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These Lecture Notes are dedicated to the victims of the brutal attacks
of September 11, 2001, including all who were affected. All of us who

attended the C.I.M.E. course, Americans and non-Americans alike,
were shocked and horrified by what took place.

We all hope for a saner world.





Preface

The C.I.M.E. course on “Multiscale Problems and Methods in Numerical Sim-
ulation” was held in Martina Franca (Italy) from September 9 to 15, 2001.
The purpose of the course was to disseminate a number of new ideas that had
emerged in the previous few years in the field of numerical simulation, bearing
the common denominator of the “multiscale” or “multilevel” paradigm. This
takes various forms, such as: the presence of multiple relevant “scales” in a
physical phenomenon, with their natural mathematical and numerical coun-
terparts; the detection and representation of “structures”, localized in space
or in frequency, in the unknown variables described by a model; the decom-
position of the mathematical or numerical solution of a differential or integral
problem into “details”, which can be organized and accessed in decreasing
order of importance; the iterative solution of large systems of linear algebraic
equations by “multilevel” decompositions of finite-dimensional spaces.

Four world leading experts illustrated the multiscale approach to numer-
ical simulation from different perspectives. Jim Bramble, from Texas A&M
University, described modern multigrid methods for finite element discretiza-
tions, and the efficient multilevel realization of norms in Sobolev scales. Albert
Cohen, from Université Pierre et Marie Curie in Paris, smoothly guided the
audience towards the realm of “Nonlinear Approximation”, which provides a
mathematical ground for state-of-the-art signal and image processing, statis-
tical estimation and adaptive numerical discretizations. Wolfgang Dahmen,
from RWTH in Aachen, described the use of wavelet bases in the design of
computationally optimal algorithms for the numerical treatment of operator
equations. Tom Hughes, from Stanford University, presented a general ap-
proach to derive variational methods capable of representing multiscale phe-
nomena, and detailed the application of the variational multiscale formulation
to Large Eddy Simulation (LES) in fluid-dynamics, using the Fourier basis.

The“senior” lecturers were complemented by four “junior” speakers, who
gave account of supplementary material, detailed examples or applications.
Ken Jansen, from Rensselaer Polytechnic Institute in Troy, discussed vari-
ational multiscale methods for LES using a hierarchical basis and finite el-
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ements. Joe Pasciak, from Texas A&M University, extended the multigrid
and multilevel approach presented by Bramble to the relevant case of sym-
metric indefinite second order elliptic problems. Rob Stevenson, from Utrecht
University, reported on the construction of finite element wavelets on gen-
eral domains and manifolds, i.e., wavelet bases for standard finite element
spaces. Karsten Urban, from RWTH in Aachen, illustrated the construction
of orthogonal and biorthogonal wavelet bases in complex geometries by the
domain decomposition and mapping approach.

Both the senior and the junior lecturers contributed to the scientific suc-
cess of the course, which was attended by 48 participants from 13 different
countries. Not only the speakers presented their own material and perspective
in the most effective manner, but they also made a valuable effort to dynam-
ically establishing cross-references with other lecturers’ topics, leading to a
unitary picture of the course theme.

On Tuesday, September 11, we were about to head for the afternoon ses-
sion, when we were hit by the terrible news coming from New York City.
Incredulity, astonishment, horror, anger, worry (particularly for the families
of our American friends) were the sentiments that alternated in our hearts. No
space for Mathematics was left in our minds. But on the next day, we unan-
imously decided to resume the course with even more determination than
before; we strongly believe, and we wanted to testify, that only rationality
can defeat irrationality, that only the free circulation of ideas and the mu-
tual exchange of experiences, as it occurs in science, can defeat darkness and
terror.

The present volume collects the expanded version of the lecture notes by
Jim Bramble, Albert Cohen and Wolfgang Dahmen. I am grateful to them for
the timely production of such high quality scientific material.

As the scientific director of the course, I wish to thank the former Director
of C.I.M.E., Arrigo Cellina, and the whole Scientific Board of the Centre, for
inviting me to organize the event, and for providing us the nice facilities in
Martina Franca as well as part of the financial support. Special thanks are due
to the Secretary of C.I.M.E., Vincenzo Vespri. Generous funding for the course
was provided by the I.N.D.A.M. Groups G.N.C.S. and G.N.A.M.P.A. Support
also came from the Italian Research Project M.U.R.S.T. Cofin 2000 “Calcolo
Scientifico: Modelli e Metodi Numerici Innovativi” and from the European
Union T.M.R. Project “Wavelets in Numerical Simulation”.

The organization and the realization of the school would have been by
far less successful without the superb managing skills and the generous help
of Anita Tabacco. A number of logistic problems were handled and solved by
Stefano Berrone, as usual in the most efficient way. The help of Dino Ricchiuti,
staff member of the Dipartimento di Matematica at the Politecnico di Torino,
is gratefully acknowledged. Finally, I wish to thank Giuseppe Ghibò for his
accurate job of processing the electronic version of the notes.

Torino, February 2003 Claudio Canuto
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Theoretical, Applied and Computational
Aspects of Nonlinear Approximation

Albert Cohen

Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie, Paris
cohen@ann.jussieu.fr

Summary. Nonlinear approximation has recently found computational applica-
tions such as data compression, statistical estimation or adaptive schemes for partial
differential or integral equations, especially through the development of wavelet-
based methods. The goal of this paper is to provide a short survey of nonlinear
approximation in the perspective of these applications, as well as to stress some
remaining open areas.

1 Introduction

Approximation theory is the branch of mathematics which studies the process
of approximating general functions by simple functions such as polynomials,
finite elements or Fourier series. It plays therefore a central role in the ac-
curacy analysis of numerical methods. Numerous problems of approximation
theory have in common the following general setting: we are given a family
of subspaces (SN )N≥0 of a normed space X, and for f ∈ X, we consider the
best approximation error

σN (f) := inf
g∈SN

‖f − g‖X . (1)

Typically, N represents the number of parameters needed to describe an ele-
ment in SN , and in most cases of interest, σN (f) goes to zero as this number
tends to infinity.

For a given f , we can then study the rate of approximation, i.e., the range
of r ≥ 0 for which there exists C > 0 such that

σN (f) ≤ CN−r. (2)

Note that in order to study such an asymptotic behaviour, we can use a
sequence of near-best approximation, i.e., fN ∈ SN such that

‖f − fN‖X ≤ CσN (f), (3)

J.H. Bramble, A. Cohen, and W. Dahmen: LNM 1825, C. Canuto (Ed.), pp. 1–29, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



2 Albert Cohen

with C > 1 independent of N . Such a sequence always exists even when the
infimum is not attained in (1), and clearly (2) is equivalent to the same esti-
mate with ‖f − fN‖X in place of σN (f).

Linear approximation deals with the situation when the SN are linear
subspaces. Classical instances of linear approximation families are the follow-
ing:
1) Polynomial approximation: SN := ΠN , the space of algebraic polynomials
of degree N .
2) Spline approximation with uniform knots: some integers 0 ≤ k < m being
fixed, SN is the spline space on [0, 1], consisting of Ck piecewise polynomial
functions of degree m on the intervals [j/N, (j + 1)/N ], j = 0, · · · , N − 1.
3) Finite element approximation on fixed triangulations: SN are finite element
spaces associated with triangulations TN where N is the number of triangles
in TN .
4) Linear approximation in a basis: given a basis (ek)k≥0 in a Banach space,
SN := Span(e0, · · · , eN ).
In all these instances, N is typically the dimension of SN , possibly up to some
multiplicative constant.

Nonlinear approximation addresses in contrast the situation where the
SN are not linear spaces, but are still typically characterized by O(N) param-
eters. Instances of nonlinear approximation families are the following:
1) Rational approximation: SN := {pq ; p, q ∈ ΠN}, the set rational functions
of degree N .
2) Free knot spline approximation: some integers 0 ≤ k < m being fixed,
SN is the spline space on [0, 1] with N free knots, consisting of Ck piecewise
polynomial functions of degree m on intervals [xj , xj+1], for all partitions
0 = x0 < x1 · · · < xN−1 < xN = 1.
3) Adaptive finite element approximation: SN are the union of finite element
spaces VT of some fixed type associated to all triangulations T of cardinality
less or equal to N .
4) N -term approximation in a basis: given a basis (ek)k≥0 in a Banach space,
SN is the set of all possible combinations

∑

k∈E xkek with #(E) ≤ N .
Note that these examples are in some sense nonlinear generalizations of the
previous linear examples, since they include each of them as particular subsets.
Also note that in all of these examples (except for the splines with uniform
knots), we have the natural property SN ⊂ SN+1, which expresses that the
approximation is “refined” as N grows.

On a theoretical level, a basic problem, both for linear and nonlinear ap-
proximation can be stated as follows:

Problem 1: Given a nonlinear family (SN )N≥0, what are the analytic prop-
erties of a function f which ensure a prescribed rate σN (f) ≤ CN−r ?
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By “analytic properties”, we typically have in mind smoothness, since we
know that in many contexts a prescribed rate r can be achieved provided
that f belongs to some smoothness class Xr ⊂ X. Ideally, one might hope
to identify the maximal class Xr such that the rate r is ensured, i.e., have a
sharp result of the type

f ∈ Xr ⇔ σN (f) ≤ CN−r. (4)

Another basic problem, perhaps on a slightly more applied level, is the effec-
tive construction of near-best approximants.

Problem 2: Given a nonlinear family (SN )N≥0, find a simple implementable
procedure f �→ fN ∈ SN such that ‖f − fN‖X ≤ CσN (f) for all N ≥ 0.

In the case of linear approximation, this question is usually solved if we can
find a sequence of projectors PN : X �→ SN such that ‖PN‖X→X ≤ K with
K independent of N (in this case, simply take fN = PNf and remark that
‖f − fN‖X ≤ (1 + K)σN (f)). It is in general a more difficult problem in the
case of nonlinear method. Since the 1960’s, research in approximation theory
has evolved significantly toward nonlinear methods, in particular solving the
two above problems for various spaces SN .

More recently, nonlinear approximation became attractive on a more ap-
plied level, as a tool to understand and analyze the performance of adaptive
methods in signal and image processing, statistics and numerical simulation.
This is in part due to the emergence of wavelet bases for which simple N -
term approximations (derived by thresholding the coefficients) yield in some
sense optimal adaptive approximations. In such applications, the problems
that arise are typically the following ones.

Problem 3 (data compression): How can we exploit the reduction of pa-
rameters in the approximation of f by fN ∈ SN in the perspective of optimally
encoding f by a small number of bits ? This raises the question of a proper
quantization of these parameters.

Problem 4 (statistical estimation): Can we use nonlinear approxima-
tion as a denoising scheme ? In this perspective, we need to understand the
interplay between the approximation process and the presence of noise.

Problem 5 (numerical simulation): How can we compute a proper non-
linear approximation of a function u which is not given to us as a data but
as the solution of some problem F (u) = 0 ? This is in particular the goal of
adaptive refinement strategies in the numerical treatment of PDE’s.

The goal of the present paper is to briefly survey the subject of nonlinear
approximation, with a particular focus on questions 1 to 5, and some emphasis
on wavelet-based methods. We would like to point out that these questions
are also addressed in the survey paper [15] which contains a more substantial
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development on the theoretical aspects. We hope that our notes might be
helpful to the non-expert reader who wants to get a first general and intuitive
vision of the subject, from the point of view of its various applications, before
perhaps going into a more detailed study.

The paper is organized as follows. As a starter, we discuss in §2 a simple ex-
ample, based on piecewise constant functions, which illustrate the differences
between linear and nonlinear approximation, and we discuss a first algorithm
which produces nonlinear piecewise constant approximations. In §3, we show
that such approximations can also be produced by thresholding the coeffi-
cients in the Haar wavelet system. In §4, we give the general results on linear
uniform approximation of finite element or wavelet types. General results on
nonlinear adaptive approximations by wavelet thresholding or adaptive par-
titions are given in §5. Applications to signal compression and estimation are
discussed in §6 and §7. Applications to adaptive numerical simulation are
shortly described in §8. Finally, we conclude in §9 by some remarks and open
problems arising naturally in the multivariate setting.

2 A Simple Example

Let us consider the approximation of functions defined on the unit interval
I = [0, 1] by piecewise constant functions. More precisely, given a disjoint
partition of I into N subintervals I0, · · · , IN−1 and a function f in L1(I), we
shall approximate f on each Ik by its average aIk

(f) = |Ik|−1
∫

Ik
f(t)dt. The

resulting approximant can thus be written as

fN :=
N∑

k=1

aIk
(f)χIk

. (5)

If the Ik are fixed independently of f , then fN is simply the orthogonal pro-
jection of f onto the space of piecewise constant functions on the partition
Ik, i.e., a linear approximation of f . A natural choice is the uniform partition
Ik := [k/N, (k + 1)/N ]. With such a choice, let us now consider the error
between f and fN , for example in the L∞ metric. For this, we shall assume
that f is in C(I), the space of continuous functions on I. It is then clear that
on each Ik we have

|f(t) − fN (t)| = |f(t) − aIk
(f)| ≤ sup

t,u∈Ik

|f(t) − f(u)|. (6)

We thus have the error estimate

‖f − fN‖L∞ ≤ sup
k

sup
t,u∈Ik

|f(t) − f(u)|. (7)

This can be converted into an estimate in terms of N , under some additional
smoothness assumptions on f . In particular, if f has a bounded first derivative,
we have supt,u∈Ik

|f(t) − f(u)| ≤ |Ik|‖f ′‖L∞ = N−1‖f ′‖L∞ , and thus
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‖f − fN‖L∞ ≤ N−1‖f ′‖L∞ . (8)

Similarly, if f is in the Hölder space Cα for some α ∈]0, 1[, i.e., if for all
x, y ∈ [0, 1],

|f(x) − f(y)| ≤ C|x− y|α, (9)

we obtain the estimate

‖f − fN‖L∞ ≤ CN−α. (10)

By considering simple examples such as f(x) = xα for 0 < α ≤ 1, one can
easily check that this rate is actually sharp. In fact it is an easy exercise to
check that a converse result holds : if a function f ∈ C([0, 1]) satisfies (10)
for some α ∈]0, 1[ then necessarily f is in Cα, and f ′ is in L∞ in the case
where α = 1. Finally note that we cannot hope for a better rate than N−1:
this reflects the fact that piecewise constant functions are only first order
accurate.

If we now consider an adaptive partition where the Ik depend on the
function f itself, we enter the topic of nonlinear approximation. In order to
understand the potential gain in switching from uniform to adaptive par-
titions, let us consider a function f such that f ′ is integrable, i.e., f is in
the space W 1,1. Since we have supt,u∈Ik

|f(t) − f(u)| ≤
∫

Ik
|f ′(t)|dt, we see

that a natural choice of the Ik can be made by equalizing the quantities
∫

Ik
|f ′(t)|dt = N−1

∫ 1
0 |f ′(t)|dt, so that, in view of the basic estimate (7), we

obtain the error estimate

‖f − fN‖L∞ ≤ N−1‖f ′‖L1 . (11)

In comparison with the uniform/linear situation, we thus have obtained the
same rate as in (8) for a larger class of functions, since f ′ is not assumed to
be bounded but only integrable. On a slightly different angle, the nonlinear
approximation rate might be significantly better than the linear rate for a
fixed function f . For instance, the function f(x) = xα, 0 < α ≤ 1, has the
linear rate N−α and the nonlinear rate N−1 since f ′(x) = αxα−1 is in L1(I).
Similarly to the linear case, it can be checked that a converse result holds : if
f ∈ C([0, 1]) is such that

σN (f) ≤ CN−1, (12)

where σN (f) is the L∞ error of best approximation by adaptive piecewise
constant functions on N intervals, then f is necessarily in W 1,1.

The above construction of an adaptive partition based on balancing the
L1 norm of f ′ is somehow theoretical, in the sense that it pre-assumes a
certain amount of smoothness for f . A more realistic adaptive approximation
algorithm should also operate on functions which are not in W 1,1. We shall
describe two natural algorithms for building an adaptive partition. The first
algorithm is sometimes known as adaptive splitting and was studied e.g. in [17].
In this algorithm, the partition is determined by a prescribed tolerance ε > 0
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which represents the accuracy that one wishes to achieve. Given a partition of
[0, 1], and any interval Ik of this partition, we split Ik into two sub-intervals
of equal size if ‖f − aIk

(f)‖L∞(Ik) ≥ ε or leave it as such otherwise. Starting
this procedure on the single I = [0, 1] and using a fixed tolerance ε > 0 at
each step, we end with an adaptive partition (I1, · · · , IN ) with N(ε) and a
corresponding piecewise constant approximation fN with N = N(ε) pieces
such that ‖f − fN‖L∞ ≤ ε. Note that we now have the restriction that the Ik
are dyadic intervals, i.e., intervals of the type 2−j [n, n+ 1].

We now want to understand how the adaptive splitting algorithm behaves
in comparison to the optimal partition. In particular, do we also have that
‖f − fN‖L∞ ≤ CN−1 when f ′ ∈ L1 ? The answer to this question turns out
to be negative, but a slight strengthening of the smoothness assumption will
be sufficient to ensure this convergence rate : we shall instead assume that
the maximal function of f ′ is in L1. We recall that the maximal function of a
locally integrable function g is defined by

Mg(x) := sup
r>0

[vol(B(x, r)]−1
∫

B(x,r)
|g(t)|dt. (13)

It is known that Mg ∈ Lp if and only if g ∈ Lp for 1 < p < ∞ and that
Mg ∈ L1 if and only if g ∈ L logL, i.e.,

∫
|g| +

∫
|g log |g|| < ∞. Therefore,

the assumption that Mf ′ is integrable is only slightly stronger than f ∈ W 1,1.
If (I1, · · · , IN ) is the final partition, consider for each k the interval Jk

which is the parent of Ik in the splitting process, i.e., such that Ik ⊂ Jk and
|Jk| = 2|IK |. We therefore have

ε ≤ ‖f − aJk
(f)‖L∞ ≤

∫

Jk

|f ′(t)|dt. (14)

For all x ∈ Ik, the ball B(x, 2|Ik|) contains Jk and it follows therefore that

Mf ′(x) ≥ [vol(B(x, 2|Ik|)]−1
∫

B(x,2|Ik|)
|f ′(t)|dt ≥ [4|Ik|]−1ε, (15)

which implies in turn ∫

Ik

Mf ′(t)dt ≥ ε/4. (16)

If Mf ′ is integrable, this yields the estimate

N(ε) ≤ 4ε−1
∫ 1

0
Mf ′(t)dt. (17)

It follows that
‖f − fN‖L∞ ≤ CN−1 (18)

with C = 4
∫ 1
0 Mf ′. Note that in this case this is only a sufficient condition

for the rate N−1 (a simple smoothness condition which characterizes this rate
is still unknown).
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3 The Haar System and Thresholding

The second algorithm is based on thresholding the decomposition of f in
the simplest wavelet basis, namely the Haar system. The decomposition of a
function f defined on [0, 1] into the Haar system is illustrated on Figure 1. The
first component in this decomposition is the average of f , i.e., the projection
onto the constant function ϕ = χ[0,1], i.e.,

P0f = 〈f, ϕ〉ϕ. (19)

The approximation is then recursively refined into

Pjf =
2j−1∑

k=0

〈f, ϕj,k〉ϕj,k, (20)

where ϕj,k = 2j/2ϕ(2j · −k), i.e., averages of f on the intervals Ij,k =
[2−jk, 2−j(k+ 1)[, k = 0, · · · , 2j − 1. Clearly Pjf is the L2-orthogonal projec-
tion of f onto the space Vj of piecewise constant functions on the intervals
Ij,k, k = 0, · · · , 2j − 1. The orthogonal complement Qjf = Pj+1f − Pjf is
spanned by the basis functions

ψj,k = 2j/2ψ(2j · −k), k = 0, · · · , 2j − 1, (21)

where ψ is 1 on [0, 1/2[, −1 on [1/2, 1[ and 0 elsewhere. By letting j go to
+∞, we therefore obtain the expansion of f into an orthonormal system of
L2([0, 1])

f = 〈f, ϕ〉ϕ+
∑

j≥0

2j−1∑

k=0

〈f, ψj,k〉ψj,k =
∑

λ

dλψλ. (22)

Here we use the notation ψλ and dλ = 〈f, ψλ〉 in order to concatenate the
scale and space parameters j and k into one index λ = (j, k), which varies
in a suitable set ∇, and to include the very first function ϕ into the same
notation. We shall keep track of the scale by using the notation

|λ| = j (23)

whenever the basis function ψλ has resolution 2−j . This simple example is
known as the Haar system since its introduction by Haar in 1909. Its main
limitation is that it is based on piecewise constant functions which are dis-
continuous and only allow for approximation of low order accuracy. We shall
remedy to this defect by using smoother wavelet bases in the next sections.

We can use wavelets in a rather trivial way to build linear approximations
of a function f since the projections of f onto Vj are given by

Pjf =
∑

|λ|<j

∑

λ

dλψλ. (24)
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Figure 1. Decomposition into the Haar system

Such approximations simply correspond to the case N = 2j using the lin-
ear projection onto piecewise constant function on a uniform partition of N
intervals, as studied in the previous section.

On the other hand, one can think of using only a restricted set of wavelet at
each scale j in order to build nonlinear adaptive approximations. A natural
way to obtain such adaptive approximation is by thresholding, i.e., keeping
only the largest contributions dλψλ in the wavelet expansion of f . Such a
strategy will lead to an adaptive discretization of f due to the fact that the size
of wavelet coefficients dλ is influenced by the local smoothness of f . Indeed,
if f is simply bounded on the support Sλ of ψλ, we have the obvious estimate

|dλ| = |〈f, ψλ〉| ≤ sup
t∈Sλ

|f(t)|
∫

|ψλ| = 2−|λ|/2 sup
t∈Sλ

|f(t)|. (25)

On the other hand, if f is continuously differentiable on Sλ, we can use the
fact that

∫
ψλ = 0 to write

|dλ| = infc∈IR |〈f − c, ψλ〉|
≤ 2−|λ|/2 infc∈IR supt∈Sλ

|f(t) − c|
≤ 2−|λ|/2 supt,u∈Sλ

|f(t) − f(u)|
≤ 2−3|λ|/2 supt∈Sλ

|f ′(t)|.

Note that if f were not differentiable on Sλ but simply Hölder continuous
of exponent α ∈]0, 1[, a similar computation would yield the intermediate
estimate |dλ| ≤ C2−(α+1/2)|λ|. As in the case of Fourier coefficients, more
smoothness implies a faster decay, yet a fundamental difference is that only
local smoothness is involved in the wavelet estimates. Therefore, if f is C1

everywhere except at some isolated point x , the estimation of |dλ| by 2−3|λ|/2

will only be lost for those λ such that x ∈ Sλ. In that sense, multiscale
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representations are better adapted than Fourier representations to concentrate
the information contained in functions which are not uniformly smooth.

This is illustrated by the following example. We display on Figure 2 the
function f(x) =

√
| cos(2πx)|, which has a cusp singularity at points x = 1/4

and x = 3/4, and which is discretized at resolution 2−13, in order to compute
its coefficients in the Haar basis for |λ| < 13. In order to visualize the effect of
local smoothness on these coefficients, we display on Figure 3 the set of indices
λ = (j, k) such that |dλ| is larger than the threshold ε = 5 × 10−3, measuring
the spatial position of the wavelet 2−jk in the x axis and its scale level j in the
y axis. We observe that for j > 4, the coefficients above the threshold are only
concentrated in the vicinity of the singularities. This is explained by the fact
that the decay of the coefficients is governed by |dλ| ≤ 2−3|λ|/2 supt∈Sλ

|f ′(t)|
in the regions of smoothness, while the estimate |dλ| ≤ C2−(α+1/2)|λ| with
α = 1/2 will prevail near the singularities. Figure 4 displays the result of the
reconstruction of f using only this restricted set of wavelet coefficients,

fε =
∑

|dλ|>ε
dλψλ, (26)

and it reveals the spatial adaptivity of the thresholding operator: the approxi-
mation is automatically refined in the neighbourhood of the singularities where
wavelet coefficients have been kept up to the resolution level j = 8. In this
example, we have kept the largest components dλψλ measured in the L2 norm.
This strategy is ideal to minimize the L2 error of approximation for a pre-
scribed number N of preserved coefficients. If we are interested in the L∞

error, we shall rather choose to keep the largest components measured in the
L∞ norm, i.e., the largest normalized coefficients |dλ|2|λ|/2.

Just as in the case of the adaptive splitting algorithm, we might want to
understand how the partition obtained by wavelet thresholding behaves in
comparison to the optimal partition. The answer is again that it is nearly
optimal, however we leave this question aside since we shall provide much
more general results on the performance of wavelet thresholding in §4. The
wavelet approach to nonlinear approximation is particularly attractive for the
following reason: in this approach, the nonlinearity is reduced to a very simple
operation (thresholding according to the size of the coefficients), resulting in
simple and efficient algorithms for dealing with many applications, as well as
a relatively simple analysis of these applications.

4 Linear Uniform Approximation

We now address linear uniform approximation in more general terms. In order
to improve on the rate N−1 obtained with piecewise constant functions, one
needs to introduce approximants with a higher degree of accuracy, such as
splines or finite element spaces. In the case of linear uniform approximation,
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Figure 4. Reconstruction from coefficients above threshold

these spaces consists of piecewise polynomial functions onto regular partitions
Th with uniform mesh size h. If Vh is such a space discretizing a regular domain
Ω ⊂ IRd, its dimension is therefore of the same order as the number of balls
of radius h which are needed to cover Ω, namely

N = dim(Vh) ∼ h−d. (27)

The approximation theory for such spaces is quite classical, see, e.g., [5], and
can be summarized in the following way. If W s,p denotes the classical Sobolev
space, consisting of those functions in Lp such that Dαf ∈ Lp for |α| ≤ s, we
typically have the error estimate

inf
g∈Vh

‖f − g‖W s,p ≤ Cht‖f‖W s+t,p (28)

provided that Vh is contained in W s,p and that Vh has approximation order
larger than s+t, i.e., contains all polynomials of degree strictly less than s+t.
In the particular case s = 0, this gives

inf
g∈Vh

‖f − g‖Lp ≤ Cht‖f‖W t,p . (29)

Such classical results also hold for fractional smoothness. If we rewrite them
in terms of the decay of the best approximation error with respect to the
number of parameters, we therefore obtain that if X = W s,p, we have

σN (f) ≤ CN−t/d, (30)
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provided that f has t additional derivatives in the metric Lp compared to the
general functions in X. Therefore, the compromise between the Lp or W s,p

approximation error and the number of parameters is governed by the approx-
imation order of the Vh spaces, the dimension d and the level of smoothness
of f measured in Lp. Such approximation results can be understood at a very
basic and intuitive level: if Vh contains polynomials of degree t − 1, we can
think of the approximation of f as a close substitute to its Taylor expansion
fK at this order on each element K ∈ Th, which has accuracy ht|Dtf |, and
(29) can then be thought as the integrated version of this local error estimate.

At this stage it is interesting to look at linear approximation from the angle
of multiscale decompositions into wavelet bases. Such bases are generalizations
of the Haar system which was discussed in the previous section, and we shall
first recall their main features (see [14] and [6] for more details). They are
associated with multiresolution approximation spaces (Vj)j≥0 such that Vj ⊂
Vj+1 and Vj is generated by a local basis (ϕλ)|λ|=j . By local we mean that the
supports are controlled by

diam(supp(ϕλ)) ≤ C2−j (31)

if λ ∈ Γj and are “almost disjoint” in the sense that

#{µ ∈ Γj s.t. supp(ϕλ) ∩ supp(ϕµ) �= ∅} ≤ C (32)

with C independent of λ and j. Such spaces can be built in particular as
nested finite element spaces Vj = Vhj with mesh size hj ≈ 2−j in which
case (ϕλ)|λ|=j is the classical nodal basis. Just as in the case of the Haar
system, a complement space Wj of Vj into Vj+1 is generated by a similar local
basis (ψλ)|λ|=j . The full multiscale wavelet basis (ψλ), allows us to expand an
arbitrary function f with the convention that we incorporate the functions
(ϕλ)|λ|=0 into the first “layer” (ψλ)|λ|=0. In the standard constructions of
wavelets on the euclidean space IRd, the scaling functions have the form ϕλ =
ϕj,k = 2jd/2ϕ(2j ·−k), k ∈ ZZd and similarly for the wavelets, so that λ = (j, k).
In the case of a general domain Ω ∈ IRd, special adaptations of the basis
functions are required near the boundary ∂Ω, which are accounted in the
general notations λ. Wavelets need not be orthonormal, but one often requires
that they constitute a Riesz basis of L2(Ω), i.e., their finite linear combinations
are dense in L2 and for all sequences (dλ) we have the norm equivalence

‖
∑

λ

dλψλ‖2
L2 ∼

∑

λ

|dλ|2. (33)

In such a case, the coefficients dλ in the expansion of f are obtained by an
inner product dλ = 〈f, ψ̃λ〉, where the dual wavelet ψ̃λ is an L2-function. In
the standard biorthogonal constructions, the dual wavelet system (ψ̃λ) is also
built from nested spaces Ṽj and has similar local support properties as the
primal wavelets ψλ. The practical advantage of such a setting is the possibility



Nonlinear Approximation 13

of “switching” between the “standard” (or “nodal”) discretization of f ∈ Vj in
the basis (ϕλ)|λ|=j and its “multiscale” representation in the basis (ψλ)|λ|<j
by means of fast O(N) decomposition and reconstruction algorithms, where
N ∼ 2dj denotes the dimension of Vj in the case where Ω is bounded.

Multiscale approximations and decompositions into wavelet bases will pro-
vide a slightly stronger statement of the linear approximation results, due to
the possibility of characterizing the smoothness of a function f through the
numerical properties of its multiscale decomposition. In the case of Sobolev
spaces Hs = W s,2, this characterization has the form of the following norm
equivalence

‖f‖2
Hs ∼ ‖P0f‖2

L2 +
∑

j≥0

22sj‖Qjf‖2
L2 , (34)

where Pjf =
∑

|λ|<j dλψλ and Qjf = Pj+1f−Pjf =
∑

|λ|<j dλψλ are respec-
tively the biorthogonal projectors onto Vj and Wj . Such a norm equivalence
should at least be understood at the intuitive level as a close substitute to the
Fourier characterization

‖f‖2
Hs ∼

∫

(1 + |ω|2s)|f̂(ω)|2dω, (35)

where the weight (1 + |ω|2s) plays an analogous role as 22sj in (34). Note
that in the particular case where Vj is the space of functions such that f̂ is
supported in [−2j , 2j ] and Pj the orthogonal projector, we directly obtain

‖f‖2
Hs ∼

∫
(1 + |ω|2s)|f̂(ω)|2dω

=
∫

|ω|<1(1 + |ω|2s)|f̂(ω)|2 +
∑

j≥0

∫

2j<|ω|<2j+1(1 + |ω|2s)|f̂(ω)|2

∼
∫

|ω|<1 |f̂(ω)|2 +
∑

j≥0 22sj
∫

2j<|ω|<2j+1 |f̂(ω)|2
∼ ‖P0f‖2

L2 +
∑

j≥0 22sj‖Qjf‖2
L2 .

We next remark that Qj can be replaced by I − Pj in (34), in the sense that
we also have

‖f‖2
Hs ∼ ‖P0f‖2

L2 +
∑

j≥0

22sj‖f − Pjf‖2
L2 . (36)

In order to prove this, we need to compare the right hand side of (34) and
(36). In one direction we obviously have

‖Qjf‖ ≤ ‖f − Pjf‖ + ‖f − Pj+1f‖ (37)

which is sufficient to control the r.h.s. of (34) by the r.h.s. of (36). In the other
direction we use

‖f − Pjf‖ ≤
∑

l≥j
‖Qlf‖ (38)

and conclude by the discrete Hardy inequality which states that if (aj) is a
positive sequence and bj :=

∑

l≥j aj , then for all s > 0 and p > 0



14 Albert Cohen

‖(2sjbj)‖�p ≤ C(s, p)‖(2sjaj)‖�p . (39)

The norm equivalence (36) show that f ∈ Hs is exactly equivalent to the
property that

(2sj inf
g∈Vj

‖f − g‖L2)j≥0 ∈ �2, (40)

which is a slight improvement over the approximation rate

inf
g∈Vj

‖f − g‖L2 ≤ C2−sj , (41)

which would be a re-expression of (29). In order to provide a similar statement
for more general Lp approximation, one needs to introduce the Besov spaces
Bs
p,q which measure smoothness of order s > 0 in Lp according to

‖f‖Bs
p,q

:= ‖f‖Lp + ‖(2sjωm(f, 2−j)p)j≥0‖�q , (42)

where

ωm(f, t)p := sup
|h|≤t

‖∆m
h f‖Lp = sup

|h|≤t
‖
m∑

k=0

(m

k

)

(−1)kf(· − kh)‖Lp

is the m-th order Lp modulus of smoothness and m is any integer strictly
larger than s. Recall that we have Hs ∼ Bs

2,2 for all s > 0, Cs ∼ Bs
∞,∞ and

W s,p ∼ Bs
p,p for all non-integer s > 0 and p �= 2. For such classes, the norm

equivalences which generalize (34) and (36) have the form

‖f‖Bs
p,q

∼ ‖P0f‖Lp + ‖(2sj‖Qjf‖Lp)j≥0‖�q
∼ ‖P0f‖Lp + ‖(2sj‖f − Pjf‖Lp)j≥0‖�q .

(43)

Such norm equivalences reflect the intuitive idea that the linear approximation
error ‖f − Pjf‖Lp decays like O(2−sj) or O(N−s/d) provided that f has “s
derivatives in Lp”. Their are essentially valid under the restriction that the
wavelet ψλ itself has slightly more than s derivative in Lp. We refer to [6] for
the general mechanism which allows us to prove these results, based on direct
and inverse estimates as well as interpolation theory.

Finally, we can re-express these norm equivalences in terms of wavelet
coefficients: using the local properties of wavelet bases, we have at each level
the norm equivalence

‖Qjf‖pLp ∼
∑

|λ|=j
‖dλψλ‖pLp ∼

∑

|λ|=j
2d(p/2−1)|λ||dλ|p, (44)

which in combination with (43) yields

‖f‖Bs
p,q

∼ ‖(2(s+d/2−d/p)j‖(dλ)|λ|=j‖�p)j≥0‖�q . (45)
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5 Nonlinear Adaptive Approximation

Let us now turn to nonlinear adaptive approximation, with a special focus on
N -term approximation in a wavelet basis: denoting by

SN := {
∑

λ∈E
cλψλ ; #(E) ≤ N}, (46)

the set of all possible N -term combinations of wavelets, we are interested in
the behaviour of σN (f) as defined in (1) for some given error norm X. We first
consider the case X = L2 and assume for simplicity that the ψλ constitute
an orthonormal basis. In this case, it is a straightforward computation that
the best N -term approximation of a function f is achieved by its truncated
expansion

fN :=
∑

λ∈EN (f)

dλψλ, (47)

where EN (f) contains the indices corresponding to the N largest |fλ|. The
approximation error is thus given by

σN (f) = ‖f − fN‖L2 = (
∑

λ/∈EN (f)

|dλ|2)1/2 = (
∑

n≥N
d2
n)

1/2, (48)

where (dn)n≥0 is defined as the decreasing rearrangement of the |dλ|, λ ∈ ∇
(i.e., dn−1 is the n-th largest |dλ|).

Consider now the Besov spaces Bs
τ,τ where s > 0 and τ are linked by

1/τ = 1/2 + s/d. According to the norm equivalence (45) we note that these
space are simply characterized by

‖f‖Bs
τ,τ

∼ ‖(dλ)λ∈∇‖�τ (49)

Thus if f ∈ Bs
τ,τ , we find that the decreasing rearrangement (dn)n≥0 satisfies

ndτn ≤
n−1∑

k=0

dτk ≤
∑

k≥0

dτk =
∑

λ∈∇
dτλ ≤ C‖f‖τBs

τ,τ
< +∞, (50)

and therefore
dn ≤ Cn−1/τ‖f‖Bs

τ,τ
. (51)

It follows that the approximation error is bounded by

σN (f) ≤ C‖f‖Bs
τ,τ

(
∑

n≥N
n− 2

τ )1/2 ≤ CN
1
2 − 1

τ ‖f‖Bs
τ,τ

= CN−s/d‖f‖Bs
τ,τ
. (52)

At this stage let us make some remarks:
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• As it was previously noticed, the rate N−s/d can be achieved by linear
approximation for functions having s derivative in L2, i.e., functions in
Hs. Just as in the simple example of §2, the gain in switching to nonlinear
approximation is in that the class Bs

τ,τ is larger than Hs. In particular
Bs
τ,τ contains discontinuous functions for arbitrarily large values of s while

functions in Hs are necessarily continuous if s > d/2.
• The rate (52) is implied by f ∈ Bs

τ,τ . On the other hand it is easy to check
that (52) is equivalent to the property (51), which is itself equivalent to
the property that the sequence (dλ)λ∈∇ is in the weak space �τw, i.e.,

#{λ s.t. |dλ| ≥ ε} ≤ Cε−τ . (53)

This shows that the property f ∈ Bs
τ,τ is almost equivalent to the rate

(52). One can easily check that the exact characterization of Bs
τ,τ is by the

stronger property
∑

N≥0(N
s/dσN (f))τN−1 < +∞.

• The space Bs
τ,τ is critically embedded in L2 in the sense that the injection is

not compact. This can be viewed as an instance of the Sobolev embedding
theorem, or directly checked in terms of the non-compact embedding of
�τ into �2 when τ ≤ 2. In particular Bs

τ,τ is not contained in any Sobolev
space Hs for s > 0. Therefore, no convergence rate can be expected for
linear approximation of functions in Bs

τ,τ .

Figure 5. Pictorial interpretation of nonlinear vs linear approximation

The general theory of nonlinear wavelet approximation developed by De-
Vore and its collaborators extends these results to various error norms, for
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which the analysis is far more difficult than for the L2 norm. This theory is
fully detailed in [15], and we would like to summarize it by stressing on three
main types of results, the two first answering respectively to problems 1 and
2 described in the introduction.

Approximation and smoothness spaces. Given an error norm ‖ · ‖X cor-
responding to some smoothness space in d-dimension, the space Y of those
functions such that σN (f) = distX(f, SN ) ≤ CN−t/d has a typical descrip-
tion in terms of another smoothness space. Typically, if X represents s order
of smoothness in Lp, Y will represent s + t order of smoothness in Lτ with
1/τ = 1/p + t/d and its injection in X is not compact. This generic result
has a graphical interpretation displayed on Figure 5. On this figure, a point
(s, 1/p) represents function spaces with smoothness r in Lp, and the point Y
sits s level of smoothness above X on the critical embedding line of slope d
emanating from X. Of course in order to obtain rigorous results, one needs
to specify for each case the exact meaning of “s derivative in Lp” and/or
slightly modify the property σN (f) ≤ CN−t/d. For instance, if X = Lp for
some p ∈]1,∞[, then f ∈ Bs

τ,τ = Y with 1/τ = 1/p + t/d if and only if
∑

N≥0[N
t/dσN (f)]τN−1 < +∞. One also needs to assume that the wavelet

basis has enough smoothness, since it should at least be contained in Y .

Realization of a near-best approximation. For various error metric X,
a near-best approximation of f in SN is achieved by fN :=

∑

λ∈ΛN (f) dλψλ

where dλ := 〈f, ψ̃λ〉 are the wavelet coefficients of f and ΛN (f) is the set of
indices corresponding to the N largest contributions ‖dλψλ‖X . This fact is
rather easy to prove when X is itself a Besov space, by using (45). A much
more elaborate result is that it is also true for spaces such as Lp and Wm,p

for 1 < p < +∞, and for the Hardy spaces Hp when p ≤ 1 (see [21]).

Connections with other types of nonlinear approximation. In the
univariate setting, the smoothness spaces Y characterized by a certain rate of
nonlinear approximation in X are essentially the same if we replace N -term
combinations of wavelets by splines with N free knots or by rational functions
of degree N . The similarity between wavelets and free knot splines is intu-
itive since both methods allow the same kind of adaptive refinement, either
by inserting knots or by adding wavelet components at finer scales. The simi-
larities between free knot splines and rational approximation were elucidated
by Petrushev in [19]. However, the equivalence between wavelets and these
other types of approximation is no longer valid in the multivariate context
(see §7). Also closely related to N -term approximations are adaptive splitting
procedures, which are generalizations of the splitting procedure proposed in §2
to higher order piecewise polynomial approximation (see e.g. [17] and [15]).
Such procedures typically aim at equilibrating the local error ‖f − fN‖Lp on
each element of the adaptive partition. In the case of the example of §2, we



18 Albert Cohen

remark that the piecewise constant approximation resulting from the adaptive
splitting procedure can always be viewed as an N -term approximation in the
Haar system, in which the involved coefficients have a certain tree structure:
if λ = (j, k) is used in the approximation, then (j − 1, [k/2]) is also used
at the previous coarser level. Therefore the performances of adaptive split-
ting approximation is essentially equivalent to those of N -term approximation
with the additional tree structure restriction. These performances have been
studied in [10] where it is shown that the tree structure restriction does not
affect the order N−s/d of N -term approximation in X ∼ (1/p, r) if the space
Y ∼ (1/τ, r + s) is replaced by Ỹ ∼ (1/τ̃ , r + s) with 1/τ̃ < 1/τ = 1/p+ s/d.

6 Data Compression

There exist many interesting applications of wavelets to signal processing and
we refer to [18] for a detailed overview. In this section and in the following one,
we would like to discuss two applications which exploit the fact that certain
signals - in particular images - have a sparse representation into wavelet bases.
Nonlinear approximation theory allows us to “quantify” the level of sparsity
in terms of the decay of the error of N -terms approximation.

On a mathematical point of view, the N -term approximation of a signal f
can already be viewed as a “compression” algorithm since we are reducing the
number of degrees of freedom which represent f . However, practical compres-
sion means that the approximation of f is represented by a finite number of
bits. Wavelet-based compression algorithms are a particular case of transform
coding algorithms which have the following general structure:

• Transformation: the original signal f is transformed into its representation
d (in our case of interest, the wavelet coefficients d = (dλ)) by an invertible
transform R.

• Quantization: the representation d is replaced by an approximation d̃
which can only take a finite number of values. This approximation can
be encoded with a finite number of bits.

• Reconstruction: from the encoded signal, one can reconstruct d̃ and there-
fore an approximation f̃ = R−1d̃ of the original signal f .

Therefore, a key issue is the development of appropriate quantization strate-
gies for the wavelet representation and the analysis of the error produced by
quantizing the wavelet coefficients. Such strategies should in some sense min-
imize the distorsion ‖f − f̃‖X for a prescribed number of bits N and error
metric X. Of course this program only makes sense if we refer to a certain
modelization of the signal: in a deterministic context, one considers the error
supf∈Y ‖f − f̃‖X for a given class Y , while in a stochastic context, one con-
siders the error E(‖f − f̃‖X) where the expectation is over the realizations f
of a stochastic process. In the following we shall indicate some results in the
deterministic context.
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We shall discuss here the simple case of scalar quantization which amounts
to quantizing independently the coefficients dλ into approximations d̃λ in or-
der to produce d̃. Similarly to the distinction between linear and nonlinear
approximation, we can distinguish between two types of quantization strate-
gies:

• Non-adaptive quantization: the map dλ �→ d̃λ and the number of bits which
is used to represent dλ depend only on the index λ. In practice they typi-
cally depend on the scale level |λ|: less bits are allocated to the fine scale
coefficients which have smaller values than the coarse scale coefficients in
an averaged sense.

• Adaptive quantization: the map dλ �→ d̃λ and the number of bits which is
used to represent dλ depend both of λ and of the amplitude value |dλ|. In
practice they typically depend on |dλ| only: more bits are allocated to the
large coefficients which correspond to different indices from one signal to
another.

The second strategy is clearly more appropriate in order to exploit the sparsity
of the wavelet representation, since a large number of bits will be used only
for a small number of numerically significant coefficients. In order to analyze
this idea more precisely, let us consider the following specific strategy: for a
fixed ε > 0, we affect no bits to the details such that |dλ| ≤ ε by setting
d̃λ = 0, which amount in thresholding them, and we affect j bits to a detail
such that 2j−1ε < |dλ| ≤ 2jε. By choosing the 2j values of d̃λ uniformly in
the range ] − 2jε,−2j−1ε[∪]2j−1ε, 2jε[, we thus ensure that for all λ

|dλ − d̃λ| ≤ ε. (54)

If we measure the error in X = L2, assuming the {ψλ} to form a Riesz basis,
we find that

‖f − f̃‖2 =
∑

λ∈∇
|dλ − d̃λ|2 ≤ ε2#{λ s.t. |dλ| ≥ ε} +

∑

|dλ|≤ε
|dλ|2. (55)

Note that the second term is simply the error of nonlinear approximation by
thresholding at the level ε, while the first term corresponds to the effect of
quantizing the significant coefficients.

Let us now assume that the class of signals Y has a sparse wavelet rep-
resentation in the sense that there exists τ ≤ 2 and C > 0 such that for all
f ∈ Y we have d = (dλ)λ∈∇ ∈ �τw(∇), with ‖d‖�τw ≤ C, i.e.,

sup
f∈Y

#{λ s.t. |dλ| ≥ η} ≤ Cη−τ . (56)

We have seen in the previous section that this property is satisfied when
‖f‖Bs

τ,τ
≤ C for all f ∈ Y with 1/τ = 1/2 + s/d and that it is equivalent

to the nonlinear approximation property σN ≤ CN−s/d. Using (56), we can
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estimate both terms in (55) as follows: for the quantization term, we simply
obtain

ε2#{λ s.t. |dλ| ≥ ε} ≤ Cε2−τ , (57)

while for the thresholding term we have
∑

|dλ|≤ε
|dλ|2 ≤

∑

j≥0

2−2jε2#{λ s.t. |dλ| ≥ ε2−j−1} ≤ Cε2−τ . (58)

Therefore we find that the compression error is estimated by Cε1−τ/2. We
can also estimate the number of bits Nq which are used to quantize the dλ
according to

Nq =
∑

j>0

j#{λ s.t. 2j−1ε < |dλ| ≤ 2jε} ≤ Cε−τ∑

j>0

j2−τj ≤ Cε−τ . (59)

Comparing Nq and the compression error, we find the striking result that

‖f − f̃‖L2 ≤ CN (1−τ/2)/τ
q = CN−s/d

q . (60)

At the first sight, it seems that we obtain with only N bits the same rate
as for nonlinear approximation which requires N real coefficients. However,
a specific additional difficulty of adaptive quantization is that we also need
to encode the addresses λ such that 2j−1ε < |dλ| ≤ 2jε. The bit cost Na of
this addressing can be significantly close to Nq or even higher. If the class of
signals is modelized by (56), we actually find that Na is infinite since the large
coefficients could be located anywhere. In order to have Na ≤ Cε−τ as well,
and thus obtain the desired estimate ‖f− f̃‖L2 ≤ CN−s/d with N = Nq+Na,
it is necessary to make some little additional assumption on Y that restricts
the location of the large coefficients and to develop a suitable addressing
strategy. The most efficient wavelet-compression algorithms, such as the one
introduced in [20] (and further developed in the compression standard JPEG
2000), typically apply addressing strategies based on tree structures within
the indices λ. We also refer to [10] where it is proved that such strategy
allow us to recover optimal rate/distorsion bounds – i.e., optimal behaviours
of the compression error with respect to the number of bits N – for various
deterministic classes Y modelizing the signals.

In practice such results can only be observed for a certain range of N , since
the original itself is most often given by a finite number of bits No, e.g. a dig-
ital image. Therefore modelizing the signal by a function class and deriving
rate/distorsion bounds from this modelization is usually relevant only for low
bit rate N << No, i.e., high compression ratio. One should then of course ad-
dress the questions of “what are the natural deterministic classes which model
real signals” and “what can one say about the sparsity of wavelet representa-
tions for these classes”. An interesting example is given by real images which
are often modelized by the space BV of functions with bounded variation.
This function space represents functions which have one order of smoothness
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in L1 in the sense that their gradient is a finite measure. This includes in
particular functions of the type χΩ for domains Ω with boundaries of finite
length. In [11] it is proved that the wavelet coefficients of a function f ∈ BV
are sparse in the sense that they are in �1w. This allows us to expect a nonlinear
approximation error in N−1/2 for images, and a similar rate for compression
provided that we can handle the addressing with a reasonable number of bits.
The last task turns out to be feasible, thanks to some additional properties,
such as the L∞-boundedness of images.

7 Statistical Estimation

In recent years, wavelet-based thresholding methods have been widely applied
to a large range of problems in statistics - density estimation, white noise
removal, nonparametric regression, diffusion estimation - since the pioneering
work of Donoho, Johnstone, Kerkyacharian and Picard (see e.g. [16]). In some
sense the growing interest for thresholding strategies represent a significant
“switch” from linear to nonlinear/adaptive methods. Here we shall consider
the simple white noise model, i.e., given a function f(t) we observe on [0, 1]

dg(t) = f(t)dt+ εdw(t), (61)

where w(t) is a Brownian motion. In other words, we observe the function f
with an additive white gaussian noise of variance ε2. This model can of course
be generalized to higher dimension. We are now interested in constructing an
estimator f̃ from the data g. The most common measure of the estimation
error is in the mean square sense: assuming that f ∈ L2 we are interested
in the quantity E(‖f̃ − f‖2

L2). Similarly to data compression, the design of
an optimal estimation procedure in order to minimize the mean square error
is relative to a specific modelization of the signal f either by a deterministic
class Y or by a stochastic process.

Linear estimation methods define f̂ by applying a linear operator to g. In
many practical situations this operator is translation invariant and amounts
to a filtering procedure, i.e., f̃ = h ∗ g. For example, in the case of a second
order stationary process, the Wiener filter gives an optimal solution in terms
of ĥ(ω) := r̂(ω)/(r̂(ω) + ε2) where r̂(ω) is the power spectrum of f , i.e.,
the Fourier transform of r(u) := E(f(t)f(t + u)). Another frequently used
linear method is by projection on some finite dimensional subspace V , i.e.,
f̃ = Pg =

∑N
n=0〈g, ẽn〉en, where (en, ẽn)n=1,···,N are a biorthogonal basis

system for V and N := dim(V ). In this case, using the fact that E(f̃) = Pf
we can estimate the error as follows:

E(‖f̃ − f‖2
L2) = E(‖Pf − f‖2) + E(‖P (g − f)‖2)

≤ E(‖Pf − f‖2) + CNε2.

If P is an orthonormal projection, we can assume that en = ẽn is an or-
thonormal basis so that E(‖P (g− f)‖2) =

∑

nE(|〈f − g, en〉|2) =
∑

n ε
2, and
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therefore the above constant C is equal to 1. Otherwise this constant depends
on the “angle” of the projection P . In the above estimation, the first term
E(‖Pf − f‖2) is the bias of the estimator. It reflects the approximation prop-
erty of the space V for the model, and typically decreases with the dimension
of V . Note that in the case of a deterministic class Y , it is simply given by
‖Pf − f‖2. The second term CNε2 represents the variance of the estimator
which increases with the dimension of V . A good estimator should find an
optimal balance between these two terms.

Consider for instance the projection on the multiresolution space Vj , i.e.,
f̃ :=

∑

|λ|≤j〈g, ψ̃λ〉ψλ, together with a deterministic model: the functions f
satisfy

‖f‖Hs ≤ C, (62)

where Hs is the Sobolev space of smoothness s. Then we can estimate the bias
by the linear approximation estimate in C2−2sj and the variance by C2jε2

since the dimension of Vj adapted to [0, 1] is of order 2j . Assuming an a-priori
knowledge on the level ε of the noise, we find that the scale level balancing
the bias and variance term is j(ε) such that 2j(ε)(1+2s) ∼ ε−2. We thus select
as our estimator

f̃ := Pj(ε)g. (63)

With such a choice, the resulting estimation error is then bounded by

E(‖f̃ − f‖2
L2) ≤ Cε

4s
1+2s . (64)

Let us make a few comments on this simple result:

• The convergence rate 4s/(1+2s) of the estimator, as the noise level tends
to zero, improves with the smoothness of the model. It can be shown that
this is actually the optimal or minimax rate, in the sense that for any
estimation procedure, there always exist an f in the class (62) for which
we have E(‖f̃ − f‖2

L2) ≥ cε
4s

1+2s .
• One of the main limitation of the above estimator is that it depends not

only on the noise level (which in practice can often be evaluated), but also
on the modelizing class itself since j(ε) depends of s. A better estimator
should give an optimal rate for a large variety of function classes.

• The projection Pj(ε) is essentially equivalent to low pass filtering which
eliminates the frequencies larger than 2j(ε). The drawbacks of such de-
noising strategies are well known in practice: while they remove the noise,
low-pass filters tend to blur the singularities of the signals, such as the
edge in an image. This problem is implicitely reflected in the fact that
signals with edges correspond to a value of s which cannot exceed 1/2 and
therefore the convergence rate is at most O(ε).

Let us now turn to nonlinear estimation methods based on wavelet threshold-
ing. The simplest thresholding estimator is defined by
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f̃ :=
∑

|〈g,ψ̃λ〉|≥η
〈g, ψ̃λ〉ψλ, (65)

i.e., discarding the coefficients of the data of size less than some η > 0. Let us
remark that the wavelet coefficients of the observed data can be expressed as

〈g, ψ̃λ〉 = 〈f, ψ̃λ〉 + εbλ (66)

where the bλ are gaussian variables. These variables have variance 1 if we
assume (which is always possible up to a renormalization) that ‖ψ̃λ‖2

L2 = 1.
In the case of an orthonormal bases the bλ are independent. Therefore the
observed coefficients appear as those of the real signal perturbated by an
additive noise of level ε. It thus seems at the first sight that a natural choice
for a threshold is to simply fix η := ε: we can hope to remove most of the
noise, while preserving the most significant coefficients of the signal, which is
particularly appropriate if the wavelet decomposition of f is sparse.

In order to understand the rate that we could expect from such a pro-
cedure, we shall again consider the class of signals described by (56). For a
moment, let us assume that we dispose of an oracle which gives us the knowl-
edge of those λ such that the wavelet coefficients of the real signal are larger
than ε, so that we could build the modified estimator

f :=
∑

|〈f,ψ̃λ〉|≥ε
〈g, ψ̃λ〉ψλ. (67)

In this case, f can be viewed as the projection Pg of g onto the space V (f, ε)
spanned by the ψλ such that |〈f, ψ̃λ〉| ≥ ε, so that we can estimate the error
by a sum of bias and variance terms according to

E(‖f̃ − f‖2
L2) = ‖f − Pf‖2 + E(‖P (f − g)‖2)

≤ C[
∑

|〈f,ψ̃λ〉|≥ε |〈f, ψ̃λ〉|2 + ε2#{λ s.t. |〈f, ψ̃λ〉| ≥ ε}].

For the bias term, we recognize the nonlinear approximation error which is
bounded by Cε2−τ according to (58). From the definition of the class (56) we
find that the variance term is also bounded by Cε2−τ . In turn, we obtain for
the oracle estimator the convergence rate ε2−τ . In particular, if we consider
the model

‖f‖Bs
τ,τ

≤ C, (68)

with 1/τ = 1/2 + s, we obtain that

E(‖f̃ − f‖2
L2) ≤ Cε2−τ = Cε

4s
1+2s . (69)

Let us again make a few comments:

• In a similar way to approximation rates, nonlinear methods achieve the
same estimation rate as linear methods but for much weaker models: the
exponent 4s/(1 + 2s) was achieved by the linear estimator for the class
(62) which is more restrictive than (56).
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• In contrast with the linear estimator, we see that the nonlinear estimator
does not need to be tuned according to the value of τ or s. In this sense,
it is very robust.

• Unfortunately, (67) is unrealistic since it is based on the “oracle assump-
tion”. In practice, we are thresholding according to the values of the ob-
served coefficients 〈g, ψ̃λ〉 = 〈f, ψ̃λ〉 + ε2bλ, and we need to face the pos-
sible event that the additive noise ε2bλ severely modifies the position of
the observed coefficients with respect to the threshold. Another unrealistic
aspect, also in (65), is that one cannot evaluate the full set of coefficients
(〈g, ψ̃λ〉)λ∈∇ which is infinite.

The strategy proposed in [16] solves the above difficulties as follows: a realistic
estimator is built by (i) a systematic truncation the estimator (65) above a
scale j(ε) such that 2−2αj(ε) ∼ ε2 for some fixed α > 0, and (ii) a choice of
threshold slightly above the noise level according to

η(ε) := C(α)ε| log(ε)|1/2. (70)

It is then possible to prove that the resulting more realistic estimator

f̃ :=
∑

|λ|≤j(ε),|〈g,ψ̃λ〉|≥η(ε)
〈g, ψ̃λ〉ψλ, (71)

has the rate [ε| log(ε)|1/2] 4s
1+2s (i.e., almost the same asymptotic performance

as the oracle estimator) for the functions which are in both the class (56)
and in the Sobolev class Hα. The “minimal” Sobolev smoothness α - which is
needed to allow the truncation of the estimator - can be taken arbitrarily close
to zero up to a change of the constants in the threshold and in the convergence
estimate.

8 Adaptive Numerical Simulation

Numerical simulation is nowadays an essential tool for the understanding of
physical processes modelized by partial differential or integral equations. In
many instances, the solution of these equations exhibits singularities, resulting
in a slower convergence of the numerical schemes as the discretization tends
to zero. Moreover, such singularities might be physically significant such as
shocks in fluid dynamics or local accumulation of stress in elasticity, and
therefore they should be well approximated by the numerical method. In order
to maintain the memory size and computational cost at a reasonable level,
it is then necessary to use adaptive discretizations which should typically be
more refined near the singularities.

In the finite element context, such discretizations are produced by mesh
refinement: starting from an initial coarse triangulation, we allow further sub-
division of certain elements into finer triangles, and we define the discretization
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space according to this locally refined triangulation. This is of course subject
to certain rules, in particular preserving the conformity of the discretization
when continuity is required in the finite element space. The use of wavelet
bases as an alternative to finite elements is still at its infancy (some first sur-
veys are [6] and [12]), and was strongly motivated by the possibility to produce
simple adaptive approximations. In the wavelet context, a more adapted ter-
minology is space refinement: we directly produce an approximation space

VΛ := Span{ψλ ; λ ∈ Λ}, (72)

by selecting an set Λ which is well adapted to describe the solution of our
problem. If N denotes the cardinality of the adapted finite element or wavelet
space, i.e., the number of degrees of freedom which are used in the computa-
tions, we see that in both cases the numerical solution uN can be viewed as
an adaptive approximation of the solution u in a nonlinear space ΣN .

A specific difficulty of adaptive numerical simulation is that the solution
u is unknown at the start, except for some rough a-priori information such as
global smoothness. In particular the location and structure of the singularities
are often unknown, and therefore the design of an optimal discretization for
a prescribed number of degrees of freedom is a much more difficult task than
simple compression of fully available data. This difficulty has motivated the
development of adaptive strategies based on a-posteriori analysis, i.e., using
the currently computed numerical solution to update the discretization and
derive a better adapted numerical solution. In the finite element setting, such
an analysis was developed since the 1970’s (see [1] or [22]) in terms of local
error indicators which aim to measure the contribution of each element to
the error. The rule of thumb is then to refine the triangles which exhibit the
largest error indicators. More recently, similar error indicators and refinement
strategies were also proposed in the wavelet context (see [2] and [13]).

Nonlinear approximation can be viewed as a benchmark for adaptive strate-
gies: if the solution u can be adaptively approximated in ΣN with a certain
error σN (u) in a certain norm X, we would ideally like that the adaptive
strategy produces an approximation uN ∈ ΣN such that the error ‖u−uN‖X
is of the same order as σN (u). In the case of wavelets, this means that the
error produced by the adaptive scheme should be of the same order as the
error produced by keeping the N largest coefficients of the exact solution. In
most instances unfortunately, such a program cannot be achieved by an adap-
tive strategy and a more reasonable goal is to obtain an optimal asymptotic
rate: if σN (u) ≤ CN−s for some s > 0, an optimal adaptive strategy should
produce an error ‖u− uN‖X ≤ C̃N−s. An additional important aspect is the
computational cost to derive uN : a computationally optimal strategy should
produce uN in a number of operation which is proportional to N . A typical
instance of computationally optimal algorithm - for a fixed discretization - is
the multigrid method for linear elliptic PDE’s. It should be noted that very
often, the norm X in which one can hope for an optimal error estimate is dic-
tated by the problem at hand: for example, in the case of an elliptic problem,
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this will typically be a Sobolev norm equivalent to the energy norm (e.g., the
H1 norm when solving the Laplace equation).

Most existing wavelet adaptive schemes have in common the following
general structure. At some step n of the computation, a set Λn is used to
represent the numerical solution uΛn

=
∑

λ∈Λn
dnλψλ. In the context of an

initial value problem of the type

∂tu = E(u), u(x, 0) = u0(x), (73)

the numerical solution at step n is typically an approximation to u at time
n∆t where ∆t is the time step of the resolution scheme. In the context of a
stationary problem of the type

F (u) = 0, (74)

the numerical solution at step n is typically an approximation to u which
should converge to the exact solution as n tends to +∞. In both cases, the
derivation of (Λn+1, uΛn+1) from (Λn, uΛn) goes typically in three basic steps:

• Refinement: a larger set Λ̃n+1 with Λn ⊂ Λ̃n+1 is derived from an a-
posteriori analysis of the computed coefficients dnλ, λ ∈ Λn.

• Computation: an intermediate numerical solution ũn+1 =
∑

λ∈Λ̃n+1
dn+1
λ ψλ

is computed from un and the data of the problem.
• Coarsening: the smallest coefficients of ũn+1 are thresholded, resulting in

the new approximation un+1 =
∑

λ∈Λn+1
dn+1
λ ψλ supported on the smaller

set Λn+1 ⊂ Λ̃n+1.

Of course the precise description and tuning of these operations strongly de-
pends on the type of equation at hand, as well as on the type of wavelets
which are being used. In the case of linear elliptic problems, it was recently
proved in [7] that an appropriate tuning of these three steps results in an opti-
mal adaptive wavelet strategy both in terms of approximation properties and
computational time. These results have been extended to more general prob-
lems such as saddle points [8] and nonlinear [9]. In the elliptic case, similar
results have also been proved in the finite element context : in [3] it is shown
that optimal appoximation rates can be achieved by an adaptive mesh refine-
ment algorithm which incorporates coarsening steps that play an analogous
role to wavelet thresholding.

9 The Curse of Dimensionality

The three applications that were discussed in the previous sections exploit the
sparsity properties of wavelet decompositions for certain classes of functions,
or equivalently the convergence properties of nonlinear wavelet approxima-
tions of these functions. Nonlinear adaptive methods in such applications are
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typically relevant if these functions have isolated singularities in which case
there might be a substantial gain of convergence rate when switching from
linear to nonlinear wavelet approximation. However, a closer look at some
simple examples show that this gain tends to decrease for multivariate func-
tions. Consider the L2-approximation of the characteristic function f = χΩ
of a smooth domain Ω ⊂ [0, 1]d. Due to the singularity on the boundary ∂Ω,
one can easily check that the linear approximation cannot behave better than

σN (f) = ‖f − Pjf‖L2 ∼ O(2−j/2) ∼ O(N−1/2d), (75)

where N = dim(Vj) ∼ 2dj . Turning to nonlinear approximation, we notice
that since

∫
ψ̃λ = 0, all the coefficients dλ are zero except those such that the

support of ψ̃λ overlaps the boundary. At scale level j there is thus at most
K2d−1j non-zero coefficients, where K depends on the support of the ψλ and
on the d − 1 dimensional measure of ∂Ω. For such coefficients, we have the
estimate

|dλ| ≤ ‖ψ̃λ‖L1 ≤ C2−dj/2. (76)

In the univariate case, i.e., when Ω is a simple interval, the number of non-
zero coefficients up to scale j is bounded by jK. Therefore, using N non-zero
coefficients at the coarsest levels gives an error estimate with exponential
decay

σN (f) ≤ [
∑

j≥N/K
K|C2−dj/2|2]1/2 ≤ C̃2−dN/2K , (77)

which is a spectacular improvement on the linear rate. In the multivariate case,
the number of non-zero coefficients up to scale j is bounded by

∑j
l=0 K2(d−1)l

and thus by K̃2(d−1)j . Therefore, using N non-zero coefficients at the coarsest
levels gives an error estimate

σN (f) ≤ [
∑

K̃2(d−1)j≥N
K2(d−1)j |C2−dj/2|2]1/2 ≤ C̃N−1/(2d−2), (78)

which is much less of an improvement. For example, in the 2D case, we only
go from N−1/4 to N−1/2 by switching to nonlinear wavelet approximation.

This simple example illustrates the curse of dimensionality in the context
of nonlinear wavelet approximation. The main reason for the degradation of
the approximation rate is the large number K2(d−1)j of wavelets which are
needed to refine the boundary from level j to level j + 1. On the other hand,
if we view the boundary itself as the graph of a smooth function, it is clear
that approximating this graph with accuracy 2−j should require much less
parameters than K2(d−1)j . This reveals the fundamental limitation of wavelet
bases: they fail to exploit the smoothness of the boundary and therefore can-
not capture the simplicity of f in a small number of parameters. Another
way of describing this limitation is by remarking that nonlinear wavelet ap-
proximation allows local refinement of the approximation, but imposes some
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isotropy in this refinement process. In order to capture the boundary with a
small number of parameters, one would typically need to refine more in the
normal direction than in the tangential directions, i.e., apply anisotropic local
refinement.

In this context, other approximation tools outperform wavelet bases: it
is easy to check that the use of piecewise constant functions on an adaptive
partition of N triangles in 2D will produce the rate σN (f) ∼ O(N−1), pre-
cisely because one is allowed to use arbitrarily anisotropic triangles to match
the boundary. In the case of rational functions it is conjectured an even more
spectacular result: if ∂Ω is C∞, then σN (f) ≤ CrN

−r for any r > 0. These
remarks reveal that, in contrast to the 1D case, free triangulations or rational
approximation outperform N -term approximation, and could be thought as a
better tool in view of applications such as those which were discussed through-
out this paper. This is not really true in practice: in numerical simulation,
rational functions are difficult to use and free triangulations are often limited
by shape constraints which restricts their anisotropy, and both methods are
not being used in statistical estimation or data compression, principally due
to the absence of fast and robust algorithms which would produce an optimal
adaptive approximation in a similar manner as wavelet thresholding. The de-
velopment of new approximation and representation tools, which could both
capture anisotropic features such as edges with a very small number of pa-
rameters and be implemented by fast and robust procedures, is currently the
object of active research. A significant breakthrough was recently achieved by
Donoho and Candes who developed representations into ridglet bases which
possess the scale-space localization of wavelets together with some directional
selection. Such bases allow for example to recover with a simple thresholding
procedure the rate O(N−1) for a bivariate function which is smooth except
along a smooth curve of discontinuity.
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Summary. These notes are to bring out some basic mechanisms governing wavelet
methods for the numerical treatment of differential and integral equations. Some
introductory examples illustrate the quasi–sparsity of wavelet representations of
functions and operators. This leads us to identify the key features of general wavelet
bases in the present context, namely locality, cancellation properties and norm equiv-
alences. Some analysis and construction principles regarding these properties are
discussed next. The scope of problems to which these concepts apply is outlined
along with a brief discsussion of the principal obstructions to an efficient numeri-
cal treatment. This covers elliptic boundary value problems as well as saddle point
problems. The remainder of these notes is concerned with a new paradigm for the
adaptive solution of such problems. It is based on an equivalent formulation of the
original variational problem in wavelet coordinates. Combining the well-posedness
of the original problem with the norm equivalences induced by the wavelet basis, the
transformed problem can be arranged to be well–posed in the Euclidean metric. This
in turn allows one to devise convergent iterative schemes for the infinite dimensional
problem over �2. The numerical realization consists then of the adaptive application
of the wavelet representations of the involved operators. Such application schemes
are described and the basic concepts for analyzing their computational complexity,
rooted in nonlinear approximation, are outlined. We conclude with an outlook on
possible extensions, in particular, to nonlinear problems.

1 Introduction

These lecture notes are concerned with some recent developments of wavelet
methods for the numerical treatment of certain types of operator equations. A
central theme is a new approach to discretizing such problems that differs from
conventional concepts in the following way. Wavelets are used to transform
the problem into an equivalent one which is well-posed in �2. The solution of
the latter one is based on concepts from nonlinear approximation. This part
of the material is taken from recent joint work with A. Cohen, R. DeVore and
also with S. Dahlke and K. Urban.

J.H. Bramble, A. Cohen, and W. Dahmen: LNM 1825, C. Canuto (Ed.), pp. 31–96, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



32 Wolfgang Dahmen

The notes are organized as follows. Some simple examples are to identify
first some key features of multiscale bases that will motivate and guide the
subsequent discussions. Some construction and analysis principles are then
reviewed that can be used to construct bases with the relevant properties for
realistic application settings. The scope of these applications will be detailed
next. After these preparations the remaining part is devoted to the discussion
of adaptive solution techniques.

2 Examples, Motivation

Rather than approximating a given function by elements of a suitable finite
dimensional space the use of bases aims at representing functions as expansions
thereby identifying the function with an array of coefficients – its digits. The
following considerations indicate why wavelet bases offer particularly favorable
digit representations.

2.1 Sparse Representations of Functions, an Example

Consider the space L2([0, 1]) of all square integrable functions on the interval
[0, 1]. For a given dyadic mesh of mesh size 2−j piecewise constant approx-
imations on such meshes are conveniently formed by employing dilates and
translates of the indicator function of [0, 1].

φ(x) := χ[0,1)(x)

φj,k := 2j/2φ
(
2j · −k

)
, k = 0, . . . 2j − 1,

10

In fact, denoting by 〈f, g〉 = 〈f, g〉[0,1] :=
1∫

0
f(x)g(x)dx the standard inner

product on [0, 1],

Pj(f) :=
2j−1∑

k=0

〈f, φj,k〉φj,k

is the orthogonal projection of f onto the space Sj := span {φj,k : k =
0, . . . , 2j − 1}. Figure 1 displays such approximations for several levels of res-
olution.
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0 1 0 1 0 1

Fig. 1. Piecewise constant approximations to f

If a chosen level of resolution turns out to be insufficient, a naive approach
would be to recompute for a smaller mesh size. More cleverly one can avoid
wasting prior efforts by monitoring the difference between successive levels of
resolution as indicated by Figure 2

a

+=

Detail+

b

Feinstruktur = Mittelung

Fig. 2. Splitting averages and details

To encode the split off details, in addition to the averaging profile φ a
second oscillatory profile is needed. Defining

-1

1

11/2

ψ(x) := φ(2x) − φ(2x− 1)

ψj,k := 2j/2ψ(2j · −k),

it is not hard to show that

(Pj+1 − Pj)f =
2j−1∑

k=0

dj,k(f)ψj,k where dj,k(f) = 〈f, ψj,k〉. (1)

Thus, due to the denseness of piecewise constants in L2([0, 1]), the telescoping
expansion converges strongly to f , so that
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f = P0f +
∞∑

j=1

(Pj − Pj−1)f =
∞∑

j=−1

2j−1∑

k=0

dj,k(f)ψj,k =: d(f)TΨ (2)

is a representation of f .
Norm equivalence: Due to the fact that

Ψ = {φ0,0} ∪ {ψj,k : k = 0, . . . , 2j − 1}

is an orthonormal collection of functions – basis in this case – one has

‖f‖L2 =





∞∑

j=0

‖(Pj − Pj−1)f‖2
L2





1/2

= ‖d(f)‖�2 . (3)

Since therefore small changes in d(f) cause only equally small changes in f
and vice versa, we have a particularly favorable digit representation of f . Ψ
is called the Haar-basis – a first simple example of a wavelet basis.
Vanishing moment: While summability in (3) implies that the detail or wavelet
coefficients dj,k(f) eventually tend to zero – just as in Fourier expansions, it is
interesting to see to what extent – in contrast to Fourier expansions – their size
conveys local information about f . Since the ψj,k are orthogonal to constants,
one readily concludes

|dj,k(f)| = inf
c∈IR

|〈f − c, ψj,k〉| ≤ inf
c∈IR

‖f − c‖L2(Ij,k) ≤ 2−j‖f ′‖L2(Ij,k). (4)

Thus dj,k(f) is mall when f is smooth on the support Ij,k of ψj,k.
If all wavelet coefficients dj,k(f) were known, keeping the N largest among

them and replacing all others by zero, would provide an approximation to f
involving only N terms that minimizes, in view of (3), the L2-error among
all other competing N term approximations from the Haar system. These N
terms would give rise to a possibly highly nonuniform mesh for the correspond-
ing piecewise constant approximation. Moreover, (4) tells us that in regions
where f has a small first derivative the mesh size would be relatively coarse,
while small intervals are encountered where f varies strongly. This ability to
provide sparse approximate representations of functions is a key feature of
wavelet bases.

Wavelet transform: Computing wavelet coefficients directly through quadra-
ture poses difficulties. Since the support of low level wavelets is comparable
to the domain, a sufficiently accurate quadrature would be quite expensive.
A remedy is offered by the following strategy which can be used when the
wavelet coefficients of interest have at most some highest level J say. The
accurate computation of the scaling function coefficients cJ,k := 〈f, φJ,k〉,
k = 0, . . . , 2J−1, is much less expensive, due to their uniformly small support.
The transformation from the array cJ into the array of wavelet coefficients
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dJ = (c0,d0, . . . ,dJ−1), dj := {dj,k(f) : k = 0, . . . , 2j − 1} is already implicit
in (1). Its concrete form can be derived from the two-scale relations:

φj,k =
1√
2
(φj+1,2k + φj+1,2k+1), ψj,k :=

1√
2
(φj+1,2k − φj+1,2k+1), (5)

φj+1,2k =
1√
2
(φj,k + ψj,k), φj+1,2k+1 =

1√
2
(φj,k − ψj,k). (6)

In fact, viewing the array of basis functions as a vector (in some fixed unspec-
ified order) and adopting in the following the shorthand notation

2j+1−1∑

k=0

cj+1,kφj+1,k =: ΦTj+1cj+1,

Figure 2 suggests to write the fine scale scaling function representation as a
coarse scale representation plus detail: ΦTj+1cj+1 = ΦTj cj + ΨTdj . One easily
derives from (5) that the coefficients are interrelated as follows

cj,k =
1√
2
(cj+1,2k + cj+1,2k+1), dj,k =

1√
2
(cj+1,2k − cj+1,2k+1),

cj+1,2k =
1√
2
(cj,k + dj,k), cj+1,2k+1 =

1√
2
(cj,k − dj,k).

This leads to the following cascadic transforms whose structure is shared also
by more complex wavelet bases.

Fast (Orthogonal) Transform:
TJ : dJ := (c0,d0, . . . ,dJ−1) → cJ :

c0 → c1 → c2 → · · · → cJ−1 → cJ
↗ ↗ ↗ ↗

d0 d1 d2 · · · dJ−1

Inverse transform: T−1
J = TT

J : cJ → dJ :

cJ → cJ−1 → cJ−2 → · · · → c1 → c0
↘ ↘ ↘ ↘

dJ−1 dJ−2 · · · d1 d0

.

Obviously, both transforms TJ and T−1
J are efficient in the sense that the

computational effort stays proportional to the size of cJ . However, one should
already note at this point that this strategy does not fit with the case when f
admits actually a much sparser approximation in wavelet coordinates. Finding
alternative strategies will be an important subject of subsequent discussions.
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2.2 (Quasi-) Sparse Representation of Operators

Wavelet bases not only offer nearly sparse representations of functions but also
of operators from a wide class. Let us explain first what is meant by standard
wavelet representation of a linear operator for the example of the Haar basis.
Suppose for simplicity that L takes L2([0, 1]) into itself. Expanding f in the
wavelet basis, applying L to each basis function and expanding the resulting
images again in the wavelet basis, yields

Lf =
∑

j,k

〈f, ψj,k〉Lψj,k =
∑

j,k




∑

l,m

〈Lψj,k, ψl,m〉ψl,m



 〈f, ψj,k〉 = ΨTLd,

where

L := (〈ψj,k,Lψl,m〉)(j,k),(l,m) =: 〈Ψ,LΨ〉, d := (〈ψj,k, f〉)(j,k) =: 〈Ψ, f〉. (7)

When L is local like a differential operator many of the entries vanish. However,
when L is global like an integral operator, in principle, all the entries of L could
be nonzero so that finite sections would be densely populated matrices with
corresponding adverse effects on computational complexity. It was observed
in [13] that for certain singular integral operators L is almost sparse in the
sense that many entries became very small. Let us quantify this statement for
the following example of the the Hilbert Transform

(Lf)(x) :=
1
π
p.v.

∫

IR

f(y)
x− y

dy.

Using Taylor expansion of the kernel and again the fact that the wavelets are
orthogonal to constants, one obtains

πL(j,k),(l,m) =

2−j(k+1)∫

2−jk






2−l(m+1)∫

2−lm

(
1

x− y
− 1
x− 2−lm

)
ψl,m(y) dy





ψj,k(x) dx

=

2−l(m+1)∫

2−lm






2−j(k+1)∫

2−jk

(y − 2−lm)
(x− yl,m)2

ψj,k(x) dx





ψl,m(y) dy

=

2−l(m+1)∫

2−lm






2−j(k+1)∫

2−jk

(
(y − 2−lm)
(x− yl,m)2

− (y − 2−lm)
(2−jk − yl,m)2

)
ψj,k(x) dx






×ψl,m(y) dy.
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Since
∫

IR

|ψj,k(x)| dx ≤ 2−j/2 one therefore obtains, for instance when l ≤ j,

π|L(j,k),(m,l)| <∼ 2−(l+j) 3
2 |2−jk − 2−lm|−3 =

2− 3
2 |j−l|

|k − 2j−lm|3 ,

which says that the entries decay exponentially with increasing difference of
levels and also polynomially with increasing spatial distance of the involved
wavelets. A more general estimate for general wavelet bases will later play an
important role.

2.3 Preconditioning

The next example addresses an effect of wavelets which is related to precon-
ditioning. As a simple example consider the boundary value problem

−u′′ = f on [0, 1], u(0) = u(1) = 0,

whose weak formulation requires finding u ∈ H1
0 ([0, 1]) such that

〈u′, v′〉 = 〈f, v〉, v ∈ H1
0 ([0, 1]).

Here H1
0 ([0, 1]) denotes the space of functions in L2([0, 1]) whose first deriva-

tive is also in L2([0, 1]) and which vanish at 0 and 1. Note that this formulation
requires less regularity than the original strong form. Therefore we can em-
ploy piecewise linear continuous functions as building blocks for representing
approximate solutions. Specifically, denoting by Sj this time the span of the
functions φj,k = 2j/2φ

(
2j · −k

)
, k = 1, . . . , 2j − 1, which are dilates and

translates of the classical hat function φ(x) := (1 − |x|)+, the corresponding
Galerkin scheme requires finding uj ∈ Sj such that

〈u′
j , v

′〉 = 〈f, v〉, v ∈ Sj . (8)

Clearly, making the ansatz uJ =
∑2J−1
k=1 uJ,kφJ,k, gives rise to a linear system

of equations

AJuJ = fJ , where AJ := 〈Φ′
J , Φ

′
J〉, fJ := 〈Φj , f〉. (9)

Here and below we denote for any two countable collections Θ ⊂ Y,Ξ ⊂ X
and any bilinear form c(·, ·) on Y ×X by c(Θ,Ξ) the matrix (c(θ, ξ))θ∈Θ,ξ∈Ξ .
In particular, as used before, 〈Φj , f〉 is then a column vector.

Although in practice one would not apply an iterative scheme for the
solution of the particular system (9), it serves well to explain what will be
relevant for more realistic multidimensional problems. The performance of
an iterative scheme for a symmetric positive system is known to depend on
the condition number of that system which in this case is the quotient of the
maximal and minimal eigenvalue. Although it will be explained later in a little
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bit more detail, what can be said about the condition numbers for problems of
the above type (see Section 10.3), it should suffice for the moment to note that
the condition numbers grow like h−2 (here 22J for h = 2−J) for a given mesh
size h, which indeed adversely affects the performance of the iteration. This
growth can be made plausible by noting that the second derivative treats
highly oscillatory functions very differently from slowly varying functions.
Since the trial space SJ contains functions with frequency ranging between
one and 2J , this accounts for the claimed growth. This motivates to split the
space SJ into direct summands consisting of functions with fixed frequency.
On each such summand the differential operator would be well conditioned. If
the summands were well separated with respect to the energy inner product
a(v, w) := 〈v′, w′〉 this should enable one to precondition the whole problem.
This is the essence of multilevel preconditioners and can be illustrated well in
the present simple case.

The key is again that the main building block, the hat function, is refinable
in the sense that

φ(x) = 1
2φ(2x+ 1) + φ(2x) + 1

2φ(2x− 1)

φj,k = 1√
2
( 1
2φj+1,2k−1 + φj+1,2k + 1

2φj+1,2k+1),
1/2 1/2-1 1

1

-

which means that the trial spaces Sj are nested. As in the case of the Haar
basis one builds now an alternative multilevel basis for SJ by retaining basis
functions on lower levels and adding additional functions in a complement
space between two successive spaces Sj and Sj+1. The simplest complement
spaces are those spanned by the hat functions for the new nodes on the next
higher level, see Figure 3. The resulting multilevel basis has become known
as hierarchical basis [75].

Ψj := {ψj,k := φj+1,2k+1 : k = 0, . . . , 2j − 1}

Sj+1 = Sj ⊕ span (Ψj)
0 1

1

Fig. 3. Hierarchical
basis

Denoting the Haar wavelets for the sake of distinction here by ψHj,k, one
can check that d

dxψj,k(x) = d
dxφj+1,2k+1(x) = 2j+

3
2ψHj,k(x) so that

〈 d
dx

ψj,k,
d

dx
ψl,m〉 = 22j+3δ(j,k),(l,m). (10)
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Thus the stiffness matrix relative to the hierarchical basis is even diagonal and
(in a slight abuse of the term) a simple diagonal scaling would yield uniformly
bounded condition numbers independent of the mesh size.

2.4 Summary

So far we have seen some basic effects of two features, namely Vanishing
Moments – Cancellation Property (CP) of wavelets which entail:

• sparse representations of functions;
• sparse representations of operators;

as well as norm equivalences (NE) which imply:

• tight relations between functions and their digit representation;
• well conditioned systems.

Of course, the above examples are very specific and the question arise to what
extend the above properties are needed in less simple situations. Specifically,
what is the role of orthogonality? Diagonalization is certainly much stronger
than preconditioning.

We will extract next somewhat weaker features of multilevel bases that
have a better chance to be practically feasible in a much more general frame-
work and will then point out why these features are actually sufficient for the
purposes indicated above.

3 Wavelet Bases – Main Features

The objective is to develop flexible concepts for the construction of multiscale
bases on one hand for realistic domain geometries Ω (bounded Euclidean do-
mains, surfaces, manifolds) as well as for interesting classes of operator equa-
tions so as to exploit in essence the features exhibited by the above examples.

3.1 The General Format

We postpone discussing the concrete construction of such bases but are con-
tent for the moment with describing their general format, always keeping the
above examples as guide line in mind. We consider collections Ψ = {ψλ :
λ ∈ J } ⊂ L2(Ω) of functions – wavelets – that are normalized in L2, i.e.
‖ψλ‖L2 = 1, λ ∈ J , where dimΩ = d. Here J = Jφ ∪ Jψ is an infi-
nite index set where: #Jφ < ∞ representing the “scaling functions”, like
the box or hat functions above, living on the coarsest scale. For Euclidean
domains these functions will span polynomials up to some order which will
be called the order of the basis Ψ . The indices in Jψ represent the “true”
wavelets spanning complements between refinement levels. Each index λ ∈ J
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encodes different types of information, namely the scale j = j(λ) = |λ|,
the spatial location k = k(λ) and the type e = e(λ) of the wavelet. Recall
that e.g. for tensor product constructions one has 2d − 1 different types of
wavelets associated with each spatial index k. For d = 2 one has, for instance,
ψλ(x, y) = 2jψ1,0(2j(x, y) − (k, l)) = 2j/2ψ(2jx − k)2j/2φ(2jy − l). We will
explain later what exactly qualifies Ψ as a wavelet basis in our context.

3.2 Notational Conventions

As before it will be convenient to view a collection Ψ as an (infinite) vector
(with respect to some fixed but unspecified order of the indices in J ). We
will always denote by D = diag (wλ : λ ∈ J ) a diagonal matrix and write
D = Ds when the diagonal entries are wλ = 2s|λ|, a frequently occurring
case. Thus D−sΨ = {2−s|λ|ψλ} will often stand for a scaled wavelet basis.
Arrays of wavelet coefficients will be denoted by boldface letters like v =
{vλ}λ∈J , d,u, . . . ,. The above shorthand notation allows us then to write
wavelet expansions as dTΨ :=

∑

λ∈J dλψλ. In the following the notation d
for the wavelet coefficients indicates expansions with respect to the unscaled
L2-normalized basis while v,u will typically be associated with a scaled basis.
Recall from (9) that (generalized) Gramian matrices are for any bilinear form
c(·, ·) : X × Y → IR and (countable) collections Ξ ⊂ X,Θ ⊂ Y denoted by

c(Ξ,Θ) := (c(ξ, θ))ξ∈Ξ,θ∈Θ , 〈Ψ, f〉 = (〈f, ψλ〉)Tλ∈J ,

where the right expression is viewed as a column vector.

3.3 Main Features

The main features of wavelet bases for our purposes can be summarized as
follows:

• Locality (L);
• Cancellation Properties (CP);
• Norm Equivalences (NE);

Some comments are in order.

Locality (L): By this we mean that the wavelets are compactly supported and
that the supports scale as follows.

Ωλ := suppψλ, diam (Ωλ) ∼ 2−|λ|. (11)

Of course, one could replace 2 by some ρ > 1. But this is merely a technical
point and will be dismissed for simplicity.
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Cancellation Property (CP) of Order m̃: This means that integration against
a wavelet annihilates smooth parts which can be expressed in terms of in-
equalities of the following type:

|〈v, ψλ〉| <∼ 2−|λ|(m̃+ d
2 − d

p )|v|W m̃
p (Ωλ), λ ∈ Jψ, (12)

see (4) for m̃ = 1, d = 1, p = 2. The most familiar sufficient (in fact equivalent)
condition for (12) for wavelets on Euclidean domains is that the wavelets have
vanishing polynomial moments of order m̃ which means that

〈P, ψλ〉 = 0, P ∈ Pm̃, λ ∈ Jψ, (13)

where Pm̃ denotes the space of all polynomials of (total) degree m̃− 1 (order
m̃). In fact, the same argument as in (4) yields for 1

p + 1
p′ = 1

|〈v, ψλ〉| = inf
P∈Pm̃

|〈v − P, ψλ〉| ≤ inf
P∈Pm̃

‖v − P‖Lp(Ωλ)‖ψλ‖Lp′ ,

<∼ 2−|λ|( d
2 − d

p ) inf
P∈Pm̃

‖v − P‖Lp(Ωλ),

where we have used that

‖ψλ‖Lp′ ∼ 2|λ|
(

d
p′ − d

2

)
∼ 2|λ|( d

2 − d
p ). (14)

Now one can invoke standard Whitney-type estimates for local polynomial
approximation of the form

inf
P∈Pk

‖v − P‖Lp(Ω) <∼ (diamΩ)k|v|Wk
p (Ω) (15)

to confirm (12) in this case (for more details about (15) see Section 10.2).

Norm Equivalences (NE): This is perhaps the most crucial point. It should be
emphasized that, in comparison with conventional numerical schemes, wavelet
concepts aim at more than just finite dimensional approximations of a given
or searched for function but rather at its representation in terms of an array
of wavelet coefficients – the digits of the underlying function. The tighter the
interrelation between function and digits is, the better. We will make heavy use
of the following type of such interrelations. For some γ, γ̃ > 0 and s ∈ (−γ̃, γ)
there exist positive bounded constants cs, Cs such that

cs‖v‖�2 ≤ ‖vTD−sΨ‖Hs ≤ Cs‖v‖�2 , v ∈ �2, (16)

where for s ≥ 0 the space Hs will always stand for a closed subspace of
the Sobolev space Hs(Ω), defined e.g. by imposing homogeneous boundary
conditions on parts or all of the boundary of Ω, i.e., Hs

0(Ω) ⊆ Hs ⊆ Hs(Ω).
For s < 0, the space Hs is always understood as the dual space Hs := (H−s)′.

(16) means that the scaled basis D−sΨ is a Riesz-basis for Hs, i.e., every
element in Hs has a unique expansion satisfying (16). Thus small changes in
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the coefficients can cause only small changes in the function and vice versa,
which is obviously a desirable feature with respect to stability.

We will discuss next some ramifications of (16). The first observation is
that (16) entails further norm equivalences for other Hilbert spaces. The fol-
lowing example addresses the issue of robustness of such norm equivalences.
The point here is that these relations can often be arranged to be independent
of some parameter in an energy inner product and the corresponding norm, a
fact that will be, for instance, relevant in the context of preconditioning.

Remark 1 Define ‖v‖2
Hε

:= ε〈∇v,∇v〉 + 〈v, v〉 and consider the diagonal
matrix Dε :=

(
(1 +

√
ε2|λ|)δλ,µ

)

λ,µ∈J . Then whenever (16) holds with γ > 1
one has for every v ∈ �2

(
2(c−2

0 + c−1
1 )
)−1/2 ‖v‖�2 ≤ ‖vTD−1

ε Ψ‖Hε ≤
(
C2

0 + C2
1
)1/2 ‖v‖�2 . (17)

Proof: Let v = dTΨ (= (Dεd)TD−1
ε Ψ). We wish to show that ‖Dεd‖�2 ∼

‖v‖Hε):

‖{(1 +
√
ε2|λ|)dλ}λ∈J ‖2

J ≤ 2
∑

λ∈J

(

|dλ|2 + ε22|λ||dλ|2
)

(NE)
≤ 2

(
c−2
0 + c−2

1

) {
‖v‖2

L2
+ ε|v|2H1

}

= 2
(
c−2
0 + c−2

1

)
‖v‖2

Hε

Conversely one has

‖v‖2
L2

+ ε|v|2H1

(NE)
≤ C2

0‖d‖2
�2 + εC2

1‖D1d‖2
�2 ≤ (C2

0 + C2
1 )
∑

λ∈J
(1 + ε22|λ|)|dλ|2

≤ (C2
0 + C2

1 )
∑

λ∈J
(1 +

√
ε2|λ|)2|dλ|2,

which finishes the proof. �

The next consequence is of general nature and concerns duality.

Remark 2 Let H be a Hilbert space, 〈·, ·〉 : H × H′ → IR, and suppose that

c‖v‖�2 ≤ ‖vTΘ‖H ≤ C‖v‖�2 , (18)

i.e., Θ is a Riesz-basis for H. Then one has

C−1‖〈Θ, v〉‖�2 ≤ ‖v‖H′ ≤ c−1‖〈Θ, v〉‖�2 . (19)

An important Application of (19) is the case H = H1
0 (Ω), Θ := D−1Ψ

which gives
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C−1
1 ‖D−1〈Ψ,w〉‖�2 ≤ ‖w‖H−1(Ω) ≤ c−1

1 ‖D−1〈Ψ,w〉‖�2 . (20)

The H−1 norm arise naturally in connection with second order elliptic equa-
tions. Its evaluation is, for instance, important in connection with least squares
formulations [17, 18] and poses serious difficulties in the finite element context.

Proof of Remark 2: We proceed in three steps.

1) Consider the mapping F : �2 → H, F : v → vTΘ. Then (18) means that

‖F‖�2→H = C, ‖F−1‖H→�2 = c−1. (21)

2) For the adjoint F ∗ : H′ → �2, defined by 〈Fv, w〉 = vTF ∗w, one then has
on one hand

‖F ∗w‖�2 = sup
v

(F ∗w)Tv
‖v‖�2

= sup
v

〈Fv, w〉
‖v‖�2

≤ sup
v

‖Fv‖H‖w‖H′

‖v‖�2
= ‖F‖�2→H‖w‖H′ ,

and on the other hand,

‖Fv‖H = sup
w

〈Fv, w〉
‖w‖H′

sup
w

(F ∗w)Tv
‖w‖H′

≤ sup
w

‖F ∗w‖�2‖v‖�2
‖w‖H′

= ‖F ∗‖H′→�2‖v‖�2 .

Thus we conclude that

‖F‖�2→H = ‖F ∗‖H′→�2 = C, ‖F−1‖H→�2 = ‖(F ∗)−1‖�2→H′ = c−1.
(22)

3) It remains to identify F ∗w by applying it to the sequence eλ := (δλ,µ : µ ∈
J ). In fact, (F ∗w)λ = (F ∗w)Teλ = 〈Feλ, w〉 = 〈θλ, w〉 which means

F ∗w = 〈Θ,w〉,

whence the assertion follows. �

Riesz-Bases – Biorthogonality: We pause to stress the role of biorthogonality
in the context of Riesz bases. Recall that under the assumption (18) the
mappings

F : �2 → H F : v → vTΘ, F ∗ : H′ → �2 〈Fv, w〉 = vTF ∗w,

are topological isomorphisms and that Feλ = θλ. Defining the collection Θ̃ by
θ̃λ := (F ∗)−1eλ, we obtain
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〈θλ, θ̃µ〉 = 〈Feλ, (F ∗)−1eµ〉 = eTλeµ = δλ,µ,

which means
〈Θ, Θ̃〉 = I. (23)

Thus one has w = 〈w,Θ〉Θ̃ and (19) simply means that Θ̃ is a Riesz basis
for H′. Hence a Riesz basis for H always entails a Riesz basis for H′. Of
course, Θ = Θ̃ when Θ is an orthonormal basis and H is identified with
H′. The following consequence often guides the construction of wavelet bases
satisfying (16) also for s = 0.

Corollary 3 When H = L2(Ω) = H′ for every Riesz basis Ψ of L2 there
exists a biorthogonal basis Ψ̃ which is also a Riesz basis for L2.

We conclude this section with some remarks on

Further norm equivalences - Besov-Spaces: Norm equivalence of the type (16)
extend to other function spaces such as Besov spaces. For a more detailed
treatment the reader is referred, for instance, to [11, 24, 51, 53, 52], see also
Section 10 for definitions.

Note first that (16) can be viewed for 0 < p < ∞, 0 < q ≤ ∞ as a special
case of

‖v‖qBt
q(Lp) ∼ ‖v‖qLp

+
∑

λ∈J
2tq|λ|‖〈v, ψ̃λ〉ψλ‖qLp

, (24)

which holds again for some range of t > 0 depending on the regularity of the
wavelets. Now, renormalizing

ψλ,p := 2d|λ|( 1
p − 1

2 )ψλ so that ‖ψλ,p‖Lp ∼ 1,

we denote by Ψp := {ψλ,p : λ ∈ J } the Lp-normalized version of Ψ and note
that one still has a biorthogonal pair 〈Ψp, Ψ̃p′〉 = I. Moreover, whenever we
have an embedding Bt

q(Lτ ) ⊂ Lp, (24) can be restated as

‖v‖qBt
q(Lτ ) ∼ ‖v‖qLτ

+
∞∑

j=0

(

2jd(
t
d + 1

p − 1
τ )‖〈Ψ̃j,p′ , v〉‖�τ

)q

, (25)

where Ψ̃j,p′ := {ψ̃λ,p′ : |λ| = j}. Note that the embedding Bt
q(Lτ ) ⊂ Lp holds,

by the Sobolev embedding theorem, as long as

1
τ

≤ t

d
+

1
p
, (26)

(with a restricted range for q when equality holds in (26)). In particular, in
the extreme case one has

t

d
+

1
p

=
1
τ

� ‖v‖Bt
τ (Lτ ) ∼ ‖v‖Lτ + ‖〈Ψ̃p′ , v〉‖�τ , (27)
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i.e., the Besov norm is equivalent to an �τ -norm, where no scale dependent
weight arises any more. This indicates that the embedding is not compact. It
is however, an important case that plays a central role in nonlinear approxi-
mation and adaptivity as explained later.

Figure 4 illustrates the situation. With every point in the (1/p, s) coordi-
nate plane we associate (a collection of) spaces with smoothness s in Lp. Left
of the critical line through (1/p, 0) with slope d all spaces are still embedded
in Lp (with a compact embedding strictly left of the critical line), see [24, 51].

Fig. 4. Critical embedding line

4 Criteria for (NE)

In view of the importance of (NE), we discuss briefly ways of affirming its va-
lidity. Fourier techniques are typically applied when dealing with bases living
on the torus or in Euclidean space. Different concepts are needed when dealing
with more general domain geometries. We have already seen that the existence
of a biorthogonal Riesz basis comes with a Riesz basis. Thus biorthogonality
is a necessary but unfortunately not sufficient criterion.

4.1 What Could Additional Conditions Look Like?

Let us see next what kind of conditions, in addition to biorthogonality, are
related to (NE). To this end, suppose that (NE) holds for 0 ≤ t < γ, so that

‖
∑

|λ|<J
dλψλ‖Ht

(NE)∼ ‖{2t|λ|dλ}|λ|<J‖�2 <∼ 2Jt‖{dλ}|λ|<J‖�2

(NE)∼ 2Jt‖
∑

|λ|<J
dλψλ‖L2 .

Thus defining the hierarchy of spaces
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Sj := closHtspan (ψλ : |λ| < j), (28)

we see that (NE) implies the

Inverse (or Bernstein) Estimate:

‖v‖Ht <∼ 2jt‖v‖L2 , v ∈ Sj , t < γ. (29)

Furthermore, consider the canonical projectors

Qjv :=
∑

|λ|<j
〈v, ψ̃λ〉ψλ, Q∗

jv :=
∑

|λ|<j
〈v, ψλ〉ψ̃λ, (30)

and note that

‖v −Qjv‖L2
<∼




∑

|λ|≥j
|〈v, ψ̃λ〉|2





1/2

≤ 2−jt




∑

|λ|≥j
22t|λ||〈v, ψ̃λ〉|2





1/2

(NE)
<∼ 2−jt‖v‖Ht .

This entails the

Direct (or Jackson) Estimate:

inf
vj∈Sj

‖v − vj‖L2
<∼ 2−jt‖v‖Ht , t < γ. (31)

Conversely, it will be seen below that direct and inverse estimates imply the
validity of (NE) for a certain range of t.

4.2 Fourier- and Basis-free Criteria

Note that the above consequences of (NE) are actually properties of the mul-
tiresolution spaces Sj , not of the specific bases. Let us therefore use possibly
basis-free formulations. To this end, note that details between two successive
spaces Sj and Sj+1 can be expressed as

∑

|λ|=j
〈v, ψ̃λ〉ψλ = (Qj+1 −Qj)v.

Collections of functions that are stable on each level are relatively easy to
construct. In fact, when the biorthogonal basis is also local, this is easy to
see, as explained later, see Remark 5 in Section 5.1. In such a case one has

‖(Qj+1 −Qj)v‖2
L2

∼
∑

|λ|=j
|〈v, ψ̃λ〉|2,
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which means

Ns,Q(v) :=





∞∑

j=0

2j2s‖(Qj+1 −Qj)v‖2
L2





1/2

∼
(
∑

λ∈J
22s|λ||〈v, ψ̃λ〉|2

)1/2

.

Moreover, biorthogonality of Ψ, Ψ̃ means that the operators Qj defined by
(30) commute. Thus, the seemingly relevant properties like direct and inverse
estimates as well as biorthogonality can be formulated without explicit ref-
erence to the specific bases Ψ, Ψ̃ (which will be important for construction
principles). In fact, in summary, one is led by the above discussion to ask the
following question:

• Given a multiresolution sequence of nested spaces S = {Sj}j∈IN0 : Sj ⊂ Hs

for s < γ, and an associate sequence Q = {Qj}j∈IN0 of uniformly L2-
bounded projectors mapping L2 onto Sj , such that

• the commutator property (C):

QlQj = Ql, l ≤ j, (32)

• the Jackson estimate (J):

inf
vj∈Vj

‖v − vj‖L2
<∼ 2−m′j‖v‖Hm′ , v ∈ Hm′

(33)

and the
• Bernstein estimate (B):

‖vj‖Hs <∼ 2sj‖vj‖L2 , vj ∈ Vj , s < γ′, (34)

hold for Sj = Vj and some γ′ > 0,m′ ∈ IN ,

can one ensure that Ns,Q(·) ∼ ‖ · ‖Hs?
The following statement is a special case of a more general result from

[39].

Theorem 1. For S, Q as above suppose that (32) and (34), (33) hold for
Vj = Sj with m′ = m > γ′ = γ > 0. Then

‖v‖Hs ∼





∞∑

j=0

22sj‖(Qj −Qj−1)v‖2
L2





1/2

, 0 < s < γ. (35)

Moreover, if (33) and (34) also hold for Vj = S̃j := rangeQ∗
j with m′ = m̃ >

γ′ = γ̃ > 0, then the above equivalence (35) also holds for −γ̃ < s < γ, where
for s < 0 it is understood that Hs = (H−s)′.
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A few comments are in order. Note that (35) is easier to realize for s > 0.
The case s ≤ 0 requires more effort and involves the dual multiresolution
sequence S̃ as well. The space Hs above may have incorporated homogeneous
boundary conditions.

As for the usefulness of the above criterion for the construction of a Riesz
basis for L2, the following remarks should be kept in mind. One actually starts
usually with a multiresolution sequence S where the Sj are then not given as
spans of wavelets but of single scale bases Φj . They consist of compactly
supported functions like scaling functions in classical settings or by standard
finite element nodal basis functions, see the examples in Section 2. One then
tries to construct suitable complement bases spanning complements between
any two successive spaces in S. It is of course not clear how to get a good
guess for such complement bases whose union would be a candidate for Ψ .
The difficulty is to choose these complements in such way that they give rise
to a dual multiresolution (which is completely determined once the ψλ are
chosen) satisfying the conditions (J), (B) as well for some range. It will be
seen later how to solve this problem in a systematic fashion, provided that for
a single scale basis Φj for Sj biorthogonal bases Φ̃j can be found which then
define S̃. One can then construct Ψ and Ψ̃ based only on the knowledge of the
collections Φj , Φ̃j .

Although the construction of dual single scale pairs Φj , Φ̃j is possible in
some important cases, one faces serious difficulties with this approach when
dealing with finite elements on nested triangulations. Therefore criteria, that
do not require explicit knowledge of dual pairs Φj , Φ̃j , are desirable. We outline
next such criteria following essentially the developments in [49]. The key is
that both multiresolution sequences S and S are prescribed. It will be seen
that one need not know corresponding biorthogonal single scale bases to start
with, but it rather suffices to ensure that single scale bases for these spaces
can be biorthogonalized. This latter property can be expressed as follows.

Remark 4 Let S and S̃ be two given multi-resolution sequences satisfying
dimSj = dim S̃j and

inf
vj∈Sj

sup
ṽj∈S̃j

|〈vj , ṽj〉|
‖vj‖L2(Ω)‖ṽj‖L2(Ω)

>∼ 1. (36)

Then there exists a sequence Q of uniformly L2-bounded projectors with ranges
S such that

range (id−Qj) = (S̃j)⊥L2 , range (id−Q∗
j ) = (Sj)⊥L2 . (37)

Moreover, Q satisfies the commutator property (C), see (32).

This leads to a version of Theorem 1, that prescribes both multiresolution
sequences S and S̃ without requiring explicit knowledge neither of the dual
generator bases nor of the dual wavelets.
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Theorem 2. If in addition to the hypotheses of Remark 4 S and S̃ satisfy
direct and inverse estimates (33) and (34) with respective parameters m, m̃ ∈
IN and γ, γ̃ > 0, then one has for any wj ∈ range (Qj − Qj−1), Qj given by
Remark 4,

∥
∥
∥
∥
∥
∥

∞∑

j=0

wj

∥
∥
∥
∥
∥
∥

2

Hs

<∼
∞∑

j=0

22sj‖wj‖2
L2
, s ∈ [−m̃, γ), (38)

and ∞∑

j=0

22sj‖(Qj −Qj−1)v‖2
L2

<∼ ‖v‖2
Hs , s ∈ (−γ̃,m]. (39)

Thus for s ∈ (−γ̃, γ) (38), (39), v → {(Qj −Qj−1)v}j is a bounded mapping
from Hs onto �2,s(Q) := {{wj}j : wj ∈ range (Qj − Qj−1), ‖{wj}j‖�2,s(Q) :=
(∑∞

j=0 22sj‖wj‖2
L2(Ω)

)1/2
< ∞}, with bounded inverse {wj}j →

∑∞
j=0 wj,

i.e., for s ∈ (−γ̃, γ) the above relations hold with ‘ <∼
′ replaced by ‘ ∼′.

Clearly Theorem 2 implies Theorem 1. We sketch now the main steps
in the proof of Theorem 2 (see [39, 49] for more details). Define orthogonal
projectors Pj : L2 → S̃j by

〈v, ṽj〉 = 〈Pjv, ṽj〉, v ∈ L2, ṽj ∈ S̃j ,

and set Rj : Pj |Sj
so that ‖Rj‖L2 ≤ 1. Then (36) implies ‖Rjvj‖L2

>∼ ‖vj‖L2 ,
vj ∈ Sj . Now we claim that rangeRj = S̃j , since otherwise there would exist
ṽ′
j ∈ S̃j , ṽ′

j ⊥L2 rangeRj , contradicting (36). Thus, the R−1
j : S̃j → Sj are

uniformly L2-bounded. Then the projectors Qj := R−1
j Qj : L2 → Sj are

uniformly L2 bounded, rangeQj = Sj and 〈Qjv, ṽj〉 = 〈v, ṽj〉, which provides
range (I −Qj) ⊂ (S̃j)⊥L2 .

Conversely, v ∈ (S̃j)⊥L2 implies range (I −Qj) ⊂ (S̃j)⊥L2 , which confirms
analogous properties for the adjoints Q∗

j .
Note that S̃j ⊂ S̃j+1, which implies (C) QjQj+1 = Qj . �

As for Theorem 2, observe first

‖wj‖Hs±ε <∼ 2j(s±ε)‖wj‖L2 , ∀ wj ∈ range (Qj −Qj−1), s± ε ∈ [−m̃, γ).
(40)

In fact, (40) follows from (B) (34) for s ± ε ∈ [0, γ). For t := s ± ε ∈ [−m̃, 0]
and any wj ∈ range (Qj −Qj−1), one has

‖wj‖Ht = sup
z∈H−t

〈wj , z〉
‖z‖H−t

= sup
z∈H−t

〈wj , (Q∗
j −Q∗

j−1)z〉
‖z‖H−t

<∼ sup
z∈H−t

‖wj‖L2 inf ṽj−1∈S̃j−1
‖z − ṽj−1‖L2

‖z‖H−t

(J)
<∼ 2tj‖wj‖L2 .
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Hence
∥
∥
∥
∥
∥
∥

∑

j

wj

∥
∥
∥
∥
∥
∥

2

Hs

=

〈
∑

j

wj ,
∑

l

wl

〉

Hs

<∼
∑

j

∑

l≥j
‖wj‖Hs+ε‖wl‖Hs−ε

(B)
<∼

∑

j

∑

l≥j
2εj2−lε(2sk‖wj‖L2)(2

sl‖wl‖L2) <∼
∑

j

22sj‖wj‖2
L2
.

Thus, we have shown

‖v‖Hs <∼ Ns,Q(v), s ∈ [−m̃, γ), (41)

which is (38). Interchanging the roles of S and S̃, the same argument gives

‖v‖Hs <∼ Ns,Q∗(v), s ∈ [−m, γ̃). (42)

In order to prove now (39), note first that

Ns,Q(v)2 =
∑

j

22sj〈(Qj −Qj−1)v, (Qj −Qj−1)v〉

=

〈
∑

j

22sj(Q∗
j −Q∗

j−1)(Qj −Qj−1)v, v

〉

≤ ‖
∑

j

22sj(Q∗
j −Q∗

j−1)(Qj −Qj−1)v

︸ ︷︷ ︸
:=w

‖H−s‖v‖Hs

(42)
<∼ N−s,Q∗(w)‖v‖Hs , s ∈ (−γ̃,m] (43)

Since by (C) (see (32)) (Q∗
l −Q∗

l−1)(Q
∗
j −Q∗

j−1) = δj,l(Q∗
l −Q∗

l−1) one has

‖(Q∗
l −Q∗

l−1)w‖L2 =22sl‖(Q∗
l −Q∗

l−1)(Ql−Ql−1)v‖L2
<∼ 22sl‖(Ql−Ql−1)v‖L2 .

This gives

N−s,Q∗(w) =

(
∑

l

2−2sl‖(Q∗
l −Q∗

l−1)w‖2
L2

)1/2

<∼




∑

j

2−2sl24sl‖(Ql −Ql−1)v‖2
L2





1/2

= Ns,Q(v).

Therefore we can bound N−s,Q∗(w) on the right hand side of (43) by a con-
stant multiple of Ns,Q(v). Dividing both sides of the resulting inequality by
Ns,Q(v), yields (39). �

Direct and inverse estimates (J), (B) are satisfied for all standard hierar-
chies of trial spaces where m is the order of polynomial exactness.
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• A possible strategy for (J) is to construct L2-bounded local projectors
onto Sj and use the reproduction of polynomials and corresponding local
polynomial inequalities;

• (B) follows from stability and rescaling arguments. The simplest case is
s ∈ IN . One first establishes an estimate on a reference domain, then
rescales and sums up the local quantities.

5 Multiscale Decompositions – Construction and
Analysis Principles

We indicate next some construction principles that allow us to make use of
the above stability criteria. The main tool is the notion of multiresolution
hierarchies.

5.1 Multiresolution

The common starting point for the construction of multiscale bases is an
ascending sequence of spaces

S0 ⊂ S1 ⊂ S2 ⊂ . . . L2(Ω),
⋃

j

Sj = L2(Ω),

which are spanned by single scale bases

Sj = spanΦj =: S(Φj), Φj = {φj,k : k ∈ Ij}.

One then seeks decompositions

Sj+1 = Sj
⊕

Wj

along with corresponding complement bases

Wj = spanΨj , Ψj = {ψλ : λ ∈ Jj}.

The union of the coarse scale basis Φ0 and all the complement bases provides
a multi-scale basis

Ψ :=
⋃

j∈IN0

Ψj (Ψ−1 := Φ0),

which is a candidate for a wavelet basis.
Before discussing how to find suitable complement bases, it is important

to distinguish several stability notions.

Uniform single scale stability: This means that the relations

‖c‖l2(Ij) ∼ ‖cTΦj‖L2 , ‖d‖l2(Jj) ∼ ‖dTΨj‖L2 (44)

hold uniformly in j. Single scale stability is easily established, for instance,
when local dual bases are available.
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Remark 5 Suppose Φj , Φ̃j are dual pairs of single scale bases, i.e.,

〈Φj , Φ̃j〉=I, ‖φj,k‖L2 ∼ 1, ‖φ̃j,k‖L2 ∼ 1,

diam (suppΦj), diam (supp Φ̃j) ∼ 1.

Then (44) holds for Φj and Φ̃j.

Proof: Let σj,k denote the support of φj,k and �j,k := 2−j(k + [0, 1]d). Then
for v = cTΦj one has

‖c‖2
�2 = ‖〈v, Φ̃j〉‖2

�2
<∼

∑

k∈Ij

‖v‖2
L2(σ̃j,k) <∼ ‖v‖2

L2
.

Conversely,

‖v‖2
L2(�j,k) ≤




∑

σj,m∩�j,k �=∅
|cm|‖φj,m‖L2(�j,k)





2

<∼
∑

σj,m∩�j,k �=∅
|cm|2,

which, upon summation, yields

‖v‖2
L2

<∼ ‖c‖2
�2 .

This finishes the proof. �

Of course, this does not mean that the multiscale basis Ψ is stable in the
sense that ‖d‖�2 ∼ ‖dTΨ‖L2 , which we refer to as stability over all levels, or
equivalently the Riesz-basis property in L2.

5.2 Stability of Multiscale Transformations

Let us pause here to indicate a first instance where the Riesz-basis property
has computational significance. To this end, note that for each j the elements
of Sj have two equivalent representations

j−1∑

l=−1

∑

λ∈Jl

dλψλ =
∑

k∈Ij

ckφj,k

Tj : d �→ c

and the corresponding arrays of single-scale, respectively multiscale coeffi-
cients c, d are interrelated by the multiscale transformation Tj , see Section
2.1.

Remark 6 (cf. [23, 39]) Assume that the Φj are uniformly L2-stable. Then

‖Tj‖, ‖T−1
j ‖ = O(1) ⇐⇒ Ψ is a Riesz basis in L2.
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Proof: Let Ψ j = {ψλ : |λ| < j} and v = dTj Ψ
j = cTj Φj . Assume that Ψ is a

Riesz basis. Then one has

‖cj‖�2 ∼ ‖v‖L2 = ‖dTj Ψ j‖L2 ∼ ‖dj‖�2 = ‖T−1
j cj‖�2 .

Conversely:
‖dj‖�2 = ‖T−1

j cj‖�2 ∼ ‖cj‖�2 ∼ ‖v‖L2 ,

whence the assertion follows. �

Stability over all scales is a more involved issue and will be addressed next.

5.3 Construction of Biorthogonal Bases – Stable Completions

We have seen in Section 4 that biorthogonality is necessary for the Riesz basis
property. Once a pair of biorthogonal bases is given, one can use Theorem 1
or Theorem 2 to check the desired norm equivalences (16), in particular, for
s = 0.

The construction and analysis of biorthogonal wavelets on IR or IRd is
greatly facilitated by Fourier methods (see [25, 50]). For more general domains
the construction of good complement spaces Wj is based on different strategies.
A rough road map looks as follows:

• Construct stable dual multiresolution sequences

S = {Sj}j∈IN0 , Sj = span(Φj), S̃ = {S̃j}j∈IN0 , S̃j = span(Φ̃j),

such that 〈Φj , Φ̃j〉 = I, j ∈ IN0.
• Construct some simple initial complement spaces W̌j .
• Change the initial complements into better ones Wj .

We will comment next on these steps.

5.4 Refinement Relations

Stability (44) and nestedness of the spaces Sj imply refinement equations of
the form

φj,k =
∑

l∈Ij+1

mj,l,kφj+1,l, (45)

which we briefly express as

ΦTj = ΦTj+1Mj,0. (46)

Here the columns of the refinement matrix Mj,0 consist of the arrays of mask
coefficients mj,l,k. The objective is then to find a basis Ψj+1 = {ψλ : |λ| =
j} ⊂ Sj+1, i.e.,

ΨTj+1 = ΦTj+1Mj,1, (47)
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that spans a complement of Sj in Sj+1. It is easy to see that this is equivalent
to the fact that the matrix Mj := (Mj,0,Mj,1) is invertible, i.e, for M−1 =:
Gj =

(Gj,0
Gj,1

)
one has

ΦTj+1 = ΦTj Gj,0 + ΨTj+1Gj,1 ⇐⇒ MjGj = GjMj = I. (48)

Remark 7 [23] The bases Ψj , Φj are uniformly stable in the sense of (44) if
and only if

‖Mj‖�2→�2 , ‖Gj‖�2→�2 = O(1). (49)

The matrix Mj,1 is called a completion of the refinement matrix Mj,0. The
sequence {Mj,1}j is called (uniformly) stable completions when (49) holds.

Let us illustrate these notions by the hierarchical complement bases from
Section 2.3. From the refinement equations one readily infers (see Figure 5)

Mj,0 =



























1
2
√

2
0 0 . . .

1√
2

0 0 . . .
1

2
√

2
1

2
√

2
0 . . .

0 1√
2

0 . . .

0 1
2
√

2
1

2
√

2
0 . . .

0 0 . . .
...

...
...

...
0

1
2
√

2
1

2
√

2

0 . . . 0 1√
2

0 . . . 0 1
2
√

2



























,

and

Mj,1 =
















1 0 0
0 0 0
0 1 0
...

...
...

...
0 1 0
0 0 0
0 0 1
















.
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1/2 1/2-1 1

1

-

Fig. 5. Hat function

One also derives directly from Figure 5 how to express the fine scale basis
functions in terms of the coarse scale and complement basis functions (the
latter being simply the fine scale basis functions at the new knots):

φj+1,2k =
√

2φj,k − 1
2

(φj+1,2k−1 + φj+1,2k+1)

=
√

2φj,k − 1
2

(ψj,k−1 + ψj,k) , k = 1, . . . , 2j − 1,

φj+1,2k+1 = ψj,k, k = 0, . . . , 2j − 1,

φj+1,0 =
√

2φj,0 − 1
2
ψj,0, φj+1,2j+1 =

√
2φj,2j − 1

2
ψj,2j−1,

Accordingly, the blocks of the matrix Gj look as follows:

Gj,0 =












0
√

2 0 0 0 . . . 0 0

0 0 0
√

2 0
... 0 0

...
...

...
...

0
√

2 0 0 0
0 0 . . . 0 0

√
2 0












Gj,1 =













1 − 1
2 0 0 . . .

0 − 1
2 1 − 1

2

...
...

...
... − 1

2 0
0 . . . − 1

2 1













.

5.5 Structure of Multiscale Transformations

Recall that by (46) and (47)

ΦTj cj + ΨTj dj = ΦTj+1
(
Mj,0cj + Mj,1d

j
)
, (50)
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so that TJ : d → c has the form

c0 M0,0→ c1 M1,0→ c2 M2,0→ · · · MJ−1,0→ cJ
M0,1

↗
M1,1

↗
M2,1

↗ · · ·
MJ−1,1

↗
d0 d1 d2 dJ−1

see Section 2.1. Thus the transform consists of the successive application of
the matrices

TJ,j :=
(

Mj 0
0 I

)

, TJ = TJ,J−1 · · ·TJ,0.

In order to determine the inverse transform T−1
J : c → d, note that by (48),

ΦTj+1c
j+1 = ΦTj (Gj,0cj+1) + ΨTj (Gj,1cj+1) = ΦTj cj + ΨTj dj ,

which yields

cJ
GJ−1,0→ cJ−1 GJ−2,0→ cJ−2 GJ−3,0→ · · · G0,0→ c0

GJ−1,1

↘
GJ−2,1

↘
GJ−3,1

↘ · · ·
G0,1

↘
dJ−1 dJ−2 d0.

5.6 Parametrization of Stable Completions

The above example of the hierarchical basis shows that often some stable
completions are easy to construct. The corresponding complement bases may,
however, not be appropriate yet, because the corresponding multiscale basis
may not have a dual basis in L2. The hierarchical basis is an example. The
idea is then to modify some initial stable completion to obtain a better one.
Therefore the following parametrization of all possible stable completions is
of interest [23].

Theorem 3. Given some initial completion M̌j,1 (and Ǧj), then all other
completions have the form

Mj,1 = Mj,0L + M̌j,1K (51)

and
Gj,0 = Ǧj,0 − Ǧj,1(KT )−1LT , Gj,1 = Ǧj,1(KT )−1. (52)

The main point of the proof is the identity

I = MjGj = Mj

(
I L
0 K

)(
I −LK−1

0 K−1

)

Gj =: M̌jǦj .

The special case K = I is often referred to as Lifting Scheme [70].
Modifications of the above type can be used for the following purposes:
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• Raising the order of vanishing moments: Choose K = I and L such that
∫

Ω

ΨTj Pdx =
∫

Ω

ΦTj+1Mj,1Pdx

=
∫

Ω

ΦTj LP + Ψ̌Tj Pdx = 0, P ∈ Pm∗ .

• Construction of finite element based wavelets through coarse grid correc-
tions [23, 40, 42, 74].

• Construction of biorthogonal wavelets on intervals and multivariate do-
mains [21, 22, 30, 46, 47].

In particular, a systematic biorthogonalization can be described as follows.
Suppose that dual pairs of single scale bases are given

ΦTj = ΦTj+1Mj,0, Φ̃Tj = Φ̃Tj+1M̃j,0, 〈Φj , Φ̃j〉 = I.

Theorem 4. Let M̃j,0, M̌j,1, Ǧj be as above. Then (K := I, L :=−M̃T
j,0M̌j,1)

Mj,1 := (I − Mj,0M̃T
j,0)M̌j,1, M̃j,1 := Ǧj,1

are new uniformly stable completions satisfying MjM̃T
j = I and

ΨTj := ΦTj+1Mj,1, Ψ̃Tj+1 := Φ̃Tj+1M̃j,1

form biorthogonal wavelet bases.

The criteria from Section 4 can be used to show that the constructions
based on these concepts give indeed rise to Riesz bases, cf. [21, 22, 30, 46, 47].
Very useful explicit expressions for the entries of L := −M̃T

j,0M̌j,1 are derived
in [62]

6 Scope of Problems

We are going to describe next the scope of problems to which the above tools
will be applied.

6.1 Problem Setting

Let H be a Hilbert space and A(·, ·) : H×H → IR a continuous bilinear form,
i.e.,

|A(V,U)| <∼ ‖V ‖H‖U‖H, V, U ∈ H. (53)

We will be concerned with the variational problem: Given F ∈ H′ find U ∈ H
such that
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A(V,U) = 〈V, F 〉, V ∈ H. (54)

We explain first what we mean when saying that (54) is well-posed. To this
end, define the operator L : H → H′ by

〈V,LU〉 = A(V,U), V ∈ H, (55)

so that (54) is equivalent to
LU = F. (56)

Then (54) is called well-posed (on H) if there exist positive finite constants
cL, CL such that

cL‖V ‖H ≤ ‖LV ‖H′ ≤ CL‖V ‖H, V ∈ H. (57)

We will refer to (57) as mapping property (MP). Clearly (MP) implies the
existence of a unique solution for any F ∈ H′ which depends continuously on
the data F (with respect to the topology of H).

Remark 8 It should be noted that in many cases, given A(·, ·) the first (and
often most crucial) task is to identify a suitable Hilbert space H such that the
mapping property (57) holds.

All examples to be considered later will have the following format. H will
in general be a product space

H = H1,0 × · · ·Hm,0,

where the component spaces Hi,0 ⊆ Hi will be closed subspaces of Hilbert
spaces Hi with norms ‖ · ‖Hi . The Hi are typically Sobolev spaces and the
Hi,0 could be determined by homogeneous boundary conditions Hti

0 (Ωi) ⊆
Hi,0 ⊆ Hti(Ωi). We use capital letters to indicate that the elements of H
have in general several components so that V = (v1, . . . , vm)T and ‖V ‖2

H =
∑m
i=1 ‖vi‖2

Hi
. Denoting by 〈·, ·〉i a dual pairing on Hi×H ′

i and setting 〈V,W 〉 =
∑m
i=1〈vi, wi〉i, the dual space H′ is endowed, as usual, with the norm

‖W‖H′ = sup
V ∈H

〈V,W 〉
‖V ‖H

.

The bilinear form A(·, ·) will in general have the form A(V,W ) =
(ai,l(vi, wl))

m
i,l=1, so that the operator L is matrix valued as well

L = (Li,l)mi,l=1.
We proceed now discussing briefly several examples and typical obstruc-

tions to their numerical treatment.
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6.2 Scalar 2nd Order Elliptic Boundary Value Problem

Suppose that Ω ⊂ IRd is a bounded (Lipschitz) domain and a(x) is a symmet-
ric (bounded) matrix that is uniformly positive definite on Ω. The classical
boundary value problem associated with this second order partial differential
equation reads

−div
(
a(x)∇u

)
+ k(x)u = f on Ω, u = 0 on ∂Ω. (58)

We shall reserve lower case letters to such scalar problems. Its weak formula-
tion has the form (54) with m = 1 and

a(v, w) :=
∫

Ω

a∇vT∇w + kvwdx, H = H1
0 (Ω), H′ = H−1(Ω). (59)

Classical finite difference or finite element discretizations turn (59) into
a finite dimensional linear system of equations. When solving these systems,
one encounters the following

Obstructions:

• The systems are sparse but in realistic cases often very large so that the
use of direct solvers based on elimination techniques, is excluded. In fact,
the fill-in caused by elimination would result in prohibitive storage and
CPU demands.

• Hence one has to resort to iterative solvers whose efficiency depends on the
condition numbers of the systems. Unfortunately, the systems are increas-
ingly ill-conditioned. When the mesh size h decreases, cond2(a(Φh, Φh)) ∼
h−2, where a(Φh, Φh) denotes the stiffness matrix with respect to an L2-
stable single scale basis, such as a standard nodal finite element basis.

6.3 Global Operators – Boundary Integral Equations

Let Ω− be again a bounded domain in IRd (d ∈ {2, 3}) and consider the
following special case of (58)

−∆w = 0, on Ω, (Ω = Ω− or Ω+ := IR3 \Ω−), (60)

subject to the boundary conditions

w = f on Γ := ∂Ω− (w(x) → 0, |x| → ∞ when Ω = Ω+). (61)

Of course, the unbounded domain Ω+ poses an additional difficulty in the
case of such an exterior boundary value problem. A well-known strategy is to
transform (60), (61) into a boundary integral equation that lives only on the
manifold Γ . There are several ways to do that. They all involve the funda-
mental solution of the Laplace operator E(x, y) = 1/4π|x− y| which gives rise
to the single layer potential operator
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(Lu)(x) = (Vu)(x) :=
∫

Γ

E(x, y)u(y)dΓy, x ∈ Γ. (62)

One can then show that the solution u of the first kind integral equation

Vu = f on Γ (63)

provides the solution w of (60) through the representation formula

w(x) =
∫

Γ

E(x, y)u(y)dΓy, x ∈ Ω.

Here one has (see e.g.[64])

a(v, u) = 〈v,Vu〉Γ , H = H−1/2(Γ ), H′ = H1/2(Γ ).

An alternative way uses the double layer potential

(Kv)(x) :=
∫

Γ

∂

∂ny
E(x, y)v(y)dΓy =

∫

Γ

1
4π

νTy (x− y)
|x− y|3 v(y) dΓy, x ∈ Γ, (64)

where ν is the outward normal to Γ . Now the solution of the second kind
integral equation

Lu := (
1
2
± K)u = f (Ω = Ω±) (65)

gives the solution to (60) through

w(x) =
∫

Γ

K(x, y)u(y)dΓy.

In this case the bilinear form and the corresponding energy space are as follows

a(v, w) = 〈v, (1
2
± K)w〉Γ , H = L2(Γ ) = H2 = H′.

The so called hypersingular operator offers yet another alternative in which
case H turns out to be H1/2(Γ ). According to the shifts caused by these
operators in the Sobolev scale the single layer potential, double layer potential
and hypersingular operator have order −1, 0, 1, respectively.

In a similar way Neumann boundary conditions can be treated. More-
over, other classical elliptic systems can be treated similarly where the above
operators serve as core ingredients.

The obvious advantage of the above approach is the reduction of the spatial
dimension and that one has to discretize in all cases only bounded domains.
On the other hand, one faces the following
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Obstructions:

• Discretizations lead in general to densely populated matrices. This severely
limits the number of degrees of freedom when using direct solvers. But even
iterative techniques are problematic, due to the cost of the matrix/vector
multiplication.

• Whenever the order of the operator is different from zero, the problem of
growing condition numbers arises (e.g. L = V), see Section 10.

6.4 Saddle Point Problems

All the above examples involve scalar coercive bilinear forms. An important
class of problems which are no longer coercive are saddle point problems. A
detailed treatment of this type of problems can be found in [19, 59]. Suppose
X,M are Hilbert spaces and that a(·, ·), b(·, ·) are bilinear forms on X ×X,
respectively X ×M which are continuous

|a(v, w)| <∼ ‖v‖X‖w‖X , |b(q, v)| <∼ ‖v‖X‖q‖M . (66)

Given f ∈ X ′, g ∈ M ′, find U = (u, p) ∈ X ×M =: H such that one has for
all V = (v, q) ∈ H

A(U, V ) =
{
a(u, v) + b(p, v) = 〈f, v〉,
b(q, u) = 〈q, g〉. (67)

Note that when a(·, ·) is positive definite symmetric, the solution component
u minimizes the quadratic functional J(w) := 1

2a(w,w)−〈f, w〉 subject to the
constraint b(u, q) = 〈q, g〉, for all q ∈ M , i.e.,

inf
v∈X

sup
q∈M

(
1
2
a(v, v) + b(v, q) − 〈f, v〉 − 〈g, q〉

)

.

This accounts for the term saddle point problem (even under more general
assumptions on a(·, ·)).

In order to write (67) as an operator equation, define the operators A, B
by

a(v, w) =: 〈v,Aw〉, v ∈ X, b(v, p) =: 〈Bv, q〉, q ∈ M,

so that (67) becomes

LU :=
(
A B′

B 0

)(
u

p

)

=
(
f

g

)

=: F. (68)

As for the mapping property (MP) (57), a simple (sufficient) condition reads
as follows [19, 59]. If a(·, ·) is elliptic on

kerB := {v ∈ X : b(v, q) = 0, ∀ q ∈ M},
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i.e.,
a(v, v) ∼ ‖v‖2

X , v ∈ kerB, (69)

and if b(·, ·) satisfies the inf-sup condition

inf
q∈M

sup
v∈X

b(v, q)
‖v‖X‖q‖M

> β (70)

for some positive β, then (66) is well-posed, i.e., L defined by (68) satisfies

cL
(
‖v‖2

X + ‖q‖2
M

)1/2 ≤ ‖L
(
v

q

)

‖X′×M ′ ≤ CL
(
‖v‖2

X + ‖q‖2
M

)1/2
. (71)

Condition (70) means that B is surjective (and thus has closed range). Con-
dition (69) is actually too strong. It can be replaced by requiring bijectivity
of A on kerB, see [19], which will be used in some of the examples below.
Before turning to these examples we summarize some principal

Obstructions:

• As in previous examples discretizations lead usually to large linear systems
that become more and more ill-conditioned when the resolution of the
discretization increases.

• An additional difficulty is caused by the fact that the form (67) is indefi-
nite, so that more care has to be taken when devising an iterative scheme.

• An important point is that the well-posedness of the infinite dimen-
sional problem (71) is not automatically inherited by a finite dimensional
Galerkin discretization. In fact, the trial spaces in X and M have to be
compatible in the sense that they satisfy the inf-sup condition (70) uni-
formly with respect to the resolution of the chosen discretizations. This
is called the Ladyšhenskaja-Babuška-Brezzi-condition (LBB) and may, de-
pending on the problem, be a delicate task.

We discuss next some special cases.

Second Order Problem - Fictitious Domains Ω ⊂ �:

Instead of incorporating boundary conditions for the second order problem
(58) in the finite dimensional trial spaces, one can treat them as constraints
for a variational problem, that is formulated over some possibly larger but
simpler domain �, e.g. a cube. This is of interest when the boundary varies
or when boundary values are used as control variables. Appending these con-
straints with the aid of Lagrange multipliers, leads to the following saddle
point problem, cf. [16, 43, 60].

Find U = (u, p) ∈ H := H1(�) ×H−1/2(Γ ), Γ := ∂Ω, such that

〈∇v,a∇u〉 + 〈v, p〉Γ = 〈v, f〉 for all v ∈ H1(�),
〈q, u〉Γ = 〈g, q〉 for all q ∈ H−1/2(Γ ).

(72)
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Remark 9 The problem (72) is well posed, i.e., (71) holds.

Proof: Clearly, (69) is satisfied. Moreover, the inf-sup condition (70) is a
consequence of the ‘inverse’ Trace Theorem that states that

inf
v∈H1(Ω),v|∂Ω=g

‖v‖H1(Ω) <∼ ‖g‖H1/2(∂Ω),

[19, 59]. In fact, in the present case we have b(v, p) = 〈v, p〉Γ . Given p ∈
H−1/2(Γ ), choose g ∈ H1/2(Γ ) such that

‖p‖H−1/2(Γ ) ≤ 2〈g, p〉Γ /‖g‖H1/2(Γ ) <∼ 〈v, p〉Γ /‖v‖H1(Ω) <∼ 〈v, p〉Γ /‖v‖H1(�)

for some v ∈ H(�). Thus b(v, p) >∼ ‖v‖H1(�)‖p‖H−1/2(Γ ) which confirms the
claim. �

First Order Systems

One is often more interested in derivatives of the solution to the boundary
value problem (58). Introducing the fluxes θ := −a∇u, (58) can be written
as a system of first order equations whose weak formulations reads

〈θ,η〉 + 〈η,a∇u〉 = 0, ∀ η ∈ L2(Ω),

−〈θ,∇v〉 + 〈ku, v〉 = 〈f, v〉, ∀v ∈ H1
0,ΓD

(Ω).
(73)

One now looks for a solution

U = (θ, u) ∈ H := L2(Ω) ×H1
0,ΓD

(Ω), (74)

where H1
0,ΓD

(Ω) is the closure in H1(Ω) of all smooth functions whose support
does not intersect ΓD. For a detailed discussion in the finite element context
see e.g. [17, 18]. It turns out that in this case the Galerkin discretization
inherits the stability from the original second order problem.

The Stokes System

The simplest model for viscous incompressible fluid flow is the Stokes system

−ν∆u + ∇p = f in Ω,

div u = 0 in Ω, (75)
u|Γ = 0,

where u and p are the velocity, respectively pressure, see [19, 59]. The relevant
function spaces are

X = H1
0(Ω) := (H1

0 (Ω))d, M = L2,0(Ω) := {q ∈ L2(Ω) :
∫

Ω

q = 0}. (76)
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In fact, one can show that the range of the divergence operator is L2,0(Ω).
The weak formulation of (75) is

ν〈∇v,∇u〉L2(Ω) + 〈 div v, p〉L2(Ω) = 〈f ,v〉, v ∈ H1
0(Ω)

〈 div u, q〉L2(Ω) = 0, q ∈ L2,0(Ω), (77)

i.e., one seeks a solution U = (u, p) in the energy space

H = X ×M = H1
0(Ω) × L2,0(Ω),

for which the mapping property (57) can be shown to hold [19, 59].

Stokes System - Fictitious Domain Formulation

An example with m = 3 components is obtained by weakly enforcing inho-
mogeneous boundary conditions for the Stokes system (see [61])

−ν∆u + ∇p = f in Ω,

div u = 0 in Ω,

u|Γ = g,
∫

Ω

p dx = 0, (
∫

Γ

g · n ds = 0),

whose weak formulation is

ν〈∇v,∇u〉L2(Ω) + 〈v,λ〉L2(Γ ) + 〈 div v, p〉L2(Ω) = 〈f ,v〉 ∀ v ∈ H1(Ω),
〈u,µ〉L2(Γ ) = 〈g,µ〉 ∀ µ ∈ H−1/2(Γ ),
〈 div u, q〉L2(Ω) = 0 ∀ q ∈ L2,0(Ω).

The unknowns are now velocity, pressure and an additional Lagrange multi-
plier for the boundary conditions U = (u,λ, p). An appropriate energy space
is

H := H1(Ω) × H−1/2(Γ ) × L2,0(Ω).

Well-posedness can either be argued by taking b(v, (λ, p)) = 〈v,λ〉L2(Γ ) +
〈div v, p〉L2(Ω) and observing that (69) holds, or by taking b(v,λ)=〈v,λ〉L2(Γ )
and using the fact that the Stokes operator is bijective on the kernel of this
constraint operator.

First Order Stokes System

The same type of argument can be used to show that the following first order
formulation of the Stokes system leads to a well-posed variational problem
(with m = 4), [20, 44]. The fluxes θ are now matrix valued indicated by the
underscore:
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θ + ∇u = 0 in Ω,
−ν( div θ)T + ∇p = f in Ω,

div u = 0 in Ω,
u = g on Γ.

The unknowns are now U = (θ,u, p,λ) ∈ H where the energy space

H := L2(Ω) × H1(Ω) × L2,0(Ω) × H−1/2(Γ ),

can be shown to render the following weak formulation

〈θ,η〉 +〈η,∇u〉 = 0, η ∈ L2(Ω),
ν〈θ,∇v〉 −〈p, div v〉 −〈λ,v〉Γ = 〈f ,v〉, v ∈ H1(Ω),

〈 div u, q〉 = 0, q ∈ L2,0(Ω),
〈µ,u〉Γ = 〈µ,g〉Γ , µ ∈ H−1/2(Γ ),

satisfy the mapping property (57).

Transmission Problem

The following example is interesting because it involves both local and global
operators [31]

−∇ · (a∇u) = f in Ω0,
−∆u = 0 in Ω1,
u|Γ0 = 0

H := H1
0,ΓD

(Ω0) ×H−1/2(Γ1).
 Ω

Ω
0

�

1

             

    

Γ

Γ0
�

1

Both boundary value problems are coupled by the interface conditions:

u− = u+, (∂n)u− = (∂n)u+.

A well-posed weak formulation of this problem with respect to the above H
is

〈a∇u,∇v〉Ω0 + 〈Wu− ( 1
2I − K′)σ, v〉Γ1 = 〈f, v〉Ω0 , v ∈ H1

0,ΓD
(Ω0),

〈( 1
2I − K)u, δ〉Γ1 + 〈Vσ, δ〉Γ1 = 0, δ ∈ H−1/2(Γ1),

where W denotes here the hypersingular operator, see [31, 44].
Note that in all these examples, as an additional obstruction, the occur-

rence and evaluation of difficult norms ‖ · ‖H1/2(Γ ), ‖ · ‖H−1/2(Γ ), ‖ · ‖H−1(Ω)
arises.
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7 An Equivalent �2-Problem

We shall now describe how the wavelet concepts from Section 3 apply to the
above type of problems.

An important distinction from conventional approaches lies in the fact,
that for suitable choices of wavelet bases the original problem (54) can be
transformed into an equivalent one defined in �2. Moreover, it will turn out to
be well-posed in Euclidean metric. Here ‘suitable’ means that the component
spaces of H admit a wavelet characterization in the sense of (16). Specifically,
we will assume that for eachHi,0 one has suitable bases Ψ i and scaling matrices
Di such that

cΨ‖v‖�2(Ji) ≤ ‖vTD−1
i Ψ i‖Hi ≤ CΨ‖v‖�2(Ji), v ∈ �2, i = 1, . . . ,m. (78)

It will be convenient to adopt the following notational conventions.

J := J1 × · · · × Jm, D := diag (D1, . . . ,Dm) , V = (v1, . . . ,vm)T .

Thus, catenating the quantities corresponding to the component spaces, we
will employ the following compact notation

VTD−1Ψ := ((v1)TD−1
1 Ψ1, . . . , (vm)TD−1

m Ψm)T .

In these terms the wavelet characterization of the energy space can be ex-
pressed as

cΨ‖V‖�2 ≤ ‖VTD−1Ψ‖H ≤ CΨ‖V‖�2 . (79)

Recalling Section 6.1, the (scaled) wavelet representation of the operators Li,l,
defined by (55), is given by

Ai,l := D−1
i ai,l(Ψ i, Ψ l)D−1

l , i, l = 1, . . . ,m.

The scaled standard representation of L, defined by (55), and the dual wavelet
representation of the right hand side data are given by

L := (Ai,l)
m
i,l=1 = D−1〈Ψ,LΨ〉D−1, F := D−1〈Ψ, F 〉.

We shall make essential use of the following fact.

Theorem 5. Suppose that U = UTD−1Ψ is the scaled wavelet representation
of the solution to (54). Then one has

LU = F ⇐⇒ LU = F, (80)

and there exist positive constants cL, CL such that

cL‖V‖�2 ≤ ‖LV‖�2 ≤ CL‖V‖�2 , V ∈ �2. (81)

In fact, lower respectively upper estimates for these constants are cL ≥ c2Ψ cL,
CL ≤ C2

ΨCL.
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Proof: The proof follows from (79) and (57). In fact, let V = VTD−1Ψ. Then

‖V‖�2 ≤ c−1
Ψ ‖V ‖H

(MP)
≤ c−1

Ψ c−1
L ‖LV ‖H′

(19)
≤ c−2

Ψ c−1
L ‖D−1〈Ψ,LV 〉‖�2

= c−2
Ψ c−1

L ‖D−1〈Ψ,LΨ〉D−1V‖�2 = c−2
Ψ c−1

L ‖LV‖�2 .
The converse estimate works analogously in reverse order. �

7.1 Connection with Preconditioning

The above result can be related to preconditioning as follows. Denote by Λ
some finite subset of J . Let ΨΛ := {ψλ : λ ∈ Λ ⊂ J } so that SΛ := spanΨΛ is
a finite dimensional subspace of H. Let DΛ denote the finite principal section
of D determined by Λ. The stiffness matrix of L with respect to D−1

Λ Ψλ is then
given by LΛ := D−1

Λ A(ΨΛ,ΨΛ)D−1
Λ . The following observation is obvious.

Remark 10 If A(·, ·) in (54) is H-elliptic, then L is symmetric positive def-
inite (s.p.d.) which, in turn, implies that

cond2(LΛ) ≤ C2
ΨCL
c2Ψ cL

. (82)

Ellipticity implies stability of Galerkin discretizations which explains why the
infinite dimensional result (81) implies (82). The following observation stresses
that it is indeed the stability of the Galerkin discretization that together with
(81) implies (82).

Remark 11 If the Galerkin discretizations with respect to the trial spaces SΛ
are stable, i.e., ‖L−1

Λ ‖�2→�2 = O(1), #Λ → ∞, then one also has

‖VΛ‖�2 ∼ ‖LΛVΛ‖�2 , VΛ ∈ IR#Λ. (83)

Hence the mapping property (MP) of L and the norm equivalences (NE) imply
uniformly bounded condition numbers

cond2(LΛ) = O(1), #Λ → ∞,

whenever the Galerkin discretizations with respect to SΛ are (uniformly) sta-
ble.

Proof: By stability of the Galerkin discretizations, we only have to verify the
uniform boundedness of the LΛ. Similarly as before we obtain

‖LΛVΛ‖�2 = ‖D−1
Λ A(ΨΛ,ΨΛ)D−1

Λ VΛ‖�2 = ‖D−1
Λ 〈ΨΛ,LVΛ〉‖�2

≤ ‖D−1〈Ψ,LVΛ〉‖�2
(19)
≤ c−1

Ψ ‖LVΛ‖H′

≤ c−1
Ψ CL‖VΛ‖H

(79)
≤ c−1

Ψ CLCΨ‖VΛ‖�2 ,
which proves the assertion. �

Recall that Galerkin stability for indefinite problems is in general not
guaranteed for any choice of trial spaces.
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7.2 There is always a Positive Definite Formulation – Least
Squares

Once a well-posed problem on �2 is given, squaring will yield a symmetric
positive definite formulation.

Theorem 6. Adhering to the previous notation, let M := LTL, G := LTF.
Then with U = UTD−1Ψ one has

LU = F ⇐⇒ MU = F,

and
c−2
L ‖V‖�2 ≤ ‖MV‖�2 ≤ C2

L‖V‖�2 .

Note that LU = F if and only if U minimizes

‖LV − F‖H′ ∼ ‖MV − G‖�2 .

The left expression corresponds to the natural norm least squares formulation
of (54), see [44]. Such least squares formulations have been studied extensively
in the finite element context, [17, 18]. A major obstruction then stems from
the fact that the dual norm ‖ · ‖H′ is often numerically hard to handle, see
the examples in Section 6 involving broken trace norms or the H−1-norm.
Once suitable wavelet bases are available these norms become just weighted
�2-norms in the transformed domain. Nevertheless, finite dimensional Galerkin
approximations would still require approximating corresponding infinite sums
which again raises the issue of stability. This is analyzed in [44]. However, we
will see below that this problem disappears, when employing adaptive solution
techniques.

8 Adaptive Wavelet Schemes

8.1 Introductory Comments

A natural way of applying the tools developed so far is to choose a finite
subset ΨΛ of wavelets and solve for UΛ ∈ SΛ, satisfying

A(V,UΛ) = 〈V, F 〉, V ∈ SΛ. (84)

The perhaps best understood case corresponds to choosing Λ = (J), which
is the set of all indices in J up to level J . For instance, when using piece-
wise polynomial wavelets, Ψ(J) spans a finite dimensional space of piecewise
polynomials on a mesh with mesh size h ∼ 2−J . For this type of trial spaces
classical error estimates are available. For instance, in a scalar case (m = 1)
when H = Ht one has

‖u− u(J)‖Ht <∼ 2−J(s−t)‖u‖Hs , J → ∞, (85)
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provided that the solution u belongs to Hs. One can then choose J so as to
meet some target accuracy ε. However, when the highest Sobolev regularity
s of u exceeds t only by a little, one has to choose J correspondingly large,
which amounts to a possibly very large number of required degrees of freedom
N ∼ 2dJ . Of course, it is then very important to have efficient ways of solving
the corresponding large systems of equations. This issue has been studied
extensively in the literature. Suitable preconditioning techniques, based e.g.
on the observations in Section 7.1, combined with nested iteration, (i.e., solving
on successively finer discretization levels while using the approximation from
the current level as initial guess on the next level,) allows one to solve the
linear systems within discretization error accuracy at a computational expense
that stays proportional to the number N of degrees of freedom. Thus, under
the above circumstances, the amount of work needed to achieve accuracy ε
remains proportional to the order of ε−d/(s−t) degrees of freedom, which is
the larger the closer s is to t. In other words, relative to the target accuracy,
the computational work related to preassigned uniform discretizations is the
larger the lower the regularity, when measured in the same metric as the error.

Our point of view here will be different. We wish to be as economical as
possible with the number of degrees of freedom so as to still achieve some
desired target accuracy. Thus instead of choosing a discretization in an a-
priori manner, we wish to adapt the discretization to the particular case at
hand. Given any target accuracy ε, the goal then would be to identify ideally
a possibly small set Λ(ε) ⊂ J and a vector U(ε) with support Λ(ε) such that

‖U − U(ε)TD−1
Λ(ε)ΨΛ(ε)‖H ≤ ε. (86)

The following two questions immediately come to mind.

(I) What can be said about the relation between #Λ(ε) as a measure for the
minimum computational complexity and the accuracy ε, when one has com-
plete knowledge about U . We will refer to this as the optimal work/accuracy
balance corresponding to the best N -term approximation

σN,H(U) := inf
#Λ≤N,V,suppV=Λ

‖U − VTD−1
Λ ΨΛ‖H, (87)

that minimizes the error in H for any given number N of degrees of free-
doms. This is a question arising in nonlinear approximation, see e.g. [51].
Precise answers are known for various spaces H. Roughly speaking the
asymptotic behavior of the error of best N -term approximation in the above
sense is governed by certain regularity scales.

(II)Best N -term approximation is in the present context only an ideal bench
mark since U is not known. The question then is: Can one devise algo-
rithms that are able to track during the solution process approximately
the significant coefficients of U , so that the resulting work/accuracy bal-
ance is, up to a uniform constant, asymptotically the same as that of best
N -term approximation?
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A scheme that tracks in the above sense the significant coefficients of U ,
based at every stage on knowledge acquired during prior calculations, is called
adaptive.

8.2 Adaptivity from Several Perspectives

Adaptive resolution concepts have been the subject of numerous studies from
several different perspectives. In the theory of Information Based Complexity
the performance of adaptivity versus nonadaptive strategies has been studied
for a fairly general framework [65, 72]. For the computational model assumed
in this context the results are not in favor of adaptive techniques.

On the other hand, adaptive local mesh refinements, based on a-posteriori
error estimators/indicators in the finite element context, indicate a very
promising potential of such techniques [56, 4, 5, 15, 57]. However, there seem
to be no rigorous work/accuracy balance estimates that support the gained
experiences.

Likewise there have been numerous investigations of adaptive wavelet
schemes that are also not backed by a complexity analysis, see e.g. [2, 12,
14, 30, 35, 37].

More recently, significant progress was made by multiresolution compres-
sion techniques for hyperbolic conservation laws initiated by the work of A.
Harten and continued by R. Abgral, F. Arrandiga, A. Cohen, W. Dahmen, R.
DeVore, R. Donat, R. Sjorgreen, T. Sonar and others. This line was developed
into a fully adaptive technique by A. Cohen, O. Kaber, S. Müller, M. Postel.
The approach is based on a perturbation analysis applied to the compressed
array of cell averages.

Another direction of recent developments concerns the scope of prob-
lems described in Section 6. In this context first asymptotically optimal
work/accuracy balances have been established in [26, 27, 36] and will be ad-
dressed in more detail below.

8.3 The Basic Paradigm

The classical approach to the numerical treatment of operator equations may
be summarized as follows. Starting with a variational formulation, the choice
of finite dimensional trial and test spaces determines a dicretization of the
continuous problem which eventually leads to a finite dimensional problem.
The issue then is to develop efficient solvers for such problems.

As indicated in Section 6, typical obstructions are then the size of the
systems, ill-conditioning, as well as compatibility constraints like the LBB
condition.

In connection with wavelet based schemes a different paradigm suggests
itself, reflected by the following steps, [27].
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(I) One starts again with a variational formulation but puts first most em-
phasis on the mapping property (MP) (cf. (57)), as exemplified in Section
6.4.

(II) Instead of turning to a finite dimensional approximation, the continuous
problem is transformed into an equivalent ∞ - dimensional �2 problem
which is well-conditioned, see Section 7.

(III) One then tries to devise a convergent iteration for the ∞ - dimensional
�2-problem.

(IV) This iteration is, of course, only conceptual. Its numerical realization
relies on the adaptive application of the involved operators.

In this framework adaptivity enters only through ways of applying infinite
dimensional operators within some accuracy tolerance. Moreover, all algorith-
mic steps take place in �2. The choice of the wavelet basis fully encodes the
original problem, in particular, the underlying geometry. Of course, the real-
ization of appropriate bases by itself may be a difficult problem depending on
the case at hand. We will assume throughout the remainder of the paper that
bases with the features described in Sections 3, 7 are available.

Thus steps (I) and (II) above have been already discussed before in Sections
6 and 7. It remains to treat (III) and (IV).

8.4 (III) Convergent Iteration for the ∞-dimensional Problem

When (54) involves a symmetric positive definite form the matrix L is sym-
metric positive definite and, by (81), well-conditioned. Hence simple iterative
schemes like gradient or Richardson iterations would converge for any initial
guess with some fixed reduction rate. However, in general L is not definite.
The idea is therefore to transform LU = F again into an equivalent system

LU = F ⇐⇒ Mp = G

with possibly different coordinates p, such that one still has

cM‖q‖�2 ≤ ‖Mq‖�2 ≤ CM‖q‖�2 , q ∈ �2, (88)

while in addition there exists some relaxation weight ω with

‖I − ωM‖�2→�2 ≤ ρ < 1. (89)

Thus simple iterations of the form

pn+1 = pn + ω(G − Mpn) (90)

would still converge with a reduction rate ≤ ρ per step.
Of course, one could think of more sophisticated iterations with better con-

vergence properties. We will confine the discussion though in essence to (90)
for two reasons. First, it makes things much more transparent. Second the ideal
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iteration (90) will eventually have to be perturbed in practical realizations.
There is always a risk of loosing superior convergence properties when per-
forming the applications of the involved operators only approximately. Thus
economizing on the application of operators, offers a chance to accomplish the
reduction rate offered by (90) at minimal cost. In fact, it will be shown later
that this leads to schemes that achieve the target accuracy at asymptotically
minimal cost.

In the following we discuss two choices of M for which the above program
can be carried through. The first one works for any well-posed problem, the
second one offers an alternative for saddle point problems. For further options
in the latter case, see [27].

Two choices of M

Following [44, 27] we put

M := LTL, G := LTF, p = U. (91)

As pointed out in Theorem 6, one then has

MU = G ⇐⇒ ‖LU − F‖H′ = min
V ∈H

‖LV − F‖H′ , (92)

so that (89) can be realized whenever (57) and (79) hold. Of course, the
condition number still gets squared so that the quantitative behavior of the
iteration (90) may in this case be rather poor.

We will therefore discuss an alternative for the class of saddle point prob-
lems, see Section 6. In this case, it will turn out that one can take M as the
Schur complement

M = BA−1BT . (93)

The interpretation of (89) for the least squares formulation is clear, because
the application of M means to apply successively L and then LT . The question
then remains how to approximate the application of L and LT , which will be
discussed later.

When M is the Schur complement, things are less clear even for the ideal-
ized situation because of the occurrence of A−1. We shall therefore point out
next how (89) is to be understood even in the idealized infinite dimensional
case.

The application of the Schur complement will be facilitated with the aid
of an Uzawa iteration, see [37]. To explain this, we need some preparations
and recall that in the saddle point case we have H = X ×M (cf. Section 6.4),
and that we need a wavelet basis for each component space

X ↔ ΨX M ↔ ΨM .

The norm equivalences (78) then read
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cX‖v‖�2(JX) ≤ ‖vTD−1
X ΨX‖X ≤ CX‖v‖�2(JX). (94)

and
cM‖q‖�2(JM ) ≤ ‖qTD−1

M ΨM‖M ≤ CM‖q‖�2(JM ). (95)

Specifically, in the case of the Stokes problem one can take the scaling weights
(DX)λ,λ = 2|λ|, (DM )λ,λ = 1.

Setting,

A := D−1
X a(ΨX , ΨX)D−1

X , B := D−1
M b(ΨM , ΨX)D−1

X ,

and
f := D−1

X 〈ΨX , f〉, g := D−1
M 〈ΨM , g〉,

(67) is equivalent to

LU = F ⇐⇒
(

A BT

B 0

)

︸ ︷︷ ︸

L

(
u
p

)

︸︷︷ ︸

U

=
(

f
g

)

︸︷︷︸

F

. (96)

Moreover, under the assumptions (69), (70) together with (94), (95) the map-
ping property

cL‖V‖�2 ≤ ‖LV‖�2 ≤ CL‖V‖�2 , V ∈ �2, (97)

holds, see Theorem 5
One actually has to be somewhat careful with (94), which expresses that

A is invertible on all of �2 or, in other words, that A is invertible on all
of X. Recall from (69) that this is neither necessary nor generally the case.
However, whenever the saddle point problem (67) is well-posed, one can show
that for some suitable c > 0 the matrix Â := A + cBTB is invertible on all
of �2 and satisfies (94). One can then replace (96) by an equivalent system
(with adjusted right hand side data) so that (MP) is valid and the Schur
complement is well defined. Therefore we will assume in the following that
either A is invertible on all of X, or that the above precaution has been been
used, leading to a matrix Â, henceforth again denoted by A, so that (93)
makes sense.

Thus we can use block elimination and observe that (96) is equivalent to
{

Mp := BA−1BTp = BA−1f − g =: G
Au = f − BTp.

On account of (97), we know that

M := BA−1BT : �2(JM ) → �2(JM ), ‖Mq‖�2(JM ) ∼ ‖q‖�2(JM ). (98)

Therefore there exists a positive relaxation parameter ω such that a fixed
point iteration (or a gradient iteration) based on the identity
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p = p + ω
(
(BA−1f − g) − Mp

)

= p + ω



BA−1(f − BTp)
︸ ︷︷ ︸

=u

−g



 = p + ω(Bu − g)

converges with a fixed reduction rate ρ < 1. Thus replacing for some iterate
pn the expression A−1(f − BTpn) in this iteration by the solution un of

Aun = f − BTpn, (99)

the iteration (90) for M given by (93), reduces to the simple update

pn+1 = pn + ω(Bun − g), (100)

with un from (99). This is the idea of the Uzawa scheme here formulated for
the original infinite dimensional problem in wavelet coordinates.

We are now prepared to discuss the last step (IV).

8.5 (IV) Adaptive Application of Operators

For notational simplicity we dispense with distinguishing between the un-
knowns U and p (see Section 8.4) and continue to use U for the moment to
denote the vectors of wavelet coefficients. Our objective is to turn the idealized
iteration

MU = G � Un+1 = Un + ω(G − MUn)

into a practicable version. Neither can we evaluate the generally infinite array
G exactly, nor can we compute MUn, even when Un has finite support. Thus,
we need approximations to these two ingredients, which we will formulate as

Basic Routines:

RHS [η,G] → Gη: such that ‖G − Gη‖�2 ≤ η;

APPLY [η,M,V] → Wη: such that ‖MV − Wη‖�2 ≤ η;

COARSE [η,W] → W̄η: such that ‖W − W̄η‖�2 ≤ η.

A few comments on these routines are in order. The input to APPLY and
COARSE will always be finitely supported. COARSE can then be realized
by sorting the coefficients and by adding successively the squares of the entries
from small to large, until the target threshold is reached. For details see [26].
It is pointed out in [7] how to avoid log-terms caused by sorting.

The simplest example of RHS is encountered in the scalar elliptic case.
Then G = f consists of the dual wavelet coefficients of the right hand side f .
One should then think of computing in a preprocessing step a highly accurate
approximation to f in the dual basis along with the corresponding coeffi-
cients. The necessary accuracy can be easily related to the target accuracy of
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the adaptive process. Ordering these finitely many coefficients by size, RHS
becomes then an application of COARSE to this finitely supported array.
In more general cases, e.g. in the least squares formulation, RHS may take
different formats to be discussed for each special case. However, in general
it will always involve a combination of the two last routines APPLY and
COARSE.

It is less obvious how to go about the routine APPLY, which will be
explained later in more detail.

8.6 The Adaptive Algorithm

We will assume for the moment that we have the above routines at hand and
wish to determine first for which tolerances η the corresponding perturbation
of the ideal scheme (90) converges.

SOLVE [ε,M,G] → Ū(ε)

(i) Set Ū0 = 0, ε0 := c−1
M ‖G‖�2 , j = 0.

(ii) If εj ≤ ε, stop Ūj → U(ε). Else V0 := Ūj.

(ii.1)For l = 0, . . . ,K − 1 :

RHS [ρlεj ,G] → Gl; APPLY [ρlεj ,M,Vl] → Wl; and set

Vl+1 := Vl + α(Gl − Wl).

(ii.2)COARSE [VK , 2εj/5] → Ūj+1, εj+1 := εj/2, j + 1 → j go to (ii).

Here ρ is the reduction rate from (89) and K depends only on the constants
in (79), (88) and (57). In fact, it can be shown that, based on these constants
and the reduction rate ρ in (89), there exists a uniformly bounded K so that
‖U − VK‖�2 ≤ εj/10. The coarsening step (ii.2) leads then to the following
estimate.

Proposition 12 The approximations Ūj satisfy

‖U − Ūj‖�2 ≤ εj , j ∈ IN. (101)

Thus any target accuracy is met after finitely many steps. Note that the
accuracy tolerances are at each stage comparable to the current accuracy,
which will be important for later complexity estimates.

The above scheme should be viewed as the simplest example of a perturbed
representation of an iteration for the infinite dimensional problem. Several al-
ternatives come to mind. Instead of applying always K steps (ii.1), one can
monitor the approximate residual for possible earlier termination. Further-
more, the fixed relaxation parameter α can be replaced by a stage dependent
parameter αj resulting from a line search in a gradient iteration. Finally, one
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could resort to (approximate) conjugate gradient iterations. To minimize tech-
nicalities we will stick, however, with the above simpler Richardson scheme.

The central question now is how to realize the basic routines in practice
and what is their complexity.

8.7 Ideal Bench Mark – Best N-Term Approximation

We wish to compare the performance of the above algorithm with what could
be achieve ideally, namely with the work/accuracy balance of the best N -term
approximation, recall (86). Since the relevant domain is just �2 the following
version matters.

σN,�2(V) := ‖V − VN‖�2 = min
#suppW≤N

‖V − W‖�2 . (102)

Due to the norm equivalences (79), one has

σN,�2(V) ∼ inf
W,#suppW≤N

‖V − WTD−1Ψ‖H = σN,H(V ), (103)

i.e., the best N -term approximation in the computational domain �2 corre-
sponds directly to the best N -term approximation in the energy norm.

The following interrelation between best N -term approximation and coars-
ening or thresholding sheds some light on the role of COARSE in step (ii.2)
of algorithm SOLVE, see [26].

Remark 13 Suppose the the finitely supported vector w satisfies ‖v−w‖�2 ≤
η/5. Clearly w̄η := COARSE [w, 4η/5] still satisfies ‖v − w̄‖�2 ≤ η. More-
over, whenever ‖v − vN‖�2 <∼ N−s one has

#supp w̄η <∼ η−1/s, ‖v − w̄η‖�2 ≤ η. (104)

Thus the application of COARSE pulls a current approximation towards
the best N -term approximation.

8.8 Compressible Matrices

We turn now to the routine APPLY. At this point the cancellation properties
(12) comes into play. As indicated in Section 2.2 wavelet representations of
many operators are quasi-sparse. In the present context the following quan-
tification of sparsity or compressibility is appropriate [26].

A matrix C is said to be s∗-compressible – C ∈ Cs∗ – if for any 0 < s < s∗

and every j ∈ IN , there exists a matrix Cj obtained by replacing all but the
order of αj2j (

∑

j αj < ∞) entries per row and column in C by zero, while
still

‖C − Cj‖ ≤ αj2−js, j ∈ IN,
∑

j

αj < ∞. (105)

As mentioned above, one can use the cancellation properties (CP) to con-
firm the following claim.
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Remark 14 The scaled wavelet representations Li,l in the above examples
belong to Cs∗ for some s∗ = s∗(L, Ψ) > 0.

8.9 Fast Approximate Matrix/Vector Multiplication

The key is that for compressible matrices one can devise approximate ap-
plication schemes that exhibit in a certain range an asymptotically optimal
work/accuracy balance. To this end, consider for simplicity the scalar case
and abbreviate for any finitely supported v the best 2j-term approximations
as v[j] := v2j and define

wj := Ajv[0] + Aj−1(v[1] − v[0]) + · · · + A0(v[j] − v[j−1]), (106)

as an approximation to Av. In fact, the triangle inequality together with the
above compression estimates yield

‖Av − wj‖�2 ≤ c ‖v − v[j]‖�2
︸ ︷︷ ︸

σ2j ,�2
(v)

+
j∑

l=0

αl2−ls ‖v[j−l] − v[j−l−1]‖�2
︸ ︷︷ ︸

<∼ σ2j−l−1,�2
(v)

. (107)

One can now exploit the a-posteriori information offered by the quantities
σ2j−l−1,�2(v) to choose the smallest j for which the right hand side of (107)
is smaller than a given target accuracy η. Since the sum is finite for each
finitely supported input v such a j does indeed exist. This leads to a concrete
multiplication scheme

MULT [η,A,v] → wη s.t.: ‖Av − wη‖ ≤ η,

which is analyzed in [26] and implemented in [8]. The main result can be
formulated as follows [26].

Theorem 7. If A ∈ Cs∗ and ‖v − vN‖�2 <∼ N−s for s < s∗, then

#suppwη <∼ η−1/s, #flops <∼ #suppv + η−1/s.

Thus, MULT has in some range an asymptotically optimal work/accuracy
balance. In fact, it is pointed out in [7] that an original logarithmic factor,
due to sorting operations can be avoided.
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Fig. 6. Adaptive solution of the Poisson problem on a L-shaped domain

Note that whenever the bilinear form in (54) is coercive, one can take M =
L to be just the wavelet representation of L, which is typically s∗-compressible
for some positive s∗. In this case one can take APPLY = MULT. Again
Poisson’s equation, i.e., (58) with a(x) the identity matrix and k(x) = 0,
may serve as an example. Figure 6 illustrates the progressive formation of the
solution when Ω ⊂ IR2 is an L-shaped domain. The lower right part displays
the position of the significant coefficients of the approximate solution at the
final stage. The reentrant corner causes a singularity in spite of a smooth right
hand side. In the example shown in Figure 6 the right hand side is chosen so
as to create the strongest possible singularity for that type of problems, see
[8] for more details. The role of the regularity of the solution with regard to
the computational complexity will be addressed later.

In general M will differ from L and we will indicate briefly how to choose
the scheme APPLY for the two choices of M mentioned above.

The simplest case is the least squares formulation M = LTL, G = LTF,
p = U.

RHSls[η,G] := MULT
[
η
2 ,L

T ,COARSE [ η
2CL

,F]
]

APPLYls[η,M,V] := MULT
[
η
2 ,L

T ,MULT [ η
2CL

,L,V]
]
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In this case the routines RHS and APPLY are compositions of COARSE
and MULT.

The situation is more involved when employing Uzawa iterations for saddle
point problems as explained next. The reader is referred to [36] for details.

8.10 Application Through Uzawa Iteration

As indicated before, the application of the Schur complement M (98) can be
based on Uzawa iterations. To explain this, recall first the

IDEAL UZAWA: Given any p0 ∈ �2(JM ), compute for i = 1, 2, . . .

Aui = f − BTpi−1, (set R := 〈Ψ̃M , Ψ̃M 〉)
(108)

pi = pi−1 + ωR(Bui − g), ‖I − ωRS‖�2→�2 ≤ ρ < 1

A few comments on the role of R are in order. The operator B in (68)
maps X to M ′ while p belongs to M . In principle, this does not matter since
the wavelet transform maps all spaces to �2. However, as in the case of the
Stokes problem, M may be a closed subspace (with finite codimension) of some
larger Hilbert space that permits a wavelet characterization. In the Stokes
problem L2,0(Ω) is obtained by factoring out constants. Due to the vanishing
moments of wavelets, these constants have to be removed only from the finite
dimensional coarse scale space. But the corresponding linear relations on the
coefficients are in general different from their counterparts for the dual basis
Ψ̃M . Since the operators are not applied exactly a correction through the
application of R that maps the vectors into the “right domain” turns out to
be necessary, see [36].

The application of M consists then of solving the elliptic problem in (108)
approximately by invoking an elliptic version of SOLVE (with APPLY =
MULT) called ELLSOLVE. The application of B, BT and R in turn is fa-
cilitated by MULT. See [36] for details and corresponding precise tolerances.

8.11 Main Result – Convergence/Complexity

We return now to the general problem (54). In the following it is understood
that the scheme APPLY is based on either one of the above versions. More-
over, full accessibility of the right hand side data is assumed. Finally, we will
assume that the entries of L can be computed on average at unit cost. This
is justified, for instance, when dealing with constant coefficient differential
operators. In general, this is a delicate task that often motivates to resort to
the so called nonstandard form. However, it can be shown that also in more
realistic situations this assumption can be realized, see also [7, 9]. The main
result can then be formulated as follows.
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Theorem 8. Assume that L ∈ Cs∗ for some s∗ = s∗(L, Ψ) > 0. Then if the
exact solution U = UTD−1Ψ of (54) satisfies for some s < s∗

inf
#suppV≤N

‖U − VTD−1Ψ‖H <∼ N−s,

then, for any ε > 0, the approximations Ū(ε) produced by SOLVE satisfy

‖U − Ū(ε)TD−1Ψ‖H <∼ ε

and
#supp Ū(ε), comp. work <∼ ε−1/s.

It should be noted that, aside from the complexity aspect, the adaptive
scheme has the interesting effect, that compatibility conditions like the LBB
condition become void. Roughly speaking, the adaptive application of the (full
infinite dimensional) operators within the right accuracy tolerances inherits at
each stage enough of the stability of the infinite dimensional problem. At no
stage a fixed trial space is chosen that requires taking care of such constraints.

8.12 Some Ingredients of the Proof of Theorem 8

We shall discuss next some typical ingredients from nonlinear approximation
entering the proof of Theorem 8, see [24, 51, 54] for more details. Recall that
typical approximation errors for spaces arising from spatial refinements decay
like powers of the mesh size and thus like negative powers of the number of
degrees of freedom. In view of (103), it is therefore of interest to understand
the structure of those sequences v ∈ �2 whose best N -term approximation
decays like N−s for some s > 0. Since best N -term approximation in �2 is
realized by retaining simply the largest N coefficients, it is directly related to
thresholding.

Thresholding

One way to describe sequences that are sparse in the sense that σN,�2(v)
decays fast, is to control the number of terms exceeding any given threshold.
To this end, define the thresholding operator

Tηv :=
{
vλ, |vλ| ≥ η,
0, |vλ| < η,

and set for some τ < 2

�wτ :=
{
v ∈ �2 : N(v, η) := #supp Tηv ≤ Cvη

−τ} . (109)

In fact, for τ ≥ 2 the condition #supp Tηv ≤ Cvη
−τ is satisfied for all v ∈ �2.

For sequences v in �wτ the error produced by thresholding is easily deter-
mined, noting that for v ∈ �wτ
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‖v − Tηv‖2
�2 =

∞∑

l=0

∑

2−l−1η≤|vλ|<2−lη

|vλ|2 ≤ Cv

∞∑

l=0

(2−lη)2(2−l−1η)−τ

=
4Cv

22−τ − 1
η2−τ . (110)

To understand the nature of the constant Cv appearing in the definition of �wτ ,
consider the decreasing rearrangement (v∗

n)n∈IN of v defined by v∗
n+1 ≤ v∗

n,
v∗
n = |vλn |. By definition one has

v∗
N(v,η)+1N(v, η)1/τ ≤ ηN(v, η)1/τ ≤ C1/τ

v .

Thus defining
C1/τ
v = sup

n∈IN
n1/τv∗

1+n =: |v|�wτ , (111)

we see that
‖v‖�wτ := ‖v‖�2 + |v|�wτ (112)

is a (quasi-) norm for �wτ . The next observation is that �wτ is very close to �τ .
In fact

n1/τv∗
n+1 ≤ (n(v∗

n)
τ )1/τ ≤




∑

j≤n
(v∗
j )
τ





1/τ

≤ ‖v‖�τ ,

so that
�τ ⊂ �wτ ⊂ �τ+ε ⊂ �2, τ < τ + ε < 2. (113)

The estimate (110) can be used to establish the following facts, that will
serve as prerequisites for Remark 13, see [26].

Lemma 15. Suppose that v ∈ �wτ for some 0 < τ < 2 and that w ∈ �2 satisfies

‖v − w‖�2 ≤ ε for some ε > 0.

Then one has for any η > 0

‖v − Tηw‖�2 ≤ 2ε+ C̄‖v‖τ/2�wτ
η1−τ/2, #supp Tηw ≤ 4ε2

η2 + 4C̄‖v‖τ�wτ η
−τ ,

where C̄ depends only on τ as τ → 0.

This can be used to prove Remark 13, see [26].

Characterization of the Rates N−s

We now turn to the characterization of those sequences whose best N -Term
approximation rates decay like N−s and recall that

σN,�2(v) := ‖v − vN‖�2 = min
#suppw≤N

‖v − w‖�2 .
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Proposition 16 Let 1
τ = s+ 1

2 . Then v ∈ �wτ if and only if σN,�2(v) <∼ N−s

and
‖v − vN‖�2 <∼ N−s‖v‖�wτ .

Proof:

σN,�2(v)2 =
∑

n>N

(v∗
n)

2 ≤




∑

n≥N
n−2/τ



 |v|2�wτ ≤ C N1− 2
τ |v|2�wτ

= C N−2s|v|2�wτ .

Conversely,

N |v∗
2N |2 ≤

∑

N<n≤2N

|v∗
n|2 ≤ σN,�2(v)2 ≤ C N−2s,

which means that

|v∗
2N | ≤ C N−(s+1/2) = C N−1/τ ,

and hence v ∈ �wτ , which completes the proof. �

Key Complexity Bounds

The above preliminaries can be used to show that the basic routines in
SOLVE exhibit under certain circumstances optimal work/accuracy bal-
ances. In fact, counting the terms in (106) and taking the characterization
of σN,�2(v) = O(N−s) given in Proposition 16 into account, leads to the
following fact, which implies Theorem 7 stated above.

Proposition 17 Suppose that C ∈ Cs∗ and let 1
τ = s + 1

2 , s < s∗. Then
wη = MULT [η,C,v] satisfies for any finitely supported input v

• ‖wη‖�wτ <∼ ‖v‖�wτ
• #flops <∼ #suppv + ‖v‖1/s

�wτ
η−1/s, #suppwη <∼ ‖v‖1/s

�wτ
η−1/s,

which indeed confirms the optimal balance: accuracy η ↔ cost η−1/s

for s < s∗.

This, in turn, is one of the main ingredients of a proof of the following
result [27].

Theorem 9. Let L ∈ Cs∗ and suppose that U ∈ �wτ for 1
τ = s + 1

2 , s < s∗.
Then in all the above cases the output Gη of the right hand side scheme
RHS [η,G] satisfies

(1) ‖Gη‖�wτ <∼ ‖G‖�wτ <∼ ‖U‖�wτ ;

(2) #flops ∼ #suppGη <∼ ‖G‖1/s
�wτ

η−1/s.
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Moreover, for APPLY ∈ {MULT,APPLYls,APPLYUz} the output Wη

of APPLY [η,M,V] satisfies for s < s∗ and any finitely supported input V:

(3) ‖Wη‖�wτ <∼ ‖V‖�wτ ;

(4) #flops <∼ #suppV + ‖V‖1/s
�wτ

η−1/s, #suppWη <∼ ‖V‖1/s
�wτ

η−1/s.

Thus, according to Theorem 8, APPLY [ε,M−1,G] := SOLVE [ε,M,G]
exibits the same work/accuracy balance as its ingredients. In fact, the proof
of Theorem 8 is based on Theorem 9 above.

Compressibility Criteria

We conclude this section with some sufficient conditions for a wavelet repre-
sentation L to be compressible. To this end, recall that in all the examples
considered before, the operator L is either local or of the form

(Lu)(x) =
∫

Γ

K(x, y)u(y) dΓy,

where ∣
∣∂αx ∂

β
yK(x, y)

∣
∣ <∼ dist(x, y)−(d+2t+|α|+|β|). (114)

Results of the following type can be found e.g. in [45, 66].

Theorem 10. Suppose that L has order 2t and satisfies for some r > 0

‖Lv‖H−t+a <∼ ‖v‖Ht+a , v ∈ Ht+a, 0 ≤ |a| ≤ r.

Assume that D−sΨ is a Riesz-basis for Hs for −γ̃ < s < γ (16) and has
cancellation properties (CP) (12) of order m̃. Then for any 0 < σ ≤
min {r, d/2 + m̃+ t}, t+ σ < γ, t− σ > −γ̃, one has

2−(|λ′|+|λ|)t|〈ψλ,Lψλ′〉| <∼
2−||λ|−|λ′||σ

(1 + 2min(|λ|,|λ′|) dist(Ωλ, Ωλ′))d+2m̃+2t . (115)

Thus the entries of the wavelet representation of operators of the above
type exhibit a polynomial spatial decay, depending on the order of cancellation
properties, and an exponential scalewise decay, depending on the regularity
of the wavelets.

Since estimates of this type are also basic for matrix compression tech-
niques, in connection with boundary integral equations, we give a

Sketch of the argument: (See ([45, 66, 67] for more details). Let againΩλ :=
suppψλ. One distinguishes two cases. Suppose first that dist(Ωλ, Ωλ′) >∼
2− min(|λ|,|λ′|). Since then x stays away from y the kernel is smooth. In contrast
to the nonstandard form one can then apply (CP) (see (12)) of order m̃ to
the kernel



84 Wolfgang Dahmen
∫

Γ

∫

Γ

K(x, y)ψλψλ′dxdy = 〈K,ψλ ⊗ ψλ′〉

successively with respect to both wavelets. The argument is similar to that in
Section 2.2 and one eventually obtains

|〈Lψλ′ , ψλ〉| <∼
2−(|λ|+|λ′|)(d/2+m̃)

(dist(Ωλ, Ωλ′))d+2m̃+2t . (116)

If on the other hand dist(Ωλ, Ωλ′) <∼ 2− min(|λ|,|λ′|) we follow [35] and use
the continuity of L together with (NE) (see (16)) to conclude that

‖Lv‖H−t+s <∼ ‖v‖Ht+s , v ∈ Ht+s, 0 ≤ |s| ≤ τ. (117)

Assuming without loss of generality that |λ| > |λ′| and employing the Schwarz
inequality, yields

|〈Lψλ′ , ψλ〉| ≤ ‖Lψλ′‖H−t+σ‖ψλ‖Ht−σ <∼ ‖ψλ′‖Ht+σ‖ψλ‖Ht−σ .

Under the above assumptions on σ one obtains

|〈Lψλ′ , ψλ〉| ≤ 2t(|λ|+|λ′|)2σ(|λ′|−|λ|).

This completes the proof. �

The estimates for wavelets with overlapping supports can actually be re-
fined using the so called second compression. This allows one to remove log-
factors in matrix compression estimates arising in the treatment of boundary
integral operators, see [62, 68].

Estimates of the type (115) combined with the Schur Lemma lead to the
following result [26].

Proposition 18 Suppose that

|Cλ,ν | <∼
2−σ||λ|−|ν||

(1 + d(λ, ν))β
, d(λ, ν) := 2min {|λ|,|ν|}dist (Ωλ, Ων)

and define

s∗ := min
{
σ

d
− 1

2
,
β

d
− 1
}

.

Then C ∈ Cs∗ .

As mentioned above, the proof is based on the

Schur Lemma: If for some C < ∞ and any positive sequence {ωλ}λ∈J
∑

ν∈J
|Cλ,ν |ων ≤ C ωλ,

∑

λ∈J
|Cλ,ν |ωλ ≤ C ων , ν ∈ J ,
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then ‖C‖�2→�2 ≤ C, see e.g. [71].

This can be proved by establishing �∞-estimates for W−1CW and
W−1CTW, where W := diag (ωλ : λ ∈ J ), and using then that �2 is obtained
by interpolation between �1 and �∞.

In the proof of Proposition 18 this is applied to ‖C − Cj‖�2 with weights
ωλ = 2−d|λ|/2 [26].

8.13 Approximation Properties and Regularity

A fundamental statement in approximation theory is that approximation
properties can be expressed in terms of the regularity of the approximated
function. In order to judge the performance of an adaptive scheme versus a
much simpler scheme based on uniform refinements say, requires, in view of
Theorem 8, comparing the approximation power of best N -term approxima-
tion versus approximations based on uniform refinements. The latter ones are
governed essentially by regularity in L2. Convergence rates N−s on uniform
grids with respect to some energy norm ‖ · ‖Ht are obtained essentially if and
only if the approximated function belongs to Ht+ds. On the other hand, the
same rate can still be achieved by best N -term approximation as long as the
approximated functions belong to the (much larger) space Bt+sd

τ (Lτ ) where
τ−1 = s+ 1/2.

The connection of these facts with the present adaptive schemes is clear
from the remarks in Section 8.12. In fact, (113) says that those sequences for
which σN,�2(v) decays like N−s are (almost) those in �τ . On the other hand,
�τ is directly related to regularity through relations of the type (27). Here the
following version is relevant which refers to measuring the error in H = Ht,
say, see [34]. In fact, when H = Ht, D = Dt and D−tΨ is a Riesz basis for
Ht, one has

u ∈ �τ ⇐⇒ u =
∑

λ

uλ2−t|λ|ψλ ∈ Bt+sd
τ (Lτ (Ω)),

where again 1
τ = s+ 1

2 . Thus, functions in the latter space, that do not belong
to Ht+ds can be recovered by the adaptive scheme at an asymptotically better
rate when compared with uniform refinements. The situation is illustrated
again by Figure 7 which indicates the topography of function spaces. While
in Figure 4 embedding in L2 mattered, Figure 7 shows embedding in Ht. The
larger r = t + sd the bigger the gap between Hr and Br

τ (Lτ ). The loss of
regularity when moving to the right from Hr at height r is compensated by
judiciously placing the degrees of freedom through nonlinear approximation.
Moreover, Theorem 8 says that this is preserved by the adaptive scheme.

Now the question is whether and under which circumstances the solutions
to (54) have higher Besov-regularity than Sobolev-regularity to take full ad-
vantage of adaptive solvers. For scalar elliptic problems this problem has been
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treated e.g. in [32, 33]. The result essentially says that for rough boundaries
such as Lipschitz or even polygonal boundaries the Besov-regularity of solu-
tions is indeed higher than the relevant Sobolev-regularity, which indicates
the effective use of adaptive techniques.

The analysis also shows that the quantitative performance of the adaptive
scheme, compared with one based on uniform refinements, is the better the
larger the Hr-norm of the solution is compared with its Br

τ (Lτ )-norm.

� ��

� ��

� ��
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Fig. 7. Embedding in Ht

Similar results can be found for the Stokes System [32, 36, 33]. We know
that, if the solution U = (u, p) of (75) satisfies

u ∈ B1+sd
τ (Lτ (Ω)), p ∈ Bsd

τ (Lτ (Ω)),
1
τ

= s+
1
2
, (118)

the solution components satisfy

σN,H1
0 (Ω)(u) <∼ N−s, σN,L2(Ω)(q) <∼ N−s.

Thus, again the question arises under which circumstances has the solution
to the Stokes problem a high Besov regularity, which according to Theorem
8 and (118), would result in correspondingly high convergence rates provided
by the adaptive scheme. The following result can be found in [36].

Theorem 11. For d = 2 the strongest singularity solutions (uS , pS) of the
Stokes problem on an L-shaped domain in IR2 belong to the above scale of
Besov spaces for any s > 0. The Sobolev regularity is limited by 1.544483...,
resp. 0.544483.... Thus arbitrarily high asymptotic rates can be obtained by
adaptive schemes of correspondingly high order.

Numerical experiments for the adaptive Uzawa scheme from Section 8.4 (see
(100)) for the situation described in Theorem 11 are reported in [36]. Therefore
we give here only some brief excerpts. The first example concerns a strong
singularity of the pressure component. Graphs of the solution components are
depicted in Figure 8.
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Fig. 8. Exact solution for the first example. Velocity components (left and middle)
and pressure (right). The pressure functions exhibits a strong singularity

The second example involves a pressure which is localized around the reen-
trant corner, has strong gradients but is smooth, see Figure 9. To assess the

Fig. 9. Exact solution for the second example. Velocity components (left and mid-
dle) and pressure (right).

quantitative performance of the adaptive schemes, we relate the errors for the
approximations produced by the scheme with the corresponding best N -term
approximation error and define

ρx :=
‖x − xΛ‖�2
‖x − x#Λ‖�2

, rx :=
‖x − xΛ‖�2

‖x‖�2
.

A detailed discussion of the results for the first example are given in [36].
The factors ρx for velocity and pressure stay clearly below 1.5, except on the
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first three refinement levels. This is somewhat due to the provisional way of
factoring out the constants in the pressure component which pulls in the full
level of scaling functions.

Therefore we concentrate here only on an experiment for the second ex-
ample, where the wavelet bases ΨX and ΨM are chosen in such a way that for
fixed trial spaces the LBB-condition would be violated. The results are shown
in Table 1, where Λx refers to the support of the component x. The results fully

It #Λu ρu ru #Λv ρv rv #Λp ρp rp

3 5 1.00 0.7586 5 1.00 0.7588 243 2.23810 0.1196
4 20 1.13 0.4064 24 1.45 0.3979 262 2.08107 0.0612
5 61 1.47 0.2107 77 1.79 0.2107 324 2.72102 0.0339
6 178 1.33 0.1060 198 1.52 0.1306 396 2.81079 0.0209
7 294 1.19 0.0533 286 1.46 0.0744 674 2.21371 0.0108
8 478 1.25 0.0271 531 1.46 0.0362 899 1.83271 0.0071

Table 1. Results for the second example with piecewise linear trial functions for
velocity and pressure - LBB condition is violated

confirm the theoretical predictions concerning the role of the LBB-condition.
The factor ρp is only slightly larger than for LBB-compatible choices of ΨX
and ΨM .

9 Further Issues, Applications

We shall briefly touch upon several further issues that are currently under
investigation or suggest themselves from the previous developments.

9.1 Nonlinear Problems

A natural step is to apply the same paradigm to nonlinear variational problems
which is done in [28, 29]. We shall briefly indicate some of the ideas for the
simple example of the following boundary value problem

−∆u+ u3 = f in Ω, u = 0 on Γ = ∂Ω. (119)

A natural weak formulation would be to look for u ∈ H = H1
0 (Ω) such that

a(v, u) := 〈∇v,∇u〉 + 〈v, u3〉 = 〈v, f〉, v ∈ H1
0 (Ω). (120)

This presupposes, of course, that u3 ∈ H−1(Ω), i.e., that the mapping u �→ u3

takes H1
0 (Ω) into H−1(Ω). By simple duality arguments this can indeed be

confirmed to be the case as long as the spatial dimension d is bounded by 4. It
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is then not hard to show that (120) is the Euler equation for the minimization
of a strictly convex functional and thus turns out to possess a unique solution.

The next step is to transform (120) into wavelet coordinates

R(u) = 0, (121)

where
R(u) = Au + D−1〈Ψ, u3〉 − f ,

and with (D)λ,ν = δλ,ν2|λ|

A = D−1〈∇Ψ,∇Ψ〉D−1, f = D−1〈Ψ, f〉.

Now (121) is to be treated by an iterative method. The simplest version is a
gradient iteration of the form

un+1 = un − ωR(un), n = 0, 1, 2, . . . (122)

In fact, taking the bounded invertibility of A on �2 as well as the above
mentioned mapping property of the nonlinearity into account, one can show
that for a suitable damping parameter ω the error is reduced in each step by
a factor ρ < 1.

As before the objective is to carry out the iteration approximately by an
adaptive application of the involved operators. The application of A can be
based again on the routine MULT discussed above. The treatment of the
nonlinearity raises several issues:

(1) Knowing the significant coefficients of v ∈ �2 predict the location of the
significant coefficients of R(v), so that an overall accuracy tolerance is
met.

(2) Knowing the location of the significant coefficients, compute them effi-
ciently.

Problem (1) is treated for a class of nonlinearities in [29]. The resulting
algorithm is then used in [28] to devise adaptive algorithms that exhibit again
in some range asymptotically optimal work/accuracy balances, provided that
the significant coefficients in the nonlinearity can be computed efficiently.

This latter task (2), in turn, can be attacked by the techniques from [48,
10]. The main idea can be sketched as follows. The searched for array

w := F(u) = D−1〈Ψ, F (u)〉, F (u) := u3,

consists of the dual wavelet coefficients of the function w := wT Ψ̃ ∈ L2(Ω).
Thus, as soon as one has some approximation w̃ to w in L2, the Riesz-basis
property says that

‖w − w̃‖�2 <∼ ‖w − w̃‖L2 ,

that is, one also has a good approximation w̃ to w in �2 when w̃ are the dual
wavelet coefficients of the approximation w̃. The objective is now to construct
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w̃ with the aid of suitable quadrature techniques and quasi-interpolants in
combination with local single scale representations. The array w̃ is then ob-
tained by local multiscale transformations. An important point is that quadra-
ture is not used for the approximation of the individual entries but for deter-
mining the global approximant w̃. For details the reader is referred to [48, 10].

9.2 Time Dependent Problems

The simplest example of a time dependent problem, that can be attacked by
the above concepts, is the heat equation or more generally

∂tu = Lu,

where L is an elliptic operator (incorporating as above homogeneous boundary
conditions). Using an implicit time discretization, the method of lines turns
this into a series of elliptic boundary value problems, which can be treated by
the concepts discussed above.

An alternative is to write

u(t) = etLu(0)

and utilize the following representation of the exponential

etLu0 =
1

2πi

∫

Γ

etz(zI − L)−1u0dz,

which in a somewhat different context has been also done in [58]. Here Γ is
a curve in the complex plane avoiding the spectrum of L. Approximating the
right hand side by quadrature, we obtain

u(t) ≈
∑

n

ωne
tzn(znI − L)−1u0,

see [58, 63]. Thus one has can solve the individual problems (znI−L)u(n) = u0
in parallel.

10 Appendix: Some Useful Facts

For the convenience of the reader a few useful facts are summarized in this
section which have been frequently referred to in previous sections.

10.1 Function Spaces

We collect first a few definitions concerning function spaces. Standard refer-
ences are [1, 11, 73].
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Sobolev spaces of integer order k (on bounded domains or IRd) are defined
as W k

p (Ω) := {f : ∂αf ∈ Lp(Ω), |α| ≤ k}, where derivatives are understood
in the weak sense. The corresponding (semi-)norms are given by |f |Wk

p (Ω) :=
(∑

|α|=k ‖∂αf‖
p
Lp(Ω)

)1/p
, ‖v‖p

Wk
p (Ω) :=

∑k
m=0 |f |

p
Wm

p (Ω).
Fractional order spaces can be defined by intrinsic norms with k := �t :

‖v‖W t
p(Ω) =



‖v‖p
Wk

p (Ω) +
∑

|α|=k

∫

Ω

∫

Ω

|∂αv(x) − ∂αv(y)|p
|x− y|d+tp dxdy





1/p

.

Negative indices are handled by duality.
An alternative is offered by extension to IRd and using then Fourier trans-

forms or by interpolation. This leads to the notion of Besov-spaces. For a given
fixed r and any t < r the quantities

|v|Bt
q(Lp(Ω)) :=






(∞∫

0
[s−tωr(f, s,Ω)p]

q ds
s

)1/q

, 0 < q < ∞;

sups>0 s
−tωr(f, s,Ω)p, q = ∞,

define equivalent Besov semi-norms. Here we have employed the Lp-modulus
of continuity:

ωr(f, t, Ω)p := sup
|h|≤t

‖∆r
hf‖Lp(Ωr,h),

where
∆hf := f(· + h) − f(·), ∆k

h = ∆h ◦∆k−1
h

and Ωr,h := {x : x+ sh ∈ Ω, s ∈ [0, r]}.
Important special cases are:

• W t
p = Bt

p(Lp) for t > 0, s �∈ IN , (p �= 2)
• Ht := W t

2 = Bt
2(L2) for t ∈ IR (H−t := (Ht)′), where as before

‖f‖X′ := sup
g∈X,g �≡0

〈f, g〉
‖g‖X

.

10.2 Local Polynomial Approximation

Estimates of the following type are frequently used, see e.g. [55].

inf
P∈Pk

‖v − P‖Wm
p (Ω) <∼ (diamΩ)k−m|v|Wk

p (Ω), (m < k)

inf
P∈Pk

‖v − P‖Lp(Ω) <∼ (diamΩ)t|v|Bt
q(Lp(Ω)),

inf
P∈Pk

‖v − P‖Lp(Ω) <∼ sup
t>0

ωk(f, t, Ω)p.
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Idea of proof: By rescaling it suffices to consider a reference domain with
unit diameter. Suppose that infP∈Pk

‖vn − P‖Wm
p (Ω) ≥ n|vn|Wk

p (Ω). Rescale
to conclude that

1 = inf
P∈Pk

‖wn − P‖Wm
p (Ω) = ‖wn‖Wm

p (Ω) ≥ n|wn|Wk
p (Ω).

Thus {wn}n is precompact in Wm
p , that is there exists w ∈ Wm

p such that

|w|Wk
p (Ω) = lim

n→∞ |wn|Wk
p (Ω) = 0,

which implies that w ∈ Pk. On the other hand, infP∈Pk
‖w − P‖Wm

p (Ω) = 1
which is a contradiction. This provides the first estimate. The remaining cases
are similar. �

10.3 Condition Numbers

The connection between the order of an operator and the condition numbers
of related stiffness matrices can be described as follows.

Remark 19 If a(·, ·) ∼ ‖ · ‖2
Ht is symmetric and Ψ is an L2-Riesz-basis, then

for J := max {|λ| : λ ∈ Λ}, min {|λ| : λ ∈ Λ} <∼ 1, one has

cond2 (a(ΨΛ, ΨΛ)) ∼ 22|t|J , J → ∞.

Proof:

max
v∈SΛ

a(v, v)
‖v‖2

L2

≥ a(ψλ, ψλ)
‖ψλ‖2

L2

≥ min
v∈SΛ

a(v, v)
‖v‖2

L2

,

which gives

cond2(a(ΨΛ, ΨΛ)) >∼

a(ψλ1 ,ψλ1 )
‖ψλ1‖2

L2

a(ψλ2 ,ψλ2 )
‖ψλ2‖2

L2

.

Since a(ψλ, ψλ) ∼ ‖ψλ‖2
Ht the norm equivalences (16) imply 2t|λ| ∼ ‖ψλ‖Ht .

Now setting

|λ1| =
{

max {|λ| : λ ∈ Λ} if t ≥ 0,
min {|λ| : λ ∈ Λ} if t < 0,

and

|λ2| =
{

min {|λ| : λ ∈ Λ} if t ≥ 0,
max {|λ| : λ ∈ Λ} if t < 0,

we conclude cond2(a(ΨΛ, ΨΛ)) >∼ 22J|t|. As for the upper estimate, consider
first the case t < 0:

min
v∈SΛ

a(v, v)
‖v‖2

L2

∼ min
dΛ∈IR#Λ

‖dTΛΨΛ‖2
Ht

‖dΛ‖2
�2

(NE)∼ min
dΛ∈IR#Λ

‖D−tdΛ‖2
�2

‖dΛ‖2
�2

>∼ 2−|t|J ,
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while

max
v∈SΛ

a(v, v)
‖v‖2

L2

<∼ 1.

In the case t > 0, the Bernstein estimate (29) yields

max
v∈SΛ

a(v, v)
‖v‖2

L2

<∼ max
v∈SΛ

‖v‖2
Ht

‖v‖2
L2

, <∼ 2Jt,

which shows that cond2(a(ΨΛ, ΨΛ)) <∼ 22J|t|. �
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Summary. This survey consists of five parts. In the first section we describe a model
problem and a two-level algorithm in order to motivate the multilevel approach. In
Section 2 an abstract multilevel algorithm is described and analyzed under some
regularity assumptions. An analysis under less stringent assumptions is given in
Section 3. Non-nested spaces and varying forms are treated in Section 4. Finally, we
show how the multilevel framework provides computationally efficient realizations
of norms on Sobolev scales.

1 Introduction

We consider a two-level multigrid algorithm applied to a simple model prob-
lem in this section. The purpose here is to describe and motivate the use of
multiple grids. We will give a complete analysis of this algorithm. For this
purpose and for the treatment of multilevel methods, we first provide some
preliminary definitions. Next, a model problem and its finite element approx-
imation are described. The two-level method is then defined and an analysis
of its properties as a reducer/preconditioner is provided.

1.1 Sobolev Spaces

The iterative convergence estimates for multigrid algorithms applied to the
computation of the discrete approximations to partial differential equations
are most naturally analyzed using Sobolev spaces and their associated norms.
To be precise, we shall give the definitions here although a more thorough
discussion can be found in, for example, [1], [14] and [19].

Let Ω be a Lebesgue measurable set in d dimensional Euclidean space Rd

and f be a real valued function defined on Ω. We denote by

‖f‖Lp(Ω) =
(∫

Ω

|f(x)|p dx
)1/p
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the Lp(Ω) norm of f . Let N denote the set of nonnegative integers and let
α = (α1, . . . , αN ), with αi ∈ N, be a multi-index. We set

|α| = α1 + · · · + αN

and

Dα =
(

∂

∂x1

)α1
(

∂

∂x2

)α2

· · ·
(

∂

∂xN

)αN

.

The Sobolev spaces W s
p (Ω) for s ∈ N are defined to be the set of distributions

f ∈ D′(Ω) (cf. [17]) for which the norm

‖f‖W s
p (Ω) =

(
∑

|α|≤s
‖Dαf‖pLp(Ω)

)1/p

< ∞.

When p = 2, the spaces are Hilbert spaces and are of special interest in
this book. We shall denote these by Hs(Ω) ≡ W s

2 (Ω). The corresponding
norm will be denoted by

‖ · ‖s,Ω = ‖ · ‖W s
2 (Ω).

For real s with i < s < i+1, the Sobolev space Hs(Ω) is defined by interpola-
tion (using the real method) between Hi(Ω) and Hi+1(Ω) (see, e.g., [12], [19]
or Appendix A of [3] ). The norm and inner product notation will be further
simplified when the domain Ω is clear from the context, in which case we use

‖ · ‖s = ‖ · ‖s,Ω and (·, ·) = (·, ·)Ω .

We will also use certain Sobolev spaces with negative indices. These will be
defined later as needed.

1.2 A Model Problem

In this section we consider the Dirichlet problem on a bounded domain Ω
in R2. This problem and its finite element approximation can be used to
illustrate some of the most fundamental properties of the multigrid algorithms.
Let

∆ =
∂2

∂x2 +
∂2

∂y2 .

Given f in an appropriately defined Sobolev space, consider the Dirichlet
problem {

−∆u = f, in Ω,
u = 0, on ∂Ω.

(1)

For v, w ∈ H1(Ω), let

D(v, w) =
∫

Ω

(
∂v

∂x

∂w

∂x
+
∂v

∂y

∂w

∂y

)

dxdy.
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Denote by C∞
0 (Ω) the space of infinitely differentiable functions with compact

support in Ω. By Green’s identity, for φ ∈ C∞
0 (Ω),

(f, φ) = (−∆u, φ) = D(u, φ). (2)

Let H1
0 (Ω) be the closure of C∞

0 (Ω) with respect to ‖ · ‖1. The Poincaré
inequality implies that there is a constant C > 0 such that

‖v‖2
0 ≤ CD(v, v), for all v ∈ H1

0 (Ω).

Hence, we can take D(·, ·)1/2 to be the norm on H1
0 (Ω). This changes the

Hilbert space structure.
In the above inequality, C represents a generic positive constant. Such

constants will appear often in this book and will be denoted by C and c, with
or without subscript. These constants can take on different values at different
occurrences, however, they will always be independent of mesh and grid level
parameters.

For a bounded linear functional f on H1
0 (Ω), the weak solution u of (1)

satisfies
D(u, φ) = (f, φ), for all φ ∈ H1

0 (Ω). (3)

Here (f, φ) is the value of the functional f at φ. If f ∈ L2(Ω), it coincides
with the L2-inner product. Existence and uniqueness of the function u ∈
H1

0 (Ω) satisfying (3) will follow from the Poincaré inequality and the Riesz
Representation Theorem.

Theorem 1.1 (Riesz Representation Theorem) Let H be a Hilbert space
with norm ‖ · ‖ and inner product (·, ·)H . Let f be a bounded linear functional
on H, i.e.,

|f(φ)| ≤ C(f)‖φ‖.

Then there exists a unique uf ∈ H such that

(uf , φ)H = f(φ), for all φ ∈ H.

To apply the above theorem to (3), we take H = H1
0 (Ω) with (·, ·)H =

D(·, ·) and set
f(φ) = (f, φ), for all φ ∈ H1

0 (Ω).

Then, by the definition of ‖ · ‖(H1
0 (Ω))′ and the Poincaré inequality,

|f(φ)| ≤ ‖f‖(H1
0 (Ω))′ ‖φ‖1 ≤ C‖f‖(H1

0 (Ω))′ D(φ, φ)1/2.

Thus, f(·) is a bounded linear functional on H and Theorem 1.1 implies that
there is a unique function u ∈ H = H1

0 (Ω) satisfying (3).
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1.3 Finite Element Approximation of the Model Problem

In this subsection, we consider the simplest multilevel finite element approxi-
mation spaces. We start with the Galerkin Method. subspace of H1

0 (Ω). The
Galerkin approximation is the function u ∈ M satisfying

D(u, φ) = (f, φ), for all φ ∈ M. (4)

As in the continuous case, the existence and uniqueness of solutions to (4)
follows from the Poincaré inequality and the Riesz Representation Theorem.
We shall consider spaces M which result from multilevel finite element con-
structions.

We first define a nested sequence of triangulations. Let Ω be a domain
with polygonal boundary and let T1 be a given (coarse) triangulation of Ω.
Successively finer triangulations {Tk}, k = 2, . . . , J are formed by subdividing
the triangles of Tk−1. More precisely, for each triangle τ of Tk, Tk+1 has four
triangles corresponding to those formed by connecting the midpoints of the
sides of τ . Note that the angles of the triangles in the finest triangulation
are the same as those in the coarsest. Thus, the triangles on all grids are of
quasi-uniform shape independent of the mesh parameter k. This construction
is illustrated in Figure 1. Nested approximation spaces are defined in terms
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Fig. 1. Nested triangulations

of the triangulations. Let Mk, for k = 1, . . . , J , be the space of continuous
piecewise linear functions on Tk which vanish on ∂Ω. Set h1 to be the length
of the side of maximum length in T1 and hk = 2−k+1h1. We clearly have that

M1 ⊂ M2 ⊂ · · · ⊂ MJ ≡ M ⊂ H1
0 (Ω).

We also denote h = hJ .
The sequence of spaces defined above satisfy the following approximation

properties: For v ∈ H1
0 (Ω)∩Hr(Ω) with r = 1 or 2, there exists χ ∈ Mk such

that
‖v − χ‖2

0 + h2
k‖v − χ‖2

1 ≤ Ch2r
k ‖v‖2

r. (5)

See, e.g., [11] for a proof.
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1.4 The Stiffness Matrix and its Condition Number

The point of our multigrid algorithms is to develop effective iterative tech-
niques for computing approximate solutions satisfying equations exemplified
by (4). Functions in M are most naturally represented in terms of a basis.
Order the interior vertices of TJ , 1 ≤ i . . . ≤ NJ and let φi ∈ M be such that

φi =
{

1 at xi
0 at xj �= xi.

Since any continuous, piecewise linear function is determined by its values at
the vertices,

u =
NJ∑

i=1

ũi φi where ũi = u(xi).

Hence,
NJ∑

i=1

ũi D(φi, φj) = (f, φj). (6)

Let A≈J
denote the stiffness matrix [A≈J

]ij = D(φi, φj). Equation (6) is equiv-
alent to

A≈J
ũ = f

∼
, (7)

where ũ = (ũ1, . . . , ũN )T , f
∼

= (f
∼1, . . . , f∼N

)T and f
∼i

= (f, φi).
It is well known that the rate of convergence of simple linear iterative

methods or the conjugate gradient method, directly applied to (7), can be
bounded in terms of the condition number of A≈J

(cf. [3]). We will now estimate
this condition number.

Let v be in MJ and write

v =
NJ∑

i=1

ṽi φi.

Let τ be a triangle of TJ . Since τ is of quasi-uniform shape and v is linear on
τ , we clearly have that ‖v‖2

0,τ is equivalent to the sum of the squares of the
values of v at the vertices of τ times h2. By summing over the triangles,

‖v‖2
0 ≈ h2

NJ∑

i=1

ṽ2
i , v ∈ MJ .

The notation ≈ means equivalence of norms with constants of equivalence
independent of h. Hence, by the Poincaré inequality,

h2
NJ∑

i=1

ṽ2
i ≤ C‖v‖2

0 ≤ CD(v, v) = C

NJ∑

i,j=1

[A≈J
]ij ṽiṽj , v ∈ MJ .
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This means that the smallest eigenvalue of A≈J
is bounded below by ch2.

Let τ be a triangle in TJ . Since v is linear on τ and τ is of quasi-uniform
shape, we have

∫

τ

|∇v|2 dx ≈ [v(a) − v(b)]2 + [v(b) − v(c)]2, v ∈ MJ .

Here a, b, c are the vertices of τ . By summing and using obvious manipulations,
it follows that

D(v, v) ≤ C1

NJ∑

i=1

ṽ2
i , for all v ∈ MJ .

This means that the largest eigenvalue is bounded and hence the condition
number of A≈J

is bounded by

κ(A≈J
) ≤ Ch−2. (8)

It is not difficult to show that the estimate (8) is sharp, i.e., there is a constant
c not depending on J such that

κ(A≈J
) ≥ ch−2.

We leave this as an exercise for the reader. This means that the problem is
rather ill conditioned and, thus, iterative methods applied directly to (7) will,
in general, converge slowly.

1.5 A Two-Level Multigrid Method

To motivate the two-level multigrid method, we start by considering the simple
linear iterative method

ũn+1 = ũn − λ≈
−1
J (A≈J

ũn − f
∼

). (9)

Here λ≈J
denotes the largest eigenvalue of A≈J

. Since A≈J
is symmetric and

positive definite, there is a basis {ψ̃i}, for i = 1, . . . , N of eigenfunctions
with corresponding eigenvalues 0 < η1 ≤ η2 ≤ · · · ≤ ηN = λJ . From (9), it
immediately follows that the error

ẽn = ũ− ũn =
N∑

i=1

ẽni ψ̃i

satisfies
ẽn+1
i = (1 − ηi/λ≈J

)ẽni .

This means that the rate of reduction of the i’th error component is ρi =
(1 − ηi/λ≈J

). For ηi on the order of λ≈J
, this reduction is bounded away from

one and corresponds to a good reduction. However, for ηi near η1 ≈ ch2,
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ρi = 1 − ch2 which is near 1. This means that the components of the error
corresponding to small eigenvalues will converge to zero rather slowly.

The two-level multigrid algorithm can now be motivated as follows. Since
the form (A≈J

ṽ, ṽ) is equivalent to the sum of the squares of differences be-
tween neighboring mesh points, the components corresponding to the larger
eigenvalues are highly oscillatory. In contrast, the components corresponding
to the smaller eigenvalues are smoother and should be adequately approxi-
mated by coarser grid functions. This suggests combining a simple iteration
of the form of (9) (to reduce the components corresponding to large eigen-
values) with a coarse grid solve (to reduce the components corresponding to
smaller eigenvalues).

To describe this procedure, it is most natural to consider the computa-
tional problem more abstractly as one of finding functions in finite element
subspaces. To this end, we define linear operators on the finite element spaces
as follows: Let Ak : Mk → Mk be defined by

(Akv, φ) = D(v, φ), for all φ ∈ Mk. (10)

Clearly, Ak is well defined since Mk is finite dimensional. Moreover, Ak is
clearly symmetric and positive definite with respect to the inner product (·, ·).
Let Qk denote the L2(Ω) projection onto Mk and let Pk denote the orthogonal
projector with respect to the D(·, ·) inner product. These are defined by

(Qkv, φ) = (v, φ), for all v ∈ L2(Ω), φ ∈ Mk,

and
D(Pkv, φ) = D(v, φ), for all v ∈ H1(Ω), φ ∈ Mk.

Now (4) can be rewritten as

AJu = fJ ≡ QJf.

We denote by λJ the largest eigenvalue of AJ . By the well known inverse
properties for M ,

(AJv, v) = D(v, v) ≤ Ch−2(v, v), for all v ∈ M.

This means that the largest eigenvalue λJ of AJ is bounded by Ch−2. The
Poincaré inequality implies that the smallest eigenvalue of AJ is bounded from
below.

In this notation, the two-level multigrid algorithm is given as follows.

Algorithm 1.1 Given ui ∈ M approximating the solution u = A−1
J fJ of (4),

define ui+1 ∈ M as follows:

(1) Set ui+1/3 = ui + λ−1
J (fJ −AJu

i).
(2) Define ui+2/3 = ui+1/3 + q, where

AJ−1q = QJ−1(fJ −AJu
i+1/3).
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(3) Finally, set ui+1 ≡ ui+3/3 = ui+2/3 + λ−1
J (fJ −AJu

i+2/3).

Steps 1 and 3 above are simple iteration of the form

ui+1 = ui + λ−1
J (fJ −AJu

i). (11)

In terms of the coefficient vectors ũi and the dual vector f
∼J

, it can be written
as

ũi+1 = ũi + λ−1
J G≈

−1
J (f

∼J
−A≈J

ũi)

where G≈J
= [(φi, φj)] is the Gram matrix. This matrix is symmetric and

positive definite and all its eigenvalues are on the order of Ch2
J . Note that λJ ≈

h−2
J and λ≈J

≈ 1, hence λ−1
J G≈

−1
J is spectrally equivalent to λ≈

−1
J I. Consequently

iteration (11), although slightly different from iteration (9), has a smoothing
property similar to that of (9), i.e., the resulting error after application of
(11) should be less oscillatory. Steps 1 and 3 above are often referred to as
smoothing steps.

The middle step is called a coarse grid correction step. Note that for φ ∈
MJ−1,

(QJ−1AJv, φ) = (AJv, φ) = D(v, φ) = D(PJ−1v, φ) = (AJ−1PJ−1v, φ),

i.e., QJ−1AJ = AJ−1PJ−1. Set ei = u − ui and ei+j/3 = u − ui+j/3. We see
that

q = A−1
J−1QJ−1AJ(u− ui+1/3) = PJ−1e

i+1/3.

Thus, ei+2/3 = (I − PJ−1)ei+1/3. This means that ei+2/3 is the D(·, ·) or-
thogonal projection of ei+1/3 into the subspace of MJ which is orthogonal to
MJ−1. We now prove the following theorem.

Theorem 1.2 Set ei = u− ui, where u is the solution of (4) and ui is given
by Algorithm 1.1. Then

|||ei+1||| ≤ δ|||ei||| .
Here δ < 1 independently of h and ||| · ||| denotes the norm defined by

|||v||| = D(v, v)1/2.

Proof. From Step (1) and Step (3) of Algorithm 1.1 and the above discussion,

ei+1/3 = (I − λ−1
J AJ)ei,

ei+2/3 = (I − PJ−1)ei+1/3,

and

ei+1 = ei+3/3 = (I − λ−1
J AJ)ei+2/3.

Thus,
ei+1 = (I − λ−1

J AJ)(I − PJ−1)(I − λ−1
J AJ)ei ≡ Eei.
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Clearly,
|||ei+1||| ≤ |||E||| |||ei||| ,

where |||E||| ≡ supv∈MJ
|||Ev|||/|||v||| is the operator norm of E . Note that E is

symmetric with respect to D(·, ·). Hence

|||E||| = sup
v∈MJ

|D(Ev, v)|
|||v|||2

= sup
v∈MJ

|||(I − PJ−1)(I − λ−1
J AJ)v|||2

|||v|||2

= |||(I − PJ−1)(I − λ−1
J AJ)|||2

= |||(I − λ−1
J AJ)(I − PJ−1)|||2.

We will estimate the last norm above. Let w ∈ M and set ŵ = (I−PJ−1)w.
Then D(ŵ, θ) = 0 for all θ ∈ MJ−1. Hence, for any θ ∈ MJ−1,

D(ŵ, ŵ) = D(ŵ, ŵ − θ) = (AJ ŵ, ŵ − θ) ≤ (AJ ŵ, AJ ŵ)1/2‖ŵ − θ‖0.

Using the approximation property (5) gives

D(ŵ, ŵ) ≤ ChJ−1(AJ ŵ, AJ ŵ)1/2D(ŵ, ŵ)1/2.

Cancelling the common factor and using λJ ≤ Ch−2
J = 4Ch−2

J−1, we obtain,

D(ŵ, ŵ) ≤ Ch2
J−1(AJ ŵ, AJ ŵ) ≤ Ĉλ−1

J (AJ ŵ, AJ ŵ).

Now I−λ−1
J AJ is symmetric with respect to D(·, ·) and σ(I−λ−1

J AJ) ⊆ [0, 1).
Hence

|||(I − λ−1
J AJ)ŵ|||2 ≤ D((I − λ−1

J AJ)ŵ, ŵ)
= D(ŵ, ŵ) − λ−1

J D(AJ ŵ, ŵ)

≤ (1 − 1/Ĉ)D(ŵ, ŵ)
≤ (1 − 1/Ĉ)D(w,w) = (1 − 1/Ĉ)|||w|||2.

This shows that |||E||| = |||(I − λ−1
J AJ)(I − PJ−1)|||2 ≤ (1 − 1/Ĉ). Therefore

|||ei+1||| ≤ (1 − 1/Ĉ) |||ei||| = δ |||ei||| ,

where δ = 1 − 1/Ĉ is independent of h.

Remark 1.1 If we omit Step 1 in Algorithm 1.1, then

ei+1 = (I − λ−1
J AJ)(I − PJ−1)ei

and hence
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|||ei+1||| = |||(I − λ−1
J AJ)(I − PJ−1)ei|||

≤ |||(I − λ−1
J AJ)(I − PJ−1)||| |||ei|||

≤ δ1/2 |||ei||| .

We obtain the same bound if we omit, instead, Step (3). One obvious advan-
tage of the symmetric algorithm is that it can be used as a preconditioner in
the PCG algorithm.

What have we gained by using the two-level scheme? In this example,

dimMJ−1 ≈ 1
4

dimMJ .

Hence A−1
J−1 is “cheaper” to compute than A−1

J . This is not a significant
improvement for very large problems. This algorithm was described only to
illustrate the multilevel technique. More efficient algorithms will be developed
in later sections by recursive application of the above idea.

Remark 1.2 The algorithm described above is not too convenient for direct
application. First of all, the largest eigenvalue explicitly appears in Steps 1 and
3. It is not difficult to see that the largest eigenvalue in these algorithms can be
replaced by any upper bound λ′

J for λJ provided that λ′
J ≤ CλJ . More impor-

tantly, Steps 1 and 3 require that Gram matrix systems be solved at each step of
the iteration. Even though these matrices are well conditioned, this results in
some unnecessary computational effort. Both of the above mentioned problems
will be avoided by the introduction of more appropriate smoothing procedures.
Smoothing procedures are studied in more detail in [3]. The more abstract
multigrid algorithms of which we will now introduce use generic smoothing
operators in place of λ−1

J I.

2 Multigrid I

In this section we develop the abstract multilevel theory. The first part gen-
eralizes the two-level method of the introduction to the multilevel case and
an analysis of the V-cycle algorithm is given under somewhat restrictive con-
ditions. The first convergence theory for the V-cycle is given in the case in
which the multilevel spaces are nested and the corresponding forms are inher-
ited from the form on the finest space. The case in which smoothing is done
only on certain subspaces is not treated here but may be found in [3]. That
theory covers the case of local mesh refinements discussed in [3] in the chapter
on applications. A more general setting is introduced in next section of these
notes. There, the requirements that the spaces be nested and that the forms
be inherited is dropped. The W-cycle is defined as well as the variable V-cycle
preconditioner.
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2.1 An Abstract V-cycle Algorithm

We consider an abstract V-cycle algorithm in this section. We shall provide a
theorem which can be used to estimate the rate of convergence of this multi-
grid algorithm. The analysis follows that of [7] and requires the so-called full
regularity and approximation assumption. The fundamental ideas of this anal-
ysis are contained in the paper [2]. However, multigrid methods are applied
to many problems which do not satisfy this hypothesis. Further results may
be found in [3] which give some bounds for the rate of convergence in the case
of less than full regularity. The first theorem provides a uniform convergence
estimate while the second gives rise to a rate of convergence which deterio-
rates with the number of levels. In the next section a stronger result is proved
using a product representation of the error.

For generality, the algorithms and theory presented in this section are
given abstractly. However, the usefulness of any abstract theory depends on
the possibility of verification of the hypotheses in various applications. We
will indicate how these conditions are satisfied for many applications. Again,
details are contained in [3].

2.2 The Multilevel Framework

In this subsection, we will set up the abstract multilevel framework. Let us
consider a nested sequence of finite dimensional vector spaces

M1 ⊂ M2 ⊂ . . . ⊂ MJ .

In addition, let A(·, ·) and (·, ·) be symmetric positive definite bilinear forms
on MJ . The norm corresponding to (·, ·) will be denoted by ‖ · ‖. We shall
develop multigrid algorithms for the solution of the following problem: Given
f ∈ MJ , find u ∈ MJ satisfying

A(u, φ) = (f, φ), for all φ ∈ MJ . (12)

As in the previous section, we will use auxiliary operators to define the
multigrid algorithms. For k = 1, . . . , J , let the operator Ak : Mk → Mk be
defined by

(Akv, φ) = A(v, φ), for all φ ∈ Mk.

The operator Ak is clearly positive definite and symmetric in both the A(·, ·)
and (·, ·) inner products. Also, we define the projectors Pk : MJ → Mk and
Qk : MJ → Mk by

A(Pkv, φ) = A(v, φ), for all φ ∈ Mk,

and
(Qkv, φ) = (v, φ), for all φ ∈ Mk.

Note that (12) can be rewritten in the above notation as
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AJu = f. (13)

We will use generic smoothing operators in our abstract multigrid al-
gorithm. Assume that we are given linear operators, Rk : Mk → Mk for
k = 2, . . . , J . Denote by Rtk the adjoint of Rk with respect to (·, ·). We shall
state further conditions concerning these operators as needed in the discus-
sion. The construction and analysis of effective smoothing operators may be
found in [3].

2.3 The Abstract V-cycle Algorithm, I

We describe a V-cycle multigrid algorithm for computing the solution u of
(13) by means of an iterative process. This involves recursively applying a
generalization of Algorithm 1.1. Given an initial iterate u0 ∈ MJ , we define a
sequence approximating u by

um+1 = MgJ(um, f). (14)

Here MgJ(·, ·) is the map of MJ × MJ into MJ defined by the following
algorithm.

Algorithm 2.1 Set Mg1(v, g) = A−1
1 g. Let k be greater than one and let

v and g be in Mk. Assuming that Mgk−1(·, ·) has been defined, we define
Mgk(v, g) as follows:

(1) Set v′ = v +Rtk(g −Akv).
(2) Set v′′ = v′ + q where q = Mgk−1(0, Qk−1(g −Akv

′)).
(3) Define Mgk(v, g) ≡ v′′′ = v′′ +Rk(g −Akv

′′).

The above algorithm is a recursive generalization of Algorithm 1.1. In
fact, if we take J = 2 and RJ = λ−1

J I then Algorithm 2.1 coincides with
Algorithm 1.1. The above algorithm replaces the solve on the J−1’st subspace
(in Algorithm 1.1) with one recursive application of the multilevel procedure.

A straightforward induction argument shows that Mgk(·, ·) is a linear map
of Mk×Mk into Mk. Moreover, it is obviously consistent. The linear operator
EJv ≡ MgJ(v, 0) is the error reduction operator for (14). That is

EJ(u− um) ≡ u− um+1 = MgJ(u, f) − MgJ(um, f) = MgJ(u− um, 0).

Steps 1 and 3 above are referred to as smoothing steps. Step 2 is called
a coarse grid correction step. Step 3 is included so that the resulting linear
multigrid operator

BJg = MgJ(0, g)

is symmetric with respect to the inner product (·, ·), and hence can be used
as a preconditioner for AJ . It is straightforward to show that with Bkg =
Mgk(0, g),

Mgk(v, g) = v +Bk(g −Akv).
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To use Bk as a preconditioner, it is often convenient to define Bkg ≡
Mgk(0, g) directly and the following algorithm gives a recursive definition of
Bk.

Algorithm 2.2 Let B1 = A−1
1 . Assuming Bk−1 : Mk−1 → Mk−1 has been

defined, we define Bk : Mk → Mk as follows. Let g ∈ Mk.

(1) Set v′ = Rtkg.
(2) Set v′′ = v′ + q where q = Bk−1Qk−1(g −Akv

′).
(3) Set Bkg ≡ v′′′ = v′′ +Rk(g −Akv

′′).

2.4 The Two-level Error Recurrence

We next derive a two-level error recurrence for the multigrid process defined
by Algorithm 2.1, i.e., we compute an expression for the error operator Ekv =
Mgk(v, 0). Let u = A−1

k g. By consistency, Ek(u−v) ≡ u−Mgk(v, g) = Mgk(u−
v, 0).

We want to express u−Mgk(v, g) in terms of u−v. We start by considering
the effect of the smoothing steps.

Now v′′′ of Algorithm 2.1 satisfies

u− Mgk(v, g) = u− v′′′ = (I −RkAk)(u− v′′) ≡ Kk(u− v′′) (15)

and v′ satisfies

u− v′ = (I −RtkAk)(u− v) ≡ K∗
k(u− v) (16)

Note that K∗
k = (I − RtkAk) is the adjoint of Kk with respect to the A(·, ·)

inner product.
We next consider the effect of the coarse grid correction step. Note that

for φ ∈ Mi with i < k,

(QiAkv, φ) = (Akv, φ) = A(v, φ) = A(Piv, φ) = (AiPiv, φ).

This means that QiAk = AiPi. Thus, q of Step 2 is given by

q = Mgk−1(0, Qk−1(g −Akv
′))

= Mgk−1(0, Qk−1Ak(u− v′))
= Mgk−1(0, Ak−1Pk−1(u− v′))
= Pk−1(u− v′) − Ek−1Pk−1(u− v′).

We used consistency for the last equality. Consequently,

u− v′′ = [(I − Pk−1) + Ek−1Pk−1](u− v′). (17)

Combining (15), (16) and (17) gives the two-level error recurrence

Ek = Kk[(I − Pk−1) + Ek−1Pk−1]K∗
k . (18)
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A simple argument using mathematical induction shows that Ek is sym-
metric, positive semidefinite with respect to the A(·, ·) inner product, i.e.,

0 ≤ A(Ekv, v), for all v ∈ Mk.

In particular,
0 ≤ A(EJv, v), for all v ∈ MJ . (19)

2.5 The Braess-Hackbusch Theorem

We prove a result given by [2] in this subsection. This result was the first
which showed that multigrid algorithms could be expected to converge with
very weak conditions on the smoother.

For this result, we require two conditions. The first is on the smoother.
Let λk be the largest eigenvalue of Ak. Let ω be in (0, 2). For v, g ∈ Mk,
Richardson’s iteration for the solution of Akv = g is defined by

vm+1 = vm + ωλ−1
k (g −Akv

m).

The corresponding error reduction operator is

Kk,ω = I − (ωλ−1
k )Ak.

Note that Kk = (I −RkAk) and

A(Kkv,Kkv) = A((I −RkAk)v, v),

where
Rk = (I −K∗

kKk)A−1
k = Rtk +Rk −RtkAkRk

is the linear smoothing operator corresponding to the symmetrized iterative
process with reducer K∗

kKk. Our condition concerning the smoothers Rk, k =
2, . . . , J is related to Richardson’s iteration with an appropriate parameter ω.

Condition (SM.1) There exists an ω ∈ (0, 1), not depending on J , such that

0 ≤ A(Kkv,Kkv) ≤ A(Kk,ωv, v), for all v ∈ Mk, k = 2, 3, . . . , J,

or equivalently

ω

λk
(v, v) ≤ (Rkv, v) ≤ (A−1

k v, v), for all v ∈ Mk, k = 2, 3, . . . , J.

Remark 2.1 Note that both K∗
kKk and Kk,ω are symmetric with respect to

A(·, ·) and positive semi-definite on Mk. Condition (SM.1) implies that K∗
kKk

is less than or equal to Kk,ω. That is, the smoother Rk results in a reduction
which is at least as good as the result obtained using the Richardson smoother
(ω/λk)I.
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The second condition which we will require is the so-called full regularity
and approximation condition.

Condition (A.1) There is a constant CP not depending on J such that

‖(I − Pk−1)v‖2 ≤ CPλ
−1
k A(v, v), for all v ∈ Mk, k = 2, . . . , J.

In applications, the verification of this condition requires that the underly-
ing elliptic problem satisfy full elliptic regularity. In the model problem of
Section 1, Pk−1 is the elliptic projector. The above condition is obtained by
application of finite element duality techniques.

We can now state the Braess-Hackbusch Theorem.

Theorem 2.1 Let MgJ(·, ·) be defined by Algorithm 2.1. Assume that Con-
dition (A.1) holds and that the smoothers Rk satisfy Condition (SM.1). Then
the error reduction operator EJv = MgJ(v, 0) of Algorithm 2.1 satisfies

0 ≤ A(EJv, v) ≤ CP

CP + ω
A(v, v), for all v ∈ MJ .

This means that the sequence um defined by (14) satisfies

|||u− um||| ≤
(

CP

CP + ω

)m

|||u− u0||| .

Before proving this theorem, we state and prove the following lemma.

Lemma 2.1 Assume that Condition (SM.1) holds. Then for any v ∈ Mk,

1
λk

‖AkK∗
kv‖2 ≤ 1

ω
[A(v, v) −A(K∗

kv,K
∗
kv)].

Proof. Let v be in Mk. By Condition (SM.1) with v replaced by AkK
∗
kv,

1
λk

‖AkK∗
kv‖2 ≤ 1

ω
(RkAkK∗

kv,AkK
∗
kv) =

1
ω
A((I −K∗

kKk)K∗
kv,K

∗
kv)

=
1
ω
A((I − K̄k)K̄kv, v),

where K̄k = KkK
∗
k . The operator K̄k is symmetric and non-negative with

respect to the A(·, ·) inner product.
It follows from the symmetry of K̄k that

A((I − K̄k)K̄kv, v) ≤ A((I − K̄k)v, v) = [A(v, v) −A(K∗
kv,K

∗
kv)].

Combining the above inequalities completes the proof of the lemma.
Proof of Theorem 2.1. By (19), we need only prove the upper inequality.

The proof is by induction. We will show that for i = 1, . . . , J ,

A(Eiv, v) ≤ δA(v, v), for all v ∈ Mi (20)



112 James H. Bramble

holds for δ = CP/(CP + ω). Since E1 = 0 is the trivial operator on M1, (20)
obviously holds for i = 1. Let k be greater than one and assume that (20)
holds for i = k − 1. Let v be in Mk. Using the two-level recurrence formula
(18) gives

A(Ekv, v) = A((I − Pk−1)K∗
kv,K

∗
kv) +A(Ek−1Pk−1K

∗
kv, Pk−1K

∗
kv).

Applying the induction hypothesis we have

A(Ekv, v) ≤ A((I − Pk−1)K∗
kv,K

∗
kv) + δA(Pk−1K

∗
kv, Pk−1K

∗
kv)

= (1 − δ)A((I − Pk−1)K∗
kv,K

∗
kv) + δA(K∗

kv,K
∗
kv). (21)

By the Cauchy-Schwarz inequality and Condition (A.1),

A((I − Pk−1)K∗
kv,K

∗
kv) ≤ ‖(I − Pk−1)K∗

kv‖‖AkK∗
kv‖

≤
(
CPλ

−1
k A((I − Pk−1)K∗

kv,K
∗
kv)
)1/2 ‖AkK∗

kv‖.

Obvious manipulations give

A((I − Pk−1)K∗
kv,K

∗
kv) ≤ CP

λk
‖AkK∗

kv‖2. (22)

Thus, (21), (22) and Lemma 2.1 imply that

A(Ekv, v) ≤ (1 − δ)CP

ω
[A(v, v) −A(K∗

kv,K
∗
kv)] + δA(K∗

kv,K
∗
kv)

= δA(v, v).

This completes the proof of the theorem.

Remark 2.2 The original result given by [2] was stated in terms of the partic-
ular smoother Rk = λ−1

k I. They also allowed a fixed number m of applications
of this smoother on each level. Theorems with variable numbers of smoothings
will appear later in these notes.

Results in this section are based on the two-level error recurrence for the
multigrid algorithm. We refer to the survey paper [4] for more detailed dis-
cussion on the development of the multigrid methods.

3 Multigrid II: V-cycle with Less Than Full Elliptic
Regularity

3.1 Introduction and Preliminaries

In this section, we provide an analysis of Algorithm 2.1 with an assumption
which is weaker than Condition (A.1). To state this condition, we require
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scales of discrete norms. The operator Ak is symmetric and positive definite
on Mk. Consequently, its fractional powers are well defined. For real s, we
consider the scale of discrete norms on Mk defined by ||| · |||s,k

|||v|||s,k = (Askv, v)
1/2, for all v ∈ Mk.

Note that
|||v|||0,k = ‖v‖ and |||v|||1,k = |||v||| .

By expanding in the eigenfunctions of Ak and using the Hölder inequality, it
follows easily that

|||v|||1+α,k ≤ |||v|||α2,k |||v|||1−α
1,k , 0 ≤ α ≤ 1.

Our theorem will be based on the following generalization of Condition
(A.1).

Condition (A.2) There exists a number α ∈ (0, 1] and a constant CP not
depending on J such that

|||(I − Pk−1)v|||21−α,k ≤ CαP λ−α
k A(v, v), for all v ∈ Mk, k = 2, . . . , J.

In the model problem of Section 1, Pk−1 is the elliptic projector. It can
be shown that for this example and s ∈ [0, 1], the norm ||| · |||s,k is equivalent
on Mk (with constants independent of J) to the Sobolev norm ‖ · ‖s. The
above condition can be then obtained by application of finite element duality
techniques.

We will also need a geometrical growth property of λk which can be verified
easily for elliptic finite element problems on a sequence of nested meshes. We
postulate this property in the following condition.

Condition (A.3) There exist positive constants γ1 ≤ γ2 < 1 such that

γ1λk+1 ≤ λk ≤ γ2λk+1 for k = 1, 2, . . . , J − 1.

When using this condition, it is convenient to introduce the symmetric
matrix Λ(α), with 0 < α ≤ 1, whose lower triangular entries are given by

Λ
(α)
ki = (λk/λi)α/2, for k ≤ i. (23)

Denote by Λ
(α)
L and Λ

(α)
U the lower and upper triangular parts of Λ(α). Con-

dition (A.3) then implies that Λ(α)
ki = (λk/λi)α/2 ≤ γ

(i−k)α/2
2 . Therefore,

‖Λ(α)
L ‖�2 = ‖Λ(α)

U ‖�2 ≤
(

γ
α/2
2

1 − γ
α/2
2

)

and ‖Λ(α)‖�2 ≤
(

1 + γ
α/2
2

1 − γ
α/2
2

)

.

The last condition needed is a condition on the uniform boundedness of
the operators Qk. This is the following.
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Condition (A.4) Let α ∈ (0, 1] be given. Then there exists a constant C ′
Q

not depending on J such that

|||Qkv|||21−α,k ≤ C ′
Q|||v|||21−α,i, for all v ∈ Mi, 1 ≤ k ≤ i ≤ J.

Before proceeding we will prove a basic lemma.

Lemma 3.1 Assume that Conditions (A.2) and (A.4) hold for the same α ∈
(0, 1] and that Condition (A.3) holds. Then

J∑

k=1

|||(Pk −Qk)v|||2 ≤ C ′
bA(v, v), for all v ∈ MJ , (24)

A(v, v) ≤ C ′
c

(

|||Q1v|||2 +
J∑

k=2

|||(Qk −Qk−1)v|||2
)

, for all v ∈ MJ , (25)

and

|||Q1v|||2 +
J∑

k=2

λk‖(Qk −Qk−1)v‖2 ≤ C ′
aA(v, v), for all v ∈ MJ . (26)

Here C ′
b = (C ′

QC
α
P)
(

γ
α/2
2

1−γα/2
2

)2

, C ′
c = (

√
C ′
b +

√
C ′
b + 1)2 and

C ′
a = 4C ′

QCP

(

1
1−γα/2

2

)2

.

Proof. Let v be in MJ . By the definition of λk,

J∑

k=1

|||(Pk −Qk)v|||2 ≤
J∑

k=1

(

λ
α/2
k |||(Pk −Qk)v|||1−α,k

)2

=
J∑

k=1

(

λ
α/2
k |||Qk(Pk − I)v)|||1−α,k

)2

.

Note that (I −Pk) =
J∑

i=k+1

(Pi−Pi−1). By the triangle inequality and Condi-

tion (A.4),

J∑

k=1

|||(Pk −Qk)v|||2 ≤ C ′
Q

J∑

k=1

(
J∑

i=k+1

λ
α/2
k |||(Pi − Pi−1)v|||1−α,i

)2

.

Note that (Pi − Pi−1) is a projector and hence Condition (A.2) implies that
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J∑

k=1

|||(Pk −Qk)v|||2 ≤ C ′
QC

α
P

J∑

k=1

(
J∑

i=k+1

(
λk
λi

)α/2

|||(Pi − Pi−1)v|||
)2

≤ C ′
QC

α
P‖Λ(α)

U ‖2
�2

J∑

k=2

|||(Pk − Pk−1)v|||2.

Condition (A.3) implies that ‖Λ(α)
U ‖2

�2
≤
(

γ
α/2
2

1−γα/2
2

)2

. Inequality (24) now

follows from the orthogonality of (Pi − Pi−1).
Now let vk = (Qk −Qk−1)v. Then

∑J
i=k+1 vi = (I −Qk)v. We have

A(v, v) =
J∑

k,i=1

A(vk, vi) =
J∑

k=1

A(vk, vk) + 2
J∑

k=1

J∑

i=k+1

A(vk, vi)

=
J∑

k=1

A(vk, vk) + 2
J∑

k=1

A(vk, (I −Qk)v)

=
J∑

k=1

A(vk, vk) + 2
J∑

k=1

A(vk, (Pk −Qk)v)

≤
J∑

k=1

|||vk|||2 + 2

(
J∑

k=1

|||vk|||2
)1/2( J∑

k=1

|||(Pk −Qk)v|||2
)1/2

≤
J∑

k=1

|||vk|||2 + 2

(
J∑

k=1

|||vk|||2
)1/2

[C ′
bA(v, v)]1/2.

Elementary algebra shows that

A(v, v) ≤ C ′
c

J∑

k=1

|||vk|||2 = C ′
c

(

|||Q1v|||2 +
J∑

k=2

|||(Qk −Qk−1)v|||2
)

for C ′
c = (

√
C ′
b +

√
C ′
b + 1)2. This proves (25).

For a proof of the (26) see [3].
We now return to the multigrid method defined by Algorithm 2.1. In this

section we continue in the framework of the previous two sections and es-
tablish four additional theorems which provide bounds for the convergence
rate of Algorithm 2.1. The proofs of these results depend on expressing the
error propagator for the multigrid algorithm in terms of a product of opera-
tors defined on the finest space. The theorem presented here gives a uniform
convergence estimate and can be used in many cases without full elliptic reg-
ularity. Several other results based on this error representation may be found
in [3].
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3.2 The Multiplicative Error Representation

The theory of Subsection 2.1 was based on a two-level error representation.
To get strong results in the case of less than full elliptic regularity, we shall
need to express the error in a different way. The fine grid error operator EJ is
expressed as a product of factors associated with the smoothings on individual
levels.

By (18), for k > 1 and any v ∈ MJ ,

(I − Pk)v + EkPkv = (I − Pk)v +Kk[(I − Pk−1) + Ek−1Pk−1]K∗
kPkv.

Let Tk = RkAkPk for k > 1 and set T1 = P1. The adjoint of Tk (for k > 1)
with respect to the inner product A(·, ·) is given by T ∗

k = RtkAkPk. Note that
I − Tk and I − T ∗

k respectively extend the operators Kk and K∗
k to operators

defined on all of MJ . Clearly (I − Pk)v = 0 for all v ∈ Mk. In addition, Pk
commutes with Tk. Thus,

(I − Pk)v + EkPkv = (I − Tk)[(I − Pk−1Pk) + Ek−1Pk−1Pk](I − T ∗
k )v

= (I − Tk)[(I − Pk−1) + Ek−1Pk−1](I − T ∗
k )v.

The second equality follows from the identity Pk−1Pk = Pk−1. Repeatedly
applying the above identity gives

EJv = (I − TJ)(I − TJ−1) · · · (I − T1)(I − T ∗
1 )(I − T ∗

2 ) · · · (I − T ∗
J ). (27)

Equation (27) displays the J ’th level error operator as a product of factors.
These factors show the precise effect of the individual grid smoothings on the
fine grid error propagator.

Our goal is to show that

0 ≤ A(EJv, v) ≤ (1 − 1/CM )A(v, v). (28)

This means that the sequence um defined by (14) satisfies

|||u− um||| ≤ (1 − 1/CM )m|||u− u0||| .

Let E0 = I and set Ek = (I − Tk)Ek−1, for k = 1, 2, . . . , J . By (27),
EJ = EJE

∗
J where E∗

J is the adjoint of EJ with respect to the A(·, ·) inner
product. We can rewrite (28) as

A(E∗
Jv,E

∗
Jv) ≤ (1 − 1/CM )A(v, v), for all v ∈ MJ ,

which is equivalent to

A(EJv,EJv) ≤ (1 − 1/CM )A(v, v), for all v ∈ MJ .

Consequently, (28) is equivalent to

A(v, v) ≤ CM [A(v, v) −A(EJv,EJv)], for all v ∈ MJ . (29)

We will establish a typical uniform convergence estimate for the multigrid
algorithm by proving (29) using the above conditions. For some other results
in this direction see [3].
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3.3 Some Technical Lemmas

We will prove in this subsection an abstract estimate which is essential to all
of our estimates. For this, we will need to use the following lemmas. The first
two are simply identities. Recall that Rk = Rk +Rtk −RtkAkRk.

Lemma 3.2 The following identity holds.

A(v, v) −A(EJv,EJv) =
J∑

k=1

(RkAkPkEk−1v,AkPkEk−1v). (30)

Proof. For any w ∈ MJ , a simple calculation shows that

A(w,w) −A((I − Tk)w, (I − Tk)w) = A((2I − Tk)w, Tkw).

Let v be in MJ . Taking w = Ek−1v in the above identity and summing gives

A(v, v) −A(EJv,EJv) =
J∑

k=1

A((2I − Tk)Ek−1v, TkEk−1v)

=
J∑

k=1

(RkAkPkEk−1v,AkPkEk−1v).

This is (30).

Lemma 3.3 Let πk : M → Mk be a sequence of linear operators with πJ = I.
Set π0 = 0 and E0 = I. Then the following identity holds.

A(v, v) =
J∑

k=1

A(Ek−1v, (πk − πk−1)v) +
J−1∑

k=1

A(TkEk−1v, (Pk − πk)v)

=

(

A(P1v, v) +
J∑

k=2

A(Ek−1v, (πk − πk−1)v)

)

+

(
J−1∑

k=2

A(TkEk−1v, (Pk − πk)v)

)

. (31)

Proof. Expanding v in terms of πk gives

A(v, v) =
J∑

k=1

A(v, (πk − πk−1)v)

=
J∑

k=1

A(Ek−1v, (πk − πk−1)v) +
J∑

k=1

A((I − Ek−1)v, (πk − πk−1)v).

Let Fk = I − Ek =
∑k
i=1 TiEi−1. Then since F0 = 0 and π0 = 0,
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J∑

k=1

A(Fk−1v, (πk − πk−1)v)

=
J∑

k=1

A(Fk−1v, πkv) −
J−1∑

k=1

A(Fkv, πkv)

=
J−1∑

k=1

A((Fk−1 − Fk)v, πkv) +A(FJ−1v, v).

Now Fk−1 − Fk = −TkEk−1. Rearranging the terms gives

J∑

k=1

A(Fk−1v, (πk − πk−1)v)

= −
J−1∑

k=1

A(TkEk−1v, πkv) +
J−1∑

k=1

A(TkEk−1v, v)

=
J−1∑

k=1

A(TkEk−1v, (Pk − πk)v).

This is the first equality in (31). Note that R1 = A−1
1 and T1 = P1 and thus

the second equality in (31) follows from the first.
Set ‖w‖R−1

k
= (R−1

k w,w)1/2 and ‖w‖Rk
= (Rkw,w)1/2 for all w ∈ Mk.

Using (30) and (31) we can prove the following basic estimate.

Lemma 3.4 Let πk : M → Mk be a sequence of linear operators with πJ = I.
Let π0 = 0. Then we have the following basic estimate.

A(v, v) ≤
[
A(v, v) −A(EJv,EJv)

]1/2 [
σ1(v) + σ2(v)

]
, (32)

where

σ1(v) =

(

A(P1v, v) +
J∑

k=2

‖(πk − πk−1)v‖2
R−1

k

)1/2

and

σ2(v) =

(
J−1∑

k=2

‖RtkAk(Pk − πk)v‖2
R−1

k

)1/2

.

Proof. We will bound the right hand side of (31). By the Cauchy-Schwarz
inequality, the first sum of (31) can be bounded as

A(P1v, v) +
J∑

k=2

A(Ek−1v, (πk − πk−1)v)

= A(P1v, v) +
J∑

k=2

(AkPkEk−1v, (πk − πk−1)v)
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≤
(

J∑

k=1

‖AkPkEk−1v‖2
Rk

)1/2(

A(P1v, v) +
J∑

k=2

‖(πk − πk−1)v‖2
R−1

k

)1/2

.

Similarly the second sum of (31) can be bounded as

J−1∑

k=2

A(TkEk−1v, (Pk − πk)v)

=
J−1∑

k=2

(RkAkPkEk−1v,Ak(Pk − πk)v)

≤
(
J−1∑

k=2

‖AkPkEk−1v‖2
Rk

)1/2( J−1∑

k=2

‖RtkAk(Pk − πk)v‖2
R−1

k

)1/2

.

Combining these two estimates and using (31) we obtain

A(v, v) ≤
(

J∑

k=1

(RkAkPkEk−1v,AkPkEk−1v)

)1/2

[σ1(v) + σ2(v)].

Using (30) in the above inequality proves the lemma.

3.4 Uniform Estimates

In this subsection, we will show that the uniform convergence estimate of
Theorem 2.1 often extends to the case of less than full regularity and approxi-
mation. The results are obtained by bounding the second factor in Lemma 3.4
from above by A(v, v).

We shall require some conditions on the smoother which we state here.
Recall that Rk = Rk + Rtk − RtkAkRk, Kk = (I − RkAk) and Kk,ω = I −
(ωλ−1

k )Ak.

Condition (SM.1) There exists a constant ω ∈ (0, 1) not depending on J
such that

0 ≤ A(Kkv,Kkv) ≤ A(Kk,ωv, v), for all v ∈ Mk, k = 2, 3, . . . , J,

or equivalently

ω

λk
(v, v) ≤ (Rkv, v) ≤ (A−1

k v, v), for all v ∈ Mk, k = 2, 3, . . . , J.

In addition to the smoother Condition (SM.1), we will require that the
smoother Rk be properly scaled. More precisely the condition is the following:

Condition (SM.2) There exists a constant θ ∈ (0, 2) not depending on J
such that
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A(Rkv,Rkv) ≤ θ(Rkv, v), for all v ∈ Mk, k = 2, 3, . . . , J.

This inequality is the same as any one of the following three inequalities:

(Rkv, v) ≥ (2 − θ)(Rkv, v) ≥
(

2 − θ

θ

)

((RtkAkRk)v, v), for all v ∈ Mk.

A simple change of variable shows that Condition (SM.2) is equivalent to
the following condition for Tk = RkAkPk.

A(Tkv, Tkv) ≤ θA(Tkv, v), for all v ∈ MJ , k = 2, 3, . . . , J.

Note that if the smoother Rk satisfies Condition (SM.1), then it also satisfies
the inequality in Condition (SM.2) with θ < 2, but possibly depending on k.
Therefore smoothers that satisfy (SM.1) will satisfy Condition (SM.2) after a
proper scaling.

Our theorem uses Condition (A.2), a regularity and approximation prop-
erty of Pk, Condition (A.3), a geometrical growth condition for λk, and Con-
dition (A.4), a stability condition on Qk.

Theorem 3.1 Assume that Conditions (A.2) and (A.4) hold with the same
α and that Condition (A.3) holds. Assume in addition that the smoothers, Rk,
satisfy Conditions (SM.1) and (SM.2). Then,

0 ≤ A(EJv, v) ≤ (1 − 1/CM )A(v, v), for all v ∈ MJ .

Here CM =
[(

θC′
b

2−θ
)1/2

+
(

1 + C′
a

ω

)1/2]2
with

C ′
a = 4C ′

QCP

(

1

1 − γ
α/2
2

)2

and C ′
b = (C ′

QC
α
P)

(

γ
α/2
2

1 − γ
α/2
2

)2

..

Proof. The theorem is proved by bounding the second factor in the right hand
side of (32) from above by A(v, v). By Lemma 3.1,

J∑

k=1

|||(Pk −Qk)v|||2 ≤ C ′
bA(v, v), for all v ∈ MJ

and

|||Q1v|||2 +
J∑

k=2

λk‖(Qk −Qk−1)v‖2 ≤ C ′
aA(v, v), for all v ∈ MJ .

By Condition (SM.1), (R−1
k w,w) ≤ ω−1λk‖w‖2, for all w ∈ Mk, k ≥ 2. Hence,

A(P1v, v) +
J∑

k=2

‖(Qk −Qk−1)v‖2
R−1

k

≤
(

1 +
C ′
a

ω

)

A(v, v).
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Condition (SM.2) implies that (RkR−1
k Rtkw,w) ≤ θ

2−θ (A
−1
k w,w) for w ∈ Mk.

Hence,

J∑

k=2

‖RtkAk(Pk −Qk)v‖2
R−1

k

≤ θ

2 − θ

J∑

k=2

|||(Pk −Qk)v|||2

≤ θC ′
b

2 − θ
A(v, v).

Combining these two estimates and applying Lemma 3.4, with πk = Qk, shows
that

A(v, v) ≤ CM [A(v, v) −A(EJv,EJv)].

The theorem follows.

4 Non-nested Multigrid

4.1 Non-nested Spaces and Varying Forms

There is not a lot in the literature on this subject. Since one of the lectures
was devoted to this more general point of view, and an extensive treatment
was given in [3], the material presented here is largely taken from [3].

We therefore depart from the framework of the previous sections where
we considered only nested sequences of finite dimensional spaces. More gen-
erally, assume that we are given a sequence of finite dimensional spaces
M1,M2, . . . ,MJ = M . Each space Mk is equipped with an inner product (·, ·)k
and denote by ‖ · ‖k the induced norm. In addition, we assume that we are
given symmetric and positive definite forms Ak(·, ·) defined on Mk ×Mk and
set A(·, ·) = AJ(·, ·). Each form Ak(·, ·) induces an operator Ak : Mk → Mk

defined by
(Akw,ϕ)k = Ak(w,ϕ), for all ϕ ∈ Mk.

Denote by λk the largest eigenvalue of Ak.
These spaces are connected through J − 1 linear operators Ik : Mk−1 →

Mk, for k = 2, . . . , J . These operators are often referred to as prolongation
operators. The operators Qk−1 : Mk → Mk−1 and Pk−1 : Mk → Mk−1 are
defined by

(Qk−1w,ϕ)k−1 = (w, Ikϕ)k, for all ϕ ∈ Mk−1,

and
Ak−1(Pk−1w,ϕ) = Ak(w, Ikϕ), for all ϕ ∈ Mk−1.

Finally, we assume that smoothers Rk : Mk → Mk are given and set

R
(�)
k =

{
Rk if � is odd,
Rtk if � is even.
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In the case discussed in Sections 2.1, Mk ⊂ Mk+1, (·, ·)k = (·, ·), Ak(·, ·) =
A(·, ·), Ik = I, and Qk and Pk are projectors with respect to (·, ·) and A(·, ·)
respectively. Here Qk and Pk are not necessarily projectors. Note that the
relationship Ak−1Pk−1 = Qk−1Ak still holds.

4.2 General Multigrid Algorithms

Given f ∈ MJ , we are interested in solving

AJu = f.

With u0 given, we will consider the iterative algorithm

ui = MgJ(ui−1, f) ≡ ui−1 +BJ(f −AJu
i−1),

where BJ : M → M is defined recursively by the following general multigrid
procedure.

Algorithm 4.1 Let p be a positive integer and let mk be a positive integer
depending on k. Set B1 = A−1

1 . Assuming that Bk−1 : Mk−1 → Mk−1 has
been defined, we define Bk : Mk → Mk as follows. Let g ∈ Mk.

(1) Pre-smoothing: Set x0 = 0 and define x�, � = 1, . . . ,mk by

x� = x�−1 +R
(�+mk)
k (g −Akx

�−1).

(2) Correction: ymk = xmk + Ikq
p, where q0 = 0 and qi for i = 1, . . . , p is

defined by

qi = qi−1 +Bk−1[Qk−1(g −Akx
mk) −Ak−1q

i−1].

(3) Post-smoothing: Define y� for � = mk + 1, . . . , 2mk by

y� = y�−1 +R
(�+mk)
k (g −Aky

�−1).

(4)Bkg = y2mk .

The cases p = 1 and p = 2 correspond to the V-cycle and the W-cycle
multigrid algorithms respectively. The case p = 1 with the number of smooth-
ings, mk, varying is known as the variable V-cycle multigrid algorithm. In
addition to the V-cycle and the W-cycle multigrid algorithms with the num-
ber of smoothings the same on each level, we will consider a variable V-cycle
multigrid algorithm in which we will assume that the number of smoothings
increases geometrically as k decreases. More precisely, in such a case we as-
sume that there exist two constants β0 and β1 with 1 < β0 ≤ β1 such that

β0mk ≤ mk−1 ≤ β1mk.
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Note that the case β0 = β1 = 2 corresponds to doubling the number of
smoothings as we proceed from Mk to Mk−1, i.e., mk = 2J−kmJ .

Our aim is to study the error reduction operator Ek = I − BkAk and
provide conditions under which, we can estimate δk between zero and one
such that

|Ak(Eku, u)| ≤ δkAk(u, u), for all u ∈ Mk.

We also show that the operator Bk corresponding to the variable V-cycle
multigrid algorithm provides a good preconditioner for Ak even in the cases
where Ek is not a reducer.

We first derive a recurrence relation. Let Kk = I −RkAk,K
∗
k = I −RtkAk

and set

K
(m)
k =

{
(K∗

kKk)m/2 if m is even
(K∗

kKk)
m−1

2 K∗
k if m is odd.

By the definition of Bk the following two-level recurrence relation is easily
derived:

Ek = (K(mk)
k )∗[I − IkPk−1 + IkEpk−1Pk−1]K

(mk)
k . (33)

Our main assumption relating the spaces Mk and Mk−1 is the following
regularity-approximation property.

Condition (A.2”) For some α with 0 < α ≤ 1 there exists CP independent
of k such that

|Ak((I − IkPk−1)v, v)| ≤ C2α
P

(
‖Akv‖2

k

λk

)α

[Ak(v, v)]1−α.

The so-called variational assumption refers to the case in which all of the
forms Ak(·, ·) are defined in terms of the form AJ(·, ·) by

Ak−1(v, v) = Ak(Ikv, Ikv), for all v ∈ Mk−1. (34)

We call this case the inherited case. Given the operators Ik, then all of forms
come from A(·, ·). If the spaces are nested, then Ik can be chosen to be the
natural injection operator and the forms can be defined by

Ak(v, v) = A(v, v), for all v ∈ Mk.

We call this case the nested-inherited case. It follows that in the nested-
inherited case, Condition (A.2) implies Condition (A.2”).

In general, (34) does not hold in the nonnested case. We will consider, at
first, a weaker condition than (34).

Condition (I.1) For k = 2, . . . , J , the operators Ik satisfy

Ak(Ikv, Ikv) ≤ Ak−1(v, v), for all v ∈ Mk−1.

It follows from the definition of Pk−1 that Condition (I.1) holds if and only
if



124 James H. Bramble

Ak−1(Pk−1v, Pk−1v) ≤ Ak(v, v), for all v ∈ Mk

and if and only if

Ak((I − IkPk−1)v, v) ≥ 0, for all v ∈ Mk .

Lemma 4.1 If Condition (I.1) holds then the error propagator Ek is symmet-
ric and positive semidefinite with respect to Ak(·, ·), i.e.,

Ak(Ekv, v) = Ak((I −BkAk)v, v) ≥ 0, for all v ∈ Mk.

Proof. Since Ak(IkPk−1w, v) = Ak−1(Pk−1w,Pk−1v), the operator IkPk−1 is
symmetric with respect to Ak(·, ·). Hence by induction, since E1 = I−B1A1 =
0, it follows, using (33), that I−BkAk is symmetric and positive semidefinite.

The assumption on the smoother is the same as in Section 2.1; we restate
it here.

Condition (SM.1) There exists ω > 0 not depending on J such that
(
ω

λk

)

‖v‖2
k ≤ (Rkv, v)k, for all v ∈ Mk, k = 2, . . . , J.

This is a condition local to Mk and hence does not depend on whether or
not the spaces Mk are nested.

The following lemma is a generalization of Lemma 2.1.

Lemma 4.2 If Condition (SM.1) holds, then

‖AkK(m)
k v‖2

k

λk
≤ ω−1

m
[Ak(v, v) −Ak(K

(m)
k v,K

(m)
k v)].

Proof. Let ṽ = K
(m)
k v. By Condition (SM.1),

‖Akṽ‖2
k

λk
≤ ω−1Ak(RkAkṽ, ṽ) = ω−1Ak((I −K∗

kKk)ṽ, ṽ).

Suppose m is even. Then ṽ = (K∗
kKk)m/2v. Set Kk = K∗

kKk. Then

‖Akṽ‖2
k

λk
≤ ω−1Ak((I −Kk)K

m

k v, v) ≤ ω−1

m
Ak((I −K

m

k )v, v)

=
ω−1

m
[Ak(v, v) −Ak(ṽ, ṽ)].

For m odd, we set Kk = KkK
∗
k and the result follows.
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4.3 Multigrid V-cycle as a Reducer

We will provide an estimate for the convergence rate of the V-cycle and
the variable V-cycle multigrid algorithm under Conditions (A.2”), (I.1) and
(SM.1).

It follows from Lemma 4.1 that if Condition (I.1) holds, then Ak(Eku, u) ≥
0. Hence our aim in such a case is to estimate δk between zero and one, where
δk is such that

0 ≤ Ak((I −BkAk)u, u) ≤ δkAk(u, u), for all u ∈ Mk.

Theorem 4.1 (V-cycle) Assume that Conditions (A.2”) and (I.1) hold and
that the smoothers satisfy Condition (SM.1). Let p = 1. Then

0 ≤ Ak(Ekv, v) ≤ δkAk(v, v), for all v ∈ Mk (35)

with 0 ≤ δk < 1 given in each case as follows:

(a) If p = 1 and mk = m for all k, then (35) holds with

δk =
Mk

1−α
α

Mk
1−α

α +mα
with M = e(1−α)(αC2

P/ω + 1
)
− 1.

(b) If p = 1 and mk increases as k decreases, then (35) holds with

δk = 1 −
(

1

1 + αC2
P

ωmα
k

)
k∏

i=2

(

1 − 1 − α

mα
i

)

.

In particular if there exist two constants β0 and β1 with 1 < β0 ≤ β1 such
that β0mk ≤ mk−1 ≤ β1mk, then δk ≤ M

M+mα
k

for M sufficiently large.

Proof. By Lemma 4.1, the lower estimate in (35) follows from Condition (I.1).
For the upper estimate, we claim that Conditions (A.2”) and (SM.1) imply
that

Ak(Ekv, v) ≤ δk(τ)Ak(v, v), for all v ∈ Mk (36)

for τ > 0 if 0 < α < 1 and for τ ≥ maxi(1/mα
i ) if α = 1. Here δk(τ) is defined

by

1 − δk(τ) =
1

1 + (αC2
P/ω)τ

k∏

i=2

(

1 − (1 − α)
(τmi)

α
1−α

)

. (37)

From this the theorem will follow by choosing an appropriate τ .
We shall prove (36) by induction. Since E1 = I −B1A1 = 0, (36) holds for

k = 1. Assume that

Ak−1(Ek−1v, v) ≤ δk−1(τ)Ak−1(v, v), for all v ∈ Mk−1.

Let ṽ = K
(mk)
k v. Using the two-level recurrence relation (33), we have
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Ak(Ekv, v) ≡ Ak((I −BkAk)v, v)
= Ak((I − IkPk−1)ṽ, ṽ) +Ak−1(Ek−1Pk−1ṽ, Pk−1ṽ)
≤ Ak((I − IkPk−1)ṽ, ṽ) + δk−1(τ)Ak−1(Pk−1ṽ, Pk−1ṽ)
= Ak((I − IkPk−1)ṽ, ṽ) + δk−1(τ)Ak(IkPk−1ṽ, ṽ)
= [1 − δk−1(τ)] Ak((I − IkPk−1)ṽ, ṽ) + δk−1(τ)Ak(ṽ, ṽ).

By Conditions (A.2”) and (SM.1) and using Lemma 4.2,

Ak((I − IkPk−1)ṽ, ṽ) ≤ C2α
P

(
‖Akṽ‖2

k

λk

)α

[Ak(ṽ, ṽ)]1−α

≤ C2α
P

(ωmk)α
[Ak(v, v) −Ak(ṽ, ṽ)]α[Ak(ṽ, ṽ)]1−α.

We now put things together to get

Ak(Ekv, v) ≤ [1−δk−1(τ)]
C2α

P

(ωmk)α
(|||v|||2−|||ṽ|||2)α(|||ṽ|||2)1−α+δk−1(τ)|||ṽ|||2.

Let x = |||ṽ|||2/|||v|||2. Then

Ak(Ekv, v) ≤ f(δk−1(τ);x,mk)Ak(v, v),

where f is defined by

f(δ;x,m) = (1 − δ)
C2α

P

(ωm)α
(1 − x)αx1−α + δx, 0 ≤ x < 1. (38)

By the Hölder inequality, we have

C2α
P

(ωm)α
(1 − x)αx1−α ≤ (αC2

P/ω)τ(1 − x) + (1 − α)(τm)− α
1−αx,

for all τ > 0 if 0 < α < 1 and for all τ ≥ 1/mα if α = 1. Hence

f(δ;x,m) ≤ �(δ;x) ≡ δx+ (1 − δ)
[

(αC2
P/ω)τ(1 − x) + (1 − α)(τm)− α

1−αx
]

.

Note that �(δ;x) is linear in x and therefore

f(δ;x,m) ≤ �(δ;x) ≤ max(�(δ; 0), �(δ; 1)).

If (αC2
P/ω)τ

1+(αC2
P/ω)τ ≤ δ < 1, then

�(δ; 0) = (1 − δ)(αC2
P/ω)τ ≤ δ ≤ δ + (1 − δ)

[

(1 − α)(τm)− α
1−α

]

= �(δ; 1),

and hence
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f(δ;x,m) ≤ �(δ; 1) = δ + (1 − δ)
[

(1 − α)(τm)− α
1−α

]

.

In particular, since (αC2
P/ω)τ

1+(αC2
P/ω)τ = δ1(τ) ≤ δk−1(τ) < 1,

f(δk−1(τ);x,mk) ≤ δk−1(τ) + [1 − δk−1(τ)] [(1 − α)(τmk)− α
1−α ] ≡ δk(τ).

As a consequence,

Ak(Ekv, v) ≤ f(δk−1(τ);x,mk)Ak(v, v) ≤ δk(τ)Ak(v, v)

holds for any τ > 0 if 0 < α < 1 and for any τ ≥ maxi(1/mi) if α = 1. This
proves (36).

If mk ≡ m, then setting τ = k(1−α)/α/mα in (37) shows that

δk(τ) ≤ Mk
1−α

α

Mk
1−α

α +mα

with M = e1−α(αC2
P/ω + 1) − 1 ≤ C2

P/ω + (e1−α − 1). This proves part (a)
of the theorem.

Part (b) of the theorem follows by setting τ = m−α
k in (37) and not-

ing that the product term is uniformly bounded from below if mk increases
geometrically as k decreases.

Remark 1. Notice that, for p = 1 and mk = m, δk → 1 as k → ∞. This is in
contrast to the results in the nested-inherited case under similar hypotheses.
The deterioration, however is only like a power of k and hence may not be
too serious.

Remark 2. For the variable V-cycle methods, if mk increases geometrically as
k decreases, then clearly the product term is strictly larger than 0 and thus
δk is strictly less than 1, independently of k. So, e.g., if mJ = 1 we have

0 ≤ AJ(EJv, v) ≤ M

M + 1
AJ(v, v), for all v ∈ MJ .

If mk = 2J−kmJ , then the cost per iteration of the variable V-cycle multigrid
algorithm is comparable to that of the W-cycle multigrid algorithm.

4.4 Multigrid W-cycle as a Reducer

We now provide an estimate for the rate of convergence of the W-cycle multi-
grid algorithm.

Theorem 4.2 (W-cycle) Assume that Conditions (A.2”) and (I.1) hold
and that the smoothers satisfy Condition (SM.1). Let p = 2 and mk = m
for all k. Then
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0 ≤ Ak(Ekv, v) ≤ δAk(v, v), for all v ∈ Mk

and

δ =
M

M +mα
with M sufficiently large but independent of k.

Proof. By Lemma 4.1, the lower estimate follows from Condition (I.1). We
obtain the upper estimate inductively. Since E1 = 0, the estimate holds for
k = 1. Assume that

Ak−1(Ek−1v, v) ≤ δAk−1(v, v), for all v ∈ Mk−1.

Then since Ak−1(Ek−1v, v) ≥ 0, we have

Ak−1(E2
k−1v, v) ≤ δ2Ak−1(v, v), for all v ∈ Mk−1.

Let ṽ = K
(m)
k v. Using the two-level recurrence (33), we obtain for p = 2,

Ak(Ekv, v) ≡ Ak((I −BkAk)v, v)
= Ak((I − IkPk−1)ṽ, ṽ) +Ak−1(E2

k−1Pk−1ṽ, Pk−1ṽ)
≤ Ak((I − IkPk−1)ṽ, ṽ) + δ2Ak−1(Pk−1ṽ, Pk−1ṽ)
= Ak((I − IkPk−1)ṽ, ṽ) + δ2Ak(IkPk−1ṽ, ṽ)
= (1 − δ2)Ak((I − IkPk−1)ṽ, ṽ) + δ2Ak(ṽ, ṽ).

By Conditions (A.2”) and (SM.1), and using Lemma 4.2,

Ak((I − IkPk−1)ṽ, ṽ) ≤ C2α
P

(
‖Akṽ‖2

k

λk

)α

[Ak(ṽ, ṽ)]1−α

≤ C2α
P

(ωm)α
[Ak(v, v) −Ak(ṽ, ṽ)]α[Ak(ṽ, ṽ)]1−α.

We now put things together to get

Ak(Ekv, v) ≤ (1 − δ2)
C2α

P

(ωm)α
(|||v|||2 − |||ṽ|||2)α(|||ṽ|||2)1−α + δ2|||ṽ|||2.

Let x = |||ṽ|||2/|||v|||2. Then

Ak(Ekv, v) ≤ f(δ2;x,m)Ak(v, v),

with f(δ;x,m) defined by (38). The theorem will follow if we can show

f(δ2;x,m) ≤ δ, (39)

for δ = M/(M +mα) with M sufficient large.
We now prove (39). We have shown in the proof of Theorem 4.1 that
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f(δ2;x,m) ≤ max(�(δ2; 0), �(δ2; 1)), for all τ > 0.

Here �(δ;x) ≡ δx + (1 − δ)[(αC2
P/ω)τ(1 − x) + (1 − α)(τm)− α

1−αx]. It thus
suffices to show that there exists a number δ with 0 < δ < 1 such that, with
an appropriately chosen τ (with the possible restrictions τ ≥ 1/m for α = 1),

�(δ2; 0) = (1 − δ2)(αC2
P/ω) τ ≤ δ

and
�(δ2; 1) = δ2 + (1 − δ2)(1 − α)(τm)−α/(1−α) ≤ δ.

These two inequalities can be written as

(
1 + δ

δ

)1−α( 1 − α

mα/(1−α)

)1−α
≤ τα ≤

(
δ

1 − δ2

)α( 1
αC2

P/ω

)α

.

This is equivalent to choosing a δ ∈ (0, 1) so that

1 + δ

δ
(1 − δ)α ≤ mα

(αC2
P/ω)α(1 − α)1−α ≡ mα

Cα

holds uniformly in m ≥ 1. Clearly, we can take δ = M
M+mα with M large

enough such that above inequality holds. For example, take M ≥ 1
2 (4Cα)1/α =

1
241/α(αC2

P/ω)(1−α)
(1−α)

α . We have thus proved (39) and hence the theorem.

In many applications, Condition (I.1) is not valid. We note that Condition
(I.1) is used in Lemma 4.1 to prove

Ak(Ekv, v) ≡ Ak((I −BkAk)v, v) ≥ 0.

Without (I.1), we have to prove

|Ak(Ekv, v)| ≤ δAk(v, v) for some δ < 1.

It is sufficient to assume either the number of smoothings, m, to be sufficiently
large (but independent of k), or the following stability condition on Ik.

Condition (I.2) For k = 2, . . . , J , the operators Ik satisfy

Ak(Ikv, Ikv) ≤ 2Ak−1(v, v), for all v ∈ Mk−1.

Theorem 4.3 (W-cycle) Suppose that Condition (A.2”) holds and that the
smoothers, Rk, satisfy Condition (SM.1). Let p = 2 and mk = m for all k.
Assume that either

(a) Condition (I.2) holds or
(b) the number of smoothings, m, is sufficiently large.
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Then
|Ak(Ekv, v)| ≤ δAk(v, v), for all v ∈ Mk, (40)

with δ = M
M+mα with M sufficiently large.

Proof. We proceed by induction. Let δ be defined as in Theorem 4.2. Since
Ek = I −B1A1 = 0, (40) holds for k = 1. Assume that

|Ak−1(Ek−1v, v)| ≤ δAk−1(v, v), for all v ∈ Mk−1.

Then

0 ≤ Ak−1(E2
k−1v, v) ≤ δ2Ak−1(v, v), for all v ∈ Mk−1.

We can prove in a way similar to the proof of the previous theorem that

Ak(Ekv, v) ≤ δAk(v, v),

with δ = M/(M +mα) given by the previous theorem. We now show that

−Ak(Ekv, v) ≤ δAk(v, v),

with the same δ. We first consider the case in which m is sufficiently large. Note
that E2

k is always symmetric, positive semidefinite. The two-level recurrence
relation (33), with p = 2, implies that

−Ak(Ekv, v) ≤ −Ak((I − IkPk−1)ṽ, ṽ) ≤ C2α
P

(ωm)α
Ak(v, v).

Without loss of generality, we assume that M > C2α
P /ωα. Then we choose m

so large that C2α
P

(ωm)α ≤ δ = M
M+mα and then (40) follows in this case.

Now if Condition (I.2) holds, then

−Ak((I − IkPk−1)ṽ, ṽ) ≤ Ak(ṽ, ṽ).

This implies that for any δ ∈ (0, 1),

−Ak(Ekv, v) ≤ (1 − δ2)|Ak((I − IkPk−1)ṽ, ṽ)| + δ2Ak(ṽ, ṽ).

This is the same bound as for Ak(Ekv, v). Thus the proof proceeds as before
to show that

|Ak(Ekv, v)| ≤ δAk(v, v),

for δ = M
M+mα with M sufficiently large. This proves the theorem.
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4.5 Multigrid V-cycle as a Preconditioner

We now consider using the multigrid operator Bk as a preconditioner for Ak.
Any symmetric positive definite operator can be used as a preconditioner for
Ak. We will discuss the conditions under which multigrid operator Bk is a
good preconditioner.

Theorem 4.1 states that if Conditions (A.2”) and (I.1) hold and the
smoothers satisfy Condition (SM.1), then

0 ≤ Ak(Ekv, v) ≡ Ak((I −BkAk)v, v) ≤ δkAk(v, v)

which is equivalent to

(1 − δk)Ak(v, v) ≤ Ak(BkAkv, v) ≤ Ak(v, v). (41)

Therefore, in such a case, Bk is an optimal preconditioner for Ak.
In many situations, Condition (I.1) is not satisfied. In such a caseAk(Ekv, v)

could become negative, and thus Ek may not be a reducer. For the V-cycle
and the variable V-cycle multigrid algorithms, we have proved without using
Condition (I.1) that Ak(Ekv, v) ≤ δkAk(v, v), which is equivalent to the lower
estimate in (41). Condition (I.1) is only used to get the upper estimate in
(41). We do not need the upper estimate in (41) in order to use Bk as a pre-
conditioner. For a good preconditioner, we want to find numbers η

k
and ηk

such that

η
k
Ak(v, v) ≤ Ak(BkAkv, v) ≤ ηkAk(v, v), for all v ∈ Mk. (42)

We will provide estimates for η
k

and ηk for the variable V-cycle multigrid
operator under the Conditions (SM.1) and (A.2”). Note again that (SM.1)
and (A.2”) imply the lower estimate in (41), and hence the lower estimate of
(42) follows with η

k
≥ 1 − δk.

Theorem 4.4 (V-cycle preconditioner) Let p = 1. Assume that Condi-
tion (A.2”) holds and that the smoothers, Rk, satisfy Condition (SM.1). Then
(42) holds with

η
k

=
ωmα

k

αC2
P + ωmα

k

k∏

i=2

(

1 − 1 − α

mα
i

)

and ηk =
k∏

i=2

(1 + δ̄i)

where δ̄i = C2α
P

ωαmα
i
αα(1−α)1−α. In particular if the number of smoothings, mk,

satisfies
β0mk ≤ mk−1 ≤ β1mk

for some 1 < β0 ≤ β1 independent of k, then

η
k
≥ mα

k

M +mα
k

and ηk ≤ 1 +
M

mα
k

=
M +mα

k

mα
k

for some M .
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Proof. We have shown in the proof of Theorem 4.1 that Conditions (A.2”)
and (SM.1) imply that Ak((I−BkAk)v, v) = Ak(Ekv, v) ≤ δkAk(v, v). Conse-
quently, (1−δk)Ak(v, v) ≤ Ak(BkAkv, v) and the lower estimate in (42) holds
with

η
k

= 1 − δk =

(

1
αC2

P/(ωm
α
k ) + 1

)
k∏

i=2

(

1 − 1 − α

mα
i

)

.

We prove the upper estimate in (42) by induction. For k = 1 there is
nothing to prove. Assume (42) is true for k − 1. Then

−Ak−1((I −Bk−1Ak−1)w,w) ≤ (ηk−1 − 1)Ak−1(w,w), for all w ∈ Mk−1.

Set ṽ = K
(mk)
k v. By the induction hypothesis

−Ak((I −BkAk)v, v)
= −Ak((I − IkPk−1)ṽ, ṽ) −Ak−1((I −Bk−1Ak−1)Pk−1ṽ, Pk−1ṽ)
≤ −Ak((I − IkPk−1)ṽ, ṽ) + (ηk−1 − 1)Ak−1(Pk−1ṽ, Pk−1ṽ)
= −ηk−1Ak((I − IkPk−1)ṽ, ṽ) + (ηk−1 − 1)Ak(ṽ, ṽ)
≤ −ηk−1Ak((I − IkPk−1)ṽ, ṽ) + (ηk−1 − 1)Ak(v, v). (43)

It remains to estimate −Ak((I − IkPk−1)ṽ, ṽ). By Condition (A.2”)

−Ak((I − IkPk−1)ṽ, ṽ) ≤ C2α
P

[

‖Akṽ‖2
k

λk

]α

[Ak(ṽ, ṽ)]1−α.

By Lemma 4.2,
‖Akṽ‖2

k

λk
≤ 1

ωmk
[Ak(v, v) −Ak(ṽ, ṽ)].

Hence, since 0 ≤ Ak(ṽ, ṽ) ≤ Ak(v, v), we have that

−Ak((I − IkPk−1)ṽ, ṽ)

≤ C2α
P

(ωmk)α
[Ak(v, v) −Ak(ṽ, ṽ)]α[Ak(ṽ, ṽ)]1−α

≤ C2α
P

(ωmk)α
αα(1 − α)1−αAk(v, v)

= δ̄iAk(v, v). (44)

Combining (43) and (44), we obtain

−Ak((I −BkAk)v, v)
≤ [ηk−1δ̄k + (ηk−1 − 1)]Ak(v, v)
= (ηk − 1)Ak(v, v).

Hence Ak(BkAkv, v) ≤ ηkAk(v, v) and the theorem is proved.
We now prove a general result for the V-cycle multigrid without assuming

the regularity-approximation assumption (A.2”).
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Theorem 4.5 If the operators Rk, k = 1, 2, . . . , J , are symmetric and pos-
itive definite, then the operator BJ corresponding to the V-cycle multigrid
method (p = 1) is symmetric and positive definite. If in addition, Condition
(SM.1) holds, then

ω

λk
Ak(v, v) ≤ Ak((BkAk)v, v).

Proof. It is the same to prove that BkAk is symmetric and positive definite
with respect to Ak(·, ·). The symmetry is easy to see. Let ṽ = K

(mk)
k v. Since

p = 1, we get

Ak((I −BkAk)v, v) = Ak(ṽ, ṽ) −Ak−1((Bk−1Ak−1)Pk−1ṽ, Pk−1ṽ).

The induction hypothesis implies that

Ak((I −BkAk)v, v) < Ak(ṽ, ṽ).

If Rk is symmetric and positive definite, then Ak(ṽ, ṽ) < Ak(v, v) and Bk is
symmetric and positive definite. If in addition, (SM.1) holds, then Ak(ṽ, ṽ) ≤
(1 − ω/λk)Ak(v, v) and thus ωλ−1

k Ak(v, v) ≤ Ak(BkAkv, v).
The theorem shows that the (variable) V-cycle multigrid operator Bk is

symmetric and positive definite, and thus can always be used as a precondi-
tioner if the size of the condition number is not a concern. If in addition we
know that Condition (I.1) holds, then by Lemma 4.1, we have

0 ≤ Ak((I −BkAk)v, v), for all v ∈ Mk

or equivalently

Ak(BkAkv, v) ≤ Ak(v, v), for all v ∈ Mk.

Therefore, if Conditions (I.1) and (SM.1) hold, then

Ak(RkAkv, v) ≤ Ak(BkAkv, v) ≤ Ak(v, v).

5 Computational Scales of Sobolev Norms

5.1 Introduction

In this lecture we provide a framework for developing computationally effi-
cient multilevel preconditioners and representations for Sobolev norms. The
material, for the most part, is taken from [6]. Specifically, given a Hilbert
space V and a nested sequence of subspaces, V1 ⊂ V2 ⊂ . . . ⊂ V , we
construct operators which are spectrally equivalent to those of the form
A =

∑

k µk(Qk − Qk−1). Here µk, k = 1, 2, . . . are positive numbers and
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Qk is the orthogonal projector onto Vk with Q0 = 0. We first present abstract
results which show when A is spectrally equivalent to a similarly constructed
operator Ã defined in terms of an approximation Q̃k of Qk , for k = 1, 2, . . . .

We describe how these results lead to efficient preconditioners for dis-
cretizations of differential and pseudo-differential operators of positive and
negative order and to sums of such operators.

Multilevel subspace decompositions provide tools for the construction of
preconditioners. One of the first examples of such a construction was provided
in [9] where a simple additive multilevel operator (BPX) was developed for
preconditioning second order elliptic boundary value problems. The analysis
of the BPX preconditioner involves the verification of norm equivalences of
the form

‖u‖2
H1(Ω) #

J∑

k=1

h−2
k ‖(Qk −Qk−1)u‖2

L2(Ω), for all u ∈ VJ . (45)

The above norms are those corresponding to the Sobolev space H1(Ω) and
L2(Ω) respectively. The quantity hk is the approximation parameter associ-
ated with Vk. The original results in [9] were sharpened by [23] and [30] to
show that (45) holds with constants of equivalence independent of J . Practical
preconditioners involve the replacement of the operator Qk −Qk−1 by easily
computable operators as discussed in [9].

In addition to the above application, there are other practical applications
of multilevel decompositions. In particular, for boundary element methods, it
is important to have computationally simple operators which are equivalent
to pseudo-differential operators of order one and minus one. In addition, mul-
tilevel decompositions which provide norm equivalences for H1/2(∂Ω) can be
used to construct bounded extension operators used in nonoverlapping domain
decomposition with inexact subdomain solves.

The equivalence (45) is the starting point of the multilevel analysis. This
equivalence is valid for J = ∞ in which case we get a norm equivalence on
H1(Ω). It follows from (45) that

‖v‖2
Hs(Ω) #

∞∑

k=1

h−2s
k ‖(Qk −Qk−1)v‖2

L2(Ω),

for s ∈ [0, 1]. Here ‖ · ‖Hs(Ω) denotes the norm on the Sobolev space Hs(Ω)
of order s. This means that the operator

As =
∞∑

k=1

h−2s
k (Qk −Qk−1) (46)

can be used as a preconditioner. However, As is somewhat expensive to eval-
uate since the evaluation of the projector Qk requires the solution of a Gram
matrix problem. Thus, many researchers have sought computationally efficient
operators which are equivalent to As.
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Some techniques for constructing such operators based on wavelet or
wavelet–like space decompositions are given by [13], [18], [20], [26], [25], [28],
[29] and others. In the domain decomposition literature, extension operators
that exploit multilevel decomposition were used in [10], [16], and [22].

In this lecture we construct simple multilevel decomposition operators
which can also be used to define norms equivalent to the usual norms on
Sobolev spaces. Specifically, we develop computationally efficient operators
which are uniformly equivalent to the more general operator

AJ =
J∑

k=1

µk(Qk −Qk−1), (47)

where 1 ≤ J ≤ ∞ and {µk} are positive constants. We start by stating an
abstract theorem. The proof is in [6]. Let {Q̃k}, with Q̃k : VJ → Vk, be another
sequence of linear operators. The theorem shows that the operators AJ and

ÃJ =
J∑

k=1

µk(Q̃tk − Q̃tk−1)(Q̃k − Q̃k−1) (48)

are spectrally equivalent under appropriate assumptions on the spaces Vk,
the operators Q̃k and the sequence {µk}. Here Q̃tk is the adjoint of Q̃k. The
abstract results are subsequently applied to develop efficient preconditioners
when Q̃k is defined in terms of a simple averaging operator. Some partial
results involving the operator used here were stated in [22].

Because of the generality of the abstract results, they can be applied to
preconditioning sums of operators. An example of this is the so-called “singu-
larly perturbed” problem resulting from preconditioning parabolic time step-
ping problems which leads to

µk = (εh−2
k + 1)−1.

In this example ε is the time step size. Our results give rise to preconditioned
systems with uniformly bounded condition numbers independent of the pa-
rameter ε.

We note that [25] provides an L2-stable local basis for the spaces
{Range(Qk−Qk−1)}. With such a construction it is possible to obtain precon-
ditioners for many of the applications considered in this lecture. However, our
approach is somewhat simpler to implement. In addition, our abstract frame-
work allows for easy application to other situations such as function spaces
which are piecewise polynomials of higher order.

5.2 A Norm Equivalence Theorem

We now provide abstract conditions which imply the spectral equivalence of
(47) and (48). We start by introducing the multilevel spaces. Let V be a
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Hilbert space with inner product (·, ·). We assume that we are given a nested
sequence of approximation subspaces,

V1 ⊂ V2 ⊂ . . . ⊂ V,

and that this sequence is dense in V . Let θj , j = 1, 2, . . ., be a non-decreasing
sequence of positive real numbers. Define H to be the subspace of V such that
the norm

|||v||| =
( ∞∑

j=1

θj‖(Qj −Qj−1)v‖2
)1/2

is finite. Here ‖·‖ denotes the norm in V , Qj for j > 0, denotes the orthogonal
projection onto Vj and Q0 = 0. Clearly H is a Hilbert space and {Vk} is dense
in H.

The following properties are obvious from the construction.

1. The “inverse inequality” holds for Vj , i.e.,

|||v||| ≤ θ
1/2
j ‖v‖, for all v ∈ Vj . (49)

2. The “approximation property” holds for Vj , i.e.,

‖(Qj −Qj−1)v‖ ≤ θ
−1/2
j |||v||| , for all v ∈ H. (50)

As discussed in the introduction, the abstract results will be stated in
terms of an additional sequence of “approximation” operators, Q̃k : V → Vk
for k > 0 and Q̃0 = 0. These operators are assumed to satisfy the following
three conditions, for k = 1, 2, . . ..

1. An “approximation property”: There exists a constant CA such that

‖(Qk − Q̃k)v‖ ≤ CAθ
−1/2
k |||v||| , for all v ∈ H. (51)

2. Uniform coercivity of Q̃k: There exists a δ > 0 such that

δ‖vk‖2 ≤ (Q̃kvk, vk), for all vk ∈ Vk. (52)

3. The range of Q̃tk, the adjoint of Q̃k, is contained in Vk. This condition is
equivalent to

Q̃kQk = QkQ̃k. (53)

Remark 5.1 Let {φi}mi=1 be a basis for Vk. It is not difficult to see that there
exists {fi}mi=1 with fi ∈ V such that

Q̃kv =
m∑

i=1

(v, fi) φi for all v ∈ V.

Then

Q̃tkw =
m∑

i=1

(w, φi) fi for all w ∈ Vk.

Thus Condition 3 above holds if and only if fi ∈ Vk, for i = 1, . . . ,m.
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The purpose of this section is to provide abstract conditions which guar-
antee that the symmetric operators AJ and ÃJ , defined respectively by (47)
and (48), are spectrally equivalent. Let L = (�k,j) be the lower triangular
(infinite) matrix with nonzero entries

�k,j =
(
θjµk
θkµj

)1/2

, k ≥ j. (54)

We assume that L has bounded l2 norm, i.e.,

‖L‖�2 ≡ sup
{ξk}, {ζk}

∞∑

k=1

∑

j≤k
�k,j ξkζj

( ∞∑

k=1
ξ2
k

)1/2( ∞∑

k=1
ζ2
k

)1/2 ≤ CL. (55)

The above condition implies that

µk ≤ Cθk

for C = C2
Lµ1/θ1. Thus, (AJv, v) < ∞ for all v ∈ H.

We introduce one final condition: There exists a constant α such that

µk + µk+1 ≤ αµk, for k = 1, 2, . . . . (56)

We can now state the main abstract theorem.

Theorem 5.1 Assume that conditions (51)–(53), (55), and (56) are satisfied.
Then the operator ÃJ defined by (48), with 1 ≤ J ≤ ∞, satisfies

[3(1 + αδ−2C2
AC

2
L)]−1(AJv, v) ≤ (ÃJv, v) ≤ 3(1 + αC2

AC
2
L) (AJv, v),

for all v ∈ H.

Remark 5.2 If W is the completion of H under the norm ‖v‖A =(A∞v, v)1/2,
then the estimate of Theorem 5.1 extends to all of W by density.

With the following lemma the theorem is easily proved. Its proof is in [6].

Lemma 5.1 Assume that conditions (51)–(53), and (55) are satisfied. Then
for all u ∈ H,

J∑

k=1

µk‖(Qk − Q̃k)u‖2 ≤ C2
AC

2
L (AJu, u) (57)

and
J∑

k=1

µk‖(Qk − Q̃k)u‖2 ≤ δ−2C2
AC

2
L (ÃJu, u). (58)
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Proof (Proof of Theorem 5.1). Note that

(Q̃k − Q̃k−1) = (Qk −Qk−1) − (Qk − Q̃k) + (Qk−1 − Q̃k−1).

Thus for v ∈ H,

(ÃJv, v) =
J∑

k=1

µk‖(Q̃k − Q̃k−1)v‖2

≤ 3
( J∑

k=1

µk‖(Qk −Qk−1)v‖2 +
J∑

k=1

(µk + µk+1)‖(Qk − Q̃k)v‖2
)

≤ 3(1 + αC2
AC

2
L) (AJv, v).

We used (56) and Lemma 5.1 for the last inequality above. The proof for
the other inequality is essentially the same. This completes the proof of the
theorem.

5.3 Development of Preconditioners

The above results can be applied to the development of preconditioners. In-
deed, consider preconditioning an operator on VJ which is spectrally equiva-
lent to

LJ =
J∑

k=1

µ−1
k (Qk −Qk−1). (59)

Our preconditioner BJ is to be spectrally equivalent to the operator

AJ ≡ L−1
J =

J∑

k=1

µk(Qk −Qk−1).

Let

BJ =
J∑

k=1

µk(Q̃k − Q̃k−1)t(Q̃k − Q̃k−1). (60)

Then BJ and AJ are spectrally equivalent provided that {µk} and {Q̃k} satisfy
the hypothesis of the theorem. It follows that BJLJ is well conditioned.

5.4 Preconditioning Sums of Operators

We next consider the case of preconditioning sums of operators. Suppose {µ̂k}
is another sequence which satisfies conditions (55) and (56). Then

L̂J =
J∑

k=1

µ̂−1
k (Qk −Qk−1). (61)

can be preconditioned by the operator defined by replacing µk by µ̂k in (60)
above. The following corollary shows that the result can be extended to non-
negative combinations of LJ and L̂J .
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Corollary 5.1 Assume that conditions (51)–(53) are satisfied and that (55)
and (56) hold for both {µk} and {µ̂k}. For nonnegative c1, c2 with c1 + c2 > 0
define

BJ =
J∑

k=1

(c1µ−1
k + c2µ̂

−1
k )−1(Q̃k − Q̃k−1)t(Q̃k − Q̃k−1). (62)

Then for 1 ≤ J ≤ ∞,

[3(1 + 4αδ−2C2
AC

2
L)]−1((c1LJ + c2L̂J)−1v, v) ≤ (BJv, v) ≤

3(1 + 4αC2
AC

2
L) ((c1LJ + c2L̂J)−1v, v), for all v ∈ H.

The above corollary shows that BJ is spectrally equivalent to (c1LJ +
c2L̂J)−1 and hence provides a uniform preconditioner for c1LJ + c2L̂J .
Moreover, the resulting condition number (for the preconditioned system)
is bounded independently of the parameters c1 and c2.

Proof. Note that

(c1LJ + c2L̂J)−1 =
J∑

k=1

(c1µ−1
k + c2µ̂

−1
k )−1(Qk −Qk−1).

To apply the theorem to this operator, we simply must check the conditions
on the sequence µ̃k = (c1µ−1

k + c2µ̂
−1
k )−1. The corresponding lower triangular

matrix has entries

(L̃)k,j =
(
θjµ̃k
θkµ̃j

)1/2

=

(

θj(c1µ−1
j + c2µ̂

−1
j )

θk(c1µ−1
k + c2µ̂

−1
k )

)1/2

≤
(
θj
θk

(
µk
µj

+
µ̂k
µ̂j

))1/2

≤
(
θjµk
θkµj

)1/2

+
(
θjµ̂k
θkµ̂j

)1/2

= (L + L̂)k,j .

Since 0 ≤ (L̃)k,j ≤ (L + L̂)k,j , for every pair k, j, it follows that

‖L̃‖�2 ≤ ‖L + L̂‖�2 ≤ 2CL.

Because (56) holds for both {µk} and {µ̂k}, it clearly holds for {µ̃k}. The
corollary follows by application of the theorem.

5.5 A Simple Approximation Operator Q̃k

In this section, we define and analyze a simple approximation operator Q̃k.
Our applications involve Sobolev spaces with possibly mixed boundary con-
ditions.

Let Ω be a polygonal domain in R2 with boundary ∂Ω = ΓD ∪ ΓN where
ΓD and ΓN are essentially disjoint. Dirichlet boundary conditions are imposed
on ΓD. We consider domains in R2 for convenience. Generalizations of the
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results to be presented to domains in Rd, with d > 2, at least for rectangular
parallelepipeds, are straightforward.

For non-negative integers s, let Hs(Ω) denote the Sobolev space of order s
on Ω (see, e.g. [14],[15]). The corresponding norm and semi-norm are denoted
‖ · ‖Hs(Ω) and | · |Hs(Ω) respectively. The space H1

D(Ω) is defined to be the
functions in H1(Ω) which vanish on ΓD and for s > 1, Hs

D(Ω) = Hs(Ω) ∩
H1
D(Ω). For positive non-integers s, the spaces Hs(Ω) and Hs

D(Ω) are defined
by interpolation between the neighboring integers using the real method of
Lions and Peetre (cf. [15]). For negative s, Hs(Ω) is defined to be the space
of linear functionals for which the norm

‖u‖Hs(Ω) = sup
φ∈H−s

D (Ω)

< u, φ >

‖φ‖H−s
D (Ω)

is finite. Here < ·, · > denotes the duality pairing. Clearly, for s < 0, L2(Ω) ⊆
Hs(Ω) if we identify u ∈ L2(Ω) with the functional < u, φ >≡ (u, φ).

Some Basic Approximation Properties

Let T be a locally quasi-uniform triangulation of Ω and τ be a closed triangle
in T with diameter hτ . Let τ̃ be the subset of the triangles in T whose
boundaries intersect τ and define Vτ̃ to be the finite element approximation
subspace consisting of functions which are continuous on τ̃ and piecewise linear
with respect to the triangles of τ̃ . Note that there are no boundary conditions
imposed on the elements of Vτ̃ . We restrict the discussion in this paper to
piecewise linear subspaces. Extensions of these considerations to more general
nodal finite element subspaces pose no significant additional difficulties.

The following facts are well known.

1. Given u ∈ H1(τ̃), there exists a constant ũ such that

‖u− ũ‖Hs(τ̃) ≤ Ch1−s
τ |u|H1(τ̃), s = 0, 1. (63)

2. Given u ∈ H2(τ̃), there exists a linear function ũ such that

‖u− ũ‖Hs(τ̃) ≤ Ch2−s
τ |u|H2(τ̃), s = 0, 1, 2. (64)

The best constants satisfying the above inequalities clearly depend on the
shape of the domain τ̃ . However, under the assumption that the triangulation
is locally quasi-uniform, it is possible to show that the above inequalities hold
with constants only depending on s and on the quasi-uniformity constants.

For the purpose of analyzing our multilevel example we define the following
local approximation operator Q̃τ̃ : L2(Ω) → Vτ̃ . Let φi, i = 1, 2, . . . ,m, be
the nodal basis for Vτ̃ . The operator Q̃τ̃ is given by

Q̃τ̃u =
m∑

i=1

(u, φi)τ̃
(1, φi)τ̃

φi, (65)
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with (·, ·)τ̃ the inner product in L2(τ̃). For u, v ∈ L2(τ̃),

(Q̃τ̃u, v)τ̃ =
m∑

i=1

(u, φi)τ̃ (v, φi)τ̃
(1, φi)τ̃

and hence it immediately follows that Q̃τ̃ is symmetric on L2(τ̃). Moreover, Q̃τ̃
is positive definite when restricted to Vτ̃ (see, Lemma 5.5). The next lemma
provides a basic approximation property for Q̃τ̃ .

Lemma 5.2 Let τ be in T . Then for s = 0, 1, there exists a constant C,
independent of τ , such that

‖u− Q̃τ̃u‖L2(τ̃) ≤ Chsτ‖u‖Hs(τ̃), for all u ∈ Hs(τ̃). (66)

Proof. A simple computation shows that

‖Q̃τ̃u‖L2(τ̃) ≤ C‖u‖L2(τ̃)

from which (66) immediately follows for s = 0. For s = 1, let ũ be the constant
function satisfying (63). Using the previous estimate, since Q̃τ̃ ũ = ũ, we have

‖u− Q̃τ̃u‖L2(τ̃) ≤ ‖u− ũ‖L2(τ̃) + ‖Q̃τ̃ (u− ũ)‖L2(τ̃) ≤ C‖u− ũ‖L2(τ̃).

Combining the above inequalities and (63) completes the proof of (66) for
s = 1.

Approximation Properties: the Multilevel Case

We provide some stronger approximation properties in the case when the mesh
results from a multilevel refinement strategy. Again we describe the case of d =
2. The analogous constructions for d > 2, at least for the case of rectangular
parallelepipeds, are straightforward generalizations. Assume that an initial
coarse triangulation T1 of Ω has been provided with ΓD aligning with the mesh
T1. By this we mean that any edge of T1 on ∂Ω is either contained in ΓD or
intersects ΓD at most at the endpoints of the edge. Multilevel triangulations
are defined recursively. For k > 1, the triangulation Tk is defined by breaking
each triangle in Tk−1 into four, by connecting the centers of the edges. The
finite element space Vk consists of the functions which are continuous on Ω,
piecewise linear with respect to Tk and vanish on ΓD. Let hk = maxτ∈Tk

hτ .
Clearly, hk = 2−k+1h1.

We now define a sequence of approximation operators Q̃k : L2(Ω) → Vk.
Let φi, i = 1, . . . ,m be the nodal basis for Vk. We define Q̃k by

Q̃ku =
m∑

i=1

(u, φi)
(1, φi)

φi. (67)
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Remark 5.3 Let τ be a triangle of Tk. It is easy to see that Q̃τ̃u and Q̃ku
agree on τ as long as τ ∩ ΓD = ∅.

In the multilevel case, we have the following stronger version of Lemma 5.2.

Lemma 5.3 Let s be in [0, 3/2). There exists a constant Cs not depending
on hk such that

‖u− Q̃ku‖L2(Ω) ≤ Csh
s
k‖u‖Hs(Ω), for all u ∈ Hs

D(Ω).

For the proof of the lemma, we will use the following lemma which is a
slight modification of Lemma 6.1 of [8]. Its proof is contained in the proof of
Lemma 6.1 of [8].

Lemma 5.4 Let Ωη denote the strip {x ∈ Ω | dist(x, ∂Ω) < η} and 0 ≤ s <
1/2. Then for all v ∈ H1+s(Ω),

‖v‖H1(Ωη) ≤ Cηs‖v‖H1+s(Ω). (68)

In addition, let Ωη
D denote the strip {x ∈ Ω | dist(x, ΓD) < η}. Then for all v

in H1
D(Ω),

‖v‖L2(Ωη
D) ≤ Cη ‖v‖H1(Ωη). (69)

Proof (Proof of Lemma 5.3). The proof for s = 0 is trivial (see, Lemma 5.2).
For positive s, we consider two cases. First we examine triangles whose bound-
aries do not intersect the boundary of any triangle in T1. We shall denote this
set by τ ∩ T1 = ∅ and the remaining set of triangles by τ ∩ T1 �= ∅.

Let φi be the nodal basis function in the space Vk associated with the
node xki . Assume that xki does not lie on the boundary of any triangle τ ∈ T1.
Because of the multilevel construction, the mesh Tk is symmetric with respect
to reflection through the point xki . It follows that the nodal basis function φi,
restricted to a line passing through xki , is an even function with respect to xki .
Let xki = (p1, p2). Then, both of the functions x − p1 and y − p2 are odd on
each such line. Consequently,

(x− p1, φi) = (y − p2, φi) = 0.

Thus, it follows from Remark 5.3 that Q̃kũ(xki ) = ũ(xki ) for any linear function
ũ.

Let τ be a triangle whose boundary does not intersect the boundary of
any triangle of T1. Applying the above argument to each node of τ shows that
Q̃kũ = ũ on τ for any linear function ũ. Let τ̃ be as in Lemma 5.2. Given
u ∈ H2(τ̃), let ũ be the linear function satisfying (64). As in the proof of
Lemma 5.2, we get

‖u− Q̃ku‖L2(τ) = ‖u− Q̃τ̃u‖L2(τ) ≤ C‖u− ũ‖L2(τ̃) ≤ Chsk‖u‖Hs(τ̃)

for s = 0, 1, 2. Summing the above inequality and interpolating gives



Multilevel Methods in Finite Elements 143

(
∑

τ∩T1=∅
‖u− Q̃ku‖2

L2(τ)

)1/2

≤ Chsk‖u‖Hs(Ω) (70)

for s ∈ [0, 2].
We next consider the case when τ intersects an edge in the triangulation

T1. Suppose that τ intersects ΓD. We clearly have that

‖Q̃ku‖L2(τ) ≤ C‖u‖L2(τ̃). (71)

Thus,
‖u− Q̃ku‖L2(τ) ≤ C‖u‖L2(τ̃).

Summing the above inequality and applying (69) gives

(
∑

τ∩ΓD �=∅
‖u− Q̃ku‖2

L2(τ)

)1/2

≤ Chk‖u‖H1(Ω2hk ). (72)

Finally, we consider the case when τ intersects an edge in the triangulation
T1 and does not intersect ΓD. By Remark 5.3 and Lemma 5.2,

‖u− Q̃ku‖L2(τ) ≤ Chk‖u‖H1(τ̃).

Summing the above inequality and using (72) gives

(
∑

τ∩T1 �=∅
‖u− Q̃ku‖2

L2(τ)

)1/2

≤ Chk‖u‖H1(E2hk ). (73)

Here E2hk denotes the strip of width O(2hk) around all element edges from
the initial triangulation T1.

The lemma for s = 1 follows combining (70) and (73). The result for
s ∈ (0, 1) follows by interpolation. For 1 < s < 3/2, (68) and (73) imply

(
∑

τ∩T1 �=∅
‖u− Q̃ku‖2

L2(τ)

)1/2

≤ Chsk‖u‖Hs(Ω).

The lemma for 1 < s < 3/2 follows combining the above inequality with (70).
This completes the proof of the lemma.

Remark 5.4 We can extend these arguments to the case when Vk consists of
piecewise quadratic functions with respect to the k’th triangulation. Again {φk}
denotes the nodal basis for Vk. Then Q̃k defined by (67) satisfies Lemma 5.3.
The proof is identical to the case of linears.
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The Coercivity Estimate

We next show that the coercivity estimate (52) holds for Q̃k. Actually, we
only require that the triangulation Th be locally quasi-uniform. We assume
that ΓD aligns with this triangulation and let Vh be the functions which are
piecewise linear with respect to this triangulation, continuous on Ω and vanish
on ΓD. We consider the linear operator Q̃h defined analogously to Q̃k in (67)
and show that

‖v‖2 ≤ C(Q̃hv, v), for all v ∈ Vh.

The constant C above only depends on the quasi-uniformity constant (or
minimal angle).

Let {xi} for i = 1, . . . ,m be the nodes of the triangulation and {φi} be the
corresponding nodal basis functions. The mesh is quasi-uniform so for each
φi, there is a parameter hi such that

hτ # hi (74)

holds for all triangles τ which have the node xi as a vertex. Here we define
a # b to mean that

a ≤ Cb and b ≤ Ca

with constant C independent of the triangulation. It is well known that

(v, v) #
∑

τ∈Th

h2
τ

∑

xl∈τ
v(xl)2, for all v ∈ Vh. (75)

It follows from (74) that

(v, v) #
m∑

i=1

h2
i v(xi)

2, for all v ∈ Vh. (76)

We can now prove the coercivity estimate. This result was essentially given
in [9] for the case of a globally quasi-uniform triangulation.

Lemma 5.5 Assume that the mesh Th is locally quasi-uniform. There is a
constant C only depending on the quasi-uniformity condition such that

C−1(v, v) ≤ (Q̃hv, v) ≤ C (v, v), for all v ∈ Vh.

Proof. Let G be the Gram matrix, i.e.

Gij = (φi, φj), i, j = 1, . . . ,m

and D be the diagonal matrix with entries Dii = h2
i . Let v be in Vh and w be

the coefficient vector satisfying

v =
m∑

i=1

wiφi.
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Note that (76) can be rewritten as

C−1((Gw,w)) ≤ ((Dw,w)) ≤ C((Gw,w)), for all w ∈ Rm.

Here ((·, ·)) denotes the inner product on Rm. This is equivalent to

C−1((D−1Gw,Gw)) ≤ ((Gw,w)) ≤ C((D−1Gw,Gw)), for all w ∈ Rm.

Since
(1, φi) # h2

i ,

it follows that

(Q̃hv, v) =
m∑

i=1

(v, φi)2

(1, φi)
=

m∑

i=1

((Gw)i)2

(1, φi)

# ((D−1Gw,Gw)) # ((Gw,w)) = (v, v).

This completes the proof of the lemma.

5.6 Applications

Here we apply some of the above results. We follow [6]. As we have seen
in the previously, the operator Q̃k satisfies the approximation and coercivity
estimates required for application of the abstract results. Throughout this
discussion we assume that V1 ⊂ V2 ⊂ . . . is a sequence of nested piecewise
linear and continuous multilevel spaces as described earlier. We take V =
L2(Ω) and (·, ·) to be the corresponding inner product. With a slight abuse
of notation we also use (·, ·) to denote the obvious duality pairing.

Remark 5.5 Since Vk ⊂ Hs(Ω), for 0 ≤ s < 3/2, Qk and Q̃k extend natu-
rally to all of H−s(Ω). Let −3/2 < s < 3/2 and define As as in (46). It is
known that the norm (Asu, u)1/2 is equivalent to ‖ · ‖Hs(Ω); cf. [24].

Fix γ < 3/2. By Lemma 5.3, the triangle inequality and well known prop-
erties of Qk

‖(Qk − Q̃k)u‖L2(Ω) ≤ Cθ
−1/2
k ‖u‖Hγ(Ω)

where θk = h−2γ
k . Let s < γ and set µk = h−2s

k . Then,

�k,j =
(
hk
hj

)γ−s

decays exponentially as a function of k− j. An elementary computation gives
that

‖L‖ ≤ CL =
(

1 −
(

1
2

)γ−s)−1

.

The next theorem immediately follows from Remark 5.5, Remark 5.2 and
Theorem 5.1.
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Theorem 5.2 Let −3/2 < s < 3/2. Then (Ã(s)u, u)1/2 provides a norm on
Hs
D(Ω) which is equivalent to the usual Sobolev norm. Here

Ã(s)u =
∞∑

k=1

h−2s
k (Q̃k − Q̃k−1)2u.

A Preconditioning Example

We consider applying the earlier results to develop a preconditioner for an ex-
ample involving a pseudo-differential operator of order minus one. The canon-
ical example of such an application is associated with a form

V(u, v) =
∫

Ω

∫

Ω

u(s1)v(s2)
|s1 − s2|

ds1ds2.

For this application, ΓD is empty and we seek preconditioners for the problem:
Find U ∈ VJ satisfying

V(U, φ) = F (φ) for all φ ∈ VJ .

Here F is a given functional. It is shown in [5] that

V(u, u) # ‖u‖2
H−1/2(Ω) for all u ∈ VJ . (77)

It is convenient to consider the problem of preconditioning in terms of
operators. Specifically, let V : VJ → VJ be defined by

(Vv, w) = V(v, w) for all v, w ∈ VJ .

We shall see that Ã(1/2)
J defined by

Ã(1/2)
J =

J∑

k=1

h−1
k (Q̃k − Q̃k−1)2

provides a computationally efficient preconditioner for V. Indeed, by Theo-
rem 5.1,

(Ã(1/2)
J u, u) # (A1/2u, u) for all u ∈ VJ .

Applying Remark 5.5 and (77) implies that

(VA1/2u,A1/2u) # (A−1/2A1/2u,A1/2u) = (u,A1/2u)

for all u ∈ VJ . Thus, Ã(1/2)
J V has a bounded spectral condition number.

It is easy to evaluate the action of Ã(1/2)
J in a preconditioned iteration

procedure. For k = 1, 2, . . . , J , let {φki } denote the nodal basis for Vk. In
typical preconditioning applications, one is required to evaluate the action of
the preconditioner on a function v where only the quantities {(v, φJi )} are
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known. One could, of course, compute v from {(v, φJi )} but this would require
solving a Gram matrix problem. Our preconditioner avoids the Gram matrix
problem. To evaluate the action of Q̃k, for 1 ≤ k ≤ J , one is only required
to take linear combinations of the quantities {(v, φki )}. Note that (v, φki ) is a
simple linear combination of {(v, φk+1

i )}. Thus, we see that all of the Q̃k’s can
be computed efficiently (with work proportional to the number of unknowns
on the finest level J) by a V-cycle-like algorithm.

Two Examples Involving Sums of Operators

The first example involves preconditioning the discrete systems which result
from time stepping a parabolic initial value problem. For the second example
we consider a Tikhonov regularization of a problem with noisy data.

Fully discrete time stepping schemes for parabolic problems often lead to
problems of the form: Find u ∈ Sh satisfying

(u, φ) + εD(u, φ) = F (φ) for all φ ∈ Sh. (78)

Here D(·, ·) denotes the Dirichlet form on Ω and Sh is the finite element
approximation. The parameter ε is related to the time step size and is often
small. Assume that Sh = VJ where VJ is a multilevel approximation space as
developed earlier. Let µk = 1 and µ̂k = h2

k, for k = 1, 2, . . .. For convenience,
we assume that ΓD is non-empty so that D(v, v) # ‖v‖2

1, for all v ∈ H1
D(Ω).

Then for LJ and L̂J defined respectively by (59) and (61), we have

(LJv, v) # (v, v) and (L̂Jv, v) # D(v, v)

for all v ∈ VJ . Applying Corollary 5.1 gives that

BJ =
J∑

k=1

(µ−1
k + εµ̂−1

k )−1(Q̃k − Q̃k−1)2 (79)

provides a uniform preconditioner for the discrete operator associated with
(78). The resulting condition number for the preconditioned system can be
bounded independently of the time step size ε and the number of levels J .

We next consider an example which results from Tikhonov regularization
of a problem with noisy data. We consider approximating the solution of the
problem

Tv = f

where T denotes the inverse of the Laplacian and f ∈ L2(Ω). This is replaced
by the discrete problem

Thv = fh

where Th is the Galerkin solution operator, i.e., Thv = w where w ∈ VJ
satisfies
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D(w, θ) = (v, θ) for all θ ∈ VJ

and fh is the L2(Ω) orthogonal projection onto VJ . If it is known that v is
smooth but f is noisy, better approximations result from regularization [21],
[27]. We consider the regularized solution w̃ ∈ VJ satisfying

(Th + αAh)w̃ = fh. (80)

Here Ah : VJ → VJ is defined by

(Ahv, w) = D(v, w) for all v, w ∈ VJ .

The regularization parameter α is often small (see, [27]) and can be chosen
optimally in terms of the magnitude of the noise in f .

Preconditioners for the sum in (80) of the form of (79) result from the
application of Corollary 5.1. In this case, µk = h−2

k , µ̂k = h2
k. The condition

numbers for the resulting preconditioned systems can be bounded independent
of the regularization parameter α.

Preconditioners for systems like (80) are generally not easily developed.
The problem is that the operator applied to the higher frequencies (depend-
ing on the size of α) behaves like a differential operator while on the lower
frequencies, it behaves like the inverse of a differential operator. This causes
difficulty in most multilevel methods.

H1(Ω) Bounded Extensions

We finally consider the construction of H1(Ω) bounded extensions. Such ex-
tensions are useful in development of domain decomposition preconditioners
with inexact subdomain solves. The construction given here is essentially the
same as that in [22]. We include it here in detail as an application of Theorem
4.1.

With {Vj} as above, let Ṽk (for k = 1, 2, . . . , J) be the functions defined on
∂Ω which are restrictions of those in Vk. This gives a multilevel structure on
the finest space ṼJ . These spaces inherit a nodal basis from the original nodal
basis on Vk. The nodal basis function associated with a boundary node xi is
just the restriction of the basis function for Vk associated with xi. Denoting
this basis by {ψki }, we define

q̃k(f) =
∑ < f, ψki >

< 1, ψki >
ψki .

The above sum is taken over the nodal basis elements for Ṽk and < ·, · >
denotes the L2(∂Ω) inner product. We note that it is known [24] that

‖θ‖2
H1/2(∂Ω) #

J∑

k=1

h−1
k ‖(qk − qk−1)θ‖2

L2(∂Ω)
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where qk denotes the L2-projection onto Ṽk. It is easy to see that Theorem
4.1 holds for these spaces. Thus

‖θ‖2
H1/2(∂Ω) #

J∑

k=1

h−1
k ‖(q̃k − q̃k−1)θ‖2

L2(∂Ω), (81)

with q̃Jθ = θ and q̃0θ = 0.
Now given a function θ ∈ ṼJ , we define EJθ ∈ VJ by EJθ =

∑J
k=1 ωk with

ωk defined as follows. Let θ̄ be the mean value of θ on ∂Ω. Then ω1 is the
function in V1 defined by

ω1(xi) = q̃1(xi), if xi is a node of V1 on ∂Ω,

and
ω1(xi) = θ̄, if xi is a node of V1 in the interior of Ω.

For J ≥ k > 1, ωk is the function in Vk defined by

ωk(xi) = [q̃kθ − q̃k−1θ](xi), if xi is a node of Vk on ∂Ω,

and
ωk(xi) = 0, if xi is a node of Vk in the interior of Ω.

Note that EJθ = θ on ∂Ω so that EJ is an extension operator.
Recall that | · |H1(Ω) denotes the semi-norm on H1(Ω). Then

|EJθ|H1(Ω) = |EJθ − θ̄|H1(Ω) = |EJ(θ − θ̄)|H1(Ω) ≤ ‖EJ(θ − θ̄)‖H1(Ω).

We now use the following well known multilevel characterization of the H1(Ω)
norm on VJ :

‖v‖2
H1(Ω) # inf

J∑

k=1

h−2
k ‖vk‖2

L2(Ω),

where the infimum is taken over all splittings v =
∑J
k=1 vk, with vk ∈ Vk.

Applying this with v = EJ(θ − θ̄) = (ω1 − θ̄) +
∑J
k=2 ωk and using (81), we

conclude that

‖EJ(θ − θ̄)‖2
H1(Ω) ≤ C

[ J∑

k=2

h−2
k ‖ωk‖2

L2(Ω) + h−2
1 ‖ω1 − θ̄‖2

L2(Ω)

]

≤ C
J∑

k=1

h−1
k ‖(q̃k − q̃k−1)(θ − θ̄)‖2

L2(∂Ω)

≤ C‖θ − θ̄‖2
H1/2(∂Ω) ≤ C|θ|2H1/2(∂Ω),

where | · |H1/2(∂Ω) denotes the H1/2(∂Ω) semi-norm. Thus we see that

|EJθ|H1(Ω) ≤ C|θ|H1/2(∂Ω).

This type of bounded extension operator is precisely what is required for
the development of non-overlapping domain decomposition algorithms with
inexact solves.
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delle funzioni automorfe

"

1957 12. Geometria aritmetica e algebrica (2 vol.) "

13. Integrali singolari e questioni connesse "

14. Teoria della turbolenza (2 vol.) "

1958 15. Vedute e problemi attuali in relatività generale "
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Nonlinear and Optimal Control Theory

June 21–29, Cetraro (Cosenza)

Course Directors:

Prof. Paolo Nistri (Università di Siena)
Prof. Gianna Stefani (Università di Firenze)
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