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Preface

This is a book about algorithms for performing arithmetic, and their imple-
mentation on modern computers. We are concerned with software more than
hardware – we do not cover computer architecture or the design of computer
hardware since good books are already available on these topics. Instead, we
focus on algorithms for efficiently performing arithmetic operations such as
addition, multiplication, and division, and their connections to topics such
as modular arithmetic, greatest common divisors, the fast Fourier transform
(FFT), and the computation of special functions.

The algorithms that we present are mainly intended for arbitrary-precision
arithmetic. That is, they are not limited by the computer wordsize of32 or 64

bits, only by the memory and time available for the computation. We consider
both integer and real (floating-point) computations.

The book is divided into four main chapters, plus one short chapter (essen-
tially an appendix). Chapter 1 covers integer arithmetic. This has, of course,
been considered in many other books and papers. However, there has been
much recent progress, inspired in part by the application topublic key cryp-
tography, so most of the published books are now partly out ofdate or incom-
plete. Our aim is to present the latest developments in a concise manner. At the
same time, we provide a self-contained introduction for thereader who is not
an expert in the field.

Chapter 2 is concerned with modular arithmetic and the FFT, and their appli-
cations to computer arithmetic. We consider different number representations,
fast algorithms for multiplication, division and exponentiation, and the use of
the Chinese remainder theorem (CRT).

Chapter 3 covers floating-point arithmetic. Our concern is with high-
precision floating-point arithmetic, implemented in software if the precision
provided by the hardware (typically IEEE standard53-bit significand) is
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inadequate. The algorithms described in this chapter focuson correct round-
ing, extending the IEEE standard to arbitrary precision.

Chapter 4 deals with the computation, to arbitrary precision, of functions
such as sqrt, exp, ln, sin, cos, and more generally functionsdefined by power
series or continued fractions. Of course, the computation of special functions is
a huge topic so we have had to be selective. In particular, we have concentrated
on methods that are efficient and suitable for arbitrary-precision computations.

The last chapter contains pointers to implementations, useful web sites,
mailing lists, and so on. Finally, at the end there is a one-page Summary of
complexitieswhich should be a usefulaide-ḿemoire.

The chapters are fairly self-contained, so it is possible toread them out of
order. For example, Chapter 4 could be read before Chapters 1–3, and Chap-
ter 5 can be consulted at any time. Some topics, such as Newton’s method,
appear in different guises in several chapters. Cross-references are given where
appropriate.

For details that are omitted, we give pointers in theNotes and references
sections of each chapter, as well as in the bibliography. We have tried, as far
as possible, to keep the main text uncluttered by footnotes and references, so
most references are given in the Notes and references sections.

The book is intended for anyone interested in the design and implementation
of efficient algorithms for computer arithmetic, and more generally efficient
numerical algorithms. We did our best to present algorithmsthat are ready to
implement in your favorite language, while keeping a high-level description
and not getting too involved in low-level or machine-dependent details. An
alphabetical list of algorithms can be found in the index.

Although the book is not specifically intended as a textbook,it could be
used in a graduate course in mathematics or computer science, and for this
reason, as well as to cover topics that could not be discussedat length in the
text, we have included exercises at the end of each chapter. The exercises vary
considerably in difficulty, from easy to small research projects, but we have
not attempted to assign them a numerical rating. For solutions to the exercises,
please contact the authors.

We welcome comments and corrections. Please send them to either of the
authors.

Richard Brent and Paul Zimmermann
Canberra and Nancy

MCA@rpbrent.com
Paul.Zimmermann@inria.fr
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Notation

C set of complex numbers
Ĉ set of extended complex numbersC ∪ {∞}
N set of natural numbers (nonnegative integers)
N∗ set of positive integersN\{0}
Q set of rational numbers
R set of real numbers
Z set of integers
Z/nZ ring of residues modulon
Cn set of (real or complex) functions withn continuous derivatives

in the region of interest

ℜ(z) real part of a complex numberz
ℑ(z) imaginary part of a complex numberz

z̄ conjugate of a complex numberz

|z| Euclidean norm of a complex numberz,
or absolute value of a scalarz

Bn Bernoulli numbers,
∑

n≥0 Bnzn/n! = z/(ez − 1)

Cn scaled Bernoulli numbers,Cn = B2n/(2n)! ,∑
Cnz2n = (z/2)/ tanh(z/2)

Tn tangent numbers,
∑

Tnz2n−1/(2n − 1)! = tan z

Hn harmonic number
∑n

j=1 1/j (0 if n ≤ 0)

(
n
k

)
binomial coefficient “n choosek” = n!/(k! (n − k)!)

(0 if k < 0 or k > n)
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β “word” base (usually232 or 264) or “radix” (floating-point)
n “precision”: number of baseβ digits in an integer or in a

floating-point significand, or a free variable
ε “machine precision”β1−n/2 or (in complexity bounds)

an arbitrarily small positive constant
η smallest positive subnormal number

◦(x), ◦n(x) rounding of real numberx in precisionn (Definition 3.1)
ulp(x) for a floating-point numberx, one unit in the last place

M(n) time to multiplyn-bit integers, or polynomials of
degreen − 1, depending on the context

∼M(n) a functionf(n) such thatf(n)/M(n) → 1 asn → ∞
(we sometimes lazily omit the “∼” if the meaning is clear)

M(m,n) time to multiply anm-bit integer by ann-bit integer
D(n) time to divide a2n-bit integer by ann-bit integer,

giving quotient and remainder
D(m,n) time to divide anm-bit integer by ann-bit integer,

giving quotient and remainder

a|b a is a divisor ofb, that isb = ka for somek ∈ Z

a = b mod m modular equality,m|(a − b)

q ← a div b assignment of integer quotient toq (0 ≤ a − qb < b)
r ← a mod b assignment of integer remainder tor (0 ≤ r = a − qb < b)
(a, b) greatest common divisor ofa andb
(

a
b

)
or (a|b) Jacobi symbol (b odd and positive)

iff if and only if
i ∧ j bitwiseandof integersi andj,

or logicalandof two Boolean expressions
i ∨ j bitwiseor of integersi andj,

or logicalor of two Boolean expressions
i ⊕ j bitwiseexclusive-orof integersi andj

i ≪ k integeri multiplied by2k

i ≫ k quotient of division of integeri by 2k

a · b, a × b product of scalarsa, b

a ∗ b cyclic convolution of vectorsa, b

ν(n) 2-valuation: largestk such that2k dividesn (ν(0) = ∞)
σ(e) length of the shortest addition chain to computee

φ(n) Euler’s totient function,#{m : 0 < m ≤ n ∧ (m,n) = 1}
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deg(A) for a polynomialA, the degree ofA
ord(A) for a power seriesA =

∑
j ajz

j ,
ord(A) = min{j : aj 6= 0} (ord(0) = +∞)

exp(x) or ex exponential function
ln(x) natural logarithm
logb(x) base-b logarithmln(x)/ ln(b)

lg(x) base-2 logarithmln(x)/ ln(2) = log2(x)

log(x) logarithm to any fixed base
logk(x) (log x)k

⌈x⌉ ceiling function,min{n ∈ Z : n ≥ x}
⌊x⌋ floor function,max{n ∈ Z : n ≤ x}
⌊x⌉ nearest integer function,⌊x + 1/2⌋

sign(n) +1 if n > 0, −1 if n < 0, and0 if n = 0

nbits(n) ⌊lg(n)⌋ + 1 if n > 0, 0 if n = 0

[a, b] closed interval{x ∈ R : a ≤ x ≤ b} (empty ifa > b)
(a, b) open interval{x ∈ R : a < x < b} (empty ifa ≥ b)
[a, b), (a, b] half-open intervals,a ≤ x < b, a < x ≤ b respectively

t[a, b] or [a, b]t column vector

(
a

b

)

[a, b; c, d] 2 × 2 matrix

(
a b

c d

)

âj element of the (forward) Fourier transform of vectora

ãj element of the backward Fourier transform of vectora

f(n) = O(g(n)) ∃c, n0 such that|f(n)| ≤ cg(n) for all n ≥ n0

f(n) = Ω(g(n)) ∃c > 0, n0 such that|f(n)| ≥ cg(n) for all n ≥ n0

f(n) = Θ(g(n)) f(n) = O(g(n)) andg(n) = O(f(n))

f(n) ∼ g(n) f(n)/g(n) → 1 asn → ∞
f(n) = o(g(n)) f(n)/g(n) → 0 asn → ∞
f(n) ≪ g(n) f(n) = O(g(n))

f(n) ≫ g(n) g(n) ≪ f(n)

f(x) ∼ ∑n
0 aj/xj f(x) − ∑n

0 aj/xj = o(1/xn) asx → +∞

123 456 789 123456789 (for large integers, we may use a space after
every third digit)
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xxx.yyyρ a numberxxx.yyy written in baseρ;
for example, the decimal number3.25 is 11.012 in binary

a
b+

c
d+

e
f+ · · · continued fractiona/(b + c/(d + e/(f + · · · )))

|A| determinant of a matrixA, e.g.

∣∣∣∣
a b

c d

∣∣∣∣ = ad − bc

PV
∫ b

a
f(x) dx Cauchy principal value integral, defined by a limit

if f has a singularity in(a, b)

s || t concatenation of stringss andt

⊲ <text> comment in an algorithm

end of a proof
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Integer arithmetic

In this chapter, our main topic is integer arithmetic. However, we
shall see that many algorithms for polynomial arithmetic are sim-
ilar to the corresponding algorithms for integer arithmetic, but
simpler due to the lack of carries in polynomial arithmetic.Con-
sider for example addition: the sum of two polynomials of degree
n always has degree at mostn, whereas the sum of twon-digit in-
tegers may haven + 1 digits. Thus, we often describe algorithms
for polynomials as an aid to understanding the corresponding
algorithms for integers.

1.1 Representation and notations

We consider in this chapter algorithms working on integers.We distinguish
between the logical – or mathematical – representation of aninteger, and its
physical representation on a computer. Our algorithms are intended for “large”
integers – they are not restricted to integers that can be represented in a single
computer word.

Several physical representations are possible. We consider here only the
most common one, namely a dense representation in a fixed base. Choose an
integralbaseβ > 1. (In case of ambiguity,β will be called theinternal base.)
A positive integerA is represented by the lengthn and the digitsai of its base
β expansion

A = an−1β
n−1 + · · · + a1β + a0,

where0 ≤ ai ≤ β − 1, andan−1 is sometimes assumed to be non-zero.
Since the baseβ is usually fixed in a given program, only the lengthn and
the integers(ai)0≤i<n need to be stored. Some common choices forβ are
232 on a32-bit computer, or264 on a64-bit machine; other possible choices
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are respectively109 and1019 for a decimal representation, or253 when using
double-precision floating-point registers. Most algorithms given in this chapter
work in any base; the exceptions are explicitly mentioned.

We assume that the sign is stored separately from the absolute value. This
is known as the “sign-magnitude” representation. Zero is animportant special
case; to simplify the algorithms we assume thatn = 0 if A = 0, and we usually
assume that this case is treated separately.

Except when explicitly mentioned, we assume that all operations areoff-line,
i.e. all inputs (resp. outputs) are completely known at the beginning (resp. end)
of the algorithm. Different models includelazy and relaxedalgorithms, and
are discussed in the Notes and references (§1.9).

1.2 Addition and subtraction

As an explanatory example, here is an algorithm for integer addition. In the
algorithm,d is acarry bit.

Our algorithms are given in a language that mixes mathematical notation
and syntax similar to that found in many high-level computerlanguages. It
should be straightforward to translate into a language suchas C. Note that
“ :=” indicates a definition, and “←” indicates assignment. Line numbers are
included if we need to refer to individual lines in the description or analysis of
the algorithm.

Algorithm 1.1 IntegerAddition

Input: A =
∑n−1

0 aiβ
i, B =

∑n−1
0 biβ

i, carry-in0 ≤ din ≤ 1

Output: C :=
∑n−1

0 ciβ
i and0 ≤ d ≤ 1 such thatA + B + din = dβn + C

1: d ← din

2: for i from 0 to n − 1 do
3: s ← ai + bi + d

4: (d, ci) ← (s div β, s mod β)

5: returnC, d.

Let T be the number of different values taken by the data type representing
the coefficientsai, bi. (Clearly,β ≤ T , but equality does not necessarily hold,
for exampleβ = 109 and T = 232.) At step 3, the value ofs can be as
large as2β − 1, which is not representable ifβ = T . Several workarounds
are possible: either use a machine instruction that gives the possible carry of
ai + bi, or use the fact that, if a carry occurs inai + bi, then the computed
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sum – if performed moduloT – equalst := ai + bi −T < ai; thus, comparing
t andai will determine if a carry occurred. A third solution is to keep a bit in
reserve, takingβ ≤ T/2.

The subtraction code is very similar. Step 3 simply becomess ← ai−bi+d,
whered ∈ {−1, 0} is theborrow of the subtraction, and−β ≤ s < β. The
other steps are unchanged, with the invariantA − B + din = dβn + C.

We use thearithmetic complexitymodel, wherecost is measured by the
number of machine instructions performed, or equivalently(up to a constant
factor) thetimeon a single processor.

Addition and subtraction ofn-word integers costO(n), which is negligible
compared to the multiplication cost. However, it is worth trying to reduce the
constant factor implicit in thisO(n) cost. We shall see in§1.3 that “fast” mul-
tiplication algorithms are obtained by replacing multiplications by additions
(usually more additions than the multiplications that theyreplace). Thus, the
faster the additions are, the smaller will be the thresholdsfor changing over to
the “fast” algorithms.

1.3 Multiplication

A nice application of large integer multiplication is theKronecker–Scḧonhage
trick, also calledsegmentationor substitutionby some authors. Assume we
want to multiply two polynomials,A(x) andB(x), with non-negative integer
coefficients (see Exercise 1.1 for negative coefficients). Assume both polyno-
mials have degree less thann, and the coefficients are bounded byρ. Now take
a powerX = βk > nρ2 of the baseβ, and multiply the integersa = A(X) and
b = B(X) obtained by evaluatingA andB atx = X. If C(x) = A(x)B(x) =∑

cix
i, we clearly haveC(X) =

∑
ciX

i. Now since theci are bounded by
nρ2 < X, the coefficientsci can be retrieved by simply “reading” blocks ofk

words inC(X). Assume for example that we want to compute

(6x5 + 6x4 + 4x3 + 9x2 + x + 3)(7x4 + x3 + 2x2 + x + 7),

with degree less thann = 6, and coefficients bounded byρ = 9. We can take
X = 103 > nρ2, and perform the integer multiplication

6 006 004 009 001 003 × 7 001 002 001 007

= 42 048 046 085 072 086 042 070 010 021,

from which we can read off the product

42x9 + 48x8 + 46x7 + 85x6 + 72x5 + 86x4 + 42x3 + 70x2 + 10x + 21.
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Conversely, suppose we want to multiply two integersa =
∑

0≤i<n aiβ
i

andb =
∑

0≤j<n bjβ
j . Multiply the polynomialsA(x) =

∑
0≤i<n aix

i and
B(x) =

∑
0≤j<n bjx

j , obtaining a polynomialC(x), then evaluateC(x) at
x = β to obtainab. Note that the coefficients ofC(x) may be larger thanβ, in
fact they may be up to aboutnβ2. For example, witha = 123, b = 456, and
β = 10, we obtainA(x) = x2 + 2x + 3, B(x) = 4x2 + 5x + 6, with product
C(x) = 4x4 +13x3 +28x2 +27x+18, andC(10) = 56088. These examples
demonstrate the analogy between operations on polynomialsand integers, and
also show the limits of the analogy.

A common and very useful notation is to letM(n) denote the time to mul-
tiply n-bit integers, or polynomials of degreen− 1, depending on the context.
In the polynomial case, we assume that the cost of multiplying coefficients is
constant; this is known as thearithmetic complexitymodel, whereas thebit
complexitymodel also takes into account the cost of multiplying coefficients,
and thus their bit-size.

1.3.1 Naive multiplication

Algorithm 1.2 BasecaseMultiply

Input: A =
∑m−1

0 aiβ
i, B =

∑n−1
0 bjβ

j

Output: C = AB :=
∑m+n−1

0 ckβk

1: C ← A · b0

2: for j from 1 to n − 1 do
3: C ← C + βj(A · bj)

4: returnC.

Theorem 1.1 Algorithm BasecaseMultiply computes the productAB

correctly, and usesΘ(mn) word operations.

The multiplication byβj at step 3 is trivial with the chosen dense representa-
tion; it simply requires shifting byj words towards the most significant words.
The main operation in AlgorithmBasecaseMultiply is the computation of
A · bj and its accumulation intoC at step 3. Since all fast algorithms rely on
multiplication, the most important operation to optimize in multiple-precision
software is thus the multiplication of an array ofm words by one word, with
accumulation of the result in another array ofm + 1 words.
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We sometimes call AlgorithmBasecaseMultiplyschoolbook multiplication
since it is close to the “long multiplication” algorithm that used to be taught at
school.

Since multiplication with accumulation usually makes extensive use of the
pipeline, it is best to give it arrays that are as long as possible, which means
thatA rather thanB should be the operand of larger size (i.e.m ≥ n).

1.3.2 Karatsuba’s algorithm

Karatsuba’s algorithm is a “divide and conquer” algorithm for multiplication
of integers (or polynomials). The idea is to reduce a multiplication of lengthn
to three multiplications of lengthn/2, plus some overhead that costsO(n).

In the following,n0 ≥ 2 denotes the threshold between naive multiplica-
tion and Karatsuba’s algorithm, which is used forn0-word and larger inputs.
The optimal “Karatsuba threshold”n0 can vary from about ten to about100

words, depending on the processor and on the relative cost ofmultiplication
and addition (see Exercise 1.6).

Algorithm 1.3 KaratsubaMultiply

Input: A =
∑n−1

0 aiβ
i, B =

∑n−1
0 bjβ

j

Output: C = AB :=
∑2n−1

0 ckβk

if n < n0 then returnBasecaseMultiply(A,B)

k ← ⌈n/2⌉
(A0, B0) := (A,B) mod βk, (A1, B1) := (A,B) div βk

sA ← sign(A0 − A1), sB ← sign(B0 − B1)

C0 ← KaratsubaMultiply (A0, B0)

C1 ← KaratsubaMultiply (A1, B1)

C2 ← KaratsubaMultiply (|A0 − A1|, |B0 − B1|)
returnC := C0 + (C0 + C1 − sAsBC2)β

k + C1β
2k.

Theorem 1.2 Algorithm KaratsubaMultiply computes the productAB

correctly, usingK(n) = O(nα) word multiplications, withα = lg 3 ≈ 1.585.

Proof. SincesA|A0 − A1| = A0 − A1 andsB |B0 − B1| = B0 − B1, we
havesAsB |A0 − A1||B0 − B1| = (A0 − A1)(B0 − B1), and thusC =

A0B0+(A0B1 + A1B0)β
k + A1B1β

2k.
SinceA0, B0, |A0−A1| and|B0−B1| have (at most)⌈n/2⌉ words, andA1

andB1 have (at most)⌊n/2⌋ words, the numberK(n) of word multiplications
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satisfies the recurrenceK(n) = n2 for n < n0, andK(n) = 2K(⌈n/2⌉) +

K(⌊n/2⌋) for n ≥ n0. Assume2ℓ−1n0 < n ≤ 2ℓn0 with ℓ ≥ 1. ThenK(n)

is the sum of threeK(j) values withj ≤ 2ℓ−1n0, so at most3ℓ K(j) with
j ≤ n0. Thus,K(n) ≤ 3ℓmax(K(n0), (n0 − 1)2), which givesK(n) ≤ Cnα

with C = 31−lg(n0)max(K(n0), (n0 − 1)2).

Different variants of Karatsuba’s algorithm exist; the variant presented here
is known as thesubtractiveversion. Another classical one is theadditivever-
sion, which usesA0+A1 andB0+B1 instead of|A0−A1| and|B0−B1|. How-
ever, the subtractive version is more convenient for integer arithmetic, since it
avoids the possible carries inA0 + A1 andB0 + B1, which require either an
extra word in these sums, or extra additions.

The efficiency of an implementation of Karatsuba’s algorithm depends heav-
ily on memory usage. It is important to avoid allocating memory for the inter-
mediate results|A0 − A1|, |B0 − B1|, C0, C1, andC2 at each step (although
modern compilers are quite good at optimizing code and removing unneces-
sary memory references). One possible solution is to allow alarge temporary
storage ofm words, used both for the intermediate results and for the recur-
sive calls. It can be shown that an auxiliary space ofm = 2n words – or even
m = O(log n) – is sufficient (see Exercises 1.7 and 1.8).

Since the productC2 is used only once, it may be faster to have auxiliary
routinesKaratsubaAddmul andKaratsubaSubmul that accumulate their re-
sults, calling themselves recursively, together withKaratsubaMultiply (see
Exercise 1.10).

The version presented here uses∼4n additions (or subtractions):2× (n/2)

to compute|A0 − A1| and |B0 − B1|, thenn to addC0 andC1, againn to
add or subtractC2, andn to add(C0 + C1 − sAsBC2)β

k to C0 + C1β
2k. An

improved scheme uses only∼7n/2 additions (see Exercise 1.9).
When considered as algorithms on polynomials, most fast multiplication

algorithms can be viewed as evaluation/interpolation algorithms. Karatsuba’s
algorithm regards the inputs as polynomialsA0+A1x andB0+B1x evaluated
at x = βk; since their productC(x) is of degree2, Lagrange’s interpolation
theorem says that it is sufficient to evaluateC(x) at three points. The subtrac-
tive version evaluates1 C(x) at x = 0,−1,∞, whereas the additive version
usesx = 0,+1,∞.

1.3.3 Toom–Cook multiplication

Karatsuba’s idea readily generalizes to what is known as Toom–Cookr-way
multiplication. Write the inputs asa0+· · ·+ar−1x

r−1 andb0+· · ·+br−1x
r−1,

1 EvaluatingC(x) at∞ means computing the productA1B1 of the leading coefficients.
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with x = βk, andk = ⌈n/r⌉. Since their productC(x) is of degree2r − 2,
it suffices to evaluate it at2r − 1 distinct points to be able to recoverC(x),
and in particularC(βk). If r is chosen optimally, Toom–Cook multiplication
of n-word numbers takes timen1+O(1/

√
log n).

Most references, when describing subquadratic multiplication algorithms,
only describe Karatsuba and FFT-based algorithms. Nevertheless, the Toom–
Cook algorithm is quite interesting in practice.

Toom–Cookr-way reduces onen-word product to2r− 1 products of about
n/r words, thus costsO(nν) with ν = log(2r − 1)/ log r. However, the con-
stant hidden by the big-O notation depends strongly on the evaluation and
interpolation formulæ, which in turn depend on the chosen points. One possi-
bility is to take−(r − 1), . . . ,−1, 0, 1, . . . , (r − 1) as evaluation points.

The caser = 2 corresponds to Karatsuba’s algorithm (§1.3.2). The case
r = 3 is known as Toom–Cook3-way, sometimes simply called “the Toom–
Cook algorithm”. AlgorithmToomCook3uses the evaluation points0, 1, −1,
2, ∞, and tries to optimize the evaluation and interpolation formulæ.

Algorithm 1.4 ToomCook3
Input: two integers0 ≤ A,B < βn

Output: AB := c0 + c1β
k + c2β

2k + c3β
3k + c4β

4k with k = ⌈n/3⌉
Require: a thresholdn1 ≥ 3

1: if n < n1 then returnKaratsubaMultiply (A,B)

2: write A = a0 + a1x + a2x
2, B = b0 + b1x + b2x

2 with x = βk.
3: v0 ← ToomCook3(a0, b0)

4: v1 ← ToomCook3(a02+a1, b02+b1) wherea02 ← a0+a2, b02 ← b0+b2

5: v−1 ← ToomCook3(a02 − a1, b02 − b1)

6: v2 ← ToomCook3(a0 + 2a1 + 4a2, b0 + 2b1 + 4b2)

7: v∞ ← ToomCook3(a2, b2)

8: t1 ← (3v0 + 2v−1 + v2)/6 − 2v∞, t2 ← (v1 + v−1)/2

9: c0 ← v0, c1 ← v1 − t1, c2 ← t2 − v0 − v∞, c3 ← t1 − t2, c4 ← v∞.

The divisions at step 8 are exact; ifβ is a power of two, the division by6
can be done using a division by2 – which consists of a single shift – followed
by a division by3 (see§1.4.7).

Toom–Cookr-way has to invert a(2r− 1)× (2r− 1) Vandermonde matrix
with parameters the evaluation points; if we choose consecutive integer points,
the determinant of that matrix contains all primes up to2r − 2. This proves
that division by (a multiple of)3 can not be avoided for Toom–Cook3-way
with consecutive integer points. See Exercise 1.14 for a generalization of this
result.



8 Integer arithmetic

1.3.4 Use of the fast Fourier transform (FFT)

Most subquadratic multiplication algorithms can be seen asevaluation-inter-
polation algorithms. They mainly differ in the number of evaluation points, and
the values of those points. However, the evaluation and interpolation formulæ
become intricate in Toom–Cookr-way for larger, since they involveO(r2)

scalar operations. The fast Fourier transform (FFT) is a wayto perform evalu-
ation and interpolation efficiently for some special points(roots of unity) and
special values ofr. This explains why multiplication algorithms with the best
known asymptotic complexity are based on the FFT.

There are different flavours of FFT multiplication, depending on the ring
where the operations are performed. The Schönhage–Strassen algorithm, with
a complexity ofO(n log n log log n), works in the ringZ/(2n + 1)Z. Since it
is based on modular computations, we describe it in Chapter 2.

Other commonly used algorithms work with floating-point complex num-
bers. A drawback is that, due to the inexact nature of floating-point computa-
tions, a careful error analysis is required to guarantee thecorrectness of the im-
plementation, assuming an underlying arithmetic with rigorous error bounds.
See Theorem 3.6 in Chapter 3.

We say that multiplication isin the FFT rangeif n is large and the multi-
plication algorithm satisfiesM(2n) ∼ 2M(n). For example, this is true if the
Scḧonhage–Strassen multiplication algorithm is used, but notif the classical
algorithm or Karatsuba’s algorithm is used.

1.3.5 Unbalanced multiplication

The subquadratic algorithms considered so far (Karatsuba and Toom–Cook)
work with equal-size operands. How do we efficiently multiply integers of dif-
ferent sizes with a subquadratic algorithm? This case is important in practice,
but is rarely considered in the literature. Assume the larger operand has size
m, and the smaller has sizen ≤ m, and denote byM(m,n) the corresponding
multiplication cost.

If evaluation-interpolation algorithms are used, the costdepends mainly on
the size of the result, i.e.m + n, so we haveM(m,n) ≤ M((m + n)/2), at
least approximately. We can do better thanM((m+n)/2) if n is much smaller
thanm, for exampleM(m, 1) = O(m).

Whenm is an exact multiple ofn, saym = kn, a trivial strategy is to cut the
larger operand intok pieces, givingM(kn, n) = kM(n) + O(kn). However,
this is not always the best strategy, see Exercise 1.16.
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Whenm is not an exact multiple ofn, several strategies are possible:

• split the two operands into an equal number of pieces of unequal sizes;
• or split the two operands into different numbers of pieces.

Each strategy has advantages and disadvantages. We discusseach in turn.

First strategy: equal number of pieces of unequal sizes

Consider for example Karatsuba multiplication, and letK(m,n) be the num-
ber of word-products for anm × n product. Take for examplem = 5, n = 3.
A natural idea is to pad the smaller operand to the size of the larger one. How-
ever, there are several ways to perform this padding, as shown in the following
figure, where the “Karatsuba cut” is represented by a double column:

a4 a3 a2 a1 a0

b2 b1 b0

A × B

a4 a3 a2 a1 a0

b2 b1 b0

A × (βB)

a4 a3 a2 a1 a0

b2 b1 b0

A × (β2B)

The left variant leads to two products of size3, i.e.2K(3, 3), the middle one to
K(2, 1)+K(3, 2)+K(3, 3), and the right one toK(2, 2)+K(3, 1)+K(3, 3),
which give respectively14, 15, 13 word-products.

However, wheneverm/2 ≤ n ≤ m, any such “padding variant” will re-
quire K(⌈m/2⌉, ⌈m/2⌉) for the product of the differences (or sums) of the
low and high parts from the operands, due to a “wrap-around” effect when
subtracting the parts from the smaller operand; this will ultimately lead to a
cost similar to that of anm×m product. The “odd–even scheme” of Algorithm
OddEvenKaratsuba(see also Exercise 1.13) avoids this wrap-around. Here is
an example of this algorithm form = 3 andn = 2. TakeA = a2x

2 +a1x+a0

andB = b1x + b0. This yieldsA0 = a2x + a0, A1 = a1, B0 = b0, B1 = b1;
thus,C0 = (a2x + a0)b0, C1 = (a2x + a0 + a1)(b0 + b1), C2 = a1b1.

Algorithm 1.5 OddEvenKaratsuba

Input: A =
∑m−1

0 aix
i, B =

∑n−1
0 bjx

j , m ≥ n ≥ 1

Output: A · B
if n = 1 then return

∑m−1
0 aib0x

i

write A = A0(x
2) + xA1(x

2), B = B0(x
2) + xB1(x

2)

C0 ← OddEvenKaratsuba(A0, B0)

C1 ← OddEvenKaratsuba(A0 + A1, B0 + B1)

C2 ← OddEvenKaratsuba(A1, B1)

returnC0(x
2) + x(C1 − C0 − C2)(x

2) + x2C2(x
2).
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We therefore getK(3, 2) = 2K(2, 1) + K(1) = 5 with the odd–even
scheme. The general recurrence for the odd–even scheme is

K(m,n) = 2K(⌈m/2⌉, ⌈n/2⌉) + K(⌊m/2⌋, ⌊n/2⌋),

instead of

K(m,n) = 2K(⌈m/2⌉, ⌈m/2⌉) + K(⌊m/2⌋, n − ⌈m/2⌉)

for the classical variant, assumingn > m/2. We see that the second parameter
in K(·, ·) only depends on the smaller sizen for the odd–even scheme.

As for the classical variant, there are several ways of padding with the odd–
even scheme. Considerm = 5, n = 3, and writeA := a4x

4 + a3x
3 + a2x

2 +

a1x + a0 = xA1(x
2) + A0(x

2), with A1(x) = a3x + a1, A0(x) = a4x
2 +

a2x+ a0; andB := b2x
2 + b1x+ b0 = xB1(x

2)+B0(x
2), with B1(x) = b1,

B0(x) = b2x+b0. Without padding, we writeAB = x2(A1B1)(x
2)+x((A0+

A1)(B0 + B1)−A1B1 −A0B0)(x
2) + (A0B0)(x

2), which givesK(5, 3) =

K(2, 1) + 2K(3, 2) = 12. With padding, we considerxB = xB′
1(x

2) +

B′
0(x

2), with B′
1(x) = b2x+b0, B′

0 = b1x. This givesK(2, 2) = 3 for A1B
′
1,

K(3, 2) = 5 for (A0 + A1)(B
′
0 + B′

1), andK(3, 1) = 3 for A0B
′
0 – taking

into account the fact thatB′
0 has only one non-zero coefficient – thus, a total

of 11 only.
Note that when the variablex corresponds to sayβ = 264, Algorithm

OddEvenKaratsuba as presented above is not very practical in the integer
case, because of a problem with carries. For example, in the sumA0 + A1 we
have⌊m/2⌋ carries to store. A workaround is to considerx to be sayβ10, in
which case we have to store only one carry bit for ten words, instead of one
carry bit per word.

The first strategy, which consists in cutting the operands into an equal num-
ber of pieces of unequal sizes, does not scale up nicely. Assume for example
that we want to multiply a number of999 words by another number of699

words, using Toom–Cook3-way. With the classical variant – without padding –
and a “large” base ofβ333, we cut the larger operand into three pieces of333

words and the smaller one into two pieces of333 words and one small piece of
33 words. This gives four full333× 333 products – ignoring carries – and one
unbalanced333 × 33 product (for the evaluation atx = ∞). The “odd–even”
variant cuts the larger operand into three pieces of333 words, and the smaller
operand into three pieces of233 words, giving rise to five equally unbalanced
333 × 233 products, again ignoring carries.
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Second strategy: different number of pieces of equal sizes

Instead of splitting unbalanced operands into an equal number of pieces –
which are then necessarily of different sizes – an alternative strategy is to split
the operands into a different number of pieces, and use a multiplication al-
gorithm which is naturally unbalanced. Consider again the example of multi-
plying two numbers of999 and699 words. Assume we have a multiplication
algorithm, say Toom-(3, 2), which multiplies a number of3n words by another
number of2n words; this requires four products of numbers of aboutn words.
Usingn = 350, we can split the larger number into two pieces of350 words,
and one piece of299 words, and the smaller number into one piece of350

words and one piece of349 words.
Similarly, for two inputs of1000 and500 words, we can use a Toom-(4, 2)

algorithm, which multiplies two numbers of4n and2n words, withn = 250.
Such an algorithm requires five evaluation points; if we choose the same points
as for Toom3-way, then the interpolation phase can be shared between both
implementations.

It seems that this second strategy is not compatible with the“odd–even”
variant, which requires that both operands are cut into the same number of
pieces. Consider for example the “odd–even” variant modulo3. It writes the
numbers to be multiplied asA = a(β) andB = b(β) with a(t) = a0(t

3) +

ta1(t
3)+t2a2(t

3), and similarlyb(t) = b0(t
3)+tb1(t

3)+t2b2(t
3). We see that

the number of pieces of each operand is the chosen modulus, here3 (see Exer-
cise 1.11). Experimental results comparing different multiplication algorithms
are illustrated in Figure 1.1.

Asymptotic complexity of unbalanced multiplication

Supposem ≥ n andn is large. To use an evaluation-interpolation scheme,
we need to evaluate the product atm + n points, whereas balancedk by k

multiplication needs2k points. Takingk ≈ (m+n)/2, we see thatM(m,n) ≤
M((m + n)/2)(1 + o(1)) asn → ∞. On the other hand, from the discussion
above, we haveM(m,n) ≤ ⌈m/n⌉M(n). This explains the upper bound on
M(m,n) given in theSummary of complexitiesat the end of the book.

1.3.6 Squaring

In many applications, a significant proportion of the multiplications have equal
operands, i.e. are squarings. Hence, it is worth tuning a special squaring im-
plementation as much as the implementation of multiplication itself, bearing
in mind that the best possible speedup is two (see Exercise 1.17).
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4 18 32 46 60 74 88 102 116 130 144 158
4 bc

11 bc bc
18 bc bc 22
25 bc bc bc 22
32 bc bc bc bc 22
39 bc bc bc 32 32 33
46 bc bc bc 32 32 32 22
53 bc bc bc bc 32 32 32 22
60 bc bc bc bc 32 32 32 32 22
67 bc bc bc bc 42 32 32 32 33 33
74 bc bc bc bc 42 32 32 32 32 33 33
81 bc bc bc bc 32 32 32 32 32 33 33 33
88 bc bc bc bc 32 42 42 32 32 32 33 33 33
95 bc bc bc bc 42 42 42 32 32 32 33 33 33 22

102 bc bc bc bc 42 42 42 42 32 32 32 33 33 44 33
109 bc bc bc bc bc 42 42 42 42 32 32 32 33 32 44 44
116 bc bc bc bc bc 42 42 42 42 32 32 32 32 32 44 44 44
123 bc bc bc bc bc 42 42 42 42 42 32 32 32 32 44 44 44 44
130 bc bc bc bc bc 42 42 42 42 42 42 32 32 32 44 44 44 44 44
137 bc bc bc bc bc 42 42 42 42 42 42 32 32 32 33 33 44 33 33 33
144 bc bc bc bc bc 42 42 42 42 42 42 32 32 32 32 32 33 44 33 33 33
151 bc bc bc bc bc 42 42 42 42 42 42 42 32 32 32 32 33 33 33 33 33 33
158 bc bc bc bc bc bc 42 42 42 42 42 42 32 32 32 32 32 33 33 33 33 33 33

Figure 1.1 The best algorithm to multiply two numbers ofx andy words
for 4 ≤ x ≤ y ≤ 158: bc is schoolbook multiplication,22 is Karatsuba’s
algorithm,33 is Toom-3, 32 is Toom-(3, 2), 44 is Toom-4, and42 is Toom-
(4, 2). This graph was obtained on a Core 2, with GMP 5.0.0, and GCC 4.4.2.
Note that forx ≤ (y + 3)/4, only the schoolbook multiplication is avail-
able; since we did not consider the algorithm that cuts the larger operand into
several pieces, this explains whybc is best for sayx = 32 andy = 158.

For naive multiplication, Algorithm 1.2BasecaseMultiplycan be modified
to obtain a theoretical speedup of two, since only about halfof the products
aibj need to be computed.

Subquadratic algorithms like Karatsuba and Toom–Cookr-way can be spe-
cialized for squaring too. In general, the threshold obtained is larger than the
corresponding multiplication threshold. For example, on amodern64-bit com-
puter, we can expect a threshold between the naive quadraticsquaring and
Karatsuba’s algorithm in the30-word range, between Karatsuba and Toom–
Cook3-way in the100-word range, between Toom–Cook3-way and Toom–
Cook4-way in the150-word range, and between Toom–Cook4-way and the
FFT in the2500-word range.

The classical approach for fast squaring is to take a fast multiplication algo-
rithm, say Toom–Cookr-way, and to replace the2r − 1 recursive products by
2r−1 recursive squarings. For example, starting from AlgorithmToomCook3,
we obtain five recursive squaringsa2

0, (a0 + a1 + a2)
2, (a0 − a1 + a2)

2,
(a0 + 2a1 + 4a2)

2, anda2
2. A different approach, calledasymmetric squaring,

is to allow products that are not squares in the recursive calls. For example,
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Figure 1.2 Ratio of the squaring and multiplication time for the GNU MP
library, version 5.0.0, on a Core 2 processor, up to one million words.

the square ofa2β
2 + a1β + a0 is c4β

4 + c3β
3 + c2β

2 + c1β + c0, where
c4 = a2

2, c3 = 2a1a2, c2 = c0 + c4 − s, c1 = 2a1a0, andc0 = a2
0, where

s = (a0 − a2 + a1)(a0 − a2 − a1). This formula performs two squarings,
and three normal products. Such asymmetric squaring formulæ are not asymp-
totically optimal, but might be faster in some medium range,due to simpler
evaluation or interpolation phases.

Figure 1.2 compares the multiplication and squaring time with the GNU MP
library. It shows that whatever the word range, a good rule ofthumb is to count
2/3 of the cost of a product for a squaring.

1.3.7 Multiplication by a constant

It often happens that the same multiplier is used in several consecutive oper-
ations, or even for a complete calculation. If this constantmultiplier is small,
i.e. less than the baseβ, not much speedup can be obtained compared to the
usual product. We thus consider here a “large” constant multiplier.

When using evaluation-interpolation algorithms, such as Karatsuba or Toom–
Cook (see§1.3.2–1.3.3), we may store the evaluations for that fixed multiplier
at the different points chosen.
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Special-purpose algorithms also exist. These algorithms differ from classi-
cal multiplication algorithms because they take into account thevalueof the
given constant multiplier, and not only its size in bits or digits. They also dif-
fer in the model of complexity used. For example, R. Bernstein’s algorithm
[27], which is used by several compilers to compute addresses in data struc-
ture records, considers as basic operationx, y 7→ 2ix± y, with a cost assumed
to be independent of the integeri.

For example, Bernstein’s algorithm computes20061x in five steps:

x1 := 31x = 25x − x

x2 := 93x = 21x1 + x1

x3 := 743x = 23x2 − x

x4 := 6687x = 23x3 + x3

20061x = 21x4 + x4.

1.4 Division

Division is the next operation to consider after multiplication. Optimizing di-
vision is almost as important as optimizing multiplication, since division is
usually more expensive, thus the speedup obtained on division will be more
significant. On the other hand, we usually perform more multiplications than
divisions.

One strategy is to avoid divisions when possible, or replacethem by multi-
plications. An example is when the same divisor is used for several consecutive
operations; we can then precompute its inverse (see§2.4.1).

We distinguish several kinds of division:full division computes both quo-
tient and remainder, while in other cases only the quotient (for example, when
dividing two floating-point significands) or remainder (when multiplying two
residues modulon) is needed. We also discussexact division– when the
remainder is known to be zero – and the problem of dividing by asingle word.

1.4.1 Naive division

In all division algorithms, we assume that divisors are normalized. We say that
B :=

∑n−1
0 bjβ

j is normalizedwhen its most significant wordbn−1 satisfies
bn−1 ≥ β/2. This is a stricter condition (forβ > 2) than simply requiring that
bn−1 be non-zero.

If B is not normalized, we can computeA′ = 2kA and B′ = 2kB so
that B′ is normalized, then divideA′ by B′ giving A′ = Q′B′ + R′. The
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Algorithm 1.6 BasecaseDivRem

Input: A =
∑n+m−1

0 aiβ
i, B =

∑n−1
0 bjβ

j , B normalized,m ≥ 0

Output: quotientQ and remainderR of A divided byB

1: if A ≥ βmB then qm ← 1, A ← A − βmB elseqm ← 0

2: for j from m − 1 downto 0 do
3: q∗j ← ⌊(an+jβ + an+j−1)/bn−1⌋ ⊲ quotient selection step
4: qj ← min(q∗j , β − 1)

5: A ← A − qjβ
jB

6: while A < 0 do
7: qj ← qj − 1

8: A ← A + βjB

9: returnQ =
∑m

0 qjβ
j , R = A.

(Note: in step 3,ai denotes thecurrentvalue of theith word ofA, which may
be modified at steps 5 and 8.)

quotient and remainder of the division ofA by B are, respectively,Q := Q′

andR := R′/2k; the latter division being exact.

Theorem 1.3 Algorithm BasecaseDivRemcorrectly computes the quotient
and remainder of the division ofA by a normalizedB, in O(n(m + 1)) word
operations.

Proof. We prove that the invariantA < βj+1B holds at step 2. This holds
trivially for j = m − 1: B being normalized,A < 2βmB initially.

First consider the caseqj = q∗j . Thenqjbn−1 ≥ an+jβ+an+j−1−bn−1+1,
and therefore

A − qjβ
jB ≤ (bn−1 − 1)βn+j−1 + (A mod βn+j−1),

which ensures that the newan+j vanishes, andan+j−1 < bn−1; thus,
A < βjB after step 5. NowA may become negative after step 5, but, since
qjbn−1 ≤ an+jβ + an+j−1, we have

A − qjβ
jB > (an+jβ + an+j−1)β

n+j−1 − qj(bn−1β
n−1 + βn−1)βj

≥ −qjβ
n+j−1.

Therefore,A−qjβ
jB+2βjB ≥ (2bn−1−qj)β

n+j−1 > 0, which proves that
the while-loop at steps 6–8 is performed at most twice [142, Theorem 4.3.1.B].
When the while-loop is entered,A may increase only byβjB at a time; hence,
A < βjB at exit.
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In the caseqj 6= q∗j , i.e. q∗j ≥ β, we have before the while-loop
A < βj+1B − (β − 1)βjB = βjB; thus, the invariant holds. If the while-
loop is entered, the same reasoning as above holds.

We conclude that when the for-loop ends,0 ≤ A < B holds, and, since
(
∑m

j qjβ
j)B + A is invariant throughout the algorithm, the quotientQ and

remainderR are correct.
The most expensive part is step 5, which costsO(n) operations forqjB (the

multiplication byβj is simply a word-shift); the total cost isO(n(m + 1)).
(Form = 0, we needO(n) work if A ≥ B, and even ifA < B to compare the
inputs in the caseA = B − 1.)

Here is an example of algorithmBasecaseDivRemfor the inputs
A = 766 970 544 842 443 844 andB = 862 664 913, with β = 1000, which
gives quotientQ = 889 071 217 and remainderR = 778 334 723.

j A qj A − qjBβj after correction

2 766 970 544 842 443 844 889 61 437 185 443 844 no change
1 61 437 185 443 844 071 187 976 620 844 no change
0 187 976 620 844 218 −84 330 190 778 334 723

Algorithm BasecaseDivRemsimplifies whenA < βmB: remove step 1,
and changem into m − 1 in the return valueQ. However, the more general
form we give is more convenient for a computer implementation, and will be
used below.

A possible variant whenq∗j ≥ β is to letqj = β; thenA − qjβ
jB at step 5

reduces to a single subtraction ofB shifted byj + 1 words. However, in this
case the while-loop will be performed at least once, which corresponds to the
identityA − (β − 1)βjB = A − βj+1B + βjB.

If instead of havingB normalized, i.e.bn ≥ β/2, we havebn ≥ β/k, there
can be up tok iterations of the while-loop (and step 1 has to be modified).

A drawback of AlgorithmBasecaseDivRemis that the testA < 0 at line 6
is true with non-negligible probability; therefore, branch prediction algorithms
available on modern processors will fail, resulting in wasted cycles. A work-
around is to compute a more accurate partial quotient, in order to decrease the
proportion of corrections to almost zero (see Exercise 1.20).

1.4.2 Divisor preconditioning

Sometimes the quotient selection – step 3 of AlgorithmBasecaseDivRem– is
quite expensive compared to the total cost, especially for small sizes. Indeed,
some processors do not have a machine instruction for the division of two
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words by one word; one way to computeq∗j is then to precompute a one-word
approximation of the inverse ofbn−1, and to multiply it byan+jβ + an+j−1.

Svoboda’s algorithm makes the quotient selection trivial,after precondition-
ing the divisor. The main idea is that ifbn−1 equals the baseβ in Algorithm
BasecaseDivRem, then the quotient selection is easy, since it suffices to take
q∗j = an+j . (In addition,q∗j ≤ β − 1 is then always fulfilled; thus, step 4 of
BasecaseDivRemcan be avoided, andq∗j replaced byqj .)

Algorithm 1.7 SvobodaDivision

Input: A =
∑n+m−1

0 aiβ
i, B =

∑n−1
0 bjβ

j normalized,A < βmB, m ≥ 1

Output: quotientQ and remainderR of A divided byB

1: k ← ⌈βn+1/B⌉
2: B′ ← kB = βn+1 +

∑n−1
0 b′jβ

j

3: for j from m − 1 downto 1 do
4: qj ← an+j ⊲ current value ofan+j

5: A ← A − qjβ
j−1B′

6: if A < 0 then
7: qj ← qj − 1

8: A ← A + βj−1B′

9: Q′ =
∑m−1

1 qjβ
j , R′ = A

10: (q0, R) ← (R′ div B,R′ mod B) ⊲ usingBasecaseDivRem
11: returnQ = kQ′ + q0, R.

With the example of§1.4.1, Svoboda’s algorithm would givek = 1160,
B′ = 1000 691 299 080:

j A qj A − qjB
′βj after correction

2 766 970 544 842 443 844 766 441 009 747 163 844 no change
1 441 009 747 163 844 441 −295 115 730 436 705 575 568 644

We thus getQ′ = 766 440 andR′ = 705 575 568 644. The final division of
step 10 givesR′ = 817B + 778 334 723, and we getQ = 1160 · 766 440 +

817 = 889 071 217, andR = 778 334 723, as in§1.4.1.
Svoboda’s algorithm is especially interesting when only the remainder is

needed, since then we can avoid the “deconditioning”Q = kQ′ + q0. Note
that when only the quotient is needed, dividingA′ = kA by B′ = kB is
another way to compute it.
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1.4.3 Divide and conquer division

The base-case division of§1.4.1 determines the quotient word by word. A
natural idea is to try getting several words at a time, for example replacing the
quotient selection step in AlgorithmBasecaseDivRemby

q∗j ←
⌊

an+jβ
3 + an+j−1β

2 + an+j−2β + an+j−3

bn−1β + bn−2

⌋
.

Sinceq∗j has then two words, fast multiplication algorithms (§1.3) might speed
up the computation ofqjB at step 5 of AlgorithmBasecaseDivRem.

More generally, the most significant half of the quotient – say Q1, of
ℓ = m − k words – mainly depends on theℓ most significant words of the
dividend and divisor. Once a good approximation toQ1 is known, fast multi-
plication algorithms can be used to compute the partial remainderA−Q1Bβk.
The second idea of the divide and conquer algorithmRecursiveDivRemis to
compute the corresponding remainder together with the partial quotientQ1; in
such a way, we only have to subtract the product ofQ1 by the low part of the
divisor, before computing the low part of the quotient.

Algorithm 1.8 RecursiveDivRem

Input: A =
∑n+m−1

0 aiβ
i, B =

∑n−1
0 bjβ

j , B normalized,n ≥ m

Output: quotientQ and remainderR of A divided byB

1: if m < 2 then returnBasecaseDivRem(A,B)

2: k ← ⌊m/2⌋, B1 ← B div βk, B0 ← B mod βk

3: (Q1, R1) ← RecursiveDivRem(A div β2k, B1)

4: A′ ← R1β
2k + (A mod β2k) − Q1B0β

k

5: while A′ < 0 doQ1 ← Q1 − 1, A′ ← A′ + βkB

6: (Q0, R0) ← RecursiveDivRem(A′ div βk, B1)

7: A′′ ← R0β
k + (A′ mod βk) − Q0B0

8: while A′′ < 0 doQ0 ← Q0 − 1, A′′ ← A′′ + B

9: returnQ := Q1β
k + Q0, R := A′′.

In Algorithm RecursiveDivRem, we may replace the conditionm < 2 at
step 1 bym < T for any integerT ≥ 2. In practice,T is usually in the range
50 to 200.

We can not requireA < βmB at input, since this condition may not be
satisfied in the recursive calls. Consider for exampleA = 5517, B = 56 with
β = 10: the first recursive call will divide55 by 5, which yields a two-digit
quotient11. EvenA ≤ βmB is not recursively fulfilled, as this example shows.
The weakest possible input condition is that then most significant words ofA
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do not exceed those ofB, i.e. A < βm(B + 1). In that case, the quotient is
bounded byβm + ⌊(βm − 1)/B⌋, which yieldsβm + 1 in the casen = m

(compare Exercise 1.19). See also Exercise 1.22.

Theorem 1.4 AlgorithmRecursiveDivRemis correct, and usesD(n+m,n)

operations, whereD(n + m,n) = 2D(n, n − m/2) + 2M(m/2) + O(n). In
particular,D(n) := D(2n, n) satisfiesD(n) = 2D(n/2)+2M(n/2)+O(n),
which givesD(n) ∼ M(n)/(2α−1 − 1) for M(n) ∼ nα, α > 1.

Proof. We first check the assumption for the recursive calls:B1 is normalized
since it has the same most significant word thanB.

After step 3, we haveA = (Q1B1 + R1)β
2k + (A mod β2k); thus, after

step 4,A′ = A − Q1β
kB, which still holds after step 5. After step 6, we have

A′ = (Q0B1 + R0)β
k + (A′ mod βk), and, after step 7,A′′ = A′ − Q0B,

which still holds after step 8. At step 9, we haveA = QB + R.
A div β2k hasm+n− 2k words, andB1 hasn−k words; thus,0 ≤ Q1 <

2βm−k and0 ≤ R1 < B1 < βn−k. At step 4,−2βm+k < A′ < βkB. Since
B is normalized, the while-loop at step 5 is performed at most four times (this
can happen only whenn = m). At step 6, we have0 ≤ A′ < βkB; thus,
A′ div βk has at mostn words.

It follows 0 ≤ Q0 < 2βk and0 ≤ R0 < B1 < βn−k. Hence, at step
7, −2β2k < A′′ < B, and, after at most four iterations at step 8, we have
0 ≤ A′′ < B.

Theorem 1.4 givesD(n) ∼ 2M(n) for Karatsuba multiplication, andD(n) ∼
2.63M(n) for Toom–Cook3-way; in the FFT range, see Exercise 1.23.

The same idea as in Exercise 1.20 applies: to decrease the probability that
the estimated quotientsQ1 andQ0 are too large, use one extra word of the
truncated dividend and divisors in the recursive calls toRecursiveDivRem.

A graphical view of AlgorithmRecursiveDivRem in the casem = n is
given in Figure 1.3, which represents the multiplicationQ · B: we first com-
pute the lower left corner inD(n/2) (step 3), second the lower right corner in
M(n/2) (step 4), third the upper left corner inD(n/2) (step 6), and finally the
upper right corner inM(n/2) (step 7).

Unbalanced division

The conditionn ≥ m in Algorithm RecursiveDivRemmeans that the divi-
dendA is at most twice as large as the divisorB. WhenA is more than twice
as large asB (m > n with the notation above), a possible strategy (see Ex-
ercise 1.24) computesn words of the quotient at a time. This reduces to the
base-case algorithm, replacingβ by βn.
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Figure 1.3 Divide and conquer division: a graphical view
(most significant parts at the lower left corner).

Algorithm 1.9 UnbalancedDivision

Input: A =
∑n+m−1

0 aiβ
i, B =

∑n−1
0 bjβ

j , B normalized,m > n

Output: quotientQ and remainderR of A divided byB

Q ← 0

while m > n do
(q, r) ← RecursiveDivRem(A div βm−n, B) ⊲ 2n by n division
Q ← Qβn + q

A ← rβm−n + A mod βm−n

m ← m − n

(q, r) ← RecursiveDivRem(A,B)

returnQ := Qβm + q, R := r.

Figure 1.4 compares unbalanced multiplication and division in GNU MP.
As expected, multiplyingx words byn − x words takes the same time as
multiplying n − x words byn words. However, there is no symmetry for the
division, since dividingn words byx words forx < n/2 is more expensive,
at least for the version of GMP that we used, than dividingn words byn − x

words.
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Figure 1.4 Time in10−5 seconds for the multiplication (lower curve) ofx
words by1000 − x words and for the division (upper curve) of1000 words
by x words, with GMP 5.0.0 on a Core 2 running at 2.83GHz.

1.4.4 Newton’s method

Newton’s iteration gives the division algorithm with best asymptotic complex-
ity. One basic component of Newton’s iteration is the computation of an ap-
proximate inverse. We refer here to Chapter 4. Thep-adic version of Newton’s
method, also called Hensel lifting, is used in§1.4.5 for exact division.

1.4.5 Exact division

A division is exactwhen the remainder is zero. This happens, for example,
when normalizing a fractiona/b: we divide botha andb by their greatest com-
mon divisor, and both divisions are exact. If the remainder is known
a priori to be zero, this information is useful to speed up the computation
of the quotient.

Two strategies are possible:

• use MSB (most significant bits first) division algorithms, without computing
the lower part of the remainder. Here, we have to take care of rounding
errors, in order to guarantee the correctness of the final result; or



22 Integer arithmetic

• use LSB (least significant bits first) algorithms. If the quotient is known to
be less thanβn, computinga/b mod βn will reveal it.

Subquadratic algorithms can use both strategies. We describe a least significant
bit algorithm using Hensel lifting, which can be viewed as ap-adic version of
Newton’s method.

Algorithm ExactDivision uses the Karp–Markstein trick: lines 1–4 compute
1/B mod β⌈n/2⌉, while the two last lines incorporate the dividend to obtain
A/B mod βn. Note that themiddle product(§3.3.2) can be used in lines 4 and
6, to speed up the computation of1 − BC andA − BQ, respectively.

Algorithm 1.10 ExactDivision

Input: A =
∑n−1

0 aiβ
i, B =

∑n−1
0 bjβ

j

Output: quotientQ = A/B mod βn

Require: gcd(b0, β) = 1

1: C ← 1/b0 mod β

2: for i from ⌈lg n⌉ − 1 downto 1 do
3: k ← ⌈n/2i⌉
4: C ← C + C(1 − BC) mod βk

5: Q ← AC mod βk

6: Q ← Q + C(A − BQ) mod βn.

A further gain can be obtained by using both strategies simultaneously: com-
pute the most significantn/2 bits of the quotient using the MSB strategy, and
the least significantn/2 bits using the LSB strategy. Since a division of sizen

is replaced by two divisions of sizen/2, this gives a speedup of up to two for
quadratic algorithms (see Exercise 1.27).

1.4.6 Only quotient or remainder wanted

When both the quotient and remainder of a division are needed,it is best
to compute them simultaneously. This may seem to be a trivialstatement;
nevertheless, some high-level languages provide bothdiv and mod, but no
single instruction to compute both quotient and remainder.

Once the quotient is known, the remainder can be recovered bya single
multiplication asA − QB; on the other hand, when the remainder is known,
the quotient can be recovered by an exact division as(A − R)/B (§1.4.5).

However, it often happens that only one of the quotient or remainder is
needed. For example, the division of two floating-point numbers reduces to the
quotient of their significands (see Chapter 3). Conversely,the multiplication of
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two numbers moduloN reduces to the remainder of their product after divi-
sion byN (see Chapter 2). In such cases, we may wonder if faster algorithms
exist.

For a dividend of2n words and a divisor ofn words, a significant speedup –
up to a factor of two for quadratic algorithms – can be obtained when only
the quotient is needed, since we do not need to update the lown words of the
current remainder (step 5 of AlgorithmBasecaseDivRem).

It seems difficult to get a similar speedup when only the remainder is re-
quired. One possibility is to use Svoboda’s algorithm, but this requires some
precomputation, so is only useful when several divisions are performed with
the same divisor. The idea is the following: precompute a multiple B1 of B,
having 3n/2 words, then/2 most significant words beingβn/2. Then re-
ducing A mod B1 requires a singlen/2 × n multiplication. OnceA is re-
duced toA1 of 3n/2 words by Svoboda’s algorithm with cost2M(n/2), use
RecursiveDivRemon A1 andB, which costsD(n/2) + M(n/2). The to-
tal cost is thus3M(n/2) + D(n/2), instead of2M(n/2) + 2D(n/2) for a
full division with RecursiveDivRem. This gives5M(n)/3 for Karatsuba and
2.04M(n) for Toom–Cook3-way, instead of2M(n) and2.63M(n), respec-
tively. A similar algorithm is described in§2.4.2 (Subquadratic Montgomery
Reduction) with further optimizations.

1.4.7 Division by a single word

We assume here that we want to divide a multiple precision number by a
one-word integerc. As for multiplication by a one-word integer, this is an
important special case. It arises for example in Toom–Cook multiplication,
where we have to perform an exact division by3 (§1.3.3). We could of course
use a classical division algorithm (§1.4.1). Whengcd(c, β) = 1, Algorithm
DivideByWord might be used to compute a modular division

A + bβn = cQ,

where the “carry”b will be zero when the division is exact.

Theorem 1.5 The output of Alg.DivideByWord satisfiesA + bβn = cQ.

Proof. We show that after stepi, 0 ≤ i < n, we haveAi+bβi+1 = cQi, where
Ai :=

∑i
j=0 aiβ

i andQi :=
∑i

j=0 qiβ
i. For i = 0, this isa0 + bβ = cq0,

which is just line 7; sinceq0 = a0/c mod β, q0c−a0 is divisible byβ. Assume
now thatAi−1 + bβi = cQi−1 holds for1 ≤ i < n. We haveai − b+ b′β = x,
sox + b′′β = cqi, thusAi + (b′ + b′′)βi+1 = Ai−1 + βi(ai + b′β + b′′β) =
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cQi−1 − bβi + βi(x + b− b′β + b′β + b′′β) = cQi−1 + βi(x + b′′β) = cQi.

Algorithm 1.11 DivideByWord

Input: A =
∑n−1

0 aiβ
i, 0 ≤ c < β, gcd(c, β) = 1

Output: Q =
∑n−1

0 qiβ
i and0 ≤ b < c such thatA + bβn = cQ

1: d ← 1/c mod β ⊲ might be precomputed
2: b ← 0

3: for i from 0 to n − 1 do
4: if b ≤ ai then (x, b′) ← (ai − b, 0)

5: else(x, b′) ← (ai − b + β, 1)

6: qi ← dx mod β

7: b′′ ← (qic − x)/β

8: b ← b′ + b′′

9: return
∑n−1

0 qiβ
i, b.

REMARK : at step 7, since0 ≤ x < β, b′′ can also be obtained as⌊qic/β⌋.
Algorithm DivideByWord is just a special case of Hensel’s division, which

is the topic of the next section; it can easily be extended to divide by integers
of a few words.

1.4.8 Hensel’s division

Classical division involves cancelling the most significant part of the dividend
by a multiple of the divisor, while Hensel’s division cancels the least significant
part (Figure 1.5). Given a dividendA of 2n words and a divisorB of n words,

A

B

QB

R

A

B

Q′B

R′

Figure 1.5 Classical/MSB division (left) vs Hensel/LSB division (right).

the classical or MSB (most significant bit) division computes a quotientQ and
a remainderR such thatA = QB+R, while Hensel’s or LSB (least significant
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bit) division computes a LSB-quotientQ′ and a LSB-remainderR′ such that
A = Q′B + R′βn. While MSB division requires the most significant bit ofB

to be set, LSB division requiresB to be relatively prime to the word baseβ,
i.e.B to be odd forβ a power of two.

The LSB-quotient is uniquely defined byQ′ = A/B mod βn, with
0 ≤ Q′ < βn. This in turn uniquely defines the LSB-remainderR′ =

(A − Q′B)β−n, with −B < R′ < βn.

Most MSB-division variants (naive, with preconditioning,divide and con-
quer, Newton’s iteration) have their LSB-counterpart. Forexample, LSB pre-
conditioning involves using a multiplekB of the divisor such thatkB =

1 mod β, and Newton’s iteration is called Hensel lifting in the LSB case. The
exact division algorithm described at the end of§1.4.5 uses both MSB- and
LSB-division simultaneously. One important difference isthat LSB-division
does not need any correction step, since the carries go in thedirection opposite
to the cancelled bits.

When only the remainder is wanted, Hensel’s division is usually known as
Montgomery reduction (see§2.4.2).

1.5 Roots

1.5.1 Square root

The “paper and pencil” method once taught at school to extract square roots is
very similar to “paper and pencil” division. It decomposes an integerm of the
form s2 + r, taking two digits ofm at a time, and finding one digit ofs for
each two digits ofm. It is based on the following idea. Ifm = s2 + r is the
current decomposition, then taking two more digits of the argument, we have a
decomposition of the form100m+r′ = 100s2 +100r+r′ with 0 ≤ r′ < 100.
Since(10s + t)2 = 100s2 + 20st + t2, a good approximation to the next digit
t can be found by dividing10r by 2s.

Algorithm SqrtRem generalizes this idea to a powerβℓ of the internal base
close tom1/4: we obtain a divide and conquer algorithm, which is in fact an
error-free variant of Newton’s method (cf. Chapter 4):
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Algorithm 1.12 SqrtRem

Input: m = an−1β
n−1 + · · · + a1β + a0 with an−1 6= 0

Output: (s, r) such thats2 ≤ m = s2 + r < (s + 1)2

Require: a base-case routineBasecaseSqrtRem
ℓ ← ⌊(n − 1)/4⌋
if ℓ = 0 then returnBasecaseSqrtRem(m)

write m = a3β
3ℓ + a2β

2ℓ + a1β
ℓ + a0 with 0 ≤ a2, a1, a0 < βℓ

(s′, r′) ← SqrtRem(a3β
ℓ + a2)

(q, u) ← DivRem(r′βℓ + a1, 2s′)
s ← s′βℓ + q

r ← uβℓ + a0 − q2

if r < 0 then
r ← r + 2s − 1, s ← s − 1

return(s, r).

Theorem 1.6 Algorithm SqrtRem correctly returns the integer square root
s and remainderr of the inputm, and has complexityR(2n) ∼ R(n) +

D(n) + S(n), whereD(n) and S(n) are the complexities of the division
with remainder and squaring respectively. This givesR(n) ∼ n2/2 with naive
multiplication,R(n) ∼ 4K(n)/3 with Karatsuba’s multiplication, assuming
S(n) ∼ 2M(n)/3.

As an example, assume AlgorithmSqrtRem is called onm = 123 456 789

with β = 10. We haven = 9, ℓ = 2, a3 = 123, a2 = 45, a1 = 67, and
a0 = 89. The recursive call fora3β

ℓ + a2 = 12 345 yields s′ = 111 and
r′ = 24. TheDivRem call yieldsq = 11 andu = 25, which givess = 11 111

andr = 2468.

Another nice way to compute the integer square root of an integer m, i.e.
⌊m1/2⌋, is Algorithm SqrtInt , which is an all-integer version of Newton’s
method (§4.2).

Still with input123 456 789, we successively gets = 61 728 395, 30 864 198,
15 432 100, 7 716 053, 3 858 034, 1 929 032, 964 547, 482 337, 241 296,
120 903, 60 962, 31 493, 17 706, 12 339, 11 172, 11 111, 11 111. Convergence
is slow because the initial value ofu assigned at line 1 is much too large. How-
ever, any initial value greater than or equal to⌊m1/2⌋ works (see the proof of
Algorithm RootInt below): starting froms = 12 000, we gets = 11 144, then
s = 11 111. See Exercise 1.28.
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Algorithm 1.13 SqrtInt
Input: an integerm ≥ 1

Output: s = ⌊m1/2⌋
1: u ← m ⊲ any valueu ≥ ⌊m1/2⌋ works
2: repeat
3: s ← u

4: t ← s + ⌊m/s⌋
5: u ← ⌊t/2⌋
6: until u ≥ s

7: returns.

1.5.2 kth root

The idea of AlgorithmSqrtRem for the integer square root can be generalized
to any power: if the current decomposition ism = m′βk + m′′βk−1 + m′′′,
first compute akth root of m′, saym′ = sk + r, then dividerβ + m′′ by
ksk−1 to get an approximation of the next root digitt, and correct it if needed.
Unfortunately, the computation of the remainder, which is easy for the square
root, involvesO(k) terms for thekth root, and this method may be slower than
Newton’s method with floating-point arithmetic (§4.2.3).

Similarly, Algorithm SqrtInt can be generalized to thekth root (see Algo-
rithm RootInt ).

Algorithm 1.14 RootInt
Input: integersm ≥ 1, andk ≥ 2

Output: s = ⌊m1/k⌋
1: u ← m ⊲ any valueu ≥ ⌊m1/k⌋ works
2: repeat
3: s ← u

4: t ← (k − 1)s + ⌊m/sk−1⌋
5: u ← ⌊t/k⌋
6: until u ≥ s

7: returns.

Theorem 1.7 AlgorithmRootInt terminates and returns⌊m1/k⌋.

Proof. As long asu < s in step 6, the sequence ofs-values is decreasing;
thus, it suffices to consider what happens whenu ≥ s. First it is easy so see that
u ≥ s impliesm ≥ sk, becauset ≥ ks and therefore(k−1)s+m/sk−1 ≥ ks.
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Consider now the functionf(t) := [(k−1)t+m/tk−1]/k for t > 0; its deriva-
tive is negative for t < m1/k and positive for t > m1/k; thus,
f(t) ≥ f(m1/k) = m1/k. This proves thats ≥ ⌊m1/k⌋. Together with
s ≤ m1/k, this proves thats = ⌊m1/k⌋ at the end of the algorithm.

Note that any initial value greater than or equal to⌊m1/k⌋ works at step 1.
Incidentally, we have proved the correctness of AlgorithmSqrtInt , which is
just the special casek = 2 of Algorithm RootInt .

1.5.3 Exact root

When akth root is known to be exact, there is of course no need to compute
exactly the final remainder in “exact root” algorithms, which saves some com-
putation time. However, we have to check that the remainder is sufficiently
small that the computed root is correct.

When a root is known to be exact, we may also try to compute it starting
from the least significant bits, as for exact division. Indeed, if sk = m, then
sk = m mod βℓ for any integerℓ. However, in the case of exact division, the
equationa = qb mod βℓ has only one solutionq as soon asb is relatively
prime toβ. Here, the equationsk = m mod βℓ may have several solutions,
so the lifting process is not unique. For example,x2 = 1 mod 23 has four
solutions1, 3, 5, 7.

Suppose we havesk = m mod βℓ, and we want to lift toβℓ+1. This implies
(s + tβℓ)k = m + m′βℓ mod βℓ+1, where0 ≤ t,m′ < β. Thus

kt = m′ +
m − sk

βℓ
mod β.

This equation has a unique solutiont when k is relatively prime toβ. For
example, we can extract cube roots in this way forβ a power of two. Whenk
is relatively prime toβ, we can also compute the root simultaneously from the
most significant and least significant ends, as for exact division.

Unknown exponent

Assume now that we want to check if a given integerm is an exact power,
without knowing the corresponding exponent. For example, some primality
testing or factorization algorithms fail when given an exact power, so this has
to be checked first. AlgorithmIsPower detects exact powers, and returns the
largest corresponding exponent (or1 if the input is not an exact power).

To quickly detect non-kth powers at step 2, we may use modular algorithms
whenk is relatively prime to the baseβ (see above).
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Algorithm 1.15 IsPower
Input: a positive integerm
Output: k ≥ 2 whenm is an exactkth power,1 otherwise

1: for k from ⌊lg m⌋ downto 2 do
2: if m is akth powerthen returnk

3: return1.

REMARK : in Algorithm IsPower, we can limit the search to prime exponents
k, but then the algorithm does not necessarily return the largest exponent, and
we might have to call it again. For example, takingm = 117649, the modified
algorithm first returns3 because117649 = 493, and when called again with
m = 49, it returns2.

1.6 Greatest common divisor

Many algorithms for computing gcds may be found in the literature. We can
distinguish between the following (non-exclusive) types:

• Left-to-right (MSB) versus right-to-left (LSB) algorithms: in the former the
actions depend on the most significant bits, while in the latter the actions
depend on the least significant bits.

• Naive algorithms: theseO(n2) algorithms consider one word of each operand
at a time, trying to guess from them the first quotients – we count in this class
algorithms considering double-size words, namely Lehmer’s algorithm and
Sorenson’sk-ary reduction in the left-to-right and right-to-left cases respec-
tively; algorithms not in this class consider a number of words that depends
on the input sizen, and are often subquadratic.

• Subtraction-only algorithms: these algorithms trade divisions for subtrac-
tions, at the cost of more iterations.

• Plain versus extended algorithms: the former just compute the gcd of the
inputs, while the latter express the gcd as a linear combination of the inputs.

1.6.1 Naive GCD

For completeness, we mention Euclid’s algorithm for findingthe gcd of two
non-negative integersu, v.

Euclid’s algorithm is discussed in many textbooks, and we donot recom-
mend it in its simplest form, except for testing purposes. Indeed, it is usually a
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slow way to compute a gcd. However, Euclid’s algorithm does show the con-
nection between gcds and continued fractions. Ifu/v has a regular continued
fraction of the form

u/v = q0 +
1

q1+

1

q2+

1

q3+
· · · ,

then the quotientsq0, q1, . . . are precisely the quotientsu div v of the divisions
performed in Euclid’s algorithm. For more on continued fractions, see§4.6.

Algorithm 1.16 EuclidGcd
Input: u, v nonnegative integers (not both zero)
Output: gcd(u, v)

while v 6= 0 do
(u, v) ← (v, u mod v)

returnu.

Double-Digit Gcd. A first improvement comes from Lehmer’s observation:
the first few quotients in Euclid’s algorithm usually can be determined from
the most significant words of the inputs. This avoids expensive divisions that
give small quotients most of the time (see [142,§4.5.3]). Consider for exam-
ple a = 427 419 669 081 andb = 321 110 693 270 with 3-digit words. The
first quotients are1, 3, 48, . . . Now, if we consider the most significant words,
namely427 and 321, we get the quotients1, 3, 35, . . . If we stop after the
first two quotients, we see that we can replace the initial inputs bya − b and
−3a + 4b, which gives106 308 975 811 and2 183 765 837.

Lehmer’s algorithm determines cofactors from the most significant words
of the input integers. Those cofactors usually have size only half a word. The
DoubleDigitGcd algorithm – which should be called “double-word” – uses
the two most significant words instead, which gives cofactorst, u, v, w of one
full-word each, such thatgcd(a, b) = gcd(ta+ub, va+wb). This is optimal for
the computation of the four productsta, ub, va, wb. With the above example,
if we consider427 419 and321 110, we find that the first five quotients agree,
so we can replacea, b by−148a+197b and441a−587b, i.e.695 550 202 and
97 115 231.

The subroutineHalfBezout takes as input two2-word integers, performs
Euclid’s algorithm until the smallest remainder fits in one word, and returns
the corresponding matrix[t, u; v, w].

Binary Gcd. A better algorithm than Euclid’s, though also ofO(n2) com-
plexity, is thebinaryalgorithm. It differs from Euclid’s algorithm in two ways:
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Algorithm 1.17 DoubleDigitGcd

Input: a := an−1β
n−1 + · · · + a0, b := bm−1β

m−1 + · · · + b0

Output: gcd(a, b)

if b = 0 then returna

if m < 2 then returnBasecaseGcd(a, b)

if a < b or n > m then returnDoubleDigitGcd(b, a mod b)

(t, u, v, w) ← HalfBezout(an−1β + an−2, bn−1β + bn−2)

returnDoubleDigitGcd(|ta + ub|, |va + wb|).

it consider least significant bits first, and it avoids divisions, except for divi-
sions by two (which can be implemented as shifts on a binary computer). See
Algorithm BinaryGcd. Note that the first three “while” loops can be omitted
if the inputsa andb are odd.

Algorithm 1.18 BinaryGcd
Input: a, b > 0

Output: gcd(a, b)

t ← 1

while a mod 2 = b mod 2 = 0 do
(t, a, b) ← (2t, a/2, b/2)

while a mod 2 = 0 do
a ← a/2

while b mod 2 = 0 do
b ← b/2 ⊲ nowa andb are both odd

while a 6= b do
(a, b) ← (|a − b|,min(a, b))

a ← a/2ν(a) ⊲ ν(a) is the2-valuation ofa

returnta.

Sorenson’sk-ary reduction

The binary algorithm is based on the fact that ifa andb are both odd, thena−b

is even, and we can remove a factor of two sincegcd(a, b) is odd. Sorenson’s
k-ary reduction is a generalization of that idea: givena andb odd, we try to
find small integersu, v such thatua− vb is divisible by a large power of two.

Theorem 1.8 [226] If a, b > 0, m > 1 with gcd(a,m) = gcd(b,m) = 1,
there existu, v, 0 < |u|, v <

√
m such thatua = vb mod m.
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Algorithm ReducedRatModfinds such a pair(u, v). It is a simple variation of
the extended Euclidean algorithm; indeed, theui are quotients in the continued
fraction expansion ofc/m.

Algorithm 1.19 ReducedRatMod
Input: a, b > 0, m > 1 with gcd(a,m) = gcd(b,m) = 1

Output: (u, v) such that0 < |u|, v <
√

m andua = vb mod m

1: c ← a/b mod m

2: (u1, v1) ← (0,m)

3: (u2, v2) ← (1, c)

4: while v2 ≥ √
m do

5: q ← ⌊v1/v2⌋
6: (u1, u2) ← (u2, u1 − qu2)

7: (v1, v2) ← (v2, v1 − qv2)

8: return(u2, v2).

Whenm is a prime power, the inversion1/b mod m at step 1 of Algorithm
ReducedRatModcan be performed efficiently using Hensel lifting (§2.5).

Given two integersa, b of sayn words, AlgorithmReducedRatModwith
m = β2 returns two integersu, v such thatvb − ua is a multiple ofβ2. Since
u, v have at most one word each,a′ = (vb−ua)/β2 has at mostn−1 words –
plus possibly one bit – therefore withb′ = b mod a′ we obtaingcd(a, b) =

gcd(a′, b′), where botha′ andb′ have about one word less thanmax(a, b). This
gives an LSB variant of the double-digit (MSB) algorithm.

1.6.2 Extended GCD

Algorithm ExtendedGcdsolves theextendedgreatest common divisor prob-
lem: given two integersa andb, it computes their gcdg, and also two integers
u andv (calledBézout coefficientsor sometimescofactorsor multipliers) such
thatg = ua + vb.

If a0 andb0 are the input numbers, anda, b the current values, the following
invariants hold at the start of each iteration of the while loop and after the while
loop: a = ua0 + vb0, andb = wa0 + xb0. (See Exercise 1.30 for a bound on
the cofactoru.)

An important special case is modular inversion (see Chapter2): given an
integern, we want to compute1/a mod n for a relatively prime ton. We then
simply run AlgorithmExtendedGcdwith inputa andb = n; this yieldsu and
v with ua + vn = 1, and thus1/a = u mod n. Sincev is not needed here, we
can simply avoid computingv andx, by removing steps 2 and 7.
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Algorithm 1.20 ExtendedGcd
Input: positive integersa andb

Output: integers(g, u, v) such thatg = gcd(a, b) = ua + vb

1: (u,w) ← (1, 0)

2: (v, x) ← (0, 1)

3: while b 6= 0 do
4: (q, r) ← DivRem(a, b)

5: (a, b) ← (b, r)

6: (u,w) ← (w, u − qw)

7: (v, x) ← (x, v − qx)

8: return(a, u, v).

It may also be worthwhile to compute onlyu in the general case, as the
cofactorv can be recovered fromv = (g − ua)/b, this division being exact
(see§1.4.5).

All known algorithms for subquadratic gcd rely on an extended gcd
subroutine, which is called recursively, so we discuss the subquadratic
extended gcd in the next section.

1.6.3 Half binary GCD, divide and conquer GCD

Designing a subquadratic integer gcd algorithm that is bothmathematically
correct and efficient in practice is a challenging problem.

A first remark is that, starting fromn-bit inputs, there areO(n) terms in the
remainder sequencer0 = a, r1 = b, . . . ,ri+1 = ri−1 mod ri, . . . , and the size
of ri decreases linearly withi. Thus, computing all the partial remaindersri

leads to a quadratic cost, and a fast algorithm should avoid this.
However, the partial quotientsqi = ri−1 div ri are usually small; the main

idea is thus to compute them without computing the partial remainders. This
can be seen as a generalization of theDoubleDigitGcd algorithm: instead of
considering a fixed baseβ, adjust it so that the inputs have four “big words”.
The cofactor-matrix returned by theHalfBezout subroutine will then reduce
the input size to about3n/4. A second call with the remaining two most
significant “big words” of the new remainders will reduce their size to half
the input size. See Exercise 1.31.

The same method applies in the LSB case, and is in fact simplerto turn
into a correct algorithm. In this case, the termsri form a binary remainder
sequence, which corresponds to the iteration of theBinaryDivide algorithm,
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with starting valuesa, b. The integerq is thebinary quotientof a andb, andr

is thebinary remainder.

Algorithm 1.21 BinaryDivide

Input: a, b ∈ Z with ν(b) − ν(a) = j > 0

Output: |q| < 2j andr = a + q2−jb such thatν(b) < ν(r)

b′ ← 2−jb

q ← −a/b′ mod 2j+1

if q ≥ 2j then q ← q − 2j+1

returnq, r = a + q2−jb.

This right-to-left division defines a right-to-left remainder sequencea0 = a,
a1 = b, . . . , whereai+1 = BinaryRemainder (ai−1, ai), andν(ai+1) <

ν(ai). It can be shown that this sequence eventually reachesai+1 = 0 for some
index i. Assumingν(a) = 0, thengcd(a, b) is the odd part ofai. Indeed, in
Algorithm BinaryDivide , if some odd prime divides botha andb, it certainly
divides2−jb, which is an integer, and thus it dividesa + q2−jb. Conversely, if
some odd prime divides bothb andr, it divides also2−jb, and thus it divides
a = r−q2−jb; this shows that no spurious factor appears, unlike in some other
gcd algorithms.

EXAMPLE : let a = a0 = 935 and b = a1 = 714, so ν(b) = ν(a) + 1.
Algorithm BinaryDivide computesb′ = 357, q = 1, anda2 = a + q2−jb =

1292. The next step givesa3 = 1360, then a4 = 1632, a5 = 2176,
a6 = 0. Since2176 = 27 · 17, we conclude that the gcd of935 and714 is
17. Note that the binary remainder sequence might contain negative terms and
terms larger thana, b. For example, starting froma = 19 andb = 2, we get
19, 2, 20,−8, 16, 0.

An asymptotically fast GCD algorithm with complexityO(M(n) log n) can
be constructed with AlgorithmHalfBinaryGcd .

Theorem 1.9 Givena, b ∈ Z with ν(a) = 0 and ν(b) > 0, and an integer
k ≥ 0, AlgorithmHalfBinaryGcd returns an integer0 ≤ j ≤ k and a matrix
R such that, ifc = 2−2j(R1,1a + R1,2b) andd = 2−2j(R2,1a + R2,2b):

1. c andd are integers withν(c) = 0 andν(d) > 0;
2. c∗ = 2jc andd∗ = 2jd are two consecutive terms from the binary remain-

der sequence ofa, b with ν(c∗) ≤ k < ν(d∗).

Proof. We prove the theorem by induction onk. If k = 0, the algorithm re-
turnsj = 0 and the identity matrix, thus we havec = a andd = b, and the
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Algorithm 1.22 HalfBinaryGcd

Input: a, b ∈ Z with 0 = ν(a) < ν(b), a non-negative integerk
Output: an integerj and a2 × 2 matrixR satisfying Theorem 1.9

1: if ν(b) > k then

2: return0,

(
1 0

0 1

)

3: k1 ← ⌊k/2⌋
4: a1 ← a mod 22k1+1, b1 ← b mod 22k1+1

5: j1, R ← HalfBinaryGcd (a1, b1, k1)

6: a′ ← 2−2j1(R1,1a + R1,2b), b′ ← 2−2j1(R2,1a + R2,2b)

7: j0 ← ν(b′)
8: if j0 + j1 > k then
9: returnj1, R

10: q, r ← BinaryDivide(a′, b′)
11: k2 ← k − (j0 + j1)

12: a2 ← b′/2j0 mod 22k2+1, b2 ← r/2j0 mod 22k2+1

13: j2, S ← HalfBinaryGcd (a2, b2, k2)

14: returnj1 + j0 + j2, S ×
(

0 2j0

2j0 q

)
× R.

statement is true. Now supposek > 0, and assume that the theorem is true up
to k − 1.

The first recursive call usesk1 < k, sincek1 = ⌊k/2⌋ < k. After step 5, by
induction,a′

1 = 2−2j1(R1,1a1+R1,2b1) andb′1 = 2−2j1(R2,1a1+R2,2b1) are
integers withν(a′

1) = 0 < ν(b′1), and2j1a′
1, 2

j1b′1 are two consecutive terms
from the binary remainder sequence ofa1, b1. Lemma 7 of [208] says that the
quotients of the remainder sequence ofa, b coincide with those ofa1, b1 up to
2j1a′ and2j1b′. This proves that2j1a′, 2j1b′ are two consecutive terms of the
remainder sequence ofa, b. Sincea anda1 differ by a multiple of22k1+1, a′

anda′
1 differ by a multiple of22k1+1−2j1 ≥ 2 sincej1 ≤ k1 by induction. It

follows thatν(a′) = 0. Similarly, b′ andb′1 differ by a multiple of2, and thus
j0 = ν(b′) > 0.

The second recursive call usesk2 < k, since by inductionj1 ≥ 0 and we
just showedj0 > 0. It easily follows thatj1 + j0 + j2 > 0, and thusj ≥ 0. If
we exit at step 9, we havej = j1 ≤ k1 < k. Otherwisej = j1 + j0 + j2 =

k − k2 + j2 ≤ k by induction.
If j0 + j1 > k, we haveν(2j1b′) = j0 + j1 > k, we exit the algorithm, and

the statement holds. Now assumej0 + j1 ≤ k. We compute an extra termr
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of the remainder sequence froma′, b′, which, up to multiplication by2j1 , is an
extra term of the remainder sequence ofa, b. Sincer = a′ + q2−j0b′, we have

(
b′

r

)
= 2−j0

(
0 2j0

2j0 q

)(
a′

b′

)
.

The new terms of the remainder sequence areb′/2j0 andr/2j0 , adjusted so that
ν(b′/2j0) = 0. The same argument as above holds for the second recursive
call, which stops when the2-valuation of the sequence starting froma2, b2

exceedsk2; this corresponds to a2-valuation larger thanj0 + j1 + k2 = k for
thea, b remainder sequence.

Given twon-bit integersa andb, andk = n/2, HalfBinaryGcd yields two
consecutive elementsc∗, d∗ of their binary remainder sequence with bit-size
aboutn/2 (for their odd part).

EXAMPLE : let a = 1889 826 700 059 andb = 421 872 857 844, with k = 20.
The first recursive call witha1 = 1243 931, b1 = 1372 916, k1 = 10 gives
j1 = 8 andR =

„

352 280
260 393

«

, which corresponds toa′ = 11 952 871 683

and b′ = 10 027 328 112, with j0 = 4. The binary division yields the new
term r = 8819 331 648, and we havek2 = 8, a2 = 52 775, b2 = 50 468.
The second recursive call givesj2 = 8 andS =

„

64 272
212 −123

«

, which finally

givesj = 20 and the matrix
„

1 444 544 1 086 512
349 084 1 023 711

«

, which corresponds to the

remainder termsr8 = 2899 749 · 2j , r9 = 992 790 · 2j . With the samea, b

values, but withk = 41, which corresponds to the bit-size ofa, we get as
final values of the algorithmr15 = 3 · 241 andr16 = 0, which proves that
gcd(a, b) = 3.

Let H(n) be the complexity ofHalfBinaryGcd for inputs of n bits and
k = n/2; a1 andb1 have∼n/2 bits, the coefficients ofR have∼n/4 bits, and
a′, b′ have∼3n/4 bits. The remaindersa2, b2 have∼n/2 bits, the coefficients
of S have∼n/4 bits, and the final valuesc, d have∼n/2 bits. The main costs
are the matrix–vector product at step 6, and the final matrix–matrix product.
We obtainH(n) ∼ 2H(n/2) + 4M(n/4, n) + 7M(n/4), assuming we use
Strassen’s algorithm to multiply two2× 2 matrices with7 scalar products, i.e.
H(n) ∼ 2H(n/2) + 17M(n/4), assuming that we compute eachM(n/4, n)

product with a single FFT transform of width5n/4, which gives cost about
M(5n/8) ∼ 0.625M(n) in the FFT range. Thus,H(n) = O(M(n) log n).

For the plain gcd, we callHalfBinaryGcd with k = n, and instead of com-
puting the final matrix product, we multiply2−2j2S by (b′, r) – the compo-
nents have∼n/2 bits – to obtain the finalc, d values. The first recursive call
has a1, b1 of size n with k1 ≈ n/2, and corresponds toH(n); the
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matrixR anda′, b′ haven/2 bits, andk2 ≈ n/2, and thus the second recursive
call corresponds to a plain gcd of sizen/2. The costG(n) satisfiesG(n) =

H(n)+G(n/2)+4M(n/2, n)+4M(n/2) ∼ H(n)+G(n/2)+10M(n/2).
Thus,G(n) = O(M(n) log n).

An application of the half-gcdper sein the MSB case is therational recon-
structionproblem. Assume we want to compute a rationalp/q, wherep andq

are known to be bounded by some constantc. Instead of computing with ratio-
nals, we may perform all computations modulo some integern > c2. Hence,
we will end up withp/q = m mod n, and the problem is now to find the un-
known p andq from the known integerm. To do this, we start an extended
gcd fromm andn, and we stop as soon as the currenta andu values – as in
ExtendedGcd– are smaller thanc: since we havea = um + vn, this gives
m = a/u mod n. This is exactly what is called a half-gcd; a subquadratic
version in the LSB case is given above.

1.7 Base conversion

Since computers usually work with binary numbers, and humanprefer decimal
representations, input/output base conversions are needed. In a typical com-
putation, there are only a few conversions, compared to the total number of
operations, so optimizing conversions is less important than optimizing other
aspects of the computation. However, when working with hugenumbers, naive
conversion algorithms may slow down the whole computation.

In this section, we consider that numbers are represented internally in base
β – usually a power of2 – and externally in baseB – say a power of ten. When
both bases arecommensurable, i.e. both are powers of a common integer, such
as β = 8 and B = 16, conversions ofn-digit numbers can be performed
in O(n) operations. We assume here thatβ andB are not commensurable.
We might think that only one algorithm is needed, since inputand output are
symmetric by exchanging basesβ andB. Unfortunately, this is not true, since
computations are done only in baseβ (see Exercise 1.37).

1.7.1 Quadratic algorithms

Algorithms IntegerInput and IntegerOutput , respectively, read and write
n-word integers, both with a complexity ofO(n2).
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Algorithm 1.23 IntegerInput
Input: a stringS = sm−1 . . . s1s0 of digits in baseB
Output: the valueA in baseβ of the integer represented byS

A ← 0

for i from m − 1 downto 0 do
A ← BA + val(si) ⊲ val(si) is the value ofsi in baseβ

returnA.

Algorithm 1.24 IntegerOutput

Input: A =
∑n−1

0 aiβ
i > 0

Output: a stringS of characters, representingA in baseB
m ← 0

while A 6= 0 do
sm ← char(A mod B) ⊲ sm: character corresponding toA mod B

A ← A div B

m ← m + 1

returnS = sm−1 . . . s1s0.

1.7.2 Subquadratic algorithms

Fast conversion routines are obtained using a “divide and conquer” strategy.
Given two stringss andt, we lets || t denote the concatenation ofs andt. For
integer input, if the given string decomposes asS = Shi ||Slo, whereSlo has
k digits in baseB, then

Input(S,B) = Input(Shi, B)Bk + Input(Slo, B),

where Input(S,B) is the value obtained when reading the stringS in the
external baseB. Algorithm FastIntegerInput shows one way to implement
this: if the outputA hasn words, AlgorithmFastIntegerInput has complexity
O(M(n) log n), more precisely∼M(n/4) lg n for n a power of two in the
FFT range (see Exercise 1.34).

For integer output, a similar algorithm can be designed, replacing multipli-
cations by divisions. Namely, ifA = AhiB

k + Alo, then

Output(A,B) = Output(Ahi, B) ||Output(Alo, B),

whereOutput(A,B) is the string resulting from writing the integerA in the
external baseB, and it is assumed thatOutput(Alo, B) has exactlyk digits,
after possibly padding with leading zeros.

If the inputA hasn words, AlgorithmFastIntegerOutput has complexity
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Algorithm 1.25 FastIntegerInput
Input: a stringS = sm−1 . . . s1s0 of digits in baseB
Output: the valueA of the integer represented byS

ℓ ← [val(s0), val(s1), . . . , val(sm−1)]

(b, k) ← (B,m) ⊲ Invariant:ℓ hask elementsℓ0, . . . , ℓk−1

while k > 1 do
if k eventhen ℓ ← [ℓ0 + bℓ1, ℓ2 + bℓ3, . . . , ℓk−2 + bℓk−1]

elseℓ ← [ℓ0 + bℓ1, ℓ2 + bℓ3, . . . , ℓk−1]

(b, k) ← (b2, ⌈k/2⌉)
returnℓ0.

Algorithm 1.26 FastIntegerOutput

Input: A =
∑n−1

0 aiβ
i

Output: a stringS of characters, representingA in baseB
if A < B then

returnchar(A)

else
find k such thatB2k−2 ≤ A < B2k

(Q,R) ← DivRem(A,Bk)

r ← FastIntegerOutput(R)

returnFastIntegerOutput(Q) || 0k−len(r) || r.

O(M(n) log n), more precisely∼D(n/4) lg n for n a power of two in the
FFT range, whereD(n) is the cost of dividing a2n-word integer by ann-
word integer. Depending on the cost ratio between multiplication and division,
integer output may thus be from two to five times slower than integer input;
see however Exercise 1.35.

1.8 Exercises

Exercise 1.1Extend the Kronecker–Schönhage trick mentioned at the begin-
ning of§1.3 to negative coefficients, assuming the coefficients are in the range
[−ρ, ρ].

Exercise 1.2 (Harvey[114]) For multiplying two polynomials of degree less
than n, with non-negative integer coefficients bounded above byρ, the
Kronecker–Scḧonhage trick performs one integer multiplication of size about
2n lg ρ, assumingn is small compared toρ. Show that it is possible to perform
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two integer multiplications of sizen lg ρ instead, and even four integer multi-
plications of size(n/2) lg ρ.

Exercise 1.3Assume your processor provides an instructionfmaa (a, b, c, d)

returningh, ℓ such thatab + c + d = hβ + ℓ, where0 ≤ a, b, c, d, ℓ, h < β.
Rewrite AlgorithmBasecaseMultiplyusingfmaa .

Exercise 1.4 (Harvey, Khachatrianet al.[138]) For A =
∑n−1

i=0 aiβ
i and

B =
∑n−1

j=0 biβ
i, prove the formula

AB =

n−1∑

i=1

i−1∑

j=0

(ai + aj)(bi + bj)β
i+j + 2

n−1∑

i=0

aibiβ
2i −

n−1∑

i=0

βi
n−1∑

j=0

ajbjβ
j .

Deduce a new algorithm for schoolbook multiplication.

Exercise 1.5 (Hanrot) Prove that the numberK(n) of word-products (as de-
fined in the proof of Thm. 1.2) in Karatsuba’s algorithm is non-decreasing,
providedn0 = 2. Plot the graph ofK(n)/nlg 3 with a logarithmic scale forn,
for 27 ≤ n ≤ 210, and find experimentally where the maximum appears.

Exercise 1.6 (Ryde)Assume the basecase multiply costsM(n) = an2 + bn,
and that Karatsuba’s algorithm costsK(n) = 3K(n/2)+cn. Show that divid-
ing a by two increases the Karatsuba thresholdn0 by a factor of two, and on
the contrary decreasingb andc decreasesn0.

Exercise 1.7 (Maeder[157], Thomé [215]) Show that an auxiliary memory
of 2n + o(n) words is enough to implement Karatsuba’s algorithm in-place,
for ann-word×n-word product. In the polynomial case, prove that an auxiliary
space ofn coefficients is enough, in addition to then + n coefficients of the
input polynomials, and the2n− 1 coefficients of the product. [You can use the
2n result words, but must not destroy then + n input words.]

Exercise 1.8 (Roche[190]) If Exercise 1.7 was too easy for you, design a
Karatsuba-like algorithm using onlyO(log n) extra space (you are allowed to
read and write in the2n output words, but then+n input words are read-only).

Exercise 1.9 (Quercia, McLaughlin)Modify Algorithm KaratsubaMultiply
to use only∼7n/2 additions/subtractions. [Hint: decompose each ofC0, C1

andC2 into two parts.]

Exercise 1.10Design an in-place version ofKaratsubaMultiply (see Exer-
cise 1.7) that accumulates the result inc0, . . . , cn−1, and returns a carry bit.
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Exercise 1.11 (Vuillemin) Design an algorithm to multiplya2x
2+a1x+a0 by

b1x+ b0 using4 multiplications. Can you extend it to a6× 6 product using16

multiplications?

Exercise 1.12 (Weimerskirch, Paar)Extend the Karatsuba trick to compute
an n × n product inn(n + 1)/2 multiplications. For whichn does this win
over the classical Karatsuba algorithm?

Exercise 1.13 (Hanrot) In Algorithm OddEvenKaratsuba, if both m andn

are odd, we combine the larger partsA0 andB0 together, and the smaller parts
A1 andB1 together. Find a way to get instead

K(m,n) = K(⌈m/2⌉, ⌊n/2⌋) + K(⌊m/2⌋, ⌈n/2⌉) + K(⌈m/2⌉, ⌈n/2⌉).

Exercise 1.14Prove that if five integer evaluation points are used for Toom–
Cook3-way (§1.3.3), the division by (a multiple of) three can not be avoided.
Does this remain true if only four integer points are used together with∞?

Exercise 1.15 (Quercia, Harvey)In Toom–Cook3-way (§1.3.3), take as eval-
uation point2w instead of2, wherew is the number of bits per word (usually
w = 32 or 64). Which division is then needed? Similarly for the evaluation
point2w/2.

Exercise 1.16For an integerk ≥ 2 and multiplication of two numbers of size
kn andn, show that the trivial strategy which performsk multiplications, each
n × n, is not the best possible in the FFT range.

Exercise 1.17 (Karatsuba, Zuras[235]) Assuming the multiplication has
superlinear cost, show that the speedup of squaring with respect to multipli-
cation can not significantly exceed2.

Exercise 1.18 (Thoḿe, Quercia) Consider two setsA = {a, b, c, . . .} and
U = {u, v, w, . . .}, and a setX = {x, y, z, . . .} of sums of products of el-
ements ofA andU (assumed to be in some fieldF ). We can ask “what is
the least number of multiplies required to compute all elements of X?”. In
general, this is a difficult problem, related to the problem of computing tensor
rank, which is NP-complete (see for example Håstad [119] and the book by
Bürgisseret al. [60]). Special cases include integer/polynomial multiplication,
the middle product, and matrix multiplication (for matrices of fixed size). As a
specific example, can we computex = au+ cw, y = av + bw, z = bu+ cv in
fewer than six multiplies? Similarly forx = au−cw, y = av−bw, z = bu−cv.

Exercise 1.19In Algorithm BasecaseDivRem(§1.4.1), prove thatq∗j ≤ β+1.
Can this bound be reached? In the caseq∗j ≥ β, prove that the while-loop at



42 Integer arithmetic

steps 6–8 is executed at most once. Prove that the same holds for Svoboda’s
algorithm, i.e. thatA ≥ 0 after step 8 of AlgorithmSvobodaDivision(§1.4.2).

Exercise 1.20 (Granlund, M̈oller) In Algorithm BasecaseDivRem, estimate
the probability thatA < 0 is true at step 6, assuming the remainderrj from the
division ofan+jβ + an+j−1 by bn−1 is uniformly distributed in[0, bn−1 − 1],
A mod βn+j−1 is uniformly distributed in[0, βn+j−1 − 1], andB mod βn−1

is uniformly distributed in[0, βn−1−1]. Then replace the computation ofq∗j by
a division of the three most significant words ofA by the two most significant
words ofB. Prove the algorithm is still correct. What is the maximal number
of corrections, and the probability thatA < 0?

Exercise 1.21 (Montgomery[171]) Let 0 < b < β, and0 ≤ a4, . . . , a0 < β.
Prove thata4(β

4 mod b) + · · ·+ a1(β mod b) + a0 < β2, providedb < β/3.
Use this fact to design an efficient algorithm dividingA = an−1β

n−1+· · ·+a0

by b. Does the algorithm extend to division by the least significant digits?

Exercise 1.22In Algorithm RecursiveDivRem, find inputs that require1, 2, 3
or 4 corrections in step 8. [Hint: considerβ = 2.] Prove that whenn = m and
A < βm(B + 1), at most two corrections occur.

Exercise 1.23Find the complexity of AlgorithmRecursiveDivRem in the
FFT range.

Exercise 1.24Consider the division ofA of kn words byB of n words, with
integerk ≥ 3, and the alternate strategy that consists of extending the divisor
with zeros so that it has half the size of the dividend. Show that this is al-
ways slower than AlgorithmUnbalancedDivision(assuming that division has
superlinear cost).

Exercise 1.25An important special base of division is when the divisor is of
the formbk. For example, this is useful for an integer output routine (§1.7).
Can a fast algorithm be designed for this case?

Exercise 1.26 (Sedoglavic)Does the Kronecker–Schönhage trick to reduce
polynomial multiplication to integer multiplication (§1.3) also work – in an
efficient way – for division? Assume that you want to divide a degree-2n poly-
nomialA(x) by a monic degree-n polynomialB(x), both polynomials having
integer coefficients bounded byρ.

Exercise 1.27Design an algorithm that performs an exact division of a4n-bit
integer by a2n-bit integer, with a quotient of2n bits, using the idea mentioned
in the last paragraph of§1.4.5. Prove that your algorithm is correct.
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Exercise 1.28Improve the initial speed of convergence of AlgorithmSqrtInt
(§1.5.1) by using a better starting approximation at step 1. Your approximation
should be in the interval[⌊√m⌋, ⌈2√m⌉].

Exercise 1.29 (Luschny)Devise a fast algorithm for computing the binomial
coefficient

C(n, k) =

(
n

k

)
=

n!

k!(n − k)!

for integersn, k, 0 ≤ k ≤ n. The algorithm should use exact integer arithmetic
and compute the exact answer.

Exercise 1.30 (Shoup)Show that in AlgorithmExtendedGcd, if a ≥ b > 0,
andg = gcd(a, b), then the cofactoru satisfies−b/(2g) < u ≤ b/(2g).

Exercise 1.31(a) Devise a subquadratic GCD algorithmHalfGcd along the
lines outlined in the first three paragraphs of§1.6.3 (most-significant bits first).
The input is two integersa ≥ b > 0. The output is a2 × 2 matrix R and
integersa′, b′ such that[a′ b′]t = R[a b]t. If the inputs have sizen bits, then the
elements ofR should have at mostn/2+O(1) bits, and the outputsa′, b′ should
have at most3n/4 + O(1) bits. (b) Construct a plain GCD algorithm which
callsHalfGcd until the arguments are small enough to call a naive algorithm.
(c) Compare this approach with the use ofHalfBinaryGcd in §1.6.3.

Exercise 1.32 (Galbraith, Scḧonhage, Stehĺe) The Jacobi symbol(a|b) of an
integera and a positive odd integerb satisfies(a|b) = (a mod b|b), the law
of quadratic reciprocity(a|b)(b|a) = (−1)(a−1)(b−1)/4 for a odd and posi-
tive, together with(−1|b) = (−1)(b−1)/2, and(2|b) = (−1)(b

2−1)/8. This
looks very much like the gcd recurrence:gcd(a, b) = gcd(a mod b, b) and
gcd(a, b) = gcd(b, a). Design anO(M(n) log n) algorithm to compute the
Jacobi symbol of twon-bit integers.

Exercise 1.33Show thatB andβ are commensurable, in the sense defined in
§1.7, iff ln(B)/ ln(β) ∈ Q.

Exercise 1.34Find a formulaT (n) for the asymptotic complexity of Algo-
rithm FastIntegerInput whenn = 2k (§1.7.2). Show that, for generaln, the
formula is within a factor of two ofT (n). [Hint: consider the binary expansion
of n.]

Exercise 1.35Show that the integer output routine can be made as fast (asymp-
totically) as the integer input routineFastIntegerInput. Do timing experi-
ments with your favorite multiple-precision software. [Hint: use D. Bernstein’s
scaled remainder tree [21] and the middle product.]
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Exercise 1.36If the internal baseβ and the external baseB share a nontrivial
common divisor – as in the caseβ = 2ℓ andB = 10 – show how we can
exploit this to speed up the subquadratic input and output routines.

Exercise 1.37Assume you are given twon-digit integers in base ten, but you
have implemented fast arithmetic only in base two. Can you multiply the inte-
gers in timeO(M(n))?

1.9 Notes and references

“On-line” (as opposed to “off-line”) algorithms are considered in many books
and papers, see for example the book by Borodin and El-Yaniv [33].
“Relaxed” algorithms were introduced by van der Hoeven. Forreferences and
a discussion of the differences between “lazy”, “zealous”,and “relaxed” algo-
rithms, see [124].

An example of an implementation with “guard bits” to avoid overflow prob-
lems in integer addition (§1.2) is the block-wise modular arithmetic of Lenstra
and Dixon on the MasPar [87]. They usedβ = 230 with 32-bit words.

The observation that polynomial multiplication reduces tointeger multi-
plication is due to both Kronecker and Schönhage, which explains the name
“Kronecker–Scḧonhage trick”. More precisely, Kronecker [146, pp. 941–942]
(also [147,§4]) reduced the irreducibility test for factorization of multivariate
polynomials to the univariate case, and Schönhage [196] reduced the univari-
ate case to the integer case. The Kronecker–Schönhage trick is improved in
Harvey [114] (see Exercise 1.2), and some nice applicationsof it are given in
Steel [206].

Karatsuba’s algorithm was first published in [136]. Very little is known about
its averagecomplexity. What is clear is that no simple asymptotic equivalent
can be obtained, since the ratioK(n)/nα does not converge (see Exercise 1.5).

Andrei Toom [217] discovered the class of Toom–Cook algorithms, and they
were discussed by Stephen Cook in his thesis [76, pp. 51–77].A very good de-
scription of these algorithms can be found in the book by Crandall and Pomer-
ance [81,§9.5.1]. In particular, it describes how to generate the evaluation and
interpolation formulæ symbolically. Zuras [235] considers the4-way and5-
way variants, together with squaring. Bodrato and Zanoni [31] show that the
Toom–Cook3-way interpolation scheme of§1.3.3 is close to optimal for the
points 0, 1,−1, 2,∞; they also exhibit efficient4-way and5-way schemes.
Bodrato and Zanoni also introduced the Toom-2.5 and Toom-3.5 notations for
what we call Toom-(3, 2) and Toom-(4, 3), these algorithms being useful for
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unbalanced multiplication using a different number of pieces. They noticed
that Toom-(4, 2) only differs from Toom3-way in the evaluation phase, thus
most of the implementation can be shared.

The Scḧonhage–Strassen algorithm first appeared in [199], and is described
in §2.3.3. Algorithms using floating-point complex numbers arediscussed in
Knuth’s classic [142,§4.3.3.C]. See also§3.3.1.

The odd–even scheme is described in Hanrot and Zimmermann [112], and
was independently discovered by Andreas Enge. The asymmetric squaring for-
mula given in§1.3.6 was invented by Chung and Hasan (see their paper [66]
for other asymmetric formulæ). Exercise 1.4 was suggested by David Harvey,
who independently discovered the algorithm of Khachatrianet al. [138].

See Lef̀evre [152] for a comparison of different algorithms for the problem
of multiplication by an integer constant.

Svoboda’s algorithm was introduced in [211]. The exact division algorithm
starting from least significant bits is due to Jebelean [130]. Jebelean and
Krandick invented the “bidirectional” algorithm [144]. The Karp–Markstein
trick to speed up Newton’s iteration (or Hensel lifting overp-adic numbers)
is described in [137]. The “recursive division” of§1.4.3 is from Burnikel and
Ziegler [61], although earlier but not-so-detailed ideas can be found in Jebe-
lean [132], and even earlier in Moenck and Borodin [166]. Thedefinition of
Hensel’s division used here is due to Shand and Vuillemin [201], who also
point out the duality with Euclidean division.

Algorithm SqrtRem (§1.5.1) was first described in Zimmermann [234], and
proved correct in Bertotet al. [29]. Algorithm SqrtInt is described in Cohen
[73]; its generalization tokth roots (AlgorithmRootInt ) is due to Keith Briggs.
The detection of exact powers is discussed in Bernstein, Lenstra, and Pila [23]
and earlier in Bernstein [17] and Cohen [73]. It is necessary, for example, in
the AKS primality test of Agrawal, Kayal, and Saxena [2].

The classical (quadratic) Euclidean algorithm has been considered by many
authors – a good reference is Knuth [142]. The Gauss–Kuz’mintheorem2 gives
the distribution of quotients in the regular continued fraction of almost all real
numbers, and hence is a good guide to the distribution of quotients in the Eu-
clidean algorithm for large, random inputs. Lehmer’s original algorithm is de-
scribed in [154]. The binary gcd is almost as old as the classical Euclidean
algorithm – Knuth [142] has traced it back to a first-century AD Chinese text
Chiu Chang Suan Shu(see also Mikami [165]). It was rediscovered several
times in the 20th century, and it is usually attributed to Stein [209]. The bi-
nary gcd has been analysed by Brent [44, 50], Knuth [142], Maze [159], and

2 According to the Gauss–Kuz’min theorem [139], the probability of a quotientq ∈ N∗ is
lg(1 + 1/q) − lg(1 + 1/(q + 1)).
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Vallée [221]. A parallel (systolic) version that runs inO(n) time usingO(n)

processors was given by Brent and Kung [53].
The double-digit gcd is due to Jebelean [131]. Thek-ary gcd reduction is

due to Sorenson [205], and was improved and implemented in GNU MP by
Weber. Weber also invented AlgorithmReducedRatMod [226], inspired by
previous work of Wang.

The first subquadratic gcd algorithm was published by Knuth [141], but his
complexity analysis was suboptimal – he gaveO(n log5 n log log n). The cor-
rect complexityO(n log2 n log log n) was given by Scḧonhage [195]; for this
reason the algorithm is sometimes called the Knuth–Schönhage algorithm.
A description for the polynomial case can be found in Aho, Hopcroft, and
Ullman [3], and a detailed (but incorrect) description for the integer case in
Yap [232]. The subquadratic binary gcd given in§1.6.3 is due to Stehlé and
Zimmermann [208]. M̈oller [168] compares various subquadratic algorithms,
and gives a nice algorithm without “repair steps”.

Several authors mention anO(n log2 n log log n) algorithm for the compu-
tation of the Jacobi symbol: e.g. Eikenberry and Sorenson [89] and Shallit and
Sorenson [200]. The earliest reference that we know is a paper by Bach [8],
which gives the basic idea (due to Gauss [101, p. 509]). Details are given in
the book by Bach and Shallit [9, Solution of Exercise 5.52], where the algo-
rithm is said to be “folklore”, with the ideas going back to Bachmann [10]
and Gauss. The existence of such an algorithm is mentioned inScḧonhage’s
book [198,§7.2.3], but without details. See also Brent and Zimmermann [57]
and Exercise 1.32.
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Modular arithmetic and the FFT

In this chapter our main topic is modular arithmetic, i.e. how
to compute efficiently modulo a given integerN . In most appli-
cations, the modulusN is fixed, and special-purpose algorithms
benefit from some precomputations, depending only onN , to
speed up arithmetic moduloN .
There is an overlap between Chapter 1 and this chapter. For ex-
ample, integer division and modular multiplication are closely re-
lated. In Chapter 1 we present algorithms where no (or only a few)
precomputations with respect to the modulusN are performed. In
this chapter, we consider algorithms which benefit from suchpre-
computations.
Unless explicitly stated, we consider that the modulusN occupies
n words in the word-baseβ, i.e. βn−1 ≤ N < βn.

2.1 Representation

We consider in this section the different possible representations of residues
moduloN . As in Chapter 1, we consider mainly dense representations.

2.1.1 Classical representation

The classical representation stores a residue (class)a as an integer0 ≤ a < N .
Residues are thus always fully reduced, i.e. incanonicalform.

Another non-redundant form consists in choosing a symmetric representa-
tion, say−N/2 ≤ a < N/2. This form might save some reductions in addi-
tions or subtractions (see§2.2). Negative numbers might be stored either with
a separate sign (sign-magnitude representation) or with a two’s-complement
representation.
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SinceN takesn words in baseβ, an alternativeredundantrepresentation
chooses0 ≤ a < βn to represent a residue class. If the underlying arithmetic
is word-based, this will yield no slowdown compared to the canonical form.
An advantage of this representation is that, when adding tworesidues, it suf-
fices to compare their sum toβn in order to decide whether the sum has to
be reduced, and the result of this comparison is simply givenby the carry bit
of the addition (see Algorithm 1.1IntegerAddition ), instead of by comparing
the sum withN . However, in the case that the sum has to be reduced, one or
more further comparisons are needed.

2.1.2 Montgomery’s form

Montgomery’s form is another representation widely used when several mod-
ular operations have to be performed modulo the same integerN (additions,
subtractions, modular multiplications). It implies a small overhead to convert –
if needed – from the classical representation to Montgomery’s and vice-versa,
but this overhead is often more than compensated by the speedup obtained in
the modular multiplication.

The main idea is to represent a residuea by a′ = aR mod N , where
R = βn, andN takesn words in baseβ. Thus Montgomery is not concerned
with the physicalrepresentation of a residue class, but with themeaningas-
sociated to a given physical representation. (As a consequence, the different
choices mentioned above for the physical representation are all possible.) Ad-
dition and subtraction are unchanged, but (modular) multiplication translates
to a different, much simpler, algorithmMontgomeryMul (see§2.4.2).

In most applications using Montgomery’s form, all inputs are first converted
to Montgomery’s form, usinga′ = aR mod N , then all computations are per-
formed in Montgomery’s form, and finally all outputs are converted back – if
needed – to the classical form, usinga = a′/R mod N . We need to assume
that (R,N) = 1, or equivalently that(β,N) = 1, to ensure the existence of
1/R mod N . This is not usually a problem becauseβ is a power of two and
N can be assumed to be odd.

2.1.3 Residue number systems

In a residue number system(RNS), a residuea is represented by a list of
residuesai moduloNi, where the moduliNi are coprime and their product is
N . The integersai can be efficiently computed froma using a remainder tree,
and the unique integer0 ≤ a < N = N1N2 · · · is computed from theai by an
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explicit Chinese remainder theorem (§2.7). The residue number system is inter-
esting since addition and multiplication can be performed in parallel on each
small residueai. This representation requires thatN factors into convenient
moduli N1, N2, . . ., which is not always the case (see however§2.9). Conver-
sion to/from the RNS representation costsO(M(n) log n), see§2.7.

2.1.4 MSB vs LSB algorithms

Many classical (most significant bits first or MSB) algorithms have ap-adic
(least significant bits first or LSB) equivalent form. Thus several algorithms in
this chapter are just LSB-variants of algorithms discussedin Chapter 1 – see
Table 2.1 below.

classical (MSB) p-adic (LSB)

Euclidean division Hensel division, Montgomery reduction
Svoboda’s algorithm Montgomery–Svoboda

Euclidean gcd binary gcd
Newton’s method Hensel lifting

Table 2.1Equivalence between LSB and MSB algorithms.

2.1.5 Link with polynomials

As in Chapter 1, a strong link exists between modular arithmetic and arith-
metic on polynomials. One way of implementing finite fieldsFq with q = pn

elements is to work with polynomials inFp[x], which are reduced modulo a
monic irreducible polynomialf(x) ∈ Fp[x] of degreen. In this case, modular
reduction happens both at the coefficient level (inFp) and at the polynomial
level (modulof(x)).

Some algorithms work in the ring(Z/NZ)[x], whereN is a composite in-
teger. An important case is the Schönhage–Strassen multiplication algorithm,
whereN has the form2ℓ + 1.

In both domainsFp[x] and (Z/NZ)[x], the Kronecker–Scḧonhage trick
(§1.3) can be applied efficiently. Since the coefficients are known to be bounded,
by p andN respectively, and thus have a fixed size, the segmentation isquite
efficient. If polynomials have degreed and coefficients are bounded byN ,
the product coefficients are bounded bydN2, and we haveO(M(d log(Nd)))

operations, instead ofO(M(d)M(log N)) with the classical approach. Also,
the implementation is simpler, because we only have to implement fast
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arithmetic for large integers instead of fast arithmetic atboth the polynomial
level and the coefficient level (see also Exercises 1.2 and 2.4).

2.2 Modular addition and subtraction

The addition of two residues in classical representation can be done as in
Algorithm ModularAdd .

Algorithm 2.1 ModularAdd
Input: residuesa, b with 0 ≤ a, b < N

Output: c = a + b mod N

c ← a + b

if c ≥ N then
c ← c − N .

Assuming thata andb are uniformly distributed inZ ∩ [0, N − 1], the sub-
tractionc ← c − N is performed with probability(1 − 1/N)/2. If we use
instead a symmetric representation in[−N/2, N/2), the probability that we
need to add or subtractN drops to1/4 + O(1/N2) at the cost of an additional
test. This extra test might be expensive for smallN – say one or two words –
but should be relatively cheap ifN is large enough, say at least ten words.

2.3 The Fourier transform

In this section, we introduce the discrete Fourier transform (DFT). An impor-
tant application of the DFT is in computing convolutions viatheConvolution
Theorem. In general, the convolution of two vectors can be computed using
three DFTs (for details see§2.9). Here we show how to compute the DFT ef-
ficiently (via thefast Fourier transformor FFT), and show how it can be used
to multiply two n-bit integers in timeO(n log n log log n) (the Scḧonhage–
Strassen algorithm, see§2.3.3).

2.3.1 Theoretical setting

Let R be a ring,K ≥ 2 an integer, andω a principalKth root of unity in
R, i.e. such thatωK = 1 and

∑K−1
j=0 ωij = 0 for 1 ≤ i < K. TheFourier

transform(or forward (Fourier) transform) of a vectora = [a0, a1, . . . , aK−1]
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of K elements fromR is the vector̂a = [â0, â1, . . . , âK−1] such that

âi =

K−1∑

j=0

ωijaj . (2.1)

If we transform the vectora twice, we get back to the initial vector, apart
from a multiplicative factorK and a permutation of the elements of the vector.
Indeed, for0 ≤ i < K

̂̂ai =
K−1∑

j=0

ωij âj =
K−1∑

j=0

ωij
K−1∑

ℓ=0

ωjℓaℓ =
K−1∑

ℓ=0

aℓ




K−1∑

j=0

ω(i+ℓ)j


 .

Let τ = ωi+ℓ. If i+ℓ 6= 0 mod K, i.e. if i+ℓ is not0 or K, the sum
∑K−1

j=0 τ j

vanishes sinceω is principal. Fori + ℓ ∈ {0,K}, we haveτ = 1 and the sum
equalsK. It follows that

̂̂ai = K

K−1∑

ℓ=0

i+ℓ∈{0,K}

aℓ = Ka(−i) mod K .

Thus, we havê̂a = K[a0, aK−1, aK−2, . . . , a2, a1].
If we transform the vectora twice, but useω−1 instead ofω for the second

transform (which is then called abackward transform), we get

˜̂ai =

K−1∑

j=0

ω−ij âj =

K−1∑

j=0

ω−ij
K−1∑

ℓ=0

ωjℓaℓ =

K−1∑

ℓ=0

aℓ




K−1∑

j=0

ω(ℓ−i)j


 .

The sum
∑K−1

j=0 ω(ℓ−i)j vanishes unlessℓ = i, in which case it equalsK.

Thus, we havẽ̂ai = Kai. Apart from the multiplicative factorK, the backward
transform is the inverse of the forward transform, as might be expected from
the names.

2.3.2 The fast Fourier transform

If evaluated naively, Eqn. (2.1) requiresΩ(K2) operations to compute the
Fourier transform of a vector ofK elements. Thefast Fourier transformor
FFT is an efficient way to evaluate Eqn. (2.1) using onlyO(K log K) oper-
ations. From now on we assume thatK is a power of two, since this is the
most common case and simplifies the description of the FFT (see §2.9 for the
general case).
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Let us illustrate the FFT forK = 8. Sinceω8 = 1, we have reduced the
exponents modulo8 in the following. We want to compute

â0 = a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7,

â1 = a0 + ωa1 + ω2a2 + ω3a3 + ω4a4 + ω5a5 + ω6a6 + ω7a7,

â2 = a0 + ω2a1 + ω4a2 + ω6a3 + a4 + ω2a5 + ω4a6 + ω6a7,

â3 = a0 + ω3a1 + ω6a2 + ωa3 + ω4a4 + ω7a5 + ω2a6 + ω5a7,

â4 = a0 + ω4a1 + a2 + ω4a3 + a4 + ω4a5 + a6 + ω4a7,

â5 = a0 + ω5a1 + ω2a2 + ω7a3 + ω4a4 + ωa5 + ω6a6 + ω3a7,

â6 = a0 + ω6a1 + ω4a2 + ω2a3 + a4 + ω6a5 + ω4a6 + ω2a7,

â7 = a0 + ω7a1 + ω6a2 + ω5a3 + ω4a4 + ω3a5 + ω2a6 + ωa7.

We see that we can share some computations. For example, the sum a0 + a4

appears in four places: in̂a0, â2, â4, and â6. Let us definea0,4 = a0 + a4,
a1,5 = a1 + a5, a2,6 = a2 + a6, a3,7 = a3 + a7, a4,0 = a0 + ω4a4, a5,1 =
a1 +ω4a5, a6,2 = a2 +ω4a6, a7,3 = a3 +ω4a7. Then we have, using the fact
thatω8 = 1

ba0 = a0,4 + a1,5 + a2,6 + a3,7, ba1 = a4,0 + ωa5,1 + ω2a6,2 + ω3a7,3,
ba2 = a0,4 + ω2a1,5 + ω4a2,6 + ω6a3,7, ba3 = a4,0 + ω3a5,1 + ω6a6,2 + ωa7,3,
ba4 = a0,4 + ω4a1,5 + a2,6 + ω4a3,7, ba5 = a4,0 + ω5a5,1 + ω2a6,2 + ω7a7,3,
ba6 = a0,4 + ω6a1,5 + ω4a2,6 + ω2a3,7, ba7 = a4,0 + ω7a5,1 + ω6a6,2 + ω5a7,3.

Now the suma0,4 + a2,6 appears at two different places. Leta0,4,2,6 = a0,4 +

a2,6, a1,5,3,7 = a1,5 + a3,7, a2,6,0,4 = a0,4 +ω4a2,6, a3,7,1,5 = a1,5 +ω4a3,7,
a4,0,6,2 = a4,0 + ω2a6,2, a5,1,7,3 = a5,1 + ω2a7,3, a6,2,4,0 = a4,0 + ω6a6,2,
a7,3,5,1 = a5,1 + ω6a7,3. Then we have

â0 = a0,4,2,6 + a1,5,3,7, â1 = a4,0,6,2 + ωa5,1,7,3,

â2 = a2,6,0,4 + ω2a3,7,1,5, â3 = a6,2,4,0 + ω3a7,3,5,1,

â4 = a0,4,2,6 + ω4a1,5,3,7, â5 = a4,0,6,2 + ω5a5,1,7,3,

â6 = a2,6,0,4 + ω6a3,7,1,5, â7 = a6,2,4,0 + ω7a7,3,5,1.

In summary, after a first stage where we have computed eight intermediary
variablesa0,4 to a7,3, and a second stage with eight extra intermediary vari-
ablesa0,4,2,6 to a7,3,5,1, we are able to compute the transformed vector in eight
extra steps. The total number of steps is thus24 = 8 lg 8, where each step has
the forma ← b + ωjc.

If we take a closer look, we can group operations in pairs(a, a′), which have
the forma = b + ωjc anda′ = b + ωj+4c. For example, in the first stage we
havea1,5 = a1 + a5 anda5,1 = a1 + ω4a5; in the second stage we have
a4,0,6,2 = a4,0 +ω2a6,2 anda6,2,4,0 = a4,0 +ω6a6,2. Sinceω4 = −1, this can
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also be written(a, a′) = (b + ωjc, b − ωjc), whereωjc needs to be computed
only once. A pair of two such operations is called abutterflyoperation.

The FFT can be performedin place. Indeed, the result of the butterfly
betweena0 anda4, i.e(a0,4, a4,0) = (a0+a4, a0−a4), can overwrite(a0, a4),
since the values ofa0 anda4 are no longer needed.

Algorithm ForwardFFT is a recursive and in-place implementation of the
forward FFT. It uses an auxiliary functionbitrev(j,K), which returns thebit-
reversalof the integerj, considered as an integer oflg K bits. For example,
bitrev(j, 8) gives0, 4, 2, 6, 1, 5, 3, 7 for j = 0, . . . , 7.

Algorithm 2.2 ForwardFFT

Input: vectora = [a0, a1, . . . , aK−1], ω principalKth root of unity,K = 2k

Output: in-place transformed vector̂a, bit-reversed
1: if K = 2 then
2: [a0, a1] ← [a0 + a1, a0 − a1]

3: else
4: [a0, a2, ..., aK−2] ← ForwardFFT ([a0, a2, ..., aK−2], ω

2,K/2)

5: [a1, a3, ..., aK−1] ← ForwardFFT ([a1, a3, ..., aK−1], ω
2,K/2)

6: for j from 0 to K/2 − 1 do
7: [a2j , a2j+1] ← [a2j + ωbitrev(j,K/2)a2j+1, a2j − ωbitrev(j,K/2)a2j+1].

Theorem 2.1 Given an input vectora = [a0, a1, . . . , aK−1], Algorithm
ForwardFFT replaces it by its Fourier transform, in bit-reverse order,in
O(K log K) operations in the ringR.

Proof. We prove the statement by induction onK = 2k. For K = 2, the
Fourier transform of[a0, a1] is [a0 + a1, a0 + ωa1], and the bit-reverse order
coincides with the normal order; sinceω = −1, the statement follows. Now
assume the statement is true forK/2. Let 0 ≤ j < K/2, and writej′ :=

bitrev(j,K/2). Let b = [b0, ..., bK/2−1] be the vector obtained at step 4, and
c = [c0, ..., cK/2−1] be the vector obtained at step 5. By induction

bj =

K/2−1∑

ℓ=0

ω2j′ℓa2ℓ, cj =

K/2−1∑

ℓ=0

ω2j′ℓa2ℓ+1.

Sincebj is stored ata2j andcj ata2j+1, we compute at step 7

a2j = bj+ωj′

cj =

K/2−1∑

ℓ=0

ω2j′ℓa2ℓ+ωj′
K/2−1∑

ℓ=0

ω2j′ℓa2ℓ+1 =
K−1∑

ℓ=0

ωj′ℓaℓ = âj′ .
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Similarly, since−ωj′

= ωK/2+j′

a2j+1 =

K/2−1∑

ℓ=0

ω2j′ℓa2ℓ + ωK/2+j′
K/2−1∑

ℓ=0

ω2j′ℓa2ℓ+1

=

K−1∑

ℓ=0

ω(K/2+j′)ℓaℓ = âK/2+j′ ,

where we used the fact thatω2j′

= ω2(j′+K/2). Sincebitrev(2j,K) =

bitrev(j,K/2) andbitrev(2j + 1,K) = K/2 + bitrev(j,K/2), the first part
of the theorem follows. The complexity bound follows from the fact that the
costT (K) satisfies the recurrenceT (K) ≤ 2T (K/2) + O(K).

Algorithm 2.3 BackwardFFT

Input: vectora bit-reversed,ω principalKth root of unity,K = 2k

Output: in-place transformed vector̃a, normal order
1: if K = 2 then
2: [a0, a1] ← [a0 + a1, a0 − a1]

3: else
4: [a0, ..., aK/2−1] ← BackwardFFT([a0, ..., aK/2−1], ω

2,K/2)

5: [aK/2, ..., aK−1] ← BackwardFFT([aK/2, ..., aK−1], ω
2,K/2)

6: for j from 0 to K/2 − 1 do ⊲ ω−j = ωK−j

7: [aj , aK/2+j ] ← [aj + ω−jaK/2+j , aj − ω−jaK/2+j ].

Theorem 2.2 Given an input vectora = [a0, aK/2, . . . , aK−1] in bit-reverse
order, AlgorithmBackwardFFT replaces it by its backward Fourier trans-
form, in normal order, inO(K log K) operations inR.

Proof. The complexity bound follows as in the proof of Theorem 2.1. For
the correctness result, we again use induction onK = 2k. For K = 2, the
backward Fourier transform̃a = [a0 + a1, a0 + ω−1a1] is exactly what the
algorithm returns, sinceω = ω−1 = −1 in that case. Assume nowK ≥ 4,
a power of two. The first half, sayb, of the vectora corresponds to the bit-
reversed vector of the even indices, sincebitrev(2j,K) = bitrev(j,K/2).
Similarly, the second half, sayc, corresponds to the bit-reversed vector of the
odd indices, sincebitrev(2j + 1,K) = K/2 + bitrev(j,K/2). Thus, we can
apply the theorem by induction tob andc. It follows thatb is the backward
transform of lengthK/2 with ω2 for the even indices (in normal order), and
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similarly c is the backward transform of lengthK/2 for the odd indices

bj =

K/2−1∑

ℓ=0

ω−2jℓa2ℓ, cj =

K/2−1∑

ℓ=0

ω−2jℓa2ℓ+1.

Sincebj is stored inaj andcj in aK/2+j , we have

aj = bj + ω−jcj =

K/2−1∑

ℓ=0

ω−2jℓa2ℓ + ω−j

K/2−1∑

ℓ=0

ω−2jℓa2ℓ+1

=

K−1∑

ℓ=0

ω−jℓaℓ = ãj ,

and similarly, using−ω−j = ω−K/2−j andω−2j = ω−2(K/2+j)

aK/2+j =

K/2−1∑

ℓ=0

ω−2jℓa2ℓ + ω−K/2−j

K/2−1∑

ℓ=0

ω−2jℓa2ℓ+1

=
K−1∑

ℓ=0

ω−(K/2+j)ℓaℓ = ãK/2+j .

2.3.3 The Scḧonhage–Strassen algorithm

We now describe the Schönhage–StrassenO(n log n log log n) algorithm to
multiply two integers ofn bits. The heart of the algorithm is a routine to mul-
tiply two integers modulo2n + 1.

Theorem 2.3 Given0 ≤ A,B < 2n + 1, AlgorithmFFTMulMod correctly
returnsA ·B mod (2n + 1), and it costsO(n log n log log n) bit-operations if
K = Θ(

√
n).

Proof. The proof is by induction onn, because at step 8 we call FFTMulMod
recursively, unlessn′ is sufficiently small that a simpler algorithm (classical,
Karatsuba or Toom–Cook) can be used. There is no difficulty instarting the
induction.

With aj , bj the values at steps 1 and 2, we haveA =
∑K−1

j=0 aj2
jM and

B =
∑K−1

j=0 bj2
jM ; thus,A · B =

∑K−1
j=0 cj2

jM mod (2n + 1) with

cj =

K−1∑

ℓ,m=0

ℓ+m=j

aℓbm −
K−1∑

ℓ,m=0

ℓ+m=K+j

aℓbm. (2.2)
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Algorithm 2.4 FFTMulMod

Input: 0 ≤ A,B < 2n + 1, an integerK = 2k such thatn = MK

Output: C = A · B mod (2n + 1)

1: decompose A =
∑K−1

j=0 aj2
jM with 0 ≤ aj < 2M , except that

0 ≤ aK−1 ≤ 2M

2: decomposeB similarly
3: choosen′ ≥ 2n/K + k, n′ multiple ofK; let θ = 2n′/K , ω = θ2

4: for j from 0 to K − 1 do
5: (aj , bj) ← (θjaj , θ

jbj) mod (2n′

+ 1)

6: a ← ForwardFFT (a, ω,K), b ← ForwardFFT (b, ω,K)

7: for j from 0 to K − 1 do ⊲ call FFTMulMod
8: cj ← ajbj mod (2n′

+ 1) ⊲ recursively ifn′ is large

9: c ← BackwardFFT(c, ω,K)

10: for j from 0 to K − 1 do
11: cj ← cj/(Kθj) mod (2n′

+ 1)

12: if cj ≥ (j + 1)22M then
13: cj ← cj − (2n′

+ 1)

14: C =
∑K−1

j=0 cj2
jM .

We have(j + 1 − K)22M ≤ cj < (j + 1)22M , since the first sum contains
j + 1 terms, the second sumK − (j + 1) terms, and at least one ofaℓ andbm

is less than2M in the first sum.
Let a′

j be the value ofaj after step 5:a′
j = θjaj mod (2n′

+ 1), and
similarly for b′j . Using Theorem 2.1, after step 6 we haveabitrev(j,K) =
∑K−1

ℓ=0 ωℓja′
ℓ mod (2n′

+ 1), and similarly forb. Thus at step 8

cbitrev(j,K) =

(
K−1∑

ℓ=0

ωℓja′
ℓ

) (
K−1∑

m=0

ωmjb′m

)
.

After step 9, using Theorem 2.2

c′i =

K−1∑

j=0

ω−ij

(
K−1∑

ℓ=0

ωℓja′
ℓ

) (
K−1∑

m=0

ωmjb′m

)

= K

K−1∑

ℓ,m=0

ℓ+m=i

a′
ℓb

′
m + K

K−1∑

ℓ,m=0

ℓ+m=K+i

a′
ℓb

′
m.

The first sum equalsθi
∑

ℓ+m=i aℓbm; the second isθK+i
∑

ℓ+m=K+i aℓbm.
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SinceθK = −1 mod (2n′

+ 1), after step 11 we have

ci =
K−1∑

ℓ,m=0

ℓ+m=i

aℓbm −
K−1∑

ℓ,m=0

ℓ+m=K+i

aℓbm mod (2n′

+ 1).

The correction at step 13 ensures thatci lies in the correct interval, as given by
Eqn. (2.2).

For the complexity analysis, assume thatK = Θ(
√

n). Thus, we have
n′ = Θ(

√
n). Steps 1 and 2 costO(n); step 5 also costsO(n) (counting the

cumulated cost for all values ofj). Step 6 costsO(K log K) times the cost
of one butterfly operation mod(2n′

+ 1), which is O(n′), thus a total of
O(Kn′ log K) = O(n log n). Step 8, using the same algorithm recursively,
costs O(n′ log n′ log log n′) per value of j by the induction hypothesis,
giving a total ofO(n log n log log n). The backward FFT costsO(n log n)

too, and the final steps costO(n), giving a total cost ofO(n log n log log n).
The log log n term is the depth of the recursion, each level reducingn to
n′ = O(

√
n).

EXAMPLE : to multiply two integers modulo(21 048 576 +1), we can takeK =

210 = 1024, andn′ = 3072. We recursively compute1024 products modulo
(23072 + 1). Alternatively, we can take the smaller valueK = 512, with 512

recursive products modulo(24608 + 1).

REMARK 1: the “small” products at step 8 (mod(23072+1) or mod(24608+1)

in our example) can be performed by the same algorithm applied recursively,
but at some point (determined by details of the implementation) it will be more
efficient to use a simpler algorithm, such as the classical orKaratsuba algo-
rithm (see§1.3). In practice, the depth of recursion is a small constant, typi-
cally 1 or 2. Thus, for practical purposes, thelog log n term can be regarded
as a constant. For a theoretical way of avoiding thelog log n term, see the
comments on F̈urer’s algorithm in§2.9.

REMARK 2: if we replaceθ by 1 in Algorithm FFTMulMod , i.e. remove
step 5, replace step 11 bycj ← cj/K mod (2n′

+1), and replace the condition
at step 12 bycj ≥ K ·22M , then we computeC = A ·B mod (2n−1) instead
of mod(2n + 1). This is useful in McLaughlin’s algorithm (§2.4.3).

Algorithm FFTMulMod enables us to multiply two integers modulo(2n +

1) in O(n log n log log n) operations, for a suitablen and a corresponding FFT
lengthK = 2k. Since we should haveK ≈ √

n andK must dividen, suitable
values ofn are the integers with the low-order half of their bits zero; there is
no shortage of such integers. To multiply two integers of at most n bits, we
first choose a suitable bit sizem ≥ 2n. We consider the integers as residues
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modulo(2m + 1), then AlgorithmFFTMulMod gives their integer product.
The resulting complexity isO(n log n log log n), sincem = O(n). In practice,
thelog log n term can be regarded as a constant; theoretically, it can be replaced
by an extremely slowly growing function (see Remark1 above).

In this book, we sometimes implicitly assume thatn-bit integer multiplica-
tion costs the same as three FFTs of length2n, since this is true if an FFT-based
algorithm is used for multiplication. The constant “three”can be reduced if
some of the FFTs can be precomputed and reused many times, forexample if
some of the operands in the multiplications are fixed.

2.4 Modular multiplication

Modular multiplication means computingA · B mod N , whereA andB are
residues moduloN . Of course, once the productC = A·B has been computed,
it suffices to perform amodular reductionC mod N , which itself reduces to
an integer division. The reader may ask why we did not cover this topic in
§1.4. There are two reasons. First, the algorithms presentedbelow benefit from
some precomputations involvingN , and are thus specific to the case where
several reductions are performed with the same modulus. Second, some algo-
rithms avoid performing the full productC = A · B; one such example is
McLaughlin’s algorithm (§2.4.3).

Algorithms with precomputations include Barrett’s algorithm (§2.4.1), which
computes an approximation to the inverse of the modulus, thus trading division
for multiplication; Montgomery’s algorithm, which corresponds to Hensel’s
division with remainder only (§1.4.8), and its subquadratic variant, which is
the LSB-variant of Barrett’s algorithm; and finally McLaughlin’s algorithm
(§2.4.3). The cost of the precomputations is not taken into account; it is
assumed to be negligible if many modular reductions are performed. How-
ever, we assume that the amount of precomputed data uses onlylinear, i.e.
O(log N), space.

As usual, we assume that the modulusN hasn words in baseβ, thatA and
B have at mostn words, and in some cases that they are fully reduced, i.e.
0 ≤ A,B < N .

2.4.1 Barrett’s algorithm

Barrett’s algorithm is attractive when many divisions haveto be made with
the same divisor; this is the case when we perform computations modulo a
fixed integer. The idea is to precompute an approximation to the inverse of



2.4 Modular multiplication 59

the divisor. Thus, an approximation to the quotient is obtained with just one
multiplication, and the corresponding remainder after a second multiplication.
A small number of corrections suffice to convert the approximations into exact
values. For the sake of simplicity, we describe Barrett’s algorithm in baseβ,
whereβ might be replaced by any integer, in particular2n or βn.

Algorithm 2.5 BarrettDivRem

Input: integersA, B with 0 ≤ A < β2, β/2 < B < β

Output: quotientQ and remainderR of A divided byB

1: I ← ⌊β2/B⌋ ⊲ precomputation
2: Q ← ⌊A1I/β⌋ whereA = A1β + A0 with 0 ≤ A0 < β

3: R ← A − QB

4: while R ≥ B do
5: (Q,R) ← (Q + 1, R − B)

6: return(Q,R).

Theorem 2.4 Algorithm BarrettDivRem is correct and step 5 is performed
at most three times.

Proof. SinceA = QB +R is invariant in the algorithm, we just need to prove
that 0 ≤ R < B at the end. We first consider the value ofQ,R before the
while-loop. Sinceβ/2 < B < β, we haveβ < β2/B < 2β; thus,β ≤
I < 2β. We haveQ ≤ A1I/β ≤ A1β/B ≤ A/B. This ensures thatR is
non-negative. NowI > β2/B − 1, which gives

IB > β2 − B.

Similarly, Q > A1I/β − 1 gives

βQ > A1I − β.

This yieldsβQB > A1IB − βB > A1(β
2 − B) − βB = β(A − A0) −

B(β + A1) > βA− 4βB sinceA0 < β < 2B andA1 < β. We conclude that
A < B(Q + 4); thus, at most three corrections are needed.

The bound of three corrections is tight: it is attained forA = 1980, B = 36,
β = 64. In this example,I = 113, A1 = 30, Q = 52, R = 108 = 3B.

The multiplications at steps 2 and 3 may be replaced by short products, more
precisely the multiplication at step 2 by a high short product, and that at step 3
by a low short product (see§3.3).

Barrett’s algorithm can also be used for an unbalanced division, when divid-
ing (k + 1)n words byn words fork ≥ 2, which amounts tok divisions of
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2n words by the samen-word divisor. In this case, we say that the divisor is
implicitly invariant.

Complexity of Barrett’s algorithm

If the multiplications at steps 2 and 3 are performed using full products,
Barrett’s algorithm costs2M(n) for a divisor of sizen. In the FFT range,
this cost might be lowered to1.5M(n) using the “wrap-around trick” (§3.4.1);
moreover, if the forward transforms ofI andB are stored, the cost decreases
to M(n), assumingM(n) is the cost of three FFTs.

2.4.2 Montgomery’s multiplication

Montgomery’s algorithm is very efficient for modular arithmetic modulo a
fixed modulusN . The main idea is to replace a residueA mod N by A′ =

λA mod N , whereA′ is the “Montgomery form” corresponding to the residue
A, with λ an integer constant such thatgcd(N,λ) = 1. Addition and subtrac-
tion are unchanged, sinceλA + λB = λ(A + B) mod N . The multiplication
of two residues in Montgomery form does not give exactly whatwe want:
(λA)(λB) 6= λ(AB) mod N . The trick is to replace the classical modular
multiplication by “Montgomery’s multiplication”

MontgomeryMul (A′, B′) =
A′B′

λ
mod N.

For some values ofλ, MontgomeryMul (A′, B′) can easily be computed, in
particular forλ = βn, whereN usesn words in baseβ. Algorithm 2.6 is
a quadratic algorithm (REDC) to computeMontgomeryMul (A’, B’) in this
case, and a subquadratic reduction (FastREDC) is given in Algorithm 2.7.

Another view of Montgomery’s algorithm forλ = βn is to consider that it
computes the remainder of Hensel’s division (§1.4.8).

Algorithm 2.6 REDC (quadratic non-interleaved version). Theci form the
current base-β decomposition ofC, i.e. they are defined byC =

∑2n−1
0 ciβ

i .

Input: 0 ≤ C < β2n, N < βn, µ ← −N−1 mod β, (β,N) = 1

Output: 0 ≤ R < βn such thatR = Cβ−n mod N

1: for i from 0 to n − 1 do
2: qi ← µci mod β ⊲ quotient selection
3: C ← C + qiNβi

4: R ← Cβ−n ⊲ trivial exact division
5: if R ≥ βn then returnR − N elsereturnR.
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Theorem 2.5 AlgorithmREDC is correct.

Proof. We first prove thatR = Cβ−n mod N : C is only modified in step 3,
which does not changeC mod N ; thus, at step 4 we haveR = Cβ−n mod N ,
and this remains true in the last step.

Assume that, for a giveni, we haveC = 0 mod βi when entering step 2.
Sinceqi = −ci/N mod β, we haveC + qiNβi = 0 mod βi+1 at the next
step, so the next value ofci is 0. Thus, on exiting the for-loop,C is a multiple
of βn, andR is an integer at step 4.

Still at step 4, we haveC < β2n + (β − 1)N(1 + β + · · · + βn−1) =

β2n + N(βn − 1); thus,R < βn + N andR − N < βn.

Compared to classical division (Algorithm 1.6BasecaseDivRem), Mont-
gomery’s algorithm has two significant advantages: the quotient selection is
performed by a multiplication modulo the word baseβ, which is more effi-
cient than a division by the most significant wordbn−1 of the divisor as in
BasecaseDivRem; and there is no repair stepinsidethe for-loop – the repair
step is at the very end.

For example, with inputsC = 766 970 544 842 443 844, N = 862 664 913,
andβ = 1000, AlgorithmREDC precomputesµ = 23; then we haveq0 = 412,
which yieldsC ← C + 412N = 766 970 900 260 388 000; then q1 = 924,
which yieldsC ← C + 924Nβ = 767 768 002 640 000 000; thenq2 = 720,
which yieldsC ← C + 720Nβ2 = 1388 886 740 000 000 000. At step 4,
R = 1388 886 740, and sinceR ≥ β3, REDC returnsR − N = 526 221 827.

Since Montgomery’s algorithm – i.e. Hensel’s division withremainder only –
can be viewed as an LSB variant of classical division, Svoboda’s divisor pre-
conditioning (§1.4.2) also translates to the LSB context. More precisely, in Al-
gorithmREDC, we want to modify the divisorN so that the quotient selection
q ← µci mod β at step 2 becomes trivial. The multiplierk used in Svoboda
division is simply the parameterµ in REDC. A natural choice isµ = 1, which
corresponds toN = −1 mod β. This motivates the Montgomery–Svoboda
algorithm, which is as follows:

1. first computeN ′ = µN , with N ′ < βn+1, whereµ = −1/N mod β;
2. perform then − 1 first loops ofREDC, replacingµ by 1, andN by N ′;
3. perform a final classical loop withµ andN , and the last steps (4–5) from

REDC.

Quotient selection in the Montgomery–Svoboda algorithm simply involves
“reading” the word of weightβi in the divisorC.

For the example above, we getN ′ = 19 841 292 999; q0 is the least signifi-
cant word ofC, i.e. q0 = 844, soC ← C+844N ′ = 766 987 290 893 735 000;
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thenq1 = 735 andC ← C + 735N ′β = 781 570 641 248 000 000. The last
step givesq2 = 704 andC ← C + 704Nβ2 = 1388 886 740 000 000 000,
which is what we found previously.

Subquadratic Montgomery reduction

A subquadratic versionFastREDCof Algorithm REDC is obtained by taking
n = 1, and consideringβ as a “giant base” (alternatively, replaceβ by βn

below):

Algorithm 2.7 FastREDC (subquadratic Montgomery reduction)

Input: 0 ≤ C < β2, N < β, µ ← −1/N mod β

Output: 0 ≤ R < β such thatR = C/β mod N

1: Q ← µC mod β

2: R ← (C + QN)/β

3: if R ≥ β then returnR − N elsereturnR.

This is exactly the2-adic counterpart of Barrett’s subquadratic algorithm;
steps 1–2 might be performed by a low short product and a high short product,
respectively.

When combined with Karatsuba’s multiplication, assuming the products
of steps 1–2 are full products, the reduction requires two multiplications of
sizen, i.e. six multiplications of sizen/2 (n denotes the size ofN , β being a
giant base). With some additional precomputation, the reduction might be
performed with five multiplications of sizen/2, assumingn is even. This is
simply the Montgomery–Svoboda algorithm withN having two big words in
baseβn/2. The cost of the algorithm isM(n, n/2) to computeq0N

′ (even if
N ′ has in principle3n/2 words, we knowN ′ = Hβn/2−1 with H < βn, and
thus it suffices to multiplyq0 by H), M(n/2) to computeµC mod βn/2, and

Algorithm 2.8 MontgomerySvoboda

Input: 0 ≤ C < β2n, N < βn, µ ← −1/N mod βn/2, N ′ = µN

Output: 0 ≤ R < βn such thatR = C/βn mod N

1: q0 ← C mod βn/2

2: C ← (C + q0N
′)/βn/2

3: q1 ← µC mod βn/2

4: R ← (C + q1N)/βn/2

5: if R ≥ βn then returnR − N elsereturnR.
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againM(n, n/2) to computeq1N ; thus, a total of5M(n/2) if eachn× (n/2)

product is realized by two(n/2) × (n/2) products.
The algorithm is quite similar to the one described at the endof §1.4.6, where

the cost was3M(n/2)+D(n/2) for a division of2n byn with remainder only.
The main difference here is that, thanks to Montgomery’s form, the last classi-
cal divisionD(n/2) in Svoboda’s algorithm is replaced by multiplications of
total cost2M(n/2), which is usually faster.

Algorithm MontgomerySvobodacan be extended as follows. The valueC

obtained after step 2 has3n/2 words, i.e. an excess ofn/2 words. Instead of
reducing that excess withREDC, we could reduce it using Svoboda’s tech-
nique withµ′ = −1/N mod βn/4, andN ′′ = µ′N . This would reduce the
low n/4 words fromC at the cost ofM(n, n/4), and a lastREDC step would
reduce the final excess ofn/4, which would giveD(2n, n) = M(n, n/2) +

M(n, n/4)+M(n/4)+M(n, n/4). This “folding” process can be generalized
to D(2n, n) = M(n, n/2) + · · · + M(n, n/2k) + M(n/2k) + M(n, n/2k).
If M(n, n/2k) reduces to2kM(n/2k), this gives

D(n) = 2M(n/2)+4M(n/4)+· · ·+2k−1M(n/2k−1)+(2k+1+1)M(n/2k).

Unfortunately, the resulting multiplications become moreand more unbal-
anced, and we need to storek precomputed multiplesN ′, N ′′, . . . of N , each
requiring at leastn words. Table 2.2 shows that the single-folding algorithm is
the best one.

Algorithm Karatsuba Toom–Cook3-way Toom–Cook4-way

D(n) 2.00M(n) 2.63M(n) 3.10M(n)
1-folding 1.67M(n) 1.81M(n) 1.89M(n)
2-folding 1.67M(n) 1.91M(n) 2.04M(n)
3-folding 1.74M(n) 2.06M(n) 2.25M(n)

Table 2.2Theoretical complexity of subquadratic REDC with1-, 2- and
3-folding, for different multiplication algorithms.

Exercise 2.6 discusses further possible improvements in the Montgomery–
Svoboda algorithm, achievingD(n) ≈ 1.58M(n) in the case of Karatsuba
multiplication.

2.4.3 McLaughlin’s algorithm

McLaughlin’s algorithm assumes we can perform fast multiplication modulo
both2n − 1 and2n + 1, for sufficiently many values ofn. This assumption is
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true for example with the Schönhage–Strassen algorithm: the original version
multiplies two numbers modulo2n + 1, but discarding the “twist” operations
before and after the Fourier transforms computes their product modulo2n −1.
(This has to be done at the top level only: the recursive operations compute
modulo2n′

+ 1 in both cases. See Remark 2 on page 57.)
The key idea in McLaughlin’s algorithm is to avoid the classical “multiply

and divide” method for modular multiplication. Instead, assuming thatN is
relatively prime to2n − 1, it determinesAB/(2n − 1) mod N with convo-
lutions modulo2n ± 1, which can be performed in an efficient way using the
FFT.

Algorithm 2.9 MultMcLaughlin

Input: A,B with 0 ≤ A,B < N < 2n, µ = −N−1 mod (2n − 1)

Output: AB/(2n − 1) mod N

1: m ← ABµ mod (2n − 1)

2: S ← (AB + mN) mod (2n + 1)

3: w ← −S mod (2n + 1)

4: if 2|w then s ← w/2 elses ← (w + 2n + 1)/2

5: if AB + mN = s mod 2 then t ← s elset ← s + 2n + 1

6: if t < N then returnt elsereturnt − N .

Theorem 2.6 Algorithm MultMcLaughlin computesAB/(2n − 1) mod N

correctly, in∼ 1.5M(n) operations, assuming multiplication modulo2n ± 1

costs∼M(n/2), or the same as3 Fourier transforms of sizen.

Proof. Step 1 is similar to step 1 of AlgorithmFastREDC, with β replaced by
2n −1. It follows thatAB +mN = 0 mod (2n −1), therefore we haveAB +

mN = k(2n−1) with 0 ≤ k < 2N . Step 2 computesS = −2k mod (2n+1),
then step 3 givesw = 2k mod (2n + 1), ands = k mod (2n + 1) in step 4.
Now, since0 ≤ k < 2n+1, the values does not uniquely determinek, whose
missing bit is determined from the least significant bit fromAB+mN (step 5).
Finally, the last step reducest = k moduloN .

The cost of the algorithm is mainly that of the four multiplicationsAB mod

(2n ±1), (AB)µ mod (2n −1) andmN mod (2n +1), which cost4M(n/2)

altogether. However, in(AB)µ mod (2n − 1) and mN mod (2n + 1), the
operandsµ andN are invariant, therefore their Fourier transforms can be pre-
computed, which saves2M(n/2)/3 altogether. A further saving ofM(n/2)/3

is obtained since we perform only one backward Fourier transform in step 2.
Accounting for the savings gives(4 − 2/3 − 1/3)M(n/2) = 3M(n/2) ∼
1.5M(n).
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The∼1.5M(n) cost of McLaughlin’s algorithm is quite surprising, since it
means that a modular multiplication can be performed fasterthan two multi-
plications. In other words, since a modular multiplicationis basically a mul-
tiplication followed by a division, this means that (at least in this case) the
“division” can be performed for half the cost of a multiplication!

2.4.4 Special moduli

For special moduliN faster algorithms may exist. The ideal case isN =

βn ± 1. This is precisely the kind of modulus used in the Schönhage–Strassen
algorithm based on the fast Fourier transform (FFT). In the FFT range, a mul-
tiplication moduloβn ± 1 is used to perform the product of two integers of
at mostn/2 words, and a multiplication moduloβn ± 1 costs∼ M(n/2) ∼
M(n)/2.

For example, in elliptic curve cryptography (ECC), we almost always use a
special modulus, for example a pseudo-Mersenne prime like2192 − 264 − 1

or 2256 − 2224 + 2192 + 296 − 1. However, in most applications the modulus
can not be chosen, and there is no reason for it to have a special form.

We refer to§2.9 for further information about special moduli.

2.5 Modular division and inversion

We have seen above that modular multiplication reduces to integer division,
since to computeab mod N , the classical method consists of dividingab by N

to obtainab = qN+r, thenab = r mod N . In the same vein, modular division
reduces to an (extended) integer gcd. More precisely, the divisiona/b mod N

is usually computed asa · (1/b) mod N , thus a modular inverse is followed by
a modular multiplication. We concentrate on modular inversion in this section.

We have seen in Chapter 1 that computing an extended gcd is expensive,
both for small sizes, where it usually costs the same as several multiplications,
and for large sizes, where it costsO(M(n) log n). Therefore, modular inver-
sions should be avoided if possible; we explain at the end of this section how
this can be done.

Algorithm 2.10 (ModularInverse) is just AlgorithmExtendedGcd(§1.6.2),
with (a, b) → (b,N) and the lines computing the cofactors ofN omitted.

Algorithm ModularInverse is the naive version of modular inversion, with
complexity O(n2) if N takes n words in baseβ. The subquadratic
O(M(n) log n) algorithm is based on theHalfBinaryGcd algorithm (§1.6.3).

When the modulusN has a special form, faster algorithms may exist. In
particular forN = pk, O(M(n)) algorithms exist, based on Hensel lifting,



66 Modular arithmetic and the FFT

Algorithm 2.10 ModularInverse
Input: integersb andN , b prime toN

Output: integeru = 1/b mod N

(u,w) ← (1, 0), c ← N

while c 6= 0 do
(q, r) ← DivRem(b, c)

(b, c) ← (c, r)

(u,w) ← (w, u − qw)

returnu.

which can be seen as thep-adic variant of Newton’s method (§4.2). To compute
1/b mod N , we use ap-adic version of the iteration (4.5)

xj+1 = xj + xj(1 − bxj) mod pk. (2.3)

Assumexj approximates1/b to “p-adic precision”ℓ, i.e. bxj = 1 + εpℓ, and
k = 2ℓ. Then, modulopk: bxj+1 = bxj(2 − bxj) = (1 + εpℓ)(1 − εpℓ) =

1−ε2p2ℓ. Therefore,xj+1 approximates1/b to double precision (in thep-adic
sense).

As an example, assume we want to compute the inverse of an odd integerb
modulo232. The initial approximationx0 = 1 satisfiesx0 = 1/b mod 2, thus
five iterations are enough. The first iteration isx1 ← x0+x0(1−bx0) mod 22,
which simplifies tox1 ← 2 − b mod 4 sincex0 = 1. Now, whetherb = 1

mod4 or b = 3 mod 4, we have2 − b = b mod 4; we can therefore start the
second iteration withx1 = b implicit

x2 ← b(2 − b2) mod 24, x3 ← x2(2 − bx2) mod 28,

x4 ← x3(2 − bx3) mod 216, x5 ← x4(2 − bx4) mod 232.

Consider for exampleb = 17. The above algorithm yieldsx2 = 1, x3 = 241,
x4 = 61 681 andx5 = 4042 322 161. Of course, any computation modpℓ

might be computed modulopk for k ≥ ℓ. In particular, all the above compu-
tations might be performed modulo232. On a32-bit computer, arithmetic on
basic integer types is usually performed modulo232, thus the reduction comes
for free, and we can write in the C language (usingunsigned variables and
the same variablex for x2, . . . , x5)

x = b * (2-b * b); x * = 2-b * x; x * = 2-b * x; x * = 2-b * x;

Another way to perform modular division when the modulus hasa special
form is Hensel’s division (§1.4.8). For a modulusN = βn, given two integers
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A,B, we computeQ andR such that

A = QB + Rβn.

Therefore, we haveA/B = Q mod βn. While Montgomery’s modular mul-
tiplication only computes the remainderR of Hensel’s division, modular divi-
sion computes the quotientQ; thus, Hensel’s division plays a central role in
modular arithmetic moduloβn.

2.5.1 Several inversions at once

A modular inversion, which reduces to an extended gcd (§1.6.2), is usually
much more expensive than a multiplication. This is true not only in the FFT
range, where a gcd takes timeΘ(M(n) log n), but also for smaller numbers.
When several inversions are to be performed modulo the same number, Algo-
rithm MultipleInversion is usually faster.

Algorithm 2.11 MultipleInversion
Input: 0 < x1, . . . , xk < N

Output: y1 = 1/x1 mod N, . . . , yk = 1/xk mod N

1: z1 ← x1

2: for i from 2 to k do
3: zi ← zi−1xi mod N

4: q ← 1/zk mod N

5: for i from k downto 2 do
6: yi ← qzi−1 mod N

7: q ← qxi mod N

8: y1 ← q.

Theorem 2.7 AlgorithmMultipleInversion is correct.

Proof. We havezi = x1x2 . . . xi mod N ; thus, at the beginning of step 6 for
a giveni, q = (x1 . . . xi)

−1 mod N , which givesyi = 1/xi mod N .

This algorithm uses only one modular inversion (step 4), and3(k−1) modular
multiplications. Thus, it is faster thank inversions when a modular inversion is
more than three times as expensive as a product. Figure 2.1 shows a recursive
variant of the algorithm, with the same number of modular multiplications: one
for each internal node when going up the (product) tree, and two for each in-
ternal node when going down the (remainder) tree. The recursive variant might
be performed in parallel inO(log k) operations usingO(k/ log k) processors.
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Figure 2.1 A recursive variant of AlgorithmMultipleInversion . First go
up the tree, buildingx1x2 mod N from x1 and x2 in the left branch,
x3x4 mod N in the right branch, andx1x2x3x4 mod N at the root of the
tree. Then invert the root of the tree. Finally, go down the tree, multiplying
1/(x1x2x3x4) by the stored valuex3x4 to get1/(x1x2), and so on.

A dual case is when there are several moduli but the number to invert is
fixed. Say we want to compute1/x mod N1, . . . , 1/x mod Nk. We illustrate
a possible algorithm in the casek = 4. First computeN = N1 . . . Nk using
a product tree like that in Figure 2.1. For example, first compute N1N2 and
N3N4, then multiply both to getN = (N1N2)(N3N4). Then computey =

1/x mod N , and go down the tree, while reducing the residue at each node. In
our example, we computez = y mod (N1N2) in the left branch, thenz mod

N1 yields1/x mod N1. An important difference between this algorithm and
the algorithm illustrated in Figure 2.1 is that here the numbers grow while
going up the tree. Thus, depending on the sizes ofx and theNj , this algorithm
might be of theoretical interest only.

2.6 Modular exponentiation

Modular exponentiation is the most time-consuming mathematical operation
in several cryptographic algorithms. The well-known RSA public-key cryp-
tosystem is based on the fact that computing

c = ae mod N (2.4)

is relatively easy, but recoveringa from c, e andN is difficult whenN has
at least two (unknown) large prime factors. The discrete logarithm problem is
similar: herec, a andN are given, and we look fore satisfying Eqn. (2.4). In
this case, the problem is difficult whenN has at least one large prime factor
(for example,N could be prime). The discrete logarithm problem is the basis
of the El Gamal cryptosystem, and a closely related problem is the basis of the
Diffie–Hellman key exchange protocol.
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When the exponente is fixed (or known to be small), an optimal sequence
of squarings and multiplications might be computed in advance. This is related
to the classicaladdition chainproblem: What is the smallest chain of additions
to reach the integere, starting from1? For example, ife = 15, a possible chain
is

1, 1 + 1 = 2, 1 + 2 = 3, 1 + 3 = 4, 3 + 4 = 7, 7 + 7 = 14, 1 + 14 = 15.

The length of a chain is defined to be the number of additions needed to com-
pute it (the above chain has length6). An addition chain readily translates to a
multiplication chain

a, a ·a = a2, a ·a2 = a3, a ·a3 = a4, a3 ·a4 = a7, a7 ·a7 = a14, a ·a14 = a15.

A shorter chain fore = 15 is

1, 1 + 1 = 2, 1 + 2 = 3, 2 + 3 = 5, 5 + 5 = 10, 5 + 10 = 15.

This chain is the shortest possible fore = 15, so we writeσ(15) = 5, where in
generalσ(e) denotes the length of the shortest addition chain fore. In the case
wheree is small, and an addition chain of shortest lengthσ(e) is known fore,
computingae mod N may be performed inσ(e) modular multiplications.

Whene is large and(a,N) = 1, thene might be reduced moduloφ(N),
whereφ(N) is Euler’s totient function, i.e. the number of integers in[1, N ]

which are relatively prime toN . This is becauseaφ(N) = 1 mod N whenever
(a,N) = 1 (Fermat’s little theorem).

Sinceφ(N) is a multiplicative function, it is easy to computeφ(N) if we
know the prime factorization ofN . For example

φ(1001) = φ(7 · 11 · 13) = (7 − 1)(11 − 1)(13 − 1) = 720,

and2009 = 569 mod 720, so172009 = 17569 mod 1001.
Assume now thate is smaller thanφ(N). Since a lower bound on the length

σ(e) of the addition chain fore is lg e, this yields a lower bound(lg e)M(n)

for modular exponentiation, wheren is the size ofN . Whene is of sizek, a
modular exponentiation costsO(kM(n)). Fork = n, the costO(nM(n)) of
modular exponentiation is much more than the cost of operations considered in
Chapter 1, withO(M(n) log n) for the more expensive ones there. The differ-
ent algorithms presented in this section save only a constant factor compared
to binary exponentiation (§2.6.1).

REMARK : whena fits in one word butN does not, the shortest addition chain
for e might not be the best way to computeae mod N , since in this case com-
putinga · aj mod N is cheaper than computingai · aj mod N for i ≥ 2.
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2.6.1 Binary exponentiation

A simple (and not far from optimal) algorithm for modular exponentiation is
binary (modular) exponentiation. Two variants exist: left-to-right and right-to-
left. We give the former in AlgorithmLeftToRightBinaryExp and leave the
latter as an exercise for the reader.

Algorithm 2.12 LeftToRightBinaryExp
Input: a, e,N positive integers
Output: x = ae mod N

1: let (eℓeℓ−1 . . . e1e0) be the binary representation ofe, with eℓ = 1

2: x ← a

3: for i from ℓ − 1 downto 0 do
4: x ← x2 mod N

5: if ei = 1 then x ← ax mod N .

Left-to-right binary exponentiation has two advantages over right-to-left
exponentiation:

• it requires only one auxiliary variable, instead of two for the right-to-left
exponentiation: one to store successive values ofa2i

, and one to store the
result;

• in the case wherea is small, the multiplicationsax at step 5 always involve
a small operand.

If e is a random integer ofℓ + 1 bits, step 5 will be performed on averageℓ/2

times, giving average cost3ℓM(n)/2.

EXAMPLE : for the exponente = 3499 211 612, which is

(11 010 000 100 100 011 011 101 101 011 100)2

in binary, AlgorithmLeftToRightBinaryExp performs31 squarings and15

multiplications (one for each1-bit, except the most significant one).

2.6.2 Exponentiation with a larger base

Compared to binary exponentiation, base2k exponentiation reduces the
number of multiplicationsax mod N (Algorithm LeftToRightBinaryExp ,
step 5). The idea is to precompute small powers ofa mod N :

The precomputation cost is(2k − 2)M(n), and if the digitsei are random
and uniformly distributed inZ ∩ [0, 2k), then the modular multiplication at
step 6 ofBaseKExp is performed with probability1− 2−k. If e hasn bits, the
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Algorithm 2.13 BaseKExp
Input: a, e,N positive integers
Output: x = ae mod N

1: precomputet[i] := ai mod N for 1 ≤ i < 2k

2: let (eℓeℓ−1 . . . e1e0) be the base2k representation ofe, with eℓ 6= 0

3: x ← t[eℓ]

4: for i from ℓ − 1 downto 0 do
5: x ← x2k

mod N

6: if ei 6= 0 then x ← t[ei]x mod N .

number of loops is aboutn/k. Ignoring the squares at step 5 (their total cost
depends onkℓ ≈ n so is independent ofk), the total expected cost in terms of
multiplications moduloN is

2k − 2 + n(1 − 2−k)/k.

Fork = 1, this formula givesn/2; for k = 2, it gives3n/8+2, which is faster
for n > 16; for k = 3, it gives7n/24 + 6, which is faster than thek = 2

formula forn > 48. Whenn is large, the optimal value ofk satisfiesk22k ≈
n/ ln 2. A minor disadvantage of this algorithm is its memory usage,since
Θ(2k) precomputed entries have to be stored. This is not a serious problem if
we choose the optimal value ofk (or a smaller value), because then the number
of precomputed entries to be stored iso(n).

EXAMPLE : consider the exponente = 3499 211 612. Algorithm BaseKExp
performs31 squarings independently ofk, we therefore count multiplications
only. Fork = 2, we havee = (3 100 210 123 231 130)4: Algorithm BaseKExp
performs two multiplications to precomputea2 anda3, and11 multiplications
for the non-zero digits ofe in base4 (except for the leading digit), i.e. a total
of 13. Fork = 3, we havee = (32 044 335 534)8, and the algorithm performs
six multiplications to precomputea2, a3, . . . , a7, and nine multiplications in
step 6, i.e. a total of15.

The last example illustrates two facts. First, if some digits (here6 and7) do
not appear in the base-2k representation ofe, then we do not need to precom-
pute the corresponding powers ofa. Second, when a digit is even, sayei = 2,
instead of doing three squarings and multiplying bya2, we could do two squar-
ings, multiply bya, and perform a last squaring. These considerations lead to
Algorithm BaseKExpOdd.

The correctness of steps 7–9 follows from:

x2k

a2md = (x2k−m

ad)2
m

.
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Algorithm 2.14 BaseKExpOdd
Input: a, e,N positive integers
Output: x = ae mod N

1: precomputea2 thent[i] := ai mod N for i odd,1 ≤ i < 2k

2: let (eℓeℓ−1 . . . e1e0) be the base2k representation ofe, with eℓ 6= 0

3: write eℓ = 2md with d odd
4: x ← t[d], x ← x2m

mod N

5: for i from ℓ − 1 downto 0 do
6: write ei = 2md with d odd (if ei = 0 thenm = d = 0)
7: x ← x2k−m

mod N

8: if ei 6= 0 then x ← t[d]x mod N

9: x ← x2m

mod N .

On the previous example, withk = 3, this algorithm performs only four
multiplications in step 1 (to precomputea2 thena3, a5, a7), then nine multi-
plications in step 8.

2.6.3 Sliding window and redundant representation

The “sliding window” algorithm is a straightforward generalization of
Algorithm BaseKExpOdd. Instead of cutting the exponent into fixed parts
of k bits each, the idea is to divide it into windows, where two adjacent win-
dows might be separated by a block of zero or more0-bits. The decomposition
starts from the least significant bits. For example, withe = 3499 211 612, or
in binary

1︸︷︷︸
e8

101︸︷︷︸
e7

00 001︸︷︷︸
e6

001︸︷︷︸
e5

00 011︸︷︷︸
e4

011︸︷︷︸
e3

101︸︷︷︸
e2

101︸︷︷︸
e1

0 111︸︷︷︸
e0

00.

Here there are nine windows (indicated bye8, ..., e0 above) and we perform
only eight multiplications, an improvement of one multiplication over Algo-
rithm BaseKExpOdd. On average, the sliding window base2k algorithm leads
to aboutn/(k + 1) windows instead ofn/k with fixed windows.

Another improvement may be feasible when division is feasible (and cheap)
in the underlying group. For example, if we encounter three consecutive ones,
say111, in the binary representation ofe, we may replace some bits by−1,
denoted bȳ1, as in1001̄. We have thus replaced three multiplications by one
multiplication and one division, in other wordsx7 = x8 ·x−1. For our running
example, this gives

e = 11 010 000 100 100 100 1̄00 01̄0 01̄0 1̄00 1̄00,
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which has only ten non-zero digits, apart from the leading one, instead of
15 with bits 0 and1 only. The redundant representation with bits{0, 1, 1̄} is
called theBooth representation. It is a special case of theAvizienis signed-digit
redundant representation. Signed-digit representations exist in any base.

For simplicity, we have not distinguished between the cost of multiplica-
tion and the cost of squaring (when the two operands in the multiplication are
known to be equal), but this distinction is significant in some applications (e.g.
elliptic curve cryptography). Note that, when the underlying group operation
is denoted by addition rather than multiplication, as is usually the case for
abelian groups (such as groups defined over elliptic curves), then the discus-
sion above applies with “multiplication” replaced by “addition”, “division” by
“subtraction”, and “squaring” by “doubling”.

2.7 Chinese remainder theorem

In applications where integer or rational results are expected, it is often worth-
while to use a “residue number system” (as in§2.1.3) and perform all compu-
tations modulo several small primes (or pairwise coprime integers). The final
result can then be recovered via the Chinese remainder theorem (CRT). For
such applications, it is important to have fast conversion routines from integer
to modular representation, and vice versa.

The integer to modular conversion problem is the following:given an integer
x, and several pairwise coprime modulimi, 1 ≤ i ≤ k, how do we efficiently
computexi = x mod mi, for 1 ≤ i ≤ k? This is the remainder tree problem of
Algorithm IntegerToRNS, which is also discussed in§2.5.1 and Exercise 1.35.

Algorithm 2.15 IntegerToRNS
Input: integerx, modulim1,m2, . . . ,mk pairwise coprime,k ≥ 1

Output: xi = x mod mi for 1 ≤ i ≤ k

1: if k ≤ 2 then
2: returnx1 = x mod m1, . . . ,xk = x mod mk

3: ℓ ← ⌊k/2⌋
4: M1 ← m1m2 · · ·mℓ, M2 ← mℓ+1 · · ·mk ⊲ might be precomputed
5: x1, . . . , xℓ ← IntegerToRNS(x mod M1,m1, . . . ,mℓ)

6: xℓ+1, . . . , xk ← IntegerToRNS(x mod M2,mℓ+1, . . . ,mk).

If all moduli mi have the same size, and if the sizen of x is comparable to
that of the productm1m2 · · ·mk, the costT (k) of Algorithm IntegerToRNS
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satisfies the recurrenceT (n) = 2D(n/2) + 2T (n/2), which yieldsT (n) =

O(M(n) log n). Such a conversion is therefore more expensive than a multipli-
cation or division, and is comparable in complexity terms toa base conversion
or a gcd.

The converseCRT reconstructionproblem is the following: given thexi,
how do we efficiently reconstruct the unique integerx, 0 ≤ x < m1m2 · · ·mk,
such thatx = xi mod mi, for 1 ≤ i ≤ k? AlgorithmRNSToIntegerperforms
that conversion, where the valuesu, v at step 7 might be precomputed if several
conversions are made with the same moduli, and step 11 ensures that the final
resultx lies in the interval[0,M1M2).

Algorithm 2.16 RNSToInteger
Input: residuesxi, 0 ≤ xi < mi for 1 ≤ i ≤ k, mi pairwise coprime
Output: 0 ≤ x < m1m2 · · ·mk with x = xi mod mi

1: if k = 1 then
2: returnx1

3: ℓ ← ⌊k/2⌋
4: M1 ← m1m2 · · ·mℓ, M2 ← mℓ+1 · · ·mk ⊲ might be precomputed
5: X1 ← RNSToInteger([x1, . . . , xℓ], [m1, . . . ,mℓ])

6: X2 ← RNSToInteger([xℓ+1, . . . , xk], [mℓ+1, . . . ,mk])

7: computeu, v such thatuM1 + vM2 = 1 ⊲ might be precomputed
8: λ1 ← uX2 mod M2, λ2 ← vX1 mod M1

9: x ← λ1M1 + λ2M2

10: if x ≥ M1M2 then
11: x ← x − M1M2.

To see that AlgorithmRNSToInteger is correct, consider an integeri, 1 ≤
i ≤ k, and show thatx = xi mod mi. If k = 1, it is trivial. Assumek ≥ 2,
and without loss of generality1 ≤ i ≤ ℓ. SinceM1 is a multiple ofmi, we
havex mod mi = (x mod M1) mod mi, where

x mod M1 = λ2M2 mod M1 = vX1M2 mod M1 = X1 mod M1,

and the result follows from the induction hypothesis thatX1 = xi mod mi.
Like IntegerToRNS, Algorithm RNSToInteger costsO(M(n) log n) for

M = m1m2 · · ·mk of sizen, assuming that themi are of equal sizes.
The CRT reconstruction problem is analogous to the Lagrangepolynomial

interpolation problem: find a polynomial of minimal degree interpolating given
valuesxi atk pointsmi.
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A “flat” variant of the explicit Chinese remainder reconstruction is the
following, taking for examplek = 3

x = λ1x1 + λ2x2 + λ3x3,

whereλi = 1 mod mi, andλi = 0 mod mj for j 6= i. In other words,λi is
the reconstruction ofx1 = 0, . . . , xi−1 = 0, xi = 1, xi+1 = 0, . . . , xk = 0.
For example, withm1 = 11, m2 = 13 andm3 = 17, we get

x = 221x1 + 1496x2 + 715x3.

To reconstruct the integer corresponding tox1 = 2, x2 = 3, x3 = 4, we
getx = 221 · 2 + 1496 · 3 + 715 · 4 = 7790, which after reduction modulo
11 · 13 · 17 = 2431 gives497.

2.8 Exercises

Exercise 2.1 In §2.1.3 we considered the representation of non-negative inte-
gers using a residue number system. Show that a residue number system can
also be used to represent signed integers, provided their absolute values are not
too large. (Specifically, if relatively prime modulim1,m2, . . . ,mk are used,
andB = m1m2 · · ·mk, the integersx should satisfy|x| < B/2.)

Exercise 2.2Suppose two non-negative integersx andy are represented by
their residues modulo a set of relatively prime modulim1,m2, . . . ,mk as in
§2.1.3. Consider thecomparison problem: is x < y? Is it necessary to convert
x andy back to a standard (non-CRT) representation in order to answer this
question? Similarly, if a signed integerx is represented as in Exercise 2.1,
consider thesign detection problem: is x < 0?

Exercise 2.3Consider the use of redundant moduli in the Chinese remainder
representation. In other words, using the notation of Exercise 2.2, consider the
case thatx could be reconstructed without using all the residues. Showthat this
could be useful for error detection (and possibly error correction) if arithmetic
operations are performed on unreliable hardware.

Exercise 2.4Consider the two complexity boundsO(M(d log(Nd))) and
O(M(d)M(log N)) given at the end of§2.1.5. Compare the bounds in three
cases: (a)d ≪ N ; (b) d ∼ N ; (c) d ≫ N . Assume two subcases for the mul-
tiplication algorithm: (i)M(n) = O(n2); (ii) M(n) = O(n log n). (For the
sake of simplicity, ignore anylog log factors.)
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Exercise 2.5Show that, if a symmetric representation in[−N/2, N/2) is used
in Algorithm ModularAdd (§2.2), then the probability that we need to add or
subtractN is 1/4 if N is even, and(1 − 1/N2)/4 if N is odd (assuming in
both cases thata andb are uniformly distributed).

Exercise 2.6Write down the complexity of the Montgomery–Svoboda algo-
rithm (§2.4.2, page 61) fork steps. Fork = 3, use van der Hoeven’s relaxed
Karatsuba multiplication [124] to save oneM(n/3) product.

Exercise 2.7Assume you have an FFT algorithm computing products modulo
2n +1. Prove that, with some preconditioning, you can perform a division with
remainder of a2n-bit integer by ann-bit integer as fast as1.5 multiplications
of n bits byn bits.

Exercise 2.8Assume you knowp(x) mod (xn1−1) andp(x) mod (xn2−1),
wherep(x) ∈ F [x] has degreen−1, andn1 > n2, andF is a field. Up to which
value ofn can you uniquely reconstructp? Design a corresponding algorithm.

Exercise 2.9Consider the problem of computing the Fourier transform of a
vectora = [a0, a1, . . . , aK−1], defined in Eqn. (2.1), when the sizeK is not a
power of two. For example,K might be an odd prime or an odd prime power.
Can you find an algorithm to do this inO(K log K) operations?

Exercise 2.10Consider the problem of computing the cyclic convolution of
two K-vectors, whereK is not a power of two. (For the definition, withK
replaced byN , see§3.3.1.) Show that the cyclic convolution can be computed
using FFTs on2λ points for some suitableλ, or by using DFTs onK points
(see Exercise 2.9). Which method is better?

Exercise 2.11Devise a parallel version of AlgorithmMultipleInversion as
outlined in§2.5.1. Analyse its time and space complexity. Try to minimize the
number of parallel processors required while achieving a parallel time com-
plexity of O(log k).

Exercise 2.12Analyse the complexity of the algorithm outlined at the end
of §2.5.1 to compute1/x mod N1, . . . , 1/x mod Nk, when all theNi have
sizen, andx has sizeℓ. For which values ofn, ℓ is it faster than the naive
algorithm which computes all modular inverses separately?[AssumeM(n) is
quasi-linear, and neglect multiplicative constants.]

Exercise 2.13Write aRightToLeftBinaryExp algorithm and compare it with
Algorithm LeftToRightBinaryExp of §2.6.1.
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Exercise 2.14Investigate heuristic algorithms for obtaining close-to-optimal
addition (or multiplication) chains when the cost of a general additiona + b

(or multiplicationa · b) is λ times the cost of duplicationa + a (or squaring
a · a), andλ is some fixed positive constant. (This is a reasonable model for
modular exponentiation, because multiplicationmod N is generally more ex-
pensive than squaringmod N . It is also a reasonable model for operations in
groups defined by elliptic curves, since in this case the formulæ for addition
and duplication are usually different and have different costs.)

2.9 Notes and references

Several number-theoretic algorithms make heavy use of modular arithmetic, in
particular integer factorization algorithms (for example: Pollard’sρ algorithm
and the elliptic curve method).

Another important application of modular arithmetic in computer algebra
is computing the roots of a univariate polynomial over a finite field, which
requires efficient arithmetic overFp[x]. See for example the excellent book
“MCA” by von zur Gathen and Gerhard [100].

We say in§2.1.3 that residue number systems can only be used whenN

factors intoN1N2 . . .; this is not quite true, since Bernstein and Sorenson show
in [24] how to perform modular arithmetic using a residue number system.

For notes on the Kronecker–Schönhage trick, see§1.9.
Barrett’s algorithm is described in [14], which also mentions the idea of

using two short products. The original description of Montgomery’s REDC al-
gorithm is [169]. It is now widely used in several applications. However, only
a few authors considered using a reduction factor which is not of the form
βn, among them McLaughlin [160] and Mihailescu [164]. The Montgomery–
Svoboda algorithm (§2.4.2) is also called “Montgomery tail tayloring” by
Hars [113], who attributes Svoboda’s algorithm – more precisely its variant
with the most significant word beingβ − 1 instead ofβ – to Quisquater. The
folding optimization of REDC described in§2.4.2 (Subquadratic Montgomery
Reduction) is an LSB-extension of the algorithm described in the context of
Barrett’s algorithm by Hasenplaugh, Gaubatz, and Gopal [118]. Amongst the
algorithms not covered in this book, we mention the “bipartite modular multi-
plication” of Kaihara and Takagi [134], which involves performing both MSB-
and LSB-division in parallel.

The description of McLaughlin’s algorithm in§2.4.3 follows [160, Varia-
tion 2]; McLaughlin’s algorithm was reformulated in a polynomial context by
Mihailescu [164].
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Many authors have proposed FFT algorithms, or improvementsof such al-
gorithms, and applications such as fast computation of convolutions. Some
references are Aho, Hopcroft, and Ullman [3]; Nussbaumer [176]; Borodin
and Munro [35], who describe the polynomial approach; Van Loan [222] for
the linear algebra approach; and Pollard [185] for the FFT over finite fields.
Rader [187] considered the case where the number of data points is a prime,
and Winograd [230] generalized Rader’s algorithm to prime powers. Bluestein’s
algorithm [30] is also applicable in these cases. In Bernstein [22, §23] the
reader will find some historical remarks and several nice applications of the
FFT.

The Scḧonhage–Strassen algorithm first appeared in [199]. Recently,
Fürer [98] has proposed an integer multiplication algorithmthat is asymptoti-
cally faster than the Schönhage–Strassen algorithm. Fürer’s algorithmalmost
achieves the conjectured best possibleΘ(n log n) running time.

Concerning special moduli, Percival considers in [183] thecaseN = a± b,
where botha andb are highly composite; this is a generalization of the case
N = βn ± 1. The pseudo-Mersenne primes of§2.4.4 are recommended in
the National Institute of Standards and Technology (NIST)Digital Signature
Standard[75]. See also the book by Hankerson, Menezes, and Vanstone [110].

Algorithm MultipleInversion – also known as “batch inversion” – is due
to Montgomery [170]. The application of Barrett’s algorithm for an implicitly
invariant divisor was suggested by Granlund.

Modular exponentiation and cryptographic algorithms are described in much
detail in the book by Menezes, van Oorschot, and Vanstone [161, Chapter 14].
A detailed description of the best theoretical algorithms,with references, can
be found in Bernstein [18]. When both the modulus and base are invariant,
modular exponentiation withk-bit exponent andn-bit modulus can be per-
formed in timeO((k/ log k)M(n)), after a precomputation ofO(k/ log k)

powers in timeO(kM(n)). Take for exampleb = 2k/t in Note 14.112 and
Algorithm 14.109 of [161], witht log t ≈ k, where the powersabi

mod N

for 0 ≤ i < t are precomputed. An algorithm of same complexity using a
DBNS (Double-Base Number System) was proposed by Dimitrov,Jullien, and
Miller [86], however with a larger table ofΘ(k2) precomputed powers.

Original papers on Booth recoding, SRT division, etc., are reprinted in the
book by Swartzlander [212].

A quadratic algorithm for CRT reconstruction is discussed in Cohen [73];
Möller gives some improvements in the case of a small number ofsmall moduli
known in advance [167]. AlgorithmIntegerToRNS can be found in Borodin
and Moenck [34]. The explicit Chinese remainder theorem andits applications
to modular exponentiation are discussed by Bernstein and Sorenson in [24].
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Floating-point arithmetic

This chapter discusses the basic operations – addition, subtrac-
tion, multiplication, division, square root, conversion –on arbi-
trary precision floating-point numbers, as Chapter 1 does for ar-
bitrary precision integers. More advanced functions such as el-
ementary and special functions are covered in Chapter 4. This
chapter largely follows the IEEE 754 standard, and extends it in
a natural way to arbitrary precision; deviations from IEEE 754
are explicitly mentioned. By default, IEEE 754 refers to the2008
revision, known as IEEE 754-2008; we write IEEE 754-1985
when we explicitly refer to the 1985 initial standard. Topics
not discussed here include: hardware implementations, fixed-
precision implementations, special representations.

3.1 Representation

The classical non-redundant representation of a floating-point numberx in
radixβ > 1 is the following (other representations are discussed in§3.8):

x = (−1)s · m · βe, (3.1)

where(−1)s, s ∈ {0, 1}, is thesign, m ≥ 0 is thesignificand, and the integer
e is theexponentof x. In addition, a positive integern defines theprecisionof
x, which means that the significandm contains at mostn significant digits in
radixβ.

An important special case ism = 0 representing zero. In this case, the sign
s and exponente are irrelevant and may be used to encode other information
(see for example§3.1.3).

Form 6= 0, several semantics are possible; the most common ones are:
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• β−1 ≤ m < 1, thenβe−1 ≤ |x| < βe. In this case,m is an integer multiple
of β−n. We say that theunit in the last placeof x is βe−n, and we write
ulp(x) = βe−n. For example,x = 3.1416 with radix β = 10 is encoded
by m = 0.31416 ande = 1. This is the convention that we will use in this
chapter.

• 1 ≤ m < β, thenβe ≤ |x| < βe+1, andulp(x) = βe+1−n. With radix ten
the numberx = 3.1416 is encoded bym = 3.1416 ande = 0. This is the
convention adopted in the IEEE 754 standard.

• We can also use an integer significandβn−1 ≤ m < βn, thenβe+n−1 ≤
|x| < βe+n, andulp(x) = βe. With radix ten the numberx = 3.1416 is
encoded bym = 31416 ande = −4.

Note that in the above three cases, there is only one possiblerepresentation of
a non-zero floating-point number: we have acanonicalrepresentation. In some
applications, it is useful to relax the lower bound on non-zero m, which in the
three cases above gives respectively0 < m < 1, 0 < m < β, and0 < m <

βn, with m an integer multiple ofβe−n, βe+1−n, and1 respectively. In this
case, there is no longer a canonical representation. For example, with an integer
significand and a precision of five digits, the number3.1400 might be encoded
by (m = 31400, e = −4), (m = 03140, e = −3), or (m = 00314, e = −2).
This non-canonical representation has the drawback that the most significant
non-zero digit of the significand is not known in advance. Theunique encoding
with a non-zero most significant digit, i.e.(m = 31400, e = −4) here, is called
thenormalized– or simplynormal– encoding.

The significand is also sometimes called themantissaor fraction. The above
examples demonstrate that the different significand semantics correspond to
different positions of the decimal (or radixβ) point, or equivalently to different
biasesof the exponent. We assume in this chapter that both the radixβ and the
significand semantics are implicit for a given implementation, and thus are not
physically encoded.

The words “base” and “radix” have similar meanings. For clarity, we reserve
“radix” for the constantβ in a floating-point representation, such as (3.1). The
significandm and exponente might be stored in a different base, as discussed
below.

3.1.1 Radix choice

Most floating-point implementations use radixβ = 2 or a power of two,
because this is convenient and efficient on binary computers. For a radixβ,
which is not a power of2, two choices are possible:
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• Store the significand in baseβ, or more generally in baseβk for an integer
k ≥ 1. Each digit in baseβk requires⌈k lg β⌉ bits. With such a choice, indi-
vidual digits can be accessed easily. Withβ = 10 andk = 1, this is the “Bi-
nary Coded Decimal” or BCD encoding: each decimal digit is represented
by four bits, with a memory loss of about 17% (sincelg(10)/4 ≈ 0.83). A
more compact choice is radix103, where three decimal digits are stored in
ten bits, instead of in12 bits with the BCD format. This yields a memory
loss of only 0.34% (sincelg(1000)/10 ≈ 0.9966).

• Store the significand in binary. This idea is used in Intel’s Binary-Integer
Decimal (BID) encoding, and in one of the two decimal encodings in IEEE
754-2008. Individual digits can not be accessed directly, but we can use effi-
cient binary hardware or software to perform operations on the significand.

A drawback of the binary encoding is that, during the addition of two arbitrary-
precision numbers, it is not easy to detect if the significandexceeds the max-
imum valueβn − 1 (when considered as an integer) and thus if rounding is
required. Eitherβn is precomputed, which is only realistic if all computations
involve the same precisionn, or it is computed on the fly, which might result
in increased complexity (see Chapter 1 and§2.6.1).

3.1.2 Exponent range

In principle, we might consider an unbounded exponent. In other words, the
exponente might be encoded by an arbitrary-precision integer (see Chapter 1).
This would have the great advantage that no underflow or overflow could occur
(see below). However, in most applications, an exponent encoded in32 bits is
more than enough: this enables us to represent values up to about10646 456 993

for β = 2. A result exceeding this value most probably corresponds toan error
in the algorithm or the implementation. Using arbitrary-precision integers for
the exponent induces an extra overhead that slows down the implementation in
the average case, and it usually requires more memory to store each number.

Thus, in practice the exponent nearly always has a limited rangeemin ≤
e ≤ emax. We say that a floating-point number isrepresentableif it can be
represented in the form(−1)s · m · βe with emin ≤ e ≤ emax. The set of
representable numbers clearly depends on the significand semantics. For the
convention we use here, i.e.β−1 ≤ m < 1, the smallest positive representable
floating-point number isβemin−1, and the largest one isβemax(1 − β−n).

Other conventions for the significand yield different exponent ranges. For
example, the double-precision format – calledbinary64 in IEEE 754-2008 –
hasemin = −1022, emax = 1023 for a significand in[1, 2); this corresponds to
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emin = −1021, emax = 1024 for a significand in[1/2, 1), andemin = −1074,
emax = 971 for an integer significand in[252, 253).

3.1.3 Special values

With a bounded exponent range, if we want a complete arithmetic, we need
some special values to represent very large and very small values. Very small
values are naturally flushed to zero, which is a special number in the sense that
its significand ism = 0, which is not normalized. For very large values, it
is natural to introduce two special values−∞ and+∞, which encode large
non-representable values. Since we have two infinities, it is natural to have two
zeros−0 and+0, for example1/(−∞) = −0 and1/(+∞) = +0. This is the
IEEE 754 choice. Another possibility would be to have only one infinity and
one zero0, forgetting the sign in both cases.

An additional special value isNot a Number(NaN), which either represents
an uninitialized value, or is the result of aninvalid operation like

√
−1 or

(+∞)− (+∞). Some implementations distinguish between different kinds of
NaN, in particular IEEE 754 definessignalingandquietNaNs.

3.1.4 Subnormal numbers

Subnormal numbersare required by the IEEE 754 standard, to allow what is
called gradual underflowbetween the smallest (in absolute value) non-zero
normalized numbers and zero. We first explain what subnormalnumbers are;
then we will see why they are not necessary in arbitrary precision.

Assume we have an integer significand in[βn−1, βn), wheren is the pre-
cision, and an exponent in[emin, emax]. Write η = βemin . The two smallest
positive normalized numbers arex = βn−1η and y = (βn−1 + 1)η. The
differencey − x equalsη, which is tiny compared tox. In particular,y − x

can not be represented exactly as a normalized number (assuming βn−1 > 1)
and will be rounded to zero in “rounding to nearest” mode (§3.1.9). This has
the unfortunate consequence that instructions such as

if (y != x) then
z = 1.0/(y - x);

will produce a “division by zero” error when executing1.0/(y - x) .
Subnormal numbers solve this problem. The idea is to relax the condition

βn−1 ≤ m for the exponentemin. In other words, we include all numbers
of the formm · βemin for 1 ≤ m < βn−1 in the set of valid floating-point
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numbers. We could also permitm = 0, and then zero would be a subnormal
number, but we continue to regard zero as a special case.

Subnormal numbers are all positive integer multiples of±η, with a multi-
plier m, 1 ≤ m < βn−1. The difference betweenx = βn−1η and
y = (βn−1 + 1)η is now representable, since it equalsη, the smallest positive
subnormal number. More generally, all floating-point numbers are multiples of
η, likewise for their sum or difference (in other words, operations in the sub-
normal domain correspond to fixed-point arithmetic). If thesum or difference
is non-zero, it has magnitude at leastη, and thus can not be rounded to zero.
Therefore, the “division by zero” problem mentioned above does not occur
with subnormal numbers.

In the IEEE 754 double-precision format – calledbinary64 in IEEE 754-
2008 – the smallest positive normal number is2−1022, and the smallest positive
subnormal number is2−1074. In arbitrary precision, subnormal numbers sel-
dom occur, since usually the exponent range is huge comparedto the expected
exponents in a given application. Thus, the only reason for implementing sub-
normal numbers in arbitrary precision is to provide an extension of IEEE 754
arithmetic. Of course, if the exponent range is unbounded, then there is ab-
solutely no need for subnormal numbers, because any non-zero floating-point
number can be normalized.

3.1.5 Encoding

The encodingof a floating-point numberx = (−1)s · m · βe is the way the
valuess, m, ande are stored in the computer. Remember thatβ is implicit, i.e.
is considered fixed for a given implementation; as a consequence, we do not
consider heremixed radixoperations involving numbers with different radices
β andβ′.

We have already seen that there are several ways to encode thesignificand
m whenβ is not a power of two, in base-βk or in binary. For normal numbers
in radix2, i.e.2n−1 ≤ m < 2n, the leading bit of the significand is necessarily
one, thus we might choose not the encode it in memory, to gain an extra bit
of precision. This is called theimplicit leading bit, and it is the choice made
in the IEEE 754 formats. For example, the double-precision format has a sign
bit, an exponent field of11 bits, and a significand of53 bits, with only52 bits
stored, which gives a total of64 stored bits:

sign (biased) exponent significand
(1 bit) (11 bits) (52 bits, plus implicit leading bit)
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A nice consequence of this particular encoding is the following. Letx be a
double-precision number, neither subnormal,±∞, NaN, nor the largest normal
number in absolute value. Consider the64-bit encoding ofx as a64-bit integer,
with the sign bit in the most significant bit, the exponent bits in the next most
significant bits, and the explicit part of the significand in the low significant
bits. Adding1 to this 64-bit integer yields the next double-precision number
to x, away from zero. Indeed, if the significandm is smaller than253 − 1, m

becomesm + 1, which is smaller than253. If m = 253 − 1, then the lowest
52 bits are all set, and a carry occurs between the significand field and the
exponent field. Since the significand field becomes zero, the new significand is
252, taking into account the implicit leading bit. This corresponds to a change
from (253 − 1) · 2e to 252 · 2e+1, which is exactly the next number away from
zero. Thanks to this consequence of the encoding, an integercomparison of
two words (ignoring the actual type of the operands) should give the same
result as a floating-point comparison, so it is possible to sort normal positive
floating-point numbers as if they were integers of the same length (64-bit for
double precision).

In arbitrary precision, saving one bit is not as crucial as infixed (small)
precision, where we are constrained by the word size (usually 32 or 64 bits).
Thus, in arbitrary precision, it is easier and preferable toencode the whole
significand. Also, note that having an “implicit bit” is not possible in radix
β > 2, since for a normal number the most significant digit might take several
values, from1 to β − 1.

When the significand occupies several words, it can be stored in a linked
list, or in an array (with a separate size field). Lists are easier to extend, but
accessing arrays is usually more efficient because fewer memory references
are required in the inner loops and memory locality is better.

The signs is most easily encoded as a separate bit field, with a non-negative
significand. This is thesign-magnitudeencoding. Other possibilities are to
have a signed significand, using either one’s complement or two’s complement,
but in the latter case a special encoding is required for zero, if it is desired to
distinguish+0 from −0. Finally, the exponent might be encoded as a signed
word (for example, typelong in the C language).

3.1.6 Precision: local, global, operation, operand

The different operands of a given operation might have different precisions,
and the result of that operation might be desired with yet another precision.
There are several ways to address this issue.
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• The precision, sayn, is attached to a given operation. In this case, operands
with a smaller precision are automatically converted to precisionn. Operands
with a larger precision might either be left unchanged, or rounded to preci-
sionn. In the former case, the code implementing the operation must be able
to handle operands with different precisions. In the lattercase, the round-
ing mode to shorten the operands must be specified. Note that this round-
ing mode might differ from that of the operation itself, and that operand
rounding might yield large errors. Consider for examplea = 1.345 and
b = 1.234567 with a precision of four digits. Ifb is taken as exact, the exact
value ofa − b equals0.110433, which when rounded to nearest becomes
0.1104. If b is first rounded to nearest to four digits, we getb′ = 1.235, and
a − b′ = 0.1100 is rounded to itself.

• The precisionn is attached to each variable. Here again two cases may occur.
If the operation destination is part of the operation inputs, as in
sub(c, a, b) , which meansc ← round(a − b), then the precision of
the result operandc is known, and thus the rounding precision is known
in advance. Alternatively, if no precision is given for the result, we might
choose the maximal (or minimal) precision from the input operands, or use
a global variable, or request an extra precision parameter for the operation,
as inc = sub(a, b, n) .

Of course, these different semantics are inequivalent, andmay yield different
results. In the following, we consider the case where each variable, including
the destination variable, has its own precision, and no pre-rounding or post-
rounding occurs. In other words, the operands are considered exact to their full
precision.

Rounding is considered in detail in§3.1.9. Here we define what we mean by
thecorrect roundingof a function.

Definition 3.1 Leta, b, . . . be floating-point numbers,f a mathematical func-
tion, n ≥ 1 an integer, and◦ a rounding mode. We say thatc is the cor-
rect roundingof f(a, b, . . .), and we writec = ◦n(f(a, b, . . .)), if c is the
floating-point number closest tof(a, b, . . .) in precisionn and according to
the given rounding mode. In case several numbers are at the same distance
from f(a, b, . . .), the rounding mode must define in a deterministic way which
one is “the closest”. When there is no ambiguity, we omitn and write simply
c = ◦(f(a, b, . . .)).
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3.1.7 Link to integers

Most floating-point operations reduce to arithmetic on the significands, which
can be considered as integers as seen at the beginning of thissection.
Therefore, efficient arbitrary precision floating-point arithmetic requires effi-
cient underlying integer arithmetic (see Chapter 1).

Conversely, floating-point numbers might be useful for the implementation
of arbitrary precision integer arithmetic. For example, wemight use hard-
ware floating-point numbers to represent an arbitrary precision integer. Indeed,
since a double-precision floating-point number has53 bits of precision, it can
represent an integer up to253 − 1, and an integerA can be represented as
A = an−1β

n−1 + · · · + aiβ
i + · · · + a1β + a0, whereβ = 253, and theai

are stored in double-precision data types. Such an encodingwas popular when
most processors were32-bit, and some had relatively slow integer operations
in hardware. Now that most computers are64-bit, this encoding is obsolete.

Floating-pointexpansionsare a variant of the above. Instead of storingai

and havingβi implicit, the idea is to directly storeaiβ
i. Of course, this only

works for relatively smalli, i.e. wheneveraiβ
i does not exceed the format

range. For example, for IEEE 754 double precision, the maximal integer preci-
sion is1024 bits. (Alternatively, we might represent an integer as a multiple of
the smallest positive number2−1074, with a corresponding maximal precision
of 2098 bits.)

Hardware floating-point numbers might also be used to implement the fast
Fourier transform (FFT), using complex numbers with floating-point real and
imaginary part (see§3.3.1).

3.1.8 Ziv’s algorithm and error analysis

A rounding boundaryis a point at which the rounding function◦(x) is discon-
tinuous.

In fixed precision, for basic arithmetic operations, it is sometimes possible
to design one-pass algorithms that directly compute a correct rounding. How-
ever, in arbitrary precision, or for elementary or special functions, the classical
method is to use Ziv’s algorithm:

1. we are given an inputx, a target precisionn, and a rounding mode;

2. compute an approximationy with precisionm > n, and a corresponding
error boundε such that|y − f(x)| ≤ ε;

3. if [y − ε, y + ε] contains a rounding boundary, increasem and go to step 2;

4. output the rounding ofy, according to the given rounding mode.
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The error boundε at step 2 might be computed eithera priori, i.e. fromx and
n only, ordynamically, i.e. from the different intermediate values computed by
the algorithm. A dynamic bound will usually be tighter, but will require extra
computations (however, those computations might be done inlow precision).

Depending on the mathematical function to be implemented, we might pre-
fer an absolute or a relative error analysis. When computing arelative error
bound, at least two techniques are available: we might express the errors in
terms of units in the last place (ulps), or we might express them in terms of
true relative error. It is of course possible in a given analysis to mix both kinds
of errors, but in general a constant factor – the radixβ – is lost when converting
from one kind of relative error to the other kind.

Another important distinction isforward versusbackwarderror analysis.
Assume we want to computey = f(x). Because the input is rounded, and/or
because of rounding errors during the computation, we mightactually compute
y′ ≈ f(x′). Forward error analysis will bound|y′ − y| if we have a bound on
|x′ − x| and on the rounding errors that occur during the computation.

Backward error analysis works in the other direction. If thecomputed value
is y′, then backward error analysis will give us a numberδ such that, forsome
x′ in the ball|x′ − x| ≤ δ, we havey′ = f(x′). This means that the error is
no worsethan might have been caused by an error ofδ in the input value. Note
that, if the problem is ill-conditioned,δ might be small even if|y′− y| is large.

In our error analyses, we assume that no overflow or underflow occurs,
or equivalently that the exponent range is unbounded, unless the contrary is
explicitly stated.

3.1.9 Rounding

There are several possible definitions of rounding. For example probabilistic
rounding– also calledstochastic rounding– chooses at random a rounding
towards+∞ or −∞ for each operation. The IEEE 754 standard defines four
rounding modes: towards zero,+∞, −∞ and to nearest (with ties broken to
even). Another useful mode is “rounding away from zero”, which rounds in the
opposite direction from zero: a positive number is rounded towards+∞, and a
negative number towards−∞. If the sign of the result is known, all IEEE 754
rounding modes might be converted to either rounding to nearest, rounding
towards zero, or rounding away from zero.

Theorem 3.2 Consider a floating-point system with radixβ and precisionn.
Letu be the rounding to nearest of some realx. Then the following inequalities
hold: |u − x| ≤ 1

2 ulp(u), |u − x| ≤ 1
2β1−n|u|, |u − x| ≤ 1

2β1−n|x|.
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Proof. Forx = 0, necessarilyu = 0, and the statement holds. Without loss of
generality, we can assumeu andx positive. The first inequality is the definition
of rounding to nearest, and the second one follows fromulp(u) ≤ β1−nu.
(In the caseβ = 2, it gives |u − x| ≤ 2−n|u|.) For the last inequality, we
distinguish two cases: ifu ≤ x, it follows from the second inequality. Ifx < u,
then if x and u have the same exponent, i.e.βe−1 ≤ x < u < βe, then
ulp(u) = βe−n ≤ β1−nx. The remaining case isβe−1 ≤ x < u = βe. Since
the floating-point number precedingβe is βe(1− β−n), andx was rounded to
nearest, we have|u − x| ≤ βe−n/2 here too.

In order to round according to a given rounding mode, we proceed as fol-
lows:

1. first round as if the exponent range was unbounded, with thegiven rounding
mode;

2. if the rounded result is within the exponent range, returnthis result;
3. otherwise raise the “underflow” or “overflow” exception, and return±0 or

±∞ accordingly.

For example, assume radix10 with precision4, emax = 3, with x = 0.9234 ·
103, y = 0.7656·102. The exact sumx+y equals0.99996·103. With rounding
towards zero, we obtain0.9999 · 103, which is representable, so there is no
overflow. With rounding to nearest,x + y rounds to0.1000 · 104, where the
exponent4 exceedsemax = 3, so we get+∞ as the result, with an overflow.
In this model, overflow depends not only on the operands, but also on the
rounding mode.

The “round to nearest” mode of IEEE 754 rounds the result of anoperation
to the nearest representable number. In case the result of anoperation is exactly
halfway between two consecutive numbers, the one with leastsignificant bit
zero is chosen (for radix2). For example,1.10112 is rounded with a precision
of four bits to1.1102, as is1.11012. However, this rule does not readily extend
to an arbitrary radix. Consider for example radixβ = 3, a precision of four
digits, and the number1212.111 . . .3. Both 12123 and12203 end in an even
digit. The natural extension is to require the whole significand to be even, when
interpreted as an integer in[βn−1, βn − 1]. In this setting,(1212.111 . . .)3
rounds to(1212)3 = 5010. (Note thatβn is an odd number here.)

Assume we want to correctly round a real number, whose binaryexpansion
is 2e · 0.1b2 . . . bnbn+1 . . ., to n bits. It is enough to know the values ofr =

bn+1 – called theround bit – and that of thesticky bits, which is zero when
bn+2bn+3 . . . is identically zero, and one otherwise. Table 3.1 shows how to
correctly round givenr, s, and the given rounding mode; rounding to±∞
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being converted to rounding towards zero or away from zero, according to the
sign of the number. The entry “bn” is for round to nearest in the case of a tie:
if bn = 0, it will be unchanged, but ifbn = 1, we add one (thus changingbn

to zero).

r s towards zero to nearest away from zero

0 0 0 0 0
0 1 0 0 1
1 0 0 bn 1
1 1 0 1 1

Table 3.1Rounding rules according to the round bitr and
the sticky bits: a “ 0” entry means truncate (round towards
zero), a “1” means round away from zero (add one to the

truncated significand).

In general, we do not have an infinite expansion, but a finite approximationy
of an unknown real valuex. For example,y might be the result of an arithmetic
operation such as division, or an approximation to the valueof a transcendental
function such asexp. The following problem arises: given the approximation
y, and a bound on the error|y − x|, is it possible to determine the correct
rounding ofx? AlgorithmRoundingPossiblereturnstrue iff it is possible.

Algorithm 3.1 RoundingPossible
Input: a floating-point numbery = 0.1y2 . . . ym, a precisionn ≤ m, an error

boundε = 2−k, a rounding mode◦
Output: truewhen◦n(x) can be determined for|y − x| ≤ ε

if k ≤ n + 1 then returnfalse
if ◦ is to nearestthen r ← 1 elser ← 0

if yn+1 = r andyn+2 = · · · = yk = 0 then s ← 0 elses ← 1

if s = 1 then returntrueelsereturnfalse.

Proof of correctness.Since rounding is monotonic, it is possible to determine
◦(x) exactly when◦(y − 2−k) = ◦(y + 2−k), or in other words when the
interval [y − 2−k, y + 2−k] contains no rounding boundary (or only one as
y − 2−k or y + 2−k).

If k ≤ n + 1, then the interval[−2−k, 2−k] has width at least2−n, and
thus contains at least one rounding boundary in its interior, or two rounding
boundaries, and it is not possible to round correctly. In thecase of
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directed rounding (resp. rounding to nearest), ifs = 0, the approximationy is
representable (resp. the middle of two representable numbers) in precision
n, and it is clearly not possible to round correctly. Ifs = 1, the interval
[y−2−k, y +2−k] contains at most one rounding boundary, and, if so, it is one
of the bounds; thus, it is possible to round correctly.

The double rounding problem

When a given real valuex is first rounded to precisionm and then to precision
n < m, we say that a “double rounding” occurs. The “double rounding prob-
lem” happens when this latter value differs from the direct rounding ofx to the
smaller precisionn, assuming the same rounding mode is used in all cases, i.e.
when

◦n(◦m(x)) 6= ◦n(x).

The double rounding problem does not occur for directed rounding modes.
For these rounding modes, the rounding boundaries at the larger precisionm
refine those at the smaller precisionn, thus all real valuesx that round to the
same valuey at precisionm also round to the same value at precisionn, namely
◦n(y).

Consider the decimal valuex = 3.14251. Rounding to nearest to five digits,
we gety = 3.1425; roundingy to nearest-even to four digits, we get3.142,
whereas direct rounding ofx would give3.143.

With rounding to nearest mode, the double rounding problem only occurs
when the second rounding involves the even-rule, i.e. the value y = ◦m(x) is
a rounding boundary at precisionn. Otherwise,y has distance at least one ulp
(in precisionm) from a rounding boundary at precisionn, and since|y − x| is
bounded by half an ulp (in precisionm), all possible values forx round to the
same value in precisionn.

Note that the double rounding problem does not occur with allways of
breaking ties for rounding to nearest (Exercise 3.2).

3.1.10 Strategies

To determine the correct rounding off(x) with n bits of precision, the best
strategy is usually to first compute an approximationy to f(x) with a working
precision ofm = n+h bits, withh relatively small. Several strategies are pos-
sible in Ziv’s algorithm (§3.1.8) when this first approximationy is not accurate
enough, or too close to a rounding boundary:

• Compute the exact value off(x), and round it to the target precisionn.
This is possible for a basic operation, for examplef(x) = x2, or more
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generallyf(x, y) = x + y or x × y. Some elementary functions may yield
an exactly representable output too, for example

√
2.25 = 1.5. An “exact

result” test after the first approximation avoids possibly unnecessary further
computations.

• Repeat the computation with a larger working precisionm′ = n + h′. As-
suming that the digits off(x) behave “randomly” and that|f ′(x)/f(x)| is
not too large, usingh′ ≈ lg n is enough to guarantee that rounding is possi-
ble with probability1−O(1/n). If rounding is still not possible, because the
h′ last digits of the approximation encode0 or 2h′ − 1, we can increase the
working precision and try again. A check for exact results guarantees that
this process will eventually terminate, provided the algorithm used has the
property that it gives the exact result if this result is representable and the
working precision is high enough. For example, the square root algorithm
should return the exact result if it is representable (see AlgorithmFPSqrt in
§3.5, and also Exercise 3.3).

3.2 Addition, subtraction, comparison

Addition and subtraction of floating-point numbers operatefrom the most sig-
nificant digits, whereas integer addition and subtraction start from the least
significant digits. Thus completely different algorithms are involved. Also, in
the floating-point case, part or all of the inputs might have no impact on the
output, except in the rounding phase.

In summary, floating-point addition and subtraction are more difficult to im-
plement than integer addition/subtraction for two reasons:

• Scaling due to the exponents requires shifting the significands before adding
or subtracting them – in principle, we could perform all operations using
only integer operations, but this might require huge integers, for example
when adding1 and2−1000.

• As the carries are propagated from least to most significant digits, we may
have to look at arbitrarily low input digits to guarantee correct rounding.

In this section, we distinguish between “addition”, where both operands to
be added have the same sign, and “subtraction”, where the operands to be
added have different signs (we assume a sign-magnitude representation). The
case of one or both operands zero is treated separately; in the description below
we assume that all operands are non-zero.
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3.2.1 Floating-point addition

Algorithm FPadd adds two binary floating-point numbersb andc of the same
sign. More precisely, it computes the correct rounding ofb + c, with respect
to the given rounding mode◦. For the sake of simplicity, we assumeb andc

are positive,b ≥ c > 0. It will also be convenient to scaleb and c so that
2n−1 ≤ b < 2n and2m−1 ≤ c < 2m, wheren is the desired precision of the
output, andm ≤ n. Of course, if the inputsb andc to Algorithm FPadd are
scaled by2k, then, to compensate for this, the output must be scaled by2−k.
We assume that the rounding mode is to nearest, towards zero,or away from
zero (rounding to±∞ reduces to rounding towards zero or away from zero,
depending on the sign of the operands).

Algorithm 3.2 FPadd
Input: b ≥ c > 0 two binary floating-point numbers, a precisionn such that

2n−1 ≤ b < 2n, and a rounding mode◦
Output: a floating-point numbera of precision n and scalee such that

a · 2e = ◦(b + c)

1: split b into bh + bℓ wherebh contains then most significant bits ofb.
2: split c into ch + cℓ wherech contains the most significant bits ofc, and

ulp(ch) = ulp(bh) = 1 ⊲ ch might be zero
3: ah ← bh + ch, e ← 0

4: (c, r, s) ← bℓ + cℓ ⊲ see the text
5: (a, t) ← (ah + c + round(◦, r, s), etc.) ⊲ for t see Table 3.2 (upper)
6: if a ≥ 2n then
7: (a, e) ← (round2(◦, a, t), e + 1) ⊲ see Table 3.2 (lower)
8: if a = 2n then (a, e) ← (a/2, e + 1)

9: return(a, e).

The values ofround(◦, r, s) andround2(◦, a, t) are given in Table 3.2. We
have simplified some of the expressions given in Table 3.2. For example, in
the upper half of the table,r ∨ s means0 if r = s = 0, and1 otherwise. In
the lower half of the table,2⌊(a + 1)/4⌋ is (a − 1)/2 if a = 1 mod 4, and
(a + 1)/2 if a = 3 mod 4.

At step 4 of AlgorithmFPadd, the notation(c, r, s) ← bℓ+cℓ means thatc is
the carry bit ofbℓ + cℓ, r the round bit, ands the sticky bit;c, r, s ∈ {0, 1}. For
rounding to nearest,t = sign(b+c−a) is a ternary value, which is respectively
positive, zero, or negative whena is smaller than, equal to, or larger than the
exact sumb + c.

Theorem 3.3 AlgorithmFPadd is correct.
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◦ r s round(◦, r, s) t

towards0 any any 0 –
away from0 any any r ∨ s –

to nearest 0 any 0 s
to nearest 1 0 0/1 (even rounding) +1/−1
to nearest 1 6= 0 1 −1

◦ a mod 2 t round2(◦, a, t)

any 0 any a/2
towards0 1 any (a − 1)/2

away from0 1 any (a + 1)/2
to nearest 1 0 2⌊(a + 1)/4⌋
to nearest 1 ±1 (a + t)/2

Table 3.2Rounding rules for addition.

Proof. We have2n−1 ≤ b < 2n and2m−1 ≤ c < 2m, with m ≤ n. Thus,
bh andch are the integer parts ofb andc, bℓ andcℓ their fractional parts. Since
b ≥ c, we havech ≤ bh and2n−1 ≤ bh ≤ 2n−1; thus,2n−1 ≤ ah ≤ 2n+1−2,
and, at step 5,2n−1 ≤ a ≤ 2n+1. If a < 2n, a is the correct rounding ofb + c.
Otherwise, we face the “double rounding” problem: roundinga down ton bits
will give the correct result, except whena is odd and rounding is to nearest. In
that case, we need to know if the first rounding was exact, and if not in which
direction it was rounded; this information is encoded in theternary valuet.
After the second rounding, we have2n−1 ≤ a ≤ 2n.

Note that the exponentea of the result lies betweeneb (the exponent ofb –
here we considered the caseeb = n) andeb + 2. Thus, no underflow can occur
in an addition. The caseea = eb + 2 can occur only when the destination
precision is less than that of the operands.

3.2.2 Floating-point subtraction

Floating-point subtraction (of positive operands) is verysimilar to addition,
with the difference thatcancellationcan occur. Consider for example the sub-
traction6.77823− 5.98771. The most significant digit of both operands disap-
peared in the result0.79052. This cancellation can be dramatic, as in
6.7782357934 − 6.7782298731 = 0.0000059203, where six digits were can-
celled.
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Two approaches are possible, assumingn result digits are wanted, and the
exponent difference between the inputs isd:

• Subtract then − d most-significant digits of the smaller operand from the
n most-significant digits of the larger operand. If the resulthasn − e digits
with e > 0, restart withn+ e digits from the larger operand and(n+ e)−d

from the smaller operand.
• Alternatively, predict the numbere of cancelled digits in the subtraction,

and directly subtract the(n + e) − d most-significant digits of the smaller
operand from then + e most-significant digits of the larger one.

Note that, in the first approach, we might havee = n if all most-significant
digits cancel, and thus the process might need to be repeatedseveral times.

The first step in the second approach is usually calledleading zero detec-
tion. Note that the numbere of cancelled digits might depend on the rounding
mode. For example,6.778 − 5.7781 with a 3-digit result yields0.999 with
rounding toward zero, and1.00 with rounding to nearest. Therefore, in a real
implementation, the definition ofe has to be made precise.

In practice, we might considern + g and(n + g) − d digits instead ofn
andn−d, where theg “guard digits” would prove useful (i) to decide the final
rounding, and/or (ii) to avoid another loop in casee ≤ g.

Sterbenz’s theorem

Sterbenz’s theorem is an important result concerning floating-point subtraction
(of operands of the same sign). It states that the rounding error is zero in some
common cases. More precisely:

Theorem 3.4 (Sterbenz)If x andy are two floating-point numbers of same
precisionn, such thaty lies in the interval[x/2, 2x] ∪ [2x, x/2], theny − x is
exactly representable in precisionn, if there is no underflow.

Proof. The casex = y = 0 is trivial, so assume thatx 6= 0. Sincey ∈
[x/2, 2x] ∪ [2x, x/2], x andy must have the same sign. We assume without
loss of generality thatx andy are positive, soy ∈ [x/2, 2x].

Assumex ≤ y ≤ 2x (the same reasoning applies forx/2 ≤ y ≤ x, i.e.y ≤
x ≤ 2y, by interchangingx andy). Sincex ≤ y, we haveulp(x) ≤ ulp(y),
and thusy is an integer multiple ofulp(x). It follows thaty − x is an integer
multiple of ulp(x). Since0 ≤ y − x ≤ x, y − x is necessarily representable
with the precision ofx.

It is important to note that Sterbenz’s theorem applies for any radix β; the
constant2 in [x/2, 2x] has nothing to do with the radix.
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3.3 Multiplication

Multiplication of floating-point numbers is called ashort product. This reflects
the fact that, in some cases, the low part of the full product of the signifi-
cands has no impact – except perhaps for the rounding – on the final result.
Consider the multiplicationx × y, wherex = ℓβe and y = mβf . Then
◦(xy) = ◦(ℓm)βe+f , and it suffices to consider the case thatx = ℓ andy = m

are integers, and the product is rounded at some weightβg for g ≥ 0. Either
the integer productℓ × m is computed exactly, using one of the algorithms
from Chapter 1, and then rounded; or the upper part is computed directly using
a “short product algorithm”, with correct rounding. The different cases that can
occur are depicted in Figure 3.1.
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Figure 3.1 Different multiplication scenarios, according to the input and output
precisions. The rectangle corresponds to the full product of the inputsx andy
(most significant digits bottom left), the triangle to the wanted short product.
Case (a): no rounding is necessary, the product being exact; case (b): the full
product needs to be rounded, but the inputs should not be; case (c):the inputx
with the larger precision might be truncated before performing a short product;
case (d): both inputs might be truncated.

An interesting question is: how many consecutive identicalbits can occur
after the round bit? Without loss of generality, we can rephrase this question
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as follows. Given two odd integers of at mostn bits, what is the longest run
of identical bits in their product? (In the case of an even significand, we might
write it m = ℓ2e with ℓ odd.) There is noa priori bound except the trivial one
of 2n − 2 for the number of zeros, and2n − 1 for the number of ones. For
example, with a precision5 bits,27× 19 = (1 000 000 001)2. More generally,
such a case corresponds to a factorization of22n−1 + 1 into two integers ofn
bits, for example258 513 × 132 913 = 235 + 1. Having2n consecutive ones
is not possible since22n − 1 can not factor into two integers of at mostn bits.
Therefore, the maximal runs have2n − 1 ones, for example217 × 151 =

(111 111 111 111 111)2 for n = 8. A larger example is849 583 × 647 089 =

239 − 1.
The exact product of two floating-point numbersmβe and m′βe′

is
(mm′)βe+e′

. Therefore, if no underflow or overflow occurs, the problem re-
duces to the multiplication of the significandsm and m′. See Algorithm
FPmultiply .

The product at step 1 ofFPmultiply is ashort product, i.e. a product whose
most significant part only is wanted, as discussed at the start of this section. In
the quadratic range, it can be computed in about half the timeof a full product.
In the Karatsuba and Toom–Cook ranges, Mulders’ algorithm can gain 10% to
20%; however, due to carries, implementing this algorithm for floating-point
computations is tricky. In the FFT range, no better algorithm is known than
computing the full productmm′ and then rounding it.

Algorithm 3.3 FPmultiply

Input: x = m · βe, x′ = m′ · βe′

, a precisionn, a rounding mode◦
Output: ◦(xx′) rounded to precisionn

1: m′′ ← ◦(mm′) rounded to precisionn
2: returnm′′ · βe+e′

.

Hence, our advice is to perform a full product ofm andm′, possibly after
truncating them ton+ g digits if they have more thann+ g digits. Hereg (the
number ofguard digits) should be positive (see Exercise 3.4).

It seems wasteful to multiplyn-bit operands, producing a2n-bit product,
only to discard the low-ordern bits. Algorithm ShortProduct computes an
approximation to the short product without computing the2n-bit full product.
It uses a thresholdn0 ≥ 1, which should be optimized for the given code base.

Error analysis of the short product. Consider twon-word normalized sig-
nificandsA andB that we multiply using a short product algorithm, where the
notationFullProduct(A,B) means the full integer productA · B.
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Algorithm 3.4 ShortProduct
Input: integersA,B, andn, with 0 ≤ A,B < βn

Output: an approximation toAB div βn

Require: a thresholdn0

if n ≤ n0 then returnFullProduct(A,B) div βn

choosek ≥ n/2, ℓ ← n − k

C1 ← FullProduct(A div βℓ, B div βℓ) div βk−ℓ

C2 ← ShortProduct(A mod βℓ, B div βk, ℓ)

C3 ← ShortProduct(A div βk, B mod βℓ, ℓ)

returnC1 + C2 + C3.
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Figure 3.2 Graphical view of AlgorithmShortProduct:
the computed parts areC1, C2, C3, and the neglected
parts areC′

2, C
′
3, C4 (most significant part bottom left).

Theorem 3.5 The valueC ′ returned by AlgorithmShortProduct differs from
the exact short productC = AB div βn by at most3(n − 1)

C ′ ≤ C ≤ C ′ + 3(n − 1).

Proof. First, sinceA,B are non-negative, and all roundings are truncations,
the inequalityC ′ ≤ C follows.

Let A =
∑

i aiβ
i andB =

∑
j bjβ

j , where0 ≤ ai, bj < β. The pos-
sible errors come from: (i) the neglectedaibj terms, i.e. partsC ′

2, C
′
3, C4 of

Figure 3.2; (ii) the truncation while computingC1; (iii) the error in the recur-
sive calls forC2 andC3.

We first prove that the algorithm accumulates all productsaibj with i + j ≥
n − 1. This corresponds to all terms on and below the diagonal in
Figure 3.2. The most significant neglected terms are the bottom-left terms from
C ′

2 andC ′
3, respectivelyaℓ−1bk−1 andak−1bℓ−1. Their contribution is at most

2(β−1)2βn−2. The neglected terms from the next diagonal contribute at most
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4(β − 1)2βn−3, and so on. The total contribution of neglected terms is thus
bounded by

(β − 1)2βn[2β−2 + 4β−3 + 6β−4 + · · · ] < 2βn

(the inequality is strict since the sum is finite).
The truncation error inC1 is at mostβn, thus the maximal differenceε(n)

betweenC andC ′ satisfies

ε(n) < 3 + 2ε(⌊n/2⌋),

which givesε(n) < 3(n − 1), sinceε(1) = 0.

REMARK : if one of the operands was truncated before applying Algorithm
ShortProduct, simply add one unit to the upper bound (the truncated part is
less than1, and thus its product by the other operand is bounded byβn).

The complexityS(n) of Algorithm ShortProduct satifies the recurrence
S(n) = M(k)+2S(n−k). The optimal choice ofk depends on the underlying
multiplication algorithm. AssumingM(n) ≈ nα for α > 1 andk = γn, we
get

S(n) =
γα

1 − 2(1 − γ)α
M(n),

where the optimal value isγ = 1/2 in the quadratic range,γ ≈ 0.694 in
the Karatsuba range, andγ ≈ 0.775 in the Toom–Cook3-way range, giving
respectivelyS(n) ∼ 0.5M(n), S(n) ∼ 0.808M(n), andS(n) ∼ 0.888M(n).
The ratioS(n)/M(n) → 1 asr → ∞ for Toom–Cookr-way. In the FFT
range, AlgorithmShortProduct is not any faster than a full product.

3.3.1 Integer multiplication via complex FFT

To multiply n-bit integers, it may be advantageous to use the fast Fouriertran-
form (FFT, see§1.3.4,§2.3). Note that three FFTs give the cyclic convolution
z = x ∗ y defined by

zk =
∑

0≤j<N

xjyk−j mod N for 0 ≤ k < N.

In order to use the FFT for integer multiplication, we have topad the input
vectors with zeros, thus increasing the length of the transform fromN to 2N .

FFT algorithms fall into two classes: those using number theoretical proper-
ties (typically working over a finite ring, as in§2.3.3), and those based on com-
plex floating-point computations. The latter, while not having the best asymp-
totic complexity, exhibit good practical behavior, because they take advantage
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of the efficiency of floating-point hardware. The drawback ofthe complex
floating-point FFT (complex FFT for short) is that, being based on floating-
point computations, it requires a rigorous error analysis.However, in some
contexts where occasional errors are not disastrous, we mayaccept a small
probability of error if this speeds up the computation. For example, in the con-
text of integer factorization, a small probability of erroris acceptable because
the result (a purported factorization) can easily be checked and discarded if
incorrect.

The following theorem provides a tight error analysis:

Theorem 3.6 The complex FFT allows computation of the cyclic convolution
z = x ∗ y of two vectors of lengthN = 2n of complex values such that

||z′ − z||∞ ≤ ||x|| · ||y|| · ((1 + ε)3n(1 + ε
√

5)3n+1(1 + µ)3n − 1), (3.2)

where|| · || and || · ||∞ denote the Euclidean and infinity norms respectively,
ε is such that|(a ± b)′ − (a ± b)| ≤ ε|a ± b|, |(ab)′ − (ab)| ≤ ε|ab| for all
machine floatsa, b. Hereµ ≥ |(wk)′ − (wk)|, 0 ≤ k < N , w = e2πi/N , and
(·)′ refers to the computed (stored) value of(·) for each expression.

For the IEEE 754 double-precision format, with rounding to nearest, we have
ε = 2−53, and if thewk are correctly rounded, we can takeµ = ε/

√
2. For a

fixed FFT sizeN = 2n, the inequality (3.2) enables us to compute a boundB

on the components ofx andy that guarantees||z′ − z||∞ < 1/2. If we know
that the exact resultz ∈ ZN , this enables us to uniquely round the components
of z′ to z. Table 3.3 givesb = lg B, the number of bits that can be used
in a 64-bit floating-point word, if we wish to performm-bit multiplication
exactly (herem = 2n−1b). It is assumed that the FFT is performed with signed
components inZ ∩ [−2b−1,+2b−1), see for example [80, p. 161].

Note that Theorem 3.6 is a worst-case result; with rounding to nearest we
expect the error to be smaller due to cancellation – see Exercise 3.9.

Since 64-bit floating-point numbers have bounded precision, we can not
compute arbitrarily large convolutions by this method – thelimit is about
n = 43. However, this corresponds to vectors of sizeN = 2n = 243 > 1012,
which is more than enough for practical purposes – see also Exercise 3.11.

3.3.2 The middle product

Given two integers of2n andn bits respectively, their “middle product” con-
sists of the middlen bits of their3n-bit product (see Figure 3.3). The middle
product might be computed using two short products, one (low) short product
betweenx and the high part ofy, and one (high) short product betweenx and
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n b m

1 25 25
2 24 48
3 23 92
4 22 176
5 22 352
6 21 672
7 20 1280
8 20 2560
9 19 4864
10 19 9728

n b m

11 18 18432
12 17 34816
13 17 69632
14 16 131072
15 16 262144
16 15 491520
17 15 983040
18 14 1835008
19 14 3670016
20 13 6815744

Table 3.3Maximal numberb of bits per IEEE 754
double-precision floating-point numberbinary64 (53-bit
significand), and maximalm for a plainm × m bit integer
product, for a given FFT size2n, with signed components.

the low part ofy. However there are algorithms to compute a2n × n middle
product with the same∼M(n) complexity as ann×n full product (see§3.8).

y

x

@
@

@
@

@

@
@

@
@

@

Figure 3.3 The middle product ofx of n bits andy of 2n bits
corresponds to the middle region (most significant bits bottom
left).

Several applications benefit from an efficient middle product. One of these
applications is Newton’s method (§4.2). Consider, for example, the reciprocal
iteration (§4.2.2):xj+1 = xj + xj(1 − xjy). If xj hasn bits, we have to
consider2n bits fromy in order to get2n accurate bits inxj+1. The product
xjy has3n bits, but if xj is accurate ton bits, then most significant bits
of xjy cancel with1, and then least significant bits can be ignored as they
only contribute noise. Thus, the middle product ofxj andy is exactly what is
needed.
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Payne and Hanek argument reduction

Another application of the middle product is Payne and Hanekargument re-
duction. Assumex = m · 2e is a floating-point number with a significand
0.5 ≤ m < 1 of n bits and a large exponente (sayn = 53 ande = 1024 to fix
the ideas). We want to computesin x with a precision ofn bits. The classical
argument reduction works as follows: first computek = ⌊x/π⌉, then compute
the reduced argument

x′ = x − kπ. (3.3)

Aboute bits will be cancelled in the subtractionx− (kπ), and thus we need to
computekπ with a precision of at leaste + n bits to get an accuracy of at least
n bits forx′. Of course, this assumes thatx is known exactly – otherwise there
is no point in trying to computesin x. Assuming1/π has been precomputed to
precisione, the computation ofk costsM(e, n), and the multiplicationk × π

costsM(e, e + n); therefore, the total cost is aboutM(e) whene ≫ n.

y
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Figure 3.4 A graphical view of Payne and Hanek algorithm.

The key idea of the Payne and Hanek algorithm is to rewrite Eqn. (3.3) as

x′ = π
(x

π
− k

)
. (3.4)

If the significand ofx hasn < e bits, only about2n bits from the expansion
of 1/π will effectively contribute to then most significant bits ofx′, namely
the bits of weight2−e−n to 2−e+n. Let y be the corresponding2n-bit part
of 1/π. Payne and Hanek’s algorithm works as follows: first multiply the n-
bit significand ofx by y, keep then middle bits, and multiply by ann-bit
approximation ofπ. The total cost is∼(M(2n, n)+M(n)), or even∼2M(n)

if the middle product is performed in timeM(n), and thus independent ofe.

3.4 Reciprocal and division

As for integer operations (§1.4), we should try as far as possible to trade
floating-point divisions for multiplications, since the cost of a floating-point
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multiplication is theoretically smaller than the cost of a division by a constant
factor (usually from2 to 5, depending on the algorithm used). In practice, the
ratio might not even be constant, unless care is taken in implementing division.
Some implementations provide division with costΘ(M(n) log n) or Θ(n2).

When several divisions have to be performed with the same divisor, a well-
known trick is to first compute the reciprocal of the divisor (§3.4.1); then each
division reduces to a multiplication by the reciprocal. A small drawback is that
each division incurs two rounding errors (one for the reciprocal and one for
multiplication by the reciprocal) instead of one, so we can no longer guarantee
a correctly rounded result. For example, in base ten with sixdigits, 3.0/3.0

might evaluate to0.999 999 = 3.0 × 0.333 333.
The cases of a single division, or several divisions with a varying divisor,

are considered in§3.4.2.

3.4.1 Reciprocal

Here we describe algorithms that compute an approximate reciprocal of a pos-
itive floating-point numbera, using integer-only operations (see Chapter 1).
The integer operations simulate floating-point computations, but all roundings
are made explicit. The numbera is represented by an integerA of n words in
radix β: a = β−nA, and we assumeβn/2 ≤ A, thus requiring1/2 ≤ a < 1.
(This does not cover all cases forβ ≥ 3, but if βn−1 ≤ A < βn/2, multiplying
A by some appropriate integerk < β will reduce to the caseβn/2 ≤ A; then
it suffices to multiply the reciprocal ofka by k.)

We first perform an error analysis of Newton’s method (§4.2) assuming all
computations are done with infinite precision, and thus neglecting roundoff
errors.

Lemma 3.7 Let1/2 ≤ a < 1, ρ = 1/a, x > 0, andx′ = x+x(1−ax). Then

0 ≤ ρ − x′ ≤ x2

θ3
(ρ − x)2,

for someθ ∈ [min(x, ρ),max(x, ρ)].

Proof. Newton’s iteration is based on approximating the function by its tan-
gent. Letf(t) = a − 1/t, with ρ the root off . The second-order expansion of
f at t = ρ with explicit remainder is

f(ρ) = f(x) + (ρ − x)f ′(x) +
(ρ − x)2

2
f ′′(θ),
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for someθ ∈ [min(x, ρ),max(x, ρ)]. Sincef(ρ) = 0, this simplifies to

ρ = x − f(x)

f ′(x)
− (ρ − x)2

2

f ′′(θ)

f ′(x)
. (3.5)

Substitutingf(t) = a − 1/t, f ′(t) = 1/t2 andf ′′(t) = −2/t3, it follows that

ρ = x + x(1 − ax) +
x2

θ3
(ρ − x)2,

which proves the claim.

Algorithm ApproximateReciprocal computes an approximate reciprocal.
The inputA is assumed to be normalized, i.e.βn/2 ≤ A < βn. The output
integerX is an approximation toβ2n/A.

Algorithm 3.5 ApproximateReciprocal

Input: A =
∑n−1

i=0 aiβ
i, with 0 ≤ ai < β andβ/2 ≤ an−1

Output: X = βn +
∑n−1

i=0 xiβ
i with 0 ≤ xi < β

1: if n ≤ 2 then return⌈β2n/A⌉ − 1

2: ℓ ← ⌊(n − 1)/2⌋, h ← n − ℓ

3: Ah ← ∑h−1
i=0 aℓ+iβ

i

4: Xh ← ApproximateReciprocal(Ah)

5: T ← AXh

6: while T ≥ βn+h do
7: (Xh, T ) ← (Xh − 1, T − A)

8: T ← βn+h − T

9: Tm ← ⌊Tβ−ℓ⌋
10: U ← TmXh

11: returnXhβℓ + ⌊Uβℓ−2h⌋.

Lemma 3.8 If β is a power of two satisfyingβ ≥ 8, andβn/2 ≤ A < βn,
then the outputX of AlgorithmApproximateReciprocal satisfies

AX < β2n < A(X + 2).

Proof. For n ≤ 2, the algorithm returnsX = ⌊β2n/A⌋, unlessA = βn/2,
when it returnsX = 2βn−1. In both cases, we haveAX < β2n ≤ A(X +1);
thus, the lemma holds forn ≤ 2.

Now considern ≥ 3. We haveℓ = ⌊(n−1)/2⌋ andh = n−ℓ, and therefore
n = h + ℓ andh > ℓ. The algorithm first computes an approximate reciprocal
of the upperh words ofA, and then updates it ton words using Newton’s
iteration.
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After the recursive call at line 4, we have by induction

AhXh < β2h < Ah(Xh + 2). (3.6)

After the productT ← AXh and the while-loop at steps 6–7, we still have
T = AXh, whereT andXh may have new values, and in additionT < βn+h.
We also haveβn+h < T + 2A; we prove this by distinguishing two cases.
Either we entered the while-loop, then since the value ofT decreased byA at
each loop, the previous valueT + A was necessarily≥ βn+h. If we did not
enter the while-loop, the value ofT is still AXh. Multiplying Eqn. (3.6) byβℓ

gives:βn+h < Ahβℓ(Xh + 2) ≤ A(Xh + 2) = T + 2A. Thus, we have

T < βn+h < T + 2A.

It follows thatT > βn+h−2A > βn+h−2βn. As a consequence, the value of
βn+h−T computed at step 8 can not exceed2βn−1. The last lines compute the
productTmXh, whereTm is the upper part ofT , and put itsℓ most significant
words in the low partXℓ of the resultX.

Now let us perform the error analysis. Compared to Lemma 3.7,x stands
for Xhβ−h, a stands forAβ−n, andx′ stands forXβ−n. The while-loop en-
sures that we start from an approximationx < 1/a, i.e.AXh < βn+h. Then
Lemma 3.7 guarantees thatx ≤ x′ ≤ 1/a if x′ is computed with infinite preci-
sion. Here we havex ≤ x′, sinceX = Xhβh + Xℓ, whereXℓ ≥ 0. The only
differences compared to infinite precision are:

• the low ℓ words from1 − ax (hereT at line 8) are neglected, and only its
upper part(1 − ax)h (hereTm) is considered;

• the low2h − ℓ words fromx(1 − ax)h are neglected.

Those two approximations make the computed value ofx′ ≤ the value which
would be computed with infinite precision. Thus, for the computed valuex′,
we have

x ≤ x′ ≤ 1/a.

From Lemma 3.7, the mathematical error is bounded byx2θ−3(ρ − x)2 <

4β−2h, sincex2 ≤ θ3 and|ρ−x| < 2β−h. The truncation from1−ax, which
is multiplied byx < 2, produces an error< 2β−2h. Finally, the truncation of
x(1 − ax)h produces an error< β−n. The final result is thus

x′ ≤ ρ < x′ + 6β−2h + β−n.

Assuming6β−2h ≤ β−n, which holds as soon asβ ≥ 6 since2h > n, this
simplifies to

x′ ≤ ρ < x′ + 2β−n,
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which gives withx′ = Xβ−n andρ = βn/A

X ≤ β2n

A
< X + 2.

Sinceβ is assumed to be a power of two, equality can hold only whenA is
itself a power of two, i.e.A = βn/2. In this case, there is only one value
of Xh that is possible for the recursive call, namelyXh = 2βh − 1. In this
case,T = βn+h − βn/2 before the while-loop, which is not entered. Then
βn+h−T = βn/2, which multiplied byXh gives (again)βn+h−βn/2, whose
h most significant words areβ − 1. Thus,Xℓ = βℓ − 1, andX = 2βn − 1.

REMARK . Lemma 3.8 might be extended to the caseβn−1 ≤ A < βn, or to
a radixβ which is not a power of two. However, we prefer to state a restricted
result with simple bounds.

COMPLEXITY ANALYSIS. Let I(n) be the cost to invert ann-word num-
ber using AlgorithmApproximateReciprocal. If we neglect the linear costs,
we haveI(n) ≈ I(n/2) + M(n, n/2) + M(n/2), whereM(n, n/2) is the
cost of ann × (n/2) product – the productAXh at step 5 – andM(n/2)

the cost of an(n/2) × (n/2) product – the productTmXh at step 10. If the
n × (n/2) product is performed via two(n/2) × (n/2) products, we have
I(n) ≈ I(n/2)+3M(n/2), which yieldsI(n) ∼ M(n) in the quadratic range,
∼ 1.5M(n) in the Karatsuba range,∼ 1.704M(n) in the Toom–Cook3-way
range, and∼3M(n) in the FFT range. In the FFT range, ann× (n/2) product
might be directly computed by three FFTs of length3n/2 words, amounting
to ∼M(3n/4); in this case, the complexity decreases to∼ 2.5M(n) (see the
comments at the end of§2.3.3, page 58).

THE WRAP-AROUND TRICK. We now describe a slight modification of
Algorithm ApproximateReciprocal, which yields a complexity2M(n). In
the productAXh at step 5, Eqn. (3.6) tells us that the result approachesβn+h,
or more precisely

βn+h − 2βn < AXh < βn+h + 2βn. (3.7)

Assume we use an FFT-based algorithm such as the Schönhage–Strassen
algorithm that computes products moduloβm + 1, for some integerm ∈
(n, n+h). LetAXh = Uβm+V with 0 ≤ V < βm. It follows from Eqn. (3.7)
thatU = βn+h−m or U = βn+h−m − 1. Let T = AXh mod (βm + 1) be the
value computed by the algorithm. NowT = V −U or T = V −U +(βm +1).
It follows thatAXh = T + U(βm + 1) or AXh = T + (U − 1)(βm + 1).
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Taking into account the two possible values ofU , we have

AXh = T + (βn+h−m − ε)(βm + 1),

whereε ∈ {0, 1, 2}. Sinceβ ≥ 6, βm > 4βn, thus only one value ofε yields
a value ofAXh in the interval(βn+h − 2βn, βn+h + 2βn).

Thus, we can replace step 5 in AlgorithmApproximateReciprocal by the
following code:

ComputeT = AXh mod (βm + 1) using FFTs with lengthm > n
T ← T + βn+h + βn+h−m ⊲ the caseε = 0
while T ≥ βn+h + 2βn do

T ← T − (βm + 1)

Assuming that we can takem close ton, the cost of the productAXh is
only about that of three FFTs of lengthn, i.e.∼M(n/2).

3.4.2 Division

In this section, we consider the case where the divisor changes between succes-
sive operations, so no precomputation involving the divisor can be performed.
We first show that the number of consecutive zeros in the result is bounded by
the divisor length, then we consider the division algorithmand its complexity.
Lemma 3.10 analyses the case where the division operands aretruncated, be-
cause they have a larger precision than desired in the result. Finally, we discuss
“short division” and the error analysis of Barrett’s algorithm.

A floating-point division reduces to an integer division as follows. Assume
dividenda = ℓ·βe and divisord = m·βf , whereℓ,m are integers. Thena/d =

(ℓ/m)βe−f . If k bits of the quotient are needed, we first determine a scaling
factor g such thatβk−1 ≤ |ℓβg/m| < βk, and we divideℓβg – truncated
if needed – bym. The following theorem gives a bound on the number of
consecutive zeros after the integer part of the quotient of⌊ℓβg⌋ by m.

Theorem 3.9 Assume we divide anm-digit positive integer by ann-digit pos-
itive integer in radixβ, with m ≥ n. Then the quotient is either exact, or its
radix β expansion admits at mostn − 1 consecutive zeros or ones after the
digit of weightβ0.

Proof. We first consider consecutive zeros. If the expansion of the quotientq
admitsn or more consecutive zeros after the binary point, we can write q =

q1+β−nq0, whereq1 is an integer and0 ≤ q0 < 1. If q0 = 0, then the quotient
is exact. Otherwise, ifa is the dividend andd is the divisor, we should have
a = q1d+β−nq0d. However,a andq1d are integers, and0 < β−nq0d < 1, so
β−nq0d can not be an integer, and we have a contradiction.
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For consecutive ones, the proof is similar: writeq = q1 − β−nq0, with
0 ≤ q0 ≤ 1. Sinced < βn, we still have0 ≤ β−nq0d < 1.

Algorithm DivideNewton performs the division of twon-digit floating-
point numbers. The key idea is to approximate the inverse of the divisor to half
precision only, at the expense of additional steps. At step 4, MiddleProduct
(q0, d) denotes the middle product ofq0 andd, i.e. then/2 middle digits of
that product. At step 2,r is an approximation to1/d1, and thus to1/d, with
precisionn/2 digits. Therefore, at step 3,q0 approximatesc/d to aboutn/2

digits, and the uppern/2 digits of q0d at step 4 agree with those ofc. The
valuee computed at step 4 thus equalsq0d− c to precisionn/2. It follows that
re ≈ e/d agrees withq0 − c/d to precisionn/2; hence, the correction term
(which is really a Newton correction) added in the last step.

Algorithm 3.6 DivideNewton
Input: n-digit floating-point numbersc andd, with n even,d normalized
Output: an approximation ofc/d

1: write d = d1β
n/2 + d0 with 0 ≤ d1, d0 < βn/2

2: r ← ApproximateReciprocal(d1, n/2)

3: q0 ← cr truncated ton/2 digits
4: e ← MiddleProduct(q0, d)

5: q ← q0 − re.

In the FFT range, the cost of AlgorithmDivideNewton is∼2.5M(n): step 2
costs∼ 2M(n/2) ∼ M(n) with the wrap-around trick, and steps 3–5 each
cost∼ M(n/2), using a fast middle product algorithm for step 4. By way of
comparison, if we computed a full precision inverse as in Barrett’s algorithm
(see below), the cost would be∼3.5M(n). (See§3.8 for improved asymptotic
bounds on division.)

In the Karatsuba range, AlgorithmDivideNewton costs∼1.5M(n), and is
useful provided the middle product of step 4 is performed with cost∼M(n/2).
In the quadratic range, AlgorithmDivideNewton costs∼ 2M(n), and a clas-
sical division should be preferred.

When the requested precision for the output is smaller than that of the inputs
of a division, we have to truncate the inputs in order to avoidan unnecessarily
expensive computation. Assume for example that we want to divide two num-
bers of10, 000 bits, with a10-bit quotient. To apply the following lemma, just
replaceµ by an appropriate value such thatA1 andB1 have about2n andn

digits respectively, wheren is the desired number of digits in the quotient; for
example, we might chooseµ = βk to truncate tok words.
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Lemma 3.10 LetA,B, µ ∈ N∗, 2 ≤ µ ≤ B. LetQ = ⌊A/B⌋, A1 = ⌊A/µ⌋,
B1 = ⌊B/µ⌋, Q1 = ⌊A1/B1⌋. If A/B ≤ 2B1, then

Q ≤ Q1 ≤ Q + 2.

The conditionA/B ≤ 2B1 is quite natural: it says that the truncated divisor
B1 should have essentially at least as many digits as the desired quotient.

Proof. Let A1 = Q1B1 + R1. We haveA = A1µ + A0, B = B1µ + B0,
therefore

A

B
=

A1µ + A0

B1µ + B0
≤ A1µ + A0

B1µ
= Q1 +

R1µ + A0

B1µ
.

SinceR1 < B1 andA0 < µ, R1µ + A0 < B1µ, thusA/B < Q1 + 1. Taking
the floor of each side proves, sinceQ1 is an integer, thatQ ≤ Q1.

Now consider the second inequality. For given truncated parts A1 andB1,
and thus givenQ1, the worst case is whenA is minimal, sayA = A1µ, andB

is maximal, sayB = B1µ + (µ − 1). In this case, we have
∣∣∣∣
A1

B1
− A

B

∣∣∣∣ =

∣∣∣∣
A1

B1
− A1µ

B1µ + (µ − 1)

∣∣∣∣ =

∣∣∣∣
A1(µ − 1)

B1(B1µ + µ − 1)

∣∣∣∣ .

The numerator equalsA − A1 ≤ A, and the denominator equalsB1B; there-
fore, the differenceA1/B1 −A/B is bounded byA/(B1B) ≤ 2, and so is the
difference betweenQ andQ1.

AlgorithmShortDivision is useful in the Karatsuba and Toom–Cook ranges.
The key idea is that, when dividing a2n-digit number by ann-digit number,
some work that is necessary for a full2n-digit division can be avoided (see
Figure 3.5).

Algorithm 3.7 ShortDivision

Input: 0 ≤ A < β2n, βn/2 ≤ B < βn

Output: an approximation ofA/B

Require: a thresholdn0

1: if n ≤ n0 then return⌊A/B⌋
2: choosek ≥ n/2, ℓ ← n − k

3: (A1, A0) ← (A div β2ℓ, A mod β2ℓ)

4: (B1, B0) ← (B div βℓ, B mod βℓ)

5: (Q1, R1) ← DivRem(A1, B1)

6: A′ ← R1β
2ℓ + A0 − Q1B0β

ℓ

7: Q0 ← ShortDivision(A′ div βk, B div βk)

8: returnQ1β
ℓ + Q0.
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Theorem 3.11 The approximate quotientQ′ returned by ShortDivision
differs at most by2 lg n from the exact quotientQ = ⌊A/B⌋, more precisely

Q ≤ Q′ ≤ Q + 2 lg n.

Proof. If n ≤ n0, Q = Q′ so the statement holds. Assumen > n0. We
haveA = A1β

2ℓ + A0 andB = B1β
ℓ + B0; thus, sinceA1 = Q1B1 + R1,

A = (Q1B1 + R1)β
2ℓ + A0 = Q1Bβℓ + A′, with A′ < βn+ℓ. Let A′ =

A′
1β

k+A′
0, andB = B′

1β
k+B′

0, with 0 ≤ A′
0, B

′
0 < βk, andA′

1 < β2ℓ. From
Lemma 3.10, the exact quotient ofA′ div βk byB div βk is greater or equal to
that ofA′ by B; thus, by inductionQ0 ≥ A′/B. SinceA/B = Q1β

ℓ +A′/B,
this proves thatQ′ ≥ Q.

Now by induction,Q0 ≤ A′
1/B′

1 + 2 lg ℓ, andA′
1/B′

1 ≤ A′/B + 2 (from
Lemma 3.10 again, whose hypothesisA′/B ≤ 2B′

1 is satisfied, sinceA′ <

B1β
2ℓ, thusA′/B ≤ βℓ ≤ 2B′

1), soQ0 ≤ A′/B + 2 lg n, andQ′ ≤ A/B +

2 lg n.

As shown at the lower half of Figure 3.5, we can use a short product to compute
Q1B0 at step 6. Indeed, we need only the upperℓ words ofA′, and thus only the
upperℓ words ofQ1B0. The complexity of AlgorithmShortDivision satisfies
D∗(n) = D(k)+M∗(n−k)+D∗(n−k) with k ≥ n/2, whereD(n) denotes
the cost of a division with remainder, andM∗(n) the cost of a short product.
In the Karatsuba range, we haveD(n) ∼ 2M(n), M∗(n) ∼ 0.808M(n),
and the best possible value ofk is k ≈ 0.542n, with corresponding cost
D∗(n) ∼ 1.397M(n). In the Toom–Cook3-way range,k ≈ 0.548n is op-
timal, and givesD∗(n) ∼ 1.988M(n).

Barrett’s floating-point division algorithm

Here we consider floating-point division using Barrett’s algorithm and provide
a rigorous error bound (see§2.4.1 for an exact integer version). The algorithm
is useful when the same divisor is used several times; otherwise Algorithm
DivideNewton is faster (see Exercise 3.13). Assume we want to dividea by b

of n bits, each with a quotient ofn bits. Barrett’s algorithm is as follows:

1. Compute the reciprocalr of b to n bits [rounding to nearest]

2. q ← ◦n(a × r) [rounding to nearest]

The cost of the algorithm in the FFT range is∼3M(n): ∼2M(n) to compute
the reciprocal with the wrap-around trick, andM(n) for the producta × r.

Lemma 3.12 At step 2 of Barrett’s algorithm, we have|a − bq| ≤ 3|b|/2.
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Figure 3.5 Divide and conquer short division: a graphical view. Upper: with
plain multiplication; lower: with short multiplication. See also Figure 1.3.

Proof. By scalinga and b, we can assume thatb and q are integers, that
2n−1 ≤ b, q < 2n; thus, a < 22n. We have r = 1/b + ε with
|ε| ≤ ulp(2−n/2) = 2−2n. Also q = ar + ε′ with |ε′| ≤ ulp(q)/2 = 1/2
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sinceq hasn bits. Therefore,q = a(1/b + ε) + ε′ = a/b + aε + ε′, and
|bq − a| = |b||aε + ε′| ≤ 3|b|/2.

As a consequence of Lemma 3.12,q differs by at most one unit in last place
from then-bit quotient ofa andb, rounded to nearest.

Lemma 3.12 can be applied as follows: to perform several divisions with a
precision ofn bits with the same divisor, precompute a reciprocal withn + g

bits, and use the above algorithm with a working precision ofn + g bits. If the
last g bits of q are neither000 . . . 00x nor 111 . . . 11x (wherex stands for0
or 1), then roundingq down ton bits will yield ◦n(a/b) for a directed rounding
mode.

Which algorithm to use?

In this section, we described three algorithms to computex/y: Divide-Newton
uses Newton’s method for1/y and incorporates the dividendx at the last
iteration,ShortDivision is a recursive algorithm using division with remainder
and short products, and Barrett’s algorithm assumes we haveprecomputed an
approximation to1/y. When the same divisory is used several times, Barrett’s
algorithm is better, since each division costs only a short product. Otherwise
ShortDivision is theoretically faster thanDivideNewton in the schoolbook
and Karatsuba ranges, and takingk = n/2 as parameter inShortDivision is
close to optimal. In the FFT range,DivideNewtonshould be preferred.

3.5 Square root

Algorithm FPSqrt computes a floating-point square root, using as subroutine
Algorithm SqrtRem (§1.5.1 to determine an integer square root (with remain-
der). It assumes an integer significandm, and a directed rounding mode (see
Exercise 3.14 for rounding to nearest).

Algorithm 3.8 FPSqrt
Input: x = m · 2e, a target precisionn, a directed rounding mode◦
Output: y = ◦n(

√
x)

if e is oddthen (m′, f) ← (2m, e − 1) else(m′, f) ← (m, e)

definem′ := m12
2k + m0, m1 integer of2n or 2n − 1 bits,0 ≤ m0 < 22k

(s, r) ← SqrtRem(m1)

if (◦ is round towards zero or down) or(r = m0 = 0)

then returns · 2k+f/2 elsereturn(s + 1) · 2k+f/2.
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Theorem 3.13 Algorithm FPSqrt returns the correctly rounded square root
of x.

Proof. Sincem1 has2n or 2n − 1 bits, s has exactlyn bits, and we have
x ≥ s222k+f ; thus,

√
x ≥ s2k+f/2. On the other hand,SqrtRem ensures that

r ≤ 2s, andx2−f = (s2 + r)22k + m0 < (s2 + r + 1)22k ≤ (s + 1)222k.
Sincey := s · 2k+f/2 andy+ = (s + 1) · 2k+f/2 are two consecutiven-bit
floating-point numbers, this concludes the proof.

NOTE: in the cases = 2n − 1, s + 1 = 2n is still representable inn bits.

A different method is to use an initial approximation to the reciprocal square
rootx−1/2 (§3.5.1), see Exercise 3.15. Faster algorithms are mentionedin §3.8.

3.5.1 Reciprocal square root

In this section, we describe an algorithm to compute the reciprocal square root
a−1/2 of a floating-point numbera, with a rigorous error bound.

Lemma 3.14 Leta, x > 0, ρ = a−1/2, andx′ = x + (x/2)(1 − ax2). Then

0 ≤ ρ − x′ ≤ 3x3

2θ4
(ρ − x)2,

for someθ ∈ [min(x, ρ),max(x, ρ)].

Proof. The proof is very similar to that of Lemma 3.7. Here we usef(t) =

a − 1/t2, with ρ the root off . Eqn. (3.5) translates to

ρ = x +
x

2
(1 − ax2) +

3x3

2θ4
(ρ − x)2,

which proves the Lemma.

Lemma 3.15 Provided thatβ ≥ 38, if X is the value returned by Algorithm
ApproximateRecSquareRoot, a = Aβ−n, x = Xβ−n, then1/2 ≤ x < 1

and

|x − a−1/2| ≤ 2β−n.

Proof. We have1 ≤ a < 4. SinceX is bounded byβn − 1 at lines 1 and 9,
we havex, xh < 1, with xh = Xhβ−h. We prove the statement by induction
onn. It is true forn ≤ 2. Now assume the valueXh at step 4 satisfies

|xh − a
−1/2
h | ≤ β−h,

whereah = Ahβ−h. We have three sources of error, that we will bound sepa-
rately:
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Algorithm 3.9 ApproximateRecSquareRoot
Input: integerA with βn ≤ A < 4βn, β ≥ 38

Output: integerX, βn/2 ≤ X < βn satisfying Lemma 3.15
1: if n ≤ 2 then returnmin(βn − 1, ⌊βn/

√
Aβ−n⌋)

2: ℓ ← ⌊(n − 1)/2⌋, h ← n − ℓ

3: Ah ← ⌊Aβ−ℓ⌋
4: Xh ← ApproximateRecSquareRoot(Ah)

5: T ← AX2
h

6: Th ← ⌊Tβ−n⌋
7: Tℓ ← β2h − Th

8: U ← TℓXh

9: returnmin(βn − 1,Xhβℓ + ⌊Uβℓ−2h/2⌉).

1. the rounding errors in steps 6 and 9;
2. the mathematical error given by Lemma 3.14, which would occur even if

all computations were exact;
3. the error coming from the fact we useAh instead ofA in the recursive call

at step 4.

At step 5 we have exactly

t := Tβ−n−2h = ax2
h,

which gives |th − ax2
h| < β−2h with th := Thβ−2h, and in turn

|tℓ − (1 − ax2
h)| < β−2h with tℓ := Tℓβ

−2h. At step 8, it follows that
|u − xh(1 − ax2

h)| < β−2h, whereu = Uβ−3h. Thus, after taking into
account the rounding error in the last step,|x − [xh + xh(1 − ax2

h)/2]| <

(β−2h + β−n)/2.
Now we apply Lemma 3.14 tox → xh, x′ → x, to bound the mathematical

error, assuming no rounding error occurs

0 ≤ a−1/2 − x ≤ 3x3
h

2θ4
(a−1/2 − xh)2,

which gives1 |a−1/2 − x| ≤ 3.04(a−1/2 − xh)2. Now |a−1/2 − a
−1/2
h | ≤

|a − ah|ν−3/2/2 for ν ∈ [min(ah, a),max(ah, a)]; thus,|a−1/2 − a
−1/2
h | ≤

β−h/2. Together with the induction hypothesis|xh − a
−1/2
h | ≤ 2β−h, it

follows that|a−1/2 − xh| ≤ 2.5β−h. Thus,|a−1/2 − x| ≤ 19β−2h.

1 Sinceθ ∈ [xh, a−1/2] and|xh − a−1/2| ≤ 2.5β−h, we haveθ ≥ xh − 2.5β−h, and
xh/θ ≤ 1 + 2.5β−h/θ ≤ 1 + 5β−h (rememberθ ∈ [xh, a−1/2]), and it follows that
θ ≥ 1/2. Forβ ≥ 38, sinceh ≥ 2, we have1 + 5β−h ≤ 1.0035; thus,
1.5x3

h/θ4 ≤ (1.5/θ)(1.0035)3 ≤ 3.04.
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The total error is thus bounded by

|a−1/2 − x| ≤ 3

2
β−n + 19β−2h.

Since2h ≥ n + 1, we see that19β−2h ≤ β−n/2 for β ≥ 38, and the lemma
follows.

NOTE: If AhX2
h ≤ β3h at step 4 of AlgorithmApproximateRecSquareRoot,

we could haveAX2
h > βn+2h at step 5, which might causeTℓ to be negative.

Let R(n) be the cost ofApproximateRecSquareRootfor an n-digit in-
put. We haveh, ℓ ≈ n/2; thus, the recursive call costsR(n/2), step 5 costs
M(n/2) to computeX2

h, andM(n) for the productAX2
h (or M(3n/4) in the

FFT range using the wrap-around trick described in§3.4.1, since we know the
uppern/2 digits of the product give1), and againM(n/2) for step 8. We get
R(n) = R(n/2) + 2M(n) (or R(n/2) + 7M(n)/4 in the FFT range), which
yieldsR(n) ∼ 4M(n) (or R(n) ∼ 3.5M(n) in the FFT range).

This algorithm is not optimal in the FFT range, especially when using an
FFT algorithm with cheap point-wise products (such as the complex FFT, see
§3.3.1). Indeed, AlgorithmApproximateRecSquareRootuses the following
form of Newton’s iteration

x′ = x +
x

2
(1 − ax2).

It might be better to write

x′ = x +
1

2
(x − ax3).

Here, the productx3 might be computed with asingleFFT transform of length
3n/2, replacing the point-wise productŝx2

i by x̂3
i , with a total cost∼0.75M(n).

Moreover, the same idea can be used for the full productax3 of 5n/2 bits,
where the uppern/2 bits match those ofx. Thus, using the wrap-around trick,
a transform of length2n is enough, with a cost of∼ M(n) for the last iter-
ation, and a total cost of∼ 2M(n) for the reciprocal square root. With this
improvement, the algorithm of Exercise 3.15 costs only∼2.25M(n).

3.6 Conversion

Since most software tools work in radix2 or 2k, and humans usually enter or
read floating-point numbers in radix10 or 10k, conversions are needed from
one radix to the other one. Most applications perform very few conversions,
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in comparison to other arithmetic operations, thus the efficiency of the conver-
sions is rarely critical.2 The main issue here is therefore more correctness than
efficiency. Correctness of floating-point conversions is not an easy task, as can
be seen from the history of bugs in Microsoft Excel.3

The algorithms described in this section use as subroutinesthe integer-
conversion algorithms from Chapter 1. As a consequence, their efficiency
depends on the efficiency of the integer-conversion algorithms.

3.6.1 Floating-point output

In this section, we follow the convention of using lower-case letters for param-
eters related to the internal radixb, and upper-case for parameters related to
the external radixB. Consider the problem of printing a floating-point num-
ber, represented internally in radixb (sayb = 2) in an external radixB (say
B = 10). We distinguish here two kinds of floating-point output:

• Fixed-format output, where the output precision is given bythe user, and
we want the output value to be correctly rounded according tothe given
rounding mode. This is the usual method when values are to be used by
humans, for example to fill a table of results. The input and output precisions
may be very different, for example we may want to print1000 digits of2/3,
which uses only one digit internally in radix3. Conversely, we may want to
print only a few digits of a number accurate to1000 bits.

• Free-format output, where we want the output value, when read with correct
rounding (usually to nearest), to giveexactlythe initial number. Here the
minimal number of printed digits may depend on the input number. This
kind of output is useful when storing data in a file, while guaranteeing that
reading the data back will produce exactly the same internalnumbers, or for
exchanging data between different programs.

In other words, ifx is the number that we want to print, andX is the printed
value, the fixed-format output requires|x−X| < ulp(X), and the free-format
output requires|x − X| < ulp(x) for directed rounding. Replace< ulp(·) by
≤ ulp(·)/2 for rounding to nearest.

Some comments on AlgorithmPrintFixed :

• It assumes that we have precomputed values ofλB = ◦(log b/ log B) for

2 An important exception is the computation of billions of digits of constants likeπ, log 2,
where a quadratic conversion routine would be far too slow.

3 In Excel 2007, the product850 × 77.1 prints as100, 000 instead of65, 535; this is really an
output bug, since if we multiply “100, 000” by 2, we get131, 070. An input bug occurred in
Excel 3.0 to 7.0, where the input1.40737488355328 gave0.64.
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Algorithm 3.10 PrintFixed

Input: x = f · be−p with f, e, p integers,bp−1 ≤ |f | < bp, external radixB
and precisionP , rounding mode◦

Output: X = F · BE−P with F,E integers,BP−1 ≤ |F | < BP , such that
X = ◦(x) in radixB and precisionP

1: λ ← ◦(log b/log B)

2: E ← 1 + ⌊(e − 1)λ⌋
3: q ← ⌈P/λ⌉
4: y ← ◦(xBP−E) with precisionq
5: if we can not roundy to an integerthen increaseq and go to step 4
6: F ← Integer(y, ◦). ⊲ see§1.7
7: if |F | ≥ BP then E ← E + 1 and go to step 4.
8: returnF,E.

any possible external radixB (the internal radixb is assumed to be fixed for
a given implementation). Assuming the input exponente is bounded, it is
possible – see Exercise 3.17 – to choose these values precisely enough that

E = 1 +

⌊
(e − 1)

log b

log B

⌋
. (3.8)

Thus, the value ofλ at step 1 is simply read from a table.
• The difficult part is step 4, where we have to perform the exponentiation

BP−E – remember all computations are done in the internal radixb – and
multiply the result byx. Since we expect an integer ofq digits in step 6, there
is no need to use a precision of more thanq digits in these computations,
but a rigorous bound on the rounding errors is required, so asto be able to
correctly roundy.

• In step 5, we can roundy to an integer if the interval containing all pos-
sible values ofxBP−E – including the rounding errors while approaching
xBP−E , and the error while rounding to precisionq – contains no rounding
boundary (if◦ is a directed rounding, it should contain no integer; if◦ is
rounding to nearest, it should contain no half-integer).

Theorem 3.16 AlgorithmPrintFixed is correct.

Proof. First assume that the algorithm finishes. Eqn. (3.8) impliesBE−1 ≤
be−1; thus |x|BP−E ≥ BP−1, which implies that|F | ≥ BP−1 at step 6.
ThereforeBP−1 ≤ |F | < BP at the end of the algorithm. Now, printingx
givesF ·Ba iff printing xBk givesF ·Ba+k for any integerk. Thus, it suffices
to check that printingxBP−E givesF , which is clear by construction.
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The algorithm terminates because at step 4,xBP−E , if not an integer, can not
be arbitrarily close to an integer. IfP −E ≥ 0, letk be the number of digits of
BP−E in radix b, thenxBP−E can be represented exactly withp + k digits.
If P − E < 0, let g = BE−P , of k digits in radixb. Assumef/g = n + ε

with n integer; thenf − gn = gε. If ε is not zero,gε is a non-zero integer, and
|ε| ≥ 1/g ≥ 2−k.

The case|F | ≥ BP at step 7 can occur for two reasons: either|x|BP−E ≥
BP , and its rounding also satisfies this inequality; or|x|BP−E < BP , but
its rounding equalsBP (this can only occur for rounding away from zero or
to nearest). In the former case, we have|x|BP−E ≥ BP−1 at the next pass
in step 4, while in the latter case the rounded valueF equalsBP−1 and the
algorithm terminates.

Now consider free-format output. For a directed rounding mode, we want
|x − X| < ulp(x) knowing |x − X| < ulp(X). Similarly, for rounding to
nearest, if we replaceulp by ulp /2.

It is easy to see that a sufficient condition is thatulp(X) ≤ ulp(x), or
equivalentlyBE−P ≤ be−p in Algorithm PrintFixed (with P not fixed at
input, which explain the “free-format” name). To summarize, we have

be−1 ≤ |x| < be, BE−1 ≤ |X| < BE .

Since|x| < be, andX is the rounding ofx, it suffices to haveBE−1 ≤ be. It
follows thatBE−P ≤ beB1−P , and the above sufficient condition becomes

P ≥ 1 + p
log b

log B
.

For example, withb = 2 andB = 10, p = 53 givesP ≥ 17, andp = 24 gives
P ≥ 9. As a consequence, if a double-precision IEEE 754 binary floating-
point number is printed with at least17 significant decimal digits, it can be read
back without any discrepancy, assuming input and output areperformed with
correct rounding to nearest (or directed rounding, with appropriately chosen
directions).

3.6.2 Floating-point input

The problem of floating-point input is the following. Given afloating-point
numberX with a significand ofP digits in some radixB (sayB = 10), a
precisionp and a given rounding mode, we want to correctly roundX to a
floating-point numberx with p digits in the internal radixb (sayb = 2).
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At first glance, this problem looks very similar to the floating-point output
problem, and we might think it suffices to apply AlgorithmPrintFixed , simply
exchanging(b, p, e, f) and (B,P,E, F ). Unfortunately, this is not the case.
The difficulty is that, in AlgorithmPrintFixed , all arithmetic operations are
performed in theinternal radix b, and we do not have such operations in radix
B (see however Exercise 1.37).

3.7 Exercises

Exercise 3.1 In §3.1.5, we described a trick to get the next floating-point num-
ber in the direction away from zero. Determine for which IEEE754 double-
precision numbers the trick works.

Exercise 3.2 (Kidder, Boldo) Assume a binary representation. The “rounding
to odd” mode [42, 148, 220] is defined as follows: in case the exact value is not
representable, it rounds to the unique adjacent number withan odd significand.
(“Von Neumann rounding” [42] omits the test for the exact value being repre-
sentable or not, and rounds to odd in all non-zero cases.) Note that overflow
never occurs during rounding to odd. Prove that ify = round(x, p + k, odd)

andz = round(y, p,nearest even), andk > 1, then

z = round(x, p,nearest even),

i.e. the double-rounding problem does not occur.

Exercise 3.3Show that, if
√

a is computed using Newton’s iteration fora−1/2

x′ = x +
3

2
(1 − ax2)

(see§3.5.1), and the identity
√

a = a× a−1/2, with rounding mode “round to-
wards zero”, then it might never be possible to determine thecorrectly rounded
value of

√
a, regardless of the number of additional guard digits used inthe

computation.

Exercise 3.4How does truncating the operands of a multiplication ton + g

digits (as suggested in§3.3) affect the accuracy of the result? Considering the
casesg = 1 andg > 1 separately, what could happen if the same strategy were
used for subtraction?

Exercise 3.5 Is the bound of Theorem 3.5 optimal?
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Exercise 3.6Adapt Mulders’ short product algorithm [173] to floating-point
numbers. In case the first rounding fails, can you compute additional digits
without starting again from scratch?

Exercise 3.7Show that, if a balanced ternary system is used (radix3 with
digits{0,±1}), then “round to nearest” is equivalent to truncation.

Exercise 3.8 (Percival)Suppose we compute the product of two complex
floating-point numbersz0 = a0 + ib0 and z1 = a1 + ib1 in the follow-
ing way: xa = ◦(a0a1), xb = ◦(b0b1), ya = ◦(a0b1), yb = ◦(a1b0), z =

◦(xa−xb)+i◦(ya+yb). All computations are done in precisionn, with round-
ing to nearest. Compute an error bound of the form|z − z0z1| ≤ c2−n|z0z1|.
What is the best possible constantc?

Exercise 3.9Show that, ifµ = O(ε) andnε < 1, the bound in Theorem 3.6
simplifies to

||z′ − z||∞ = O(|x| · |y| · nε).

If the rounding errors cancel, we expect the error in each component ofz′ to be
O(|x| · |y| ·n1/2ε). The error||z′− z||∞ could be larger since it is a maximum
of N = 2n component errors. Using your favourite implementation of the
FFT, compare the worst-case error bound given by Theorem 3.6with the error
||z′ − z||∞ that occurs in practice.

Exercise 3.10 (Enge)Design an algorithm that correctly rounds the product
of two complex floating-point numbers with3 multiplications only. [Hint: as-
sume all operands and the result haven-bit significand.]

Exercise 3.11Write a computer program to check the entries of Table 3.3 are
correct and optimal, given Theorem 3.6.

Exercise 3.12 (Bodrato)Assuming we use an FFT moduloβm − 1 in the
wrap-around trick, how should we modify step 5 ofApproximateReciprocal?

Exercise 3.13To performk divisions with the same divisor, which of Algo-
rithm DivideNewtonand Barrett’s algorithm is faster?

Exercise 3.14Adapt AlgorithmFPSqrt to the rounding to nearest mode.

Exercise 3.15Devise an algorithm similar to AlgorithmFPSqrt but using Al-
gorithmApproximateRecSquareRootto compute ann/2-bit approximation
to x−1/2, and doing one Newton-like correction to return ann-bit approxima-
tion to x1/2. In the FFT range, your algorithm should take time∼ 3M(n) (or
better).
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Exercise 3.16Prove that for anyn-bit floating-point numbers(x, y) 6= (0, 0),
and if all computations are correctly rounded, with the samerounding mode,
the result ofx/

√
x2 + y2 lies in [−1, 1], except in a special case. What is this

special case and for what rounding mode does it occur?

Exercise 3.17Show that the computation ofE in Algorithm PrintFixed ,
step 2, is correct – i.e.E = 1 + ⌊(e − 1) log b/ log B⌋ – as long as there is
no integern such that|n/(e − 1) log B/ log b − 1| < ε, whereε is the relative
precision when computingλ: λ = log B/ log b(1 + θ) with |θ| ≤ ε. For a
fixed range of exponents−emax ≤ e ≤ emax, deduce a working precisionε.
Application: for b = 2, andemax = 231, compute the required precision for
3 ≤ B ≤ 36.

Exercise 3.18 (Lef̀evre) The IEEE 754-1985 standard required binary to dec-
imal conversions to be correctly rounded in double precision in the range
{m · 10n : |m| ≤ 1017 − 1, |n| ≤ 27}. Find the hardest-to-print double-
precision number in this range (with rounding to nearest, for example). Write
a C program that outputs double-precision numbers in this range, and compare
it to thesprintf C-language function of your system; similarly, for a con-
version from the IEEE 754-2008binary64 format (significand of53 bits,
2−1074 ≤ |x| < 21024) to thedecimal64 format (significand of16 decimal
digits).

Exercise 3.19The same question as in Exercise 3.18, but for decimal to binary
conversion, and theatof C-language function.

3.8 Notes and references

In her Ph.D. thesis [162, Chapter V], Valérie Ménissier-Morain discusses con-
tinued fractions and redundant representations as alternatives to the classical
non-redundant representation considered here. She also considers [162, Chap-
ter III] the theory of computable reals, their representation byB-adic numbers,
and the computation of algebraic or transcendental functions.

Other representations were designed to increase the range of representable
values; in particular Clenshaw and Olver [70] inventedlevel-index arithmetic,
where for example2009 is approximated by3.7075, since 2009 ≈
exp(exp(exp(0.7075))), and the leading3 indicates the number of iterated ex-
ponentials. The obvious drawback is that it is expensive to perform arithmetic
operations such as addition on numbers in the level-index representation.
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Clenshaw and Olver [69] also introduced the concept of anunrestricted
algorithm (meaning no restrictions on the precision or exponent range).
Several such algorithms were described in Brent [48].

Nowadays most computers use radix two, but other choices (for example
radix 16) were popular in the past, before the widespread adoption of the IEEE
754 standard. A discussion of the best choice of radix is given in Brent [42].

For a general discussion of floating-point addition, rounding modes, the
sticky bit, etc., see Hennessy, Patterson, and Goldberg [120, Appendix A.4].4

The main reference for floating-point arithmetic is the IEEE754 standard
[5], which defines four binary formats: single precision, single extended (dep-
recated), double precision, and double extended. The IEEE 854 standard de-
fines radix-independent arithmetic, and mainly decimal arithmetic – see Cody
et al.[72]. Both standards were replaced by the revision of IEEE 754 (approved
by the IEEE Standards Committee on June 12, 2008).

We have not found the source of Theorem 3.2 – it seems to be “folklore”.
The rule regarding the precision of a result, given possiblydiffering precisions
of the operands, was considered by Brent [49] and Hull [127].

Floating-point expansions were introduced by Priest [186]. They are mainly
useful for a small number of summands, typically two or three, and when the
main operations are additions or subtractions. For a largernumber of sum-
mands, the combinatorial logic becomes complex, even for addition. Also,
except in simple cases, it seems difficult to obtain correct rounding with
expansions.

Some good references on error analysis of floating-point algorithms are the
books by Higham [121] and Muller [174]. Older references include Wilkin-
son’s classics [228, 229].

Collins and Krandick [74], and Lefèvre [153], proposed algorithms for
multiple-precision floating-point addition.

The problem of leading zero anticipation and detection in hardware is classi-
cal; see Schmookler and Nowka [194] for a comparison of different methods.
Theorem 3.4 may be found in Sterbenz [210].

The idea of having a “short product” together with correct rounding was
studied by Krandick and Johnson [145]. They attributed the term “short prod-
uct” to Knuth. They considered both the schoolbook and the Karatsuba do-
mains. AlgorithmsShortProduct andShortDivision are due to Mulders [173].
The problem of consecutive zeros or ones – also calledrunsof zeros or ones –
has been studied by several authors in the context of computer arithmetic:
Iordache and Matula [129] studied division (Theorem 3.9), square root, and

4 We refer to the first edition as later editions may not include the relevant Appendix by
Goldberg.
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reciprocal square root. Muller and Lang [151] generalized their results to alge-
braic functions.

The fast Fourier transform (FFT) using complex floating-point numbers and
the Scḧonhage–Strassen algorithm are described in Knuth [142]. Many varia-
tions of the FFT are discussed in the books by Crandall [79, 80]. For further
references, see§2.9.

Theorem 3.6 is from Percival [183]; previous rigorous erroranalyses of
complex FFT gave very pessimistic bounds. Note that the erroneous proof
given in [183] was corrected by Brent, Percival, and Zimmermann [55] (see
also Exercise 3.8).

The concept of “middle product” for power series is discussed in Hanrotet
al. [111]. Bostan, Lecerf, and Schost [40] have shown that it canbe seen as
a special case of “Tellegen’s principle”, and have generalized it to operations
other than multiplication. The link between usual multiplication and the mid-
dle product using trilinear forms was mentioned by Victor Pan [181] for the
multiplication of two complex numbers: “The duality technique enables us to
extend any successful bilinear algorithms to two new ones for the new prob-
lems, sometimes quite different from the original problem· · · ”. Harvey [115]
has shown how to efficiently implement the middle product forintegers. A
detailed and comprehensive description of the Payne and Hanek argument re-
duction method can be found in Muller [174].

In this section, we drop the “∼” that strictly should be included in the com-
plexity bounds. The2M(n) reciprocal algorithm of§3.4.1 – with the wrap-
around trick – is due to Schönhage, Grotefeld, and Vetter [198]. It can be
improved, as noticed by Dan Bernstein [20]. If we keep the FFT-transform of
x, we can saveM(n)/3 (assuming the term-to-term products have negligible
cost), which gives5M(n)/3. Bernstein also proposes a “messy”3M(n)/2

algorithm [20]. Scḧonhage’s3M(n)/2 algorithm is simpler [197]. The idea
is to write Newton’s iteration asx′ = 2x − ax2. If x is accurate ton/2 bits,
thenax2 has (in theory)2n bits, but we know the uppern/2 bits cancel with
x, and we are not interested in the lown bits. Thus, we can perform modu-
lar FFTs of size3n/2, with costM(3n/4) for the last iteration, and1.5M(n)

overall. This1.5M(n) bound for the reciprocal was improved to1.444M(n)

by Harvey [116]. See also Cornea-Hasegan, Golliver, and Markstein [78] for
the roundoff error analysis when using a floating-point multiplier.

The idea of incorporating the dividend in AlgorithmDivideNewton is due to
Karp and Markstein [137], and is usually known as the Karp–Markstein trick;
we already used it in AlgorithmExactDivision in Chapter 1. The asymptotic
complexity5M(n)/2 of floating-point division can be improved to5M(n)/3,
as shown by van der Hoeven in [125]. Another well-known method to perform
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a floating-point division is Goldschmidt’s iteration: starting froma/b, first find
c such thatb1 = cb is close to1, anda/b = a1/b1 with a1 = ca. At step
k, assuminga/b = ak/bk, we multiply bothak and bk by 2 − bk, giving
ak+1 andbk+1. The sequence(bk) converges to1, and(ak) converges toa/b.
Goldschmidt’s iteration works because, ifbk = 1 + εk with εk small, then
bk+1 = (1 + εk)(1 − εk) = 1 − ε2

k. Goldschmidt’s iteration admits quadratic
convergence as does Newton’s method. However, unlike Newton’s method,
Goldschmidt’s iteration is not self-correcting. Thus, it yields an arbitrary pre-
cision division with costΘ(M(n) log n). For this reason, Goldschmidt’s it-
eration should only be used for small, fixed precision. A detailed analysis of
Goldschmidt’s algorithms for division and square root, anda comparison with
Newton’s method, is given in Markstein [158].

Bernstein [20] obtained faster square root algorithms in the FFT domain, by
caching some Fourier transforms. More precisely, he obtained11M(n)/6 for
the square root, and5M(n)/2 for the simultaneous computation ofx1/2 and
x−1/2. The bound for the square root was reduced to4M(n)/3 by
Harvey [116].

Classical floating-point conversion algorithms are due to Steele and White
[207], Gay [103], and Clinger [71]; most of these authors assume fixed pre-
cision. Cowlishaw maintains an extensive bibliography of conversion to and
from decimal formats (see§5.3). What we call “free-format” output is called
“idempotent conversion” by Kahan [133]; see also Knuth [142, exercise 4.4-
18]. Another useful reference on binary to decimal conversion is Corneaet
al. [77].

Bürgisser, Clausen, and Shokrollahi [60] is an excellent book on topics such
as lower bounds, fast multiplication of numbers and polynomials, Strassen-like
algorithms for matrix multiplication, and the tensor rank problem.

There is a large literature on interval arithmetic, which isoutside the scope
of this chapter. A recent book is Kulisch [149], and a good entry point is the
Interval Computations web page (see Chapter 5).

In this chapter, we did not consider complex arithmetic, except where rel-
evant for its use in the FFT. An algorithm for the complex (floating-point)
square root, which allows correct rounding, is given in Ercegovac and Muller
[91]. See also the comments on Friedland’s algorithm in§4.12.
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Elementary and special function evaluation

Here we consider various applications of Newton’s method,
which can be used to compute reciprocals, square roots, and more
generally algebraic and functional inverse functions. We then
consider unrestricted algorithms for computing elementary and
special functions. The algorithms of this chapter are presented at
a higher level than in Chapter 3. A full and detailed analysisof
one special function might be the subject of an entire chapter!

4.1 Introduction

This chapter is concerned with algorithms for computing elementary and
special functions, although the methods apply more generally. First we con-
sider Newton’s method, which is useful for computing inverse functions. For
example, if we have an algorithm for computingy = lnx, then Newton’s
method can be used to computex = exp y (see§4.2.5). However, Newton’s
method has many other applications. In fact, we already mentioned Newton’s
method in Chapters 1–3, but here we consider it in more detail.

After considering Newton’s method, we go on to consider various methods
for computing elementary and special functions. These methods include power
series (§4.4), asymptotic expansions (§4.5), continued fractions (§4.6), recur-
rence relations (§4.7), the arithmetic-geometric mean (§4.8), binary splitting
(§4.9), and contour integration (§4.10). The methods that we consider areun-
restrictedin the sense that there is no restriction on the attainable precision –
in particular, it is not limited to the precision of IEEE standard 32-bit or 64-bit
floating-point arithmetic. Of course, this depends on the availability of a suit-
able software package for performing floating-point arithmetic on operands of
arbitrary precision, as discussed in Chapter 3.
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Unless stated explicitly, we do not consider rounding issues in this chapter;
it is assumed that methods described in Chapter 3 are used. Also, to simplify
the exposition, we assume a binary radix (β = 2), although most of the content
could be extended to any radix. We recall thatn denotes the relative precision
(in bits here) of the desired approximation; if the absolutecomputed value is
close to1, then we want an approximation to within2−n.

4.2 Newton’s method

Newton’s method is a major tool in arbitrary-precision arithmetic. We have al-
ready seen it or itsp-adic counterpart, namely Hensel lifting, in previous chap-
ters (see for example AlgorithmExactDivision in §1.4.5, or the iteration (2.3)
to compute a modular inverse in§2.5). Newton’s method is also useful in small
precision: most modern processors only implement additionand multiplication
in hardware; division and square root are microcoded, usingeither Newton’s
method if a fused multiply-add instruction is available, orthe SRT algorithm.
See the algorithms to compute a floating-point reciprocal orreciprocal square
root in §3.4.1 and§3.5.1.

This section discusses Newton’s method is more detail, in the context of
floating-point computations, for the computation of inverse roots (§4.2.1),
reciprocals (§4.2.2), reciprocal square roots (§4.2.3), formal power series
(§4.2.4), and functional inverses (§4.2.5). We also discuss higher-order Newton-
like methods (§4.2.6).

Newton’s method via linearization

Recall that a functionf of a real variable is said to have azeroζ if f(ζ) = 0.
If f is differentiable in a neighborhood ofζ, andf ′(ζ) 6= 0, thenζ is said to be
asimplezero. Similarly, for functions of several real (or complex)variables. In
the case of several variables,ζ is a simple zero if the Jacobian matrix evaluated
at ζ is non-singular.

Newton’s methodfor approximating a simple zeroζ of f is based on the idea
of making successive linear approximations tof(x) in a neighborhood ofζ.
Suppose thatx0 is an initial approximation, and thatf(x) has two continuous
derivatives in the region of interest. From Taylor’s theorem1

f(ζ) = f(x0) + (ζ − x0)f
′(x0) +

(ζ − x0)
2

2
f ′′(ξ) (4.1)

1 Here we use Taylor’s theorem atx0, since this yields a formula in terms of derivatives atx0,
which is known, instead of atζ, which is unknown. Sometimes (for example in the derivation
of (4.3)), it is preferable to use Taylor’s theorem at the (unknown) zeroζ.
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for some pointξ in an interval including{ζ, x0}. Sincef(ζ) = 0, we see that

x1 = x0 − f(x0)/f ′(x0)

is an approximation toζ, and

x1 − ζ = O
(
|x0 − ζ|2

)
.

Providedx0 is sufficiently close toζ, we will have

|x1 − ζ| ≤ |x0 − ζ|/2 < 1.

This motivates the definition ofNewton’s methodas the iteration

xj+1 = xj −
f(xj)

f ′(xj)
, j = 0, 1, . . . . (4.2)

Provided|x0 − ζ| is sufficiently small, we expectxn to converge toζ. The
order of convergencewill be at least two, i.e.

|en+1| ≤ K|en|2

for some constantK independent ofn, whereen = xn − ζ is the error aftern
iterations.

A more careful analysis shows that

en+1 =
f ′′(ζ)

2f ′(ζ)
e2
n + O

(
|e3

n|
)
, (4.3)

providedf ∈ C3 nearζ. Thus, the order of convergence is exactly two if
f ′′(ζ) 6= 0 ande0 is sufficiently small but non-zero. (Such an iteration is also
said to bequadratically convergent.)

4.2.1 Newton’s method for inverse roots

Consider applying Newton’s method to the function

f(x) = y − x−m,

wherem is a positive integer constant, and (for the moment)y is a positive
constant. Sincef ′(x) = mx−(m+1), Newton’s iteration simplifies to

xj+1 = xj + xj(1 − xm
j y)/m. (4.4)

This iteration converges toζ = y−1/m provided the initial approximationx0

is sufficiently close toζ. It is perhaps surprising that (4.4) does not involve
divisions, except for a division by the integer constantm. In particular, we can
easily compute reciprocals (the casem = 1) and reciprocal square roots (the
casem = 2) by Newton’s method. These cases are sufficiently importantthat
we discuss them separately in the following subsections.
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4.2.2 Newton’s method for reciprocals

Takingm = 1 in (4.4), we obtain the iteration

xj+1 = xj + xj(1 − xjy), (4.5)

which we expect to converge to1/y, providedx0 is a sufficiently good approx-
imation. (See§3.4.1 for a concrete algorithm with error analysis.) To see what
“sufficiently good” means, define

uj = 1 − xjy.

Note thatuj → 0 iff xj → 1/y. Multiplying each side of (4.5) byy, we get

1 − uj+1 = (1 − uj)(1 + uj),

which simplifies to

uj+1 = u2
j . (4.6)

Thus

uj = (u0)
2j

. (4.7)

We see that the iteration converges iff|u0| < 1, which (for realx0 andy) is
equivalent to the conditionx0y ∈ (0, 2). Second-order convergence is reflected
in the double exponential with exponent2 on the right-hand side of (4.7).

The iteration (4.5) is sometimes implemented in hardware tocompute re-
ciprocals of floating-point numbers (see§4.12). The sign and exponent of the
floating-point number are easily handled, so we can assume thaty ∈ [0.5, 1.0)

(recall we assume a binary radix in this chapter). The initial approximationx0

is found by table lookup, where the table is indexed by the first few bits ofy.
Since the order of convergence is two, the number of correct bits approximately
doubles at each iteration. Thus, we can predict in advance how many iterations
are required. Of course, this assumes that the table is initialized correctly.2

Computational issues

At first glance, it seems better to replace Eqn. (4.5) by

xj+1 = xj(2 − xjy), (4.8)

which looks simpler. However, although those two forms are mathematically
equivalent, they are not computationally equivalent. Indeed, in Eqn. (4.5), if
xj approximates1/y to within n/2 bits, then1 − xjy = O(2−n/2), and the

2 In the case of the infamousPentiumfdiv bug[109, 175], a lookup table used for division
was initialized incorrectly, and the division was occasionally inaccurate. In this case division
used the SRT algorithm, but the moral is the same – tables must be initialized correctly.
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product ofxj by 1−xjy might be computed with a precision of onlyn/2 bits.
In the apparently simpler form (4.8),2−xjy = 1+O(2−n/2), and the product
of xj by 2−xjy has to be performed with a full precision ofn bits to getxj+1

accurate to withinn bits.
As a general rule, it is best to separate the terms of different order in New-

ton’s iteration, and not try to factor common expressions. For an exception, see
the discussion of Schönhage’s3M(n)/2 reciprocal algorithm in§3.8.

4.2.3 Newton’s method for (reciprocal) square roots

Takingm = 2 in (4.4), we obtain the iteration

xj+1 = xj + xj(1 − x2
jy)/2, (4.9)

which we expect to converge toy−1/2 providedx0 is a sufficiently good ap-
proximation.

If we want to computey1/2, we can do this in one multiplication after first
computingy−1/2, since

y1/2 = y × y−1/2.

This method does not involve any divisions (except by2, see Exercise3.15).
In contrast, if we apply Newton’s method to the functionf(x) = x2 − y, we
obtain Heron’s3 iteration (see AlgorithmSqrtInt in §1.5.1) for the square root
of y

xj+1 =
1

2

(
xj +

y

xj

)
. (4.10)

This requires a division byxj at iterationj, so it is essentially different from
the iteration (4.9). Although both iterations have second-order convergence,
we expect (4.9) to be more efficient (however this depends on the relative cost
of division compared to multiplication). See also§3.5.1 and, for various opti-
mizations,§3.8.

4.2.4 Newton’s method for formal power series

This section is not required for function evaluation, however it gives a comple-
mentary point of view on Newton’s method, and has applications to computing
constants such as Bernoulli numbers (see Exercises 4.41–4.42).

Newton’s method can be applied to find roots of functions defined by for-
mal power series as well as of functions of a real or complex variable. For

3 Heron of Alexandria,circa 10–75 AD.
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simplicity, we consider formal power series of the form

A(z) = a0 + a1z + a2z
2 + · · · ,

whereai ∈ R (or any field of characteristic zero) andord(A) = 0, i.e.a0 6= 0.
For example, if we replacey in (4.5) by1−z, and take initial approximation

x0 = 1, we obtain a quadratically convergent iteration for the formal power
series

(1 − z)−1 =
∞∑

n=0

zn.

In the case of formal power series, “quadratically convergent” means that
ord(ej) → +∞ like 2j , where ej is the difference between the desired
result and thejth approximation. In our example, with the notation of§4.2.2,
u0 = 1 − x0y = z, souj = z2j

and

xj =
1 − uj

1 − z
=

1

1 − z
+ O

(
z2j

)
.

Given a formal power seriesA(z) =
∑

j≥0 ajz
j , we can define the formal

derivative

A′(z) =
∑

j>0

jajz
j−1 = a1 + 2a2z + 3a3z

2 + · · · ,

and theintegral
∑

j≥0

aj

j + 1
zj+1,

but there is no useful analogue for multiple-precision integers
∑n

j=0 ajβ
j .

This means that some fast algorithms for operations on powerseries have no
analogue for operations on integers (see for example Exercise 4.1).

4.2.5 Newton’s method for functional inverses

Given a functiong(x), its functional inverseh(x) satisfiesg(h(x)) = x, and
is denoted byh(x) := g(−1)(x). For example,g(x) = lnx andh(x) = exp x

are functional inverses, as areg(x) = tan x andh(x) = arctan x. Using the
functionf(x) = y − g(x) in (4.2), we get a rootζ of f , i.e. a value such that
g(ζ) = y, or ζ = g(−1)(y)

xj+1 = xj +
y − g(xj)

g′(xj)
.
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Since this iteration only involvesg andg′, it provides an efficient way to eval-
uateh(y), assuming thatg(xj) andg′(xj) can be efficiently computed. More-
over, if the complexity of evaluatingg′ – and of division – is no greater than
that ofg, we get a means to evaluate the functional inverseh of g with the same
order of complexity as that ofg.

As an example, if one has an efficient implementation of the logarithm, a
similarly efficient implementation of the exponential is deduced as follows.
Consider the rootey of the functionf(x) = y− lnx, which yields the iteration

xj+1 = xj + xj(y − lnxj), (4.11)

and in turn AlgorithmLiftExp (for the sake of simplicity, we consider here
only one Newton iteration).

Algorithm 4.1 LiftExp

Input: xj , (n/2)-bit approximation toexp(y)

Output: xj+1, n-bit approximation toexp(y)

t ← lnxj ⊲ t computed ton-bit accuracy
u ← y − t ⊲ u computed to(n/2)-bit accuracy
v ← xju ⊲ v computed to(n/2)-bit accuracy
xj+1 ← xj + v.

4.2.6 Higher-order Newton-like methods

The classical Newton’s method is based on a linear approximation of f(x) near
x0. If we use a higher-order approximation, we can get a higher-order method.
Consider for example a second-order approximation. Eqn. (4.1) becomes:

f(ζ) = f(x0) + (ζ − x0)f
′(x0) +

(ζ − x0)
2

2
f ′′(x0) +

(ζ − x0)
3

6
f ′′′(ξ).

Sincef(ζ) = 0, we have

ζ = x0 −
f(x0)

f ′(x0)
− (ζ − x0)

2

2

f ′′(x0)

f ′(x0)
+ O((ζ − x0)

3). (4.12)

A difficulty here is that the right-hand side of (4.12) involves the unknownζ.
Let ζ = x0 − f(x0)/f ′(x0) + ν, whereν is a second-order term. Substituting
this in the right-hand side of (4.12) and neglecting terms oforder(ζ − x0)

3

yields the cubic iteration

xj+1 = xj −
f(xj)

f ′(xj)
− f(xj)

2f ′′(xj)

2f ′(xj)3
.
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For the computation of the reciprocal (§4.2.2) withf(x) = y−1/x, this yields

xj+1 = xj + xj(1 − xjy) + xj(1 − xjy)2. (4.13)

For the computation ofexp y using functional inversion (§4.2.5), we get

xj+1 = xj + xj(y − lnxj) +
1

2
xj(y − lnxj)

2. (4.14)

These iterations can be obtained in a more systematic way that generalizes to
give iterations of arbitrarily high order. For the computation of the reciprocal,
let εj = 1 − xjy, soxjy = 1 − εj and (assuming|εj | < 1),

1/y = xj/(1 − εj) = xj(1 + εj + ε2
j + · · · ).

Truncating after the termεk−1
j gives akth-order iteration

xj+1 = xj(1 + εj + ε2
j + · · · + εk−1

j ) (4.15)

for the reciprocal. The casek = 2 corresponds to Newton’s method, and the
casek = 3 is just the iteration (4.13) that we derived above.

Similarly, for the exponential we takeεj = y − lnxj = ln(x/xj), so

x/xj = exp εj =
∞∑

m=0

εm
j

m!
.

Truncating afterk terms gives akth-order iteration

xj+1 = xj

(
k−1∑

m=0

εm
j

m!

)
(4.16)

for the exponential function. The casek = 2 corresponds to the Newton itera-
tion, the casek = 3 is the iteration (4.14) that we derived above, and the cases
k > 3 give higher-order Newton-like iterations. For a generalization to other
functions, see Exercises 4.3, 4.6.

4.3 Argument reduction

Argument reductionis a classical method to improve the efficiency of the eval-
uation of mathematical functions. The key idea is to reduce the initial problem
to a domain where the function is easier to evaluate. More precisely, givenf

to evaluate atx, we proceed in three steps:
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• argument reduction: x is transformed into areduced argumentx′;
• evaluation: f is evaluated atx′;
• reconstruction: f(x) is computed fromf(x′) using a functional identity.

In some cases, the argument reduction or the reconstructionis trivial, for ex-
amplex′ = x/2 in radix 2, or f(x) = ±f(x′) (some examples illustrate this
below). It might also be that the evaluation step uses a different functiong

instead off ; for example,sin(x + π/2) = cos(x).
Unfortunately, argument reduction formulæ do not exist forevery function;

for example, no argument reduction is known for the error function. Argument
reduction is only possible when a functional identity relatesf(x) andf(x′) (or
g(x) andg(x′)). The elementary functions haveaddition formulaesuch as

exp(x + y) = exp(x) exp(y),

log(xy) = log(x) + log(y),

sin(x + y) = sin(x) cos(y) + cos(x) sin(y),

tan(x + y) =
tan(x) + tan(y)

1 − tan(x) tan(y)
. (4.17)

We use these formulæ to reduce the argument so that power series converge
more rapidly. Usually we takex = y to getdoubling formulaesuch as

exp(2x) = exp(x)2, (4.18)

though occasionallytripling formulaesuch as

sin(3x) = 3 sin(x) − 4 sin3(x)

might be useful. This tripling formula only involves one function (sin), whereas
the doubling formulasin(2x) = 2 sin x cos x involves two functions (sin and
cos), but this problem can be overcome: see§4.3.4 and§4.9.1.

We usually distinguish two kinds of argument reduction:

• Additive argument reduction, wherex′ = x − kc, for some real constant
c and some integerk. This occurs in particular whenf(x) is periodic, for
example for the sine and cosine functions withc = 2π.

• Multiplicative argument reduction, wherex′ = x/ck for some real constant
c and some integerk. This occurs withc = 2 in the computation ofexp x

when using the doubling formula (4.18): see§4.3.1.

Note that, for a given function, both kinds of argument reduction might be
available. For example, forsin x, we might either use the tripling formula
sin(3x) = 3 sin x − 4 sin3 x, or the additive reductionsin(x + 2kπ) = sin x

that arises from the periodicity ofsin.
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Sometimes “reduction” is not quite the right word, since a functional identity
is used toincreaserather than todecreasethe argument. For example, the
Gamma functionΓ(x) satisfies an identity

xΓ(x) = Γ(x + 1),

that can be used repeatedly toincreasethe argument until we reach the region
where Stirling’s asymptotic expansion is sufficiently accurate, see§4.5.

4.3.1 Repeated use of a doubling formula

If we apply the doubling formula (4.18) for the exponential functionk times,
we get

exp(x) = exp(x/2k)2
k

.

Thus, if|x| = Θ(1), we can reduce the problem of evaluatingexp(x) to that of
evaluatingexp(x/2k), where the argument is nowO(2−k). This is better since
the power series converges more quickly forx/2k. The cost is thek squarings
that we need to reconstruct the final result fromexp(x/2k).

There is a trade-off here, andk should be chosen to minimize the total time.
If the obvious method for power series evaluation is used, then the optimalk is
of order

√
n and the overall time isO(n1/2M(n)). We shall see in§4.4.3 that

there are faster ways to evaluate power series, so this is notthe best possible
result.

We assumed here that|x| = Θ(1). A more careful analysis shows that the
optimalk depends on the order of magnitude ofx (see Exercise 4.5).

4.3.2 Loss of precision

For some power series, especially those with alternating signs, a loss of pre-
cision might occur due to a cancellation between successiveterms. A typical
example is the series forexp(x) whenx < 0. Assume for example that we
want ten significant digits ofexp(−10). The first ten termsxk/k! for x = −10

are approximately:

1.,−10., 50.,−166.6666667, 416.6666667,−833.3333333, 1388.888889,

−1984.126984, 2480.158730,−2755.731922.

Note that these terms alternate in sign and initiallyincreasein magnitude. They
only start to decrease in magnitude fork > |x|. If we add the first51 terms
with a working precision of ten decimal digits, we get an approximation to
exp(−10) that is only accurate to about three digits!
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A much better approach is to use the identity

exp(x) = 1/ exp(−x)

to avoid cancellation in the power series summation. In other cases, a different
power series without sign changes might exist for a closely related function:
for example, compare the series (4.22) and (4.23) for computation of the error
functionerf(x). See also Exercises 4.19–4.20.

4.3.3 Guard digits

Guard digitsare digits in excess of the number of digits that are requiredin
the final answer. Generally, it is necessary to use some guarddigits during a
computation in order to obtain an accurate result (one that is correctly rounded
or differs from the correctly rounded result by a small number of units in the
last place). Of course, it is expensive to use too many guard digits. Thus, care
has to be taken to use the right number of guard digits, i.e. the right working
precision. Here and below, we use the generic term “guard digits”, even for
radixβ = 2.

Consider once again the example ofexp x, with reduced argumentx/2k and
x = Θ(1). Sincex/2k isO(2−k), when we sum the power series1+x/2k+· · ·
from left to right (forward summation), we “lose” aboutk bits of precision.
More precisely, ifx/2k is accurate ton bits, then1+x/2k is accurate ton+k

bits, but if we use the same working precisionn, we obtain onlyn correct bits.
After squaringk times in the reconstruction step, aboutk bits will be lost (each
squaring loses about one bit), so the final accuracy will be only n − k bits. If
we summed the power series in reverse order instead (backward summation),
and used a working precision ofn + k when adding1 andx/2k + · · · and
during the squarings, we would obtain an accuracy ofn + k bits before thek
squarings, and an accuracy ofn bits in the final result.

Another way to avoid loss of precision is to evaluateexpm1(x/2k), where
the functionexpm1 is defined by

expm1(x) = exp(x) − 1

and has a doubling formula that avoids loss of significance when |x| is small.
See Exercises 4.7–4.9.
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4.3.4 Doubling versus tripling

Suppose we want to compute the functionsinh(x) = (ex − e−x)/2. The
obvious doubling formula forsinh,

sinh(2x) = 2 sinh(x) cosh(x),

involves the auxiliary functioncosh(x) = (ex + e−x)/2. Sincecosh2(x) −
sinh2(x) = 1, we could use the doubling formula

sinh(2x) = 2 sinh(x)

√
1 + sinh2(x),

but this involves the overhead of computing a square root. This suggests using
the tripling formula

sinh(3x) = sinh(x)(3 + 4 sinh2(x)). (4.19)

However, it is usually more efficient to do argument reduction via the doubling
formula (4.18) forexp, because it takes one multiplication and one squaring
to apply the tripling formula, but only two squarings to apply the doubling
formula twice (and3 < 22). A drawback is loss of precision, caused by can-
cellation in the computation ofexp(x) − exp(−x), when|x| is small. In this
case, it is better to use (see Exercise 4.10)

sinh(x) = (expm1(x) − expm1(−x))/2. (4.20)

See§4.12 for further comments on doubling versus tripling, especially in the
FFT range.

4.4 Power series

Once argument reduction has been applied, where possible (§4.3), we are usu-
ally faced with the evaluation of a power series. The elementary and special
functions have power series expansions such as

exp x =
∑

j≥0

xj

j!
, ln(1 + x) =

∑

j≥0

(−1)jxj+1

j + 1
,

arctan x =
∑

j≥0

(−1)jx2j+1

2j + 1
, sinhx =

∑

j≥0

x2j+1

(2j + 1)!
, etc.

This section discusses several techniques to recommend or to avoid. We use
the following notations:x is the evaluation point,n is the desired precision,
andd is the number of terms retained in the power series, ord−1 is the degree
of the corresponding polynomial

∑
0≤j<d ajx

j .
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If f(x) is analytic in a neighborhood of some pointc, an obvious method to
consider for the evaluation off(x) is summation of the Taylor series

f(x) =

d−1∑

j=0

(x − c)j f (j)(c)

j!
+ Rd(x, c).

As a simple but instructive example, we consider the evaluation of exp(x)

for |x| ≤ 1, using

exp(x) =

d−1∑

j=0

xj

j!
+ Rd(x), (4.21)

where|Rd(x)| ≤ |x|d exp(|x|)/d! ≤ e/d!.
Using Stirling’s approximation ford!, we see thatd ≥ K(n) ∼ n/ lg n is

sufficient to ensure that|Rd(x)| = O(2−n). Thus, the time required to evaluate
(4.21) with Horner’s rule4 is O(nM(n)/ log n).

In practice, it is convenient to sum the series in the forwarddirection
(j = 0, 1, . . . , d − 1). The termstj = xj/j! and partial sums

Sj =

j∑

i=0

ti

may be generated by the recurrencetj = xtj−1/j, Sj = Sj−1 + tj , and the
summation terminated when|td| < 2−n/e. Thus, it is not necessary to estimate
d in advance, as it would be if the series were summed by Horner’s rule in the
backward direction(j = d − 1, d − 2, . . . , 0) (see however Exercise 4.4).

We now consider the effect of rounding errors, under the assumption that
floating-point operations are correctly rounded, i.e. satisfy

◦(x op y) = (x op y)(1 + δ),

where|δ| ≤ ε and “op” = “+”, “−”, “×” or “/”. Here ε = 2−n is the “machine
precision” or “working precision”. Let̂tj be the computed value oftj , etc.
Thus

|t̂j − tj | / |tj | ≤ 2jε + O(ε2)

4 By Horner’s rule(with argumentx), we mean evaluating the polynomial
s0 =

P

0≤j≤d ajxj of degreed (notd − 1 in this footnote) by the recurrencesd = ad,

sj = aj + sj+1x for j = d − 1, d − 2, . . . , 0. Thus,sk =
P

k≤j≤d ajxj−k. An
evaluation by Horner’s rule takesd additions andd multiplications, and is more efficient than
explicitly evaluating the individual termsajxj .
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and using
∑d

j=0 tj = Sd ≤ e

|Ŝd − Sd| ≤ deε +
d∑

j=1

2jε|tj | + O(ε2)

≤ (d + 2)eε + O(ε2) = O(nε).

Thus, to get|Ŝd−Sd| = O(2−n), it is sufficient thatε = O(2−n/n). In other
words, we need to work with aboutlg n guard digits. This is not a significant
overhead if (as we assume) the number of digits may vary dynamically. We
can sum withj increasing (theforwarddirection) or decreasing (thebackward
direction). A slightly better error bound is obtainable forsummation in the
backward direction, but this method has the disadvantage that the number of
termsd has to be decided in advance (see however Exercise 4.4).

In practice, it is inefficient to keep the working precisionε fixed. We can
profitably reduce it when computingtj from tj−1 if |tj−1| is small, without
significantly increasing the error bound. We can also vary the working preci-
sion when accumulating the sum, especially if it is computedin the backward
direction (so the smallest terms are summed first).

It is instructive to consider the effect of relaxing our restriction that|x| ≤ 1.
First suppose thatx is large and positive. Since|tj | > |tj−1| whenj < |x|, it
is clear that the number of terms required in the sum (4.21) isat least of order
|x|. Thus, the method is slow for large|x| (see§4.3 for faster methods in this
case).

If |x| is large andx is negative, the situation is even worse. From Stirling’s
approximation we have

max
j≥0

|tj | ≃ exp |x|√
2π|x|

,

but the result isexp(−|x|), so about2|x|/ log 2 guard digits are required to
compensate for what Lehmer called “catastrophic cancellation” [94]. Since
exp(x) = 1/ exp(−x), this problem may easily be avoided, but the corre-
sponding problem is not always so easily avoided for other analytic functions.

Here is a less trivial example. To compute the error function

erf(x) =
2√
π

∫ x

0

e−u2

du,

we may use either the power series

erf(x) =
2x√
π

∞∑

j=0

(−1)j x2j

j!(2j + 1)
(4.22)
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or the (mathematically, but not numerically) equivalent

erf(x) =
2xe−x2

√
π

∞∑

j=0

2j x2j

1 · 3 · 5 · · · (2j + 1)
. (4.23)

For small|x|, the series (4.22) is slightly faster than the series (4.23)because
there is no need to compute an exponential. However, the series (4.23) is prefer-
able to (4.22) for moderate|x| because it involves no cancellation. For large
|x|, neither series is satisfactory, becauseΩ(x2) terms are required, and in this
case it is preferable to use the asymptotic expansion forerfc(x) = 1 − erf(x):
see§4.5. In the borderline region, use of the continued fraction(4.40) could be
considered: see Exercise 4.31.

In the following subsections, we consider different methods to evaluate power
series. We generally ignore the effect of rounding errors, but the results
obtained above are typical.

Assumption about the coefficients

We assume in this section that we have a power series
∑

j≥0 ajx
j , where

aj+δ/aj is a rational functionR(j) of j, and hence it is easy to evaluate
a0, a1, a2, . . . sequentially. Hereδ is a fixed positive constant, usually1 or
2. For example, in the case ofexp x, we haveδ = 1 and

aj+1

aj
=

j!

(j + 1)!
=

1

j + 1
.

Our assumptions cover the common case of hypergeometric functions. For the
more general case of holonomic functions, see§4.9.2.

In common cases where our assumption is invalid, other good methods are
available to evaluate the function. For example,tan x does not satisfy our as-
sumption (the coefficients in its Taylor series are calledtangent numbersand
are related to Bernoulli numbers – see§4.7.2), but to evaluatetan x we can
use Newton’s method on the inverse function (arctan, which does satisfy our
assumptions – see§4.2.5), or we can usetan x = sin x/ cos x.

The radius of convergence

If the elementary function is an entire function (e.g.exp, sin), then the power
series converges in the whole complex plane. In this case, the degree of the
denominator ofR(j) = aj+1/aj is greater than that of the numerator.

In other cases (such asln, arctan), the function is not entire. The power
series only converges in a disk because the function has a singularity on the
boundary of this disk. In fact,ln(x) has a singularity at the origin, which is
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why we consider the power series forln(1 + x). This power series has radius
of convergence 1.

Similarly, the power series forarctan(x) has radius of convergence 1 be-
causearctan(x) has singularities on the unit circle (at±i) even though it is
uniformly bounded for all realx.

4.4.1 Direct power series evaluation

Suppose that we want to evaluate a power series
∑

j≥0 ajx
j at a given argu-

mentx. Using periodicity (in the cases ofsin, cos) and/or argument reduction
techniques (§4.3), we can often ensure that|x| is sufficiently small. Thus, let
us assume that|x| ≤ 1/2 and that the radius of convergence of the series is at
least 1.

As above, assume thataj+δ/aj is a rational function ofj, and hence easy
to evaluate. For simplicity, we consider only the caseδ = 1. To sum the series
with errorO(2−n) it is sufficient to taken + O(1) terms, so the time required
is O(nM(n)). If the function is entire, then the series converges fasterand the
time is reduced toO(nM(n)/(log n)). However, we can do much better by
carrying the argument reduction further, as demonstrated in the next section.

4.4.2 Power series with argument reduction

Consider the evaluation ofexp(x). By applying argument reductionk + O(1)

times, we can ensure that the argumentx satisfies|x| < 2−k. Then, to obtainn-
bit accuracy we only need to sumO(n/k) terms of the power series. Assuming
that a step of argument reduction isO(M(n)), which is true for the elementary
functions, the total cost isO((k+n/k)M(n)). Indeed, the argument reduction
and/or reconstruction requiresO(k) steps ofO(M(n)), and the evaluation of
the power series of ordern/k costs(n/k)M(n); so choosingk ∼ n1/2 gives
cost

O
(
n1/2M(n)

)
.

For example, our comments apply to the evaluation ofexp(x) using

exp(x) = exp(x/2)2,

to log1p(x) = ln(1 + x) using

log1p(x) = 2 log1p

(
x

1 +
√

1 + x

)
,
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and toarctan(x) using

arctan x = 2arctan

(
x

1 +
√

1 + x2

)
.

Note that in the last two cases each step of the argument reduction requires
a square root, but this can be done with costO(M(n)) by Newton’s method
(§3.5). Thus, in all three cases the overall cost isO(n1/2M(n)), although the
implicit constant might be smaller forexp than forlog1p or arctan. See Exer-
cises 4.8–4.9.

Using symmetries

A not-so-well-known idea is to evaluateln(1 + x) using the power series

ln

(
1 + y

1 − y

)
= 2

∑

j≥0

y2j+1

2j + 1

with y defined by(1 + y)/(1 − y) = 1 + x, i.e. y = x/(2 + x). This
saves half the terms and also reduces the argument, sincey < x/2 if x > 0.
Unfortunately, this nice idea can be applied only once. For arelated example,
see Exercise 4.11.

4.4.3 Rectangular series splitting

Once we determine how many terms in the power series are required for the
desired accuracy, the problem reduces to evaluating a truncated power series,
i.e. a polynomial.

Let P (x) =
∑

0≤j<d ajx
j be the polynomial that we want to evaluate,

deg(P ) < d. In the general case,x is a floating-point number ofn bits,
and we aim at an accuracy ofn bits for P (x). However, the coefficientsaj ,
or their ratiosR(j) = aj+1/aj , are usually small integers or rational num-
bers ofO(log n) bits. A scalar multiplicationinvolves one coefficientaj and
the variablex (or more generally ann-bit floating-point number), whereas a
non-scalar multiplicationinvolves two powers ofx (or more generally twon-
bit floating-point numbers). Scalar multiplications are cheaper because theaj

are small rationals of sizeO(log n), whereasx and its powers generally have
Θ(n) bits. It is possible to evaluateP (x) with O(

√
n) non-scalar multiplica-

tions (plusO(n) scalar multiplications andO(n) additions, usingO(
√

n) stor-
age). The same idea applies, more generally, to evaluation of hypergeometric
functions.
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Classical splitting

Supposed = jk, definey = xk, and write

P (x) =

j−1∑

ℓ=0

yℓPℓ(x), where Pℓ(x) =

k−1∑

m=0

akℓ+m xm.

We first compute the powersx2, x3, . . . , xk−1, xk = y, then the polynomials
Pℓ(x) are evaluated simply by multiplyingakℓ+m and the precomputedxm (it
is important not to use Horner’s rule here, since this would involve expensive
non-scalar multiplications). Finally,P (x) is computed from thePℓ(x) using
Horner’s rule with argumenty. To see the idea geometrically, writeP (x) as

y0 [a0 + a1x + a2x
2 + · · · + ak−1x

k−1] +
y1 [ak + ak+1x + ak+2x

2 + · · · + a2k−1x
k−1] +

y2 [a2k + a2k+1x + a2k+2x
2 + · · · + a3k−1x

k−1] +
...

...
...

yj−1 [a(j−1)k + a(j−1)k+1x + a(j−1)k+2x
2 + · · · + ajk−1x

k−1] ,

wherey = xk. The terms in square brackets are the polynomialsP0(x), P1(x),
. . . ,Pj−1(x).

As an example, considerd = 12, with j = 3 andk = 4. This givesP0(x) =

a0+a1x+a2x
2+a3x

3, P1(x) = a4+a5x+a6x
2+a7x

3, P2(x) = a8+a9x+

a10x
2 +a11x

3, thenP (x) = P0(x)+ yP1(x)+ y2P2(x), wherey = x4. Here
we need to computex2, x3, x4, which requires three non-scalar products –
note that even powers likex4 should be computed as(x2)2 to use squarings
instead of multiplies – and we need two non-scalar products to evaluateP (x);
thus, a total of five non-scalar products, instead ofd − 2 = 10 with a naive
application of Horner’s rule toP (x).5

Modular splitting

An alternate splitting is the following, which may be obtained by transpos-
ing the matrix of coefficients above, swappingj andk, and interchanging the
powers ofx andy. It might also be viewed as a generalized odd–even scheme
(§1.3.5). Suppose as before thatd = jk, and write, withy = xj :

P (x) =

j−1∑

ℓ=0

xℓPℓ(y), where Pℓ(y) =

k−1∑

m=0

ajm+ℓ ym.

5 P (x) has degreed − 1, so Horner’s rule performsd − 1 products, but the first onex × ad−1

is a scalar product, hence there ared − 2 non-scalar products.
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First computey = xj , y2, y3, . . . , yk−1. Now the polynomialsPℓ(y) can be
evaluated using only scalar multiplications of the formajm+ℓ × ym.

To see the idea geometrically, writeP (x) as

x0 [a0 + ajy + a2jy
2 + · · · ] +

x1 [a1 + aj+1y + a2j+1y
2 + · · · ] +

x2 [a2 + aj+2y + a2j+2y
2 + · · · ] +

...
...

...
xj−1 [aj−1 + a2j−1y + a3j−1y

2 + · · · ] ,

wherey = xj . We traverse the first row of the array, then the second row, then
the third, . . ., finally the jth row, accumulating sumsS0, S1, . . . , Sj−1 (one
for each row). At the end of this process,Sℓ = Pℓ(y), and we only have to
evaluate

P (x) =

j−1∑

ℓ=0

xℓSℓ .

The complexity of each scheme is almost the same (see Exercise 4.12). With
d = 12 (j = 3 andk = 4) we haveP0(y) = a0 + a3y + a6y

2 + a9y
3,

P1(y) = a1 + a4y + a7y
2 + a10y

3, P2(y) = a2 + a5y + a8y
2 + a11y

3.
We first computey = x3, y2, andy3, then we evaluateP0(y) in three scalar
multiplicationsa3y, a6y

2, anda9y
3 and three additions, similarly forP1 and

P2. Finally we evaluateP (x) using

P (x) = P0(y) + xP1(y) + x2P2(y),

(here we might use Horner’s rule). In this example, we have a total of six non-
scalar multiplications: four to computey and its powers, and two to evaluate
P (x).

Complexity of rectangular series splitting

To evaluate a polynomialP (x) of degreed − 1 = jk − 1, rectangular series
splitting takesO(j + k) non-scalar multiplications – each costingO(M(n)) –
andO(jk) scalar multiplications. The scalar multiplications involve multipli-
cation and/or division of a multiple-precision number by small integers. As-
sume that these multiplications and/or divisions take timec(d)n each (see Ex-
ercise 4.13 for a justification of this assumption). The function c(d) accounts
for the fact that the involved scalars (the coefficientsaj or the ratiosaj+1/aj)
have a size depending on the degreed of P (x). In practice, we can usually
regardc(d) as constant.
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Choosingj ∼ k ∼ d1/2, we get overall time

O(d1/2M(n) + dn · c(d)). (4.24)

If d is of the same order as the precisionn of x, this is not an improvement
on the boundO(n1/2M(n)) that we obtained already by argument reduction
and power series evaluation (§4.4.2). However, we can do argument reduction
before applying rectangular series splitting. Assuming that c(n) = O(1) (see
Exercise 4.14 for a detailed analysis), the total complexity is

T (n) = O
(n

d
M(n) + d1/2M(n) + dn

)
,

where the extra(n/d)M(n) term comes from argument reduction and/or re-
construction. Which term dominates? There are two cases:

1. M(n) ≫ n4/3. Here the minimum is obtained when the first two terms –
argument reduction/reconstruction and non-scalar multiplications – are
equal, i.e. ford ∼ n2/3, which yieldsT (n) = O(n1/3M(n)). This case
applies if we use classical or Karatsuba multiplication, since lg 3 > 4/3,
and similarly for Toom–Cook3-, 4-, 5-, or 6-way multiplication (but not
7-way, sincelog7 13 < 4/3). In this case,T (n) ≫ n5/3.

2. M(n) ≪ n4/3. Here the minimum is obtained when the first and the last
terms – argument reduction/reconstruction and scalar multiplications – are
equal. The optimal value ofd is then

√
M(n), and we get an improved

boundΘ(n
√

M(n)) ≫ n3/2. We can not approach theO(n1+ε) that is
achievable with AGM-based methods (if applicable) – see§4.8.

4.5 Asymptotic expansions

Often it is necessary to use different methods to evaluate a special function in
different parts of its domain. For example, the exponentialintegral6

E1(x) =

∫ ∞

x

exp(−u)

u
du (4.25)

is defined for allx > 0. However, the power series

E1(x) + γ + lnx =

∞∑

j=1

(−1)j−1xj

j!j
(4.26)

6 E1(x) andEi(x) = PV
R x
−∞

(exp(t)/t) dt are both called “exponential integrals”. Closely

related is the “logarithmic integral”li(x) = Ei(ln x) = PV
R x
0 (1/ ln t) dt. Here the integrals

PV
R

· · · should be interpreted as Cauchy principal values if there isa singularity in the range
of integration. The power series (4.26) is valid forx ∈ C if | arg x| < π (see Exercise 4.16).
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is unsatisfactory as a means of evaluatingE1(x) for large positivex, for the
reasons discussed in§4.4 in connection with the power series (4.22) forerf(x),
or the power series forexp(x) (x negative). For sufficiently large positivex, it
is preferable to use

ex E1(x) =

k∑

j=1

(j − 1)!(−1)j−1

xj
+ Rk(x), (4.27)

where

Rk(x) = k! (−1)k exp(x)

∫ ∞

x

exp(−u)

uk+1
du. (4.28)

Note that

|Rk(x)| <
k!

xk+1
,

so

lim
x→+∞

Rk(x) = 0,

but limk→∞ Rk(x) does not exist. In other words, the series

∞∑

j=1

(j − 1)! (−1)j−1

xj

is divergent. In such cases, we call this anasymptotic seriesand write

ex E1(x) ∼
∑

j>0

(j − 1)!(−1)j−1

xj
. (4.29)

Although they do not generally converge, asymptotic seriesare very useful.
Often (though not always!) the error is bounded by the last term taken in the
series (or by the first term omitted). Also, when the terms in the asymptotic
series alternate in sign, it can often be shown that the true value lies between
two consecutive approximations obtained by summing the series with (say)k
andk + 1 terms. For example, this is true for the series (4.29) above,provided
x is real and positive.

Whenx is large and positive, the relative error attainable by using (4.27)
with k = ⌊x⌋ is O(x1/2 exp(−x)), because

|Rk(k)| ≤ k!/kk+1 = O(k−1/2 exp(−k)) (4.30)

and the leading term on the right side of (4.27) is1/x. Thus, the asymptotic
series may be used to evaluateE1(x) to precision n whenever
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x > n ln 2 + O(ln n). More precise estimates can be obtained by using a
version of Stirling’s approximation with error bounds, forexample

(
k

e

)k √
2πk < k! <

(
k

e

)k √
2πk exp

(
1

12k

)
.

If x is too small for the asymptotic approximation to be sufficiently accurate,
we can avoid the problem of cancellation in the power series (4.26) by the
technique of Exercise 4.19. However, the asymptotic approximation is faster
and hence is preferable whenever it is sufficiently accurate.

Examples where asymptotic expansions are useful include the evaluation of
erfc(x), Γ(x), Bessel functions, etc. We discuss some of these below.

Asymptotic expansions often arise when the convergence of series is accel-
erated by the Euler–Maclaurin sum formula.7 For example, Euler’s constantγ

is defined by

γ = lim
N→∞

(HN − lnN) , (4.31)

whereHN =
∑

1≤j≤N 1/j is a harmonic number. However, Eqn. (4.31) con-
verges slowly, so to evaluateγ accurately we need to accelerate the conver-
gence. This can be done using the Euler–Maclaurin formula. The idea is to
split the sumHN into two parts

HN = Hp−1 +

N∑

j=p

1

j
.

We approximate the second sum using the Euler–Maclaurin formula7 with
a = p, b = N , f(x) = 1/x, then letN → +∞. The result is

γ ∼ Hp − ln p +
∑

k≥1

B2k

2k
p−2k. (4.32)

If p and the number of terms in the asymptotic expansion are chosen judi-
ciously, this gives a good algorithm for computingγ (though not the best algo-
rithm: see§4.12 for a faster algorithm that uses properties of Bessel functions).

7 The Euler–Maclaurin sum formula is a way of expressing the difference between a sum and
an integral as an asymptotic expansion. For example, assuming thata ∈ Z, b ∈ Z, a ≤ b, and
f(x) satisfies certain conditions, one form of the formula is

X

a≤k≤b

f(k) −

Z b

a
f(x) dx ∼

f(a) + f(b)

2
+

X

k≥1

B2k

(2k)!

“

f (2k−1)(b) − f (2k−1)(a)
”

.

Often we can letb → +∞ and omit the terms involvingb on the right-hand side. For more
information, see§4.12.
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Here is another example. The Riemann zeta-functionζ(s) is defined for
s ∈ C, ℜ(s) > 1, by

ζ(s) =

∞∑

j=1

j−s, (4.33)

and by analytic continuation for others 6= 1. ζ(s) may be evaluated to any
desired precision ifm andp are chosen large enough in the Euler–Maclaurin
formula

ζ(s) =

p−1∑

j=1

j−s +
p−s

2
+

p1−s

s − 1
+

m∑

k=1

Tk,p(s) + Em,p(s), (4.34)

where

Tk,p(s) =
B2k

(2k)!
p1−s−2k

2k−2∏

j=0

(s + j), (4.35)

|Em,p(s)| < |Tm+1,p(s) (s + 2m + 1)/(σ + 2m + 1)|, (4.36)

m ≥ 0, p ≥ 1, σ = ℜ(s) > −(2m + 1), and theB2k are Bernoulli numbers.
In arbitrary-precision computations, we must be able to compute as many

terms of an asymptotic expansion as are required to give the desired accuracy.
It is easy to see that, ifm in (4.34) is bounded as the precisionn goes to
∞, thenp has to increase as an exponential function ofn. To evaluateζ(s)

from (4.34) to precisionn in time polynomial inn, bothm andp must tend to
infinity with n. Thus, the Bernoulli numbersB2, . . . , B2m can not be stored in
a table of fixed size,8 but must be computed when needed (see§4.7). For this
reason, we can not use asymptotic expansions when the general form of the
coefficients is unknown or the coefficients are too difficult to evaluate. Often
there is a related expansion with known and relatively simple coefficients. For
example, the asymptotic expansion (4.38) forln Γ(x) has coefficients related to
the Bernoulli numbers, like the expansion (4.34) forζ(s), and thus is simpler to
implement than Stirling’s asymptotic expansion forΓ(x) (see Exercise 4.42).

Consider the computation of the error functionerf(x). As seen in§4.4, the
series (4.22) and (4.23) are not satisfactory for large|x|, since they require
Ω(x2) terms. For example, to evaluateerf(1000) with an accuracy of six digits,

8 In addition, we would have to store them as exact rationals, taking∼ m2 lg m bits of storage,
since a floating-point representation would not be convenient unless the target precisionn
were known in advance. See§4.7.2 and Exercise 4.37.
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Eqn. (4.22) requires at least2 718 279 terms! Instead, we may use an asymp-
totic expansion. The complementary error functionerfc(x) = 1 − erf(x) sat-
isfies

erfc(x) ∼ e−x2

x
√

π

k∑

j=0

(−1)j (2j)!

j!
(2x)−2j , (4.37)

with the error bounded in absolute value by the next term and of the same sign.
In the casex = 1000, the term forj = 1 of the sum equals−0.5× 10−6; thus,
e−x2

/(x
√

π) is an approximation toerfc(x) with an accuracy of six digits.
Becauseerfc(1000) ≈ 1.86× 10−434 298 is very small, this gives anextremely
accurate approximation toerf(1000).

For a function like the error function, where both a power series (atx = 0)
and an asymptotic expansion (atx = ∞) are available, we might prefer to use
the former or the latter, depending on the value of the argument and on the
desired precision. We study here in some detail the case of the error function,
since it is typical.

The sum in (4.37) is divergent, since itsjth term is∼
√

2(j/ex2)j . We
need to show that the smallest term isO(2−n) in order to be able to deduce
ann-bit approximation toerfc(x). The terms decrease whilej < x2 + 1/2,
so the minimum is obtained forj ≈ x2, and is of ordere−x2

; thus, we need
x >

√
n ln 2. For example, forn = 106 bits this yieldsx > 833. However,

sinceerfc(x) is small for largex, sayerfc(x) ≈ 2−λ, we need onlym = n−λ

correct bits oferfc(x) to getn correct bits oferf(x) = 1 − erfc(x).
Considerx fixed andj varying in the terms in the sums (4.22) and (4.37).

For j < x2, x2j/j! is an increasingfunction of j, but (2j)!/(j!(4x2)j) is a
decreasingfunction ofj. In this region, the terms in Eqn. (4.37) are decreasing.
Thus, comparing the series (4.22) and (4.37), we see that thelatter should
always be used if it can give sufficient accuracy. Similarly,(4.37) should if
possible be used in preference to (4.23), as the magnitudes of corresponding
terms in (4.22) and in (4.23) are similar.

Algorithm Erf computeserf(x) for real positivex (for other realx, use the
fact thaterf(x) is an odd function, soerf(−x) = − erf(x) anderf(0) = 0).
In Algorithm Erf , the number of terms needed if Eqn. (4.22) or Eqn. (4.23)
is used is approximately the unique positive rootj0 (rounded up to the next
integer) of

j(ln j − 2 ln x − 1) = n ln 2,

so j0 > ex2. On the other hand, if Eqn. (4.37) is used, then the summation
boundk is less thanx2 + 1/2 (since otherwise the terms start increasing). The
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Algorithm 4.2 Erf
Input: positive floating-point numberx, integern
Output: ann-bit approximation toerf(x)

m ← ⌈n − (x2 + lnx + (lnπ)/2)/(ln 2)⌉
if (m + 1/2) ln(2) < x2 then

t ← erfc(x) with the asymptotic expansion(4.37) and precisionm
return1 − t (in precisionn)

else ifx < 1 then
computeerf(x) with the power series(4.22) in precisionn

else
computeerf(x) with the power series(4.23) in precisionn.

condition(m + 1/2) ln(2) < x2 in the algorithm ensures that the asymptotic
expansion can givem-bit accuracy.

Here is an example: forx = 800 and a precision of one million bits, Equa-
tion (4.23) requires aboutj0 = 2339 601 terms. Eqn. (4.37) tells us that
erfc(x) ≈ 2−923 335; thus, we need onlym = 76 665 bits of precision for
erfc(x) – in this case Eqn. (4.37) requires only aboutk = 10 375 terms. Note
that using Eqn. (4.22) would be slower than using Eqn. (4.23), because we
would have to compute about the same number of terms, but withhigher pre-
cision, to compensate for cancellation. We recommend usingEqn. (4.22) only
if |x| is small enough that any cancellation is insignificant (for example, if
|x| < 1).

Another example, closer to the boundary: forx = 589, still with n = 106,
we havem = 499 489, which givesj0 = 1497 924, andk = 325 092. For
somewhat smallerx (or largern), it might be desirable to use the continued
fraction (4.40), see Exercise 4.31.

Occasionally, an asymptotic expansion can be used to obtainarbitrarily high
precision. For example, consider the computation ofln Γ(x). For large positive
x, we can use Stirling’s asymptotic expansion

ln Γ(x) =

(
x − 1

2

)
lnx − x +

ln(2π)

2
+

m−1∑

k=1

B2k

2k(2k − 1)x2k−1
+ Rm(x),

(4.38)
whereRm(x) is less in absolute value than the first term neglected, i.e.

B2m

2m(2m − 1)x2m−1
,
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and has the same sign.9 The ratio of successive termstk andtk+1 of the sum is

tk+1

tk
≈ −

(
k

πx

)2

,

so the terms start to increase in absolute value for (approximately)k > πx.
This gives a bound on the accuracy attainable, in fact

ln |Rm(x)| > −2πx ln(x) + O(x).

However, becauseΓ(x) satisfies the functional equationΓ(x + 1) = xΓ(x),
we can takex′ = x + δ for some sufficiently largeδ ∈ N, evaluateln Γ(x′)
using the asymptotic expansion, and then computeln Γ(x) from the functional
equation. See Exercise 4.21.

4.6 Continued fractions

In §4.5, we considered the exponential integralE1(x). This can be computed
using thecontinued fraction

ex E1(x) =
1

x +
1

1 +
1

x +
2

1 +
2

x +
3

1 + · · ·

.

Writing continued fractions in this way takes a lot of space, so instead we use
the shorthand notation

ex E1(x) =
1

x+

1

1+

1

x+

2

1+

2

x+

3

1+
· · · (4.39)

Another example is

erfc(x) =

(
e−x2

√
π

)
1

x+

1/2

x+

2/2

x+

3/2

x+

4/2

x+

5/2

x+
· · · (4.40)

Formally, a continued fraction

f = b0 +
a1

b1+

a2

b2+

a3

b3+
· · · ∈ Ĉ

9 The asymptotic expansion is also valid forx ∈ C, | arg x| < π, x 6= 0, but the bound on the
error termRm(x) in this case is more complicated. See for example [1, 6.1.42].
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is defined by two sequences(aj)j∈N∗ and(bj)j∈N, whereaj , bj ∈ C. Here
Ĉ = C ∪ {∞} is the set ofextendedcomplex numbers.10 The expressionf is
defined to belimk→∞ fk, if the limit exists, where

fk = b0 +
a1

b1+

a2

b2+

a3

b3+
· · · ak

bk
(4.41)

is the finite continued fraction – called thekth approximant– obtained by
truncating the infinite continued fraction afterk quotients.

Sometimes continued fractions are preferable, for computational purposes,
to power series or asymptotic expansions. For example, Euler’s continued frac-
tion (4.39) converges for all realx > 0, and is better for computation ofE1(x)

than the power series (4.26) in the region where the power series suffers from
catastrophic cancellation but the asymptotic expansion (4.27) is not sufficiently
accurate. Convergence of (4.39) is slow ifx is small, so (4.39) is preferred
for precisionn evaluation ofE1(x) only whenx is in a certain interval, say
x ∈ (c1n, c2n), c1 ≈ 0.1, c2 = ln 2 ≈ 0.6931 (see Exercise 4.24).

Continued fractions may be evaluated by either forward or backward recur-
rence relations. Consider the finite continued fraction

y =
a1

b1+

a2

b2+

a3

b3+
· · · ak

bk

. (4.42)

The backward recurrence isRk = 1, Rk−1 = bk,

Rj = bj+1 Rj+1 + aj+2 Rj+2 (j = k − 2, . . . , 0), (4.43)

andy = a1R1/R0, with invariant

Rj

Rj−1
=

1

bj+

aj+1

bj+1+
· · · ak

bk

.

The forward recurrence isP0 = 0, P1 = a1, Q0 = 1, Q1 = b1,

Pj = bj Pj−1 + aj Pj−2

Qj = bj Qj−1 + aj Qj−2

}
(j = 2, . . . , k), (4.44)

andy = Pk/Qk (see Exercise 4.26).
The advantage of evaluating an infinite continued fraction such as (4.39) via

the forward recurrence is that the cutoffk need not be chosen in advance; we
can stop when|Dk| is sufficiently small, where

Dk =
Pk

Qk
− Pk−1

Qk−1

. (4.45)

10 Arithmetic operations onC are extended tobC in the obvious way, for example
1/0 = 1 + ∞ = 1 ×∞ = ∞, 1/∞ = 0. Note that0/0, 0 ×∞ and∞±∞ are undefined.



152 Elementary and special function evaluation

The main disadvantage of the forward recurrence is that twice as many arith-
metic operations are required as for the backward recurrence with the same
value ofk. Another disadvantage is that the forward recurrence may beless
numerically stable than the backward recurrence.

If we are working with variable-precision floating-point arithmetic, which is
much more expensive than single-precision floating-point,then a useful strat-
egy is to use the forward recurrence with single-precision arithmetic (scaled to
avoid overflow/underflow) to estimatek, and then use the backward recurrence
with variable-precision arithmetic. One trick is needed: to evaluateDk using
scaled single-precision we use the recurrence

D1 = a1/b1,

Dj = −ajQj−2Dj−1/Qj (j = 2, 3, . . .)

}
, (4.46)

which avoids the cancellation inherent in (4.45).
By analogy with the case of power series with decreasing terms that alternate

in sign, there is one case in which it is possible to give a simple a posteriori
bound for the error occurred in truncating a continued fraction. Let f be a
convergent continued fraction with approximantsfk as in (4.41). Then:

Theorem 4.1 If aj > 0 andbj > 0 for all j ∈ N∗, then the sequence(f2k)k∈N

of even order approximants is strictly increasing, and the sequence(f2k+1)k∈N

of odd order approximants is strictly decreasing. Thus

f2k < f < f2k+1

and ∣∣∣∣f − fm−1 + fm

2

∣∣∣∣ <

∣∣∣∣
fm − fm−1

2

∣∣∣∣

for all m ∈ N∗.

In general, if the conditions of Theorem 4.1 are not satisfied, then it is diffi-
cult to give simple, sharp error bounds. Power series and asymptotic series are
usually much easier to analyse than continued fractions.

4.7 Recurrence relations

The evaluation of special functions by continued fractionsis a special case
of their evaluation by recurrence relations. To illustratethis, we consider the
Bessel functions of the first kind,Jν(x). Hereν andx can in general be com-
plex, but we restrict attention to the caseν ∈ Z, x ∈ R. The functionsJν(x)
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can be defined in several ways, for example by the generating function (elegant
but only useful forν ∈ Z)

exp

(
x

2

(
t − 1

t

))
=

+∞∑

ν=−∞
tνJν(x), (4.47)

or by the power series (also valid ifν /∈ Z):

Jν(x) =
(x

2

)ν ∞∑

j=0

(−x2/4)j

j! Γ(ν + j + 1)
. (4.48)

We also need Bessel functions of the second kind (sometimes called Neumann
functions or Weber functions)Yν(x), which may be defined by

Yν(x) = lim
µ→ν

Jµ(x) cos(πµ) − J−µ(x)

sin(πµ)
. (4.49)

BothJν(x) andYν(x) are solutions of Bessel’s differential equation

x2y′′ + xy′ + (x2 − ν2)y = 0. (4.50)

4.7.1 Evaluation of Bessel functions

The Bessel functionsJν(x) satisfy the recurrence relation

Jν−1(x) + Jν+1(x) =
2ν

x
Jν(x). (4.51)

Dividing both sides byJν(x), we see that

Jν−1(x)

Jν(x)
=

2ν

x
− 1

/
Jν(x)

Jν+1(x)
,

which gives a continued fraction for the ratioJν(x)/Jν−1(x) (ν ≥ 1)

Jν(x)

Jν−1(x)
=

1

2ν/x−
1

2(ν + 1)/x−
1

2(ν + 2)/x− · · · · (4.52)

However, (4.52) is not immediately useful for evaluating the Bessel functions
J0(x) or J1(x), as it only gives their ratio.

The recurrence (4.51) may be evaluated backwards byMiller’s algorithm.
The idea is to start at some sufficiently large indexν′, takefν′+1 = 0, fν′ = 1,
and evaluate the recurrence

fν−1 + fν+1 =
2ν

x
fν (4.53)
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backwards to obtainfν′−1, · · · , f0. However, (4.53) is the same recurrence as
(4.51), so we expect to obtainf0 ≈ cJ0(x), wherec is some scale factor. We
can use the identity

J0(x) + 2

∞∑

ν=1

J2ν(x) = 1 (4.54)

to determinec.
To understand why Miller’s algorithm works, and why evaluation of the re-

currence (4.51) in the forward direction is numerically unstable forν > x,
we observe that the recurrence (4.53) has two independent solutions: the de-
sired solutionJν(x), and an undesired solutionYν(x), whereYν(x) is a Bessel
function of thesecond kind, see Eqn. (4.49). The general solution of the recur-
rence (4.53) is a linear combination of the special solutions Jν(x) andYν(x).
Due to rounding errors, the computed solution will also be a linear combina-
tion, sayaJν(x)+ bYν(x). Since|Yν(x)| increases exponentially withν when
ν > ex/2, but |Jν(x)| is bounded, the unwanted component will increase ex-
ponentially if we use the recurrence in the forward direction, but decrease if
we use it in the backward direction.

More precisely, we have

Jν(x) ∼ 1√
2πν

(ex

2ν

)ν

and Yν(x) ∼ −
√

2

πν

(
2ν

ex

)ν

(4.55)

asν → +∞ with x fixed. Thus, whenν is large and greater thanex/2, Jν(x)

is small and|Yν(x)| is large.
Miller’s algorithm seems to be the most effective method in the region where

the power series (4.48) suffers from catastrophic cancellation, but asymptotic
expansions are not sufficiently accurate. For more on Miller’s algorithm, see
§4.12.

4.7.2 Evaluation of Bernoulli and tangent numbers

In §4.5, Eqns. (4.35) and (4.38), the Bernoulli numbersB2k or scaled Bernoulli
numbersCk = B2k/(2k)! were required. These constants can be defined by
the generating functions

∞∑

k=0

Bk
xk

k!
=

x

ex − 1
, (4.56)

∞∑

k=0

Ckx2k =
x

ex − 1
+

x

2
=

x/2

tanh(x/2)
. (4.57)
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Multiplying both sides of (4.56) or (4.57) byex−1, then equating coefficients,
gives the recurrence relations

B0 = 1,
k∑

j=0

(
k + 1

j

)
Bj = 0 for k > 0, (4.58)

and
k∑

j=0

Cj

(2k + 1 − 2j)!
=

1

2 (2k)!
. (4.59)

These recurrences, or slight variants with similar numerical properties, have
often been used to evaluate Bernoulli numbers.

In this chapter our philosophy is that the required precision is not known in
advance, so it is not possible to precompute the Bernoulli numbers and store
them in a table once and for all. Thus, we need a good algorithmfor computing
them at runtime.

Unfortunately, forward evaluation of the recurrence (4.58), or the corre-
sponding recurrence (4.59) for the scaled Bernoulli numbers, is numerically
unstable: using precisionn, the relative error in the computedB2k or Ck is of
order4k2−n: see Exercise 4.35.

Despite its numerical instability, use of (4.59) may give theCk to acceptable
accuracy if they are only needed to generate coefficients in an Euler–Maclaurin
expansion where the successive terms diminish by at least a factor of four (or if
theCk are computed using exact rational arithmetic). If theCk are required to
precisionn, then (4.59) should be used with sufficient guard digits, or (better)
a more stable recurrence should be used. If we multiply both sides of (4.57) by
sinh(x/2)/x and equate coefficients, we get the recurrence

k∑

j=0

Cj

(2k + 1 − 2j)! 4k−j
=

1

(2k)! 4k
. (4.60)

If (4.60) is used to evaluateCk, using precisionn arithmetic, the relative
error is only O(k22−n). Thus, use of (4.60) gives a stable algorithm for
evaluating the scaled Bernoulli numbersCk (and hence, if desired, the
Bernoulli numbers).

An even better, and perfectly stable, way to compute Bernoulli numbers is
to exploit their relationship with thetangent numbersTj , defined by

tan x =
∑

j≥1

Tj
x2j−1

(2j − 1)!
. (4.61)

The tangent numbers are positive integers and can be expressed in terms of
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Bernoulli numbers

Tj = (−1)j−122j
(
22j − 1

) B2j

2j
. (4.62)

Conversely, the Bernoulli numbers can be expressed in termsof tangent
numbers

Bj =





1 if j = 0,

−1/2 if j = 1,

(−1)j/2−1jTj/2/(4j − 2j) if j > 0 is even,

0 otherwise.

Eqn. (4.62) shows that the odd primes in the denominator of the Bernoulli
numberB2j must be divisors of22j − 1. In fact, this is a consequence of
Fermat’s little theorem and the Von Staudt–Clausen theorem, which says that
the primesp dividing the denominator ofB2j are precisely those for which
(p − 1)|2j (see§4.12).

We now derive a recurrence that can be used to compute tangentnumbers,
using only integer arithmetic. For brevity, writet = tanx andD = d/dx.
ThenDt = sec2 x = 1 + t2. It follows thatD(tn) = ntn−1(1 + t2) for all
n ∈ N∗.

It is clear thatDnt is a polynomial int, sayPn(t). For example,P0(t) = t,
P1(t) = 1+t2, etc. WritePn(t) =

∑
j≥0 pn,jt

j . From the recurrencePn(t) =

DPn−1(t), and the formula forD(tn) just noted, we see thatdeg(Pn) = n+1

and
∑

j≥0

pn,jt
j =

∑

j≥0

jpn−1,jt
j−1(1 + t2),

so

pn,j = (j − 1)pn−1,j−1 + (j + 1)pn−1,j+1 (4.63)

for all n ∈ N∗. Using (4.63), it is straightforward to compute the coefficients
of the polynomialsP1(t), P2(t), etc.

Observe that, sincetan x is an odd function ofx, the polynomialsP2k(t) are
odd, and the polynomialsP2k+1(t) are even. Equivalently,pn,j = 0 if n + j is
even.

We are interested in the tangent numbersTk = P2k−1(0) = p2k−1,0.
Using the recurrence (4.63) but avoiding computation of thecoefficients that
are known to vanish, we obtain AlgorithmTangentNumbersfor the in-place
computation of tangent numbers. Note that this algorithm uses only arithmetic
on non-negative integers. If implemented with single-precision integers, there
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Algorithm 4.3 TangentNumbers
Input: positive integerm
Output: Tangent numbersT1, . . . , Tm

T1 ← 1

for k from 2 to m do
Tk ← (k − 1)Tk−1

for k from 2 to m do
for j from k to m do

Tj ← (j − k)Tj−1 + (j − k + 2)Tj

returnT1, T2, . . . , Tm.

may be problems with overflow as the tangent numbers grow rapidly. If imple-
mented using floating-point arithmetic, it is numerically stable because there
is no cancellation. An analogous algorithmSecantNumbersis the topic of
Exercise 4.40.

The tangent numbers grow rapidly because the generating functiontan x has
poles atx = ±π/2. Thus, we expectTk to grow roughly like(2k−1)! (2/π)2k.
More precisely

Tk

(2k − 1)!
=

22k+1(1 − 2−2k)ζ(2k)

π2k
, (4.64)

whereζ(s) is the usual Riemann zeta-function, and

(1 − 2−s)ζ(s) = 1 + 3−s + 5−s + · · ·

is sometimes called theoddzeta-function.
The Bernoulli numbers also grow rapidly, but not quite as fast as the tan-

gent numbers, because the singularities of the generating function (4.56) are
further from the origin (at±2iπ instead of±π/2). It is well-known that the
Riemann zeta-function for even non-negative integer arguments can be
expressed in terms of Bernoulli numbers – the relation is

(−1)k−1 B2k

(2k)!
=

2ζ(2k)

(2π)2k
. (4.65)

Sinceζ(2k) = 1 + O(4−k) ask → +∞, we see that

|B2k| ∼
2 (2k)!

(2π)2k
. (4.66)

It is easy to see that (4.64) and (4.65) are equivalent, in view of the rela-
tion (4.62).



158 Elementary and special function evaluation

An asymptotically fast way of computing Bernoulli numbers is the topic of
Exercise 4.41. For yet another way of computing Bernoulli numbers, using
very little space, see§4.10.

4.8 Arithmetic-geometric mean

The (theoretically) fastest known methods for very large precisionn use the
arithmetic-geometric mean (AGM) iteration of Gauss and Legendre. The AGM
is another non-linear recurrence, important enough to treat separately. Its com-
plexity isO(M(n) ln n); the implicit constant here can be quite large, so other
methods are better for smalln.

Given(a0, b0), the AGM iteration is defined by

(aj+1, bj+1) =

(
aj + bj

2
,
√

ajbj

)
.

For simplicity, we only consider real, positive starting values(a0, b0) here (for
complex starting values, see§4.8.5 and§4.12). The AGM iteration converges
quadraticallyto a limit that we denote byAGM(a0, b0).

The AGM is useful because:

1. It converges quadratically – eventually the number of correct digits doubles
at each iteration, so onlyO(log n) iterations are required.

2. Each iteration takes timeO(M(n)) because the square root can be com-
puted in timeO(M(n)) by Newton’s method (see§3.5 and§4.2.3).

3. If we take suitable starting values(a0, b0), the resultAGM(a0, b0) can be
used to compute logarithms (directly) and other elementaryfunctions (less
directly), as well as constants such asπ andln 2.

4.8.1 Elliptic integrals

The theory of the AGM iteration is intimately linked to the theory of elliptic
integrals. Thecomplete elliptic integral of the first kindis defined by

K(k) =

∫ π/2

0

dθ√
1 − k2 sin2 θ

=

∫ 1

0

dt√
(1 − t2)(1 − k2t2)

, (4.67)

and thecomplete elliptic integral of the second kindis

E(k) =

∫ π/2

0

√
1 − k2 sin2 θ dθ =

∫ 1

0

√
1 − k2t2

1 − t2
dt,
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wherek ∈ [0, 1] is called themodulusandk′ =
√

1 − k2 is thecomplemen-
tary modulus. It is traditional (though confusing as the prime does not denote
differentiation) to writeK ′(k) for K(k′) andE′(k) for E(k′).

The connection with elliptic integrals. Gauss discovered that

1

AGM(1, k)
=

2

π
K ′(k). (4.68)

This identity can be used to compute the elliptic integralK rapidly via the
AGM iteration. We can also use it to compute logarithms. Fromthe defini-
tion (4.67), we see thatK(k) has a series expansion that converges for|k| < 1

(in fact, K(k) = (π/2)F (1/2, 1/2; 1; k2) is a hypergeometric function). For
smallk, we have

K(k) =
π

2

(
1 +

k2

4
+ O(k4)

)
. (4.69)

It can also be shown that

K ′(k) =
2

π
ln

(
4

k

)
K(k) − k2

4
+ O(k4). (4.70)

4.8.2 First AGM algorithm for the logarithm

From the formulæ (4.68), (4.69), and (4.70), we easily get

π/2

AGM(1, k)
= ln

(
4

k

)(
1 + O(k2)

)
. (4.71)

Thus, ifx = 4/k is large, we have

ln(x) =
π/2

AGM(1, 4/x)

(
1 + O

(
1

x2

))
.

If x ≥ 2n/2, we can computeln(x) to precisionn using the AGM iteration. It
takes about2 lg(n) iterations to converge ifx ∈ [2n/2, 2n].

Note that we need the constantπ, which could be computed by using our
formula twice with slightly different argumentsx1 andx2, then taking differ-
ences to approximate(d ln(x)/dx)/π atx1 (see Exercise 4.44). More efficient
is to use theBrent–Salamin(or Gauss–Legendre) algorithm, which is based on
the AGM and the Legendre relation

EK ′ + E′K − KK ′ =
π

2
. (4.72)
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Argument expansion. If x is not large enough, we can compute

ln(2ℓx) = ℓ ln 2 + lnx

by the AGM method (assuming the constantln 2 is known). Alternatively, if
x > 1, we can squarex enough times and compute

ln
(
x2ℓ

)
= 2ℓ ln(x).

This method withx = 2 gives a way of computingln 2, assuming we already
knowπ.

The error term. TheO(k2) error term in the formula (4.71) is a nuisance. A
rigorous bound is

∣∣∣∣
π/2

AGM(1, k)
− ln

(
4

k

)∣∣∣∣ ≤ 4k2(8 − ln k) (4.73)

for all k ∈ (0, 1], and the bound can be sharpened to0.37k2(2.4 − ln(k)) if
k ∈ (0, 0.5].

The errorO(k2| ln k|) makes it difficult to accelerate convergence by using
a larger value ofk (i.e. a value ofx = 4/k smaller than2n/2). There is anexact
formula which is much more elegant and avoids this problem. Before giving
this formula, we need to define sometheta functionsand show how they can
be used to parameterize the AGM iteration.

4.8.3 Theta functions

We need the theta functionsθ2(q), θ3(q) andθ4(q), defined for|q| < 1 by

θ2(q) =
+∞∑

n=−∞
q(n+1/2)2 = 2q1/4

+∞∑

n=0

qn(n+1), (4.74)

θ3(q) =

+∞∑

n=−∞
qn2

= 1 + 2

+∞∑

n=1

qn2

, (4.75)

θ4(q) = θ3(−q) = 1 + 2

+∞∑

n=1

(−1)nqn2

. (4.76)

Note that the defining power series are sparse, so it is easy tocomputeθ2(q)

andθ3(q) for smallq. Unfortunately, the rectangular splitting method of§4.4.3
does not help to speed up the computation.

The asymptotically fastest methods to compute theta functions use the AGM.
However, we do not follow this trail, because it would lead usin circles! We
want to use theta functions to give starting values for the AGM iteration.
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Theta function identities. There are many classical identities involving theta
functions. Two that are of interest to us are

θ2
3(q) + θ2

4(q)

2
= θ2

3(q
2) and θ3(q)θ4(q) = θ2

4(q
2).

The latter may be written as
√

θ2
3(q)θ

2
4(q) = θ2

4(q
2)

to show the connection with the AGM

AGM(θ2
3(q), θ

2
4(q)) = AGM(θ2

3(q
2), θ2

4(q
2)) = · · ·

= AGM(θ2
3(q

2k

), θ2
4(q

2k

)) = · · · = 1

for any |q| < 1. (The limit is 1 becauseq2k

converges to0, thus bothθ3 and
θ4 converge to1.) Apart from scaling, the AGM iteration is parameterized by
(θ2

3(q
2k

), θ2
4(q

2k

)) for k = 0, 1, 2, . . ..

The scaling factor. SinceAGM(θ2
3(q), θ

2
4(q)) = 1, andAGM(λa, λb) =

λ · AGM(a, b), scaling givesAGM(1, k′) = 1/θ2
3(q) if k′ = θ2

4(q)/θ2
3(q).

Equivalently, sinceθ4
2 + θ4

4 = θ4
3 (Jacobi),k = θ2

2(q)/θ2
3(q). However, we

know (from (4.68) withk → k′) that1/AGM(1, k′) = 2K(k)/π, so

K(k) =
π

2
θ2
3(q). (4.77)

Thus, the theta functions are closely related to elliptic integrals. In the literature
q is usually called thenomeassociated with the modulusk.

From q to k and k to q. We saw thatk = θ2
2(q)/θ2

3(q), which givesk in
terms ofq. There is also a nice inverse formula which givesq in terms ofk:
q = exp(−πK ′(k)/K(k)), or equivalently

ln

(
1

q

)
=

πK ′(k)

K(k)
. (4.78)

Sasaki and Kanada’s formula. Substituting (4.68) and (4.77) into (4.78)
with k = θ2

2(q)/θ2
3(q) gives Sasaki and Kanada’s elegant formula

ln

(
1

q

)
=

π

AGM(θ2
2(q), θ

2
3(q))

. (4.79)

This leads to the following algorithm to computelnx.
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4.8.4 Second AGM algorithm for the logarithm

Supposex is large. Letq = 1/x, computeθ2(q
4) andθ3(q

4) from their defin-
ing series (4.74) and (4.75), then computeAGM(θ2

2(q
4), θ2

3(q
4)). Sasaki and

Kanada’s formula (withq replaced byq4 to avoid theq1/4 term in the definition
of θ2(q)) gives

ln(x) =
π/4

AGM(θ2
2(q

4), θ2
3(q

4))
.

There is a trade-off between increasingx (by squaring or multiplication by a
power of2, see the paragraph on “Argument Expansion” in§4.8.2), and taking
longer to computeθ2(q

4) andθ3(q
4) from their series. In practice, it seems

good to increasex until q = 1/x is small enough thatO(q36) terms are negli-
gible. Then we can use

θ2(q
4) = 2

(
q + q9 + q25 + O(q49)

)
,

θ3(q
4) = 1 + 2

(
q4 + q16 + O(q36)

)
.

We needx ≥ 2n/36, which is much better than the requirementx ≥ 2n/2 for
the first AGM algorithm. We save about four AGM iterations at the cost of a
few multiplications.

Implementation notes. Since

AGM(θ2
2, θ

2
3) =

AGM(θ2
2 + θ2

3, 2θ2θ3)

2
,

we can avoid the first square root in the AGM iteration. Also, it only takes two
non-scalar multiplications to compute2θ2θ3 andθ2

2 + θ2
3 from θ2 andθ3: see

Exercise 4.45. Another speedup is possible by trading the multiplications for
squares, see§4.12.

Drawbacks of the AGM. The AGM has three drawbacks:

1. The AGM iteration isnotself-correcting, so we have to work with full pre-
cision (plus any necessary guard digits) throughout. In contrast, when us-
ing Newton’s method or evaluating power series, many of the computations
can be performed with reduced precision, which saves alog n factor (this
amounts to using anegativenumber of guard digits).

2. The AGM with real arguments givesln(x) directly. To obtainexp(x), we
need to apply Newton’s method (§4.2.5 and Exercise 4.6). To evaluate
trigonometric functions such assin(x), cos(x), arctan(x), we need to work
with complex arguments, which increases the constant hidden in the “O”
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time bound. Alternatively, we can use Landen transformations for incom-
plete elliptic integrals, but this gives even larger constants.

3. Because it converges so fast, it is difficult to speed up theAGM. At best we
can saveO(1) iterations (see however§4.12).

4.8.5 The complex AGM

In some cases, the asymptotically fastest algorithms require the use of complex
arithmetic to produce a real result. It would be nice to avoidthis because com-
plex arithmetic is significantly slower than real arithmetic. Examples where we
seem to need complex arithmetic to get the asymptotically fastest algorithms
are:

1. arctan(x), arcsin(x), arccos(x) via the AGM, using, for example,

arctan(x) = ℑ(ln(1 + ix));

2. tan(x), sin(x), cos(x) using Newton’s method and the above, or

cos(x) + i sin(x) = exp(ix),

where the complex exponential is computed by Newton’s method from the
complex logarithm (see Eqn. (4.11)).

The theory that we outlined for the AGM iteration and AGM algorithms for
ln(z) can be extended without problems to complexz /∈ (−∞, 0], provided
we always choose the square root with positive real part.

A complex multiplication takes three real multiplications(using Karatsuba’s
trick), and a complex squaring takes two real multiplications. We can do even
better in the FFT domain, assuming that one multiplication of cost M(n) is
equivalent to three Fourier transforms. In this model, a squaring costs2M(n)/3.
A complex multiplication(a + ib)(c + id) = (ac − bd) + i(ad + bc) requires
four forward and two backward transforms, and thus costs2M(n). A complex
squaring(a + ib)2 = (a + b)(a − b) + i(2ab) requires two forward and two
backward transforms, and thus costs4M(n)/3. Taking this into account, we
get the asymptotic upper bounds relative to the cost of one multiplication given
in Table 4.1 (0.666 should be interpreted as∼2M(n)/3, and so on). See§4.12
for details of the algorithms giving these constants.

4.9 Binary splitting

Since the asymptotically fastest algorithms forarctan, sin, cos, etc. have a
large constant hidden in their time boundO(M(n) log n) (see “Drawbacks of



164 Elementary and special function evaluation

Operation real complex

squaring 0.666 1.333
multiplication 1.000 2.000
reciprocal 1.444 3.444
division 1.666 4.777
square root 1.333 5.333
AGM iteration 2.000 6.666
log via AGM 4.000 lg n 13.333 lg n

Table 4.1Costs in the FFT domain.

the AGM”, §4.8.4, page 162), it is interesting to look for other algorithms that
may be competitive for a large range of precisions, even if not asymptotically
optimal. One such algorithm (or class of algorithms) is based onbinary split-
ting (see§4.12). The time complexity of these algorithms is usually

O((log n)αM(n))

for some constantα ≥ 1 depending on how fast the relevant power series
converges, and also on the multiplication algorithm (classical, Karatsuba, or
quasi-linear).

The idea. Suppose we want to computearctan(x) for rational x = p/q,
wherep andq are small integers and|x| ≤ 1/2. The Taylor series gives

arctan

(
p

q

)
≈

∑

0≤j≤n/2

(−1)jp2j+1

(2j + 1)q2j+1
.

The finite sum, if computed exactly, gives a rational approximationP/Q to
arctan(p/q), and

log |Q| = O(n log n).

(Note: the series forexp converges faster, so in this case we sum∼ n/ ln n

terms and getlog |Q| = O(n).)
The finite sum can be computed by the “divide and conquer” strategy: sum

the first half to getP1/Q1 say, and the second half to getP2/Q2, then

P

Q
=

P1

Q1
+

P2

Q2
=

P1Q2 + P2Q1

Q1Q2

.

The rationalsP1/Q1 andP2/Q2 are computed by a recursive application of
the same method, hence the term “binary splitting”. If used with quadratic
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multiplication, this way of computingP/Q does not help; however, fast mul-
tiplication speeds up the balanced productsP1Q2, P2Q1, andQ1Q2.

Complexity. The overall time complexity is

O




⌈lg(n)⌉∑

k=1

2k M(2−kn log n)


 = O((log n)αM(n)), (4.80)

whereα = 2 in the FFT range; in generalα ≤ 2 (see Exercise 4.47).
We can save a little by working to precisionn rather thann log n at the top

levels; but we still haveα = 2 for quasi-linear multiplication.
In practice, the multiplication algorithm would not be fixedbut would de-

pend on the size of the integers being multiplied. The complexity would de-
pend on the algorithm(s) used at the top levels.

Repeated application of the idea.If x ∈ (0, 0.25) and we want to compute
arctan(x), we can approximatex by a rationalp/q and computearctan(p/q)

as a first approximation toarctan(x), say p/q ≤ x < (p + 1)/q. Now,
from (4.17)

tan(arctan(x) − arctan(p/q)) =
x − p/q

1 + px/q
,

so

arctan(x) = arctan(p/q) + arctan(δ),

where

δ =
x − p/q

1 + px/q
=

qx − p

q + px
.

We can apply the same idea to approximatearctan(δ). Eventually we get a
sufficiently accurate approximation toarctan(x). Since|δ| < |x−p/q| < 1/q,
it is easy to ensure that the process converges.

Complexity of repeated application. If we use a sequence of aboutlg n ra-
tionalsp1/q1, p2/q2, . . ., where

qi = 22i

,

then the computation of eacharctan(pi/qi) takes timeO((log n)αM(n)), and
the overall time to computearctan(x) is

O((log n)α+1M(n)).
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Indeed, we have0 ≤ pi < 22i−1

; thus,pi has at most2i−1 bits, andpi/qi

as a rational has valueO(2−2i−1

) and sizeO(2i). The exponentα + 1 is 2

or 3. Although this is not asymptotically as fast as AGM-based algorithms, the
implicit constants for binary splitting are small and the idea is useful for quite
largen (at least106 decimal places).

Generalizations. The idea of binary splitting can be generalized. For exam-
ple, the Chudnovsky brothers gave a “bit-burst” algorithm,which applies to
fast evaluation of solutions of linear differential equations. This is described in
§4.9.2.

4.9.1 A binary splitting algorithm for sin, cos

Brent [45, Theorem 6.2] claims anO(M(n) log2 n) algorithm forexp x and
sin x; however, the proof only covers the case of the exponential and ends with
“the proof of (6.28) is similar”. He had in mind deducingsinx from a complex
computation ofexp(ix) = cos x + i sin x. Algorithm SinCos is a variation
of Brent’s algorithm forexp x that computessin x andcos x simultaneously,
in a way that avoids computations with complex numbers. The simultaneous
computation ofsin x andcos x might be useful to computetan x or a plane
rotation through the anglex.

Algorithm 4.4 SinCos
Input: floating-point0 < x < 1/2, integern
Output: an approximation ofsin x andcos x with errorO(2−n)

1: write x ≈ ∑k
i=0 pi · 2−2i+1

where0 ≤ pi < 22i

andk = ⌈lg n⌉ − 1

2: let xj =
∑k

i=j pi · 2−2i+1

, with xk+1 = 0, andyj = pj · 2−2j+1

3: (Sk+1, Ck+1) ← (0, 1) ⊲ Sj is sinxj andCj is cos xj

4: for j from k downto 0 do
5: computesin yj andcos yj using binary splitting
6: Sj ← sin yj ·Cj+1 +cos yj ·Sj+1, Cj ← cos yj ·Cj+1− sin yj ·Sj+1

7: return(S0, C0).

At step 2 of AlgorithmSinCos, we havexj = yj + xj+1; thus,sin xj =

sin yj cos xj+1 + cos yj sinxj+1, and similarly forcos xj , explaining the for-
mulæ used at step 6. Step 5 uses a binary splitting algorithm similar to the
one described above forarctan(p/q): yj is a small rational, or is small itself,
so that all needed powers do not exceedn bits in size. This algorithm has the
same complexityO(M(n) log2 n) as Brent’s algorithm forexpx.
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4.9.2 The bit-burst algorithm

The binary-splitting algorithms described above forarctan x, exp x, sin x rely
on a functional equation:tan(x + y) = (tan x + tan y)/(1 − tan x tan y),
exp(x + y) = exp(x) exp(y), sin(x + y) = sin x cos y + sin y cos x. We
describe here a more general algorithm, known as the “bit-burst” algorithm,
which does not require such a functional equation. This algorithm applies to
a class of functions known asholonomicfunctions. Other names aredifferen-
tiably finiteandD-finite.

A functionf(x) is said to beholonomiciff it satisfies a linear homogeneous
differential equation with polynomial coefficients inx. Equivalently, the Taylor
coefficientsuk of f satisfy a linear homogeneous recurrence with coefficients
polynomial ink. The set of holonomic functions is closed under the operations
of addition and multiplication, but not necessarily under division. For example,
theexp, ln, sin, cos functions are holonomic, buttan is not.

An important subclass of holonomic functions is the hypergeometric func-
tions, whose Taylor coefficients satisfy a recurrenceuk+1/uk = R(k), where
R(k) is a rational function ofk (see§4.4). This matches the second defini-
tion above, because we can write it asuk+1Q(k) − ukP (k) = 0 if R(k) =

P (k)/Q(k). Holonomic functions are much more general than hypergeometric
functions (see Exercise 4.48); in particular, the ratio of two consecutive terms
in a hypergeometric series has sizeO(log k) (as a rational number), but can be
much larger for holonomic functions.

Theorem 4.2 If f is holonomic and has no singularities on a finite, closed
interval [A,B], whereA < 0 < B and f(0) = 0, thenf(x) can be com-
puted to an (absolute) accuracy ofn bits, for anyn-bit floating-point number
x ∈ (A,B), in timeO(M(n) log3 n).

NOTES: For a sharper result, see Exercise 4.49. The conditionf(0) = 0 is just
a technical condition to simplify the proof of the theorem;f(0) can be any
value that can be computed ton bits in timeO(M(n) log3 n).

Proof. Without loss of generality, we assume0 ≤ x < 1 < B; the binary
expansion ofx can then be writtenx = 0.b1b2 . . . bn. Define r1 = 0.b1,
r2 = 0.0b2b3, r3 = 0.000b4b5b6b7 (the same decomposition was already used
in Algorithm SinCos): r1 consists of the first bit of the binary expansion ofx,
r2 consists of the next two bits,r3 the next four bits, and so on. Thus, we have
x = r1 + r2 + . . . + rk, where2k−1 ≤ n < 2k.

Definexi = r1 + · · · + ri with x0 = 0. The idea of the algorithm is to
translate the Taylor series off from xi to xi+1; sincef is holonomic, this
reduces to translating the recurrence on the correspondingcoefficients. The
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condition thatf has no singularity in[0, x] ⊂ [A,B] ensures that the translated
recurrence is well-defined. We definef0(t) = f(t), f1(t) = f0(r1+t), f2(t) =

f1(r2 + t), . . . , fi(t) = fi−1(ri + t) for i ≤ k. We havefi(t) = f(xi + t),
andfk(t) = f(x + t) sincexk = x. Thus, we are looking forfk(0) = f(x).

Let f∗
i (t) = fi(t) − fi(0) be the non-constant part of the Taylor expansion

of fi. We havef∗
i (ri+1) = fi(ri+1) − fi(0) = fi+1(0) − fi(0) because

fi+1(t) = fi(ri+1 + t). Thus

f∗
0 (r1) + · · · + f∗

k−1(rk) = (f1(0) − f0(0)) + · · · + (fk(0) − fk−1(0))

= fk(0) − f0(0) = f(x) − f(0).

Sincef(0) = 0, this gives

f(x) =

k−1∑

i=0

f∗
i (ri+1).

To conclude the proof, we will show that each termf∗
i (ri+1) can be evalu-

ated ton bits in timeO(M(n) log2 n). The rationalri+1 has a numerator of at
most2i bits, and

0 ≤ ri+1 < 21−2i

.

Thus, to evaluatef∗
i (ri+1) to n bits, n/2i + O(log n) terms of the Taylor

expansion off∗
i (t) are enough. We now use the fact thatf is holonomic.

Assumef satisfies the following homogeneous linear11 differential equation
with polynomial coefficients

cm(t)f (m)(t) + · · · + c1(t)f
′(t) + c0(t)f(t) = 0.

Substitutingxi + t for t, we obtain a differential equation forfi

cm(xi + t)f
(m)
i (t) + · · · + c1(xi + t)f ′

i(t) + c0(xi + t)fi(t) = 0.

From this equation, we deduce (see§4.12) a linear recurrence for the Taylor
coefficients offi(t), of the same order as that forf(t). The coefficients in the
recurrence forfi(t) haveO(2i) bits, sincexi = r1 + · · · + ri hasO(2i) bits.
It follows that theℓth Taylor coefficient offi(t) has sizeO(ℓ(2i + log ℓ)).
The ℓ log ℓ term comes from the polynomials inℓ in the recurrence. Since
ℓ ≤ n/2i + O(log n), this isO(n log n).

However, we do not want to evaluate theℓth Taylor coefficientuℓ of fi(t),

11 If f satisfies a non-homogeneous differential equation, say
E(t, f(t), f ′(t), . . . , f (k)(t)) = b(t), whereb(t) is polynomial int, differentiating it yields
F (t, f(t), f ′(t), . . . , f (k+1)(t)) = b′(t), andb′(t)E(·) − b(t)F (·) is homogeneous.
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but the series

sℓ =
ℓ∑

j=1

ujr
j
i+1 ≈ f∗

i (ri+1).

Noting thatuℓ = (sℓ−sℓ−1)/rℓ
i+1, and substituting this value in the recurrence

for (uℓ), say of orderd, we obtain a recurrence of orderd + 1 for (sℓ). Putting
this latter recurrence in matrix formSℓ = MℓSℓ−1, whereSℓ is the vector
(sℓ, sℓ−1, . . . , sℓ−d), we obtain

Sℓ = MℓMℓ−1 · · ·Md+1Sd, (4.81)

where the matrix productMℓMℓ−1 · · ·Md+1 can be evaluated in time
O(M(n) log2 n) using binary splitting.

We illustrate Theorem 4.2 with the arc-tangent function, which satisfies the
differential equationf ′(t)(1 + t2) = 1. This equation evaluates atxi + t to
f ′

i(t)(1 + (xi + t)2) = 1, wherefi(t) = f(xi + t). This gives the recurrence

(1 + x2
i )ℓuℓ + 2xi(ℓ − 1)uℓ−1 + (ℓ − 2)uℓ−2 = 0

for the Taylor coefficientsuℓ of fi. This recurrence translates to

(1 + x2
i )ℓvℓ + 2xiri+1(ℓ − 1)vℓ−1 + r2

i+1(ℓ − 2)vℓ−2 = 0

for vℓ = uℓr
ℓ
i+1, and to

(1 + x2
i )ℓ(sℓ − sℓ−1)

+ 2xiri+1(ℓ − 1)(sℓ−1 − sℓ−2) + r2
i+1(ℓ − 2)(sℓ−2 − sℓ−3) = 0

for sℓ =
∑ℓ

j=1 vj . This recurrence of order3 can be written in matrix form,
and Eqn. (4.81) enables us to efficiently computesℓ ≈ fi(ri +1)−fi(0) using
multiplication of3 × 3 matrices and fast integer multiplication.

4.10 Contour integration

In this section, we assume that facilities for arbitrary-precision complex arith-
metic are available. These can be built on top of an arbitrary-precision real
arithmetic package (see Chapters 3 and 5).

Let f(z) be holomorphic in the disc|z| < R, R > 1, and let the power
series forf be

f(z) =

∞∑

j=0

aj zj . (4.82)
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From Cauchy’s theorem [122, Ch. 7], we have

aj =
1

2πi

∫

C

f(z)

zj+1
dz, (4.83)

whereC is the unit circle. The contour integral in (4.83) may be approximated
numerically by sums

Sj,k =
1

k

k−1∑

m=0

f(e2πim/k)e−2πijm/k. (4.84)

Let C ′ be a circle with centre at the origin and radiusρ ∈ (1, R). From
Cauchy’s theorem, assuming thatj < k, we have (see Exercise 4.50)

Sj,k − aj =
1

2πi

∫

C′

f(z)

(zk − 1)zj+1
dz = aj+k + aj+2k + · · · , (4.85)

so |Sj,k − aj | = O((R − δ)−(j+k)) ask → ∞, for anyδ > 0. For example,
let

f(z) =
z

ez − 1
+

z

2
(4.86)

be the generating function for the scaled Bernoulli numbersas in (4.57), so
a2j = Cj = B2j/(2j)! andR = 2π (because of the poles at±2πi). Then

S2j,k − B2j

(2j)!
=

B2j+k

(2j + k)!
+

B2j+2k

(2j + 2k)!
+ · · · , (4.87)

so we can evaluateB2j with relative errorO((2π)−k) by evaluatingf(z) atk
points on the unit circle.

There is some cancellation when using (4.84) to evaluateS2j,k because the
terms in the sum are of order unity but the result is of order(2π)−2j . Thus,
O(j) guard digits are needed. In the following, we assumej = O(n).

If exp(−2πijm/k) is computed efficiently fromexp(−2πi/k) in the obvi-
ous way, the time required to evaluateB2, . . . , B2j to precision n is
O(jnM(n)), and the space required isO(n). We assume here that we need
all Bernoulli numbers up to index2j, but we do not need to store all of them
simultaneously. This is the case if we are using the Bernoulli numbers as coef-
ficients in a sum such as (4.38).

The recurrence relation method of§4.7.2 is faster but requires spaceΘ(jn).
Thus, the method of contour integration has advantages if space is critical.

For comments on other forms of numerical quadrature, see§4.12.
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4.11 Exercises

Exercise 4.1 If A(x) =
∑

j≥0 ajx
j is a formal power series overR with

a0 = 1, show thatln(A(x)) can be computed with errorO(xn) in time
O(M(n)), whereM(n) is the time required to multiply two polynomials of
degreen − 1. Assume a reasonable smoothness condition on the growth of
M(n) as a function ofn. [Hint: (d/dx) ln(A(x)) = A′(x)/A(x).] Does a
similar result hold forn-bit numbers ifx is replaced by1/2?

Exercise 4.2 (Scḧonhage[197] and Schost) Assume we want to compute
1/s(x) mod xn, for s(x) a power series. Design an algorithm using an odd–
even scheme (§1.3.5), and estimate its complexity in the FFT range.

Exercise 4.3Suppose thatg andh are sufficiently smooth functions satisfying
g(h(x)) = x on some interval. Letyj = h(xj). Show that the iteration

xj+1 = xj +
k−1∑

m=1

(y − yj)
m g(m)(yj)

m!

is a kth-order iteration that (under suitable conditions) will converge tox =

g(y). [Hint: generalize the argument leading to (4.16).]

Exercise 4.4Design a Horner-like algorithm for evaluating a series
∑k

j=0 ajx
j

in the forward direction, while deciding dynamically whereto stop. For the
stopping criterion, assume that the|aj | are monotonic decreasing and that
|x| < 1/2. [Hint: usey = 1/x.]

Exercise 4.5Assume we wantn bits of exp x for x of order 2j , with the
repeated use of the doubling formula (§4.3.1), and the naive method to evaluate
power series. What is the best reduced argumentx/2k in terms ofn andj?
[Consider both casesj ≥ 0 andj < 0.]

Exercise 4.6Assuming we can compute ann-bit approximation tolnx in
time T (n), wheren ≪ M(n) = o(T (n)), show how to compute ann-bit
approximation toexp x in time∼T (n). Assume thatT (n) andM(n) satisfy
reasonable smoothness conditions.

Exercise 4.7Care has to be taken to use enough guard digits when computing
exp(x) by argument reduction followed by the power series (4.21). If x is of
order unity andk steps of argument reduction are used to computeexp(x) via

exp(x) =
(
exp(x/2k)

)2k

,

show that aboutk bits of precision will be lost (so it is necessary to use about
k guard bits).
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Exercise 4.8Show that the problem analysed in Exercise 4.7 can be avoided
if we work with the function

expm1(x) = exp(x) − 1 =
∞∑

j=1

xj

j!
,

which satisfies the doubling formulaexpm1(2x) = expm1(x)(2+expm1(x)).

Exercise 4.9Forx > −1, prove the reduction formula

log1p(x) = 2 log1p

(
x

1 +
√

1 + x

)
,

where the functionlog1p(x) is defined bylog1p(x) = ln(1 + x), as in§4.4.2.
Explain why it might be desirable to work withlog1p instead ofln in order
to avoid loss of precision (in the argument reduction, rather than in the recon-
struction as in Exercise 4.7). Note however that argument reduction forlog1p

is more expensive than that forexpm1, because of the square root.

Exercise 4.10Give a numerically stable way of computingsinh(x) using one
evaluation ofexpm1(|x|) and a small number of additional operations (com-
pare Eqn. (4.20)).

Exercise 4.11 (White)Show thatexp(x) can be computed viasinh(x) using
the formula

exp(x) = sinh(x) +

√
1 + sinh2(x).

Since

sinh(x) =
ex − e−x

2
=

∑

k≥0

x2k+1

(2k + 1)!
,

this saves computing about half the terms in the power seriesfor exp(x) at the
expense of one square root. How can we modify this method to preserve nu-
merical stability for negative argumentsx? Can this idea be used for functions
other thanexp(x)?

Exercise 4.12Count precisely the number of non-scalar products necessary
for the two variants of rectangular series splitting (§4.4.3).

Exercise 4.13A drawback of rectangular series splitting as presented in§4.4.3
is that the coefficients (akℓ+m in the classical splitting, orajm+ℓ in the modular
splitting) involved in the scalar multiplications might become large.
Indeed, they are typically a product of factorials, and thushave size
O(d log d). Assuming that the ratiosai+1/ai are small rationals, propose an
alternate way of evaluatingP (x).
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Exercise 4.14Make explicit the cost of the slowly growing functionc(d)

(§4.4.3).

Exercise 4.15Prove the remainder term (4.28) in the expansion (4.27) for
E1(x). [Hint: prove the result by induction onk, using integration by parts
in the formula (4.28).]

Exercise 4.16Show that we can avoid using Cauchy principal value integrals
by definingEi(z) andE1(z) in terms of the entire function

Ein(z) =

∫ z

0

1 − exp(−t)

t
dt =

∞∑

j=1

(−1)j−1zj

j! j
.

Exercise 4.17Let E1(x) be defined by (4.25) for realx > 0. Using (4.27),
show that

1

x
− 1

x2
< ex E1(x) <

1

x
.

Exercise 4.18In this exercise, the series are purely formal, so ignore anyques-
tions of convergence. Applications are given in Exercises 4.19–4.20.

Suppose that(aj)j∈N is a sequence with exponential generating function
s(z) =

∑∞
j=0 ajz

j/j!. Suppose thatAn =
∑n

j=0

(
n
j

)
aj , and letS(z) =∑∞

j=0 Ajz
j/j! be the exponential generating function of the sequence(An)n∈N.

Show that

S(z) = exp(z)s(z).

Exercise 4.19The power series forEin(z) given in Exercise 4.16 suffers from
catastrophic cancellation whenz is large and positive (like the series for
exp(−z)). Use Exercise 4.18 to show that this problem can be avoided by
using the power series (whereHn denotes thenth harmonic number)

ez Ein(z) =
∞∑

j=1

Hjz
j

j!
.

Exercise 4.20Show that Eqn. (4.23) forerf(x) follows from Eqn. (4.22).
[Hint: this is similar to Exercise 4.19.]

Exercise 4.21Give an algorithm to evaluateΓ(x) for realx ≥ 1/2, with guar-
anteed relative errorO(2−n). Use the method sketched in§4.5 for ln Γ(x).
What can be said about the complexity of the algorithm?



174 Elementary and special function evaluation

Exercise 4.22Extend your solution to Exercise 4.21 to give an algorithm to
evaluate1/Γ(z) for z ∈ C, with guaranteed relative errorO(2−n). Note:Γ(z)

has poles at zero and the negative integers (i.e. for−z ∈ N), but we over-
come this difficulty by computing the entire function1/Γ(z). Warning:|Γ(z)|
can be very small ifℑ(z) is large. This follows from Stirling’s asymptotic
expansion. In the particular case ofz = iy on the imaginary axis, we have

2 ln |Γ(iy)| = ln

(
π

y sinh(πy)

)
≈ −π|y|.

More generally

|Γ(x + iy)|2 ≈ 2π|y|2x−1 exp(−π|y|)

for x, y ∈ R and|y| large.

Exercise 4.23The usual form (4.38) of Stirling’s approximation forln(Γ(z))

involves a divergent series. It is possible to give a versionof Stirling’s approx-
imation where the series is convergent

ln Γ(z) =

(
z − 1

2

)
ln z − z +

ln(2π)

2
+

∞∑

k=1

ck

(z + 1)(z + 2) · · · (z + k)
,

(4.88)
where the constantsck can be expressed in terms ofStirling numbers of the
first kind, s(n, k), defined by the generating function

n∑

k=0

s(n, k)xk = x(x − 1) · · · (x − n + 1).

In fact

ck =
1

2k

k∑

j=1

j|s(n, j)|
(j + 1)(j + 2)

.

The Stirling numberss(n, k) can be computed easily from a three-term recur-
rence, so this gives a feasible alternative to the usual formof Stirling’s approx-
imation with coefficients related to Bernoulli numbers.

Show, experimentally and/or theoretically, that the convergent form of Stir-
ling’s approximation isnot an improvement over the usual form as used in
Exercise 4.21.

Exercise 4.24Implement procedures to evaluateE1(x) to high precision for
real positivex, using (a) the power series (4.26), (b) the asymptotic expan-
sion (4.27) (if sufficiently accurate), (c) the method of Exercise 4.19, and (d)
the continued fraction (4.39) using the backward and forward recurrences as
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suggested in§4.6. Determine empirically the regions where each method isthe
fastest.

Exercise 4.25Prove the backward recurrence (4.43).

Exercise 4.26Prove the forward recurrence (4.44).
[Hint: let

yk(x) =
a1

b1+
· · · ak−1

bk−1+

ak

bk + x
.

Show, by induction onk ≥ 1, that

yk(x) =
Pk + Pk−1x

Qk + Qk−1x
. ]

Exercise 4.27For the forward recurrence (4.44), show that
(

Qk Qk−1

Pk Pk−1

)
=

(
b1 1

a1 0

) (
b2 1

a2 0

)
· · ·

(
bk 1

ak 0

)

holds fork > 0 (and fork = 0 if we defineP−1, Q−1 appropriately).
Remark.This gives a way to use parallelism when evaluating continued frac-
tions.

Exercise 4.28For the forward recurrence (4.44), show that
∣∣∣∣

Qk Qk−1

Pk Pk−1

∣∣∣∣ = (−1)ka1a2 · · · ak.

Exercise 4.29Prove the identity (4.46).

Exercise 4.30Prove Theorem 4.1.

Exercise 4.31Investigate using the continued fraction (4.40) for evaluating
the complementary error functionerfc(x) or the error functionerf(x) = 1 −
erfc(x). Is there a region where the continued fraction is preferable to any of
the methods used in AlgorithmErf of §4.6?

Exercise 4.32Show that the continued fraction (4.41) can be evaluated in time
O(M(k) log k) if the aj andbj are bounded integers (or rational numbers with
bounded numerators and denominators). [Hint: use Exercise4.27.]

Exercise 4.33Instead of (4.54), a different normalization condition

J0(x)2 + 2
∞∑

ν=1

Jν(x)2 = 1 (4.89)

could be used in Miller’s algorithm. Which of these normalization conditions
is preferable?
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Exercise 4.34Consider the recurrencefν−1 + fν+1 = 2Kfν , whereK > 0

is a fixed real constant. We can expect the solution to this recurrence to give
some insight into the behavior of the recurrence (4.53) in the regionν ≈ Kx.
Assume for simplicity thatK 6= 1. Show that the general solution has the form

fν = Aλν + Bµν ,

whereλ andµ are the roots of the quadratic equationx2 − 2Kx + 1 = 0, and
A andB are constants determined by the initial conditions. Show that there are
two cases: ifK < 1, thenλ andµ are complex conjugates on the unit circle,
so|λ| = |µ| = 1; if K > 1, then there are two real roots satisfyingλµ = 1.

Exercise 4.35Prove (or give a plausibility argument for) the statements made
in §4.7 that: (a) if a recurrence based on (4.59) is used to evaluate the scaled
Bernoulli numberCk, using precisionn arithmetic, then the relative error is of
order4k2−n; and (b) if a recurrence based on (4.60) is used, then the relative
error isO(k22−n).

Exercise 4.36Starting from the definition (4.56), prove Eqn. (4.57). Deduce
the relation (4.62) connecting tangent numbers and Bernoulli numbers.

Exercise 4.37(a) Show that the number of bits required to represent the tan-
gent numberTk exactly is∼2k lg k ask → ∞. (b) Show that the same applies
for the exact representation of the Bernoulli numberB2k as a rational number.

Exercise 4.38Explain how the correctness of AlgorithmTangentNumbers
(§4.7.2) follows from the recurrence (4.63).

Algorithm 4.5 SecantNumbers
Input: positive integerm
Output: Secant numbersS0, S1, . . . , Sm

S0 ← 1

for k from 1 to m do
Sk ← kSk−1

for k from 1 to m do
for j from k + 1 to m do

Sj ← (j − k)Sj−1 + (j − k + 1)Sj

returnS0, S1, . . . , Sm.

Exercise 4.39Show that the complexity of computing the tangent numbers
T1, . . . , Tm by AlgorithmTangentNumbers(§4.7.2) isO(m3 log m). Assume
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that the multiplications of tangent numbersTj by small integers take time
O(log Tj). [Hint: use the result of Exercise 4.37.]

Exercise 4.40Verify that Algorithm SecantNumberscomputes in-place the
Secant numbersSk, defined by the generating function

∑

k≥0

Sk
x2k

(2k)!
= sec x =

1

cos x
,

in much the same way that AlgorithmTangentNumbers (§4.7.2) computes
the Tangent numbers.

Exercise 4.41 (Harvey)The generating function (4.56) for Bernoulli num-
bers can be written as

∑

k≥0

Bk
xk

k!
= 1

/
∑

k≥0

xk

(k + 1)!
,

and we can use an asymptotically fast algorithm to compute the first n + 1

terms in the reciprocal of the power series. This should be asymptotically faster
than using the recurrences given in§4.7.2. Give an algorithm using this idea
to compute the Bernoulli numbersB0, B1, . . . , Bn in time O(n2(log n)2+ε).
Implement your algorithm and see how largen needs to be for it to be faster
than the algorithms discussed in§4.7.2.

Algorithm 4.6 SeriesExponential
Input: positive integerm and real numbersa1, a2, . . . , am

Output: real numbersb0, b1, . . . , bm such that
b0 + b1x + · · · + bmxm = exp(a1x + · · · + amxm) + O(xm+1)

b0 ← 1

for k from 1 to m do
bk ←

(∑k
j=1 jajbk−j

) /
k

returnb0, b1, . . . , bm.

Exercise 4.42(a) Show that AlgorithmSeriesExponentialcomputesB(x) =

exp(A(x)) up to terms of orderxm+1, whereA(x) = a1x+a2x
2+· · ·+amxm

is input data andB(x) = b0 + b1x+ · · ·+ bmxm is the output. [Hint: compare
Exercise 4.1.]
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(b) Apply this to give an algorithm to compute the coefficients bk in
Stirling’s approximation forn! (or Γ(n + 1)):

n! ∼
(n

e

) √
2πn

∑

k≥0

bk

nk
.

[Hint: we know the coefficients in Stirling’s approximation(4.38) for ln Γ(z)

in terms of Bernoulli numbers.]
(c) Is this likely to be useful for high-precision computation ofΓ(x) for real

positivex?

Exercise 4.43Deduce from Eqn. (4.69) and (4.70) an expansion ofln(4/k)

with error termO(k4 log(4/k)). Use any means to figure out an effective
bound on theO() term. Deduce an algorithm requiring onlyx ≥ 2n/4 to getn
bits of lnx.

Exercise 4.44Show how bothπ andln 2 can be evaluated using Eqn. (4.71).

Exercise 4.45In §4.8.4, we mentioned that2θ2θ3 andθ2
2 + θ2

3 can be com-
puted using two non-scalar multiplications. For example, we could (A) com-
puteu = (θ2 + θ3)

2 andv = θ2θ3; then the desired values are2v andu − 2v.
Alternatively, we could (B) computeu andw = (θ2 − θ3)

2; then the desired
values are(u ± w)/2. Which method (A) or (B) is preferable?

Exercise 4.46Improve the constants in Table 4.1.

Exercise 4.47Justify Eqn. (4.80) and give an upper bound on the constantα

if the multiplication algorithm satisfiesM(n) = Θ(nc) for somec ∈ (1, 2].

Exercise 4.48 (Salvy)Is the functionexp(x2) + x/(1 − x2) holonomic?

Exercise 4.49 (van der Hoeven, Mezzarobba)Improve to O(M(n) log2 n)

the complexity given in Theorem 4.2.

Exercise 4.50If w = e2πi/k, show that

1

zk − 1
=

1

k

k−1∑

m=0

wm

z − wm
.

Deduce thatSj,k, defined by Eqn. (4.84), satisfies

Sj,k =
1

2πi

∫

C′

zk−j−1

zk − 1
f(z) dz

for j < k, where the contourC ′ is as in§4.10. Deduce Eqn. (4.85).
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Remark. Eqn. (4.85) illustrates the phenomenon ofaliasing: observations at
k points can not distinguish between the Fourier coefficientsaj , aj+k, aj+2k,
etc.

Exercise 4.51Show that the sumS2j,k of §4.10 can be computed with (essen-
tially) only aboutk/4 evaluations off if k is even. Similarly, show that about
k/2 evaluations off suffice ifk is odd. On the other hand, show that the error
boundO((2π)−k) following Eqn. (4.87) can be improved ifk is odd.

4.12 Notes and references

One of the main references for special functions is the “Handbook of Mathe-
matical Functions” by Abramowitz and Stegun [1], which gives many useful
results but no proofs. A more recent book is that of Nico Temme[214], and
a comprehensive reference is Andrewset al. [4]. A large part of the content
of this chapter comes from Brent [48], and was implemented inthe MP pack-
age Brent [47]. In the context of floating-point computations, the “Handbook
of Floating-Point Arithmetic” by Brisebarreet al. [58] is a useful reference,
especially Chapter 11.

The SRT algorithm for division is named after Sweeney, Robertson [189]
and Tocher [216]. Original papers on Booth recoding, SRT division, etc., are
reprinted in the book by Swartzlander [212]. SRT division issimilar to non-
restoring division, but uses a lookup table based on the dividend and the divisor
to determine each quotient digit. The Intel Pentiumfdiv bug was caused by
an incorrectly initialized lookup table.

Basic material on Newton’s method may be found in many references, for
example the books by Brent [41, Ch. 3], Householder [126] or Traub [218].
Some details on the use of Newton’s method in modern processors can be
found in Intel [128]. The idea of first computingy−1/2, then multiplying by
y to gety1/2 (§4.2.3) was pushed further by Karp and Markstein [137], who
perform this at the penultimate iteration, and modify the last iteration of New-
ton’s method fory−1/2 to gety1/2 directly (see§1.4.5 for an example of the
Karp–Markstein trick for division). For more on Newton’s method for power
series, we refer to [43, 52, 56, 142, 150, 202].

Some good references on error analysis of floating-point algorithms are the
books by Higham [121] and Muller [174]. Older references include Wilkin-
son’s classics [228, 229].

Regarding doubling versus tripling: in§4.3.4, we assumed that one multi-
plication and one squaring were required to apply the tripling formula (4.19).
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However, we might use the formsinh(3x) = 3 sinh(x)+4 sinh3(x), which re-
quires only one cubing. Assuming a cubing costs 50% more thana squaring –
in the FFT range – the ratio would be1.5 log3 2 ≈ 0.946. Thus, if a special-
ized cubing routine is available, tripling may sometimes beslightly faster than
doubling.

For an example of a detailed error analysis of an unrestricted algorithm, see
Clenshaw and Olver [69].

The idea of rectangular series splitting to evaluate a powerseries withO(
√

n)

non-scalar multiplications (§4.4.3) was first published in 1973 by Paterson and
Stockmeyer [182]. It was rediscovered in the context of multiple-precision
evaluation of elementary functions by Smith [204,§8.7] in 1991. Smith gave it
the name “concurrent series”. Smith proposed modular splitting of the series,
but classical splitting seems slightly better. Smith noticed that the simultaneous
use of this fast technique and argument reduction yieldsO(n1/3M(n)) algo-
rithms. Earlier, in 1960, Estrin [92] had found a similar technique withn/2

non-scalar multiplications, butO(log n) parallel complexity.
There are several variants of the Euler–Maclaurin sum formula, with and

without bounds on the remainder. See Abramowitz and Stegun [1, Ch. 23],
and Apostol [6], for example.

Most of the asymptotic expansions that we have given in§4.5 may be found
in Abramowitz and Stegun [1]. For more background on asymptotic expan-
sions of special functions, see for example the books by de Bruijn [84],
Olver [180] and Wong [231]. We have omitted mention of many other useful
asymptotic expansions, for example all but a few of those forBessel functions,
for which see Olver [180], Watson [225], Whittaker and Watson[227].

Most of the continued fractions mentioned in§4.6 may be found in Abram-
owitz and Stegun [1]. The classical theory is given in the books by
Khinchin [139] and Wall [224]. Continued fractions are usedin the manner
described in§4.6 in arbitrary-precision packages such as Brent’s MP [47]. A
good recent reference on various aspects of continued fractions for the evalu-
ation of special functions is theHandbook of Continued Fractions for Special
Functionsby Cuyt et al. [83]. In particular, Chapter 7 contains a discussion
of error bounds. Our Theorem 4.1 is a trivial modification of Cuyt et al. [83,
Theorem 7.5.1]. The asymptotically fast algorithm suggested in Exercise 4.32
was given by Scḧonhage [195].

A proof of a generalization of (4.54) is given in [4,§4.9]. Miller’s algorithm
is due to J. C. P. Miller. It is described, for example, in [1,§9.12,§19.28] and
Clenshawet al. [68, §13.14]. An algorithm is given in Gautschi [102].

A recurrence based on (4.60) was used to evaluate the scaled Bernoulli
numbersCk in the MP package following a suggestion of Reinsch [48,§12].
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Previously, the inferior recurrence (4.59) was widely used, for example in
Knuth [140] and in early versions of Brent’s MP package [47,§6.11]. The idea
of using tangent numbers is mentioned in [107,§6.5], where it is attributed to
B. F. Logan. Our in-place AlgorithmsTangentNumbersandSecantNumbers
may be new (see Exercises 4.38–4.40). Kaneko [135] describes an algorithm
of Akiyama and Tanigawa for computing Bernoulli numbers in amanner simi-
lar to “Pascal’s triangle”. However, it requires more arithmetic operations than
Algorithm TangentNumbers. Also, the Akiyama–Tanigawa algorithm is only
recommended for exact rational arithmetic, since it is numerically unstable if
implemented in floating-point arithmetic. For more on Bernoulli, tangent and
secant numbers, and a connection with Stirling numbers, seeChen [62] and
Sloane [203, A027641, A000182, A000364].

The Von Staudt–Clausen theorem was proved independently byKarl von
Staudt and Thomas Clausen in 1840. It can be found in many references. If just
a single Bernoulli number of large index is required, then Harvey’s modular
algorithm [117] can be recommended.

Some references on the Arithmetic-Geometric Mean (AGM) areBrent [43,
46, 51], Salamin [192], the Borweins’ book [36], Arndt and Haenel [7]. An
early reference, which includes some results that were rediscovered later, is
the fascinating reportHAKMEMby Beeler, Gosper and Schroeppel [15]. Bern-
stein [19] gives a survey of different AGM algorithms for computing the log-
arithm. Eqn. (4.70) is given in Borwein and Borwein [36, (1.3.10)], and the
bound (4.73) is given in [36, p. 11, Exercise 4(c)]. The AGM can be extended
to complex starting values provided we take the correct branch of the square
root (the one with positive real part): see Borwein and Borwein [36, pp. 15–16].
The use of the complex AGM is discussed in [88]. For theta function identities,
see [36, Chapter 2], and for a proof of (4.78), see [36,§2.3].

The use of the exact formula (4.79) to computelnx was first suggested by
Sasaki and Kanada (see [36, (7.2.5)], but beware the typo). See Brent [46] for
Landen transformations, and Brent [43] for more efficient methods; note that
the constants given in those papers might be improved using faster square root
algorithms (Chapter 3).

The constants in Table 4.1 are justified as follows. We assumewe are in
the FFT domain, and one Fourier transform costsM(n)/3. The13M(n)/9 ≈
1.444M(n) cost for a real reciprocal is from Harvey [116], and assumes
M(n) ∼ 3T (2n), whereT (n) is the time to perform a Fourier transform of
sizen. For the complex reciprocal1/(v+ iw) = (v− iw)/(v2 +w2), we com-
putev2+w2 using two forward transforms and one backward transform, equiv-
alent in cost toM(n), then one real reciprocal to obtain sayx = 1/(v2 + w2),
then two real multiplications to computevx, wx, but take advantage of the
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fact that we already know the forward transforms ofv andw, and the trans-
form of x only needs to be computed once, so these two multiplicationscost
only M(n). Thus, the total cost is31M(n)/9 ≈ 3.444M(n). The1.666M(n)

cost for real division is from van der Hoeven [125, Remark 6],and assumes
M(n) ∼ 3T (2n) as above for the real reciprocal. For complex division, say
(t+iu)/(v+iw), we first compute the complex reciprocalx+iy = 1/(v+iw),
then perform a complex multiplication(t + iu)(x + iy), but save the cost
of two transforms by observing that the transforms ofx and y are known
as a byproduct of the complex reciprocal algorithm. Thus, the total cost is
(31/9+4/3)M(n) ≈ 4.777M(n). The4M(n)/3 cost for the real square root
is from Harvey [116], and assumesM(n) ∼ 3T (2n) as above. The complex
square root uses Friedland’s algorithm [97]:

√
x + iy = w + iy/(2w), where

w =
√

(|x| + (x2 + y2)1/2)/2; as for the complex reciprocal,x2 + y2 costs
M(n), then we compute its square root in4M(n)/3, the second square root
in 4M(n)/3, and the divisiony/w costs1.666M(n), which gives a total of
5.333M(n).

The cost of one real AGM iteration is at most the sum of the multiplica-
tion cost and of the square root cost, but since we typically perform several
iterations, it is reasonable to assume that the input and output of the iteration
includes the transforms of the operands. The transform ofa + b is obtained by
linearity from the transforms ofa andb, so is essentially free. Thus, we save
one transform orM(n)/3 per iteration, giving a cost per iteration of2M(n).
(Another way to saveM(n)/3 is to trade the multiplication for a squaring,
as explained in Scḧonhage, Grotefeld, and Vetter [198,§8.2.5].) The complex
AGM is analogous: it costs the same as a complex multiplication (2M(n)) and
a complex square root (5.333M(n)), but we can save two (real) transforms per
iteration (2M(n)/3), giving a net cost of6.666M(n). Finally, the logarithm
via the AGM costs2 lg(n) + O(1) AGM iterations.

We note that some of the constants in Table 4.1 may not be optimal. For
example, itmay be possible to reduce the cost of reciprocal or square root
(Harvey, Sergeev). We leave this as a challenge to the reader(see Exercise 4.46).
Note that the constants for operations on power series may differ from the cor-
responding constants for operations on integers/reals.

The idea of binary splitting is quite old, since in 1976 Brent[45, Th. 6.2]
gave a binary splitting algorithm to computeexpx in timeO(M(n)(log n)2).
See also Borwein and Borwein [36, page 335]. The CLN library implements
several functions with binary splitting, see Haible and Papanikolaou [108], and
is quite efficient for precisions of a million bits or more.

The “bit-burst” algorithm was invented by David and GregoryChud-
novsky [65], and our Theorem 4.2 is based on their work. Some references
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on holonomic functions are J. Bernstein [25, 26], van der Hoeven, [123] and
Zeilberger [233]. See also the MapleGFUN package [193], which allows one,
amongst other things, to deduce the recurrence for the Taylor coefficients of
f(x) from its differential equation.

There are several topics that are not covered in this chapter, but might have
been if we had more time and space. We mention some referenceshere. A
useful resource is the website [143].

The Riemann zeta-functionζ(s) can be evaluated by the Euler–Maclaurin
expansion (4.34)–(4.36), or by Borwein’s algorithm [38, 39], but neither of
these methods is efficient ifℑ(s) is large. On the critical lineℜ(s) = 1/2, the
Riemann–Siegel formula [99] is much faster and in practice sufficiently accu-
rate, although only an asymptotic expansion. If enough terms are taken, the
error seems to beO(exp(−πt)), wheret = ℑ(s): see Brent’s review [82] and
Berry’s paper [28]. An error analysis is given in [184]. The Riemann–Siegel
coefficients may be defined by a recurrence in terms of certainintegersρn that
can be defined using Euler numbers (see Sloane’s sequence A087617 [203]).
Sloane calls this the Gabcke sequence but Gabcke credits Lehmer [155] so
perhaps it should be called theLehmer–Gabcke sequence. The sequence(ρn)

occurs naturally in the asymptotic expansion ofln(Γ(1/4 + it/2)). The (not
obvious) fact that theρn are integers was proved by de Reyna [85].

Borwein’s algorithm forζ(s) can be generalized to cover functions such as
the polylogarithm and the Hurwitz zeta-function: see Veps̆tas [223].

To evaluate the Riemann zeta-functionζ(σ + it) for fixed σ and many
equally spaced pointst, the fastest known algorithm is due to Odlyzko and
Scḧonhage [179]. It has been used by Odlyzko to compute blocks ofzeros with
very large heightt, see [177, 178]; also (with improvements) by Gourdon to
verify the Riemann Hypothesis for the first1013 non-trivial zeros in the upper
half-plane, see [105]. The Odlyzko–Schönhage algorithm can be generalized
for the computation of other L-functions.

In §4.10, we briefly discussed the numerical approximation of contour inte-
grals, but we omitted any discussion of other forms of numerical quadrature,
for example Romberg quadrature, the tanh rule, the tanh-sinh rule, etc. Some
references are [11, 12, 13, 95, 172, 213], and [37,§7.4.3]. For further dis-
cussion of the contour integration method, see [156]. For Romberg quadra-
ture (which depends on Richardson extrapolation), see [59,188, 191]. For
Clenshaw–Curtis and Gaussian quadrature, see [67, 93, 219]. An example of
the use of numerical quadrature to evaluateΓ(x) is [32, p. 188]. This is an
interesting alternative to the use of Stirling’s asymptotic expansion (§4.5).

We have not discussed the computation of specific mathematical constants
such asπ, γ (Euler’s constant),ζ(3), etc. π can be evaluated usingπ =
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4 arctan(1) and a fastarctan computation (§4.9.2); or by theGauss–Legendre
algorithm (also known as theBrent–Salaminalgorithm), see [43, 46, 192].
This asymptotically fast algorithm is based on the arithmetic-geometric mean
and Legendre’s relation (4.72). A recent record computation by Bellard [16]
used a rapidly converging series for1/π by the Chudnovsky brothers [64],
combined with binary splitting. Its complexity isO(M(n) log2 n) (theoret-
ically worse than Gauss–Legendre’sO(M(n) log n), but with a small con-
stant factor). There are several popular books onπ: we mention Arndt and
Haenel [7]. A more advanced book is the one by the Borwein brothers [36].

For a clever implementation of binary splitting and its application to the
fast computation of constants such asπ andζ(3) – and more generally con-
stants defined by hypergeometric series – see Cheng, Hanrot,Thomé, Zima,
and Zimmermann [63].

The computation ofγ and its continued fraction is of interest because it
is not known whetherγ is rational (though this is unlikely). The best algo-
rithm for computingγ appears to be the “Bessel function” algorithm of Brent
and McMillan [54], as modified by Papanikolaou and later Gourdon [106] to
incorporate binary splitting. A very useful source of information on the evalua-
tion of constants (includingπ, e, γ, ln 2, ζ(3)) and certain functions (including
Γ(z) andζ(s)) is Gourdon and Sebah’s web site [106].

A nice book on accurate numerical computations for a diverseset of “SIAM
100-Digit Challenge” problems is Bornemann, Laurie, Wagon, and Waldvo-
gel [32]. In particular, Appendix B of this book considers how to solve the
problems to10 000-decimal digit accuracy (and succeeds in all cases but one).
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Implementations and pointers

Here we present a non-exhaustive list of software packages that
(in most cases) the authors have tried, together with some other
useful pointers. Of course, we cannot accept any responsibility
for bugs/errors/omissions in any of the software or documenta-
tion mentioned here –caveat emptor!

Websites change. If any of the websites mentioned here disappear
in the future, you may be able to find the new site using a search
engine with appropriate keywords.

5.1 Software tools

5.1.1 CLN

CLN (Class Library for Numbers,http://www.ginac.de/CLN/ ) is a
library for efficient computations with all kinds of numbersin arbitrary preci-
sion. It was written by Bruno Haible, and is currently maintained by Richard
Kreckel. It is written in C++ and distributed under the GNU General Public
License (GPL). CLN provides some elementary and special functions, and fast
arithmetic on large numbers, in particular it implements Schönhage–Strassen
multiplication, and the binary splitting algorithm [108].CLN can be config-
ured to use GMP low-levelMPN routines, which improves its performance.

5.1.2 GNU MP (GMP)

The GNU MP library is the main reference for arbitrary-precision arithmetic.
It has been developed since 1991 by Torbjörn Granlund and several other con-
tributors. GNU MP (GMP for short) implements several of the algorithms de-
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scribed in this book. In particular, we recommend reading the “Algorithms”
chapter of the GMP reference manual [104]. GMP is written in C, is released
under the GNU Lesser General Public License (LGPL), and is available from
http://gmplib.org/ .

GMP’s MPZ class implements arbitrary-precision integers (corresponding
to Chapter 1), while theMPF class implements arbitrary-precision floating-
point numbers (corresponding to Chapter 3).1 The performance of GMP comes
mostly from its low-levelMPN class, which is well designed and highly opti-
mized in assembly code for many architectures.

As of version 5.0.0,MPZ implements different multiplication algorithms
(schoolbook, Karatsuba, Toom–Cook3-way, 4-way, 6-way, 8-way, and FFT
using Scḧonhage–Strassen’s algorithm); its division routine implements Algo-
rithm RecursiveDivRem(§1.4.3) in the middle range, and beyond that New-
ton’s method, with complexityO(M(n)), and so does its square root, which
implements AlgorithmSqrtRem, since it relies on division. The Newton di-
vision first precomputes a reciprocal to precisionn/2, and then performs two
steps of Barrett reduction to precisionn/2: this is an integer variant of Algo-
rithm Divide. It also implements unbalanced multiplication, with Toom–Cook
(3, 2), (4, 3), (5, 3), (4, 2), or (6, 3) [31]. Functionmpn ni invertappr ,
which is not in the public interface, implements AlgorithmApproximate-
Reciprocal (§3.4.1). GMP 5.0.0 does not implement elementary or special
functions (Chapter 4), nor does it provide modular arithmetic with an invariant
divisor in its public interface (Chapter 2). However, it contains a preliminary
interface for Montgomery’sREDC algorithm.

MPIR is a “fork” of GMP, with a different license, and variousother dif-
ferences that make some functions more efficient with GMP, and some with
MPIR; also, the difficulty of compiling under Microsoft operating systems may
vary between the forks. Of course, the developers of GMP and MPIR are con-
tinually improving their code, so the situation is dynamic.For more on MPIR,
seehttp://www.mpir.org/ .

5.1.3 MPFQ

MPFQ is a software library developed by Pierrick Gaudry and Emmanuel
Thomé for manipulation of finite fields. What makes MPFQ different from
other modular arithmetic libraries is that the target finitefield is given atcom-
pile time, thus more specific optimizations can be done. The two main targets
of MPFQ are the Galois fieldsF2n andFp with p prime. MPFQ is available

1 However, the authors of GMP recommend using MPFR (see§5.1.4) for new projects.
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from http://www.mpfq.org/ , and is distributed under the GNU Lesser
General Public License (LGPL).

5.1.4 GNU MPFR

GNU MPFR is a multiple-precision binary floating-point library, written in C,
based on the GNU MP library, and distributed under the GNU Lesser General
Public License (LGPL). It extends the main ideas of the IEEE 754 standard to
arbitrary-precision arithmetic, by providingcorrect roundingandexceptions.
MPFR implements the algorithms of Chapter 3 and most of thoseof Chap-
ter 4, including all mathematical functions defined by the ISO C99 standard.
These strong semantics are in most cases achieved with no significant slow-
down compared to other arbitrary-precision tools. For details of the MPFR
library, seehttp://www.mpfr.org/ and the paper [96].

5.1.5 Other multiple-precision packages

Without attempting to be exhaustive, we briefly mention someof MPFR’s pre-
decessors, competitors, and extensions.

1. ARPREC is a package for multiple-precision floating-point arithmetic, writ-
ten by David Baileyet al. in C++/Fortran. The distribution includesThe Ex-
perimental Mathematician’s Toolkit, which is an interactive high-precision
arithmetic computing environment. ARPREC is available from http://
crd.lbl.gov/ ˜ dhbailey/mpdist/ .

2. MP [47] is a package for multiple-precision floating-point arithmetic and el-
ementary and special function evaluation, written in Fortran77. MP permits
any small baseβ (subject to restrictions imposed by the word-size), and im-
plements several rounding modes, though correct rounding-to-nearest is not
guaranteed in all cases. MP is now obsolete, and we recommendthe use of
a more modern package such as MPFR. However, much of Chapter 4was
inspired by MP, and some of the algorithms implemented in MP are not yet
available in later packages, so the source code and documentation may be
of interest: seehttp://rpbrent.com/pub/pub043.html .

3. MPC (http://www.multiprecision.org/ ) is a C library for arith-
metic using complex numbers with arbitrarily high precision and correct
rounding, written by Andreas Enge, Philippe Théveny, and Paul Zimmer-
mann [90]. MPC is built on and follows the same principles as MPFR.
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4. MPFI is a package for arbitrary-precision floating-pointinterval arithmetic,
based on MPFR. It can be useful to get rigorous error bounds using interval
arithmetic. Seehttp://mpfi.gforge.inria.fr/ , and also§5.3.

5. Several other interesting/useful packages are listed under “Other Related
Free Software” at the MPFR websitehttp://www.mpfr.org/ .

5.1.6 Computational algebra packages

There are several general-purpose computational algebra packages that incor-
porate high-precision or arbitrary-precision arithmetic. These include Magma,
Mathematica, Maple, and Sage. Of these, Sage is free and open-source; the
others are either commercial or semi-commercial and not open-source. The
authors of this book have often used Magma, Maple, and Sage for prototyping
and testing algorithms, since it is usually faster to develop an algorithm in a
high-level language (at least if one is familiar with it) than in a low-level lan-
guage like C, where there are many details to worry about. Of course, if speed
of execution is a concern, it may be worthwhile to translate the high-level code
into a low-level language, but the high-level code will be useful for debugging
the low-level code.

1. Magma (http://magma.maths.usyd.edu.au/magma/ ) was de-
veloped and is supported by John Cannon’s group at the University of Syd-
ney. Its predecessor wasCayley, a package designed primarily for compu-
tational group theory. However, Magma is a general-purposealgebra pack-
age with logical syntax and clear semantics. It includes arbitrary-precision
arithmetic based on GMP, MPFR, and MPC. Although Magma is notopen-
source, it has excellent online documentation.

2. Maple(http://www.maplesoft.com/ ) is a commercial package orig-
inally developed at the University of Waterloo, now by Waterloo Maple,
Inc. It uses GMP for its integer arithmetic (though not necessarily the latest
version of GMP, so in some cases calling GMP directly may be significantly
faster). Unlike most of the other software mentioned in thischapter, Maple
uses radix10 for its floating-point arithmetic.

3. Mathematicais a commercial package produced by Stephen Wolfram’s
company Wolfram Research, Inc. In the past, public documentation on
the algorithms used internally by Mathematica was poor. However, this
situation may be improving. Mathematica now appears to use GMP for its
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basic arithmetic. For information about Mathematica, seehttp://www.
wolfram.com/products/mathematica/ .

4. NTL(http://www.shoup.net/ntl/ ) is a C++ library providing data
structures and algorithms for manipulating arbitrary-length integers, as well
as vectors, matrices, and polynomials over the integers andover finite fields.
For example, it is very efficient for operations on polynomials over the fi-
nite fieldF2 (i.e. GF(2)). NTL was written by and is maintained by Victor
Shoup.

5. PARI/GP(http://pari.math.u-bordeaux.fr/ ) is a computer al-
gebra system designed for fast computations in number theory, but also
able to handle matrices, polynomials, power series, algebraic numbers, etc.
PARI is implemented as a C library, and GP is the scripting language for
an interactive shell giving access to the PARI functions. Overall, PARI is a
small and efficient package. It was originally developed in 1987 by Chris-
tian Batut, Dominique Bernardi, Henri Cohen, and Michel Olivier at Uni-
versit́e Bordeaux I, and is now maintained by Karim Belabas and a teamof
volunteers.

6. Sage(http://www.sagemath.org/ ) is a free, open-source mathe-
matical software system. It combines the power of many existing open-
source packages with a common Python-based interface. According to the
Sage website, its mission is “Creating a viable free open-source alternative
to Magma, Maple, Mathematica and Matlab”. Sage was started by William
Stein and is developed by a large team of volunteers. It uses MPIR, MPFR,
MPC, MPFI, PARI, NTL, etc. Thus, it is a large system, with many capa-
bilities, but occupying a lot of space and taking a long time to compile.

5.2 Mailing lists

5.2.1 The GMP lists

There are four mailing lists associated with GMP:gmp-bugs for bug reports;
gmp-announce for important announcements about GMP, in particular new
releases;gmp-discuss for general discussions about GMP;gmp-devel
for technical discussions between GMP developers. We recommend subscrip-
tion to gmp-announce (very low traffic), togmp-discuss (medium to
high traffic), and togmp-devel only if you are interested in the internals of
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GMP. Information about these lists (including archives andhow to subscribe)
is available fromhttp://gmplib.org/mailman/listinfo/ .

5.2.2 The MPFR list

There is only one mailing list for the MPFR library. Seehttp://www.
mpfr.org/ to subscribe or search through the list archives.

5.3 On-line documents

TheNIST Digital Library of Mathematical Functions(DLMF) is an ambitious
project to completely rewrite Abramowitz and Stegun’s classic Handbook of
Mathematical Functions[1]. It is online athttp://dlmf.nist.gov/ and
will also be published in book form by Cambridge University Press.

The Wolfram Functions Sitehttp://functions.wolfram.com/
contains a lot of information about mathematical functions(definition, spe-
cific values, general characteristics, representations asseries, limits, integrals,
continued fractions, differential equations, transformations, and so on).

The Encyclopedia of Special Functions (ESF) is another niceweb site, whose
originality is that all formulæ are automatically generated from very few data
that uniquely define the corresponding function in a generalclass [163]. This
encyclopedia is currently being reimplemented in the Dynamic Dictionary of
Mathematical Functions (DDMF); both are available fromhttp://algo.
inria.fr/online.html .

A large amount of information about interval arithmetic (introduction, soft-
ware, languages, books, courses, applications) can be found on the Interval
Computations pagehttp://www.cs.utep.edu/interval-comp/ .

Mike Cowlishaw maintains an extensive bibliography of conversion to and
from decimal arithmetic athttp://speleotrove.com/decimal/ .

Useful if you want to identify an unknown real constant such as1.414213 · · ·
is the Inverse Symbolic Calculator(ISC) by Simon Plouffe (building on
earlier work by the Borwein brothers) athttp://oldweb.cecm.sfu.
ca/projects/ISC/ .

Finally, an extremely useful site for all kinds of integer/rational sequences is
Neil Sloane’sOnline Encyclopaedia of Integer Sequences(OEIS) athttp://
www.research.att.com/ ˜ njas/sequences/ .
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[146] Kronecker, Leopold. 1880.Über die symmetrischen Functionen.Monats-
berichte der K̈oniglich Preuβischen Akademie der Wissenschaften zu Berlin
1880(Berlin: Verl. d. Kgl. Akad. d. Wiss., 1881), 936–948. (44)

[147] Kronecker, Leopold. 1882.Grundz̈uge einer arithmetischen Theorie der alge-
braischen Gr̈ossen. Berlin: Druck und Verlag Von G. Reimer. (44)

[148] Kuki, Hirondo and Cody, William J. 1973. A statistical study of the accuracy
of floating-point number systems.Communications of the ACM, 16, 223–230.
(118)

[149] Kulisch, Ulrich W. 2008.Computer Arithmetic and Validity. Theory, Implemen-
tation, and Applications. Studies in Mathematics, no. 33. de Gruyter. 410 pages.
(123)

[150] Kung, Hsiang T. 1974. On computing reciprocals of power series. Numerische
Mathematik, 22, 341–348. (179)

[151] Lang, Tomas and Muller, Jean-Michel. 2001. Bounds on runs of zeros and ones
for algebraic functions. Pages 13–20 ofProceedings of the 15th IEEE Sympo-
sium on Computer Arithmetic (ARITH-15). IEEE Computer Society. (122)
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[184] Ṕetermann, Yves-F. S. and Rémy, Jean-Luc. 2007. On the Cohen–Olivier algo-
rithm for computingζ(s): error analysis in the real case for an arbitrary preci-
sion. Advances in Applied Mathematics, 38, 54–70. (183)

[185] Pollard, John M. 1971. The fast Fourier transform in a finite field. Mathematics
of Computation, 25(114), 365–374. (78)

[186] Priest, Douglas M. 1991. Algorithms for arbitrary precision floating point arith-
metic. Pages 132–144 of Kornerup, P. and Matula, D. (eds.),Proceedings of the
10th IEEE Symposium on Computer Arithmetic (ARITH-10). Grenoble, France:
IEEE Computer Society Press. (121)

[187] Rader, Charles M. 1968. Discrete Fourier transforms when thenumber of data
samples is prime.Proceedings IEEE, 56, 1107–1108. (78)

[188] Richardson, Lewis F. and Gaunt, John A. 1927. The deferredapproach to the
limit. Philosophical Transactions of the Royal Society of London, Series A, 226,
299–361. (183)

[189] Robertson, James E. 1958. A new class of digital division methods. IRE Trans-
actions on Electronic Computers, EC–7(3), 218–222. (179)

[190] Roche, Daniel S. 2009. Space- and time-efficient polynomial multiplication.
Pages 295–302 of May, J. P. (ed.),Proceedings of the 2009 International Sym-
posium on Symbolic and Algebraic Computation (ISSAC’09). (40)

[191] Romberg, Werner. 1955. Vereinfachte numerische Integration. Det Kongelige
Norske Videnskabers Selskab Forhandlinger(Tronheim),28(7), 30–36. (183)

[192] Salamin, Eugene. 1976. Computation ofπ using arithmetic-geometric mean.
Mathematics of Computation, 30, 565–570. (181, 184)

[193] Salvy, Bruno and Zimmermann, Paul. 1994. Gfun: A Maple package for the ma-
nipulation of generating and holonomic functions in one variable.ACM Trans-
actions on Mathematical Software, 20(2), 163–177. (183)

[194] Schmookler, Martin S. and Nowka, Kevin J. 2001. Leading zeroanticipation and
detection – a comparison of methods. Pages 7–12 of Burgess, N. and Ciminiera,
L. (eds.),Proceedings of the 15th IEEE Symposium on Computer Arithmetic
(ARITH-15). IEEE Computer Society. (121)
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Lecerf, Gŕegoire, 122
Lefèvre, Vincent, 45, 120, 121
Legendre, Adrien-Marie, 158, 184
Lehmer, Derrick Henry, 30, 45, 183
Lehmer–Gabcke sequence, 183
Lenstra, Arjen Klaas, 44
Lenstra, Hendrik Willem, Jr., 45
level-index arithmetic, 120
lg, seelogarithm
LGPL, 186, 187
Lickteig, Thomas Michael, 123
lists versus arrays, 84
little o notation, xv
ln, seelogarithm
Loan,seeVan Loan
log, seelogarithm

log1p, seelogarithm
Logan, Benjamin Franklin “Tex”, Jr.,

181
logarithm

addition formula, 133
computation via AGM, 159
lg(x), ln(x), log(x), xv
log1p, 140, 172
notations for, xv
Sasaki–Kanada algorithm, 162

logical operations, xiv
LSB, 22, 24, 25, 29, 49
Luschny, Peter, 43
Lyness, James N., 183

machine precision, xiv
Maeder, Roman Erich, 40
Magaud, Nicolas, 45
Magma, 188
mailing lists, 189
mantissa,seesignificand
Maple, 183, 188
Markstein, Peter, 22, 45, 122, 123,

179
Martin, David W., 180
MasPar, 44
Massey, James Lee, 40
Mathematica, 188
Mathematics Genealogy Project, xi
matrix multiplication, 41, 123
matrix notation, xv
Matula, David William, 121
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Schost,Éric, 122, 171
Schroeppel, Richard Crabtree, 181
Sebah, Pascal, 184
secant numbers, 157, 177
Sedjelmaci, Sidi Mohamed, xi
Sedoglavic, Alexandre, 42

segmentation,seeKronecker–
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Summary of complexities

Integer arithmetic (n-bit or (m,n)-bit input)

Addition, subtraction O(n)

Multiplication M(n)

Unbalanced multiplication (m ≥ n) M(m,n) ≤ ⌈m
n ⌉M(n),M(m+n

2 )

Division O(M(n))

Unbalanced division (with remainder) D(m + n, n) = O(M(m,n))

Square root O(M(n))

kth root (with remainder) O(M(n))

GCD, extended GCD, Jacobi symbol O(M(n) log n)

Base conversion O(M(n) log n)

Modular arithmetic (n-bit modulus)

Addition, subtraction O(n)

Multiplication M(n)

Division, inversion, conversion to/from RNSO(M(n) log n)

Exponentiation (k-bit exponent) O(kM(n))

Floating-point arithmetic (n-bit input and output)

Addition, subtraction O(n)

Multiplication M(n)

Division O(M(n))

Square root,kth root O(M(n))

Base conversion O(M(n) log n)

Elementary functions
(in a compact set O(M(n) log n)

excluding zeros and poles)
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