

James F. Blowey
Alan W. Craig
(Eds.)

Frontiers of Numerical
Analysis
Durham 2004

ABC

James F. Blowey
Department of Mathematical Sciences
University of Durham
South Road
DH1 3LE Durham
United Kingdom
E-mail: j.f.blowey@durham.ac.uk

Alan W. Craig
Department of Mathematical Sciences
University of Durham
South Road
DH1 3LE Durham
United Kingdom
E-mail: alan.craig@durham.ac.uk

Mathematics Subject Classification: 35-XX, 65-XX, 70-08

Library of Congress Control Number: 2005927222

ISBN-10 3-540-23921-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-23921-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com
c© Springer-Verlag Berlin Heidelberg 2005

Printed in The Netherlands

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: by the authors and TechBooks using a Springer LATEX macro package

Cover design: Cover design: design & production GmbH, Heidelberg

Printed on acid-free paper SPIN: 11357292 46/TechBooks 5 4 3 2 1 0

Preface

The Eleventh LMS-EPSRC Computational Mathematics and Scientific Com-
puting Summer School was held at the University of Durham, UK, from the
4th of July to the 9th of July 2004. This was the third of these schools to
be held in Durham, having previously been hosted by the University of Lan-
caster and the University of Leicester. The purpose of the summer school
was to present high quality instructional courses on topics at the forefront of
computational mathematics and scientific computing research to postgradu-
ate students. The main speakers were Emmanuel Candes, Markus Melenk,
Joe Monaghan and Alex Schweitzer.

This volume presents written contributions three of our speakers which are
more comprehensive versions of the high quality lecture notes which were
distributed to participants during the meeting. We are also extremely pleased
that Angela Kunoth was able to make an additional contribution from the
ill-fated first week.

At the time of writing it is now more than two years since we first contacted
the guest speakers and during that period they have given significant portions
of their time to making the summer school, and this volume, a success. We
would like to thank all of them for the care which they took in the preparation
and delivery of their material.

Instrumental to the school were the two tutors who ran a very successful tuto-
rial programme (Peter Johnson & Angela Mihai). There was also a successful
programme of contributed talks from eleven students in the afternoons. The
UKIE section of SIAM contributed prizes for the best talks given by graduate
students. The invited speakers took on the bulk of the task of judging these
talks. After careful and difficult consideration, and after canvassing opinion
from other academics present, the prizes were awarded to Patrick Lechner
(Bath University) and Richard Welford (Sussex University), see figure be-
low. The general quality of the student presentations was impressively high
promising a vibrant future for the subject.

The audience covered a broad spectrum, thirty-seven participants ranging
from research students to academics. As always, one of the most important
aspects of the summer school was providing a forum for numerical analysts,
both young and old, to meet for an extended period and exchange ideas.

We would also like to thank the Grey College for their hospitality in hosting
the participants, the Durham postgraduates who together with those who
had attended the previous Summer School ran the social programme, Rachel
Duke, Fiona Giblin and Mary Bell for their secretarial support and our fam-
ilies for supporting our efforts.

VI Preface

We thank the LMS and the Engineering and Physical Sciences Research
Council for their financial support which covered all the costs of the main
speakers, tutors, plus the accommodation costs of the participants.

James F. Blowey and Alan W. Craig
Durham, April 2005

Patrick Lechner & Richard Welford being presented with the UKIE section of
SIAM prizes for the best talks given by graduate students by Joe Monaghan.

Contents

Preface . V
Contents . VII

Wavelet Methods for Stationary PDEs and PDE-Constrained
Control Problems . 1
Angela Kunoth
1 Introduction . 1
2 Problem Classes . 4

2.1 An Abstract Operator Equation . 4
2.2 Elliptic Boundary Value Problems . 5
2.3 Saddle Point Problems Involving Boundary Conditions 7
2.4 PDE-Constrained Control Problems: Distributed Control 10
2.5 PDE-Constrained Control Problems: Dirichlet Boundary Control 12

3 Wavelets . 13
3.1 Basic Properties . 13
3.2 Norm Equivalences and Riesz Maps . 16
3.3 Representation of Operators . 18
3.4 Multiscale Decomposition of Function Spaces 19

4 Problems in Wavelet Coordinates . 33
4.1 Elliptic Boundary Value Problems . 33
4.2 Saddle Point Problems Involving Boundary Conditions 35
4.3 Control Problems: Distributed Control . 37
4.4 Control Problems: Dirichlet Boundary Control 42

5 Iterative Solution . 44
5.1 Finite Systems on Uniform Grids . 44
5.2 Adaptive Schemes . 51

References . 60

On Approximation in Meshless Methods . 65
Jens Markus Melenk
1 Introduction . 65

1.1 Notation . 66
1.2 The Notion of Optimality . 68

2 Polynomial Reproducing Systems . 69
2.1 Motivation . 69
2.2 Approximation Properties of Systems Reproducing Polynomials 70
2.3 Construction of Shape Functions with the Moving Least Squares

Procedure . 76
2.4 Bibliographical Remarks . 87

3 Approximation Properties of Radial Basis Functions 87
3.1 Analysis of a Class of RBFs . 88

VIII Contents

3.2 Bibliographical Remarks . 92
4 Partition of Unity Method and Generalized FEM 93

4.1 Approximation Theory . 93
4.2 Example: Polynomial Local Approximation Spaces 95

5 Examples of Operator Adapted Approximation Spaces 96
5.1 A One-Dimensional Example . 97
5.2 Laplace’s Equation . 100
5.3 Helmholtz Equation . 102
5.4 Linear Elasticity . 103
5.5 Further Examples . 105
5.6 Local Approximation Spaces Obtained Numerically 105
5.7 Bibliographical Remarks . 106

6 Augmenting Classical FEM Spaces . 106
6.1 Singular Functions . 106
6.2 Crack Propagation Problems . 108
6.3 Further Examples: The Generalized FEM 111
6.4 Bibliographical Remarks . 111

7 Enforcement of Essential Boundary Conditions 111
7.1 Conforming Methods . 112
7.2 Non-Conforming Methods: Lagrange Multiplier Methods and

Collocation Techniques . 115
7.3 Non-Conforming Methods: Penalty Method 116
7.4 Non-Conforming Methods: Nitsche’s Method 119

A Results from Analysis . 122
B Properties of Polynomials . 123
C Approximation with Adapted Function Systems 126

C.1 The Theory of Bergman and Vekua . 126
C.2 Proof of Theorems 5.3, 5.4 . 127
C.3 Two-Dimensional Elasticity . 130

References . 136

Theory and Applications of Smoothed Particle Hydrodynamics143
Joseph J. Monaghan
1 Introduction . 143
2 Integral and Summation Interpolants . 144

2.1 Errors in the Integral Interpolant . 148
2.2 Errors in the Summation Interpolant . 149
2.3 Errors when the Particles are Disordered 152

3 Euler Equations . 155
3.1 The SPH Continuity Equation . 156
3.2 The SPH Acceleration Equation . 157
3.3 The Thermal Energy Equation . 158
3.4 Dispersion of Sound Waves . 159

4 Tests of the SPH Euler Equations . 161
4.1 The Force Law in One Dimension . 162

Contents IX

4.2 The Equations of Motion . 163
4.3 Oscillations . 164
4.4 SPH Results for Small Oscillations . 165

5 Lagrangian SPH . 167
5.1 The Lagrangian . 167
5.2 Conservation Laws . 168
5.3 The Lagrangian with Constraints . 172
5.4 Resolution Varying in Space and Time . 174

6 SPH Heat Conduction . 177
6.1 Derivatives from Integrals . 178
6.2 Does the Entropy Increase? . 179
6.3 Discontinuous Thermal Conductivity . 180
6.4 Diffusion of Matter . 181

7 Viscosity . 183
7.1 A Simple Artificial Shock Viscosity . 183
7.2 Invariance Properties . 185
7.3 Effective Pressure and Viscosity . 186
7.4 The Sign of the Dissipation Term . 186

8 Applications to Shock and Rarefaction Problems 187
8.1 Rarefaction Waves . 187
8.2 The Sod Shock Tube . 187

References . 193

Implementation and Parallelization of Meshfree Methods 195
Marc Alexander Schweitzer
1 Introduction . 195
2 Partition of Unity Method . 197

2.1 Construction of a Partition of Unity Space 197
2.2 Variational Formulation and Boundary Conditions 204
2.3 Galerkin Discretization . 209
2.4 Solution of Resulting Linear System . 210

3 Efficient Implementation . 212
3.1 Cover Construction . 212
3.2 Numerical Integration . 217
3.3 Multilevel Solution of Linear System . 231

4 Parallelization . 243
4.1 Parallel Data Decomposition . 244
4.2 Load Balancing with Space Filling Curves 248
4.3 Parallel Cover Construction . 250
4.4 Parallel Neighbour Search . 252
4.5 Parallel Matrix Assembly . 254
4.6 Parallel Multilevel Solution . 254
4.7 Computational Complexity . 257

References . 258

Wavelet–Based Multiresolution Methods for
Stationary PDEs and PDE-Constrained
Control Problems

Angela Kunoth

Universität Bonn, Institut für Angewandte Mathematik, Wegelerstr. 6, 53115
Bonn, Germany
email: kunoth@iam.uni-bonn.de

Abstract These notes are concerned with numerical analysis issues arising in the
solution of certain classes of stationary linear variational problems. The standard
examples are second order elliptic boundary value problems, where particular em-
phasis is placed on the treatment of essential boundary conditions. These operator
equations serve as a core ingredient for control problems where in addition to the
state, the solution of the PDE, a control is to be determined which together with
the state minimizes a certain tracking-type objective functional. Having assured
that the variational problems are well-posed, we propose numerical schemes based
on wavelets as a particular multiresolution discretization methodology. The guiding
principle is to devise fast and efficient solution schemes which are optimal in the
number of arithmetic unknowns. Issues that are dealt with are optimal conditioning
of the system matrices, numerical stability of discrete formulations and adaptive
approximation.

1 Introduction

For the solution of elliptic partial differential equations (PDEs), multilevel
ingredients have proved to achieve more efficient solution methods for a vari-
ety of problems than methods based on approximating on a single scale. This
is due to the fact that solutions often exhibit a multiscale behaviour which
one naturally wants to exploit. Perhaps the first such schemes were multi-
grid methods where a fixed discretization, with respect to some underlying
uniform fine grid, leads a large ill-conditioned system of linear equations to
solve. The basic idea of multigrid schemes is to successively solve smaller
versions of the linear system which can be interpreted as discretizations with
respect to coarser grids. Here ‘efficiency of the scheme’ means that one can
solve the problem with respect to the fine grid with a number of arithmetic
operations which is proportional to the number of unknowns on the finest
grid. This in turn means that multigrid schemes provide an asymptotically
optimal preconditioner for the original system on the finest grid. The search
for such optimal preconditioners was one of the major topics in the solution
of elliptic boundary value problems for many years. Another multiscale pre-
conditioner which has this property is the BPX-preconditioner proposed first

2 A. Kunoth

in [BPX] which was proved to be asymptotically optimal with techniques
from Approximation Theory in [DK1,O].
Wavelets as a particular example of a multiscale basis were constructed with
compact support in the 1980’s [Dau]. While mainly used for signal analysis
and image compression, they were also discovered to provide optimal precon-
ditioners in the above sense for elliptic boundary value problems [DK1,J]. It
was soon realized that biorthogonal spline-wavelets developed in [CDF] are
better suited for the numerical solution of elliptic PDEs since they allow one
to work with piecewise polynomials instead of the implicitly defined original
wavelets [Dau] (in addition to the fact that orthogonality with respect to L2

of the Daubechies wavelets is only a minor advantage for elliptic PDEs). The
principal ingredient that allows one to prove optimality of the preconditioner
are certain norm equivalences between Sobolev norms and sequence norms
of weighted wavelet expansion coefficients, and optimal conditioning of the
resulting linear system of equations can be achieved by applying the Fast
Wavelet Transform together with a weighting in terms of an appropriate di-
agonal matrix. The terminology ‘wavelets’ here and in the sequel is to mean
that these are not necessarily Daubechies’ wavelets, but rather classes of such
multiscale bases with three main properties:

(R) Riesz basis property for the underlying function spaces;
(L) locality of the basis functions;

(CP) cancellation properties;

all of which are detailed in Section 3.1.
After these initial results, research on using wavelets for solving elliptic PDEs
numerically has gone into many different directions. Since the original con-
structions in [Dau, CDF] and many others are based on using the Fourier
transform, these constructions provide bases for function spaces only on all
of R or R

n. In order for these tools to be applicable for the solution of PDEs
which naturally live on a bounded domain Ω ⊂ R

n, there arose the need
for having available constructions on bounded intervals without, of course,
losing the aforementioned properties (R), (L) and (CP). The first such sys-
tematic construction of biorthogonal spline-wavelets on [0, 1] (and, by tensor
products, on [0, 1]n) was provided in [DKU]. At the same time, techniques
for satisfying essential boundary conditions were investigated in the context
of wavelets in [K1].
Aside from the investigations to provide appropriate bases, the built-in po-
tential of adaptivity for wavelets has played a prominent role when solving
PDEs, on account of the fact that wavelets provide a locally supported Riesz
basis for a whole function space. Here the issue is to approximate the so-
lution of the variational problem on an infinite-dimensional function space
by the fewest number of degrees of freedom up to a certain prescribed accu-
racy. Most approaches use wavelet coefficients in a heuristic way, i.e., judg-
ing approximation quality by the size of the wavelet coefficients together

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 3

with thresholding. In the past few years convergence of wavelet-based adap-
tive methods for stationary variational problems was investigated systemati-
cally [CDD1,CDD2,CDD3]. In particular, these schemes are designed to also
provide optimal complexity of the schemes, meaning that these algorithms
provide the solution in a total number of arithmetic operations which is com-
parable to the wavelet-best N -term approximation of the solution. Here the
guidelines are, given a prescribed tolerance, find a sparse representation of
the solution by extracting the largest N expansion coefficients of the solution
during the solution process.
As soon as one aims at numerically solving a variational problem which can
no longer be formulated in terms of a single elliptic operator equation such as
a saddle point problem, one is faced with the problem of numerical stability.
This means that finite approximations of the continuous well-posed problem
may be ill-posed, obstructing its efficient numerical solution. This issue will
also be addressed below.
Along these lines, I would like to discuss in these notes the potential of by
wavelet methods for the following classes of problems. First, we will be con-
cerned with second order elliptic PDEs with a particular emphasis placed on
treating essential boundary conditions. Then PDE-constrained control prob-
lems guided by elliptic boundary value problems are considered, leading to
a system of elliptic PDEs. The starting point for contriving efficient solution
schemes are wavelet representations of continuous well-posed problems in
their variational form. Viewing the numerical solution of such a discretized,
yet still infinite-dimensional operator equation as an approximation helps
to reveal multilevel preconditioners for elliptic PDEs which yield uniformly
bounded condition numbers . Stability issues like the LBB condition for saddle
point problems are also discussed in this context. In addition, the compact
support of the wavelets allows for sparse representations of the implicit in-
formation contained in systems of PDEs, the adaptive approximation of their
solution.
More information and extensive literature on applying wavelets for more gen-
eral PDEs addressing, among other things, the connection between adaptiv-
ity and nonlinear approximation and the evaluation of nonlinearities may be
found in [Co,D2,D3].
This paper is structured as follows. In Section 2 a number of well–posed
variational problem classes are compiled to which later several aspects of
the wavelet methodology are applied. The simplest example is a linear el-
liptic boundary value problem for which we derive two forms of an operator
equation, the simplest one consisting of just one equation for homogeneous
boundary conditions and a more complicated one in the form of a saddle
point problem where nonhomogeneous boundary conditions are treated by
means of Lagrange multipliers. Both formulations are then employed for the
following classes of PDE-constrained control problems. In the distributed con-
trol problems in Section 2.4 the control is exerted through the right hand side

4 A. Kunoth

of the PDE, while in Dirichlet boundary control problems in Section 2.5 the
Dirichlet boundary condition serves this purpose. Section 3 is devoted to
assembling necessary ingredients and basic properties of wavelets which are
required in the sequel. In particular, Section 3.4 collects the essential con-
struction principles for wavelets on bounded domains which do not rely on
Fourier techniques, namely, multiresolution analyses of function spaces and
the concept of stable completions. In Section 4, we formulate the problem
classes introduced in Section 2 in wavelet coordinates and in particular de-
rive the resulting systems of linear equations for the control problems arising
from the optimality conditions. Section 5 is devoted to the iterative solution
of these systems. We shall fully investigate iterative schemes on uniform grids
and show that the resulting systems can be solved in the wavelet framework
together with a nested iteration strategy with a number of arithmetic oper-
ations which is proportional to the total number of unknowns on the finest
grid. Finally, in Section 5.2 a wavelet-based adaptive scheme for the distrib-
uted control problem will be derived together with convergence results and
complexity estimates, relying on techniques from Nonlinear Approximation
Theory.
Throughout these notes we will employ the following notational convention:
the relation a ∼ b will always stand for a <∼ b and b <∼ a where the latter
inequality means that b can be bounded by some constant times a uniformly
in all parameters on which a and b may depend. Norms and inner products are
always indexed by the corresponding function space. For 1 ≤ p ≤ ∞, Lp(Ω)
are the usual Lebesgue spaces on a domain Ω, and for k ∈ N, W k

p (Ω) ⊂ Lp(Ω)
denote the Sobolev spaces of functions whose weak derivatives up to order k
are bounded in Lp(Ω). For p = 2, we write as usual Hk(Ω) = W k

2 (Ω).

2 Problem Classes

The variational problems to be investigated here will first be formulated in
the following abstract form.

2.1 An Abstract Operator Equation

Let H be a Hilbert space with norm ‖ · ‖H and let H′ be the normed dual of
H endowed with the norm

‖w‖H′ := sup
v∈H

〈v, w〉
‖v‖H

(2.1)

where 〈·, ·〉 denotes the dual pairing between H and H′.
Given F ∈ H′, we seek a solution to the operator equation

LU = F (2.2)

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 5

where L : H → H′ is a linear operator which is assumed to be a bounded
bijection, that is,

‖LV ‖H′ ∼ ‖V ‖H, V ∈ H. (2.3)

We call the operator equation well-posed since (2.2) implies for any given data
F ∈ H′ the existence and uniqueness of the solution U ∈ H which depends
continuously on the data.
In the following subsections, we describe some problem classes which can be
placed into this framework. In particular, these examples will have the format
that H is a product space

H := H1,0 × · · · × Hm,0 (2.4)

where each of the Hi,0 ⊆ Hi is a Hilbert space (or a closed subspace of a
determined Hilbert space Hi, e.g., by homogeneous boundary conditions).
The spaces Hi will be Sobolev spaces living on a domain Ω ⊂ R

n or on
(part of) its boundary. According to the definition of H, the elements V ∈ H
will consist of m components V = (v1, . . . , vm)T , and we define ‖V ‖2

H :=∑m
i=1 ‖vi‖2

Hi
. The dual space H′ is then endowed with the norm

‖W‖H′ := sup
V ∈H

〈V,W 〉
‖V ‖H

(2.5)

where 〈V,W 〉 :=
∑m

i=1〈vi, wi〉i in terms of the dual pairing 〈·, ·〉i between Hi

and H ′
i.

We next formulate four problem classes which fit into this format. The first
two concern elliptic boundary value problems with included essential bound-
ary conditions, and elliptic boundary value problems formulated as saddle
point problem with boundary conditions treated by means of Lagrange Mul-
tipliers. For an introduction on elliptic boundary value problems and saddle
point problems together with the functional analytic background one can,
e.g., resort to [B]. Based on these formulations, we introduce certain control
problems afterwards. A recurring theme in the derivation of the system of
operator equation is the minimization of a quadratic functional subject to
linear constraints.

2.2 Elliptic Boundary Value Problems

Let Ω ⊂ R
n be a bounded domain with piecewise smooth boundary ∂Ω :=

Γ ∪ ΓN . We consider the scalar second order boundary value problem

−∇ · (a∇y) + cy = f in Ω,

y = g on Γ, (2.6)
(a∇y) · n = 0 on ΓN ,

where n = n(x) is the outward normal at x ∈ Γ, a = a(x) ∈ R
n×n is

uniformly positive definite and bounded on Ω and c ∈ L∞(Ω). Moreover, f

6 A. Kunoth

and g are some given right hand side and boundary data. With the usual
definition of the bilinear form

a(v, w) :=
∫

Ω

(a∇v · ∇w + cvw) dx, (2.7)

the weak formulation of (2.6) requires in the case g ≡ 0 to find y ∈ H where

H := H1
0,Γ(Ω) := {v ∈ H1(Ω) : v|Γ = 0}, (2.8)

or
H := {v ∈ H1(Ω) :

∫
Ω

v(x) dx = 0} when Γ = ∅, (2.9)

such that
a(y, v) = 〈v, f〉, v ∈ H. (2.10)

The Neumann–type boundary conditions on ΓN are implicitly satisfied in
the weak formulation (2.10), therefore called natural boundary conditions. In
contrast, the Dirichlet boundary conditions on Γ have to be posed explic-
itly, for this reason called essential boundary conditions. The easiest way to
achieve this for homogeneous Dirichlet boundary conditions when g ≡ 0 is to
include them in the solution space as above in (2.8). In the nonhomogeneous
case g �≡ 0 on Γ in (2.6) and Γ �= ∅, one can reduce the problem to a problem
with homogeneous boundary conditions by homogenization as follows. Let
w ∈ H1(Ω) be such that w = g on Γ. Then ỹ := y − w satisfies

a(ỹ, v) = a(y, v) − a(w, v) = 〈v, f〉 − a(w, v) =: 〈v, f̃〉

for all v ∈ H defined in (2.8), and on Γ one has ỹ = g − w ≡ 0, that is,
ỹ ∈ H. Thus, it suffices to consider the weak form (2.10) with eventually
modified right hand side. (A second possibility which allows one to treat
inhomogeneous boundary conditions explicitly in the context of saddle point
problems will be discussed below in Section 2.3.)
The crucial property is that the bilinear form defined in (2.7) is continuous
and elliptic on H,

a(v, v) ∼ ‖v‖2
H for any v ∈ H, (2.11)

for example see [B].
By Riesz’ representation theorem, the bilinear form defines a linear operator
A : H → H′ by

〈w,Av〉 := a(v, w), v, w ∈ H, (2.12)

which is under the above assumptions of being a bounded linear bijection,
that is,

cA‖v‖H ≤ ‖Av‖H′ ≤ CA‖v‖H for any v ∈ H. (2.13)

Here we only consider the case where A is symmetric. With corresponding
alterations, the material in the subsequent sections can also be derived for the

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 7

nonsymmetric case with corresponding changes with respect to the employed
algorithms.
The relation (2.13) implies that given any f ∈ H′, there exists a unique y ∈ H
which solves the linear system

Ay = f in H′ (2.14)

derived from (2.10). This linear operator equation, where the operator defines
a bounded bijection in the sense of (2.13), is the simplest case of a well-posed
variational problem (2.2). Adhering to the notation in Section 2.1, here we
have m = 1 and L = A.

2.3 Saddle Point Problems Involving Boundary Conditions

A collection of saddle point problems or, more general, multiple field for-
mulations, including first order system formulations of the elliptic boundary
value problem (2.6) and the three field formulation of the Stokes problem with
inhomogeneous boundary conditions, have been rephrased as well-posed vari-
ational problems in the above sense in [DKS], see also further references cited
therein.
Here a particular saddle point problem derived from (2.6) shall be consid-
ered which will be recycled later in the context of control problems. In fact,
this formulation is particularly appropriate for handling essential Dirichlet
boundary conditions.
Recall from, e.g., [B], that the solution y ∈ H of (2.10) is also the unique
solution of the minimization problem

inf
v∈H

J (v), J (v) :=
1
2
a(v, v) − 〈v, f〉. (2.15)

This means that y is a zero for its first order variational derivative of J , that
is, δJ (y; v) = 0. We denote here and in the following by δmJ (v;w1, . . . , wm)
the m–th variation of J at v in directions w1, . . . , wm, see e.g. [Z]. In partic-
ular, for m = 1

δJ (v;w) := lim
t→0

J (v + tw) − J (v)
t

(2.16)

is the (Gateaux) derivative of J at v in direction w.
In order to generalize (2.15) to the case of nonhomogeneous Dirichlet bound-
ary conditions g, we formulate this as minimizing J over v ∈ H1(Ω) subject
to constraints in form of the essential boundary conditions v = g on Γ. Using
techniques from nonlinear optimization theory, one can employ a Lagrange
multiplier p to append the constraints to the optimization functional J de-
fined in (2.15). Satisfying the constraint is guaranteed by taking the supre-
mum over all such Lagrange multipliers before taking the infimum. Thus,

8 A. Kunoth

minimization subject to a constraint leads to the problem of finding a saddle
point (y, p) of the saddle point problem

inf
v∈H1(Ω)

sup
q∈(H1/2(Γ))′

J (v) + 〈v − g, q〉Γ. (2.17)

Some comments on the choice of the Lagrange multiplier space and the dual
form 〈·, ·〉Γ in (2.17) are in order. The boundary expression v = g actu-
ally means taking the trace of v ∈ H1(Ω) to Γ ⊆ ∂Ω which we explicitly
write from now on as γv := v|Γ. Classical trace theorems which may be
found in [Gr] state that for any v ∈ H1(Ω) one loses ‘ 12 order of smooth-
ness’ when taking traces so that one ends up with γv ∈ H1/2(Γ). Thus,
when the data g ∈ H1/2(Γ), the expression in (2.17) involving the dual
form 〈·, ·〉Γ := 〈·, ·〉H1/2(Γ)×(H1/2(Γ))′ is well–defined, and so is the selection
of the multiplier space (H1/2(Γ))′. In the case of Dirichlet boundary condi-
tions on the whole boundary of Ω, i.e., the case Γ ≡ ∂Ω, one can identify
(H1/2(Γ))′ = H−1/2(Γ).
The formulation (2.17) above was first investigated in [Ba1]. Another stan-
dard technique from optimization to handle minimization problems under
constraints is to append the constraints to J(v) by means of a penalty para-
meter ε as follows, cf. [Ba2]. For the case of homogeneous Dirichlet boundary
conditions, one could introduce the functional J(v)+(2ε)−1‖γv‖2

H1/2(Γ)
. (The

original formulation in [Ba2] uses the term ‖γv‖2
L2(Γ).) Although the linear

system derived from this formulation is still elliptic — the bilinear form is of
the type a(v, v) + ε−1(γv, γv)H1/2(Γ) — the spectral condition number of the
corresponding operator Aε depends on ε. The choice of ε is typically attached
to the discretization of an underlying grid with grid spacing h for Ω of the
form ε ∼ hα when h → 0 for some exponent α > 0 chosen such that one
retains the optimal approximation order of the underlying scheme. Thus, the
spectral condition number of the operators in such systems depends polyno-
mially on (at least) h−α. Consequently, iterative solution schemes such as the
conjugate gradient method converge as slow as without preconditioning for
A, and so far no optimal preconditioniers for this situation are known.
It should also be mentioned that the way of treating essential boundary con-
ditions by Lagrange multipliers can be extended to fictitious domain methods
which may be used for problems with changing boundaries such as shape op-
timization problems [HM,KP]. There one embeds the domain Ω into a larger,
simple domain �, and formulates (2.17) with respect to H1(�) and dual form
on the changing boundary Γ [K3]. One should note, however, that for Γ a
proper subset of ∂Ω, some ambiguity may occur in the relation between the
fictitious domain formulation and the corresponding strong form (2.6).
In order to bring out the role of the trace operator, in addition to (2.7) we
define a second bilinear form on H1(Ω) × (H1/2(Γ))′ by

b(v, q) :=
∫

Γ

(γv)(s) q(s) ds (2.18)

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 9

so that the saddle point problem (2.17) may be rewritten as

inf
v∈H1(Ω)

sup
q∈(H1/2(Γ))′

J (v, q), where J (v, q) := J(v) + b(v, q) − 〈g, q〉Γ.

(2.19)
Computing zeroes of the first order variations of J , now with respect to both
v and q, yields the system of equations that a saddle point (y, p) has to satisfy

a(y, v) + b(v, p) = 〈v, f〉, v ∈ H1(Ω),
b(y, q) = 〈g, q〉Γ, q ∈ (H1/2(Γ))′.

(2.20)

Defining the linear operator B : H1(Ω) → H1/2(Γ) and its adjoint B′ :
(H1/2(Γ))′ → (H1(Ω))′ by

〈Bv, q〉Γ = 〈v,B′q〉Γ := b(v, q),

this can be rewritten as the linear operator equation from H := H1(Ω) ×
(H1/2(Γ))′ to H′ as follows:
Given (f, g) ∈ H′, find (y, p) ∈ H that solves(

A B′

B 0

)(
y

p

)
=
(

f

g

)
. (2.21)

It can be shown that the Lagrange multiplier is given by p = −n · a∇y and
can here be interpreted as a stress force on the boundary [Ba1].
Let us briefly investigate the properties of B representing the trace operator.
Classical trace theorems from, e.g., [Gr], state that for any f ∈ Hs(Ω), 1/2 <
s < 3/2, one has

‖f |Γ‖Hs−1/2(Γ)
<∼ ‖f‖Hs(Ω). (2.22)

Conversely, for every g ∈ Hs−1/2(Γ), there exists some f ∈ Hs(Ω) such that
f |Γ = g and

‖f‖Hs(Ω) <∼ ‖g‖Hs−1/2(Γ). (2.23)

Note that the range of s extends accordingly if Γ is more regular. Estimate
(2.22) immediately implies for s = 1 that B : H1(Ω) → H1/2(Γ) is con-
tinuous. Moreover, the second property (2.23) means B is surjective, i.e.,
rangeB = H1/2(Γ) and kerB′ = {0}, which yields that the inf–sup condi-
tion

inf
q∈(H1/2(Γ))′

sup
v∈H1(Ω)

〈Bv, q〉Γ
‖v‖H1(Ω) ‖q‖(H1/2(Γ))′

>∼ 1 (2.24)

is satisfied.
At this point it will be more convenient to consider (2.21) as a saddle point
problem in abstract form on H = Y × Q. Thus, we identify Y = H1(Ω) and
Q = (H1/2(Γ))′ and linear operators A : Y → Y ′ and B : Y → Q′.
The abstract theory of saddle point problems states there exists and unique
solution pair (y, p) ∈ H if A and B are continuous, A is invertible on

10 A. Kunoth

ker B ⊆ Y and the range of B is closed in Q′, for example see [B,BF,GR].
The properties for B and the continuity for A have been assured above. In
addition, we will always deal here with operators A which are invertible on
ker B, which cover the standard cases of the Laplacian (a = I and c ≡ 0) and
the Helmholtz operator (a = I and c = 1).
Consequently,

L :=
(

A B′

B 0

)
: H → H′ (2.25)

is a linear bijection, and one has the mapping property∥∥∥∥L(v

q

)∥∥∥∥
H′

∼
∥∥∥∥(v

q

)∥∥∥∥
H

(2.26)

for any (v, q) ∈ H with constants depending on upper and lower bounds for
A,B. Thus, the operator equation (2.21) is established to be a well-posed
variational problem in the sense of Section 2.1: for given (f, g) ∈ H′, there
exists a unique solution (y, p) ∈ H = Y × Q which depends continuously on
the data.

2.4 PDE-Constrained Control Problems: Distributed Control

A class of problems where the numerical solution of systems (2.14) is required
repeatedly are certain control problems with PDE-constraints described next.
Adhering to the notation from Section 2.2, consider as a guiding model for
the subsequent discussion the objective to minimize a quadratic functional
of the form

J (y, u) =
1
2
‖y − y∗‖2

Z +
ω

2
‖u‖2

U , (2.27)

subject to linear constraints

Ay = f + u in H ′ (2.28)

where A : H → H ′ is defined as above in (2.12) satisfying (2.13) and f ∈ H
is given. Reserving the symbol H for the resulting product space, in view of
the notation in Section 2.1, the space H in this subsection is defined as in
(2.8) or in (2.9). In order for a solution y of (2.28), the state of the system,
to be well–defined, the problem formulation has to ensure that the unknown
control u appearing on the right hand side is at least in H ′. This can be
achieved by choosing the control space U whose norm appears in (2.27) such
that it is as least as smooth as H ′. The second ingredient in the functional
(2.27) is a data fidelity term which tries to match the system state y to some
prescribed target state y∗, measured in some norm which is typically weaker
than ‖ · ‖H . Thus, we require that the observation space Z and the control
space U are such that the continuous embeddings

‖v‖H′ <∼ ‖v‖U , v ∈ U , ‖v‖Z <∼ ‖v‖H , v ∈ H, (2.29)

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 11

hold. Mostly the simplest cases of norms which occur for U = Z = L2(Ω)
have been investigated and which are covered by these assumptions [Li]. The
parameter ω ≥ 0 balances the norms in (2.27).
Since the control appears in all of the right hand side of (2.28), such control
problems are termed problems with distributed control. Although their prac-
tical value is of a rather limited nature, distributed control problems help
to bring out the basic mechanisms. Note that when the observed data are
compatible in the sense that y∗ ≡ A−1f , the control problem has the trivial
solution u ≡ 0 which yields J (y, u) ≡ 0.
Solution schemes for the control problem (2.27) subject to the constraints
(2.28) can be based on the system of operator equations derived next by
the same variational principles as employed in the previous section, using
a Lagrange multiplier p to enforce the constraints. Defining the Lagrangian
functional

Lagr(y, p, u) := J (y, u) + 〈p,Ay − f − u〉 (2.30)

on H ×H ×H ′, the first order necessary conditions or Karush-Kuhn-Tucker
(KKT) conditions δ Lagr(x) = 0 for x = p, y, u can be derived as

Ay = f + u,

A′p = −S(y − y∗), (2.31)
ωRu = p.

Here the linear operators S and R can be interpreted as Riesz operators
defined by the inner products (·, ·)Z and (·, ·)U . The system (2.31) may be
written in saddle point form as

LV :=
(
A B′

B 0

)
V :=

⎛⎝S 0 A′

0 ωR −I
A −I 0

⎞⎠⎛⎝y
u
p

⎞⎠ =

⎛⎝Sy∗
0
f

⎞⎠ =: F (2.32)

on H := H × H × H ′.

Remark 2.1.
We can also allow for Z in (2.27) to be a trace space on part of the boundary
∂Ω as long as the corresponding condition (2.29) is satisfied [K4].
The class of control problems where the control is exerted through Neumann
boundary conditions can also be written in this form, since in this case the
control still appears on the right hand side of a single operator equation of a
form like (2.28), see [DK3].

Well-posedness of the system (2.32) can now be established by applying the
conditions for saddle point problems stated in Section 2.3. However, for the
control problems here and below we will follow a different route which sup-
ports efficient numerical solution schemes better. The idea is as follows, while
the PDE constraints (2.28) that govern the system are fixed, there is in many
applications some ambiguity with respect to the choice of the spaces Z and

12 A. Kunoth

U . L2 norms are easily realized in finite element discretizations, although in
some applications like glass cooling smoother norms for the observation ‖·‖Z
are desirable [PT]. Once Z and U are fixed, there is only a single parameter
ω to balance the two norms in (2.27). Modelling the objective functional is
therefore an issue where more flexibility may be advantageous. Specifically in
a multiscale setting, one may want to weight contributions on different scales
by multiple parameters.
The wavelet setting which we describe below allows for this flexibility. It is
based on formulating the objective functional in terms of weighted wavelet
coefficient sequences which are equivalent to Z, U and which, in addition,
support an efficient numerical implementation. Once wavelet discretizations
are introduced, we formulate control problems with such objective functionals
below.

2.5 PDE-Constrained Control Problems: Dirichlet Boundary
Control

Even more involved than the control problems with distributed control en-
countered in the previous section are those problems with Dirichlet boundary
control which, however, are practically more relevant.
An illustrative guiding model for this case is the problem to minimize for
some given data y∗ the quadratic functional

J (y, u) =
1
2
‖y − y∗‖2

Z +
ω

2
‖u‖2

U , (2.33)

where, adhering to the notation in Section 2.2, the state y and the control u
are coupled through the linear second order elliptic boundary value problem

−∇ · (a∇y) + ky = f in Ω,
y = u on Γ,

(a∇y) · n = 0 on ΓN .
(2.34)

The appearance of the control u as a Dirichlet boundary condition in (2.34)
is referred to as a Dirichlet boundary control . In view of the treatment of es-
sential Dirichlet boundary conditions in the context of saddle point problems
derived in Section 2.3, we write the PDE constraints (2.34) in the operator
form (2.21) on Y × Q where Y = H1(Ω) and Q = (H1/2(Γ))′. The model
control problem with Dirichlet boundary control then reads as follows:
For given data y∗ ∈ Z and f ∈ Y ′ minimize the quadratic functional

J (y, u) =
1
2
‖y − y∗‖2

Z +
ω

2
‖u‖2

U (2.35)

subject to (
A B′

B 0

)(
y

p

)
=
(

f

u

)
. (2.36)

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 13

In view of the problem formulation in Section 2.4 and the discussion of the
choice of the observation space Z and the control space, analogously here we
require that Z and U are such that the continuous embeddings

‖v‖Q′ <∼ ‖v‖U , v ∈ U , ‖v‖Z <∼ ‖v‖Y , v ∈ Y, (2.37)

hold. In view of Remark 2.1, the case of observations on part of the boundary
∂Ω can also be taken into account [K5]. Part of the numerical results are for
such a situation shown in Figure 5.2.

Remark 2.2.
It should be noted that the simple choice of U = L2(Γ), which is used in
many applications of Dirichlet control problems, is not covered here. The
problem of well-posedness may arise in this case which we briefly discuss.
Note that the constraints (2.34) or, in weak form (2.21), guarantee a unique
weak solution y ∈ Y = H1(Ω) provided that the boundary term u satisfies
u ∈ Q′ = H1/2(Γ). Therefore, in the framework of control problems, this
smoothness of u has to be required either by the choice of U or by the choice
of Z (such as Z = H1(Ω)) which would assure By ∈ Q′. In the latter case,
we could relax condition (2.37) on U .

In the context of flow control problems, an H1 norm on the boundary for the
control has been used in [GL].
Similarly as stated at the end of Section 2.4, we can now derive by variational
principles the first order necessary conditions for a coupled system of saddle
point problems. Well-posedness of this system can again be established by
applying the conditions for saddle point problems from Section 2.3 where
the inf-sup condition for the saddle point problem (2.21) yields an inf-sup
condition for the exterior saddle point problem of interior saddle point prob-
lems [K2]. However, also in this case, we follow the ideas mentioned at the end
of Section 2.5 and pose a corresponding control problem in terms of wavelet
coefficients.

3 Wavelets

The numerical solution of the classes of problems introduced above hinges
on the availability of appropriate wavelet bases for the function spaces under
consideration which are all particular Hilbert spaces. First we introduce the
three basic properties that we require our wavelet bases to satisfy.
Afterwards, construction principles for wavelets based on multiresolution
analysis of function spaces on bounded domains will be given.

3.1 Basic Properties

In view of the problem classes considered above, we need to have a wavelet
basis at our disposal for each occurring function space. A wavelet basis for a

14 A. Kunoth

Hilbert space H here is understood as a collection of functions

ΨH := {ψH,λ : λ ∈ IIH} ⊂ H (3.1)

which are indexed by elements λ from an infinite index set ∈ IIH . Each of the
λ comprises different information λ = (j,k, e) such as the refinement scale or
level of resolution j and a spatial location k = k(λ) ∈ Z

n. In more than one
space dimensions, the basis functions are built from taking tensor products
of certain univariate functions, and in this case the third index e contains
information on the type of wavelet. We will frequently use the symbol |λ| := j
to have access to the resolution level j. In the univariate case on all of R,
ψH,λ is typically generated by means of shifts and dilates of a single function
ψ, i.e., ψλ = ψj,k = 2j/2ψ(2j ·−k), j, k ∈ Z, normalized with respect to ‖·‖L2 .
On bounded domains, the structure of the functions is essentially the same
up to modifications near the boundary.
The three crucial properties that we will assume the wavelet basis to have
for the sequel are the following.

(R) Riesz basis property
Every v ∈ H has a unique expansion in terms of ΨH ,

v =
∑

λ∈IIH

vλ ψH,λ =: vT ΨH , v := (vλ)λ∈IIH
, (3.2)

and its expansion coefficients satisfy a norm equivalence, that is, for
any v = {vλ : λ ∈ IIH} one has

cH ‖v‖�2(IIH) ≤ ‖vT ΨH‖H ≤ CH ‖v‖�2(IIH), v ∈ 	2(IIH), (3.3)

where 0 < cH ≤ CH < ∞. This means that wavelet expansions induce
isomorphisms between certain function spaces and sequence spaces.
It will be convenient in the following to abbreviate 	2 norms without
subscripts as ‖ · ‖ := ‖ · ‖�2(IIH) when the index set is clear from the
context. If the precise format of the constants does not matter, we
write the norm equivalence (3.3) shortly as

‖v‖ ∼ ‖vT ΨH‖H , v ∈ 	2(IIH). (3.4)

(L) Locality
The functions ψH,λ have compact support which decreases with in-
creasing level j = |λ|, i.e.,

diam (suppψH,λ) ∼ 2−|λ|. (3.5)

(CP) Cancellation property
There exists an integer m̃ = m̃H such that

〈v, ψH,λ〉 <∼ 2−|λ|(n/2−n/p+m̃)|v|W m̃
p (supp ψH,λ). (3.6)

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 15

Thus, integrating against a wavelet has the effect of taking an m̃’th
order difference which annihilates the smooth part of v. This property
is for wavelets defined on Euclidean domains typically realized by con-
structing ΨH in such a way that it possesses a dual or biorthogonal
basis Ψ̃H ⊂ H ′ such that the multiresolution spaces S̃j := span{ψ̃H,λ :
|λ| < j} contain all polynomials of order m̃. Here dual basis means
that 〈ψH,λ, ψ̃H,ν〉 = δλ,ν where λ, ν ∈ IIH .

A few remarks on these properties are in order. In (R), the norm equivalence
(3.4) is crucial since it means complete control over a function measured in
‖·‖H from above and below by its expansion coefficients: small changes in the
coefficients only causes small changes in the function which, together with
the locality (L), also means that local changes stay local. This stability is
an important feature which is used for deriving optimal preconditioners and
driving adaptive approximations where, again, the locality is crucial. Finally,
the cancellation property (CP) implies that smooth functions have small
wavelet coefficients which, on account of (3.3), may be neglected in a control-
lable way. Moreover, (CP) can be used to derive quasi–sparse representations
of a wide class of operators.
By duality arguments one can show that (3.3) is equivalent to the existence
of a biorthogonal collection which is dual or biorthogonal to ΨH ,

Ψ̃H := {ψ̃H,λ : λ ∈ IIH} ⊂ H ′, 〈ψH,λ, ψ̃H,µ〉 = δλ,µ, λ, µ ∈ IIH , (3.7)

which is a Riesz basis for H ′, that is, for any ṽ = ṽT Ψ̃H ∈ H ′ one has

C−1
H ‖ṽ‖ ≤ ‖ṽT Ψ̃H‖H′ ≤ c−1

H ‖ṽ‖, (3.8)

see [D1,D3,K2]. Here, and in the sequel, the tilde expresses that the collection
Ψ̃H is a dual basis to a primal one for the space identified by the subscript,
so that Ψ̃H = ΨH′ .
Above in (3.3), we have already introduced the following shorthand notation
which simplifies the presentation of many terms. We will view ΨH , as in
(3.1), as a collection of functions as well as a (possibly infinite) column vector
containing all functions always assembled in some fixed unspecified order. For
a countable collection of functions Θ and some single function σ, the term
〈Θ, σ〉 is to be understood as the column vector with entries 〈θ, σ〉, θ ∈ Θ, and
correspondingly 〈σ, Θ〉 the row vector. For two collections Θ, Σ, the quantity
〈Θ,Σ〉 is then a (possibly infinite) matrix with entries (〈θ, σ〉)θ∈Θ, σ∈Σ for
which 〈Θ,Σ〉 = 〈Σ,Θ〉T . This also implies that for a (possibly infinite) matrix
C that 〈CΘ,Σ〉 = C〈Θ,Σ〉 and 〈Θ,CΣ〉 = 〈Θ,Σ〉CT .
In this notation, the biorthogonality or duality conditions (3.7) can be reex-
pressed as

〈Ψ, Ψ̃〉 = I (3.9)

with the infinite identity matrix I.

16 A. Kunoth

Wavelets with the above properties can actually be obtained in the following
way. This concerns, in particular, a scaling depending on the regularity of
the space under consideration. In our case, H will always be a Sobolev space
Hs = Hs(Ω) or a closed subspace of Hs(Ω) determined by homogeneous
boundary conditions, or its dual. For s < 0, Hs is interpreted as above as
the dual of H−s. One typically obtains the wavelet basis ΨH for H from an
anchor basis Ψ = {ψλ : λ ∈ II = IIH} which is a Riesz basis for L2(Ω),
meaning that Ψ is scaled such that ‖ψλ‖L2(Ω) ∼ 1. Moreover, its dual basis
Ψ̃ is also a Riesz basis for L2(Ω). Ψ and Ψ̃ are constructed in such a way
that rescaled versions of both bases Ψ, Ψ̃ form Riesz bases for a whole range
of (closed subspaces of) Sobolev spaces Hs, for 0 < s < γ, γ̃, respectively.
Consequently, one can derive that for each s ∈ (−γ̃, γ) the collection

Ψs := {2−s|λ|ψλ : λ ∈ II} =: D−sΨ (3.10)

is a Riesz basis for Hs, see [D1]. This means that there exist positive finite
constants cs, Cs such that

cs ‖v‖ ≤ ‖vT Ψs‖Hs ≤ Cs ‖v‖ v ∈ 	2(II), (3.11)

holds for each s ∈ (−γ̃, γ). Such a scaling represented by a diagonal matrix
Ds introduced in (3.10) will play an important role later on. The analogous
expression in terms of the dual basis reads

Ψ̃s := {2s|λ| ψ̃λ : λ ∈ II} = Ds Ψ̃, (3.12)

where Ψ̃s forms a Riesz basis of Hs for s ∈ (−γ, γ̃). This implies the following
fact. For t ∈ (−γ̃, γ) the mapping

Dt : v = vT Ψ �→ (Dtv)T Ψ = vT DtΨ =
∑
λ∈II

vλ 2t|λ|ψλ (3.13)

acts as a shift operator between Sobolev scales which means that

‖Dtv‖Hs ∼ ‖v‖Hs+t ∼ ‖Ds+tv‖, if s, s + t ∈ (−γ̃, γ). (3.14)

Concrete constructions of wavelet bases with the above properties for parame-
ters γ, γ̃ ≤ 3/2 on a bounded Lipschitz domain Ω can be found in [DKU,DSt].
This suffices for the aforementioned examples where the relevant Sobolev reg-
ularity indices range between −1 and 1.

3.2 Norm Equivalences and Riesz Maps

As we have seen, the scaling provided by D−s is an important feature to
establish norm equivalences (3.11) for the range s ∈ (−γ̃, γ) of Sobolev spaces
Hs. However, there are several other norms which are equivalent to ‖ · ‖Hs

which may be used later in the objective functional (2.27) in the context of

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 17

control problems. This issue addresses the mathematical model which we now
briefly discuss.
We first consider norm equivalences for the L2 norm. As before let Ψ be the
anchor wavelet basis for L2 for which the Riesz operator R = RL2 is the
(infinite) Gramian matrix with respect to the inner product (·, ·)L2 defined
as

R := (Ψ,Ψ)L2 = 〈Ψ,Ψ〉. (3.15)

Expanding Ψ in terms of Ψ̃ and recalling the duality (3.9), this implies

I = 〈Ψ, Ψ̃〉 =
〈
〈Ψ,Ψ〉Ψ̃, Ψ̃

〉
= R〈Ψ̃, Ψ̃〉 or R−1 = 〈Ψ̃, Ψ̃〉. (3.16)

R may be interpreted as the transformation matrix for the change of basis
from Ψ̃ to Ψ, that is, Ψ = RΨ̃.
For any w = wT Ψ ∈ L2, we now obtain the identities

‖w‖2
L2

= (wT Ψ,wT Ψ)L2 = wT 〈Ψ,Ψ〉w = wT Rw = ‖R1/2w‖2 =: ‖ŵ‖2.
(3.17)

Expanding w with respect to the basis Ψ̂ := R−1/2Ψ = R1/2Ψ̃, that is,
w = ŵT Ψ̂, yields ‖w‖L2 = ‖ŵ‖. On the other hand, we get from (3.11) with
s = 0

c2
0 ‖w‖2 ≤ ‖w‖2

L2
≤ C2

0 ‖w‖2. (3.18)

From this we can derive the condition number κ(Ψ) of the wavelet basis in
terms of the extreme eigenvalues of R by defining

κ(Ψ) :=
(

C0

c0

)2

=
λmax(R)
λmin(R)

= κ(R) ∼ 1, (3.19)

where κ(R) also denotes the spectral condition number of R and the last
relation is assured by the asymptotic estimate (3.18). However, the absolute
constants will have an impact on numerical results in specific cases.
For a Hilbert space H, denote by ΨH a wavelet basis for H satisfying (R),
(L), (CP) with a corresponding dual basis Ψ̃H . The (infinite) Gramian matrix
with respect to the inner product (·, ·)H inducing ‖ · ‖H which is defined by

RH := (ΨH ,ΨH)H (3.20)

will be also called Riesz operator . The space L2 is covered trivially by R0 =
R. For any function v := vT ΨH ∈ H we then have the identity

‖v‖2
H = (v, v)H = (vT ΨH ,vT ΨH)H = vT (ΨH ,ΨH)H v

= vT RHv = ‖R1/2
H v‖2. (3.21)

Note that in general RH may not be explicitly computable, in particular,
when H is a fractional Sobolev space.

18 A. Kunoth

Again referring to (3.11), we obtain as in (3.19) for the more general case

κ(Ψs) :=
(

Cs

cs

)2

=
λmax(RHs)
λmin(RHs)

= κ(RHs) ∼ 1 for each s ∈ (−γ̃, γ).

(3.22)
Thus, all Riesz operators on the applicable scale of Sobolev spaces are spec-
trally equivalent. Moreover, comparing (3.22) with (3.19), we get

cs

C0
‖R1/2v‖ ≤ ‖R1/2

Hs v‖ ≤ Cs

c0
‖R1/2v‖. (3.23)

Of course, in practice, the constants appearing in this equation may be much
sharper, as the bases for Sobolev spaces with different exponents are only
obtained by a diagonal scaling which preserves much of the structure of the
original basis for L2.
We summarize these results for further reference.

Proposition 3.1. In the above notation, we have for any v = vT Ψs ∈ Hs

the norm equivalences

‖v‖Hs = ‖R1/2
Hs v‖ ∼ ‖R1/2v‖ ∼ ‖v‖ for each s ∈ (−γ̃, γ). (3.24)

3.3 Representation of Operators

A final ingredient concerns the wavelet representation of linear operators in
terms of wavelets. Let H,V be Hilbert spaces with wavelet bases ΨH ,ΨV

and corresponding duals Ψ̃H , Ψ̃V , and suppose that L : H → V is a linear
operator with dual L′ : V ′ → H ′ defined by 〈v,L′w〉 := 〈Lv, w〉 for all v ∈ H,
w ∈ V .
We shall make frequent use of this representation and its properties.

Remark 3.1.
The wavelet representation of L : H → V with respect to the bases ΨH , Ψ̃V

of H, V ′, respectively, is given by

L := 〈Ψ̃V ,LΨH〉, Lv = (Lv)T ΨV . (3.25)

Thus, the expansion coefficients of Lv in the basis that spans the range space
of L is obtained by applying the infinite matrix L = 〈Ψ̃V ,LΨH〉 to the
coefficient vector of v. Moreover, boundedness of L implies boundedness of
L in 	2, i.e.,

‖Lv‖V <∼ ‖v‖H , v ∈ H, implies ‖L‖ := sup
‖v‖�2(IIH)≤1

‖Lv‖�2(IIV) <∼ 1. (3.26)

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 19

Proof. Any image Lv ∈ V can naturally be expanded with respect to ΨV

as Lv = 〈Lv, Ψ̃V 〉ΨV . In addition expanding v in the basis ΨH , v = vT ΨH

yields

Lv = vT 〈LΨH , Ψ̃V 〉ΨV = (〈LΨH , Ψ̃V 〉T v)T ΨV = (〈Ψ̃V ,LΨH〉v)T ΨV .
(3.27)

As for (3.26), we can infer from (3.3) and (3.25) that

‖Lv‖�2(IIV) ∼ ‖(Lv)T ΨV ‖V = ‖Lv‖V <∼ ‖v‖H ∼ ‖v‖�2(IIH),

which confirms the claim. �

3.4 Multiscale Decomposition of Function Spaces

In this section, the basic construction principles of the biorthogonal wavelets
with properties (R), (L) and (CP) are summarized, for example see [D2].
Their cornerstones are multiresolution analyses of the function spaces under
consideration and the concept of stable completions. These concepts are free
of Fourier techniques and can therefore be applied to derive constructions of
wavelets on domains or manifolds which are subsets of R

n.

Multiresolution of L2

Practical constructions of wavelets typically start out with multiresolution
analyses of function spaces. Consider a multiresolution S of L2 which consists
of closed subspaces Sj of L2, called trial spaces, such that they are nested
and their union is dense in L2,

Sj0 ⊂ Sj0+1 ⊂ . . . ⊂ Sj ⊂ Sj+1 ⊂ . . . L2, closL2

(∞⋃
j=j0

Sj

)
= L2. (3.28)

The index j is the refinement level which already appeared in the elements
of the index set II in (3.1), starting with some coarsest level j0 ∈ N0. For a
finite subset Θ ⊂ L2 we abbreviate the linear span of Θ as

S(Θ) = span{Θ}.

Typically the multiresolution spaces Sj have the form

Sj = S(Φj), Φj = {φj,k : k ∈ ∆j}, (3.29)

for some finite index set ∆j , where the set {Φj}∞j=j0
is uniformly stable in

the sense that

‖c‖�2(∆j) ∼ ‖cT Φj‖L2 , c = {ck}k∈∆j
∈ 	2(∆j), (3.30)

holds uniformly in j. Again we have used the shorthand notation

cT Φj =
∑

k∈∆j

ckφj,k

20 A. Kunoth

and Φj denotes both the (column) vector containing the functions φj,k as
well as the set of functions (3.29).
The collection Φj is called a single scale basis since all of its elements only
live on one scale j. In the present context of multiresolution analysis, Φj is
also called a generator basis or shortly generators of the multiresolution. We
assume that the φj,k are compactly supported with

diam(suppφj,k) ∼ 2−j . (3.31)

It follows from (3.30) that they are scaled such that

‖φj,k‖L2 ∼ 1 (3.32)

holds. It is known that nestedness (3.28) together with stability (3.30) implies
the existence of matrices Mj,0 = (mj

r,k)r∈∆j+1,k∈∆j
such that the two-scale

relation
φj,k =

∑
r∈∆j+1

mj
r,kφj+1,r, k ∈ ∆j , (3.33)

is satisfied. We can essentially simplify the subsequent presentation of the
material by viewing (3.33) as a matrix–vector equation which then attains
the compact form

Φj = MT
j,0Φj+1. (3.34)

Any set of functions satisfying an equation of this form, the refinement or
two–scale relation, will be called refinable.
Denoting by [X,Y] the space of bounded linear operators from a normed
linear space X into the normed linear space Y , one has that

Mj,0 ∈ [2(∆j), 	2(∆j+1)]

is uniformly sparse which means that the number of entries in each row or
column is uniformly bounded. Furthermore, one infers from (3.30) that

‖Mj,0‖ = O(1), j ≥ j0, (3.35)

where the corresponding operator norm is defined as

‖Mj,0‖ := sup
c∈�2(∆j), ‖c‖�2(∆j)=1

‖Mj,0c‖�2(∆j+1).

Since the union of S is dense in L2, a basis for L2 can be assembled from
functions which span any complement between two successive spaces Sj and
Sj+1, i.e.,

S(Φj+1) = S(Φj) ⊕ S(Ψj) (3.36)

where
Ψj = {ψj,k : k ∈ ∇j}, ∇j := ∆j+1 \ ∆j . (3.37)

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 21

The functions Ψj are called wavelet functions or shortly wavelets if, among
other conditions detailed below, the union {Φj ∪Ψj} is still uniformly stable
in the sense of (3.30). Since (3.36) implies S(Ψj) ⊂ S(Φj+1), the functions in
Ψj must also satisfy a matrix–vector relation of the form

Ψj = MT
j,1Φj+1 (3.38)

with a matrix Mj,1 of size (#∆j+1)×(#∇j). Furthermore, (3.36) is equivalent
to the fact that the linear operator composed of Mj,0 and Mj,1,

Mj = (Mj,0,Mj,1), (3.39)

is invertible as a mapping from 	2(∆j∪∇j) onto 	2(∆j+1). One can also show
that the set {Φj ∪ Ψj} is uniformly stable if and only if

‖Mj‖, ‖M−1
j ‖ = O(1), j → ∞. (3.40)

The particular cases that will be important for practical purposes are when
not only Mj,0 and Mj,1 are uniformly sparse but also the inverse of Mj . We
denote this inverse by Gj and assume that it is split into

Gj = M−1
j =

(
Gj,0

Gj,1

)
. (3.41)

A special situation occurs when

Gj = M−1
j = MT

j

which corresponds to the case of L2 orthogonal wavelets [Dau]. A systematic
construction of more general Mj , Gj for spline-wavelets can be found in
[DKU], see also [D2] for more examples, including the hierarchical basis.
Thus, the identification of the functions Ψj which span the complement of
S(Φj) in S(Φj+1) is equivalent to completing a given refinement matrix Mj,0

to an invertible matrix Mj in such a way that (3.40) is satisfied. Any such
completion Mj,1 is called stable completion of Mj,0. In other words, the prob-
lem of the construction of compactly supported wavelets can equivalently be
formulated as an algebraic problem of finding the (uniformly) sparse com-
pletion of a (uniformly) sparse matrix Mj,0 in such a way that its inverse is
also (uniformly) sparse. The fact that inverses of sparse matrices are usually
dense elucidates the difficulties in the constructions.
The concept of stable completions has been introduced in [CDP] for which a
special case is known as the lifting scheme [Sw]. Of course, constructions that
yield compactly supported wavelets are particularly suited for computations
in numerical analysis.
Combining the two–scale relations (3.34) and (3.38), one can see that Mj

performs a change of bases in the space Sj+1,(
Φj

Ψj

)
=
(
MT

j,0

MT
j,1

)
Φj+1 = MT

j Φj+1. (3.42)

22 A. Kunoth

Conversely, applying the inverse of Mj to both sides of (3.42) results in the
reconstruction identity

Φj+1 = GT
j

(
Φj

Ψj

)
= GT

j,0Φj + GT
j,1Ψj . (3.43)

Fixing a finest resolution level J , one can repeat the decomposition (3.36) so
that SJ = S(ΦJ) can be written in terms of the functions from the coarsest
space supplied with the complement functions from all intermediate levels,

S(ΦJ) = S(Φj0) ⊕
J−1⊕
j=j0

S(Ψj). (3.44)

Thus, every function v ∈ S(ΦJ) can be written in its single–scale represen-
tation

v = (cJ)T ΦJ =
∑

k∈∆J

cJ,kφJ,k (3.45)

as well as in its multiscale form

v = (cj0)
T Φj0 + (dj0)

T Ψj0 + · · · + (dJ−1)T ΨJ−1 (3.46)

with respect to the multiscale or wavelet basis

ΨJ := Φj0 ∪
J−1⋃
j=j0

Ψj =:
J−1⋃

j=j0−1

Ψj . (3.47)

Often the single–scale representation of a function may be easier to com-
pute and evaluate while the multiscale representation allows one to separate
features of the underlying function characterized by different length scales.
Therefore since both representations are advantageous, it is useful to deter-
mine the transformation between the two representations, commonly referred
to as the Wavelet Transform,

TJ : 	2(∆j) → 	2(∆j), dJ �→ cJ , (3.48)

where
dJ := (cj0 ,dj0 , . . . ,dJ−1)T .

The previous relations (3.42) and (3.43) indicate that this will involve the
matrices Mj and Gj . In fact, TJ has the representation

TJ = TJ,J−1 · · ·TJ,j0 , (3.49)

where each factor has the form

TJ,j :=
(

Mj 0
0 I(#∆J−#∆j+1)

)
∈ R

(#∆J)×(#∆J). (3.50)

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 23

Schematically TJ can be visualized as a pyramid scheme

Mj0,0 Mj0+1,0 MJ−1,0

cj0 −→ cj0+1 −→ cj0+2 −→ · · · cJ−1 −→ cJ

Mj0,1 Mj0+1,1 MJ−1,1

↗ ↗ ↗ · · · ↗
dj0 dj0+1 dj0+2 dJ−1

. (3.51)

Accordingly, the inverse transform T−1
J can also be written in product struc-

ture (3.49) in reverse order involving the matrices Gj as follows:

T−1
J = T−1

J,j0
· · ·T−1

J,J−1, (3.52)

where each factor has the form

T−1
J,j :=

(
Gj 0
0 I(#∆J−#∆j+1)

)
∈ R

(#∆J)×(#∆J). (3.53)

The corresponding pyramid scheme is then

GJ−1,0 GJ−2,0 Gj0,0

cJ −→ cJ−1 −→ cJ−2 −→ · · · −→ cj0

GJ−1,1 GJ−2,1 Gj0,1

↘ ↘ ↘ · · · ↘
dJ−1 dJ−2 dJ−1 dj0

. (3.54)

Remark 3.2.
Property (3.40) and the fact that Mj and Gj can be applied in (#∆j+1)
operations uniformly in j implies that the complexity of applying TJ or T−1

J

using the pyramid scheme is of order O(#∆J) = O(dim SJ) uniformly in J .
For this reason, TJ is called the Fast Wavelet Transform (FWT). Note that
there is no need to explicitly assemble TJ or T−1

J .

In Table 3.1 spectral condition numbers for the Fast Wavelet Transform
(FWT) for different constructions of biorthogonal wavelets on the interval
computed in [P] are displayed.
Since ∪j≥j0Sj is dense in L2, a basis for the whole space L2 is obtained when
letting J → ∞ in (3.47),

Ψ :=
∞⋃

j=j0−1

Ψj = {ψj,k : (j, k) ∈ II}, Ψj0−1 := Φj0

II := {{j0} × ∆j0} ∪
∞⋃

j=j0

{{j} × ∇j} .

(3.55)

The next theorem from [D1] illustrates the relation between Ψ and TJ .

24 A. Kunoth

Theorem 3.1. The multiscale transformations TJ are well–conditioned in
the sense

‖TJ‖, ‖T−1
J ‖ = O(1), J ≥ j0, (3.56)

if and only if the collection Ψ defined by (3.55) is a Riesz basis for L2, i.e.,
every v ∈ L2 has unique expansions

v =
∞∑

j=j0−1

〈v, Ψ̃j〉Ψj =
∞∑

j=j0−1

〈v,Ψj〉Ψ̃j , (3.57)

where Ψ̃, defined analogously as in (3.55), is also a Riesz basis for L2 which
is biorthogonal or dual to Ψ,

〈Ψ, Ψ̃〉 = I (3.58)

such that
‖v‖L2 ∼ ‖〈Ψ̃, v〉‖�2(II) ∼ ‖〈Ψ, v〉‖�2(II). (3.59)

Next we briefly explain how the functions in Ψ̃, called wavelets dual to Ψ, or
dual wavelets, can be determined. Assume that there is a second multireso-
lution S̃ of L2 satisfying (3.28) where

S̃j = S(Φ̃j), Φ̃j = {φ̃j,k : k ∈ ∆j} (3.60)

and {Φ̃j}∞j=j0
is uniformly stable in j in the sense of (3.30). Let the functions

in Φ̃j also have compact support satisfying (3.31). Furthermore, suppose that
the biorthogonality conditions

〈Φj , Φ̃j〉 = I (3.61)

hold. We will often refer to Φj as the primal and to Φ̃j as the dual generators.
The nestedness of the S̃j and the stability again implies that Φ̃j is refinable
with some matrix M̃j,0, similar to (3.34),

Φ̃j = M̃T
j,0Φ̃j+1. (3.62)

The problem of determining biorthogonal wavelets now consists of finding
bases Ψj , Ψ̃j for the complements of S(Φj) in S(Φj+1), and of S(Φ̃j) in
S(Φ̃j+1), such that

S(Φj)⊥S(Ψ̃j), S(Φ̃j)⊥S(Ψj) (3.63)

and
S(Ψj)⊥S(Ψ̃r), j �= r, (3.64)

holds. The connection between the concept of stable completions and the dual
generators and wavelets is made by the following result which is a special case
from [CDP].

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 25

Proposition 3.2. Suppose that the biorthogonal collections {Φj}∞j=j0
and

{Φ̃j}∞j=j0
are both uniformly stable and refinable with refinement matrices

Mj,0, M̃j,0, i.e.,

Φj = MT
j,0Φj+1, Φ̃j = M̃T

j,0Φ̃j+1, (3.65)

and satisfy the duality condition (3.61). Assume that M̌j,1 is any stable com-
pletion of Mj,0 such that

M̌j := (Mj,0, M̌j,1) = Ǧ−1
j (3.66)

satisfies (3.40).
Then

Mj,1 := (I − Mj,0M̃T
j,0)M̌j,1 (3.67)

is also a stable completion of Mj,0, and Gj = M−1
j = (Mj,0,Mj,1)−1 has

the form

Gj =
(
M̃T

j,0

Ǧj,1

)
. (3.68)

Moreover, the collections of functions

Ψj := MT
j,1Φj+1, Ψ̃j := Ǧj,1Φ̃j+1 (3.69)

form biorthogonal systems,

〈Ψj , Ψ̃j〉 = I, 〈Ψj , Φ̃j〉 = 〈Φj , Ψ̃j〉 = 0, (3.70)

so that

S(Ψj)⊥S(Ψ̃r), j �= r, S(Φj)⊥S(Ψ̃j), S(Φ̃j)⊥S(Ψj). (3.71)

In particular, the relations (3.61), (3.70) imply that the collections

Ψ =
∞⋃

j=j0−1

Ψj , Ψ̃ :=
∞⋃

j=j0−1

Ψ̃j := Φ̃j0 ∪
∞⋃

j=j0

Ψ̃j (3.72)

are biorthogonal,
〈Ψ, Ψ̃〉 = I. (3.73)

Remark 3.3.
It is important to note that the properties needed in addition to (3.73)
in order to ensure (3.59) are neither properties of the complements nor of
their bases Ψ, Ψ̃ but of the multiresolution sequences S and S̃. These can be
phrased as approximation and regularity properties and appear in Theorem
3.2.

26 A. Kunoth

We briefly recall yet another useful point of view. The operators

Pjv := 〈v, Φ̃j〉Φj = 〈v, Ψ̃j〉Ψj = 〈v, Φ̃j0〉Φj0 +
j−1∑
r=j0

〈v, Ψ̃r〉Ψr

P ′
jv := 〈v,Φj〉Φ̃j = 〈v,Ψj〉Ψ̃j = 〈v,Φj0〉Φ̃j0 +

j−1∑
r=j0

〈v,Ψr〉Ψ̃r

(3.74)

are projectors onto

S(Φj) = S(Ψj) and S(Φ̃j) = S(Ψ̃j) (3.75)

respectively, which satisfy

PrPj = Pr, P ′
rP

′
j = P ′

r, r ≤ j. (3.76)

Remark 3.4.
Let {Φj}∞j=j0

be uniformly stable. The Pj defined by (3.74) are uniformly
bounded if and only if {Φ̃j}∞j=j0

is also uniformly stable. Moreover, the Pj

satisfy (3.76) if and only if the Φ̃j are refinable as well. Note that then (3.61)
implies

MT
j,0M̃j,0 = I. (3.77)

In terms of the projectors, the uniform stability of the complement bases Ψj ,
Ψ̃j means that

‖(Pj+1 − Pj)v‖L2 ∼ ‖〈Ψ̃j , v〉‖�2(∇j), ‖(P ′
j+1 − P ′

j)v‖L2 ∼ ‖〈Ψj , v〉‖�2(∇j),
(3.78)

so that the L2 norm equivalence (3.59) is equivalent to

‖v‖2
L2

∼
∞∑

j=j0

‖(Pj − Pj−1)v‖2
L2

∼
∞∑

j=j0

‖(P ′
j − P ′

j−1)v‖2
L2

(3.79)

for any v ∈ L2, where Pj0−1 = P ′
j0−1 := 0.

The whole concept derived so far is based on the availability of both Φj and
Φ̃j . It should be pointed out that in the algorithms one does not actually
need Φ̃j explicitly for computations.
We recall next results that guarantee norm equivalences of the type (3.3) for
Sobolev spaces.

Multiresolution of Sobolev Spaces
Now let S be a multiresolution sequence consisting of closed subspaces of Hs

with the property (3.28) whose union is dense in Hs. The following result
from [D1] ensures under which conditions norm equivalences hold for the
Hs–norm.

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 27

Theorem 3.2. Let {Φj}∞j=j0
and {Φ̃j}∞j=j0

be uniformly stable, refinable,
biorthogonal collections and let Pj : Hs → S(Φj) be defined by (3.74).
If the Jackson-type estimate

inf
vj∈Sj

‖v − vj‖L2
<∼ 2−sj‖v‖Hs , v ∈ Hs, 0 < s ≤ d̄, (3.80)

and the Bernstein inequality

‖vj‖Hs <∼ 2sj‖vj‖L2 , vj ∈ Sj , s < t̄, (3.81)

hold for

Sj =
{

S(Φj)
S(Φ̃j)

}
with order d̄ =

{
d

d̃

}
and t̄ =

{
t
t̃

}
, (3.82)

then for
0 < σ := min{d, t}, 0 < σ̃ := min{d̃, t̃}, (3.83)

one has

‖v‖2
Hs ∼

∞∑
j=j0

22sj‖(Pj − Pj−1)v‖2
L2

, s ∈ (−σ̃, σ). (3.84)

Recall that we always write Hs = (H−s)′ for s < 0.
The regularity of S and S̃ is characterized by

t := sup {s : S(Φj) ⊂ Hs, j ≥ j0}, t̃ := sup {s : S(Φ̃j) ⊂ Hs, j ≥ j0}.
(3.85)

Recalling the representation (3.78), we can immediately derive the following
fact.

Corollary 3.1. Suppose that the assumptions in Theorem 3.2 hold. Then we
have the norm equivalence

‖v‖2
Hs ∼

∞∑
j=j0−1

22sj‖〈Ψ̃j , v〉‖2
�2(∇j)

, s ∈ (−σ̃, σ). (3.86)

In particular for s = 0 the Riesz basis property (3.59) of the Ψ, Ψ̃ relative to
L2 is recovered. For many applications it suffices to have (3.84) or (3.86) only
for certain s > 0 for which one only requires (3.80) and (3.81) for {Φj}∞j=j0

.
The Jackson estimates (3.80) of order d̃ for S(Φ̃j) imply the cancellation
properties (CP) (3.6), for example see [D4].

Remark 3.5.
When the wavelets live on Ω ⊂ R

n, (3.80) means that all polynomials up to
order d̃ are contained in S(Φ̃j). One also says that S(Φ̃j) is exact of order
d̃. On account of (3.58), this implies that the wavelets ψj,k are orthogonal to
polynomials up to order d̃ or have d̃’th order vanishing moments. By Taylor
expansion, this in turn yields (3.6).

28 A. Kunoth

Later we will use the following generalization of the discrete norms (3.79).
For s ∈ R let

|||v|||s :=

⎛⎝ ∞∑
j=j0

22sj‖(Pj − Pj−1)v‖2
L2

⎞⎠1/2

(3.87)

which by the relations (3.78) is also equivalent to

v s :=

⎛⎝ ∞∑
j=j0−1

22sj‖〈Ψ̃j , v〉‖2
�2(∇j)

⎞⎠1/2

. (3.88)

In this notation, (3.84) and (3.86) read

‖v‖Hs ∼ |||v|||s ∼ v s. (3.89)

In terms of such discrete norms, Jackson and Bernstein estimates hold with
constants equal to one [K2], which turns out to be useful later in Section 4.2.

Lemma 3.1. Let {Φj}∞j=j0
and {Φ̃j}∞j=j0

be uniformly stable, refinable, bi-
orthogonal collections and let the Pj be defined by (3.74). Then the estimates

v − Pjv s′ ≤ 2−(j+1)(s−s′) v s, v ∈ Hs, s′ ≤ s ≤ d, (3.90)

and
vj s ≤ 2j(s−s′) vj s′ , vj ∈ S(Φj), s′ ≤ s ≤ d, (3.91)

are valid, and correspondingly for the dual side.

The same results hold for the norm ||| · ||| defined in (3.87).

Reverse Cauchy–Schwarz Inequalities
The biorthogonality condition (3.61) together with direct and inverse esti-
mates implies the following reverse Cauchy–Schwarz inequalities for finite–
dimensional spaces [DK2]. It will be one essential ingredient for the discussion
of the LBB condition in Section 4.2.

Lemma 3.2. Let the assumptions in Theorem 3.2 be valid such that the
norm equivalence (3.84) holds for (−σ̃, σ) with σ, σ̃ defined by (3.83). Then
for any v ∈ S(Φj) there exists some ṽ∗ = ṽ∗(v) ∈ S(Φ̃j) such that

‖v‖Hs ‖ṽ∗‖H−s <∼ 〈v, ṽ∗〉 (3.92)

for any 0 ≤ s < min(σ, σ̃).

The proof of this result given in [DK2] for s = 1/2, in terms of the projectors
Pj defined in (3.74) and corresponding duals P ′

j , immediately carries over to
more general s. Recalling the representation (3.75) in terms of wavelets, the
reverse Cauchy inequality (3.92) attains the following sharp form.

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 29

Lemma 3.3. [K2] Let the assumptions of Lemma 3.1 hold. Then for every
v ∈ S(Φj) there exists some ṽ∗ = ṽ∗(v) ∈ S(Φ̃j) such that

v s ṽ∗
−s = 〈v, ṽ∗〉 (3.93)

for any 0 ≤ s ≤ min(σ, σ̃).

Proof. Every v ∈ S(Φj) can be written as

v =
j−1∑

r=j0−1

2sr
∑

k∈∇r

vr,kψr,k.

Setting now

ṽ∗ :=
j−1∑

r=j0−1

2−sr
∑

k∈∇r

vr,kψ̃r,k

with the same coefficients vj,k, the definition of · s yields by biorthogonality
(3.73)

v s ṽ∗
−s =

j−1∑
r=j0−1

∑
k∈∇r

|vj,k|2.

Combining this with the observation

〈v, ṽ∗〉 =
j−1∑

r=j0−1

∑
k∈∇r

|vj,k|2

confirms (3.93). �

Remark 3.6.
The previous proof reveals that the identity (3.93) is also true for elements
from infinite–dimensional spaces Hs and (Hs)′ for which Ψ and Ψ̃ are Riesz
bases.

Biorthogonal Wavelets on R

The construction of biorthogonal spline-wavelets on R from [CDF] for L2 =
L2(R) employs the multiresolution framework introduced at the beginning of
this section. There the φj,k are generated through the dilates and translates
of a single function φ ∈ L2,

φj,k = 2j/2φ(2j · −k). (3.94)

This corresponds to the idea of a uniform virtual underlying grid, explaining
the terminology uniform refinements. B–Splines on uniform grids are known
to satisfy refinement relations (3.33) in addition to being compactly sup-
ported and having L2–stable integer translates. For computations, they have

30 A. Kunoth

the additional advantage that they can be expressed as piecewise polynomi-
als. In the context of variational formulations for second order boundary value
problems, a well–used example are the nodal finite elements φj,k generated
by the cardinal B–Spline of order two, i.e., the piecewise linear continuous
function commonly called the ‘hat function’. For cardinal B–Splines as gen-
erators, a whole class of dual generators φ̃j,k (of arbitrary smoothness at the
expense of larger supports) can be constructed which are also generated by
one single function φ̃ through translates and dilates. By Fourier techniques,
one can construct from φ, φ̃ then a pair of biorthogonal wavelets ψ, ψ̃ whose
dilates and translates built as in (3.94) constitute Riesz bases for L2(R).
By taking tensor products of these functions, of course, one can generate
biorthogonal wavelet bases for L2(Rn).

Biorthogonal Wavelets on Domains
Now some constructions that exist have as a core ingredient tensor products
of one-dimensional wavelets on an interval derived from the biorthogonal
wavelets from [CDF] on R. On finite intervals in R, the corresponding con-
structions are usually based on keeping the elements of Φj , Φ̃j supported in-
side the interval while modifying those translates overlapping the end points
of the interval so as to preserve a desired degree of polynomial exactness.
A general detailed construction satisfying all these requirements has been
proposed in [DKU]. Here, just the main ideas for constructing a biorthogo-
nal pair Φj , Φ̃j and corresponding wavelets satisfying the above requirements
are sketched, where we apply the techniques derived at the beginning of this
section.
We start out with those functions from two collections of biorthogonal gen-
erators ΦR

j , Φ̃R

j for some fixed j ≥ j0 living on the whole real line whose
support has nonempty intersection with the interval (0, 1). In order to treat
the boundary effects separately, we assumed that the coarsest resolution level
j0 is large enough so that, in view of (3.31), functions overlapping one end of
the interval vanish at the other. One then leaves as many functions from the
collection ΦR

j , Φ̃R

j living in the interior of the interval untouched and modifies
only those near the interval ends. Note that keeping just the restrictions to the
interval of those translates overlapping the end points would destroy stability
(and also the cardinality of the primal and dual basis functions living on (0, 1)
since their supports do not have the same size). Therefore, modifications at
the end points are necessary; also, just discarding them from the collections
(3.29), (3.60) would produce an error near the end points. The basic idea
is essentially the same for all constructions of orthogonal and biorthogonal
wavelets on R adapted to an interval. Namely, one takes fixed linear combi-
nations of all functions in ΦR

j , Φ̃R

j living near the ends of the interval in such a
way that monomials up to the exactness order are reproduced there and such
that the generator bases have the same cardinality. Because of the boundary
modifications, the collections of generators are no longer biorthogonal there.
However, one can show in the case of cardinal B–Splines as primal generators

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 31

(which is a widely used class for numerical analysis) that biorthogonalization
is indeed possible. This yields collections denoted by Φ(0,1)

j , Φ̃(0,1)
j which then

satisfy (3.61) on (0, 1) and all assumptions required in Proposition 3.2.
For the construction of corresponding wavelets, first an initial stable comple-
tion M̌j,1 is computed by applying Gaussian eliminations to factor Mj,0 and
then to find a uniformly stable inverse of M̌j . Here we exploit that for cardi-
nal B–Splines as generators the refinement matrices Mj,0 are totally positive.
Thus, they can be stably decomposed by Gaussian elimination without pivot-
ing. Application of Proposition 3.2 then gives the corresponding biorthogonal
wavelets Ψ(0,1)

j , Ψ̃(0,1)
j on (0, 1) which satisfy the requirements in Corollary

3.1. It turns out that these wavelets coincide in the interior of the interval
again with those on all of R from [CDF]. An example of the primal wavelets
for d = 2 generated by piecewise linear continuous functions is displayed in
Figure 3.1 on the left. After constructing these basic versions, one can then
perform local transformations near the ends of the interval in order to im-
prove the condition or L2 stability constants, see [Bu, P] for corresponding
results and numerical examples.
We display spectral condition numbers for the FWT for two different con-
structions of biorthogonal wavelets on the interval computed in [P] in Table
3.1. The first column denotes the finest level on which the spectral con-
dition numbers of the FWT are computed. The next column contains the
numbers for the construction of biorthogonal spline-wavelets on the interval
from [DKU] for the case d = 2, d̃ = 4 while the last column displays the
numbers for a scaled version derived in [Bu]. Later in Section 4.1 we will see
how the transformation TJ is used for preconditioning.

j κ2(TDKU) κ2(TB)

4 4.743e+00 4.640e+00

5 6.221e+00 6.024e+00

6 8.154e+00 6.860e+00

7 9.473e+00 7.396e+00

8 1.023e+01 7.707e+00

9 1.064e+01 7.876e+00

10 1.086e+01 7.965e+00

j κ2(TDKU) κ2(TB)

11 1.097e+01 8.011e+00

12 1.103e+01 8.034e+00

13 1.106e+01 8.046e+00

14 1.107e+01 8.051e+00

15 1.108e+01 8.054e+00

16 1.108e+01 8.056e+00

Table 3.1. Computed spectral condition numbers [P] for the Fast Wavelet Trans-
form for different constructions of biorthogonal wavelets on the interval [Bu,DKU].

Also along these lines, biorthogonal generators and wavelets with homoge-
neous (Dirichlet) boundary conditions can be constructed. Since the Φ(0,1)

j

are locally near the boundary monomials which all vanish at 0, 1 except for
one, removing the one from Φ(0,1)

j which corresponds to the constant function
produces a collection of generators with homogeneous boundary conditions
at 0, 1. In order for the moment conditions (3.6) still to hold for the Ψj ,

32 A. Kunoth

the dual generators have to have complementary boundary conditions. A
corresponding construction has been carried out in [DS1] and implemented
in [Bu]. Homogeneous boundary conditions of higher order can be generated
accordingly.

By taking tensor products of the wavelets on (0, 1), in this manner bior-
thogonal wavelets for Sobolev spaces on (0, 1)n with or without homogeneous
boundary conditions are obtained. This construction can be further extended
to any other domain or manifold which is the image of a regular parametric
mapping of the unit cube. Some results on the construction of wavelets on
manifolds are summarized in [D3]. There are essentially two approaches. The
first idea is based on domain decomposition and consists of ‘glueing’ genera-
tors across interelement boundaries, see, e.g., [CTU,DS2]. These approaches
all have in common that the norm equivalences (3.86) for Hs = Hs(Γ) can
be shown to hold only for the range −1/2 < s < 3/2, due to the fact that
duality arguments apply only for this range because of the nature of a modi-
fied inner product to which biorthogonality refers. The other approach which
overcomes the above limitations on the ranges for which the norm equiva-
lences hold has been developed in [DS3] based on previous characterizations
of function spaces as Cartesian products from [CF]. The construction in [DS3]
has been optimized and implemented to construct wavelet bases on the sphere
in [KS,S], see Figure 3.1.

Figure 3.1. Primal wavelets for d = 2 on [0, 1] (left) and on a sphere (right)
from [S].

Of course, there are also other different approaches to constructing wavelet
bases with the above properties without using tensor products. On triangles a
construction of biorthogonal spline-wavelets has been introduced by [Stv] and
implemented in two spatial dimensions with an application to the numerical
solution of a linear elliptic boundary value problem in [Kr].

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 33

4 Problems in Wavelet Coordinates

4.1 Elliptic Boundary Value Problems

We now consider the wavelet representation of the elliptic boundary value
problem from Section 2.2. For H given by (2.8) or (2.9) let ΨH be a wavelet
basis with corresponding dual Ψ̃H which satisfies the properties (R), (L)
and (CP) from Section 3.1. Following the recipe from Section 3.3, expanding
y = yT ΨH, f = fT Ψ̃H and recalling (2.12), the wavelet representation of the
elliptic boundary value problem (2.14) is given by

Ay = f (4.1)

where
A := a(ΨH,ΨH), f := 〈ΨH, f〉. (4.2)

Then the mapping property (2.13) and the Riesz basis property (R) yield the
following fact.

Proposition 4.1. The infinite matrix A is a boundedly invertible mapping
from 	2 = 	2(IIH) into itself, and there exists finite positive constants cA ≤
CA such that

cA‖v‖ ≤ ‖Av‖ ≤ CA‖v‖, v ∈ 	2(IIH). (4.3)

Proof. For any v ∈ H with coefficient vector v ∈ 	2, we have by the lower
estimates in (3.3), (2.13) and the upper inequality in (3.8), respectively,

‖v‖ ≤ c−1
H ‖v‖H ≤ c−1

H c−1
A ‖Av‖H′ = c−1

H c−1
A ‖(Av)T Ψ̃H‖H′ ≤ c−2

H c−1
A ‖Av‖

where we have used the wavelet representation (3.25) for A. Likewise, the
converse estimate

‖Av‖ ≤ CH‖Av‖H′ ≤ CHCA‖v‖H ≤ C2
HCA‖v‖

follows by the lower inequality in (3.8) and the upper estimates in (2.13) and
(3.3). The constants appearing in (4.3) are therefore identified as cA := c2

HcA

and CA := c2
HCA. �

In the present situation where A is defined via the elliptic bilinear form a(·, ·),
Proposition 4.1 implies the following result with respect to preconditioning .
For II = IIH let the symbol Λ denote any finite subset of the index set II.
For the corresponding set of wavelets ΨΛ := {ψλ : λ ∈ Λ} denote by SΛ :=
spanΨΛ the respective finite-dimensional subspace of H. For the wavelet
representation of A in terms of ΨΛ,

AΛ := a(ΨΛ,ΨΛ), (4.4)

we obtain the following result.

34 A. Kunoth

Proposition 4.2. If a(·, ·) is H-elliptic according to (2.11), the finite matrix
AΛ is symmetric positive definite and its spectral condition number is bounded
uniformly in Λ, i.e.,

κ2(AΛ) ≤ CA

cA
, (4.5)

where cA, CA are the constants from (4.3).

Proof. Clearly, since AΛ is just a finite section of A, we have ‖AΛ‖ ≤ ‖A‖.
On the other hand, by assumption, a(·, ·) is H-elliptic which implies that
a(·, ·) is also elliptic on every finite subspace SΛ ⊂ H. Thus, we infer ‖A−1

Λ ‖ ≤
‖A−1‖, and we have

cA‖vΛ‖ ≤ ‖AΛvΛ‖ ≤ CA‖vΛ‖, vΛ ∈ SΛ. (4.6)

Together with the definition κ2(AΛ) := ‖AΛ‖ ‖A−1
Λ ‖ we obtain the claimed

estimate. �

In other words, representations of A with respect to properly scaled wavelet
bases for H entail well-conditioned system matrices AΛ independent of Λ.
This in turn means that the convergence speed of an iterative solver applied
to the corresponding finite system

AΛyΛ = fΛ (4.7)

does not deteriorate as Λ → ∞.
In summary, ellipticity implies stability of the Galerkin discretizations for
any set Λ ⊂ II. This is not the case for finite versions of the saddle point
problems discussed in Section 4.2.

Fast Wavelet Transform
Let us briefly summarize how in the situation of uniform refinements, i.e.,
when S(ΦJ) = S(ΨJ), the Fast Wavelet Transformation (FWT) TJ can be
used for preconditioning linear elliptic operators, together with a diagonal
scaling induced by the norm equivalence (3.86) [DK1]. Here we recall the
notation from Section 3.4 where the wavelet basis is in fact the (unscaled)
anchor basis from Section 3.1. Thus, the norm equivalence (3.3) using the
scaled wavelet basis ΨH is the same as (3.86) in the anchor basis. Recall
that the norm equivalence (3.86) implies that every v ∈ Hs can be expanded
uniquely in terms of the Ψ and its expansion coefficients v satisfy

‖v‖Hs ∼ ‖Dsv‖�2

where Ds is a diagonal matrix with entries Ds
(j,k),(j′,k′) = 2sjδj,j′δk,k′ . For

H ⊂ H1(Ω), the case s = 1 is relevant.
In a stable Galerkin scheme for (2.10) with respect to S(ΨJ) = S(ΨΛ), we
have therefore already identified the diagonal (scaling) matrix DJ consisting

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 35

of the finite portion of the matrix D = D1 for which j0 − 1 ≤ j ≤ J − 1. The
representation of A with respect to the (unscaled) wavelet basis ΨJ can be
expressed in terms of the Fast Wavelet Transform TJ , that is,

〈ΨJ , AΨJ 〉 = TT
J 〈ΦJ , AΦJ 〉TJ , (4.8)

where ΦJ is the single–scale basis for S(ΨJ). Thus, we first set up the operator
equation as in Finite Element settings in terms of the single–scale basis ΦJ .
Applying the Fast Wavelet Transform TJ together with DJ yields that the
operator

AJ := D−1
J TT

J 〈ΦJ , AΦJ 〉TJ D−1
J (4.9)

has uniformly bounded condition numbers independent of J . This can be
seen by combining the properties of A according to (2.13) with the norm
equivalences (3.3) and (3.8).
It is known that the boundary adaptations of the generators and wavelets
aggravate the absolute values of the condition numbers. Nevertheless, these
constants can be greatly reduced by sophisticated biorthogonalizations of the
boundary adapted functions [Bu]. Numerical tests confirm that the absolute
constants can be further improved by taking the inverse of the diagonal of
〈ΨJ , AΨJ 〉 instead of D−1

J for the scaling in (4.9) [Bu,CM,P]. Table 4.2 dis-
plays the condition numbers for discretizations of an operator in two spatial
dimensions for boundary adapted biorthogonal spline-wavelets in the case
d = 2, d̃ = 4 with such a scaling.

4.2 Saddle Point Problems Involving Boundary Conditions

As in the previous situation, we first derive an infinite wavelet representation
of the saddle point problem introduced in Section 2.3.
For H = Y × Q with Y = H1(Ω), Q = (H1/2(Γ))′ let two collections of
wavelet bases ΨY , ΨQ be available, each satisfying (R), (L) and (CP), with
respective duals Ψ̃Y , Ψ̃Q. Similar to the previous case, we expand y = yT ΨY

and p = pT ΨQ and test with the elements from ΨY , ΨQ. Then (2.21) attains
the form

L
(
y
p

)
:=
(

A BT

B 0

)(
y
p

)
=
(

f
g

)
, (4.10)

where
A := 〈ΨY , AΨY 〉 f := 〈ΨY , f〉,
B := 〈ΨQ, BΨY 〉, g := 〈ΨQ, g〉.

(4.11)

In view of the above assertions, the operator L is an 	2–automorphism, i.e.,
for every (v,q) ∈ 	2(II) = 	2(IIY × IIQ) we have

cL

∥∥∥∥(v
q

)∥∥∥∥ ≤
∥∥∥∥L(v

q

)∥∥∥∥ ≤ CL

∥∥∥∥(v
q

)∥∥∥∥ (4.12)

36 A. Kunoth

with constants cL, CL only depending on cL, CL from (2.26) and the constants
in the norm equivalences (3.3) and (3.8).
For saddle point problems with an operator L satisfying (4.12), finite sections
are in general not uniformly stable in the sense of (4.6). In fact, for discretiza-
tions on uniform grids, the validity of the corresponding mapping property
relies on a suitable stability condition, see e.g. [BF,GR]. The relevant facts
derived in [DK2] are as follows.
The bilinear form a(·, ·) defined in (2.7) is for c > 0 elliptic on all of Y =
H1(Ω) and, hence, also on any finite–dimensional subspace of Y . Let there
be two multiresolution analyses Y of H1(Ω) and Q of Q where the discrete
spaces are Yj ⊂ H1(Ω) and QΛ =: Q� ⊂ (H1/2(Γ))′. With the notation from
Section 3.4 and in addition superscripts referring to the domain on which the
functions live, these spaces are represented by

Yj = S(ΦΩ
j) = S(Ψj,Ω), Ỹj = S(Φ̃Ω

j) = S(Ψ̃j,Ω),

Q� = S(ΦΓ
�) = S(Ψ�,Γ), Q̃� = S(Φ̃Γ

�) = S(Ψ̃�,Γ).
(4.13)

Here the indices j and 	 refer to mesh sizes on the domain and the boundary,

hΩ ∼ 2−j and hΓ ∼ 2−�.

The discrete inf–sup condition, the LBB condition, for the pair Yj , Q� requires
that there exists a constant β1 > 0 independent of j and 	 such that

inf
q∈Q�

sup
v∈Yj

b(v, q)
‖v‖H1(Ω) ‖q‖(H1/2(Γ))′

≥ β1 > 0 (4.14)

holds. We have investigated in [DK2] the general case in arbitrary spatial
dimensions where the Q� are not trace spaces of Yj . Employing the reverse
Cauchy-Schwarz inequalities from Section 3.4, one can show that (4.14) is
satisfied provided that hΓ(hΩ)−1 = 2j−� ≥ cΩ > 1, similar to a condition
which was known for bivariate polygons and particular finite elements [Ba1,
GG].
It should be mentioned that the obstructions caused by the LBB condition
can be avoided by means of stabilization techniques proposed, e.g., in [St]
where, however, the location of the boundary of Ω relative to the mesh is
somewhat constrained. Another stabilization strategy based on wavelets has
been investigated in [Be]. A related approach which systematically avoids
restrictions of the LBB type is based on least squares techniques [DKS].
It is particularly interesting that adaptive schemes based on wavelets like the
one in Section 5.2 can be designed in such a way that the LBB condition
is automatically enforced which was first observed in [DDU]. More on this
subject can be found in [D4].
In order to get an impression of the value of the constants for the condition
numbers for AΛ in (4.5) and the corresponding ones for the saddle point
operator on uniform grids (4.12), we mention an example investigated and

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 37

implemented in [P]. In this example, Ω = (0, 1)2 and Γ is one face of its
boundary. In Table 4.2 from [P], the spectral condition numbers of A and
L with respect to two different constructions of wavelets for the case d = 2
and d̃ = 4 are displayed. We see next to the first column, in which the refine-
ment level j is listed, the spectral condition numbers of A with the wavelet
construction from [DKU] denoted by ADKU and with the modification in-
troduced in [Bu] and a further transformation [P] denoted by AB. The last
columns contain the respective numbers for the saddle point matrix L where
κ2(L) :=

√
κ(LT L).

j κ2(ADKU) κ2(AB) κ2(LDKU) κ2(LB)

3 5.195e+02 1.898e+01 1.581e+02 4.147e+01

4 6.271e+02 1.066e+02 1.903e+02 1.050e+02

5 6.522e+02 1.423e+02 1.997e+02 1.399e+02

6 6.830e+02 1.820e+02 2.112e+02 1.806e+02

7 7.037e+02 2.162e+02 2.318e+02 2.145e+02

8 7.205e+02 2.457e+02 2.530e+02 2.431e+02

9 7.336e+02 2.679e+02 2.706e+02 2.652e+02

Table 4.2. Spectral condition numbers of the operators A and L for different
constructions of biorthogonal wavelets on the interval [P].

4.3 Control Problems: Distributed Control

We now discuss appropriate wavelet formulations for PDE-constrained con-
trol problems with distributed control as introduced in Section 2.4. For
V ∈ {H,Z,U} let ΨV denote a wavelet basis with the properties (R), (L),
(CP) for V with dual basis Ψ̃V .
Let Z,U satisfy the embedding (2.29). In terms of wavelet bases and in view of
(3.10), the corresponding canonical injections correspond to a multiplication
by a diagonal matrix. That is, let DZ ,DH be such that

ΨZ = DZΨH , Ψ̃H = DHΨU . (4.15)

Since Z possibly induces a weaker and U a stronger topology, the diagonal
matrices DZ ,DH are such that their entries are nondecreasing in scale, and
there is a finite constant C such that

‖D−1
Z ‖, ‖D−1

H ‖ ≤ C. (4.16)

For instance, for H = Hα,Z = Hβ , or for H ′ = H−α, U = H−β , 0 ≤ β ≤ α,
DZ ,DH have entries (DZ)λ,λ = (DH)λ,λ = (Dα−β)λ,λ = 2(α−β)|λ|.
We expand y in ΨH and u in a wavelet basis ΨU for U ⊂ H ′,

u = uT ΨU = (D−1
H u)T ΨH′ . (4.17)

38 A. Kunoth

Following the derivation in Section 4.1, the linear constraints (2.28) attain
the form

Ay = f + D−1
H u (4.18)

where
A := a(ΨH ,ΨH), f := 〈ΨH , f〉. (4.19)

Recall that A has been assumed to be symmetric. The objective functional
(2.33) is stated in terms of the norms ‖ · ‖Z and ‖ · ‖U . For an exact rep-
resentation of these norms, corresponding Riesz operators RZ and RU de-
fined analogously to (3.20) would come into play which may not be explicitly
computable if Z,U are fractional Sobolev spaces. On the other hand, as
mentioned before, in many cases such a cost functional serves the purpose
of yielding unique solutions while there is some ambiguity in its exact for-
mulation. Hence, in search for a formulation which best supports numerical
realizations, it is often sufficient to employ norms which are equivalent to
‖ · ‖Z and ‖ · ‖U . Therefore, in view of the discussion in Section 3.2 we can
work with equivalent norms for ‖ · ‖Z , ‖ · ‖U in terms of the diagonal scaling
matrices Ds induced by the regularity of Z,U , or we can in addition include
the Riesz map R defined in (3.15) to represent ‖ · ‖Z , ‖ · ‖U by equivalent
norms.
In the numerical studies in [Bu], a somewhat better quality of the solution
is observed when R is included. In order to keep track of the appearance of
the Riesz maps in the linear systems derived below, here we choose the latter
variant.
Moreover, we expand the given observation function y∗ ∈ Z as

y∗ = 〈y∗, Ψ̃Z〉ΨZ =: (D−1
Z y∗)T ΨZ = yT

∗ ΨH . (4.20)

The way the vector y∗ is defined here, for notational convenience, may by
itself actually have infinite norm in 	2. However, its occurrence will always
include premultiplication by D−1

Z which is therefore always well–defined. In
view of (3.24), we obtain the relations

‖y − y∗‖Z ∼ ‖R1/2D−1
Z (y − y∗)‖ ∼ ‖D−1

Z (y − y∗‖. (4.21)

Note that here R = 〈Ψ,Ψ〉 (and not R−1) comes into play since y, y∗ have
been expanded in a scaled version of the primal wavelet basis Ψ. Hence,
equivalent norms for ‖·‖Z may involve R. As for describing equivalent norms
for ‖·‖U , recall that u is expanded in the basis ΨU for U ⊂ H ′. Consequently,
R−1 is the natural matrix to take into account when considering equivalent
norms, i.e., we choose here

‖u‖U ∼ ‖R−1/2u‖. (4.22)

Finally, we formulate the following control problem in (infinite) wavelet co-
ordinates.

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 39

(DCP) For given data D−1
Z y∗ ∈ 	2(IIZ), f ∈ 	2(IIH), and weight parameter

ω > 0, minimize the quadratic functional

J̌(y,u) := 1
2 ‖R1/2D−1

Z (y − y∗)‖2 + ω
2 ‖R−1/2u‖2 (4.23)

over (y,u) ∈ 	2(IIH) × 	2(IIH) subject to the linear constraints

Ay = f + D−1
H u. (4.24)

Remark 4.1.
Problem (DCP) can be viewed as (discretized yet still infinite–dimensional)
representation of the linear–quadratic control problem (2.27) together with
(2.28) in wavelet coordinates in the following sense. The functional J̌(y,u)
defined in (4.23) is equivalent to the functional J(y, u) from (2.27) in the
sense that there exist constants 0 < cJ ≤ CJ < ∞ such that

cJ J̌(y,u) ≤ J(y, u) ≤ CJ J̌(y,u) (4.25)

holds for any y = yT ΨH ∈ H, given y∗ = (D−1
Z y∗)T ΨZ ∈ Z and any

u = uT ΨU ∈ U . Moreover, in the case of compatible data y∗ = A−1f yield-
ing J(y, u) ≡ 0, the respective minimizers coincide, and y∗ = A−1f yields
J̌(y,u) ≡ 0. In this sense the new functional (4.23) captures the essential
features of the model minimization functional.

Once problem (DCP) is posed, we can apply variational principles to derive
necessary and sufficient conditions for a unique solution. All control problems
considered here are in fact simple in this regard, as we have to minimize a
quadratic functional subject to linear constraints, for which the necessary
conditions are also sufficient. In principle, there are two ways to derive the
optimality conditions for (DCP). In Section 2.4 we have already encountered
the technique via the Lagrangian.
We define for (DCP) the Lagrangian introducing the Lagrange multiplier ,
adjoint variable or adjoint state p as

Lagr(y,p,u) := J̌(y,u) + 〈p,Ay − f − D−1
H u〉. (4.26)

Then the KKT conditions δ Lagr(w) = 0 for w = p,y,u are, respectively,

Ay = f + D−1
H u, (4.27a)

AT p = −D−1
Z RD−1

Z (y − y∗), (4.27b)

ωR−1u = D−1
H p. (4.27c)

The first system resulting from the variation with respect to the Lagrange
multiplier always recovers the original constraints (4.24) and will be referred
to as the primal system or the state equation. Accordingly, we call (4.27b) the
adjoint or dual system, or the costate equation. The third equation (4.27c)
is sometimes denoted as the design equation. Although A is symmetric, we

40 A. Kunoth

continue to write AT for the operator of the adjoint system to distinguish it
from the primal system.
The coupled system (4.27) is to be solved later. However, in order to derive
convergent iterations and deduce complexity estimates, a different formula-
tion will be advantageous. It is based on the fact that A is, according to
Proposition 4.1, a boundedly invertible mapping on 	2. Thus, we can for-
mally invert (4.18) to obtain y = A−1f +A−1D−1

H u. Substitution into (4.23)
yields a functional depending only on u,

J(u) := 1
2 ‖R1/2D−1

Z
(
A−1D−1

H u − (y∗ − A−1f)
)
‖2 + ω

2 ‖R−1/2u‖2. (4.28)

Employing the abbreviations

Z := R1/2D−1
Z A−1D−1

H , (4.29a)

G := −R1/2D−1
Z (A−1f − y∗), (4.29b)

the functional simplifies to

J(u) = 1
2‖Zu − G‖2 + ω

2 ‖R−1/2u‖2. (4.30)

Proposition 4.3. [K4] The functional J is twice differentiable with first
and second variation

δJ(u) = (ZT Z + ωR−1)u − ZT G, δ2J(u) = ZT Z + ωR−1. (4.31)

In particular, J is convex so that a unique minimizer exists.

Setting
Q := ZT Z + ωR−1, g := ZT G, (4.32)

the unique minimizer u of (4.30) is given by solving

δJ(u) = 0 (4.33)

or, equivalently, the system
Qu = g. (4.34)

By definition (4.32), Q is a symmetric positive definite (infinite) matrix.
Hence, finite versions of (4.34) could be solved by gradient or conjugate gra-
dient iterative schemes. As the convergence speed of any such iteration de-
pends on the spectral condition number of Q, it is important to note the
following result.

Proposition 4.4. The (infinite) matrix Q is uniformly bounded on 	2, i.e.,
there exist constants 0 < cQ ≤ CQ < ∞ such that

cQ ‖v‖ ≤ ‖Qv‖ ≤ CQ ‖v‖, v ∈ 	2. (4.35)

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 41

The proof follows from (2.13) and (4.16), see [DK3]. Of course, in order
to make such iterative schemes for (4.34) practically feasible, the explicit
inversion of A in the definition of Q has to be avoided and replaced by an
iterative solver in turn. This is where the system (4.27) will come into play. In
particular, the third equation (4.27c) has the following interpretation which
will turn out to be very useful later.

Proposition 4.5. For a given control vector u if we solve (4.24) for y and
(4.27b) for p successively, then the residual for (4.34) attains the form

Qu − g = ωR−1u − D−1
U p. (4.36)

Proof. Solving consecutively (4.24) and (4.27b) and recalling the definitions
of Z, g (4.29a), (4.32) we obtain

D−1
H p = −D−1

H (A−T D−1
Z RD−1

Z (y − y∗))

= −ZT R1/2D−1
Z (A−1f + A−1D−1

H u − y∗)

= ZT G − ZT R1/2D−1
Z A−1D−1

H u

= g − ZT Zu.

Hence, the residual Qu − g attains the form

Qu − g = (ZT Z + ωR−1)u − g = ωR−1u − D−1
H p,

where we have used the definition of Q from (4.32). �

Having derived the optimality conditions (4.27), the next issue is their ef-
ficient numerical solution. In view of the fact that the system (4.27) still
involves infinite matrices and vectors, this also raises the question of how to
derive computable finite versions. By now we have investigated two scenarios.
The first version with respect to uniform discretizations is based on choosing
finite–dimensional subspaces of the function spaces under consideration. The
second version which deals with adaptive discretizations is actually based
on the infinite system (4.27). In both scenarios, a fully iterative numerical
scheme for the solution of (4.27) is designed along the following lines. The
basic iteration scheme is a gradient or conjugate gradient iteration for (4.34)
as an outer iteration where each application of Q is in turn realized by solving
the primal and the dual system (4.24) and (4.27b) also by a gradient or
conjugate gradient method as inner iterations.
For uniform discretizations for which we wanted to numerically test the role
of equivalent norms and the influence of Riesz maps in the cost functional
(4.23), we have used in [BK] as central iterative scheme the conjugate gradient
(CG) method. Since the interior systems are only solved up to discretization
error accuracy, the whole procedure may therefore be viewed as an inexact
conjugate gradient (CG) method . We stress already at this point that the
iteration numbers of such a method do not depend on the discretization level

42 A. Kunoth

as finite versions of all involved operators are also uniformly well–conditioned
in the sense of (4.35). In each step of the outer iteration, the error will be
reduced by a fixed factor ρ. Combined with a nested iteration strategy , it will
be shown that this yields an asymptotically optimal method in the number
of arithmetic operations.
Starting from the infinite coupled system (4.27), we have investigated in
[DK3] adaptive schemes which, given any prescribed accuracy ε > 0, solve
(4.27) such that the error for y,u,p is controlled by ε. Here we have used
a gradient scheme as basic iterative scheme since it somehow simplifies the
analysis, see Section 5.2.

4.4 Control Problems: Dirichlet Boundary Control

Having derived a representation in wavelet coordinates for both the saddle
point problem from Section 2.3 and the PDE-constrained control problem in
the previous section, it is straightforward to also find an appropriate repre-
sentation of the control problem with Dirichlet boundary control introduced
in Section 2.5. In order not to be overburdened with notation, we specifically
choose the control space on the boundary as U := Q(= (H1/2(Γ))′). For the
more general situation covered by (2.37), a diagonal matrix with nondecreas-
ing entries similar to (4.15) would come into play to switch between U and
Q. Thus, the exact wavelet representation of the constraints (2.36) is given
by the system (4.10), where we exchange the given Dirichlet boundary term
g by u in the present situation to express the dependence on the control in
the right hand side, i.e.,

L
(
y
p

)
:=
(

A BT

B 0

)(
y
p

)
=
(

f
u

)
. (4.37)

The derivation of a representer of the initial objective functional (2.35) is un-
der the embedding condition (2.37) ‖v‖Z <∼ ‖v‖Y for v ∈ Y now the same as
in the previous section, where all reference to the space H is to be exchanged
by reference to Y . We end up with the following minimization problem in
wavelet coordinates for the case of Dirichlet boundary control.
(DCP) For given data D−1

Z y∗ ∈ 	2(IIZ), f ∈ 	2(IIY), and weight parameter
ω > 0, minimize the quadratic functional

J̌(y,u) := 1
2 ‖R1/2D−1

Z (y − y∗)‖2 + ω
2 ‖R−1/2u‖2 (4.38)

over (y,u) ∈ 	2(IIY) × 	2(IIY) subject to the linear constraints (4.37),

L
(
y
p

)
=
(

f
u

)
.

The corresponding Karush-Kuhn-Tucker conditions can be derived by the
same variational principles as in the previous section by defining a Lagrangian

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 43

in terms of the functional J̌(y,u) and appending the constraints (4.18) with
the help of additional Lagrange multipliers (z,µ)T , see [K4]. We obtain in
this case a system of coupled saddle point problems

L
(
y
p

)
=
(

f
u

)
(4.39a)

LT

(
z
µ

)
=
(
−ωD−1

Z RD−1
Z (y − y∗)

0

)
(4.39b)

u = µ. (4.39c)

Again, the first system appearing here, the primal system, is just the con-
straints (4.18) while (3.9) will be referred to as the dual or adjoint system.
The specific form of the right hand side of the dual system emerges from
the particular formulation of the minimization functional (4.38). The (here
trivial) equation (4.39c) stems from measuring u just in 	2, representing mea-
suring the control in its natural trace norm. Instead of replacing µ by u in
(3.9) and trying to solve the resulting equations, (4.39c) will be essential to
devise an inexact gradient scheme. In fact, since L in (4.18) is an invertible
operator, we can rewrite J̌(y,u) by formally inverting (4.18) as a functional
of u, that is, J(u) := J̌(y(u),u) as above. The following result will be very
useful for the design of the outer–inner iterative solvers

Proposition 4.6. The first variation of J satisfies

δJ(u) = u − µ, (4.40)

where (u,µ) are part of the solution of (4.39). Moreover, J is convex so that
a unique minimizer exists.

Hence, equation (4.39c) is just δJ(u) = 0. For a unified treatment below of
both control problems considered in these notes, it will be useful to rewrite
(4.39c) as a condensed equation for the control u similar to (4.34). We for-
mally invert (4.37) and (4.39b) to obtain

Qu = g (4.41)

with the abbreviations

Q := ZT Z + ωI, g := ZT (y∗ − T�L−1I�f) (4.42)

and

Z := T�L−1I�, I� :=
(
0
I

)
, T� := (T 0). (4.43)

Proposition 4.7. The vector u as part of the solution vector (y,p, z,µ,u)
of (4.39) coincides with the unique solution u of the condensed equations
(4.41).

44 A. Kunoth

5 Iterative Solution

Each of the four problem classes discussed above finally leads to the problem
of solving a system

δJ(q) = 0 (5.1)

or, equivalently, a linear system

Mq = b, (5.2)

where M : 	2 → 	2 is a (possibly infinite) symmetric positive definite matrix
satisfying

cM‖v‖ ≤ ‖Mv‖ ≤ CM‖v‖, v ∈ 	2, (5.3)

for some constants 0 < cM ≤ CM < ∞ and where b ∈ 	2 is some given right
hand side.
A simple gradient method for solving (5.1) is

qk+1 := qk − α δJ(qk), k = 0, 1, 2, . . . (5.4)

with some initial guess q0. In all of the previously considered situations, it
has been asserted that there exists a fixed parameter α, depending on bounds
for the second variation of J, such that (5.4) converges and reduces the error
in each step by at least a fixed factor ρ < 1, i.e.,

‖q − qk+1‖ ≤ ρ‖q − qk‖, k = 0, 1, 2, . . . , (5.5)

where ρ is determined by ρ := ‖I − αM‖ < 1. Hence, the scheme (5.4) is a
convergent iteration for the possibly infinite system (5.2). Next we will need
to discuss how to reduce the infinite systems to computable finite versions.

5.1 Finite Systems on Uniform Grids

Let us first consider finite-dimensional trial spaces with respect to uniform
discretizations. For each of the Hilbert spaces H, in the wavelet setting this
means picking the index set of all indices up to some highest refinement level
J , i.e.,

IIJ,H := {λ ∈ IIH : |λ| ≤ J} ⊂ IIH

satisfying NJ,H := #IIJ,H < ∞. The representation of operators is then built
as in Section 3.3 with respect to this truncated index set which corresponds
to deleting all rows and columns that refer to indices λ such that |λ| > J ,
and correspondingly for functions. There is by construction also a coarsest
level of resolution denoted by j0.
Computationally the representation of operators according to (3.25) is in the
case of uniform grids always realized as follows. First, the operator is set up in
terms of the generator basis on the finest level J . This generator basis simply
consists of tensor products of B-Splines, or linear combinations of these near

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 45

the boundaries. The representation of an operator in the wavelet basis is
then achieved by applying the Fast Wavelet Transform (FWT) which needs
O(NJ,H) arithmetic operations and is therefore asymptotically optimal, for
example see [D2,DKU,K2] and Section 3.4.
In order not to overburden the notation, in this subsection let the resulting
system for N = NJ,H unknowns again be denoted by

Mq = b, (5.6)

where now M : R
N → R

N is a symmetric positive definite matrix satisfy-
ing (5.3) on R

N . It will be convenient to abbreviate the residual using an
approximation q̃ to q for (5.6) as

Resd(q̃) := Mq̃ − b. (5.7)

We will employ a basic conjugate gradient method that iteratively computes
an approximate solution qK to (5.6) with given initial vector q0 and given
tolerance ε > 0 such that

‖MqK − b‖ = ‖Resd(qK)‖ ≤ ε, (5.8)

where K denotes the number of iterations used. Later we specify ε depend-
ing on the discretization for which (5.6) is set up. The following CG scheme
contains a routine App(ηk,M,dk) which, in view of the problem classes dis-
cussed above, is to have the property that it approximately computes the
product Mdk up to a tolerance ηk = ηk(ε) depending on ε, i.e., the output
mk of App(ηk,M,dk) satisfies

‖mk − Mdk‖ ≤ ηk. (5.9)

For the cases where M = A, this is simply the matrix-vector multiplication
Mdk. For the situations where M may involve the solution of an additional
system, this multiplication will be only approximative.
CG [ε,q0,M,b] → qK

(i) Set d0 := b − Mq0 and r0 := −d0. Let k = 0.
(ii) While ‖rk‖ > ε

mk := App(ηk(ε),M,dk)

αk :=
(rk)T rk

(dk)T mk
qk+1 := qk + αkdk

rk+1 := rk + αkmk βk :=
(rk+1)T rk+1

(rk)T rk

dk+1 := −rk+1 + βkdk

k := k + 1

(5.10)

(iii) Set K := k − 1.

46 A. Kunoth

Briefly in the case M = A the final iterate qK indeed satisfies (5.8). From
the newly computed iterate qk+1 = qk + αkdk it follows by applying M
on both sides that Mqk+1 − b = Mqk − b + αkMdk which is the same as
Resd(qk+1) = Resd(qk) + αkMdk. By the initialization for rk used above,
this in turn is the updating term for rk, hence, rk = Resd(qk). After the
stopping criterion based on rk is met, the final iterate qK satisfies (5.8).
The routine CG computes the residual up to the stopping criterion ε. From
the residual and in view of (5.3), we can estimate the error in the solution as

‖q − qK‖ = ‖M−1(b − MqK)‖ ≤ ‖M−1‖ ‖Resd(qK)‖ ≤ ε

cM
, (5.11)

that is, it may deviate from the norm of the residual by a factor proportional
to the smallest eigenvalue of M.

Distributed Control
Let us now apply the solution scheme to the situation from Section 4.3
where Q now involves the inversion of finite-dimensional systems (4.27a)
and (4.27b). The material in the remainder of this subsection is essentially
contained in [BK].
We begin with a specification of the approximate computation of the right
hand side b which also contains applications of A−1.

RHS[ζ,A, f ,y∗] → bζ

(i) CG [cA
2C

cA
C2C2

0
ζ,0,A, f] → b1

(ii) CG [cA
2C ζ,0,AT ,−D−1

Z RD−1
Z (b1 − y∗)] → b2

(iii) bζ := D−1
H b2.

The tolerances used within the two conjugate gradient methods depend on
the constants cA, C, C0 from (2.13), (4.16) and (3.18), respectively. Since the
additional factor cA(CC0)−2 in the stopping criterion in step (i) in compari-
son to step (ii) is in general smaller than one, this means that in step (ii) the
primal system needs to be solved more accurately than the adjoint system.

Proposition 5.1. The result bζ of RHS[ζ,A, f ,y∗] satisfies

‖bζ − b‖ ≤ ζ. (5.12)

Proof. Recalling the definition (4.32) of b, step (iii) and step (ii) yield

‖bζ − b‖ ≤ ‖D−1
H ‖ ‖b2 − DHb‖

≤ C‖A−T ‖ ‖AT b2 − D−1
Z RD−1

Z (A−1f − b1 + b1 − y∗)‖

≤ C

cA

(cA
2C

ζ + ‖D−1
Z RD−1

Z (A−1f − b1)‖
)

.

(5.13)

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 47

Employing the upper bounds for D−1
Z and R, we arrive at

‖bζ − b‖ ≤ C

cA

(cA
2C

ζ + C2C2
0 ‖A−1‖ ‖f − Ab1‖

)
≤ C

cA

(
cA
2C

ζ +
C2C2

0

cA

cA
2C

cA
C2C2

0

ζ

)
= ζ. �

(5.14)

Accordingly, an approximation mη to the matrix-vector product Qd is the
output of the following routine App.

App[η,Q,d] → mη

(i) CG [cA
3C

cA
C2C2

0
η,0,A, f + D−1

H d] → yη

(ii) CG [cA
3C η,0,AT ,−D−1

Z RD−1
Z (yη − y∗)] → pη

(iii) mη := gη/3 + ωR−1d − D−1
H pη.

The choice of the tolerances for the interior application of CG in steps (i)
and (ii) will become clear from the following result.

Proposition 5.2. The result mη of App[η,Q,d] satisfies

‖mη − Qd‖ ≤ η. (5.15)

Proof. Denote by yd the exact solution of (4.27a) with d in place of u on the
right hand side, and by pd the exact solution of (4.27b) with yd on the right
hand side. Then we deduce from step (iii) and (4.36) combined with (3.18)
and (4.16)

‖mη − Qd‖ = ‖gη/3 − g + ωR−1d − D−1
U pη − (Qd − g)‖

≤ 1
3η + ‖ωR−1d − D−1

U pη − (ωR−1d − D−1
U pd)‖

≤ 1
3η + C‖pd − pη‖.

(5.16)

Denote by p̂ the exact solution of (4.27b) with yη on the right hand side.
Then we have pd − p̂ = −A−T D−1

Z RD−1
Z (yd − yη). It follows by (2.13),

(3.18) and (4.16) that

‖pd − p̂‖ ≤ C2C2
0

cA
‖yd − yη‖ ≤ 1

3C
η, (5.17)

where the last estimate follows by the choice of the threshold in step (i). Fi-
nally, the combination(5.16) and (5.17) together with (5.12) and the stopping
criterion in step (ii) readily confirms that

‖mη − Qd‖ ≤ 1
3η + C (‖pd − p̂‖ + ‖p̂ − pη‖)

≤ 1
3
η + C

(
1

3C
η +

1
3C

η

)
= η. �

48 A. Kunoth

The effect of perturbed applications of M in CG and more general Krylov
subspace schemes with respect to convergence has been investigated in a
numerical linear algebra context for a given linear system (5.6) in several
papers, for example see [ES]. Here we have chosen the ηi to be proportional
to the outer accuracy ε incorporating a safety factor accounting for the values
of βi and ‖ri‖.
Finally, we can formulate a full nested iteration strategy for finite systems
(4.27) on uniform grids which employs outer and inner CG routines as follows.
The scheme starts at the coarsest level of resolution j0 with some initial guess
uj0

0 and successively solves (4.34) with respect to each level j until the norm
of the current residual is below the discretization error on that level.
In wavelet coordinates, ‖ · ‖ corresponds to the energy norm. If we employ
as in [BK] on the primal side for approximation linear combinations of B–
splines of order d, the discretization error is for smooth solutions expected
to be proportional to 2−(d−1)j . Then the refinement level is successively in-
creased until on the finest level J a prescribed tolerance proportional to the
discretization error 2−(d−1)J is met. In the following, superscripts on vectors
denote the refinement level on which this term is computed. The given data
yj
∗, f j are supposed to be accessible on all levels. On the coarsest level, the

solution of (4.34) is computed exactly up to double precision by QR decom-
position. Subsequently, the results from level j are prolongated onto the next
higher level j+1. Using wavelets, this is accomplished by simply adding zeros:
wavelet coordinates have the character of differences, this prolongation corre-
sponds to the exact representation in higher resolution wavelet coordinates.
The resulting Nested–Iteration–Incomplete–Conjugate–Gradient Algorithm is
the following.

NEICG[J] → uJ

(i) Initialization for coarsest level j := j0
(1) Compute right hand side gj0 = (ZT G)j0 by QR decompo-

sition using (4.29).
(2) Compute solution uj0 of (4.34) by QR decomposition.

(ii) While j < J
(1) Prolongate uj → uj+1

0 by adding zeros, set j := j + 1.
(2) Compute right hand side using RHS [2−(d−1)j ,A, f j ,yj

∗] →
gj.

(3) Compute solution of (4.34) using CG [2−(d−1)j ,uj
0,Q,gj] →

uj.

Recall that step (ii.3) requires multiple calls of App[η,Q,d], which in turn
invokes both CG [. . . ,A, . . .] as well as CG [. . . ,AT , . . .] in each application.
On account of (2.13) and (4.35), finite versions of the system matrices A
and Q have uniformly bounded condition numbers, entailing that each CG
routine employed in the process reduces the error by a fixed rate ρ < 1
in each iteration step. Let NJ ∼ 2nJ be the total number of unknowns (for

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 49

yJ ,uJ and pJ) on the highest level J . Employing the CG method only on the
highest level, one needs O(J) = O(log ε) iterations to achieve the prescribed
discretization error accuracy εJ = 2−(d−1)J . As each application of A and Q
requires O(NJ) operations, the solution of (4.34) by CG only on the finest
level requires O(J NJ) arithmetic operations.

Proposition 5.3. [BK] If the residual (4.36) is computed up to discretiza-
tion error proportional to 2−(d−1)j on each level j and the corresponding
solutions are taken as initial guesses for the next higher level, NEICG is an
asymptotically optimal method in the sense that it provides the solution uJ up
to discretization error on level J in an overall number of O(NJ) arithmetic
operations.

Proof. In the above notation, nested iteration allows one to get rid of the
factor J in the total number of operations. Starting with the exact solution
on the coarsest level j0, in view of the uniformly bounded condition numbers
of A and Q, one only needs a fixed number of iterations to reduce the error
up to discretization error accuracy εj = 2−(d−1)j on each subsequent level
j, taking the solution from the previous level as initial guess. Thus, on each
level, one needs O(Nj) operations to realize discretization error accuracy.
Since the spaces are nested and the number of unknowns on each level grows
like Nj ∼ 2nj , by a geometric series argument the total number of arithmetic
operations stays proportional to O(NJ). �

Numerical Examples
As an illustration of the ingredients for a distributed control problem, we
consider the following example taken from [BK] with the Helmholtz operator
in (2.6) (a = I, c = 1) and homogeneous Dirichlet boundary condition. A
non–constant right hand side f(x) := 1 + 2.3 exp(−15|x − 1

2 |) is chosen, and
the target state is set to a constant y∗ ≡ 1. We first investigate the role the
different norms ‖ · ‖Z and ‖ · ‖U in (2.27), encoded in the diagonal matrices
DZ ,DH from (4.15), have on the solution. We see in Figure 5.1 for the choice
U = L2 and Z = Hs(0, 1) for different values of s varying between 0 and 1
the solution y (left) and the corresponding control u (right) for fixed weight
ω = 1. As s is increased, a stronger tendency of y towards the prescribed state
y∗ ≡ 1 can be observed which is, however, deterred from reaching this state
by the homogeneous boundary conditions. Extensive studies of this type can
be found in [Bu,BK].
As an example displaying the performance of the proposed fully iterative
scheme NEICG in two spatial dimensions, Table 5.3 from [BK] is included.
This is an example of a control problem for the Helmholtz operator with
Neumann boundary conditions. The stopping criterion for the outer iteration
(relative to ‖ · ‖ which corresponds to the energy norm) on level j is chosen
to be proportional to 2−j . The second column displays the final value of the
residual of the outer CG scheme on this level, i.e., ‖rj

K‖ = ‖Resd(uj
K)‖.

50 A. Kunoth

0

0.05

0.10

0.15

0.20

0.25

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 x

s = 0
s = 0.95

s = 1
s = 0.98

0

0.2

0.4

0.6

0.8

1

u

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 x

s = 0
s = 0.95

s = 1
s = 0.98

Figure 5.1. Distributed control problem for elliptic problem with Dirichlet bound-
ary conditions, a peak as right hand side f , y∗ ≡ 1, ω = 0, U = L2 and varying
Z = Hs(0, 1).

The next three columns show the number of outer CG iterations (#O) for
Q according to the App scheme followed by the maximum number of inner
iterations for the primal system (#E), the adjoint system (#A) and the design
equation (#R). We clearly see the effect of the uniformly bounded condition
numbers of the operators involved. The last columns display different versions
of the actual error in the state y and the control u when compared to the fine
grid solution (R denotes restriction of the fine grid solution to the actual grid,
and P prolongation). Here we can see the effect of the constants appearing in
(5.11), that is, the error is very well controlled via the residual. More results
for up to three spatial dimensions can be found in [Bu,BK].

j ‖rj
K‖ #O #E #A #R ‖R(yJ)−yj‖ ‖yJ−P (yj)‖ ‖R(uJ)−uj‖ ‖uJ−P (uj)‖

3 6.86e-03 1.48e-02 1.27e-04 4.38e-04
4 1.79e-05 5 12 5 8 2.29e-03 7.84e-03 4.77e-05 3.55e-04
5 1.98e-05 5 14 6 9 6.59e-04 3.94e-03 1.03e-05 2.68e-04
6 4.92e-06 7 13 5 9 1.74e-04 1.96e-03 2.86e-06 1.94e-04
7 3.35e-06 7 12 5 9 4.55e-05 9.73e-04 9.65e-07 1.35e-04
8 2.42e-06 7 11 5 10 1.25e-05 4.74e-04 7.59e-07 8.88e-05
9 1.20e-06 8 11 5 10 4.55e-06 2.12e-04 4.33e-07 5.14e-05

10 4.68e-07 9 10 5 9 3.02e-06 3.02e-06 2.91e-07 2.91e-07

Table 5.3. Iteration history for a two-dimensional distributed control problem with
Neumann boundary conditions, ω = 1, Z = H1(Ω), U = (H0.5(Ω))′.

Dirichlet Boundary Control
For the system of saddle point problems (4.39) arising from the control prob-
lem with Dirichlet boundary control in Section 2.5, a fully iterative algorithm
NEICG can also be designed along the lines above. Again the design equa-
tion (4.39c) for u serves as the equation for which a basic iterative scheme
(5.4) can be posed. Of course, the CG method for A then has to be replaced
by a convergent iterative scheme for saddle point operators L like Uzawa’s
algorithm. Also the discretization has to be chosen such that the LBB condi-
tion is satisfied, see Section 4.2. Details can be found in [K4]. Alternatively,

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 51

since L has a uniformly bounded condition number, the CG scheme can, in
principle, also be applied to LT L. The performance of wavelet schemes on
uniform grids for such systems of saddle point problems arising from optimal
control is currently under investigation [P].

Numerical Example
For illustration of the choice of different norms for the Dirichlet boundary con-
trol problem, consider the following example taken from [P]. Here we actually
have the situation of controlling the system through the control boundary Γ
on the right hand side of Figure 5.2 while a prescribed state y∗ ≡ 1 on the ob-
servation boundary Γy opposite the control boundary is to be achieved. The
right hand side is chosen as constant f ≡ 1, and ω = 1. Each layer in Figure
5.2 corresponds to the state y for different values of s when the observation
term is measured in Hs(Γy), that is, the objective functional (2.35) contains
a term ‖y − y∗‖2

Hs(Γy) for s = 0, 1/10, 2/10, 3/10, 4/10, 5/10, 7/10, 9/10 from
bottom to top. We see that as the smoothness index s for the observation in-
creases, the state moves towards the target state at the observation boundary.

Figure 5.2. State y of the Dirichlet boundary control problem using the objective
functional J(y, u) = 1

2
‖y− y∗‖2

Hs(Γy) + 1
2
‖u‖2

H1/2(Γ)
for s = 0, 0.1, 0.2, 0.3, 0.4, 0.5,

0.7, 0.9 (from bottom to top) on resolution level J = 5.

5.2 Adaptive Schemes

In case of the appearance of singularities caused by the data or the domain, a
prescribed accuracy may require discretizations with respect to uniform grids
to spend a large number of degrees of freedom in areas where the solution
is actually smooth. Hence, although the above numerical scheme NEICG is

52 A. Kunoth

of optimal linear complexity, the degrees of freedom are not implanted in
an optimal way. In these situations, one expects adaptive schemes to work
favourably which judiciously place degrees of freedom where singularities oc-
cur. Thus, the guiding line for adaptive schemes is to reduce the total number
of degrees of freedom when compared to discretizations on a uniform grid.
This does not mean that the previous investigations with respect to uniform
discretizations are dispensable. In fact, the above results on conditioning
carry over to the adaptive case, the solvers are still linear in the number of
arithmetic operations and, in particular, one expects to recover the uniform
situation when the solutions are smooth. Much on adaptivity for variational
problems and the relation to nonlinear approximation can be found in [D4].
The starting point for adaptive wavelet schemes systematically derived for
variational problems in [CDD1, CDD2, CDD3] is the infinite formulation in
wavelet coordinates as derived for the different problem classes in Section 4.
These algorithms have been proven to be optimal in the sense that they match
the optimal work/accuracy rate of the wavelet-best N -term approximation,
a concept which has been introduced in [CDD1]. The schemes start out with
formulating algorithmic ingredients which are then step by step reduced to
computable quantities. We follow in this section the material for the distrib-
uted control problem from [DK3]. An extension to Dirichlet control problem
involving saddle point problems can be found in [K5]. It should be pointed
out that the theory is neither confined to symmetric A nor to the positive
definite case.

Algorithmic Ingredients
We start out again with a very simple iterative scheme for the design equation.
In view of (4.35) and the fact that Q is positive definite, there exists a fixed
positive parameter α such that in the Richardson iteration (which is a special
case of a gradient method)

uk+1 = uk + α(g − Quk) (5.18)

the error is reduced in each step by at least a factor

ρ := ‖I − αQ‖ < 1, (5.19)

‖u − uk+1‖ ≤ ρ ‖u − uk‖, k = 0, 1, 2, . . . , (5.20)

where u is the exact solution of (4.34). As the involved system is still infi-
nite, we aim at carrying out this iteration approximately with dynamically
updated accuracy tolerances.
The central idea of the wavelet-based adaptive schemes is to start from the
infinite system in wavelet coordinates (4.27) and step by step reduce the
routines to computable versions of applying the infinite matrix Q and the
evaluation of the right hand side g of (4.34) involving the inversion of A.
The main conceptual tools from [CDD1,CDD2,CDD3] are the following.

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 53

We first assume that we have a routine at our disposal with the following
property. Later it will be shown how to realize this routine in the concrete
case.
Res [η,Q,g,v] → rη

determines for a given tolerance η > 0 a finitely supported
sequence rη satisfying

‖g − Qv − rη‖ ≤ η. (5.21)

The schemes considered below will also contain the following routine.
Coarse [η,w] → wη

determines for any finitely supported input vector w a vec-
tor wη with smallest possible support such that

‖w − wη‖ ≤ η. (5.22)

This ingredient will eventually play a crucial role in controlling the complexity
of the scheme although at this stage its role is not yet apparent. A detailed
description of Coarse can be found in [CDD1]. The basic idea is to first sort
the entries of w by size. Then one subtracts squares of their moduli until
the sum reaches η2, starting from the smallest entry. A quasi–sorting based
on binary binning can be shown to avoid the logarithmic term in the sorting
procedure at the expense of the resulting support size being at most a fixed
constant of the minimal size, see [Br].
Next a perturbed iteration is designed which converges in the following sense:
for every target accuracy ε, the scheme produces after finitely many steps
a finitely supported approximate solution with accuracy ε. To obtain a cor-
rectly balanced interplay between the routines Res and Coarse, we need
the following control parameter. Given (an estimate of) the reduction rate ρ
and the step size parameter α from (5.19), let K denote the minimal integer
	 for which ρ�−1(α	 + ρ) ≤ 1

10 .
In the following always denoting u to be the exact solution of (4.34), a per-
turbed version of (5.18) for a fixed target accuracy ε > 0 is the following.

Solve [ε,Q,g,q0, ε0] → qε

(i) Given an initial guess q0 and an error bound ‖q − q0‖ ≤ ε0;
set j = 0.

(ii) If εj ≤ ε, stop and set qε := qj. Otherwise set v0 := qj.
(1) For k = 0, . . . , K − 1 compute Res [ρkεj ,Q,g,vk] → rk and

vk+1 := vk + αrk. (5.23)

(2) Apply Coarse [25εj ,vK] → qj+1; set εj+1 := 1
2εj, j + 1 → j

and go to (ii).

54 A. Kunoth

In the case that no particular initial guess is known, we initialize q0 = 0, set
ε0 := c−1

Q ‖g‖ and briefly write then Solve [ε,Q,g] → qε.
In a straightforward manner, perturbation arguments yield the convergence
of this algorithm [CDD2,CDD3].

Proposition 5.4. The iterates qj generated by Solve [ε,Q,g] satisfy

‖q − qj‖ ≤ εj for any j ≥ 0, (5.24)

where εj = 2−jε0.

In order to derive appropriate numerical realizations of Solve, recall that
(4.34) is equivalent to the KKT conditions (4.27). Although the matrix A
is always assumed to be symmetric here, the distinction between the system
matrices for the primal and the dual system, A and AT , may be helpful.
The strategy in each step for approximating the residual g − Quk, that is,
realization of the routine Res for the problem (4.34), is based upon the result
stated in Proposition 4.5. In turn, this requires solving the two auxiliary sys-
tems in (4.27). Since the residual only has to be approximated, these systems
will only have to be solved approximately. These approximate solutions, in
turn, will be provided again by employing Solve but this time with respect
to suitable residual schemes tailored to the systems in (4.27). In our special
case, the matrix A is symmetric positive definite, and the choice of wavelet
bases ensures the validity of (2.13). Thus, (5.19) holds for A and AT so that
the scheme Solve can indeed be invoked. Although we conceptually use the
fact that a gradient iteration for the reduced problem (4.34) reduces the error
for u in each step by a fixed amount, employing (4.27) for the evaluation of
the residuals will generate as byproducts approximate solutions to the exact
solution triple (y,p,u) of (4.27).
Under this hypothesis, next we formulate the ingredients for suitable ver-
sions SolvePRM and SolveADJ of Solve for the systems in (4.27). Specifi-
cally, this requires identifying residual routines ResPRM and ResADJ for the
systems SolvePRM and SolveADJ. The main task in both cases is to apply
the operators A,AT , D−1

H and R1/2D−1
Z . Again we assume for the moment

that routines for the application of these operators are available, i.e., that for
any L ∈ {A,AT ,D−1

H ,R1/2D−1
Z } we have a scheme at our disposal with the

following property.
Apply[η,L,v] → wη

determines for any finitely supported input vector v and any
tolerance η > 0 a finitely supported output wη which satisfies

‖Lv − wη‖ ≤ η. (5.25)

The scheme SolvePRM for the first system in (4.27) is then defined by

SolvePRM [η,A,D−1
H , f ,v,y0, ε0] := Solve [η,A, f + D−1

H v,y0, ε0],

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 55

where y0 is an initial guess for the solution y of Ay = f+D−1
H v with accuracy

ε0. The scheme Res for Step (ii) in Solve is in this case realized by a new
routine ResPRM defined as follows.
ResPRM [η,A,D−1

H , f ,v,y] → rη

determines for any positive tolerance η, a given finitely sup-
ported v and any finitely supported input y a finitely sup-
ported approximate residual rη satisfying (5.21), that is,

‖f + D−1
H v − Ay − rη‖ ≤ η, (5.26)

as follows:
(I) Apply[13η,A,y] → wη;

(II) Coarse[13η, f] → fη;
(III) Apply[13η,D−1

H ,v] → zη;
(IV) set rη := fη + zη − wη.

For ResPRM and the subsequent variants of Res, by the triangle inequality
one can show that indeed (5.26) or (5.21) holds.
Similarly, one needs a version of Solve for the approximate solution of the
second system (4.27b), AT p = −D−1

Z RD−1
Z (y − y∗), which depends on an

approximate solution y of the primal system and possibly on some initial
guess p0 with accuracy ε0. Here we set

SolveADJ [η,A,D−1
Z ,y∗,y,p0, ε0] := Solve [η,AT,D−1

Z RD−1
Z (y−y),p0, ε0].

As usual we assume that the data f ,y∗ are approximated in a preprocess-
ing step with sufficient accuracy. A suitable residual approximation scheme
ResADJ for Step (ii) of this version of Solve is the following where the main
issue is the approximate evaluation of the right hand side.
ResADJ [η,A,D−1

Z ,y∗,y,p] → rη

determines for any positive tolerance η, given finitely sup-
ported data y,y∗ and any finitely supported input p an ap-
proximate residual rη satisfying (5.21), i.e.,

‖ − D−1
Z RD−1

Z (y − y∗) − AT p − rη‖ ≤ η, (5.27)

as follows:
(I) Apply[13η,AT ,p] → wη;

(II) Apply[16 η,D−1
Z ,y] → zη; Coarse[16 η,y∗] → (y∗)η;

set dη := (yZ)η − zη;
Apply[16η,D−1

Z ,dη] → v̂η; Apply[16η,R, v̂η] → vη;
(III) set rη := vη − wη.

Finally, we can define the residual scheme for the version of Solve applied
to (4.34). We shall refer to this specification as SolveDCPwith corresponding
residual scheme is ResDCP. Since the scheme is based on Proposition 4.5, it
will involve several parameters stemming from the auxiliary systems (4.27).

56 A. Kunoth

ResDCP[η,Q,g, ỹ, δy, p̃, δp,v, δv] → (rη, ỹ, δy, p̃, δp)

determines for any approximate solution triple (ỹ, p̃,v) of
the system (4.27) satisfying

‖y − ỹ‖ ≤ δy, ‖p − p̃‖ ≤ δp, ‖u − v‖ ≤ δv, (5.28)

an approximate residual rη such that

‖g − Qv − rη‖ ≤ η. (5.29)

Moreover, the initial approximations ỹ, p̃ are overwritten
by new approximations ỹ, p̃ satisfying (5.28) with new bounds
δy and δp defined in (5.30) below, as follows:

(i) SolvePRM[13cA η,A,D−1
H , f ,v, ỹ, δy] → yη;

(ii) SolveADJ[13η,A,D−1
Z ,y∗,yη, p̃, δp] → pη;

(iii) Apply[13η,D−1
H ,pη] → qη; set rη := qη − ωv;

(iv) set ξy := c−1
A δv + 1

3cAη, ξp := c−2
A δv + 2

3η; replace ỹ, δy and
p̃, δp by

ỹ := Coarse[4ξy,yη], δy := 5 ξy,
p̃ := Coarse[4ξp,pη], δp := 5 ξp.

(5.30)

Step (iv) already indicates the conditions on the tolerance η and the accuracy
bound δv under which the new error bounds in (5.30) are actually tighter.
The precise relation between η and δv in the context of SolveDCP is not
apparent yet and emerges as well as the claimed estimates (5.29) and (5.30)
from the complexity analysis in [DK3].
Finally, the scheme SolveDCP attains the following form with the error re-
duction factor ρ from (5.19) and α from (5.18).
SolveDCP [ε,Q,g] → uε

(i) Let q0 := 0 and ε0 := c−1
A (‖yZ‖ + c−1

A ‖f‖).
Let ỹ := 0, p̃ := 0 and set j = 0.
Define δy := δy,0 := c−1

A (‖f‖+ε0) and δp := δp,0 := c−1
A (δy,0 +‖yZ‖).

(ii) If εj ≤ ε, stop and set uε := uj, yε = ỹ, pε = p̃.
Otherwise set v0 := uj.

(1) For k = 0, . . . , K − 1, compute
ResDCP [ρkεj ,Q,g, ỹ, δy, p̃, δp,vk, δk] → (rk, ỹ, δy, p̃, δp),
where δ0 := εj and δk := ρk−1(αk + ρ)εj;
set

vk+1 := vk + αrk. (5.31)

(2) Coarse [25εj ,vK] → uj+1; set εj+1 := 1
2εj, j + 1 → j and go

to (ii).

By overwriting ỹ, p̃ at the last stage prior to the termination of SolveDCP

one has δv ≤ ε, η ≤ ε, so that the following fact is an immediate consequence
of (5.30).

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 57

Proposition 5.5. The outputs yε and pε produced by SolveDCP in addition
to uε are approximations to the exact solutions y,p of (4.27) satisfying

‖y − yε‖ ≤ 5ε (c−1
A + 1

3cA), ‖p − pε‖ ≤ 5ε (c−2
A + 2

3).

Complexity Analysis
Proposition 5.4 states that the routine Solve converges for an arbitrary given
accuracy provided that there is a routine Res satisfying the property (5.21).
Then we have broken down step by step the necessary ingredients to derive
computable versions which satisfy these requirements. What we finally want
to show is that the routines are optimal in the sense that they provide the
optimal work/accuracy rate in terms of best N–term approximation. The
complexity analysis given next also reveals the role of the routine Coarse
within the algorithms and the particular choices of the thresholds in Step
(iv) of ResDCP.
In order to be able to assess the quality of the adaptive algorithm, the notion
of optimality has to be clarified first in the present context.

Definition 5.1. The scheme Solve has an optimal work/accuracy rate s
if the following holds: Whenever the error of best N–term approximation
satisfies

‖q − qN‖ := min
suppv≤N

‖q − v‖ <∼ N−s,

then the solution qε is generated by Solve at an expense that also stays pro-
portional to ε−1/s and in that sense matches the best N–term approximation
rate.

Note that this implies that #suppqε also stays proportional to ε−1/s. Thus,
our benchmark is that whenever the solution of (4.34) can be approximated
by N terms at rate s, Solve recovers that rate asymptotically. If q is known,
the wavelet-best N–term approximation qN of q is given by picking the N
largest terms in modulus from q, of course. However, when q is the (unknown)
solution of (4.34) this information is certainly not available.
Since we are here in the framework of sequence spaces 	2, the formulation
of appropriate criteria for complexity will be based on a characterization of
sequences which are sparse in the following sense. We consider sequences v
for which the best N–term approximation error decays at a particular rate
(Lorentz spaces). That is, for any given threshold 0 < η ≤ 1, the number of
terms exceeding that threshold is controlled by some function of this thresh-
old. In particular, for some 0 < τ < 2 set

	w
τ := {v ∈ 	2 : #{λ ∈ II : |vλ| > η} ≤ Cv η−τ , for all 0 < η ≤ 1}. (5.32)

This determines a strict subspace of 	2 only when τ < 2. Smaller τ ’s indicate
sparser sequences. For a given v ∈ 	w

τ let Cv be the smallest constant for
which (5.32) holds. Then one has |v|�w

τ
:= supn∈N n1/τv∗

n = C
1/τ
v , where

58 A. Kunoth

v∗ = (v∗
n)n∈N is a non–decreasing rearrangement of v. Furthermore, ‖v‖�w

τ
:=

‖v‖ + |v|�w
τ

is a quasi–norm for 	w
τ . Since the continuous embeddings 	τ ↪→

	w
τ ↪→ 	τ+ε ↪→ 	2 hold for τ < τ + ε < 2, 	w

τ is ‘close’ to 	τ and is therefore
called weak 	τ . The following crucial result connects sequences in 	w

τ to best
N–term approximation [CDD1].

Proposition 5.6. Let positive real numbers s and τ be related by
1
τ = s + 1

2 . (5.33)

Then v ∈ 	w
τ if and only if ‖v − vN‖ <∼ N−s ‖v‖�w

τ
.

The property that an array of wavelet coefficients v belongs to 	τ is equivalent
to the fact that the expansion vT ΨH in terms of a wavelet basis ΨH for a
Hilbert space H belongs to a certain Besov space which describes a much
weaker regularity measure than a Sobolev space of corresponding order, see,
e.g., [Co,DV]. Thus, Proposition 5.6 expresses how much loss of regularity can
be compensated by judiciously placing the degrees of freedom in a nonlinear
way in order to retain a certain optimal order of error decay.
A key criterion for a scheme Solve to exhibit an optimal work/accuracy rate
can be formulated through the following property of the respective residual
approximation. The routine Res is called τ∗–sparse for some 0 < τ∗ < 2 if
the following holds: Whenever the solution q of (4.34) belongs to 	w

τ for some
τ∗ < τ < 2, then for any v with finite support the output rη of Res [η,Q,g,v]
satisfies

‖rη‖�w
τ

<∼ max{‖v‖�w
τ
, ‖q‖�w

τ
} and # supp rη <∼ η−1/s max{‖v‖1/s

�w
τ

, ‖q‖1/s
�w

τ
}

where s and τ are related by (5.33), and the number of floating point opera-
tions needed to compute rη stays proportional to # supp rη.
The analysis in [CDD2] then yields the following result.

Theorem 5.1. If Res is τ∗–sparse and if the exact solution q of (4.34) be-
longs to 	w

τ for some τ > τ∗, then for every ε > 0 algorithm Solve [ε,Q,g]
produces after finitely many steps an output qε (which, according to Propo-
sition 5.4, always satisfies ‖q− qε‖ < ε) with the following properties: For s
and τ related by (5.33), one has

#suppqε
<∼ ε−1/s‖q‖1/s

�w
τ

, ‖qε‖�w
τ

<∼ ‖q‖�w
τ
, (5.34)

and the number of floating point operations needed to compute qε remains
proportional to #suppqε.

Hence, τ∗-sparsity of the routine Res implies asymptotically optimal work/ac-
curacy rates for Solve for a certain range of decay rates given by τ∗. We
stress that the algorithm itself does not require any a priori knowledge about
the solution such as its actual best N–term approximation rate. Theorem 5.1
also states that controlling the 	w

τ –norm of the quantities generated in the
computations is crucial. This finally explains the role of Coarse in Step
(ii.2) of Solve in terms of the following result [CDD1].

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 59

Lemma 5.1. Let v ∈ 	w
τ and let w be any finitely supported approximation

such that ‖v − w‖ ≤ 1
5η. Then the output wη of Coarse [45η,w] satisfies

#suppwη <∼ ‖v‖1/τ
�w

τ
η−1/s, ‖v−wη‖ <∼ η, and ‖wη‖�w

τ
<∼ ‖v‖�w

τ
. (5.35)

This can be interpreted as follows. If an error bound for a given finitely sup-
ported approximation w is known, a certain coarsening using only knowledge
about w produces a new approximation to (the possibly unknown) v which
gives rise to a slightly larger error but realizes up to a uniform constant the
optimal relation between support and accuracy. In the scheme Solve, this
means that the 	w

τ –norms of the iterates vK are controlled by the coarsening
step.
It remains to establish that for SolveDCP the corresponding routine ResDCP

is τ∗-sparse. The following results from [DK3] reduce this question to the
efficiency of Apply. We say that Apply[·,L, ·] is τ∗–efficient for some 0 <
τ∗ < 2 if for any finitely supported v ∈ 	w

τ , for 0 < τ∗ < τ < 2, the output wη

of Apply[η,L,v] satisfies ‖wη‖�w
τ

<∼ ‖v‖�w
τ

and #suppwη <∼ η−1/s‖v‖1/s
�w

τ
for

η → 0. Here the constants depend only on τ as τ → τ∗ and s, τ satisfy (5.33).
Moreover, the number of floating point operations needed to compute wη is
to remain proportional to #suppwη.

Proposition 5.7. If the Apply schemes in ResPRM and ResADJ are τ∗–
efficient for some τ∗ < 2, then ResDCP is τ∗–sparse whenever there exists a
constant C such that Cη ≥ max {δv, δp} and

max {‖p̃‖�w
τ
, ‖ỹ‖�w

τ
, ‖v‖�w

τ
} ≤ C

(
‖y‖�w

τ
+ ‖p‖�w

τ
+ ‖u‖�w

τ

)
,

where v is the current finitely supported input and ỹ, p̃ are the initial guesses
for the exact solution components (y,p).

Theorem 5.2. If the Apply schemes appearing in ResPRM and ResADJ are
τ∗-efficient for some τ∗ < 2 and the components of the solution (y,p,u) of
(4.27) all belong to the respective space 	w

τ for some τ > τ∗, then the approx-
imate solutions yε,pε,uε, produced by SolveDCP for any target accuracy ε,
satisfy

‖yε‖�w
τ

+ ‖pε‖�w
τ

+ ‖uε‖�w
τ

<∼ ‖y‖�w
τ

+ ‖p‖�w
τ

+ ‖u‖�w
τ
, (5.36)

and

(#suppyε) + (#supppε) + (#suppuε) <∼
(
‖y‖1/s

�w
τ

+ ‖p‖1/s
�w

τ
+ ‖u‖1/s

�w
τ

)
ε−1/s,

(5.37)
where the constants only depend on τ when τ approaches τ∗. Moreover, the
number of floating point operations required during the execution of SolveDCP

remains proportional to the right hand side of (5.37).

60 A. Kunoth

Thus, the practical realization of SolveDCP providing optimal work/accuracy
rates for a possibly large range of decay rates of the error of best N–term
approximation hinges on the availability of τ∗–efficient schemes Apply with
possibly small τ∗ for the involved operators.
For the approximate application of wavelet representations of a wide class
of operators, including differential operators, one can indeed devise efficient
schemes which is a consequence of the cancellation properties (CP) together
with the norm equivalences (3.3) for the relevant function spaces. For the
example considered above, the τ∗–efficiency of A defined in (4.18) can be
shown whenever A is s∗–compressible where τ∗ and s∗ are related by (5.33).
One knows that s∗ is larger the higher the ‘regularity’ of the operator and the
order of cancellation properties of the wavelets are. Estimates for s∗ in terms
of these quantities for spline wavelets and the above differential operator
A can be found in [BCDU]. Hence, Theorem 5.2 guarantees asymptotically
optimal complexity bounds for τ > τ∗. This means that the scheme SolveDCP

recovers rates of the error of best N–term approximation of order N−s for
s < s∗.
When describing the control problem, it has been pointed out that the wavelet
framework allows for a flexible choice of norms in the control functional which
is reflected by the diagonal matrices DZ and DH in (DCP), (4.23) together
with (4.24). The following result states that multiplication by either D−1

Z or
D−1

H makes a sequence more compressible, that is, they produce a shift in
weak 	τ spaces [DK3].

Proposition 5.8. For β > 0, p ∈ 	w
τ implies D−βp ∈ 	w

τ ′ , where 1
τ ′ := 1

τ +β
d .

We can conclude with the following. Whatever the sparsity class of the ad-
joint variable p is, the control u is in view of (4.27c) even sparser. This also
means that although the control u may be accurately recovered with rela-
tively few degrees of freedom, the overall solution complexity is in the case
above bounded from below by the less sparse auxiliary variable p.

Acknowledgments

I want to thank Carsten Burstedde and Roland Pabel for their assistance
during the preparation of this manuscript. This work has been supported in
part by the Deutsche Forschungsgemeinschaft (SFB 611).

References

[Ba1] I. Babuška, The finite element method with Lagrange multipliers, Numer.
Math. 20, 1973, 179–192.

[Ba2] I. Babuška, The finite element method with penalty, Math. Comp. 27,
1973, 221–228.

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 61

[Br] A. Barinka, Fast Evaluation Tools for Adaptive Wavelet Schemes, PhD.
Dissertation, RWTH Aachen, 2004.

[BCDU] A. Barinka, T. Barsch, Ph. Charton, A. Cohen, S. Dahlke, W. Dahmen, K.
Urban, Adaptive wavelet schemes for elliptic problems — Implementation
and numerical experiments, SIAM J. Sci. Comp., 23 (2001), 910–939.

[Be] S. Bertoluzza, Wavelet stabilization of the Lagrange multiplier method,
Numer. Math., 86 (2000), 1–28.

[B] D. Braess, Finite Elements: Theory, Fast Solvers and Applications in Solid
Mechanics, 2nd ed., Cambridge University Press, Cambridge, 2001.

[BPX] J.H. Bramble, J.E. Pasciak, J. Xu, Parallel multilevel preconditioners,
Math. Comp. 55, (1990), 1–22.

[BF] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer,
1991.

[Bu] C. Burstedde, Wavelets Methods for Linear-Quadratic, Elliptic Optimal
Control Problems, PhD Thesis, in preparation.

[BK] C. Burstedde, A. Kunoth, Fast iterative solution of elliptic control prob-
lems in wavelet discretizations, SFB 611 Preprint No. 127, Universität
Bonn, December 2003, submitted for publication.

[CTU] C. Canuto, A. Tabacco, K. Urban, The wavelet element method, part I:
Construction and analysis, Appl. Comput. Harm. Anal., 6 (1999), 1–52.

[CDP] J.M. Carnicer, W. Dahmen, J.M. Peña, Local decomposition of refinable
spaces, Appl. Comp. Harm. Anal., 3 (1996), 127–153.

[CF] Z. Ciesielski, T. Figiel, Spline bases in classical function spaces on compact
C∞ manifolds: Part I and II, Studia Mathematica (1983), 1–58 and 95–136.

[Co] A. Cohen, Numerical Analysis of Wavelet Methods, Studies in Mathemat-
ics and its Applications 32, Elsevier, 2003.

[CDD1] A. Cohen, W. Dahmen, R. DeVore, Adaptive wavelet methods for elliptic
operator equations – Convergence rates, Math. Comp. 70, 2001, 27–75.

[CDD2] A. Cohen, W. Dahmen, R. DeVore, Adaptive wavelet methods II – Beyond
the elliptic case, Found. Comput. Math. 2, 2002, 203–245.

[CDD3] A. Cohen, W. Dahmen, R. DeVore, Adaptive wavelet schemes for nonlinear
variational problems, SIAM J. Numer. Anal. 41 (5), 2003, 1785–1823.

[CDF] A. Cohen, I. Daubechies, J.-C. Feauveau, Biorthogonal bases of compactly
supported wavelets, Comm. Pure Appl. Math. 45 (1992), 485–560.

[CM] A. Cohen, R. Masson, Adaptive wavelet methods for second order elliptic
problems, preconditioning and adaptivity, SIAM J. Sci. Comp., 21 (1999),
1006–1026.

[DDU] S. Dahlke, W. Dahmen, K. Urban, Adaptive wavelet methods for saddle
point problems — Optimal convergence rates, SIAM J. Numer. Anal. 40
(2002), 1230–1262.

[D1] W. Dahmen, Stability of multiscale transformations, J. Four. Anal. Appl.,
2 (1996), 341–361.

[D2] W. Dahmen, Wavelet and multiscale methods for operator equations, Acta
Numerica (1997), 55–228.

[D3] W. Dahmen, Wavelet methods for PDEs – Some recent developments, J.
Comput. Appl. Math., 128 (2001), 133–185.

[D4] W. Dahmen, Multiscale and wavelet methods for operator equations, in:
Multiscale Problems and Methods in Numerical Simulation, C. Canuto
(ed.), C.I.M.E. Lecture Notes in Mathematics 1825, Springer Heidelberg
2003, 31–96.

62 A. Kunoth

[DK1] W. Dahmen, A. Kunoth, Multilevel preconditioning, Numer. Math., 63
(1992), 315–344.

[DK2] W. Dahmen, A. Kunoth, Appending boundary conditions by Lagrange
multipliers: Analysis of the LBB condition, Numer. Math., 88 (2001), 9–
42.

[DK3] W. Dahmen, A. Kunoth, Adaptive wavelet methods for linear–quadratic
elliptic control problems: Convergence rates, Preprint No. 46, SFB 611,
Universität Bonn, December 2002, revised May 2004, to appear in: SIAM
J. Contr. Optim.

[DKS] W. Dahmen, A. Kunoth, R. Schneider, Wavelet least squares methods for
boundary value problems, SIAM J. Numer. Anal., 39 (2002), 1985–2013.

[DKU] W. Dahmen, A. Kunoth, K. Urban, Biorthogonal spline wavelets on the
interval – Stability and moment conditions, Appl. Comput. Harm. Anal.,
6 (1999), 132–196.

[DS1] W. Dahmen, R. Schneider, Wavelets with complementary boundary condi-
tions — Function spaces on the cube, Results in Mathematics, 34 (1998),
255–293.

[DS2] W. Dahmen, R. Schneider, Composite wavelet bases for operator equa-
tions, Math. Comp., 68 (1999), 1533–1567.

[DS3] W. Dahmen, R. Schneider, Wavelets on manifolds I: Construction and
domain decomposition, SIAM J. Math. Anal., 31 (1999), 184–230.

[DSt] W. Dahmen, R. Stevenson, Element–by–element construction of wavelets
satisfying stability and moment conditions, SIAM J. Numer. Anal., 37
(1999), 319–325.

[Dau] I. Daubechies, Orthonormal bases of compactly supported wavelets,
Comm. Pure Appl. Math., 41 (1988), 909–996.

[DV] Ronald A. DeVore, Nonlinear Approximation, Acta Numerica, 7, (1998),
51-150.

[ES] J. van den Eshof, G.L.G. Sleijpen, Inexact Krylov subspace methods for
linear systems, SIAM J. Matr. Anal. Appl. 26 (2004), 125-153.

[GG] V. Girault, R. Glowinski, Error analyis of a fictitious domain method ap-
plied to a Dirichlet problem, Japan J. Industr. Appl. Math., 12 (1995),
487–514.

[GR] V. Girault, P.-A. Raviart, Finite Element Methods for Navier–Stokes
Equations, Springer, 1986.

[Gr] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, 1985.
[GL] M.D. Gunzburger, H.C. Lee, Analysis, approximation, and computation

of a coupled solid/fluid temperature control problem, Comp. Meth. Appl.
Mech. Engrg., 118 (1994), 133–152.

[HM] J. Haslinger, R.A.E. Mäkinen, Introduction to Shape Optimization: The-
ory, Approximation, and Computation, SIAM, 2003.

[J] S. Jaffard, Wavelet methods for fast resolution of elliptic problems, Siam
J. Numer. Anal., 29 (1992), 965-986.

[KP] K. Kunisch, G. Peichl, Shape optimization for mixed boundary value prob-
lems based on an embedding domain method, Dyn. Contin. Discrete Im-
pulsive Syst., 4 (1998), 439 – 478.

[K1] A. Kunoth, Multilevel Preconditioning, Verlag Shaker, Aachen 1994.
[K2] A. Kunoth, Wavelet Methods — Elliptic Boundary Value Problems and

Control Problems, Advances in Numerical Mathematics, Teubner, 2001.

Wavelets for Stationary PDEs and PDE-Constrained Control Problems 63

[K3] A. Kunoth, Wavelet techniques for the fictitious domain—Lagrange mul-
tiplier approach, Numer. Algor., 27 (2001), 291–316.

[K4] A. Kunoth, Fast iterative solution of saddle point problems in optimal
control based on wavelets, Comput. Optim. Appl., 22 (2002), 225–259.

[K5] A. Kunoth, Adaptive wavelet methods for an elliptic control problem with
Dirichlet boundary control, Preprint # 109, SFB 611, Universität Bonn,
November 2003, to appear in: Numer. Algor.

[KS] A. Kunoth, J. Sahner, Wavelets on manifolds: An optimized construction,
SFB 611 Preprint No. 163, Universität Bonn, July 2004, submitted for
publication.

[Kr] J. Krumsdorf, Finite Element Wavelets for the Numerical Solution of Ellip-
tic Partial Differential Equations on Polygonal Domains, Diploma Thesis
(in English), Universität Bonn, January 2004.

[Li] J.L. Lions, Optimal Control of Systems Governed by Partial Differential
Equations, Springer, Berlin, 1971.

[O] P. Oswald, On discrete norm estimates related to multilevel precondition-
ers in the finite element method, in: Constructive Theory of Functions,
K.G. Ivanov, P. Petrushev, B. Sendov, (eds.), Proc. Int. Conf. Varna 1991,
Bulg. Acad. Sci., Sofia (1992), 203–214.

[P] R. Pabel, Wavelet Methods for PDE Constrained Control Problems with
Dirichlet Boundary Control, Diploma Thesis, in preparation.

[PT] R. Pinnau, G. Thömmes, Optimal boundary control of glass cooling
processes, Math. Methods Appl. Sci. 27 (2004), 1261–1281.

[S] J. Sahner, On the Optimized Construction of Wavelets on Manifolds,
Diploma Thesis (in English), Universität Bonn, September 2003.

[St] R. Stenberg, On some techniques for approximating boundary conditions
in the finite element method, J. Comp. Appl. Maths., 63 (1995), 139–148.

[Stv] R. Stevenson, Locally supported, piecewise polynomial biorthogonal wave-
lets on non-uniform meshes, Constr. Approx., 19 (2003), 477-508.

[Sw] W. Sweldens, The lifting scheme: A construction of second generation
wavelets, SIAM J. Math. Anal., 29 (1998), 511–546.

[Z] E. Zeidler, Nonlinear Functional Analysis and its Applications; III: Varia-
tional Methods and Optimization, Springer, 1985.

On Approximation in Meshless Methods

Jens Markus Melenk

The University of Reading, Department of Mathematics, PO Box 220,
Whiteknights RG6 6AX, United Kingdom
email: j.m.melenk@reading.ac.uk

Abstract We analyze the approximation properties of some meshless methods.
Three types of functions systems are discussed: systems of functions that reproduce
polynomials, a class of radial basis functions, and functions that are adapted to
a differential operator. Additionally, we survey techniques for the enforcement of
essential boundary conditions in meshless methods.

1 Introduction

The classical finite element method (FEM) is a well-established tool for
numerically solving partial differential equations. New, non-standard meth-
ods, that are broadly covered by the term meshless methods or meshfree
methods have recently emerged. A few examples frequently mentioned in
this context are the diffuse element method, [87], the element-free Galerkin
(EFG, [11,13,14]), the X-FEM (extended FEM), [29,84,98], the RKPM (re-
producing kernel particle method, [70, 72–75]), the generalized FEM/par-
tition of unity method ([7, 9, 78, 79, 82]), the hp-cloud method, [89], the
particle partition of unity particle method of [47–51, 96], the finite point
method [91], and the method of finite spheres [30]; also the use of radial basis
functions, [44, 61, 65, 66, 108, 110] and the older generalized finite difference
method of [71] fall into this category. This list is by no means exhaustive,
and surveys of such methods include [6, 12, 60]. Two of the reasons given for
introducing such methods are:

• The cost of creating good quality meshes can be high. This is particularly
true for three-dimensional problems and for problems where the standard
FEM requires frequent remeshing such as time-dependent problems and
crack propagation problems.

• For some non-standard problems, the standard FEM performs poorly.
Here, it is attractive to create custom-tailored methods designed for a
particular problem at hand.

A main aim of these notes is to illustrate some of the mechanisms of approxi-
mation that underlie meshless methods. In view of the multitude of methods
and applications it is impossible to be exhaustive, and a selection had to be
made concerning the approximation spaces and the type of approximation re-
sults. With respect to the approximation spaces, we have selected three types:

66 J.M. Melenk

an example of function systems that reproduce polynomials, a class of radial
basis functions, and some examples of systems that are tailored to a partic-
ular differential operator. The type of approximation results that we obtain
are mostly formulated with a view to an application in projection methods
for second order elliptic problems. Since the natural setting of such problems
is that of the Hilbert space H1 (or subspaces thereof), most approximation
results are formulated in this norm.

1.1 Notation

General Notation
We write N = {1, 2, . . . , } for the positive integers and N0 = N∪{0} represents
the non-negative integers. R

+ stands for the positive real numbers, R
+
0 =

R
+ ∪ {0} for the non-negative real numbers. We will denote by Pp the space

of polynomials of degree p in d variables, that is Pp = span{
∏d

i=1 xαi
i |αi ∈

N0 with
∑d

i=1 αi ≤ p}. The Euclidean norm on R
d will be denoted by ‖ · ‖2.

Balls of radius r centred at x0 are denoted by Br(x0).

Spaces and Domains
For domains Ω ⊂ R

d, integers k ∈ N0 and q ∈ [1,∞] the Sobolev spaces
W k,q(Ω) are defined in the usual way (see for example [23, Chap. 1]). Also
for values of k �∈ N0 and q ∈ [1,∞), the Sobolev spaces W k,q(Ω) are defined
in the usual way, [23]; they can be equipped with the so-called Sobolev-
Slobodeckij norm as follows: we write k = k̃+κ, where k̃ ∈ N0 and κ ∈ (0, 1),
and we define

‖u‖q
W k,q(Ω)

= ‖u‖q

W k̃,q(Ω)
+ |u|q

W k,q(Ω)
,

where the semi-norm | · |W k,q(Ω) is given by

|u|q
W k,q(Ω)

:=
∑

α∈N
d
0

|α|=k̃

∫
Ω

∫
Ω

|Dαu(x) − Dαu(y)|q

‖x − y‖d+qκ
2

dx dy. (1.1)

We remark in passing that an equivalent definition of the fractional order
Sobolev spaces W k,q(Ω) based on the interpolation of spaces using the K-
method is possible, [15, 104]. The case q = 2 is special in that the spaces
W k,2(Ω) are Hilbert spaces; it is customary to write Hk(Ω) = W k,2(Ω).
We denote by H1

0 (Ω) = {u ∈ H1(Ω) |u|∂Ω = 0} the space of functions of
H1(Ω) that vanish on the boundary of Ω.
For ξ ∈ R

d with ‖ξ‖2 = 1, x ∈ R
d, r > 0, and θ ∈ (0, π) we define the cone

C(x, ξ, θ, r) := Br(x) ∩ {y ∈ R
d | (y − x)�ξ > ‖y − x‖ cos θ}. (1.2)

A domain Ω is said to satisfy a cone condition with angle θ and radius r if for
each x ∈ Ω there exists a ξ ∈ R

d with ‖ξ‖2 = 1 such that C(x, ξ, θ, r) ⊂ Ω.

Meshless Methods 67

Notation for Particle Methods
In these notes, the approximation spaces VN will have the form

VN = span{ϕi | i = 1, . . . , N};

as is customary in FEM, the functions ϕi, i = 1, . . . , N , will be called shape
functions. We furthermore introduce the patches Ωi, which are the interior
of the supports of the shape functions, and the diameters hi of the patches
by

Ωi := (suppϕi)◦, hi := diam Ωi ≤ 1.

Remark 1.1.
The assumption hi ≤ 1 is made for convenience only and could be replaced
by boundedness of the patch diameters.

Frequently, a shape function ϕi will be associated with a particle xi ∈ Ωi.
The particles are collected in the set

XN := {xi | i = 1, . . . , N},

which throughout these notes will be assumed to consist of N distinct points
xi ∈ R

d, i = 1, . . . , N . In the parlance of classical FEM the “connectivity” of
the shape functions will be important. We therefore define

n(x) := {i ∈ N |x ∈ Ωi}, (1.3)
n(i) := {j ∈ N |Ωj ∩ Ωi �= ∅}; (1.4)

the notation n(·) is reminiscent of “neighbour.”

FEM and Projection Methods
Techniques and terminology of the classical FEM will pervade much of these
notes, and we refer to [23, 27, 94] for general reference on the topic. We will,
for example, employ the notion of shape-regular affine triangulations T of
a domain Ω. Based on such a triangulation of Ω, one can define the space
Sp,1(T) ⊂ H1(Ω) of piecewise polynomials of degree p. We refer to [94] for a
precise definition of Sp,1(T). We will write Sp,1

0 (T) for the space Sp,1
0 (T) :=

Sp,1(T) ∩ H1
0 (Ω).

Many of the results of the presentation are obtained with a view to an ap-
plication in projection methods such as the Galerkin method. An example of
such as setting is the following: Let X be a Hilbert space, a : X ×X → R be
a continuous bilinear form, l ∈ X ′ be a continuous linear form, and u ∈ X
solve

a(u, v) = l(v) ∀ v ∈ X. (1.5)

If VN ⊂ X is a subspace, then one can define an approximation uN ∈ VN by:

Find uN ∈ VN such that a(uN , v) = l(v) ∀ v ∈ VN . (1.6)

68 J.M. Melenk

Once a basis of VN is chosen, the problem (1.6) represents a linear system
of equations that has to be solved. Under suitable assumptions on the bilin-
ear form a, one has existence and uniqueness of uN together with a quasi-
optimality result, that is

‖u − uN‖X ≤ C inf
v∈VN

‖u − v‖X , (1.7)

where the constant C > 0 is independent of critical parameters (e.g. N). In
this situation it is very important to understand the approximation properties
of the space VN employed so as to be able to be give bounds on the infimum
in (1.7).

1.2 The Notion of Optimality

When discussing the approximation properties of a space VN , it is instructive
to have a notion of optimality so as to be able to compare this space VN

with the best possible choice. One notion of optimality that is common in
approximation theory is that of n-width (see for example [92]): For a normed
space X with norm ‖ · ‖X and a subset Y ⊂ X one defines for n ∈ N

dn := inf
En⊂X

dim En≤n

sup
u∈Y

inf
v∈En

‖u − v‖X ;

here, the spaces En appearing in the first infimum are arbitrary linear sub-
spaces of dimension n. The quantity dn thus measures how well functions of
the set Y can be approximated from linear spaces En of dimension n. Clearly,
dn depends on the error measure ‖ · ‖X and the set Y . For Sobolev spaces we
have [62]:

Theorem 1.1. Let Ω ⊂ R
d be a Lipschitz domain and k ≥ 1. Then there

exists C > 0 such that

inf
VN⊂H1(Ω)
dim VN≤N

sup
u∈Hk(Ω)

‖u‖
Hk(Ω)=1

inf
v∈VN

‖u − v‖L2(Ω) ≥ N−(k−1)/d.

The converse of Theorem 1.1 is well-known in classical FEM (see for example
[23]):

Theorem 1.2. Let T be a quasi-uniform triangulation of a domain Ω ⊂
R

d with maximum element size h. Then for k ≥ 1 and the classical H1-
conforming space Sp,1(T) of piecewise polynomials of degree p we have

inf
v∈Sp,1(T)

‖u − v‖H1(Ω) ≤ CN−(min{p+1,k}−1)/d‖u‖Hk(Ω),

where N = dimSp,1(T) ∼ h−d.

Meshless Methods 69

Theorems 1.1, 1.2 show that the classical FEM attains already the best pos-
sible rate of convergence if the only information available about the function
to be approximated is membership in some Sobolev space Hk(Ω). In this
setting, the use of approximation spaces VN different from the classical FEM
spaces is mainly justified by algorithmic considerations.

Remark 1.2.
The approximation results of these notes are obtained with a view to an
application in classical projection methods such as the Galerkin scheme (1.6).
We will not cover nonlinear approximation techniques, for which we refer
to [32].

2 Polynomial Reproducing Systems

The fist class of approximation spaces VN that we analyze is one where the
space VN reproduces polynomials of degree p. We will see that the approxi-
mation properties of such spaces are very similar to the classical FEM spaces.
Such spaces can be constructed in different ways. One possibility is based on
the moving least squares technique and will be illustrated in Section 2.3.

2.1 Motivation

Let Ω ⊂ R
d be a domain, let XN = {xi | i = 1, . . . , N} be a set of particles,

and let VN = span{ϕi | i = 1, . . . , N} be a space of functions defined on Ω.
In this chapter, we will make the following assumptions:

Assumption 2.1 (finite overlap). There exists a constant M ∈ N such that for
every x ∈ Ω the cardinality n(x) of the set n(x) satisfies 1 ≤ cardn(x) ≤ M .

Assumption 2.2 (polynomial reproduction property).
N∑

i=1

π(xi)ϕi(x) = π(x)

for all x ∈ Ω and all π ∈ Pp.

Assumption 2.3 (stability). There exist Cstab ≥ 1, rstab ∈ N0 such that
‖Dαϕi‖L∞(Ω) ≤ Cstabh

−|α|
i for all i ∈ {1, . . . , N} and all α ∈ N

d
0 with

|α| ≤ rstab.

Assumption 2.4 (local comparability of patches). There exists Ccomp > 0 such
that C−1

comphi ≤ hj ≤ Ccomphi for all i ∈ {1, . . . , N} and j ∈ n(i).

These assumptions are a generalization of certain properties of the classical
FEM. For p = 1 and shape-regular affine meshes T , the classical piecewise
linear FEM shape functions satisfy the above assumptions. For p > 1, the
shape functions employed in the FEM are not as standardized; nevertheless,
a basis of Sp,1(T) satisfying Assumptions 2.1–2.4 can be constructed as the
following exercise shows.

70 J.M. Melenk

Bi

xi xj

Ωi

Ωj

Bδhj (xj)

Bδhi(xi)

Figure 2.1. Notation of Theorem 2.1.

Exercise 2.1.
Let T be a mesh on Ω = (0, 1) determined by the points 0 = x0 < x1 <
· · · < xn = 1. Assume that the element sizes are locally comparable, that is
C−1 ≤ xi+1−xi

xi−xi−1
≤ C for i = 1, . . . , n− 1. Construct a basis of Sp,1(T) = {u ∈

C([0, 1]) |u|(xi,xi+1) ∈ Pp for i = 0, . . . , n − 1} such that Assumptions 2.1–2.4
are satisfied.

The construction of shape functions ϕi that satisfy Assumptions 2.1–2.4 will
be the topic of Section 2.3.

2.2 Approximation Properties of Systems Reproducing
Polynomials

Spaces VN that satisfy Assumptions 2.1–2.4 inherit the local approximation
properties of polynomials:

Theorem 2.1. Suppose Assumptions 2.1–2.4 hold. Let δ, C > 0 be given.
Choose for each xi a ball B̃i with radius ri ≤ Chi such that Bδhj

(xj) ⊂ B̃i

for all j ∈ n(i) and B̃i ⊂ Ωi (see Figure 2.1).
Then there exists a linear operator QN : L1(Rd) → VN with the following
approximation property: For u ∈ Hk(Rd), k ∈ N0, with

∑N
i=1 ‖u‖2

Hk(B̃i)
< ∞

we have for s = 0, . . . ,min{k, rstab}

‖u − QNu‖2
Hs(Ω) ≤ C

N∑
i=1

h
2(min{p+1,k}−s)
i ‖u‖2

Hk(B̃i)
.

Remark 2.1.
Theorem 2.1 could be generalized to approximation in the space W k,q(Ω).
Additionally, the proof shows that the balls B̃i could be replaced with other
set, e.g. squares, rectangles.

Meshless Methods 71

Inspection of the proof also shows that it is sufficient to have u defined on
∪N

i=1B̃i instead of R
d.

Proof of Theorem 2.1. We abbreviate µ := min{k, p + 1} and denote by χj

the characteristic function of the patch Ωj , that is χj(x) = 1 if x ∈ Ωj and
χj(x) = 0 if x �∈ Ωj . We note that Assumption 2.1 gives

1 ≤
N∑

j=1

χj(x) ≤ M ∀ x ∈ Ω. (2.1)

For each patch Ωi we choose with the aid of the polynomial approximation
result Theorem B.1 (and, for the case min{k, p+1} < min{k, rstab} the inverse
estimate Theorem B.2 together with the assumption hi ≤ 1) a polynomial
πi ∈ Pp such that

‖u − πi‖Hs(B̃i)
≤ Crµ−s

i ‖u‖Hk(B̃i)
, s = 0, . . . ,min{k, rstab}. (2.2)

We then define the desired approximation QNu by

QNu :=
N∑

i=1

πi(xi)ϕi. (2.3)

Note that the map u �→ QNu is linear since the maps u|B̃i
�→ πi, whose

existence is ascertained in Theorem B.1, is linear. By Assumption 2.2 we
have for each i ∈ {1, . . . , N}

πi(x) =
N∑

j=1

πi(xj)ϕj(x) ∀ x ∈ Ω. (2.4)

For each i ∈ {1, . . . , N} we can write

u − QNu = u −
N∑

j=1

πj(xj)ϕj

= (u − πi) +
N∑

j=1

[πi(xj) − πj(xj)]ϕj =: T1,i + T2,i.

Since the patches Ωi, i = 1, . . . , N , cover Ω by Assumption 2.1, we get for
each s = 0, . . . ,min{k, rstab}

‖u − QNu‖2
Hs(Ω) ≤

N∑
i=1

‖u − QNu‖2
Hs(Ωi∩Ω)

≤ 2
N∑

i=1

‖T1,i‖2
Hs(Ωi∩Ω) + ‖T2,i‖2

Hs(Ωi∩Ω).

72 J.M. Melenk

Using (2.2) we can estimate ‖T1,i‖Hs(Ωi∩Ω) by

‖T1,i‖Hs(Ωi∩Ω) ≤ Chµ−s
i ‖u‖Hk(B̃i)

s = 0, . . . ,min{k, rstab}. (2.5)

Hence,
∑N

i=1 ‖T1,i‖2
Hs(Ωi∩Ω) can be estimated in the desired fashion. For the

term involving the functions T2,i, we use Assumptions 2.3 to get for any
α ∈ N

d
0 with |α| = s ∈ {0, . . . ,min{k, rstab}}

|DαT2,i(x)| ≤ C
N∑

j=1

|πi(xj) − πj(xj)|h−s
j χj(x).

Thus, we get for the Hs-semi norm of T2,i on Ωi ∩ Ω:

|T2,i|2Hs(Ω) ≤ C

∫
Ωi∩Ω

∣∣∣∣∣∣
N∑

j=1

|πi(xj) − πj(xj)|h−s
j χj

∣∣∣∣∣∣
2

≤ CM

∫
Ω∩Ωi

N∑
j=1

|πi(xj) − πj(xj)|2h−2s
j χj

≤ CM

∫
Ω

∑
j∈n(i)

|πi(xj) − πj(xj)|2h−2s
j χjχi, (2.6)

where we exploited (2.1) in the second bound and, in the last bound, we used
the observation that χj(x)χi(x) �= 0 can only happen if j ∈ n(i). For j ∈ n(i)
we bound |πi(xj) − πj(xj)| ≤ ‖πi − πj‖L∞(Bδhj

(xj)), note that πi − πj ∈ Pp,
and use the polynomial inverse estimate Theorem B.2 to get

‖πi − πj‖L∞(Bδhj
(xj)) ≤ Ch

−d/2
j ‖πi − πj‖L2(Bδhj

(xj))

≤ Ch
−d/2
j

[
‖u − πi‖L2(Bδhj

(xj)) + ‖u − πj‖L2(Bδhj
(xj))

]
.

Using Bδhj
(xj) ⊂ B̃j ∩ B̃i, we then get from (2.2) and Assumption 2.4

‖πi − πj‖L∞(Bδhj
(xj)) ≤ Ch

−d/2
j

[
hµ

j ‖u‖Hµ(B̃j)
+ hµ

i ‖u‖Hµ(B̃i)

]
.

Inserting this in (2.6) and using Assumption 2.4 gives

|T2|2Hs(Ωi∩Ω)

≤ CM

∫
Ω

N∑
j=1

[
h

2(µ−s)−d
j ‖u‖2

Hk(B̃j)
+ h

2(µ−s)−d
i ‖u‖2

Hk(B̃i)

]
χjχi.

Meshless Methods 73

The sum
∑N

i=1 |T1,i|2Hs(Ω∩Ωi)
can then be bounded by using again (2.1)

N∑
i=1

|T2,i|2Hs(Ωi∩Ω) ≤ CM

∫
Ω

N∑
j=1

N∑
i=1

h
2(µ−s)−d
i ‖u‖2

Hk(B̃i)
χiχj

≤ CM2
N∑

i=1

h
2(µ−s)−d
i ‖u‖2

Hk(B̃i)

∫
Ω

χi ≤ CM2
N∑

i=1

h
2(µ−s)
i ‖u‖2

Hk(B̃i)
.

This concludes the proof of the theorem. �
Theorem 2.1 assumes u to be defined on R

d. An extension result, e.g. Theo-
rem A.1, allows us to treat the case of bounded domains:

Corollary 2.1. Let Ω ⊂ R
d be a Lipschitz domain. Assume that the balls

B̃i of Theorem 2.1 satisfy additionally an overlap condition, that is for some
M ∈ N we have

sup
x∈Rd

card{i ∈ N |x ∈ B̃i} ≤ M.

Then there exists a linear map QN : L1(Ω) → VN such that for each k ∈ N0

there exists C > 0 with

‖u − QNu‖Hs(Ω) ≤ hmin{p+1,k}−s‖u‖Hk(Ω), s = 0, . . . ,min{p + 1, rstab},

where h := maxi=1,...,N hi.

Proof. Let Q̃N be the linear operator of Theorem 2.1 and let E : L1(Ω) →
L1(Rd) be the extension operator of Theorem A.1. Set QN := Q̃N ◦ E.
Then by abbreviating µ := min{p + 1, k} we get from Theorem 2.1 for
s = 0, . . . ,min{rstab, k}

‖u − QNu‖2
Hs(Ω) = ‖Eu − Q̃NEu‖2

Hs(Ω) ≤ C

N∑
i=1

h
2(µ−s)
i ‖Eu‖2

Hk(B̃i)

≤ Ch2(µ−s)
N∑

i=1

‖Eu‖2
Hk(B̃i)

≤ Ch2(µ−s)M2‖Eu‖2
Hk(Rd);

here, the last step followed from arguments analogous to those employed in
the proof of Theorem 2.1. The extension operator E finally has the property
‖Eu‖Hk(Rd) ≤ C‖u‖Hk(Ω), which allows us to conclude the proof. �
Approximation of Singular Functions
The diameters of the balls B̃i in Theorem 2.1 play the role of the local
mesh size in the classical FEM approximation theorem. In the classical FEM,
meshes that are locally refined are important, for example, for the treatment
of elliptic boundary value problems in domains with piecewise smooth geome-
tries. The solutions of such problems exhibit singularities (the functions Sji

of (6.2) are a typical example), which can be resolved in the classical FEM

74 J.M. Melenk

by the use of appropriately graded meshes, [8, 93]. In fact, the optimal rate
of convergence, as measured in error versus problem size, can be recovered.
Meshless methods can mimic this mesh refinement of the classical FEM by
an appropriate clustering of particles and a corresponding shrinking of the
diameters of the balls B̃i. The following two Exercises 2.2, 2.3 illustrate this.
To stress the analogy of our approach in Exercises 2.2, 2.3 with the classical
FEM situation and to motivate the distribution of the diameters of the balls
B̃i, we first recall the following example (see for example [94, Sec. 3.3.7]):

Example 2.1.
Let Ω = (0, 1) and u(x) = xα, α ∈ (1/2, 1). Fix p ∈ N and β > p+1/2

α−1/2 .
Consider a mesh T consisting of N intervals Ii, i = 0, . . . , N − 1, such that

diam I0 ≤ Chβ , diam Ii ∼ h dist(Ii, 0)1−1/β , i = 1, . . . , N − 1. (2.7)

Then, for some C > 0 independent of N we have

inf
v∈Sp,1(T)

‖u − v‖H1(Ω) ≤ CN−p,

that is the optimal rate of convergence is recovered. A specific mesh T that
satisfies (2.7) is determined by the nodes xi, i = 0, . . . , N , where xi = Φ(x̂i),
Φ(x) = xβ , and x̂i = ih for h = 1/N .

The function Φ of Example 2.1 maps a uniform node distribution to a highly
nonuniform one that is suitable for the approximation of the function x �→ xα.
We use this function Φ to create particle distributions, and we use (2.7) as
a guideline for our choice of the diameters of the patches Ωi and the balls
B̃i in the following Exercise 2.2. We will show there that this choice leads
to patches that satisfy Assumptions 2.1, 2.4, and we will see that polyno-
mials of degree p have good approximation properties on the balls B̃i. The
construction of concrete shape functions associated with these patches that
satisfy Assumptions 2.2, 2.3 is postponed until Exercise 2.6. Corresponding
results exist for two-dimensional problems and are sketched in Exercises 2.2,
2.7.

Exercise 2.2.
Let Ω = (0, 1), u(x) = xα for some α ∈ (1/2, 1). Fix p ∈ N0 and choose
β ≥ p+1/2

α−1/2 > 1. Define
Φ(x) := xβ .

For N ∈ N set h = 1/N , x̂i := ih, i = 0, . . . , N , and define the particles
XN = {xi | i = 0, . . . , N} by xi = Φ(x̂i). Let ρ > 0 be a parameter and
choose for each particle xi

ρi = ρ

{
hx

1−1/β
i i ≥ 1,

x1 i = 0.

Let a shape function ϕi be associated with particle xi. Assume furthermore
that Ωi := (suppϕi)◦ = Bρi

(xi).

Meshless Methods 75

(a) Show: For each fixed M there holds ρi ∼ hβ for i ∈ {0, . . . , M} (The
constants of the ∼-notation depend on ρ, β, M).

(b) Show: There exist λ, λ′ (depending only on ρ, β) such that

Bλh(x̂i) ∩ Ω ⊂ Φ−1(Bρi
(xi) ∩ Ω) ⊂ Bλ′h(x̂i) ∩ Ω i = 0, . . . , N.

Conclude that Assumption 2.1 is satisfied.
(c) Show: Assumption 2.4 is satisfied.
(d) Let Ccomp be the constant of Assumption 2.4, whose existence was ascer-

tained in (c). Set B̃i := Bρ̃i
(xi) with ρ̃i := (1 + (1 + δ)Ccomp)ρi. Show:

Bρi
(xi) ∩ Bρj

(xj) �= ∅ implies Bδρj
(xj) ⊂ B̃i.

(e) Show: The balls B̃i, i = 0, . . . , N satisfy an overlap condition, that is there
exists M > 0 (depending only on ρ, β) such that card{j | B̃i∩B̃j �= ∅} ≤ M
for all i ∈ {0, 1, . . . , N}.

(f) Let I1 := {i ∈ {0, . . . , N} | dist(B̃i, 0) ≥ 2ρ̃i}. Show: For i ∈ I1 the
point x̃i := inf{x |x ∈ B̃i} satisfies x̃i ∼ xi. Furthermore, there exist
polynomials πi ∈ Pp such that

‖u − πi‖L2(B̃i)
+ ρ̃i‖(u − πi)′‖L2(B̃i)

≤ Cρ̃
p+3/2
i x̃α−1−p

i .

(g) Set I2 := {1, . . . , N} \ I1. Show: I2 ⊂ {1, . . . , M} for some M > 0 inde-
pendent of N . Show: For each i ∈ I2 one can find a πi ∈ P1 such that

‖u − πi‖L2(Ω∩B̃i)
+ ρ̃i‖(u − πi)′‖L2(Ω∩B̃i)

≤ Cρ̃
α+1/2
0 ,

‖u − πi‖L∞(Ω∩B̃i)
≤ Cρ̃α

0 .

(h) Assume that the shape functions ϕi satisfy Assumptions 2.2, 2.3. (We
will see in Exercise 2.6 that such functions can be constructed with the
moving least squares procedure if ρ is chosen sufficiently large). By adapt-
ing the proof of Theorem 2.1 show that the approximation space VN =
span{ϕi | i = 0, . . . , N} satisfies

inf
v∈VN

‖u − v‖H1(Ω) ≤ Chp = CN−p.

A similar idea leads to approximation results in two spatial dimensions:

Exercise 2.3.
Define for h = 1/n the uniform particle distribution X̂n = {x̂ij = (ih, jh) | 0 ≤
i, j ≤ n}. For some β > 1, let Φ : R

2 → R
2 be given by Φ(x) = ‖x‖β−1

2 x.
Define the particle distribution Xn := {xij = Φ(x̂ij) | 0 ≤ i, j ≤ n}. Associate
with each particle xij a radius

ρij = ρ

{
h‖xij‖1−1/β

2 if (i, j) �= (0, 0)
hβ if i = j = 0,

where ρ > 0 is a parameter. The patches Ωij are taken as Ωij := Bρij
(xij).

Set Ω := (0, 1/2)2.

76 J.M. Melenk

(a) Proceed as in Exercise 2.2 to show that Assumptions 2.1 and 2.4 hold.
(b) Assume that the shape functions ϕij , i, j = 0, . . . , n, that are associated

with the nodes xij satisfy additionally Assumptions 2.2, 2.3. (We will show
in Exercise 2.7 that this can be achieved by taking ρ sufficiently large).
Consider a function u in polar coordinates (r, ϕ) of the form u = rαΘ(ϕ),
where α > 0 and Θ : (−ε, π/2 + ε) → R for some ε > 0 is smooth. Show:
If β > p

α , then

inf
v∈VN

‖u − v‖H1(Ω) ≤ Chp, h =
1
n
∼ 1√

N
,

where N denotes the number of particles. Note that this is the optimal
rate of convergence.

2.3 Construction of Shape Functions with the Moving Least
Squares Procedure

The approximation result Theorem 2.1 hinges on Assumptions 2.1–2.4. In the
present section we construct shape functions that satisfy these requirements.

Motivation from Scattered Data Fitting
One approach to construct shape functions ϕi from a collection of particles
XN is based on the so-called moving least squares (MLS) technique that we
describe in more detail in this section.
The MLS technique was devised to fit a “smooth” function x �→ If to a
collection of given scattered data (xi, fi), i = 1, . . . , N , obtained, for example,
from measurements. Here, the points xi, i = 1, . . . , N , are N distinct points
and the “smooth” function If that is sought should satisfy If(xi) ≈ fi,
i = 1, . . . , N . The idea is to define the value If(x) for a given x as a weighted
average of the given data fi. More specifically, one chooses a polynomial
degree p ∈ N0 and for each i ∈ {1, . . . , N} a weight wi(x) ≥ 0 and then
defines

If(x) := π(x), (2.8)

where the polynomial π ∈ Pp is the solution of the minimization problem:

Find π ∈ Pp s.t.
N∑

i=1

|fi−π(xi)|2wi(x) ≤
N∑

i=1

|fi−v(xi)|2wi(x) ∀ v ∈ Pp.

(2.9)

Remark 2.2.
The choice of the weight functions x �→ wi(x) depends, of course, on the
application. In practise, the weight function x �→ wi(x) is chosen to have
small support or to decay rapidly as ‖x − xi‖ → ∞ so as to give the data
points xi close to x more weight than data points far from x.

Meshless Methods 77

Under reasonable assumptions on the weight functions wi, the minimization
problem is uniquely solvable. As we will show in Theorem 2.2, this solution
If takes the form

If(x) =
N∑

i=1

fiϕi(x) (2.10)

for some functions ϕi. Theorem 2.2 also provides an explicit formula for the
functions ϕi. Their differentiability properties are then analyzed in Theo-
rem 2.3. The goal of this section is to show that the functions shape func-
tions ϕi, which are motivated by the above data fitting technique, satisfy
the assumptions of the approximation result Theorem 2.1. Indeed, we will
discover that Assumption 2.2 is ensured by construction and that Assump-
tion 2.3 can be satisfied if, roughly speaking, each particle has sufficiently
many neighbours. Assumptions 2.1, 2.4 have to be checked separately.

Construction of the Shape Functions
The shape functions ϕi appearing in (2.10) are constructed in the following
theorem.

Theorem 2.2. Let particles XN = {xi | i = 1, . . . , N} and weight functions
wi ∈ C(Rd) with wi ≥ 0, i = 1, . . . , N be given. Set Ωi := (suppwi)◦.
Assume that for each x ∈ Ω the set X(x) := {xi | i ∈ n(x)} is Pp-unisolvent1.
Then the approximant If of (2.8), (2.9) is well-defined, and there are unique
functions ϕi, i = 1, . . . , N , depending solely on XN and the weight functions
wi such that

If(x) =
N∑

i=1

fiϕi(x).

Moreover, we have the representation formula

ϕi(x) = wi(x)
Q∑

k=1

λk(x)πk(xi), i = 1, . . . , N, (2.11)

where {πk | k = 1, . . . , Q} is an arbitrary basis of Pp, and the values λk(x)
are the unique solution of the linear system

Q∑
k=1

N∑
i=1

wi(x)πk(xi)πl(xi)λk(x) = πl(x), l = 1, . . . , Q. (2.12)

Proof. We follow the presentation of [109]. We fix x∗ ∈ Ω and seek π ∈ Pp of
(2.8) in the form π =

∑Q
l=1 λ̃lπl. The minimization problem (2.9) then leads

1 A set Y ⊂ R
d is Pp-unisolvent, if π ∈ Pp and π(y) = 0 for all y ∈ Y implies

π ≡ 0.

78 J.M. Melenk

to the following system of equations: Find λ̃l, l = 1, . . . , Q, such that

N∑
i=1

wi(x∗)

(
fi −

Q∑
l=1

λ̃lπl(xi)

)
πk(xi) = 0, k = 1, . . . , Q. (2.13)

We prove unique solvability of this linear system of equations by proving that
the symmetric matrix G ∈ R

Q×Q with entries Gkl =
∑N

i=1wi(x∗)πl(xi)πk(xi)
is symmetric positive definite: For a ∈ R

Q we compute

a�Ga =
N∑

i=1

wi(x∗)

∣∣∣∣∣
Q∑

k=1

akπk(xi)

∣∣∣∣∣
2

;

in view of the assumption wi ≥ 0, we conclude that G is positive semi-definite.
If G were not positive definite, then there existed a vector a ∈ R

Q with a �= 0
such that a�Ga = 0. Hence, for the non-trivial polynomial π̃ =

∑Q
k=1 akπk,

we would have π̃(xi) = 0 for all xi ∈ X(x∗), since xi ∈ X(x∗) implies
xi ∈ (suppwi)◦, that is by wi ∈ C(Rd) we have wi(x∗) > 0. But then π̃ = 0
by our assumption of unisolvence. We have thus arrived at a contradiction
and conclude that G is positive definite.
We now evaluate If(x∗) = π(x∗) (writing wi = wi(x∗), λk = λk(x∗))

π(x∗) =
Q∑

l=1

λ̃lπl(x∗)
(2.12)
=
∑
i,k,l

λ̃lλkwiπk(xi)πl(xi)
(2.13)
=
∑
i,k

fiλkπk(xi),

which leads to the desired representation formula (2.11). �

Exercise 2.4.
Show: For p = 0 the functions ϕi are given by

ϕi(x) =
wi(x)∑N

j=1 wj(x)
=

wi(x)∑
j∈n(i) wj(x)

. (2.14)

These functions are called Shephard functions, [97].

An important observation is that the functions ϕi constructed by the MLS
procedure reproduce polynomials, that is they satisfy Assumption 2.2:

Exercise 2.5.
Show that the functions ϕi satisfy Assumption 2.2, that is

N∑
i=1

π(xi)ϕi(x) = π(x) ∀ x ∈ Ω ∀ π ∈ Pp. (2.15)

Remark 2.3.
The representation formula (2.11) shows that the functions ϕi can be evalu-
ated at a point x ∈ Ω by solving a Q×Q system of linear equations. Likewise,

Meshless Methods 79

by differentiating the linear system (2.12), it is clear that also the values of
derivatives of the functions x �→ λk(x) can be obtained as solutions of linear
systems; therefore, derivatives of the functions ϕi can be determined. The
question of bounds of the derivatives of the functions ϕi will be discussed in
more detail in Theorem 2.3.

The weight functions wi have to be chosen by the user. A popular form is

wi(x) = w

(
x − xi

ρi

)
, (2.16)

where the window function w is of one of the following types:

1. w is radial , that is w(z) = w̃(‖z‖) for some w̃ : R
+
0 → R

+
0 ;

2. w has tensor product form, that is w(z) =
∏d

j=1 w̃j(zj).

We note that if the window function w is compactly supported, then the
parameter ρi in (2.16) is a measure for the support size and ρi ∼ hi =
diam Ωi. In this situation, the univariate functions w̃ or w̃j are often taken
to be compactly supported splines, e.g. the symmetric part of the classical
piecewise cubic C2 B-spline given by

w(r) =

⎧⎨⎩4 − 6r2 + 3r3 for 0 ≤ r ≤ 1,
(2 − r)3 for 1 < r ≤ 2,
0 for r > 2.

Remark 2.4.
If the window function is a radial function and has compact support, then
the norm ‖ · ‖ on R

d can be still be chosen. For example, the patches Ωi can
be balls (or, more generally, ellipsoids) if ‖ ·‖ is taken as the Euclidean norm;
the patches Ωi can be cubes if ‖ · ‖l∞ is chosen.

Regularity of the Shape Functions
Our analysis of the differentiability properties of the functions ϕi in Theo-
rem 2.3 below will be based on the assumption that the weight functions wi

are determined by a window function w via (2.16). This window function w
will be required to satisfy

Assumption 2.5. The window function w ∈ Ck(Rd) satisfies w(x) ≥ 0 for all
x ∈ R

d, and (suppw)◦ = B1(0).

Remark 2.5.
We take B1(0) as the unit ball with respect to the Euclidean norm. This is
not essential, however, and results analogous to Theorem 2.3 below hold if
we replace the Euclidean norm with another norm on R

d.

80 J.M. Melenk

The formula (2.14) for the special case p = 0 suggests that ϕi ∈ Ck if
the weights wi are determined by a window function w satisfying Assump-
tions 2.5. Roughly speaking, if for every x ∈ Ω the number of particles in the
vicinity of x, that is cardn(x), is sufficiently large, then the shape functions
ϕi are indeed as smooth as the window function. In order to prove this result
in Theorem 2.3 below, we introduce the fill distance function h by

h(x) := dist(x,XN) (2.17)

and can now formulate:

Theorem 2.3. Let Ω satisfy a cone condition with angle θ and radius r. Let
α ∈ (0, 1), XN = {xi | i = 1, . . . , N} ⊂ R

d and {ρi |, i = 1, . . . , N} ⊂ R
+. Set

ρ̂i := min{ρi, r}, i = 1, . . . , N,

and assume the covering condition

Ω ⊂ ∪N
i=1Bαρ̂i

(xi). (2.18)

Let w satisfy Assumption 2.5, define the weight functions wi(x) := w(x−xi

ρi
)

with corresponding patches Ωi = (suppwi)◦ = Bρi
(xi). Suppose that Assump-

tion 2.4 is valid. Let p ∈ N0.
Then there exist δ > 0 and C > 0 (depending only on θ, r, α, p, k, Ccomp)
such that if

sup
x∈Bρ̂i

(xi)∩Ω

h(x) ≤ δρ̂i ∀ xi ∈ XN , (2.19)

then the functions ϕi of (2.11) satisfy ϕi ∈ Ck(Rk), suppϕi ⊂ Bρi
(xi), and

‖Dαϕi‖L∞(Ω) ≤ Cρ
−|α|
i ∀ α ∈ N

d
0, |α| ≤ k. (2.20)

Before proving Theorem 2.3 it is instructive to check that the assumptions
of Theorem 2.3 can be satisfied in simple circumstances.

Example 2.2.
The assumption (2.19) is often formulated in a simpler, global way. If we
define the fill distance h := supx∈Ω h(x) and use constant ρi = ρ for all i ∈
{1, . . . , N}, then (2.19) merely requires that h be sufficiently small compared
to ρ, the size of the supports of the patches Ωi.

We have seen Exercises 2.2, 2.3 two examples of highly nonuniform particle
distributions and greatly varying patches sizes that are suitable for the ap-
proximation of singularity functions. The following two exercises show that
the assumptions of Theorem 2.3 can be fulfilled in such circumstances as well.

Exercise 2.6.
In Exercise 2.2 we constructed particles and patch sizes that were appropriate
for the approximation of the singular function x �→ xα. We assumed, however,

Meshless Methods 81

that the shape functions ϕi satisfied Assumptions 2.2 and 2.3. Show that by
choosing ρ in Exercise 2.2 sufficiently large, the hypotheses of Theorem 2.3 are
satisfied. Conclude that the shape functions obtained by the MLS technique
yield the optimal approximation result of Exercise 2.2.
Hint : Show that the fill distance function h satisfies

h(x) ≤ C
[
hx1−1/β + hβ

]
for a constant C > 0 independent of ρ and N .

Exercise 2.7.
Assume the hypotheses of Exercise 2.3. Show: If ρ is chosen sufficiently large,
then the hypotheses of Theorem 2.3 are satisfied.
Hint : Show that the fill distance function h satisfies h(x) ≤ C

[
h‖x‖1−1/β

2 +
hβ
]

for a constant C > 0 independent of ρ and N .

Proof of Theorem 2.3. The proof is broken up into several steps.
First step: We notice that the representation formula (2.11) is independent
of the choice of the basis of Pp. In particular, we may chose for each x∗ ∈ Ω
a different basis. We will exploit this observation as follows: First, we fix a
basis {π̃k | k = 1, . . . , Q} of Pp; then, for each fixed x∗ ∈ Ω, we define the
basis {πk | k = 1, . . . , Q} by

πk(x) := π̃k

(
x − x∗

ρ∗

)
,

where, for some arbitrary (but fixed) i∗ ∈ n(x∗) we set

ρ∗ := ρi∗ .

(Note that the covering condition (2.18) guarantees that n(x∗) �= ∅). Since
2ρi = hi = diam Ωi = diamBρi

(xi), Assumption 2.4 guarantees that

ρ∗C
−1
comp ≤ ρj ≤ ρ∗Ccomp ∀ j ∈ n(x∗). (2.21)

We next define the matrix G(x∗) ∈ R
Q×Q with entries

Gkl(x∗) :=
N∑

i=1

wi(x∗)πk(xi)πl(xi)

=
∑

i∈n(x∗)

w

(
x∗ − xi

ρi

)
π̃k

(
x∗ − xi

ρ∗

)
π̃l

(
x∗ − xi

ρ∗

)
.

By Theorem 2.2 the function value ϕi(x∗) is given by

ϕi(x∗) = wi(x∗)
Q∑

k=1

λk(x∗)πk(xi), (2.22)

82 J.M. Melenk

where the vector λ(x∗) = (λ1(x∗), . . . , λQ(x∗))� ∈ R
Q is the solution of the

linear system
G(x∗)λ(x∗) =

(
π̃1(0) · · · π̃Q(0)

)�
. (2.23)

In order to get bounds on the derivatives of ϕi, we need to get bounds on
the derivatives of the function λ. In this direction, we first notice that the
product rule together with (2.21) gives

|DαG(x∗)| ≤ Cαρ∗
−|α| ∀ α ∈ N

d
0, |α| ≤ k, (2.24)

where the constant Cα depends only on α, the function w, and the choice of
basis {π̃l | l = 1, . . . , Q}. The analogous bound

|DαG−1(x∗)| ≤ Cαρ∗
−|α| ∀ α ∈ N

d
0, |α| ≤ k, (2.25)

holds by Cramer’s rule, provided that we can show the existence of C > 0
such that

inf
x∗∈Ω

|detG(x∗)| ≥ C > 0. (2.26)

From (2.25) follows a bound similar to (2.25) for the derivatives of the solution
λl, l = 1, . . . , Q of (2.23); the product rule applied to (2.22) together with
(2.21) then gives the desired bound (2.20) for the shape functions ϕi. We are
thus left with establishing (2.26).
Second step: To see (2.26) we prove a lower bound on the smallest eigenvalue
of the symmetric matrix G(x∗). To that end, let a ∈ R

Q be arbitrary but
fixed. We define the polynomial

π :=
Q∑

k=1

akπk

and observe

a�G(x∗)a =
∑
i,k,l

wi(x∗)akalπk(xi)πl(xi) =
N∑

i=1

wi(x∗)|π(xi)|2. (2.27)

We wish to exploit that Assumption 2.5 gives us the existence of Cmin > 0
such that

min{w(x) |x ∈ Bα(0)} = Cmin > 0. (2.28)

To do so, we define η < 1/2 by

η :=
1
2

α

Ccomp
≤ 1

2
α <

1
2
, (2.29)

where we used Ccomp ≥ 1. Next, we choose δ appearing in (2.19) according
to the definition (2.33) below; in particular, therefore, δ < η so that there
exists an index i ∈ N such that x∗ ∈ Bηρ̂i

(xi). We fix this index and define

ñ(x∗) := {j ∈ N |xj ∈ XN ∩ Bηρ̂i
(x∗)}. (2.30)

Meshless Methods 83

Our goal in this second step is to show

a�G(x∗)a ≥
∑

j∈ñ(x∗)

wj(x∗)|π(xj)|2 ≥ Cmin

∑
j∈ñ(x∗)

|π(xj)|2. (2.31)

The first bound in (2.31) is obvious since wj ≥ 0 for all j. To see the second
estimate, in view of (2.28), it suffices to see ‖xj − x∗‖2 < αρ̂j for j ∈ ñ(x∗).
Let therefore j ∈ ñ(x∗). Then

‖xj − xi‖2 ≤ ‖xj − x∗‖2 + ‖xi − x∗‖2 < 2ηρ̂i ≤ ρ̂i,

where in the last step, we used η ≤ 1/2. Hence, xj ∈ Bρi
(xi), and thus

j ∈ n(i). We conclude with Assumption 2.4

ρ̂i ≤ Ccompρ̂j ∀ j ∈ ñ(x∗).

Together with the definition of η in (2.29), we arrive at the desired bound
‖xj − x∗‖2 < ηρ̂i ≤ ηCcompρ̂j ≤ 1

2αρ̂j ≤ αρ̂j .
Third step: To get further, we apply Lemma 2.1. Our choice of δ above is
precisely the choice of Lemma 2.1 so that we can find C > 0 depending only
on Ω, η, and p such that

‖π‖L∞(Bρ̂i
(x∗)) ≤ C max{|π(xj)| | j ∈ ñ(x∗)}.

Thus, we get from (2.31)

a�G(x∗)a ≥ C‖π‖2
L∞(Bρ̂i

(x∗)).

In view of (2.21), we get from Bernstein’s estimate Lemma B.1 the existence
of C > 0 (depending only on p, Ccomp and the parameter r of the cone
condition) such that ‖π‖L∞(Bρ∗ (x∗)) ≤ C‖π‖L∞(Bρ̂i

(x∗)). Thus, we get

a�G(x∗)a ≥ C‖π‖2
L∞(Bρ∗ (x∗)). (2.32)

To control the smallest eigenvalue of G(x∗), we are therefore left with esti-
mating

∑Q
k=1 |ak|2 by ‖π‖2

L∞(Bρ∗ (x∗)). We achieve this by a scaling argument:
We define the function π(x) := π((x − x∗)/ρ∗) on B1(0) and note

π(x) =
Q∑

k=1

akπ̃k(x).

We observe ‖π‖L∞(B1(0)) = ‖π‖L∞(Bρ∗ (x∗)). By the equivalence of norms on
finite dimensional space, we then get the existence of C > 0 (depending solely
on p and the choice of the basis {π̃k | k = 1, . . . , Q}) such that

C−1

Q∑
k=1

|ak|2 ≤ ‖π‖2
L∞(B1(0))

≤ C

Q∑
k=1

|ak|2.

84 J.M. Melenk

zρ̂i

ηρ̂i

x x̂

θ

B

x̂ x∗
xj

x∗δρ̂i

2δρ̂i

Figure 2.2. Notation for Lemma 2.1. Left: Ball B̃. Right: Location of x̂, x∗, xj .
This establishes the desired lower bound on the eigenvalues of G(x∗). Finally,
we note that this bound holds in fact uniformly in x∗ ∈ Ω, thus completing
the proof of (2.26). �
The following lemma allows us to bound the L∞-norm of a polynomial in
terms of values in discrete points:

Lemma 2.1. Let XN = {xi | i = 1, . . . , N} ⊂ R
d and {ρi | i = 1, . . . , N} ⊂

R
+. Let Ω ⊂ R

d satisfy an interior cone condition with angle θ and radius
r > 0. Define

ρ̂i := min{ρi, r}, i = 1, . . . , N.

Let η ∈ (0, 1] and p ∈ N0. Set

δ := η
sin θ

1 + sin θ
min

{
1
3
,

1
36p2

}
. (2.33)

Then the following holds: If Ω ⊂ ∪N
i=1Bρ̂i

(xi) and if for all i ∈ {1, . . . , N}

sup
y∈Bρ̂i

(xi)∩Ω

h(y) ≤ δρ̂i, (2.34)

then for each x ∈ Ω and any xi ∈ XN ∩ Bρ̂i
(x) and all π ∈ Pp

‖π‖L∞(Bρ̂i
(x)) ≤ ‖π‖L∞(B2ρ̂i

(xi))

≤ 2
(

4(1 + sin θ)
η sin θ

)p

max{|π(xj)| |xj ∈ XN ∩ Bηρ̂i
(x)}.

Proof. The proof follows the arguments of [109] and proceeds in several steps.
We fix x ∈ Ω ∩ Bρ̂i

(xi) and π ∈ Pp. We also define

z := η
sin θ

1 + sin θ

Meshless Methods 85

and note that δ, z are chosen such that

3δ ≤ z.

First step: By the cone condition, there exists a cone C1 = C(x, ξ, θ, ηρ̂i) ⊂ Ω.
Elementary geometric considerations (see Figure 2.2) then show the existence
of a ball B̃ = Bzρ̂i

(x̂), where x̂ = x + η
1+sin θ ξ with the following properties:

B̃ ⊂ C1 ⊂ Ω ∩ Bηρ̂i
(x) ∩ B2ρ̂i

(xi). (2.35)

Second step: From Lemma B.1, we get

‖π‖L∞(B2ρ̂i
(xi)) ≤

(
4
z

)p

‖π‖L∞(B̃). (2.36)

It therefore suffices to bound ‖π‖L∞(B̃) in terms of the values of π in the
discrete set XN ∩ Bηρ̂i

(x). Towards this goal, we construct in this second
step an xj ∈ XN ∩ Bηρ̂i

(x) that will be seen in the fourth step to have the

property that |π(xj)| is comparable to ‖π‖L∞(B̃). Choose x∗ ∈ B̃ such that

‖π‖L∞(B̃) = |π(x∗)|.

We claim the existence of xj ∈ XN ∩ B̃ ∩ B3δρ̂i
(x∗). To see this, we recall

that x̂ is the centre of B̃ and define the auxiliary point

x∗ :=

{
x∗ + 2δρ̂i

1
‖x̂−x∗‖2

(x̂ − x∗) if x∗ �= x̂,

x∗ if x∗ = x̂.

Since 3δ ≤ z, elementary considerations show ‖x∗ − x̂‖2 < (z − δ)ρ̂i; hence
Bδρ̂i

(x∗) ⊂ B̃. The assumption (2.34) then implies the existence of an xj ∈
XN ∩ Bδρ̂i

(x∗) ⊂ XN ∩ B̃. By the triangle inequality we furthermore get
xj ∈ B3δρ̂i

(x∗).
Third step: Let xj be the point constructed in the second step and set

ζ :=
1

‖xj − x∗‖2
(xj − x∗) if xj �= x∗.

If xj = x∗, then choose an arbitrary ζ ∈ R
d with ‖ζ‖2 = 1. We claim:

{x∗ + tζ | t ∈ [0, 1
3zρ̂i]} ⊂ B̃.

To see this, we first note that the case x∗ = x̂ is trivial. We therefore assume
that x∗ �= x̂. From the second step we recall

‖x∗ − xj‖2 ≤ δρ̂i, ‖x∗ − x∗‖2 = 2δρ̂i, (2.37)

86 J.M. Melenk

so that we can conclude
‖xj − x∗‖2 ≥ δρ̂i. (2.38)

In order to see that x∗ + tζ ∈ B̃ for t ∈ [0, 1
3zρ̂i] we write

xj = x∗ + (xj − x∗) = x∗ +
2δρ̂i

‖x̂ − x∗‖2
(x̂ − x∗) + (xj − x∗).

and compute

‖x∗ + tζ − x̂‖2 ≤
∣∣∣∣‖x∗ − x̂‖2 −

2δρ̂i

‖xj − x∗‖2
t

∣∣∣∣+ ‖xj − x∗‖2

‖xj − x∗‖2
t.

Requiring ∣∣∣∣‖x∗ − x̂‖2 −
2δρ̂i

‖xj − x∗‖2
t

∣∣∣∣+ ‖xj − x∗‖2

‖xj − x∗‖2
t ≤ zρ̂i

is equivalent to the following two inequalities:

‖x∗ − x̂‖2 − zρ̂i ≤
2δρ̂i − ‖xj − x∗‖2

‖xj − x∗‖2
t and

t ≤ (‖x∗ − x̂‖2 + zρ̂i)
‖xj − x∗‖2

2δρ̂i + ‖xj − x∗‖2
,

which are indeed both satisfied for t ∈ [0, 1
3zρ̂i] in view of ‖x∗ − x̂‖2 ≤ zρ̂i

and (2.37), (2.38).
Fourth step: We now turn to estimating |π(x∗)| in terms of |π(xj)|. To that
end, we define with the vector ζ of the fourth step the polynomial

p(t) := π(x∗ + tζ), t ∈ [0, 1
3zρ̂i],

and note that xj = x∗+τζ for some τ with 0 ≤ τ ≤ 3δρ̂i since xj ∈ B3δρ̂i
(x∗).

Additionally, we have (for p ≥ 1) in view of the definition of δ that τ ≤ 1
3z.

Using Markov’s inequality (see for example [33, Chap. 4, Thm. 1.4]), we can
bound

|π(x∗) − π(xj)| = |p(‖x∗ − xj‖2) − p(0)| =
∣∣∣∣∫ τ

0

p′(t) dt

∣∣∣∣
≤ τ‖p′‖

L∞(0,
1
3 zρ̂i)

≤ 2τp2

1
3zρ̂i

‖p‖
L∞(0,

1
3 zρ̂i)

≤ 18δ

z
p2‖π‖L∞(B̃).

Recalling now that |π(x∗)| = ‖π‖L∞(B̃), we get

‖π‖L∞(B̃) ≤
1

1 − 18p2δ/z
|π(xj)|.

This estimate is also trivially true for p = 0. We therefore conclude, since
xj ∈ XN ∩ B̃ ⊂ XN ∩ Bηρ̂i

(x)

‖π‖L∞(B2ρ̂i
(xi)) ≤

(
4
z

)p 1
1 − 18p2δ/z

max{xj |xj ∈ XN ∩ Bηρ̂i
(x)}.

Using δ ≤ 1
36p2 z and the definition of z, we arrive at the desired bound. �

Meshless Methods 87

Exercise 2.8.
Assumption 2.5 requires the function w to be k-times continuously differen-
tiable. Consider what assumptions (e.g. on the definition of n(x)) need to be
changed if w is in Ck−1,1.

2.4 Bibliographical Remarks

The construction of the QN in the proof of Theorem 2.1 that is based on
point evaluations of locally approximating polynomials is just one possible
technique; variations of such constructions can be found in [1, 6]. The proof
of the stability result Theorem 2.3 follows in essence [109]. Variants can be
found, for example, in [1, 41,55].
The moving least squares technique originates from scattered data approx-
imation. Early references include [45, 97]. It is, however, just one way of
generating shape functions that reproduce polynomials. Alternatives include
the reproducing kernel particle methods (RKPM), [70,72–75].
One reason for introducing meshless methods is to alleviate the costly mesh-
ing. Completely regular meshes on the other hand are very simple to gener-
ate and have many advantages. With this in mind, the web-splines (weighted
extended B-splines) were introduced in [57]. The computational domain is
covered with a regular mesh on which standard splines can be defined easily.
Appropriate adjustments near the boundary are made to be able to handle
essential boundary conditions.

3 Approximation Properties of Radial Basis Functions

A second class of shape functions that can be motivated from scattered data
interpolation are radial basis functions (RBFs). In scattered data interpola-
tion the basic problem is as follows: given a norm ‖ · ‖ on R

d, a function
Φ : R

+
0 → R, distinct points XN = {xi | i = 1, . . . , N} ⊂ R

d and function
values fi, i = 1, . . . , N , the goal is to find If of the form

If(·) =
N∑

j=1

ujΦ(‖ · −xj‖) such that If(xi) = fi i = 1, . . . , N. (3.1)

The problem (3.1) represents a linear system of equations. Clearly, existence
and uniqueness of If depends on the function Φ. An important class for
which this can be established is that of positive definite functions Φ:

Definition 3.1. A continuous function Φ : R
+
0 → R is positive definite, if for

any set X = {x1, . . . , xM} of M distinct points the Gram matrix G ∈ R
M×M

with entries Gij = Φ(‖xi − xj‖) is symmetric positive definite.

Proposition 3.1. If Φ is positive definite, then the interpolation problem
(3.1) is uniquely solvable.

88 J.M. Melenk

Proof. Exercise. �

Example 3.1.
Classically, the norm ‖ · ‖ on R

d is taken to be the Euclidean norm ‖ · ‖2.
Popular examples of radial basis functions Φ are the Gaussians (Φ(r) = e−r2

),
Hardy’s multiquadrics Φ(r) =

√
1 + r2, and the inverse multiquadrics Φ(r) =

(1 + r2)−1/2. It is also a widely used practise to employ scaled versions, that
is, to use the function Φ̃(r) = Φ(r/h) with a suitable scaling parameter h > 0.
These RBFs can be used for scattered data interpolation in any dimension.
Another class is obtained by taking the fundamental solution of the iterated
Laplacian ∆m. For 2m ≥ d, these RBFs are given by Φ(r) = r2m−d ln r if
d is even and Φ(r) = r2m−d if d is odd. The function Φ in the special case
m = d = 2 is called the thin-plate spline since in the Kirchhoff plate model,
which is a biharmonic equation, the deflection of an infinite plate under a
point load coincides with Φ (up to scaling).

The functions of Example 3.1 do not have bounded support. As was shown
in [106,107] it is possible to construct RBFs that have compact support:

Example 3.2.
A class of RBFs Φd′,k, k ∈ N0 for applications in spatial dimension d ≤ d′ are
the compactly supported RBFs of H. Wendland, [106, 107]. A few examples
of this class are:

function smoothness for problems in R
d

Φ1,0(r) = (1 − r)+ C0 d = 1
Φ1,1(r) = (1 − r)3+(3r + 1) C2 d = 1
Φ1,2(r) = (1 − r)5+(8r2 + 5r + 1) C4 d = 1
Φ3,0(r) = (1 − r)2+ C0 d ≤ 3
Φ3,1(r) = (1 − r)4+(4r + 1) C2 d ≤ 3
Φ3,2(r) = (1 − r)6+(35r2 + 18r + 3) C4 d ≤ 3

With the exception of Φ1,0, Φ3,0, the functions Φk,d′ satisfy Assumption 3.1
below (see [107] and Exercise 3.1) and hence are positive definite. As in Exam-
ple 3.1 scaled version Φk,d(r/ρ) for a scaling parameter ρ > 0 are frequently
employed as well.

3.1 Analysis of a Class of RBFs

We consider the following class of RBF functions x �→ Φ(‖x‖2):

Assumption 3.1. The Fourier transform2 ψ of the function x �→ Φ(‖x‖2)
satisfies for some τ > d/2 and C > 0

C−1(1 + ‖ξ‖2
2)

−τ ≤ ψ(ξ) ≤ C(1 + ‖ξ‖2
2)

−τ ∀ ξ ∈ R
d.

2 f̂(ξ) = 1
(2π)d

∫
Rd f(x)e−ix·ξ dx denotes the Fourier transform f̂ of a function f .

The inversion formula takes the form f(x) =
∫

Rd f̂(ξ)eix·ξ dξ.

Meshless Methods 89

The set of RBFs that satisfy Assumption 3.1 is not empty:

Exercise 3.1.
Check that the compactly supported RBF Φ1,1 of Example 3.2 for d = 1
satisfies Assumption 3.1 with τ = 2.

The strict positivity of ψ stipulated in Assumption 3.1 allows us to define an
inner product 〈·, 〉Φ and the corresponding Hilbert space HΦ, which is called
the “native space”:

〈f, g〉Φ :=
∫

Rd

1
ψ

f̂(ξ)ĝ(ξ) dξ, HΦ := {f | ‖f‖2
Φ := 〈f, f〉Φ < ∞}. (3.2)

We have

Proposition 3.2. Let Φ satisfy Assumption 3.1. Then

1. HΦ ⊂ C(Rd).
2. HΦ = Hτ (Rd) with equivalent norms.
3. Φ ∈ HΦ.
4. Φ is positive definite.

Proof. The second assertion is just one of several equivalent definitions of the
Sobolev spaces Hτ (Rd). The other assertions are left as an exercise. �

Theorem 3.1. Let Assumption 3.1 be valid. Then for distinct points XN =
{xi | i = 1, . . . , N} and f ∈ HΦ the scattered interpolation problem:

Find If ∈ VN := span{Φ(‖ · −xi‖2) | i = 1, . . . , N}
such that If(xi) = f(xi) i = 1, . . . , N,

has a unique solution, which satisfies

〈f − If, v〉Φ = 0 ∀ v ∈ VN (3.3)

and
‖f − If‖Φ = min

v∈VN

‖f − v‖Φ. (3.4)

Proof. Existence and unique follows from the fact that x �→ Φ(‖x‖2) is posi-
tive definite. The orthogonality relation can be seen as follows: The function
vk = Φ(‖ · −xk‖2) satisfies vk ∈ VN and v̂k(ξ) = ψ(ξ)eixkξ. Next,

〈f − If, vk〉Φ =
∫

Rd

1
ψ

(
f̂ − Îf

)
ψeixkξ dξ = f(xk) − If(xk) = 0,

where the last step follows from the interpolation property. Hence, (3.3) is
true. This orthogonality relation implies the best approximation result (3.4)
in the ‖ · ‖Φ-norm in the standard way (see for example the proof of Céa’s
Lemma in [23, Thm. 2.8.1]). �

90 J.M. Melenk

Corollary 3.1 (stability of scattered data interpolation). Let Ω ⊂ R
d

be a Lipschitz domain (or Ω = R
d). Let XN = {xi | i = 1, . . . , N} ⊂ Ω and

suppose Assumption 3.1. Then for all f ∈ Hτ (Ω)

‖f − If‖Hτ (Ω) ≤ C‖f‖Hτ (Ω).

Proof. We will only treat the case of Ω being a Lipschitz domain. Let E :
Hτ (Ω) → Hτ (Rd) be the universal extension operator of Theorem A.1. Since
XN ⊂ Ω, we have Ef(xi) = f(xi), i = 1, . . . , N . By Proposition 3.2, the
interpolant If exists and is unique. Since Hτ (Rd) = HΦ, we have Ef ∈ HΦ.
By Proposition 3.2 and Theorem 3.1 we arrive at

‖Ef − If‖2
Hτ (Rd) ≤ C〈Ef − If, Ef − If〉Φ = C〈Ef − If, Ef〉Φ

≤ C‖Ef − If‖Φ‖Ef‖Φ ≤ C‖Ef − If‖Hτ (Rd)‖Ef‖Hτ (Rd)

≤ C‖Ef − If‖Hτ (Rd)‖f‖Hτ (Ω).

We conclude ‖Ef−If‖Hτ (Rd) ≤ C‖f‖Hτ (Ω). Since Ef = f on Ω and trivially
‖Ef − If‖Hτ (Ω) ≤ C‖Ef − If‖Hτ (Rd), the proof is complete. �

This stability result is the key to approximation results for the scattered data
interpolant If :

Corollary 3.2. Let Assumption 3.1 be satisfied and let Ω ⊂ R
d be a Lipschitz

domain. Define the fill distance

h := sup
x∈Ω

min
i=1,...,N

‖x − xi‖2. (3.5)

Then there exists C > 0 such that for f ∈ Hτ (Ω) there holds

‖f − If‖Hs(Ω) ≤ Chτ−s‖f‖Hτ (Ω), 0 ≤ s ≤ τ.

Proof. We proceed in two steps.
First step: By Theorem 3.1, the linear operator Id−I : Hτ (Ω) → VN ⊂
Hτ (Ω) satisfies ‖ Id−I‖Hτ (Ω)→Hτ (Ω) ≤ C. If we can show the claim for s = 0,

‖ Id−I‖Hτ (Ω)→L2(Ω) ≤ Chτ ,

then the desired bound ‖ Id−I‖Hτ (Ω)→Hs(Ω) ≤ Chτ−s for any s ∈ [0, τ]
follows by interpolation. We are thus left with showing the special case s = 0.
Second step: Choose p ∈ N0 such that τ ≤ p. By Lemma 2.1 there exist C,
Ĉ > 0 depending only on Ω such that for ρ = Ch we have for all balls Bρ(x),
x ∈ Ω:

‖π‖L∞(Bρ(x)) ≤ Ĉ max
xi∈Bρ(x)

|π(xi)| ∀ π ∈ Pp. (3.6)

We cover Ω ⊂
⋃

x∈Ω Bρ(x). By the Besicovitch covering theorem, Theo-
rem A.3, we can extract from the cover B = {Bρ(x) |x ∈ Ω} a subcover

Meshless Methods 91

Bj , i = j, . . . , M , with the following properties: Ω ⊂ ∪M
j=1 ∪B∈Bj

B and each
collection Bj consists of countably many disjoint balls.
We set z := f−If and assume for notational convenience, as we may using the
extension operator of Theorem A.1, that z is defined on R

d with ‖z‖Hτ (Rd) ≤
C‖z‖Hτ (Ω). For each ball B of ∪M

j=1Bj we select Q ∈ Pp as given by the
polynomial approximation result Theorem B.1. We can then bound with the
triangle inequality and the polynomial inverse estimate of Theorem B.2

‖z‖L2(B) ≤ ‖z − Q‖L2(B) + ‖Q‖L2(B) ≤ C
{

ρτ‖z‖Hτ (B) + ρd/2‖Q‖L∞(B)

}
.

Our choice of the balls B in B guarantees (3.6). Hence, we can estimate

‖Q‖L∞(B) ≤ Ĉ max{|Q(xi)| |xi ∈ B} = C sup{|Q(xi)| |xi ∈ B}.

Since z vanishes in the interpolation points xi, we get

‖Q‖L∞(B) ≤ Ĉ sup{|Q(xi) − z(zi)| |xi ∈ B}
≤ Ĉ‖z − Q‖L∞(B) ≤ Cρτ−d/2‖z‖Hτ (B),

where we used again the approximation properties in L∞ ascertained in
Theorem B.1. Using the fact that Ω ⊂ ∪M

j=1 ∪B∈Bj
B and that for each

j ∈ {1, . . . , M} the balls of the collection Bj are pairwise disjoint, we get

‖z‖2
L2(Ω)≤

M∑
j=1

∑
B∈Bj

‖z‖2
L2(B)≤ Cρ2τ

M∑
j=1

∑
B∈Bj

‖z‖2
Hτ (B) ≤ Cρ2τ

M∑
j=1

‖z‖2
Hτ (Ω).

This concludes the proof in view of the stability result Corollary 3.1. �

It is of interest to consider functions f ∈ Hk(Ω) with k < τ . Since in this case
the function f may not be continuous, we cannot define the scattered data
interpolant; nevertheless, the space VN = span{Φ(‖ · −xi‖2) | i = 1, . . . , N}
can still have good approximation properties. Indeed, we have the following:

Proposition 3.3. Let Ω ⊂ R
d be a Lipschitz domain. Assume that Φ sat-

isfies Assumption 3.1. Let XN be a particle distribution with fill distance h
given by (3.5). Set VN := span{Φ(‖ · −xi‖2) |xi ∈ XN}. Then for 0 ≤ k ≤ τ
and real numbers 0 ≤ s1 ≤ · · · ≤ sm = k, we have for some C > 0 indepen-
dent of h and f :

inf
v∈VN

m∑
j=1

hsj‖f − v‖Hsj (Ω) ≤ Chk‖f‖Hk(Ω).

Proof. We will prove the following, weaker statement:

inf
v∈VN

‖f − v‖Hs(Ω) ≤ Chk−s‖f‖Hk(Ω), 0 ≤ s ≤ k. (3.7)

92 J.M. Melenk

The statement of the proposition then follows from (3.7) and a result on
simultaneous approximation in Sobolev space, [22]. To see (3.7), fix s and let
Π : Hs(Ω) → VN be the Hs(Ω)-orthogonal projection. Then by Corollary 3.2

‖ Id−Π‖Hs(Ω)→Hs(Ω) = 1, ‖ Id−Π‖Hτ (Ω)→Hs(Ω) ≤ Chτ−s.

Since the space Hk(Ω) can be obtained by interpolation between Hs(Ω) and
Hτ (Ω) we arrive at the desired bound.

3.2 Bibliographical Remarks

The presentation here follows [86]. The presentation is restricted to posi-
tive definite RBFs for simplicity. A very important, more general class of
functions is that of conditionally positive RBFs: For given p ∈ N0, norm
‖ · ‖ on R

d, a function Φ(‖ · ‖) is called conditionally positive definite if for
any set XM = {x1, . . . , xM} of distinct points, the matrix G ∈ R

M×M de-
fined by Gij = Φ(‖xi − xj‖) is positive definite on the set subspace {a ∈
R

M |
∑M

k=1 akπ(xk) = 0 ∀ π ∈ Pp}. The interpolation problem (3.1) is then
replaced with the problem of finding If of the form

∑N
j=1 ujΦ(‖ · −xj‖) + π

for a π ∈ Pp such that If(xi) = fi for i = 1, . . . , N . For a detailed survey of
RBF functions we refer to [25,26,61,110].
The approximation theory for RBFs can be traced back to the work of
Duchon, [35,36], where in particular the RBFs Φ that are fundamental solu-
tions of the iterated Laplacian are analyzed.
The approximation result Proposition 3.3 is just one example of a setting
where the function f to be approximated is not in the native space HΦ. We
refer to [24] and the reference there for a more detailed discussion.
It should be noted that even for the compactly supported radial basis func-
tions of Example 3.2 the Gram matrix G of the interpolation problem or
the stiffness matrix, if they are used as shape functions in Galerkin meth-
ods, is not sparse. Multiresolution analysis ideas have been proposed and
employed in the context of radial basis functions. For example, if for each
level l ∈ {0, . . . , L} a collection of points xi,l, i = 1, . . . , Nl, is given or con-
structed, one can approximate from the space span{Φ(‖(· − xi,l)/hl‖2) | i =
1, . . . , Nl, l = 0, . . . , L}, where the scaling parameters hl are additional, suit-
ably chosen parameters. We refer [61] and the references there for more de-
tails.

Meshless Methods 93

4 Partition of Unity Method and Generalized FEM

The approximation properties of the spaces discussed in Sections 2, 3 ulti-
mately rely on the local approximation properties of polynomials. The Par-
tition of Unity Method/generalized FEM [7, 9, 78, 79, 82, 101–103] is a gen-
eralization of the classical FEM and the above approaches in that it allows
the creation of special approximation spaces that are tailored to a particular
problem. As we will see in Theorem 4.1, one can construct, starting from
local approximation spaces Vi, a global approximation space V by means of
a partition of unity, where the global space V inherits the approximation
properties from the local spaces Vi. As we will illustrate in Section 5, the
approximation properties of the local spaces Vi need not rely on those of
polynomials.

4.1 Approximation Theory

Theorem 4.1. Let Ω ⊂ R
d be a Lipschitz domain and let {ψi | i = 1, . . . , N}

be a collection of W 1,∞(Ω) functions. Set Ωi := (suppψi)◦ ⊂ Ω, hi :=
diam Ωi, and assume

‖ψi‖L∞(Ω) ≤ C∞, ‖∇ψi‖L∞(Ω) ≤
CG

hi
i = 1, . . . , N,

N∑
i=1

ψi ≡ 1 on Ω, sup
x∈Ω

card{i ∈ N |x ∈ Ωi} ≤ M.

Assume that each Ωi, i = 1, . . . , N , is a Lipschitz domain as well.
For each i ∈ {1, . . . , N} let Vi ⊂ H1(Ωi) be given and set

V :=
N∑

i=1

ψiVi =

{
N∑

i=1

ψivi | vi ∈ Vi

}
. (4.1)

Then V ⊂ H1(Ω).
Assume that for a given u ∈ H1(Ω) the spaces Vi have a local approximation
property, that is there exist vi ∈ Vi such that

‖u − vi‖L2(Ωi) =: ε1(i), ‖∇(u − vi)‖L2(Ωi) =: ε2(i). (4.2)

Then the approximant v :=
∑N

i=1 ψivi ∈ V satisfies

‖u − v‖2
L2(Ω) ≤ MC2

∞

N∑
i=1

|ε1(i)|2, (4.3)

‖∇(u − v)‖2
L2(Ω) ≤ 2M

N∑
i=1

[(
CG

hi

)2

|ε1(i)|2 + C2
∞|ε2(i)|2

]
. (4.4)

94 J.M. Melenk

Proof. The assumption that the patches Ωi be Lipschitz domain is required
to ensure that V ⊂ H1(Ω) as we now show: By the extension result Theo-
rem A.1, there exist extension operators Ei : H1(Ωi) → H1(Rd). For each
i ∈ {1, . . . , N} we choose vi ∈ Vi. We then check that ψi(Eivi) ∈ H1(Ω) as
the product of a Lipschitz continuous function and an H1(Ω)-function. Hence,∑N

i=1 ψiEivi ∈ H1(Ω). By the support properties of the functions ψi we get∑N
i=1 ψivi =

∑N
i=1 ψiEivi. In this way, we see that V =

∑N
i=1 ψiVi ⊂ H1(Ω).

We will now prove (4.4) and leave (4.3) as an exercise. Using
∑N

i=1 ψi ≡ 1 on
Ω we can write with the product rule

∇(u −
N∑

i=1

ψivi) = ∇
N∑

i=1

ψi(u − vi) =
N∑

i=1

(u − vi)∇ψi + ψi∇(u − vi).

This allows us to bound the error e := u −
∑N

i=1 ψivi by

∫
Ω

|e|2 dx ≤ 2
∫

Ω

∣∣∣∣∣
N∑

i=1

(u − vi)∇ψi

∣∣∣∣∣
2

+

∣∣∣∣∣
N∑

i=1

ψi∇(u − vi)

∣∣∣∣∣
2

dx. (4.5)

The assumption supx∈Ω card{i |x ∈ Ωi} ≤ M implies that for each fixed
x ∈ Ω each of the sums consists of at most M terms. Hence, exploiting the
bound (

∑M
j=1 |aj |)2 ≤ M

∑M
j=1 |aj |2, which is valid for any finite sequence

(aj)M
j=1, and using the bounds on the functions ψi, ∇ψi, we arrive at∣∣∣∣∣

N∑
i=1

(u − vi)(x)∇ψi(x)

∣∣∣∣∣
2

≤ M
N∑

i=1

|∇ψi(x)|2 |(u − vi)(x)|2

≤ MC2
G

N∑
i=1

1
h2

i

|(u − vi)(x)|2,

∣∣∣∣∣
N∑

i=1

ψi(x)∇(u − vi)(x)

∣∣∣∣∣
2

≤ M

N∑
i=1

|ψi(x)|2 |∇(u − vi)(x)|2

≤ MC2
∞

N∑
i=1

|∇(u − vi)(x)|2.

Inserting these bounds in (4.5) then gives the desired estimate. �

Remark 4.1.
Theorem 4.1 is formulated for L2-based spaces—an extension to spaces W k,q,
1 ≤ q < ∞ is possible. If the partition of unity is smoother, that is ψi ∈
W k,∞(Ω) and the local spaces Vi satisfy Vi ⊂ Hk(Ωi), then again V ⊂
Hk(Ω) and analogous approximation results in Hk can be obtained. Thus,
applications requiring subspaces of Hk(Ω) instead of H1(Ω) as approximation
spaces can easily be constructed.

Meshless Methods 95

A prominent example of a partition of unity satisfying the assumptions of
Theorem 4.1 consists of the standard basis of a FEM space:

Example 4.1.
Let T be a shape-regular mesh on a domain Ω ⊂ R

d. Let {xi | i = 1, . . . , N} be
the vertices of T and let {ψi | i = 1, . . . , N} be the standard piecewise linear
basis of S1,1(T). Then {ψi | i = 1, . . . , N} is a partition of unity satisfying
the assumptions of Theorem 4.1.

Remark 4.2.
Partitions of unity are systems of functions that reproduce polynomials of
degree p = 0. Hence, one can obtain a partition of unity with the Shephard
construction of Exercise 2.4 from a collection of particles XN = {xi | i =
1, . . . , N} and corresponding weight functions wi, i = 1, . . . , N . As discussed
in Section 2.3, the regularity of the shape functions obtained in this way is
determined by the regularity of the weight functions wi.
Of particular note in the Shephard construction is the case when each patch
Ωi contains an open subset Ω′

i such that Ω′
i ∩ Ωj = ∅ for j �= i. Then ψi ≡ 1

on Ω′
i. Such a partition of unity is employed in the particle partition of unity

method of [96].

For practical implementations, it is important to identify a basis of the space
V . It appears natural to base it on bases Bi = {bi,j | j = 1, . . . ,dimVi}, i =
1, . . . , N , and consider the set B = {ψibi,j | i = 1, . . . , N, j = 1, . . . ,dimVi}.
In general B is not a basis of V as the following exercise shows:

Exercise 4.1.
Let Ω = (0, 1) and 0 = x0 < x1 < · · ·xN = 1 be a partition of Ω. let ψi,
i = 0, . . . , N , be the standard piecewise linear hat function associated with
node xi. Let Vi = Pp = span{bj | j = 0, . . . , p} for each i = 0, . . . , p. Show by
a dimension argument that {ψibj | i = 0, . . . , N, j = 0, . . . , p} is not a basis of
V =

∑N
i=0 ψiVi.

If the partition of unity is suitably chosen, then the set B is a basis of V :

Exercise 4.2.
Let the partition of unity {ψi | i = 1, . . . , N} be such that for each i there
exists an open set Ω′

i with Ω′
i ∩ suppψj = ∅ for all j �= i. Show: The set B is

a basis of V . This fact is exploited in the particle partition of unity of [96].

4.2 Example: Polynomial Local Approximation Spaces

There are several ways to employ the approximation result Theorem 4.1 in
a numerical scheme. One way is to use polynomials as local approximation
spaces Vi; the partition of unity method could, for example, be obtained from
a collection of particles and the partition of unity is based on the Shepard
function of Exercise 2.4. This is approach is pursued in a series of papers

96 J.M. Melenk

by Griebel and Schweitzer [47–51] and collected in the monograph [96]. The
approximation properties of this method are comparable to the classical FEM
as is shown in the following Exercises 4.3, 4.4.

Exercise 4.3.
Let Ω ⊂ R

d be a Lipschitz domain. For each patch Ωi choose a polynomial
degree pi ∈ N0 and set Vi := Ppi

. For each i ∈ {1, . . . , N} let B̃i be a ball
of diameter diam B̃i ≤ Chi such that Ωi ⊂ B̃i. Assume additionally that the
balls B̃i satisfy an overlap condition, that is

sup
x∈Rd

{i |x ∈ B̃i} ≤ M. (4.6)

Show: Under the hypotheses of Theorem 4.1 on the functions ψi there holds

inf
v∈VN

‖u − v‖2
H1(Ω) ≤ C

N∑
i=1

h
2(min{pi+1,k}−1)
i ‖u‖2

Hk(B̃i)
.

In particular, if pi = p for all i and if we set h := maxhi, then

inf
v∈VN

‖u − v‖2
H1(Ω) ≤ Ch2 min{p,k−1}‖u‖2

Hk(Ω).

The size diam B̃i of the ball B̃i in Exercise 4.3 plays the role of the local mesh
size in the classical FEM. Graded meshes can also be simulated as illustrated
in the following exercise.

Exercise 4.4.
Continue Exercise 4.3 for the approximation of singularity functions of the
form u(r, ϕ) = rαΘ(ϕ) as discussed in Exercise 2.3. Let Ω = (0, 1/2)2, let
XN be the particle distribution given in Exercise 2.3 with β > p/α. Let the
patches Ωi be such that xi ∈ Ωi ⊂ B̃i, where B̃i = Bρi

(xi) with ρi given in
Exercise 2.3. Let Vi = Pp as in the preceding exercise. Show: (4.6) holds, and
the approximation space V satisfies

inf
v∈V

‖u − v‖H1(Ω) ≤ CN−p,

that is the optimal rate of convergence is achieved.

5 Examples of Operator Adapted Approximation
Spaces

Theorem 4.1 allows us to construct approximation spaces V where the global
space V inherits the approximation properties of the local spaces Vi. These
spaces can be custom tailored to the approximation of a function u. We
illustrate this with a few examples.

Meshless Methods 97

10
0

10
2

10
4

10
6

10
8

10
−4

10
−3

10
−2

10
−1

10
0

onset of FE−convergence for piecewise linears; M−dependence

re
l.

er
ro

r
in

 e
ne

rg
y

no
rm

problem size N

M=22

M=27

M=214

M=219

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

problem size N

re
l.

er
ro

r
in

 e
ne

rg
y

no
rm

M=4096; b=0; a smooth

classical FEM
robust O(h)
robust O(h2)

Figure 5.1. Left: Convergence of the classical FEM. Right: Convergence of the
PUM.

5.1 A One-Dimensional Example

We consider the following one-dimensional model problem:

Lu := −(a(Mx)u′)′+b(x)u = f on Ω = (0, 1), u(0) = u(1) = 0, (5.1)

where M ∈ N and a ∈ L∞(R) is 1-periodic. Additionally, we assume ellip-
ticity, that is 0 < a ≤ a(x) for all x ∈ R and 0 ≤ b(x) ≤ ‖b‖L∞(Ω) for all
x ∈ Ω. If M is large, then the coefficient a(M ·) is highly oscillatory and so is
the solution u. The standard FEM performs poorly in the situation, namely,
convergence is only observed under the assumption of scale resolution, that
is if the mesh size h is sufficiently small to resolve all scales. The following
example illustrates this.

Example 5.1.
We consider the case a = 1

2+cos(2πx) , b ≡ 0, and f ≡ 1. In the left graph in
Figure 5.1 we show the convergence behaviour of the classical FEM based on
the space S1,1

0 (T) on uniform meshes. The error measure is relative error in
the energy norm, that is

‖u − uN‖E

‖u‖E
=

√∫
Ω

a(Mx)|(u − uN)′|2 dx∫
Ω

a(Mx)|u′|2 dx
. (5.2)

The solution u can be computed analytically and it can be checked that
‖u′‖L2(Ω) ∼ M and ‖u′′‖L2(Ω) = O(M2). The classical FEM convergence
analysis then gives

‖(u − uN)′‖L2(Ω)

‖u′‖L2(Ω)
≤ C min

{
1,

h‖u′′‖L2(Ω)

‖u′‖L2(Ω)

}
≤ C min{1, hM}. (5.3)

We clearly observe in Figure 5.1 the expected asymptotic first order conver-
gence; nevertheless, the asymptotic convergence behaviour is not observed
until h ≈ 1/M , that is, until scale resolution is reached. Note that this is in
agreement with (5.3).

98 J.M. Melenk

It is possible to design local approximation spaces that have good approxi-
mation properties for the solution of (5.1).

Lemma 5.1. Let I = (x0, x0 + h) and γ < 1. Let h2 ‖b‖L∞(I)

a ≤ γ < 1. Let
B = {u0, u1} be a fundamental system for L, that is Lu0 = Lu1 = 0 on I and
u0, u1 are linearly independent. Then there exists a C > 0 depending only on
a, ‖a‖L∞(I), ‖b‖L∞(I), γ, such that for a solution u ∈ H1(I) of Lu = f there
holds

inf
v∈V

‖u − v‖L∞(I) + h‖(u − v)′‖L∞(I) ≤ Ch2‖f‖L∞(I),

where V := spanB.

Proof. Since f ∈ L∞(I) and u ∈ H1(I) we get that u and au′ are continuous.
We then choose v ∈ V such that v(x0) = u(x0) and (av′)(x0) = (au′)(x0).
The error e := u − v then satisfies e(x0) = 0 and (ae′)(x0) together with
Le = f . The differential equation Le = f gives us −(ae′)′ = f − be so that

|e(x)| ≤
∣∣∣∣∫ x

x0

e′(t) dt

∣∣∣∣ ≤ h‖e′‖L∞(I),

|e′(x)|≤ 1
a
|(ae′)(x)| ≤ 1

a

∣∣∣∣∫ x

x0

f − be dt

∣∣∣∣ ≤ 1
a
h‖f‖L∞(I)+

‖b‖L∞(I)

a
h‖e‖L∞(I).

Combining these two estimates, we arrive at

‖e′‖L∞(I) ≤
‖f‖L∞(I)

a
h + h2 ‖b‖L∞(I)

a
‖e′‖L∞(I) ≤

‖f‖L∞(I)

a
h + γ‖e′‖L∞(I),

which allows us to conclude ‖e′‖L∞(I) ≤ h‖f‖L∞(I)/(a(1 − γ)). �

Remark 5.1.
It should be noted that the approximation spaces constructed in Lemma 5.1
merely require a and b to be L∞—no further regularity is required.

Extensions of the approximation result Lemma 5.1 are obtained in the fol-
lowing exercise.

Exercise 5.1.

(a) Construct a one-dimensional space V0 = span{u0} such that u0(x0) = 0
and V0 satisfies, for u(x0) = 0 and Lu = f ,

inf
v∈V0

‖u − v‖L∞(I) + h‖(u − v)′‖L∞(I) ≤ Ch2‖f‖L∞(I).

(b) Let u2 be such that Lu2 = 1. Let u0, u1 be defined in Lemma 5.1. Set
V2 := span{u0, u1, u2}. Show:

inf
v∈V2

‖u − v‖L∞(I) + h‖(u − v)′‖L∞(I) ≤ Ch3‖f ′‖L∞(I).

Meshless Methods 99

(c) Construct a two-dimensional space V0,2 = span{u0, u1} such that v(x0) =
0 for v ∈ V0,2 and V0,2 satisfies, for u(x0) = 0 and Lu = f ,

inf
v∈V0,2

‖u − v‖L∞(I) + h‖(u − v)′‖L∞(I) ≤ Ch3‖f ′‖L∞(I).

Example 5.2.
We use the partition of unity method (PUM) with a partition of unity given
by the piecewise linear functions on a uniform mesh with mesh size h for
the approximation of the solution of (5.1) where a = 1/(2 + cos(2πx)), b ≡
0, and f(x) = x. We choose M = 4096. In the first experiment the local
approximation spaces are taken as the spaces V constructed in Lemma 5.1
for the internal nodes and the space V0 constructed in Exercise 5.1 for the
two nodes at the boundary of Ω. In view of Lemma 5.1 and Theorem 4.1 we
expect convergence O(h) in the energy norm (cf. (5.2)), where the constant
in the O(h) convergence is independent M . The convergence behaviour of
this projection method is depicted in the graph labelled “robust O(h)” in the
right picture of Figure 5.1. Since the problem size N ∼ 1/h, the expected
convergence O(h) is indeed confirmed numerically.
In the second experiment, the local spaces for the internal nodes are taken
as the spaces V2 of Exercise 5.1 and the spaces V0,2 of Exercise 5.1 for the
boundary nodes. In view of Exercise 5.1 and Theorem 4.1 we expect a con-
vergence O(h2) in the energy norm. This expectation is confirmed by the
graph labelled “robust O(h2)” in the right picture of Figure 5.1. Again, the
constant hidden in the O(h2) convergence result is independent of M . For
more details on this one-dimensional problem, we refer to [82].

Exercise 5.2.
The approximation properties of the space V constructed in Lemma 5.1 can
also be understood by transforming the problem. Consider the case b ≡ 0.
Then

V = span
{

1,

∫ x

x0

1
a(t)

dt

}
.

Let f ∈ L2(I) and define the change of variable x̃ :=
∫ x

x0

1
a(t) dt. Show: The

function ũ(x̃) := u(x) is in H2 (hint: write down a differential equation
satisfied by ũ). Hence it can be approximated well from P1. Infer from that
approximation results for u for the approximation from V .

Remark 5.2.
The construction in Lemma 5.1 exploits in a crucial way the fact that a one-
dimensional problem is considered: the solution space of homogeneous linear
second order differential equations is two-dimensional. Nevertheless analo-
gous approximation results can be shown for quasi one-dimensional cases.
Exercise 5.2 illustrates an old, but powerful tool of numerical mathematics,

100 J.M. Melenk

namely, the use of suitable transformations. This device is also the reasons
for the results of [7]. In [7] problems of the form

−∂x (a(x)∂xu) − ∂y (a(x)∂yu)) = f on (0, 1)2

are considered; the coefficient a ≥ a > 0 depends on the single variable x but
may be merely bounded and measurable. For such problems, it is shown that
local approximation space of the form

V := span
{

1,

∫ x

x0

1
a(t)

dt, y

}
can lead to the optimal rate O(h).

5.2 Laplace’s Equation

We consider the two-dimensional case Ω ⊂ R
2 and solutions to Laplace’s

equation
−∆u = 0 on Ω. (5.4)

It seems reasonable to try to approximate the solutions to a differential equa-
tion with systems of functions that likewise solve the differential equation.
For the Laplace equation one such system is that of harmonic polynomials:

HPp := span{Re zn, Im zn |n = 0, . . . , p}, (5.5)

where z = x + iy ∈ C. Note that dimHPp = 2p + 1. We have exponential
convergence if the function u to be approximated is harmonic on set that
strictly contains the domain of interest:

Theorem 5.1. Let Ω ⊂ R
2 be a simply connected domain and let Ω′ ⊂⊂ Ω

be a compact subset. Let k ∈ N0. Let u satisfy −∆u = 0 on Ω. Then there
exist C, b > 0 such that for all p ∈ N0

inf
v∈HPp

‖u − v‖W k,∞(Ω′) ≤ Ce−bp.

Proof. This result is due to Szegö. We refer to [80] for a proof. �

Example 5.3.
We consider the approximation of the solution u of (5.4), where Ω = (0, 1)2.
The exact solution is given by

u(x, y) = Re
(

1
a2 + z2

+
1

a2 − z2

)
, a = 1.05.

Ω is partitioned into n2 square of equal size, and the partition of unity is
taken as the standard bilinear hat functions associated with this mesh. This
partition of unity is fixed and the local approximation spaces Vi are taken as

Meshless Methods 101

0 5 10 15 20 2510−3

10−2

10−1

100

polynomial degree p

re
l.

er
ro

r
in

en
er

gy
no

rm

a=1.05; n=2, 4, 8, 16

n=2
n=4
n=8
n=16

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

re
l.

er
ro

r
in

 e
ne

rg
y

polynomial degree p+1

approx. of Im z1/2 by harmonic polyn. on sector with angle ω

ω=5/3π
ω=3/2π
ω=π
ω=2π/3
ω=π/2
ω=π/4
ω=π/8

Figure 5.2. Left: Exponential convergence of Example 5.3. Right: Algebraic con-
vergence of Example 5.4.

HPp for different values of p ∈ N0. The numerical results in the left graph in
Figure 5.2 present the result of the minimization problem

min
{‖∇(u − v)‖L2(Ω)

‖∇u‖L2(Ω)

∣∣∣ v ∈ V :=
(n+1)2∑

i=1

ϕiVi

}
in dependence on the polynomial degree p.

Algebraic convergence results are also available:

Theorem 5.2. Let Ω ⊂ R
2 be star-shaped with respect to a ball and let Ω

satisfy an exterior cone condition with angle λπ. Let k ≥ 1 and let u ∈ Hk(Ω)
satisfy (5.4). Then there exists C > 0 and harmonic polynomials up ∈ HPp

such that

‖u − up‖Hj(Ω) ≤ C

(
ln(p + 2)

p + 2

)λ(k−j)

, j = 0, 1.

Proof. See [80]. �

Example 5.4.
Theorem 5.2 can be sharpened in the following situation (see [80] for a more
detailed discussion of this effect): Define the sector Sω = {(r cos ϕ, r sin ϕ) | 0 <
r < 1, 0 < ϕ < ω} and let u(x, y) = Re zα or u(x, y) = Im zα for some α > 0.
Then we have with λ = 2 − ω

π and any ε > 0

inf
v∈HPp

‖u − v‖H1(Sω) ≤ Cεp
−λα+ε,

where Cε depends on α, ω, and ε. Figure 5.2 illustrates this convergence
behaviour by plotting for different values of ω the result of the minimization

102 J.M. Melenk

problem

min
{‖∇(u1/2 − v)‖2

L2(Sω)

‖∇u1/2‖2
L2(Sω)

∣∣∣ v ∈ HPp

}
, u1/2 = Im z1/2,

in dependence on the polynomial degree p. It is noteworthy that in this
particular example λ may be bigger than 1—this cannot be expected in the
situation of Theorem 5.2.

Remark 5.3.
The harmonic polynomials system is just one possible choice. Near corners,
the solution of (5.4) has singularities, which are known. The corresponding
singularity functions could be used as approximation systems. We will de-
scribe the idea of augmenting a standard FEM space with such singularity
function in more detail in Section 6.

5.3 Helmholtz Equation

We consider for two-dimensional problems the Helmholtz equation

−∆u − k2u = 0 on Ω ⊂ R
2, (5.6)

and we discuss the following two choices of local approximation systems:

1. Systems of plane waves , W (p), given by

W (p) := span
{

eikωn·(x,y) |n = 0, . . . , p − 1
}

, (5.7)

where the vectors ωn are given by ωn := (cos 2πn
p , sin 2πn

p)�.
2. Generalized harmonic polynomials given by

V (p) := span {Jn(kr) sin(nϕ), Jn(kr) cos(nϕ) |n = 0, . . . , p} , (5.8)

where we employed polar coordinates (r, ϕ) in the definition of V (p); the
functions Jn are the first kind Bessel function.

We note that dimV (p) = O(p), dimW (p) = O(p). These spaces have the
following approximation properties:

Theorem 5.3. Let Ω ⊂ R
2 be a simply connected domain, Ω′ ⊂⊂ Ω be a

compact subset. Let u solve (5.6). Then there exist C, b > 0 such that for all
p ∈ N, p ≥ 2:

inf
v∈V (p)

‖u − v‖H1(Ω′) ≤ Ce−bp, inf
v∈W (p)

‖u − v‖H1(Ω′) ≤ Ce−bp/ ln p. (5.9)

Proof. The first estimate is proved in [80]. The second one can be proved
using the arguments detailed in Section C.2. �

Meshless Methods 103

Theorem 5.4. Let Ω ⊂ R
2 be star-shaped with respect to a ball. Let Ω satisfy

an exterior cone condition with angle λπ. Let u ∈ Hk(Ω), k ≥ 1, solve (5.6).
Then there exists C > 0 such that

inf
v∈V (p)

‖u − v‖H1(Ω) ≤ C

(
ln(p + 2)

p + 2

)λ(k−1)

, (5.10)

inf
v∈W (p)

‖u − v‖H1(Ω) ≤ C

(
ln2(p + 2)

p + 2

)λ(k−1)

. (5.11)

Proof. (5.10) is proved in [80]. See Section C.2 for the proof of (5.11). �
Example 5.5.
The function

u(x, y) = eik(cos θ,sin θ), θ =
π

16
,

is a solution of (5.6). Let Ω = (0, 1), and let g be defined on ∂Ω by g :=
∂nu + iku. Then u solves

−∆u − k2u = 0 on Ω, ∂nu + iku = g on ∂Ω. (5.12)

Let Ω be partitioned into n×n squares of equal size. We take as the partition
of unity ψi, i = 1, . . . , (n+1)2, the standard bilinear hat functions associated
with the (n + 1)2 nodes. The approximation space V is then constructed as
in Theorem 4.1 with local spaces taken either as V (p) (with p ranging from
1 to 15) or as W (p) (with p ∈ {2, 6, 10, 14, 18, 22, 26, 30, 34, 38}). Contrary to
our exposition so far, all spaces are taken as spaces over the field C instead
of R. The numerical approximation uN is obtained as the standard Galerkin
approximation for problem (5.12), viz.,

find uN ∈ V s.t.
∫

Ω

(∇uN ·∇v−k2uv)+ik
∫

∂Ω

uv =
∫

Ω

fv +
∫

∂Ω

gv ∀ v ∈ V.

Theorem 5.3 suggests that an exponential rate of convergence could be achiev-
ed. The numerical results for k = 32 are displayed in Figure 5.3. Indeed, we
observe for fixed n an exponential convergence in p ∼ N for the relative error
‖u − uN‖H1(Ω)/|u‖H1(Ω). We refer to [79] for more details.

5.4 Linear Elasticity

In two-dimensional linear elasticity and in the absence of body forces, the
displacement field (u, v) satisfies the following system of equations:

∂xσx + ∂yτxy = 0, ∂xτxy + ∂yσy = 0; (5.13)

here, the stresses σx, σy, and τxy are defined by

σx = λ(∂xu+∂yv)+2µ∂xu, σy = λ(∂xu+∂yv)+2µ∂yv, τxy = µ(∂yu+∂xv).

The material constants λ, µ are called the Lamé constants.

104 J.M. Melenk

0 500 1000 1500 2000
10

−7

10
−5

10
−3

10
−1

10
1

problem size N

re
l.

er
ro

r
in

 H
1

approximation with generalized harm. polyn.

n=8
n=4
n=2

0 500 1000 1500 2000
10

−9

10
−7

10
−5

10
−3

10
−1

problem size N

re
l.

er
ro

r
in

 H
1

approximation with plane waves

n=8
n=4
n=2

Figure 5.3. Operator adapted methods for Helmholtz equation; see Example 5.5.
Local approximation space V (p) (left) and W (p) (right).

Remark 5.4.
The above system is written for the so-called plane strain case. For plane
stress, λ should be replaced with λ∗ = 2λµ/(λ + 2µ).

Let Ω be simply connected. By [85], the displacement field (u, v) can then be
expressed in terms of two holomorphic functions ϕ, ψ, namely,

2µ [u(x, y) + iv(x, y)] = κϕ(z) − zϕ′(z) − ψ(z); (5.14)

here, we set κ = (λ+3µ)/(λ+µ). This representation is unique if we require
additionally ϕ(z0) = 0 for an arbitrarily chosen point z0. This representa-
tion suggests to use as an approximation space for the approximation of the
complex function u + iv the space

V elast
p := span{κπ(z) − zπ′(z) − ρ(z) |π, ρ ∈ Hp}, (5.15)

where Hp denote the space of (complex) polynomials of degree p. An approx-
imation result analogous to Theorem 5.2 can indeed be obtained:

Theorem 5.5. Let Ω ⊂ R
2 be star-shaped with respect to a ball. Let Ω satisfy

an exterior cone condition with angle λ̂π. Let m ∈ N, s ∈ [0, 1) and assume
that the displacement field (u, v) ∈ Hm+s(Ω) satisfies the homogeneous elas-
ticity equations (5.13). Then the function u := u + iv can be approximated
from V elast

p such that

inf
uap∈V elast

p

‖u − uap‖H1(Ω) ≤ C

(
ln(p + 2)

p + 2

)λ̂(m+s−1)

‖u‖Hm+s(Ω).

Proof. See Section C.3. �
Remark 5.5.
The proof of Theorem 5.5 shows that the improved rate of convergence for
the typical singularity functions that we observed in Example 5.4 are also
obtained for the elasticity equations.

Meshless Methods 105

5.5 Further Examples

The Laplace equation and the Helmholtz equation are merely two examples
of elliptic equations for which special approximation systems can be con-
structed. A more general theory by S. Bergman [16–18] and I.N. Vekua [105]
is in fact available: For two-dimensional elliptic equations of the form

−∆u + a(x, y)∂xu + b(x, y)∂yu + c(x, y)u = 0, (5.16)

where the functions a, b, c are real analytic on Ω, there exists a linear operator
ReV that maps functions holomorphic on Ω onto solutions of solution of
(5.16). Essentially, this operator is a bijection and bicontinuous in Sobolev
norms. That is: regularity assertions for u can be translated into regularity
assertions for the corresponding holomorphic functions; this function may
then be approximation by (complex) polynomials; the image of (complex)
polynomials under ReV then yields a good approximation space. In some
cases, the operator ReV can be computed explicitly (e.g. in the case of the
Helmholtz equations, where the space V (p) is precisely the image of complex
polynomials under the map ReV); we refer to Appendix C and [80] for more
details on this. The representation theory of Bergman and Vekua is, due to
its close link with complex analysis, largely a two-dimensional theory. Some
extensions to three dimensions have been done in [28].

5.6 Local Approximation Spaces Obtained Numerically

In the above examples the local approximation spaces were given in closed
form. They can, however, be obtained numerically as well. For example, while
the form of the singularity functions of linear elasticity is known, the precise
exponents have to be determined as solutions of small auxiliary problems.
More in the spirit of domain decomposition is the following approach for
problems of the form Lu = 0: For each patch Ωi, one chooses a finite dimen-
sional space Vi,∂Ωi

= span{b̃i,j | j = 1, . . . , Ni} of functions that are defined
on ∂Ωi. The space Vi is then obtained by (numerically) solving boundary
value problems

Lbi,j = 0 on Ωi, bi,j |∂Ωi
= b̃i,j .

The total computation is therefore done in two steps: first, many local prob-
lems are solved (which can be done completely in parallel), and in a second
step a global problems is solved. Conceptually, this is the approach taken for
example in [5] and [37,58,59] for calculations of very heterogeneous media.

Remark 5.6.
The functions bi,j were computed above as solutions of Dirichlet problems.
The approximation space Vi could be determined by solving other boundary
value problems, e.g. by solving Neumann problems. It has also been observed
that it is advantageous to define them as solutions of boundary value problems
defined on Ω′

i, where Ωi ⊂⊂ Ω′
i. We refer, for example, to [5] for more details

on this.

106 J.M. Melenk

Another example of a method where the approximation spaces are determined
numerically in a preprocessing step is the generalized FEM of [77, 95] for
problems with periodic microstructures.

5.7 Bibliographical Remarks

Approximation systems that are tailored to the differential operator are used
by engineers, where such methods are known, among others, under the name
of Trefftz methods, see for example [56,63,64]. In the context of the partition
of unity method/generalized FEM special approximation systems have been
used in [69] for Helmholtz problems and in [34, 90] for elasticity and crack
problems. The “method of particular solutions” [43], [19] (see, in particular,
the references in [19]) is closely related to the ideas presented here.
We have seen the poor performance of the classical FEM in Section 5.1.
Indeed, it was already shown in [10] that the classical FEM can perform
arbitrarily poorly. On the other hand, the constructions in [81] show that for
reasonable classes of right-hand sides, it is in principle possible to construct
good approximation spaces. Such approximation spaces have to be adapted
to a particular problem at hand.

6 Augmenting Classical FEM Spaces

The partition of unity method/generalized FEM can be viewed as a frame-
work for incorporating information about the problem into the approximation
space. The simplest such technique is to augment a standard finite element
space with special functions.

6.1 Singular Functions

The power of augmenting a classical FEM space with special functions can be
seen in the following model problem: Let Ω ⊂ R

2 be a polygon and consider

−∆u = f on Ω, u = 0 on ∂Ω. (6.1)

If we denote by Aj , j = 1, . . . , J , the vertices of Ω and by ωj ∈ (0, 2π) the
internal angle of Ω at Aj , then it is well-known that the classical FEM-space
S1,1

0 (T) that is based on a quasi-uniform mesh T of mesh size h performs
poorly if maxj=1,...,J ωj > π; namely, the rate of convergence is

inf
v∈S1,1

0 (T)
‖u − v‖H1(Ω) ≤ Chα, α = min

j=1,...,J

π

ωj
< 1.

This is indeed observed in practise. By augmenting this FEM space by a few
suitably chosen singularity functions, however, we recover the optimal rate
of convergence. To this end, it is important to note the following regularity
assertion for the solution u of (6.1):

Meshless Methods 107

Lemma 6.1. Let Ω ⊂ R
2 be a polygon with vertices Aj, j = 1, . . . , J , and

internal angles ωj, j = 1, . . . , J . Define for each vertex Aj the singularity
functions Sj,i, i = 1, 2, . . . , by

Sj,i(rj , ϕj) :=

⎧⎨⎩r
iπ/ωj

j sin(i π
ωj

ϕj) if iπ/ωj �∈ N

r
iπ/ωj

j

[
ln rj sin(i π

ωj
ϕj) + ϕj cos(i π

ωj
ϕj)
]

if iπ/ωj ∈ N

(6.2)
where (rj , ϕj) represent polar coordinates with origin Aj such that the two
edges of Ω meeting at Aj fall on the lines ϕj = 0 and ϕj = ωj.
Let f ∈ H−1+k(Ω), k > 0 and k �∈ N. Then the solution u of (6.1) can be
written in the form

u =
J∑

j=1

∑
i∈N

i π
ωj

<k

aijSij + u0, (6.3)

for some numbers aij ∈ R and u0 ∈ H1+k(Ω).

Proof. Such decompositions can be found, for example, in [52,53]. �

This regularity assertion allows us to design approximation spaces that re-
cover the optimal rate of convergence (in terms of “error vs. problem size”):

Exercise 6.1.
Fix a cut-off function χj ∈ C∞

0 (R2) for each corner Aj such that χj ≡ 1 in a
neighbourhood of Aj and such that χj ≡ 0 in a neighbourhood of the vertices
Ai, i �= j.

(a) Show: The decomposition (6.3) can take the form

u =
J∑

j=1

∑
i∈N

i π
ωj

<k

aijχjSij + ũ0,

where ũ0 ∈ H1+k(Ω) ∩ H1
0 (Ω). Additionally, χjSi,j ∈ H1

0 (Ω).
(b) Show: The space

VN := Sp,1
0 (T) ⊕ span{χjSj,i | j = 1, . . . , J, i

π

ωj
< k} ⊂ H1

0 (Ω)

satisfies
inf
∈VN

‖u − v‖H1(Ω) ≤ Chmin{p,k}. (6.4)

Note that dimVN ∼ dimSp,1
0 (T).

The purpose of the cut-off functions χj is to localize the singularity functions.
This could also be achieved with the aid classical FEM functions:

108 J.M. Melenk

ρ h

Figure 6.1. Nodes marked • are augmented with singularity function. Left: O(h−2)
nodes are augmented to ensure optimal rate of convergence. Right: augmenting very
few nodes often suffices in practise.

Exercise 6.2.
Let T be a quasi-uniform mesh on the polygon Ω ⊂ R

2. Let {ψi | i =
1, . . . , N1} be set of the classical piecewise linear hat functions associated
with T and S1,1(T) = span{ψi | i = 1, . . . , N1}. Fix ρ > 0 and define, for
each j ∈ {1, . . . , J}, the set Ij := {i | suppψi ⊂ Bρ(Aj)}. Define

VN := Sp,1
0 (T) ⊕ span{ψiSj,m |m π

ωj
< k, i ∈ Ij , j = 1, . . . , J}.

Show: Also for this choice of approximation space the approximation property
(6.4) holds. Note: VN ⊂ H1

0 (Ω) and dimVN ∼ dimSp,1
0 (T).

The above construction involves only classical FEM functions and the sin-
gularity functions Sj,i. Of course, since ρ > 0 is fixed, a rather large num-
ber of nodes is affected (see the left picture in Figure 6.1, where the nodes
that require multiplication with singularity functions are denoted •), namely,
O(h−2) nodes. A variety of practitioners have therefore looked at further
simplifications:

Example 6.1.
In practise, a) only the strongest singularity functions are added (typically
only Sj,1), b) only those singularity functions at re-entrant corners (that
is for corners Aj where π/ωj < 1) and c) ρ ∼ h is chosen (see the right
picture in Figure 6.1). While the choice ρ ∼ h does not improve the rate of
convergence, the constant is greatly improved so that in many cases good
engineering accuracy is reached.

6.2 Crack Propagation Problems

Crack propagation problems have been put forward as an example where
augmenting a standard FEM space with special functions is advantageous. In

Meshless Methods 109

γ

H = 1

H = −1

Figure 6.2. Left: Crack problem. Right: Classical FEM mesh. Nodes • are enriched
with discontinuity functions; nodes marked are enriched with singularity function.

many 2D crack problems, the crack is modelled as a curve γ (see Figure 6.2).
A linear elasticity problem is solved on Ω \ γ; then the so-called stress inten-
sity factors are extracted from the FEM solution; from these stress intensity
factors the crack propagation is determined according to some engineering
model; finally, the crack is extended, and the next iteration of this loop is
performed. Performing such a crack propagation analysis is costly since the
domain Ω \ γ on which the elasticity equations have to be solved, changes
in each iteration step thus requiring (at least local) remeshing. Additionally,
since the solution exhibits a strong singularity at the crack tip, a strongly
refined mesh is required near the crack tip to resolve this singularity and guar-
antee reliable results. The technique of augmenting a standard FEM space by
a few special functions to overcome these two difficulties seems very attrac-
tive and has been proposed, for example, under the name X-FEM (extended
FEM) in [29,84,98] and in the context of the generalized FEM. We will only
sketch the key ideas of the X-FEM applied to crack propagation problems.
For that, we will not consider the elasticity equation but the simpler scalar
case of

−∆u = 0 on Ω \ γ, ∂nu = 0 on γ+ and on γ− (6.5)

together with further boundary conditions on ∂Ω. Here, γ+ and γ− denote
the upper and lower part of the curve γ (see Figure 6.2). If γ is sufficiently
smooth, then an expansion analogous to that of Lemma 6.1 can be obtained,
namely, near the crack tip (located at the origin), the solution u of (6.5) takes
the form

u =
∞∑

n=0

Snrn/2 cos
(n

2
ϕ
)

;

110 J.M. Melenk

here, the coefficient S1 ∈ R of the first singularity function is called, in analogy
to the elasticity case, the stress intensity factor. The solution u need not be
continuous across the curve γ. It is, away from the crack tip, only piecewise
smooth. The idea of the X-FEM is to employ a standard FEM space VFE on
Ω. This space ignores the crack γ but takes care of the geometry of Ω and
the boundary conditions on ∂Ω. The crack γ is then accounted for as follows:
nodes near γ but far from the crack tip are collected in the set IH , nodes
near the crack tip are collected in the set ICT (see Figure 6.2 where these
sets are denoted • and). One defines the discontinuity function

H(x) :=

{
1 if x is above γ

−1 if x is below γ

and takes as approximation space

VN := VFE ⊕ span{Hψ | i ∈ IH} ⊕ span{ψir
1/2 cos

1
2
ϕ | i ∈ ICT }.

This approximation space is chosen so as to account for the expected solution
behaviour near the crack tip. Near the crack but away from the crack tip,
the space VN contains discontinuous functions, reflecting the fact that the
solution sought may jump across the crack γ.

Remark 6.1.
Some extensions of this choice would be: a) add more singularity functions,
b) use higher order discontinuity functions, e.g. H(x)π(x), where π ∈ Pp (the
above construction corresponds to p = 0).

We will not analyze the approximation properties of the space VN defined
above. The following exercise, however, gives an indication of what can be
expected away from the crack tip.

Exercise 6.3.
Let Ω = (−1, 1) and consider a uniform mesh T of mesh size h = 2/(2N +1)
with nodes xi = −1 + ih, i = 0, . . . , 2N + 1. Let Sp,1(T) ⊂ C(Ω) be a
standard FEM space on the mesh T and consider the approximation of
a function u that is smooth on [−1, 0) ∪ (0, 1] but has a jump disconti-
nuity at 0. What convergence rate (in L2) can be expected? Augment the
nodes xN , xN+1 with the Heaviside function H(x) = signx, that is consider
Sp,1(T) ⊕ span{ψN (x)H(x), ψN+1(x)H(x)}, where ψi is the standard hat
function associated with nodes xi. What convergence rate can be expected?
Consider Sp,1(T) ⊕ span{ψN (x)H(x)xj , ψN+1H(x)xj | j = 0, . . . , p − 1}.

Remark 6.2.
If only very few close neighbours of the crack tip are enriched with the sin-
gularity function, then the rate of convergence cannot be expected to be
good. Nevertheless, as already pointed out in Example 6.1, good engineering
accuracy can be reached.

Meshless Methods 111

6.3 Further Examples: The Generalized FEM

The generalized FEM in the form [101–103] is very similar to the X-FEM.
The versatility of the generalized FEM is demonstrated in [101–103] by cal-
culations on complicated domains, for example, domains with many holes
or cracks. A classical FEM is augmented by special functions the reflect the
proper behaviour of the solution near these features. Related earlier work on
the generalized FEM for elasticity and crack problems can be found in [34,90].

6.4 Bibliographical Remarks

The idea of augmenting classical FEM spaces with special functions adapted
to a problem has a long history. For problems with singularities (e.g. corner
singularities) it can be found in [20,42].
The bilinear form a in all the above examples involves an integration over
Ω. In practise, this integration is replaced by numerical quadrature. Based
on modern adaptive quadrature techniques (possibly including adaptive or-
der control for higher efficiency) it is possible to perform the integration in a
completely black box fashion where the user merely needs to provide informa-
tion whether a point x ∈ R

d is in Ω. The “pixelation” technique of [102] can
be viewed as an example of such an approach. For geometries whose bound-
ary is piecewise smooth or piecewise affine, it can be much more efficient to
deviate from the black box approach by employing local meshing near the
boundary, [48,96,101,103]. Note that this local mesh near the boundary need
not be regular since it is only used for quadrature purposes. The structure of
the shape functions also greatly affects the cost of the quadrature. Consider
as an example the particle partition of unity method of [96]. There, the shape
functions whose support is contained in Ω are constructed such that they are
piecewise smooth, where the regions of smoothness are axis parallel boxes.
Clearly, this choice greatly simplifies the design of appropriate quadrature
rules. We finally mention that the use of numerical quadrature entails errors;
some ideas for their control are discussed in [101].

7 Enforcement of Essential Boundary Conditions

In many applications, essential boundary conditions have to be enforced. As
a model problem we consider the classical Poisson problem: Find u ∈ H1

0 (Ω)
such that

a(u, v) :=
∫

Ω

∇u · ∇v dx = F (v) :=
∫

Ω

fv, dx ∀ v ∈ H1
0 (Ω). (7.1)

The ideas how to enforce essential boundary conditions in meshless mehods
are essentially the same ones as in the classical FEM. They can be split into
two categories:

112 J.M. Melenk

• Conforming methods: The approximation space VN is chosen as a sub-
space of H1

0 (Ω), that is VN ⊂ H1
0 (Ω). This can be achieved by:

– using cut-off functions;
– combining the classical FEM near the boundary with particle meth-

ods in the interior;
– creating H1

0 (Ω)-conforming spaces in the framework of the partition
of unity method by properly selecting the local approximation spaces
Vi near the boundary.

• Non-conforming methods: In these methods, the variational formulation
is changed. These methods include:
– Lagrange multiplier methods;
– collocation of boundary conditions;
– penalty methods;
– Nitsche’s method.

7.1 Conforming Methods

For the model case (7.1) the approximation space VN has to be chosen to
satisfy VN ⊂ H1

0 (Ω).

A Simple Approach
The simplest approach is to select from a given set B = {ϕi | i = 1, . . . , N}
of shape functions only those that satisfy ϕi ∈ H1

0 (Ω), that is to take

VN,0 := span{ϕi | (suppϕi)◦ ⊂ Ω}. (7.2)

Good approximation properties cannot be expected of VN,0, however, even if
the function to be approximated is smooth:

Exercise 7.1.
Let VN := span{ϕi | i = 0, . . . , N} be the space of piecewise linear functions
associated with the mesh given by the points xi = −h

2 + ih, i = 0, . . . , N ,
h = 1/(N − 1). Consider for Ω = (0, 1) the subspace VN,0 ⊂ VN given
by VN,0 = span{ϕi | (suppϕi)◦ ⊂ Ω}. Show that for the smooth function
u(x) = x(1 − x) ∈ H1

0 (Ω) we have

inf
v∈VN,0

‖u − v‖H1(Ω) ≥ C
√

h.

Cut-Off Function Methods
In cut-off function methods, the essential boundary conditions are enforced
by multiplying an approximation space VN by a weight function w, where w
vanishes on ∂Ω and satisfies w ∼ dist(·, ∂Ω). If w is sufficiently smooth and
VN ⊂ H1(Ω), then we obtain an H1

0 (Ω)-conforming subspace Vw,N by setting
Vw,N := wVN ⊂ H1

0 (Ω). These ideas can be traced back to [67, 83] and were
revived in [57]. Concerning the approximation properties of the space Vw,N

we follow [57].

Meshless Methods 113

Lemma 7.1. Let k ≥ 2, and let w ∈ W k,∞(Ω) be such that w ∼ dist(·, ∂Ω).
Then there exists C > 0 such that for any compact subset Ω′ ⊂⊂ Ω we have
for functions u, v satisfying u = vw

‖v‖Hk(Ω) ≤ Cδ−1
[
‖u‖Hk(Ω) + ‖v‖Hk−1(Ω′)

]
, ‖v‖Hk−1(Ω) ≤ C‖u‖Hk(Ω),

where δ = dist(Ω′, ∂Ω).

Proof. The proof follows from Hardy’s inequality. The details can be found
in [57, Thm. 6.1]. �

Lemma 7.1 can be employed to recover the optimal rate of convergence if
u ∈ Hk(Ω) ∩ H1

0 (Ω):

Exercise 7.2.
Let Ω ⊂ R

d have a smooth boundary. Assume the setting of Exercise 4.3.
Suppose that pi = p ≥ k − 1 ≥ 1 for all i and that hi ∼ h for all i. Show,
using Lemma 7.1, that the space Vw,N = wVN satisfies

inf
v∈Vw,N

‖u − v‖H1(Ω) ≤ Chk−1‖u‖Hk(Ω) ∀ u ∈ Hk(Ω) ∩ H1
0 (Ω);

here VN is chosen as in Exercise 4.3.

Remark 7.1.
The existence of a weight function w with the above regularity properties
is closely related to the smoothness of ∂Ω: the “natural” choice w(x) :=
dist(x, ∂Ω) is only smooth if ∂Ω is.

Combination with the Classical FEM
A technique proposed, e.g. in [68], is to combine shape functions of the clas-
sical FEM with general particle methods. In the vicinity of the boundary ∂Ω,
a standard mesh is defined and a standard FE space is employed. This space
guarantees optimal approximation properties and gives the flexibility of the
classical FEM to handle boundary conditions. For the approximation in the
interior of Ω, any system can be used, e.g. systems VN,0 of the form (7.2).
These ideas can be shaped into several forms. In order to illustrate what can
be expected, we present the following example:

Example 7.1.
Let Ω ⊂ R

2 be a polygon, and let 2 ≤ k ≤ p. Let VN ⊂ H1(Ω) be an
approximation space with the property

inf
v∈VN

‖u − v‖L2(Ω) + h‖u − v‖H1(Ω) ≤ Chk‖u‖Hk(Ω). (7.3)

Let Sh := {x ∈ Ω | dist(x, ∂Ω) < h} be a tubular neighbourhood of ∂Ω. Let
T be an affine, quasi-uniform triangulation of mesh size O(h) of a set Ω′ ⊂ Ω
that satisfies Sh ⊂ Ω′. Let Sp,1(T) be the standard finite element space of

114 J.M. Melenk

piecewise polynomials of degree p on the mesh T and set Sp,1
0 (T) = Sp,1(T)∩

H1
0 (Ω′). Note that by extending functions of Sp,1

0 (T) by zero outside of Ω′,
we may think of Sp,1

0 (T) as a subset of H1
0 (Ω). Let {ψi | i ∈ I∂Ω} ⊂ S1,1(T)

be the standard piecewise linear hat functions associated with the nodes on
∂Ω and set

ω :=
∑

i∈I∂Ω

ψi.

Again, by the support properties of the piecewise linear hat functions ψi, we
may think of ω as being defined on Ω. We observe:

ω ≡ 1 on ∂Ω, ω ≡ 0 on Ω \ Ω′,

ω ∈ W 1,∞(Ω), ‖∇ω‖L∞(Ω) ≤ Ch−1.

We select as the approximation space

Vp,N := (1 − ω)VN ⊕ Sp,1
0 (T) ⊂ H1

0 (Ω).

We claim that for u ∈ Hk(Ω) ∩ H1
0 (Ω)

inf
v∈Vp,N

‖u − v‖H1(Ω) ≤ Chk−1‖u‖Hk(Ω). (7.4)

(7.4) is shown using the same ideas as in the proof of Theorem 4.1. Let
uN ∈ VN be an approximation of u from VN such that

‖u − uN‖L2(Ω) + h‖u − uN‖H1(Ω) ≤ Chk‖u‖Hk(Ω).

We will take the approximant to u from Vp,N of the form (1 − ω)uN + v,
where v ∈ Sp,1

0 (T) will be determined below. The error can be written as
u − (1 − ω)uN − v = (1 − ω)(u − uN) + (ωu − v). For the first term, we
calculate

‖(1 − ω)(u − uN)‖L2(Ω) + h‖(1 − ω)(u − uN)‖H1(Ω) ≤ Chk‖u‖Hk(Ω),

which has the desired form (7.4). We now turn to the definition of v ∈ Sp,1
0 (T),

which approximates ωu. We select Ip−1u ∈ Sp−1,1(T) by a standard FEM
interpolation procedure. Then, (Ip−1u)|∂Ω = 0 and

‖u − Ip−1u‖L2(K) + h‖∇(u − Ip−1u)‖L2(K) ≤ Chk|u|Hk(K) ∀ K ∈ T .

Here, we exploited the assumption p ≥ k. As the product of a piecewise linear
function and a piecewise polynomial of degree p − 1, the function ωIp−1u

satisfies ωIp−1u ∈ Sp,1
0 (T). We conclude using the support properties of ω

and ‖∇ω‖L∞(Ω) ≤ Ch−1

‖ωu − ωIp−1u‖L2(Ω) + h|ωu − ωIp−1u|H1(Ω) ≤ Chk.

Thus taking v := ωIp−1u gives an approximation (1−ω)uN +ωIp−1u ∈ Vp,N

that realizes the desired bound (7.4).

Meshless Methods 115

Local Approximation Spaces Satisfying
Essential Boundary Conditions
The previous idea of combining the classical FEM in a strip near the boundary
with general approximation spaces VN in the interior of Ω can be viewed as a
variant of the partition of unity method where the local approximation spaces
Vi for the patches Ωi near the boundary are chosen such that they conform
to the boundary conditions. A more general approach is the outlined in the
following exercise.

Exercise 7.3.
Assume the hypotheses of Theorem 4.1. Suppose additionally: if Γi,D :=
∂Ωi ∩ ∂Ω �= ∅, then Vi ⊂ H1

D(Ωi) := {u ∈ H1(Ωi) |u|Γi,D
= 0}. Show: The

space V of Theorem 4.1 satisfies V ⊂ H1
0 (Ω), and the approximation result

of Theorem 4.1 is still valid.

Local approximation spaces Vi that satisfy the correct boundary conditions
can be derived in different ways. They can be determined analytically or
numerically.

Example 7.2.
Let u solve Laplace’s equation and assume that u vanishes on a straight
line. Extending u by reflection across this line yields a function (again de-
noted u) that is anti-symmetric with respect to this line and again solves
Laplace’s equation. It is shown in [78] that harmonic polynomials that are
anti-symmetric with respect to this line (and hence vanish on it), can ap-
proximate the function u at the same rate as the full space HPp of harmonic
polynomials.

As discussed in Section 5.6, local approximation spaces Vi can also be com-
puted numerically. If these spaces are computed using the standard FEM,
then it is easy to enforce essential boundary conditions.

7.2 Non-Conforming Methods: Lagrange Multiplier Methods
and Collocation Techniques

The essential boundary condition could also be enforced in a weak sense. The
simplest such approach is to collocate the boundary condition in a (finite) set
of points Y ⊂ ∂Ω as was proposed, for example, in [2,54,111]. Such methods
are, however, difficult to analyze even in the setting of the classical FEM.
Early references to the Lagrange Multiplier Method are [3,4]. One introduces
a bilinear form b : H1(Ω) × H−1/2(∂Ω) by

b(v, µ) := 〈γ0v, µ〉H1/2(∂Ω)×H−1/2(∂Ω),

where γ0 : H1(Ω) → H1/2(∂Ω) is the trace operator γ0v = v|∂Ω. One then
considers the problem: Find (u, λ) ∈ H1(Ω) × H−1/2(∂Ω) such that

a(u, v) + b(v, λ) = F (v) ∀ v ∈ H1(Ω),
b(u, µ) = 0 ∀ µ ∈ H−1/2(∂Ω).

(7.5)

116 J.M. Melenk

The function u of the pair (u, λ) solving (7.5) is in fact an element of H1
0 (Ω)

and also a solution of the original problem (7.1). A natural discretization of
(7.5) is to take subspaces VN ⊂ H1(Ω), MN ⊂ H−1/2(∂Ω) and then consider
the problem: Find (uN , λN) ∈ VN × MN such that

a(uN , v) + b(v, λN) = F (v) ∀ v ∈ VN ,
b(uN , µ) = 0 ∀ µ ∈ MN .

(7.6)

We mention in passing that 〈v, µ〉H1/2(∂Ω)×H−1/2(∂Ω) =
∫

∂Ω
vµ ds if µ ∈

L2(∂Ω) so that the discrete problem (7.6) represents a linear system of equa-
tions that can be set up for any reasonable choice of space MN (e.g. a space
of piecewise constant functions). One challenge in the Lagrange multiplier
method is that the spaces VN and MN cannot be chosen independently. As
is well-known the so-called “inf-sup” condition, or Babuška-Brezzi condition,
needs to be satisfied: If

inf
µ∈MN

sup
v∈VN

b(v, µ)
‖v‖H1(Ω‖µ‖H−1/2(∂Ω)

≥ γN > 0, (7.7)

then the error u − uN satisfies (see for example [94, Thm. 5.13])

‖u− uN‖H1(Ω)≤C

(
1 +

1
γN

)
inf

(v,µ)∈VN×MN

‖u− v‖H1(Ω) + ‖λ− µ‖H−1/2(∂Ω).

This bound suggests that the inf-sup constant γN should be bounded away
from zero uniformly in the discretization parameter N to guarantee good
performance. The condition γN > 0 is indeed necessary as the following
exercise shows.

Exercise 7.4.
Show: γN = 0 implies that the matrix representing the linear system (7.6) is
not invertible.

In the classical FEM, various combinations of spaces VN and MN are known
to be “stable” in the sense that (7.6) holds for a constant independent of
the mesh size; we refer to [100] for a more detailed discussion and appropri-
ate references. In the context of the classical FEM, a key ingredient in the
stability proofs for pairs VN , MN are inverse estimates. To the knowledge of
the author, such estimates are not available for meshless methods, and an
analysis is therefore hard. We will encounter a similar difficulty in our analy-
sis of Nitsche’s method below; the appropriate inverse estimate is therefore
stipulated as Assumption 7.1.

7.3 Non-Conforming Methods: Penalty Method

In the conforming FEM, one would have to choose VN ⊂ H1
0 (Ω). In the

penalty method, the essential boundary conditions are weakened by changing

Meshless Methods 117

the problem: Taking VN ⊂ H1(Ω) and ψ ≥ 1 the problem is to find uN ∈ VN

such that

aψ(uN , v) := a(uN , v) +
∫

∂Ω

ψuNv ds = F (v) ∀ v ∈ VN . (7.8)

We recognize this as the Galerkin approximation to the following problem:

Find uψ ∈ H1(Ω) s.t. aψ(uψ, v) = F (v) ∀ v ∈ H1(Ω). (7.9)

The strong form of this problem is:

−∆uψ = f on Ω, ∂nuψ + ψu = 0 on ∂Ω. (7.10)

One sees that, if ψ → ∞, then uψ → u, where u is the solution of (7.1). We
will make this more precise below.

Theorem 7.1 (penalty method). Let Ω ⊂ R
d be a Lipschitz domain. Let

k ≥ 2. Assume u ∈ Hk(Ω) is the solution of (7.1). Let ξ ∈ Hk−1(Ω) solve

−∆ξ + ξ = 0 on Ω, ξ|∂Ω = ∂nu on ∂Ω. (7.11)

Assume that the approximation space VN ⊂ H1(Ω) satisfies:

inf
v∈VN

‖u − v‖L2(Ω) + h‖∇(u − v)‖L2(Ω) ≤ Chk, (7.12)

inf
v∈VN

‖ξ − v‖L2(Ω) + h‖∇(ξ − v)‖L2(Ω) ≤ Chk−1. (7.13)

Then there holds for a C > 0 independent of ψ and h

‖u − uN‖H1(Ω) ≤ C
{

ψ−1 + ψ−1/2hk−3/2 + ψ1/2hk−1/2 + hk−1
}

.

Setting ψ = hσ with the optimal value σ = 2k−1
3 gives

‖u − uN‖H1(Ω) ≤ hσ, σ =
2k − 1

3
.

Remark 7.2.
The regularity assumption ξ ∈ Hk−1(Ω) is satisfied, for example, if ∂Ω is
smooth.

Proof of Theorem 7.1. The proof follows the exposition of [3, Thm. 7.2.2].
From the Lax-Milgram Lemma (see for example [23, Thm. 2.7.7]) we have
upon equipping the space H1(Ω) with the norm ‖ · ‖ψ :=

√
aψ(·, ·), which is

equivalent to the standard ‖ · ‖H1(Ω) norm,

‖uψ − uN‖ψ = inf
v∈VN

‖uψ − v‖ψ.

118 J.M. Melenk

We now write

u = uψ +
1
ψ

ξ + ζ.

The function ζ satisfies

aψ(ζ, v) = a(u, v)︸ ︷︷ ︸
=
∫
Ω fv dx+

∫
∂Ω ∂nuv ds

+ψ

∫
∂Ω

uv ds︸ ︷︷ ︸
=0

− aψ(uψ, v)︸ ︷︷ ︸
=
∫
Ω fv dx

− 1
ψ

aψ(ξ, v)

=
∫

∂Ω

∂nuv ds − 1
ψ

a(ξ, v) −
∫

∂Ω

ξv ds︸ ︷︷ ︸
=
∫

∂Ω ∂nuv ds

= − 1
ψ

∫
Ω

∇ξ · ∇v dx.

Hence, the Lax-Milgram Lemma gives us

‖ζ‖ψ ≤ 1
ψ
‖ξ‖H1(Ω). (7.14)

The function uN is the Galerkin approximation to uψ, so we get ‖uψ−uN‖ψ =
infv∈VN

‖uψ − v‖ψ. Thus:

‖uψ − uN‖ψ = inf
v∈VN

‖uψ − v‖ψ ≤ inf
v∈VN

‖u − v‖ψ +
1
ψ

inf
v∈VN

‖ξ − v‖ψ + ‖ζ‖ψ.

Using the bound ‖z‖2
L2(∂Ω) ≤ C‖z‖L2(Ω)‖z‖H1(Ω) (see for example Theo-

rem A.2), we can bound with our assumptions on the approximation proper-
ties of VN

‖uψ − uN‖ψ ≤ C
{
hk−1 + ψ1/2hk−1/2 + ψ−1/2hk−3/2 + ψ−1

}
.

Choosing ψ = h−σ gives

‖uψ − uN‖ψ ≤ Chmin{σ,σ/2+k−3/2,−σ/2+k−1/2,k−1}.

The optimal rate of convergence is obtained for σ = 2k−1
3 . We get

‖u − uN‖H1(Ω) ≤ ‖uψ − uN‖H1(Ω) +
1
ψ
‖ξ‖H1(Ω) + ‖ζ‖H1(Ω)

≤ ‖uψ − uN‖ψ + Cψ−1,

which gives the desired bound. �

Remark 7.3.
In the case k = 2, we see that the choice σ = (2k − 1)/3 leads to the optimal
rate of convergence. For k > 2, the penalty method leads to suboptimal rates.

Meshless Methods 119

7.4 Non-Conforming Methods: Nitsche’s Method

Nitsche’s method was introduced in [88]; a good account that relates it to
various forms of Lagrange Multiplier Methods can be found in [100]. Like the
penalty method, Nitsche’s method alters the variational formulation albeit
in a more subtle way. For definiteness’ sake, we consider again the model
problem (7.1).
For simplicity, we will assume that the approximation space VN satisfies
VN ⊂ H2(Ω), although weaker assumptions suffice3. We need to identify
the shape functions ϕi that are near the boundary. Hence, upon recalling the
definition of patches, Ωi = (suppϕi)◦, we define

I∂Ω := {i ∈ N |Ωi ∩ ∂Ω �= ∅}. (7.15)

For i ∈ I∂Ω we set

Γi := Ωi ∩ ∂Ω, h̃i := diam Γi. (7.16)

For a penalty parameter γ > 0 define

aN (u, v) := a(u, v)−
∫

∂Ω

∂nuv ds−
∫

∂Ω

u∂nv ds+γ
∑

i∈I∂Ω

h̃−1
i

∫
Γi

uv ds. (7.17)

One variant of Nitsche’s method can then be formulated as:

Find uN ∈ VN s.t. aN (uN , v) = F (v) ∀ v ∈ VN . (7.18)

In contrast to the penalty method, Nitsche’s method is consistent if the exact
solution is sufficiently regular:

Lemma 7.2 (consistency of Nitsche’s method). Let Ω be a Lipschitz
domain. If for some ε > 0 the solution u of (7.1) satisfies u ∈ H3/2+ε(Ω),
then aN (u, v) = F (v) for all v ∈ VN .

Proof. By the trace theorem, the assumption u ∈ H3/2+ε(Ω) guarantees that
∂nu is well-defined and ∂nu ∈ L2(∂Ω). Since also the Gauss-Green theorem
holds, the result now follows by inspection. �
The consistency result Lemma 7.2 will allow us to obtain quasi-optimality
results in appropriate norms. In order to perform this analysis, we introduce
a few discrete norms on the space H3/2+ε(Ω):

‖u‖2
1/2,h :=

∑
i∈I∂Ω

h̃−1
i ‖u‖2

L2(Γi)
, (7.19)

‖∂nu‖2
−1/2,h :=

∑
i∈I∂Ω

h̃i‖∂nu‖2
L2(Γi)

, (7.20)

‖u‖2
1,h := ‖∇u‖2

L2(Ω) + ‖u‖2
1/2,h + ‖∂nu‖2

−1/2,h. (7.21)

3 One has to be able to define the conormal derivative ∂nu for u ∈ VN as an element
of H−1/2(∂Ω) in a meaningful way. In view of practical computations, one would
like ∂nu ∈ L2(∂Ω). For example, VN ⊂ Hs(Ω) for some s > 3/2 suffices.

120 J.M. Melenk

Central to the analysis of Nitsche’s method is an inverse assumption:

Assumption 7.1 (inverse assumption). There exists Cinv > 0 such that

‖∂nu‖−1/2,h ≤ Cinv‖∇u‖L2(Ω) ∀ u ∈ VN .

In the case of the classical FEM, this inverse assumption can be proved:

Exercise 7.5.
Let T be a shape-regular triangulation of a polygon in R

2. For the space of
piecewise linears S1,1(T), let E∂Ω be the set of edges that lie on ∂Ω and let
he be the length of edge e ∈ E∂Ω. Show: There exists C > 0 depending solely
on the shape-regularity constant of T such that upon setting

‖∂nu‖2
−1/2,h :=

∑
e∈E∂Ω

he‖∂nu‖2
L2(e)

we have ‖∂nu‖−1/2,h ≤ Cinv‖∇u‖L2(Ω) for all u ∈ S1,1(T) for some suitable
Cinv > 0.

If the inverse Assumption 7.1 is satisfied, then the bilinear form aN is coercive
on VN provided that the parameter γ is chosen sufficiently large:

Lemma 7.3. If Assumption 7.1 is satisfied, then we have for γ > 2C2
inv

min
{

1
4
,

1
4Cinv

, γ − 2C2
inv

}
‖u‖2

1,h ≤ aN (u, u) ∀ u ∈ VN , (7.22)

|aN (u, v)| ≤ (1 + γ)‖u‖1,h‖v‖1,h ∀ u, v ∈ H3/2+ε(Ω). (7.23)

Proof. Using the fact that ∂Ω ⊂ ∪i∈I∂ΩΓi, we can estimate with the Cauchy-
Schwarz inequality ∣∣∣∣∫

∂Ω

∂nuu ds

∣∣∣∣ ≤ ‖∂nu‖−1/2,h‖u‖1/2,h.

Using next the bound 2|ab| ≤ εa2 + 1
ε b2, which is valid for all ε > 0, we get

aN (u, u) ≥ ‖∇u‖2
L2(Ω) − 2‖∂nu‖−1/2,h‖u‖1/2,h + γ‖u‖2

1/2,h

≥ ‖∇u‖2
L2(Ω) − ε‖∂nu‖2

−1/2,h − ε−1‖u‖2
1/2,h + γ‖u‖2

1/2,h

≥ (1 − εC2
inv)‖∇u‖2

L2(Ω) + (γ − ε−1)‖u‖2
1/2,h,

where we appealed to the inverse assumption. Choosing now ε = (2C2
inv)−1

gives the desired bound (7.22).
The bound (7.23) follows from the trace theorem. �
Remark 7.4.
Lemma 7.3 shows that the problem (7.18) is well-defined and leads to a sym-
metric positive definite stiffness matrix, provided that the parameter γ is
chosen sufficiently large. A good estimate on Cinv is required for that. De-
termining Cinv can be formulated as an eigenvalue problem, and a numerical
scheme that works well has been proposed in [51,96].

Meshless Methods 121

The consistency result Lemma 7.2 allows us to get quasi-optimality of the
Nitsche method:

Lemma 7.4. Set a := min{ 1
4 , 1

4Cinv
, γ − 2C2

inv}. Assume that the solution u

of (7.1) satisfies u ∈ H3/2+ε(Ω) for some ε > 0. Then

‖u − uN‖1,h ≤
(

1 +
1 + γ

a

)
inf

v∈VN

‖u − v‖1,h.

Proof. The proof is the same as the proof of Céa’s lemma, for which we refer,
for example, to [23, Thm. 2.8.1]. �
Theorem 7.2 (Convergence of Nitsche’s method). Let the solution u
of (7.1) satisfy u ∈ Hk(Ω) for some k ≥ 2. Assume:

(a) the constant a of Lemma 7.4 is positive;
(b) the sets Γi, i ∈ I∂Ω satisfy an overlap condition;
(c) hi ∼ h for all i ∈ I∂Ω,
(d) inf

v∈VN

‖u − v‖L2(Ω) + h‖u − v‖H1(Ω) + h2‖u − v‖H2(Ω) ≤ Chk‖u‖Hk(Ω).

Then
‖u − uN‖H1(Ω) ≤ Chk−1.

Proof. By the quasi-optimality result Lemma 7.4 it suffices to bound the
expression infv∈VN

‖u − v‖1,h. Using hi ∼ h for all i ∈ I∂Ω and the overlap
condition on the sets Γi gives us for arbitrary v ∈ VN

‖u − v‖2
1,h ≤ ‖u − v‖2

H1(Ω) + Ch‖∂n(u − v)‖2
L2(∂Ω) + h−1‖∂n(u − v)‖2

L2(∂Ω).

The trace Theorem A.2 applied to z ∈ H2(Ω) gives in view of ∇z ∈ H1(Ω)

‖u − v‖2
1,h ≤ C

{
‖u − v‖2

H1(Ω)

+ h‖u − v‖H1(Ω)‖u − v‖H2(Ω) +
1
h
‖u − v‖L2(Ω)‖u − v‖H1(Ω)

}
.

The assumptions on the approximation properties of VN allow us to conclude
the argument. �
We required k ≥ 2 in the proof of Theorem 7.2 for convenience only. The
follow exercise shows that k > 3/2 is in fact sufficient:

Exercise 7.6.
Use Theorem A.2 to show that the approximation result of Theorem 7.2 is
true for k ∈ (3/2, 2) provided

inf
v∈VN

‖u − v‖L2(Ω) + h‖u − v‖H1(Ω) + hk‖u − v‖Hk(Ω) ≤ Chk‖u‖Hk(Ω).

Remark 7.5.
The approximation properties of VN stated in Theorem 7.2 required simul-
taneous approximation properties of VN in three norms. Such results were
established in Theorem 2.1 and Proposition 3.3.

122 J.M. Melenk

A Results from Analysis

Theorem A.1 (universal extension operator). Let Ω ⊂ R
d be a Lip-

schitz domain. Then there exists a linear operator E : L1(Ω) → L1(Rd) with
the following properties:

(i) (Eu)|Ω = u for all u ∈ L1(Ω).
(ii) For each k ∈ N0, p ∈ [1,∞], there exists C > 0 such that

‖Eu‖W k,p(Rd) ≤ C‖u‖W k,p(Ω) for all u ∈ W k,p(Ω).

Proof. See [99, Chap. VI.3]. �

Theorem A.2 (multiplicative trace theorem). Let Ω ⊂ R
d be a Lip-

schitz domain, s ∈ (1/2, 1]. Then there exists a constant C > 0 such that for
all u ∈ Hs(Ω) the trace γ0u = u|∂Ω satisfies

‖γ0u‖L2(∂Ω) ≤ C‖u‖1−1/(2s)
L2(Ω) ‖u‖1/(2s)

Hs(Ω).

Proof. The case s = 1 is well-known (see for example [23, Prop. 1.6.3]). For
the case s ∈ (1/2, 1), a proof that is based on elementary techniques can be
found in Exercise A.1. A short proof resting on the theory of interpolation
spaces is as follows. From [104, Thm. 2.9.3], we can infer the trace theorem

‖γ0u‖L2(∂Ω) ≤ C‖u‖
B

1/2
2,1 (Ω)

, (A.1)

where the Besov space B
1/2
2,1 (Ω) = (L2(Ω),H1(Ω))1/2,1; here, the K-method

of interpolation, [15, 104] is employed. For s ∈ (1/2, 1], the reiteration theo-
rem then allows us to recognize B

1/2
2,1 as an interpolation space between L2(Ω)

and Hs(Ω), namely, B
1/2
2,1 (Ω) = (L2(Ω),Hs(Ω))θ,1, where θ = 1/(2s). Insert-

ing into (A.1) the interpolation inequality ‖u‖
B

1/2
2,1 (Ω)

≤ Cθ‖u‖1−θ
L2(Ω)‖u‖θ

Hs(Ω)

then gives the desired result. �

Exercise A.1 (alternative proof of Theorem A.2).
The present exercise illustrates a very useful device of analysis, namely, how
scaling arguments can lead to multiplicative bounds.
For simplicity, consider the case Ω = (0, 1)d. Write Γ := R

d−1 × {0}. Using
the extension operator of Theorem A.1, we may assume u ∈ Hs(Rd). Proceed
in several steps:

(a) Starting from the estimate ‖v‖L2(∂Ω) ≤ C‖v‖Hs(Ω) for all v ∈ Hs(Ω),
show that

‖v‖L2(Γ) ≤ C
[
‖v‖L2(Rd) + |v|Hs(Rd)

]
∀ v ∈ C∞

0 (Rd) (A.2)

where we recall that | · |Hs(Rd) is defined as the Slobodeckij norm (1.1).

Meshless Methods 123

(b) By scaling (that is considering the function ũ(x) := u(Rx)) show that
(A.2) has actually the form

‖v‖2
L2(Γ) ≤ C

[
R‖v‖2

L2(Rd) + R1−2s|v|2Hs(Rd)

]
∀ v ∈ C∞

0 (Rd) (A.3)

for arbitrary R > 0.
(c) Choose R in (A.3) suitably to obtain ‖v‖2

L2(Γ) ≤ C‖v‖2−1/s

L2(Rd)
|v|1/s

Hs(Rd)
.

The following theorem shows that it is possible to cover arbitrary bounded
sets by balls that satisfy a finite overlap property:

Theorem A.3 (Besicovitch covering theorem). Let d ∈ N. Then there
exists a constant Md > 0 (depending solely on d) with the following property:
Let B be a collection of nondegenerate closed balls in R

d with

sup{diamB |B ∈ B} < ∞.

Let A be the set of centres of the balls of B. Then there exist countable col-
lections B1, . . . ,BMd

⊂ B such that each Bi, i = 1, . . . , Md, is a collection of
disjoint balls and

A ⊂
Md⋃
i=1

⋃
B∈Bi

B.

Proof. See, for example, [112, Thm. 1.3.5] or [40, Sec. 1.5.2]. �

B Properties of Polynomials

Theorem B.1 (polynomial approximation). Let B ⊂ R
d be a ball of

diameter h ≤ 1. Then for each polynomial degree p ∈ N0 there exists a linear
operator Qp : L1(B) → Pp with the following properties:

Qpu = u ∀ u ∈ Pp, (B.1)

‖u − Qpu‖W s,q(B) ≤ Cp,q,kh(min{p+1,k}−s)+‖u‖W k,q(B), 0 ≤ s ≤ k. (B.2)

Here, the notation (·)+ represents the function x �→ (x)+ = max{x, 0}. The
constant Cp,q,k depends only on p ∈ N0, q ∈ [1,∞), d, and k ≥ 0. The bound
(B.2) also holds for q = ∞ if k and s are restricted to integer values s,
k ∈ N0.
If q ∈ (1,∞) and k > d/q or if q = 1 and k ≥ d, then additionally

‖u − Qpu‖L∞(B) ≤ C̃p,q,khmin{p+1,k}−d/q‖u‖W k,q(B), (B.3)

where C̃p,q,k depends only on p, q, d, and k.

124 J.M. Melenk

Proof. The L∞-bound (B.3) will be treated in the following Exercise B.1.
We elaborate the arguments of [23, Chap. 4] in order to show the statements
(B.1), (B.2). We proceed in several steps.
First step: Let F : B1(0) → B be an affine bijection. We define u �→ Qpu

by (Qpu) ◦ F := Q̂p(u ◦ F), where Q̂p : L1(B1(0)) → Pp is defined as in [23,
Chap. 4]. From [23, Prop. 4.3.8 and Cor. 4.1.15] we have

Q̂pu = u ∀ u ∈ Pp, (B.4)

‖Q̂pu‖W m,∞(B1(0)) ≤ Cm‖u‖L1(B1(0)) for any m ∈ N0. (B.5)

(B.4) implies (B.1). We therefore turn to the proof of (B.2). We set µ :=
min{p + 1, k}, let v ∈ Pp be arbitrary, and calculate for s ∈ [0, µ] using (B.4)
and the stability result (B.5)

‖u − Q̂pu‖W s,q(B1(0)) ≤ ‖u − Q̂pu‖W µ,q(B1(0))

≤ ‖u − v‖W µ,q(B1(0)) + ‖Q̂p(u − v)‖W µ,q(B1(0))

≤ ‖u − v‖W µ,q(B1(0)) + C‖(u − v)‖L1(B1(0)) ≤ C‖u − v‖W µ,q(B1(0)). (B.6)

Second step: In order to employ scaling arguments, we have to replace the
full norm on the right-hand side of (B.6) by a semi-norm. The technique
for doing this can be traced back to [21, 31] and is based on a compactness
argument: From Rellich’s theorem, [39, Chap. 5.7], we have that the embed-
ding W k,q(B1(0)) ⊂⊂ W k−1,q(B1(0)) is compact for k ∈ N; for k = k̃ + s

with k̃ ∈ N0 and s ∈ (0, 1) we have W k,q(B1(0)) ⊂⊂ W k̃,q(B1(0)), [104,
Sec. 1.16.4, Thm. 2]. Reasoning in the same way by contradiction as in the
classical proof of the Poincaré inequality (see for example [39, Sec. 5.8.1]),
we can infer for p ∈ N0 with p ≥ k − 1

inf
v∈Pp

‖u − v‖W k,q(B1(0)) ≤ C|u|W k,q(B1(0)) ∀ u ∈ W k,q(B1(0)). (B.7)

Third step: Since v ∈ Pp in (B.6) is arbitrary and µ ≤ p + 1, we get for
s ∈ [0, µ]

‖u − Q̂pu‖W s,q(B1(0)) ≤ C inf
v∈Pp

‖u − v‖W µ,q(B1(0)) ≤ C|u|W µ,q(B1(0)).

By transforming to B and observing how the semi-norms | · |W s,q , | · |W µ,q

scale (cf. (1.1)) we obtain the desired bound (B.2) for s ∈ [0, µ].
Fourth step: It remains to see the bound for min{p + 1, k} < s ≤ k. This can
only happen for p + 1 < k. But then p + 1 < s and an easy calculation shows
that |Qp|W s,q(B) = 0. We conclude for the semi norm

|u − Qpu|W s,q(B) ≤ |u|W s,q(B) + |Qpu|W s,q(B) = |u|W s,q(B) ≤ C‖u‖W k,q(B).

This allows us to obtain the desired bound (B.2) for the case min{p+1, k} <
s ≤ k. �

Meshless Methods 125

Exercise B.1.
Show (B.3) by proving the following two results.

(a) Show the following generalization of (B.7) for p + 1 < k and Ω := B1(0):

inf
v∈Pp

‖u − v‖W k,q(Ω) ≤ C|u|W p+1,q(Ω) +
∑
j∈N

p+2≤j<k

|u|W j,q(Ω) + |u|W k,q(Ω).

(b) The parameter k in the statement of Theorem B.1 is such that the Sobolev
embedding theorem W k,q(B1(0)) ⊂ L∞(B1(0)) holds. By proceeding as
in the proof of Theorem B.1 show the estimate (B.3).

Theorem B.2 (polynomial inverse estimates). Let p ∈ N0, d ∈ N, k ∈
N. Then there exists a constant C > 0 depending only on p, d, and there
exists a constant Ck depending only on d, p, k such that for any ball B ⊂ R

d

of radius h ≤ 1 there holds for all π ∈ Pp:

‖π‖L∞(B) ≤ Ch−d/2‖π‖L2(B),

‖π‖Hk(B) ≤ Ckh−k‖π‖L2(B).

Proof. For h = 1 this estimate follows from the equivalence of norm of the
finite dimensional space Pp. The general case h �= 1 follows by a scaling
argument (see also [23, Lemma 4.5.3]).

Lemma B.1. Let B1 ⊂ B2 ⊂ R
d be two balls of radius r1, r2, respectively.

Then

‖π‖L∞(B2) ≤
(

2r2

r1

)p

‖π‖L∞(B1) ∀ π ∈ Pp. (B.8)

Proof. To show this, we employ the following one-dimensional Bernstein es-
timate for r ≥ 1, [33, Chap. 4, Thm. 2.2]:

‖π‖L∞(−r,r) ≤ rp‖π‖L∞(−1,1) ∀ π ∈ Pp. (B.9)

Let B1 = Br1(x1), B2 = Br2(x2). Let y ∈ Br2(x2)\{x1} be arbitrary; let l be
the line passing through the points y and x1. Then the length of l∩B1 is 2r1

and the length of l∩Br2(x2) is bounded by diamBr2(x2). Since the restriction
of π to l can be viewed as a univariate polynomial, the one-dimensional result
(B.9) implies

|π(y)| ≤ ‖π‖L∞(l) ≤
(

diamBr2(x2)
r1

)p

‖π‖L∞(l∩B1) ≤
(

2r2

r1

)p

‖π‖L∞(B1).

Since y ∈ Br2(x2) was arbitrary, the desired bound (B.8) follows. �

126 J.M. Melenk

C Approximation with Adapted Function Systems

In this appendix, we prove Theorems 5.3, 5.4, and 5.5. These results are
restricted to two-dimensional problems and make use of complex variables.
We will identify R

2 with the complex plane C where appropriate without
explicit mention.

C.1 The Theory of Bergman and Vekua

We consider equations of the form

−∆u + a∂xu + b∂yu + cu = 0 on Ω ⊂ R
2, (C.1)

where the constants a, b, c are real. The theory of S. Bergman [16] and
I.N. Vekua [105] asserts the existence of a bijection between (suitably nor-
malized) holomorphic functions and the solutions of (C.1). This bijection is
even bicontinuous in Sobolev norms:

Lemma C.1. Let Ω ⊂ C be a simply connected Lipschitz domain. Fix z0 ∈
Ω. Let H := {ϕ |ϕ holomorphic on Ω and ϕ(z0) real}. Then there exists a
linear map ReV with the following properties:

1. ReV(ϕ) solves (C.1) for every ϕ ∈ H.
2. For every solution u of (C.1) there exists a unique ϕ ∈ H such that

ReV(ϕ) = u.
3. ‖ReV(ϕ)‖Hk(Ω) ≤ C‖ϕ‖Hk(Ω) for all ϕ ∈ H and k ≥ 0.
4. If u∈Hk(Ω), k ≥ 1, solves (C.1), then the corresponding ϕ= ReV−1(u) ∈

H is likewise in Hk(Ω) and ‖ϕ‖Hk(Ω) ≤ C‖u‖Hk(Ω).

In the last two estimates, the constant C depends on k, Ω, and the differential
operator.

Proof. See [80]. Corresponding bicontinuity results in Hölder spaces have
been obtained in [38]. �

Remark C.1.
The case of Laplace’s equation is particularly simple. Then ReV reduces
to the operator Re, that is taking the real part of a holomorphic function.
Lemma C.1 can be generalized to the case of real analytic coefficients a, b, c;
we refer to [80] and [16,105] for the precise statements.

An important observation is that the operator ReV can also be computed for
Helmholtz’s equation. For z0 = 0 and writing (x, y) in polar coordinates, it
is shown in [80] that

ReV[zn] = n!
(

2
k

)n

cos(nϕ)Jn(kr), (C.2a)

ReV[izn] = −n!
(

2
k

)n

sin(nϕ)Jn(kr); (C.2b)

Meshless Methods 127

here and in the remainder of this section (r, ϕ) denotes polar coordinates,
that is x = r cos ϕ, y = r sin ϕ; the functions Jn are the first kind Bessel
functions.

C.2 Proof of Theorems 5.3, 5.4

The approximation properties of the spaces V (p) of (5.8) are proved in [80].
The purpose of the present section is to show how the approximation prop-
erties of W (p) (see (5.7)) can be inferred from those of V (p). To that end,
we need to approximate the functions einϕJn(kr) from W (p):

Lemma C.2. Let the spaces W (p) be defined by (5.7). Then there exists
C > 0 independent of n ∈ N0 and p ∈ N and there exists, for each n ∈ N0, a
function v ∈ W (p) such that for all R ≥ 1, (x, y) ∈ R

2, k ≥ 0 we have

|einϕJn(kr) − v(x, y)| ≤ CenRekeR(|x|+|y|)e−pR/e,

|∇(einϕJn(kr) − v(x, y))| ≤ CenR(1 + keR)ekeR(|x|+|y|)e−pR/e.

Proof. Given n and p, we will construct the function v ∈ W (p) explicitly.
First step: We start by deriving an integral representation for einϕJn(kr).
From [46, 8.411] we have for z ∈ C the integral representation

Jn(z) =
1
π

∫ π

−π

e−niθ+iz sin θ dθ. (C.3)

Next, we recall x = r cos ϕ, y = r sin ϕ, and we get using the periodicity of
the integrand in (C.3)

πeinπ/2einϕJn(kr) = einπ/2einϕ

∫ π

−π

e−in(θ+ϕ+π/2)+ikr sin(θ+ϕ+π/2) dθ

=
∫ π

−π

e−inθ+ikr{cos θ cos ϕ−sin θ sin ϕ} dθ =
∫ π

−π

e−inθ+ik{x cos θ−y sin θ} dθ

=
∫ π

−π

e−inθ+ik{x cos θ+y sin θ} dθ. (C.4)

By differentiating under the integral sign with respect to x and y, we obtain
a similar expression for the gradient of einϕJn(kr).
Second step: For ρ > 0 we define the strip Sρ := {z ∈ C | | Im z| < ρ}.
We claim that the Fourier coefficients gν of periodic functions g that are
holomorphic on a strip SR decay exponentially. For ρ < R the expression
gρ := supz∈Sρ

|g(z)| is finite and an m-fold integration by parts gives for
ν �= 0

gν =
1
2π

∫ π

−π

e−iνθg(θ) dθ =
1
2π

(
1
iν

)m ∫ π

−π

e−iνθg(m)(θ) dθ.

128 J.M. Melenk

Using the Cauchy integral representation formula we get for ν �= 0

|gν | =

∣∣∣∣∣ 1
2π

m!
2πi

(
1
iν

)m ∮
|t|=ρ

∫ π

−π

eiνθ g(θ + t)
(t)m+1

dθ dt

∣∣∣∣∣ ≤ C
m!

(ρ|ν|)m
gρ.

The parameter m ∈ N0 is at our disposal. We choose it as �|ν|ρ/e� and get,
using the generous bound m! ≤ mm,

m!
(ρ|ν|)m

≤
(

m

ρ|ν|

)m

≤
(
|ν|ρ/e

|ν|ρ

)|ν|ρ/e−1

= ee−|ν|ρ/e.

Thus, we arrive at
|gν | ≤ ee−ρ|ν|/egρ ∀ ν ∈ Z

and conclude ∑
|ν|≥p

|gν | =
2e

1 − e−ρ/e
e−pρ/egρ. (C.5)

Third step: For p ∈ N and θj := −π + 2π
p j, j = 0, . . . , p− 1, we denote by Tp

the trapezoidal rule for integration on the interval (−π, π), that is

Tpf :=
2π

p

p−1∑
j=0

f(θj).

The rule Tp is exact for trigonometric polynomials of degree p − 1, that is

Tpf =
∫ π

−π

f(θ) dθ ∀ f ∈ Tp := span{ejθ, e−jθ | j = 0, . . . , p − 1}.

Hence, if the periodic function g has the Fourier representation g(θ) =∑
ν∈Z

gνeiνθ, we can bound∣∣∣∣∫ π

−π

g(θ) dθ − Tpg

∣∣∣∣ ≤ 4π inf
v∈Tp

‖g − v‖L∞(−π,π) ≤ 4π
∑
|ν|≥p

|gν |. (C.6)

Fourth step: We observe that an approximation of einϕJn(kr) from W (p) can
be obtained by applying the trapezoidal rule to the integral (C.4). We set

g(θ) :=
1
π

e−inπ/2e−inθ+ik{x cos θ+y sin θ}

and note v := Tpg ∈ W (p). It therefore remains to get bounds on the error
einϕJn(kr) − v. The function g is entire, and we can bound for any R > 0

sup
z∈SR

|g(z)| ≤ enRekeR(|x|+|y|). (C.7)

Meshless Methods 129

Hence, we get by combining (C.5), (C.6), (C.7)

|einϕJn(kr) − v| ≤ 4π
∑
|ν|≥p

|gν | ≤ CenRekeR(|x|+|y|)e−pR/e,

where the constant C > 0 is independent of n, p, R ≥ 1, and x, y.
Fifth step: The bound for the gradient ∇(einϕJn(kr)−v) is obtained similarly:
By differentiating under the integral sign, we have the representation formula
∂xeinϕJn(kr) =

∫ π

−π
∂xg(θ) dθ; by linearity of the operator Tp we have ∂xv =

Tp(∂xg). Reasoning as above then gives the desired bound. �

Proof of Theorems 5.3 and 5.4. It only remains to prove the approximation
properties of the space W (p). We will only show Theorem 5.4 and leave the
proof of Theorem 5.3 to the reader. Let Ω be star-shaped with respect to the
ball Bρ(0). The real and imaginary parts u1 := Reu and u2 := Im u of the
complex-valued solution u of the Helmholtz equation also solve the Helmholtz
equation. Additionally, ‖u1‖Hk(Ω) + ‖u2‖Hk(Ω) ≤ C‖u‖Hk(Ω).
From the approximation properties of V (p) detailed in (5.10) and the obser-
vation (C.2) we have the existence of holomorphic polynomials Pj ∈ HN of
degree N such that

‖uj − ReV Pj‖H1(Ω) ≤ C

(
lnN

N

)λ(k−1)

. (C.8)

Lemma C.1 asserts that ReV is bicontinuous in Sobolev spaces, so we get

‖Pj‖H1(Ω) ≤ C‖ReV Pj‖H1(Ω) ≤ C (C.9)

for some C > 0 that is independent of N . We now approximate ReV Pj from
W (p). To that end, we write the polynomial Pj as Pj(z) =

∑N
n=0 an,jz

n.
Cauchy’s integral representation then gives

an,j =
1

2πi

∮
|t|=ρ/2

Pj(t)
(t)n+1

dt.

The bound (C.9) and Lemma C.7 then imply

‖Pj‖L∞(Bρ/2(0)) ≤
1√

π dist(∂Bρ/2(0), ∂Bρ(0))
‖Pj‖L2(Bρ(0)) ≤ C

for some C > 0 independent of N . From this, we infer for the coefficients an,j

of the polynomial Pj

|an,j | ≤ C
1

(ρ/2)n
‖Pj‖L2(Bρ(0)) ≤ C

1
(ρ/2)n

.

130 J.M. Melenk

In view of (C.2) and Lemma C.2, we can approximate for p ≥ N

inf
v∈W (p)

‖ReV Pj − v‖H1(Ω)

≤ C
N∑

n=0

|an,j |n!
(

2
k

)n

enR(1 + keR)ekeR diam Ωe−pR/e.

Here, the constant C > 0 is independent of the parameters R and N , both
of which we will now choose. We estimate

N∑
n=0

|an,j |n!enR

(
2
k

)n

≤ CN !e(γ+R)N

for suitable C, γ > 0 independent of N , R. Choosing now (ignoring the
complications do to rounding p/ ln p to the nearest integer)

N =
p

ln p
(C.10)

we can bound lnN ! ≤ N lnN = p
ln p ln(p/ ln p) ≤ p to arrive at

N∑
n=0

|an,j |n!enR

(
2
n

)n

≤ Ceγ′p

for some C, γ′ > 0 independent of p and R. Hence, choosing R > 0 sufficiently
large allows us to estimate

inf
v∈W (p)

‖ReV Pj − v‖H1(Ω) ≤ Ce−bp, (C.11)

for some appropriate b > 0 independent of p. The triangle inequality

‖uj − v‖H1(Ω) ≤ ‖uj − ReV Pj‖H1(Ω) + ‖ReV Pj − v‖H1(Ω)

and making use of (C.8), (C.10), (C.11) allows us to conclude the proof. �

C.3 Two-Dimensional Elasticity

For complex-valued functions, we use the standard abbreviations ∂z = 1
2 (∂x−

i∂y), ∂z = 1
2 (∂x + i∂y). As discussed in (5.14), the displacement field (u, v)

can be expressed on simply connected domains in terms of two holomorphic
function ϕ, ψ. We can then check that

2µ∂m
z (u + iv) = −zϕ(m+1) − ψ(m), (C.12a)

σx + σy = 2 Re ϕ′, (C.12b)
2µ∂z(u + iv) = (κ + 1)Re ϕ′ + i(κ − 1) Im ϕ′, (C.12c)

Meshless Methods 131

where the stresses σx, σy are defined in Section 5.4. It will be convenient to
combine the components of the displacement field (u, v) into the complex-
valued function

u(x, y) := u(x, y) + iv(x, y).

The next lemma shows that the functions ϕ, ψ appearing in the representation
formula (5.14) inherit regularity from the displacement field u:

Lemma C.3. Let Ω ⊂ R
2 be star-shaped with respect to a ball Bρ(z0). Let

the displacement field u = u + iv ∈ Hk(Ω) for some k ∈ N. Let z0 ∈ Ω. Let
ϕ, ψ be the holomorphic functions appearing in the representation formula
(5.14), which are uniquely determined by stipulating ϕ(z0) = 0. Then

‖ϕ‖Hk(Ω) + ‖ψ‖Hk−1(Ω) ≤ C‖u‖Hk(Ω),

where C > 0 depends only on the Lamé constants, upper bounds on diam Ω,
and lower bounds on ρ.

Proof. We will only show the case k = 1 and leave the case k > 1 to the
reader. Equation (C.12b) implies that Reϕ′ ∈ L2(Ω) with ‖Re ϕ′‖L2(Ω) ≤
C‖u‖H1(Ω). Equation (C.12c) then shows that also Imϕ′ ∈ L2(Ω) with
‖ Im ϕ′‖L2(Ω) ≤ C‖u‖H1(Ω). The condition ϕ(z0) = 0 then allows us to infer
from Lemma C.8 that ‖ϕ‖L2(Ω) ≤ C‖ϕ′‖L2(Ω) for a constant C > 0 that
depends only on upper bounds on diam Ω and lower bounds on ρ. Finally,
we use once more the representation formula (5.14) to get the desired L2

estimate for ψ. �
Lemma C.4. Let Ω ⊂ C be a domain and define for ε > 0 the set Ωε =
{z ∈ Ω |Bε(z) ⊂ Ω}. If f , g are holomorphic on Ω and satisfy f ∈ Hs(Ω),
zf ′ + g ∈ Hs(Ω) for some s ∈ [0, 1], then

‖zf ′ + g‖H1(Ωε) ≤ Cεs−1
{
‖f‖Hs(Ω) + ‖zf ′ + g‖Hs(Ω)

}
.

Proof. The case s = 1 is trivial and the case s = 0 is very similar to the case
s ∈ (0, 1). We have to bound the L2(Ωε)-norms of

∂z(zf ′ + g) = f ′, ∂z(zf ′ + g) = zf ′′ + g′.

By an interior estimate for holomorphic functions, [80, Lemma 2.4], we have
for each s′ ∈ [0, 1] a constant Cs′ > 0 such that for all f ∈ Hs′

(Ω) that are
holomorphic on Ω

‖f ′‖L2(Ωε) ≤ Cεs′−1|f |Hs′ (Ω). (C.13)

For the bound on zf ′′ + g′ we use Cauchy’s integral representation formula
to get for z ∈ Ωε

zf ′′ + g′ =
1

2πi

∮
|t−z|=ε

(z − t)f ′(t)
(t − z)2

dt

+
1

2πi

∮
|t−z|=ε

tf ′(t) + g(t) − (zf ′(z) + g(z))
(t − z)2

dt. (C.14)

132 J.M. Melenk

For the second term, we used additionally
∮
|z−t|=ε

1
(z−t)2 dt = 0. For the first

integral in (C.14), we observe that |t−z| = ε implies z−t = ε2

z−t and recognize
the first integral to be

1
2πi

∮
|t−z|=ε

(z − t)f ′(t)
(z − t)2

dt =
ε2

2!
2!
2πi

∮
|t−z|=ε

f ′(t)
(t − z)3

dt =
ε2

2!
f ′′′(z).

Together with bounds on the second integral, we arrive at∣∣∣zf ′′ + g′
∣∣∣2 ≤ Cε4|f ′′′(z)|2 + Cε+2s sup

t∈∂Bε(z)

|tf ′(t) + g(t) − (zf ′(z) + g(z)|2
|z − t|2+2s

.

Upon integrating in z ∈ Ωε, we can bound ε2‖f ′′′‖L2(Ωε) ≤ Cεs−1|f |Hs(Ω)

if we note Ωε ⊂ Ωε/3 ⊂ Ω2ε/3 ⊂ Ω and use (C.13) repeatedly, namely,
twice with s′ = 0 and once with s′ = s. For the second term involving the
supremum, we use the interior estimate (C.22) to bound the supremum and
then integrate in the z-variable to obtain the desired result. �

Lemma C.5. Let Ω be star-shaped with respect to the ball Bρ(0). Let m ∈ N,
s ∈ [0, 1). Let the displacement field (u, v) be in Hm+s(Ω). Define the function

g(t) := 2µ (u((1 − t)z) + iv((1 − t)z)) .

Then for t ∈ (0, 1/2)

‖g(m+1)(t)‖L2(Ω) + ‖g(m)(t)‖H1(Ω) ≤ Ct−(1−s)‖u‖Hm+s(Ω). (C.15)

Proof. We will only show the bound on g(m), the other one being handled
similarly. Using the representation formula (5.14) for u = u + iv, we write

g(t) = −(1 − t)zϕ′((1 − t)z) − ψ((1 − t)z)) + κϕ((1 − t)z),

g(m)(t) =
[
−(1 − t)zϕ(m+1)((1 − t)z) − ψ(m)((1 − t)z))

]
(−z)m

+ mz(−z)m−1ϕ(m)((1 − t)z) + κ(−z)mϕ(m)((1 − t)z),

∂zg
(m)(t) = −(1 − t)(−z)mϕ(m+1)((1 − t)z) + m(−z)m−1ϕ(m)((1 − t)z)

+ κ
d

dz

[
(−z)mϕ(m)((1 − t)z)

]
,

∂zg
(m)(t) = (1 − t)

[
−(1 − t)zϕ(m+2)((1 − t)z) − ψ(m+1)((1 − t)z)

]
(−z)m

− m
[
−(1 − t)zϕ(m+1)((1 − t)z) − ψ(m)((1 − t)z)

]
(−z)m−1

+ mz
d

dz

[
(−z)m−1ϕ(m)((1 − t)z)

]
.

The estimate (C.15) follows from the change of variables ζ = (1 − t)z, the
observations (C.12), and Lemma C.3. An additional ingredient to the proof
is the fact that there exists C > 0 such that BCt(z) ⊂ Ω for all z ∈ (1 − t)Ω
so that Lemma C.4 can be employed. �

Meshless Methods 133

Lemma C.6. Assume the hypotheses of Lemma C.5. Let Tm be the Taylor
polynomial of g about the point t0 = ε that is evaluated at t = 0, that is

Tm =
m∑

ν=0

g(ν)(ε)
(−ε)ν

ν!
.

Then Tm is defined on 1
1−εΩ and

‖Tm‖L2(1
1−ε Ω) ≤ C‖u‖Hm(Ω), (C.16)

‖Tm‖H1(1
1−ε/2Ω) ≤ Cε−1‖u‖Hm(Ω), (C.17)

‖g(0) − Tm‖L2(Ω) + ε‖g(0) − Tm‖H1(Ω) ≤ Cεm+s‖u‖Hm+s(Ω). (C.18)

Proof. The bound (C.16) follows from the change of variables ζ = (1−ε)z, an
inspection of the definition of the terms g(j), j = 0, . . . , m, equation (C.12),
and Lemma C.3. The proof of (C.17) follows along the same lines. Estimating
∂zg

(m)(t), however, requires additionally to use Lemma C.4 and the obser-
vation that 1

1−ε/2Ω ⊂ {z ∈ 1
1−εΩ |Bε′(z) ⊂ 1

1−εΩ} for some ε′ ∼ ε. In the
bound (C.18), we will only show the H1(Ω)-estimate. We will also exclude
the case m = 1, s = 0, which we leave to the reader. We choose δ ∈ (0, 1/2)
such that 2(m − 1) − 2(1 − s) + 2δ > 0 and recall the Taylor formula

g(0) − Tm = − 1
m!

(−ε)mg(m)(ε) − 1
(m − 1)!

∫ 0

ε

g(m)(t)(−t)m−1 dt.

The first term can be bounded by εm+s−1
[
‖u‖Hm+s(Ω) + ‖v‖Hm+s(Ω)

]
by

Lemma C.5. For the integral, we estimate∥∥∥∥∫ 0

ε

g(m)(t)tm−1 dt

∥∥∥∥2
H1(Ω)

≤
∫ ε

0

‖g(m)(t)‖2
H1(Ω)t

2(1−s−δ)dt

∫ ε

0

|t−(1−s)+δ+m−1|2dt,

which can again be estimated in the desired fashion using Lemma C.5. �

Proof of Theorem 5.5. Without loss of generality, we assume that Ω is star-
shaped with respect to the ball Bρ(0). For a parameter ε > 0 sufficiently
small, which will be chosen below in dependence on the polynomial degree
p, we define g and Tm as in Lemmas C.5, C.6. Then Tm is defined on 1

1−εΩ
and, since g(0) = u, we get from Lemma C.6

‖u − Tm‖Hj(Ω) ≤ Cεm+s−j‖u‖Hm+s(Ω), j = 0, 1. (C.19)

From the representation formulae for the g(j), j = 0, . . . , m, in the proof of
Lemma C.5, we observe that Tm has the form Tm = κϕ1−zϕ′

1−ψ1, where ϕ1,
ψ1 are functions holomorphic on 1

1−εΩ and ϕ1(0) = ϕ(0) = 0. Lemma C.3

134 J.M. Melenk

(together with the observation that the constant appearing in Lemma C.3
can be made independent of ε ∈ (0, 1/2)) and Lemma C.6 then imply

‖ϕ1‖H1(1
1−ε/2Ω) + ‖ψ1‖L2(1

1−ε/2Ω) ≤ C‖Tm‖H1(1
1−ε/2Ω)

≤ Cε−1‖u‖Hm(Ω). (C.20)

Since ϕ1, ψ1 are holomorphic on 1
1−εΩ, they can be approximated on Ω

by (complex) polynomials at an exponential rate. Namely, by Szegö’s ap-
proximation result (see [80, Thm. 2.6]) there exist complex polynomials ϕap,
ψap ∈ Hp of degree p such that

‖ϕ1 − ϕap‖W j,∞(Ω) ≤ Ch−α(1 + h)−p‖ϕ1‖L2(Int(L4h)), j = 0, 1, 2, (C.21a)

‖ψ1 − ψap‖W j,∞(Ω) ≤ Ch−α(1 + h)−p‖ϕ1‖L2(Int(L4h)), j = 0, 1, 2; (C.21b)

here, Lh = {ϕΩ(z) | |z| = 1 + h}, where ϕΩ : C \B1(0) → C \Ω is the unique
conformal map with ϕΩ(∞) = ∞ and ϕ′

Ω(∞) > 0. The constants C, α > 0 are
independent of h and p. By geometric considerations (see [80, Lemma 2.3]),
we can ascertain the existence of D > 0 such that for hλ̂ = Dε we have
IntL4h ⊂ 1

1−ε/2Ω. Hence, combining (C.19), (C.20), (C.21), we can conclude
for j ∈ {0, 1}

‖u − (−zϕ′
ap − ψap + κϕap)‖Hj(Ω)

≤ Cεm+s−j‖u‖Hm+s(Ω) + ε−λ̂α(1 + (Dε)1/λ̂)−pε−1‖u‖Hm(Ω).

Choosing

ε = K

(
ln(p + 2)

p + 2

)λ̂

for sufficiently large K gives the desired bound stated in Theorem 5.5. �
Lemma C.7 (interior estimates for holomorphic functions). Let Ω ⊂
C be a domain. Define for ε > 0 the set Ωε := {z ∈ Ω |Bε(z) ⊂ Ω}. Then for
any function f that is holomorphic on Ω

‖f‖L∞(Ωε) ≤
1√
πε

‖f‖L2(Ω). (C.22)

Proof. The proof can be found, for example, in [76]. For the reader’s con-
venience, we reproduce it here: For fixed z ∈ Ωε we use Cauchy’s integral
representation theorem to write for any r ∈ (0, ε)

|f(z)| =

∣∣∣∣∣ 1
2πi

∮
|t|=r

f(z + t)
−t

dt

∣∣∣∣∣ = 1
2π

∣∣∣∣∣
∫

∂B1(0)

f(z + rt) |dt|
∣∣∣∣∣ .

Multiplying this equality by r and integrating over r from 0 to ε gives, if
we note that the right-hand side integral is then an area integral in polar

Meshless Methods 135

coordinates,

1
2
ε2|f(z)| =

∫ ε

0

r|f(z)| dr =
1
2π

∫ ε

0

∣∣∣∣∣
∫

∂B1(0)

f(z + rt) |dt|
∣∣∣∣∣ r dr

≤ ε

2
√

π

(∫ ε

0

∫
∂B1(0)

|f(z + rt)|2 |dt|r dr

)1/2

=
ε

2
√

π
‖f‖L2(Bε(z)).

Since z ∈ Ωε was arbitrary, the proof is complete. �

Lemma C.8. Let Ω ⊂ C
2 be star-shaped with respect to 0 and assume that

Bρ(0) ⊂ Ω. Then for f ∈ H1(Ω) holomorphic on Ω we have

‖f − f(0)‖L2(Ω) ≤
√

2 diam Ω

[
1
π

+
(

2 diam Ω
ρ

)2
]1/2

‖f ′‖L2(Ω). (C.23)

Proof. We define δ := ρ/(2 diam Ω) < 1. Since Ω is star-shaped with respect
to 0, we can write for z ∈ Ω by integrating on the line connecting 0 and z

f(z) − f(0) =
∫ 1

t=0

zf ′(tz) dt =
∫ δ

t=0

zf ′(tz) dt +
∫ 1

t=δ

zf ′(tz) dt.

For the first integral, we note that t ∈ (0, δ) and z ∈ Ω implies |tz| ≤ ρ/2.
Hence, Lemma C.7 implies∣∣∣∣∣

∫ δ

t=0

zf ′(tz) dt

∣∣∣∣∣ ≤ δ diam Ω√
πρ/2

‖f ′‖L2(Bρ(0)) ≤
1√
π
‖f ′‖L2(Ω).

Thus,

‖f − f(0)‖2
L2(Ω) ≤ 2

area(Ω)
π

‖f ′‖2
L2(Ω) + 2

∫
Ω

∣∣∣∣∫ 1

t=δ

zf ′(tz) dt

∣∣∣∣2 .

The second term is treated as follows: First, the Cauchy-Schwarz inequality
is applied to the inner integral; then the order of integration is switched, and
finally a change of variables ζ := tz is performed. This leads to∫

Ω

∣∣∣∣∫ 1

t=δ

zf ′(tz) dt

∣∣∣∣2 ≤
(

diam Ω
δ

)2

‖f ′‖2
L2(Ω).

Combining the above estimates leads to (C.23). �

136 J.M. Melenk

References

1. M. Armentano. Error estimates in Sobolev spaces for moving least square
approximations. SIAM J. Numer. Anal., 39:38–51, 2001.

2. S.N. Atluri and S. Shen. The meshless local Petrov-Galerkin (MLPG) method:
a simple & less-costly alternative to the finite element and boundary element
methods. CMES Comput. Model. Eng. Sci., 3(1):11–51, 2002.

3. A.K. Aziz and I.M. Babuška, editors. Mathematical Foundations of the Finite
Element Method with Applications to Partial Differential Equations. Academic
Press, New York, 1972.

4. I. Babuška. The finite element method with Lagrange multipliers. Numer.
Math., 20:179–192, 1973.

5. I. Babuška, B. Andersson, P.J. Smith, and K. Levin. Damage analysis of fiber
composites. I: Statistical analysis of fiber scale. Comput. Meth. Appl. Mech.
Engrg., 172:27–77, 1999.

6. I. Babuška, U. Banerjee, and J. Osborn. Survey of meshless and generalized
finite element methods: a unified approach. In Acta Numerica 2003, pages
1–125. Cambridge University Press, 2003.

7. I. Babuška, G. Caloz, and J. Osborn. Special finite element methods for
a class of second order elliptic problems with rough coefficients. SIAM J.
Numer. Anal., 31:945–981, 1994.

8. I. Babuška, R.B. Kellogg, and J. Pitkäranta. Direct and inverse error estimates
for finite elements with mesh refinements. Numer. Math., 33:447–471, 1979.

9. I. Babuška and J. M. Melenk. The partition of unity method. Internat. J.
Numer. Meths. Engrg., 40:727–758, 1997.

10. I. Babuška and J. Osborn. Can a finite element method perform arbitrarily
badly? Math. Comput., 69:443–462, 2000.

11. T. Belytschko, L. Gu, and Y.Y. Lu. Fracture and crack growth by element-free
Galerkin methods. Modelling Simul. Mater. Sci. Eng., 2:519–534, 1994.

12. T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl. Meshless
methods: An overview and recent developments. Comput. Meth. Appl. Mech.
Engrg., 139:3–47, 1996.

13. T. Belytschko, Y.Y. Lu, and L. Gu. Element-free Galerkin methods. Internat.
J. Numer. Meths. Engrg., 37:229–256, 1994.

14. T. Belytschko, Y.Y. Lu, and L. Gu. A new implementation of the element-free
Galerkin method. Comput. Meth. Appl. Mech. Engrg., 113:397–414, 1994.

15. J. Bergh and J. Löfström. Interpolation Spaces. Springer Verlag, 1976.
16. S. Bergman. Integral operators in the theory of linear partial differential equa-

tions. Springer Verlag, 1961.
17. S. Bergman and J. Herriot. Application of the method of the kernel function

for solving boundary value problems. Numer. Math., 3:209–225, 1961.
18. S. Bergman and J. Herriot. Numerical solution of boundary-value problems

by the method of integral operators. Numer. Math., 7:42–65, 1965.
19. T. Betcke and N.L. Trefethen. Reviving the method of particular solutions.

SIAM Review, to appear.
20. H. Blum and M-Dobrowolski. On finite element methods for elliptic equations

on domains with corners. Computing, 28:53–61, 1982.
21. J. Bramble and S.R. Hilbert. Estimation of linear functionals on sobolev

spaces with application to fourier transforms and spline interpolation. SIAM
J. Numer. Anal., 7:112–124, 1970.

Meshless Methods 137

22. J. Bramble and R. Scott. Simultaneous approximation in scales of Banach
spaces. Math. Comput., 32:947–954, 1978.

23. S.C. Brenner and L.R. Scott. The mathematical theory of finite element meth-
ods. Springer Verlag, 1994.

24. Rob Brownlee and Will Light. Approximation orders for interpolation by
surface splines to rough functions. IMA J. Numer. Anal., 24(2):179–192, 2004.

25. M. Buhmann. Radial basis functions. In Acta Numerica 2000, pages 1–38.
Cambridge University Press, 2000.

26. M. D. Buhmann. Radial basis functions: theory and implementations, vol-
ume 12 of Cambridge Monographs on Applied and Computational Mathemat-
ics. Cambridge University Press, Cambridge, 2003.

27. P. G. Ciarlet. The Finite Element Method for Elliptic Problems. North-
Holland Publishing Company, 1976.

28. D. Colton. Bergman operators for elliptic equations in three independent
variables. Bull. Amer. Math. Soc., 77(5):752–756, 1971.

29. C. Daux, N. Moës, J. Dolbrow, N. Sukumar, and T. Belytschko. Arbitrary
cracks and holes with the extended finite element method. Internat. J. Numer.
Meths. Engrg., 48(12):1741–1760, 2000.

30. S. De and K.J. Bathe. The method of finite spheres. Computational Mechanics,
25:329–345, 2000.

31. J. Deny and J.L. Lions. Les espaces du type de Beppo Levi. Ann. Inst. Fourier,
Grenoble, 5:305–370, 1955.

32. R.A. DeVore. Nonlinear approximation. In Acta Numerica 1998, pages 51–
150. Cambridge University Press, 1998.

33. R.A. DeVore and G.G. Lorentz. Constructive Approximation. Springer Verlag,
1993.

34. C. A. Duarte, I. Babuška, and J. T. Oden. Generalized finite element methods
for three-dimensional structural mechanics problems. Comput. & Structures,
77(2):215–232, 2000.

35. J. Duchon. Splines minimizing rotation-invariant seminorms in Sobolev norms.
In W. Schempp and K. Zeller, editors, Constructived Theory of Functions of
Several Variables, volume 571 of Lecture Notes in Mathematics, pages 85–100.
Springer Verlag, 1976.

36. J. Duchon. Sur l’erreur d’interpolation des fonctions de plusieurs variables
par les Dm-splines. RAIRO Anal. Numérique, 12(4):325–334, 1978.

37. Y. Efendiev, T. Hou, and X.-H. Wu. Convergence of a nonconforming multi-
scale finite element method. SIAM J. Numer. Anal., 37(3):888–910, 2000.

38. Stanley C. Eisenstat. On the rate of convergence of the Bergman-Vekua
method for the numerical solution of elliptic boundary value problems. SIAM
J. Numer. Anal., 11:654–680, 1974.

39. L.C. Evans. Partial Differential Equations. American Mathematical Society,
1998.

40. L.C. Evans and R.F. Gariepy. Measure Theory and Fine Properties of Func-
tions. CRC Press, 1992.

41. S. Fernández-Méndez, P. Dı́ez, and A. Huerta. Convergence of finite elements
enriched with meshless methods. Numer. Math., 96:43–59, 2003.

42. G. Fix, S. Gulati, and G. I. Wakoff. On the use of singular functions with the
finite element method. J. Comput. Phys., 13:209–228, 1973.

43. L. Fox, P. Henrici, and C. Moler. Approximations and bounds for eigenvalues
of elliptic operators. SIAM J. Numer. Anal., 4:89–102, 1967.

138 J.M. Melenk

44. C. Franke and R. Schaback. Convergence order estimates of meshless collo-
cation methods using radial basis functions. Adv. Comp. Math., 8:381–399,
1998.

45. R. Franke. Scattered data interpolation: test of some methods. Math. Comput.,
38:181–200, 1982.

46. I.S. Gradshteyn and I.M. Ryzhik. Table of Integrals, Series, and Products,
corrected and enlarged edition. Academic Press, New York, 1980.

47. M. Griebel and M.A. Schweitzer. A particle-partition of unity method for the
solution of elliptic, parabolic, and hyperbolic pdes. SIAM J. Sci. Stat. Comp.,
22:853–890, 2000.

48. M. Griebel and M.A. Schweitzer. A particle-partition of unity method—part
II: Efficient cover construction and reliable integration. SIAM J. Sci. Stat.
Comp., 23:1655–1682, 2002.

49. M. Griebel and M.A. Schweitzer. A particle-partition of unity method—part
III: A multilevel solver. SIAM J. Sci. Stat. Comp., 24(2):377–409, 2002.

50. M. Griebel and M.A. Schweitzer. A particle-partition of unity method—part
IV: Parallelization. In M. Griebel and M.A. Schweitzer, editors, Meshfree
Methods for Partial Differential Equations, volume 26 of Lecture Notes in
Computational Science and Engineering, pages 161–192. Springer, 2002.

51. M. Griebel and M.A. Schweitzer. A particle-partition of ynity method—part
V: Boundary conditions. In S. Hildebrandt and H. Karcher, editors, Geo-
metric Analysis and Nonlinear Partial Differential Equations, pages 517–540.
Springer, 2002.

52. P. Grisvard. Elliptic Problems in Nonsmooth Domains. Pitman, 1985.
53. P. Grisvard. Singularities in Boundary Value Problems. Springer Verlag/Mas-

son, 1992.
54. D. Hagen. Element-free Galerkin methods in combination with finite element

approaches. Comput. Meth. Appl. Mech. Engrg., 139:237–262, 1996.
55. W. Han and X. Meng. error analysis of the reproducing kernel particle method.

Comput. Meth. Appl. Mech. Engrg., 190:6157–6181, 2001.
56. I. Herrera. Boundary Methods: An Algebraic Theory. Pitman, Boston, 1984.
57. K. Höllig, U. Reif, and J. Wipper. Weighted extended b-spline approximation

of Dirichlet problems. SIAM J. Numer. Anal., 39(2):442–462, 2001.
58. T. Hou. Numerical approximations to multiscale solutions in partial differen-

tial equations. In J. Blowey, A. Craig, and T. Shardlow, editors, Frontiers in
numerical analysis (Durham, 2002), pages 241–301. Springer, 2003.

59. T. Hou, X.-H. Wu, and Z. Cai. Convergence of a multiscale finite element
method for elliptic problems with rapidly oscillating coefficients. Math. Com-
put., 68(227):913–943, 1999.

60. A. Huerta, T. Belytschko, S. Fernández-Méndez, and T. Rabczuk. Meshfree
methods. In R. de Borst, T.J.R. Hughes, and E. Stein, editors, Encyclopedia
of Computational Mechanics. Elsevier, to appear.

61. A. Iske. Multiresolution Methods in Scattered Data Modelling. Number 37
in Lecture Notes in Computational Science and Engineering. Springer Verlag,
2004.

62. J.W. Jerome. On n-widths in Sobolev spaces and applications to elliptic
boundary value problems. Journal of Mathematical Analysis and Applications,
29:201–215, 1970.

63. J. Jirousek and A. Venkatesh. Hybrid-Trefftz plane elasticity elements with p-
method capabilities. Internat. J. Numer. Meths. Engrg., 35:1443–1472, 1992.

Meshless Methods 139

64. J. Jirousek and A.P. Zielinski. Survey of Trefftz-type element formulations.
Computers and Structures, 63(2):225–242, 1997.

65. E.J. Kansa. Multiquadrics–a scattered data approximation scheme with ap-
plications to computational fluid-dynamics–I surface approximations and par-
tial derivative estimates. Computers and Mathematics with Applications,
19(8/9):127–145, 1990.

66. E.J. Kansa. Multiquadrics–a scattered data approximation scheme with appli-
cations to computational fluid-dynamics–II solutions to parabolic, hyperbolic,
and elliptic partial differential equations. Computers and Mathematics with
Applications, 19(8/9):147–161, 1990.

67. I.V. Kantorovich and V.I. Krylov. Approximate Methods of Higher Analysis.
Interscience Publishers, 1958.

68. Y. Krongaus and T. Belytschko. Enforcement of essential boundary conditions
in meshless approximation using finite elments. Comput. Meth. Appl. Mech.
Engrg., 131:133–145, 1996.

69. O. Laghrouche and P. Bettes. Solving short wave problems using special finite
elements; towards an adaptive approach. In J. Whiteman, editor, Mathematics
of Finite Elements and Applications X, pages 181–195. Elsevier, 2000.

70. S. Li, H. Lu, W. Han, W. K. Liu, and D. C. Simkins. Reproducing kernel ele-
ment method. II. Globally conforming Im/Cn hierarchies. Comput. Methods
Appl. Mech. Engrg., 193(12-14):953–987, 2004.

71. T. Liszka and J. Orkisz. The finite difference method at arbitrary irregular
grids and its application in applied mechanics. Computers & Structures, 11:83–
95, 1980.

72. W. K. Liu, J. Adee, and S. Jun. Reproducing kernel particle methods for
elastic and plastic problems. In D.J. Benson and R.A. Asaro, editors, Advanced
Computational Methods for Material Modeling, pages 175–190. AMD 180 and
PVP 268, ASME, 1993.

73. W. K. Liu, W. Han, H. Lu, S. Li, and J. Cao. Reproducing kernel element
method. I. Theoretical formulation. Comput. Methods Appl. Mech. Engrg.,
193(12-14):933–951, 2004.

74. W. K. Liu and S. Li. Reproducing kernel particle hierarchical partition of unity
I: Formulation and theory. Internat. J. Numer. Meths. Engrg., 45:251–288,
1999.

75. W.K. Liu and S. Li. Reproducing kernel particle hierarchical partition of unity
II: Applications. Internat. J. Numer. Meths. Engrg., 45:289–317, 1999.

76. A. I. Markushevich. Theory of functions of a complex variable. Chelsea Pub-
lishing Company, N.Y., 1965.

77. A.-M. Matache, I. Babuška, and C. Schwab. Generalized p-FEM in homoge-
nization. Numer. Math., 86:319–375, 2000.

78. J. M. Melenk. Finite element methods with harmonic shape functions for
solving Laplace’s equation. Master’s thesis, University of Maryland, 1992.

79. J. M. Melenk. On Generalized Finite Element Methods. PhD thesis, University
of Maryland, 1995.

80. J.M. Melenk. Operator adapted spectral element methods. I: Harmonic and
generalized harmonic polynomials. Numer. Math., 84(1):35–69, 1999.

81. J.M. Melenk. On n-widths for elliptic problems. J. Math. Anal. Appl.,
274:272–289, 2000.

140 J.M. Melenk

82. J.M. Melenk and I. Babuška. The partition of unity finite element method:
Basic theory and applications. Comput. Meth. Appl. Mech. Engrg., 139:289–
314, 1996.

83. S.G. Mikhlin. Numerical Perforamnce of Variational Methods. Nordhoff, 1971.

84. N. Moës, J. Dolbrow, and T. Belytschko. A finite element method for crack
growth without remeshing. Internat. J. Numer. Meths. Engrg., 46(1):131–150,
1999.

85. N. I. Muskhelishvili. Some Basic Problems of the Mathematical Theory of
Elasticity. P. Noordhoff, Groningen, 1963.

86. F. Narcowich, J. Ward, and H. Wendland. Sobolev bounds on functions with
scattered zeros, with applications to radial basis function surface fitting. Math.
Comput., (to appear).

87. B. Nayroles, G. Touzot, and P. Villon. Generalizing the finite element
method: diffuse approximation and diffuse elements. Computational Mechan-
ics, 10:307–318, 1992.

88. J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen
bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen
sind. Abh. Math. Univ. Hamburg, 36:9–15, 1970/71.

89. J. T. Oden and A. Duarte. hp clouds – a meshless method. Num. Meths.
Part. Diff. Eqns., 12:673–705, 1996.

90. J.T. Oden and C.A. Duarte. Clouds, cracks and fem’s. In B.D. Reddy, editor,
Recent developments in computational and applied mechanics. A volume in
honour of John B. Martin. Barcelona: CIMNE, pages 302–321, 1997.

91. E. Oñate, F. Perazzo, and J. Miguel. A finite point method for elasticity
problems. Computers & Structures, 79:2143–2149, 2001.

92. A. Pinkus. n-widths in approximation theory. Springer Verlag, 1984.

93. G. Raugel. Résolution numérique par une méthode d’élements finis du
problème de Dirichlet pour le Laplacien dans un polygone. C. R. Acad. Sci.
Paris, 286:791–794, 1978.

94. C. Schwab. p- and hp-Finite Element Methods. Oxford University Press, 1998.

95. C. Schwab and A.M. Matache. Generalized FEM for homogenization prob-
lems. In Multiscale and multiresolution methods, volume 20 of Lect. Notes
Comput. Sci. Eng., pages 197–237. Springer, Berlin, 2002.

96. M.A. Schweitzer. A parallel multilevel partition of unity method for elliptic
partial differential equations, volume 29 of Lecture Notes in Computational
Science and Engineering. Springer, 2003.

97. D. Shephard. A two-dimensional function for irregularly spaced data. In AMC
National Conference, pages 517–524, 1968.

98. F.L. Stazi, E. Budyn, J. Chessa, and T. Belytschko. An extended finite ele-
ment with higher-order elements for curved cracks. Computational Mechanics,
31:38–48, 2003.

99. E.M. Stein. Singular integrals and differentiability properties of functions.
Princeton University Press, 1970.

100. R. Stenberg. On some techniques for approximating boundary conditions in
the finite element method. J. Comput. Appl. Math., 63:139–148, 1995.

101. T. Strouboulis, K. Copps, and I. Babuška. The design and analysis of the gen-
eralized finite element method. Comput. Meth. Appl. Mech. Engrg., 181:43–69,
2000.

Meshless Methods 141

102. T. Strouboulis, K. Copps, and I. Babuška. The generalized finite element
method: an example of its implementation and illustration of its performance.
Internat. J. Numer. Meths. Engrg., 47:1401–1417, 2000.

103. T. Strouboulis, K. Copps, and I. Babuška. The generalized finite element
method. Comput. Meth. Appl. Mech. Engrg., 190:4081–4193, 2001.

104. H. Triebel. Interpolation Theory, Function Spaces, Differential Operators.
Johann Ambrosius Barth, 2 edition, 1995.

105. I. N. Vekua. New Methods for Solving Elliptic Equations. North Holland,
1967.

106. H. Wendland. Piecewise polynomial, positive definite and compactly sup-
ported radial functions of minimal degree. Adv. Comput. Math., 4:258–272,
1995.

107. H. Wendland. Error estimates for interpolation by compactly supported radial
basis functions of minimal degree. J. Approx. Theory, pages 361–368, 1998.

108. H. Wendland. Meshless Galerkin methods using radial basis functions. Math.
Comput., 68:1521–1531, 1999.

109. H. Wendland. Local polynomial reproduction and moving least squares ap-
proximation. IMA J. Numer. Anal., 21:285–300, 2001.

110. H. Wendland. Scattered Data Approximation. Cambridge University Press,
2004.

111. T. Zhu and S.N. Atluri. A modified collocation method and a penalty formu-
lation for enforcing essential bounadry conditions. Comp. Mech., 21:165–178,
1998.

112. W.P. Ziemer. Weakly Differentiable Functions. Springer Verlag, 1989.

Theory and Applications of Smoothed Particle
Hydrodynamics

Joseph J. Monaghan

School of Mathematical Sciences, Monash University, Australia
email: joe.monaghan@sci.monash.edu.au

1 Introduction

Many problems in fluid dynamics involve more than one material, and more
than one phase. An example is the eruption of a volcano where the magma
contains gas which bubbles out as the magma reaches the surface. The result
is a hot gas containing liquid rock which rapidly cools to form small pieces of
solid rock. Such problems are not easily solved using finite difference methods
because more than one material may move through a cell and, in general, each
phase or material requires a different resolution. Related problems occur in
astrophysics where the particle method Smoothed Particle Hydrodynamics
(SPH) was developed to solve these problems (Gingold and Monaghan (1977),
Lucy (1977), for a review see Monaghan (1992)).
The basic idea behind SPH is to replace the fluid by a set of points which fol-
low the motion of the fluid and carry information about the properties of the
fluid. For the mathematician these points are just interpolation points, but
to the physicist and engineer it is naturally to think of them as real material
particles. Whatever viewpoint is adopted it is necessary to assign properties
to the particles and derive equations which will describe how these properties
change. The simplest such property is mass, and in most problems the mass
of each particle will remain constant. In addition we need to know the veloc-
ity, density and position of the particles (and possibly other quantities) and
how these change with time. The equations which determine these changes
are the equations of fluid dynamics.
The simplest set of equations are the acceleration and density equations for an
ideal gas without dissipation. These are the Euler equations. The acceleration
equation is

dv
dt

= −1
ρ
∇P, (1.1)

where v is the velocity, ρ is the density, and P is the pressure. In this equation
the time derivative is the derivative following the motion

dv
dt

=
∂v
∂t

+ v · ∇v. (1.2)

In general P is a function of ρ and the thermal energy, but in the case where
there is no dissipation the pressure can be taken as a function of ρ alone.

144 J.J. Monaghan

The density (continuity) equation is

dρ

dt
= −ρ∇ · v. (1.3)

In these equations the rates of change of physical quantities are determined
by spatial derivatives. The key step in any numerical method for the solution
of these equations is to approximate these derivatives by using information
from a finite number of points. In finite difference methods the points are the
vertices of a mesh. In the SPH method the interpolating points are particles
which move with the flow. In the next section we will study the details of
this particle interpolation method which is the characteristic feature of SPH.

2 Integral and Summation Interpolants

Suppose we wish to interpolate some property A which is a function of the
spatial coordinates. A could be a scalar, a vector or a tensor quantity. We
begin by writing the equality

A(r) =
∫

A(r′)δ(r − r′)dr′, (2.1)

where δ(r) denotes the Dirac delta function and dr′ is an element of volume
in the space being considered. The Dirac delta function has the property that
it vanishes everywhere except where r vanishes where it becomes infinite in
such a way that ∫

δ(r − r′)dr′ = 1. (2.2)

As a result the integral relation for A is an identity because the only non-zero
contribution comes from the point where r′ = r.
A delta function can be thought of as a limit of a well behaved function
W (r, h) which has the following properties:

lim
h→0

W (r, h) = δ(r), (2.3)

and is normalised so that ∫
W (r)dr′ = 1. (2.4)

One example in one dimension is the Gaussian

W (x, h) =
1

h
√

π
e−x2/h2

, (2.5)

Theory and Applications of Smoothed Particle Hydrodynamics 145

which is a C∞ function. Another example in one dimension is the spline
defined as follows. If q = |x|/h then

W (x, h) =

⎧⎪⎨⎪⎩
1
h (2

3 − q2 + 1
2q3), for 0 ≤ q ≤ 1,

1
6h (2 − q)3, for 1 ≤ q ≤ 2,

0, otherwise.
(2.6)

This function has continuous second derivatives and compact support. Using
such a function we can replace (2.4) by the integral interpolant

A(r)I =
∫

A(r′)W (r − r′, h)dr′. (2.7)

In the following we will refer to the function W as the kernel.
Suppose now we divide the volume of fluid into a set of small volume elements.
The element a will have a mass ma, density ρa, and position ra. We denote
the value of A at particle a by Aa. We can approximate the integral in the
following way. First write the integral as∫

A(r′)
ρ(r′)

ρ(r′)dr′. (2.8)

An element of mass is ρdr′. We can therefore approximate the integral by a
summation over the mass elements. This gives us the summation interpolant

As(r) =
∑

b

mb
Ab

ρb
W (r − rb, h), (2.9)

where the summation is over all the particles but, in practice, is only over
near neighbours because W falls off rapidly with distance. Typically, h is
close to the particle spacing, and the kernel W is effectively zero beyond a
distance 2h. In practice we choose kernels which have compact support i.e.
they vanish at a finite distance. We will discuss the various types of kernels
later.
As an example of the use of kernel estimation suppose A is the density ρ.
The interpolation formula then gives the following estimate for the density
at a point r

ρ(r) =
∑

b

mbW (r − rb, h), (2.10)

which shows how the mass of a set of particles is smoothed to produce the
estimated density. The reader who is familiar with the technique of estimating
probability densities from sample points (Parzen (1962)) will see that our
formula for the density is the same with mb replaced by 1/N , where N is the
number of sample points.
If h is constant we can integrate the density estimate to give∫

ρ(r)dr =
∑

b

mb = M, (2.11)

146 J.J. Monaghan

which shows that mass is conserved exactly (in the probability case the kernel
estimate ensures the total probability is 1). If we allow h to vary, the integral
is no longer exactly M but the errors are small because the particles carry
their mass unchanged.
We not only want to estimate functions we also want to estimate gradients.
The SPH formulation allows us to do this with ease. If we take W to be a
differentiable function then we can differentiate our estimate of A exactly.
For example

∂A

∂x
=
∑

b

mb
Ab

ρb

∂W

∂x
. (2.12)

However, the straightforward SPH forms of spatial derivatives are not neces-
sarily the most accurate. The following exercise involves the simple forms of
the divergence and curl. We show below how better forms of these quantities
can be constructed. The reader is urged to investigate the form of the terms
in the case where the kernel is a Gaussian. In particular, note that the con-
tribution to the divergence of the velocity from a particle is negative when it
is moving towards the particle of interest. Correspondingly, the contribution
to the density is positive when the particle is approaching.

Exercise 2.1. Show by taking the divergence of the SPH interpolation for-
mula for v that

∇ · v =
∑

b

mb

ρb
vb · ∇W (2.13)

and that
∇× v =

∑
b

mb

ρb
vb ×∇W. (2.14)

Show also that the contribution of particle b to ∇·v in the case of a Gaussian
kernel is

−2mb

h2
vb · (r − rb)W, (2.15)

which is negative if particle b is moving towards r.

In the previous exercise the simplest form of the divergence and curl were
worked out in the SPH formulation. However, in general these estimates do
not vanish exactly when the velocity field is zero. To guarantee that they do
vanish we use the trick of subtracting a quantity which would be zero if the
SPH interpolation was perfect. Thus we write

∇ · v = ∇ · v − v · ∇1, (2.16)

and we use the SPH approximation of 1, namely

1 =
∑

b

mb

ρb
W (r − rb, h), (2.17)

Theory and Applications of Smoothed Particle Hydrodynamics 147

with gradient
∇1 =

∑
b

mb

ρb
∇W. (2.18)

This gradient would be zero if the SPH interpolation was exact. Returning
to our new expression for ∇ · v we write the SPH form as

∇ · v =
∑

b

mb

ρb
(vb − v) · ∇W. (2.19)

For later reference we evaluate this expression at the position of particle a.
We then find

(∇ · v)a =
∑

b

mb

ρb
vba · ∇aWab, (2.20)

where vba = vb−va, the gradients ∇a is taken with respect to the coordinates
of particle a, and Wab = W (ra − rb, h).
In a similar way we get

(∇× v)a =
∑

b

mb

ρb
(vb − va) ×∇aWab. (2.21)

Exercise 2.2. Show that the contribution of particle b to (∇ · v)a in the case
of a Gaussian kernel is

2mb

h2
vab · rabWab, (2.22)

which is negative if particles a and b are moving towards each other. Show
also that the contribution of particle b to ∇×v for particle a is proportional
to the relative angular momentum of the two particles.

Another way of getting more accurate formulae is to use another trick. This
trick involves putting ρ inside expressions and compensating by adding or
subtracting a term. For example we can write ∇ · v another way by noting

ρ∇ · v = ∇ · (ρv) − v · ∇ρ. (2.23)

If we write the right hand side in SPH form we find

(∇ · va) = − 1
ρa

∑
b

mbvab · ∇aWab. (2.24)

If this is compared with (2.21) it will be seen that one has ρ inside and
one outside. Both expressions vanish, as they should, when the velocity is
constant. However, when the system involves two or more fluids with large
density ratios, the expression for ∇ · v with ρ inside the summation is more
accurate. The reason being that near an interface the summation for ∇·v for
one type of fluid SPH particle involves contributions from the other fluid. If
we imagine the other fluid changed for a fluid with exactly the same velocity

148 J.J. Monaghan

field, and exactly the same particle positions, but different density, we would
still want the same estimate of ∇·v. However, with (2.24) the mass elements
will be changed and the estimate will be different. On the other hand, if (2.21)
is used the ratio of mass to density will be invariant. In practice it turns out
that either (2.21) or (2.24) can be used for density ratios less than about 2,
but for larger density ratios it is better to use (2.21).
These two tricks, one where the ∇1 is subtracted, and one where ρ is put
into expressions and then compensated by another term, are used frequently.

2.1 Errors in the Integral Interpolant

Let’s go back to the integral interpolant in one dimension. We have

AI(x) =
∫

A(x′)W (x − x′, h) dx′, (2.25)

and we assume h is constant. We expand A(x′) in a Taylor series about x to
get

AI(x) =
∫

[A(x) + (x′ − x)
dA(x)

dx
+ 1

2 (x′ − x)2
d2A(x)

dx2
+ . . .]W (x′ − x, h) dx′.

(2.26)
We now assume that W (q, h) is an even function of q. In three dimensions
this means the kernels are spherical. If W (q, h) is an even function of q this
means that the terms with odd powers of x − x′ will vanish giving

AI(x) = A(x) +
1
2

d2A(x)
dx2

∫
(x′ − x)2W (x′ − x, h) dx′ + (2.27)

Keeping in mind the example of the Gaussian kernel it is easy to see that∫
(x′ − x)2W (x′ − x, h) dx′ = σh2, (2.28)

where σ is a constant. We therefore write

AI(x) = A(x) +
σh2

2
d2A(x)

dx2
+ . . . , (2.29)

which shows that the integral interpolant gives at least second order inter-
polation. The interpolation is better if σ is zero. Then higher order terms
must be included in the expansion. The third order term vanishes because of
symmetry leaving a possible fourth order term. An example of a higher order
kernel is

W (x, h) =
1

h
√

π

(
3
2
− x2

h2

)
e−x2/h2

. (2.30)

For this kernel, the integral interpolant is accurate to O(h4). However, this
example shows the general result that to achieve higher order interpolation
the kernel must change sign. This may have unwanted side effects. For exam-
ple the density might become negative near a very strong shock.

Theory and Applications of Smoothed Particle Hydrodynamics 149

2.2 Errors in the Summation Interpolant

If the particles are equi-spaced then we can easily estimate the errors in
the summation interpolant. However, in general, the particles in an SPH
calculation will be disordered. Before considering this case we calculate some
examples in one dimension.

Exercise 2.3. Estimate the accuracy of interpolation for particles separated
by a constant distance ∆x on an infinite one dimensional line. Assume that
A is a constant K and assign to each SPH particle a mass m = ρ∆x. Starting
with the summation interpolant for any SPH point on the line

A(xa) =
∞∑
−∞

Ab∆xW (xa − xb, h), (2.31)

show that if the kernel is a Gaussian then

A(xa) =
K∆x

h
√

π

[
1 + 2e−q2

+ 2e−4q2
+ 2e−9q2

+ . . .
]
, (2.32)

where q = ∆x/h. Show that

A(xa) =

⎧⎪⎨⎪⎩
1.00010K if q = 1,
0.99999K if q = 1.5,

1.170K if q = 0.5.

The previous exercise shows that if h > ∆x the interpolation over equi-spaced
particles is very good, but if h < ∆x the accuracy is poor. In this last case
the kernels do not overlap sufficiently to give high accuracy.
The reader will note that in the case of equi-spaced particles the results
show that the integral interpolant with a Gaussian kernel is approximated
very accurately by the summation interpolant. This result is well known
and reflects the fact that integrals of Gaussian functions over an infinite
interval can be represented by a finite summation with errors which are ∼
exp(−(πh/∆x)2).
Therefore, although a constant is not interpolated exactly, the errors are ex-
ponentially small. The reader will be able to confirm that the interpolation
of a linear function of x has the same high accuracy. It is often said that
functions should be represented is such a way that completeness is satis-
fied. The Gaussian kernels are not complete since they never interpolate any
function, even a constant, exactly. Nevertheless they give accurate interpola-
tion. This reminds us that what we are looking for is accuracy, and although
completeness might be one route to accuracy, it is not the only route.
The following exercise is one way of showing that the dominant error depends
on the Fourier Transform of the kernel.

150 J.J. Monaghan

Exercise 2.4. Estimate the accuracy of interpolation of a linear function
A(x) = β +αx for particles separated by a constant distance ∆ on an infinite
one dimensional line as in the previous two problems and with a Gaussian
kernel. Begin with the Poisson summation formula

∞∑
j=−∞

f(j) =
∫ ∞

∞
f(j) dj + 2

∞∑
r=1

∫ ∞

−∞
f(j) cos (2πjr) dj, (2.33)

where, in the integrals, j becomes a continuous variable. The integral inter-
polant is approximated according to

∆
h
√

π

∞∑
j=−∞

[β + α∆j]e−(∆(y−j)/h)2 (2.34)

where we have written x = y∆. Show from the Poisson summation formula,
when x is on one of the points (so that y is an integer), that the summation
interpolant gives

(β + α∆y)
(

1 +
2∆

h
√

π

∫ ∞

−∞
cos (2πq)e−(∆q/h)2 dq + . . .

)
. (2.35)

Work out the integral and show the error is exponentially small, and is smaller
as h/∆ increases. Repeat the calculation for arbitrary (non-integer) y.

If the kernel does not have the rapid decrease and smoothness of the Gaussian
kernel the accuracy is less unless h/∆ is much larger than for the Gaussian.
The following exercise illustrates this.

Exercise 2.5. Show that in one dimension the kernel exp(−|x|/h) when nor-
malized is a possible kernel. Show also that a constant function K is inter-
polated by the function

K∆x

2h

(1 + e−q)
(1 − e−q)

. (2.36)

Shoenberg (1946) showed that interpolation accuracy could be related to the
properties of the Fourier Transform of the interpolating kernel. Smoothness
then shows up as rapid decrease of the Fourier Transform for large k and
the order of accuracy shows up in the expansion of the Fourier Transform in
powers of k. In particular, if the Fourier transform has a zero of order m at
k = 0, then the kernel has continuous derivatives up to the (m − 2)th.
Shoenberg was concerned with interpolation when the data was noisy. For
that reason he wasn’t interested in the standard interpolation formula such
as those due to Everett or Bessel but rather interpolation with smoothing.
In Shoenberg’s formalism the interpolation is written in the form

f(x) =
∑

j

fjL(x − xj), (2.37)

Theory and Applications of Smoothed Particle Hydrodynamics 151

which has the same as our SPH interpolation. If the points are equi-separated
with spacing ∆, as in a table, then the Bessel formula which interpolates
quadratic functions exactly is given by the following (where q = |x|/h)

L(x) =

⎧⎪⎨⎪⎩
(1 − q)(1 + 1

4q), for 0 ≤ q ≤ 1
1
4 (1 − q)(2 − q), for 1 ≤ q ≤ 2.

0, otherwise.
(2.38)

The first derivative of this function is not continuous everywhere. When the
data is noisy it is an advantage to have smoother interpolating kernels. Shoen-
berg (1946) constructed a set of basic smoothing functions which he called
Cardinal Splines. They can be defined by their Fourier transform. Thus, the
spline with continuous (n−2) derivatives, Mn(x), (which is an even function
of x) is given by

Mn(x) =
∫ ∞

−∞

(
sin πk∆

πk∆

)n

cos (2πkx) dk. (2.39)

These spline kernels all interpolate with errors of O(h2), but they are smooth-
er as n increases. The M0 spline gives nearest grid point interpolation. The
M2 spline is:

M2(x) =

{
1 − q, for 0 ≤ q ≤ 1,

0, for q ≥ 1.
(2.40)

In this, and the following expressions, q denotes |x|/∆. M2 gives linear inter-
polation but its first derivative is discontinuous.

Exercise 2.6. Work out the Fourier transform defining M2 and show it agrees
with the linear function just defined.

A commonly used kernel is the M4 kernel (commonly called the cubic spline
because it is a piecewise cubic polynomial). It has the form:

M4(x) =

⎧⎪⎨⎪⎩
1
6 (2 − q)3 − 2

3 (1 − q)3, for 0 ≤ q ≤ 1,
1
6 (2 − q)3, for 1 ≤ q ≤ 2,

0, for q > 2.

(2.41)

The SPH kernel associated with M4(x) is W (x, h) = 1
hM4(x) where now

q = |x|/h. These kernels have been used for SPH interpolation because they
are less sensitive to particle disorder.
For reference we end with the formula for Mn which can be determined
from the Fourier Transform. Because the expressions are lengthy we use the
notation

Xj = n/2 − q − j,

152 J.J. Monaghan

then

(n − 1)!Mn(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, for q > n/2,

Xn−1
0 , for n/2 − 1 ≤ q ≤ n/2

Xn−1
0 − C(n, 1)Xn−1

1 , for n/2 − 2 ≤ q ≤ n/2 − 1
Xn−1

0 − C(n, 1)Xn−1
1

+C(n, 2)Xn−1
2 , for n/2 − 3 ≤ q ≤ n/2 − 2

(2.42)
and so on where C(n, k) = n!/(k!(n−k)!). The sub-ranges are continued until
we reach 0 ≤ q ≤ 1 if n is even or −1/2 ≤ q ≤ 1/2 if n is odd (though in the
latter case since q ≥ 0 we use the domain 0 ≤ q ≤ 1/2).
The kernel proportional to e−|x|/h is an example of a kernel that requires the
contribution of many neighbours to give high accuracy. For example, if we
are estimating a constant, and we decide to add particle contributions until
the error is less that 0.001 of the first term, and we take h = ∆x, then we
must add contributions from 7 particles on each side of the particle of interest
since e−7 ∼ 0.001. This makes this kernel inefficient. The Fourier transform
of this kernel is ∫ ∞

−∞

e−|x|/h

2h
e2πkx dx =

1
1 + (2πkh)2

, (2.43)

which decreases as ∼ 1/k2 for large k. By comparison the Fourier transform
of the Gaussian is

e(−πkh)2 , (2.44)

which decreases much faster. From Schoenberg’s analysis we expect that the
Gaussian kernel would be much more efficient than the exponential kernel
and this is found in practice.

2.3 Errors when the Particles are Disordered

During the course of an SPH calculation the particles become disordered.
The exact form of this disorder depends on the dynamics. When Bob Gin-
gold and I first ran SPH calculations we thought that the disorder could
be described by a probability distribution proportional to the mass density,
and that the errors could be estimated in the same way as a Monte Carlo
estimate. In particular we expected that the errors arising from fluctuations
would be ∼ 1/

√
N . However, the errors were much smaller than this estimate

would suggest. The reason for the smaller errors is that the probability esti-
mates allow fluctuations which are inconsistent with the dynamics. Because
the disorder depends on the dynamics it is not possible to make traditional
error estimates like those used for finite differences or finite elements. For
that reason estimates of SPH calculations have had to depend on compar-
isons with known solutions, experiments, or by studying how the error varies

Theory and Applications of Smoothed Particle Hydrodynamics 153

with particle number for particular calculations (see for example Cleary and
Monaghan (1999)). These comparisons show that it is possible to achieve
very accurate results with SPH.
It is clear that the errors depend on the type of disorder. Niedereiter (1978)
showed that if the points are quasi-ordered then the error of an integration
in d dimensions varies with the number of particles as ln(Nd)/N which is
not very satisfactory in 1 dimension, but in 3 dimensions it means the er-
ror varies as h3 ln |h| which is efficient. There is a large industry working out
multi dimensional integration algorithms using quasi-disordered numbers. As
a simple example suppose points xj in 0 ≤ xj ≤ 1, are computed by recur-
rence from

xj+1 = xj + α, mod(1) (2.45)

where α is an irrational number and x0 = 0. If we wish to evaluate the
integral ∫ 1

0

F (x) dx, (2.46)

then we can approximate it by using the points xj . Thus∫ 1

0

F (x) dx =
1
N

N∑
j=1

F (xj) + ε, (2.47)

where ε is the error. We can estimate this error by using the Fourier expansion
of F (x). We can write

F (x) =
∞∑

n=−∞
Cne2πnix, (2.48)

where

C0 =
∫ 1

0

F (x) dx. (2.49)

Then we can write the integral as

1
N

N∑
j=0

∞∑
n=−∞

Cne2πnijα, (2.50)

where we can replace xj by jα because the mod(1) operation has no effect
on the complex exponentials. We can write this summation as

C0 +
2
N

∞∑
n=1

Cn
sin (παn(N + 1))

sin (παn)
cos (πnNα). (2.51)

This shows that the error in this case is ∝ 1/N but the constant depends
on how rapidly the Fourier coefficients decrease and how small sin (πnα) �= 0
becomes (for a detailed discussion see Davis and Rabinowitz, (1967)).

154 J.J. Monaghan

Figure 2.1. The Kepler problem integrated using a 4th order Runge Kutta method.
Note the orbit is not closed and spirals out.

Another reason for the accuracy of SPH despite the disorder is that it is pos-
sible to set up SPH calculations so that they conserve important quantities
like momentum and energy. The importance of this conservation shows up in
very simple problems. Suppose, for example, that we wish to integrate the
equations for a binary star system with the stars treated as points and we are
offered either a second order reversible symplectic integrator, or a standard
4th order Runge Kutta integrator. If we use the Runge Kutta scheme the or-
bit, instead of being an ellipse, will spiral in or spiral out with the effect being
more extreme as the eccentricity gets closer to 1. The problem arises because
the standard 4th order Runge Kutta does not conserve angular momentum.
On the other hand, the symplectic Verlet integrator, which is a second order
integrator, gives much better results because it conserves angular momen-
tum exactly, and conserves energy better than the Runge Kutta method. In
addition it is easy to ensure that the numerical orbit is reversible. In Figure
2.1 we show the orbit for the Kepler problem with eccentricity 0.5 integrated
with the Runge Kutta method. The orbit spirals out and the axis of sym-
metry rotates. In Figure 2.2 the orbit calculated using the symplectic Verlet
method is shown. This example shows very clearly that high order does not
necessarily mean that important properties of the dynamics will be retained.
We will show later that the SPH equations for non-dissipative flow can be
derived from a particle Lagrangian which preserves many of the invariants of

Theory and Applications of Smoothed Particle Hydrodynamics 155

Figure 2.2. The Kepler problem integrated with the symplectic Verlet method
using the same step size as for the Runge Kutta example shown in Figure 2.1. Note
that the orbit is closed to high accuracy.

the original system. These include not only the additive invariants of energy,
and momentum but also the integral invariants such as Liouville’s theorem
and Poincare invariants which involve integrations in phase space. In addi-
tion, with appropriate time integration, the reversibility of the dynamical
system can be preserved. It seems, but has not been proven, that in this case
it is the good approximation of the Lagrangian that is the key reason for the
robustness and accuracy of the SPH equations.

3 Euler Equations

In the previous sections we showed how the spatial gradients could be esti-
mated from information at the particle positions. In this section we will study
how the equations of non-dissipative fluid dynamics (the Euler equations) can
be approximated by SPH using expressions for the spatial derivatives.
The simplest set of equations we need to solve are the acceleration and con-
tinuity equations for an ideal gas without dissipation. These are the Euler
equations. For the present we assume there are no body forces. The acceler-
ation equation in the absence of gravity or other body forces is then

dv
dt

= −1
ρ
∇P, (3.1)

156 J.J. Monaghan

where v is the velocity, ρ is the density, P is the pressure and g is the body
force per unit mass. In this equation the time derivative is the derivative
following the motion

dv
dt

=
∂v
∂t

+ v · ∇v. (3.2)

The characteristics of this equation are the trajectories of the fluid elements.
These trajectories will be approximated by the trajectories of the SPH par-
ticles.
In general P is a function of ρ and the thermal energy, but in the case where
there is no dissipation the pressure can be taken as a function of ρ and the
entropy per unit mass s which remains constant. In some cases we will assume
the entropy is the same for all particles, but in general each particle could
have a different entropy which does not change with time.
The density (continuity) equation is

dρ

dt
= −ρ∇ · v, (3.3)

and to move the particles we solve the equation

dr
dt

= v. (3.4)

In the following we will work out SPH forms of these equations which will
determine how the position and density at each particle changes with time.

3.1 The SPH Continuity Equation

As shown in the previous section we can estimate the density at particle a
by the summation

ρa =
∑

b

mbWab, (3.5)

where Wab denotes W (ra − rb, h) and mb is the mass of particle b. If we take
the time derivative of (3.5) we find

dρa

dt
=
∑

b

mb
dWab

dt
=
∑

b

mbvab · ∇aWab, (3.6)

where vab = va − vb. We can decode the RHS of (3.6) by writing it first as

va ·
∑

b

mb∇aWab −
∑

b

mbvb · ∇aWab. (3.7)

which can be interpreted as the SPH expression for

va · (∇ρ)a − (∇ · (ρv))a = −(ρ∇ · v)a. (3.8)

Theory and Applications of Smoothed Particle Hydrodynamics 157

Our form of the rate of change of density (3.6) is therefore what we would
have arrived at by using the expression (2.24) for ∇ · v in the continuity
equation. Another form of the continuity equation follows from (2.21)

dρa

dt
= ρa

∑
b

mb

ρb
vab · ∇aWab. (3.9)

This equation is more accurate when there are fluids with very different
densities in contact.

3.2 The SPH Acceleration Equation

We can convert the acceleration equation for our ideal fluid into SPH form
by writing

(∇P)a =
∑

b

mb
Pb

ρb
∇aWab. (3.10)

Our first, crude, SPH form of the acceleration equation is then

dva

dt
= − 1

ρa

∑
b

mb
Pb

ρb
∇aWab. (3.11)

However, this equation doesn’t conserve linear or angular momentum exactly
since the force on particle a due to b is not equal and opposite to the force
on b due to a or

mambPb

ρaρb
�= mambPa

ρaρb
. (3.12)

To write the acceleration equation in a form which conserves linear and an-
gular momentum we make the force term symmetric by noting that

∇P

ρ
= ∇

(
P

ρ

)
+

P

ρ2
∇ρ. (3.13)

Using the SPH interpolation rules we can write the first term on the right
hand side as

∇
(

P

ρ

)
a

=
∑

b

Pb

ρ2
b

∇aWab, (3.14)

and the second term as

Pa

ρ2
a

(∇ρ)a =
Pa

ρ2
a

∑
b

mb∇aWab, (3.15)

combining these we get the acceleration equation

dva

dt
= −

∑
b

mb

(
Pb

ρ2
b

+
Pa

ρ2
a

)
∇aWab, (3.16)

158 J.J. Monaghan

Assuming that the kernel Wab is a function of |ra − rb| we can write its
gradient in the following form

∇aWab = rabFab, (3.17)

where Fab is a scalar function of |ra − rb| and Fab ≤ 0. The force/mass on a
due to b is then

mb

(
Pb

ρ2
b

+
Pa

ρ2
a

)
rabFab, (3.18)

which shows that the force on a due to b is now equal and opposite to the
force on b due to a.

Exercise 3.1. Show that the linear momentum
∑

a mava and angular mo-
mentum

∑
a mara × va are conserved if the symmetric form of the accelera-

tion equation is used.

3.3 The Thermal Energy Equation

We get the thermal energy equation from the first law of thermodynamics

T ds = du + P dv (3.19)

= du − P

ρ2
dρ (3.20)

where s is the entropy, and we have assumed in the last equation that all
quantities are per/unit mass. If there is no source of heat we deduce

du

dt
=

P

ρ2

dρ

dt
= − P

ρ2
∇ · v. (3.21)

We can write this equation in various ways. For example

du

dt
=

P

ρ2
(∇ · (ρv) − v · ∇ρ) , (3.22)

and, in SPH form for any particle a, this equation becomes

dua

dt
=

Pa

ρ2
a

∑
b

mbvab · ∇aWab. (3.23)

Alternatively, we could make use of one of the forms of ∇·v from the previous
section and deduce the thermal energy equation

dua

dt
=

Pa

ρa

∑
b

mb

ρb
vab · ∇aWab. (3.24)

A good general principle when writing SPH equations is to be consistent. For
example, if we use a particular expression for ∇·v in the continuity equation,
we should use the same form in the energy equation.

Theory and Applications of Smoothed Particle Hydrodynamics 159

3.4 Dispersion of Sound Waves

We now have a set of ordinary differential equations for the motion of a fluid
when there is no dissipation. We will discuss how to integrate the equations
in a later section. For the present it is useful to consider how the SPH for-
mulation affects the dispersion relation for small amplitude waves in a gas in
one dimension. We assume the initial density ρ̄ is constant and the domain
is infinite. The SPH particles have equal mass and are initially equi-spaced
with spacing ∆x. For convenience we assume that the equation of state is
P = Kρ2. We assume the sound waves have sufficiently small amplitude then
we can write the position of particle a as

xa = x̄a + Xei(kx̄a−ωt), (3.25)

where x̄a is the unperturbed position of particle a and the wave has frequency
ω and wave number k. The velocity can be written as

va = V ei(kx̄a−ωt), (3.26)

and the density
ρa = ρ̄a + Dei(kx̄a−ωt). (3.27)

Because P = Kρ2 we do not need to consider the continuity equation to ob-
tain the dispersion relation for the SPH system. The first order perturbation
to the acceleration equation gives

−iωva = −2mK
∑

b

(δxa − δxb)
d2Wab

dx̄2
a

, (3.28)

where
δxa = Xei(kx̄a−ωt). (3.29)

Substituting for va we get

−iωV = −2mKX
∑

b

[
1 − eik(x̄b−x̄a)

] d2Wab

dx̄2
a

. (3.30)

From the equation for the change in position dxa/dt = va we get

−iωX = V. (3.31)

Substituting this result into the previous equation we get the dispersion re-
lation

ω2 = 2mK
∑

b

[
1 − eik(x̄b−x̄a)

] d2Wab

dx̄2
a

, (3.32)

160 J.J. Monaghan

Because the particles are equi-spaced and the line is infinite we can shift the
origin in the summation to x̄a and measure lengths from this point. We can
then write (3.32) as

ω2 = 2mK
∑

b

[
1 − eikx̄b

] d2W (x̄b, h)
dx̄2

b

. (3.33)

If the wavelength is much large than the particle spacing we can replace the
summation by an integration according to

∞∑
b=−∞

[
1 − eikx̄b

] d2W (x̄b, h)
dx̄2

b

� 1
∆x

∫ ∞

−∞

[
1 − eikb∆x

] ∂2W

∂b2
db, (3.34)

where we have used the fact that x̄b = b∆x and, for convenience, b is used
to denote both the discrete and the continuous variable. Integrating by parts
twice we find

∞∑
b=−∞

[
1 − eikx̄b

] d2W (x̄b, h)
dx̄2

b

� k2

∫ ∞

−∞
Weikb∆x db. (3.35)

Since we have assumed P = Kρ2 the speed of sound cs is equal to 2Kρ =
2Km/∆x. We can therefore write the dispersion relation as

ω2 � c2
sk

2W̃ , (3.36)

where W̃ denotes the Fourier transform of W∫ ∞

−∞
Weikb∆x db. (3.37)

If the kernel is a Gaussian we can evaluate the integral to get

ω2 = c2
sk

2e−(kh/2)2 . (3.38)

If the kh � 2 the dispersion relation is a close approximation to the exact
form ω2 = c2

sk
2, but as k increases the frequency of the wave calculated using

SPH drops below the correct value. The largest allowed value of k is π/∆x
and for this k the error is a maximum. However, it is not the error that
is a concern for short wave lengths but rather whether or not the method
remains stable. To determine the stability we evaluate the dispersion relation
numerically.
Because the term d2W (x̄b,h)

dx2
b

in the original dispersion relation is an even
function of the coordinates we can write it as

ω2 = 2mK
∑

b

[1 − cos kx̄b]
d2W (x̄b, h)

dx̄2
b

. (3.39)

Theory and Applications of Smoothed Particle Hydrodynamics 161

If the system is unstable the fastest growing mode is usually the one with the
shortest wavelength (largest k) and this shows up as clumping. We therefore
evaluate the dispersion relation for k = π/∆x and get

ω2 = 8mK

∞∑
j=1

d2W (x̄j , h)
dx̄2

j

, (3.40)

where the summation is over odd values of j. For the Gaussian kernel we get

ω2 =
8mK

h3
√

π

∞∑
j=1

(
−2 +

4x̄2
j

h2

)
e−x̄2

j/h2
. (3.41)

Evaluating the right hand side for ∆x ≤ h ≤ 2∆x, the usual range for SPH
calculations we find it is positive, showing that ω is real and the method
stable with a Gaussian kernel. In practice the time evolution is approximated
by discrete steps and the stability then depends on the scheme used. We will
discuss time stepping schemes later.

Exercise 3.2. If the equation of state is P = Kργ show that the dispersion
relation is

ω2 =
c2
s

γ

(
B + (γ − 2)A2

)
, (3.42)

where

B = ∆x
∑

b

(1 − cos (kx̄b))
d2W (x̄b, h)

dx̄2
b

, (3.43)

and

A = −∆x
∑

b

sin (kx̄b)
dW (x̄b, h)

dx̄b
. (3.44)

In the long wave length limit replace summations by integrations and show
that

B = k2 and A = k, (3.45)

where we have used the approximation W̃ = 1. Show that the dispersion
relation becomes

ω2 = c2
sk

2, (3.46)

in agreement with the exact value. As before the deviation from the correct
value is a maximum for k = π/∆x. For this k, A = 0 and B ≥ 0 so that SPH
is stable for arbitrary γ. This result is also true for the spline kernel.

4 Tests of the SPH Euler Equations

The usual tests in computational gas dynamics involve systems with rigid or
periodic boundaries. In this section we consider tests where the system is a

162 J.J. Monaghan

finite region of gas held together by a simple force. In this sense, they are
like model stars with the gravitational force replaced by another force which
is easy to calculate. These systems are therefore called Toy Stars (Monaghan
and Price (2004)). The force we consider is such that for any two elements
of mass the force between them proportional to their separation and along
the line of their centres. This force is the simplest many-body force. It was
discovered by Newton who pointed out that if two particles attract each other
with a linear force then they move as if attracted to the centre of mass of
the pair (see Chandrasekhar (1995) for a modern interpretation of Newton’s
Principia and, in particular, Newton’s proposition LXIV which discusses this
force).
If there are N particles attracting each other with a force proportional to the
separation, and directed along the line joining pairs of particles, then each
particle moves as if independent of the others. The force is a linear force
towards the centre of mass of the N particles. In the case of two particles
the trajectories are Lissajous figures. A gaseous system with this force has a
number of attractive features for testing algorithms for fluid dynamics. The
modes of oscillation can be calculated easily, and there is a nonlinear solution
where the velocity is a linear function of the coordinates. This solution can
be calculated very accurately by integrating a small number (2 in the case of
one dimension) of ordinary differential equations.
The simplest version of the Toy star assumes the pressure P is given in terms
of the density ρ by P = Kρ2 where K is a constant. This makes the problem
analogous to the problem of shallow water motion in paraboloidal basins.
There is an extensive literature on this problem including the early papers of
Goldsbrough (1930) and the general analysis by Holm (1991) which contains
many further references.

4.1 The Force Law in One Dimension

Newton proposed the linear force law in the Principia but for our purposes the
modern discussion by Chandrasekha (1995) is clearer. Suppose for example
that we have an isolated group of N particles in one dimension interacting
with linear forces so that the potential energy is

Φ =
1
4
ν

N∑
j=1

N∑
k=1

mjmk(xj − xk)2, (4.1)

The equation of motion of the jth particle is then

mj
d2xj

dt2
= −νmj

∑
k

mk(xj − xk). (4.2)

However, the centre of mass ∑
k mkxk∑

k mk
, (4.3)

Theory and Applications of Smoothed Particle Hydrodynamics 163

can be chosen as the origin so the equation of motion becomes

d2xj

dt2
= −νMxj , (4.4)

where M is the total mass. The potential can then be written

Φ =
1
2
νM

∑
j

mjx
2
j , (4.5)

The motion of the N-body system is therefore identical to the independent
motion of each particle in a harmonic potential. In the following we replace
Mν by Ω2.

4.2 The Equations of Motion

The system is one dimensional with velocity v, density ρ, and pressure P .
The acceleration equation is

dv

dt
= −1

ρ

∂P

∂x
− Ω2x. (4.6)

We assume the equation of state is

P = Kρ2, (4.7)

which makes our equations identical in form to those for the shallow water
equations with density replacing the water depth. The acceleration equation
is then

dv

dt
= −2K

∂ρ

∂x
− Ω2x. (4.8)

The simplest case to consider is the static model. The next simplest case is
to study the small oscillations about the static model. However, one of the
attractive features of the toy star is that we can find an exact stable nonlinear
oscillation. We now consider each of these in turn.

Exercise 4.1. Show that the static model has density

ρ = ρ0 −
Ω2x2

4K
. (4.9)

so that the radius xe of the static model is

x2
e =

4Kρ0

Ω2
. (4.10)

and the mass M is 4ρ0xe/3.

164 J.J. Monaghan

If M , K and Ω are specified then ρ0 and therefore xe can be calculated. To
simplify the following equations we use xe as the unit of length, and we use
1/Ω as the unit of time. The acceleration equation then becomes

dv

dt
= −1

2
∂ρ

∂x
− x, (4.11)

and then the static density ρ̄ is

ρ̄ = 1 − x2, (4.12)

while P = ρ2/4 and M = 4/3.

4.3 Oscillations

We now consider small oscillations of our toy star. We assume v is small and
we write the density in the form

ρ = ρ̄ + η. (4.13)

If we retain only quantities which are linear in the perturbations the accel-
eration equation becomes

∂v

∂t
= −1

2
∂η

∂x
, (4.14)

and the continuity equation becomes

∂η

∂t
= −∂(ρ̄v)

∂x
. (4.15)

We let the time variation be eiωt and, by combining the equations, the equa-
tion for v becomes

(1 − x2)
d2v

dx2
− 4x

dv

dx
+ 2(ω2 − 1)v = 0. (4.16)

The solutions of this equation are the Gegenbauer polynomials Gn(x). The
solution for Gn(x) requires that

2(ω2 − 1) = n2 + 3n, (4.17)

or

ω2 =
(n + 1)(n + 2)

2
. (4.18)

Typical examples of Gegenbauer polynomials are G0(x) = 1, G1(x) = x,
G2(x) = 3(5x2 − 1)/2, and G3(x) = 5(7x3 − 3x)/2. Note that the Gegen-
bauer polynomials rise rapidly near the edge of the Toy Star. The standard
normalization is ∫ 1

−1

G2
n(x)(1 − x2) dx = 2

(n + 1)(n + 2)
2n + 3

. (4.19)

Theory and Applications of Smoothed Particle Hydrodynamics 165

Other properties of Gn can be found in books on special functions e.g.
Abramowitz and Stegun which is available on the Web). The equation for
the density perturbation is

(1 − x2)
d2η

dx2
− 2x

dη

dx
+ 2ω2η = 0. (4.20)

The solution to this equation are Legendre polynomials Pm(x). We note that

d

dx
Pm+1(x) = Gm(x). (4.21)

We compare the perturbation solution with the SPH calculation below.

4.4 SPH Results for Small Oscillations

Figure 4.1. The velocity field for the toy star oscillating with the velocity field in
the 3rd mode after 4 periods. The SPH results are shown by the filled symbols and
the exact result by the circles.

To simulate the high order oscillations we need enough particles to ensure
the resolution length is much smaller than the wave lengths of the modes.
In the present case we use 400 particles. The toy star can be set up with
the particles in the static position with initial velocity v = 0.01CsGn(x) and
solution v = 0.01CsGn(x) cos (ωt), where Cs is the speed of sound (with value

166 J.J. Monaghan

1/
√

2 in our scaled units). Correspondingly the expected density perturbation
is η = 0.02CsωPn+1 sin (ωt). A comparison between the SPH and the exact
solution is shown in Figure 4.1 for the 3rd mode. Results for other modes are
given by Monaghan and Price (2004).

Exercise 4.2. Show that there is an exact nonlinear solution in the form

v = A(t)x, (4.22)

with
ρ = H(t) − C(t)x2, (4.23)

so that the time dependent radius of the toy star is
√

h/C, and the mass M
is given by

M = 2
∫ √

H/C

0

ρ dx =
4
3

(
H3

C

)1/2

(4.24)

where the equations determining A, H, C are

Ȧ + A2 = C − 1, (4.25)

and
Ḣ = −AH, and Ċ = −3AC. (4.26)

Deduce from the last two equations that H3 ∝ C, which guarantees the con-
servation of mass. The solution of the original equations of motion therefore
reduce to the solution of the two first order autonomous equations

Ȧ = C − 1 − A2 (4.27)
Ċ = −3AC, (4.28)

after which H can be found from C. The equations for A and C can be solved
for given initial conditions on v and ρ.

Exercise 4.3. Generalize the theory to the case where P = Kργ again as-
suming

ργ−1 = H(t) − C(t)x2, (4.29)

and v = A(t)x. Show that

Ȧ + A2 =
2Kγ

γ − 1
C − 1, (4.30)

and from the continuity equation

Ḣ = −AH(γ − 1), (4.31)

and
Ċ = −AC(γ + 1). (4.32)

From these last two equations deduce that Hγ+1 ∝ Cγ−1 which guarantees
the conservation of mass.

Theory and Applications of Smoothed Particle Hydrodynamics 167

The Toy stars considered here can be extended to 2 and 3 dimensions. In
the 3 dimensional case there are no incompressible flow problems which are
related to the Toy star. Current work on the 2 dimensional case shows again
that the SPH algorithm is very stable and gives accurate results.

5 Lagrangian SPH

We will now discuss how to derive SPH equation from a Lagrangian (for the
theory and application to mechanics see Landau and Lifshitz, Mechanics or
the Feynman Lectures Vol II). The advantage of using a Lagrangian is that
conservation laws are built into the equations from the beginning and this
was the motivation for using Lagrangians in early papers on SPH (Gingold
and Monaghan (1978), (1979), (1982)). In fact, the form of the pressure force
we used previously, (3.18), was discovered by deriving the equations from a
Lagrangian. For more complicated problems the Lagrangian leads to robust
equations. In the case of relativistic flow a Lagrangian was used by Price
and Monaghan (2001), and in the case of elasticity, Bonet and Lok (1999)
showed the advantages of using a Lagrangian. A recent study of MHD sim-
ulations using SPH is based on equations derived from a Lagrangian (Price
and Monaghan (2004)). Another nice feature of the Lagrangian is that other
symmetries can be exploited and, if desired, the whole system of equations
can be written in Hamiltonian form.

5.1 The Lagrangian

The Lagrangian L for the non-dissipative motion of a fluid is (Eckart (1960))

L =
∫

ρ

(
1
2
v2 − u(ρ, s)

)
dr, (5.1)

where v is the velocity, u the thermal energy per unit mass, ρ the density
and s is the entropy. We assume the entropy of each element of fluid remains
constant though each particle can have a different entropy.
The SPH form of this Lagrangian is

L =
∑

b

mb

(
1
2
v2

b − u(ρb, sb)
)

(5.2)

From Lagrange’s equations for particle a

d

dt

(
∂L

∂va

)
− ∂L

∂ra
= 0, (5.3)

we find
dva

dt
= −

∑
b

mb

(
∂u

∂ρ

)
s

∂ρb

∂ra
. (5.4)

168 J.J. Monaghan

From the first law of thermodynamics we find(
∂u

∂ρ

)
=

P

ρ2
, (5.5)

where Pa is the pressure at particle a and, from the SPH summation for the
density (but assuming h is constant),

∂ρb

∂ra
=
∑

c

mc∇bWbc(δab − δac), (5.6)

where δab is a Kronecker delta, and ∇a denotes the gradient taken with
respect to the coordinates of particle a.
Substituting these results into Lagrange’s equation and noting that

∂L

∂vb
= mbvb, (5.7)

we get
dva

dt
= −

∑
b

mb

(
Pa

ρ2
a

+
Pb

ρ2
b

)
∇aWab. (5.8)

which agrees with the result we obtained earlier using a symmetrized form
of the force. As remarked earlier this symmetrized form was discovered from
Lagrange’s equations.
The Lagrangian and the equation of motion can be easily generalised to the
case where there is a body force which can be derived from a potential Φ
which is a function of the coordinates. In this case

L =
∑

b

mb

(
1
2
v2

b − u(ρb, sb) − Φ
)

. (5.9)

5.2 Conservation Laws

The conservation laws of fluid mechanics are intimately related to the in-
variance properties. The fundamental theorem is due to Emmy Noether who
showed that, if the Lagrangian is invariant to infinitesimal transformations,
there will be a conserved quantity. Conserved quantities can be found by
playing around with the equations of motion but it is much easier to find
these quantities by studying the invariance properties of the Lagrangian.

Momentum Conservation
If the Lagrangian is invariant to a shift in the coordinate system, the mo-
mentum is conserved. To see this consider a shift in the coordinate system by
the small vector q. In this case the change in r is q and the velocity remains

Theory and Applications of Smoothed Particle Hydrodynamics 169

unchanged. If L is invariant to this change then the change in L, to first
order, is

δL =
∑

b

∂L

∂rb
· q (5.10)

= q ·
∑

b

∂L

∂rb
(5.11)

= q · d

dt

∑
b

∂L

∂vb
, (5.12)

where the last equation follows from Lagrange’s equations. Since δL must
vanish for arbitrary small q we conclude that the linear momentum∑

mbvb, (5.13)

is conserved.
Suppose now that L is invariant to a rotation of the coordinate system
through a small angle φ about an axis in the direction k. In this case the
change in the coordinate is δr = φk × r and the change in the velocity is
δv = φk × v. The resulting change in L is then

δL =
∑

b

(
∂L

∂rb
· δr +

∂L

∂vb
· δv
)

. (5.14)

If we use Lagrange’s equation and note that

δv =
d

dt
δr, (5.15)

we can write

δL =
d

dt

∑
b

∂L

∂vb
· δrb (5.16)

= φk · d

dt

∑
b

rb ×
∂L

∂vb
. (5.17)

But δL must vanish for arbitrary small φk. We therefore conclude that∑
b

rb ×
∂L

∂vb
=
∑

b

mbrb × vb, (5.18)

is constant. This quantity is the angular momentum.

Exercise 5.1. Suppose a charged particle moves in the field of a wire bent into
a uniform helix. The potential has the following symmetry: if a shift is made
along the axis of the helix by α and simultaneously, a rotation by φ is made
about the axis where φ = pα (the constant p is determined by the winding
of the helix) show that the invariant quantity is a linear combination of the
angular momentum about the axis of symmetry and the linear momentum
along the axis of symmetry.

170 J.J. Monaghan

Circulation
Another interesting conservation law is circulation. Suppose we consider a
fluid where all the particles have the same mass. Imagine a necklace of parti-
cles like those illustrated in Figure 2.1. If the particles have the same entropy
(so the necklace lies in a constant entropy surface) then nothing will change if
each particle is shifted to its neighbour’s positions always moving in the same
sense around the necklace. The dynamics should therefore be unchanged. We
can interpret this as requiring the change in the Lagrangian to be zero.
In this case, if the particles on the necklace are denoted by 	 then the change
in position and velocity of the 	th particle will be (r�+1 − r�) and (v�+1 −v�)
respectively. The change in the Lagrangian to first order is then

δL =
∑

�

(
∂L

∂r�
· δr� +

∂L

∂v�
· δv�

)
(5.19)

where now the summation only applies to the particles around the neck-
lace. Using the previous expressions for δr and δv together with Lagrange’s
equations results in

δL =
d

dt

∑
�

v� · (r�+1 − r�) = 0, (5.20)

and we deduce that
C =

∑
j

v� · (r�+1 − r�), (5.21)

is constant and this is true regardless of the necklace in the constant entropy
surface. This result is a discrete version of the conservation of circulation of
Kelvin’s theorem which states that for a fluid which has no dissipation, and
the pressure is a function of the density, the circulation

CK =
∮

v · dr, (5.22)

is constant. The integration is around any closed loop. Therefore, by contrast
with the conservation of momentum, the circulation invariant is really an
infinite number of invariants, one for each loop. Our result is, in general, only
approximate because the changes in position and velocity to get from one
place in the necklace to its neighbour are discrete whereas exact conservation
is only true when infinitesimal transformations are relevant.

Exercise 5.2. Show that we get the same result, but with opposite sign, by
going around the necklace in the opposite sense. Combine the two and take
account of sign to show that

1
2

∑
�

v� · (r�+1 − r�−1), (5.23)

which is a more accurate estimate of the circulation.

Theory and Applications of Smoothed Particle Hydrodynamics 171

Figure 5.1. The necklace transformation.

Although our expression for the circulation is only approximate it is exactly
true in some circumstances as shown in the following exercise.

Exercise 5.3. Suppose the pressure is zero and the fluid moves in a quadratic
potential Φ analogous to the Toy star potential considered in the previous
section. We define the ith coordinate of any particle by xi and define the
potential by

Φ =
1
2

∑
i

∑
j

Aijxixj , (5.24)

where Aij denote the coefficients of a symmetric matrix. These coefficients
may depend on time but, if they do, energy is no longer conserved. The
equation of motion for particle 	 is then

m
dvj

�

dt
= −Aijxj

� . (5.25)

Use the definition of C to show that

dC

dt
= −

∑
�

Aijxj
�(x

i
�+1 − xi

�−1) +
∑

�

vi
�(v

i
�+1 − vi

�−1). (5.26)

Show that this vanishes.

172 J.J. Monaghan

The previous analysis assumes that each particle in the necklace has the same
entropy. What happens if the necklace has particles with different entropies,
and these entropies remain fixed during the motion? If we consider the shift
of particles around the necklace the particle 	 will have to change its entropy
when it gets to the neighbouring position. As a consequence δL contains the
following entropy term∑

�

∂L

∂s
δs = −

∑
�

(
∂u

∂s

)
ρ

δs = −
∑

�

T�(s�+1 − s�) (5.27)

where T is the temperature.
If, following Eckart (1960), we define a quantity κ by

dκ

dt
= T. (5.28)

The extra term can be written, recalling that the entropy of each particle is
constant, as

d

dt

∑
�

κ�(s�+1 − s�). (5.29)

As before we can take advantage of the fact that we can go around the
necklace in either direction, to write this as

1
2

d

dt

∑
�

κ�(s�+1 − s�−1). (5.30)

From the fact that δL should vanish for the necklace transformation we infer
the conservation of

1
2

∑
�

v� · (r�+1 − r�−1) −
1
2

∑
�

κ�(s�+1 − s�−1), (5.31)

where the second term may be called the thermodynamic circulation. The
continuum limit of this conserved quantity is

C =
∮

v · dr −
∮

κds. (5.32)

The quantity κ is monotonically increasing. Therefore, if we consider C for a
loop that involves particles with different entropies, the thermal contribution
will force the normal velocity based circulation to change continually. This
suggests that such systems can become unstable quite easily.

5.3 The Lagrangian with Constraints

In the simplest form of the SPH equations ρ is defined by a summation
over kernels and this means it is a function of the coordinates leading to

Theory and Applications of Smoothed Particle Hydrodynamics 173

the equations of motion given above. However, as we have seen earlier, there
may be advantages in working with the continuity equation written in a non-
standard way. For example, we can write the SPH continuity equation as

dρa

dt
= −ρa

∑
b

mb

ρb
vab · ∇aWab. (5.33)

Suppose now we want to use our Lagrangian (5.9). If we go back to the
original action principle it requires that the action

S =
∫

L dt, (5.34)

is stationary for arbitrary and infinitesimal variations δr in the coordinates
and corresponding variations δv in the velocities. These variations are related
by

dδr
dt

= δv. (5.35)

Suppose then that the only non-zero variation is δra. The first order change
in S is

δS =
∫ (

mava · δva −
∑

b

mb
∂u(ρb, s)

∂ρb

δρb

δra
· δra

)
dt, (5.36)

where
δρb

δra
(5.37)

denotes the Lagrangian change in ρb when the position of particle a changes
by δraat time t. From (5.33) we get

δρb = −ρb

∑
c

mc

ρc
(δrb − δrc) · ∇bWbc, (5.38)

and therefore
δρb

δra
= −ρb

∑
c

mc

ρc
(δab − δac)∇bWbc, (5.39)

where δab is the Kronecker delta which is 1 if a equals b and zero otherwise.
If we substitute this expression into the integral for δS, we find

δS =
∫

(mava · δva − ma

∑
b

mb
(Pa + Pb)

ρaρb
∇aWab · δra) dt. (5.40)

If we now integrate the velocity term by parts recalling that d(δr)/dt = δv,
we get

δS = ma

∫ (
−dva

dt
−
∑

b

mb
(Pa + Pb)

ρaρb
∇aWab

)
· δra dt. (5.41)

174 J.J. Monaghan

Since this must vanish for arbitrary δra we conclude that

dva

dt
= −

∑
b

mb
(Pa + Pb)

ρaρb
∇aWab. (5.42)

This is the acceleration equation that is consistent with the continuity equa-
tion (5.33). The Lagrangian basis for this choice of the SPH acceleration
equation was first pointed out by Bonet.

Exercise 5.4. Generalize this procedure by writing the continuity equation
as

dρ

dt
= −

(ρ

Φ

)
Φ∇ · v, (5.43)

where Φ is an arbitrary function. Show that

dρ

dt
= − ρ

Φ
(∇ · (Φv) − v · ∇Φ). (5.44)

The SPH form of this equation is

dρa

dt
= − ρa

Φa

∑
b

mb

ρb
Φbvab · ∇aWab. (5.45)

If the effect of this constraint on the Lagrangian is calculated following the
previous example we find that the acceleration equation consistent with the
continuity equation is

dva

dt
= −

∑
b

mb

ρaρb

(
PaΦb

Φa
+

PbΦa

Φb

)
∇aWab. (5.46)

If we choose Φ = ρ then we recover our first form of the equation of the
acceleration equation. If we choose Φ = 1 we recover the second form. If we
choose Φ =

√
P , then the acceleration equation becomes

dva

dt
= −2

∑
b

mb

√
PaPb

ρaρb
∇aWab, (5.47)

which was used by Springel and Hernquist (2002), but they used an incon-
sistent continuity equation.

5.4 Resolution Varying in Space and Time

In the SPH formulation the density of particle a can be written

ρa =
∑

b

mbWab(ha). (5.48)

Theory and Applications of Smoothed Particle Hydrodynamics 175

In many SPH simulations ha is chosen so that a particle a has a specified
number of neighbours. However, to retain the Lagrangian formulations we
need to specify h as a function of the coordinates, and this is most easily done
by assuming ha is a function of ρa which we denote by H(ρa) or Ha. In many
astrophysical calculations Ha ∝ (1/ρ

1/d
a) where the number of dimensions

is d, but a more general function could be used. For example, to prevent
arbitrarily large h when ρ becomes very small we could choose

Ha =
A

1 + Bρ
1/d
a

,

where A and B are constants. Furthermore, while the usual practice is to
estimate ρa at a given time using the value of ha from a previous time, it
would be possible to calculate ρa from (5.48) with ha a function of ρa. This
idea was suggested recently by Bonet (2001), and when implemented it gives
ρa and ha as functions of the coordinates. Equation (5.48) is a nonlinear
function for ρa and it can be solved by any standard root solving algorithm
using, for example, the value at the previous time step as a first estimate. As
an example Figure 5.2 shows the SPH density calculated in this self consistent
way for the case of a Gaussian density

ρ(x) =
1√
π

e−x2
, (5.49)

with total mass 1. We set up 51 SPH particles with equal mass m in the fol-
lowing way. The first particle was placed at x0 = 0 and given h0 = 1.3m/ρ(0).
The next particle was placed at a distance ∆x1 = m/ρ(0), then particle 2 at
a distance ∆x2 to the right of particle 1 where

ρ(1)(∆x1 + ∆x2) = m, (5.50)

and this was continued up to particle 26. Finally the coordinates of all
particles except particle 1 were reflected about the origin. The values of
hj = 1.3∆xj . The factor 1.3 could easily be replaced by any number be-
tween 1 and 1.5. With these values of h we can expect an SPH sum to give
a good estimate of the density by means of the SPH summation. For the self
consistent estimate we choose

h = 1.3m/ρ. (5.51)

All the initial estimates of h at the particles use this formula with the exact
density which we can expect to differ slightly from the SPH estimate. The
estimates of ρ and therefore h for each particle were found by finding the
solution of the equation (5.48) with a Newton-Raphson method. To get con-
vergence to 5 figures no more than 2 iterations were needed. The results are
shown in Figure 2.2 where the solid line denotes the exact density.

176 J.J. Monaghan

Figure 5.2. The self consistent density is chosen for a set of SPH particles. The
line denotes the exact Gaussian density.

The equations of motion follow from varying the action keeping the entropy
constant. From Lagrange’s equations for particle a we find

dva

dt
= −

∑
b

mb

(
∂u

∂ρ

)
s

∂ρb

∂ra
. (5.52)

From (5.1)

∂ρb

∂ra
=
∑

c

mc∇aWac(ha)δab − ma∇bWab(hb) +
∑

c

mc
∂Wbc

∂hb

∂hb

∂ra
, (5.53)

which we can write as

Ωb
∂ρb

∂ra
=
∑

c

mc∇aWac(ha)δab − ma∇bWab(hb), (5.54)

where the gradient of Wab is taken keeping h constant and

Ωb = 1 − H ′
b

∑
c

mc
∂Wbc(hb)

∂hb
. (5.55)

Here H ′
b denotes ∂Hb/∂ρb. If the density variation is smooth then Ω = 1 +

O(h2).

Theory and Applications of Smoothed Particle Hydrodynamics 177

Using the first law of thermodynamics the acceleration equation (5.52) with
(5.54) becomes

dva

dt
= −

∑
b

mb

(
Pa

Ωaρ2
a

∇aWab(ha) +
Pb

Ωbρ2
b

∇aWab(hb)
)

. (5.56)

As in the case where h was held constant, this equation conserves linear and
angular momentum as we would expect from the symmetry of the Lagrangian.
The equation of motion (5.9) is exactly the same as the equation of motion
due to Springel and Hernquist (2001) who introduce constraints on h with a
Lagrange multiplier. The important point to note is that despite the fact that
the resolution can vary, the equation of motion is not much more complicated
than before. The only extra work is to calculate h and ρ self consistently but
this can usually be done efficiently because the Newton-Raphson method can
be used and a good starting value is always available from the previous step.

6 SPH Heat Conduction

The previous sections have been concerned with non-dissipative dynamics.
While there are many interesting problems which involve no dissipation, many
of the most important problems involving fluids depend on dissipation which
may take the form of heat conduction, diffusion of matter, viscous processes,
ohmic heating or friction. In this section we consider the first. In working out
SPH forms of the equations we will be guided, as before, by satisfying general
physical principles rather than focus on the order of the errors. The first of
these principles is that all dissipative processes result in an increase in the
entropy of the system. Second, provided the boundaries are sealed the system
will conserve energy and matter. Our aim is to design SPH equations which
incorporate these principles. The principal applications we have in mind are
the shock dynamics of gases.
The equations describing these dissipative processes are parabolic equations
which involve second derivatives of spatially varying quantities such as tem-
perature. In an SPH simulation the particles become disordered and calcu-
lating second derivatives by differentiating the interpolation formula often
results in unacceptable error. To get around this difficulty we return once
more to integral interpolants, this time with the aim of constructing second
derivatives which are not sensitive to particle disorder. We will find it possible
to do this and retain the physical principles mentioned earlier.
The heat conduction equation is

du

dt
=

1
ρ
∇(κ∇T), (6.1)

where u is the thermal energy per unit mass, T is the absolute temperature, ρ
the density, κ the coefficient of thermal conductivity (which in general varies

178 J.J. Monaghan

in space), and d/dt is the derivative following the motion. For simplicity we
assume that du can be replaced by CpdT where Cp is the specific heat at
constant pressure. We will assume that Cp is constant. The heat conduction
equation then takes the form

Cp
dT

dt
=

1
ρ
∇(κ∇T). (6.2)

We could approximate this equation by working out spatial derivatives using
the interpolation formula given earlier. However, as mentioned above, this
can lead to significant errors.

6.1 Derivatives from Integrals

An alternative SPH form of this equation for the change of temperature Ta at
particle a can be found by constructing the second derivative term ∇(κ∇T)
using an integral. To see this consider the integral∫

(κ(x) + κ(x′)) (T (r′) − T (r))
(r − r′) · ∇W (r − r′)

|r − r′|2 dr′, (6.3)

where dr′ denotes a volume element.
For convenience we set qF (|q|) = ∇W (q, h), and we note that F ≤ 0. The
integral then becomes∫

(κ(x) + κ(x′)) (T (r′) − T (r)) F (|r − r′|)dr′. (6.4)

If we expand the functions of r′ about r, and keep the dominant terms, the
integral reduces to −∇· (κ∇T). In making this approximation the reader will
note that, for example in two dimensions, integrals like∫ (

∂2T

∂x2
(x − x′)2 +

∂2T

∂y2
(y − y′)2

)
F (|r − r′|)dr′ (6.5)

occur. From symmetry in a two dimensional space we can equate the integrals
as follows∫

(x−x′)2F (|r−r′|)dr′ =
∫

(y−y′)2F (|r−r′|)dr′ =
1
2

∫
(r−r′)2F (|r−r′|)dr′.

(6.6)
Substituting these results into the expression (6.5) it becomes

1
2
∇2T

∫
(r − r′)2F (|r − r′|)dr′. (6.7)

If we define q = r′ − r, and make use of the definition of F (|q|) we can write
the integral in the previous expression as∫

q · ∇qW (q, h)dq = −
∫

W∇ · qdq = −d, (6.8)

Theory and Applications of Smoothed Particle Hydrodynamics 179

where d is the number of dimensions which in this case is 2 which cancels the
1/2 from the series expansion. In 3 dimensions a similar cancellation occurs.
If we now write the integral using the usual rule for integral interpolants we
find that the heat conduction equation becomes

Cp,a
dTa

dt
=
∑

b

mb
(κa + κb)(Ta − Tb)

ρaρb
Fab. (6.9)

The errors in the integral formulation is O(h2), but there are further errors
due to approximating the integral by a summation. The following exercise is
an elementary example of the equations satisfying a physical principle.

Exercise 6.1. Does heat travel from a hot particle to a cold particle? From the
fact that the contribution of particle b to the rate of change of temperature
of particle a is

mb
(κa + κb)(Ta − Tb)

ρaρb
Fab. (6.10)

Show that, if Ta > Tb then heat flows from a to b as expected physically
(that is the temperature of a decreases and that of b increases). Note that if
we had constructed the heat conduction equation by second derivatives of an
interpolated temperature we could not guarantee this.

6.2 Does the Entropy Increase?

We can also check if the change in the entropy per unit mass s increases.
Assuming there are no other processes operating we can write the change of
sa as

Ta
dsa

dt
=

dQ

dt
=
∑

b

mb
(κa + κb)(Ta − Tb)

ρaρb
Fab, (6.11)

where Q denotes the heat per unit mass. Multiplying by ma and summing
gives the change in the total entropy

dS

dt
=
∑

a

ma
dsa

dt
=
∑

a

∑
b

mamb
(κa + κb)(Ta − Tb)

ρaρbTa
Fab. (6.12)

In the summation we can interchange the dummy suffices a and b. If this is
added to the original summation, compensating by a factor 1/2, we get

dS

dt
=
∑

a

ma
dsa

dt
=

1
2

∑
a

∑
b

mamb
(κa + κb)

ρaρb

[
(Ta − Tb)

(
1
Ta

− 1
Tb

)]
Fab.

(6.13)
The factor is square brackets is ≤ 0 and since Fab is also ≤ 0, the terms in
the summation are all positive. The entropy therefore increases as a result of
heat conduction regardless of the position and temperature of the particles.

180 J.J. Monaghan

Exercise 6.2. The total thermal energy Eth is∑
a

maCp,aTa, (6.14)

Show that
dEth

dt
=
∑

a

∑
b

mbmb
(κa + κb)(Ta − Tb)

ρaρb
Fab. (6.15)

which vanishes because the summed quantity is antisymmetric in a and b.
The equation therefore conserves energy.

The result of the previous exercise means is that if we have a set of SPH
particles exchanging heat amongst themselves the total thermal energy re-
mains constant because what we have described is an adiabatic enclosure.
To lose heat the SPH particles must communicate with other particles which
convey heat away or bring it in. A typical way to do this is to suppose the
SPH particles are in a container with walls kept at a fixed temperature. The
walls can be simulated by SPH particles. Imagine that we solve our heat con-
duction equation by some suitable time stepping scheme. At each step the
temperature of the wall particles will change corresponding to a loss or gain
of heat from the system. We can then set the temperature of the wall particles
back to the prescribed value at the end of each step. The heat loss or gain of
the entire system can be easily determined by summing the changes which
occurred for each wall particle. If the wall, or part of the wall, is adiabatic
the wall particles are treated like other particles of the fluid system.

6.3 Discontinuous Thermal Conductivity

When there is more than one material the thermal conductivity may jump
discontinuously. The thermal boundary condition at the interface between the
two materials is that the flux of heat is continuous and, in finite difference
methods, this requires solving the difficult problem of estimating the gradient
at a surface which may pass through the cells and vary with time. In the SPH
calculation Cleary and Monaghan (1999) showed that the same result could
be achieved by replacing the term

κa + κb, (6.16)

by
4κaκb

κa + κb
. (6.17)

That is, an arithmetic mean is replaced by an harmonic mean. The reason for
this is as follows. For convenience suppose that we are using a finite difference
scheme in one dimension with the interface at x = 0. Let κ be κL for x < 0
and κR for x > 0 and assign the temperature T ∗ to the interface between

Theory and Applications of Smoothed Particle Hydrodynamics 181

point j (the last point of the material on the left) and (j + 1) which is the
first point of the material on the right of the interface. These two points are
assumed to be separated by ∆x with the interface half way between them.
Then, for the heat flux to be continuous, we require

κL
T ∗ − Tj

∆x/2
= κL

Tj+1 − T ∗

∆x/2
. (6.18)

Solving this for T ∗ we get

T∗ =
κLTj+1 + κRTj

κL + κR
. (6.19)

To solve the heat conduction equation for the material with x < 0 we ap-
proximate the finite difference heat conduction equation by

Cp
dT

dt
= κL

(
T ∗ − Tj

∆x/2
− Tj − Tj−1

∆x/2

)
. (6.20)

If we now substitute for T ∗ this equation becomes

Cp
dT

dt
=
(

2κLκR

κL + κR

Tj+1 − Tj

∆x/2
− κL

Tj − Tj−1

∆x/2

)
. (6.21)

This equation shows that to preserve heat flux all we need to do is include
the first point of the adjoining region and replace the coefficient of thermal
conductivity. The SPH conduction equation then becomes

Cp,a
dTa

dt
=
∑

b

mb
4κaκb

(κa + κb)
(Ta − Tb)

ρaρb
Fab. (6.22)

We can use this form of the equation to deal with heat conduction of two
fluids with an interface that may have complicated geometry and may change
with time. A simple application of the SPH algorithm is to calculate the
temperature conduction in a composite one dimensional medium. In Figure
6.1 we show the temperature distance variation when the density and specific
heats are the same, but the thermal conductivity for x < 0 is 1.0 and for
x ≥ 0 is 10.0. The temperature at the end points is fixed. At x = −1 the
temperature is 0.1 and at x = 1.0 the temperature is 1. The results are shown
after 100 times steps (using a predictor corrector time stepping scheme Cleary
and Monaghan (1999)). The continuous line shows the exact results (taken
from Carslaw and Jaeger (1990)) and the symbols show the SPH results. The
agreement is clearly very good.

6.4 Diffusion of Matter

The diffusion of matter is similar to the diffusion of heat. We consider a
liquid which contains dissolved salt. The molecules of salt will diffusion from

182 J.J. Monaghan

Figure 6.1. The temperature distance variation in a composite one dimensional
system, where the thermal conductivity on the right is 10 times that on the left,
and the left and right boundaries are kept at constant temperature.

places of high concentration to places of low concentration. We denote the
concentration of salt by C so that the mass of salt in a mass M of liquid is
CM . The diffusion of the salt is given by an equation similar in form to the
heat conduction equation namely

dC

dt
=

1
ρ
∇(D∇C). (6.23)

where D is the diffusion coefficient with dimensions of kg/(m s). The SPH
form of this equation is

dCa

dt
=
∑

b

mb
4DaDb

(Da + Db)
(Ca − Cb)

ρaρb
Fab. (6.24)

where ma is the mass of the liquid particle that contains the salt and D is the
coefficient of diffusion. Note that we have written the diffusion coefficients to
ensure that the flux of material across an interface is constant in the same
way as done previously for the flux of heat.
The total amount of matter in an isolated region is∑

a

maCa (6.25)

and the SPH equation shows that this remains constant.

Theory and Applications of Smoothed Particle Hydrodynamics 183

Exercise 6.3. When the composition changes there is a further contribution
to the entropy. To deduce this by divide (6.26) by Ca then sum over a followed
by an interchange of labels. Show that

d

dt

∑
a

ma lnCa = −
∑

a

∑
b

mamb
4DaDb

(Da + Db)

(
1

Ca
− 1

Cb

)
(Ca − Cb)

ρaρb
Fab ≥ 0,

(6.26)
which is the increase of entropy resulting from composition changes.

7 Viscosity

We now consider how to include viscosity in the SPH equations. We begin
by deriving an artificial viscosity which is suitable for shock calculations. As
before we will be guided by physical principles of which the first are the
conservation of linear and angular momentum. In addition we will require
that the contributions of viscous dissipation to the thermal energy and the
entropy are always positive. Our first viscosity was constructed by comparison
with actual gas viscosities. However, for shock problems it is useful to take the
Riemann type dissipative terms as a guide (Monaghan (1997)) and this has
the advantage of reducing some of the arbitrary features of the first viscosity.
Both forms of the viscosity are similar.

7.1 A Simple Artificial Shock Viscosity

In one dimension the Navier-Stokes acceleration equation is

dv

dt
= −1

ρ

∂P

∂x
+

1
ρ

∂

∂x

(
µ

∂v

∂x

)
, (7.1)

where µ is the coefficient of viscosity. For a gas

µ ∼ 1
3
ρλcs (7.2)

where λ is the mean free path of the gas molecules and cs is the speed of
sound. We can write the equation of motion in the form

dv

dt
= −1

ρ

∂

∂x

(
P − µ

∂v

∂x

)
, (7.3)

which shows that when ∂v/∂x < 0 that is, when the density is increasing,
the viscous term acts like a positive pressure. When the density is decreasing,
the viscous term acts as a negative pressure. With this result as a guide, we
now write the SPH acceleration equation in the form

dva

dt
= −

∑
b

mb

(
Pa

ρ2
a

+
Pb

ρ2
b

+ Πab

)
∂

∂xa
Wab, (7.4)

184 J.J. Monaghan

where Πab is the SPH viscous dissipation term. From our previous discussion
we clearly need

Π ∼ µ

ρ2

∂v

∂x
. (7.5)

We guess that
∂v

∂x
∼ va − vb

xa − xb
, (7.6)

and that instead of the actual µ for the gas we can take

µ = αρacah, (7.7)

since the natural length scale for communication is not the mean free path
but the interaction distance of the SPH particles. The constant α is expected
to be ∼ 1 and, if our intuition is correct, we should be able to choose α in
a way which is independent of the particular shock problem. Our first guess
for the artificial viscosity is therefore

Πab = −
(

αhca

ρa

)(
va − vb

xa − xb

)
. (7.8)

However, to get conservation of momentum we need Πab to be symmetric in
a and b. This is easy to do. We replace ca, h and ρa as follows

ca → 1
2
(ca + cb) = c̄ab, (7.9)

ρ → 1
2
(ρa + ρb) = ρ̄ab, (7.10)

h → 1
2
(ha + hb) = h̄ab. (7.11)

To prevent numerical problems when va �= vb but xa = xb, we can write (with
vab = va − vb and with the same notation for xab)

va − vb

xa − xb
→ vabxab

x2
ab + η2

, (7.12)

and this form is commonly used. The constant η ∼ 0.001h2 serves to smooth
out any singularities resulting from xa = xb. However, it is simpler to just
set the viscous term to zero if xa = xb which, in practice, occurs rarely.
We can generalise to an arbitrary number of dimensions and write

Πab = −
(

αh̄abc̄ab

ρ̄ab

)(
vab · rab

r2
ab + η2

)
. (7.13)

A further generalization, which gives a higher order viscosity, is to multiply
the previous viscosity by any power of

vab · rab

c̄ab
. (7.14)

Theory and Applications of Smoothed Particle Hydrodynamics 185

Finally we note that, for shock tube problems, it is usual to turn the viscosity
on for approaching particles and turn it off for receding particles. In this
way the viscosity is used for shocks and not rarefactions. Unfortunately in
astrophysical calculations this rule means that the viscosity is turned on when
the density is increasing in shock free regions, for example when gravity pulls
gas together.
When the viscosity term Πab was first used (Monaghan and Gingold (1983))
it was found to work well for shocks of moderate strength. However, in astro-
physical calculations involving colliding gas clouds, where the Mach number
can be very high, it was found that particles from one cloud could stream
between the particles of the other cloud. Generally this streaming is limited
to a few particle spacings, and is therefore not a severe problem, but it should
not occur at all. To prevent it an extra term was added to Πab which then
took the form

Πab = −
(

h̄abvab · rab

ρ̄ab(r2
ab + η2)

)
(αc̄ab − βµab) (7.15)

where

µab =
h̄abvab · rab

r2
ab + η2

. (7.16)

Good results have been obtained with the choice α = 1 and β = 2.
Another form of the viscosity for shock problems can be found using ideas
from Riemann solvers as a guide. This viscosity uses

Πab = −Kvsig(a, b)vab · rab

ρ̄ab|rab|
(7.17)

where K is a constant (typically 0.5) and vsig(a, b) is a signal velocity (Mon-
aghan (1997)). This signal velocity automatically includes a term equivalent
to the β term in the previous viscosity.

7.2 Invariance Properties

A fundamental property of the fluid dynamical equations is that they are
Galilean invariant. That is, if we shift to a coordinate frame moving with
constant velocity V the equations should be unchanged. This is the case
for Πab because it involves differences of velocity and the shift to the new
frame simply replaces va by va −V and vb is replaced in the same way. The
difference vab is unchanged. Similarly if we shift the origin of the coordinate
system to R the equations are unchanged.
If the fluid is rigidly rotating va = Ω × ra, where Ω is the angular velocity.
Substitution into Πab shows that the viscous term disappears in this case as
expected.

186 J.J. Monaghan

7.3 Effective Pressure and Viscosity

If particles a and b are approaching each other

vab · rab ≤ 0, (7.18)

and Πab ≥ 0 and the contribution to the pressure terms is positive. The vis-
cosity therefore acts to slow down approaching particles. The reverse happens
for receding particles.

Exercise 7.1. Take the dot product of the acceleration equation with va,
followed by multiplying by ma and summing to get∑

a

mava · dva

dt
= −

∑
a

∑
b

mamb

(
Pa

ρ2
a

+
Pb

ρ2
b

+ Πab

)
va · ∇aWab. (7.19)

Note that the left hand side is the rate of change of total kinetic energy so
the right hand side must be minus the rate of change of total thermal energy.
By interchanging a and b on the right hand side and combining the result
with the original right hand side (compensating by a factor 1/2) show that
the thermal energy equation is

dua

dt
=

Pa

ρ2
a

∑
b

mbvab · ∇aWab +
1
2

∑
a

ma

∑
b

mbΠabvab · ∇aWab. (7.20)

7.4 The Sign of the Dissipation Term

To determine the sign of the SPH dissipation term obtained in the previous
exercise we begin by noting that we can write ∇aWab = rabFab where Fab ≤ 0.
Then

Πabvab · ∇aWab = Πabvab · rabFab. (7.21)

Referring now to the definition of Πab, for example to (5.39), we find the
viscous dissipation is

Πab = −
(

αh̄abc̄ab

ρ̄ab

)
Fab(vab · rab)2

r2
ab + η2

(7.22)

which is ≥ 0. This confirms that our SPH dissipation increases the thermal
energy as it should.

Exercise 7.2. Show that the rate of change of entropy, s, due to viscous dis-
sipation is positive. Begin with the thermodynamic equation

T
ds

dt
= du − P

ρ2
dρ (7.23)

Theory and Applications of Smoothed Particle Hydrodynamics 187

whose SPH form this becomes

Ta
dsa

dt
=

1
2

∑
b

mbΠabvab · ∇aWab. (7.24)

We showed above that the right hand side is ≥ 0. Since the temperature T is
positive, the change to the entropy of any particle due to viscous dissipation
is positive.

8 Applications to Shock and Rarefaction Problems

We now have a set of equations which can be used for shock and rarefaction
problems. In this section we show the result of applying these equations using
a simple predictor corrector time stepping scheme (see Section 7 for details
of this and other time stepping schemes).

8.1 Rarefaction Waves

The first case we consider is the rarefaction wave. This can be set up by
placing SPH particles in the region −0.5 ≤ x ≤ 0.5. The separation ∆x is
uniform and the density ρ = 1. For this example we use 200 particles and set
γ = 1.4, and the initial h = 1.5∆x, and the thermal energy/mass to be 2.
We integrate the SPH acceleration, continuity and thermal energy equation.
The viscosity is turned off for the rarefaction wave. In Figure 8.1 we show
the velocity field for x ≥ 0. The exact velocity field in the wave is a linear
function of x shown by the solid line. The SPH velocity is very close to a
linear function, and the slope is within ∼2 percent of the exact slope.
In Figure 8.2 we show the SPH density. This follows the exact curve (shown by
the solid line) except in the low density region where an oscillation appears. In
addition the last particle shows a jump in density. In Figure 8.3 we show the
results for a higher resolution (500 particles in the domain −0.5 ≤ x ≤ 0.5).
The oscillation and the jump in density remains. In Figure 8.4 we show the
density calculated by integrating the continuity equation on odd steps and
from the summation on even steps. The jump in density and small oscillations
have now disappeared.

8.2 The Sod Shock Tube

We now consider the shock tube used by Sod (1978) as a test for numerical
techniques. The system is one dimensional with uniform conditions one each
side of a diaphragm which breaks at t = 0. To the left of the diaphragm
(x < 0) the conditions are ρ, P, v, γ = 1.0, 1.0, 0.0, 1.4 and to the right
(0.125, 0.1, 0.0, 1.4). The evolved system consists of (from the left), the
undisturbed original conditions, a rarefaction, a contact discontinuity and

188 J.J. Monaghan

Figure 8.1. The velocity field for the one dimensional rarefaction waves from the
expansion of uniform gas initially in the region −0.5 ≤ x ≤ 0.5. We show the results
for the right half x ≥ 0.The exact velocity field is shown by the solid line and the
SPH results by the solid diamonds

Figure 8.2. The density in the rarefaction waves calculated using the continuity
equation. The exact run of density with distance is shown by the solid line and the
SPH results by the solid diamonds. Note the jump in density for the last particle
and the oscillation in the low density region.

Theory and Applications of Smoothed Particle Hydrodynamics 189

Figure 8.3. The density in the rarefaction waves calculated using the continuity
equation with the same conditions as for the previous density but calculated with
500 particles over the domain.

Figure 8.4. The density in the rarefaction waves calculated by using the continu-
ity equation on odd steps and the summation on even steps. Note that the jump
in density for the last particle and the oscillation in the low density region have
disappeared.

190 J.J. Monaghan

a shock. Between the shock and the rarefaction the pressure and velocity
are constant. The density and thermal energy change discontinuously at the
contact discontinuity.
We use the viscosity (7.15) with α = 1 and β = 2. Because the density changes
we can choose to have the particles equi-spaced or equi-mass, or some other
combination. For the present simulations we use equi-mass particles with
spacing ∆x = 0.005 on the far right hand side and spacing 0.125 this on
the far left hand side. The mass of each particle is then ρ+∆x = 0.62510−3.
Because there is an initial discontinuity in all the properties other than the
velocity, and because SPH is based on smoothing, we smooth the density
and thermal energy at the interface. This means that to be consistent with
the particles having constant mass and the density being smoothed we must
smooth the spacing.
A simple way to smooth the variables is to define for any quantity A a value
on the left A�, and on the right Ar and then define the smoothed AS by

AS =
A� + Are

−xk

1 + e−xk
, (8.1)

where k = 1/∆x, ∆x is the particle spacing on the far right (low density
region), and we assume the discontinuity is at x = 0. The particle spacing is
chosen in the following way. The initial space available to particle j is

1
2
(xj+1 − xj) +

1
2
(xj − xj−1) =

1
2
(xj+1 − xj−1). (8.2)

and, with density ρj for this particle we require that

1
2
ρj(xj−1 − xj−2) = m (8.3)

The smoothing (8.1) is satisfactory, but it doesn’t guarantee that the system
will start with the correct conditions for the shock and we should not be
surprised to find there is a perturbation to the solution due to the initial
state.
In Figure 8.5 we show the exact and SPH velocity variation with distance
x. The exact post-shock velocity is 0.926. The SPH value is 0.921, an error
of 0.5 percent. The small bump in the velocity is to an unwanted change in
the pressure across the contact discontinuity. The shock front is spread over
several particle spacings, but because h and the spacing change across the
shock the shock front is 3 of the particle spacings on the low density side. In
Figure 8.6 we show the exact and SPH density ρ. The density between the
contact discontinuity and the shock front is 0.263 to be compared with the
exact value of 0.265.
In Figure 8.7 we show the thermal energy. The post shock thermal energy
is 0.284 compared with the exact value of 0.286 and the exact and SPH
values to between the rarefaction and the contact discontinuity are 1.78 and

Theory and Applications of Smoothed Particle Hydrodynamics 191

Figure 8.5. The velocity in the Sod shock tube problem. Note the slight deviation
in the velocity associated with the small perturbation to the pressure at the contact
discontinuity.

Figure 8.6. The density in the Sod shock tube problem.

192 J.J. Monaghan

Figure 8.7. The thermal energy in the Sod shock tube with particle spacing on
the right of the diaphragm 0.002. The exact run of thermal energy with distance is
shown by the solid line. The solid diamonds are the SPH results. Note the sharp-
ening in the SPH profiles compared with the previous figure.

1.79 respectively. In Figure 8.7 we show the thermal energy with the initial
resolution (∆x = 0.002 to the right of the diaphragm). The results are in good
agreement with the exact results although there is still significant diffusion
near the contact discontinuity.
All of these results are very satisfactory though, for the resolution used the
results are not as accurate as those from finely tuned Riemann solvers.

Exercise 8.1. Work out an SPH equation for the rate of change of energy per
unit mass ê defined by

ê =
1
2
v2 + u. (8.4)

Begin with the acceleration equation

dva

dt
= −

∑
b

mb

(
Pa

ρ2
a

+
Pb

ρ2
b

)
∇aWab (8.5)

and dot it with va to get

1
2

d

dt
v2

a = −
∑

b

mb

(
Pa

ρ2
a

+
Pb

ρ2
b

)
va · ∇aWab. (8.6)

Theory and Applications of Smoothed Particle Hydrodynamics 193

Combine this with the thermal energy equation

dua

dt
=

Pa

ρ2
a

∑
b

mbvab · ∇aWab, (8.7)

to show
dêa

dt
= −

∑
b

mb

(
Pavb

ρ2
a

+
Pbva

ρ2
b

)
· ∇aWab. (8.8)

If we decode this SPH equation we find it is the SPH form of

dê

dt
= − P

ρ2
∇ · (ρv) − v ·

(
P

ρ

)
= −1

ρ
∇ · Pv, (8.9)

and we could have started with this equation and derived the equivalent SPH
equation.

In our discussion we have only considered an SPH viscosity suitable for
shocks. In many problems we want to mimic physical viscosities. To do this
we can make use of the previous viscosity but note that the effective kine-
matic viscosity is αhcs/6 in two dimensions (but the numerical coefficient
depends on the kernel). We can then write

Πab = − 12µaµb

ρaρb(µa + µb)
vab · rab

|rab|
(8.10)

where µ = νρ. This form of the viscosity has been used by Cleary (1998) to
model more than one fluid with large differences in viscosity.
Other SPH viscosity calculations are described by Morris et al. (1997), Chan-
iotis et al. (2002) and Sigalotti et al. (2003). SPH has been used for many
other applications. These include elastic fracture (Benz and Asphaug (1995)),
relativistic calculations (Chow and Monaghan (1997)) and MHD simulations
(Price and Monaghan (2004)).

References

1. Benz, W., and Asphaug, E. Icarus, Computer Phys. Communications, 87,
253-265, (1995).

2. Bonet J. and Lok, T-S.L. Comp. methods in app. mech. and Eng., 180, 97-115,
(1999).

3. Carslaw, H. S., and Jaeger, J. C. (1990) Conduction of Heat in Solids. Oxford
Press, Oxford.

4. Chandrasekhar, S. (1995) Newton’s Principia for the Common Reader, Claren-
don Press. Oxford.

5. Chaniotis, A. K., Poulikakos, D., Koumotsakos, P. J. Comp. Phys., 182, 67,
(2002).

6. Chow, E., and Monaghan, J. J. J. Computat. Phys, 134, 296 -305, (1997).

194 J.J. Monaghan

7. Cleary, P. W. Applied mathematical Modelling, 22, 981-983, (1998).
8. Cleary, P. W., and Monaghan, J. J. J. Computat. Phys. 148, 227-264, (1999).
9. Davis, P.J., and Rabinowitz, P. (1967) Numerical Integration. Publ. Blaisdell,

Waltham.
10. Eckart, C. Physics of Fluids, 3, 421-427, (1960).
11. Feynman, R. P. (1965) Feynman lectures on Physics Vol II, Publ. Addison-

Wesley.
12. Gingold, R. A., and Monaghan, J. J. Mon. Not. Roy. Astro. Soc 181, 375,

(1977).
13. Gingold, R. A., and Monaghan, J. J. Mon. Not. Roy. Astro. Soc 184, 481-499,

(1978).
14. Gingold, R. A., and Monaghan, J. J. Mon. Not. Roy. Astro. Soc 188, 45-58,

(1979).
15. Gingold, R. A., and Monaghan, J. J. J. Computat. Phys. 46, 429-453, (1982).
16. Gingold, R. A., and Monaghan, J. J.J. Computat. Phys 52, 374, (1983).
17. Goldsbrough, G. R., Proc. Roy. Soc. A,, 130, 157, (1930).
18. Holm, D. D., J. Fluid Mech, 227, 393, (1991).
19. Landau, L. D., and Liftzhitz, E. M. (1960) Course of Theoretical Physics Vol

1, Publ. Pergamon.
20. Lucy, L. B. Astron. J 82, 1013, (1977).
21. Monaghan, J. J. Ann. Rev. Astron. Astro. 30, 543 - 574, (1992).
22. Monaghan, J. J. J. Computat. Phys 136, 298, (1997).
23. Monaghan, J. J., and Price, D. J., Mon. Not. Roy. Astr. Soc, 350, 1449-1456,

(2004).
24. Morris, J. P., Fox, P. J., and Zhu, Yi J. computat. Phys, 136, 214, (1997).
25. Niedereiter, N., Bull. American. Math. Soc. 84, 957, (1978).
26. Parzen, E. Ann. Math. Statist. 33, 1065-1076, (1962).
27. Price, D., and Monaghan, J. J. Mon. Not. Roy. Astr. Soc 328, 381-392, (2001).
28. Price, D., and Monaghan, J. J. Mon. Not. Roy. Astr. Soc 348, 139-152, (2004).
29. Sod, G., A., J. Computat. Phys., 27, 1-31, (1978).
30. Shoenberg, I. J. Quart. J. App. Math, IV, 45, (1946).
31. Sigalotti, L. Di. G., Klapp, J. Sira, Eloy and Melean Ysamin J. Computat.

Phys 191, 622, (2003).
32. Springel, V., and Hernquist, L. Mon. Not. Roy. Astr. Soc. 333, 649 -664,

(2002).

Efficient Implementation and Parallelization of
Meshfree and Particle Methods—The Parallel
Multilevel Partition of Unity Method

Marc Alexander Schweitzer

Institut für Numerische Simulation, Rheinische Friedrich–Wilhelms Universität
Bonn, Wegelerstraße 6, D–53115 Bonn, Germany.
email: schweitzer@ins.uni-bonn.de

Abstract In these introductory notes, we focus on the efficient implementation
and parallelization of meshfree methods. Even though there exist a large number
of different meshfree methods, e.g. smoothed particle hydrodynamics (SPH), repro-
ducing kernel particle methods (RKPM), element free Galerkin methods (EFGM),
radial basis functions (RBF), generalized finite element methods (GFEM), and par-
tition of unity methods (PUM), the computational challenges are very similar for
many of these approaches.
Some of the key issues involved with meshfree Galerkin discretization techniques
are the fast construction of the shape functions, the assembly of the stiffness matrix
and the load vector, i.e. numerical integration, the treatment of essential boundary
conditions, and the efficient solution of the arising linear systems. We shall con-
sider these issues in the context of the PUM, however, the concepts presented are
applicable to most meshfree Galerkin approaches.

1 Introduction

Mesh based methods like the finite element method (FEM) [15, 21, 77], the
finite difference method (FDM) [48] or the finite volume method (FVM) [13]
are classical techniques for the numerical treatment of partial differential
equations (PDEs). They exhibit good convergence properties in strong norms
and their use is well established in various fields of application such as com-
putational structural mechanics or computational fluid dynamics. However,
all mesh based methods are rather involved when it comes to time dependent
problems with complicated geometries since they rely on the availability of
an appropriate discretization of the domain by a mesh. The construction of
good quality meshes is not an easy task and a large portion of the overall
computational time is often spent for mesh generation.
Particle schemes [64–67] on the other hand stem directly from physics appli-
cations such as Boltzmann equations [1,36]. They are Lagrangian techniques
where the domain of interest is discretized by a set of particles without any
fixed connection between them; i.e. they are completely independent of a
mesh. Here, the PDE on the computational domain is transformed into a
system of ordinary differential equations (ODEs), the equations of motion

196 M.A. Schweitzer

for the particles. Then, after time discretization, we obtain a certain particle
distribution for each time step and define an approximate solution of the
PDE via a density function for the respective particle distribution. Hence,
the implementation of particle methods seems to be straightforward and less
involved than the implementation of mesh based numerical schemes. How-
ever, particle methods generally only exhibit poor convergence properties in
weak norms.
Meshfree methods are hybrid schemes which try to merge the best of both
worlds. A meshfree method should have the strong convergence properties of a
FEM or FDM. For instance, it should allow for a higher order approximation
where we utilize the smoothness of the solution to reduce the degrees of
freedom. Yet at the same time, the method should be independent of a mesh;
i.e. it should not require any fixed connections between the degrees of freedom
of the discretization and should only involve minimal assumptions on the
distribution of the degrees of freedom.
The approaches to the design and development of meshfree methods are
manifold, see e.g. [4, 30, 44, 45, 55] and the references therein. However, the
computational challenges in most meshfree methods are very similar. In
these introductory notes we focus on the particle-partition of unity method
(PUM) [38–43,76] which is a meshfree Galerkin technique and can be viewed
as a generalized finite element method (GFEM). The three key issues we
address are

1. The fast construction of the shape functions, which corresponds in some
sense to the mesh generation problem in the FEM or the problem of
finding all interacting particles in a particle scheme.

2. The development of a suitable weak formulation of the PDE, especially
for problems involving essential boundary conditions, and an appropriate
numerical integration scheme for the PUM.

3. The fast multilevel solution of the arising linear system.

We present efficient numerical techniques to tackle each of these computa-
tional challenges in the context of the PUM. However, the fundamental ideas
and concepts (as well as some of the presented algorithms) are applicable to
a wide range of mesh based and meshfree methods. The techniques and data
structures used for the parallelization of our PUM for instance are also used
in parallel particle methods with long range potentials [24, 37, 56, 81, 82] as
well as in parallel mesh based multilevel method [86].
The remainder of this paper is organized as follows. In section 2 we review the
abstract setting of the PUM. We focus on the construction of the shape func-
tions, their properties and the realization of essential boundary conditions.1

The efficient implementation of the PUM is discussed in detail in Section
3. There, we present computational techniques and algorithms for the fast
construction of the shape functions, for the numerical integration of the weak
1 For a study of the approximation properties of the PUM we refer to e.g. [8,9,61].

Implementation and Parallelization of Meshfree Methods 197

form as well as an efficient multilevel solver for our PUM. The parallelization
of the overall method is subject of Section 4.

2 Partition of Unity Method

In the following, we consider a general partition of unity method (PUM)
for a meshfree discretization of an elliptic partial differential equation. The
approach is roughly as follows: The discretization is stated only in terms of
points xi. To obtain a trial and test space V PU, a patch or volume ωi ⊂ R

d

is attached to each point xi such that the union of these patches form an
open cover CΩ = {ωi} of the domain Ω, i.e. Ω ⊂

⋃
ωi. Now, with the help

of weight functions Wi : R
d → R with supp(Wi) = ωi local shape functions

ϕi are constructed by Shepard’s method. The functions ϕi form a partition
of unity (PU). Then, each partition of unity function ϕi is multiplied by a
sequence of local approximation functions ψn

i to assemble higher order shape
functions. These product functions ϕiψ

n
i are finally plugged into the weak

form to set up a linear system of equations via a Galerkin discretization.

2.1 Construction of a Partition of Unity Space

Necessary conditions for a trial and test space to perform well in a Galerkin
method are local approximability and inter-element continuity. Here, local
approximability means that the shape functions can approximate the exact
solution well locally, and interelement continuity means that any linear com-
bination of shape functions satisfies some global continuity condition. In the
finite element method we have piecewise polynomial shape functions φ where
the restriction φ|E on an element E is a polynomial. Furthermore, there
are certain constraints imposed on these local polynomials on the element
boundary ∂E so that the shape function φ fulfills the interelement continu-
ity condition. In the partition of unity approach [7–9, 76] we focus on the
fulfillment of the condition of interelement continuity via the choice of an
appropriate partition of unity {ϕi} subordinate to a cover CΩ := {ωi}. Local
expansion of the functions ϕi by the multiplication with local (unconstrained)
approximation spaces V pi

i = span〈{ψn
i }〉 of order pi defined on ωi = supp(ϕi)

causes the generated space

V PU :=
∑

i

ϕiV
pi

i =
∑

i

ϕi span〈{ψn
i }〉 = span〈{ϕiψ

n
i }〉

to fulfill the condition of local approximability. Note that the superscript n
only denotes a counting index. The global approximation space V PU inherits
the approximation quality of the local spaces V pi

i . Furthermore the space V PU

inherits the smoothness of the partition of unity. Here, the approximation
property of the space V PU may either be achieved by the smallness of the
patches (h-version) or by the approximation quality of V pi

i (p-version).

198 M.A. Schweitzer

Figure 2.1. Example of an open cover CΩ of a domain Ω.

The starting point for any meshfree discretization approach is a collection of
N independent points

P := {xi ∈ R
d |xi ∈ Ω, i = 1, . . . , N} .

In our PUM, we then attach to each point xi a d-rectangular patch2

ωi = {x ∈ R
d | |xl

i − xl| < hl
i, l = 1, . . . , d} =

d⊗
l=1

(xl
i − hl

i, x
l
i + hl

i).

The construction of appropriate patches ωi from a given set of points P =
{xi} is a first crucial step in the discretization process. Keeping in mind
that these patches will be the supports of the trial and test functions in a
Galerkin method, the most basic property these patches have to fulfill is that
they cover the complete domain Ω ⊂

⋃N
i=1 ωi.3 In other words, for any point

x ∈ Ω there exists at least one patch ωi which contains x. Figure 2.1 gives
an example of an open cover CΩ = {ωi} of a domain Ω with d-rectangular
patches ωi. Note that the cover CΩ also determines the sparsity pattern of the
stiffness matrix via the geometric neighbour relations ωi∩ωj �= ∅ and thus the
number of integrals that have to be evaluated in the Galerkin discretization.
The influence on the overall computational cost of our PUM is therefore
substantial and special attention should be paid to the appropriate design of
a cover CΩ for general point sets P , see Section 3.1 and [39,40,76].

2 Note that the PUM is not restricted to d-rectangular patches. The geometry of
the patches however has a major impact on the computational work involved
with numerical integration. See [25,26] for a partition of unity method based on
radial supports.

3 Other meshfree methods like smoothed particle hydrodynamics (SPH) which was
first proposed in [34, 59] and further elaborated in [35, 62, 63] allow for holes
in the covering of the domain Ω. Methods based on the moving least squares
approach [27, 28, 31] on the other hand have to impose more severe geometric
conditions on the cover CΩ = {ωi}.

Implementation and Parallelization of Meshfree Methods 199

Shepard Partition of Unity
Let us assume that we have constructed such a d-rectangular cover CΩ. Then
we can define a partition of unity {ϕi} via data fitting techniques [51]. In
general, a data fitting method is used to construct special shape functions ϕi

for the approximation of a function u from discrete data (e.g. from sampling).
Then, a so-called scattered data approximation ũ usually is defined as

ũ(x) :=
N∑

i=1

uiϕi(x)

where ui are given data or are derived from that. Shepard’s method uses
inverse distance weighting for the construction of these shape functions. Here,
the shape functions ϕi are defined as

ϕi(x) :=
Wi(x)

N∑
j=1

Wj(x)

,

with weight functions Wi(x) = ‖x−xi‖−β with β > 0 where ‖·‖ is the classi-
cal Euclidean norm. But since these weight functions Wi have global support
also the shape functions ϕi have global support. Hence, the evaluation of a
single shape function ϕi involves all weight functions Wj ; i.e. each function
evaluation requires O(N) operations. Furthermore, the use of globally sup-
ported shape functions in a Galerkin method would lead to a dense stiffness
matrix and a quadratic storage complexity. We therefore use a localized ver-
sion of Shepard’s approach; i.e. supp(Wi) = ωi � R

d. Then, we can restrict
the summation of the weight functions to direct neighbours, i.e.

ϕi(x) =
Wi(x)∑

ωk∈Ci

Wk(x)
, (2.1)

where Ci := {ωj ∈ CΩ |ωi ∩ ωj �= ∅} denotes the local neighbourhood of a
particular Shepard function ϕi, i.e. of its associated patch ωi. This reduces
the complexity of a function evaluation to O(1) and gives a sparse matrix for
the stiffness. Here, the neighbourhoods Ci determine the sparsity pattern.
There are basically two variants for this localization: In [54] a locally sup-
ported singular weight function such as

Wi(x) = Li(x)‖x − xi‖−β , where Li ∈ C∞ and supp(Li) = ωi

is used. This approach generates an interpolatory partition of unity, i.e.
ϕi(xj) = δij . Another approach is to employ a locally supported smooth
weight function Wi on a patch ωi, e.g. Wi is chosen to be a B-spline [51]. The
first approach is especially suitable for a collocation discretization, whereas

200 M.A. Schweitzer

the latter approach is more suitable for the construction of shape functions
for a Galerkin method since the evaluation of singular functions near their
singularity is avoided. We are interested in a Galerkin discretization and
therefore employ the latter approach in our method.
Since we restrict ourselves to the use of d-rectangular cover patches ωi, i.e.
the ωi are products of intervals, the most natural choice for a weight function
Wi is a product of univariate functions, i.e.

Wi (x) =
d∏

l=1

W l
i (xl) =

d∏
l=1

W
(

x − xl
i + hl

i

2hl
i

)

with supp(W) = [0, 1] such that supp(Wi) = ωi. It is sufficient for this
construction to choose a compactly supported univariate weight function W
which is non-negative.4

Since we postulate that the union
⋃

ωi of the patches ωi covers the domain
Ω ⊂

⋃
ωi we are at least able to reproduce constant functions by (2.1); i.e.

the functions ϕi form a partition of unity. Therefore, we obtain a consistency
order of one in the L2-norm.

Local Enrichment
First order consistency, however, is not sufficient for the discretization of
a second order partial differential equation. Hence, some effort is necessary
to improve the order. Here, the moving least squares method [11, 27, 28, 30,
31] allows for the construction of shape functions with higher reproduction
and consistency orders but it increases the computational effort dramatically.
Furthermore one has to impose severe geometric restrictions on the cover [31]
to make the method work at all. Therefore we use a different approach. We
use the partition of unity to collect local approximation spaces V pi

i of order
pi defined on the cover patches ωi, which generates a global approximation
space

V PU :=
∑

i

ϕiV
pi

i =
∑

i

ϕi span〈{ψn
i }〉 = span〈{ϕiψ

n
i }〉 (2.2)

on the domain Ω. Hence, the overall shape functions ϕiψ
n
i in a PUM are

product functions. Note that the local spaces V pi

i can be chosen completely
independently of each other. In general, the global space V PU may only re-
produce the constant, but the error estimates for the PUM [8,9,61] show that
the consistency order of the global space V PU is nevertheless the same as the
consistency order of the local spaces V pi

i , see below. If the local spaces V pi

i

are polynomials of degree ≤ pi the resulting global space V PU reproduces
polynomials of degree mini pi.
Since we only use d-rectangular patches ωi, a local tensor product space is
the most natural choice. We usually employ products of univariate Legendre

4 We usually employ a normalized B-spline as the generating weight function W.

Implementation and Parallelization of Meshfree Methods 201

polynomials as local approximation spaces V pi

i ; i.e. we choose

V pi

i = span〈{ψn
i |ψn

i =
d∏

l=1

Ln̂l
i , ‖n̂‖1 =

d∑
l=1

n̂l ≤ pi}〉, (2.3)

where n̂ is the multi-index of the polynomial degrees n̂l of the univariate
Legendre polynomials Ln̂l

i : [xl
i − hl

i, x
l
i + hl

i] → R, and n is the counting
index associated with the product function ψn

i =
∏d

l=1 L
n̂l
i . The use of more

general product spaces is nonetheless possible and can improve the overall
approximation properties or the computational complexity of the method;
e.g. we can use anisotropic spaces or complete tensor product spaces where
we use other (generalized) norms instead of ‖ · ‖1 in (2.3). If some a priori
knowledge about a particular behaviour of the solution (local or global) is
available, we can utilize that knowledge in the selection of appropriate local
approximation spaces [3, 6, 61, 76]. Note that the selection of the local ap-
proximation spaces in our PUM is completely unconstrained, we can use any
local space with any basis anywhere in the computational domain without
introducing any restriction on the choice of the local spaces elsewhere in the
domain.
In summary we can view the construction given above as⎛⎝ {xi}

W
{pi}

⎞⎠→

⎛⎝ {ωi}
{Wi}

{V pi

i = span〈ψn
i 〉}

⎞⎠→
(

{ϕi}
{V pi

i }

)
→ V PU =

∑
ϕiV

pi

i ,

where the set of points P = {xi}, the generating weight function W and the
local approximation orders pi are assumed to be given. Following this con-
struction we can construct approximate solutions uPU ∈ V PU = span〈ϕiψ

n
i 〉

of any order and regularity without additional constraints on the cover CΩ.
The extension to vector-valued PUM spaces is straightforward. We simply
change the definition of our local approximation spaces to V pi

i = span〈ψn,l
i 〉 =

span〈ψn
i el〉 where el denotes an appropriate unit vector in R

d, but keep the
scalar partition of unity functions ϕi.5

Properties
The resulting approximation space V PU and the shape functions ϕiψ

n
i are

quite different from their finite element counterparts and have some notable
properties.

1. The global PUM space V PU inherits the approximation properties of
the local enrichment spaces V pi . Let u ∈ H1(Ω) be the function to be
approximated. Assume that the local approximation spaces V pi

i have the
following approximation properties: On each patch Ω∩ωi, the function u

5 Note that we may use scalar basis functions ψn
i of different type (e.g. polynomial

or trigonometric) for the different coordinate directions el, l = 1, . . . , d.

202 M.A. Schweitzer

can be approximated by a function vi ∈ V pi

i such that ‖u−vi‖L2(Ω∩ωi) ≤
ε̂i, and ‖∇(u − vi)‖L2(Ω∩ωi) ≤ ε̃i hold. Then the function

uPU :=
∑

i

ϕivi ∈ V PU ⊂ H1(Ω)

satisfies the estimates

‖u − uPU‖L2(Ω) ≤ C1

(N∑
i=1

ε̂2i

) 1
2
,

‖∇(u − uPU)‖L2(Ω) ≤ C2

(N∑
i=1

C3(
diam(ωi)

)2 ε̂2i + C4ε̃
2
i

) 1
2
,

where C1, C2, C3, and C4 only depend on the partition of unity used,
see [8, 9] for details.

2. The partition of unity functions ϕi are (in general) non-interpolatory.
Furthermore, there are more degrees of freedom in a PUM space than
there are points xi ∈ P due to the use of (multidimensional) local approx-
imation spaces V pi

i . Therefore, the implementation of essential boundary
conditions is not straightforward in the PUM.

3. The PUM shape functions are piecewise rational functions due to the use
of piecewise polynomial weights in (2.1) which makes numerical integra-
tion more challenging than in the FEM.

4. The regularity of the shape functions ϕiψ
n
i is independent of the number

of local degrees of freedom. All shape functions ϕiψ
n
i inherit the regularity

of the respective partition of unity function ϕi (if we assume that the local
approximation spaces V pi

i are at least of the same regularity). The par-
tition of unity functions again inherit the smoothness of the weight func-
tions Wi used in (2.1) since

(
Wi ∈ Ck(Rd) ∧ ∀x

∑
i Wi(x) �= 0

)
⇒

ϕi ∈ Ck(Rd) holds. Therefore, we can improve the regularity of an ap-
proximation uPU by changing the generating weight function W inde-
pendent of the local approximation spaces V pi

i . Note that this is different
from finite element methods. In a FEM the global regularity of an ap-
proximation is given by the element regularity which on the other hand
is implemented by constraints imposed on the local degrees of freedom.
Hence, a higher order regularity may only be achieved by increasing the
number of degrees of freedom within an element.

5. The distribution of the point set P = {xi} and the cover CΩ = {ωi}
significantly influence the computational effort necessary to evaluate the
functions ϕi, since the definition of ϕi in (2.1) involves the weights Wk

of all geometric neighbours ωj ∈ Ci = {ωk |ωi ∩ ωk �= ∅} of ωi. The
neighbour relations ωj ∈ Ci of the cover CΩ also define the sparsity
pattern of the stiffness matrix. Furthermore, the diameters of the overlaps
ωi ∩ ωj for ωj ∈ Ci have a significant effect on the smoothness of ϕi

[39,40]. If the cover is minimal; i.e. there is exactly one patch ωj for every

Implementation and Parallelization of Meshfree Methods 203

x ∈ Ω with x ∈ ωj , the partition of unity degenerates to the characteristic
functions ϕi = χωi

independently of the chosen weight functions Wi. Thus
we see that small overlaps will cause large gradients of ϕi close to the
boundary of the respective support ωi. Hence, the diameter of the overlap
ωi ∩ ωj of two neighbouring patches ωi, ωj should be bounded, i.e.

diam(ωi ∩ ωj) ≥ C min(diam(ωi),diam(ωj)), (2.4)

so that the gradients ∇ϕi and ∇ϕj of the PU functions ϕi and ϕj are
bounded.
Note that in our PUM we use a rather small overlap. In the FEM for
instance the overlap of two supports supp(φi) ∩ supp(φj) is the size of
an element, whereas in many meshfree methods the overlap is usually
three to five times larger. Hence, in the FEM we obtain a stiffness matrix
with approximately 3d entries per row but in many meshfree methods the
stiffness matrix is much more dense e.g. 7d entries per row and more. In
our PUM, however, we allow for an overlap which is even smaller than in
the FEM (but fulfills (2.4)) and obtain a stiffness matrix with a similar
sparsity pattern as the FEM.

6. The PUM shape functions ϕiψ
n
i are not shape equivalent due to the

meshfree construction. The shape of each single PUM function ϕiψ
n
i is

dependent on the geometric neighbour relations ωi ∩ ωj �= ∅, the associ-
ated weight functions Wj and the local basis {ψn

i }. Hence, the numerical
integration (in general) cannot be carried out in a single reference config-
uration as we have in the FEM but it must rather be carried out in the
physical space for each entry of the stiffness matrix.

7. In very special situations the shape functions ϕiψ
n
i can be linearly de-

pendent which makes the solution of the resulting linear system more
involved than in the FEM. For instance, the GFEM [2–5, 78, 79], where
the PU comes from an h-version FEM, leads to linearly dependent shape
functions ϕiψ

n
i (the so-called nullity of the method). This is essentially

due to the fact that in the GFEM the partition of unity functions ϕi al-
ready reconstruct the linear polynomials. Consider the one-dimensional
situation, where we have one element, i.e. a single interval, and two nodes
(the interval boundaries) with their associated linear shape function as
ϕi. Assume that we use linear polynomials as local approximations spaces
V pi

i . The shape functions ϕiψ
n
i are (global) polynomials due to this con-

struction. The number of shape functions is four and the maximal poly-
nomial degree is two. Since the quadratic polynomials in one dimension
can be generated by three basis functions, we see that the GFEM shape
functions are linearly dependent. Hence, the solution of the arising linear
system is a very challenging task in the GFEM.
Note also that the construction of approximations with a higher degree of
regularity in the GFEM requires the use of a more complex elements for
the construction of the PU. With our general Shepard approach for the

204 M.A. Schweitzer

PU construction we can construct a PU with a higher degree of regularity
simply by a change of the generating weight function W. Furthermore, we
can easily avoid the linear dependence of the shape functions by enforcing
ϕi ≡ 1 on ω̃i ⊂ ωi with vol(ωi) ≤ C vol(ω̃i).

8. In general a smooth coefficient vector does not correspond to a smooth
function since the coefficients are not directly related to the function
value due to the non-interpolatory character of the shape functions. Fur-
thermore, the choice of the local basis functions ψn

i and their ordering
determine e.g. the discrete representation of the constant function. This
can have a significant impact on the iterative solution of the resulting lin-
ear system since e.g. an algebraic multigrid method [80] (usually) assumes
that the constant vector represents the constant function.

2.2 Variational Formulation and Boundary Conditions

We are interested in the approximate solution of an elliptic boundary value
problem of the type

Lu = f in Ω ⊂ R
d,

Bu = g on ∂Ω,
(2.5)

where L is a symmetric partial differential operator of second order and B
expresses suitable boundary conditions. Here, we are faced with two major
computational tasks: We need to discretize the partial differential operator
efficiently and we need to deal with boundary conditions properly.
Our PUM shape functions ϕiψ

n
i are non-interpolatory since the partition

of unity functions ϕi are (in general) non-interpolatory, i.e. ϕi(xj) �= δij .
Furthermore, the use of local approximation spaces V pi

i with dim(V pi

i) > 1
generates an approximation space V PU =

∑
i ϕiV

pi

i with more degrees of
freedom than interpolation nodes xi. Therefore, we have to cope with the
problem: How do we fulfill the boundary conditions?
First consider (2.5) with L = −∆ and Neumann boundary conditions Bu =
uν := ∂u/∂ν := ∇u · ν = g on ∂Ω, where ν denotes the outer normal. Then
the continuous and elliptic bilinear form induced by L on H1(Ω) is given by
a(u, v) = 〈∇u,∇v〉L2 and we learn from the variational formulation

F (v) :=
1
2
a(v, v) − 〈f, v〉L2 −

∫
∂Ω

gv → min{v ∈ H1(Ω)}, (2.6)

that the trial functions v have to fulfill no additional constraint besides being
from the definition space H1(Ω) of the differential operator L in its weak
form. The boundary conditions are not imposed explicitly on the function
space. Therefore, the basis of a finite-dimensional subspace V ⊂ H1(Ω) used
to approximate the solution of (2.6) may be compiled of arbitrary functions
v ∈ H1(Ω). The basis functions do not need to be interpolatory. Hence, we
may use our functions ϕiψ

n
i as trial and test functions in a Galerkin procedure

without any modification.

Implementation and Parallelization of Meshfree Methods 205

However, Dirichlet boundary conditions Bu = u = g on ∂Ω explicitly impose
the values of the solution u on the boundary ∂Ω. Therefore, the trial space
of the usual weak formulation

Find u ∈ H1
g (Ω) : a(u, v) = 〈f, v〉L2 for all v ∈ H1

0 (Ω)

is not the complete space H1(Ω) but H1
g (Ω) := {v ∈ H1(Ω) |u = g on ∂Ω},

whereas the test space is H1
0 (Ω). Note that we can enforce vanishing Dirichlet

boundary conditions within the PUM by the selection of appropriate local
approximation spaces V pi

i ; i.e. we need ψn
i |∂Ω ≡ 0 for all local basis functions

ψn
i [2,31]. But the implementation of a trial space V ⊂ H1

g (Ω) with g �≡ 0 by
the selection of appropriate local approximation spaces is not feasible.
There are many different approaches to the treatment of Dirichlet boundary
conditions with meshfree methods [2,31,39,46,50,53,58,61,76]. From our point
of view, however, the most natural approach seems to be Nitsche’s method
[68] which is a variational technique that allows for the use of subspaces
VN ⊂ H1(Ω) which do not have to fulfill the boundary conditions explicitly,
yet it gives the optimal rate of convergence. The main advantages of Nitsche’s
method over other techniques are:

1. It does not introduce constraints on the distribution of the points xi ∈ P .
2. The problem formulation only involves a single function space VN defined

on Ω. There is no need for an additional appropriate function space on
the boundary ∂Ω.

3. The method leads to symmetric positive definite linear systems. We do
not need to be concerned with linear solvers for saddle-point problems.

Let us consider the Poisson problem

−∆u = f in Ω ⊂ R
d,

u = g on ∂Ω,
(2.7)

for reasons of simplicity. We are interested in finding an approximate solution
uN ∈ VN ⊂ H1(Ω) to (2.7) — within optimal error bounds. Nitsche proposed
in [68] to minimize the functional

JN (w) :=
∫

Ω

|∇w|2 − 2
∫

∂Ω

wwν + βN

∫
∂Ω

w2,

for the error w = v − u among all v ∈ VN where u is the solution of (2.7),
and βN > 0 only depends on the subspace VN ; i.e. the approximation uN is
given by J(uN − u) != infv∈VN

JN (v − u). Note that the subscript ν denotes
the normal derivative, i.e. wν = ∇w · ν, whereas the subscript N indicates a
dependence on the discretization space VN ⊂ H1(Ω). The minimizer uN ∈ VN

can be computed from the input data f and g of (2.7) since

JN (v − u) = JN (v) + JN (u) − 2
(∫

Ω

∇v∇u +
∫

∂Ω

βNuv − vuν − uvν

)
= JN (v) + JN (u) − 2

(∫
Ω

fv +
∫

∂Ω

βNgv − gvν

)
.

206 M.A. Schweitzer

The corresponding weak formulation is given by aN (uN , v) = lN (v) for all
v ∈ VN where

aN (w, v) :=
∫

Ω

∇v∇w −
∫

∂Ω

vwν −
∫

∂Ω

wvν + βN

∫
∂Ω

vw,

lN (v) :=
∫

Ω

fv −
∫

∂Ω

gvν + βN

∫
∂Ω

gv.

Although the bilinear form aN (·, ·) is indefinite on the space H1(Ω) it is
symmetric positive definite on the subspace VN under the assumptions that

‖vν‖L2(∂Ω) ≤ CN‖∇v‖L2(Ω) (2.8)

holds for all v ∈ VN with CN > 0 and that βN > 2 C2
N since

aN (v, v) = ‖∇v‖2
L2(Ω) − 2

∫
∂Ω

vvν + βN‖v‖2
L2(∂Ω)

≥ ‖∇v‖2
L2(Ω) − 2 CN‖v‖L2(∂Ω)‖∇v‖L2(Ω) + βN‖v‖2

L2(∂Ω)

≥ 1
2
‖∇v‖2

L2(Ω) + (βN − 2 C2
N)‖v‖2

L2(∂Ω).

Nitsche furthermore proved optimal error estimates if the relation

C2
N = O(diam(supp(φ))−1) (2.9)

for CN in (2.8) holds for all basis functions φ ∈ VN and the respective ap-
proximation property in VN is given. The proportionality (2.9) is valid e.g. if
we have estimates of the form∫

∂Ω

|φν |2 ≤ CN,1(diam(supp(φ)))d−1 (2.10)

and ∫
Ω

|∇φ|2 ≥ CN,2(diam(supp(φ)))d (2.11)

for all basis functions φ ∈ VN with supp(φ) ∩ ∂Ω �= ∅. Note that (2.10) and
(2.11) essentially introduce some geometric constraints on the intersections
supp(φ) ∩ Ω and supp(φ) ∩ ∂Ω; i.e. in our meshfree context on the cover CΩ

or in the finite element context on the regularity of the mesh.
In general a proof of (2.9) is simplified when we only need to consider a regular
reference configuration; i.e. where the map to the reference configuration is
affine. Here, we find∫

∂ supp(φ)

|φν |2∫
supp(φ)

|∇φ|2
=

det(J∂T)
∫

∂ωref

|φν ◦ ∂T |2

det(JT)
∫

ωref

|∇φ ◦ T |2
= det(J∂T)

det(JT) CN,ref

≈ (diam(supp(φ)))−1CN,ref

Implementation and Parallelization of Meshfree Methods 207

where CN,ref only depends on the polynomial degree of the shape function φ.
So if we limit ourselves to the use of uniform covers and a fixed local approx-
imation space we only need to consider very few reference cases (depending
on the number of edges of supp(ϕψn

i) ∩ ∂Ω and the local polynomial degree
pi of V pi

i). But for the general situation where we have an irregular point
distribution and locally varying approximation spaces this approach cannot
be pursued. Furthermore, from a computational point of view we must be
interested in the value of CN in (2.8), not only the type of the proportion-
ality (2.9). Only a large enough value of CN will lead to a definite problem
formulation. Yet, a wrong choice of the regularization parameter may have
an impact on the condition number of the linear system or other adverse
effects on the applicability of certain linear solvers. Since the parameter CN

is not only dependent on the support sizes but also on the selected local basis
functions ψn

i for the spaces V pi

i and the local approximation orders pi, we
need to be concerned with the automatic computation of a reliable estimate of
CN . Here, we decided to approach condition (2.8) as a generalized eigenvalue
problem

Ax = λBx (2.12)

where

A(i,n),(j,m) :=
∫

∂Ω

(ϕjψ
m
j)ν(ϕiψ

n
i)ν

and

B(i,n),(j,m) :=
∫

Ω

∇(ϕjψ
m
j)∇(ϕiψ

n
i)

for all index pairs (i, n), and (j,m) which correspond to shape functions which
overlap the boundary ∂Ω; i.e. ωi ∩ ∂Ω �= ∅ and ωj ∩ ∂Ω �= ∅. Solving (2.12)
for the maximal eigenvalue λmax we get a good estimate for C2

N . Hence, a
choice of βN = wλmax with w > 2 will lead to a symmetric positive definite
system.
Note that the assembly of the matrices A and B does not introduce a signif-
icant amount of additional computational cost. The entries of B are needed
for the stiffness matrix and can be reused. The remaining additional cost
associated with the computation of the regularization parameter βN come
from the solution of the eigenvalue problem (2.12). The eigenvalue λmax can
be computed very efficiently by a simultaneous Rayleigh-quotient minimiza-
tion method [14, 57] due to the similar structure of the matrices A and B.
On average we need about five to ten conjugate gradient iterations to com-
pute λmax with five digits accuracy. Here, the minimization of xT Bx

xT Ax
involves

only matrix-vector-products. We do not need to solve a linear system. Fur-
thermore, the eigenvalue problem (2.12) involves only boundary degrees of
freedom and is therefore of smaller dimension. Hence, the computational cost
associated with the assembly of a Dirichlet problem are comparable to the
cost associated with the respective Neumann problem.

208 M.A. Schweitzer

For the sake of completeness, we give the weak formulation of a Poisson
problem

−∆u = f in Ω ⊂ R
d,

u = gD on ΓD ⊂ ∂Ω,
uν = gN on ΓN = ∂Ω \ ΓD,

(2.13)

with mixed boundary conditions where the Dirichlet boundary conditions are
realized with Nitsche’s method and the Neumann boundary conditions are
implemented in the standard fashion as an additional surface term on the
right-hand side. The respective weak formulation a(u, v) = l(v) is given by

a(u, v) :=
∫

Ω

∇u∇v +
∫

ΓD

u(βv − vν) − uνv,

l(v) :=
∫

Ω

fv +
∫

ΓD

gD(βv − vν) +
∫

ΓN

gNv,
(2.14)

where β now denotes the respective regularization parameter.
The extension of Nitsche’s method to vector-valued problem is straightfor-
ward. Let us consider the Navier–Lamé equations

−µ∆u − (λ + µ)∇div(u) = f in Ω ⊂ R
d, d = 2, 3

together with suitable boundary conditions uD = gD on ΓD ⊂ ∂Ω and σ(u) ·
ν = gN on ΓN = ∂Ω \ ΓD where σ(u) := λ div(u)I + 2µ ε(u) denotes the
symmetric stress tensor, I is the identity operator and ε(u) := 1

2 (∂iuj +
∂jui) the strain tensor associated with the displacement field u = (ui), i =
1, . . . , d.6 The associated bilinear form arising from Nitsche’s approach is
given by

a(u, v)=
∫

Ω

σ(u) : ε(v)+
∫

ΓD

2µβεu·v+λβdiv(u·ν)(v·ν)−
(
(σ(u)·ν)·v+u·(σ(v)·ν)

)
where σ(u) : ε(v) :=

∑
i,j σ(u)i,j ε(v)i,j . The linear form on the right-hand

side is given by

l(v)=
∫

Ω

f · v +
∫

ΓN

gN · v +
∫

ΓD

2µβεgD · v +λβdiv(gD · ν)(v · ν)− gD · (σ(v) · ν).

Here, we compute the regularization parameter βε = wCε associated with
the strain term from the generalized eigenvalue problem

Ax =
∫

∂Ω

(ε(u) · ν) · (ε(v) · ν) ≤ Cε

∫
Ω

ε(u) : ε(v) = CεBx.

6 The parameters λ and µ are the so-called Lamé parameters. They are related to
the Poisson ratio ν and the Young modulus E of the material via λ = Eν

(1+ν)(1−2ν)

and µ = E
2(1+ν)

.

Implementation and Parallelization of Meshfree Methods 209

The regularization parameter βdiv = wCdiv for the divergence term is com-
puted with the help of

Ax =
∫

∂Ω

div(u) div(v) ≤ Cdiv

∫
Ω

div(u) div(v) = CdivBx.

Note that the use of Nitsche’s method for the implementation of Dirichlet
boundary conditions leads to a so-called level dependent weak formulation;
i.e. the bilinear form as well as the linear form on the right-hand side involve
regularization parameters which depend on the discretization space used.
Hence, if we change the discretization space, for instance by increasing the
resolution via refinement, we obtain a different weak formulation a(u, v) =
l(v).

2.3 Galerkin Discretization

The PUM is a meshfree generalized finite element method, hence we discretize
a partial differential equation using the respective weak formulation a(u, v) =
l(v) and a Galerkin approach. That is, we need to compute the entries of the
stiffness matrix

A = (A(i,n),(j,m)), with A(i,n),(j,m) = a (ϕjψ
m
j , ϕiψ

n
i)

and the entries of the right-hand side vector

f̂ = (f̂(i,n)), with f̂(i,n) = l(ϕiψ
n
i)

to set up the respective linear system Aũ = f̂ , where ũ = (ũ(i,n)) denotes a
coefficient vector and f̂ denotes a moment vector. Let us now consider this
assembly step for (2.14). Here we have to compute the integrals∫

Ω

fϕiψ
n
i +

∫
ΓD

gD(βϕiψ
n
i − ((ϕiψ

n
i)ν) +

∫
ΓN

gNϕiψ
n
i

for the right-hand side f̂ , and the integrals∫
Ω

∇ϕiψ
n
i ∇ϕjψ

m
j +

∫
ΓD

ϕiψ
n
i (βϕjψ

m
j − (ϕjψ

m
j)ν) − (ϕiψ

n
i)νϕjψ

m
j (2.15)

for the stiffness matrix A. Recall that ϕi is defined by (2.1), i.e.

ϕi(x) =
Wi(x)∑

ωk∈Ci

Wk(x)
=

Wi(x)
N∑

k=1

Wk(x)

.

210 M.A. Schweitzer

Now we carry out the differentiation in (2.15). With the notation S :=∑N
k=1 Wk, T :=

∑N
k=1 ∇Wk and Gi := ∇WiS − WiT we end up with the

integrals

a(ϕjψ
m
j , ϕiψ

n
i) =

∫
Ω

S−4Giψ
n
i Gjψ

m
j +

∫
Ω

S−2Wi∇ψn
i Wj∇ψm

j

+
∫

Ω

S−3
(
Giψ

n
i Wj∇ψm

j + Wi∇ψn
i Gjψ

m
j

)
−
∫

ΓD

S−3
(
Giψ

n
i Wjψ

m
j + Wiψ

n
i Gjψ

m
j

)
· ν

−
∫

ΓD

S−2
(
Wi∇ψn

i Wjψ
n
j + Wiψ

n
i Wj∇ψm

j

)
· ν

+
∫

ΓD

βS−2Wiψ
n
i Wjψ

m
j

(2.16)

for the stiffness matrix and the integrals

l(ϕiψ
n
i) =

∫
Ω

S−1Wiψ
n
i f +

∫
ΓN

S−1Wiψ
n
i +

∫
ΓD

βS−1WigD

−
∫

ΓD

(
S−2Giψ

n
i + S−1Wi∇ψn

i

)
gD · ν

(2.17)

for the right-hand side. The functions T and Gi may have a large number of
jumps (or kinks) due to the overlap of the support patches ωi and the use of
piecewise polynomial weights Wi in (2.1). Therefore, the integrals (2.16) and
(2.17) should not be computed by a simple quadrature scheme which does not
respect these discontinuities and the algebraic structure of the shape func-
tions.7 The numerical integration of the weak form is a major computational
task in any meshfree Galerkin discretization [10, 19, 20, 29, 39, 40]. Further-
more, we must be aware that an inappropriate solution to the integration
problem can lead to stability problems.

2.4 Solution of Resulting Linear System

Finally, it remains to solve the discrete system of linear equations Aũ = f̂ .
For our PUM space we have dof = O(Npd) where N = card(CΩ) denotes
the number of patches ωi and p the order of approximation. The number of
nonzeros nnz of the stiffness matrix A is of the order O(Np2d). The stiffness
matrix is sparse with respect to N due to the compactness of the cover
patches ωi and the sparsity pattern is given by the local neighbourhoods Ci.
The higher order p-dependence is due to the use of multi-dimensional local
7 The integrals for the right-hand side are oftentimes not directly evaluated but

rather approximated via the coefficient vectors f̃ , g̃N , g̃D and (generalized) mass
matrices (on the boundary).

Implementation and Parallelization of Meshfree Methods 211

approximation spaces V pi

i . Overall, the stiffness matrix is a sparse block-
matrix with dense matrix blocks Ai,j = (A(i,n),(j,m)). A single block Ai,j

corresponds to a local discretization of the PDE on the domain ωi ∩ ωj ∩
Ω. The blocks Ai,j are dense matrices and may have different dimensions
corresponding to the dimensions of the local approximation spaces V

pj

j and
V pi

i .

Note that the use of an inappropriate solver can drive up the computational
time as well as the storage demand dramatically. For an optimal scalability
of the overall methods, the linear solver used should have a complexity of
O(nnz). Classical direct solvers for dense matrices like Gaussian elimination or
LU-decomposition have a storage requirement of O(dof2) and the number of
operations even scales with O(dof3), where dof denotes the number of degrees
of freedom. More advanced direct solvers for sparse linear systems can reduce
these complexities to some extend only. In the special case of regular meshes
in two dimensions for instance, a nested dissection solver requires O(dof3/2)
operations and O(dof ln(dof)) storage [32] whereas the optimal complexity
is O(dof) = O(nnz) with nnz being the number of nonzeros of the matrix
A. Hence, the optimal storage and operation complexity will be lost when a
direct solver is employed.

With the classical iterative schemes like the Jacobi- or Gauss–Seidel method
we do not have a significant increase in the storage requirements, but the
number of operations necessary to obtain the solution of the linear system
does not scale with the optimal complexity. A class of sophisticated itera-
tive methods which not only show an optimal scaling in the storage demand
but also in the operation count is the class of the so-called multilevel iter-
ative solvers [83] or multigrid methods [47]. These solvers, however, are not
general algebraic methods but involve a substantial amount of information
about the discretization and possibly the PDE.8 Hence, we cannot expect an
existing multilevel solver which was designed for a completely different type
of discretization to solve our linear system from a PUM discretization. We
rather need to translate the essential multigrid ideas to the meshfree setting.
However, the design of an efficient multilevel solver for meshfree methods
is complicated by the fact that it is in general not feasible to construct a
sequence of nested function spaces.

8 There are algebraic multigrid (AMG) methods [80] but their construction is (in
general) based on the assumption of an interpolatory linear basis. These methods
are very involved and a generalization of AMG to meshfree discretizations is not
an easy task. Furthermore, we usually try to mimic the behaviour of geometric
multigrid methods with AMG. Hence, a first step in the design of an AMG
method for meshfree discretizations must be the development of a geometric
multilevel solver which can provide guidelines for a meshfree AMG.

212 M.A. Schweitzer

3 Efficient Implementation

In the following we focus on the efficient implementation of the PUM. Accord-
ing to the presentation given above, the three major issues in the realization
of the PUM, and many other mesh-based and meshfree methods, are:

1. The fast construction of the shape functions; i.e. the construction of an
appropriate cover CΩ = {ωi} of the domain Ω and the computation of
the local neighbourhoods Ci = {ωj |ωi ∩ ωj �= ∅}.

2. The efficient and reliable integration of the weak form to set up a valid
approximation of the stiffness matrix A and right-hand side f̂ .

3. The fast solution of the resulting linear system Aũ = f̂ .

We present specialized algorithms for each of these challenges. Even though
these algorithms are specifically designed for the PUM, the underlying con-
cepts are applicable to a number of meshfree (and mesh-based) numerical
methods. The tree-based cover construction algorithm we present in the fol-
lowing for instance can be modified easily to be suitable for mesh gener-
ation [12], for the implementation of an adaptive multilevel FEM [86] or
Lagrangian particle schemes [24,37,56,81,82].

3.1 Cover Construction

Following the construction given in Section 2.1, the first critical step in the
implementation of the PUM is the efficient construction of an appropriate
cover CΩ for a general given point set. Here, we need to consider not only
the construction of patches ωi which cover the domain Ω but the respective
neighbourhoods Ci which significantly influence the overall computational
cost. Hence, our cover construction should have the following properties:

1. The only input data are the domain Ω and a set of points P = {xi ∈
R

d}. There are no assumptions on the distribution of the points xi. The
construction is independent of the dimension d.

2. The union of the constructed cover patches ωi covers the complete domain
Ω including the boundary ∂Ω, i.e.

⋃
i ωi ⊃ Ω.

3. The number of constructed cover patches is minimal, i.e. card(CΩ) =
O(card(P)). The geometric shape of a cover patch ωi is simple and all
patches are shape-regular.

4. The neighbourhood Ci = {ωj ∈ CΩ |ωi ∩ ωj �= ∅} of a particular patch is
easily computable.

5. The size of the overlaps ωi ∩ ωj can be controlled and the number of
neighbours card(Ci) is of the order O(1) and can be controlled.

Many different geometric algorithms have been used for the construction
of a suitable cover. The nearest neighbour or direct covering for instance
has been used in [31, 39, 40, 76]. With this cover construction, however, the

Implementation and Parallelization of Meshfree Methods 213

covering property is not ensured automatically for a general point set and
an explicit validation procedure is necessary. Furthermore, the problem of
finding all neighbouring patches ωj ∈ Ci remains. The computation of the
neighbourhoods Ci is essentially a geometric search problem [75]. Hence, tree-
based techniques which have been used successfully for searching and sorting
problems in many areas [52,74] can be used to tackle this problem. But if such
a tree-based algorithm must be employed to compute the neighbourhoods Ci

even when we have a cover CΩ, the question arises, if we can use a tree-based
method also for the construction of CΩ itself.
We have developed a hierarchical cover construction algorithm [40,76] based
on d-binary trees (quadtrees, octrees) which allows us to construct a valid
cover CΩ and enables us to compute the local neighbourhoods Ci very effi-
ciently using a single data structure. In the following we denote the set of
points xi which are used for the partition of unity construction by P whereas
we denote a given initial point set by P̃ since these two sets may differ. Our
tree-based cover construction algorithm employs a decomposition approach
for the domain Ω to assign patches ωi ⊂ R

d to the points xi of a newly con-
structed point set P ⊃ P̃ in such a way that these patches cover the complete
domain Ω ⊂

⋃
ωi. Note that this hierarchical algorithm does not need any

additional input besides the point set P̃ and the domain Ω. Furthermore,
there is no need for an explicit validation of the covering property Ω ⊂

⋃
ωi.

Figure 3.1. Hierarchical cover construction with Algorithm 3.1 in two dimensions.
The cell decomposition induced by P̃ (upper left) and its corresponding tree rep-
resentation (upper right, white: INNER tree nodes, gray shaded: LEAF tree nodes)
after step 3 of Algorithm 3.1. Here, the leaves of the tree correspond to the points
xi ∈ P̃ . The final cell decomposition with all points xL ∈ P (lower left) and its tree
representation (lower right) after the completion of Algorithm 3.1. Now, the leaves
of the tree correspond to the points xL ∈ P .

214 M.A. Schweitzer

Algorithm 3.1. Hierarchical Cover Construction

1. Given the domain Ω ⊂ R
d, a bounding box RΩ =

⊗d
i=1[l

i
Ω, ui

Ω] ⊃ Ω and
a scalar α ≥ 1.

2. Given the initial point set P̃ = {xj |xj ∈ Ω, j = 1, . . . , Ñ}.
3. Build a d-binary tree9 over RΩ such that per leaf L at most one xi ∈ P̃

lies within the associated cell CL :=
⊗d

i=1[l
i
L, ui

L]; see Figure 3.1.
4. Set P = ∅, CΩ = ∅.
5. For the root cell CL =

⊗d
i=1[l

i
L, ui

L] = RΩ:
(a) If current tree cell CL is an INNER tree node and CL ∩ Ω �= ∅:

i. Descend tree for all successors CS of CL. (→ 5(a))
ii. Set patch ωL such that

⋃
ωS ⊂ ωL.

(b) Else if CL ∩ Ω �= ∅:
i. If xk ∈ CL for a xk ∈ P̃ :

Set xL = xk.
ii. Else:

Choose xL ∈ CL, e.g. xi
L = liL + 1

2 (ui
L − liL).

iii. Set hi
L = α max{ui

L − xi
L, xi

L − liL}.
iv. Set patch ωL =

⊗d
i=1[x

i
L − hi

L, xi
L + hi

L] ⊃ CL.
v. Set P = P ∪ {xL}, CΩ = CΩ ∪ {ωL}.

With this hierarchical cover construction algorithm we have P = P̃ ∪Q where
Q is an automatically constructed set of additional points.10

We ensure not only the covering property Ω ⊂
⋃

ωi without additional input
data with Algorithm 3.1, but also some control over the neighbourhoods Ci;
i.e. the nonzero blocks of the stiffness matrix, and to some extent we can reg-
ulate the smoothness of the functions ϕi. Furthermore, we can easily compute
the neighbourhoods Ci with the help of the tree of patches by Algorithm 3.2.

Algorithm 3.2. Computation of Neighbourhood Ci

For the root cell CL =
⊗d

j=1[l
j
L, uj

L] = RΩ:

1. If current tree cell CL is an INNER tree node and CL ∩ Ω �= ∅:
(a) If for current patch ωL ∩ ωi �= ∅:

Descend tree for all successors CS of CL. (→ 1)
2. Else if CL ∩ Ω �= ∅:

(a) If for current patch ωL ∩ ωi �= ∅:
Set Ci = Ci ∪ {ωL}.

9 Samet [75] refers to a point region (PR) quadtree for our two-dimensional con-
struction in Figure 3.1.

10 The additional points are necessary to ensure the shape regularity of the tree
cells (and patches). A similar tree-based algorithm for the construction of shape-
regular triangulations with an almost-minimal number of vertices was proposed
in [12]. Analogously, Algorithm 3.1 may have a similar almost-optimal property:
If m is the minimal number of shape-regular d-rectangles required to cover the
given point set in such way that all d-rectangles contain at most one point, then
the cover CΩ constructed by the presented algorithm is of size card(CΩ) = O(m).

Implementation and Parallelization of Meshfree Methods 215

Figure 3.2. Points of an initial Halton(2, 3) point set P̃ with Ñ = card(P̃) = 64
points distributed in RΩ = Ω = [0, 1]2 (left), the points of the generated point set
P with N = card(P) = 106 (centre) after Algorithm 3.1, and the constructed cover
CΩ (right) with α = 1.25.

Note that the number of neighbours card(Ci) of a particular cover patch
ωi constructed by Algorithm 3.1 is small, yet the amount of overlap of any
two neighbouring patches is of significant size. Certainly, these features do
come at a price we have to pay: The constructed point set P is larger than the
given point set P̃ ; see Figures 3.1 and 3.2. This increases the number of cover
patches N = card(CΩ); i.e. the number of block-rows of the stiffness matrix,
and seemingly the overall computational cost. However, the total number
of nonzero blocks of a stiffness matrix based on our hierarchical algorithm is
comparable to the number of nonzero blocks of a stiffness matrix based on the
direct covering for uniformly distributed point sets P̃ and it is substantially
less for highly irregular point sets P̃ , see [40,76]. Furthermore, the proposed
algorithm enables the user to control the amount of overlap ωi ∩ ωj of two
neighbouring patches completely by the choice of xL ∈ CL in step 5(b)ii, and
the choice of the parameter α in step 5(b)iii.11 Hence, this construction leads
to smoother PU functions ϕi and allows for the use of cheaper quadrature
schemes (compared with the nearest neighbour covering) during the assembly
of the stiffness matrix. Note however, that the functions ϕi are still more
complex than FE shape functions (see Figure 3.3).
Note that we obtain d-rectangular cover patches ωi independent of the shape
of the bounding box RΩ. However, the aspect ratios are bounded; see Figure
3.2. In Section 3.2 we present a regularized version of Algorithm 3.1 which

11 The original algorithm presented in [40] employs a further parameter k ∈ N

in step 3 which controls the local imbalance of the tree, e.g. with a choice of
k = 0 the constructed cell decomposition always corresponds to the cells of a
uniform grid. Here, we allow for k = ∞, i.e. we impose no restrictions on the
local imbalance of the tree. If we limit k, e.g. enforce k = 1, then there is no need
for a complete neighbour search. In this situation we can directly compute the
set of (possible) neighbours. Such a restricted tree construction is also employed
in [60,86].

216 M.A. Schweitzer

Figure 3.3. The PU functions ϕi on Ω ∩ ωi generated by Algorithm 3.1 with the
input data from Figure 3.2 for an interior point (left), a boundary point (centre),
and a corner point (right) using linear B-splines in the Shepard construction (2.1).

guarantees the shape-regularity of the cover patches where all patches inherit
the geometry and aspect ration of the bounding box RΩ.

Remark 3.1.
Note that we usually use a very small overlap parameter α ∈ (1, 2] in our
PUM. Here, a choice of α = 2 leads to an overlap with diam(ωi ∩ ωj) ≈
diam(Ci) which corresponds to the amount of overlap of two finite element
shape functions in a mesh-based method. Hence, we have a similar neighbour
structure and sparsity pattern as in a FEM with a choice of α ∈ (1, 2]. This
is in contrast to many other meshfree methods where a rather large overlap
is chosen.

Remark 3.2.
The extension of Algorithm 3.1 for a least squares approximation or a La-
grangian particle method is straightforward. We only need to change step
5(b) where we introduce additional points xL in empty tree cells CL and have
to choose the overlap parameter α with respect to the interaction potential
of the particles.

Computational Complexity
The computational complexity of our tree-based algorithm is of order O(NJ)
where N = card(P) = card(CΩ) and J denotes the resulting depth of the
tree, i.e. the number of levels of the tree, after all card(P̃) insert operations.
For uniformly distributed point sets P̃ we have N = card(P) = O(card(P̃))
and J = O(ln N) such that the overall complexity of our tree-based cover
construction algorithm is O(N lnN).
Note that the patches ωL associated with INNER tree nodes in Algorithm 3.1
are used for the efficient neighbour search in the computation of the neigh-
bourhoods Ci only, see Algorithm 3.2. They are not used for the construction
of the partition of unity. If we assign patches ωL ⊃

⋃
ωS of minimal size to

INNER tree nodes in step 5(a)ii, the computation of the local neighbourhood
Ci of a particular patch ωi with Algorithm 3.2 in general only requires O(J)
operations. Hence, for uniform point sets P̃ the computation of all neigh-
bourhoods can be completed in O(N lnN) operations.

Implementation and Parallelization of Meshfree Methods 217

Figure 3.4. Surface plots of ∇ϕi∇ϕi for a partition of unity function based on a
cover from Algorithm 3.1 using a linear spline as generating weight function W and
an overlap parameter of α = 1.1 (left), α = 1.3 (centre), and α = 1.5 (right).

3.2 Numerical Integration

In the following we focus on the efficient assembly of the stiffness matrix; i.e.
on the numerical integration problem. Let us assume that the PU is given
by an h-mesh construction like we have in the GFEM. Then, we know how
to resolve the piecewise character of the integrands: We subdivide the inte-
gration domains ωij := ωi ∩ ωj ∩ Ω with the help of the geometric elements
of the h-mesh to obtain smooth (polynomial) integrands on the integration
cells/elements. With our general PUM, however, we do not have a mesh or
geometric elements. But we have support patches ωi and weight functions Wi

which define the partition of unity functions ϕi by (2.1). From this informa-
tion only, we have to find an appropriate subdivision of the support patches
ωi and subsequently the integration domains. Furthermore, we have to cope
with rational integrands on the cells of such a subdivision in our general PUM
due to (2.1), cf. Figure 3.4.
We can obtain a suitable decomposition Dωij

of the integration domains ωij

into disjoint integration cells Ds
ωij

utilizing the product structure of the cover
patches ωi and the product structure of the weight functions Wi used during
the construction (2.1) of the partition of unity {ϕi} [39, 40]. The resulting
decomposition Dωij

:= {Ds
ωij

} is optimal in the sense that all discontinuities
of the derivatives of the partition of unity functions, see (2.16), are resolved12

with a minimal number of cells. Since the integrands are smooth on the dis-
joint integration cells a higher order quadrature rule can be successfully used.
A reduction in the computational cost associated with the numerical integra-
tion requires the construction of partition of unity functions with simpler
algebraic structure; i.e. which allow for a decomposition with less integration
cells. To this end, we later present a regularized version of our cover con-
struction which reduces the computational cost substantially, but requires
only some minor changes to Algorithm 3.1.

12 Note that this is not feasible when we use radial weight functions in Shepard’s
method. The integration scheme presented in [26] does not resolve all disconti-
nuities of all derivatives of the respective Shepard functions.

218 M.A. Schweitzer

intergration domain decomposition of
intergration domain
induced by local
weight functions

Figure 3.5. Integration domain Ωij = ωi ∩ ωj (left). The decomposition Eωij of
the integration domain ωij via the subdivision induced by the weight functions Wi

and Wj (right). Here, the weights are products of quadratic B-splines.

Let us consider the integration domain ωij = ωi ∩ωj ⊂ Ω which is a product
of intervals since our cover patches ωi, ωj are products of intervals, see Figure
3.5 (left). Moreover, the weight functions used Wk are products of normalized
B-splines of order l, i.e. they are piecewise polynomials of degree l. Therefore,
the weight function Wk induces a subdivision of the respective cover patch
ωk into (l + 1)d sub-patches ωq

k on which Wk

∣∣
ωq

k

is polynomial. Furthermore,

these sub-patches ωq
k are also products of intervals. With the help of the

sub-patches ωq
i , ωq

j we can define a first decomposition Eωij
= {Es

ωij
} of ωij ,

see Figure 3.5 (right). On the cells Es
ωij

of this decomposition we have that
Wi

∣∣
Es

ωij

and Wj

∣∣
Es

ωij

are polynomials of degree l, but the weights Wk

∣∣
Es

ωij

for

all other neighbours ωk ∈ Cij := Ci ∩ Cj may still be piecewise polynomial
only. Therefore, we further refine the decomposition Eωij

by subdividing the
cells Es

ωij
with the help of the ωq

k sub-patches for all ωk ∈ Cij , see Figure 3.6.
The resulting decomposition Dωij

= {Ds
ωij

} consists of d-rectangular cells
Ds

ωij
on which all weight functions Wk|Ds

ωij
are polynomials of degree l. The

number of cells card(Dωij
) of the decomposition Dωij

= {Ds
ωij

} depends on
the polynomial degree l of the weight functions Wk used during the Shep-
ard construction (2.1) for the partition of unity, the number of neighbours
card(Cij) and their geometric location.

Since all weights Wk are polynomial on the cells Ds
ωij

, the functions T and
Gi (see Section 2.3) are non-singular rational functions on Ds

ωij
. Hence, any

standard quadrature rule for smooth functions is applicable for the numerical
integration of the weak form e.g. (2.16) and (2.17) on the cells Ds

ωij
(if we

assume that the local basis functions ψn
i and ψm

j are smooth on ωij). Inde-
pendently of the local quadrature rule used on Ds

ωij
we can utilize the product

structure of the shape functions ϕiψ
n
i to reduce the computational cost of an

Implementation and Parallelization of Meshfree Methods 219

Figure 3.6. Refinement of the decomposition Eωij of the integration domain ωij

via the subdivision induced by the weight function Wk (product of quadratic B-
splines) of one neighbouring patch ωk (left). The resulting decomposition Dωij after
the refinement step for the neighbouring weight function Wk (right).

evaluation of the weak form at a quadrature point. To this end we evaluate
the complete block Ai,j = a(ϕjψ

m
j , ϕiψ

n
i) ∈ R

dim(V
pi

i)×dim(V
pj

j) of the stiff-
ness matrix simultaneously rather than evaluating every single scalar entry
A(i,n),(j,m) = a(ϕjψ

m
j , ϕiψ

n
i) ∈ R for fixed n and m. Thereby, we reduce the

number of (relatively expensive) evaluations of the PU functions ϕi and ϕj .
Furthermore, this block-approach also allows for a hierarchical evaluation of
the local basis functions ψn

i and ψm
j (which is available for the chosen Legen-

dre polynomials) which reduces the computational cost of an evaluation of
the weak form significantly (especially for higher order approximations).
A further reduction of the computational cost associated with the assembly
of the stiffness matrix can be achieved by the simultaneous integration of
a complete block-row of the discrete operator. Here, we evaluate all block-
entries of the form Ai,· = a(·, ϕiψ

n
i) simultaneously.13 Thereby, we reduce the

number of evaluations of the weight functions Wl for ωl ∈ Ci. This approach
is possible due to our decomposition scheme. Since the decomposition Dωij

of an integration domain ωij involves all neighbouring patches ωl ∈ Ci ∩ Cj

it is clear that each cell Ds̃
ωij

of such a decomposition Dωij
is also a cell Ds

ωii

of the decomposition Dωii
for the diagonal block-entry, i.e. Dωij

⊂ Dωii
for

all ωj ∈ Ci. Furthermore, the evaluation of the partition of unity function ϕi

on the test side of the weak form already involves all non-vanishing weight
functions Wl for ωl ∈ Ci. Therefore, we can compute the values for all non-
vanishing PU functions ϕl for ωl ∈ Ci simultaneously; i.e. we can evaluate all
PU functions ϕj on the trial side from the data necessary for the computation
of the value of the PU function ϕi on the test side of the weak form. Hence,

13 This simultaneous integration procedure can be viewed as a generalization of the
assembly of the stiffness matrix by element matrices in the FEM.

220 M.A. Schweitzer

every non-vanishing weight function Wl is evaluated only once per quadrature
point independent of the quadrature rule used.
For the selection of an appropriate quadrature rule on the cells Ds

ωij
we now

can assume the smoothness of the integrands due to our decomposition ap-
proach. But still the quadrature rule has to be applicable to general situations
(general covers, weights and local basis functions ψn

i , etc.). Hence, we have
to find a fast converging, cheap quadrature rule on Ds

ωij
which allows for a

reliable dynamic stopping criterion for a wide range of integrands.
So-called sparse grid quadrature [33] rules are multidimensional interpolatory
rules with a substantially smaller number of integration nodes compared with
a tensor product rule. They are defined as special products of one-dimensional
interpolatory quadrature rules. Although the number of evaluations of the
integrand is significantly less for a sparse grid quadrature rule, the order of
the approximation is comparable to that of a full tensor product rule. Here, we
only state the fundamental construction principles and error bounds, see [33]
and the references cited therein for further details.
Consider a sequence of nested one-dimensional quadrature rules {Q1

l |Q1
l f :=∑n1

l
i=1 wlif(xli), n1

l = O(2l)} for univariate functions f : R → R with weights
wli, nodes xli and an error bound |Q1

l f −
∫

f | = O(2−lr) where f is assumed
to be r-times continuously differentiable. These assumptions hold for example
for the Clenshaw–Curtis and Gauss–Patterson [71] rules. With the help of the
difference quadrature rules ∆1

k

∆1
kf := (Q1

k − Q1
k−1)f with Q1

0f := 0

we can define the sparse grid quadrature rule Qd
l on level l in d dimensions

as
Qd

l f :=
∑

d∑
i=1

ki ≤ l + d − 1

(∆1
k1

⊗ · · · ⊗ ∆1
kd

)f

with f : R
d → R now denoting a multivariate function, l ∈ N and k =

(ki)d
i=1 ∈ N

d. Due to the restriction
∑d

i=1 ki ≤ l + d − 1 in the summation,
the number nd

l of quadrature points xd
i of the resulting sparse grid quadrature

rule Qd
l is only

nd
l = O(2lld−1).

Hence, the number of function evaluations for a sparse grid quadrature rule
is dramatically less (see Figure 3.7) than for a full tensor product rule where
the integrand has to be evaluated at O(2ld) quadrature points. This reduction
of the computational cost, however, does not compromise the approximation
quality significantly for smooth functions. When f is assumed to be r-times
continuously differentiable the following estimate holds:

|Qd
l f −

∫
f | = O(2−lrl(d−1)(r+1)).

Implementation and Parallelization of Meshfree Methods 221

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0
0.2

0.4
0.6

0.8
10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

Figure 3.7. Quadrature nodes of two sparse grid Gauss–Patterson rules, level l = 6
with 769 nodes in two dimension (left) and level l = 5 with 1023 nodes in three
dimension (right).

In summary, sparse grid quadrature rules are not only cheaper to evaluate
(especially in higher dimensions) compared with tensor product rules, but
rather their overall efficiency with respect to accuracy is significantly better.
In [33] the fast convergence of sparse grid quadrature rules based on Gauss–
Patterson rules (see Figure 3.7) is shown for a wide variety of function classes.
In fact, they have a polynomial exactness of 3 · 2l−1 − 1 and converge expo-
nentially for smooth integrands. Since, our integrands are smooth on the cells
Ds

ωij
of the constructed decomposition Dωij

we use Gauss–Patterson sparse
grid rules for the numerical integration of the entries of the stiffness matrix.
To ensure a reliable accuracy of our quadrature scheme, we use a simple
three level dynamic stopping criterion [69]. The quadrature on a cell Ds

ωij
is

stopped if

|Qd
l−1f −Qd

l−2f | ≤ c1εa +c2εr|Qd
l−1f | and |Qd

l f −Qd
l−1f | ≤ εa +c3εr|Qd

l f |

hold for all the integrals A(i,n),(j,m) of each block Ai,j . Here, c1, c2 and c3 are
non-negative constants and εa and εr are user supplied absolute and relative
tolerances. These tolerances which determine the accuracy of the integra-
tion have to be chosen with respect to the approximation space. Here, the
diameters diam(ωi), diam(ωj) of the cover patches ωi, ωj , the number of inte-
gration cells card(Dωij

), their respective diameters diam(Ds
ωij

) and the local
approximation orders pi and pj have to be considered. An automatic selec-
tion of the tolerances εa and εr which minimizes the computational work but
at the same time does not compromise the accuracy of the discretization [77]
is an open problem. Note that we limit the stopping criterion to the inte-
grals A(i,n),(i,m) associated with the block-diagonal entry Ai,i of the stiffness
matrix if we compute all integrals of a complete block-row simultaneously.
The overall numerical scheme for the assembly of the stiffness matrix is given
in Algorithm 3.3. Note that in step 4(b)iii we need to evaluate all weight
functions Wj only once per integration node p l.

222 M.A. Schweitzer

Algorithm 3.3. Assembly of Stiffness Matrix A = (Ai,j) = (A(i,n),(j,m))
For all i = 1, . . . , N :

1. For all ωj ∈ Ci:
Set Ai,j = 0.

2. Compute decomposition Dωii
= {Ds

ωii
} of patch ωi via neighbouring

patches ωj ∈ Ci and respective weight functions Wj .
3. Compute decomposition DΩ

ωii
= {Ds,Ω

ωii
} of integration domain ωi ∩ Ω.

4. For all integration cells Ds,Ω
ωii

∈ DΩ
ωii

:
(a) Set transformation Tωii

: [−1, 1]d → Ds,Ω
ωii

.
(b) For all ωj ∈ Ci with ωj ∩ Ds,Ω

ωii
�= ∅:

i. Set integration level l = 1.
ii. Set As,Ω

i,j = 0.
iii. For all integration points pl on level l:

Set pωii

l = Tωii
(pl).

Set As,Ω
i,j = As,Ω

i,j + a(ϕj(pωii

l)ψm
j (pωii

l), ϕi(pωii

l)ψn
i (pωii

l)).
iv. If stopping criteria for all As,Ω

i,j are fulfilled:
Set Ai,j = Ai,j + As,Ω

i,j . (→ 4)
v. Else:

If l < 6: Increase integration level l = l + 1. (→ 4(b)ii)
Else: Refine Ds,Ω

ωii
. (→ 4)

Remark 3.3.
In step 4(b)ii of Algorithm 3.3 we need to employ a volume integration rule
as well as a surface integration rule since the bilinear form a(·, ·) in general
consists of volume and surface integrals due to Nitsche’s approach. To this
end, we use the sparse grid construction in d dimensions for the volume terms
and in d − 1 dimensions for the surface terms.

Remark 3.4.
From the product construction of the sparse grid quadrature rules it is ob-
vious that the proposed numerical integration scheme will be most effective
for PUM shape functions ϕiψ

n
i where the higher order approximation func-

tion ψn
i is a product function itself; e.g., a tensor product of local univariate

polynomials. If we use other approximation functions with radial charac-
teristic or augment a local polynomial space by singular or other custom
functions [3,6,7,61] we may need to employ other quadrature rules (at least
for the singular shape functions) in step 4(b)iii of Algorithm 3.3. But since
the local basis {ψn

i } used on patch ωi is known in advance we can select an
appropriate quadrature rule prior to the assembly of the stiffness matrix.

Remark 3.5.
Since the discontinuities of the derivatives of the partition of unity functions
ϕi are located on the boundaries ∂Ds,Ω

ωii
of the integration cells Ds,Ω

ωii
, the

local quadrature scheme (for the volume terms) should not involve integration
nodes pl on the boundary ∂Ds,Ω

ωii
of the integration cells; i.e. so-called open

rules like the Gauss–Patterson rules should be used.

Implementation and Parallelization of Meshfree Methods 223

Figure 3.8. Tree-based approximation of a spherical domain (left), a smooth non-
convex domain (centre), and a quarter of a spherical domain with a spherical hole
(right) on level k = 5 (upper row) and level k = 7 (lower row).

Note that in step 3 we assume that we can easily compute the intersection
of the d-rectangular cell Ds

ωii
with the domain Ω. Furthermore, in step 4 we

assume that a (smooth) transformation Tωii
: [−1, 1]d → Ds,Ω

ωii
exists for each

integration cell Ds,Ω
ωii

= Ds
ωii

∩ Ω. These assumptions are essentially due to
the use of integration schemes based on products of univariate quadrature
rules. In general, they can only be fulfilled if we employ an appropriate ap-
proximation to the domain Ω. With the help of our tree construction we can
obtain such an approximation without much additional work.

Domain Approximation

Recall that in steps 5(a)ii and 5(b)iv of Algorithm 3.1 we only consider tree
cells CL which intersect the computational domain Ω; i.e. we need to define
shape functions on a patch ωL only if for the respective tree cell CL ∩ Ω �= ∅
holds. Then we set the respective patches ωL in such a way that they cover
their associated tree cell CL, i.e. ωL ⊃ CL. Hence, the cover patches do not
only cover the computational domain Ω but also the union of all tree cells CL

with CL ∩ Ω �= ∅. Therefore, the cover CΩ = {ωL} is a valid cover for Ω as
well as for ΩA :=

⋃
L CL with CL ∩ Ω �= ∅. The approximation ΩA ⊃ Ω can

be simplified with the help of the tree to only consist of a minimal number of
cells. To this end, we assign to each tree node the information if the respective

224 M.A. Schweitzer

tree cell CL is completely contained in the domain Ω or if it intersects the
boundary ∂Ω. With these data we can easily obtain an approximation to the
domain Ω and its boundary ∂Ω with a minimal number of cells by descending
the tree only for those nodes which intersect the boundary ∂Ω, see Figure
3.8. By construction the cells of this approximation are d-rectangular so that
the assumptions in Algorithm 3.3 are automatically fulfilled.

Remark 3.6.
Other approximation techniques for the computational domain can also be
used within the PUM. Note, however, that appropriate quadrature rules must
be available for the respective domain cells. For instance, if the domain is
approximated via a triangulation then quadrature rules on triangles must be
used in Algorithm 3.3.

Remark 3.7.
The tree-based approximation ΩA given above can also serve as a base for a
triangulation Th of the domain Ω, see e.g. [12].

The overall computational cost of Algorithm 3.3 depends on the number
of cells card(Dωii

) of the decomposition, i.e. on the order l of the weight
functions, the geometric location of the neighbours ωj ∈ Ci, their number
card(Ci), and the local quadrature rule used on the integration cells. The
order l of the spline weight function is determined by the global continuity
requirements. We always use the smallest allowable order l to minimize the
computational work, i.e. for a PDE of second order we use a linear spline
weight function so that l = 1 and ϕi ∈ C0. Due to our tree construction and
the small overlap parameter α ∈ (1, 2] we obtain small neighbourhoods Ci

which limits the number of integration cells necessary to resolve the discon-
tinuities of the derivatives of ϕi. Furthermore, the use of sparse grid rules on
each integration cell reduces the computational cost with respect to a single
integration cell significantly compared with tensor product rules.

Regularized Cover Construction
A further reduction of the computational cost associated with the assembly
of the stiffness matrix can be achieved only by reducing the number of cells of
the decomposition Dωij

.14 This can be attained by the alignment of the cover
patches ωk and their subdivisions {ωq

k}. Taking into account that we limit
ourselves to the use of tensor product B-splines as weight functions Wi in the
14 The decomposition itself, however, is minimal in the sense that it has a minimal

number card(Dωij) of integration cells necessary to resolve the piecewise charac-
ter of the PU functions. In our construction (2.1) of the PU we have to allow for
higher orders t of the B-spline weights to be able to construct global solutions
uPU with higher order regularity; i.e. uPU ∈ Ct−1. Therefore, the remaining in-
fluences on the computational effort involved with the numerical integration of
the stiffness matrix entries are the geometric neighbouring relations of our cover
patches ωi.

Implementation and Parallelization of Meshfree Methods 225

construction of the PU (2.1) we can align the cover patches to simplify the
algebraic structure of the resulting partition of unity functions ϕi. Here, we
eliminate some of the flexibility in step 5(b) of Algorithm 3.1 for the choices
of xL and α. This, however, does not lead to a significantly larger number
of neighbours. Hence, the number of nonzero blocks of the stiffness matrix
stays (almost) constant. Yet, the number of integration cells card(Dωij

) is
substantially reduced by this modification, see [40,76] for details.
Recall that we split the integration domain ωij into several cells by its inter-
sections ωij ∩ ωq

k with the cells ωq
k of the subdivision induced by the weight

Wk on ωk ∈ Cij during the construction of the decomposition Dωij
. Hence,

we align these intersections ωij ∩ ωq
k, which subsequently induce at least one

integration cell Ds
ωij

, if we align the neighbouring cover patches ωk with re-
spect to their subdivisions {ωq

k}. Therefore, many of the ωij ∩ ωq
k will lead

to the same integration cell Ds
ωij

, and the overall number of integration cells
card(Dωij

) will be reduced significantly. This alignment of the cover patches
ωk and their subdivisions {ωq

k} is achieved by the following algorithm where
we make changes to the original Algorithm 3.1 only in step 5(b).15 However,
we give the overall algorithm for the sake of completeness.

Algorithm 3.4. Regular Hierarchical Cover Construction

1. Given the domain Ω ⊂ R
d and a bounding box RΩ =

⊗d
i=1[l

i
Ω, ui

Ω] ⊃ Ω.
2. Given the initial point set P̃ = {xj |xj ∈ Ω, j = 1, . . . , Ñ}.
3. Build a d-binary tree over RΩ such that per leaf L at most one xi ∈ P̃

lies within the associated cell CL :=
⊗d

i=1[l
i
L, ui

L]; see Figure 3.1.
4. Set P = ∅, CΩ = ∅.
5. For the root cell CL =

⊗d
i=1[l

i
L, ui

L] = RΩ:
(a) If current tree cell CL is an INNER tree node and CL ∩ Ω �= ∅:

i. Descend tree for all successors CS of CL. (→ 5(a))
ii. Set patch ωL such that

⋃
ωS ⊂ ωL.

(b) Else if CL ∩ Ω �= ∅:
i. Set patch ωL =

⊗d
i=1[x

i
L−hi

L, xi
L+hi

L] ⊃ CL where hi
L = αt

2 (ui
L−

liL), xi
L = liL + 1

2 (ui
L − liL), and αt > 1.

ii. Set P = P ∪ {xL}, CΩ = CΩ ∪ {ωL}.

The parameter αt ∈ (1, 2] in the computation of the support size in step 5(b)i
is dependent only on the weight function used in (2.1); i.e. the order t of the
B-spline. By construction the one-dimensional distances from a point xL ∈ P
to its direct neighbouring point xj ∈ P , i.e. the point xj corresponding to
the sibling tree cell Cj =

⊗d
i=1[l

i
j , u

i
j], are |xi

L − xi
j | = ui

L − liL = ui
j − lij ,

where CL =
⊗d

i=1[l
i
L, ui

L] is the cell associated with xL. Hence, if we choose
αt in such a way that condition (3.1) is fulfilled, we align not only the patch
ωL with its direct neighbouring patch ωj but rather also their corresponding

15 Hence, the approximation of the computational domain is not affected by this
regularization technique.

226 M.A. Schweitzer

Figure 3.9. Points of an initial Halton(2, 3) point set P̃ with Ñ = card(P̃) = 64
points distributed in RΩ = Ω = [0, 1]2 (left), the points of the generated point set
P with card(P) = 106 (centre) after Algorithm 3.4, and the constructed cover CΩ

with αt = 2 (right).

subdivisions {ωq
L} and {ωq

j} induced by the weight functions WL and Wj ;
see Figure 3.9. Moreover, this alignment of the patches does not increase the
number of neighbours card(CL). With the notation hi

t := αt

t+1 (ui
L − liL) for

the B-spline interval size, the condition reads

xi
L + t+1

2 hi
t = xi

j −
(

t+1
2 − m

)
hi

t = xi
L + (ui

L − liL) −
(

t+1
2 − m

)
hi

t (3.1)

for the ith coordinate with i = 1, . . . , d. Here, the parameter m ∈ N indicates
the amount of overlap ωL ∩ ωj ∼

⊗d
i=1 mhi

t for the neighbour ωj ∈ CL. Any
integer m with 1 ≤ m ≤ t+1

2 leads to minimal neighbourhoods CL and mini-
mal decompositions DωLj

; i.e. the number of nonzero entries of the stiffness
matrix

∑
L card(CL) and the number of integration cells

∑
L,j card(DωLj

)
are (almost) constant. Therefore, it is advisable to choose the largest such
integer to control the gradients of the PU function ϕi. Solving (3.1) for αt

we have
αt =

t + 1
t + 1 − m

.

With the choice of t = 2n − 1 and maximal m = n, this yields αt = 2; in
general, we have 1 < αt ≤ 2. Due to this construction many of the points
xi ∈ P are covered only by the corresponding ωi. Therefore, we have ϕi(xj) =
δij for many PU functions ϕi and points xj ∈ P ; see Figure 3.10. In fact,
ϕi(x) = 1 holds not only for the point x = xi if we have αt < 2 but rather on
a subpatch ω̃i ⊂ ωi with xi ∈ ω̃i ∼

⊗d
i=1 hi

t; i.e. ϕi|ω̃i
≡ 1; see Figure 3.10.

When we compare the covers CΩ (Figures 3.2 and 3.9), the partition of unity
functions ϕi (Figures 3.3 and 3.10), and the respective integrands (Figures
3.4 and 3.11) generated by Algorithms 3.1 and 3.4, we clearly see the effect
of the alignment of the cover patches.
Note also that the cover patches ωL constructed with Algorithm 3.4 and
the bounding box RΩ always have the same aspect ratio; see Figure 3.9. If
we apply the algorithm given above to Ω = RΩ = [0, 1]d with αt = 2 to

Implementation and Parallelization of Meshfree Methods 227

Figure 3.10. The PU functions ϕi on Ω∩ωi generated by Algorithm 3.4 with the
input data from Figure 3.9 for an interior point (left), a boundary point (centre),
and a corner point (right) using linear B-splines (t = 1, αt = 2) in the Shepard
construction (2.1).

a uniformly distributed set of points P̃ , we construct a uniform grid (or at
least an r-irregular grid with very small r depending only on the quality of
the initial point set P̃ ; see Figure 3.9). Here, also the cells Ds

ωij
of the de-

composition Dωij
are (geometrically) identical to a bilinear finite element.

Furthermore, the PU {ϕi} generated by (2.1) will again be piecewise linear
for t = 1 just like their finite element counterpart in the GFEM (see Figure
3.10). Hence, in this situation our method does reconstruct functions ϕi that
are identical to bilinear finite element functions, and also our general decom-
position algorithm will recover the corresponding geometric elements. Hence,
the number of integrals to be evaluated in this situation with our method or
a FEM/GFEM are the same.

So far we were only concerned with the computational cost during the inte-
gration and the influence the shape functions ϕiψ

n
i have on the computational

efficiency of our PUM. Another important issue, however, is the stability of
the basis of our PUM space. Here, we also have to address the question of
whether the functions ϕiψ

n
i are indeed a basis. In the case of t = 1 and

αt = 2 the alignment of the cover patches ωi and their respective weight sub-
divisions {ωq

i } leads to the reconstruction of the finite element hat functions
for the PU. Hence, our PUM reduces to the GFEM in this situation. It is
well-known [8,9,78] that the GFEM (in general) generates linearly dependent
shape functions ϕiψ

n
i , the so-called nullity of the method. This is essentially

due to the fact that in the GFEM the PU functions ϕi already reconstruct
the linear polynomial. With our approach, the ϕi only reconstruct the linear
polynomial away from the boundary; close to the boundary we have ϕi ≡ 1.
Therefore, the shape functions are not linearly dependent. However, since the
small boundary layer where ϕi ≡ 1 decreases with larger N , the condition
number κ of the mass matrix is dependent on N ; i.e. the basis is not stable.
A simple cure for this stability problem is to use m < 1 in (3.1) when we
have t = 1; i.e. we limit ourselves to 1 < αt < 2 when t = 1. With αt < 2
we can find a subpatch ω̃i ⊂ ωi with vol(ωi) ≤ C vol(ω̃i), where ϕi |ω̃i

≡ 1
for many i. Therefore, the PU functions ϕi no longer reconstruct the lin-
ear polynomial independent of N , and the resulting shape functions form a
stable basis. We therefore allow for any value 1 < αt < 2 in Algorithm 3.4

228 M.A. Schweitzer

Figure 3.11. Surface plots of ∇ϕi∇ϕi for a partition of unity function based on
a cover from Algorithm 3.4 using a linear spline as generating weight function W
and an overlap parameter of α = 1.1 (left), α = 1.3 (centre), and α = 1.5 (right).

if t = 1.16 The number of integration cells increases somewhat due to this
generalization. The patches ωi are still aligned, but their respective weight
subdivisions are not. However, a comparison of the average number of inte-
gration cells required to resolve the piecewise character of the resulting PU
functions [40, 76] showed that we still need substantially fewer integration
cells compared with the covers from Algorithm 3.1.
Note that with Algorithm 3.4 we now may have P ∩ P̃ = ∅. However, this is
admissible due to the non-interpolatory character of the PUM shape functions
ϕiψ

n
i . We can interpret this change in the point set P as a change of the

weight functions Wk used during the Shepard construction (2.1). So far the
weight functions Wk and the cover patches ωk were assumed to be centred
on the given point xk (cf. Section 2.1), this, however, is not a necessary
condition for the PUM to work. Note that the constructed point set P is
only part of the implementation of the function space. The given point set
P̃ is still the set of all relevant points for the resolution of the function
space and the approximation of the domain. We can either store a separate
copy of the initial point set P̃ which is used in time dependent settings to
generate covers for future time steps [39] or allow for the associated patch
ωk and weight function Wk to be centered at a point other than xk, e.g.
with Algorithm 3.4 the weight functions Wk and cover patches ωk are now
centered at lL + 1

2 (uL − lL) rather than xk.17 This leaves the given points at
their original location and as before we have P = P̃ ∪Q with Algorithm 3.1.

Computational Complexity
The optimal computational complexity associated with the assembly of the
stiffness matrix A corresponds to the number of nonzeros of A, in our case
O(Np2d). If numerical integration is used this optimal complexity can hardly
be realized. First of all, we need an a priori estimate on the allowable er-
ror due to numerical integration [77] to establish a stable approximation.

16 A similar problem arises for higher order splines t > 1 only if αt > 2; e.g., we need
αt = 4 with t = 2. Therefore, we can stay with the minimal values of αt = 1.5 if
t = 2 and αt = 2 if t = 3.

17 Here, a cover patch ωk now needs to store the coordinates of the given point xk,
the centre xL of the associated tree cell CL and the radii hL.

Implementation and Parallelization of Meshfree Methods 229

For the PUM and most meshfree Galerkin methods this is an open prob-
lem, see Remark 3.8 below. Hence, we currently employ a dynamic stopping
criterion with user supplied relative and absolute tolerances for our numer-
ical integration scheme which makes the analysis of the computational cost
associated with the assembly of the stiffness matrix very challenging.18 Un-
der some reasonable assumptions, however, we can attain an estimate of the
computational work.
In general the cost CNI associated with the numerical integration of a single
entry of the stiffness matrix A is given by

CNI = O(nIC nIN CEI)

where nIC denotes the number of integration cells, nIN the number of inte-
gration nodes per cell, and CEI the cost associated with the evaluation of the
integrand. The number of integration cells nIC in our implementation, see
Algorithm 3.3, is determined by the number of jumps of the derivatives of
ϕi. Due to our regularized cover construction, see Algorithm 3.4, we have
nIC = O(3d(t + 1)d) where t denotes the order of the spline weight functions
W used.
On each of the integration cells the integrands are smooth so that a higher
order scheme can be used. We use a sparse grid Gauss–Patterson scheme
with nIN = O(2qqd−1) integration nodes where q denotes the refinement level
of the univariate Gauss–Patterson rule which has a polynomial exactness of
3 · 2q−1 − 1. Note that the sparse grid construction preserves this exactness
for higher dimensions d.
Due to our regularized cover construction we may make the assumption that
a partition of unity function ϕi can be well approximated by a piecewise poly-
nomial of degree l, cf. Figure 3.10. If we further assume that the coefficients
of a(·, ·) are piecewise constant functions, we can approximate all integrands
by a polynomial of degree (p+ t)2 on each integration cell and we can choose
the refinement level q ≈ ln(p+t) for the sparse grid Gauss–Patterson scheme.
Under these assumptions we can estimate the computational cost CA,NI as-
sociated with the assembly of the stiffness matrix by

CA,NI = O(N(p + t)(ln(p + t))d−1(dp + pd + p2d)).

Hence, CA,NI is optimal up to factor of O(p(ln p)d−1) for a fixed weight func-
tion W.

Remark 3.8.
An open problem in the PUM and most meshfree methods is the question of
selecting an appropriate accuracy for the stopping criterion in the numerical
integration of the entries of the stiffness matrix. Here, the goal is to allow for
the largest admissible integration error to reduce the computational cost, yet
18 Note also that the approximation may become instable if the user prescribed

tolerances are too crude.

230 M.A. Schweitzer

to maintain the order of approximation of the overall discretization [77]. Since
the size of an integration cell in Algorithm 3.3 may not be comparable to the
support size it is not an easy task to obtain an estimate which balances the
error due to integration and the approximation error without very restrictive
assumptions on the distribution of the points xi ∈ P .

Remark 3.9.
The alignment of the cover patches ωi in Algorithm 3.4 leads to partition of
unity functions with simpler algebraic structure, see Figure 3.10. Moreover,
this alignment generates regions in the domain where the neighbourhoods Ci

of the respective patches ωi are geometrically equivalent. Hence, the asso-
ciated partition of unity functions ϕi are only shifted versions of the same
function ϕ̃. Therefore, the respective entries in the stiffness matrix are iden-
tical if the PDE has constant coefficients and if the same local basis functions
are employed on these shifted patches. In this case, we can reduce the number
of integrals that need to be evaluated dramatically; i.e. we only compute a
specific stencil once and reuse the computed values for equivalent patches.

Remark 3.10.
In a FEM the integrals associated with the right hand-side vector f̂ are
often not evaluated directly. If a coefficient vector f̃ of the right hand-side
f of the PDE is available it is sufficient to approximate f̂ by the product
Mf̃ of the mass matrix M and the coefficient vector f̃ . This can reduce
the computational cost substantially especially when the same problem is
solved for multiple right hand-sides. Often an interpolation of f is used to
obtain a coefficient vector f̃ . Since the shape functions of the PUM are non-
interpolatory we need to find a different approach to attain an acceptable
approximation to f̃ . The construction of this approximation, however, must
be very efficient so that the overall computational cost are in fact reduced.
In Section 3.3 we present a very cheap localized projection technique which
can be used to obtain such a valid approximation f̃ .
Note that in our PUM not only need the mass matrix M but also more general
moment matrices M∂Ω on the boundary to approximate the surface terms due
to Nitsche’s method. The caching technique discussed in Remark 3.9 can be
used for the mass and the moment M∂Ω matrices on the boundary.

Remark 3.11.
With Algorithm 3.3 we implicitly define a particular integration scheme for a
certain bilinear form. For a different bilinear form we may obtain a different
decomposition and might employ local integration rules on a different level l.
Hence, if we use Algorithm 3.3 for instance for the assembly of the stiffness
matrix associated with a Poisson problem like (2.7) and for the assembly of
the respective mass matrix independently, the two resulting approximations
may be incompatible; i.e. they are evaluated at different integration nodes
pl. If multiple operators, i.e. bilinear forms, need to be assembled for a sin-
gle simulation it is advisable to evaluate all operators simultaneously using

Implementation and Parallelization of Meshfree Methods 231

the same integration nodes. To this end, we can either modify Algorithm 3.3
to deal with multiple bilinear forms simultaneously or we can implement a
modification where a pre-computed decomposition is reused. Here, the stop-
ping criteria should be evaluated for the highest order term. Similarly, the
right hand-side should also be evaluated at the same integration nodes as the
operator on the respective left hand-side.

Remark 3.12.
Note that the assembly of the stiffness matrix A does not make explicit use
of the tree data structure. Here, we employ a sparse matrix data structure
(for sparse block-matrices with dense blocks) to store the matrix A. Once the
neighbourhoods Ci are known the evaluation of a partition of unity function
and the matrix assembly are independent of the tree construction.

3.3 Multilevel Solution of Linear System

For a PUM discretization in d dimensions, the number of degrees of free-
dom is of the order dof = O(Npd) where N denotes the number of cover
patches and p is the approximation order. The number of nonzeros nnz of
the stiffness matrix is of the order O(Np2d). To allow for an efficient and
scalable meshfree simulation the employed linear solver should have a similar
complexity. Since there is no such optimal solver based on general algebraic
methods, non-optimal (sparse) direct solvers are often employed in meshfree
methods or generalized finite element methods [79]. Our goal is the develop-
ment of an iterative multilevel solver with optimal complexity for the PUM;
i.e. the number of iterations required to solve the linear system should be
independent of the number of points N and the approximation order p, and
the computational cost associated with a single iteration should be close to
O(Np2d).
Multigrid [47] and multilevel methods [83] have been developed in the late
1970s and early 1980s for the efficient solution of linear systems derived from
grid-based discretizations. The fundamental observation which led to the de-
velopment of multigrid methods was that classical iterative schemes like the
Jacobi- or the Gauss–Seidel method reduce oscillatory error components very
efficiently but their convergence behaviour breaks down for smooth errors.
Such smooth errors, however, can be approximated very well on a coarser
mesh. Furthermore, these formerly smooth functions (with respect to the
original mesh-width) are now again more oscillatory (with respect to the
coarser mesh-width). Hence, a classical iterative scheme on the coarser mesh
will again start to converge very efficiently. Now, we can either apply this
idea recursively or we can use a direct solver on the coarser mesh since the
number of degrees of freedom is smaller than on the original mesh. Finally,
we only need to correct the current iterate on the original mesh by the com-
puted solution on the coarse mesh to obtain a better approximation to the
solution of the linear system on the fine level. Hence, a multigrid method
essentially consist of two operations: the application of a classical iterative

232 M.A. Schweitzer

method (the so-called smoother) on the current mesh and the transfer of in-
formation between two successive meshes (the so-called interlevel transfer).
Obviously, certain properties of these two components and their interplay are
the key to the optimal convergence of multigrid methods [16]. The standard
prerequisites and basic assumptions for a multilevel algorithm are:

1. Let V0, . . . , VJ be a sequence of (nonnested) finite dimensional vector
spaces where VJ is the finest discretization space.

2. Assume that we have a linear prolongation operator Ik
k−1 : Vk−1 → Vk

for k = 1, . . . , J .
3. Assume that we have a linear restriction operator Ik−1

k : Vk → Vk−1 for
k = 1, . . . , J .

4. Assume that we have a symmetric positive definite bilinear form a (·, ·)
on the function space V and its respective representation Ak on the dis-
cretization spaces Vk for k = 0, . . . , J .

5. Assume that we have linear smoothing operators Spre
k : Vk × Vk → Vk

and Spost
k : Vk × Vk → Vk on the spaces Vk for k = 1, . . . , J .

With these spaces and operators we can define an abstract multiplicative
multilevel iteration, see Algorithm 3.5.

Algorithm 3.5. Multilevel Iteration Mν1,ν2
γ (k, xk, bk)

1. if k > 0:
(a) For l = 1, . . . , ν1:

Set xk = Spre
k (xk, bk).

(b) Set dk−1 := Ik−1
k (bk − Akxk).

(c) Set ek−1 := 0.
(d) For i = 1, . . . , γ: ek−1 = Mν1,ν2

γ (k − 1, ek−1, dk−1).
(e) Set xk = Ck (xk, ek−1) := xk + Ik

k−1 ek−1.
(f) For l = 1, . . . , ν2:

Set xk = Spost
k (xk, bk).

2. else:
(a) Set xk = A−1

k bk.

The parameter γ in Algorithm 3.5 determines the recursive cycling scheme
of the algorithm and thereby its overall computational complexity. The mul-
tilevel algorithm Mν1,ν2

γ (k, xk, bk) with γ = 1 is referred to as the V -cycle,
and for a choice of γ = 2 we get the so-called W -cycle [18].
Let us now turn to the question of how we can design a multilevel solver
for our partition of unity method. According to the multigrid motivation
given above there are essentially three major issues we need to address: First,
the question of how to construct an appropriate sequence of partition of
unity space V PU

k . Then, we must consider the transfer of information between
two partition of unity spaces V PU

k−1 and V PU
k on different scales. Finally, the

selection of an appropriate smoother for our multilevel partition of unity
method is the last crucial decision.

Implementation and Parallelization of Meshfree Methods 233

Construction of a Sequence of PUM Spaces
The hierarchical construction of a (fine level) cover CΩ = CJ

Ω enables us to
define a sequence of covers Ck

Ω for k = 0, . . . , J with similar properties at no
significant extra cost. This sequence of covers Ck

Ω can then be used to define
the sequence of PUM spaces V PU

k needed for our multilevel solver. To this
end, we need to set appropriate patches ωi,k on coarser levels k < J , i.e. for
INNER tree nodes, and to specify the respective polynomial degrees pi,k.
Recall that the amount of overlap ωi,k∩ωj,k of two neighbouring patches ωi,k

and ωj,k have significant impact on the smoothness of the PU functions ϕi,k

and ϕj,k. Hence, it is not sufficient to choose coarser patches ωi,k for k < J
which only cover their respective successor patches ωS,k+1; compare step
5(a)ii of Algorithm 3.4. A coarser cover patch must be larger than the union
of its successor patches to control the size of the gradients of the partition of
unity functions. Hence, we choose the size of a coarser cover patch to be twice
as large as the size of its successor patches; i.e. we fix the ratio of diam(ωi,k)
and diam(ωi,k ∩ ωj,k) independent of the level k.

Algorithm 3.6. Multilevel Cover Construction

1. Given the domain Ω ⊂ R
d and a bounding box RΩ =

⊗d
i=1[l

i
Ω, ui

Ω] ⊃ Ω.
2. Given the initial point set P̃ = {xj |xj ∈ Ω, j = 1, . . . , Ñ}.
3. Build a d-binary tree over RΩ such that per leaf L at most one xi ∈ P̃

lies within the associated cell CL :=
⊗d

i=1[l
i
L, ui

L].
4. Set J to the finest refinement level of the tree.
5. Set Pk = ∅, Ck

Ω = ∅ for k = 0, . . . , J .
6. For the root cell CL =

⊗d
i=1[l

i
L, ui

L] = RΩ:
(a) If current tree cell CL is an INNER tree node and CL ∩ Ω �= ∅:

i. Descend tree for all successors CS of CL. (→ 6(a))
ii. Set patch ωL =

⊗d
i=1[x

i
L−hi

L, xi
L+hi

L] ⊃ CL where xL = 1
2d

∑
xS

is the centre of its successors points xS and hi
L = 2 max hi

S is twice
the maximum radius of its successors hi

S .
iii. Set active levels lmin

L = lmax
L = min lmin

S − 1 and update for all
successors lmin

S = min lmin
S .

iv. Set polynomial degree pL := min pS to minimal degree of its
successors.

(b) Else if CL ∩ Ω �= ∅:
i. Set patch ωL =

⊗d
i=1[x

i
L−hi

L, xi
L+hi

L] ⊃ CL where hi
L = αt

2 (ui
L−

liL), xi
L = liL + 1

2 (ui
L − liL), and αt > 1.

ii. Set active levels lmin
L = lmax

L = J .
iii. Set polynomial degree to some given value pL.
iv. Set PJ = PJ ∪ {xL}, CJ

Ω = CJ
Ω ∪ {ωL}.

7. For k = 0, . . . , J − 1:
(a) Set Pk = {xL | lmin

L ≤ k ≤ lmax
L }.

(b) Set Ck
Ω = {ωL | lmin

L ≤ k ≤ lmax
L }.

234 M.A. Schweitzer

Figure 3.12. Multilevel cover construction with Algorithm 3.6 in two dimensions.
The cell decompositions and its respective tree representation (upper right, white:
INNER tree nodes, gray shaded: LEAF tree nodes) for the fine level point set PJ = P4

(upper row), and two coarser level point sets P3 (centre row) and P2 (lower row).
The leaves of the tree correspond to the points xL ∈ Pk.

Note that the active (discretization) levels k with lmin
L ≤ k ≤ lmax

L of a partic-
ular patch ωL can be completely unrelated to the respective tree refinement
level, see steps 6(a)iii and 6(b)ii. With this algorithm19 we define a coarser
cover Ck−1

Ω to a cover Ck
Ω by collapsing those leaves of the tree into its parent

tree node whose siblings are also leaves (with respect to the current level k),
see Figure 3.12. Note however that the corresponding coarser patch ωj,k−1 is
not the agglomerate of its successor patches ωi,k. A coarser patch needs to be
slightly larger than that to control the amount of overlap on coarser levels,
i.e. to control the gradients of coarser partition of unity functions ϕj,k−1.
Furthermore, the described cell agglomeration principle does not translate
(in general) to a nested sequence of function spaces V PU

k due to the Shep-
ard construction (2.1) for the partition of unity. Each PUM space V PU

k with
k = 0, . . . , J is defined according to the single level construction presented in

19 We can also construct a sequence of more general covers (Algorithm 3.1) by
changing step 6(b)i accordingly. The definition of coarser patches in step 6(a)ii
is not affected by such a change.

Implementation and Parallelization of Meshfree Methods 235

Section 2.1; i.e. starting from the respective cover Ck
Ω we set up the Shepard

partition of unity {ϕi,k} via (2.1) and define the global PUM space

V PU
k :=

∑
ϕi,k span〈{ψpi,k

i,k }〉 = span〈{ϕi,kψ
pi,k

i,k }〉.

Note that a geometric patch ωL may be resident on several (discretization)
levels k, e.g. ωL = ωi,k = ωj,k−1 so that ωL ∈ Ck

Ω and ωL ∈ Ck−1
Ω , see

Figure 3.12. Nevertheless, the corresponding shape functions on level k may
differ from those on level k − 1. Since the geometric neighbourhoods Ci,k

and Cj,k−1 and the weight functions of the respective neighbours on different
levels can change, the corresponding partition of unity function may change,
i.e. ϕi,k �= ϕj,k−1. Hence, the shape functions ϕi,kψn

i,k associated with ωi,k =
ωL on level k are different from those ϕj,k−1ψ

n
j,k−1 on level k − 1, even if

the local approximation space V
pi,k

i,k = V
pj,k−1
j,k−1 = V pL

L on the cover patch
ωi,k = ωj,k−1 = ωL is not changed between levels k and k − 1. Therefore,
the PUM spaces V PU

k and V PU
k−1 on two successive levels k and k − 1 are in

general nonnested, i.e. V PU
k �⊃ V PU

k−1.

Remark 3.13.
Note that the tree construction of the cover patches ωi,k leads to a sequence
of covers Ck

Ω where for each cover patch ωi,k ∈ Ck
Ω on level k we have exactly

one cover patch ωĩ,k−1 ∈ Ck−1
Ω such that ωi,k ⊆ ωĩ,k−1. Every cover patch ωL

corresponds to a tree-cell CL and vice versa. Either a fine cover patch ωi,k

is also element of the coarse cover Ck−1
Ω , then we have ωi,k = ωĩ,k−1, or the

cover patch ωĩ,k−1 which corresponds to the parent tree-cell of ωi,k is element
of Ck−1

Ω and is the only coarse patch ωl,k−1 that fulfills ωl,k−1 ⊇ ωi,k; i.e. in
this case ωj,k−1 ⊃ ωi,k holds, see Figure 3.12.

Remark 3.14.
The neighbourhoods Ci,k := {ωj,k ∈ Ck

Ω |ωi,k ∩ ωj,k �= ∅} on all levels k can
be computed with Algorithm 3.2 if we extend step 2(a) to include a test of
the active level lmin

L ≤ k ≤ lmax
L .

Now that we have a sequence of PUM function spaces V PU
k which are in

general nonnested, i.e.

V PU
0 �⊂ V PU

1 �⊂ V PU
2 �⊂ · · · �⊂ V PU

J ,

the next step in the development of a multilevel solver is the design of ap-
propriate interlevel transfer operators

Ik
k−1 : V PU

k−1 → V PU
k and Ik−1

k : V PU
k → V PU

k−1.

Interlevel Transfer
In addition to the fact that coarser shape functions ϕi,k−1ψ

n
i,k−1 cannot be

represented exactly on finer levels, i.e.

ϕi,k−1ψ
n
i,k−1 �=

∑
βm

j,kϕj,kψm
j,k,

236 M.A. Schweitzer

Figure 3.13. Uniform cells on level l and support of a single shape function (dark
gray shaded) on level l which overlaps 3d cells (left). The support of a coarser shape
function (gray shaded) on level l − 1 overlaps 4d cells on level l (right).

due to the nonnestedness of the spaces V PU
k , we also have to deal with non-

interpolatory shape functions ϕi,k−1ψ
n
i,k−1 and ϕj,kψm

j,k. Therefore, the two
classical approaches to the interlevel transfer problem, natural injection and
interpolation, are not available for our multilevel partition of unity method.
One approach toward the construction of the prolongation operators Ik

k−1 for
our nonnested spaces is the use of L2-projections Πk

k−1 : V PU
k−1 → V PU

k as
prolongations Ik

k−1 from V PU
k−1 onto V PU

k which are given by

Πk
k−1 = (Mk

k)−1(Mk
k−1)

where the storage requirement of Πk
k−1 is given by the sparsity patterns

of the mass matrix Mk
k on level k and the interlevel mass matrix Mk

k−1.
Therefore, we need to be concerned with the number of interlevel neighbours
card(Cj,k−1,k), where

Cj,k−1,k := {ωi,k ∈ Ck
Ω |ωi,k ∩ ωj,k−1 �= ∅}.

Let us assume for now that the tree in our cover construction is fully sat-
urated; i.e. all tree cells correspond to grid cells of a uniformly refined grid
with mesh-width hk = 2−k, i.e. ωi,k =

⊗d
l=1(x

l
i,k −αhk

2 , xl
i,k + αhk

2). Then it
is easy to see that the number of interlevel neighbours card(Cj,k−1,k) = 4d is
even larger than the number of (intralevel) neighbours card(Ci,k) = 3d, see
Figure 3.13. Hence, it becomes clear that the global projection Πk

k−1 suffers
from three major drawbacks:

1. The mass matrix Mk
k has to be inverted. Although the global basis

{ϕj,kψm
j,k} is stable with respect to the number of cover patches card(Ck

Ω),
see Section 2.1, the condition number κk of Mk

k is dependent on the local
approximation orders pj,k.

2. The sparsity pattern of the mass matrix Mk
k is identical to that of the

operator matrix Ak and therefore the storage requirement per level k is
doubled.

Implementation and Parallelization of Meshfree Methods 237

3. The sparsity pattern of the interlevel mass matrix Mk
k−1 is given by the

geometric neighbour relations ωi,k ∩ωj,k−1 �= ∅. Due to the overlap of the
cover patches the number of interlevel neighbours is rather large which
further increases the storage requirement per level.

These issues make the use of the global L2-projection Πk
k−1 too expensive in

practice. We need to find a way to avoid the inversion of the mass matrix
Mk

k and we also have to reduce the overall storage demand associated with
the interlevel transfer.
Within the PUM context we can construct a very cheap prolongation opera-
tor based on a localized L2-projection approach, see [41, 76] for details. The
localization of the L2-projection Πk

k−1 consists of two steps. At first consider
the basic PUM error estimate [8, 9]

‖v − vPU‖2
L2 (Ω) ≤ C

∑
i

‖v − vi‖2
L2 (ωi∩Ω), (3.2)

where vPU :=
∑

i ϕi

∑
n un

i ψn
i and vi :=

∑
n un

i ψn
i . From (3.2) we know that

it is sufficient to control the local errors ‖v−vi‖L2 (ωi∩Ω) on each cover patch
ωi. Now choose v = uPU

k−1 =
∑

j ϕj,k−1uj,k−1 =
∑

j ϕj,k−1

∑
m um

j,k−1ψ
m
j,k−1

and vPU = Ik
k−1u

PU
k−1 =

∑
i ϕi,kui,k =

∑
i ϕi,k

∑
n un

i,kψn
i,k so that (3.2) reads

‖uPU
k−1 − Ik

k−1u
PU
k−1‖2

L2 (Ω) ≤ C
∑

i

‖uPU
k−1 − ui,k‖2

L2 (ωi,k∩Ω). (3.3)

Hence, we observe that we can approximate the global coarse function uPU
k−1

locally on the fine cover patches ωi,k using the local basis functions ψn
i,k,

rather than approximating uPU
k−1 by the global shape functions ϕi,kψn

i,k on
the finer level k. Now in a second step we establish an upper bound for each
of the terms on the right-hand side of (3.3) utilizing the geometric hierarchy
of our tree. Due to our tree-based cover construction we can find exactly
one coarse patch ωĩ,k−1 for every fine patch ωi,k such that ωi,k ⊂ ωĩ,k−1

holds, see Remark 3.13. Hence, we can introduce the respective coarse local
function uĩ,k−1 associated with the unique coarse patch ωĩ,k−1 into each term
‖uPU

k−1 − ui,k‖L2 (ωi,k∩Ω) of (3.3) so that we obtain the estimate

‖uPU
k−1 − ui,k‖L2 (ωi,k∩Ω) ≤ ‖uPU

k−1 − uĩ,k−1‖L2 (ωi,k∩Ω)

+‖uĩ,k−1 − ui,k‖L2 (ωi,k∩Ω)
(3.4)

by the triangle inequality. This estimate allows us to approximate each coarse
local function uĩ,k−1, independent of all other local components uj,k−1 of
uPU

k−1, on the respective fine cover patch ωi,k with ωi,k ⊂ ωĩ,k−1 since the first
term of (3.4) is small by definition of uPU

k−1. Hence, we can set up our prolon-
gation operators Ik

k−1 via the so-called local-to-local L2-projection. To this
end, we project each local approximation ui,k−1 on level k− 1 independently

238 M.A. Schweitzer

to the finer level k using the hierarchical condition ωi,k ⊆ ωĩ,k−1 instead of
the geometric neighbour relation ωi,k∩ωj,k−1 �= ∅ only. The respective matrix
representation of this prolongation is given by

Ik
k−1 := Π̃k

k−1 := (M̃k
k)−1(M̃k

k−1) with

(M̃k
k)(i,n),(i,m) := 〈ψm

i,k, ψn
i,k〉L2 (ωi,k∩Ω) and

(M̃k
k−1)(i,n),(̃i,m) := 〈ψm

ĩ,k−1
, ψn

i,k〉L2 (ωi,k∩Ω).

The storage requirement of Ik
k−1 = Π̃k

k−1 is minimal. We only need to store
a single block-entry (M̃k

k)−1
i,i (M̃k

k−1)i,̃i for each patch ωi,k on level k since
Ik
k−1 = Π̃k

k−1 and Ik−1
k = (Ik

k−1)
T involve the hierarchical neighbours

CH
j,k−1,k := {ωi,k ∈ Ck

Ω |ωi,k ⊆ ωj,k−1},
CH

i,k,k−1 := {ωj,k−1 ∈ Ck−1
Ω |ωi,k ⊆ ωj,k−1}

rather than all neighbours Ci,k−1,k. Moreover, the respective integrals only
involve the local basis functions ψm

ĩ,k−1
and ψn

i,k and can be computed very effi-

ciently. Overall, the projection operator Π̃k
k−1 can be computed with O(Np3d

max)
operations in general (and with O(Npd

max) if we use orthogonal polynomials
locally) where pmax = maxi pi,k. Furthermore, it is exact for polynomials of
degree pmin = mini pi,k and therefore suitable also for higher order approx-
imations. Note that the construction is symmetric so that the prolongation
Ik
k−1 = Π̃k

k−1 as well as the restriction operators Ik−1
k = (Ik

k−1)
T are well-

suited for multilevel schemes for general PUM spaces with varying local basis
functions [76].
Smoothing Operators
The remaining ingredients for our multilevel solver, Algorithm 3.5, are the
smoothers Spre

k and Spost
k . Recall that a smoother should damp highly oscilla-

tory error components, so that the smoothed error can be well-approximated
on a coarser level. Note that we only coarsen the h-components of our PUM
approximation space, i.e. the partition of unity functions, independent of the
polynomial degree p. Hence, the quality of our multilevel solver with respect
to the approximation order p is essentially determined by the quality of the
smoother; i.e. we need to employ a p-robust smoother to obtain a p-robust
multilevel solver.
Smoothers usually are classical iterative schemes like the Jacobi- or Gauss–
Seidel iteration. These classical smoothing schemes as well as overlapping do-
main decomposition methods and even multigrid methods can be interpreted
in the framework of subspace correction methods (SCM) [17,23,49,70,83,84].
Hence, let us shortly review the abstract setting of an SCM.
The general idea is as follows: First, we write the discretization space V =∑N

j=1 Vj as the sum20 of subspaces Vj with maps Pj : Vj → V.21 Then, we

20 Note that we do not assume that the splitting is a direct sum.
21 It is sufficient to require V =

∑
j PjVj , i.e. the condition Vj ⊂ V is not necessary.

Implementation and Parallelization of Meshfree Methods 239

choose symmetric positive definite bilinear forms bj(·, ·) on each Vj repre-
sented by operators Bj such that solutions to the systems of linear equations
Bjuj = fj on Vj are easily computable, and B−1

j can be considered as an
approximate inverse to the restriction of A to Vj . Finally, we combine these
local approximate inverses B−1

j appropriately to define a global approximate
inverse to A on the discretization space V. There are essentially two ap-
proaches to the definition of an approximate inverse of A by the B−1

j , the
additive approach and the multiplicative approach.
In the so-called parallel subspace correction (PSC) or additive Schwarz meth-
od we set up an iterative solution process via the operator

MPSC := I−ω
N∑

j=1

PjTj = I−ω
(N∑

j=1

PjB
−1
j Rj

)
A, (3.5)

where ω is a relaxation parameter and the operators involved are defined by

a(u, v) = 〈Au, v〉V , bj(uj , vj) = 〈Bjuj , vj〉Vj
,

〈Rju, vj〉V = 〈u, Pjvj〉V , bj(Tju, vj) = a(u, Pjvj).

The iteration operator of the successive subspace correction (SSC) or mul-
tiplicative Schwarz method is given by

MSSC :=
N∏

j=1

(
I−PjTj

)
=

N∏
j=1

(
I−PjB

−1
j RjA

)
. (3.6)

Note that the PSC operator (3.5) can also be interpreted as a preconditioned
Richardson iteration where the preconditioner is given by

CPSC :=
N∑

j=1

PjB
−1
j Rj . (3.7)

Let us now restrict ourselves to the case of Bj := A|Vj
which means that we

only consider exact subspace solvers. Then, we have two degrees of freedom in
the design of our smoothing scheme: The splitting of the discretization space
and the type of the iteration, namely the additive scheme (3.5) or the multi-
plicative scheme (3.6). For instance the classical Jacobi- or the Gauss–Seidel
iteration is based on a splitting into one-dimensional subspaces; i.e. each sin-
gle shape function ϕi,kψn

i,k defines a particular subspace. Such a splitting
in to one-dimensional subspaces, however, is not very natural for our PUM
due to the specific product structure of the shape functions. The subspace
splitting should respect the product structure of the PUM shape functions
ϕi,kψn

i,k ∈ V PU
k . For the ease of notation we assume pi,k = p and omit the

level index k in the following.

240 M.A. Schweitzer

Figure 3.14. Sub-domains (light gray shaded) associated with the subspaces V̂n

(left), Vi from (3.8) (centre), and Ṽl from (3.9) (right) and the support of the shape
functions ϕiψ

n
i (dark gray shaded) based on a cover with α = 1.5.

The product structure of the shape functions ϕiψ
n
i implies two natural sub-

space definitions. For instance, we can define the subspaces

V̂n := spani〈ϕiψ
n
i 〉 := {v ∈ V PU | v =

∑
i

ϕiv
n
i ψn

i }.

These subspaces, however, contain functions with global support on the do-
main Ω, see Figure 3.14 (left), and the dimension of each subspace is of the
order O(N). Therefore, a direct solution of A|V̂n

is not feasible. We would
need to resort to fast iterative solution techniques for these subspace prob-
lems. Furthermore, we are interested in smoothing schemes Sk for Algorithm
3.5 based on our multilevel cover sequence Ck

Ω. Hence, there is no additional
benefit from the fact that the solutions to A|V̂n

contain global information
and the computational cost associated with the solution of the subspace prob-
lems make this splitting unsuitable for our construction. A more appropriate
subspace definition is given by

Vi := ϕiV
p
i = spann〈ϕiψ

n
i 〉 := {v ∈ V PU | v =

∑
n

ϕiv
n
i ψn

i }. (3.8)

These spaces contain functions only with local supports, see Figure 3.14 (cen-
tre). Furthermore, the dimension of the subspace Vi is given by the dimension
O(pd) of the local approximation spaces V p

i . Hence, we can compute the in-
verse (A|Vi

)−1 of each of the subspace problems with acceptable complexity
of O(p3d); i.e. one iteration of a PSC or SSC iteration based on this splitting
is of the order O(Np3d).
Note that both subspace definitions lead to a direct splitting of our PUM
function space V PU =

∑
i Vi =

∑
n V̂n; i.e. every basis function ϕiψ

n
i is

contained in exactly one subspace. In terms of the index pairs (i, n) we have
a disjoint decomposition of the index set {(i, n)} which induces a specific
partitioning of the PUM stiffness matrix A = (A(i,n),(j,m)). A PSC iteration
(3.5) based on the direct splitting V PU =

∑
i Vi corresponds to the classical

block-Jacobi iteration and the SSC iteration (3.6) corresponds to the block-
Gauss–Seidel iteration (BGS) where we only have a small overlap between the

Implementation and Parallelization of Meshfree Methods 241

supports of functions from different subspaces, see Figure 3.14 (centre). Even
though we consider a direct splitting and employ an exact solver (A|Vi

)−1

within a specific subspace Vi there are still couplings between the subspaces
due to the overlap of the supports via the global problem A. The quality
of the PSC and SSC iterations is obviously determined by the strength of
these couplings. The two parameters within our PUM which can influence
the strength of the couplings between two different subspaces Vi and Vj ,
and hence the quality of the iterations, are the overlap parameter α used
in our cover construction and the polynomial degree p. Therefore, the BGS
smoothing scheme will not be robust with respect to p; i.e. the quality of the
smoother will depend on p, see Figure 3.15.
One approach to overcome this p-dependence is to consider subspace split-
tings V PU =

∑
l Ṽl which are no longer direct splittings, i.e. a basis function

ϕiψ
n
i may belong to several subspaces Ṽl. Consider the subspace definition

Ṽl :=
∑

ωi∩ωl �=∅
Vi = span(i,n),i∈Cl

〈ϕiψ
n
i 〉 (3.9)

where Cl := {i |ωi∩ωl �= ∅} denotes the neighbourhood of the cover patch ωl,
see Figure 3.14 (right). The subspace Ṽl contains all functions ϕiψ

n
i whose

support ωi has a non-vanishing intersection with the patch ωl. Hence, when
we solve the subspace problem A|Ṽl

we resolve all couplings involving the basis
functions ϕlψ

q
l . Therefore, for each patch ωl there is one subspace problem

A|Ṽl
which resolves all couplings involving the associated basis functions ϕlψ

q
l

independent of the overlap parameter α and the polynomial degree p.
Since the subspace splitting into Ṽl is not a direct splitting it does not corre-
spond to a simple partitioning scheme of the stiffness matrix A. Here, we have
to assemble the (discrete) local subproblems Al,l from the global linear sys-
tem via the Galerkin products Al,l := PT

l APl where Pl denotes the discrete
extension operator which embeds the subspace Ṽl in the global PUM space
V PU. In our case Pl is just a mask matrix, i.e. a reduced identity matrix.
With the matrices A and Pl the application of the SSC iteration operator
(3.6) to a linear system Aũ = f̂ can be realized by Algorithm 3.7. In the
following this iteration referred to as a multiplicative overlapping Schwarz
(MOS) smoother.

Algorithm 3.7. Successive subspace correction method
For all l = 1, . . . , N :

1. Compute local residual f̂l := PT
l (f̂ − Aũ).

2. Solve subspace problem (PT
l A Pl)ũl = Al,lũl = f̂l.

3. Update global iterate ũ = ũ + Plũl.

In Figure 3.15 we give the smoothing results obtained after one iteration of
the BGS and the MOS smoother for p = 1 and p = 5. From these surface
plots we can clearly observe that the MOS smoother gives much smoother

242 M.A. Schweitzer

Figure 3.15. Random valued initial guess (left) and smoothing results using
a block-Gauss–Seidel (centre) and a multiplicative overlapping Schwarz smoother
(right). Depicted are the current iterates after a single application of the smoother.
The discretization was based on a uniform node arrangement on level 5 and em-
ployed polynomials of degree p = 1 (upper row) and p = 5 (lower row).

iterates than the BGS smoother. More notably, the quality of the BGS
smoother deteriorates for higher order approximations. The results for p = 5
are not as smooth as for p = 1. For the MOS smoother we find a completely
different behaviour. There is no deterioration in the quality for larger p. In
fact it even seems that the results for p = 5 are better than for p = 1.

Computational Complexity
To estimate the computational cost associated with the multilevel iteration
operator M

(ν1,ν2)
γ , see Algorithm 3.5, we need to consider the assembly of the

prolongation Ik
k−1 and restriction Ik−1

k = (Ik
k−1)

T operators, and the setup
of the smoothing schemes Spre

k and Spost
k on all levels.

The local-to-local projection Ik
k−1 = Π̃k

k−1 on a particular level k can in
general be computed with O(Nkp3dk) operations where Nk = card(Ck

Ω)
and pk = maxi pi,k. Similarly, the BGS and the MOS smoothers require
O(Nkp3d

k) operations due to the computation of A−1
i,i for all i = 1, . . . , Nk.

The application of the prolongation operator Ik
k−1 = Π̃k

k−1, the restriction op-
erator Ik−1

k = (Ik
k−1)

T , and the smoothers Spre
k = Spost

k requires only order
O(Nkp2d

k) operations.
Hence, one iteration of our multilevel solver is of optimal complexity with
respect to the number of patches NJ = card(CJ

Ω) if the series

J∑
k=0

γk NJ−k

NJ
< ∞ for J → ∞ (3.10)

Implementation and Parallelization of Meshfree Methods 243

converges. If the number of patches Nk = card(Ck
Ω) is reduced at a constant

rate from level to level, (3.10) holds and our multilevel iteration M
(ν1,ν2)
γ can

be applied with O(NJ) operations.
With respect to the polynomial degree p = maxi,k pi,k, the optimal complex-
ity is O(p2d) since the local matrix blocks Ai,j are generally dense. Yet, due
to the direct solves for the diagonal blocks Ai,i one iteration of our multilevel
solver M

(ν1,ν2)
γ is optimal up to a factor of O(pd) only. Therefore, we obtain

the solution of a linear system Aũ = f̂ up to a prescribed relative accuracy
ε with O(ln(1/ε)NJp3d) operations if the rate of convergence of the solver is
independent of the number of patches NJ and independent of the polynomial
degree p. The results presented in [41, 76] show that the V (1, 1)-cycle, i.e.
the M

(1,1)
1 iteration, converges with a rate which is independent of NJ for

the BGS smoother. However, the rate is not independent of the polynomial
degree p. On the other hand the V (1, 1)-cycle with the MOS smoother con-
verges with a rate which is independent of the number of patches NJ and the
polynomial degree p [38]. However, the MOS smoother is much more expen-
sive since it involves a rather large constant so that for a practical range of
NJ and p the multigrid solver Algorithm 3.5 with the BGS smoother may
give a faster solver with respect to actual computational time.

4 Parallelization

With the algorithms given in the previous section we can carry out simula-
tions with several hundred thousand degrees of freedom efficiently on a single
processor. However, the storage limitations of a single processor machine in
general render a simulation with millions of degrees of freedom not feasible.
For very large simulations we must resort to distributed memory parallel
computers. Hence, we need to parallelize the algorithms given above to be
able to deal with large scale problems.
Our parallelization follows the data decomposition approach. Here, the main
ingredients are a parallel key-based tree implementation and a space filling
curve load balancing scheme. The overall method can be split into three major
steps: The initial tree construction and load balancing step, the assembly step
where we set up the stiffness matrices Ak on all levels k = 0, . . . , J and the
interlevel transfers Ik−1

k and Ik
k−1, and finally the solution step where we use

a multiplicative multilevel iteration to solve the linear system AJ ũJ = f̂J .
The load balancing step as well as the assembly step require some infor-
mation about the neighbouring patches. The neighbour search in parallel
computations is the most challenging task since we need to determine the
communication pattern and have to exchange the appropriate data between
the processors. This is further complicated by our multilevel construction and
the necessary increase in the support sizes on coarser levels, see Section 4.4.

244 M.A. Schweitzer

4.1 Parallel Data Decomposition

In general there are two main tasks associated with the efficient paralleliza-
tion of any numerical computation on distributed memory computers. The
first is to split up the data evenly among the participating processors; i.e.
the associated computational work should be well-balanced. The second is to
allow for an efficient access to data stored by another processor; i.e. on dis-
tributed memory parallel computers also the amount of remote data needed
by a processor should be small.
In a data decomposition approach we partition the data, e.g. the computa-
tional domain or mesh, among the participating processors [72]. Then, we
simply restrict the operations of the global numerical method to the assigned
part of the data/domain. A processor has read and write access to its local
data but only read access to remote data it may need to complete its local
computation. On distributed memory machines these required data have to
be exchanged explicitly in distinct communication steps.
The quality of the partition of the domain/data essentially determines the
efficiency of the resulting parallel computation. The local parts of the data
assigned to each processor should induce a similar amount of computational
work so that each processor needs roughly the same time to complete its
local computation. Here, a processor may need to access the data of the
neighbouring sub-domains to solve its local problem. Hence, the geometry
of the sub-domains should be simple to limit the number of communication
steps and the communication volume. The number of neighbouring proces-
sors (which determines the number of communication steps) should be small
and the geometry of the local boundary (which strongly influences the com-
munication volume) should be simple, i.e. its size should be small.

Key Based Tree Implementation
In a classical tree implementation the topology of the tree is explicitly en-
coded via pointers from a tree node to its successors. Such a pointer based
implementation, however, is not easily parallelized especially on distributed
memory machines. Hence, we use a different implementation of a d-binary
tree [76, 81, 82]. Here, the tree is realized with the help of a hashed associa-
tive container. To this end, a unique label is assigned to each possible tree
cell and instead of linking a cell directly to its successor cells, the labelling
scheme implicitly defines the topology of the tree and allows for the easy
access to successors and ancestors of a particular tree cell. Furthermore, we
can randomly access any cell of the tree via its unique label. This allows us to
catch accesses to non-local data in parallel computations and we can easily
compute the communication pattern and send and receive all necessary data
to complete the local computation.
The labelling scheme must encode the topology of the tree. To this end, the
labelling scheme maps tree cells CL =

⊗d
i=1[c

i
L, ci

L + hi
L] ⊂ R

d to a single
integer value kL ∈ N0, the key . For instance, we can use the d-binary path
as the key value kL associated with a tree cell CL. The d-binary path kL is

Implementation and Parallelization of Meshfree Methods 245

successor cell binary key value integer key value

[c1
L, c1

L + 1
2
h1

L] × [c2
L, c2

L + 1
2
h2

L] kL00 4kL

[c1
L, c1

L + 1
2
h1

L] × [c2
L + 1

2
h2

L, c2
L + h2

L] kL01 4kL + 1

[c1
L + 1

2
h1

L, c1
L + h1

L] × [c2
L, c2

L + 1
2
h2

L] kL10 4kL + 2

[c1
L + 1

2
h1

L, c1
L + h1

L] × [c2
L + 1

2
h2

L, c2
L + h2

L] kL11 4kL + 3

Table 4.1. Path key values for the successor cells of a tree cell CL =
⊗d

i=1[c
i
L, ci

L +
hi

L] with associated key kL in two dimensions.

defined by the search path that has to be completed to find the respective cell
in the tree. Starting at the root of the tree, we set kL = 1 and descend the
tree in the direction of the cell CL. Here we concatenate the current key value
kL (in binary representation) and the d Boolean values 0 and 1 associated
with the decisions to which successor cell the descent continues to reach the
respective tree cell CL. In Table 4.1 we give the resulting path key values kL

for a two dimensional example. Note that the key value kL = 1 for the root
cell is essentially a stop bit which is necessary to ensure the uniqueness of
the key values.

Parallel Key Based Tree Implementation
The data structure which describes the computational domain in our PUM
is a d-binary tree (quadtree, octree) used for the cover construction and the
fast neighbour search for the evaluation of the Shepard PU functions (2.1).
The use of a global unique integer key for each cell of the tree allows for a
simple description of a partitioning of the computational domain. The set
of all admissible22 keys {0, 1, . . . , kmax} is simply split into ℘ subsets which
are then assigned to the ℘ processors. We subdivide the range of keys into ℘
intervals

0 = r0 ≤ r1 ≤ · · · ≤ r℘ = kmax

and assign the interval [rq, rq+1) to the qth processor, i.e. the set of tree cells
assigned to the qth processor is {CL | kL ∈ [rq, rq+1)}. With this very simple
decomposition each processor can identify which processor stores a particular
tree cell CL. A processor has to compute only the key value kL for the tree
cell CL and the respective interval [rq, rq+1) with kL ∈ [rq, rq+1) to determine
the processor q which stores this tree cell CL. The question now arises if such
a partition of the domain with the path keys kL (see Section 3 is a reasonable
choice? Obviously the partitioning of the tree should be done in such a way
that complete sub-trees are assigned to a processor to allow for efficient tree
traversals. But the path key labelling scheme given above orders the tree cells
rather horizontally (see Figure 4.1) instead of vertically. Therefore, we need
to transform the path keys kL to so-called domain keys kD

L .
A simple transformation which leads to a vertical ordering of the tree cells
is the following: First, we remove the leading bit (the initial root key value)
22 The maximal key value kmax is a constant depending on the architecture of the

parallel computer.

246 M.A. Schweitzer

k=16 k=17 k=18 k=19

k=4 k=5 k=6

k=28 k=29 k=30 k=31

k=7

k=1

Figure 4.1. Horizontal ordering of a tree induced by the path key values k.

from the key’s binary representation. Then we shift the remaining bits all the
way to the left so that the leading bit of the path information is now stored in
the most significant bit.23 Assume that the key values are stored as an 32 bit
integer and that we are in two dimensions. Then this simple transformation
of a path key value kL to a respective domain key value kD

L is given by

kL = 000000000000000000000001 01110010︸ ︷︷ ︸
path

kD
L = 01110010︸ ︷︷ ︸

path

000000000000000000000000. (4.1)

With these domain keys kD
L the tree is now ordered vertically and we can

assign complete sub-trees to a processor using the simple interval domain
description [rq, rq+1).

Remark 4.1.
Note that the transformed keys are no longer unique and cannot be used as
the key value for the associative container to store the tree itself. Obviously,
a successor cell CS of a tree cell CL can be assigned the same domain key as
the tree cell, i.e. kD

S = kD
L . Hence, we use the unique path keys kL for the

container and the associated domain keys kD
L for the domain description, i.e.

for the associated interval boundaries [rq, rq+1).

Note that the description of the data partition via the intervals [rq, rq+1)
defines a minimal refinement stage of the tree which has to be present on all
processors to ensure the consistency of the tree. In the following we refer to
this top part of the tree as the common global tree. The leaves CL of the com-
mon global tree are characterized by the fact that they are the coarsest tree
cells for which all possible successor cells are stored on the same processor,
see Figure 4.2. The domain key values kD

S of all possible successor cells CS lie
in the same interval [rq, rq+1) as the domain key kD

L . We therefore refer to
the leaves of the common global tree as local sub-tree roots.
23 This transformation needs O(1) operations if we assume that the current refine-

ment level of the tree is known, otherwise it is of the order O(J), where J denotes
the number of levels of the tree.

Implementation and Parallelization of Meshfree Methods 247

Figure 4.2. Common global tree (dashed, gray shaded) for a partition onto three
processors. Local sub-tree roots (dark gray shaded) and the local sub-tree cells
(white) for the first (left), second (centre) and third processor (right).

The order of the tree cells induced by the domain keys kD
L given above is

often referred to as bit-interleaving, the Morton-order, the Z-order or the N-
order. The curve induced by mapping the domain keys to the associated cell
centres corresponds to the Lebesgue curve (Figure 4.3 (upper left)) which is
a space filling curve [73]. There are many space filling curves with different
properties which might be more suitable for our needs; e.g. the sub-domains
generated by the Lebesgue curve may be not connected [86] even for a d-
rectangle, see Figure 4.3 (upper right). This increases the size of the local
boundary and thereby the communication volume and possibly the number
of communication steps.

Figure 4.3. The Lebesgue curve (upper left) and the constructed sub-domains (up-
per right) for a partition onto three processors. The sub-domains are not connected
since the curve does not have the locality property. The Hilbert curve (lower left)
and the constructed sub-domains (lower right) for a partition onto three processors.
The sub-domains are connected due to the locality property of the curve.

248 M.A. Schweitzer

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
data partition

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
data partition

Figure 4.4. A partition of the point set PJ onto four processors (colour coded)
using the domain keys kD

L based on the Lebesgue curve (left), and the domain keys
kD

L based on the Hilbert curve (right).

4.2 Load Balancing with Space Filling Curves

The properties of space filling curves with respect to partitioning data for
parallel computations have been studied in [85, 86]. Here, it turns out that
the Hilbert curve (Figure 4.3 (lower left)) is more suitable for partitioning
irregular data than the Lebesgue curve, see Figure 4.4. It provides a better
data locality, e.g. the constructed sub-domains for a d-rectangle are connected
(Figure 4.3 (lower right)) and the size of the local boundaries is of optimal
order. Hence, we use the Hilbert curve instead of the Lebesgue curve to order
the tree in our implementation; i.e. we use a different transformation than
(4.1) to map the path keys kL to domain keys kD

L . This transformation of the
path key values to Hilbert curve keys is more involved than the transforma-
tion (4.1) to Lebesgue curve keys, but it can also be realized with fast bit
manipulations, see [76, Appendix B] for details.24

By changing the interval boundaries {rq | q = 0, . . . , ℘}, which describe the
decomposition of our tree, we can balance the load among the processors.
To this end we assign estimated work loads wL as weights to the leaves CL

of the tree. Then we compute the current load estimate wq̂ =
∑

wL on
every processor q̂ and gather all remote load estimates wq with q �= q̂. In
the next step, the global load estimate w =

∑℘−1
q=0 wq, and the balanced load

distribution wq
b = qw

℘ are computed. Then, every processor q̂ iterates over
its current set of leaves CL of the tree in ascending order of the domain keys
kD

L and sets new (intermediate and inconsistent) local interval boundaries
{r̃q̂

q | q = 0, . . . , ℘} accordingly. Finally, a reduction operation over all (local

24 In general the transformation of a given key kL to its associated Hilbert domain
key kD

L requires O(J) operations, even if the current tree level J is known. But
since we are interested in the domain keys kD

L keys for all cells (or at least for all
leaves) of the tree we can merge the transformation with the tree traversal which
reduces the complexity of the transformation of a single key to O(1).

Implementation and Parallelization of Meshfree Methods 249

intermediate) sets {r̃q̃
q | q = 0, . . . , ℘} of the ℘ participating processors q̃ gives

the new (global and consistent) interval boundaries {rq | q = 0, . . . , ℘} which
balance the estimated load w. Note that this load balancing scheme itself is
completed in parallel.

Algorithm 4.1. Load Balancing

1. For all local leaves CL of the tree:
Assign estimated work load wL.

2. Compute local estimate wq̂ =
∑

L wL (on processor q̂).
3. Gather remote estimates wq with q = 0, . . . , ℘ − 1 and q �= q̂.
4. Compute global load estimate w =

∑℘−1
q=0 wq.

5. Set local estimate wq̂
g =

∑q<q̂
q=0 wq (on processor q̂).

6. Set balanced load distribution wq
b = qw

℘ for q = 0, . . . , ℘.
7. For all local leaves CL (in ascending order of domain keys kD

L):
Set local intermediate interval boundary r̃q̂

q = kD
L (on processor q̂)

where q ∈ {0, . . . , ℘} is the smallest integer with wq̂
g ≤ wq

b and update
estimate wq̂

g = wq̂
g + wL.

8. Set (global) interval boundaries rq = maxq̃ r̃q̃
q for all q ∈ {0, . . . , ℘} by

reducing the set of all (local) intermediate boundaries {r̃q̃
q} over all proces-

sors q̃, force r0 = 0 and r℘ = kmax.

The quality of the load balancing scheme is essentially determined by the
local load estimate wL. With respect to the finest level J we can estimate the
computational work associated with a particular patch ωi,k for instance by the
number of degrees of freedom assigned to the patch. Such an estimate is very
cheap to compute, however, its quality is rather poor. We can obtain a very
accurate estimate of the local computational work by considering the number
of integration points used on a particular patch. Since we use a dynamic
stopping criterion in the assembly of the stiffness matrix, such an estimate
however cannot be attained with reasonable effort. Yet, if we assume that the
integration of all nonzero entries of the stiffness matrix can be computed with
a similar amount of work, we can use the number of nonzeros per block-row
as our load estimate, i.e.

wL = wi,J = dim(V pi,J

i,J)
∑

ωk∈Ci,J

dim(V pk,J

k,J).

If all polynomial degrees pi,J = p we can use wL = wi,J = card(Ci,J). Hence,
to balance the load with this work load estimate, we need to compute all
neighbourhoods Ci,J (in parallel) on the finest level J (in the unbalanced
tree). Therefore, the computation of an accurate load estimate for parallel
simulations is already a challenging task.

Remark 4.2.
The computational cost associated with the estimation of the current load

250 M.A. Schweitzer

can often be reduced. In a time dependent setting or in adaptive refinement
we usually have a pretty good load estimate from a previous time step or a
coarser level without extra computations. This estimate can either be used
directly to partition the data or it can be updated with only a few operations.
Furthermore, we typically have to redistribute only a small amount of data
in these situations.

Remark 4.3.
With the load balancing scheme given in Algorithm 4.1 we balance the load
with respect to only the finest level J . For our PUM discretization this is
sufficient, since the largest amount of work is due to the finest level and we
already assume that we coarsen the number of patches at a constant rate from
level to level to obtain an optimal complexity multilevel iteration. However,
sometimes it might be necessary to balance the load with respect to all levels
simultaneously. Then, we need to modify the load balancing scheme in such a
way that we consider all nodes of the tree rather than only the leaves. Note,
however, that the design of an appropriate load estimate is somewhat more
involved in such cases.

Remark 4.4.
In the case of a PDE with (piecewise) constant coefficients we can employ
a caching technique due to our regularized cover construction, see Remark
3.9, in some regions of the domain. Hence, not all integrals associated with
the stiffness matrix are computed explicitly, many entries are computed only
once and reused in the assembly. Therefore, when this caching technique is
employed we need to update our load estimate to account for this change in
computational work. Yet, we must be aware that the load has to balanced also
with respect to the solution phase, i.e. the scalability of a single matrix-vector
product should be retained.

4.3 Parallel Cover Construction

Now that the computational domain is partitioned in an appropriate fashion
among the processors we turn to the algorithmic changes for our parallel
implementation, e.g. the computation of the communication pattern. The first
task in our PUM is the multilevel cover construction (cf. Section 3.3) which is
essentially a post-order tree operation. Due to our tree decomposition which
assigns complete sub-trees to processors most work can be done completely
in parallel. When we reach elements of the common global tree we need to
gather the respective tree cells from remote processors. Then, all processors
can complete the cover construction on the common global tree. The parallel
version of the multilevel cover construction algorithm (cf. Algorithm 3.6)
reads as:

Algorithm 4.2. Parallel Multilevel Cover Construction

1. Given the domain Ω ⊂ R
d and a bounding box RΩ =

⊗d
i=1[l

i
Ω, ui

Ω] ⊃ Ω.

Implementation and Parallelization of Meshfree Methods 251

2. Given the interval boundaries {rq | q = 0, . . . , ℘} and the local part P̃q̂ of
the initial point set P̃ = {xj |xj ∈ Ω, j = 1, . . . , Ñ}, i.e. kD

j ∈ [rq̂, rq̂+1)
for all xj ∈ P̃q̂.25

3. Initialize the common global d-binary tree (quadtree, octree) according
to the ℘ intervals [rq, rq+1).

4. Build parallel d-binary sub-trees over local sub-tree roots, such that
per leaf L at most one xi ∈ P̃q̂ lies within the associated cell CL :=⊗d

i=1[l
i
L, ui

L].
5. Set J to the finest refinement level of the tree.
6. For all local sub-tree roots CL =

⊗d
i=1[l

i
L, ui

L]:
(a) If current tree cell CL is an INNER tree node and CL ∩ Ω �= ∅:

i. Descend tree for all successors CS of CL. (→ 6(a))
ii. Set patch ωL =

⊗d
i=1[x

i
L−hi

L, xi
L+hi

L] ⊃ CL where xL = 1
2d

∑
xS

is the centre of its successors points xS and hi
L = 2 max hi

S is twice
the maximum radius of its successors hi

S .
iii. Set active levels lmin

L = lmax
L = min lmin

S − 1 and update for all
successors lmin

S = min lmin
S .

iv. Set polynomial degree pL := min pS to minimal degree of its
successors.

(b) Else if CL ∩ Ω �= ∅:
i. Set patch ωL =

⊗d
i=1[x

i
L − hi

L, xi
L + hi

L] ⊃ CL where xi
L = liL +

1
2 (ui

L − liL) and hi
L = αt

2 (ui
L − liL).

ii. Set active levels lmin
L = lmax

L = J .
iii. Set polynomial degree to some given value pL.
iv. Set PJ q̂ = PJ q̂ ∪ {xL}, CJ

Ω q̂ = CJ
Ω q̂ ∪ {ωL}.

7. Broadcast patches ωL associated with local sub-tree roots CL to all proces-
sors.

8. For the common global root cell CL =
⊗d

i=1[l
i
L, ui

L] = RΩ:
(a) If current tree cell CL is not the root of any complete processor sub-

tree, and an INNER tree node with CL ∩ Ω �= ∅:
i. Descend tree for all successors of CL. (→ 8(a))
ii. Set patch ωL =

⊗d
i=1[x

i
L−hi

L, xi
L+hi

L] ⊃ CL where xL = 1
2d

∑
xS

is the centre of its successors points xS and hi
L = 2 max hi

S is twice
the maximum radius of its successors hi

S .
iii. Set active levels lmin

L = lmax
L = min lmin

S − 1 and update for all
successors lmin

S = min lmin
S .

iv. Set polynomial degree pL := min pS to minimal degree of its
successors.

9. For k = 0, . . . , J − 1:
(a) Set Pkq̂ = {xL | lmin

L ≤ k ≤ lmax
L and kD

L ∈ [rq̂, rq̂+1)}.
(b) Set Ck

Ωq̂ = {ωL | lmin
L ≤ k ≤ lmax

L and kD
L ∈ [rq̂, rq̂+1)}.

25 An initial partition can easily be constructed by choosing uniform interval bound-
aries {rq} and partitioning the initial point set P̃ according to the domain keys
on the finest possible tree level.

252 M.A. Schweitzer

Note that the main difference between this parallel cover construction algo-
rithm and Algorithm 3.6 is the use of different entry points for insert op-
erations into the (global) tree. With Algorithm 3.6 we always insert points
starting at the (global) root of the tree whereas in parallel each processor
will essentially insert points into one of its local sub-tree roots only. There-
fore, Algorithm 4.2 will yield the same sequence of covers Ck

Ω as Algorithm
3.6 only if the initial common global tree of step 3 (which is induced by the
interval boundaries of step 2) is reasonable, cf. Section 4.1. Otherwise there
can be slight differences in the constructed covers using different processor
numbers ℘ for small initial point sets P̃ .

4.4 Parallel Neighbour Search

Although most neighbours ωj,k of a patch ωi,k are stored on the local proces-
sor, the patch ωi,k may well overlap patches which are stored on a remote
processor. Hence, a processor may need copies of certain patches from a re-
mote processor for the assembly of its assigned block-rows of the global stiff-
ness matrices Ak. The computation of a single block-entry (Ak)i,j involves
ϕi,k and ϕj,k. Hence, it seems that we not only need remote patches ωj,k

but also all their neighbours ωl,k ∈ Cj,k for the evaluation of the integrands
involved in the block-row corresponding to the local patch ωi,k. This would
significantly increase the communication volume and storage overhead due
to parallelization. But since all function evaluations of ϕj,k are restricted to
the support of ϕi,k—recall that the integration domain for the block entry
is Ω ∩ ωi,k ∩ ωj,k—every neighbouring patch ωl,k ∈ Cj,k that contributes a
nonzero weight Wl,k to the PU function ϕj,k (on the integration domain)
must also be a neighbour of ωi,k. Hence, it is sufficient to store copies of
remote patches ωj,k which are direct neighbours of a local patch ωi,k. There
is no need to store neighbours of neighbours for the assembly of the stiffness
matrix.
But how does a processor detect which neighbours ωj,k exist on a remote
processor? In fact, a processor cannot determine which patches to request
from a remote processor. But a processor can certainly determine which of
its local patches ωi,k overlap the remote sub-trees with the help of the leaves of
the common global tree. Hence, a processor can compute which local patches
a remote processor may need to complete its neighbour search. Therefore, we
need to perform only a parallel communication step where a processor sends
its local patches which overlap the remote sub-trees prior to the computation
of the neighbourhoods Ci,k.
Our cover construction algorithm constructs patches with increasing overlap
on coarser levels k < J to control the gradients ∇ϕi,k for k < J . Hence, many
local patches ωi,k̂ will overlap a remote sub-tree root patch ωj,k̃. But for the
computation of the neighbourhoods Cj,k̂ on level k̂ > k̃ the remote processor
may not need the local patch ωi,k̂. The remote patches ωj,k̂ on level k̂ might

Implementation and Parallelization of Meshfree Methods 253

not overlap ωi,k̂, even though the coarser patch ωj,k̃ with k̃ < k̂ does overlap
ωi,k̂. Hence, the patch ωi,k̂ is not needed by the remote processor to complete
its computation and ωi,k̂ should not be sent. This problem can be cured if
we first compute a minimal coarse cover. Here, the patches associated with
the tree cells are computed without increasing the overlap from level to level.
Recall that in the single-level cover construction with Algorithm 3.1 and Al-
gorithm 3.4 we already computed such a cover. There, we assigned patches
ωL to INNER tree nodes which only cover the union of their respective suc-
cessor patches ωS . But for the multilevel cover construction it was necessary
to increase the size of these coarser patches in Algorithm 3.6 to control the
size of the gradients of the associated partition of unity functions. Now in
parallel computations we need to employ both types of coarse patches. We
need the minimal patches for the partitioning of the domain, and we need
the larger PUM patches for the construction of the shape functions. Note
however that we only need the minimal patches for the common global tree.
Therefore, we compute a minimal coarse cover, essentially with a parallel
version of Algorithm 3.4, and then we store separate copies of the computed
minimal patches associated with the leaves of the common global tree before
we compute the correct PUM cover sequence with Algorithm 4.2. A processor
can now test its local PUM patches against the minimal patches associated
with remote sub-tree roots to compute the correct overlap with respect to
the finest level J .
For the computation of the neighbourhoods Ci,k on coarser levels k < J we
have to keep in mind that the complete tree is coarsened from level to level.
Hence, we need to coarsen the common global tree as well. Furthermore, we
also have to update the minimal patches associated with the coarser cells of
the common global tree to compute the current overlaps.26 After the exchange
of the respective overlaps the neighbour search can be completed on each
processor as before with Algorithm 3.2.

Remark 4.5.
The precise estimation of the communication volume is essential to obtain a
scalable parallel implementation. It is very important to employ a conserva-
tive estimate, i.e. to over-estimate the amount of data, since all required data
should be exchanged in a single communication step. However, if too many
unnecessary data are sent and too many copies are stored locally we may
lose the optimal complexity of the original algorithm due to an unsuitable
non-optimal parallelization.

26 Under certain constraints on the overlap parameter α in the cover construction
and the regularity of the tree we can compute the neighbourhoods Ci,k on coarser
levels k < J directly from the neighbourhoods Ci,J on the finest level J and there
is no need for an overlap computation of coarser levels. But this does not improve
the overall complexity since we still need to search for neighbours on the finest
level J .

254 M.A. Schweitzer

4.5 Parallel Matrix Assembly

Now that we have constructed the covers Ck
Ω in a distributed fashion, we come

to the Galerkin discretization of a PDE in parallel. Here, we simply restrict
the assembly of the stiffness matrix (and the transfer operators) on each of
the ℘ processors to the block-rows associated with its assigned patches ωi,k.
A processor q̂ computes all block-entries

(Ak)i,j = (Ak(i,n),(j,m)) , with Ak(i,n),(j,m) = a (ϕj,kψm
j,k, ϕi,kψn

i,k) , (4.2)

where ϕi,k is the PU function associated with one of its assigned patches
ωi,k, i.e. the domain key kD

i,k = kD
i associated with the patch ωi,k is element

of [rq̂, rq̂+1). The block-sparsity pattern of the respective block-row is deter-
mined by the neighbourhood Ci,k = {ωj,k ∈ Ck

Ω |ωi,k ∩ ωj,k �= ∅}. Hence,
a processor needs to access all geometric neighbours ωi,k ∩ ωj,k �= ∅ of its
patches ωi,k to compute its assigned part of the stiffness matrix Ak on level
k. These neighbourhoods Ci,k need to be computed prior to the assembly of
the stiffness matrix Ak on level k so that during the assembly of the stiffness
matrix Ak local copies of all neighbouring patches are available. After the
exchange of all required neighbours ωj,k ∈ Ci,k we can use Algorithm 3.3 for
the assembly of the stiffness matrix without any modification. Note that the
neighbourhoods Ci,k are needed to pre-allocate the correct storage for the
sparse block-matrix Ak as well as for each function evaluation of ϕi,k. Hence,
we compute all Ci,k only once and store them, i.e. the respective keys ki,k,
in a separate sparse data structure.

4.6 Parallel Multilevel Solution

The first challenge we encounter in the parallelization of our multilevel solver
is the question of smoothing in parallel. Recall that our smoothing schemes,
namely the BGS and MOS iterations, are SSC methods. Hence, they are
inherently sequential and their efficient parallelization is in general not fea-
sible. Therefore, we need to modify the smoothing schemes in parallel com-
putations. A common approach to circumvent the complete parallelization
of SSC iterations is the domain decomposition approach, i.e. a sub-domain-
blocking approach. Here, the SSC iteration is only applied locally within a
processor’s assigned sub-domain and these local iterates are then merged us-
ing an outer PSC iteration, i.e. by a sub-domain-block-Jacobi iteration. Note
that this approach may lead to a change in the subspace splitting and in the
overall iteration for different numbers of sub-domains, i.e. varying processor
numbers ℘. For the MOS iteration for instance we now define the subspaces

Ṽl,q := span(i,n),i∈Cl∩CΩq
〈φiψ

n
i 〉

where CΩq denotes the set of all patches assigned to processor q. The respec-
tive composite iteration can then be carried out with Algorithm 4.3.

Implementation and Parallelization of Meshfree Methods 255

Figure 4.5. Smoothing results obtained with one iteration of the BGS smoother
(left) and the composite PSC-BGS smoother (centre: with 4 sub-domains, right:
with 16 sub-domains).

Figure 4.6. Smoothing results obtained with one iteration of the MOS smoother
(left) and the composite PSC-MOS smoother (centre: with 4 sub-domains, right:
with 16 sub-domains).

Algorithm 4.3. Composite PSC-SSC iteration

1. Exchange coefficients ũ required for parallel matrix-vector product Aũ.
2. For all local l ∈ CΩq on processor q:

(a) Compute local residual f̂l,q := PT
l,q(f̂ − Aũ).

(b) Solve subspace problem (PT
l,qA Pl,q)ũl,q = f̂l,q.

(c) Update iterate ũ = ũ + Pl,qũl,q.

Note that the computation of the residual in step 2(a) employs an inconsistent
coefficient vector ũ since we exchange the coefficients only once per iteration;
i.e. in step 2(c) we update coefficients k ∈ CΩq on processor q but we do not
update the respective copies stored on other processors.
The error reduction rate of such a composite PSC-SSC iteration is some-
what reduced compared with the rate obtained by the original SSC scheme
but it is often still superior to that of the respective PSC scheme (for large
sub-domains). Since we are interested in a parallel smoothing scheme for our
multilevel solver, however, we must also be interested in the global smooth-
ness of the respective iterates. From the plots depicted in Figures 4.5 and
4.6 we can observe that the composite PSC-BGS smoother with ℘ = 4 and
℘ = 16 sub-domains gives iterates with similar smoothness as the sequential
BGS smoother (℘ = 1). However, for the composite PSC-MOS smoother

256 M.A. Schweitzer

Figure 4.7. Smoothing results obtained with the MOS smoother (left) and a
multiplicative smoother, i.e. an SSC iteration, based on the subspaces Ṽl,q (centre:
with 4 sub-domains, right: with 16 sub-domains).

this is not the case. Here, we can clearly see the artifacts introduced by the
sub-domain splitting. In the interior of each processor sub-domain we have
the excellent error reduction and smoothing property of the MOS scheme.
But close to the boundary of the processor sub-domain we lose the error
reduction property and hence the global smoothness of the iterates. Note
that the subspaces Ṽl,q near the sub-domain boundary become very similar
to the non-overlapping subspaces Vl employed in a BGS smoother. Further-
more, the quality of the MOS smoother relies very much on the fact that
smoothing is done in a successive fashion in the entire domain. In Figure 4.7
we give the iterates obtained by a multiplicative iteration, i.e. an SSC iter-
ation, using the subspace splitting Ṽl,q.27 From these plots we see that the
iterates are much smoother than those obtained with the composite PSC-
MOS smoother. Hence, the outer PSC iteration seems to be the main reason
for the substantial loss in the quality of the smoother composite PSC-MOS
smoother. Note that the loss in smoothing for the composite PSC-MOS iter-
ation is so severe that the respective multilevel iteration may diverge. Hence,
for the parallelization of the MOS smoother we cannot pursue a simple sub-
domain blocking approach together with an outer PSC iteration. Here, a
more involved parallelization approach using multi-colour strategies must be
taken [22]. However, the implementation of such techniques for unstructured
data is rather cumbersome and sometimes even not feasible.
Since the MOS smoother is rather expensive and not easily parallelizable we
usually employ the composite PSC-BGS smoother in our parallel multilevel
solver. The computational complexity of this parallel smoother with respect
to the number of operations, the storage requirements and the communication
demands is comparable to that of a parallel matrix-vector product.
The second basic operation of our multilevel iteration is the application of the
prolongation and restriction operators. In our implementation we completely
assemble the prolongation as well as the restriction operators in an analogous

27 Here we employ a consistent coefficient vector in the residual computation and
update all copies of the coefficients on all processors, i.e. we employ multiple
communication steps per iteration.

Implementation and Parallelization of Meshfree Methods 257

fashion as described above for the stiffness matrices Ak. This increases some-
what the storage overhead but on the other hand we do not need an explicit
transposition or a transpose matrix-vector-product in parallel. We need only
a parallel matrix-vector-product to transfer information between levels. Since
we assign complete sub-trees to a processor most block-coefficients per proces-
sor are stored locally. Therefore the communication volume in the smoother
as well as in the interlevel transfer is small. Here, the local-to-local projection
has an especially simple communication demand due to its minimal block-
sparsity pattern and our tree partitioning scheme. The ith block-row of the
restriction operator Ik−1

k only consists of a single block-entry Ik−1
k i,j

which
corresponds to the coarser cover patch ωj,k−1 ∈ CH

i,k,k−1 associated with the
ancestor tree-cell of the current fine level patch ωi,k (cf. Section 3.3). Most of
these ancestors are located on the same processor as the current patch due
to our partition of the tree. Hence, the application of a local-to-local transfer
operator involves very little communication.

4.7 Computational Complexity

The complexity of the parallel multilevel cover construction including the
setup of the tree is given by O(N

℘ J +℘ log ℘), where N = card(PJ) and PJ is
the point set for our PUM space V PU

J on the finest level J , i.e. card(PJ) corre-
sponds to the number of leaves of the tree, and ℘ is the number of processors.
For the load balancing step we need to compute the neighbourhoods Ci,J as
the local load estimate. If we assume that the load imbalance is not too
severe, this estimate can be computed with O(N

℘ J) operations. The com-
plexity of the necessary overlap computation is given by O(J(log ℘)2) and
the respective communication volume is of the order O((N

℘)
d−1

d).28 Hence,
the complexity of the tree construction and load balancing step is given by
O(N

℘ J + (N
℘)

d−1
d + J(log ℘)2 + ℘ log ℘).

Note that in our implementation we pre-compute the neighbourhoods Ci,k

on all levels k = 0, . . . , J prior to the assembly of the stiffness matrices Ak.
Again, the complexity of the neighbourhood computation is given by O(N

℘ J).
These neighbourhoods, i.e. the respective keys, are stored in an additional
sparse data structure since they determine not only the sparsity pattern of
the stiffness matrix but they are also needed for the function evaluation of
the PU functions ϕi,k. Hence, we compute the neighbourhoods Ci,k only
once and utilize the O(1) random access capabilities of our key-based tree
implementation so that the single function evaluation of ϕi,k is of the order
O(1). Hence, the assembly of the stiffness matrices does not involve any
searching operations so that its complexity is of the order O(CA,NI

℘) in parallel.

28 The complexity of the overlap computation may be reduced to O(J log ℘) if we
employ a second tree data structure to store a complete copy of the common
global tree.

258 M.A. Schweitzer

The computation of the hierarchical neighbourhoods CH
i,k,l does not involve

a complete search process. Here, we only need to check the active levels of
the particular patch ωi,k. Either the patch itself is the only element of CH

i,k,l

or we can directly compute the key for the ancestor patch (or the successor
patches) with a constant number of operations. Therefore, we can assemble

the local-to-local transfers also with O(
CΠ̃,NI

℘) operations.
Finally, we need to consider the complexity of our multiplicative multi-
level solver in parallel. In essence, the iteration given in Algorithm 3.5 con-
sists of three operations: the application of a smoothing scheme, a matrix-
vector product and a scalar product. Since our parallel PSC-BGS smoothing
scheme has a similar complexity as a parallel matrix-vector product, we only
need to consider the complexities of the parallel matrix-vector product and
the parallel scalar product. Obviously, a scalar product can be computed
in parallel with O(N

℘ + log p) operations and communication steps. A par-
allel matrix-vector product (for sparse matrices) has a parallel complexity
of O(N

℘ + (N
℘)

d−1
d). To obtain the overall complexity of our parallel multi-

level solver we need to consider that we apply these operations on all lev-
els. Note that the overall number of arithmetic operation is not effected by
the multilevel structure.29 However, we need to communicate on each level
k = 0, . . . , J . Hence, the overall complexity of our parallel multilevel solver
is given by O(N

℘ + (N
℘)

d−1
d + J + log ℘).

References

1. H. Babovsky, Die Boltzmann–Gleichung, B. G. Teubner, 1998.

2. I. Babuška, U. Banerjee, and J. E. Osborn, Meshless and Generalized
Finite Element Methods: A Survey of Some Major Results, in Meshfree Methods
for Partial Differential Equations, M. Griebel and M. A. Schweitzer, eds., vol. 26
of Lecture Notes in Computational Science and Engineering, Springer, 2002,
pp. 1–20.

3. , On Principles for the Selection of Shape Functions for the Generalized
Finite Element Method, Comput. Methods Appl. Mech. Engrg., 191 (2002),
pp. 5595–5629.

4. , Survey of Meshless and Generalized Finite Element Methods: A Unified
Approach, Acta Numerica, (2003), pp. 1–125.

5. , Generalized Finite Element Methods—Main Ideas, Results, and Perspec-
tive, Inter. J. Comput. Meth., 1 (2004), pp. 67–103.

6. , On the Approximability and the Selection of Particle Shape Functions,
Numer. Math., 96 (2004), pp. 601–640.

7. I. Babuška, G. Caloz, and J. E. Osborn, Special Finite Element Methods
for a Class of Second Order Elliptic Problems with Rough Coefficients, SIAM
J. Numer. Anal., 31 (1994), pp. 945–981.

29 We assume that the number of degrees of freedom is reduced at a geometric rate
from level to level.

Implementation and Parallelization of Meshfree Methods 259

8. I. Babuška and J. M. Melenk, The Partition of Unity Finite Element
Method: Basic Theory and Applications, Comput. Meth. Appl. Mech. Engrg.,
139 (1996), pp. 289–314. Special Issue on Meshless Methods.

9. , The Partition of Unity Method, Int. J. Numer. Meth. Engrg., 40 (1997),
pp. 727–758.

10. S. Beissel and T. Belytschko, Nodal Integration of the Element-Free
Galerkin Method, Comput. Meth. Appl. Mech. Engrg., 139 (1996), pp. 49–74.

11. T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl,
Meshless Methods: An Overview and Recent Developments, Comput. Meth.
Appl. Mech. Engrg., 139 (1996), pp. 3–47. Special Issue on Meshless Methods.

12. M. Bern, D. Eppstein, and J. Gilbert, Provably Good Mesh Generation, J.
Comput. Sys. Sci., 48 (1994), pp. 384–409.

13. J. Bey, Finite-Volumen- und Mehrgitter-Verfahren für elliptische Randwert-
probleme, Advances in Numerical Mathematics, Teubner, 1998.

14. W. W. Bradburry and R. Fletcher, New Iterative Methods for the Solution
of the Eigenproblem, Numer. Math., 9 (1966), pp. 259–267.

15. D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid
Mechanics, Cambridge University Press, 2001.

16. D. Braess and W. Hackbusch, A New Convergence Proof for the Multigrid
Method Including the V-Cycle, SIAM J. Numer. Anal., 20 (1983), pp. 967–975.

17. J. H. Bramble and X. Zhang, Handbook of Numerical Analysis, in The
Analysis of Multigrid Methods, P. G. Ciarlet and J. L. Lions, eds., vol. VII,
Elsevier, 2000, pp. 173–416.

18. W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial,
SIAM, 2nd ed., 2000.

19. J. S. Chen, C. T. Wu, and S. Yoon, Non-linear Version of Stabilized Con-
forming Nodal Integration for Galerkin Mesh-free Methods, Int. J. Numer.
Meth. Engrg., 53 (2002), pp. 2587–2615.

20. J. S. Chen, C. T. Wu, S. Yoon, and Y. You, A Stabilized Conforming Nodal
Integration for Galerkin Mesh-free Methods, Int. J. Numer. Meth. Engrg., 50
(2001), pp. 435–466.

21. P. G. Ciarlet, The Finite Element Methods for Elliptic Problems, North–
Holland, 1980.

22. J. Culberson, Graph Coloring Page. www.cs.ualberta.ca/ joe/Coloring/.
23. W. Dahmen, Multiscale Analysis, Approximation, and Interpolation Spaces,

in Approximation Theory VIII, C. K. Chui and L. L. Schumaker, eds., vol. 2,
World Scientific, 1995, pp. 47–88.

24. R. Dave, J. Dubinski, and L. Hernquist, Parallel TreeSPH, New Astron-
omy, 2 (1997), pp. 277–297.

25. S. De and K. J. Bathe, The Method of Finite Spheres, Comput. Mech., 25
(2000), pp. 329–345.

26. , The Method of Finite Spheres with improved Numerical Integration,
Comput.s & Struct., 79 (2001), pp. 2183–2196.

27. G. A. Dilts, Moving-Least-Square-Particle Hydrodynamics I: Consistency and
Stability, Int. J. Numer. Meth. Engrg., 44 (1999), pp. 1115–1155.

28. , Moving-Least-Square-Particle Hydrodynamics II: Conservation and Bo-
undaries, Int. J. Numer. Meth. Engrg., 48 (2000), pp. 1503–1524.

29. J. Dolbow and T. Belytschko, Numerical Integration of the Galerkin Weak
Form in Meshfree Methods, Comput. Mech., 23 (1999), pp. 219–230.

260 M.A. Schweitzer

30. C. A. M. Duarte, A Review of Some Meshless Methods to Solve Partial Dif-
fertial Equations, Tech. Rep. 95-06, TICAM, University of Texas, 1995.

31. C. A. M. Duarte and J. T. Oden, hp Clouds – A Meshless Method to Solve
Boundary Value Problems, Numer. Meth. for PDE, 12 (1996), pp. 673–705.

32. J. A. George, Nested Dissection of a Regular Finite Element Mesh, SIAM J.
Num. Anal., 10 (1973), pp. 345–363.

33. T. Gerstner and M. Griebel, Numerical Integration using Sparse Grids,
Numer. Alg., 18 (1998), pp. 209–232.

34. R. A. Gingold and J. J. Monaghan, Smoothed Particle Hydrodynamics:
Theory and Application to non-spherical Stars, Mon. Not. R. Astr. Soc., 181
(1977), pp. 375–389.

35. , Kernel Estimates as a Basis for General Particle Methods in Hydrody-
namics, J. Comput. Phys., 46 (1982), pp. 429–453.

36. R. T. Glassey, The Cauchy Problem in Kinetic Theory, SIAM, 1996.
37. M. Griebel, S. Knapek, G. Zumbusch, and A. Caglar, Numerische Sim-

ulation in der Molekulardynamik, Springer, 2003.
38. M. Griebel, P. Oswald, and M. A. Schweitzer, A Particle-Partition of

Unity Method—Part VI: A p-robust Multilevel Solver, in Meshfree Methods for
Partial Differential Equations II, M. Griebel and M. A. Schweitzer, eds., vol. 43
of Lecture Notes in Computational Science and Engineering, Springer, 2004,
pp. 71–92.

39. M. Griebel and M. A. Schweitzer, A Particle-Partition of Unity Method for
the Solution of Elliptic, Parabolic and Hyperbolic PDE, SIAM J. Sci. Comput.,
22 (2000), pp. 853–890.

40. , A Particle-Partition of Unity Method—Part II: Efficient Cover Con-
struction and Reliable Integration, SIAM J. Sci. Comput., 23 (2002), pp. 1655–
1682.

41. , A Particle-Partition of Unity Method—Part III: A Multilevel Solver,
SIAM J. Sci. Comput., 24 (2002), pp. 377–409.

42. , A Particle-Partition of Unity Method—Part IV: Parallelization, in
Meshfree Methods for Partial Differential Equations, M. Griebel and M. A.
Schweitzer, eds., vol. 26 of Lecture Notes in Computational Science and Engi-
neering, Springer, 2002, pp. 161–192.

43. , A Particle-Partition of Unity Method—Part V: Boundary Conditions,
in Geometric Analysis and Nonlinear Partial Differential Equations, S. Hilde-
brandt and H. Karcher, eds., Springer, 2002, pp. 517–540.

44. , eds., Meshfree Methods for Partial Differential Equations, vol. 26 of
Lecture Notes in Computational Science and Engineering, Springer, 2002.

45. , eds., Meshfree Methods for Partial Differential Equations II, vol. 43 of
Lecture Notes in Computational Science and Engineering, Springer, 2005.

46. F. C. Günther and W. K. Liu, Implementation of Boundary Conditions for
Meshless Methods, Comput. Meth. Appl. Mech. Engrg., 163 (1998), pp. 205–
230.

47. W. Hackbusch, Multi-Grid Methods and Applications, vol. 4 of Springer Series
in Computational Mathematics, Springer, 1985.

48. , Elliptic Differential Equations. Theory and Numerical Treatment, Spr-
inger, 1992.

49. , Iterative Solution of Large Sparse Linear Systems of Equations, Springer,
1994.

Implementation and Parallelization of Meshfree Methods 261

50. W. Han and X. Meng, Some Studies of the Reproducing Kernel Particle
Method, in Meshfree Methods for Partial Differential Equations, M. Griebel
and M. A. Schweitzer, eds., vol. 26 of Lecture Notes in Computational Science
and Engineering, Springer, 2002, pp. 193–210.

51. J. Hoschek and D. Lasser, Grundlagen der geometrischen Datenverar-
beitung, B. G. Teubner, 1992.

52. D. E. Knuth, The Art of Computer Programming, vol. 3 Searching and Sorting,
Addison Wesley, Second ed., 1998.

53. Y. Krongauz and T. Belytschko, Enforcement of Essential Boundary Con-
ditions in Meshless Approximations using Finite Elements, Comput. Meth.
Appl. Mech. Engrg., 131 (1996), pp. 133–145.

54. P. Lancaster and K. Salkauskas, Surfaces Generated by Moving Least
Squares Methods, Math. Comp., 37 (1981), pp. 141–158.

55. S. Li and W. K. Liu, Meshfree Particle Methods, Springer, 2004.
56. C. Lia and G. Carraro, A Parallel Tree SPH Code for Galaxy Formation,

Month. Not. Roy. Astro. Soc., 314 (2000), pp. 145–161.
57. D. E. Longsine and S. F. McCormick, Simultaneous Rayleigh-Quotient

Minimization Methods for Ax = λBx, Lin. Alg. Appl., 34 (1980), pp. 195–
234.

58. Y. Y. Lu, T. Belytschko, and L. Gu, A New Implementation of the Ele-
ment Free Galerkin Method, Comput. Math. Appl. Mech. Engrg., 113 (1994),
pp. 397–414.

59. L. B. Lucy, A Numerical Approach to the Testing of the Fission Hypothesis,
Astro. J., 82 (1977), pp. 1013–1024.

60. M. Macri, S. De, and M. S. Shepard, Hierarchical Tree-based Discretization
in the Method of Finite Spheres, Comput. & Struct., 81 (2003), pp. 789–803.

61. J. M. Melenk, On Approximation in Meshless Methods, in Durham 2004,
J. Blowey and A. Craig, eds., Springer, 2004. this volume.

62. J. J. Monaghan, Why Particle Methods Work, SIAM J. Sci. Stat. Comput.,
3 (1982), pp. 422–433.

63. , An Introduction to SPH, Comput. Phys. Comm., 48 (1988), pp. 89–96.
64. K. Nanbu, Direct Simulation Scheme derived from the Boltzmann Equation,

J. Phys. Soc. Japan, 49 (1980), pp. 20–49.
65. , Theoretical Basis on the Direct Simulation Monte Carlo Method, in Rar-

efied Gas Dynamics, V. Boffi and C. Cercignani, eds., vol. 1, Teubner, 1986.
66. H. Neunzert, A. Klar, and J. Struckmeier, Particle Methods: Theory and

Applications, Tech. Rep. 95-153, Arbeitsgruppe Technomathematik, Univer-
sität Kaiserslautern, 1995.

67. H. Neunzert and J. Struckmeier, Particle Methods for the Boltzmann Equa-
tion, Acta Numerica, (1995), pp. 417–457.

68. J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei
Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind,
Abh. Math. Sem. Univ. Hamburg, 36 (1970–1971), pp. 9–15.

69. E. Novak, K. Ritter, R. Schmitt, and A. Steinbauer, On a Recent In-
terpolatory Method for High Dimensional Integration, J. Comput. Appl. Math.,
15 (1999), pp. 499–522.

70. P. Oswald, Multilevel Finite Element Approximation, Teubner Skripten zur
Numerik, Teubner, 1994.

71. T. N. L. Patterson, The Optimum Addition of Points to Quadrature Formu-
lae, Math. Comp., 22 (1968), pp. 847–856.

262 M.A. Schweitzer

72. A. Pothen, Graph Partitioning Algorithms with Applications to Scientific
Computing, in Parallel Numerical Algorithms, D. E. Keyes, A. Sameh, and
V. Venkatakrishnan, eds., Kluwer Academic Publishers, 1997, pp. 323–368.

73. H. Sagan, Space-Filling Curves, Springer, 1994.
74. H. Samet, Applications of Spatial Data Structures: Computer Graphics, Image

Processing, and GIS, Addison–Wesley, 1990.
75. , The Design and Analysis of Spatial Data Structures, Addison–Wesley,

1990.
76. M. A. Schweitzer, A Parallel Multilevel Partition of Unity Method for Ellip-

tic Partial Differential Equations, vol. 29 of Lecture Notes in Computational
Science and Engineering, Springer, 2003.

77. G. Strang and G. J. Fix, An Analysis of the Finite Element Method,
Prentice–Hall, 1973.

78. T. Strouboulis, I. Babuška, and K. Copps, The Design and Analysis of
the Generalized Finite Element Method, Comput. Meth. Appl. Mech. Engrg.,
181 (2000), pp. 43–69.

79. T. Strouboulis, K. Copps, and I. Babuška, The Generalized Finite Element
Method, Comput. Meth. Appl. Mech. Engrg., 190 (2001), pp. 4081–4193.

80. U. Trottenberg, C. W. Osterlee, and A. Schüller, Multigrid, Acad-
emic Press, 2001, Appendix A: An Introduction to Algebraic Multigrid by
K. Stüben, pp. 413–532.

81. M. S. Warren and J. K. Salmon, A Parallel Hashed Oct-Tree N-Body Al-
gorithm, in Supercomputing ’93, IEEE Comput. Soc., 1993, pp. 12–21.

82. , A Portable Parallel Particle Program, Comput. Phys. Comm., 87 (1995).
83. J. Xu, Iterative Methods by Space Decomposition and Subspace Correction,

SIAM Review, 34 (1992), pp. 581–613.
84. H. Yserentant, Old and New Convergence Proofs for Multigrid Methods, Acta

Numerica 93, (1993), pp. 285–326.
85. G. W. Zumbusch, On the Quality of Space-Filling Curve Induced Partitions,

Z. Angew. Math. Mech., 81 Suppl. 1 (2001), pp. 25–28.
86. , Parallel Multilevel Methods. Adaptive Mesh Refinement and Loadbalanc-

ing, Advances in Numerical Mathematics, Teubner, 2003.

Universitext

Aguilar, M.; Gitler, S.; Prieto, C.: Alge-
braic Topology from a Homotopical View-

point

Aksoy, A.; Khamsi, M.A.: Methods in
Fixed Point Theory

Alevras, D.; Padberg M.W.: Linear Opti-

mization and Extensions

Andersson, M.: Topics in Complex Analysis

Aoki, M.: State Space Modeling of Time Se-
ries

Arnold, V. I.: Lectures on Partial Differen-
tial Equations

Audin, M.: Geometry

Aupetit, B.: A Primer on Spectral Theory

Bachem, A.; Kern, W.: Linear Program-
ming Duality

Bachmann, G.; Narici, L.; Beckenstein, E.:

Fourier and Wavelet Analysis

Badescu, L.: Algebraic Surfaces

Balakrishnan, R.; Ranganathan, K.: A
Textbook of Graph Theory

Balser, W.: Formal Power Series and Linear
Systems of Meromorphic Ordinary Differen-
tial Equations

Bapat, R.B.: Linear Algebra and Linear
Models

Benedetti, R.; Petronio, C.: Lectures on
Hyperbolic Geometry

Benth, F. E.: Option Theory with Stochas-
tic Analysis

Berberian, S.K.: Fundamentals of Real

Analysis

Berger, M.: Geometry I, and II

Bliedtner, J.; Hansen, W.: Potential The-
ory

Blowey, J. F.; Coleman, J. P.; Craig, A.W.
(Eds.): Theory and Numerics of Differential

Equations

Blowey, J.; Craig, A.: Frontiers in Numeri-
cal Analysis. Durham 2004

Blyth, T. S.: Lattices and Ordered Algebraic
Structures

Börger, E.; Grädel, E.; Gurevich, Y.: The
Classical Decision Problem

Böttcher, A; Silbermann, B.: Introduction
to Large Truncated Toeplitz Matrices

Boltyanski, V.; Martini, H.; Soltan, P. S.:

Excursions into Combinatorial Geometry

Boltyanskii, V.G.; Efremovich, V.A.: Intu-

itive Combinatorial Topology

Bonnans, J. F.; Gilbert, J. C.; Lemarchal,
C.; Sagastizbal, C.A.: Numerical Optimiza-

tion

Booss, B.; Bleecker, D.D.: Topology and
Analysis

Borkar, V. S.: Probability Theory

Brunt B. van: The Calculus of Variations

Carleson, L.; Gamelin, T.W.: Complex
Dynamics

Cecil, T. E.: Lie Sphere Geometry: With
Applications of Submanifolds

Chae, S. B.: Lebesgue Integration

Chandrasekharan, K.: Classical Fourier
Transform

Charlap, L. S.: Bieberbach Groups and Flat

Manifolds

Chern, S.: Complex Manifolds without Po-
tential Theory

Chorin, A. J.; Marsden, J. E.: Mathemati-

cal Introduction to Fluid Mechanics

Cohn, H.: A Classical Invitation to Alge-

braic Numbers and Class Fields

Curtis, M. L.: Abstract Linear Algebra

Curtis, M. L.: Matrix Groups

Cyganowski, S.; Kloeden, P.; Ombach, J.:

From Elementary Probability to Stochastic
Differential Equations with MAPLE

Dalen, D. van: Logic and Structure

Das, A.: The Special Theory of Relativity:
A Mathematical Exposition

Debarre, O.: Higher-Dimensional Algebraic

Geometry

Deitmar, A.: A First Course in Harmonic
Analysis

Demazure, M.: Bifurcations and Catastro-
phes

Devlin, K. J.: Fundamentals of Contempo-

rary Set Theory

DiBenedetto, E.: Degenerate Parabolic
Equations

Diener, F.; Diener, M.(Eds.): Nonstandard
Analysis in Practice

Dimca, A.: Sheaves in Topology

Dimca, A.: Singularities and Topology of
Hypersurfaces

DoCarmo, M.P.: Differential Forms and
Applications

Duistermaat, J. J.; Kolk, J. A.C.: Lie

Groups

Edwards, R. E.: A Formal Background to
Higher Mathematics Ia, and Ib

Edwards, R. E.: A Formal Background to
Higher Mathematics IIa, and IIb

Emery, M.: Stochastic Calculus in Mani-
folds

Emmanouil, I.: Idempotent Matrices over
Complex Group Algebras

Endler, O.: Valuation Theory

Erez, B.: Galois Modules in Arithmetic

Everest, G.; Ward, T.: Heights of Polyno-
mials and Entropy in Algebraic Dynamics

Farenick, D.R.: Algebras of Linear Trans-
formations

Foulds, L. R.: Graph Theory Applications

Franke, J.; Hrdle, W.; Hafner, C.M.: Sta-
tistics of Financial Markets: An Introduc-
tion

Frauenthal, J. C.: Mathematical Modeling

in Epidemiology

Freitag, E.; Busam, R.: Complex Analysis

Friedman, R.: Algebraic Surfaces and Holo-
morphic Vector Bundles

Fuks, D.B.; Rokhlin, V.A.: Beginner’s
Course in Topology

Fuhrmann, P.A.: A Polynomial Approach
to Linear Algebra

Gallot, S.; Hulin, D.; Lafontaine, J.: Rie-
mannian Geometry

Gardiner, C. F.: A First Course in Group
Theory

G̊arding, L.; Tambour, T.: Algebra for
Computer Science

Godbillon, C.: Dynamical Systems on Sur-

faces

Godement, R.: Analysis I, and II

Goldblatt, R.: Orthogonality and Spacetime
Geometry

Gouvêa, F.Q.: p-Adic Numbers

Gross, M. et al.: Calabi-Yau Manifolds and

Related Geometries

Gustafson, K. E.; Rao, D.K.M.: Numerical

Range. The Field of Values of Linear Oper-
ators and Matrices

Gustafson, S. J.; Sigal, I.M.: Mathematical

Concepts of Quantum Mechanics

Hahn, A. J.: Quadratic Algebras, Clifford
Algebras, and Arithmetic Witt Groups

Hájek, P.; Havránek, T.: Mechanizing Hy-
pothesis Formation

Heinonen, J.: Lectures on Analysis on Met-
ric Spaces

Hlawka, E.; Schoißengeier, J.; Taschner,
R.: Geometric and Analytic Number The-
ory

Holmgren, R.A.: A First Course in Discrete

Dynamical Systems

Howe, R., Tan, E.Ch.: Non-Abelian Har-
monic Analysis

Howes, N.R.: Modern Analysis and Topol-
ogy

Hsieh, P.-F.; Sibuya, Y. (Eds.): Basic The-

ory of Ordinary Differential Equations

Humi, M., Miller, W.: Second Course in Or-
dinary Differential Equations for Scientists
and Engineers

Hurwitz, A.; Kritikos, N.: Lectures on
Number Theory

Huybrechts, D.: Complex Geometry: An In-
troduction

Isaev, A.: Introduction to Mathematical
Methods in Bioinformatics

Istas, J.: Mathematical Modeling for the
Life Sciences

Iversen, B.: Cohomology of Sheaves

Jacod, J.; Protter, P.: Probability Essen-
tials

Jennings, G.A.: Modern Geometry with
Applications

Jones, A.; Morris, S. A.; Pearson, K.R.:
Abstract Algebra and Famous Inpossibili-

ties

Jost, J.: Compact Riemann Surfaces

Jost, J.: Dynamical Systems. Examples of
Complex Behaviour

Jost, J.: Postmodern Analysis

Jost, J.: Riemannian Geometry and Geo-

metric Analysis

Kac, V.; Cheung, P.: Quantum Calculus

Kannan, R.; Krueger, C.K.: Advanced
Analysis on the Real Line

Kelly, P.; Matthews, G.: The Non-

Euclidean Hyperbolic Plane

Kempf, G.: Complex Abelian Varieties and

Theta Functions

Kitchens, B. P.: Symbolic Dynamics

Kloeden, P.; Ombach, J.; Cyganowski, S.:
From Elementary Probability to Stochastic
Differential Equations with MAPLE

Kloeden, P. E.; Platen; E.; Schurz, H.: Nu-
merical Solution of SDE Through Computer

Experiments

Kostrikin, A. I.: Introduction to Algebra

Krasnoselskii, M.A.; Pokrovskii, A.V.:
Systems with Hysteresis

Kurzweil, H.; Stellmacher, B.: The Theory
of Finite Groups. An Introduction

Lang, S.: Introduction to Differentiable
Manifolds

Luecking, D.H., Rubel, L.A.: Complex
Analysis. A Functional Analysis Approach

Ma, Zhi-Ming; Roeckner, M.: Introduction
to the Theory of (non-symmetric) Dirichlet
Forms

Mac Lane, S.; Moerdijk, I.: Sheaves in
Geometry and Logic

Marcus, D.A.: Number Fields

Martinez, A.: An Introduction to Semiclas-

sical and Microlocal Analysis

Matoušek, J.: Using the Borsuk-Ulam The-
orem

Matsuki, K.: Introduction to the Mori Pro-
gram

Mazzola, G.; Milmeister G.; Weissman J.:
Comprehensive Mathematics for Computer
Scientists 1

Mazzola, G.; Milmeister G.; Weissman J.:
Comprehensive Mathematics for Computer
Scientists 2

Mc Carthy, P. J.: Introduction to Arith-
metical Functions

McCrimmon, K.: A Taste of Jordan Alge-

bras

Meyer, R.M.: Essential Mathematics for

Applied Field

Meyer-Nieberg, P.: Banach Lattices

Mikosch, T.: Non-Life Insurance Mathe-
matics

Mines, R.; Richman, F.; Ruitenburg, W.: A
Course in Constructive Algebra

Moise, E. E.: Introductory Problem
Courses in Analysis and Topology

Montesinos-Amilibia, J.M.: Classical Tes-
sellations and Three Manifolds

Morris, P.: Introduction to Game Theory

Nikulin, V.V.; Shafarevich, I. R.: Geome-

tries and Groups

Oden, J. J.; Reddy, J. N.: Variational Meth-
ods in Theoretical Mechanics

Øksendal, B.: Stochastic Differential Equa-
tions

Øksendal, B.; Sulem, A.: Applied Stochas-
tic Control of Jump Diffusions

Poizat, B.: A Course in Model Theory

Polster, B.: A Geometrical Picture Book

Porter, J. R.; Woods, R.G.: Extensions and
Absolutes of Hausdorff Spaces

Radjavi, H.; Rosenthal, P.: Simultaneous
Triangularization

Ramsay, A.; Richtmeyer, R.D.: Introduc-
tion to Hyperbolic Geometry

Rees, E.G.: Notes on Geometry

Reisel, R. B.: Elementary Theory of Metric
Spaces

Rey, W. J. J.: Introduction to Robust and
Quasi-Robust Statistical Methods

Ribenboim, P.: Classical Theory of Alge-
braic Numbers

Rickart, C. E.: Natural Function Algebras

Rotman, J. J.: Galois Theory

Rubel, L.A.: Entire and Meromorphic Func-

tions

Ruiz-Tolosa, J. R.; Castillo E.: From Vec-
tors to Tensors

Runde, V.: A Taste of Topology

Rybakowski, K. P.: The Homotopy Index

and Partial Differential Equations

Sagan, H.: Space-Filling Curves

Samelson, H.: Notes on Lie Algebras

Schiff, J. L.: Normal Families

Sengupta, J.K.: Optimal Decisions under
Uncertainty

Séroul, R.: Programming for Mathemati-

cians

Seydel, R.: Tools for Computational Fi-

nance

Shafarevich, I. R.: Discourses on Algebra

Shapiro, J. H.: Composition Operators and
Classical Function Theory

Simonnet, M.: Measures and Probabilities

Smith, K. E.; Kahanpää, L.; Kekäläinen,

P.; Traves, W.: An Invitation to Algebraic
Geometry

Smith, K.T.: Power Series from a Compu-

tational Point of View

Smoryński, C.: Logical Number Theory I.
An Introduction

Stichtenoth, H.: Algebraic Function Fields
and Codes

Stillwell, J.: Geometry of Surfaces

Stroock, D.W.: An Introduction to the The-
ory of Large Deviations

Sunder, V. S.: An Invitation to von Neu-

mann Algebras

Tamme, G.: Introduction to Étale Coho-
mology

Tondeur, P.: Foliations on Riemannian
Manifolds

Toth, G.: Finite Mbius Groups, Minimal
Immersions of Spheres, and Moduli

Verhulst, F.: Nonlinear Differential Equa-

tions and Dynamical Systems

Wong, M.W.: Weyl Transforms

Xambó-Descamps, S.: Block Error-Cor-
recting Codes

Zaanen, A.C.: Continuity, Integration and
Fourier Theory

Zhang, F.: Matrix Theory

Zong, C.: Sphere Packings

Zong, C.: Strange Phenomena in Convex
and Discrete Geometry

Zorich, V.A.: Mathematical Analysis I

Zorich, V.A.: Mathematical Analysis II

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

