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Laudatio for Torben Krarup

Levallois Medal

by

Helmut Moritz

A committee consisting of all IAG Past Presidents unanimously recommended
to award at this General Assembly the Levallois Medal to Dr.h.c. Torben
Krarup. I have the honor to present the laudatio.

This is an easy and pleasant task. Easy because Krarup, since about 1969,
is generally recognized as the authority on physical geodesy. The name of
“least-squares collocation” is inseparably connected with Torben. I am proud
that this idea goes back to the time when I was the chairman of an IAG Study
Group on Mathematical Methods in Physical Geodesy of which he was the
most active and inspiring member.

His “Letters on Molodensky’s Problem” sent to the members of this Study
Group became an influential instrument (the influence reached as far as to the
famous Swedish mathematician Lars Hörmander) although he could not be
persuaded to publish them. In this he followed Carl Friedrich Gauss (“Pauca
sed matura”). He shows that one can influence the history of geodesy even
without participating in the current paper industry.

Born March 2, 1919 in Odder (Denmark), he studied first mathematics
and physics and then geodesy in Copenhagen, finishing 1952. At the Danish
Geodetic Institute he was instrumental in geodetic computations, having ac-
tively participated in the construction of the electronic computer GIER built
at the Geodetic Institute around 1960. So he was a pioneer also in this field.

Torben Krarup is a wonderful person: kind, gentle, helpful, unselfish and,
above all, inpeccably honest. He likes to spread his ideas in discussions with
friends and in letters in a generous way.

I do not know a person more worthy of the Levallois Medal. In the name
of the international geodetic community, I congratulate you on this honor
and thank you, Torben, for your great contributions to geodesy and for your
equally great friendship.

I have the great pleasure and honour to hand over now the Levallois Medal
and the related certificate to you, Torben Krarup. The certificate reads:

The International Association of Geodesy
awards the Levallois Medal

to
Torben Krarup

In recognition of distinguished service to the Association and
the science of geodesy in general.

XXII IUGG/IAG general Assembly
Birmingham, UK, July, 1999

Signed. Klaus-Peter Schwarz, IAG president



Preface

This book contains contributions from one of the outstanding geodesists of
our time. From start to finish the reader will find wonderful insights and be
stimulated by the manner in which the interdependence of various subjects
emerge from these writings. The influence of Torben Krarup’s work has been
tremendous, and by publishing this volume his achievements are made avail-
able to everyone.

Most of the material in the book has been hard to obtain. The idea of
collecting it dates back to the 1980’s, when Helmut Moritz asked me if it were
possible to publish Torben Krarup’s so-called Molodensky letters. At that time
the difficulties of getting this project started prevented me from trying it.

With the coming of TEX and my closer relationship with the publishing
world I saw new possibilities. So I decided to create pdf-versions of all papers
that never found their way into a periodical. Often I scanned the typed pa-
pers, and optical character recognition software secured a surprisingly correct
result. Formulas and tables had to be entered in LATEX and the figures were
created by means of the powerful MetaPost. This last step took place on my
travels abroad where I spent hundreds of hours in hotel rooms in Finland,
France, Greece, Italy, Lithuania, Norway, Sweden, and the USA working on
this manuscript.

The next step was to scan all printed and published material. That job
was easier, but also more comprehensive because of the large number of pages.
Finally all the material was compiled into a book. The project was undertaken
because I felt strongly that having all of Torben’s writings accessible in one
volume would be of great benefit to the geodetic community.

The volume contains a variety of mathematical techniques useful for geodesy.
One of Torben’s hallmarks is his broad knowledge of mathematics combined
with a rare innovative ability to put relevant topics and concepts together.
Modern students of geodesy can learn a lot from his selection of mathematical
tools for solving actual problems. He himself somewhere in the book says:
. . .Most people seem to be more interested in presenting new ideas than in
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transforming good ideas into reality. Torben’s writings are mathematically
well founded and professionally relevant. It is rare nowadays to find scientific
papers that fulfill both requirements.

Torben Krarup was very reluctant to publish. He found it difficult to put
his ideas on paper. Typically, papers were re-written more than once, until
a formulation was found that satisfied him. Sometimes this did not happen
and papers were eventually put away. This painstaking process of finding the
right expression often led to compact formulations which some readers find
difficult to digest. To some extent he writes for the chosen few. He wants the
reader to be actively involved, and therefore he puts high demands on him.
So it may appear contradictory that he became disappointed when only a few
people understood his main ideas after the writing had been so laborious. It
is more important to be understood than to understand by yourself —he once
remarked on this theme. It took a few years before someone understood his
collocation theory. It was seen as a framework for theoretical investigations,
not as a procedure for creating numbers.

Once he told me that you never should publish more than a third or a half
of what you know. The papers that I have followed closely really live up to this
principle. His paper on Helmert Geometry underwent at least three different
derivations, all fundamentally different. Only very creative mathematicians
can do this.

I have co-authored papers with Torben that never passed the final test.
In my opinion they were excellent and I remember my disappointment when
he did not agree to publication. Because of this, Torben has left numerous
unfinished manuscripts. They are not included in this volume because the
papers published here cover all relevant subjects to which he has contributed.

As a colleague, he was very generous about sharing ideas. I think he did
this with a twofold aim: To educate students and colleagues to use the best
possible mathematical tools, and also to start a professional discussion on the
subject matter. Never in my life have I experienced more fatiguing moments
than those together with him. Most often they were tremendously fruitful!

I believe Torben’s finest mathematical skill is his intuition. Often he knows
the result before it has been derived and proved. My most recent memory is of
the prolonged process of establishing the Helmert Geometry. Many colleagues
would ask for the result in the form of algorithms. He denied to give them
away as he was looking for a geometric description of the problem rather than
a set of algorithms. His curiosity was the driving force, the result a valuable
supplementary gain.

Torben Krarup’s interest in geodetic problems can be compared to a sculp-
tor’s attention to each work. His interest declines when the solution emerges.
The artist’s interest lies in the problem, not in the complete work. In this
respect Torben Krarup is an artist.

Faced with the life work of a great scientist one asks if there is an over-
all structure in the topics and problems treated. Let me try to answer this
question by looking at some of his major contributions.
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In the late 1950s Torben worked in a team dealing with computational
problems in geodesy. As an outcome of this work the possibility of building
a transistorized computer arose. Krarup contributed much to its logic. It was
called GIER and became an important tool for the study of the propagation
of rounding errors in geodetic networks. This project also led to a better
understanding of the organization and structure of geodetic network problems.

With the publication of A Contribution to the Mathematical Foundation of
Physical Geodesy (1969) Torben created a well founded mathematical frame
for a description of the reality of physical geodesy. The booklet introduced
a new concept, namely collocation. It took a considerable time before the
message was understood by a number of the leading geodesists. It actually
happened when Helmut Moritz became the promotor. A number of geodesists
considered it as an algorithm for performing comprehensive computations;
however, it was meant as a common reference frame for description of geodetic
observations, so that they could be corrected properly for the influence of the
gravity field of the Earth.

It was not unexpected that a paper dealing with details on how to treat
geodetic observation equations followed. A final version of Integrated Geodesy
was published in 1978. The core concept is the definition of a local frame
which is based on the reference potential. The classical geodetic observation
equations are linearized in this frame and are used in an iterative collocation
process. The iteration stops when a minimum condition is fulfilled.

In parallel to this development Krarup was also occupied with a rigor-
ous formulation of the problem of physical geodesy: Given the potential field
of the Earth and some discrete geodetic observations like distances, angles,
absolute gravity, height differences, deflections of the vertical etc., determine
the surface of the physical Earth. By means of partial differential equations
Krarup succeeded in a stringent formulation of a free value boundary prob-
lem with oblique derivatives. The problem description was a reformulation of
Molodensky’s problem of 1945. In 1973, after ten years of thinking, he wrote
the celebrated Molodensky letters which were distributed to the members of
a study group on the topic. Perhaps this was his most important contribution
to our science.

Models for combining discrete geodetic measurements and the continuous
gravity field of the Earth were very much on Torben’s mind. Therefore it
was a natural continuation of his activities when he formulated the geodetic
elasticity theory. In 1974 he published Foundation of a Theory of Elasticity
For Geodetic Networks which is based on the fundamental duality between
applied and numerical mathematics.

During the later years Torben Krarup and I worked on certain generaliza-
tions of the Helmert transformation. The draft paper Helmert Geometry—or
the Importance of Symmetry looks at different aspects of the linear part, i.e.
the translation, and the non-linear part, i.e. the rotation and change of scale.
It turns out that singular value decomposition provides better insight into the
problem than the classical solution.
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Over more than a generation Torben Krarup has continuously been in-
trigued by central problems in geodesy. He succeeded in formulating them in
a relevant mathematical framework. But equally important, he succeeded in
solving the mathematical problems so formulated.

Allow me to add a comment on publishing conditions then and now. As a
state geodesist at the Geodetic Institute, Torben Krarup did not suffer from
the contemporary pressure on publishing. When you have genuine and new
results you publish. Cutting and pasting papers was not a part of his world. If
he republished, it happened in order to correct earlier mistakes. He was very
honest to himself and to the scientific community in which he worked.

When he decided to publish it was most often in non-refereed journals and
reports. So when circumstances made it a necessity to go through the referee
system he was often annoyed and angry. In many cases the result was not to
publish.

During the editing of the material contained in this book, I have come
across situations where another editor certainly would have changed the pre-
sentation. Only unpublished material has been properly copy-edited. It has
led to minor changes, but always with due respect to Torben’s definite style.
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1

Linear Equations

Introduction

In the last years several methods for solving linear algebraic equations have
been published. This chapter is not meant to be a more or less detailed survey
of these methods, rather, its purpose is to give the reader such a knowledge
of a few special methods or techniques that he will be able to make a series of
programs for his computer for solving linear equations of the types he is likely
to meet with in practice. We find it important to point out that one must
have a series of programs for these problems and not merely one standard
program because the problems which occur in practice vary considerably with
respect to dimensions, numerical behaviour, symmetrical pattern etc. The
cardinal point in our investigation has been the numerical strength of the
methods, considering that large systems of equations are often ill-conditioned,
and it is of little consolation to use a method that uses the central and the
peripheral storages of a computer in an elegant way if the numerical result of
the computation is drowned in rounding errors.

Direct Methods: The General Case

The form of the linear equations considered is supposed to be the following:

AX = B (1)

where A is a given non singular n×n matrix, B a given n×m matrix, and X
is the unknown n × m matrix. If B is the n × n unit matrix then X will be
the inverse A−1 of A and the problem of matrix inversion is thus included in
our problem. We suppose the numbers to be real numbers. The technique we
shall use is the classical one of reducing the system of equations to successive
systems of equations with triangular matrices of coefficients, that is matrices
with all the coefficients below the diagonal (or above the diagonal) being zero.



2 1 Linear Equations

We try to decompose the system (1) thus

LY = B

UX = Y
(2)

where U is an upper triangular matrix having zeros below the diagonal, L is
a lower triangular matrix having zeros above the diagonal, and

LU = A. (3)

The same connection can also be expressed in another way. Let us consider
the compound matrix [A B ] consisting of the columns of A followed by the
columns of B and let us try to express this matrix as a product of a lower
triangular matrix LA and an upper triangular matrix [UA UB ]

LA

[
UA UB

]
=
[
A B

]
,

then the system (1) is reduced to the triangular system

UAX = UB.

The two descriptions are only formally different, the following equations
being fulfilled

LA = L

UA = U

UB = Y

and the calculations being the same. It is however often convenient to use the
latter description.

If the triangular decomposition (3) is possible at all it is possible in an
infinity of ways. If LU is one triangular decomposition of A then (LD−1)(DU),
where D is any non singular diagonal matrix, is another decomposition. In the
following we shall suppose that the decomposition is defined by the condition
that all the diagonal elements of the matrix L be unity.

Equation (3) or, more explicitly,⎡⎢⎢⎢⎢⎣
1

l21 1

l31 l32 1

. . .
. . .

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

u11 u12 u13 . . .

u22 u23 . . .

u33 . . .

. . .

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
a11 a12 a13 . . .

a21 a22 a23 . . .

a31 a32 a33 . . .

. . . . . . . . .
. . .

⎤⎥⎥⎥⎥⎦ (4)

is equivalent to the following series of triangular systems of equations:
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u11 = a11;

l21u11 = a21; u12 = a12;
l21u12 + u22 = a22;

l31u11 = a31; u13 = a13;
l31u12 + l32u22 = a32; l21u13 + u23 = a23;

l31u13 + l32u23 + u33 = a33;
etc.

(5)

The u’s are found by solving the right hand systems and the l’s are found by
solving the left hand systems, and it can be done in the following order: First
the first right hand system, then the first left hand system and alternately the
next right hand and the next left hand system. When the l’s are found the
right hand system can always be solved, but the condition for the solvability
of the left hand systems is that uii �= 0 for i = 1, 2, . . . , n. (It should be
pointed out that the equations (5) can be solved also in other orders, as for
instance the algorithm (13) below shows.)

Considering the determinants of the matrices in (4) one obtains

u11u22 · · ·unn = det(A),

but considering the submatrices consisting of the first p columns and the first p
rows of each matrix, the formula (4) is still valid, and from the determinants
one obtains

u11u22 · · ·upp = det(Ap)

where det(Ap) is the pth principal subdeterminant of A. It follows that if
det(Ap) �= 0 for p = 1, 2, 3, . . . , q but det(Aq) = 0 then

upp �= 0 for p = 1, 2, 3, . . . , q − 1 but uqq = 0.

Since it is always possible to rearrange the columns and rows of a non singular
matrix so that the principal subdeterminants are non zero, it follows from the
above that it is always possible—at least, after a rearrangement of columns
and rows—to effectuate the triangular decomposition (3) of a non singular
matrix A. In practice it is necessary to make a rearrangement not only if one
of the diagonal elements of U would otherwise be zero but also if it would be
relatively small.

Some special properties of the matrix A can be used to make the decom-
position simpler.

If the matrix A is symmetric: AT = A, and the decomposition (3) is
possible, then the decomposition can be effectuated in a symmetrical way
thus:

A = LDLT (6)

where D is a diagonal matrix the diagonal elements of which are ±1. (The
diagonal elements of L are here in general different from unity). It is, how-
ever, not always possible during the triangular decomposition to restrict the
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rearrangements of columns and rows to those leaving the coefficient matrix
symmetric. In Section 1.2 we shall see a very important case where the sym-
metric decomposition is possible.

Skew symmetric matrices (matrices A for which AT = −A) have all the
diagonal elements equal to zero, hence they can not be decomposed in the nor-
mal way as skew symmetric matrices. Since systems of linear equations with
skew symmetric coefficient matrices should be relatively common in problems
relating to partial differential equations it is surprising that the solving of such
systems is dealt with so seldom, that the authors have no reference to papers
treating it. Since symmetric matrices can generally be decomposed according
to the formula (4), a skew symmetric matrix of even order (a skew symmetric
matrix of odd order is always singular) can generally be decomposed thus:

A = LJLT (7)

where J is a matrix for which

jrs =

{
1 for r, s = 2p− 1, 2p and p = 1, 2, . . . , n/2

−1 for r, s = 2p, 2p − 1 and p = 1, 2, . . . , n/2
0 otherwise

and L is a lower triangular matrix such that

l2p,2p−1 = 0

l2p,2p = l2p−1,2p−1 for p = 1, 2, . . . , n/2.

The proof and the necessary formulae are found very simply by writing (7)
explicitly as a system of equations.

Many attempts have been made to make use of the fact that the coefficient
matrices met with in practice very often consist of relatively few non zero
elements, but with only very slight success. Virtually the only thing to say
about this is the following almost obvious theorem:

If the first p elements (p is any integer) of a column of A equal zero,
then the corresponding elements of U are zero too; if the first p ele-
ments of a row of A equal zero, then the corresponding elements of L
are zero too.

A general theorem about matrices that deserves to be commonly known shall
be exposed here:

For any two square matrices A and B of orders m and n respectively
we define the direct product [ars]× [brs] as the square matrix [arsbr′s′ ]
of order mn in which the pair of numbers r, r′ define the row, and s, s′

the column. Any convention may be adopted for the ordering of the
rows in the direct product but the same convention must be adopted
for the columns. (A natural convention is to let (r1, r

′
1) precede (r2, r

′
2)

for r1 < r2 and for r1 = r2 if r′1 < r′2; the matrix A × B is then the
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compound matrix made from A by replacing for each element ars the
matrix arsB.)
If A and B are two matrices of order m and C and D are two matrices
of order n, then we have

(A × C)(B × D) = (AB) × (CD)

and if A and C moreover are non singular, we have

(A × C)−1 = A−1 × C−1.

The reader will with a pencil and paper be able to prove this.
Before we go into details concerning the practical solution of linear equa-

tions we shall investigate how well the unknowns are defined by such equations
with rounded coefficients, that is to say, how much the unknowns can alter
when the coefficients undergo small alterations.

For the n-dimensional vectors we shall use the Euclidian metric, the norm
‖V ‖ of a vector V being defined by

‖V ‖ =

( n∑
i=1

V 2
i

)1/2

and for matrices we define the norm by

‖A‖ = max
x �=0

‖Ax‖
‖x‖ .

The exact solution of the system of equations

Ax = b, A non singular and b a column vector,

is
x = A−1b.

If b is given an increment ∆b and if the new solution is denoted by x + ∆x,
we have

x + ∆x = A−1(b + ∆b) = A−1b + A−1∆b

∆x = A−1∆b

and
‖∆x‖ ≤ ‖A−1‖ · ‖∆b‖, (8)

using the obvious inequality ‖PQ‖ ≤ ‖P‖ · ‖Q‖ valid for any matrices P
and Q.

The effect of an increment ∆A of the matrix of coefficients is a little more
complicated:
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(A + ∆A)(x + ∆x) = b,

Ax + (A + ∆A)∆x + ∆A · x = b,

∆x = −(A + ∆A)−1∆A · x

if (A + ∆A) is non singular. Under this assumption we have

‖∆x‖ ≤
∥∥(A + ∆A)−1

∥∥ · ‖∆A‖ · ‖x‖. (9)

A known theorem concerning norms says that if ‖M‖ < 1 then I + M is non
singular and ∥∥(I + M)−1

∥∥ ≤ 1

1 − ‖M‖
see e.g. [2], pp. 290–291.

Therefore (9) can be written

‖∆x‖ ≤
∥∥A−1(I + A−1∆A)−1

∥∥ · ‖∆A‖ · ‖x‖

or

‖∆x‖ ≤ ‖A−1‖ · ‖∆A‖ · ‖x‖
1 − ‖A−1∆A‖

provided that
‖A−1∆A‖ < 1.

We can now write

‖∆x‖ ≤ ‖A−1‖ · ‖∆A‖ · ‖x‖
1 − ‖∆A‖ · ‖A−1‖ (10)

provided that

‖∆A‖ <
1

‖A−1‖ .

We see from (6) and (8) that if the significance of the last digit retained in
the calculations is of the same order of magnitude as

1

‖A−1‖ ,

then the system of equations is very ill-conditioned and the rounding errors
in the original coefficients and those arising during the calculations are likely
to spoil the results totally.

In investigating the errors arising from the triangular decomposition we
use the ingenious method of J. H. Wilkinson and it is warmly recommended
that interested readers read the two papers [1] and [2] for further details.

Supposing that the matrix [A B ] is so scaled that the triangular de-
composition can be effectuated in fixed point arithmetic in the interval
−1 ≤ x ≤ 1, we shall find the matrix [A′ B′ ] which really corresponds to the
computed triangular matrices. We suppose further that the accumulations of
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the product sums are made with double precision, and that the divisions are
made as divisions of double precision numbers by single precision numbers,
the quotients being correctly rounded as single precision numbers. Then we
see from the equations (5) that if we denote by ars the coefficients of the
matrix [ A B ] and by a′

rs those of the matrix [A′ B′ ] we have

|a′
rs − ars| ≤

{
2−t−1 for s ≥ r
2−t−1|urr| ≤ 2−t−1 for s < r

(11)

where t is the number of binary digits in the single precision numbers.
We have seen above that it can be necessary to change the orders of rows

and columns to prevent that some uss should be zero. If some uss is numeri-
cally extraordinary small then some lrs with r > s is likely to be extraordinary
large and this will probably make some later computed numbers large etc. In
fact it has been possible to give an upper bound for the maximum number
appearing in the calculation only under the supposition that the “complete
pivoting procedure” is used, that is to say, that before every computation
of a diagonal element uss the rows and columns with numbers not smaller
than s are rearranged so as to give the absolutely largest uss. Unfortunately
this process is not a simple one because it is necessary to compute which
ars would give the absolutely largest uss, but examples show that this piv-
oting procedure is generally necessary. In consideration of this we find that
J. H. Wilkinson’s proposal ([2]) is the most recommendable. This proposal is
first to reduce the matrix (or solve the equations) according to the original
Gaussian method using floating point calculations and the complete pivoting
procedure which in this case is less complicated, and secondly, after scaling
of the rows and rearrangement of the rows and columns of the matrix using
results from the first calculation, to effectuate the triangular decomposition
in fixed point arithmetic. (It is possible too to multiply the columns by appro-
priate scaling factors and then, when the solutions are found, to divide these
by the same factors. If these scaling factors are chosen so that the solutions of
the scaled equations are, to a higher degree than the solutions of the original
equations, of the same order of magnitude, then this method can perhaps give
more accurate results than the results calculated from the unscaled equations,
but the question of what strategy to use is still open.)

By multiplying the rows by appropriate constants it is possible to trans-
form the matrix so that the largest modulus in each row is of the same order
of magnitude for all the rows, and we shall suppose this to be done before the
calculations are started.

The process of solution will now be described more detailed, first the Gaus-
sian reduction (in floating point arithmetic) and secondly the decomposition
in fixed point arithmetic.

The Gaussian reduction with complete pivoting consists of n − 1 succes-
sive steps, after the pth of which the system consists of one equation with n
unknowns, one with n− 1 unknowns, . . . , one with n− p + 1 unknowns, and
n − p equations with n − p unknowns. The pth step can be described thus:
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for i := p + 1 step 1 until n do
begin m := a[i, p]/a[p, p]; a[i, p] := 0;

for j := p + 1 step 1 until n do
a[i, j] := a[i, j]− m × a[p, j];

end;

(12)

But before the pth step the last n − p rows and the last n − p columns
of the (left side) coefficient matrix must be rearranged so that the absolutely
largest aij for p < i ≤ n, p < j ≤ n replaces ap+1,p+1 and the permutation
of rows and columns must be recorded in a catalogue, by means of which one
can permute the original rows and columns before the fixed point calculation.
Besides this permutation the only result of interest of the first calculation is
the largest absolute value ass (which after the rearrangement must occur in
the diagonal).

After rearranging rows and columns of the original matrix and multipli-
cation of its elements by a scaling factor c > 0 such that max |ass| × c is
sufficiently less than unity, the triangular decomposition in fixed point arith-
metic can begin. This can be described in an ALGOL-like language thus:

for p := 1 step 1 until n do
begin for r := p step 1 until n do

a[p, r] = a[p, r] −
∑p−1

i=1 a[p, i] × a[i, r];
for s := p + 1 step 1 until m do

a[s, p] :=
(
a[s, p] −

∑p−1
i=1 a[s, i]× a[i, p]

)/
a[p, p];

end;

(13)

Here the sums of the type
∑p−1

i=1 are interpreted as zero for p = 1, and corre-
sponding interpretations are made in the following algorithms (14), (16), (26),
(33), and (34).

The back substitution is effectuated by the algorithm

for s := n + 1 step 1 until m do
for p := n step −1 until 1 do

a[p, s] =
(
a[p, s] −

∑n
i=p+1 a[p, i] × a[i, s]

)/
a[p, p];

(14)

The computations are first carried out in floating point arithmetic and then,
if one wants more precise results, in fixed point arithmetic with double preci-
sion accumulation etc. using scaling factors determined by the floating point
calculation. The back substitution procedure is generally less critical than the
triangular reduction, and hence the fixed point back substitution is in most
cases unnecessary.

The formula (11) shows that for small urr (and for ill-conditioned systems
some urr is small) the values |a′

rs − ars| are generally smaller below the small
diagonal element than to the right of it. Since it is very important that |a′

rs −
ars| is small when urr is small it would probably give a better precision if the
formulae were made more symmetrical using a square root method inspired
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by the Cholesky method for symmetric equations (see below). In place of the
algorithm (13) we will then use:

for p := 1 step k until n do
begin a[p, p] := a[p, p] −

∑p−1
i=1 a[p, i] × a[i, p];

a[p, p] := sign(a[p, p]) × sqrt
(
abs(a[p, p])

)
;

for s := p + 1 step 1 until m do
a[s, p] :=

(
a[s, p] −

∑p−1
i=1 a[s, i]× a[i, p]

)/
a[p, p];

for r := p + 1 step 1 until n do
a[p, r] :=

(
a[p, r] −

∑p−1
i=1 a[p, i] × a[i, r]

)/
abs(a[p, p]);

end;

(15)

Since this algorithm is more complicated and slower than (14) it shall be
recommended only for ill-conditioned systems.

It will often be possible to increase the precision of a solution of a system
of linear equations by a simple iterative method. Let us consider the case
where the right hand side of the system is a column vector b:

Ax = b. (16)

The methods described above will theoretically give the calculated solution x0

as a linear function of b, say D,

x0 = Db. (17)

We define an iteration process thus

xn = xn−1 + D(b − Axn−l), (18)

where the meaning is that by means of an approximate solution xn−1 we
calculate xn as the sum of xn−1 and the calculated solution of (16) where b
is exchanged with the column vector of discrepancies of the equations (16)
when xn−1 is inserted. Using the exact solution x we can write (18) in the
following way

xn − x = xn−1 − x + D
(
b − A(xn−1 − x) − b

)
xn − x = xn−1 − x − DA(xn−1 − x)

xn − x = (I − DA)(xn−1 − x)

‖xn − x‖ ≤ ‖I − DA‖ · ‖xn−1 − x‖;

that is to say, that if the norm λ of I−DA is smaller than 1, then the iteration
process will converge linearly with the convergence factor λ.

It was tempting to think, that when it is so easy to get a better approxima-
tion to the solution, then is it not important to use fixed point decomposition
before using the iteration, but unfortunately it will often occur that it is dif-
ficult to get ‖I − DA‖ smaller than unity.
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We shall conclude this section with two cases where the pivoting procedure
is much more simple.

The first example is that of a matrix A with a dominating diagonal:

|arr| ≥
∑
s�=r

|ars| for 1 ≤ r ≤ n. (19)

Here the pivoting procedure is entirely unnecessary as it will probably be also
if the inequality in (19) is only “approximately” true.

The second example is that of a Hessenberg matrix, that is, a matrix
which below the diagonal has non zero elements only immediately below the
diagonal:

ars = 0 for r > s + 1.

A special case of the Hessenberg matrix is the tridiagonal matrix for which

ars = 0
{

for r > s + 1;
for s > r + 1.

For a Hessenberg matrix the following very simple pivoting procedure suf-
fices: After the calculation of a row ur,r, ur,r+1, . . . , ur,n of the upper triangular
matrix, examine whether

|ar+1,r| > |urr|;
if so permute the rows r and r + 1, otherwise continue.

Positive Definite Symmetric Matrix of Coefficients

Theorem A positive definite symmetric matrix A can always be decomposed
thus:

A = LLT, (20)

where L is a lower triangular matrix.

Proof We assume the theorem to be true for positive definite symmetric
matrices of order n − 1. The matrix A of order n can be partitioned

A =

[
An−1 a

aT ann

]
where An−1 is a matrix of order n − 1, a is a vector of order n − 1, and ann

is a scalar. That A is positive definite means that

xTAx > 0 for all vectors x �= 0.

We consider all vectors x of the form[
x′

0

]
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where x′ denotes an arbitrary vector of dimension n−1. The above inequality
then reduces to the corresponding inequality for the matrix An−1

(x′)TAn−1x
′ > 0 for all x′ �= 0

which shows that An−1 is positive definite. By hypothesis there exists an Ln−1

satisfying

Ln−1L
T
n−1 = An−1.

Since det(Ln−1) = det(LT
n−1) =

√
det(An−1) > 0 it is possible to find a

vector l of order n − 1 such that

Ln−1l = a.

Then [
Ln−1 0

lT lnn

][
LT

n−1 l

0 lnn

]
=

[
An−1 a

aT ann

]
= A (21)

if

lTl + l2nn = ann. (22)

Considering the determinants of (21) one obtains

det(Ln−1) det(lnn) det(LT
n−1) det(lnn) = det(A) > 0(

det(Ln−1)
)2(

det(lnn)
)2

> 0.

Hence l2nn is positive and lnn can be chosen positive (which it is assumed to
be in the following).

The theorem is obviously correct for n = 1 and is thus proved by induction.
(22) expresses that the square sum of the elements in a row of L is equal to

the diagonal element of the corresponding row of A. If the diagonal elements
of A (and thus the modulus of all the elements of A) are less than unity, then
all the elements of L will be less than unity too.

If L is a non singular lower triangular matrix then

B = LLT

must be symmetric:

BT =
(
LLT

)T
= LLT = B,

and it will be positive definite too:

xTBx = xTLLTx =
(
LTx

)T(
LTx

)
> 0 for x �= 0

as

LTx �= 0 for x �= 0.
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Since the determinant of L is the product of the diagonal elements the
product of the squares of the diagonal elements of L is equal to the determi-
nant of A.

We will prove that

m(A) ≤ l2pp ≤ M(A) for all p, (23)

where M(A) and m(A) are the maximal, respectively the minimal value of

‖Ax‖
‖x‖ for x �= 0,

‖x‖ being the Euclidean norm.
For the vector x = [xi], xi = 0 if i �= p and xp = 1, and we have

M(A) ≥ xTAx =
(
LTx

)T(
LTx

)
= l2p1 + l2p2 + · · · + l2pp. (24)

For the vector

y = [yi]

satisfying

yp = 1

yi = 0 for i < p

li1y1 + li2y2 + · · · + liiyi = 0 for i > p

lp1y1 + lp2y2 + · · · + lppyp = lpp

(it is evidently possible to have these conditions fulfilled) we have

m(A) ≤ yTAy =
(
LTy)T

(
LyT

)
= l2pp; (25)

‖y‖ being not less than unity.
The inequalities (23) then follows from (24) and (25).
We will now investigate how to use this triangular decomposition (termed

the Cholesky method or the square-root method) in practice.
The above mentioned property, that if the elements of the matrix A are

(fixed-point) machine numbers then the elements of L will be machine num-
bers too, makes the Cholesky method well suited for fixed point calculation.

Since the matrix A is symmetric it is practical only to store the diagonal
and the elements above the diagonal. It is possible to compute LT and store
the elements of this matrix in the same memory cells as the corresponding
elements of A. The computation is described thus:

for r := 1 step 1 until n do
begin for s := 1 step 1 until r − 1 do

a[r, s] :=
(
a[r, s] −

∑s−1
p=1 a[p, r] × a[p, s]

)
/a[s, s];

a[r, r] := sqrt
(
a[r, r] −

∑r−1
p=1 a[p, r]2

)
;

end;

(26)
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In common mathematical notation the two formulae would be

lsr =
ars −

∑s−1
1 lprlsp

lss
; (27)

lrr =

√√√√arr −
r−1∑
1

l2rp. (28)

Owing to round off errors LTL will not be exactly equal to the original ma-
trix A, but the arithmetical operations can be executed so as to make the
difference very small. To attain this it is important to accumulate the prod-
uct sums with double precision, which in most computers can be done without
much extra trouble for fixed point calculation. The square root extraction of
a double precision number and the division of a double precision number with
a single precision number both giving the correctly rounded single precision
number may also be executed in a relatively simple way. It is thus for

E = LLT − A (29)

possible to attain

|Ers| ≤

⎧⎪⎨⎪⎩
2−t−1|lrr|, s > r

2−t−1|lss|, r > s

2−t|lrr|, r = s,

(30)

(where t is the number of binary digits in a single precision number) if the
moduli of the elements of A are so much smaller than unity and A so far
from being singular that the matrix LLT has the same properties. A sufficient
condition for this is that

(n + 1)2−t‖A−1‖ < 1; |Ars| < (1 − 2−t).

It is surprising that it is possible to arrive at such a satisfactory result.
It shows that generally the rounding errors introduced by the triangular de-
composition are smaller than the initial rounding errors of the elements of A
produced by transforming these into binary form. Moreover it follows from
(29) and (30) that if any lrr is small then the corresponding elements of E
are far smaller than 2−t and this has a very favourable effect on the solution
of ill-conditioned equations.

The result of the triangular decomposition is that the solution of the equa-
tions

AX = B

has been reduced to that of solving

LLTX = B
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or

LY = B (31)

LTX = Y (32)

that is, the original system is reduced to two systems with triangular matrices.
The system (31) is solved by the algorithm

for s := 1 step 1 until m do
for r := 1 step 1 until n do

b[r, s] :=
(
b[r, s] −

∑r−1
i=1 a[r, i] × b[i, s]

)/
a[r, r];

(33)

where yrs are the resulting values of brs. Formally these operations resemble
the operations (26) but generally we can not be sure that

|yrs| < 1.

Since the numerically critical part of the solution of linear equations is the
triangular decomposition it will generally suffice to execute in floating point
arithmetic the algorithm (33) and the algorithm

for s := 1 step 1 until m do
for r := n step −1 until 1 do

b[r, s] :=
(
b[r, s] −

∑n
i=r+1 a[r, i] × b[i, s]

)
/a[r, r];

(34)

where xrs are the resulting values of brs. If this does not suffice one may
apply these algorithms first in floating point arithmetic and then in fixed point
arithmetic with scaling factors determined by the floating point calculation.

In practice there are often many zeros among the coefficients, and it is
therefore desirable to have a program where those zeros that stand above all
non-zero coefficients in the same column shall not be stored and because of
the symmetry of the coefficient matrix only the upper triangular part of it is
stored. The author has written such a program which is described below.

The machine first computes a table for two functions ps and qs, where s is
the column number. Here qs is the number of ignored zeros in column s. The
coefficients a[r, s] that have to be stored are stored columnwise and in each
column in order of ascending r. The ith element in this array is called b[i] and
the function ps is defined from

a[r, s] = b[ps + r] for qs < r ≤ s.

The triangular decomposition is then described by

for s := 1 step 1 until n do
for r := qs step 1 until s do
begin z := 0;

for t := max (qr, qs) + 1 step 1 until r do
z := z − b[pr + t] × b[ps + t];

b[ps + r] := if r < s then (b[ps + r] + z)/b[pr + r]
else sqrt(b[ps + s] + z);

end;

(35)
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The back substitution is described by

for r := n step −1 until 1 do
begin z := c[r];

for s := n step −1 until r + 1 do
begin if qs < r then z := z − c[s] × b[ps + r];
end;
c[r] := z/b[pr + r]

end;

Here the quantities c[r] are used to supply the reduced right hand constants
on entry into the calculation and, on exit, they will contain the solutions. The
right hand reduction is not described here but can naturally be included in (35)
if the qn+1 is put equal to zero.
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The Adjustment Procedure in Tensor Form

The situation when applying the adjustment procedure is the following: Mea-
surements of m parameters exist for the determination of a physical quan-
tity A, which depends on n parameters (m > n). According to the mathemat-
ical model in which the wanted physical quantity may be expressed by the
n parameters, the measured quantities must fulfill certain conditions which
in general are not fulfilled by the observed quantities, as these are encum-
bered with errors. The question now is how to define the value of the physical
quantity A which is to appear from the existing observations.

According to ideas, which can at least be tracked back to Galileo, we will
have to choose the values of A which correspond to the values of the observed
quantities and is at the same time as close as possible to the observations.

We are now in a position to make precise definitions.
The observed parameters can be described by a vector

xi i = 1, 2, . . . , m

in a linear vector space O in which the positive definite quadratic form

gijx
ixj , gij = gji and gij are constants, i, j = 1, 2, . . . , m (1)

defines a Euclidian metric.
Those values for xi which are compatible with the mathematical model

constitute a subset C of O, and we presuppose that C be an n-dimensional
twice differentiable variety in O. Consequently, the points on C are in one-to-
one correspondence with the values of the wanted quantity A.

Now the adjustment procedure is defined as the mapping of O into C which
to any point in O corresponds to that point on C, the distance of which relative
to the defined metric (1) from the point in O is minimum, taking it that the
point on C is uniquely determined.

Thus the adjustment procedure is defined by the specification of (a) the
mathematical model which describes C and (b) the quadratic form gijx

ixj
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which determines the metric in O being an expression of the statistical model.
A specification of these models lies outside the scope of the present paper.

Let Pµ be a point on C, the distance of which to a given point Pσ in O is
minimum, then the line PµPσ is orthogonal to the tangent space to C at Pµ.
In general, we cannot find Pµ directly, as C cannot be presupposed to be a
subspace of O, but we must find Pµ by successive approximation.

C may be specified in various ways. For the present we suppose that C is
given on a parameter form so that

yα, α = 1, 2, . . . , n,

constitutes a permissible coordinate system on C within the region of interest.
The actual parameter representation is

xi = ai(yα), (2)

where ai are m twice differentiable functions of n independent variables. Any
tangent to C at P has the direction

dxi =
∂xi

∂yα
dyα = ai

α dyα,

where dyα is an arbitrary vector. If PµPσ has to be orthogonal to this tangent,
then

ai
µ,α dyα gij(x

j
µ − xj

σ) = 0.

As PµPσ must be orthogonal to all tangents at P , we have

ai
µ,α gij(x

j
µ − xj

σ) = 0 for α = 1, 2, . . . , n. (3)

When determining Pµ, we start from a neighboring point on C, e.g., in the
point P1. Equation (3) is not fulfilled for this point, but we have

ai
µ,α gij(x

j
µ − xj

σ) = b1,α. (4)

P1

Pµ

Pσ

C

O

Fig. 2.1. The linear vector space O and the subset C
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Now it would be natural to try to solve (3) by means of Newton’s method.
Differentiation of (4) yields

db1,α = ai
1,α gija

i
1,β dyβ + ai

1,αβgij(x
j
1 − xj

σ)dyβ .

This means that the following point of approximation P2 is given by the
equations (

gija
i
1,αai

1,β + gija
j
1,αβ(xj

1 − xj
σ)
)
(yβ

2 − yβ
1 ) = −b1,α

or, in a rewritten form,

hαβ = gija
i
αaj

β + gija
i
αβ(xj − xj

σ), (5)

h1,αβ(yβ
2 − yβ

1 ) = −b1,α. (6)

However, the matrix hαβ is not necessarily positive definite except in a certain
region around P , so (6) will only be suitable for points P1, which are already
quite close to P . On the other hand, the first term on the right side of (5)

gαβ = gija
i
αaj

β

is positive definite at all points in the area where yα is a permissible coordinate
system. Experience also shows that by iterative use of

g1,αβ(yβ
2 − yβ

1 ) = −b1,α (7)

we obtain convergence within a larger region. By the way, (7) in connection
with (4) constitute the classical normal equations.

gαβ is the induced metric tensor for C and is thus covariant to permissible
transformations of the coordinates on C. If C is a linear subspace of O, then,

as is well known, gµ,αβ and gαβ
µ =

(
gµ,αβ

)−1
are respectively a covariant and

a contravariant weight tensor of the coordinates yα. In the nonlinear case they
may be used as weight tensors.

In general, hαβ is not covariant, but hµ,αβ is. The proof is as follows: Let

� = 1
2

(
PµPσ

)2
and we get

� = 1
2gij

(
xi

µ − xi
σ

)(
xj

µ − xj
σ

)
.

Differentiating with respect to yα therefore gives( ∂�

∂yα

)
µ

= gija
i
µ,α

(
xj

µ − xj
σ

)
and ( ∂2�

∂yα∂yβ

)
µ

= gija
i
µ,αaj

µ,β + gija
i
µ,αβ

(
xj

µ − xj
σ

)
= hαβ

µ .
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Here (q)µ denotes q evaluated at the point Pµ. As � is a scalar field on C,
∂�/∂yα is a tensor. Covariant differentiation with respect to yβ gives

Hµ,αβ =
( ∂2�

∂yα∂yβ

)
µ
−
(
Γ γ

αβ

)
µ

( ∂�

∂yγ

)
µ

= hµ,αβ

since ( ∂�

∂yα

)
µ

= 0.

As the distance PµPσ is minimum, it must also be true that hµ,αβ is non-
negative in a region around Pµ. These results indicate that hµ,αβ may have a
meaning rather similar to that of gαβ in the linear case.

Now let us look at the differential map of a neighborhood of Pσ into a
neighborhood of Pµ. Now (3) can be written:

( ∂xi

∂yα

)
µ
gij

(
xj

µ − xj
σ

)
= 0. (8)

We differentiate and get( ∂2xi

∂yα∂yβ

)
µ
gij

(
xj

µ − xj
σ

)
dyβ

µ +
( ∂xi

∂yα

)
µ
gij dxj

µ =
( ∂xi

∂yα

)
µ
gij dxj

σ . (9)

In virtue of (9) and

dxj
µ = aj

µ,α dyα
µ

we get

hµ,αβ dyβ
µ = gija

i
µ,α dxj

σ . (10)

As opposed to what is valid for the linear mapping, the differential mapping
in this case depends on PµPσ; this is due to the fact that the direction of
projection is not constant owing to the conditions of curvature on C. �

The very process of iteration can be described as follows:

1. Select a preliminary point P1 on C
2. Compute εi

1 = xi
1 − xi

σ = ai
(
yα
1

)
− xi

σ

3. Compute ∆yα = yα
2 −yα

1 by solving the symmetric linear equation system

−gij

(
xj

2 − xj
σ

)
+ gija

j
1,α∆yα = gijε

i
1

ai
1,αgij

(
xj

2 − xj
σ

)
= 0

(11)

4. Compute

yα
2 = yα

1 + ∆yα

5. If P2 is not close enough to Pµ, then put P1 = P2 and start again at 2.



2 The Adjustment Procedure in Tensor Form 21

Until now we have only considered adjustment by elements. Perhaps it
would be appropriate to tell something about adjustment by correlates. Re-
verting to the considerations in the beginning of the paper, we remember that
C was given in a parametrical form. But by adjustment by correlates we take,
as a starting point, the equations which xi must fulfil for the coordinates of a
point on C.

We suppose that C, at least in the considered region can be described by
the m (< n) equations

bα(xi) = 0 (12)

where bα are twice differentiable functions of n independent variables xi.
The tangent space to C at the point P1 ∈ C has the equations

bα
i

(
xi − xi

1

)
= 0 (13)

where

bα
i =

(∂bα

∂xi

)
1
.

At the point Pµ any tangent vector to C is orthogonal to PµPσ, i.e.,

gij

(
xi

µ − xi
σ

)
zj = 0 (14)

where all zi satisfy
bα
i zi = 0. (15)

If
gij(x

i
µ − xi

σ) = bβ
j kβ (16)

where kβ is an arbitrary m dimensional vector, (14) will be fulfilled for all zi

satisfying (15). A consideration of dimensions will show that (16) is necessary
for a minimum, too. kβ is determined from (13) by insertion of xi

µ as given by

(16). Then we have the symmetric linear system of equations for ∆xi = xi−xi
1:

−gij∆xi + bβ
j kβ = gij

(
xi

1 − xi
σ

)
bα
i ∆xi = 0

(17)

according to the system (11). By eliminating xi we get the normal equations
for determination of kβ :

gijbα
i bβ

j kβ = bα
i

(
xi

1 − xi
σ

)
(18)

according to (13). If the vector xi we obtain by solving (17) is not equal
to xi

µ, we may use it as an approximation to this quantity and then calculate

the corresponding bα
i and continue iterating. If the first selected vector xi

µ

is sufficiently “good,” the process will converge and exact computations will
yield the same result as the adjustment by elements.
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The Theory of Rounding Errors in the
Adjustment by Elements of Geodetic Networks

Shortly after the appearance of the first electronic computers the investigation
of the effect of rounding errors on the solution of linear equations was initiated
by John von Neumann, see [2]. In the last years especially J. H. Wilkinson
has contributed in this field; and his lucid exposition of the problems and the
results in [3] is to day of the greatest importance for everybody who works
seriously with linear algebraic equations.

For a long time it has been known that the linear equations arising from
adjustment problems are often ill-conditioned. Therefore many proposals for
better algorithms to solve these equations have been made, see e.g. [1].

For some years I have tried to apply these results and methods on the
adjustment of geodetic networks and although these investigations have not
yet been concluded, I have found that a presentation of some of the tools, I
have used, could be of some interest.

A very important notion is that of the condition number. Let us consider
the set of linear equations

Ax = b (1)

where the matrix A is symmetric and non singular. As we know it is possible
to find n eigenvalues λi and n eigenvectors φi, i = 1, 2, . . . , n, where n is the
dimension of the system so that

0 < |λ1| ≤ |λ2| ≤ · · · ≤ |λn| and ‖φi‖2 = φT
i φi = 1.

If the vector b is perturbed by a vector δb = εφi, then x will be perturbed
by the vector δx = ε

λi
φi, i.e. the smaller |λi| is, the greater is the perturbation.

It is easy from this to show that for the relative perturbation of x, the following
inequality must hold

‖δx‖
‖x‖ ≤ |λn|

|λ1|
‖δb‖
‖b‖ (2)

for an arbitrary perturbation δb of b. It is λn/λ1 that is called the condition
number.



24 3 The Theory of Rounding Errors in the Adjustment by Elements

For perturbations of x arising from perturbations of A we have the in-
equality

‖δx‖
‖x‖ ≤

|λn

λ1
| | ν

λn
|

1 − |λn

λ1
| | ν

λn
|

(3)

provided | ν
λ1
| < 1, where ν is the numerically greatest eigenvalue of δA.

We shall now consider the condition number of the normal equations for ad-
justment by elements.

The linearized observation equations can be written as

Az = o, (4)

where A is an m by n matrix (m > n), z is the n-vector of the (differentials
of the) parameters to be calculated and o is the m-vector of the (differentials
of the) observations. It is possible to normalize these equations so that all the
weights are unity, and we shall assume that this has been done. If v is the
m-vector of the residuals we can write all the equations to be solved

−Iv + Az = o,

ATv = 0.
(5)

An elimination of v yields the normal equations

ATAz = ATo,

where ATA = N is the n by n matrix, the condition number of which we are
investigating. The eigenvalue problem for this matrix is the problem to find
the n-vectors φi and the numbers λi (i = 1, 2, . . . , n) so that

Nφi = λiφi, ‖φi‖ = 1 for i = 1, 2, . . . , n (6)

0 < λ1 ≤ λ2 ≤ · · · ≤ λn. (7)

We can assume that

φT
i φj = 0 for i �= j also if λi = λj .

Then the condition number of N is λn/λ1.
Being vectors in the parameter space, the φi can be regarded as linear

functions of the differentials of the parameters

φi ≈ φT
i z,

where the square sums of the coefficients are unity. We denote such functions
unity functions.



3 The Theory of Rounding Errors in the Adjustment by Elements 25

Using the matrix C = N−1 the equations (6) can be written:

Cφi = λ−1
i φi, (8)

from which follows

φT
i Cφi = λ−1

i , for j = i, (9)

φT
j Cφi = 0, for j �= i. (10)

As C is proportional to the covariance matrix of the parameters, the equa-
tions (10) express that φi regarded as functions of the differentials of the pa-
rameters are independent (they are “free functions”), and the equations (9)
express that the variance of the φi are inversely proportional to the λi. We
see that the condition number λn/λ1 equals the quotient the highest possible
variance of a unity function by the lowest possible variance of a unity func-
tion. If we decompose z in its φi-components, φT

i z, we see that the better
a component is defined by the measurements, the better it can be found by
calculation, but while the mean square error (from the measurements) is pro-
portional to

√
1/λi, then the uncertainty from rounding errors is proportional

to the square of
√

1/λi. We can say that the more well planned the network
is, the less is the condition number.

Let us now consider a very critical network. I choose a traverse connecting
two points with given coordinates. We consider all the sides known to have
the same length and let all the angles be measured with the same weight and
we consider them to be theoretically 180◦ each. If the number of unknown
points is n, then the eigenvalues and the eigenvector will be:

λi =
(
2 sin

iπ

2n + 1

)4

, (11)

φi,j = Ki sin
ij

2n + 1
, (12)

where Ki are normalizing constants. The condition number will be given by
the asymptotical relation

λn

λi
≈
(n + 1

π

)4

≈
(n

π

)4

.

For n = 100 we shall have the condition number of about 106 and for n = 1000
we get 1010, numbers that give reason to some precaution.

A classical example in the literature of least-squares problems is one where
the matrix A in (4) is given by

A =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 1 1 1
ε 0 0 0 0
0 ε 0 0 0
0 0 ε 0 0
0 0 0 ε 0
0 0 0 0 ε

⎤⎥⎥⎥⎥⎥⎥⎦ (13)
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where ε = 10−5 and the calculations are performed with nine decimals. The
matrix of the normal equations is then

ATA =

⎡⎢⎢⎢⎢⎣
1 + ε2 1 1 1 1

1 1 + ε2 1 1 1
1 1 1 + ε2 1 1
1 1 1 1 + ε2 1
1 1 1 1 1 + ε2

⎤⎥⎥⎥⎥⎦ (14)

and the eigenvalues are ε2, ε2, ε2, ε2, and 5+ ε2, but the matrix of the normal
equations will be calculated so as to consist of unity coefficients overall and
will thus be singular and it will not be possible to find the solutions, no matter
how accurate a method is used for solving the normal equations. I shall try
to show, how such a problem can be solved, but first I shall say something
about solving the normal equations.

The most natural way to solve the normal equations is, as we all know,
to use the Cholesky-method. Its essential part consists in finding an upper
triangular matrix U so that

N = UTU. (15)

From (15) follows that every element of N is the product sum of two
columns of U , and from this follows again, that if N is “normalized” then
every element of U and of N is numerically less than one. By normalizing the
matrix of the normal equations I mean multiplying the ith row and the ith
column of it by such a power of two, that the ith diagonal element nii satisfies

1
4 ≤ nii < 1

for every i. Therefore it is possible to perform the calculations in fixed point
arithmetic.

As pointed out by Wilkinson very much is gained in numerical precision
by calculating the product-sums in double precision arithmetic, finding the
diagonal elements of U as square roots correctly rounded to single precision
of the double precision square-sums, and finding the nondiagonal elements
of U as the quotients correctly rounded to single precision of the double pre-
cision product-sums by the single precision diagonal elements. This sounds
complicated but in many computers it can be performed so with only very
little extra cost in time and storage, and the gain in numerical precision is as-
tonishing. For the proof and as an illustrating example I can only refer to [3].
I call this variant of the Cholesky-method the Cholesky-Wilkinson-method. I
think that the normal equations should be solved by this method whenever
possible.

Now we can return to the example (13). Let us look at the system (5)
where A is given by (13). This is a symmetrical set of linear equations, and
we shall try to use the Cholesky-Wilkinson-method for it, slightly modified
so as to be used also when the diagonal elements are negative. Ignoring some
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normalizing problems which every computer-user should be able to solve we
get by this method the matrix U of the reduced normal equations:

U =

⎡⎢⎢⎢⎢⎣
1 1 1 1 1

ε 1 1 1
ε 1 1

ε 1
ε

⎤⎥⎥⎥⎥⎦ .

This matrix is not singular and the normal equations corresponding to it are:

N ′ =

⎡⎢⎢⎢⎢⎣
1 1 1 1 1
1 1 + ε2 1 1 1
1 1 1 + ε2 1 1
1 1 1 1 + ε2 1
1 1 1 1 1 + ε2

⎤⎥⎥⎥⎥⎦ .

As I said before there has been proposed many methods for solving ill-
conditioned least-square problems but this is the most simple and is as far as
I can see numerically not less precise than any other of them. Unfortunately
all these methods have the drawback that during the solution of the equations
all the coefficients of the observation equations must be present in the storage
or every such coefficient must be calculated several times. This fact causes a
much lower limit for the dimension of the networks that can be solved on a
computer with a given capacity.

Nevertheless I think that the method mentioned here can be used also on
relatively small computers after an adjustment using the solution of normal
equations explicitly in the following way: Express the unknown corrections to
the coordinates already found as polynomials in the coordinates with coeffi-
cients to be found. Then let these coefficients be parameters in an adjustment
using the numerically strong method. This will be possible if the parameters
are few enough. This polynomial will give “systematical” (by “systematical”
I mean here non-local) corrections to the coordinates and will probably give
most of the residual corrections because the φi corresponding to low eigenval-
ues are likely to be approximated by polynomials of low degree.

This paper has not been intended to give final results of my investigations,
I hope to be able to present them in a publication in the near future, but I hope
I have pointed out that there are other problems in the geodetic computations
than finding good formulas, there are numerical problems that have to be
solved and these are methods to solve them.
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4

A Contribution to the Mathematical
Foundation of Physical Geodesy

Exposition of the Ideas

Traditionally geodesists look on the problem of determination of the potential
of the Earth as a boundary value problem: in principle we can measure some
local property of the potential—the gravity—at the surface of the Earth and
until recently only there. Seeing that today the artificial satellites make it
possible to measure effects of the potential also in the outer space, and that,
on the other hand, we shall never be able to make gravity measurements at
more than a finite number of points, it would perhaps be more natural to
look on the main problem of physical geodesy as one of interpolation. The
present paper was primarily meant to be an attempt to solve some of the
theoretical and computational problems connected with this changed point
of view, but gradually, as my ideas took their form and I became aware of
the difficulties, my impression that the mathematical foundation of physical
geodesy had reached a state of crisis grew stronger and stronger.

I think that in reality the cause of this crisis is a crisis of communication,
not communication between geodesists but between geodesy and mathematics,
and that physical geodesy shares this difficulty with other sciences which
are interested in applied mathematics. Looking around on the mathematical
methods used, e.g. in physical geodesy, you will find ideas which seem to
have reached us by accident from the closed land of mathematics rather than
methods naturally suited for our problems.

I shall give a few examples which, I hope, will make it clear what I mean.
The methods used for determining the potential from satellite measure-

ments and from gravity measurements on the Earth are completely different,
and although they should be able to complete one another—the satellite data
being best suited to give the more global information and the gravity data to
give the more local information—it is nevertheless very difficult to combine
these two sets of data. It is curious that geodesists who are accustomed to use
and perhaps misuse adjustment methods in geometrical geodesy have not been
able to find an adjustment method that can combine these two sorts of data.
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Some geodesists have suspected that Molodenskiy’s boundary value prob-
lem has some form of unstableness. Would it not have been natural then to
try to formulate the boundary value problem as an adjustment problem, i.e.
to try to obtain an improvement of the boundary values so as to make the
boundary value problem uniquely solvable and so that the improvement in
some least-squares sense would be as small as possible? We have, however,
stuck to the traditional formulation of boundary value problems, used and
perhaps relevant in other parts of physical mathematics, but—at least in my
opinion—not relevant here.

This crisis of communication is well understandable. The mathematical
foundation of physical geodesy has been the classical potential theory as it
was, say in the late thirties, which theory is well described in a few well-known
books. After that time mathematics has developed fast and has in the opinion
of many people become an esoteric science. If you want to know something
about modern potential theory you will first learn that nothing is written
today about potential theory, but that this subject is generalized to the theory
of linear elliptic partial differential equations, and that it is preferable also
to read something about linear partial differential equations in general. But
when you see the books you realize that in order to understand anything in
them you have first to read one or two books on functional analysis (and to
understand these you must first read something about topology). Well, after a
few years of study you may begin to suspect what a modern potential theory
would look like and to see that there really are new things of importance to
physical geodesy in it. But a book on modern potential theory for geodesists
could—if it existed—be read in a few weeks; only such a book does not exist.
I understand why modern books on mathematics are written as they are, but
as a user of mathematics I must deplore it.

As a type of problem that would be treated in a modern book on potential
theory I can mention the problems concerning approximation of potentials
and in this connection stability problems.

I shall here give a few examples:
We have learned in the classical potential theory that two potentials which

are identical in an open set are identical in their whole domain of regularity.
The new potential theory gives a valuable complement to this theorem:

Let us consider potentials regular in some domain Ω, and consider another
domain Ω0 ∈ Ω. For two potentials φ1 and φ2 regular in Ω we assume that

|φ1(P ) − φ2(P )| < ε for P ∈ Ω0 (1)

where ε is some positive number.
We must now distinguish between two different cases:

1. The boundary of Ω is a part of the boundary of Ω0. Then there exists a
constant δ > 0 so that

|φ1(P ) − φ2(P )| < δ for P ∈ Ω. (2)
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2. The boundary of Ω is not a part of the boundary of Ω0. Then there does
not exist a constant δ so that (2) is satisfied.

From this important theorem many conclusions can be drawn, most of
which are more or less known by geodesists, e.g.:

The upward continuation of the potential (or the gravity) of the Earth is
stable and the downward continuation is unstable.

By going to the limit in (1) we see that the Dirichlet problem is stable but
the Cauchy problem is unstable.

The potential at the surface of the Earth (or the figure of the Earth) cannot
be found from dynamical satellite measurements alone.

These conclusions are just expressed as slogans; the exact meaning can be
found only on the basis of the theorem. Thus the words stable and unstable
have been given an exact content by (1) and (2).

In a parenthesis I should like to say a few words more on the stability
problem in another connection. We know from the classical potential theory
that both Dirichlet’s and Neumann’s problems have one and only one solution
and that this is also the case as regards the third boundary value problem,
where

∂φ

∂n
+ hφ (3)

is given at the boundary, if h ≤ 0. But for certain functions h for which
h ≤ 0 does not hold, the values of (3) at the boundary cannot be arbitrarily
prescribed, but must satisfy certain linear condition(s) for the problem to
have a solution, which is now not unique (Fredholm’s alternative). If h is not
given exactly, but for example found by measurements, it may happen that
it has no meaning to say that h is or is not one of the exceptional coefficient
functions. If this is the case, the boundary value problem will be unstable.

And now back to the approximation problems.
As far as I can see, the most important point of view introduced in physical

geodesy since the appearance of Molodenskiy’s famous articles is Bjerham-
mar’s idea of calculating an approximation of the potential by collocation, at
the points where gravity anomalies have been measured, of potentials that are
regular down to a certain sphere situated inside the surface of the Earth.

From the classical theory this idea looks very venturesome, because we
know that the actual potential of the Earth is not regular down to the Bjer-
hammar sphere. Nor does the evidence that Bjerhammar produces in support
of his idea seem convincing to me at all. As we shall see later on from the
point of view of the new potential theory, very much can be said in favour of
the determination of the potential by interpolation methods as well as of the
use of potentials that are regular outside a Bjerhammar sphere.

It is curious that from the very beginning these two things (I mean the
interpolation and the Bjerhammar sphere) have appeared together, exactly as
I was forced to accept the Bjerhammar sphere as soon as I drew the conclusions
from Moritz’ interpolation formula for the gravity anomalies.
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Moritz’ interpolation formula rests upon the idea of an auto-correlation
(the word “covariance” is used in this sense in the geodetic literature in the
same way as it will be used in this paper from the first section and on) func-
tion for the gravity anomalies which is invariant under the group of rotations
around the centre of the Earth. In the first section I shall prove that from the
existence of such an auto-correlation function on a sphere follows the existence
of an auto-correlation function for the potential in the whole space outside the
surface of the sphere and also that this auto-correlation function is invariant
under the group of rotations. It appears from some of Kaula’s articles that he
too was aware of that.

Now it is an obvious idea to generalize Moritz’ interpolation formula so
as to find the potential directly by collocation (or generalized interpolation)
from the gravity anomalies and thus drop the complicated integration proce-
dure using Stokes’ formula or a related formula. It is not less obvious that this
method would not be confined to the use of gravity anomaly data, but that
for example data related to satellites or vertical deflections could be included
as well. In fact, I have derived such a formula in the first section and, more
than that, I have also generalized this formula to make it possible, not by
exact collocation but by the aid of a given variance-covariance matrix for the
measurements, to find a potential which corresponds to improved measure-
ments and which is more likely according to the auto-correlation hypothesis.
This is what I call a smoothing procedure.

As Moritz has pointed out in [10] which is as amusing as it is interesting,
there is a close relation between his form of interpolation and the classical
least-squares adjustment. Therefore, I could re-deduce the results described
in the first section from the point of view of adjustment described in the sec-
ond section. The classical reciprocity between variance-covariance and weight
corresponds here to a reciprocity between auto-correlation and norm metrics.
This recalls the beautiful geometric method of deducing the formula for classi-
cal adjustment where the weight defines a Euclidean norm in the vector space
of the measurements.

The technical difficulty here is that the vector space in which the adjust-
ment has to be made is not a finite dimensional one, but, when the metric
has been defined, a Hilbert space.

The Hilbert space should be within the natural sphere of interest of geode-
sists, since it is the most general substratum for the least-squares adjustment
and also an indispensable tool of modern potential theory. But the Hilbert
space is not enough. We must use a concept that exists in Hilbert spaces
consisting of sufficiently well-behaved functions—and regular potentials are
well-behaved in most respects. This is the concept of a reproducing kernel.

I have not found it possible in this paper to give an introduction to Hilbert
spaces with a reproducing kernel, but good books exist on that subject. The
book most relevant to the use I have made of Hilbert spaces with reproducing
kernel is [9] which exists only in German, but the beautiful book [1] which
contains little but enough about the subject and which contains many other
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interesting ideas not totally irrelevant to our problems, is also useful. On the
other hand, I guess that most physical geodesists will be able to read this
paper the first time with some profit without having ever seen the words
“Hilbert spaces” and “reproducing kernel” together before.

The advantage we get by introducing the adjustment aspect is not only
that we attain a closer connection to classical adjustment methods, which
is only a formal gain, but also—and this is more essential—that we obtain
a better insight in the set of potentials among which the solution is found.
This set is exactly those potentials for which the norm (defining the metrics)
is defined and finite, and—here it is again—all these potentials are regular
outside a certain sphere in the interior of the Earth: The Bjerhammar sphere.
Again: The coupling between interpolation and the Bjerhammar sphere.

And now we can go back to Moritz’ formula. (I mean, here as before,
Moritz’ formula without height correction.) It presupposes the rotation invari-
ance of the auto-correlation function, from which follows the rotation invari-
ance of the auto-correlation function for the potential and again the rotation
invariance for the domain of definition of the potential itself, independent of
the way it is calculated: from Moritz’ formula and Stokes’ formula, or directly
from the generalized Moritz’ formula. Again: The Bjerhammar sphere.

There is a close connection between the problem of the Bjerhammar sphere
and the problem of the convergence of series in spherical harmonics or better
the question of approximation of potentials by series in spherical harmonics,
and here I believe we have reached the very core of the foundation of physical
geodesy.

The consequence must be that not only the first two sections of this paper
but also very much of the work done by physical geodesists all over the world
remain idle formalism until this approximation problem has been solved.

This is what I have tried to do in the third section. Here it appears that
again the theory of Hilbert spaces with reproducing kernel is a valuable tool
and that the central theorem—the Runge theorem—is a special case of a theo-
rem, known as a theorem of the Runge type, which is well-known in the theory
of linear partial differential equations and which concerns the approximation
of solutions to a partial differential equation in some domain by solutions to
the same equation in another domain containing the first one. The proof of
Runge’s theorem given in the Appendix is a reduction and specialization of
Theorem 3.4.3 in [5].

As far as I can see, all the problems of approximations of potentials relevant
to physical geodesy are solved or can be solved by the methods used in the
third section and the Appendix. And it is curious that the investigations
there seem to show that the adjustment method described in Section II (or,
equivalently, the interpolation method from Section I) is the natural way to
find the approximation, but the cause of this may be that I do not know about
any other way to obtain an approximation to the potential of the Earth which
can be proved relevant.
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The last section is dedicated to the applications of the method of ap-
proximation treated in the first sections. I fear that most readers will feel
disappointed by reading the last section as I myself felt disappointed when
writing it. In the light of the many thoughts and feelings I have had as to the
possibilities of application of the method it seems very poor to me. But in the
less than 18 months elapsed from the first idea of the method originated until
the paper was sent to the printers I have have had to concentrate so much on
the foundation and the studies of the relevant mathematical literature, that
the physical or geodetic aspects could only be vaguely glanced at. However,
I feel that now the time is ripe for a discussion of this matter and that espe-
cially the question relating to the geodetic applications is best furthered by
discussion and collaboration, and so I hope that the few hints in Section IV
will be sufficient to start such a discussion.

Forse altri canterà con miglior plettro!

I. Covariance and Collocation

1. As starting point I shall take the least-squares prediction formula (7-63)
from [4], page 268, and I assume that the reader is familiar with the statistical
reasoning leading to this formula. To ensure a better understanding of what
follows I shall make a few comments on the mathematical reasoning using
Moritz’ notation. The problem is to find the coefficients αPi

in the linear
prediction formula

∆̃gP =

n∑
i=1

αPi
∆gi, (4)

so that the mean square error mP of the predicted anomaly at P attains a
minimum. We have

m2
P = CPP − 2

n∑
i=1

αPi
CPi

+

n∑
i=1

n∑
k=1

αPi
αPk

Cik, (5)

and the αPi
are to be determined so that (5) attains a minimum.

With
αPi

= βPi
+ γPi

(6)

(5) becomes

m2
P = CPP − 2

n∑
i=1

βPi
CPi

+
n∑

i=1

n∑
k=1

βPi
βPk

Cik

+ 2

n∑
i=1

γPi

( n∑
k=1

βPk
Cik − CPi

)
+

n∑
i=1

n∑
k=1

γPi
γPk

Cik. (7)
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We may here choose the βPi
as we like, and we shall choose them so that

n∑
k=1

βPk
Cik = CPi

(8)

which is possible if {Cik} is non-singular. Then the second line in formula (7)
is zero, and the first line has a fixed value independent of γPi

.
If now {Cik} is a positive definite matrix, then the third line of (7) is ≥ 0

and is = 0 only if γPi
= 0, i.e. (5) attains its minimum for αPi

satisfying the
normal equations

n∑
k=1

αPk
Cik = CPi

. (9)

If, on the other hand, {Cik} is not definite, then the third line may attain any
positive or negative value, and m2

P cannot have any minimum.
Thus we see that for the least-squares problem to have a meaning the

covariance function C(P, Q)1 must be of positive type, i.e.

n∑
i=0

n∑
k=0

C(Pi, Pk)xixk > 0, (10)

for all sets of n points Pi and n corresponding numbers xi �= 0, for i = 1,
2, . . . , n, for all natural numbers n. It is evident, that only in this case has
C(P, Q) a meaning as a covariance function.

The αPi
having been found by (9), the predicted value can be found by (4)

or by

∆̃gP =

n∑
i=1

n∑
k=1

C−1
ik CPi

∆gk. (11)

If predicted values for several points are to be calculated, it is most economical
first to solve the following set of “normal equations”

n∑
i=1

ξiCik = ∆gk, (12)

where ξi are independent of P . Then the set of solutions to (12) can be used
to find the predicted values for all points by

∆̃gP =

n∑
i=1

ξiCPi
. (13)

It is evident that (11) follows again from (12) and (13), but (12) and (13)
formulate a problem of interpolation and its solution:

1 I regard the covariance function C(P, Q) as a symmetric function of the two
points P and Q and not merely as a function of the distance PQ. This will be of
importance in the following part of the paper. It should perhaps be noted that
Cik means C(Pi, Pk) and CPi means C(P, Pi).
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(13): Find ∆̃gP in the whole region as a linear combination of the functions
C(P, Pi) of P for i = 1, 2, . . . , n, so that

(12): ∆̃gP = ∆gk for k = 1, 2, . . . , n.

On the assumption that C(P, Q) is of positive type this problem has always
one and only one solution.

Having regarded the method from this slightly changed point of view one
gets the courage to try to generalize.

Let us jump into the new problem:
By first using Moritz’ prediction formula with a given covariance func-

tion C(P, Q) we can find ∆̃gP for all points of some surface. Solution of the
corresponding boundary value problem will then give us the disturbing poten-
tial T . But can we, by using another covariance function K(P, Q) defined in a
domain including the outer space of the Earth and describing the covariance
between values of T at the points P and Q, find the potential T directly from
the measured values of ∆gi?

Or to put the question in another way: Can we find the disturbing poten-
tial T by collocation (i.e. so that the corresponding gravity anomalies attain a
given set of values at given points) so that T corresponds to the interpolated
anomalies that could be found by Moritz’ formula?

I shall prove that this is not only possible but also relatively simple.
Evidently we cannot find the covariance function directly, for to do so we

should have a population of earths similar to our own and have the opportunity
to measure any T for all these earths at all points. But let us for a moment
assume that by a miracle we were given such a function; how then could we
use it and what can we say a priori about its properties?

First of all we see that the whole theory about Moritz’ prediction formula
may be used unchanged. Given the values of the potential T at n points Pi,
T can be predicted for all points P in the domain Ω where K is valid. The
form of (13) will here be

T̃P =

n∑
i=1

ξiK(P, Pi) (14)

where ξi is found from the normal equations

n∑
k=1

K(Pk, Pi)ξk = TP . (15)

Using the Laplace operator ∆ on both sides of (14) for n = 1 we find that

(a) for all Pi K(P, Pi) satisfies the Laplace equation

∆P K(P, Pi) = 0

at all points P ∈ Ω and is a regular potential at infinity as a function of P .
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The last remark follows from T having the corresponding property. (By
regularity at infinity for a potential φ I mean in this paper that 1) limφ = 0
and 2) lim r·φ exists. It is evident that T has at least these two properties.)
From the definition of K(P, Q) as a covariance function follows

(b) K(P, Q) = K(Q, P ). Then it is trivial that, for all Pi, K(Pi, P ) as a
function of P is a regular potential in Ω.

(c) K(P, Q) is a function of positive type.
This follows as in the theory explaining Moritz’ formula.
As a harmonic function K(P, Q) must be arbitrarily often differentiable
with respect to the coordinates of the points P and Q in the domain Ω.
Now we shall investigate what can be deduced from a given K(P, Q) about
the covariance between derivatives of T .
From the definition of K(P, Q) as a covariance function we have

M{TP , TQ} = K(P, Q). (16)

For P, Q, R being three points in Ω follows

M{TP , TR − TQ} = K(P, R) − K(P, Q). (17)

Let the distance from Q to R be l, so that for some unity vector e

R = Q + le; (18)

then (17) gives

M

{
TP ,

TQ + le− TQ

l

}
=

K(P, Q + le) − K(P, Q)

l
, (19)

and for l → 0

M

{
TP ,

(∂T

∂l

)
Q

}
=
( ∂

∂l
K(P, Q)

)
Q

, (20)

where (∂f/∂l)Q means the derivative of the function f in the direction e
taken at the point Q.
Evidently (20) can be generalized to arbitrarily high derivatives in arbi-
trary directions and to all linear differential operators. Specially, we get

0 = M{TP , ∆TQ} = ∆QK(P, Q), (21)

i.e. again the result that K(P, Q) is harmonic as a function of Q.
The normal potential U being known, ∆g can be found from T by a dif-
ferential operator, let it be called L, so that we get

M{∆gP , ∆gQ} = LPLQK(P, Q). (22)

That is to say that if on a surface ω bounding Ω we know the covariance
function C(P, Q) for the gravity anomaly then we must have:
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(d)LPLQK(P, Q) = C(P, Q) for P, Q ∈ ω, and now it follows from (a), (b),
and (d) that K(P, Q) can be found from C(P, Q) under certain conditions.

2. I hope that the reader now looks upon the possibility of finding K(P, Q)
with so much optimism that he is interested in learning how to use the co-
variance function.

I shall try to show it, using the same argumentation as that used in [4],
p. 266ff.

We assume that we have found the anomalies ∆gi at n points

Pi = Qi i = 1, 2, . . . , n,

and that we use a linear prediction for the potential T at the point P :

T̃p =

n∑
i=1

αPi
∆gi. (23)

If the correct value for T at P is TP , the error of prediction εP is

εP = TP − T̃P = TP −
n∑

i=1

αPi
∆gi. (24)

Then we can find the error covariance

σPQ = M{εP εQ}. (25)

σPQ = M

{(
TP −

∑
i

αPi
∆gi

)(
TQ −

∑
k

αQk
∆gk

)}
= M

{
TP TQ −

∑
i

αPi
TQ∆gi −

∑
k

αQk
TP ∆gk +

∑
i

∑
k

αPi
αQk

∆gi∆gk

}

= K(P, Q)−
n∑

i=1

αPi
LPi

K(Q, P )−
n∑

k=1

αQk
LQi

K(P, Q)

+
n∑

i=1

n∑
k=1

αPi
αQk

LPi
LQk

K(P, Q). (26)

For P = Q this becomes

ε2P = K(P, P )−2
n∑

i=1

αPi
LQi

K(P, Q)+
n∑

i=1

n∑
k=1

αPi
αPk

LPi
LQk

K(P, Q). (27)

If ε2P is to attain a minimum, αPi
must satisfy the normal equations

n∑
k=1

αPk
LPk

LQi
K(P, Q) = LQi

K(P, Q). (28)
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If the points Pi ∈ ω, then the coefficients of the normal equations are
C(Pi, Pk), and the matrix is positive definite so that we can find the inverse
matrix Nik defined by

n∑
j=1

NijLPj
LQk

K(P, Q) = δik. (29)

By the aid of Nik the potential can be predicted for any point P in Q by
the formula

T̃P =

n∑
i=1

n∑
k=1

NikLQi
K(P, Q)∆gk. (30)

The error covariance for the points P and Q is found by

σPQ = K(P, Q) −
n∑

i=1

n∑
k=1

NikLP K(P, Qi)LQK(Q, Pk). (31)

Also here we can turn the question in another way as in the case of for-
mula (11):

We want to represent T̃P as follows

T̃P =

n∑
i=1

ξiLQi
K(P, Qi) (32)

for all points in Ω so that for i = 1, 2, . . . , n (ξi are constants)

LPk
T̃P = ∆gk. (33)

This is precisely what is meant by collocation.
Now we get the normal equations

n∑
i=1

ξiLPi
LQi

K(P, Q) = ∆gk, (34)

and once they are solved, TP can be found by (32). Substitution of ξi from (34)
in (32) gives again (30).

It follows from (32) and (a) that TP is a potential, and from (33) and (34)
that it gives the wanted values for the gravity anomalies at the points Pi. So
far, we have in fact eliminated the statistical reasoning. The formula (31), on
the other hand, follows only from the statistical hypothesis.

3. My treatment of the statistical aspect has so far been very loose. I shall
now try to give it a better foundation.

Let us here, as in most of this paper, regard Ω as the domain outside
a sphere with its centre O in the centre of gravity of the Earth and the
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potential T , regular in Ω, as a stochastic process on Ω and invariant with
respect to rotations around the centre O. All functions of two points P, Q ∈ Ω
that are invariant with respect to such rotations are functions of the distances
rP and rQ of the points P and Q from O and of the angle w between OP
and OQ. From this follows that K(P, Q) is a function of not six but only three
independent parameters, and it can be found from T as the mean of

TP ′TQ′ (35)

over all pairs of points P ′ and Q′ satisfying

OP ′ = OP

OQ′ = OQ

∠POQ′ = ∠POQ.

(36)

In this way the means can be interpreted for simple interpolations (i.e.
when no linear operators L are involved), and this is analogous to the inter-
pretation of the means by Moritz. But in the case of operators not invariant
with respect to rotation it does not work. Here a set of potentials Σ must be
given so that the mean can be taken over point by point, and the set must
have the ergodic property so that at each point the mean of φ ∈ Σ equals the
mean of an individual φ over the sphere (with centre at O) passing through
the point in question.

Let φ(P ) be a potential regular in Ω. If R is a rotation (we regard only
rotations about O) then φ(RP ) is also a potential regular in Ω. We shall
then define Σφ for a given potential φ as the set of potentials φ(RP ) for all
rotations R and interpret the mean at a point as the mean over Σφ using as
a measure µ the invariant measure for the group of rotations G normalized
so that µ(G) = 1. When we use this interpretation of M{·}, the reasoning
leading to formula (30) runs without difficulty.

Now one could ask whether it is reasonable to represent the disturbing
potential for a non-spherical planet as a rotation invariant stochastic process.
My answer is that it may give a reasonable result if it is done in a reasonable
way: The interpolation, i.e. the mathematical procedure that gives a poten-
tial T satisfying a finite set of conditions (from measurements), has an infinity
of solutions. It must be theoretically exact, i.e. it must give one of these solu-
tions, but for economical reasons we want to use a statistical method that can
give us a solution that seems to us to use the observations as well as possible.
Therefore, a rather rough approximation in the statistical hypothesis is not
disastrous, but merely an economic question. The situation is exactly paral-
lel to that in adjustment of geodetic networks, where it is essential that we
use a high precision of the physical (or geometrical) constants, but much less
important to use “exact” weight (or covariance) coefficients.

But the acceptance of a disturbing potential with some rotation invariant
properties confronts us with a much severer problem: The T that we calculate
must be defined and harmonic not only in the space outside to the surface
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of the Earth but also down to a Bjerhammar sphere, and we know that the
physically existing T of the Earth cannot be extended to a potential with this
property.

Now back to the formulae.
A rotation invariant K(P, Q) restricted to a spherical surface in Ω with

centre at O and radius R is a function of w only and can be expanded into a
series in Legendre polynomials:

K(P, Q) =
∞∑

n=0

An(2n + 1)Pn(cos w) for rP = rQ = R. (37)

Since K(P, Q) is a potential as a function of P and as a function of Q, it can
be expanded as follows:

K(P, Q) =
∞∑

n=0

(2n + 1)
R2n+2An

rn+1
P rn+1

Q

Pn(cosw) for all P, Q ∈ Ω. (38)

We see that K(P, Q) is a function of rP , rQ and w only, and that it is symmet-
ric and harmonic in Ω and regular at infinity. We shall just find the conditions
for its being of positive type, and therefore we must investigate the expression

N∑
i=1

N∑
k=1

K(Pi, Qk)xixk

=
∑

i

∑
k

K(i, k)xixk

=

∞∑
n=0

(
(2n + 1)AnR2n+2

∑
i

∑
k

Pn(cos wik)

rn+1
i rn+1

k

xixk

)

=

∞∑
n=0

AnR2n+2

( n∑
m=0

∑
i

∑
k

Rnm(θi, λi)xi

rn+1
i

Rnm(θk, λk)xk

rn+1
k

+

n∑
m=1

∑
i

∑
k

Snm(θi, λi)xi

rn+1
i

Snm(θk, λk)xk

rn+1
k

)

=

∞∑
n=0

AnR2n+2

( n∑
m=0

(∑
i

Rnm(θi, λi)xi

rn+1
i

)2

+

n∑
m=1

(∑
i

Snm(θi, λi)xi

rn+1
i

)2
)

.

(39)

If An ≥ 0 for all n, (39) shows that∑
i

∑
k

K(i, k)xixk ≥ 0, (40)

but if An < 0 for some n, then for some set of points Pi and weights xi∑
i

∑
k

K(i, k)xixk < 0.
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We may conclude that the necessary and sufficient condition of K(P, Q) being
of non-negative type is that for all the coefficients An in (38)

An ≥ 0.

4. I think that the readers will agree that the notation used till now is rather
clumsy. Therefore I have chosen already here to introduce another notation
that only later will be theoretically justified, but which is much more handy.

As long as we are interested only in simple interpolation the new notation
is nothing but the classical matrix notation and requires no justification.

As we can suppose that we are interested only in the interpolated values
at a finite set of points we just need to know K(P, Q) at a finite number of
points, say m points, i.e. we may represent K(P, Q) by a square matrix:

m →
m

↓
KK(P, Q)�

The square n×n matrix K(Pi, Qk) is still represented as an n×n matrix:
n →

n

↓ (Kik)Kik�

Kik is obtained from K(P, Q) using a projection matrix L. It is of dimen-
sions n×m and consists of only 0’s and 1’s with precisely one 1 in each column.

m →
n

↓ LL�

Then we may write:
(Kik) = LKLT

(Kik) = L K LT

(αPi
) is of the same form as LT:

αPi
� A

n →
m

↓
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(TP ) is represented by a “long” vector:

TP � t

m

↓

and ∆gi by a “short” one:

∆gi� x

n

↓

I call the vector representing ∆gi for x, because it may represent not only mea-
surements of gravity anomalies, but also components of vertical deflections,
perturbations of satellite orbits, and so on.

When we use the method not on a problem of simple interpolation, but
on a problem of collocation, the dimensionality m is infinite, and L must
be interpreted as a linear operator or, better, as a set of n linear operators
operating at different points. However, I do not think that the interpretation
will cause any difficulties; but it will be practical for the reader continuously
to compare the following example with the formulae (23)–(34).

The problem to be solved using the new notation is this:
If an interpolation or collocation is used on many measurements, the re-

quirement that the result must be exactly compatible with all the results of
the measurements may have the effect that the result becomes very oscillating;
therefore it is often better to use smoothing than exact interpolation.

Let us suppose that in addition to what was given in the problem treated
in Subsection 2 of this section we are given an n × n variance-covariance
matrix R for the n measurements, i.e.

x = y − v (41)

where x is the vector of the measurements, y is the true value and v is the
vector of the corrections.

We put as before, cf. (23),

t̃ = Ax. (42)

The error of prediction will now be

(εP ) = t − t̃ = t − Ay + Av (43)

and the error covariance

(σPQ) = M
{
(εP )(εQ)T

}
= M

{
(t − Ay + Av)(tT − yTAT + vTAT)

}
= M{ttT} − M{tyTAT} − M{AytT} + M{tvTAT} + M{AvtT}
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+ M{AyyTAT} − M{AyvTAT} − M{AvyTAT} + M{AvvTAT}
= K − KLTAT − ALK + 0 + 0 + ALKLTAT − 0 − 0 + ARAT (44)

or

(σPQ) = K − KLTAT − ALK + A(R + LKLT)AT. (45)

The condition that εP must attain a minimum gives the normal equations

A(R + LKLT) = KLT (46)

or

(R + LKLT)AT = KLT. (47)

Here the matrix R is positive definite and LKLT is always nonnegative defi-
nite; therefore the matrix of the normal equations

R + LKLT

is always positive definite. If we define N by

N(R + LKLT) = I, (48)

where I is the n × n unit matrix, we get

A = KLTN, AT = NLK (49)

and

t̃ = KLTNx. (50)

For the error covariance σPQ (45) and (49) give

(σPQ) = K − KLTNLK. (51)

Also here it is most simple from a computational point of view first to solve
the normal equations

(R + LKLT)ξ = x, (52)

and then to find t̃ by

t̃ = KLTξ. (53)

The a posteriori variance-covariance matrix for the measurements may also
be calculated:

L(σPQ)LT = LKLT − LKLTNLKLT = LKLT
(
I − N(R + LKLT − R)

)
= LKLTNR = (R + LKLT − R)NR = R − RNR. (54)
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5. We return to the collocation problem (not the smoothing problem).

Then R = 0 and (54) gives

L(σPQ)LT = 0 (55)

which is not surprising.

I have called σPQ the error covariance, because it has been called so by
others up to now, although I should have preferred to call it the a posteriori
covariance, and I shall try to explain why.

Imagine the situation that we have made a collocation as in Subsection 2
of this section and that afterwards we have made measurements at another
set of points and now want to make the interpolation using both sets of mea-
surements. I claim that it can be done in the following way:

Let the t̃ found from the first collocation be called t̃0 and that found from
the second one t̃, and put

t̃ = t̃0 + s̃. (56)

Let the second set of measurements be called y, and let M play the role
of L in the second set. Then s̃ may be found using the ordinary method, if
for K we use

K ′ = K − KLTNLK, (57)

for L we use N , and for x we use

y − t̃0,

i.e.

s̃ = (K − KLTNLK)MTN ′(y − t̃0), (58)

where

N ′ =
(
M(K − KLTNLK)MT

)−1
. (59)

This may be verified directly by the well-known technique of manipulation
with partitioned matrices, but it will not be done here as I do not think the
result will be of any computational importance; nevertheless, I find it rather
interesting, especially when it is formulated as follows:

If one has used the prediction method on the result of some measure-
ments and after that made some new measurements (at other points), then
the following two procedures will give the same results:

1. Use the prediction method on all measurements with the original covari-
ance function.

2. Use the prediction method on the improvements (the new measured val-
ues minus the predicted values at the same points) with the a posteriori
covariance function.
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II. The Least-Squares Method in Hilbert Spaces

1. In the first section I have carried the generalization of Moritz’ prediction
formula to a point—or perhaps a little beyond a point—where some difficul-
ties, e.g. with respect to a simple and consistent notation, seem to indicate
the need for a more powerful mathematical apparatus.

I have several times stressed that the prediction method may be looked
upon in two different aspects: the original prediction aspect, where one for-
mally asks for the predicted value at a single point and, on the other hand, the
collocation aspect where one asks for an interpolating function as an entity.
Perhaps we can say that the first aspect is a discrete or finite one, while the
second is a continuous or infinite one; therefore, it is not very surprising that
we have to use methods from the functional analysis in order to make more
extensive use of the second aspect.

The form of the normal equations for the second aspect (12) seems to
indicate that the interpolating function is a result of an adjustment problem.
When we introduced the new notation, we saw that in the case of ordinary
interpolation the notation was the ordinary matrix notation, provided that
we asked for the value of the interpolating function at a finite set of points
only. Let us first investigate this special case to find out which quantity is
minimized.

Let us try to find an m-dimensional vector t so that n, say the first n of
its coordinates, equal the n coordinates of the n-dimensional vector x and so
that

tTGt = min (60)

where G is an m×m-dimensional positive definite matrix. The first condition
can be written

Lt = x, (61)

where the m × n matrix L can be partitioned according to[
In 0

]
(62)

where In is the n × n-dimensional unity matrix, and 0 is the n × (m − n)-
dimensional zero matrix. The problem is now a classical least-square adjust-
ment problem with the equations of condition (61) and the weight matrix G.
Its solution is

t = G−1LT(LG−1LT)−1x. (63)

If
G = K−1, (64)

then we have (50), i.e. x is the solution to the prediction problem for K = G−1.
We can explain what we have seen here by saying that the correlation function
defines the metric of the vector space of which t is an element, and that the
matrix defining this metric is the weight matrix corresponding to the given
correlation.



4 A Contribution to the Mathematical Foundation of Physical Geodesy 47

When we have found the t that minimizes

tTK−1t, (65)

we can also find the value of the minimum:

min
t

tTK−1t = xT(LKLT)−1LKK−1KLT(LKLT)−1x

= xT(LKLT)−1LKLT(LKLT)−1x = xT(LKLT)−1x. (66)

This result is very interesting because it is independent of the set of m−n
points at which we wanted to find the prediction, and because the result is
not limited to simple interpolation but may be generalized to the case where
the unit matrix In in (62) is replaced with another nonsingular n×m matrix.

If we interpret K−1 as the matrix that defines the metric in the m-
dimensional vector space of the t’s, the norm of t is defined by

‖t‖ =
(
tTK−1t

)1/2
, (67)

and using (66) we can define the norm of the interpolating function t for the
problem given by L, K and x:

‖t‖ =
(
xT(LKLT)−1x

)1/2
. (68)

Now we shall find a more explicit expression of the norm. Suppose that
K(P, Q) can be expressed as follows

K(P, Q) =
∑

n

knφn(P )φn(Q) for P, Q ∈ Ω, (69)

where kn are positive constants, φn(P ) is a set of functions harmonic in Ω
and the range of n is finite or infinite. As we are here interested in simple
interpolation, we want to find such a function t(P ) that

t(Pi) = xi i = 1, 2, . . . , N . (70)

As in (12) we put

t(P ) =
N∑

i=1

ξiK(P, Qi) =
∑

n

knφn(P )
N∑

i=1

ξiφn(Qi) =
∑

n

tnφn(P ), (71)

where

tn = kn

N∑
i=1

ξiφn(Qi) (72)

are the coefficients in the expansion of t(P ) into a series of φn(P ).
The conditions (70) give the normal equations ((52) for R = 0)

LKLTξ = x, (73)
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i.e.

‖t‖2 = ξTLKLT(LKLT)−1LKLTξ = ξTLKLTξ

=
N∑

i=1

N∑
k=1

ξiξkK(Pi, Pk) =
∑

i

∑
k

ξiξk

∑
n

knφn(Pi)φn(Pk)

=
∑

n

kn

∑
i

∑
k

ξiξkφn(Pi)φn(Pn) =
∑

n

kn

(∑
i

ξiφi(Pi)
)2

=
∑

n

t2n
kn

.

(74)

If for all f for which

f =
∑

n

fnφn(P ) (75)

converges at all points of Ω and for which∑
n

f2
n

kn
(76)

also converges, we define

‖f‖ =

(∑
n

f2
n

kn

)1/2

, (77)

then our definition is consistent with (33). We shall adopt this definition, and
call the set of all such f HK .

HK is a linear space, i.e. for f, g ∈ HK and for a being any number
f + g ∈ HK and af ∈ HK .

Let us for f, g ∈ HK define the scalar product 〈f, g〉 by

2〈f, g〉 = ‖f + g‖2 − ‖f‖2 − ‖g‖2. (78)

It is evident that 〈f, g〉 = 〈g, f〉, that the scalar product is bilinear, and that

‖f‖2 = 〈f, f〉. (79)

If 〈f, g〉 = 0, we say that f and g are orthogonal.
For

f = φn + φm

we find by (78)

‖f‖2 = ‖φn + φm‖2 = ‖φn‖2 + ‖φm‖2 + 2〈φn, φm〉 (80)

and using (77)

1

kn
+

1

km
=

1

kn
+

1

km
+ 2〈φn, φm〉 for m �= n (81)
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and
4

kn
=

2

kn
+ 2〈φn, φn〉 for m = n. (82)

Equation (81) gives
〈φn, φm〉 = 0 for m �= n. (83)

and (82) gives

‖φn‖2 = 〈φn, φn〉 =
1

kn
(84)

which shows that φ1, φ2, . . . is a system of orthogonal functions.
As a function of φ the covariance function K(P, Q) is an element of the

space HK and for f being any element of HK we can calculate

〈K(P, Q), f(Q)〉 =
〈∑

n

knφn(P )φn(Q),
∑
m

fmφm(Q)
〉

=
∑

n

∑
m

kmfmφn(P )
〈
φn(Q), φm(Q)

〉
=
∑

n

knfnφn(P )
1

kn
=
∑

n

fnφn(P ) = f(P ). (85)

Specially for f(Q) = K(Q, R) we get

〈K(P, Q), K(Q, R)〉 = K(P, R). (86)

What we have found so far may be summarized as follows: The covariance
function given by (69) defines a Hilbert space HK consisting of the functions f
satisfying (75) and (77), and K(P, Q) is the reproducing kernel for HK . From
the theory of Hilbert spaces with kernel function it follows that it is not
necessary to demand the convergence of (75)—it follows from that of (76).

As to the rotation invariant case we have found the form of the covariance
function (38):

K(P, Q) =
∞∑

n=0

(2n + 1)An

( R2

rP rQ

)n+1

Pn(cosw)

=

∞∑
n=0

An

( R2

rP rQ

)n+1 n∑
m=−n

Enm(θP , λP )Enm(θQ, λQ) (87)

where An ≥ 0, and I have defined

Enm(θ, λ) = Rnm(θ, λ) for m ≥ 0,

Enm(θ, λ) = Snm(θ, λ) for m ≤ 0.
(88)

HK consists here of all functions of the form

f(P ) =
∑′

n

n∑
m=−n

fnm

( R

rP

)n+1

Enm(θ, λ), (89)
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for which

‖f‖2 =
∑′

n

n∑
m=−n

f2
nm

An
(90)

converges.
∑′

n denotes here and below that the sum is to be taken over the
set of n for which An > 0.

Equations (83) and (84) give here〈(R

r

)i+1

Eij(θ, λ),
(R

r

)k+1

Ekl(θ, λ)

〉
=

{
1

Ai
for i = k and j = l,

0 in all other cases.
(91)

2. In this section the two classical least-squares adjustment problems will be
generalized to Hilbert spaces.

In both cases we have two Hilbert spaces H1 and H2, and each of them
may independent of the other be finite- or infinite-dimensional. The scalar
products and the norms in the different spaces will be distinguished by lower
indices, so that for instance ‖ · ‖2 is the norm in H2. The two spaces may be
identical.

First I shall draw the attention of the reader to some definitions concerning
linear operators in Hilbert spaces.

A linear operator A : H1 → H2 is a function on H1 to H2 so that if A is
defined for two elements x1 and y1 ∈ H1 in such a way that

Ax1 = x2

Ay1 = y2

(92)

where x2 and y2 ∈ H2, then A is also defined for x1 + y1, and

A(x1 + y1) = x2 + y2, (93)

and for ax1, where a is any real number, and

A(ax1) = aAx1. (94)

A linear operator A : H1 → H2 is said to be bounded if it is defined for
every x ∈ H1 and there exists such a positive number b that for all x ∈ H1

‖Ax‖2 ≤ b‖x‖1 (95)

(in fact the fulfilment of the second condition follows from that of the first).
If H1 = H2, the bounded linear operators A : H1 → H2 are analogous

to square matrices; if H1 �= H2, they are analogous to rectangular matrices.
There is also the following analogy to transposition:

If A : H1 → H2 is a bounded operator, then there exists one and only one
bounded linear operator AT : H2 → H1 so that for all x1 ∈ H1 and x2 ∈ H2

〈Ax1, x2〉2 = 〈x1, A
Tx2〉1. (96)

When I use the word operator, I generally mean bounded linear operator.
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{y
∣∣ y = Ax}

a

y

The first problem. Given a bounded operator A : H1 → H2 and an element
a ∈ H2. Find such an element x ∈ H1 that ‖z‖2, where

z = Ax − a, (97)

is as small as possible.
‖z‖2 attains a minimum if, and only if, z is orthogonal to Ay for all y ∈ H1:

〈z, Ay〉2 = 0

〈ATz, y〉1 = 0
for all y ∈ H1 (98)

that is

0 = ATz = ATAx − ATa,

ATAx = ATa.
(99)

If the operator ATA is invertible, the unique solution is

x = (ATA)−1ATa (100)

and

‖z‖2
2 = 〈A(ATA)−1ATa − a, A(ATA)−1ATa − a〉2

= 〈A(ATA)−1ATa, A(ATA)−1ATa〉2 − 2〈A(ATA)−1ATa, a〉2 + 〈a, a〉2
= 〈ATA(ATA)−1ATa, (ATA)−1ATa〉1 − 2〈A(ATA)−1ATa, a〉2 + 〈a, a〉2
= 〈ATa, (ATA)−1ATa〉1 − 2〈(ATA)−1ATa, ATa〉1 + 〈a, a〉2
= 〈a, a〉2 − 〈a, A(ATA)−1ATa〉2
= 〈a, a〉2 − 〈A(ATA)−1ATa, A(ATA)−1ATa〉2
= ‖a‖2

2 − ‖A(ATA)−1ATa‖2
2 (101)

because(
A(ATA)−1AT

)2
= A(ATA)−1ATA(ATA)−1AT = A(ATA)−1AT. (102)
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{x
∣∣ Bx = b}O

x

The operator of the normal equations (99) is non-negative definite:

〈x, ATAx〉2 ≥ 0 for all x ∈ H2 (103)

because

〈x, ATAx〉2 = 〈Ax, Ax〉1 = ‖Ax‖2
1 ≥ 0. (104)

The operator ATA is symmetric:

(ATA)T = ATA. (105)

The second problem. Given a bounded operator B : H2 → H1 and an element
b ∈ H1. Find such an element x ∈ H2 that

Bx = b (106)

and that

‖x‖2 (107)

is as small as possible.
Any x ∈ H2 can be written as

x = BTξ + y (108)

with a suitable ξ ∈ H1 and y ∈ H2 so that y is orthogonal to BTs for all
s ∈ H1, that is

0 = 〈BTs, y〉2 = 〈s, By〉1 for all s ∈ H1 (109)

or

By = 0. (110)

Now (108) and (110) give

Bx = BBTξ + By = BBTξ. (111)
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The condition of x, written in the form (108), satisfying (106) is that ξ is
determined by

BBTξ = b. (112)

If BBT, which definitely is symmetric and non-negative definite, is invertible,
we have

ξ = (BBT)−1b. (113)

In (108) x is expressed as a sum of two orthogonal elements of which the
first is given; the norm of x therefore attains its minimum for y = 0, and we
have the solution:

x = BT(BBT)−1b. (114)

For the minimum value ‖x‖2 we have

‖x‖2
2 = 〈BT(BBT)−1b, BT(BBT)−1b〉2 = 〈BBT(BBT)−1b, (BBT)−1b〉1

= 〈b, (BBT)−1b〉1. (115)

As in the finite-dimensional case we can also here define and solve the more
sophisticated mean squares problems.

There is a method of including in the two problems treated here problems
that look more general by using direct sums of Hilbert spaces.

For two (finite- or infinite-dimensional) Hilbert spaces H1 and H2 we can
define a third Hilbert space H+:

H+ = H1 ⊕ H2 (116)

called the direct sum of the spaces H1 and H2. It consists of all ordered pairs

(x1, x2) (117)

of elements x1 ∈ H1 and x2 ∈ H2, and the scalar product in H+ is defined as

〈(x1, x2), (y1, y2)〉+ = 〈x1, y1〉1 + 〈x2, y2〉2. (118)

If we have a fourth Hilbert space H3 and an operator A : H+ → H3, it will
often be practical to partition A:

A =
[
A1 A2

]
, (119)

where A1 : H1 → H3 and A2 : H2 → H3.
If, in the same way, B : H3 → H+, then

B =

[
B1

B2

]
(120)

where B1 : H3 → H1 and B2 : H3 → H2. The analogy to matrix notation is
striking.
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3. To be able to use the adjustment formulae we must know how to obtain
explicit forms of the operators A and B and here the covariance function or
kernel K(P, Q) may help us very much.

Formula (85) shows that K(P, Q) can operate on a function f(P ). We shall
now write (85) in this way:

Kf = f. (121)

We see that in reality this operator is the unity operator in the Hilbert
space HK .

If P1, P2, . . . , PN is any ordered set of points in Ω, then the operator L
defined by

Li =
〈
K(Pi, Q), f(Q)

〉
= f(Pi) (122)

is a bounded linear operator L : HK → EN , where EN is the N -dimensional
Euclidean space, which to an element of HK assigns the vector consisting of
its values at the points Pi. This can be generalized, defining L by

Li =
〈
LPi

K(P, Q), f(Q)
〉

= LPi
f(P ), (123)

where Li are N -linear functionals, e.g. differential operators operating at dis-
crete points.

If (Vi) is a vector in EN , then LT is defined:〈
LQi

K(P, Q), V
〉

N
=
∑

i

LQi
K(P, Q)Vi, (124)

and it follows that

LLTV =
∑

k

LPi
LQk

K(P, Q)Vk (125)

i.e. LLT is the same operator (matrix) as LKLT in for example (46). This is
not surprising, as we have seen that the operator K is equivalent to the unity
operator in HK .

Now we can solve the problem which was previously solved by reasoning
on covariance as an example of the second problem of adjustment.

H2 is now the infinite-dimensional Hilbert space HK , and H1 is the N -
dimensional space of measurements EN , where N is the number of scalar
measurements involved.

B : H2 → H1 becomes here L : HK → EN , and b is the N -vector of the
results of the measurements. The normal equations are

LLTξ = b, (126)

and now they really are normal equations. The solution is given by (114) or
by

x = LT(LLT)−1b. (127)
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We notice that we can compute the solution to the problem without explic-
itly using the norm in the potential space, but only the covariance function K.
As we see from (115), the norm ‖x‖ of the result can also be calculated without
our knowing the explicit expression of the norm in the potential space.

An instructing example of the adjustment technique is the smoothing prob-
lem from the first section.

Here we have again the measurement equations

(Lf)i ≡ Lif(P ) = bi, i = 1, 2, . . . , n, (128)

but now we do not want them to be satisfied exactly. We ask for such a
potential f that

Lf − v = b, (129)

and
‖f‖2 + vTPv = min, (130)

where P is a positive definite n × n matrix.
This problem may be treated as an adjustment problem of the second

type.
Our unknown quantities consist of the potential f and the vector v, and

we may look upon them as a single quantity

x = f ⊕ v (131)

or

x =

[
f
v

]
. (132)

If we have another element y of the same type

y =

[
g
u

]
(133)

we can define the scalar product

〈x, y〉2 = 〈f, g〉 + vTPu (134)

and the norm
‖x‖2 = 〈x, x〉1/2

2 . (135)

Now we have defined the space H2.
H1 is the space of the measurements, i.e. the n-dimensional Euclidean

space, and the operator B : H2 → H1 is defined by (129) or by

Bx =
[
L −In

] [f
v

]
= Lf − v, (136)

where In is the unity matrix in H1.
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The problem is now: Find such an element x ∈ H2 that

Bx = b (137)

and that
‖x‖2 (138)

is as small as possible.
We first have to find the normal equations

BBTξ = b (139)

but what is BT?
From the definition of transposed operators it follows that BT : H1 → H2

is given by the equation

〈Bx2, x1〉1 = 〈x2, B
Tx1〉2 (140)

for all x1 ∈ H1 and x2 ∈ H2, or if we write

x2 =

[
f2

v2

]
. (141)

and

BTx1 =

[
y
z

]
, y ∈ H, z ∈ H, (142)

and use (134) and (136)

〈Lf2 − v2, x1〉1 = 〈f2, y〉 + vT
2 Pz (143)

or
〈f2, L

Tx1〉 − 〈v2, x1〉1 = 〈f2, y〉 + 〈v2, P z〉1. (144)

Equation (144) will only hold for all x2, that is for all f2 and v2, if

y = LTx1 (145)

and
z = −P−1x1 (146)

i.e.

BTx1 =

[
LTx1

−P−1x1

]
=

[
LT

−P−1

]
x1. (147)

Then

BBT =
[
L −In

] [ LT

−P−1

]
= LLT + P−1, (148)

where P−1 is the variance-covariance matrix R of the measurements. If this
matrix is a diagonal matrix, as it is commonly assumed to be, it will have an
ameliorating influence on the condition number of the normal equations

(R + LLT)ξ = b. (149)
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The solution to the problem is now given by

x = BTξ (150)

or more explicitly
f = LTξ, v = −Rξ. (151)

Equation (115) gives here

‖x‖2
2 = ‖f‖2 + vTPv = bTξ = bT(R + LLT)−1b. (152)

The reader should carefully compare this solution of the smoothing prob-
lem with that given in the first section (41)–(54).

The same problem could also be solved as a problem of the first type.

III. Hilbert Spaces with Kernel Function and Spherical
Harmonics

1. As in the first approximation the Earth is spherical, it is tempting to look
for its gravitation potential among the potentials which are regular outside
some sphere. There has been some discussion among geodesists as to the
permissibility thereof, but before answering this important question we shall
first study such sets of potentials and their connection with the spherical
harmonics.

Let Σ be the part of the space outside a sphere with radius R and surface σ,
which surface is not included in Σ. We shall be interested in several sets of
potentials φ all of which are regular in Σ including infinity so that

lim
P→∞

φ(P ) = 0. (153)

The first set S of these potentials consists of those which are continuous in
Σ + σ, i.e. those which have continuous boundary values on the surface σ of
the sphere. For such potentials we can define a scalar product

〈φ, ψ〉 =
1

4π

∫
σ

φ(P )ψ(P ) dσ, for φ, ψ ∈ S. (154)

This is the mean value of the product of the boundary values for the two
potentials on the surface of the sphere. The corresponding norm is

‖φ‖ = 〈φ, ψ〉1/2 =

(
1

4π

∫
σ

φ(P )2 dσ

)1/2

. (155)

If for a potential φ ∈ S, ‖φ‖ = 0, then φ must be zero on σ, because φ is
continuous and ∫

σ

φ(P )2 dσ = 0. (156)
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But a potential which is regular in Σ and continuous in Σ + σ is zero at
all points of Σ if it is zero on σ. So ‖φ‖ = 0 if, and only if φ = 0: (155) defines
really a norm, and the set S is a pre-Hilbert space.

It is well-known, see [4], p. 34–35, that, if the boundary values of a potential
φ ∈ S on σ are known, then φ can be found in Σ by Poisson’s integral:

φ(P ) =
R(r2

P − R2)

4π

∫
σ

φ(Q)

l3
dσ, P ∈ Σ, Q ∈ σ, (157)

where

l =
√

r2
P + R2 − 2RrP cosψ, (158)

and that “Poisson’s kernel” can be expressed by spherical harmonics in the
following way

R(r2
P − R2)

l3
=

∞∑
n=0

(2n + 1)
( R

rP

)n+1

Pn(cosψ). (159)

Poisson’s kernel is a function of the two points P and Q, of which one
is on σ and the other in Σ. We can define a symmetrical kernel K(P, Q) by
putting:

K(P, Q) =
r2
P r2

Q − R4

RL3
(160)

where

L =

√
r2
P r2

Q

R2
− 2rP rQ cosψ + R2. (161)

As K(P, Q) is the result of substituting

R2 for R

and
rP rQ for rP ,

in the formula for Poisson’s kernel, the same substitution in (159) will give
the expansion of K(P, Q) into spherical harmonics:

K(P, Q) =

∞∑
n=0

(2n + 1)
( R2

rP rQ

)n+1

Pn(cosψ). (162)

K(P, Q) is defined for P and Q ∈ Σ and also for P ∈ σ and Q ∈ Σ (or
P ∈ Σ and Q ∈ σ), but for both P and Q ∈ σ K(P, Q) is zero for P �= Q and
not defined for P = Q.

From (162) it follows, at least formally, that for either P or Q being fixed
K(P, Q) is a regular potential as a function of the other variable. A straight-
forward differentiation will verify that. Therefore, we have that for a fixed
P ∈ Σ, K(P, Q) as a function of Q is a member of the set S.
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Now we may calculate the scalar product of K(P, Q) and a potential
φ(Q) ∈ S. Here we shall only use the values of K(P, Q) for Q ∈ σ, in which
case rQ = R and K(P, Q) has the same values as Poisson’s kernel. Therefore,
the scalar product is exactly the right member of (157), and we have〈

K(P, Q), φ(Q)
〉

= φ(P ), for P ∈ Σ. (163)

i.e. K(P, Q) is the reproducing kernel for the set S of potentials.
With the metric defined in (155) S is not a Hilbert space, but only a

pre-Hilbert space, i.e. not every sequence

{ψn}, ψn ∈ S for n = 0, 2, . . .

for which
lim

n,m→∞ ‖ψn − ψm‖ = 0,

has a limit ψ ∈ S. Therefore we shall complete S to a Hilbert space H ,
which can be proved to consist of potentials regular in Σ and having square
integrable boundary values on σ. For this Hilbert space K(P, Q) is the repro-
ducing kernel. Now the values of the integrals in (154), (155), etc. must be
understood as the limits for r > R, r → R of the corresponding integrals over
spheres with radius r.

If we define the functions with two indices{
φm

n (P )
}

=

{
m = −n, −n + 1, . . . , n − 1, n
n = 0, 1, 2, . . .

by

φm
n (P ) =

⎧⎪⎨⎪⎩
(

R
rP

)n+1

Rnm(QP , λP ) for m ≥ 0(
R
rP

)n+1

Snm(QP , λP ) for m < 0

(164)

where Rnm and Snm are the fully normalized harmonics, see [4], p. 31, then
we can write (162) as follows:

K(P, Q) =
∞∑

n=0

n∑
m=−n

φm
n (P )φm

n (Q), (165)

which shows that the spherical harmonics {φm
n } form a complete orthonor-

mal system for the Hilbert space H . This means that every φ ∈ H may be
represented by a series expansion:

φ(P ) =

∞∑
n=0

n∑
m=−n

am
n φm

n (P ), for P ∈ Σ (166)

where
am

n = 〈φ, φm
n 〉. (167)
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This, however, is to be understood in the sense of convergence in the Hilbert
space metric

lim
N→∞

∥∥∥∥φ(P ) −
N∑

n=0

n∑
m=−n

am
n φm

n (P )

∥∥∥∥ = 0, (168)

and we want a theorem which secures uniform convergence of the series. For-
tunately the theory of reproducing kernels may help us here. For every ψ ∈ H
we can write∣∣φ(P )

∣∣ =
∣∣〈ψ(Q), K(P, Q)

〉∣∣ ≤ ‖φ‖ ·
∥∥K(P, Q)

∥∥
Q

= ‖φ‖
〈
K(P, Q), K(P, Q)

〉1/2

Q
= ‖φ‖K(P, P )1/2. (169)

Here we have used the fact that K(P, Q) is a reproducing kernel, Schwartz’
inequality, the expression of the norm by the scalar product (the index Q
signifies that the norm and the scalar product are to be understood with
respect to Q) and once more the fact that K(P, Q), is a reproducing kernel.

Let us use (169) on∥∥∥∥φ(P ) −
N∑

n=0

n∑
m=−n

am
n φm

n (P )

∥∥∥∥ =

∥∥∥∥ ∞∑
n=N+1

n∑
m=−n

am
n φm

n (P )

∥∥∥∥
≤
( ∞∑

n=N+1

n∑
m=−n

(
am

n

)2)1/2

(170)

to get∣∣∣∣φ(P ) −
∞∑

n=0

n∑
m=−n

am
n φm

n (P )

∣∣∣∣ ≤ ( ∞∑
n=N+1

n∑
m=−n

(
am

n

)2)1/2

K(P, P )1/2. (171)

A simple calculation gives that

0 < K(P, P )1/2 ≤ R rP

r2
P − R2

√
2 (172)

and then (171) shows that the series (166) converges uniformly for all P so
that

rP ≥ r0 > R. (173)

We now have to go back to the formulae (166) and (167).

From the general theory for Hilbert spaces we know that from (166) and
(167) follows

‖φ‖ =

( ∞∑
n=0

n∑
m=−n

(
am

n

)2)1/2

(174)
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and that for every sequence {am
n } for which∑∑(

am
n

)2
converges such an element φ ∈ H exists that (166), (167), and (174) hold.

If we have a φ given by (166), it might be of interest to know if the series
converges for points P so that rP < R.

Let us put

An =

( n∑
m=−n

(
am

n

)2)1/2

(175)

then we have from (174)
∞∑

n=0

A2
n = ‖φ‖2, (176)

and therefore we must have

lim
n→∞ Anρn = 0 (177)

for 0 ≤ ρ ≤ 1. Let the least upper bound of ρ for which (177) is valid be
called ρ0. (ρ0 may be ∞.)

Then (177) is valid for every ρ so that 0 < ρ < ρ0.
If ρ0 > 1, then take two members ρ1 and ρ2 so that

0 < ρ1 < ρ2 < ρ0. (178)

Then we have ∞∑
n=0

Anρn
1 < ∞ (179)

for since
lim

n→∞ Anρn
2 = 0 (180)

there will be some N so that

|Anρ2
2| < 1 for n > N . (181)

We may then write

∞∑
n=0

(
Anρn

1

)2 ≡
N∑

n=0

(
Anρ2

1

)2
+

∞∑
n=N+1

(ρ1

ρ2

)2n

=

N∑
n=0

(
Anρn

1

)2
+

(ρ2
1/ρ2

2)
N+1

1 − ρ2
1/ρ2

2

(182)
and may also state that

∞∑
n=0

n∑
m=−n

(am
n ρn

1 )2

will converge for every ρ1 so that (172) or

0 < ρ1 < ρ0 (183)

holds.



62 4 A Contribution to the Mathematical Foundation of Physical Geodesy

Let us now use functions {ψm
n } defined as {φm

n } by (164) only with R/ρ1

substituted for R; then we have the result:

ψ(P ) =

∞∑
n=0

n∑
m=−n

(ρn+1
1 am

n )φm
n (P ) for rP >

R

ρ1
. (184)

If we call the sphere with centre at the centre of σ and radius R/ρ0 the
limit sphere, we can express our result as follows:

The series expansion of a potential into spherical harmonics with O as
origin will converge uniformly on the surface of and in the space outside any
sphere with O as centre and so that all the singularities of the potential are in
the interior of the sphere. There exists such a radius R′ that for R > R′ the
series will converge uniformly on the surface of and outside any sphere with
radius R and centre O. This, however, is not true for R < R′.

The last (the negative) part of the theorem will be proved a few pages
further on.

2. Geodesists are interested in exterior potential fields; therefore I have only
treated such fields here. But by means of inversion with respect to a sphere we
get corresponding results for interior spherical regions, which will recall the
well-known theorems on the convergence of power series in the complex plane.
There we have a limiting circle and uniform convergence in circles inside and
divergence at all points outside the circle. I have the impression that many
geodesists believe that it should, correspondingly, be so that the spherical
harmonics series diverge at all points inside the limit sphere, but they cannot
give any proof of it.

I shall not give the proof—on the contrary, I shall give an example that
shows that the conjecture is false.

Consider the following potential

φ =
1 − x

(1 − x)2 + y2
(185)

in a three-dimensional space. It corresponds to a uniform mass distribution
on the line

x = 1 and y = 0 (186)

and is only a function of x and y. It is elementary to show that it can be
expanded into a series

φ =

∞∑
n=0

anrn cosnθ cosnλ =

∞∑
n=0

an(x2 + y2)n/2 cosnλ (187)

or

φ =

∞∑
n=0

bnrnPn
n (sin θ) cos nλ (188)

Pn
n (sin θ) = (−1)n1 · 3 · 5 · · · (2n + 1) cosnθ. (189)
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x

z

Neither the potential φ nor the coefficients in (187) or (188) depend on
the coordinate z; therefore the series (188) will be convergent in the cylinder
with x = 0, y = 0 as axis and with radius 1. If we make an inversion with
respect to the sphere

x2 + y2 + z2 = 1, (190)

then

Φ(x, y, z) =
1

r
φ
( x

r2
,

y

r2
,

z

r2

)
=

r(r2 − x)

(r2 − x)2 + y2
(191)

is also a potential, and it is regular at infinity. The series expansion of Φ
corresponding to (188) becomes

Φ =
∞∑

n=0

bn
1

rn+1
Pn

n (sin θ) cos nλ, (192)

which therefore will converge at all points of the space outside the torus into
which the cylinder is transformed. The torus is that described by the circle:

(x − 1
2 )2 + z2 = 1

4

y = 0,

when its plane is rotated around the z-axis. By using the idea of this example
it is not difficult to construct other expansions into spherical harmonics that
converge in regions that are not spherical. I have nevertheless still the feeling
that normally the limit sphere bounds the region of convergence, but this
question requires a closer study.

The criterion given here for the limit sphere is merely a theoretical one,
as the limit radius can only be found when all the coefficients of the series
are known. Therefore, we must have a criterion that can give more practical
information.
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From the above it follows that outside the limit sphere the series represents
a regular potential, provided that the radius of the limit sphere is smaller than
the radius of the smallest sphere containing the points at which the originally
given potential was undefined or irregular. In other words, the series gives
an analytic continuation of the potential. It is a well-known fact that the
potential of a homogeneous sphere can be analytically continued to the whole
space except the centre and that the normal potential of an oblate ellipsoid
of revolution can also be so continued to the whole space except the “focal
disc.” Naturally the continuation of the outer potential into the gravitating
body has nothing to do with the (irregular) potential that exists physically in
the body. Two potentials which are regular in some domain and are identical
in some open set of points in that domain are known to be identical in the
whole domain of definition. Therefore, we may define a maximal potential as
a regular potential defined in a connected region so that there does not exist
any larger connected region in which the potential could be defined and be
regular, and we may claim that to each potential there corresponds one and
only one maximal potential continuation of the given. In the vicinity of every
point of the boundary of the region of definition of a maximal potential there
are points at which the potential is singular. Consequently, we may claim:

To every potential regular in the vicinity of infinity and to every sphere Σ
containing all the singular points of the corresponding maximal potential there
exists a series expansion of the form (166) which converges uniformly on and
outside every sphere concentric with Σ so that no point of its surface is in
the vicinity of any of the singular points. If we call the minimum value of the
radii of such spheres R0, then the series must be divergent at some points of
every sphere with radius less than R0 and concentric with Σ.

The remaining part of the claim runs like this:

1. For fixed θ and λ a series as (73) is a power series in 1/r; therefore, if it
diverges for some value of 1/r, say α, it will diverge for every value of r
so that 1/r > α and the same θ and λ, or in other words, if it diverges at
one point, it will diverge at all points of the line segment connecting that
point and the origin.

2. From the definition of the limit sphere it follows that there are singularities
in every vicinity of some of its points: therefore, given any ε > 0 we can
find a sphere concentric with Σ and with radius r > R0 − ε, so that
there are singular points on its surface, and then the series cannot be
uniformly convergent on such a sphere (for if it were, it would represent
a continuation of the potential which was supposed to be maximal). The
surface of a sphere is a closed set of points; therefore, convergence at all
points would simply be uniform convergence.

3. From 2) it follows that there are spheres with radii arbitrarily near R0

where the series diverges (at least at some points), and from 1) it follows
that all the spheres with radii less than R0 will also have divergence points
on their surfaces.
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The potential which is of most interest to geodesists is the disturbing
potential T ; therefore, it would be interesting to know whether it is reasonable
to hope that the limit sphere for the corresponding maximal potential would
be located below the surface of the Earth. Using an idea from [11] I shall show
that the basis for such a hope is slender. More precisely, I shall show that if to
a gravitating body for which the corresponding maximal potential is defined
below the surface we locally add some mass distribution, e.g. a grain of sand,
above the surface at a place where the original maximal potential is defined
below the surface, then the resulting maximal potential will have a singularity
in the interior of the added mass distribution.

The proof is almost trivial. The resulting potential is the sum of the orig-
inal maximal potential Φ and the potential φ of the added mass distribution
and is regular at least where both are defined. Let us enclose the added mass
distribution with a single closed surface σ leaving the singularities of Φ outside
(this is possible according to what we have supposed). φ is regular outside σ
and must therefore have a singularity inside σ (since every regular potential
defined in the whole space vanishes). On the other hand Φ is regular inside σ,
and therefore Φ + φ must have a singularity inside σ, and as we can select σ
approximately, we have the theorem.

Here I must warn the reader that if he has not noticed the importance of
the word “locally,” then he has not really understood the proof. (The added
mass distribution must not cover the whole surface of the original body, for
then we should not be able to find σ.)

If as an example of an added mass distribution I mentioned a grain of sand
and not, as Moritz did, a mountain, it was in order to push the discussion
on the series of harmonic functions near the gravitating masses ad absurdum.
A popular way of expressing the theorem would be: Even if the series were
convergent at the surface of the Earth, a displacement of a single grain of sand
should spoil the convergence.

The consequence of this must be that the convergence of series of spherical
harmonics near the surface of the Earth is such an unstable property that it
has no physical meaning at all.

I know that here many geodesists will argue that we may use the series
without knowing anything about their convergence. I must confess that I do
not understand what they mean by the little word “use.”

Let us take an example. Let us regard the “Poisson kernel” (159). It has a
singularity at the “north pole”—rP = R, ψ = 90◦—and is regular at all other
points in the space. For the singular point the series gives

∞∑
n=0

(2n + 1). (193)

The sum of the first N members is N2, and this is all right; for all other
points of the sphere, rP = R, the kernel is zero. But for the “south pole”—
ψ = −90◦—the series gives
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∞∑
n=0

(−1)n(2n + 1), (194)

and the sum of the first N members is (−1)N+1N .

For a point having rP = R/ρ and ψ = −90◦ (ρ > 1) the series gives

∞∑
n=0

(−1)n(2n + 1)ρn, (195)

and the sum of the first N members is

1 − ρ + (−1)Nρ2N
(
2N + 1 + (2N − 1)ρ2

)
(1 + ρ)2

(196)

How can you “use” such a result?

I see very well that if we multiply the kernel by a small constant and add a
dominating “normal potential,” then it is a simple task in the resulting series
to ‘filter’ the disturbing part with the increasing coefficients from the well-
behaved part with decreasing coefficients. But if we happen to be interested
mainly in the disturbing potential, how are we then to “use” the series?

I do like this example very much, so I ask the reader to have patience
enough to follow another experiment with it.

The series (159) may be written like this:

F0 =

∞∑
n=0

(2n + 1)
( R

rP

)n

Pn(cos ψ). (197)

We define another series

Fλ =

∞∑
n=0

2n + 1

1 + 2n+1λ

( R

rP

)n+1

Pn(cosψ), λ ≥ 0. (198)

It is evident that for λ = 0, Fλ = F0, and it seems likely that for small λ, Fλ

should approximate F0; in fact we have:

∣∣F0 − Fλ

∣∣ ≤ ∞∑
n=0

(2n + 1)
(
1 − 1

1 + 2n+1λ

)( R

rP

)n+1

|Pn(cos θ)

≤
∞∑

n=0

(2n + 1)
2n+1λ

1 + 2n+1λ

( R

rP

)n+1

. (199)
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For every fixed rP > R the series in the second line is uniformly convergent for
λ ≥ 0, and, consequently, it represents a continuous function. As this function
is zero for λ = 0, we have

lim
λ→0

Fλ = F0 for rP > R. (200)

The interesting thing is that for λ > 0 the series for Fλ (198) is convergent
outside a sphere with radius R/2 and not R as in the case of the series for F0.

It is not difficult to see that the method used in this example can be used
generally to solve the following problem:

Given a potential φ defined in the space outside a sphere σ. Find a sequence
of potentials {φn} regular outside a sphere concentric with σ and with half
the radius so that for all points outside σ

lim
n→∞φn = φ. (201)

If from the series expansions for the potentials {φn} we take only the members
up to the n’th degree φ′

n, then we also have

lim
n→∞φ′

n = φ, (202)

and here we have an approximation of φ by “polynomials” of spherical har-
monics (i.e. series with a finite number of members).

We have seen a very important new aspect of the instability of convergence
for series of spherical harmonics. We saw before (Moritz’ theorem) that in the
vicinity of every potential which can be expressed by a series convergent at
the surface of the Earth there is another potential regular outside the Earth
but for which the series diverges at the surface. Now we see that perhaps there
exists also another theorem (Runge’s theorem) expressing that in the vicinity
of every potential φ regular in the space outside the Earth there is a potential
for which the series of spherical harmonics converges down to the surface of
some sphere in the interior of the Earth; that is to say: φ can be approximated
arbitrarily well by polynomials of spherical harmonics.

In fact there exists a Runge’s theorem for physical geodesy (as to the name
I have given it, see [1], p. 275–278), but as the proof of it is rather technical,
I have given it in the Appendix and shall only state the result here:

Runge’s theorem: Given any potential regular outside the surface of
the Earth and any sphere in the interior of the Earth. For every closed
surface surrounding the Earth (which surface may be arbitrarily near
the surface of the Earth) there exists a sequence of potentials regular
in the whole space outside the given sphere and uniformly converging
to the given potential on and outside the given surface.

This theorem is extremely important. In fact it permits a mathematical
treatment of physical geodesy by giving a good compensation for the possi-
bility of using series of harmonic functions converging down to the surface of
the Earth.
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3. Runge’s theorem merely establishes the existence of a sequence with the
wanted properties. I shall now, at least theoretically, show how such a sequence
can be found by means of the adjustment method from Section II.

Let the given potential be φ and the domain on which it is given be Ω.
The part of the space outside the sphere σ is called Σ, and we have Ω ∈ Σ.
Let us then define a metric 〈 , 〉Σ for potentials regular in Σ, and let us call
the corresponding Hilbert space HΣ . We suppose that HΣ has a reproducing
kernel K. We know that it has one if the metric in HΣ is that defined in
the first part of this section (155). Let ω be a closed smooth surface in Ω
surrounding and arbitrarily near to the boundary of Ω. Then we can define
the norm

‖φ‖Ω =

(
1

4π

∫
ω

φ2 dω

)1/2

(203)

for potentials regular in Ω. By this norm and the corresponding scalar product
we have defined a Hilbert space HΩ consisting of potentials regular in Ω.

Then the problem is:
Find ψ ∈ HΣ so that

‖ψ‖2
Σ + λ‖ψ − φ‖2

Ω = min, (204)

where λ is a not yet specified constant. Let us rewrite (204) as∥∥ 1√
λ

φ − 0
∥∥2

Σ
+
∥∥ψ − φ

∥∥2

Ω
= min . (205)

Then the problem is an adjustment problem of the first type treated in Sec-
tion II (formulae (97)–(105)), provided that we put

H1 = HΣ

H2 = HΣ ⊕ HΩ.
(206)

The operator A : H1 → H2 is defined as follows:

A =

[
A1

A2

]
A1 : HΣ → HΣ

A1 =
1√
λ

A2 : HΣ → HΩ

A2ψ = ψ′ where ψ′ is the restriction of ψ to Ω.

(207)

a =

[
0
φ

]
(208)

The normal equations (99):

ATAψ = ATa (209)
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become here [
AT

1 AT
2

] [A1

A2

]
ψ =

[
AT

1 AT
2

] [0
φ

]
(210)

or (
AT

1 A1 + AT
2 A2

)
ψ = AT

2 φ. (211)

Here A1 is a scalar operator, i.e. an operator indicating multiplication by
a scalar, and thus identical with its transpose so that

AT
1 A1ψ = 1

λ .ψ (212)

For the restriction ψ′ of ψ to Ω we have

ψ′(Q) = 〈K(Q, P ), ψ(P )〉Σ for Q ∈ Ω, P ∈ Σ, (213)

which follows from the trivial fact that

ψ′(Q) = ψ(Q), for Q ∈ Ω, (214)

and from the defining property of the reproducing kernel K(Q, P ).
To find the transpose AT

2 we remember the definition of the transposed
operator (96) and write for ξ ∈ HΩ:

〈ATξ(Q), ψ(Q)〉 = 〈ξ(Q), A(ψQ)〉 =

∫
ω

ξ(Q)〈K(Q, P ), ψ(P )〉Σ dωQ

=

〈∫
ω

ξ(Q)K(Q, P ) dωQ, ψ(P )

〉
Σ

(215)

so that

ATξ(Q) =

∫
ω

ξ(Q)K(Q, P ) dωQ for Q ∈ Ω, P ∈ Σ (216)

follows.
Now we can write (211):

1

λ
ψ(P ) +

∫
ω

ψ(Q)K(Q, P ) dωQ =

∫
ω

φ(Q)K(Q, P ) dωQ, Q ∈ Ω, P ∈ Σ.

(217)
Let us define ξ ∈ HΩ by

ξ(Q) = φ(Q) − ψ(Q); (218)

then for P, Q ∈ Ω, (206) becomes

ξ(P ) + λ

∫
ω

K(Q, P )ξ(Q) dωQ = φ(P ). (219)
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Equation (219), which is analogous to the normal equations, is an integral
equation. As we shall see, ξ(P ) can be found from (219), and then ψ(Q) can
be found by

ψ(Q) = φ(Q) − ξ(Q) (220)

for Q ∈ Ω; for P ∈ Σ ψ(P ) can be found from (217):

ψ(P ) = λ

∫
ω

K(Q, P )ξ(Q) dωQ for P ∈ Σ, Q ∈ Ω. (221)

The integral equation (219) is a Fredholm integral equation of the second
kind with bounded continuous positive definite symmetric kernel. Normally
such an integral equation is written with a minus and not a plus before the λ,
and then one of the many elegant theorems on equations of this kind shows
that all the eigenvalues are positive or zero; therefore (219) can have no eigen-
solutions for positive λ’s. So for a given φ it will have a unique solution ξ for
every positive λ, and then by (221) also ψ will be uniquely determined, and
the least-squares problem (204) has been solved.

But what does that mean?
Let us start with a “small” λ > 0, and let then λ increase. Then we may

expect to find potentials ψ ∈ HΣ which, in HΩ, approximate φ better and
better so that in the part of Σ outside Ω ψ increase and, if we have luck,

‖ψ − φ‖Ω → 0 for λ → ∞. (222)

I shall prove that this is in fact so, and for the proof I shall use the theory of
integral equations and Runge’s theorem.

Let the homogeneous integral equation

Φ(P ) − λ

∫
ω

K(Q, P )Φ(Q) dωQ = 0; P, Q ∈ Ω (223)

have the eigenvalues {λn} and the corresponding eigenfunctions {φn}; we may
suppose that

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · (224)

and that the eigenfunctions are normalized and orthogonal so that

〈φn, φm〉Ω =

{
1 for m = n
0 for m �= n.

(225)

The eigenfunctions {φn} are only defined in Ω, but they may also be defined
in Σ and on σ by

φn(P ) = λn

∫
ω

K(Q, P )φn(Q) dωP , P ∈ Σ + σ, Q ∈ Ω (226)
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because K(Q, P ) is regular for Q, P ∈ σ + Σ provided that not both Q and
P ∈ σ. From Mercer’s theorem it follows that

K(P, Q) =
∑

n

φn(P )φn(Q)

λn
(227)

for P, Q ∈ Ω and by the method of proof used for Mercer’s theorem (227) can
be proved for P, Q ∈ Σ.

Now K(P, Q) is the reproducing kernel for HΣ and, therefore,

φn(P ) =

〈∑
m

φm(P )φn(Q)

λm
, φn(Q)

〉
Σ

=
∑
m

φm(P )

λm

〈
φm(Q), φn(Q)

〉
Σ

.

(228)
As {φn} are orthogonal in HΩ, they must be linearly independent, and so
(228) implies

1

λm
〈φm, φn〉Σ =

{
1 for m = n
0 for m �= n,

(229)

or

〈φm, φn〉 =

{
λn for m = n
0 for m �= n,

(230)

i.e. the functions {φn/
√

λn} form a system of orthonormal functions in HΣ .
If we write

φ′
n =

φn√
λn

, (231)

then (227) becomes

K(P, Q) =
∑

n

φ′
n(P )φ′

n(Q). (232)

A well-known theorem from the theory of Hilbert spaces with reproducing
kernel establishes that, if a reproducing kernel can be expressed by (232), i.e.
by a set of orthonormal functions, then this set will be complete. Therefore
the set of functions {φn} is complete in HΣ .

The system {φn} will also be complete in HΩ. For if it were not, there
would exist such an element η ∈ HΩ that

‖η‖Ω = 1 and 〈η, φn〉Ω = 0 for all φn. (233)

From Runge’s theorem it follows that for any given ε > 0 there exists such
an element µ ∈ HΣ that

|η(Q) − µ(Q)| < ε for Q ∈ ω. (234)

Being an element of HΣ µ(Q) may be expressed as

µ(Q) =
∑

n

anφn, (235)
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where the sum converges uniformly on ω. Therefore,∥∥∥η(Q) −
∑

n

anφn(Q)
∥∥∥2

Ω
= 1 +

∑
a2

n > 1, (236)

(from (233)). On the other hand,∥∥∥η(Q) −
∑

n

anφn(Q)
∥∥∥2

Ω
=

∫
ω

(
η(Q) −

∑
n

anφn(Q)
)2

dω ≤ ε2A, (237)

where A is the area of the surface ω. If we choose ε < A−1/2, we have a
contradiction, and, consequently, {φn} will be complete also in HΩ.

Now we can go back to the integral equation (219). Here we can express φ
and ξ by the complete set {φn}:

ξ =
∑

n

xnφn, φ =
∑

n

fnφn (238)

so that, using (227), we have∑
n

xnφn + λ
∑

n

xn

λn
φn =

∑
n

fnφn (239)

or

xn =
λn

λn + λ
fn, (240)

ξ =
∑

n

λn

λn + λ
fnφn. (241)

ψ is defined by (218) so that

‖φ(Q) − ψ(Q)‖Ω =

(∑
n

( λn

λn + λ

)2

f2
n

)1/2

. (242)

(We should remember that ψ(Q) is a function of λ.)
The series on the right side of (242) is uniformly convergent in λ for λ > 0

since ∑
f2

n = ‖φ‖2
Ω, (243)

and
λn

λn + λ
< 1 for λ > 0. (244)

However, every member of the series converges to zero when λ → ∞, and,
therefore,

lim
λ→∞

‖φ(Q) − ψ(Q)‖Ω = 0, (245)

from which uniform convergence follows in the usual way (169).
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If we put

ψ =
∑

n

Pnφn, (246)

we find from (221)

Pn =
λ

λn + λ
fn (247)

or

ψ(P ) =
∑

n

λ

λn + λ
fnφn(P ) (248)

and

‖ψ‖2
Σ =

∑
n

( λ

λn + λ

)2

f2
n. (249)

Only if the series
∑

f2
n is convergent, i.e. if the definition of φ can be

extended to Σ, does the series in (249) converge for λ → ∞. Only in this case
does

lim
λ→∞

ψ = φ (250)

hold in HΣ . ψ(P ) does not in general converge for λ → ∞ (for P ∈ Σ but
not ∈ Ω), as can be seen from the example (198).

Now we have—at least theoretically—solved the problem of approximation
of potentials down to the surface of the Earth by potentials regular down to a
Bjerhammar sphere and thus given a sound mathematical foundation of the
method described in the previous two sections. Moreover—as far as I can see—
only this method presents a way in which one can find such approximations
from physical measurements of the effects of the potential.

The proof given here of the convergence of the function ψ for λ → ∞ might
be used as a model for proofs of the convergence of the results of the appli-
cation of the adjustment method on concrete problems in physical geodesy,
provided that the number and the quality of the measurements increase until
we have enough exact measurements. However, I shall not give such a proof
for any practical case here, because I do not really see the value thereof. I
believe that sufficient information about the reliability of the results can be
found by means of the statistical method mentioned in the first section. The
important information that Runge’s theorem gives us in this connection is the
method of approximation, which does not introduce any form of systematic
error in the result.

4. Before leaving the question about the convergence of series of spherical
harmonics I should like to advance a few naive considerations.

It has often been said that generally the convergence of series of spherical
harmonics is slow. (I often wonder if those who say so have ever tried to
calculate e−100 using directly the very well-known power series for ex which
converges for all x.)
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The reason why the series of spherical harmonics used here are so slowly
converging is rather that the functions we want to represent are very com-
plicated (i.e. contain a large amount of information) than that the spherical
harmonics are not well suited for the set of functions in which we are inter-
ested.

If we try to describe some function defined on a sphere by a series of spheri-
cal harmonics of up to the 36th degree, then we must have 362 = 1296 parame-
ters, but we cannot expect that details of a magnitude less than 180◦/36 = 5◦

can be sharply mapped. If we want a more detailed mapping, the price to
be paid is more parameters and this is relatively independent of the type of
function used for the mapping. By local interpolation it is of course possible
to map much smaller details by a suitable choice of the 1296 first coefficients
in the series, but then we are to expect a very “wild” behaviour of the series
outside the local domain in which it has been forced to follow the details.

After this warning I shall say something about criteria for the choice of
kernels and the corresponding metrics.

There exists an infinite number of metrics symmetric with respect to ro-
tation for sets of potentials regular outside a given Bjerhammar sphere and
having corresponding reproducing kernels. One of them was treated in the first
few pages of this section. There is another metric which has been mentioned
sometimes in literature. It is defined by the scalar product:

〈φ, ψ〉 =
1

4π

∫
Σ

gradφ gradψ dΣ, (251)

where the domain of integration is the whole exterior space. Using Green’s
theorem and ∆ψ = 0 we find, however:

〈φ, ψ〉 = − 1

4π

∫
σ

φ
∂ψ

∂r
dσ. (252)

This property of the special metric has made it suitable for the study of the
classical boundary value problems related to Laplace’s equation. But for our
purpose it is not of very great interest, since it has the drawback that the
expression of the reproducing kernel is a rather complicated one containing a
logarithm.

A metric that has a slightly more complicated scalar product but a much
simpler reproducing kernel is defined by the following scalar product:

〈φ, ψ〉L =
1

4π

∫
Σ

1

r
gradφ gradψ dΣ, (253)

and has the reproducing kernel

K(P, Q) =
2R

L
,
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where L is given by (161)

L =

√
r2
P r2

Q

R2
− 2rP rQ cosψ + R2.

If P is a point in Σ, then

P ′ =
(xP

R2
,
yP

R2
,
zP

R2

)
(254)

is the point in the interior of the sphere at which P is mapped by inversion
with respect to the sphere. We have

L =
rP

R

√
r2
Q − 2rQrP ′ cosψ + r2

P ′ , (255)

i.e. for a fixed P , 1/L is proportional to 1/QP ′, and therefore 1/L is a regular
potential in Σ as a function of one of the points P , Q, the other being fixed,
and

2R

L
=

2R2

rP

1

QP ′ =
R2

2rP

1

r′P

∞∑
n=0

(rP

rQ

)n+1

Pn(cos ψ)=2

∞∑
n=0

( R2

rP rQ

)n+1

Pn(cosψ).

(256)

I shall prove that 2R/L is the reproducing kernel corresponding to 〈 , 〉L.
Since

φk
i =

(R

r

)i+1

Ek
i for k = −i, −i + 1, . . . , i and i = 0, 1, . . . , (257)

where Ek
i are 2i + 1 fully normalized spherical harmonics for i = 0, 1, 2, . . . ,

is a complete orthogonal system, a scalar product is known once its effect on
{φk

i } is known. We find

〈φk
i , φl

j〉L =
1

4π

∫
Σ

1

r
gradφk

i gradφl
j dΣ

=
1

4π

∫
Σ

1

r

(
∂

∂r
φk

i

∂

∂r
φl

j + grad2 φk
i grad2 φl

j

)
dΣ

(where grad2 is the two-dimensional gradient on the sphere)

=
1

4π

∫
Σ

1

r

(
d

dr

(R

r

)i+1 d

dr

(R

r

)i+1

Ek
i El

j

+
(R

r

)i+1(R

r

)j+1

grad2 Ek
i grad2 El

j

)
dΣ
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(now we shall make use of Green’s theorem for the surface of the sphere)

=
1

4π

∫
Σ

1

r

(
(i + 1)(j + 1)

r2

(R

r

)i+j+2

Ek
i El

j

−
(R

r

)i+j+2

El
j∆2E

k
i

)
r sin θ dθ dλ

(where ∆2 is the Laplace-Beltrami operator on the sphere)

=
1

4π

∫
Σ

1

r

(R

r

)i+j+2(
(i + 1)(j + 1) + i(i + 1)

)
Ek

i El
j sin θ dθ dλ

=
(i + 1)(i + j + 1)

4π

∫
Ek

i El
j sin θ dθ dλ

∫ ∞

R

Ri+j+2

ri+j+3
dr

= (i + 1)(i + j + 1)δijδkl
1

2i + 2
=

{
2i+1

2 for i = j, k = l

0 in all other cases.

We can now write:〈2R

L
, φk

j

〉
L

=

〈
2

∞∑
i=0

( R2

rP rQ

)i+1

Pi(cos ψ), φl
j

〉
L

=

〈
2

∞∑
i=0

1

2i + 1
φk

i (P )φk
i (Q), φl

j(Q)

〉
L

= φl
j(P ), (258)

and so we have proved that 2R/L is the reproducing kernel in the Hilbert
space HL with the scalar product 〈 , 〉L.

This section will be concluded by a short discussion of the important
problem: How to choose the metric (or the kernel) for practical computations.

The most obvious idea is perhaps to use as kernel the finite series of spheri-
cal harmonics which corresponds to Kaula’s expansion of the correlation func-
tion C(P, Q), see [6]. (In Kaula’s publications one of the coefficients in this
expansion is negative, but it cannot be so; is it an iterated printing error?)

But if one uses a kernel with only a finite number of members, one has
limited the solution to a finite-dimensional space consisting of potentials ex-
pressible by spherical harmonics of the same degrees as those occurring in the
kernel. To get good local results one, consequently, has to use a very large
number of members.

Another possibility is to use a kernel with a simple closed expression,
e.g. 2R/L (or 2R/L multiplied by a suitable constant). If the radius R of the
Bjerhammar sphere is chosen a few per cent smaller than the mean radius
of the Earth, a good local approximation to Kaula’s correlation function is
achieved.

As far as I can see the best thing to do is to use a combination of these two
ideas, i.e. 2R/L multiplied by some constant plus a correction consisting of a
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finite sum of spherical harmonics so that the corresponding correlation func-
tion is sufficiently similar to Kaula’s correlation function. The scalar product
will then be a constant multiple of 〈 , 〉L plus a correction which is simple to
calculate, but as the scalar product is not explicitly used in the calculations I
shall not give the result here. From a theoretical point of view the important
thing is that since this correction is finite, the Hilbert space corresponding to
the corrected kernel consists of the same elements as does HL.

IV. Application of the Method

Already today Molodenskiy’s problem is looked upon as the classical problem
of physical geodesy; it is therefore reasonable to start the discussion on the
application of the kernel-method with this problem.

As I do not find that the mathematical aspects of Molodenskiy’s problem
are clearly formulated in literature, I shall first propose another formulation
of the problem.

Molodenskiy’s problem is the problem of finding a better approximation of
the potential of the Earth—the normal potential—from a given approximation
by geodetic measurements.

Let us assume that we have measured the following data for points on the
physical surface of the Earth:

1. the astronomical geographical coordinates, i.e. the direction of the plumb
line,

2. the potential of gravity of the Earth W , and
3. the gravity g.

Let us also assume that we have given a normal potential U ; we can then for
each point P on the surface of the Earth find such a point Q that

(a) the normal potential at Q equals the potential at P :

UQ = WP , (259)

and that
(b) the geodetic normal coordinates of Q are equal to the astronomical coor-

dinates of P , which can be expressed by the vector equation

1

γQ
(gradU)Q =

1

gP
(gradW )P . (260)

Both terms in this equation represent unity vectors defining the directions
in question. The locus of the points Q is the telluroid.

We want to find the vector
−−→
QP and T = W − U . Here T , the disturbance

potential, is a regular potential, because the potential of the centrifugal force
is the same in W and U .
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Since T = W − U , (259) can now be written

TP + UP − UQ = 0, (261)

and (260) can be written

(gradT )P + (gradU)P − gP

γQ
(gradU)Q = 0, (262)

or

(gradT )P + (gradU)P − (gradU)Q =
gP − γQ

γQ
(gradU)Q. (263)

Now
gP − γQ = ∆g (264)

is the gravity anomaly at the point in question, so that (263) becomes:

(gradT )P + (gradU)P − (gradU)Q =
∆g

γ
(gradU)Q. (265)

If we introduce a Cartesian system of coordinates (x1, x2, x3) and call the

components of the vector
−−→
QP p1, p2, and p3, we can write (261) and (265) in

linear approximation

T +

3∑
i=1

pi
∂U

∂xi
= 0, (266)

and
∂T

∂xj
+

3∑
i=1

pi
∂2U

∂xi∂xj
=

∆g

γ

∂U

∂xj
, j = 1, 2, 3. (267)

These four equations must be satisfied for all points of the telluroid, where
all variables except T , ∂T/∂xj, and pj are known.

If T and ∂T/∂xj were known at a point Q of the telluroid, then (266) and
(267) would be four linear equations in the three variables pj , which could be
determined if, and only if, (266) and (267) were compatible; let i = 1, 2, 3 run
over columns, let j = 1, 2, 3 run over rows, hence the determinants on both
sides become 4 by 4:∣∣∣∣∣∣∣∣

T
∂U

∂xi

∂T

∂xj

∂2U

∂xi∂xj

∣∣∣∣∣∣∣∣ =
g

γ

∣∣∣∣∣∣∣∣
0

∂U

∂xi

∂U

∂xj

∂2U

∂xi∂xj

∣∣∣∣∣∣∣∣ (268)

in other words (268) has to be satisfied for all points of the telluroid.
Equation (268) is the correct form of the boundary conditions for T in

Molodenskiy’s problem.
The boundary value problem for T is not one of the classical boundary

value problems for potentials, i.e. problems where the potential, the normal
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derivative of the potential, or a linear combination thereof is given at the
boundary. Ours is the so-called oblique derivative problem where a linear
combination of the potential and the derivative of it in some direction is
given at the boundary. It can be proved that the direction in question is
that of the normal line through the point Q, the normal line being the curve
consisting of points having the same normal coordinates as Q; the normal
lines are approximately vertical. If this direction does not at any point of the
boundary coincide with the direction of a tangent to the boundary at the
same point and if for the whole boundary the direction is to the same side of
the boundary surface, then we have the regular oblique derivative problem,
provided, however, that the boundary surface and the coefficients in equation
(268) satisfy some very weak regularity conditions.

The oblique derivative problem is in general very complicated, but if it is
regular it has been proved ([5], p. 265, and [2], p. 82) that the theorem called
Fredholm’s alternative applies. Since we have a certain liberty in choosing the
mathematical model for the surface of the Earth, we can and shall assume
that we have to do with the regular oblique derivative problem.

Fredholm’s alternative runs as follows: Either

(a) there is no regular potential T different from zero which satisfies the homo-
geneous boundary value equation corresponding to (268) (i.e. (268) with
the right term equal to zero); if so, (268) has for all right terms a unique
solution T that is a regular potential (outside the boundary surface), or

(b) the homogeneous problem has a finite number n of linearly independent
solutions; if so, the inhomogeneous problem is solvable only if the right
term satisfies n linearly independent linear homogeneous conditions, and
then it has n linearly independent solutions so that the difference between
two arbitrary solutions is a solution to the corresponding homogeneous
problem.

In pure mathematics it makes good sense to work with clear alternatives—
in applied mathematics and in numerical mathematics the facts are more
blurred. There we often have a situation where it is practically impossible to
tell whether we are in case (a) or case (b); we have the same situation when
we are to solve a system of linear algebraic equations so that the coefficient
matrix has a “small” eigenvalue: the system is unstable—a “small” change in
the input values may cause a change in the result that is not “small.”

To find out which case applies to Molodenskiy’s problem, we shall first
consider the simplified situation where we have a non-rotating planet.

Here the normal potential U is regular also at infinity as are all its deriva-
tives with respect to the Cartesian coordinates; thus,

∂U

∂x1
,

∂U

∂x2
,

∂U

∂x3

are regular potentials.
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If in the left determinant of (268) we substitute ∂U/∂xh for T , then the
first and the h + 1’th column are identical and the determinant vanishes, i.e.
∂U/∂xh is a solution to the homogeneous problem corresponding to Moloden-
skiy’s problem for h = 1, 2, 3; that is to say we are in case (b) with n being
at least three.

Let us first suppose that n = 3. Then, if the boundary value problem
has a solution T0—and so it has if the gravity anomalies satisfy three linear
equations

T = T0 + a
∂U

∂x1
+ b

∂U

∂x2
+ c

∂U

∂x3
(269)

is a solution for all values of a, b and c, and we may choose the constants so
that the gravity centre for T coincides with the gravity centre for U , i.e. so
that the three first-order terms of the expansion of T into spherical functions
in the vicinity of infinity vanish.

For n > 3 the anomalies must satisfy more than three conditions, but
if there are solutions, there will always be such which have gravity centres
coinciding with that of the Earth. However, the solutions will be n − 3 times
indeterminate.

Now we shall discuss the interesting case where the Earth is rotating. Let
us fix the coordinate system so that the origin is at the gravity centre of the
Earth and so that the x3-axis coincides with the axis of rotation. Then

∂U

∂x3

is still a solution to the homogeneous problem, whereas

∂U

∂x1
and

∂U

∂x2

are only formal solutions; they are not zero at infinity; they are not even
bounded. Therefore, we can only say that n is at least one and, if the problem
has a solution T0, we cannot generally obtain coincidence between the gravity
centres of T and the Earth. So we have again the situation that in order to
obtain a usable solution, we must have a set of ∆g satisfying (at least) three
conditions. And even more: It is known that also two of the first-order terms
in the expansion must be zero, see [4], p. 62, so in reality we have (at least)
five conditions that should be satisfied.

The result of this investigation must be that Molodenskiy’s problem is
ill-posed, in the terminology of J. Hadamard, see [8]. For a problem to be
well-posed it should according to Hadamard have one and only one solution
for arbitrarily given data, and small variations of the given data should cause
reasonably small variations in the solution. The correct formulation of Molo-
denskiy’s problem would be to ask for a potential T that is regular outside the
telluroid, that satisfies five conditions at infinity (the vanishing of the first-
order terms and two of the second order terms in the expansion into spherical
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harmonics) and that satisfies equation (268) where in the right term ∆g + V
is substituted for ∆g, where∫

ω

p(Q)V 2(Q) dω = min,

the integral to be taken over the telluroid and p being a given positive weight
function. This form of boundary value problem might be called a least-squares
boundary value problem.

I shall not follow up this idea here, since we are not in possession of a con-
tinuous field of boundary data, but I have tried to point out that adjustment
methods, also from an abstract theoretical point of view, are more realistic
than the classical approach.

In the computation for the determination of the potential it may be prac-
tical to include results concerning the deflection of the vertical on one hand
and to make it possible to find deflections of the vertical on the other hand.
Therefore, we must find the differential operators that give these quantities
from the representation of the disturbing potential, and I shall here derive
those corresponding to the same model that led to the formula (268) for the
differential operator giving ∆g.

At the point P the direction of the physical vertical is − gradW and the
direction of the normal vertical is − gradU . We are interested in the projection
on a horizontal plane through P of the difference between the unity vectors
in the two verticals. This difference is

−1

g
gradW +

1

γ
gradU = −1

g
gradW +

1

γ
(gradW − gradT )

=
( 1

γ
− 1

g

)
gradW − 1

γ
gradT. (270)

Let us use a coordinate system with the z-axis in the direction of the
physical vertical, the x-axis in the west-east direction and the y-axis in the
south-north direction. The horizontal plane through P has the equation z =
constant, i.e. the projection on this plane of gradW is zero, and we have for
the west-east and the south-north components of the vertical deflection:

ξ =
1

γ

∂T

∂x
and η = − 1

γ

∂T

∂y
. (271)

If the interpolation method is used for the interpolation of vertical deflections
using gravity anomalies, we have at least two advantages over the classical
method: 1) the theoretical advantage that all the measurements enter into
the calculation in the same way, 2) the practical advantage that there is no
integration in the process; the anomalies at the measured stations enter di-
rectly into the calculations, which, therefore, can be automatized.

I find it a very attractive thought that the problem of local interpolation
of vertical deflections can be solved by the smoothing method so that the
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measurements of vertical deflections and of gravity anomalies enter formally
into the calculations in the same way. This problem is in fact the first one
on which we have planned to use the present theory at the Danish Geodetic
Institute.

But still more attractive is it to use this method on an integrated adjust-
ment of dynamical satellite measurements and measurements referring to the
potential at the surface of the Earth.

I cannot write down yet practical formulae to be used in such calculations;
I think that special research work is needed on this problem and I can only
offer some theoretical comments on the question.

It is important to remember that the disturbing potentials T and R used
for measurements relative to the surface of the Earth and to the satellites
respectively are not the same, but as the difference between them is known,
this fact does not cause severe difficulties. Also the slightly more complicated
case where the difference is not completely known but is dependent on one or
more unknown parameters may be dealt with by letting these parameters enter
into the adjustment as unknowns. This problem is perhaps not unrealistic.

As a starting point for the discussion of the explicit form of the normal
equations I take the formulae from [7], p. 29:

da

dt
=

2

na

∂R

∂M

de

dt
=

1 − e2

na2e

∂R

∂M
− (1 − e2)1/2

na2e

∂R

∂ω

dω

dt
= − cos i

na2(1 − e2)1/2 sin i

∂R

∂i
+

(1 − e2)1/2

na2e

∂R

∂e

di

dt
=

cos i

na2(1 − e2)1/2 sin i

∂R

∂ω
− 1

na2(1 − e2)1/2 sin i

∂R

∂Ω

dΩ

dt
=

1

na2e(1 − e2)1/2 sin i

∂R

∂i

dM

dt
= n − 1 − e2

na2e

∂R

∂e
− 2

na

∂R

∂a
.

(272)

Here, as in the previous problems, the operations on the right sides of the
equations (272) are not to be performed directly on the disturbing potential R
but on the reproducing kernel with respect to the first point P or the second
point Q. If the kernel is given explicitly, e.g. as 2αR/L it is not difficult to
express it by the elements corresponding to the two points P and Q and
perform the differentiations. If the kernel contains correction members in the
form of spherical harmonics, the differential coefficients with respect to the
elements can be derived in the traditional way or by using the generalized
spherical harmonics, see [12] and [3].
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Now, if we could measure directly the rates of variation of the elements in
short intervals of time, then the problem would be solved, but we can only find
the resulting perturbations during long intervals of time, and, consequently,
we have to use integrations or mean values. This situation, however, is not pe-
culiar to our problem, so it should be possible to overcome also that difficulty.

The most severe draw-back of the method is that it results in very large
systems of normal equations—one equation for each measurement—and that
these equations are not sparse, as are for instance the normal equations used
for the adjustment of geodetic networks. It is a consolation that the matrix of
the normal equations is positive definite, so that the equations may be solved
without using pivoting, and that the adjustment procedure—like adjustment
procedures in general—is relatively simple to automatize.

I believe it is necessary to find some trick that may reduce the number of
normal equations or at least the number of coefficients different from zero; I
have some ideas in this respect, but I think it is too early to go into compu-
tational details.

The adjustment technique introduced here is a typical data-processing
method giving a formally correct result which is absolutely independent of
the meaning given (or not given) to the input data. It is in my opinion a
dangerous draw-back of this method, as of all adjustment methods, that it
gives an answer to even the most foolish question if it is only asked in a
formally correct way.

Therefore, I hope that the time gained by this and other forms of mecha-
nization of tedious calculations will not be used exclusively for the production
of more figures but for a better formulation of the problem, so that the ques-
tions we ask may be more realistic, from the physical as well as from the
numerical point of view. I think that some of the thoughts expressed in this
paper may be helpful in that respect.

Appendix. Proof of Runge’s Theorem

I want to prove that any potential regular in an open bounded region Ω can
be approximated by potentials regular in an open sphere Σ containing Ω in
its interior. The region Ω is supposed to be bounded by a surface ω which is
sufficiently regular, e.g. by having a finite curvature all over. This condition
could be weakened very much, but I do not think it would be of much interest
in this connection. It is, however, important that Σ − Ω is connected.

The theorem will be proved through a series of lemmas.

Lemma 4.1 For every function f continuous in Ω + ω and 0 on ω we have
that from ∫

Ω

fψ dΩ = 0 (273)
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Σ

Ω

Fig. 4.1. Runge’s theorem

for all potentials ψ regular in Σ follows∫
Ω

fφ dΩ = 0. (274)

for all potentials φ regular in Ω.

It is obvious that, if we can prove the lemma for certain potentials ψ
regular in Σ, then the lemma will be true as it stands. The set of ψ I shall use
is that represented by continuous single layer distributions on the surface σ
of Σ, i.e. for potentials representable by

ψP =

∫
σ

1

rPQ
κ(Q) dσQ, (275)

where
P ∈ Σ and Q ∈ σ

and rPQ is the distance between the points P and Q. κ is the density of the
single layer distribution on σ.

For (273) to be satisfied for all ψ represented by (275) it is necessary and
sufficient that

F (Q) ≡
∫
Ω

f(P )
1

rPQ
dΩP = 0 for all Q ∈ σ. (276)

F is here a regular potential in the space outside ω. In Ω F is a solution to
the Poisson equation ∆F = f .

Now (276) says that F is zero on the surface of the sphere and that it has
the finite mass

M =

∫
Ω

f dΩ (277)

i.e. F is zero at infinity; therefore it will vanish in the space outside the sphere,
but then it must be zero in the whole space outside ω and on ω.
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For every potential φ regular in Ω we may, consequently, write:∫
Ω

fφ dΩ =

∫
Ω

∆FφdΩ =

∫
Ω

F∆φdΩ = 0, (278)

(here we have used Green’s formula) and the lemma is proved.

Let us now consider the Hilbert space H consisting of functions, not nec-
essarily potentials, f defined in Ω so that the integral

‖f‖2 =

∫
Ω

f2 dΩ (279)

is finite. The scalar product in H is

〈f1, f2〉 =

∫
Ω

f1f2 dΩ. (280)

Since functions of the type of f in Lemma 4.1 are dense in H , we have

Lemma 4.2 In the Hilbert space H any element orthogonal to every poten-
tial ψ regular in Σ and restricted to Ω is orthogonal to every element φ of H
that is a regular potential in Ω.

Now, according to the elementary theory of Hilbert spaces Lemma 4.2 implies:

Theorem 4.1 Any element φ of H which is a regular potential in Ω can be
approximated in the strong topology in H by restriction to Ω of potentials ψ
regular in Σ.

But what we wanted was not a theorem on approximation in the strong
topology in H , but in the uniform topology on all closed subsets of Ω.

If for a moment we assume that the elements φ of H which are regu-
lar potentials in Ω form a Hilbert space, say H0, with the reproducing ker-
nel K(P, Q), then we can deduce the following theorem using a technique used
already in Section III.

Theorem 4.2 Any element φ of H0 (i.e. any φ of H which is a regular
potential in Ω) can be approximated uniformly on all closed subsets of Ω
by restriction to Ω of potentials ψ regular in Σ, so that also any derivative
of φ with respect to the coordinates in Ω is uniformly approximated by the
corresponding derivatives of the ψ’s on the same closed subsets of Ω.

Corollary 4.1 By using inversion with respect to the sphere Σ this theorem
gives a strengthened form of Runge’s theorem, at least for φ ∈ H0.
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Proof of Theorem 4.2: For a function f(P ) that is an element of a Hilbert
space with reproducing kernel K(P, Q), we have, cf. (169):∣∣f(P )

∣∣ =
∣∣〈f(Q), K(Q, P )

〉∣∣ ≤ ‖f‖
∥∥K(Q, P )

∥∥
= ‖f‖

〈
K(P, Q), K(Q, P )

〉1/2

Q
= ‖f‖K(P, P )1/2 (281)

and ∣∣∣( ∂f

∂xP

)
P

∣∣∣ =
∣∣∣〈f(Q),

∂

∂xP
K(Q, P )

〉∣∣∣ ≤ ‖f‖
∥∥∥ ∂

∂xP
K(Q, P )

∥∥∥
Q

= ‖f‖
〈

∂K(P, Q)

∂xP
,
∂K(Q, P )

∂xP

〉1/2

Q

(282)

as well as similar formulae for the higher derivatives. From the properties of
the reproducing kernel and the boundedness of Ω it follows that〈

K(P, Q), K(Q, P )
〉1/2

Q

is finite. From the same premises and from the fact that K(P, Q), a function
of P or Q, is a potential regular in Ω it follows that the same applies to〈

∂K(P, Q)

∂xP
,
∂K(Q, P )

∂xP

〉1/2

Q

and also to the higher derivatives of the kernel.
Now, from Theorem 4.1 it follows that, given a φ ∈ H0 we can find a

sequence {φn} of potentials ψn regular in Σ so that for every ε > 0 there is
such an N that

‖φ − ψn‖ < ε for n > N. (283)

By putting f = φ − ψn Theorem 4.2 follows from (281), (282), etc.

In order to get rid of the restriction that φ must have a finite H-norm, we
may use the spaces Hp instead of H . For any twice continuously differentiable
positive function defined on Ω Hp is given by the scalar product

〈f, g〉p =

∫
Ω

p(P )f(P )g(P ) dΩ (284)

and the corresponding norm

‖f‖2
p =

(∫
Ω

pf2 dΩ

)1/2

. (285)

Given any potential φ regular in Ω, we can find such a p that

φ ∈ Hp.

(Take p = (1 + φ2)−1/2).



4 A Contribution to the Mathematical Foundation of Physical Geodesy 87

The reader is invited to prove Lemma 4.1, Lemma 4.2 and Theorem 4.1
for Hp instead of H , which is quite simple. Then the restriction is removed
and Runge’s theorem is proved as soon as we have proved:

Lemma 4.3 The subset of Hp consisting of potentials regular in Ω is a
Hilbert space with reproducing kernel.

But we shall first prove

Lemma 4.4 Any Hilbert space consisting exclusively of potentials regular in
Ω has a reproducing kernel.

If φ is an element of the Hilbert space in question and P is a fixed point
in Ω, then φ(P ) is finite. The linear operator AP from the given Hilbert space
to the real numbers which to φ assigns the value φ(P ) of φ at P is therefore de-
fined for all φ of the Hilbert space. From a well-known theorem from functional
analysis (Hellinger and Toeplitz’ Theorem or the Closed Graph Theorem) it
follows that Ap is a bounded operator or, in our case where the range is the
real numbers, a bounded linear functional, and from this it follows again from
one of the fundamental theorems of Hilbert spaces with reproducing kernel
that the Hilbert space in question has a reproducing kernel.

As to the proof of Lemma 4.3 it remains only to be shown that the subset
of Hp consisting of potentials regular in Ω forms a Hilbert space, i.e. a closed
linear subspace of Hp. That it is a linear subspace is evident; the only difficulty
is to prove that the subspace is closed.

Let us use M to denote the set of twice continuously differentiable func-
tions defined on Ω and zero outside some closed subset of Ω. It is evident that
M ∈ Hp and that any function of Hp which is orthogonal to every f ∈ M
is equivalent to zero, so that a necessary and sufficient condition of φ ∈ Hp

being a regular potential in Ω is that∫
Ω

pf∆φdΩ = 0 for all f ∈ M. (286)

From (286) follows ∫
Ω

∆(pf)φdΩ = 0 for all f ∈ M, (287)

Green’s formula having been used.
If φ is twice differentiable, (286) follows from (287), and as the φ ∈ Hp for

which (287) holds form a closed linear subset of Hp, Lemma 4.3 follows from
the famous Weyl’s lemma, which shows that the φ for which (287) holds are
not only twice but arbitrarily often differentiable.

Finally, I shall outline a short proof of Weyl’s lemma.
Let S be the unit sphere, and let us suppose that Φ(P ) is an n times

continuously differentiable function which is zero outside S and which depends
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only on the distance of P from the origin. Let us also suppose that∫
S

ΦdΩ = 1. (288)

For every function u(P ) ∈ Hp and every ε > 0 we can now define:

uε(P ) =

∫
S

Φ(Q)u(P − εQ) dΩQ = ε−3

∫
Φ
(P − Q

ε

)
u(Q) dΩQ, (289)

where the latter integral is taken over the domain where the integrand is
different from zero.

It is easy to prove that uε is n times continuously differentiable, and that

lim
ε→0

uε(P ) = u(P ) (290)

almost everywhere.
We shall now prove that, given two positive numbers ε1 and ε2, it follows

from (287) that
φε1(P ) = φε2(P ) (291)

for all P ∈ Ω so that the distance from P to the boundary of Ω is larger than
both ε1 and ε2.

Let us define the function F by

F (P ) =

∫ (
ε−3
1 Φ

(P − Q

ε1

)
− ε−3

2 Φ
(P − Q

ε2

)) 1

rQ
dΩQ. (292)

For F we have immediately

∆F (P ) = ε−3
1 Φ

(P

ε1

)
− ε−3

2 Φ
(P

ε2

)
(293)

and
F (P ) = 0 (294)

for P outside the spheres with centres at the origin and radii ε1 and ε2.
Therefore, for a given Q ∈ Ω and for ε1 and ε2 sufficiently small ∆F (P−Q)

is a function of P in the set M , and so (287) implies:∫
F (P − Q)φ(Q) dωQ = 0, (295)

which in its turn is equivalent to (291).
Equations (290) and (291) now give

φε(P ) = φ(P ) (296)

almost everywhere for ε sufficiently small (dependent on P ).
But a consequence of (296) is that φ is equivalent to a function which is n

times continuously differentiable. For n = 2 this means that we may deduce
(286) from (287), and we have Weyl’s lemma.
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5

A Remark on Approximation of T by Series in

Spherical Harmonics

I believe that the problem about the convergence or not convergence of series
in spherical harmonic down to the surface of the earth is posed in a wrong
way, and I shall therefore try to stress a more realistic aspect of it.

First I shall mention two theorems. We have already heard about the first
of them to day:

Moritz’ theorem: in every vicinity of a potential for which the series expan-
sions in spherical harmonics converges down to the surface of the earth there
is a potential regular outside the earth for which the expansion in spherical
harmonics diverges at some point at the surface of the earth.

The other theorem is exactly as positive as the first one is negative. It
has been known by mathematicians for years but the communication between
mathematics and geodesy is not so fast to day as it was a hundred years ago.
For our use it can be stated as follows:

Runge’s theorem: in every vicinity of a potential regular outside the earth
and for every given sphere with centre in the centre of the earth there is a
potential which is regular down to the surface of the given sphere, or more
precisely:

Given any potential regular outside the surface of the earth and any sphere
in the interior of the earth, for every closed surface surrounding the earth
(which surface may be arbitrarily near the surface of the earth) there exists a
sequence of potentials regular in the whole space outside the given sphere and
uniformly converging to the given potential on and outside the given surface,
and even more, the derivatives of all orders converge also uniformly (each of
them) in the same region.

This theorem is at least interesting but it will be extremely useful if the
problem could be solved to find an approximation, the existence of which
is secured by the theorem, of a potential (e.g. T ) which is (partly) known
from measurements. This problem is not a trivial one but in the forthcoming
“Meddelelse No. 44” from the Danish Geodetic Institute: “A Contribution to
the Mathematical Foundation of Physical Geodesy” is given a method which
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could be called the method of least-squares collocation which should solve
this problem. It can be looked at as a combination of Moritz interpolation
formula and some of Bjerhammar’s ideas and should at the same time give
the latter that mathematical coherence which some of us may have missed in
them before.

The publication, which will be available at the Danish Geodetic Institute
from the 5th of September 1969, will also contain a proof of Runge’s theorem.

Another promising approach to the problem is Kolmogorov’s theory on
ε-entropy an approximation of functions.

In the discussion following the remark I had to stress that Runge’s theo-
rem does not claim that a potential regular outside the earth can be continued
down to a sphere inside the earth but only that it can be approximated arbi-
trarily well by a potential regular outside the sphere. On the other hand this
distinction has only a meaning for a mathematically given potential but not
for a physically given one, exactly as it has no meaning to say that a physical
quantity is expressed by a rational or an irrational number.
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On the Geometry of Adjustment

Zusammenfassung

Der Artikel behandelt die wichtige Frage der Abhängigkeit der Lösung eines
Ausgleichungsproblems von der Gewichtsmatrix P . Das Problem wird zu-
nächst qualitativ behandelt, wobei unter Variation von P die Menge der
möglichen Lösungen eines gegebenen Ausgleichungsproblems sowohl unter der
Voraussetzung unkorrelierter wie korrelierter Messungen beschrieben wird.
Bei der qualitativen Darstellung wird eine Formel für die maximale Änderung
der Lösung als Resultat einer Änderung von P angegeben.

Die angewandte Methode ist vollständig geometrisch; es ist kurios, daß
keine der klassischen Formeln der Ausgleichungsrechnung benötigt wird.

Der Verfasser wünscht mit diesem Artikel darauf hinzuweisen, daß die geo-
metrische Methode in der Theorie der Ausgleichung nicht nur wie bekannt die
Ableitung der fundamentalen Formeln der Ausgleichungsrechnung gestattet,
sondern auch ein sehr wirksames Mittel für die Lösung tieferliegender Pro-
bleme in dieser Disziplin ist. Die gefundenen Resultate könnten schwerlich
mit traditionellen Methoden hergeleitet werden.

Geometrically the process of classical adjustment can be described as fol-
lows: The result of the n observations may be represented as a point in an
n-dimensional vector space, the observation space. The locus of observation
points consistent with the physical model for the observations constitutes
an m-dimensional linear subspace, the permissible subspace, of the observa-
tion space. If the permissible subspace is given on parameter form—i.e. its
coordinates in the observation space are given as n linear expressions in m
parameters then we have the classical case of adjustment in elements; if it
is given by n − m linear equations in the coordinates then we have the ad-
justment with correlates, but from the geometrical point of view there is no
difference between these cases—or between these cases and the hybrid cases
also mentioned in the literature.
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The problem of adjustment is now, given the observation point x to find
that point y in the permissible subspace for which the “distance” to the ob-
servation point is minimum. The square of this distance is expressed by a
quadratic form in the coordinate differences of these two points

d2 = (x − y)TP (x − y). (1)

Here P is the weight matrix, a symmetric positive definite n×n matrix which
is the reciprocal to the matrix of variance-covariance. Now it is a well-known
fact that such a positive definite matrix by the equation (1) determines a
Euclidean metric on the n-dimensional vector space, the observation space.
Partisans of tensor analysis would say that P is the contravariant metric
tensor and that the variance-covariance matrix is the covariant metric tensor.
It is now evident that y must be the orthogonal projection of x into the
permissible subspace—here orthogonal means orthogonal with respect to the
Euclidean metric determined by P through (1)—and so we have seen that
from the geometrical point of view least-squares adjustment is nothing else
than orthogonal projection.

It is clear that we could use this geometrical insight in deducing all the
well-known formulas in adjustment theory in a very simple way but here I
shall concentrate on the problem on the dependence of y on P .

The first question in which I am interested is: Given x which values of y
are possible? It is evident that there are two limitations on y:

1. y must be a point of the permissible subspace, and

2. if the observations are formally correct i.e. if x is already in the permissible
subspace then y is identically equal to x.

I shall prove that there are no other limitations: Given a point x of the
observation space but not in the permissible subspace and a point y in the
permissible subspace there exists a positive definite matrix P such that y is
the result of the least-squares adjustment of the observations represented by x
with P as weight matrix.

Suppose it is possible to find P and an orthogonal coordinate system in
the observation space such that the first m coordinate axes are vectors in
the permissible subspace and the next coordinate axis is parallel to x − y
(orthogonality is here meant with respect to P ), then x−y would be orthogonal
to permissible subspace and y would be the orthogonal projection of x into
this subspace and P would be a solution.

The possibility of choosing P and the coordinate system is secured by the
following lemma: Given n linearly independent vectors in an n-dimensional
vector space there exists a positive definite matrix P so that in the metric
determined by P and (1) these vectors constitute an orthonormal set.

Let A be the n × n matrix consisting of the given n vectors as column
vectors, then A is non singular, and the condition that the vectors shall be
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x

y1 y2

α

Fig. 6.1. Drawing in P1 metric: Observation point x and its orthogonal projections
y1 and y2 onto the permissible subspace with respect to the Euclidean metrics P1

and P2, respectively.

orthonormal with respect to P can be expressed as follows

ATPA = I or P = (AAT)−1,

and this is a positive definite matrix.
This simple result concerning the possible results of an adjustment seems

to be little known to geodesists—in fact from time to time geodesists have
tried to prove almost the opposite result.

The simplest not trivial adjustment problem is that where there are given
two correlated observations of the same physical quantity, in this case you can
easily by calculation verify our result and you will see on the other hand that
for a diagonal weight matrix—i.e. for not correlated observations—the result
will always lie between the values of the two observations. This fact may also
be generalized to the general case of adjustment with diagonal weight matrix.
The proof is quite elementary but perhaps a little complicated therefore I shall
only quote the result.

The set of points of the permissible subspace corresponding to a given value
of one of the observations corresponds to a hyperplane of this subspace. So
to the n observations there will correspond n hyperplanes in the permissible
subspace and these hyperplanes will generally bound several polyhedra of
different dimensionality in the permissible subspace but there will be one
of these polyhedra which contains all the other polyhedra and the possible
domain for y is exactly the interior of this maximum polyhedron. It is perhaps
astonishing that this polyhedron is not necessarily convex.

As you see the situation is very much different in this case where the
observations are supposed to be uncorrelated from that in the general case.

Now we have obtained a qualitative view over the possibilities for the
solution of adjustment problems. Let us try after that to complement this
with a more quantitative insight in the same problem: If the weight matrix is
changed so and so much how much can the result then change?

Let us try to formulate the problem.
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We have two adjustments. For both of them as well the permissible sub-
space as the observation space are identical. The values of the observations
are in both cases the n dimensional vector x. The two weight matrices are P1

and P2, and the results y1 and y2 are regarded as two functions of x or as one
function of P and x

y = f(P, x),

so that
y1 = f(P1, x) and y2 = f(P2, x).

We want to define a measure for the effect of changing the weight matrix
from P1 to P2. The effect on a given set of observations (corresponding to the
vector x) could be measured by the distance between y1 and y2, this distance
being measured by P1 or by P2. This distance is not bounded as a function
of x; it is proportional to the vector of the residuals i.e. the distance from x to
the permissible subspace, therefore the distance y1y2 divided by the vector of
the residuals—both distances measured in the same metric P1 or P2—would
be a more natural measure for the discussed effect.

In Figure 6.1 I have tried to illustrate the meaning. The figure is drawn
using the P1 metric. The above mentioned ratio is

|y2 − y1|P1

|x − y1|P1

= tanα,

here | · |P1
means the P1-length and α is the angle under which y1y2 is seen

from the point x.
The angle at y2 (i.e. the angle y1y2x) is P2-orthogonal but in the P1-metric

it is π/2 − α, that is the shifting of the metric from P2 to P1 has changed
this angle from π/2 to π/2− α. In the Appendix I have proved that α has to
satisfy the inequalities

−ν1/2 − ν−1/2

2
≤ tanα ≤ ν1/2 − ν−1/2

2
,

where ν is the condition number of the matrix

Q = P
−1/2
1 P2P

−1/2
1

i.e. the ratio of the largest to the smallest of the eigenvalues of Q. Here P
1/2
1

is that positive definite matrix which satisfies(
P

1/2
1

)2
= P1.

This matrix exists certainly and is non-singular.
Recapitulating we have almost proved the following theorem: Given an

adjustment problem by

1. an observation space,
2. a permissible subspace of it,



6 On the Geometry of Adjustment 97

3. a weight matrix P0 and
4. an observation point not in the permissible subspace.

Then for all weight matrices P for which the spectrum of P
−1/2
0 PP

−1/2
0 is

contained in the closed interval [a, b], b ≥ a > 0, the following inequality
is valid for the angle α under which the displacement of the result of the
adjustment effected by the use of the weight matrix P instead of P0 is seen
from the observation point in the P0 metric:

| tanα| ≤ 1

2

(√
b

a
−
√

a

b

)
, (2)

and there exists at least one P such that this inequality is valid with the
equality sign.

The last assertion that the bound given here is the best possible does not
follow immediately from the foregoing but it should not be difficult for the
interested reader to prove it.

For the ratio between the lengths of the residual vectors according to the
two weight matrices P1 and P2 we find the inequalities:

λ−1/2
max ≤ |x − y1|P1

|x − y2|P2

≤ λ1/2
max (3)

where λmax is the largest eigenvalue of the matrix

R = P
−1/2
2 P1P

−1/2
2 .

Proof : According to Figure 6.1 we have

|x − y1|P1
≤ |x − y2|P1

≤ λ1/2
max|x − y2|P2

,

where the last inequality follows from the first part of the Appendix, conse-
quently

|x − y1|P1

|x − y2|P2

≤ λ1/2
max,

which is the second inequality of (3).
In the same way we find that

|x − y2|P2

|x − y1|P1

≤ λ
1/2
1

where λ1 is the largest eigenvalue of

Q = P
−1/2
1 P2P

−1/2
1 .

Then the first part of (3) follows from the fact that the eigenvalues of R are
the reciprocals of those of Q: The eigenvalues of R are the reciprocals to those
of

R−1 = P
1/2
2 P−1

1 P
1/2
2
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and the matrices Q and R−1 have the same eigenvalues because these two
matrices are similar:

Q =
(
P

−1/2
1 P

1/2
2

)(
P

1/2
2 P

−1/2
1

)
=
(
P

−1/2
1 P

1/2
2

)(
P

1/2
2 P

−1/2
1

)(
P

−1/2
1 P

1/2
2

)(
P

−1/2
1 P

1/2
2

)−1

=
(
P

−1/2
1 P

1/2
2

)
R−1

(
P

−1/2
1 P

1/2
2

)−1
.

This similarity has also the consequence that what we have proved here holds
good with very small modifications if we let P (P1 and P2) mean the variance-
covariance matrix instead of the weight matrix.

A special case of the problem on the influence on the result of an adjust-
ment of a change of the variance-covariance metric has been treated in several
articles during the last years, it is that of the effect of ignoring the correlations
between the observations. As the reader will see immediately the matrix Q
will in that case be equal to the correlation matrix (having ones in the diago-
nal). If the condition number of the correlation matrix is large it may in fact
be dangerous to ignore the correlations as our results show.

Appendix

Let us have a look at the geometric implications of a shift of metric from that
determined by the positive definite matrix P1 to that determined by P2.

First let us see how much the length of a vector can be changed: Let us find
the maximum and minimum lengths of a vector φ according to the metric P2

if φ is a unit vector according to the metric P1 i.e. find

max
φTP1φ=1

(
φTP2φ

)1/2
(4)

and
min

φTP1φ=1

(
φTP2φ

)1/2
. (5)

Using the transformation of coordinates defined by

ψ = P
1/2
1 φ

and putting

Q = P
−1/2
1 P2P

−1/2
1

the problem is reduced to the following: Find

max
|ψ|=1

(
ψTQψ

)1/2
and min

|ψ|=1

(
ψTQψ

)1/2
(6)

where |ψ| = (ψTψ)1/2. But as Q is symmetric and positive definite it is a
well-known fact that the maximum and minimum in (4) and consequently
also in (6) are respectively the square roots of the largest and the smallest
eigenvalues of Q.
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Next let us find out how much an angle which is right according to one
metric can differ from a right angle according to the second metric i.e. the
two vectors φ and ψ are supposed to be 2-orthogonal:

φTP2ψ = 0, (7)

call the 1-angle between them π/2 − α such that

sinα = cos
(

π
2 − α

)
=

φTP1ψ

(φTP1φ)1/2(ψTP1ψ)1/2
(8)

what is the maximum for α determined by (8) over all pairs of vectors φ and ψ
satisfying (7)?

Using the same coordinate transformation as above we may reformulate
the problem as: Find the maximum value of

sin α = φTψ

under the constraints

φTφ = ψTψ = 1 and φTQψ = 0.

We shall solve it by the method of Lagrangean multipliers. Define

f(φ, ψ) ≡ φTψ − µφTφ − νψTψ − λφTQψ,

then a necessary condition for maximum (or minimum) is

df ≡ dφT(ψ−2µφ−λQψ)+dψT(φ−2νψ−λQφ) = 0 for all dφT and dψT,

or
ψ − 2µφ − λQψ = 0, φ − 2νψ − λQφ = 0. (9)

By multiplication at left of the first of these equations by φT and of the
second one by ψT using the conditions we obtain

2µ = 2ν = φTψ = sin α

so that (9) may be written as

ψ − φ sin α = λQψ, φ − ψ sin α = λQφ. (10)

Adding and subtracting of these equations give:

1 − sin α

λ

(
φ + ψ

)
= Q(φ + ψ),

1 + sinα

λ

(
φ − ψ

)
= Q(φ − ψ). (11)

(11) expresses that φ+ψ respectively φ−ψ are eigenvectors for the matrix Q
corresponding to the eigenvalues

Λ+ =
1 − sin α

λ
(12)

respectively

Λ− =
1 + sinα

λ
. (13)
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Elimination of λ between (12) and (13) gives

1 − sin α

1 + sinα
=

Λ+

Λ−
or sin α =

1 − Λ+

Λ−

1 + Λ+

Λ−

.

Different combinations of the eigenvalues of Q will generally give dif-
ferent values for α, and the largest and the smallest possible values for α
are among them, the largest value for α will correspond to the combination
Λ+ = the smallest eigenvalue of Q and Λ− = the largest eigenvalue of Q.

If we put

ν =
Λ−
Λ+

for this combination we have

sin αmax =
ν − 1

ν + 1
and tanαmax =

ν1/2 − ν−1/2

2

in the same way we find for the smallest possible value of α:

tanαmin =
ν−1/2 − ν1/2

2

so that we have

−ν1/2 − ν−1/2

2
≤ tanα ≤ ν1/2 − ν−1/2

2
.
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Remarks to the Discussion Yesterday

There is one point in applied mathematics about which I cannot stop won-
dering. It is that we have to work with notions such as continuity, differentia-
bility etc. inherited from pure mathematics, although these concepts have no
meaning in a numerical model, where we work with finite representations of
numbers and functions.

It is perhaps an important aspect of human conditions that we have to
balance on two levels: one ideal and abstract and one practical and approxi-
mative. This is a philosophical question but it is evident that it is so, when we
shall apply mathematics on physical and geodetic problems. When we advance
our numerical model for a geodetic problem we must apply our knowledge of
the abstract mathematical background, but the practical methods we use need
not be direct maps of the mathematical model.

As far as I can see Molodenskiy’s problem and method belong to the ab-
stract level of physical geodesy and it should never be used for calculations of
the potential of the earth. The mathematical beauty of Molodenskiy’s theory
is connected with the fact that it (under certain conditions) gives a method
for determining of the potential from exactly the necessary and sufficient data.
But in physical geodesy we should exactly as in geometric geodesy use a least-
squares method permitting us to let all relevant geodetic observations enter
into the determination of coordinates and potential in a natural way. I have en-
gaged myself in the work to create such a least-squares model which I call “in-
tegrated geodesy” towards which the least-squares collocation is the first step.

But even if we accept a method for calculation, it is important at the
abstract level to find out what information we may extract from special forms
of data and here theories such as Molodenskiy’s will always be of interest.

I believe that Moritz’ paper on the convergence of Molodenskiy’s series
is a step toward a better understanding of Molodenskiy’s problem first of all
because he faces the fact that the integral operator in Molodenskiy’s integral
equation is of Calderon-Zygmund type. Too many authors have ignored this
fact with disastrous consequences for their results.
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The idea behind the Molodenskiy’s series is to regard the boundary value
problem as a perturbation of Stoke’s problem. The question Moritz asks (and
to some extent answers) can therefore be expressed as follows: how long can
the solution of the perturbed problem be developed in a Taylor series in the
perturbation parameter?

I have asked myself the opposite question: what can make the convergence
of such a series break down?

I shall follow Moritz’ example and treat the problem using matrices in
order to avoid functional analysis. It is a matter of routine work to make the
considerations theoretically valid.

We have to solve the linear problem

Atφ = α (1)

where At is a matrix A0 + tB, for t = 1, and we know the solution for t = 0.

It is a well-known fact that A−1
t depends analytically on t at all points

in the complex t-plane for which the matrix At is non-singular. (Here the
word “singular” is used in quite another meaning then when we speak about
“singular kernels.”) Therefore the matrix A−1

t (and so also the solution of (1))
may be expanded in a Taylor series (after powers of t) converging inside a
circle with centre t = 0 and radius r, where r equals the absolute value of
that t which is nearest to 0 among the values of t for which At is singular.
That is, the problem about the radius of convergence of Molodenskiy’s series
is equivalent to an eigenvalue problem for a generalized complex Molodenskiy
problem.

It should be well-known that Molodenskiy’s problem as a boundary value
problem for a harmonic function has three (linearly independent) eigensolu-
tions connected with the three coordinates for the mass centre of the earth and
that Molodenskiy’s integral equation in a way eliminates these three eigenso-
lutions and so it seems that obstruction of the convergence of Molodenskiy’s
series should be connected with the existence in certain cases of nontrivial
eigensolutions—at least for the “complexified” Molodenskiy’s problem.

I shall come back to the eigenvalue problem (for the real case) at a 1ater
occasion, probably in a letter to study group 4.31. I am very interested in
this problem and it is a consolation for me that the convergence problem for
Molodenskiy’s series which is even more complicated after all has advanced.

It was asked yesterday how we shall react to the result that our statistical
model is non-ergodic. To this let me say first that it is always rash to built
up a new theory before one really understands the problem, and I do not
think that we shall understand it before Lauritzen’s book exists printed in its
definitive form. Therefore the following has to be taken with due reservation.

1. As far as I understand Lauritzen does not claim that the covariance form
does not exist but that we are principally unable to find it.
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2. It is a widespread feeling—and it may be easily proved—that if the data
are good enough and really relevant then the result will be only weakly
dependent on the covariance form.

3. On the other hand the estimation of the a posteori variances depend
strongly on the covariance form used.

My conclusion are: let us continue to use and improve the statistical meth-
ods but with precaution using different reasonable covariance forms, and let us
see if the results are independent of these. Let us not believe in the estimates
for the variances but apply a control based on prediction of data which have
not entered in the calculations. At the theoretical level let us analyse more
thoroughly the nonstatistical aspects of the least squares methods and study
Molodenskiy’s problem and other similar problems in order to find out what
are the most relevant data for the solution of different geodetic problems.

Lauritzen’s result was not as we hoped it should be. But it is better for it
opens a way for us to a lot of new interesting problems. Moreover it seems to
be true.

Remarks

Moritz: I agree with Prof. Tengström that it would be preferable to be able to
consider the earth’s surface as known, but even then the problem remains an
oblique-derivative problem with difficulties basically similar to Molodensky’s
problem, although on a reduced scale.

Bursa: The applying of Molodensky’s theory is connected with the smoothing
of the actual Earth’s surface in an extent. The smoothing should be done be-
fore. The problem of a uniform smoothing is up till now open, but it is not so
difficult than the regularization in the classical theory is. Therefore, the main
progress done by Molodensky’s solution is that the actual Earth, not regular-
ized (however, smoothed), and its external gravity field, be investigated.
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Letters on Molodenskiy’s Problem

I. The Simple Molodenskiy Problem

1. Mathematical Formulation

In the three-dimensional Euclidean space, the following are given

1. A closed surface ω with two times continuously differentiable coordinates
which is star-shaped with respect to origin O, i.e., every half line from O
meets ω in exactly one point

2. A continuous function f on ω.

Let Ω be the open domain outside ω. What we want is then a function T
on Ω + ω which is 1) differentiable on Ω +ω, 2) harmonic on Ω, 3) regular at
infinity, i.e., for |x| a sufficiently large T is representable as

T =
h0(x)

|x| +
h1(x)

|x|3 + · · · + hn(x)

|x|2n+1
+ · · · , (1)

here and in the following hn(x) are (solid) homogeneous harmonic polynomials
of degree n, and 4)

3∑
i=1

xi ∂T

∂xi
+ 2T = f on ω. (2)

As we shall see later, we have wanted too much; therefore we have to
reduce our demands slightly.

If for such a T h1(x) = 0 then T is said to be an admissible solution
of the simple Molodenskiy problem. (Contrary to some authors, we do not
demand that also h0(x) = 0. More about this question will be addressed in
Section II1).

1 There are four Molodenskiy letters; each of them is identical to a section in this
chapter.
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2. The Necessary and Sufficient Conditions for Solution

It is well-known (and it will be proved below) that if T is harmonic in Ω
then the left side of (2) is also harmonic in Ω; that is, at all points of Ω + ω,
T satisfies the equation

3∑
i=1

xi ∂T

∂xi
+ 2T = F, x ∈ Ω (3)

where F is the solution of the Dirichlet problem: Find F , continuous in Ω+ω,
harmonic in Ω, regular at infinity and F = f on ω. In that way we have almost
reduced the problem to one of solving a partial differential equation of order
one (3): Under the given assumptions Dirichlet’s problem has exactly one
solution F , and our problem therefore corresponds to F to find a harmonic
function T satisfying (3).

In (3) put Tn = hn(x)/|x|2n+1. The ratio hn(x)/|x|2n+1 is homogeneous
of degree −(n + 1); therefore

∑
i xi∂Tn/∂xi = −(n + 1)Tn and∑

i

xi ∂Tn

∂xi
+ 2Tn = −(n − 1)Tn;

that is, the differential operator T →
∑

xi(∂T/∂xi) + 2T has eigenvalues
λn = −(n − 1), n = 0, 1, . . . and for every eigenvalue λn it has 2n + 1
linearly independent eigensolutions hn(x)/|x|2n+1 corresponding to the 2n+1
linearly independent homogeneous harmonic polynomials of degree n. As these
functions for n = 0, 1, . . . span the space of harmonic functions on Ω (Runge’s
theorem) 1) there do not exist other eigenvalues (and eigensolutions) and 2)
we have proved that

∑
xi(∂T/∂xi) + 2T is harmonic if T is harmonic.

From 1) follows for n = 1 that the only solutions of∑
i

xi ∂T

∂xi
+ 2T = 0

are linear combinations of the three functions xi/|x|3, i = 1, 2, 3, and we see
that if the simple Molodenskiy problem has a solution then the sum of this
solution and such a linear combination is also a solution, and also that if it
has a solution then it has also an admissible solution.

Now let σ be the surface of a fixed sphere with its center in O so that
ω is in its interior and let Σ be the exterior of the same sphere. Then the
expansion (1) for T is valid for every x ∈ Σ. Application of our differential
operator on T gives again for x ∈ Σ∑

xi ∂T

∂xi
+ 2T =

h0(x)

|x| − h2(x)

|x|5 − 2h3(x)

|x|7 − · · · − (n − 1)hn(x)

|x|2n+1
− · · · . (4)

We observe that (3) has a solution which is regular in Σ if and only if the
coefficients to the spherical harmonics of the first degree in the expansion
of F vanish, i.e., if the mass center of the potential F is the point O, but the
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methods we have used so far do not permit us to decide whether the solution
we have found in Σ can be extended so as to be a solution in Ω.

(3) may be written as

1

|x|
∂

∂|x|
(
|x|2T

)
= F,

so that a formal solution of (3) should be

T =
1

|x|2
∫

|x|F (x) d|x|,

more precisely as T (∞) should be 0:

T (x) = −
[

1

|y|2
∫

|y|F (y) d|y|
]y=∞

y=x

(5)

where the integration is to take place along the half line from O through
the point x ∈ (Ω + ω). The complete solution of (3) contains a ‘constant’ of
integration C. That C is ‘constant’ must mean that it is constant on every such
half line; that is it depends only on x/|x|. Therefore we write C = C(x/|x|).
The total contribution of C to the solution is

T0(x) =
C
(

x
|x|
)

|x|2

which is positively homogeneous of degree −2. Therefore if T0(x) shall be
harmonic, C must be a linear function of x divided by |x|, or

T0(x) =
h1(x)

|x|3

which are the zero solutions we have found before.
In order to help one understand this, one may control (5) by applying it

to the functions

Fn(x) =
hn(x)

|x|2n+1
.

Simple calculations show that for n �= 1 the admissible results are

T =
1

1 − n

hn(x)

|x|2n+1

as it should be. For n = 1 we obtain

T =
h1(x)

|x|3 ln |x|

which is not harmonic, in fact

∆

(
h1(x)

|x|3 ln |x|
)

= −5h1(x)

|x|5 .
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If |x|3F (x) is bounded (for x ∈ Ω) it is clear that the right side of (5) exists
(for x ∈ Ω). Under the same assumptions we have

−
[

1

|y|2
∫

|y|F (y) d|y|
]y=∞

y=x

= − 1

|x|2
∫ ∞

x

|y|F (y) d|y|

and the expression on the right side is harmonic when F (y) is harmonic. This
is most easily proved by using spherical coordinates:

∆F (x) =
1

r2

∂

∂r

(
r2 ∂F

∂x

)
+

1

r2

(
1

sin θ

∂

∂θ

(
sin θ

∂F

∂θ

)
+

1

sin2 θ

∂2F

∂λ2

)
= 0

or
1

sin θ

∂

∂θ

(
sin θ

∂F

∂θ

)
+

1

sin2 θ

∂2F

∂λ2
= − ∂

∂r

(
r2 ∂F

∂r

)
so that

∆

(
− 1

|x|2
∫ ∞

x

|y|F (y) d|y|
)

= − 1

r2

∂

∂r

[
r2 ∂

∂r

(
1

r2

∫ ∞

|y|=r

|y|F (y) d|y|
)]

− 1

r4

∫ ∞

r

|y|
(

1

sin θ

∂

∂θ

(
sin θ

∂F

∂θ

)
+

1

sin2 θ

∂2F

∂λ2

)
d|y|

= − 1

r2

∂

∂r

(
−rF − 2

r

∫ ∞

r

|y|F (y) d|y|
)

+
1

r4

∫ ∞

r

|y| ∂

∂|y|
(
|y|2 ∂F

∂|y|
)

d|y|

= − 1

r2

(
−F − r

∂F

∂r
+

2

r2

∫ ∞

r

|y|F (y) d|y|+ 2F

)
+

1

r4

([
|y|3 ∂F

∂|y|

]∞
r

−
∫ ∞

r

|y|2 ∂F

∂|y| d|y|
)

=
F

r2
+

1

r

∂F

∂r
− 2

r4

∫ ∞

r

|y|F (y) d|y| − 2F

r2
+

1

r4

[
|y|3 ∂F

∂|y|

]∞
r

− 1

r4

[
|y|2F

]∞
r

+
2

r4

∫ ∞

r

|y|F (y) d|y| = 0.

As every F harmonic in Ω, regular at infinity and such that h1(x) is zero, may
be expressed as a sum of a harmonic function F ′ such that |x|3F ′ is bounded
and a function of the form h0/|x| as we have solved the simple Molodenskiy
problem for both forms of harmonic functions and as the problem is linear,
we have in fact proved that the condition h1(x) = 0 is not only necessary but
also sufficient.
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3. Stability—The Prague Method

We shall say that Molodenskiy’s problem is stable if ‘small’ variations of the
given function f inside the domain in which the problem is soluble result
in ‘small’ variations of the admissible solution T . Here the adjective ‘small’
must be given reasonable meanings at both of its occurrences. Inequalities
expressing stability are standard in modern treatises on elliptic boundary
value problems—this is also the case covering our situation, but it is extremely
difficult to find practical values for the constants entering these inequalities for
actual problems. Guided by a knowledge about the form of such inequalities
I have recently succeeded in finding a method by which actual constants can
be found for the simple Molodenskiy problem.

The decisive step towards this determination is the introduction of an
integral equation method for the solution of the simple Molodenskiy problem
which I have called the Prague method.

The Prague method consists firstly to solve the Dirichlet problem for the
function F by the classical integral-equation method: Principally we look for
a continuous double layer distribution µ on ω corresponding to F such that

F (x) =

∫
ω

µ(y)
∂

∂ny

( 1

|x − y|
)

dωy, x ∈ Ω. (6)

F has the continuous boundary values f if and only if µ satisfies the
Fredholm integral equation

2πµ(x) − λ

∫
ω

µ(y)
∂

∂ny

( 1

|x − y|
)

dωy = f(x), x ∈ ω (7)

with λ = −1.
Instead of effectively computing F in the whole outer space Ω by (6), the

idea of the Prague method is to find T directly from µ by an integral of a
form not very different from the form of (6), of course using the formula (5).

Now the total mass of a double layer distribution is zero; therefore F can
not be represented as in (6) if its mass does not vanish. But F can always be
represented as

F =
h0

|x| + F ′ (8)

where the mass of F ′ vanishes and h0 is a suitable constant. Accordingly the
corresponding homogeneous integral equation (7) has λ = −1 as an eigenvalue
with the corresponding eigensolution µ0 = 1 and the associated homogeneous
integral equation has an eigensolution say σ0 corresponding to the conductor
potential of ω. That is (7) has a solution if and only if

∫
ω σ0f dω = 0 and by

the condition ∫
ω

µ dω =

∫
ω

µ0µ dω = 0 (9)
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this solution is uniquely determined and generates F by (6). Therefore our
Dirichlet problem can be solved in the following way.

Write

f(x) =
h0

|x| + f ′, x ∈ ω

and determine the constant h0 so that (7) has a solution for f ′ on the right
side instead of f :

0 =

∫
ω

f ′σ0 dω =

∫
ω

fσ0 dω + h0

∫
ω

σ0

|x| dω.

This equation has a solution because 1/|x| is never orthogonal to σ0. Then
solve (7) and (9) for µ with f ′ instead of f . The corresponding potential F ′

is found by (6), and the solution of the Dirichlet problem F is given by (8)
where h0 and F ′ already have been determined.

From F we shall find T . If the problem has a solution it can be written as

T =
h0

|x| + T ′,

where T ′ corresponds to F ′ in (8), i.e., we have reduced the problem to de-
termining T ′ corresponding to a potential F ′ which can be expressed from
a double layer µ by (6). In the following we may and shall restrict ourselves
to considering this problem without mentioning this restriction any more and
consequently omitting the dots.

But first we must consider the potential T corresponding to the potential F
generated by a unitary mass situated at some point y on ω. We have

F =
1

|x − y|

and using (5) we find

T (x) = −
[

1

|z|2
∫ |z|

|z − y| d|z|
]z=∞

z=x

= −
[

1

|z|2

(
|z − y|+ (z, y)

|z|

(
ln

|z − y|+ |z| − (z,y)
|z|

2|z| + ln 2|z|
)

+ C

)]z=∞

z=x

=
|x− y|
|x|2 +

(x, y)

|x|3

(
ln

|x− y|+ |x| − (x,y)
|x|

2|x| + ln 2|x|
)

+
C

|x|2 .

Here the ‘constant’ C does not depend on |x|, i.e., it must be a function of y
and x/|x|. Let us write the last line as

K(x, y) +
C
(

x
|x| , y

)
|x|2 .
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From this follows—at least formally—that if F is given by (6) then the
corresponding T is given by

T (x) =

∫
ω

µ(y)
∂

∂ny
K(x, y) dωy +

1

|x|2
∫
ω

µ(y)
∂

∂ny
C
( x

|x| , y
)

dωy. (10)

As long as x is in Ω, all the functions involved are very smooth so that the
changing of order of integration and differentiation involved in the deduction
of (10) are harmless. We shall later investigate the problem for x ∈ ω. Now
the question is whether T is a solution of our problem.

By direct calculation it can be proved that T satisfies Equation (3), but
is T harmonic?

First consider the last term in (10):

1

|x|2
∫
ω

µ(y)C
( x

|x| , y
)

dωy.

This is a function of x alone, and it is positively homogeneous of degree −2;
that is it must be of the form h1(x)/|x|3 in order to be harmonic. This term
is again the zero solution of Molodenskiy’s problem and we need not be in-
terested in it once more.

Next let us regard K(x, y). It may be split into two parts:

|x − y|
|x|2 +

(x, y)

|x|3 ln
|x − y| + |x| − (x,y)

|x|
2|x| (11)

and
(x, y)

|x|3 ln 2|x|. (12)

(12) is certainly not harmonic, but a direct calculation shows that (11) is.
(Here harmonic means harmonic with respect to x.)

The part of T in (10) coming from (12) is

T2(x) =
ln 2|x|
|x|3

∫
ω

µ(y)(ny , x) dωy,

(ny is the unit vector in the direction of the normal of ω at y) which is
harmonic only if it is zero, i.e., if∫

ω

µ(y)αi
y dωy = 0 i = 1, 2, 3, . . . (13)

where αi
y are the direction cosines of the normal to ω at the point y. (13) are

the sufficient and necessary conditions for h1(x) to vanish in the expansion
of F at infinity, i.e., again the conditions for the simple Molodenskiy problem
to be soluble.
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That is if µ satisfies (13) then

T (x) =

∫
ω

µ(y)
∂

∂ny
K(x, y) dωy (14)

where now and in the following K(x, y) shall mean that expression (11) should
be a solution of Molodenskiy’s problem.

It is now time to find the kernel ∂
∂ny

K(x, y) explicitly:

∂

∂ny
K(x, y) =

(y − x, ny)

|x|2|x − y| +
(x, ny)

|x|3 ln
|x − y| + |x| − (x,y)

|x|
2|x|

+
(x, y)

|x|3

(y−x,ny)
|x−y| − (x,ny)

|x|
|x − y| + |x| − (x,y)

|x|
.

By using simple geometry the reader can convince himself that

|x − y| + |x| − (x, y)

|x| = 2|x − y| cos2
σ

2

where σ is the angle between the two half lines from x through O and through y
so we may write:

∂

∂ny
K(x, y) =

(y−x, ny)

|x|2|x−y| +
(x, ny)

|x|3 ln
( |x−y|

|x| cos2
σ

2

)
+

(y−x,ny)
|x−y| − (x,ny)

|x|
2|x−y| cos2 σ

2

(x, y)

|x|3 .

(15)
We observe that the star shape of ω is still essential for ∂K/∂ny is not

defined for x between O and y. We observe further that the two last terms
are O(|x|−3) for x → ∞, while the first term is O(|x|−2). It may be written

1

|x|2
(y − x, ny)

|x − y| = − 1

|x|2
(x, ny)

|x| + O(|x|−3).

But from the conditions (13) follows that the first term here is without
influence, so that we have proved that if the simple Molodenskiy problem,
has a solution then the Prague method automatically gives the admissible
solution.

As we saw before that T (x) as defined by (14) is very smooth (in fact it
is analytic) for x ∈ Ω, we shall now see how T (x) behaves for x converging to
a point x0 ∈ ω from the outside. First suppose that x0 is not an exceptional
point of ω. By the exceptional points of ω we mean those where the tangent
to ω passes through O.

The method we shall use is the well-known one used in potential theory
for proving that the potential of a single layer is continuous by the passage of
the surface supporting the single layer. The proof will be only sketched; for
details the reader is referred to textbooks on classical potential theory.
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Let Br(x0) be the set of points x for which |x − x0| < r for r > 0 and set

µ1(y) =

{
0 for y ∈ Br(x0),
µ(y) for y /∈ Br(x0)

and

µ2(y) =

{
µ(y) for y ∈ Br(x0),
0 for y /∈ Br(x0)

and define T1(x) and T2(x) by

Ti(x) =

∫
ω

µi(x)
∂

∂ny
K(x, y) dωy for i = 1, 2.

The µ = µ1 + µ2 and T = T1 + T2.
Now it is clear that for x ∈ Ω

lim
x→x0

T1(x) = T1(x0) for every r > 0.

On the other hand, for every ε > 0 given we can choose r > 0 such that
|T2(x)| < ε for all x ∈ Br(x0) ∩ Ω, because (x − x0)

∂
∂ny

K(x, y) is bounded in

x, y ∈ Br(x0) ∩ Ω. From this follows the existence of T (x0) and that

lim
x→x0

T (x) = T (x0) for x ∈ Ω.

If x0 is an exceptional point of ω then T (x0) is not defined. But if x
converges along a straight line from the outside to x0 then 1/ cos2(σ/2) is
bounded and therefore for each such line limx→x0

T (x) will exist and its value
will not depend on the choice of line along which x approximates x0. Therefore
we can define T (x0) to be this common limit.

It is not difficult to prove that T (x) for x ∈ ω as a function on the surface ω
is continuous at all non-exceptional points of ω.

As to the behavior of gradT , it is a task of routine to prove that for
x0 ∈ ω a non-exceptional point limx→x0

gradT (x) exists and that if we define
gradT (x0) as this limit we have a vector field which is continuous on all
subsets of Ω not containing exceptional points, i.e., we have found for surfaces
without exceptional points a solution to the simple Molodenskiy problem as
it was defined in part 1). For surfaces with exceptional points we can only say
that the solution is differentiable on such subsets of Ω which do not contain
exceptional points.

For points x ∈ Ω it is clear that gradT (x) may be calculated using (14)
and changing the order of differentiation and integration. This is not so on ω:
If µ(y) satisfies a Hölder-condition the expression∫

ω

µ(y) gradx

( ∂

∂ny
K(x, y)

)
dωy
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certainly exists for x = x0 ∈ ω and is non-exceptional, but it is not con-
tinuous for x → x0 (x ∈ Ω). Certain jump relations exist similar to those
satisfied by the gradients of potentials of a single layer. The derivative of T
in the direction of the radius vector exists and has a well-defined limit at
the boundary so that the boundary condition has a meaning even if µ is not
Hölder-continuous. Summarizing we can say that the solution T of the sim-
ple Molodenskiy problem (if it exists) behaves outside the exceptional points
very much as a potential of a single layer, whereas the solution of the Dirichlet
problem behaves as a potential of a double layer, i.e., the solution of Molo-
denskiy’s problem in smoother than the solution of Dirichlet problem. This
important remark shall be made more explicit in the following. In these more
precise statements we shall instead of continuous functions on ω use functions
belonging to certain Lebesgue spaces Lp(ω) for 1 ≤ p < ∞. For the theory of
these spaces, see for example [7] or [1].

Our main tool will be the following theorem (see [7], pp. 190–191 or [1],
pp. 228–290):

Let (X,X , mX) and (Y,Y, mY ) be σ-finite measure spaces, let p,
r, µ1, and µ2 be real numbers such that

1 ≤ p ≤ r,
µ1

p′
+

µ2

r
= 1,

1

p′
+

1

p
= 1

and let ψ be an X ,Y-measurable function. Suppose there are non-
negative constants M1 and M2 such that∫

X

∣∣ψ(x, y)
∣∣µ1

dmY (y) ≤ M1 for all x ∈ X (i)

∫
Y

∣∣ψ(x, y)
∣∣µ2

dmX(x) ≤ M2 for all y ∈ Y . (ii)

If the operator A is defined by

A(f)(x) =

∫
Y

f(y)ψ(x, y) dmY (y), x ∈ X

then
A : Lp(Y ) → Lr(X),

and ∥∥A(f)
∥∥

r
≤ M

1/p′

1 M
1/r
2 ‖f‖p.

In our application of this theorem, Y is always the surface ω and X is a
closed measurable subset of ω which does not contain exceptional points. If
ω is without exceptional points then X may be ω itself but in applications it
can be of interest to work with smaller subsets if one is interested in the local



8 Letters on Molodenskiy’s Problem 115

behavior of the solution of the simple Molodenskiy problem. The measure will
always be the Lebesgue-measure (the area) on ω. The kernel ψ(x, y) is our

∂
∂ny

K(x, y). Obviously from our definition of X follows that 1/ cos2(σ/2) has

an upper bound for x ∈ X and y ∈ ω. (i) and (ii) then become∫
X

∣∣∣ ∂

∂ny
K(x, y)

∣∣∣µ1

dωy ≤ M1 for all x ∈ X (16)

and ∫
ω

∣∣∣ ∂

∂ny
K(x, y)

∣∣∣µ2

dωx ≤ M2 for all y ∈ ω, (17)

and it is clear that for µ1 = µ2 = 2 − ε the two integrals are in fact bounded
if ε > 0 but not if ε = 0.

A simple manipulation of the relations between p, r, µ1, and µ2 cited in
the theorem and µ1 = µ2 = 2 − ε gives

1

p
− 1

r
=

1 − ε

2 − ε
for 0 < ε ≤ 1. (18)

We shall apply the result on the operator (confer (14))

A(µ) = T : T (x) =

∫
ω

µ(y)
∂

∂ny
K(x, y) dωy.

If we put ε = 1, the theorem gives:
Let the constants M1 and M2 be such that∫

X

∣∣∣ ∂

∂ny
K(x, y)

∣∣∣ dωy ≤ M1 for all x ∈ X (19)

and ∫
ω

∣∣∣ ∂

∂ny
K(x, y)

∣∣∣ dωx ≤ M2 for all y ∈ ω (20)

then for any p such that 1 ≤ p < ∞(∫
X

∣∣T (x)|p dω

)1/p

≤ M
1− 1

p

1 M
1
p

2

(∫
ω

∣∣µ(x)
∣∣p dω

)1/p

.

A realistic estimation for the constants M1 and M2 is principally not
difficult but would certainly demand patience.

The fact that T is more well-behaved than µ is expressed by the results
of the theorem for ε > 1 (but ε < 2). As the reader may verify we can find in
that way that T ∈ Lp(X) for all 2 ≤ p < ∞ if µ is quadratic integrable, i.e.,
µ ∈ L2(ω) which certainly is true if f ∈ L2(ω).

The following remark may not be superfluous.
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Let δµ denote an increment to µ and let δT be the corresponding increment
to T . As the operator A : µ → T is linear, all our inequalities connecting norms
of µ and of T are valid for the same norms of δµ and δT , respectively.

At last a few words should be mentioned about estimates for gradT at the
boundary or more correctly for the limit of gradT as the point goes to the
boundary from the outside.

In deducing such estimates we meet two difficulties: 1◦)The integrals over ω
must be complemented of terms caused by the jump relations mentioned (but
not explicitly found) above. 2◦) As the reader can easily find, the above cited
theorem on integral operators between Lp-spaces cannot be applied here be-
cause the kernel now has become singular. The operator from µ to gradT (or
perhaps more correctly to each component of gradT ) is now expressed by an
integral operator of Calderon-Zygmund type (see e.g. [7] or [4]). The result is
the following: For every 1 < p < ∞ there is a constant Cp such that∥∥| gradT |

∥∥
p
≤ Cp‖µ‖p

where the norm at left is over X and that at right is over ω. This estimate is
not true for p = ∞ if we do not impose a Hölder-condition on µ.

II. The Mushroom Problem

1. Reformulation of the Prague Method

In Section I a kernel was introduced:

K(x, y) =
|x − y|
|x|2 +

(x, y)

|x|3 ln
|x − y| + |x| − (x,y)

|x|
2|x| (21)

which has the following properties:

1. K(x, y) is defined for all pairs (x, y) of points in the three-dimensional
Euclidian space R3 with the exception of those pairs for which there exist
an α, 0 ≤ α ≤ 1, such that x = αy.

2. For fixed y K(x, y) is harmonic in x and regular at infinity.
3. For fixed x K(x, y) is harmonic in y.
4. If F (x) is harmonic in Ω, the exterior of a closed star-shaped surface ω,

and is generated by a mass-distribution µ(y) in Ω, the interior of ω, and
if µ satisfies the identities∫

Ω

yiµ(y) dy = 0 for i = 1, 2, 3 (22)

then T (x) defined by

T (x) =

∫
Ω

µ(y)K(x, y) dy (23)
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Fig. 8.1. Mushroom-shaped landscape

is the admissible solution of the simple Molodenskiy problem correspond-
ing to the surface ω and the boundary values f(x), where f(x) = F (x)
for x ∈ ω.

5. If the identities (22) are satisfied, then the corresponding Molodenskiy
problem has a solution.

At first sight it could make one wonder that the integral in (23) is inde-
pendent of which of the different mass-distribution generating F (x) has been
chosen but this is a simple result of 3). (Use Green’s formula!)

2. The Mushroom Problem and its Difficulty

We shall now modify the simple Molodenskiy problem to the effect that the
surface ω is not necessarily star-shaped but may contain a ‘mushroom-shaped
landscape’ as depicted in Figure 8.1.

If we try to use the Prague method, we can find T overall in Ω− (by Ω−

we denote Ω with exception of the part of Ω situated under the cap) if µ(x)
is not zero in the ‘cap’ outside the gray part, and we can in no way be sure
that the potential we have found has a harmonic continuation in the part of Ω
under the cap.

By following the reasoning in Section I it is not difficult now to prove the
following:

The necessary and sufficient conditions for the existence of a solu-
tion of the mushroom problem are
1. that the given boundary values f are such that the identities (22)

are satisfied, and
2. that the resulting T determined from F in Ω− may be continuated

harmonically until ω.

As the question as to the existence of a harmonic continuation of an ap-
proximately given potential is meaningless (confer some of my earlier letters
to the study group), the question arises as to whether we can find an approx-
imative solution to the problem.
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3. Approximative Solution to the Mushroom Problem

I want to prove the following theorem:

1. If and only if the identities (22) are satisfied, it is possible to apply an
arbitrarily small correction to the boundary values f so as to make the
mushroom problem solvable.

2. The approximative solution of the mushroom problem depends in Ω−

continuously on f .

Let H(Ω−) denote the normal vector space consisting of functions φ which
are harmonic in Ω−, regular at infinity, continuous in Ω, the closure of Ω−,
and have gradients which are continuous in Ω− with norm

‖φ‖ = sup
x∈Ω−

(
|φ| + r| gradφ|

)
.

A version of Runge’s theorem says that the subset of H(Ω−) which consists
of potentials which are regular not only in Ω− but in Ω is overall dense
in H(Ω−), i.e., in every neighborhood of a given φ0 ∈ H(Ω−) there is a
φ ∈ H(Ω−) which is regular in Ω.

Through the solution of Dirichlet’s problem for Ω and the Prague method
we have established a mapping

M : f → T ∈ H(Ω−);

if we now can prove that the image by M of every neighborhood of any f
contains a neighborhood in H(Ω−), then part 1) of the theorem is proved.

In order to do this we must put a topology on the set of possible f . We
choose the C(ω) topology, i.e., we take the space C(ω) of functions which are
continuous on ω and define the norm

‖f‖ω = sup
y∈ω

∣∣f(y)
∣∣.

The mapping M−1 inverse to M is

M−1 : T → f = r
∂T

∂r
+ 2T +

h1(x)

r2
,

where h1(x)/r2 is the first order term in the expression of T at infinity is
continuous in the topologies we have defined. And now from the very definition
of continuity follows what we wanted to prove.

But alas! We have met with a new difficulty. Instead the original T0 cor-
responding to the given f0, we see that we may choose another T1 which is
regular in Ω and which corresponds to an f1 arbitrarily near to f0 but we
cannot be sure that h1 for this T2 is zero. But h1 must be small so that also

f2(y) = f1(y) − h1(y)

|y|2

is near to f0 and
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T2 = T1 −
h1(x)

|x|2 ,

which corresponds to f2 is an admissible solution and has the same domain
of regularity as T1 has and so the situation is saved.

Point 2) is simpler. We already know from Section I that T0 depends
continuously on f in Ω−, as |T2 − T0| can be made arbitrarily small T2 must
also depend continuously on f in Ω−.

III. A Mathematical Formulation of Molodenskiy’s
Problem

1. Assumptions, U-Potentials, and W -Potentials

It is impossible to apply mathematics to the so-called ‘real world.’ We first
have to make an idealized picture, a physical model, to which we may apply
mathematics exactly and afterwards find out if this model is reasonable and if
necessary find out how we can modify assumptions and results so as to arrive
at a sufficiently good approximation to ‘reality.’ Therefore I shall start with a
short description of that physical model which I have found most suitable for
a mathematical treatment.

1) Stationarity. We assume that time does not enter into our problem,
i.e., the Earth rotates as a solid with constant angular velocity ω around a
fixed axis (the x3-axis of our Cartesian coordinate system which rotates with
the Earth) passing through the mass center of the Earth (the origin O of our
Cartesian coordinate system).

2) Concentration of the masses. We assume the existence of a smooth
surface ω (not to be confounded with the angular velocity) such that all grav-

itating masses are in Ω̃+ω (Ω̃ is the interior of ω and Ω is its exterior). We do
not make any other assumptions with respect to the mass distribution than
that its support is in Ω̃ + ω and its mass center is O.

3) Knowledge. We assume known at every point x of ω a) the value w(x)
of the gravity potential W of the Earth (from spirit leveling and an intelligent
guess of an additive constant) and b) the value g(x) (observe that g is here
a vector) of the gradient gradW of the same potential (from astronomy and
gravity measurements). We shall suppose W and g to be sufficiently smooth
functions.

4) Classicity. We shall work in three-dimensional space and assume that
Euclidean geometry and Newtonian mechanics are valid.

5) A supplementary technical assumption. We shall assume that the grav-
ity potential W satisfies the following condition (the Marussi condition): there
exist two positive numbers h and a such that for every point in Ω with distance
from ω less than h, ∣∣∣det

∂2W

∂xi∂xj

∣∣∣ > a.
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Remark. We assume no knowledge as to the Cartesian coordinates of the
surface ω—in fact Molodenskiy’s problem may be defined as the problem to
find these coordinates from the assumptions 1–5.

From our assumption follows in the well-known way that the gravity po-
tential can be written as

W = V + 1
2ω2

(
x2

1 + x2
2

)
,

where V is harmonic in Ω, regular at infinity having vanishing first order
terms at infinity, and where W satisfies assumption 5.

Every function of this form will be called a W -potential (in Ω) and we

shall not ascribe any value to it in Ω̃.
By a U -potential we shall mean a function similar to a W -potential, the

only difference being that the domain of regularity for its harmonic part is so
much larger that we can be sure that ω is contained in it and in a domain

where
∣∣det ∂2W

∂xi∂xj

∣∣ > a for some a > 0.

It is clear that every U -potential determines a W -potential which simply
is the U -potential restricted to Ω. On the other hand from Runge’s theorem
follows a given W -potential that may be approximated arbitrarily well (in
suitable topologies) by U -potentials.

2. Molodenskiy’s Problem as a Problem of Coordinate
Transformations

Curvilinear coordinates have the curious advantage that one can know, e.g.,
the coordinates of the points of a surface without knowing the shape and the
position of the surface. We shall make use of this fact in the following.

By the gravimetric coordinates for a point in the domain of definition of
a U -potential (or of a W -potential) we shall mean the components of gradU
(or of gradW ) at the point. It is clear from the Marussi condition that there
exists a neighborhood around ω in which the Cartesian coordinates and the
U -gravitational coordinates are in a one-to-one correspondence.

We may now formulate Molodenskiy’s problem in the following way (here
W means the actual gravity potential of the Earth):

Given the W -gravimetric coordinates of ω and the values w of W at ω find
the Cartesian coordinates of ω.

As we have seen, if W is known in a neighborhood of ω the coordinate
transformation is trivial, our problem is therefore to prove that it suffices
to know the values of W on ω. On the other hand if w and the Cartesian
coordinates of ω are known we can find W in Ω (Dirichlet’s problem).

3. Mathematical Formulation of Molodenskiy’s Problem

Molodenskiy’s problem as defined above is highly non-linear, and in this re-
spect it is similar to most conventional geodetic problems, a fact we often
seem to forget.
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The problem of adjustment of a geodetic network is not less non-linear.
Traditionally this difficulty is evaded by starting the adjustment from rather
well approximated coordinates and not iterating the process so that the non-
linearity is not ascertained. The fact that today it would be much more ratio-
nal and give more precise results to use a more dexterous adjustment proce-
dure and iterate this process seems to prevail very slowly in practical geodesy.

In order to have a starting position we choose a U -potential U and a
surface ω′ which is situated in the domain of regularity of U and a one-
to-one mapping of ω onto ω′. U shall be an approximation to the gravity
potential W of the Earth—a possible choice is the normal potential. ω′ shall be
an approximation to ω; a possible choice is the surface consisting of points P
for which the gravimetric coordinates with respect to U (gradU)P are the
same as the gravimetric coordinates with respect to W for the corresponding
points Q of ω), (gradW )Q. In this case ω′ is called the gravimetric telluroid
(with respect to U). The traditionel choice would be the points P which have
Marussi coordinates (with respect to U) identical to the Marussi coordinates
(with respect to W ) of Q. Then we would have the traditionel telluroid or,
more correctly, the Marussi telluroid (with respect to U). In any case we
call ω′ the telluroid.

For every point P ∈ ω′ we can compute U and gradU , as we know the
Cartesian coordinates x of P and for the corresponding point Q ∈ ω we know
W and gradW according to our assumptions. That is, we can find

δW = WQ − UP (24)

and
δg = (gradW )Q − (gradU)P . (25)

where we call δW the potential anomaly and δg the (vector) gravity anomaly.
If ω′ is the gravimetric telluroid then δg = 0 and if it is the Marussi telluroid
then δW = 0 and δg = ∆

(
grad U
| grad U|

)
Q

, where ∆g is the conventional (scalar)

gravity anomaly.
Now let x be the (known) Cartesian coordinates of P and x + ∆x be the

unknown Cartesian coordinates of Q and put W = U + T , where U is known
and T unknown.

Then T must be harmonic outside ω, regular at infinity and have vanishing
first order terms, and we can write (24) and (25) as

T (x + ∆x) + U(x + ∆x) − U(x) = δW

(gradT )x+∆x + (gradU)x+∆x − (gradU)x = δg.
(26)

We linearize these equations, i.e., we rewrite them ignoring the following terms
which are o(∆x, T ):

T (x + ∆x) − T (x), (gradT )x+∆x − (gradT )x,

U(x+∆x)−
(
U(x)+∆xT(gradU)x

)
, (gradU)x+∆x−

(
(gradU)x−M∆x

)
,
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where M =
{

∂2U
∂xi∂xj

}
is the Marussi tensor evaluated at P , and we obtain

T + ∆xT gradU = δW (27)

gradT + M∆x = δg. (28)

The system (27) and (28) consists of four scalar equations corresponding to
each point of the telluroid. As three linear equations in the three components
of ∆x (28) are linearly independent according to our assumptions (the Marussi
condition), we may solve them for ∆x:

∆x = −M−1 gradT + M−1δg.

With this value of ∆x, (27) becomes:

T − (gradU)TM−1 gradT = δW − M−1δg.

Let us put
1
2f = δW − M−1δg

and call it the total anomaly which is computable from known data, and we
can write the last equation as

T − (gradU)TM−1 gradT = 1
2f. (29)

(29) gives one equation for every P ∈ ω′, i.e., it is a boundary condition
for T . As in the simple case of Molodenskiy’s problem it is a first order linear
partial differential operator.

We have now arrived at a boundary value problem which we will call the
linear Molodenskiy problem:

Find a function T which is harmonic outside ω′, regular at infinity
and which satisfies the boundary condition (29) at ω′.

A solution of the linear Molodenskiy problem for which the first order
terms vanish is called an admissible solution.

4. The Linear Molodenskiy Problem

The equation (29) is a representation of the exact boundary conditions for
the anomalous potential T but it is not very lucid from a geometrical point
of view. Therefore we shall give it another form which is also exact but from
which it is evident to see for example in which direction the derivative of T
is taken. In order to do this we must use gravimetric coordinates instead of
Cartesian coordinates.

The gravimetric U -coordinates are defined to be the components of the
vector u = gradU , and according to our assumptions these coordinates are in
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one-to-one correspondence with the Cartesian coordinates in some neighbor-
hood of ω and so also of ω′. The Marussi tensor M and its inverse may be
written

M =
{ ∂ui

∂xj

}
and

M−1 =
{ ∂xi

∂uj

}
so that (29) becomes

T −
∑

ui
∂T

∂ui
=

1

2
f. (30)

An even better form is obtained by the introduction of quasi-spherical
coordinates (ρ, φ, λ) defined by

1

ρ2
cosφ cosλ = −u1 = − ∂U

∂x1

1

ρ2
cosφ sin λ = −u2 = − ∂U

∂x2

1

ρ2
sin φ = −u3 = − ∂U

∂x3

(31)

where ρ ≥ 0.
In quasi-spherical coordinates the boundary condition reads

ρ
∂T

∂ρ
+ 2T = f. (32)

The derivative ∂/∂ρ is taken for constant φ and λ, i.e., along an isozenithal.
(32) has exactly the same form as the boundary condition has in the simple
Molodenskiy problem; it is also evident from (31) that if U = k/r then ρ =
r/k1/2.

If the Earth were non-rotating so that the potential ω2(x2
1 + x2

2)/2 of the
centrifugal force vanished, then the correspondence between the Cartesian and
the gravimetric coordinates would have been one-to-one overall outside ω′ and
so the quasi-spherical coordinates would also have been reasonable there. But
the centrifugal potential spoils this bijectivity. If we multiply ω2(x2

1 +x2
2)/2 by

a smooth function of |x| which is equal to one near the Earth and converges
sufficiently fast to zero for |x| → ∞ and uses this in the definition of U for the
definition of the gravimetric and the quasi-spherical coordinates, then we have
arrived at an exact definition of what by some geodesists is called the spherical
mapping which underlies the theory of the so-called spherical approximation
to Molodenskiy’s problem.

The spherical mapping maps every point P ∈ Ω+ω to the point Q so that
the spherical coordinates of Q are identical to the quasi-spherical coordinates
of P .
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Naturally the expression for Laplace’s operator in quasi-spherical coordi-
nates (which is rather easily found) is different from its expression in spherical
coordinates. The idea behind the spherical approximation is to ignore this dif-
ference and then solve a problem formally identical to the simple Molodenskiy
problem if there is only one point of ω′ corresponding to every set (φ, λ) of
geographical coordinates. In this way one finds the values of T at ω′ and then
finds T in outer space (the true outer space). It is perhaps plausible that this T
would be an approximation to the true T , and it would be promising to try
to find sufficient conditions for an exact solution of the linear Molodenskiy
problem using these ideas by successive approximation. I shall nevertheless
use another method in my fourth letter.

5. Some Results from the Theory of Boundary Value Problems

I shall give here a concise account of the results from the theory of bound-
ary value problems for elliptic partial differential equations relevant to the
linear Molodenskiy problem. These results are compiled from [3] which is cer-
tainly not the simplest book for a geodesist to obtain for primary information
about the modern theory of boundary value problems, but it seems to me to
be almost indispensible for everyone who wants to penetrate seriously into
Molodenskiy’s problem.

Let ω be a closed surface in R3 diffeomorphic to a sphere, i.e., a sphere
may be mapped by arbitrarily often differentiable functions onto ω and the
inverse mapping is also arbitrarily often differentiable, and let Ω be the open
part of R3 outside ω. By V we denote the set of functions such that for every
φ ∈ V there exists an open subset Ωφ of R3, such that Ω ⊂ Ωφ and ω ⊂ Ωφ,
where φ is harmonic and every φ ∈ V is regular at infinity.

For every φ ∈ V the function φ|ω (the function φ restricted to ω) and the
vector field (gradφ)|ω are well defined so that

‖φ‖1 =

(∫
ω

(
φ2 + | gradφ|2

)
dω

)1/2

(33)

exists for every φ ∈ V and it is a norm. With this norm V becomes a pre-
Hilbert space. The Hilbert space is H1, and the completion of this pre-Hilbert
space consists of functions φ which all are harmonic in Ω and regular at
infinity and for which φ|ω has a meaning as a trace, see [3], p. 39, and (33)
has a meaning for them also.

Let there be given on ω 1) an arbitrarily often differentiable scalar func-
tion a and 2) an arbitrarily often differentiable (three-dimensional) vector
field l so that |l| �= 0 everywhere on ω.

It is clear that for every φ ∈ H1

lT gradφ + aφ (34)
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has a meaning (it would have been more correct to write lT(gradφ)ω + aφ|ω)
as a function defined on ω and that

‖lT gradφ + aφ‖0 =

(∫
ω

(
lT gradφ + aφ

)2
dω

)1/2

exists for all φ ∈ H1. Let the Hilbert space of all functions ψ on ω for which

‖ψ‖0 =

(∫
ω

ψ2 dω

)1/2

< ∞

be called H0. Then we may express this fact as follows:

The operator

A : H1 → h0 : φ → lT gradφ + aφ

is a linear continuous operator from H1 to H0.
The problem f ∈ H0 given to find a φ ∈ H1 such that

Aφ = f

is called the oblique derivative problem (for the spaces H1 and H0).

If the vector field l on ω is such that there are no points on ω where l
is tangent to ω, then the problem is said to be a regular oblique derivative
problem. If the problem is not regular then there are difficulties of ‘mushroom
type’ and they are not yet completely solved. Therefore we shall concentrate
here on regular oblique derivative problems.

It is clear that if the boundary differential operator (34) corresponds to
a regular oblique derivative problem, then by multiplying by a function with
constant sign it may be expressible in the form

∂φ

∂n
+ pT grad2 φ + bφ (35)

where ∂/∂n is the derivative along the outward unit normal to ω and grad2 is
the two-dimensional gradient on ω, p is a two-dimensional tangential vector
field on ω and b is a scalar function on ω. p and b are again arbitrarily often
differentiable. If the boundary operator has been put into this form, then
the boundary value problem is said to be normalized. We can then write the
boundary condition as

Anφ = g,

where

An =
∂

∂n
+ pT grad2 +b.
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We shall now define the boundary problem adjoint to the given problem.
Let ψ be an arbitrary function of H1. Then from Green’s formula and from∫

ω

div2(ψφp) dω = 0

and
div2(ψφp) = ψφdiv2 p + pT(ψ grad2 φ + φ grad2 ψ),

it follows that∫
ω

ψ
(∂φ

∂n
+ pT grad2 φ + bφ

)
dω =

∫
ω

φ
(∂ψ

∂n
− pT grad2 ψ + (b − div2 p)ψ

)
dω.

(36)
If we define

A∗
n : H1 → H0 : ψ → ∂ψ

∂n
− pT grad2 ψ + (b − div2 p)ψ,

then we can write (36) as∫
ω

ψAnφdω =

∫
ω

φA∗
nψ dω, for all φ, ψ ∈ H1, (37)

and we call A∗
n the boundary differential operator adjoint to An.

It is also clear that A∗
n defines a regular oblique derivative problem which

will be called the boundary value problem adjoint to the given one and that
An is the adjoint to A∗

n.
The subsets of H1 consisting of functions φ ∈ H1 for which

Anφ = 0

will be called N and that for which

A∗
nφ = 0

will be called N∗.
Clearly N and N∗ are linear spaces which may be zero dimensional, i.e.,

consisting of φ = 0 only.
By well-known reasoning it follows that a necessary condition for the linear

problem
Anφ = g, φ ∈ H1, g ∈ H0, g given

to have a solution is ∫
ω

ψg dω = 0, for all ψ ∈ N∗,

and analogously a necessary condition for the problem

A∗
nφ = h, φ ∈ H1, h ∈ H0, h given
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to have a solution is that∫
ω

ψh dω = 0, for all ψ ∈ N .

Now the first result is that these conditions are also sufficient; in fact:

If and only if g is orthogonal (with respect to the metric of H0) to
every solution ψ ∈ H , to the homogeneous equation

A∗
nψ = 0

then the inhomogeneous equation

Anφ = g, φ ∈ H1, g ∈ H0, g given (38)

has a unique solution φ1 for which

‖φ1‖1 = min
φ : Anφ=g,φ∈H1

‖φ‖1

and every solution φ of (38) may be written as

φ = φ1 + φ0, φ0 ∈ H1, Anφ0 = 0.

There exists a constant C such that

‖φ1‖ ≤ C‖g‖0. (39)

The analogy between the equations of the type of (38) and linear algebraic
equations

Bx = a,

where B is an n × m matrix:

B : Rm → RN : x → Ax, x ∈ Rm, a ∈ Rn

is evident.
Here we can also define N and N∗ such that N ⊂ Rm and N∗ ⊂ Rn, and

results on solvability and unicity are similar in the two cases.
For the case of matrices we may define the index of B: indB as

indB = dimN − dimN∗

where dimN (dimN∗) is the number of dimensions of the linear vector
space N (N∗) and we see that even if we can not in general say anything
about dimN and dimN∗ separately we always have

indB = n − m.

For the regular oblique derivative problem, the second result is now

N and N∗ are finite dimensional and indA = indA∗ = 0.

We may loosely express this last result by saying that A and A∗ are analogue
to square matrices.
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Faced with these results from the theory of elliptic partial differential equa-
tions, a reasonable question from the reader would be if it would be possible
to use other spaces than H0 and H1 for defining the regular oblique derivative
problem and if the conditions for solvability and unicity could possibly be
modified in that way.

In fact many other pairs of spaces H0, H1 are possible and give reasonable
results. I have chosen H0 and H1 for simplicity and because I think that they
are the most relevant spaces for the treatment of Molodenskiy’s problem. It
is a striking result of the theory that for every reasonable choice of the pair
of spaces, the spaces N and N∗ are identical as well, i.e., our conditions are
definitive.

6. The Regular Linear Molodenskiy Problem in Light of the
General Theory

It is easily seen that the simple Molodenskiy problem without exceptional
points is a regular oblique derivative problem and the results we found in
Section I are also in good agreement with the general results referred above.
But as regards the simple Molodenskiy problem we were so fortunate to be
able to prove that the dimensionality of N (and of N∗) is 3.

We also see that the linear Molodenskiy problem is an oblique derivative
problem and that it is regular if and only if the isozenithals are never tangent
to the surface ω′; in this case we shall call it the regular (linear) Molodenskiy
problem.

In order to find some result concerning dimN = dimN∗ for the regular
Molodenskiy problem, we shall first investigate the case of a non-rotating
planet, i.e., the Molodenskiy problem where U is harmonic outside ω′. If
U is harmonic then also CT gradU is harmonic for C any constant three-
dimensional vector and so if (T0, ∆x0) is a solution of the linear Molodenskiy
problem then (T0+CT gradU, ∆x0−C) is also a solution. Confer (27) and (28);
that is in this case dimN ≥ 3.

It is natural that it must be so: From our assumptions and observations
we can not find the absolute position of the Earth in space but only its form
and direction, and position relative to the mass center.

That a parallel translation of a solution of the non-linearizied Molodenskiy
problem is again a solution is evident, which an examination of (26) can show.

We have U = (M/|x|) + O(|x|−3), M > 0 and therefore

gradU = −Mx

|x|3 + O(|x|−4),

so that if T0 is any solution of the linear Molodenskiy problem then we can
find C uniquely so that

T0 + CT gradU

is an admissible solution. Therefore we may conclude:



8 Letters on Molodenskiy’s Problem 129

In the regular Molodenskiy problem for a non-rotating planet
dimN ≥ 3. The total anomaly has to satisfy dim N independent lin-
ear conditions for the problem to have a solution. If these conditions
are satisfied, the admissible solution depends on dim N − 3 arbitrary
constants.

It is at first a little astonishing that the circumstances are different for the
case of a rotating planet; it seems as though here a parallel translated solution
should again be a solution so that dimN ought to be ≥ 3. The reason this
is not the case is a purely formal one and has to do with the fact that our
definition of regularity at infinity is not physically relevant here. It is true that
the difference between two potentials of the centrifugal force corresponding to
different axes but to the same angular velocity is harmonic in the whole space
but not regular at infinity as it is not even bounded, and the same is valid for
∂U
∂x1

and ∂U
∂x2

; only ∂U
∂x3

is regular at infinity. Therefore we find dimN ≥ 1.
In this case we may conclude:

For the regular Molodenskiy problem (for a rotating planet) dimN ≥1.
The total anomaly has to satisfy dimN + 2 independent linear con-
ditions for the problem to have an admissible solution. If these con-
ditions are satisfied the admissible solution depends on dimN − 1
arbitrary constants.

If we define the degeneracy δ, an integer, as

δ =

{
dimN − 3 for a non-rotating planet
dimN − 1 for a rotating planet,

then we can say generally—for the rotating as well as the non- rotating planet:

For the regular Molodenskiy problem we have δ ≥ 0. The total
anomaly has to satisfy 3 + δ independent linear conditions for the
problem to have an admissible solution. If these conditions are satis-
fied, the general admissible solution depends on δ arbitrary constants.

For the simple Molodenskiy problem δ = 0, and it would be very
satisfactory if one could prove that δ = 0 in general. Unfortunately I
have not been able to prove this. I believe that in exceptional cases
δ > 0 and in the fourth letter I shall give a sufficient condition for δ = 0.

As we have seen, the conditions for the solvability depend on the solutions
of the homogeneous adjoint problem. In practice it is very difficult to find
these solutions, and often even their number.

This was the question of solvability and unicity. What does the general
result say about stability?

Formally the stability is expressed by (39), where C depends on U and ω′

in an unknown way. It is plausible however that C is ‘large’ if the problem
is in the vicinity of a problem where δ > 0. Therefore it seems to me that it
is important to find out under which conditions δ > 0 and to be able to say
something about the nature of the corresponding eigensolutions.
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7. Concluding Remarks

We have seen that results from the theory of partial differential equations can
give us some information about the regular Molodenskiy problem but that
there are still questions left. I shall try in my last Molodenskiy letter to partly
solve these questions. I shall conclude Section III with a few remarks on the
nonlinear Molodenskiy problem.

From a mathematical point of view it would be interesting to prove that the
non-linear Molodenskiy problem could be solved by successive approximations
by linear steps by using the W -potential found in one step to construct a U -
potential for the next step. The possibility of having δ > 0 makes however
such a proof very difficult.

From a geodetic point of view however I think that a good theory for
the linear Molodenskiy problem must be sufficient. Starting from the best
available U -potential, a few linear approximations should suffice to make the
numerical precision of the solution an order of magnitude better than the
precision of the observations and this should be satisfactory. But in order to
achieve this we must use the general regular Molodenskiy problem; the simple
one is not enough.

IV. Application of the Prague Method on the Regular
Molodenskiy Problem

1. Reformulation of the Prague Method Once Again

In the first letter we saw how the Prague method could be used to find the
admissible solution of the simple Molodenskiy problem if a solution exists.
Let

A0 : H1 → H0 : T �→
3∑

i=1

xi
∂T

∂xi
+ 2T = f, (40)

then A0 has no inverse, but if the problem has a solution the admissible
solution is given by

T = Pf,

where

P : H0 → H1 : f �→ T =

∫
�Ω

ρ(y)K(x, y) dy,

where ρ(y) is any mass distribution in Ω̃ generating the potential F such that
F |ω = f .

As A0 has no inverse, P can not be its inverse but we find

PA0 = I, A0Pf = −h1(x)

|x|3 ,

where h1(x)/|x|3 is the first order term in the expansion at infinity for F .
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Therefore if we define the operator A′
0 as

A′
0 : H1 → H0 : T �→

2∑
1

xi
∂T

∂xi
+ 2T +

h1(x)

|x|3 , (41)

where h1(x)/|x|3 is the first order term of T , then

A′
0P = PA′

0 = I,

i.e., the inverse of A′
0 is P .

The result of all this is that we may formulate the Prague method in this
way: Instead of solving the original boundary value problem

A0T = f, (42)

we solve the modified problem

A′
0T = f, (43)

which always has a unique solution. If and only if this solution is admissible,
then the original problem (42) has a solution and the solution of (43) is the
admissible solution of (42).

2. The Modified Regular Molodenskiy Problem and its Solution

In the regular Molodenskiy problem we work with an operator A such that

A : H1 → H0 : T �→ lT gradT + 2T. (44)

Let us modify this operator in the same way as we modified the operator
A in the foregoing paragraph:

A′ : H1 → H0 : T �→ lT gradT + 2T +
h1(x)

|x|3 , (45)

where h1(x)/|x|3 again is the first order term of T and let us together with
the original regular Molodenskiy problem, the solution of

AT = f (46)

regard the modified regular Molodenskiy problem, the solution of

A′T = f. (47)

The index of A′ is the same as the index of A viz. zero because the index
of an operator is left unchanged by the addition of an operator with range
of finite dimension. Therefore it is at least plausible that if our regular Molo-
denskiy problem is not too far from a simple Molodenskiy problem then A′

is invertible, i.e., (47) has a unique solution. It is easy to prove that if (47)
has a unique solution then if and only if this solution is admissible then the
original problem (46) has a solution, and the solution of (47) is the admissible
solution of (46). (This follows simply from the fact that for admissible T , the
operators A and A′ are identical.)
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For the following it is necessary to assume that the surface ω is not only
such that the Molodenskiy problem is regular but also that ω is star-shaped
(with respect to the mass center) and without exceptional points.

We can now in a unique way write

A = A0 + A1

where A0 is the differential operator defined in (40) for the corresponding
simple Molodenskiy problem and A1 is a ‘small’ differential operator of order 1:

A1T = lT1 gradT.

Thus, we can write (46) as

A0T + A1T = f,

and (47) as
A′

0T + A1T = f. (48)

It suggests itself to solve (48) by successive approximations, i.e., to find a
sequence of potentials T0 = 0, T1, T2, T3, . . . where Ti is found from Ti−1 by
the i’th step i = 1, 2, . . . by solving the equation

A′
0Ti = f − A1Ti−1

or
Ti = Pf − PA1Ti−1.

This is exactly what we shall do, but it is perhaps more convenient to
express it in another way.

Put
g = A′

0T,

then g is a function on ω and if T ∈ H1 then g ∈ H0.
From g we can find T by the Prague method:

T = Pg

so that we may write (48) as

g + A1Pg = f (49)

T = Pg. (50)

We saw in the first letter that P is a bounded operator from H0 to H1,
so that A1P is bounded too from H0 to H0. We also saw that we can at
least principally find the explicite bound for P—in practice it may be very
difficult—these bounds found it is much easier through estimates for the co-
efficients l1 to find the bound for the operator A1P .

Now if
‖A1P‖ ≡ sup

‖g‖0=1

‖A1Pg‖0 < 1 (51)
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then we can solve the equation (49) by a Neumann series:

g = (I + A1P )−1f =

∞∑
0

(−1)i(A1P )if,

so that in this case (49) always has a unique solution g and the modified
regular Molodenskiy problem (48) has the unique solution T = Pg and as we
saw above the original Molodenskiy problem then has a solution if and only
if T = Pg is admissible.

To the members of SSG 4:31 March 22, 1973

Dear Colleagues,

In terminating this sequence of letters on Molodenskiy’s problem, which
should be a rather subjective account of the situation of Molodenskiy’s prob-
lem today, I shall try to clear up the connection of some of the ideas in the
existing literature.

The astronomical variant of Molodenskiy’s problem (Section III) goes back
to [5], pp. 90–91, but by the introduction of approximations his equations were
less transparent. (The reader should try to prove the invariance of Moloden-
skiy’s equations with respect to a parallel translation for a nonrotating planet.)
At the time when Molodenskiy’s historical papers were written, boundary
value problems for partial differential equations were solved using integral
equations, and it is natural that very much transparency is lost by the trans-
formation of a problem to integral equations. The boundary condition, see [5],
p. 80, (V.4.5)

−(g − γ) =
(∂T

∂ν
− T

γ

∂γ

∂ν

)
h

is very similar to the correct one for the astronomical variant. It is easy to
prove that it is made correct if

1. ∂
∂ν means derivation along the isozenithal (and not along the vertical),

2. the left side is multiplied by cosα where α is the angle between vertical
and isozenithal.

This translation invariance of Molodenskiy’s problem is—as it appears
from my letter—essential for the understanding of it and for the results, as is
also the assumption that the axis of rotation passes through the mass center.
It could perhaps be interesting to find out how the theory should be modified
if this assumption were dropped. But I must say that until somebody has con-
vinced me to the contrary I believe that the distance of the mass center from
the axis is small compared with the precision with which it might be deter-
mined by a thus modified Molodenskiy method—at least as long as time does
not enter the problem. I should perhaps also say that I have not mentioned the
two well-known admissibility conditions for the second order term of T because
they do not play any essential role in the conditions for solvability and unicity.
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The fact which makes the simple Molodenskiy problem simple is that the
differential operator in (2) when applied on a harmonic function gives a har-
monic function. This has been known and used by almost all authors who
have written about Molodenskiy’s problem. Moritz has used the fact to prove
that the simple Molodenskiy problem is stable, see [6], p. 32. The idea to use
it to derive a stronger result (i.e., that also the first derivatives of T at the
surface depend continuously on f) and from that deduce a sufficient condition
for the stability of the general Molodenskiy problem has been proposed in [2]
but as I did not yet know the idea described in the fourth letter of modifying
Molodenskiy’s problem so that it becomes uniquely solvable, I did not suc-
ceed in carrying out my program and this disappointment has forced me to
return to Molodenskiy’s problem again and again during the last five years. I
hope for myself and for my environments that the writing of these four letters
will make it possible for me to forget everything about unsolved problems in
connection with Molodenskiy’s problem.

The definition of Molodenskiy’s problem and the form for the boundary
conditions also stem from [2]. The replacement of the classical gravity anomaly
by more general forms of anomaly in the third letter has been done mainly
in order to make possible the assumption of a C∞-smooth boundary surface
even if the input data is only in L2.

At last I wish to thank the members of the study group for their patience
and for the reaction I have received and the reactions to come in the future.
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9

On the Spectrum of Geodetic Networks

Abstract

The spectrum of a geodetic network is defined as the eigenvalues of the ma-
trix ATA of normal equations corresponding to the observation equations
Ax = b in the coordinates.

We find the meaning of and some general properties for the eigenvectors
of the symmetric matrices ATA and AAT and some results concerning the
distribution of the eigenvalues when the network is relatively large.

The ultimate goal for these investigations is to get a deeper insight into
the relations between netform and netquality. Unfortunately the results are
rather fragmentary because we have only recently arrived at what we consider
the core of the problem after years of research.

Introduction

So far there has been moderate interest in the spectral theory of geodetic
networks. By the spectrum in a narrow sense we mean the eigenvalues. The
interest has hitherto focused on the two functions of the spectrum: the trace
and the condition number. But in questions concerning optimum netforms, op-
timum utilization of additional observations, and statistical and information-
theoretical investigations the spectrum plays the main role. Besides this, the
spectrum is invariant under similarity transformations, so in some sense this
reflects the most useful information of geodetic networks.

In some respects the value of the smallest eigenvalue of the normal equa-
tions gives a good measure of the quality of the networks, and then the con-
centration of eigenvalues in the lower end of the spectrum says something
about the number of complementary observations necessary to increase the
netquality appreciably. However, as will be seen, the asymptotic properties of
the spectrum will be of great interest in the above-mentioned problems.
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The Canonical Form of the Adjustment Problem

Let the linearized observation equations be

Ax = b (1)

where x is the n-dimensional vector of the increments of the coordinates and b
the m-dimensional vector of observations which are supposed to be of equal
weights (weight-normalized) and uncorrelated. In other words, the covariance
matrix is equal to the unit matrix I.

It is always possible to find an orthogonal matrix V (in the coordinate
space) and another U (in the space of measurements) such that with

y = V x, c = Ub (2)

the equation (1) can be written as

By = c, (3)

where
B = UAV T (4)

and such that B has the form

B =

n[
D

Θ

]
n

m−n
(5)

where D is the diagonal matrix

D =

⎡⎢⎢⎢⎣
λ1

λ2

. . .

λn

⎤⎥⎥⎥⎦ , (6)

and Θ is the (m − n) × n zero matrix. Further, all the λ’s are ordered as

|λ1| ≥ |λ2| ≥ |λ3| ≥ · · · ≥ |λn| ≥ 0.

Obviously we have

BTB = V ATUTUAV T = V ATAV T = D2 (7)

and

BBT = UAV TV ATUT = UAATUT =

[
D2 Θ

Θ Θ

]
. (8)

Confer, e.g. [6], Chapter 3. Recall that an orthogonal matrix Q is characterized
by the property QTQ = QQT = I. If we write

V T =
[
φ1 φ2 . . . φn

]
, UT =

[
ψ1 ψ2 . . . ψn ρ1 ρ2 . . . ρm−n

]
,
(9)
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then we see that {φi} is an orthonormalized set of n-dimensional vectors,
and {ψi} ∪ {ρi} is another of m-dimensional vectors, and (2)

T
then shows

that y may be considered the coefficients in the expansion of the vector x in
the set {φi}, and correspondingly c may be considered the coefficients in the
expansion of b in {ψi} and {ρi}. The sets {φi}, {ψi}, and {ρi} will be called
the first, the second, and the third set of canonical vectors, although they are
not uniquely determined.

The reader interested in a statistical description of the canonical form of
the adjustment problem is referred to [10], Chapter I. Here the space spanned
by the {ρi}’s is named the error space and that one spanned by the {φi}’s is
called the estimation space.

From (4) and (5) the following relations connecting the first two sets of
canonical vectors result in the following

Aφi = λiψi, i = 1, 2, . . . , n (10)

and from (4)T and (5) follows:

ATψi = λiφi, i = 1, 2, . . . , n (11)

ATρi = 0, i = 1, 2, . . . , m − n. (12)

As the orthogonal transformation by U of the observation vector b leaves
the ‘observations’ c in (3) weight-normalized, we can solve the adjustment
problem via the normal equations

BTBy = BTc (13)

or

λ2
i yi = λici, i = 1, 2, . . . , n

or finally

yi =
ci

λi
, i = 1, 2, . . . , p (14)

where p is the number of λi’s different from zero and the index i of the Latin
letters denote the ith component of these vectors.

Already from these results we may draw some conclusions:

1. Regarding the first set of canonical vectors: The components of the coor-
dinate vector x in the directions defined by the φi are better determined
from the observations the larger the corresponding value for λi is; the
components of φi with λi = 0 are completely undetermined. For this re-
sult to be interesting the coordinate increments must be measured on
(approximately) the same scale (e.g., not as ∆φ and ∆λ) as we shall in
fact suppose they are. Normally one is interested in all components of x
being equally well determined; therefore we have to ask what can be done
in order to have the spectrum strongly concentrated.
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2. Regarding the second set, we can say that this can be used to find out
which of the measurements should have been carried out so as to have
greater weight by expanding the single measurements (that is the unit
vectors in the observation space) in {ψi} and {ρi} and selecting those
for which the coefficients corresponding to small λi �= 0 are dominating.
These coefficients may be found by inspecting the matrix U . This follows
from the property UTU = I which may be looked upon as giving the
expansion of the unit vectors in {ψi} and {ρi}.

3. Regarding the third set, we see that the components of the observations
in the directions determined by {ρi} bring no information about the co-
ordinates; the same holds also true for the ψi for i > p, i.e., those vectors
corresponding to eigenvalues λi = 0. It could perhaps be relevant to define
the ‘redundancy’ of the ith measurement, say, as

redi =

√√√√ m∑
j=p+1

u2
ji. (15)

The Spectral Density of the Discrete Laplacian

Now we shall study some features of the spectral distribution of the untrans-
formed normal equation matrix ATA = R. It is possible to carry through the
calculations in explicit form if R, for example, has the following simple form:

Rn =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
−1 2 −1

−1 2 −1
. . .

−1 2 −1
−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
n×n

. (16)

These normal equations correspond to a leveling network with n nodal points
each having only two neighbors, except the terminal points each having one.
Rn also arises in the case of a straight traverse where only the logarithm of the
side lengths is subject to measurement. Suppose all weights are unit weights
and all neighboring distances are equal. The eigenvalues of R are given by

λi = 4 sin2 iπ

2n
, i = 0, 1, . . . , n − 1. (17)

Note that throughout the rest of the paper we use a reverse ordering of the
eigenvalues compared to that one in the previous section. We also omit the
exponent of λi, as further on this could lead to misunderstandings. Obviously

0 ≤ λi < 4. (18)
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What is then the distribution of the eigenvalues λi on this interval for n → ∞?
Let N(λ) denote the nondecreasing step function

N(λ) =
∑
λi<λ

1, (19)

then N(A) is the number of eigenvalues less than λ. N(λ) is also called the
spectral distribution function with discontinuity points at λi. Suppose for a
fixed n corresponding to a subdivision of the interval [a, b] we have M + 1
points with equidistance k:

a = x0 < x1 < x2 < · · · < xM = b. (20)

We want to find the number of eigenvalues in the interval [xi, xi+1] = k:

Ti(N) = N(xi+1) − N(xi) ≥ 0. (21)

Letting n → ∞, we see that in the case of M → ∞ the spectral density is
determined by

µ(i) = lim
k→0

Ti(N)

k
=

dN

dλ
. (22)

In our special case (17) we get

λi = 4 sin2 iπ

2n
∼ 4 sin2 x = y, 0 ≤ y < 4 (23)

and the normalized density function is given by

µ(y) =
dx

dy
=

1

π
√

y(4 − y)
. (24)

For y → 0+ and y → 4− we have µ(y) → ∞, i.e., the eigenvalues for n → ∞
are naturally separated into two groups, but still they are overall dense on the
interval [0, 4], cf. Figure 9.1.

So if we for example want to improve the condition number of this ma-
trix, it is clear that very little is gained by removing the smallest or greatest
eigenvalue, i.e., the network is unstable.

In a corresponding 2-dimensional rectangular network of dimension m×n
described by means of the Kronecker product, the normal equation matrix is
given by

L = Im ⊗ Rn + Rm ⊗ In (25)

and now are the eigenvalues

λij = 4
(
sin2 iπ

2n
+ sin2 jπ

2m

)
,

{
i = 0, 1, . . . , n − 1
j = 0, 1, . . . , m − 1.

(26)
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The spectral density is determined in the case of m = n by the convolution

λi.(L) ∗ λ.j(L) ∼ µ(z) =
1

π2

∫ z

0

dy√
(y − 4)(y − z)y(y − 4 + z)

=
1

2π2
K

(√
z(8 − z)

16

)
, (27)

where K(k) is the complete elliptic integral of the first kind, cf. Figure 9.2.
As it will be seen, there exists a remarkable difference in the spectral

distributions for the cases d = 1, 2, and d ≥ 3. By means of Young’s inequality
we may obtain a deep insight into the convolution of the spectrum in d-
dimensions.

By definition the class of functions f(x), which are measurable and for
which |f(x)|p is integrable over [a, b], is known as Lp[a, b], p > 0. From inte-
gration theory we have the theorem: If −∞ < a < b < +∞, then f ∈ Lp[a, b],
p′ < p, which implies f ∈ Lp′

[a, b].
In the following we will use the pair of Hölder conjugate numbers (p, p′)

which are connected by
1

p
+

1

p′
= 1,

and define the positive number ‖f‖p by

‖f‖p =

(∫ b

a

∣∣f(x)
∣∣pdx

)1/p

.
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From [9], p. 192 we take the formulation of Young’s Inequality: Let f ∈Lp(Rn),
g ∈ Lq(Rn), where n ≥ 1 (an integer), p, q ≥ 1, 1

p + 1
q ≥ 1, and let

1

r
=

1

p
+

1

q
− 1.

Then (f ∗ g) ∈ Lr(Rn), and

‖f ∗ g‖r ≤ ‖f‖p ‖g‖q. (28)

For the considered f = g we have

f(x) =
1

π
√

x(4 − x)
. (29)

It is easily seen that f ∈ Lp[0, 4] for p < 2. Young’s inequality now yields
r < ∞, and consequently f ∗ g ∈ Lp for p < ∞ and is thus unbounded
on [0, 8]. The convolution iterate

f (3) = f ∗ f ∗ f = f (1) ∗ f (2) (30)

with f (1) ∈ Lp for p = 2− ε and f (2) ∈ Lq for q = N has the Hölder numbers
(2 − ε, N). If the conditions for Young’s inequality shall be fulfilled then

1

2 − ε
+

1

N
≥ 1, (31)

which leads to

1 > ε >
N − 2

N − 1
(32)



142 9 On the Spectrum of Geodetic Networks

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

y

µ

Fig. 9.3.

and consequently

p = 2 − ε > 1 and q = N > 3. (33)

This is valid as we only require q < ∞. Then f (3) ∈ L∞ and is thus bounded.
(In statistics it is a well-known fact that limn→∞ f (n) is the normal distri-

bution function when f (1) fulfils certain restrictions; one of which is∫ 4

0

f ′(x) dx < a constant. (34)

It is easily seen that this is not the case. Cf. [4], p. 164 ff.)
The matrix R2

n is related to observations of a straight traverse where only
the angles are subject to measurements. So in this case we have

y = 4 sin4 x (35)

and

µ(y) =
1

2π4
√

y3(y + 4 − 4
√

y)
. (36)

Obviously the distribution function still has the same structure as in the
former case, but now µ(y) is no more symmetric, cf. Figure 9.3. In the case
of R2

n we are actually observing second order differences between the param-
eters contrary to first order differences in the case of Rn. So in this regular
case we can conclude that angle observations in a certain sense decrease the
larger eigenvalues compared to, e.g., length measurements.
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So the fact that angle measurements in addition to first order differences
of coordinates of neighboring stations contain second order differences of such
coordinates and further exploiting that these second order differences are most
dominating for rounds with a small number of directions the following could
be proposed:

Conjecture An increment of the rate of the number of angle measurements
to the number of distance measurements will give an increment of the disper-
sion of the eigenvalues, i.e., make the concentration of them near the ends of
the spectrum higher, and this tendency will be stronger as fewer stations are
observed in each round.

The authors must greatly deplore that up to now they can not can see
how to prove this conjecture in the general form stated.

Finally we shall demonstrate how the spectral distribution for the discrete
case can give valid results for the continuous case. We must then assume
that the nodal points lie on a straight line with equidistance h. Then the
eigenvalues of Rn are

λi =
4

h2
sin2 hiπ

2M
=

4

h2
sin2 iπ

2n
, (37)

where M = n · h. Now we keep M fixed and let n → ∞:

lim
n→∞ λi =

( iπ

M

)2

. (38)

The number of eigenvalues less than Λ =
(
iπ/M

)2
is

N(Λ) =
∑

λi<Λ

1 = i. (39)

By means of i = M
√

Λ/π we get

N(Λ) =
M

π

√
Λ, 1-dim. (40)

cf. the result of Weyl

N(Λ) ∼ |Ω|
2d
√

πdΓ (d
2 + 1)

Λ
d
2 , d-dim. (41)

where the eigenvalues no longer are limited. We observe that N(Λ) is propor-

tional to Λ
d
2 .

The Spectral Distribution Function N(λ)

It is comparatively easy to derive upper and lower bounds for the spectral
distribution function N(λ) in the special case treated in the previous section.
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In the 1-dimensional case with

λi = 4 sin2 iπ

2n
, i = 0, 1, . . . , n − 1 (42)

cf. equation (17) we get according to [3], Th. 2.2:

2n

π
arcsin

√
λ

2
≤ N(λ) ≤ 2n

π

{
1 +

c

n
√

λ

}
arcsin

√
λ

2
, (43)

where c is a positive constant. The upper and lower bounds for N(λ) are
sketched in Figure 9.4.

In case we did not consider a free network, but one fixed at the terminals
we would have

λi = 4 sin2 iπ

2(n − 1)
, i = 1, 2, . . . , n − 2. (44)

Now the bounds are given by Th. 2.1 in [3]:

2(n − 1)

π

{
1 − c

(n − 1)
√

λ

}
arcsin

√
λ

2
≤ N(λ) ≤ 2(n − 1)

π
arcsin

√
λ

2
. (45)

The lower bound is shown with a dashed line in Figure 9.4.
Of course, this time the upper bound, apart from a minor change in the

factor, is the lower bound in case of a free network. This is in agreement with
Courant’s minimax principle (enforcing constraints on an oscillating system at
most increases all its eigenvalues) when recalling N(λ) is reversely connected
with this change of the eigenvalues.
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In the 2-dimensional case, however, it is not plain to find the explicit upper
and lower bounds for N(λ). In case of a free boundary we have, e.g.,

N(λ ≤ 4) ≥ 2mn
√

λ

π2

∫ 1

0

arcsin
√

λ
4 − λ

4 x2√
1 − λ

4 x2
dx. (46)

But because of Equation (22) and Figure 9.2 we must have a picture somewhat
as sketched in Figure 9.5. The function corresponding to the central line will
be denoted λmn · A(λ).

As we especially are interested in small eigenvalues and their density, it is
appropriate to point out the following upper bounds valid for free networks,
cf. [3], p. 477:

Dimension N(λ) ≤

1
n
√

λ

π

(
1 + O(λ)

)
2

mnλ

4π

(
1 + O(λ)

)
for λ → 0,

3
lmnλ3/2

6π2

(
1 + O(λ)

)
4

klmnλ2

32π2

(
1 + O(λ)

)

(47)

where k, l, m, and n denote the number of points in various directions.



146 9 On the Spectrum of Geodetic Networks

The corresponding lower bounds are obtained by multiplying by
(
1− c

a
√

λ

)
where a = min(n, m, . . .).

All bounds given till now have dealt with the discrete Laplacian on a
rectangular grid with mesh width 1 in d-dimensional Euclidian spaces. Of
special interest are bounds for 2-dimensional square grids with an arbitrary
boundary. For networks with a fixed boundary we get, cf. [3], Th. 3.1:

A(λ)λ
(
1 − c2

δ
√

λ

)(
|Ω| − c0δ

)
≤ N(λ) ≤ A(λ)λ

(
1 +

c1

δ
√

λ

)(
|Ω| + c0δ

)
, (48)

where c1 and c2 are positive constants, |Ω| denotes the number of interior
points of the grid, δ is the minimum length over all edges of the grid and
then necessarily ≥ 1, and finally c0 is a positive constant independent of δ
but dependent of the ‘pathology’ of the boundary. A modified result is valid
for free networks.

In a given network it may be difficult to obtain the best possible values for
the constants c0, c1, and c2. Therefore an easy estimate is always obtainable
by circum- and inscribing rectangles with the smallest or largest number of
interior points, respectively. But this may lead to bad estimates. For example
in case of a circle we can never get a better upper bound than one which is
twice as large as the lower one.

Essentially, however, the bounds are rather close for small eigenvalues. In
a certain sense the larger ones only determine the scale of the whole problem.
Confer the definition of the spectral condition number.

As earlier mentioned, the constants c0, c1, and c2 depend on how frayed
the boundary is. Whether an improved analysis can yield results so good that
‘one can hear the shape of the boundary,’ cf. [5] is still an open question.

On the Smoothness and Roughness of the Eigenvectors
of the Normal Equation Matrix

In this section we shall discuss properties of a geodetic network which ensure
that the eigenvectors belonging to small eigenvalues of the normal equations
are smooth.

Let the observation equations be

b = Ax. (49)

They give the change b of the observable quantities when the coordinates are
changed by the amount x.

[8] calls a network relatively large when the distance of any pair of points
between which observations have been taken is small compared to the size of
the network.

Now if x is a smooth network distortion, then the distances and angles of
local point configurations are small. Since only such local point configurations
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have been observed, it follows: In a relatively large network a smooth network
distortion causes a small change of the observations.

For any eigenvector x, xTx = 1, we have

λ = xTATPAx = bTPb. (50)

If we agree to measure the size of b by the norm ‖b‖ =
√

bTPb we immedi-
ately have the consequence: In a relatively large network a smooth eigenvector
belongs to a small eigenvalue.

However, we also want to demonstrate the opposite: A small eigenvalue
must belong to a smooth eigenvector. For this we require another network
property also stated in [8]. A network is locally stable if the observations
cannot be changed considerably without changing size and shape of local
configurations appreciably.

For such a network, we can revert the above reasoning: A small A entails
a small b which, by local stability, entails a smooth x. We summarize:

In a relatively large and locally stable network small eigenvalues of the normal
equation matrix belong to smoothly varying eigenvectors, and vice versa.

The verbal formulation of the stated principle may not satisfy everybody.
Instead of formalizing it in general terms, we illustrate by means of a specific
example.

Consider a relatively large leveling network. A leveling network is auto-
matically locally stable. Let S denote the set of pairs of points between which
height differences have been measured. For any (i, j) ∈ S, i and j are neces-
sarily close together (definition of relatively large network). Suppose a unit
weight matrix. We have

bij = δHj − δHi, (i, j) ∈ S, (51)

δHi denoting the height distortion at i. We further have for any eigenvalue λ
and corresponding eigenvector δH :

λ =
∑

(i,j)∈S

(
δHj − δHi

)2
. (52)

This demonstrates that a small λ must belong to a smooth height distortion
with δH as eigenvector.

Green’s Formula for Trigonometric Networks

For a trigonometric network, the analogue to Green’s formula is formally

xT(ATA)x = (Ax)T(Ax). (53)

This formula is less trivial than it looks at first glance.
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In order to find the meaning of (53) we shall concentrate here on free
networks.

The vector x has an immediate interpretation as a discrete vector field: x
consists of a set of two dimensional vectors xi (the coordinate increments),
one for each station in the network: x = [ xT

1 xT
2 . . . xT

n ]
T
.

An observation equation corresponding to an observation of a distance or
of an absolute direction between the stations i and j has the form

sk
eT

k xi − eT
k xj

rij
= bk, k = 1, 2, . . . , m (54)

where k is the observation number, sk has something to do with the weight,
rij is the distance between the stations i and j, and ek is a two-dimensional
unit vector. In the case of distance observations, e is parallel to the direction
stationi−stationj; in the case of a direction observation e is orthogonal to that
direction.

If every observation in the network is of one of these two kinds, (53) may
be written

xT(ATA)x =

m∑
k=1

s2
k

(
eT

k xi − eT
k xj

rij

)2

,

and if φ is a normalized eigenvector for ATA with eigenvalue λ we deduce

m∑
k=1

s2
k

(
eT

k φi − eT
k φj

rij

)2

= λ. (55)

(eT
k xi − eT

k xj)/rij is a kind of 1. order vectorial difference quotient and (55)
is thus a complete analogue to formula (52) in the case of a leveling network.

If we have in station i a horizon of directions to p other stations with
observations of equal weight s, we have the observation equations

s

(
eT

k xi − eT
k xk

rik
− α0

)
= bk, k = 1, 2, . . . , p

where α0 is the initial direction.
It is not difficult to see that the contribution to the normal equations of

such a horizon will be a positive definite quadratic form in the difference

Dk − Dl =
eT

k xi − eT
k xk

rik
− eT

l xi − eT
l xl

ril
, k, l = 1, 2, . . . , p

between difference quotients. In a realistic network, the contributions of this
type from the different horizons have to be added at the right hand member
of (55). The result is

s2

p

∑
k<l

(
Dk − Dl

)2
.

If the network is not free, every outer condition gives occasion to a ‘boundary
term’ in addition to the terms mentioned above.



9 On the Spectrum of Geodetic Networks 149

Difference and Differential Equations Corresponding to
Networks With Various Types of Observation

In a triangulation network we assign to each station a two-dimensional vector
describing the increments of coordinates of the station. All the elements of
these vectors are contained in the x vector of equation (1). Let us imagine
this discrete vector field prolonged so as to cover the whole network up to a
boundary a little outside it. The prolongation shall take place such that the
vector field becomes continuous and the gradient shall fulfill certain restric-
tions which we shall not describe in detail.

The coefficient matrix ATA of the normal equations can be viewed as
the result of a certain difference operator acting on this continuous vector
field. The difference operator must act just between the stations of the given
geodetic network. Obviously, this difference operator must depend on the sort
of measurement taken.

Although this difference operator is already known for some classes of
observations satisfying certain correlation patterns, cf. [2], such operators are
not yet known for, e.g., pure distance or pure angular networks.

The introduction of the continuous prolongation of the discrete vector
field also introduces infinitely many unbounded eigenvalues which in the dis-
crete case are bounded, and their number here equals the dimension of the
coefficient matrix. But in some sense, which may be defined in terms of con-
cepts found in [1], the eigenvalues and -functions are good approximations
to the corresponding eigensolutions of the discrete network. Especially for
small eigenvalues the approximation is good and should thus indicate some-
thing about the weakness of the network. So there are good reasons for trying
to obtain the continuous analogous operator corresponding to any form for
geodetic observations and combinations of such.

In [2] one finds the following class of observations treated: Leveling net-
works, pure angular networks with known ratio of the sides, and networks
with distance and absolute directions. For regularly shaped (isotropic) net-
works they all boil down to the discrete Laplacian, so the following partial
differential equation is the analogue to the eigensolution problem of the nor-
mal equations:

∆u + λu = 0 (56)

with Neumann or Dirichlet boundary conditions depending on whether it is
a free network or one fixed along the boundary.

A so-called relative leveling network, i.e., one in which the scale cannot be
carried over from one station to another, satisfies

∆2u − λu = 0. (57)

Further, by more advanced methods which shall not be presented here, we get
for distance measurements in a free equilateral triangular network
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3
∂2u1

∂x2
+

∂2u1

∂y2
+ 2

∂2u2

∂x∂y
+ λu1 = 0

2
∂2u1

∂x∂y
+

∂2u2

∂x2
+ 3

∂2u2

∂y2
+ λu2 = 0

(58)

with boundary conditions

n1

(
3
∂u1

∂x
+

∂u2

∂y

)
+ n2

(
∂u1

∂y
+

∂u2

∂x

)
= 0

n1

(
∂u1

∂y
+

∂u2

∂x

)
+ n2

(
∂u1

∂x
+ 3

∂u2

∂y

)
= 0.

(59)

Here, u1 and u2 denote the components of the two-dimensional vector u, and
n1 and n2 denote the components of the vector normal to the boundary. (In
fact, equations (56) and (57) are scalar equations.) Equations (58) may be
rewritten

3∆u + 2 curl curl u + λu = 0. (60)

By the way, these equations are closely related to the equations of equilibrium
for longitudinal deformations of thin plates, cf. [7], §13.

In a similar way, we get for a network of the same shape but now only
with absolute direction measurements

∆u − 2 curl curl u + λu = 0. (61)

Finally, the combination of the last two networks yields

2∆u + λu = 0 (62)

in accordance with (56) as we deal with observations of this class.
It shall be mentioned that the boundary value problem (58)–(59) can be

solved explicitly within a circle in terms of Bessel functions. For small values
of λ the eigenfunctions are nearly harmonic.

This continuous analogy to realistic, i.e., discrete networks may be viewed
as a limit case of relatively large networks, namely networks which are in-
finitely large compared to the distances between stations with connecting
observations.

For partial differential equations of the type we meet with here, many
important results are known especially concerning the asymptotic behavior;
therefore, we believe that by using them it will be possible to get a more
quantitative formulation of results and conjectures referred to in this paper.

The different equations were found this summer, so we could not, as we
would have liked, have built up the whole paper upon this single method. The
deduction of the differential equations, which relies on Green’s formula, both
in its usual form and in its discrete form referred in the foregoing section, will
be published as soon as it appears to us to be sufficiently clear.



9 On the Spectrum of Geodetic Networks 151

Acknowledgment

The authors like to express their gratitude to Professor P. Meissl for valuable
discussions on strength analysis of networks.

References

[1] Jean-Pierre Aubin. Approximation of Elliptic Boundary-Value Problems.
Wiley-Interscience, New York, 1972.

[2] K. Borre and P. Meissl. Strength Analysis of Leveling-Type Networks. An
Application of Random Walk Theory. Meddelelse 50. Geodætisk Institut,
København, 1974.

[3] R. L. Burden and G. W. Hedstrom. The distribution of the eigenvalues
of the discrete Laplacian. BIT, 12:475–488, 1972.

[4] A. J. Chintschin. Mathematische Grundlagen der statistischen Mechanik.
Bibliographisches Institut, Mannheim, 1964.

[5] Marc Kac. Can one hear the shape of a drum? American Mathematical
Monthly, 73:1–23, 1966.

[6] C. Lanczos. Linear Differential Operators. D. Van Nostrand, New York,
1961.

[7] L. P. Landau and E. M. Lifschitz. Elastizitätstheorie. Akademie-Verlag,
Berlin, 1970.

[8] P. Meissl. Investigations of random error propagation in geodetic net-
works. In Proceedings of the Symposium: Satellite and Terrestrial Trian-
gulation, pages 301–319, Graz, 1972.

[9] G. O. Okikiolu. Aspects of the Theory of Bounded Integral Operators in
Lp-Spaces. Academic Press, London and New York, 1971.
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10

Mathematical Geodesy

Considering the intimate relations which have always existed between geodesy
and mathematics the recent notion of mathematical geodesy could seem rather
superfluous. I think however that this notion indicates a new style for the
relations between the two sciences and I shall try in this lecture to describe
this new style in a manner which you may find rather subjective.

The notion itself ‘mathematical geodesy’ goes back to Martin Hotine who
launched it as the title of a formidable book of his in 1969, and it is worth
while to mention his name as it was his untiring struggle which has made it
acceptable for a geodesist to work in the field of mathematical geodesy.

But the concept was born in 1951 with Marussi’s beautiful paper Fonda-
menti di Geodesia Intrinseca where—in the language of the famous Italian
school of differential geometry—the geodesy is edified in a radically new way.
Marussi accepts only coordinates which, in principle, may be observed di-
rectly i.e. the two astronomical coordinates and the value of the potential (or
rather the potential plus a fixed but unknown constant) as the third coordi-
nate. Observations of distances and angles between points at the surface of
the Earth are then used to find the metric fundamental tensor in the intrinsic
coordinates. When this fundamental tensor is found the intrinsic coordinate
system has a practical meaning and it is e.g. possible to calculate coordinates
for points at the surface of the Earth in a global Cartesian system.

The really radical in Marussi’s approach was not so much that it gave
geodesy a three-dimensional foundation—although this for the contemporaries
seemed to be the conspicuous innovation—it was rather that it departed with
a geodetic tradition, or bad habit, which may be called that of inconsistent
approximations.

This old style of application of mathematics in geodesy, which all of us
know too well, may be described as follows: The treatment of a geodetic
problem is split up into several steps and at each step one makes special sim-
plifications and approximations in order to apply that mathematical method
which the author, or tradition, has decided to use for the carrying through of
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that step. Use of this style has not only the effect that it makes the reading of
geodetic texts unreasonably tiring even for geodesists who have been indoc-
trinated in this ‘method’ and makes our texts almost unreadable for mathe-
maticians, but even if the approximations introduced at the single steps are
clear and relatively harmless—as they sometimes are—it is usually impossible
to trace the influence of the different approximations on the result and finally
to say anything about the reliability of the result. Regarding the immense
quantity of geodetical papers we see that it is in fact easy to arrive at numer-
ical results of the observations but it is very difficult to arrive at a reliable
estimate for the reliability of these numerical results.

It is the great merit of Marussi’s that he has introduced a new style into
geodetic research, i.e. that of translating the original geodetic problem into
a mathematical problem (forming a mathematical model) and then to treat
this mathematical problem so to say under the jurisdiction of mathematics. If
one succeeds in solving the problem in its mathematical form one only has to
find out how relevant the mathematical model is by investigating the possible
pertubations caused by the geodetical factors ignored in the mathematical
model, and this should be relatively simple because of the existence of an
exact and consistent mathematical solution. I find that it is reasonable to
use—and to reserve the use of—the notion of mathematical geodesy to such
a method for approaching geodetic problems which is quite parallel to the
philosophy of mathematical physics.

With this definition, which is parallel to that of mathematical physics,
mathematical geodesy becomes a mathematical discipline, i.e. its form is
mathematical but its content is geodetical.

I regard Marussi’s demand for consistency of geodetic theories so impor-
tant that the question whether he really has succeeded in giving geodesy a
consistent mathematical foundation becomes of minor interest. Personally I
think that he has not yet succeeded, but I do not go into that here.

After that of Marussi there have been other approaches to intrinsic
geodesy. The most interesting of those is perhaps that of E. Grafarend and N.
Grossmann. In contrast to Marussi they express geodesy in the language of the
French school of differential geometry (Elie Cartan). They start from the fact
that there is at every point a privileged direction, that of the plumb line, there-
fore they introduce in order to describe the geometry in three-dimensional
Euclidean space a geometry in which all plumb lines are parallel. Naturally
this describing geometry is not Euclidean and even not Riemannian (being
not torsion-free). Although this approach could seem a little sophisticated it
is not impossible that they can erect on this foundation a theory which is
equivalent to that of Marussi but with a simpler mathematical formalism.

Almost at the same time as Marussi founded his intrinsic geodesy Molo-
denskiy published his important papers on physical geodesy.

The most famous part of Molodenskiy’s investigations is the definition of
Molodenskiy’s problem and the attempt to solve it. I believe that the most
permanent result of his work is his analysis of the concept of the geoid, from
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which results that it is principally impossible to determine the geoid from
geodetic measurements and that the concept of the geoid is unnecessary, so
when we continue to speak about the geoid it is a historical relict exactly as
when we speak about the daily motion of the sun: it spares us from using
more sophisticated expressions and everybody knows what we mean. It was a
pitty that Molodenskiy not such as Marussi had an established mathematical
tradition upon which to found his work—such a tradition in the field of the
solution of complicated boundary value problems existed hardly at that time,
therefore Molodenskiy’s problem has been formulated in an unhappy way. It
is well-known that one of the secrets of science is to ask the right questions:
Our questions shall not only be relevant, there shall also exist an answer to
them. Nevertheless Molodenskiy’s problem has fascinated us for tens of years
and we have wasted a lot of time on it. To give a better formulation of it is
an important task which is in store for us.

We have also a Danish approach to mathematical geodesy, which we call
‘integrated geodesy.’

Integrated geodesy is founded upon least-squares adjustment or rather
upon a generalization of this concept arrived at by means of functional anal-
ysis.

We normally use Cartesian coordinates. We do not mean that the fact that
these coordinates are not directly observable should be any reason for not
using them provided that we can prove that they are principally computable.

The idea of integrated geodesy may shortly be described by describing the
following two steps:

1. For every geodetical measurement it is possible to write down the cor-
rect linearized observation equation i.e. an equation which expresses the
differential of the value of the observation (the correction) by the dif-
ferentials of the Cartesian coordinates (the corrections to the reference
coordinates) and by linear functionals of the disturbing potential of the
Earth (generalized corrections to the reference potential). There may also
enter some auxiliary parameters such as orientation constants etc. The
difference from the classical observation equations is that no geodetic re-
duction is applied to the observations but that the reference potential and
the disturbing potential enter the equations. Principally these observation
equations are simple to deduce, but in practice we have seen that without
a clever technique the formulas will become rather impenetrable. We have
therefore spent some time bringing about such a technique and we think
we have succeeded in finding one which is both handy and interesting.

2. The second step is naturally the adjustment.

The mathematical theory for such a generalized least-squares adjustment
is almost trivial. An expression which is the sum of the weighted square sum of
the corrections to the observations (as in classical adjustment) and a quadratic
form in the disturbing potential shall be minimized in order to define a so-
lution. This solution can be found numerically. Now the serious problem is
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that the solution depends of which quadratic form we choose. This problem
is a principal one and is closely connected to the fact that the value of the
potential in one point cannot be determined from any set of measurements
in finitely many other points. Our common sense tells us that if these mea-
surements are dense enough near the point in question then we can find the
value by interpolation but there is no objective method to define what the
best value is—and there will never be! It was an obvious idea to try to solve
the problem by statistical methods similar to time series analysis. We have
tried this and even if somebody still may hope for a solution from statistics I
now feel convinced that this will be impossible. For the time being we must
be satisfied with a reasonable numerical result which is consistent with the
observations, but we have good prospects of a method which by using to-
pographical and geological results will enable us to say something about the
reliability of the result.

One could argue that it is a drawback for our method as compared with
conventional methods that the result is not unique. To that I can only say
that when conventional methods give unique results it is because in them
there has already been made a choice normally tacitely and perhaps even
subconsciously. I find it important to focus on such ‘nightsides’ of scientific
methods and try to find the possible influence of such choices on the results.

I think it is in continuation of good geodetic tradition to work with such
an adjustment model which involves all forms of geodetic observations even if
there may be practical reasons for realizing the computations in sections each
of which involves parts of the measurements, only in this way we can arrive
at a theory for the correct joining together of partial results.

As I indicated before I do not see the greatest importance of mathematical
geodesy in the new methods of calculation it furnishes but didactically in the
possibility it gives us to present geodesy in a logical and coherent form and
practically in that it should give us good methods for treating the important
problems of reliability and optimisation.

If we shall discuss the aptitude of integrated geodesy for solving problems
of optimisation we are faced with the deep and fundamental dualism of applied
and numerical mathematics: that of the continuous and the discrete aspects.

I shall illustrate this dualism by two examples.
The first example is from the theory of elasticity.
The theory of elasticity treats the behaviour of solids under the influ-

ence of forces. Classically the theory investigates the continuous deformations
under the influence of exteriour forces and the laws are expressed by par-
tial differential equations. But this macroscopic behaviour can be explained
from molecular forces and so we are led to the discrete aspect: the elastical
behaviour of the solid can be expressed by a gigantic system of equations in-
volving each of the molecules. On the other hand if one shall solve numerical
problems in elasticity theory one usually has to solve the differential equations
by discrete approximation methods using finite differences or finite element
methods.
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The other example concerns Molodenskiy’s problem. Molodenskiy himself
formulated this problem under the continuous aspect while other geodeti-
cal boundary value problems such as astrogeodetic levelling is traditionally
treated under the discrete aspect. As Bjerhammar has pointed out a discrete
approach to Molodenskiy’s problem is not only possible but even more realis-
tic, and no matter how the problem is formulated in order to find a numerical
solution we must apply some finite i.e. discrete method, but the different for-
mulations may lead to different discrete numerical methods, and if we want
to formulate general laws e.g. about the influence on the result at one point
from errors of the anomalies at more or less distant points then the continuous
formulation is likely to be best suited.

Considerations similar to these have recently led us to the conviction that
laws concerning the ‘macroscopic’ behaviour of geodetic networks under the
influence of systematic and accidental errors are most easily found by using a
continuous approach and we have therefore begun to work at what we call ‘the
elasticity theory of geodetic networks.’ This theory makes a rapid progress so
that the paper about it distributed at this meeting gives only an impression
of what it is about, an impression which is already out of date today. It is my
hope that it will give important help for the planning of geometrical networks
but that it also as an organic part of integrated geodesy will be well suited
for solution of planning problems for geodetic projects where physical as well
as geometric observations are involved.

My personal experience from working with mathematical geodesy is that
it is much easier to make new ideas—and perhaps even good ideas?—in that
field than it is to work out these ideas into details so that they can have
practical influence. This task is very work consuming and cannot be afforded
by one man or even one institute. But most people seem to be more interested
in presenting new ideas than in transforming good ideas into reality.



11

Foundation of a Theory of Elasticity for

Geodetic Networks

1

Every geodesist has when assessing geodetic networks intuitively used analo-
gies from the theory of elasticity, but so far nobody seems to have succeeded
in making such an analogy rigorous. The authors of the present paper believe
that the establishing of a theory of elasticity for geodetic networks will be im-
portant for the analysis of strength of relatively extended geodetic networks,
i.e. networks for which the maximum net width is small with respect to the
extension of the net.

The main tools in elasticity theory are the system of partial differential
equations and boundary conditions for the displacements. A classical way to
deduce these equations is to write down the expression for the elastic en-
ergy, which is a quadratic form in the displacements, and then using methods
from the calculus of variations to find the conditions which the displacements
must satisfy in order to minimize the energy: these conditions are exactly the
equations we wanted.

In the theory for geodetic networks we also have a quadratic form in the
displacements which we want to minimize: the weighted square sum of the
residuals, and the conditions on the displacements for this minimization are
expressed by the normal equations. Now our main idea is to consider these
normal equations as expressing a discrete approximation to an ideal ‘contin-
uous network’ problem described by a system of partial differential equations
and corresponding boundary value conditions. Then we find it reasonable to
expect that these equations may give us the same global information about
the network as the partial differential equations in elasticity theory give about
the macroscopic behaviour of solids.

There exist many methods for discrete approximation of problems ex-
pressed by partial differential equations, the most modern and perhaps the
most powerful of those is ‘the method of finite elements.’ After eight years of
dreaming about a geodetic theory of elasticity one of the authors to this paper
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was struck by the idea to use the method of finite elements in the opposed
direction and some of the results attained in this way are presented in the
following.

Naturally we are not the only geodesists who have speculated about find-
ing a continuous model for networks, influences from [4], [6], and [2] have
contributed to keeping our dream alive.

The present paper consists of two parts. In the first of them Sections 2
to 6 the partial differential equations and the boundary conditions governing
continuous networks are deduced. A certain acquaintance with the calculus of
variations and with the theory of elasticity will be helpful for the reader, on the
other hand no knowledge about the method of finite elements will be necessary.
The second part is written in order to help the reader to understand the
ideas. Here the general method is applied to one-dimensional networks, where
the main ideas are illustrated without distracting technical details which are
inevitable in the two-dimensional case which naturally is the only geodetically
relevant one, and which we hope to cover in a following paper, where we shall
demonstrate that the time of dreaming about a geodetic theory of elasticity
is definitely over.

2

We shall now concentrate on a single triangle (the finite element) of the net-
work and find the contributions to normals from observations directly related
to this triangle.

In order to take into consideration the commonly used geometric geodetic
observations but also to give a certain symmetry to the resulting mathematical
model we shall consider the following four types of observations:

1. Observations of the (logarithm of the) distance between two vertices of
the network [absolute distances ],

2. Observations of the logarithm of the distance from one vertex of the net-
work to another vertex apart from an additive constant α, which is sup-
posed to be the same for all observations of this type [relative distances]
from the same vertex,

3. Observations of grid directions (in radians) for sides of triangles in the
network [absolute directions],

4. Observations of grid directions from one vertex of the network to another
vertex apart from an additive constant β, which is supposed to be the
same for all observations of this type [relative directions] from the same
vertex.

The observations of the types 1 and 4 are natural geodetic observations but as
it may be of interest to study the difference between the behaviour of relative
and absolute observations the inclusion of observations of the types 2 and 3
can be of some practical interest.
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One advantage by concentrating on a single triangle is that we can choose
a simple and systematic system for indexing of the quantities entering in our
calculations.

We will number the vertices of the triangle by 1, 2, and 3 and index quan-
tities referring to the vertex i (i = 1, 2, 3) by i e.g. we denote the (Cartesian)
coordinate of the vertex 2 by x2 and y2 and the additive constants α and β
connected with the relative observations in the vertex 2 by α2 and β2. The
components of the displacement vector for the vertex i will be denoted by ui

and vi.
Correspondingly quantities naturally pertaining to oriented sides of the

triangle will be equipped with double indices, e.g. x23 = x3 − x2, the x-
component of the oriented triangle side from vertex 2 to vertex 3.

If i = 2 then xi−1,i+1 refers to the side opposite to vertex 2 (with a well
determined direction). In summation formulas it is convenient to use the same
expression also for i = 1 or 3. Therefore i = 0 respectively i = 4 shall mean
the same as i = 3 respectively i = 1.

Relative observations refer naturally to oriented sides and one of the ver-
tices, we will agree to let the first of the two indices refer to the vertex in
which the observation has taken place.

The equations of observation which express the corrections to the obser-
vations by the displacements and the observed values can now be written as:

1. For absolute observations:

w = pijuij + qijvij − fij (1)

where w is the correction to the observed value fij , uij = ui − uj, vij =
vi − vj where (ui, vi) is the displacement vector of the vertex i and

pij =
xij

r2
ij

, qij =
yij

r2
ij

(2)

for observations of distances and

pij = −yij

r2
ij

, qij =
xij

r2
ij

(3)

for observations of directions. Here r2
ij = x2

ij + y2
ij .

2. For relative observations:

w = pijuij + qijvij + αi − fij (4)

for observations of distances (p and q are here again given by (2)) and

w = pijuij + qijvij + βi − fij (5)

for observations of directions (p and q from (3)).
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We are interested in the contributions from such equations to the normals
or rather to the weighted square sum of the corrections which we will call
the energy form. The whole contribution from all the observations of relative
distances in the triangle 1, 2, 3 is for example:∑

i,j

eij

(
pijuij + qijvij + αi − fij

)2
i, j = 1, 2, 3, i �= j (6)

where eij are the weights.

3

The energy form to which we have found the contribution from a single triangle
shall now be considered as a discrete approximation to a continuous quadratic
form.

First we must prolong the displacement vectors (u, v) which are defined
only at the vertices of the network, to a continuous vector field defined on the
whole area covered by the network. Such a prolongation is uniquely defined
by the demands that 1) u and v shall be continuous functions 2) which at the
vertices coincide with the discrete displacements and 3) which in the interior
of every triangle of the network vary linearly. From this definition follows
that the partial derivatives ∂u/∂x, ∂u/∂y, ∂v/∂x, ∂v/∂y are constant in the
interior of each triangle and that

uij = xij
∂u

∂x
+ yij

∂u

∂y

vij = xij
∂v

∂x
+ yij

∂v

∂y
.

(7)

The additive constants α and β which also are defined only at the vertices
are prolonged in the same way and if the values of the prolonged functions α
and β at the barycentre of the triangle 1, 2, 3 are denoted by α0 and β0 then
we have

αi = α0 + 1
3

(
xi−1,i + xi+1,i

)∂α

∂x
+ 1

3

(
yi−1,i + yi+1,i

)∂α

∂y

βi = β0 + 1
3

(
xi−1,i + xi+1,i

)∂β

∂x
+ 1

3

(
yi−1,i + yi+1,i

)∂β

∂y
.

i = 1, 2, 3 (8)

Now we can substitute the expression (7) and (10) into the forms such as (6)
and so we have a quadratic form in the partial derivatives of first order of
the displacements of α and β and in α0, β0, and in the observed values with
coefficients depending of the weights and the coordinate differences xij , yij .
Before we write down this quadratic form explicitly we must make some small
changes.
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We want to write that contribution to the energy form on which we con-
centrate as an integral over the triangle 123. The partial derivatives of u, v, α,
and β are constant and the mean values of α and β are α0 and β0 respec-
tively, therefore we may omit the zero indices in α0 and β0 without spoiling
the approximation the result of the integration is almost only that of multi-
plication of the value of the quadratic form by the area of the triangle. This
multiplication can be corrected for by dividing every weight by the area of
the triangle; the weight per unit of area is also the reasonable unit for weight
in a continuous network.

We also have to suppose the observed value fij of the four different types
to be prolonged in a reasonable way. This will be described later on, until then
we shall concentrate on the ‘left hand side’ and formally treat f as a vector.

The vector field

W =
[∂u

∂x
,
∂u

∂y
,
∂v

∂x
,
∂v

∂y
,
∂α

∂x
,
∂α

∂y
, α,

∂β

∂x
,
∂β

∂y
, β, f

]T
is now well defined for the whole area Ω covered by the network, and we can
now define the energy form E for the continuous network by the integral

E = 1
2

∑
k

∫∫
Ω

WTMkW dxdy, (9)

where Mk for k = 1, 2, 3, 4 are the matrices defining the contributions to the
energy form corresponding to the four different types of observations. Mk is
constant in the interior of each triangle of the network, and E is likely to be
a good continuous approximation to the discrete energy form for the original
discrete network.

The factor 1/2 stems from the fact that all observations referring to in-
terior sides of the network are included twice in the integral once for each
of the triangles into which the side enters. Therefore observations referring
to boundary sides of the network should enter with double weight into the
formulas.

Mk is an 11 by 11 matrix and for each value of k a considerable part of
its entries are zero. For typographical reasons it is most practical to partition
the matrix in the following way before writing it out explicitly:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mww
4×4

Mwα
4×3

Mwβ
4×3

Mwf
4×1

MT
wα

3×4
Mαα
3×3

Mαβ
3×3

Mαf
3×1

MT
wβ

3×4

MT
αβ

3×3

Mββ
3×3

Mβf
3×1

MT
wf

1×4

MT
αf

1×3

MT
βf

1×3

Mff
1×1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10)
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For all values of k, Mww is given by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
eijp

2
ijx

2
ij

∑
eijp

2
ijxijyij

∑
eijpijqijx

2
ij

∑
eijpijqijxijyij∑

eijp
2
ijxijyij

∑
eijp

2
ijy

2
ij

∑
eijpijqijxijyij

∑
eijpijqijy

2
ij∑

eijpijqijx
2
ij

∑
eijpijqijxijyij

∑
eijq

2
ijx

2
ij

∑
eijq

2
ijxijyij∑

eijpijqijxijyij

∑
eijpijqijy

2
ij

∑
eijq

2
ijxijyij

∑
eijq

2
ijy

2
ij

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The summation is to be taken over i �= j but for the absolute types (i.e. for
k = 1 and 3) there is only one observation for each side i.e. the summation is
only over i < j.

All the submatrices containing an α-index vanish for k �= 2 as those with
a β vanish for k �= 4, Mαβ vanishes always as none of the observations we
consider concerns both α and β constants.

Mwα = Mwβ have the following form with the corresponding meaning of p
and q ((2) or (3)):

Mwα = −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3

∑
eijpijxijx

′
i

1
3

∑
eijpijxijy

′
i

∑
eijpijxij

1
3

∑
eijpijyijx

′
i

1
3

∑
eijpijyijy

′
i

∑
eijpijyij

1
3

∑
eijqijxijx

′
i

1
3

∑
eijqijxijy

′
i

∑
eijqijxij

1
3

∑
eijqijyijx

′
i

1
3

∑
eijqijyijy

′
i

∑
eijqijyij

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
where x′

i = xi−1,i + xi+1,i and y′
i = yi−1,i + yi+1,i.

Mαα = Mββ has the following appearance:

Mαα =

⎡⎢⎢⎢⎢⎣
1
9

∑
eij(x

′
i)

2 1
9

∑
eijx

′
iy

′
i

1
3

∑
eijx

′
i

1
9

∑
eijx

′
iy

′
i

1
9

∑
eij(y

′
i)

2 1
3

∑
eijy

′
i

1
3

∑
eijx

′
i

1
3

∑
eijy

′
i

∑
eij

⎤⎥⎥⎥⎥⎦ .

In order to make possible a prolongation of the values fij of the observa-
tions and to obtain a convenient expression for the ‘forces’ we must look for
a more invariant representation for fij .

Let us start with type 1. As we have here three values fij for every
triangle—one value connected with the direction of every side of the triangle—
it could perhaps be obvious to try to express them from a symmetric tensor.

In fact if we write

fij =
1

r2
ij

[
xij yij

] [g1 g3

g3 g2

] [
xij

yij

]
, i, j = 1, 2; 2, 3; 3, 1; (11)
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then we have three linear equations for the determination of the three un-
knowns g1, g2, g3. Furthermore the determinant of this system will vanish
only if the area of the triangle vanishes. Therefore we can find the symmetric
tensor

G =

[
g1 g3

g3 g2

]
for every triangle of the network. We assign this value of G to the barycentre of
the triangle and prolong it to all the area covered by the network continuously
and piecewise linearly in the following way: To the vertices we assign the
mean value of the G’s corresponding to the adjacent triangles (eventually
with weights proportional to the respective triangles). If we then connect
each barycentre with the vertices of its triangle by straight lines we have a
new network of triangles for which G has been defined for all its vertices
and we can in exactly one way prolong G to a continuous symmetric tensor
field which varies linearly in each of the small triangles. This tensor field is
obviously differentiable almost overall with uniformly bounded derivatives,
and this is all we want.

We shall now find the matrix elements of the energy form involving g1, g2,
and g3.

The contribution from a finite element to E is (for type 1):

∆E =
∑

12,23,31

eij

(
pijxij

∂u

∂x
+ pijyij

∂u

∂y
+ qijxij

∂v

∂x
+ qijxij

∂v

∂y

−
x2

ij

r2
ij

g1 −
2xijyij

r2
ij

g3 −
y2

ij

r2
ij

g2

)2

and we find

Mwg = −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
eijpijxij

x2
ij

r2
ij

2
∑

eijpijxij
xijyij

r2
ij

∑
eijpijxij

y2
ij

r2
ij∑

eijpijyij
x2

ij

r2
ij

2
∑

eijpijyij
xijyij

r2
ij

∑
eijpijyij

y2
ij

r2
ij∑

eijqijxij
x2

ij

r2
ij

2
∑

eijqijxij
xijyij

r2
ij

∑
eijqijxij

y2
ij

r2
ij∑

eijqijyij
x2

ij

r2
ij

2
∑

eijqijyij
xijyij

r2
ij

∑
eijqijyij

y2
ij

r2
ij

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)

a result which is valid also for type 3. The reader should notice that all the
entries of this matrix are identical to (or twice the value of) entries occurring
in Mww.

Now to the types 2 and 4. Here we have six observations fij which fall into
two groups: the positive group i, j = 1, 2; 2, 3; 3, 1 and the negative group
i, j = 2, 1; 3, 2; 1, 3 and accordingly we define two symmetric tensors G+

and G−, G+ being defined from the positive group by (11) and G− by the



166 11 Foundation of a Theory of Elasticity for Geodetic Networks

same formula for i, j = 2, 1; 3, 2; 1, 3. We may write ∆E as

∆E =
∑
+

eij

(
pijxij

∂u

∂x
+ pijyij

∂u

∂y
+ qijxij

∂v

∂x
+ qijxij

∂v

∂y

− 1
3

(
xi,i−1 + xi,i+1

)∂α

∂x
− 1

3

(
yi,i−1 + yi,i+1

)∂α

∂y

− α −
x2

ij

r2
ij

g+
1 − 2xijyij

r2
ij

g+
3 −

y2
ij

r2
ij

g+
2

)2

+
∑
−

. . . .

Here Mwg+ and Mwg− are of the same form as (12) with summation over the
positive respectively the negative group.

We find Mαg+ equals⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
3

∑
+

eij

(
xij + xik

)x2
ij

r2
ij

2
3

∑
+

eij

(
xij + xik

)xijyij

r2
ij

1
3

∑
+

eij

(
xij + xik

)y2
ij

r2
ij

1
3

∑
+

eij

(
yij + xik

)x2
ij

r2
ij

2
3

∑
+

eij

(
yij + yik

)xijyij

r2
ij

1
3

∑
+

eij

(
yij + xik

)y2
ij

r2
ij∑

+
eij

x2
ij

r2
ij

2
∑
+

eij
xijyij

r2
ij

∑
+

eij
y2

ij

r2
ij

⎤⎥⎥⎥⎥⎥⎥⎥⎦
where k = i−1. For Mαg− we have the same expression with summation over
the negative groups and k = i + 1.

4

According to the method of least squares the solution of our continuous net-
work problem is defined as that field of displacement vectors (u, v) and ‘addi-
tives’ α and β for which the energy form E attains its minimum for the given
values of observations f . This problem will be treated here as a problem of
variational calculus but it is of the same type as problems encountered in the
least-squares methods used for the determination of the gravity field of the
Earth, i.e. least-squares methods in Hilbert space and it could be treated in
almost the same way.

In the variational calculus it is generally much simpler to find necessary
conditions for a minimum than to find sufficient ones. So also here, and in
this paper we shall find only necessary conditions. The sufficient conditions
will be given at another occasion, we shall here only mention that it seems to
be less difficult to prove the existence of a solution in the geodetic theory of
elasticity than it is in classical elasticity theory [3], pp. 88–100.

In deducing the necessary conditions we meet with a technical difficulty.
We have to apply Green’s theorem on the energy integral but coefficients of
the quadratic form in the integral i.e. the entries of the matrix Mk are not gen-
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erally, as they should be, continuously differentiable, they are even not contin-
uous under the passage of a side of the network. Only if the network is homo-
geneous i.e.

∑
Mk is constant all over the network we may apply Green’s the-

orem without applying first a smoothing procedure on the coefficients. There-
fore we shall describe here an interpolation method for the matrices

∑
Mk,

which is simple but certainly not the ‘best’ one. As we cannot warrant that
the reader will find this method interesting we believe the best thing he could
do (at least at the first reading) would be to jump directly to Section 5.

First we fix the value the matrix shall attain at the barycentre of a triangle
to be the value we have found for the matrix in Section 3. Then we define
that its value at any vertex of the network shall be the weighted mean of its
original values in the adjacent triangles with weights the areas of the respective
triangles.

The next step is then to interpolate between the vertices along the side
using one polynomial for each side. The values of this polynomial at the two
vertices corresponding to it shall be those just defined and the differential
quotient of the polynomial shall vanish at the vertices.

If we regard the side in question to be the part of an axis between the
points (the vertices) −1 and +1 and the value at −1 should be a and that
at +1 should be b then the polynomial

P (x) =
a + b

2
+

b − a

4

(
3x − x3

)
will do the job.

The values thus defined along all the sides of the network, all that is left
is to interpolate to points in the interior of the triangles but different from
the barycentre. Each such point defines a half line through the barycentre of
the triangle to the interior which it belongs and this half line will meet the
circumference of this triangle at one point where the value has already been
fixed. All we have to do is to interpolate between this point and the barycentre
in the same way as above.

It is not difficult (although some reflection may be needed) to persuade
oneself that this method of interpolation has the following three properties
which are essential for the application we shall make of it:

1. The first derivatives (with respect to x and y) of the interpolated values
are continuous.

2. For each point of the network each entry of the matrix at that point de-
pends linearly upon the values of the same entry of the original matrices—
from which follows that symmetry properties of the original matrices will
be preserved by the interpolation.

3. Properties of definiteness of the original matrices or of submatrices of
those will be preserved by the interpolation.

We also observe that if the network is homogeneous then nothing is
changed by using this method of interpolation.
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5

In order to avoid typographical excesses we shall further on limit ourselves to
an important special type of networks. Our method is sufficiently general to
make it possible for the reader to deduce the general formulas.

To make the meaning clear we start with an example.
The simplest type of a geodetic network is perhaps that consisting of con-

gruent equilateral triangles. Suppose we have made all four types of observa-
tions in such a network and that all observations of the same type is of the
same weight. Let the side length be l and let one angle between the x-axis and
one of the sides be φ. We will find first the submatrix Mww of the matrix M
corresponding to relative observations of directions with weight e per unit of
area.

For the first element in the first column we have

m11 =
∑
ij

e
x2

ijy
2
ij

r4
ij

= e

6∑
1

cos2
(kπ

3
+ φ

)
sin2

(kπ

3
+ φ

)

=
e

4

6∑
1

sin2
(2kπ

3
+ 2φ

)
=

e

8

6∑
1

(
1 − cos

(4kπ

3
+ 4φ

))
=

3e

4
.

In the same way we find

m44 =
3e

4

and

m14 = m23 = m32 = m41 = −3e

4
.

Similarly

m22 =
∑
ij

e
x4

ij

r4
ij

= e

6∑
1

cos4
(kπ

3
+ φ

)
=

e

4

6∑
1

(
1 + cos

(2kπ

3
+ 2φ

))2

=
e

4

6∑
1

(
1 + 2 cos

(2kπ

3
+ 2φ

)
+ cos2

(2kπ

3
+ 2φ

))

=
e

4

(
6∑
1

1 + 2

6∑
1

cos
(2kπ

3
+ 2φ

)
+

1

2

6∑
1

(
1 + cos

(4kπ

3
+ 4φ

)))

=
3e

2
+

3e

4
=

9e

4
.

In the same way we find

m33 =
9e

4
.

Moreover

m12 = m21 = m34 = m43 = m13 = m24 = m31 = m42 = 0.
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Evidently absolute observations of directions will give the same Mww-ma-
trix if the weight per area unit is 2e.

We write down this result together with the corresponding one for obser-
vations of distances:

Mww = e

⎡⎢⎢⎢⎣
3
4 0 0 − 3

4

0 9
4 − 3

4 0

0 − 3
4

9
4 0

− 3
4 0 0 3

4

⎤⎥⎥⎥⎦ for directions,

and

Mww = e

⎡⎢⎢⎢⎣
9
4 0 0 3

4

0 3
4

3
4 0

0 3
4

3
4 0

3
4 0 0 9

4

⎤⎥⎥⎥⎦ for distances.

With the same method we find the other submatrices of

Mwα = e

⎡⎢⎢⎣
0 0 −3
0 0 0
0 0 0
0 0 −3

⎤⎥⎥⎦ for type-2 observations,

Mwβ = e

⎡⎢⎢⎣
0 0 0
0 0 3
0 0 −3
0 0 0

⎤⎥⎥⎦ for type-4 observations,

Mαα = Mββ = e

⎡⎢⎣
l2

3 0 0

0 l2

3 0

0 0 3

⎤⎥⎦ for type-2 or type-4 observations,

Mwg = −e

⎡⎢⎢⎢⎣
9
4 0 3

4

0 3
2 0

0 3
2 0

3
4 0 9

4

⎤⎥⎥⎥⎦ for type-1 observations,

Mwg = −e

⎡⎢⎢⎢⎣
0 − 3

2 0

− 3
4 0 − 9

4
9
4 0 3

4

0 3
2 0

⎤⎥⎥⎥⎦ for type-3 observations.

Mwg+ for type 2 is half Mwg for type 1, and Mwg− for type 4 is half Mwg for
type 3.
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Finally we have

Mαg+ = Mβg−

=

⎡⎢⎢⎣
el
4

√
3 cos

(
3φ + π/6

)
el
2

√
3 sin

(
3φ + π/6

)
− el

4

√
3 cos

(
3φ + π/6

)
el
4

√
3 sin

(
3φ + π/6

)
− el

2

√
3 cos

(
3φ + π/6

)
− el

4

√
3 sin

(
3φ + π/6

)
3e
4 0 3e

4

⎤⎥⎥⎦
while Mαg− and Mβg+ are the same except for the opposite sign in the two
first rows.

It is evident that networks of this type are homogeneous and we also see
that the matrices Mk are independent of φ, i.e. they are invariant with respect
to orthogonal transformations. Networks possessing this invariance property
are said to be isotropic. (The expressions ‘homogeneous’ and ‘isotropic’ are
borrowed from classical elasticity theory.)

The matrices we have found for this simple network are typical for the
slightly more general isotropic networks. For general isotropic networks the
parts of the integrands of the energy integral corresponding to the four types
of observations are respectively:

E1

[
∂u

∂x

(
3
∂u

∂x
+

∂v

∂y
−3g1−g2

)
+

∂u

∂y

(∂u

∂y
+

∂v

∂x
−2g3

)
+

∂v

∂x

(∂u

∂y
+

∂v

∂x
−2g3

)
+

∂v

∂y

(∂u

∂x
+ 3

∂v

∂y
− g1 − 3g2

)
− g1

(
3
∂u

∂x
+

∂v

∂y

)
− 2g3

(
3
∂u

∂y
+

∂v

∂x

)
− g2

(∂u

∂x
+ 3

∂v

∂y

)
+ terms quadratic in g

]
. (13)

Also in the three following formulas we shall ignore the terms quadratic in g
because their explicit form is irrelevant.

E2

[
∂u

∂x

(
3
∂u

∂x
+

∂v

∂y
−4α−3g1−g2

)
+

∂u

∂y

(∂u

∂y
+

∂v

∂x
−2g3

)
+

∂v

∂x

(∂u

∂y
+

∂v

∂x
−2g3

)
+

∂v

∂y

(∂u

∂x
+ 3

∂v

∂y
− 4α− g1 − 3g2

)
− α

(
4
∂u

∂x
+ 4

∂v

∂y
− 8α− 4g1 − 4g2

)
+ 4

3 l
∂α

∂x

[
l
∂α

∂x
+

√
3

4

((
g̃1 − g̃2

)
cos

(
3φ + π/6

)
+ 2g̃3 sin

(
3φ + π/6

))]

+ 4
3 l

∂α

∂y

[
l
∂α

∂y
+

√
3

4

((
g̃1 − g̃2

)
sin

(
3φ + π/6

)
− 2g̃3 cos

(
3φ + π/6

))]

− g1

(
3
∂u

∂x
+

∂v

∂y
− 4α

)
− 2g3

(
3
∂u

∂y
+

∂v

∂x

)
− g2

(∂u

∂x
+ 3

∂v

∂y
− 4α

)
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+
√

3
3 l
(
g̃1 − g̃2

)(∂α

∂x
cos

(
3φ + π/6

)
+

∂α

∂y
sin

(
3φ + π/6

))
+ 2

√
3

3 lg̃3

(∂α

∂x
sin

(
3φ + π/6

)
− ∂α

∂y
cos

(
3φ + π/6

))
+ · · ·

]
(14)

where we have used the symbols

gi = 1
2

(
g+

i + g−i
)
;

g̃i = 1
2

(
g+

i − g−i
)
;

i = 1, 2, 3.

E3

[
∂u

∂x

(∂u

∂x
−∂v

∂y
+2g3

)
+

∂u

∂y

(
3
∂u

∂y
−∂v

∂x
+g1+3g2

)
−∂v

∂x

(∂u

∂y
−3

∂v

∂x
+3g1+g2

)
− ∂v

∂y

(∂u

∂x
− ∂v

∂y
+ 2g3

)
+ g1

(∂u

∂y
− 3

∂v

∂x

)
+ 2g3

(∂u

∂x
− ∂v

∂y

)
+ g2

(
3
∂u

∂y
− ∂v

∂x

)
+ · · ·

]
. (15)

E4

[
∂u

∂x

(∂u

∂x
− ∂v

∂y
+ 2g3

)
+

∂u

∂y

(
3
∂u

∂y
− ∂v

∂x
− 4β + g1 + 3g2

)
− ∂v

∂x

(∂u

∂y
− 3

∂v

∂x
− 4β + 3g1 + g2

)
− ∂v

∂y

(∂u

∂x
− ∂v

∂y
+ 2g3

)
− β

(
4
∂u

∂x
− 4

∂v

∂y
− 8β + 4g1 + 4g2

)
+ 4

3 l
∂β

∂x

[
l
∂β

∂x
+

√
3

4

((
g̃1 − g̃2

)
cos

(
3φ + π/6

)
+ 2g̃3 sin

(
3φ + π/6

))]

+ 4
3 l

∂β

∂y

[
l
∂β

∂y
+

√
3

4

((
g̃1 − g̃2

)
sin

(
3φ + π/6

)
− 2g̃3 cos

(
3φ + π/6

))]

+ g1

(∂u

∂y
− 3

∂v

∂x
− 4β

)
+ 2g3

(∂u

∂x
− ∂v

∂y

)
+ g2

(
3
∂u

∂y
− ∂v

∂x
− 4β

)
+

√
3

3 l
(
g̃1 − g̃2

)(∂β

∂x
cos

(
3φ + π/6

)
+

∂β

∂y
sin

(
3φ + π/6

))
+ 2

√
3

3 lg̃3

(∂β

∂x
sin

(
3φ + π/6

)
− ∂β

∂y
cos

(
3φ + π/6

))
+ · · ·

]
. (16)

Ek is for given networks proportional to weight per unit of area of obser-
vations of type k. As an isotropic network is not necessarily a homogeneous
one Ek may vary from point to point in the area.
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6

It might be useful for the understanding of the following first to recall the
classical connection between variational problems and the Neumann problem.

Let Ω be a domain in the plane bounded by a smooth closed curve ω.
Given a continuous function f defined on Ω we want to find a function φ
on Ω such that the integral

I(φ) =

∫∫
Ω

[(∂φ

∂x

)2

+
(∂φ

∂y

)2

− 2φf

]
dx dy (17)

attains a minimum.
A necessary condition for I(φ) to be minimal is that for every differentiable

function ψ on Ω

δI =
( ∂

∂ε
I(φ + εψ)

)
ε=0

= 0,

or

δI = 2

∫∫
Ω

[
∂φ

∂x

∂ψ

∂x
+

∂φ

∂y

∂ψ

∂y
− ψf

]
dx dy = 0. (18)

According to Green’s theorem (18) may be written

δI = −2

∫∫
Ω

ψ
(
∆φ + f

)
dx dy + 2

∫
ω

ψ
∂φ

∂n
ds = 0, (19)

where ds is the differential of the arc length on ω.
A form of reasoning well-known in the calculus of variations implies that

for (19) to be satisfied for all differentiable ψ it is necessary that factors to ψ in
the two integrands of (19) vanish identically, i.e. φ must satisfy the following
partial differential equation

∆φ + f = 0 on Ω, (20)

and the following boundary condition

∂φ

∂n
= 0 on ω. (21)

In more advanced treatises it is proved that in fact for certain well-defined
function classes the boundary-value problem (20), (21) is equivalent with the
original minimum problem for the integral in (17), [1], pp. 2–4.

If we will minimize the integral over Ω of an expression such as (13) we
are faced with three new problems:

1. We shall minimize not over one function φ but over two functions u and v,
2. The factor to the given function f1 is not 2φ but a linear combination

2(4∂u/∂x+4∂v/∂y) of the differential quotients of the unknown functions,
3. There are also terms with g.
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The last of these complications is easily solved, the term g is relevant only
for the value of the minimum but not for the determination of the functions
for which it is attained. We may therefore delete the term which is quadratic
in g. Neither the two first points are really serious as we shall see now.

Instead of (17) we have now the integral

I(u, v) =

∫∫
Ω

E1

[
∂u

∂x

(
3
∂u

∂x
+

∂v

∂y
−3g1−g2

)
+

∂u

∂y

(∂u

∂y
+

∂v

∂x
−2g3

)
+

∂v

∂x

(∂u

∂y
+

∂v

∂x
−2g3

)
+

∂v

∂y

(∂u

∂x
+3

∂v

∂y
−g1−3g2

)
−g1

(
3
∂u

∂x
+

∂v

∂y

)
−2g3

(∂u

∂y
+

∂v

∂x

)
−g2

(∂u

∂x
+3

∂v

∂y

)]
dx dy.

(22)

Exactly as above we see that a necessary condition for I(u, v) to be minimal
is that for every pair of differentiable functions u′ and v′ on Ω we have

δI =
( ∂

∂ε
I
(
u + εu′, v + εv′

))
ε=0

= 0,

or

δI =

∫∫
Ω

E1

[
∂u′

∂x

(
3
∂u

∂x
+

∂v

∂y
− 3g1 − g2

)
+

∂u′

∂y

(∂u

∂y
+

∂v

∂x
− 2g3

)
+

∂v′

∂x

(∂u

∂y
+

∂v

∂x
− 2g3

)
+

∂v′

∂y

(∂u

∂x
+ 3

∂v

∂y
− g1 − 3g2

)]
dx dy = 0. (23)

Here we may apply Green’s theorem to obtain

δI = −
∫∫
Ω

[
u′
(

∂

∂x

(
E1

(
3
∂u

∂x
+

∂v

∂y
−3g1−g2

))
+

∂

∂y

(
E1

(∂u

∂y
+

∂v

∂x
−2g3

)))

+ v′
(

∂

∂x

(
E1

(∂u

∂y
+

∂v

∂x
− 2g3

))

+
∂

∂y

(
E1

(∂u

∂x
+ 3

∂v

∂y
− g1 − 3g2

)))]
dx dy

+ 2

∫
ω

E1

[
u′
(

nx

(
3
∂u

∂x
+

∂v

∂y
− 3g1 − g2

)
+ ny

(∂u

∂y
+

∂v

∂x
− 2g3

))

+v′
(

nx

(∂u

∂y
+

∂v

∂x
−2g3

)
+ny

(∂u

∂x
+3

∂v

∂y
−g1−3g2

))]
ds = 0,

(24)
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but this is possible only if the factors to u′ and v′ in both of the integrals
vanish. (nx and ny are the x- and y-components of the unit normal vector
to ω.) The resulting partial differential equations and the boundary conditions
are easily deduced, but we shall do it here only for homogeneous networks,
i.e. for E1 = constant:

3
∂2u

∂x2
+

∂2u

∂y2
+ 2

∂2v

∂x∂y
= 3

∂g1

∂x
+

∂g2

∂x
+ 2

∂g3

∂y

2
∂2u

∂x∂y
+

∂2v

∂x2
+ 3

∂2v

∂2y
= 2

∂g3

∂x
+

∂g1

∂y
+ 3

∂g2

∂y

in Ω (25)

and

nx

(
3
∂u

∂x
+

∂v

∂y

)
+ ny

(∂u

∂y
+

∂v

∂x

)
= nx

(
3g1 + g2

)
+ 2nyg3

nx

(∂u

∂y
+

∂v

∂x

)
+ ny

(∂u

∂x
+ 3

∂v

∂y

)
= 2nxg3 + ny

(
g1 + 3g2

) on ω. (26)

If we in the networks have all four types of observations we only have
to add the expressions (13)–(16) and apply Green’s theorem as above. The
resulting differential equations may be written as

A
∂2u

∂x2
+ B

∂2u

∂y2
+
(
A − B

) ∂2v

∂x∂y
− a

∂α

∂x
− b

∂β

∂y
= Fu

(
A − B

) ∂2u

∂x∂y
+ B

∂2v

∂x2
+ A

∂2v

∂2y
− a

∂α

∂y
+ b

∂β

∂x
= Fv

a
∂u

∂x
+ a

∂v

∂y
+

al2

3
∆α − 2aα = Fα

b
∂u

∂y
− b

∂v

∂x
+

bl2

3
∆β − 2bβ = Fβ

(27)

where

A = 9
4 (E1 + E2) + 3

4 (E3 + E4)

A = 3
4 (E1 + E2) + 9

4 (E3 + E4)

a = 3E2

b = 3E4.

The forces Fu, Fv, Fα, and Fβ depend on the observations and may be
found as in the special case (25). But for the study of random errors in ge-
ometric networks we are normally interested only in the left hand side of
the equations which together with the boundary conditions play a role cor-
responding to the role played by the left hand side of the normal equations.
But for the study of systematic errors and of the interplay between geometric
and physical data they are extremely important.
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The boundary conditions are

nx

(
A

∂u

∂x
+

A − B

2

∂v

∂y
− aα

)
+ ny

(
B

∂u

∂y
+

A − B

2

∂v

∂x
− bβ

)
= fu

nx

(A − B

2

∂u

∂y
+ B

∂v

∂x
− aα

)
+ ny

(A − B

2

∂u

∂x
+ A

∂v

∂y
+ bβ

)
= fv

nx
∂α

∂x
+ ny

∂α

∂y
= fα

nx
∂β

∂x
+ ny

∂β

∂y
= fβ.

(28)

It seems to be so that the boundary forces fu, fv, fα, and fβ may be supposed
vanish if the boundary is shifted a half side length away from the physical
boundary of the network. But as we have not yet found a rigorous proof
for this strong conjecture we only mention it here and refer to the following
treatment of the one-dimensional case where the correctness of the conjecture
is obvious.

7

This last section shall try to describe how we got the idea of establishing a
continuous analogue of the geodetic problem. When once established, then it
is so apparent!

For the sake of simplicity consider a 1-dimensional case of absolute distance
measurements. The straight line from 0 to L is subdivided by points P1, P2,
P3, . . . , Pn−1, Pn. The length of each subinterval between consecutive points
Pi−1 and Pi is measured and the logarithm to the length is given with equal
weight 1. Hence the observation equations are

ln(xi−1,i) = si−1,i i = 2, 3, . . . , n. (29)

The linearized observation equations are then

ui − ui−1

xi−1,i
= si−1,i. (30)

Finally we put xi−1,isi−1,i = fi−1,i and connect the observation fi−1,i ≡ fi−1

with the coordinate i − 1:

u2 − u1 = f1

u3 − u2 = f2

...

un − un−1 = fn−1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ n − 1 equations (31)

or in matrix notation
Au = f (32)
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where

A =

⎡⎢⎢⎢⎢⎢⎣
−1 1

−1 1
−1 1

. . .

−1 1

⎤⎥⎥⎥⎥⎥⎦
(n−1)×n

. (33)

The normals are obtained in the usual way:

Nu = ATAu = ATf (34)

or ⎡⎢⎢⎢⎢⎢⎣
1 −1

−1 2 −1
. . .

−1 2 −1
−1 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
u1

u2

...
un−1

un

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
−1

1 −1
. . .

1 −1
1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
f1

f2

...
fn−2

fn−1

⎤⎥⎥⎥⎥⎥⎦ . (35)

The n-dimensional matrix equation (35) can be looked upon as a submatrix
equation of an infinite matrix equation with the general term

−u(j − 1) + 2u(j) − u(j + 1) = f(j − 1) − f(j). (36)

The transition from the infinite matrices to the finite ones demands some
modifications near the indices 1 and n. We write fully out the equations con-
cerned:

−u0 + 2u1 − u2 = f0 − f1

and

−un−1 + 2un − un+1 = fn−1 − fn.

It is easily seen that we have subtracted

−u0 + u1 = f0 and un − un+1 = −fn (37)

respectively, from the infinite matrices in order to get the normals (35).
Now we apply the method of images to determine the values of u0 and

un+1. By placing the “mirrors” at x = 0 and x = n we get

u0 = u1 and un = un+1. (38)

From (36) then follows
f0 = fn = 0. (39)

The eigenvalue problem defined by the homogeneous difference equa-
tion (36) and the boundary conditions (37), or equivalently the eigenvalue
problem of the matrix N , has the eigenvalues

λi = 4 sin2 iπ

2n
i = 0, 1, . . . , n − 1 (40)
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Fig. 11.1. The Green Function. Note that G′(0, ξ) = 0 and G′(L, ξ) = 0

and corresponding eigenvectors

φi(j) = cos
2j − 1

2n
iπ

i = 0, 1, . . . , n − 1

j = 1, 2, . . . , n.
(41)

Normalization of the φ’s yields

ψi(j) =

⎧⎨⎩
1√
n√
2
n cos 2j−1

2n iπ
i = 1, 2, . . . , n − 1
j = 1, 2, . . . , n.

(42)

In our simple example it has been possible to find an explicit expression for
the pseudo-inverse of N :

N+
ij =

1

2n

(n − 1

3

(
2n+5−6j

)
+
(
j−1

)(
j −2

)
+ i

(
i−1

))
for j ≥ i. (43)

Notice that the row/column sums are zero, i.e. the vectors are orthogonal to a
constant, corresponding to the fact that every vector orthogonal to a constant
vector is estimable.

The continuous analogue to the eigenvalue problem for the difference equa-
tion (36) is

u′′ + λu = 0 (44)

with the boundary conditions

u′(0) = u′(L) = 0. (45)

Notice that these conditions are attached to x = 0 and x = L which are points
half a mesh width outside the physical network in analogy to the discrete case.

This problem has non-trivial solutions for the eigenvalues

λi =
( iπ

L

)2

i = 0, 1, . . . (46)

and the functions

u(x) = cos
iπ

L
x (47)

are the corresponding eigenfunctions.
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Obviously the set of eigenvectors/functions (42), (47) of the discrete and
continuous problems are very similar. The same holds true for the pseudoin-
verse N+

ij (43) and for the Green function of the problem (44), (45). The
generalized Green function is

G(x, ξ) =

⎧⎨⎩
x2+ξ2

2 + L
3 − ξ for x ≤ ξ

x2+ξ2

2 + L
3 − x for x ≥ ξ.

(48)

In Figure 11.1 we have graphed the Green function with arguments x = 1, 2,
. . . , 10. Besides the circles are indicating the entries of N+ such that point
No i has coordinate i. The absolute error of approximation δ(n) = N+ −G is
δ(n) = − 1

12n where n = L. The relative error is ≈ − 1
4n2 . An astonishing good

approximation.
Let φpq = xp − xq, p < q. Then the variance of this difference is given by

σ2(φ̃pq) = G(p, p) + G(q, q) − G(p, q) − G(q, p) = q − p (49)

i.e. the variance of a difference of lengths grows proportionally to this. The
result is in good agreement with the result known from the discrete case.

It turned out that it was easy to determine the generalized Green function
for absolute distance measurements while already in the case of 1-dimensional
relative distance measurements we are faced with a generalized Green function
expressed in not quite simple terms, cf. [5].

This and many other problems need thorough investigation before the
model can be given the adequate geodetic interpretation. About this in forth-
coming publications.
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12

Integrated Geodesy

Introduction

Though geodesy, as the theory of shape and size of the earth, may seem to be
a purely geometrical science, the measurements performed depend not only on
the relative position of the stations involved, but also on a physical entity, the
potential W of the Earth. So, in order to determine the position of a station,
some information concerning W is necessary. If, on the other hand, we know
W (x, y, z) as a function of position, then measurements of, say, the direction
and magnitude of the gradient would determine the coordinates of a point
and so it becomes an object for geodesy to determine W .

The classical way to find W is to split it up in a normal part U and an
anomalous part T through the equation (all the references in the Introduction
refer to [3])

T = W − U (2-137)

where T is determined so as to satisfy the Laplacian ∆T = 0 outside some
surface, say, the geoid. On this surface a boundary condition found

∆g = −∂T

∂h
+

1

γ

∂γ

∂h
T (2-147c)

presenting a third boundary value problem of potential theory, which can be
solved in spherical approximation by Stokes formula

T =
R

4π

∫∫
σ

∆gS(ψ) dσ. (2-163a)

The disadvantage of this method is that the geoid, being the equipotential
surface W = constant of the mean sea level, inside the Earth depends on the
density ρ because of Poisson’s formula

∆W = −4πkρ + 2ω2. (2-6)
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In order to find the gravity anomaly ∆g and at the same time satisfy
that T shall be regular outside the geoid, we have to compute the gravity gG

on the geoid, that is, we have to reduce gravity measured at ground level, and
at the same time remove the masses outside the geoid. In order to do that we
have to make assumptions concerning the density ρ, and this is unsatisfactory
at least from a theoretical point of view even though the practical influence
of these assumptions usually is very small.

For this reason it is of basic importance, that Molodenskiy was able to go
through essentially the same development as Stokes, without assuming any-
thing about the density, by introducing the telluroid and letting this surface
take the place of the geoid. The solution to his problem presents itself in
spherical approximation as

T =
R

4π

∫∫
σ

∆gS(ψ) dσ +
R

4π

∫∫
σ

G1S(ψ) dσ (8-50)

where the second term on the right side expresses the influence of the topo-
graphic effect, and ∆g is calculated as the difference of measured gravity at
ground level and normal gravity at the telluroid. Both Stokes’ and Moloden-
skiy’s method, however, presupposes gravity known overall on the surface of
the Earth, and as this is impossible, ways of interpolating the gravity anoma-
lies have to be found in both cases. This exposes the weakness of (8-50) as the
telluroid as a whole follows the surface of the Earth, and so the interpolated
gravity anomalies become strongly correlated with the height, whereas the
geoid represents the intuitive realization of a level surface.

Now the question naturally arises if it were not possible to select an equipo-
tential surface W = constant, which did not intersect the Earth, reduce mea-
sured gravity upwards and carry out the same calculations as Stokes and
Molodenskiy—thereby getting the advantages of both methods i.e. a smooth
interpolation and no assumptions concerning the mass inside the Earth. The
solution T could then be added to the normal potential U to get W outside
this surface. W could then be split up according to

W = V + Φ (2-5)

thereby determining a regular potential V as Φ is given analytically as

Φ = 1
2ω2

(
x2 + y2

)
. (2-3)

Now we could use, that if for two regular potentials V and V ′ the following
equation holds

V (x) = V ′(X), x ∈ Ω

for an open set Ω, then it holds everywhere in the region of regularity of V
and V ′, and so the potential W could be analytically continued “downwards”
to the surface of the Earth.
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Actually, however, due to inaccuracy of computation and interpolation, the
above equation cannot be fulfilled exactly, but even if there exists an ε > 0 so
that ∣∣V (x) − V ′(x)

∣∣ < ε, x ∈ Ω

potential theory shows us that there exists no δ > 0 so that the “downward”
analytically continued potential differs less than δ from the actual potential
of the Earth, in other words, we risk to get arbitrarily great errors if we
try to continue such a solution downwards. Now, this remarkable feature of
the potential functions not only impairs the practical value of the preceding
example—it also suggests, that if we look for an approximation of a potential
regular in Ω, then we may have several choices, even if we as approximating
functions restrict ourselves to potentials regular in Ω′ � Ω. In [4] is proved
the existence of a solution to such an interpolation problem, using as Ω′ the
exterior of a sphere situated inside the Earth, and as Ω the exterior of the
Earth, and this important theorem enables us to regard the determination
of T as a problem of interpolation rather than a boundary value problem.

One consequence of this different point of view is immediately appealing:
Whereas we in order to solve the boundary value problem have to know gravity
all over the world, or at least so dense that we can interpolate with sufficient
accuracy, we now can seek local solutions of T , which again will enable us
to compute absolute coordinates of the geodetic stations, based only upon
geodetic measurements performed at the area in question.

As mentioned before almost any measurement, even a seemingly purely
geometrical one as an azimuth measurement, attaches a bond to the potential
function at the station where the measurement takes place. So the result of
the measurement expresses an interplay between the position of the stations
involved and the potential field. This interplay can be expressed in differential
equations (so called observation equations), which relate linear functionals of
the disturbing potential to variations in coordinates. Now, as the disturbing
potential is determined so as to be very “small,” we cannot afford to falsify
the information we get about it through the measurements by using some
assumption concerning the density ρ; so we cannot use any form of projection
of the stations and the measurements down to an ellipsoid. This is the main
reason why, in this paper, the observation equations have been carried out in
three dimensions.

The problem of interpolating the disturbing potential T outside the surface
of the Earth, by means of potentials regular down to a “Bjerhammar” sphere,
demands us to give these potentials a mathematical structure, by which we
can be able to measure the fitness of the approximation.

In [4] is found, that the class of approximating functions could conveniently
be structured as a Hilbert space with reproducing kernel, see [6]. Various
reasons for this choice present themselves in his paper, and we shall only
mention a few here:
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1. Due to the fact that the Laplacian is a linear differential operator, the class
of potentials regular outside a sphere forms a vector space over the reals.

2. By introducing a norm in the space it is not only possible to decide if a
given function is an element of this class, but it also, in the case where
several solutions to a problem are available, introduces the possibility to
choose the “smoothest” function in the given topology, by applying the
condition of least norm.

3. This, however, requires that the space is complete.
4. The above mentioned linear functionals on T can be identified with ele-

ments in the dual space of a Hilbert space.
5. The last reason we will mention here is, that the reproducing kernel, due

to the fact that it determines the norm in the dual space, can be used to
find the approximating potential, as is shown in Section III.

This reason exposes the strength and the weakness of the method of inter-
polation. Given a norm in a Hilbert space we can calculate the reproducing
kernel (if it exists), which again delivers the interpolating function, that is,
the problem of interpolation becomes inextricably involved with the problem
of choosing the norm. This problem is not treated in this paper, but even if
we in some way or another found an optimal norm, we could not be sure that
the reproducing kernel existed and even if it existed it might not be suitable
for use in computations.

As a consequence of this line of reasoning it looks more promising to try
to find a kernel which gives the “best” approximation, bearing in mind that
it has to have a simple, closed expression for the sake of computation. Some
work has been done in this field, but it is sufficient here to refer to [8].

I

Let us by W denote the Earth’s potential outside the attracting masses and
let U be some reference potential, determined so that

T = W − U (1)

is regular outside the surface at the Earth. If we replace the surface of the
Earth by a surface α with finite curvature all over, and confine ourselves to
determine T outside α, we can make use of an important variant of Runge’s
Theorem, which states that the set of potentials regular outside a ball B
(situated inside α, B ∩α = ∅) is dense relative to the set of potentials regular
outside α. As ball it is common to use the Bjerhammar sphere B0,B with
radius B, surface σ and complement Σ.

The following theorem follows from the fact that the Laplacian is a linear
differential operator.

Theorem 12.1 The class of functions harmonic on the open set Σ is a
linear vector space over the reals.
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Now, let R be the distance of the volume element dΣ from the center of
the ball B0,B, then the following theorem holds:

Theorem 12.2 Let HB be the class of potential functions regular in Σ for
which

1

2π

∫
Σ

( 1

B
− 1

R

)(
gradφ

)2
dΣ (2)

exists. The class HB is a separable Hilbert space with a reproducing kernel, in
which the scalar product 〈φ, ψ〉H is given by

〈φ, ψ〉H =
1

2π

∫
Σ

( 1

B
− 1

R

)
gradφ gradψ dΣ. (3)

First we shall prove that HB is a Hilbert space. The only non-trivial part
is to prove, that any Cauchy sequence in HB is convergent relative to HB. To
a given δ > 0 let Σδ ⊂ Σ be an open subset defined by

x ∈ Σδ ⇔ Bx,σ ∩ σ = ∅.

Now let φn be a Cauchy sequence, that is

∀ ε>0 ∃ N ∈Ǹ ∀ n, m :(
n, m>N ⇒‖φn−φm‖2

H =
1

2π

∫
Σ

( 1

B
− 1

R

)(
grad(φn−φm)

)2
dΣ <ε2

)
.

Green’s third formula, [7], Chapter III (34), used for the (not harmonic) func-

tion
(
φn(x) − φm(x)

)2
, φn, φm ∈ HB gives

4π
(
φn(x)−φm(x)

)2
=

∫∫
δBx,δ

(
2
r

(
φn−φm)

∂(φn − φm)

∂n
−(φn−φm)2

∂ 1
r

∂n

)
dδB

−
∫∫∫
Bx,δ

1
r ∆(φn − φm)2 dΣ

as(
φn(x)−φm(x)

)2 ≥ 0,

∫∫
δBx,δ

(φn−φm)2
∂ 1

r

∂n
≥ 0, and

∫∫∫
Bx,δ

1
r ∆(φn−φm)2 dB ≥ 0

we have

4π
(
φn(x) − φm(x)

)2 ≤
∫∫

δBx,δ

2
r (φn − φ)

∂(φn − φm)

∂n
dδB
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or

4π
(
φn(x) − φm(x)

)2 ≤ 2
δ

∫∫
δBx,δ

(φn − φ)
∂(φn − φm)

∂n
dδB (4)

using the fact, that we on δBx,δ have r = constant = δ.
Green’s first identity∫∫∫

Bx,δ

u∆v dB +

∫∫∫
Bx,δ

gradu gradv dB =

∫∫
δBx,δ

u
∂v

∂n
dδB

with u = v = φn − φm gives

2
δ

∫∫
δBx,δ

(φn − φm)
∂(φn − φm)

∂n
dδB = 2

δ

∫∫∫
δBx,δ

(
grad(φn − φm)

)2
dB

and (4) becomes

2πδ
(
φn(x) − φm(x)

)2 ≤
∫∫∫
Bx,δ

(
grad(φn − φm)

)2
dB

as any x ∈ Σδ at least is the distance δ from σ, a scalar k can be found (i.e.
k < 1

B − 1
B+δ ) so that

δk2π
(
φn(x) − φm(x)

)2 ≤ k

∫∫∫
Bx,δ

(
grad(φn − φm)

)2
dB

≤
∫
Σ

( 1

B
− 1

R

)(
grad(φn − φm)

)2
dΣ (5)

so that φn(x), x ∈ Σδ is uniformly convergent. Consequently there exists a
function φ harmonic in Σδ (Harnack’s Theorem) for which

φ(x) = lim
n→∞ φn(x), x ∈ Σδ (6)

in the sense of pointwise convergence, i.e.

∀ x ∈ Σδ ∀ η > 0 ∃ N
(
n > N ⇒ |φ(x) − φn(x)| < η

)
. (7)

As Σ is open and δ can be made arbitrary small we can replace ∀x ∈ Σδ with
∀x ∈ Σ getting the sharper result that there exists a harmonic function φ(x),
x ∈ Σ for which

φ(x) = lim
n→∞φn(x), x ∈ Σ.

We shall now prove, that φ is an element of HB, that is has a finite norm.
First we observe that the sequence ‖φn‖H is convergent owing to the fact,
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that ‖φn‖H −‖φm‖H ≤ ‖φn −φm‖H . Let λ = limn→∞ ‖φn‖H and let us take
a closer look at the equation

‖φ‖2
Σδ

=
1

2π

∫
Σδ

( 1

B + δ
− 1

R

)
(gradφ)2 dΣδ. (8)

We repeat Green’s second identity∫
Σδ

u∆v − v∆u dΣδ =

∫
σ′

(
u

∂v

∂n
− v

∂u

∂n

)
dσ′

where σ′ is the surface of Σδ.
Put u = ρ, v = φψ where ρ, φ, ψ satisfy Laplace’s equation in a domain

including Σδ and φ, ψ are regular at infinity:

2

∫
Σδ

ρ gradφ gradψ dΣδ =

∫
σ′

ρ
(
φ

∂ψ

∂n
+ ψ

∂φ

∂n

)
dσ′ −

∫
σ′

∂ρ

∂n
φψ dσ′ (9)

putting ρ = 1
B+δ − 1

R we obtain

2

∫
Σδ

( 1

B + δ
− 1

R

)
gradφ gradψ dΣδ =

1

(B + δ)2

∫
σ′

φψ dσ′

or

1

4π(B + δ)2

∫
σ′

φψ dσ′ =
1

2π

∫
Σδ

( 1

B + δ
− 1

R

)
gradφ gradψ dΣδ (10)

using (10) we can now write (8):

‖φ‖2
Σδ

=
1

4π(B + δ)2

∫
σ′

φ2 dσ′. (11)

The triangular inequality now gives:

‖φ‖Σδ
≤ ‖φ − φn‖Σδ

+ ‖φn‖Σδ

now we use (7) on (11) and observe that ‖φn‖Σδ
≤ ‖φn‖H :

‖φ‖Σδ
≤ η + ‖φn‖H

and we have for each δ > 0 that ‖φ‖Σδ
is finite. Now follows the existence of

‖φ‖2
H =

1

2π

∫
Σ

( 1

B
− 1

R

)
(gradφ)2 dΣ ≤ λ



186 12 Integrated Geodesy

from a well-known theorem concerning monotone convergence of Lebesgue
integrals (B. Levi’s monotone convergence theorem). The limit function φ is
then a member of our class HB and as a consequence HB is a Hilbert space.
Following [6], Theorem III.2, HB has a reproducing kernel if φ(x) is a linear
functional for every fixed x ∈ Σ. It is enough here to show that it is bounded.

(5) yields

2πk
(
φ(x)

)2 ≤
∫
Σ

( 1

B
− 1

R

)
(gradφ)2 dΣ

or

φ(x)

‖φ‖H
≤
√

1

k(x)
(12)

where k depends solely on the distance from x to σ. Now from (12) and the
fact that φ ∈ HB is continuous follows, that HB is separable, see [6], Theorem
III.9, i.e. there exists a complete orthonormal system for HB. This means that
every φ ∈ HB may be represented by a series expansion

φ(x) =

∞∑
v=1

〈φ, φv〉H φv(x), x ∈ Σ (13)

this, however, is to be understood in the sense of convergence in the Hilbert
space metric

lim
N→∞

∥∥∥∥φ(x) −
N∑

v=1

〈φ, φv〉H φv(x)

∥∥∥∥
H

= 0

in addition, see [6], Theorem III.4, for every subset Σδ ⊂ Σ the series (13) is
uniformly convergent.

The kernel function KB(x, y), x, y ∈ Σ is uniquely determined, see [6],
Theorem III.1 and is for every fixed x ∈ Σ a regular potential function of y
and vice versa. As the space HB is separable KB(x, y) can be written as a
convergent series

KB(x, y) =

∞∑
v=1

φv(x)φv(y) x, y ∈ Σ (14)

for any complete orthonormal system {φv}, v = 1, 2, . . . .
We have now finished the proof of Theorem 12.2. Of course it could have

been made the other way around: By 1) introducing the spherical harmonics
suitably normalized, 2) prove that they constitute a complete orthonormal
system, and 3) that the series (14) is convergent. This has been done by
Krarup, getting the reproducing kernel

K(x, y) =
‖x‖2‖y‖2 − B4(

B4 − 2B2‖x‖‖y‖ cosω + ‖x‖2‖y‖2
)3/2

where ω is the angle between the vectors x and y.



12 Integrated Geodesy 187

We are in the following going to use two important facts concerning a
reproducing kernel, first the reproducing quality:

φ(x) =
〈
K(x, y), φ(y)

〉
H

∀φ ∈ HB , x, y ∈ Σ (15)

which is well known, and second that it can be used to find a representation of
certain bounded linear functionals. Let evx (the evaluation at x) be defined by

evx ∈ HT
B , evx : φ → φ(x), ∀φ ∈ HB, x ∈ Σ

from (15) follows
φ(x) =

〈
K(x, ·), φ

〉
H

(16)

so that evx ∈ HT
B may be represented by the element K(x, ·) ∈ HB. That evx

is bounded follows by applying Cauchy-Schwarz’ inequality on (16) using the
same technique as in

Theorem 12.3 Any directional derivative Dx,e taken at a fixed point x in
the direction e is a bounded linear functional Dx,e ∈ HT

B and may be repre-
sented by the element Dx,e

(
K(x, ·)

)
where the index x means that the direc-

tional derivative is to be applied on K(x, y) considered as a function of x for
every fixed y ∈ Σ.

Following (16) we have for every fixed h �= 0

φ(x) − φ(x + he)

h
=

〈
K(x, ·) − K(x + he, ·)

h
, φ

〉
H

, h �= 0 (17)

or, in a condensed notation

∆x,h φ =
〈
∆x,hK(x, ·), φ

〉
H

using Cauchy-Schwarz’ inequality we get

|∆x,h φ| ≤ ‖∆x,hK(x, ·)‖H‖φ‖H

but∥∥∆x,hK(x, ·)
∥∥2

H
=

〈
K(x, ·) − K(x + he, ·)

h
,
K(x, ·) − K(x + he, ·)

h

〉
H

using the reproducing quality of K(x, y) we get∥∥∆x,hK(x, ·)
∥∥2

H
=

K(x + he, x + he) − 2K(x, x + he) + K(x, x)

h2

which can be arranged as

∆x,h∆y,hK(x, y)

=

(
K(x + he, x + he) − K(x, x + he)

)
−
(
K(x, x + he) − K(x, x)

)
h2

.
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Now, for every fixed h �= 0 the above expression is finite. Using that K(x, y)
is a potential regarded as a function of one of the variables when the other is
fixed, and that the derivative of a potential is a potential we can to every r > 0
find M so that

|h| < r ⇒ ∆x,h∆y,hK(x, y) < M

by taking the limit in (17) the rest of Theorem 12.3 follows.

II

We will start this section by establishing the mathematical model chosen in
this paper to fit the physical reality and the preceding theory.

Regarding the former it comes natural to refer the Earth and thereby the
geodetic stations and the reference potential U to the 3-dimensional Euclidean
vector space with a basis e1, e2, e3 and origin at the Earth’s center of gravity.
e3 is chosen as a parallel to the meridian plane of Greenwich, e1 coincides
with the Earth’s axis of rotation. With special reference to polar migration
the choice of e1 formally requires a fixed moment of time but as that problem
is of no immediate consequence for the actual derivation of the observation
equations we will for the rest of this section regard it as non-existing. Rel-
ative to this “global” coordinate system each geodetic station P will have
attached reference coordinates XR (written as a 3 × 1 matrix) and values

UXR
, (gradU)XR

and
(

∂2U
∂xi∂xj

)
XR

.

The preceding theory demands observation equations relating measure-
ments to linear operators of the anomalous potential T and variations in co-
ordinates and as a consequence hereof it has proven a facility at each station
to introduce local Cartesian coordinate systems after an idea developed in [2].

Now, suppose that we have carried out angular measurements at the sta-
tion Q to the station P . In the moment of observation the theodolite de-
fines a “local” Cartesian coordinate system with origin at Q, first axis along
(gradW )Q and third axis situated in the plane defined by the first axis and the
center of the cross hairs of the theodolite, i.e. in the direction of the measured
angle αm.

The idea now is to approximate this local system by a “local reference
system” with origin at the reference coordinate YR of Q, first axis along
(gradU)YR

and third axis turned the angle αm relative to some fixed approxi-
mation of the zero-point of the circle. If we, in this system, make a simulation
of the measurement by moving the cross hairs along a unit sphere in the plane
defined by the first and the third axes until the almucantar goes through the
point XR defined by the reference coordinates of P , we can introduce the two
variables K, H which both are angles defined along the lines of the cross hairs
relative to its center. K is defined positive along the almucantar towards the
second axis, H is defined negative along the vertical towards the first axis.
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e1
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Fig. 12.1. Definition of the variables H and K for given measurement station YR

and target station XR

Thus, if the point XR has the local direction cosines (ξR, ηR, ζR), H and K
are given by

ξR = cosK sin H

ηR = sin K (18)

ζR = cosK cosH

or, in the reference coordinates relative to the local system (small x), with
R = ‖XR − YR‖:

x1R = R cosK sin H

x2R = R sin K (19)

x3R = R cosK cosH.

The local systems introduced this way may at first sight seem a little tedious
but there are among others three reasons underlying our choice:

1. Regardless of the position of the station and the object there are induced
no singularities, and so we can use the systems to deduce both terrestrial
and astronomical observation equations.

2. Corrections for instrumental errors can be applied at the intuitive correct
place i.e. at H and K.

3. The systems apply directly to horizontal wire passages of stars, the prob-
lem of convergence between the almucantar of latitude and the great circle
induced by the horizontal wire never arising.

To do the observation equations will now be to establish a bond between
the variations leading

(a) the local reference system onto the local system (by modifications applied
to the reference coordinates and to the directions of the axes), and
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(b) the changes thereby induced in the quantities H and K.

The derivation of (a) might be done by means of ordinary vector calculus,
but we think the reader will agree, that we can cut a short way by utilizing
a property by the Euclidean space, observing that any two of the coordinate
systems introduced so far transform into each other by a so called rigid mo-
tion i.e. a motion composed by a translation and a rotation. Especially, the
rotations in this case being orthogonal transformations in a Euclidean space,
the transformations form the Euclidean Group of the space. According to [9]
the members of this group may be represented as 4 × 4 matrices

F =

[
1 0
Y A

]
where Y is a 3×1 matrix and A is a 3×3 orthogonal matrix. For our purpose it
may be suggestive to interpret Y as the global coordinates of the local system
and A as the matrix of transformation which rotates the global coordinate
axes onto the local ones. Using this interpretation we will call F a frame and
it is easily seen that there is a one-to-one correspondence between frames and
coordinate systems, for instance the frame corresponding to the global system
is the 4 × 4 unit matrix E.

Let P and Q have the global coordinates X and Y , and let P have the
local coordinates x relative to a local system situated at Q. The equation of
transformation is

X − Y = Ax (20)

which is equal to writing [
1
X

]
=

[
1 0
Y A

] [
1
x

]
(21)

thus establishing a one-to-one correspondence between the coordinates of a
point relative to a coordinate system and relative to a frame by extending the
vector

X →
[

1
X

]
. (22)

If we denote the extended vectors as
[

1
X

]
,
[

1
x

]
by X̃, x̃ we can write (21)

simply as

X̃ = F x̃ (23)

which has the solution

x̃ = F−1X̃ (24)

where

F−1 =

[
1 0

−A−1Y A−1

]
. (25)



12 Integrated Geodesy 191

(24) yields the local coordinates of a point as a function of its global coordi-
nates and the frame in question. The above formulas apply also for a direction
when we interpret it as a difference between points, i.e.

X̃ − Ỹ =

[
0

X − Y

]
. (26)

In order to compare measurements in a local frame F to coordinates in a
local reference frame FR, we seek the variation δx̃ in x̃R when we apply the
modifications

X̃R → X̃R + dX̃ (27)

ỸR → ỸR + dỸ (28)

to the reference coordinates XR, YR of P, Q and simultaneously change the
reference frame according to

FR → FR + dF (29)

where the variation of FR may be seen as the result of the following three
points

1. The first column in FR is changed according to (28).
2. The first coordinate axis is rotated onto a parallel to (gradW )Q or, ex-

pressed by U and T , to the gradient of

W = UYR
+ dY T(gradU)YR

+ T (30)

where we can suppose T to be taken at Q.
3. The third axis (and thereby the second too) is rotated according to a

correction dα0 to the fixed approximation to the zero-direction.

As a consequence of the way we have chosen the reference frame, we can
regard the changes (27), (28), (29) as differential, thus getting (from (24))

δx̃ = dF−1
R X̃R + F−1

R dX̃ (31)

from (25) we find

dF−1
R =

[
0 0

−dA−1YR − A−1 dY dA−1

]
(32)

so that

δx̃ =

[
0 0

−dA−1YR − A−1 dY dA−1

] [
1

XR

]
+

[
1 0

−A−1YR A−1

] [
0

dX

]
or

δx̃ =

[
0

−dA−1YR − A−1dY + A−1dX + dA−1XR

]
(33)
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having
dA−1XR − dA−1YR = dA−1(XR − YR) = dA−1AxR

and
A−1dX = dx

we get
δx = dx − dy + dA−1AxR. (34)

The only not trivial part of (34) is the infinitesimal matrix

S = dA−1A = dATA (35)

where we have used that differentiation and transposition commute and that
A is orthogonal

ATA = I. (36)

Differentiation of (36) gives

dATA + ATdA = 0

or

S + ST = 0

ST = −S

i.e. the matrix S is skew-symmetric. If we write

S =

⎡⎣ 0 −s3 −s2

s3 0 −s1

s2 s1 0

⎤⎦
our problem is now to express s1, s2, s3 by dx and T . As the column vectors
of the matrix A + dA have the directions of the coordinate frame

F = FR + dF

the first column vector of A + dA equals the vector k(gradW )Q in the global
system, where k is a constant �= 0. Therefore this vector in the reference
system must equal the first column vector of

A−1(A + dA) = I − S

or

k
∂W

∂x1
=

1

γ

∂U

∂x1

k
∂W

∂x2
= −s3

k
∂W

∂x3
= −s2

(37)
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where γ = ‖ gradU‖ is the reference gravity. Using (30) in the local system
we can write (37) as

∂U

∂x1
+ dyT

(
grad

∂U

∂x1

)
+

∂T

∂x1
=

1

kγ

∂U

∂x1
(38)

k

(
dyT

(
grad

∂U

∂x2

)
+

∂T

∂x2

)
= −s3 (39)

k

(
dyT

(
grad

∂U

∂x3

)
+

∂T

∂x3

)
= −s2 (40)

from the first of these equations follows, that

−k =
1

γ
+ 0(dy, T )

so that we in the infinitesimal equations (39) and (40) may put −k = 1/γ to
find

s2 =
1

γ

(
dyT

(
grad

∂U

∂x3

)
+

∂T

∂x3

)
(41)

s3 =
1

γ

(
dyT

(
grad

∂U

∂x2

)
+

∂T

∂x2

)
(42)

a similar argument applied at the second (or third) column vector in the
matrix I − S will prove that

s1 = −dα0

and we have

δx = dx − dy

− 1

γ

⎡⎢⎢⎢⎣
0 −dyT

(
grad ∂U

∂x2

)
+ ∂T

∂x2
−dyT

(
grad ∂U

∂x3

)
+ ∂T

∂x3

dyT
(
grad ∂U

∂x2

)
+ ∂T

∂x2
0 γdα0

dyT
(
grad ∂U

∂x3

)
+ ∂T

∂x3
−γdα0 0

⎤⎥⎥⎥⎦
×

⎡⎣x1R

x2R

x3R

⎤⎦ . (43)

To do (b) i.e. to deduce the changes in H and K we differentiate (19) to get

dx1 = cosK sin H dR − R sinK sinH dK + R cosK cosH dH (44)

dx2 = sin K dR + R cosK dK (45)

dx3 = cosK cosH dR − R sin K cosH dK − R cosK sin H dH (46)
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and form (44) · x3R − (46) · x1R

x3R dx1 − x1R dx3 = R2 cos2 K dH =
(
x2

1R + x2
3R

)
dH = r2 dH

to get
dH = bT dx (47)

where
bT =

[ x3R

r
0 −x1R

r2

]
.

To get dK we form (44)·x2Rx1R + (46) · x2Rx3R

x1Rx2R dx1 + x2Rx3R dx3 = R2 cos2 K sinK dR − R3 sin2 K cosK dK

and (45) · r2

r2 dx2 = R2 cos2 K sin K dR + R3 cos2 K cosK dK

subtraction gives

−x1Rx2R dx1 + r2 dx2 − x2Rx3R dx3 = R3 cosK dK = R2r dK

or
dK = cT dx (48)

where
cT =

[
−x1Rx2R

rR2

r

R2
−x2Rx3R

rR2

]
.

The observation equation for an observed horizontal direction now follows,
observing that if xR is changed with δx then K is incremented with δK and as
a consequence of the way we have defined the local coordinate system we have

K + δK + v = 0.

As δK can be regarded as a differential quantity, we may apply (48) to get

K + v = −cTδx

or, using (43)

x1Rx2R

rR2
dx1 −

r

R2
dx2 +

x2Rx3R

rR2
dx3 +

(x1R

rγ

∂2U

∂x1∂x2
− x1Rx2R

rR2

)
dy1

+
(x1R

rγ

∂2U

∂x2
2

+
r

R2

)
dy2 +

(x1R

rγ

∂2U

∂x2∂x3
− x2Rx3R

rR2

)
dy3

+
x3R

r
dα0 +

x1R

rγ

∂T

∂x2
= K + v. (49)

Let H be the complement of an observed zenith distance. Using the same ar-
gument as above we can write an observation equation for zenith distances as

Hm − H + v = δH = bTδx
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or explicitly

x3R

r2
dx1−

x1R

r2
dx3−

(1

γ

∂2U

∂x1∂x3
+

x3Rx2R

γr2

∂2U

∂x1∂x2
+

x3R

r2

)
dy1

−
(1

γ

∂2U

∂x2∂x3
+

x2Rx3R

γr2

∂2U

∂x2
2

)
dy2−

(1

γ

∂2U

∂x2
3

+
x2Rx3R

γr2

∂2U

∂x2∂x3
+

x3R

r2

)
dy3

+
x1Rx2R

r2
dα0−

1

γ

∂T

∂x3
− x2Rx3R

γr2

∂T

∂x2
= Hm−H +v. (50)

The above observation equations only apply to an object given an absolute
position as e.g. a geodetic station on the Earth. Regarding astronomical mea-
surements, the position of a star will be given by its direction cosines or by
H , K as defined in equation (18). Now of course we could start at

δx̃ = dF−1
R X̃R + FR dX̃ (51)

and carry out the calculations along the same line as above (with the obvious

modification (26) of X̃R), but at this point we will put

dX̃ = 0

as

1. we do not believe it to be relevant here to set up observation equations
which apply corrections to the positions of the stars, and

2. the measurement carried out to determine the position of the star e.g. a
time measurement, will be taken as being exact. The error thereby induced
should be treated as a collimation error.

Visualizing (26), (32), (35) and (18) we can write (31) as⎡⎣dξ
dη
dζ

⎤⎦ =

⎡⎣ 0 −s3 −s2

s3 0 −s1

s2 s1 0

⎤⎦⎡⎣ξR

ηR

ζR

⎤⎦ . (52)

Inserting H and K by (18) and carrying out the differentiation and multipli-
cation gives

− sinK sin H dK + cosK cosH dH = −s3 sinK − s2 cosK cosH (53)

cosK dK = s3 cosK sin H − s1 cosK cosH (54)

sin K cosH dK − cosK sin H dH = s2 cosK sin H + s1 sin K (55)

(53) · cosH − (55) · sin H gives

cosK dH = −s1 sin H sinK − s2 cosK − s3 sin K cosH

dH = −(s1 sin H + s3 cosH) tanK − s2
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or, written out explicitly as an observation equation for an observed passage of
the horizontal wire at the fixed zenith distance Hm and the fixed azimuth αm:

sin H tanK dα0−
1

γ

( ∂2U

∂x1∂x2
cosH tanK +

∂2U

∂x1∂x3

)
dy1

− 1

γ

(∂2U

∂x2
2

cosH tanK +
∂2U

∂x2∂x3

)
dy2−

1

γ

( ∂2U

∂x2∂X3
cosH tanK +

∂2U

∂x2
3

)
dy3

− 1

γ

∂T

∂x2
cosH tanK− 1

γ

∂T

∂x3
= Hm−H +v. (56)

K is found by forming (53) · sin H+ (55) · cosH

− sinK dK = −s3 sinK sinH + s1 sinK cosH (57)

and (54) · cosK− (57) · sinK

dK = s3 sin H − s1 cosH

and the observation equation for the passage of a star through the vertical
hair with the azimuth αm becomes

sin H

γ

∂2U

∂x1∂x2
dy1 +

sinH

γ

∂2U

∂x2
2

dy2 +
sin H

γ

∂2U

∂x2∂x3
dy3 +

sin H

γ

∂T

∂x2

+ cosH dα0 = K + v. (58)

We shall once again stress that the equations (56) and (58) are valid no
matter what position the observer has on the Earth. The price we have to
pay is that we always have to be in possession of corresponding values of
αm and Hm. We do not regard this as a serious draw back, as the “other”
measurement by no means has to be exact, say less than 10◦ which a little
consideration will show.

We are now going to leave the local coordinate systems. Suppose that we
have carried out a gravity measurement at the station Q. Considering the
methods of measurement used today, we can regard the measured gravity g
to be an absolute value, i.e.

g = ‖ gradW‖Q

which can be expanded as

g = ‖ gradW‖YR+dY =
∥∥gradU + dY T(gradU) + T

∥∥
YR

.

If we as reference value use γ = ‖ gradU‖YR
we have

g − γ =
g2 − γ2

g + γ
=

∑
i

( ∂U

∂xi
+
∑

j dYj
∂2U

∂xi∂xj
+

∂T

∂xi

)2

−
∑

i

( ∂U

∂xi

)2

g + γ
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=

2
∑

i

∂U

∂xi

(∑
j dYj

∂2U

∂xi∂xj
+

∂T

∂xi

)
+ second order terms

2γ + first order terms
.

Introducing the 3×3 matrix M consisting of the second order derivatives of U

M =
∂2U

∂xi∂xj

we get

g − γ =
1

γ

(
gradU

)T(
M dY + gradT

)
+ second order terms

so that the observation equation becomes

1

γ2

(
gradU

)T
M dY +

(
gradU

)T(
gradT

)
=

g − γ

γ
+ v. (59)

Spirit levelling between two stations P and Q can be regarded as a measured
difference (WP − WQ) of the value of the potential at the two points. An
expansion gives

Wp − WQ = UXR
+ dXT(gradU)XR

+ TP − UYR
− dY T(gradU)YR

− TQ

and the observation equation becomes

dXT(gradU)XR
−dY T(gradU)YR

+TP −TQ = (WP −WQ)−(UXR
−UYR

)+v.
(60)

The last example given in this section will be the observation equation for an
observed distance Sm. It becomes

Sm − R

R
+v=

X1R

R2
dX1+

X2R

R2
dX2+

X3R

R2
dX3−

Y1R

R2
dY1−

Y2R

R2
dY2−

Y3R

R2
dY3.

(61)

III

The aim of this section is to find an element in the Hilbert space HB (i.e. a
potential) given the values of n linear functionals of the disturbing potential.
Visualizing the observation equations, Theorem 12.3 states that the linear
functionals li used are bounded and have the norm

‖li‖2 = lix

(
liy

(
K(x, y)

))
(62)

where the norm used is the usual maximum norm for linear mappings.
For any two of these linear functionals we can define a scalar product by

〈li, lj〉 = 1
2

(
‖li + lj‖ − ‖li‖ − ‖lj‖

)
(63)
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thus having
〈li, lj〉 = lix

(
ljy

(
K(x, y)

))
. (64)

Suppose that we have carried out n measurements in order to determine
the 3m coordinates of m different geodetic stations. Let A denote the ma-
trix formed by the n observations with T = the zero-potential, P the weight
matrix of the system and r the vector of residuals. The normal equations are

ATPAx = ATPr. (65)

As the reference coordinates generally not allow the system to be linear (65)
must be iterated in the sense that the solution x must be added to the reference
coordinates until we have a solution for which x = 0.

When we have iterated “to the bottom” a new vector of residuals r′ may
be calculated using the latest coordinates and we have

ATPr′ = 0.

Inserting the disturbing potential T and the matrix L representing the linear
functionals we have

LT = r′. (66)

From this point we have found it convenient to denote the approximating
potential in HB by T , as we do not believe it will cause any confusion. Now,
the problem of determining T is a problem of collocation if we require (66)
to be satisfied exact. This has in general an infinity of solutions, but if we
choose the solution with minimal norm then we have a problem of least-
squares collocation and such a problem has generally a unique solution.

Let T be the minimal solution. Any solution T1 to (66) can be written in
the form

T1 = T + T0

where T0 is a solution to
LT0 = 0 (67)

we have
‖T1‖ = 〈T + T0, T + T0〉 = ‖T ‖ + ‖T0‖ + 2〈T, T0〉 (68)

if T satisfies not only (66) but also

〈T, T0〉 = 0

for every solution T0 to (67) then it follows from (68) that T is the solution with
minimal norm. Let li be the linear functional of the i’th row of L. Theorem 12.3
states that it may be represented by lix

(
K(xj)

)
so that we can write (67) as〈

lix

(
K(xj)

)
, T0

〉
H

= 0

so that T must be orthogonal to the elements

lix

(
K(xj)

)
i = 1, 2, . . . , n
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and it follows that T can be expressed as

T =

n∑
i=1

αilix

(
K(xj)

)
for a suitable set of constants αi, i = 1, 2, . . . , n. (66) gives

ljy

( n∑
i=1

αilix

(
K(xj)

))
= r′j

or using the condensed notation of (64)

n∑
i=1

〈li, lj〉αi = r′j (69)

the matrix
[
〈li, lj〉

]
can be shown to be non-singular for the linear functionals

derived in Section II, so
[
〈li, lj〉

]−1
exists and the constants αi can be found

from (69) by

α =
[
〈li, lj〉

]−1
r′ (70)

and the solution of the least-squares collocation problem is

T = r′T
[
〈li, lj〉

]−1
lx
(
K(xj)

)
(71)

where lx
(
K(xj)

)
is the column vector

{
lix

(
K(xj)

)}
. The norm of T becomes

‖T ‖ = r′T
[
〈li, lj〉

]−1[〈li, lj〉][〈li, lj〉]−1
r′ = r′T

[
〈li, lj〉

]−1
r′. (72)

Various reasons speak against a solution as (71). For instance we risk to get
an oscillating T and moreover we know that the observation errors are “built
in” the vector r′. This leads us to another way of presenting the problem:
Find T ∈ HB such that the expression

δ = ‖T ‖H + (LT − r′)TP (LT − r′) (73)

is minimum.
Visualizing the previous pages we have that to any vector β the problem

LT = β

has a solution of minimal norm:

‖T ‖=βT
[
〈li, lj〉

]−1
β

for such a solution (73) becomes

δ=βT
[
〈li, lj〉

]−1
β+(β−r′)TP (β−r′)=βT

([
〈li, lj〉

]−1
+P

)
β−2βTPr′+r′TPr′
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this expression attains its minimum for β satisfying([
〈li, lj〉

]−1
+ P

)
β = Pr′ (74)

multiplying (74) by P (the variance-covariance matrix) and using β=
[
〈li, lj〉

]
α

gives (
P−1 +

[
〈li, lj〉

])
α = r′ (75)

the matrix
(
P−1 +

[
〈li, lj〉

])
is positive definite being the sum of two positive

definite matrices and so (75) may be solved for α. Then the solution T is
found by

T =

n∑
i=1

αilix

(
K(xj)

)
(76)

a simple calculation shows that δ is given by

δ = r′T
(
P−1 +

[
〈li, lj〉

])−1
r′. (77)

The way to proceed is now to use an iterative method by first calculating
the adjusted coordinates ignoring T . Then using these coordinates we find an
estimate for T better than zero; then better values for the coordinates etc.

This way of procedure is similar to the classical way of calculating coor-
dinates where the physical information is processed using the knowledge of
coordinates and afterwards used to improve these coordinates. The difference
is that we in this method have systematized these steps so that the whole
calculating process can be carried out in a short time on a computer.

The Concept of Solution in Integrated Geodesy

We have seen how to find the observation equations in integrated geodesy.
We saw that the observation equations are a set of linear equations with a
constant term, there is one equation corresponding to each observed quantity
and it expresses the increment of this quantity as a function of the increments
of the coordinates and of the linear functionals on the potential involved in
this observation.

It is not at all evident how to define a solution of an adjustment problem
in integrated geodesy: even if we had determined the values of the (finitely
many) linear functionals on the potential, this potential would not be deter-
mined because it depends on infinitely many parameters. We have build up the
observation equations in a rather hypothesis-free manner but now we cannot
advance further without introducing a hypothesis concerning the variation of
the potential.

In classical adjustment we also have to introduce a hypothesis—here con-
cerning the distribution of the increments to the observed values—in order
to define a solution. This hypothesis, which is in fact a statistical hypothesis,
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brings about that we may define the optimal solution of the adjustment prob-
lem as that solution of the observation equation which minimizes a certain
quadratic form in the increments to the observed values.

In comparing solutions to the observation equation we will intuitively—
other things equal—prefer a solution giving a ‘smaller’ correction to the po-
tential for one which gives a ‘larger’ correction. But in order to give the words
‘smaller’ and ‘larger’ a meaning we must define some form for measure for
the potential. In analogy with classical adjustment we will choose a quadratic
norm so that we are led to the application of Hilbert space theory.

From a superficial consideration it would seem desirable to choose the
norm in such a way that we could work in a Hilbert space H such that

1. All elements of H are harmonic functions in the space outside the surface
of the Earth.

2. H contains all the functions which are harmonic outside the surface of the
Earth.

3. All linear functionals of forms corresponding to quantities observable in
geodesy are continuous functionals on H.

One can however prove that it is impossible to find a Hilbert space which
satisfies these three requests. The best we can achieve is one which satisfies
the three requests where the second request is replaced by the following one:

2′. Every function harmonic outside the surface of the Earth may be ap-
proximated arbitrarily well (in a sense to be defined more explicitly) by
elements of H.

There are many possible choices for a norm which defines spaces satisfying
these modified requests and there are many problems related to such a choice.
In the next section we shall discuss some of these problems, but here we shall
only suppose that we have chosen one such norm ‖ · ‖. When such a norm has
been chosen we shall prefer a solution which minimizes this norm.

Let us suppose that in a given adjustment problem in integrated geodesy
there are involved N linearly independent linear functionals f1, f2, . . . , fN .
Suppose moreover that (x0, φ0, v0) satisfies the observation equations. x0 is
the vector defining the increments of the coordinates, v0 one defining the
increments of the values of the observations and φ0 ∈ H is the increment to
the reference potential. Then if φ is any harmonic function for which

fiφ = 0, i = 1, 2, . . . , N (78)

then also (x0, φ0+φ, v0) is a solution. So for the original solution to be optimal
we must demand that

‖φ0‖ = inf
fiφ=0, i=1,2,...,N

‖φ0 + φ‖. (79)

The set of elements of H satisfying (78) is a closed linear subspace of H,
therefore there exists a closed linear subspace H0 of H which is orthogonal to
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it and H0 is evidently an N -dimensional Hilbert space. Let us suppose that φ0

already has been chosen such that φ0 ∈ H0—if it was not so originally we could
replace it with its orthogonal projection onto H0 without effecting the values
of the functionals fi. But then

‖φ0 + φ‖ =
(
‖φ0‖2 + ‖φ‖2

)1/2 ≥ ‖φ0‖
so that (79) is satisfied for this choice for φ0 and—given the values of fiφ—
only for this choice and we have proved:

For the triple (x0, φ0, v0) satisfying the observation equations to be
optimal it is necessary that φ0 ∈ H, the subspace of H orthogonal to
all solutions of the equations (78).

The observation equations may be written as

aT
i x + fiφ = Ci + Vi, i = 1, 2, . . . , N

where ai are vectors in an n-dimensional vector space (n is the number of
unknown coordinates), Vi are the increments to the values of the observations
and Ci are constants. Here we have for the sake of simplicity ignored the
possibility of having observation equations involving no functionals on the
potential or involving such functionals which are linear combinations of the
first N ones.

As we may suppose φ ∈ H0 and as the functionals fi are supposed to be
linearly independent we may use ui = fiφ as coordinates in the N -dimensional
vector space H0. ‖φ‖2 must be a quadratic form in the coordinates ui, say

‖φ‖2 =
∑
ij

Qijuiuj.

Suppose we have a complete orthonormal system {ψi}, i = 1, 2, . . . , N in H0,
{ψi} are then vectors such that (ψi, ψj) = δij and (ψj , φ) = 0 for every φ ∈ H
such that fiφ = 0 for i, j = 1, 2, . . . , N . Then there are constants αij , i, j = 1,

2, . . . , N such that fiφ =
∑N

j=1 αij(ψj , φ) for all φ ∈ H. If we write

Fi =
N∑

j=1

αijψj (80)

then fiφ = (Fi, φ), that is Fi is the element in H0 which represents the linear
functional fi. We can also say that Fi is the element in H which represents
the functional fi, but as we have seen Fi are actually in H0.

From (80) follows

(Fi, Fj) =

N∑
h,l=1

(
αihψh, αjlψl

)
=

N∑
l=1

αilαjl,

or if we write A = {αij}
(Fi, Fj) = AAT.
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We have supposed the functionals fi to be linearly independent so that A
must be non-singular and from

ui = fiφ =

N∑
j=1

αij(ψj , φ)

we deduce that {
(ψj , φ)

}
= A−1u,

but from the orthonormality and the completeness of the system {ψi} follows

‖φ‖2 =

N∑
j=1

(ψj , φ)2 = uT(AAT)−1u,

that is Q = (AAT)−1 =
{
(Fi, Fj)

}−1
.

Let us rewrite the observation equations in matrix notation

Ax + u = c + v (81)

these equations differ only from the classical observation equations by the
presence of the vector u which similarly to the vector v shall be small. Clas-
sically we have u = 0 and vTPv = min, where P is the weight matrix for the
observations.

If the observations were supposed to be exact, then we could put v = 0
in (81) and solve (81) for uTQu = min, in this case the result would be
determined by the normal equations

ATQAx = ATQc,

whereas we in the classical case would have

ATPAx = ATPc.

Neither the first nor the second choice are reasonable, instead let us try to
solve (81) for

(1 − α)vTPv + αuTQu = min,

where 0 ≤ α ≤ 1.
This adjustment problem may easily be reduced to a classical one. For t

an N -dimensional vector and I the unit matrix in RN we may write (81) as

Ax + It = c + v

It = u.

We write P1 for (1− α)P and Q1 for αQ and then the normal equations are:[
A I
0 I

]T [
P1 0
0 Q1

] [
A I
0 I

] [
x
t

]
=

[
A I
0 I

]T [
P1 0
0 Q1

] [
c
0

]
[
ATP1 0

P1 Q1

] [
Ax + t

t

]
=

[
ATP1 0

P1 Q1

] [
c
0

]
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ATP1Ax + ATP1t = ATP1c

P1Ax + (P1 + Q1)t = P1c

or by elimination of t:

AT
(
P1 − P1(P1 + Q1)

−1P1

)
Ax = AT

(
P1 − P1(P1 + Q1)

−1P1

)
c

but if both P1 and Q1 are non-singular we find:

P1 − P1(P1 + Q1)
−1P1 = P1 − P1(P1 + Q1)

−1(P1 + Q1 − Q1)

= P1(P1 + Q1)
−1Q1 =

(
Q−1

1 (P1 + Q1)P
−1
1

)−1
=
(
P−1

1 + Q−1
1

)−1
,

so that the normal equations may be written as

AT
(
αP−1 + (1 − α)Q−1

)−1
Ax = AT

(
αP−1 + (1 − α)Q−1

)−1
c. (82)

This result is at the first sight astonishing because it can almost be ex-
pressed by saying that the normal equations in integrated geodesy differ only
from those in geometric geodesy by the use of another weight-matrix.

The matrix P−1 in (82) is the variance-covariance matrix of the observa-
tions, but what is Q−1? As we have seen above Q−1 =

{
(Fi, Fj)

}
that is its

elements are scalar products of the elements in H (or H0) representing the
linear functionals {fi}. Note that Q−1 depends only on the metric and the
functionals and not on the orthogonal coordinate system {ψi}.

In the statistical approach to collocation the matrix
{
(Fi, Fj)

}
is regarded

as a variance-covariance matrix and although we shall not do so here, we see
that given the norm the optimal value for the ‘weight coefficient’ α may be
found by statistical considerations.

The Challenge of Integrated Geodesy

No doubt the less satisfactory point of integrated geodesy is that of the choice
of the norm: the result is only defined when the norm has been chosen, it
depends on the norm, and the choice of the norm is to some extent arbitrary.

The norm in integrated geodesy corresponds to the weight matrix in clas-
sical adjustment and we know that if we have sufficiently many observations
and these observations are correct then the result is independent of the weight
matrix if only the matrix satisfies one formal condition, that of positive defi-
niteness.

The analogue to this result must in integrated geodesy have the form of a
theorem of convergence because there must be executed infinitely many ob-
servations in order to determine infinitely many unknowns, and we could ask:
under which conditions will the solution in integrated geodesy converge to the
correct result independently of the choice of the norm when the observations
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are correct and their number increases without limit. This should give condi-
tions about the class of norms from which the choice may be made and about
the nature and distribution of the observations. In order to be meaningful
this question must be modified so as to demand not only convergence but also
stability i.e. the results must depend continuously on the observation data.

An explicit answer to this question is not known as yet. The problem
is in fact a boundary value problem much more general than Molodenskiy’s
problem. A reasonable answer seems to be that the ‘limit conjecture,’ that is:

1. if the observations contain information enough to determine the solution,

2. if they are distributed so as to be overall dense on a surface surrounding
the surface of the Earth (this condition is necessary for the stability), and

3. if the norm is chosen so as to correspond to what we have called ‘a regular
Hilbert space of functions harmonic on a Bjerhammar domain’ (i.e. the
part of the space outside any closed surface inside the Earth)

then the result will converge to the true solution, be stable and independent of
the choice of norm, but generally the resulting potential will not converge in
the chosen norm but in some norm corresponding to a regular Hilbert space of
functions harmonic outside the surface on which the observations are dense.
This is because the resulting potential need not be harmonic between the
Bjerhammar surface and the surface of the Earth.

If this conjecture is correct, as we believe it to be, perhaps with small
technical corrections, then the choice of a norm is reduced to a problem of
economy: choose the norm such that the result computed from a given set
of observations will be the best possible. A complete solution of this prob-
lem can scarcely be given by other than statistical means. But a statistical
solution seems today to be impossible, and that for two reasons: 1) the statis-
tical approach is based on the supposition of the potential of the Earth as a
stochastic process homogeneous with respect to rotations with respect to the
centre of the Earth, a supposition which is inconsistent with the deviation of
the surface of the Earth from a sphere. Therefore the higher degree-variances,
or rather, the asymptotic behaviour of the degree-variances, which determine
the behaviour of the potential near the boundary of the Bjerhammar sphere,
are statistically meaningless. 2) As [5] has established even for a spherical
Earth the determination of the covariance form would be a much larger prob-
lem than that of the potential itself. From these objections does in no way
follow that the statistical approach is without practical and theoretical value
for integrated geodesy on the contrary the lower order degree-variances can
be rather well-determined and it is evidently of importance to choose a norm
consistent with the well-determined degree-variances.

As a result of this it may be concluded that the ‘norm problem’ has to be
solved by a combination of statistical and mathematical and physical methods.
The nearest problem is to find out how the higher order degree-variances of
the norm effect the result. As yet very little is known about this and in order
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to get interesting results it is necessary to study thoroughly the theory of
regular Hilbert spaces of harmonic functions.

One could ask if this new conception of geodesy really deserves the name of
integrated geodesy. Our answer must be: No, not yet! Two forms for informa-
tion which are of great importance for the potential namely the topography
and the geology are almost respectively totally ignored in our approach. There
are several possibilities for including information about topography and geol-
ogy in the computations but probably the most natural way to do it will only
present itself when we have a better insight in the connection between norms
for harmonic functions and the correspondent mass-distributions.

It is here as it normally is when new ideas turn up that a lot of new
problems appear with a challenge for interesting research along new lines.

References

[1] Garrett Birkhoff and Saunders MacLane. A Survey of Modern Algebra.
New York, 1965.
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13

On Potential Theory

Preface

For years I have missed a book on potential theory in which were considered
the needs of a physical geodesist, i.e. in which were collected the tools for
least-squares methods for the determination of harmonic functions with given
domain of regularity from observed values of linear functionals with support
near the boundary and in which was treated—besides the classical boundary
value problems—also the oblique derivative problem.

When I had to write my lecture notes for the International Summer School
in the Mountains on mathematical methods in physical geodesy this need be-
came acute for me because I could give no reasonable reference to literature for
the responsibility for lectures on geodetic aspects of potential theory without
having access to a systematic text on the foundation.

Therefore I had during a few months to write down the following pages
which I herewith publish despite of their very preliminary character.

I hope to be able to publish the second (last?) volume next year and after a
serious overhauling and an addition of instructive examples, which is perhaps
the most important, an official edition will perhaps be published.

1. Homogeneous Polynomials in Rq

Let x ∈ Rq denote the column vector with coordinates xi, i = 1, 2, . . . , q.
|x| = (xTx)1/2 is the length of the vector x and xTy is the scalar product of
the vectors x, y ∈ Rq.

It is convenient to use multiindices such that if x ∈ Rq and α a multiindex
α = α1, α2, . . . , αq, where {αi} is an ordered set of non-negative integers,
then

xα = xα1

1 xα2

2 · · ·xαq
q

is a monomial on Rq of degree |α| = α1 + α2 + · · · + αq.
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If we also write
α! = α1! α2! · · · αq!,

then we have for x, y ∈ Rq and n > 0( q∑
i=1

xi

)n

=
∑
|α|=n

n!

α!
xα

and (
xTy

)n
=

∑
|α|=n

n!

α!
xαyα. (1)

As every homogeneous polynomial P (x) of degree n in the q variables x1,
x2, . . . , xq can be written as

P (x) =
∑
|α|=n

aαxα (2)

for one and only one set of real numbers
{

aα

∣∣ |α| = n
}
, this set of polynomials

form a linear vector space of finite dimension. The number of dimensions of
this vector space is the number M of elements in the base

{
xα

∣∣ |α| = n
}

of
the space and by induction with respect to n it is easily proved that

M(q, n) =

(
n + q − 1

q − 1

)
=

(n + q − 1)!

(q − 1)! n!
. (3)

Besides the classical polynomials—polynomials in x—we will introduce poly-
nomials in ‘differentiation with respect to x’ in the following way: In a poly-
nomial in x such as (2) ∂/∂xi is substituted for xi for each occurrence of xi

for i = 1, 2, . . . , q and we write

P
( ∂

∂x

)
=

∑
|α|=n

aα
∂n

∂xα
=

∑
|α|=n

aα
∂n

∂xα1

1 ∂xα2

2 · · · ∂x
αq
q

. (4)

The expression (4) is a homogeneous differential operator of order n. Such
an expression will be called a homogeneous differential operator of order n. It
would be more correct to say a homogeneous differential operator with con-
stant coefficients. If such an operator is applied on a homogeneous polynomial
Q(x) =

∑
|α|=n bαxα of the same degree then the result will be a real number:

P
( ∂

∂x

)
Q(x) =

∑
|α|=n

∑
|β|=n

aαbβ

( ∂α1

∂xα1

1

xβ1

1

)( ∂α2

∂xα2

2

xβ2

2

)
· · ·

( ∂αq

∂x
αq
q

xβq
q

)
=

∑
|α|=n

aαbβα1! α2! · · ·αq! =
∑
|α|=n

aαbαα!. (5)

From the symmetry of the result in (5) in a and b follows

Q
( ∂

∂x

)
P (x) = P

( ∂

∂x

)
Q(x).
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For P and Q homogeneous polynomials of degree n on Rq the expression

(P, Q)n = P
( ∂

∂x

)
Q(x) (6)

satisfies the axioms for a scalar product:

(P, Q) is bilinear in P and Q and symmetric in P and Q

and
‖P‖2

n = (P, P )n =
∑
|α|=n

a2
αα! ≥ 0,

and
(P, P )n > 0 for P �= 0.

Therefore we can define the finite dimensional Hilbert space Pqn as the
vector space of homogeneous polynomials of degree n in q variables with the
scalar product (6).

We see immediately that the set of monomials{
φα(x) =

xα

√
α!

∣∣∣∣ |α| = n

}
constitute a complete set of orthonormal elements.

In accordance with the general theory for orthonormal systems every ele-
ment P ∈ Pqn can be expressed as

P (x) =
∑
|α|=n

aαφα(x) (7)

where the coefficients aα are determined by

aα = (P, φα)n. (8)

The formulae (7) and (8) can be combined in

P (x) =
∑
|α|=n

(P, φα)n φα(x) =
∑
|α|=n

1

α!

(
P (y), yα

)
n

xα =
(
K(x, ·), P

)
n
, (9)

where

K(x, y) =
∑
|α|=n

1

α!
xαyα =

1

n!

∑
|α|=n

n!

α!
xαyα =

1

n!

(
xTy

)n
(10)

(here (1) is used).
The formula

P (x) =
(
K(x, ·), P

)
n

for P ∈ Pqn (11)

expresses the fact that K(x, y) is a reproducing kernel for the Hilbert function
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space Pqn. According to the definition of the scalar product in Pqn it may be
read as

P (x) = P
( ∂

∂y

) (xTy)n

n!
or as

P (x) =
1

n!

(
xT ∂

∂y

)n

P (y).

Every homogeneous polynomial of degree n may be written in the following
form

P (x) =

M∑
i=1

ai(y
T
i x)n

for ai real numbers and yi ∈ Rq for i = 1, 2, . . . , M . This can be proved
directly but it follows also from the following

Theorem 13.1 If H is a finite dimensional Hilbert space of continuous func-
tions defined on a domain Ω then there exists a set {yi}, i = 1, 2, . . . , M ,
where yi ∈ Ω and M is the number of dimensions of H such that for each
f ∈ H there exists a set {ai} of M real numbers such that

f(x) =

M∑
i=1

aiK(x, yi), x, y ∈ Ω, (12)

where K(y, x) is the reproducing kernel

K(x, y) =

M∑
i=1

φi(x)φi(y), x, y ∈ Ω, (13)

of H. Here {φi}, i = 1, 2, . . . , M , is any complete orthonormal set of elements
of H.

Proof That f ∈ H and {φi} is a complete orthonormal set of elements of H
means that there exists a set of real numbers {bi} such that

f(x) =
∑

biφi(x),

on the other hand putting (13) into (12) gives

f(x) =

M∑
i,j=1

aiφj(x)φj(yi) =

M∑
i=1

φi(x)

( M∑
j=1

ajφi(yj)

)
,

so that the theorem is proved if we can prove that it is possible to find the
set of M points yi ∈ Ω such that the following system of M linear equations
with M unknowns {aj} has one solution for every set of M constants {bi}:

M∑
j=1

ajφi(yi) = bi, i = 1, 2, . . . , M ,
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i.e. if we can prove that {yj} can be found such that

det
1≤i,j≤M

φi(yj) �= 0. (14)

The functions φi(x) are linearly independent—for else they would not be
orthonormal—therefore none of them can vanish identically and so there must
be a y1 ∈ Ω for which φ1(y1) �= 0. There must also be a y2 such that∣∣∣∣∣φ1(y1) φ1(y2)

φ2(y1) φ2(y2)

∣∣∣∣∣ �= 0,

for else we would have for every y ∈ Ω that∣∣∣∣∣φ1(y1) φ1(y)

φ2(y1) φ2(y)

∣∣∣∣∣ = 0,

or
aφ1(y) + bφ2(y) = 0

for a = φ2(y1) and b = −φ1(y1) which is different from zero, this is impos-
sible because φ1 and φ2 are linearly independent. In the same way we prove
existence of a y3 such that∣∣∣∣∣∣∣

φ1(y1) φ1(y2) φ1(y3)

φ2(y1) φ2(y2) φ2(y3)

φ3(y1) φ3(y2) φ3(y3)

∣∣∣∣∣∣∣ �= 0

etc. until (14) is proved.

It would perhaps be convenient to write here a few facts on reproducing
kernels for Hilbert spaces.

A reproducing kernel for a Hilbert space H of continuous functions defined
on Ω is a function K(x, y) in two variables x, y ∈ Ω such that

1. K(x, y) is for any fixed x ∈ Ω as a function of y an element K(x, ·) of H .
2. K(x, y) is for any fixed y ∈ Ω as a function of x an element K(·, y) of H .
3. For every f ∈ H is

f(x) =
(
f, K(·, x)

)
,

where (·, ·) is the scalar product in H .

From 1, 2, and 3 follows

K(x, y) =
(
K(·, y), K(·, x)

)
and

K(y, x) =
(
K(·, x), K(·, y)

)
i.e.

K(x, y) = K(y, x).
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It is immediately clear that for H finite dimensional

K(x, y) =

N∑
i=1

φi(x)φi(y)

is a reproducing kernel where {φi}, i = 1, 2, . . . , N , is a complete orthonormal
system. If {ψi}, i = 1, 2, . . . , N , is another complete orthonormal system in H
then

K1(x, y) =

N∑
i=1

ψi(x)ψi(y)

is also a reproducing kernel but

K1(x, y) = K(x, y),

because no Hilbert space has more than one reproducing kernel.

Proof Let both K(x, y) and K1(x, y) be reproducing kernels for H then for
every f ∈ H and for every x ∈ Ω∥∥K(·, x) − K1(·, x)

∥∥2
=
(
K(·, x) − K1(·, x), K(·, x) − K1(·, x)

)
=
(
K(·, x) − K1(·, x), K(·, x)

)
−
(
K(·, x) − K1(·, x), K1(·, x)

)
= K(x, x) − K1(x, x) − K(x, x) + K1(x, x) = 0.

If f(x) is any—not necessarily homogeneous—polynomial of degree n in
x ∈ Rq then it can be written as

f(y) = f0(y) + f1(y) + · · · + fn(y),

where fi ∈ Pqi. By (9) and (10) we have

fi(y) =
1

i!

(
yT ∂

∂z

)i

fi(z) =
1

i!

((
yT ∂

∂z

)i

f(z)

)
z=0

,

so that we can write:

f(y) =

n∑
i=0

(
1

i!

(
yT ∂

∂z

)i

f(z)

)
z=0

. (15)

This may be generalized as follows: f(x + y) is by fixed x a polynomial of
degree n in y and on this function we may apply (15):

f(x+ y) =

n∑
i=0

(
1

i!

(
yT ∂

∂z

)i

f(x+ z)

)
z=0

= f(x)+
1

1!

(
yT ∂

∂x

)
f(x)+

1

2!

(
yT ∂

∂x

)2

f(x)+ · · ·+ 1

n!

(
yT ∂

∂x

)n

f(x)

(16)

this is Taylor’s formula for polynomials in q variables.
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There exists a generalization of this formula for n + 1 times continuously
differentiable functions which need not be polynomials:

Theorem 13.2 (Taylor’s formula) Let Ω ⊂ Rq be an open set, and let
f : Ω → R, f ∈ Cn+1(Ω). For x ∈ Ω, let y ∈ Rq so that for all t ∈ [0, 1] :
x + ty ∈ Ω. Then the following expansion holds:

f(x+ y) =

n∑
i=0

1

i!

(
yT ∂

∂x

)i

f(x) +
1

n!

∫ 1

0

(1− t)n
(
yT ∂

∂x

)n+1

f(x + ty) dt. (17)

Proof First we notice, that

d

dt

(
yT ∂

∂x

)n

f(x + ty) =
(
yT ∂

∂x

)n+1

f(x + ty)

so that the remainder may be treated according to

1

n!

∫ 1

0

(1− t)n
(
yT ∂

∂x

)n

f(x + ty) dt

=
1

n!

∫ 1

0

(1− t)nd

((
yT ∂

∂x

)n+1

f(x + ty)

)
=

[
1

n!
(1− t)n

(
yT ∂

∂x

)n

f(x + ty)

]1

0

+
1

(n− 1)!

∫ 1

0

(1− t)n−1
(
yT ∂

∂x

)n

f(x + ty) dt

= − 1

n!

(
yT ∂

∂x

)n

f(x) +
1

(n− 1)!

∫ 1

0

(1− t)n−1d

((
yT ∂

∂x

)n−1

f(x + ty)

)
.

After carrying out integration by parts n times the theorem follows.

For functions f ∈ C∞(Ω) it is sometimes possible to prove that the re-
mainder for n → ∞ converges to 0 and then f(x + y) can be represented by
Taylor’s series:

f(x + y) =

∞∑
i=0

1

i!

(
yT ∂

∂x

)i

f(x). (18)

2. Harmonic Polynomials

Polynomials P (x) on Rq for which ∆P (x) = 0 are called harmonic polynomi-
als. Here the Laplacian differential operator is defined by

∆ =
∂2

∂x2
1

+
∂2

∂x2
2

+ · · · + ∂2

∂x2
q

.

Homogeneous polynomials P (x) of degree n on Rq for which ∆P (x) = 0 are
called spherical harmonics of degree n, they constitute a linear subspace Hqn

of the Hilbert space Pqn with the same scalar product (·, ·)n.
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Theorem 13.3 Every harmonic polynomial Pn(x) of degree n can in one
and only one way be written as

Pn =

n∑
i=0

Qi, (19)

where Qi is a spherical harmonic of degree i.

Proof It is clear that Pn may be written uniquely as in (19) with Qi a ho-
mogeneous polynomial of degree i, what shall be proved is only that ∆Qi = 0.
But from (19) and that ∆Pn = 0 follows

∆Pn =
n∑

i=0

∆Qi = 0. (20)

But (20) expresses that the zero polynomial is a sum of homogeneous poly-
nomials {∆Qi} of degrees i− 2 and this is possible only if ∆Qi = 0 for i = 2,
3, . . . , n, ∆Q0 and ∆Q1 are automatically zero.

On account of this theorem we shall to the present concentrate on spherical
harmonics.

We shall now find the subspace of Pqn which is the orthogonal complement
to Hqn, i.e. the subspace Hc

qn ⊂ Pqn such that every P ∈ Pqn may be uniquely
decomposed as

P = h + hc, h ∈ Hqn, hc ∈ Hc
qn

such that h is orthogonal to hc:

(h, hc)n = 0.

Now it is clear that for Q ∈ Pqn−2 the polynomial |x|2Q ∈ Pqn. But |x|2Q ∈
Hc

qn for

P ∈ Hqn ⇒
(
|x|2Q(x), P (x)

)
n

= Q
( ∂

∂x

)
∆P (x) = 0,

i.e. |x|2Q(x) is orthogonal to P ∈ Hqn.
If on the other hand P ∈ Pqn is orthogonal to |x|2Q(x) for all Q ∈ Pqn−2

then

0 =
(
|x|2Q(x), P (x)

)
n

= Q
( ∂

∂x

)
∆P (x) =

(
Q(x), ∆P (x)

)
n−2

,

i.e. (
Q(x), ∆P (x)

)
n−2

= 0 for all Q ∈ Pqn−2,

which is only possible if ∆P (x) = 0, and we have proved:

Theorem 13.4 The orthogonal complement Hc
qn to the space of spherical

harmonics Hqn ⊂ Pqn is the space of polynomials |x|2Q(x) ⊂ Pqn for all
Q ∈ Pqn, i.e. every homogeneous polynomial P of degree n can be expressed
uniquely as the sum

P (x) = h(x) + |x|2Q(x), (21)

where h is a spherical harmonic of degree n and Q is a homogeneous polyno-
mial of degree n − 2.
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Definition 13.1 h(x) is called the harmonic projection of the homogeneous
polynomial P (x) if P (x) and h(x) are related as in (21).

As Pqn is the direct sum of the two mutually orthogonal subspaces Hqn

and |x|2Pqn−2 we have

dimPqn = dimHqn + dimPqn−2

or

Nqn = dimHqn =

(
n + q − 1

q − 1

)
−
(

n + q − 3

q − 1

)
= (2n + q − 2)

(n + q − 3)!

(q − 2)!n!
.

We have proved:

Theorem 13.5 For the number Nqn of dimensions of the vector space Hqn

we have

Nqn = (2n + q − 2)
(n + q − 3)!

(q − 2)!n!
=

2n + q − 2

q − 2

(
n + q − 3

q − 3

)
;

i.e. there exist Nqn linearly independent spherical harmonics of degree n.

In particular, for q = 3 we have

N3n = 2n + 1.

If we apply Theorem 13.4 again to Q ∈ Pqn−2 and so on we prove:

Theorem 13.6 Every homogeneous polynomial of degree n may be expressed
by spherical polynomials of degree n and lower degrees by the formula

P (x) = hn(x) + |x|2hn−2(x) + |x|4hn−4 + |x|6hn−6 + · · · , (22)

where hn ∈ Hqn, hn−2 ∈ Hqn−2, hn−4 ∈ Hqn−4, . . . are uniquely determined.

Part of this result may also be expressed in another way which perhaps
gives a justification of the term ‘spherical harmonic’:

Corollary 13.1 To every homogeneous polynomial P (x) of degree n there
corresponds a harmonic polynomial Q(x) such that P (x) = Q(x) on the unit
sphere |x|2 = 1, and

Q(x) = hn(x) + hn−2(x) + hn−4(x) + hn−6(x) + · · ·

where the spherical harmonics hn, hn−2, . . . are the same as above.

Corollary 13.2 To every polynomial P (x) there corresponds a harmonic
polynomial Q(x) of the same degree such that P (x) = Q(x) on the unit sphere.
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The corollary is proved from Corollary 13.1 by writing P (x) as a sum of
homogeneous polynomials.

Theorem 13.6 has also another aspect. If P
(

∂
∂x

)
is a homogeneous differ-

ential operator of degree n then from (22) follows

P
( ∂

∂x

)
= hn

( ∂

∂x

)
+ hn−2

( ∂

∂x

)
∆ + hn−4

( ∂

∂x

)
∆2 + · · · . (23)

Here we call hn

(
∂
∂x

)
, hn−2

(
∂
∂x

)
, hn−4

(
∂
∂x

)
harmonic differential operators

of order n, n − 2, n − 4, . . . . If we apply the operator P
(

∂
∂x

)
on a function f

on Rq which satisfies the equation ∆f = 0 then all the right hand terms
in (23) except the first one vanish and we have:

Theorem 13.7 If φ(x) satisfies Laplace’s equation ∆φ = 0 then the result
of the application of the homogeneous operator P

(
∂
∂x

)
on φ depends only on

the harmonic projection h(x) of P (x) and of φ:

P
( ∂

∂x

)
φ = h

( ∂

∂x

)
φ. (24)

Proof Follows directly from (21).

The proofs we have given of the Theorems 13.4–13.7 are not constructive
proofs, so we have no method for computing the harmonic projection directly.
Although it is not difficult from Theorem 13.6 to find the following formula
for this projection

h(x) = P (x) − |x|2∆P (x)

2(q + 2n − 4)
+

|x|4∆2P (x)

2 · 4(q + 2n − 4)(q + 2n− 6)
· · · . (25)

I have chosen to go an indirect way and first prove the classical Hobson’s
theorem:

Theorem 13.8 For P ∈ Pqn we have

P
( ∂

∂x

) 1

|x|q−2
= (−1)n(q−2)q · · · (q+2n−4)

1

|x|q+2n−2

×
(
1− |x|2∆

2(q+2n−4)
+

|x|4∆2

2 ·4(2+2n−4)(q+2n−6)
· · ·
)

P (x).

(26)

Proof Direct computation gives for P (x) = xn
i , i = 1, 2, . . . , q:

∂n

∂xn
i

1

|x|q−2
= (−1)n(q−2)q · · · (q+2n−4)

1

|x|q+2n−2

×
(
xn

i −
n(n−1)|x|2xn−2

i

2(q+2n−4)
+

n(n−1)(n−2)(n−3)|x|4xn−4
i

2 ·4(2+2n−4)(q+2n−6)
· · ·
)

.
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But n(n−1)xn−2
i = ∂2

∂x2
i

xn
i = ∆xn

i ; n(n−1)(n−2)(n−3)xn−4
i = ∂4

∂x4
i

xn
i = ∆2xn

i ,

etc., so that (26) is valid for these special cases. Then (26) must also be
valid for P (x)= (αTx)n for α any unit vector in Rq because the differential
operator ∆ is invariant with respect to rotations, and multiplication with a
constant shows that then it is valid also for P (x)= (yTx)n where y is any
vector in Rq. From the linearity of the equation (26) follows then that (26) is
valid for

P (x) =

M∑
i=1

ai

(
yT

i x
)n

, ai real numbers, yi ∈ Rq, i = 1, 2, . . . , M . (27)

But as we have proved in Section 1 that any homogeneous polynomial of
degree n may be written in the form (27), (26) is proved for the general case.

If we take for P
(

∂
∂x

)
any harmonic differential operator h

(
∂
∂x

)
of order n

we find

h
( ∂

∂x

) 1

|x|q−2
= (−1)(q − 2) · · · (q + 2n− 4)

h(x)

|x|q+2n−2
. (28)

The function |x|2−q is harmonic for x �= 0 i.e. ∆ 1
|x|q−2 = 0 for x �= 0:

∂

∂xi

1

|x|q−2
= −q − 2

2

1

|x|q 2xi = −(q − 2)
xi

|x|q

∂2

∂x2
i

1

|x|q−2
= −(q − 2)

1

|x|q + (q − 2)q
x2

i

|x|q+2

∆
1

|x|q−2
=

q∑
i=1

∂2

∂x2
i

1

|x|q−2
= −(q − 2)q

1

|x|q + (q − 2)q
|x|2

|x|q+2
= 0,

therefore we can apply Theorem 13.7 on our P (x) and φ = 1
|x|q−2 to the result

that if h(x) is the harmonic projection of P (x) then

P
( ∂

∂x

) 1

|x|q−2
= (−1)n(q − 2)q · · · (q + 2n− 4)

h(x)

|x|q+2n−2
,

from which we again deduce the formula (25).
The operator

Π : Pqn→Hqn : P (x) �→h(x)=P (x)− |x|2∆P (x)

2(q+2n−2)
+

|x|4∆2P (x)

2·4(q+2n−4)(q+2n−6)
· · ·

(29)
which projects the Hilbert space of homogeneous polynomial of degree n or-
thogonally onto its subspace consisting of spherical harmonics of degree n is
an ortogonal projector and it may be a good exercise for the reader to prove
directly that it satisfies the formal conditions for being so:

Π2 = Π and (ΠP, Q)n = (P, ΠQ)n for all P, Q ∈ Pqn,
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and also that

Π
(
|x|2Q(x)

)
= 0 for all Q ∈ Pqn−2,

ΠP (x) = P (x) for all P ∈ Hqn.

Now we want to find the reproducing kernel Hn(x, y) of Hqn. For {φi}, i = 1,
2, . . . , N , any complete orthonormal system in Hqn

Hn(x, y) =

N∑
i=1

φi(x)φi(y).

Let {ψj} , j = 1, 2, . . . , M −N , be any complete orthonormal system for Hc
qn

then
{φi} ∪ {ψj} i = 1, 2, . . . , N , j = 1, 2, . . . , M − N

must be a complete orthonormal system in Pqn such that

1

n!

(
xTy

)n
=

N∑
i=1

φi(x)φi(y) +

M−N∑
j=1

ψj(x)ψj(y)

because 1
n! (x

Ty)n is the reproducing kernel for Pqn.
From the properties of the projector Π proved above follows

Πφi = φi i = 1, 2, . . . , N

Πψj = 0 j = 1, 2, . . . , M − N

so that by Πx denote Π as operating on x we have

Πx

( 1

n!

(
xTy

)n
)

=
N∑

i=1

φi(x)φi(y) = Hn(x, y),

or by (29)

Hn(x, y) =
1

n!

((
xTy

)n − n(n − 1)|x|2|y|2
2(q + 2n − 4)

(xTy)n−2

+
n(n − 1)(n − 2)(n − 3)|x|4|y|4
2 · 4(q + 2n − 4)(q + 2n − 6)

(xTy)n−4 · · ·
)

(30)

here we have used

∂

∂xi

(
xTy

)n
= n

(
xTy

)n−1
yi

∂2

∂x2
i

(
xTy

)n
= n(n − 1)

(
xTy

)n−2
y2

i

∆
(
xTy

)n
= n(n − 1)|y|2

(
xTy

)n−2
.
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If we by θ denote the angle between the two vectors x and y in Rq then(
xTy

)m
= |x|m|y|m cosm θ,

so that we may write (30) as

Hn(x, y) =
|x|n|y|n

n!

(
cosn θ − n(n − 1)

2(q + 2n− 4)
cosn−2 θ

+
n(n − 1)(n − 2)(n − 3)

2 · 4(q + 2n − 4)(q + 2n − 6)
cosn−4 θ − · · ·

)
. (31)

As we see Hn(x, y) is a product of |x|n, |y|n, and a polynomial of degree n
in cos θ. This polynomial is even if n is even and odd if n is odd. It is customary
to rewrite (31) in the form

Hn(x, y) = |x|n|y|n
(
n+q−3

q−3

)
(q − 2)q(q + 2) · · · (q + 2n − 4)

Pn(cos θ) (32)

where

Pn(t) =
(q−2)q(q+2) · · · (q+2n−4)

(q−2)(q−1)q · · · (q+n−3)

×
(

tn− n(n−1)

2(q+2n−4)
tn−2 +

n(n−1)(n−2)(n−3)

2 ·4(q+2n−4)(q+2n−6)
tn−4−· · ·

)
is called the Legendre polynomial of degree n (in Rq) and where the constant,
as we shall see later, is chosen so as to make Pn(1) = 1.

The formula

φ1(x)φ1(y) + φ2(x)φ2(y) + · · · + φN (x)φN (y)

= |x|n|y|n
(
n+q−3

q−3

)
(q − 2)q(q + 2) · · · (q + 2n − 4)

Pn(cos θ) (33)

is called the addition theorem for the spherical harmonics and is of great
importance in the theory and the applications of spherical harmonics. It is
valid for {φi}, i = 1, 2, . . . , N , any complete orthonormal system in Hqn. We
have proved:

Theorem 13.9 If f(x) is a function such that there exists a neighbourhood U
of x0 ∈ Rq such that for x ∈ U : ∆f(x) = 0, then again

1

n!

(
yT ∂

∂x

)n

f(x) = Hn

(
y,

∂

∂y

)
f(x), x ∈ U.

We shall now give another, and more conventional, expression for the scalar
product in Hqn, which has relation to the interplay between the spherical
harmonics and that we will call the outer spherical harmonics.
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We have already seen that if we in the Hobson formula (26) for P (x) put
a spherical harmonic h(x) of degree n we find

h
( ∂

∂x

) 1

|x|q−2
= (−1)n(q − 2)q(q + 2) · · · (q + 2n − 4)

h(x)

|x|q+2n−2
. (34)

The function

h̃(x) =
h(x)

|x|q+2n−2
(35)

is obviously not a polynomial, but it is an algebraic function which is positively
homogeneous of degree −(n + q − 2).

A function f(x), x ∈ Rq \ {0}, is said to be positively homogeneous of
degree d if for all t > 0 we have

f(tx) = tdf(x).

Evidently a homogeneous polynomial of degree d is positively homogeneous
of degree d. We shall use Euler’s lemma on positively homogeneous functions:

If f(x), x ∈ Rq \ {0}, is positively homogeneous of degree d then

q∑
i=1

xi
∂f

∂xi
= d f. (36)

Proof (
∂f(tx)

∂t

)
t=1

=

q∑
i=1

xi
∂f

∂xi
, (37)

and
∂f(tx)

∂t
=

∂

∂t

(
tdf(x)

)
= dtd−1f(x). (38)

By putting t = 1 in (38), (36) follows from (37) and (38).

∆h̃(x) = 0 for x �= 0 i.e. overall where h̃ is defined. This follows from the
fact that all derivatives—also of higher orders—with respect to the Cartesian
coordinates of harmonic functions are harmonic, but we shall prove it directly
by using Euler’s lemma:

∂

∂xi
h̃(x) =

1

|x|q+2n−2

∂h

∂xi
− (q + 2n − 2)

xi

|x|q+2n
h(x)

∂2

∂x2
i

h̃(x) =
1

|x|q+2n−2

∂2h

∂x2
i

− 2(q + 2n − 2)
1

|x|q+2n
xi

∂h

∂xi

− (q + 2n − 2)
h(x)

|x|q+2n
+ (q + 2n − 2)(q + 2n)

x2
i h(x)

|x|q+2n+2
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∆h̃(x) =
1

|x|q+2n−2
∆h(x) − 2(q + 2n − 2)

n

|x|q+2n
h(x)

− (q + 2n − 2)q
h(x)

|x|q+2n
+ (q + 2n − 2)(q + 2n)

h(x)

|x|q+2n

=
∆h(x)

|x|q+2n−2
+ (q + 2n− 2)(−2n− q + q + 2n)

h(x)

|x|q+2n
= 0

because
∑

xi
∂h
∂xi

= nh and ∆h = 0.

The functions h̃(x) defined by (35) will be called outer spherical harmonics
of degree n.

Let x and y be two different points of Rq, then from (34) evidently follows

h
( ∂

∂x

) 1

|x − y|q−2
= (−1)n(q − 2)q(q + 2) · · · (q + 2n− 4)

h(x − y)

|x − y|q+2n−2

= (q − 2)q(q + 2) · · · (q + 2n− 4)
h(y − x)

|x − y|q+2n−2
, (39)

because the polynomial h is odd for n odd and even for n even. By putting
x = 0 (39) becomes(

h
( ∂

∂x

) 1

|y − x|q−2

)
x=0

= (q − 2)q(q + 2) · · · (q + 2n − 4)h̃(y). (40)

From Corollary 13.5 follows for any x ∈ Rq, any k ∈ Hqm and for any surface ω
with x ∈ ω and where 0 is in the interior of ω:

k(x) =
1

ωq

∫
ω

(
k(y)

∂

∂ny
ρx(y) − ρx(y)

∂

∂ny
k(y)

)
dωy (41)

where

ρx(y) =
1

(q − 2)|x − y|q−2
.

For x �= y, ρx(y) is arbitrarily often differentiable, therefore we may in
differentiating (41) reverse the order of differentiation and integration so that
if h is any spherical harmonic of order n we have(

h
( ∂

∂x

)
k(x)

)
x=0

=
(q−2)q(q+2) · · · (q+2n−4)

(q−2)ωq

∫
ω

(
k(y)

∂

∂n
h̃(y)−h̃(y)

∂

∂n
k(y)

)
dω

(42)
where we have used (41); here, ω denotes any smooth surface surrounding 0.

Let us consider (42) first for m = n. Then h, k ∈ Hqn and(
h
( ∂

∂x

)
k(x)

)
x=0

= h
( ∂

∂x

)
k(x) = (h, k)n
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and (42) reads:

(h, k)n =
(q − 2)q(q + 2) · · · (q + 2n − 4)

(q − 2)ωq

∫
ω

(
k

∂h̃

∂n
− h̃

∂k

∂n

)
dω

that is, if we for h, k ∈ Hqn define

(h, k) =
1

ωq

∫
ω

(
k

∂h̃

∂n
− h̃

∂k

∂n

)
dω

where the closed smooth surface ω surrounds 0 then

(h, k) =
q − 2

(q − 2)q(q + 2) · · · (q + 2n − 4)
(h, k)n

so that (h, k) = (k, h) is a scalar product for spherical harmonics of de-
gree n, in fact the two scalar products (·, ·) and (·, ·)n differ only from one
another by a positive constant factor. We will call the Hilbert space of
spherical harmonics of degree n with the scalar product (·, ·) Hqn, it has
evidently the same elements as Hqn and when two elements are orthogo-
nal in one of these spaces the same two polynomials are also orthogonal
in the other space. If {φi} is a complete orthonormal system in Hqn then{√

(q − 2)q(q + 2) · · · (q + 2n − 4)/(q − 2)φi

}
is a complete orthonormal sys-

tem in Hqn, and the reproducing kernel Ln(x, y) of Hqn must be

Ln(x, y) =
(q − 2)q(q + 2) · · · (q + 2n − 4)

q − 2
Hn(x, y)

where Hn(x, y) is the reproducing kernel for Hqn. From (32) follows then:

Ln(x, y) = |x|n|y|n 1

q − 2

(
n + q − 3

q − 3

)
Pn(cos θ), (43)

and the formula expressing the addition theorem for spherical harmonics (33)
now becomes

N∑
i=1

φi(x)φi(y) = |x|n|y|n 1

q − 2

(
n + q − 3

q − 3

)
Pn(cos θ), (44)

where {φi} now is a complete orthonormal system in Hqn.
For m < n the expression

h
( ∂

∂x

)
k(x) (45)

where h ∈ Hqn and k ∈ Hqm is identically 0, for m > 0 (45) is a homogeneous
polynomial of degree m − n and we must have for m �= n:(

h
( ∂

∂x

)
k(x)

)
x=0

= 0
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or, by (42)

1

ωq

∫
ω

(
k

∂h̃

∂n
− h̃

∂h

∂n

)
dω = 0 (46)

for h and k spherical harmonics of different degrees.
We can extend the operation ˜ defined in (35) for spherical harmonics

to harmonic polynomials e.g. l(x) by expressing l(x) as a sum of spherical
harmonics hi, i = 0, 2, . . . , n, where n is the degree of l and the degree of hi is i:

l =
n∑

i=0

hi

and defining

l̃ =

n∑
i=0

h̃i =
1

|x|q−2

n∑
i=0

hi(x)

|x|2i
.

This definition is evidently unique, and using it we may define

(l1, l2) =
1

ωq

∫
ω

(
l1

∂l̃2
∂n

− l̃2
∂l1
∂n

)
dω (47)

for all pairs of harmonic polynomials l1, l2. It has many of the properties of
the scalar product but the space of all harmonic polynomials is not a Hilbert
space, it is only a pre-Hilbert space. With respect to the scalar product (·, ·)
two spherical harmonics of different orders are always orthogonal.

The scalar product (·, ·) is that which we shall use normally as the stan-
dard scalar product in the following although it is not the scalar product for
spherical harmonics commonly used in the geodetic literature.

Not only for historical reasons we must also say a little about the spherical
surface harmonics and the commonly used normalization.

If we in (35) put |x| = 1 we see that on the unit sphere |x| = 1 the values

of h(x) and h̃(x) are the same and we will call

h
( x

|x|
)

=
1

|x|n h(x) for x �= 0 and h ∈ Hqn

a spherical surface harmonic of degree 1, it is a function defined on the unit
sphere, and the outer spherical harmonics as well as the spherical harmonics
may be expressed by means of them and |x| as follows:

h(x) = |x|nh
( x

|x|
)

and h̃(x) =
h
(

x
|x|
)

|x|q+n−2
.

For points at the unit sphere we have for r = |x| and ∂/∂r denoting partial
differentiation with respect to r with constant of x/|x|:

∂h(x)

∂r
=

∂

∂r

(
rnh

(x

r

))
= nrn−1h

(x

r

)
=

n

|x|h(x)
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∂h̃(x)

∂r
= −q + n − 2

|x| h̃(x)

so that if we in (47) for ω choose the unit sphere we find for h ∈ Hqn and
k ∈ Hqm:

(h, k) = − 1

ωq

∫
S(0,1)

[
h
( x

|x|
)(

−(q + m − 2)k
( x

|x|
))

− k
( x

|x|
)
nh
( x

|x|
)]

dωq

= (m + n + q − 2)
1

ωq

∫
S(0,1)

h
( x

|x|
)
k
( x

|x|
)

dωq. (48)

S(a, r) denotes the sphere |x − a| = r with centre a and radius r. Here the
expression

1

ωq

∫
S(0,1)

h
( x

|x|
)
k
( x

|x|
)

dωq,

the mean value over the unit sphere of the product of the values of two spheri-
cal surface harmonics, is the ‘traditional’ scalar product of the two harmonics
used to define the ‘fully normalized spherical harmonics.’ It is not without
regret that I try to introduce into geodesy another normalization conven-
tion which in my eyes has important advantages relative to the old one and
which—as far as I understand—is that preferred e.g. in geophysics.

For both of these normalization conventions the scalar product of spherical
harmonics of different degrees is zero, and the ‘geometry’ in the single Hqn

spaces are essentially the same for the two normalizations.
We can however use the equation (48) to deduce an important result.
Let us in (44) put y = x and therefore also θ = 0:

N∑
i=1

(
φi

( x

|x|

))2

=
1

q − 2

(
n + q − 3

q − 3

)
Pn(1), (49)

where {φi} is a complete orthonormal system in Hqn, and where we have
divided with |x|2n on both sides.

Next we will on both sides in (49) take the mean value over S(0, 1). The
right hand is unchanged being constant. On the left hand we use (48) and the
fact that (φi, φi) = 1:

N

2n + q − 2
=

1

q − 2

(
n + q − 3

q − 3

)
Pn(1)

but as we have found (Theorem 13.5) that N = 2n+q−2
q−2

(
n+q−3

q−3

)
,

Pn(1) = 1

results as I have promised above.



13 On Potential Theory 225

From this result and (49) we find

N∑
i=1

(
φi(x)

)2
=

1

q − 2

(
n + q − 3

q − 3

)
|x|2n

from which follows

|φi(x)| ≤ |x|n
√

1

q − 2

(
n + q − 3

q − 3

)
, for i = 1, 2, . . . , N (50)

where the expression under the root sign is a polynomial in n of degree q− 3,
for q = 3 the square root is 1, evidently (50) is important for the discussion
of convergence for series in spherical harmonics. The corresponding formula
for outer spherical harmonics is:

|φ̃i(x)| ≤ 1

|x|n+q−1

√
1

q − 2

(
n + q − 3

q − 3

)
, for i = 1, 2, . . . , N . (51)

We can prove more than Pn(1) = 1 namely that |Pn(cos θ)| ≤ 1: Ln(x, y)
is the reproducing kernel for Hqn, therefore∣∣Ln(x, y)

∣∣= ∣∣(Ln(x, ·), Ln(y, ·)
)∣∣≤‖Ln(x, ·)‖‖Ln(y, ·)‖=

(
Ln(x, x)Ln(y, y)

)1/2

or by (43)∣∣∣∣∣|x|n|y|n 1

q − 2

(
n + q − 3

q − 3

)
Pn(cos θ)

∣∣∣∣∣ ≤
∣∣∣∣∣|x|n|y|n 1

q − 2

(
n + q − 3

q − 3

)
Pn(1)

∣∣∣∣∣,
i.e. Pn(cos θ) ≤ 1 q.e.d.

As I mentioned above it is the expression (·, ·) that we shall use here as the
standard scalar product but I have to introduce many other scalar products.
In the few last pages of this section two new scalar products shall be defined.

The first one (·, ·)B0
is defined as

(h, k)B0
=

1

ωq

∫
B(0,1)

h(x)k(x) dx, h ∈ Hqn, k ∈ Hqm,

i.e. the L2

(
B(0, 1)

)
scalar product where B(0, 1) =

{
x ∈ Rq

∣∣ |x| < 1
}
. We

want to express it by (·, ·).
The computation is straightforward:

(h, k)B0
=

1

ωq

∫
B(0,1)

h(x)k(x) dx =
1

ωq

∫ 1

0

rq−1 dr

∫
S(0,1)

rnh
(x

r

)
rmk

(x

r

)
dωq

=
1

ωq

∫ 1

0

rm+n+q−1 dr

∫
S(0,1)

h
(x

r

)
k
(x

r

)
dωq
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=
1

m + n + q

1

ωq

∫
S(0,1)

h
(x

r

)
k
(x

r

)
dωq

=
1

(m + n + q)(m + n + q − 2)
(h, k),

the last step follows from (48). We restate the result:

(h, k)B0
=

1

(m + n + q)(m + n + q − 2)
(h, k) for h ∈ Hqn, k ∈ Hqm.

(52)
Again the scalar product of spherical harmonics of different degrees is 0,

and within Hqn the new scalar product is a constant multiple of the standard
scalar product, the constant being 1/

(
(2n + q)(2n + q − 2)

)
.

The other scalar product (h, k)B1
is defined by

(h, k)B1
=

1

ωq

∫
B(0,1)

q∑
i=1

∂h

∂xi

∂k

∂xi
dx = − 1

ωq

∫
S(0,1)

h
∂k

∂n
dωq

=
1

ωq

∫
S(0,1)

|r|nh
(x

r

)∂rm

∂r
k
(x

r

)
dωq =

m

ωq

∫
S(0,1)

h
(x

r

)
k
(x

r

)
dωq

=
m

n + m + q − 2
(h, k), (53)

where we have used Green’s formula.
On the other hand:

(h, k)B1
=

1

ωq

∫
B(0,1)

q∑
i=1

∂h

∂xi

∂k

∂xi
dx=

q∑
i=1

1

ωq

∫
B(0,1)

∂h

∂xi

∂k

∂xi
dx=

q∑
i=1

( ∂h

∂xi
,

∂k

∂xi

)
B0

.

For h ∈ Hqn we thus find (note that ∂h
∂xi

∈ Hqn−1)

q∑
i=1

∥∥∥ ∂h

∂xi

∥∥∥2

= (2n + q − 2)(2n + q − 4)

q∑
i=1

∥∥∥ ∂h

∂xi

∥∥∥2

B0

= (2n + q − 2)(2n + q − 4)‖h‖2
B1

= n(2n + q − 4)‖h‖2. (54)

From this follows at last:∥∥∥ ∂h

∂xi

∥∥∥ ≤
√

n(2n + q − 4) ‖h‖, i = 1, 2, . . . , q.

3. Series in Spherical Harmonics

In this section, let {φni}, i = 1, 2, . . . , Nqn for every fixed n = 0, 1, 2, . . . ,
denote a complete orthonormal system in Hqn.
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Definition 13.2 The radius of convergence R for the series

∞∑
n=0

Nqn∑
i=1

aniφni(x), ani ∈ R, (55)

is defined by

R = sup

{
r

∣∣∣∣ r > 0;

∞∑
n=0

Nqn∑
i=1

(
rnani

)2
< ∞

}
and the sphere of convergence for the series (55) is S(0, R).

We shall prove

Theorem 13.10 The series in spherical harmonics (55) converges abso-
lutely in the interior of its sphere of convergence and on and inside every
sphere S(0, r) where r < the radius of convergence is uniform.

Proof The series (55) may be written as

∞∑
n=0

AnΦn(x), (56)

where

An =

(Nqn∑
i=1

a2
ni

)1/2

and

Φn(x) =
1

An

Nqn∑
i=1

aniφni(x),

where obviously Φn ∈ Hqn for n = 0, 1, . . . .
Then

R = sup

{
r

∣∣∣∣ r > 0;

∞∑
n=0

(Anrn)2 < ∞
}

.

Let r<R and choose r1 such that r<r1 <R. Then the series
∑∞

n=0(Anrn
1 )2

converges and therefore we must have limn→∞ Anrn
1 =0 and then the series

∞∑
n=0

Anrn =

∞∑
n=0

Anrn
1

( r

r1

)n

(57)

must converge. (As |r/r1| < 1 it converges because {Anrn
1 } is bounded.) This

convergence is not spoiled by multiplying every term by a polynomial in n
and therefore also the series

1√
q − 2

∞∑
n=0

An

√(
n + q − 3

q − 3

)
rn (58)

converges.
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But from (50) follows

∣∣Φn(x)
∣∣ ≤ |x|n

√
1

q − 2

(
n + q − 3

q − 3

)
so that (56) and hence (55) are dominated by the converging series with non-
negative coefficients (58), and the theorem is proved.

Definition 13.3 If a function f(x) is defined for x ∈ Ω, where Ω is any
open set in Rq and ∫

Ω

(
f(x)

)2
dx < ∞,

then f is said to be square integrable in Ω and we write

f ∈ L2(Ω).

Corollary 13.3 (of Theorem 13.10) With the notations of the theorem

∞∑
n=0

Nqn∑
i=1

aniφni ∈ L2
(
B(0, r)

)
,

where B(0, r) is the interior of the sphere S(0, r), r < R.

Proof Follows from the uniform convergence of the series in B(0, r).

Theorem 13.11 For |y|< |x| the function ρy(x)= 1
q−2

1
|x−y|q−2 may be rep-

resented by the following convergent series

ρy(x) = ρ0(x)

[
1 +

(
q − 2

q − 3

)
|y|
|x|P1(cos θ) +

(
q − 1

q − 3

)
|y|2
|x|2 P2(cos θ)

+

(
q

q − 3

)
|y|3
|x|3 P3(cos θ) + · · ·

+

(
n + q − 3

q − 3

)
|y|n
|x|n Pn(cos θ) + · · ·

]
(59)

where θ is the angle between the vectors x and y.

Proof By Taylor’s formula (17)

1

|x − y|q−2
=

1

|x|q−2
− 1

1!

(
yT ∂

∂x

) 1

|x|q−2
+

1

2!

(
yT ∂

∂x

)2 1

|x|q−2
+ · · ·

+ (−1)n 1

n!

(
yT ∂

∂x

)n 1

|x|q−2

+ (−1)n+1 1

n!

∫ 1

0

(1 − s)n
(
yT ∂

∂x

)n+1 1

|x − sy|q−2
ds (60)
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1
|x−sy|q−2 satisfies Laplace’s equation ∆ 1

|x−sy|q−2 = 0 for all x ∈ Rq such that

x − sy �= 0, therefore we may apply Theorem 13.9 for m = 0, 1, 2, . . . :

1

m!

(
yT ∂

∂x

)m 1

|x − sy|q−2
= Hm

(
y,

∂

∂x

)m 1

|x − sy|q−2
for x �= sy. (61)

Hm(y, ∂
∂x ) is for all y a harmonic differential operator of order m, therefore

by Hobson’s theorem (Theorem 13.8):

Hm

(
y,

∂

∂x

) 1

|x|q−2
= (−1)m(q − 2)q(q + 2) · · · (q + 2m − 4)

Hm(x, y)

|x|q+2m−2
, (62)

but by (32), Hm(x, y) = |x|m|y|m (m+q−3

q−3 )
(q−2)q(q+2)···(q+2m−4)Pm(cos θ); therefore

(62) becomes

Hm

(
y,

∂

∂x

) 1

|x|q−2
= (−1)m

(
m + q − 3

q − 3

)
1

|x|q−2

|y|m
|x|m Pm(cos θ),

so that if we can prove that the remainder in (60)

Rn = (−1)n+1 1

n!

∫ 1

0

(1 − s)n
(
yT ∂

∂x

)n+1 1

|x − sy|q−2
ds → 0

for n → ∞ then the theorem is proved.

In order to find an estimate for the remainder we apply (62) for m = n+1
at x − sy instead of x and find

1

(n + 1)!

(
yT ∂

∂x

)n+1 1

|x − sy|q−2

= (−1)n+1(q − 2)q(q + 2) · · · (q + 2m − 2)
Hn+1(x − sy, y)

|x − sy|q+2n

= (−1)n+1

(
n + q − 2

q − 3

)
|x − sy|n+1|y|n+1

|x − sy|q+2n
Pn+1(cos θ′)

where θ′ is the angle between y and x − sy. From |Pn+1(cos θ)| ≤ 1 follows∣∣∣∣ 1

n!

(
yT ∂

∂x

)n+1 1

|x − sy|q−2

∣∣∣∣ ≤ (n + 1)

(
n + q − 2

q − 3

)
|y|n+1

|x − sy|q+n−1

≤ (n + 1)

(
n + q − 2

q − 3

)
|y|n+1

(|x| − s|y|)q+n−1

because |x − sy| ≥ |x| − s|y| so that

|Rn| ≤
n + 1

(|x| − |y|)q−2

(
n + q − 2

q − 3

)∫ 1

0

(1 − s)n |y|n+1

(|x| − s|y|)n+1
ds

=
n + 1

(|x| − |y|)q−2

(
n + q − 2

q − 3

)
kn+1

1 − k

∫ 1

0

( 1 − s

1 − ks

)n

ds

where k = |y|/|x| < 1.
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The integrand
(

1−s
1−ks

)n
< 1 so that

∣∣Rn

∣∣ ≤ n + 1

(|x| − |y|)q−2

(
n + q − 2

q − 3

)
kn+1

1 − k
→ 0 for n → ∞,

and the theorem follows.

Corollary 13.4 Under the assumptions of the theorem we can develop ρy(x)
for |y| < |x| in a series in spherical harmonics in y and outer spherical har-
monics in x as follows:

ρy(x) =

∞∑
n=0

Nqn∑
i=1

φ̃ni(x)φni(y).

Proof

1

q−2

1

|x|q−2

(
n+q−3

q−3

)
|y|n
|x|n Pn(cos θ)

=
1

|x|q+2n−2
|x|n|y|n 1

q−2

(
n+q−3

q−3

)
Pn(cos θ)=

1

|x|q+2n−2

Nqn∑
i=1

φni(x)φni(y)

by (44) and
φni(x)

|x|q+2n−2
= φ̃ni(x)

by (35) and the corollary follows.

4. Harmonic Functions on Bounded Sets

With point sets we shall here and overall in the following mean sets of points
in Rq, where q ≥ 3.

Definition 13.4 A function f(x) defined on any point set is said to be har-
monic in a point x0 if there exists a neighbourhood of x0 where f is two times
differentiable and satisfies Laplace’s equation

∆f = 0.

A function f is said to be harmonic in a bounded point set if it is harmonic
in all points of this point set. The set of harmonic functions in the bounded
set S is denoted by H(S).

Remark 13.1 From these definitions follows that if A ⊂ Rq is any closed
bounded point set then from f harmonic in A follows that there exists a
bounded open set Ω containing A in its interior such that f is harmonic in Ω.
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Example 13.1

1. For every bounded set S ⊂ Rq, every harmonic polynomial is harmonic
in S.

2. For y /∈ S, S any bounded set in Rq, the function

ρy(x) =
1

(q − 2)|x − y|q−2
(63)

is harmonic in S as a function of x.

Since linear combinations of harmonic functions are harmonic, H(S) is
obviously a linear vector space.

Now we suppose that the bounded set Ω as a boundary which is a two
times continuously differentiable hypersurface ω, then Green’s formula reads∫

ω

(
u

∂v

∂n
− v

∂u

∂n

)
dω =

∫
Ω

(
u∆v − v∆u

)
dΩ, (64)

where u, v ∈ C2(Ω) i.e. u and v are two times continuously differentiable on Ω
and its boundary and where ∂/∂n denotes differentiation along the outgoing
normal.

We shall here and in the following use the symbol ωq to denote the surface
area of the unit sphere S(0, 1) in Rq. ω3 is 4π, for general q is

ωq =
2πq/2

Γ ( q
2 )

.

Theorem 13.12 Let Ω be a bounded open set of Rq with two times differ-
entiable boundary ω and let u ∈ C2(Ω) then

u(y) =
1

ωq

[∫
ω

(
ρy

∂u

∂n
− u

∂ρy

∂n

)
dω −

∫
Ω

ρy∆u dΩ

]
, for y ∈ Ω. (65)

Corollary 13.5 If the function φ is harmonic in Ω it follows immediately
from Theorem 13.12 that

φ(y) =
1

ωq

∫
ω

(
ρy

∂φ

∂n
− φ

∂ρy

∂n

)
dω for y ∈ Ω. (66)

Proof We apply (64) to the open set Ωε =
{

x ∈ Ω
∣∣ |x − y| > ε

}
, where

0 < ε < the distance from y to the complement of Ω and v = ρy, it is clear
that ρy ∈ C2(Ωε):∫

ω

(
u

∂ρy

∂n
−ρy

∂u

∂n

)
dω +

∫
S(y,ε)

(
u

∂ρy

∂n
−ρy

∂u

∂n

)
dω =

∫
Ωε

(
u∆ρy−ρy∆u

)
dΩ. (67)
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In the second integral we introduce spherical coordinates with origin in y and
write dωq for the surface element of the unit sphere in Rq and r for |x − y|:∫
S(y,ε)

(
u

∂ρy

∂n
−ρy

∂u

∂n

)
dω =

1

q−2

∫
S(y,ε)

(
u
(
− ∂

∂r

1

rq−2

)
r=ε

− 1

εq−2

∂u

∂n

)
εq−1 dωq

=

∫
S(y,ε)

u
1

εq−1
εq−1 dωq−

1

q−2

∫
S(y,ε)

ε
∂u

∂n
dωq

= ωq
1

ωqεq−1

∫
S(y,ε)

uεq−1 dωq−
ωq

q−2

1

ωqεq−1

∫
S(y,ε)

∂u

∂n
εq−1 dωq

= ωqMS(y,ε)(u)− ωqε

q−2
MS(y,ε)

(∂u

∂n

)
where MS(y,ε)(f) denotes the mean value of the function f over the surface of
the sphere S(y, ε). If f is continuous we have limε→0 MS(y,ε)(f) = f(y) and
so we have:

lim
ε→0

∫
S(y,ε)

(
u

∂ρy

∂n
− ρy

∂u

∂n

)
dω = ωqu(y).

In the last integral in (67) ∆ρy = 0 so that∫
Ωε

(
u∆ρy − ρy∆u

)
dΩ = −

∫
Ωε

ρy∆u dΩ

from all this results

ωqu(y) =

∫
ω

(
u

∂ρy

∂n
− ρy

∂u

∂n

)
dω − lim

ε→0

∫
Ωε

ρy∆u dΩ.

Now the theorem follows if

lim
ε→0

∫
Ωε

ρy∆u dΩ =

∫
Ω

ρy∆u dΩ.

To show this it suffices to prove that ρy is integrable over Ω since ∆u is
bounded on Ω. By transforming to spherical coordinates relative to the pole y∫

B(y,ε)

ρy dΩ ≤ ωq

∫ ε

0

1

q − 2

1

rq−2
rq−1 dr

where B(y, ε) =
{

x
∣∣ |x − y| ≤ ε

}
.
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Corollary 13.6 If φ is a harmonic polynomial then (66) is valid for any
y ∈ Rq if ω is any smooth surface with y in its interior.

This follows from the fact that a harmonic polynomial is harmonic in any
bounded point set.

Theorem 13.13 (The mean value theorem) If u ∈ H(Ω) then its value
in the point x ∈ Ω is the arithmetic mean of its values on each sphere S(x, r)
so that 0 < r < the distance from x to �Ω. [ �Ω is the complement of S i.e.
�Ω =

{
y ∈ Rq

∣∣ y /∈ Ω
}
.]

Proof (64) gives for u ∈ H(Ω) and v = 1∫
ω

∂u

∂n
dω = 0

for each closed smooth surface in the interior of Ω. Therefore (63) gives for
u ∈ H(Ω) and ω the sphere S(x, r):

u(x) =
1

q − 2

1

ωq

[ ∫
S(x,r)

r2−q ∂u

∂r
dω −

∫
S(x,r)

(2 − q)r1−qu dω

]
=

1

rq−1ωq

∫
S(x,r)

u dω

q.e.d.

Theorem 13.14 Every u ∈ H(Ω) is in C∞(Ω) and every derivative of u ∈
H(Ω) with respect to Cartesian coordinates is harmonic in Ω. In particular,
every harmonic derivative of u is harmonic in Ω.

Proof For x ∈ Ω choose a sphere S(x, r) as in Theorem 13.13. Then for
every y so that |y − x| < r we have

u(y) =
1

ωq

∫
S(x,r)

(
ρy(z)

∂u(z)

∂n
− u(z)

∂ρy(z)

∂n

)
dωz . (68)

For |y − x| > r/2, ρy(x) and all its derivatives are bounded and continuous,
therefore we may differentiate u(y) by differentiating under the integral sign
in (68) and u ∈ C∞(Ω) follows from x being an arbitrary point of Ω. That
Dαu is harmonic follows from

∆Dαu = Dα∆u = 0.

We shall now use a function φ ∈ C∞(Rq) which depends only on |x|, which
is zero for |x| > 1, and for which

∫
Rq φ(x) dx = 1. The existence of such a

function is not obvious but a classical example is φ(x) = f(|x|2 − 1), where

f(t) = Ke1/t for t < 0 and f(t) = 0 for t ≥ 0,
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where the constant K is determined such that
∫
Rq φ(x) dx = 1. If u and r

satisfy the conditions of Theorem 13.13 it follows from the same theorem that

u(x) =
1

rq

∫
Rq

u(x − y)φ
(y

r

)
dy =

1

rq

∫
Rq

u(y)φ
(x − y

r

)
dy.

Here we may differentiate under the integral sign and we find for any multi-
index α: ( ∂

∂x

)α

u(x) =
1

rq

∫
Rq

u(y)
( ∂

∂x

)α

φ
(x − y

r

)
dy.

From Schwartz’ inequality we then find∣∣∣∣( ∂

∂x

)α

u(x)

∣∣∣∣ ≤
[
r−2q

∫
Rq

(( ∂

∂x

)α

φ
(x − y

r

))2

dy

∫
B(x,r)

|u(y)|2 dy

]1/2

where B(x, r) is
{

y ∈ Rq
∣∣ |y − x| < r

}
, and from this follows the existence

of constants Aα such that∣∣∣∣( ∂

∂x

)α

u(x)

∣∣∣∣ ≤ Aαr−q/2−|α|
[ ∫

B(x,r)

|u(y)|2 dy

]1/2

. (69)

Theorem 13.15 Let Ω be a bounded open subset of Rq and u ∈ H(Ω). For
every closed K ⊂ Ω and every open neighbourhood Ω′ ⊂ Ω of K there exist
constants Cα such that

sup
z∈K

∣∣Dαu(z)
∣∣ ≤ Cα

[ ∫
Ω′

∣∣u(x)
∣∣2 dx

]1/2

. (70)

Proof This follows from (69) and the fact that every z ∈ K is the centre of
a sphere which has positive radius and is contained in Ω′ and as K is compact
these spheres may be chosen so that these radii have a lower bound.

Corollary 13.7 If un ∈ H(Ω), n = 1, 2, . . . , and un converges to u in
L2(Ω

′) for all Ω′ � Ω for n → ∞ then u ∈ H(Ω). (Ω′ � Ω means that there
exists a compact set C such that Ω′ ⊂ C ⊂ Ω.)

Proof From (70) follows that the second derivatives of un converge uni-
formly on compact subsets of Ω. Hence u ∈ C2(Ω) and ∆u = limn→∞ un = 0
and so u ∈ H(Ω).

Corollary 13.8 (I. Harnack) If un ∈ H(Ω) converges uniformly on com-
pact subsets of Ω then limn→∞ un = u ∈ H(Ω) and all derivatives of un

converge to the corresponding derivatives of u.
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Proof We have for any Ω′ � Ω that Ω
′ ⊂ Ω and Ω

′
is compact. In[ ∫

Ω

∣∣φ(x)
∣∣2 dx

]1/2

≤ K sup
x∈Ω′

∣∣φ(x)
∣∣

where K2 is the volume of Ω′. Put φ = u − un to show that uniform conver-
gence implies convergence in L2(Ω

′). The rest follows from Corollary 13.8.

Theorem 13.16 The series

u(x) =

∞∑
n=0

Nqn∑
i=1

aniφni(x), ani ∈ R, (71)

where {φni}, i = 1, 2, . . . , N for every n = 0, 1, 2, . . . , is a complete
orthonormal system in Hqn converges to a harmonic function in the interior
of its sphere of convergence and it is term-wise differentiable there.

Proof Follows immediately from Theorem 13.3 and from Theorem 13.15.

Theorem 13.17 If u ∈ H(Ω) where Ω =
{

x ∈ Rq
∣∣ |x| < r

}
, we have for

x ∈ Ω

u(x) = (q − 2)

∞∑
n=0

Nqn∑
i=1

φni(x)

(q − 2)q(q + 2) · · · (q + 2n − 4)

(
φni

( ∂

∂y

)
u(y)

)
y=0

(72)
where {φni} is as in Theorem 13.16. The series (72) converges uniformly on
compact subsets of Ω.

Proof (66) gives

u(x) = − 1

ωq

∫
|y|=r2

(
ρx

∂u

∂r
− u

∂ρx

∂r

)
dω, for |x| ≤ r1 < r2 < r.

But from Theorem 13.11 follows that the series

ρx(y) =
∞∑

n=0

N∑
i=1

φni(φ)φ̃ni(y), |x| ≤ r1, |y| = r1

converges uniformly and absolutely so that we may integrate term by term:

u(x) = −
∞∑

n=0

N∑
i=1

φni(x)〈φ̃ni, u〉 (73)

where we have used the notation

〈φ̃ni, u〉 =
1

ωq

∫
|y|=r2

(
φ̃ni

∂u

∂r
− u

∂

∂r
φ̃ni

)
dω. (74)



236 13 On Potential Theory

Harmonic differentiation of (73) and putting x = 0 gives for every m = 0,
1, . . . and j = 1, 2, . . . , Nqm:(

φmj

( ∂

∂x

)
u(x)

)
x=0

= −
(

φmj

( ∂

∂x

)
φmj(x)

)
x=0

〈φ̃mj , u〉, (75)

because
(
φmj

(
∂
∂x

)
φmj(x)

)
x=0

= 0 for m, j �= n, i.
Now {φni} are normed with respect to the standard scalar product 〈·, ·〉

and we have

φmj

( ∂

∂x

)
φmj(x) = 〈φmj , φmj〉m =

(q − 2)q(q + 2) · · · (q + 2n− 4)

q− 2
〈φmj , φmj〉

and we can write (75) as(
φmj

( ∂

∂x

)
u(x)

)
x=0

=
(q − 2)q(q + 2) · · · (q + 2n − 4)

q − 2
〈φ̃mj , u〉

or

−〈φ̃mj , u〉 =
q − 2

(q − 2)q(q + 2) · · · (q + 2n− 4)

(
φmj

( ∂

∂x

)
u(x)

)
x=0

so that we may write (73) as

u(x) = (q − 2)
∞∑

n=0

Nqn∑
i=1

(
φni

(
∂
∂y

)
u(y)

)
y=0

(q − 2)q(q + 2) · · · (q + 2n − 4)
φni(x)

so that the theorem is proved.

Corollary 13.9 If u ∈ H
(
B(y, r)

)
where B(y, r) =

{
x ∈ Rq

∣∣ |x− y| < r
}
,

we have for x ∈ B(y, r):

u(x) = (q − 2)

∞∑
n=0

Nqn∑
i=1

φni(x − y)

(q − 2)q(q + 2) · · · (q + 2n − 4)

(
φni

( ∂

∂y

)
u(y)

)
y=x

where {φni} is as in Theorem 13.16. This series converges uniformly on com-
pact subsets of B(y, r).

This is the analogue to Taylor’s formula.

Corollary 13.10 (The uniqueness of harmonic continuation) If u ∈
H(Ω) and there is a point x ∈ Ω where

φni

( ∂

∂x

)
u(x) = 0 for all i = 1, 2, . . . , Nqn and all n = 0, 1, . . . (76)

it follows that u = 0 in Ω if Ω is connected.
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Proof The set of all x ∈ Ω for which (76) is satisfied is closed and by
Corollary 13.10 it is also open. Since it is non-empty by assumption it must
be equal to Ω. (Remember that an open set Ω is said to be connected if there
does not exist a pair Ω1 and Ω2 of open sets such that Ω = Ω1 ∪ Ω2 and
Ω1 ∩ Ω2 = ∅.)

Corollary 13.11 If u1, u2 ∈ H(Ω) and Ω is connected then u1 = u2 if
every harmonic derivative of u1 at x is equal to the corresponding harmonic
derivative of u2 at x.

Proof From Corollary 13.11 follows that u1 − u2 = 0.

Theorem 13.18 Ω is as everywhere in this section open and bounded. Let
u ∈ C(Ω) and u ∈ H(Ω). Then the maximum and the minimum of u in Ω is
attained on the boundary of Ω.

Proof If the maximum (minimum) is attained in an interior point x then
from Theorem 13.13 follows that the same value is attained at all points of
every sphere contained in Ω and having its centre at x i.e. u must be constant
in a ball with centre at x and therefore it must be constant in the component
of Ω which contains x according to Corollary 13.10 and so it will attain its
maximum (minimum) at the boundary. (A component of an open set is an
open connected subset Ω1 ⊂ Ω such that Ω \ Ω1 is open.)

5. Harmonic Functions on Complements to Bounded Sets

In geodesy we are particularly interested in harmonic functions in the space
outside the Earth. This is not a bounded set but its complement is: The sur-
face of the Earth and the interior of the Earth. We shall now define harmonic
functions on complements to bounded sets such that the essential results from
Section 4 remain valid for those functions and such that they should be rele-
vant for the study of the potential of the Earth.

First we shall prove

Theorem 13.19 The following two properties for functions f defined in a
subset of Rq are equivalent:

1. there exists a neighbourhood of x where f is two times differentiable and
where ∆x = 0

2. there exists an r > 0 such that for |y − x| < r f(y) can be expressed by a
convergent series in

{
φni(y − x)

}
.

Here x ∈ Rq and {φni} is a complete orthonormal system in Hqn.

Proof That (1) ⇒ (2) follows directly from Theorem 13.17. That (2) ⇒ (1)
follows from Theorem 13.16.
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From this theorem follows that we could have used (2) to define harmonic
functions. It is therefore natural to define

Definition 13.5 A function f defined in a subset of Rq is said to be har-
monic in ∞ if there exists an r > 0 such that for |x| > r f(x) can be expressed

by a convergent series in
{
φ̃ni(x)

}
, where {φni} is as in Theorem 13.19.

A function f defined in S, the complement to a bounded point set in Rq,
is said to be harmonic in S if it is harmonic in every point of S and in ∞.

In order to convince ourselves that these definitions make sense we have
to get some information about series in

{
φ̃ni(x)

}
. The tool we shall use here

is the Rayleigh transformation.

Definition 13.6 If

u(x) =

∞∑
n=0

N∑
i=1

aniφni(x), φni ∈ Hqn, (77)

is a series in orthonormalized spherical harmonics its Rayleigh transform
R(u)(x) is defined as

R(u)(x) =

∞∑
n=0

N∑
i=1

aniφ̃ni(x). (78)

(77) will also be called the Rayleigh transform of (78).

For h(x) a spherical polynomial of degree n we have defined

h̃(x) =
h(x)

|x|2n+q−2
,

which—as h(x) is homogeneous of degree n—may also be written as

h̃(x) =
1

|x|q−2
h
( x

|x|2
)
; (79)

so that we have for u given by (77):

R(u)(x) =
1

|x|q−2
u
( x

|x|2
)
.

It is easy to see that from (79) follows

h(x) =
1

|x|q−2
h̃
( x

|x|2
)
,

therefore it was reasonable to define that u was the Rayleigh transform
of R(u). Note, in order to have R2 = I we must define

x

|x|2 =

{
∞ for x = 0,

0 for x = ∞.

An immediate consequence of the above is:
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Theorem 13.20 If r is the radius of convergence of the series u in (77) then
the series R(u) in (78) converges absolutely and uniformly for |x| ≥ 1/R for
any 0 < R < r, and the series represents the harmonic function 1

|x|q−2 u
(

x
|x|2

)
for |x| > 1/r. The series (78) may be differentiated term by term.

The Rayleigh transformation can be generalized to harmonic functions not
necessarily defined in neighbourhoods of 0 or ∞ by the formula R

(
u(x)

)
=

1
|x|q−2 u

(
x

|x|2
)
. By straightforward computation it can be proved that the

Rayleigh transformed of a function harmonic in one domain Ω is a harmonic
function in another domain

Ω′ =

{
x ∈ Rq

∣∣∣∣ x

|x|2 ∈ Ω

}
,

in fact

∆x

(
1

|x|q−2
u(y)

)
=

∆yuy

|x|q+2
,

where y = x/|x|2.
Theorem 13.18 (the maximum-minimum theorem) is not directly valid for

unbounded domains, but we shall prove

Theorem 13.21 Let Ω be an open set in Rq bounded or the complement to
a bounded set and let u ∈ C(Ω) and u ∈ H(Ω). Then the maximum of |u| is
attained on the boundary of Ω.

Proof If Ω is bounded this follows from Theorem 13.18. If Ω is the com-
plement to a bounded set A choose R such that A ⊂ B(0, R). Then apply
Theorem 13.18 on the bounded set Ω ∩ B(0, r) for r > R. As u is harmonic
at ∞ we have u(x) ∼ O(|x|2−q) so that also the max|x|>r |u(x)| ∼ O(|r|2−q),
and the theorem follows.

Closed sets which are complements to bounded sets are not compact, there-
fore bounded functions on such sets need not be quadratic integrable and we
cannot apply the way of reasoning as in Theorem 13.15. But instead of the
integrals of type

∫
Ω′ u2 dx we can use integrals as

∫
Ω′ w(x)u2 dx where the

weight function w(x) ≥ 0 for all x ∈ Ω′ and where there exists a positive con-
stant c and a neighbourhood of the boundary of Ω′ such that w(x) > c for all
points in that neighbourhood. If we use such weight functions the assumption
of compactness of sets may often be replaced by that of compactness of the
boundaries of the sets. This will often be used tacitly in the following.

6. Harmonic Functionals and the Green Transform

We shall in the following regard only functions which are harmonic on bounded
sets or on complements to bounded sets and in the last case harmonic in ∞.
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Then if such a function φ is harmonic in an open set Ω then for every closed
set A ⊂ Ω

‖φ‖A =

[∫
A

φ2

1 + |x|q+1
dx

]1/2

(80)

is finite and if {φt}, t > 0, is a family of functions such that φt → φ0 uniformly
on A for t → 0 then ‖φt −φ0‖A → 0, i.e. φt converges also with respect to the
norm ‖ · ‖A. The notation ‖φ‖A defined by (80) will be used several times in
the following.

Definition 13.7 Let A be a closed subset of Rq. If the linear functional f
is defined for all harmonic functions on A and there is a constant k ≥ 0 such
that

|fφ| ≤ k‖φ‖A, (81)

then f is said to be a harmonic functional with support A.

We recall that to say that a function φ is harmonic in a closed set A means
that there exists an open set Ω ⊃ A such that φ is harmonic on Ω.

If f is a harmonic functional

A = supp f

means that f has support A. Notice that the support of f is not uniquely
determined.

Example 13.2 Let evx0
be the linear functional defined by

evx0
φ = φ(x0),

this functional is defined for all functions harmonic at x0. From Theorem 13.15
follows that any closed ball with centre at x0 is a support for evx0

For y any point in the complement to the closed set A the function ρy(x) =
1

q−2
1

|x−y|q−2 is harmonic in A so that the following definition has a meaning:

Definition 13.8 Let f be a harmonic functional. The function

f̃(y) = fρy(x) y ∈ � supp f,

is called the Green transform of f .

Example 13.3 Let us find the Green transform of evx0
.

ẽvx0
(y) = evx0

ρy(x) = ρy(x0) =
1

q − 2

1

|y − x0|q−2
.

We observe that not only is ẽvx0
(y) defined for y �= x0, but it is a harmonic

function for y in the complement to x0.
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Theorem 13.22 Let f be a harmonic functional with support A. Then

(a) f̃ ∈ H(�A), and

(b)
∂|α|

∂yα
f(y) = fx

(
∂|α|

∂yα
ρy(x)

)
, (82)

(‘differentiation under the functional sign’ is permitted).

For the proof we shall need two lemmas.

Lemma 13.1 Let {φt}, −c < t < c, be a family of functions harmonic on A
which converge for t → 0 uniformly to φ which then must be harmonic on A
also, and let f be a harmonic functional with support A then fφt → fφ for
t → 0.

Proof From the uniform convergence of {φt} follows that ‖φt − φ‖A for
t → 0 and so

|fφ − fφt| = |f(φ − φt)| ≤ k‖φt − φ‖A → 0,

and this proves the lemma.

Lemma 13.2 Let f be a function f(x, y) of two variables x ∈ A and y ∈ �A,
where A is compact and let f ∈ C2(A× �A), then for any fixed y0 ∈ �A there
exists a c > 0 such that for |h| ≤ c and i = 1, 2, . . . , q

f(x, y0 + eih) − f(x, y0)

h
→

(
∂f(x, y)

∂yi

)
y0

uniformly in x on A.

Here ei denotes unit vector {0, 0, . . . , 1, . . . , 0}T ∈ Rq with 1 in the ith coor-
dinate.

Proof As y0 ∈ �A there exists a c such that the closed ball B(y0, c) has no
point in common with A and then for |h| ≤ c f(x, y0 + eih) is defined for all
x ∈ A. From the mean value theorem of differential calculus follows

f(x, y0 + eih) = f(x, y0) + h

(
∂f(x, y))

∂yi

)
y0

+
h2

2

(
∂2f(x, y)

∂y2
i

)
y+θeih

,

where 0 ≤ θ ≤ 1, or

f(x, y0 + eih) − f(x, y0)

h
=

(
∂f(x, y)

∂yi

)
y0

+
h2

2

(
∂2f(x, y)

∂y2
i

)
y+θeih

, (83)

it should be remembered that θ depends on h and x; but the second deriva-
tive shall in all cases be taken for x∈A and −c≤h≤c which is a compact
set in A×�A. We have supposed that all second derivatives of f are contin-
uous on A×�A and therefore they are uniformly bounded on A×

{
y0 +eih

∣∣
−c≤h≤c

}
and therefore the second term on the right side of (83) converges

uniformly to 0 for h→0 and so the lemma follows.
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Proof of Theorem 13.22. Evidently (a) follows from (b), therefore we can
concentrate on (b).

For |α| = 0 (82) is trivial, therefore if we can prove that if (82) is satisfied
for |α| = n then it is also satisfied for |α| = n + 1 then we have proved (b).

Therefore suppose that for all multiindices α such that |α| = n

∂|α|

∂yα
fxρy(x) = fx

(
∂|α|

∂yα
ρy(x)

)
, (84)

we shall keep y ∈ �A fixed and choose c > 0 as in the proof of Lemma 13.2.
For |h| ≤ c we deduce first from (84) then from the linearity of f :

∂|α|

∂yα fxρy+eih(x) − ∂|α|

∂yα fxρy(x)

h
=

fx

(
∂|α|

∂yα ρy+eih(x)
)
− fx

(
∂|α|

∂yα ρy(x)
)

h

= fx

( ∂|α|

∂yα ρy+eih(x) − ∂|α|

∂yα ρy(x)

h

)
, (85)

we observe that the arguments for f are always harmonic with respect to x
on A so that the values of f are really defined.

Now
∂|α|

∂yα
ρy(x) =

1

q − 2

∂|α|

∂yα

1

|x − y|q−2

is for x �= y in C∞ as a function of x− y and therefore also in C∞ as function
of x and y on A × �A so that we may apply Lemma 13.2 to the result that

∂|α|

∂yα ρy+eih(x) − ∂|α|

∂yα ρy(x)

h
→ ∂|α|+1

∂yi∂yα
ρy(x) (86)

uniformly in x on A for h → 0.
At last we apply Lemma 13.1 which in connection with (86) proves that

everything in (84) converges to fx

(
∂|α|+1

∂yi∂yα ρy(x)
)

but this is equivalent to the
result that

∂|α|+1

∂yi∂yα

(
fxρy(x)

)
= fx

(
∂|α|+1

∂yi∂yα
ρy(x)

)
q.e.d.

We have in the Green transform defined a mapping of the harmonic func-
tionals with support in A into H(�A).

On the other hand we shall see that every ψ ∈ H(�A) defines a linear func-
tional defined for functions harmonic on A. This functional need not however
be supported by A.

If the closed set A is connected let ω be a smooth closed surface with A in
its interior, if A consists of several connected closed subsets Ai let ω consist of
one smooth closed ωi surface for every Ai such that every Ai is in the interior
of ωi and in no ωj for j �= i. Then for any φ which is harmonic on A it is
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possible to find an ω such that all points on ω are in the open set where φ is
harmonic. For any ψ ∈ H(�A) define

〈ψ, φ〉 =
1

ωq

∫
ω

(
ψ

∂φ

∂n
− φ

∂ψ

∂n

)
dω. (87)

Although the ‘surface’ ω depends on φ and is not uniquely defined this
definition is meaningful because it gives the same results for different per-
missible ω, which can be proved by applying Green’s formula on ψ and φ on
the ‘volume’ between two permissible surfaces ω1 and ω2. That (87) given
ψ ∈ H(�A) defines a linear functional is evident, from Theorem 13.15 follows
that for any closed set B such that there exists an open set Ω with A ⊂ Ω ⊂ B,
〈ψ, ·〉 defines a harmonic functional with support B.

We shall prove

Theorem 13.23 〈ψ̃, ·〉 = ψ.

Proof Let y ∈ �A and choose ω such that y is in the exterior of ω then

〈ψ̃, ·〉(y) = 〈ψ, ρy〉 =
1

ωq

∫
ω

(
ψ

∂ρy

∂n
− ρy

∂ψ

∂n

)
dω = ψ(y)

where we have used Corollary 13.6.

The facts expressed in Theorem 13.23 and in the following Theorem 13.24
have evidently contributed to the choice of the name ‘Green transform.’

Theorem 13.24 Let f be a harmonic functional with support A then

〈f̃ , ·〉 = f.

Proof Let φ be harmonic in A, then from Theorem 13.22 and from

φ(y) =
1

ωq

∫
ω

(
ρy

∂φ

∂n
− φ

∂ρy

∂n

)
dω y ∈ Ω

follows

fφ =
1

ωq

∫
ω

(
fφ

∂φ

∂n
− φ

∂f̃

∂n

)
dω = 〈f̃ , φ〉

q.e.d.

Example 13.4 For the continuous linear functional f = h
(

∂
∂x

)
x=0

where
h(x) is a spherical harmonic we find

f̃(y) =

(
h
( ∂

∂x

)
ρy(x)

)
x=0

=
(q − 2)q(q + 2) · · · (q + 2n − 4)

q − 2
h̃(y).
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We shall prove that B(0, R) for R > 0 is a support for f : For φ ∈ H(Ω)
where Ω � B(0, R) we have∫

B(0,R)

φ(x)h(x) dx =

∫ R

0

[
rn

∫
S(0,r)

φ(x)h
( x

|x|
)

dω

]
dr

and for r < R

fφ = 〈f̃ , φ〉 =
1

ωq

(q − 2)q(q + 2) · · · (q + 2n− 4)

q − 2

∫
S(0,r)

(
h̃(x)

∂φ

∂n
− φ

∂h̃

∂n

)
dω.

Now∫
S(0,r)

(
h̃(x)

∂φ

∂n
−φ

∂h̃

∂n

)
dω =

∫
S(0,r)

(
h(x)

|x|2n+q−2

∂φ

∂n
+(n+q−2)φ

h
(

x
|x|
)

|x|n+q−1

)
dω

=
1

r2n+q−2

∫
S(0,r)

h(x)
∂φ

∂n
dω+

n+q−2

rn+q−1

∫
S(0,r)

φ(x)h
( x

|x|

)
dω

=
1

r2n+q−2

∫
S(0,r)

φ(x)
∂h

∂n
dω+

n+q−2

rn+q−1

∫
S(0,r)

φ(x)h
( x

|x|
)

dω

=
2n+q−2

rn+q−1

∫
S(0,r)

φ(x)h
( x

|x|
)

dω

substituting this result in the first equation we find∫
B(0,R)

φ(x)h(x) dx =
ωq(q − 2)fφ

(2n + q − 2)(q − 2)q · · · (q + 2n − 4)

∫ R

0

r2n+q−1 dr

and using Schwartz’ inequality we find[ ∫
B(0,R)

φ2 dx

]1/2[ ∫
B(0,R)

h2 dx

]1/2

≥ ωq(q−2)R2n+q

(2n+q)(2n+q−2)(q−2)q · · · (q+2n−4)
|fφ|.

Now [ ∫
B(0,R)

h2(x) dx

]1/2

=

[∫ R

0

[
r2n+q−1 +

∫
S(0,1)

h2
( x

|x|
)

dω

]
dr

]1/2

= Rn+q/2√ωq
1√

2n + q − 1
‖h‖ 1√

2n + q
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where ‖ · ‖ is the standard norm for spherical harmonics so we get

|fφ| ≤
√

(2n + q − 2)(2n + q)(q − 2)q(q + 2) · · · (q + 2n − 4)
√

ωq(q − 2)

× R−n−q/2‖h‖
[ ∫

B(0,R)

φ2 dx

]1/2

and the statement follows, observing that

1√
1 + Rq+1

[ ∫
B(0,R)

φ2 dx

]1/2

≤ ‖φ‖B(0,R) ≤
[ ∫

B(0,R)

φ2 dx

]1/2

.

A method similar to this may be used to find constants corresponding to
the Aα in (7) explicitly for harmonic differentiation.

7. Regular Hilbert Spaces of Harmonic Functions —
Duality 1

In geodesy we are mainly interested in Hilbert spaces of harmonic functions
because this is the natural field for the solution of least-squares problems
in connection with the gravity field of the Earth. It seems to be expedient to
delimit the set of such spaces to a smaller set which is well-behaved and which
seems to be sufficiently general for applications, and in lack of originality I
have given it the name of regular Hilbert spaces of harmonic functions.

In this section Ω shall denote an open subset of Rq which is bounded or
the complement to a bounded set. Normally we shall assume both Ω and �Ω
to be connected in order to make the proofs less verbose.

Definition 13.9 A regular Hilbert space of harmonic functions on Ω is a
Hilbert space H the elements of which are harmonic functions on Ω such that:

1. H contains all functions which are harmonic on any open set with Ω in
its interior, and for every closed A ⊃ Ω the restriction

R : H(A) → H : φ �→ φ|Ω
φ ∈ H(A)

is continuous,
2. for every closed A ⊂ Ω the restriction

R : H → H(A) : φ �→ φ|A
φ ∈ H

is continuous.

Remark 13.2 The definition has a meaning because the restriction in ques-
tion will always exist.
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Theorem 13.25 A quadratic norm ‖ · ‖ is the norm for a regular Hilbert
space of harmonic functions on Ω if and only if:

1. ‖φ‖ is defined for all φ ∈ H(Ω), and for every closed A ⊃ Ω there exists
a constant k such that

‖φ‖ ≤ k‖φ‖A for all φ ∈ H(A), (88)

2. for every closed A ⊂ Ω there exists a constant k such that

‖φ‖A ≤ k‖φ‖ for all φ ∈ H(Ω). (89)

Proof The ‘only if’ part is evident from the definition. The ‘if’ part is proved
as follows: From (1) follows that the elements of H(Ω) with the norm ‖ · ‖
constitute a pre-Hilbert space H ′, from (2) follows that a Cauchy sequence
in H ′ has a limit which is element of H(A) for any closed A ⊂ Ω, i.e. the
completion H and H ′ consists of harmonic functions on Ω. The continuity of
the restrictions follows directly from the existence of the two constants.

Remark 13.3 The regular Hilbert space which we have constructed in this
way from the norm ‖ · ‖ will be called the minimal Hilbert space Hmin corre-
sponding to the norm ‖ · ‖. We could also have constructed a Hilbert space by
defining H as the elements φ of H(Ω) for which ‖φ‖ < ∞. We shall call this
Hilbert space Hmax, the maximal Hilbert space corresponding to the norm ‖·‖.
That it is in fact a Hilbert space and not merely a pre-Hilbert space follows
again from (2) in the theorem. It is clear that Hmin ⊂ Hmax and also that
Hmin is a closed subspace of Hmax. We shall in the following when the con-
trary is not directly expressed by a normal Hilbert space with norm ‖ ·‖ mean
the corresponding minimal space.

We shall now investigate the dual space to H , i.e. the space of continuous
linear functionals on H , and the realization of this dual space as a Hilbert
space H ′ the elements of which are the Green transforms of these continuous
linear functionals.

We know that a linear functional f defined on elements of H(Ω) is a
continuous linear functional on H if there exists a constant k such that

|fφ| ≤ k‖φ‖ for all φ ∈ H . (90)

Theorem 13.26 Every harmonic functional with support A in Ω is contin-
uous on H.

Proof That A is a support of f means that there exists a constant k1

|fφ| ≤ k1‖φ‖A.

By (89) there exists a constant k2 such that

‖φ‖A ≤ k2‖φ‖,

such that (90) with k = k1k2 results, and we have:
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Corollary 13.12 If f is a harmonic functional with support in Ω then f̃ ∈
H(�Ω), and all elements ψ of H(�Ω) are Green transforms of continuous
harmonic functionals on H : fφ = 〈ψ, φ〉 for φ ∈ H.

The last part follows by noticing that any closed A ⊂ Ω such that A
contains the surface ω over which the integral in 〈·, ·〉 is taken is a support for
the harmonic functional 〈ψ, ·〉.

Theorem 13.27 Every closed A ⊃ Ω is support for every continuous har-
monic functional on H.

Proof Let A be as in the theorem and let R be the restrictions Rφ = φ|Ω
for φ ∈ H(A). For f any continuous linear functional on H f operates also
on H(A) by

fφ = f(φ|Ω), φ ∈ H(A),

and by (90) and (88):

|fφ| ≤ k1

∥∥φ|Ω∥∥ ≤ k1k2‖φ‖A.

Corollary 13.13 The Green transforms f̃ of all continuous harmonic func-
tionals f on H are elements of H(�Ω) and the definition of the pairing 〈·, ·〉
can be extended by continuity so that the original harmonic functional f can
be found from its Green transform f̃ by

f = 〈f̃ , ·〉.

Proof The first part is evident. As we have defined H as the minimal har-
monic Hilbert space with the norm ‖ · ‖, to every φ ∈ H there corresponds a
sequence {φi}, i = 1, 2, . . . , such that each φi is harmonic in an open neigh-
bourhood of Ω and limi→∞ φi = φ. For each φi there exists a smooth closed
surface ωi with Ω in its interior such that ωi is in the domain of harmonicity
of φi and such that 〈f̃ , φi〉 can be computed by means of ωi. It is evident that

the sequence
{
〈f̃ , φi〉

}
is a Cauchy sequence. From the continuity of f the

result follows.

Through the scalar product (·, ·) in H every element φ ∈ H defines a con-
tinuous linear functional (φ, ·) on H . The Green transform of this functional

φ̃ = (φ, ρx)

shall be called the Green transform of φ with respect to H . It is evident that
˜φ + ψ = φ̃+ ψ̃ for φ, ψ ∈ H and that ãφ = aφ̃ for a a real number and φ ∈ H ,
that is the Green transform of the elements of H constitutes a linear vector
space. We can define a Hilbert space structure on this vector space by defining

(φ̃, ψ̃)
∼

= (φ, ψ) for φ, ψ ∈ H
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where (·, ·)∼ is the scalar product in H̃ . It is evident that

˜lim
i→∞

φi = lim
i→∞

φ̃i

if one of the two limits exists. This Hilbert space will be called H̃ , the Green
transform of H .

We shall prove later on that H̃ is a regular Hilbert space of harmonic
functions on �Ω and that H is the Green transform of H̃ , i.e.˜̃

H = H.

Now let {φi}, i = 1, 2, . . . , be a complete orthonormal system in H , then

{φ̃i} is evidently an orthonormal system in H̃ and from the definition of H̃
follows that it is complete.

For the sake of symmetry we shall write ρ(x, y) instead of ρx(y) as before
i.e.

ρ(x, y) =
1

q − 2

1

|x − y|q−2
.

For y ∈ �Ω, ρ(x, y) is as a function of x an element of H and so ρ may be
expressed by the complete orthonormal system {φi} as

ρ(x, y) =

∞∑
i=1

ai(y)φi(x), x ∈ Ω, y ∈ �Ω,

where
ai(y) =

(
φi(x), ρ(x, y)

)
x

= φ̃i(y),

i.e.

ρ(x, y) =

∞∑
i=1

φi(x)φ̃i(y), x ∈ Ω, y ∈ �Ω. (91)

In addition to the orthogonality relations

(φi, φj) = δij , (φ̃i, φ̃j)
∼

= δij

we have also, as the reader should try to convince himself,

〈φ̃i, φj〉 = δij .

It is also evident that ∣∣〈ψ̃1, ψ2〉
∣∣ ≤ ‖ψ̃1‖‖ψ2‖

for ψ1, ψ2 ∈ H , i.e. the pairing 〈·, ·〉 is jointly continuous in its arguments.
We know from the general theory for Hilbert spaces that (φ, ·) is not merely

an example on continuous linear functionals but that to every continuous
linear functional f on a Hilbert space H there corresponds an element φ, of
that space so that

fψ = (φ, ψ) for all ψ ∈ H ,
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and that ‖φ‖ equals the smallest number k such that

|fφ| ≤ kψ for all ψ ∈ H ,

(Riesz’ theorem). As the Green transformation is one to one and an isometry

we see that H̃ is exactly the space of the Green transforms of continuous
harmonic functionals on H . Therefore we will call H̃ the dual to H although
it is only one of several different realizations for the dual H ′ to H , the space
of continuous linear functionals on H .

One could ask why we have chosen H̃ and not the realization given by
Riesz of the dual as H itself. The answer must be that H̃ as the dual is more
geometrically lucid and more invariant: The element of H representing a linear
functional depends on the norm of H but the Green transform of a harmonic
functional is independent of the norm.

8. The Fundamental Kernels — Duality 2

We shall for simplicity call a function H(x, y) for x, y ∈ Rq a (harmonic)
kernel if for x fixed H(x, y) is harmonic as a function of y: ∆yH(x, y) = 0
and for y fixed H(x, y) is harmonic as a function of x: ∆xH(x, y) = 0 or as
we also shall write it ∆H(x, ·) = ∆H(·, y) = 0.

The most important example is ρ(x, y), which is a harmonic kernel for
x �= y.

In connection with a minimal regular Hilbert space H of harmonic func-
tions on an open set Ω and its dual H̃ there exist three kernels which are of
great importance.

The first of them is again ρ(x, y) which for fixed x ∈ Ω̃ = �Ω as a function
of y is an element of H and for fixed y ∈ Ω as a function of x is an element
of H̃ and vice versa.

As we have seen ρ(x, y) has the following reproducing properties

φ(y) = 〈ρ(·, y), φ〉 for every φ ∈ H and y ∈ Ω

ψ(y) = 〈ρ(x, ·), ψ〉 for every ψ ∈ H̃ and x ∈ Ω̃

which are special cases of
fφ = 〈f̃ , φ〉

where f is any continuous linear functional on H and

f̃ = fρ(·, y)

is the Green transform of f .
The second fundamental kernel is defined by

K(x, y) =
(
ρ(·, x), ρ(·, y)

)∼
for x, y ∈ Ω (92)

K(x, y) may for x fixed be looked upon as the Green transform of ρ(·, x) with

respect to H̃ and from this follows that K(x, y) is a kernel.
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We have seen (91) that ρ(x, y) may be written as

ρ(x, y) =

∞∑
i=1

φ̃i(x)φi(y), x ∈ Ω̃, y ∈ Ω,

where {φi} is any complete orthonormal system in H . From this we find

K(x, y) =

( ∞∑
i=1

φ̃iφi(x),

∞∑
i=1

φ̃iφi(y)

)∼
=

∞∑
i=1

φi(x)φi(y), (93)

because {φ̃i} is an orthonormal system in H .
Also K(x, y) has a reproducing property:

ψ(x) =
(
K(x, ·), ψ

)
. (94)

This may be proved from the representation of ψ by the orthonormal sys-
tem {φi}:

ψ =

∞∑
i=1

aiφi, ai = (φi, ψ)

combined with the representation (93) of K(x, y). It is the property (94) which
has given K(x, y) the name the reproducing kernel for the Hilbert space H .

By remembering that
ẽvx = ρ(·, x)

we can write (92) as

K(x, y) = (ẽvx, ẽvy)
∼

x, y ∈ Ω.

This formula may be generalized. Let f and g be two continuous harmonic
functionals on H then

fx

(
gyK(x, y)

)
=
(
f̃ , g̃

)∼
(95)

where fx etc. means the functional f working on its argument as a function
of x. (95) follows directly from the definition of K(x, y) and expresses the im-
portant fact that the scalar product of two functionals on H or more correctly
the scalar product of the Green transforms of these functionals can be found
simply by letting the functionals operate on K(x, y) through each one of the
arguments x and y.

As the simplest application of the reproducing kernel on maximum prob-
lems let us find for a given point x ∈ Ω

max
‖φ‖=1

|φ(x)| for φ ∈ H .

We have

|φ(x)| ≤ ‖ẽvx‖
∼‖φ‖ = ‖ẽvx‖

∼

=
(
(ẽvx, ẽvx)

∼)1/2
=
(
K(x, x)

)1/2
,

this can naturally also be found by using the reproducing property of K(x, y)
directly.
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Now let A ⊂ Ω be closed. Then K(x, x) must have a maximum value KA

on A and we find for any φ ∈ H :

‖φ‖2
A =

∫
A

φ(x)φ(x)

1 + |x|q+1
dx ≤ KA

∫
A

‖φ‖2

1 + |x|q+1
dx, (96)

which proves that the condition (2) in the definition of regular Hilbert spaces
of harmonic functions is necessary for the existence of a reproducing kernel
for H .

The third fundamental kernel is K̃(x, y) for x, y ∈ Ω̃, the reproducing

kernel for H̃ defined by

K̃(x, y) =
(
ρ(·, x), ρ(·, y)

)
(97)

or
K̃(x, y) = ˜ρ(·, x).

It may be expressed by {φ̃i} as

K̃(x, y) =

∞∑
i=1

φ̃i(x)φ̃i(y), x, y ∈ Ω̃. (98)

Its reproducing property is expressed by

ψ̃(y) =
(
K̃(·, y), ψ̃

)∼
y ∈ Ω̃ (99)

and its properties with respect to H̃ are analogue to the properties of K(x, y)
with respect to H .

By a formula analogue to (96) we can prove that also H̃ satisfies point (2)
of the definition of regular Hilbert spaces etc.

The reader should be able to find several proofs for the formula

ρ(x, y) =
〈
K̃(x, ·), K(y, ·)

〉
(100)

connecting the three fundamental kernels.
From (100) or from ρ(x, y) =

∑∞
i=1 φ̃i(x)φi(y) and (93) and (93) one proves∣∣ρ(x, y)

∣∣2 ≤ K̃(x, x)K(y, y), x ∈ Ω̃, y ∈ Ω,

from which follows that for x on the closure of both Ω and Ω̃ can K̃(x, x) and
K(x, x) not both have a finite limit.

There exist very many simple formulas around the fundamental kernels and
I shall not take from the reader the joy of discovery, only one more formula
has to be mentioned here:

(φ, ψ)
∼

=
〈
〈φ(x), K(x, y)〉x, ψ(y)

〉
y
, for φ, ψ ∈ H̃ . (101)
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Let A ⊃ Ω̃ be a closed set and φ be harmonic in an open set O such that
A ⊃ O � Ω̃. Then the pairings in (101) may be computed over a surface ω

in O outside Ω̃. The kernel K(x, y) and its derivatives are bounded on ω
because in fact ω ⊂ Ω, therefore there exists a constant c such that

‖φ‖∼

=
〈
〈φ(x), K(x, y)〉x, φ(y)

〉1/2 ≤ c‖φ‖A

and we have proved that H̃ satisfies also point (1) in the definition of a regular

Hilbert space of harmonic functions on Ω̃ and finished the proof of the fact
that H̃ is a regular Hilbert space of harmonic functions, and we are now able
to formulate the main theorem on duality:

Theorem 13.28 Let H be a minimal regular Hilbert space of harmonic func-
tions on an open set Ω. Then the dual to H, the space H̃ consisting of the
Green transforms of the continuous linear functionals on H, is a minimal
regular Hilbert space of harmonic functions on the open set Ω̃ = �Ω, and H
is the dual to H̃. The Hilbert spaces H and H̃ have reproducing kernels K
and K̃ respectively which are connected with ρ by the formulas:

K(x, y) =
(
ρ(·, x), ρ(·, y)

)∼
x, y ∈ Ω

K̃(x, y) =
(
ρ(·, x), ρ(·, y)

)
x, y ∈ Ω̃

ρ(x, y) = 〈K(x, ·), K(y, ·)〉 x ∈ Ω̃, y ∈ Ω.

9. Runge’s Theorem — Duality 3

In this section we shall apply the theory of duality between regular Hilbert
spaces of harmonic functions to the proof of Runge’s theorem, i.e. to the prob-
lem of approximation of functions harmonic in one domain Ω2 by functions
harmonic in a greater domain Ω1 � Ω2. But first we must study a generaliza-
tion to Hilbert space of transposed matrices, the dual operators.

Suppose now that we have two open sets Ω1 and Ω2 and so two minimal
regular Hilbert spaces of harmonic functions H1 and H2 and their dual spaces
H̃1 and H̃2. We denote the pairing between H1 and H̃1 by 〈·, ·〉1 and the

pairing between H2 and H̃2 by 〈·, ·〉2.
Let there be given a continuous linear operator

A : H1 → H2,

then we define A′, the dual operator to A, as the operator

A′ : H̃2 → H̃1,

defined by

〈A′ψ̃, φ〉1 = 〈ψ̃, Aφ〉2 for all φ ∈ H1 and ψ̃ ∈ H̃2. (102)
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It is clear that A′ is defined by (102), for the right term of (102) is defined

for all φ and ψ̃, so that for any fixed ψ̃ the left term is a continuous linear
functional f on H , so that A′ψ̃ = f̃ , and so A′ is a linear operator. From (102)
follows also that A and A′ have the same bound i.e. A′ is continuous because
A is so.

Now suppose that Ω2 � Ω1 from which follows that H1 ⊂ H2 i.e. every
element in H1 is also an element in H2, or more correctly if φ ∈ H1 then its
restriction Rφ to Ω2 is in H2.

But from Ω2 � Ω1 follows �Ω1 � �Ω2 and for every ψ̃ ∈ H̃2 its restric-
tion R′ψ̃ is an element of H̃1. We have here two operators

R : H1 → H2 and R′ : H̃2 → H̃1,

which are dual to one another because

〈R′ψ̃, φ〉1 = 〈ψ̃, Rφ〉2 for all ψ̃ ∈ H̃2 and all φ ∈ H1 (103)

expresses only that 〈ψ̃, φ〉 is computed over two different smooth closed sur-

faces which separate the point sets where the functions φ and ψ̃ are not defined
(or not harmonic).

Now R is continuous. This is proved by using a closed set A such that
Ω2 ⊂ A ⊂ Ω1. From the continuity conditions in the definition of regular
Hilbert spaces of harmonic functions follows that the restrictions

R1 : H1 → H(A), φ �→ φ|A,

and

R2 : H(A) → H2, ψ �→ ψ|Ω2

are continuous and so is
R = R2R1.

From the continuity of R follows that R′, its dual, is continuous. This
result is not surprising as it follows from the fact that H1 and H2 are regular
Hilbert spaces of harmonic functions.

In finite dimensional vector spaces dual operators are expressed by trans-
posed matrices. Let

A : Rn → Rm

be a linear mapping defined by a matrix A, then the transposed matrix AT

defines a mapping
AT : Rm → Rn.

A is a matrix with m rows and n columns while AT has n rows and m
columns. If the mapping A of Rn onto its image in Rm is one to one then the
mapping AT of Rm is onto Rn, this follows directly from the fact that the
mapping defined by a matrix is one to one if the columns of A are linearly
independent and the mapping is onto if the rows are linearly independent.

In infinite dimensional space we cannot from the mapping R′ one to one
infer that R is onto as we shall see soon from an example but we can conclude
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something. Let us look at (103) again and suppose that R′ is one to one, which
is equivalent to

R′ψ̃ = 0 ⇒ ψ̃ = 0

or
〈R′ψ̃, φ〉1 = 0 for all φ ∈ H1 ⇒ ψ̃ = 0,

but by (103) this is equivalent to saying

〈ψ̃, Rφ〉2 = 0 for all φ ∈ H1 ⇒ ψ̃ = 0, (104)

or a continuous linear functional on H̃2 which vanishes on the image of R
RH1 ⊂ H2 is identically zero.

We shall now use the following

Lemma 13.3 Let F be a Hilbert space, E a closed linear subspace of F and
a an element of F not in E, then there exists a continuous, linear functional f
on F such that fa = 1 and fb = 0 for all b ∈ E.

The proof of this lemma will be given later.
It is clear that the image of R is linear, therefore its closure is a closed

linear subspace of H2, let us call it I and suppose that there is an element
µ ∈ H2 which is not in I. Then by the lemma, there would be a continuous
linear functional on H2 such that fµ = 1 and fν = 0 for all ν ∈ I. But (104)
expressed exactly that this is impossible, i.e. I = H2 or every element of H2

is the limit of a sequence of elements of the form {Rφi}, φi ∈ H1, i = 1, 2,
. . . , or again said with plain words every element of H2 may be approximated
by elements of the form Rφ, φ ∈ H1.

But what does that mean for our special operators R and R′?
R is the restriction to Ω2 of harmonic functions on Ω1, that is if we can

prove that R′ is one to one then it follows from the considerations above
that all harmonic functions on Ω2 may be approximated by those which are
harmonic in Ω1.

If Ω1 and Ω2 are open point sets of Rq with Ω2 � Ω1, H any minimal
regular Hilbert space of harmonic functions on Ω2, and all harmonic functions
on Ω2 may be approximated in the topology of H by such harmonic functions
on Ω1 which are restrictions (to Ω2) of harmonic functions on Ω1, then Ω2 is
said to be a (harmonic) Runge domain of Ω1. So what we have proved so far

is that if R′, the restriction to Ω̃1 of harmonic functions on Ω̃2, is one to one,
that is if two functions on Ω̃2 have the same restriction to Ω̃1 then they are
identical. But we have seen in Corollary 13.11 that if Ω̃2 is connected then
the harmonic continuation from Ω̃1 to Ω̃2 is unique and so R′ is one to one,
and we have proved

Theorem 13.29 Let Ω1 and Ω2 be open point sets in Rq and Ω2 � Ω1,
then Ω2 is a Runge domain of Ω1 if Ω̃2 = �Ω2 is connected.

Remark 13.4 From the definition of regular Hilbert spaces of harmonic
functions and the results of Section 4 follows that convergence in the topol-
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ogy of H implies not only uniform convergence of the harmonic functions
themselves on compact subsets of Ω2 but also that of any harmonic derivative
of harmonic functions and of any harmonic functional with compact support
in Ω2.

As a classical example of the application of Runge’s theorem let Ω1 be
the part of R3 outside the surface of the Earth and Ω2 the part of the same
space outside any Bjerhammar sphere, i.e. a sphere totally inside the Earth.
Here again Ω1 � Ω2 and �Ω1 are connected, it is the surface and the interior
of the Earth and we have the ‘geodetic’ Runge theorem: for every function φ
harmonic outside the Earth, for every closed surface surrounding the Earth,
for every Bjerhammar sphere, and for every ε > 0 there exists a function φ0

which is harmonic outside the Bjerhammar sphere and such that |φ−φ0| < ε
overall on and outside the given surface.

As a counter example let us take a variant of the foregoing one. Let Ω2 be
as before but let now Ω1 be the part of space outside the Earth and the Moon,
then �Ω1 is the Earth and the Moon and they are not connected, therefore
we may not apply the theorem here. In fact Ω2 is here not a Runge domain
of Ω1.

It is now clear what I mentioned above that the dual to a one to one
operator is not necessarily onto—not every function harmonic outside the
Earth may be continued to a harmonic function outside a given Bjerhammar
sphere—we can only say that the image is overall dense.

Now we come to the proof of the lemma.
As a is supposed not to be in the closed linear subspace E ⊂ F , a may be

written as

a = a0 + b0, where b0 ∈ E and (a0, b) = 0 for all b ∈ E

and where ‖a0‖ > 0 (because a /∈ E).
Every x ∈ F may now be written as

x = x0 + x1, where x0 =
(x, a0)

‖a0‖2
a0 and (x1, a0) = 0

i.e.

x1 = x − (x, a0)

‖a0‖2
a0.

Now define f by

fx =
(x, a0)

‖a0‖2
for x ∈ F .

Then we find:

fa =
(a0 + b0, a0)

‖a0‖2
= 1

and

fb =
(b, a0)

‖a0‖2
= 0 for all b ∈ E

as it should be.
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La Formule de Stokes Est-Elle Correcte?

Commentaires sur le papier de W. Baranov

—by T. Krarup, Geodætisk Institut, Charlottenlund, Denmark

Most readers of this journal will certainly after a rereading of e.g. the relevant
pages of Heiskanen and Moritz: Physical Geodesy answer the question: “Is
Stokes’ formula correct” in the affirmative. Nevertheless it may be instructive
to see that “the new Stokes’ formula” is certainly not correct.

More specifically we shall prove that the T furnished by this formula is
not harmonic outside the Earth.

W. Baranov’s new Stokes’ formula—(17) and (18) in his paper—may be
written as

S(M, P ) =
2

|M − P | − 3aW (M, P ),

where

W (M, P ) =
1

a

(
r − a

L2
+

aµ

L2
ln

r + L − aµ

a(1 − µ)

)
=

∫ ∞

a

dρ

ρ2
√

ρ2 − 2Rρµ + R2

that is W (M, P ) is the value at P of the potential generated by a mass dis-
tribution with the density 1/ρ2 on the radius vector through the point P for
a < ρ < ∞, where ρ is the distance of the mass point in question from the
centre of the sphere.

Therefore

T (M) =
1

4π

∫∫
|P |=a

g(P )S(M, P ) dσ (1)

is the potential generated by

1. the single layer mass distribution g(P )
2π and

2. the space mass distribution − 3a3

4πρ4 g(P ), ρ > a, outside the sphere. Here ρ
is again the distance of the mass point from the centre and P is the point
where the radius vector through the mass point meets the sphere.
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And therefore

∆T =
3a2

L4
g(PM ),

where PM is the point on the sphere “under” M , that is outside the sphere T
is only harmonic in points “over” those points of the sphere where g = 0.

On the other hand P as determined by (1) is harmonic inside the sphere—
in fact “the new Stokes’ formula” is the solution of “Stokes’ problem for the
interior sphere” which is without geodetical interest.

Received: 25.5.1976

—by B. Zondek, Dahlgren Naval Laboratory, Dahlgren, Va., U.S.A.

A recent paper (Baranov 1975) casts doubt on the validity of the classic Stokes
formula of physical geodesy. We wish to point out a mathematical error early
in Baranov’s paper, which invalidates his conclusions. We use Baranov’s own
notation.

A result of Baranov’s equations (5) and (6) is∫∫
g(P )

(
L

dS

dL
+ 2S +

L2 − a2

r3

)
dσ = 0. (2)

This equation is satisfied by the gravity anomaly g(P ) and the Stokes kernel S.
Baranov concludes from it that

L
dS

dL
+ 2S +

L2 − a2

r3
= 0 (3)

because the integral vanishes “quelle que soit la fonction g(P )” i.e. whatever
function g(P ). This conclusion is erroneous because the gravity anomaly is
arbitrary function. In fact, as is well known, its surface harmonic expansion
lacks a dipole term (Heiskanen & Moritz, 1967), p. 89.

Received: 5.5.1976

Reponse de W. Baranov

Dans sa lettre du 7 mai 1975, le Dr. T. Krarup m’a écrit ceci:
“When working in mathematics one often need the comforting fact, that it

is accepted that it is human to make errors. But this comfort is rather feeble.”
L’erreur que j’ai commise se trouve dans la phrase suivante (page 29 du

Bulletin Géodésique no 115):
“Ce noyau remplit la condition (7), on vérifie qu’il est harmonique et nous

verrons tout à l’heure que la condition aux limites (3) est également respectée
. . . .”
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Or, s’il est vrai que ∆S = 0, la fonction S que j’ai définie n’est pas
harmonique pour autant, car elle admet une ligne singulière pour µ = 1.
Dr. Krarup a déjà signalé ce défaut d’harmonicité dans sa lettre circulaire
(“Last letter to the S.S.G. no 4.11”) et je suis d’accord avec son analyse.

En ce qui concerne les conclusions de B. Zondek, il est impossible de les
accepter. En effet, il semble que B. Zondek fait une erreur logique en affir-
mant qu’une fonction particulière, telle que l’anomalie ∆g, n’appartient pas
à l’ensemble de fonctions quelconques g(P ).

On est d’accord que l’anomalie ∆g théorique ne doit pas comprendre
l’harmonique d’ordre un. Cependant, les géophysiciens qui font les mesures
et les réductions ne se préoccupent pas de cette question. Il est donc légitime
d’examiner ce qui se passe dans le cas où la fonction g(P ) est quelconque.

Received: 16.6.1976
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Some Remarks About Collocation

Abstract

It is here proposed to apply the statistical theory not to the gravity field itself
but to its cause, the mass distribution inside the Earth. Through an example,
the paper presents part of mathematical tools necessary for the realization of
this idea. In connection with the same example, it also is demonstrated how
an error estimation not using statistical arguments can be found.

Introduction

“Die Geodäsie ist im allgemeinen ein glänzendes Beispiel dafür, was
man mit der Mathematik in den Anwendungen machen kann und wie
man es machen soll. Man bekommt selbstverständlich alles nur ap-
proximativ bestimmt, zugleich aber hat man überall da, wo die Un-
tersuchung als zu Ende geführt gilt, das Maß der Annäherung fest-
gestellt.” Felix Klein, 1902

It is a curious thing for one who has followed collocation from its very begin-
ning to attend the discussion at this summer school. I see that my complaint
that “(collocation) gives an answer to even the most foolish question if it is
only asked in a formally correct way” has proved to be too pessimistic, in
fact I have been glad to see that the struggle for reasonable output has forced
the users of collocation to formulate their problems in an adequate way, but
I cannot evade the impression that collocation is in a state of crisis. Let it be
said at once: I believe that this state of crisis has to do with the really amazing
fact that we talk so much about statistics and so little about physics.

Surely the statistical approach to collocation is very important, it gives
us at least the illusion that we can compute meaningful mean square errors,
which “fix the measure for the approximation.”
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In this paper I have tried to find out what can be done in collocation with-
out statistics especially in order to find the measure for the approximation. In
this investigation I have been forced to use a (very simple) physical argument,
a more advanced physical argumentation could perhaps give a better result.

The main part of the paper is Section 2 where the approximation error
is estimated. If the error estimates calculated from the statistical approach
are too good to be true, my estimate is too true to be good, but first I hope
that the method may be improved and second I find the interplay between
potential theory and collocation interesting in itself and it can perhaps open
new ways and reveal new problems. Some ideas in this direction are shortly
discussed in Section 4 and I hope that the imagination of the reader will be
stimulated and work further with many ideas.

Section 3 only treats a technical detail and may be skipped on first reading.
In Section 1 the theory of least-squares collocation is presented so far as

is necessary for the following. The principal attitude of mine which has been
determining for the presentation is the following: If we have made, say, n
observations related to the anomalous potential T then we can (in infinitely
many ways) write the possible candidates to T as a sum:

T = Tn + T ′

where Tn is n-dimensional and T ′ infinite dimensional, and where Tn is
uniquely defined by linear operations from the observations (and the way
we have defined the decomposition) and we know nothing about T ′. If given
a norm in the space of which T must be a member then it is clear that if the
spaces of which T and T ′ are members are orthogonal then the norm of T is
minimum if and only if we put T ′ = 0.

This is the geometry of least-squares collocation and I find it important to
understand that before statistics is introduced. Statistics says that if certain
hypotheses are satisfied then we can find a norm such that T ′ is minimized in
mean and we can say a little more about its statistics.

But there are other possible reasons for the choice of a norm:

1. Numerical reasons, e.g. in order to have a better condition number for the
normal equations.

2. For a local use of collocation it may seem unreasonable to use a homoge-
neous norm, i.e. a norm which forces a minimizing of equal weight all over
the surface of the Earth. Why not try to focus on the region in which we
are interested? This could be done by a conformal mapping of the whole
space in itself and of the Bjerhammar sphere in itself by using the product
of two Kelvin-transformations such that the region in question is mapped
into one which occupies a much greater part of the image of the surface of
the Earth. In the image space we could then use collocation with homo-
geneous norm. This would be a very obvious idea but one has sometimes
the impression that the prevailing statistical approach to collocation in
some way confines the initiative and the imagination.
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It is possible however to define the fundamental decomposition of T into
Tn and T ′ without any norm simply by defining Tn as a linear combination
of n given harmonic functions and T ′ as any harmonic function for which
the n observations would give the value zero. I find it reasonable to call col-
location also methods built upon such a decomposition. Then the “single
layer”-method becomes a form for collocation; by the way it is possible even
to prove that the “single layer”-method (at least when it is slightly idealized)
minimizes a certain norm, so that it really is at least an approximation to
least-squares collocation. Also Bjerhammar’s “reflexive prediction” is—as far
as I have understood it—a form of collocation. I wonder if even this method
should minimize some norm.

In this paper I have treated only exact collocation, the essential points
may be generalized to smoothing collocation in obvious ways.

1. Definition of Exact Collocation and of Least-Squares
Collocation

—The Main Theorem for Least-Squares Collocation

Let H be a Hilbert-space, let i be 1, 2, . . . , n, let {li} be real numbers and
let {Li} be n linearly independent functionals defined on H (in this paper
functional will always mean bounded linear functional).

Definition 15.1 Exact collocation (EC) is to find a solution φ ∈ H to the
equations

Liφ = li i = 1, 2, . . . , n (1)

or in vector form
Lφ = � (2)

as a linear combination

φ =

n∑
1

ajψj = aTψ (3)

where {ψj} are n given linearly independent elements of H.

By substituting (3) into (1) we find the equations

n∑
1

Liψjaj = lj , i = 1, 2, . . . , n

i.e. the collocation problem has a unique solution if and only if the matrix
{Liψi} is regular. Our assumption about the linear independence of {ψj} is
necessary but not sufficient.

Definition 15.2 Exact least-squares collocation (ELSC) is to find among
all the φ ∈ H for which (2) is satisfied one for which the norm ‖φ‖ is as small
as possible.
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That ELSC is a form for EC will follow from Theorem 15.1, but first we
must introduce a few notations.

We shall suppose that all elements of H are functions (in geodetic practice
even harmonic functions) in an open point set Ω and that H has a repro-
ducing kernel K(x, y); x ∈ Ω, y ∈ Ω. It is well known that K(·, y) ∈ H and
K(x, ·) ∈ H and that K(x, y) = K(y, x). If F ∈ H ′ (i.e. for F a functional
on H) and φ ∈ H we shall sometimes instead of

Fφ

write

φ(F ).

This convention makes the notations K(F,·),K(·,G) and K(F,G) for F,G∈H ′

clear.
Accordingly K(Li, Lj) becomes an n× m matrix and we will denote it as

K(L,L). Moreover K(·,L) is a row vector the entries of which are elements
of H and

K(L, ·)T = K(·,L).

Theorem 15.1 To every ψ ∈ H there exists a unique element φ ∈ HL ⊂ H
where

HL =
{

K(·,L)ξ
∣∣ ξ ∈ Rn

}
is an n-dimensional subspace of H, such that

1. Lφ = Lψ
2. ‖φ‖ ≤ ‖ψ‖

with ‖φ‖ = ‖ψ‖ if and only if ψ ∈ HL.

Corollary 15.1 Under the given assumptions the exact least-squares prob-
lem has a unique solution.

Proof of the corollary. As {Li} are linearly independent there exists a ψ ∈ H
such that that

Lψ = �.

From this ψ Theorem 15.1 implies the existence of a unique φ ∈ H such that

1. Lφ = �
2. ‖φ‖ < the norm of any other element of H satisfying 1).

Proof of the theorem. First we prove that 1) has a unique solution φ ∈ HL:
Putting

φ = K(·,L)ξ, ξ ∈ Rn,

1) is equivalent with

K(L,L)ξ = Lψ. (4)
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These linear equations in {ξj} have the unique solution

ξ =
(
K(L,L)

)−1Lψ

because K(L,L) is regular, therefore

φ = K(·,L)
(
K(L,L)

)−1Lψ (5)

is the unique solution of 1) in HL.
Next we prove that if φ′ is any element of H , but not in HL and such that

Lφ′ = Lψ then ‖φ′‖ > ‖φ‖.
φ′ can be written as φ′ = φ+φ0 where φ ∈ HL is given by (5) and Lφ0 = 0.
We have

〈φ0, φ〉 =
〈
φ0, K(·,L)ξ

〉
= φ0LTξ = ξLφ0 = 0,

i.e. φ0 is orthogonal to φ (and evidently to every element of HL), therefore

‖φ′‖2 = ‖φ‖2 + ‖φ0‖2 > ‖φ‖2

or
‖φ′‖ > ‖φ‖.

Corollary 15.2 The norm of φ (the solution of the ELSC problem) is de-
termined by

‖φ‖2 = �T
(
K(L,L)

)−1
�.

Proof From (5) we find

‖φ‖2 = 〈φ, φ〉 =
〈
(K·,L)

(
K(L,L)

)−1Lψ, (K·,L)
(
K(L,L)

)−1Lψ
〉

= (Lψ)T
(
K(L,L)

)−1Lψ = �T
(
K(L,L)

)−1
�.

Our result so far can partly be expressed by saying that the element φ ∈ H
given by (5) is in a certain sense (namely with respect to the norm ‖ · ‖ in H)
the best approximation to ψ to be found from our limited knowledge about ψ
(namely the values of the functionals Li of ψ). We will in this paper use the

symbol ψ̃ for this approximation:

ψ̃ = K(·,L)
(
K(L,L)

)−1Lψ. (6)

Applying the functional F on ψ̃ gives

Fψ̃ = K(F,L)
(
K(L,L)

)−1Lψ

which gives the value of F applied on ψ̃ as a linear combination of the values
of the functionals Li applied on ψ, if we define

F̃ψ = Fψ̃, (7)
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then F̃ is a linear functional which may be written as

F̃ = K(F,L)
(
K(L,L)

)−1L, (8)

and we could call F̃ the ELSC approximation to F . We will however give
another definition of “the best approximation” F̃ to F which makes evident
some minimum property of F − F̃ :

Definition 15.3 The exact least-squares collocation approximation to any
F ∈ H ′ is that linear combination of the given functionals {Li}, i = 1, 2,

. . . , n, for which ‖F − F̃‖′ is as small as possible. Here ‖ · ‖′ is the norm
in H ′, the dual space to H.

We could also express the definition by saying that F is the orthogonal
projection of F into H ′

L, the n-dimensional subspace of H ′ spanned by the n
functionals {Li}. So we want to find ξ ∈ Rn such that

F − F̃ = (F − ξTL) ⊥ ηTL for all η ∈ Rn,

or
〈ηTL, F − ξTL〉′ = 0 for all η ∈ Rn. (9)

But we know that for any G1, G2 ∈ H ′

〈G1, G2〉′ = K(G1, G2),

therefore we can write (9) as

ηT
(
K(L, F ) − K(L, ξL)

)
= 0 for all η ∈ Rn,

that is

K(L,L)ξ = K(L, F )

ξ =
(
K(L,L)

)−1
K(L, F )

or

ξT = K(F,L)
(
K(L,L)

)−1

such that

F̃ = ξTL = K(F,L)
(
K(L,L)

)−1L

which is the same as (8) and we have proved that Definition 15.3 gives the
same F as the Definition (7).

We can express this result in
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Theorem 15.2 The approximation problem given by Definition 15.3 has a
unique solution, the minimum is determined by(

‖F − F̃‖′
)2

= K(F,L)
(
K(L,L)

)−1
K(L, F ) (10)

and the solutions for any pair of functionals F, G ∈ H ′ are consistent, i.e.
there exists an element φ̃ ∈ H such that

F̃ φ = Fφ̃ and G̃φ = Gφ̃.

This φ̃ depends only on the linear functionals {Li} and their values {li} and
is the solution of the approximation problem given by Definition 15.2.

(10) is proved by a trivial calculation.
(If the kernel K may be identified with a covariance form, then Theo-

rem 15.2 is the mathematical machinery to be applied in order to arrive at
the Gauss-Markov lemma and then it is the mean-square error which is min-
imized.)

2. An Upper Bound for the Approximation Error of a
Functional in Least-Squares Collocation

From the definition of the norm in H ′, the dual space to H , follows that∣∣(F − F̃ )φ
∣∣ ≤ ‖F − F̃‖′‖φ‖ for φ ∈ H .

Using (10) we find(
(F − F̃ )φ

)2 ≤ K(F,L)
(
K(L,L)

)−1
K(L, F )‖φ‖2. (11)

This formula can be improved:

(F − F̃ )φ = (F − F̃ )(φ − φ̃)

because
(F − F̃ )φ̃ = 0.

Therefore (
(F − F̃ )φ

)2 ≤ K(F,L)
(
K(L,L)

)−1
K(L, F )‖φ − φ̃‖2

or(
(F − F̃ )φ

)2 ≤ K(F,L)
(
K(L,L)

)−1
K(L, F )

(
‖φ‖2 − �T

(
K(L,L)

)−1
�
)
. (12)

If we try to apply this inequality on errors for the approximation of functionals
on the anomalous gravity field T of the Earth we are faced with the unpleasant
fact that we cannot find an upper bound for ‖T ‖ in a Hilbert space of functions
harmonic outside a Bjerhammar sphere and we normally use such Hilbert
spaces in geodetic collocation.
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As a first step on the way to a practical estimate of the approximation
error for geodetic collocation methods I shall here introduce a special Hilbert
space for which it is possible to find an upper bound for ‖T ‖ and for which it
is possible to calculate least-squares collocation approximations.

The actual gravitation field of the Earth is supposed to be generated by
a mass distribution inside the Earth. The density of this mass distribution is
non-negative and bounded by some constant K. For the normal gravitation
field a mass distribution with the same properties can be found. Therefore T
as the difference between these fields can also be regarded as generated by
a mass distribution inside the Earth and having a bounded density so the
integral of the square of this density is bounded.

Let ω denote the surface of the Earth, Ω0 the interior and Ω the exterior
of the Earth, and let D be the space L2(Ω0) i.e. Hilbert space of square
integrable functions on Ω0. We can regard the elements of D as densities of
mass distributions. The gravitation field φ in Ω generated by ρ ∈ D is given by

φ(x) =

∫
Ω0

ρ(y)

|x − y| dy. (13)

(13) defines a linear mapping

M : ρ �→ φ for ρ ∈ D.

Let H be the image space consisting of Mφ for all ρ ∈ D such that

M : D �→ H, ρ �→ φ.

H is a linear space of functions harmonic in Ω (regular at infinity) and we have
just seen that T ∈ H . We shall prove that H can be made a Hilbert space.

By the definition of H the operator M is surjective, but it is not one to
one: to a given harmonic function φ ∈ H there corresponds an infinite set of
densities ρ ∈ D such that φ = Mρ. Let D0 be the kernel of M , i.e. D0 is the
set of elements ρ ∈ D such that Mρ = 0. D0 is the set of square integrable
densities on Ω0 which generate potentials which are zero on Ω. If we can prove
that D0 is a closed linear subspace of D, then every element ρ ∈ D can be
written

ρ = ρ0 + ρ1

where ρ0 ∈ D0 and ρ1 ⊥ ρ0 (or ρ1 ∈ D1 where D1 is the orthogonal comple-
ment to D0 in D).

We have
Mρ = Mρ0 + Mρ1 = Mρ1

and
‖ρ‖2

D = ‖ρ0‖2
D + ‖ρ1‖2

D,

so that ρ1—the orthogonal projection of ρ into D1—is that element of D which
has the smallest norm among those which generate the same outer potential
as ρ.
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It is now clear that if M1 is the restriction of M to D1:

M1 : D1 �→ H, ρ1 �→ Mρ1

then M1 is linear, one to one, and onto: To every φ ∈ H there exists one
ρ ∈ D1 such that M1ρ = Mρ = φ, and we can define a norm ‖ · ‖H in H by

‖φ‖H = ‖ρ‖D where φ ∈ H and ρ ∈ D such that φ = Mρ

that is the norm of φ in H is the norm of that ρ which has the smallest norm
of those densities which generate φ:

‖φ‖H = min
Mρ=φ

‖φ‖D.

And we can prove that D0 is closed! (That it is linear is trivial.) Define

k(x, y) =
1

|x − y| , x ∈ Ω, y ∈ Ω0

then k(x, ·) is continuous on Ω0 and therefore k(x, ·) ∈ D for all x ∈ Ω and
we can write (13) as

φ(x) =
〈
ρ, k(x, ·)

〉
D

(14)

i.e. for fixed x ∈ Ω, φ(x) is a bounded linear functional on D, let us call it Mx:

Mx : D �→ R : ρ �→ φ(x).

As a bounded linear functional Mx is continuous and therefore the set

Sx =
{

ρ ∈ D
∣∣ Mx = 0

}
is closed. Clearly,

D0 =
⋂

x∈Ω

Sx

which is closed as an intersection of closed sets.
From (14) we can find a characterization of D1, the orthogonal complement

to D0 in D. In fact (14) says that D0 is the orthogonal complement in D to
the linear subspace spanned by the elements k(x, ·) ∈ D, that is D1 is exactly
this subspace. It is at least plausible that D1 consists exactly of those elements
of D which are harmonic in Ω0 and, in fact, it can be proved provided only
that ω satisfies a very weak smoothness condition; it will not be proved or
needed here, but we will return to the geodetic problem for a while.

In order to give the inequalities (11) and (12) a meaning we have found
a Hilbert space H of functions harmonic outside the Earth such that T must
be an element of this space and such that it is possible to find a number c
such that

‖T ‖H < c. (15)
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In the next section we shall prove that the space H has a reproducing
kernel K and that it is possible for F, G ∈ H ′ to calculate K(F, G) and so
(11) and (12) have at least a meaning. Unfortunately, probably any constant c
(in (15)) which can be calculated from our knowledge today about the mass
distribution in the Earth will be much too great and so result in a much too
pessimistic estimate for the approximation errors. c cannot be computed from
satellite potentials because those ignore “higher order terms” i.e. the terms
of T which decrease rapidly with the distance from the Earth’s surface, but
from satellite potentials we can find lower bounds for c.

There can be given three good reasons for our estimate being so pes-
simistic:

1. It lies in the very nature of maximum error estimates that they are more
pessimistic than mean error estimates, they must therefore normally be
looked upon with a reasonable large portion of optimism.

2. In the Gauss-distribution least-squares model the maximum error is in-
finite. Naturally it would be unfair already from the existence of finite
maximum errors for this collocation model to deduce the invalidity of a
Gauss-distribution model for geodetic collocation exactly as the fact that
we know that geodetic observation errors in networks are bounded does
not in practice preclude the application of the Gauss-distribution model.

3. Least-squares collocation is not fashioned with reference to the minimiza-
tion of maximum errors. It would be possible to define a least-maximum
error collocation and, more general, a least-norm collocation using Banach
spaces with a not necessarily quadratic norm instead of Hilbert space.
Then, however, the calculation would no longer be linear and I think the
loss in simplicity would exceed the gain.

3. The Kernel

We have seen that M1 : D1 → H is an isometric operator:

〈M1ρ, Mσ〉H = 〈ρ, σ〉D for ρ, σ ∈ D1. (16)

We want to find the reproducing kernel K(x, y), x, y ∈ Ω, for H . It is
defined by the equation

φ(x) =
〈
φ, K(x, ·)

〉
H

, x ∈ Ω, φ ∈ H ; (17)

but from (14) and (16) follows:

φ(x) =
〈
ρ, k(x, ·)

〉
D

=
〈
M1ρ, k(x, M1)

〉
H

=
〈
φ, k(x, M1)

〉
H

for φ = M1ρ,

therefore we must have

K(x, y) = k(x, M1) = M1

( 1

|x − z|
)

M1 operates with respect to z



15 Some Remarks About Collocation 271

=

∫
Ω0

dz

|x − z| |y − z| =
〈
k(x, ·), k(y, ·)

〉
D

.

For given x, y ∈ Ω this can be found by numerical integration, but it is
normally impossible to find a closed expression for it. But for F, G ∈ H ′ we
can find

K(F, G) =
〈
k(F, ·), k(G, ·)

〉
D

by numerical integration. k(F, ·) is harmonic in Ω0 and is called the Green’s
transform of the functional F , it is useful also for calculations in spaces with
other norms.

There exist other Hilbert spaces for which the norm of T must be bounded.
Some of them are more convenient. One could choose a Bjerhammar sphere Σ
inside the Earth and define the norm for the mass density by

‖ρ‖2 =

∫
Σ

w(r)ρ2 dx +

∫
Ω0−Σ

ρ2 dx

where w(r) > 0 is a continuous function of r, the distance from the centre
of the Bjerhammar sphere. Also in this case such a norm defines a norm for
harmonic functions in Ω as above; by a suitable choice of the weight function w
that part of the reproducing kernel corresponding to the integral over Σ can
be expressed by a closed expression such that the numerical integration has
only to be performed over Ω0 − Σ.

4. Discussion

The fact that I in the foregoing section have entered into computational details
concerning reproducing kernels for Hilbert spaces over Ω could perhaps make
the reader suspect that I would recommend collocation “with respect to the
surface of the Earth” instead of “with respect to a Bjerhammar sphere.” This
is not the case.

On the other hand, there is perhaps reason for expecting that the evolution
of collocation will make a step or two in that direction.

I shall here give two possible reasons:

1. When the distance between points where observations of the same type
are performed becomes small with respect to the distance to the Bjer-
hammar sphere then the normal equations have a tendency to become
ill-conditioned. But where we are interested in a detailed picture of the
local gravity field we have to use such neighbouring observations. There-
fore we can be forced to lift up the Bjerhammar surface under certain
circumstances so much that it is not a sphere any more. I have always re-
gretted that the cheapest relevant source of information, the topography,
is neglected by collocation. Here it comes in again, and I find it proba-
ble that a Bjerhammar surface approximating the physical surface roughly
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from below in mountainous regions e.g. the Rheingraben can improve local
results considerably. The topographical information is cheap but the nu-
merical integration needed for its application for collocation is not cheap.
But something can be done with suitable approximations and moreover
any use of topography in physical geodesy costs a lot of calculations.

2. The field of applications of statistics is the unknown, but by using statistics
on the field outside the Bjerhammar sphere we cut off the topography, the
isostasy, etc. Was it not better to take advantage of what we know and
apply statistics on that part of the mass distribution which is unknown?
I do not want that the statistical speculations shall be buried, but I want
them brought not only down to Earth but down under the surface of the
Earth and this is quite different.

Bibliographical Notes

The Klein quotation is from [2], page 171. I have tried to translate it:

Generally speaking geodesy is a brilliant illustration of the possibil-
ities of application of mathematics and how to apply it. It is true
that it gives only approximations, but as far as a geodetic investiga-
tion can be regarded as completed it always gives the measure for the
approximation.

The quotation from myself—sans comparaison—is from [3]. This paper has
been strongly influenced by the recent paper [1].

For slightly different aspects of the connection between collocation of the
anomalous field and mass distributions in the Earth see [4] and [5].
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Apropos Some Recent Papers by Willi Freeden
on a Class of Integral Formulas in the

Mathematical Geodesy

I think that some geodesists after reading of one or two of the papers by
Willi Freeden1 would find it amusing to know if there is a relation between
Freeden’s method and the geodetic collocation method: is there an alternative
to collocation or a complement to it here—or should the connections between
the two theories be much more intimate as some formulas of Freeden’s could
make one suspect? The aim of this paper is to clear up this question.

I. Two Types of Approximation

In order to compare the two methods we will first define an abstract version
of these methods, and in order to do that we will first formulate the problem
they intend to solve.

The problem In a real Hilbert space H we concentrate on N +1 bounded
linear functionals {fi}, i = 1, 2, . . . , N , and F . In the following the indices i
and j will always have the range 1, 2, . . . , N . We suppose that these functionals
are independent; that is, for any {vi} ∈ RN and V ∈ R there exists at least
one element φ ∈ H such that

fiφ = vi and Fφ = V.

Now suppose that the values {vi} are given, from the independence of
the N + 1 functionals follows that V cannot be computed from {vi}; the only
linear functionals we can find from {fi} are those linearly dependent on {fi},
i.e., the elements of the linear subspace of H′ spanned by {fi}. Let N be this
N -dimensional subspace, and let us define:

Any function
A : H′ → N : F �→ F̃

is called an approximation to F . If A is linear it will be called a linear
approximation.

1 [2], [3]
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Clearly as both F and F̃ are linear functionals, their difference

F̃ − F = E

is also a linear functional and we will call it the error functional for the ap-
proximation A. The numerical value of E for a given element φ ∈ H,

|Eφ| = |F̃ φ − Fφ|,

will be called the error for A and φ. The H′ norm of E, i.e., the smallest
constant c such that

|Eφ| ≤ c‖φ‖,
where ‖φ‖ is the H-norm of φ, is called the norm for the approximation.
We will denote the H′-norm by ‖ · ‖′, such that ‖E‖′ is the norm of the
approximation A.

We can now give the final formulation of the problem, namely by defin-
ing a best approximation in a reasonable way and stating a method for the
computation of this best approximation. It shall be remarked that best ap-
proximation always is meant to be relative to the given structure of H as a
Hilbert space, i.e., relative to the given norm ‖ · ‖.

The most obvious definition of best approximation is that approximation
for which ‖E‖′ is as small as possible. This definition gives the least-squares
method and the result can be described as follows:

F̃ is defined as the element in N for which ‖F̃ −F‖′ is as small as possible;

this means that F̃ is the orthogonal projection of F into N , so F̃ − F must
be orthogonal to every element of N , and it is so if

〈F̃ − F, fi〉′ = 0 (1)

for every {fi}, where 〈·, ·〉′ is the scalar product in H′. F̃ ∈ N so there exists
a vector a = {ai} such that

F̃ =
∑

i

aifi,

and we can write (1) as ∑
i

ai〈fi, fj〉′ = 〈F, fj〉′.

The matrix
M =

{
〈fi, fj〉′

}
is non-singular because {fi} are independent; therefore

a = M−1fF ,

where fF means the vector

fF =
{
〈F, fi〉′

}
.
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If we pass from the functionals {fi} and F to their values {vi} and V , we
may write the result as

Ṽ = fT
F M−1v, (2)

where v = {vi}.
We see that the least-squares approximation is linear. Another important

property of this approximation which shall not be proved here is that it is
consistent; that is given {fi} and {vi} there exists a unique element φ̃ ∈ H
such that for any F ∈ H′,

Ṽ = Fφ̃.

Before we can define what we call the F -approximation and the F -method,
we must give a few definitions.

We define the null space of the linear functional F as

H0 =
{

φ ∈ H
∣∣ Fφ = 0

}
,

and we give H0 the structure as a Hilbert space induced on it as a subspace
of H. Its dual H′

0 is the subspace of H′ consisting of all elements of H′ or-
thogonal to F .

The orthogonal complement to H0 in H will be called G; it is one-
dimensional and G′ is the one-dimensional subspace of G′ spanned by F . The
orthogonal projector of H′ onto G′ is

Q =
〈F, ·〉′
〈F, F 〉′ F,

and the orthogonal projector of H′ onto H′
0 is

P = I − 〈F, ·〉′
〈F, F 〉′ F.

Now we can define the F -best approximation by the following three con-
ditions:

1. F̃ ∈ N
2. QF̃ = F
3. F̃ shall satisfy conditions 1 and 2 and have an error norm as small as

possible.

Let NF be the N − 1 dimensional affine subspace of H′ consisting of
elements F̃ of N for which QF̃ = F , then 1 and 2 can be expressed as

F̃ ∈ NF , (3)

and 3 can be expressed as the following: F̃ is the orthogonal projection of F
into NF .

1) means that there exists a vector b = {bi} such that

F̃ =
∑

bifi, (4)
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N

H′ NF

Fig. 16.1. Diagram of commuting orthogonal projections

and then 2) means that

〈F, F̃ 〉′F
〈F, F 〉′ F =

∑
bi〈F, fi〉′

F

〈F, F 〉′ = F

or ∑
bi〈F, fi〉′ = 〈F, F 〉′ or fT

F b = 〈F, F 〉′, (5)

so (3) means that there exists a vector b such that (4) and (5) are satisfied.
The orthogonal projection H′ → NF will now be effectuated by compo-

sition of the orthogonal projections H′ → N and N → NF . This is possible
because the diagram in Figure 16, where the arrows indicate orthogonal pro-
jections, commutes.

The first projection
H′ → N : F �→ FN

is effectuated by the least-squares method:

FN =
∑

aifi

a = M−1fF .

The second projection is

N → NF :
∑

aifi �→
∑

bifi,

where b satisfies condition (5) is an orthogonal projection in an N -dimensional
vector space onto an affine hyperplane in this space. Therefore∑

bifi −
∑

aifi

shall be orthogonal to the hyperplane in N determined by (5). A qualified
guess is b = λa, then∑

bifi −
∑

aifi = (λ − 1)
∑

aifi

and for x = {xi}:

(λ−1)
〈∑

aifi,
∑

xifi

〉′
= (λ−1)aTMx = (λ−1)fT

F M−1Mx = (λ−1)fT
F x,

which in fact is zero for
∑

xifi parallel to the hyperplane (5).
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Putting b = λa in (5) gives

λ =
〈F, F 〉′
fT

F a
=

〈F, F 〉′
fT

F M−1fF

and so the F -approximation is given by

F̃ =
∑

bifi,

b = 〈F, F 〉′ M−1fF

fT
F M−1fF

,

and

Ṽ = 〈F, F 〉′ fT
F M−1v

fT
F M−1fF

. (6)

This result is, as we shall see, apparently different from that of Freeden, which
with our notations may be written as

Ṽ = 〈F, F 〉′ fT
F M−1

0 v

fT
F M−1

0 fF

, (7)

where
M0 =

{
〈Pfi, Pfj〉′

}
.

But

〈Pfi, Pfj〉′ = 〈Pfi, fj〉′ =

〈
fi −

〈F, fi〉′
〈F, F 〉′ F, fj

〉′

= 〈fi, fj〉′ −
〈F, fi〉′〈F, fj〉′

〈F, F 〉′ = 〈fi, fj〉′ −
fF fT

F

〈F, F 〉′ ,

and

M−1
0 =

{
〈fi, fj〉′ −

fF fT
F

〈F, F 〉′

}−1

= M−1 +
M−1 fF fT

F

〈F,F 〉′ M
−1

1 − fT
F M−1fF

〈F,F 〉′
.

Therefore

fT
F M−1

0 v = fT
F M−1v +

fT
F M−1fF

1
〈F,F 〉′ f

T
F M−1v

1 − fF M−1fF

〈F,F 〉′

=

(
1 +

fT
F M−1fF

〈F,F 〉′

1 − fT
F

M−1fF

〈F,F 〉′

)
fT

F M−1v =
fT

F M−1v

〈F, F 〉′ − fT
F M−1fF

,

and in the same way

fT
F M−1

0 fF =
fT

F M−1fF

〈F, F 〉′ − fT
F M−1fF

,

so the expressions (6) and (7) are identical.
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All these things found by calculations can in a moment be made trans-
parent by regarding the plane in H′ which contains the vector F and its
projection into the span of {fi}. This plane contains the four points O, F and

the two approximating F̃ , namely the least-squares approximation and the
F -approximation, and it becomes clear that the latter is 1/ cos2 θ times the
former, where θ is the angle between the vector F and (its projection into)
span {fi}.

Finally, we have three remarks:

1. The F -approximation is only defined for θ �= π
2 ;

2. The F -approximation is not linear;
3. The F -approximation is not consistent.

II. The Joy of Recognition

Perhaps it is not easy to recognize Freeden’s Method in the F -approximation
but just like reproducing kernels, the bridge from least squares to collocation
it is also the bridge from the F -approximation back to Freeden’s integral
formulas. Let us therefore recall a few essential facts about Hilbert spaces
with reproducing kernels (see [4] and [1]).

Let H be a Hilbert space of a class of functions on an open subset Ω of
a Euclidean space. If the values of any element of H at points of Ω, evalu-
ation functionals, are bounded linear functionals on H, then there exists a
reproducing kernel K(·, ·), a symmetric function on Ω × Ω such that for any

g ∈ H′ and h ∈ H′,

e.g., for evaluation functionals

gxK(x, ·) ∈ H,

(we often write K(g, ·) instead of gxK(x, ·)) and for any φ ∈ H

gφ =
〈
K(g, ·), φ

〉
,

where 〈·, ·〉 is the scalar product in H

gxhyK(x, y) = 〈g, h〉′

or as we also write it
K(g, h) = 〈g, h〉′.

Therefore if we know the reproducing kernel for our space H, especially if
this kernel is explicitly expressible in elementary functions, then the approx-
imation problems are computationally simpler to solve if we in the formulas
substitute K(g, h) for 〈g, h〉′.
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For Ω the unit sphere in R3 we have in Freeden’s notations

f(ξ) =
1

(4π)2m

∫
Ω

[
(∆∗

η + λ)G(2m)(λ; ξ, η)
]
(∆∗

η + λ)f(η) dω(η)

for λ �= n(n + 1), i.e., G(2m)(λ; ξ, η) is the reproducing kernel for the Hilbert
space Hm,λ consisting of functions on Ω for which the norm

‖f‖m,λ =

[
1

(4π)2m

∫
Ω

[
(∆∗

η + λ)f(η)
]2

dω(η)

]1/2

corresponding to the scalar product

〈f, g〉m,λ =
1

(4π)2m

∫
Ω

[
(∆∗

η + λ)f(η)
][

(∆∗
η + λ)g(η)

]
dω(η) (8)

is finite.
For

F (φ) =
1

4π

∫
Ω

φ(η) dω(η)

and λ = 0 we have that (8) is the scalar product on H0 for a suitable Hilbert
space H of functions on Ω. The scalar product in H may be defined as

〈f, g〉 =

[
1

4π

∫
Ω

f(η) dω(η)

][
1

4π

∫
Ω

g(η) dω(η)

]
+

1

(4π)2m

∫
Ω

(
∆∗mf

)(
∆∗mg

)
dω(η),

and the kernel for H then becomes

1 + G(2m)(0; ξ, η).

Applying (7) in this situation we will find Freeden’s result, remembering
that {fi} are evaluation functionals and F is the mean value over the unit
sphere, so 〈F, F 〉′ = 〈F, fi〉′ = 1.

The kernels G(2m)(0; ξ, η) are not expressible by elementary functions but
instead of those one could use

K(2m)(ξ, η) =

∞∑
k=1

2k + 1

k(k + 1)(k + 2) · · · (k + 2m− 1)
Pk(ξ, η),

which are explicitly expressible by elementary functions and are reproducing
kernels in Hilbert spaces with norms equivalent to the norms in the spaces
in which G(2m) are reproducing kernels; this is easily proved by decomposing
the coefficients in (2) into partial fractions.
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III. Instead of a Conclusion

Here I have tried to point out some connections between Freeden’s formulas
and collocation and to generalize Freeden’s method in different directions,
but I want to leave it to the reader to find out which one of the methods is
preferred for his problems. I hope that the considerations above will help him
in his choice.

I have observed that some geodesists in writing about applications of col-
location have expressed surprise or perhaps complaint over the fact that the
mean of an observed functional there in contrast to that calculated by Free-
den’s method is expressed by weights, the sum of which are less than one.
Geodesists with such problems can perhaps by contemplating this paper find
out where this is reasonable and where it is not.
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of Die Grundlehren der mathematischen Wissenschaften in Einzeldarstel-
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17

S-Transformation or How to Live Without the
Generalized Inverse —Almost

I

Let
Ax = a (1)

be the normal equations of an adjustment problem in supernumerary parame-
ters. Let n be the number of parameters, then A is an n×n matrix which is non
negative definite but singular. Let its zero space N : {y ∈ Rn | Ay = 0 } be
d-dimensional, then the problem is said to have index d, and x is determined
by (1) only modulo N .

In order to make the problem uniquely solvable we add a suitable set of d
fictitious observation equations

Fx = b (2)

where F is a d × n matrix. We suppose that these observation equations are
weight normalized, such that the normal equations now become

(A + FTF )x = a + FTb. (3)

Such an addition to the problem is called a soft postulation, and the question
which shall be treated here is how the inverse of the matrix

B = A + FTF

of the normal equations (3) depends on this soft postulation.
Let

O =
[
M N

]
be an orthogonal n × n matrix where N is an n × d submatrix consisting
of (d normalized and mutually orthogonal) column vectors in N . Then M is
an n×(n−d) submatrix consisting of n−d normalized and mutually orthogonal
column vectors in the subspace M ⊂ Rn which is orthogonal to N .
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We find

O−1BO =

[
MT

NT

] [
A + FTF

][
M N

]
=

[
MTAM + MTFTFM MTFTFN

NTFTFM NTFTFN

]

=

[
I (FM)T

Θ (FN)T

][
MTAM Θ

Θ I

][
I Θ

FM FN

]
where Θ means a zero matrix of suitable dimensions and I means a unity
matrix. We will express the result as

O−1BO =

[
I (FM)T

Θ (FN)T

][
MTAM Θ

Θ λ

][
I Θ

FM FN

]
λ = I. (4)

In the following we shall treat λ as any scalar matrix not necessarily equal
to I. Now

(O−1BO)−1 =

[
I Θ

FM FN

]−1 [
MTAM Θ

Θ λ

]−1 [
I (FM)T

Θ (FN)T

]−1

. (5)

The determinant of
[

I Θ
FM FN

]
is equal to the determinant of FN . It is easy

to see that (3) has a unique solution if

det(FN) �= 0. (6)

(6) is the exact formulation of the condition that the observation equations (2)
correspond to a suitable set of fictitious observations! We shall suppose that
(6) is satisfied, and we find:

(O−1BO)−1 =

[
I Θ

−(FN)−1FM (FN)−1

][
(MTAM)−1 Θ

Θ λ−1

]

×
[

I −(FM)T(FN)−T

Θ (FN)−T

]
. (7)

The product of the three matrices is⎡⎢⎢⎢⎣
(MTAM)−1 −(MTAM)−1(FM)T(FN)−T

−(FN)−1FM(MTAM)−1

{
(FN)−1FM(MTAM)−1(FM)T(FN)−T

+ 1
λ

(
(FN)TFN

)−1
}

⎤⎥⎥⎥⎦ .
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We observe here that λ enters only at one place in the last expression and
the result for λ → ∞ is the same as if in the second matrix in (7), λ−1 had
been replaced by Θ. Now λ → ∞ corresponds to what could be called hard
postulation, i.e., that the fictitious observations are given infinite weight or,
equivalently, that the equations (2) are regarded as condition equations and
not as observation equations. Writing Ω instead of B−1, we may rewrite (7) as

O−1ΩO =

[
I Θ

−(FN)−1FM (FN)−1

][
(MTAM)−1 Θ

Θ ε

]

×
[

I −(FM)T(FN)−T

Θ (FN)−T

]
; (8)

where

ε =

{
I for soft postulation

Θ for hard postulation.

We should find

Ω = O

[
I Θ

−(FN)−1FM (FN)−1

]
O−1O

[
(MTAM)−1 Θ

Θ ε

]
O−1

× O

[
I −(FM)T(FN)−T

Θ (FN)−T

]
O−1.

Now

O

[
(MTAM)−1 Θ

Θ ε

]
O−1 =

[
M N

] [(MTAM)−1 Θ

Θ ε

][
MT

NT

]

=
[
M(MTAM)−1 εN

] [MT

NT

]

= M(MTAM)−1MT + εNNT.

Here NNT = ΠN , the orthogonal projector Rn → N and so independent
of the choice of the d orthogonal vectors in N . It is easily proved that
M(MTAM)−1MT is also independent of the actual choice of the ‘coordinate
system’ in M. By the way,

M(MTAM)−1MT = A+,

the generalized inverse of A.
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Next

SF = O

[
I Θ

−(FN)−1FM (FN)−1

]
O−1

=
[
M N

] [ I Θ

−(FN)−1FM (FN)−1

][
MT

NT

]

=
[
M − N(FN)−1FM N(FN)−1

] [MT

NT

]

= MMT − N(FN)−1FMMT + N(FN)−1NT.

Here MMT = ΠM, the orthogonal projector Rn → M, and ΠM = I−ΠN =
I − NNT, so

SF = (I − NNT) − N(FN)−1F (I − NNT) + N(FN)−1NT

= I − N(FN)−1(F − NT), (9)

and
Ω = SF

(
M(MTAM)−1MT + εNNT

)
ST

F . (10)

A possible way to compute M(MTAM)−1MT is the following: Compute first Ω
for soft postulation, then

M(MTAM)−1 = S−1
F ΩS−T

F − NNT,

but

S−1
F =

(
O

[
I Θ

−(FN)−1FM (FN)−1

]
O−1

)−1

= O

[
I Θ

FM FN

]
OT

=
[
M N

] [ I Θ

FM FN

][
MT

NT

]

=
[
M + NFM NFN

] [MT

NT

]
or

S−1
F = MMT + NFMMT + NFNNT

= (I − NNT) + NF. (11)
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More generally suppose that we have found Ω for the soft postulation corre-
sponding to the equations (2), let us call it ΩF , then we can find ΩG; it is Ω
for the soft postulation corresponding to the equations (2) with G instead
of F in the formula

ΩG = SGS−1
F ΩF S−T

F ST
G = (SGS−1

F )ΩF (SGS−1
F )T. (12)

Such transformations ΩF → ΩG are called S-transformations ; they evidently
form a group.

I shall give an alternative proof of the result, a proof of a more statistical
flavor.

If f is a linear functional of the parameters, then

σ2(f) = fΩfT σ2;

on the other hand if f1 is a linear functional on M, i.e., if f1 is estimable,
then from the definition of A+ follows

σ2(f1) = f1A
+fT

1 σ2,

and if f2 = hF , where h is a d-dimensional row vector, i.e., if f2 depends only
on the postulation, then

σ2(f2) = εhhT σ2.

But every f may be written as f = f1 + f2, with suitable f1 and f2 as above:

f = f1 + hF, f1 = f − hF, Θ = f1N = fN − hFN

or

h = fN(FN)−1, f2 = fN(FN)−1F, f1 = f
(
I − N(FN)−1F

)
,

and as f1 and f2 are independent we have

σ2(f) = σ2(f1) + σ2(f2) = f
(
I − N(FN)−1F

)
A+

(
I − N(FN)−1F

)T
fTσ2

+ εfN(FN)−1
(
N(FN)−1

)T
fT σ2.

This formula is even correct if the row vectors of N are not orthonormal! We
have

NTN(NTN)−2NTN = I,

so we can write

σ2(f) = f
(
I − N(FN)−1F

)
A+

(
I − N(FN)−1F

)T
fTσ2

+ εfN(FN)−1NT
(
N(NTN)−2NT

)(
N(FN)−1NT

)T
fT σ2

= fSF

(
A+ + εN(NTN)−2NT

)
ST

F fT σ2.

This is correct for all f ; therefore we must have

Ω = SF

(
A+ + εN(NTN)−2NT

)
ST

F .

If NTN = I, i.e., if the row vectors of N are orthonormal this is formula (10),
q.e.d.
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II

As an example we shall regard a geodetic network in the Euclidean plane.
Suppose there are m points and we have observed (sufficiently many) rela-
tive distances and/or directions, such that the coordinates can be estimated
modulo the group of similarity transformations in R2. Let (1) be the normal
equations in the coordinates and n = 2m. Then we will suppose that the co-
ordinates x1, y1, x2, and y2 of two of the points are given (hard postulation)
and that A+ is found. We want to find SF .

By (9)

SF = I − N(FN)−1F + N(FN)−1NT,

but as we are only interested in hard postulation the last addend is irrelevant,
so we put

SF = I − N(FN)−1F. (13)

Evidently

F =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0

Θ

0 0 0 1

⎤⎥⎥⎦ .

It is also evident that in order to find the reduced SF in (13), it is not necessary
to orthonormalize the vectors in N , so we may write

N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 x1 −y1

0 1 y1 x1

1 0 x2 −y2

0 1 y2 x2

1 0 x3 −y3

0 1 y3 x3

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In order to make the calculations simple, we will choose the coordinate system
such that

x1 = − 1
2 , y1 = 0;

x2 = 1
2 , y2 = 0.

Then

FN =

⎡⎢⎢⎢⎣
1 0 − 1

2 0

0 1 0 − 1
2

1 0 1
2 0

0 1 0 1
2

⎤⎥⎥⎥⎦ ,
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and

(FN)−1 =

⎡⎢⎢⎢⎣
1
2 0 1

2 0

0 1
2 0 1

2

−1 0 1 0

0 −1 0 1

⎤⎥⎥⎥⎦ ,

so

N(FN)−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
1
2 − x3 y3

1
2 + x3 −y3

−y3
1
2 − x3 y3

1
2 + x3

1
2 − x4 y4

1
2 + x4 −y4

−y4
1
2 − x4 y4

1
2 + x4

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

N(FN)−1F is then the square matrix:

N(FN)−1F =
[
N(FN)−1 | Θ

]
.

Now

B = SF A+ST
F = A+ − N(FN)−1FA+ − A+FT(FN)−TNT

+ N(FN)−1(FA+FT)(FN)−TNT

= A+ − C − CT + D.

Let us regard first the last addend

D = N(FN)−1(FA+FT)(FN)−TNT.

Here FA+FT is a 4 × 4 submatrix of A+. If the smallest eigenvalue of this
submatrix is λ1 and the largest is λ4, then

0 ≺ λ1I ≺ FA+FT ≺ λ4I,

where for two symmetric matrices M1 and M2, M1 ≺ M2 means that M2−M1

is positive definite, and

λ1N(FN)−1(FN)−TNT ≺ D ≺ λ4N(FN)−1(FN)−TNT.

But

N(FN)−1(FN)−TNT =

⎡⎣A11 A12 . . .
A21 A22 . . .

. . .

⎤⎦ ,
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where the 2 × 2 submatrices Aij are

Aij =

[
2(xixj + yiyj) + 1

2 −2(xiyj − xjyi)

−2(xiyj − xjyi) 2(xixj + yiyj) + 1
2

]
,

and we see that the ‘error-ellipses’ of D have axes ai and bi which satisfy

λ1

(
1
2 + 2(x2

i + y2
i )
)

<

{
a2

i

b2
i

}
< λ4

(
1
2 + 2(x2

i + y2
i )
)
.

Remembering that the unit of coordinates is the distance between the two
first points of the network we see, especially if these points are neighboring
points near the boundary of the network, that these error ellipses can be very
large compared with those of A+.

The matrices C and CT are of less importance, because they only grow
linearly and they have changing signs.

The case where the coordinates are determined modulo translations is
extremely simple. Here

F =

[
1 0
0 1

Θ

]
,

the coordinates of the first point are postulated. We find

Bij = A+
ij − A+

1j − A+
i1 + A+

11,

where A+
ij , (Bij) are the 2 × 2 submatrices of A+, (B) corresponding to the

point with numbers i and j. The reader should try to find out why the diagonal
elements of B has a tendency to grow with the distance of the corresponding
point from point No. 1.
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Integrated Geodesy

Summary

The paper ranges over the principles of Integrated Geodesy, characterizing its
peculiar approach to geodetic problems like the adjustment and the combina-
tion of different measurements of geometric and gravimetric nature. Particular
care is paid to the formulation of observation equations (distances, angles, etc.)
including the description of the “local frame” by a suitable matrix formalism.

Sommario

Il lavoro esamina i principi della Geodesia Integrata, caratterizzandone il
tipico approccio a problemi di combinazione di dati provenienti da misure di
diversa natura (geometriche, gravimetriche, ecc.). Con particolare attenzione
si illustra il metodo per la formazione di equazioni alle osservazioni (distanze,
angoli, ecc.) includendo la trattazione del sistema locale di riferimento per
mezzo di un opportuno formalismo matriciale.

The Leading Principles of Integrated Geodesy

Least-Squares Adjustment

The main framework for computation and discussion of classical geodetic net-
works is least-squares adjustment, which has proved to be very useful in com-
bining different observations, so it is curious that geodesists in combining
geometric and physical observations almost invariably use a more primitive
technique. Collocation has made such an approach possible.

In such a framework the whole geodesy is formally reduced to three prob-
lems:

1. Forming of the observation equations.
2. Determination of the weights.
3. The adjustment procedure itself.
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The Dynamic Aspect of Geodesy

Until recently great surveying projects had an overtone of eschatology: the
computed coordinates were looked upon as being eternal and unalterable—
a sort of domesday book. Today this has changed towards a more dynamic
aspect, now a surveying institution regards as its treasure its continually in-
creasing stock of observations rather than its file of computed coordinates,
at any time new requirements can be covered from ad hoc adjustment from
the relevant observations. We therefore want that integrated geodesy shall be
flexible enough to handle both local and global coordinate computations.

Whether coordinates are measurable or not does not interest us: we have
already coordinates, from new observations we shall be able to compute better
coordinates, to glue two or more networks coordinated in different reference
frames together into a common system of coordinates, and to take advantage
of those observations concerning the gravity field, which make possible to find
a reference frame with respect to the mass center of the Earth. Although it is
contrary to all geodetic tradition I have proposed to use Cartesian coordinates
in integrated geodesy because the passage from one frame of coordinates to
another is most simple for Cartesian coordinates.

Consistent Mathematical Model

The observations we want to handle are those which are relevant to the de-
termination of coordinates of points on (and outside) the surface of the Earth
and of the gravity field of the Earth also on and outside the surface. The
set of formulas which from a specification of such an observation gives the
theoretical value of the result of the observation from the coordinates of the
points involved in the observation and the mathematical expression for the
gravity field outside the Earth.

A mathematical model will never be correct, but we want to use a model
which is consistent, i.e. which would give unique and correct results under
certain idealizing conditions, e.g. if the “real” geometry were Euclidean, if the
instruments were correct, and if the refraction were zero.

We have to take into account that we do not live under these ideal condi-
tions by applying corrections on the observations, that is we need also some—
let us call them—peripheral mathematical models for the corrections in con-
trast to the proper mathematical model defined above.

Integrated geodesy differs from classical geometric geodetic methods main-
ly in the fact that the proper model includes the effects of the gravity field. One
could say that what characterizes a geodetic method is where it places the di-
viding line between the proper mathematical model and the peripheral models.

I believe I have good reasons for placing refraction outside this dividing
line and, at least for the time being, the effects of polar motion and plate
tectonics, but I hope that in a not too far future integrated geodesy will be
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a sort of touchstone for theories in time dependent geodesy: can these new
theories give us a better proper mathematical model or not.

Our proper mathematical model can shortly be described as follows:

The geometry is Euclidean, light propagates as in Newtonian vacuum,
the Earth rotates with constant angular velocity around a fixed axis, in a
coordinate system rigidly fixed to the thus rotating Earth, points at the surface
of the Earth have unchangeable coordinates, the gravity field in this coordinate
system is the sum of a centrifugal force part and a harmonic part satisfying
certain well-known conditions at infinity, and both of these two parts are time
independent.

The Reference

The starting point in integrated geodesy is the reference. Its analog in classical
geodesy is the reference surface. Integrated geodesy has no reference surface
but a reference potential, which is simply a mathematically given approxi-
mation to the gravity field. For historical reason the reference field will be
called U . It plays almost the same role as the provisional coordinates which
we therefore also call the reference coordinates.

We shall now see how an observation equation normally is found.

From the specification of the observation the mathematical model typically
gives

o = f
(
x, y, W (x), (gradW )(x)

)
(1)

where x and y are the coordinates of two points involved in the observation
and W is the gravity potential. o is the value of the observation. If we in (1)
for x, y, and W put the corresponding reference values x0, y0, and U we find

o0 = f
(
x0, y0, U(x0), (gradU)(x0)

)
. (2)

o0 is called the reference value of the observation.

By differentiation of (1) we find:

do =

3∑
1

∂f

∂xi
dxi +

3∑
1

∂f

∂yi
dyi +

∂f

∂W

( 3∑
1

∂W

∂xi
dxi + T

)

+

3∑
j=1

∂f(
∂W
∂xj

)( 3∑
1

∂2W

∂xi∂xj
dxj +

∂T

∂xj

)
(3)

where dxi and dyi are the increments to the coordinates xi and yi, i = 1, 2, 3,
and T is the increment to W .

If x and y are “near to” x0 and y0, and W is a “near to” U then we have
the linearized observation equation (here we use the summation convention):
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( ∂f

∂xi

)
0
dxi +

( ∂f

∂yi

)
0
dyi +

( ∂f

∂W

)
0

(( ∂U

∂xi

)
0
dxi + T (x0)

)
+

(
∂f
∂W
∂xj

)
0

(
Mij dxj +

( ∂T

∂xj

)
0

)
= o − o0 + vo. (4)

Here the index 0 means that the function shall be evaluated at x = x0, y = y0,

and W = U . M is the matrix
[(

∂2U
∂xi∂xj

)
0

]
and vo is the correction to the

observed value o. The meaning of (4) is that except from terms of the second
(and higher) order in dx, dy, U , and | gradU |, (4) is the condition for the
compatibility of

the coordinates x0 + dx and y0 + dy,

the potential U + T , (5)

the observation result o + vo

with the mathematical model.
Sometimes it seems to be a help in the search for the observation equation

to use a special coordinate system (or frame) F determined by the geodetic
instrument and also a reference frame F0 which moreover depends on the
reference. Naturally these frames must be “eliminated” so that no reference
to them enters the final observation equation.

A set as (5) for each observation in question satisfying all the observation
equations is called a feasible (linear) solution. It is clearly far from uniquely
determined. A unique solution will normally be determined by the condition
that it among all feasible solutions minimizes a given quadratic form—not
only in the increments vo to the observation, as in classical least-squares
adjustment—but in vo and T (least-squares collocation). The form for this
quadratic form is an interesting problem which will not be discussed here.

It is clear that the use of the observation equations in the linearized form
(4) introduces an error. With the optimism characteristic for an applied math-
ematician it is reasonable to expect that if the reference values are “good
enough” then by iteration of the collocation procedure, i.e. by writing new ob-
servation equations, but every time with reference coordinates and reference
potential equal to the already found coordinates and potential, i.e. writing

x0 for x0 + dx

and
U for U + T

etc. that by such an iteration it should be possible to find a set of values con-
sistent with the mathematical model and satisfying the minimum condition.
By a suitable definition of “good enough” this is even a tautology.

In this way it should be possible to come arbitrarily near to the ideal
solution, i.e. that defined by the observations, the model, and the minimum
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principle. It is not so in classical geodetic calculation schemes, where already
the use of a reference ellipsoid gives a bound for the precision of the approxi-
mation (spherical precision, ellipsoidal precision etc.).

Historical Notes

The name “integrated geodesy” has arisen in analogy to “integrated data
processing” as the idea itself has arisen as a natural continuation of attempts
at the integration of the geodetic data processing in the Danish Geodetic
Institute at the same time as the idea of collocation. In fact collocation and
integrated geodesy are two aspects of the same thing a natural generalization
of least-squares methods in geodesy. It was in 1967.

In 1970 I gave it as a problem for a student to combine these ideas with the
ideas in [1]. Dufour’s ideas had interested me very much because he applied the
classical French idea of “repère mobile” to geodesy. I suggested to the student
that it could be done more elegantly using the well-known matrix expression of
the Euclidean Group, [3], page 47. During the last few years the moving frame
has gained a faithful community of geodesists through differential geometry.

Already the last year integrated geodesy was presented in a lecture at the
Technical University in Berlin, but I deemed it too early to publish anything
about it. In connection with the first summer school in Ramsau 1973 [2] was
published, perhaps still too early, for among the many errors in that paper
unfortunately some of them are not printing errors.

My own attitude to integrated geodesy has always been ambiguous. But
as it seems that its ideas still have influence upon the evolution of the data
processing philosophy at our institute I think that it may have a meaning
to try to make colleagues outside our institute interested. And in these years
where some geodesists of the older generation can have the impression that
modern theoretical geodesy is emancipating itself from geodetic reality, this
theory, which a few years ago I deemed perhaps too unrealistic, can even be
regarded as a complementary movement.

The Observation Equations

Points, Vectors, and Frames in Euclidean Geometry

We will identify Euclidean n-space with Rn, i.e. we suppose there has been
selected a reference frame. We will denote the point with coordinates x = {xi},
i = 1, 2, . . . , n, by the n + 1 dimensional column vector

x =

[
1
x

]
=

⎡⎢⎢⎢⎢⎢⎣
1
x1

x2

...
xn

⎤⎥⎥⎥⎥⎥⎦ .
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If x and y are points their difference

x − y =

⎡⎢⎢⎢⎢⎢⎣
0

x1 − y1

x2 − y2

...
xn − yn

⎤⎥⎥⎥⎥⎥⎦ =

[
0

x − y

]

is called a vector, so a vector describes the direction and the length of a line
segment but not its position in the space. Vectors can be multiplied by scalars
and added as usual to give new vectors and for two vectors x and y their
scalar product xTy = yTx is defined as usual. Moreover vectors may be added
to points to give new points:

x + y =

[
1

x + y

]
,

but points can not be added, multiplied by scalars, etc.
A coordinate frame is determined by 1) a point f the zero point of the

frame, and 2) n orthonormal vectors in the direction of the coordinate axes.
We will combine the vectors in a matrix F , which will be an orthogonal matrix:
F−1 = FT and, if the coordinate frame is right-handed, which we shall say
suppose here, then the determinant detF = 1. We shall normally combine all
this information on the frame into a single (n + 1) × (n + 1) matrix F :

F =

[
1 0
f F

]
=

⎡⎢⎢⎢⎢⎢⎣
1 0 0 . . . 0
f1 f11 f12 . . . f1n

f2 f21 f22 . . . f2n

...
...

...
...

fn fn1 fn2 . . . fnn

⎤⎥⎥⎥⎥⎥⎦ (6)

and F shall mean the frame itself as well as this matrix. If E is the natural
frame in Rn then E = 1n+1, the unit (n + 1) × (n + 1) matrix.

If a point x has the coordinate xF in the frame F then we write

x = xF

and we find

x = FxF =

[
1 0
f F

] [
1

xF

]
=

[
1

f + FxF

]
.

In the same way for the vector x (the frame G) with coordinates xF (GF )
in the frame F we have

x = FxF (G = FGF ). (7)

The determinant of the matrix (6) is

detF = 1 · detF = 1,
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therefore F−1 exists and is called the frame reciprocal to F :

F−1 =

[
1 0

−F−1f F−1

]
=

[
1 0

−FTf FT

]
. (8)

Therefore from (7) follows
GF = F−1G,

and we have in general:

If a point (a vector or a frame) α has the expressions

αFi
in the frames Fi, i = 1, 2

then
α = FiαFi

and
αF2

= F−1
2 F1αF1

.

We shall use “infinitely small” orthogonal matrices in three dimensions:
Let F be an orthogonal matrix; then we have

FTF = I,

FT dF + (dF )TF = 0,

or, if we write

S = FTdF = F−1dF

S + ST = 0,

i.e. S is skew-symmetric and
dF = FS.

If we write S as

S =

⎡⎣ 0 −S3 S2

S3 0 −S1

−S2 S1 0

⎤⎦
then Si, i = 1, 2, 3, are the small Eulerian angles corresponding to rotations
around the three coordinate axes.

The Observation Equations Illustrated by Examples

Distance Measurements

Suppose we have observed the logarithm of the distance between the two
points x and y with reference coordinates x0 and y0. Let the observed value
be l and let l0 be the reference value:

l0 = ln |x0 − y0| = 1
2 ln

3∑
i=1

(x0i − y0i)
2.
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We should have
l = ln |x − y|.

Differentiation gives

∂l

∂xi
=

xi − yi

|x − y| ,
∂l

∂yi
=

yi − xi

|x − y|
and the equation for the increments ∆xi and ∆yi to the reference coordinates
becomes:

3∑
i=1

xi − yi

|x − y| (∆xi − ∆yi) = l − l0 + vl

or

(x0 − y0)
T(∆x − ∆y)

l0
= l − l0 + vl.

Gravity Measurements

Let the gravity be measured in the point x with reference coordinates x0, the
observed result is g. The reference value is

γ = | gradU |x0
.

We have

dg = d| gradW | =
(gradW )Td gradW

| gradW | ≈ 1

γ
(gradU)T(M dx + gradT )

and the observation equation becomes:

1

γ
(gradU)T(M dx + gradT ) = g − γ + vg.

Horizon Measurements By Theodolite

A theodolite determines a frame in the following way: The zero point is the
center of the instrument, the first coordinate axis is the vertical axis orientated
downwards, the second axis goes through the zero of the horizontal scale and
the third axis through 90◦. This is a right hand frame and will be called F .
We write

F =

[
1 0 0 0

x 1
g gradW α β

]
, F =

[ 1
g gradW α β

]
.

As we do not know x, W , and α, we must use a reference frame F0, namely

F0 =

[
1 0 0 0

x0
1
γ gradU α0 β0

]
, F0 =

[ 1
γ gradU α0 β0

]
which can be calculated from reference coordinates, the reference potential,
and one observation in x.
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In order to give relevant information the theodolite measurements at x
shall consist of the values of the (horizontal) angles giving the directions to at
least two points. To each angle measurement there will correspond an obser-
vation equation, and we shall now find that corresponding to a point y �= x.
y has the reference coordinates y0.

Let us find the coordinates of y in the frame F and the coordinates of y0

in the frame F0:

yF = F−1y =

[
1 0

−F−1x F−1

] [
1
y

]
=

[
1

FT(y − x)

]
and

y0F0
= F−1

0 y0 =

[
1 0

−F−1
0 x0 F−1

0

] [
1
y0

]
=

[
1

FT
0 (y0 − x0)

]
.

We write
dyF = yF − y0F0

etc.

and ignore consequently terms of second and higher orders. Then

dyF = FT
0 (dy − dx) + (dFT)(y − x). (9)

Now
dFT = (dF )T

and

dF =F0

⎡⎣ 0 −S3 S2

S3 0 −S1

−S2 S1 0

⎤⎦=
[
S3α0−S2β0 −S3

grad U
γ +S1β0 S2

grad U
γ −S1α0

]
.

(10)
As we are interested in angles we write with evident notation

yF1
= r sin h

yF2
= r cosh cosφ

yF3
= r cosh sinφ

and find

dyF2
= cosφd(r cosh) − r cosh sinφdφ

dyF3
= sin φd(r cosh) + r cosh cosφdφ

such that
r cosh dφ = cosφdyF3

− sin φdyF2
. (11)

Equations (9), (10), and (11) give

r cosh dφ =
(
cosφ·βT

0 −sin φ·αT
0

)
(dy−dx)−S1

(
cosφ·αT

0 +sinφ·βT
0

)
(y−x)

+
(
S2 cosφ + S3 sinφ

) 1

γ
(gradU)T(y − x). (12)
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First consider the second term!
Here S1 is the Eulerian angle corresponding to a rotation around the ver-

tical axis, i.e. S1 = dφ′, the correction to the zero direction in the horizon

cosφ · α0 + sin φ · β0 (13)

is the unit vector in the direction of the orthogonal projection of y − x into
the horizontal plane, and so the second term is simply

−r cosh dφ′. (14)

In the first term
cosφ · β0 − sin φ · α0

is a horizontal unit vector orthogonal to (13), therefore it is proportional to
the vector product

gradU

γ
× (y − x),

the proportional factor being evidently

1

r cosh
,

and so the first term must be:

1

r cosh

∣∣∣∣gradU

γ
y − x dy − dx

∣∣∣∣ (15)

where | · | is the determinant.
In order to find S2 and S3 we use (10), or rather the first column of (10):

d
gradW

g
= S3α0 − S2β0

which gives

S2 = −βT
0 d

gradW

g

S3 = αT
0 d

gradW

g
.

Using the same reasoning as above, before (15), we find

S2 cosφ + S3 cosφ = − 1

r cosh

∣∣∣∣gradU

γ
y − x d

gradW

g

∣∣∣∣.
But

d
gradW

g
=

d gradW

γ
− gradU

γ2
dg,
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but the second term is proportional to (gradU)/γ, so that

S2 cosφ + S3 sin φ = − 1

r cosh

∣∣∣∣gradU

γ
y − x d

gradW

γ

∣∣∣∣.
Here

d gradW

γ
=

1

γ

(
gradT + M dx

)
,

and the third term in (12) becomes:

− tanh

γ2

∣∣∣∣gradU y − x gradT + M dx

∣∣∣∣. (16)

From (12), (14), (15), and (16) follows:

dφ =
1

r2 cos2 h

∣∣∣∣gradU

γ
y − x dy − dx

∣∣∣∣
− tanh

γ2r cosh

∣∣∣∣gradU y − x gradT + M dx

∣∣∣∣− dφ′,

and if we write l for r cosh and h for −h, then h gets its “natural” orientation,
and the observation equation becomes:

1

γl2

∣∣∣gradU y−x dy−dx
∣∣∣+ tanh

γ2l

∣∣∣gradU y−x gradT +M dx
∣∣∣−dφ′

= φ − φ0 + vφ.
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A Measure for Local Redundancy
—A Contribution to the Reliability Theory for

Geodetic Networks

1. Motivation

It is a great merit of Baarda’s to have drawn attention to the fact that besides
the precision of a geodetic network, also its reliability is of great importance
in practice. Here I regard reliability as an expression of the possibility of
localizing gross errors in the observations.

Now it is clear that the possibility of localizing gross errors depends on the
number of over-determinations in the network, the redundancy r = N − m,
where N is the number of observations and m is the number of parameters
in the model. Or rather it depends on the relative redundancy ρ = r/N . But
that ρ does not always give a good picture of the reliability of a network is
seen in two simple examples.

First, let the network N consist of two sub-networks N1 and N2 with no
measurements between them. If the redundancy r1 of N1 is very great and r2

of N2 very small, then the redundancy r1 + r2 = r of N gives a very poor
picture of the reliability of N1.

That such unpleasant behavior is not restricted to unconnected networks
is shown in the second example. Here a point P is only tied to the rest of the
network by two distance measurements (from two different points, naturally).
But no matter how great the redundancy of the network is, a gross error in
one or both of these distance measurements cannot be localized.

In order to meet such difficulties, we shall define here the local redundancy,
i.e., the redundancy ρ of every measurement in a network, such that

1. 0 ≤ ρ < 1;
2. The sum of the redundancies of all the measurements in the network is

equal to the redundancy of the network as defined above.

It is clear that for any subset of measurements consisting of n measurements
in the network, we can define the redundancy r as the sum of the redundancies
of these n measurements and the relative redundancy ρ = r/n and that for
the single measurements the relative redundancy equals the redundancy.
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2. The Model

Let the model space M be an m-dimensional vector space, and let {ai}, i = 1,
2, . . . , N , be N linear functionals on M called the measurements. We suppose
that there is at least one subset with n linearly independent measurements.
We have also given N numbers, the observations {oi}, i = 1, 2, . . . , N ,
the observed values of the measurement functionals, and the corresponding
weights pi, i = 1, 2, . . . , N , which we put together so as to form a diagonal
matrix P .

By the so-called weight normalization, i.e., the multiplication of the obser-

vation equations ai(x) = oi, x ∈ M, by p
1/2
i we could suppose P = 1, and we

shall do so eventually, but until then we must retain the {pi} in our formulas.
We organize the possible values of the observations into an N -dimensional

vector space O in which the ith component is oi, and so the actual observations
determine the point o = (o1, o2, . . . , oN)T and we define a metric in O such

that the distance between point o1 and o2 is
(
(o1 − o2)TP (o1 − o2)

)1/2
.

The model space may be embedded in the observation space by defining
the embedded M as the union of the points o ∈ O such that

oi = ai(x) for x ∈ M.

For a given observation point o ∈ O, the least-squares solution ô may be
defined as the orthogonal projection (with respect to the metric defined by P )
onto the embedded M and for any reference system X on M the coordinates
of ô are given by

ATPAx = ATPo,

where the N × m matrix A is the matrix with rows {ai}, i = 1, 2, . . . , N ,
expressed in the reference system X ; that is

ai(x) = aijx
i.

We shall denote the matrix of the normal equations by N(P ), where

N(P ) = ATPA,

and we shall write
N = N(1).

We shall also write
∆(P ) = detN(P )

and
∆ = ∆(1) = detN.

Evidently ∆(P ) is a homogeneous polynomial in the {pi} of degree m,
which depends on the choice of the reference system in M (the choice of the
parameters). If we use another reference system Y such that

x = Sy,
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where S is a regular m × m matrix, then

N(P )Y = STN(P )XS

and
∆(P )Y = (det S)2∆(P )X .

Two homogeneous polynomials f1 and f2 are called equivalent if and only
if f1 = kf2 where k is a number different from zero, and we can say that the
equivalence class of ∆(P ) is independent of the reference system in M.

Remark 19.1 If I : M → O is the embedding of M in O then N(P ) is the
pull-back of the metric tensor P of O:

N(P ) = A∗P,

i.e., N(P ) is the metric tensor on M induced by the embedding in O or the
metric tensor on O restricted to M. It is clear that N(P ) is positive definite
as P is; geometrically a Riemannian metric induces a Riemannian metric
(rather than a pseudo-Riemannian) metric on a submanifold. It is curious
and of some importance later on that N(P ) may also be positive definite
in some cases where P is not, i.e., even if some of the weights are negative.
The analog to this situation is the existence of space-like submanifolds of
Einsteinian space-time.

N×N diagonal matrices constitute an N -dimensional vector space P with
addition and multiplication with scalar defined in the evident way. For some
such matrices P , N(P ) is positive definite, for others not. The first alternative
is valid if all the diagonal elements in P are positive. We shall be interested
in the subset P+ ⊂ P for which

P ∈ P+ ⇒ N(P ) positive definite

and which is connected and contains all P ∈ P with positive diagonal ele-
ments. At the boundary of P+, ∆(P ) evidently vanishes. We shall determine
later on that P+ is convex.

3.

Definition 19.1 The redundancy ρi of the ith measurement ai is defined by

ρi = 1 −
(

1

∆(P )

∂∆(P )

∂pi

)
P=1

First we observe that the multiplication of ∆(P ) with a constant c �= 0
does not change ρi.
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Using Euler’s theorem for homogeneous polynomials∑
xi

∂f

∂xi
= nf,

for f a homogeneous polynomial of degree n in {xi} we find

N∑
i=1

ρi = N −
N∑

i=1

(
1

∆(P )

∂∆(P )

∂pi

)
P=1

= N − 1

∆

N∑
i=1

(
∂∆(P )

∂pi

)
P=1

= N − 1

∆

( N∑
i=1

pi
∂∆(P )

∂pi

)
P=1

= N − 1

∆
m
(
∆(P )

)
P=1

= N − m = r

and we have proved that the sum of the redundancies of all the measurements
is equal to the redundancy of the network itself.

In order to find another expression for ρi, we shall use the following well-
known formula: ( d

dt
det(A + tB)

)
t=0

= detA tr(A−1B),

where A and B are m × m matrices and A is regular. This formula is proved
as follows: ( d

dt
det(A + tB)

)
t=0

=
d

dt

(
detA det(1 + tA−1B)

)
t=0

= detA
( d

dt
det(1 + tA−1B)

)
t=0

but as det(1+ tA−1B) is a polynomial of degree m in t, d
dt det(1+ tA−1B)t=0

is the coefficient to t in this polynomial which is the trace of A−1B, q.e.d.
In case B is a matrix of rank 1, we can prove a little more. In fact in this

case also A−1B is of rank 1 so all sub-determinants in A−1B of order 2, 3,
. . . , m are zero, and therefore all terms in the polynomial det(1 + tA−1B) of
degree higher than the first will vanish, and we have

det(A + tB) = detA
(
1 + t tr(A−1B)

)
.

If and only if the rank of B is 1, then there exist two (column) vectors a
and b such that

B = abT,

and
tr(A−1B) = tr(A−1abT) = tr(bTA−1a) = bTA−1a,

because the trace of a product is invariant with respect to a cyclic permutation
of the factors, and they become bTA−1a which is a scalar and therefore equal
to its trace. So we have

det(A + tabT)

detA
= 1 + tbTA−1a.
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Now put for a fixed j

pi =

{
qi > 0 for i �= j

qj + t, qj > 0 for i = j,

then

N(P ) = ATPA =
N∑

i=1

pia
T
i ai = taT

j aj +
N∑

i=1

qia
T
i ai = N(Q) + taT

j aj ;

we remember that {ai} are row-vectors!
Then

∆(P ) = det
(
N(Q) + taT

j aj

)
= ∆(Q)

(
1 + tajN(Q)−1aT

j

)
,

which shows us that for all pi for i �= j fixed ∆(P ) is an affine (i.e., nonho-
mogeneous linear) polynomial in pj. As this is true for every choice of j it
follows that all the terms in the polynomial ∆(P ) are constants multiplied by
the product of m different weights.

Putting qi = 1, i = 1, 2, . . . , n, i.e., all the weights pi for i �= j is 1 gives

∆(P ) = ∆
(
1 + (pj − 1)ajN

−1aT
j

)
,

so that (
1

∆(P )

∂∆(P )

∂pj

)
P=1

= ajN
−1aT

j

or
ρj = 1 − ajN

−1aT
j

which is an expression for the local redundancy which is easily computable.
Now ajN

−1aT
j is the a posteriori variance of the measurement aj and the

a priori variance of aj is one, so we have the following:
The redundancy of a measurement is the difference between its a priori

and its a posteriori variance.
From this also follows that 0 ≤ ρj < 1.
If the definition of local redundancy should be reasonable it should be so

that if and only if the redundancy of a measurement is greater than zero,
then the network should be determined also if that measurement is ignored,
i.e., if it is given the weight 0 (all the other measurements having weight 1).
Therefore from the continuity of ∆(P ), it follows that if −µj is the greatest
lower bound for pj such that ∆(P ) > 0 for

pi =

{
1 for j �= i
pj for j = i

then ρj = 0 ⇒ µj = 0 and ρj > 0 ⇒ µj > 0, and if in fact it is so, we have

∆(P ) = ∆
(
1 + (pj − 1)ajN

−1aT
j

)
= ∆

(
1 + (pj − 1)(1 − ρj)

)
.
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If and only if −µj is the greatest lower bound for pj such that ∆(P ) > 0,
then ∆(P ) = 0 for pj = −µj , i.e.,

1 − (1 + µj)(1 − ρj) = 0

1 + µj =
1

1 − ρj

µj = −1 +
1

1 − ρj
=

ρj

1 − ρj
.

We can now take up again the second of the examples mentioned in the
motivation section. Here a point was determined relative to the rest of the
network by only two measurements, say a1 and a2 such that the network is
not determined if we put p1 and/or p2 to zero, i.e., µ1 = µ2 = 0 and so
ρ1 = ρ2 = 0, as it should be for ρi to be a reasonable measure for the local
redundancy. By the way, it is easy to see that in this case p1 and p2 are factors
in the polynomial ∆(P ).

It is left to the reader to find out if our definition gives a reasonable result
in connection with the first example.

The theory can be pushed much further, but we will proceed only one step
more.

Can we find a condition for ∆(P ) not to vanish if two given measurements,
say a1 and a2, are given weights zero simultaneously (when all other weights
are one)?

It would have been beautiful if the necessary and sufficient condition would
have been ρ1 + ρ2 > 1. It is not that beautiful, but ρ1 + ρ2 > 1 is sufficient.

As pointed out in Section 2, P+ is a convex set. If we look at the inter-
section of P+ with the plane p1, p2 for pi = 1 for i = 3, 4, . . . , N , we find
obviously a convex subset P+

12 of this plane where ∆(P ) > 0 and the points
(1,−µ1) and (−µ2, 1) are situated at the boundary of P+

12. The line segment
between these two boundary points must consist of points in the closure of P+

12,
and a sufficient condition for the point (0, 0) to be in P+

12 is therefore that this
line segment passes under (0, 0); that is that µ1µ2 > 1, i.e.,

ρ1

1 − ρ1

ρ2

1 − ρ2
> 1

ρ1ρ2 > 1 − ρ1ρ2 + ρ1ρ2

or

ρ1 + ρ2 > 1

q.e.d.
A closer analysis shows that if the a posteriori correlation between a1

and a2 is zero, then already ρ1 > 0 and ρ2 > 0 suffice, and it seems clear that
for a further development of this theory the a posteriori correlations have to
be taken into account.
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Example 19.1 Linear regression for n equidistant points.
Here we have n observation equations of the form

x + py = op

where

−n− 1

2
≤ p ≤ n − 1

2
,

and p is an integer if n is odd and a half-integer if n is even.
The weights are supposed to be 1, so the matrix of the normal equations is[

n 0

0 (n−1)n(n+1)
12

]

and the diagonal element labeled p of the covariance matrix for the adjusted
observations is

[
1 p

] [ 1
n 0

0 12
(n−1)n(n+1)

] [
1
p

]
=

1

n
+

12p2

(n − 1)n(n + 1)
.

Finally, the redundancy for the observation labeled p is

ρp = 1 − 1

n
− 12p2

(n − 1)n(n + 1)
.

If we instead of a line look for a polynomial of second degree, then with
the notation introduced above we get the observation equations

x + py + p2z = op

with the normal equation matrix

n(n2 − 4)

⎡⎢⎣
1

n2−1 0 1
12

0 1
12 0

1
12 0 3n2−7

240

⎤⎥⎦
and variance-covariance matrix

1

n(n2 − 4)

⎡⎢⎢⎣
9n2−21

4 0 −15

0 12(n2−4)
n2−1 0

−15 0 180
n2−1

⎤⎥⎥⎦
and the redundancy for the observation labeled p becomes

ρp = 1 − 9n2 − 21

4n(n2 − 4)
+

18p2

n(n2 − 4)
− 180p4

n(n2 − 4)(n2 − 1)
.
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A Convergence Problem in Collocation Theory

Summary

Collocation theory allows the approximation of the anomalous potential T ,
harmonic in a region Ω, by a smoother function T̂ harmonic in a larger do-
main Σ and agreeing with measurements performed on T at discrete points.
The smoothing least-squares collocation method is a part of collocation theory
in which a hybrid norm is minimized, norm that depends upon a parameter λ
that can be interpreted as the relative weight of the norm of T̂ in Σ and in Ω.

The problem of the behaviour of T̂ when the number of measurements
tends to infinity and contemporarily λ → ∞ is analyzed: the convergence to
the correct solution is proved under suitable hypotheses.

Introduction

It has sometimes been claimed that using a discrete approach such as colloca-
tion to the solution of problems in physical geodesy should make the theoret-
ical study of boundary value problems an idle sport for armchair geodesists.
Naturally discrete methods can give results, and it is possible by analyzing
them to have ad hoc evidence for their relevance, but it is equally obvious that
the general evaluation of the relevance is only possible when the corresponding
continuous boundary value problem has been studied.

That a discrete method is relevant must mean that if the number and the
precision of the observations goes to infinity (in a way to be carefully specified),
then the method will give results which converge to a solution of the boundary
value problem defined by the observations, so if the boundary value problem
has a unique solution then the result converges to the correct result.

To evaluate such a relevance must be to give formulas which estimate the
errors of the results from specifications of the observations and the calculation
methods. This is what I have tried to do in this paper for the smoothing least-
squares collocation method. (The word smoothing seems to be important here!)
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The method I use in order to find these estimates is to a given discrete
collocation problem to find a continuous collocation problem to which the
original problem may be looked at as an approximation, to estimate this
approximation (in Section 2) and analyse the continuous problem, which is,
in fact, a specially formulated boundary value problem (Section 1).

The condition for this procedure to work, i.e. for the proof for a solution to
be relevant, is that the continuous collocation problem is what I call coercive,
and this again is (almost) the same as saying that the corresponding boundary
value problem is coercive, where this word now has the meaning defined in
the theory for the variational approach to boundary value problems for elliptic
partial differential equations.

1. Continuous Collocation

Let ω be a smooth (C∞) closed surface outside the Earth (but possibly very
near the surface of the Earth), which surrounds the Earth. Suppose that we
have measured the T , or the free-air anomaly or such a thing at all points
of ω. Mathematically we can formulate that by saying that we have given a
linear differential operator D of finite order with coefficients which are smooth
functions of the coordinates outside the Earth and that we have measured

DxT = f

at all points x ∈ ω. Here DxT means the value of DT at x and f : ω → R.
As ω is smooth and outside the Earth, the “true” value of f is a smooth
function. We will suppose that the observed f is square integrable over ω.

We want to find an approximation T ′ to T such that

DxT ′ = f + v for all x ∈ ω (1)

where v : ω → R and T ′ is harmonic outside a given Bjerhammar sphere σ.
Then v is also square integrable. Let Σ be the subset of R3 outside the
sphere σ and let H be a Hilbert space with norm ‖ · ‖ and scalar product (·, ·)
such that 1) if φ is harmonic in any open set Ω ⊂ R such that Σ ⊂ Ω then
φ ∈ H , and 2) every φ ∈ H is harmonic in Σ, and 3) strong convergence of
φi in H involves uniform convergence of φi(X) on closed sets in Σ. Then H
has a reproducing kernel K(x, y).

The approximation T ′ we look for shall now be determined by

1. T ′ ∈ H ,

2. T ′ and v satisfy (1),

3. ‖T ′‖2 + λ
∫
ω

qv2 dω shall be as small as possible,
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here λ is a positive number and q : ω → R is a positive smooth function such
that there exist two positive numbers c1 and c2 with

c1 ≤ q(x) ≤ c2 for all x ∈ ω

q is the weight density of the observations.
We have now defined a smoothing continuous collocation problem, we want

to find its solution and see what happens for λ → ∞.
Instead of the clumsy expressions

DxK(x, y) etc.

we will write
K(Dx, y) etc.

Then we can write the “normal equations” for our problem as

T ′(x) + λ

[ ∫
ω

K(x, Dz)q(z)
(
K(Dz, ·), T ′) dωz

]
= λ

∫
ω

K(x, Dz)q(z)f(z) dωz.

(2)
By applying the operator Dx on both sides of (2) and remembering that

DxT ′ =
(
K(Dx, ·), T ′)

we find

DxT ′ + λ

∫
ω

K(Dx, Dz)q(z)DzT
′ dωz = λ

∫
ω

K(Dx, Dz)q(z)f(z) dωz.

Substitution of (1) in this equation gives

v(x) + λ

∫
ω

K(Dx, Dz)q(z)v(z) dωz + f(x) = 0. (3)

This is an integral equation for v with a kernel

K(Dx, Dz)q(z),

which is not symmetric, but if we write

q(x)1/2v(x) = w(x)

we find:

w(x) + λ

∫
ω

q(x)1/2K(Dx, Dz)q(z)1/2w(z) dωz + q(x)1/2f(x) = 0 (4)

and this is an integral equation for w with the symmetric kernel

H(x, y) = q(x)1/2K(Dx, Dy)q(y)1/2.
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H is smooth and positive definite (not necessarily strictly positive definite),
so (4) is a Fredholm integral equation with positive eigenvalues λi, i = 1, 2,
. . . , and it has a unique solution for every positive value of λ.

By substitution of (1) in (2) we find analogously:

T ′(x) = −λ

∫
ω

K(x, Dy)q(y)1/2w(y) dωy (5)

so when w is found T ′ can be found by (5), and it is easy to see that for all
0 < λ < ∞, T ′ ∈ H .

This solution is a curious one: T ′ is in (5) calculated directly from w, the
(weight normalized) correction to the observations, that is, in a way from the
measuring errors. But Nature often seems to like paradoxes!

We want to find out what happens for λ → ∞. It is most amusing to do
this using the eigenfunctions and eigenvalues defined by

φi(x) − λi

∫
ω

H(x, y)φi(y) dωy = 0 i = 1, 2, 3, . . . (6)

where φ : ω → R.
From the theory of Fredholm integral equations we know that (6) has only

positive eigenvalues, that they have no point of accumulation and that the
eigenfunctions can be chosen so as to be orthonormal in L2(ω). Let us call
the Hilbert Space L2(ω) Hω, the subspace spanned by {φi} H ′

ω, and let the
orthogonal complement to H ′

ω in Hω be called H ′′
ω . H ′′

ω may be the zero space.
H(x, y) can be represented as

H(x, y) =
∑ φi(x)φi(y)

λi
.

Define

Φi(x) = λ
1/2
i

∫
ω

K(x, Dy)q(y)1/2φi(y) dωy (7)

then
Φi : Σ → R

and Φi is harmonic in Σ.
Clearly

(Φi, Φj) = λ
1/2
i λ

1/2
j

∫
ω

∫
ω

H(x, y)φi(x)φj(y) dωx dωy =

{
1 for i = j,

0 for i �= j,

so {Φi} is a complete orthonormal system for (at least) a subspace H ′ ⊂ H .
Let H ′′ be the orthogonal complement to H ′ in H and {ψi} be an orthonormal
system in H ′′.

Then
K(x, y) =

∑
i

Φi(x)Φi(y) +
∑

j

ψj(x)ψj(y).
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From (7) it follows also that

K(x, Dy)q(y)1/2 =
∑

i

Φi(x)φi(y)

λ
1/2
i

,

so that

q(x)1/2DxΦi =
φi(x)

λ
1/2
i

and
q(x)1/2Dxψj = 0,

and it follows that H ′′ consists of those u ∈ H for which Dxu = 0 for all
x ∈ ω.

Let us write
q1/2f = f ′ + f ′′,

where f ′ and f ′′ are the projections of q1/2f into the subspaces H ′
ω and H ′′

ω .
Then f ′ can be expressed as

f ′ =
∑

i

f ′
iφi,

where

f ′
i =

∫
ω

f(x)φ(x) dω,

and

‖f ′‖2
ω =

∫
ω

(
f ′(x)

)2
dω =

∑
i

f ′2
i .

If {ψj} is a complete orthonormal system for H ′′
ω , then f ′′ =

∑
j f ′′

j ψj and

q1/2f =
∑

i

f ′
iφi +

∑
j

f ′′
j ψj . (8)

Putting (8) and the analogous representation of w:

w =
∑

i

w′
iφi +

∑
j

w′′
j ψj

in (4) we find∑
i

w′
iφi +

∑
j

w′′
j ψj + λ

∑
i

w′
i

λi
φi +

∑
i

f ′
iφi +

∑
j

f ′′
j ψj = 0,

or (
1 +

λ

λi

)
w′

i + f ′
i = 0,

w′′
j + f ′′

j = 0;
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that is

w = −
∑

i

λi

λi + λ
f ′

iφi −
∑

j

f ′′
j ψj , (9)

or

f + v = q−1/2
∑

i

λ

λi + λ
f ′

iφi. (10)

f + v is the “corrected observations” and so (10) shows

1. that ‖f + v‖ω ≤ ‖f‖ω for all λ > 0
2. that limλ→∞(f + v) = q−1/2f ′.

On the other hand putting (9) into (5) and using (7) gives:

T ′(x) =
∑

i

λλ
1/2
i

λi + λ
f ′

iΦi(x),

thus T ′ ⊂ H for all 0 < λ < ∞ but for λ → ∞ one finds formally

T ′ ∼
∑

i

λ
1/2
i f ′

iΦi,

that is T ′ converges in H for λ → ∞, if and only if
∑

i λif
′2
i < ∞, in fact

limλ→∞ T ′ ∈ H if and only if (1) or

DxT ′ = q−1/2f ′

has a solution in H .
We can now conclude:

The continuous collocation problem as we have defined it here has
always a solution for 0 < λ < ∞, i.e. if it is a smoothing collocation
problem, but the corresponding not smoothing problem (λ = ∞) has
normally no solution.

Before we try to repair this situation we will look at a few examples. First
let DxT = T (x) for x ∈ ω and let Ω be the points of R3 outside ω. Now∥∥T∥∥2

Ω
=

∫
ω

q2T 2 dω

is a norm for a Hilbert space of functions harmonic in Ω which contains
all functions harmonic in any open set containing Ω̄, and this space has a
reproducing kernel. (These simple facts will not be proved here).

Therefore if we use the collocation theory as described above and let λ→∞
then even if T does not converge in Σ it converges in Ω and it converges to
a potential which does not depend on the norm we choose in Σ, namely to
that regular potential in Ω which has the observed T (x), x ∈ ω as boundary
values (in a certain general sense).
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Next let ω be a sphere (still outside the Earth) concentric with the Bjer-
hammar sphere and

DxT =
(∂T

∂r
+

2

r
T
)
(x).

Under the Symmetry assumption: q is constant and the norm ‖ · ‖ is invariant
with respect to a rotation about 0, the eigenfunctions φi, Φi, ψj are spherical
harmonics and I think it would be very instructive for the reader to make the
calculations above for this special case. If he does so he will find for λ → ∞:

1. That f + v converges to a function on ω for which the boundary problem
(the Stokes’ problem) has a solution.

2. That T converges (in an appropriate norm) in Ω to the well-known solu-
tion of Stokes’ problem.

If we drop the symmetry assumption the result 1 is still true but 2 must
be changed slightly: From the theory of boundary problems it follows that

‖T ‖2
Ω =

∫
ω

(∂T

∂r
+

2

r
T
)2

dω

is a norm for the space H ′, i.e. this norm defines a pre-Hilbert space with
the norm ‖ · ‖′Ω and the elements equal to the elements of H ′. By completion
we get a Hilbert space H ′

Ω ⊃ H ′ which consists of functions harmonic in Ω.
In this case for λ → ∞ the component of T in the space H ′

Ω converges to
a solution of the Stokes’ problem in Ω and the component of T in H ′′ is 0.
But because H ′ is defined as the orthogonal complement to H ′′ in H it is not
independent of the norm ‖ · ‖ of H ; in fact it is only independent modulo H ′′,
that is the difference of solutions found by using different norms is an outer
spherical harmonic of degree 1.

After these examples we can formulate the final result. First define:

A continuous collocation problem as defined above is coercive if∥∥T∥∥′2
Ω

=

∫
ω

(DxT )2 dω,

which is a semi-norm defined for all elements T ∈ H , has the following
property: The completion of H with respect to the semi-norm ‖ · ‖′Ω
consists of functions harmonic in Ω.

If the collocation problem is coercive then for λ → ∞ Tλ converges in Ω
(in the semi-norm ‖ · ‖′Ω) to a solution of the boundary value problem:

∆T = 0 in Ω,

DxT = f + v on ω,

where v depends on the weight density q but not on the norm in Σ (that is v
does not depend on the reproducing kernel); and therefore modulo a solution
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to the homogeneous boundary value problem:

∆T = 0 in Ω,

DxT = 0 on ω.

T does not depend on the choice of the reproducing kernel.

2. Discrete Collocation

The notations from Section 1 remain valid also in this section but we have to
introduce some more notations.

In the discrete case we have measured

DxT = f

only at N points xn ∈ ω, n = 1, 2, . . . , N . Writing Dn for Dxn
we want to

find an approximation T ′ to T such that

DnT ′ = fn + vn,

with T ′ ∈ H such that

‖T ′‖ + λ

N∑
n=1

pnv2
n

is as small as possible where {pn} are positive weights.
We want to investigate what happens when N → ∞ using the results

from the continuous case. The method we shall use consists in regarding the
discrete case as a “finite element” approximation to the continuous case for
fixed N and then afterwards letting N → ∞.

First we make a subdivision of ω into N open sets ωn ⊂ ω such that

1. xn ∈ ωn for n = 1, 2, . . . , N ,
2. ω = ∪N

n=1ω̄n

3. the boundary of ωn is a closed piecewise smooth curve which is star shaped
with respect to xn for n = 1, 2, . . . , N .

Functions which are only defined in the points xn, n = 1, 2, . . . , N , will
now be extended to almost all points of ω by defining

f̃(x) = fn, ṽ(x) = vn for x ∈ ωn.

The points of ω where these functions are not defined are on the boundary
curves of the sets ωn.

If f is a continuously differentiable function on ω and we put fn = f(xn),
then f̃ can be regarded as an approximation to f . How good is this approxi-
mation?
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For y ∈ ωn

f(y) − f̃(y) = f(y) − f(xn) =

∫ y

xn

grad f ds̄,

where the curve integral is taken along a geodesic cn on ω from xn to y. Write
|cn| for the length of cn. We have then:∣∣f(y) − f̃(y)

∣∣ ≤ |cn| sup
ωn

| grad f |,

and ∥∥f(y) − f̃(y)
∥∥2

ω
=

∫
ω

q(y)
(
f(y) − f̃(y)

)2
dω

≤
∑

n

∫
ωn

q(y)
(
cn(y)

)2
sup
ωn

| gradf |2 dωn

≤
∑

n

sup
ωn

| grad f |2
∫
ωn

q(y)cn(y)2 dωn.

If we write ∫
ωn

qc2
n dωn = ρ2

n

∫
ωn

q dωn = pnρ2
n

where

pn =

∫
ωn

q dωn (11)

then ∥∥f − f̃
∥∥2

ω
≤
∑

n

sup
ωn

| gradf |2pnρ2
n.

Here supωn
| grad f |2 exists because grad f is continuous and ω is compact.

Putting
ρ = max

n
cn

we get at last ∥∥f − f̃
∥∥2

ω
≤ ρ2

∑
n

pn sup
ωn

| gradf |2. (12)

We will now in (3) approximate v(x) and K(Dx, Dz) in the same way as
we approximate f(x). The smooth function q is not approximated but we
suppose the connection between q and pn given by (11). (3) in approximated
form becomes

ṽ(x) + λ

∫
ω

K̃(Dx, Dz)q(z)ṽ(z) dωz + f̃(x) = 0. (13)
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Subtracting (13) from (3) now gives

(v − ṽ) + λ

∫
ω

K(Dx, Dz)q(v − ṽ) dω + (f − f̃) + λ

∫
ω

(K − K̃)qṽ dω = 0,

or if we write

f̃ = (f − f̃) + λ

∫
ω

(K − K̃)qṽ dω,

we have

(v − ṽ) + λ

∫
ω

K(Dx, Dz)q(z)
(
v(z) − ṽ(z)

)
dωz + f̃ = 0,

i.e. v− ṽ is a solution of an integral equation of the same form as (3) and with
the same kernel, and therefore it follows from result of Section 1 especially
equation (9) that

‖v − ṽ‖ω ≤ ‖f̄‖ω. (14)

But
f̄ = f̄1 + f̄2 + f̄3

where

f̄1 = f − f̃ ,

f̄2 = λ

∫
ω

(
K(Dx, Dz) − K(Dx, D̃z)

)
q(z)ṽ(z) dωz,

f̄3 = λ

∫
ω

(
K(Dx, D̃z) − K(D̃x, D̃z)

)
q(z)ṽ(z) dωz,

so that from (14) it follows

‖v − ṽ‖ ≤ ‖f̄1‖ω + ‖f̄2‖ω + ‖f̄3‖ω. (15)

From (12)

‖f̄1‖ω = ρ

(∑
n

pn sup
ωn

| gradf |2
)1/2

.

Using a standard routine from the theory of integral equations we find:∥∥f̄2

∥∥2

ω
≤ λ2

∫
ω

∫
ω

(
K(Dx, Dy) − K(Dx, D̃y)

)2
q(x)q(y) dωxdωy

∫
ω

ṽ(x)2q(x) dωx

= λ2
N∑

n=1

N∑
m=1

∫
ωn

∫
ωm

(
K(Dx, Dy) − K(Dx, Dym

)
)2

q(x)q(y) dωxdωy

×
N∑

n=1

∫
ωn

v2
nq(x) dωx
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≤ λ2
N∑

m=1

∫
ωn

ρ2

( N∑
m=1

pm sup
y∈ωm

∣∣K(Dx, gradDy)
∣∣2q(x)

)
dωn

N∑
n=1

v2
npn

≤ λ2ρ2
N∑

n=1

N∑
m=1

sup
x∈ωn

y∈ωm

∣∣K(Dx, gradDy)
∣∣2pnpm

N∑
n=1

v2
npn.

For ‖f̄3‖2
ω we find the same estimate as for ‖f̄2‖2

ω, and we have:

‖v − ṽ‖ω ≤ ρ

( N∑
n=1

pn sup
ωn

| grad f |2
)1/2

+ 2ρλ

( N∑
n=1

N∑
m=1

sup
x∈ωn

y∈ωm

∣∣K(Dx, gradDy)
∣∣2pnpm

N∑
n=1

v2
npn

)1/2

. (16)

The perspicacious reader, seeing that the complicated part and, as we shall
see soon, the rather unpleasant part of the estimate (16) stems from the fact
that we have used an approximation to the kernel instead of using the kernel
itself may wonder why I do the task so complicated for myself and for him,
so I shall give the explanation here and now.

Let us go back to (13) writing it as

vn + λ

N∑
m=1

K(Dn, Dm)pmvm + fn = 0, n = 1, 2, . . . , N ,

but this is together with

T (x) = −λ
N∑

n=1

K(x, Dn)pnvn

the expression for the solution of the discrete collocation problem (written in
an asymmetrical form) and therefore (16) gives an estimate for the difference
between the result of a continuous collocation problem and a discrete one.

It is possible to continue this procedure and apply it to (5) or rather to

T ′(x) = −λ

∫
ω

K(x, Dy)q(y)v(y) dωy ,

and its ∼-approximation

T ′′(x) = −λ

∫
ω

K(x, D̃y)q(y)ṽ(y) dωy,

in order to estimate ‖T ′ − T ′′‖, the norm of the difference between T ′, the
solution to the continuous problem, and T ′′, the solution to the discrete prob-
lem. I will not do that here—the interested reader should be able to do it
without difficulties using the same method as above—but it is relevant to
use the results from Section 1 under the assumption of coercivity. In this case
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‖T ′−T ′′‖′Ω ≤ ‖v− ṽ‖ω and (16) give directly an estimate for T ′−T ′′ outside ω
which alone is physically relevant.

For λ → ∞ also the last member of (16) → ∞, therefore (16) only gives
an estimate for smoothing collocation. This is perhaps because the estima-
tion method is not strong enough, but I do not think so. At any case this
question deserves further investigations. On the other hand, as I have already
mentioned immediately after (16) it is possible to find from a finite set of
observations an approximation to the solution of the continuous collocation
problem which remains finite also for λ → ∞, although this method demands
more calculation, I think it should be further investigated also!

We have now arrived at our essential problem namely what happens when
the number of observations goes to infinity? We must first, however, thor-
oughly define the limiting process.

Instead of one set of discrete observations we have a sequence of finite sets
of observations, one for every ν, ν = 1, 2, . . . , ∞, such that:

1. Nν → ∞, i.e. the number of observations goes to infinity with ν

2. fnν = f(xnν), i.e. all the observation results are compatible with the
same continuously differentiable function f . (This hypothesis could easily
be replaced by

|fnν − f(xnν)| ≤ lν ,

where lν → 0, the price would be an extra addend in the resulting esti-
mate.)

3. ρν → 0, a necessary (but not sufficient) condition for this is that the areas
of ωnν → 0.

4. pnν =
∫

ωnν

q dω, from this follows

Nν∑
n=1

pnν =

∫
ω

q dω,

that is the weights are normalized in such a way that the sum of the
weights for the νth set is independent of ν, and

pnν → 0 for ν → ∞,

it is important to remember this normalization when you try to interpret
the final result especially the meaning of the parameter λ.

The first addend on the right hand side of (16) is ρ multiplied by a factor
which is finite for all ν and

lim
ν→∞

( Nν∑
n=1

pnν sup
ωnν

| grad f |2
)1/2

=

(∫
ω

q| gradf |2 dω

)1/2

,
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which is finite because f is continuously differentiable on ω, therefore there
exists a constant A (normally between, say, 2 and 5) such that( Nν∑

n=1

pnν sup
ωnν

| gradf |2
)1/2

≤ A

∫
ω

q| grad f |2 dω.

The second addend is 2ρλ multiplied by two factors, the first of which is( Nν∑
n=1

Nν∑
m=1

sup
x∈ωnν

y∈ωmν

∣∣K(Dx, gradDy)
∣∣2pnνpmν

)1/2

,

it is also finite and it converges for ν → ∞ to(∫
ω

∫
ω

∣∣K(Dx, gradDy)
∣∣2q(x)q(y) dωx dωy

)1/2

.

The second factor is( Nν∑
n=1

v2
nνpnν

)1/2

≤
( Nν∑

n=1

f2
nνpnν

)1/2

.

This again is finite and it converges to ‖f‖ω. For the second addend we
can find a factor B similar to A and find:

‖v − ṽ‖ω ≤ ρνA

(∫
ω

q| gradf |2 dω

)1/2

+ 2ρνλB‖f‖ω

(∫
ω

∫
ω

∣∣K(Dx, gradDy)
∣∣2q(x)q(y) dωx dωy

)1/2

.

This inequality shows not only that ṽ converges to v under our assumptions
1–4 for λ a finite constant, but also, in connection with Section 1, that again
under the assumptions 1–4 together with

5. limλν→∞ ρνλ = 0, and
6. the continuous collocation problem is coercive,

that is under the assumptions 1–6, T converges outside ω to a solution of the
boundary value problem.

For observations with equal precision we have

1

ρν
= O

( 1

Nν

)
and it would be natural to choose λ ∼ cNν , c a constant, but in this case λρ
would not go to zero so e.g.

λ ∼ cN1/2
ν

would be better.
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Remarks

For the understanding of the collocation formulas used in this paper it would
be useful to read Sections II,2 and III,3 in [2], the continuous collocation is
treated only in that book. A short introduction to the variational theory of
boundary value problems is given in [3] Section II,9. For the theory of integral
equations see [1], Chapter III.

It is not usual to apply different weights for the observations in collocation,
when I have used weights in this paper it was in order to obtain a better
fitting between discrete and continuous collocation. It is possible that the use
of weights proportional to the areas of ωi can improve the numerical behaviour
of collocation methods in regions with dense observations.
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21

Non-Linear Adjustment and Curvature

Most of the adjustment problems in geodesy are non-linear. We have learned
that we should ‘linearize’ the problems by differentiation of the equations of
observation, and after doing so we normally forget about the non-linearity of
the original problem and the relations between the solution of this and the
solution of the linearized one.

This paper will treat one single aspect of non-linear adjustment viz. the
curvature, which is a measure of the non-linearity of the problem, and which
I regard as essential for our understanding of it.

The first section describes a model example which is extremely simple but
illustrates the impact of curvature for adjustment in a nutshell and should
make the understanding of the following section easy.

In Section 2 I try to give a geometric intuitive exposition of non-linear ad-
justment under the aspect of curvature, and in Section 3 I describe a geodetic
problem—it could be called pseudo-free adjustment on an ellipsoid—for which
the curvature is very large, and which could hardly be solved by linear meth-
ods.

I must emphasize that this is a first report on a complex of problems which
has occupied me for some years, and that it has been necessary here to focus
on a very small part of this complex.

1

Suppose we know that a point P is situated on the circle with radius r and
center at the origin of a coordinate system in the plane, and that we have
uncorrelated observations with equal weights of its coordinates x and y. We
want to find P by adjustment according to the rules.

We express P by its coordinates (r cos t, r sin t) where t is the parameter
to be determined. Put t = t0 + ∆t, where t0 is our guessed value for t, then
the ‘linearized’ equations of observation are:
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−r sin t0 ∆t ≈ x − r cos t0;

r cos t0 ∆t ≈ y − r sin t0;

and the normal equation is

r2 ∆t = r(y cos t0 − x sin t0).

Putting
x = R cosφ, y = R sin φ, R > 0

we find
∆t = R

r sin(φ − t0).

If our guessed value for t is rather good, i.e.,

sin(φ − t0) ≈ φ − t0,

then we get according to the rules

∆t ≈ R
r (φ − t0)

and not
∆t = φ − t0

as it should be.
If R

r ≈ 1 then we may expect that iteration of our linear adjustment will
converge to the correct result, but if R > 2r this expectation is normally
frustrated.

But why is it so?
In order to understand this we will generalize the problem slightly. Instead

of the circle we suppose given a two times continuously differentiable plane
curve C; let the observation point be Q and let B be the distance from C to Q
and let δ be the distance from C to Q such that δ is in this case the estimated
mean error of the observations after the adjustment. Let P be a point on C
such that PQ = δ and let P0 on C be our guess for the adjustment result.
We will use s, the arc-length along C, as the parameter in the adjustment
and suppose that ∆s, the distance between P and P0, is so small that we
in practice may identify the distance between P and P0 along the chord and
along the curve, i.e., we ignore quantities of the second order in ∆s.

Now the effect of our ‘linearized’ adjustment procedure is exactly the or-
thogonal projection P ′ of Q into the tangent, but—and this is essential—not
the tangent at P but the tangent at P0, and the angle between these two
tangents is ∆s multiplied by c, the curvature of C in some point between P0

and P , and therefore the distance between P0 and P ′ is not ∆s but this value
changed by the amount of

δ tan(c∆s) ≈ δc∆s,

still ignoring second order quantities in ∆s. I leave it to the reader to discuss
the sign of this discrepancy, i.e., to see how the result depends on how Q and
the relevant center of curvature are positioned with respect to C.
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In any case, we see that the unpleasant discrepancy is proportional to δ
divided by a certain radius of curvature, and we shall see this is true for
adjustment problems in higher dimensions, also. The reader may argue that
as geodetic observations are normally very precise it would be unlikely that for
any reasonable geodetic problem the mean error should be great with respect
to this radius of curvature. To that I should remark that, as far as I know,
geodesists have not been so much interested in these curvatures as they are
in estimating their magnitude relative to the mean errors, and later in this
paper I shall discuss a geodetic problem with a very small radius of curvature.
Whether that problem is a reasonable one—that is another question.

2

It is well known that linear adjustment problems may be looked at from the
geometrical point of view as orthogonal projections from points in a Euclidean
N -space O (N is the number of observations) into a linear subspace. In gen-
eralizing this idea to non-linear problems we must be a little sophisticated in
defining the relevant manifolds and mappings.

The space of observations O is, as in the linear case, a Euclidean space. If
the observations are uncorrelated and of equal weight, then O has the usual
RN -metric:

d2 =

N∑
i=1

∆x2
i .

The range of the solution of the problem is described by the parameter man-
ifold Q. The meaning of this is best understood through an example.

Suppose we want to find ten points on a given sphere. Locally these points
are determined by twenty coordinates, but no coordinate system exists on the
sphere which gives a global one-to-one correspondence between the position
of a point on the sphere and pairs of coordinates. Therefore we must use
the concept of a differentiable manifold which just rests on the idea of local
coordinate systems. In this case, the manifold will be the product manifold
S2 × S2 × · · · × S2 of ten spheres.

For any point of Q there corresponds a set of values of the N observations,
so we have a mapping

F : Q �−→ O;

the observation equations are the expression of this mapping in local coor-
dinates. Here we will suppose that the mapping F is C∞, i.e., arbitrarily
often continuously differentiable. The image of F will be called Q′ and is a
differentiable submanifold of O.

Let Q be a point of Q with coordinates

q =
{
qi
}
, i = 1, 2, 3, . . . , m
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in a local coordinate system in a neighborhood of Q, m is the dimension of Q,
and define the matrix

A(q) =
{∂oα

∂qi

}
, α = 1, 2, 3, . . . , N .

A is the left-hand matrix of the observation equations, and {oα} are the values
of the observations.

If rank A(q) = N for all points Q ∈ Q (this condition is evidently indepen-
dent of the choice of coordinate system), then the mapping F is an immersion.
If F is an immersion then for any Q ∈ Q there exists a neighborhood of Q
such that F is one-to-one with a C∞ inverse, but we cannot deduce that F is
globally one-to-one, as we can if F is linear. In the linear case rankA = N is
necessary and sufficient for Q to be estimable, while in the non-linear case it
is only necessary.

As a differentiable manifold imbedded in O, Q′ is a Riemannian manifold
with metric induced by the imbedding in a Euclidean space. If F is an im-
mersion, this Riemannian structure can be pulled back to Q and the matrix
of the first fundamental form g is given by

g = (ATA)−1 or gij =

N∑
α=1

(
∂oα

∂qi

∂oα

∂qj

)−1

.

If T ∈ O corresponds to a set of observations, then we will define Q ∈ Q
as a solution of the adjustment problem if the distance δ in Q between T
and Q′ = FQ is as small as possible:

δ = inf
Q∈Q

‖T − FQ‖.

If Q—and thus Q′—is compact, then we are sure that the problem

δ = inf
Q′∈Q′

‖T − Q′‖

has at least one solution—but it may have more than one, possibly infinitely
many solutions and, as F is not necessarily one-to-one, to each of these
points Q′ there may correspond more than one point Q ∈ Q.

It is even more complicated. A necessary condition for δ to have a local
minimum at Q′ is that the line Q′T is orthogonal to the tangent space at Q′

and it is exactly such points we are looking for using the normal procedure
for adjustment; we do not know if we have a global minimum or even perhaps
a maximum etc. In normal geodetic praxis we know approximately where to
look for the solution (the starting point Q0), but it may be that at least in
exceptional occasions we find a ‘solution’ Q which does not correspond to a
global minimum.

Now let Q be a ‘stationary point,’ i.e., such that the line Q′T is orthogonal
to the tangent space at Q′ (Q′ = FQ) and let Q0 be ‘close to’ Q such that
Q′

0 = FQ0 is close to Q′ and let us start the traditional adjustment procedure
at Q0. Exactly as in the example in Section 1 we find Q′ as the orthogonal
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projection of T into the tangent space at Q′
0 so the ‘angle’ between this tangent

space and that at Q′ is important for the behavior of the method, and again
this ‘angle’ has to do with the curvature of the manifold Q′ near Q′. Here, I
shall shortly refer the result of a closer analysis of the behavior—the reader
who has our first example in mind will at least not be surprised by the result.

The general problem has two complications with respect to that in two
dimensions: First, the normal space at Q′ has more than one dimension, and
second, the tangent space at Q′ has also more than one dimension.

The first of these complications is evaded by projecting the line Q′T and a
neighborhood in Q′ of Q′ into the linear space spanned by T and the tangent
space at Q′. Let Q′′ be this projection of (part of) Q′. Generally in Q′, m
lines of curvature of Q′′ will meet orthogonally and the corresponding centers
of curvature (for Q′) will be situated on the normal Q′T .

Now for Q′ to be a point of local minimum for δ, it is necessary that none
of these centers of curvature lies between Q′ and T and it suffices if, moreover,
T is not such a center.

Moreover, it is clear that if δ = Q′T is not small with respect to all these
radii of curvature in Q′ then we will have difficulties with the convergence
if we simply iterate the adjustment procedure if the line Q′Q′

0 should not
happen to be orthogonal to all the lines of curvature corresponding to small
radii of curvature through Q′.

I should like to state here that the discussion above is coordinate-free so
the results are independent of the way we choose the coordinates to determine.
On the other hand, everything rests on the supposition that Q0 is close to Q;
if this is not the case new difficulties may very well occur which depend on the
choice of the local coordinate system. But it is so to speak the most favorable
situation we have treated.

As a conclusion of this section we can say that a measure for the non-
linearity of an adjustment problem, i.e., a measure for the difficulties caused
by the non-linearity of such a problem, is the greatest principal curvature
of the manifold Q′ as imbedded in O in the region where the solution point
can be. For a numerically given adjustment problem it is relatively easy to
compute this curvature (at least after the problem itself has been solved!), but
for a given class of adjustment problems it can be very difficult. In the next
section we shall give a rough estimate for the curvature for a certain class of
adjustment problems, which should be of some geodetic relevance.

3

Now we shall consider free adjustment of distance networks on a sphere. Sup-
pose we have m/2 points on a given sphere; here m is an even integer greater
than 4, and that we have measured the distance (or rather squares of the
distances) between N pairs of these points, sufficiently many to determine
the configuration, that is N > m − 3, and we suppose that these squares of
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distances are measured with equal weights. This sounds abominable in the
ears of a geodesist, but I promise to repair the situation later!

Now the parameter manifold Q is the product manifold of m/2 spheres,
i.e., there is a one-to-one correspondence between points Q ∈ Q and m

2 -tuples
of points on the sphere. The mapping F : Q �−→ O is differentiable, also for
the case where two or more of the m/2 points of the sphere coincide—it was
exactly in order to obtain this differentiability that we choose that unnatural
weighting. But in this case, F is not an immersion, because if we rotate the
sphere with the m/2 points, then the distances between pairs of them are the
same; that is all points Q ∈ Q corresponding to rotations of a given configura-
tion of m/2 points on the sphere correspond to the same point Q′ ∈ Q′. As the
orthogonal group in three-dimensional space is three-dimensional, the rank of
ATA is at most m−3. It follows from what we have supposed that this rank is
exactly m−3, and the dimension of Q′ is also m−3 while that of Q is m. But
nevertheless the manifold Q′ ⊂ O is well defined and so is the problem to find
a point of Q with the smallest distance to T . Our geodetic experience and op-
timism even promises us that this problem, which is properly the adjustment
problem, should not be complicated by large curvatures. The problem to find
Q ∈ Q corresponding to Q′ ∈ Q′ ⊂ O is then to find the inverse image of Q′

by F . This is why I usually say that the difficulty of free adjustment is not in
the problem of adjustment but only in the problem of inverse mapping.

If we consider distance networks on an ellipsoid instead of on a sphere, the
situation changes. Suppose the m/2 points on an ellipsoid E with semi-axes
a > b > c:

E =
{

(x, y, z) ∈ R3
∣∣∣ x2

a2 + y2

b2 + z2

c2 = 1
}
.

The only transformations of E onto itself which are isometric is the finite
group generated by reflections with respect to the coordinate axes. Therefore
generally a configuration of m/2 points on E cannot be displaced with a small
amount without a change in the distances between them, i.e., generally the
position of a distance network on E is locally determined. Clearly there are
exceptions, e.g., the number of points must at least be 5, but we may suppose
that the number of points and the number of distances suffice.

In the elliptic case, QE is the product manifold of m/2 ellipsoids. We have
equipped Q with the suffix E in order to distinguish it from the corresponding
manifold in the spherical case, which from now on will be denoted by QS . Its
dimension is still m, but the dimension of Q′

E is now also m (and not m − 3
as for the sphere) and the mapping FE : QE → Q′

E is here an immersion.
In order to be able to compare adjustment on the sphere and ellipsoid we

will choose a mapping G of the ellipsoid E onto the sphere S with radius r
and center at 0. r will later be fixed to

√
ac.

G : E → S; (x, y, z) �−→
(

a
r x, b

r y, c
rz
)
.

This mapping is evidently differentiable and one-to-one, and its inverse G−1 :
S → E is also differentiable.
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We can now define a ‘pseudo-rotation’ R∗ on the ellipsoid E as

R∗ = G−1RG,

where R is an orthogonal transformation of the sphere S. This transforma-
tion R∗ is evidently differentiable and one-to-one.

A given configuration of m/2 points on E determines as above the points
QE ∈ QE and Q′

E ∈ Q′
E ⊂ O, but applying the transformation G to each of

the points we find corresponding points QS ∈ QS and Q′
S ∈ Q′

S ⊂ O.
If we apply a pseudo-rotation R∗ on this configuration, the corresponding

point, let us call it R∗Q′
E, is in general different from Q′

E , but RQ′
S will be

equal to Q′
S , and we see that each point Q′

S ∈ Q′
S will correspond to a three-

dimensional manifold of points in Q′
E as R varies over the orthogonal group

in three dimensions.
If a/c is ‘near to one’ then the ratio between distances between corre-

sponding pairs of points on E and on S are also near to one, and therefore
the distances in O between points Q′

S and the corresponding points Q′
E are

small. On account of the continuity of the mappings involved, for any ε > 0 it
is possible to find a three-axed ellipsoid such that for every Q′

S ∈ Q′
S and the

corresponding points Q′
E ∈ Q′

E the distance (Q′
SQ′

E) < ε, i.e., the whole m-
dimensional manifold Q′

E is in the interior of a ‘tubular’ neighborhood defined
as those points in O which have a distance less than ε from the manifold Q′

S .
The ‘tube’ itself, i.e., the set of points P ∈ O such that dist(QSP ) = ε is an

N−1-dimensional submanifold of O which at each point has (N−1)−(m−3) =
N−m+2 orthogonal tangents such that the radii of curvature in the directions
of these tangents are equal to ε. Now QE is an m-dimensional closed manifold
which is situated inside this tube.

Let C be a closed curve in 3-space such that the curvature of C is less
than 1/ε, and let T be the tube consisting of the points with distance ε from C.
Then it is clear that T at every point has a circle of curvature with radius ε
(and center on C). If V is a differentiable surface inside T and the greatest
curvature at a point P ∈ V is c(P ), then it seems plausible that the mean
value of c(P ) over V is greater than 1/ε, but I must confess that I have not
yet found a proof for it. If the reader will admit this conjecture as a fact, then
he will perhaps go a step further and admit that the three greatest curvatures
of QE at a point for most points of QE are greater than 1/ε. But if this is
so he will also understand that for the adjustment problem we are discussing,
the curvature can be arbitrarily great if only a/c is sufficiently near to one.

Finally we will find an estimation of ε as a function of a/c − 1, but first
we must release ourselves from the unnatural weight-convention with which
we have worked above; in fact we will suppose that it is the logarithms of the
distances which are observed with equal weights. The price we have for such an
adaption of the mathematical model is that QS and QE are not differentiable
manifolds any longer: The observations—the logarithms of the distances—are
even not continuous when the distances go to zero. But for every network
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there is a positive number such that distances between points less than this
number will never be actual; therefore it seems as we may ignore this blemish.

First we have to compare distances between pairs of points on the el-
lipsoid E and distances between the corresponding pairs of points on the
sphere S, when the correspondence is given by the mapping G.

For the scale µ of the mapping G we have evidently√
c
a ≤ µ ≤

√
a
c ,

so if C is a curve on S and the length of C is, say λS , then for the length of
G−1(C) on E, say λE , we have√

c
a λ ≤ λE ≤

√
a
c λS

and √
c
a λ ≤ λE ≤

√
a
c λE .

Now let C be a (minimal) geodesic connecting the points A and B ∈ E, then

dist(A, B) = λE ≥
√

c
a λS ≥

√
c
a dist(GA, GB).

On the other hand, let C′ be a shortest great circle arc connecting the
points GA and GB, then

dist(GA, GB) = λ′
S ≥

√
c
a λE ≥

√
c
a dist(A, B),

i.e., √
c
a ≤ dist(A, B)

dist(GA, GB)
≤
√

a
c

or ∣∣log dist(A, B) − log dist(GA, GB)
∣∣ ≤ 1

2 log a
c ≤ a−c

2c .

From this and the definition of N and ε follows

ε ≤ a−c
2c

√
N.

Epilogue

Indeed the position of a distance network on a three-axed ellipsoid is theo-
retically estimable, but no geodesist would find it in this way, for it is only
poorly estimable. Nevertheless I have analyzed this example because I think
it helps us to understand the non-linear nature of some adjustment problems
better, and also because it emphasizes the strength of the geometrical reason-
ing in connection with such problems at a time where the statistical aspects
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of adjustment almost control the market. The depth of an object is best per-
ceived by changing the point of view. In another—not yet published—paper,
I have discussed a more down-to-earth problem, the Helmert transformation
in three dimensions; from the point of view of non-linearity. Probably nobody
has observed this non-linearity—simply because they have not tried to iterate
the linearized adjustment procedure.

We have now arrived at the question: How can we make sure that the
results of our adjustments are not invalidated from effects of non-linearity?

As far as I see, the simplest and most effective way is to iterate the linear
adjustment procedure from scratch, i.e., to recalculate the linearized observa-
tion equations with the result from the foregoing adjustment as provisional
value, compute the normal equations, etc. Also for purely linear problems,
this strategy will have a favorable effect, so—in my opinion—an adjustment
can not be looked upon as finished if it has not been verified or improved by
such an iteration.

In this connection I should like to mention a concept which has been used
constantly at the Danish Geodetic Institute for 15 years as an indicator mainly
for the numerical behavior of adjustments. For obvious reasons we call it ENP,
exponent of numerical precision.

ENP is calculated as

− log10

√ ∑
c2
j∑

piv2
i

,

where {cj} are the constants on the right-hand sides of the Cholesky-reduced
normal equations, and it is an estimate for the number of numerically signif-
icant decimals of the adjustment calculations. The idea behind ENP is the
philosophy that the measure for the numerical precision of an adjustment
calculation is the angle under which the distance from the calculated adjust-
ment result to the exact adjustment result is seen from the observation point
in observation space. This angle cannot be computed because the exact re-
sult is unknown, but ENP can, and it gives valuable information. Especially
when curvature behavior of an adjustment is dangerous, the ENP will reach
a reasonable value only after many iterations or perhaps not at all.

So my first advice to geodesists who have seen that curvature may be
dangerous: Use iteration from scratch and ENP!

I can give no references to publications treating adjustment from the aspect
of this paper but I can mention that most of the ideas used here can be traced
back to the book [1].
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Mechanics of Adjustment

The tendency of looking for structures common for different branches of math-
ematics and applications of mathematics has been very pronounced in the last
fifty years. Clearly the establishment of such common structures is advanta-
geous for the economy of reasoning but also for the understanding of different
branches of the science for the possibility of illuminating problems and meth-
ods in one branch by corresponding problems and methods in other branches.

It is well-known that part of adjustment theory may be expressed by a
geometric structure—namely orthogonal projection, it is also known that there
is an analogy between adjustment and statics, in fact the notion of forces is
often used heuristically in the discussion of geodetic networks.1

On the other hand modern presentations of analytical dynamics are
founded upon symplectic geometry i. e. the geometrical structure of phase
space, and it is proved that this structure is also inherent in statics, therefore
I have found that in a time where analytical dynamics has attracted the at-
tention of many geodesists it could perhaps be of interest to try to find the
corresponding structure in adjustment theory. In fact I shall prove that there
is a common geometrical structure in mechanics, in non-linear adjustment,
and in Sansò’s approach to Molodenskiy’s problem.

Non-Linear Adjustment

We map the values of n observations in the usual way to a point u0 in U ,
the n-dimensional observation space, which is a Euclidean space with the
constant metric tensor P , the weight matrix of observations. The coordinate
axes correspond in a one-to-one way to the single observations. The square of
the distance from any point u ∈ U to the observation point is then

2E = (u − u0)
TP (u − u0).

E is a quadratic polynomial in the coordinates {uα | α = 1, 2, . . . , n } of u.
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We shall call E the energy function in U :

E : U → R.

The energy is non-negative and zero only for u = u0.

dE =
∑

α

∂E

∂uα
duα

is a differential one-form on U , which we shall call the force form on U , and
the vector

τ = {τα} =

{
∂E

∂uα

}
∈ U ′ (the dual of U)

is called the force. We can look upon τ as an elastic force directed more or less
towards the observation point. If P is not a scalar multiple of the unit matrix
there is a ‘plumb-line declination.’ Exactly as when we treat the gravity field
of the Earth we here give the wrong sign to the force!

Let the purpose of our observations be to determine a point x ∈ A, where
A is an m-dimensional differential manifold (m < n), for which we have given
a mapping

f : A → U .

f is a vector-valued function such that

f(x) =
{

fα(x)
∣∣ α = 1, 2, . . . , n }

where fα(x) is the theoretical value of the i’th observation corresponding to
the point x ∈ A. We suppose that f is (sufficiently many times) differentiable
and that the mapping f is an immersion, i. e. for any admissible coordinate
system {xi | i = 1, 2, . . . , m } the matrix

A = {Aαi} =

{
∂fα

∂xi

}
has rank = m. Then the mapping of A to its image in U is locally one-to-one.
Under this condition A becomes a Riemannian space with the metric tensor

g = {gij} =

{∑
α

∂fα

∂xi

∂fα

∂xj

}
(1)

which defines the metric on the image of A as a submanifold of the Euclidean
space U .

We can also pull the energy and the force form back to A:

We define EA, the energy function on A, as

EA(x) = E
(
f(x)

)
,

and we call the differential one-form EA the force form on A.
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In any given admissible coordinate system {xi} on A we define the m-
dimensional vector σ = {σi | i = 1, 2, . . . , m } by

dEA =
∑

i

σi dxi,

i. e.

σi =
∂EA
∂xi

or, for short,

σ =
∂EA
∂x

. (2)

We shall say that a point x0 ∈ A is a solution point of the adjustment problem
if the distance between u0 and f(x) for x ∈ A attains a local minimum at
x = x0. Evidently this means that EA(x) attains a minimum at x0 and a
necessary condition for this is that the force vanishes at x0, that is x0 is a
point for which the right hand member of (2) vanishes.

If

det

(
∂2EA

∂xi∂xj

)
�= 0 i, j = 1, 2, . . . , m

for x = x1, say, then from the implicit function theorem follows that if

σ1 =

(
∂EA
∂x

)
x=x1

,

then in a neighborhood of σ1 the equation (2) has a solution x. By a well-
known reasoning2 there exists a function F from the cotangent space of A to
the reals such that this solution can be expressed by

−xi =
∂F

∂σi
,

or

−x =
∂F

∂σ
, (3)

and
EA − F −

∑
σixi = 0.

Evidently

∂σi

∂xj
=

∂2EA
∂xi∂xj

,

and

−∂xj

∂σi
=

∂2F

∂σi∂σj
,

therefore the matrices

−
[

∂2EA
∂xi∂xj

]
and

[
∂2F

∂σi∂σj

]
are inverse to one-another, for corresponding values of x and σ.
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It should be noticed that
[

∂2EA

∂xi∂xj

]
is not equal to g in (1), the coefficient

matrix of the so-called linearized normal equations, it depends also on the
curvature behaviour of the image of A in U .

The forces are as differential one-forms elements of the cotangent spaces
of A as are the momentums in analytical dynamics, and as in dynamics we
will combine the space A, the configuration space, and the cotangent spaces
of A (they are all congruent to Rm), to an m-dimensional manifold S, the
phase-space which is the same as the cotangent bundle T ∗A, of A. Let

θ =
∑

i

σi dxi

and
ω = dθ =

∑
i

dσi ∧ dσi

be the canonical 1- respective 2-forms on S = T ∗A, such that (S, ω) is a
symplectic space.

The transformation [
x

σ

]
→

[
σ

−x

]
is a canonical transformation, and we may express part of the result of this
section by saying that the execution of this transformation corresponds to
solving the normal equations.

Partial Adjustment

In this section we suppose that the m-dimensional manifold A introduced
in the foregoing section may be regarded as a product manifold of a p-
dimensional manifold B and a q-dimensional manifold C, i. e. A is diffeo-
morphic to the set of ordered pairs (x, y), with x ∈ B and y ∈ C. Naturally
p + q = m.

The mapping
F : A = B × C → U

is now a function of the two variables x and y, and also the energy EA on A
is a function of these variables.

The force form dEA may be decomposed into B- and C-components; or
rather T ∗B- and T ∗C-components:

dEA =

〈
∂E

∂x
, dx

〉
+

〈
∂E

∂y
, dy

〉
= dEB + dEC ,

but it is important to remember that dEB as well as dEC depend on both x

and y in analogy with the way partial differential coefficients do! It is also
important to observe that dEB and dEC are independent of the choice of
coordinates in B and C.
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In an evident way we can define the B- respective C-phase spaces SB re-
spective SC with the respective canonical two-forms ωB and ωC , with

ω = ωB + ωC ,

and perhaps more correctly

ω = (ωB, 0) + (0, ωC).

Now we can define partial adjustment:

Let the point y ∈ C be given, find a point x ∈ B such that the energy
attains a local minimum, and find the force form dEC .
A necessary condition is that the force form ωB vanishes.

By introducing local coordinate systems x = {xi | i = 1, 2, . . . , p } and
y = {yk | k = 1, 2, . . . , q }, we can write the force vectors in B and C as

τ i =
∂EA
∂xi

and λk =
∂EA
∂yk

;

and we have

dτ i =
∑

j

∂2EA
∂xi∂xj

dxj +
∑

l

∂2EA
∂xi∂yl

dyl;

dλk =
∑

j

∂2EA
∂yk∂xj

dxj +
∑

l

∂2EA
∂yk∂yl

dyl;

or, using matrices:

dτ = Adx + B dy;

dλ = BT dx + C dy.
(4)

If detA �= 0 then the system can be solved locally with respect to −dx

and dλ:

−dx = −A−1 dτ + A−1B dy;

dλ = BTA−1 dτ + (C − BTA−1B) dy.

The fact that the matrix of the coefficients of this system, i. e.[
−A−1 A−1B

BTA−1 C − BTA−1B

]
is symmetric makes it plausible that there exists a function F (τ , y) such that

−x =
∂F

∂τ
and λ =

∂F

∂y
;

or
−
∑

i

xidτ i +
∑

j

λjdyj = dF. (5)
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In fact subtracting (5) from∑
i

τ i dxi +
∑

j

λj dyj = dE

gives ∑
i

(τ i dxi + xi dτ i) = dE − dF

or

d(E − F ) = d

(∑
i

τ ixi

)
,

so
F = E −

∑
i

τ ixi

will do, and we see that solving the partial adjustment problem corresponds
to using the canonical transformation defined by⎡⎢⎢⎣

x

y

σ

λ

⎤⎥⎥⎦ →

⎡⎢⎢⎣
σ

y

−x

λ

⎤⎥⎥⎦ .

As mentioned above the condition for the local solution of the problem is that
detA �= 0, that is that x is determined by the observations and the fixed value
of y, therefore the method can be applied in the typical geodetic case of a
(more or less) free network where at least sufficiently many parameters are
fixed.

Conclusion

We have seen that certain canonical transformations play a role in adjustment,
namely what could be called interchange transformations. It is natural to
ask if other—or perhaps all—canonical transformations of the phase space
should have obvious interpretations also. We shall see here that there are two
subgroups of all the canonical transformations which have:

1. A canonical transformation which maps the configuration space onto itself
and which also maps the force space onto itself is called a point transfor-
mation; it is simply a diffeomorphism of the configuration space and the
contragradient diffeomorphism of the force space. In adjustment theory
it corresponds simply to a coordinate transformation in the admissible
subspace A.

2. A canonical transformation which maps every point of the configuration
space in itself can be defined in coordinates by[

xi

σi

]
→

[
xi

σi + ∂f
∂xi

]
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where f is any differentiable function from configuration space to R. But
this is exactly the way the observation data is introduced in the phase
space.

Transformations of the three kinds mentioned here generate the whole
group of canonical transformations, but I still miss a good idea for a natural
interpretation of this whole group in adjustment theory.

In the note2 I mentioned the Legendre transformation, so it is natural to
compare the transformation theory here with Sansò’s transformation of the
Molodenskiy problem, [3]. This transformation is the same as that used here
in the section non-linear adjustment, but it is commonly called the Legendre
transformation, which can be justified because the configuration space there is
(part of) a Euclidean space, and a Euclidean space is canonically isomorph to
its tangent space at every point. Nevertheless I think it would be more fruitful
to regard it as a canonical transformation. There exist canonical transforma-
tions which near the surface of the Earth are equal to Sansò’s transformation
but which far from the surface are equal to the identity. Using such a transfor-
mation it would perhaps be possible to generalize Sansò’s theory to rotating
planets also.

Notes

1An actual example of such reasonings is on pp. 104 and 118 in Peter
Meissl’s formidable work [2].

2The canonical transformation we introduce here has a striking likeness
to the Legendre transformation, but it is not the same thing. The Legendre
transformation is a fibre mapping between the tangent bundle of the phase
space to the cotangent bundle, the mapping here is between the phase space
itself and the cotangent bundle (the moment space—or as it should be called
in connection with adjustment—the force space). For a beautiful introduc-
tion to the modern treatment of analytical dynamics and especially for the
definition of the Legendre transformation, see [1]. Moreover it will help the
understanding of this transformation to confront it with its generalization in
the next section.
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Angelica Returning or
The Importance of a Title

Shortly after he had become president for a study group on mathematical
problems in physical geodesy in 1967 Professor Moritz wrote a circular letter
to the members of this study group, where he pointed out some fundamental
problems, which he hoped would be taken up by the members. This letter was
a great encouragement to continue my work seriously, for now I saw that I
would have at least one reader, for whom these problems really mattered.

Some months later I wrote a letter to the study group where I sketched the
lines along which I had planned to attack the problems pointed out by Moritz.

Again a few months later, when I was trying to combine what is now known
as collocation with Moritz’s method for interpolation of gravity anomalies, I
found that the first thing (collocation) was simply a generalization of the
second. This discovery fascinated me so much that I made it the starting
point in [2] in the hope that it would be easier to understand starting from
well-known facts and generalizing a well established statistical method.

Considering the fact that I have always lacked the right feeling for statistics
this was a bad idea. I did not consider the fact and I have often had occasion
to regret it afterwards, but I had the satisfaction that my colleagues have
judged the result rather by what is right than by what is wrong in it, and I
am very grateful to them for that.

It is curious, however, that it seems as geodesists have read the mentioned
booklet as if its title were: ‘Collocation a new method for calculation of the
gravity field’ and not as a contribution to the mathematical foundation of
physical geodesy as the title really is. Naturally I was not uninterested in
using collocation for practical computations but my main purpose was to use
it as an important link in the answer to the fundamental problem in physical
geodesy e.g. as formulated in Moritz’s circular letter.

I shall try here, avoiding technical details, to summarize my thoughts about
the foundation of physical geodesy, this paper may at least be a key to [2] and
[3] for the reader who does not wish to make his discovering himself using hints
which are not necessarily placed exactly where he would expect to find them.
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1

The fundamental problem of physical geodesy may be formulated as follows:
how may we from a finite set of observations concerning the potential of the
Earth—or, mathematically from a finite set of observations of linear function-
als of the potential—calculate a useful approximation to the potential itself.

It is very difficult to work with functions which are harmonic only outside
surfaces of complicated form, such as the surface of the Earth, therefore it is
important to know that any function which is harmonic outside the Earth may
be approximated arbitrarily well by a function which is harmonic overall out-
side any given nonvoid closed point set in the interior of the Earth, e.g. down
to any Bjerhammar sphere (i.e. a sphere inside the Earth) or even down to (but
not including) the center of the Earth. (The precise meaning of the expression
that a function outside the Earth may be approximated arbitrarily well is that
for any closed point set outside the Earth the absolute value of the error of
the approximation can be made less than any ε > 0). This result—the Runge
theorem—was well known for elliptic differential equations in the sixties.

From Runge’s theorem many important facts may be deduced but certainly
not, that one may treat series in spherical harmonics as if they were convergent
overall where the potential they represent is regular. The following example
is illustrative in this direction.

In [2], pages 52–53, it is demonstrated how a harmonic function given by its
expansion in a series in spherical harmonics convergent outside a sphere with
radius R may be approximated by another harmonic function expressed by
a series in spherical harmonics converging outside another sphere concentric
with the first one, but with radius R1 < R. But this approximation is generally
a good one only outside the first sphere. So if the first sphere contains the
Earth and the second one is contained in the Earth (i.e. is a Bjerhammar
sphere) then we can not find an approximation to a function harmonic outside
the Earth which is valid down to the surface of the Earth. To the reader who
wants to use Runge’s theorem I recommend thorough study of this example.

Then how can we find a Runge-approximation down to the Earth?
In order to answer this question we must first quantitatively describe what

it is we want.
Let φ be the known function which is harmonic in the (open) domain D

then we want to find a function φ1, which is harmonic in a greater domain D1

such that D̄1 ⊃ D, where D̄ is the closure of D1 and such that |φ1−φ| is ‘small’
in D. In order to define what we mean by |φ1 − φ| is small we define a norm
for harmonic functions in D such that this norm of φ is finite. But even by
prescribing the norm of φ1−φ the approximating function φ, is not determined.
We can introduce also a norm for harmonic functions in D1 and call the two
norms ‖·‖ and ‖·‖1 respectively, then it is reasonable to look for a φ1 such that
both ‖φ1‖1 and ‖φ1 − φ‖ are small. If φ is bounded in D the most obvious
choice for the norm would be ‖φ‖ = supx∈D |φ(x)| such that ‖φ1 − φ‖ =
supx∈D |φ1(x) − φ(x)|. It is possible to build up a theory using these norms
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but if we choose quadratic norms (Hilbert-norms) instead, all the problems
will reduce to linear problems analogous to least-squares problems, therefore
we shall in the following suppose that all norms used are quadratic norms.

Given such norms we will look for a φ, which minimizes the expression
‖φ1‖2

1 + λ‖φ1 − φ‖2 where λ is a given positive number. Clearly if it can be
proved—as in fact it can—that this minimum problem has a solution for every
λ > 0 then for increasing values of λ and corresponding solution φ1, ‖φ1‖1

will be increasing and ‖φ1 − φ‖ decreasing. From Runge’s theorem it then
follows that for λ going to infinity ‖φ1−φ‖ converges to zero, but φ1 does not
converge unless φ is extendable to D1, in which case φ1 does in fact converge
to the analytic continuation of φ to D1. If we regard the restriction of φ1 to
the domain D however, then this function converges to φ in all cases.

I have here sketched how a Runge approximation is found for an explicitly
given harmonic function, an effective proof can be based upon simple facts
from potential theory and the theory for compact operators in Hilbert space.
But as the harmonic function in our case is not explicitly given but is only
partly determined by a finite set of observations this result does not help us
very much.

2

An obvious adaption of this method would be among all harmonic functions
defined in D1 and compatible with the, say n, observations to look for that
for which ‖ · ‖1 is minimum, that is to look for that φ1 which minimizes
‖φ1‖1 under n given conditions. If these conditions are independent then this
problem has exactly one solution, and this solution is exactly the collocation
solution. We may also, as above, look for harmonic functions in D1 which
minimize the square of ‖ · ‖1 plus λ times a weighted square sum of the
residuals of the observations. Then we have smoothing collocation. For λ → ∞
we get the solution of the non-smoothing collocation problem if and only
if the observations are independent. It can undoubtedly be supposed that
readers of this book know how the solution of these minimum problems are
found by solving system of linear equations derived by use of the theory for
Hilbert-spaces with reproducing kernels, and also that the norms ‖·‖1 used in
practice are invariant with respect to rotations around the center of the Earth
such that the region D1 becomes the part of the space outside a Bjerhammar
sphere, and also that users of the collocation method agree in the choice of the
norm ‖ · ‖1 (or equivalently of reproducing kernel) in consideration of quasi
statistical principles (covariance functions). In my opinion there has been
made amazingly little research in the norm problem under other aspects also.

It should here be mentioned too that in practice the potential to which
an approximation is looked for is not the potential of the Earth itself but
the anomalous potential or rather the correction to the ‘so-far-best-known’
approximation to the potential itself, for it is naturally this correction which
should be minimized.
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3

What the collocation method gives us is a method for computing a harmonic
function in D, which is compatible with the observations (or in the smoothing
case with a reasonable choice of λ is reasonably compatible with the obser-
vations taking their precision into account). Our problem is then in which
respect our solution gives a good approximation to the Earth’s potential.

Another formulation of this problem is that of a ‘convergence problem of
collocation’:

If we have given an infinite sequence of sets of observations of functionals
of the potential, such that the errors of the observations in the mth set goes
to zero for m → ∞ and points of the observations become dense on a certain
smooth surface ω around the Earth and near its surface, under which condi-
tions does the result of the collocation applied to the mth set of observations
converge to the correct result for m → ∞?

Clearly the best thing we may expect is that the restriction of φ1 to the
domain D (the part of the space outside the surface ω) converges to the
(anomalous) potential of the Earth, for this potential is in general not ex-
tendable to D (cf. the result under 1).

Instead of attacking the convergence problem here directly let us regard
first some variations of it.

First suppose that ω is known and that the value of the potential is known
and finite at all points of ω. If we try to use smoothing collocation instead of
n linear equations we have to solve an integral equation of Fredholm type. By
analyzing this equation we would find that for λ → ∞ the restriction of φ1

to D in fact converges to the solution of Dirichlet’s problem as we want and
that the limit is independent of the norm ‖·‖1 selected in D1. This follows from
the unique solvability of the boundary value problem, which here is Dirichlet’s
problem.

There is another way however to regard this problem.
The expression which should be minimized is

‖φ1‖2
1 + λ

∫
ω

(φ1 − φ)2 dω,

but it can be proved (in fact it follows easily from some (unpublished) papers
of mine of Hilbert spaces of harmonic functions) that

‖φ‖2
D =

∫
ω

φ(x)2 dω

defines a norm for functions harmonic in D and so we are back to the problem
treated under 1.

We can intuitively look at the limiting process as a swelling of ‖φ1‖1—and
therefore also of φ1—as λ increases but this swelling takes place only inside ω
(in D1 \ D̄) exactly because ‖φ1 −φ‖D is a norm and it enters with increasing
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weight for increasing λ. That this norm converges to 0 and therefore φ1 → φ
in D follows from Runge’s theorem, so we have here an interplay between
boundary value problem theory, Runge’s theorem, and the theory for Hilbert
spaces of harmonic functions.

This example may naturally be generalized to other boundary value prob-
lems e.g. to Molodenskiy’s problem, but here it is important to notice that
the boundary value problems which really are of interest in geodesy are rather
complicated, because there are observed different kinds of boundary value data
on overlapping regions of ω, e.g. different kinds of data over continents and
oceans. There is here a great challenge for those working with boundary value
problems to prove that such actual observations define norms of harmonic
functions in the outer space, but this is a slight generalization of the so-called
coersivity problem in the theory of boundary value problems.

We have not yet arrived at the goal. We are faced with that set of prob-
lems which in my opinion is what makes mathematical geodesy so fascinating
namely those of the interplay between continuous and discrete aspects, for
still we have only finitely many observations.

In my Assisi lecture I have bridged the gap between these two aspects by
using a method of interpolation of the observations to achieve functions on ω.
Today I should prefer a more direct method which I hope could give practical
results in an easier way.

So we have again to look at our problem with only a finite sets of ob-
servations and a corresponding smoothing collocation problem. Clearly by
increasing the value of λ or by increasing the number n of observations the
resulting φ1 becomes more ‘short waved.’ On the other hand the more long
waved φ1 is the more ‘feels’ φ1 the observations acting on it through the
factor to λ, the weighted square sums of the residuals as (the square of) a
norm. When n and the value of λ approach infinity the restriction of φ1 to D
will only be bounded if the ‘ideal boundary value problem’ corresponding to
the observations is coersive, so we see also here the relevance of the study of
boundary value problems. Under assumption of coercivity in my Assisi lec-
ture I succeeded in proving the convergence for the number of observations
and λ going to infinity only if λ increases sufficiently slowly with respect to
the number of observations and I made the conjecture that this was essential,
such that it should be impossible to prove convergence of the non-smoothing
collocation. I have not yet succeeded in proving or disproving this conjecture.

The traditional mathematical proof of convergence is build upon a manip-
ulation of ε and δ. So also here. It has been said that only the result, not the
ε-δ-manipulation is of interest for the user of mathematics. So it is not here.
The limit we find, if it exists, is independent of e.g. the norm ‖ · ‖1 but the
velocity of the convergence is not. For the practical problems we are interested
very much in how δ depends on ε and the dependance of this dependance of
the kind of observations, the distance between them, of the radius of the Bjer-
hammar sphere etc. A deeper study of the convergence problem as sketched
here should have good chances for throwing light on the practical problems in
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physical geodesy and perhaps not only on the collocation method. And from
where should really good and new practical results come if not from a solid
mathematical foundation of physical geodesy.

The second title of this paper may have given some reader the desire for
an explication of the first title. Here it is.

Angelica was a Chinese princess who plays an important role in [1]. But at
a certain point of time the author looses interest in her, and concentrates on
other parts of the action which brings the reader all around the Earth even
with excursions to the underworld and to the moon. Ariosto leaves Angel-
ica writing that perhaps some more clever poet would write about her later
adventures on her way back to China. I do not think that Ariosto were ex-
pressing a sincere hope concerning a continuation of his work, and certainly
he had no particular author in mind when scribing so, but I had when I closed
my ‘contribution’ quoting this passage from Ariosto. Relatively soon later this
hope of mine was fulfilled beyond any expectation, subsequent work especially
of Moritz has eminently contributed to the acceptance of the method of col-
location in the geodetic community, and I have the feeling that the sporadic
resistance against it has rather deepened the understanding and contributed
to this acceptance.

But still . . . . Well, I do not pretend to have written something which can be
read with pleasure even 450 years later but as I expressed it in common words
in the introduction of this paper, I had hoped—and still I hope it—that not
only a ramification of the plot but chiefly the ‘grand tour around the world’
should serve as a starting point for fruitful investigation by my colleagues.

Perhaps one should never make explicit what one has written between the
lines. But I have done it here in order to counterbalance my habit of writing
too much between the lines, which may have to do with the fact that I regard
writing not as a means to propagate my meanings but as a means to make
my colleagues and myself think.

For years I have been dreaming of writing a paper without formulas, as you
see, I have not completely succeeded. I know that a paper without references
would hardly be accepted, so here they are!
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Evaluation of Isotropic Covariance Functions of
Torsion Balance Observations

Abstract

Torsion balance observations in spherical approximation may be expressed as
second-order partial derivatives of the anomalous (gravity) potential T :

T13 =
∂2T

∂x1∂x3
, T23 =

∂2T

∂x2∂x3
, T12 =

∂2T

∂x1∂x2
, T∆ =

∂2T

∂x2
1

− ∂2T

∂x2
2

where x1, x2, and x3 are local coordinates with x1 “east,” x2 “north,” and
x3 “up.” Auto- and cross-covariances for these quantities derived from an
isotropic covariance function for the anomalous potential will depend on the
directions between the observation points. However, the expressions for the
covariances may be derived in a simple manner from isotropic covariance func-
tions of torsion balance measurements. These functions are obtained by trans-
forming the torsion balance observations in the points to local (orthogonal)
horizontal coordinate systems with first axis in the direction to the other ob-
servation point. If the azimuth of the direction from one point to the other
point is α, then the result of this transformation may be obtained by rotating
the vectors [

T13

T23

]
and

[
T∆

2T12

]
the angles α − 90◦ and 2(α − 90◦) respectively.

The reverse rotations applied on the 2× 2 matrices of covariances of these
quantities will produce all the direction dependent covariances of the original
quantities.

1. Introduction

Let K(P, Q) be a rotational invariant reproducing kernel of a Hilbert space of
harmonic functions, or equivalently a so-called empirical covariance function
of the anomalous gravitational potential T . It is a function of two variables
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P, Q, both points in R3 outside some sphere with radius RB, the Bjerhammar
sphere, bounding the set of harmonicity for the functions in the Hilbert space.
Then

K(P, Q) =

∞∑
i=2

σi

(R2
B

rr′
)i+1

Pi(cos ψ), (1)

where ψ is the spherical distance between P and Q, r and r′ the radial dis-
tances of P, Q from the origin respectively, and Pi are Legendre polynomials.
σi are positive constants, the so-called degree-variances.

The inner product of two linear functionals L1 and L2 or equivalently their
covariance, is obtained by applying these functionals on K

L1(L2(K(P, Q))) := K(L1, L2). (2)

Expressions for such quantities where L1 and L2 are linear functionals asso-
ciated with zero-, first-, or second-order derivatives of T are given, e.g., in [8].
Similar expressions have been derived in [2] for harmonic functions given in a
half space

{
(x1, x2, x3)

∣∣ x3 > 0
}
.

If we want to derive the quantities K(L1, L2) for cases where L1 or L2 are
linear functionals associated with torsion balance (or gravity gradiometer)
observations, then the equations given in [8] cannot be used directly. Certain
linear combinations of the equations must be used.

The covariance functions will depend on the directions between P and Q.
This makes the direct derivation of expressions for these functions rather in-
volved. We will show here that the expressions may be derived in a very
straightforward manner from isotropic covariance functions of torsion balance
observations. Such functions are also useful in cases where empirical covari-
ances have to be estimated in a situation where few observations are available.
(This is because sampling of products of pairs of observations will have to be
done only with respect to the distance between the observation points.)

Isotropic covariances are derived in Section 4 following some mathematical
preparations in Sections 2 and 3. Finally in Section 5 the isotropic covariances
are used to derive not only the general expressions for the covariances of
torsion balance observations, but also expressions for covariances of several
other gravity field quantities.

2. Basic equations

Suppose we have a usual Cartesian coordinate system with axes x, y, z so
that the last one coincides with the rotation axis of the Earth. All points not
located on the z-axis will then have the usual spherical coordinates φ, latitude,
λ, longitude, and r, the distance from the origin. For these points we may also
define a local coordinate system with coordinates (x1, x2, x3) so that the first
axis points east, the second north, and the third in the direction of the radius
vector. We may keep the origin or move it to the point, as we like.
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In spherical approximation we may then express the torsion balance ob-
servations as follows:

T13 =
∂2T

∂x1∂x3
=

∂

∂r

( 1

r cosφ

∂T

∂λ

)
(3)

T23 =
∂2T

∂x2∂x3
=

∂

∂r

(1

r

∂T

∂φ

)
(4)

T∆ =
∂2T

∂x2
1

− ∂2T

∂x2
2

= − 1

r2

(
1

cosφ

∂

∂φ

(
cosφ

∂

∂φ
T
)
− 1

cos2 φ

∂2T

∂2λ

)
(5)

2T12 = 2
∂2T

∂x1∂x2
=

2

r

∂

∂φ

( 1

r cosφ

∂T

∂λ

)
(6)

see [4] and [7], Equation (58).
For the sake of completeness, we write the equations associated with some

other important types of observations, the height anomaly ζ, the gravity
anomaly ∆g, and the deflections of the vertical (η, ξ). Then, with γ equal
to the normal gravity, and still using spherical approximation, we have

ζ = T/γ

∆g = − ∂T

∂x3
− 2

r
T = −∂T

∂r
− 2

r
T

η = − 1

γ

∂T

∂x1
= − 1

γr cosφ

∂T

∂λ

ξ = − 1

γ

∂T

∂x2
= − 1

γr

∂T

∂φ
.

It is obvious that the evaluation functional or the functional ∂
∂x3

∣∣
P

will result
in quantities which are still isotropic and of the form given in Equation (7);
except for factors rk or (r′)k, k = −1 or −2. T13 and T23 will in this respect
be treated as if they were deflections of the vertical (η, ξ). In order to see this

∂

∂r

(1

r

∂

∂φ
T
)

=
1

r

∂

∂φ

(∂T

∂r
− 1

r
T
)

∂

∂r

( 1

r cosφ

∂

∂λ
T
)

=
1

r cosφ

∂

∂λ

(∂T

∂r
− 1

r
T
)
.

Then with i, j = 1 or 2

K
( ∂2

∂xj∂x3

∣∣∣
P

, Q
)

=
∂

∂xj

∣∣∣
P

(∂K

∂r
− 1

r
K
)

K
(
P,

∂2

∂xj∂X3

∣∣∣
Q

)
=

∂

∂xj

∣∣∣
Q

(∂K

∂r′
− 1

r′
K
)

K
( ∂2

∂xj∂x3

∣∣∣
P
,

∂2

∂xi∂x3

∣∣∣
Q

)
=

∂

∂xj

∣∣∣
P

∂

∂xi

∣∣∣
Q

( ∂2K

∂r∂r′
− 1

r

∂K

∂r′
− 1

r′
∂K

∂r
+

1

rr′
K
)
.
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In order to facilitate the use of these quantities in the subroutine COVAX [8]
we introduce the variable s = R2

B/(rr′) and compute the derivatives using s.
(Note, that we later use the term “s” for another quantity.)

Because

∂

∂r
=

∂s

∂r

∂

∂s
= −s

r

∂

∂s
,

∂

∂r′
=

∂s

∂r′
∂

∂s
= − s

r′
∂

∂s

we get

∂T

∂r
− 1

r
T = −1

r

(
s
∂K

∂s
+ K

)
∂T

∂r′
− 1

r′
T = − 1

r′
(
s
∂K

∂s
+ K

)
∂2K

∂r∂r′
− 1

r

∂K

∂r′
− 1

r′
∂K

∂r
+

1

rr′
K =

s

rr′
∂

∂s

(
s
∂K

∂s
+ K

)
+

1

rr′
(
s
∂K

∂s
+ K

)
=

1

rr′

(
s2 ∂2K

∂s2
+ 3s

∂K

∂s
+ K

)
.

With

D = s
∂K

∂s
+ K

E =
(
s2 ∂2K

∂s2
+ 3s

∂K

∂s
+ K

)
s
/
R2

B

we have

K
( ∂2

∂xj∂x3

∣∣∣
P
, Q

)
=

∂

∂xj

∣∣∣
P
(D)/(−r) (7)

K
(
P,

∂2

∂xi∂x3

∣∣∣
Q

)
=

∂

∂xi

∣∣∣
Q

(D)/(−r′) (8)

K
( ∂2

∂xi∂x3

∣∣∣
P
,

∂2

∂xj∂x3

∣∣∣
Q

)
=

∂

∂xi

∣∣∣
P

∂

∂xj

∣∣∣
Q

(E). (9)

Note that

D =

∞∑
i=2

σi(i + 2)si+1Pi(cosψ)

and

E =

∞∑
i=2

σi

R2
B

(i + 2)2si+2Pi(cosψ).

3. Change of covariances caused by a rotation of the
local coordinate system

It is well known that isotropic covariance functions for deflections of the ver-
tical are obtained by using the longitudinal and transversal components of a
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P ′
Q′

����

ψ

α α′

Fig. 24.1. P ′ and Q′ are the projections of P , Q respectively on the unit sphere

pair of deflections in a point P relative to a point Q, see [1], [3], [5], and [6].
These components arise as first-order partial derivatives with respect to the
coordinates of a local coordinate system obtained by rotating the local coor-
dinate system the angle α−90◦ with axes pointing east and north, where α is
the azimuth from the point P to the point Q. Another angle α′ will obviously
have to be used in the point Q, see Figure 24.1.

Let us then compute the change in the second-order horizontal derivatives
following a rotation β and let us denote the new coordinates z1 and z2. Then[

z1

z2

]
= R(β)

[
x1

x2

]
(10)

with

R(β) =

[
cosβ − sinβ
sinβ cosβ

]
. (11)

For the first-order derivatives we have⎡⎢⎢⎣
∂

∂z1

∂

∂z2

⎤⎥⎥⎦ = R(β)

⎡⎢⎢⎣
∂

∂x1

∂

∂x2

⎤⎥⎥⎦ (12)

and for the second-order derivatives⎡⎢⎢⎢⎣
∂2

∂z2
1

∂2

∂z1∂z2

∂2

∂z1∂z2

∂2

∂z2
2

⎤⎥⎥⎥⎦ = R(β)

⎡⎢⎢⎢⎣
∂2

∂x2
1

∂2

∂x1∂x2

∂2

∂x1∂x2

∂2

∂x2
2

⎤⎥⎥⎥⎦R(−β). (13)

The functionals related to the torsion balance observations 2T12 and T∆

are then transformed as follows:



352 24 Evaluation of Isotropic Covariance Functions

∂2

∂z2
1

− ∂2

∂z2
2

=
(
cos2 β − sin2 β

) ∂2

∂x2
1

−
(
cos2 β − sin2 β

) ∂2

∂x2
2

− 2 sinβ cosβ 2
∂2

∂x1∂x2

2
∂2

∂z1∂z2
= 2 cosβ sin β

(
∂2

∂x2
1

− ∂2

∂x2
2

)
+ 2

(
cos2 β − sin2 β

)
2

∂2

∂x1∂x2
.

Hence ⎡⎢⎢⎢⎣
∂2

∂z2
1

− ∂2

∂z2
2

2
∂2

∂z1∂z2

⎤⎥⎥⎥⎦ =

[
cos 2β − sin 2β

sin 2β cos 2β

]⎡⎢⎢⎢⎣
∂2

∂x2
1

− ∂2

∂x2
2

2
∂2

∂x1∂x2

⎤⎥⎥⎥⎦ . (14)

The vector containing (T∆, 2T12) is then transformed by a rotation the an-
gle 2β while the vector (T13, T23) is transformed by a rotation the angle β, just
as if it were a vector containing the negative deflection components (−η,−ξ).

Because of the rotational invariance of K(P, Q) we may now choose the lo-
cal coordinate systems in a convenient way, so that the derivative with respect
to the first coordinate variable corresponds to the directional derivatives be-
tween the points. We will then work with two systems, so that the first makes
the evaluation of the linear functionals associated with P easy and so that
the second makes the evaluations in Q easy. The original derivatives in north-
ern and eastern directions may then be obtained by executing the rotations
90◦ − α in P and 270◦ − α′ in Q.

4. Evaluation of isotropic covariances

We now introduce the two coordinate systems. One is associated with P having
coordinates (x1, x2, x3) and the other with Q having coordinates (y1, y2, y3).
They are obtained from the above described local coordinate systems by ro-
tations α − 90◦ and α′ − 270◦ respectively.

The third axis will in both systems coincide with the radius vector passing
through the point, and the first axis will be in the plane spanned by the
two radius vectors. In both cases the direction of the first axis is selected so
that the new azimuth is 0. The second axis is selected so that the three axes
span a right-handed Cartesian coordinate system. Here P = (0, 0, r) in the
x-system and Q = (0, 0, r′) in the y-system. Let the angle between the radius
vectors be ψ = the spherical distance and denote the coordinates of a point x
in the y-system by x̃ and vice versa. Then we have the following coordinate
transformation:

x̃1 = −x1 cosψ + x3 sin ψ = −x1t + x3s

x̃2 = −x2

x̃3 = x1 sinψ + x3 cosψ = x1s + x3t.

(15)
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Note that this transformation is its own inverse, i.e., ˜̃x = x, and that it is also

valid for ˜̃y. We now put t = cosψ and s = sin ψ.
We will now express the covariance function by some more convenient

parameters

u = (x, ỹ) = (x̃, y) =

3∑
i=1

xiỹi =

3∑
j=1

x̃jyj (16)

v = 1
2 |x|

2|y|2 (17)

so that
K(x, y) := f(u, v).

However, we may here use D or E instead of K, see Section 1.
Because of our choice of coordinate system, we may now compute the

derivatives in these two new systems, and subsequently evaluate the result in P
and Q. The derivatives may then be transformed back to the old coordinate
system using Equations (12) and (14).

We denote the derivatives of f with respect to u and v using subscripts,
so that

∂mf

∂ui∂vj
:= fij , m = i + j.

We will need the derivatives of u and v with respect to the coordinates

∂u

∂xi
= ỹi,

∂v

∂xi
= xi|ỹ|2 = xi|y|2

and also
∂ỹ1

∂y1
= −t,

∂ỹ1

∂y3
= s,

∂ỹ2

∂y2
= −1.

Then
∂

∂xi
K = f10ỹi + f01xi|y|2

and

∂2

∂xi∂xj
K = f20ỹiỹj + f11(ỹixj + ỹjxi)|y|2 + f02xixj |y|4 +

∂xi

∂xj
f01|y|2.

When evaluating the derivatives in P , and then subsequently in Q following ♦,
we may after each completed differentiation insert the actual values of the
coordinates. This gives us the following simple equations:

∂

∂x1
K = f10ỹ1 ♦ f01r

′s (18)

∂

∂x2
K = f10ỹ2 ♦ 0 (19)
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F :=
∂2K

∂x2
1

− ∂2K

∂x2
2

= f20(ỹ
2
1 − ỹ2

2) ♦ f20(r
′s)2 (20)

G :=
∂2K

∂x1∂x2
= f20ỹ1ỹ2 ♦ 0. (21)

We must then differentiate these quantities with respect to coordinates yi,
using P = (0, 0, r) in x-coordinates:

∂2K

∂yj∂xi
= ỹi

(
f20x̃j + f11yj |x|2

)
+

∂ỹi

∂yj
(f10)

+ xi

(
|y|2(f11x̃j + f02yj |x|2) + 2yj|y|f01

)
and then

∂2K

∂y1∂x1
= ỹ1(f20x̃1 + f11y1|x|2)− tf10 ♦ s2rr′f20 − tf10 (22)

∂2K

∂y2∂x1
= ỹ1(f20x̃2 + f11y2|x|2)♦ ỹ1x̃2f20 = 0 (23)

∂2K

∂y1∂x2
= ỹ2(f20x̃1 + f11y1|x|2)♦ 0 (24)

∂2K

∂y2∂x2
= ỹ2(f20x̃2 + f11y2|x|2)− f10 ♦−f10 (25)

∂F

∂y1
=

∂

∂y1
(ỹ2

1)f20 +(ỹ2
1 − ỹ2

2)(f30x̃1 + f21y1|x|2)♦−2tsr′f20 +(sr′)2rsf30

(26)

∂F

∂y2
= −2y2f20 +(ỹ2

1 − ỹ2
2)(f30x̃2 + f21y2|x|2)♦ 0 (27)

∂2F

∂y1∂y2
= −2y2

∂

∂y1
(f20)+ y2|x|2

∂

∂y1

(
(y2

1 − y2
2)f21

)
♦ 0 (28)

∂2F

∂y2
1

= 2t2f20 − 2tỹ1(f30x̃1 + f21y1|x|2)− 2tỹ1(f30x̃1 + f21y1|x|2)

+ (ỹ2
1 − ỹ2

2)

[
x̃1(f40x̃1 + f31y1|x|2)+ |x|2

(
f21 + y1

∂

∂y1
(f21)

)]
♦ 2t2f20 − 4ts2rr′f30 +(r′s)2

(
(rs)2f40 + r2f21

)
(29)

∂2F

∂y2
2

= −2f20 − 2y2
∂

∂y2
(f20)+ (ỹ2

1 − ỹ2
2)|x|2

(
f21 + y2

∂

∂y2
(f21)

)
+2ỹ2

∂

∂y2
(f21y2|x|2)♦−2f20 +(rr′s)2f21. (30)
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Hence( ∂2

∂y2
1

− ∂2

∂y2
2

)
F = 2(t2 + 1)f20 − 4ts2rr′f30 + (rr′)2s4f40 (31)

∂G

∂y1
= ỹ2

(∂ỹ1

∂y1
(f20)+ ỹ1(f30x̃1 + f21y1|x|2)

)
♦ 0 (32)

∂G

∂y2
= ỹ1

(
−f20 + ỹ2(f30x̃2 + f21y2|x|2)

)
♦−r′sf20 (33)

∂2G

∂y2∂y1
= tf20 − ỹ1

(
f30x̃1 + f21y1|x|2

)
+ ỹ2

∂

∂y2
(. . . )♦ tf20 − rr′s2f30.

(34)

These expressions may be slightly simplified by introducing the derivatives
of K, D, and E with respect to t = cosψ.

Because
∂

∂u
=

∂t

∂u

∂

∂t
=

1

rr′
∂

∂t

then with

Kn =
∂n

∂tn
K, and similarly for D and E

we have the following non-zero expressions

∂K

∂x1
=

s

r
K1 (35)

∂2K

∂x2
1

− ∂2K

∂x2
2

=
s2

r2
K2 (36)

∂2K

∂y1∂x1
= (s2K2 − tK1)/(rr′) (37)

∂2K

∂y2∂x2
= −K1/(rr′) (38)

∂

∂y2

( ∂2K

∂x1∂x2

)
= −sK2/(r2r′) (39)

∂

∂y1

(∂2K

∂x2
1

− ∂2K

∂x2
2

)
= (s3K3 − 2tsK2)/(r2r′) (40)

∂2

∂y2∂y1

∂2K

∂x2∂x1
= (tK2 − s2K3)/(rr′)2 (41)

( ∂2

∂y2
1

− ∂2

∂y2
2

)(∂2K

∂x2
1

− ∂2K

∂x2
2

)
=
(
2(t2 + 1)K2 − 4ts2K3 + s4K4

)
/(rr′)2.

(42)
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When evaluating the non-zero quantities related to Tl2 and T23, we sub-
stitute D for K in Equations (35), (37)–(40) and E for K in Equations (37)
and (38) and use Equations (7)–(9). Then

∂2K

∂x3∂x1
= − s

r2
D1 (43)

∂3K

∂y1∂x3∂x1
= −(s2D2 − tD1)/(r2r′) (44)

∂3K

∂y3∂y1∂x1
= −(s2D2 − tD1)/

(
r(r′)2

)
(45)

∂3K

∂y2∂x3∂x2
= D1/(r2r′) (46)

∂3K

∂y3∂y2∂x2
= D1/

(
r(r′)2

)
(47)

∂2

∂y3∂y2

( ∂2K

∂x1∂x2

)
= −sD2/(rr′)2 (48)

∂2

∂y3∂y1

(∂2K

∂x2
1

− ∂2K

∂x2
2

)
= −(s3D3 − 2tsD2)/(rr′)2 (49)

∂4K

∂y3∂y1∂x3∂x1
= (s2E2 − tE1)/(rr′) (50)

∂4K

∂y3∂y2∂x3∂x2
= −E1/(rr′). (51)

The quantities (35)–(51) are then the basic isotropic quantities computed
in the two local coordinate systems. Quantities involving gravity anomalies
could have been obtained from functions similar to D and E, but where the
degree-variances σj are multiplied with (i − 1) and (i − 1)2 respectively.

5. General covariance expressions

The general covariance expressions cov(L1(T ), L2(T )) = K(L1, L2) are then
obtained using Equations (35)–(51). We introduce of few more “shorthand”
expressions

Kijkn =
∂4K

∂xi∂xj∂yk∂yn
, i, j, k, n = 1, 2, or 3

K∆kn =
( ∂2

∂x2
1

− ∂2

∂x2
2

) ∂2K

∂yk∂yn
,

and similarly for Kij∆ and K∆∆. Then
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cov(T∆, T∆) cov(T∆, 2T12)

cov(2T12, T∆) cov(2T12, 2T12)

]
=R(180◦−2α)

[
K∆∆ 0

0 4K1212

]
R(2α′+180◦)

[
cov(T13, T∆) cov(T13, 2T12)

cov(T23, T∆) cov(T23, 2T12)

]
=R(90◦−α)

[
K13∆ 0

0 2K2312

]
R(2α′+180◦)

[
cov(T13, T13) cov(T13, T23)

cov(T23, T13) cov(T23, T23)

]
=R(90◦−α)

[
K1313 0

0 K2323

]
R(α′+90◦).

Quantities such as K∆∆ or K1212 are easily obtained using the subroutine
COVAX, (for the degree-variance models described in [8]). However, the com-
putation of K13∆, K1313, K2323, and K2312 requires some small modifications.
A modified version of COVAX is available on request from the authors.

6. Conclusion

We have here derived covariance expressions for torsion balance observations
based on an isotropic covariance function (or reproducing kernel). It is planned
to evaluate these functions using degree-variance models and compare these
values with values obtained from empirical data.
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25

Contribution to the Geometry of the Helmert

Transformation

Abstract

Considering the fact that the determination of the Helmert transformation of
one point set to another point set is a non-linear problem of adjustment, a
geometrical theory for this problem is treated, and as a result of this theory a
simple and numerically strong method for the computation of the parameters
of the Helmert transformation is presented.

Introduction

In the q-dimensional Euclidian space Rq two ordered point sets are given,
each consisting of n points. We suppose the point sets given by two q × n-
matrices X resp. Y , the column vectors of which are q coordinates of the
points numbered 1, 2, . . . , n in the first resp. second point set. We call the
point sets the X-set and the Y -set, respectively.

The Helmert transformation is then a similarity transformation in Rq,
which applied to the X-set brings the points of this set to the ‘best possible
coincidence’ with the points (with the same numbers) of the Y -set; that is
when we use the designation ‘Helmert transformation’ instead of similarity
transformation; we normally mean a certain similarity transformation char-
acterized by some optimization condition, which should be specified, and we
also think about the way in which the parameters of such a transformation
have to be determined.

As in so many other problems in geodesy, the determination of the Helmert
transformation is made using least-squares adjustment and like most such
problems this problem is in reality a non-linear adjustment problem for
q > 2, but unlike almost all other non-linear adjustment problems, that of
the Helmert transformation admits a geometrical theory which in the opinion
of the author is interesting and even beautiful, and—what is perhaps more
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important—it suggests a method for the computation of the parameters, which
seems to be numerically well behaved.

The central problem in the adjustment is to find a similarity matrix, i.e.,
a matrix

A = rU,

where r is a non-negative number and U is an orthogonal matrix, i.e., a matrix
such that

UTU = UUT = I.

In adjustment problems, the unknown quantity is normally a vector—here
it is a vector and a matrix, a similarity matrix, the relevant entries of which
naturally could be expressed as a vector, but it was obvious to try to look
directly for the matrix itself, whereby the richer structure of matrices could be
applied in the computations. We look upon the q× q matrices as constituting
an algebra and at the same time a normed vector space. This idea is illustrated
in Section 1 where it is applied to a linear problem.

In Section 2 we treat the problem of finding that similarity matrix which
approximates a given square matrix best. It turns out that the hard core of
the problem is the following: given a matrix N , find an orthogonal matrix U
such that NU is symmetric, a problem which can be solved easily as soon as
the singular value decomposition of N is found.

In Section 3 we try to use the insight gained in the introductory sections
on the Helmert transformation, but this section is very short as the difficulties
have already been overcome.

A few examples in Section 4 shall illustrate what happens in special situ-
ations when certain eigenvalues coincide or vanish, and in Section 5 we find a
method of successive approximation which in most cases should be preferred
to the method given in Section 2 based on the singular value decomposition.

In this paper, the best transformation is defined as that transformation
(of a given type) for which the sum of the squares of the distances between
corresponding points of the Y -set and the X-set after the transformation is
as small as possible. Of course it is possible to make some variations of the
method where these distances enter with different weights, etc.

1

A similarity transformation in Rq may be written as

z → a + Az,

where a is a q-dimensional vector and A is a q×q matrix which may be written
as the product of a positive number and an orthogonal matrix. In this section
we shall drop this condition for A such that A is any q × q matrix and the
transformation is then an affine transformation.

If η means the n-dimensional column vector with all its entries equal to 1,
we may formulate the problem of this section as follows in matrix algebra:
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Find the vector a and the matrix A such that the Euclidean norm of
the matrix V , where

V = aηT + AX − Y,

is as small as possible.

The Euclidian norm of a matrix M , also called the Schur norm or the
Frobenius norm, is the square root of the sum of the squares of its entries or

‖M‖2 = tr(MTM) = tr(MMT).

To this norm corresponds a scalar product: for A and B being q×q matrices
the scalar product is

〈A, B〉 = tr(ABT) = tr(ATB),

such that
‖M‖2 = 〈M, M〉.

Now suppose that the origin of the coordinate system coincides with the
center of gravity of the Y -set, then

Y η = 0.

Suppose, moreover, that we have already translated the X-set such that its
center of gravity also coincides with the origin, then

Xη = 0,

and now a is the remaining translation.
We must remember that the columns of X and Y from now on are the

coordinates of the X- and the Y -sets with respect to the center of gravity of
the respective sets!

We find

‖V ‖2 = tr(V V T) = tr
(
(aηT + AX − Y )(ηaT + XTAT − Y T)

)
= q‖a‖2 + tr

(
(AX − Y )(XTAT − Y T)

)
.

We have used here
trAT = tr A

and
tr(AB) = tr(BA),

when these expressions have a meaning.
The two terms in this expression are non-negative, so the minimum of ‖V ‖

can only be attained for a = 0, i.e., we have found that the translation shall
be that translation which brings the gravity center of the X-system over in
the gravity center of the Y -system, and so we have reduced the problem to a
homogeneous problem namely that of finding the matrix A which minimizes

‖V ‖2 = tr
(
(AX − Y )(XTAT − Y T)

)
.
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An easy calculation gives

‖V ‖2 = tr(XXTATA) − tr(Y XTAT) − tr(XY TA) + tr(Y Y T).

By differentiation with respect to A we find:

d‖V ‖2 = tr(XXTATdA) + tr
(
XXT(dAT)A

)
− tr(Y XTdA) − tr(XY TdA)

= tr
(
(XXTAT − XY T) dA

)
+ tr

(
(AXXT − Y XT) dAT

)
= 2 tr

(
(AXXT − Y XT) dAT

)
= 2〈AXXT − Y XT, dA〉.

A necessary condition for a minimum is that d‖V ‖2 is zero for all matrices dA,
i.e.,

AXXT − Y XT = 0,

and if XXT is a regular matrix the solution is

A = Y XT(XXT)−1.

We also find
1
2d2‖V ‖2 = tr

(
(dA)XXTdAT

)
.

If XXT is regular, then XXT is strictly positive definite and therefore this
expression for 1

2d2‖V ‖2 is a strictly positive definite quadratic form in the
entries of the matrix dA and therefore

A = Y XT(XXT)−1

corresponds to a minimum.
It is easy to see that XXT is regular if and only if the X-set consists

of q linearly independent points and at least one point more which must not
coincide with the gravity center of the first-mentioned q points. We shall not
analyze what happens if this condition is not satisfied.

2

As a second preliminary exercise, consider the following problem:
Given a q × q matrix M , find the best approximating similarity matrix A,

i.e., find a matrix A = rU , where r ≥ 0 and U is a q × q orthogonal matrix:
UTU = 1, such that ‖M−A‖ is as small as possible, where ‖·‖ is the Euclidean

norm in Rq2

:

‖M − A‖2 = tr
(
(MT − AT)(M − A)

)
=

∑
i,j=1,...,q

(Mij − Aij)
2.

As it does not seem unreasonable to solve our original problem by first finding
the general matrix M solving the problem in Section 1 and then finding the
best similarity matrix A approximating M , so it follows that this problem is
related to our original problem.
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Write

2E = ‖M − A‖2 = tr(MTM) − 2 tr(MTA) + tr(ATA)

= tr(MTM) − 2 tr(MTA) + qr2.

The q× q orthogonal matrices form a group, and near the unity matrix I, the
unit of the group, the group may be parametrized by

U = expS,

where

expR = 1 +
R

1!
+

R2

2!
+

R3

3!
+ · · · + Rn

n!
+ · · ·

for any q × q matrix (this series converges in the norm ‖ · ‖ for every R), and
where S is a skew-symmetric matrix:

ST = −S.

Therefore a neighborhood V of U ∈ O(q) (the orthogonal group in q dimen-
sion) may be parameterized by

V = U exp S,

and we have

2E = tr(MTM) − 2r tr(MTU exp S) + qr2,

dE = −r tr(MTU exp S dS) +
(
qr − tr(MTU exp S)

)
dr,

d2E = −r tr(MTU exp S dS2) − 2 tr(MTU expS dS) dr + q dr2.

For S = 0, i.e., for the point U we get

dE = −r tr(MTUdS) +
(
qr − tr(MTU)

)
dr,

d2E = −r tr(MTUdS2) − 2 tr(MTUdS)dr + qdr2,

so dE = 0 if and only if
〈MTU, dST〉 = 0

for every skew-symmetric matrix dS, and

r = 1
q tr(MTU).

The first of these conditions says that MTU shall be orthogonal to all skew-
symmetric matrices, but as the symmetric and the skew-symmetric matrices
constitute orthogonal complementary subspaces of Rq2

, the conditions may
be expressed as

B = MTU is symmetric

and
r = 1

q tr B ≥ 0;
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and if dE = 0 then

d2E = −r tr(BdS2) + q dr2 = r tr(dSTBdS) + q dr2.

This quadratic form in dr and dSij , 1 ≤ i < j < q, (the entries above the
diagonal in dS) cannot be non-positive definite, so there can be no maximum
for E. On the other hand if B is positive definite, then d2E is also positive
definite, and A = rU is a minimum point.

We are now faced with the following problem:

Given a matrix MT, find an orthogonal matrix, U , such that

B = MTU is symmetric.

In order to find B and U we shall use the singular value decomposition
of MT: Any q × q-matrix MT can be decomposed as

MT = ΦΛΨT,

where Φ and Ψ are orthogonal matrices and Λ is a diagonal matrix, cf. [1].
Evidently,

MMT = ΨΛ2ΨT

and

MTM = ΦΛ2ΦT,

so the diagonal elements of Λ2, i.e., the squares of the diagonal elements of Λ,
are the eigenvalues of MMT and of MTM , and the column vectors of Φ resp. Ψ
are the corresponding eigenvectors of MTM resp. MMT. From this does not
follow that they should be computed that way however, but it does follow that
the diagonal elements λi, i = 1, 2, . . . , q, of Λ are determined apart from their
signs. Clearly we may—and we shall—suppose that they are non-negative and
arranged in non-increasing order: λq ≥ λq−1 ≥ · · · ≥ λ2 ≥ λ1 ≥ 0.

Let
ε = diag(εq, εq−1, . . . , ε2, ε1)

be a diagonal matrix with the diagonal elements {εq} all of which are ±1.
This is an orthogonal and symmetric matrix! There are evidently 2q different
such matrices, and we have

MT = ΦεΛεΨT = Φ(εΛ)(Ψε)T.

Now define
Bε = Φ(εΛ)ΦT,

and
Uε = ΨεΦT.

Here Uε is orthogonal as a product of three orthogonal matrices, Bε is sym-
metric, and

Bε = Φ(εΛ)(Ψε)T(Ψε)ΦT = MTUε,

and we have found 2q solutions to our problem. All the Uε are different and
if all the {λi} are also different and if λi > 0, then the Bε are also different.
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It is almost evident that there are no other solutions when the {λi} are
all different. The interested reader should be able to see what happens if this
is not the case, at least after reading Section 4.

If λ1 > 0, then Bε is positive definite for ε = {1, 1, . . . , 1, 1}, and thus
corresponds to a minimum point.

From
r = 1

q tr B ≥ 0

follows that not all of the 2q solutions (Bε, Uε) can be used for the solution of
our minimum problem. In order to find out if some non-definite solutions B
may really be relevant, we must investigate the quadratic form

tr(dSTB dS)

occurring in the expression for d2E. For simplicity, we write S instead of dS.
We have then

tr(STBS) = tr(ΦTSTBSΦ) = tr
(
(ΦTSTΦ)(ΦTBΦ)(ΦTSΦ)

)
= tr(S̄TDS̄),

where
S̄ = ΦTSΦ,

but
S̄T = ΦTSTΦ = −ΦTSΦ = −S̄,

so S̄ is also skew-symmetric, and the transformation

S → S̄ = ΦTSΦ

is an automorphism of the set of q× q skew-symmetric matrices and therefore
one of the two quadratic forms

tr(STBS) and tr(S̄TDS̄)

is definite if and only if the other is so, i.e., we may concentrate on the second
of them.

We have
tr(STDS) = tr(DSST) = − tr(DS2).

Because D is diagonal, only the diagonal entries of S2 play a role. S is pa-
rameterized by the q(q−1)/2 entries above the diagonal. Each diagonal entry
in S2 is minus the sum of the squares of q − 1 different from those q(q − 1)/2
entries, and each of these entries occurs exactly in two diagonal entries of S2.
The example q = 4 will make this clear:

tr

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎣

λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

⎤⎥⎥⎦
⎡⎢⎢⎣

0 s12 s13 s14

−s12 0 s23 s24

−s13 −s23 0 s34

−s14 −s24 −s34 0

⎤⎥⎥⎦
2
⎫⎪⎪⎪⎬⎪⎪⎪⎭
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= tr

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎣

λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

⎤⎥⎥⎦

×

⎡⎢⎢⎣
−s2

12−s2
23−s2

14 −s13s23−s14s24 s12s23−s14s34 s12s24+s13s34

−s13s23−s14s24 −s2
12−s2

23−s2
34 −s12s13−s24s34 s12s14+s23s34

−s12s23−s14s34 −s12s13−s24s34 −s2
13−s2

23−s2
34 s13s14−s23s24

−s12s24+s13s34 −s12s24+s13s34 −s13s14−s23s24 s2
14−s2

24−s2
34

⎤⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

= −(λ1+λ2)s
2
12−(λ1+λ3)s

2
13−(λ1+λ4)s

2
14

−(λ2+λ3)s
2
23−(λ2+λ4)s

2
24−(λ3+λ4)s

2
34.

It is not difficult to see that the general result is

− tr(STDS) =
∑

1≤i<j≤q

(λi + λj)s
2
ij ,

which evidently is strictly positive definite if and only if all the sums of pairs
of {λi} are positive, and this is the case 1) if all signs are + and 2) if the sign
for λ1 is − and all the others are +, so it seems that there will normally be
two minima.

Given a point x in Rq2

, a closed submanifold of Rq2

must contain at
least one point y such that ‖x − y‖ attains its minimum there, but the set of
similarity matrices rU such that r > 0 consists of two closed subsets: those for
which the determinant of U is 1, and those for which it is −1. These two sets
are differential manifolds with the common boundary consisting of the point 0.
Therefore a point x in Rq2

will normally have a point y+ and a point y− on
these two submanifolds, respectively, which minimizes the distance. The only
difficulty comes from the point 0, but the only point x, for which y+ and y−
coincide (in 0) is x = 0, i.e., the zero matrix.

In Section 4 we shall see an example which illustrates what may happen
if some of the eigenvalues of MTM coincide.

By substitution we find the minimum values of 2E:

min 2E = tr(MTM) − 2r tr B + r2 = tr(MTM) − tr2 B

q
.

If {λi} are the non-negative square roots of the eigenvalues of MTM , this
becomes

q∑
i=1

λ2
i − 1

q

( q∑
i=1

λi

)2

or
q∑

i=1

λ2
i − 1

q

( q∑
i=1

λi − 2λ1

)2

.
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But which of these minima is attained on the manifold consisting of the proper
similarities (those with detU = 1)?

For the first of the minima we have for all the eigenvalues of B

λi ≥ 0,

so detB ≥ 0, and for the second of them det B ≤ 0. But

B = MTU,

detB = detM detU,

and therefore if M is regular then the first minimum value is less than the
second one and corresponds to a proper similarity if and only if detM > 0,
and vice versa for the second minimum. If and only if detM = 0, the two
minimum values are equal.

In two dimensions, q = 2, everything simplifies radically. Every 2×2 matrix
M may be decomposed according to

M =

[
a b

c d

]
=

[
a+d
2 − c−b

2
c−b
2

a+d
2

]
+

[
a−d

2
c+b
2

c+b
2 −a−d

2

]
= A1 + A2.

Here we find

〈A1, A2〉 = tr(A1A
T
2 ) = a2−d2

4 + c2−b2

4 − c2−b2

4 − a2−d2

4 = 0,

A1A
T
1 =

(a + d

2

)2

+
(b − c

2

)2

= detA1 = 1
4‖M‖2 + 1

2 detM,

A2A
T
2 =

(a − d

2

)2

+
(b + c

2

)2

= − detA2 = 1
4‖M‖2 − 1

2 detM.

That is, A1 and A2 are similarity matrices, and A1 is orthogonal to A2 in the
Euclidean metric. We also see that A1 is a proper similarity matrix (detA1≥0),
every such matrix may be written in this form, A2 is an improper similarity
matrix (det A2 ≤ 0), and every such matrix may be written in this form.

Therefore we have for q = 2:

min
A is a proper

similarity matrix

‖M − A‖ =
√

1
4‖M‖2 − 1

2 detM for A =

[
a+d
2

b−c
2

c−b
2

a+d
2

]
,

and

min
A is an improper
similarity matrix

‖M − A‖ =
√

1
4‖M‖2 + 1

2 detM for A =

[
a−d

2
b+c
2

b+c
2

d−a
2

]
.

For q > 2, neither the proper nor the improper similarity matrices form
linear subspaces of Rq2

, so in these cases the problem to find the best Helmert
transformation is a non-linear one.
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3

After this double preparation, we should be able to attack the problem directly
with the hope of an easy victory.

The problem differs only from that solved in Section 1 therein that instead
of minimizing

2E(A) = tr(Y TY ) − 2 tr(XY TA) + tr(XXTAAT)

over all q × q matrices A, we shall minimize over all similarity matrices A.
Here we have already homogenized the problem by using the gravity center
of the Y -point set as coordinate origin and having translated the X-point set
such that the gravity centers of the two point sets coincide.

Now
A = rU, UTU = I,

so

AAT = r2;

2E′ = tr(Y Y T) − 2 tr(XY TA) + r2 tr(XXT),

but in Section 2 we have solved the minimum problem for

2E = tr(MTM) − 2 tr(MTA) + qr2.

Here, if we put

M =
q

tr(XXT)
Y XT,

then

2E′ =

(
tr(Y Y T) − q

tr(XXT)
tr(Y TY XTX)

)
+

tr(XXT)

q
2E,

where the first term does not depend on A and so we have reduced the problem
to that solved in Section 2 with the result

min 2E′ = tr(Y Y T) − r2 tr(XXT).

4

In order to achieve a better geometric understanding of the results of Section 2,
I shall give a few illustrating examples here.

First let q = 5, and M = I, the 5 × 5 unit matrix.
We want to find orthogonal matrices, U , such that the distance ‖M −U‖

is minimized, or, more generally, we will find those orthogonal matrices, U ,
such that

dE

dU
= 0,
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where

2E = ‖M − U‖2 = tr(MMT) − 2 tr(MUT) + tr(UUT) = 2(5 − tr U),

and then find the geometrical significance of these solutions.
In this case, MT = I and therefore U itself must be a symmetric matrix:

UT = U and B = U,

but
UUT = I,

so
U2 = I.

The eigenvalues of an orthogonal matrix are (real or complex) numbers λ
with |λ| = 1; from U2 = I follows

λ2 = 1,

so the eigenvalues of U must be ±1.
Such matrices U fall into six types:

U0, U1, U2, U3, U4, U5,

where the index is the number of negative eigenvalues −1, and so the dis-
tances di from M to Ui are

di =
√

10 − 2(5 − 2i) = 2
√

i or d = {0, 2, 2
√

2, 2
√

3, 4, 2
√

5}.

In these six cases the eigenvalues of the quadratic form tr(STBS) occurring
in the expression for d2E are respectively

0 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 strictly positive definite
2 2, 2, 2, 2, 2, 2, 0, 0, 0, 0 non-negative definite

2
√

2 2, 2, 2, 0, 0, 0, 0, 0, 0, −2 not definite

2
√

3 2, 0, 0, 0, 0, 0, 0, −2, −2, −2 not definite
4 0, 0, 0, 0, −2, −2, −2, −2, −2, −2 non-positive definite

2
√

5 −2, −2, −2, −2, −2, −2, −2, −2, −2, −2 strictly negative definite.

We see that 0 is the least distance from M = I to any rotation matrix, that 2 is
the least distance to any orthogonal matrix with determinant −1, that 4 is the
greatest distance to any rotation matrix, and that 2

√
5 is the greatest distance

to any orthogonal matrix—here one with determinant −1; the remaining two
cases do not correspond to local maxima or minima.

The matrices U0 and U5 are evidently uniquely determined

U0 =

⎡⎢⎢⎢⎢⎣
1

1
1

1
1

⎤⎥⎥⎥⎥⎦ , U5 =

⎡⎢⎢⎢⎢⎣
−1

−1
−1

−1
−1

⎤⎥⎥⎥⎥⎦ ,
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because for any orthogonal matrix W

WTU0W = U0, WTU5W = U5,

corresponding to the regularity of tr(STBS) in these cases.
In the remaining cases this form has four or six vanishing eigenvalues,

which seems to indicate a 4 resp. 6-dimensional manifold of solutions:
A matrix of type U1 has four eigenvalues equal to 1, and one equal to −1;

therefore it must represent a reflection with respect to a four-dimensional
linear subspace of R5, and any such reflection corresponds to a matrix of
type U1. There are as many four-dimensional linear subspaces of R5 as there
are directions in R5, i.e., four, and we see that the sphere with its center
at M = unit matrix ∈ R52

and radius 2 touches the manifold of orthogonal
matrices with determinant −1 in a four-sphere.

A matrix of type U2 with three eigenvalues equal to 1 and two equal
to −1 corresponds to a rotation which leaves all points of three-dimensional
linear subspace invariant and reflects all the points in the complementary two-
dimensional plane with respect to the origin. So the number of dimensions of
manifold in R25 of matrices of type U2 is the same as the dimension of the
manifold of planes in R5, i.e., six, etc.

The reader may convince himself that the situation does not change dras-
tically if we for M choose any orthogonal matrix instead of I.

Next we consider the case where det M = 0, or more specifically where
MTM has one vanishing eigenvalue.

Then tr B will be invariant with respect to a change of sign for the vanish-
ing eigenvalue, so two different similarity matrices will correspond to the same
minimum value—one for a rotation, one for an improper similarity matrix. In
this situation XY T has one vanishing eigenvalue, and this means that at least
one of the matrices X and Y is of rank q − 1, i.e., at least one of the two
point sets span an affine subspace of dimension q − 1 in Rq. It is clear that
in this case the Helmert transformation is only determined apart from the
orientation.

If MTM has more than one vanishing eigenvalue, then at least one of the
point sets span an affine subspace of dimension less than q − 1 and so the
determination of the transformation has an infinity of solutions, and corre-
spondingly, tr(STBS) has one or more vanishing eigenvalues.

5

After this short presentation of a theory for the Helmert transformation, we
will turn to the question of the practical formulas for the computation of the
parameters.

A given Helmert transformation may in infinitely many ways be repre-
sented as a parallel translation and a homogeneous similarity transformation
around a point, the ‘center’ of the transformation, according to which point
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is chosen to be the center, and if the translation is chosen to be performed
before or after the homogeneous similarity transformation. Here we shall sup-
pose that the translation is performed first and that the translation vector is
the vector from the center of gravity of the X-set to the center of gravity of
the Y -set, such that the center of the similarity transformation becomes the
common center of gravity for the two systems (after the translation) and that
we use coordinates with this center as origin, i.e., exactly as we have described
above. In this case, the coefficients of the translation will be mutually uncor-
related and uncorrelated with the entries of the similarity matrix. It should be
almost evident that this choice is optimal from the numerical point of view.

We have seen in the foregoing sections how the similarity matrix, A, can
be computed from the matrices Y XT and XXT, but this calculation depends
on the eigenvalue decomposition of (Y XT)TY XT, and it might be preferable
to have a simpler method based on successive approximations, which—even if
it does not converge in the general case—could be applied in normal geodetic
and photogrammetric practice, where the two point sets are almost—i.e., apart
from observation errors—similar.

As we have seen for two dimensions, the problem is not only linear but
almost trivial, we may concentrate on three dimensions, q = 3.

First we have to choose a starting value, A0, for our approximation process.
The most obvious candidate would be

M =
q

tr(XXT)
Y XT,

but this matrix is not in general approximatively a similarity matrix; a much
better choice is

A0 = Y XT(XXT)−1,

in fact if we have exactly
Y = AX

for A a similarity matrix, then we would have A0 = A, so under our assump-
tions A0 is equal to a similarity matrix apart from a slight perturbation caused
by observation errors. The price we have to pay for this better starting value
is that it restricts the method to cases where the matrix XXT is regular; we
do not regard this to be a serious restriction, however.

First step: Given a matrix A0 find one, A, in a neighborhood of A0 and
which is nearer to a similarity matrix than A0 is:

Write
A = A0(I + ε),

then
ATA = (I + εT)AT

0 A0(I + ε) = aI,

where a shall be a scalar multiplied by the unit matrix.
This can, apart from second order expressions in the matrix ε, be written as

a(I − ε − εT) = AT
0 A0.
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Choose

a =
tr(AT

0 A0)

q
,

and

ε = −1

2

AT
0 A0 − a

a
,

then ε is symmetric and tr ε = 0 and A = A0(I + ε) is apart from an error of
second order (in ε), a similarity matrix.

We will iterate this step until we have a matrix, A, which is a similarity
matrix within the calculation precision.

Second step: Now we have a similarity matrix, A, which is ‘near to’ A0, and
in many cases this may be sufficient, but here we wish to find that similarity
matrix, A2, which is the best possible in the metric we have chosen.

We know that A2 should satisfy

MTA symmetric,

or
MTA − ATM = 0.

We shall find A2 from A1 by an iterative process along S, the manifold of
similarity matrices.

We look for an approximation

A2 = A1(I + S),

where S is skew-symmetric, i.e., I + S is an infinitesimal orthogonal matrix.
We find

MTA1(I + S) − (I − S)AT
1 M = 0

or
(MTA1)S + S(MTA1)

T = −MTA1 + (MTA1)
T,

or writing
C = MTA1,

we have
CS + SCT = −C + CT.

By writing this in the matrix entries we find for q = 3 the following equation:

(tr C − CT)

⎡⎣s23

s31

s12

⎤⎦ = −

⎡⎣c23 − c32

c31 − c13

c12 − c21

⎤⎦ ,

or (
tr(MTA1) − AT

1 M
)⎡⎣s23

s31

s12

⎤⎦ = −

⎡⎣c23 − c32

c31 − c13

c12 − c21

⎤⎦ .

Now the manifold of similarity matrices is not linear, so by taking this linear
step we may have left the manifold but we can get back into it by performing
the first step again. By performing alternatively step 2 and step 1, we should
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‘normally’ be able to arrive at a solution A2, which in the precision of the
calculation satisfies

1. A2 is a similarity matrix;
2. MTA2 is symmetric.

Then we only have to adjust the factor of multiplication putting

A = rA2,

where

r =
tr(MTA2)

tr(AT
2 A2)

.

It would perhaps be simpler in the approximation process to use

MT = XY T

and, accordingly

r =
q

tr(XXT)

tr(XY TA2)

tr(AT
2 A2)

.

This successive approximation method has been implemented on the computer
of the Danish Geodetic Institute, and its precision seems to be optimal among
approximation methods using only a priori data, i.e., data which do not use
residuals computed in the foregoing steps.

A sharper result can be attained using the following idea:
First use the approximation method described above with the resulting

similarity matrix A. Next compute the residual matrix

R = Y − AX.

Then
C = XY TA = XRTA + XXTATA = XRTA + r2XXT.

Here the second term is symmetric and the first one is relatively small; there-
fore in the equation

(trC − CT)

⎡⎣s23

s31

s12

⎤⎦ = −

⎡⎣c23 − c32

c31 − c13

c12 − c21

⎤⎦ ,

the right number can profitably be calculated from the first term, and the
resulting matrix S may then be used as a last correction to A.

It should perhaps be mentioned that in our implementations of the method
we always use the symmetrical left-hand matrix

trC − 1
2 (C + CT)

instead of
tr(C − CT)

in order to have a simpler program. The value of A should be the same in the
limit.
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Letter on a Problem in Collocation Theory

To the happy few.

Under Remark 4.1 in his Admont-lectures August 1986 F. Sansò mentions
what I for years have looked upon as the main problem in collocation theory:

We know that the potential we want to find is an element of some Hilbert-
space Hk0

(which I call H0 in the following) but for technical reasons we use
collocation in a space Hk (which I call H) based on a Bjerhammar sphere in
which the potential almost certainly not is an element, so in the topology of H
(which is stronger than that of H0) our solution can not converge, even if we
have information enough. The problem as I see it is not: does the collocation
method (under certain circumstances) converge, but: in which topology does
it converge.

After the summer school in Admont I saw that now I had to solve this
problem. I believed it was a difficult problem, and therefore I was happy when
I had constructed a rather complicated proof for the result I had found. But
I found an error in the proof, and I had to cut in the stuff. After several
frustrating iterations of this process, I was left with a small nucleus of one or
two naive ideas. So fearing that the result should totally disappear between my
fingers, I should like to communicate the rest of it to a few of my colleagues,
who are supposed to be interested in this problem and to read a relevant
mathematical text so as to see some of its implications to their field.

1

1. Let H0 be a Hilbert-space of harmonic functions based on a region Ω0⊂R3.

[This means:

(a) all elements of H0 are harmonic in Ω,

(b) all functions which are harmonic in a neighbourhood of Ω̄ are elements
of H0.]
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2. Let
{ fn | n = 1, 2, 3, . . .}

be a sequence of bounded linear functionals on H0.
3. The fn are linearly independent (i.e. { fn | n = 1, 2, 3, . . . , N } are linearly

independent for every N).
4. The sequence {fn} is a fundamental subset of H∗ (i.e. from φ ∈ H0 and

fnφ = 0 for n = 1, 2, 3, . . . follows φ = 0).
5. Let

{Pn | n = 1, 2, 3, . . .}
be a sequence of bounded linear operators

Pn : H0 → H0,

such that for every n and every φ ∈ H0

fiPnφ = fiφ for i = 1, 2, 3, . . . , n. (1)

From (part of) these suppositions we shall now prove that Pn converges
weakly to the identity operator for n → ∞.

This means that for all bounded linear functionals g on H0 and all φ ∈ H0

we have
lim

n→∞ gPnφ − gφ = 0. (2)

But from Lemma III.1.31 in [1] follows that it is enough to prove (2) for all g
of a fundamental subset of H∗ and all φ ∈ H , so (2) follows from 4 and (1).

2

6. Let H be a Hilbert space of harmonic functions based on a region Ω ⊂ R3,
such that

7. Ω0 ⊂ Ω;
8. H ⊂ H0 (if Ω0 ⊂ Ω this follows from 7).

Then it follows from 6 that for φ ∈ H , the restriction of φ to Ω0 is an
element of H0.

We suppose that

9. if φ ∈ H and ψ ∈ H have the same restriction to Ω0, then φ = ψ;
10. the set of all restrictions of elements of H to Ω0 is dense in H0. (Runge’s

theorem!)

Then it follows from 3 and 10 that for all N , { fn | n = 1, 2, 3, . . . , N }
are linearly independent also as linear functionals on H . Therefore we can for
every n by using collocation in H for the n first fi and with fiφ, i = 1, 2,
3, . . . , n, as ‘observations’ find Pn satisfying the conditions in 5.
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3

If the sequence {Pn} is found by collocation not in H but in H0, then—
naturally—the proof in Section 2 will still be valid, and it is well-known (but
shall not be proved here) that in that case the convergence is even strong, but
it does not seem to be so in the general case (?).

In a special case, however, we can prove that the convergence is strong:

11. Let H1 be a Hilbert-space such that

H ⊂ H1 ⊂ H0,

and such that the injection I of H1 in H0 is compact (this will for instance
be true if H1 is a Hilbert-space based on a region Ω1 and Ω̄0 ⊂ Ω1).

12. φ ∈ H1 (and not only in H0).

Then H1 plays the role of H0 and {Pn} converges weakly in H1 but as a
compact operator ‘transforms weak convergence into strong convergence,’ we
find that then the convergence in H0 becomes strong:

Pnφ converges weakly in H1

therefore
IPnφ converges strongly in H0.
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Approximation to The Earth Potential From
Discrete Measurements

Introduction

Collocation was originally thought of as part of the mathematical foundation
of physical geodesy, and the extent of the practical use of the technique of
collocation has astonished me as much as it has disappointed me, that a
solid and exact foundation of physical geodesy has advanced so little recently
with—or (why not?) without—the theory of collocation.

My “Contribution” was written during few hectic and enthusiastic months
in 1968 with all the weaknesses which follows—and perhaps some naive charm
which also can follow from such a situation.

This paper written very slowly by an old sceptic man is meant as an
essential complement to the “Contribution.”

The main task of physical geodesy is from a reasonable set of observations
at discrete points and along discrete orbits to calculate an approximation to
the gravity potential. The classical approach is to interpolate the values of
some linear functional of the potential to all points on a surface surrounding
all the masses of the Earth and then apply the methods of boundary value
problems, whereas the collocation method goes directly from the discrete ob-
servations without using interpolation.

The argumentations of the “Contribution” are such to induce the reader
to believe, that for certain given types of observations it is possible for a given
precision to choose such a set of those observations such that the potential
can be calculated—according to the given precision—from the results of exact
measurements of the observations—perhaps under certain conditions.

Several geodesists—among them myself—have felt the need of sufficient
conditions and a specification of the calculation procedure in order to reach
such a precision, and we have also seen attempts to solve this problem, pop-
ularly called “the convergence problem” for collocation, but—so far as I can
see—without giving a satisfying answer.

Twelve years ago I wrote a paper to the Hotine symposium in Assisi 1978,
where I postulated essentially the same result as in this paper, but, alas, in
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the proof there was a non-trivial lacuna, which I did not observe before I three
years ago made a proof using another mathematical method.

In the following presentation of the proof I have tried to treat the mathe-
matical hard-core of it rather generally in order to make the result easily adap-
tive for problems corresponding to other boundary value problems as those
regarded here. A generalization to under-determined and/or over-determined
b.v.p. should be almost a work of routine.

My best thanks to Else Udbye Poulsen for “technical assistance” and
patience—during many years—and to Jørgen Eeg and Fernando Sansò for
fruitful discussions and critique.

1. Smoothing

We have two open regions Ω0 and Ω1 in an Euclidean space, such that

Ω0 ⊂ Ω1.

Ω1 may be that part of R3 outside a Bjerhammar sphere and Ω0 the part
outside the surface of the Earth.

If H(Ω0) and H(Ω1) are the sets of harmonic regular functions on Ω0

and Ω1, we have evidently

H(Ω1) ⊂ H(Ω0).

Now let H0 and H1 be acceptable Hilbert spaces of harmonic functions such
that

H0 ⊂ H(Ω0) with norm ‖ · ‖0

and
H1 ⊂ H(Ω1) with norm ‖ · ‖1.

The definition of acceptable Hilbert spaces in an open set Ω is given in
Section 2.

Supposing that the closure of Ω0 is a subset of Ω1 and that if Ω is any open
region, such that the closure of Ω0 (Ω1) is contained in Ω then H(Ω) ⊂ H0

(H(Ω) ⊂ H1), it is evident that

H1 ⊂ H0.

It is clear that not all elements of H0 are (restrictions of) elements of H1,
but we shall assume that elements of H1 are dense in H0 (Runge’s theorem!).

In this set-up we shall study the problem of approximation of elements
of H0 by elements of H1.

That H1 is dense in H0 means that for every φ ∈ H0 and every r > 0 there
exists an element ψ ∈ H1 such that

‖φ − ψ‖0 ≤ r.

We can now define our approximation problem as follows:
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Given φ ∈ H0 and r > 0, find elements ψ ∈ H1 and δ ∈ H0 such that

δ + ψ = φ (1)

‖δ‖0 ≤ r, (2)

and such that ‖ψ‖1 is as small as possible.

First we must prove that this problem has a solution and that the solution
is unique.

The problem may be formulated as the problem of minimizing the norm
‖ψ‖1 under the side condition

‖φ − ψ‖0 ≤ r,

therefore it seems reasonable to study the problem by the method of Legen-
dre’s multiplier, namely: find ψ ∈ H1 such that

‖δ‖2
0 + λ‖ψ‖2

1 (3)

attains its minimum, where δ = φ − ψ. (It would have been more natural to
place the factor λ before ‖δ‖2

0 instead of before ‖ψ‖2
1, but it will be important

in the following, that it is as in (3).)
For every λ > 0 the set of pairs{

(δ, ψ)
∣∣ δ ∈ H0, ψ ∈ H1

}
with the norm

(δ, ψ)
(
‖δ‖2

0 + λ‖ψ‖2
1

)1/2
(4)

constitutes a Hilbert space H0 ⊕λ H1.
Here it is important to observe that the equation

δ + ψ = φ

in this connection does not mean

(δ, 0) + (0, ψ) = (φ, 0).

(This equation has for a given φ only the solution δ = φ; ψ = 0!)
But (1) means

δ + R(ψ) = φ,

where
R(ψ) : H1 �−→ H0

is the restriction of ψ as a harmonic function on Ω1 to Ω0, such that for
x ∈ Ω0, (

R(ψ)
)
(x) = ψ(x).
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Now R is a continuous operator from H1 into H0 (this will be proved in
Section 2), therefore the mapping

(δ, ψ) �−→ (δ + Rψ, 0)

is continuous and so the set
δ + Rψ = φ (5)

for φ given is a closed affine subspace of H0 ⊕λ H1 parallel to the linear
subspace

δ + Rψ = 0;

and from this follows that the orthogonal projection with respect to the
norm (4) of the point (0, 0) into the subspace (5) exists, and this projec-
tion is evidently the unique solution of the minimum problem in Legendre’s
multiplier form; and we see that the expression

K(λ, φ) = lim
δ+ψ=φ

(
‖δ‖2

0 + λ‖ψ‖2
1

)1/2
(6)

has a meaning for all φ ∈ H0 and all λ > 0.
(We shall again where we do not work in the space H0⊕λ H1 use the same

symbol for ψ ∈ H1 and the restriction Rψ ∈ H0.)
In order to study the behaviour of K(λ, φ) as a function of λ for fixed

values of φ, it is best to concentrate on the square of K:

f(λ) =
(
K(λ, φ)

)2
= min

δ+ψ=φ

(
‖δ‖2

0 + λ‖ψ‖2
1

)
, λ > 0.

Clearly f is positive, so the curve y = f(λ) will remain in the first quadrant
in the (λ, y) coordinate system.

Now let µ > 0 be any value of λ, then

f(µ) = min
δ+ψ=φ

(
‖δ‖2

0 + µ‖ψ‖2
1

)
= ‖δµ‖2

0 + λ‖ψµ‖2
1

and
yλ = ‖δµ‖2

0 + λ‖ψµ‖2
1 (7)

is a straight line, such that

yλ ≥ f(λ) for all λ > 0.

(This follows from the fact that δµ + ψµ = φ and the definition of f(λ) as
minimum.)

That is, (7) is the equation for a tangent to our curve and the curve must
be concave (i.e. y = −f(λ) is convex). The curve must also be increasing
as its tangents at all points have positive inclination (= ‖ψµ‖1). Clearly the
tangent (7) meets the y-axis at the point (0, ‖δµ‖2

0), and it is also clear from
these results that

‖δλ‖0 is increasing
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and
‖ψλ‖1 is decreasing,

but this is not surprising!
As f(λ) is concave it must also be continuous at least for λ > 0, but how

is its behaviour when λ → ∞ and when λ → 0.
First it is evident that

f(λ) ≤ ‖φ‖2
0,

so f must as a bounded increasing function have a limit as λ → ∞, and it is
easy to prove that, in fact

lim
λ→∞

f(λ) = ‖φ‖2
0.

Analogously as f(λ) ≥ 0 and decreasing when λ decreases to 0, it must have
a limit ≥ 0 for λ → 0.

That
lim
λ→0

f(λ) = 0

follows from the fact that H1 is dense in H0: for given ε > 0 and φ ∈ H0, we
can choose ψ ∈ H1 such that

‖φ − ψ‖2
0 < ε2

2

and λ > 0 such that
λ‖ψ‖2

1 < ε2

2 ,

then
‖φ − ψ‖2

0 + λ‖φ‖2
1 < ε2

and a fortiori
f(λ) < ε2;

i.e.
lim
λ→0

f(λ) = 0

(as evidently f(0) = 0, we have now proved that f(λ) is continuous in the
closed interval λ ≥ 0).

Now we also have
lim
λ→0

λ‖ψλ‖2
1 = 0 (8)

and
lim
λ→0

‖φ − ψλ‖2
0 = lim

λ→0
‖δλ‖2

0 = 0;

it is for λ → 0, ψλ converges in the space H0 to φ even if φ is not in H1 and
ψλ therefore does not converge in H1.

Besides (8) we shall later use

λ‖ψλ‖2
1 ≤ f(λ) ≤ ‖φ‖2

0. (9)
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2. A Lemma

The norm ‖·‖ for a Hilbert space (or more generally a Banach space) H is said
to be an acceptable norm with respect to an open region Ω and the space H
will be called acceptable if

1. for every open point set S which contains the closure of Ω every function
which is harmonic in S is an element of H , i.e. the norm ‖ · ‖ is defined
for all such functions,

2. for every point x ∈ Ω the linear functional evaluation at x is bounded,
i.e. there exists a constant cx such that for every φ ∈ H

|φ(x)| ≤ cx‖φ‖.

It is almost trivial but shall nevertheless be proved here that:
In a Hilbert (or Banach) space with acceptable norm with respect to Ω, any

sequence {φi} of elements, which converge strongly to an element φ, converges
point-wise to φ in Ω:

For x ∈ Ω ∣∣φi(x) − φ(x)
∣∣ ≤ cx‖φi − φ‖.

We shall now prove our main lemma, namely:

If Ω0 and Ω1 are open regions such that

Ω0 ⊂ Ω1; Ω0 is the closure of Ω0

and ‖ ·‖i are acceptable norms for Hilbert (or Banach) spaces Hi with
respect to

Ωi, i = 0, 1

then there exists a positive constant c such that for all φ ∈ H1,

‖φ‖0 ≤ c‖φ‖1.

For the proof we shall use the not quite elementary “closed graph theorem,”
which is well-known in functional analysis, and says that

A closed linear operator

A : B1 �→ B0, B1 and B0 are Banach spaces

which is defined overall in B1 is bounded.

We apply this theorem on the operator R:

R : H1 �→ H0 : Rφ(x) = φ(x) for φ ∈ H1 and x ∈ Ω0.

Clearly R is defined for all φ ∈ H1 and R is linear. It follows from the
usual definition of closed-ness of linear operators, that R is closed if and only
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if for every sequence {φj | j = 1, 2, . . .} of elements of H1 which converges
strongly in H1 and for which the sequence

{Rφj | j = 1, 2, . . .}

converges strongly in H0

lim
j→∞

Rφj =
(

lim
j→∞

φj

)
, where (·) denotes strong limits!

All we need is to prove is that this condition is satisfied in our case, and
also this is almost trivial:

Let (
lim

j→∞
φj

)
= φ ∈ H1,

then from what we proved above

lim
j→∞

φj(x) = φ(x)

for all x ∈ Ω1, and therefore also for all x ∈ Ω0, that is

lim
j→∞

Rφj(x) = Rφ(x) for all x ∈ Ω0.

Then let (
lim

j→∞
Rφj

)
= ψ ∈ H0

then
lim

j→∞
Rφj(x) = ψ(x) for all x ∈ Ω0

and therefore ψ = Rφ, and the lemma is proved.

3. Smoothing collocation in the continuous case

From now on we suppose that the boundary of Ω0 is a closed smooth surface
and that

B : H1 → L2(ω)

is a bounded linear operator defined on H1 with functions f on ω, such that∫
ω

f2 dω

is finite. Further we suppose that the mapping B is injective, i.e. if for φ ∈ H1

we have Bφ = 0, then φ = 0.
In this case

‖Bφ‖L2
=

(∫
ω

(
Bφ

)2
dω

)1/2

is a Hilbert norm and the set φ ∈ H1 with this norm constitutes a pre-Hilbert
space.
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Let HB be the completion of H1 with respect to this norm. Then HB is
a Hilbert space. At least in some case ‖Bφ‖L2

is an acceptable norm with
respect to Ω0. This is the case if B maps harmonic functions in H1 to their
values on ω, and also when Ω is the set of points outside the surface ω and(

Bφ
)
x

=
(∂φ

∂n

)
x

for all x ∈ ω,

and many other examples can be given.
In that case, i.e., if ‖Bφ‖L2

is acceptable with respect to Ω0, we can use
the theory of Section 1 putting

‖φ‖0 = ‖Bφ‖L2
,

but the problem we here have solved is in fact a continuous case of smoothing
collocation (collocation with hybrid norm) and we can—if we use a space H1,
for which we know the reproducing kernel—use the same abstract formulas
for the computation as in the discrete and finite case; the normal equations
will in the continuous case be integral equations and not a finite set of linear
algebraic equations. This is well-known but until now it has only been a belief,
that it should be possible to achieve an arbitrarily good approximation to the
potential by elements of H1 in that way. Here we have a sufficient condition
and a solid definition of such an approximation.

4. . . .

In this section I want to prove that we—under the suppositions of the foregoing
sections—for every wanted precision can find sufficiently many sufficiently well
distributed points on ω and a form for smoothing collocation (in the discrete
case) such that the calculated harmonic function in Ω1 approximates the
“true” potential according to the wanted precision in Ω0.

It is on purpose that I do not use the word “observation” or “measure-
ment,” and it is for two reasons:

First the knowledge of the value of Bφ at the selected points must be
exact. The influence of measuring errors is—as well as that of calculation
errors—outside the scope of this paper; but it deserves a paper of its own!

Second I feel that in common language the sentence “the value of Bφ at
the point x′ presupposes that the functional” evaluating of Bφ at x′ depends
locally on φ, of its behaviour in a small neighbourhood of x etc. As such
a locality seems to be inessential for the theory of this paper I can spare
the reader—and myself—an unnecessary definition by not using the work
observation.

The central quantity in this paper until now is ‖ · ‖0, therefore it is rea-
sonable to find an approximation to ‖ · ‖0 from the values of Bφ at a finite
number of points on ω—or more concretely—to look for an estimate for
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0 −

∑
i

wi

(
Bφ(xi)

)2∣∣∣∣
where φ is a function harmonic in Ω0,

{ xi | i = 1, 2, . . . , N }

are N points on Ω,
{wi | i = 1, 2, . . . , N }

are some positive weights to be applied on the squares of the evaluation of Bφ
at those points.

But here we meet the difficulty that such an estimate does not exist for
φ ∈ H0. This has to do with another fact, namely that evaluation in a point
on φ of a function (in our case Bφ) of L2 is not a bounded functional.

The consequence of this seems to be that we cannot find the potential φ
without supposing that it belongs to a space with a stronger topology than
that of H0. As a reasonable example I have selected a space, which I call B
(it is a Banach space and not a Hilbert space).

It is defined as follows:

(a) First we define the spaces Lα for 0 < α ≤ 1 of continuous functions on ω
which satisfy the Lipschitz condition

|f(x) − f(y)| ≤ ktα for all x, y ∈ ω, (10)

where t is the distance between the points x and y on ω. (Distances on ω
are measured along (the shortest) geodesic connecting the points.)
Let kα be the smallest value of k for which (10) is satisfied for a given α,
then the norm ‖f‖α, of f is defined by

‖f‖2
α = max |f |2 + k2

α,

(As ω is compact and f continuous max |f |2 exists.)
Clearly with this norm Lα is a Banach space.

(b) The norm
‖ · ‖Bα

= ‖B · ‖α

is defined for all φ ∈ H1, and the set of φ ∈ H1 constitutes a pre-Banach
space with norm ‖ · ‖Bα

, its completion is the Banach space called Bα.

We want to prove that the norm ‖ · ‖Bα
is an acceptable one.

It is evident that point 1) of the definition in Section 2 is satisfied, so we
have only to prove that 2) also is so.

Let φ ∈ Bα, then

max
x∈ω

(
Bφ(x)

)2
exists and

max
x∈ω

(
Bφ(x)

)2 ≤ ‖φ‖2
Bα
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but

‖φ‖2
0 =

∫
ω

(
Bφ

)2
dx ≤ area(ω)max

x∈ω

(
Bφ(x)

)2 ≤ ‖φ‖2
Bα

area(ω),

so if for every x ∈ Ω0

|φ(x)|
‖φ‖0

is finite, so is
|φ(x)|
‖φ‖Bα

;

i.e. evaluation of φ at any point x ∈ Ω0 is also a bounded functional on Bα, and
we have proved that Bα is an acceptable Banach space of harmonic functions
in Ω0.

From this fact and from the lemma of Section 2 then follows the existence
of a constant Kα such that for every element ψ ∈ H1

‖ψ‖Bα
≤ Kα‖ψ‖1.

Here we shall use one more definition: By a centered tesselation of ω with
radius ρ > 0, we shall mean a finite set of pairs

{ωi, xi }, i = 1, 2, . . . , N ;

where
ωi ⊂ ω, i = 1, 2, . . . , N,

are disjoint open subsets of ω such that every point of ω is in the closure of
(at least) one such subset ωi, and the “centers”

xi ∈ ωi, i = 1, 2, . . . , N .

If
ρi = sup

x∈ωi

dist(x, xi),

where dist(x, xi) means the distance between x and xi, then the “radius” ρ is
defined as

ρ = max
i=1,2,...,N

ρi.

After these preparations we can prove the following estimate:
If

{ xi | i = 1, 2, . . . , N }
are the centres of a centered tesselation on ω and the weights {wi } are defined
as

wi = area(ωi)

then for every φ ∈ Bα we have∣∣∣∣‖φ‖2
0 −

N∑
i=1

wi

(
Bφ(xi)

)2∣∣∣∣ ≤ ρα‖φ‖2
Bα

area(ω). (11)
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Proof∣∣∣∣‖φ‖2
0 −

N∑
i=1

wi

(
Bφ(xi)

)2∣∣∣∣ =

∣∣∣∣∣
N∑

i=1

( ∫
ωi

(
Bφ(x)

)2
dx − area(ωi)

(
Bφ(xi)

)2)∣∣∣∣∣
≤

N∑
i=1

∫
ωi

((
Bφ(x)

)2− (
Bφ(xi)

)2)
dx

=

N∑
i=1

∫
ωi

(
Bφ(x) + Bφ(xi)

)(
Bφ(x) − Bφ(xi)

)
dx

≤
N∑

i=1

area(ωi) · 2 max
∣∣Bφ(x)

∣∣Kαρα

= 2 area(ω)ρα max |Bφ|Kα

≤ area(ω)ρα
(
max |Bφ|2 + K2

α

)
= area(ω)ρα‖φ‖2

Bα
.

For any function φ which is harmonic in an open set containing the closure
of Ω0 we shall define ‖φ‖N by

‖φ‖2
N =

∑
ωi

wi

(
Bφ(xi)

)2
when the pairs

{ xi, wi }, i = 1, 2, . . . , N , (12)

are given. If the pairs (12) are related to a centered tesselation with radius ρ
we shall write

‖φ‖ρ = ‖φ‖N .

‖φ‖N is not a norm, only a semi-norm, but it is easy to see that the approxi-
mation theory from the first sections works unchanged if it is applied to ‖ · ‖1

and ‖ · ‖N instead of ‖ · ‖1 and ‖ · ‖0, and that it becomes the theory for
smoothing discrete collocation.

The fact that ‖φ‖ρ for φ ∈ Bα can be looked upon as an approximation
to ‖φ‖0—as follows from the theorem above—makes it tempting to try to
prove that smoothing discrete collocation can be used as an approximation
to smoothing continuous collocations; and this is the idea we shall take up in
the following.

The central expression in Section 1

K(λ, φ) = lim
δ+ψ=φ

(
‖δ‖2

0 + λ‖ψ‖2
1

)1/2
,

or, when minimizing harmonic functions δλ and ψλ are substituted:

K(λ, φ) =
(
‖δλ‖2

0 + λ‖ψλ‖2
1

)1/2
. (13)
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We will write the expression corresponding to a centered tesselation with
radius ρ:

Kρ(λ, φ) =
(
‖δρλ‖2

ρ + λ‖ψδλ‖2
1

)1/2
. (14)

Using (11):∣∣‖δ‖2
0 − ‖δ‖2

ρ

∣∣ =
∣∣‖φ − ψ‖2

0 − ‖φ − ψ‖2
ρ

∣∣ ≤ area(ω)ρα‖φ − ψ‖2
Bα

.

But as

‖φ − ψ‖Bα
≤ ‖φ‖Bα

+ ‖ψ‖Bα

‖φ − ψ‖2
Bα

≤ 2
(
‖φ‖2

Bα
+ ‖ψ‖2

Bα

)
and, as we saw above, that

‖ψ‖Bα
≤ Kα‖ψ‖1,

we have∣∣‖δ‖2
0 − ‖δ‖2

ρ

∣∣ ≤ 2 area(ω)ρα
(
‖φ‖2

Bα
+ K2

α‖ψ‖2
1

)
= ρα(A + B‖ψ‖2

1

)
;

where
A = 2 area(ω)‖φ‖2

Bα

and
B = 2 area(ω)K2

α.

We want to find for any given ε > 0, λε and ρε such that

‖φ − ψρελε
‖2
0 ≤ ε. (15)

This is accomplished in three steps:

1. Find λε such that (
K(λε, φ)

)2 ≤ ε
3 .

2. Find ρε such that for any centered tesselation with radius ρε∣∣(Kρ(λε, φ)
)2 − (

K(λε, φ)
)2∣∣ ≤ ε

3 .

3.
∣∣‖φ − ψρελε

‖2
0 − ‖φ − ψρελε

‖2
ρ

∣∣ ≤ ε
3 .

Point 1) is already proved in the first sections. When point 2) is proved it
follows that (

Kρ(λε, φ)
)2 ≤ 2ε

3

and from this follows
‖φ − ψρελε

‖2
ρ ≤ 2ε

3 . (16)

Point 3) will be proved together with 2), and then from (16) and point 3)
follows (15). So we have only to prove 2) and 3).

We have(
K(λ, φ)

)2 ≤ ‖δρλ‖2
0 + λ‖ψρλ‖2

1 = ‖δρλ‖2
0 − ‖δρλ‖2

ρ + ‖δρλ‖2
ρ + λ‖ψρλ‖2

1

≤
∣∣‖δρλ‖2

0 − ‖δρλ‖2
ρ

∣∣+ (
Kρ(λ, φ)

)2
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and(
Kρ(λ, φ)

)2 ≤ ‖δλ‖2
ρ + λ‖ψλ‖2

1 = ‖δλ‖2
ρ − ‖δλ‖2

0 + ‖δλ‖2
0 + λ‖ψλ‖2

1

≤
∣∣‖δλ‖2

0 − ‖δλ‖2
ρ

∣∣+ (
K(λ, φ)

)2
or (

K(λ, φ)
)2 − (

Kρ(λ, φ)
)2 ≤

∣∣‖δρλ‖2
0 − ‖δρλ‖2

ρ

∣∣ ≤ ρα
(
A + B‖ψρλ‖2

1

)
(
Kρ(λ, φ)

)2 − (
K(λ, φ)

)2 ≤
∣∣‖δλ‖2

0 − ‖δλ‖2
ρ

∣∣ ≤ ρα
(
A + B‖ψλ‖2

1

)
that is ∣∣(K(λ, φ)

)2 − (
Kρ(λ, φ)

)2∣∣ ≤ ε
3

if both
ρα
(
A + B‖ψρλ‖2

1

)
≤ ε

3 (17)

and
ρα
(
A + B‖ψλ‖2

1

)
≤ ε

3 ; (18)

but in that case we also have∣∣‖δρλ‖2
0 − ‖δρλ‖2

0

∣∣ ≤ ε
3 ,

so we only have to prove that given λ > 0 it is possible to chose ρ such that
(17) and (18) are satisfied.

From (9)
‖ψλ‖2

1 ≤ 1
λ‖φ‖

2
0,

so (18) becomes
ρα
(
A + 1

λB‖φ‖2
0

)
≤ ε

3 ,

and analogously (17) becomes

ρα
(
A + 1

λB‖φ‖2
ρ

)
≤ ε

3 .

Now we have
‖φ‖2

0 ≤ ‖φ‖2
Bα

area(ω),

and also
‖φ‖2

ρ ≤ ‖φ‖2
Bα

area(ω),

so defining
C = B‖φ‖2

Bα
area(ω),

we see that the condition is

ρα
(
A + 1

λC
)
≤ ε

3 ,

where A and C are independent of ρ and λ, and so we in fact can find ρα as
postulated in points 2) and 3), as λ > 0 and 0 < α ≤ 1; and we have thus
proved that we can achieve any prescribed degree of approximation by using
exact “observations” and smoothing collocation, but for the case λ = 0 i.e.
non-smoothing collocation the method of proof breaks down.
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Conclusion

I shall not try to draw the consequences of the result to which we have arrived,
but a few remarks may be helpful.

1. I think it is necessary to use smoothing collocation in order to get conver-
gence such that λ, the parameter of smoothing, becomes small when ρ,
the radius of the tesselation becomes small. This has to do with the
“Lelgemann-effect” (first pointed out by Lelgemann in his dissertation),
namely the fact that the value of the functional (used by the collocation)
on the potential solution of the collocation behaves rather exotically be-
tween the collocation points. It seems to be so that for non-smoothing
collocation the B-norm is not necessarily bounded for ρ → 0. By using
the smoothing technique described here this effect is kept under control.

2. The weights of the observations are here determined such that the “density
of weights” is constant. It is easy to see that it is enough that there exist
two positive constants a and b such that for the density δ we have overall

a ≤ δ ≤ b.

3. In the proof I have supposed that the potential φ, which we want to find,
is a member of Banach space B such that for all ψ ∈ B, B(ψ) satisfies
a Lipschitz condition on ω. I have recently found that continuity of Bψ
on ω is sufficient, but the proof is a little more difficult. In any case it
seems reasonable that B must be so that for all ψ ∈ B the value of B(ψ)ω

at all points of ω is a continuous functional on B, in fact I believe that
this condition is necessary. And this is a thing which makes the treatment
of real observations (observations with errors) more complicated, because
unprecise observation results will not combine to continuous function on ω
in the limit.

There are still many open questions in collocation theory, but I believe
that with the ideas of this paper, which will be my last paper on collocation,
it will be possible to create a solid foundation of physical geodesy. It is my
hope that a few of my colleagues will understand these ideas, so I should be
glad to answer questions—I can still write letters!

Bibliographical Notes

The “closed graph theorem” can be found in any book on functional analysis
e.g. [2]. This theorem is essential for the proof, and it is what is needed to fill
the lacuna in my Assisi paper [3].

Theoretically—but only theoretically—this paper can be read by readers
without any knowledge of collocation, because I have used formulas or any
other results from collocation theory. A good introduction to this is found
in [4].
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It is important to point out that I here have looked upon collocation
under the analytical aspect. The fundamental treatise on collocation under
the statistical aspect is [5]. I think the time has come where we should find
out if collocation under the two different aspects is the same thing expressed
in different languages.

In this paper I have used methods and symbols borrowed from the so-called
K-method in the theory of interpolating spaces, see [1].
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28

An Old Procedure for Solving the Relative
Orientation in Photogrammetry

Abstract

We describe the problem of relative orientation in terms of homogeneous co-
ordinates concluding in a least squares problem in the observed image co-
ordinates. The solution determines a rotational matrix for each image; these
rotational matrices bring the images back to the normal position. The explicit
formula for the rotational matrices is derived using properties of ‘nearly’ or-
thogonal matrices. The procedure is augmented by a special preliminary iter-
ation step in order to cope with large rotations.

The method is described through a complete Pascal program.

1. Introduction

The problem of relative orientation is constantly subject to investigation. For
some years we have been using a procedure which apparently is not well
known, so we have decided to publish ideas originating from the early fifties
when one of the authors finished his Master’s thesis on photogrammetry. As
so often before, the really good ideas emerge shortly afterwards. It shall be
mentioned that ideas of J. Krames, [2], have influenced this paper, too.

The following section contains a description of the problem in terms of ho-
mogeneous coordinates. This is advantageous as we obtain a strict formulation
of the subject matter. The rotational matrices which are necessary to bring
back the images to the normal position are derived in Section 3. By means of
a special procedure—a procedure we consider as the essential contribution of
this paper—we try to orthogonalize these rotational matrices and thus obtain
computational achievements not yet seen. In showing a commented version
of the program, we want to introduce to photogrammetrists all details of the
method and the features of a so-called zero iteration.

The procedure shall be looked upon as an efficient part of a larger program
for solving the relative and the absolute orientation simultaneously.
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2. The Problem in Terms of Homogeneous Coordinates

Let U and V be projective planes and let W be the projective space of di-
mension 8. In U and V we have chosen homogeneous coordinate systems in
the orthodox way. Likewise, in W a homogeneous coordinate system is also
applied with nine coordinates representing the entries wij of a 3×3 matrix. If
W is such a matrix, then cW represents the same point in W provided c �= 0.

Now we define a mapping of U and V onto W :

wij = uivj

or in matrix language
W = uvT

where (u1 : u2 : u3) and (v1 : v2 : v3) are coordinates for u ∈ U and v ∈ V ,
respectively. It is not difficult to realize that this really is a mapping, i.e., to
any points u and v there is a point W ∈ W independent of how the constant
factors cu and cv are chosen. Because cW = cucv, then cW �= 0 if and only if
cu �= 0 and cv �= 0.

The range of this mapping is denoted P and is called the product manifold
of the two projective planes U and V , cf. [1] or [4].

It is almost evident that the following statements are equivalent:

1. W ∈ P ;
2. The rank of the matrix W is 1;
3. Any two rows in the matrix W are proportional;
4. Any two columns in the matrix W are proportional;
5. All second order minors of W are 0;
6. ∣∣∣∣w11 w1s

wr1 wrs

∣∣∣∣ = 0 for r = 2, 3 and s = 2, 3. (1)

Accordingly, the rangeP consists of the set of points in W which satisfy the
four independent (quadratic) equations (1). Not surprisingly, it is of dimension
8 − 4 = 4. For each point of P there is one and only one pair of points u ∈ U
and v ∈ V and vice versa.

The product of a non-singular matrix A and a matrix X has rank 1 if and
only if X has rank 1. Consequently, the following holds true:

Let A and B be non-singular matrices. Then AWB ∈ P
if and only if W ∈ P .

(2)

Any hyperplane in W can be described as

〈H, W 〉 = tr(HTW ) = 0,

where H is a 3 × 3 matrix given apart from a constant factor (exactly as the
coordinates of a point in W). If we make the following particular choice Y
for H
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Y =

⎡⎣0 0 0
0 0 1
0 −1 0

⎤⎦ , (3)

we obtain a hyperplane Y determined by the equation

〈Y, W 〉 = 0. (4)

This hyperplane describes just the condition of coplanarity as shown in (21).
Equation (21) is a more familiar way of writing this condition.

The intersection containing points common to P and Y we call P̂ . It is a
three-dimensional manifold, and W ∈ P̂ if and only if W satisfies the equations
(1) and (4).

Since P̂ is of dimension 3 it is tempting to map P̂ onto a three-dimensional
projective space P 3. It certainly works well.

In P 3 we denote the homogeneous coordinates (x0 : x1 : x2 : x3). We try
to solve for them so that

(x1 + x0)(x1 − x0) : x2(x1 − x0) : x3(x1 − x0)
(x1 + x0)x2 : x2x2 : x3x2

(x1 + x0)x3 : x2x3 : x3x3

=
w11 : w12 : w13

w21 : w22 : w23

w31 : w32 : w33

.

If w33 �= 0, we choose x3 so that x2
3 = kw33 with an appropriate value k �= 0.

Next we find
x2 =

w32

w33
x3,

or by use of (1),

x2 =
w23

w33
x3.

As all 2 × 2 minors in W vanish, we have

x2
2 = kw22.

Henceforth, x1 + x0 is determined as

x1 + x0 =
w31

w32
x2

or equivalently as

x1 + x0 =
w21

w22
x2,

as

∣∣∣∣w21 w22

w31 w32

∣∣∣∣ = 0, etc.

In this manner, we have determined a one-to-one mapping of P̂ onto the
three-dimensional projective space P 3.

We may proceed yet further. As long as we stay in a neighborhood of P 3

with x �= 0, we can normalize the coordinates: We put x0 = b/2, i.e., we mul-
tiply all coordinates by b/2x0 and then obtain the usual (model)coordinates
in the three-dimensional affine space.
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Before turning to the photogrammetric issues, we shall solve the following
task:

For W ∈ W given, find the condition that

W + SW + WT ∈ Y (5)

where S and T are unknown skew-symmetric 3 × 3 matrices.

Therefore, we have
〈Y, W + SW + WT 〉 = 0.

Hence,

0 = 〈Y, W 〉 + 〈Y, SW 〉 + 〈Y, WT 〉 = 〈Y, W 〉 + 〈STY, W 〉 + 〈Y T T, W 〉

and
〈Y + STY + Y TT, W 〉 = 0. (6)

Let S be defined as

S =

⎡⎣ 0 −s3 s2

s3 0 −s1

−s2 s1 0

⎤⎦ , (7)

and T in a similar manner whereupon we obtain

Y + STY + Y TT =

⎡⎣0 0 0
0 0 1
0 −1 0

⎤⎦+

⎡⎣ 0 s3 −s2

−s3 0 s1

s2 −s1 0

⎤⎦⎡⎣0 0 0
0 0 1
0 −1 0

⎤⎦
+

⎡⎣0 0 0
0 0 1
0 −1 0

⎤⎦⎡⎣ 0 t3 −t2
−t3 0 t1

t2 −t1 0

⎤⎦
=

⎡⎣ 0 s2 s3

t2 −(s1 + t1) 1
t3 −1 −(s1 + t1)

⎤⎦ .

So condition (6) can be expressed as

〈Y + STY + Y TT, W 〉 =

〈⎡⎣ 0 s2 s3

t2 −(s1 + t1) 1
t3 −1 −(s1 + t1)

⎤⎦ , W

〉
= 0. (8)

3. Determination of the Rotation Matrix

On the basis of the observations, we shall determine two orthogonal matrices:
Φ, which rotates the right image back to the normal position, and ΨT, which
rotates the left image back to the normal position (The matrix Φ shall not
be confused with a rotational angle of the absolute orientation). The set of
orthogonal matrices O is not a linear manifold, as aΦ+ bΨ normally is not an
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orthogonal matrix. So we embed O in the manifold R of 3 × 3 matrices. We
shall work iteratively in R, i.e., based on a preliminary guess at Φ we look for
an improving matrix Φ′ so that the improved guess is Φ′Φ.

The tangent manifold to O at Φ is

Φ + dΦ = Φ(I + S),

where S is infinitesimal (A similar expression is valid for T : Ψ+dΨ = (I+T )Ψ).
There is no God-given correspondence between this tangent manifold S and
the manifold of orthogonal matrices O. The matrix I + S is only orthogonal
for S being infinitesimal.

Therefore, we look for a symmetric matrix R being a function of S so that
R(I + S) is orthogonal; that is

R(I + S)
(
R(I + S)

)T
= I

or
R(I + S)(I − S)R = I

or
R(I − S2)R = I

or
R = (I − S2)−1/2.

Hence we introduce the following mapping

Φ′ = orth(S) =
I + S√
I − S2

, (9)

which is defined through a corresponding power series at a neighborhood of
S = 0.

The designation orth not only means that the result of the mapping is
orthogonal, but also that Φ′Φ is the orthogonal projection S of the tangent
space at Φ onto O or in other words that

dist(I + S, Φ′) = min .

Of course, this assumes a metric being defined in R. We choose the Euclidian
metric defined through the Euclidian norm or the trace norm:

‖A‖2 = tr(ATA) =

3∑
r,s=1

a2
rs, A = [ars]. (10)

In this norm, the distance between A and B ∈ R is

dist(A, B) = ‖A − B‖ =
√
‖A‖2 + ‖B‖2 − 2〈A, B〉. (11)

Now we want to verify that

orth(ST) = orth(−S) =
(
orth(S)

)−1
. (12)
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Making a series expansion and investigating this leads to

orth(ST) =
(
orth(S)

)T
, (13)

i.e., (Φ′)T = (Φ′)−1, so Φ′ is really orthogonal.
As a matter of form we also have to prove detΦ′ = 1. Because Φ′ is

orthogonal, det Φ′ can only be +1 or −1. Next

det
(
orth(Φ)

)
= det 1 = 1;

so what remains is to prove that

det
(
orth(S)

)
= det

(
orth(Φ)

)
.

This follows from
f(t) = orth(tS) for 0 ≤ t ≤ 1

varies continuously in this interval and so does det
(
orth(tS)

)
. Once it is +1,

it can never become −1.
Finally, we have to prove that orth is an orthogonal projection,

orth: R �→ O.

According to [3], this is equivalent to asking if (I + S)(Φ′)T is a symmetric
matrix. From (9) follows that this expression equals

√
I − S2 which evidently

is symmetric, and we have finished the proof.
After this we can turn to the computational aspects. Basically, we shall

calculate (I + S)/
√

I − S2, S being skew-symmetric.
The characteristic equation corresponding to the matrix S is

det(S − λI) = λ3 + σ2λ = λ(λ2 + σ2), (14)

where σ2 = s2
1 + s2

2 + s2
3 = 1

2 tr(SST), cf. (7). As any matrix satisfies its own
characteristic equation (Cayley-Hamilton theorem, see [6]), we get

S3 + σ2S = 0 (15)

or
S(S2 + σ2I) = 0, (16)

i.e.,

S3 = −σ2S, S4 = −σ2S2, S6 = σ4S2, S8 = −σ6S2, . . . .

For any polynomial in x2

p(x2) = a0 + a1x
2 + a2x

4 + · · · + anx2n

the following is valid, if we substitute x with S:

p(S2) = a0I + a1S
2 + a2S

4 + · · · + anS2n

= a0I + a1S
2 − a2σ

2S2 + a3σ
4S2 − · · · ± anσ2n−2S2
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= a0I +
(
a1σ

2 − a2σ
4 + a3σ

6 − · · · ± anσ2n
)S2

σ2

= p(0) − 1

σ2

(
p(−σ2) − I

)
S2.

The expression
√

I − S2 is a continuous function for all σ, so the expression
can in any finite interval be approximated uniformly by a series of polynomials

1√
I − S2

= I − 1

σ2

[
1√

1 + σ2
− 1

]
S2. (17)

According to (9), this is to be multiplied by I + S. The product is written as

I + S√
I − S2

=
(
I + S

)[
− 1

σ2

( 1√
1 + σ2

− 1
)
(S2 + σ2I) +

1√
1 + σ2

I

]
. (18)

By this, the expression is prepared for making use of (16); the result is

I + S√
I − S2

= I +
1√

1 + σ2
S +

1

σ2

(
1 − 1√

1 + σ2

)
S2. (19)

The coefficient of S2 is rewritten in the following brilliant way:

1

σ2

(
1 − 1√

1 + σ2

)
=

1

σ2
√

1 + σ2

(√
1 + σ2 − 1

)
=

1

σ2
√

1 + σ2

1 + σ2 − 1√
1 + σ2 + 1

=
1

1 + σ2 +
√

1 + σ2
.

So the final version for “orthogonalization” of S is

Φ′ = orth(S) =
I + S√
I − S2

= I +
1√

1 + σ2
S +

1

1 + σ2 +
√

1 + σ2
S2 (20)

with σ2 = 1
2 tr(SST). This formula is implemented later on as a Pascal pro-

cedure.

4. The Adjustment and the Iterative Procedure

For the moment being, we suppose that W ∈ W is given. According to (2),
ΦWΨ is still in W when Φ and Ψ are non-singular matrices. We shall under-
stand Φ and Ψ as rotational matrices so this condition is satisfied. The tangent
manifold to W at Φ, Ψ is given as

ΦWΨ + d(ΦWΨ) = ΦWΨ + dΦWΨ + ΦW dΨ

= ΦWΨ + ΦSWΨ + ΦWTΨ

= Φ(W + SW + WT )Ψ.

Thereby the W -matrix has in the hyperplane Y been transformed to W +
SW +WT which is exactly condition (5). This again is equivalent to (8), and
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R

Φ′ = Φ0 = I
O

Φ′
1 = Φ1Φ0

I + S1

(I + S2)Φ1

Φ′
2 = Φ2Φ1Φ0

Φ

S

Fig. 28.1. The linear adjustment happens in the tangent space of the manifold O

of orthogonal matrices at Φ′

i

we shall evaluate this expression into its explicit form. Recall that 〈Y, W 〉 =
tr(Y TW ) = 0, and we obtain

(w22 + w33)(s1 + t1) − w12s2 − w13s3 − w21t2 − w31t3 = w23 − w32. (21)

This equation may be interpreted as an observational equation with unknowns
s1(= t1), s2, s3, t2, and t3. There are as many observation equations as mea-
sured point coordinates. The coefficients of the unknowns are

2(w22 + w33), −w12, −w13, −w21, and − w31,

with the right-hand side w23 −w32. The unknowns are determined through a
least-squares procedure with appropriate weights.

We repeat the definition of W = uvT. The measured point coordinates in
the left image are designated (x′, y′) and in the right image (x′′, y′′). These
coordinates and the camera constants are in the following way collected in
vectors: u = (x′, y′, c1) and v = (x′′, y′′, c2). So we have

w11 = x′x′′ w12 = y′x′′ w13 = c1x
′′

w21 = x′y′′ w22 = y′y′′ w23 = c1y
′′

w31 = x′c2 w32 = y′c2 w33 = c1c2.

The adjustment solution determines the two skew-symmetric matrices S
and T . They are orthogonalized by means of (20) and we multiply to the left
and to the right to obtain the updated rotational matrices:

Φ′ = orth(S)Φ; Ψ ′ = Ψ orth(T ). (22)

Initially Φ and Ψ are put equal to the identity matrix. This procedure is
repeated a few times till a given numerical accuracy is attained.

The two matrices Φ and Ψ rotate the coordinate systems symmetrically
with respect to a vertical plane through the x-axis. This originally vertical
plane is rotated a small amount in each iteration.

The product ΦnΦn−1 · · ·Φ2Φ1 of orthogonal matrices is not commutative.
It is important that the preliminary orthogonal matrix Φn−1 · · ·Φ2Φ1 is mul-
tiplied to the left with Φn.
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In the present context, we solve the problem of relative orientation; the
problem of the non-vertical symmetry plane is part of the subsequent absolute
orientation.

5. Practical Experiences with the Procedure

The method described has been used successfully for more than five years at
the former Danish Geodetic Institute. The method has been tested both for
speed and convergence.

The present method has been shown to be superior in speed compared
to all other standard methods applied for relative orientation on the given
computer. Often, the speed was multiplied by a factor of 2.

With reference to convergence, we have tested the method for all imag-
inable situations which occur in aerial and terrestrial photogrammetry. With
less than 4 iterations—including the zero iteration—we have obtained results
which we could have expected within the numerical accuracy of the computer.

In the following, we present a commented version of a newly written Pascal
program. Many sophisticated considerations are to be found in the comments
about finding elegant implementations on a computer.

program relative_orientation;

{$N+}

const

umax = 6; {umax .. maximum number of unknowns}

vmax = 28;

type

obs_line = 1..umax;

tri_len = 1..vmax;

vec = array[tri_len] of double;

vec1 = array[obs_line] of double;

arrV = array[1..3] of double;

arrM = array[1..3,1..3] of double;

arrA = array[1..4] of real;

var

bool: boolean;

sign,iteration,g,h,i,j,k,nop,p,q,u,u1,v,w1: integer;

base,c1,c2,rhs,sigma,x,y,z: real;

M: vec;

obs: vec1;

filnavn: string;

infile,outfile,w_file: text;

DUM, PHI, PSI, PSIT, S, T, W, W0: arrM;

sum,x1,x2: double;

A: arrA;

ans: char;
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The function NLL is a normal equation solver using the method of Cholesky.
The upper triangular part of the normal equations is packed in a one-
dimensional array N; this happens by means of the OTN procedure. The function
value is the a posteriori variance factor (of the unit weight) σ̂2. The integer s
is the number of unknowns plus one, viz. the right-hand side. The boolean BS

is true if you want the back substitution to take place.

function NLL (var N: vec; var s,fr,fc: integer; var BS: boolean): real;

var

r,c,p1,I,Ir,Ic: integer;

sum: double;

begin

for r:=fr+1 to s do

begin

Ir:=(r*r-r) div 2; I:=Ir+fc;

for c:=fc+1 to r do

begin

sum:=0; Ic:=(c*c-c) div 2;

I:=I+1;

for p1:=fc+1 to c-1 do

sum:=sum+N[Ir+p1]*N[Ic+p1];

N[I]:=N[I]-sum;

if r<>c then N[I]:=N[I]/N[Ic+c];

end;

if r <> s then N[I]:=sqrt(N[I])

else

begin

NLL:=N[I];

if BS then

for c:=s-1 downto 1 do

begin

Ir:=I-1; I:=I-1; Ic:=(c*c+c) div 2; N[I]:=N[I]/N[Ic];

for p1:=c-1 downto 1 do

begin

Ir:=Ir-1; Ic:=Ic-1;

N[Ir]:=N[Ir]-N[I]*N[Ic];

end;

end;

end;

end;

end;

The procedure OTN creates from the coefficients in the single observation equa-
tion B the contribution to the normal equations and puts it at the proper places
in the array of the normal equations NL.

procedure OTN (var B: vec1; var NL: vec; s: integer);

var

i,r,c: integer;
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begin

i:=0;

for r:=1 to s do

for c:=1 to r do

begin

i:=i+1; NL[i]:=NL[i]+B[r]*B[c];

end

end;

Now follows an implementation of formula (20). Note that in this procedure S
is the usual S plus the identity matrix I.

procedure orth (var S: arrM);

var

V: arrV;

a, b: double;

i, j: integer;

begin

V[1]:=-S[2,3];

V[2]:= S[1,3];

V[3]:=-S[1,2];

a:=1;

for i:=1 to 3 do

a:=a+sqr(V[i]);

b:=a;

a:=sqrt(a);

b:=b+a;

for i:=1 to 3 do

for j:=1 to 3 do

S[i,j]:=S[i,j]/a+V[i]*V[j]/b;

end;

A simple procedure for transposing an r× s matrix, B = AT is the following:

procedure transp (var A,B: arrM; r,s: integer);

begin

for i:=1 to r do

for j:=1 to s do

B[i,j]:=A[j,i];

end;

A simple procedure for multiplication of two 3 × 3 matrices, C = AB is the
following:

procedure matrixmult (var A,B,C: arrM);

var

j: integer;

s: double;

begin

for i:=1 to 3 do
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for k:=1 to 3 do

begin

s:=0;

for j:=1 to 3 do

s:=A[i,j]*B[j,k]+s;

C[i,k]:=s;

end;

end;

Initialization of the matrices A, Φ, and Ψ :

begin

for i:=1 to 4 do

A[i]:=0;

for i:=1 to 3 do

for j:=1 to 3 do

begin

PHI[i,j]:=0;

PSI[i,j]:=0;

end;

for i:=1 to 3 do

begin

PHI[i,i]:=1;

PSI[i,i]:=1;

end;

assign(infile,’rel.in’);

assign(outfile,’rel.out’);

assign(w_file,’w.in’);

rewrite(outfile);

rewrite(w_file);

Opening of the output file is for the results and opening of the input file
rel.in. The input file is expected to contain the following information:

6

150 150

16.012 79.963 -73.930 78.706

88.560 81.134 -5.252 78.184

14.618 -0.231 -76.006 0.036

86.140 -1.346 -7.706 -2.112

13.362 -79.370 -79.122 -78.879

82.240 -80.027 -9.887 -80.089

The first line contains the number of observations, i.e., number of measured
point coordinates nop. The second line contains the left and right camera con-
stants c1, c2, not necessarily equal. Then follows line-wise the observations
x′, y′, x′′, and y′′. The present example is taken from [5], p. 179.

In practice the rotational angles si and ti are not necessarily small. This
may happen if the model is constituted of images from different flying lines; in
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order to handle this situation, we have introduced a zeroth iteration. During
that iteration we rotate the left image so that the barycenter of measured
points lies at the positive part of the x-axis and the right image so that
the barycenter lies at the negative part of the x-axis. In doing so, we have
determined the two rotational angles around the z-axes.

Once and for all the W matrix is computed for each point. The result is
stored in the w_file.

writeln(’Zero iteration? [Y/N]: ’);

readln(ans);

if UpCase(ans)= ’Y’ then iteration:=-1 else iteration:=0;

reset(infile);

read(infile,nop);

read(infile,c1,c2);

c1:=-c1; c2:=-c2;

for q:=1 to nop do

begin

for i:=1 to 4 do

read(infile,obs[i]);

W[1,1]:=obs[1]*obs[3]; W[1,2]:=obs[2]*obs[3]; W[1,3]:=c1*obs[3];

W[2,1]:=obs[1]*obs[4]; W[2,2]:=obs[2]*obs[4]; W[2,3]:=c1*obs[4];

W[3,1]:=obs[1]*c2; W[3,2]:=obs[2]*c2; W[3,3]:=c1*c2;

for i:=1 to 3 do

writeln(w_file,W[i,1]:15:5,W[i,2]:15:5,W[i,3]:15:5);

end;

close(w_file);

The number of unknowns u is 5, and the coefficients of the normal equa-
tions M are initialized. The coordinate observations are read and the W matrix
is computed.

rhs:=1;

u:=5;

u:=u+1; v:=(u*u+u) div 2; w1:=(u*u-u+2) div 2;

repeat

reset(w_file);

iteration:=iteration+1;

writeln(outfile,’Iteration ’, iteration:2);

writeln(outfile,’Number of points ’,nop);

for q:=1 to v do

M[q]:=0;

for q:=1 to nop do

begin

for i:=1 to 3 do

readln(w_file,W[i,1],W[i,2],W[i,3]);

if iteration > 0 then
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begin

matrixmult(W,PSI,W0);

matrixmult(PHI,W0,W);

obs[1]:=(W[2,2]+W[3,3])*2; obs[2]:=-W[1,2];

obs[3]:=-W[1,3]; obs[4]:=-W[2,1];

obs[5]:=-W[3,1]; obs[6]:=W[2,3]-W[3,2];

end

else

begin

A[1]:=A[1]+W[1,3]; A[2]:=A[2]-W[2,3];

A[3]:=A[3]-W[3,1]; A[4]:=A[4]-W[3,2];

end;

if iteration > 0 then OTN(obs,M,u);

end;

By this, the input of observations has finished (If the observations occur with
varying weights all the terms obs[x] must be multiplied by the square root
of the particular weight of that single observation). Then comes the proper
adjustment procedure. It performs according to the description given in Sec-
tion 4. The iteration is stopped after a specified number of passes or after
the norm of the right-hand side rhs has reached a specified small (machine
dependent) number.

writeln(outfile,’The unknowns’);

g:=0; h:=0; bool:=true;

if iteration > 0 then

begin

sigma:=sqrt(NLL(M,u,g,h,bool)/(nop-u+1));

for q:=w1 to v-1 do

writeln(outfile,M[q]:16:10);

writeln(outfile,’Sigma ’,sigma:2:10);

sum:=0;

for i:=w1 to v-1 do

sum:=sqr(M[i])+sum;

rhs:=sqrt(sum);

writeln(outfile,’Right hand side ’,rhs:2:10);

S[1,1]:= 1; S[1,2]:=-M[w1+2]; S[1,3]:= M[w1+1];

S[2,1]:=-S[1,2]; S[2,2]:= 1; S[2,3]:=-M[w1];

S[3,1]:=-S[1,3]; S[3,2]:=-S[2,3]; S[3,3]:= 1;

T[1,1]:= 1; T[1,2]:=-M[w1+4]; T[1,3]:= M[w1+3];

T[2,1]:=-T[1,2]; T[2,2]:= 1; T[2,3]:=-M[w1];

T[3,1]:=-T[1,3]; T[3,2]:=-T[2,3]; T[3,3]:= 1;

writeln(outfile,’S ’);

for i:=1 to 3 do

writeln(outfile, S[i,1]:10:5, S[i,2]:10:5, S[i,3]:10:5);

writeln(outfile);

orth(S);
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writeln(outfile,’S-orth ’);

for i:=1 to 3 do

writeln(outfile, S[i,1]:10:5, S[i,2]:10:5, S[i,3]:10:5);

writeln(outfile);

end

else

begin

sum:=0;

for i:=1 to 4 do

writeln(outfile,’A[’,i:1,’]/’,nop:2, A[i]/nop:12:3);

for i:=0 to 1 do

begin

sum:=sqrt(sqr(A[2*i+1])+sqr(A[2*i+2]));

A[2*i+1]:=-A[2*i+1]/sum; A[2*i+2]:=-A[2*i+2]/sum;

end;

S[1,1]:=A[1]; S[1,2]:=-A[2]; S[1,3]:=0;

S[2,1]:=A[2]; S[2,2]:= A[1]; S[2,3]:=0;

S[3,1]:=0; S[3,2]:=0; S[3,3]:=1;

T[1,1]:=A[3]; T[1,2]:=-A[4]; T[1,3]:=0;

T[2,1]:=A[4]; T[2,2]:=A[3]; T[2,3]:=0;

T[3,1]:=0; T[3,2]:=0; T[3,3]:=1;

end;

matrixmult(S,PHI,DUM);

for i:=1 to 3 do

for k:=1 to 3 do

PHI[i,k]:=DUM[i,k];

if iteration > 0 then orth(T);

matrixmult(PSI,T,DUM);

for i:=1 to 3 do

for k:=1 to 3 do

PSI[i,k]:=DUM[i,k];

writeln(outfile,’PHI ’);

for i:=1 to 3 do

writeln(outfile, PHI[i,1]:10:5, PHI[i,2]:10:5, PHI[i,3]:10:5);

writeln(outfile);

writeln(outfile,’PSI ’);

for i:=1 to 3 do

writeln(outfile, PSI[i,1]:10:5, PSI[i,2]:10:5,PSI[i,3]:10:5);

writeln(outfile);

until (iteration > 8) or (rhs < 10e-10);

Now follows an optional part, the purpose of which is to balance the rotations
around the x-axis. The model coordinates are balanced as well.

Finally, we output the results: Standard deviations of the weight unit and
the single unknowns, the rotational matrices Φ, and Ψ , the model coordinates
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of the measured points and the right-hand side. The (dimensionless) model
coordinates are normed according to b = 1. In case of the data from [5], our
values for the coordinates x, y, z have to be multiplied by 90mm (the base
length) to be compared to the result given at loc. cit.

For the final calculation of model coordinates, it is necessary to rotate the
right coordinate system back through the angles t1, t2, and t3. The reasoning is
as follows: If u′ = Φu and v′ = Ψv then W ′ = u′v′T = Φu(Ψv)T = ΦuvTΨT =
ΦWΨT. Thus, the matrix Ψ must be transposed.

A[1]:=PHI[3,3]+PSI[3,3];

A[2]:=PHI[2,3]+PSI[3,2];

A[3]:=sqrt(sqr(A[1])+sqr(A[2]));

A[1]:=A[1]/A[3]; A[2]:=A[2]/A[3];

for i:=1 to 3 do

for j:=1 to 3 do

S[i,j]:=0; T[i,j]:=0;

S[1,1]:=1; T[1,1]:=1;

S[2,2]:=A[1]; S[3,3]:=A[1]; T[2,2]:=A[1]; T[3,3]:=A[1];

S[2,3]:=-A[2]; T[3,2]:=-A[2];

S[3,2]:=A[2]; T[2,3]:=A[2];

matrixmult(S,PHI,DUM);

for i:=1 to 3 do

for k:=1 to 3 do

PHI[i,k]:=DUM[i,k];

matrixmult(PSI,T,DUM);

for i:=1 to 3 do

for k:=1 to 3 do

PSI[i,k]:=DUM[i,k];

writeln(outfile);

writeln(outfile,’Standard deviation of the weight unit ’,sigma:6:6);

for q:=0 to u-2 do

begin

for i:=w1 to v do

M[i]:=0;

M[q+w1]:=1; u1:=u-1; bool:=false;

writeln(outfile,’Standard deviation of unknown ’,(q+1):2,

sqrt(-NLL(M,u,u1,q,bool))*sigma:12:6);

end;

transp(PSI,PSIT,3,3);

writeln(outfile);

writeln(outfile,’Final PHI’);

for i:=1 to 3 do

writeln(outfile, PHI[i,1]:10:5, PHI[i,2]:10:5, PHI[i,3]:10:5);
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writeln(outfile);

writeln(outfile,’Final PSI’);

for i:=1 to 3 do

writeln(outfile, PSIT[i,1]:10:5, PSIT[i,2]:10:5, PSIT[i,3]:10:5);

writeln(outfile);

writeln(outfile,’Camera constants ’, c1:8:2, c2:8:2);

writeln(outfile,’Number of points ’,nop:2);

writeln(outfile,’Model coordinates [b=1]’);

write (outfile,’ x y z’);

writeln(outfile,’ W[2,3]-W[3,2]’);

reset(w_file);

for q:=1 to nop do

begin

for i:=1 to 3 do

readln(w_file,W[i,1],W[i,2],W[i,3]);

matrixmult(W,PSI,W0);

matrixmult(PHI,W0,W);

z:=-1;

y:=z*(W[3,2]+W[2,3])/(2*W[3,3]);

x1:=z*W[3,1]/W[3,3];

x2:=z*W[1,3]/W[3,3];

base:=x2-x1;

x:=(x1+x2)/(2*base);

y:=y/base;

z:=z/base;

writeln(outfile, x:15:5, y:15:5, z:15:5, W[2,3]-W[3,2]:15:5);

end;

close(infile);

close(outfile);

end.

Test computations show that the method—including the zeroth iteration—
works well for any rotation around the z-axis, and in these cases the procedure
normally converges in at most four to five iterations. Under usual circum-
stances three to four iterations suffice with or without the zeroth iteration.
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[2] J. Krames. Über ein graphisches Verfahren zum gegenseitigen Einpassen
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servations. Bulletin Géodésique, 58:180–192, with C.C. Tscherning.

(1985) Contribution to the Geometry of the Helmert Transformation. Unpub-
lished note.

(1987) Letter on a Problem in Collocation Theory. Unpublished note.

(1991) Approximation to the Earth Potential From Discrete Measurements.
Proceedings of the Geodetic Day in Honor of Antonio Marussi. Rome, October
9th, 1989. Atti dei Convegni Lincei, 91:67–85.

(1998) An Old Procedure for Solving Relative Orientation in Photogrammetry.
Unpublished note, with K. Borre and J. Olsen.


	Contents
	1 Linear Equations
	2 The Adjustment Procedure in Tensor Form
	3 The Theory of Rounding Errors in the Adjustment by Elements
	4 A Contribution to the Mathematical Foundation of Physical Geodesy
	5 A Remark on Approximation of T by Series in Spherical Harmonics
	6 On the Geometry of Adjustment
	7 Remarks to the Discussion Yesterday
	8 Letters on Molodenskiy’s Problem
	9 On the Spectrum of Geodetic Networks
	10 Mathematical Geodesy
	11 Foundation of a Theory of Elasticity for Geodetic Networks
	12 Integrated Geodesy
	13 On Potential Theory
	14 La Formule de Stokes Est-Elle Correcte?
	15 Some Remarks About Collocation
	16 Apropos Some Recent Papers by Willi Freeden
	17 S-Transformation
	18 Integrated Geodesy
	19 A Measure for Local Redundancy
	20 A Convergence Problem in Collocation Theory
	21 Non-Linear Adjustment and Curvature
	22 Mechanics of Adjustment
	23 Angelica Returning or The Importance of a Title
	24 Evaluation of Isotropic Covariance Functions
	25 Contribution to the Geometry of the Helmert Transformation
	26 Letter on a Problem in Collocation Theory
	27 Approximation to The Earth Potential
	28 Relative Orientation in Photogrammetry
	A. Bibliography for Torben Krarup


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice




