

Springer Undergraduate Texts
 in Mathematics and Technology

Series Editors
Jonathan M. Borwein

Helge Holden

F
http://www.springer.com/series/

or further volumes:
7438

An Introduction to Modern
Mathematical Computing

Jonathan M. Borwein • Matthew P. Skerritt

With Maple™

© Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of
the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for
brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary
rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

ISBN 978-1-4614-0121-6 e-ISBN 978-1-4614-0122-3
DOI 10.1007/978-1-4614-0122-3
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011932674

Jonathan M. Borwein
Director, Centre for Computer Assisted Research
Mathematics and its Applications (CARMA)
School of Mathematical and Physical Sciences
University of Newcastle
Callaghan, NSW 2308
Australia
jon.borwein@gmail.com

Centre for Computer Assisted Research
Mathematics and its Applications (CARMA)
School of Mathematical and Physical Sciences
University of Newcastle
Callaghan, NSW 2308
Australia

Matthew P. Skerritt

matt.skerritt@gmail.com

IS N e-IS N S 1867-5506 S 1867-5514

Maple is a trademark of Waterloo Maple, Inc.

To my grandsons Jakob and Skye.
Jonathan Borwein

To my late grandmother, Peggy, who ever urged me
to hurry up with my PhD, lest she not be around to
see it.

Matthew Skerritt

Preface

Thirty years ago mathematical, as opposed to applied numerical, computation was
difficult to perform and so relatively little used. Three threads changed that:

• The emergence of the personal computer, identified with the iconic Macintosh but
made ubiquitous by the IBM PC.
• The discovery of fiber-optics and the consequent development of the modern internet
culminating with the foundation of the World Wide Web in 1989 made possible by
the invention of hypertext earlier in the decade.
• The building of the Three Ms: Maple, Mathematica, and Matlab. Each of these

is a complete mathematical computation workspace with a large and constantly
expanding built-in “knowledge base”. The first two are known as “computer algebra”
or “symbolic computation” systems, sometimes written CAS. They aim to provide
exact mathematical answers to mathematical questions such as what is∫ ∞

−∞
e−x

2
dx,

what is the real root of x3 + x = 1, or what is the next prime number after
1,000,000,000? The answers, respectively, are

√
π,

3
√

108 + 12
√

93
6 − 2

3
√

108 + 12
√

93
, and 1,000,000,007.

The third M is primarily numerically based. The distinction, however, is not a sim-
ple one. Moreover, more and more modern mathematical computation requires a
mixture of so-called hybrid numeric/symbolic computation and also relies on signif-
icant use of geometric, graphic and, visualization tools. It is even possible to mix
these technologies, for example, to make use of Matlab through a Maple interface;
see also [6]. Matlab is the preferred tool of many engineers and other scientists
who need easy access to efficient numerical computation.

Of course each of these threads relies on earlier related events and projects, and there
are many other open source and commercial software packages. For example, Sage is an
open-source CAS, GeoGebra an open-source interactive geometry package, and Octave
is an open-source counterpart of Matlab. But this is not the place to discuss the merits
and demerits of open source alternatives. For many purposes Mathematica and Maple
are interchangeable as adjuncts to mathematical learning. We propose to use the latter.

vii

viii Preface

After reading this book, you should find it easy to pick up the requisite skills to use
Mathematica [14] or Matlab.

Many introductions to computer packages aim to teach the syntax (rules and struc-
ture) and semantics (meaning) of the system as efficiently as possible [7, 8, 9, 13]. They
assume one knows why one wishes to learn such things. By contrast, we intend to per-
suade that Maple and other like tools are worth knowing assuming only that one wishes
to be a mathematician, a mathematics educator, a computer scientist, an engineer, or
scientist, or anyone else who wishes/needs to use mathematics better. We also hope
to explain how to become an experimental mathematician while learning to be better
at proving things. To accomplish this our material is divided into three main chapters
followed by a postscript. These cover the following topics:

• Elementary number theory. Using only mathematics that should be familiar
from high school, we introduce most of the basic computational ideas behind Maple.
By the end of this chapter the hope is that the reader can learn new features of
Maple while also learning more mathematics.
• Calculus of one and several variables. In this chapter we revisit ideas met
in first-year calculus and introduce the basic ways to plot and explore functions
graphically in Maple. Many have been taught not to trust pictures in mathematics.
This is bad advice. Rather, one has to learn how to draw trustworthy pictures.

> plot
(
x sin

(
1
x

)
, x = −1

2 ..
1
2

)

• Introductory linear algebra. In this chapter we show how much of linear algebra
can be animated (i.e. brought to life) within a computer algebra system. We suppose
the underlying concepts are familiar, but this is not necessary. One of the powerful
attractions of computer-assisted mathematics is that it allows for a lot of “learning
while doing” that may be achieved by using the help files in the system and also
by consulting Internet mathematics resources such as MathWorld, PlanetMath or
Wikipedia.

Preface ix

• Visualization and interactive geometric computation. Finally, we explore
more carefully how visual computing [10, 11] can help build mathematical intuition
and knowledge. This is a theme we will emphasize throughout the book.

Each chapter has three main sections forming that chapter’s core content. The fourth
section of each chapter has exercises and additional examples. The final section of each
chapter is entitled “Further Explorations,” and is intended to provide extra material
for more mathematically advanced readers.

A more detailed discussion relating to many of these brief remarks may be followed
up in [2, 3, 4] or [5], and in the references given therein.

The authors would like to thank Shoham Sabach and James Wan for their help
proofreading preliminary versions of this book.

Additional Reading and References

We also supply a list of largely recent books at various levels that the reader may find
useful or stimulating. Some are technical and some are more general.

1. George Boros and Victor Moll, Irresistible Integrals, Cambridge University Press,
New York, 2004.

2. Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM: A Study in Analytic
Number Theory and Computational Complexity, John Wiley & Sons, New York,
1987 (Paperback, 1998).

3. Christian S. Calude, Randomness and Complexity, from Leibniz To Chaitin, World
Scientific Press, Singapore, 2007.

4. Gregory Chaitin and Paul Davies, Thinking About Gödel and Turing: Essays on
Complexity, 1970-2007, World Scientific, Singapore, 2007.

5. Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspec-
tive, Springer, New York, 2001

6. Philip J. Davis, Mathematics and Common Sense: A Case of Creative Tension,
A.K. Peters, Natick, MA, 2006.

7. Stephen R. Finch, Mathematical Constants, Cambridge University Press, Cam-
bridge, UK, 2003.

8. Marius Giaguinto, Visual Thinking in Mathematics, Oxford University, Oxford,
2007.

9. Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics,
Addison-Wesley, Boston, 1994.

10. Bonnie Gold and Roger Simons (Eds.), Proof and Other Dilemmas: Mathematics
and Philosophy, Mathematical Association of America, Washington, DC, in press,
2008.

11. Richard K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, Heidel-
berg, 1994.

12. Reuben Hersh, What Is Mathematics Really? Oxford University Press, Oxford,
1999.

13. J. Havil, Gamma: Exploring Euler’s Constant, Princeton University Press, Prince-
ton, NJ, 2003.

14. Steven G. Krantz, The Proof Is in the Pudding: A Look at the Changing Nature of
Mathematical Proof, Springer, New York, 2010.

15. Marko Petkovsek, Herbert Wilf, and Doron Zeilberger, A=B, A.K. Peters, Natick,
MA, 1996.

x Preface

16. Nathalie Sinclair, David Pimm, and William Higginson (Eds.),Mathematics and the
Aesthetic. New Approaches to an Ancient Affinity, CMS Books in Math, Springer-
Verlag, New York, 2007.

17. J. M. Steele, The Cauchy-Schwarz Master Class, Mathematical Association of
America, Washington, DC, 2004.

18. Karl R. Stromberg, An Introduction to Classical Real Analysis, Wadsworth, Bel-
mont, CA, 1981.

19. Richard P. Stanley, Enumerative Combinatorics, Volumes 1 and 2, Cambridge Uni-
versity Press, New York, 1999.

20. Terence Tao, Solving Mathematical Problems, Oxford University Press, New York,
2006.

21. Nico M. Temme, Special Functions, an Introduction to the Classical Functions of
Mathematical Physics, John Wiley, New York, 1996.

22. Fernando R. Villegas, Experimental Number Theory, Oxford University Press, New
York, 2007.

Finally many useful links are maintained by the authors of Mathematics by Experi-
ment [3] at www.experimentalmath.info.

Jonathan Borwein
Matthew Skerritt

May 21, 2011

Contents

Preface . vii

Conventions and Notation . xiii

1 Number Theory . 1
1.1 Introduction to Maple . 1

1.1.1 Inputting Basic Maple Expressions . 1
1.1.2 Variables . 3
1.1.3 Functions . 5
1.1.4 Sequences, Lists, and Sets . 6
1.1.5 Sums and Products . 9
1.1.6 Packages . 10

1.2 Putting It Together . 11
1.2.1 Creating Functions . 11
1.2.2 Loops . 14
1.2.3 Decision Structures . 21
1.2.4 Procedures . 27
1.2.5 Nesting . 30
1.2.6 Recursive Functions . 34
1.2.7 Computation Time . 36

1.3 Enough Code, Already. Show Me Some Math! . 41
1.3.1 Induction. 41
1.3.2 Continued Fractions . 44
1.3.3 Recurrence Relations . 49
1.3.4 The Sieve of Eratosthenes . 52

1.4 Problems and Exercises . 56
1.5 Further Explorations . 63

2 Calculus . 67
2.1 Revision and Introduction . 67

2.1.1 Plotting . 67
2.1.2 Multiple Plots . 71
2.1.3 Limits . 75
2.1.4 Differentiation . 82
2.1.5 Integration . 85

2.2 Univariate Calculus . 86
2.2.1 Optimization . 86

xi

xii Contents

2.2.2 Integral Evaluation . 89
2.2.3 Symbolic Integrals . 92
2.2.4 Differential Equations . 94
2.2.5 Parametric Equations, Alternative co-ordinates, and Other

Esoteric Plotting Fun . 97
2.3 Multivariate Calculus . 104

2.3.1 Three-Dimensional Plotting . 104
2.3.2 Surfaces and Volumes of Rotation . 107
2.3.3 Partial and Directional Derivatives . 112
2.3.4 Double Integrals . 117

2.4 Exercises . 124
2.5 Further Explorations . 127

3 Linear Algebra . 129
3.1 Introduction and Review . 129

3.1.1 Vectors and Matrices in Maple . 129
3.1.2 Simultaneous Linear Equations . 134
3.1.3 Elementary Row Operations . 139

3.2 Vector Spaces . 148
3.2.1 Vector Spaces . 148
3.2.2 Linear Combinations . 151
3.2.3 Linear Independence . 153
3.2.4 Basis and Dimension . 158

3.3 Linear Transformations . 161
3.3.1 Introduction to Linear Transformations . 161
3.3.2 Linear Transformations as Matrices . 162
3.3.3 Eigenvectors and Eigenvalues . 166
3.3.4 Diagonalization . 171

3.4 Exercises . 179
3.5 Further Explorations . 183

4 Visualization and Geometry: A Postscript . 187
4.1 Useful Visualization Tools . 187

4.1.1 Text and Labeling . 187
4.1.2 Polygons, Polyhedra, and so on . 192

4.2 Geometry and Geometric Constructions . 196
4.2.1 Constructing a Circle Given Three Points . 196
4.2.2 Constructing the Orthocenter of a Triangle 200

A Sample Quizzes . 203
A.1 Number Theory . 203
A.2 Calculus . 205
A.3 Linear Algebra . 207

References . 209

Index . 211

Conventions and Notation

Maple

Maple provides a wealth of different options for its interface, and mechanisms for en-
tering commands. It is not within the scope of this book to deal with all of them. We
present Maple input here as if it were entered in Worksheet mode with 2D Math as
both the input and output display settings. All three of these settings may be changed
to be defaults (or not, of course) through Maple’s preferences.

This input scheme has the advantage that it looks a lot more like “regular” mathe-
matics, makingMaple worksheets easier to read than the historic text-only input scheme
used in earlier versions. Using a worksheet mode instead of document mode also makes
input, output, and explanatory text generally much clearer and is, in this author’s opin-
ion, superior when working on mathematical problems, although the document mode
is probably preferable when trying to write results in a more human-readable format.

Maple examples in this book are formatted to look like they would in a Maple work-
sheet using the above assumptions, and look like the following

> Input; Input
Input

Output
Output
Output

Warnings and Information
Errors

Each input—and its associated output, warnings, and errors—are enclosed by a giant
bracket (a “[”, sometimes referred to as a “square bracket”), with a red > symbol acting
as an input prompt. Multiple commands may be input together at the same prompt,
and the input may even be spread over multiple lines. Input is colored black and is left
aligned. Output is blue, and centered. Warnings are blue in a monospaced “typewriter”
(Courier) font. Finally errors are red in a monospaced typewriter font. This is almost
identical to Maple (given the above assumptions), with the only difference that Maple’s
errors are a more purple-like color. For the sake of simplicity (and not too many colors)
we have adopted red for this book.

xiii

xiv Conventions and Notation

Maple Input Basics

It is, unfortunately, not immediately obvious which keystrokes produce which input
effects. As such we include Table P.1 which shows the non obvious keystrokes. Note
that Maple will automatically format the text as mathematics for you at the moment
it is typed. Maple will also attempt to make sensible decisions, based around order of
operations, as to which parts of the input will be affected. If Maple makes an incorrect
decision, then parentheses ((and)) are needed to make the expression unambiguous.

Operation Keys Example Keystrokes
Multiplication * a · b a*b

 a b a b

Powers ^ ab a^b
Subscripts _ ab a_b
Fractions / a

b a/b
Not Equal <> a 6= b a<>b
Less than or Equal to <= a ≤ b a<=b
Greater than or Equal to >= a ≥ b a>=b
Function -> a→ b a->b
Multiple Line Commands shift-enter a

b
a shift-enter b

Table P.1 Maple Input Keystrokes

Note that although multiplication may be produced using a space () as well as the
asterisk (*), the dot (·) that Maple places instead of the asterisk leaves no ambiguity as
to the nature of the calculation, whereas a space might easily be missed. As such the
reader should feel free to use whichever method he or she prefers, but should be aware
that the Maple examples in this book use the · notation to denote multiplication, unless
there can be no ambiguity (for instance, with polynomial coefficients).

Useful Functions

We list here, for convenience, a small list of Maple functions which are arguably es-
sential to know. These are functions to perform elementary mathematical operations
(for example, square roots) or for simplification. The list is in Table P.2. Consult the
help files on these functions for more specific details on their use. Note that many more
functions are introduced and explained within the main text of this book.

Some comments:
• The log command may also be directed to perform logs to a base other than e if

desired, but will perform natural logs unless specifically told otherwise. For example,
the command log[2](3) will calculate the log of 3 to the base 2.
• The Maple names pi and Pi are both used for the lower case greek letter π, whereas
PI is used for upper case Π. These are case sensitive, and all distinct. The most
commonly used is probably Pi (capital “P” and small “i”) which is used when the
value of π is desired. The other two (pi and PI) are only symbols with no innate
value.
• The commands for algebraic rearrangement work primarily as one would expect
from their names. However, it should be noted that when faced with a complicated

Conventions and Notation xv

Desired Effect Command
Square root of a number (

√
x) sqrt

nth root of a number (n
√
x) root

surd
Power of e (ex) exp
Natural logarithm (log x) log

ln
Value of π Pi
Value of ∞ infinity
Rearrange an algebraic expression simplify

factor
expand
combine

Conversion between forms convert

Table P.2 Essential Maple Functions

answer from Maple it is sometimes the case that factor, expand, or even combine
will produce a more simplified answer than the simplify command does. Further-
more, these commands used in conjunction with each other can produce superior
results.
• The convert function is a multi faceted function that allows many different
types of conversions to be performed (see Exercise 4). Of particular interest
and utility, in conjunction with the algebraic rearrangement above, is the vari-
ant that allows conversion of an expression to one involving standard functions:
convert(· ,StandardFunctions).

Mathematics

Included in Table P.3 is a list of mathematical notation, and its meaning.

Notation Meaning
N The set of natural numbers
Z The set of integers
Q The set of rational numbers
R The set of real numbers
C The set of complex numbers

log x The natural logarithm of x
logb x The logarithm of x (base b)
sin x The sine function applied to x

sinn x The nth power of the sine function applied to x. That is (sinx)n.
sin−1 x The inverse-sine function applied to x
arcsin x The inverse-sine function applied to x

cosx The cosine function applied to x
cosn x The nth power of the cosine function applied to x. That is (cosx)n.
cos−1 x The inverse-cosine function applied to x
arccosx The inverse-cosine function applied to x

Table P.3 Mathematical Notation

xvi Conventions and Notation

Note: In the case of the log, sin, cos, and similar functions, if there is any ambiguity
as to what the function in question is and is not to be applied to, then parentheses or
brackets are used to make it clear. For example 2 + sin(3x+ 1).

Chapter 1
Number Theory

This chapter includes the basics of the use ofMaple, illustrated by fairly simple examples
mostly involving integers. For this chapter you need to know what a sequence is, an
infinite sum, summation notation, what a function is, and what a polynomial is. By the
end of the chapter you should be comfortable usingMaple for moderately complex tasks,
and should be ready to learn the new commands required for doing specific mathematics
such as calculus or linear algebra.

1.1 Introduction to Maple

Before we can set about exploring mathematics with Maple we need to know how to
input basic commands into it. This section will introduce Maple and its most basic
commands.

1.1.1 Inputting Basic Maple Expressions

At its absolute most basic, Maple can be used as sort of an overblown pocket calculator.
We give it an expression to calculate, and Maple performs the calculation.[
> 1 + 2

3[
> 2 · 35 + 12− 2

496
or even more complicated statements involving factorials, trigonometric functions, and
a lot more besides
>

(
sin
(

Pi
2

)
+ 12! · sqrt(12)

)
exp(4)

1 + 958003200
√

3
e4

Notice that in this last example that Maple didn’t provide a decimal number as the
answer to the input. This rather nicely illustrates a key difference between Maple and

1

© Springer Science+Business Media, LLC 2011
Springer Undergraduate Texts in Mathematics and Technology, DOI 10.1007/978-1-4614-0122-3_1,
J. M. Borwein and M. P. Skerritt, An Introduction to Modern Mathematical Computing: With Maple ,TM

2 1 Number Theory

your pocket calculator. Maple is a Computer Algebra System (CAS), and performs its
calculations as exactly as possible. When no exact number occurs, Maple provides an
exact expression. So e4 and

√
3 are exact values, whereas 54.59815003 and 1.732050808

(respectively) are decimal approximations. Maple gives us the exact value unless we
specifically ask it otherwise. To accomplish this we either use the evalf command, or
put a decimal point next to a constant. > evalf


(

sin
(

Pi
2

)
+ 12! · sqrt(12)

)
exp(4)


3.039132676 107

>

(
sin
(

Pi
2

)
+ 12! · sqrt(12.)

)
exp(4)

1.659310217 109

e4

Attention should be drawn, in the second example, to the period after the 12 in
the square root. This is a shorthand for—in this case—12.0, and tells Maple that the
value is a decimal. The inclusion of a decimal in an expression is one way to tell Maple
that we wish a numeric (rather than symbolic) calculation to be performed. In this
particular case, only the numerator was evaluated numerically, which suggests that
Maple considers the numerator and denominators somehow to be separate expressions.
If in doubt, it’s usually easier just to put the entire expression in an evalf command.

Inasmuch as Maple is a CAS, we ought to expect that it can do some basic algebra.
In point of fact it can, and a good start is to work with basic polynomials.[
> 3x2 + 2x3 + 3

3x2 + 2x3 + 3[
> 4x2 + 9x2

13x2

Notice that Maple automatically adds the like terms together.[
> 3x4 · 3y2

9x4y2

In general, Maple considers any word it does not otherwise know to be an algebraic
variable. We could use the strings “alice” and “bob” in place of x and y and Maple will
treat them just like any other algebraic variable.
> alice + bob; % + 2; % + 5

alice + bob
alice + bob + 2

alice + bob + 7
The previous example demonstrates a couple of things that we have not yet seen

before, which we take some time to highlight.
First there were three commands on one line. Each command is ended by a semicolon

(;), which tells Maple where a command ends. Alternatively, a command may be ended
by a full colon (:) if we wish for the output of that command not to be displayed.
Older versions of Maple required a semicolon (or colon as desired) after each and every

1.1 Introduction to Maple 3

command—even if there were only a single command on a line—but version 12 and
later only requires them between multiple commands.

Second there is the special character %. This character is used to refer to the value
of the most recent calculation. The % is a very useful tool, but be careful when using it,
as the most recent calculation performed may not be on the same, or even the previous
line of your input (see Exercise 3).

1.1.2 Variables

In addition to providing an unknown quantity for working with algebra,Maple variables
(any string of characters that Maple doesn’t know to be something else) can also have
values assigned to them. There are two primary reasons to do this. The first is to give
a name to an expression you want to use later; the other is to store a value that might
change. In reality, these are two sides to the same coin. To assign a value to a variable,
we use the assignment operator (:=).[
> A := 2

A := 2
Note that the assignment operator is often used in mathematics to denote a definition.

This is no less true in Maple. We could happily view assigning a value to a variable
name as defining the variable name to be that value. Once we have assigned a value to
a variable, when we use the variable name, Maple automatically uses its value for the
computation.
> A;A+ 2;A10

2
4

1024 > Poly := 3x3 + 2x2 + 3x; Poly + 3x2 + x

Poly := 3x3 + 2x2 + 3x
3x3 + 5x2 + 4x

We can, if we wish, have Maple perform a calculation, and store the result of that
calculation in the variable.[
> value := 4 · 12 + 135

value := 371341
We can even use variable names as input to functions, and Maple still uses the value

of the variable. We look at exactly what a function is in the next subsection, but for
now notice that in the example below, Maple has plotted the cubic 3x3 + 2x2 + 3x to
which we gave the name Poly in an earlier example above.

4 1 Number Theory

> plot(Poly, x = −1..1)

We may assign any valid Maple input to a variable, and Maple will always use the
value of the variable wherever we use its name. This can be very useful, if occasionally
confusing. A common theme throughout the course of the book is that one must remain
aware of the subtleties of the system when utilizing it. With great power comes great
responsibility.

So far we have used variables to give a name to something we wish to somehow
utilize later on. However, as mentioned above, sometimes we want to use a variable
as a storage box for values that can and will change. This is really no different from
reassigning a variable name to a different expression. > a := 2; 2 · a

a := 2
4 > a := 4; 2 · a

a := 4
8

Such a technique, however, lets us use a variable to store intermediate results of a
calculation in progress.[
> total := 0

total := 0[
> total := total + 12

total := 12[
> total := total + 11

total := 23
Note here that not only are we reassigning the value of the variable named total but

we are also using its current value to calculate its new value. The line total := total +12
means, in English, something along the line of “set the value of total to be its current
value plus 12.” WhatMaple actually does is evaluate the right-hand side of the definition

1.1 Introduction to Maple 5

(which in this case is total + 12) and assign the result of that calculation back to the
variable name on the left-hand side. These need not be the same variable, for instance: > subtotal1 := 12; subtotal2 := 23

subtotal1 := 12
subtotal2 := 23[

> total := subtotal1 + subtotal2
total := 35

The above code is perfectly valid, and is really just another case of the basic assign-
ment of a variable we saw at the beginning of the subsection.

1.1.3 Functions

Having dealt with basic input and variables, we now move on to another key Maple
concept, that of functions. A function, simplistically speaking, is just something that
takes an input (perhaps several inputs) and produces output. We have already seen a
couple of functions in our examples thus far such as sin and evalf . Functions are written
in the form of name(input, input, . . .) where name is the name of the function, and
input, input, . . . is a comma separated list of the inputs, sometimes called parameters.
To start with we deal mostly with functions that take a single input, and should look
very similar to the functions seen in first-year calculus.[
> ifactor(1573)

(11)2 (13)[
> factor(x4 − 2x3 − 13x2 + 14x+ 24)

(x− 2)(x− 4)(x+ 3)(x+ 1)
> simplify

(
x2 + x

x3 + 2x

)
x+ 1
x2 + 2[

> is(1 < 2)
true[

> lhs(A = B)
A

A list of commonly used basic functions is included at the very beginning of this
book, just after the preface. For more complicated functions, Maple’s own help files are
always a good source of information. Every example thus far has been a function that
comes built-in to Maple. In the next section we start creating our own functions, but
for now we look at an example of a function that takes multiple inputs. > convert(0.1234, rational)

617
5000

The astute reader will also recognize that the plot function we saw earlier was also
a function that took multiple inputs.

6 1 Number Theory

1.1.4 Sequences, Lists, and Sets

In Maple, however, a sequence refers to a group of expressions separated by commas.
For example, the following demonstrates two Maple sequences.
> 1, 2, 3; poly := x3 + 3; poly, 5, bob

1, 2, 3
poly := x3 + 3
x3 + 3, 5, bob

First-year calculus students should have studied infinite sequences and series (which
were just a more intricately constructed sequence), and the difference between a Maple
sequence and a mathematical (infinite) sequence could potentially be confusing. Al-
though Maple sequences could well be thought of as finite sequences, it might be easier
to just recognize the fact that the two are different. Maple can handle the usual calculus
sequences, but does so using the limit function, which is dealt with in more detail in
Chapter 2. > limit

(
1
k2 , k = infinity

)
0

So with that clarification out of the way, let’s get back to Maple sequences. For the
remainder of this chapter a sequence refers to a Maple sequence. Any valid Maple code
may form an element of a sequence. The astute reader may have already noticed that
the functions above, which took multiple variables, accepted their input as a sequence.
For example, the plot function took as its input the sequence poly, x = −1..1 and the
convert function had the sequence 0.1234, rational as its input.

Because sequences are just another valid Maple expression, they may be stored in a
variable. If we have two sequences and put them into a single sequence, the result is
one large sequence, not two nested sequences. This becomes clearer when we see how
lists and sets “nest” later in the subsection.
> A := a, b, c;B := 1, 2, 3;C := i, ii, iii

A := a, b, c

B := 1, 2, 3
C := i, ii, iii[

> A,B,C

a, b, c, 1, 2, 3, i, ii, iii
Sequences can also be a very convenient way of assigning multiple variables in a

single command. For instance, if we wish to assign A := 1, B := 2, and C := 3 then we
could use[
> A,B,C := 1, 2, 3

A,B,C := 1, 2, 3
> A;B;C;

1
2
3

1.1 Introduction to Maple 7

There is also a special sequence called the null sequence. This is a sequence with
no elements, much as the empty set in set theory is the set with no elements. The
null sequence in Maple is referenced by the keyword NULL. As such, putting the null
sequence in any sequence doesn’t change the sequence at all.
> NULL, a, b, c; a, b, c,NULL; a, b,NULL, c

a, b, c

a, b, c

a, b, c

Using a null sequence allows a list to be built up by parts within a variable, a little
like the total variable was in the previous subsection.[
> S := NULL

S :=[
> S := S, a, b, c

S := a, b, c[
> S := S, d, e

S := a, b, c, d, e

If we want to produce a sequence that follows a fairly predictable pattern, we have
a handy command, seq. To print out the first ten squares we simply input[
> seq(k2, k = 1..10)

1, 4, 9, 16, 25, 36, 49, 64, 81, 100
or for something a little more complicated
> seq

(
3 · k2 + k

2 , k = 4..15
)

50, 155
2 , 111, 301

2 , 196, 495
2 , 305, 737

2 , 438, 1027
2 , 595, 1365

2
In general, to have Maple print out the sequence {xn}bn=a we use the command

seq(xn, n = a..b). There is a shortcut that can be applied if we wish to repeat the same
term multiple times, which will come in handy when we do some calculus. To do this
we use the sequence operator ($).[
> x$4

x, x, x, x

This sequence operator can be used as a shortcut to the seq command, but be warned
that it isn’t quite as flexible as the seq command (see Exercises 5 and 6).

If we have a sequence, we may wish to use only a subsequence of it, or perhaps only
a single element. Maple allows this through indexing using the index operator [], or
through subscripting in the graphical editor. Be warned, subscripting is a shorthand for
the square bracket operator. If unsure, use square brackets. For subsequences we also
use the range (..) operator.[
> S := seq(k2, k = 1..10);

S := 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 > S[3];S4;
9

16

8 1 Number Theory > S[5..8];S3..7

25, 36, 49, 64
9, 16, 25, 36, 49

> S[..4];S..3;S[6..];S7..

1, 4, 9, 16
1, 4, 9

36, 49, 64, 81, 100
49, 64, 81, 100

In the latter example, the “half ranges” ..n and m.. mean “the first n elements” and
“from the mth to the last element,” respectively. Such notions make sense because we
are indexing a sequence that contains only a finite number of elements. An alternate
way of thinking of these ranges is to consider that Maple automatically inserts the
beginning or the end index for the missing number as appropriate.

We now look at two related notions to sequences: lists and sets. Syntactically, a list
or set is just a sequence enclosed in [] or {}, respectively. Sets are unsorted and ignore
duplication, as should be expected by the reader familiar with elementary set theory.
Lists are ordered and allow duplications. Both lists and sets can be nested, which makes
them distinct in behavior from sequences. Lists and sets are also useful for removing
ambiguity when trying to have a function recognize a sequence as a single input, an
example of which can be seen in Exercise 14. > L := [1, 1, 2, 2, 3, 3, 4, 4];S := {1, 1, 2, 2, 3, 3, 4, 4}

L := [1, 1, 2, 2, 3, 3, 4, 4]
S := {1, 2, 3, 4} > [L, S]; {L, S}

[[1, 1, 2, 2, 3, 3, 4, 4], {1, 2, 3, 4}]
{[1, 1, 2, 2, 3, 3, 4, 4], {1, 2, 3, 4}}

Lists and sets may be indexed exactly as with a sequence, with the difference that if
a range (using the .. operator) is given for the index, then a list or set, respectively, is
produced. Indexing a single element produces only the element as with a sequence[
> L[1], L2, S[3], S4

1, 1, 2, 2[
> L[3..5], L..3, S[3..], S2..3

[2, 2, 3], [1, 1, 2], {3, 4}, {2, 3}
Observe that in the above two examples we have used a sequence to display the

results of the calculations on a single line.
If we wish to know whether a list or a set contains a particular element, we may use

the in operator. This may be thought of as being the ∈ operator, and is even printed
as such in Maple.[
> 1 inS

1 ∈ S
This command on its own does nothing but write itself out again with the element

symbol. In order to have Maple actually tell us whether 1 ∈ S (in the above case) then
we need to use the is or evalb commands. We saw is in Section 1.1.3. Both functions
return a value of either true or false. In fact the function evalb is short for “evaluate
as Boolean” where a Boolean value is either true or false.

1.1 Introduction to Maple 9 > is(1 inS); evalb(9 inL)
true

false
And finally, the usual set operations of union and intersect work as expected with

sets, and not at all with lists. > {1, 2}union{2, 3, 4}; {1, 2} intersect{2, 3, 4}
{1, 2, 3, 4}
{2}

1.1.5 Sums and Products

Having dealt with the basics of Maple, we can now move onto some mathematics a
little more like we might see at the beginning of a first-year math course. We begin by
looking at how Maple can handle sums and products, both of the finite and the infinite
variety.

For large additions (or, indeed, for anything too complicated to use the + operator
practically) Maple provides the add and sum commands. There are a couple of small
differences between these two commands, but the most glaring difference is that sum
is designed for infinite sums (sometimes known as series) and tries to be clever about
the addition, whereas add simply adds together a bunch of terms, and so is generally a
lot quicker than sum, but cannot handle infinite or indefinite sums. Both the sum and
add commands look very much like the seq command.[
> add(k2, k = 1..10)

385[
> sum(k2, k = 1..10)

385
The sum command comes in two forms. If the command is written with a lower case

“s”, thenMaple performs the summation as we have previously seen. This form is known
as an the active form of the sum command. If the command is written with a capital
“S”, then Maple performs no immediate computation, and instead simply displays the
sum in the sigma notation. This form is known as the inert form. In order to be able
to ask Maple to perform the calculation of an inert sum, we have the value function.
Maple displays an inert sum with a grey sigma, and an active sum (on the unusual
occasions that it displays an active sum in sigma notation) with a blue sigma.
> Sum(k2, k = 1..N)

N∑
k=1

k2

 > factor(value(%))
1
6N(N + 1)(2N + 1)

As well as sums,Maple can also handle products. Much like add and sum,Maple has
two functions to perform products; one that simply performs a multiplication, and the
other which is smarter but slower and designed for evaluating infinite products. These
commands are mul and product, respectively. Also like sum, the product command

10 1 Number Theory

comes in an inert and active variant which is indicated by a capital “P” for the inert,
and a lower case “p” for the active.[
> mul(k2, k = 1..10)

13168189440000[
> product(k2, k = 1..10)

13168189440000

> Product(k2, k = 1..N); value(%)

N∏
k=1

k2

Γ (N + 1)2

The result of the latter of these computations should make more sense if you know
that Γ (n) = (n− 1)!

We show in later chapters more functions that have inert and active forms. It is a
common enough occurrence in Maple. Be sure to remember that the function with a
capital letter at the beginning of its name (e.g., Sum or Product) is the inert form
that will not perform any calculation, and the function whose name is all lower case
(e.g., sum or product) is the active form. Inert forms always require the use of the
value function to have the calculation in question performed.

One should be made aware of a subtlety when evaluating inert sums and products.
It may be tempting to use the evalf function instead of the value function to evaluate
a sum or product. It may appear, superficially, that these two commands would do
the same thing, however, they are quite different. The evalf functions causes Maple to
obtain a decimal approximation of the calculation, whereas value causes the calcula-
tion to be performed symbolically (just as the active form of the function in question
performs directly). Each method has its place, but it is important to understand the
difference.

1.1.6 Packages

Not all of Maple’s functions are able to be used immediately. Instead some of them are
stored away in packages. We have not, hitherto, come across any packaged functions yet,
so we quickly look at an example now. Suppose we have a list, and we wish to reverse its
order. There is a function named Reverse in a package named, appropriately enough,
ListTools.[
> L := [1, 2, 3, 4, 5, 6, 7, 8, 9]

L := [1, 2, 3, 4, 5, 6, 7, 8, 9]
If we try to use the Reverse function normally, nothing happens[
> Reverse(L)

Reverse([1, 2, 3, 4, 5, 6, 7, 8, 9])
To use a function that is in a package we need to tell Maple exactly where to locate

the function. That is, we need to tell Maple that the function is in a package, as well as
in which package. This is done by using the so-called long form of the function, which

1.2 Putting It Together 11

is of the form package[function]. In the particular case of our list reversal example, this
would be ListTools[Reverse], which should be read as “the Reverse function from the
ListTools package.”[
> ListTools[Reverse](L)

[9, 8, 7, 6, 5, 4, 3, 2, 1]
Being required to type ListTools[] every time we use a function might become tedious

if we want to use the function more than just once or twice. Furthermore, we may wish
to use other functions from the ListTools package. We may avoid the need to always use
the long form of a function name by simply loading the package into Maple by using
the with function. Doing this will load all the functions in the package, allowing their
use directly, without need to specify to which package they belong.

> with(ListTools)
[BinaryPlace,BinarySearch,Categorize,DotProduct,Enumerate,FindRepetitions,

Flatten,FlattenOnce,Group, Interleave, Join, JoinSequence,LengthSplit,
MakeUnique,Occurrences,Pad,PartialSums,Reverse,Rotate,Search,SearchAll,

Sorted,Split,Transpose][
> Reverse(L)

[9, 8, 7, 6, 5, 4, 3, 2, 1]
Maple helpfully gives a list of all the new functions that are available when we use

the with command. This may, of course, be suppressed in the usual way if we wish.
Some small care must be taken here, as sometimes two (or more) packages may each
contain a function (or functions) with identical names. In this case, the function from
the most recently loaded package is the one that will be used, unless the long form is
used to specifically and unambiguously refer to one or the other.

1.2 Putting It Together

In the previous section, we looked at inputting single commands into Maple. These
may be thought of as building blocks. In this section we begin to put these building
blocks together to produce more complicated calculations. We also begin to introduce
some more serious mathematics in order to motivate or illustrate the particular Maple
constructions with which we are dealing.

1.2.1 Creating Functions

In the previous section we have seen what a function is. In addition to the built-in
functions, we may create our own. A function, using the arrow operator (→) takes on
the form input→ expression, and is a perfectly valid Maple expression on its own. The
→ operator is produced by typing the text ->[
> x→ 3x2 + 4x− 2

x→ 3x2 + 4x− 2
The above function takes a single expression as input (which it calls x), and then

uses that expression to perform the calculation 3x2 + 4x − 2. The name of the input

12 1 Number Theory

variable is entirely arbitrary and could be any valid Maple variable name. In order to
be able to actually use this function, we need to assign it to a variable name.[
> f := x→ 3x2 + 4x− 2

f := x→ 3x2 + 4x− 2

> f(2); f(4); f(A); f(Γ (N)); f([1, 2])
18
62

3A2 + 4A− 2
3Γ (N)2 + 4Γ (N)− 2
3[1, 2]2 + 4[1, 2]− 2

It is interesting to see in the last example above that even though it makes apparently
no sense mathematically, Maple will, nonetheless, accept [1, 2] as input to the function
f and produce the output string as if [1, 2] were a variable.

How about something that might be a bit more familiar. Recall from first-year cal-
culus that

∞∑
k=1

1
k

diverges, whereas
∞∑
k=1

1
k2

converges. This is a good reminder that the divergence test is inconclusive in the case
where the sequence has a limit of 0 because 1/k → 0 (as k →∞) yet the series diverges
but 1/k2 → 0 yet the series converges. To attempt to verify the convergence of the
1/k2 series, we can try the ratio test with Maple, but unfortunately this test also proves
inconclusive.

> a := k → 1
k2 ; limit(a(N), N = infinity); abs

(
a(N + 1)
a(N)

)
; limit(%, N =

infinity)

a := N → 1
k2

0∣∣∣∣ N2

(N + 1)2

∣∣∣∣
1

We side-track for a moment and notice that for every N we have∣∣∣∣a(N + 1)
a(N)

∣∣∣∣ < 1

This is not hard to verify by hand, but we ask Maple for a verification anyway. Observe
that the fraction is undefined for N = −1, but this isn’t a concern for us as we’re only
interested in natural values of N . However, we may need to be a little specific in what
we ask Maple.

1.2 Putting It Together 13 > is(abs
(
a(N + 1)
a(N)

)
< 1)

FAIL > is(abs
(
a(N + 1)
a(N)

)
< 1) assuming N :: posint

true
You should read N :: posint as “N is a positive integer.” We could, in this particular

case (but not always), have used N ≥ 0 in place of N :: posint and would have obtained
the same answer.

Now, returning to the question of convergence of 1/k2, we have yet to verify analyt-
ically whether the series converges or diverges. Recall, however, that an infinite sum is
a limit of partial sums. That is,

∞∑
k=1

a(k) = lim
N→∞

N∑
k=1

a(k)

As our next attempt we attempt to see how the partial sums behave. To do this we
begin by creating the Nth partial sum of our series 1/k2 as a function in Maple.
> f := N → sum

(
1
k2 , k = 1..N

)
f := N →

N∑
k=1

1
k2

We now have f as a function of N where N is the number of terms to sum. Let us
now see how this sum behaves with increasing values

> f(1), f(2), f(10), f(100), f(10000)

1, 5
4 ,

1968329
1270080 ,

1589508694133037873112297928517553859702383498543709859889432834803818131090369901
972186144434381030589657976672623144161975583995746241782720354705517986165248000 ,

−Ψ(1, 10001) + 1
6π

2

Well that wasn’t particularly helpful, although the term for f(10000) looks promising.
Let’s try asking for decimal answers instead.[
> seq(evalf (f(10i)), i = 1..6)

1.549767731, 1.634983900, 1.643934568, 1.644834073, 1.644924068, 1.644933068
Note that we needed to be careful here, as our function f consisted of a sum that

used the dummy variable k, and so if we had also used k for the dummy variable in the
seq command, they would have conflicted. See Exercise 13. We avoided this problem
by using i as the dummy variable for the seq command.

We can see evidence here of convergence of the series to 1.644. . . , remembering that
the sequence we asked for was

f(1), f(10), f(100), f(1000), f(10000), f(1000000)

As we calculate progressively larger and larger partial sums, the value of those partial
sums seems to change less and less. At this point we may as well ask Maple if it can
give us an answer for the limit.

14 1 Number Theory
> limit(f(n), n = infinity); evalf (%)

1
6π

2

1.644934068
And there we have it. It looks very much as if the series converges to 1/6 π2.

1.2.2 Loops

Until now if we wanted to perform something several times, we either typed it in multiple
times at the command prompt, or we constructed a sequence. Sometimes these options
aren’t satisfactory. Let us revisit our example of the series

∑
(1/k2). Earlier we used

seq to print out the sequence 
10N∑
k=1

1
k2


6

N=1

which quite conveniently demonstrated the convergence of the series. The sequence was
easy to read. However, suppose we wanted to see more values of the sequence. Let’s
look at the values of the partial sums for values of N as the first 20 powers of 2. That
is, N = 2, 4, 8, 16, . . . , 1048576.
> seq(evalf (f(2i)), i = 1..20)
1.250000000, 1.423611111, 1.527422052, 1.584346533, 1.614167263,
1.629430501, 1.637152005, 1.641035436, 1.642982848, 1.643957982,
1.644445906, 1.644689957, 1.644812005, 1.644873035, 1.644903551,
1.644918809, 1.644926439, 1.644930253, 1.644932161, 1.644933114

That’s a bit of a mess, but not completely unreadable. Now, we would like to see
which values of N produce which of those outputs. We can work it out by counting
from the left and working out the power of 2, but it would be nicer to see it. We tell
Maple to print f(N) = before each answer. In order to do this without having Maple
evaluate f(N) as a function, we enclose the f in single quotes, which tells Maple to
treat it as a symbol only, and not to evaluate it.

> seq(′f ′(2i) = evalf (f(2i)), i = 1..20)
f(2) = 1.250000000, f(4) = 1.423611111, f(8) = 1.527422052, f(16) =
1.584346533, f(32) = 1.614167263, f(64) = 1.629430501, f(128) =

1.637152005, f(256) = 1.641035436, f(512) = 1.642982848, f(1024) =
1.643957982, f(2048) = 1.644445906, f(4096) = 1.644689957, f(8192) =

1.644812005, f(16384) = 1.644873035, f(32768) = 1.644903551,
f(65536) = 1.644918809, f(131072) = 1.644926439, f(262144) =

1.644930253, f(524288) = 1.644932161, f(1048576) = 1.644933114
Ugh, now that’s really a mess. We might improve matters if we could somehow put

each equality on its own line, instead the one big sequence we currently have. We might
achieve this by simply typing out all 20 expressions one after the other, but this would
be slow and tedious, and would not work well if we wanted many computations to be
performed. Fortunately, Maple provides a mechanism for such repeating calculations as
these, called a for loop.

1.2 Putting It Together 15

> for i from 1 to 20 do ’f ’(2i) = evalf (f(2i)) od

f(2) = 1.250000000
f(4) = 1.423611111
f(8) = 1.527422052
f(16) = 1.584346533
f(32) = 1.614167263
f(64) = 1.629430501
f(128) = 1.637152005
f(256) = 1.641035436
f(512) = 1.642982848
f(1024) = 1.643957982
f(2048) = 1.644445906
f(4096) = 1.644689957
f(8192) = 1.644812005
f(16384) = 1.644873035
f(32768) = 1.644903551
f(65536) = 1.644918809
f(131072) = 1.644926439
f(262144) = 1.644930253
f(524288) = 1.644932161
f(1048576) = 1.644933114

Now this is much easier to read. Maple has calculated the expression ’f ’(2i) =
evalf (f(2i)) for us, and has done so 20 times, each time with the value of i increased
by 1. After each calculation it has output the result of the calculation just as it would
have if we had entered it manually at the command prompt.

We have calculated some remarkably large partial sums here. It turns out, for this
example, that we can blithely ask Maple to calculate some truly extraordinary large
partial sums, and it will give us an answer almost instantaneously.
> evalf (f(1012)); evalf (f(10100))

1.644934068
1.644934068

It is tempting to conclude that computer technology is just so fast nowadays that
such a performance is simply to be expected. Unfortunately, this is not true as we show.

The previous example is taken from a slightly more general result. This result states
that the p-series

∞∑
k=1

1
kp

where p ∈ R, converges only when p > 1. So let’s see what happens when we choose
p = π.

16 1 Number Theory
> g := N → sum

(
1
kPi , k = 1..N

)
g := N →

N∑
k=1

1
kπ

> g(infinity); evalf (%)
ζ (π)

1.176241738
We can see that the sum converges to the zeta (ζ) function evaluated at π. If we now

go and look up the zeta function we find out that the zeta function is defined in terms
of these infinite sums.

ζ(p) :=
∞∑
k=1

1
kp

Maple hasn’t told us a great deal here. Nonetheless we have a decimal approximation
to which we should see convergence. We can use the same for loop from above, but this
time with the g function.

> for i from 1 to 20 do ’g’(2i) = evalf (g(2i)) od

g(2) = 1.113314732
g(4) = 1.157856429
g(8) = 1.171486718
g(16) = 1.175089712
g(32) = 1.175971771
g(64) = 1.176179520
g(128) = 1.176227516
g(256) = 1.176238498
g(512) = 1.176240996
g(1024) = 1.176241563
g(2048) = 1.176241563
g(4096) = 1.176241563
g(8192) = 1.176241563
g(16384) = 1.176241563
g(32768) = 1.176241563
g(65536) = 1.176241563
g(131072) = 1.176241563

Warning, computation interrupted
This time the computation was much slower, and seemed to get slower each time. If

we think about this, we realize that Maple must perform twice as many computations
each time, so it stands to reason that, say, g(1000) should be quicker than g(2000). If
we try to calculate something only moderately outrageous (when compared to 1012 or
10100 from above), we find the computation takes too long to be useful to us.[
> evalf (g(106))

Warning, computation interrupted

1.2 Putting It Together 17

In point of fact, when one of the authors ran the above computations on his home
laptop, it caused the system to collapse under its own weight (so to speak) as all its
memory was eaten up (and hence the aborted computation). It is for this reason that
the computations were interrupted.1

Remember here, that the reason we are doing this is to get a quick feel for the
convergence of a system. There may very well be times when we should be happy to
let a calculation run for perhaps even weeks or months if the value of the computation
is sufficiently important. Computations of π to exceptionally large precision have been
run that have taken months to perform. This is not such a case, however. It is important
to remember our goals in order to ascertain how long a wait is too long.

The question now arises, why was the function f so fast? Even calculating a thousand
billion (1012) terms of the series was nearly instantaneous. The answer is found when
we try to see what Maple thinks an arbitrary partial sum should look like
> f(N); g(N)

−Ψ (1, N + 1) + 1
6 π

2

N∑
k=1

(
1
kπ

)
We see here that our first function, f(N) =

∑N
k=1 k

−2, has a clear formula, whereas
for our second function g(N) =

∑N
k=1 k

−π, Maple has just given us back the sum
we gave it in the first place. We can infer from this that Maple cannot find a simple
formula for this partial sum. It does, however, know a lot about the ζ-function and
how to compute it quickly, as we saw when we asked for g(∞) earlier. This is in keeping
with the behavior we have seen thus far. Surely a single formula will be much faster to
calculate than N terms of a sum.

Digging a little deeper we see more of the same idea.
> f(10); g(10)

1968329
1270080

1 + 1
2π + 1

3π + 1
4π + 1

5π + 1
6π + 1

7π + 1
8π + 1

9π + 1
10π

> f(12); g(12)
240505109
153679680

1 + 1
2π + 1

3π + 1
4π + 1

5π + 1
6π + 1

7π + 1
8π + 1

9π + 1
10π + 1

11π + 1
12π

> f(106); g(106)

−Ψ (1, 1000001) + 1
6 π

2

[Length of output exceeds limit of 1000000]

1 For the more computer-knowledgeable readers, the computation caused excessive paging and large
amounts of virtual memory to be assigned, as well as much of the current memory to be swapped
out to disk. Even after aborting the calculation—no small feat on a system that is chronically
unresponsive due to all the paging—the system would only page contents back into memory on
demand; as such it was quite some time before ordinary use of the computer didn’t result in a burst
of disk activity, and corresponding delay.

18 1 Number Theory

What is particularly interesting here is that we were successfully able to calculate
g(106), and very quickly at that. Yet, when we tried (almost) the same calculation
above it took a long time and nearly crashed the author’s computer. It would seem,
then, that the problem is not in the symbolic calculation of the partial sum, as much
as in the evaluation of it to floating point.

If we modify our approach only slightly, we are able to calculate the millionth partial
sum without the issues we saw earlier. We have already tried first computing g(106)
symbolically and then evaluating its decimal representation, and we did not fare well.
Instead we calculate the decimal representation at each step, and add these decimals
together as we go. We achieve this using the add function.[
> add(evalf (k−Pi), k = 1..106)

1.176241737
This code completed in just under three minutes on the author’s computer, and

caused no discernible stress on the system.
It is very tempting to view the above numerical computation with some contempt.

Decimal approximations are just that, approximations. Worse still, the above compu-
tation is adding approximations to approximations at every step, and doing it a million
times. What’s more, we are using a CAS, the whole point of which is to allow the com-
puter to perform exact symbolic calculations. Surely it would seem reasonable, even
preferable, to perform all computations symbolically, and to obtain decimal approxi-
mations from these exact mathematical constructs. This was certainly the opinion of
one of the authors before the commencement of this book.

Of course, what we have seen in this previous example is a case where such an
approach is simply not feasible. Sometimes we have to work purely numerically, and
the reality is that numeric computations aren’t as bad as all that. We should, of course,
be quite aware of the fact that numerical approximation can introduce errors in our
calculations, and be on the lookout for them, but this should not and does not detract
from the usefulness of symbolic computation.

We look at this phenomenon again with a different example. This time we take the
infinite product

∞∏
k=3

cos
(π
k

)
If we sketch a picture of the cosine graph we can quickly see we are multiplying a bunch
of numbers together, all of which are positive, and all of which are less than 1, but that
are getting closer and closer to 1 as we progress. If we ask Maple for the answer, we are
told it is 0.
> P := Product

(
cos
(

Pi
k

)
, k = 3..infinity

)
P :=

∞∏
k=3

cos
(π
k

)
[
> value(P)

0
This is not entirely problematic, because we are talking about the limit of partial

products. So it could well be the case that even though the number we multiply by at
each stage is increasing, it may not be increasing quickly enough, and the whole process
might still end up decreasing to a limit of 0. It is, however, incorrect. If we try a floating
point evaluation instead, Maple gives us a different answer.

1.2 Putting It Together 19[
> evalf (P)

0.1149420449
Clearly, at least one of these answers must be incorrect. Note that we’ve been careful

here to define P as an inert product, so that we can separately perform the value and
evalf commands on the same product.

It is at this point that we would like to calculate some partial products, just as we
did previously, and hope to see some sort of convergence. We find, unfortunately, the
same problem as we had with our k−π sum. The large partial products just take too
long to calculate.

> for i from 1 to 20 do′ g′(2i) = evalf (g(2i)) od

f(4) = 0.3535533905
f(8) = 0.2061903868
f(16) = 0.1550922784
f(32) = 0.1337985136
f(64) = 0.1240823134
f(128) = 0.1194421627
f(256) = 0.1171748402
f(512) = 0.1160541566
f(1024) = 0.1154970332
f(2048) = 0.1152192732
f(4096) = 0.1150805931
f(8192) = 0.1150113030
f(16384) = 0.1149766706
f(32768) = 0.1149593584

Warning, computation interrupted
It certainly looks, above, as if the answer of 0.1149420449 is probably the correct

one, but we don’t have the best data. If we adopt a numeric approach, and use a more
naive loop, we can actually see the convergence much better

> total := 1;

for i from 3 to 104 do total := total · cos
(

Pi
i

)
od

total := 1
total := 0.5000000000
total := 0.3535533905
total := 0.2860307013

...
total := 0.1149987860
total := 0.1149987803

The actual output in Maple is far larger than we have shown above, and vertical dots
have been placed in this book to shorten the space. In total the command takes around
ten minutes to complete (and most of us will probably have stopped the computation
before then). What it does, however, is give us a rather good intuitive feel for the way

20 1 Number Theory

the product changes as more terms are introduced, and the approximate rate at which
it is changing.

We see fast change to start with, but as time wears on we see less and less change
until only the last couple of decimal places seem to be changing at all. The rate of
change is clearly decelerating, and when we recall that the value of cos(π/i) → 1 as i
increases, it should seem very unlikely indeed that this will keep going all the way down
to 0.

We might, now, try accelerating the same approach by calculating partial products
in steps of 100 instead of in steps of 1.

> total := 1;
for i from 0 to 104 do

total := total ·mul
(

evalf
(

cos
(

Pi
100 · i+ 3 + k

))
, k = 0..99

)
od

total := 1
total := 0.1206114938
total := 0.1177775543
total := 0.1168325277

...
total := 0.1149436767
total := 0.1149436767
total := 0.1149436767

Ultimately, the same principle still applies, and this is really just a refinement of the
technique. It is interesting that the last three entries are all the same number. This is
probably best explained by numeric rounding. The terms at this stage are very likely so
close to 1 by this stage, that to ten digits of accuracy, Maple is probably just calculating
them as 1.
> evalf

(
cos
(

Pi
106

))
; evalf [20]

(
cos
(

Pi
106

))
1.000000000

0.99999999999506519780
We could increase the numerical accuracy and perform the computation again, but

by now we should be fairly confident that the answer of 0 is incorrect, and that the
answer of 0.1149420449 is correct. Now we should try something more analytical.

If we know a little about infinite products, we might try to check turning the product
into a sum using the identity

log
(∞∏
k=a

f(k)
)

=
∞∑
k=a

log(f(k))

and so if the infinite product P really is zero, then the logarithm should be undefined,
and hence the sum of the logarithms should diverge.

1.2 Putting It Together 21
> sum

(
log
(

cos
(

Pi
k

))
, k = 3..infinity

)
∞∑
k=3

log
(

cos
(π
k

))
[
> evalf (%)

−2.163327235[
> exp(%)

0.1149420449
We should be even more confident now in the answer of 0.1149420449. Working with

the above sum (on paper or perhaps even with Maple) it is possible to calculate upper
and lower bounds for the product, and to show conclusively that 0 is incorrect. We do
not do so here, as we have strayed from both the discussion of numeric versus symbolic
computation, as well as the topic of for loops. Further analysis of this product is left
as an exercise for the reader.

1.2.3 Decision Structures

There are times when, as part of a computation we are performing, we need to make
some sort of decision in order to proceed. To illustrate this idea, and how we implement
decisions in Maple we look at the following problem.

Let us say we have a natural number n. Recall that if n can be divided by another
natural number a evenly—that is, n/a is a natural number—we use the notation a|n
and say that a divides n or that a is a divisor of n. Furthermore, if a|n then n = ka for
some k ∈ N and so, recalling modular arithmetic, n ≡ 0 mod a.

The problem we now try to solve now with Maple is to find all the divisors of a
number. To begin with, it is helpful to know thatMaple can perform modular arithmetic
using the mod operator. Simply put, entering amod b will calculate the modulus of a
(modulo b).
> 3 mod 4; 9 mod 7; 10 mod 5;

3
2
0

We start with a straightforward approach. Given our number n, whatever it happens
to be, we recognize that no number bigger than n can possibly be a divisor of n, so we
check every single number a less than n and see if a|n. This is just the thing for which
a loop would be good. We’ll start small with n = 6[
> n := 6

n := 6

22 1 Number Theory

> for a from 1 tondo
n

a
od

6
3
2
3
2
6
5
1

From this we can see that the divisors of 6 are 6, 3, 2, 1. It would be nice if we could
have Maple only show the divisors, and not the fractions that are clearly not divisors.
To do this we have Maple make a decision using an if command.

Now, we need Maple to recognize which of the calculations are fractions, and which
are whole numbers, but unfortunately we currently have no idea how we might do this.
The answer is to use the modular arithmetic calculations from above, remembering that
if n/a ∈ N then n ≡ 0 mod a. This is something we already know how to express in
Maple. In order to see if, say, 3 was a divisor of our n then we could issue the command > if nmod 3 = 0 then n

3 fi

2
The above code should be read as “If n is equal to 0 modulo 3 then calculate n/3,”

and because n—which happens to be 6 at the moment—is most certainly equivalent to
0 modulo 3, Maple has correctly gone on to calculate 6/3 = 2. Note that if n were some
other number such that n 6≡ 0 mod 3 then Maple would have performed no calculation
at all.

The code between the if and the then is a criterion for the code after the then to
be carried out. If the criterion is met, the code is carried out, and if the criterion is not
met, the code is not carried out. The fi simply tells Maple where the if statement ends.
Note that in some cases (which we look at later), we may add a third piece of code to
be carried out in the case that the criterion is not met. For the moment, let’s look at
an example with a single piece of code that does not execute[
> if nmod 4 = 0 then n

4
fi

Of course, we don’t want to have to type all of these in individually, so we now
incorporate these decisions into our loop.

> for a from 1 tondo
if nmod a = 0 then print

(n
a

)
fi

od
6
3
2
1

In fact, it is usually quite rare that we use a decision manually when using Maple,
where we can make these decisions for ourselves. It is much more common that a decision

1.2 Putting It Together 23

would be part of a function or a loop where we do not have the luxury of being certain
what values our variables contain.

We were forced to use the print function above, which just tells Maple to output
an expression just as it would if we typed that expression in ourselves manually. This
was required here because we had an if statement buried inside a for statement. We
look more at this sort of thing later on, but for the time being be aware that once these
things become buried inside each other (often referred to as “nesting”) Maple will not
produce output unless we specifically ask for it.

The astute reader may have noticed that each of our divisors—which were all of the
form n/a—were, themselves, also values of a at some point in the loop. To see this a
little more clearly, we modify our loop to print both n/a and a on the same line.

> for a from 1 tondo
if nmod a = 0 then print

(
a,
n

a

)
fi

od
1, 6
2, 3
3, 2
6, 1

We have, essentially, found each divisor twice. We checked every integer less than
n (6 in our previous examples) to see if it was a divisor, but we need only check the
numbers less than or equal to

√
n (≈ 2.449 in our previous examples). We can see, by

inspection above, that after our second repetition we had already found all the divisors
of 6.

This is true in general because for any divisor a of a number, n say, we have a
codivisor b such that a · b = n. This is simply what it means to be a divisor. Now
suppose that a ≤

√
n. It must, necessarily, be the case that b ≥

√
n, because

b ≤
√
k =⇒ ab <

√
n
√
n = n

which would contradict a and b being codivisors. Similarly, if a ≥
√
n then b ≤

√
n. It

follows, then, that once we’ve found all the divisors less than or equal to
√
n then we

have also found all the larger divisors in the codivisors.
We can use this fact to modify our loop and make it a little more efficient. There

is a small problem here, however, because the square root of a number is not always a
natural number. In order to avoid this problem we need to use the while clause of a
loop, instead of the usual to. The loop will keep calculating (and the variable a will keep
incrementing) until the condition after the while is met. See Exercise 15 and Maple’s
help files for more information.
> for a from 1 while is (a ≤ sqrt(n)) do

if nmod a = 0 then print
(
a,
n

a

)
fi

od
1, 6
2, 3

Such an improvement may not seem particularly worthwhile for the case of cal-
culating the divisors of 6. However, for calculating the divisors of a large number,
1,000,000 say, then our modified loop would be performing only 1000 decisions, instead

24 1 Number Theory

of 1,000,000, which is a more significant difference. We now calculate the divisors of 999
(because the output is more manageable), requiring only 31 iterations of our loop.[
> n := 999

n := 999

> for a from 1 while is (a ≤ sqrt(n)) do
if nmod a = 0 then print

(
a,
n

a

)
fi

od
1, 999
3, 333
9, 111
27, 37

Note that due to a glitch in Maple at the time of writing, we needed to use the is
function to evaluate the truth of the clause a ≤

√
n in the loop. If we try the more

readable loop without this function, Maple complains that it cannot ascertain whether
a is less than

√
n.

> for a from 1 while a ≤ sqrt(n) do
if nmod a = 0 then print

(
a,
n

a

)
fi

od
Error, cannot determine if this expression is true or false: 4 <=

3*111ˆ(1/2)
It might not surprise the reader to discover that Maple in fact has a built-in function

that will calculate the divisors of a number. This function is the divisors function, in
the numtheory package.[
> numtheory[divisors](6)

{1, 2, 3, 6}
The reader may now find cause to wonder why we went through the above rigmarole

of loops and decisions to calculate the divisors of a number, when we could have just
used this divisors function right from the start. This is not an unfair question, and
there are two primary reasons for this approach. The immediately obvious answer is
we wished to introduce the reader to Maple’s loop and decision structures, and the
divisor calculation seemed a natural example that lent itself nicely to demonstrating
these structures. Furthermore we have demonstrated the ability to use the more basic
building blocks of Maple to perform mathematics and solve problems when we don’t
know a more direct way of having Maple perform the calculation. By taking this longer
route, we perhaps also allow ourselves to learn a little more about the mathematics
than we might have if we had just asked for an answer directly.

This is illustrative of an approach that is used repeatedly by the authors in this book.
We repeatedly construct mathematics and calculations from first (or, at least, earlier)
principles before introducing the Maple command that would perform the calculation
directly. The reader should be sure to understand both the Maple and the mathematics
involved in these constructions, but should feel free to use the “direct” methods once
they have been introduced. In fact, several exercises require the use of these direct
methods seemingly blindly, and it is expected that knowledge of the underlying concepts
will allow the reader to confirm the answers thatMaple provides, even though the reader
may not have the tools to produce the answer without the aid of the computer.

1.2 Putting It Together 25

We now return to our discussion of divisors and of Maple decision structures, explor-
ing both a little further. We introduce the notion of proper divisors and perfect numbers.
When considering the divisors of some number, n say, it should be clear that n is always
a divisor of itself. The set of proper divisors of n are simply all of its divisors, except for
n itself. So the proper divisors of 6 are {1, 2, 3}. If we add the proper divisors together,
we see that 3 + 2 + 1 = 6, and that the sum of the proper divisors of 6 is 6 itself. This
is an example of a perfect number , which is any number n whose proper divisors sum
to the value of n.

We use Maple to calculate whether some numbers are perfect, starting with 6. We
need to use a decision, but this time we have two options: either the number is perfect,
or it is not. We want an answer in either case, so we need to use the else keyword of a
decision. First we must find the proper divisors and add them.[
> n := 6

n := 6[
> div := numtheory[divisors](n)

div := {1, 2, 3, 6}[
> N := add(k, k in div)− n

N := 6
Recall that we changed the value of n earlier, so we needed to set it back to 6. Also,

we have used a slight variant of the add function. See Exercise 6 for a similar variant
of the seq command. Finally, note that we only wanted to sum the proper divisors, but
the add command variant we used will sum every divisor, so we needed to subtract out
n to compensate for this unwanted addition.

We can clearly see that 6 is perfect (which we already knew), but we issue the if
command regardless, to demonstrate the else keyword. Decisions with this keyword
work almost identically to the decisions we have been using thus far. If the condition is
met, then the code after the then keyword is executed. The else keyword signifies the
end of the aforementioned code, much as the fi did previously. We now have a second
block of code between the then and the fi, which is executed if the condition is not
met.[
> if N = n thenn is perfect elsen is imperfect fi

6 is perfect
Let’s see if there are any perfect numbers less than 6. Currently if we want to know

if a number is perfect, we have two or three calculations to perform; if we were to start
at n = 1 and test up until n = 6 we would end up typing out ten commands, all of
which would be a little tedious. One of the advantages of for loops is that they allow
us to repeat not just single, but multiple calculations within the loop, so we use this
technique instead.

26 1 Number Theory

> forn from 1 to 6 do
div := numtheory[divisors](n);
N := add(k, k in div)− n;
if N = n then print(n is perfect) fi;

od
div := {1}
N := 0

div := {1, 2}
N := 1

div := {1, 3}
N := 1

div := {1, 2, 4}
N := 3

div := {1, 5}
N := 1

div := {1}
N := 6

6 is perfect
This is rather messy, but we can see the div and N variables being created at each

repetition of the loop, and can also see (after perhaps a bit of thought) that 6 is the
first perfect number. It would be better if we could suppress the output from the first
two calculations, and only see the output of the if . In fact, we can do this, but it is in a
round-about manner. Loops are an all-or-nothing affair; either we see every calculation
within them, or we see none of them. We must completely suppress the output from
the entire for loop (by ending it with a full colon after the od) and realize that the
print command will always produce output, regardless of whether the command has
been suppressed. An alternate solution is to create a procedure (see Section 1.2.4) to
house the loop.

Let us now find all the perfect numbers less than or equal to 10,000.

> forn from 1 to 10000 do
div := numtheory[divisors](n);
N := add(k, k in div)− n;
if N = n then print(n) fi;

od :
6
28
496
8128

We see that there are only four perfect numbers less than 10,000.
Finally, we apply these same concepts directly to a new problem. Suppose we have a

natural number, n, that is not perfect. Let m be the sum of the proper divisors of n. It
is possible (but not necessarily likely) that n also happens to be equal to the sum of the
proper divisors of m. If this happens, then n,m are called a pair of amicable numbers.

Our problem is to find all the amicable pairs where at least one of the pair is less
than 10,000.

1.2 Putting It Together 27

Applying some thought to the problem, we should realize that for any n there can
only be one possibility for its amicable partner m, and that possibility is the sum of
the proper divisors of n. If n is a perfect number, then our candidate for its amicable
partner is itself, but remember we stipulated initially that n was not perfect, so we
must make sure to somehow exclude perfect numbers in our computation.

Our approach, then, is clear. Given n, we calculate m directly, as well as the sum of
the divisors of m. We then check to see if the sum of m’s divisors is equal to n, and we
also check that n is not perfect. The number if perfect so long as both of these checks
are true. That is, n is perfect if and only if the sum of m’s divisors is equal to n and n
is not perfect. This leaves us with two criteria, which we are able to express in a single
if command using the and operator. We implement this approach using a loop similar
to that used above.

> forn from 1 to 10000 do
ndiv := numtheory[divisors](n);
m := add(k, k in ndiv)− n;
mdiv := numtheory[divisors](m);
N := add(k, k in mdiv)−m;
if n 6= mandn = N then print(n,m) fi;

od :
220, 284
284, 220

1184, 1210
1210, 1184
2620, 2924
2924, 2620
5020, 5564
5564, 5020
6232, 6368
6368, 6232

Notice that we have found each pair twice, once starting with the smaller of the two,
and once starting with the larger. We can see then that there are only five amicable
pairs less than 10,000. It is left as an exercise for the reader to modify the loop so that
it only prints each pair once.

1.2.4 Procedures

When we created our own functions earlier, we used the very handy arrow notation
(→). Using this method is very convenient, and allows us a lot of power when using
Maple, but it doesn’t take long to find that it does have some limitations.

For example, an earlier calculation required three commands to have Maple ascertain
whether a number was perfect. It would be nice to have a function which performed the
calculation for us, instead of having to type those three lines out every time we wish to
see if a number were perfect or not. Unfortunately, the arrow notation only works for
single line Maple commands, and so cannot help us here.

If we are clever, we can reduce the three commands into a single if statement. To do
this, we perform the computation of the divisor set and the sum of these divisors in one

28 1 Number Theory

fell swoop within the condition of the if statement, as follows. Note that n = 10,001
after the most recent loop.

> if n = add(k, k in numtheory[divisors](n))− n then
print(n is perfect)

else
print(n is imperfect)

fi
10001 is imperfect

This works, because we only need to use each of these intermediate computations
a single time to establish an answer. All the same computations are performed here,
but they are used in place and are never assigned to variable names and thus cannot
be reused at a later date (without performing the computation again). Although we
have broken this command up over several lines for ease of reading, this is nonetheless
a single command.

Our desire now would be to turn this single command into a function using the arrow
notation. It is unfortunate then to discover that we cannot use an if statement to make
decisions in a function created using the arrow method.2 > isperfect := n → if n = add(k, k in numtheory[divisors](n)) −

n then print(n is perfect) else print(n is imperfect) fi
Error, invalid arrow procedure

As it happens, the functions we have created up till now with the → operator have
been special cases of a more general Maple construction known as a procedure. A
procedure is, as its name suggests, a series of steps to be followed and behaves like
the functions we have used and created so far in that it takes input and produces
output. A procedure, however, allows multiple calculations to be performed as part of
its processing, much as our loops and decisions above did.

We can see this if we use the lprint command with our already familiar arrow
notation functions. We use a simple function that calculates the square of the input. > x→ x2; lprint(%)

x→ x2

proc (x) options operator, arrow; xˆ2 end proc
A procedure, at its most basic, takes the form proc(input) commands end proc,

although we may use end as a shorthand version of end proc. The commands, as do
any Maple commands, must have semicolons between them if there are more than one.
If we ignore the options in the example above, we see precisely that form. The result
of the last calculation performed in a procedure is that which Maple outputs when the
procedure is used.

In order to create the perfect number query function which we could not do earlier,
we can use a procedure as follows.
2 This is not absolutely true. It is possible to include an if statement within an arrow procedure
when using the text-based (sometimes called 1D) Maple input scheme, but even in this case it is far
from ideal.

1.2 Putting It Together 29

> isperfect := proc(n)
if n = add(k, k in numtheory[divisors](n))− n then

print(n is perfect)
else

print(n is imperfect)
fi

end :

[
> isperfect(6), isperfect(10), isperfect(12), isperfect(28)

6 is perfect, 10 is imperfect, 12 is imperfect, 28 is imperfect
Our function works fairly well, although it gives some questionable results when we

give it input that is not a natural number.[
> isperfect(−6), isperfect(x), isperfect([1, 2])

−6 is imperfect, x is imperfect, [1, 2] is imperfect
> isperfect(1 + I)
Error, (in isperfect) invalid input: numtheory:-divisors expects its

1st argument, n, to be of type Or(integer, Not(constant)), but
received 1+I

If we experiment a little we will probably find other things it doesn’t handle very
well. Nonetheless the procedure most certainly calculates whether a natural number is
perfect.

Our procedures may consist of several lines and may even have variable assignment
within them. However, if we assign variables, then we must tell Maple whether the
variables are local to the procedure, or global to the worksheet. For more details on
what these mean, see Exercise 16. We are only concerned with local procedure variables,
which exist separately from any variables (even those with the same name) outside the
procedure. Note that if we do not specify local or global for any variable inside a
procedure, then Maple will report an error, and will assume the variable is local.

We rewrite our isperfect function using our earlier, and easier to follow, three-line
calculation. Furthermore, we make some effort to ensure that the procedure will only
work if we use a natural number as its input.

> isperfect := proc(n :: posint)
local divs, N ;
divs := numtheory[divisors](n);
N := add(k, k in divs)− n;
if n = N then

true
else

false
fi

end :

[
> isperfect(6), isperfect(10), isperfect(12), isperfect(28)

true, false, false, true

30 1 Number Theory

> isperfect(−6);
isperfect(x);
isperfect([1, 2])

Error, invalid input: isperfect expects its 1st argument, n, to be
of type posint, but received -6

Error, invalid input: isperfect expects its 1st argument, n, to be
of type posint, but received x

Error, invalid input: isperfect expects its 1st argument, n, to be
of type posint, but received [1, 2]

First notice we have added the text ::posint to the variable name. This is our way
of telling Maple that we want the variable n in the procedure to be a positive integer.
Recall that we used the same notation with the assuming keyword in Section 1.2.1. See
the help file (?types) for more information on the different types that a variable might
be. If we give isperfect anything other than a positive integer for the input parameter,
we are given an error message as we saw.

Second, notice that we specified the variables divs and N as local to the procedure.
It is very important that the local declaration ends with a semicolon. In fact any addi-
tional declarations (e.g., description, global, option) must end with a semicolon. See
?procedures for more details on procedures in general and declarations in particular.

Finally, note that we changed the procedure ever so slightly to return either true
or false instead of the previous n is perfect. There are two reasons for this. For one,
n is perfect is actually an abuse of Maple notation, and although it looks quite good to
our eye, to Maple it is actually a product of three unknown variables: n× is× imperfect.
Perhaps more importantly, however, using true and false results in our procedure behav-
ing properly with decision constructions, as the condition in a decision must evaluate
to either true or false.[
> if isperfect(6) then print(6 is perfect) else print(6 is imperfect)

6 is perfect
What is important to notice above is that our isperfect function is able to be used as

the condition to the if statement. The command above can be read as “if 6 is perfect
then print ‘6 is perfect’ otherwise print ‘6 is imperfect’.”

Our loop to find the perfect numbers less than 10,000 can now become much more
succinct, yet remain clear in its purpose.

> forn from 1 to 10000 do
if isperfect(n) then print(n) fi

od
6
28
496
8128

Note that we didn’t even need to suppress the output.

1.2.5 Nesting

We have looked at loops and decisions in the previous sections. Inside a loop, or a
decision, we may have any valid Maple code, and even multiple valid Maple commands.

1.2 Putting It Together 31

We have even seen that we may have a decision inside of a loop. One may ask if a loop
may be placed inside a loop, or if a decision may be placed inside a decision, and the
answer is yes they can. Doing such a thing is called nesting.

To illustrate this idea, let’s look even more at our divisors and perfect numbers.
Observe that if a number n is not perfect, then the sum of the proper divisors is either
strictly greater, or strictly less than n itself. If the sum of the proper divisors is less
than n we say the number is deficient, and if the sum of the proper divisors is greater
than n then we say that n is abundant. We now have three mutually exclusive options
for any natural number.

This idea lends itself nicely to a nested decision. We must first make a decision to
see if the number is perfect, and if it is not then we must make a second decision as
to whether it is abundant or deficient. We would implement this in Maple as follows
(extending one of our previous procedures).

> classify := proc(n :: posint)
localN ;
N := add(k, k in numtheory[divisors](n))− n;
if N = n then

perfect
else

if N < n then
deficient

else
abundant

fi
fi

end :



> forn from 6 to 12 don, classify(n) od
6, perfect

7, deficient
8, deficient
9, deficient
10, deficient
11, deficient
12, abundant

It is quite important here to notice the if within the if above; specifically it is within
the else portion of the containing if . Also note that we need to use the sum of the
proper divisors several times, so we are forced to store this value in a variable.

There is no necessary requirement that the innermost decision be within the else
portion of the outermost decision, and furthermore we may nest potentially any number
of decisions.

In this particular case, however, all our conditions are mutually exclusive and as a
direct consequence we may use the rather simpler-to-read elif command, which behaves
more or less as both an else and an if together.

32 1 Number Theory

> classify := proc(n :: posint)
localN ;
N := add(k, k in numtheory[divisors](n))− n;
if N = n then

perfect
elif N < n then

deficient
else

abundant
fi

end :



> forn from 6 to 12 don, classify(n) od
6, perfect

7, deficient
8, deficient
9, deficient
10, deficient
11, deficient
12, abundant

It is important to note in this case Maple considers this to be a single decision
structure, and so only one fi is needed at the end. A decision structure consists of an if
followed by a condition and a then followed by any number of elif s (each of which has
a condition and a then), and finally an option else and the fi to end it. Maple simply
starts at the top, and tests each condition until it finds the first that matches—or the
else clause if nothing else matches—and then performs the appropriate calculation.

Let us now, on a whim, find all the abundant numbers less than or equal to 100.
For a bit of variety, we collect these into a list by starting with a null list, and adding
elements one by one as we find them.[
> A := NULL

A :=
> forn from 1 to 100 do

if classify(n) = abundant thenA := A,nfi
od :

[
> A

12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100
We leave our discussion of the properties of numbers and their divisors there for now.

Before we move to nested loops, we show one more example of a nested decision. This
time we use a nested decision to decide in which quadrant a point in the real plan lies.
For the sake of simplicity, we consider any point that lies on the x-axis to be in the
upper half-plane, and any point on the y-axis to be in the right half-plane. This means,
in particular, that the point (0, 0) is considered to be in the first quadrant.

We construct a procedure that takes two inputs: x and y. For our decision, we observe
that when y ≥ 0 we are in either the first (x ≥ 0) or second (x < 0) quadrant. Otherwise

1.2 Putting It Together 33

y < 0 and we are in either the third (x < 0) or fourth (x ≥ 0) quadrant. Our nested
decisions use this logic.

> quadrant := proc(x, y)
if y ≥ 0 then

if x ≥ 0 then
first

else
second

fi;
else

if x < 0 then
third

else
fourth

fi;
fi

end :


> quadrant(1, 1); quadrant(1,−2); quadrant(−4,−3); quadrant(−7, 12);

first
fourth
third

second
We now move on to nested loops. As the nested decisions above should suggest, a

nested loop is simply a loop inside another loop. As with decisions, we may nest any
number of loops, but we concern ourselves initially with just a pair of nested loops.

If we think of a double sum
∑N
i=1
∑M
j=1 f(i, j) then

N∑
i=1

M∑
j=1

f(i, j) =
N∑
i=1

 M∑
j=1

f(i, j)


=

N∑
i=1

(f(i, 1) + · · ·+ f(i,M))

= f(1, 1) + · · ·+ f(1,M) + · · · + f(N, 1) + · · ·+ f(N,M)

The dummy variable, i in this case, assumes a set of values 1, . . . , N and for each of
these another sum is to be computed. For this second sum, the dummy variable j also
assumes a set of values 1, . . . ,M and the i value stays (temporarily) fixed. The final
result is the pattern we see above. A nested loop will behave in a very similar way. In
fact, we may calculate a double sum with a nested loop, as we do below.[
> S := 0

S := 0

34 1 Number Theory
> for i from 1 to 3 do

for j from 1 to 3 do
S := S + f(i, j)

od
od

[
> S

f(1, 1) + f(1, 2) + f(1, 3) + f(2, 1) + f(2, 2) + f(2, 3) + f(3, 1) + f(3, 2) + f(3, 3)
For each (temporarily) fixed value of i, the entirety of the innermost loop is calcu-

lated. Of course, we could achieve this same result using only the sum function, but
the above nicely demonstrates the behavior of a nested loop.[
> sum(sum(f(i, j), j = 1..3), i = 1..3)
f(1, 1) + f(1, 2) + f(1, 3) + f(2, 1) + f(2, 2) + f(2, 3) + f(3, 1) + f(3, 2) + f(3, 3)
As an example of three nested loops, we construct all possible truth values for three

variables A, B, and C. We also show a variant of the for loop in which the variables
are not incremented, but instead are taken from the elements of a list, by the use of the
in keyword.

> forA in[true, false] do
forB in[true, false] do

forC in[true, false] do
print(A,B,C)

od
od

od
true, true, true
true, true, false
true, false, true
true, false, false
false, true, true
false, true, false
false, false, true
false, false, false

1.2.6 Recursive Functions

For some calculations, it is mathematically convenient to have a function use itself as
part of its own calculation. Such a technique is called recursion. As a natural example
of this we look at the Fibonacci numbers.

Recall that the Fibonacci numbers are given by the relation fn = fn−1 + fn−2. This
is an example of a recurrence relation, which we look at in more detail in Section 1.3.3.
Nonetheless, it should be clear that in order to calculate any Fibonacci number, we need
to know the previous two. Each of these two numbers is, itself, a Fibonacci number,
they therefore may be calculated in turn by knowing the prior numbers. In order to
prevent forever looking backwards we need a starting point, or some known Fibonacci
numbers, and so we also stipulate that f1 = f2 = 1.

1.2 Putting It Together 35

We may implement this in Maple fairly simply with a procedure that uses decision
and recursion. If f1 or f2 are asked for (these will be f(1) or f(2) because of the way
functions and procedures work in Maple) then we return the value 1, and otherwise we
will use the same procedure again to calculate the previous two Fibonacci numbers. In
this way we will eventually work our way back to either f1 or f2.

> f := proc(n :: posint)
description “Calculate the nth Fibonacci number”;
if n = 1 orn = 2 then

1;
else
f(n− 1) + f(n− 2)

fi
end :

[
> seq(f(n), n = 1..20)

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765
We have used an optional declaration within this procedure, the description decla-

ration, which is, as its name should suggest, just a description of what the procedure
does. This is purely for our own benefit as a reminder of what the procedure is written
to do. We may query this directly with Maple’s Describe command. > Describe(f)

Calculate the nth Fibonacci number
f(n::posint)

To make the code a little more intuitive to read we may, if we wish, eschew the
decision completely and simply write only the recursive part of the procedure. If we do
this, we also need to tell Maple directly what f(1) and f(2) are supposed to be. This is
a lot more in line with the way we handle recurrence relations on paper, and so should
be intuitively more familiar.
> f := proc(n :: posint)

description “Calculate the nth Fibonacci number”;
f(n− 1) + f(n− 2)

end :


> f(1) := 1; f(2) := 1;

f(1) := 1
f(2) := 1[

> seq(f(n), n = 1..20)
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765

We may apply this recursive function definition approach with manually defined
initial conditions to the arrow notation for functions. If we do this, we lose the input
type checking we get from a procedure using :: posint, but this is a small price to
pay. We also lose the possibility of the remember option (see Section 1.2.7, below),
which may be more significant. For much of the time, however, such concerns are likely
nonexistent (at least to begin with), and the arrow notation is simple and quick to
write. Using it below there is no mistaking that we most certainly are calculating the
Fibonacci numbers.

36 1 Number Theory
> f := n→ f(n− 1) + f(n− 2); f(1) := 1; f(2) := 1

f := n→ f(n− 1) + f(n− 2)
f(1) := 1
f(2) := 1[

> seq(f(n), n = 1..20)
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765

As it was with divisors, so it is with the Fibonacci numbers; Maple contains an
inbuilt function for their direct calculation. The function is the fibonacci function and
is contained within the combinat package.[
> seq(combinat[fibonacci](n), n = 1..20)

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765
Using this function we do not need to write our own Fibonacci computing functions,

no matter how simple they are. The reader, nonetheless, should take pains to understand
the concepts in the Fibonacci computations we constructed above, for the Fibonacci
numbers are not the only recurrence relation, and Maple will most certainly not always
be so forthcoming with inbuilt functions for our convenience.

1.2.7 Computation Time

The previous section gives rise to the question of how long a computation will take to
perform. It may not be obvious from the computation of the early terms of the Fibonacci
sequence, but the above recursive function we wrote in Section 1.2.6 is actually quite
slow. The problem stems from the fact that it does not remember previous calculations.
For instance, suppose we ask for f(5), the 5th Fibonacci number. Maple—acting in
accord with our instructions—will first compute f(4) which involves computing f(3) and
f(2), and computing f(3) involves, in turn, computing f(2) and f(1). Maple performs
each of these computations, including computing f(2) twice. Fortunately, we specified
the value of f(2) directly, so the extra computation is quick, just a simple matter of
recalling the stored value. This is more easily seen with the tree diagram shown in
Figure 1.1.

f(5)

f(4)
zztttttttt

f(3)
��������

f(2)
�������

f(1)
��///// f(2)

��999999 f(3)
$$JJJJJJJJ

f(2)
��������

f(1)
��999999

Fig. 1.1 Computation of the 5th Fibonacci number performed by the recursive f function.

1.2 Putting It Together 37

In total, from a single request, Maple has performed 9 different computations (al-
though 5 of these were simply looking up the specified initial values). If now we were
to ask for f(6), then our recursive function would calculate f(5) in its entirety, as well
as f(4) also in its entirety for a total of 15 computations as shown in Figure 1.2. For
large Fibonacci numbers, this recursive method will perform a staggering number of
computations.

f(6)

f(5)
wwoooooooooooo

f(4)
���������

f(3)
�������

f(2)
�������

f(1)
��///// f(2)

��///// f(3)
��???????

f(2)
�������

f(1)
��/////

f(4)
''OOOOOOOOOOOO

f(3)
���������

f(2)
�������

f(1)
��///// f(2)

��???????

Fig. 1.2 Computation of the 6th Fibonacci number performed by the recursive f function.

This, however, turns out to be a small issue. We may tellMaple to remember previous
computations of a procedure, so that if we ask for that computation again, Maple need
only look up the answer from a table of remembered values, rather than performing the
full computation. We do this by specifying the remember option when we write the
function.
> f := proc(n :: posint)

description “Calculate the nth Fibonacci number”;
option remember ;
f(n− 1) + f(n− 2)

end :


> f(1) := 1; f(2) := 1;

f(1) := 1
f(2) := 1[

> seq(f(n), n = 1..20)
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765

This will greatly improve computation performance, at the expense of some extra
memory usage. We show the tree diagram for the computation of f(6) with the remem-
ber option in Figure 1.3. For this diagram, the left branch of any node represents the
first computation. Once a node is computed for the first time, the value is remembered,
and it need not be computed again.

We may measure the time taken for a computation and thereby see the effect of this
growing number of computations. Maple provides a function called time to measure
computation time. The time is measured in seconds, but is a measure of CPU time

38 1 Number Theory

f(6)

f(5)
��������

f(4)
��������

f(3)
��������

f(2)
��������

f(1)
��999999

f(2)
��999999 f(3)

��999999 f(4)
��999999

Fig. 1.3 Computations performed by the recursive f function with the remember option.

as opposed to actual elapsed time. The help documents aren’t very specific, but it
seems safe to presume that this measurement tries to take into account delays where
no computation is being performed (idle time due to system multitasking, for example,
ought not to count as CPU time). We do not worry ourselves with the technical specifics
too much, and just consider this measurement as internally consistent and suitable as
a comparison tool.

We start by measuring the time taken to calculate single Fibonacci numbers. We’ve
already implemented the f function above as our faster (or so we claim) procedure, for
Fibonacci number computation. To see the difference in speed, we need something to
compare against. So we’ll reimplement the arrow procedure, but call it F so we can test
both variants together, and tell them apart.
> F := n→ F (n− 1) + F (n− 2);F (1) := 1;F (2) := 1

F := n→ F (n− 1) + F (n− 2)
F (1) := 1
F (2) := 1[

> time(F (30))
1.003

The 30th Fibonacci number was chosen because it took about a second to compute,
with the slow variant, on one of the authors computers. Anything smaller was a little too
quick to be useful for illustrating the concepts illustrated in this section. The reader,
when trying to replicate the above, might very well find that even this number is a
little too quick if they are using a computer that is faster than the author’s, which
is likely. Some trial and error may be needed to find a Fibonacci number that takes,
approximately, a second to calculate.

Notice with the above example that we did not see the output of the F function. We
only saw the time it took to complete. We are confident that this function is correct,
thus this is not such a problem. Nonetheless if we wish to see both the function output
and the time taken in its computation we need to do something different. Fortunately
time has an alternate usage where, if we give it no parameters, it reports back the
current time (total elapsed CPU time for the worksheet) instead of the elapsed time for
a single command. We simply record the current time before executing our procedure,

1.2 Putting It Together 39

and record the time again once it is completed, and subtract the two. This technique
is also given by the help files for the time function.
> st := time(); fib30 = F (30); time()− st;

st := 188.953
fib30 = 832040

0.987
This took slightly less time than the first execution. The execution time for a single

command will always vary a little bit each time the command is executed. The important
thing is that the times are always very close, “in the ballpark” if you like. In this case,
the function takes very close to 1 second to compute. Let’s see how long it takes for the
31st–35th Fibonacci numbers to compute (individually). Because we’re more interested
in the execution times than the Fibonacci numbers themselves for this discussion, we
go back to the first use of the time function.[
> seq(time(F (k)), k = 31..35)

1.616, 2.620, 4.225, 6.805, 11.010
Calculating F (31) took more than half as long again as F (30), and F (32) took more

than twice the computation time of F (30). What is striking is that these times also
exhibit a Fibonacci-like relationship.

time(F (32)) ≈ time(F (30)) + time(F (31))
time(F (33)) ≈ time(F (31)) + time(F (32))

...

This is in keeping with, and explained by, our earlier observations. The computation
for, say, F (32) would involve calculating both F (31) and F (30) in their entirety. So it
stands to reason that the computation times should sum in this Fibonacci-like way. We
should expect, then, that F (36) should take something in the vicinity of 18 seconds to
compute.[
> time(F (36))

17.653
Let us look at the faster variant now. This variant only ever calculates a previous

Fibonacci number once, so if we calculate a Fibonacci number with it, then it will
calculate every previous Fibonacci number only once as part of the computation. We
should expect, then, that the speed should be roughly linear with the position of the
Fibonacci number to be computed. That is, if it takes, say, 1 second to calculate the
nth Fibonacci number, then we would expect around 2 seconds to calculate the (2n)th
Fibonacci number.[
> seq(time(f(k)), k = 30..35)

0., 0., 0., 0., 0., 0.
The function is clearly an improvement, however, the above does not really give us

very much more information than that. Let’s try something bigger[
> time(f(2000))

0.010
That is exceptionally quick. Unfortunately, due of a limitation of this style of func-

tion, it is impractical to find a value that takes approximately a second to calculate.

40 1 Number Theory

Nonetheless, we can test our earlier expectation, that f(2n) should take approximately
twice as long as f(n). In this case we expect f(4000) to take approximately 0.02 seconds.[
> time(f(4000))

0.013
This is not quite what we expected. If we think a little, however, about the conse-

quences of remembering previous computations we should actually find the above result
is not so surprising. When we calculated f(2000), above, Maple saved, and remembered,
the values of the first 2000 Fibonacci numbers. So when we then went on to calculate
f(4000), the first 2000 Fibonacci numbers would not have needed to be calculated again
and so only 2000 more computations (f(2001) − −f(4000)) needed to be performed,
and so the computation times ought to have been similar, which they were.

We perform two more computations in order to better support this idea. If the above
claim is correct, then we should expect that a second calculation of f(4000) should take
almost no time at all, and neither should a calculation of f(4001). If the claim is not
correct, then f(4000) and f(4001) should both take similar amounts of time to calculate
as the previous computation (0.013 seconds).[
> time(f(4000)), time(f(4000))

0., 0.
This ability to remember and recall previous computations of a function with the

remember option is very useful, but does make execution times less precise as we
have seen. It is probably most useful to think of the time taken worst case scenario
(that no values have been previously calculated and stored) as a baseline, with the idea
that the remember option will often be better than this. In the case we have been
dealing with, the Fibonacci number calculator with the remember option will, in the
very worst case, only need to calculate each previous Fibonacci number once. This is
significantly better than the earlier attempts that did not use the remember option.

We close this section with a slightly surprising result. Later, in Section 1.3.3 we
look at the Fibonacci numbers again, and find a formula for calculating them. Some
readers may already know of this formula. Such a formula would allow a function to
perform only a single computation when computing any Fibonacci number. Contrast
this with our best approach so far which involves (in the worse case) n computations
when computing the nth Fibonacci number. It would seem reasonable to think that
the inbuilt Maple function for Fibonacci numbers would exploit this. However, when
we measure the time taken for each technique to compute the first 10,000 Fibonacci
numbers we see something perhaps a little surprising.[
> restart :


> f := proc(n :: posint)

option remember ;
f(n− 1) + f(n− 2)

end :


> f(1) := 1; f(2) := 1;

f(1) := 1
f(2) := 1

1.3 Enough Code, Already. Show Me Some Math! 41
> time(seq(f(k), k = 1..10000));

time(seq(combinat[fibonacci](k), k = 1..10000));
0.051
1.322

We have been very careful here to restart and redefine our functions. We have
done this to make sure our measurements are not skewed by previously performed and
remembered computations. What we see is that our f function is drastically quicker
than the inbuilt function. Upon first seeing this, one of the authors was quite surprised,
however, further thought has lessened this surprise a little. It is left as an exercise for
the reader to explore this. As a starting point, one thing to notice is that the f function
is exceptionally well suited to sequential computation of Fibonacci numbers—reducing
each subsequent computation to a single addition—but there may be other factors as
well.

In closing this section, we note that there are many other small and subtle com-
plexities to the detailed structures (loops, decisions and procedures) than we have been
able to cover. What has been covered is, however, a very good introduction and should
serve—along with the relevant exercises—as an excellent and solid starting point for the
readers’ own computations. Be sure to examine Maple’s help files for more information.

1.3 Enough Code, Already. Show Me Some Math!

We have spent the previous two sections learning Maple code mostly for its own sake.
Even when we have tackled mathematical problems, we have done so to understand or
illustrate particular Maple language concepts. By now we hope to be, at the very least,
passably familiar with instructing Maple to perform calculations.

The point of usingMaple, however, is to allow us to perform and explore mathematics,
not the other way around. So, from this section onwards we move the emphasis away
from Maple itself and onto mathematical concepts and problems. Our Maple skills
learned in the previous sections are used to explore the mathematics, and new Maple
concepts, functions, and so on are introduced as they are needed for the problems at
hand.

1.3.1 Induction

In general, the work we do in Maple does not constitute a mathematical proof. Maple is
more a tool for exploring mathematics that will often lead to greater understanding and
perhaps the production of a proof by the usual (non-computer-related) means. However,
we may use it to perform some basic induction for us.

Recall the formula for the sum of the first n squares is
n∑
k=1

k2 = n(n+ 1)(2n+ 1)
6

Suppose we only want to add the first n even squares. It’s not hard to manipulate the
sum to an expression involving the above sum.

42 1 Number Theory

n∑
k=1

(2k)2 =
n∑
k=1

4k2 = 4
n∑
k=1

k2 = 2n(n+ 1)(2n+ 1)
3

and we can certainly check Maple to see if it provides the same answer. > sum((2k)2, k = 1..n)
4
3(n+ 1)3 − 2(n+ 1)2 + 2

3n+ 2
3 > factor(%)

2
3n(n+ 1)(2n+ 1)

That is all well and good, but it’s not induction. How about we try the first n odd
squares:

n∑
k=1

(2k − 1)2

We could follow the same approach as above, and expand the summand into a quadratic,
and apply the formulae we already know for

∑n
k=1 k

2,
∑n
k=1 k, and

∑n
k=1 C, respec-

tively, and indeed a good number of first-year students would probably prefer this to
induction. We do not do that this time, however. Instead we ask Maple what it thinks
the answer is, and verify it using induction (also within Maple).

To begin with, we set up a function to more easily reuse the calculations.
> f := N → sum((2k − 1)2, k = 1..N);

N →
N∑
k=1

(2k − 1)2

Now we see what Maple thinks the function should look like for arbitrary N . > g := factor(f(N));

g := 1
3N(2N − 1)(2N + 1)

We have factorized the answer here to keep it neat, and we have assigned it to the
variable g for future reference. So now we have a candidate for a formula. We can be
pretty confident that it is correct because Maple provided it, but it never hurts to
check, especially since we don’t know yet exactly how Maple’s sum function handles
an indefinite sum like that. This we now do. First we begin with a basis case.[
> f(1) = subs(N = 1, g)

1 = 1
Note here the use of the substitution command subs. This command substitutes the

value 1 for N in the expression g. Note here that we could have simply asked Maple
is (f(1) = subs(N = 1, g)), but the answer of true or false is sometimes unreliable, and
it is best to see the statement written out in its entirety before asking for an is or
evalb. It is clear from the Maple output that the formula is correct for the basis case
of N = 1.

Now we may complete the induction. Assuming that

N∑
k=1

(2k − 1)2 = 1
3
N(2N − 1)(2N + 1)

we want to show that

1.3 Enough Code, Already. Show Me Some Math! 43

N+1∑
k=1

(2k − 1)2 = 1
3

(N + 1)(2N + 1)(2N + 3)

which we do by showing that(
N∑
k=1

(2k − 1)2

)
+ (2N + 1)2 − 1

3
(N + 1)(2N + 1)(2N + 3) = 0

 > f(N) + (2 · (N + 1)− 1)2 − subs(N = N + 1, g)
1
3N(2N − 1)(2N + 1) + (2N + 1)2 − 1

3(N + 1)(2N + 1)(2N + 3)[
> simplify(%)

0
And we’re done. We may not be sure how Maple handles an indefinite sum, but we

can be extremely confident with its ability to do basic algebra. If we want to completely
remove the question of the behavior of Maple’s sum function out of the equation—as
it is technically in question here—we can do the same thing with g alone.

However, the substitution command is a little long, and we probably don’t really
want to be constantly typing it in whenever we want to assign a value to N . It would
be much easier if g was a function itself. Maple provides a handy method for taking
an arbitrary expression and turning it into a function. It is called unapply (and uses
nifty ideas from modern logic involving the λ-calculus). We use it now to make g into
a function of N , rather than just a fixed expression as it is now. > g := unapply(g,N)

g := N → 1
3N(2N − 1)(2N + 1)

Now we can perform the inductive step using the functional notation for g
> g(N) + (2 · (N + 1)− 1)2 − g(N + 1); simplify(%)

1
3N(2N − 1)(2N + 1) + (2N + 1)2 − 1

3(N + 1)(2N + 1)(2N + 3)
0

Be careful here. It might look awfully tempting to try something like the following
as the inductive step. > f(N + 1)− g(N + 1)

11
3
N + 19

3
− 4(N + 2)2 + 4

3
(N + 2)3 − 1

3
(N + 1)(2N + 1)(2N + 3)[

> simplify(%)
0

However, this is not induction, because we have not used the assumption that f(N) =
g in order to show that f(N + 1) has the required form. All we have done in this case
is verify that Maple’s sum command produces the desired formula for inputs of N and
N + 1, but we have not proved the relation using induction.

We do one more induction with Maple. This time we verify a well known one, and
because we won’t be explaining every step of the way, the process is much shorter. We
verify the formula

44 1 Number Theory

N∑
k=1

k3 = N2(N + 1)2

4

We can verify in our heads that the relation is true when N = 1 so we may eschew the
basis step in Maple, leaving us just the inductive step itself.
> g := N → N2 · (N + 1)2

4 ; g(N) + (N + 1)3 − g(N + 1); simplify(%)

g := N → 1
4N

2(N + 1)2

1
4
N2(N + 1)2 + (N + 1)3 − 1

4
(N + 1)2(N + 2)2

0

1.3.2 Continued Fractions

Real numbers may, as we should already be aware, be expressed by decimals that
either terminate or continue (countably) infinitely. The latter category may be further
partitioned into recurring and nonrecurring infinite decimal representations. Rational
numbers may be written as terminating or recurring decimals, and irrational numbers
have only infinite nonrecurring decimal representations.

Another way to represent real numbers is with so-called continued fractions. A con-
tinued fraction is a, potentially infinite, fraction of the form

a0 +
b0

a1 +
b1

a2 +
b2

. . .

where ai, bi ∈ Z

However, for the purposes of this section, we concentrate on simple continued fractions,
where the bi are all 1

a0 +
1

a1 +
1

a2 +
1
.. .

often abbreviated to just [a0; a1, a2, . . .].
The procedure for calculating the continued fraction of a number is quite straight-

forward. Let x ∈ R. We let x0 = x and separate the integer part from the fractional
part. That is, we take a0 = bx0c,

x = a0 + (x0 − a0) = a0 + 1(
1

x0 − a0

)
We now invert the fractional part for x1 = (x0 − a0)−1 and set a1 = bx1c, yielding

1.3 Enough Code, Already. Show Me Some Math! 45

x = a0 + 1
a1 + (x1 − a1) = a0 +

1

a1 +
1(
1

(x1 − a1)

)

Inverting the fractional part again we end up with x2 = (x1 − a1)−1 and repeat the
process.

We explore this idea in Maple with a terminating decimal x = 1.23456789. We use
the floor command to extract the integer part. The reader is encouraged to read the
help documentation regarding this function. We are careful to make sure we use the
rational representation of our number, rather than the decimal representation, in order
to allow Maple to keep the calculations exact. We also need to tell the convert function
to perform an exact conversion to a rational number, otherwise it will try to make a
rational approximation of the decimal number it is given. See the Maple’s help files on
?convert/rational for more details. > x := convert(1.23456789, rational, exact);

x := 123456789
100000000

> x0 := x;L := floor(x0);

x0 := 123456789
100000000
L := 1

> x1 := 1
x0 − floor(x0)

;L := L,floor(x1)

x1 := 100000000
23456789

L := 1, 4

So we currently have a0 = 1 and a1 = 4 for our continued fraction. Next we need
to calculate x2 = x1 − 4 and append floor(x2) to the end of the list, and repeat the
process. We started off with a terminating decimal, therefore we should expect the
continued fraction also to terminate. So instead of tiring our fingers typing the same
two commands over and over again, we write a loop to finish the process for us.

46 1 Number Theory

> for i from 2 whilexi−1 − floor(xi−1) 6= 0 do
xi := 1

xi−1 − floor(xi−1) ;L := L,floor(xi);
od

x2 := 23456789
6172844

L := 1, 4, 3

x3 := 6172844
4938257

L := 1, 4, 5, 1

x4 := 4938257
1234587

L := 1, 4, 3, 1, 3

x5 := 1234587
1234496

L := 1, 4, 3, 1, 3, 1

x6 := 1234496
91

L := 1, 4, 3, 1, 3, 1, 13565

x7 := 91
81

L := 1, 4, 3, 1, 3, 1, 13565, 1

x8 := 81
10

L := 1, 4, 3, 1, 3, 1, 13565, 1, 8
x9 := 10

L := 1, 4, 3, 1, 3, 1, 13565, 1, 8, 10

And so we have the continued fraction representation of 1.23456789 as

1 +
1

4 +
1

3 +
1

1 +
1

3 +
1

1 +
1

13565 +
1

1 +
1

8 +
1
10

or, more compactly, [1; 4, 3, 1, 3, 1, 13565, 1, 8, 10]. For the remainder of this book we
only use this more compact notation when referring to continued fractions.

We pause here and talk briefly about the mysterious 13565 which appears in the
middle of this continued fraction. It perhaps seems a little incongruous sitting there
in the middle of a collection of predominantly single digit numbers. Or, at least, it

1.3 Enough Code, Already. Show Me Some Math! 47

should look incongruous. Inasmuch as we’ve been working with rational numbers for
the calculations in question, we can be quite confident that it is not a mistake. However,
we should be aware that, in general, when we see such unexpected numbers pop up,
that we may have a sign of numeric roundoff error (or some other mistake), and should
be on our guard. Increasing the digit precision to see if the (apparent) anomaly persists
is a good first step.

As the reader might very well have come to expect by now, Maple has functions
inbuilt to allow for the conversion of a real or rational number to a continued fraction.
There are, in fact, two methods. The first method is to use the highly flexible convert
function, which is explored somewhat in Exercise 4. > convert

(
123456789
100000000 , confrac

)
[1, 4, 3, 1, 3, 1, 13565, 1, 8, 10]

However, you should be aware that using this method may run afoul of Maple’s
internal digit precision. For instance, with the default precision of 10 digits, Maple
produces the following output.[
> convert(1.23456789, confrac)

[1, 4, 3, 1, 3, 1, 13565]
which is missing the last three quotients. However, if we raise the internal precision
to 20 digits then we obtain the correct result. For best results, one should avoid using
decimals with the continued fraction conversion when using the convert function, if at
all possible.

The alternative, and probably preferred, method is to use the cfrac function which
is located within the numtheory package. This function seems to behave better with
decimal numbers but note, however, that it will write the continued fraction out in the
long form, unless we ask it otherwise.

> x := convert(1.23456789, rational, exact) :
numtheory[cfrac](x); numtheory[cfrac](1.23456789, quotients)

1 +
1

4 +
1

3 +
1

1 +
1

3 +
1

1 +
1

13565 +
1

1 +
1

8 +
1
10

[1, 4, 3, 1, 3, 1, 13565, 1, 8, 10]

The cfrac function also allows for converting a converted fraction in list form back
to a rational number (see Exercise 23).

Let us explore continued fractions with some irrational numbers now. We start with
the golden ratio φ = (1 +

√
5)/2. The name phi (or, equivalently, phi) is reserved as a

function in the numtheory package, therefore we avoid using it, and use GR (short for
golden ratio) instead.

48 1 Number Theory > GR = 1 + sqrt(5)
2 ; convert(GR, confrac)

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
Well that’s interesting. Let’s see what the cfrac function makes of it[
> numtheory[cfrac](GR, quotients)

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . .][
> numtheory[cfrac](GR, quotients, 20)

[1, . . .]
Note here that the ellipses above do not mean “continuing on in the same fashion”

as they usually would in printed mathematics, but instead mean something closer to
“and some more stuff that wasn’t calculated.” So what we know is that the first twenty
one quotients in the continued fraction of φ are all 1, and that there are some more
quotients about which we don’t know.

As it happens, being an irrational number, the continued fraction representa-
tion of φ is infinite, just as its decimal representation. However, unlike its decimal
representation—which exhibits no particularly discernible pattern—the continued frac-
tion representation does indeed exhibit a clear pattern. The pattern we have seen above
continues infinitely for a continued fraction representation that is all 1.

So why is this? Well, first notice that 2 <
√

5 < 3 because 4 < 5 < 9, and so
1 < φ < 2. This tells us straight away that the integer part of φ is 1. Subtracting this
yields

φ− 1 = 1 +
√

5
2 − 2

2 =
√

5− 1
2

Inverting this we get

2√
5− 1

= 2√
5− 1

·
√

5 + 1√
5 + 1

= 2(
√

5 + 1)
4 = 1 +

√
5

2 = φ

which is back where we started from. It should be clear from this then that φ − 1 =
1/φ and that we can continue the continued fraction process begun above indefinitely
providing the continued fraction [1; 1, 1] (where the bar above the 1, 1 indicates that
the pattern is repeated infinitely).

Finally, let us look at the continued fractions of some other irrationals.

> with(numtheory) :
cfrac(sqrt(2), quotients, 20);
cfrac(sqrt(5), quotients, 20);
cfrac(exp(1), quotients, 20);

[1, 2, . . .]
[2, 4, . . .]

[2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, . . .]

We can see, then, that continued fractions may give more information regarding the
patterns behind a real number than its decimal expansion might. When exploring an
unknown number, we should look at both a decimal approximation, as well as its con-
tinued fraction. However, not all numbers have a nice continued fraction representation,
as we explore in Exercise 24.

1.3 Enough Code, Already. Show Me Some Math! 49

1.3.3 Recurrence Relations

We should recall from Section 1.2.6 the Fibonacci numbers, and their formulation as
f(n) = f(n− 1) + f(n− 2) where n ∈ N and f(1) = f(2) = 1. This is an example of a
recurrence relation, a sequence where the value of each element is dependent on one or
more previous elements.

The requirement that n be natural is important here, because the recurrence relation
describes a sequence and not a function, even though we have used functional notation
so far. Recurrence relations are often written using the subscript notation more usu-
ally associated with a sequence, in which case the Fibonacci numbers are defined as a
sequence {fn}n∈N where fn = fn−1 + fn−2 and f1 = f2 = 1. However, due to the way
Maple handles recurrence relations, we continue to use the functional notation instead
of the subscript notation.

The order of a recurrence relation is how far back one must look in order to calculate
a term. The Fibonacci numbers are therefore of order two because one needs to know
the two previous terms in order to calculate any term. A recurrence relation may have
other properties, but for the sake of simplicity let us say that a constant coefficient,
linear, homogeneous recurrence relation of order k is a recurrence relation that has the
form

a(n) = c1 · a(n− 1) + · · ·+ ck · a(n− k)

where the ci are constants.
To begin we look at some first-order recurrence relations. In fact, we look in full

generality at first order linear recurrence relations with constant coefficients. Let a(n) =
c1 · a(n − 1). This is the general form of a first-order linear homogeneous recurrence
relation. If we wish to know what the 100th term in the sequence was—provided, of
course that we know both the first term a(0), and the coefficient (c1), then we would
have to calculate the second term before we could calculate the third term and so on.
All in all we would have to perform 99 calculations. In fact, this is exactly what we have
had to do when we wrote loops and procedures to calculate the Fibonacci numbers in
Sections 1.2.2 and 1.2.4.

What we would ideally like is some formula or function of n that would always
calculate the nth term in the sequence. The act of finding such a formula is called
solving the recurrence relation. In the case of first-order relations, and especially first-
order linear homogeneous recurrence relations with constant coefficients, doing so is
quite straightforward. Observe that

a(0) = 1 · a(0) = (c1)0 · a(0)
a(1) = c1 · a(0) = (c1)1 · a(0)
a(2) = c1 · a(1) = c1 · (c1 · a(0)) = (c1)2 · a(0)
a(3) = c1 · a(2) = c1 ·

(
(c1)2 · a(0)

)
= (c1)3 · a(0)

and so on. The pattern here is quite clear.

a(n) = (c1)n · a(0)

We may easily now, if we wish, calculate the 100th element of the sequence as (c1)99·a(0).
A simple example of such a recurrence relation is a bank account that earns, say, 5%

compound interest both calculated and paid annually. If we let a(n) be the amount of
money at the end of n years, then a(0) is the initial deposit, and a(n) = 1.05 · a(0). If

50 1 Number Theory

we start with $5000 then we know, thanks to the analysis performed above, that after
5 years we will have (1.05)5 · 5000 = $6381.41.

We can explore recurrence relations inside Maple, of course. Maple provides the
rsolve command for solving recurrence relations. Happily, this function is not limited
to only linear, homogeneous, constant coefficient recurrence relations. Unfortunately,
not all recurrence relations are solvable. Let us see what Maple says about our earlier
analysis.[
> rsolve(a(n) = c1 · a(n− 1), a(n))

a(0)cn1
Here we asked Maple to solve the recurrence relation a(n) = c1 · a(n− 1) and asked

it to solve for a(n). This means that the answer returned by the rsolve function should
be the formula for a(n). As we should hope, Maple gave us the answer we already knew.
Let us now, quickly, drop the constant coefficient condition, and see what happens. For
maximum generality, we assume that a function f(n) multiplies the previous term in
the recurrence.
> rsolve(a(n) = f(n) · a(n− 1), a(n))

n−1∏
n0=0

f(n0 + 1) a(0)

It is not immediately clear which terms are part of the product. However, if Maple
has multiple terms within a sum or product, it will enclose them in parentheses. With
this in mind, the a(0) term isn’t inside the product, and the entire expression might be
written less ambiguously as(

n−1∏
n0=0

f(n0 + 1)
)
a(0) or a(0)

n−1∏
n0=0

f(n0 + 1)

We may confirm the result using a very similar analysis to that performed for the
constant coefficient cast

a(1) = f(1) a(0) =
(1∏
k=1

f(k)
)
a(0) = a(0)

1−1∏
k=0

f(k + 1)

a(2) = f(2) a(1) = f(2)f(1)a(0) =
(2∏
k=1

f(k)
)
a(0) = a(0)

2−1∏
k=0

f(k + 1)

a(3) = f(3) a(2) = f(3)f(2)f(1)a(0) =
(3∏
k=1

f(k)
)
a(0) = a(0)

3−1∏
k=0

f(k + 1)

...

a(n) = f(n)f(n− 1) · · · f(1) a(0) =
(

n∏
k=1

f(k)
)
a(0) = a(0)

n−1∏
k=0

f(k + 1)

Let us now look at second-order linear recurrence relations with constant coefficients.
Performing an analysis like the ones above that we performed for first-order recurrence
relations is of limited to no use with second-order relations. In short, there’s too much
going on to see a clear pattern. Fortunately there are some nice theorems that allow for
easy solution.

1.3 Enough Code, Already. Show Me Some Math! 51

Given a second order linear, homogeneous recurrence relation with constant coeffi-
cients,

a(n) = c1 · a(n− 1) + c2 · a(n− 2)

we construct the characteristic polynomial x2 − c1x− c2 and find the roots. Note that
the recurrence may be re-written as

a(n)− c1 · a(n− 1) + c2 · a(n− 2) = 0

and so the transformation to the characteristic polynomial should be clearer now. Once
we have the roots r1, r2 of the characteristic polynomial, then the recurrence relation
has a formula depending on whether the roots are distinct. The general form of the
solution is

a(n) =
{
A · (r1)n +B · (r2)n if r1 6= r2

A · (r1)n + n ·B · (r1)n if r1 = r2

where A and B are constants. If we know some initial conditions, then we may substitute
them into the general form of a(n) in order to calculate exactly what the constants A
and B are. What is interesting here is that the general form will always satisfy the
recurrence relation no matter the choice of constants.

Let us explore this with the Fibonacci numbers. The characteristic polynomial we
need to find the roots of is is x2−x−1. Using the quadratic formula x = (1/2a) · (−b±√
b2 − 4ac) we have x = 1

2 (1±
√

5). So r1 = 1
2 (1 +

√
5), which is the golden ratio that

we looked at in Section 1.3.2, and r2 = 1
2 (1−

√
5). Turning to Maple now,

> f := n→ A ·
(

1 + sqrt(5)
2

)n
+B ·

(
1− sqrt(5)

2

)n
;

f := n→ A

(
1
2 + 1

2
√

5
)n

+B

(
−1

2
√

5 + 1
2

)n


> f(n− 1) + f(n− 2); simplify(%)

A

(
1
2 + 1

2
√

5
)n−1

+B

(
−1

2
√

5 + 1
2

)n−1
+A

(
1
2 + 1

2
√

5
)n−2

+B

(
−1

2
√

5 + 1
2

)n−2

16
(
A

(
1
2 + 1

2
√

5
)n

+B

(
−1

2
√

5 + 1
2

)n)
(√

5 + 1
)2 (√5− 1

)2

Unfortunately, for some reason, Maple doesn’t simplify the denominator of the ex-
pression. It should take no time at all to calculate in our head that(√

5 + 1
)2 (√

5− 1
)2

=
((√

5 + 1
)(√

5− 1
))2

= 42 = 16

and so the denominator and the multiple of 16 will cancel. We could, also, have asked
Maple to specifically simplify only the denominator. > denom(%) = simplify(denom(%))(√

5 + 1
)2 (√5− 1

)2 = 16
In either case, we end up with the formula for f(n) when we simplify f(n − 1) +

f(n− 2), showing that the choice of constants A and B does not matter.

52 1 Number Theory

In order to find the constants for the specific case of the Fibonacci numbers we could
plug f(1) = 1 and f(2) = 1 into our equation above and solve for A and B. Instead of
this, however, we just ask Maple to solve the recursion for us. We have already defined
the variable f , above, so we make sure to use a different variable name this time.
> rsolve({F (n) = F (n− 1) + F (n− 2), F (1) = 1, F (2) = 1}, F (n))

1
5
√

5
(

1
2

+ 1
2
√

5
)n
− 1

5
√

5
(

1
2
− 1

2
√

5
)n

and so it would seem that A = 1
5
√

5 and B = − 1
5
√

5.

1.3.4 The Sieve of Eratosthenes

It would be hard to justify this chapter as being about number theory if we didn’t
mention prime numbers at some stage. Here we look at the problem of listing numbers
that are prime, and use a technique known to the ancient Greeks. In particular, it was
a man named Eratosthenes who is responsible for this technique.

Suppose we want to find all the prime numbers less than some number, 100 say. First
we write the numbers in a square (or rectangle) thusly

�1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

We know that 1 is not prime, therefore we start by crossing it out. We now find the
first uncrossed number, 2 in this case. This number is prime and so no multiple of is
can be prime. So we go and cross out all the multiples of this number.

�1 2 3 �4 5 �6 7 �8 9 ��10
11 ��12 13 ��14 15 ��16 17 ��18 19 ��20
21 ��22 23 ��24 25 ��26 27 ��28 29 ��30
31 ��32 33 ��34 35 ��36 37 ��38 39 ��40
41 ��42 43 ��44 45 ��46 47 ��48 49 ��50
51 ��52 53 ��54 55 ��56 57 ��58 59 ��60
61 ��62 63 ��64 65 ��66 67 ��68 69 ��70
71 ��72 73 ��74 75 ��76 77 ��78 79 ��80
81 ��82 83 ��84 85 ��86 87 ��88 89 ��90
91 ��92 93 ��94 95 ��96 97 ��98 99 ��100

Having done that, we find the next number along (after 2, which was our previous
number) which is not crossed out. In this case it’s 3. This number must be prime because
it is not a multiple of any prime number less than it, of which there was only one in

1.3 Enough Code, Already. Show Me Some Math! 53

this case. We now cross out all multiples of 3. Note that some of the multiples of 3 are
already crossed out, because they were also multiples of 2.

�1 2 3 �4 5 �6 7 �8 �9 ��10
11 ��12 13 ��14 ��15 ��16 17 ��18 19 ��20
��21 ��22 23 ��24 25 ��26 ��27 ��28 29 ��30
31 ��32 ��33 ��34 35 ��36 37 ��38 ��39 ��40
41 ��42 43 ��44 ��45 ��46 47 ��48 49 ��50
��51 ��52 53 ��54 55 ��56 ��57 ��58 59 ��60
61 ��62 ��63 ��64 65 ��66 67 ��68 ��69 ��70
71 ��72 73 ��74 ��75 ��76 77 ��78 79 ��80
��81 ��82 83 ��84 85 ��86 ��87 ��88 89 ��90
91 ��92 ��93 ��94 95 ��96 97 ��98 ��99 ��100

The next number that is not crossed out is 5, which must be prime because it is not
a multiple of any prime smaller than it. We repeat this process and eventually there
will be no new “next” uncrossed number, in which case we will have found all primes
less than or equal to 100 (our chosen upper bound for this example). This yields the
following final table.

�1 2 3 �4 5 �6 7 �8 �9 ��10
11 ��12 13 ��14 ��15 ��16 17 ��18 19 ��20
��21 ��22 23 ��24 ��25 ��26 ��27 ��28 29 ��30
31 ��32 ��33 ��34 ��35 ��36 37 ��38 ��39 ��40
41 ��42 43 ��44 ��45 ��46 47 ��48 ��49 ��50
��51 ��52 53 ��54 ��55 ��56 ��57 ��58 59 ��60
61 ��62 ��63 ��64 ��65 ��66 67 ��68 ��69 ��70
71 ��72 73 ��74 ��75 ��76 ��77 ��78 79 ��80
��81 ��82 83 ��84 ��85 ��86 ��87 ��88 89 ��90
��91 ��92 ��93 ��94 ��95 ��96 97 ��98 ��99 ��100

We can see then that our list of prime numbers less than 100 is

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

When completing the previous example—and the reader is encouraged to do so by
hand—we find that once we have crossed off all the multiples of 7, then all multiples of
all later primes are already crossed off. In fact, this is a phenomenon that we always see
when performing the Eratosthenes’ sieve for any upper bound. The special property of
7 in our particular case, above, is that it is the largest prime less than or equal to

√
100.

In general, when using Eratosthenes sieve to find prime numbers less than or equal to
some bound, n say, we may always end the process when we’ve found all primes less
than or equal to

√
n.

Recall from Section 1.2.3 that when finding the divisors of a number, n say, we need
only to check the numbers less than or equal to

√
n. In a similar vein, when performing

the Eratosthenes’ sieve to find all primes less than n, when we find a prime, p say,
we then proceed to cross off any number for which p is a divisor. We have effectively
marked all numbers less than n that have p as a divisor. We only need a single divisor
to decide a number is not prime, and it follows from our observations in Section 1.2.3
that if a number has a divisor, then it has a divisor less than its square root. Finally,
the simple fact that

a ≤ b =⇒
√
a ≤
√
b

54 1 Number Theory

leads us to the conclusion that once we have crossed off all multiples of all primes less
than

√
n then we must have found a divisor for every number less than n, as long as

there was one to find in the first place. Anything not crossed out must, therefore, be
prime.

In our particular example, above, once we get past 10, we have crossed off every
multiple of every prime less than or equal to

√
100 and so we must have found at least

one divisor for every number less than or equal to 100, as long as there was a divisor
to find. This is exactly the observation that led us to this line of inquiry.

Now we implement this technique in Maple. We make a procedure that we will name
Eratosthenes that will return a sequence of all the primes less than some given number
N which must be a positive integer.

In order to represent in Maple the “crossing out” of numbers as we performed in the
sieve (above), we are going to create a list L that contains N elements. If Li is true,
then i is prime, and if Li is false then i is not prime. This list begins with all its values
as true and we “cross out” by setting the appropriate value in the list to false. We also
create a sequence named primeslist which starts out empty, and to which we append
the primes.

> Eratosthenes := proc(N :: posint)
localL, primeslist, n, k;
description "Calculate all primes less than or equal to N";
L := Array(2..N, i→ true);
forn from 2 to trunc(sqrt(N)) do

if Ln = true then
for k fromnby 1 while k · n ≤ N do
Lk·n := false

od
fi

od;
We computed the primes, now to collate them into a sequence
primeslist := NULL;
forn from 2 toN do

if Ln = true then primeslist := primeslist, nfi
od;
primeslist;

end :



> Eratosthenes(1000)
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137,
139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277,
281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359,
367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439,
443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521,
523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607,
613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683,
691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773,
787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863,
877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967,

971, 977, 983, 991, 997

1.3 Enough Code, Already. Show Me Some Math! 55

Instead of a list, we declared an Array. An Array is a quite powerful, and very
general class in Maple, but in this example it behaves almost exactly as does a list.
Using the Array gave us two advantages over a list. First we were able to specify an
exact range of indices for indexing (2..N in this case). Second we were easily able to
specify an initial value for each element, which is set when the Array was created. This
initialization was in the form of a function mapping an index variable (which we called
i) to the value we wanted Li to have. Without the Array we would have needed to use
something like L := [seq(true, k = 1..N)] to achieve a similar result. In our case above
we wanted the value at all indices to be true but this need not have been the case, and
we could have had a more complicated initialization had we wanted.

Generating prime numbers is actually a fairly computationally intensive task. The
sieve of Eratosthenes is quite interesting in its own right, and is reasonably efficient
for such a simple algorithm. However, for primes larger than 10,000 it starts to get
noticeably slow. Of course, as we should have well and truly come to expect by now,
Maple provides inbuilt functions for finding primes, as well as testing primality. The
big advantage to the inbuilt functions is that they perform all sorts of tricks to keep
the execution times remarkably quick.

These functions are ithprime which calculates the ith prime number, nextprime
which calculates the next prime number after a given number, prevprime which cal-
culates the previous prime number before a given number, and finally isprime which
calculates whether a given number is prime.[
> ithprime(5),nextprime(5),nextprime(6), prevprime(5), prevprime(4)

11, 7, 7, 3, 3

56 1 Number Theory

1.4 Problems and Exercises

1. Enter the following expressions into Maple

a. 1
2

b. e2

c. x2 + x− 1

d. x
2 + 1
x2 − 1

Perform the following calculations in Maple. Obtain a decimal approximation as
well as simplified exact values.

e. sin
(

3π
5

)
f. 15!

e4

g. 12! + 2 1
3

sin(2)3

h. 22222

What do you notice about the floating point approximation of the final calculation,
compared to the exact value?

2. We now explore Maple’s digit precision for decimal approximations. Enter the fol-
lowing commands into Maple and explain how the precision has been modified. Try
some entries of your own if you are still unsure, or to test your explanation.

a. > evalf (Pi); evalf (exp(1))
b. > evalf [20](Pi); evalf [25](exp(1))
c. > evalf (Pi, 35); evalf (exp(1), 30)
d. > Digits := 50; evalf (Pi); evalf (exp(1))

Obtain numeric approximations of the following expressions, to the indicated digit
precision

e. π2 to 10 significant figures
f. sin(1) to 10 significant figures
g. eπ to 15 significant figures
h. log(π) to 22 significant figures

You can reset the digit precision to 10 decimal places using either Digits := 10
or the restart command. Beware that the restart command will completely undo
anything you have done previously.

3. This exercise shows two cautionary scenarios.

a. Some variables in Maple are protected, which means their values cannot be
changed. Enter the following into Maple.

i. > NULL := 7

ii. > sin := exp(2)

iii. > log := x2 + 3x− 2
iv. > sum := x+ 1

2x− 2

Why might these names be protected?
b. We look at why caution should be taken when using the % operator. Follow the

instructions below.
i. Enter the following Maple commands. Make sure to keep each entry in its

own input bracket.
> (x+ y)3

> expand(%)

1.4 Problems and Exercises 57

> subs(y = 1,%)
ii. Edit the first command to instead read (x + y)4. Be sure to remember to

hit enter to perform the new calculation
iii. Go back to the third calculation and press enter. What happened?

4. The convert function is a very useful function with very many uses. The following
are just a tiny handful of examples of the convert function’s capabilities. Enter the
following into Maple and also read the help files regarding the convert function.

a. > convert
(

3 · Pi
2

, degrees
)

b. > convert(25 degrees, radians)

c. > convert
(

10, units, meters
second ,

kilometers
hour

)
d. > convert

(
60, units, km

h
,
m

s

)
e. > convert(sinh(x), exp)

f. > convert
(

exp(x) + exp(−x)
2 , trig

)
g. > convert([x, 2x, 3x, 4x], ‘ + ‘)
h. > convert([x, 2x, 3x, 4x], ‘ ∗ ‘)

Now perform the following conversions.

i. How many furlongs per fortnight is 60 kilometers per hour?
j. What is the trigonometric identity for (ex − e−x)/(ex + e−x)
k. What is the partial fraction representation of

x2 + 3x+ 2
(x− 1)(x2 + 2)2

5. We have seen the $ operator used to create repeated sequences. It may also be used
as a shortcut to the seq command. Enter the following commands, and explain how
the $ operator works. Try some entries of your own if you are still unsure, or to test
your explanation.

a. > k2$k = 4..10

b. > ai$i = 3..6
c. >

1
k

$k = 1..7
d. > $3..5

Confirm your guess with Maple’s help: (?$)
6. Maple’s seq command is capable of creating sequences where the index variable

increases by more than 1 at each step, or even where the index variable takes
on arbitrary values entirely. Enter the following into Maple and explain what is
happening. Note that the index variable can be any valid variable.

a. > seq(i2, i = 1..10, 3)

b. > seq(a2 − a− 1, a = 1..10, 3)

c. > seq
(

2
n
, n in [2, 3, 5, 7, 11, 12]

)
d. > seq

(
fib2,fib in [1, 1, 2, 3, 5, 8]

)
Now produce the following sequences using the seq command, and the ideas above.

58 1 Number Theory

e. 9, 25, 49, 81 f. 1, 1
2 ,

1
4 ,

1
7 ,

1
11 ,

1
16

Note that neither of these techniques can be used with the $ operator; see Exercise 5.
7. For lists and sequences—and many otherMaple constructs that use natural indices—

indexing may be performed by using a negative index that begins counting from
the end, instead of the beginning. To illustrate this, create in Maple a list L :=
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Issue the following commands.

a. > L−1
b. > L[−3]
c. > L−4..−2

d. > L[−7..− 5]
e. > L−4..
f. > L[..− 6]

Which of the following commands do you expect to fail? Enter them into Maple
and see if you were correct. Explain why the failures occurred.

g. L−1..−3
h. L[3..− 3]

i. L[4..− 7]
j. L−7..2

Hint: Try to change the negative index into the usual positive index.
8. Enter the following commands into Maple. For the purposes of these commands
L := [x, y, z, x, y].

a. > op([1, 2, 3, 4, 5])
b. > nops([1, 2, 3, 4, 5])
c. > numboccur([1, 2, 3, 4, 5], 3)

d. > op(L)
e. > nops(L)
f. > numboccur(L, x)

What does it look like the op, nops, and numboccur functions are doing? Now
change L to be L := [[1, 2], [2, 3], [3, 4]] and consider the following.

g. > op(L)
h. > nops(L)
i. > numboccur(L, 3)

j. > op(x2 + 2x− 3)
k. > nops(x2 + 2x− 3)
l. > numboccur(x2 + 2x− 3, x)

What do you now think op, nops, and numboccur are doing? Read Maple’s help
files regarding these functions and see if they agree with your observations and
guesses.
Finally, have a look at the ListTools package, and in particular the Occurrences
function. Redefine L to be L := [[1, 2], [3, 4], 5, 6, [1, 2]] and use this function to have
Maple calculate the following. You should be able to verify the answers by eye.

m. The number of occurrences of the element [1, 2] in the list L.
n. The number of occurrences of the element 5 in the list L.
o. The number of occurrences of the element x in the list L.
p. The number of occurrences of the element [y, z] in the list L.

9. Create a list containing the first 1000 digits of π, in the correct order.
In order to do this you need to manipulate the first 1000 digits of π into an integer
and use the command convert(n, base, 10) which converts an integer n into a list of
digits in base 10.
Hint: You need to use the trunc command at some stage.

10. Calculate the following sums and products.

1.4 Problems and Exercises 59

a.
100∑
i=1

1
2i

b.
6∏

n=1
(1 + x2n)

c.
∞∑
n=0

1
n!

d.
∞∏
k=1

4k2

4k2 − 1

The following should look familiar from first-year calculus.

e.
∞∑
k=0

x2n

(2n)! f.
∞∑
k=0

(−1)nx2n+1

(2n+ 1)!

Convert the following sums to sigma notation, and then use that to implement them
using the sum command.

g. 1 + 8 + 27 + · · ·+ n3

h. 1 + 1
2

+ 1
4

+ · · ·+ 1
2i

i. 1
1 · 3 + 1

3 · 5 + 1
5 · 7 + · · ·+ 1

(2k − 1)(2k + 1)

11. Use Maple’s sum command to explore the binomial formula. Recall that the bino-
mial theorem states that

(x+ y)n =
n∑
k=0

(
n

k

)
xn−kyk, where

(
n

k

)
= n!

(n− k)!k!

You should also use Maple’s help to find a built-in function that will calculate the
binomial coefficients

(
n
k

)
.

a. Create a function, f say, using the arrow notation (→) that expands (x+ y)n.
b. Create another function, g say, using the arrow notation that uses Maple’s sum

command to evaluate the sum in the binomial formula.
c. Choose some values for n and check that f(n) = g(n).
d. Ask Maple to evaluate f(N). To what does it evaluate?

Perform these tasks twice: once using Maple’s built-in function for binomial coeffi-
cients and once using the formula for the coefficients.

12. An arithmetic sequence is a sequence where each term differs from the previous
term by a fixed amount. This “fixed amount” is called the common difference of the
sequence. For example,

a = {1, 2, 3, 4, . . .}, b = {1, 3, 5, 7, . . .}, and c = {1, 4, 7, 10, . . .}

are arithmetic sequences with a common difference of 1, 2, and 3, respectively.

a. Determine a formula for the nth element of an arbitrary arithmetic sequence
starting at 1, with common difference d.

b. Write functions that will calculate the first n terms in the arithmetic sequences
a, b, and c (above).
Hint: Use part (a) in combination with a seq command.

Arithmetic sequences may have any first element, but those beginning at 1 generate
the so-called polygonal numbers. The sequence a generates the triangular numbers;

60 1 Number Theory

the nth triangular number is the sum of the first n terms in the arithmetic progres-
sion a (above). That is,

T :=
{

N∑
k=1

ak

}∞
N=1

Similarly the nth square number is the sum of the first n terms in the arithmetic
progression b and the nth pentagonal number is the sum of the first n terms in the
arithmetic sequence c.
Note: The square numbers are precisely the numbers that are perfect squares.

c. Write functions that will calculate the nth triangular, square, and pentagonal
numbers.

d. Repeat (b) and (c) for the hexagonal numbers. (You will need to extrapolate
which arithmetic sequence generates the hexagonal numbers).

13. Enter the following into Maple. What is causing the errors? Can you modify the
commands so that they work?

a. > k := 1; sum
(

1
k
, k = 1..10

)
b. > n := 3; Sum(n3, n = 1..5); value(%)
c. > f := N → sum(k, k = 1..N); seq(f(k), k = 1..10)

Note that the seq command does not exhibit this problem.

d. > k := 1; seq
(

1
k
, k = 1..10

)
;′ k′ = k;

e. > n := 3; seq(n3, n = 1..5);′ n′ := n;

14. If we wish to apply a function to every item in a list, Maple provides a function
named map. Enter the following commands, and read Maple’s help on the map
function. What is the map function doing?

a. > map(exp, [1, 2, 3, 4, 5])
b. > L := [0, π2 , π,

3π
2 , 2π]; map(sin, L)

c. > f := x→ 2 · x2; map(f, [0, 2, 4, 6, 8])
d. > f := x→ x

2 ;L := [0, 1
2 , 1,

3
2 , 2]; map(f, L)

e. > map(N → 1
N , [2, P i, exp(1), log(Pi)])

f. > C := [seq(k + 1 + k · I, k = 1..10)]; map(z → abs(z), C)

Create a list P that contains the first five prime numbers [2, 3, 5, 7, 11]. Use map
and the list P to create the following lists.

g. [3, 4, 6, 8, 12]
h. [5, 10, 26, 50, 122]
i. [ln(2π), ln(3π), ln(5π), ln(7π), ln(11π)]

15. Just as with sequences (see Exercise 6) Maple for loops are capable of having their
counter increase by more than 1 at each step, or even have the counter take on
arbitrary values entirely (from a list or a set). Enter the following into Maple and
explain what is happening.

a. > for i from 1 to 10 by 3 do i2 od
b. > for a from 1 to 10 by 3 do a2 − a− 1 od
c. > forn in[2, 3, 5, 7, 11, 12] do 2

n
od

1.4 Problems and Exercises 61

d. > for fib in[1, 1, 2, 3, 5, 8] do fib2 od

Loops in Maple may also continue indefinitely until some criterion is met. Enter the
following, and explain what the loop is doing.

e. > for i from 1 while i2 < 1000 do iod
f. > forN from 1 by 2 whileN3 < 10000 doN,N3, N3 −N2 od

Create loops to calculate the following

g. Decimal approximations of e, e6, e11 and so on where the power of e is less than
100.

h. Decimal approximations of π2 ,
π

3 ,
π

5 ,
π

7 ,
π

11 .
i. The Fibonacci numbers less than 1200.

Note: Recall from Section 1.3.3 that the nth Fibonacci number can be calculated
using the fibonacci function from the combinat package.

16. Implement the following procedure. What does it appear to do?
> f := proc()

local a, b;
globalG,H;
a, b := 1, 2;
G,H := 3, 4;

end
Now perform the following in Maple.

a. > a := Pi; a; f(); a;
b. > b := exp(2); b; f(); b;

c. > G := log(Pi);G; f();G;
d. > H := exp(Pi);H; f();H;

What is happening to the local and global variables. What do you think is the
difference between a local and a global variable for a procedure. Perform some tests
in Maple and refer to the help files on procedures (?procedure) to confirm your
guess.

17. Write procedures to perform the following. Your procedures may have two or more
input variables by having a sequence of variable names inside the parentheses after
the proc declaration. For example proc(x, y) or proc(a, b, c).

a. Add all multiples of 5 and 7 less than an arbitrary number.
b. Generate a sequence using the Fibonacci equation, but from an arbitrary pair

of initial conditions.

Be sure to test your procedures with small cases that you can verify by hand.
18. Use nesting to perform the following.

a. Print out the first 5 rows of Pascal’s triangle.
b. Create a function or procedure that prints out the first N rows of Pascal’s

triangle

Hint: Try asking Maple what it knows about Pascal’s triangle. You might need to
not use punctuation. Also recall that Exercise 11 dealt with the binomial formula,
which is related to Pascal’s triangle.

19. Implement the Fibonacci number calculation procedure what used the remember
option from Section 1.2.7. Make sure that there are no previously computed and
remembered values (issue a restart command before implementing the function if
necessary).

62 1 Number Theory

a. Compute the following (in order), taking note of any error messages.

i. f(6000)
ii. f(4000)
iii. f(3000)

iv. f(2000)
v. f(4000)
vi. f(6000)

b. Why was it impractical in Section 1.2.7 to find a Fibonacci number that took
approximately a second to compute using this procedure?

20. One should be careful when using the % operator for creating functions. Enter the
following into Maple.

a. > sum(k, k = 1..n);
f := n→ %;
′f ′(2) = f(2);

b. > sum(k, k = 1..n);
f := unapply(%, n);
′f ′(2) = f(2);

What appears to have happened here?
21. Use the sum command to find a formula for

a. An arbitrary polygonal number, that is, the sum of the first n terms of an
arbitrary arithmetic sequence beginning at 1 with common difference d

b. The sum of the first n terms of an arbitrary arithmetic sequence beginning at
a with common difference d

Use induction to prove these formulae.
See Exercise 12 for the definition of an arithmetic sequence and polygonal numbers.

22. Perform the manual calculation of the continued fraction of 1.23456789 (the one
involving the for loop) from Section 1.3.2 without starting with a rational number.
What happens? Why do you think this is happening?
WARNING: Save your worksheet before attempting this. You will probably want
to use the “stop sign” icon to cancel computations, when things seem to be going
on for too long.

23. Use the cfrac function to change the following continued fractions into rational
numbers.

a. [1, 2]
b. [1, 1, 2]

c. [1, 1, 1, 2]
d. [1, 1, 1, 1, 2]

Do you notice an interesting pattern with these examples? Formulate a conjecture
regarding this pattern of continued fractions and the rational numbers they are
equal to, and test your conjecture.
Hint: This behavior is related to the Fibonacci numbers and their relation to the
golden ratio.

24. Have Maple calculate the continued fractions for the following numbers.

a. 3
√

2 b. (5
√

2)3 c. π

Can you see any pattern? Be sure to try several computations, computing different
amounts of quotients each time.

25. What is the solution to the general first order recurrence relation

a(n) = f(n) a(n− 1)p

1.5 Further Explorations 63

where p > 1 is a positive power?
Test this answer by picking some simple functions f(n) (polynomials are recom-
mended) and powers of p and seeing if the first however-many terms in the sequences
agree when you calculate the terms both using recursion, and the formula given by
rsolve.

26. Find general solutions to the following recurrence relations. Verify the solutions.

a. a(n) = 5a(n− 1)− 6a(n− 2)
b. s(n) = 2s(n− 2)

Now find the solutions to the following recurrence relations with initial values. Test
the solutions both by testing that the formula satisfies the recurrence, and by having
Maple calculate the first 10 or 20 terms of the sequence from both the recurrence
and the solution.

c. f(n) = f(n− 1) + 2f(n− 2) where f(0) = 1, f(1) = −2
d. a(n) = a(n− 1) · a(n− 2)2 where a(0) = 2, a(1) = 3

27. Find a formula for the number of ways to climb a flight of steps of height n if 1 or
2 steps may be taken at a time.
Hint: Formulate the problem as a recurrence relation.

28. Use the techniques from Exercise 1.2.7 to measure the time taken for the sieve of
Eratosthenes from Section 1.3.4

a. Measure the time taken to calculate the first 10, 000, 20, 000, 30, 000, and so on
up to the first 90, 000 primes. Use this information to estimate the time required
to calculate the first 100, 000 primes.

b. Remove the part of the procedure that collects the primes into a list. Repeat
the previous part with this modified procedure.

c. Attempt to modify the procedure to more efficiently collate the primes into a
list or sequence.

Produce the same lists of primes using Maple’s seq command and the inbuilt prime
number functions, and measure how much time these take. Were these quicker or
slower than the Eratosthenes’ sieve procedure?

1.5 Further Explorations

This section presents open ended problems for the interested reader. The idea is to
introduce mathematics that may be explored with no real constraints. Each topic may
ask specific questions, or state particular calculations to be performed, however, these
should be considered to be a beginning to exploration, and not an exhaustive set of steps
to be performed. It is expected and encouraged that one explore these topics using one’s
own means.

1. The field of rational numbers may be extended to incorporate irrational numbers
in a way similar to the way in which the real numbers are extended to the complex
numbers. If R is the solution of the equation x2 = 2, then it must be that R2 = 2,
and we know that R must be an irrational number.
If we include our new number R into the rationals (i.e., consider Q′ = Q ∪ {R})
then our new set Q′ will no longer be a field. In particular, what is 1 +R? In order

64 1 Number Theory

to have a field, we need to add every rational multiple of R as well as addition of
every rational number with every multiple of R.
We end up with what is known as a field extension

Q(R) := {a+ bR | a, b ∈ Q}

with the operations

a+ bR+ c+ dR = (a+ c) + (b+ d)R
(a+ bR)(c+ dR) = ac+ (ad+ bc)R + bdR2 = (ac+ 2bd) + (ad+ bc)R

where a, b, c, d ∈ Q.
Maple allows exploration of these ideas with the evala (evaluate in an algebraic
number, or function, field) and RootOf functions. For instance,[
> R := RootOf (x2 = 2)

R := RootOf (_Z 2 − 2) > R2; evala(R2)
RootOf (_Z 2 − 2)2

2
2. The 3n+1 Problem. This problem has many other names: Collatz’s problem, the

Syracuse problem, Kakutani’s problem, Hase’s algorithm, and Ulam’s problem.
We begin with the following simple algorithm that we apply recursively, starting
with an arbitrary natural number, n say.

• If n is even then halve it.
• If n is odd then multiply it by 3 and then add 1.

We continue this process with each new number obtained until we end up at 1.
The actual problem is does this procedure always terminate? An equivalent formu-
lation of the problem is, if we think of the numbers produced as an infinite sequence,
does the sequence always end with a repetition of the subsequence 4, 2, 1?
For example, if we start with the number 13, then we get

13→ 40→ 20→ 10→ 5→ 16→ 8→ 4→ 2→ 1

or, equivalently, the infinite sequence

{13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, . . . }

For some starting values it will take a large number of steps, and on the way very
large numbers might be encountered before the sequence finally begins to drop back
to 1. Such sequences are sometimes called hailstone or juggler sequences.
Implement this algorithm in Maple. See what happens when you start with 7 (you
can even check this particular one without the help of Maple). Then try some other
starting values. The sequence starting at 27 takes one hundred and eleven steps to
reach 1. You might experiment with the rule a little: for example, what happens if
you change the 3 to a 5, thus making a “5n+ 1” rule?
You should ask yourself how (i.e., under what circumstances) the system could
possibly fail to terminate. For this to happen there must be a starting value that
either diverges or settles into an infinite loop (other than 4, 2, 1).

1.5 Further Explorations 65

3. A real number is said to be normal if its numeric expansion in any base has a
normal distribution. This is to say that each single digit is equally likely to appear,
as is each pair of digits, each triple of digits, and so on. There are not many known
normal numbers, and none are known that were not constructed to be normal in
the first place. It has been conjectured, however, that the number π is normal.
We may obtain a “feel” for whether a number may be normal by counting its digits.
If we count, say, 100 digits of a number, and find that there are, give or take, 10
of each digit then it’s possible the number is normal. If we find this general idea
holds for 1000, and even 10,000 digits (with approximately 100 or 1000 of each
digit, respectively) the hypothesis looks even stronger. We could carry on and then
count each pair of digits and see if there’s roughly an even number of those. We
could continue in this fashion, and even perform the same sort of analysis using a
different base.
Note that a number may be normally distributed in a particular base representation,
but not be a normal number. Such a number, if normally distributed in base b is
said to be b-normal.
Some good numbers to begin looking at for possible normality are

1 +
√

5
2 ,

√
1 +
√

5
2 , π, e, log 2, 3

√
2

Generate 100, 1000, and 10000 decimal digits of these numbers (more, if you wish),
and count the digits, and pairs of digits. If you’re feeling adventurous try triples
and even quadruples.
Try with another base, binary say. You’ll need to ask yourself, with what probability
should each binary digit occur for normal distribution. With what probability should
each double (as well as triple or quadruple if you test those) occur?
There is a similar analysis that can be performed on the continued fraction of a real
number. The Gauss–Kuz’min distribution states that the probability that an = k
(in the continued fraction expansion [a1, a2, . . .] of a random real number) is

Prob(an = k) = log2

[
1− 1

(k + 1)2

]
In other words, approximately 42% of numbers in a continued fraction expansion
will be 1, approximately 17% will be 2, around 9.4% will be 3, and so on. Note
that because this is a continued fraction expansion, then it is possible for numbers
greater than 9 to be in the expansion; in fact any natural number may be included
(you should find that the infinite sum of these probabilities is equal to 1 as you
would expect). As such, the distribution also tells us that approximately 1.4% of
numbers in the expansion will be 10, 0.55% will be 50, and 0.14% will be 100.

Chapter 2
Calculus

In this chapter we explore calculus with the help of Maple. Much of what is seen in
this chapter should be familiar (or at least recognized) from first-year study. We aim to
revise this material, as well as visualize it in ways that are, one hopes, easily accessible
and in addition provide new insight even to the more capable reader. We also attempt
to introduce some newer (or, at least, less familiar) material. In all cases here the aim
is to use Maple to complement and improve our own calculus skills; the goal is one of a
human/machine collaboration, not that of an electronic replacement for calculus skills.

2.1 Revision and Introduction

In this section we introduce the Maple commands best suited for studying and perform-
ing calculus. In addition we recall key concepts from typical first-year calculus courses.
It is, however, expected that the reader is familiar with the underlying concepts and
is able to perform such first-year calculus including (but not limited to) differentiation
and integration of single variable functions, evaluation of limits, and curve sketching,
among others. The reader is encouraged to review his or her favorite (or most readily
available) calculus text.

2.1.1 Plotting

In much first-year calculus the ability to be able to visualize the functions and concepts
being studied is quite valuable, but usually not readily available. Indeed in almost
anything involving calculus visualization is a powerful tool. So we begin this calculus
chapter by looking at how to have Maple plot functions.

Briefly in Section 1.1.2 we saw a plot of a cubic. The Maple command to plot a
function is, unsurprisingly, plot. The most basic use of the plot function is to simply
give it an expression involving a single variable, usually x but any valid Maple variable
name will work just as well.

67

© Springer Science+Business Media, LLC 2011
Springer Undergraduate Texts in Mathematics and Technology, DOI 10.1007/978-1-4614-0122-3_2,
J. M. Borwein and M. P. Skerritt, An Introduction to Modern Mathematical Computing: With Maple ,TM

68 2 Calculus

> plot(x2)

Maple automatically assigns the horizontal axis to be the axis for the independent
variable (x in the previous example) and labels it as such. The vertical axis is unnamed,
but depicts—as it always does—the values of the function (or the dependent variable).
Also, unless we tell it otherwise, the plot command will plot over the horizontal interval
(−10, 10). If we wish to plot over a different interval, we must provide a second argument.

> plot(sin(t), t = 0..2 · Pi)

Notice here that our horizontal axis is now t, where it was x for the parabola ex-
ample. Notice the vertical axis in these two examples. The values of the vertical axis
automatically adjust to suit the function we are trying to plot. For the parabola the
vertical axis was between 0 and 100, corresponding to the values the parabola would

2.1 Revision and Introduction 69

have for −10 ≤ x ≤ 10, and the sine curve used vertical range (−1, 1) just as we would
have hoped it did. It should be interesting to note that the actual screen space taken up
by the two plots is the same in both cases, showing that the vertical scale is different
in both cases. In fact, the vertical scale and horizontal scale may be different even in
the same plot, as is the case in both of these examples.

If we have a function to plot—instead of an expression—there is another way we may
ask for a plot. Note above that although sin is definitely a function, sin(t) is actually a
Maple expression. The former will take an input and produce an output, but the latter
will not take any input at all. If we have a function or procedure we wish to plot, we
may omit the input from the function/procedure, and omit the variable name from the
second input parameter. For example, to plot the tan function between its asymptotes
we can use the following.

> plot
(

tan,−Pi
2
..
P i

2

)

This is equivalent to the command

plot
(

tan(t), t = −Pi
2
..
P i

2

)
Unfortunately the plot we see certainly doesn’t look like the tan function that we all
know and love. If we have a look at the first plot we produced, we should notice the
scale of the vertical axis is exceptionally large, and that we have two seemingly vertical
lines at the end of the graph. If we were to somehow limit the vertical interval (and
thus the vertical scale), perhaps we’d get a better picture.

As it happens, we may do just this with a third argument to the plot function. This
third argument must be a range. It may be in the form of an interval (a..b) or may be
assigned to a variable (var = a..b). In the latter case, the vertical axis is labeled with
the variable name. In either case, however, the vertical axis range must be present after
the horizontal axis range. For example, to refine our plot of the tan function we might
do the following.

70 2 Calculus

> plot
(

tan,−Pi
2
..
P i

2
,−5..5

)

We now have a much more familiar plot. To better understand why this helped, we
need to know how Maple plots a function.

When Maple plots a function it evaluates that function at various points along the
horizontal interval and fits a curve to the sampled points. We see this sampling behavior
by asking Maple to plot points, instead of a line, as follows.

> plot(sin, 0..2 · Pi, style = point)

By default, Maple uses 50 sample points, but the number of points may be specified
by the numpoints input parameter to the plot function.

2.1 Revision and Introduction 71

Usually the sample points are evenly spaced along the horizontal range, however,
Maple is rather clever and if it detects that the values of the function are changing too
quickly between sample points, it will sample the function at an extra point between
them to try to obtain more and better information with which to plot the function. We
observe this happening at the peaks of the curve plotted above.

This extra sampling—known as subdivision—can, by default, happen up to 6 times
between any two sample points and so one should be aware that Maple could potentially
end up evaluating a function at as many as 6 times the number of sampling points
requested. This behavior is, of course, able to be controlled and modified using input
parameters (see ?plot/options).

Now, if we have a look at the tan plot in point mode, we see two extreme points far
to the top and bottom of the graph, with the remainder of the sampled points on or
very near the x-axis.

> plot
(

tan,−Pi2 ..
P i

2 , style = point
)

Of course, with the vertical range so large, the scale is such that the points seemingly
on the x-axis could have values varying anywhere between ±1,000,000 or more and we
wouldn’t be able to tell the difference.

Without explicitly specifying the vertical range,Maple adjusts it accordingly between
the largest and smallest sampled values. It should be clear then that by specifying the
vertical range we see only the plot generated from the sampled points inside that range.
It is worth noting that even with a specified vertical range Maple still samples all the
same points as it would have without the specified range.

2.1.2 Multiple Plots

An interesting example comes to us from Borwein and Devlin [5]. Suppose we have two
expressions, y − y2 and −y2 log(y), and wish to know (and eventually prove) which (if
either) is always larger when y ∈ (0, 1). A good first step would be to plot the two

72 2 Calculus

expressions over the unit interval, to see if the curves cross each other. However, up
until now we have only plotted single expressions. Two separate plots are of limited (if
any) use to us. We need a way to plot the two expressions on the same pair of axes.
This is made possible in one of two ways.

The first method is far and away the simplest. Maple’s plot command will happily
plot a list of expressions (or functions). In place of a single expression we simply provide
a list, and any parameters that modify the plots must also be provided in a list. For
example, to plot the above two functions, with the first one being colored the usual red,
and the second colored blue (so we may identify which is which) we would enter the
following.

> plot([y − y2,−y2 · log(y)], y = 0..1, color = [red, blue])

For the second method, let us now consider a modified version of our example. This
time we compare y2 − y4 and −y2 log(y) (also from [5]). First we will make a simple
observation: up until now, any valid Maple expression could be assigned to a variable
name. It should, then, be a natural question to ask whether the same can be done
with the plot function. The answer is that yes it can, although the logistics of such an
assignment are probably not obvious. Let’s try this.
> plot1 := plot(y2 − y4, y = 0..1, color = red);

plot2 := plot(−y2 · log(y), y = 0..1, color = blue)
plot1 := PLOT (. . .)
plot2 := PLOT (. . .)

Maple stores what is known as a plot structure in the variable. If we wish to see the
actual plot, then we may either just ask Maple for the contents of the variable in the
usual way, or we may use the display function from the plots package.

2.1 Revision and Introduction 73

> plot1



> plots[display](plot2)

This is all well and good, but it doesn’t really help us show multiple plots on the
same axes, at least not in any different way from the method we have already used.
The key to this lies in the display function, whose entire purpose is not so much the
display of single stored plots (which, as we have seen can be displayed easily without
the use of this function), but multiple plots. Just as the plot function will accept a list
of expressions and plot them on the same axes, so will display accept a list (or set) of
plot structures, and display them all on the same axes.

74 2 Calculus

> plots[display]([plot1 , plot2])

The use of display for the above example above may seem unnecessarily long and
complicated, when we could more easily use just a single plot as we did in the first
example. Such an observation is quite well founded. However, there are situations where
the easier method is either impossible, or impractical to use. It is these cases where
display really shines.

To illustrate this utility, we show the previous example and a plot of its sample points
at the same time. In fact, we use both of the above techniques at the same time. We use
a single plot command to produce the two curves, then a second single plot command
two produce the two curves as points (using the style = point option).

It is possible to produce the same result with a single plot command, but is long
and difficult to read, whereas the following commands are quite descriptive, and easy
to follow.
> f := y2 − y4; g := −y2 · log(y)

f := y2 − y4

g := −y2 · log(y) > curves := plot([f, g], y = 0..1, color = [red, blue]) :
points := plot([f, g], y = 0..1, color = [red, blue], style = point) :

We now combine these two plots using the display function, and have the plot
we wished to see. We use this technique again later in the book when demonstrating
sequences whose points lie on continuous functions in Section 2.1.3.

2.1 Revision and Introduction 75

> plots[display]([curves, points])

Display is also a very valuable tool when a function plot is difficult and time con-
suming and we want to reuse it quickly and with certainty that it is what we wanted
to draw.

2.1.3 Limits

Calculus, ultimately, all comes down to limits. So it is with limits that we begin our
exploration of calculus proper. We have already seen and used very briefly in the pre-
vious chapter, the Maple limit command. We look at it in more detail here, and recall
quickly the math behind limits.

We may take a limit of a sequence (of the infinite variety) or of a function. The intu-
itive (and mathematically imprecise) notion of a limit is a value that we may approach
as closely as we could ever wish, just by traveling sufficiently far along the sequence or
function.

We start with sequences. Recall that the limit, L say, of some sequence

{xn}∞n=1 = x1, x2, x3, · · ·

written
lim
n→∞

xn = L

is a number such that for every ε > 0 we can find a natural number N so that whenever
we have any other number n ≥ N it will be the case that |xn − L| ≤ ε.

The sequence {
1
k

}∞
k=1

= 1, 1
2 ,

1
3 , . . .

76 2 Calculus

should be familiar and has, of course, limit 0. We ask Maple to verify this. The Maple
limit command, just like sum and prod has both an inert and active form, with the
inert form being the one with the capital “L”.
> f := k → 1

k
; Limit(f(k), k = infinity) = limit

(
1
k
, k = infinity

)
f := k → 1

k
lim
k→∞

f(k) = 0

As usual, the value command will perform the active calculation on the inert form.
We may also, if we wish a more visual clarification of the convergence, plot this. We

could simply just plot the continuous function 1/k to see the convergence (using the
fact that if the function converges, then the sequence evaluated only at integer points
also converges). Instead, however, we use Maple’s point plot option and see only the
points of the sequence in our visualization.

To do this we construct a sequence (Maple sequence, that is) of 2-element lists
[x, y] each of which represent a point in the Cartesian plane. Because we are plotting
a sequence, we choose the x-axis to be our index, and the y-axis to be the sequence
element. As such the points are [k, 1/k]. We look at the first 100 points. This sequence
of lists is then put into a containing list, so the plot function does not get confused.

> plot
([

seq
([
k,

1
k

]
, k = 1..100

)]
, style = point

)

The convergence is visually pretty clear. It is worth stressing at this point, however,
that these plots give an indication of convergence, not a proof of convergence. There is
always the possibility that the sequence does something odd after the interval we have
plotted. So we must still perform regular mathematics to verify the limits, or at the
very least ask Maple to evaluate the limit.

Recall now that an infinite sum is defined to be a limit of its partial sums. Mathe-
matically, that is,

2.1 Revision and Introduction 77

∞∑
k=1

f(k) = lim
N→∞

N∑
k=1

f(k)

We have already used Maple’s sum command to calculate infinite sums for us in Sec-
tion 1.1.5, but we do this again now, and demonstrate the limit property. Let us use
the series 1/k2 again, which we know from the previous section converges to π2/6.

> sum
(

1
k2 , k = 1..N

)
;

Limit(%, N = infinity) = limit(%, N = infinity)

−Ψ(1, N + 1) + 1
6π

2

lim
N→∞

(
−Ψ(1, N + 1) + 1

6π
2
)

= 1
6π

2

We have not seen the Ψ function before, although we may ask Maple about it
by using the command ?Psi. We should expect, due to the algebra of limits, that
limN→∞−Ψ(1, N + 1) = 0. It is always good to cross check answers we are unfamiliar
with, we therefore do so.[
> limit(−Ψ(1, N + 1))

0

> plot(−Ψ(1, N + 1), N = 1..100)

The convergence in the picture seems pretty clear, and combined with the results
Maple gave us for the infinite sum as well as the limit of the partial sums, and the limit
of the Ψ function—not to mention the numeric approximations we saw in the previous
section—we may be quite confident of the validity of the answer.

Now let us look at limits of continuous functions. For this purpose we consider the
function f(x) = 1/(x3 − 2x2). Our first impulse should be to plot the function to see
what it looks like, but doing so produces something that is not so useful.

78 2 Calculus

> plot
(

1
x3 − 2x2

)

We could attempt to use trial and error to find a good interval to plot over, but
instead we perform some calculus. First note that the denominator is equal to x2(x−2),
which tells us that the function is not defined at x = 0 or x = 2 and that we should
probably expect vertical asymptotes at those points. It should also be clear, using the
algebra of limits, that

lim
x→a

1
x3 − 2x2 = lim

x→a

1
x3

1− 2
x

=
limx→a

1
x3

1− limx→a
2
x

and so for a = ±∞ the limit will be 0.
The limits at a = 0 and a = 2 are only a little bit trickier to work out. We again

look at the factored denominator x2(x− 2) and observe that

lim
x→0

x2(x− 2) = 0 and lim
x→2

x2(x− 2) = 0

Furthermore we can see that x2 will always be ≥ 0, and that for all points near a = 0
it is the case that x − 2 < 0 so the denominator near a = 0 must always be negative.
We conclude therefore that the limit at a = 0 is −∞. Finally observe that for x > 2 we
have x− 2 > 0 and that for x < 2 we have x − 2 < 0 which tells us that f(x) → −∞
as x→ 2− and that f(x)→∞ as x→ 2+

We now have plenty of information for us to choose appropriate plotting ranges. In
order to put the undefined points (with the vertical asymptotes) evenly spread across
the x-axis we plot across the interval x ∈ (−2, 4). However, because we know that the
function has vertical asymptotes, we should limit the y-axis range somewhat. A quick
substitution of x = 1 into the function shows that the midpoint between the vertical
asymptotes attains the value −1, and so we take a reasonable guess that y ∈ (−5, 5)
will suffice.

2.1 Revision and Introduction 79

> plot
(

1
x3 − 2x2 , x = −2..4, y = −5..5, discont = true

)

The discont = true argument to the plot command simply tells plot that we are
plotting a discontinuous function allowing for a better plotting. Without that argument,
plot assumes it is plotting a continuous function and ends up putting vertical lines at
points of discontinuity, or at asymptotes.

We now verify the limits with Maple.
> f := 1

x3 − 2x2 ;
limit(f, x = −infinity), limit(f, x = 0), limit(f, x = 2), limit(f, x = infinity)

f := 1
x3 − 2x2

0,−∞, undefined, 0
The undefined limit at a = 2 should be completely unsurprising thanks to the plot

we performed above. The limit from below and the limit from above are not the same.
Recall that limx→a− = limx→a+ = L if and only if limx→a = L. Fortunately for us
Maple can handle single directional limits by allowing the limit command to take a
third input variable for this purpose, which may be one of left or right. As might be
expected, the left limit at a is when x→ a− and the right limit at a is when x→ a+.

> Limit(f, x = 2, left) = limit(f, x = 2, left);
Limit(f, x = 2, right) = limit(f, x = 2, right);

lim
x→2−

1
x3 − 2x2 = −∞

lim
x→2+

1
x3 − 2x2 =∞

We now return to sequence limits, and a cautionary example. Maple’s limit func-
tion calculates real- or complex-valued (function) limits. When we used it to calculate
sequence limits above, what we were really doing was evaluating the real-valued limit
at infinity of the functions in question, and using the theorem which states that if

80 2 Calculus

f(x) → L as x → ∞ exists for a real-valued function f , then the sequence {f(n)}n∈N
converges to the same limit as n→∞.

However, caution is advised. This relationship between limits of functions and limits
of sequences does not always work the other way around. Consider the function

f(x) = x sin(Pi · x) + 2 tanh(x− 5)

and the corresponding sequence {f(n)}n∈N. If we evaluate limits or plot the function
we might very well be tempted to conclude that the sequence does not converge.
> f := x→ x · sin(Pi ·x) + 2 · tanh(x− 5);

limit(f(x), x = infinity)
f := x→ x · sin(π · x) + 2 · tanh(x− 5)

undefined

> plot(f)

We clearly see a function with no limit at infinity. However, plotting only the sequence
points shows an entirely different picture.1

> plot([seq([n, f(n)], n = 1..100)], style = point)

1 The astute reader will notice that this plot is not square, as the others are. This is because, due to
the information displayed in the plot and aesthetic reasons, the author manually shrunk the height
(using the mouse and a drag action).

2.1 Revision and Introduction 81

Our sequence has what looks very much like a limit. Applying our calculus knowledge,
we see that n sin(πn) = 0 for n ∈ N, and so that part of the function will not affect the
sequence at all. Furthermore, because tanh(x)→ 1 as x→∞ it must be the case that
2 tanh(x − 5) → 2 as x → ∞. In short, the sequence {f(n)}n∈N ought to converge to
the value 2, and the plot of the sequence points exhibited precisely this behavior.

If we plot the real-valued function and the sequence on the same axes, we can see
the convergence a little better.

> p1 := plot(f, 0..20, color = grey) :
p2 := plot([seq([n, f(n)], n = 1..100)], style = point) :
plots[display]([p1 , p2])

All that remains is to see if we may convince Maple to provide us with the correct
answer for the sequence limit. Because we are evaluating a limit at infinity we are
already evaluating a left limit and cannot possibly try to change to a right limit or a
bidirectional limit. A good attempt would be to use the assuming keyword.[
> limit(f(n), n = infinity) assuming n :: posint

undefined
Unfortunately, as it turns out, due to n being a dummy variable inside the limit

function, the assumptions we requested for n do not quite seem to be being applied. See
?assuming for more details. The solution is to use the assume command, which works
in a similar way to assuming except that the assumptions become globally accepted
for the entire worksheet (as opposed to just the current command). So we make sure to
explicitly reset the n variable after performing our calculation.[
> assume(n :: posint); limit(f(n), n = infinity);n := ′n′ :

2
To reiterate the key points here, the lack of a limit of a real valued function does

not imply the lack of a limit of a sequence of evaluations of that function, and—more
important—one must always keep one’s wits about one when using a CAS (of course
this is true when reading a book or taking a bus too).

82 2 Calculus

2.1.4 Differentiation

Differentiation is, fundamentally, all about calculating rates of change. Recall that the
derivative of a function, f(x) say, at any point a is the slope of the tangent line to f
at the point a. Recall, also, that the tangent at a is defined to be the line through a
with slope equal to the limit of the slopes of lines drawn between a and points near a,
as depicted in Figure 2.1. So it is that we come to the limit definition of the derivative

Fig. 2.1 Depiction of the convergence of lines to the tangent.

at a point a as
f ′(a) = lim

x→a

f(x)− f(a)
x− a

= lim
h→0

f(a+ h)− f(a)
h

Let us explore this a little before we introduce Maple’s native differentiation com-
mands. We start with a parabola f(x) = x2 and so, of course, we know that f ′(x) = 2x
meaning that the tangent to the parabola at any point a has slope 2a. We write a small
procedure to output the limit and its value.
> d := proc(f :: procedure, a)

Limit
(
f(a+ h)− f(a)

h
, h = 0

)
= limit

(
f(a+ h)− f(a)

h
, h = 0

)
end :

2.1 Revision and Introduction 83

> d(x→ x2, 1); d(x→ x2, 2); d(x→ x2, x)

lim
h→0

(1 + h)2 − 1
h

= 2

lim
h→2

(2 + h)2 − 4
h

= 4

lim
h→0

(x+ h)2 − x2

h
= 2x

If we look a little closer at the final limit, we should see that

(x+ h)2 − x2 = x2 − 2hx− h2 − x2 = h(2x− h)

and so the limit then becomes

lim
h→0

h(2x− h)
h

= lim
h→0

(2x− h) = 2x

thus verifying both Maple’s limit calculation and our regular differentiation technique
(for the parabola, at least).

Turning our eye now to trigonometric functions, we choose the sin function and the
point π/2. This produces a limit that is a little trickier to work out on paper.
> d

(
sin, P i

2

)
;

lim
h→0

cos(h)− 1
h

= 0

As ever, our instinct should be to plot the function. However, to be on the safe side,
we ask for a lot of sample points, to try to get a good idea of the behavior near the
h = 0 point which we know is undefined.

> plot
(

cos(h)− 1
h

, h = −1..1,numpoints = 1000
)

84 2 Calculus

Of course, in order to perform differentiation in Maple we need not perform limit
calculations each and every time. There are two functions, named diff and D, that
obtain the derivative of a function. The difference between them is that diff takes an
expression as input and produces an expression as output, and D takes a function as
an input and produces a function as an output. It should also be mentioned that diff
also has an inert form Diff .
> diff (x2 + x+ 1, x); diff (exp(2x), x); Diff (sin(x), x) = diff (sin(x), x)

2x+ 1
2e2x

d

dx
sin(x) = cos(x)

Notice that we need to tell diff with respect to which variable we are taking the
derivative. For similar differentiation using the D function, we have the following.
> D(x→ x2 + x+ 1);D(exp);D(sin)(Pi)

x→ 2x+ 1
exp
−1

Note that inasmuch as D produces a function, we may immediately pass input to it
for evaluation, as we did in the last calculation above (which quite correctly calculated
cos(π) = −1).

If we wish to calculate a second derivative, we do the following.
> p := x→ x2 + x+ 1; diff (p(x), x, x);D(2)(p);

p := x→ x2 + x+ 1
2
2

Note that the parentheses around the 2 in D(2) are very important, and their
omission will cause the command to fail. In general, for the kth derivative we use
diff (f(x), x, x, . . . , x) where the sequence of xs is of length k (which we may abbreviate
x$k), or we use D(k)(f).

> p := x→ 4x5 − 3x2 + x− 2 :
for k from 1 whileD(k−1)(p)(x) 6= 0 do

Diff (p(x), x$k) = D(k)(p)(x)
od

d

dx
(4x5 − 3x2 + x− 2) = 20x4 − 6x+ 1

d2

dx2 (4x5 − 3x2 + x− 2) = 80x3 − 6

d3

dx3 (4x5 − 3x2 + x− 2) = 240x2

d4

dx4 (4x5 − 3x2 + x− 2) = 480x

d5

dx5 (4x5 − 3x2 + x− 2) = 480

d6

dx6 (4x5 − 3x2 + x− 2) = 0

2.1 Revision and Introduction 85

2.1.5 Integration

Integration grows out of the problem of calculating area underneath a curve, although
its applications are far more wide and varied than that. Recall that a definite integral
of a continuous function f between two points a and b may be approximated by a limit
of rectangles.∫ b

a

f(x) dx = lim
n→∞

(
∆x

n∑
k=1

f(a+ k∆x)
)

where ∆x := b− a
n

In fact, the approximation can be made from rectangles coming from an arbitrary parti-
tioning of the interval (a, b) with the heights of the rectangles being taken from arbitrary
points within each of the partition elements. See [12] or any elementary calculus text
for more details.
> integral := proc(f :: procedure, r :: range) local Delta, a, b;

a, b := lhs(r), rhs(r); Delta := b−a
n ;

Limit(Delta ·Sum(f(a + k · Delta), k = 1..n), n = infinity) =
limit(Delta ·sum(f(a+ k ·Delta), k = 1..n), n = infinity)
end :



> integral(x→ x2, 0..2); integral(sin, 0..Pi); integral(sin, 0..2 · Pi)

lim
n→∞

2
(∑n

k=1
4k2

n2

)
n

 = 8
3

lim
n→∞

(
π
(∑n

k=1 sin
(
kπ
n

))
n

)
= 2

lim
n→∞

(
2π
(∑n

k=1 sin
(2kπ
n

))
n

)
= 0

Once this limit is established, then we are presented with the fundamental theorem
of calculus which states that∫ b

a

f(x) dx = F (b)− F (a) where F ′ = f

and nicely links differentiation and definite integrals. We also, by convention, denote
the indefinite integral ∫

f(x) dx = F (x)⇔ F ′ = f

We may use this to check the limits found above. First we have x3/3 as an antideriva-
tive of x2, and evaluating

23

3 −
0
3 = 8

3
verifies the integral. Similarly we have − cos as an antiderivative of sin leading us to
− cos(π) − (− cos(0)) = 1 + 1 = 2 and (− cos(2π) − (− cos(0))) = −1 + 1 = 0. In fact,
the final integral can be verified by the symmetric nature of the cosine graph between
0 and 2π.

86 2 Calculus

Again, as with differentiation, we need not perform limit calculations within Maple
if we wish to calculate an integral, as there is a handy function named int (and its inert
form Int). The int function can handle both definite and indefinite integrals and takes
an expression as its first argument, and a range as its second argument in the form
var = a..b where var is the variable over which to integrate. In the case of an indefinite
integral, the second parameter is just var with no range.

> Int(x2, x = 1..3) = int(x2, x = 1..3);
Int(sin(x), x) = int(sin(x), x) ∫ 3

1
x2 dx = 26

3∫
sin(x) dx = − cos(x)

The int command will also accept function (as opposed to expression) for its first
parameter. This works in precisely the same way as the plot function does, also requiring
the omission of var = from the second parameter. However, it can only do this for
definite integrals, and the inert form does not behave very well this way.[
> Int(sin, 0..Pi) = int(sin, 0..Pi)

Int(sin, 0..π) = 2[
> value(lhs(%))

2
To close this section, we mention that the Student and IntegrationTools packages

each contain many useful tools to help manipulate integrals, for instance to extract
the integrand quickly without learning a lot about operands in Maple or resorting to
cutting and pasting. The reader is, as always, actively encouraged to utilize Maple’s
help files to learn more.

2.2 Univariate Calculus

2.2.1 Optimization

Suppose we wish to calculate the longest ladder that we may carry around a corner
with one corridor 2 meters in width, and the other 1 meter in width. This is an example
of an Optimization problem. We may use calculus (specifically, differentiation) to solve
problems along these lines.

Given any angle θ we know that

x = 1
cos(θ) and y = 2

sin(θ)

Therefore, the length L of a ladder that touches the corner, and the opposite walls of
each corridor at an angle of θ to the corner, is given by the formula

L := 1
cos(θ)

+ 2
sin(θ)

2.2 Univariate Calculus 87

We can see straight away that 0 < θ < π/2 and that 1/ cos(θ) →∞ as θ → (π/2)− as
well as 2/ sin(θ) → ∞ as θ → 0+ which tells us that our L function will tend toward
infinity at its endpoints. We also know that L > 0 for all values of θ, just as we would
expect for the length of a ladder. We plot the function, being sure to limit the y-axis.

> L := theta → 1
cos(theta) + 2

sin(theta) ;

plot
(
L(theta), theta = 0..Pi

2
, y = 0..100

)
L := θ → 1

cos(θ) + 2
sin(θ)

What is interesting here is that the function is concave up and has no maximum
values, although it does have a minimum value. What’s going on here? Well, our function
L, as we know, calculates the length of a ladder at an angle of θ that touches both the
far walls of the two corridors as well as the corner. Such a ladder is the longest possible
ladder that can rest at that particular angle. However, if a ladder is to be carried around
the corner, then it must go through all angles from θ = 0 to θ = π/2 and not become
stuck. What we are, in essence, looking for is the shortest of all such longest ladders,
and hence a minimum of the function L.

With a little trial and error, we may find the following plot and see that the minimum
value lies somewhere in the range 0.5 ≤ θ ≤ 1. We can, in fact, do a little better with
these bounds. Looking at the plot (below) we can clearly see the the minimum lies to
the right of the midpoint of the θ-axis. Even though it is not labelled, we know this
midpoint must be π/4 because our plot is for theta between 0 and π/2. Our minimum,
therefore, must lie in the range π/4 ≤ θ ≤ 1.

88 2 Calculus

> plot
(
L(theta), theta = 0..Pi

2
, y = 4..10

)

We could, if we wished “zoom in” by plotting the region π/4 ≤ θ ≤ 1 and 4 ≤ L ≤ 5
in the hopes of obtaining better bounds. We could even continue along these lines for
some time. There is little point in doing so, at least in this case. Instead we proceed
to find the minimum symbolically. The minimum is a turning point, and so will have a
derivative of 0. We therefore solve L′(θ) = 0.
> D(L)(theta); solve(% = 0)

sin(θ)
cos(θ)2 −

2 cos(θ)
sin(θ)2

arctan(21/3),− arctan
(

1
2 21/3 − 1

2I
√

3 21/3
)
,− arctan

(
1
2 21/3 + 1

2I
√

3 21/3
)

Well, that’s a bit of a mess. Maple seems to have given us three solutions, two of
which appear to be complex. Nonetheless, there is clearly a real solution there, and
evaluating it numerically shows it to be in the range we were expecting.
> evalf

(
arctan

(
21/3)) ;L = L

(
arctan

(
21/3)) ; evalf (%)

0.8999083481

L =
√

22/3 + 1 + 22/3
√

22/3 + 1
L = 4.161938184

And so there we have it. A ladder of approximately 4.16 meters in length is the
longest we may carry around the corner. We can see quite well from the plots above
that this is clearly a local minimum, however, a quick second derivative test won’t hurt.
> D(2)(L)

(
arctan

(
21/3)) ; is(% > 0); evalf (%%)

3 22/3
√

22/3 + 1 + 3
√

22/3 + 1
true

12.48581455

2.2 Univariate Calculus 89

2.2.2 Integral Evaluation

Integral evaluation can, at times, be quite tricky. A tool such as Maple can indeed be
an asset, however, even it may be unable to perform certain integrals symbolically. For
example, suppose we ask Maple to integrate xex3 between 0 and 1. > int

(
x · exp

(
x3) , x = 0..1

) ∫ 1

0
xex

3
dx

Notice here that we definitely used the active form of the integral command, and yet
Maple still returned only the integral back again. It seems that Maple cannot provide a
better symbolic answer than the integral itself. The use of hand-methods should prove
equally frustrating. We note that if the integrand were xex2 , then the task would be
trifling easy. At times like this, all one can really do is ask for a numerical answer
> evalf [50]

(
int
(
x · exp

(
x3) , x = 0..1

))
; identify(%);

0.78119703110865591510743281434829950577669739096218
0.78119703110865591510743281434829950577669739096218

The use of the identify is a request toMaple to take a good guess at a likely symbolic
representation of the given decimal number. In this case identify simply gives us back
the decimal number, meaning that it could not find any likely symbolic representation.
Similarly, neither Sloane’s On-line Encyclopedia of Integer Sequences2, nor the Inverse
Symbolic Calculator3 turn up anything. It looks like we’re stuck with just a numerical
approximation of the integral.

Suppose we wish to evaluate the integral∫ π

0

x sin(x)
1 + cos2(x) dx

Well, our first attempt should be to see what Maple thinks.

> simplify
(

int
(

x · sin(x)
1 + cos(x)2 , x = 0..Pi

))
1
4π

2 − dilog
(√

2− 1− I√
2− 1

)
+ dilog

(
1− I +

√
2

1 +
√

2

)
− dilog

(
1 + I +

√
2

1 +
√

2

)
+ dilog

(√
2− 1 + I√

2− 1

)
+ Iπ ln (1 +

√
2)

That’s not really very useful. Let’s try to evaluate that mess as a decimal number.[
> evalf [50](%)

2.4674011002723396547086227499690377838284248518102− 3. 10−49I
Hmmm, that’s a complex number even if the complex part is infinitesimal. Let’s try

again, and see if asking Maple to evaluate the integral numerically works any better.
We even throw in an identify for good measure.
2 http://oeis.org/ at the time of writing
3 http://isc.carma.newcastle.edu.au/ at the time of writing

90 2 Calculus
> int

(
x · sin(x)

1 + cos(x)2 , x = (0.)..Pi
)

; identify(%)

2.467401100
1
4π

2

Numerically evaluating the integral, and askingMaple to guess a symbolic value, gives
us that the integral is very probably equal to 1

4π
2. At this point we would start looking

for a more formal proof. Fortunately, in this case, it can be shown (see Exercise 5) that∫ π

0
xf(sin(x)) dx = π

2

∫ π

0
f(sin(x)) dx

and it should be pretty clear that

sin(x)
1 + cos2(x) = sin(x)

2− sin2(x)
= f(sin(x)) where f = x

2− x2

which leaves us with the rather simpler integral∫ π

0

x sin(x)
1 + cos2(x) dx = π

2

∫ π

0

sin(x)
1 + cos2(x) dx

As it happens, this new integral is easier for Maple to handle.
>

Pi
2 · int

(
sin(x)

1 + cos2(x) , x = 0..Pi
)

1
4π

2

Let us perform another integral. This time we evaluate∫ ∞
0

x2
√
ex − 1

dx

As a first attempt, we see what Maple makes of the integral.
> int

(
x2

sqrt(exp(x)− 1) , x = 0..infinity
)

∫ ∞
0

x2
√
ex − 1

dx

Unfortunately, Maple apparently cannot evaluate this integral. Our next course of
action is to attempt numeric evaluation.
> evalf (%); identify(%)

16.37297620
9
2 23/5√3 ζ(5)9

We now have a possible value for the integral. Remember, however, that the identify
function gives a probable symbolic expression but not a certain one. We return shortly
to the question of how reliable this symbolic guess is, but it should be clear that more
work is needed to be performed in order to verify the identity with any certainty.

We have a closer look at the integral. Looking at the denominator,
√
ex − 1, we

see that a substitution of x = log(u) will change the denominator to
√
u− 1 thus

2.2 Univariate Calculus 91

eliminating the exponent term. Performing this substitution, we see that

dx

du
= 1
u
⇒ dx = du

u

It is also the case that log(0) = 1 and log(x)→∞ as x→∞ so that∫ ∞
0

x2
√
ex − 1

dx =
∫ ∞

1

log(u)2

u
√
u− 1

du

Turning again to Maple with this new integral we find altogether better success than
we did previously.
> int

(
log(u)2

u · sqrt(u− 1) , x = 1..infinity
)

1
3 π

3 + 4 π ln(2)2

Interestingly, however, we have an altogether different symbolic answer to the one pro-
duced by identify, above. It is prudent then, to perform a sanity check[
> evalf (%)

16.37297620
which is precisely the same 10-digit value we obtained from our first attempt. This
is absolutely expected, of course, because substitutions do not alter the value of an
integral.

As an epilogue to this example, we return to the question of the symbolic answer that
identify gave us earlier. It turns out that if we obtain even one extra digit of precision
for this integral, thenMaple is completely unable to identify the decimal approximation.
> evalf [11]

(
int
(

x2

sqrt(exp(x)− 1) , x = 0..infinity
))

; identify(%)

16.372976196
16.372976196

Indeed, for any precision greater than 11 digits, it seems that Maple is unable to identify
the number.

Exploring this a little more closely, we find that the two differ after, approximately,
eight decimal places. > evalf

(
int
(

x2

sqrt(exp(x)− 1)
, x = 0..infinity

)
− 9

2
· 23/5 · sqrt(3) · Zeta(5)9

)
−4. 10−8 > evalf [50]

(
int
(

x2

sqrt(exp(x)− 1)
, x = 0..infinity

)
− 9

2
· 23/5 · sqrt(3) · Zeta(5)9

)
−5.7359902850345135770849920305260620836853 10−8

It would seem that identify was confused by not having enough decimal digits of the
number in question with which to work.

At least two things should be readily apparent from these examples. First and fore-
most is that Maple is not a substitution for poor calculus skills (or, at least, is a poor
one). Second, answers—especially from the identify function—should be checked from
a number of avenues before being accepted. Human/machine collaboration is the name
of the game here. Maple can be wonderful for performing tedious calculations quickly,

92 2 Calculus

and is remarkably adept at performing integral calculus, but a correct substitution, or
other mathematical insight on our part can mean the difference between successfully
obtaining a symbolic answer, or not.

2.2.3 Symbolic Integrals

In the previous section we took pains to calculate the value of certain definite integrals,
but did not always find a symbolic answer. Our attempts to find a symbolic answer,
however, began and ended with issuing an int command. In one case we performed a
substitution, but this amounted to a second (and successful, as it happened) attempt
at issuing an int command. The reader may wonder if it is possible to have Maple
perform such a substitution. The astute reader may realize that an integral itself is just
another mathematical expression that is subject to symbolic manipulation, and may
further wonder whether Maple can treat one as such. In fact, these two questions are
related, and the answer to both is yes and involves the IntegrationTools package.
> with(IntegrationTools)

[Change,Combine,Expand,Flip,GetIntegrand,GetRange,GetVariable,Parts,
Split]

There are not many functions here, but what is there should look familiar. The
reader should spend some time looking at the help files for this package (?Integration
Tools). It should be mentioned that the IntegrationTools functions seem to work better
with inert integrals, and can be a little unpredictable with active integrals. Let us look
first at the integral from the previous example.
> A := Int

(
x2

sqrt(exp(x)− 1)
, x = 0..infinity

)
A :=

∫ ∞
0

x2
√
ex − 1

dx

We know, from above, that Maple cannot evaluate this integral directly. We also
know, from above, exactly what the substitution we need to perform is; x = log(u). It
should be little surprise that the function we need to use to have Maple perform this
substitution is the Change function (for a change of variable). > Change(A, x = log(u)) ∫ ∞

1

ln(u)2
√
u− 1u

du

We could just as easily have phrased the change of variable as u = ex > Change(A, u = exp(x)) ∫ ∞
1

ln(u)2
√
u− 1u

du

Either way we have the integral that we calculated by hand in the previous section,
and we know that Maple can compute this integral > value(%)

1
3
π3 + 4 π ln(2)2

2.2 Univariate Calculus 93

We look now at a different example. We calculate the integral of excos(x). As it
happens, Maple can calculate this directly. > B := Int(exp(x) · cos(x), x)

B :=
∫

ex cos(x) dx > value(B)
1
2 ex cos(x) + 1

2 ex sin(x)

We explore this integral a little. If we were to try this by hand, our first instinct
should be to try to use integration by parts. Setting u = ex and dv = cos(x) we have
that du = ex and v = sin(x). We use the Parts function from the IntegrationTools
package to perform this integration by parts. Much like the Change function, we first
specify the integral on which we wish to work. The second parameter is the value of u
for the integration by parts. An optional third parameter may also be used to specify
the v parameter directly, but we do not use this here. The interested reader should
consult the help files. > B = Parts(B, exp(x))∫

ex cos(x)dx = ex sin(x)−
∫

ex sin(x) dx

In order to make any use of this, we need to perform the same integration by parts
on this new integral. One useful feature of the IntegrationTools functions is that they
only operate on integrals, and tend to ignore anything else. This may sometimes be
inconvenient in the case of a change of variables, but in this case we exploit the feature. > C := Parts(B, exp(x))

C := ex sin(x)−
∫

ex sin(x) dx > C := Parts(C, exp(x))

C := ex sin(x) + ex cos(x) +
∫
−ex cos(x) dx

We now have the integral of ex cos(x) again, which is what we started with, although
there’s a negative in this newest one. We can pull the negative outside the integrand
with the simplify command. > C := simplify(C)

C := ex sin(x) + ex cos(x)−
∫

ex cos(x) dx

We now have the following identity. > B = C ∫
ex cos(x)dx = ex sin(x) + ex cos(x)−

∫
ex cos(x) dx

We can see the result easily enough from this identity, however, we have Maple
produce it for us in order to demonstrate how we may perform arithmetic on equalities.
The first step is to add the integral to both sides; then we divide by 2. > % +B

2
∫

ex cos(x)dx = ex sin(x) + ex cos(x)

94 2 Calculus
>

%
2 ∫

ex cos(x)dx = 1
2 ex sin(x) + 1

2 ex cos(x)

2.2.4 Differential Equations

Differential equations are equations that relate a function to its derivatives. A solu-
tion to a differential equation is a function that has the required relationship with its
derivatives. The simplest differential equation is y′ = y which has the solution y = Cex

(where C is an arbitrary constant). This should be nothing new to anybody who has
studied first-year calculus.

A first-order linear differential equation can always be re-written to have the form

y′ + P (x) y = Q(x)

and can be solved by use of an integrating factor

I(x) := e
∫
P (x) dx

which has the property that∫ (
I(x) y′ + I(x)P (x) y

)
dx = I(x) y

It is fairly simple to verify the claimed property of the integrating factor by hand.
We check it in Maple. > IF := exp(int(P (x), x));

IF := e
∫
P (x) dx > int(IF · diff (y(x), x) + IF · P (x) · y(x), x)

e
∫
P (x) dx y(x) > diff (IF · y(x), x)

e
∫
P (x) dx

(
d

dx
y(x)

)
+ e
∫
P (x) dx P (x) y(x)

Of course, we only needed to check one of these identities, the other one we get for free
with the fundamental theorem of calculus.

With this identity available to us, we may solve the equation by multiplying the left-
hand and right-hand sides by the integrating factor, integrating both sides, and solving
for y. The solution, therefore, to the differential equation is

y′ + P (x) y = Q(x) =⇒
∫
I(x)(y′ + P (x) y) dx =

∫
I(x)Q(x) dx

=⇒ I(x) y =
∫
I(x)Q(x) dx

and so the solution is

2.2 Univariate Calculus 95

y =

∫
I(x)Q(x) dx

I(x)

Let us now consider the linear differential equation xy′ + y = 3x3, which may be
rewritten as y′ + x−1y = 3x2; then we may use Maple
> P := x→ 1

x
;Q := x→ 3 · x2; IF := exp(int(P (x), x))

P := x→ 1
x

Q := x→ 3x2

IF := x
>

int(IF ·Q(x), x) + C

IF
3
4 x

4 + C

x
Note, however, that for a general solution we needed to add manually the constant of
integration when calculating the answer, because Maple’s int function does not include
this constant.

We may cross-check this using Maple’s inbuilt differential equation solving function
dsolve. > dsolve(x · diff (y(x), x) + y(x) = 3 · x3)

y(x) =
3
4 x

4 + _C1
x

Moving on now to second-order differential equations. A second-order linear differ-
ential equation is a differential equation of the form

P (x) y′′ +Q(x) y′ +R(x) y = G(x)

and is furthermore said to be homogeneous if G(x) = 0. Finally, if the functions P (x),
Q(x), and R(x) are constant functions then the differential equation is said to have
constant coefficients; however, if the differential equation is still to be second-order
then P (x) 6= 0.

Homogeneous second-order linear differential equations with constant coefficients
may be solved in a manner almost identical to that used to solve homogeneous second-
order linear recurrence relations with constant coefficients, which we looked at in Sec-
tion 1.3.3.

Given the equation ay′′ + by′ + c = 0 we construct the characteristic equation at2 +
bt + c = 0 and solve for t. There are only three possibilities for the roots r1, r2 of the
equation. The general formula is as follows.

y(x) =


Aer1x +Ber2x r1 6= r2

Aer1x +Bxer2x r1 = r2

eαx (A sin(βx) +B cos(βx)) r1, r2 = α± iβ

where A and B are arbitrary constants.
Let’s look at some examples. We start with a differential equation that has the

same characteristic equation as the Fibonacci numbers, y′′ − y′ − y = 0. Because this
has characteristic equation t2 − t − 1, we know from Section 1.3.2 that the roots are

96 2 Calculus

t = 1
2 (1±

√
5). As such, the solution to the differential equation should be

y = Aex·(1+
√

5)/2 +Bex·(1−
√

5)/2

We check this in Maple. > y := A · exp
(
x · (1 + sqrt(5))

2

)
+B · exp

(
x · (1− sqrt(5))

2

)
Ae

1
2 x(1+

√
5) +Be

1
2 x(1−

√
5)

> diff (y, x); diff (y, x, x)

A

(
1
2 + 1

2
√

5
)

e
1
2 x(1+

√
5) +B

(
1
2 −

1
2
√

5
)

e
1
2 x(1−

√
5)

A

(
1
2 + 1

2
√

5
)2

e
1
2 x(1+

√
5) +B

(
1
2 −

1
2
√

5
)2

e
1
2 x(1−

√
5)

[
> simplify(diff (y, x, x)− diff (y, x)− y)

0
And asking Maple for the solution directly also gives the expected result (which is

always nice). > y :=′ y′; dsolve
(

D(2)(y)(x)−D(y)(x)− y(x) = 0
)

y(x) = _C1 e
1
2 x(1+

√
5) + _C2 e−

1
2 x(−1+

√
5)

In the case of nonhomogeneous second-order linear differential equations with con-
stant coefficients the solution is obtained by first calculating the solution to the equiva-
lent homogeneous differential equation (essentially just pretending that G(x) = 0) and
adding to that a particular solution.

To be more mathematically rigorous here, given the equation

ay′′ + by′ + cy = G(x)

the general solution is
y = yp + yc

where yp is some (any) solution to the equation, and yc is the solution to the comple-
mentary homogeneous equation

ay′′ + by′ + cy = 0

which is henceforth referred to only as the complementary equation.
Ordinarily in first-year courses the particular solution is obtained by a guess-and-

check approach. A more systematic method named variation of parameters is described
in [12], but tends to be trickier and slower to implement in practice, at least for the
sorts of problems studied in first-year calculus.

We eschew the entire business, and go straight to the “just ask Maple” method. We
extend our previous example to a nonhomogeneous problem where G(x) = sin x. > dsolve

(
D(2)(y)(x)−D(y)(x)− y(x) = sin(x)

)
y(x) = e

1
2 x(1+

√
5)_C2 + e−

1
2 x(−1+

√
5)_C1 + 1

5 cos(x)− 2
5 sin(x)

2.2 Univariate Calculus 97

We can clearly see our homogeneous solution there (even though the arbitrary con-
stants have moved from the front to the back of each term), and an extra bit at the end
which is, presumably, the particular solution. We have a closer look at that.
> y := x→ 1

5 cos(x)− 2
5 sin(x);

D(2)(y)(x)−D(y)(x)− y(x)

y := 1
5 cos(x)− 2

5 sin(x)

sin(x)
So it is clear that 1

5 cosx − 2
5 sin x is a solution to the original nonhomogeneous

problem. It should be clear, using the fact that

d

dx
(f + g) = d

dx
(f) + d

dx
(g)

that the entire function returned by Maple is also a solution to the equation as well.
One might well ask why, when we have a perfectly good and easy-to-write solution

such as 1
5 cosx − 2

5 sin x would we ever want to bother with adding in the extra mess
of the solution to the complementary equation as well. The answer is that yc + yp is
the general solution to the equation. That is to say that any and every solution to the
equation can be written in that form. Indeed, the particular solution, above, was the
same as the general solution with _C1 = _C2 = 0. The proof of this fact is quite
elementary, and can be found in [12] if desired.

2.2.5 Parametric Equations, Alternative co-ordinates, and
Other Esoteric Plotting Fun

Recall that when a graph is plotted, what we are seeing is a graphical representation
of pairs of points that satisfy some relationship. The parabola, for example, is the
collection of all points (x, y) in R× R where y = x2.

We may also plot functions from parametric equations, where a parameter, t say,
varies, and the points in the plot are of the form (x, y) = (x(t), y(t)). There is not
necessarily a relationship between the x and y co-ordinates in a parametric equation,
apart from the fact that they share the same t-value. Of course, any function f(x) may
be turned into a parametric equation (x, y) = (t, f(t)).

Maple’s plot function will allow us to plot parametric equations, if we so wish. To do
so, we must pass a three-element list as the first argument to the plot function, instead
of the usual expression. This list must be in the form of [x(t), y(t), t = a..b] where a..b
is a range, t is any valid variable name, and x(t) and y(t) are arbitrary expressions
involving that variable. Note that Maple will automatically scale the horizontal and
vertical axes to fit the plot, based on the values of x(t) and y(t) as t varies through its
range.

However, one should be careful; the axis ranges are independent of the parameter
range, and all three may be modified separately. In the case of our parabola, there is a
very direct relationship between the parameter t, and the horizontal and vertical ranges.
This need not be so.

For example, to plot our parabola using parametric equations, we would input the
following.

98 2 Calculus

> plot([t, t2, t = −10..10])

To see the independence of the axis and parameter variables, recall the parametric
equations of a circle centered at an arbitrary point, (x0, y0) say, are

(x, y) = (x0, y0) + (r cos θ, r sin θ) = (x0 + r cos θ, y0 + r sin θ)

This is easiest to see by treating these parametric equations as vector equations, and
recalling that the parametric equations of a circle centered at the origin are (x, y) =
(r cos θ, r sin θ).

We plot a circle, centered at (1, 2), with radius 3. We should expect the horizontal
range to be −2..4 and the vertical range to be −1..5.

> plot([1 + 3 · cos(t), 2 + 3 · sin(t), t = 0..2 · Pi],−3..5,−2..6)

2.2 Univariate Calculus 99

In order to demonstrate the independent nature of the axis and parameter ranges,
we specifically instructed Maple to plot a larger axis range. We can clearly see the circle
neatly within the ranges as defined by the parameter, and yet Maple has happily plotted
with the extra range we requested.

In a lot of (if not most) cases separately modifying the horizontal, vertical, and
parameter ranges will not be necessary. Nonetheless, it is worth being aware of the fact
that they may be independently specified.

The circle example demonstrates a very useful feature of parametric plots, which is
that they may be used to plot curves that are not the result of functions. The circle is
clearly not a function, as it violates the vertical line test. Recall that a function always
associates a single value in the range with each single value in the domain. This is
not the case with a circle; we cannot assign a function y = f(x) that will produce all
the points in a circle. We can, of course, simply plot y = ±

√
1− x2 and display them

together, but doing this is often neither easy nor even possible.
To further illustrate this advantage of parametric equations, we plot a spiral using

parametric equations. We use the parametric equations (x, y) = (t cos t, t sin t). This
varies from the circle in that the radius is no longer fixed. If we think of the points
(x, y) as vectors, then each point on the line is a vector of length t and angle t. As t
increases, then the angle will cycle, but the length will continue increasing. We plot
four full revolutions of this spiral.

> plot([t · cos(t), t · sin(t), t = 0..8 Pi])

Returning to our circle plots, the reader may well recall that although there is no
explicit function for a circle, there most certainly is an equation that gives an implicit
function for the circle. That equation is, of course, (x − x0)2 + (y − y0)2 = r2 where
(x0, y0) is the center of the circle and r is the radius. One may well wonder if Maple can
plot such implicit equations. The answer is that yes it can, although we need to use a
special function in the plots package, which goes by the name of implicitplot.

100 2 Calculus

> plots[implicitplot]
(
(x− 1)2 + (y − 2)2 = 9, x = −3..5, y = −2..6

)

Notice that even though we asked for the plot to be in the extra range, just as we
did with the parametric plot above, the implicitplot function plotted the circle to its
extremities, and no more. It would seem that when evaluating implicit equations, Maple
evaluates all the pairs (x, y) within the range that satisfy the equation, and then works
out the required scale for the axes.

So far we have considered only Cartesian co-ordinates (of the form (x, y) in relation
to two axes) when plotting. Another common co-ordinate system is the so-called polar
co-ordinates, which are co-ordinates of the form (r, θ) where θ is the angle, and r is
the distance traveled in that direction. The polar co-ordinates (

√
2, 1

4π), for example,
correspond to the Cartesian co-ordinates (1, 1). We may freely convert between polar
and Cartesian co-ordinates with the identities r =

√
x2 + y2, x = r cos θ, and y =

r sin θ. These identities may easily be confirmed by drawing up a trigonometric triangle.
Maple will happily plot polar equations (i.e., equations given in terms of polar co-

ordinates) for us either on a regular Cartesian pair of axes, or on a special background
more suited to the polar co-ordinates. The latter requires a special function in the plots
package. Polar plots expect an expression for r to be a function of θ (just as regular
plots expect an expression for y as a function of x). This should be unsurprising, given
that polar equations are usually written as r = r(θ).

Let us start with a circle, as it is quite simple. A circle contains points that are
equidistant from its center, hence r is the constant radius, and θ may take any value.
So our polar equation is simply r = C where C is a constant. Such a circle, however, will
always be centered at the origin. Plotting, in polar co-ordinates, a circle not centered
at the origin is trickier. See Exercise 10b.

Let us look at the spiral again. The spiral construction with parametric equations
(x, y) = (t cos t, t sin t) was constructed in a way that is very amenable to a polar
equation. Recall that our t parameter varied as both an angle and a distance. This
sounds very much like a polar equation. It should come as no surprise then that the
polar equation of the spiral is simply r = θ. To plot this, we simply pass the parameter
coords=polar to the plot function.

2.2 Univariate Calculus 101

> plot(theta, theta = 0..8 · Pi, coords = polar)

Alternatively we may use the polarplot function from the plots package. This has
the advantage that it much better labels the r and θ parameters of the polar coordinate
system, allowing us to much more easily read these values directly from the plot in
much the same way we might read (x, y) value pairs from a plot on the plane.

> plots[polarplot](theta, theta = 0..8 · Pi)

For a more interesting and complicated example, we now look at a more complicated
polar plot; r = sin(8θ/5). This is clearly a cyclic equation, however the precise nature
of the cycling needs some thought. It is clear that r will cycle every time θ changes
through 5π/4 radians. In order to cycle fully through all possible pairs of (r, θ) we need

102 2 Calculus

to find integers a, b such that a ·2π = b ·5π/4 and the smallest such value for a is a = 5,
corresponding to b = 8. We therefore plot this function for 0 ≤ θ ≤ 10π.

> plot
(

sin
(

8 · theta
5

)
, theta = 0..10 · Pi, coords = polar

)

We may, using implicitplot, plot ranges of inequalities, with filled-in regions. We
look at a couple of simple examples to close this section. The general approach is
basically as one would expect; we replace the equation to be plotted with the inequality.
For instance, if we wish to see the inequality 4x− 2y < 3, we would try the following.

> plots[implicitplot](4x− 2y < 3, x = −1..1, y = −1..1)

The only catch is that in the above plot we have no idea on which side of the line the
region we want lies, even though it is just a simple matter of substituting x = y = 0

2.2 Univariate Calculus 103

into the inequality. In order to have Maple shade the relevant area, we need to use the
filledregions option.

> plots[implicitplot](4x− 2y < 3, x = −1..1, y = −1..1,filledregions = true)

The option to change colors is a little different here as well. If we use the color option
we will only change the color of the implicit curve itself, and not the regions. To color
the regions we need to use coloring4 option, and we must use a list with this option,
even for only one color. To demonstrate this, and to close off this section, we plot our
familiar radius-3 circle, centered at (1, 2) with a black border and blue interior.
4 Note that, unlike other Maple options and keywords, the British spelling of “colouring” will not
be recognised as an alternative spelling of coloring.

104 2 Calculus

> plots[implicitplot]
(
(x− 1)2 + (y − 2)2 ≤ 9, x = −3..5, y = −2..6, color =

black, coloring = [blue],filledregions = true
)

2.3 Multivariate Calculus

2.3.1 Three-Dimensional Plotting

The plot function, which is for two-dimensional plots, has a counterpart named plot3d
which is rather unsurprisingly for three-dimensional plots. Ordinarily, plot3d will plot
a function z = f(x, y). To plot, for example, the paraboloid z = x2 +y2 we simply input
the following.

> plot3d(x2 + y2, x = −1..1, y = −1..1)

Be aware that unlike the plot function, plot3d has no default values for the input
range and so we must explicitly state ranges for both independent variables. Also be
aware that 3-D plots default to having the z-axis pointing “up” (which is to say up with
respect to the screen), unlike 2-D plots which have the y-axis pointing up. An advantage
to these plots is that they may be rotated by dragging them with the mouse, which
allows a better appreciation of the overall three-dimensional shape, even though we
ultimately only have a two-dimensional projection on our computer screen. Of course,

2.3 Multivariate Calculus 105

such rotation will almost always change which, if any, axis is pointing up with respect
to the screen.

Just as with the plot command and two-dimensional plots, we may parameterize
surfaces and may have plot3d plot them for us. We do this by asking plot3d to
plot a list of exactly three elements, instead of an expression. The three-element list
is interpreted to be the parametric values for points [x, y, z]. Note that this is slightly
different from the two-dimensional case, in that the range for the parameter(s) is not
contained within the list.

> plot3d([v · cos(u), v · sin(u), v], u = 0..2 · Pi, v = −1..1)

Three-dimensional plots are usually—although not always—parameterized with two
parameters. The trivial parameterization, for a function f(x, y) is simply [u, v, f(u, v)],
and should look quite similar to the trivial parameterization of a function of one variable.

We look quickly at two alternative co-ordinate systems for three-dimensional sur-
faces. These are cylindrical and spherical co-ordinates. Both may be invoked with an
appropriate coords option in the plot3d function.

Cylindrical co-ordinates are an extension of polar co-ordinates. Any point in 3-space
may be located by specifying an angle on the xy-plane, and a distance from the origin
at that angle (which is identical to polar co-ordinates), and finally by a height above (or
below) the xy-plane. As such a point in cylindrical co-ordinates is of the form [r, θ, z],
and as the name might suggest, it is quite easy to plot a cylinder using such co-ordinates.

A word of warning.Maple, by default, expects cylindrical co-ordinates to be expressed
in the form of r as a function of θ and z. That is, r = f(θ, z). This is probably
counterintuitive, as we were most probably expecting the form z = f(r, θ) just as
for Cartesian co-ordinates, where we plot functions of the form z = f(x, y). The easiest
way around this problem is to plot cylindrical functions as parameterized plots of the
form [r, θ, z], and is precisely what we do.

> plot3d([1, theta, z], theta = 0..2 · Pi, z = −1..1, coords = cylindrical)

106 2 Calculus

> plot3d([r, theta, r], r = −1..1, theta = 0..2 · Pi, coords = cylindrical)

We show more cylindrical plots in Section 2.3.2.
Spherical co-ordinates are similar to cylindrical, differing only in the final co-ordinate.

As with cylindrical co-ordinates, we have an r, θ pair that locates a point on the xy-
plane. We then rotate that point vertically by an angle φ ∈ [0..π] where the angle is
measured against the z-axis, with 0 pointing upwards, and π pointing downward. Thus
a point in 3-space in spherical co-ordinates has the form [r, θ, φ]. Our r co-ordinate in
this system will always be the distance of a point from the origin (note that this is
not the case with cylindrical co-ordinates). As the name might suggest, this co-ordinate
system is very well suited to locating points on a sphere. Indeed, anybody familiar with
longitude and latitude on maps of earth will have seen this concept before.

As with cylindrical co-ordinates, it is usually easier to plot spherical co-ordinate plots
as parametric plots, as Maple’s default is to expect r to be as a function of θ and φ.

> plot3d([1, theta,phi], theta = 0..2 · Pi,phi = −0..Pi coords = spherical)

We may also plot this sphere using the implicitplot3d function (from the plots
package), which is a three-dimensional analogue of the implicitplot function from
Section 2.2.5.

> plots[implicitplot3d](x2 + y2 + z2 = 1, x = −1..1, y = −1..1, z = −1..1)

The interested reader is encouraged to check out the Maple help files on co-ordinates.
See ?coords, ?plot[coords], and ?plot3d[coords].

2.3 Multivariate Calculus 107

2.3.2 Surfaces and Volumes of Rotation

In general, calculating volumes is usually a job for iterated integrals (see Section 2.3.4).
However, volumes of solids of revolution may be calculated with a single integral. A
solid of revolution is produced by rotating a curve in the plane about a line. Usually,
but not always, one of the axes is chosen. As an example, let us consider the sine curve
between 0 and π.

> plot(sin(x), x = 0..Pi, scaling = constrained)

If we rotate the above sine curve about the x-axis we can imagine a sort of symmet-
rical teardrop shape. In fact, we can do better than imagine. We can have Maple draw
us a picture. In order to plot our rotated sine curve, however, it is simplest to use a
parametric equation. To this end, notice that at any point x ∈ [0, π], our rotated surface
will have a cross-section, parallel to the yz-plane which is a circle or radius sin(x). We
may, therefore, parameterize the surface of the rotated surface by

[x, y, z] = [t, sin(t) sin(θ), sin(t) cos(θ)]

where t ∈ [0, π] and θ ∈ [0, 2π).
This we may now plot.

> plot3d([t, sin(t) · sin(theta), sin(t) · cos(theta)], t = 0..Pi, theta = 0..2 · Pi,
scaling = constrained)

The parameterization of this surface gives us a hint as to how to use integration
to calculate the volume. We think of the volume as an infinite number of infinitely
small disks (otherwise known as “circles”), and add up the area of each circle over an
interval, the interval being [0..π] in this case. The accumulated area is the volume.
This is, incidentally, identical to a Riemann sum where we (more or less) add up the
height of an infinite number of infinitely small boxes (otherwise known as “lines”) and
accumulate these heights over an interval to obtain an area. The disks we are calculating
are perpendicular to the axis of rotation.

We know that the area of any particular disk is πr2, and because our radius is
sin(x), each disk in our particular example will have area A(x) = π sin(x)2. So the area,

108 2 Calculus

remembering we have only rotated the portion of the sine curve between 0 and π, is∫ π

0
A(x) dx =

∫ π

0
π sin(x)2 dx = π

∫ π

0
sin(x)2 dx

This we may now calculate in Maple or manually, as we see fit.
> Pi · int(sin(x)2, x = 0..P i)

1
2
π2

In general, the volume of a solid produced by rotating a function f(x) inside an
interval [a, b] around the x-axis is given by the integral

π

∫ b

a

f(x)2 dx

If we wish to rotate a function f(x) around the y-axis, then we need to rewrite
the function as a function of y instead. Note that this is more complicated than just
replacing every x in the function with a y. For example, let us rotate the parabola
y = x2 around the y-axis for x ∈ [0, 2].

We start by plotting what we want to see. First, however, remember that with a three-
dimensional plot it is the z-axis which is pointing upwards, but for a two-dimensional
plot it is the y-axis that is pointing upwards. This is easily fixed by just renaming the
y-axis to be the z-axis instead, giving us our “new” function of z = x2, being rotated
around the z-axis. For the remainder of this section, and any time we discuss volumes
of revolution, we consider the 2-D plots to be in the xz-plane.

Once this is done, we notice that when rotating a curve around the z-axis, we have
a natural cylindrical co-ordinate representation, r representing the distance from the
origin (between 0 and 2), θ as the angle, and z = r2 as the height above that point.

> plot3d([r, theta, r2], r = 0..2, theta = 0..2 · Pi, coords = cylindrical)

Straight away we have an issue (although it is not immediately obvious). It is not
clear from this plot whether we mean the volume between the paraboloid and the z-
axis, or the volume “below” the paraboloid, down to the xy-plane. In fact we meant the
latter, which is troublesome to visualize on that plot.

We remedy matters here. It is useful to be explicit about precisely which area we are
rotating around the z-axis. In this case, we wish to take the volume under the curve
z = x2, but above the x-axis, and between the values x = 0 and x = 2. By plotting
these bounds in two dimensions we should make it clearer exactly which area will be
rotated.

2.3 Multivariate Calculus 109

> plot([[x, x2, x = 0..2], [2, z, z = 0..4], [x, 0, x = 0..2]], x = 0..2, z, color = red)

We can’t see the line that forms the lower bound, because the x-axis is obscuring
it, nonetheless it is quite clear now exactly which area is being rotated. We plot the
volume of revolution now, and again—just as with the 2-D plot above—we include the
bounds as well. The line where x = 2 becomes a cylinder when rotated, and the line
at the bottom of the plot becomes a disk. We are also cunning and leave a part of the
solid open, so that we can see inside for a better impression of the solid in question.

> plot3d
([[

x, theta, x2] , [2, theta, x2] , [x, theta, 0]
]
, x = 0..2, theta =

0..5 · Pi
3

, coords = cylindrical
)

Now in order to use our integral, above, we need to be rotating around the same axis
as the independent variable of our function. Here, however, we are rotating a function
of x around the z-axis (still using the z-axis as the upward pointing one). We need to
rewrite our function as x = f(z). Rearranging z = x2 in this manner produces x =

√
z.

We also notice that x = 0 =⇒ z = 0 and x = 2 =⇒ z = 4, so we may equivalently
consider our rotation as rotating the function x =

√
z for z ∈ [0, 4] around the z-axis.

However, it is the area of the function above x =
√
z that we are rotating around the

z-axis. The upper bound for this function is the line x = 2.

110 2 Calculus

> plot([sqrt(z), 2], z = 0..4, x, color = red)

So, what we actually want is the area between the two curves x = 2 and x =
√
z for

0 ≤ z ≤ 4 to be rotated. That’s easy. Observe that x = 2 is always larger than z =
√
z

on the interval in question. For the area itself, we could happily calculate the integral of
the larger minus the integral of the smaller. We may take the same approach with the
volume integral. If we calculate the volume of the cylinder we obtain by rotating x = 2
around the z-axis, and subtract from that the volume of the paraboloid (obtained by
rotating the volume under the function x =

√
z) then we have calculated the precise

area we wanted. This is demonstrated in Figure 2.2.

Fig. 2.2 Cylinder with paraboloid removed.

In short, we wish to calculate

π

∫ 4

0
22 dz − π

∫ 4

0

√
z

2
dz = π

∫ 4

0
4− z dz

2.3 Multivariate Calculus 111[
> Pi · int(4− z, z = 0..4)

8π
Let us return now to our sine function, plotted between x = 0 and x = π. We now

rotate this around the z-axis (treating z as the axis pointing “up” again, as we did with
the last example). We start as we have each other time, with plotting the surface to see
with what we’re dealing. We add a scaling parameter to make the plot clearer in this
case.

> plot3d([x · sin(theta), x · cos(theta), sin(x)], x = 0..Pi, theta = 0..2 · Pi,
scaling = constrained)

Now we have a problem here, inasmuch as there’s no particularly easy or, at least,
obvious way to rewrite z = sin(x) as a function of z. The z-interval is clearly [0, 1],
however, for any given value of z there are two values of x. This is easily seen with a
plot.

> plot([sin(x), 0.9], x = 0..Pi, z, color = [red, blue], scaling = constrained)

The line z = 0.9 clearly cuts the sine function in two places.
Now, we may try and express the solid of rotation as an area between two functions,

f(z), g(z) and calculate the integral accordingly. However finding these two functions is
tedious and time consuming. Instead, we use a slightly different integral to calculate the
area. Our previous method used disks that were perpendicular to the axis of rotation.
This time we use a method known as “shells”. To do this, we approximate the area as
infinitely many cylinders, centered at the origin, and with radius x and height sin(x).
The surface area of each cylinder is the circumference multiplied by the height. As such,
the area function is A(x) = 2πx sin(x), and our volume may now be calculated as∫ π

0
A(x) dx =

∫ π

0
2πx sin(x) dx = 2π

∫ π

0
x sin(x) dx

[
> 2 · Pi · int(x · sin(x), x = 0..Pi)

2 π2

112 2 Calculus

And, in general, if we rotate a function y = f(x) between x = a and x = b around
the y-axis then the volume of the solid of revolution is given by the integral

2π
∫ b

a

xf(x) dx

And we always have the possibility of changing between these two integrals, by re-
writing the function and interchanging the dependent and independent variables if the
integration in one method proves too troublesome.

We may check our paraboloid volume calculation using this method.[
> 2 · Pi · int(x · x2, x = 0..2)

8π

2.3.3 Partial and Directional Derivatives

Recall that for a function of two or more variables, the derivatives are taken with
respect to one of the variables at a time. These are known as partial derivatives. There
are several ways to denote partial derivatives, of which we use the following two. Let
f : R2 → R. Then the first partial derivative of f with respect to x is denoted by

fx or ∂f

∂x

and the first partial derivative of f with respect to y is denoted by

fy or ∂f

∂y

Both of these are functions (R2 → R) in their own right.
Note that, if we do not have a name for our function, we may write the function in

brackets after the ∂ notation. For example,

∂

∂x

(
x2 + y2

x2 − y2

)
would be the first partial derivative with respect to x of the rational polynomial (x2 +
y2)/(x2 − y2).

If we take the derivative of one of these derivatives, then we again may take a partial
derivative. By doing so we obtain a second partial derivative. The variable with respect
to which the second derivative is taken may be different from that with respect to which
the first derivative was taken (because a first partial derivative is still a valid function
in its own right). The four possibilities for a second partial derivative are as follows.

fx,x or ∂2f

∂x2 fx,y or ∂2f

∂y∂x

fy,x or ∂2f

∂x∂y
fy,y or ∂2f

∂y2

2.3 Multivariate Calculus 113

In general if we have a function that is an nth partial derivative, which we then take
yet another partial derivative of, then we have the following scenario.

(fx1,...,xn)xn+1 = fx1,...,xn+1 or ∂

∂xn+1

(
∂n

∂xn · · ·∂x1

)
= ∂n+1

∂xn+1 · · ·∂x1

Note that the above also demonstrates why the ∂ notation has the variables written
backwards.

Like standard derivatives, partial derivatives are defined in terms of the limit of the
slopes of a series of lines between the point at which we wish to calculate the derivative,
and another point near to it, as follows.

fx(x, y) := lim
h→0

f(x+ h, y)− f(x, y)
h

or fy(x, y) := lim
h→0

f(x, y + h)− f(x, y)
h

Maple may perform partial derivatives. Indeed, the diff function we have already
used for regular differentiation will happily perform partial differentiation. For a first
partial derivative, we tell diff with respect to which variable we want to take the
derivative.

> p := sum(sum(xi · yj , j = 0..2), i = 0..2);
diff (p, x); diff (p, y)

p := 1 + y + y2 + x+ xy + xy2 + x2 + x2y + x2y2

1 + y + y2 + 2x+ 2xy + 2xy2

1 + 2 y + x+ 2xy + x2 + 2x2y

And for second and later partial derivatives, we simply list the derivatives in the
order they are to be taken. Note that this is exactly what we did for single variable
derivatives, only there was only one variable in that case. So ∂2f/∂x2 was calculated
with diff (f(x), x, x) which told Maple to take the first derivative with respect to x and
then the second derivative with respect to x. Multivariable derivatives are different only
in that we may take the derivative with respect to a different variable at each step.

> diff (p, x, x); diff (p, x, y);
diff (p, y, x); diff (p, y, y)

2 + 2 y + 2 y2

1 + 2 y + 2x+ 4xy
1 + 2 y + 2x+ 4xy

2 + 2x+ 2x2

Of course, the inert form of the function still works, as do—as suggested above—
higher-order derivatives. > Diff (p, x, x, y) = diff (p, x, x, y)

∂3

∂y∂x2
(
1 + y + y2 + x+ xy + xy2 + x2 + x2y + x2y2) = 2 + 4 y

The D function may also be used. For a function of multiple variables, to compute
the first partial derivative with respect to the first variable, we use the subscript 1 with
the D. To compute the first partial derivative with respect to the second variable, we
use a subscript of 2, and so on. For example,

114 2 Calculus
> f := (x, y)→ x2 − y2 + x · y; D1(f),D2(f)

f := (x, y)→ x2 − y2 + xy

(x, y)→ 2x+ y

(x, y)→ −2 y + x

To compute second partial derivatives, we simply subscript D with a sequence of
numbers describing the variable numbers, in the order that the derivatives are taken.
The following examples may be quickly checked by hand.

> Diff (f(x, y), x$2) = D1,1(f)(x, y)
Diff (f(x, y), y, x) = D2,1(f)(x, y);

∂2

∂x2

(
x2 − y2 + xy

)
= 2

∂2

∂x∂y

(
x2 − y2 + xy

)
= 1

Note that although this is different from the method we used to take derivatives of single
variable functions with the D command, this method also works for single variable
functions.

Recall that for a function with continuous second partial derivatives, then the second
partial derivatives, fy,x and fx,y will be equal. This is Clairaut’s theorem (see [12]). More
precisely:

Theorem 1 (Clairaut’s). Let f be a function defined on a disk D ⊂ R2, such that
all the second partial derivatives are continuous on D. Then fy,x(a, b) = fx,y(a, b) for
every (a, b) ∈ D.

It follows, of course, that if the function f is defined for all of R2 and its partial
derivatives are continuous on all of R2 then it will certainly be the case that fy,x = fx,y.

We have seen an example of this above, with the second partial derivatives of our
polynomial p. A quick check of our first partial derivatives of our function f shows
that the second partial derivatives fx,y and fy,x are clearly equal. Let’s look at another
example.
> f := sin

(
x2 + y2) ; diff (f, x, y) = diff (f, y, x);

f := sin
(
x2 + y2)

−4 sin
(
x2 + y2) yx = −4 sin

(
x2 + y2) yx

And this even extends to higher partial derivatives.
> diff (f, x, x, y); diff (f, x, y, x); diff (f, y, x, x)

−8 cos
(
x2 + y2) yx2 − 4 sin

(
x2 + y2) y

−8 cos
(
x2 + y2) yx2 − 4 sin

(
x2 + y2) y

−8 cos
(
x2 + y2) yx2 − 4 sin

(
x2 + y2) y

For an example where Clairaut’s theorem does not hold, see Exercise 14.
The partial derivatives, just as regular derivatives, allow calculation of a line that

is tangent to a surface, f(x, y) say. However, there are potentially many such tangent
lines in a three-dimensional space. As such, the partial derivatives fx and fy give the
slope of a tangent line parallel to the x- or y-axes, respectively.

Lines in three-dimensional space are tricky, but may be plotted with a parametric
equation. In the case of our directional derivatives, we know a point on the line, the
direction each line is traveling, and the rate at which the height of each line changes
(the slope). In short, we have all the information we need to plot the tangent lines.

2.3 Multivariate Calculus 115

For a surface f(x, y) we may use the following parameterization of the tangent lines.

[x0 + u, y0, f(x0, y0) + u · fx(x0, y0)] in the x direction
[x0, y0 + v, f(x0, y0) + v · fy(x0, y0)] in the y direction

and, of course, the obvious parameterization of the surface itself as [u, v, f(u, v)].
> tlx := proc(f :: procedure)

(x0, y0)→ [x0 + u, y0, f(x0, y0) + u ·D1(f)(x0, y0)]
end :
tly := proc(f :: procedure)

(x0, y0)→ [x0, y0 + v, f(x0, y0) + v ·D2(f)(x0, y0)]
end :

> f := (x, y)→ x2 + y2 :
plot3d([[u, v, f(u, v)], tlx(f)(0, 1), tly(f)(0, 1)], u = −1..1, v = −1..1,

axes = framed)

The directional derivatives allow us to calculate the tangent plane to a surface in 3-D.
Given a function, f(x, y) say, with continuous derivatives the equation of the tangent
plane to the surface of f at a point (x0, y0, z0) is

z − z0 = ∂f

∂x
(x0, y0) · (x− x0) + ∂f

∂y
(x0, y0) · (y − y0)

which may be rewritten as

z = ∂f

∂x
(x0, y0) · (x− x0) + ∂f

∂y
(x0, y0) · (y − y0) + z0

= ∂f

∂x
(x0, y0) · (x− x0) + ∂f

∂y
(x0, y0) · (y − y0) + f(x0, y0)

because if (x0, y0, z0) is a point on the surface of f(x, y), then it must be the case that
z0 = f(x0, y0).

We may (and, indeed, do) explore this in Maple. First we create a procedure that
returns an arrow-notation function for the tangent plane equation. > tp := proc(f :: procedure)

(x0 , y0)→ f(x0 , y0) +D1(f)(x0 , y0) · (x− x0) +D2(f)(x0 , y0) · (y − y0)
end :

116 2 Calculus

Now we have a function tp which, when given a procedure as input, will return a new
function that calculates the tangent plane at a given point. Because the tp creates a
function, we expect to be able to use the expression tp(f)(a, b) to calculate the tangent
plane to the function f at the point (a, b).
> f := (x, y)→ x2 + y2; tp(f)(a, b)

f := (x, y)→ x2 + y2

a2 + b2 + 2 a (x− a) + 2 b (y − b)
Well, that’s all well and good, but it’s about time we produced some plots.

> plot3d([f(x, y), tp(f)(0, 0)], x = −2..2, y = −2..2);



> plot3d([f(x, y), tp(f)(1, 1)], x = −2..2, y = −2..2);

We may calculate tangent lines (and so instantaneous rate of change) at a point in
both the x- and y-directions as we wish. Furthermore, we may use this information to
calculate the tangent plane at the same point. It should follow, therefore, that we ought
to be able to calculate the slope of a tangent line in any direction, and also that it
should lie on the tangent plane we have already calculated.

To do this, we need a vector of unit length pointing in the direction we wish to
calculate the slope. Call this vector u = (a, b). Then we may calculate the directional
derivative in the direction of u at any point (x, y)

2.3 Multivariate Calculus 117

Duf(x, y) := fx(x, y) · a+ fy(x, y) · b

We show that this vector is on the tangent plane. If we ignore the z-axis for the
moment, we can parameterize the line from a point (x0, y0) in the direction of u as
[x0+ta, y0+tb] (think of the vector equation (x0, y0)+t·(a, b)). Getting back to thinking
three-dimensionally, we know that this line is climbing at the rate of Duf(x0, y0) in the
z axis for each unit moved in the direction of u, which is supposed to be of unit length
anyway.

This leads us to the parameterization of the line as

[x0 + t · a, y0 + t · b, f(x0, y0) + t ·Duf(x0, y0)]

and so if a point on this line is on the plane, which we should recall has equation

z = f(x0, y0) + fx(x0, y0) · (x− x0) + fy(x0, y0) · (y − y0)

then it must be the case that every point on the line as parameterized above, satisfies
the equation. Over to Maple now.

> f :=′ f ′ :
tp := (x0 , y0)→ f (x0 , y0) +D1 (f) (x0 , y0) · (x− x0) +D2 (f) (x0 , y0)
· (y − y0) ;

du := (x0 , y0)→ D1 (f) (x0 , y0) · a+D2 (f) (x0 , y0) · b;
tp := (x0 , y0)→ f (x0 , y0) +D1 (f) (x0 , y0) (x− x0) +D2 (f) (x0 , y0) (y − y0)

du := (x0 , y0)→ D1 (f) (x0 , y0) a+D2 (f) (x0 , y0) b
> subs({x = x0− t · a, y = y0− t · b}, tp(x0, y0))
f(x0, y0) + t · (du(x0, y0)) ;

f (x0 , y0) +D1 (f) (x0 , y0) ta+D2 (f) (x0 , y0) tb
f (x0 , y0) + t (D1 (f) (x0 , y0) a+D2 (f) (x0 , y0) b)[

> simplify(%−%%)
0

And there we have it. Notice that we needed to reset the f variable in order to
maintain proper generality. We could probably have done without the final subtraction,
inasmuch as it was clear that the two calculated expressions were the same, but it never
hurts to check and we didn’t have to go out of our way to do so. In any event, it is clear
that the directional derivative in the direction of a unit vector u will give us the slope
of a tangent line that lies on the tangent plane and travels parallel to the direction of
u.

2.3.4 Double Integrals

Just as the space under a curve, but above the x-axis, may be calculated as an area
via integration, so too can the space under a surface (i.e., a function z = f(x, y)), and
above the x-y plane, may be calculated as a volume using integration.

The same basic approach applies. Given a range for x and y we have a rectangle that
is a subsection of the xy-plane. We partition the x and y ranges, resulting in the area
under the surface being partitioned into rectangles. We then create rectangular prisms

118 2 Calculus

by choosing a point inside every rectangle, and setting the height of that rectangular
prism to be the height of the function evaluated at that point. This should sound awfully
similar to the method of approximating the area under a curve with rectangles.

If we let Aij be the area of the (i, j)th subrectangle (i.e., the rectangle that is at the
intersection of the ith x-partition and jth y-partition), and (x∗ij , y∗ij) be a point inside
that subrectangle, then the area of the resulting rectangular prism is f(x∗ij , y∗ij)Aij .
The volume underneath the surface (and above the xy-plane) may be approximated by
adding up the volumes of all the rectangular prisms.

This is well demonstrated in Maple using the ApproximateInt command from
the Student[MultivariateCalculus] package. Note that in the Maple worksheet itself, the
following two commands produce animations, and not just static pictures. Such anima-
tion would be long and tedious to produce by hand (although quite possible with the
animate command from the plots package). Note that the text above the images is
automatically generated and packaged part of the output of ApproximateInt.

We may, as it happens, use a more interactive manner of exploration. Maple provides
a number of interactive demonstration screens, refereed to as tutors. In particular is the
ApproximateIntTutor, which may also be used to produce the following animations.
The tutor has the advantage of being interactive, allowing experimentation with quickly
seen results.

The tutors are best used for exploration. Unfortunately due to their interactive na-
ture, they are troublesome to explain in print, and so fall out of the scope of this book.
They may be accessed through the Tools menu, which has a Tutors submenu, and cover
many areas of university mathematics appropriate to students. The reader is encouraged
to explore these for themselves (see also Exercise 1).

> Student[MultivariateCalculus][ApproximateInt](x2 + y2, x = −2..2, y = −2..2,
method = midpoint, coordinates = cartesian, partition = [25, 25],
output = animation)

The above is using midpoints as the sample points (x∗ij , y∗ij). Random points work
just as well, as it happens (and, incidentally, also work for Riemann sums of single
variable functions).

2.3 Multivariate Calculus 119

> Student[MultivariateCalculus][ApproximateInt](x2 + y2, x = −2..2, y = −2..2,
method = random, coordinates = cartesian, partition = [25, 25],
output = animation)

We obtain the volume under the curve by taking progressively more and more rect-
angular prisms (which are, in turn, smaller and smaller). As such the volume under the
surface may be approximated by the double sum

n∑
i=1

m∑
j=1

f(x∗ij , y∗ij)Aij

and the volume as the limit of this sum as both n and m approach ∞.

V = lim
n,m→∞

n∑
i=1

m∑
j=1

f(x∗ij , y∗ij)Aij

The question now is, how do we turn this into an integral? The key lies in recognizing
that the two sums (above) may be taken to infinity independently. In integration terms,
fix y as a constant, and calculate the integral of the function as if it were just a function
of the single variable x. The result will be a function of y that tells us the area under the
surface for any given y value. Integrating this function with respect to y will give us the
volume. This is, in fact, very similar to our volumes of revolution from Section 2.3.2. If
we think of this as accumulation, we accumulate an infinite amount of areas to obtain
a volume, just as we did with the disks or cylinders of the solids of revolution.

To make this more rigorous, let f(x, y) be a function of two variables. We wish to find
the volume under the surface of f for x ∈ [x1, x2] and y ∈ [y1, y2]. In other words we want
to integrate over the rectangle [x1, x2] × [y1, y2]. Furthermore, suppose that f(x, y) is
continuous over that rectangle. The integral

∫ x2
x1
f(x, y) dx is used to denote integrating

with respect to x while holding y fixed. Similarly
∫ y2
y1
f(x, y) dy denotes integrating with

respect to y while holding x to be fixed. These are called partial integrals (compare to
partial derivatives).

Then the volume can be calculated as

120 2 Calculus

V =
∫ y2

y1

(∫ x2

x1

f(x, y) dx
)
dy

which, for simplicity’s sake is usually just written without the bracketing, as it is un-
derstood that the innermost integral needs to be performed first, before the outermost
integral may be performed

V =
∫ y2

y1

∫ x2

x1

f(x, y) dx dy

Let’s look at this in Maple using our favorite paraboloid, over the rectangle [−2, 2]×
[−2, 2].
> f := x2 + y2;

Int(f, x = −2..2) = int(f, x = −2..2)
f := x2 + y2∫ 2

−2

(
x2 + y2) dx = 16

3 + 4 y2

 > Int(rhs(%), y = −2..2) = int(rhs(%), y = −2..2)∫ 2

−2

(
16
3

+ 4 y2
)
dy = 128

3
We see from the above that the first integration did indeed leave us with a function

of y. We also see that, apparently, the volume is 128/3 cubic units. We should hope,
given the double sum definition, and the basic idea that we are calculating a volume,
that if the order of integration is reversed, we should obtain the same answer. As it
happens, we do indeed. > Int(f, y = −2..2) = int(f, y = −2..2)∫ 2

−2

(
x2 + y2) dy = 4x2 + 16

3 > Int(rhs(%), x = −2..2) = int(rhs(%), x = −2..2)∫ 2

−2

(
4 x2 + 16

3

)
dx = 128

3
This guarantee that the double integral will always give the same answer, no matter

the order the integrals are performed in, is given by Fubini’s theorem. This guarantee
is dependent on the function f being continuous over the rectangle in question. In fact,
it is even true sometimes when f is not continuous over the rectangle, but we do not
concern ourselves with the generalization.

Maple is often capable, it should come as no surprise to find, of handling double
(even multiple) integrals without the need to manually perform each single integral.
This is achieved by simply providing the ranges for x and y in a list, in the order they
are to be performed.

2.3 Multivariate Calculus 121

> Int(f, [x = −2..2, y = −2..2]) = int(f, [x = −2..2, y = −2..2])
Int(f, [y = −2..2, x = −2..2]) = int(f, [y = −2..2, x = −2..2])∫ 2

−2

∫ 2

−2

(
x2 + y2) dxdy = 128

3∫ 2

−2

∫ 2

−2

(
x2 + y2) dydx = 128

3
The reader may have noticed that the volume we get for this paraboloid is somewhat

larger than the 8π cubic units of the paraboloid we obtained from revolving z = x2

around the z-axis. This is explained by remembering that the volume of revolution was
calculated with a circular base, whereas our paraboloid has a square base. The extra
area under the corners (where, incidentally, the paraboloid realizes its largest values)
explains the discrepancy.

To see this, we can adopt a couple of approaches. The first (and least satisfying) is
to plot both surfaces together and see if we can see one completely contained in the
other. > P1 := plot3d(x2 + y2, x = −2..2, y = −2..2, color = blue) :

P2 := plot3d([r, theta, r2], r = 0..2, theta = 0..2 · Pi, coords = cylindrical,
color = red) :

> plots[display]([P1, P2])

We can certainly see where the revolved paraboloid stops, and the other continues.
However, a more compelling way of convincing ourselves of this would be to make a
new function that is x2 +y2 as long as

√
x2 + y2 ≤ 2 and 0 otherwise. That is, we want

F (x, y) =
{
x2 + y2 if

√
x2 + y2 ≤ 2

0 otherwise

Integrating this function then should only give us the area of the paraboloid under the
circle of radius 2 centered at the origin, and thus our 8π volume.
> F := (x, y)→ piecewise(sqrt(x2 + y2) ≤ 2, x2 + y2, 0);

int(F (x, y), [x = −2..2, y = −2..2])

F := (x, y)→ piecewise
(√

x2 + y2 ≤ 2, x2 + y2, 0
)

8π
Readers familiar with iterated integrals are be able to verify this using integration

techniques for type I or type II regions (see [12]). We content ourselves with the above.
Let us return to the idea of partial integration. We should expect the notions of

integrals as antiderivatives to extend to partial integrals and partial differentiation. We
explore this in Maple.

122 2 Calculus
> int(f, x); diff (%, x)

1
3 x

3 + y2x

x2 + y2
> int(f, y); diff (%, y)

x2y + 1
3 y

3

x2 + y2

That certainly looks promising. Partial integration with respect to x or y is undone
by partial differentiation with respect to x or y as appropriate. Also interesting is that
if we follow the usual substitution done by hand in integration, we can probably obtain
the definite integrals Maple calculated for us earlier.
> int(f, x); subs(x = 2,%)− subs(x = −2,%);

1
3 x

3 + y2x

16
3 + 4 y2


> int(f, y); subs(y = 2,%)− subs(y = −2,%);

x2y + 1
3 y

3

4x2 + 16
3

That is, we have shown that[
1
3 x

3 + y2x

]x=2

x=−2
= 16

3 + 4 y2 and
[
x2y + 1

3 y
3
]y=2

y=−2
= 4x2 + 16

3

which is all as it should be, but is nonetheless nice to have verified.
Finally, we try a truly general function, and see if Maple’s partial differentiation and

partial integration still undo each other.

> Diff (Int(g(x, y), x), x) = diff (int(g(x, y), x), x);
Int(Diff (g(x, y), x), x) = int(diff (g(x, y), x), x)

∂

∂x

∫
g (x, y) dx = g (x, y)∫

∂

∂x
g (x, y) dx = g (x, y)

> Diff (Int(g(x, y), y), y) = diff (int(g(x, y), y), y);
Int(Diff (g(x, y), y), y) = int(diff (g(x, y), y), y)

∂

∂y

∫
g (x, y) dy = g (x, y)∫

∂

∂y
g (x, y) dy = g (x, y)

Maple certainly seems to think that partial differentiation and partial integration are
inverse procedures.

We have only just scraped the surface here with double integrals in particular, and
multivariate calculus in general. The interested reader is encouraged to read [12] and/or

2.3 Multivariate Calculus 123

any other good calculus texts. Exploration and confirmation of such material should be
possible with the tools used and discussed in this section.

124 2 Calculus

2.4 Exercises

The exercises for this, and subsequent, chapters are less numerous and slightly longer
in duration when compared to the exercises from Chapter 1. An effort has been made
to keep the amount of work each question requires roughly the same for each question,
and also for each question to be more or less self-contained. However, no guarantees to
this effect are made.

1. Maple provides a group of packages all collected into a super-package named Stu-
dent. The goal of these packages is to “assist with the teaching and learning of stan-
dard undergraduate mathematics.” In particular is the Student[Calculus1] package
that deals with single variable calculus. Read the help information on this pack-
age (?Student[Calculus1]), giving particular (but not exclusive) attention to the
visualization and interractive sections. Experiment with some of these commands
and tutors.
Note: The tutors may alternatively be accessed directly through the Tools menu.

2. Plot the following functions. Make sure that, where possible, you plot all important
information to the plot; turning points, zeroes, and so on.

a. x5 − 7x4 − 162x3 + 878x2 + 3937x− 15015
b. sin x

x

c. cosx− 1
x

d. x5 − 3x4 + x2 − x− 5

The following plots produce slightly unexpected results. Plot the functions, and
identify the unexpected behavior. Modify the plot parameters to produce a more
correct plot. Also, have Maple plot the functions with identical scale for the vertical
and horizontal axes.

e. 2 + sin x f. sin(x)2 + cos(x)2

3. Evaluate the limits of the following functions for x = ±∞ as well as any undefined
points. Produce appropriate plots to demonstrate these limits.

a. tanh x

b. x
2 + 1
x2 − 1

c. sin 1
x

d. cos 1
x

4. Find all critical points, maxima and minima, and inflection points for the function
y = x4 + x.

5. Using the substitution u = π−x and the IntegrationTools package check the identity∫ π

0
xf(sin x) dx = π

2

∫ π

0
f(sin x) dx

Note: Recall that the IntegrationTools functions seem to work best with inert inte-
grals.

2.4 Exercises 125

6. A cone may be constructed by cutting a sector out of a circle,
and then joining the two straight lines CA and CB (from the
diagram to the right) which are created by the removal of arc.
If the circle has radius R, then find a formula for the maximum
volume that such a cone may have.
Hint: Try finding the circumference of the circle at the top of
the cone.
Hint2: You will probably need to tellMaple some assumptions
about your variables.

7. Evaluate the following integrals. In each case the answer is a combination (i.e., sums
or products) of constants such as e,

√
2,
√

3, π, ζ(3), log 2, and γ (Euler’s gamma
constant). At least one even involves log π. If Maple cannot calculate the integral
directly, evaluate it numerically and try to identify it.

a.
∫ π

2

0

x2

sin2 x
dx

b.
∫ π

2

0

x4

sin4 x
dx

c.
∫ π

2

0

arcsin
(√

2
2 sin x

)
sin x√

4− 2 sin2 x
dx

d.
∫ ∞

0

log x
cosh2 x

dx

The following two integrals arise from mathematical physics, but neither had a
known closed form as of 2009. This may have changed.

e.
∫ 1

0

log
(√

3 + y2 + 1
)
− log

(√
3 + y2 − 1

)
1 + y2 dy

f.
∫ 4

3

arcsec(x)√
x2 − 4x− 3

dx

8. Solve the following linear differential equations, verify the solution, and plot it for
some values of the constant.

a. xy′ + y = x cosx (for x > 0) b. y′ + (cos x)y = cos x

How do the solution curves change as the constant changes?
If you are feeling adventurous, try and plot the solutions using theDEplot function
from the DEtools package.

9. The differential equation

x2y′′ + xy′ + (x2 − α2)y = 0

is known as the Bessel equation. The solutions to this equation give rise to the so-
called Bessel functions of the first and second kind, Jα(x) and Yα(x), respectively.

a. Solve the Bessel equation for the special cases of α = 1
2 and α = 3

2 . Verify the
solutions.

b. Solve the Bessel equation for the general case. Verify the solution.
c. Plot the Bessel functions Jα and Yα for some values of α of your choosing.

The modified Bessel functions of the first and second kind—Iα(x) and Kα(x),
respectively—are solutions of the modified Bessel equation,

x2y′′ + xy′ − (x2 + α2)y = 0

d. Solve the modified Bessel equation for the general case. Verify the solution.

126 2 Calculus

e. Plot the modified Bessel functions Iα and Kα for some values of α of your
choosing.

10. a. Plot Pac-Man5 on a set of Cartesian axes. You need only produce the basic
outline.
Hint: Use multiple polar co-ordinate plots and the display function.

b. Find a polar equation for the circle of radius 3 with center (1, 2). Plot the circle
using this equation.

11. a. Find the volume obtained by rotating the area between by the curve z = x2

and the z-axis for x ∈ [0, 1] around the z-axis. Notice anything interesting?
b. Plot and calculate the volumes obtained by rotating the following areas around

the z-axis. In all cases the curve is z = log x with x ∈ [0, 1].
i. The area underneath the curve (between the curve and the x-axis)
ii. The area between the curve and the z-axis.
Check your answers by calculating both the disks and the shells method.

12. Find and classify the critical points of the following functions of two variables.
Recall that critical points occur where fx(a, b) = fy(a, b) = 0. A critical point may
be a maximum, a minimum, or a saddle point.

a. f(x, y) := 3x2y + y3 − 3x2 − 3y2 + 2. b. f(x, y) := xye−x
2−y2

13. Verify that the following functions are solutions to the partial differential equation
fx + fy = sin(x) + cos(y). A solution to a partial differential equation is a function
whose partial derivatives satisfy the equation (compare to an ordinary differential
equation).

a. sin(y)− cos(x) + C · (y − x)
b. sin(y)− cos(x) + (y − x)n

c. sin(y)− cos(x) +
√
y − x

d. sin(y)− cos(x) + eC·(y−x)n

What do you think the general solution might be?
14. Let f be the function defined below.

f(x, y) :=


xy(x2 − y2)
x2 + y2 if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

a. Verify—visually or otherwise—that f is continuous at the origin.
b. Show that fxy(0, 0) 6= fyx(0, 0) and so Clairaut’s theorem does not apply to this

function.

Note: You need to use the limit definition on all functions to establish the value of
their partial derivatives at the point (0, 0).

15. Plot the following, and calculate their area using iterated integrals.

a. The area underneath z = x5y3exy for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1
b. The area between z = e−x

2 cos(x2 + y2) and z = 2 − x2 − y2 for |x| ≤ 1 and
|y| ≤ 1

The following iterated integrals are volumes underneath surfaces (z = f(x, y)) for
points (x, y) that do not lie inside a rectangle. Calculate the integrals. Can you
work out the bounding curves for the points (x, y)?

5 Pac-Man is a video game character from the early 1980s. A quick Internet search should be all
that is needed in order to know what the plot must look like.

2.5 Further Explorations 127

c.
∫ 2

1

∫ y

0
x2y2 dx dy d.

∫ 2

0

∫ x2
2

0

x√
1 + x2 + y2

dy dx

2.5 Further Explorations

1. Finding limits.

a. Let a0 = 0, a1 = 1
2 and define

an+1 :=
1 + an + a3

n−1
3

Determine the limit as n → ∞, and find out what happens when a1 = a is
allowed to vary.

b. Let a1 = 1 and define
an+1 := 3 + 2an

3 + an

Determine the limit and find out what happens when a1 = a is allowed to vary.

The above two limits are easy enough to find and (depending on what you know)
to prove.

c. Let a1 ≥ 1 be given and determine the limit of the iteration

an+1 := an −
an√

1 + a2
n

+ sin(θ)

for arbitrary θ.

2. A (strict) mean M(a, b) is a continuous function of two positive numbers that
calculates a number c lying between a and b (strictly between them as long as
a 6= b). The arithmetic and geometric means are clearly such objects.
A mean iteration takes two means, M and N say, and iterates by setting a0 = a,
b0 = b and

an+1 := M(an, bn), bn+1 := N(an, bn)

The limit of such a strict mean iteration always exists and is denoted byM⊗N(a, b).
Identify the limits of the mean iteration defined by the means in the following.

a. M(a, b) := a+ b

2 , N(a, b) := 2ab
a+ b

b. M(a, b) := a+
√
ab

2 , N(a, b) := b+
√
ab

2
3. Define

sinc(x) := sinx
x

and explore the following integrals. Calculate them for all (natural) values of N
from 1 to 8 at least (more if you wish), and measure the time each calculation takes
to perform. Can you work out what is going on?

128 2 Calculus

a.
∫ ∞

0

N∏
n=0

sinc
(

x

2n+ 1

)
dx b.

∫ ∞
0

N∏
n=0

sinc
(

x

3n+ 2

)
dx

Chapter 3
Linear Algebra

3.1 Introduction and Review

In this section we introduceMaple’s linear algebra capabilities, and examine some of the
basic linear algebra that should already be familiar (or, at least, have been seen before
now). We presume that the reader is proficient, at least, in Gaussian and Gauss–Jordan
elimination of matrices.

Maple provides two packages for working with linear algebra. The first is the linalg
package, which has since been superseded by the LinearAlgebra package. The former
package is still available, and may be needed for older Maple files. We deal with the
newer LinearAlgebra package for the entirety of this book.

3.1.1 Vectors and Matrices in Maple

Before we can start to explore much linear algebra in Maple, we must first know how
to create the basic building blocks required. As such, this section is essentially devoted
solely to Maple syntax and semantics for the basic building blocks of linear algebra;
matrices and vectors. This is unfortunate, but necessary, and we return to more pre-
dominant mathematical endeavors as quickly as possible.

As previous stated, linear algebra more or less boils down to vectors and matrices
(although the distinction is not all that clear and students of second-year or later
linear algebra should see that matrices may, themselves, be the vectors of a vector
space). Maple can handle creation, and basic arithmetic (addition, scaling, and non-
commutative multiplication) without the need to load any external packages.

There are a number of ways to declare a vector. Note, however, that a Maple list is
not a vector, even though it might behave a little like one. The simplest way to define
a vector is to use the 〈〉 shortcut notation.

> 〈1, 2, 3〉; 〈a|b|c|d|e〉 
1

2

3


[
a b c d e

]
129

© Springer Science+Business Media, LLC 2011
Springer Undergraduate Texts in Mathematics and Technology, DOI 10.1007/978-1-4614-0122-3_3,
J. M. Borwein and M. P. Skerritt, An Introduction to Modern Mathematical Computing: With Maple ,TM

130 3 Linear Algebra

This method provides, at a glance, an easy way to see that something is a vector.
The only trick is remembering that commas are used for the delimiter when one wants
a column vector, and vertical bars are used when one wants a row vector.

Maple also provides aVector command (note the capital “V”) for creation of vectors.
The simplest form of this command takes a list as input, and produces a column vector,
or a row vector if the correct parameters are used

> Vector([a, b, c, d]); Vectorrow([1, 2, 3, 4])
a

b

c

d


[

1 2 3 4
]

The Vector command may, instead, be used to specify the number of elements in
the vector, as well as a function (or value) that each element is to take. If no second
parameter is given, then the default value is 0.

> Vector(5); Vector [row](4, a); Vector(3, i→ 3 · i)

0

0

0

0

0


[
a (1) a (2) a (3) a (4)

]
2

4

6


For additional usage of the Vector command, consult Maple’s help files (?Vector).
Matrices may be declared in a similar fashion. We may think of a matrix as a vector

where each row is also a vector (or, equivalently, a row vector where each column is also
a vector). As such, our 〈〉 shortcut also allows us to declare matrices.

> 〈〈1|2|3〉, 〈4|5|6〉, 〈7|8|9〉〉; 〈〈a, b, c〉|〈d, e, f〉|〈g, h, i〉〉
1 2 3

4 5 6

7 8 9



a d g

b e h

c f i


Just as with vectors, there is also a Matrix function for declaration of matrices. The

basic form of this command requires a list of lists, where the innermost lists must all
be the same length, and represent the row vectors.

3.1 Introduction and Review 131
> Matrix([[1, 2, 3], [a, b, c], [i, ii, iii]])

1 2 3

a b c

i ii iii


There remains, just as with vectors, the capacity to directly specify the size of the

matrix, and a function (or value) to populate it, with the default being 0. Note that
when specifying the size of a matrix, both the number of rows, and the number of
columns must be specified, in that order. If only one size is given then the matrix is
presumed to be square, but one should be careful using this method, as the second
parameter must unmistakably be a function or a variable. If unsure, it is always best
to explicitly state both width and height.

> Matrix(2, 3); Matrix(2, f); Matrix(4, (i, j)→ 10 · i+ j)[
0 0 0

0 0 0

]
[
f (1, 1) f (1, 2)

f (2, 1) f (2, 2)

]


11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44


Now that we know how to produce vectors and matrices in Maple, we should expect

to be able to perform the usual arithmetic with them. Most of this is possible still
without the need for an extra package, but we begin to run into some situations where
it might be better to begin using some of the LinearAlgebra functions.

Matrices and vectors may both be added and subtracted with the usual Maple op-
erators for those purposes. They may be scaled using the multiplication and division
operators (note that division by a is the same as scaling the vector by a−1). Note that
vectors must both either be row or column vectors in order to be added. Similarly,
matrices must be of the same size to be able to added.

> 〈u1, u2〉+ 〈v1, v2〉; 〈u1|u2〉+ 〈v1|v2〉; a · 〈u1|u2〉; 〈u1, u2〉+ 〈v1|v2〉[
u1 + v1

u2 + v2

]
[
u1 + v1 u2 + v2

][
au1 au2

]
Error, (in rtable/Sum) invalid arguments

132 3 Linear Algebra

> M1 := 〈〈1|2|3〉, 〈4|5|6〉, 〈7|8|9〉〉;M2 := 〈〈a, b, c〉|〈d, e, f〉|〈g, h, i〉〉

M1 :=


1 2 3

4 5 6

7 8 9



M2 :=


a d g

b e h

c 2 i




> M1 +M2; 3 ·M1 
a+ 1 d+ 2 3 + g

b+ 4 e+ 5 6 + h

c+ 7 10 9 + i




3 6 9

12 15 18

21 24 27


Matrices may also be multiplied using the . (dot) operator. Be very careful here, this

is a “full stop” (a period) and not the · that we have hitherto used for multiplication.
We can also take powers of matrices using the usual superscript method.

> M1 .M2;M1 .M1;M2
1

a+ 2 b+ 3 c d+ 2 e+ 3 f g + 2h+ 3 i

4 a+ 5 b+ 6 c 4 d+ 5 e+ 6 f 4 g + 5h+ 6 i

7 a+ 8 b+ 9 c 7 d+ 8 e+ 9 f 7 g + 8h+ 9 i




30 36 42

66 81 96

102 126 150




30 36 42

66 81 96

102 126 150


The . operator is a Maple operator for performing noncommutative multiplication;

see ?dot. Be careful, though, as it can be difficult to tell the difference between the
two multiplication symbols. The . (dot) operator can also, as the name may make us
suspect, be used to calculate the dot product of two vectors.[
> 〈u1, u2〉 .〈v1, v2〉

u1v1 + u2v2

The answer here is the more general dot product as defined for a complex vector
space. This, of course, gives the same answer in the real case when we remember that
the conjugate or a real number is itself (i.e., x̄ = x if x ∈ R). We should be careful to
make sure that the vectors are both the same kind of vector (row or column), otherwise
Maple may produce some unexpected results.

3.1 Introduction and Review 133

> 〈u1|u2〉 .〈v1, v2〉
〈u1, u2〉 .〈v1|v2〉

v1u1 + v2u2[
v1u1 u1v2

u2v1 v2u2

]
The first case looks like the regular dot product (although without the complex

conjugation). The second case is a 2× 2 matrix, and is precisely the matrix we would
get if we considered the u vector to be a single column matrix, and the v vector to be
a single row matrix.

The confusion above may be alleviated somewhat with some functions from the
LinearAlgebra package. However, this comes at a cost of extra typing, and a less math-
ematical look to the input. The DotProduct and Multiply commands perform the
dot product, and multiplication, respectively.

The advantage of DotProduct is that we don’t need to make sure that the two
vectors are of the same type and, in addition, we can’t accidentally perform matrix
multiplication.[
> with(LinearAlgebra) :



> DotProduct(< u1, u2 >,< v1, v2 >)
DotProduct(< u1|u2 >,< v1, v2 >)
DotProduct(< u1, u2 >,< v1|v2 >)
DotProduct(< u1|u2 >,< v1|v2 >)

u1v1 + u2v2

v1u1 + v2u2

u1v1 + u2v2

v1u1 + v2u2

The Multiply command more or less does everything that the . operator as well as
the usual multiplication (·) operator do, with the exception of the vector dot product.
Consulting the help files on this function explains the unusual behavior when we try
to multiply two types of vectors together (which should, in turn, explain why the .
operator behaves unusually in this case as well).

> Multiply(M1,M2); Multiply(〈u1|u2〉, 〈v1, v2〉)
a+ 2 b+ 3 c d+ 2 e+ 3 f g + 2h+ 3 i

4 a+ 5 b+ 6 c 4 d+ 5 e+ 6 f 4 g + 5h+ 6 i

7 a+ 8 b+ 9 c 7 d+ 8 e+ 9 f 7 g + 8h+ 9 i


v1u1 + v2u2

Multiplying a row vector by a column vector (in that order) results in a scalar. The
scalar in question happens to be the single element inside the 1 × 1 matrix we would
have if we considered the vectors to be single row/column matrices, respectively. This is
different from the dot product because we are only multiplying the individual elements
of each vector together. If the vectors contained complex numbers we would not end up
with the complex conjugation in this case that we do with the dot product.

Finally, before we move on to something more mathematical, we demonstrate two
more shortcuts. The inverse of a matrix (if it exists), may be calculated by using ex-
ponentiation notation, as one might well expect. That is, if we raise a matrix to the

134 3 Linear Algebra

power −1 Maple will calculate the inverse matrix. Recall that for a square matrix A
the inverse matrix is the unique matrix (usually written A−1) with the property that
A−1A = AA−1 = I.

> A := 〈〈1, 2〉|〈3, 4〉;
A−1

A−1.A,A.A−1

A :=
[

1 3

2 4

]
[
−2 3

2

1 − 1
2

]
[

1 0

0 1

]
,

[
1 0

0 1

]

> 〈〈1, 2, 3〉|〈4, 5, 6〉〉−1

Error, (in rtable/Power) power -1 not defined for non-square
Matrices; try LinearAlgebra[MatrixInverse] to obtain a

pseudo-inverse
The transpose of a matrix (the matrix created when column vectors are changed to

be row vectors, or—equivalently—vice versa, usually written AT) may be obtained by
raising a matrix (in Maple, that is) to the power %T .

> A := 〈〈a, b, c〉|〈d, e, f〉;A%T ; %%T

A :=


a d

b e

c f


[
a b c

d e f

]

a d

b e

c f


Naturally, there are additional functions in the LinearAlgebra package that will also

perform both the matrix inverse and the transpose.
The other functions in the LinearAlgebra package may (and even should) be exam-

ined using Maple’s help files on the package (?LinearAlgebra). Further discussion on
functions from this package (and Maple approaches to linear algebra in general) takes
place as and when they are needed in the course of the mathematics that follows.

3.1.2 Simultaneous Linear Equations

One of the first parts of linear algebra a student sees is the method of solving systems
of linear equations using matrices and Gauss–Jordan elimination. We re-examine this
topic now.

3.1 Introduction and Review 135

Let’s start with a simple example. We want to find values for x and y that satisfy
both the equations x+ y = 2 and 2x+ y = 3 simultaneously. This we should be able to
do quickly in our heads, or on paper. If we were to use Maple we would probably use
the solve command.[
> solve({x+ y = 2, 2 · x+ y = 3})

{x = 1, y = 1}
However, we can also attack this problem using our tools from linear algebra. Let’s

start by constructing a vector where the elements inside the vector are the equations
we are trying to simultaneously solve[

x+ y = 2
2x+ y = 3

]
This can be thought of as [

x+ y
2x+ y

]
=
[
2
3

]
which in turn can be thought of as[

1 1
2 1

] [
x
y

]
=
[
2
3

]
which is an equation of the form Ax = b where A is a matrix, and x and b are matrices.

The solution to this problem is to construct the augmented matrix[
1 1 2
2 1 3

]
and to perform Gaussian elimination in order that the matrix be in row echelon form,
or Gauss–Jordan elimination in order that the matrix be in reduced row echelon form.

Reduced row echelon is the easier form to see the solutions directly, but is usually
a little tricky (or, at least fiddly) to produce by hand. Fortunately, we do not have
such problems when using a CAS, and the LinearAlgebra package includes a function
that will calculate the reduced row echelon form of a matrix and is named, probably
unsurprisingly, ReducedRowEchelonForm.

> A := 〈〈1|1|2〉, 〈2|1|3〉〉; ReducedRowEchelonForm(A)

A :=
[

1 1 2

2 1 3

]
[

1 0 1

0 1 1

]
We can read the answer that x = 1 and y = 1 directly from this matrix, remembering

that it is an augmented matrix representing the vector equation[
1 0
0 1

] [
x
y

]
=
[
1
1

]
which is equivalent to our original equations (due to the fact that elementary row
operations, as performed in Gauss–Jordan elimination do not change the solution of a
system of equations).

136 3 Linear Algebra

In general, for a system of m simultaneous linear equations in n unknowns, we
construct them×n coefficient matrix, A say, and the vector of constants (the right-hand
sides of the equations) b. The system may then be considered as the vector equation

Ax = b

where x is the vector of the unknown values. We then calculate the solution by reducing
the augmented matrix [A | b] into reduced row echelon form. (Note here that [A | b] is
the matrix A with b added in as a final column vector). This should not be anything
new to any student who has studied first-year university mathematics.

In the case of systems of equations with two or three unknowns, there is a clear
geometric interpretation of these systems of linear equations. The equation ax+ by = c
describes a unique line in the Euclidean plane. This line can be thought of as the col-
lection of all points (x, y) in the plane that satisfy the equation ax + by = c. When
evaluating two such equations simultaneously, we are looking for the collection of all
points (x, y) that satisfy both equations at the same time, or—geometrically—the col-
lection of all points that lie on both lines (the intersection of the two lines).

With the plane, there are not very many different things that can happen. Either
the equations all describe the same line, in which case we should see infinitely many
solutions, or the lines will meet at a point somewhere, in which case there will be one
solution, or the lines are parallel in which case there will be no solutions.

Let’s have a look at the example from above, x+ y = 2 and 2x+ y = 3. We already
know that the only solution to this system of equations is x = 1, y = 1. When we plot
these lines we should expect to see them crossing at the point (1, 1). Note that in order
to plot these lines, we needed to manipulate the equations into the equivalent forms of
y = 2− x and y = 3− 2x.

> plot([2− x, 3− 2x], x = −1..2, color = [red, blue])

When more than two lines are introduced, the chances that there is any point at which
they all intersect becomes smaller (it is quite likely that any two lines will intersect; the
point here is that a solution to the simultaneous equations must be a point where all
the lines intersect at the same point). For instance, if we extend the system above to

3.1 Introduction and Review 137

also include the equations −3x+ y = 4 and −x+ y = −2, plotting all four lines shows
clearly that there is no common intersection point for the four lines

> plot([2− x, 3− 2x, 4 + 3x, x− 2], color = [red, red, blue, black])

And the linear algebra produces the expected result

> M, b := 〈〈1|1〉, 〈2|1〉, 〈−3|1〉, 〈−1|1〉〉, 〈2, 3, 4,−2〉

M, b :=


1 1

2 1

−3 1

−1 1

 ,


2

3

4

−2




> M.〈x, y〉 = b;
LinearSolve(M, b) 

x+ y

2x+ y

−3x+ y

−x+ y

 =


2

3

4

−2


Error, (in LinearAlgebra:-LA_Main:-LinearSolve) inconsistent system

It doesn’t really come much clearer than that error message, so long as we know that
an inconsistent system of linear equations has no solution. Even if we didn’t know this,
it should be quite clear form the context.

We may also, if we wish, read this directly off the augmented matrix in reduced row
echelon form. Note the second row from the bottom which should be read 0x+ 0y = 1.

138 3 Linear Algebra

> ReducedRowEchelonForm(〈M |b〉)
1 0 0

0 1 0

0 0 1

0 0 0


Let’s now have a look at this in three dimensions. Recall that in real 3-space, the

equation ax + by + cz = d describes a plane. The intersection of any three or more
different planes will either be a line, a point, or nonexistent. In the case of only two
distinct planes then the intersection can only be a line or nonexistent. We start with
the following set of equations.

x+ y + z = 3
−x− y + z = −2
2x+ y + z = 0

Our aim here is to see how the planes intersect (if they do at all). To do this most
effectively we need to know if they intersect, and if so then where. So we first solve the
system of equations.

To solve these equations we now use the LinearSolve function from the LinearAlgebra
package. This function has two basic forms. If A is a matrix, and b is a vector, then
the command LinearSolve(A, b) will solve the linear system Ax = b. However, if we use
the form LinearSolve(A) (with no b) then Maple will presume that A is an augmented
matrix, and solve the linear system for that augmented matrix. We use the first form
here.
> M, b := 〈〈1|1|1〉, 〈−1|1|1〉, 〈2|1|1〉〉, 〈3,−2, 0〉

M, b :=


1 1 1

−1 −1 1

2 1 1

 ,


3

−2

0




> LinearSolve(M, b) 
−3
11
2
1
2


And so we now see that there is but a single point, [−3, 11

2 ,
1
2] at which the three

planes intersect. We can now plot the planes in such a way as to see this intersection
clearly. In order to have the intersection point close to the middle of the plot (so as, we
hope, to see the most of the interrelations of the planes) we plot over the x-range (0, 6)
and the y-range (3, 9).

We have a small problem, however. If we ask Maple to plot these functions with a
single plot command, we will have a list of three elements for our plot, which plot3d
will interpret as a parametric equation. To avoid this problem we parameterize the three
planes as [

x, y,
1
c

(−ax− by + d)
]

3.1 Introduction and Review 139 > pt := convert(LinearSolve(M, b), list)

pt :=
[
−3, 11

2 ,
1
2

]
 > planes := plot3d([[x, y, 3− x− y], [x, y, x+ y− 2], [x, y,−2 ∗ x− y]], x = −6..0,

y = 3..9, color = [red, blue,white]) :

 > intpoint := plot3d([pt], x = −6..0, y = 3..9, style = point, symbol =
solidsphere, symbolsize = 30, color = black) :



> plots[display]([planes, intpoint])

3.1.3 Elementary Row Operations

We now look more closely at the elementary row (and, equivalently, column) operations.
There are three basic operations that may be performed:

• Swap two rows.
• Multiply a row by a constant.
• Add a multiple of one row to another row.

It is expected that none of this is new to the reader.
What may be new, however, is that it is possible to construct matrices that perform

these row operations when they are multiplied (on the left) with another matrix. It is
this idea that we explore. It is important to note at this point that there is no practical
purpose to performing row operations with matrix multiplication and, indeed, directly
performing the operations is quicker and easier. However, the mere fact that we can do
this allows us to prove some facts about invertible matrices.

To construct these row-operation matrices, called elementary matrices, we simply
perform a row operation manually on the identity matrix. The resulting matrix will
then perform that same row operation when it is multiplied with another matrix. We
demonstrate this for the case of 2× 2 matrices.

140 3 Linear Algebra

> ID := IdentityMatrix(2)
G := 〈〈a|b〉, 〈c|d〉〉

ID :=
[

1 0

0 1

]

G :=
[
a b

c d

]

> S := RowOperation(ID, [1, 2])

S :=
[

0 1

1 0

]
Maple’s LinearAlgebra package provides us with the RowOperation function (as we

have used above) in order to perform row operations. There are (unsurprisingly) three
ways of using this function. The method used above, RowOperation(M, [a, b]), will swap
rows a and b in the matrix M . This is precisely what we saw happen to the identity
matrix above.
> S.G [

c d

a b

]

> G.S [

b a

d c

]
When we multiply our matrix S on the left against an arbitrary matrix, we can see

that it swaps the rows as claimed. This behavior can be verified on paper, and doing
so should demonstrate just why the matrix does this. Furthermore, when we multiply
on the right by our matrix, it performs the swap as a column operation. This may also
be confirmed on paper.

Continuing on in this manner, we now create the matrices for multiplying a given row
by a constant. The command form for this operation is RowOperation(M, r, k) which
multiplies row r in matrix M by constant k.

> M1 := RowOperation(ID, 1, k);
M2 := RowOperation(ID, 2, k);

M1 :=
[
k 0

0 1

]

M2 :=
[

1 0

0 k

]

> M1 .G,M2 .G [

ka kb

c d

]
,

[
a b

kc kd

]

> G.M1 , G.M2 [

ka b

kc d

]
,

[
a kb

c kd

]

3.1 Introduction and Review 141

Sure enough these two matrices behave just as we should have expected. Multiplying
on the left against an arbitrary matrix performs the row operation, and multiplying on
the right performs the equivalent column operation.

Finally, we create the matrices for adding a multiple of one row to another row.
The command form for this operation is RowOperation(M, [a, b], k) which adds row b
multiplied by k to row a. We use a possibly overly complicated naming scheme for these
matrices, but it leaves little to no doubt as to what the matrix does

> Ar1+k·r2 := RowOperation(ID, [1, 2], k);
Ar2+k·r1 := RowOperation(ID, [2, 1], k);

Ar1+k·r2 :=
[

1 k

0 1

]

Ar2+k·r1 :=
[

1 0

k 1

]

> Ar1+k·r2 .G,Ar2+k·r1 .G[

a+ ck b+ dk

c d

]
,

[
a b

ka+ c kb+ d

]

> G.Ar1+k·r2 , G.Ar2+k·r1 [

a ka+ b

c ck + d

]
,

[
a+ kb b

c+ dk d

]
It should be mentioned at this point that these elementary matrices need not be

multiplied with only square matrices. The elementary matrices themselves will always
be square (because they are obtained by performing a row operation on an identity
matrix, which is always square). However, just as row operations may be performed on
any size matrix, so will the elementary matrices perform their appropriate row operation
on any size matrix. The only stipulation is the usual one for matrix multiplication, which
is that when multiplying matrices A and B together, A must have the same number of
columns as B has rows.

What this means for our elementary matrices is that an n×n elementary matrix will
perform its row operation when multiplying on the left any matrix with exactly n rows.
Similarly, when multiplying on the right said matrix will perform column operations on
any matrix with n columns
> B := 〈〈11|12|13|14|15〉, 〈21|22|23|24|25〉〉

B :=
[

11 12 13 14 15

21 22 23 24 25

]


> S.B ; M1.B ; Ar2+k·r1.B [
21 22 23 24 25

11 12 13 14 15

]
[

11 k 12 k 13 k 14 k 15 k

21 22 23 24 25

]
[

11 12 13 14 15

11 k + 21 12 k + 22 13 k + 23 14 k + 24 15 k + 25

]

142 3 Linear Algebra > B.S

Error, (in LinearAlgebra:-MatrixMatrixMultiply) first matrix column
dimension (5) <> second matrix row dimension (2)

Notice that the final thing we tried was to multiply on the right instead of on the
left, and Maple issued an error to tell us that the matrices could not be multiplied in
that order, just as we already knew they couldn’t.

> B := B%T

B :=



11 21

12 22

13 23

14 24

15 25




> B.S , B.M1 , B.Ar2+kr1

21 11

22 12

23 13

24 14

25 15


,



11 k 21

12 k 22

13 k 23

14 k 24

15 k 25


,



11 + 21 k 21

12 + 22 k 22

13 + 23 k 23

14 + 24 k 24

15 + 25 k 25


 > S.B

Error, (in LinearAlgebra:-MatrixMatrixMultiply) first matrix column
dimension (2) <> second matrix row dimension (5)

We now put all this together with a real (pun intended) matrix. In order to allow us
to properly use the M and A matrices correctly, we create functions that allow us to
choose the particular k value we want.
> R := 〈〈1, 2〉|〈3, 4〉〉

R :=
[

1 3

2 4

]

> M1 := unapply(M1) :
M2 := unapply(M2) :
M1(x),M2(x) [

x 0

0 1

]
,

[
1 0

0 x

]

> Ar1+k·r2 := unapply(Ar1+k·r2) :
Ar2+k·r1 := unapply(Ar2+k·r1) :
Ar1+k·r2(x), Ar2+k·r1(x) [

1 x

0 1

]
,

[
1 0

x 1

]
Now we perform row operation—via multiplication with elementary matrices—to

reduce our matrix R into reduced row echelon form.

3.1 Introduction and Review 143
> R [

1 3

2 4

]

> Ar2+k·r1(−2).% [

1 3

0 −2

]

> M2

(
−1

2

)
.% [

1 3

0 1

]

> Ar1+k·r2(−3).% [

1 0

0 1

]
We should note here that we have inadvertently found an inverse matrix for R.

That inverse is the product of the three elementary matrices we used in the correct
order. Because we were multiplying on the left the entire way, the correct order for
multiplication is to start with the final elementary matrix, and work our way backwards.
> Ar1+k·r2(−3).M2

(
−1

2

)
.Ar2+k·r1(−2).G[

1 0

0 1

]

> Ar1+k·r2(−3).M2

(
−1

2

)
.Ar2+k·r1(−2)−2 3

2

1 −1
2



> R.% , %.R [

1 0

0 1

]
,

[
1 0

0 1

]
Sure enough, if we ask Maple directly for the inverse of our matrix R then it gives

us the matrix we just calculated.
> R−1 −2 3

2

1 −1
2


This is no coincidence. It is necessarily the case that an invertible matrix will always

become the identity matrix when changed into reduced row echelon form. Furthermore
any invertible matrix can always be created by multiplying some sequence of elementary
matrices together. We look at this idea now.

144 3 Linear Algebra

First observe that every elementary matrix is invertible. This is a direct consequence
of the fact that the row operations themselves are invertible processes. We can, very
simply, undo any row operation we perform as follows:

Operation Inverse
Swap rows a and b Swap rows a and b
Multiply a row a by a constant k Multiply a row a by the constant 1

k
Add k times row a to row b Add −k times row a to row b

We look at three-dimensional elementary matrices this time. First we should unassign
the variables we used for the various flavors of elementary matrices earlier, as we will
use them again.

> A,M,S :=′ A′,′M ′,′ S′
ID := IdentityMatrix(3)

A,M,S := A,M,S

ID :=


1 0 0

0 1 0

0 0 1


We simplify the creation of the matrices with the use of some for loops. Observe that

for swapping rows, swapping rows a and b is exactly the same as swapping rows b and
a, so we avoid creating duplicate row swapping matrices, and stipulate, when swapping
rows, that we will always specify the lowest numbered row first.
> for i from 1 to 3 do

for j from i+ 1 to 3 do
Si,j := RowOperation(ID, [i, j])

od
od :


> for i from 1 to 3 do

RowOperation(ID, i, k);
Mi := unapply(%, k);

od :



> for i from 1 to 3 do
for j in{1, 2, 3}minus{i}do

RowOperation(ID, [i, j], k);
Ar‖i+k·r‖j := unapply(%, k);

od
od :

Here, ‖ is the Maple operator for concatenation. the string r‖i+ k · r‖j is converted
by Maple to ri + k · rj, with i and j being correctly substituted for their correct
values. Conversely, merely inputting ri+ k · rj directly would not perform the relevant
substitution because Maple would consider ri and rj to be complete variable names in
their own right.

Let us have a look at our fresh new elementary matrices now.

3.1 Introduction and Review 145

> S1,2, S1,3, S2,3;
M1(k),M2(k),M3(k);
Ar1+k·r2(k), Ar1+k·r3(k), Ar2+k·r1(k), Ar2+k·r3, Ar3+k·r1, Ar3+k·r2(k);

1 0 0

0 0 1

0 1 0

 ,


0 0 1

0 1 0

1 0 0

 ,


0 1 0

1 0 0

0 0 1



k 0 0

0 1 0

0 0 1

 ,


1 0 0

0 k 0

0 0 1

 ,


1 0 0

0 1 0

0 0 k




1 k 0

0 1 0

0 0 1

 ,


1 0 k

0 1 0

0 0 1

 ,


1 0 0

k 1 0

0 0 1

 ,


1 0 0

0 1 k

0 0 1

 ,


1 0 0

0 1 0

k 0 1

 ,


1 0 0

0 1 0

0 k 1


We now perform row reduction again on a real 3 × 3 matrix, just as we did above

for our 2× 2 matrix R. In fact, we even reuse the name. However, we proceed a little
more quickly, and take multiple steps at a time, where it is obvious to do so.
> R := 〈〈1,−2, 3〉|〈3, 5,−6〉|〈−7, 8, 9〉〉

1 4 −7

−2 5 8

3 −6 9



> Ar2+k·r1(2).Ar3+k·r1(−3).% 

1 4 −7

0 13 −6

0 −18 30




> M2

(
1
13

)
.% 

1 4 −7

0 1 − 6
13

0 −18 30




> Ar1+k·r2(−4).Ar3+k·r2(18).% 
1 0 −67

13

0 1 − 6
13

0 0 282
13



146 3 Linear Algebra

> M3

(
13
282

)
.% 

1 0 −67
13

0 1 − 6
13

0 0 1



> Ar1+k·r3

(
67
13

)
.Ar2+k·r3

(
6
13

)
.%

1 0 0

0 1 0

0 0 1


And so it is that we may replay this sequence of moves to find the inverse of R

(observing that the order of the A matrices at each step doesn’t matter).

> Ar1+k·r3

(
67
13

)
. Ar2+k·r3

(
6
13

)
.M3

(
13
282

)
. Ar1+k·r2(−4) . Ar3+k·r2(18) .M2

(
1
13

)
. Ar2+k·r1(2) . Ar3+k·r1(−3)

31
94

1
47

67
282

7
47

5
47

1
47

− 1
94

3
47

13
282



> R.% , %.R 

1 0 0

0 1 0

0 0 1

 ,


1 0 0

0 1 0

0 0 1


For simplicity’s sake, let’s call this sequence of elementary matrices

E1, E2, E3, E4, E5, E6, E7, E8

(because it’s easier to write and type). We know that

E1E2E3E4E5E6E7E8R = I or equivalently E1E2E3E4E5E6E7E8 = R−1

and we also know that all of the Ei matrices as well as the R matrix are invertible.
Recalling that (AB)−1 = B−1A−1, then it must be the case that

R = E−1
8 E−1

7 E−1
6 E−1

5 E−1
4 E−1

3 E−1
2 E−1

1

Checking this in Maple for our above example:

3.1 Introduction and Review 147

> Ar3+k·r1(3) . Ar2+k·r1(−2) .M2 (13) . Ar3+k·r2(−18) . Ar1+k·r2(4) .M3

(
282
13

)
. Ar2+k·r3

(
−6
13

)
. Ar1+k·r3

(
−67
13

)


1 4 −7

−2 5 8

3 −6 9


In fact, this will always happen for an invertible matrix. We have the following

theorem.

Theorem 2. Let A be a square matrix. The following are equivalent.

1. A is invertible.
2. The linear system Ax = 0 has only the trivial solution (i.e., x = 0).
3. The reduced row echelon form of A is the identity matrix.
4. A may be expressed as a product of elementary matrices.

Proof. Observe that if A is invertible, then

Ax = 0 ⇒ A−1(Ax) = A−10 ⇒ (A−1A)x = 0 ⇒ x = 0

showing that the x vector must be the zero vector.
If x = 0 is the only solution to the linear sy stem Ax = 0 then the augmented matrix

[A|0] must have reduced row echelon form [I|0] (corresponding to the solution x = 0).
And so the reduced row echelon form of A is I.

If the I is the reduced row echelon form of A then it must be the case that there is
some set of elementary matrices such that

E1E2 · · ·EiA = I =⇒ A = E−1
i · · ·E

−1
2 E−1

1

showing that A is expressible as the product of elementary matrices.
And finally if A is expressible as the product of elementary matrices, then A must

be invertible, inasmuch as the elementary matrices are all invertible, so

A−1 = E1E2 · · ·Ei

It is precisely this theorem that allows us to find the inverse of an invertible matrix A
by using row operations on the augmented matrix [A|I] where I is the identity matrix.
Remember, however, that in practice there’s no point to performing the row operations
with the elementary matrices, as directly performing row operations on a matrix is far
faster (both for a computer and for a human). However, the existence of the elementary
matrices allows us to prove the above theorem, whose utility is quite significant indeed.
> 〈R|ID〉 

1 4 −7 1 0 0

−2 5 8 0 1 0

3 −6 9 0 0 1



148 3 Linear Algebra

> ReducedRowEchelonForm(%)
1 0 0 31

94
1
47

67
282

0 1 0 7
47

5
47

1
47

0 0 1 − 1
94

3
47

13
282



3.2 Vector Spaces

3.2.1 Vector Spaces

Until now we have been using vectors without really saying what they are. However.
before we can do much more with linear algebra, we need to define exactly what a
vector, or rather a vector space is.

If V is a set of objects, and F is a field, then we call V a vector space—or, more
accurately, a vector space over F—if the elements of V and F interact as described
below. Note that fields for our purposes are nearly always real numbers R and sometimes
complex numbers C, although other fields do exist and may be used in place of F. The
elements of V are, not surprisingly, the vectors, and the elements of F are referred to
as scalars.

For V to be a vector space (over the field F, remember), then there must be an
addition operator on V (i.e., a way of adding any two vectors in such a way as to always
result in a vector) and a scalar multiplication operation (i.e., a way of multiplying any
scalar and any vector in such a way as to always result in a vector). In addition, the
following axioms must hold for u, v, w ∈ V and a, b ∈ F

1. u+ v = v + u (Commutativity of vector addition).
2. (u+ v) + w = u+ (v + w) (Associativity of vector addition).
3. There is an element 0 ∈ V such that 0 + u = u (Additive identity, or zero vector).
4. There is an element −v ∈ V such that v + (−v) = 0 (Additive inverse).

Anybody who has studied abstract algebra should recognize that the above four axioms
show that V must be an Abelian group. Continuing on:

5. a(u+ v) = au+ av (Distributive property).
6. (a+ b)u = au+ bu (Distributive property).
7. (ab)u = a(bu) (Associativity of scalar multiplication).
8. 1v = v where 1 ∈ F is the multiplicitave identity.

Scalar multiplication and vector addition interact in a very similar fashion to the
way the more familiar addition and multiplication of real or complex numbers interact.

We should already be familiar with some vector spaces, even if we have never thought
of them in such terms. The points of the Cartesian plane can be thought of as vectors,
and indeed we have used Maple to manipulate or produce them earlier. To be specific,
the set V in this case is the set R2 or R × R which consists of ordered pairs of real
numbers (R2 := {(x, y) |x ∈ R and y ∈ R}) and the field is the real numbers R. It is
straightforward to check that these two sets satisfy all the axioms above.

In a similar fashion we can see that the points in three-dimensional real space, or R3

also form a vector space over the real numbers. In fact, any n-dimensional real space

3.2 Vector Spaces 149

Rn := {(x1, . . . , xn) | xi ∈ R} forms a vector space over the real numbers, with vector
addition and scalar multiplication working as it does for R2 and R3.

We can extend this idea a little further by replacing the real numbers with complex
numbers and end up with Cn := {(z1, . . . , zn) | zi ∈ C} with vector addition and scalar
multiplication working in precisely the same way as with the real case (excepting, of
course, that we perform complex multiplication). Let’s have a quick look at that in
Maple.
> u, v := 〈1 + 2 · I, 2 + 3 · I, 3 + 4 · I〉, 〈5 + 6 · I, 6 + 7 · I, 7 + 8 · I〉

u, v :=


1 + 2 I

2 + 3 I

3 + 4 I

 ,


5 + 6 I

6 + 7 I

7 + 8 I




> u+ v; (9 + 10 · I) · u 
6 + 8 I

8 + 10 I

10 + 12 I



−11 + 28 I

−12 + 47 I

−13 + 66 I


We may even construct vector spaces of polynomials of fixed degree, or matrices of

a fixed size. It is left as an exercise for the reader to verify the vector space axioms for
both of these cases We denote the space of m× n matrices as Mm,n(F), and the space
of degree n polynomaials as Pn(F) (both over the field F).

We now demonstrate a useful correlation between the vector space Pn(F) and the
vector space Fn+1. Let p0 + p1 x + · · · + pn x

n ∈ Pn(F) (so pi ∈ F). We take the
vector (p0, p1, . . . , pn) ∈ Fn+1, and consider it as being equivalent.We can freely change
between these forms; given the vector we can easily construct the equivalent polynomial,
and given the polynomial we can easily construct the vector. For this example we use
n = 4, however this idea works for any n.
> P := p0 + p1 · x+ p2 · x2 + p3 · x3 + p4 · x4

Q := p0 + q1 · x+ q2 · x2 + q3 · x3 + q4 · x4

P := p0 + p1 x+ p2 x
2 + p3 x

3 + p4 x
4

Q := q0 + q1 x+ q2 x
2 + q3 x

3 + q4 x
4

> u :=′ u′ :
up, uq := Vector(5, i→ pi−1),Vector(5, i→ qi−1)

up, uq :=



p0

p1

p2

p3

p4


,



q0

q1

q2

q3

q4



150 3 Linear Algebra

We demonstrate that vector addition and polynomial addition produce equivalent
results, as do vector and polynomial scaling.[
> expand(k · P)

k p0 + k p1 x+ k p2 x
2 + k p3 x

3 + k p4 x
4

> k · up 

k p0

k p1

k p2

k p3

k p4


 > P +Q

p0 + p1 · x+ p+ 2 · x2 + p3 · x3 + p4 · x4 + q0 + q1 · x+ q + 2 · x2 + q3 · x3 + q4 · x4

[
> collect(%, x)

(p4 + q4)x4 + (q3 + p3)x3 + (q2 + p2)x2 + (q1 + p1) x+ p0 + q0

> up + uq 

p0 + q0

q1 + p1

q2 + p2

q3 + p3

p4 + q4


As previously mentioned, this works for any value of n (which should be clear, given

what we know about vectors and polynomials). We have, in effect, shown that polyno-
mials can be thought of as n+ 1 vectors, and that they can be interchangeably used as
vector spaces.

Incidentally, converting between forms in Maple is quite straightforward. If we multi-
ply the column vector (1, x, x2, x3, x4) on the left of our previous vectors we will retrieve
our polynomial. To go the other way, we use the CoefficientVector from the Poly-
nomialTools package, which returns a vector of the coefficients of a polynomial (as the
name suggests).[
> 〈1|x|x2|x3|x4〉 . (up + uq)

p0 + q0 + (q1 + p1)x+ (q2 + p2)x2 + (q3 + p3)x3 + (p4 + q4)x4

> PolynomialTools[CoefficientVector](P, x),PolynomialTools[CoefficientVector](Q, x)

p0

p1

p2

p3

p4


,



q0

q1

q2

q3

q4



3.2 Vector Spaces 151

This is all a special case of a result we look at a little later; that any finite-dimensional
vector space with dimension n can be thought of as Fn. This is of key use to us with
Maple.

3.2.2 Linear Combinations

Let V be a vector space, and let v1, v2, . . . , vk ∈ V . A linear combination of these vectors
is a new vector of the form v = a1 v1 + a2 v2 + · · ·+ ak vk where the ai are scalars (i.e.,
ai ∈ F). That v ∈ V follows directly from the axioms of a vector space.

We may wish to consider the set of all possible linear combinations of a set of vectors,
which we call the span of those vectors, for example, span({v1, v2, . . . , vk}) which is equal
to {a2 v2 + · · ·+ ak vk : ai ∈ F}.

Let S ⊂ V be a nonempty and finite set of vectors. A natural question arises as
to how we may tell whether a vector v is a linear combination of the vectors in S.
Equivalently this same question may be phrased as whether a vector is in the span of
S. For example, is the vector (7, 8, 9) a linear combination of the vectors (1, 2, 3) and
(4, 5, 6)?

For simplicity, we consider only the case of the vector spaces Fn. Think of what a
linear combination would mean in this case. If v is a linear combination of vectors in S
then

a1

 v11
...
v1n

+ a2

 v21
...
v2n

+ · · ·+ ak

 vk1
...
vkn

 = v =

 v1
...
vn


which is equivalent to  v11 v21 · · · vk1

...
...

. . .
...

v1n v2n · · · vkn


 a1

...
an

 =

 v1
...
vn


which, in turn, is a system of linear equations, just as we dealt with in Section 3.1.2.
If the linear system has at least one solution, then the vector v is a linear combination
of the vectors in S. Indeed if there are many solutions, then there are many ways to
represent v as such a linear combination, but this does not detract in any way from the
fact that it is a linear combination. If, however, there is no solution to the system, then
v cannot be written as a linear combination of the vectors in S.

This will be true for any set of vectors v1, . . . , vk, as long as our vector space is Fn.
We know how to solve such systems, so we can now easily answer our example question
from above.
> LinearSolve(〈〈1, 2, 3〉|〈4, 5, 6〉〉, 〈7, 8, 9〉)[

−1

2

]
It would seem that there is a linear combination here, with coefficients −1 and 2. We

can, of course, check this easily.

152 3 Linear Algebra
> −1 · 〈1, 2, 3〉+ 2 · 〈4, 5, 6〉 

7

8

9


This gives us a new way to look at simultaneous linear equations as well. Recall from

Section 3.1.2 our first (and simplest) example x + y = 2 and 2x + y = 3 which had
solution x = 1, y = 1. We constructed from this the linear system[

1 1
2 1

] [
x
y

]
=
[
2
3

]
which we may now, equivalently, consider as finding (2, 3) as a linear combination of
(1, 2) and (1, 1). The solution 1, 1 clearly works for this interpretation.
> 〈〈1, 2〉|〈1, 1〉〉 . 〈1, 1〉 [

2

3

]

> 1 · 〈1, 2〉+ 1 · 〈1, 1〉 [

2

3

]
We may use this same linear system technique with polynomials, as well, because

we established a correspondence between polynomials and n-tuples (meaning vectors in
Fn). Let us then ascertain whether −4x4 + x3 + 5x2 + 3x− 13 is a linear combination
of x4 + 3x3 + 7x2 − 6, 2x4 + 4x2 − 5x + 2 and 5x3 − 3x2 + 12x − 5. To do this, we
need to consider them as the vectors (−13, 3, 5, 1,−4), (−6, 0, 7, 3, 1), (2,−5, 4, 0, 2), and
(−5, 12,−3, 5, 0).

> p1 := x4 + 3 · x3 + 7 · x2 − 6;
p2 := 2 · x4 + 4 · x2 − 5 · x+ 2;
p3 := 5 · x3 − 3 · x2 + 12 · x− 5;
q := −4 · x4 + x3 + 5 · x2 + 3 · x− 13

p1 := x4 + 3x3 + 7x2 − 6
p2 := 2x4 + 4x2 − 5x+ 2
p3 := 5x3 − 3x2 + 12x− 5

q := −4x4 + x3 + 5x2 + 3x− 13

> u1, u2, u3 := seq(PolynomialTools[CoefficientVector](pi, x), i = 1..3);

u1, u2, u3 :=



−6

0

7

3

1


,



2

−5

4

0

2


,


−5

12

−3

5



3.2 Vector Spaces 153

> v := PolynomialTools[CoefficientVector](q, x)

v :=



−13

3

5

1

−4


Observe that the vector u3 is incorrect, as Maple saw only a degree-3 polynomial,

and not the degree-4 polynomial we intended. This is easily fixed by appending a 0 to
the bottom of u3 using the angle bracket notation.

> u3 := 〈u3, 0〉

u3 :=



−5

12

−3

5

0


Now we may solve the problem
> LinearSolve(〈u1|u2|u3〉, v) 

2

−3

−1


[
> 2 · p1 − 3 · p2 − p3 = q

−4x4 + x3 + 5 x2 + 3x− 13 = −4x4 + x3 + 5x2 + 3x− 13
and there we have it.

3.2.3 Linear Independence

Along with the question of whether a vector may be expressed as a linear combination
of other vectors comes a related but different question. If we have a nonempty and finite
set S ⊂ V , can we express one of them (any one) as a linear combination of the others?
If we can, then we say that the set S is linearly dependent. Conversely, if we cannot
express any of the vectors in S as a linear combination of the others, then we say the
set is linearly independent.

This is different from the question of whether an arbitrary vector v ∈ V is in the
span of S. The difference here is that previously v could have been any vector at all,
whereas now we are asking whether vectors in the subset S are linear combinations
of other vectors in the same subset which is a more specific question. Another way to
think about this idea is whether we can remove vectors from S and still have the same
span.

Another, equivalent, formulation of linear (in)dependence is to say that a finite set
{v1, . . . , vn} of vectors is linearly independent if and only if the only solution to a1v1 +
a2v2 + · · ·+ anvn = 0 is the trivial solution a1 = a2 = · · · = an = 0. To see that this is

154 3 Linear Algebra

an equivalent notion, suppose that v1 6= 0 can be expressed as a linear combination of
the other vectors,

v1 = a2v2 + · · ·+ anvn =⇒ 0 = a2v2 + · · ·+ anvn − v1

showing that the zero vector can be obtained as a nontrivial linear combination of
the vectors. If v2 or any other vi can be expressed as a linear combination of the
other vectors, then we may similarly construct the zero-vector as a non-trivial linear
combination. Conversely, now suppose that

a1v1 + a2v2 + · · ·+ anvn = 0 where a1 6= 0

Then

v1 =
(
−a2

a1

)
v2 + · · ·+

(
−an
a1

)
vn

showing that v1 can be written as a linear combination of the other vectors. If v2 or
any other vi is nonzero, then we can similarly show that it can be written as a linear
combination of the other vectors.

We have now shown that the two notions of linear independence (and, thus, linear
dependence) are equivalent.

This, in turn, allows us to link these linear independence notions to systems of linear
equations and matrix invertibility. If we wish to see if a set, S, of vectors is linearly
independent, we need to see if the zero vector can be expressed as a linear combination
of the vectors in S. This, as we have seen, can be accomplished by solving a linear
system.

For example, we have a look at the vectors (−1, 2, 3, 4), (1,−2, 3, 4), (1, 2,−3, 4), and
(1, 2, 3,−4), and see if they are a linearly independent set. We do this by solving the
linear system 

−1 1 1 1

2 −2 2 2

3 3 −3 3

4 4 4 −4




x1

x2

x3

x4

 =


0

0

0

0




> v := 〈−1, 2, 3, 4〉, 〈1,−2, 3, 4〉, 〈1, 2,−3, 4〉, 〈1, 2, 3,−4〉

v :=


−1

2

3

4

 ,


1

−2

3

4

 ,


1

2

−3

4

 ,


1

2

3

−4




> A := 〈v1|v2|v3|v4〉

A :=


−1 1 1 1

2 −2 2 2

3 3 −3 3

4 4 4 −4



3.2 Vector Spaces 155

> LinearSolve(A, 〈0, 0, 0, 0〉) 
0

0

0

0


The only solution is the trivial solution, therefore the vectors are linearly indepen-

dent. If we add a new vector into the mix, (1, 2, 3, 4), we can ask the same question.

> v := v, 〈1, 2, 3, 4〉

v :=


−1

2

3

4

 ,


1

−2

3

4

 ,


1

2

−3

4

 ,


1

2

3

−4

 ,


1

2

3

4




> A := 〈v1|v2|v3|v4|v5〉

A :=


−1 1 1 1 1

2 −2 2 2 2

3 3 −3 3 3

4 4 4 −4 4




> LinearSolve(A, 〈0, 0, 0, 0〉) 

_t10 4

_t10 4

_t10 4

_t10 4

−2 _t10 4


Now we have a linearly independent set. In fact, we can read straight from the

solution to the linear system that 2v5 = v1 + v2 + v3 + v4.

> t · v1 + t · v2 + t · v3 + t · v4 
2 t

4 t

6 t

8 t


Looking at the question of linear dependence as a linear system problem, in the case

of Fn, if we have more than n vectors, then we have a linear system with an infinite
number of solutions. This linear system would correspond to a set of simultaneous
equations with more unknowns as equations. As such, any set of more than n vectors
from the vector space Fn must be linearly dependent.

Furthermore, if we have exactly n vectors then we have a square matrix, and the
solution to Ax = 0 being the trivial solution is equivalent to the matrix being invertible,
by the theorem in Section 3.1.3. In fact, we may now add a new equivalence to this list;
that the column vectors are linearly independent.

156 3 Linear Algebra

We now look at this same phenomenon with polynomials and their correspondence
to n-tuples which we have been using. We start by using the same polynomials from
Section 3.2.2, as we already know the answer to the linear system. Recall that 2p1 −
3p2 − p3 = q or, in other words 2p1 + 3p2 − p3 − q = 0 and so the set {p1, p2, p3, q} is
linearly dependent.

> p1 := x4 + 3 · x3 + 7 · x2 − 6;
p2 := 2 · x4 + 4 · x2 − 5 · x+ 2;
p3 := 5 · x3 − 3 · x2 + 12 · x− 5;
q := −4 · x4 + x3 + 5 · x2 + 3 · x− 13

p1 := x4 + 3x3 + 7x2 − 6
p2 := 2x4 + 4x2 − 5x+ 2
p3 := 5x3 − 3x2 + 12x− 5

q := −4x4 + x3 + 5x2 + 3x− 13[
> 2 · p1 − 3 · p2 − p3 − q

0
Let’s try some larger polynomials. We use 90x5 + 80x4 + 19x3 + 88x2 − 82x − 70,

41x5 + 91x4 + 29x3 + 70x2 − 32x− 1 and 52x5 − 13x4 + 82x3 + 72x2 + 42x+ 18. > p := 90x5 + 80x4 + 19x3 + 88x2 − 82x− 70 , 41x5 + 91x4 + 29x3 + 70x2−
32x− 1 , 52x5 − 13x4 + 82x3 + 72x2 + 42x+ 18 :


> p1; p2; p3

90x5 + 80x4 + 19x3 + 88x2 − 82x− 70
41x5 + 91x4 + 29x3 + 70x2 − 32x− 1
52x5 − 13x4 + 82x3 + 72x2 + 42x+ 18

> u := seq(PolynomialTools[CoefficientVector](pi, x), i = 1..3)

u :=



−70

−82

88

19

80

90


,



−1

−32

70

29

91

41


,



18

42

72

82

−13

52



> LinearSolve(〈u1|u2|u3〉, 〈0, 0, 0, 0, 0, 0〉)

0

0

0


We can see that our polynomials are linearly independent. We now add two more

polynomials to this list, −19x5− 68x4− 89x3 + 66x+ 77 and −80x5− 19x4− 62x3 +
81x2 + 22x+ 50.

3.2 Vector Spaces 157 > p := p, −19x5 − 68 x4 − 89x3 + 66x+ 77, −80x5 − 19 x4 − 62x3 + 81x2

+ 22x+ 50 :



> u := u, seq(PolynomialTools[CoefficientVector](pi, x), i = 4..5)

u :=



−70

−82

88

19

80

90


,



−1

−32

70

29

91

41


,



18

42

72

82

−13

52


,



77

66

0

−89

−68

−19


,



50

22

81

−62

−19

−80




> LinearSolve(〈u1|u2|u3|u4|u5〉, 〈0, 0, 0, 0, 0, 0〉)

0

0

0

0

0


Our collection of vectors is still linearly independent. We add one more polynomial

162x5 − 73x4 + 45x3 + 9x2 + 36x− 24[
> p := p, 162x5 − 73 x4 + 45x3 + 9x2 + 36x− 24 :



> u := u,PolynomialTools[CoefficientVector](p6, x)

−70

−82

88

19

80

90


,



−1

−32

70

29

91

41


,



18

42

72

82

−13

52


,



77

66

0

−89

−68

−19


,



50

22

81

−62

−19

−80


,



−24

36

9

45

−73

162




> A := 〈u1|u2|u3|u4|u5|u6〉

A :=



−70 −1 18 77 50 −24

−82 −32 42 66 22 36

88 70 72 0 81 9

19 29 82 −89 −62 45

80 91 −13 −68 −19 −73

90 41 52 −19 −80 162


[
> Determinant(A)

0

158 3 Linear Algebra

We have a zero determinant, which tells us that the matrix is not invertible, which
in turn tells us that the column vectors are linearly dependent. This, in turn, tells us
that we have a linearly dependent set of polynomials. We go ahead and solve the linear
system.

> LinearSolve(A, 〈0, 0, 0, 0, 0, 0〉) 

−_t12 5

_t12 5

−_t12 5

−_t12 5

_t12 5

_t12 5


We may read directly from this solution that −t·p1 +t·p2−t·p3−t·p4 +t·p5 = −t·p6.
> −t · p1 + t · p2 − t · p3 − t · p4 + t · p5

−t
(
90x5 + 80x4 + 19x3 + 88x2 − 82x− 70

)
+ t
(
41 x5 + 91x4 + 29x3 + 70x2

−32x− 1)− t
(
52x5 − 13x4 + 82x3 + 72x2 + 42x+ 18

)
− t
(
−19x5 − 68x4

−89x3 + 66x+ 77
)

+ t
(
−80 x5 − 19x4 − 62x3 + 81x2 + 22x+ 50

)
[
> simplify(%)

24 t− 162 tx5 + 73 tx4 − 45 tx3 − 9 tx2 − 36 tx[
> sort(%)

−162 tx5 + 73 tx4 − 45 tx3 − 9 tx2 − 36 tx+ 24 t

3.2.4 Basis and Dimension

Having discussed linear combinations and linear independence, we now come to the
notion of the basis for a vector space. If we have a subset S ⊂ V of vectors, then it is
possible that the span of S (the collection of all linear combinations of the vectors) may
indeed be the entire vector space V . If, in addition, S is linearly independent, then we
say that S is a basis of V .

Because a basis, B say, must be linearly independent, then no vector in B can be
made from a linear combination of the other vectors, and so if we remove a basis vector,
the span of the resultant set will no longer be all of V . Furthermore, if we add any vector,
v ∈ V to B, then the new set will no longer be linearly independent (because v will be
able to be written as a linear combination of the other basis vectors). As such we can
think of a basis as the smallest set of vectors that span a given vector space.

We should be familiar with some standard bases. For example, F3 has basis (1, 0, 0),
(0, 1, 0), and (0, 0, 1). In fact Fn has a standard basis of n vectors

1
0
0
...
0

 ,


0
1
0
...
0

 , . . . ,


0
0
...
0
1



3.2 Vector Spaces 159

An interesting result, which we do not prove, is that any basis for a given vector space
will always have the same number of elements. This gives rise to the notion of dimension
of a vector space. The dimension of a vector space V is the number of elements in any
basis for the space.

If we look to polynomial spaces again, we may see that the space of all degree-n poly-
nomials has a basis consisting of the n+ 1 elements {1, x, x2, . . . , xn} or, alternatively,
{xk : 0 ≤ k ≤ n and k ∈ Z}. In fact, what we have been doing with our correspondence
between polynomials and n-tuples has been to establish a correspondence between their
basis vectors. More correctly, we have established a correspondence between degree-n
polynomials and (n+ 1)-tuples.

In fact, this notion extends to any finite-dimensional vector space, and allows us to
treat any n-dimensional vector space as being Fn. This allows us to use Maple vectors to
perform calculations with any finite-dimensional vector space, just as we have previously
been doing with polynomial spaces. This result is nontrivial, and should be proved in
any good linear algebra text. We do not prove it here.

The standard bases are not the only basis for any given space; in fact there are many.
In fact, if V is an n-dimensional vector space, then any linearly independent subset of
V with exactly n elements will be a basis for V . We explore this a little now.

We choose (1, 2) and (−1, 3) as a linearly independent set of vectors in R2. That
these vectors are linearly independent should be clear, but we shall verify this with
Maple regardless.
> v = 〈1, 2〉, 〈−1, 3〉

v :=
[

1

2

]
,

[
−1

3

]
[
> Determinant(〈v1 |v2 〉)

5
Our claim is that any vector (a, b) in R2 may be expressed as a linear combination

of our basis vectors. If we ask Maple this directly, we do not get an entirely satisfactory
answer.
> c1 · v1 + c2 · v2 [

c1 − c2

2 c1 + 3 c2

]
However, we are asking a question about when (or, in this case, if) a vector is a linear

combination of other vectors. We know that this problem can be solved with a linear
system. Attacking the problem in this way gives a better answer.
> LinearSolve(〈v1|v2〉) 

3
5 a+ 1

5 b

−2
5
a+ 1

5
b



>
(

3a
5

+ b

5

)
· v1 +

(
−2a

5
+ b

5

)
· v2 [

a

b

]

160 3 Linear Algebra

In fact, we may use this technique to verify the claim that any n linearly independent
vectors of an n-dimensional vector space will form a basis for the space. We do this by
treating the problem as the equivalent question of whether an arbitrary vector may
be constructed as a linear combination of the basis vectors, which in turn may be
thought of as solving the vector equation Ax = b. In this case, A is the square matrix
constructed with the columns being the column vectors of the (alleged) basis vectors.
If the basis vectors are linearly independent, then the matrix is invertible, and so the
solution Ax = b has a unique solution for every b.

Let’s look at this with some polynomials now.[
> p := x3, x3 + 1, x3 + x+ 1, x3 + x2 + x+ 1

p := x3, x3 + 1, x3 + x+ 1, x3 + x2 + x+ 1

> for i from 1 to 4 do pi od
x3

x3 + 1
x3 + x+ 1

x3 + x2 + x+ 1
We have defined 4 linearly independent degree-3 polynomials. We convert these into

equivalent 4-tuples, and verify the linear independence.

> u := seq(PolynomialTools[CoefficientVector](pi, x), i = 1..4)

u :=


0

0

0

1

 ,


1

0

0

1

 ,


1

1

0

1

 ,


1

1

1

1


[
> Determinant(〈u1|u2|u3|u4〉)

−1
Now all that remains to be seen is whether a general polynomial dx3+cx2+bx+a can

be constructed as a linear combination of the polynomials ui. We answer this question
in F4 using our equivalencies, and verify the answer in P3(F).

> LinearSolve(〈u1|u2|u3|u4〉, 〈a, b, c, d〉)
−a+ d

−b+ a

−c+ b

c


[
> (−a+ d) · p1 + (−b+ a) · p2 + (−c+ b) · p3 + c · p4

(−a+ d)x3 + (−b+ a)
(
x3 + 1

)
+ (−c+ b)

(
x3 + x+ 1

)
+ c

(
x3 + x2 + x+ 1

)
[
> simplify(%)

x3d+ a+ bx+ cx2[
> sort(%)

dx3 + cx2 + bx+ a

3.3 Linear Transformations 161

And so, not only can we see that the polynomials form a basis for P3(F), but we even
have a formula for the coefficients the basis vectors will have for any given polynomial.

3.3 Linear Transformations

3.3.1 Introduction to Linear Transformations

We now look at functions between vector spaces. Such functions are sometimes called
transformations. We say a function (or transformation) is linear if it preserves linear
combinations. That is if we have vector spaces U, V , and a function f : V → V , we say
that f is linear if

f(c1v1 + c1v1) = c1f(v1) + c2f(v2) for each c1, c2 ∈ F and v1, v2 ∈ V

or, in other words if we put a linear combination of vectors into the function, what we
get out is the same linear combination, but of the images of our original vectors.

Let’s look at two simple examples of functions from R2 → R2.

f : R2 → R2 g : R2 → R2[
a
b

]
7→
[

2a+ b
b− a

] [
a
b

]
7→
[
a2

b

]
[
> f := v → 〈2 · v1 + v2, v2 − v1〉

f := v → 〈2 v1 + v2, v2 − v1〉[
> g := v → 〈v2

1, v2〉
g := v → 〈v2

1, v2〉
Having defined our functions, we may now ascertain whether they are linear.
> f (c1 · 〈u1, u2〉+ c2 · 〈v1, v2〉) = c1 · f(〈u1, u2〉) + c2 · f(〈v1, v2〉)[

2 c1u1 + 2 c2v1 + c1u2 + c2v2

c1u2 + c2v2 − c1u1 − c2v1

]
=
[
c1 (2u1 + u2) + c2 (2 v1 + v2)

c1 (u2 − u1) + c2 (v2 − v1)

]

> simplify(%)[

2 c1u1 + 2 c2v1 + c1u2 + c2v2

c1u2 + c2v2 − c1u1 − c2v1

]
=
[

2 c1u1 + 2 c2v1 + c1u2 + c2v2

c1u2 + c2v2 − c1u1 − c2v1

]
We see that f is linear.
> g (c1 · 〈u1, u2〉+ c2 · 〈v1, v2〉) = c1 · g(〈u1, u2〉) + c2 · g(〈v1, v2〉)[

(c1u1 + c2v1)2

c1u2 + c2v2

]
=
[
c1u1

2 + c2v1
2

c1u2 + c2v2

]
We see that because, in general, c1u

2
1 + c2v

2
1 6= (c1u1 + c2v1)2 it is the case that g is

not linear.

162 3 Linear Algebra

3.3.2 Linear Transformations as Matrices

We know that every vector in a given vector space may be written as a linear com-
bination of basis vectors. We also know that a linear transformation preserves linear
combination. It follows then that once we know how a linear transformation modifies
the basis vectors of a vector space, we know how it will modify any vector in the space.

We now extend our equivalence between vector spaces and n-tuples a little. If
v1, . . . , vn is a basis for an n-dimensional vector space, then we may write an arbi-
trary vector u = c1v1 + · · · + cnvn simply as the n-tuple (c1, . . . , cn). This is precisely
what we have been doing previously with polynomials and matrices. However, we may
use this idea to write the same vector in Fn in many different ways.

Let us recall an example from Section 3.2.4, where we showed that the vectors (1, 2)
and (−1, 3) formed a basis for R2. Of course, these vectors are already written in terms
of the standard basis (1, 0) and (0, 1) in that (1, 2) = 1 · (1, 0) + 2 · (0, 1) and (−1, 3) =
−1 ·(1, 0)+3 ·(0, 1). We already see our principle in action. However, things can become
confusing, as we are not altogether accustomed to thinking of (a, b) as a shorthand
notation for these linear combinations, and worse still we are about to be comparing
different bases. So we now give these bases names. Let S (for “standard”) be the basis
{(1, 0), (0, 1)} and let B (for, simply, “basis”) be our alternate basis {(1, 2), (−1, 3)}.

At this stage, it is quite important that we be aware of just which basis we are
referring to at any one time. We do this by denoting what basis a vector is in respect to
by using a subscript. That is, for some basis A = {a1, . . . , an}, the vector (u1, . . . , un)A
denotes the vector that is equal to u1a1 + · · · + unam. If we do not specify a basis in
this way, and it is not abundantly clear from the context which we mean, then we mean
the standard basis.

Returning to our example, let us take the vector v = (5, 15). To be more clear, we
mean (5, 15)S . We know from our example in Section 3.2.4 that we can write this vector
as a linear combination of our basis B with the coefficients c1 = 3

5 · 5 + 1
5 · 15 = 6 and

c2 = − 2
5 · 5 + 1

5 · 15 = 1 so that (5, 15) = 6 · (1, 2) + 1 · (−1, 3). All of this is with
respect to the usual basis, remember, and so should feel familiar. However, because of
this, we could equally well write the vector with respect to the alternate basis B and
say that v = (6, 1)B . There is no question that we refer to the same actual vector within
our vector space. The reader who is familiar with representation of natural numbers in
different bases should see a similarity with this idea.

So now, when we see a vector written as an n-tuple we should think of this as the list
of coefficients of some basis, even if that basis is simply the standard basis. In particular
the vector (c, 0, . . . , 0) represents the vector which is the first basis vector scaled by a
constant c, (0, c, 0, . . . , 0) as the second basis vector scaled by a constant c, and so on.

Observe, now, the effect matrix multiplication has on these vectors. We think of a
matrix as being a collection of column vectors.
> M := 〈〈u1, u2〉|〈v1, v2〉〉

M :=
[
u1 v1

u2 v2

]
Observe that due to the nature of matrix multiplication, multiplying M on the right

by the vector (c, 0) will yield the column vector (cu1, cu2). Similarly multiplying M on
the right by the vector (0, d) will yield the column vector (dv1, dv2).

3.3 Linear Transformations 163
> M.〈c, 0〉 [

u1 c

u2 c

]

> M.〈0, d〉 [

v1 d

v2 d

]
It should be clear that this will hold for any n×m matrix and n-tuple. Furthermore

multiplying M on the right by the vector (c, d) will yield the vector (cu1 + dv1, cu2 +
dv2) = c(u1, u2) + d(v1, v2).
> M.〈c, d〉 = c · 〈u1, u2〉+ d · 〈v1, v2〉[

u1c+ v1d

u2c+ v2d

]
=
[
u1c+ v1d

u2c+ v2d

]
Again, because of the way matrix multiplication is performed, this idea extends to

any n×m matrix and n-tuple.
The point to all this is to demonstrate that matrix multiplication coincides with a lin-

ear combination of the column vectors of the matrix. It can be fairly easily checked that
matrix multiplication itself is a linear transformation. What is less immediately obvious
(but is strongly suggested by the above observations) is that every linear transformation
between finite-dimensional vector spaces can be represented by matrix multiplication,
for a suitable matrix.

We put this information together now. We know that a vector is just a shorthand
way of writing a linear combination of basis vectors. We also know that linear trans-
formations preserve linear combinations. Finally we know multiplying a matrix on the
left by a vector creates a linear combination of the row vectors of that matrix. So, if we
calculate the image of the basis vectors under the transformation, and then construct
the matrix whose column vectors are those image vectors (in the correct order), then
multiplying that matrix on the right by any vector (written with respect to the basis)
will be exactly the same as applying the linear transformation to the vector directly.

For example, using our linear function f from Section 3.3.1,
> M := 〈f(〈1, 0〉)|f(〈0, 1〉)〉 [

2 1

−1 1

]

> f(〈a, b〉) = M.〈a, b〉 [

2 a+ b

b− a

]
=
[

2 a+ b

b− a

]
We use this concept now to rotate some plots in R2. Specifically, to rotate them

around the origin (as rotation around an arbitrary point is not, in general, a linear trans-
formation). We need only know what happens to the standard basis vectors (1, 0), (0, 1)
under the rotation. It is simpler to use polar co-ordinates, however, be warned that
polar co-ordinates (r, θ) most emphatically are not a linear combination of basis vec-
tors. They refer to a distance from the origin and an angle from the x-axis. To avoid
confusion, we use the polar form of complex numbers eiθ when referring to points in
polar form.

164 3 Linear Algebra

As complex numbers, our basis vectors are simply 1 = ei0 and ei
π
2 . Rotating anti-

clockwise by an angle of θ we have that

(1, 0) = 1 7→ eiθ = (cos(θ), sin(θ))
(0, 1) = ei

π
2 7→ ei(

π
2 +θ) =

(
cos
(
π
2 + θ

)
, sin

(
π
2 + θ

))
and we can now construct our matrix, which we construct as a function of θ so that we
may reuse it for different angles.
> R := theta→

〈
〈cos(theta), sin(theta)〉|

〈
cos
(

Pi
2 + theta

)
, sin

(
Pi
2 + theta

)〉〉
R := θ →

〈
〈cos(θ), sin(θ)〉|

〈
cos
(

Pi
2 + θ

)
, sin

(
Pi
2 + θ

)〉〉

> R(theta) [

cos (θ) − sin (θ)

sin (θ) cos (θ)

]
The observant student will notice thatMaple has simplified our second column vector

for us. These verifications can easily be verified (cos(π/2 + θ) = − sin(θ) and sin(π/2 +
θ) = cos theta). This is the standard form for a rotation matrix in R2.

Let us first rotate a parabola through an angle of 1
3π. In order for this linear function

to be applied, the matrix must be multiplied with a vector, so we need to use the vector
equation (or parameterized equation) for the parabola. That is, (x, y) = (t, t2).
> R

(
Pi
3

)
.〈t, t2〉 

1
2
t− 1

2
√

3 t2

1
2
√

3 t+ 1
2 t

2


This gives us our parameterization of the rotated parabola, but we need to turn it

into a list with a range for t so that the plot function will know what to do with it. > convert(%, list) [
1
2 t−

1
2
√

3t2, 1
2
√

3t+ 1
2 t

2
]

 > P := [op(%), t = −2..2][
1
2
t− 1

2
√

3t2, 1
2
√

3t+ 1
2
t2, t = −2 . . . 2

]
And now we can plot it.

3.3 Linear Transformations 165

> plot(P, scaling = constrained)

And now we rotate a sine curve clockwise by 1
4π.

> plot
([

op
(

convert
(
R

(
−Pi

4

)
.〈t, sin(t)〉, list

)
, t = −2 · Pi ..2 · Pi

)]
,

scaling = constrained
)

Finally we make an observation. Because every linear transformation can be repre-
sented as matrix multiplication, it should then be clear that a linear transformation
may only produce linear combinations of the components of a vector. In other words,
given an arbitrary vector (v1, . . . , vn) we should never see vki , vivj or anything similar
as components of the resultant vector. We can only see linear combinations of the vi,

166 3 Linear Algebra

as a result of matrix multiplication. Looking back at our examples from Section 3.3.1
it should be quite clear now that g : (a, b) 7→ (a2, b) could not possibly be a linear
mapping, whereas f : (a, b) 7→ (2a+ b, b− a) clearly is.

3.3.3 Eigenvectors and Eigenvalues

If we have a linear transformation, T : V → V say, operating on a vector space V , then
it might be the case that there is a vector v ∈ V that doesn’t get moved at all by T ,
and is only scaled. That is, T (v) = λv. We call such a vector an eigenvector , and λ the
eigenvalue corresponding to the eigenvector. Because 0 always remains unchanged by
a linear transformation, we do not consider it to be an eigenvector. Note that if λ = 1
then v is not only an eigenvector, but it is a fixed point of the mapping (as it remains
unchanged by the transformation).

The question now is how do we find these eigenvectors? First, instead of thinking
of T (v) as the image of v under the transformation T , we consider T to be a matrix
(which we can do in light of the previous section). So we are looking for solutions to
the vector equation Tv = λv, which we may equivalently write Tv = λIv, where I is
the identity matrix. Then

Tv = λIv ⇒ Tv − λIv = 0 ⇒ (T − λI)v = 0

and we now have a vector equation corresponding to a linear system of the sort we have
dealt with earlier in Sections 3.1.2 and 3.2.

We know that 0 is not an eigenvector, but will be a solution to the linear system,
so we need the linear system to have a nontrivial solution. We know from our theorem
that this will not happen if the determinant of the matrix is nonzero, so we are looking
for values of λ where the determinant of T − λI is zero.

Let us have a look at our linear transformation f from Section 3.3.1.
> T := 〈f(〈1, 0〉)|f(〈0, 1〉)〉 [

2 1

−1 1

]

> T − lambda · IdentityMatrix(2)[

2− λ 1

−1 1− λ

]
The resultant matrix T − λI is simply the matrix T with lambda subtracted from

each entry on the diagonal. This always happens no matter the size of the matrix. When
we calculate the determinant of this (or any other) matrix, we end up with a polynomial
in λ.[
> Determinant(%)

3− 3λ+ λ2

This is called the characteristic polynomial of T . Maple can calculate this directly
using the CharacteristicPolynomial function from the LinearAlgebra package. To use
this function we also need to tell it the name we want to use for the variable of the
polynomial.

3.3 Linear Transformations 167[
> CharacteristicPolynomial(T, lambda)

3− 3λ+ λ2

We do not yet have solutions for v, but we have solutions for λ. We know the only
possible eigenvalues are the values of λ that solve χ(λ) = 0 where χ is the characteristic
polynomial. Once we know the values for λ (of which there can only be finitely many,
for they are the roots of a polynomial) then we may substitute them into our linear
system and solve for v. > solve(% = 0) [

3
2 + 1

2 I
√

3, 3
2 −

1
2 I
√

3
]

We can see straight away that our linear transformation f has no eigenvectors, be-
cause the possible eigenvalues are all complex, and there is no possible way our integer-
valued matrix multiplied by any real-valued vector could produce a complex scaling of
that vector.

Let us look at another example—one that actually has eigenvectors this time—and
in three dimensions.
> T := 〈〈−1,−6, 4〉|〈2, 6,−2〉|〈0, 0, 1〉〉

−1 2 0

−6 6 0

4 −2 1


[
> CharacteristicPolynomial(T, lambda)

−6 + λ3 − 6λ2 + 11λ[
> factor(%, lambda)

(λ− 1)(λ− 2)(λ− 3)
We can see straight away that λ ∈ 1, 2, 3 are solutions to the characteristic polyno-

mial, and so are eigenvalues of the matrix T . This is great, but we still need to know
what the corresponding eigenvectors are. All we know at the moment is that, for our
linear map T , there is a vector which stays the same (after T is applied), there is an-
other vector which becomes twice as large, and yet another vector which becomes three
times as large. But we have no idea which vectors they may be.1

In order to find the vectors, we return to our vector equation (T−λI)v = 0. However,
we now know the only values of λ that could possibly satisfy this equation, and if we
substitute these values into the above equation (one by one) we have three separate
equations of the formMv = 0 whereM = (T −λI). These are, of course, linear systems
that we should be quite familiar and adept with by now. So we simply solve these linear
systems.
1 The astute reader who is familiar with matrix operations should be able to make a good guess,
from the matrix of T alone, as to which vector remains unchanged.

168 3 Linear Algebra

> for lambda in [1, 2, 3] do
′ lambda′ = lambda,LinearSolve(T − lambda · IdentityMatrix(3), 〈0, 0, 0〉)

od;
lambda :=′ lambda′ :

λ = 1,


0

0

_t5 3



λ = 2,


_t6 3

3
2 _t6 3

_t6 3



λ = 3,


_t7 1

2 _t7 1

0


And we have our answer, although we need to think about it for a second. Maple

has given us a whole family of vectors for each eigenvalue. This shouldn’t surprise us,
for if we have an eigenvector v, then Tv = λv for some λ. But because T is linear, then
T (kv) = kTv = kλv for any k ∈ F in our field of scalars. So any scale of v is also an
eigenvector corresponding to the eigenvector λ. What we usually do here is to just pick
the simplest looking such vector to represent all of the possible vectors. In this spirit
we declare that (0, 0, 1), (1, 3

2 , 1) and (1, 2, 0) are the eigenvectors corresponding to the
eigenvectors 1, 2, and 3, respectively.

To demonstrate this, we check this answer in Maple. We simplify the parameter in
the vectors by calling it t.
> T . 〈0, 0, t〉 

0

0

t



> T .

〈
t,

3
2 · t, t

〉


2 t

3 t

2 t



> T . 〈t, 2 · t, 0〉 

3 t

6 t

0


We explore one more example. In the previous example we had a 3×3 matrix, and we

ended up with three distinct eigenvalues, and three distinct single-dimensional families
of eigenvectors, each one corresponding to a particular eigenvalue. This does not always

3.3 Linear Transformations 169

happen in general.2 Furthermore, there is no requirement that eigenvalues be nonzero
(unlike eigenvectors). The example we now look at demonstrates both of these points.

> T := 〈〈2, 4, 3, 1〉|〈−5,−19,−15,−29〉|〈6, 24, 19, 38〉|〈0, 0, 0, 2〉〉
2 −5 6 0

4 −19 24 0

33 −15 19 0

17 −29 38 2


[
> CharacteristicPolynomial(T, lambda)

λ4 − 4λ3 + 5λ2 − 2λ[
> factor(%, lambda)

λ (λ− 2) (λ− 1)2

This time we have 0, 1, and 2 as the only eigenvalues, however, notice that in this
case 1 is a repeated root of the characteristic polynomial, and so we also consider it to
be a repeated eigenvalue of the linear operator (or, equivalently, matrix) T . We now
find the eigenvectors.

> for lambda in [0, 1, 2] do
′ lambda′ = lambda,LinearSolve(T−lambda · IdentityMatrix(4), 〈0, 0, 0, 0〉)

od;
lambda :=′ lambda′ :

λ = 0,


2 _t5 4

8 _t5 4

6 _t5 4

_t5 4



λ = 1,


5 _t6 2 − 6 _t6 3

_t6 2

_t6 3

24 _t6 2 − 32 _t6 3



λ = 2,


0

0

0

_t7 4


Now, we have (2, 8, 6, 1) as “the” eigenvector corresponding to eigenvalue 0 as well

as (0, 0, 0, 1) as “the” eigenvector corresponding to eigenvalue 2. Of course, any scale
multiple of these vectors is also a corresponding eigenvector. In particular, this means
that any scale of the vector (2, 8, 6, 1) will be turned into the zero vector by our trans-
formation T . Eigenvalue 1 is more interesting, but we verify the easy ones first.
2 Indeed, we have already seen an example with no eigenvalues or eigenvectors.

170 3 Linear Algebra

> T . 〈2t, 8t, 6t, t〉 
0

0

0

0




> T . 〈0, 0, 0, t〉 
0

0

0

2 t


Now, to our repeated eigenvalue, 1: we need to recognize that the vector given to

us by Maple has two parameters, and so is a two-dimensional family of vectors. The
parameterization may be written as t · (5, 1, 0, 24) + s · (−6, 0, 1,−32). We could think
of (5, 0, 1, 24) and (−6, 0, 1,−32) as being two separate eigenvectors of T , both corre-
sponding to the eigenvalue 1 (and, of course, any scale of each vector) as follows.

> T . 〈5t, 0, t, 24t〉 
5 t

t

0

24 t




> T . 〈−6t, 0, t,−32t〉 
−6 t

0

t

−32 t


However, this is really only half the story. What Maple has given us is a two-

dimensional family of vectors, any of which are left unchanged by our transformation
T

> 〈5t, 0, t, 24t〉+ 〈−6s, 0, s,−32s〉 ;T .%
5 t− 6 s

t

s

24 t− 32 s




5 t− 6 s

t

s

24 t− 32 s



3.3 Linear Transformations 171

Observe, firstly, that each family of eigenvectors is, in fact, a vector subspace of the
space which the matrix acts on; verification is left as an exercise for the reader. These
spaces are called eigenspaces.

Observe, secondly, that in this, and the previous, example the dimensions of the
eigenspaces all add up to the dimension of the whole space. In the most recent case we
had eigenspaces of degree 2, 1, and 1 which add together to give us 4 which was the
dimension of the vector space upon which the matrix acted. This is not always the case,
but we explore the cases in which it happens in the next section.

3.3.4 Diagonalization

We motivate this section with an observation regarding a previous example. Let us look
at our 3× 3 matrix from the previous section,

−1 2 0

−6 6 0

4 −2 1


and its eigenvectors, (0, 0, 1), (1, 3/2, 1) and (1, 2, 0) which correspond to eigenvalues 1, 2
and 3 respectively. In order to avoid messy fractions, we use the vector (2, 3, 2) instead
of (1, 3/2, 1) as they are from the same eigenspace.
> T := 〈〈−1,−6, 4〉|〈2, 6,−2〉|〈0, 0, 1〉〉

−1 2 0

−6 6 0

4 −2 1



> e1, e2, e3 := 〈0, 0, 1〉, 〈2, 3, 2〉, 〈1, 2, 0〉

e1, e2, e3 :=


0

0

1

 ,


2

3

2

 ,


1

2

0


The observation we make is simple. These eigenvectors are linearly independent,

and because there are three of them, they form an alternate basis for R3. This is an
observation that we can easily check in Maple thanks to our work back in Section 3.2.
> LinearSolve(〈e1|e2|e3〉, 〈0, 0, 0〉) 

0

0

0


Now, inasmuch as our vectors e1, e2, and e3 form a basis (which we call B), then we

can write any vector v ∈ R3 as a linear combination of these new basis vectors. We use
Maple to find an explicit formula for this new combination, by solving the appropriate
linear system (just as we did in Section 3.2.4).

172 3 Linear Algebra
> LinearSolve(〈e1|e2|e3〉, 〈x, y, z〉)

−4x+ 2 y + z

2x− y

−3 x+ 2 y


[
> ChgBasis := v → LinearSolve(〈e1|e2|e3〉, v)

f := v → LinearAlgebra: -LinearSolve(〈e1|e2|e3〉, v)
Let’s see what the vector (1, 1, 1) becomes in terms of the basis B.
> ChgBasis(〈1, 1, 1〉) 

−1

1

−1


It is quite elementary to verify that (−1, 1,−1)B = −1 · (0, 0, 1) + 1 · (2, 3, 2) − 1 ·

(1, 2, 0) = (1, 1, 1).
The question that may occur now, is what will our linear operator T do to vectors

written in terms of our new basis? Clearly T has not changed, and neither have the
vectors themselves, just how we write them. However, because we are writing the vectors
slightly differently now, our old matrix for T will probably not be appropriate anymore,
as it was expecting to be multiplied by a vector that contained the coefficients of the
standard basis, and not our new basis.

If we think about this for a bit, we can apply what we already know about linear
transformations to obtain an answer. We know that, because T is linear, then T (λ1v1 +
λ2v2) = λ1T (v1) + λ2T (v2). We apply this to an arbitrary vector v written in terms of
our basis B; that is, v = λ1e1 + λ2e2 + λ3e3. When we do this we get that

T (v) = T (λ1e1 + λ2e2 + λ3e3)
= λ1T (e1) + λ2T (e2) + λ3T (e3)
= λ1 · 1 · e1 + λ2 · 2 · e2 + λ3 · 3 · e3

because, in this case e1, e2, and e3 are eigenvectors corresponding to eigenvalues 1, 2,
and 3, respectively. To put this more succinctly

T ((λ1, λ2, λ3)B) = (λ1, 2λ2, 3λ3)B

which can be achieved by multiplication (on the left) by the matrix1 0 0
0 2 0
0 0 3


We demonstrate this for an arbitrary three-dimensional vector, v = (x, y, z). First,

we show what the transformation does to the vector directly. We call this new vector
w.

3.3 Linear Transformations 173
> w := T.〈x, y, z〉

w :=


−x+ 2 y

−6x+ 6 y

4x− 2 y + z


Recall from earlier that v when written as a vector with respect to the basis B is

v = (−4x+ 2y + z, 2x− y,−3x+ 2y)B

Now, from our recent calculations, we should expect T (v) to be equal to

T (v) = (1·(−4x+2y+z), 2·(2x−y), 3·(−3x+2y))B = (−4x+2y+z, 4x−2y,−9x+6y)B

which is, as it happens, exactly what happens.
> ChgBasis(w) 

−4x+ 2 y + z

4x− 2 y

−9x+ 6 y


Let us look a little more closely at the change of basis. One should notice that it is

a linear transformation, as it is the solution of a linear system of equations. As such
we should be able to represent it as matrix multiplication. We construct the matrix as
we did in Section 3.3.2, by seeing what the change of basis does to the standard basis
vectors. We call the matrix B.
> B := 〈ChgBasis(〈1, 0, 0〉)|ChgBasis(〈0, 1, 0〉)|ChgBasis(〈0, 0, 1〉)〉

B :=


−4 2 1

2 −1 0

−3 2 0


The form of this matrix should not be surprising when we compare it to the elements

of the form of an arbitrary vector (v, above). We see a column of 4, 2, and −3 which are
precisely the coefficients of x, another column of 2, −1, and 2 which are the coefficients
of y, and 1, 0, and 0 which are the coefficients of z.

With this information now we may perform the steps above with simple matrix
multiplication, using this matrix B, and the diagonal matrix above, which we name Di.
We would prefer to call this diagonal matrix simply D, but recall that Maple uses D for
differentiation, and it is a reserved name. We use Maple’s DiagonalMatrix function
from the LinearAlgebra package for the purpose.
> Di := DiagonalMatrix([1, 2, 3])

Di :=


1 0 0

0 2 0

0 0 3



> Di.B.〈x, y, z〉 

−4x+ 2 y + z

4x− 2 y

−9x+ 6 y



174 3 Linear Algebra

This vector, which we have calculated a number of ways now, is still with respect
to our basis B (not to be confused with our matrix B). It should follow that if we can
change our basis from the standard basis to the basis B, then we should be able to
freely change back. That is, the change of basis should be an invertible function. This is
reinforced when we remember that the coefficients of the standard basis are unique to
each unique vector, as are the coefficients of the vectors in our basis B. What we have
here is an isomorphism, which really ought to be invertible. We should expect, then,
that the matrix B has an inverse, and that multiplying by this inverse should undo the
basis change, as clearly B−1B = I.
> B−1.% 

−x+ 2 y

−6 x+ 6 y

4 x− 2 y + z


Now, it should occur to us that we have never yet tried to see what our linear function

T actually does to an arbitrary vector. This is an egregious oversight, which we correct
immediately.
> T.〈x, y, z〉 

−x+ 2 y

−6 x+ 6 y

4 x− 2 y + z


So now we have two matrix representations for our linear operator T . One is just the

matrix we started with, and the other is the product of three matrices, one of which is
diagonal B−1 Di B. In fact, we should expect that T = B−1 Di B.
> T = B−1.Di.B 

−1 2 0

−6 6 0

4 −2 1

 =


−1 2 0

−6 6 0

4 −2 1


So now, one might ask, just what is B−1?
> B−1 

0 2 1

0 3 2

1 2 0


It is precisely the matrix consisting of our eigenvectors, in the exact order we used

them back when we solved the linear system for the ChgBasis function we wrote.
> 〈e1|e2|e3〉 

0 2 1

0 3 2

1 2 0


This is an example of a diagonalizable matrix. That is, an n × n matrix, M say,

which may be written as a product of matrices P DP−1 where D is a diagonal matrix.
Alternately, we might say that P−1 M P is a diagonal matrix. If we rename B−1 to be
P in the previous example, then we see that this is satisfied.

3.3 Linear Transformations 175

Let us look now at the next example from the previous section (Section 3.3.3).

> T := 〈〈2, 4, 3, 1〉|〈−5,−19,−15,−29〉|〈6, 24, 19, 38〉|〈0, 0, 0, 2〉〉
2 −5 6 0

4 −19 24 0

33 −15 19 0

17 −29 38 2


We should remember that this example had eigenvalues 0, 1, 2 and that the eigenspace

associated with eigenvalue 1 was two-dimensional. Specifically, we had eigenvector
(2, 8, 6, 1) corresponding to eigenvalue 0, eigenvectors (5, 1, 0, 24) and (−6, 0, 1,−32)
formed a basis for the eigenspace corresponding to eigenvalue 1, and eigenvector
(0, 0, 0, 1) corresponded to eigenvalue 2.

It is prudent to talk about the multiplicity of an eigenvalue as well as the dimension
of the eigenspace. The multiplicity of the eigenvalue, is simply its multiplicity in as a
root of the characteristic polynomial. In this example the characteristic polynomial is
x(x − 2)(x − 1)2, and so x = 0 and x = 2 are single roots, whereas x = 1 is a double
root. Hence the eigenvalues 0 and 2 had multiplicity 1, and eigenvalue 1 had multiplicity
2. Similarly the dimensions of the eigenspaces are the same as the multiplicity of the
corresponding eigenvalue.

We ask Maple to calculate the eigenvectors directly.

> E := Eigenvectors(T)

E :=


0

1

1

2

 ,


2 5
24

2
3 0

8 1
24

4
3 0

6 0 1 0

1 1 0 1


We see here that Maple has calculated a vector of our eigenvectors, as well as a

matrix consisting of eigenvectors as its columns. Well, almost. We see (2, 8, 6, 1) as well
as (0, 0, 0, 1) as the first and last column, as well as (5/24, 1/24, 0, 1) which is clearly a
scale of (5, 1, 0, 24). However, we have a mysterious column (2/3, 4/3, 1, 0).

If we remember that a general form of an eigenvector corresponding to eigenvalue
1 as t · (5, 1, 0, 24) + s · (−6, 0, 1,−32), then setting t = 4/3 and s = 1 we get that
5t−6s = 2/3 and that 24t−32t = 0 giving us that our mysterious vector (2/3, 4/3, 1, 0)
is just another eigenvector corresponding to eigenvalue 1. It should also be clear that
this vector and (5/24, 1/24, 0, 1) are linearly independent, and so form a basis of the
eigenspace corresponding to eigenvalue 1.

We can now produce our diagonal matrix, and see if we can diagonalize the original
matrix.

> Di, P := DiagonalMatrix(E1), E2

Di, P :=


0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 2

 ,


2 5
24

2
3 0

8 1
24

4
3 0

6 0 1 0

1 1 0 1



176 3 Linear Algebra

We could, at this point, simply calculate P Di P−1 and see if the matrix we get is
equal to T , however, it is probably prudent and illustrative to check that the eigenvectors
we have are all linearly independent (and thus form a basis for R4). Fortunately, we
already have the eigenvectors handily arranged into the matrix named P , so establishing
the linear independence is precisely the same as verifying that the vector equation
Px = 0 has only the trivial solution.

> LinearSolve(P, 〈0, 0, 0, 0〉) 
0

0

0

0


Thus we see that these vectors form the required basis, and so we can be quite sure

that diagonalization will work. We see that indeed it does.

> P.Di.P−1 
2 −5 6 0

4 −19 24 0

33 −15 19 0

17 −29 38 2


In both of the above examples, our matrix has had exactly as many linearly indepen-

dent eigenvectors in number as the dimension of the vector space upon which it acts.
That is, we had a 3×3 matrix with 3 linearly independent eigenvectors, and also a 4×4
matrix with 4 linearly independent eigenvectors. The process of diagonalization that we
have used in both of these examples is one of using these eigenvectors as a basis for the
underlying space. With this basis we find that we may apply the function simply by
multiplying the coefficients of the basis vectors by fixed values (and hence the diagonal
matrix), and then change back to the regular basis.

It should be clear then that as long as we have n linearly independent eigenvectors
for an n × n matrix, M say, we can always follow this procedure, and we will thus
always have a diagonalizable matrix. It turns out that this must always happen and
that, in fact, an equivalent definition of an n× n matrix being diagonalizable is that it
has exactly n linearly independent eigenvectors. To see that this is equivalent, we must
see that a diagonalizable matrix M will always have exactly n linearly independent
eigenvectors. We do not prove this here, but the proof is quite elementary and can be
found in any good linear algebra text.

Why is diagonalization desirable? Well, diagonalization has applications in the solv-
ing of differential equations, as well as recurrence relations, and more besides. However,
a more down to earth reason is that it can make taking powers of the matrix much
simpler.

Without diagonalization, to compute Tn (which is just TT · · ·T where there are
n multiplications) we would have to compute n matrix multiplications. In the case
where n is large, such a computation might be prohibitively time consuming, even for
a computer.

In the case that T is diagonalizable, then we can write T = PDP−1, and so

Tn = TT · · ·T = PDP−1PDP−1 · · ·PDP−1 = PDnP−1

3.3 Linear Transformations 177

where each P−1 is canceled out by multiplication by P in the middle of the expression,
leaving only a single P on the left and P−1 on the right, and n Ds all multiplied together
in the middle forming Dn.

Now, the power of a diagonal matrix is very simple to take. One simply raises each
entry on the diagonal to the power n. The reader is encouraged to experiment with some
simple 2 × 2 or 3× 3 examples of diagonal matrices to see why. For this it is actually
more illustrative to perform the calculations by hand in order to see the pattern of
multiplication.

Clearly this is a potentially very great decrease in time taken to find large powers
of a matrix. Imagine trying to find T 100 the long way, compared to just three matrix
multiplications, plus some work to find eigenvectors and eigenvalues. This is not just
a speedup of hand calculations, either. Matrix multiplication on computers can be
similarly sped up this way, and it is quite likely that Maple itself uses such techniques
(and likely more sophisticated ones as well).

We look at one more example of a diagonalizable matrix. This time, we do so in
complex space. We take this example from the previous section as well.
> T := 〈〈2,−1〉|〈1, 1〉 [

2 1

−1 1

]
We should remember, from our earlier computation, that this example had no real

eigenvalues, but it did have complex eigenvalues. If we think about this matrix as a
linear transformation from C2 → C2, then the roots of the characteristic equation, and
thus the eigenvalues are 1

2 (3 + i
√

3) and 1
2(3− i

√
3).

> Eigenvectors(T);
Di, P := DiagonalMatrix(%1),%2[

3/2 + 1/2 i
√

3

3/2− 1/2 i
√

3

]
,

[(
−1/2 + 1/2 i

√
3
)−1 (−1/2− 1/2 i

√
3
)−1

1 1

]

Di, P :=
[

3/2 + 1/2 i
√

3 0

0 3/2− 1/2 i
√

3

]
,

[(
−1/2 + 1/2 i

√
3
)−1(−1/2− 1/2 i

√
3
)−1

1 1

]
We see that the vectors are linearly independent by finding the determinant of the

matrix P , remembering that a nonzero determinant is equivalent to the expression
Tx = 0 having only the trivial solution, and thus the column vectors being linearly
independent.
> Determinant(T)

4 i
√

3(
−1 + i

√
3
) (

1 + i
√

3
)

We have exactly two linearly independent, complex eigenvectors, which must there-
fore form a basis for C2. We can diagonalize the matrix.
> simplify(P.Di .P−1) [

2 1

−1 1

]
And there we have it. Note the we need to simplify the expression. The result of the

computation P.Di .P−1 on its own is complicated, and messy, and too troublesome to
print.

178 3 Linear Algebra

Finally we look at an example of a matrix that is not diagonal. We have not proven
that an n × n matrix must have n linearly independent eigenvectors for it to be diag-
onalizable, although we have referred the reader to where such a proof may be found.
We take this as read, however, and show a matrix with too few eigenvectors.
> T := 〈〈6, 4〉|〈−9,−6〉 [

6 −9

4 −6

]

> Eigenvectors(T); [

0

0

]
,

 3
2 0

1 0


Interpreting the output, we have a repeated eigenvalue of 0, and two eigenvectors,

(3/2, 1) and (0, 0). However, we know the zero vector cannot be an eigenvector. Fur-
thermore, taking linear combinations of these vectors yields only a one-dimensional
eigenspace. Let’s look at this a little closer to see what’s going on.[
> CharacteristicPolynomial(T, lambda)

λ2

Well that’s an easy one to solve. Clearly λ = 0 is the only eigenvalue with multiplicity
of 2. We will now manually calculate the eigenvectors. Recall that we need to solve the
linear system (T − λI)x = 0, which in this case collapses to Tx = 0.
> LinearSolve(T, 〈0, 0〉)  3

2 _t0 2

_t0 2


And here we see only a single-parameter vector, and hence only a one dimensional

eigenspace. Because the multiplicity of the eigenvalue is greater than the dimension of
the eigenspace we say that the eigenspace is deficient. This is sufficient to render our
matrix T as not being invertible.

3.4 Exercises 179

3.4 Exercises

1. a. Create the following vectors and matrices using the angle bracket 〈〉 notation.

i.


x1

x2

x3

 ii. (x, y, z, w) iii.


1 −2 7

8 4 −5

7 9 2


Create the matrix twice, once as a row of column vectors and then as a column
of row vectors.

b. Create the following row vectors using the Vector function.

i. (π, π, π, π, π) ii. (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

Create the following as column vectors using the Vector function
iii. u = (u1, . . . , u8) where ui = ii.
iv. v = (v1, . . . , v10) where vi is the ith Fibonacci number.
Create the following matrices using the Matrix function

v.


e2 e2 e2 e2

e2 e2 e2 e2

e2 e2 e2 e2

e2 e2 e2 e2

 vi.


m1,1 m1,2 · · · m1,10

m2,1 m2,2 · · · m2,10

...
...

. . .
...

m5,1 m5,2 · · · m5,10


c. Create functions to produce the following general matrices.

i. An n×n matrix A = [ai,j] where ai,j =
(
n
i

)
+
(
n
j

)
and

(
k
m

)
are the binomial

coefficients.
ii. An n×m matrix B = [bi,j] where bi,j = i3 + j2.
iii. An n ×m matrix C = [ci,j] where ci,j = f(i, j) for an arbitrary 2-variable

function f .
2. a. Calculate the following matrix products

i.


1 5 9

2 6 10

3 7 11

4 8 12




1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

 ii.
[

1 2 3 4

5 6 7 8

]
a

b

c

d


b. Recall that the dot product between two vectors allows the calculation of the

angle between the vectors with the formula

u.v = |u| · |v| · cos θ

Use this formula to find the angle between the following vectors. Also, find a
function in the LinearAlgebra package for calculating the angle between vectors,
and use it to verify your calculations.

180 3 Linear Algebra

i. (1, 0, 1) and (1, 1, 0)
ii. (2, 2, 2, 2) and (3, 0, 3, 3)

iii. (1, 2, 3, 4, 5, 6) and (6, 5, 4, 3, 2, 1)
iv. (1, 2, 3) and (4, 5, 6)

Note: For a vector v, the value |v| may be calculated in Maple with the Vec-
torNorm command (from the LinearAlgebra package, of course), using the com-
mand VectorNorm(v, 2). The “, 2” is necessary and tells Maple that we are
calculating the 2-norm.

c. Recall that the vector cross-product is an operation that can only be performed
on three-dimensional vectors, and that it calculates a new vector perpendicular
to the two vectors used in its calculation.
Find the Maple command to perform cross-products, and use it to calculate the
cross-product of the following vectors. Verify that the cross-product is, indeed,
perpendicular to the two vectors.

i. (1, 0, 0) and (0, 0, 1) ii. (1,−2, 3) and (3, 2,−1)

3. a. Plot the following systems of equations, and attempt to identify from the plot
whether the system is solvable. Solve the system using linear algebraic tech-
niques. Plot the solution space if there is more than one solution.

i. 2x− 3y = −2
2x+ y = 1
3x+ 2y = 1

ii. −x+ y = 16
2x+ y = −17

6x+ 2y = −56

iii. 2x+ z = 1
−3x+ z = 3

2y + z = 4
−2y + z = 2

iv. x+ y + z = 3
−x+ y + 3z = 3
4x+ y − 2z = 3

b. Solve the following linear systems and verify the solution. Express the solutions
as vector equations.

i. 4x+ 3y + 2z + w = 1
x+ 2y + 3z + 4w = 2

ii. 2x+ y + z + w = 1
x+ 2y + z + w = 2
x+ y + 2z + w = 3
x+ y + z + 2w = 4

4. Let An be the n× n matrix where

ai,j =
{

2 if i = j

1 otherwise

and let b = (b1, . . . , bn) be the n-vector where bi = i.
Solve the linear system An x = b for all values of n up to 10. Form a hypothesis
about the solution for general n, and test that hypothesis for n = 100, and any
other values of n that you choose.

5. Use row reduction to attempt to find inverses for the following matrices. If they
are invertible, then give the inverse matrix, otherwise explain why they are not
invertible.

3.4 Exercises 181

a.


−90 30 −4

−54 57 17

−27 −69 −40

 b.


40 71 40 72

−51 −44 83 −26

−21 79 41 −39

−5 17 −76 −58



c.



22 −3 −56 −18 −72

29 7 80 −94 −55

−84 −62 −42 −26 89

64 −84 −12 23 59

7 −65 −30 27 60


6. Which of the following matrices will always give a unique solution to the vector

equation Ax = b, which are invertible, and which will become the identity matrix
in reduced row echelon form?

a.



15 33 0 −97 47 48

−70 0 0 −84 66 65

0 −19 −65 13 0 0

0 −61 65 0 −55 −78

−38 0 0 64 −42 0

−53 0 −41 0 −9 0



b.



−62 32 0 61 31 −124

0 −94 0 93 −1 0

−74 0 51 0 −23 −46

−86 −25 39 0 −72 −94

−36 −20 0 0 −56 −72

0 −69 0 −26 −95 0



c.



76 66 98 −37 82 −153

93 −18 −89 −10 −88 76

56 −18 −50 87 −85 −26

−58 79 92 46 34 −35

68 10 −89 −16 1 46

40 −72 32 78 −26 −196



d.



25 −16 −38 57 −32 99

94 −9 −18 27 −74 29

12 −50 87 −93 −4 44

−2 −22 33 −76 27 92

50 45 −98 −72 8 −31

10 −81 −77 −2 69 67


7. For the matrices in Exercise 6 that were invertible, find a sequence of row operations

that will produce the matrix when performed on the identity matrix. (In other
words, find the expression of the matrix as a product of elemenary matrices).

8. a. For the following, state whether the first vector is a linear combination of the
other vectors.

i. (1, 2), (−1, 4), (2,−3)
ii. (1, 2, 3), (−1, 2, 3), (1,−2, 3)

iii. (−1, 2, 3), (1, 2,−3), (1, 10,−3)
iv. (−1, 2, 3,−4), (3,−2,−1, 5), (7,−2, 3, 7),

(1, 2, 5,−3)

b. For the following, state whether the first polynomial is a linear combination of
the other polynomials.
i. 71x4 − 136x3 + 142x2 + 264x+ 265

−31x4 − 54x3 + 88x+ 31
−82x4 − 13x3 − 71x2 − 86

182 3 Linear Algebra

ii. 67x5 − 31x4 + 92x3 + 44x2 + 29x+ 99
69x5 + 8x4 + 27x3 − 4x2 − 74x− 32
−2x5 − 72x4 − 76x3 − 93x2 + 27x+ 57
−77x5 − 98x4 + 33x3 + 87x2 − 18x− 38

9. Which of the sets of vectors and polynomials from Exercise 8 are linearly indepen-
dent, and which are linearly dependent?

10. The matrix space M2(R) has a standard basis:[
1 0

0 0

]
,

[
0 0

1 0

]
,

[
0 1

0 0

]
,

[
0 0

0 1

]

And so has dimension 4.

a. Extend this notion to find a standard basis for Mn(R). What is the dimension
of Mn(R)? Use this to establish a correspondence between matrices in Mn(R)
and Rm for suitable m.

b. For the following sets of matrices calculate whether the first is a linear combi-
nation of the others. Which of these sets are linearly independent, and which
are linearly dependent?

i.
[
−50 45

−22 −81

]
,

[
50 −16

10 −9

]
,

[
25 12

94 −2

]
,

[
31 −80

−50 43

]

ii.
[
−36 1

−99 53

]
,

[
−61 77

−48 9

]
,

[
24 86

65 20

]
,

[
−25 76

51 −44

]

iii.


−67 16 60

22 9 −95

14 99 −20

 ,


82 18 −62

72 −59 −33

42 12 −68

 ,

−70 29 −1

41 70 52

91 −32 −13

 ,

−14 21 19

60 90 88

−35 80 −82


11. A vector in R3 may be rotated around any of the three axes. Rotation around the

z-axis is equivalent to rotating in the xy plane. Similarly rotating around the y-axis
is equivalent to rotating in the xz plane and rotating around the x-axis is equivalent
to rotating in the yz plane. We call these rotations Rxy, Rxz and Rzy, respectively.

a. Convince yourself that each of these rotations is a linear transformation on R3.
b. Construct rotation matrices for Rxy, Rxz, and Rzy for a rotation by an arbitrary

angle θ.
c. Show that any one of these rotations can be realized as a composite transfor-

mation using only the other two and their inverses.
d. How would you rotate a vector around an arbitrary line in R3?
e. Plot a cube with a face pointing in the direction of the vector (1, 1, 1).

12. Find the eigenvectors and eigenvalues of the following matrices.

a.



−300 296 −36 24 0

−309 305 −36 24 0

−365 356 −40 27 0

−699 680 −92 61 0

328 −320 44 −24 4


b.



1277 −336 −1668 1572 288

744 −187 −972 900 168

1634 −432 −2138 2021 370

548 −144 −718 679 124

1722 −456 −2259 2133 395



3.5 Further Explorations 183

13. The square root of a (square) matrix, M say, is a matrix A such that A ·A = M .

a. Find the square root of the following matrices.

i.


16 0 0 0

0 49 0 0

0 0 64 0

0 0 0 1

 ii.



36 0 0 0 0 0

0 16 0 0 0 0

0 0 1 0 0 0

0 0 0 49 0 0

0 0 0 0 4 0

0 0 0 0 0 81


What is the square root of an arbitrary diagonal matrix? (Justify your answer)

b. Find the square root of the following diagonalizable matrices from Sections 3.3.3
and 3.3.4.

i.


−1 2 0

−6 6 0

4 −2 1

 ii.


2 −5 6 0

4 −19 24 0

33 −15 19 0

17 −29 38 2


Hint: Use the fact that these matrices are diagonalizable, and the properties
of powers of diagonalizable matrices.

14. Diagonalize the following matrices.

a.


9 −45 9 −9

0 0 0 0

2 −10 2 −2

3 −15 3 −3

 b.


4 10 −16 44

−3 15 −9 24

−8 16 2 −4

−2 4 −1 5

 c.


18 −8 0 −16

18 −7 0 −18

0 0 2 0

8 −4 0 −6



d.



−300 296 −36 24 0

−309 305 −36 24 0

−365 356 −40 27 0

−699 680 −92 61 0

328 −320 44 −24 4



3.5 Further Explorations

1. A positive matrix A = (ai,j) is a matrix over R where ai,j > 0 for every i and j.
In other words it is a real matrix with all positive entries. The Peron–Frobenius
theorem states that such a matrix has a unique, largest, real eigenvalue, and a
corresponding eigenvalue with all positive entries.
More technically stated:

184 3 Linear Algebra

Theorem 3 (Peron–Frobenius). Let A = (ai,j) be an n×n positive matrix. Then
the following hold.

a. There is a unique eigenvalue r ∈ R with the property that for every other eigen-
value λ it is the case that |λ| < r.

b. The eigenvalue r is a simple root of the characteristic polynomial, and so is a
degree 1 eigenvalue.

c. There is an eigenvector v = (v1, . . . , vn) corresponding to the eigenvalue r has
the property that vi > 0 for every 1 ≤ i ≤ n.

d. The eigenvector v (above) is the only eigenvector with nonnegative entries.

The eigenvalue r is sometimes called the Peron root or the Peron–Frobenius eigen-
value.

Be aware that the eigenvalues λ in 1a could potentially be complex, in which case
the absolute value is the complex modulus. Similarly, as a consequence of 1d any
other eigenvector of A (i.e., an eigenvector corresponding to a different eigenvalue)
must have either a negative entry, or a complex one.

2. Recall recurrence relations from Section 1.3.3. The solution to a first order re-
currence relation is quite straightforward. We may use a similarly straightforward
approach to systems of recurrence relations (often called difference equations). Sup-
pose we have n recurrence relations a1(k), . . . , an(k) which are interlinked in some
way. That is,

a1(k) = λ11a1(k − 1) + λ12a2(k − 1) + · · ·+ λ1nan(k − 1)
a2(k) = λ21a1(k − 1) + λ22a2(k − 1) + · · ·+ λ2nan(k − 1)

...
an(k) = λn1a1(k − 1) + λn2a2(k − 1) + · · ·+ λnnan(k − 1)

We may decompose this into something very reminiscent of a linear system. Let

A :=


λ11 λ12 . . . λ1n
λ21 λ22 . . . λ2n
...

...
. . .

...
λn1 λn2 . . . λnn

 and a(k) :=


a1(k)
a2(k)

...
an(k)


then

a(k) = A · a(k − 1)

and by the same argument we used in Section 1.3.3 we can see that

a(k) = Ak · a(0)

How would you ascertain the long-term behavior of such a system?
In the special case that the elements of every row of A add to 1, we have a rep-
resentation of a time-homogeneous Markov chain. This is not actually a difference
equation, however. In this case we are representing some system with n states that
between which it may transition. Each state is represented by a row and a column.
The element ai,j (being the element in row i and column j) is the probability that
the system will move to the state represented by column j if it is currently in the
state represented by row i.

3.5 Further Explorations 185

The similarity to difference equations is in taking higher powers of the matrix A in
order to obtain a solution. If we have an n-vector, v0 say, whose elements sum to 1,
we can consider it to be a probability distribution of the states. That is, we consider
the element vi as being the probability that the state is in the state represented by
row i, then the vector v1 = A · v is the probability distribution of the system after
a single transition, and the vector vk = Ak · v is the probability distribution of the
system after k transitions.
How would you ascertain the long term behavior of such a system?

3. Recall differential equations from Section 2.2.4. We may have interrelated differen-
tial equations in a similar manner to our difference equations above. Such equations
are sometimes called coupled differential equations. Suppose we have the following
system of differential equations.

y′1(t) = λ11y1(t) + λ12y2(t) + · · ·+ λ1nyn(t)
y′2(t) = λ21y1(t) + λ22y2(t) + · · ·+ λ2nyn(t)

...
y′n(t) = λn1y1(t) + λn2y2(t) + · · ·+ λnnyn(t)

We construct a linear system. Let

A :=


λ11 λ12 . . . λ1n
λ21 λ22 . . . λ2n
...

...
. . .

...
λn1 λn2 . . . λnn

, f(t) :=


f1(t)
f2(t)
...

fn(t)

 and f ′(t) :=


f ′1(t)
f ′2(t)
...

f ′n(t)


Then our system of differential equations can be written as

f ′(t) = A · f(t)

If µ1, . . . , µn are distinct eigenvalues of A with corresponding eigenvectors v1, . . . , vn
then

f(t) =
n∑
i=1

cie
µitvi

is the general form of the solution to where ci are arbitrary constants. You can
easily show that eµtv is a solution, and it’s an easy step from there to see that a
linear combination of solutions must also be a solution.
For second-order differential equations, ay′′ + by′ + cy = 0, we introduce a new
function x such that x = y′ and we now have the following system of equations

y′ = x

x′(t) = − b
a
x− c

a
y

which we can now evaluate using the matrix method above. Doing so will verify the
characteristic polynomial method.
Extend this method to deal with higher-degree differential equations, and systems
of coupled higher-degree differential equations. How might you cope with inhomo-
geneous cases?

Chapter 4
Visualization and Geometry: A Postscript

We conclude with a brief chapter on visualization and geometry. It should be noted
here that although Maple is capable of handling geometric problems, it is inherently
static. There is a growing variety of “interactive geometry” packages such as Cinderella
and GeoGebra that allow a much more dynamic exploration to take place.

4.1 Useful Visualization Tools

Maple contains some useful tools for visualization that we discuss briefly here.

4.1.1 Text and Labeling

Many of the plots we produce may be enhanced with the addition of text to the plot
to explain or label. Up until now we have only labeled the axes of a plot. We show here
some more complicated labeling.

First, the plot and plot3d commands have some built-in labeling options (see the
Maple help files regarding plotting options for more details). One simple change from
our regular plots is to change which values are marked on the axes. A common use for
this would be for plotting the sine function and showing the multiples of π along the
horizontal axis.

The markings on any axis are called tickmarks, and are modified using the tickmarks
argument to the plot command. The tickmarks argument takes a list that specifies
the options for the horizontal axis and the vertical axis in that order. In our case we
want the tickmarks on the horizontal axis to be shown at regular intervals of 1

2π in
order to have the critical points of the sine curve suitably marked. We do not need, nor
wish, for the vertical axis to be marked any differently from usual, and so we specify
the default marking for it.

187

© Springer Science+Business Media, LLC 2011
Springer Undergraduate Texts in Mathematics and Technology, DOI 10.1007/978-1-4614-0122-3_4,
J. M. Borwein and M. P. Skerritt, An Introduction to Modern Mathematical Computing: With Maple ,TM

188 4 Visualization and Geometry: A Postscript

> plot
(

sin(theta), theta = 0..2 · Pi, tickmarks =
[

spacing
(

Pi
2

)
, default

])

There are other handy labeling options as shown below. For example, we may label
the axes, display a legend to multiple plots, or put a caption on the plot.

> plot
(

[sin, cos], 0..2 · Pi, color = [red, blue], legend = [sin, cos],

labels = [”Angle (radians)”, ””], tickmarks =
[

spacing
(

Pi
2

)
, default

]
,

caption = ”A comparison of sine and cosine curves”
)

4.1 Useful Visualization Tools 189

Regarding the labeling of the axes; we have previously had no trouble with the
labeling of axes in our plots, and have been merrily labeling the axes with variable
names for as long as we’ve been plotting functions. However, the labels option of the
plot command allows us to label using arbitrary text that may even include spaces. This
is something we would not have been able to do with our previous labeling methods
(the reader is encouraged to verify this).

We may, if we wish, place arbitrary text anywhere on a plot using the textplot
function from the plots package. For example, let’s take the cubic x3 + x2 − 5x − 5,
which we call p. Through simple analysis (which we leave as an exercise to the reader)
we discover that p has zeroes at x = 1 and x = ±

√
5. We also discover that p has

turning points at (1,−8) and (−5/3, 40/27) which are a local minimum and maximum,
respectively. We intend to plot this cubic, and label these interesting points.

First we should have a look at the curve. Notice that we need to put the caption in
parentheses so that the entire mathematical expression becomes the caption, and Maple
doesn’t get confused with the two equal signs. > with(plots) :

p := x→ x3 + x2 − 5x− 5
p := x→ x3 + x2 − 5x− 5[

> pl := plot(p(x),−3.25..2.75, caption = (y = p(x)), labels = [x, y])
pl := PLOT (. . .)

> pl

We start with the critical points. It should be noted here that the textplot function
produces a plot, just as do any of our other plotting functions. If we want to put the
text near the plot of our curve, we need to use the display function. It is for this reason
that we assigned our first plot to the variable pl , above.

We want the label for the local maximum to sit immediately above the point in
question, and the label for the local minimum to sit immediately below the point. We
also place points on the plot in the appropriate places. Finally, we incorporate both

190 4 Visualization and Geometry: A Postscript

text and mathematics together for our labels using the typeset option, which may be
used anywhere we have a label (including in our previous examples).

> cpts := plot
([[
−5

3
,

40
27

]
, [1,−8]

]
, style = point, color = black,

symbol = solidcircle, symbolsize = 14
)

;

mx := textplot
([
−5

3 ,
40
27 , typeset

(
"Local Max: ",

[
−5

3 ,
40
27

])]
, align = above

)
;

mn := textplot([1,−8, typeset("Local Min: ", [1,−8])], align = below)
cpts := PLOT (. . .)
mx := PLOT (. . .)
mn := PLOT (. . .)[

> critpoints := cpts,mx ,mn
critpoints := PLOT(. . .),PLOT (. . .),PLOT(. . .)

> display([pl, critpoints])

The syntax of the textplot function is quite straightforward. The function takes a
list consisting of x-coordinate, y-coordinate, and text to be displayed, in that order.
The function plots the text in an invisible box, and places the center of that box upon
the point given by the x- and y-coordinates. We may modify the placement of the box
using the align option. In the case above, we place the text above the local maximum,
and below the local minimum.

We have also mixed text and mathematics together to form the label. The typeset
option does this for us in a quite simple way. This option behaves much as a function,
and concatenates its inputs. In the above example we provided only two inputs, the
first one being text and the second one being mathematics. We may have as many
parameters as we wish. The typeset option may be used anywhere that labels are
being produced.

4.1 Useful Visualization Tools 191

We now mark and label the zeroes of the function in a similar manner. We make the
markings and labels for the zeroes blue so that they are more easily separable from the
critical points.

> zpts := plot([[− sqrt 5, 0], [−1, 0], [sqrt(5), 0]], style = point, color = blue,
symbol = solidcircle, symbolsize = 14);

z1 := textplot([− sqrt(5), 0,− sqrt(5)], align = [above, left]);
z2 := textplot([sqrt(5), 0, sqrt(5)], align = [above, left]);
z3 := textplot([−1, 0,−1], align = [above, right])

zpts := PLOT(. . .)
z1 := PLOT(. . .)
z2 := PLOT(. . .)
z3 := PLOT(. . .)[

> zeroes := zpts, z1 , z2 , z3
zeroes := PLOT (. . .),PLOT(. . .),PLOT (. . .),PLOT (. . .)

> display([pl, zeroes])

The labels for the zeroes are much simpler, and do not need to be typeset. We do,
however, need to be more careful about the placement. Observe that previously, when
we placed the text above (or below) a point, it was still centered horizontally. If we
were to do that with our zeroes, labeling the curve would cut through the text. Instead
we need to place the text above and to the right, or left of the point. The positioning
information is put in a list in this case, however, the order is not important ([above, left]
is the same as [left, above]).

We may now put everything together, and see the final result.

192 4 Visualization and Geometry: A Postscript

> display([pl, critpoints, zeroes])

4.1.2 Polygons, Polyhedra, and so on

In addition to plotting functions (implicit or otherwise), there may be other things we
wish to visualize. Maple provides a package named plottools that allows for some more
unusual display functions.

We may visualize basic polygons and polyhedra. The polygon function takes a list
of points which it then uses to create a polygon.

> plots[display](polygon([[0, 0], [3, 1], [2, 1]], color = blue))

With some judicious use of the seq command we can create a regular 11-gon.

4.1 Useful Visualization Tools 193 > vertices :=
[

seq
([

cos
(

2 · Pi ·k
11

)
, sin

(
2 · Pi ·k

11

)]
, k = 1..11

)]
:



> plots[display](polygon(vertices, color = blue))

Note that the order of the vertices is important. The polygon functions draws the
boundary of the polygon by drawing lines between the vertices in the order they appear
(1st to 2nd then 2nd to 3rd and so on until the nth and then finally from the nth to
the 1st). If the boundary lines intersect, then the interior changes appropriately.

> plots[display](polygon([0, 0], [1, 0], [0, 1], [1, 1]], color = blue))

Note here that there is a very similar function in the plots package named poly-
gonplot, as well as a three-dimensional variant polygonplot3d.

Getting back to our plottools, however, we have some functions to visualize the regular
polyhedra. These functions take a center and an optional scale. The interested reader
can consult the Maple help files for more information.

194 4 Visualization and Geometry: A Postscript

> plots[display](icosahedron([0, 0, 0]))

The plottools package also provides some shortcuts to some more common plots,
for instance, line and hyperbola. Below we use the latter as a shortcut to plot the
hyperbola

(x− 2)2

12 − (y − 2)2

12 = 1

> plots[display](hyperbola([2, 2], 1, 1,−3..3))

The interval −3..3 is not a simple interval of the x-axis, as should be clear from the
plot. Instead it is used to form a pair of parameterized intervals, in a way best explored
in the help files.

Finally the plottools package provides a small suite of functions for manipulating
other plots. We may project, rotate, scale, transform, and several others. Each of
these functions takes a PLOT object of some sort, and performs computations on the
points of the plot.

For instance, recall that to rotate a plot of the sin function in Section 3.3.2 we first
created a vector with parameterized coordinates for the sin function which we then
transformed using matrix multiplication and a rotation matrix. We also had to convert
the vector back to a list that we could then use in the plot command. We now perform
this same task (i.e., rotating a sin curve) using the rotate function from the plottools
package.

4.1 Useful Visualization Tools 195[
> S := plot(sin(theta), theta = −2 · Pi ..2 · Pi)

S := PLOT (. . .)

> rotate
(
S,
−Pi

4

)

This is simpler than the method employed in Section 3.3.2, however, it should be
noted that these functions are operating numerically upon the points calculated by
the original plot command. Contrast this with our earlier approach which was work-
ing symbolically upon a parameterization of the curve. Remembering that the plot
command samples points (quite intelligently) and then fills in the space between these
points, it is possible that for highly irregular plots, that the sampling for the original
plot may not be appropriate for the rotated plot (and similarly for the other functions
that modify PLOT structures). As always, one should not be complacent, and should
be aware of what one is doing, and attempting to do when using a CAS.

The functions provided by the plottools package can be a little esoteric. We have
endeavored here to give some idea as to the “flavor” of the package, but more important,
we have pointed out its existence to the reader. The interested reader, by this stage
of the book, should be capable of independently using the help files to gain further
knowledge of the contents of this package.

We close this section now with one final example of a function that manipulates a
PLOT structure, and an esoteric one at that. This final example is chosen for no better
reason than it looks “kinda cool” to the author. The function is the stellate function,
which takes a three-dimensional1 POLYGONS construct, and turns each polygon in
the construction into a pyramid, thus creating something that looks a lot like a star
(in most cases). We apply this to the icosahedron, because we have already seen it
un-stellated earlier.
1 Be careful, it is not entirely clear from the help page for this function that it requires three-
dimensional polyhedra.

196 4 Visualization and Geometry: A Postscript

> plots[display](stellate(icosahedron()))

4.2 Geometry and Geometric Constructions

Maple, unsurprisingly, comes with a geometry package which is named, even more
unsurprisingly, geometry. We show some geometric constructions using this package.
All constructions given in this section are performed in R2. Again we remind the reader
that these constructions are much better explored using dynamic geometry software.

The geometry package operates somewhat differently from theMaple we have become
familiar with thus far. These differences are dealt with and explained in the course of
our explorations in this section. However, it is expected that by now readers should be
more than competent enough with Maple and its associated help file system to be able
to make sense of this package (and others) on their own. As such we do not explain the
functions in as much detail as we might have done previously.

4.2.1 Constructing a Circle Given Three Points

Given three points, we may find a unique circle that passes through all three of those
points. This fact is related to the fact that the perpendicular bisector of any two chords
on a circle will always intersect at the center of that circle.

Let us start with three points. In this case we take the points

(1, 5), (4, 2) and
(

1 + 9
√

10
10 , 2 + 3

√
10

10

)
These are points that have been chosen because they lie on a familiar circle. We start
with these points in Maple.[
> with(geometry) : > point(p1, 1, 5), point(p2, 2, 4), point

(
p3, 1 + 9 · sqrt(10)

10 , 2 + 3 · sqrt(10)
10

)
p1, p2, p3

Here we see our first change from familiar Maple. The above Maple code creates three
points named p1, p2, and p3. We did not, however, use the assignment operator as we
would have normally. Instead the first parameter of the point function is the name of
the point. All geometric elements in the geometry package are created in this way. It is
worth noting here that this function does not like subscripts in the variable names.

4.2 Geometry and Geometric Constructions 197

We may obtain information about our various geometric objects using the detail
function. Fortunately this works pretty much as we would expect.
> detail(p1)

name of the object p1
form of the object point2d
coordinates of the point [1, 5]

And we may draw our geometric objects using the draw function. Note that for these
geometry objects we must use draw, because plot will not work. Fortunately some of
the options we may use are similar.

> draw([p1, p2, p3], scaling = constrained)

The way in which we construct the circle is to suppose that our three points lie on
the surface of some circle. If this were the case, then we could create up to three chords
of that circle by drawing line segments between the three points. We create these line
segments using the segment command.[
> segment(s1, p1, p2), segment(s2, p2, p3)

s1, s2

> draw([p1, p2, p3, s1, s2], scaling = constrained)

In order to find the center of our hypothetical circle, we need only two of these
chords. For simplicity’s sake, we chose the chords p1 p2 and p2 p3. Observe, however,

198 4 Visualization and Geometry: A Postscript

that whichever two chords we chose would always have had a point in common. This is
critical. We now construct the perpendicular bisector of each of these chords. This we
do with the PerpenBisector function.[
> PerpenBisector(pb1 , p1, p2),PerpenBisector(pb2 , p2, p3)

pb1 , pb2
Notice that the PerpenBisector function used the points, and not the segments.

We could have done completely without the segments, but because they help with the
visualization, we keep them. We should look at our construction now.

> draw([p1, p2, p3, s1, s2, pb1, pb2], scaling = constrained)

So now we have an intersection of two perpendicular bisectors drawn from chords
on a hypothetical circle. How do we know this circle even exists? One way would be
to try to draw the circle whose center is at the intersection of the two bisectors and
using one of the points as a radius. If we did this then maybe that circle would also
pass through the other three points in which case we would have our desired circle.
Doing this, however, would not guarantee that the same construction would work for a
different three points.

So instead, let’s think about these bisector lines for a bit. If we take any point, p say,
on the bisector of, say, p1 p2, then we know that point is equidistant from p1 and p2. If we
imagine the isosceles triangle p p1 p2 we should be convinced of this fact. In particular,
then, the point of intersection between our two bisectors—let’s be presumptions and
call it c—is equidistant to p1 and p2. By a similar argument, applied to the chord p2 p3,
the intersection point c is also equidistant from the points p2 and p3. So it must be
the case that all three of our points are equidistant from c, which is the same as saying
that they lie on a circle whose center is c and whose radius is the distance between the
points and c.

We now know that not only is our hypothetical circle actually a real circle, but that
it makes no difference which three points we choose. This is because as we observed
above, there must always be a common point that our two chords share. The proof that
this circle is unique is left as an exercise for the reader.

Let’s now go and draw our circle. We find the intersection of the two bisectors using
the intersection function and we create our circle using the circle function. We find
the distance between two points by using the distance function, which behaves like
functions we are more used to dealing with in Maple.

4.2 Geometry and Geometric Constructions 199[
> intersection(c, pb1, pb2)

c[
> r := distance(c, p1)

r :=
√

9[
> circle(circ1 , [c, r])

circ1

> draw([circ1 , c, p1, p2, p3, s1, s2, pb1, pb2], scaling = constrained)

As is usually the case with these things, we could simply have given the initial
three points to the circle function, and it would have produced the correct circle for
us. Having done so would not have led us to the proof of correctness of the above
technique, however. Nonetheless, it is useful to know, and readers are encouraged to
investigate the other forms of the circle function and, indeed, the geometry package in
its entirety on their own.[
> circle(circ2 , [p1, p2, p3])

circ2

> draw([circ2 , p1, p2, p3])

200 4 Visualization and Geometry: A Postscript

4.2.2 Constructing the Orthocenter of a Triangle

We perform one more construction. Inasmuch as we’re now a little familiar with the
working of the geometry package, we can proceed a little more quickly than usual.

We start with a triangle, the points of which have been chosen arbitrarily by the
author for no particular reason other than they fit fairly neatly within a square[
> point(p1, 1, 2), point(p1,−1,−2), point(p1, 3,−1)

p1, p2, p3[
> segment(s1, p1, p2), segment(s2, p2, p3), segment(s3, p3, p1)

s1, s2, s3

> draw([s1, s2, s3])

To construct the orthocenter of the triangle, we draw the line perpendicular to each
side and passing though that side’s opposite corner. In this case, we take the lines
perpendicular to s1 passing though p3, the line perpendicular to s2 passing though p1,
and the line perpendicular to s3 passing through p2.

These lines, as we will shortly see, intersect at a single point. In fact, performing this
construction for any given triangle will always produce a single intersection point. We
call this point the orthocenter. We give no proof that the lines always intersect at a
single point, nor does our construction shed any light on why this might be. We produce
but a single example.

In order to create our intersection lines, we take a quick look at the Perpendicu-
larLine function. Unfortunately, it turns out that this function takes a line and a point
as its parameters, but so far we have only points and segments. Time to make some
lines.[
> line(l1, [p1, p2]), line(l2, [p2, p3]), line(s3, [p3, p1])

l1, l2, l3
Our observations above are simply modified by replacing the segment with the ap-

propriate line (s1 with l1, s2 with l2, and so on). > PerpendicularLine(pl1 , p3, l1),PerpendicularLine(pl2 , p1, l2),
PerpendicularLine(pl1 , p2, l3)

pl1 , pl1 , pl1

4.2 Geometry and Geometric Constructions 201

> draw([s1, s2, s3, pl1 , pl2 , pl3])

The three perpendiculars appear to meet at a point. In fact they do. In order to see
this a little better we construct the segments of the perpendicular lines that lie within
the triangle.[
> intersection(i1, l1, pl1), intersection(i2, l2, pl2), intersection(i3, l3, pl3)

i1, i2, i3[
> segment(s4, i1, p3), segment(s5, i2, p1), segment(s6, i3, p2)

s4, s5, s6

> draw([s1, s2, s3, s4, s5, s6])

We now calculate the intersection of two of the perpendicular lines, and see that the
point, which we call c, also lies on the third line.[
> intersection(c, pl1 , pl2)

c[
> IsOnLine(c, pl3)

true

Appendix A
Sample Quizzes

A.1 Number Theory

Short Answer Section

The following questions are worth 1 point each. Answer the questions in your Maple
file.

1. What is e13 evaluated to 23 significant figures?
2. Factorize x12 + 3x10 − 23 x8 − 51x6 + 94x4 + 120x2.
3. Convert e2x − 1

xe2x + x
into an expression involving trig functions.

4. What is the partial fraction decomposition of the rational polynomial.

x7 + 4x6 + 25x4 − 20x3 + 53x2 − 42x+ 33
x8 − 2x7 + 7x6 − 12x5 + 18x4 − 24 x3 + 20x2 − 16x+ 8

5. What are the first 20 terms of the sequence
{

1
k(k + 1)

}∞
k=1

?

6. Evaluate
∞∑
k=1

1
k(k + 1)

.

7. Evaluate
∞∏
k=1

(
1− 1

2x2

)
.

8. The following variable names are all names that Maple treats as Greek letters.
Which of them are protected?

delta,Delta, gamma,Gamma,GAMMA,pi,Pi,PI, zeta,Zeta,ZETA

203

© Springer Science+Business Media, LLC 2011
Springer Undergraduate Texts in Mathematics and Technology, DOI 10.1007/978-1-4614-0122-3,
J. M. Borwein and M. P. Skerritt, An Introduction to Modern Mathematical Computing: With Maple ,TM

204 A Sample Quizzes

Long Answer Section

The following questions are worth 3 points each. Points are given for working. Answer
the questions in your Maple file.

9. Let an = 2n− 1 and sn = n2 and define the sequences

A := {an}∞n=1 S := {sn}∞n=1

It should be clear then that A = {1, 3, 5, . . . } and S = {1, 4, 9, 16, . . . }.

a. Calculate the first 20 terms of the sequence

{sn+1 − sn}∞n=1

What is sn+1 − sn ?
b. Calculate the first 20 terms of the sequence{

n∑
k=1

ak

}∞
n=1

What is
∑n
k=1 ak ?

10. Recall that
∑
k−1 diverges. It may be shown that

∑
k−(1+ε) converges for any

ε > 0. For this question we let ε = 1
100

a. Evaluate the series
∑∞
k=1 1/k 101

100 , and obtain a decimal approximation.
b. Calculate decimal approximations of the partial sums

N∑
k=1

1
k101/100 for N = 10, 100, 1000, 10000, 100000

and measure how much time each takes to calculate.

Notice that this series converges very slowly.
11. Let {fn} be the Fibonacci-like sequence defined by

fn := fn−1 + fn−2 f1 = −2, f2 = 3

a. Write a Maple function (using arrow notation or a procedure as you choose) to
calculate the terms of this sequence.

b. What are the first 10 terms of this sequence?
c. What is the largest number in this sequence less than 1,000,000, and what is

its index?

12. Let s be the first-order nonlinear recurrence relation defined by

sn = n s2
n−1

a. Let s0 = C and calculate the first 5 or so terms of the recurrence.
b. Solve the recurrence.
c. Verify the solution for at least 20 terms of the sequence, and in general if you

can.

A.2 Calculus 205

A.2 Calculus

Short Answer Section

The following questions are worth 1 point each. Answer the questions in your Maple
file.

1. What is the limit of x+ sinx
π x

at x→∞?

2. Find lim
x→0+

− cosh x
x

.

3. What is the derivative of cosx
x

?

4. What is the slope of the tangent to the curve y = cosx
x

at x = 1
3π?

5. Evaluate
∫ 1

0
log x dx.

6. Find a function whose derivative is tanhx.
7. Find the first partial derivatives of z = x2 − y2.
8. How many critical points does z = x2 − y2 have, and what kind of critical points

are they?

206 A Sample Quizzes

Long Answer Section

The following questions are worth 3 points each. Points are given for working. Answer
the questions in your Maple file.

9. A length of wire 10 meters long is cut in two. One of the pieces is bent into a square,
the other into an equilateral triangle. Let x be the length of wire that is bent into
the square (meaning that 10 − x is the length of wire bent into the triangle). Let
As be the area of the square and let At be the area of the triangle.

a. Define A to be the formula for the total area of the two shapes (i.e., A :=
As +At). Plot A.

b. How much wire should be used for the square to maximize the total area?
c. How much wire should be used for the square to minimize the total area?

10. The Airy functions Ai(z),Bi(z) are the two independent solutions to the differential
equation

y′′ − z y = 0 (A.1)

a. Solve the differential equation (A.1), and verify the solution.
b. Plot the Airy functions together on the same axes. Make sure to show good

detail of what the functions are doing.
c. Find and plot a third solution, other than y = Ai(z) and y = Bi(z), to equa-

tion (A.1).

11. Use solids of revolution to verify the following volumes.

a. The volume of a sphere with radius r (4/3πr3)
b. The volume of a cone with height h and radius r (1/3πr2h)

12. Consider the surface z = sin(x) cos(y).

a. Plot the surface z.
b. Find a general formula, or formulae, for the critical points.
c. Which critical points are maxima, which are minima, and which are saddle

points?

A.3 Linear Algebra 207

A.3 Linear Algebra

The following questions are worth 1 point each. Answer the questions in your Maple
file.

1. Calculate the vector π · (8, 1, 5, 1, 9) + e · (1, 2, 5, 6, 6).

2. Calculate the matrix product
[

3 1 6

0 0 7

]
2 0

0 0

5 4

.
3. Calculate the dot product of the vectors (3, 3, 2, 3, 3, 3) and (3, 2, 3, 3, 2, 1) .
4. Find the angle between the vectors (3, 3, 2, 3, 3, 3) and (3, 2, 3, 3, 2, 1).
5. Find a vector perpendicular to the vectors (5, 5, 3) and (5, 5, 5).
6. Create the 9× 10 matrix M whose entries mi,j = 17 i j.
7. Find the elementary matrix that will add k multiplied by row 7 to row 9 of a 10×10

matrix.
8. How many solutions are there to the vector equation M · x = 0 where

M :=



9 4 7 8 5

4 7 3 4 8

7 7 0 5 7

7 4 6 4 4

7 6 2 2 6



208 A Sample Quizzes

Long Answer Section

The following questions are worth 3 points each. Points are given for working. Answer
the questions in your Maple file.

9. This question refers to the following simultaneous equations.

y + 3z = 2
8x+ 2y + 2z = 3
3x+ 3y + 5z = 2

a. Solve the simultaneous equations. How many solutions are there?
b. Plot the three surfaces in such a way that clearly shows the solution.

10. This question refers to the following three matrices
1 1 7 2

2 2 0 9

7 7 2 5

0 0 1 5

 ,


0 4 1 4

0 2 1 1

3 3 4 4

6 4 9 5

 ,


0 1 1 1

6 1 0 0

2 2 6 6

9 4 4 4


a. Which of the matrices may be expressed as a product of elementary matrices?
b. For the matrices that may be expressed as a product of elementary matrices,

find the sequence of elementary matrices whose product is that matrix. (Equiv-
alently, you may find the sequence of row operations performed on the identity
matrix.)

11. Let A be the matrix below, and let p, q ∈ R.

A :=


p q 1− p− q

1− p− q p q

q 1− p− q p


a. Create A in Maple as a function of p and q.
b. By examining various numerical cases where p > 0, q > 0 and 1 − p − q > 0,

conjecture the behavior of the matrix An as n→∞.

12. This question refers to the following set of matrices
7 2 9

1 2 6

2 4 8

 ,


8 4 7

6 7 4

9 5 7

 ,


0 6 0

2 4 0

5 2 5

 ,


0 7 4

2 7 9

9 3 7




0 0 9

3 7 1

0 0 3

 ,


1 0 1

7 3 9

0 0 4

 ,


7 9 1

1 4 5

1 6 3

 ,


9 7 4

2 1 4

5 9 0

 ,


5 0 8

7 5 4

9 4 8


a. Do the matrices form a basis for M3(R)? Justify your answer.
b. Find the coefficients of a linear combination of these matrices for an arbitrary

3× 3 matrix.

References

1. Anton, H., and Rorres, C. Elementary Linear Algebra, 7th ed. John Wiley and Sons Inc,
Brisbane, 1994.

2. Bailey, D., Borwein, J., Calkin, N., Girgensohn, R., Luke, R., and Moll, V. Experi-
mental Mathematics in Action, 1st ed. AK Peters, Wellesley, MA, 2007.

3. Borwein, J., and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st
Century, 2nd ed. AK Peters, Wellesley, MA, 2008.

4. Borwein, J., Bailey, D., and Girgensohn, R. Experimentation in Mathematics: Computa-
tional Paths to Discovery, 1st ed. AK Peters, Natick, MA, 2004.

5. Borwein, J., and Devlin, K. The Computer as Crucible: An Introduction to Experimental
Mathematics. AK Peters, Wellesley, MA, 2009.

6. Gander, W., and Hrebícek, J. Solving Problems in Scientific Computing Using Maple and
MATLAB, 4th ed. Springer, New York, 2008.

7. Garvan, F. The Maple 5 Primer Rel 4. Prentice Hall, Englewood Cliffs, NJ, 1997.
8. Garvan, F. The Maple Book. Chapman and Hall/CRC, Boca Raton, FL, 2001.
9. Heck, A. Introduction to Maple, 3rd ed. Springer, New York, 2003.
10. Klimek, G., and Klimek, M. Discovering Curves and Surfaces with Maple. Springer, New

York, 1997.
11. Rovenski, V. Y. Geometry of Curves and Surfaces with MAPLE. Springer, New York, 2000.
12. Stewart, J. Calculus, 6th ed. Brooks/Cole, 2008.
13. Trott, M. The Mathematica Guidebooks, 3rd ed. Springer, New York, 2004–2006.
14. Wagon, S. Mathematica in Action, 2nd ed. Springer, New York, 1999.

209

Index

3n+ 1 Problem, 64
Psi-function, 77
· (operator), xiv, 132, 133
‖ (operator), 144
→ (operator), 11, 27, 28, 59
p-series, 12, 13
phi (function), 47
zeta-function, 16, 17
. (operator), 132, 133
.. (operator), 7, 8, 69, 97
:: (operator), 13, 30
:= (operator), 3
[] (operator), 7
$ (operator), 7, 57, 58
% (operator), 3, 56, 62

abundant number, 31, 32
active

form, 9, 10
integral, 86, 92
limit, 76
product, 10
sum, 9

add (function), 9, 18, 25
amicable number, 27
amicable numbers, 26
amicable pair, 26, 27
and (operator), 27
animate (function), 118
animation, 118
ApproximateInt (function), 118
ApproximateIntTutor (function), 118
arithmetic sequence, 59, 60, 62
Array (function), 55
array, comparison to list, 55
assume (function), 81
assuming (keyword), 30, 81
augmented matrix, 135–138, 147

Bessel equation, 125
modified, 125

Bessel function, 125
Bessel functions of the first and second kind,

125

modified, 125

caption (keyword), 188
cfrac (function), 47, 48, 62
Change (function), 92, 93
characteristic equation, 95
characteristic polynomial, 51, 166, 167, 169,

175, 184, 185
CharacteristicPolynomial (function), 166
circle (function), 198, 199
Clairaut’s theorem, 114
failure of, 126

co-ordinates
cylindrical, 105, 108
polar, 100
polar, conversion to Cartesian, 100
spherical, 106

CoefficientVector (function), 150
Colatz’s conjecture, 64
color (keyword), 103
coloring (keyword), 103
combinat (package), 36, 61
combine (function), xv
command separation, 2, 3, 28
command termination, 2, 3
in procedures, 30

computation time, 16, 17, 36
measuring, 37, 38

continued fraction, 44–48, 62
conversion between Pn(F) and Fn, 149, 150,

152, 155, 159
convert (function), xv, 6, 45, 47, 57
coords (keyword), 105
cylindrical co-ordinates, 105, 108

D (function), 84, 113, 114, 173
default (keyword), 187
deficient number, 31
DEplot (function), 125
derivative

limit definition, 82
partial, 112

Describe (function), 35
description (keyword), 30, 35

211

212 Index

detail (function), 197
determinant, 158, 166, 177
Determinant (function), 157, 166, 177
DEtools (package), 125
diagonalizable matrix, 174, 176, 178, 183
DiagonalMatrix (function), 173
Diff (function), 84
diff (function), 84, 113
difference equation, 184
differential equation

complementary equation, 96
coupled, 185
first order linear, 94, 95, 125
high degree as system of, 185
second-order as system of, 185
second-order linear, 95
homogeneous, 95
homogenous w/ constant coeffs, 95
nonhomogeneous w/ constant coeffs, 96

second-order solution, general form, 97
solving, 94–96
system of, 185

discont (keyword), 79
disks method (volumes of revolution), 107
display (function), 72–74, 126, 189
distance (function), 198
divergence test, 12
divisor, 21–25, 27, 31, 53, 54
proper, 25, 26, 31

divisors (function), 24
DotProduct (function), 133
double sum, 33, 119
draw (function), 197
dsolve (function), 95

eigenspace, 171, 175, 178
basis, 175
dificient, 178
dimension, 175, 178

eigenvalue, 166–172, 175, 177, 178, 182–185
multiplicity, 175, 178
Peron–Frobenius, 184
repeated, 169, 170, 178

eigenvector, 166–172, 174–178, 182, 184, 185
linearly independent, 176, 178

elementary matrix, 139, 141–144, 146, 147
elif (keyword), 31, 32
else (keyword), 25, 31, 32
end (keyword), 28
end proc (keyword), 28
Eratosthenes (sieve), 52, 63
evala (function), 64
evalb (function), 8, 42
evalf (function), 2, 5, 10, 19
exp (function), xv
expand (function), xv

factor (function), xv
fi (keyword), 22, 25, 32
fibonacci (function), 36, 61
Fibonacci numbers, 34–38, 40, 49, 51, 52, 61, 62

Field extension, 63
filledregions (keyword), 103
fixed point, 166
floor (function), 45
for (keyword), 14, 16, 21, 23, 25, 26, 34, 60, 62,

144
Fubini’s theorem, 120
Functions
phi, 47
add, 9, 18, 25
animate, 118
ApproximateInt, 118
ApproximateIntTutor, 118
Array, 55
assume, 81
cfrac, 47, 48, 62
Change, 92, 93
CharacteristicPolynomial, 166
circle, 198, 199
CoefficientVector, 150
combine, xv
convert, xv, 6, 45, 47, 57
D, 84, 113, 114, 173
DEplot, 125
Describe, 35
detail, 197
Determinant, 157, 166, 177
DiagonalMatrix, 173
Diff, 84
diff, 84, 113
display, 72–74, 126, 189
distance, 198
divisors, 24
DotProduct, 133
draw, 197
dsolve, 95
evala, 64
evalb, 8, 42
evalf, 2, 5, 10, 19
exp, xv
expand, xv
factor, xv
fibonacci, 36, 61
floor, 45
hyperbola, 194
identify, 89–91, 125
implicitplot, 99, 100, 102, 106
implicitplot3d, 106
Int, 86
int, 86, 92, 95
intersection, 198
is, 8, 24, 42
isprime, 55
ithprime, 55
limit, 6, 75, 76, 79, 81
line, 194
LinearSolve, 138
ln, xv
log, xiv, xv
lprint, 28
map, 60

Index 213

Matrix, 130, 179
mul, 9
Multiply, 133
nextprime, 55
nops, 58
numboccur, 58
Occurrences, 58
op, 58
Parts, 93
PerpenBisector, 198
PerpendicularLine, 200
phi, 47
piecewise, 121
plot, 6, 67, 68, 70, 72, 74, 76, 79, 86, 97, 100,

104, 105, 124, 164, 187, 194, 195, 197
plot3d, 104, 105, 138, 187
point, 196
polarplot, 101
polygon, 192, 193
polygonplot, 193
polygonplot3d, 193
prevprime, 55
print, 23, 26
prod, 76
Product, 10
product, 9, 10
project, 194
ReducedRowEchelonForm, 135
restart, 41, 56, 61
Reverse, 10, 11
root, xv
RootOf, 64
rotate, 194
RowOperation, 140, 141
rsolve, 50, 63
scale, 194
segment, 197
seq, 7, 9, 13, 14, 25, 57, 59, 60, 63, 192
simplify, xv, 93
sin, 5
solve, 135
sqrt, xv
stellate, 195
subs, 42
Sum, 10
sum, 9, 10, 34, 42, 43, 59, 62, 76, 77
surd, xv
textplot, 189, 190
time, 37–39
transform, 194
trunc, 58
typeset, 190
unapply, 43
value, 9, 10, 19, 76
Vector, 130, 179
VectorNorm, 180
with, 11

fundamental theorem of calculus, 85

Gauss–Jordan elimination, 134, 135
Gaussian elimination, 135

geometry (package), 196, 199, 200
geometry, interactive, 187
global (keyword), 29, 30, 61
golden ratio, 47, 48, 51

half range, 8
harmonic series, 12
hexagonal number, 60
hyperbola (function), 194

icosahedron, 193, 195
identify (function), 89–91, 125
if (keyword), 22, 23, 25–28, 30–32
implicitplot (function), 99, 100, 102, 106
implicitplot3d (function), 106
in (operator), 8, 34
inert

form, 9, 10
integral, 86, 92, 124
limit, 76
product, 10, 19
sum, 9, 10

infinity (keyword), xv
Int (function), 86
int (function), 86, 92, 95
integral

indefinite, 85
inert, preferred use w/ IntegrationTools, 92,

124
limit definition, 85

integrating factor, 94
IntegrationTools (package), 86, 92, 93, 124
interactive geometry, 187
interactive tutors, 118, 124
intersect (operator), 9
intersection (function), 198
inverse (matrix), 133, 134
inverse of matrix product, 146
inverse symbolic computation, 89–91, 125
invertible matrix equivalences, 147, 154, 155
is (function), 8, 24, 42
isprime (function), 55
ithprime (function), 55

Keywords
assuming, 30, 81
caption, 188
color, 103
coloring, 103
coords, 105
default, 187
description, 30, 35
discont, 79
elif, 31, 32
else, 25, 31, 32
end, 28
end proc, 28
fi, 22, 25, 32
filledregions, 103
for, 14, 16, 21, 23, 25, 26, 34, 60, 62, 144
global, 29, 30, 61

214 Index

if, 22, 23, 25–28, 30–32
infinity, xv
labels, 188, 189
legend, 188
local, 29, 30, 61
NULL, 7
numpoints, 70
od, 26
option, 30
PI, xiv
Pi, xiv, xv
pi, xiv
proc, 28, 61
remember, 35, 37, 38, 40, 61
scaling, 111
StandardFunctions, xv
style, 70, 74
then, 22, 25, 32
tickmarks, 187
to, 23
while, 23

labels (keyword), 188, 189
legend (keyword), 188
limit (function), 6, 75, 76, 79, 81
linalg (package), 129
line (function), 194
linear algebra w/ arbitrary finite dimensional

vector spaces, 159
linear combination, 151
LinearAlgebra (package), 129, 131, 133–135,

138, 140, 166, 173, 179, 180
LinearSolve (function), 138
list, comparison to array, 55
ListTools (package), 10, 11, 58
ln (function), xv
local (keyword), 29, 30, 61
log (function), xiv, xv
long form (packaged function), 10, 11
lprint (function), 28

map (function), 60
matrix

augmented, 135–138, 147
determinant, 158, 166, 177
diagonalizable, 174, 176–178, 183
elementary, 139, 141–144, 146, 147
inverse, 133, 134
of product, 146

of rotation, 163, 164
positive, 183
powers of, 176, 177
reduced row echelon form, 135–137, 142, 143,

147, 181
row echelon form, 135
square root, 183
transpose, 134

Matrix (function), 130, 179
matrix operations, 131, 132
mean (strict), 127
method of disks (volumes of revolution), 107

method of shells (volumes of revolution), 111
mod (operator), 21
mul (function), 9
multiple commands, 2, 3
Multiply (function), 133

nextprime (function), 55
noncommutative multiplication, 132
nops (function), 58
norm (vector), 179
normal number, 65
NULL (keyword), 7
null sequence, 7
numboccur (function), 58
numpoints (keyword), 70
numtheory (package), 24, 47

Occurrences (function), 58
od (keyword), 26
op (function), 58
Operators
·, xiv, 132, 133
‖, 144
→, 11, 27, 28, 59
., 132, 133
.., 7, 8, 69, 97
::, 13, 30
:=, 3
[], 7
$, 7, 57, 58
%, 3, 56, 62
and, 27
in, 8, 34
intersect, 9
mod, 21
union, 9

option (keyword), 30
output suppression, 2, 3
in loops, 26

Pac-Man, 126
packaged function, long form, 10, 11
Packages

combinat, 36, 61
DEtools, 125
geometry, 196, 199, 200
IntegrationTools, 86, 92, 93, 124
linalg, 129
LinearAlgebra, 129, 131, 133–135, 138, 140,

166, 173, 179, 180
ListTools, 10, 11, 58
numtheory, 24, 47
plots, 72, 99–101, 106, 118, 189, 193
plottools, 192–195
PolynomialTools, 150
Student, 86, 124
Student[Calculus1], 124
Student[MultivariateCalculus], 118

paraboloid, 104, 108, 110, 112, 120, 121
parametric equation, 97, 99, 100, 107, 114
plot3d confusion, 138

Index 215

parametric surface, 105, 107
partial derivative, 112
partial sum, 13–15, 17, 18
Parts (function), 93
pentagonal number, 60
perfect number, 25–31
Peron root, 184
Peron–Frobenius theorem, 183
PerpenBisector (function), 198
PerpendicularLine (function), 200
phi (function), 47
PI (keyword), xiv
Pi (keyword), xiv, xv
pi (keyword), xiv
piecewise (function), 121
plot (function), 6, 67, 68, 70, 72, 74, 76, 79, 86,

97, 100, 104, 105, 124, 164, 187, 194, 195,
197

axis labeling, 188, 189
caption, 188
legend, 188
tickmarks, 187

plot3d (function), 104, 105, 138, 187
plots (package), 72, 99–101, 106, 118, 189, 193
plottools (package), 192–195
point (function), 196
polar co-ordinates, 100
polarplot (function), 101
polygon (function), 192, 193
polygonal numbers, 59, 62
polygonplot (function), 193
polygonplot3d (function), 193
PolynomialTools (package), 150
positive matrix, 183
prevprime (function), 55
prime number functions, inbuilt, 55
print (function), 23, 26
proc (keyword), 28, 61
prod (function), 76
Product (function), 10
product (function), 9, 10
product (mathematical)

conversion into sum, 20
infinite, 9, 18, 20
partial, 18, 19

project (function), 194
proper divisor, 25, 26, 31
Psi function, 77

ratio test, 12
recurrence relation, 34, 35, 49–51, 184

first order w/ constant coeffs, 49
first-order general form, 49
linear homogeneous w/ constant coeffs, 49
order, 49
second order linear homogeneous w/ constant

coeffs, 51
second order linear w/ constant coeffs, 50
solving, 49, 50
system of, 184

recursion, 34–37

reduced row echelon form, 135–137, 142, 143,
147, 181

ReducedRowEchelonForm (function), 135
remember (keyword), 35, 37, 38, 40, 61
restart (function), 41, 56, 61
Reverse (function), 10, 11
root (function), xv
RootOf (function), 64
rotate (function), 194
rotation matrix, 163, 164
row echelon form, 135
RowOperation (function), 140, 141
rsolve (function), 50, 63

scale (function), 194
scaling (keyword), 111
segment (function), 197
seq (function), 7, 9, 13, 14, 25, 57, 59, 60, 63,

192
sequence (mathematical)

arithmetic, 59, 60, 62
difference to Maple sequence, 6
plotting, 76

series, 9, 12–17, 76, 77
p-series, 12, 13
harmonic, 12

shells method (volumes of rotation), 111
Sieve of Eratosthenes, 52
simplify (function), xv, 93
sin (function), 5
sinc (trigonometric function), 127
solve (function), 135
span, 151, 153, 158
spherical co-ordinates, 106
sqrt (function), xv
square number, 60
StandardFunctions (keyword), xv
stellate (function), 195
Student (package), 86, 124
Student[Calculus1] (package), 124
Student[MultivariateCalculus] (package), 118
style (keyword), 70, 74
subs (function), 42
Sum (function), 10
sum (function), 9, 10, 34, 42, 43, 59, 62, 76, 77
sum (mathematical)
p-series, 13–16
conversion from product, 20
divergence test, 12
double, 33, 119
first n squares, 41
indefinite, 42, 43
infinite, 9, 12–17, 76, 77
partial, 13–15, 17, 18, 76, 77
ratio test, 12

surd (function), xv
systems of linear equations

augmented matrix, 135–138, 147
Gauss–Jordan elimination, 134, 135
Gaussian elimination, 135
geometric interpretation, 136

216 Index

inconsistent system, 137

tangent plane, 115–117
textplot (function), 189, 190
then (keyword), 22, 25, 32
tickmarks (keyword), 187
time (function), 37–39
to (keyword), 23
transform (function), 194
transpose (matrix), 134
triangular number, 59, 60
trunc (function), 58
tutors (interactive), 118, 124
typeset (function), 190

unapply (function), 43
union (operator), 9

value (function), 9, 10, 19, 76
Vector (function), 130, 179

vector dot product, 132
vector norm, 179
vector operations, 131
vector space

conversion between Pn(F) and Fn, 149, 150,
152, 155, 159

definition, 148
equivalence of finite dimensional and Fn, 150,

159
vector span, 151, 153, 158
VectorNorm (function), 180
volumes of revolution

disks method, 107
shells method, 111

while (keyword), 23
with (function), 11

zeta function (mathematical), 16, 17

	Cover
	Springer Undergraduate Texts
in Mathematics and Technology
	An Introduction to Modern Mathematical Computing
	ISBN 9781461401216
	Preface
	Contents
	Conventions and Notation
	Maple
	Maple Input Basics
	Useful Functions

	Mathematics

	Chapter 1 Number Theory
	1.1 Introduction to Maple
	1.1.1 Inputting Basic Maple Expressions
	1.1.2 Variables
	1.1.3 Functions
	1.1.4 Sequences, Lists, and Sets
	1.1.5 Sums and Products
	1.1.6 Packages

	1.2 Putting It Together
	1.2.1 Creating Functions
	1.2.2 Loops
	1.2.3 Decision Structures
	1.2.4 Procedures
	1.2.5 Nesting
	1.2.6 Recursive Functions
	1.2.7 Computation Time

	1.3 Enough Code, Already. Show Me Some Math!
	1.3.1 Induction
	1.3.2 Continued Fractions
	1.3.3 Recurrence Relations
	1.3.4 The Sieve of Eratosthenes

	1.4 Problems and Exercises
	1.5 Further Explorations

	Chapter 2
 Calculus
	2.1 Revision and Introduction
	2.1.1 Plotting
	2.1.2 Multiple Plots
	2.1.3 Limits
	2.1.4 Differentiation
	2.1.5 Integration

	2.2 Univariate Calculus
	2.2.1 Optimization
	2.2.2 Integral Evaluation
	2.2.3 Symbolic Integrals
	2.2.4 Differential Equations
	2.2.5 Parametric Equations, Alternative co-ordinates, and Other Esoteric Plotting Fun

	2.3 Multivariate Calculus
	2.3.1 Three-Dimensional Plotting
	2.3.2 Surfaces and Volumes of Rotation
	2.3.3 Partial and Directional Derivatives
	2.3.4 Double Integrals

	2.4 Exercises
	2.5 Further Explorations

	Chapter 3 Linear Algebra
	3.1 Introduction and Review
	3.1.1 Vectors and Matrices in Maple
	3.1.2 Simultaneous Linear Equations
	3.1.3 Elementary Row Operations

	3.2 Vector Spaces
	3.2.1 Vector Spaces
	3.2.2 Linear Combinations
	3.2.3 Linear Independence
	3.2.4 Basis and Dimension

	3.3 Linear Transformations
	3.3.1 Introduction to Linear Transformations
	3.3.2 Linear Transformations as Matrices
	3.3.3 Eigenvectors and Eigenvalues
	3.3.4 Diagonalization

	3.4 Exercises
	3.5 Further Explorations

	Chapter 4 Visualization and Geometry: A Postscript
	4.1 Useful Visualization Tools
	4.1.1 Text and Labeling
	4.1.2 Polygons, Polyhedra, and so on

	4.2 Geometry and Geometric Constructions
	4.2.1 Constructing a Circle Given Three Points
	4.2.2 Constructing the Orthocenter of a Triangle

	Appendix A Sample Quizzes
	A.1 Number Theory
	A.2 Calculus
	A.3 Linear Algebra

	References
	Index

