes, where it cost§ M (n) logn). Therefore, modular inver-
sions should be avoided if possible; we explain at the endisfdection how
this can be done.
Algorithm[Z.I0 Modularinverse) is just AlgorithmExtendedGcd(41.6.2),
with (a,b) — (b, N) and the lines computing the cofactors/éfomitted.
Algorithm Modularinverse is the naive version of modular inversion, with
complexity O(n?) if N takes n words in base3. The subquadratic
O(M (n)log n) algorithm is based on thealfBinaryGed algorithm {1.6.3).
When the modulusV has a special form, faster algorithms may exist. In
particular forN = p*, O(M(n)) algorithms exist, based on Hensel lifting,

66 Modular arithmetic and the FFT

Algorithm 2.10 Modularlnverse
Input: integersh and N, b prime toN
Output: integeru = 1/b mod N
(u,w) «— (1,0),c — N
while ¢ #£ 0 do
(¢,r) < DivRem(b, ¢)
(b,c) < (¢,r)

(u, w) — (w,u — qu)

returnu.

which can be seen as theadic variant of Newton’s method4.2). To compute
1/b mod N, we use a-adic version of the iteratiofl (4.5)

Zjt1 = x; +2;(1 — bx;j) mod Pk, (2.3)

Assumez; approximated /b to “p-adic precision’, i.e. bz; =1+ ept, and
k = 2¢. Then, modul@”: bz ;1 = bxj(2 — bx;) = (1 +ep’)(1 —ep’) =
1—e2p*. Therefore; ;1 approximates /b to double precision (in the-adic
sense).

As an example, assume we want to compute the inverse of amtadpeib
modulo232. The initial approximation:, = 1 satisfiestg = 1/b mod 2, thus
five iterations are enough. The first iteratiomis«— x¢+x¢ (1 —bzg) mod 22,
which simplifies tox; < 2 — b mod 4 sincezy = 1. Now, whetherh = 1
mod4 orb = 3 mod 4, we have2 — b = b mod 4; we can therefore start the
second iteration with:; = b implicit

x9 + b(2 — b?) mod 2, T3 « x9(2 — bry) mod 28,
x4« 23(2 — bwz) mod 26, x5 « x4(2 — bxy) mod 232,

Consider for examplé = 17. The above algorithm yields, = 1, z3 = 241,
x4 = 61681 andxs = 4042322 161. Of course, any computation mod
might be computed modulg”® for & > ¢. In particular, all the above compu-
tations might be performed moduf3?. On a32-bit computer, arithmetic on
basic integer types is usually performed mod2ilé, thus the reduction comes
for free, and we can write in the C language (usimgigned variables and
the same variable for xo, .. ., x5)

X = b*(2-b *b); x *= 2-b*x; X *= 2-b*x; X *= 2-b xX;

Another way to perform modular division when the modulus aapecial
form is Hensel's division{T.4.8). For a modulud/ = 3", given two integers

2.5 Modular division and inversion 67

A, B, we compute) and R such that
A=QB+ Rg"™.

Therefore, we havel/B = @ mod . While Montgomery’s modular mul-
tiplication only computes the remaind&rof Hensel's division, modular divi-
sion computes the quotier; thus, Hensel’s division plays a central role in
modular arithmetic modulg™.

2.5.1 Several inversions at once

A modular inversion, which reduces to an extended gfde(2), is usually
much more expensive than a multiplication. This is true mdy in the FFT
range, where a gcd takes ting M (n) log), but also for smaller numbers.
When several inversions are to be performed modulo the sambeamiAlgo-
rithm MultipleInversion is usually faster.

Algorithm 2.11 Multiplelnversion

Input: 0 < xy,...,2p, <N

Output: y; = 1/%‘1 mod N,...,yp = 1/-77k mod N
Z1 < X1

: for i from 2to k do

zi < zi—1x; mod N

0 q <+ 1/zp mod N

: for i from k& downto 2 do

Yi < qzi—1 mod N

q < qx; mod N

Y1 —¢q-

Theorem 2.7 AlgorithmMultiplelnversion is correct.

Proof. We havez; = x125 ... x; mod N; thus, at the beginning of stép 6 for
agiveni, g = (z1...2;)~! mod N, which givesy; = 1/x; mod N. 0

This algorithm uses only one modular inversion (§fep 4),3kd- 1) modular
multiplications. Thus, it is faster thaninversions when a modular inversion is
more than three times as expensive as a product. Higdre @nsshrecursive
variant of the algorithm, with the same number of modulartiplitations: one
for each internal node when going up the (product) tree, andfor each in-
ternal node when going down the (remainder) tree. The raeuariant might
be performed in parallel i®(log k) operations usin@ (k/ log k) processors.

68 Modular arithmetic and the FFT

1/($1$2{E3$4)

1/(z122) 1/(w3z4)

1/:51 1/.%‘2 1/1’3 1/.T4

Figure 2.1 A recursive variant of AlgorithriMultiplelnversion. First go

up the tree, buildingriz2 mod N from z; and z» in the left branch,
xsx4 mod N in the right branch, and;zsz3z4 mod N at the root of the
tree. Then invert the root of the tree. Finally, go down the tree, multiplying
1/(z1x22324) by the stored valuesz, to getl/(xz122), and so on.

A dual case is when there are several moduli but the numbeventiis
fixed. Say we want to compute’z mod Ny, ..., 1/ mod Nj. We illustrate
a possible algorithm in the cage= 4. First computeN = N; ... Ny using
a product tree like that in Figuie 2.1. For example, first cotapv; N> and
N3Ny, then multiply both to gefvV = (N1 N3)(N3N4). Then compute =
1/2 mod N, and go down the tree, while reducing the residue at each frode
our example, we compute= y mod (N; N») in the left branch, them mod
N; yields1/2 mod N;. An important difference between this algorithm and
the algorithm illustrated in Figule_2.1 is that here the narmsbgrow while
going up the tree. Thus, depending on the sizesarid the/V;, this algorithm
might be of theoretical interest only.

2.6 Modular exponentiation

Modular exponentiation is the most time-consuming math@alaoperation
in several cryptographic algorithms. The well-known RSAlikey cryp-
tosystem is based on the fact that computing

c=a®mod N (2.4)

is relatively easy, but recoveringfrom ¢, e and V is difficult when N has

at least two (unknown) large prime factors. The discretadibigm problem is
similar: herec, a and N are given, and we look far satisfying Eqn.[[Z]4). In
this case, the problem is difficult whe¥ has at least one large prime factor
(for example,N could be prime). The discrete logarithm problem is the basis
of the EI Gamal cryptosystem, and a closely related probéeting basis of the
Diffie—Hellman key exchange protocol.

2.6 Modular exponentiation 69

When the exponent is fixed (or known to be small), an optimal sequence
of squarings and multiplications might be computed in adeaithis is related
to the classicahddition chainproblem: What is the smallest chain of additions
to reach the integer, starting froml? For example, it = 15, a possible chain
is

L,14+41=21+2=31+3=4,34+4="7,7+7=14,1+ 14 = 15.

The length of a chain is defined to be the number of additioesl®e to com-
pute it (the above chain has length An addition chain readily translates to a
multiplication chain

a,a-a=ad%a-a>=aa-a®>=a*a® a* =d",d"-a" = a'*, a-a'* = a'®.

A shorter chain foe = 15 is
1,1+1=2,142=3,2+3=5,5+5=10,5+10 = 15.

This chain is the shortest possible fo= 15, so we writes(15) = 5, where in
generalr(e) denotes the length of the shortest addition chairefdn the case
wheree is small, and an addition chain of shortest length) is known fore,
computinga® mod N may be performed ia(e) modular multiplications.

Whene is large and(a, N) = 1, thene might be reduced modulg(NV),
where¢(N) is Euler’s totient function, i.e. the number of integerdinV]
which are relatively prime tdV. This is because?™) = 1 mod N whenever
(a, N) =1 (Fermat’s little theorem).

Since¢(N) is a multiplicative function, it is easy to compuéN) if we
know the prime factorization aV. For example

$(1001) = ¢(7-11-13) = (7 — 1)(11 — 1)(13 — 1) = 720,

and2009 = 569 mod 720, s01720%9 = 17569 mod 1001.

Assume now that is smaller thar(V). Since a lower bound on the length
o(e) of the addition chain foe is 1g e, this yields a lower boundlg e) M (n)
for modular exponentiation, whereis the size ofN. Whene is of sizek, a
modular exponentiation cos€(kM (n)). Fork = n, the costO(nM (n)) of
modular exponentiation is much more than the cost of oparattonsidered in
ChaptefdL, withD (M (n) log n) for the more expensive ones there. The differ-
ent algorithms presented in this section save only a confetor compared
to binary exponentiatiorffi2.6.1).

REMARK: whena fits in one word butV does not, the shortest addition chain
for e might not be the best way to computémod N, since in this case com-
putinga - ¢’ mod N is cheaper than computing - o/ mod N for i > 2.

70 Modular arithmetic and the FFT

2.6.1 Binary exponentiation

A simple (and not far from optimal) algorithm for modular exgntiation is
binary (modular) exponentiatioffwo variants exist: left-to-right and right-to-
left. We give the former in AlgorithnieftToRightBinaryExp and leave the
latter as an exercise for the reader.

Algorithm 2.12 LeftToRightBinaryExp

Input: a, e, N positive integers

Output: = = a® mod N

: let(eges—q - . . e1€0) be the binary representation @fwith e, = 1
Xr < a

. for i from ¢ — 1 downto 0 do

z «— z2 mod N

if e, = 1thenz < ax mod N.

a RN R

Left-to-right binary exponentiation has two advantagesravght-to-left
exponentiation:

e it requires only one auxiliary variable, instead of two faetright-to-left
exponentiation: one to store successive values’afand one to store the
result;

e inthe case where is small, the multiplicationax at steg’b always involve
a small operand.

If ¢ is a random integer of + 1 bits, stefi’b will be performed on average
times, giving average co8tM (n)/2.

ExampPLE: for the exponent = 3499211612, which is
(11010000100100011011 101101011 100)s

in binary, AlgorithmLeftToRightBinaryExp performs31 squarings and5
multiplications (one for each-bit, except the most significant one).

2.6.2 Exponentiation with a larger base

Compared to binary exponentiation, ba2e exponentiation reduces the
number of multiplicationszz mod N (Algorithm LeftToRightBinaryExp ,
sted®). The idea is to precompute small powers ofod N:

The precomputation cost {2* — 2)M (n), and if the digitse; are random
and uniformly distributed irZ N [0,2%), then the modular multiplication at
sted® oBaseKExpis performed with probability — 2. If e hasn bits, the

2.6 Modular exponentiation 71

Algorithm 2.13 BaseKExp

Input: a, e, N positive integers

Output: = = a® mod N
1: precomputé[i] := a’ mod N for 1 <i < 2k
2: let (egeq_1 . . . e1eg) be the baseé” representation of, with e, # 0
3 x — tle]

4: for ¢ from ¢ — 1 downto 0 do

5

6

z— 22" mod N
if e; # 0thenx — t[e;]Jz mod N.

number of loops is about/k. Ignoring the squares at stép 5 (their total cost
depends o/ ~ n so is independent @), the total expected cost in terms of
multiplications modulaV is

2F —2 4 n(1 —27%)/k.

Fork = 1, this formula gives:/2; for k = 2, it gives3n/8 + 2, which is faster

for n > 16; for k = 3, it gives 7n/24 + 6, which is faster than thé = 2
formula forn > 48. Whenn is large, the optimal value df satisfiesk?2* ~
n/In2. A minor disadvantage of this algorithm is its memory usajece
O(2%) precomputed entries have to be stored. This is not a seriolem if

we choose the optimal value bf(or a smaller value), because then the number
of precomputed entries to be stored{s).

EXAMPLE: consider the exponemrt= 3499 211 612. Algorithm BaseKExp
performs31 squarings independently &f we therefore count multiplications
only. Fork = 2, we havee = (3100210 123 231 130)4: Algorithm BaseKExp
performs two multiplications to precompuié anda?, and11 multiplications
for the non-zero digits of in base4 (except for the leading digit), i.e. a total
of 13. Fork = 3, we havee = (32044 335 534)s, and the algorithm performs
six multiplications to precompute?, a3, ..., a”, and nine multiplications in
sted®, i.e. atotal of5.

The last example illustrates two facts. First, if some diditere6 and7) do
not appear in the bas¥: representation of, then we do not need to precom-
pute the corresponding powersafSecond, when a digit is even, sgy= 2,
instead of doing three squarings and multiplying:Bywe could do two squar-
ings, multiply bya, and perform a last squaring. These considerations lead to
Algorithm BaseKExpOdd

The correctness of stepH 7-9 follows from:

x2ka2md _ (ka—nz ad)Qm)

72 Modular arithmetic and the FFT

Algorithm 2.14 BaseKExpOdd
Input: a, e, N positive integers
Output: = = a® mod N
. precompute:? thent|[i] := a’ mod N foriodd,1 <i < 2*
let (eqes—_1 . . . e1eg) be the base” representation of, with e, # 0
write e, = 2"d with d odd
zt[d], -+ 2*" mod N
for ¢ from ¢ — 1 downto 0 do
write e; = 2"d with d odd (if e; = 0 thenm = d = 0)
22" mod N
if e; # 0thenx «— t[d]z mod N
z — 22" mod N.

© X N oA ®DNR

On the previous example, with = 3, this algorithm performs only four
multiplications in stefp]l (to precomput€ thena?, ¢, a7), then nine multi-
plications in stepl8.

2.6.3 Sliding window and redundant representation

The “sliding window” algorithm is a straightforward genkzation of
Algorithm BaseKExpOdd Instead of cutting the exponent into fixed parts
of k bits each, the idea is to divide it into windows, where twoaadnt win-
dows might be separated by a block of zero or niplets. The decomposition
starts from the least significant bits. For example, wits 3499211612, or
in binary

1 101 00 001 001 00011 011 101 101 0111 00.
Y N e e Vg

€g er €g €5 €4 €3 €2 €1 €0

Here there are nine windows (indicated &y, ..., e, above) and we perform
only eight multiplications, an improvement of one multgaition over Algo-
rithm BaseKExpOdd On average, the sliding window ba®ealgorithm leads
to aboutn/(k + 1) windows instead of./k with fixed windows.

Another improvement may be feasible when division is fdagiénd cheap)
in the underlying group. For example, if we encounter thi@mesecutive ones,
say 111, in the binary representation ef we may replace some bits by,
denoted byl, as in1001. We have thus replaced three multiplications by one
multiplication and one division, in other word$ = 2% - z—!. For our running
example, this gives

e = 11010000 100 100 100 100 010 010 100 100,

2.7 Chinese remainder theorem 73

which has only ten non-zero digits, apart from the leading, anstead of
15 with bits 0 and1 only. The redundant representation with bfits 1,1} is
called theBooth representatiarit is a special case of thivizienis signed-digit
redundant representatioisigned-digit representations exist in any base.

For simplicity, we have not distinguished between the céshaltiplica-
tion and the cost of squaring (when the two operands in théiptiahtion are
known to be equal), but this distinction is significant in soapplications (e.g.
elliptic curve cryptography). Note that, when the undewygroup operation
is denoted by addition rather than multiplication, as isallyuthe case for
abelian groups (such as groups defined over elliptic curtlesh the discus-
sion above applies with “multiplication” replaced by “atidn”, “division” by
“subtraction”, and “squaring” by “doubling”.

2.7 Chinese remainder theorem

In applications where integer or rational results are ebgubdt is often worth-
while to use a “residue number system” (a$fZal.3) and perform all compu-
tations modulo several small primes (or pairwise coprintegars). The final
result can then be recovered via the Chinese remainderetime(CRT). For
such applications, it is important to have fast conversarines from integer
to modular representation, and vice versa.

The integer to modular conversion problem is the followigigen an integer
x, and several pairwise coprime moduli, 1 < ¢ < k, how do we efficiently
computer; = x mod m;, for1 < i < k? Thisis the remainder tree problem of
Algorithm IntegerToRNS, which is also discussed {2.5.1 and Exercide 1.B5.

Algorithm 2.15 IntegerTORNS

Input: integerz, modulimy, ma, ..., m; pairwise coprimek > 1

Output: x; =z mod m; for1 <i <k

. if k < 2then

returnz; = x mod mq, ...,xr = x mod my,

cl— k/2]

My «— myimg---myg, My — mypyq---my > might be precomputed
Z1,...,x¢ < IntegerTORNS(x mod My, mq,...,my)

D Tpgt, ..., 2k — IntegerTORNS(z mod Mo, mypyq, ..., my).

If all moduli m; have the same size, and if the sizef x is comparable to
that of the productnyms - - - my, the costl’(k) of Algorithm IntegerTORNS

74 Modular arithmetic and the FFT

satisfies the recurren@®(n) = 2D(n/2) + 2T'(n/2), which yieldsT'(n) =
O(M (n)logn). Such a conversion is therefore more expensive than a filtip
cation or division, and is comparable in complexity terma tzase conversion
oragcd.

The converséCRT reconstructiorproblem is the following: given the;,
how do we efficiently reconstruct the unique integed < x < mimg - - - my,
such thatr = z; mod m;, for1 < i < k? AlgorithmRNSTolntegerperforms
that conversion, where the values at stefi ¥ might be precomputed if several
conversions are made with the same moduli, and[step 11 ethatehe final
resultz lies in the interval0, M; M,).

Algorithm 2.16 RNSTolnteger
Input: residues;, 0 < z; < m; for 1 < i < k, m; pairwise coprime
Output: 0 <z < myimg---my With x = 2; mod m;

1: if k= 1then

2: returnz;

30— |k/2]

4: My «— mymo---my, Mo myyq---my > might be precomputed
5: X, < RNSTolnteger([x1, . .., z¢], [m1, ..., my])

6: Xo «— RNSTolnteger([zs+1,. .., xk], [Mer1, ..., mg])

7. computeu, v such thatuM; + vMs =1 > might be precomputed
8: A\ «— uXy mod Ms, Ay« vX; mod M;

9: x — A\ My + Ao M>

10: if & > MM, then

11: x «— x — My Ms.

To see that AlgorithnRNSTolnteger is correct, consider an integérl <
i < k, and show that = z; mod m;. If k = 1, itis trivial. Assumek > 2,
and without loss of generality < ¢ < /. SinceM; is a multiple ofm;, we
havez mod m; = (z mod M;) mod m;, where

z mod M1 = /\QMQ mod M1 = UXlMQ mod M1 = X1 mod Ml,

and the result follows from the induction hypothesis tRat= x; mod m;.
Like IntegerToRNS, Algorithm RNSTolnteger costsO(M (n) logn) for
M = myms - - - my, Of sizen, assuming that the; are of equal sizes.
The CRT reconstruction problem is analogous to the Lagraofygomial
interpolation problem: find a polynomial of minimal degrageirpolating given
valuesz; atk pointsm;.

2.8 Exercises 75

A “flat” variant of the explicit Chinese remainder reconstian is the
following, taking for exampld: = 3

T = A1x1 + Aax2 + Azx3,

where); = 1 mod m;, and\; = 0 mod m; for j # . In other words\; is
the reconstruction afy = 0,..., 2,1 = 0,z; = 1, 2,41 = 0,..., 2, = 0.
For example, withn; = 11, ms = 13 andms = 17, we get

x = 221x, 4+ 149625 + 7T15x3.

To reconstruct the integer correspondingito = 2, x5 = 3, x3 = 4, we
getr = 221 -2+ 1496 - 3 + 715 - 4 = 7790, which after reduction modulo
11-13 - 17 = 2431 gives497.

2.8 Exercises

Exercise 2.1In §2.1.3 we considered the representation of non-negatiee int
gers using a residue number system. Show that a residue nsygiem can
also be used to represent signed integers, provided thsofb values are not
too large. (Specifically, if relatively prime modutivy, mo, ..., my are used,
andB = myms - - - my, the integers: should satisfylz| < B/2.)

Exercise 2.2 Suppose two non-negative integar@&ndy are represented by
their residues modulo a set of relatively prime moduli, mo, ..., my as in
§2.1.3. Consider theomparison problemis z < y? Is it necessary to convert
z andy back to a standard (non-CRT) representation in order to @ngvis
question? Similarly, if a signed integeris represented as in Exercise]2.1,
consider thesign detection problenis z < 0?

Exercise 2.3 Consider the use of redundant moduli in the Chinese remainde
representation. In other words, using the notation of BzeiZ.2, consider the
case that could be reconstructed without using all the residues. Shatthis
could be useful for error detection (and possibly errorection) if arithmetic
operations are performed on unreliable hardware.

Exercise 2.4 Consider the two complexity boundS(M (dlog(Nd))) and
O(M(d)M (log N)) given at the end ofZ.1.5. Compare the bounds in three
cases: (&) < N; (b)d ~ N; (c)d > N. Assume two subcases for the mul-
tiplication algorithm: ()M (n) = O(n?); (i) M(n) = O(nlogn). (For the
sake of simplicity, ignore anlpg log factors.)

76 Modular arithmetic and the FFT

Exercise 2.5 Show that, if a symmetric representatiorf+V/2, N/2) is used

in Algorithm ModularAdd (§2.2), then the probability that we need to add or
subtractN is 1/4 if N is even, and1 — 1/N?)/4 if N is odd (assuming in
both cases that andb are uniformly distributed).

Exercise 2.6 Write down the complexity of the Montgomery—Svoboda algo-
rithm (§2.4.2, page 61) fok steps. Fok = 3, use van der Hoeven’s relaxed
Karatsuba multiplicatio4] to save ofé(n/3) product.

Exercise 2.7 Assume you have an FFT algorithm computing products modulo
2™ 4+ 1. Prove that, with some preconditioning, you can perfornvasitin with
remainder of &n-bit integer by am-bit integer as fast ak.5 multiplications

of n bits byn bits.

Exercise 2.8 Assume you know(z) mod (2™ —1) andp(z) mod (™2 —1),
wherep(z) € F[z] has degree—1, andn; > nq, andF' is afield. Up to which
value ofn can you uniquely reconstrup? Design a corresponding algorithm.

Exercise 2.9 Consider the problem of computing the Fourier transform of a
vectora = [ag, a1, . . .,ax 1], defined in Eqn{2]1), when the siZ&is not a
power of two. For examples might be an odd prime or an odd prime power.
Can you find an algorithm to do this (K log K') operations?

Exercise 2.10Consider the problem of computing the cyclic convolution of
two K-vectors, wheref is not a power of two. (For the definition, with'
replaced by, see§3.3.1.) Show that the cyclic convolution can be computed
using FFTs or2* points for some suitablg, or by using DFTs ok points
(see Exercise29). Which method is better?

Exercise 2.11Devise a parallel version of Algorithivlultiplelnversion as
outlined in§2.5.1. Analyse its time and space complexity. Try to minirtize
number of parallel processors required while achievingraligh time com-
plexity of O(log k).

Exercise 2.12 Analyse the complexity of the algorithm outlined at the end
of .53 to computd /z mod Ny, ...,1/z mod Ni, when all theN; have
sizen, andz has sizef. For which values of1, ¢ is it faster than the naive
algorithm which computes all modular inverses separaf@g8umel (n) is
quasi-linear, and neglect multiplicative constants.]

Exercise 2.13Write aRightToLeftBinaryExp algorithm and compare it with
Algorithm LeftToRightBinaryExp of §2.6.1.

2.9 Notes and references 77

Exercise 2.14Investigate heuristic algorithms for obtaining closesfutimal
addition (or multiplication) chains when the cost of a gahadditiona + b

(or multiplicationa - b) is A times the cost of duplication + a (or squaring

a - a), and\ is some fixed positive constant. (This is a reasonable madel f
modular exponentiation, because multiplicatiand N is generally more ex-
pensive than squaringiod N. It is also a reasonable model for operations in
groups defined by elliptic curves, since in this case the tdaenfor addition
and duplication are usually different and have differerstsg

2.9 Notes and references

Several number-theoretic algorithms make heavy use of fapdtthmetic, in
particular integer factorization algorithms (for exampellard’s p algorithm
and the elliptic curve method).

Another important application of modular arithmetic in qauer algebra
is computing the roots of a univariate polynomial over a éirfield, which
requires efficient arithmetic ovéf,[x]. See for example the excellent book
“MCA" by von zur Gathen and GerharmOO].

We say in§2.1.3 that residue number systems can only be used \When
factors intoN Vs . . .; this is not quite true, since Bernstein and Sorenson show
in [@] how to perform modular arithmetic using a residue bemsystem.

For notes on the Kronecker—Suthage trick, se§1.9.

Barrett's algorithm is described in_[14], which also mensahe idea of
using two short products. The original description of Mamttery's REDC al-
gorithm is]. It is now widely used in several applicatso However, only
a few authors considered using a reduction factor which tsofdhe form
£, among them McLaughIiO] and Mihailes64]. The Myorhery—
Svoboda algorithm §2.4.2) is also called “Montgomery tail tayloring” by
Hars @], who attributes Svoboda’s algorithm — more [m&gi its variant
with the most significant word being — 1 instead of — to Quisquater. The
folding optimization of REDC described §2.4.2 (Subquadratic Montgomery
Reduction) is an LSB-extension of the algorithm describethe context of
Barrett’s algorithm by Hasenplaugh, Gaubatz, and G&E}[]Amongst the
algorithms not covered in this book, we mention the “bigannodular multi-
plication” of Kaihara and Takadﬂi%], which involves pemiing both MSB-
and LSB-division in parallel.

The description of McLaughlin’s algorithm i#2.4.3 follows ILl_ﬁ_b Varia-
tion 2]; McLaughlin’s algorithm was reformulated in a potmial context by
Mihailescu].

78 Modular arithmetic and the FFT

Many authors have proposed FFT algorithms, or improvemeafrgsich al-
gorithms, and applications such as fast computation of @atiens. Some
references are Aho, Hopcroft, and Ullman [3]; Nussbaur@];lBorodin
and Munro [L_ab], who describe the polynomial approach; Vaan_@] for
the linear algebra approach; and PoII@lSS} for the FHar diwite fields.
Rader[Ll_8_|7] considered the case where the number of datéspsia prime,
and WinogradﬁO] generalized Rader’s algorithm to primwers. Bluestein’s
algorithm Eﬁb] is also applicable in these cases. In Bems{@, §23] the
reader will find some historical remarks and several nicdiegons of the
FFT.

The Sclbnhage—Strassen algorithm first appeared |£| [199]. Regentl
Furer @] has proposed an integer multiplication algoritfait is asymptoti-
cally faster than the Sémhage—Strassen algorithniirer's algorithmalmost
achieves the conjectured best possi(e log n) running time.

Concerning special moduli, Percival consider:%ElSS]dhseN =a+b,
where botha andb are highly composite; this is a generalization of the case
N = 3" £ 1. The pseudo-Mersenne primes 4.4 are recommended in
the National Institute of Standards and Technology (NIBigital Signature
Standarc{@]. See also the book by Hankerson, Menezes, and Van@ [

Algorithm Multiplelnversion — also known as “batch inversion” — is due
to Montgomery]. The application of Barrett’s algoritHor an implicitly
invariant divisor was suggested by Granlund.

Modular exponentiation and cryptographic algorithms &sctibed in much
detail in the book by Menezes, van Oorschot, and Vansiort @Bapter 14].
A detailed description of the best theoretical algorithmigh references, can
be found in BernsteirL_[_iB]. When both the modulus and basenzegiant,
modular exponentiation witlk-bit exponent and:-bit modulus can be per-
formed in timeO((k/log k)M (n)), after a precomputation aP(k/log k)
powers in timeO (kM (n)). Take for examplé = 2*/! in Note 14.112 and
Algorithm 14.109 of], witht logt ~ k, where the powerabi mod N
for 0 < ¢ < t are precomputed. An algorithm of same complexity using a
DBNS (Double-Base Number System) was proposed by Dimifiaiien, and
Miller [@], however with a larger table ¢d(k?) precomputed powers.

Original papers on Booth recoding, SRT division, etc., &minted in the
book by Swartzlande@Z].

A quadratic algorithm for CRT reconstruction is discussedohen |E|3];
Moller gives some improvements in the case of a small numismafl moduli
known in advancmn AlgorithrmtegerToRNS can be found in Borodin
and Moenck@]. The explicit Chinese remainder theoremisrapplications
to modular exponentiation are discussed by Bernstein arehSon in@].

3
Floating-point arithmetic

This chapter discusses the basic operations — additiomrasdb
tion, multiplication, division, square root, conversioroa arbi-
trary precision floating-point numbers, as Chapler 1 doesrfo
bitrary precision integers. More advanced functions siglela
ementary and special functions are covered in Chdpter 4 Thi
chapter largely follows the IEEE 754 standard, and extenis i

a natural way to arbitrary precision; deviations from IEE&7
are explicitly mentioned. By default, IEEE 754 refers to 2088
revision, known as IEEE 754-2008; we write IEEE 754-1985
when we explicitly refer to the 1985 initial standard. Tapic
not discussed here include: hardware implementationsg-fixe
precision implementations, special representations.

3.1 Representation

The classical non-redundant representation of a floatoigtprumberz in
radix 3 > 1 is the following (other representations are discussefi8):

x=(=1)°-m-[° (3.1)

where(—1)*%, s € {0, 1}, is thesign m > 0 is thesignificand and the integer
e is theexponenof z. In addition, a positive integer defines therecisionof
x, which means that the significamad contains at most significant digits in
radix (.

An important special case is = 0 representing zero. In this case, the sign
s and exponent are irrelevant and may be used to encode other information

(see for examplg3.1.3).

Form # 0, several semantics are possible; the most common ones are:

80 Floating-point arithmetic

e 371 <m < 1,thenpe~! < |z| < . In this casem is an integer multiple
of f~". We say that theinit in the last placeof = is 5", and we write
ulp(z) = g¢~™. For examplex = 3.1416 with radix 5 = 10 is encoded
by m = 0.31416 ande = 1. This is the convention that we will use in this
chapter.

e 1 <m < 3, thens® < |z| < B¢, andulp(z) = BT, With radix ten
the numbern: = 3.1416 is encoded byn = 3.1416 ande = 0. This is the
convention adopted in the IEEE 754 standard.

e We can also use an integer significadtt ! < m < 37, thenget"—1 <
lz| < pet™, andulp(xz) = 3. With radix ten the number = 3.1416 is
encoded byn = 31416 ande = —4.

Note that in the above three cases, there is only one possiilesentation of
a non-zero floating-point number: we havesaonicalrepresentation. In some
applications, it is useful to relax the lower bound on nomze, which in the
three cases above gives respectively m < 1,0 < m < 3, and0 < m <
8", with m an integer multiple ofs*=", <t1=", and1 respectively. In this
case, there is no longer a canonical representation. Fomggawith an integer
significand and a precision of five digits, the numBdari00 might be encoded
by (m = 31400,e = —4), (m = 03140,e = —3), or (m = 00314,e = —2).
This non-canonical representation has the drawback teamtbst significant
non-zero digit of the significand is not known in advance. Wihigue encoding
with a non-zero most significant digit, i.en = 31400, e = —4) here, is called
thenormalized- or simplynormal— encoding.

The significand is also sometimes called thentissaor fraction. The above
examples demonstrate that the different significand seosaobrrespond to
different positions of the decimal (or radi® point, or equivalently to different
biasesof the exponent. We assume in this chapter that both the fadind the
significand semantics are implicit for a given implememtatiand thus are not
physically encoded.

The words “base” and “radix” have similar meanings. Foritfawe reserve
“radix” for the constani3 in a floating-point representation, suchas](3.1). The
significandm and exponent might be stored in a different base, as discussed
below.

3.1.1 Radix choice

Most floating-point implementations use radix = 2 or a power of two,
because this is convenient and efficient on binary compukensa radixs,
which is not a power o2, two choices are possible:

3.1 Representation 81

e Store the significand in bagg or more generally in basg* for an integer
k > 1. Each digit in basg* requires[k g 3] bits. With such a choice, indi-
vidual digits can be accessed easily. With= 10 andk = 1, this is the “Bi-
nary Coded Decimal” or BCD encoding: each decimal digit [gresented
by four bits, with a memory loss of about 17% (sirigél0)/4 ~ 0.83). A
more compact choice is radid?, where three decimal digits are stored in
ten bits, instead of in2 bits with the BCD format. This yields a memory
loss of only 0.34% (sinci(1000)/10 ~ 0.9966).

e Store the significand in binary. This idea is used in IntellaaBy-Integer
Decimal (BID) encoding, and in one of the two decimal encgdim IEEE
754-2008. Individual digits can not be accessed directiywe can use effi-
cient binary hardware or software to perform operationshersignificand.

A drawback of the binary encoding is that, during the additbtwo arbitrary-
precision numbers, it is not easy to detect if the significexceeds the max-
imum values™ — 1 (when considered as an integer) and thus if rounding is
required. Eithep3” is precomputed, which is only realistic if all computations
involve the same precisiom, or it is computed on the fly, which might result
in increased complexity (see Chagdier 1 §8db5.1).

3.1.2 Exponent range

In principle, we might consider an unbounded exponent. heowords, the
exponent might be encoded by an arbitrary-precision integer (se@feid).
This would have the great advantage that no underflow or avedbuld occur
(see below). However, in most applications, an exponeradgtin32 bits is
more than enough: this enables us to represent values upio 1dl§*¢ 456 993
for 8 = 2. Aresult exceeding this value most probably corresponds terror
in the algorithm or the implementation. Using arbitrarggision integers for
the exponent induces an extra overhead that slows down giienmentation in
the average case, and it usually requires more memory ® stmh number.

Thus, in practice the exponent nearly always has a limitedea,,;, <
e < emax- We say that a floating-point number rispresentabléf it can be
represented in the forr—1)° - m - 3° with epin < € < epax. The set of
representable numbers clearly depends on the significandrgies. For the
convention we use here, i.67! < m < 1, the smallest positive representable
floating-point number ige=i=—1 and the largest one j§max (1 — 377).

Other conventions for the significand yield different exponranges. For
example, the double-precision format — calbédary64 in IEEE 754-2008 —
hasenin = —1022, emax = 1023 for a significand if1, 2); this corresponds to

82 Floating-point arithmetic

emin = —1021, epmax = 1024 for a significand in1/2, 1), ande,i, = —1074,
emax = 971 for an integer significand if2°2, 2°%).

3.1.3 Special values

With a bounded exponent range, if we want a complete aritisgnet need
some special values to represent very large and very smaésiavery small
values are naturally flushed to zero, which is a special nuintie sense that
its significand ism = 0, which is not normalized. For very large values, it
is natural to introduce two special valueso and+oco, which encode large
non-representable values. Since we have two infinities niatural to have two
zeros—0 and+-0, for examplel /(—oc0) = —0 and1/(+oc0) = +0. This is the
IEEE 754 choice. Another possibility would be to have only dnfinity and
one zerd), forgetting the sign in both cases.

An additional special value Mot a NumbefNaN), which either represents
an uninitialized value, or is the result of amvalid operation like/—1 or
(400) — (+00). Some implementations distinguish between different &iofd
NaN, in particular IEEE 754 definessgnalingandquietNaNs.

3.1.4 Subnormal numbers

Subnormal numberare required by the IEEE 754 standard, to allow what is
called gradual underflonbetween the smallest (in absolute value) non-zero
normalized numbers and zero. We first explain what subnonualbers are;
then we will see why they are not necessary in arbitrary preci

Assume we have an integer significand]i¥ !, 37), wheren is the pre-
cision, and an exponent imin, €max). Write n = gmin. The two smallest
positive normalized numbers are = 3"~'n andy = ("' + 1)n. The
differencey — x equalsn, which is tiny compared ta:. In particular,y — x
can not be represented exactly as a normalized number (ags@fT! > 1)
and will be rounded to zero in “rounding to nearest” mo@&1.9). This has
the unfortunate consequence that instructions such as

if (y !I= x) then
z = 1.0/(y - x);

will produce a “division by zero” error when executidgd/(y - X)

Subnormal numbers solve this problem. The idea is to relexctimdition
Bn—1 < m for the exponent,,;,. In other words, we include all numbers
of the formm - gémin for 1 < m < A"~ in the set of valid floating-point

3.1 Representation 83

numbers. We could also permit = 0, and then zero would be a subnormal
number, but we continue to regard zero as a special case.

Subnormal numbers are all positive integer multiplestgf with a multi-
plier m, 1 < m < p»!. The difference between = A" 'y and
y = ("' + 1)n is now representable, since it equalghe smallest positive
subnormal number. More generally, all floating-point nurstage multiples of
7, likewise for their sum or difference (in other words, opinas in the sub-
normal domain correspond to fixed-point arithmetic). If suen or difference
is non-zero, it has magnitude at legstand thus can not be rounded to zero.
Therefore, the “division by zero” problem mentioned aboeesinot occur
with subnormal numbers.

In the IEEE 754 double-precision format — callédary64 in IEEE 754-
2008 — the smallest positive normal numbezd°22, and the smallest positive
subnormal number 81974, In arbitrary precision, subnormal numbers sel-
dom occur, since usually the exponent range is huge compathd expected
exponents in a given application. Thus, the only reasomfiptémenting sub-
normal numbers in arbitrary precision is to provide an esi@mof IEEE 754
arithmetic. Of course, if the exponent range is unboundaeh there is ab-
solutely no need for subnormal numbers, because any norfleating-point
number can be normalized.

3.1.5 Encoding

The encodingof a floating-point numbex = (—1)® - m - 3¢ is the way the
valuess, m, ande are stored in the computer. Remember that implicit, i.e.
is considered fixed for a given implementation; as a consemjeve do not
consider herenixed radixoperations involving numbers with different radices
B andg’.

We have already seen that there are several ways to encodigtiifecand
m wheng is not a power of two, in basg¥ or in binary. For normal numbers
inradix2, i.e.2"~! < m < 2", the leading bit of the significand is necessarily
one, thus we might choose not the encode it in memory, to gaiexta bit
of precision. This is called thieplicit leading bit and it is the choice made
in the IEEE 754 formats. For example, the double-precistmmét has a sign
bit, an exponent field of 1 bits, and a significand af3 bits, with only52 bits
stored, which gives a total 6f1 stored bits:

sign | (biased) exponent significand
(1 bit) (11 bits) (52 bits, plus implicit leading bit)

84 Floating-point arithmetic

A nice consequence of this particular encoding is the fahowLetx be a
double-precision number, neither subnormado, NaN, nor the largest normal
number in absolute value. Consider thiebit encoding ofr as a64-bit integer,
with the sign bit in the most significant bit, the exponens it the next most
significant bits, and the explicit part of the significand le iow significant
bits. Adding1 to this 64-bit integer yields the next double-precision number
to =, away from zero. Indeed, if the significandis smaller thar2®® — 1, m
becomesn + 1, which is smaller tha®3. If m = 253 — 1, then the lowest
52 bits are all set, and a carry occurs between the significatdl died the
exponent field. Since the significand field becomes zero,dhesignificand is
252, taking into account the implicit leading bit. This corresps to a change
from (253 — 1) - 2¢ to 252 . 2¢*1, which is exactly the next number away from
zero. Thanks to this consequence of the encoding, an integeparison of
two words (ignoring the actual type of the operands) shoulé the same
result as a floating-point comparison, so it is possible to sormal positive
floating-point numbers as if they were integers of the samgtke(©4-bit for
double precision).

In arbitrary precision, saving one bit is not as crucial adiied (small)
precision, where we are constrained by the word size (ys@albr 64 bits).
Thus, in arbitrary precision, it is easier and preferablericode the whole
significand. Also, note that having an “implicit bit” is nobgsible in radix
(6 > 2, since for a normal number the most significant digit mighketseveral
values, froml to 5 — 1.

When the significand occupies several words, it can be storedlinked
list, or in an array (with a separate size field). Lists ardezas extend, but
accessing arrays is usually more efficient because feweromyeraferences
are required in the inner loops and memory locality is better

The signs is most easily encoded as a separate bit field, with a norntimega
significand. This is thesign-magnitudeencoding. Other possibilities are to
have a signed significand, using either one’s complememtais tomplement,
but in the latter case a special encoding is required for, zkitois desired to
distinguish-+0 from —0. Finally, the exponent might be encoded as a signed
word (for example, typéong in the C language).

3.1.6 Precision: local, global, operation, operand

The different operands of a given operation might have wdffe precisions,
and the result of that operation might be desired with yetlaroprecision.
There are several ways to address this issue.

3.1 Representation 85

e The precision, say, is attached to a given operation. In this case, operands
with a smaller precision are automatically converted t@isienn. Operands
with a larger precision might either be left unchanged, ancded to preci-
sionn. In the former case, the code implementing the operation baiable
to handle operands with different precisions. In the latse, the round-
ing mode to shorten the operands must be specified. Notehisatound-
ing mode might differ from that of the operation itself, arfmht operand
rounding might yield large errors. Consider for example= 1.345 and
b = 1.234567 with a precision of four digits. I is taken as exact, the exact
value ofa — b equals0.110433, which when rounded to nearest becomes
0.1104. If b is first rounded to nearest to four digits, we get 1.235, and
a — b = 0.1100 is rounded to itself.

e The precisiom is attached to each variable. Here again two cases may occur.
If the operation destination is part of the operation inpus in
sub(c, a, b) , which means: < round(a — b), then the precision of
the result operand is known, and thus the rounding precision is known
in advance. Alternatively, if no precision is given for thesult, we might
choose the maximal (or minimal) precision from the inputrapes, or use
a global variable, or request an extra precision parametehé operation,
asinc = sub(a, b, n)

Of course, these different semantics are inequivalentnaenyyield different
results. In the following, we consider the case where eadable, including
the destination variable, has its own precision, and norpueding or post-
rounding occurs. In other words, the operands are considseact to their full
precision.

Rounding is considered in detail #8.1.9. Here we define what we mean by
thecorrect roundingof a function.

Definition 3.1 Leta, b, ... be floating-point numberg, a mathematical func-
tion, n > 1 an integer, ando a rounding mode. We say thatis the cor-
rect roundingof f(a,b,...), and we writec = o,(f(a,b,...)), if ¢ is the
floating-point number closest tf(a, b, ...) in precisionn and according to
the given rounding mode. In case several numbers are at thee ghstance
from f(a, b, ...), the rounding mode must define in a deterministic way which
one is “the closest”. When there is no ambiguity, we oménd write simply

c=o(f(a,b,...).

86 Floating-point arithmetic

3.1.7 Link to integers

Most floating-point operations reduce to arithmetic on tlgeificands, which
can be considered as integers as seen at the beginning okdbimn.
Therefore, efficient arbitrary precision floating-poinitlametic requires effi-
cient underlying integer arithmetic (see Chapier 1).

Conversely, floating-point numbers might be useful for thelementation
of arbitrary precision integer arithmetic. For example, m&ght use hard-
ware floating-point numbers to represent an arbitrary preciinteger. Indeed,
since a double-precision floating-point number habits of precision, it can
represent an integer up &% — 1, and an integerd can be represented as
A=qap 1" '+ +a;8 + -+ a1 + ag, whereg = 2°3, and thea;
are stored in double-precision data types. Such an encedingopular when
most processors we2-bit, and some had relatively slow integer operations
in hardware. Now that most computers &#ebit, this encoding is obsolete.

Floating-pointexpansionsre a variant of the above. Instead of storing
and having3? implicit, the idea is to directly store;3’. Of course, this only
works for relatively smalk, i.e. whenever;3’ does not exceed the format
range. For example, for IEEE 754 double precision, the makinteger preci-
sion is1024 bits. (Alternatively, we might represent an integer as atiplel of
the smallest positive number 1974, with a corresponding maximal precision
of 2098 bits.)

Hardware floating-point numbers might also be used to imptdrthe fast
Fourier transform (FFT), using complex numbers with flogdpoint real and

imaginary part (se§3.3.1).

3.1.8 Ziv's algorithm and error analysis

A rounding boundarys a point at which the rounding functierix) is discon-
tinuous.

In fixed precision, for basic arithmetic operations, it isn× possible
to design one-pass algorithms that directly compute a cbroeinding. How-
ever, in arbitrary precision, or for elementary or speaialdtions, the classical
method is to use Ziv’s algorithm:

1. we are given an input, a target precision, and a rounding mode;

2. compute an approximatiopwith precisionm > n, and a corresponding
error bounct such thaty — f(z)| < ¢;

3. if [y — e,y + €] contains a rounding boundary, increasend go to step 2;

4. output the rounding af, according to the given rounding mode.

3.1 Representation 87

The error bound at step 2 might be computed eitheepriori, i.e. fromz and

n only, ordynamically i.e. from the different intermediate values computed by
the algorithm. A dynamic bound will usually be tighter, butlwequire extra
computations (however, those computations might be dolmniprecision).

Depending on the mathematical function to be implementednight pre-
fer an absolute or a relative error analysis. When computingladive error
bound, at least two techniques are available: we might sspifee errors in
terms of units in the last place (ulps), or we might expressentlin terms of
true relative error. It is of course possible in a given asialyo mix both kinds
of errors, but in general a constant factor — the ratlixis lost when converting
from one kind of relative error to the other kind.

Another important distinction igorward versusbackwarderror analysis.
Assume we want to computie= f(x). Because the input is rounded, and/or
because of rounding errors during the computation, we naigually compute
y' ~ f(«'). Forward error analysis will boung’ — y| if we have a bound on
|’ — x| and on the rounding errors that occur during the computation

Backward error analysis works in the other direction. If tbenputed value
isy’, then backward error analysis will give us a numbsuch that, fosome
2’ in the ball|2’ — 2| < §, we havey’ = f(2’). This means that the error is
no worsethan might have been caused by an erraf iofthe input value. Note
that, if the problem is ill-conditioned, might be small even ify’ — y| is large.

In our error analyses, we assume that no overflow or underfloours,
or equivalently that the exponent range is unbounded, sirhes contrary is
explicitly stated.

3.1.9 Rounding

There are several possible definitions of rounding. For @taprobabilistic
rounding— also calledstochastic rounding— chooses at random a rounding
towards+oo or —oo for each operation. The IEEE 754 standard defines four
rounding modes: towards zerepo, —oo and to nearest (with ties broken to
even). Another useful mode is “rounding away from zero”,atiounds in the
opposite direction from zero: a positive number is roundedards+oo, and a
negative number towardsoo. If the sign of the result is known, all IEEE 754
rounding modes might be converted to either rounding toastarounding
towards zero, or rounding away from zero.

Theorem 3.2 Consider a floating-point system with radixand precisiomn.
Letu be the rounding to nearest of some reallhen the following inequalities
hold: [u — | < 3 ulp(w), [u— | < 38" "[ul, |u—a| < 35" "|z|.

88 Floating-point arithmetic

Proof. Forz = 0, necessarily, = 0, and the statement holds. Without loss of
generality, we can assumendz positive. The first inequality is the definition
of rounding to nearest, and the second one follows frdp{u) < ' "u.

(In the case5 = 2, it gives |u — z| < 27™|ul.) For the last inequality, we
distinguish two cases: if < z, it follows from the second inequality. if < u,
then if z andu have the same exponent, I8! < = < u < 3¢ then
ulp(u) = B¢~ < B~"z. The remaining case |8°~! < z < u = 3°. Since
the floating-point number precedinyj is 5¢(1 — ~"), andz was rounded to
nearest, we have: — z| < 5¢~"/2 here too. 0

In order to round according to a given rounding mode, we m@dass fol-
lows:

1. first round as if the exponent range was unbounded, withitles rounding
mode;

2. if the rounded result is within the exponent range, retbimiresult;

3. otherwise raise the “underflow” or “overflow” exceptiomdareturn+0 or
+oo accordingly.

For example, assume radix with precision4, e, = 3, with 2 = 0.9234 -
103,y = 0.7656-10%. The exact sum+y equalg).99996-103. With rounding
towards zero, we obtaif.9999 - 103, which is representable, so there is no
overflow. With rounding to nearest, + y rounds t00.1000 - 10*, where the
exponend exceeds:,,.x = 3, SO we geti-co as the result, with an overflow.
In this model, overflow depends not only on the operands, lat an the
rounding mode.

The “round to nearest” mode of IEEE 754 rounds the result aff@aration
to the nearest representable number. In case the resulbpEaation is exactly
halfway between two consecutive numbers, the one with kgsificant bit
zero is chosen (for radi®). For example].10115 is rounded with a precision
of four bits to1.1104, as is1.11015. However, this rule does not readily extend
to an arbitrary radix. Consider for example radix= 3, a precision of four
digits, and the number212.111...3. Both 12123 and 12203 end in an even
digit. The natural extension is to require the whole sigaiiig to be even, when
interpreted as an integer "1, 3" — 1]. In this setting,(1212.111...)3
rounds to(1212)5 = 501. (Note that3™ is an odd number here.)

Assume we want to correctly round a real number, whose biegugnsion
is2¢-0.1by...bybyy1 ..., ton bits. It is enough to know the values of=
bn11 — called theround bit— and that of thesticky bits, which is zero when
bniobnis ... is identically zero, and one otherwise. Tablel 3.1 shows fow t
correctly round givernr, s, and the given rounding mode; rounding @o

3.1 Representation 89

being converted to rounding towards zero or away from zeroomling to the
sign of the number. The entry,;” is for round to nearest in the case of a tie:
if b, = 0, it will be unchanged, but i6,, = 1, we add one (thus changirbg

to zero).

r s | towardszero tonearest away from zefo
0 0 0 0 0
0 1 0 0 1
1 0 0 bn 1
1 1 0 1 1

Table 3.1 Rounding rules according to the round biand
the sticky bits: a “ 0” entry means truncate (round towards
zero), a “1” means round away from zero (add one to the
truncated significand).

In general, we do not have an infinite expansion, but a finigg@pmationy
of an unknown real value. For exampley might be the result of an arithmetic
operation such as division, or an approximation to the vaféetranscendental
function such asxp. The following problem arises: given the approximation
y, and a bound on the errdy — |, is it possible to determine the correct
rounding ofz? AlgorithmRoundingPossiblereturnstrue iff it is possible.

Algorithm 3.1 RoundingPossible
Input: a floating-point numbey = 0.1ys . . . y,,, @ precisiom < m, an error
bounde = 2%, a rounding mode
Output: truewheno,, (z) can be determined fay — z| < ¢
if & < n+ 1 thenreturnfalse
if o is to nearesthenr — 1 elser «— 0
if ypi1 =randypio=--- =y, =0thens — 0 elses — 1
if s = 1 thenreturntrue elsereturnfalse

Proof of correctness. Since rounding is monotonic, it is possible to determine
o(z) exactly wheno(y — 27%) = o(y + 27%), or in other words when the
interval [y — 27%, y + 27*] contains no rounding boundary (or only one as
y—2"%ory+27F).

If & < n + 1, then the interva[—2~% 27*] has width at least—", and
thus contains at least one rounding boundary in its inteaptwo rounding
boundaries, and it is not possible to round correctly. In ttase of

90 Floating-point arithmetic

directed rounding (resp. rounding to nearest}, # 0, the approximatiory is
representable (resp. the middle of two representable nignhbe precision
n, and it is clearly not possible to round correctly.sif= 1, the interval
[y — 2%,y +27%] contains at most one rounding boundary, and, if so, it is one
of the bounds; thus, it is possible to round correctly. 0

The double rounding problem

When a given real value is first rounded to precisiom and then to precision

n < m, we say that a “double rounding” occurs. The “double rouggob-

lem” happens when this latter value differs from the directrding ofz to the
smaller precisiom, assuming the same rounding mode is used in all cases, i.e.
when

on(om(x)) # on(x).

The double rounding problem does not occur for directed dowgymodes.
For these rounding modes, the rounding boundaries at therlarecisionn
refine those at the smaller precisionthus all real values that round to the
same valug at precisionn also round to the same value at precisignamely
on(y).

Consider the decimal value= 3.14251. Rounding to nearest to five digits,
we gety = 3.1425; roundingy to nearest-even to four digits, we gel42,
whereas direct rounding afwould give3.143.

With rounding to nearest mode, the double rounding problaefy occurs
when the second rounding involves the even-rule, i.e. theeva= o,,(x) is
a rounding boundary at precisien Otherwisey has distance at least one ulp
(in precisionm) from a rounding boundary at precisianand sincgy — x| is
bounded by half an ulp (in precision), all possible values far round to the
same value in precision.

Note that the double rounding problem does not occur withwalys of
breaking ties for rounding to nearest (Exergisé 3.2).

3.1.10 Strategies

To determine the correct rounding ¢ifz) with n bits of precision, the best
strategy is usually to first compute an approximatjdo f () with a working
precision ofm = n+ h bits, with i relatively small. Several strategies are pos-
sible in Ziv's algorithm §3.1.8) when this first approximatignis not accurate
enough, or too close to a rounding boundary:

e Compute the exact value gf(z), and round it to the target precision
This is possible for a basic operation, for exampler) = 22, or more

3.2 Addition, subtraction, comparison 91

generallyf(z,y) = = + y orz x y. Some elementary functions may yield
an exactly representable output too, for exampgle25 = 1.5. An “exact
result” test after the first approximation avoids possibipecessary further
computations.

e Repeat the computation with a larger working precisioh= n + h'. As-
suming that the digits of (x) behave “randomly” and thay’(z)/f(x)| is
not too large, using’ = lg n is enough to guarantee that rounding is possi-
ble with probabilityl — O(1/n). If rounding is still not possible, because the
k' last digits of the approximation encofl®r 2" — 1, we can increase the
working precision and try again. A check for exact resultargantees that
this process will eventually terminate, provided the aitipon used has the
property that it gives the exact result if this result is eggntable and the
working precision is high enough. For example, the squaoé atgorithm
should return the exact result if it is representable (sg@AthmFPSqrt in

§3.5, and also Exercige 3.3).

3.2 Addition, subtraction, comparison

Addition and subtraction of floating-point numbers opefeten the most sig-
nificant digits, whereas integer addition and subtracti@mt rom the least
significant digits. Thus completely different algorithme &volved. Also, in
the floating-point case, part or all of the inputs might hasempact on the
output, except in the rounding phase.

In summary, floating-point addition and subtraction areerthfficult to im-
plement than integer addition/subtraction for two reasons

e Scaling due to the exponents requires shifting the sigmifisdefore adding
or subtracting them — in principle, we could perform all ggems using
only integer operations, but this might require huge integfor example
when addingl and2~1000,

e As the carries are propagated from least to most significigitsgwe may
have to look at arbitrarily low input digits to guaranteereat rounding.

In this section, we distinguish between “addition”, wheoghboperands to
be added have the same sign, and “subtraction”, where therge to be
added have different signs (we assume a sign-magnitudesemation). The
case of one or both operands zero is treated separatelg destription below
we assume that all operands are non-zero.

92 Floating-point arithmetic

3.2.1 Floating-point addition

Algorithm FPadd adds two binary floating-point numbérandc of the same
sign. More precisely, it computes the correct rounding ef ¢, with respect

to the given rounding mode. For the sake of simplicity, we assurbandc

are positivep > ¢ > 0. It will also be convenient to scaleandc so that
27—l < p < 27 and2™~! < ¢ < 2™, wheren is the desired precision of the
output, andn < n. Of course, if the inputé andc to Algorithm FPadd are
scaled by2*, then, to compensate for this, the output must be scalett by
We assume that the rounding mode is to nearest, towardsaeaaay from
zero (rounding tatoo reduces to rounding towards zero or away from zero,
depending on the sign of the operands).

Algorithm 3.2 FPadd
Input: b > ¢ > 0 two binary floating-point numbers, a precisiarsuch that
2n—1 < b < 27, and a rounding mode
Output: a floating-point number of precisionn and scalee such that
a-2¢°=o(b+c)

. splitb into by, + by whereb,, contains the: most significant bits ob.

split ¢ into ¢;, + ¢, wherec;, contains the most significant bits of and
ulp(cp,) = ulp(by) =1 > ¢, might be zero

N =

3 ap<—by+cp, e<—0

4: (c,r,8) «— by + ¢y > see the text
5: (a,t) « (ap + ¢ + round(o, r, 5), etc.) > for ¢ see Tabl€3]2 (upper)
6: if @ > 2™ then

7 (a,e) « (round2(o, a,t),e + 1) > see Tabl€3]12 (lower)
8 if a = 2" then (a,e) — (a/2,e +1)

9: return(a, e).

The values ofound(o, r, s) andround2(o, a, t) are given in Tablg=3]2. We
have simplified some of the expressions given in Table 3.2.ekample, in
the upper half of the table, Vv s means) if » = s = 0, and1 otherwise. In
the lower half of the table2|(a + 1)/4] is (a — 1)/2 if a = 1 mod 4, and
(a+1)/21if a = 3 mod 4.

At sted? of AlgorithmFPadd, the notatior{c, r, s) < b,+c, means that is
the carry bit ofb, + ¢, r the round bit, and the sticky bit;c, r, s € {0, 1}. For
rounding to nearest,= sign(b+c—a) is aternary value, which is respectively
positive, zero, or negative whenis smaller than, equal to, or larger than the
exact sum + c.

Theorem 3.3 AlgorithmFPadd is correct.

3.2 Addition, subtraction, comparison 93

o r s round(o, 7, s) t
towards0 any any 0 -
away from0 any any rVs -
to nearest 0 any 0 s
to nearest 1 0 0/1 (even rounding) | +1/—1
to nearest 1 #0 1 -1
o a mod 2 t round2(o, a, t)
any 0 any a/2
towards0 1 any (a—1)/2
away from0 1 any (a+1)/2
to nearest 1 0 2[(a+1)/4]
to nearest 1 +1 (a+1t)/2

Table 3.2 Rounding rules for addition.

Proof. We have2"~! < b < 27 and2™ ! < ¢ < 2™, with m < n. Thus,
by, andcy, are the integer parts éfandc, b, andc, their fractional parts. Since
b > c,we have:, < by, and2"~! < b, < 2"—1;thus 2"~ ! < q; <271 -2,
and, at stepl®" ! < a < 2"*L If o < 27, ais the correct rounding df + c.
Otherwise, we face the “double rounding” problem: roundirdpwn ton bits
will give the correct result, except wheris odd and rounding is to nearest. In
that case, we need to know if the first rounding was exact, famak in which
direction it was rounded; this information is encoded in thenary valuet.
After the second rounding, we hagg=! < a < 27, 0

Note that the exponert, of the result lies betwees), (the exponent ob —
here we considered the cagse= n) ande;, + 2. Thus, no underflow can occur
in an addition. The case, = ¢, + 2 can occur only when the destination
precision is less than that of the operands.

3.2.2 Floating-point subtraction

Floating-point subtraction (of positive operands) is veiyilar to addition,
with the difference thatancellationcan occur. Consider for example the sub-
traction6.77823 — 5.98771. The most significant digit of both operands disap-
peared in the resuld.79052. This cancellation can be dramatic, as in
6.7782357934 — 6.7782298731 = 0.0000059203, where six digits were can-
celled.

94 Floating-point arithmetic

Two approaches are possible, assumingsult digits are wanted, and the
exponent difference between the inputd:is

e Subtract then — d most-significant digits of the smaller operand from the
n most-significant digits of the larger operand. If the rebalsn — e digits
with e > 0, restart withn + e digits from the larger operand arid + ¢) — d
from the smaller operand.

e Alternatively, predict the number of cancelled digits in the subtraction,
and directly subtract thén + e) — d most-significant digits of the smaller
operand from the, + e most-significant digits of the larger one.

Note that, in the first approach, we might have= n if all most-significant
digits cancel, and thus the process might need to be repsavedal times.

The first step in the second approach is usually cdéeding zero detec-
tion. Note that the number of cancelled digits might depend on the rounding
mode. For example;.778 — 5.7781 with a 3-digit result yields0.999 with
rounding toward zero, antl00 with rounding to nearest. Therefore, in a real
implementation, the definition efhas to be made precise.

In practice, we might consider + g and(n + g) — d digits instead ofn
andn — d, where they “guard digits” would prove useful (i) to decide the final
rounding, and/or (ii) to avoid another loop in caseg g.

Sterbenz’s theorem

Sterbenz’s theorem is an important result concerning figgpioint subtraction
(of operands of the same sign). It states that the roundiog isrzero in some
common cases. More precisely:

Theorem 3.4 (Sterbenz)If » andy are two floating-point numbers of same
precisionn, such that lies in the intervalz /2, 22] U [2x, /2], theny — z is
exactly representable in precisionif there is no underflow.

Proof. The caser = y = 0 is trivial, so assume that # 0. Sincey €
[x/2,2x] U [2z,2/2], x andy must have the same sign. We assume without
loss of generality that andy are positive, s@ € [z/2, 2z].

Assumer < y < 2x (the same reasoning appliesfof2 <y < z,i.e.y <
x < 2y, by interchanging: andy). Sincex < y, we haveulp(z) < ulp(y),
and thusy is an integer multiple ofilp(z). It follows thaty — x is an integer
multiple of ulp(x). Since0 < y — 2 < z, y — x is necessarily representable
with the precision ofc. 0

It is important to note that Sterbenz’s theorem applies for mdix 3; the
constan® in [z/2, 2z] has nothing to do with the radix.

3.3 Multiplication 95
3.3 Multiplication

Multiplication of floating-point numbers is calledshort product This reflects
the fact that, in some cases, the low part of the full prodddhe signifi-
cands has no impact — except perhaps for the rounding — onntilerdisult.
Consider the multiplication: x y, wherexz = ¢3¢ andy = mp/. Then
o(zy) = o(¢m)B+/, and it suffices to consider the case that ¢ andy = m
are integers, and the product is rounded at some weigfior ¢ > 0. Either
the integer product x m is computed exactly, using one of the algorithms
from Chaptef1L, and then rounded; or the upper part is cordglitectly using

a “short product algorithm”, with correct rounding. Thefdient cases that can
occur are depicted in Figufe 8.1.

v @) Q)

v (©)

Figure 3.1 Different multiplication scenarios, according to the input arpud
precisions. The rectangle corresponds to the full product of the inpatsly
(most significant digits bottom left), the triangle to the wanted short product.
Case (a): no rounding is necessary, the product being exact; lwasbg full
product needs to be rounded, but the inputs should not be; caseg@putz

with the larger precision might be truncated before performing a shodugt;
case (d): both inputs might be truncated.

An interesting question is: how many consecutive identiged can occur
after the round hit? Without loss of generality, we can raepbrthis question

96 Floating-point arithmetic

as follows. Given two odd integers of at masbits, what is the longest run
of identical bits in their product? (In the case of an evemigicand, we might
write it m = ¢2¢ with ¢ odd.) There is n@ priori bound except the trivial one
of 2n — 2 for the number of zeros, arith — 1 for the number of ones. For
example, with a precisiofi bits, 27 x 19 = (1 000 000 001),. More generally,
such a case corresponds to a factorizatio2?8f ' + 1 into two integers of,
bits, for example258 513 x 132913 = 23° + 1. Having2n consecutive ones
is not possible sincg?” — 1 can not factor into two integers of at mosbits.
Therefore, the maximal runs ha2e — 1 ones, for exampl@17 x 151 =
(111111111111 111), for n = 8. A larger example i849 583 x 647089 =
239 _ 1.

The exact product of two floating-point numbers3® and m/3¢ is
(mm’)3<t¢ . Therefore, if no underflow or overflow occurs, the problem re
duces to the multiplication of the significands and m’/. See Algorithm
FPmultiply .

The product at sted 1 ¢fPmultiply is ashort producti.e. a product whose
most significant part only is wanted, as discussed at theddtthis section. In
the quadratic range, it can be computed in about half thediragull product.
In the Karatsuba and Toom—Cook ranges, Mulders’ algoritamgain 10% to
20%; however, due to carries, implementing this algoritlomffoating-point
computations is tricky. In the FFT range, no better algaomitis known than
computing the full producinm’ and then rounding it.

Algorithm 3.3 FPmultiply
Input: = =m- 3% &’ =m'- 3¢, aprecisiom, a rounding mode
Output: o(za’) rounded to precision

1: m” <« o(mm’) rounded to precision

2: returnm’’ - gete’.

Hence, our advice is to perform a full productrefandm’, possibly after
truncating them ta + ¢ digits if they have more than + g digits. Hereg (the
number ofguard digitg should be positive (see Exerc[se]3.4).

It seems wasteful to multiply.-bit operands, producing 2n-bit product,
only to discard the low-order bits. Algorithm ShortProduct computes an
approximation to the short product without computing 2hebit full product.

It uses a threshold, > 1, which should be optimized for the given code base.

Error analysis of the short product. Consider twon-word normalized sig-
nificandsA and B that we multiply using a short product algorithm, where the
notationFullProduct (A, B) means the full integer produet - B.

3.3 Multiplication 97

Algorithm 3.4 ShortProduct
Input: integersA, B, andn, with0 < A, B < "
Output: an approximation tol B div 8"
Require: a threshold
if n < ng then returnFullProduct (A, B) div g™
choose: > n/2,0 —n—k
C « FullProduct (A div 3%, B div 8%) div g+~*
Cy « ShortProduct(A mod ¢, B div 3%, ()
Cs3 «+ ShortProduct(A div 4%, B mod 3¢, ¢)
returnCy + Cs + Cs.

Cy 4 Cy

Ch
Cs

B

Figure 3.2 Graphical view of AlgorithrBhortProduct:
the computed parts ar€, Cs, Cs, and the neglected
parts areCs, C%, C4 (most significant part bottom left).

Theorem 3.5 The valueC”’ returned by Algorithn8hortProduct differs from
the exact short product’ = AB div 8 by at mosB(n — 1)

C'<C<C'+3(n-1).

Proof. First, sinceA, B are non-negative, and all roundings are truncations,
the inequalityC’” < C follows.

Let A = >, a;" andB = 3_.b;37, where0 < a;,b; < (3. The pos-
sible errors come from: (i) the neglecte¢gh; terms, i.e. part€’s, C5, Cy of
Figure[3.2; (ii) the truncation while computin; ; (iii) the error in the recur-
sive calls forCy andCs.

We first prove that the algorithm accumulates all produgls with i + j >
n — 1. This corresponds to all terms on and below the diagonal in
Figure[3.2. The most significant neglected terms are thetekeft terms from
Cl andC4, respectivelyi,_1b, 1 andag_1b,—1. Their contribution is at most
2(3—1)23"~2. The neglected terms from the next diagonal contribute atmo

98 Floating-point arithmetic

4(B8 — 1)2p"3, and so on. The total contribution of neglected terms is thus
bounded by

(B—1)2B"[28 2 +48 3 +687 " +---] <28"

(the inequality is strict since the sum is finite).
The truncation error i is at most3™, thus the maximal differencgn)
betweenC' andC’ satisfies

g(n) < 3+2¢([n/2)),
which givess(n) < 3(n — 1), sinces(1) = 0. 0

REMARK: if one of the operands was truncated before applying Atgori
ShortProduct, simply add one unit to the upper bound (the truncated part is
less thanl, and thus its product by the other operand is bounde@)y

The complexityS(n) of Algorithm ShortProduct satifies the recurrence
S(n) = M(k)+2S(n—E). The optimal choice of depends on the underlying
multiplication algorithm. Assumingd/(n) ~ n® for « > 1 andk = yn, we
get

S(n) i

= T2 =y M

where the optimal value is = 1/2 in the quadratic rangey ~ 0.694 in
the Karatsuba range, and~ 0.775 in the Toom—Cook3-way range, giving
respectivelyS(n) ~ 0.5M(n), S(n) ~ 0.808M (n), andS(n) ~ 0.888M (n).
The ratioS(n)/M(n) — 1 asr — oo for Toom—Cookr-way. In the FFT
range, AlgorithmShortProduct is not any faster than a full product.

3.3.1 Integer multiplication via complex FFT

To multiply n-bit integers, it may be advantageous to use the fast Faugier
form (FFT, seefl.3.4,92.3). Note that three FFTs give the cyclic convolution
z = x x y defined by

ZE = Z TjYk—j mod N for 0 <k < N.
0<j<N

In order to use the FFT for integer multiplication, we haveptal the input
vectors with zeros, thus increasing the length of the tansfrom N to 2N.

FFT algorithms fall into two classes: those using numbeortbigcal proper-
ties (typically working over a finite ring, as {£.3.3), and those based on com-
plex floating-point computations. The latter, while not imavthe best asymp-
totic complexity, exhibit good practical behavior, beaatisey take advantage

3.3 Multiplication 99

of the efficiency of floating-point hardware. The drawbacktloé complex
floating-point FFT (complex FFT for short) is that, being &&®n floating-
point computations, it requires a rigorous error analyiswever, in some
contexts where occasional errors are not disastrous, weatagpt a small
probability of error if this speeds up the computation. Baraple, in the con-
text of integer factorization, a small probability of erisracceptable because
the result (a purported factorization) can easily be che@wd discarded if
incorrect.
The following theorem provides a tight error analysis:

Theorem 3.6 The complex FFT allows computation of the cyclic convotutio
z = x x y of two vectors of lengtlv = 2™ of complex values such that

12 = 2lloo < 2l llyll - (1 +)" (1 +eVE)* (1 + p)*" — 1), (3.2)

where|| - || and|| - || denote the Euclidean and infinity norms respectively,
eissuch thaf(a £ b) — (a £ b)] < ela £ 0|, |(ab)’ — (ab)| < e|ab]| for all
machine floats, b. Here . > |(w*)’ — (w*)|, 0 < k < N, w = ¢*™/N, and

()’ refers to the computed (stored) value(offor each expression.

For the IEEE 754 double-precision format, with rounding éarest, we have
e = 27°3, and if thew"* are correctly rounded, we can take= ¢/+/2. For a
fixed FFT sizeN = 2", the inequality[(3.R) enables us to compute a bobnd
on the components af andy that guaranteel$z’ — z||- < 1/2. If we know
that the exact result € Z", this enables us to uniquely round the components
of 2/ to 2. Table[3:B givesh = lg B, the number of bits that can be used
in a 64-bit floating-point word, if we wish to performn-bit multiplication
exactly (heren = 2"~1b). Itis assumed that the FFT is performed with signed
components ifZ N [-20—1, +20=1), see for exampleé [80, p. 161].

Note that Theorer 3.6 is a worst-case result; with roundingearest we
expect the error to be smaller due to cancellation — see BeEE.

Since 64-bit floating-point numbers have bounded precision, we cann
compute arbitrarily large convolutions by this method — lingit is about
n = 43. However, this corresponds to vectors of si¥e= 2" = 243 > 10!2,
which is more than enough for practical purposes — see aleBd 3.111.

3.3.2 The middle product

Given two integers o2n andn bits respectively, their “middle product” con-
sists of the middle: bits of their3n-bit product (see Figurie_3.3). The middle
product might be computed using two short products, one)(&hert product
between: and the high part of, and one (high) short product betweeand

100 Floating-point arithmetic

n b m n b m

1 25 25 11 18 18432

2 24 48 12 17 34816

3 23 92 13 17 69632

4 22 176 14 16 131072
5 22 352 15 16 262144
6 21 672 16 15 491520
7 20 1280 17 15 983040
8 20 2560 18 14 1835008
9 19 4864 19 14 3670016
10 19 9728 20 13 6815744

Table 3.3 Maximal numbeb of bits per IEEE 754
double-precision floating-point numbbkr nar y64 (53-bit
significand), and maximah for a plainm x m bit integer
product, for a given FFT siz2”, with signed components.

the low part ofy. However there are algorithms to comput@rax n middle
product with the same M (n) complexity as am x n full product (se€f3.8).

Y

Figure 3.3 The middle product af of n bits andy of 2n bits
corresponds to the middle region (most significant bits bottom
left).

Several applications benefit from an efficient middle pradO@ne of these
applications is Newton's metho@d4.2). Consider, for example, the reciprocal
iteration §4.2.2):z,41 = z; + x;(1 — z;y). If z; hasn bits, we have to
consider2n bits fromy in order to geRn accurate bits in:; ;. The product
x;y has3n bits, but if z; is accurate ton bits, then most significant bits
of z;y cancel withl, and then least significant bits can be ignored as they
only contribute noise. Thus, the middle productgfandy is exactly what is
needed.

3.4 Reciprocal and division 101

Payne and Hanek argument reduction

Another application of the middle product is Payne and Haargkiment re-
duction. Assumer = m - 2¢ is a floating-point number with a significand
0.5 < m < 1 of n bits and a large exponeaisayn = 53 ande = 1024 to fix
the ideas). We want to compuien = with a precision ofn bits. The classical
argument reduction works as follows: first comphite- | /7], then compute
the reduced argument

¥ =z —km. (3.3)

Aboute bits will be cancelled in the subtraction— (kr), and thus we need to
computekr with a precision of at least+ n bits to get an accuracy of at least
n bits forz’. Of course, this assumes thais known exactly — otherwise there
is no point in trying to computein x. Assumingl /7 has been precomputed to
precisione, the computation o costsM (e, n), and the multiplicatiork x =
costsM (e, e + n); therefore, the total cost is abaolif(¢) whene > n.

1/

Y

Figure 3.4 A graphical view of Payne and Hanek algorithm.

The key idea of the Payne and Hanek algorithm is to rewrite EZB) as
.
=7 (77 k) (3.4)

If the significand ofz hasn < e bits, only abou®n bits from the expansion
of 1/m will effectively contribute to thex most significant bits of’, namely
the bits of weight2=¢=" to 27", Let y be the correspondingn-bit part
of 1/x. Payne and Hanek’s algorithm works as follows: first mujtihie n-
bit significand ofz by y, keep then middle bits, and multiply by am-bit
approximation ofr. The total costis- (M (2n,n)+ M (n)), or even~2M (n)

if the middle product is performed in tim& (n), and thus independent ef

3.4 Reciprocal and division

As for integer operationsdf.4), we should try as far as possible to trade
floating-point divisions for multiplications, since thestf a floating-point

102 Floating-point arithmetic

multiplication is theoretically smaller than the cost ofigislon by a constant
factor (usually fron2 to 5, depending on the algorithm used). In practice, the
ratio might not even be constant, unless care is taken ireim@hting division.
Some implementations provide division with c€xtM (n) logn) or ©(n?).

When several divisions have to be performed with the samsativa well-
known trick is to first compute the reciprocal of the divis§8.Z.1); then each
division reduces to a multiplication by the reciprocal. Aadhdrawback is that
each division incurs two rounding errors (one for the remiat and one for
multiplication by the reciprocal) instead of one, so we carlamger guarantee
a correctly rounded result. For example, in base ten withdajiks, 3.0/3.0
might evaluate t©.999 999 = 3.0 x 0.333 333.

The cases of a single division, or several divisions with iying divisor,
are considered if3.4.2.

3.4.1 Reciprocal

Here we describe algorithms that compute an approximaigroeal of a pos-
itive floating-point number, using integer-only operations (see Chapier 1).
The integer operations simulate floating-point computegjdut all roundings
are made explicit. The numberis represented by an integdrof n words in
radix 8: a = B~ ™A, and we assumg” /2 < A, thus requiringl /2 < a < 1.
(This does not cover all cases for> 3, butif 37~1 < A < 37 /2, multiplying
A by some appropriate integér< g will reduce to the casg” /2 < A; then
it suffices to multiply the reciprocal dfa by k.)

We first perform an error analysis of Newton's meth§d.Z) assuming alll
computations are done with infinite precision, and thus ewglg roundoff
errors.

Lemma3.7 Letl/2<a < 1,p=1/a,z > 0,andz’ = z+ (1 —ax). Then

8
o

0<p—a' < Zz(p—2)
for somed € [min(x, p), max(x, p)].

Proof. Newton’s iteration is based on approximating the functigritb tan-
gent. Letf(t) = a — 1/t, with p the root of f. The second-order expansion of
f att = p with explicit remainder is

3.4 Reciprocal and division 103

for somef € [min(zx, p), max(x, p)]. Sincef(p) = 0, this simplifies to

S AN)
Substitutingf (t) = a — 1/t, f'(t) = 1/t> and f”(t) = —2/t3, it follows that
.132
p=z+a(l—ar)+ 25 (p—2)
which proves the claim. 0

Algorithm ApproximateReciprocal computes an approximate reciprocal.
The inputA is assumed to be normalized, i®!/2 < A < ™. The output
integerX is an approximation tg?" /A.

Algorithm 3.5 ApproximateReciprocal

Input: A = "7 a;8%, with0 < a; < and3/2 < a,_,
Output: X =" + z;:ol B with0 < z; < 8

1: if n < 2thenreturn[3?"/A] — 1
20— |(n—=1)/2],h—n—1¢

3 Ap Z?;ol aptif3

4. X, «— ApproximateReciprocal(Ay,)
5 T «— AX,,

6: while T > 3"*" do

7. (Xh,T)H(Xh—l,T—A)
g T« pnth T

9: T, — | TS|

10: U « T,, X},

11: return X, 3¢ + |[UB~2R .

Lemma 3.8 If 5 is a power of two satisfying > 8, andg"/2 < A < 57,
then the outpufX of AlgorithmApproximateReciprocal satisfies

AX < B8P < A(X +2).

Proof. Forn < 2, the algorithm returns{ = |3%"/A], unlessA = ("/2,
when it returnsX = 2™ — 1. In both cases, we haweX < %" < A(X +1);
thus, the lemma holds faor < 2.

Now considemn > 3. We havel = | (n—1)/2] andh = n—¢, and therefore
n = h + ¢andh > ¢. The algorithm first computes an approximate reciprocal
of the upperh words of A, and then updates it to words using Newton’s
iteration.

104 Floating-point arithmetic

After the recursive call at ling 4, we have by induction
ApXp < B < Ap(Xp +2). (3.6)

After the productl’ +— AX), and the while-loop at stefig[@-7, we still have
T = AX}, whereT andX;, may have new values, and in additidn< 57 +",
We also haves™t" < T 4 2A; we prove this by distinguishing two cases.
Either we entered the while-loop, then since the valué diecreased byl at
each loop, the previous valli® + A was necessarily 57", If we did not
enter the while-loop, the value @fis still AX},. Multiplying Eqn. [3.6) by3*
gives: 3" < ALBY(Xy, +2) < A(X), +2) = T + 2A. Thus, we have

T < g™ < T 424,

It follows thatT > g"*th —24 > gnth —25", As a consequence, the value of
A7 th—T computed at stégd 8 can not exc@ett — 1. The last lines compute the
productT;,, X}, whereT,, is the upper part df’, and put it most significant
words in the low partX, of the resultX.

Now let us perform the error analysis. Compared to Lerhmh:8stands
for X, 57", a stands forA3—", andz’ stands forX 5~". The while-loop en-
sures that we start from an approximation< 1/a, i.e. AX; < #"t". Then
Lemmd3.Y guarantees that< ' < 1/a if 2’ is computed with infinite preci-
sion. Here we have < 2/, sinceX = X, 3" + X,, whereX, > 0. The only
differences compared to infinite precision are:

e the low/ words from1 — ax (hereT at line[8) are neglected, and only its
upper pari{1 — ax);, (hereT,,) is considered,;
e the low2h — ¢ words fromz (1 — ax),;, are neglected.

Those two approximations make the computed value' af the value which
would be computed with infinite precision. Thus, for the caoneg valuer’,
we have

r <z <1/a.

From Lemmad_3]7, the mathematical error is bounded iy 3(p — z)? <
432" sincex? < 03 and|p — x| < 23~". The truncation from — az, which
is multiplied byz < 2, produces an error. 23~2". Finally, the truncation of
x(1 — ax)p, produces an error. ™. The final result is thus

¥ <p<a +6672 45
Assuming63~2" < 3=", which holds as soon & > 6 since2h > n, this
simplifies to
¥ <p<a+2877,

3.4 Reciprocal and division 105
which gives witha’ = X5~ andp = " /A

5271
X< —< X +2.
S < +
Since3 is assumed to be a power of two, equality can hold only wHen
itself a power of two, i.eA = ("/2. In this case, there is only one value
of X, that is possible for the recursive call, namély, = 25" — 1. In this
case, I = g"+" — 37 /2 before the while-loop, which is not entered. Then
g+t T = p" /2, which multiplied byX, gives (again)p”+" — 3" /2, whose
h most significant words aré — 1. Thus, X, = g* — 1, andX = 23" — 1.

REMARK. Lemma 3B might be extended to the cake! < A < 37, or to
a radixg which is not a power of two. However, we prefer to state a icstl
result with simple bounds.

COMPLEXITY ANALYSIS. Let I(n) be the cost to invert an-word num-
ber using AlgorithmApproximateReciprocal. If we neglect the linear costs,
we havel(n) ~ I(n/2) + M(n,n/2) + M(n/2), whereM (n,n/2) is the
cost of ann x (n/2) product — the product X,, at sted’b — andV/ (n/2)
the cost of ann/2) x (n/2) product — the product,, X;, at stedID. If the
n x (n/2) product is performed via tw¢n/2) x (n/2) products, we have
I(n) ~ I(n/2)+3M(n/2), whichyieldsI(n) ~ M (n)in the quadratic range,
~ 1.5M (n) in the Karatsuba rangey 1.704M (n) in the Toom—Cook-way
range, and-3M (n) in the FFT range. In the FFT range, arx (n/2) product
might be directly computed by three FFTs of length/2 words, amounting
to ~ M (3n/4); in this case, the complexity decreasest@.5M (n) (see the
comments at the end §P.3.3, page 58).

THE WRAP-AROUND TRICK. We now describe a slight modification of
Algorithm ApproximateReciprocal, which yields a complexity2M (n). In
the productd X, at ste b, Eqn[{316) tells us that the result approagdties,

or more precisely

Bt — 9™ < AX, < g 4237 (3.7)

Assume we use an FFT-based algorithm such as thérbelge—Strassen
algorithm that computes products modw&® + 1, for some integem <
(n,n+h). LetAXy, = UB™+V with0 <V < g™, It follows from Eqn.[37)
thatU = gnth—morU = gr+h=m — 1. LetT = AX}, mod (8™ + 1) be the
value computed by the algorithm. N&dv=V —U orT =V —U + (™ +1).

It follows that AX;, = T + U(B™ + 1) or AX), = T + (U — 1)(f™ + 1).

106 Floating-point arithmetic

Taking into account the two possible valued gfwe have
AXy =T+ (B"Th=™ —) (B™ + 1),

wheree € {0,1,2}. Sinces > 6, ™ > 45", thus only one value of yields
a value ofA X}, in the interval(gn*h — 287, gnth + 25m).

Thus, we can replace stEp 5 in AlgorithipproximateReciprocal by the
following code:
Computel’ = AX);, mod (8™ + 1) using FFTs with lengthn > n
T «— T + gnth 4 grth—m > the case = 0
while T > ™" + 2™ do

T—T—-("+1)

Assuming that we can take close ton, the cost of the producti X}, is
only about that of three FFTs of lengthi.e.~ M (n/2).

3.4.2 Division

In this section, we consider the case where the divisor cimbgtween succes-
sive operations, so no precomputation involving the divism be performed.
We first show that the number of consecutive zeros in thetresbibunded by
the divisor length, then we consider the division algorithma its complexity.
Lemmd3.ID analyses the case where the division operandsiacated, be-
cause they have a larger precision than desired in the r&gudtly, we discuss
“short division” and the error analysis of Barrett’s alghm.

A floating-point division reduces to an integer division adws. Assume
dividenda = ¢-3¢ and divisord = m-37, wherel, m are integers. Them/d =
(¢/m)Be=1. If k bits of the quotient are needed, we first determine a scaling
factor g such that3*~! < |¢89/m| < B*, and we divide/39 — truncated
if needed — bym. The following theorem gives a bound on the number of
consecutive zeros after the integer part of the quotient8f| by m.

Theorem 3.9 Assume we divide an-digit positive integer by an-digit pos-
itive integer in radixg, with m > n. Then the quotient is either exact, or its
radix # expansion admits at most— 1 consecutive zeros or ones after the
digit of weight(°.

Proof. We first consider consecutive zeros. If the expansion of tlwigntq
admitsn or more consecutive zeros after the binary point, we carewri:
q1+8""qo, whereg; is an integer and < ¢y < 1. If gy = 0, then the quotient
is exact. Otherwise, i is the dividend and is the divisor, we should have
a = q1d+ B~ "qod. Howevera andg; d are integers, andl < 3~ "qod < 1, SO
B~ "qod can not be an integer, and we have a contradiction.

3.4 Reciprocal and division 107

For consecutive ones, the proof is similar: write= ¢; — 3~ "qq, with
0 < ¢p < 1. Sinced < (3, we still haved < 37 "qod < 1. 0

Algorithm DivideNewton performs the division of two-digit floating-
point numbers. The key idea is to approximate the inversieeflivisor to half
precision only, at the expense of additional steps. At StediddleProduct
(g0, d) denotes the middle product gf andd, i.e. then/2 middle digits of
that product. At stepl2; is an approximation td /d;, and thus tol /d, with
precisionn /2 digits. Therefore, at stdgd 3o approximates:/d to aboutn /2
digits, and the uppenr/2 digits of god at sted# agree with those of The
valuee computed at st 4 thus equadg — ¢ to precision/2. It follows that
re ~ e/d agrees withyy — ¢/d to precisionn/2; hence, the correction term
(which is really a Newton correction) added in the last step.

Algorithm 3.6 DivideNewton

Input: n-digit floating-point numbers andd, with n even,d normalized
Output: an approximation of/d

cwrited = d1 82 + do with 0 < dy, dy < /2

r — ApproximateReciprocal(d,,n/2)

. qo < cr truncated tou/2 digits

. e « MiddleProduct (qo, d)

q < Qo — Te€.

In the FFT range, the cost of AlgorithBivideNewtonis ~2.5M (n): sted2
costs~ 2M (n/2) ~ M(n) with the wrap-around trick, and stepk[B—5 each
cost~ M (n/2), using a fast middle product algorithm for sfdp 4. By way of
comparison, if we computed a full precision inverse as inr@&#s algorithm
(see below), the cost would be3.5M (n). (See§3.8 for improved asymptotic
bounds on division.)

In the Karatsuba range, AlgorithBivideNewton costs~ 1.5M (n), and is
useful provided the middle product of sfdp 4 is performethwiist~ M (n/2).

In the quadratic range, AlgorithmivideNewton costs~ 2M/(n), and a clas-
sical division should be preferred.

When the requested precision for the output is smaller thatroftthe inputs
of a division, we have to truncate the inputs in order to a@midinnecessarily
expensive computation. Assume for example that we wanwvideltwo num-
bers of10, 000 bits, with al0-bit quotient. To apply the following lemma, just
replaceu by an appropriate value such that and B; have abou2n andn
digits respectively, where is the desired number of digits in the quotient; for
example, we might chooge= /* to truncate td: words.

108 Floating-point arithmetic

Lemma3.10 LetA,B,u € N*,2 < u < B.LetQ = |A/B], A1 = |A/n],
B, = LB/,LLJ, Q1 = LAl/BlJ If A/B < 2B, then

Q< <Q+2

The conditionA/B < 2B; is quite natural: it says that the truncated divisor
By should have essentially at least as many digits as the degii@ient.

Proof. Let A, = Q1B; + R;. We haved = A,u + Ay, B = By + By,
therefore

A AL[L-FAO A1ﬂ+A0 R1[L+A0

== < =Q, + LT

B Bip+ By Biu Biu
SinceR; < By andAp < p, Rip+ Ag < Byip, thusA/B < @1 + 1. Taking
the floor of each side proves, sin€e is an integer, tha®) < Q.

Now consider the second inequality. For given truncatetspéy and B,

and thus giver),, the worst case is whes is minimal, sayA = A;u, andB
is maximal, sayB = By + (i — 1). In this case, we have

A A A A Ay(p—1)
B, B By Bip+(p—1) Bi(Bip+p—1)|
The numerator equald — A; < A, and the denominator equals B; there-

fore, the differencel, /B; — A/B is bounded byd /(B B) < 2, and so is the
difference betweey) and@);. 0

Algorithm ShortDivision is useful in the Karatsuba and Toom—Cook ranges.
The key idea is that, when dividing2a-digit number by am-digit number,
some work that is necessary for a fak-digit division can be avoided (see

Figure[3.5).

Algorithm 3.7 ShortDivision
Input: 0 < A< B, 3"/2<B< "
Output: an approximation ofi/ B
Require: a threshold:y

1: if n < ngthenreturn| A/B]
choosek > n/2,0 «—n—k
(A1, Ag) « (A div 8%, A mod %)
(B1, By) « (B div *, B mod %)
(Q1, R1) < DivRem(A44, By)
A — R + Ay — Q1 Bof*
Qo « ShortDivision(A’ div 8%, B div %)
return@Q: 3¢ + Qo.

3.4 Reciprocal and division 109

Theorem 3.11 The approximate quotient)’ returned by ShortDivision
differs at most by lg n from the exact quotied® = | A/ B|, more precisely

Q<Q <Q+2Ign.

Proof. If n < ng, @ = @’ so the statement holds. Assume> ng. We
haveA = A,3% + Ay andB = B, ' + By; thus, sinced; = Q1B + R,
A = (QiB1 + R)B* + Ay = Q1Bp* + A’, with A’ < pgntt Let A’ =
Al R+ A), andB = B3¢+ B}, with0 < A}, B) < 3%, andA} < 3. From
Lemmd3.ID, the exact quotientaf div 5% by B div 8* is greater or equal to
that of A’ by B; thus, by inductiorQ, > A’/B. SinceA/B = Q,3*+ A'/B,
this proves that)’ > Q.

Now by induction,Qy < A}/Bj + 21lg¢, andA}/B; < A’/B + 2 (from
Lemma[3.ID again, whose hypothedi§ B < 2B/ is satisfied, sincel’ <
B1%,thusA’/B < 3 < 2B1),s0Qo < A'/B +2lgn, andQ’ < A/B +
2lgn. O

As shown at the lower half of Figuie 3.5, we can use a shortmitd compute
Q1 By at stefhB. Indeed, we need only the uppenrds of A’, and thus only the
upper? words of(Q1 By. The complexity of AlgorithnShortDivision satisfies
D*(n) = D(k)+M*(n—k)+D*(n—k) with k > n/2, whereD(n) denotes
the cost of a division with remainder, add*(n) the cost of a short product.
In the Karatsuba range, we ha¥®n) ~ 2M(n), M*(n) ~ 0.808M (n),
and the best possible value bfis £ ~ 0.542n, with corresponding cost
D*(n) ~ 1.397M (n). In the Toom—-Cool-way rangek ~ 0.548n is op-
timal, and givesD*(n) ~ 1.988M (n).

Barrett's floating-point division algorithm

Here we consider floating-point division using Barrettgalithm and provide

a rigorous error bound (s€@.4.1 for an exact integer version). The algorithm
is useful when the same divisor is used several times; otherdgorithm
DivideNewton s faster (see Exercige 3113). Assume we want to diwitg b

of n bits, each with a quotient of bits. Barrett’s algorithm is as follows:

1. Compute the reciprocalof b to n bits [rounding to nearest]
2. q < o,(a x r) [rounding to nearest]

The cost of the algorithm in the FFT rangeNsSM (n): ~2M (n) to compute
the reciprocal with the wrap-around trick, aidl(n) for the product: x r.

Lemma 3.12 At sted 2 of Barrett's algorithm, we have — bq| < 3|b|/2.

110 Floating-point arithmetic

M(g)

M(%)
M(n/4)

M(%)

M(2)
M(n/4)

M(%)
M(n/2)

M(%)
M(n/4)

M(%)

M (n/2)

Figure 3.5 Divide and conquer short division: a graphical view. éppith
plain multiplication; lower: with short multiplication. See also Figlrd 1.3.

Proof. By scalinga and b, we can assume thatand ¢ are integers, that
2n=l < bg < 27 thus,a < 2*". We haver = 1/b + e with
le| < ulp(277/2) = 272", Also ¢ = ar + ¢’ with |¢/| < ulp(q)/2 = 1/2

3.5 Square root 111

sinceq hasn bits. Thereforeq = a(1/b +¢) + ¢’ = a/b+ ae + £, and
|bg — a| = |b||ac + €'| < 3]b|/2. 0

As a consequence of Lemra 3. 32differs by at most one unit in last place
from then-bit quotient ofa andb, rounded to nearest.

Lemma3.IP can be applied as follows: to perform severabidins with a
precision ofn bits with the same divisor, precompute a reciprocal with ¢
bits, and use the above algorithm with a working precision &fg bits. If the
last g bits of ¢ are neithei000...00x nor 111 ... 11z (wherex stands for0
or 1), then rounding; down ton bits will yield o,,(a/b) for a directed rounding
mode.

Which algorithm to use?

In this section, we described three algorithms to compyite Divide-Newton
uses Newton's method for/y and incorporates the dividend at the last
iteration,ShortDivision is a recursive algorithm using division with remainder
and short products, and Barrett’s algorithm assumes we fir@ommputed an
approximation td /y. When the same divisaris used several times, Barrett's
algorithm is better, since each division costs only a shaytipct. Otherwise
ShortDivision is theoretically faster thabDivideNewton in the schoolbook
and Karatsuba ranges, and taking= n/2 as parameter ishortDivision is
close to optimal. In the FFT rangBjvideNewton should be preferred.

3.5 Square root

Algorithm FPSqgrt computes a floating-point square root, using as subroutine
Algorithm SgrtRem (41.5.1 to determine an integer square root (with remain-
der). It assumes an integer significaing and a directed rounding mode (see
Exercisd_3.14 for rounding to nearest).

Algorithm 3.8 FPSqrt
Input: = =m - 2¢, atarget precision, a directed rounding mode
Output: y = o, (/)

if eis oddthen (m/, f) « (2m,e — 1) else(m/, f) < (m,e)

definem’ := m2%* 4 mg, m, integer of2n or 2n — 1 bits,0 < mq < 22*

(s,r) < SqrtRem(m;)

if (o is round towards zero or down) 6r = mg = 0)

then returns - 25+//2 elsereturn(s + 1) - 2++//2,

112 Floating-point arithmetic

Theorem 3.13 Algorithm FPSqrt returns the correctly rounded square root
of z.

Proof. Sincem; has2n or 2n — 1 bits, s has exactlyn bits, and we have
x > 52224/ thus,\/z > s2F*7/2, On the other handsgrtRem ensures that
r < 2s,and2z2™F = (s2 +7)2% 4 my < (82 + 1+ 1)22F < (s + 1)22%F,
Sincey := s - 284//2 andy* = (s + 1) - 2*+//2 are two consecutive-bit
floating-point numbers, this concludes the proof. 0

NOTE: in the cases = 2™ — 1, s + 1 = 2™ is still representable in bits.

A different method is to use an initial approximation to tbeiprocal square
rootz— /2 (§3.5.1), see Exerci§e 3]15. Faster algorithms are mentioriBd.

3.5.1 Reciprocal square root

In this section, we describe an algorithm to compute thegrecal square root
a~1/2 of a floating-point numbet, with a rigorous error bound.

Lemma 3.14 Leta,r > 0, p = a~ /2, andz’ = = + (z/2)(1 — az?). Then
323 9
0<p-—a'< ﬁ(ﬂ*x))
for some) € [min(x, p), max(x, p)].

Proof. The proof is very similar to that of Lemnfia8.7. Here we y$€) =
a — 1/t2, with p the root of f. Eqn. [35) translates to

_ x 5, 33 9
P—$+§(1—a$)"’W(P—x) .

which proves the Lemma. 0

Lemma 3.15 Provided that3 > 38, if X is the value returned by Algorithm
ApproximateRecSquareRoota = A", o = X7 ", thenl/2 < z < 1
and

lz —a 12| <287,
Proof. We havel < a < 4. SinceX is bounded by3" — 1 at lined1 andlo,

we haver, z;, < 1, with z;, = X,3~". We prove the statement by induction
onn. Itis true forn < 2. Now assume the valug;, at sted # satisfies

2y, —ay P < 87N,

wherea;, = A,3~". We have three sources of error, that we will bound sepa-
rately:

3.5 Square root 113

Algorithm 3.9 ApproximateRecSquareRoot

Input: integerA with g" < A < 45™, 5 > 38
Output: integerX, /2 < X < " satisfying Lemm&3.15
:if n < 2thenreturnmin(g™ — 1, | 6" /\/AB~"])
A= |(n=1)/2],h—n—1¢

Ay — A7

. X, < ApproximateRecSquareRootAy,)

T — AX}

cTh — | T

C Ty — ﬁQh T,

U — T, X,

- returnmin (g™ — 1, X, 8° + |UB 21 /2]).

© 0N O U A WN R

1. the rounding errors in stepk 6 did 9;

2. the mathematical error given by Lemina_3.14, which woulclo@ven if
all computations were exact;

3. the error coming from the fact we ugg instead ofA in the recursive call

at step 4.

At step® we have exactly
t:=TF " = ax?,

which gives |t;, — ax?| < B72" with t;, = T,572", and in tun
[te — (1 — ax?)| < B~ with ¢, := T,~2". At step[8, it follows that
lu — (1 — ax?)| < B2, whereu = UB~3h. Thus, after taking into
account the rounding error in the last stép,— [z, + z,(1 — az?)/2]| <
(8720 + g /2.

Now we apply Lemm&334 to — x5, 2’ — z, to bound the mathematical
error, assuming no rounding error occurs

)

3
0<a?—z< %(a71/2 —xp)?

which givel] [a=1/2 — 2| < 3.04(a="/2 — 2,)%. Now |a~V/2 — a '/?|
la — ap|lv=3/2/2 for v € [min(ay, a), max(ap, a)]; thus,|a=1/2 — a,
B~"/2. Together with the induction hypothesis;, — a;1/2| < 287" i
follows thatla=1/2 — x| < 2.58~". Thus,|a~'/? — 2| < 1952

|
=
_w
IAIA

—

1 Sinceb € [z},,a" /2] and|z;, —a~/2| < 2.5~ ", we haved > z;, — 2.56~", and
zn/0 < 142537/ <1+ 53" (remembe® € [z},,a'/2]), and it follows that
6 > 1/2.For3 > 38, sinceh > 2, we havel + 56~" < 1.0035; thus,
1.523 /6* < (1.5/6)(1.0035)3 < 3.04.

114 Floating-point arithmetic

The total error is thus bounded by
la=1/?% — 2| < ;ﬂfﬂ +19872h,

Since2h > n + 1, we see that9s—2" < 3= /2 for 3 > 38, and the lemma
follows. 0

NoTE: If A, X? < 33" at stefi#t of AlgorithmApproximateRecSquareRoof
we could haved X7 > 37 +2h at stefi b, which might cauge to be negative.

Let R(n) be the cost ofApproximateRecSquareRootfor an n-digit in-
put. We haveh, ¢ ~ n/2; thus, the recursive call cosfg(n/2), stepb costs
M (n/2) to computeX?, andM (n) for the productAX? (or M (3n/4) in the
FFT range using the wrap-around trick describe8@rt.1, since we know the
uppern/2 digits of the product give), and againV/ (n/2) for steg8. We get
R(n) = R(n/2) +2M(n) (or R(n/2) + 7M(n)/4 in the FFT range), which
yields R(n) ~ 4M (n) (or R(n) ~ 3.5M (n) in the FFT range).

This algorithm is not optimal in the FFT range, especiallyewlusing an
FFT algorithm with cheap point-wise products (such as theptex FFT, see
43.3.1). Indeed, AlgorithnApproximateRecSquareRootuses the following
form of Newton'’s iteration

=+ g(l — az?).

It might be better to write

¥ =x+ i(ac —ax®).

Here, the product? might be computed with singleFFT transform of length
3n/2, replacing the point-wise products by z?, with a total cost-0.75M (n).
Moreover, the same idea can be used for the full produétof 5n/2 bits,
where the upper /2 bits match those of. Thus, using the wrap-around trick,
a transform of lengti2n is enough, with a cost of M (n) for the last iter-
ation, and a total cost of 2M (n) for the reciprocal square root. With this
improvement, the algorithm of Exercise 3.15 costs onB25M (n).

3.6 Conversion

Since most software tools work in radior 2*, and humans usually enter or
read floating-point numbers in radiX or 10, conversions are needed from
one radix to the other one. Most applications perform vew éenversions,

3.6 Conversion 115

in comparison to other arithmetic operations, thus theieffiy of the conver-
sions is rarely criticE.The main issue here is therefore more correctness than
efficiency. Correctness of floating-point conversions isaroeasy task, as can
be seen from the history of bugs in Microsoft E)@el.

The algorithms described in this section use as subroutimesnteger-
conversion algorithms from ChaptEl 1. As a consequencédy, dfficiency
depends on the efficiency of the integer-conversion algost

3.6.1 Floating-point output

In this section, we follow the convention of using lower-e&stters for param-
eters related to the internal radixand upper-case for parameters related to
the external radix3. Consider the problem of printing a floating-point num-
ber, represented internally in radix(sayb = 2) in an external radix3 (say

B = 10). We distinguish here two kinds of floating-point output:

e Fixed-format output, where the output precision is giventhwy user, and
we want the output value to be correctly rounded accordinthéogiven
rounding mode. This is the usual method when values are tcsed by
humans, for example to fill a table of results. The input artgwiprecisions
may be very different, for example we may want to pii6®0 digits of2/3,
which uses only one digit internally in radix Conversely, we may want to
print only a few digits of a number accuratelt@)0 bits.

e Free-format output, where we want the output value, wheehweth correct
rounding (usually to nearest), to giexactlythe initial number. Here the
minimal number of printed digits may depend on the input nemihis
kind of output is useful when storing data in a file, while qargeeing that
reading the data back will produce exactly the same intemmalbers, or for
exchanging data between different programs.

In other words, ifz is the number that we want to print, aid is the printed
value, the fixed-format output requires— X | < ulp(X), and the free-format
output requiresz — X | < ulp(z) for directed rounding. Replace ulp(-) by
< ulp(-)/2 for rounding to nearest.

Some comments on AlgorithRrintFixed :

e |t assumes that we have precomputed valuesof= o(log b/ log B) for

2 An important exception is the computation of billions of digitf constants liker, log 2,
where a quadratic conversion routine would be far too slow.

3 In Excel 2007, the produ&50 x 77.1 prints as100, 000 instead 065, 535; this is really an
output bug, since if we multiply¥00, 000" by 2, we get131, 070. An input bug occurred in
Excel 3.0 to 7.0, where the inplit40737488355328 gave(.64.

116 Floating-point arithmetic

Algorithm 3.10 PrintFixed

Input: = = f-b°"P with f,e,pintegersp?~t < |f| < bP, external radixB
and precisionP, rounding mode

Output: X = F - BF-F with F, E integers, B! < |F| < B, such that

X = o(x) inradix B and precisionP

A« o(logb/log B)

E—1+|(e—1))]

g [P/A]

y « o(xBF~F) with precisiong

if we can not roung to an integethen increase; and go to stepl4

F « Integer(y, o). > seedI.

if || > B then E + E + 1 and go to stepl4.

returnfF’, E.

© NG R wNR

any possible external radi® (the internal radi» is assumed to be fixed for
a given implementation). Assuming the input exponeig bounded, it is
possible — see Exercie 317 — to choose these values fyemiseigh that

logb
logB |

E=1+ {(e -1 (3.8)
Thus, the value oh at stefi 1L is simply read from a table.

e The difficult part is stefpl4, where we have to perform the egptiation
BP~F — remember all computations are done in the internal radixand
multiply the result byr. Since we expect an integergfligits in stel b, there
is no need to use a precision of more thadigits in these computations,
but a rigorous bound on the rounding errors is required, 4o s able to
correctly roundy.

e In step[®, we can roung to an integer if the interval containing all pos-
sible values oft B”~F — including the rounding errors while approaching
xBP~F and the error while rounding to precisign- contains no rounding
boundary (ifo is a directed rounding, it should contain no integer i
rounding to nearest, it should contain no half-integer).

Theorem 3.16 AlgorithmPrintFixed is correct.

Proof. First assume that the algorithm finishes. Efn.1(3.8) impliés ! <

be~1; thus|z|BP—# > BP~!, which implies tha F'| > BY~! at stef®.
ThereforeB”~! < |F| < BT at the end of the algorithm. Now, printing
givesF - B iff printing «B* givesF - B4+* for any integetk. Thus, it suffices
to check that printinge B —F givesF', which is clear by construction.

3.6 Conversion 117

The algorithm terminates because at §lepi,’ — ¥, if not an integer, can not
be arbitrarily close to an integer. H — E > 0, letk be the number of digits of
BP~F in radix b, thenzB"~F can be represented exactly wjth+ k digits.

If P—E <0, letg = BF~F, of k digits in radixb. Assumef/g = n + ¢
with n integer; thenf — gn = ge. If € is not zeroge is a non-zero integer, and
le] > 1/g > 27F.

The caseF| > B at sted¥ can occur for two reasons: eithg3”—F >
B, and its rounding also satisfies this inequality;|efB”~* < BT, but
its rounding equalg3” (this can only occur for rounding away from zero or
to nearest). In the former case, we haveB”~F > BF~1 at the next pass
in step#, while in the latter case the rounded valuequalsB”~! and the
algorithm terminates. O

Now consider free-format output. For a directed roundingleyave want
|z — X| < ulp(z) knowing |z — X| < ulp(X). Similarly, for rounding to
nearest, if we replacelp by ulp /2.

It is easy to see that a sufficient condition is théb(X) < ulp(z), or
equivalently BE=F < p¢~P in Algorithm PrintFixed (with P not fixed at
input, which explain the “free-format” name). To summayize have

bl < |z| < b, BF'<|X|< BE.

Since|z| < b¢, and X is the rounding ofz, it suffices to haveB®~! < b°. It
follows thatBE—F < p¢B'—F, and the above sufficient condition becomes

logb
P21+p1§ggB

For example, witth = 2 andB = 10, p = 53 givesP > 17, andp = 24 gives
P > 9. As a consequence, if a double-precision IEEE 754 binaryifiga
point number is printed with at leabT significant decimal digits, it can be read
back without any discrepancy, assuming input and outpupar®rmed with
correct rounding to nearest (or directed rounding, withrappately chosen
directions).

3.6.2 Floating-point input

The problem of floating-point input is the following. Givenflaating-point
numberX with a significand ofP digits in some radixB (say B = 10), a
precisionp and a given rounding mode, we want to correctly roufido a
floating-point numbes: with p digits in the internal radix (sayb = 2).

118 Floating-point arithmetic

At first glance, this problem looks very similar to the flogtpoint output
problem, and we might think it suffices to apply AlgorititrintFixed, simply
exchanging(b, p, e, f) and (B, P, E, F'). Unfortunately, this is not the case.
The difficulty is that, in AlgorithmPrintFixed, all arithmetic operations are
performed in thenternal radix b, and we do not have such operations in radix
B (see however Exerci§e 1137).

3.7 Exercises

Exercise 3.11n §3.1.3, we described a trick to get the next floating-point Aum
ber in the direction away from zero. Determine for which IEE& double-
precision numbers the trick works.

Exercise 3.2 (Kidder, Boldo) Assume a binary representation. The “rounding
to odd” modem 0] is defined as follows: in case tleeexalue is not
representable, it rounds to the unique adjacent numbernitidd significand.
(“Von Neumann rounding’iEZ] omits the test for the exactuabeing repre-
sentable or not, and rounds to odd in all non-zero casesg that overflow
never occurs during rounding to odd. Prove that i round(z,p + &, odd)
andz = round(y, p, nearest_even), andk > 1, then

z = round(z, p, nearest_even),
i.e. the double-rounding problem does not occur.

Exercise 3.3 Show that, if,/a is computed using Newton’s iteration for !/2

¥ =x+ §(1 —ax?)

2
(seef3.5.1), and the identity/a = a x a~'/2, with rounding mode “round to-
wards zero”, then it might never be possible to determinedtheectly rounded
value of/a, regardless of the number of additional guard digits useithén

computation.

Exercise 3.4How does truncating the operands of a multiplicatiomte- ¢
digits (as suggested #8.3) affect the accuracy of the result? Considering the
caseg = 1 andg > 1 separately, what could happen if the same strategy were
used for subtraction?

Exercise 3.51s the bound of Theorefm 3.5 optimal?

3.7 Exercises 119

Exercise 3.6 Adapt Mulders’ short product algorithrm73] to floatingipb
numbers. In case the first rounding fails, can you computdtiaddl digits
without starting again from scratch?

Exercise 3.7 Show that, if a balanced ternary system is used (r&dixith
digits {0, £1}), then “round to nearest” is equivalent to truncation.

Exercise 3.8 (Percival) Suppose we compute the product of two complex
floating-point numbersy = ag + ibg and z; = a; + by in the follow-
ing way: z, = o(apai), x, = o(bob1), ya = o(agh1), y» = o(arby), z =
o(xq—xp)+io(ys+yp). Allcomputations are done in precisianwith round-

ing to nearest. Compute an error bound of the form zz1| < ¢27"|z021].
What is the best possible constafit

Exercise 3.9 Show that, if, = O(e) andne < 1, the bound in Theoref 3.6
simplifies to

12" = zlloc = O(l2] - [y] - ne).

If the rounding errors cancel, we expect the error in eachpoomant ofz’ to be
O(|z| - Jy| - n'/?¢). The errof|2’ — z|| could be larger since it is a maximum
of N = 2™ component errors. Using your favourite implementation haf t
FFT, compare the worst-case error bound given by Thebrelwithéhe error
||z — z||~ that occurs in practice.

Exercise 3.10 (Enge)Design an algorithm that correctly rounds the product
of two complex floating-point numbers withmultiplications only. [Hint: as-
sume all operands and the result havhkit significand.]

Exercise 3.11Write a computer program to check the entries of Thblk 3.3 are
correct and optimal, given Theorém13.6.

Exercise 3.12 (Bodrato) Assuming we use an FFT modulg”™ — 1 in the
wrap-around trick, how should we modify sfglp 5AifproximateReciprocal?

Exercise 3.13To performk divisions with the same divisor, which of Algo-
rithm DivideNewton and Barrett’s algorithm is faster?

Exercise 3.14 Adapt AlgorithmFPSqrt to the rounding to nearest mode.

Exercise 3.15Devise an algorithm similar to AlgorithiaPSqrt but using Al-
gorithm ApproximateRecSquareRootto compute am /2-bit approximation
to 2~'/2, and doing one Newton-like correction to return/abit approxima-
tion to z'/2. In the FFT range, your algorithm should take time&A/(n) (or
better).

120 Floating-point arithmetic

Exercise 3.16 Prove that for any:-bit floating-point numberéz, y) # (0,0),
and if all computations are correctly rounded, with the saoumding mode,
the result ofz/ /22 + y? lies in[—1, 1], except in a special case. What is this
special case and for what rounding mode does it occur?

Exercise 3.17Show that the computation af in Algorithm PrintFixed,
stepl2, is correct — i.ef = 1 + |(e — 1)logb/log B| — as long as there is
no integem such thain/(e — 1) log B/logb — 1| < ¢, wheres is the relative
precision when computing: A = log B/logb(1 + 0) with |§] < . For a
fixed range of exponentse,,.x < e < emax, deduce a working precisian
Application: forb = 2, anden.x = 23!, compute the required precision for
3 < B < 36.

Exercise 3.18 (Leévre) The IEEE 754-1985 standard required binary to dec-
imal conversions to be correctly rounded in double prenisio the range
{m - 10" : |m| < 107 — 1,|n| < 27}. Find the hardest-to-print double-
precision number in this range (with rounding to nearestef@mple). Write

a C program that outputs double-precision numbers in thiggaand compare

it to thesprintf C-language function of your system; similarly, for a con-
version from the IEEE 754-2008inary64 format (significand ob3 bits,
27107 < |z| < 21024) to thedecimal64 format (significand ofi6 decimal
digits).

Exercise 3.19 The same question as in Exerdise 8.18, but for decimal tayina
conversion, and thatof C-language function.

3.8 Notes and references

In her Ph.D. thesi2, Chapter V], e Ménissier-Morain discusses con-
tinued fractions and redundant representations as aliezsdo the classical
non-redundant representation considered here. She aistmlensﬁTﬁlZ, Chap-
ter 111] the theory of computable reals, their represeptatly B-adic numbers,
and the computation of algebraic or transcendental funstio

Other representations were designed to increase the rdimgpresentable
values; in particular Clenshaw and OIVE|[70] inveniegkl-index arithmetic
where for example2009 is approximated by3.7075, since 2009 =~
exp(exp(exp(0.7075))), and the leading indicates the number of iterated ex-
ponentials. The obvious drawback is that it is expensivestéopm arithmetic
operations such as addition on numbers in the level-inderesentation.

3.8 Notes and references 121

Clenshaw and OlvelL_[jSQ] also introduced the concept oluarestricted
algorithm (meaning no restrictions on the precision or exponent range
Several such algorithms were described in Brent [48].

Nowadays most computers use radix two, but other choiceseffample
radix 16) were popular in the past, before the widespreagtamtoof the IEEE
754 standard. A discussion of the best choice of radix isrginéBrent @].

For a general discussion of floating-point addition, rongdmodes, the
sticky bit, etc., see Hennessy, Patterson, and Gold@ A@pendix A.4ﬂ

The main reference for floating-point arithmetic is the IEE® standard
[B], which defines four binary formats: single precisiomgée extended (dep-
recated), double precision, and double extended. The |IEEEstandard de-
fines radix-independent arithmetic, and mainly decimaharetic — see Cody
etal. [E]. Both standards were replaced by the revision of IEEE(@pproved
by the IEEE Standards Committee on June 12, 2008).

We have not found the source of Theorem 3.2 — it seems to bieldfel’.
The rule regarding the precision of a result, given possiiffering precisions
of the operands, was considered by Brént [49] and IHL_M[127].

Floating-point expansions were introduced by Prie__s_d[l%ﬁ]ay are mainly
useful for a small number of summands, typically two or theeel when the
main operations are additions or subtractions. For a langerber of sum-
mands, the combinatorial logic becomes complex, even fditiad. Also,
except in simple cases, it seems difficult to obtain correcinding with
expansions.

Some good references on error analysis of floating-poirtrilgns are the
books by Highaml[121] and Mullef [174]. Older referenceslide Wilkin-
son’s classic 2P9].

Collins and Krandick|E4], and Leéfre], proposed algorithms for
multiple-precision floating-point addition.

The problem of leading zero anticipation and detection ndWware is classi-
cal; see Schmookler and Nowl@94 for a comparison of difiemethods.
Theoreni:3.4 may be found in SterbedﬂZlO].

The idea of having a “short product” together with correainding was
studied by Krandick and Johns@%]. They attributed ént‘short prod-
uct” to Knuth. They considered both the schoolbook and theatsaba do-
mains. AlgorithmsShortProduct andShortDivision are due to Mulder@ﬂ.
The problem of consecutive zeros or ones — also calladof zeros or ones —
has been studied by several authors in the context of computémetic:
lordache and Matulﬁiw] studied division (Theorem 3.8Yase root, and

4 We refer to the first edition as later editions may not includerelevant Appendix by
Goldberg.

122 Floating-point arithmetic

reciprocal square root. Muller and Lal@Sl] generalizeirtresults to alge-
braic functions.

The fast Fourier transform (FFT) using complex floatingapoiumbers and
the Scldnhage—Strassen algorithm are described in K 142hyMaria-
tions of the FFT are discussed in the books by Cranddl P, B further
references, se@.9.

Theorem 3.6 is from Perciva]EllSS]; previous rigorous eraoalyses of
complex FFT gave very pessimistic bounds. Note that theneoas proof
given in @] was corrected by Brent, Percival, and Zimrmmlm@s] (see
also Exercis€3]8).

The concept of “middle product” for power series is discdsseHanrotet
al. [E]. Bostan, Lecerf, and Schom40] have shown that itlbarseen as
a special case of “Tellegen’s principle”, and have geneedliit to operations
other than multiplication. The link between usual multgplion and the mid-
dle product using trilinear forms was mentioned by Victon F[@] for the
multiplication of two complex numbers: “The duality techoe enables us to
extend any successful bilinear algorithms to two new oneshi® new prob-
lems, sometimes quite different from the original probleni’. Harvey]
has shown how to efficiently implement the middle productifdgegers. A
detailed and comprehensive description of the Payne andktmgument re-
duction method can be found in Mulléﬂm].

In this section, we drop the~” that strictly should be included in the com-
plexity bounds. TheM (n) reciprocal algorithm of3.4.1 — with the wrap-
around trick — is due to Sémhage, Grotefeld, and Vett98]. It can be
improved, as noticed by Dan Bernst [20]. If we keep the-ERisform of
x, we can savé/(n)/3 (assuming the term-to-term products have negligible
cost), which givessM (n)/3. Bernstein also proposes a “messyi¥/(n)/2
algorithm @b]. Scbnhage’s3M (n)/2 algorithm is simpler?]. The idea
is to write Newton’s iteration a8’ = 2z — az?. If z is accurate to/2 bits,
thenaz? has (in theoryRn bits, but we know the upper/2 bits cancel with
z, and we are not interested in the lawbits. Thus, we can perform modu-
lar FFTs of size3n /2, with costM (3n/4) for the last iteration, and.51/ (n)
overall. This1.5M (n) bound for the reciprocal was improved tot44.M (n)
by Harvey |LT;LB]. See also Cornea-Hasegan, Golliver, anck&fain Eﬁ] for
the roundoff error analysis when using a floating-point ipliér.

The idea of incorporating the dividend in AlgoritiivideNewtonis due to
Karp and Marksteirmﬂ, and is usually known as the Karprddizin trick;
we already used it in AlgorithriexactDivision in Chaptef]l. The asymptotic
complexity5M (n)/2 of floating-point division can be improved 5/ (n)/3,
as shown by van der Hoeven 25]. Another well-known mettaoperform

3.8 Notes and references 123

a floating-point division is Goldschmidt’s iteration: gtag froma/b, first find

¢ such thath; = cb is close tol, anda/b = ay /by with a; = ca. At step
k, assuminga/b = ax /by, we multiply botha, andb, by 2 — by, giving
ai+1 andbg1. The sequenc@y) converges td, and(ay) converges ta/b.
Goldschmidt’s iteration works becausebjf = 1 + ¢, with £, small, then
b1 = (1 +¢ex)(1 —ex) = 1 — 7. Goldschmidt's iteration admits quadratic
convergence as does Newton’s method. However, unlike Nesvtoethod,
Goldschmidt’s iteration is not self-correcting. Thus, ilgs an arbitrary pre-
cision division with costO(M (n)logn). For this reason, Goldschmidt’s it-
eration should only be used for small, fixed precision. A itledaanalysis of
Goldschmidt’s algorithms for division and square root, armbmparison with
Newton’s method, is given in MarksteiMSS].

Bernstein|L—2b] obtained faster square root algorithms&RRT domain, by
caching some Fourier transforms. More precisely, he obtkith M (n)/6 for
the square root, anslM (n)/2 for the simultaneous computation of/2 and
x~1/2. The bound for the square root was reduced 4/ (n)/3 by
Harvey].

Classical floating-point conversion algorithms are dueteef® and White
[@], Gay @], and CIingelL_[_J(l]; most of these authorsuass fixed pre-
cision. Cowlishaw maintains an extensive bibliography @fiversion to and
from decimal formats (se€5.3). What we call “free-format” output is called
“idempotent conversion” by Kaham%]; see also Knl@ibrcise 4.4-
18][.|£nother useful reference on binary to decimal conegrss Corneaet
al. [77].

Burgisser, Clausen, and ShokroII[GO] is an excellenklmotopics such
as lower bounds, fast multiplication of numbers and polyiadenStrassen-like
algorithms for matrix multiplication, and the tensor rarmkiplem.

There is a large literature on interval arithmetic, whicloigside the scope
of this chapter. A recent book is Kuliscmw], and a goodepbint is the
Interval Computations web page (see Chalter 5).

In this chapter, we did not consider complex arithmetic egtavhere rel-
evant for its use in the FFT. An algorithm for the complex (filog-point)
square root, which allows correct rounding, is given in Gmec and Muller
[|9_1|]. See also the comments on Friedland’s algorithridid2.

4
Elementary and special function evaluation

Here we consider various applications of Newton’s method,
which can be used to compute reciprocals, square roots, arel m
generally algebraic and functional inverse functions. \Went
consider unrestricted algorithms for computing elementard
special functions. The algorithms of this chapter are preeskat

a higher level than in ChaptEl 3. A full and detailed analydis
one special function might be the subject of an entire clibpte

4.1 Introduction

This chapter is concerned with algorithms for computingrelatary and
special functions, although the methods apply more gdgeFatst we con-
sider Newton’s method, which is useful for computing ineefsnctions. For
example, if we have an algorithm for computipg= Inz, then Newton’s
method can be used to compute= expy (see§4.2.5). However, Newton’s
method has many other applications. In fact, we already ioreed Newton'’s
method in Chaptefd [}-3, but here we consider it in more detail

After considering Newton’s method, we go on to consideraasimethods
for computing elementary and special functions. These oastinclude power
series {4.4), asymptotic expansiong4(d), continued fractions{ff.g), recur-
rence relations§@.14), the arithmetic-geometric mea#(8), binary splitting
(§4:9), and contour integratiod4.10). The methods that we consider are
restrictedin the sense that there is no restriction on the attainaldeigion —
in particular, it is not limited to the precision of IEEE stiard 32-bit or 64-bit
floating-point arithmetic. Of course, this depends on thalakility of a suit-
able software package for performing floating-point arigtimon operands of
arbitrary precision, as discussed in Chapter 3.

126 Elementary and special function evaluation

Unless stated explicitly, we do not consider rounding issnehis chapter;
it is assumed that methods described in Chdgter 3 are ussga, talsimplify
the exposition, we assume a binary radixt 2), although most of the content
could be extended to any radix. We recall thatenotes the relative precision
(in bits here) of the desired approximation; if the absokdmputed value is
close tol, then we want an approximation to withén™.

4.2 Newton’s method

Newton’s method is a major tool in arbitrary-precisiontarietic. We have al-
ready seen it or itg-adic counterpart, namely Hensel lifting, in previous chap
ters (see for example AlgorithBxactDivision in §1.4.3, or the iteratior (2.3)
to compute a modular inverse§@.3). Newton's method is also useful in small
precision: most modern processors only implement addétimhmultiplication

in hardware; division and square root are microcoded, usithger Newton'’s
method if a fused multiply-add instruction is available tloe SRT algorithm.
See the algorithms to compute a floating-point reciprocakoiprocal square
root in §3.4.1 andf3.5.1.

This section discusses Newton’s method is more detail, énctimtext of
floating-point computations, for the computation of ineem®ots §4.2.1),
reciprocals §.2.2), reciprocal square root§4(2.3), formal power series
(§4:2.3), and functional inverse$42.3). We also discuss higher-order Newton-

like methods {4.2.9).

Newton’s method via linearization
Recall that a functiorf of a real variable is said to havezaro(if f({) = 0.
If fis differentiable in a neighborhood ¢fandf’(¢) # 0, then(is said to be
asimplezero. Similarly, for functions of several real (or complegyiables. In
the case of several variabléss a simple zero if the Jacobian matrix evaluated
at(is non-singular.

Newton’s methotbr approximating a simple zerpof f is based on the idea
of making successive linear approximationsfia:) in a neighborhood of.
Suppose that is an initial approximation, and thgt«) has two continuous
derivatives in the region of interest. From Taylor’s therrﬂe

_ R =m0
f(Q) = f(xo) + (€ — x0) f'(w0) + 5/) (4.1)

1 Here we use Taylor’s theoremag, since this yields a formula in terms of derivatives:at
which is known, instead of &, which is unknown. Sometimes (for example in the derivation
of (£3)), it is preferable to use Taylor's theorem at thek@uown) zero(.

4.2 Newton’s method 127

for some point in an interval including{¢, zo }. Sincef(¢) = 0, we see that
z1 =20 — f(20)/f'(%0)

is an approximation tq, and
21— (=0 (Jxro = ¢]?).

Providedz is sufficiently close t@, we will have
|21 — (] < |wo — ¢]/2 < 1.

This motivates the definition dlewton’s methods the iteration

Tjp1 = T5 — ff/((ijj)), j = 07 17 e (42)

Provided|z, — (| is sufficiently small, we expect,, to converge ta;. The
order of convergencwill be at least two, i.e.

lent1] < Klen|?

for some constank” independent of,, wheree,, = x,, — (is the error aften
iterations.
A more careful analysis shows that

)

2f'(¢)

provided f € C? near¢. Thus, the order of convergence is exactly two if

17(¢) # 0 andey is sufficiently small but non-zero. (Such an iteration ioals
said to bequadratically convergenx

en+0(lenl) 4.3)

4.2.1 Newton’s method for inverse roots

Consider applying Newton’s method to the function
f(.]?) =Y - x_m7

wherem is a positive integer constant, and (for the momeni3 a positive
constant. Sincg’(z) = ma~ ™+, Newton’s iteration simplifies to

Tip1 = xj +xi(1 = 2'y)/m. (4.4)

This iteration converges to = y—!/™ provided the initial approximatiom,

is sufficiently close ta(. It is perhaps surprising thdf_(4.4) does not involve
divisions, except for a division by the integer constantn particular, we can
easily compute reciprocals (the case= 1) and reciprocal square roots (the
casem = 2) by Newton’s method. These cases are sufficiently impottaait
we discuss them separately in the following subsections.

128 Elementary and special function evaluation

4.2.2 Newton’s method for reciprocals
Takingm = 1 in (@.4), we obtain the iteration

rip1 = x5+ xi(1 — z5y), (4.5)

which we expect to converge 1gy, providedz is a sufficiently good approx-
imation. (Se€f3.4.1 for a concrete algorithm with error analysis.) To séatw
“sufficiently good” means, define

uj =1—x;y.

Note thatu; — 0 iff ; — 1/y. Multiplying each side of[{415) by, we get
1—ujpr = (1 —u;) (1 +uy),

which simplifies to

Uj41 = u? (46)

Thus
uj = (ug)” . 4.7)

We see that the iteration converges|iff| < 1, which (for realzy andy) is
equivalent to the conditionyy € (0, 2). Second-order convergence is reflected
in the double exponential with exponenon the right-hand side of (4.7).

The iteration[[4F) is sometimes implemented in hardwareotopute re-
ciprocals of floating-point numbers (sg§€12). The sign and exponent of the
floating-point number are easily handled, so we can assuahg th[0.5, 1.0)
(recall we assume a binary radix in this chapter). The irégoroximationzg
is found by table lookup, where the table is indexed by thé figns bits ofy.
Since the order of convergence is two, the number of coriecapproximately
doubles at each iteration. Thus, we can predict in advaneeneny iterations
are required. Of course, this assumes that the table ialinéd correctlﬂ

Computational issues
At first glance, it seems better to replace E@n.l(4.5) by

Tjt1 :xj(Qijy)a (48)

which looks simpler. However, although those two forms aeghematically
equivalent, they are not computationally equivalent. &wjen Eqn.[(4b), if
z; approximated /y to within n/2 bits, thenl — z;y = O(27"/2), and the
2 In the case of the infamoRentiumfdiv bug[109,[175], a lookup table used for division

was initialized incorrectly, and the division was occasilyinaccurate. In this case division
used the SRT algorithm, but the moral is the same — tables musitiaéized correctly.

4.2 Newton’s method 129

product ofz; by 1 — z,;y might be computed with a precision of onty2 bits.
In the apparently simpler forri(4.8);-z;y = 1+0O(27"/2), and the product
of z; by 2 — z;y has to be performed with a full precisionobits to getz;;
accurate to withim bits.

As a general rule, it is best to separate the terms of diffeyeter in New-
ton’s iteration, and not try to factor common expressioms.dn exception, see
the discussion of S@mhage’s3 M/ (n)/2 reciprocal algorithm ir§3.8.

4.2.3 Newton’s method for (reciprocal) square roots

Takingm = 2 in ([@.4), we obtain the iteration
zip =z +x;(1 — 23y) /2, (4.9)

which we expect to converge 10 !/2 providedz, is a sufficiently good ap-
proximation.

If we want to computey'/2, we can do this in one multiplication after first
computingy /2, since

y1/2 =y x y—1/2_
This method does not involve any divisions (exceptZbgee Exercige3.15).
In contrast, if we apply Newton’s method to the functipfr) = 22 — y, we
obtain Heron iteration (see Algorithnsqrtint in §.5.7) for the square root
of y
1 y

This requires a division by; at iterationyj, so it is essentially different from
the iteration [[4.B). Although both iterations have secomder convergence,
we expect[(4]9) to be more efficient (however this dependsenaiative cost
of division compared to multiplication). See al§®5.1 and, for various opti-
mizations,§3.8.

4.2.4 Newton's method for formal power series

This section is not required for function evaluation, hoert gives a comple-
mentary point of view on Newton’s method, and has applic&tto computing
constants such as Bernoulli numbers (see Exercises 428)--4.

Newton’s method can be applied to find roots of functions @efiny for-
mal power series as well as of functions of a real or compleiakige. For

3 Heron of Alexandriagirca 10-75 AD.

130 Elementary and special function evaluation
simplicity, we consider formal power series of the form
Alz) =ap+ a1z +az® +--- |

wherea; € R (or any field of characteristic zero) andd(A) = 0, i.e.ag # 0.

For example, if we replacgin (4.3) byl — z, and take initial approximation
xo = 1, we obtain a quadratically convergent iteration for thexfalr power
series

1—2)"'= ;}z".

In the case of formal power series, “quadratically convetgeneans that
ord(e;) — +oo like 27, wheree; is the difference between the desired
result and theth approximation. In our example, with the notationddfZ.2,

ug =1 —xoy = 2, SOu; = 22" and

717'1107]. 27
1= 1—2 71—Z+O<Z)

Given a formal power seried(z) = 3. a;2/, we can define the formal
derivative

A/(Z) = Zjajzj_l = a1 + 2a22z + 30,322 4o,
3>0
and theintegral
Z Ll sy
=0l *
but there is no useful analogue for multiple-precisiongets 3~7_, a;3.

This means that some fast algorithms for operations on peesmes have no
analogue for operations on integers (see for example Beatfcl).

4.2.5 Newton’s method for functional inverses

Given a functiony(z), its functional inversé:(x) satisfiesg(h(z)) = x, and
is denoted byi(z) := ¢(~)(z). For exampleg(z) = Inz andh(z) = exp =
are functional inverses, as ajér) = tanx andh(x) = arctan x. Using the
function f(x) = y — g(z) in (£2), we get a roof of f, i.e. a value such that

9(Q) =y, or{ = gV (y)
y—g(z;)

A g'(x;)

4.2 Newton’s method 131

Since this iteration only involveg andg’, it provides an efficient way to eval-
uateh(y), assuming thag(x;) andg’(x;) can be efficiently computed. More-
over, if the complexity of evaluating’ — and of division — is no greater than
that ofg, we get a means to evaluate the functional invéregg with the same
order of complexity as that af.

As an example, if one has an efficient implementation of tigaulibhm, a
similarly efficient implementation of the exponential isddeed as follows.
Consider the roat? of the functionf (z) = y — In 2, which yields the iteration

i1 =z +x;(y —Inzy), (4.11)

and in turn AlgorithmLiftExp (for the sake of simplicity, we consider here
only one Newton iteration).

Algorithm 4.1 LiftExp
Input: x5, (n/2)-bit approximation texp(y)
Output: x;1, n-bit approximation texp(y)

t—Inz, > t computed toe-bit accuracy
u—y—t > u computed tdn/2)-bit accuracy
U — TU > v computed tqn/2)-bit accuracy

Tj41 < T + 0.

4.2.6 Higher-order Newton-like methods

The classical Newton’s method is based on a linear apprdiamef f(x) near
x¢. If we use a higher-order approximation, we can get a higheéer method.
Consider for example a second-order approximation. Eqfi) becomes:

(S (¢ — 20)°

> S (E).

f(Q) = flxo) + (¢ — 20) f'(20) + f" (o) +

Sincef(¢) = 0, we have

flxo) (€ —w0)? f" (o) 3
¢ =m0 (o) 5 Filao) + O((¢ — 20)"). (4.12)
A difficulty here is that the right-hand side &f(4112) invetsthe unknowr.
Let{ = o — f(z0)/f (x0) + v, wherev is a second-order term. Substituting
this in the right-hand side of{4.112) and neglecting termsrader (¢ — x¢)?

yields the cubic iteration

flay))" (xy)

TR) T 2 (ay)?

132 Elementary and special function evaluation
For the computation of the reciprocgf{Z.2) with f (z) = y — 1/, this yields
Tip1 =25+ 2(1 — zjy) + 2;(1 — 259)% (4.13)
For the computation afxp y using functional inversiond.2.5), we get
1
Tjip1 =x;+2;(y —Inz;) + izrj(yflnxj)Q. (4.14)

These iterations can be obtained in a more systematic wagémeralizes to
give iterations of arbitrarily high order. For the compigatof the reciprocal,
lete; =1 — z;y, soz;y = 1 —¢; and (assumingg ;| < 1),

ly=u1;/(1-¢;) :xj(1+€j+€?+"').
Truncating after the terrré?*l gives akth-order iteration
zip =ai(l+e;+ei+--+efh) (4.15)

for the reciprocal. The cade = 2 corresponds to Newton’s method, and the
casek = 3 is just the iteration(4.13) that we derived above.
Similarly, for the exponential we takg = y — Inz; = In(z/z;), SO

oo m
/ =
Tr/Tr; =expe; = —
J J m)
m=0

Truncating aftek terms gives ath-order iteration

k—1 em
Tj41 = Ty (Z Trjl'> (416)
m=0

for the exponential function. The case= 2 corresponds to the Newton itera-
tion, the casé = 3 is the iteration[(4.14) that we derived above, and the cases
k > 3 give higher-order Newton-like iterations. For a genegtlan to other
functions, see ExercisEs .3, 14.6.

4.3 Argument reduction

Argument reductiois a classical method to improve the efficiency of the eval-
uation of mathematical functions. The key idea is to redbeartitial problem

to a domain where the function is easier to evaluate. Moreigely, givenf

to evaluate at, we proceed in three steps:

4.3 Argument reduction 133

e argument reductionz is transformed into eeduced argument’;
e evaluation f is evaluated at’;
e reconstruction f(z) is computed frony («’) using a functional identity.

In some cases, the argument reduction or the reconstrustioial, for ex-
amplex’ = /2 inradix 2, or f(z) = +f(2') (some examples illustrate this
below). It might also be that the evaluation step uses ardiifefunctiong
instead off; for examplegsin(z + 7/2) = cos(x).

Unfortunately, argument reduction formulae do not existefegry function;
for example, no argument reduction is known for the errocfiom. Argument
reduction is only possible when a functional identity retgt(z) andf(z") (or
g(z) andg(z")). The elementary functions hawmeldition formulaesuch as

exp(x + y) = exp(z) exp(y),

) =
log(zy) = log() +log(y),
sin(x + y) = sin(z) cos(y) + cos(z) sin(y),
tan(z +y) = tan() + tan(y) . (4.17)

— tan(z) tan(y)

We use these formulee to reduce the argument so that powes semnverge
more rapidly. Usually we take = y to getdoubling formulaesuch as

exp(2z) = exp(z)?, (4.18)
though occasionallyripling formulaesuch as
sin(3z) = 3sin(z) — 4sin®(z)

might be useful. This tripling formula only involves one fifion (sin), whereas
the doubling formulain(2z) = 2sin x cos x involves two functionsgin and
cos), but this problem can be overcome: $ge3.4 andj4.9.1.

We usually distinguish two kinds of argument reduction:

e Additive argument reductiorwherez’ = = — k¢, for some real constant
¢ and some integek. This occurs in particular whefi(x) is periodic, for
example for the sine and cosine functions with 2.

e Multiplicative argument reductigrwherez’ = z/c* for some real constant
c and some integek. This occurs withe = 2 in the computation oéxp x
when using the doubling formula{4118): SgE3.1.

Note that, for a given function, both kinds of argument reaurc might be
available. For example, fasin 2, we might either use the tripling formula
sin(3z) = 3sinz — 4sin® 2, or the additive reductiosin(x + 2k7) = sinx
that arises from the periodicity efn.

134 Elementary and special function evaluation

Sometimes “reduction” is not quite the right word, sincerchional identity
is used toincreaserather than todecreasethe argument. For example, the
Gamma functiol’(z) satisfies an identity

al(z) =T(z+ 1),

that can be used repeatedlyinareasethe argument until we reach the region
where Stirling’s asymptotic expansion is sufficiently aata, se¢/4.5.

4.3.1 Repeated use of a doubling formula

If we apply the doubling formuld(4.18) for the exponentiahftionk times,
we get

exp(z) = exp(x/2k)2k .

Thus, if|z| = ©(1), we can reduce the problem of evaluating(x) to that of
evaluatingexp(z/2%), where the argument is no@(2~*). This is better since
the power series converges more quickly£g2*. The cost is thé: squarings
that we need to reconstruct the final result fremp(z/2%).

There is a trade-off here, agshould be chosen to minimize the total time.
If the obvious method for power series evaluation is usezh the optimak is
of order,/n and the overall time i®(n'/2M (n)). We shall see if4.4.3 that
there are faster ways to evaluate power series, so this ithediest possible
result.

We assumed here that| = O(1). A more careful analysis shows that the
optimal & depends on the order of magnituderofsee Exercisg4.5).

4.3.2 Loss of precision

For some power series, especially those with alternatigigssia loss of pre-
cision might occur due to a cancellation between succesgsives. A typical
example is the series fexp(z) whenz < 0. Assume for example that we
want ten significant digits afxp(—10). The first ten terms* /k! for z = —10
are approximately:

1.,-10.,50., —=166.6666667, 416.6666667, —833.3333333, 1388.888889,
—1984.126984, 2480.158730, —2755.731922.

Note that these terms alternate in sign and initisdreasan magnitude. They
only start to decrease in magnitude for> |z|. If we add the first1 terms
with a working precision of ten decimal digits, we get an axmation to
exp(—10) that is only accurate to about three digits!

4.3 Argument reduction 135

A much better approach is to use the identity

exp(x) = 1/ exp(—x)

to avoid cancellation in the power series summation. Inrateses, a different
power series without sign changes might exist for a closelgted function:

for example, compare the seriés (4.22) dnd (4.23) for coatiout of the error

functionerf(x). See also Exercis€s 4119-4.20.

4.3.3 Guard digits

Guard digitsare digits in excess of the number of digits that are requimed
the final answer. Generally, it is necessary to use some gligitd during a
computation in order to obtain an accurate result (one shadiirectly rounded
or differs from the correctly rounded result by a small numdfeunits in the
last place). Of course, it is expensive to use too many gugitsdThus, care
has to be taken to use the right number of guard digits, ieeright working
precision. Here and below, we use the generic term “guaritistligeven for
radix 5 = 2.

Consider once again the example=eh =, with reduced argument/2* and
x = O(1). Sincer/2¥ isO(27%), when we sum the power seriesz /25 +. - -
from left to right (forward summation), we “lose” aboktbits of precision.
More precisely, ifr /2 is accurate ta bits, thenl + z /2" is accurate ta + k
bits, but if we use the same working precisiorwe obtain onlyn correct bits.
After squaringt times in the reconstruction step, abauiits will be lost (each
squaring loses about one bit), so the final accuracy will B¢ an- k bits. If
we summed the power series in reverse order instead (baglsmarmation),
and used a working precision of + £ when addingl andz/2* + --- and
during the squarings, we would obtain an accuracy ef k bits before the:
squarings, and an accuracysobits in the final result.

Another way to avoid loss of precision is to evaluatem1(x/2%), where
the functionexpml is defined by

expml(z) = exp(x) — 1

and has a doubling formula that avoids loss of significancenih| is small.

See Exercisds4.[[=4.9.

136 Elementary and special function evaluation

4.3.4 Doubling versus tripling

Suppose we want to compute the functidnh(z) = (e* — e=*)/2. The
obvious doubling formula fosinh,

sinh(2z) = 2sinh(z) cosh(x),

involves the auxiliary functiorosh(z) = (e” + e~*)/2. Sincecosh?(z) —
sinh?(z) = 1, we could use the doubling formula

sinh(2z) = 2sinh(x)y/1 + sinh?(x),

but this involves the overhead of computing a square roas Jiggests using
the tripling formula

sinh(3z) = sinh(z)(3 + 4 sinh?(z)). (4.19)

However, it is usually more efficient to do argument reducti@ the doubling
formula [4.18) forexp, because it takes one multiplication and one squaring
to apply the tripling formula, but only two squarings to appthe doubling
formula twice (and3 < 22). A drawback is loss of precision, caused by can-
cellation in the computation afxp(x) — exp(—x), when|z| is small. In this
case, it is better to use (see Exer¢ise ¥.10)

sinh(z) = (expml(z) — expml(—x))/2. (4.20)

See§4.12 for further comments on doubling versus tripling, esgéy in the
FFT range.

4.4 Power series

Once argument reduction has been applied, where pos§bB) (we are usu-
ally faced with the evaluation of a power series. The eleargrand special
functions have power series expansions such as

xJ (—1)igitt
expr = — In(l+2x) = -~ .,
pr=> 7 (+0)=2 7
j=0 j>0
—1)I 25 +1 2j+1
arctanx = 2(2)7%1, sinhx:Z%, ete.
= 2+ = (27 + 1)

This section discusses several techniques to recommerdawotd. We use
the following notationsz is the evaluation pointy is the desired precision,
andd is the number of terms retained in the power seried,-ot is the degree
of the corresponding polynom@:ogj@ ajd.

4.4 Power series 137

If f(z) is analytic in a neighborhood of some poifan obvious method to
consider for the evaluation ¢f(x) is summation of the Taylor series

d—1 ;
)(C) + Rg(z,c).

JZO

As a simple but instructive example, we consider the evalnaif exp(x)
for |z| < 1, using

]
—| (4.21)

exp(z i
=0

where|Ry(z)| < |z|?exp(|z|)/d! < e/d!.

Using Stirling’s approximation fod!, we see thatl > K(n) ~ n/lgn is
sufficient to ensure thak,(z)| = O(27 ™). Thus, the time required to evaluate
(4.23) with Horner’s I’UIISO (nM(n)/logn).

In practice, it is convenient to sum the series in the forwdirgction
(j=0,1,...,d —1). The termg; = 27 /4! and partial sums

J
Si=>Y ti
=0

may be generated by the recurreti¢e= «t;_1/j, S; = S;—1 + t;, and the
summation terminated whety| < 2~ /e. Thus, itis not necessary to estimate
d in advance, as it would be if the series were summed by Hanele in the
backward directiorfj = d — 1,d — 2,...,0) (see however Exerci§e 4.4).

We now consider the effect of rounding errors, under therapsion that
floating-point operations are correctly rounded, i.e séati

o(z op y) = (z op y)(1 +),

where|d| < e and “op” ="“+",“—",“ x" or “/". Here e = 27" is the “machine
precision” or “working preC|S|on’. LetAj be the computed value af, etc.
Thus

[t =151/ It5] < 2je + O(?)

4 By Horner’s rule (with argumentz), we mean evaluating the polynomial
so = Zo<j<d a;x? of degreed (notd — 1 in this footnote) by the recurrensg = aq,
sj=aj+sjpxforj=d—1,d—2,...,0.Thus,s;, = Zk<j<d aj:(;j*k. An
evaluation by Horner’s rule takesadditions and multiplications, and is more efficient than
explicitly evaluating the individual terms; z7 .

138 Elementary and special function evaluation
and usingzg?:0 ti=95 <e

d
Sa = Sal < des+Y" 2jelt;| + O(c?)
j=1

< (d+2)es + O(?) = O(ne).

Thus, to getS,—Sy| = O(27™), itis sufficient that = O(2~"/n). In other
words, we need to work with abolg n guard digits. This is not a significant
overhead if (as we assume) the number of digits may vary digadimn We
can sum withy increasing (théorward direction) or decreasing (tHeackward
direction). A slightly better error bound is obtainable garmmation in the
backward direction, but this method has the disadvantaafetiiie number of
termsd has to be decided in advance (see however Exdrcike 4.4).

In practice, it is inefficient to keep the working precisieriixed. We can
profitably reduce it when computing from ¢;_; if |t;_1| is small, without
significantly increasing the error bound. We can also vaeywbrking preci-
sion when accumulating the sum, especially if it is compunettie backward
direction (so the smallest terms are summed first).

It is instructive to consider the effect of relaxing our regton that|z| < 1.
First suppose that is large and positive. Sinde;| > |t;_1| whenj < |z|, it
is clear that the number of terms required in the dum {4.24) lisast of order
|z|. Thus, the method is slow for larde| (see§4.3 for faster methods in this
case).

If || is large andz is negative, the situation is even worse. From Stirling’s
approximation we have

exp |z|

\/2m|z|

but the result issxp(—|z|), so abou2|z|/log 2 guard digits are required to
compensate for what Lehmer called “catastrophic candmﬂ’a(@]. Since
exp(z) = 1/exp(—zx), this problem may easily be avoided, but the corre-

sponding problem is not always so easily avoided for othalyaic functions.
Here is a less trivial example. To compute the error function

2 T
erf(z) = 7 /0 e du,

we may use either the power series

ti| ~
max [t] >

(4.22)

4.4 Power series 139

or the (mathematically, but not numerically) equivalent

2ze~%" & 27 g%

erf(z) = 7 ;1_3.5_”(2]_“)- (4.23)

For small|z|, the seried(4.22) is slightly faster than the sefies{428ause
there is no need to compute an exponential. However, thes{gii?B) is prefer-
able to [42P) for moderate:| because it involves no cancellation. For large
||, neither series is satisfactory, becatXe?) terms are required, and in this
case it is preferable to use the asymptotic expansioarfofz) = 1 — erf(z):
see§4.H. In the borderline region, use of the continued fracf##AQd) could be
considered: see Exercise4.31.

In the following subsections, we consider different methtmdevaluate power
series. We generally ignore the effect of rounding errorg, the results
obtained above are typical.

Assumption about the coefficients

We assume in this section that we have a power sexigs, a;z’, where
a;+s/a; is a rational functionR(j) of j, and hence it is easy to evaluate
ag, a1, as, ... sequentially. Herd is a fixed positive constant, usuallyor

2. For example, in the case efp x, we havej = 1 and

ajt1 _ J! 1

a; G+ G410

Our assumptions cover the common case of hypergeometigtidas. For the
more general case of holonomic functions, $68.2.

In common cases where our assumption is invalid, other goettiaods are
available to evaluate the function. For example) = does not satisfy our as-
sumption (the coefficients in its Taylor series are catlthent numberand
are related to Bernoulli numbers — s§&7.2), but to evaluatean x we can
use Newton’s method on the inverse functianc¢an, which does satisfy our
assumptions — se@l.2.3), or we can usewn z = sin z/ cos z.

The radius of convergence

If the elementary function is an entire function (exgp, sin), then the power
series converges in the whole complex plane. In this casedegree of the
denominator ofR(j) = a,+1/a; is greater than that of the numerator.

In other cases (such as, arctan), the function is not entire. The power
series only converges in a disk because the function hagyalaiity on the
boundary of this disk. In factn(x) has a singularity at the origin, which is

140 Elementary and special function evaluation

why we consider the power series far(1 +). This power series has radius
of convergence 1.

Similarly, the power series fairctan(x) has radius of convergence 1 be-
causearctan(z) has singularities on the unit circle (&) even though it is
uniformly bounded for all reat.

4.4.1 Direct power series evaluation

Suppose that we want to evaluate a power se¥ies, a;=’ at a given argu-
mentz. Using periodicity (in the cases eiin, cos) and/or argument reduction
techniques§4.3), we can often ensure that is sufficiently small. Thus, let

us assume that| < 1/2 and that the radius of convergence of the series is at
least 1.

As above, assume thaf s/a; is a rational function ofj, and hence easy
to evaluate. For simplicity, we consider only the case 1. To sum the series
with errorO(27™) it is sufficient to taker + O(1) terms, so the time required
is O(nM (n)). If the function is entire, then the series converges fasterthe
time is reduced t@(nM(n)/(logn)). However, we can do much better by
carrying the argument reduction further, as demonstraitdioe next section.

4.4.2 Power series with argument reduction

Consider the evaluation ekp(x). By applying argument reductidn+ O(1)
times, we can ensure that the argumesatisfiegz| < 27*. Then, to obtaim-

bit accuracy we only need to su(n/k) terms of the power series. Assuming
that a step of argument reductior®$M (n)), which is true for the elementary
functions, the total costi©((k+n/k)M (n)). Indeed, the argument reduction
and/or reconstruction requiré¥(k) steps ofO(M (n)), and the evaluation of
the power series of order/k costs(n/k)M (n); so choosing: ~ n'/? gives
cost

0 (nl/QJV[(n)) .
For example, our comments apply to the evaluatioexpf{) using

exp(x) = exp(e/2)?,

tologlp(z) = In(1 + z) using

€T
loglp(z) = 2loglp [————),
glp(x) gp<1+m>

4.4 Power series 141

and toarctan(z) using

Xz
arctanr = 2arctan | ———— | .
(1+—V1—Fx2>
Note that in the last two cases each step of the argumenttreduequires
a square root, but this can be done with c0$\/ (n)) by Newton’s method
(§338). Thus, in all three cases the overall cosDis'/2M (n)), although the
implicit constant might be smaller fekp than forloglp or arctan. See Exer-

cised4.B=419.

Using symmetries
A not-so-well-known idea is to evaluate(1 + x) using the power series

2j+1

1+y) Y
m(=2y =
1—y j202]+1

with y defined by(1 + y)/(1 —y) = 1+ z, i.e.y = x/(2 +). This
saves half the terms and also reduces the argument, girce /2 if © > 0.
Unfortunately, this nice idea can be applied only once. Falated example,
see Exercise 4.11.

4.4.3 Rectangular series splitting

Once we determine how many terms in the power series arereeqiar the
desired accuracy, the problem reduces to evaluating adted@ower series,
i.e. a polynomial.

Let P(z) = > o<jca ajz’ be the polynomial that we want to evaluate,
deg(P) < d. In the general case; is a floating-point number of. bits,
and we aim at an accuracy ofbits for P(x). However, the coefficients,,
or their ratiosR(j) = a;4+1/a;, are usually small integers or rational num-
bers ofO(logn) bits. A scalar multiplicationinvolves one coefficient; and
the variablex (or more generally am-bit floating-point number), whereas a
non-scalar multiplicatiorinvolves two powers of (or more generally twa-
bit floating-point numbers). Scalar multiplications areaper because thg
are small rationals of siz®(logn), wherease and its powers generally have
©(n) bits. It is possible to evaluate(x) with O(y/n) non-scalar multiplica-
tions (plusO(n) scalar multiplications an@(n) additions, using’(/n) stor-
age). The same idea applies, more generally, to evaluatibpp@rgeometric
functions.

142 Elementary and special function evaluation

Classical splitting
Supposel = jk, definey = z*, and write

j—1 k—1
P(x) = Zy‘fPf(x), where Py(xz) = Z Ukt T
£=0 m=0

We first compute the powers’, 23, ..., z*~1 2% = 4, then the polynomials
P;(x) are evaluated simply by multiplying,,.,, and the precomputed™ (it
is important not to use Horner’s rule here, since this wonlelive expensive
non-scalar multiplications). Finally?(z) is computed from the?(x) using
Horner's rule with argumenj. To see the idea geometrically, wrif&z) as

y° Jao + arx + azx? + + apz® o+
y' [ak + arpir + agser® 4 o 4 a1z 4+
y? laz + asey1® + aseg2r® + oo+ agezt'] +
i1 g . Lo 2 k-1
Y lag-nk + aG-nrt1® + a2z + 0+ a1zt],

wherey = z*. The terms in square brackets are the polynonials), P; (),
PR Pj_l(lﬂ).

As an example, considdr= 12, with j = 3 andk = 4. This givesPy(x) =
ao+arx+asx? +azx®, Pi(z) = ag+asr+asr’+arad, Py(x) = ag+agw+
a10r? +ay123, thenP(x) = Py(z) +y Py () +y? P2 (z), wherey = z. Here
we need to compute?, =3, z*, which requires three non-scalar products —
note that even powers like* should be computed &3%)? to use squarings
instead of multiplies — and we need two non-scalar prodactsaluateP (x);
thus, a total of five non-scalar products, instead/ ef 2 = 10 with a naive
application of Horner’s rule taP(x)ﬁ

Modular splitting
An alternate splitting is the following, which may be obtihby transpos-
ing the matrix of coefficients above, swappinp@ndk, and interchanging the
powers ofz andy. It might also be viewed as a generalized odd—even scheme
(4I.3.8). Suppose as before thiat jk, and write, withy = 27:

Jj—1 k—1
P(z) = ZxéPg(y), where Py(y) = Z Qjmte Y™
=0 m=0

5 P(xz) has degred — 1, so Horner’s rule performé — 1 products, but the first one x ag_ 1
is a scalar product, hence there dre 2 non-scalar products.

4.4 Power series 143

First computey = 7,42, %°,...,%"*~!. Now the polynomials?(y) can be
evaluated using only scalar multiplications of the farm, ., x y™.
To see the idea geometrically, writ&z) as

1’0 [ao + a;y + agjyz + N] +
1’1 [a1 + aj+1Y + a2j+1y2 + c] +
1’2 +

[a2 4+ @y + azpey® + o]

e ajr A agiy + aziayt A+ -],

wherey = z7. We traverse the first row of the array, then the second ram th
the third,. .., finally the jth row, accumulating sumsSy, S1,...,5;-1 (one
for each row). At the end of this proces$, = P(y), and we only have to
evaluate

P(z) = X_:IeSg .

(=0

The complexity of each scheme is almost the same (see BxBIdiR). With
d =12 (j = 3andk = 4) we haveP,(y) = ag + azy + asy® + agy>,
Pi(y) = a1 + asy + azy® + aroy®, Po(y) = as + asy + asy® + any®.
We first computey = 23, »2, andy?, then we evaluaté(y) in three scalar
multiplicationsasy, agy?, andagy® and three additions, similarly faP; and
P,. Finally we evaluate’(z) using

P(z) = Po(y) + 2Pi(y) + 2° P2 (y),

(here we might use Horner’s rule). In this example, we haweal bf six non-
scalar multiplications: four to computeand its powers, and two to evaluate
P(x).

Complexity of rectangular series splitting

To evaluate a polynomiaP(z) of degreed — 1 = jk — 1, rectangular series
splitting takesO(j + k) non-scalar multiplications — each costi®gM (n)) —
andO(jk) scalar multiplications. The scalar multiplications inv@multipli-
cation and/or division of a multiple-precision number byadinmtegers. As-
sume that these multiplications and/or divisions take tifakn each (see Ex-
ercisd 4.1B for a justification of this assumption). The fiorce(d) accounts
for the fact that the involved scalars (the coefficient®r the ratiosz;;1/a;)
have a size depending on the degdeef P(x). In practice, we can usually
regarde(d) as constant.

144 Elementary and special function evaluation

If

Choosingj ~ k ~ d'/2, we get overall time
O(d**M (n) + dn - c(d)). (4.24)

d is of the same order as the precisiorof z, this is not an improvement

on the bound)(n'/?M (n)) that we obtained already by argument reduction
and power series evaluatiofg{4.2). However, we can do argument reduction
before applying rectangular series splitting. Assumirgg tin) = O(1) (see
Exercisé 4.14 for a detailed analysis), the total compyexit

T(n) =0 <%M(n) +dV2M(n) + dn) ,

where the extrdn/d) M (n) term comes from argument reduction and/or re-
construction. Which term dominates? There are two cases:

1.

M (n) > n?/3. Here the minimum is obtained when the first two terms —
argument reduction/reconstruction and non-scalar nligidifions — are
equal, i.e. ford ~ n?/3, which yieldsT'(n) = O(n'/3M(n)). This case
applies if we use classical or Karatsuba multiplicationcsilg3 > 4/3,
and similarly for Toom—CooR-, 4-, 5-, or 6-way multiplication (but not
7-way, sincdlog; 13 < 4/3). In this case7'(n) > n°/3,

. M(n) < n*3. Here the minimum is obtained when the first and the last

terms — argument reduction/reconstruction and scalaiplioéitions — are
equal. The optimal value of is then/M (n), and we get an improved
bound©(n\/M(n)) > n®/2. We can not approach th@(n'*¢) that is
achievable with AGM-based methods (if applicable) — $&8.

4.5 Asymptotic expansions

Often it is necessary to use different methods to evaluapeeia function in
different parts of its domain. For example, the exponemmlgreﬁ

Ei(z) = / (=) 4, (4.25)
2 u
is defined for allz > 0. However, the power series
(1)1
Ei(z)+y+Inz = Z (1)% (4.26)
= v

6

E1(z) andEi(z) = PV [7__ (exp(t)/t) dt are both called “exponential integrals”. Closely
related is the “logarithmic integrali(z) = Ei(Inz) = PV [(1/ Int) d¢. Here the integrals

PV [.- should be interpreted as Cauchy principal values if theaesisgularity in the range
of integration. The power serids (4]26) is valid foe C if | arg x| < 7 (See ExercisE4.16).

4.5 Asymptotic expansions 145

is unsatisfactory as a means of evaluatifigx) for large positivez, for the
reasons discussed§d.4 in connection with the power seri€s(4.22)dol(z),
or the power series farxp(x) (z negative). For sufficiently large positive it
is preferable to use

k _ 1) j—1
¢ Eifx) =Y]— + Ry(), (4.27)
j=1
where
Ry(z) = k! (=1)F exp(x) / %;“) du. (4.28)
Note that
k!
| Ry ()| < prEE
SO
2, Rel@) =0,

butlimy_. ., Ri(z) does not exist. In other words, the series

= (=D (=1)7t
Z(J)l_g)

Jj=1

is divergent. In such cases, we call thissmymptotic serieand write

i 1)(=1)71
¢ By(a) ~ 3 % : (4.29)
j>0

Although they do not generally converge, asymptotic sesiesvery useful.
Often (though not always!) the error is bounded by the lashtiaken in the
series (or by the first term omitted). Also, when the termshim asymptotic
series alternate in sign, it can often be shown that the talieeVies between
two consecutive approximations obtained by summing thiesevith (say)k
andk + 1 terms. For example, this is true for the serfes (4.29) abuejided
x is real and positive.

Whenz is large and positive, the relative error attainable by gifh27)
with k = |z] is O(z'/? exp(—x)), because

[Re(k)| < KI/EFTY = O(k™/% exp(—k)) (4.30)

and the leading term on the right side bf(4.27) j:. Thus, the asymptotic
series may be used to evaluate,(z) to precision n whenever

146 Elementary and special function evaluation

x > nln2 + O(Inn). More precise estimates can be obtained by using a
version of Stirling’s approximation with error bounds, fatample

k)" k" 1
<) Vork < k! < <> V2rk exp <> .
e e 12k
If = is too small for the asymptotic approximation to be suffidigaccurate,
we can avoid the problem of cancellation in the power sedezg) by the
technique of Exercise 4.119. However, the asymptotic appration is faster
and hence is preferable whenever it is sufficiently accurate
Examples where asymptotic expansions are useful inclueevhluation of
erfe(x), I'(z), Bessel functions, etc. We discuss some of these below.
Asymptotic expansions often arise when the convergencerdssis accel-
erated by the Euler—Maclaurin sum fornfiIgor example, Euler’s constant
is defined by

v = Nlim (Hy —InN), (4.31)

whereHy =, ;. 1/7 is a harmonic number. However, Eqn. (4.31) con-
verges slowly, so to evaluate accurately we need to accelerate the conver-
gence. This can be done using the Euler—Maclaurin formuta. iflea is to
split the sumH into two parts

N
HN:prl‘i_Z;'
Jj=p

We approximate the second sum using the Euler—Maclaurimuta with
a=pb=N, f(x) =1/z,thenletN — +oc. The result is

Bak o,
’yNHp—lnp—FZ%p . (4.32)
E>1
If p and the number of terms in the asymptotic expansion are ohosk
ciously, this gives a good algorithm for computingthough not the best algo-
rithm: see§4. 12 for a faster algorithm that uses properties of Bessetions).

7 The Euler-Maclaurin sum formula is a way of expressing thiedihce between a sum and
an integral as an asymptotic expansion. For example, assuhahg € Z,b € Z, a < b, and
f(x) satisfies certain conditions, one form of the formula is

b f(a) + f(b) Bk [(2k-1) (2k—1)
> fk) = [fz)de~ + f (b) - f (a)) -
a<k<b /‘1 2 =1 (2R ()

Often we can leb — +oo and omit the terms involving on the right-hand side. For more
information, se¢f4.132.

4.5 Asymptotic expansions 147

Here is another example. The Riemann zeta-functior) is defined for
s€C,R(s) > 1, by

COED DN (4.33)

Jj=1

and by analytic continuation for other+# 1. ((s) may be evaluated to any
desired precision ifn andp are chosen large enough in the Euler—Maclaurin
formula

p—1 —s 1—s m
s, P p
C(s):Z] + =5 +s_1+z Tip(s) + Emp(s), (4.34)
j=1 k=1
where
B 2k—2
2k s .
Tin() = 1 e | CE)) (4.35)
! =
[Emp(8)] < [Tmg1p(s) (s +2m+1)/(o +2m +1)], (4.36)

m>0,p>1,0=R(s) > —(2m+ 1), and theBy;, are Bernoulli numbers.
In arbitrary-precision computations, we must be able to o as many
terms of an asymptotic expansion as are required to givedbieedl accuracy.
It is easy to see that, if» in (£.32) is bounded as the precisiangoes to
oo, thenp has to increase as an exponential functiomoffo evaluatel(s)
from (4.33) to precisiom in time polynomial inn, bothm andp must tend to
infinity with n. Thus, the Bernoulli numbems, . .., Bs,, cannot be stored in
a table of fixed siﬂ,but must be computed when needed ($&&). For this
reason, we cannot use asymptotic expansions when the géorenaof the
coefficients is unknown or the coefficients are too difficaletvaluate. Often
there is a related expansion with known and relatively singolefficients. For
example, the asymptotic expansibn (4.38)ifor (=) has coefficients related to
the Bernoulli numbers, like the expansifn (4.34)¢6¢), and thus is simpler to
implement than Stirling’s asymptotic expansion fdt:) (see Exercise 4.42).
Consider the computation of the error functiatfi(z). As seen irffd.4, the
series [(4.22) and_(4.23) are not satisfactory for Ignge since they require
Q(2?) terms. For example, to evaluatef (1000) with an accuracy of six digits,

8 In addition, we would have to store them as exact rationalkéng ~ m?2 Ig m bits of storage,
since a floating-point representation would not be convenialess the target precision
were known in advance. Sg4.7.2 and Exercide 4.B7.

148 Elementary and special function evaluation

Eqn. [4.22) requires at lea®f18 279 terms! Instead, we may use an asymp-
totic expansion. The complementary error functiofe(z) = 1 — erf(x) sat-
isfies

erfe(x x\f Z (j (22) %, (4.37)

with the error bounded in absolute value by the next term &tttecsame sign.
In the caser = 1000, the term forj = 1 of the sum equals-0.5 x 10~5; thus,
e~ /(z\/7) is an approximation terfc(z) with an accuracy of six digits.
Becauserfc(1000) ~ 1.86 x 10434298 js very small, this gives aextremely
accurate approximation taf(1000).

For a function like the error function, where both a powerese(atz = 0)
and an asymptotic expansion at co) are available, we might prefer to use
the former or the latter, depending on the value of the argiiraed on the
desired precision. We study here in some detail the caseeddrtior function,
since it is typical.

The sum in[(4.37) is divergent, since ifth term is~ /2(j/ex?)’. We
need to show that the smallest term($2—™) in order to be able to deduce
ann-bit approximation teerfe(x). The terms decrease whije< 22 + 1/2,
so the minimum is obtained fgr ~ x2, and is of ordee—*"; thus, we need
x > v/nln2. For example, fom = 10° bits this yieldsz > 833. However,
sinceerfc(x) is small for larger, sayerfc(z) ~ 27, we need onlyn = n— \
correct bits okrfc(z) to getn correct bits okrf(z) = 1 — erfe(z).

Considerz fixed andj varying in the terms in the sums_(4]122) abd (4.37).
Forj < 2%, 2% /j!is anincreasingfunction of j, but (25)!/(j!(422)7) is a
decreasindunction of;. In this region, the terms in Eqil._(4]37) are decreasing.
Thus, comparing the series (4122) abd (#.37), we see thaattes should
always be used if it can give sufficient accuracy. Simila@314) should if
possible be used in preference[io (4.23), as the magnitdfdem@sponding
terms in [4.2P) and i .(4.23) are similar.

Algorithm Erf computesrf(x) for real positiver (for other real:, use the
fact thaterf(x) is an odd function, serf(—z) = —erf(z) anderf(0) = 0).

In Algorithm Erf, the number of terms needed if Eqh. (4.22) or Efn. (4.23)
is used is approximately the unique positive rgetrounded up to the next
integer) of

j(lnj—2Inz—1)=nln2,

S0 jo > ex?. On the other hand, if EQn_{4137) is used, then the summation
boundk is less than:? + 1/2 (since otherwise the terms start increasing). The

4.5 Asymptotic expansions 149

Algorithm 4.2 Erf
Input: positive floating-point number, integern
Output: ann-bit approximation teerf(z)
m— [n— (22 +Inz+ (In7)/2)/(In2)]
if (m+1/2)In(2) < 22 then
t « erfc(x) with the asymptotic expansiq@d.37) and precisionn
returnl — ¢ (in precisionn)
else ifz < 1then
computeerf () with the power serieé4.22) in precisionn
else
computeerf () with the power serie§4.23) in precisionn.

condition(m + 1/2)In(2) < 2?2 in the algorithm ensures that the asymptotic
expansion can givex-bit accuracy.

Here is an example: for = 800 and a precision of one million bits, Equa-
tion (4.23) requires about; = 2339601 terms. Eqn.[(4.37) tells us that
erfe(z) ~ 27923335, thus, we need onlyn = 76665 bits of precision for
erfc(z) — in this case Eqn[{(4.87) requires only abbut 10375 terms. Note
that using Eqn.[{4.22) would be slower than using EGn. {4.B8yause we
would have to compute about the same number of terms, buthigtier pre-
cision, to compensate for cancellation. We recommend Uiy [4.22) only
if |z| is small enough that any cancellation is insignificant (fearaple, if
|z < 1).

Another example, closer to the boundary: for= 589, still with n = 106,
we havem = 499489, which givesj, = 1497924, andk = 325092. For
somewhat smallet. (or largern), it might be desirable to use the continued
fraction [4.40), see Exercige 4]131.

Occasionally, an asymptotic expansion can be used to cdothitnarily high
precision. For example, consider the computatiom®f(z). For large positive
x, we can use Stirling’s asymptotic expansion

1 In(2r) "~ B
InT(z) = (:17 - 2) Inz —xz+ n(27r) + Z M%_—M + R (2),
k=1
(4.38)

whereR,, (x) is less in absolute value than the first term neglected, i.e.

BQm
2m(2m — 1)x2m—1 ’

150 Elementary and special function evaluation

and has the same sﬂ'.he ratio of successive termgandt; of the sumis

2
1 (K
tr rx)’
so the terms start to increase in absolute value for (apmbely) & > wx.
This gives a bound on the accuracy attainable, in fact

In|R,,(z)] > —27xIn(x) + O(x).

However, becausE(x) satisfies the functional equatidi{x + 1) = «['(z),

we can taker’ = x + ¢ for some sufficiently largé € N, evaluatelnT'(2")

using the asymptotic expansion, and then compuf&) from the functional
equation. See Exercite 4121.

4.6 Continued fractions

In §4.3, we considered the exponential intedtalz). This can be computed
using thecontinued fraction

e’ Ey(z) =
r+

1+

x +
1+
x +

3
14---

Writing continued fractions in this way takes a lot of spaceinstead we use
the shorthand notation

T E(r) = — — — = = 2 . 4,
¢ Ex(z) ot 1+ 24+ 1+ o+ 1+ (4.39)

Another example is

erfe(z) = <6_$2> 1 1/22/23/24/25/2 (4.40)

VT o+ a4 2+ z+ a+ x+
Formally, a continued fraction
a1 an as ~
=bp+ ———---cC
S =t T bt bt

9 The asymptotic expansion is also valid fole C, | arg z| < m, = # 0, but the bound on the
error termR,, (z) in this case is more complicated. See for exaniple [1, 6.1.42].

4.6 Continued fractions 151

is defined by two sequencés;), cn- and(b;),cn, Wherea;, b; € C. Here
C = CU {0} is the set okextendedcomplex numbefd The expressiorf is
defined to béimy_. . fx, if the limit exists, where

aq as asg Q.
—py+ A 92 Gk 4.41
e e ot batr by (4-41)

is the finite continued fraction — called thig¢h approximant— obtained by
truncating the infinite continued fraction aftequotients.

Sometimes continued fractions are preferable, for contipui@ purposes,
to power series or asymptotic expansions. For exampler’Belntinued frac-
tion (4.39) converges for all real > 0, and is better for computation &f; (z)
than the power serieE (4]26) in the region where the powersssuffers from
catastrophic cancellation but the asymptotic expanEichijds not sufficiently
accurate. Convergence ¢f (4139) is slowriis small, so[(4.39) is preferred
for precisionn evaluation ofE; () only whenx is in a certain interval, say
z € (c1n, can), cp =~ 0.1, co = In2 ~ 0.6931 (see Exercise 4.24).

Continued fractions may be evaluated by either forward ckWward recur-
rence relations. Consider the finite continued fraction

aq a9 as Qg

=< = ... = 4.42
4 b1+ ba+ b3+ b ()

The backward recurrencely, = 1, Rp_1 = by,
Rj =bjp1 Rjs1+aj12 Rjs (J=k-2,...,0), (4.43)

andy = a1 R/ Ry, with invariant

Rj _ 1 @iy o
R;_1 bj+ bjyi+ b

The forward recurrence 8y = 0, P, = a1, Qo = 1, Q1 = by,
Pj = bj Pj71 + Q. Pj,Q
Q;=b;Qj-1+a;Qj 2

andy = P, /Q;. (see Exercise 4.26).

The advantage of evaluating an infinite continued fractiorhsas[(4:39) via

the forward recurrence is that the cutéfheed not be chosen in advance; we
can stop whenDy| is sufficiently small, where
P, Pp

D, — 2k _ .
"TQr Qra

10 Arithmetic operations offt are extended t& in the obvious way, for example
1/0=14 00 =1 X 0o = 00, 1/oo = 0. Note thatd /0, 0 x co andoco + oo are undefined.

} (G=2....k), (4.44)

(4.45)

152 Elementary and special function evaluation

The main disadvantage of the forward recurrence is thaetagmany arith-
metic operations are required as for the backward recugreriih the same
value of k. Another disadvantage is that the forward recurrence magdse
numerically stable than the backward recurrence.

If we are working with variable-precision floating-pointtametic, which is
much more expensive than single-precision floating-paen a useful strat-
egy is to use the forward recurrence with single-precisighraetic (scaled to
avoid overflow/underflow) to estimaig and then use the backward recurrence
with variable-precision arithmetic. One trick is needeglevaluateD,, using
scaled single-precision we use the recurrence

Dy = a1 /by, (4.46)
Dj = —a;Qj-2D;j1/Q; (G=23..))" .

which avoids the cancellation inherentin (4.45).

By analogy with the case of power series with decreasingdé¢hnat alternate
in sign, there is one case in which it is possible to give a &ragposteriori
bound for the error occurred in truncating a continued foactLet f be a
convergent continued fraction with approximaritsas in [4.41). Then:

Theorem 4.1 If a; > 0andb; > 0forall j € N*, then the sequencgay) en
of even order approximants is strictly increasing, and th@®ence faox1)ken
of odd order approximants is strictly decreasing. Thus

Jor < f < fors1

and
fm - fmfl
2

o fmfl + fm
2

1

for all m € N*,

In general, if the conditions of Theordm 1.1 are not satisfieeh it is diffi-
cult to give simple, sharp error bounds. Power series anupi®yic series are
usually much easier to analyse than continued fractions.

4.7 Recurrence relations

The evaluation of special functions by continued fractima special case
of their evaluation by recurrence relations. To illustritis, we consider the
Bessel functions of the first kind, (x). Herer andz can in general be com-
plex, but we restrict attention to the cases Z, « € R. The functions/, (x)

4.7 Recurrence relations 153

can be defined in several ways, for example by the generatingibn (elegant
but only useful forv € Z)

exp (; (t - 1)) - io .7, (z), (4.47)

V=—00

or by the power series (also validuf¢ Z):

(VY (/)

J(z) = (5) ;) T (4.48)
We also need Bessel functions of the second kind (sometiadlesidNeumann
functions or Weber functions), (x), which may be defined by
Ju(x) cos(mpn) — J_(x)

Y, (x) = lim =&
@) e sin(mp)

(4.49)

Both J, (z) andY, (x) are solutions of Bessel’s differential equation

22y +ay + (2 — vy = 0. (4.50)

4.7.1 Evaluation of Bessel functions

The Bessel functiong,, (z) satisfy the recurrence relation
2v
Jy—1(x) + Jpp1(x) = ?Jy(:c). (4.51)

Dividing both sides byJ,, (z), we see that
Jy—i(z) 20 1/ Jy(x)

() w Jos1(z)
which gives a continued fraction for the ratip(z)/.J,—1(z) (v > 1)
J,(x) 1 1 1

Jo_i(z) 2w/z— 2w+ 1)/a— 2 +2)/z— (4.52)
However, [4.5R) is not immediately useful for evaluating Bessel functions
Jo(z) or Jy(x), as it only gives their ratio.

The recurrencd (4.51) may be evaluated backwardslitigr's algorithm.
The idea is to start at some sufficiently large indéxakef, 1 =0, f,, =1,
and evaluate the recurrence

for 4 for =22 4, (453)

154 Elementary and special function evaluation

backwards to obtairf,._1, - - - , fo. However, [4.5B) is the same recurrence as
(451), so we expect to obtajfy ~ cJy(x), wherec is some scale factor. We
can use the identity

Jo(@) +2) () =1 (4.54)
v=1

to determiner.

To understand why Miller’s algorithm works, and why evalaatof the re-
currence[(4.51) in the forward direction is numerically tatde forv > =,
we observe that the recurren€e (4.53) has two independkrtioss: the de-
sired solution/,, (x), and an undesired solutidn (=), whereY, (z) is a Bessel
function of thesecond kindsee Eqn[{4.49). The general solution of the recur-
rence [[4.5B) is a linear combination of the special soltigr{z) andY,, (z).
Due to rounding errors, the computed solution will also bmeadr combina-
tion, saya.J, (z) + bY, (x). Since|Y, (z)| increases exponentially withwhen
v > ex/2, but|.J,(z)| is bounded, the unwanted component will increase ex-
ponentially if we use the recurrence in the forward direttibut decrease if
we use it in the backward direction.

More precisely, we have

J () ~ ﬁ% (%) and Y, (z) ~ — % (i;) (4.55)
asv — +oo with z fixed. Thus, whew is large and greater than:/2, J, (x)
is small andY, (z)] is large.

Miller’'s algorithm seems to be the most effective methodhmregion where
the power serie$ (4.48) suffers from catastrophic cartamtiabut asymptotic
expansions are not sufficiently accurate. For more on Mllgigorithm, see

§4.12.

4.7.2 Evaluation of Bernoulli and tangent numbers

In 4.8, Eqns.[(4.35) an@{4.88), the Bernoulli numbBss or scaled Bernoulli
numbersCy, = Bayi/(2k)! were required. These constants can be defined by
the generating functions

> k

Y B = (4.56)
k! et —1

k=0

- x x x/2
2k — = . 4.57
kz_;) Crw e’ —1 + 2 tanh(z/2) (4.57)

4.7 Recurrence relations 155

Multiplying both sides ofl(4.56) of (4.57) hy¥ — 1, then equating coefficients,
gives the recurrence relations

k
kE+1
Bozl,z<4__>Bj:0fork>0, (4.58)
i=o N J
and
k

Cj . 1
Z (2k+1—25)! 2(2k)! (4.59)

=0
These recurrences, or slight variants with similar nunanicoperties, have
often been used to evaluate Bernoulli numbers.

In this chapter our philosophy is that the required precissonot known in
advance, so it is not possible to precompute the Bernouttirars and store
them in a table once and for all. Thus, we need a good algofitheomputing
them at runtime.

Unfortunately, forward evaluation of the recurrente_(},.58 the corre-
sponding recurrencé€ (4}59) for the scaled Bernoulli nusbisrnumerically
unstable: using precisiom, the relative error in the computédsh, or C}, is of
order4*2~": see Exercisg 4.35.

Despite its numerical instability, use 6f(4159) may give @, to acceptable
accuracy if they are only needed to generate coefficients Euder—Maclaurin
expansion where the successive terms diminish by at leastar fof four (or if
the C, are computed using exact rational arithmetic). If ¢heare required to
precisionn, then [4.5D) should be used with sufficient guard digits petter)
a more stable recurrence should be used. If we multiply bdeésof [4.57) by
sinh(z/2) /2 and equate coefficients, we get the recurrence

k

Gj 1
jgo (2k +1 —2j)14+=7 — (2k)1 4k (4.60)

If (Z.60) is used to evaluat€, using precisionn arithmetic, the relative
error is only O(k?2~"). Thus, use of[[4.80) gives a stable algorithm for
evaluating the scaled Bernoulli numbe€s, (and hence, if desired, the
Bernoulli numbers).

An even better, and perfectly stable, way to compute Betnouinbers is
to exploit their relationship with thiangent number$);, defined by
220—1
tanx = ZTj m . (4.61)

Jj=1

The tangent numbers are positive integers and can be egprasserms of

156 Elementary and special function evaluation

Bernoulli numbers
By

Tj - (71>j7122j (22j - 1) 2j

(4.62)

Conversely, the Bernoulli numbers can be expressed in tefntangent
numbers

1 if j =0,
12 if j =1,
L) (—1)I2NTy /(4 — 27) if 5 > 0is even,
0 otherwise.

Egn. [462) shows that the odd primes in the denominator ef&&rnoulli
number By; must be divisors o2? — 1. In fact, this is a consequence of
Fermat's little theorem and the Von Staudt—Clausen thepverith says that
the primesp dividing the denominator of3,; are precisely those for which
(p —1)[2j (seefd.1D).

We now derive a recurrence that can be used to compute tangenters,
using only integer arithmetic. For brevity, write= tanz andD = d/dz.
ThenDt = sec?x = 1 + t2. It follows that D(t") = nt"~'(1 + ¢2) for all
n € N*,

It is clear thatD™¢ is a polynomial irt, say P, (t). For examplePy(t) = t,
Py(t) = 1+t°, etc. WriteP,,(t) = Y_ - pn ;t’. Fromthe recurrencg, (t) =
DP,_4(t), and the formula foD(¢") just noted, we see thdeg(P,,) = n+

and
> bt =Y pao1 gt T 1+ 1),
j=0 7>0
SO
Png == Dpn-1-1+ G +Dpn-15401 (4.63)

for all n € N*. Using [4.6B), it is straightforward to compute the coeffits
of the polynomialsP; (t), P»(t), etc.

Observe that, sincemn x is an odd function of;, the polynomials>y (¢) are
odd, and the polynomialB 11 (t) are even. Equivalently,, ; = 0if n+jis
even.

We are interested in the tangent numb@&js = Ps,_1(0) = par—_1,0-
Using the recurrencé (4.163) but avoiding computation ofabefficients that
are known to vanish, we obtain AlgorithiiangentNumbersfor the in-place
computation of tangent numbers. Note that this algorithesusly arithmetic
on non-negative integers. If implemented with single-i@iea integers, there

4.7 Recurrence relations 157

Algorithm 4.3 TangentNumbers
Input: positive integern
Output: Tangent number®y, ..., T,,
T1 — 1
for k from 2to m do
Ty — (k— 1)Tx—4
for k from 2 to m do
for j from k to m do
Ty — (= k)i + (G — k+2)T;
returnTy, Ts, ..., Ty,.

may be problems with overflow as the tangent numbers growdisai imple-
mented using floating-point arithmetic, it is numericaltglsde because there
is no cancellation. An analogous algoritiBecantNumbersis the topic of
Exercisd 4.40.

The tangent numbers grow rapidly because the generatictjdanan « has
poles atr = +7 /2. Thus, we expect}, to grow roughly like(2k—1)! (2/7)2".
More precisely

T, B 22k+1(1 _ 2_2k)C(2k)

2k — 1)1 w2k ’ (4.64)

where((s) is the usual Riemann zeta-function, and
(L=27)¢(s) = 1437 57" 4.

is sometimes called thedd zeta-function.

The Bernoulli numbers also grow rapidly, but not quite as éssthe tan-
gent numbers, because the singularities of the generatimgion [4.56) are
further from the origin (at-2i7 instead of+x/2). It is well-known that the
Riemann zeta-function for even non-negative integer aspim can be
expressed in terms of Bernoulli numbers — the relation is

k-1 Bar _ 2((2k)

(-1 e (4.65)
Since((2k) = 14+ O(47%) ask — +oo, we see that
k)!
| Bag| ~ ?2%21 : (4.66)

It is easy to see thaf (4.64) arld (4.65) are equivalent, iw d&the rela-
tion (4.62).

158 Elementary and special function evaluation

An asymptotically fast way of computing Bernoulli numbesstie topic of
Exercise[4.411. For yet another way of computing Bernouliinbers, using
very little space, se@.10.

4.8 Arithmetic-geometric mean

The (theoretically) fastest known methods for very largecigionn use the
arithmetic-geometric mean (AGM) iteration of Gauss anddrelye. The AGM
is another non-linear recurrence, important enough to segaarately. Its com-
plexity isO(M (n) lnn); the implicit constant here can be quite large, so other
methods are better for smail

Given(ag, by), the AGM iteration is defined by

a; + b;
(@j41,bj41) = (: 5 J7\/ajbj>~

For simplicity, we only consider real, positive startindues(ao, by) here (for
complex starting values, séd.8.53 andj4.12). The AGM iteration converges
quadraticallyto a limit that we denote bAGM (ag, by).

The AGM is useful because:

1. It converges quadratically — eventually the number ofexdrdigits doubles
at each iteration, so oni§(log n) iterations are required.

2. Each iteration takes tim@(M (n)) because the square root can be com-
puted in timeO(M (n)) by Newton's method (se¥8.3 andj4.2.3).

3. If we take suitable starting valu€s,, by), the resultAGM(ay, by) can be
used to compute logarithms (directly) and other elemerftargtions (less
directly), as well as constants suchraandin 2.

4.8.1 Elliptic integrals

The theory of the AGM iteration is intimately linked to thesthry of elliptic
integrals. Theeomplete elliptic integral of the first kind defined by

(4.67)

/2 do ! dt
K(k)*/o /71_]{2&1129/0 \/(1—t2)(1—k2t2)'

and thecomplete elliptic integral of the second kirsd

/2 L 22
E(k):/ \/1—kQSin29d9:/ JEEE g

4.8 Arithmetic-geometric mean 159

wherek € [0, 1] is called themodulusandk’ = /1 — k? is thecomplemen-
tary moduluslt is traditional (though confusing as the prime does notate
differentiation) to writeK’ (k) for K (k') andE’ (k) for E(k').

The connection with elliptic integrals. Gauss discovered that

1 2,
RGN)~ —K' (k). (4.68)
This identity can be used to compute the elliptic integkarapidly via the
AGM iteration. We can also use it to compute logarithms. Fitben defini-
tion (4.67), we see that'(k) has a series expansion that convergesifpx 1
(in fact, K (k) = (w/2)F(1/2,1/2;1;k?) is a hypergeometric function). For
smallk, we have

T k2 4
K(k):5 1+Z+O(k)) - (4.69)
It can also be shown that
/ _ g 4 o k72 4
K'(k) = p In <k) K(k) 1 + O(k%). (4.70)

4.8.2 First AGM algorithm for the logarithm

From the formulad(4.68). (4.59), aid (4.70), we easily get

A(};\T/[/(Ql,k:) =In (:) (1+0(k?)). (4.71)

Thus, ifx = 4/k is large, we have

o) - 2 (100 (L)),

If 2 > 2"/2, we can computén(z) to precisionn using the AGM iteration. It
takes abou? Ig(n) iterations to converge if € [2/2,2"].

Note that we need the constantwhich could be computed by using our
formula twice with slightly different arguments, andz-, then taking differ-
ences to approximatel In(z)/dx) /m atz, (see Exercise 4.44). More efficient
is to use thBrent—Salamirfor Gauss—Legendjalgorithm, which is based on
the AGM and the Legendre relation

EK' + E'K — KK' = g : (4.72)

160 Elementary and special function evaluation

Argument expansion. If z is not large enough, we can compute
In(2‘z) =¢In2 +1Inz

by the AGM method (assuming the constam® is known). Alternatively, if
x > 1, we can square enough times and compute

In (xzé) = 2%In(x).

This method withr = 2 gives a way of computingn 2, assuming we already
know .

The error term. The O(k?) error term in the formuld{4.71) is a nuisance. A
rigorous bound is

/2 4 9
e — — < — .
AGM(LF) hl(k)‘ < 4k*(8 —Ink) (4.73)
for all & € (0, 1], and the bound can be sharpened &7k?(2.4 — In(k)) if

k € (0,0.5].

The errorO(k?|In k|) makes it difficult to accelerate convergence by using
alarger value of: (i.e. a value of: = 4/k smaller thar2™/2). There is arexact
formula which is much more elegant and avoids this probleafoi giving
this formula, we need to define sortfeeta functionsand show how they can
be used to parameterize the AGM iteration.

4.8.3 Theta functions
We need the theta functiofis(q), 65(¢) andf,(q), defined forlg| < 1 by

+oo +oo
82((]) _ Z q(n+1/2)2 _ 2ql/4 an(n-i-l)7 (474)
n=-—o00 n=0
00) 00)
O3(g) = > ¢~ =1+2) q", (4.75)
n=-—oo n=1
00)
0a(q) = O3(—q) =142 (~1)"¢". (4.76)
n=1

Note that the defining power series are sparse, so it is easynmputeds(q)
andfs(q) for smallg. Unfortunately, the rectangular splitting method{df4.3
does not help to speed up the computation.

The asymptotically fastest methods to compute theta fanstise the AGM.
However, we do not follow this trail, because it would leadmusircles! We
want to use theta functions to give starting values for thdiiration.

4.8 Arithmetic-geometric mean 161

Theta function identities. There are many classical identities involving theta
functions. Two that are of interest to us are

w =03(¢°) and 03(q)0a(q) = 07(¢*).

The latter may be written as

03(q)03(q) = 03 (q*)
to show the connection with the AGM

AGM(65(9), 63(9)) = AGM(03(¢*), 0

2
s V4
= AGM(02(¢*"),0

¢°) ="
@) ==
for any|q| < 1. (The limitis1 becauseq2~ converges td, thus bothd; and

64 converge tol.) Apart from scaling, the AGM iteration is parameterized by
(02(¢%"),02(¢*")) fork =0,1,2,

:

7

The scaling factor. Since AGM(63(q),03(q)) = 1, and AGM()\a, A\b) =
A - AGM(a, b), scaling givesAGM(1, k") = 1/03(q) if k' = 03(q)/03(q)

Equivalently, sinced; + 0F = 03 (Jacobi),k = 02(q)/03(q). However, we
know (from [4.68) withk — £’) that1/ AGM(1, k') = 2K (k)/m, so

K (k) = 363(a). (4.77)

Thus, the theta functions are closely related to elliptiegnals. In the literature
q is usually called th@omeassociated with the modulés

From ¢ to k and k to ¢. We saw thatk = 603(q)/62(q), which givesk in
terms ofq. There is also a nice inverse formula which givels terms ofk:
q = exp(—mK'(k)/K(k)), or equivalently

o(l)-

Sasaki and Kanada’s formula. Substituting [(4.68) and_(4.Y7) intG_(4]78)
with k& = 03(q)/03(q) gives Sasaki and Kanada’s elegant formula

1 T
m(q>:AGMwa@ﬁa@f

This leads to the following algorithm to compuiex.

(4.79)

162 Elementary and special function evaluation

4.8.4 Second AGM algorithm for the logarithm

Supposer is large. Lety = 1/, computeds (¢*) andfs(¢*) from their defin-
ing series[(4.74) and(4175), then comput&M (03(q*), 02(¢*)). Sasaki and
Kanada’s formula (witly replaced by;* to avoid the;'/* term in the definition
of 02(q)) gives

B /4

~ AGM(65(q*), 05(*))

There is a trade-off between increasingby squaring or multiplication by a
power of2, see the paragraph on “Argument Expansion§4iB.2), and taking
longer to compute,(¢*) andfs(q*) from their series. In practice, it seems
good to increase until ¢ = 1/ is small enough thaD(¢>¢) terms are negli-
gible. Then we can use

02(¢*) =2 (¢ + ¢ + ¢* + 0(¢"))

In(zx)

05(¢") =1+2(¢" + ¢"° + O0(¢*)) .

We needr > 2"/36, which is much better than the requirement 2"/2 for
the first AGM algorithm. We save about four AGM iterations la¢ tost of a
few multiplications.

Implementation notes. Since

2 2
AGM(62, 62) — ACM(63 203, 20205)

we can avoid the first square root in the AGM iteration. Alsorily takes two
non-scalar multiplications to compu2é,03; and63 + 6 from 0, andfs: see
Exercisd 4.45. Another speedup is possible by trading tHépiications for
squares, se$1.12.

Drawbacks of the AGM. The AGM has three drawbacks:

1. The AGM iteration isot self-correcting, so we have to work with full pre-
cision (plus any necessary guard digits) throughout. Irtresty when us-
ing Newton’s method or evaluating power series, many of tmeputations
can be performed with reduced precision, which savkg a factor (this
amounts to using aegativenumber of guard digits).

2. The AGM with real arguments givés(x) directly. To obtainexp(z), we
need to apply Newton's method4;2.5 and ExercisE4.6). To evaluate
trigonometric functions such am(x), cos(x), arctan(x), we need to work
with complex arguments, which increases the constant hiddé¢he “O”

4.9 Binary splitting 163

time bound. Alternatively, we can use Landen transfornmatifmor incom-
plete elliptic integrals, but this gives even larger contta

3. Because it converges so fast, it is difficult to speed ugAtB®I. At best we
can save)(1) iterations (see howevgd.12).

4.8.5 The complex AGM

In some cases, the asymptotically fastest algorithms redjoe use of complex
arithmetic to produce a real result. It would be nice to avhid because com-
plex arithmetic is significantly slower than real arithnseiExamples where we
seem to need complex arithmetic to get the asymptoticadiietd algorithms
are:

1. arctan(z), arcsin(x), arccos(x) via the AGM, using, for example,
arctan(z) = S(In(1 + ix));

2. tan(x), sin(x), cos(x) using Newton’s method and the above, or
cos(z) + isin(z) = exp(ix),

where the complex exponential is computed by Newton’s ntefram the
complex logarithm (see Eqri._(4]11)).

The theory that we outlined for the AGM iteration and AGM aigfams for
In(z) can be extended without problems to comple¥ (—oo,0], provided
we always choose the square root with positive real part.

A complex multiplication takes three real multiplicatiofusing Karatsuba'’s
trick), and a complex squaring takes two real multiplicasioWe can do even
better in the FFT domain, assuming that one multiplicatiboast M (n) is
equivalent to three Fourier transforms. In this model, @asag cost2M (n)/3.
A complex multiplication(a + ib)(c + id) = (ac — bd) + i(ad + bc) requires
four forward and two backward transforms, and thus c@3fgn). A complex
squaring(a + ib)? = (a + b)(a — b) + i(2ab) requires two forward and two
backward transforms, and thus cosf¥/ (n)/3. Taking this into account, we
get the asymptotic upper bounds relative to the cost of origptication given
in Table 4.1 (.666 should be interpreted as2M (n)/3, and so on). Se¢L.12
for details of the algorithms giving these constants.

4.9 Binary splitting

Since the asymptotically fastest algorithms fottan, sin, cos, etc. have a
large constant hidden in their time bou@dM (n) logn) (see “Drawbacks of

164 Elementary and special function evaluation

Operation real complex
squaring 0.666 1.333
multiplication 1.000 2.000
reciprocal 1.444 3.444
division 1.666 4.777
square root 1.333 5.333
AGM iteration 2.000 6.666
log via AGM 4.0001gn 13.3331gn

Table 4.1 Costs in the FFT domain.

the AGM", §4.8.4, page 162), it is interesting to look for other aldurit that
may be competitive for a large range of precisions, eventifasgmptotically
optimal. One such algorithm (or class of algorithms) is bamebinary split-
ting (seed4.12). The time complexity of these algorithms is usually

O((logn)* M (n))

for some constantv > 1 depending on how fast the relevant power series
converges, and also on the multiplication algorithm (dtzdsKaratsuba, or
quasi-linear).

The idea. Suppose we want to computectan(z) for rationalz = p/q,
wherep andq are small integers and| < 1/2. The Taylor series gives

p (—1)7p2+1
arctan <) ~ HTT s T
Z +1
0/ iz (201

The finite sum, if computed exactly, gives a rational appr@tion P/(Q to
arctan(p/q), and

log |Q| = O(nlogn).

(Note: the series foexp converges faster, so in this case we ssm/Inn
terms and gelog |Q] = O(n).)

The finite sum can be computed by the “divide and conquertegya sum
the first half to getP; /Q1 say, and the second half to gét/Q-, then

B:i+&:P1Q2+P2Q1_
Q Q1 Qo Q1Q2

The rationalsP; /@, and P,/Q- are computed by a recursive application of

the same method, hence the term “binary splitting”. If useth guadratic

4.9 Binary splitting 165

multiplication, this way of computing’/@) does not help; however, fast mul-
tiplication speeds up the balanced produet§),, P,Q1, and@Q1Qx.

Complexity. The overall time complexity is

Mg(n)]
O 28 M (2 Fnlogn) | = O((logn)*M(n)), (4.80)
k=1

wherea = 2 in the FFT range; in general < 2 (see Exercise 4.47).

We can save a little by working to precisiarrather tham log n at the top
levels; but we still haver = 2 for quasi-linear multiplication.

In practice, the multiplication algorithm would not be fixbdt would de-
pend on the size of the integers being multiplied. The corifylevould de-
pend on the algorithm(s) used at the top levels.

Repeated application of the idea.lf = € (0,0.25) and we want to compute
arctan(z), we can approximate by a rationalp/q and computerctan(p/q)
as a first approximation tarctan(z), sayp/q < = < (p + 1)/q. Now,

from (4.17) -

z —p/q
tan(arctan(x) — arctan =
((z) (v/9)) = 1 e
SO
arctan(z) = arctan(p/q) + arctan(9),
where

_z—-plg _gqr—p,
L+px/q q+px

We can apply the same idea to approximatetan(d). Eventually we get a
sufficiently accurate approximationdoctan(z). Since|d| < |[x—p/q| < 1/q,
it is easy to ensure that the process converges.

Complexity of repeated application. If we use a sequence of abdgtn ra-
tionalsp1/q1,p2/q2, - . ., Wwhere
qi = 22i7

then the computation of eaelctan(p;/¢;) takes timeD((logn)*M (n)), and
the overall time to computerctan(z) is

O((logn)* T M (n)).

166 Elementary and special function evaluation

Indeed, we hav® < p; < 22 '; thus, p; has at mosRi— bits, andp; /q;
as a rational has valu@(2-2"") and sizeO(2%). The exponenty + 1 is 2
or 3. Although this is not asymptotically as fast as AGM-basepbathms, the
implicit constants for binary splitting are small and theads useful for quite
largen (at leastl0 decimal places).

Generalizations. The idea of binary splitting can be generalized. For exam-
ple, the Chudnovsky brothers gave a “bit-burst” algorithwhjch applies to
fast evaluation of solutions of linear differential eqoat. This is described in

§49.2.

4.9.1 A binary splitting algorithm for sin, cos

Brent @ Theorem 6.2] claims ad(M (n) log? n) algorithm forexp = and
sin ; however, the proof only covers the case of the exponermnikads with
“the proof of (6.28) is similar”. He had in mind deducisig = from a complex
computation ofexp(iz) = cosz + isinz. Algorithm SinCosis a variation
of Brent’s algorithm forexp x that computesin x andcos x simultaneously,
in a way that avoids computations with complex numbers. Timailsaneous
computation ofsin 2 andcos 2 might be useful to computean z or a plane
rotation through the angle.

Algorithm 4.4 SinCos

Input: floating-point0 < = < 1/2, integern

Output: an approximation ofin x andcos x with errorO(27")
1: write z ~ Zf:o pi - 272" where0 < p; < 22" andk = gn] —1

2 letz; = Zf:j i - 2-2""" with ZTp+1 = 0, andy; = p; - 2-2"

3: (Sk+1, Ck+1) — (O, 1) > Sj is SiIle ande is COS T 5
4: for j from k downto 0 do
5
6
7

computesin y; andcos y; using binary splitting
S «siny;-Cjp1+cosy;-Sjy1,Cj < cosy;j-Cipr —siny; - Sj
. return(Sop, Co).

At step[2 of AlgorithmSinCos we haver; = y; + z,41; thus,sinz; =
siny; cosxj41 + cosy; sinx 41, and similarly forcos ;, explaining the for-
mulee used at stdgd 6. StEp 5 uses a binary splitting algorithnitas to the
one described above farctan(p/q): y; is a small rational, or is small itself,
so that all needed powers do not exceelits in size. This algorithm has the
same complexity) (M (n) log® n) as Brent's algorithm foexp z.

4.9 Binary splitting 167
4.9.2 The bit-burst algorithm

The binary-splitting algorithms described abovedottan x, exp z, sin x rely

on a functional equatiortan(z + y) = (tanz + tany)/(1 — tanz tany),

exp(z + y) = exp(z)exp(y), sin(z + y) = sinzcosy + sinycosx. We
describe here a more general algorithm, known as the “btbalgorithm,
which does not require such a functional equation. Thisrélgn applies to
a class of functions known dlonomicfunctions. Other names adifferen-
tiably finiteandD-finite.

A function f(z) is said to béholonomiciff it satisfies a linear homogeneous
differential equation with polynomial coefficients:inEquivalently, the Taylor
coefficientsu,, of f satisfy a linear homogeneous recurrence with coefficients
polynomial ink. The set of holonomic functions is closed under the opamatio
of addition and multiplication, but not necessarily undiersion. For example,
theexp, In, sin, cos functions are holonomic, bitn is not.

An important subclass of holonomic functions is the hypengetric func-
tions, whose Taylor coefficients satisfy a recurrenge; /u, = R(k), where
R(k) is a rational function of (see§4.4). This matches the second defini-
tion above, because we can write it@as; 1 Q(k) — up P(k) = 0 if R(k) =
P(k)/Q(k). Holonomic functions are much more general than hypergé&@mne
functions (see Exercige 4]48); in particular, the rationaf tonsecutive terms
in a hypergeometric series has si2zfog k) (as a rational number), but can be
much larger for holonomic functions.

Theorem 4.2 If f is holonomic and has no singularities on a finite, closed
interval [A, B], whereA < 0 < B and f(0) = 0, then f(z) can be com-
puted to an (absolute) accuracy ofits, for anyn-bit floating-point number

z € (A, B), intimeO(M (n)log®n).

NoTEs For a sharper result, see Exerdise #.49. The condjtioh = 0 is just
a technical condition to simplify the proof of the theorefi{0) can be any
value that can be computedstdbits in timeO(M (n) log® n).

Proof. Without loss of generality, we assume< z < 1 < B; the binary
expansion ofr can then be writtex = 0.b1bs...b,. Definer; = 0.bq,
ro = 0.002b3, 73 = 0.000b4b5b6b7 (the same decomposition was already used
in Algorithm SinCo9: r; consists of the first bit of the binary expansionof
ro consists of the next two bitg; the next four bits, and so on. Thus, we have
T =71 4+7re+ ...+ 1, where2b—1 < n < 2k,

Definex; = r + --- + r; with g = 0. The idea of the algorithm is to
translate the Taylor series ¢gf from z; to x;,1; since f is holonomic, this
reduces to translating the recurrence on the corresporatiefficients. The

168 Elementary and special function evaluation

condition thatf has no singularity if0, z] C [A, B] ensures that the translated
recurrence is well-defined. We defifigt) = f(¢), f1(¢) = fo(r1+1), f2(t) =
filra +), . fi(t) = fia(ri +) fori < k. We havef;(t) = f(z; + 1),
and fi(t) = f(x +t) sincexy = . Thus, we are looking fof,(0) = f(z).

Let f7(t) = f:(t) — f:(0) be the non-constant part of the Taylor expansion
of f;. We havef’(ri11) = fi(riy1) — fi(0) = fi41(0) — f;(0) because
fir1(t) = fi(riz1 +1t). Thus

fo(r) + -+ frioa(re) = (f1(0) = fo(0) + -+ - + ((0) = fr—1(0))
= fx(0) — fo(0) = f(x) — f(0).

Sincef(0) = 0, this gives

k—1
F@) = f(riq).
=0
To conclude the proof, we will show that each teffi{r; ;) can be evalu-
ated ton bits in timeO (M (n) log® n). The rational;, ; has a numerator of at
most2¢ bits, and

0<ripq <272,

Thus, to evaluatef; (r;11) to n bits, n/2" + O(logn) terms of the Taylor
expansion off;*(¢) are enough. We now use the fact thais holonomic.
Assumej satisfies the following homogeneous I||E|51d|fferent|al equation
with polynomial coefficients

m () FU () + -+ L (8) /() + o) f(2) = 0.
Substitutinge; + t for ¢, we obtain a differential equation fgi
em (i + B F™ () + -+ ea(ws + 1) f(1) + colws + D fi(t) =0

From this equation, we deduce (S§E12) a linear recurrence for the Taylor
coefficients off;(¢), of the same order as that f@(t). The coefficients in the
recurrence forf; (t) haveO(2?) bits, sincer; = ry + - -+ + r; hasO(2?) bits.
It follows that the/th Taylor coefficient off;(t) has sizeO(£(2¢ + log¥)).
The Zlog ¢ term comes from the polynomials ihin the recurrence. Since
¢ < n/2" + O(logn), this isO(nlogn).

However, we do not want to evaluate téte Taylor coefficientu, of f;(t),
L |f f satisfies a non-homogeneous differential equation, say

E(t, f(t), f(t),..., f®)(t)) = b(t), whereb(t) is polynomial int, differentiating it yields
F(t, ft), f/#), ..., fEFD(@)) =/ (t), andb/ (t) E(-) — b(t)F(-) is homogeneous.

4.10 Contour integration 169

but the series
¢
Sy = Z’U,j’f‘iLl ~ fi*(Ti+1)~
j=1

Noting thatu, = (s,g—sE,l)/er, and substituting this value in the recurrence
for (u¢), say of ordetl, we obtain a recurrence of ordér- 1 for (s;). Putting
this latter recurrence in matrix forrf, = M,S,_1, where S, is the vector
(8¢,80-1,---,80—aq), We obtain

Se= MMy - Mg4154, (4.81)
where the matrix productM,M,_,---Myy; can be evaluated in time
O(M (n)log® n) using binary splitting. O

We illustrate Theorerin 4.2 with the arc-tangent functionichlsatisfies the
differential equationf’(t)(1 + t?) = 1. This equation evaluates at + ¢ to
fI) (1 + (z; + t)%) = 1, wheref;(t) = f(z; + t). This gives the recurrence

(1 + 22 lug + 22;(0 — Vug_y + (£ — 2)ug_2 =0
for the Taylor coefficients, of f;. This recurrence translates to
(14 @) v + 22m41(6 — Vve—y + 171 (£ — 2)vp—2 =0
for vy = werf, |, and to
(1+3)l(se = s0-1)
+ 221 (€ — 1) (801 — S0—2) + 1711 (£ — 2)(s¢—2 — s0—3) =0

for s, = Zﬁzl v;. This recurrence of orde¥ can be written in matrix form,
and Eqn.[(4.81) enables us to efficiently compute: f;(r; +1) — f;(0) using
multiplication of3 x 3 matrices and fast integer multiplication.

4.10 Contour integration

In this section, we assume that facilities for arbitrarggision complex arith-
metic are available. These can be built on top of an arbipaegision real
arithmetic package (see Chaptérs 3f@nd 5).

Let f(z) be holomorphic in the dis¢z| < R, R > 1, and let the power
series forf be

f(z) = i aj 2. (4.82)
=0

170 Elementary and special function evaluation

From Cauchy’s theorerJlJTZLIZZ, Ch. 7], we have

1 (2)
= — —-d 4.83
2mi Jo 2T - (4.83)

J

whereC is the unit circle. The contour integral in (4183) may be appmnated
numerically by sums

k—1

Sj,k' _ f(e27ri7n/k)€727rijm/k' (484)

| =

m=0

Let C” be a circle with centre at the origin and radipse (1, R). From
Cauchy’s theorem, assuming that k, we have (see Exercige 4150)

1 /(2)
Sf‘vk‘aﬂ':%/,mdzmﬁwaﬁmm> (4.85)

s0|S;x — aj| = O((R — §)~U*k) ask — oo, for anys > 0. For example,
let
z z

+2 (4.86)

FE) =37 +3

be the generating function for the scaled Bernoulli numizersn [4.57), so
azj = Cj = Byj/(24)! andR = 27 (because of the poles &t7i). Then

By Bojik Baj o
R — . 4.87
Sajik N (25 + k) (2] + 2k)! ’ (4.87)

so we can evaluatBs,; with relative errorO((27)~*) by evaluatingf(z) atk
points on the unit circle.

There is some cancellation when usihg(4.84) to evalfaje because the
terms in the sum are of order unity but the result is of or@er)~2/. Thus,
O(37) guard digits are needed. In the following, we assymeO(n).

If exp(—2mijm/k) is computed efficiently fromaxp(—27i/k) in the obvi-
ous way, the time required to evaluat®,,...,By; to precisionn is
O(jnM(n)), and the space required 3(n). We assume here that we need
all Bernoulli numbers up to indeXj, but we do not need to store all of them
simultaneously. This is the case if we are using the Bernouthbers as coef-
ficients in a sum such as{4138).

The recurrence relation method$E.7.2 is faster but requires spa®é;jn).
Thus, the method of contour integration has advantagesdess critical.

For comments on other forms of numerical quadratureJ4e&l.

4.11 Exercises 171
4.11 Exercises

Exercise 4.11f A(z) = > ;5 ajz’ is a formal power series ovék with

ap = 1, show thatln(A(z)) can be computed with erraD(z") in time
O(M(n)), whereM (n) is the time required to multiply two polynomials of
degreen — 1. Assume a reasonable smoothness condition on the growth of
M(n) as a function ofn. [Hint: (d/dz)In(A(x)) = A'(z)/A(z).] Does a
similar result hold fom-bit numbers ifx is replaced byt /2?

Exercise 4.2 (Scbnhage[@] and Schost) Assume we want to compute
1/s(xz) mod z™, for s(x) a power series. Design an algorithm using an odd—
even schemej.3.5), and estimate its complexity in the FFT range.

Exercise 4.3 Suppose thaj andh are sufficiently smooth functions satisfying
g(h(z)) = z on some interval. Leg; = h(x;). Show that the iteration
k—1
T =xi+ Y (y—y;)
m=1
is a kth-order iteration that (under suitable conditions) widheerge tar =
g(y). [Hint: generalize the argument leadingfo(4.16).]

m 9 (y;)
m!

Exercise 4.4 Design a Horner-like algorithm for evaluating a seFL’é§:O ajxl

in the forward direction, while deciding dynamically wherestop. For the
stopping criterion, assume that tfwe;| are monotonic decreasing and that
|z] < 1/2.[Hint: usey = 1/z.]

Exercise 4.5Assume we want bits of expz for 2 of order2’, with the
repeated use of the doubling formufg{3.1), and the naive method to evaluate
power series. What is the best reduced argumegat in terms ofn and;?
[Consider both cases> 0 andj < 0.]

Exercise 4.6 Assuming we can compute anbit approximation toln z in
time T'(n), wheren < M(n) = o(T(n)), show how to compute an-bit
approximation teexp x in time ~ T'(n). Assume thaf’(n) and M (n) satisfy
reasonable smoothness conditions.

Exercise 4.7 Care has to be taken to use enough guard digits when computing
exp(x) by argument reduction followed by the power serles (4.%1}.ik of
order unity and: steps of argument reduction are used to compxkipéx) via

exp(r) = (exp(r/2)”

show that abouk bits of precision will be lost (so it is necessary to use about
k guard bits).

172 Elementary and special function evaluation

Exercise 4.8 Show that the problem analysed in Exer¢isé 4.7 can be avoided
if we work with the function

expml(z) = exp(z) — 1 = -
=
which satisfies the doubling formulapm1(2z) = expm1(z)(2+expml(x)).

Exercise 4.9 Forx > —1, prove the reduction formula

x
1+V1i+w) ’
where the functiotog1p(z) is defined byloglp(z) = In(1 +), as in§4.4.2.
Explain why it might be desirable to work witlhvg1p instead ofln in order
to avoid loss of precision (in the argument reduction, nathan in the recon-
struction as in Exercide 4.7). Note however that argumehtaigon forloglp
is more expensive than that fexpm1, because of the square root.

loglp(z) = 2loglp (

Exercise 4.10Give a numerically stable way of computiggh(z) using one
evaluation ofexpm1(]z|) and a small number of additional operations (com-

pare Eqn.[(4.20)).

Exercise 4.11 (White) Show thatexp(x) can be computed viginh(z) using
the formula

exp(z) = sinh(z) + \/1 + sinh?(z).

Since
ez o 671 1,2k+1

sinh(z) = = ;

|

2 =0 (2k + 1)!

this saves computing about half the terms in the power stnesp(x) at the
expense of one square root. How can we modify this methodasepve nu-
merical stability for negative argument8 Can this idea be used for functions
other tharexp(x)?

Exercise 4.12Count precisely the number of non-scalar products neggssar
for the two variants of rectangular series splitti§g.4.3).

Exercise 4.13 A drawback of rectangular series splitting as presentg§d.ih3

is that the coefficientsig.¢+, in the classical splitting, at;,,, ¢ in the modular
splitting) involved in the scalar multiplications might dmme large.
Indeed, they are typically a product of factorials, and ttheve size
O(dlogd). Assuming that the ratios; 1 /a; are small rationals, propose an
alternate way of evaluating(x).

4.11 Exercises 173

Exercise 4.14Make explicit the cost of the slowly growing functiarid)

(§4.4.3).

Exercise 4.15Prove the remainder terri (4]128) in the expans[an {4.27) for
E;(x). [Hint: prove the result by induction oh, using integration by parts

in the formula[(4.2B).]

Exercise 4.16 Show that we can avoid using Cauchy principal value integral
by definingEi(z) andE; (z) in terms of the entire function

o0

11— —t —1)i—1zd
Fin(2) :/ &Hdtzzﬂ%_

0 t =)
Exercise 4.17Let E;(x) be defined by[(4.25) for real > 0. Using [427),
show that

1 1 1

;—ﬁ<€xE1(!II)< ;
Exercise 4.181In this exercise, the series are purely formal, so ignorejaeg-
tions of convergence. Applications are given in Exerdis&§8#4.20.

Suppose thafa;);en iS a sequence with exponential generating function
s(z) = Zj‘;o aj2’ /j!. Suppose thatl, = 377 (7)a;, and letS(z) =
Z;’io A, 27/ 7! be the exponential generating function of the sequéAge,, cn.
Show that

S(z) = exp(2)s(z).

Exercise 4.19The power series fdtin(z) given in Exercis€4.16 suffers from
catastrophic cancellation whenis large and positive (like the series for
exp(—=z)). Use Exercis¢ 4.18 to show that this problem can be avoiged b
using the power series (whefg&, denotes theith harmonic number)

0 .
H. %
e Ein(z) = Z]'Z :
=1 7

J

Exercise 4.20Show that Eqn.[{4.23) foerf(z) follows from Eqn. [4.2R).
[Hint: this is similar to ExercisE4.19.]

Exercise 4.21Give an algorithm to evaluat®(z) for realz > 1/2, with guar-
anteed relative erroD(2~"). Use the method sketched #.3 for InT'(x).
What can be said about the complexity of the algorithm?

174 Elementary and special function evaluation

Exercise 4.22Extend your solution to Exercige 4121 to give an algorithm to
evaluatel /T'(z) for z € C, with guaranteed relative err6r(2—"). Note:T'(z)

has poles at zero and the negative integers (i.e.—fore N), but we over-
come this difficulty by computing the entire functiafI’(z). Warning:|T'(z)|

can be very small if¥(z) is large. This follows from Stirling’s asymptotic
expansion. In the particular case0f iy on the imaginary axis, we have

. ™

More generally
(@ + iy)|* = 27]y[** " exp(—7ly])
for z,y € Rand|y| large.

Exercise 4.23The usual form[{4.38) of Stirling’s approximation for(T'(z))
involves a divergent series. It is possible to give a versio@tirling’s approx-
imation where the series is convergent

o0

1 In(27) Ck
lnI‘(z)—(z—2>lnz—z+2 +)(z+2)-(z4+Fk)
(4.88)
where the constants, can be expressed in terms $firling numbers of the
first kind s(n, k), defined by the generating function

k=1

Zs(n,k)xk:x(x—l)---(x—n+1).

k=0

In fact

The Stirling numbers(n, k) can be computed easily from a three-term recur-
rence, so this gives a feasible alternative to the usual &r&tirling’s approx-
imation with coefficients related to Bernoulli numbers.

Show, experimentally and/or theoretically, that the cogeat form of Stir-
ling’s approximation isnot an improvement over the usual form as used in
Exercisd 4.21.

Exercise 4.24Implement procedures to evaludig(x) to high precision for
real positivex, using (a) the power series (4126), (b) the asymptotic expan
sion [4.27) (if sufficiently accurate), (c) the method of Eeiee[4.19, and (d)
the continued fractio (4.39) using the backward and fodwacurrences as

4.11 Exercises 175

suggested i§4.6. Determine empirically the regions where each methtkis
fastest.

Exercise 4.25Prove the backward recurren€e(4.43).

Exercise 4.26 Prove the forward recurrende (4144).

[Hint: let
a1 ak—1 ag

bt bt brta
Show, by induction ot > 1, that

P+ Pz
T Qr+ Qran]
Exercise 4.27 For the forward recurrencE{(4144), show that

Qr Qr—1 - by 1 by 1 b 1
Pk Pk—l - aiq 0 a9 0 Qg 0

holds fork > 0 (and fork = 0 if we defineP_,, Q_, appropriately).
Remark.This gives a way to use parallelism when evaluating contrfueec-
tions.

Yk ()

yr ()

Exercise 4.28For the forward recurrence(4]44), show that

Qr Qr—1
P, Pr

Exercise 4.29Prove the identity[(4.46).

= (—l)kalag ceeap.

Exercise 4.30Prove Theorem 4]1.

Exercise 4.31Investigate using the continued fractidn (4.40) for evihga
the complementary error functianfc(x) or the error functiorerf(x) = 1 —
erfc(z). Is there a region where the continued fraction is preferédblany of
the methods used in Algorith&rf of §4.6?

Exercise 4.32Show that the continued fractidn (4141) can be evaluatddhia t
O(M (k) log k) if the a; andb; are bounded integers (or rational numbers with
bounded numerators and denominators). [Hint: use Exé4cie]

Exercise 4.33Instead of[(4.54), a different normalization condition
Jo(x)?+2) Jy(z)? =1 (4.89)
v=1

could be used in Miller's algorithm. Which of these normatiaa conditions
is preferable?

176 Elementary and special function evaluation

Exercise 4.34Consider the recurrencg _1 + f,+1 = 2K f,, whereK > 0

is a fixed real constant. We can expect the solution to thisrrence to give
some insight into the behavior of the recurrerice (4.53) énrédgionr ~ K.
Assume for simplicity thaf{ # 1. Show that the general solution has the form

fo = AN+ By,

where)\ andy are the roots of the quadratic equatich— 2Kz + 1 = 0, and

A andB are constants determined by the initial conditions. Shawttrere are
two cases: if’ < 1, then\ andu are complex conjugates on the unit circle,
so|A| = |p| = 1; if K > 1, then there are two real roots satisfyikg = 1.

Exercise 4.35Prove (or give a plausibility argument for) the statemendsien
in 4.7 that: (a) if a recurrence based én (4.59) is used to eeathe scaled
Bernoulli numbelC},, using precisiom arithmetic, then the relative error is of
order4*2~"; and (b) if a recurrence based ¢n_(4.60) is used, then thiveela
error isO(k?27m).

Exercise 4.36 Starting from the definitiod (4.56), prove Eqh. (4.57). Deglu
the relation[[4.6R2) connecting tangent numbers and Belimauhbers.

Exercise 4.37(a) Show that the number of bits required to represent the tan
gent numbefl}, exactly is~ 2k 1g k ask — oo. (b) Show that the same applies
for the exact representation of the Bernoulli numBgf, as a rational number.

Exercise 4.38Explain how the correctness of AlgorithirangentNumbers
(§4Z2) follows from the recurrence(4163).

Algorithm 4.5 SecantNumbers
Input: positive integerm
Output: Secant numberSy, Sq,...,Sn
So —1
for k from 1 to m do
Sk — kSk—1
for k from 1to m do
for j from k + 1tom do
Sj =G —k)Si1+ 0 —k+1)S5;
returnSy, S, ..., Sm.

Exercise 4.39Show that the complexity of computing the tangent numbers
Ty,. .., T,, by Algorithm TangentNumbers(§&.7.2) isO (m? log m). Assume

4.11 Exercises 177

that the multiplications of tangent numbefs by small integers take time
O(log T}). [Hint: use the result of Exercige 4]37.]

Exercise 4.40Verify that Algorithm SecantNumberscomputes in-place the
Secant numberS, defined by the generating function

22k 1
R -,
Z b (2k)! ST = os
k>0

in much the same way that AlgorithifangentNumbers (§4.7.2) computes
the Tangent numbers.

Exercise 4.41 (Harvey) The generating functior_(4.56) for Bernoulli num-
bers can be written as

Z‘k Z‘k
ZBkk;:l/;OM’

k>0

and we can use an asymptotically fast algorithm to compueditht n + 1
terms in the reciprocal of the power series. This should pmptotically faster
than using the recurrences given§.7.2. Give an algorithm using this idea
to compute the Bernoulli numbeisy, By, ..., B, in time O(n?(logn)?*¢).
Implement your algorithm and see how langeeeds to be for it to be faster
than the algorithms discussed§4.7.2.

Algorithm 4.6 SeriesExponential

Input: positive integern and real numbers,, as, ..., an,
Output: real number$y, by, ...,b,, such that
bo + b1z + -+ bpa™ = exp(a1z + - - + apa™) + O(z™mH)
b() — 1

for k from 1 to m do
by — (Z?:lja’jbk*j) [k

returnbg, by, ..., by,

Exercise 4.42(a) Show that AlgorithnSeriesExponentialcomputesB(z) =
exp(A(z)) up to terms of order™*!, whereA(z) = a1z +asz?+- - -+a,z™
is input data and3(z) = by + by + - - - + b, 2™ is the output. [Hint: compare

Exercisd 4.11.]

178 Elementary and special function evaluation

(b) Apply this to give an algorithm to compute the coefficgenf, in
Stirling’s approximation fon! (or I'(n + 1)):

ot (6) Vem

[Hint: we know the coefficients in Stirling’s approximatidd.38) forln T'(z)
in terms of Bernoulli numbers.]

(c) Is this likely to be useful for high-precision computatiof I'(x) for real
positivex?

Exercise 4.43Deduce from Eqn[{4.69) and (4]70) an expansiomn¢t/ k)
with error termO(k*log(4/k)). Use any means to figure out an effective
bound on the)() term. Deduce an algorithm requiring onty> 2"/ to getn
bits of In .

Exercise 4.44 Show how bothr andln 2 can be evaluated using Eqh. (4.71).

Exercise 4.45In §4.8:4, we mentioned tha&f»0; and63 + 63 can be com-
puted using two non-scalar multiplications. For example,oould (A) com-
puteu = (6, + 65)? andv = ,053; then the desired values ae andu — 2v.
Alternatively, we could (B) compute andw = (62 — 603)?; then the desired
values ardu + w)/2. Which method (A) or (B) is preferable?

Exercise 4.46Improve the constants in Table 4.1.

Exercise 4.47 Justify Eqn. [[4:80) and give an upper bound on the constant
if the multiplication algorithm satisfied/ (n) = ©(n°) for somec € (1, 2].

Exercise 4.48 (Salvy)ls the functionexp(z?) + x/(1 — 2%) holonomic?

Exercise 4.49 (van der Hoeven, Mezzarobba)mprove to O (M (n)log® n)
the complexity given in Theorem 4.2.

Exercise 4.50If w = ¢>*/¥ show that
k—1
1 1 w™
2k —1 _%mzz:oz—wm.
Deduce thasS; ;,, defined by Eqn[{4.84), satisfies

g 1 Zh—i—1 q
=g, o fe

for j < k, where the contout” is as in§4.10. Deduce Eqn[{4.85).

4.12 Notes and references 179

Remark. Eqn. [4.8b) illustrates the phenomenonatiising observations at
k points can not distinguish between the Fourier coefficients:; 1, 42k,
etc.

Exercise 4.51Show that the sums; 5, of §4.10 can be computed with (essen-
tially) only aboutk /4 evaluations off if k is even. Similarly, show that about
k /2 evaluations off suffice if k is odd. On the other hand, show that the error
boundO((27)~*) following Eqn. [4.87) can be improvedifis odd.

4.12 Notes and references

One of the main references for special functions is the “Hiaoé of Mathe-
matical Functions” by Abramowitz and Steglﬂ1 [1], which giveany useful
results but no proofs. A more recent book is that of Nico Te], and
a comprehensive reference is Andrestsal. [EI]. A large part of the content
of this chapter comes from Brelm48], and was implementetienrMP pack-
age Brentl[47]. In the context of floating-point computasipthe “Handbook
of Floating-Point Arithmetic” by Brisebarret al. [@] is a useful reference,
especially Chapter 11.

The SRT algorithm for division is named after Sweeney, Rtsber@]
and Tocher|_[7;l|6]. Original papers on Booth recoding, SRTsitin, etc., are
reprinted in the book by Swartzland@lZ]. SRT divisiosiimilar to non-
restoring division, but uses a lookup table based on théeind and the divisor
to determine each quotient digit. The Intel Pentiftiv bug was caused by
an incorrectly initialized lookup table.

Basic material on Newton’s method may be found in many refes, for
example the books by Brerﬂ41, Ch. 3], Househol@[lZG] raud E{S].
Some details on the use of Newton's method in modern processm be
found in Intel @]. The idea of first computing™'/2, then multiplying by
y to gety'/? (§4.2.3) was pushed further by Karp and Markst 137], who
perform this at the penultimate iteration, and modify thet Igeration of New-
ton’s method fory—1/2 to gety'/2 directly (see§I.4.3 for an example of the
Karp—Markstein trick for division). For more on Newton’s thed for power
series, we refer t@ﬁﬂ@@@zo%

Some good references on error analysis of floating-poirrilgns are the
books by Highaml] and Mulle4]. Older referencedude Wilkin-
son’s classic 2P9].

Regarding doubling versus tripling: ##.3.4, we assumed that one multi-
plication and one squaring were required to apply the tripformula [4.1D).

180 Elementary and special function evaluation

However, we might use the forsinh(3z) = 3 sinh(z) 44 sinh®(z), which re-
quires only one cubing. Assuming a cubing costs 50% moredtstjuaring —
in the FFT range — the ratio would He5logs 2 ~ 0.946. Thus, if a special-
ized cubing routine is available, tripling may sometimeslightly faster than
doubling.

For an example of a detailed error analysis of an unrestrigigorithm, see
Clenshaw and OIveE[;dS9].

The idea of rectangular series splitting to evaluate a peaees withO(/n)
non-scalar multiplicationsf#f.4.3) was first published in 1973 by Paterson and
StockmeyerEZ]. It was rediscovered in the context of ipldtprecision
evaluation of elementary functions by Sm@@&?] in 1991. Smith gave it
the name “concurrent series”. Smith proposed modulartisigibf the series,
but classical splitting seems slightly better. Smith nedithat the simultaneous
use of this fast technique and argument reduction yiél@is'/3 M (n)) algo-
rithms. Earlier, in 1960, EstritEbZ] had found a similarhie@ue withn /2
non-scalar multiplications, bu?(log n) parallel complexity.

There are several variants of the Euler—Maclaurin sum ftamuith and
without bounds on the remainder. See Abramowitz and Ste@u@fﬁ. 23],
and Apostolﬁb], for example.

Most of the asymptotic expansions that we have givefdlil may be found
in Abramowitz and Stegurﬂ[l]. For more background on asytigpgxpan-
sions of special functions, see for example the books by dejrB{84],
Olver @] and Wongl]. We have omitted mention of manyeotuseful
asymptotic expansions, for example all but a few of thos®&ssel functions,
for which see OIver@O], Watson [225], Whittaker and Wat@].

Most of the continued fractions mentioned@#.8 may be found in Abram-
owitz and Stegun [[1]. The classical theory is given in the Ksody
Khinchin] and Wall@]. Continued fractions are usedhe manner
described irff4.g in arbitrary-precision packages such as Brent’s MP. [A7]
good recent reference on various aspects of continueddnactor the evalu-
ation of special functions is thdandbook of Continued Fractions for Special
Functionsby Cuytet al. [@]. In particular, Chapter 7 contains a discussion
of error bounds. Our Theorelm #.1 is a trivial modification afy€Cet al. [@
Theorem 7.5.1]. The asymptotically fast algorithm sugegéh Exercis€ 4.32
was given by SohnhageS].

A proof of a generalization of (4.54) is given H [¢4.9]. Miller’s algorithm
is due to J. C. P. Miller. It is described, for example,%§9,12,§19.28] and
Clenshawet al. [@ §13.14]. An algorithm is given in Gautsclﬁ]OZ].

A recurrence based ofi (4]160) was used to evaluate the scaiedli
numbersC, in the MP package following a suggestion of Reinﬁl [a)].

4.12 Notes and references 181

Previously, the inferior recurrence _(4159) was widely ysed example in
Knuth] and in early versions of Brent’'s MP pack (& 11]. The idea
of using tangent numbers is mentionedmlw.,S], where it is attributed to
B. F. Logan. Our in-place AlgorithmBEngentNumbersandSecantNumbers
may be new (see Exercides 4.88-4.40). Kanekd [135] descaibelgorithm
of Akiyama and Tanigawa for computing Bernoulli numbers manner simi-
lar to “Pascal’s triangle”. However, it requires more anitktic operations than
Algorithm TangentNumbers Also, the Akiyama—Tanigawa algorithm is only
recommended for exact rational arithmetic, since it is nucaly unstable if
implemented in floating-point arithmetic. For more on Batiptangent and
secant numbers, and a connection with Stirling numbersCées [62] and
Sloane@& A027641, A000182, AO00364].

The Von Staudt—Clausen theorem was proved independentiabyvon
Staudt and Thomas Clausen in 1840. It can be found in manierefes. If just
a single Bernoulli number of large index is required, themidg’'s modular
algorithm] can be recommended.

Some references on the Arithmetic-Geometric Mean (AGM)Baent ,
,B], SalaminZ], the Borweins’ b036], Arndt anddtal E’]. An
early reference, which includes some results that werescedered later, is
the fascinating repolAKMEM by Beeler, Gosper and Schroep@ [15]. Bern-
stein] gives a survey of different AGM algorithms for cputing the log-
arithm. Eqn. [[4.70) is given in Borwein and Borwe@[%, (1], and the
bound [4.7B) is given in [36, p. 11, Exercise 4(c)]. The AGN t& extended
to complex starting values provided we take the correctdirai the square
root (the one with positive real part): see Borwein and Bcim\/[@, pp. 15-16].
The use of the complex AGM is discussedﬂ [88]. For thetationddentities,
see , Chapter 2], and for a proof bf{4.78), see [263].

The use of the exact formula{4179) to complite: was first suggested by
Sasaki and Kanada (SQ[SG, (7.2.5)], but beware the type)BSent@b] for
Landen transformations, and Brent![43] for more efficienthods; note that
the constants given in those papers might be improved uastgrfsquare root
algorithms (Chaptér 3).

The constants in Table 4.1 are justified as follows. We assumare in
the FFT domain, and one Fourier transform cagt§:) /3. The13M (n)/9 =~
1.444M (n) cost for a real reciprocal is from Harve@lG], and assumes
M(n) ~ 3T'(2n), whereT'(n) is the time to perform a Fourier transform of
sizen. For the complex reciprocal/ (v +iw) = (v—iw)/(v* +w?), we com-
putev?+w? using two forward transforms and one backward transformiyeq
alentin cost taV/ (n), then one real reciprocal to obtain say= 1/(v? + w?),
then two real multiplications to computer, wz, but take advantage of the

182 Elementary and special function evaluation

fact that we already know the forward transformsvadindw, and the trans-
form of x only needs to be computed once, so these two multiplicatioss
only M (n). Thus, the total cost 810 (n)/9 ~ 3.444M (n). The1.666M (n)
cost for real division is from van der Hoevémzs, Remarkasid assumes
M(n) ~ 3T(2n) as above for the real reciprocal. For complex division, say
(t+iu)/(v+iw), we first compute the complex reciproaat-iy = 1/(v+iw),
then perform a complex multiplicatiott + iu)(x + iy), but save the cost
of two transforms by observing that the transformszoénd y are known
as a byproduct of the complex reciprocal algorithm. Thus, tthtal cost is
(31/9+4/3)M (n) ~ 4.777M (n). The4M (n)/3 cost for the real square root
is from Harvey], and assumaég(n) ~ 37'(2n) as above. The complex
square root uses Friedland’s algorithm| [9¢} + iy = w + iy/(2w), where
w = +/(|z| + (22 4 y2)1/2)/2; as for the complex reciprocal? + y> costs
M (n), then we compute its square root4M (n)/3, the second square root
in 4M (n)/3, and the divisiony/w costs1.666M (n), which gives a total of
5.333M (n).

The cost of one real AGM iteration is at most the sum of the iplida-
tion cost and of the square root cost, but since we typicafgom several
iterations, it is reasonable to assume that the input angubof the iteration
includes the transforms of the operands. The transforaeb is obtained by
linearity from the transforms af andb, so is essentially free. Thus, we save
one transform o/ (n)/3 per iteration, giving a cost per iteration &M (n).
(Another way to saveM (n)/3 is to trade the multiplication for a squaring,
as explained in S@nhage, Grotefeld, and Vettél_[_i%.zs].) The complex
AGM is analogous: it costs the same as a complex multipbog@ M/ (n)) and
a complex square root333M (n)), but we can save two (real) transforms per
iteration @M (n)/3), giving a net cost 06.666M (n). Finally, the logarithm
via the AGM cost2 1g(n) + O(1) AGM iterations.

We note that some of the constants in Table 4.1 may not be aptkor
example, itmay be possible to reduce the cost of reciprocal or square root
(Harvey, Sergeev). We leave this as a challenge to the réseExercise 4.46).
Note that the constants for operations on power series nfi@y ffom the cor-
responding constants for operations on integers/reals.

The idea of binary splitting is quite old, since in 1976 Br@, Th. 6.2]
gave a binary splitting algorithm to computep « in time O(M (n)(log n)?).
See also Borwein and Borweim%, page 335]. The CLN libramplements
several functions with binary splitting, see Haible andadtakolaou], and
is quite efficient for precisions of a million bits or more.

The “bit-burst” algorithm was invented by David and Gregdyud-
novsky @5], and our Theorefn 4.2 is based on their work. Sosferénces

4.12 Notes and references 183

on holonomic functions are J. Bernstelﬂ[@, 26], van der\ldne@] and
Zeilberger Eib]. See also the Mapt&UN package@3], which allows one,
amongst other things, to deduce the recurrence for the Magkefficients of
f(x) from its differential equation.

There are several topics that are not covered in this chdptemight have
been if we had more time and space. We mention some referbecesA
useful resource is the websiEi43].

The Riemann zeta-functiof(s) can be evaluated by the Euler—Maclaurin
expansion[(4.34)E(4.86), or by Borwein’s algorith|a| [],3§ht neither of
these methods is efficient¥(s) is large. On the critical lin&(s) = 1/2, the
Riemann-Siegel formulﬁbg] is much faster and in practidéciently accu-
rate, although only an asymptotic expansion. If enough $esine taken, the
error seems to b@(exp(—mt)), wheret = (s): see Brent's revie\/\}IésZ] and
Berry's paperﬂ8]. An error analysis is given ﬂ84]. TheeRann-Siegel
coefficients may be defined by a recurrence in terms of carntegersp,, that
can be defined using Euler numbers (see Sloane’s sequend®A0 1).
Sloane calls this the Gabcke sequence but Gabcke creditadr] so
perhaps it should be called thehmer—Gabcke sequendée sequencén,,)
occurs naturally in the asymptotic expansionwfl’(1/4 4 it/2)). The (not
obvious) fact that the,, are integers was proved by de Reylé [85].

Borwein’s algorithm for{(s) can be generalized to cover functions such as
the polylogarithm and the Hurwitz zeta-function: see%tap].

To evaluate the Riemann zeta-functiofv + it) for fixed ¢ and many
equally spaced points the fastest known algorithm is due to Odlyzko and
Sckbnhageg]. It has been used by Odlyzko to compute blockerok with
very large height, see 8]; also (with improvements) by Gourdon to
verify the Riemann Hypothesis for the firki'? non-trivial zeros in the upper
half-plane, se5]. The Odlyzko—Stthage algorithm can be generalized
for the computation of other L-functions.

In §4.10, we briefly discussed the numerical approximation ofaar inte-
grals, but we omitted any discussion of other forms of nuoa¢mguadrature,
for example Romberg quadrature, the tanh rule, the tartihrsile, etc. Some
references areE]lDlﬂ]@ ‘i&.__hEZB], ﬂi k¥74.3]. For further dis-
cussion of the contour integration method, @[156]. FanBerg quadra-
ture (which depends on Richardson extrapolation), @e@,@]. For
Clenshaw—Curtis and Gaussian quadrature,@é;_[b?x,ﬁrl&ixample of
the use of numerical quadrature to evaluBfe) is ﬂﬁ p. 188]. This is an
interesting alternative to the use of Stirling’s asymmt@tkpansion{4.3).

We have not discussed the computation of specific matheahatbnstants
such asm, v (Euler's constant)((3), etc. = can be evaluated using =

184 Elementary and special function evaluation

4arctan(1) and a fashrctan computation $4.9.2); or by theéGauss—Legendre
algorithm (also known as thBrent—Salamiralgorithm), see@ﬂ 2].
This asymptotically fast algorithm is based on the arithcageometric mean
and Legendre’s relatiof (4.]72). A recent record computalip Bellard [16]
used a rapidly converging series fofw by the Chudnovsky brothers [64],
combined with binary splitting. Its complexity © (M (n)log” n) (theoret-
ically worse than Gauss—Legendr&¥ M (n)logn), but with a small con-
stant factor). There are several popular booksromve mention Arndt and
HaeneI[ﬂ?]. A more advanced book is the one by the Borweirhbmd[gb].

For a clever implementation of binary splitting and its aggtion to the
fast computation of constants suchrasnd((3) — and more generally con-
stants defined by hypergeometric series — see Cheng, Haimatg, Zima,
and Zimmermanr[63].

The computation ofy and its continued fraction is of interest because it
is not known whethety is rational (though this is unlikely). The best algo-
rithm for computingy appears to be the “Bessel function” algorithm of Brent
and McMillan @l], as modified by Papanikolaou and later kar@] to
incorporate binary splitting. A very useful source of infation on the evalua-
tion of constants (including, ¢, v, In 2, ¢(3)) and certain functions (including
I'(z) and((s)) is Gourdon and Sebah’s web 5@06].

A nice book on accurate numerical computations for a diveesef “SIAM
100-Digit Challenge” problems is Bornemann, Laurie, Wagamd Waldvo-
gel @]. In particular, Appendix B of this book considersahto solve the
problems tol 0 000-decimal digit accuracy (and succeeds in all cases but one).

)
Implementations and pointers

Here we present a non-exhaustive list of software packdgss t
(in most cases) the authors have tried, together with soher ot
useful pointers. Of course, we cannot accept any respditsibi
for bugs/errors/omissions in any of the software or documen
tion mentioned here eaveat emptor!

Websites change. If any of the websites mentioned hereuksap
in the future, you may be able to find the new site using a search
engine with appropriate keywords.

5.1 Software tools

5.1.1 CLN

CLN (Class Library for Numbershttp://www.ginac.de/CLN/)is a
library for efficient computations with all kinds of numbensarbitrary preci-
sion. It was written by Bruno Haible, and is currently main&al by Richard
Kreckel. It is written in C++ and distributed under the GNUr@eal Public
License (GPL). CLN provides some elementary and speciatimms, and fast
arithmetic on large numbers, in particular it implementb@hage—Strassen
multiplication, and the binary splitting algorith O0&TLN can be config-
ured to use GMP low-leveliPN routines, which improves its performance.

5.1.2 GNU MP (GMP)

The GNU MP library is the main reference for arbitrary-psémn arithmetic.
It has been developed since 1991 by TorbjGranlund and several other con-
tributors. GNU MP (GMP for short) implements several of thgoathms de-

186 Implementations and pointers

scribed in this book. In particular, we recommend readiregy “tigorithms”

chapter of the GMP reference manm104]. GMP is written jisCeleased
under the GNU Lesser General Public License (LGPL), andadae from
http://gmplib.org/

GMP’s MPz class implements arbitrary-precision integers (corradp@
to Chaptei1l), while theuPF class implements arbitrary-precision floating-
point numbers (corresponding to Chaﬂﬂ Bhe performance of GMP comes
mostly from its low-levelvPN class, which is well designed and highly opti-
mized in assembly code for many architectures.

As of version 5.0.0MPz implements different multiplication algorithms
(schoolbook, Karatsuba, Toom—Co8kwvay, 4-way, 6-way, 8-way, and FFT
using Sclinhage—Strassen’s algorithm); its division routine impdats Algo-
rithm RecursiveDivRem({1.4.3) in the middle range, and beyond that New-
ton’s method, with complexity) (M (n)), and so does its square root, which
implements AlgorithmSqrtRem, since it relies on division. The Newton di-
vision first precomputes a reciprocal to precisiof2, and then performs two
steps of Barrett reduction to precisiaif2: this is an integer variant of Algo-
rithm Divide. It also implements unbalanced multiplication, with Todboek
(3,2), (4,3), (5,3), (4,2), or (6,3) [13_1|]. Functionmpnni _invertappr
which is not in the public interface, implements Algorithéypproximate-
Reciprocal (§3.4.1). GMP 5.0.0 does not implement elementary or special
functions (Chaptdrl4), nor does it provide modular aritiowith an invariant
divisor in its public interface (ChaptEt 2). However, it tains a preliminary
interface for Montgomery'®EDC algorithm.

MPIR is a “fork” of GMP, with a different license, and varioasher dif-
ferences that make some functions more efficient with GM&, some with
MPIR; also, the difficulty of compiling under Microsoft ofaing systems may
vary between the forks. Of course, the developers of GMP aRtRMire con-
tinually improving their code, so the situation is dynanfior more on MPIR,
seehttp://www.mpir.org/

5.1.3 MPFQ

MPFQ is a software library developed by Pierrick Gaudry amdntanuel
Thomé for manipulation of finite fields. What makes MPFQ differerdnh
other modular arithmetic libraries is that the target fiffiédd is given atcom-
pile timg thus more specific optimizations can be done. The two majeta
of MPFQ are the Galois field8,~» and[F, with p prime. MPFQ is available

1 However, the authors of GMP recommend using MPFR {B&34) for new projects.

5.1 Software tools 187

from http://www.mpfq.org/ , and is distributed under the GNU Lesser
General Public License (LGPL).

5.1.4 GNU MPFR

GNU MPFR is a multiple-precision binary floating-point iéy, written in C,

based on the GNU MP library, and distributed under the GNsée&eneral
Public License (LGPL). It extends the main ideas of the IEBE Standard to
arbitrary-precision arithmetic, by providirgprrect roundingand exceptions

MPFR implements the algorithms of Chapfiér 3 and most of tlkd<ehap-

ter[4, including all mathematical functions defined by th®1899 standard.
These strong semantics are in most cases achieved with mificgigt slow-

down compared to other arbitrary-precision tools. For it the MPFR

library, seehttp://www.mpfr.org/ and the pape@G].

5.1.5 Other multiple-precision packages

Without attempting to be exhaustive, we briefly mention soffdPFR’s pre-
decessors, competitors, and extensions.

1. ARPREC is a package for multiple-precision floating-panithmetic, writ-
ten by David Baileyet al. in C++/Fortran. The distribution includ&e Ex-
perimental Mathematician’s Toolkitvhich is an interactive high-precision
arithmetic computing environment. ARPREC is availablerfraottp://
crd.Ibl.gov/ ~ dhbailey/mpdist/

2. MP] is a package for multiple-precision floating-pgarthmetic and el-
ementary and special function evaluation, written in For#7. MP permits
any small basg@ (subject to restrictions imposed by the word-size), and im-
plements several rounding modes, though correct rounimgparest is not
guaranteed in all cases. MP is now obsolete, and we recomthene of
a more modern package such as MPFR. However, much of Clidptas 4
inspired by MP, and some of the algorithms implemented in k&Phat yet
available in later packages, so the source code and docatizeninay be
of interest: sedttp://rpbrent.com/pub/pub043.html

3. MPC (ttp://www.multiprecision.org/)is a C library for arith-
metic using complex numbers with arbitrarily high precisiand correct
rounding, written by Andreas Enge, PhilippeéMeny, and Paul Zimmer-
mann éb]. MPC is built on and follows the same principles &AR.

188 Implementations and pointers

. MPFl is a package for arbitrary-precision floating-paiérval arithmetic,

based on MPFR. It can be useful to get rigorous error bouridg irgerval
arithmetic. Sedttp://mpfi.gforge.inria.fr/ , and alsdf5.3.

Several other interesting/useful packages are listei@rutOther Related
Free Software” at the MPFR webshép://www.mpfr.org/

5.1.6 Computational algebra packages

There are several general-purpose computational algeloieapes that incor-
porate high-precision or arbitrary-precision arithmefibese include Magma,
Mathematica, Maple, and Sage. Of these, Sage is free andsopece; the
others are either commercial or semi-commercial and noh-gperce. The
authors of this book have often used Magma, Maple, and Sagedtotyping
and testing algorithms, since it is usually faster to dgvedn algorithm in a
high-level language (at least if one is familiar with it) thaa a low-level lan-
guage like C, where there are many details to worry aboutoOfse, if speed
of execution is a concern, it may be worthwhile to translagehigh-level code
into a low-level language, but the high-level code will befus for debugging
the low-level code.

1.

Magma (http://magma.maths.usyd.edu.au/magma/) was de-
veloped and is supported by John Cannon’s group at the Witiyef Syd-
ney. Its predecessor w&ayley a package designed primarily for compu-
tational group theory. However, Magma is a general-purpdgebra pack-
age with logical syntax and clear semantics. It includegrary-precision
arithmetic based on GMP, MPFR, and MPC. Although Magma i®penh-
source, it has excellent online documentation.

. Maple(http://www.maplesoft.com/) is acommercial package orig-

inally developed at the University of Waterloo, now by WaderMaple,
Inc. It uses GMP for its integer arithmetic (though not neeeidy the latest
version of GMP, so in some cases calling GMP directly may dpeiicantly
faster). Unlike most of the other software mentioned in ghiapter, Maple
uses radix 0 for its floating-point arithmetic.

. Mathematicais a commercial package produced by Stephen Wolfram’s

company Wolfram Research, Inc. In the past, public docuatem on
the algorithms used internally by Mathematica was poor. &l@s; this
situation may be improving. Mathematica now appears to Ude ®r its

5.2 Mailing lists 189

basic arithmetic. For information about Mathematica, Isije://www.
wolfram.com/products/mathematica/

4. NTL (http://www.shoup.net/ntl/) is a C++ library providing data
structures and algorithms for manipulating arbitrarygiérintegers, as well
as vectors, matrices, and polynomials over the integersegrdinite fields.
For example, it is very efficient for operations on polynolsiaver the fi-
nite field[F, (i.e. GF(2)). NTL was written by and is maintained by Victor
Shoup.

5. PARI/GP(http://pari.math.u-bordeaux.fr/) is a computer al-
gebra system designed for fast computations in humber ytheat also
able to handle matrices, polynomials, power series, afiebumbers, etc.
PARI is implemented as a C library, and GP is the scriptinglege for
an interactive shell giving access to the PARI functionsei@il, PARI is a
small and efficient package. It was originally developed987 by Chris-
tian Batut, Dominique Bernardi, Henri Cohen, and MicheM@li at Uni-
versi€ Bordeaux |, and is now maintained by Karim Belabas and a tdam
volunteers.

6. Sage(http://www.sagemath.org/) is a free, open-source mathe-
matical software system. It combines the power of many iexjsbpen-
source packages with a common Python-based interface rdingao the
Sage website, its mission is “Creating a viable free opemesoalternative
to Magma, Maple, Mathematica and Matlab”. Sage was stastafliiam
Stein and is developed by a large team of volunteers. It usRIRVMPFR,
MPC, MPFI, PARI, NTL, etc. Thus, it is a large system, with maapa-
bilities, but occupying a lot of space and taking a long timeampile.

5.2 Mailing lists
5.2.1 The GMP lists

There are four mailing lists associated with GMjmp-bugs for bug reports;
gmp-announce for important announcements about GMP, in particular new
releasesgmp-discuss for general discussions about GMémnp-devel

for technical discussions between GMP developers. We rexnd subscrip-
tion to gmp-announce (very low traffic), togmp-discuss (medium to
high traffic), and tagmp-devel only if you are interested in the internals of

190 Implementations and pointers

GMP. Information about these lists (including archives hod to subscribe)
is available fromhttp://gmplib.org/mailman/listinfo/

5.2.2 The MPFR list

There is only one mailing list for the MPFR library. Saép://www.
mpfr.org/ to subscribe or search through the list archives.

5.3 On-line documents

TheNIST Digital Library of Mathematical Function®LMF) is an ambitious
project to completely rewrite Abramowitz and Stegun'’s slaglandbook of
Mathematical Function@]. Itis online athttp://dImf.nist.gov/ and
will also be published in book form by Cambridge Universitg$s.

The Wolfram Functions Siténttp://functions.wolfram.com/
contains a lot of information about mathematical functiddsfinition, spe-
cific values, general characteristics, representatiosgr@ss, limits, integrals,
continued fractions, differential equations, transfatiores, and so on).

The Encyclopedia of Special Functions (ESF) is anothenngdesite, whose
originality is that all formulee are automatically genedateom very few data
that uniquely define the corresponding function in a gendees [[é@b]. This
encyclopedia is currently being reimplemented in the Dyigabictionary of
Mathematical Functions (DDMF); both are available frottp://algo.
inria.fr/online.html

A large amount of information about interval arithmetict(@duction, soft-
ware, languages, books, courses, applications) can bel foarthe Interval
Computations pagkttp://www.cs.utep.edu/interval-comp/)

Mike Cowlishaw maintains an extensive bibliography of cension to and
from decimal arithmetic dttp://speleotrove.com/decimal/

Useful if you want to identify an unknown real constant sush.414213 - - -
is the Inverse Symbolic Calculato(lSC) by Simon Plouffe (building on
earlier work by the Borwein brothers) attp://oldweb.cecm.sfu.
cal/projects/ISC/

Finally, an extremely useful site for all kinds of integational sequences is
Neil Sloane’®0nline Encyclopaedia of Integer Sequen@@EklS) athttp://
www.research.att.com/ ~ njas/sequences/

(1]
(2]
(3]
(4]
(5]

(6]

References

Abramowitz, Milton and Stegun, Irene A. 1973Handbook of Mathematical
Functions Dover. (150, 179, 180, 190)

Agrawal, Manindra, Kayal, Neeraj, and Saxena, Nitin. 2004. PR8Ms in P.
Annals of Mathemati¢c460, 1-13. (45)

Aho, Alfred V., Hopcroft, John E., and Ullman, Jeffrey D. 197%e Design and
Analysis of Computer Algorithm@ddison-Wesley. (46, 78)

Andrews, George E., Askey, Richard, and Roy, Ranjan. 199@cial Functions
Cambridge University Press. (179, 180)

ANSI/IEEE. 2008. |EEE Standard for Binary Floating-Point Arithine Revi-
sion of IEEE 754-1985, approved on June 12, 2008 by IEEE Stdadzward.
(121)

Apostol, Tom M. 1999. An elementary view of Euler's summation fatmx The
American Mathematical Month|st06(5), 409-418. (180)

[7] Arndt, Jorg and Haenel, Christoph. 200% UnleashedBerlin: Springer-Verlag.

(8]
9]
[10]

[11]

[12]

[13]

[14]

(181, 184)

Bach, Eric. 1990. A note on square roots in finite fiellSEE Transactions on
Information Theory36(6), 1494-1498. (46)

Bach, Eric and Shallit, Jeffrey O. 1998lgorithmic Number Theory, Volume 1:
Efficient Algorithms MIT Press. (46)

Bachmann, Paul. 1902.Niedere Zahlentheorie Vol. 1. Leipzig: Teubner.
Reprinted by Chelsea, New York, 1968. (46)

Bailey, David H. 2006. Tanh-sinh high-precision quadrature. niaript,
3 pages, Jan 2006: LBNL-60519. Available frdrtip://crd.lbl.gov/

~ dhbailey/dhbpapers/dhb-tanh-sinh.pdf . (183)

Bailey, David H. and Borwein, Jonathan M. 2009. High-precisian n
merical integration: progress and challenges. Manuscript, 19 pdoés,
2009: LBNL-547E. http://crd.lbl.gov/ ~ dhbailey/dhbpapers/
hp-num-int.pdf . (183)

Bailey, David H., Jeyabalan, Karthik, and Li, Xiaoye S. 2005. Anparison
of three high-precision quadrature schemgsperimental Mathematic44(3),
317-329. (183)

Barrett, Paul. 1987. Implementing the Rivest Shamir and Adlenudtigpkey
encryption algorithm on a standard digital signal processor. Pages333f

192

[15]

[16]
[17]
(18]

[19]

[20]
[21]
[22]

(23]

[24]

[25]

[26]

(27]
(28]

[29]

(30]

(31]

References

Odlyzko, A. M. (ed.), Advances in Cryptology, Proceedings of Crypto’8@&c-
ture Notes in Computer Science, vol. 263. Springer-Verlag. (77)

Beeler, Michael, Gosper, Richard W., and Schroeppel, Richi2 11AKMEM.
Memo 239. MIT Atrtificial Intelligence Laboratory.http://www.inwap.

com/pdpl0/hbaker/hakmem/hakmem.html . (181)
Bellard, Fabrice. 2009. Pi computation recanttp://bellard.org/pi/
pi2700e9/announce.html . (184)

Bernstein, Daniel J. 1998. Detecting perfect powers in essenliadigr time.
Mathematics of Computatiof7, 1253-1283. (45)
Bernstein, Daniel J. 2002. Pippenger’s exponentiation algorithitp://

cr.yp.to/papers.html . 21 pages. (78)

Bernstein, Daniel J. 2003. Computing logarithm intervals with the agtion
geometric-mean iteration. http://cr.yp.to/arith.html . 8 pages.
(181)

Bernstein, Daniel J. 2004a. Removing redundancy in highigicet Newton
iteration. http://cr.yp.to/fastnewton.html . 13 pages. (122, 123)

Bernstein, Daniel J. 2004b. Scaled remainder trelatsp://cr.yp.to/

arith.html . 8 pages. (43)

Bernstein, Daniel J. 2008. Fast multiplication and its applicatidmtp://
cr.yp.to/arith.html . 60 pages. (78)

Bernstein, Daniel J., Lenstra, Hendrik W., Jr., and Pila, J@matR007. Detect-
ing perfect powers by factoring into coprime$lathematics of Computation
76(257), 385-388. (45)

Bernstein, Daniel J. and Sorenson, Jonathan P. 2007. Magkganentiation via
the explicit Chinese remainder theoremathematics of Computatioid6(257),
443-454. (77, 78)

Bernstein, Joseph N. 1971. Modules over a ring of differenfi@rators, study
of the fundamental solutions of equations with constant coeffici€éntsctional
Analysis and Its Application$(2), Russian original: 1-16, English translation:
89-101. (183)

Bernstein, Joseph N. 1972. The analytic continuation of genedalizections
with respect to a parameterf-unctional Analysis and Its Application§(4),
[3] Russian original: 26—-40, English translation: 273-285. (183)

Bernstein, Robert. 1986. Multiplication by integer constaStsftware, Practice
and Experiencel§(7), 641-652. (14)

Berry, Michael V. 1995. The Riemann-Siegel expansion forzéta function:
high orders and remainderBroc. Roy. Soc. Londo#50, 439-462. (183)
Bertot, Yves, Magaud, Nicolas, and Zimmermann, Paul. 2002roafiof GMP
square root.Journal of Automated Reasoningd, 225-252. Special Issue on
Automating and Mechanising Mathematics: In honour of N.G. de Bruijg) (4
Bluestein, Leo I. 1968. A linear filtering approach to the computatibthe
discrete Fourier transformNortheast Electronics Research and Engineering
Meeting Recordl0, 218-219. (78)

Bodrato, Marco and Zanoni, Alberto. 2007. Integer and polyiabmultiplica-
tion: towards optimal Toom—Cook matrices. Pages 17—24 of Brown,. Ged\),
Proceedings of the 2007 International Symposium on Symbolic andraigeb
Computation (ISSAC’'07)44, 186)

[32]

[33]
[34]
[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

References 193

Bornemann, Folkmar, Laurie, Dirk, Wagon, Stan, and Waldl;odjgg. 2004.
The SIAM 100-Digit Challenge: A Study in High-Accuracy Numerical @am
ing. SIAM. (183, 184)

Borodin, Allan and El-Yaniv, Ran. 1998nline Computation and Competitive
Analysis Cambridge University Press. (44)

Borodin, Allan and Moenck, Robert. 1974. Fast modular trams$oJournal of
Computer and System Sciend&8), 366—386. (78)

Borodin, Allan and Munro, lan. 1975The Computational Complexity of Alge-
braic and Numeric Problem<Elsevier Computer Science Library. (78)
Borwein, Jonathan M. and Borwein, Peter B. 1998.and the AGM: A Study
in Analytic Number Theory and Computational Complexityiley. (181, 182,
184)

Borwein, Jonathan M., Borwein, Peter B., and Girgensohn, irbl2004.
Experimentation in Mathematics: Computational Paths to Discavefy K.
Peters. (183)

Borwein, Jonathan M., Bradley, David M., and Crandall, Rict&ard000. Com-
putational strategies for the Riemann zeta functidaurnal of Computational
and Applied Mathematicd 21, 247—-296. (183)

Borwein, Peter B. 2000. An efficient algorithm for the Riemann Zetetion.
In Constructive, Experimental, and Nonlinear Analydisnoges, 1999), CMS
Conf. Proc. 27, Amer. Math. Soc. (183)

Bostan, Alin, Lecerf, Gegoire, and SchosEric. 2003. Tellegen’s principle into
practice. Pages 37-44 of Sendra, J. R. (&t9ceedings of the 2003 Interna-
tional Symposium on Symbolic and Algebraic Computation (ISSAC(032)
Brent, Richard P. 1973a.Algorithms for Minimization without Derivatives
Prentice-Hall. Reprinted by Dover, 200Rttp://rpbrent.com/pub/
pub011.html . (179)

Brent, Richard P. 1973b. On the precision attainable with variousritp@oint
number systemdEEE Transactions on ComputeiS-22, 601-607 .http://
rpbrent.com/pub/pub017.html . (118, 121)

Brent, Richard P. 1975. Multiple-precision zero-finding methaut the com-
plexity of elementary function evaluation. Pages 151-176 of Traub,(édB,
Analytic Computational ComplexityNew York: Academic Presshttp://
rpbrent.com/pub/pub028.html . (179, 181, 184)

Brent, Richard P. 1976a. Analysis of the binary Euclidean algorittitages
321-355 of Traub, J. F. (ed)ew Directions and Recent Results in Algorithms
and ComplexityNew York: Academic Pres#itp://rpbrent.com/pub/
pub037.html . Errata: see the online version. (45)

Brent, Richard P. 1976b. The complexity of multiple-precision arétim Pages
126-165 of Anderssen, R. S. and Brent, R. P. (efleg,Complexity of Computa-
tional Problem SolvingUniversity of Queensland Predstp://rpbrent.
com/pub/pub032.html . (166, 182)

Brent, Richard P. 1976c¢. Fast multiple-precision evaluation of efgary func-
tions. Journal of the ACM23(2), 242—251 .http://rpbrent.com/pub/
pub034.html . (181, 184)

194

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

References

Brent, Richard P. 1978. Algorithm 524: MP, a Fortran multiple-fgien
arithmetic package. ACM Transactions on Mathematical Softwade 71-81.
http://rpbrent.com/pub/pub043.html . (179, 180, 181, 187)

Brent, Richard P. 1980. Unrestricted algorithms for elementaayspecial func-
tions. Pages 613—619 of Lavington, S. H. (ebhjprmation Processingvol. 80.
http://rpbrent.com/pub/pub052.html . (121, 179, 180)

Brent, Richard P. 1982. An idealist’s view of semantics for integet eeal
types. Australian Computer Science Communicatiofs130-140. http://
rpbrent.com/pub/pub069.html . (121)

Brent, Richard P. 2000. Twenty years’ analysis of the binarylitean algo-
rithm. Pages 41-53 of Davies, J., Roscoe, A. W., and Woodcodled3.),
Millennial Perspectives in Computer Sciendgéew York: Palgrave http://
rpbrent.com/pub/pub183.html . (45)

Brent, Richard P. 2006. Fast algorithms for high-precision agatpn of el-
ementary functions. Invited talk presented at the Real Numbers ang@am
tion Conference (RNC7), Nancy, France, July 2006. Available fiotp://
rpbrent.com/talks.html . (181)

Brent, Richard P. and Kung, Hsiang T. 1978. Fast algorithmsrfanipulat-
ing formal power series.Journal of the ACM 25(2), 581-595. http://
rpbrent.com/pub/pub045.html . (179)

Brent, Richard P. and Kung, Hsiang T. 1983. Systolic VLSI esifay linear-time
GCD computation. Pages 145-154 of Anceau, F. and Aas, E. J),(etSl
83. Amsterdam: North-Holland http://rpbrent.com/pub/pub082.

html | (46)

Brent, Richard P. and McMillan, Edwin M. 1980. Some new algoritHfors
high-precision computation of Euler's constaMathematics of Computation
34(149), 305—-312http://rpbrent.com/pub/pub049.html . (184)
Brent, Richard P., Percival, Colin, and Zimmermann, Paul. 2@7or bounds
on complex floating-point multiplicatiotMathematics of Computatioi6(259),
1469-1481 http://rpbrent.com/pub/pub221.html . (122)

Brent, Richard P. and Traub, Joseph F. 1980. On the compléxityroposition
and generalized composition of power seri8sAM J. on Computing, 54—66.
http://rpbrent.com/pub/pub050.html . (179)

Brent, Richard P. and Zimmermann, Paul. 2010. @@\ (n) logn) algorithm
for the Jacobi symbol. Pages 83-95 of Hanrot, Guillaume, Moraimgeis, and
Thomé, Emmanuel (eds.Rroceedings of the 9th Algorithmic Number Theory
Symposium (ANTS-IX).ecture Notes in Computer Science, vol. 6197. Nancy,
France, July 19-23, 2010: Springer-Verlag. (46)

Brisebarre, Nicolas, de Dinechin, Florent, Jeannerod, Cl&ielee, Leévre,
Vincent, Melquiond, Guillaume, Muller, Jean-Michel, Revol, Nathalie, &ehl
Damien, and Torres, Serge. 2009Handbook of Floating-Point Arithmetic
Birkhauser. 572 pages. (179)

Bulirsch, Roland and Stoer, Josef. 1967. Handbook seriegncahintegration:
numerical quadrature by extrapolatioNumerische Mathematil®, 271-278.
(183)

References 195

[60] Burgisser, Peter, Clausen, Michael, and Shokrollahi, Mohammad A7.1A8
gebraic Complexity TheoryGrundlehren der mathematischen Wissenschaften
315. Springer. (41, 123)

[61] Burnikel, Christoph and Ziegler, Joachim. 1998. Fast RecerBlivision.
Research Report MPI-1-98-1-022. MPI Saditken. (45)

[62] Chen, Kwang-Wu. 2001. Algorithms for Bernoulli numbers andieE numbers.
Journal of Integer Sequences Article 01.1.6, 7 pp. (181)

[63] Cheng, Howard, Hanrot, Guillaume, ThemEmmanuel, Zima, Eugene, and
Zimmermann, Paul. 2007. Time- and space-efficient evaluation ot dom
pergeometric constants. Pages 85-91 of Brown, C. W. (Rtbeedings of the
2007 International Symposium on Symb@lESAC’2007). ACM. (184)

[64] Chudnovsky, David V. and Chudnovsky, Gregory G. 1988prsgimations and
complex multiplication according to Ramanujan. Pages 375-472 of Asdrew
G. E., Berndt, B. C., and Rankin, R. A. (edRpgmanujan Revisited: Proceedings
of the Centenary ConferencBoston: Academic Press. (184)

[65] Chudnovsky, David V. and Chudnovsky, Gregory V. 1990.mpater algebra
in the service of mathematical physics and number theory. Pages 3D®f2
Computers in MathematidStanford, CA, 1986). Lecture Notes in Pure and
Applied Mathematics, vol. 125. New York: Dekker. (182)

[66] Chung, Jaewook and Hasan, M. Anwar. 2007. Asymmetricriggiformulae.
Pages 113-122 of Kornerup, P. and Muller, J.-M. (ed&g¢ceedings of the 18th
IEEE Symposium on Computer Arithmetic (ARITH:-1BEE Computer Society.
(45)

[67] Clenshaw, Charles W. and Curtis, Alan R. 1960. A method for migaleinte-
gration on an automatic comput&tumerische MathematiR, 197—205. (183)

[68] Clenshaw, Charles W., Goodwin, Charles E. T., Martin, DavidWiler, Geof-
frey F., Olver, Frank W. J., and Wilkinson, James H. 198hdern Computing
Methods Second edn. Notes on Applied Science, No. 16. HMSO. (180)

[69] Clenshaw, Charles W. and Olver, Frank W. J. 1980. An unrésttialgorithm
for the exponential functiorSIAM Journal on Numerical Analysis7, 310-331.
(121, 180)

[70] Clenshaw, Charles W. and Olver, Frank W. J. 1984. Beyondirig@oint. Jour-
nal of the ACM 31(2), 319-328. (120)

[71] Clinger, William D. 1990. How to read floating point numbers accuyatages
92-101 ofProceedings of the ACM SIGPLAN’90 Conference on Programming
Language Design and Implementatiqi23)

[72] Cody, William J., Coonen, Jerome T., Gay, David M., Hansomt&e, Hough,
David, Kahan, William, Karpinski, Richard, Palmer, John, Ris, Fredgrjand
Stevenson, David. 1984. A proposed radix- and word-length-inutkgre stan-
dard for floating-point arithmetidEEE Micro, 86—100. (121)

[73] Cohen, Henri. 1993.A Course in Computational Algebraic Number Theory
Graduate Texts in Mathematics 138. Springer-Verlag. 534 pages7&}5,

[74] Collins, George E. and Krandick, Werner. 2000. Multiprecisiomtfloy point
addition. Pages 71-77 of Traverso, C. (eBrpceedings of the 2000 Interna-
tional Symposium on Symbolic and Algebraic Computation (ISSACROM
Press. (121)

196 References

[75] Commerce, US Department of. 2000. Digital Signature Stand2&8§. Tech.
rept. FIPS PUB 186-2. National Institute of Standards and Technolégyages.
(78)

[76] Cook, Stephen A. 1966. On the minimum computation time of functiBhsD.
thesis, Harvard University. Chapter 3 available frbitp://cr.yp.to/
bib/1966/cook.html . (44)

[77] Cornea, Marius, Anderson, Cristina, Harrison, John, Tarngg Hak Peter,
Schneider, Eric, and Tsen, Charles. 2007. A software implementatitdreo
IEEE 754R decimal floating-point arithmetic using the binary encodingébr
Pages 29-37 dProceedings of the 18th IEEE Symposium on Computer Arith-
metic (ARITH-18) (123)

[78] Cornea-Hasegan, Marius A., Golliver, Roger A., and MaikstBeter. 1999.
Correctness proofs outline for Newton—Raphson based floating-givide and
square root algorithms. Pages 96—105 of Koren, I. and Korn&upds.)Pro-
ceedings of the 14th IEEE Symposium on Computer Arithmetic (ARITH-14)
(122)

[79] Crandall, Richard E. 1994Projects in Scientific ComputationTELOS, The
Electronic Library of Science, Santa Clara, California. (122)

[80] Crandall, Richard E. 199@0pics in Advanced Scientific ComputatiditLOS,
The Electronic Library of Science, Santa Clara, California. (99, 122)

[81] Crandall, Richard E. and Pomerance, Carl. 20@6me Numbers: A Computa-
tional PerspectiveSecond edn. Springer-Verlag. (44)

[82] Crary, Fred D. and Rosser, John B. 1977. High precisionficteits related
to the zeta function.Reviewed in Mathematics of Computati@i, 803—804.
Review available fronittp://rpbrent.com/review01.html . (183)

[83] Cuyt, Annie, Petersen, Vigdis B., Verdonk, Brigitte, Waadelandakbn, and
Jones, William B. (with contributions by Franky Backeljauw and Catherine
Bonan-Hamada). 2008Handbook of Continued Fractions for Special Func-
tions Springer. xvi+431 pages. (180)

[84] de Bruijn, Nicolaas G. 1970 (reprinted by Dover, New York 1984%ymptotic
Methods in AnalysisThird edn. North-Holland. (180)

[85] de Reyna, Juan Arias. 2005. Dynamical zeta functions and Kemoongru-
encesActa Arithmetical191), 39-52. (183)

[86] Dimitrov, Vassil S., Jullien, Graham A., and Miller, William C. 1998. Algo-
rithm for modular exponentiatiorinformation Processing Letter§6, 155-159.
(78)

[87] Dixon, Brandon and Lenstra, Arjen K. 1993. Massively paraléptic curve
factoring. Pages 183-193 #froceedings of Eurocrypt’92 Lecture Notes in
Computer Science, vol. 658. Springer-Verlag. (44)

[88] Dupont, Regis. 2010. Fast evaluation of modular functions using Newton itera-
tions and the AGMMathematics of Computatiorin press, 2010. (181)

[89] Eikenberry, Shawna M. and Sorenson, Jonathan P. 1998idgtfalgorithms for
computing the Jacobi symbolournal of Symbolic Computatip26(4), 509—
523. (46)

[90] Enge, Andreas, Téveny, Philippe, and Zimmermann, Paul. 2009IPC — A
library for multiprecision complex arithmetic with exact roundir@8.1 edn.
INRIA. http://mpc.multiprecision.org/ . (187)

References 197

[91] Ercegovac, Milg D. and Muller, Jean-Michel. 2007. Complex square root with

operand prescalindg-he Journal of VLSI Signal Processimt§(1), 19-30. (123)
[92] Estrin, Gerald. 1960. Organization of computer systems — the fiikesdvariable

structure computer. Pages 33—-4@Pobceedings of the Western Joint Computer

Conference(180)

[93] Féjer, Leopold. 1933. On the infinite sequences arising in the theories-of ha

monic analysis, of interpolation, and of mechanical quadratiBe#ietin of the
American Mathematical Society9, 521-534. (183)

[94] Forsythe, George E. 1970. Pitfalls in computation, or why a matlk et
enough.American Mathematical Month|y7, 931-956. (138)

[95] Fousse, Laurent. 2006. Bdration nurdrique avec erreur boge en pecision
arbitraire. Ph.D. thesis, University Henri Poineadancy 1. (183)

[96] Fousse, Laurent, Hanrot, Guillaume, &efe, Vincent, Blissier, Patrick, and
Zimmermann, Paul. 2007. MPFR: A multiple-precision binary floating-poin
library with correct rounding. ACM Transactions on Mathematical Software
33(2), 13:1-13:15. (187)

[97] Friedland, Paul. 1967. Algorithm 312: Absolute value and squeoeaf a com-
plex numberCommunications of the ACM0(10), 665. (182)

[98] Furer, Martin. 2007. Faster integer multiplication. Pages 57—66 of Johnso
D. S. and Feige, U. (edsRroceedings of the 39th Annual ACM Symposium on

Theory of Computing (STOC3an Diego, California, USA. ACM. (78)

[99] Gabcke, Wolfgang. 1979. Neue Herleitung und explizite Restéivachg der
Riemann-Siegel-Formel. Ph.D. thesis, Georg-August-Uniars@ottingen.
Spanish translation available from Juan Arias de Reyna. (183)

[100] Gathen, Joachim von zur and Gerharidrg@én. 1999. Modern Computer Al-
gebra Cambridge: Cambridge University Presshttp://www-math.
uni-paderborn.de/mca . (77)

[101] Gauss, Carl F. 188%ntersuchungeiiber Hohere Arithmetik Berlin: Springer.
Reprinted by the American Mathematical Society, 2006. (46)

[102] Gautschi, Walter. 1964. Algorithm 236: Bessel functions of tre kind. Com-
munications of the ACIW, 479-480. (180)

[103] Gay, David M. 1990. Correctly rounded binary-decimal andrdel-binary con-
versions. Numerical Analysis Manuscript 90-10. AT&T Bell Laborags. (123)

[104] GMP. 2010.GNU MP: The GNU Multiple Precision Arithmetic Librar$.0.0
edn. http://gmplib.org/ . (186)

[105] Gourdon, Xavier. 2004. Thi)'? first zeros of the Riemann zeta function, and
zeros computation at very large heighttp://numbers.computation.
free.fr/Constants/Miscellaneous/zetazeroslel3-1e24.

pdf . (183)
[106] Gourdon, Xavier and Sebah, Pascal. 2010. Numbers, casstad computation.
http://numbers.computation.free.fr/ . (184)

[107] Graham, Ronald L., Knuth, Donald E., and Patashnik, Ore841%oncrete
MathematicsThird edn. Addison-Wesley. (181)

[108] Haible, Bruno and Papanikolaou, Thomas. 1998. Fast muliioacevaluation
of series of rational numbers. Pages 338-350 of Buhler, J. [, Redceedings
of the 3rd Algorithmic Number Theory Symposium (ANTS-écture Notes in
Computer Science, vol. 1423. Springer-Verlag. (182, 185)

198 References

[109] Halfhill, Tom R. 1995. The truth behind the Pentium blgyte March 1995.
Available from http://www2.informatik.uni-jena.de/ ~nez/
rechnerarithmetik_5/fdiv_bug/byte_artl.htm . (128)

[110] Hankerson, Darrel, Menezes, Alfred, and Vanstone, Scofi42Guide to El-
liptic Curve Cryptography Springer-Verlag. http://www.cacr.math.
uwaterloo.ca/ecc/ . (78)

[111] Hanrot, Guillaume, Quercia, Michel, and Zimmermann, Paul. 200# mid-
dle product algorithm, I. Speeding up the division and square roobafp
series. Applicable Algebra in Engineering, Communication and Computing
14(6), 415-438. (122)

[112] Hanrot, Guillaume and Zimmermann, Paul. 2004. A long note on &fsldhort
product.Journal of Symbolic Computatip87, 391-401. (45)

[113] Hars, Laszlo. 2004. Long modular multiplication for cryptograpdpplica-
tions. Pages 44-61 HES’'04 Lecture Notes in Computer Science, vol. 3156.
Springer-Verlag. (77)

[114] Harvey, David. 2009a. Faster polynomial multiplication via multipoint
Kronecker substitutionJournal of Symbolic Computatipd4, 1502-1510. (39,

44)
[115] Harvey, David. 2009b. The Karatsuba middle product for iateghttp://
cims.nyu.edu/ ~ harvey/papers/mulmid/ . Preprint. (122)

[116] Harvey, David. 2010a. Faster algorithms for the square nadtraciprocal of
power seriesMathematics of ComputatiorPosted on July 8, 2010 (to appear
in print). (122, 123, 181, 182)

[117] Harvey, David. 2010b. A multimodular algorithm for computing
Bernoulli numbersMathematics of Computatioii9, 2361—-2370. (181)

[118] Hasenplaugh, William, Gaubatz, Gunnar, and Gopal, Vinodh7 26@st mod-
ular reduction. Pages 225-229Rioceedings of the 18th IEEE Symposium on
Computer Arithmetic (ARITH-18Montpellier, France: IEEE Computer Society
Press. (77)

[119] Hastad, Johan. 1990. Tensor rank is NP-compligarnal of Algorithms11(4),
644-654. (41)

[120] Hennessy, John L., Patterson, David A., and Goldberg, Da@i@l0. Computer
Architecture: A Quantitative ApproactMorgan Kaufmann. (121)

[121] Higham, Nicholas J. 2002Accuracy and Stability of Numerical Algorithms
Second edn. SIAM. (121, 179)

[122] Hille, Einar. 1959 Analytic Function Theory\Vol. 1. New York: Blaisdell. (170)

[123] Hoeven, Joris van der. 1999. Fast evaluation of holonomitiums. Theoretical
Computer Scien¢10, 199-215. (183)

[124] Hoeven, Joris van der. 2002. Relax, but don't be too lakyurnal of Sym-
bolic Computation 34(6), 479-542. Available fromhttp://www.math.
u-psud.fr/ ~vdhoeven . (44, 76)

[125] Hoeven, Joris van der. 2006. Newton's method and FFT tradifigch.
rept. 2006-17. University Paris-Suuttp://www.texmacs.org/joris/
fnewton/fnewton-abs.html . (122, 182)

[126] Householder, Alston S. 1970rhe Numerical Treatment of a Single Nonlinear
Equation New York: McGraw-Hill. (179)

References 199

[127] Hull, Thomas E. 1982. The use of controlled precision. Page84 df Reid,
J. K. (ed.),The Relationship Between Numerical Computation and Programming
LanguagesNorth-Holland. (121)

[128] Intel. 2003. Division, square root and remainder algorithmshHe Intel(R) Ita-
nium(TM) architecture. Application Note, available frdtp://download.
intel.com/software/opensource/divsqrt.pdf , 120 pages. (179)

[129] lordache, Cristina and Matula, David W. 1999. On infinitely precsending
for division, square root, reciprocal and square root recipréades 233—240 of
Proceedings of the 14th IEEE Symposium on Computer Arithmetic (ARF).H-
IEEE Computer Society. (121)

[130] Jebelean, Tudor. 1993. An algorithm for exact divisialournal of Symbolic
Computation15, 169-180. (45)

[131] Jebelean, Tudor. 1995. A double-digit Lehmer—Euclid algoriftinfinding the
GCD of long integersJournal of Symbolic Computatioh9, 145-157. (46)

[132] Jebelean, Tudor. 1997. Practical integer division with Karatstdmplexity.
Pages 339-341 ofikchlin, W. W. (ed.) Proceedings of International Symposium
on Symbolic and Algebraic Computation (ISSAC:94p)

[133] Kahan, William M. 2002. Idempotent binary~ decimal — binary
conversion. |http://www.cs.berkeley.edu/ ~wkahan/Math128/
BinDecBin.pdf . 1 page. (123)

[134] Kaihara, Marcelo E. and Takagi, Naofumi. 2008. Bipartite maduraltiplica-
tion method.IEEE Transactions on Computes7(2), 157-164. (77)

[135] Kaneko, Masanobu. 2000. The Akiyama—Tanigawa algorithmBfernoulli
numbers.Journal of Integer Sequence® Article 00.2.9, 6 pages. (181)

[136] Karatsuba, Anatolii A. and Ofman, Yuri. 1962. Multiplication of mudigit
numbers on automata (in Russiaroklady Akad. Nauk SSSR45?2), 293—
294. Translation irBoviet Physics-Doklady (1963), 595-596. (44)

[137] Karp, Alan H. and Markstein, Peter. 1997. High-precision divisand square
root. ACM Trans. on Mathematical Softwa@3(4), 561-589. (45, 122, 179)

[138] Khachatrian, Gurgen H., Kuregian, Melsik K., Ispiryan, KafR., and Massey,
James L. 2001. Fast multiplication of integers for public-key applicatiBages
245-254 of Vaudenay, S. and Youssef, A. M. (ed3rpceedings of the 8th An-
nual International Workshop Selected Areas in Cryptography (SAQYQec-
ture Notes in Computer Science, vol. 2259. Springer-Verlag. (40, 45)

[139] Khinchin, Aleksandr Y. 1963.Continued FractionsThird edn. Groningen:
Noordhoff. Translated by P. Wynn. Reprinted by Dover, New Yo8Q7L (45,
180)

[140] Knuth, Donald E. 1962. Euler’s constant to 1271 pladé¢athematics of Com-
putation 16, 275-281. (181)

[141] Knuth, Donald E. 1971. The analysis of algorithms. Pages Z89e2Actes
du Conges International des Ma#imaticiens de 197®ol. 3. Paris: Gauthiers-
Villars. (46)

[142] Knuth, Donald E. 1998 The Art of Computer Programming hird edn. \ol.
2 : Seminumerical Algorithms. Addison-Weslétp://www-cs-staff.
stanford.edu/ ~ knuth/taocp.html . (xi, 15, 30, 45, 122, 123, 179)

200 References

[143] Koornwinder, Tom, Temme, Nico, and Vidunas, Raimunda&020Algorith-
mic methods for special functions by computer algebktp://staff.
science.uva.nl/ ~ thk/specfun/compalg.html . (183)

[144] Krandick, Werner and Jebelean, Tudor. 1996. Bidirectiorateinteger divi-
sion. Journal of Symbolic Computatip81(4—6), 441-456. (45)

[145] Krandick, Werner and Johnson, Jeremy R. 1993. Efficiantipmecision float-
ing point multiplication with optimal directional rounding. Pages 228-233 of
Swartzlander, E., Irwin, M. J., and Jullien, G. (ed®joceedings of the 11th
IEEE Symposium on Computer Arithmetic (ARITH:-1121)

[146] Kronecker, Leopold. 1880.Uber die symmetrischen FunctionenMonats-
berichte der Kniglich Prewischen Akademie der Wissenschaften zu Berlin
1880(Berlin: Verl. d. Kgl. Akad. d. Wiss., 1881), 936-948. (44)

[147] Kronecker, Leopold. 1882Grundzige einer arithmetischen Theorie der alge-
braischen Géssen Berlin: Druck und Verlag Von G. Reimer. (44)

[148] Kuki, Hirondo and Cody, William J. 1973. A statistical study of thewaecy
of floating-point number systems&Communications of the ACM6, 223-230.
(118)

[149] Kulisch, Ulrich W. 2008.Computer Arithmetic and Validity. Theory, Implemen-
tation, and ApplicationsStudies in Mathematics, no. 33. de Gruyter. 410 pages.
(123)

[150] Kung, Hsiang T. 1974. On computing reciprocals of power sefieimerische
Mathematik 22, 341-348. (179)

[151] Lang, Tomas and Muller, Jean-Michel. 2001. Bounds on rfizems and ones
for algebraic functions. Pages 13—20Rybceedings of the 15th IEEE Sympo-
sium on Computer Arithmetic (ARITH-13EEE Computer Society. (122)

[152] Lefevre, Vincent. 2001. Multiplication by an Integer Constant. ResearcbiiRep
RR-4192. INRIA. (45)

[153] Lefevre, Vincent. 2004. The generic multiple-precision floating-point additio
with exact rounding (as in the MPFR library). Pages 135-145roteedings of
the 6th Conference on Real Numbers and Compu(éel)

[154] Lehmer, Derrick H. 1938. Euclid’s algorithm for large numbéFhe American
Mathematical Monthly45(4), 227-233. (45)

[155] Lehmer, Derrick H. 1956. Extended computation of the Riemata-finction.
Mathematika3, 102—-108. (183)

[156] Lyness, James N. and Moler, Cleve B. 1967. Numerical difféation of ana-
lytic functions. SIAM Journal on Numerical Analysi4, 20—2—210. (183)

[157] Maeder, Roman. 1993. Storage allocation for the Karatsubaeintegltiplica-
tion algorithm. Pages 59-65 Bfoceedings of the International Symposium on
Design and Implementation of Symbolic Computation Systems (DISIC£0)
ture Notes in Computer Science, vol. 722. Springer-Verlag. (40)

[158] Markstein, Peter. 2004. Software division and square raogusoldschmidt’s
algorithms. Pages 146-157 of Frougny, Ch., Brattka, V., adtldy] N. (eds.),
Proceedings of the 6th Conference on Real Numbers and Compudé@qR
(123)

[159] Maze, Gerard. 2007. Existence of a limiting distribution for the binary GCD
algorithm. Journal of Discrete Algorithmsb, 176—-186. (45)

References 201

[160] McLaughlin, Philip B., Jr. 2004. New frameworks for Montgaryie modular
multiplication method Mathematics of Computatioi3(246), 899-906. (77)

[161] Menezes, Alfred J., van Oorschot, Paul C., and Vanstarwt 8. 1997.Hand-
book of Applied Cryptography CRC Press. http://www.cacr.math.
uwaterloo.ca/hac/ . (78)

[162] Ménissier-Morain, Varie. 1994. Arithratique exacte, conception, algorith-
mique et performances d’'une ingphentation informatique en geision arbi-
traire. Ph.D. thesis, University of Paris 7. (120)

[163] Meunier, Ludovic and Salvy, Bruno. 2003. ESF: an automaticgdigerated
encyclopedia of special functions. Pages 199-206 of Sendra,(8dR.Pro-
ceedings of the 2003 International Symposium on Symbolic and Alg&Roaie
putation (ISSAC’03)(190)

[164] Mihailescu, Preda. 2008. Fast convolutions meet Montgoméaghematics of
Computation77, 1199-1221. (77)

[165] Mikami, Yoshio. 1913.The Development of Mathematics in China and Japan
Teubner. Reprinted by Martino Publishing, Eastford, CT, USA, 2088) (

[166] Moenck, Robert and Borodin, Allan. 1972. Fast modular fiamnss via division.
Pages 90-96 dProceedings of the 13th Annual IEEE Symposium on Switching
and Automata Theory45)

[167] Moller, Niels. 2007. Notes on the complexity of CRT. Preprint. 8 pagey. (78

[168] Moller, Niels. 2008. On Sdinhage’s algorithm and subquadratic integer GCD
computation.Mathematics of Computatioi@7(261), 589—607. (46)

[169] Montgomery, Peter L. 1985. Modular multiplication without trial digis
Mathematics of Computatiod4(170), 519-521. (77)

[170] Montgomery, Peter L. 1987. Speeding the Pollard and elliptic ameflhods of
factorization.Mathematics of Computatiod8(177), 243—-264. (78)

[171] Montgomery, Peter L. 2001. Personal communication to Bonb{Sranlund.
(42)

[172] Mori, Masatake. 2005. Discovery of the double exponentiakfiamation and
its developments. Publications of RIMS, Kyoto Universjt@#1(4), 897—935.
(183)

[173] Mulders, Thom. 2000. On short multiplications and divisiofipplicable Alge-
bra in Engineering, Communication and Computitd(1), 69-88. (119, 121)

[174] Muller, Jean-Michel. 200€&lementary Functions. Algorithms and Implementa-
tion. Birkhauser. Second edition. 265 pages. (121, 122, 179)

[175] Nicely, Thomas R. 1995. Enumeration16'* of the twin primes and Brun’s
constant. Virginia Journal of Science46(3), 195-204. http://www.
trnicely.net/twins/twins.html . Review athttp://wwwmaths.
anu.edu.au/ ~ brent/reviews.html . (128)

[176] Nussbaumer, Henri J. 1982Fast Fourier Transform and Convolution Algo-
rithms Second edn. Springer-Verlag. (78)

[177] Odlyzko, Andrew M. 1992. Th&0*°-th zero of the Riemann zeta function and
175 million of its neighbors. http://www.dtc.umn.edu/ ~ odlyzko/
unpublished/ . (183)

[178] Odlyzko, Andrew M. 2001. The0?*?-nd zero of the Riemann zeta function.
Pages 139-144 of van Frankenhuysen, M. and Lapidus, M. L)(E&ysmamical,

202 References

Spectral, and Arithmetic Zeta Functiandmerican Math. Soc., Contemporary
Math. series, no. 290. (183)

[179] Odlyzko, Andrew M. and Sd@mhage, Arnold. 1988. Fast algorithms for multi-
ple evaluations of the zeta-functiofirans. Amer. Math. Soc3092), 797-809.
(183)

[180] Olver, Frank W. J. 1974Asymptotics and Special Function&cademic Press.
Reprinted by A. K. Peters, 1997. (180)

[181] Pan, Victor. 1984How to Multiply Matrices FasterLecture Notes in Computer
Science, vol. 179. Springer-Verlag. (122)

[182] Paterson, Michael S. and Stockmeyer, Larry J. 1973. Onuimoer of nonscalar
multiplications necessary to evaluate polynomi&lsAM Journal on Computing
2(1), 60-66. (180)

[183] Percival, Colin. 2003. Rapid multiplication modulo the sum and dfiee of
highly composite numbersMathematics of Computation2(241), 387—395.
(78, 122)

[184] Petermann, Yves-F. S. anceR1y, Jean-Luc. 2007. On the Cohen-Olivier algo-
rithm for computing¢(s): error analysis in the real case for an arbitrary preci-
sion. Advances in Applied Mathematj&8, 54—70. (183)

[185] Pollard, John M. 1971. The fast Fourier transform in a finite filldthematics
of Computation25(114), 365-374. (78)

[186] Priest, Douglas M. 1991. Algorithms for arbitrary precision flogpoint arith-
metic. Pages 132-144 of Kornerup, P. and Matula, D. (ee®§eedings of the
10th IEEE Symposium on Computer Arithmetic (ARITH-@)noble, France:
IEEE Computer Society Press. (121)

[187] Rader, Charles M. 1968. Discrete Fourier transforms whenuhgber of data
samples is primeProceedings IEEE56, 1107-1108. (78)

[188] Richardson, Lewis F. and Gaunt, John A. 1927. The defeapgdoach to the
limit. Philosophical Transactions of the Royal Society of London, Seri226\
299-361. (183)

[189] Robertson, James E. 1958. A new class of digital division metH&E Trans-
actions on Electronic Compute&C-7(3), 218-222. (179)

[190] Roche, Daniel S. 2009. Space- and time-efficient polynomidtipfication.
Pages 295-302 of May, J. P. (ed®®ypceedings of the 2009 International Sym-
posium on Symbolic and Algebraic Computation (ISSAC’09))

[191] Romberg, Werner. 1955. Vereinfachte numerische Integrafiet Kongelige
Norske Videnskabers Selskab Forhandlin@gponheim),28(7), 30—36. (183)

[192] Salamin, Eugene. 1976. Computationzofising arithmetic-geometric mean.
Mathematics of ComputatioB80, 565-570. (181, 184)

[193] Salvy, Bruno and Zimmermann, Paul. 1994. Gfun: A Maple pgelkfor the ma-
nipulation of generating and holonomic functions in one variaBleéM Trans-
actions on Mathematical Softwar20(2), 163-177. (183)

[194] Schmookler, Martin S. and Nowka, Kevin J. 2001. Leading aet@ipation and
detection — a comparison of methods. Pages 7-12 of Burgess, Niranteta,

L. (eds.),Proceedings of the 15th IEEE Symposium on Computer Arithmetic
(ARITH-15) IEEE Computer Society. (121)

[195] Sclonhage, Arnold. 1971. Schnelle Berechnung von Kettenbruchertwick

gen.Acta Informatical, 139-144. (46, 180)

References 203

[196] Sclonhage, Arnold. 1982. Asymptotically fast algorithms for the numenuat
tiplication and division of polynomials with complex coefficients. Pages 3-15
of Computer Algebra, EUROCAM’'82 ecture Notes in Computer Science, vol.
144. Springer-Verlag. (44)

[197] Scldnhage, Arnold. 2000. Variations on computing reciprocals of poeres.
Information Processing Letterg4, 41-46. (122, 171)

[198] Sclonhage, Arnold, Grotefeld, A. F. W., and Vetter, E. 19B4st Algorithms: A
Multitape Turing Machine ImplementatioBl-Wissenschaftsverlag, Mannheim.
(46, 122, 182)

[199] Scldnhage, Arnold and Strassen, Volker. 1971. Schnelle Multiplikationegrof3
Zahlen.Computing 7, 281-292. (45, 78)

[200] Shallit, Jeffrey and Sorenson, Jonathan. 1993. A binary ihgoifor the Jacobi
symbol. SIGSAM Bulletin27(1), 4-11. http://euclid.butler.edu/
~ sorenson/papers/binjac.ps . (46)

[201] Shand, Mark and Vuillemin, Jean. 1993. Fast implementation$Séf &yptog-
raphy. Pages 252—259 Bfoceedings of the 11th IEEE Symposium on Computer
Arithmetic (ARITH-11) (45)

[202] Sieveking, Malte. 1972. An algorithm for division of power seri€®mputing
10, 153-156. (179)

[203] Sloane, Neil J. A. 2009. The On-Line Encyclopedia of Integequ&nces.
http://www.research.att.com/ ~njas/sequences/ . (181, 183)

[204] Smith, David M. 1991. Algorithm 693: A Fortran package for flogtjoint
multiple-precision arithmetic. ACM Transactions on Mathematical Software
17(2), 273-283. (180)

[205] Sorenson, Jonathan P. 1994. Two fast GCD algorithlosrnal of Algorithms
16, 110-144. (46)

[206] Steel, Allan. 2006. Reduce everything to multiplication. Computing ley th
Numbers: Algorithms, Precision, and Complexity, Workshop for Ridfgaent’s
sixtieth birthday, Berlin. http://www.mathematik.hu-berlin.de/
~ gaggle/EVENTS/2006/BRENT60/ . (44)

[207] Steele, Guy L. and White, Jon L. 1990. How to print floating-poimtnbers
accurately. Pages 112-126Ribceedings of the ACM SIGPLAN’'90 Conference
on Programming Language Design and Implementati@23)

[208] Stehé, Damien and Zimmermann, Paul. 2004. A binary recursive GCD algo-
rithm. Pages 411-425 of Buell, D. A. (ed?roceedings of the 6th International
Symposium on Algorithmic Number Theory (ANTS VBcture Notes in Com-
puter Science, vol. 3076. Burlington, USA: Springer-Verlag. (39, 46

[209] Stein, Josef. 1967. Computational problems associated withhRaegabra.
Journal of Computational Physics, 397-405. (45)

[210] Sterbenz, Pat H. 1974Floating-Point Computation Englewood Cliffs, NJ,
USA: Prentice Hall. (121)

[211] Svoboda, Antonin. 1963. An algorithm for divisionnformation Processing
Machines9, 25-34. (45)

[212] Swartzlander, Earl E., Jr. (ed.). 19&bmputer ArithmeticDowden, Hutchison
and Ross (distributed by Van Nostrand, New York). (78, 179)

204 References

[213] Takahasi, Hidetosi and Mori, Masatake. 1974. Double exptaidarmulas for
numerical integrationPublications of RIMS, Kyoto Universjt9(3), 721-741.
(183)

[214] Temme, Nico M. 1996. Special Functions: An Introduction to the Classical
Functions of Mathematical PhysicgViley. (179)

[215] Thone, Emmanuel. 2002. Karatsuba multiplication with temporary space of size
< n. 6 pageshttp://www.loria.fr/ ~thome/ . (40)

[216] Tocher, Keith D. 1958. Techniques of multiplication and divisiongatomatic
binary computers.Quarterly Journal of Mechanics and Applied Mathematics
11(3), 364-384. (179)

[217] Toom, Andrei L. 1963. The complexity of a scheme of functi@ements real-
izing the multiplication of integers (in Russiaroklady Akademii Nauk SSSR
150(3), 496-498. Available fromhttp://www.de.ufpe.br/ ~toom/
my_articles/rusmat/MULT-R.PDF . Translation inSoviet Mathematics
4 (1963), 714-716. (44)

[218] Traub, Joseph F. 1964terative Methods for the Solution of Equatiorsngle-
wood Cliffs, New Jersey: Prentice-Hall. (179)

[219] Trefethen, Lloyd N. 2008. Is Gauss quadrature better thansGéem-Curtis?
SIAM Review50(1), 67-87. (183)

[220] Urabe, Minoru. 1968. Roundoff error distribution in fixed-paimultiplication
and a remark about the rounding rulBlAM Journal on Numerical Analysis,
202-210. (118)

[221] Vallée, Brigitte. 1998. Dynamics of the binary Euclidean algorithm: functional
analysis and operatorélgorithmicg 22, 660-685. (46)

[222] Van Loan, Charles F. 1992Computational Frameworks for the Fast Fourier
Transform Philadelphia: SIAM. (78)

[223] Vepstas, Linas. 2007. An efficient algorithm for accelerating the converyef
oscillatory series, useful for computing the polylogarithm and Hurwitz zete-

tions. http://arxiv.org/abs/math.CA/0702243 . 37 pages. (183)
[224] Wall, Hubert S. 1948 Analytic Theory of Continued Fractiond/an Nostrand.
(180)

[225] Watson, George N. 196@& Treatise on the Theory of Bessel FunctioBecond
edn. Cambridge University Press. (180)

[226] Weber, Kenneth. 1995. The accelerated integer GCD algori#@\ Transac-
tions on Mathematical Softwar21(1), 111-122. (31, 46)

[227] Whittaker, Edmund T. and Watson, George N. 192 Tourse of Modern Anal-
ysis Fourth edn. Cambridge University Press. (180)

[228] Wilkinson, James H. 1963Rounding Errors in Algebraic ProcessesiMSO,
London. (121, 179)

[229] Wilkinson, James H. 1969 he Algebraic Eigenvalue Problei@larendon Press,
Oxford. (121, 179)

[230] Winograd, Shmuel. 1978. On computing the discrete FourierfobemsMathe-
matics of Computatiqr82(141), 175-199. (78)

[231] Wong, Roderick. 198%Asymptotic Approximation of Integral8cademic Press.
Reprinted by SIAM, 2001. (180)

[232] Yap, Chee K. 2000.Fundamental Problems in Algorithmic AlgebraDxford
University Press. (46)

References 205

[233] Zeilberger, Doron. 1990. A holonomic systems approach taiap&inction
identities.J. Comput. Appl. Math32(3), 321-348. (183)

[234] Zimmermann, Paul. 1999. Karatsuba Square Root. Reseambrt3805. IN-
RIA. http://hal.inria.fr/docs/00/07/28/54/PDF/RR-3805.
pdf . (45)

[235] Zuras, Dan. 1994. More on squaring and multiplying large inee¢feEE Trans-
actions on Computerg3(8), 899-908. (41, 44)

Index

Abramowitz, Milton [T79[180, 190
addition[2[91L
carry bit[T0[92
modular[5D
addition chain[_xil/[_619
weighted[7l
Adleman, Leonard Max,_68

AGM, seearithmetic-geometric mean

Agrawal, Manindral 45
Aho, Alfred Vaino[46[7B
AKS primality test[4b
algorithm
AGM (for log),[159[162
Akiyama-Tanigawd, 181

ApproximateReciprocal,_10B, 1119
ApproximateRecSquareRobf, 113

BackwardFFT 54
Barrett's[58[78, 109, 11T, 119
BarrettDivRem[5P
BasecaseDivRer, 115,141,142
BasecaseMultiply,14, 40
BaseKExp[_7iL
BaseKExpOdd,_12

D. Bernstein’s|_122

R. Bernstein’d_14

binary splitting[168
BinaryDivide [32
BinaryGed[31

bit-burst[T6¥[178
Bluestein's[7B
Brent-Salamir{_159, 184
cryptographid_6id, 48
DivideByWord [24
DivideNewton[1011, 111,110, 1p2
DoubleDigitGed[31L
Erf,[149[175
EuclidGed[30
ExactDivision[2P[122
ExtendedGed, 38,43
FastIntegerinpu, 39, 43
FastIntegerOutput._39
FastREDCI_6R2
FFTMulMod,[56
ForwardFFT 5B
FPadd[9P

FPmultiply,[96
FPSqrtCTIN_119
Friedland's[I8P
Furer's[5T[78
Gauss-Legendrg, 149, 184
HalfBinaryGed[3b[43
HalfGed,[43
IntegerAddition[P
Integerinput[3B
IntegerOutpul_38
IntegerToRNS 73,78

208

IsPower[2P
KaratsubaMultiplyl 520
lazy,[2[43
LeftToRightBinaryExp[7I[_716
LiftExp, I31
McLaughlin’s [63E6H, 717
ModularAdd[50[7b
Modularinverse,_ 66
Montgomery's[6D
MontgomerySvobodé, $2
Mulders’,[96
MultipleInversion[[6V[718
MultMcLaughlin,[64

OddEvenKaratsubf] B, 141
off-line,[2,[44
on-line [424

parallel,[46,[4P[67 16, 7T 1I75,

180
Payne and Hanek, 101
PrintFixed 116120
Rader's[7B
RecursiveDivReni, 18§, 42
REDC [GD
ReducedRatMod, 32, 46
relaxed[P[44
RightToLeftBinaryExp[7b
RNSTolntegel_74
RootInt[2T
RoundingPossiblé, 89
Sasaki—Kanad& _1b2. 181

Index

SvobodaDivision 117,42
systolic[46
TangentNumbers_Ib7,_176. 177,
181
ToomCook3[F
UnbalancedDivisior, 20, 42
unrestricted, 121,125
zealous 44
Ziv's,
aliasing[17P
Andrews, George Eyrg,_ 1719, 180
ANU, il
Apostol, Tom Mike[I8D
ARC,[x]
argument reductiof, T0T, 1I32=135
additive[T38
multiplicative [133
arithmetic-geometric mean, 1148=163
advantage$, 158
complex varian{,_183
drawbackd, 162
error term[16D
for elliptic integrals[158
for logarithms[[I50=162
optimization of [16P, 182
Sasaki—Kanada algorithin, 162
scaling factof_161
theta functiond, 180
Arndt, Brg,[Xi,[181[18%
ARPREC[18V

Schbnhage—Strassef.148,155.] 65Askey, Richard Allen 179, 180

[78,[10%[12P 185

SecantNumberE, 116, 177,181

SeriesExponentidl,_1V7
ShortDivision[[I0B 111,121
ShortProducf 97,121
SinCos[16b
Sqrtint [274845
SqrtRem[ZH, 45
Strassen’d, 36, 123

asymptotic equality notatior, Xvl
asymptotic expansions, 144,180
asymptotic series notatiarrxv
Avizienis representatioh, 73

Bach, (Carl) Eric["4b

Bachmann, Paul Gustav Heinri¢h] 46
Backeljauw, Franky, 180

backward summatiof, 1B5, 138

Index 209

Bailey, David Harold[183,184,187 Big O notation[xv

balanced ternarfz_119 binary coded decimal (BCD}, 81
Barrett's algorithm [54=80_64, 177, binary exponentiatiof, 68, 70
[78,[10%9[11P binary number, notation fdr, Xvi
Barrett, Paul 54,39 binary representatiof] 1
base[/[80 conversion to decimdl_B7
conversion[_ 31,190 binary splitting[16B=186¢, 1TB. 185
Batut, Christian_189 CLN library,[182
Becuwe, Stefarf, 180 for 1/m,((3),[184
Beeler, Michael 181 for sin/cos[166
Belabas, Karin{_189 binary-integer decimal (BIDJ, 81
Bellard, Fabricd,_184 binary64[81[84, 120
Bernardi, Dominiqud, 189 BinaryDivide [32
Bernoulli numbers[Xii,[I47[154, binomial coefficient xii[4B
158169176 bipartite modular multiplicatio, 17
Akiyama-Tanigawa algorithm, bit reversal[53, 54
181 bit-burst algorithm[_166=160, 1I78
complexity of evaluatiori, 177 Bluestein, Leo IsaaE, 78
denominators of, 156 Bodrato, Marco 44, 119
fast evaluatior], 177 Boldo, Sylvie[118
Harvey's algorithm[_181 Bonan-Hamada, Catheriie, 180
scaled[Xil Booth representatiof, 173,178

space required fdr, 160, 176 Bornemann, Folkmal,_183. 184
stable computatiofl, 155, 1116, 180 Borodin, Allan Bertram_44.18

via tangent numberg,_156 Borwein, Jonathan Michael_159—
Bernstein, Daniel Juliu§, #8, W5177, [161[I81FI84, 190
[78,[122[128, 131 Borwein, Peter Benjamif,_1H9-161,
Bernstein, Joseph Naumovi¢h, 183 [I871-£184[190
Bernstein, Roberf, 14 Bostan, Alin[12P
Berry, Michael Victor[18B branch predictior, 16
Bertot, Yves[4b Brent, Erin Margaref_Xi
Bessel functiong, 153 Brent, Richard Peircé, #5121, 166,
first kind, J,, (x),[153 [182[18%
in computation ofy,[146[18% Brent—McMillan algorithm[12d, 184
Miller's algorithm,[154 Brent—Salamin algorithnh,_159, 1184
second kindy, (x),[I53 Briggs, Keith Martin[45

Bessel's differential equation, 153 Bruijn, seede Bruijn

Bessel, Friedrich Wilhelni,_ 152 Bulirsch, Roland Zdegk,[183
Bézout coefficient$, 32 Burgisser, Petelr, 40, 1P3
Bézout,Etienne[3P Burnikel, Christoph[45

210

butterfly operatior{, 33

C,[68[186E189
C++,[185[181. 189
cancellation[_ 138
Cannon, John Josefh, 188
carry bit,[T0[40 92
catastrophic cancellatioin, 1138
Cauchy principal valué_xMi, 144
Cauchy’s theoreni, 170
Cayley[188
ceiling function[z],xw
Chen, Kwang-WuU, 181
Cheng, Howard, 184
Chinese remainder
seemodular representation

Chinese remainder theorem (CRT),

[[373[78
explicit,[49
reconstructior,_14,. 18
Chiu Chang Suan Shiu, 45

Chudnovsky, David VolfovicH, 186,

(182,184
Chudnovsky,

[166,[182(184
Chung, Jaewook,_45
classical splitting,_142

Gregory \Volfovich,

Index

arithmetic[18V
multiplication,[163
square roof_182
squaring[163
complexity
arithmetic[B[%
asymptotic[B
bit,[4
concatenation, notation for Vi, 38
continued fraction
approximant_151
backward recurrence. 191,175
error bound 1972, 175
fast evaluatio,_17%, 180

representation, for E;,[I50

for erfc,[I50
forward recurrencé._I5L, 1175
notation for[xvi[15D
regular[30
contour integratiorl, 169, 183
convolution [X[78
convolution theorent,_%0
cyclic,[xivi,[78,[98
via FFT[64[99
Cook, Stephen Arthult 44
Cornea-Hasegan, Marius Adrian,

12211238

Clausen, Michael Hermann, 41,123 correct rounding,,, 83

Clausen, Thomak, 156, 181

cosh(z),[138

Clenshaw, Charles Williarh,ZIP0,1180,Cowlishaw, Mike[[123.190

183
Clenshaw—Curtis quadratufe, 183
Clinger, William Douglas_123
CLN,[182[185
Cohen, Henri_ 44, 189
Collins, George Edwii, 121
complementary error functiosge
erfe(x)
complex

AGM, 163

Crandall, Richard Eugenle, 44,122
Crary, Fred D[183

CRT, seeChinese remainder theorem
cryptographic algorithni, 68,78
Curtis, Alan R.[18B

Cuyt, Annie[I8D

D-finite, seeholonomic
DBNS,[73
DDMF,

Index 211

de Bruijn, Nicolaas Govert (Dick), DLMF, 180

180

decimal arithmetid,_ 81
decimal representatiol], 2

conversion to binary, 37
decimal64[120
degxv
determinant, notation fdr, Xvi
Detrey, &emie[X

DFT, seeDiscrete Fourier transform
differentiably finite,seeholonomic

Diffie, Bailey Whitfield,[68

Diffie—Hellman key exchangE, b8

Dimitrov, Vassil S.[[78

Discrete Fourier transform, b0,164

notation for[xy
div notation iV
divide and conquer
for conversion[_38
for GCD,[33
for multiplication,[3
division,[T4£25[4b
by a single word, 23,42
classicalversusHensel[24
divide and conquel, 18
Euclidean[4b
exact[TH 2142
full, T4l
Goldschmidt’s iteratiorf, 123
modular[6b
notation for[Xy
paper and pencil, 25

SRT algorithm[12d, 128179

time for, D(n),xivl 102

unbalanced. 19, 42
divisor

implicitly invariant,[60[78

notation for[xi

preconditioning[_111, 81
Dixon, Brandon[_44

double roundind, 90
double-base number systdm]| 78
doubling formula I34=136,1V1 172
for exp,[133
for sin,[133
for sinh, [136
versus tripling 136, 179
Dupont, Regis[181

e, seeEuler’'s constang
ECM, seeelliptic curve method
Ehrhardt, Wolfgand, Xi
Ein(x),[I73
elementary functio, 126=144
El Gamal, Tahei, 88
El Gamal cryptosysterh, 68
elliptic curve cryptography, 65
elliptic curve method,_47
elliptic integral [158
first kind,[158
modulus[I50
nome[161
second kind_158
email addresses] x
Enge, Andrea$, 45, 10, 187
entire function[-140
Ercegovac, Mibs Dragutin[1213
erf(z),[138 148173
erfe(z), 139148150
error correction_75
error function seeerf(x)
ESF[I90
Estrin, Gerald_180
Euclid,[29
Euclidean algorithmseeGCD
Euler's constant, [184
Euler’s constanty,[184
Brent—-McMillan algorithm, (1486,
184

212 Index

Euler—Maclaurin approx__1#6 Figure[2.1[6B
Euler’s totient functior_xiv Figure[3.1[9b
Euler—-Maclaurin formuld,_146, 180 Figure[3.2[9
for computation ofy, [148 Figure[3:3[100
exp(z), seeexponential Figure[3.3 101
exponent 79, 8183 Figure[3.5[110
exponential finite field, seefield
addition formulal_I33 floating-point
binary splitting for[18P addition[91[0QM, 121
expml,[I35[17P binary64[81
notations forrxv choice of radix[_1211
exponential integral_144.1b0, 173, comparisor 91
173 conversion 114, 123
exponentiation decimal 1Tk
binary[70 division,[101
modular[68E713 double precisiorf, 81
extended complex numbe®s 151 encoding[(8B
expansions, 86, 121
fast Fourier transform (FFTL] 850, guard digits[135
[65,[B612p input,[IIT
Bluestein’s algorithn{,_18 level-index representatioin, 120
complex[99 loss of precisior_134
in place algorithn{, 53 multiplication [9%
over finite ring[99 output[1Th
padding[5B 98 reciprocal (I0N[102,122
Rader’s algorithn{ 48 reciprocal square rodt,_ 1112
rounding errors i, 99 redundant representatiofis, 120
use for multiplication 54,98 representatiof, 19
Féjer, Leopold 183 sign-magnitudd, 84
Fermat, Pierre de special value$, 82
little theorem[6B[_156 square roof 111
FFT, seefast Fourier transform subtraction[91, 93
field, finite [77[78 via integer arithmeti¢, 86
representation. 49 floor function|z |, X%
Figures fmaa instruction[40
Figure[T1[1P folding,[63
Figure[T.2[1B Fortran[18
FigureT.B[2D forward summatior, 136, 1B8
Figure[T.3[21 Fourier transformseeDFT

Figure[T.5[21 fraction, seesignificand

Index

free format[12B

Friedland, Paul[_182

function, D-finite,seeholonomic
function, elementaryseeelementary
function, holonomicseeholonomic
function, specialseespecial
functional inversd,_125

Furer, Martin[78

Gabcke sequende, 183

Gabcke, Wolfgand, 183
Galbraith, Steven Douglds] ki, 43
~, seeEuler’s constant

213

notation for[xi¥

plain,[29

Sorenson’s algorithnh, 29

subquadrati¢,_38=3[7. 43

subtraction-only algorithmE, 29
Gerhard, drgen[7¥
Girgensohn, Rolan@, 183
GMP|[x],[185[18B, 189
gnuplot[Xi
Goldberg, David Mard, 121
Goldschmidt’s iteratior, 123
Golliver, Roger Allen[12
Goodwin, Charles E. T._I80

Gamma functior(x),[I34[I3Y[138, Gopal, Vinodh[77
[IZ2E150,I7B[1141y T.183,Gosper, Ralph William, J; 181

on imaginary axid, 144
Gathenseevon zur Gathen
Gaubatz, Gunndr, Y7
Gaudry, Pierrick_186
Gaunt, John Arthuf_183

Gourdon, Xavier Richar@_18B, 184
GP[189

GPL,[18%

Graham, Ronald Lewif, 181
Granlund, Torkjrn,[xi,[42 [78[185

greatest common divisaseeGCD

Gauss, Johann Carl Friedri€h] 86, 15&rotefeld, Andreas Friedrich Wil-

Gauss—Kuz'min theorerh, 45

helm [122[18P

Gauss—Legendre algorithi. 159, 184yroup operation

Gaussian quadratufe, 183
Gautschi, Waltef_180
Gay, David M.[1ZB
GCD,[29
algorithms for[2P
Bézout coefficients, 32
binary[30[4D
cofactors[3P
continued fraction fronl, 30
divide and conquek,_33
double digit[30[3B
Euclidean[29, 4%, 49
extended, 29,32, 4B, b5
half binary[33
Lehmer’s algorithn_29
multipliers [32

cost of [77
notation for[7B
guard digits[96,118,185
for AGM,
for Bernoulli numberd,_15%. 170
for catastrophic cancellation, 138
for exp,[171
for subtraction 94
for summation[_138
negative[162

Haenel, Christopli,_184
Haible, Bruno[184, 185
HAKMEM,
HalfBezout[30
HalfBinaryGed[3# 6b

214 Index

HalfGed,[43 infinity, co, 00,82
Hanek, Robert N[_T0[1P2 INRIA, il
Hankerson, Darrel Richard,]78 integer
Hanrot, Guillaume[Xi[/40["41["#5, notation forrxy
122184 integer division
harmonic numbel Xii[_173 notation for[Xy
Hars, Laszld 747 integer sequencds, 190
Harvey, David [34144, 4% 122 interval arithmetid 184190
M2317y[(174. 181,182 inversion
Hasan, Mohammed Anwar({i[, #5 batch[78
Hasenplaugh, Williani, 77 modular[32[6H=88_76
Hastad, Johan Torké[#1 lordache, Cristina S, 121
Hellman, Martin Edward. 88 ISC [190
Hennessy, John LeRdy, 121 Ispiryan, Karen R[Z40
Hensel
division,[24 £25[2H, 49, 58-b1.166

Jacobi symbo[43,36

notation for[X

subquadratic algorithri, #38, 146
Jacobi, Carl Gustav Jacdb,]43
Jebelean, Tuddr_ 45, 16
Johnson, Jeremy Russé€ll[121
Jones, William B.[-180

lifting, 21,22 [32[4b"49. 85
Hensel, Kurt Wilhelm Sebastian.149
Heron of Alexandria_129
Higham, Nicholas Johf, TP, 179
Hille, Einar Carl[17D
Hoevenseevan der Hoeven

holonomic function[139[_1671,_1I78

53 "Jullien, Graham A[18
Hopcroft, John Edward, 46,178
Horner's rule[T3M_ 147 143 Kahan, William Morton[1213
forward [T71 Kaihara, Marcelo Emilid_47
Horner, William Georgd, 137 Kanada, Yasumasa, 162,181
Householder, Alston Scoff_1I79 Kaneko, Masanobi, 181
Hull, Thomas Edward_ 121 Karatsuba’s algorithni] 836, 10,141,
Hurwitz zeta-function_183 [44,[62[16B
Hurwitz, Adolf,[183 in-place versior{, 40
hypergeometric function_IBJ._159, threshold for{4D
167 Karatsuba, Anatolii Alekseevich, 11,
44,6296
idempotent conversioh, 1P3 Karp, Alan Hersh 24, 4%, 1PP. 1179
IEEE 754 standar@_70, 11 Karp—Markstein trick, [2245122,
extension of 187 79
IEEE 854 standard,_1P1 Kayal, Neeraj_ 45

iff, Kiv] Khachatrian, Gurgen H.._ #0, %5

Index

Khinchin,
43,180
Kidder, Jeffrey Nelsori, 118

Knuth, Donald Ervin[i 45, 46, 121,

122181
Koornwinder, Tom Hendrik_ 183
Krandick, Wernef_49, 121
Kreckel, Richard Bernd_185
Kronecker, Leopold, 44
Kronecker-Sctinhage trick,[13,[39,
42,44497r
Kulisch, Ulrich Walter HeinZ,_123
Kung, Hsiang Tsund, 46, 179
Kuregian, Melsik K.[4D
Kuz’min, Rodion OsievicH,_45

Lagrange interpolatiof] 6, 74
Lagrange, Joseph Louls, 6
Landen transformations, 163, 181
Landen, Johi, 163

Lang, Tomad, 122

Laurie, Dirk,[I83[18K

lazy algorithm[2[_ 44

leading zero detectioh, P4

Lecerf, Gegoire[12P

Lefevre, Vincent 45, 120, 121
Legendre, Adrien-Marié¢, 158, 184
Lehmer, Derrick Henry,_30, 45,183
Lehmer—Gabcke sequente, 183
Lenstra, Arjen Klaa$, 44

Lenstra, Hendrik Willem, Ji. 45
level-index arithmetid,_120

lg, seelogarithm

LGPL,[186[18¥

Lickteig, Thomas Michael 123
lists versus arrayk, 84

little o notationxv

In, seelogarithm

Loan,seeVan Loan

log, seelogarithm

Aleksandr Yakovlevich,

215

loglp, seelogarithm
Logan, Benjamin Franklin “Tex”, Jr.,
181

logarithm
addition formula[_133
computation via AGM[_159
lg(z), In(z), log(z), Xv
loglp,[140[172
notations for=xv
Sasaki—Kanada algorithin, 162

logical operationg, xiv

LSB,[22[24[25 29. 29

Luschny, Petef, 43

Lyness, James N., 1B3

machine precisio, Xiv

Maeder, Roman Erich, #0

Magaud, Nicolag, 45

Magma[18B

mailing lists[189

mantissaseesignificand

Maple [183[188

Markstein, Petell 22 3%, 1PP. 123,
179

Martin, David W.[180

MasPar 44

Massey, James Lde, 140

Mathematica 188

Mathematics Genealogy Projelct, xi

matrix multiplication[41L[123

matrix notationxv

Matula, David William[121L

Maze, Gerard[4b

MCA, [77

McLaughlin’s algorithm[5l7_54. 63—
[63,[77

polynomial version_47

McLaughlin, Philip Burtis, Jr[_ 40,63,
(72

McMillan, Edwin Mattison[184

216 Index

Menezes, Alfred Johf, 78 Montgomery—Svoboda algorithin,]149,
Ménissier-Morain, Varie [IT20 BIe3[7677

Mezzarobba, Mar¢, i, 178 Mori, Masatake 183

Microsoft,[186 MP,[179£181 187

middle product 24, 41,99 MPC,[I87[18B

Mihailescu, Preda V[_17 MPFI,[188

Mikami, Yoshio [4% MPFQ,186

Miller's algorithm,[154[17H_180 MPFR/[187[188
Miller, Jeffrey Charles Percy_T4, MPIR,[186

MSB,[21[22[24 29. 29. 49
Miller, William C., [78 Mulders, Thom[94, 119, TP1
mod notation[Xi/ Muller, Jean-Michel, i, CI21=123,
modular IE _

addition[50 multiplication
division,[65 by a anstanﬂs
exponentiatior_88=TB.78 carry bit,[40

base2* [T complex[16B

inversion 3P 6H=88.76 EFT r?“@:el:ﬁth -
multiplication [G8E6b urers a 9?“ M.
splitting, (12 Karatsuba’s algorithnf, 163
subtraction 50 2?:;'6‘;@55

modular arithmetic gers| B=4

of large integers, 38

notation for[xiw Schnhage—Strassdn.]49

special moduli_ 64,748

schoolboo
modular representatioin, 173 short prodEEiBjs
comparison problerfi, 75 time for, M (n), K
conversion to/fron{. 43 unbalar;ced:lﬁéélll:ﬂl
rgdundanQS complexity of [T1
sign detection problerfi, 75 via complex FFT.98
Moenck, Robert Thomak, U5.178 multiplication chain[6D
Moler, Cleve Barry|_183 weighted[7V
Mbller, Niels [42[4B] 46,78 Munro, (James) lafi, 78
Montgomery’s algorithn{, 58
Montgomery’s form[4H, 60 NaN,[82
Montgomery multiplication 60=63 quiet[82
subquadrati¢,_ 82 signaling[8P
Montgomery reductior, 25, %9 nbits Xy

Montgomery, Peter Lawrende]42] 48 nearest integer functiop |, Xv
7278 Neumann, Carl Gottfried 153

Index

217

Newton’s method,_21,25, P6. 49,166 p-adic [49

[102,[114126-132.1¥9
for functional inversed, 130, 189
for inverse rootd, 127
for power series. 129
for reciprocal[12B
for reciprocal square rodt, 1P9
higher-order variantg,_ 181
Karp—Marstein trickl_179
p-adic (Hensel lifting)[2R
Newton, Isaad, 21,40, 102,125
Nicely, Thomas R[128
NIST,[78
NIST Digital Library,[190
normalized divisof_14
Not a Number (NaN},_ 82
Nowka, Kevin Johr[_121
NTL,
numerical differentiatiof,_183
numerical instability
in summation[_138
recurrence relations_1b5
numerical quadratursgequadrature
Nussbaumer, Henri Jedn]78

odd zeta-functiorf, 157

odd—even schemlel @145, 182, 1171
Odlyzko, Andrew Michae[_183
Odlyzko—Scldnhage algorithni, 183
OEIS[190

off-line algorithm [2[44

Olivier, Michel,[189

Olver, Frank William Johr_120, 180
Omega notatiofi, xv]

on-line algorithm[-44
Oorschotseevan Oorschot

ord,xXv

Osborn, Judy-anne Heathied, xi

Paar, Christof_41

Pan, Victor YakovlevicH, 122
Papanikolaou, Thomds, 182, 184
PARI/GP[189
Patashnik, Oref, 181
Paterson, Michael Stewalrf, 180
Patterson, David Andref, 1P1
Payne and Hanek
argument reductioif, IO, 122
Payne, Mary H[_ 101, 122
Pentium bud, 128,179
Percival, Colin Andrew,_44. 118, 1p2
Pétermann, Yves-Francois Sap-
phorain[18B
Petersen, Vigdis Brevik,_180
phi functiong, xivi
w,[184
Brent—Salamin algorithrh, 159, 1181
Chudnovsky serieb, 1B4
Gauss-Legendre algorithin, 159
record computation, 184
Pila, Jonathan 9., %5
Plouffe, Simon[_190
Pollard, John Michae[, TZ. V8
polylogarithm[18B
polynomial evaluatiori, 141
Pomerance, Call_#4
power
computation of_6o
detection of 2H, 45
power series
argument reductioif, T#0
assumptions re coefficienks, 139
backward summation_IB%, 137,
direct evaluatior, 120
forward summatior, 135, 187, 138
radius of convergencg, 1139
precision[XV
local/global[8%

218

machine[137
operand/operatioh, 84, 121
reduced 162
working,[90[13V
Priest, Douglas M[86, 121
product tred, 67
pseudo-Mersenne prinfe.]65] 78
PV [, seeCauchy principal value
Python[18D

quadrature
Clenshaw—Curti$, 183
contour integratiorl, 169
Gaussiar, 183
numerical[18B
Romberg[183
tanh-sinh, 183

Quercia, Michel 4, 41122

Quisquater, Jean-Jacques, 77

quotient selectior, 16,18, b1

Rader, Charles M[._T8
radix,[xiv,[79581

choice of[80

mixed,[83

radix ten[114
rational reconstructiof,_ 87
reciprocal square rodt, 112, 129

Index

Remy, Jean-Lud¢, 183
residue class representatibn] 47
residue number system.148] 73] 77
Reyna, Juan Arias de, 183
Richardson extrapolatioh, 1I83
Richardson, Lewis Fr{, 183
Riemann Hypothesis
computational verificatiof, 183
Riemann zeta-functiof, THZ, 184
at equally spaced poinfs,183
at even integer§, 157
Bernoulli numberd,_ 157
Borwein’s algorithm[_183
error analysid, 183
Euler—Maclaurin expansiorf,_147,
183
odd zeta-functior, 157
Odlyzko—Sclknhage
183
Riemann-Siegel formulb, 183
Riemann, Georg Friedrich Bernhard,
141
Rivest, Ronald Linr[_@8
Rix, Anne[X]
RNS, seeresidue number system
Robertson, James Evahs, 179
Roche, Daniel Steveh, 40
Roegel, Denig, Xi

algorithm,

rectangular series splitting,_14I=144Romberg quadraturg, 183

recurrence relationg,_1b2
REDC[60[7V
redundant representation
for error detection/correctioh, 75
for exponentiatior,_43
for modular addition_48
Reinsch, Christiah,_180
relaxed algorithn{ 12,44
relaxed multiplicatior_76
remainder tre¢. 48,67

Romberg, Wernef,_183
root
kth,[27
Goldschmidt's iteratiori, 123
inverse[12I7
principal [50
square[2-26.T111
complex[128182
paper and pencil, 25
wrap-around trick_114
Rosser, John Barkley, 183

Index

rounding
away from zerd,_g87
boundary[86
correct[85137
double[90
mode[8Y[121
notation for[X
probabilistic[8¥
round bit[88[9P
sticky bit,[83 921211
stochastid_87
strategies fof,_ 90
to nearesf, 82._87-D0
balanced ternarf, 119
to odd[118
towards zerd, 87,118
Von Neumanr_118
rounding mode, [85+31
Roy, Ranjan_179. 180
RSA cryptosystent, 68
runs of zeros/onek, 1P1
Ryde, Kevin[4D

Sagel 189

Salamin, Eugené, 181, 1184
Salvy, Bruno[178

Sasaki, Tateaki, 162, 181
Saxena, Nitin_45

Schmid, Wolfgang Alexanddr Ixi
Schmookler, Martin S[121

219

segmentatiorseeKronecker—
Schbnhage trick
Sergeeyv, Igor S[, 182
Shallit, Jeffrey Outlawi,_46
Shamir, Adi[68
Shand, Mark Alexanddr, 45
Shokrollahi, Mohammad Amin,_41,
123
short division[121
short produc{_82.95-9B8. 11
Shoup, Victor Johi, 48,189
Sieveking, Maltel 179
sign Xy
sign-magnitudd,]Z, 47, 84,191
significand[7B_83
sin(z),[133
sinh(z),[138
sliding window algorithm[_712
Sloane, Neil James Alexander, 190
Smith’s methodseerectangular
series splitting
Smith, David Michael_180
software toold 185
Sorenson, Jonathan Pdul] 811 46, 77,
73
special function_12%5=18%. 190
special moduli_6H. 78
splitting
classicall_14R2
modular[14p

Sctbnhage, Arnold[Xi["43["44, 46, square rootseeroot

122[171[180. 182. 183

squaring[_TH[41

Schinhage—Strassen algorithrh, 149, complex[168

(65,[65 78104, 122, 185
SchostEric,[122 171
Schroeppel, Richard Crabtrée, 181
Sebah, Pascdl, 1184
secant numberg, IHZ, 177
Sedjelmaci, Sidi MohamefIxi
Sedoglavic, Alexandré, #2

SRT division[125, 128. 179

Staudt, Karl Georg Christian von,
158,181

Steel, Allan[Z4

Steele, Guy Lewis, Ji,_1P3

Stegun, Irene Anné._1V0, 1180, 190

Stehke, Damien[44,46

220

Stein, Josef_45
Stein, William Arthur[189
Sterbenz's theorerh, P4, 121
Sterbenz, Pat Holmds. 194, 121
sticky bit,[88[121
Stirling numberd, 174, 181
Stirling’s approximation
convergent forn{, 174
for InT'(iy),[174
for InT'(z),[149
for InT'(2), 142
for n! or I'(z), 134137134, 147,
177183
with error boundd, 146
Stirling, Jamed, 134
Stockmeyer, Larry Josedh, 180
Stoer, Josef 183
Strassen’s algorithrii, B6
Strassen, Volkel 36, 1P3
strings
concatenatior, xii. 38
subnormal numberg,_B2
smallest[xiV
substitution seeKronecker—
Schbnhage trick
subtraction[A, 91
guard digits[9%
leading zero detectioh, P4
modular[5D
summation
backward[" 134,138
forward [135[138

Index

Table[Z2[6B
Table 3.1[8P
Table 3.2[9B
Table 3.3[100
Table 4.1[16K
Takagi, Naofumil_7l7
Takahasi, Hidetosl, 183
tan(z), 133155
tangent numberg Xiii, 156, 1116, 181
algorithm for[156
complexity of evaluatiorf, 177
space required far, 1V6
Tellegen'’s principld, 122
Temme, Nico M.[179,183
tensor rank,_ 41,123
ternary systeni, 119
theta functiond,_ 180
Theta notatior®, X
Théveny, Philippe 187
Thomé, Emmanuel_kil—4d, 41,184,
Tocher, Keith Dougla$, 1T9
Toom, Andrei LeonovicH, 44
Toom—Cook multiplicatior 1637, 41
time for,[1
totient function[Xy
Traub, Joseph Frederidk, 179
Trefethen, (Lloyd) Nichola§, 188, 184
tripling formula
for sin,[133
for sinh, [136
in FFT rangel 134, 180

Svoboda’s algorithn{, 17,28, 12,145,

4961163717
Svoboda, Antonir, 4%, 49
Swartzlander, Earl E., JI. 118179
Sweeney, Dura Warreh, 1179

Tables
Table[Z1[4D

Ullman, Jeffrey David_4i4, 18
unbalanced multiplicatiofi] B=1I 141
unit in the last place (ulpl.xiV, 80, 87
unrestricted algorithni,_12L.1P5

for exp,[180

Vallée, Brigitte[46

Index

valuation [XiVy

van der Hoeven, Jori§, W& 176, 122
178182188

Van Loan, Charles Franc[s. 178

van Oorschot, Paul Cornel[s.]78

Vandermonde matrik] 7

Vanstone, Scott Alexandér.]78

vectors, notation for3v

Vepstas, Linad, 183

Verdonk, Brigitte[18D

Vetter, Herbert Dieter Ekkehaff,_1122,
182

Vidunas, Raimundag, 1B3

Von Neumann, John &hos Lajos),
118

Von Staudt-Clausen theorerh, 156
181

von zur Gathen, Joachif.]77

Vuillemin, JearEtienne[2145

Waadeland, Haakoh, 180
Wagon, Stanley (Starl), 143,184
Waldvogel, &rg,[T83[18K

Wall, Hubert Stanley, 180

Wang, Paul Shyh-Hornf, #6
Watson, George Nevillg,_T1B0
Weber functionsY,, (z),[153
Weber, Heinrich Friedricti, 153

221

Weber, Kennetl, 46

Weimerskirch, Ande,[41

Wezelenburg, Mark ki

White, Jim[I7P

White, Jon L.[12B

Whittaker, Edmund Taylof,_ I80

Wilkinson, James Hardy, 11, 179,
1180

Winograd, Shmuel, 18

Wolfram, Stepherl, 188

Wong, Roderick_130

wrap-around trick_ 6@, 105

Yap, Chee-Kend, 46

Zanoni, Alberto[44
zealous algorithni, 44
Zeilberger, Doror[, 183
zero,+0,[82[82
((3),[184
Ziegler, Joachin, 45
Zima, Eugend,_184
Zimmermann, Marid,_Xi
Zimmermann, Paul Vincenf_#5, 146,
122 184187
Ziv's algorithm [86
Zuras, Dan_41, 44

Summary of complexities

Integer arithmetici-bit or (m, n)-bit input)

Addition, subtraction O(n)
Multiplication M(n)
Unbalanced multiplication > n) | M (m,n) < [Z]M(n), M(™£2)
Division O(M(n))
Unbalanced division (with remainder) D(m + n,n) = O(M(m,n))
Square root O(M(n))
kth root (with remainder) O(M(n))
GCD, extended GCD, Jacobi symbpl O(M(n)logn)
Base conversion O(M(n)logn)
| Modular arithmetic ¢-bit modulus) |
Addition, subtraction O(n)
Multiplication M(n)
Division, inversion, conversion to/from RNSO(M (n) logn)
Exponentiation £-bit exponent) O(kM(n))

| Floating-point arithmetici{-bit input and output)|

Addition, subtraction O(n)
Multiplication M(n)
Division O(M(n))
Square rootkth root O(M(n))
Base conversion O(M(n)logn)
Elementary functions
(in a compact set O(M(n)logn)
excluding zeros and poles)

	Contents
	Preface
	Acknowledgements
	Notation
	Integer arithmetic
	Representation and notations
	Addition and subtraction
	Multiplication
	Naive multiplication
	Karatsuba's algorithm
	Toom--Cook multiplication
	Use of the fast Fourier transform (FFT)
	Unbalanced multiplication
	Squaring
	Multiplication by a constant

	Division
	Naive division
	Divisor preconditioning
	Divide and conquer division
	Newton's method
	Exact division
	Only quotient or remainder wanted
	Division by a single word
	Hensel's division

	Roots
	Square root
	kth root
	Exact root

	Greatest common divisor
	Naive GCD
	Extended GCD
	Half binary GCD, divide and conquer GCD

	Base conversion
	Quadratic algorithms
	Subquadratic algorithms

	Exercises
	Notes and references

	Modular arithmetic and the FFT
	Representation
	Classical representation
	Montgomery's form
	Residue number systems
	MSB vs LSB algorithms
	Link with polynomials

	Modular addition and subtraction
	The Fourier transform
	Theoretical setting
	The fast Fourier transform
	The Schönhage--Strassen algorithm

	Modular multiplication
	Barrett's algorithm
	Montgomery's multiplication
	McLaughlin's algorithm
	Special moduli

	Modular division and inversion
	Several inversions at once

	Modular exponentiation
	Binary exponentiation
	Exponentiation with a larger base
	Sliding window and redundant representation

	Chinese remainder theorem
	Exercises
	Notes and references

	Floating-point arithmetic
	Representation
	Radix choice
	Exponent range
	Special values
	Subnormal numbers
	Encoding
	Precision: local, global, operation, operand
	Link to integers
	Ziv's algorithm and error analysis
	Rounding
	Strategies

	Addition, subtraction, comparison
	Floating-point addition
	Floating-point subtraction

	Multiplication
	Integer multiplication via complex FFT
	The middle product

	Reciprocal and division
	Reciprocal
	Division

	Square root
	Reciprocal square root

	Conversion
	Floating-point output
	Floating-point input

	Exercises
	Notes and references

	Elementary and special function evaluation
	Introduction
	Newton's method
	Newton's method for inverse roots
	Newton's method for reciprocals
	Newton's method for (reciprocal) square roots
	Newton's method for formal power series
	Newton's method for functional inverses
	Higher-order Newton-like methods

	Argument reduction
	Repeated use of a doubling formula
	Loss of precision
	Guard digits
	Doubling versus tripling

	Power series
	Direct power series evaluation
	Power series with argument reduction
	Rectangular series splitting

	Asymptotic expansions
	Continued fractions
	Recurrence relations
	Evaluation of Bessel functions
	Evaluation of Bernoulli and tangent numbers

	Arithmetic-geometric mean
	Elliptic integrals
	First AGM algorithm for the logarithm
	Theta functions
	Second AGM algorithm for the logarithm
	The complex AGM

	Binary splitting
	A binary splitting algorithm for sin, cos
	The bit-burst algorithm

	Contour integration
	Exercises
	Notes and references

	Implementations and pointers
	Software tools
	CLN
	GNU MP (GMP)
	MPFQ
	GNU MPFR
	Other multiple-precision packages
	Computational algebra packages

	Mailing lists
	The GMP lists
	The MPFR list

	On-line documents

	References
	Index

