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Preface

The Twelvefth LMS-EPSRC Summer School in Computational Mathematics and
Scientific Computation was held at the University of Durham, UK, from the 25th
to the 31st of July 2010. This was the fourth of these schools to be held in
Durham, having previously been hosted by the University of Lancaster and the
University of Leicester. The purpose of the summer school was to present high
quality instructional courses on topics at the forefront of computational mathematics
and scientific computing research to postgraduate students.

This volume presents written contributions from each of the speakers. In all
cases, these contributions are more comprehensive versions of the lecture notes
which were distributed to participants during the meeting.

At the time of writing it is now more than two years since we first contacted the
guest speakers and during that period they have given significant portions of their
time to making the summer school, and this volume, a success. We would like to
thank all four of them for the care which they took in the preparation and delivery
of their lectures. The main speakers were Daniele Boffi, Susanne Brenner, Professor
Peter Monk and Paolo Zunino.

Instrumental to the school were the two tutors who ran a very successful
tutorial programme (Richard Norton & Angela Mihai). There was also a successful
programme of contributed talks from six students in the afternoon. The UKIE
section of SIAM contributed prizes for the best talks given by graduate students.
The invited speakers took on the bulk of the task of judging these talks. After careful
and difficult consideration the prizes were awarded to Edward Tucker (Imperial
College) and Alexander Raisch (Bonn University.) The general quality of the student
presentations was impressively high promising a vibrant future for the subject.

The audience consisted of forty-three research students from within the UK and
Europe. As always, one of the most important aspects of the summer school was
proving a forum for UK numerical analysts, both young and old, to meet for an
extended period and exchange ideas.

Durham James F. Blowey
June 2011 Max P.J. Jensen
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Some Remarks on Eigenvalue Approximation
by Finite Elements

Daniele Boffi, Francesca Gardini, and Lucia Gastaldi

Abstract The aim of this paper is to supplement the results of Boffi (Acta Numer.
19:1–120, 2010) with some additional remarks. In particular we deal with three
distinct topics: we review some tutorial examples in one dimension and provide
numerical codes for them; we analyze the case of multiple eigenvalues and show
some numerical; we review a posteriori error analysis for eigenvalue problems.

1 Introduction

A recent survey [21] reports on the state of the art of the approximation of symmetric
and compact eigenvalue problem by the finite element method. The aim of this paper
is to supplement it with some additional theoretical results, application examples,
and numerical codes.

This paper deals with three different topics. The first topic is considered in
Sects. 2, 3, and 4 where some preliminary examples reported in [21, Part 1] are
revisited in more detail. With a didactic purpose, particular emphasis is put on basic
one dimensional examples in the standard and in the mixed Galerkin setting. Each
example is completed by appropriate Matlab codes.

The second topic, discussed in Sect. 5, deals with the approximation of multiple
eigenvalues. It is a common practice to restrict the analysis of eigenvalue/eigenfunc-
tion convergence to the case of simple modes and to only state the results in the case
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2 D. Boffi et al.

of multiplicities higher than one. Here we want to make it precise how the analysis
goes in the case of multiple eigensolutions and, in particular, to focus on the case
when an eigenspace can contain eigenfunctions of variable smoothness. The typical
example of this situation is given by a double eigenvalue with one singular and
one smooth eigenfunction. We will recall the theoretical estimates for this particular
situation and we will confirm them with appropriate numerical experiments.

Finally, Sect. 6 is devoted to a fundamental topic which could not be covered
in [21]: a posteriori error control for eigenvalue approximations. We will review the
main ideas behind adaptive mesh refinement for the approximation of eigenvalue
problems in the case of standard elliptic and mixed formulations.

2 Variationally Posed Eigenvalue Problems

In this paper we deal with the finite element approximation of symmetric and com-
pact eigenvalue problem arising from partial differential equations. We introduce in
this section our setting and recall some basic results.

The convergence analysis for eigenvalue problems usually consists of two parts:
in the first step one shows that all continuous eigensolutions are approximated by the
correct number of discrete eigenmodes (counted according to their multiplicities)
and that no spurious eigenvalue is present; in the second step error estimates
are looked for, which provide the order of convergence for eigenvalues and
eigenfunctions. In this section we focus on the first step. The question of the rate
of convergence will be detailed in Sect. 5

Let V and H be real Hilbert spaces. We suppose V � H with dense and
continuous embedding. Let a W V �V ! R and b W H �H ! R be symmetric and
continuous bilinear forms, and consider the problem: find � 2 R and u 2 V , with
u ¤ 0, such that

a.u; v/ D �b.u; v/ 8v 2 V: (1)

The Galerkin discretization of problem (1) is based on a finite dimensional space
Vh � V and reads: find �h 2 R and uh 2 Vh, with uh ¤ 0, such that

a.uh; v/ D �hb.uh; v/ 8v 2 Vh: (2)

The convergence analysis of the eigensolutions of (2) to those of (1) is usually
performed with the introduction of suitable solution operators. We assume that for
any f 2 H there exists a unique Tf 2 V and a unique Thf 2 Vh such that

a.Tf; v/ D b.f; v/ 8v 2 V (3)

and

a.Thf; v/ D b.f; v/ 8v 2 Vh: (4)
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This is the case, for instance, when a is V -elliptic and b is equivalent to a scalar
product in H . Unless otherwise expressly written, we will assume that we are in
this setting. We are then given two self-adjoint operators from H into itself and we
assume that

T W H ! H is compact: (5)

It is clear that, being a finite rank operator, Th is compact as well.
Our main question about the convergence of the eigenvalue and the absence of

spurious modes is indeed equivalent to the convergence in norm of Th to T (see [21]
for more details and for a formal definition of convergence): we will then discuss
sufficient and necessary conditions for obtaining

kT � ThkL .H/ ! 0 when h ! 0: (6)

It can be seen that the eigenvalue convergence is also ensured by a convergence in
the norm of V

kT � ThkL .V / ! 0 when h ! 0; (7)

which can of course hold true only under the additional hypothesis that T is compact
in L .V /.

The most elegant theorem that proves (6) has been stated in this framework by
Kolata in [58], although results in this direction were known and used before by
many authors (see [8], for instance). The starting point is the standard Galerkin
orthogonality which reads

Th D PhT; (8)

where Ph W V ! Vh is the elliptic projection associated to the bilinear form a. The
next theorem (see [58] and [21, Theorem 7.6]) is often referred to by saying that
compactness turns pointwise into uniform convergence.

Theorem 1. If T is compact from H to V and Ph converges strongly (i.e.,
pointwise) to the identity operator from V toH , then Th converges to T (uniformly)
in the norm of L .H/ (see (6)).

Remark 1. It should be noted that the compactness hypothesis of Theorem 1 is
stronger than (5). This is however needed when using the representation Th D PhT ,
since Ph is naturally defined in V and not in H . There is another option which
consists of assuming T to be compact in L .V / and Ph converging strongly to I in
L .V /: this implies the convergence in norm (7).

Remark 2. The convergence in norm (6) can often be obtained by examining
directly the error estimates linking (4) and (3). In many applications it is possible to
get estimates of the form

kTf � Thf kV � Chkkf kH :
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3 One Dimensional Examples

In this section we consider some one dimensional examples. We start with the
standard Laplace eigenvalue problem which fits pretty well the theory presented
in Sect. 2. Then we consider eigenvalue problems in mixed form and show how the
theory of Sect. 2 should be changed in order to deal with this setting. In particular,
an analogue of Theorem 1 cannot be proved in the case of the Laplace eigenvalue
problem in mixed form due to a lack of compactness.

The examples are discussed in detail and particular emphasis is given to the
numerical results (including the source code for Matlab computations).

3.1 Standard Laplace Eigenvalue Problem

Given the interval ˝ D�0; �Œ we look for eigenvalues � and eigenfunctions u with
u ¤ 0 such that ( � u00.x/ D �u.x/ in ˝

u.0/ D u.�/ D 0:
(9)

The exact eigenvalues are given by � D 1; 4; 9; 16; : : : and the eigenspaces are
generated by sin.kx/ for k D 1; 2; 3; 4; : : : .

This problem fits the setting of Sect. 2 with the following choices:

V D H1
0 .˝/

H D L2.˝/

a.u; v/ D
Z �

0

u0.x/v0.x/dx

b.u; v/ D
Z �

0

u.x/v.x/dx:

Let us consider the conforming approximation of (9) by continuous piecewise
linear finite elements. It is well-known that the matrix form of the discrete problem
is given by

Ax D �Mx

where the stiffness matrix A is

aij D 1

h
�

8̂̂
<
ˆ̂:
2 for i D j

�1 for ji � j j D 1

0 otherwise;
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Table 1 Eigenvalues computed using the code in Listing 1.1 for different values of n

Exact Computed (rate)

n D 8 n D 16 n D 32 n D 64 n D 128

1 1.0129 1.0032 (2.0) 1.0008 (2.0) 1.0002 (2.0) 1.0001 (2.0)
4 4.2095 4.0517 (2.0) 4.0129 (2.0) 4.0032 (2.0) 4.0008 (2.0)
9 10.0803 9.2631 (2.0) 9.0652 (2.0) 9.0163 (2.0) 9.0041 (2.0)
16 19.4537 16.8382 (2.0) 16.2067 (2.0) 16.0515 (2.0) 16.0129 (2.0)
25 33.2628 27.0649 (2.0) 25.5059 (2.0) 25.1257 (2.0) 25.0314 (2.0)
36 51.3724 40.3212 (1.8) 37.0525 (2.0) 36.2610 (2.0) 36.0651 (2.0)
49 69.5582 57.0672 (1.3) 50.9572 (2.0) 49.4840 (2.0) 49.1206 (2.0)
64 77.8147 67.3528 (2.0) 64.8266 (2.0) 64.2059 (2.0)
81 103.0473 86.3943 (2.0) 82.3258 (2.0) 81.3299 (2.0)
100 133.0513 108.2597 (2.0) 102.0237 (2.0) 100.5030 (2.0)

DOF 7 15 31 63 127

Fig. 1 The second
eigenfunction computed and
plotted using the code
in Listing 1.1 (n D 8 and
k D 2)

0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1
λ = 4.209547

and the mass matrix M is

mij D h �

8̂̂<
ˆ̂:
2=3 for i D j

1=6 for ji � j j D 1

0 otherwise;

with i; j D 1; : : : ; n�1, where n is the number of subdivisions of the interval Œ0; ��
(the dimensions of A and M equal the number of internal nodes).

In Listing 1.1 we report a simple Matlab code that solves our problem, which
displays the first ten eigenvalues, and plots a specific eigenfunction. The result of
the computations for successively refined meshes is included in Table 1. Second
order convergence can be clearly appreciated (this is compatible with the error
estimates which will be made precise in Sect. 5.1). Figure 1 shows the second
eigenfunction for n D 16 (this is the plot which is generated with the parameters
reported in Listing 1.1).
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Table 2 Eigenvalues computed using the code in Listing 1.2 for different values of n

Exact Computed (rate)

n D 8 n D 16 n D 32 n D 64 n D 128

1 1.0000 1.0000 (4.0) 1.0000 (4.0) 1.0000 (4.0) 1.0000 (4.0)
4 4.0020 4.0001 (4.0) 4.0000 (4.0) 4.0000 (4.0) 4.0000 (4.0)
9 9.0225 9.0015 (3.9) 9.0001 (4.0) 9.0000 (4.0) 9.0000 (4.0)
16 16.1204 16.0082 (3.9) 16.0005 (4.0) 16.0000 (4.0) 16.0000 (4.0)
25 25.4327 25.0307 (3.8) 25.0020 (3.9) 25.0001 (4.0) 25.0000 (4.0)
36 37.1989 36.0899 (3.7) 36.0059 (3.9) 36.0004 (4.0) 36.0000 (4.0)
49 51.6607 49.2217 (3.6) 49.0148 (3.9) 49.0009 (4.0) 49.0001 (4.0)
64 64.8456 64.4814 (0.8) 64.0328 (3.9) 64.0021 (4.0) 64.0001 (4.0)
81 95.7798 81.9488 (4.0) 81.0659 (3.8) 81.0042 (4.0) 81.0003 (4.0)
100 124.9301 101.7308 (3.8) 100.1229 (3.8) 100.0080 (3.9) 100.0005 (4.0)

DOF 15 31 63 127 255

Fig. 2 The second
eigenfunction computed and
plotted using the code
in Listing 1.2 (n D 4 and
k D 2). The dashed line
represents the linear part of
the solution

0 0.5 1 1.5 2 2.5 3

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
λ=4.030089

As an additional example, in Listing 1.2 we report a code that solves the
same problem using continuous piecewise quadratic finite elements. The matrix
construction has been made using a hierarchical approach: in the interval Œxi ; xiC1�
a quadratic function is seen as the sum of its affine part with matching values at the
endpoints and a quadratic bubble. It turns out that the stiffness matrix A is a 2 � 2
block matrix of size 2n � 1 (n being the number of subintervals) in which only the
two blocks on the main diagonal are different from zero: the blockA11 of size n�1 is
equal to the stiffness matrix of the previous case and the block A22 of size n is given
by the contribution of the bubbles. The mass matrixM has a block structure too, but
now the off-diagonal terms are non zero since there are contributions coming from
the interaction between affine functions and bubbles.

The results in Table 2 show that the eigenvalues are approximated with fourth
order accuracy. A direct comparison with Table 1 confirms that quadratic elements
provide much more accurate results even with less degrees of freedom. Figure 2
shows the second eigenfunctions computed with the code reported in Listing 1.2:
the linear part is drawn with a dashed line and the sum of the linear part and the
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Fig. 3 Exponential
convergence of eigenvalues
computed with the code
reported in Listing 1.3

bubble (i.e., the full solution) is represented by the solid line. This plot compares to
Fig. 1, where the same eigenfunctions was computed with piecewise linear elements.
It is apparent that (even on such coarse meshes) quadratic elements provide a more
accurate result using the same number of degrees of freedom (7).

The results shown so far concern the approximation of problem (9) using the
h version of the finite element method. This means that a better approximation
is obtained by successive refinements of the mesh and error estimates are given
in terms of the meshsize h, which is supposed to tend to zero. We conclude the
discussion of this example with a remark on the p version of the finite element
methods, that is the mesh is kept fixed and a better approximation is obtained by
raising the order of the polynomials. The code reported in Listing 1.3 computes
the eigenvalues of problem (9) using p-th order polynomials on a mesh which is
composed of a single element (i.e., using a plain spectral method).

The stiffness and mass matrix are evaluated using the arguments presented in [30,
Sect. 3.8]. It is interesting to analyze the results of some computations. Since we
are expecting exponential convergence, we plot the errors using a semilog scale
in Fig. 3. The x axis represents the polynomial order (ranging from 3 to 20) and
the y axis reports the logarithm of the error. The errors in the approximation of the
eigenvalues are reported from the left to the right (this means, in particular, that
the most left line corresponds to the error in the approximation of the first eigenvalue
� D 1). It can be observed a typical behavior of spectral approximations: the
convergence is exponential and is dependent on the parity of the polynomial order.
Table 3, for instance, shows the computed values of the fifth discrete eigenvalue
approximating � D 25. The polynomial order varies from 7 to 20 (the fifth
eigenvalue shows up only when the order is at least 7 and the dimension of the
system is 5). It is apparent that the approximation improves only every other step
(when the order is raised from even to odd in this case, but the situation is the
opposite if an even eigenvalue is considered, see Fig. 3). It is also clear that the
accuracy of the discrete values is not very good when the order is 7 or 8 but, after
the convergence has started, it is very fast (more than 10 digits with 17 degrees of
freedom, while we needed over 100 degrees of freedom to get only 3 digits with
quadratic elements, see Table 2).
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Table 3 Fifth eigenvalue
computed with the code
in Listing 1.3 for different
values of p

p DOF Computed

7 5 35.5593555378041
8 6 35.5593555378041
9 7 25.7779168651921
10 8 25.7779168651921
11 9 25.0306605127133
12 10 25.0306605127132
13 11 25.0004945052929
14 12 25.0004945052929
15 13 25.0000037734250
16 14 25.0000037734250
17 15 25.0000000156754
18 16 25.0000000156756
19 17 25.0000000000389
20 18 25.0000000000389

Listing 1.1 Matlab code for the 1D Laplace eigenvalue problem: piecewise linear elements

c l e a r a l l
c l o s e a l l
k =2 ; % e i g e n f u n c t i o n t o be p l o t t e d
n =8 ; % number o f s u b d i v i s i o n s
kev =4 ; % number o f e i g e n v a l u e s t o compute
a =0 ; b= pi ; % i n t e r v a l e n d p o i n t s
h =( b�a ) / n ; % mesh s i z e
x= l i n s p a c e ( a , b , n + 1 ) ; % mesh nodes
%
% s t i f f n e s s m a t r i x A
%
e= ones ( n �1 , 1 ) ;
A= s p d i a g s ([ � e 2�e �e ] / h , �1 :1 , n �1 ,n �1) ;
%
% mass m a t r i x M
%
M= s p d i a g s ( [ 1 / 6 � e 2 /3� e 1 /6� e ]�h , �1 :1 , n�1 ,n �1) ;
%
% compute s o l u t i o n and s o r t e igenmodes
%
[ v , d ]= e i g s (A,M, min ( kev , l e n g t h (M) ) , ’SM’ ) ;
[ ev , I ]= s o r t ( diag ( d ) ) ;
e f =v ( : , I ) ;

%
% d i s p l a y f i r s t 10 e i g e n v a l u e s
%
ev ( 1 : min ( l e n g t h ( ev ) , 1 0 ) )
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%
% p l o t s e l e c t e d e i g e n f u n c t i o n
%
v e c t o r = [ 0 ; e f ( : , k ) ; 0 ] ;
c=min ( v e c t o r ) ; d=max ( v e c t o r ) ;
c=c �(d�c ) � . 1 ; d=d +( d�c ) � . 1 ;
s e t ( 0 , ’ d e f a u l t a x e s f o n t s i z e ’ , 1 5 )
s e t ( 0 , ’ d e f a u l t t e x t f o n t s i z e ’ , 1 5 )
f i g u r e
hold on
p l o t ( x , v e c t o r , ’�k ’ )
p l o t ( x , v e c t o r , ’ . k ’ )
a x i s ( [ a b c d ] )
s e t ( f i n d o b j ( ’ t y p e ’ , ’ l i n e ’ ) , ’ l i n e w i d t h ’ , 2 , . . .

’ m a r k e r s i z e ’ , 2 0 )
lambda= s p r i n t f ( ’ %0.7g ’ , ev ( k ) ) ;
t i t l e ( [ ’ n lambda= ’ lambda ] )

Listing 1.2 Matlab code for the 1D Laplace eigenvalue problem: piecewise quadratic elements

c l e a r a l l
c l o s e a l l
k =2 ; % e i g e n f u n c t i o n t o be p l o t t e d
n =4 ; % number o f s u b d i v i s i o n s
kev =4 ; % number o f e i g e n v a l u e s t o compute
a =0 ; b= pi ; % i n t e r v a l e n d p o i n t s
h =( b�a ) / n ; % mesh s i z e
x= l i n s p a c e ( a , b , n + 1 ) ; % mesh nodes
%
% s t i f f n e s s m a t r i x A ( c o n t r i b u t i o n s coming from P1 )
%
e= ones ( n , 1 ) ;
A11= s p d i a g s ([ � e 2�e �e ] / h , �1 :1 , n�1 ,n �1) ;
%
% s t i f f . m a t r i x A ( c o n t r i b u t i o n s coming from b u b b l e s )
%
A22= s p d i a g s ( 1 6 / 3 � e / h , 0 , n , n ) ;
%
% s t i f f . m a t r i x A : a ssemb ly
%
A=[A11 , z e r o s ( n �1 ,n ) ; z e r o s ( n , n �1) ,A22 ] ;
%
% mass m a t r i x M ( c o n t r i b u t i o n s coming from P1 )
%
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M11= s p d i a g s ( [ 1 / 6 � e 2 /3� e 1 /6� e ]� h , �1 :1 , n �1 ,n �1) ;
%
% mass m a t r i x M ( c o n t r i b u t i o n s coming from b u b b l e s )
%
M22= s p d i a g s ( 8 / 1 5 � e�h , 0 , n , n ) ;
%
% mass m a t r i x M ( i n t e r a c t i o n s P1 / b u b b l e s )
%
M12= s p d i a g s ( [ e e ] / 3 � h , [ 0 1 ] , n �1 ,n ) ;
%
% mass m a t r i x M: a ssemb ly
%
M=[M11, M12 ; M12’ , M22 ] ;
%
% compute s o l u t i o n and s o r t e igenmodes
%
[ v , d ]= e i g s (A,M, min ( kev , l e n g t h (M) ) , ’SM’ ) ;
[ ev , I ]= s o r t ( diag ( d ) ) ;
e f =v ( : , I ) ;

%
% d i s p l a y f i r s t 10 e i g e n v a l u e s
%
ev ( 1 : min ( l e n g t h ( ev ) , 1 0 ) )
%
% p l o t s e l e c t e d e i g e n f u n c t i o n
%
% P1 component
%
v e c t o r = [ 0 ; e f ( 1 : n�1 ,k ) ; 0 ] ;

%
% b u b b le component
%
b u b b le = e f ( n : end , k ) ;
%
c=min ( v e c t o r ) ; d=max ( v e c t o r ) ;
c=c �(d�c ) � . 1 ; d=d +( d�c ) � . 1 ;
f i g u r e
hold on
s e t ( 0 , ’ d e f a u l t a x e s f o n t s i z e ’ , 1 5 )
s e t ( 0 , ’ d e f a u l t t e x t f o n t s i z e ’ , 1 5 )

%
kk =10; % number o f p o i n t s f o r b u b b le r e c o s t r u c t i o n s
f o r i =1 : n

f o r j =1 : kk
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xx= l i n s p a c e ( 0 , h , kk ) ;
p l o t ( [ x ( i )+ xx ] , [ b u b b le ( i ) � 4 / h ˆ2� xx . � ( h�xx ) + . . .

( v e c t o r ( i ) + ( v e c t o r ( i +1)� v e c t o r ( i ) ) / h�xx ) ] , . . .
’�k ’ )

end
end
%
p l o t ( x , v e c t o r , ’ : k ’ )
p l o t ( x , v e c t o r , ’ . k ’ )
a x i s ( [ a b c d ] )
s e t ( f i n d o b j ( ’ t y p e ’ , ’ l i n e ’ ) , ’ l i n e w i d t h ’ , 2 , . . .

’ m a r k e r s i z e ’ , 2 0 )
lambda= s p r i n t f ( ’ %0.7g ’ , ev ( k ) ) ;
t i t l e ( [ ’ n lambda= ’ lambda ] )

Listing 1.3 Matlab code for the 1D Laplace eigenvalue problem: spectral method

c l e a r a l l ;
p =10; % o r d e r o f t h e p o l y n o m i a l
a =0 ; b= pi ; % i n t e r v a l e n d p o i n t s
%
% s t i f f n e s s m a t r i x A ( modal b a s i s i n [�1 1 ] )
%
A=eye ( p + 1 ) ;
A( 1 : 2 , 1 : 2 ) = [ 1 / 2 �1/2; �1/2 1 / 2 ] ;
%
% mass m a t r i x M ( modal b a s i s i n [�1 1 ] )
%
d i a g o n a l= z e r o s ( p , 1 ) ;
f o r k =2 : p

d i a g o n a l ( k +1 )=2 / (2� k �3 ) / (2� k + 1 ) ;
end
M= diag ( d i a g o n a l ) ;
%
d i a g o n a l 2 = z e r o s ( p , 1 ) ;
f o r k =2 : p�2

d i a g o n a l 2 ( k +2)= �1/(2�k + 1 ) / s q r t ( ( 2 � k �1)�(2�k + 3 ) ) ;
end
M=M+diag ( d i a g o n a l 2 ( 2 : p ) , �2)+ diag ( d i a g o n a l 2 ( 2 : p ) , 2 ) ;
%
M( 1 : 2 , 1 : 4 ) = [ 2 / 3 1 / 3 1 / s q r t ( 6 ) �1/3 / s q r t ( 1 0 ) ; . . .

1 / 3 2 / 3 1 / s q r t ( 6 ) 1 / 3 / s q r t ( 1 0 ) ] ;
M( 3 : 4 , 1 : 2 ) = [ 1 / s q r t ( 6 ) 1 / s q r t ( 6 ) ; . . .

�1/3 / s q r t ( 1 0 ) 1 / 3 / s q r t ( 1 0 ) ] ;
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%
% s o l v e f o r D i r i c h l e t boundary c o n d i t i o n s
% and r e s c a l e i n t e r v a l
%
ev= s o r t ( e i g (A( 3 : p , 3 : p ) ,M( 3 : p , 3 : p ) ) ) � 4 / ( b�a ) / ( b�a ) ;
ev ( 1 : min ( 1 0 , p �2))

3.2 Laplace Eigenvalue Problem in Mixed Form

The standard mixed formulation of problem (9) is: given ˙ DH1.˝/ and
U D L2.˝/, find � 2 R and u 2 U , with u ¤ 0, such that for some s 2 ˙

8̂̂̂
<
ˆ̂̂:

Z �

0

s.x/t.x/dx C
Z �

0

u.x/t 0.x/dx D 0 8t 2 ˙
Z �

0

s0.x/v.x/dx D ��
Z �

0

u.x/v.x/dx 8v 2 U:
(10)

Its Galerkin discretization is based on discrete subspaces ˙h � ˙ and Uh � U

and reads: find �h 2 R and uh 2 Uh with uh 6D 0, such that for some sh 2 ˙h it
holds 8̂̂̂

<
ˆ̂̂:

Z �

0

sh.x/t.x/dx C
Z �

0

uh.x/t
0.x/dx D 0 8t 2 ˙h

Z �

0

s0
h.x/v.x/dx D ��h

Z �

0

uh.x/v.x/dx 8v 2 Uh:

The matrix form of the problem is

�
A BT

B 0

��
x
y

�
D ��

�
0 0

0 M

��
x
y

�
;

where A is the mass matrix in ˙h, M is the mass matrix in Uh, and B is the matrix
defined as follows:

bjk D
Z �

0

'0
k.x/ j .x/dx;

where f'kg and f j g are bases in ˙h and Uh, respectively.

Example 1 (P1-P1 element). We start with the simplest choice of finite element
spaces: continuous piecewise linears for both˙h andUh. The corresponding Matlab
code is reported in Listing 1.4. It should be noted that the homogeneous Dirichlet
boundary conditions are enforced in a natural way through the formulation (10), so
that the matrices A, B , and M do not include boundary conditions.
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Table 4 Eigenvalues computed using the code in Listing 1.4 for different values of n

Exact Computed (rate)

n D 8 n D 16 n D 32 n D 64 n D 128

0.0000 �0.0000 0.0000 0.0000 �0.0000
1 1.0001 1.0000 (4.1) 1.0000 (4.0) 1.0000 (4.0) 1.0000 (4.0)
4 3.9660 3.9981 (4.2) 3.9999 (4.0) 4.0000 (4.0) 4.0000 (4.0)

7.4257 8.5541 8.8854 8.9711 8.9928
9 8.7603 8.9873 (4.2) 8.9992 (4.1) 9.0000 (4.0) 9.0000 (4.0)
16 14.8408 15.9501 (4.5) 15.9971 (4.1) 15.9998 (4.0) 16.0000 (4.0)
25 16.7900 24.5524 (4.2) 24.9780 (4.3) 24.9987 (4.1) 24.9999 (4.0)

38.7154 29.7390 34.2165 35.5415 35.8846
36 39.0906 35.0393 (1.7) 35.9492 (4.2) 35.9970 (4.1) 35.9998 (4.0)
49 46.7793 48.8925 (4.4) 48.9937 (4.1) 48.9996 (4.0)

In [21, Table 4.1] it has already been observed that this method does not provide
reliable results. Table 4 shows that the correct eigenvalues are approximated with
fourth order accuracy, while several other spurious modes are present. Figure 4
shows the first two spurious modes, corresponding to the value � D 0 and to a
discrete value which seems to converge to � D 9 (i.e., this mode is spurious in the
sense of a wrong multiplicity). The eigenfunction u is plotted in the left part of the
figure, while the corresponding component s is on the right. An example of correct
eigenfunction is shown in Fig. 5: this is the eigenfunction obtained exactly with the
parameters of Listing 1.4 and should be compared with Figs. 1 and 2. For the sake
of completeness, we report in Fig. 6 the eigenfunction corresponding to the discrete
eigenvalue approximating the correct continuous eigenvalue � D 9 (i.e., the fifth
discrete mode).

Example 2 (P1-P0 element). We now describe a convergent mixed scheme for
which no spurious mode is present. Since the space U is L2.˝/, there is no
need to consider a finite element approximation Uh made of continuous functions.
For reasons which are clear from the abstract theory, it is natural to consider
the following choice: continuous piecewise linear elements for the approximation
of ˙ and discontinuous piecewise constants for the approximation of U . The
corresponding Matlab code is reported in Listing 1.5.

As already observed in [21, Sect. 4.2], the numerical results are pretty much
related to the ones of the standard Galerkin approximation of the Laplace eigenvalue
problem: the eigenvalues are reported in Table 5 where second order of convergence
is clearly detected. As far as the number of degrees of freedom is concerned, Table 5
shows the dimension of the space Uh, since in the solution procedure the variable s
can be eliminated (see Listing 1.5).

Figure 7 shows the second eigenfunction computed using the code in Listing 1.5
and should be compared with Fig. 1.

Example 3 (P2-P0 element). We conclude this section about one-dimensional
examples with the discussion of the P2-P0 scheme for the approximation of the
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Fig. 4 Some spurious modes computed with the code in Listing 1.4: the first (top) and fourth
(bottom) eigenfunction. The left subplots correspond to the component u and the right ones to s.
Notice that the function in the top right subplot is zero up to machine precision
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Fig. 5 An approximation of the second eigenfunction of problem (10) (the component u on the
left side and the component s on the right) computed with the code in Listing 1.4 for n D 8 and
k D 3

mixed problem (10). We started from the P1-P1 element (see Example 1) which is
affected by spurious modes and moved to the P1-P0 element (see Example 2) which
is nicely convergent. In this last example, we shall demonstrate the bad behavior
of the P2-P0 element where we use continuous piecewise quadratic elements for
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Fig. 6 An approximation of the third eigenfunction of problem (10) (the component u on the left
side and the component s on the right) computed with the code in Listing 1.4 for n D 8 and k D 5

Table 5 Eigenvalues computed using the code in Listing 1.5 for different values of n

Exact Computed (rate)

n D 8 n D 16 n D 32 n D 64 n D 128

1 1.0129 1.0032 (2.0) 1.0008 (2.0) 1.0002 (2.0) 1.0001 (2.0)
4 4.2095 4.0517 (2.0) 4.0129 (2.0) 4.0032 (2.0) 4.0008 (2.0)
9 10.0803 9.2631 (2.0) 9.0652 (2.0) 9.0163 (2.0) 9.0041 (2.0)
16 19.4537 16.8382 (2.0) 16.2067 (2.0) 16.0515 (2.0) 16.0129 (2.0)
25 33.2628 27.0649 (2.0) 25.5059 (2.0) 25.1257 (2.0) 25.0314 (2.0)
36 51.3724 40.3212 (1.8) 37.0525 (2.0) 36.2610 (2.0) 36.0651 (2.0)
49 69.5582 57.0672 (1.3) 50.9572 (2.0) 49.4840 (2.0) 49.1206 (2.0)
64 77.8147 77.8147 (0.0) 67.3528 (2.0) 64.8266 (2.0) 64.2059 (2.0)
81 103.0473 86.3943 (2.0) 82.3258 (2.0) 81.3299 (2.0)
100 133.0513 108.2597 (2.0) 102.0237 (2.0) 100.5030 (2.0)

DOF 8 16 32 64 128
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Fig. 7 The second eigenfunction computed and plotted using the code in Listing 1.5 (n D 8 and
k D 2). The component u is on the left side and the component s on the right
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Table 6 Eigenvalues computed using the code in Listing 1.6 for different values of n

Exact Computed (rate with respect to 6�)

n D 8 n D 16 n D 32 n D 64 n D 128

1 5.7061 5.9238 (1.9) 5.9808 (2.0) 5.9952 (2.0) 5.9988 (2.0)
4 19.8800 22.8245 (1.8) 23.6953 (1.9) 23.9231 (2.0) 23.9807 (2.0)
9 36.7065 48.3798 (1.6) 52.4809 (1.9) 53.6123 (2.0) 53.9026 (2.0)
16 51.8764 79.5201 (1.4) 91.2978 (1.8) 94.7814 (1.9) 95.6925 (2.0)
25 63.6140 113.1819 (1.2) 138.8165 (1.7) 147.0451 (1.9) 149.2506 (2.0)
36 71.6666 146.8261 (1.1) 193.5192 (1.6) 209.9235 (1.9) 214.4494 (2.0)
49 76.3051 178.6404 (0.9) 253.8044 (1.5) 282.8515 (1.9) 291.1344 (2.0)
64 77.8147 207.5058 (0.8) 318.0804 (1.4) 365.1912 (1.8) 379.1255 (1.9)
81 232.8461 384.8425 (1.3) 456.2445 (1.8) 478.2172 (1.9)
100 254.4561 452.7277 (1.2) 555.2659 (1.7) 588.1806 (1.9)

DOF 8 16 32 64 128
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Fig. 8 The second eigenfunction computed and plotted using the code in Listing 1.6 (n D 8 and
k D 2). The component u is on the left side and the component s on the right

the approximation of ˙ and discontinuous piecewise constants for U . The final
message will be that, as expected, when dealing with mixed schemes the choice
of the discrete spaces has to be made very carefully in order to meet suitable
assumptions. For a discussion on this issues the reader is referred to Sect. 4.

A Matlab code for this element is presented in Listing 1.6. As in Listing 1.2 we
use a hierarchical approach in order to implement the P2 element, that is the space
of quadratic elements is presented as the sum of continuous piecewise linears and
local bubbles.

In [21, Sect. 4.4] it has been shown that this scheme does not converge. More
precisely, the discrete eigenvalues computed with the code in Listing 1.6 converge
up to second order to wrong values which correspond to six times the correct
eigenvalues. Table 6 shows this behavior.

Moreover, it can be shown that the eigenspaces are good approximations of the
correct ones as far as the component u is concerned, while the component s is badly
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approximated. Figure 8, for instance, shows the eigenfunctions corresponding to the
second eigenvalue (which converges to six times � D 4). It can be observed that uh
is a good approximation of the space generated by sin.2x/; on the other hand, the
linear part of sh is a good approximation of the space generated by 2 cos.2x/, while
the bubble part of s provides a spurious component of the solution. This fact is a
consequence of the lack in the ellipticity in the kernel property (see Sect. 4).

Listing 1.4 Matlab code for the 1D Laplace eigenvalue problem in mixed form: P1-P1 element

c l e a r a l l
c l o s e a l l
k =3 ; % e i g e n f u n c t i o n t o be p l o t t e d
n =8 ; % number o f s u b d i v i s i o n s
kev =5 ; % number o f e i g e n v a l u e s t o compute
a =0 ; b= pi ; % i n t e r v a l e n d p o i n t s
h =( b�a ) / n ; % mesh s i z e
x= l i n s p a c e ( a , b , n + 1 ) ; % mesh nodes
%
% mass m a t r i x A ( no boundary c o n d i t i o n s )
%
e= ones ( n + 1 , 1 ) ;
A= s p d i a g s ( [ 1 / 6 � e 2 /3� e 1 /6� e ]�h , �1 :1 , n +1 , n + 1 ) ;
A( 1 , 1 ) = 1 / 3 �h ; A( n +1 , n +1)=1/3� h ;
%
% t h e m a t r i x B ( no boundary c o n d i t i o n s )
%
B= s p d i a g s ( [ e / 2 �e / 2 ] , [ �1 1 ] , n +1 , n + 1 ) ;
B ( 1 , 1 ) = 1 / 2 ; B( n +1 , n +1)= �1/2 ;
%
% mass m a t r i x M i s e q u a l t o A
%
%
% compute s o l u t i o n and s o r t e igenmodes
%
Schur=AnB ’ ;
[ v , d ]= e i g s (B�Schur , A, min ( kev , l e n g t h (A ) ) , . 1 ) ;
[ ev , I ]= s o r t ( diag ( d ) ) ;
e f =v ( : , I ) ;

%
% d i s p l a y f i r s t 10 e i g e n v a l u e s
%
ev ( 1 : min ( 1 0 , l e n g t h ( ev ) ) )
%
% p l o t s e l e c t e d e i g e n f u n c t i o n
%
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s e t ( 0 , ’ d e f a u l t a x e s f o n t s i z e ’ , 1 5 )
s e t ( 0 , ’ d e f a u l t t e x t f o n t s i z e ’ , 1 5 )

%
% t h e component ”u”
%
f i g u r e ( 1 )
c l f
hold on
v e c t o r = e f ( : , k ) ;
c=min ( v e c t o r ) ; d=max ( v e c t o r ) ;
c=c �(d�c ) � . 1 ; d=d +( d�c ) � . 1 ;
p l o t ( x , v e c t o r , ’�k ’ )
p l o t ( x , v e c t o r , ’ . k ’ )
s e t ( f i n d o b j ( ’ t y p e ’ , ’ l i n e ’ ) , ’ l i n e w i d t h ’ , 2 , . . .

’ m a r k e r s i z e ’ , 2 0 )
a x i s ( [ a b c d ] )
lambda= s p r i n t f ( ’ %0.7g ’ , ev ( k ) ) ;
t i t l e ( [ ’ n lambda= ’ lambda ] )

%
% t h e component ”s ”
%
f i g u r e ( 2 )
c l f
hold on
v e c t o r=�Schur� e f ( : , k ) ;
c=min ( v e c t o r ) ; d=max ( v e c t o r ) ;
c=c �(d�c ) � . 1 ; d=d +( d�c ) � . 1 ;
p l o t ( x , v e c t o r , ’�k ’ )
p l o t ( x , v e c t o r , ’ . k ’ )
s e t ( f i n d o b j ( ’ t y p e ’ , ’ l i n e ’ ) , ’ l i n e w i d t h ’ , 2 , . . .

’ m a r k e r s i z e ’ , 2 0 )
a x i s ( [ a b c d ] )

Listing 1.5 Matlab code for the 1D Laplace eigenvalue problem in mixed form: P1-P0 element

c l e a r a l l
c l o s e a l l
k =2 ; % e i g e n f u n c t i o n t o be p l o t t e d
n =8 ; % number o f s u b d i v i s i o n s
kev =4 ; % number o f e i g e n v a l u e s t o compute
a =0 ; b= pi ; % i n t e r v a l e n d p o i n t s
h =( b�a ) / n ; % mesh s i z e
x= l i n s p a c e ( a , b , n + 1 ) ; % mesh nodes
%
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% mass m a t r i x A
%
e= ones ( n + 1 , 1 ) ;
A= s p d i a g s ( [ 1 / 6 � e 2 /3� e 1 /6� e ]�h , �1 :1 , n +1 , n + 1 ) ;
A( 1 , 1 ) = 1 / 3 �h ; A( n +1 , n +1)=1/3� h ;
%
% t h e m a t r i x B
%
B= s p d i a g s ([ � e e ] , [ 0 1 ] , n , n + 1 ) ;
%
% mass m a t r i x M
%
M= s p d i a g s ( e�h , 0 , n , n ) ;
%
% compute s o l u t i o n and s o r t e igenmodes
%
Schur=AnB ’ ;
[ v , d ]= e i g s (B�Schur ,M, min ( kev , l e n g t h (M) ) , ’SM’ ) ;
[ ev , I ]= s o r t ( diag ( d ) ) ;
e f =v ( : , I ) ;

%
% d i s p l a y f i r s t 10 e i g e n v a l u e s
%
ev ( 1 : min ( 1 0 , l e n g t h ( ev ) ) )
%
% p l o t s e l e c t e d e i g e n f u n c t i o n
%
s e t ( 0 , ’ d e f a u l t a x e s f o n t s i z e ’ , 1 5 )
s e t ( 0 , ’ d e f a u l t t e x t f o n t s i z e ’ , 1 5 )

%
% t h e component ”u”
%
f i g u r e ( 1 )
c l f
hold on
c=min ( e f ( : , k ) ) ; d=max ( e f ( : , k ) ) ;
c=c �(d�c ) � . 1 ; d=d +( d�c ) � . 1 ;
f o r j =1 : n

v a l u e= e f ( j , k ) ;
p l o t ( [ x ( j ) x ( j + 1 ) ] , [ v a lu e , v a l u e ] , ’�k ’ )
p l o t ( ( x ( j )+ x ( j + 1 ) ) / 2 , v a lu e , ’ . k ’ )

end
s e t ( f i n d o b j ( ’ t y p e ’ , ’ l i n e ’ ) , ’ l i n e w i d t h ’ , 2 , . . .

’ m a r k e r s i z e ’ , 2 0 )
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a x i s ( [ a b c d ] )
lambda= s p r i n t f ( ’ %0.7g ’ , ev ( k ) ) ;
t i t l e ( [ ’ n lambda= ’ lambda ] )

%
% t h e component ”s ”
%
f i g u r e ( 2 )
c l f
hold on
v e c t o r=�Schur� e f ( : , k ) ;
c=min ( v e c t o r ) ; d=max ( v e c t o r ) ;
c=c �(d�c ) � . 1 ; d=d +( d�c ) � . 1 ;
p l o t ( x , v e c t o r , ’�k ’ )
p l o t ( x , v e c t o r , ’ . k ’ )
s e t ( f i n d o b j ( ’ t y p e ’ , ’ l i n e ’ ) , ’ l i n e w i d t h ’ , 2 , . . .

’ m a r k e r s i z e ’ , 2 0 )
a x i s ( [ a b c d ] )

Listing 1.6 Matlab code for the 1D Laplace eigenvalue problem in mixed form: P2-P0 element

c l e a r a l l
c l o s e a l l
k =2 ; % e i g e n f u n c t i o n t o be p l o t t e d
n =8 ; % number o f s u b d i v i s i o n s
kev =4 ; % number o f e i g e n v a l u e s t o compute
a =0 ; b= pi ; % i n t e r v a l e n d p o i n t s
h =( b�a ) / n ; % mesh s i z e
x= l i n s p a c e ( a , b , n + 1 ) ; % mesh nodes
%
% mass m a t r i x A ( c o n t r i b u t i o n s coming from P1 )
%
e= ones ( n + 1 , 1 ) ;
A11= s p d i a g s ( [ 1 / 6 � e 2 /3� e 1 /6� e ]� h , �1 :1 , n +1 , n + 1 ) ;
A11 ( 1 , 1 ) = 1 / 3 �h ; A11 ( n +1 , n +1)=1/3� h ;
%
% mass m a t r i x A ( c o n t r i b u t i o n s coming from b u b b l e s )
%
A22= s p d i a g s ( 8 / 1 5 � e�h , 0 , n , n ) ;
%
% mass m a t r i x A ( i n t e r a c t i o n s P1 / b u b b l e s )
%
A12= s p d i a g s ( [ e e ] / 3 � h ,[ �1 0 ] , n +1 , n ) ;
A=[A11 , A12 ; A12 ’ , A22 ] ;
%
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% t h e m a t r i x B
%
B= s p d i a g s ([ � e e ] , [ 0 1 ] , n , n+n + 1 ) ;
%
% mass m a t r i x M
%
M= s p d i a g s ( e�h , 0 , n , n ) ;
%
% compute s o l u t i o n and s o r t e igenmodes
%
Schur=AnB ’ ;
[ v , d ]= e i g s (B�Schur ,M, min ( kev , l e n g t h (M) ) , ’SM’ ) ;
[ ev , I ]= s o r t ( diag ( d ) ) ;
e f =v ( : , I ) ;

%
% d i s p l a y f i r s t 10 e i g e n v a l u e s
%
ev ( 1 : min ( l e n g t h ( ev ) , 1 0 ) )
%
% p l o t s e l e c t e d e i g e n f u n c t i o n
%
s e t ( 0 , ’ d e f a u l t a x e s f o n t s i z e ’ , 1 5 )
s e t ( 0 , ’ d e f a u l t t e x t f o n t s i z e ’ , 1 5 )

%
% t h e component ”u”
%
f i g u r e ( 1 )
c l f
hold on
f o r j =1 : n

v a l u e= e f ( j , k ) ;
p l o t ( [ x ( j ) x ( j + 1 ) ] , [ v a lu e , v a l u e ] , ’�k ’ )
p l o t ( ( x ( j )+ x ( j + 1 ) ) / 2 , v a lu e , ’ . k ’ )

end
s e t ( f i n d o b j ( ’ t y p e ’ , ’ l i n e ’ ) , ’ l i n e w i d t h ’ , 2 , . . .

’ m a r k e r s i z e ’ , 2 0 )
c=min ( e f ( : , k ) ) ; d=max ( e f ( : , k ) ) ;
c=c �(d�c ) � . 1 ; d=d +( d�c ) � . 1 ;
a x i s ( [ a b c d ] )
lambda= s p r i n t f ( ’ %0.7g ’ , ev ( k ) ) ;
t i t l e ( [ ’ n lambda= ’ lambda ] )

%
% t h e component ”s ”
%
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f i g u r e ( 2 )
c l f
hold on
v e c t o r=�Schur� e f ( : , k ) ;

%
% P1 component
%
l i n e a r = v e c t o r ( 1 : n + 1 ) ;
c=min ( l i n e a r ) ; d=max ( l i n e a r ) ;
c=c �(d�c ) � . 1 ; d=d +( d�c ) � . 1 ;
%
% b u b b le component
%
b u b b le = v e c t o r ( n + 2 : end ) ;
%
kk =10; % number o f p o i n t s f o r b u b b le r e c o s t r u c t i o n s
%
f o r i =1 : n

f o r j =1 : kk
xx= l i n s p a c e ( 0 , h , kk ) ;
p l o t ( [ x ( i )+ xx ] , [ b u b b le ( i ) � 4 / h ˆ2� xx . � ( h�xx ) + . . .

( l i n e a r ( i ) + ( l i n e a r ( i +1)� l i n e a r ( i ) ) / h�xx ) ] , . . .
’�k ’ )

end
end
%
p l o t ( x , l i n e a r , ’ : k ’ )
p l o t ( x , l i n e a r , ’ . k ’ )
a x i s ( [ a b c d ] )
s e t ( f i n d o b j ( ’ t y p e ’ , ’ l i n e ’ ) , ’ l i n e w i d t h ’ , 2 , . . .

’ m a r k e r s i z e ’ , 2 0 )

4 Eigenvalue Problems in Mixed Form

The examples presented in Sect. 3 confirm that Galerkin discretizations of eigen-
value problems in mixed form present a different behavior from standard Galerkin
approximations of variationally posed eigenvalue problems. In particular, Sect. 3.1
shows that standard Galerkin approximations of the Laplace eigenvalue problem are
optimally convergent as soon as we choose a reasonable approximating space. This
is the important consequence of Theorem 1. Let us define T W L2 ! L2 using the
source problem associated to (9): given f 2 L2 let Tf 2 H1 be the solution of the
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problem Z �

0

.Tf /0.x/v0.x/dx D
Z �

0

f .x/v.x/dx:

The discrete operator Th W L2 ! L2 can be defined analogously using the discrete
source problem. It turns out that the operator T is compact from L2 into H1 and
that the elliptic projection onto standard finite element spaces converges pointwise
to the identity operator from H1 to L2. Hence, we can apply Theorem 1 with the
choice H D L2 and V D H1 in order to conclude that Th converges to T in the
space L .L2/.

On the other hand, Examples 1, 2 and 3 show that in the case of mixed
approximation we need to impose suitable compatibility assumptions between the
two approximating finite element spaces. This fact is not surprising since we are
used to the classical inf-sup conditions [29] for mixed finite elements, but we shall
see that for eigenvalue problems the situation is different from that of the source
problem.

4.1 Inf-Sup Conditions

We now discuss Examples 1, 2, and 3 in respect to the classical inf-sup conditions.
It is well-known that for the well-posedness of the source problem associated

with (10) the following two conditions are sufficient and, in a suitable sense,
necessary: the ellipticity in the discrete kernel

kthk2L2 � ˛kthk2H1 8th 2 Kh; (11)

where Kh D fth 2 ˙h W R �
0

v.x/t 0h.x/dx D 0 8v 2 Uhg, and the inf-sup condition

inf
vh2Uh

sup
th2˙h

R �
0

vh.x/t 0h.x/dx
kvhkL2kthkH1

� ˇ: (12)

Remark 3. Conditions (11) and (12) should be changed to use the divergence oper-
ator instead of the first derivative andH.div/ instead ofH1 in the multidimensional
case.

We start by showing that the P1-P0 element discussed in Example 2 satisfies both
conditions (11) and (12).

The ellipticity in the discrete kernel is a trivial consequence of the fact that
the derivative of a function in P1 is an object of P0, hence functions in Kh have
vanishing derivative (take v D t 0 in the definition of Kh).

The inf-sup condition can be proved by constructing a Fortin operator (see [29,
Prop. II.2.8]). We need to find ˘h W H1 ! ˙h such that
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Z �

0

.s0.x/ � .˘hs/
0.x//v.x/dx D 0 8v 2 Uh

and k˘hskH1 � CkskH1 . It can be easily observed that the standard nodal
interpolation operator s 7! sI satisfies the required properties; indeed, for each
element Œxi ; xiC1� we have

Z xiC1

xi

s0
I .x/dx D sI .xiC1/ � sI .xi / D s.xiC1/� s.xi / D

Z xiC1

xi

s0.x/dx:

Remark 4. The P1-P0 element is the one dimensional counterpart of the well-
known Raviart–Thomas element

Moving to the P1-P1 element discussed in Example 1, it has been observed
several times in the literature that it does not satisfies the inf-sup condition (see,
for instance, [11]). What is surprising about the bad behavior reported in Table 4
is that the P1-P1 element is convergent for the corresponding source problem when
the solution is smooth and the eigenfunctions of the Laplace problem are analytic.
It turns out that the approximation of eigenvalue problems does not follow the
same lines as the approximation of the corresponding source problem: there are
several spurious modes even if the regularity of the eigenfunctions is not an issue.
To be more precise, the zero frequency reported in Table 4 was expected and is a
consequence of the lack of the inf-sup condition: there is a function uh 2 Uh with
uh ¤ 0 such that

R �
0

uh.x/t 0.x/dx D 0 for all t 2 ˙h; such a function is the
eigenfunction shown in Fig. 4 (top left); on the other hand, the other spurious modes
cannot be predicted from the standard theory of mixed finite elements.

Let us conclude this section with the analysis of the P2-P0 element presented
in Example 3 which can be seen as a modification of the P1-P0 element with
an enrichment of the space ˙h. The hierarchical construction of the matrices
in Listing 1.6 shows explicitly the nature of the enrichment which consists of a
single quadratic bubble in each element. Since the P1-P0 element satisfies the inf-
sup condition (12), the P2-P0 satisfies the inf-sup condition as well (the supremum
is taken over a larger space). On the other hand the enrichment of the space ˙h
implies a modification of the discrete kernel Kh for the definition of the ellipticity
condition (11). In particular, all the element bubbles are elements of Kh (they vanish
at the endpoints of the interval, hence their first derivatives have zero mean value)
and, moreover, are functions for which the uniform ellipticity (11) does not hold as
it can be easily observed by a standard scaling argument or by explicit computation.
Figure 8 confirms that the bad behavior of the method is due to the presence of the
bubbles which pollute the discrete solution. For similar consideration related to the
corresponding source problem the reader is referred to [26].
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4.2 Convergence of Eigenvalue Problems in Mixed Forms

From the discussion of Sect. 4.1 it might seem that the two main conditions for
the stability of the mixed source problem, namely the ellipticity in the discrete
kernel (11) and the inf-sup condition (12), are sufficient for the convergence
of the mixed eigenvalue problem as well. On the other hand, the analysis of
the P1-P1 element should warn the reader: in that case the approximation of
the source problem is convergent when the solution is smooth enough, while the
approximation of the eigenvalue problem presents spurious modes (even though all
exact eigenfunctions are smooth).

The fundamental results contained in [22,23] state that the natural conditions for
the good approximation and the absence of spurious modes in the approximation
of eigenvalue problems in mixed form are not the classical inf-sup conditions. We
recall in this setting the conditions introduced in [22] (see also [21, Part 3]).

In order to convince the reader that the eigenvalue problem has a substantially dif-
ferent nature from the source problem, we try to repeat the argument of Theorem 1
in the framework of mixed approximations: we will show that the situation is now
more complicated. Roughly speaking, Theorem 1 says that a suitable compactness
assumption turns pointwise convergence into uniform convergence. In order to use
a similar argument in this framework, we need to introduce a suitable solution
operator T and to show a suitable compactness property. Since the solution of the
source problem corresponding to (10) has two components s and u, we firstly have
to choose how to define the solution operator. A first (and, as we shall see, wrong)
possibility is to define T˙U W L2 � L2 ! L2 � L2 as follows:

.f; g/
cutoff7�! .0; g/

T27�! .s; u/;

where the operator T2 W L2 � L2 ! L2 � L2 corresponds to T2.f; g/ D .s; t/ 2
H1 �L2 solution of the following source problem

8̂̂̂
<
ˆ̂̂:

Z �

0

s.x/t.x/dx C
Z �

0

u.x/t 0.x/dx D
Z �

0

f .x/t.x/dx 8t 2 H1

Z �

0

s0.x/v.x/dx D �
Z �

0

g.x/v.x/dx 8v 2 L2:
(13)

The discrete operator T˙U;h can be defined analogously using the same cutoff
function and the discrete source problem. In order to fit the framework of Theorem 1
one needs to introduce a suitable projection operator. This can be done by using
the source mixed problem: let Qh W H1 � L2 ! ˙h and Rh W H1 � L2 ! Uh
be defined starting from .s; u/ 2 H1 � L2 in order to satisfy the following
equations
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Z �

0

Qh.s; u/.x/t.x/dx C
Z �

0

Rh.s; u/.x/t
0.x/dx

D
Z �

0

s.x/t.x/dx C
Z �

0

u.x/t 0.x/dx 8t 2 H1

Z �

0

.Qh.s; u//
0.x/v.x/dx D

Z �

0

s0.x/v.x/dx 8v 2 L2:

Taking Ph D .Qh;Rh/, it is clear that we have T˙U;h D PhT˙U , so that we might
think of adapting Theorem 1 to this situation.

Unfortunately, the compactness assumption on T˙U does not hold. Indeed, taking
H D L2 � L2 and V D H1 � L2, we would need T˙U compact from L2 � L2 in
H1 � L2 which is in conflict with the fact that in (13) the derivative of s is equal
to �g. As a possible workaround, we can try to use the second comment contained
in Remark 1. Unfortunately, for the same reason as before T˙U is not compact from
H1 �L2 in H1 �L2 either.

The correct approach for the definition of the solution operator has been
introduced in [22]. Being interested in an eigenvalue problem which involves the
eigenfunction u, the natural choice is to define T W L2 ! L2 as follows: given
g 2 L2 find s 2 H1 and Tg 2 Uh such that

8̂̂̂
<
ˆ̂̂:

Z �

0

s.x/t.x/dx C
Z �

0

Tg.x/t 0.x/dx D 0 8t 2 H1

Z �

0

s0.x/v.x/dx D �
Z �

0

g.x/v.x/dx 8v 2 L2:
(14)

The discrete operator Th can be defined analogously using the discrete source
problem. In [22] sufficient (and, in a suitable sense, necessary) conditions for the
convergence of Th to T have been introduced. These conditions, which in particular
imply the good approximation of Problem (10), are:

the weak approximability of H2, that is

Z �

0

v.x/t 0h.x/dx � �.h/kthkL2kvkH2 8v 2 H2 8th 2 Kh; (15)

where here and in the next two properties �.h/ denotes a quantity that tends to zero
as h goes to zero;

the strong approximability of H2, that is for all v 2 H2 there exists vI 2 Kh

such that
kv � vI kH1 � �.h/kvkH2 I (16)

the Fortid condition, that is there exists a bounded Fortin operator˘hWH1 !˙h

converging in norm to the identity

kt �˘htkL2 � �.h/ktkH1 8t 2 H1: (17)
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For the sake of completeness, we recall that a bounded Fortin operator satisfies

Z �

0

.s0.x/� .˘hs/
0.x//v.x/dx D 0 8s 2 H1 8v 2 Uh

and k˘hskH1 � CkskH1 .
Coming back to the three mixed methods discussed in Examples 1, 2, and 3, it

can be seen that all of them satisfy the strong approximability property, while only
the P1-P0 element satisfies the remaining two properties. Indeed, we have already
shown in Sect. 4.1 that it satisfies the ellipticity in the kernel property (which implies
the weak approximability property) and we proved that the interpolation operator is
a Fortin operator (which easily implies the Fortid property). On the other hand, the
P1-P1 element does not satisfy the Fortid property (it is known not to meet the inf-
sup condition) and the P2-P0 element does not satisfy the weak approximability
condition.

5 Error Estimates for Multiple Eigenvalues

This part of the paper is devoted to a priori error estimates for the eigenvalue
problem in variational formulation. After a brief review of the fundamental results
on spectral approximation mainly based on the theory of Babuška and Osborn [12],
in the second section, we focus on the problem of error estimates for multiple
eigenvalues. The main result of this section, due to Knyazev and Osborn [57],
shows that the eigenvalue errors depend mainly on the approximability of the
corresponding eigenspace. We end this section with some numerical results.

5.1 Fundamental Results on Spectral Approximation

In this section, we recall the error estimates, collected in [21], which show how the
eigenvalues and eigenfunctions of T are approximated by those of Th and then how
they apply to the case of variationally posed eigenproblems. Throughout this section
we assume that X is a Hilbert space with inner product .u; v/ and that T W X ! X

is a compact self-adjoint positive linear operator. Let Th W X ! X be a family
of compact self-adjoint positive linear operators of finite rank. We assume that Th
converges uniformly to T , that is

kT � ThkL .X/ ! 0 as h ! 0: (18)

Let � be an eigenvalue of T of algebraic multiplicity m. Since T is self-adjoint
and X is a Hilbert space, then the ascent of � is 1. Let �i;h for i D 1; : : : ; m be
the eigenvalues, repeated according to their multiplicity, of Th converging to �. We
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denote by E 	 X the eigenspace associated to � and by Eh the direct sum of all
the eigenspaces associated to the eigenvalues �i;h. Then it holds

Oı.E;Eh/ � Ck.T � Th/jEkL .X/; (19)

where Oı.E; F / represents the gap between Hilbert subspaces and is defined by

ı.E; F / D sup
u2E

kukXD1

inf
v2F ku � vkX ; Oı.E; F / D max.ı.E; F /; ı.F;E//: (20)

Let us introduce some notation and observations which will be useful later on. For
nonzero functions u and v, if E D spanfug, we write ı.u; F / instead of ı.E; F /
and if E D spanfug and F D spanfvg, we write ı.u; v/ for ı.E; F /. We have
0 � ı.E; F / � 1 and ı.E; F / D 0 if and only if E 	 F . If dimE D dimF < 1
then ı.E; F / D ı.F;E/.

In the remainder of the section we shall have dimE � dimF , then the following
Lemma holds true, see [28, Lemma 3.4].

Lemma 1. Let f�i ; i D 1; : : : ; dimEg form an orthogonal basis for the sub-
space E. Then

ı2.E; F / �
X
i

ı2.�i ; F /:

If P and Q are the orthogonal projections onto E and F , respectively, then
ı.E; F / equals the largest singular value of the operator .I �Q/P and

ı.E; F / D k.I �Q/P kX: (21)

Let us now go back to the approximation of eigenvalues and eigenfunctions. We
have the following error estimate for the eigenvalues.

Theorem 2. Let f�1; : : : ; �mg be a basis of the eigenspace E associated to the
eigenvalue �. Then, for i D 1; : : : ; m

j� � �i;hj � C

0
@ mX
j;kD1

j..T � Th/�j ; �k/j C k.T � Th/jEk2L .X/

1
A : (22)

Moreover, we have the following estimate for the eigenfunctions.

Theorem 3. Let f�hg be a sequence of discrete eigenvalues of Th converging to
a non-zero eigenvalue � of T . Consider a sequence fuhg of unit vectors in the
eigenspaceEh associated to �h. Then there exists an eigenfunction u.h/ associated
to the eigenvalue � of T such that

ku.h/ � uhkX � Ck.T � Th/jEkL .X/:
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We first observe that Theorems 2 and 3 also hold in the case of operators which
are not self-adjoint. In such a case, one has to take into account the concept of ascent
multiplicity of � � T .

As a corollary of the above theorems we obtain the error estimates for eigenvalues
and eigenfunctions of problem (1). In order to embed the operator T defined in
Sect. 2 (see (3)) into the abstract setting of this section, we assume that T W V ! V

is compact, hence we can apply the results of Theorems 2 and 3 with X D V and
� D 1=�. This is the case, for instance, if V � H is compact; the convergence (18)
is a consequence of Theorem 1 (see Remark 1).

Corollary 1. Let � be an eigenvalue of problem (1) and let �i;h, for i D 1; : : : ; m

be the eigenvalues of problem (2) converging to �. Then we have for i D 1; : : : ; m:

j� � �i;hj � C sup
u2E

kukD1

inf
v2Vh

ku � vk2V : (23)

Corollary 2. Let f�hg be a sequence of discrete eigenvalues of (2) converging to
an eigenvalue � of (1). Consider a sequence fuhg of unit vectors in the eigenspace
Eh associated to �h. Then there exists an eigenfunction u.h/ associated to the
eigenvalue � of (1) such that

ku.h/ � uhkV � C sup
u2E

kukD1

inf
v2Vh

ku � vkV :

We notice here that one can deduce analogous results using the less strong
assumption (6). We refer to [21, Sect. 10], for instance, for a discussion on the
error estimates for the Laplace eigenproblem.

From the last theorems, we infer that the rate of convergence of multiple
eigenvalues depends on the rate of approximability of the corresponding eigenspace,
hence on the approximation rate of the least regular eigenfunction. On the other
hand, the numerical experiments reported in [12, Sect. 10] show different rates
of convergence for the approximate eigenvalues in the presence of eigenfunctions
having different approximabilities. In the next section this point will be addressed
following the ideas of Knyazev and Osborn [57] in the case of variationally posed
eigenproblems.

5.2 Error Estimates for Ritz-Galerkin Approximation
of Multiple Eigenvalues

This section is devoted to sharp error estimates in the case of multiple eigenval-
ues which take into account the possibility that a multiple eigenvalue might be
associated to eigenfunctions with different regularities. In particular, we shall see
that in this case it is possible to identify discrete eigenvalues converging to the
multiple eigenvalue with different rates of convergence which take into account
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the regularities of the corresponding eigenfunctions. More precisely, the rate of
convergence towards an eigenvalue � of multiplicitym associated to eigenfunctions
with different regularities depends on the regularity of the eigenspace which is
approximated by the sequence of the discrete eigenvectors associated to the m
eigenvalues �i;h for 1 � i � m which converge to �.

The results we are going to report here are based on the theory developed in [57].
Let us go back to the setting of Sect. 2. Let Vh a finite dimensional subspace of V

with dimVh D N . Let T W V ! V and Th W V ! V be defined, respectively, in (3)
and in (4). Then we have that Th is the Ritz approximation of T W V ! V since

Th D PhT (24)

where Ph W V ! Vh is the elliptic projection onto Vh defined as follows: for all
u 2 V , Phu 2 Vh is such that

a.Phu � u; v/ D 0 8v 2 Vh: (25)

We assume that the bilinear form a W V � V ! R is coercive and continuous in V ,
that is

˛kuk2V � a.u; u/ 8u 2 V; with ˛ > 0;

ja.u; v/j � CkukV kvjjv 8u; v 2 V; with C > 0
(26)

Since
p
a.u; u/ is an equivalent norm in V , in this section we will use the following

norm in V
kukV D p

a.u; u/: (27)

Notice that the elliptic projectionPh results in an orthogonal projection with respect
to this norm.

Let us denote by 0 < �1 � �2 � : : : the eigenvalues of (1) and by
0 < �1;h � �2;h � � � � � �N;h those of (2), both repeated according to their
algebraic multiplicity. Moreover, we denote by ui the eigenfunction associated to
the eigenvalue �i and by ui;h the discrete eigenfunction associated to �i;h, that is

a.ui ; v/ D �ib.ui ; v/ 8v 2 V
a.ui;h; v/ D �i;hb.ui;h; v/ 8v 2 Vh:

From now on we assume that b.ui ; uj / D ıij and b.ui;h; uj;h/ D ıij for i; j D 1;

: : : ; N . Notice that this implies

a.ui ; ui / D �i

a.ui ; uj / D 0 i ¤ j
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and
a.ui;h; ui;h/ D �i;h

a.ui;h; uj;h/ D 0 i ¤ j:

Let E1;:::;i � V (resp. E1;:::;i;h � Vh) denote the span of the first i eigenvectors
u1; : : : ; ui (resp. u1;h; : : : ; ui;h) and let P1;:::;i (resp. P1;:::;i;h) be the elliptic projection
onto E1;:::;i (resp. E1;:::;i;h), that is

a.u � P1;:::;iu; v/ D 0 8v 2 E1;:::;i
a.u � P1;:::;i;hu; v/ D 0 8v 2 E1;:::;i;h:

We recall here the following characterization of the eigenvalues by means of the
Rayleigh quotient:

�1 D min
v2V
v¤0

a.v; v/

b.v; v/
; �i D min

v2

�Li�1
jD1 Ej

�
?

v¤0

a.v; v/

b.v; v/
;

�1;h D min
v2V h
v¤0

a.v; v/

b.v; v/
; �i;h D min

v2

�Li�1
jD1 Ej;h

�
?

v¤0

a.v; v/

b.v; v/
; (28)

Moreover, the i -th eigenvalue �i of (1) and the i -th discrete eigenvalue �i;h of (2)
satisfy:

�i D min
E2V .i/

max
v2E

a.v; v/

b.v; v/
; �i;h D min

E2V .i/
h

max
v2E

a.v; v/

b.v; v/
(29)

where V .i/ and V .i/

h denote the set of all subspaces of V , respectively Vh with
dimension equal to i (see, for instance, [21, Prop. 7.2]).

Notice that as a consequence of (29) we have that

�i � �i;h for i D 1; : : : ; N: (30)

In the case of self-adjoint operators and of their Ritz approximation, one can
make more precise the statement of Theorem 2 with the following result, proved
in [55], which shows that the error for an eigenvalue depend on the approximability
of all previous eigenvectors.

Theorem 4. For i D 1; : : : ; N we have

0 � �i;h � �i
�i;h

� ı2.E1;:::;i ; Vh/ D k.I � Ph/P1;:::;ik2L .V /: (31)

Proof. We have ı.E1;:::;i ; Vh/ � 1. If ı.E1;:::;i ; Vh/ D 1 then (31) is obviously true.
Hence, let us suppose that

ı.E1;:::;i ; Vh/ < 1:
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Since dimE1;:::;i D i � dimVh D N < C1, we can apply (21) and obtain

ı.E1;:::;i ; Vh/ D k.I � Ph/P1;:::;ikL .V /;

from which, thanks to [53, Theorem 6.34, Cap. I], we deduce that Ph provides a
one-to-one map fromE1;:::;i to PhE1;:::;i . Therefore dimPhE1;:::;i D dimE1;:::;i D i .

Let us take Nu 2 PhE1;:::;i such that kNukV D 1 and

�.Nu/ D max
w2PhE1;:::;i ;w¤0

�.w/

where �.w/ is the Rayleigh quotient defined by

�.w/ D a.w;w/

b.w;w/
:

We recall that thanks to the coercivity assumption (26) and to the norm defini-
tion (27) we also have a.Nu; Nu/ D kNuk2V D 1.

We consider the following orthogonal decomposition of Nu in V

Nu D u C v for u 2 E1;:::;i ; v 2 E?
1;:::;i : (32)

Hence, we have a.v;w/ D 0 for all w 2 E1;:::;i and consequently a.v; Tw/ D 0,
since E1;:::;i is an invariant subspace of T . By the definition of T we also get that
b.v;w/ D a.v; Tw/ D 0 for all w 2 E1;:::;i .

The definition (32) of v yields

kvkV D ı.Nu; E1;:::;i / � ı.PhE1;:::;i ; E1;:::;i /

D ı.E1;:::;i ; PhE1;:::;i / D ı.E1;:::;i ; Vh/ < 1; (33)

since PhE1;:::;i and E1;:::;i have the same dimension.
From (33) we obtain that u ¤ 0 so that �.u/ is well defined. We now show that

�.u/ � �i � �i;h � �.Nu/: (34)

We already know that �i � �i;h (see (30)). By the definition of Nu and the min-max
characterization of the eigenvalues (28) the last inequality holds true. It remains to
prove the first one. Since u 2 E1;:::;i , we have u D Pi

jD1 ˛j uj and

�.u/ D a.u; u/

b.u; u/
D
Pi

jD1 ˛2j a.uj ; uj /Pi
jD1 ˛2j b.uj ; uj /

D
Pi

jD1 ˛2j �jPi
jD1 ˛2j

� �i :

due to the orthogonalities of the eigenfunctions.
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We observe that

�.Nu/ D a.u; u/C a.v; v/

b.u; u/C b.v; v/

If v D 0, then �.Nu/ D �.u/. If v ¤ 0, a direct calculation gives

1

�.u/
� 1

�.Nu/ D
�

1

�.Nu/ � 1

�.v/

�
a.v; v/

a.u; u/
� 1

�.Nu/
a.v; v/

a.u; u/
� 1

�i;h

a.v; v/

a.u; u/
:

It is now easy to see that

0 � 1

�i
� 1

�i;h
� 1

�.u/
� 1

�.Nu/ � 1

�i;h

a.v; v/

a.u; u/
;

which implies
�i;h

�i
� a.v; v/

a.u; u/
C 1 D 1

a.u; u/

and

�i;h � �i

�i;h
D 1 � �i

�i;h
� 1 � a.u; u/ D a.v; v/ D kvkV :

This inequality together with (33) concludes the proof of the theorem.

We see that the error estimate for the eigenvalue in Theorem 4 depends on the
approximability properties of all previous eigenvectors, while in Corollary 1 it
depends on the approximability properties of eigenspace associated to the eigen-
value of interest. On the other hand we see that the estimate (31) does not depend
on any undetermined constant. Let us consider an eigenvalue �p with multiplicity
m > 1, then from the above theorem it is easy to derive the following result.

Corollary 3. Assume that

�p�1 < �p D : : : �pCm�1 < �pCm; (35)

with p Cm � 1 � N . Then for any index i D p; : : : ; p Cm � 1 we have

0 � �i;h � �p

�i;h
� inf

E1;:::;p�1�E1;:::;i�E1;:::;pCm�1
dimE1;:::;iDi

ı2.E1;:::;i ; Vh/

D ı2.E1;:::;pCm�1; Vh/: (36)

Corollary 3 provides different estimates for every eigenvalue, but it requires
approximability of all previous eigenvectors.

The following lemma suggests that the rate of convergence of the error for the
multiple eigenvalue does not necessarily depend on the approximability of all the
associated eigenfunctions.
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Lemma 2. For i D 1; : : : ; N , the following relation holds true

0 � �i;h � �i

�i;h
D 1

�i
k.I � Pi;h/uik2V � �i

�i;h
a..I � Pi /ui;h; T .I � Pi /ui;h/

where Pi and Pi;h are the elliptic projection onto spanfuig and spanfui;hg, respec-
tively.

Proof. The proof is quite simple. Using the definition of the Rayleigh quotient and
the equality b.ui ; ui / D b.ui;h; ui;h/ D 1, we have �i;h D a.ui;h; ui;h/ and 1 D
b.ui;h; ui;h/ D a.Thui;h; ui;h/, hence

0 � �i;h � �i

�i
D �i;h

�i
� 1 D 1

�i
a.ui;h; ui;h/ � a.Thui;h; ui;h/

D 1

�i
a..I�Pi /ui;h; .I�Pi/ui;h/C 1

�i
a.ui;h; Piui;h/�a.T ui;h; ui;h/

D 1

�i
k..I � Pi/ui;hk2V C 1

�i
a.ui;h; Piui;h/

� a.T .I � Pi /ui;h; ui;h/� a.TPiui;h; ui;h/

D 1

�i
k..I � Pi/ui;hk2V C a

�
ui;h;

1

�i
Piui;h � TPiui;h

�

D 1

�i
k..I � Pi/ui;hk2V � a..I � Pi /ui;h; T .I � Pi/ui;h/

thanks to

�
1

�i
I � T

�
Piui;h D 0 and a.T .I � Pi/ui;h; Piui;h/ D a..I �

Pi/ui;h; TPiui;h/ D 0. We conclude the proof by observing that

1

�i;h
k.I � Pi/ui;hk2V D 1

�i
k.I � Pi;h/uik2V ;

so that

0 � �i;h � �i
�i;h

D �i

�i;h

�i;h � �i

�i

D 1

�i;h
k..I � Pi/ui;hk2V � �i

�i;h
a..I � Pi /ui;h; T .I � Pi /ui;h/:

Since T is positive, we immediately obtain using (21)

0 � �i;h � �i

�i
� 1

�i
k.I � Pi;h/uik2 � 1

�i
ı2.ui ; ui;h/:
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Lemma 2 shows that the estimate on the i -th eigenvalue depends explicitly on both
the continuous and the discrete associated eigenfunctions ui and ui;h.

The next theorem, proved in [57], provides an estimate which does not depend
explicitly on the approximate eigenfunction ui;h, but only on the approximability
properties of ui in the discrete space Vh.

Theorem 5. Let us fix an index i with 1 � i � N such that

min
jD1;:::;i�1 j�j;h � �i j ¤ 0; (37)

then

0 � �i;h � �i
�i;h

� k.I � Ph C P1;:::;i�1;h/uik2V
kuik2V

�
 
1C max

jD1;:::;i�1
�2j;h�

2
j

j�j;h � �i j2 k.I � Ph/TP1;:::;i�1;hk2L .V /

!
ı2.ui ; Vh/; (38)

where P1;:::;i�1;h is the elliptic projection onto E1;:::;i�1;h D spanfu1;h; : : : ; ui�1;hg
defined as follows: for u 2 V , P1;:::;i�1;hu 2 E1;:::;i�1;h such that

a.u � P1;:::;i�1;hu; v/ D 0 8v 2 E1;:::;i�1;h;

Proof. The proof of the first inequality in (5) follows the same lines as that of
Theorem 31. Let i > 1, since the case i D 1 is already covered by Theorem 4.

Let Qui D ui =kuikV . Since the operator I � Ph C P1;:::;i�1;h is an orthogonal
projection in V with respect to the norm defined in (27) and Qui is normalized, we
have k.I�PhCP1;:::;i�1;h/ QuikV � 1. We assume that k.I�PhCP1;:::;i�1;h/ QuikV < 1,
since otherwise the inequality (38) is obviously true.

Let Ei D spanfuig, then dimEi D 1 and also dim.Ph�P1;:::;i�1;h/Ei D 1. Then
by [53, Theorem 6.34, Cap. I] we obtain

ı.Ei ; .Ph�P1;:::;i�1;h/Ei/Dı.ui ; .Ph�P1;:::;i�1;h/ui /Dk.I�PhCP1;:::;i�1;h/ QuikV <1:
Let us take Nu 2 .Ph �P1;:::;i�1;h/Ei such that kNukV D 1 and consider its orthogonal
decomposition with respect to the norm of V as follows:

Nu D u C v with u 2 E1;:::;i ; v 2 .E1;:::;i /?;
so that

a.v;w/ D a.Nu � u;w/ D 0 8w 2 E1;:::;i :
Hence

kvkV D kNu � ukV D inf
w2E1;:::;i

kNu � wkV
D ı.Nu; E1;:::;i / � ı.Nu; ui / D ı..Ph � P1;:::;i�1;hui ; ui / < 1: (39)
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This implies that u ¤ 0 and that �.u/ is defined. As in Theorem 4, if we show that

�.u/ � �i � �i;h � �.Nu/; (40)

then we get

0 � �i;h � �i

�i;h
� kvkV ;

and this would conclude the proof of the theorem.
We prove only the last inequality in (40), since the others are quite standard.
We observe that the operator Ph � P1;:::;i�1;h is the projection onto the subspace

of Vh spanned by the eigenfunctions uj;h with j D i; : : : ; N . Hence, by definition,
we have

Nu 2
0
@ i�1M
jD1

Ej;h

1
A

?

;

then (28) yields

�.Nu/ D a.Nu; Nu/
b.Nu; Nu/ � min

w2

�Li�1
jD1 Ej;h

�
?

w¤0

a.w;w; /

b.w;w/
D �i;h:

It remains to obtain the second line of (38). We have

k.I � Ph C P1;:::;i�1;h/ Quik2V D k.I � Ph/ Quik2V C kP1;:::;i�1;h Quik2V :

In order to use [56, Theorem 3.2], we observe that P1;:::;i�1;hTP1;:::;i�1;hjE1;:::;i�1;h D
ThjE1;:::;i�1;h , hence the spectrum of P1;:::;i�1;hTP1;:::;i�1;hjE1;:::;i�1;h is the set of the
eigenvalues 1=�j;h for j D 1; : : : ; i � 1 of Th. Then we have

kP1;:::;i�1;h QuikV � k.I � Ph/TP1;:::;i�1;hkL .V /

dh
k.I � Ph/ QuikV

where

dh D min
jD1;:::;i�1

ˇ̌̌
ˇ 1�j;h � 1

�i

ˇ̌̌
ˇ D min

jD1;:::;i�1
j�j;h � �i j

j�j;h�i j :

Remark 5. Let us assume that each �i;h converges to �i , then the assumption (37)
reads:

min
jD1;:::;i�1 j�j;h � �i j 
 �i � �i�1:

Notice that this quantity enters in the denominator of (38), hence the constant in the
second line of (38) increases as �i � �i�1 becomes smaller.
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In order to better explain the result presented in Theorem 5, let us consider the
case of an eigenvalue �p with multiplicity m D 2 so that

�p�1 < �p D �pC1 < �pC2:

We can choose i D p or i D p C 1. If i D p then the denominator in (38)
approximates �p � �p�1 hence it is strictly positive. For i D p C 1, instead, we
have

min
jD1;:::;p j�j;h � �pC1j 
 j�p;h � �pC1j

and it tends to 0 as h ! 0.
We can make the result of Theorem 5 more precise in the following corollary.

Corollary 4. Assume that the eigenvalue �p with p > 1 has multiplicity m > 1

so that (35) holds with p C m � 1 � N and that (37) holds true for i D p. Let
Ep;:::;pCm�1 be the corresponding eigenspace, then

0 � �p;h � �p
�p;h

� min
u2Ep;:::;pCm�1; kukV D1

k.I � Ph C P1;:::;p�1;h/uk2V

�
 
1C max

jD1;:::;p�1
�2j;h�

2
p

j�j;h � �pj2 k.I�Ph/TP1;:::;p�1;hk2L .V /

!
min

u2Ep;:::;pCm�1
kukV D1

ı2.u; Vh/

D
 
1C max

jD1;:::;p�1
�2j;h�

2
p

j�j;h � �pj2 k.I�Ph/TP1;:::;p�1;hk2L .V /

!
ı2.Ep;:::;pCm�1; Vh/:

Notice that Corollary 4 gives an estimate containing only the gap between the
eigenspace spanned by them eigenfunctions associated to �p and the discrete space
Vh, even if the approximability of the previous eigenfunctions still appears in the
constant.

The final result of this section provides an error estimate for �p which can take
into account the case of eigenfunctions associated to a multiple eigenvalue with
different approximability properties. In addition, this estimate also covers the case
of clustered eigenvalues.

Theorem 6. Let i and q be fixed with 1 � i � N and 1 � q � i . Let us denote
by Ei�qC1;:::;i the q-dimensional invariant subspace corresponding to eigenvalues
�i�qC1 � � � � � �i and by Pi�qC1;:::;i the elliptic projection onto Ei�qC1;:::;i . If

min
jD1;:::;i�q j�j;h � �i j ¤ 0 (41)
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then the following error estimate holds true

0 � �i;h � �i

�i;h
� k.I � Ph C P1;:::;i�q;h/Pi�qC1;:::;ik2L .V /

�
�
1C max

jD1;:::;i�q
�2j;h�

2
i

j�j;h��i j2 k.I�Ph/TP1;:::;i�q;hk2L .V /

�
k.I�Ph/Pi�qC1;:::;ik2L .V /

(42)

where P1;:::;i�q;h is the elliptic projection onto E1;:::;i�q;h D spanfu1;h; : : : ; ui�q;hg.

Proof. The proof is similar to that of Theorem 5. The operators I �Ph CP1;:::;i�q;h
and Pi�qC1;:::;i are orthogonal projections with respect to the norm of V , therefore
k.I � Ph C P1;:::;i�q;h/Pi�qC1;:::;ikL .V / � 1. We consider the case

k.I � Ph C P1;:::;i�q;h/Pi�qC1;:::;ikL .V / < 1;

since otherwise the inequality (42) is obviously true. By [53, Theorem 3.6, Cap. I]
dim.Ph � P1;:::;i�q;h/Ei�qC1;:::;i D dimEi�qC1;:::;i D q.

We choose Nu 2 .Ph � P1;:::;i�q;h/Ei�qC1;:::;i such that kNukV D 1 and

�.Nu/ D max
w2.Ph�P1;:::;i�q;h/Ei�qC1;:::;i

w¤0

�.w/;

where �.Nu/ is the Rayleigh quotient. Let us consider the following V -orthogonal
decomposition of Nu:

Nu D u C v; with u 2 E1;:::;i ; v 2 .E1;:::;i /? ;

then working as in (39) we have

kvkV D ı.Nu; E1;:::;i /
� ı..Ph � P1;:::;i�q;h/Ei�qC1;:::;i ; Ei�qC1;:::;i /

D k.I � Ph C P1;:::;i�q;h/Pi�qC1;:::;ikL .V /:

Then the required estimate

0 � �i;h � �i
�i;h

� kvkV

follows from the following chain of inequalities working as in the proof of
Theorem 4

�.u/ � �i � �i;h � �.Nu/:
The last estimate is a consequence of the definition of Nu and of (29).

To obtain the second line of (42) it is enough to apply [56, Theorem 3.2].
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The first consequence of Theorem 6 concerns the case of multiple eigenvalues.

Corollary 5. Assume that the eigenvalue �p with p > 1 has multiplicity m > 1 so
that (35) holds with p Cm � 1 � N and

min
jD1;:::;p�1 j�j;h � �pj ¤ 0:

Then, for i D p; : : : ; p Cm � 1 we have

0 ��i;h � �p
�i;h

� k.I � Ph C P1;:::;p�1;h/Pp;:::;ik2L .V /

�
 
1C max

jD1;:::;p�1
�2j;h�

2
p

j�j;h��pj2 k.I�Ph/TP1;:::;p�1;hk2L .V /

!
k.I�Ph/Pp;:::;ik2L .V /;

where P1;:::;p�1;h is the orthogonal projection with respect to the norm of V onto
E1;:::;p�1;h D spanfu1;h; : : : ; up�1;hg and Pp;:::;i is the orthogonal projection onto
any i � p C 1 dimensional subspace of the eigenspace Ep;:::;pCm�1 corresponding
to the eigenvalue �p.

Remark 6. We remark that the error estimates for the eigenvalues of Theorems 5
and 6 contain multiplicative constants which approach 1, provided that assump-
tions (37) and (41) hold true.

Let us consider some particular cases in order to see the strength of Theorem 6 and
of Corollary 5.

CASE 1: �1 < �2 D �3 < �4
Let us suppose that �2 has multiplicity 2, so we can apply Corollary 5 with p D
m D 2. Assumption (37) gives

min
jD1;:::;p�1 j�j;h � �pj D j�1;h � �2j 
 �2 � �1:

In Corollary 5 we can take i D 2 or i D 3. For i D 2 we obtain

�2;h � �2

�2;h
�
 
1C �21;h�

2
2

j�1;h � �2j2 k.I � Ph/TP1;hk2L .V /

!
k.I � Ph/P2k2L .V /: (43)

For i D 3 we have

�3;h � �3
�3;h

D �3;h � �2
�3;h

�
 
1C �21;h�

2
2

j�1;h � �2j2 k.I � Ph/TP1;hk2L .V /

!
k.I � Ph/P2;3k2L .V /:

(44)
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In the first inequality the error is bounded by the best approximation error for
eigenfunction u2, while in the second one we have the bound in terms of the
best approximation error for spanfu2; u3g. Therefore, we can separate the rate of
convergence according to approximability of each eigenfunction. Notice that if u2 is
less regular than u3, we have from both the estimates (43) and (44) the same rate of
convergence, while in the opposite case the inequality (43) could give the best rate
of convergence corresponding to the most regular eigenfunction. Moreover, we also
see here the improvement with respect to the result of Theorem 5, which would not
give a valid estimate in this case since the denominator tends to zero.

CASE 2:�1 < �2 
 �3 < �4
This case is similar to the previous one but we have clustered eigenvalues. We obtain
results similar to the ones quoted for Case 1. In particular, as in the previous case
Theorem 5 would not give a good estimate for i D 3 since j�3 � �2;hj 
 0.

CASE 3: �1 < �2 D �3 < �4
We apply Theorem 6 with i D 3. Then we can choose q D 1; 2; 3 and obtain the
following bounds.

For q D 1 we have

�3;h � �3

�3;h
�
 
1C max

jD1;2
�2j;h�

2
3

j�j;h � �3j2 k.I � Ph/TP1;2;hk2L .V /

!
k.I � Ph/P3k2L .V /:

but this estimate is not optimal since minjD1;2 j�j;h � �3j 
 0.
For q D 2 we have

�3;h � �3
�3;h

�
 
1C �21;h�

2
3

j�1;h � �3j2 k.I � Ph/TP1;hk2L .V /

!
k.I � Ph/P2;3k2L .V /:

If �3 � �1 is large enough this inequality gives a sharp estimate in the case we have
u1 with poor approximability property.

For q D 3 we obtain

�3;h � �3

�3;h
� k.I � Ph/P1;2;3k2L .V /;

and this estimate recovers the result of Theorem 4 so that we estimate the error in
terms of the approximability of the span of all the previous eigenfunctions.

5.3 Numerical Results

In this section we report some numerical results of eigenproblems with multiple
eigenvalues, whose associated eigenfunctions can have different regularities.
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The first example in this direction is due to Babuška and Osborn [12]. Let us
consider the following one-dimensional differential equation: find � 2 R such that
there exists u ¤ 0 with:

�
�

1

'0.x/
u0.x/

�0
D �'0.x/u.x/; x 2 .��; �/

u.��/ D u.�/;

�
1

'
u0
�
.��/ D

�
1

'
u0
�
.�/;

where

'.x/ D ��˛ jxj1C˛ sign.x/; 0 < ˛ < 1:

It is easy to check that the continuous eigenvalues and eigenfunctions are given by

�0 D 0; �2i�1 D �2i D i 2 for i D 1; 2; : : :

u0 D 1; u2i�1 D cos.i'.x//; u2i D sin.i'.x// for i D 1; 2; : : : :

Due to the definition of ' we have that cos.'.x// 2 H2.��; �/ while sin.'.x// 2
H1C˛.��; �/. Each eigenvalue has multiplicity 2 and its eigenspace contains a
regular eigenfunction approximated optimally by piecewise linear finite elements
and a less regular eigenfunction for which the optimal rate of convergence cannot
be reached. We refer to the numerical results reported in [12, Sect. 10] showing that
for each double eigenvalue the rate of convergence is either 2 or 1C ˛.

The second example does not fit the theory presented so far, however the problem
is an important one and the numerical experiments show that the results presented
in Sect. 5.2 also hold in this case. It would also be interesting to extend the theory
to this situation.

Let ˝ 	 R
2 be an open polygon, denote by n the outward normal vector to its

boundary @˝ and by t the counterclockwise oriented tangent vector. We consider
the following eigenproblem which describes the vibration frequencies of a fluid
in a cavity, hence it can be considered as the simplest problem in fluid-structure
interaction (see e.g. [19, 24, 34]):

8<
:

�r div u D �u in ˝
rot u D 0 in ˝
u � n D 0 on @˝:

(45)

By standard orthogonalities in R
2 between the operators r and rot, (45) can be

transformed into 8<
:

� rot rot u D �u in ˝
div u D 0 in ˝
u � t D 0 on @˝;

which arises in electromagnetic applications (see e.g. [20, 25, 54, 63]).
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Here we focus on (45). One can observe that the constraint rot u D 0 follows
automatically from the first equation if � ¤ 0, hence one could drop the
irrotationality constraint and add a zero frequency corresponding to the infinite
dimensional null space of the functions which belong to rH1

0 .˝/. Numerical
methods based on this idea have been analyzed, for instance, in [20, 27, 54, 74]
for the Maxwell’s problem and in [19, 34] for the fluid-structure example. Another
approach is based on a penalization strategy (see, e.g., [18, 47, 54, 73]), which we
are going to consider in the present paper.

Let s be a positive real number, then the penalized formulation of (45) reads: find
� 2 R and u ¤ 0 such that:

8̂̂<
ˆ̂:

�r div u C 1

s
rot rot u D �u in ˝

u � n D 0 on @˝
rot u D 0 on @˝

(46)

Let us introduce the following Hilbert spaces

H1
0 .˝/ D fv 2 H1.˝/ W v D 0 on @˝g

H0.divI˝/ D fv 2 L2.˝/2 W div v 2 L2.˝/; v � n D 0g
H.rotI˝/ D fv 2 L2.˝/2 W rot v 2 L2.˝/g

The variational formulation of (46) reads: given s 2 R with s > 0, find � 2 R and
u 2 H0.divI˝/ \ H.rotI˝/ with u ¤ 0 such that

.div u; div v/C 1

s
.rot u; rot v/ D �.u; v/ 8v 2 H0.divI˝/ \ H.rotI˝/: (47)

It is well-known that if ˝ is convex the space H0.divI˝/ \ H.rotI˝/ is equal to
H1.˝/2 \ H0.divI˝/. But this equivalence fails if ˝ is a nonconvex polygon, as
it has been shown in [37]. On the other hand, we observe that it is not possible
to construct a piecewise polynomial function which is contained in H0.divI˝/ \
H.rotI˝/ but not in H1.˝/2. For this reason we introduce a mixed formulation
of (47) by setting sp D rot u, thus we obtain the following problem: given s > 0,
find � 2 R and u 2 H0.divI˝/ with u ¤ 0 such that for some p 2 H1

0 .˝/

.div u; div v/C .rotp; v/ D �.u; v/ 8v 2 H0.divI˝/

.rotq;u/ � s.p; q/ D 0 8q 2 H1
0 .˝/

(48)

Notice that if we take s D 0 in (48), then the second equation implies that rot u D 0,
so that p is the Lagrange multiplier associated to the irrotational constraint (see [54]
for the analogous situation in the case of Maxwell eigenproblem).
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Given a regular family fThg of triangulations of the domain ˝ , we consider the
following finite element spaces

Vh D fv 2 H0.divI˝/ W vjK 2 RT0.K/ 8K 2 Thg
Qh D fq 2 H1

0 .˝/ W qjK 2 P1.K/ 8K 2 Thg
(49)

where Pk.K/ is the set of polynomials of degree less than or equal to k on K and
RT0.K/ D P0.K/

2 C P0.K/.x; y/
t is the space of lowest order Raviart-Thomas

elements (see [65]). Then the discrete counterpart of (48) reads: given s > 0, find
�h 2 R and uh 2 Vh with uh ¤ 0 such that for some ph 2 Qh

.div uh; div v/C .rotph; v/ D �h.uh; v/ 8v 2 Vh

.rotq;uh/� s.ph; q/ D 0 8q 2 Qh:
(50)

Problem (48) with s D 0 is an eigenproblem in mixed form (see Sect. 4) and the
term which is added when s > 0 contributes to its stability (since it has the right
negative sign). We refer to [10] for the analysis in a more general framework.

Here we use this problem as an example of problems with multiple eigenvalues
associated to eigenfunctions of different regularity. We observe that, thanks to
the Helmholtz decomposition, the eigensolutions of problem (48) split into two
families. The first one is given by the eigensolutions .�n;un/ such that rot un D 0

and un D r' with .�n; '/ the eigensolution of the following Laplace equation with
Neumann boundary conditions

��' D �n' in ˝

@'

@n
D 0 on @˝:

The second family .�d ;ud / satisfies div ud D 0 so that ud D � rot with
.�d ;  / the eigensolution of the following Laplace equation with Dirichlet boundary
conditions

� 1

s
� D �d in ˝

 D 0 on @˝:

As a consequence of this carachterization, the Neumann eigenvalues �n do not

depend on s, while the Dirichlet ones �d grow linearly with
1

s
.

We consider the L-shaped domain ˝ reported in Fig. 9. Since ˝ is not convex,
there are eigenfunctions which are not in H2.˝/. We use as reference values for
the eigenvalues of the Neumann problem the solution published in [39], which are
computed by a Galerkin approximation with a geometrical refined mesh near the
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Fig. 9 The L-shaped domain

corner (10 layers and ratio 4) and polynomials of “high” degree (degree 10). The
first 5 eigenvalues with 11 correct digits are:

�n1 D 0:147562182408EC 01

�n2 D 0:353403136678EC 01

�n3 D 0:986960440109EC 01

�n4 D 0:986960440109EC 01

�n5 D 0:113894793979EC 02:

(51)

The first eigenvector has a strong singularity; notice, in particular, that �n3 D �n4
D �2.

We computed the solution of problem (50) using the package FreeFemCC [50]:
an open source software for solving partial differential problems by the finite
element method. The results of this computation have been taken from [69].
In Listing 1.7 we report the FreeFemCC code which computes eigenvalues and
eigenfunctions of problem (48).

In the first computation we set s D 0 so that we obtain the first five eigenvalues
associated to the irrotational eigenfunction, that is the Neumann eigenvalues �ni for
i D 1; : : : ; 5. In Table 7 we report the computed eigenvalues together with the
rate of convergence estimated by using the exact values quoted in (51). The integer
n represents the number of subdivision of the interval Œ0; 1�, the total number of
elements is NE D 6n2. Figure 10 reports the mesh corresponding to the value
n D 8.
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Table 7 Eigenvalues computed using the code listed in Listing 1.7 for s D 0

Exact Computed (rate)

n D 2 n D 4 n D 8 n D 16 n D 32

1.48 1.3248 1.4176 (1.4) 1.4531 (1.4) 1.4668 (1.4) 1.4722 (1.4)
3.53 3.4976 3.5217 (1.6) 3.5305 (1.8) 3.5331 (1.9) 3.5338 (1.9)
9.87 9.0496 9.6577 (2.0) 9.8161 (2.0) 9.8562 (2.0) 9.8662 (2.0)
9.87 9.3021 9.7420 (2.0) 9.8385 (2.0) 9.8619 (2.0) 9.8677 (2.0)

11.39 10.7739 11.2193 (1.9) 11.3448 (1.9) 11.3781 (2.0) 11.3866 (2.0)

DOF 65 225 833 3201 12545
NE D 6n2 24 96 384 1563 6144

Fig. 10 The mesh in the
L-shaped domain ˝ for
n D 8, NE D 384

We see in this first example that the discrete eigenvalues stay below the
corresponding continuous one. We remark that the technique used to prove the
error estimates in Sect. 5.2 cannot be applied to the approximation of problem (48).
Indeed the estimates in Theorems 4–6 are based on (30), that is the Ritz approxima-
tions of the eigenvalues bound the continuous ones by above. In general, no relation
of this type can be deduced for the approximation of the eigenvalues of the problem
in mixed form.

The second computation is performed using the value s D 13:376875077383353,
so that there is a regular Dirichlet eigenvalue which equals the first Neumann
eigenvalue �n1 that is not regular. This value for s has been computed by solving
the equation 2�2=s D �n1 : since there is a Dirichlet eigenvalue �d D 2�2 (for
s D 1) associated to a smooth eigenfunction, it follows that this choice for s shifts
this eigenvalue in such a way that its value is superimposed to �n1 .

Table 8 reports the first 5 computed eigenvalues together with the rate of
convergence for those eigenvalues converging to �n1 .

We see that in this case the rate of convergence is different from one eigenvalue to
the other and depends on the regularity of the associated eigenfunction as predicted
by Theorem 6, even if the problem does not fit within the theory presented in
Sect. 5.2. Moreover, we notice that �3;h, as n � 4, converges to �n1 from below,
while �4;h converges from above to the same value.
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Table 8 Eigenvalues computed using the code listed in Listing 1.7 for s D 13:376875077383353

Exact Computed (rate)

n D 2 n D 4 n D 8 n D 16 n D 32 n D 64

0.9867 0.7905 0.7413 0.7273 0.7229 0.7214
1.3248 1.2669 1.1688 1.1443 1.1381 1.1366

1.48 1.6462 1.4176 (1.6) 1.4531 (1.4) 1.4668 (1.4) 1.4722 (1.3) 1.4743 (1.3)
1.48 2.3922 1.7059 (1.9) 1.5327 (2.0) 1.4899 (2.0) 1.4792 (2.0) 1.4765 (2.0)

3.4976 2.7079 2.3317 2.2381 2.2147 2.2088

DOF 65 225 833 3201 12545 49665
NE D 6n2 24 96 384 1563 6144 24576

Listing 1.7 FreeFemCC code for problem (50)

i n t n =32; / / numbers o f s u b d i v i s i o n o f [ 0 , 1 ]
/�

C o n s t r u c t i o n o f t h e mesh
The domain i s s u b d i v i d e d i n t o t h r e e s q u a r e s
The mesh f o r each sq u a re i s c o n s t r u c t e d s e p a r a t e l y

� /
mesh Th1= s q u a r e ( n , n ) ;
mesh Th2= s q u a r e ( n , n , [ x�1 ,y ] ) ;
mesh Th3= s q u a r e ( n , n , [ x�1 ,y � 1 ] ) ;
v e r b o s i t y =3 ;
p l o t ( Th1 , Th2 , Th3 ) ;
i n t [ i n t ] r1 = [ 4 , 0 ] , r 2 = [ 2 , 0 ] , r 3 = [ 1 , 0 ] ;
i n t [ i n t ] r4 = [ 3 , 0 ] , r 5 = [ 1 , 5 ] , r 6 = [ 2 , 6 ] ;
Th1=change ( Th1 , l a b e l = r1 ) ;
Th2=change ( Th2 , l a b e l = r2 ) ;
Th2=change ( Th2 , l a b e l = r3 ) ;
Th3=change ( Th3 , l a b e l = r4 ) ;
Th3=change ( Th3 , l a b e l = r5 ) ;
Th3=change ( Th3 , l a b e l = r6 ) ;
/ / t h e t h r e e meshes a re g l u e d t o g e t h e r
mesh Th=Th1+Th2+Th3 ;
p l o t ( Th , w a i t = 1 ) ;
/ /
/� s i s t h e p e n a l i z a t i o n p a ra me te r � /
/ / r e a l s =0;
r e a l s =1 3 .3 7 6 875077383353;
r e a l sigma =0 ; / / s h i f t p a ra me te r
/ / f i n i t e e l e m e n t s p a c e s
f e s p a c e VQh( Th , [ RT0 , P1 ] ) ;
VQh [ u1 , u2 , p ] , [ v1 , v2 , q ] ;
/ /
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/� D e f i n i t i o n o f t h e p a r t i a l d i f f e r e n t i a l e q u a t i o n � /
v a r f op ( [ u1 , u2 , p ] , [ v1 , v2 , q ] ) =

i n t 2 d ( Th ) ( ( dx ( u1 )+ dy ( u2 ) ) � ( dx ( v1 )+ dy ( v2 ) )
�dx ( p )� v2 + dy ( p )� v1
+dx ( q )� u2 � dy ( q )� u1
+ s�p�q � sigma �u1�v1 � sigma �u2�v2 )

+on ( 1 , 2 , 3 , 4 , 5 , 6 , u1 =0 , u2 =0 , p = 0 ) ;
/� C o n s t r u c t i o n o f t h e m a t r i c e s � /
m a t r i x OP=op (VQh, VQh, s o l v e r = s p a r s e s o l v e r ) ;
v a r f m( [ u1 , u2 , p ] , [ v1 , v2 , q ] ) = i n t 2 d ( Th ) ( u1�v1 + u2�v2 ) ;
m a t r i x M=m(VQh, VQh, s o l v e r =GMRES) ;
/� Number o f computed e i g e n v a l u e s � /
r e a l nev =5 ;
r e a l [ i n t ] ev ( nev ) ;
VQh[ i n t ] [ eV ,eW, ep ] ( nev ) ;
i n t k ;
i n t n o ld = c o u t . p r e c i s i o n ( 2 0 ) ;
/� c o m p u t a t i o n o f e i g e n v a l u e s and e i g e n v e c t o r s � /
k= EigenVa lue (OP ,M, sym= true , nev=nev , v a l u e=ev ,

sigma =sigma , t o l =1e �10 , v e c t o r =eV ) ;
/� p l o t o f t h e e i g e n v e c t o r s � /
f o r ( i n t i =0 ; i<k ;++ i )
f
c o u t << ” E i g e n v a l u e ” << i << ” = ” << ev [ i ] <<e n d l ;
p l o t ( [ eV [ i ] ,eW[ i ] ] , ep [ i ] , cmm=” E i g e n v a l u e ” + ev [ i ] ,

w a i t =1 , v a l u e= t rue ) ;
g

6 A Posteriori Error Analysis

In this section we present an introduction to the subject of a posteriori error estima-
tion and adaptive mesh refinement for the approximation of the eigenvalue problem.
The main purpose of this section is to underline the difficulties which arise in the a
posteriori error analysis of eigenvalue problems. In this sense, the presentation is by
no means exhaustive and focuses on error estimators of the residual type. We first
recall the bibliography, which is now very extensive for eigenvalue problem as well
as for source problems. Then in Sects. 6.3, 6.4 we highlight the difficulties which
arise in dealing with eigenvalue problems, both in standard and mixed form, and
we show why the techniques used to develop an a posteriori error analysis for the
source problem cannot be trivially extended to the eigenvalue problem.



48 D. Boffi et al.

6.1 Some Introductory Remarks

In the last twenty years there has been a great deal of research work on a posteriori
error estimation and adaptive refinement for the finite element approximation of
PDEs that arise from physical and engineering applications. The aim is to obtain a
numerical solution within a prescribed tolerance using a minimal amount of work.

The a priori error estimates provided by the standard error analysis for the
finite element method yield information only on the asymptotic error behavior, and
strongly depend on the regularity of the solution. In particular in the presence of
local singularities, such as re-entrant corners and interior or boundary layers, the
overall accuracy of the numerical solution deteriorates. A first remedy is to refine the
mesh; nevertheless the uniform refinement could lead to an excessive computational
effort, when actually it is enough to refine only the elements in the neighborhood
of the singularities. The question then is how to detect the elements which have to
be refined and how to obtain a good balance between the refined and the un-refined
regions such that the overall accuracy is optimal.

Another issue is to be able to judge the quality of the numerical solution, namely
to obtain reliable estimates of the accuracy of the computed solution in order to
decide whether a prescribed tolerance has been achieved or not.

In this context the need of an error estimator which can be computed locally
from the numerical solution and the data of the problem appears clear. The error
estimator should yield reliable upper and lower bounds for the actual error. Indeed
global upper bounds are sufficient to ensure that the numerical solution achieves a
prescribed tolerance. Local lower bounds however are essential to guarantee that the
error is not overestimated and that its local distribution is correctly resolved. Finally,
the calculation of the a posteriori error estimate should be far less expensive than
the computation of the numerical solution.

The bibliography on a posteriori error estimators for the finite element method is
now very extensive (see, in particular the books by Verfürth [71] and Ainsworth and
Oden [1], and the references therein).

For classical finite element approximations of eigenvalue problems, Babuška
and Rheinboldt in [13] first introduced an a posteriori error estimator for a one
dimensional problem; Verfürth in [70] derived an upper bound of suboptimal order
in the approximation of the eigenvalue and only a global lower bound by considering
the eigenvalue problem as a parameter-dependent nonlinear equation and using
general results for the Galerkin approximation of such type of problems. Alonso
et al. in [5] presented an error estimator of the residual type for piecewise linear
finite element approximation of structure vibration problems. Then Larson in [60]
obtained optimal order estimates assuming the H2-regularity of the eigenfunctions,
which however excludes domain with re-entrant corners or discontinuous coeffi-
cients; Heuveline and Rannacher in [51] obtained results based on a general analysis
for nonlinear equations without requiring the H2-regularity of the problem. In [41]
Durán et al. developed a simple analysis for a residual type error estimator for the
linear finite element approximation of a second order elliptic problem. Finally, more
recent results can be found in [9, 49, 72].
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Concerning the mixed approximation of eigenvalue problems, Durán et al. in [40]
analyzed an error estimator for the approximation of the eigensolutions of a second-
order elliptic problem by using the equivalence between the mixed finite element
method of Raviart-Thomas of the lowest order and the non-conforming piecewise
linear approximation of Crouzeix and Raviart. Then Alonso et al. in [6] adapted the
techniques used in [40] to derive an error estimator for the lowest order Raviart-
Thomas approximation of the acoustic vibration problem. Moreover in [3, 4] this
error estimator has been used together with the one presented in [5] to deal
with structural-acoustic vibration problems on matching and non matching grids,
respectively. A posteriori error estimators for eigenvalue problems in mixed form
have been studied in [44, 45] without using the equivalence with a non-conforming
approximation. Finally, the Stokes eigenvalue problem has been considered in [61].

Eventually, the convergence of adaptive methods for the finite element appro-
ximation of eigenvalue problems has been studied quite recently in [32, 38, 42, 43,
48, 62].

6.2 A Posteriori Error Estimators

In this section we recall the properties of the error estimators and we describe a
simple mesh-refinement algorithm.

Let 	 denote the error estimator, which is usually given by the sum of local error
indicators

	2 D
X
K2Th

	2K:

The error estimator has to satisfy the following properties:

Reliability. It should bound from above the global error eh in a suitable norm k k:

kehk � C	C h.o.t.;

where h.o.t. denotes higher order terms.

Efficiency. It should provide local lower error estimates, in order to point out which
elements should be effectively refined:

	K � CkehkV;K� C h.o.t.;

whereK� is the union of K and few neighboring elements.

Low computational cost . The computation of 	K should be inexpensive in
comparison with the overall computation of the discrete solution.

Here and thereafter, C denotes a generic constant, not necessarily always the
same, but always independent of the mesh size.
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Having an a posteriori error estimator, an adaptive mesh-refinement algorithm,
which applies a usual procedure from [71], reads as follows:

1. Start with an initial coarse mesh T0. Set k D 0.
2. Solve the discrete problem on Tk .
3. For each elementK 2 Tk compute the local error indicator 	K .
4. Evaluate stopping criterion and decide to finish or go to next step.
5. Decide which elements have to be refined and construct the new mesh.
6. Define resulting mesh as TkC1, replace k by k C 1 and go to step 2.

Heuristic arguments show that for a linear finite element discretization of the
Poisson problem the optimal mesh among all partitions with a given number of
elements is the one which equilibrates the error, i.e. the error in each element is
almost the same (see [13, 14, 66]).

Based on this strategy, there are two main possibilities to decide which elements
have to be refined (see [71]):

1. Let K be an element in Th and let 
 be an element obtained by subdividing K .
It is quite reasonable to assume that the errors in K and 
 behave like ChrK and
Chr
 with unknown constants C and r . Computing error estimators 	K and 	
 ,
one can roughly calculate C and r and hence approximately predict the error in
an element 
 obtained by subdividingK .

2. For each elementK 2 Th compute the local error indicator 	K . Then refine each
element K 0 whose error indicator 	K0 satisfies

	K0 � � maxf	K W K 2 Thg;

where � 2 .0; 1/ is a prescribed threshold (very often � D 0:5).

The first possibility clearly is more sophisticated. However, in practice the second
possibility, which is cheaper, gives satisfactory results.

Another issue concerns the shape regularity of the mesh: it is mandatory
to preserve it during the refinement process. For triangular meshes there exist
essentially three different strategies which preserve the shape regularity:

1. Regular refinement: divide triangles into four by joining the midpoints of edges.
2. Longest edge bisection: bisect triangles by joining the midpoint of the longest

edge with the vertex opposite to this edge.
3. Marked edge bisection: bisect triangles by joining the midpoint of a marked edge

with the vertex opposite to this edge.

Finally, in order to obtain an admissible triangulation, i.e. without hanging nodes,
the refinement process has to obey some additional rules (see, in particular, [15–
17, 59, 67, 68]).
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6.3 Standard Finite Element Approximation

The aim of the present section is to highlight the difficulties which arise in the a
posteriori error analysis moving from the source problem to the eigenvalue problem.

For the sake of simplicity, we consider the Laplace problem as a model:

given f 2 L2.˝/; find u such that( ��u D f in ˝

u D 0 on @˝;

(52)

where˝ � R
d (d D 2; 3) is a polygonal or polyhedral domain.

Let us first consider the standard variational formulation of problem (52), which
reads

given f 2 L2.˝/; find u 2 V such that

.ru;rv/ D .f; v/ 8 v 2 V;
where as usual .�; �/ denotes the L2-inner product and V D H1

0 .˝/:

Let fThg denote a shape-regular family (i.e., satisfying the minimum angle
condition, see [35]) of triangulations of ˝ . As usual we require that any two
elements in Th share at most a common face, edge or a common vertex, and we
denote by h the maximum diameter of the elements K in Th. Let E be the set of
interior edges (faces in three dimensions) of the mesh and EK � E be the subset of
the edges (faces in three dimensions) of the elementK .

We denote by Vh � V a finite element subspace of V (we can take for example
the space consisting of continuous piecewise linear functions vanishing on the
boundary of ˝). The discrete problem reads:

given f 2 L2.˝/; find uh 2 Vh such that

.ruh;rvh/ D .f; vh/ 8 vh 2 Vh:

In the following we shall denote by a.u; v/ the bilinear form .ru;rv/ and by eh D
u � uh the error which belongs to the space V and satisfies the residual equation

a.eh; v/ D .f; v/� a.uh; v/ 8 v 2 V: (53)

Moreover, the standard Galerkin orthogonality property holds

a.eh; vh/ D 0 8 v 2 Vh:

The first step in the error analysis is to write the residual equation (53) as a sum
of local contribution and to apply integration by parts on each element. Moreover,
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observing that the traces of functions in V match along the interface between two
elements, we obtain the following expression

a.eh; v/ D
X
K2Th

8<
:.f C�uh; v/K � 1

2

X
e2EK

Z
e

�
@uh
@n

�
e

v

9=
; 8 v 2 V;

where .�; �/K and ���e denote respectively the L2-inner product restricted to the
element K and the jump across the edge (face in three dimensions) e, which is
defined as follows

�
@uh
@n

�
e

D ruhjK1
e

� nK1
e

C ruhjK2
e

� nK2
e
;

K1
e andK2

e being the two elements in Th sharing the edge (face in three dimensions)
e and nK1

e
and nK2

e
the unit outward normals on @K1

e and @K2
e , respectively.

Given any v 2 V , let vI 2 Vh be such that

kv � vIk0;K � ChK jvj1; QK

and

kv � vIk0;e � Ch1=2e jvj1; QK;

where QK is the union of all the elements sharing a vertex with K and hK and he
denote the diameter of K and the diameter of edge (face in three dimensions) e,
respectively. We can take, for example, the well-known Clément interpolant
(see [36]).

Then, thanks to the Galerkin orthogonality, we have

a.eh; v/ D
X
K2Th

8<
:.f C�uh; v � vI /K � 1

2

X
e2EK

Z
e

�
@uh
@n

�
e

.v � vI /

9=
; 8 v 2 V:

Using the Cauchy-Schwarz inequality and the properties of vI , we obtain

a.eh; v/ � Ckvk1
8<
:
X
K2Th

0
@h2Kkrk20;K C 1

2

X
e2EK

hekRk20;e

1
A
9=
;
1=2

;

where r is the interior residual

r jK D f C�uh 8K 2 Th
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and R is the boundary residual

Rje D
�
@uh
@n

�
e

8e 2 EK:

Hence, we can estimate the energy norm, or equivalently the H1-norm of the error,
as follows:

jehj1 � C

8<
:
X
K2Th

0
@h2Kkrk20;K C 1

2

X
e2EK

hekRk20;e

1
A
9=
;
1=2

:

Apart from the constant C , all of the quantities in the right-hand side can be com-
puted explicitly from the data of the problem and the finite element approximation.
This suggests to define the local error indicator associated with the element K by

	2K D h2Kkrk20;K C 1

2

X
e2EK

hekRk20;e

and the corresponding error estimator by

	 D
0
@X
K2Th

	2K

1
A
1=2

:

As usual in residual-type error indicators, 	K consist of the L2-norm of the
volumetric and edge (face in three dimensions) residual, suitably weighted.

We have then proved the reliability of the error estimator for the source problem.

Theorem 7. There exists a constant C , depending only on the regularity of the
mesh, such that

jehj1 � C	:

Let us now consider the eigenvalue problem corresponding to problem (52),
which reads

find � 2 R such that there exists u; with u ¤ 0 W( ��u D �u in ˝

u D 0 on @˝:

(54)
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The classical variational formulation of (54) is given by

find � 2 R such that there exists u 2 V; with u ¤ 0 W(
a.u; v/ D �.u; v/ 8 v 2 V
kuk0 D 1;

and its discretization by

find �h 2 R such that there exists uh 2 Vh; with uh ¤ 0 W(
a.uh; vh/ D �h.uh; vh/ 8 vh 2 Vh
kuhk0 D 1:

Let .�; u/ be an eigensolution of the continuous problem with � simple, and
.�h; uh/ be the corresponding discrete eigensolution. We denote by eh D u � uh
the error in the approximation of the eigenfunction, which satisfies the following
residual equation:

a.eh; v/� .�u � �huh; v/ D �a.uh; v/C �h.uh; v/ 8 v 2 V: (55)

First of all we observe that the Galerkin orthogonality property does not hold
anymore, indeed

a.eh; vh/ D .�u � �huh; vh/ 8 vh 2 Vh:

Therefore, the analysis developed for the source problem cannot be extended in a
straightforward fashion.

Trying to generalize the analysis developed for the source problem to the
eigenvalue problem, one has to deal with terms such as

.�u � �huh; eh/

and, in order to prove the efficiency of the estimator, as

k�u � �huhk0;K ;

which appear in the error estimate since the Galerkin orthogonality does not hold.
Duran et al. in [41] proved that these terms are of higher order than the error.
Due to the normalization on the eigenfunction, the first term can be treated in the
following way

.�u � �huh; eh/ D .�C �h/.1 � .u; uh// D �C �h

2
kehk20:



Some Remarks on Eigenvalue Approximation by Finite Elements 55

Then, proceeding as for the source problem rewriting the residual equation (55) as
a sum over the elements and applying integration by part yields

a.eh; v/ D a.eh; v � vI /C a.eh; v
I /

D
X
K2Th

8<
:.�uh C �huh; v � vI /K � 1

2

X
e2EK

Z
e

�
@uh
@n

�
e

.v � vI /

9=
;

C .�u � �huh; v � vI /C .�u � �huh; v
I /

D
X
K2Th

8<
:.�uh C �huh; v � vI /K � 1

2

X
e2EK

Z
e

�
@uh
@n

�
e

.v � vI /

9=
;

C .�u � �huh; v/ 8v 2 V:
Taking v D eh in the above equation, we obtain

kehk2a � C

8<
:
X
K2Th

0
@h2Kkrk20;K C 1

2

X
e2EK

hekRk20;e
1
A
9=
;
1=2

kehka C �C �h

2
kehk20;

where for the eigenvalue problem the volumetric and edge (face in three dimensions)
residuals are given respectively by

r jK D �uh C �huh 8K 2 TH

and

Rje D
�
@uh
@n

�
e

8e 2 Eh:

Hence, the local error indicator associated with the elementK is defined by

	2K D h2Kkrk20;K C 1

2

X
e2EK

hekRk20;e

and the error estimator by

	 D
0
@X
K2Th

	2K

1
A
1=2

:

Then the following theorem, which gives an upper error estimate, holds true.

Theorem 8. There exists a constant C , depending only on the regularity of the
mesh, such that

jehj1 � C	C
�
�C �h

2

�1=2
kehk0:
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Remark 7. By the a priori error estimates (see [12, 21]), kehk0 is of higher order
than jehj1 and thus the estimator provides an upper bound of the error in the energy
norm up to a multiplicative constant and a higher order term.

Remark 8. Thanks to the normalization of the eigenfunctions, the following result
holds true:

jehj21 D �C �h � 2�.u; uh/ D �h � �C �kehk20:
Therefore, if the error estimator is reliable, then we automatically have that it bounds
from above, up to a multiplicative constant dependent on � and higher order terms,
the square root of the error in the approximation of the eigenvalues as well.

The efficiency of the error indicator has been proved using a technique introduced
for the source problem firstly by Verfürth in [70]. The key idea is to use interior
bubble functions, supported on a single element, and edge (face in three dimensions)
bubble functions, supported on a pair of neighboring elements.

The following lemma provides a local upper estimate for the volumetric resid-
ual r .

Lemma 3. There exists a constantC , depending only on the regularity of the mesh,
such that

hKkrk0;K � C .jej1;K C hKk�u � �huhk0;K/ :
Proof. Let bK denote the standard cubic bubble function on the element K .
Choosing v D rbK in the residual equation (55), we get

a.eh; rbk/ D .�u � �huh; rbk/C .r; rbK/:

Thanks to the property of bubble functions, it holds

krk20;K � C

Z
K

r2bK D C Œa.eh; rbK/ � .�u � �huh; rbK/�

and hence, since jrbKj1;K � Ch�1
K krk0;K , we get the result.

We now estimate from above the edge (face in three dimensions) residual R.

Lemma 4. There exists a constant C , depending only on the regularity of K1
e and

K2
e , such that

h1=2e kRk0;e � C
�jehj1;K1

e[K2
e

C hek�u � �huhk0;K1
e[K2

e

�
:

Proof. Let be denote the edge (face in three dimensions) bubble function relative to
edge e. Writing the residual equation (55) as a sum of elemental contributions and
integrating by part yields

a.eh; v/� .�u � �huh; v/ D
X
K2Th

0
@Z

K

rv � 1

2

X
e2EK

Z
e

Rv

1
A :
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Taking v D Rbe in the above equation, we get

Z
e

R2be D .r; Rbe/� a.eh; Rbe/C .�u � �huh; Rbe/:

We conclude the proof using Lemma 3 together with the fact that

kRk20;e � C

Z
e

R2be and h
�1=2
K kRbek0;K C h

1=2
K jRbej1;K � CkRbek0;e:

As an immediate consequence of the previous lemmas, we get the following
theorem.

Theorem 9. LetK� be the union ofK and the neighboring elementsK 0 sharing an
edge (face in three dimensions) with K . There exists a positive constant, depending
only on the regularity of the mesh, such that

	K � C .jehj1;K� C hKk�u � �huhk0;K�/ :

Remark 9. The term hKk�u � �huhk0;K� in the previous theorem is a higher order
term. Indeed, for each element K 2 Th, it holds

hKk�u � �huhk0;K� � �hKku � uhk0;K� C j� � �hjhKkuhk0;K� :

By the a priori error estimates (see [12, 21]) both terms in the above equation are
higher order than the local error jehj1;K� .

In [41] it has also been proved that, for linear elements, the volumetric part of
the error indicator is dominated, up to higher order terms, by the edge (face in three
dimensions) residuals. This result was known for the source problem, see [33]. The
simpler error indicator is defined as

Q	K D
0
@1
2

X
e2EK

hekRk20;e
1
A
1=2

and the corresponding global error estimator as

Q	 D
0
@X
K2Th

Q	2k

1
A
1=2

:

The following theorem states the reliability and efficiency of the new error
estimator.
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Theorem 10. There exists a constant C , depending only on the regularity of the
mesh, such that

jehj1 � C

"
Q	C

�
�C �h

2

�1=2
kehk0 C �

3=2

h h2

#

and

Q	K � C .jehj1;K� C hKk�u � �huhk0;K�/ :

The additional term �
3=2

h h2 in the first estimate of the above theorem is of higher
order (see [41, Remark 4.1])

6.4 Mixed Finite Element Approximation

Error estimators for mixed approximations of the Poisson equation have been
introduced in [2, 31] starting from the Helmholtz decomposition of the error and
using the Galerkin orthogonality which holds for the second equation of the
problem.

Changing to the eigenvalue problem, difficulties similar to the ones underlined
for the classical approximation and due to the lack of the Galerkin orthogonality
arise.

The first a posteriori error estimators for mixed approximation of eigenvalue
problems have been obtained in a very particular situation using the equivalence
between the mixed method of Raviart-Thomas of the lowest order and the non-
conforming Crouzeix-Raviart approximation of the classical formulation (see [40]
and [6] for an application to fluid-structure interactions).

An a posteriori error analysis for mixed approximations of eigenvalue problems
has been developed in [44, 45] without resorting to the equivalence with a non-
conforming discretization. Moreover, an a posteriori error analysis for the finite
element approximation of the Stokes eigenvalue problem has been presented in [61].

6.4.1 A Posteriori Error Analysis for Brezzi–Douglas–Marini Finite
Elements

In this section we present the a posteriori error analysis developed in [44, 45] for
the Brezzi–Douglas–Marini (BDM) approximation of an eigenvalue problem which
arises from the displacement formulation to compute the vibration modes of an
acoustic fluid contained within a rigid cavity. We define an error estimator of the
residual type and prove that, under some regularity conditions on the continuous
eigensolution, it is equivalent to the H.div/-norm of the error up to higher order
terms. The constants involved in this equivalence depend on the corresponding
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eigenvalue, but are independent of the mesh size. Moreover, the square root of the
error in the approximation of the eigenvalue is also bounded by a constant times the
estimator.

We consider an eigenvalue problem which has already been introduced in
Sect. 5.3. For the ease of the reader, we present the problem again.

find � 2 R such that there exists u ¤ 08̂<
:̂

�r div u D � u in ˝

rot u D 0 in ˝

u � n D 0 on @˝;

(56)

where˝ � R
2 is a simply connected polygonal domain, @˝ its boundary, and n its

outward normal unit vector.
This problem has been studied by many authors concerning fluid-structure

interaction (see [19, 73]). Moreover, since in two dimensions the divergence and
rotational operators are isomorphic, it is equivalent to Maxwell’s eigenproblem for
a cavity resonator with dielectric constant " and magnetic permeability � constant
and equal to 1 (see [25, 52]).

A variational formulation of (56) reads:

find � 2 R such that there exists u 2 H0.div;˝/; with u ¤ 0 W(
.div u; div v/ D �.u; v/ 8 v 2 H0.div;˝/

.u; rotq/ D 0 8 q 2 H1
0 .˝/;

(57)

where H0.div;˝/ D fv 2 L2.˝/2 W div v 2 L2.˝/ and v � n D 0 on @˝g is
endowed with the norm kvk2div D kvk20Ck div vk20. It is well known that problem (57)
admits a countable set of real and positive eigenvalues, which can be ordered
in an increasing divergent sequence. Moreover the eigenfunctions satisfy u 2
Hs.div;˝/ D fv 2 Hs.˝/2 W div v 2 Hs.˝/g, for some s > 1=2 depending
on ˝ (s D 1 when ˝ is convex) (see [7]).

Let fThg be a regular family of triangulations of˝ , where as usual h denotes the
maximum diameter of the elementsK in Th. The Brezzi-Douglas-Marini spaces are
defined for k � 1 by

BDMk D fv 2 H.div;˝/ W vjK 2 Pk.K/2 8K 2 Thg;

where Pk.K/ denotes the space of polynomial of degree at most k on K (see [29]).
Setting Vh D BDMk \H0.div;˝/, and denoting byQh the subspace ofH1

0 .˝/

consisting of continuous piecewise polynomial of degree at most kC 1, the discrete
problem is then given by:

find �h 2 R such that there exists uh 2 Vh, with uh ¤ 0 W(
.div uh; div v/ D �h.uh; v/ 8 v 2 Vh
.uh; rotq/ D 0 8 q 2 Qh.

(58)
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Let .�;u/ be an eigensolution of (57) such that � is a simple eigenvalue and
kuk0 D 1. It follows from the abstract theory (see [12, 21]) and known a priori
estimates that, for h small enough (depending on �), there exists .�h;uh/ eigenpair
of (58) with kuhk0 D 1 such that

ku � uhkdiv D O.ht / (59)

ku � uhk0 D O.hr/ (60)

j� � �hj D O.h2t /; (61)

where t D minfs; kg, and r D minfs; k C 1g:
Since the problem we are dealing with consists of two equations, it is reasonable

to expect that the error estimator will be given by the sum of two terms, related
one to the residual of the first equation and the other to the residual of the second
equation.

Let E be the set of the interior edges of the mesh and EK � E be the subset
of edges of K . We denote by eh D u � uh the error in the approximation of the
eigenfunctions.

For any K 2 Th we define two local error indicators by

	21;K D h2Kkr div uh C �huhk20;K C 1

2

X
e2EK

hek�div uh�ek20;e;

	22;K D h2Kk rot uhk20;K C 1

2

X
e2EK

hek�uh � t�ek20;e;

and the corresponding error estimators by

	1 D
0
@X
K2Th

	21;K

1
A
1=2

;

	2 D
0
@X
K2Th

	22;K

1
A
1=2

:

The jump of the tangential component across the edge e is defined as follows

�uh � t�e D uhjK1
e

� tK1
e

C uhjK2
e

� tK2
e

where, for each triangle K , tK denotes the unit tangent vector to @K oriented
counterclockwise.

The following lemmas provide the residual equations which will be the starting
points of our error analysis.
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Lemma 5. For v 2 H0.div;˝/\H�.div;Th/, with � > 0, there holds

.div eh; div v/ � .�u � �huh; v/ D �.div uh; div v/C �h.uh; v/

D
X
K2Th

2
4.r1; v/K�1

2

X
e2EK

Z
e

�div uh�ev � n

3
5; (62)

where r1jK D r div uh C �huh is the volumetric residual of the first equation of
problem (56).

Lemma 6. For q 2 H1
0 .˝/ there holds

.eh; rotq/ D
X
K2Th

2
4.r2; q/K C 1

2

X
e2EK

Z
e

q �uh � t�e
3
5 ; (63)

where r2jK D � rot uh is the volumetric residual of the second equation of
problem (56).

Proof. The results easily follow by writing the residual equations as a sum over the
elements K 2 Th and integrating by parts over each element.

Remark 10. In order to write the boundary term coming from the integration by
parts as a sum of integrals over the edges of K , we had to require that v 2
H0.div;˝/\H�.div;Th/, for some � > 0. In the following we shall use Lemma 5
taking v D eh � eIh , where eIh 2 Vh denotes a suitable interpolant of eh. Hence, the
regularity assumption on v is not restrictive for our purposes.

Then the following propositions hold true.

Proposition 1. There exists a positive constant C , independent of h, such that

kehk0 � Ck div ehk0 C C	2: (64)

Proof. Since eh D u � uh 2 H0.div;˝/, by the Helmholtz decomposition we can
write

eh D r˛ C rotˇ;

where ˛ 2 H1.˝/=R and ˇ 2 H1
0 .˝/ are the solutions of the Laplace problem

with homogeneous boundary condition and datum � div eh and rot eh, respectively.
Using the stability of the Laplace problem and the Galerkin orthogonality

property of eh, we have that

kehk20 � C kehk0k div ehk0 C .eh; rot .ˇ � ˇI //;

where ˇI denotes the Clément interpolant of ˇ (see [36]).
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Applying Lemma 6 with q D ˇ � ˇI and taking into account the properties of
Clément interpolation operator, we get

kehk20 � Ckehk0k div ehk0 C kˇk1
X
K2Th

2
4hKkr2k0;K C 1

2

X
e2EK

h
1
2
e k�uh � t�ek0;e

3
5 :

We conclude the proof using the Helmholtz decomposition and Cauchy-Schwarz
inequality.

Proposition 2. There holds

k div ehk20 � C�
�
	21 C 	22 C .�u � �huh; eh/

	
; (65)

where C� is a positive constant dependent on �.

Proof. Let eIh 2 Vh be a suitable interpolant of eh, then

k div ehk20 D .div eh; div.eh � eIh//C .div eh; div eIh/

D .�u � �huh; eh/� .div uh; div.eh � eIh//C �h.uh; eh � eIh/;

where the last equality follows from the residual equation (62).
The following decomposition of H0.div;˝/ plays a key role in the proof

(see [64] for the details of the proof):

Proposition 3. For any v 2 H0.div;˝/ there exists z 2 H1
0 .˝/

2 and ' 2 H1.˝/

such that
v D z C rot'

and the following estimates hold:

kzk1 � Ck div vk0 and k'k1 � Ckvk0:

Then we write the error as eh D z C rot' and define eIh D zI C rot'I , where zI

and 'I denote the Clément interpolant of z and ', respectively. Note that with this
definition, eIh 2 Vh and eh�eIh D .z�zI /Crot.'�'I /. It follows from Lemmas 5
and 6 that

� .div uh; div.eh � eIh//C �h.uh; eh � eIh/

D �.div uh; div.z � zI //C �h.uh; z � zI /C �h.uh; rot.' � 'I //

�
X
K2Th

2
4kr1k0;KhKh�1

K kz � zI k0;K C 1

2

X
e2EK

k�div uh�ek0;eh 1
2
e h

� 1
2

e kz � zIk0;e
3
5
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C�h
X
K2Th

2
4kr2k0;KhKh�1

K k'�'Ik0;KC1

2

X
e2EK

k�uh � t�ek0;eh 1
2
e h

� 1
2

e k'�'Ik0;e
3
5:

Using the properties of Clément interpolation operator and the estimates in
Proposition 3, we have

k div ehk20 � Ck div ehk0
2
4X
K2Th

0
@h2Kkr1k20;K C 1

2

X
e2EK

hek�div uh�ek20;e
1
A
3
5

1
2

C C�hkehk0
2
4X
K2Th

.h2Kkr2k20;K C 1

2

X
e2EK

hek�uh � t�ek20;e/
3
5

1
2

C .�u � �huh; eh/:

Since �h ! � we can bound �h by a constant depending on �. We complete the

proof using two times the arithmetic-geometric mean inequality ab � "

2
a2 C b2

2"
.

Remark 11. Since kuk0 D kuhk0 D 1, the last term in (65) can be written as

.�u � �huh; eh/ D .�C �h/ Œ1 � .u;uh/� D �C �h

2
kehk20 (66)

and hence if the continuous eigensolution is smooth enough (i.e. u 2 H�.˝; div/
for some � > k), then by the a priori estimate (60) it turns out to be of higher order
than k div ehk20.

As a consequence of the previous results, we can state the following theorem.

Theorem 11. Let us assume that u 2 H�.div;˝/, for some � > k. Then there
exists a constant C�, depending on � and on the regularity of the mesh, such that

kehkdiv � C�.	1 C 	2/C h.o.t. (67)

Remark 12. Thanks to the normalization of the eigenfunctions, the following result
holds true:

k div ehk20 D �C �h � 2�.u;uh/ D �h � �C �kehk20:

Therefore, if the error estimator is reliable, then we automatically have that it bounds
from above, up to a multiplicative constant dependent on �, the square root of the
error in the approximation of the eigenvalues as well.

We split the proof of the efficiency of the error indicators into two steps.
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First of all we use the following lemma to prove that the error indicator 	2;K is
bounded above by the L2-norm of the error in the neighborhood of the elementK .

Lemma 7. Let K 2 Th. Given qK 2 L2.K/; pe;K 2 L2.e/; e � @K , there exists
a unique  K 2 PkC3.K/ such that

8̂̂<
ˆ̂:
. K; r/K D .qK; r/K 8r 2 Pk.K/R
e
 Ks D R

e
pe;Ks 8s 2 PkC1.e/

 K D 0 at the vertices of K

(68)

and

k Kk0;K � C

 
kqKk0;K C

X
e�@K

h
1
2
e kpe;Kk0;e

!
; (69)

with C constant depending only on the regularity of K .

Then the following result holds.

Proposition 4. There exists a constant C , depending only on the regularity of the
element K , such that

h2Kkr2k20;K � Ckehk20;K:

Proof. We apply Lemma 7 with qK D r2, pe;K D 0 8e � @K , then  K 2 H1
0 .K/.

Let  2 H1
0 .˝/ denote the zero extension of  K . Taking q D  in the residual

equation (63) we get

kr2k20;K D .r2;  K/K D .eh; rot  / � kehk0;Kk rot  Kk0;K
� Ckehk0;Kh�1

K k Kk0;K;

where the last bound follows from an inverse inequality. We complete the proof
using (69).

For any interior edge Ne 2 E let K1
Ne and K2

Ne denote the two elements of Th

sharing Ne.

Proposition 5. Let Ne 2 E . There exists a constant C , depending only on the
regularity of K1Ne andK2Ne , such that

1

2
hNek�uh � t�Nek20;Ne � Ckehk20;K1

Ne
[K2

Ne

:

Proof. For i D 1; 2, we apply Lemma 7 with qKi
Ne

D 0; pNe;Ki
Ne

D �uh � t�, and

pe;Ki
Ne

D 0 if e ¤ Ne. Let  2 H1
0 .K

1Ne [K2Ne / \H1
0 .˝/ defined by
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 D

8̂̂
<
ˆ̂:
 K1

Ne
in K1

Ne
 K2

Ne
in K2Ne

0 in ˝n.K1Ne [K2Ne /:

Taking q D  in (63) we get

1

2
k�uh � t�Nek20;Ne D .eh; rot /K1

Ne
[K2

Ne
� Ckehk0;K1

Ne
[K2

Ne
h

� 1
2Ne k�uh � t�Nek0;Ne ;

where the last bound follows from an inverse inequality and (69).

We can therefore state the following theorem.

Theorem 12. There exists a constant C , depending only on the regularity of the
mesh, such that

	2 � Ckehk0:
Moreover, the following local estimate holds

	2;K � Ckehk0;K� ;

with C constant depending only on the regularity of the elements K of K�.

Now we prove that the error indicator 	1;K is bounded above, up to higher order
terms, by the L2-norm of the divergence of the error in the neighborhood of the
element K . This, together with the previous result, yields the efficiency of the error
indicator 	1;K C 	2;K .

We shall use the following lemma, which generalizes Lemma 7 to vector-valued
functions.

Lemma 8. Let K 2 Th. Given qK 2 ŒL2.K/�2; pe;K 2 ŒL2.e/�2; e � @K , there
exists a unique  K 2 ŒPkC3.K/�2 such that

8̂̂
<
ˆ̂:
. K; r/K D .qK; r/K 8r 2 ŒPk.K/�2R
e
 K � s D R

e
pe;K � s 8s 2 ŒPkC1.e/�2

 K D 0 at the vertices of K

(70)

k Kk0;K � C.kqKk0;K C
X
e�@K

h
1
2
e kpe;Kk0;e/; (71)

with C constant depending only on the regularity of the element K .

Then the following propositions hold.

Proposition 6. There exists a constant C , depending only on the regularity of K ,
such that

hKkr1k0;K � C.k div ehk0;K C hKk�u � �huhk0;K/:
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Proof. We apply Lemma 8 with qK D r1, pe;K D 0 8e � @K , then  K 2
ŒH1

0 .K/�
2. Let  2 ŒH1

0 .˝/�
2 denote the zero extension of  K . Then taking v D  

in (62), we get

kr1k20;K D .r1;  K/K D .div eh; div K/K � .�u � �huh;  K/K

� k div ehk0;Kk div Kk0;K C k�u � �huhk0;Kkr1k0;K

� Ch�1
K k div ehk0;Kkr1k0;K C k�u � �huhk0;Kkr1k0;K;

where the last bound follows from an inverse inequality and from (71).

Proposition 7. Let Ne 2 E . There exists a constant C , depending only on the
regularity of K1Ne andK2Ne , such that

1

2
h
1
2Ne k�div uh�Nek0;Ne � C.k div ehk0;K1

Ne
[K2

Ne
C hNek�u � �huhk0;K1

Ne
[K2

Ne
/:

Proof. For i D 1; 2, we apply Lemma 8 with qKi
Ne

D 0; p Ne;Ki
Ne

D .0;��div uh�Ne/,
and pe;Ki

Ne
D 0 if e ¤ Ne. Let  2 ŒH1

0 .K
1Ne [K2Ne /�2 \ ŒH1

0 .˝/�
2 be defined by

 D

8̂̂
<
ˆ̂:
 K1

Ne
in K1

Ne
 K2

Ne
in K2Ne

0 in ˝n.K1Ne [K2Ne /:

Taking v D  in the residual equation (62) we get

1

2
k�div uh�Nek20;Ne D .div eh; div /K1

Ne
[K2

Ne
� .�u � �huh;  /K1

Ne
[K2

Ne

� C.k div ehk0;K1
Ne
[K2

Ne
h

� 1
2Ne k�div uh�Nek0;Ne

C k�u � �huhk0;K1
Ne[K2

Ne
h
1
2Ne k�div uh�Nek0;Ne/;

where the last bound follows from an inverse inequality and from (71).

As a consequence of Propositions 6 and 7 the following theorem holds.

Theorem 13. There exists a constant C , depending only on the regularity of the
elements of K�, such that

	1;K � C .k div ehk0;K� C hKk�u � �huhk0;K�/ :
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Remark 13. The term hKk�u��huhk0;K� in the previous theorem is a higher order
term. Indeed, for each element K 2 Th

hKk�u � �huhk0;K� � j� � �hjhKkuhk0;K� C �hKkehk0;K� � Ch2tC1

C �hKkehk0;K� ;

where the last bound follows from the a priori estimate (61). Note that the right hand
side is asymptotically negligible with respect to the local error k div ehk0;K� .

Putting together the results of Theorems 12 and 13, we have that the error
indicator 	1;K C 	2;K is bounded above by the local error up to a multiplicative
constant and higher order terms, namely,

	1;K C 	2;K � Ckehkdiv;K� CO.h2tC1/CO.hK/kehk0;K� :

We summarize all the result we presented in the following theorem.

Theorem 14. There exists a constant C , depending only on the regularity of the
mesh, such that

	1;K C 	2;K � Ckehkdiv;K� C h.o.t. (72)

Moreover if u 2 H�.div;˝/ for some � > k, then there exist two constants C1;�
and C2;�, depending on � and on the regularity of the mesh, such that

kehkdiv � C1;�.	1 C 	2/C h.o.t. (73)

j� � �hj 12 � C2;�.	1 C 	2/C h.o.t. (74)

6.4.2 A Posteriori Error Analysis for Raviart-Thomas Finite Elements

In this section we develop an a posteriori error analysis for the Raviart-Thomas (RT)
approximation of the Laplace eigenproblem with Neumann boundary condition.

It is known (see [25]) that the mixed formulation of the Laplace eigenprob-
lem with Neumann boundary condition is equivalent to the eigenvalue problem
considered in the previous section. Moreover, if we consider Raviart-Thomas or
Brezzi-Douglas-Marini finite elements, then the corresponding discrete problems
are equivalent as well. Nevertheless, the a posteriori error analysis developed for
Brezzi-Douglas-Marini approximation does not hold for Raviart-Thomas finite
elements. This is due to the fact that, contrary to BDM elements, RT elements
provide an approximation of the same order in L2 and H.div/ and thus the term
.�u � �huh; eh/, which appears in the analysis, is not a higher order term (see
Remark 11).
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We prove that, if a superconvergence result holds true, then the error estimator
	2 previously introduced in Sect. 6.4.1 is equivalent to the L2-norm of the error up
to higher order terms.

In order to prove this result, we also prove that the grad-part of the L2-norm
of the error is negligible. A similar result is known to hold for the source problem,
provided the solution is smooth enough. Nevertheless, the proof given for the source
problem cannot be extended in a straightforward fashion to the eigenvalue problem.
Indeed the proof strongly relies on the Galerkin orthogonality, which holds for the
source problem but not for the eigenvalue problem.

The mixed formulation of the Laplace eigenproblem with Neumann boundary
condition reads:

find � 2 R such that there exist .� ; '/ 2 H0.div;˝/ �L20.˝/, with ' ¤ 0 W

.� ;�/C .div �; '/ D 0 8 � 2 H0.div;˝/
.div � ;  / D ��.';  / 8 2 L20.˝/

(75)

and its discretization by means of Raviart-Thomas finite elements is given by

find �h 2 R such that there exist .� h; 'h/ 2 ˙h � ˚h, with 'h ¤ 0 W

.� h;�/C .div �; 'h/ D 0 8 � 2 ˙h

.div � h;  / D ��h.'h;  / 8 2 ˚h,
(76)

where

˙h D RTk \H0.div;˝/;

and

˚h D f 2 L20.˝/ W  jK 2 Pk 8K 2 Thg:

The Raviart-Thomas spaces are defined for k � 0 as follows:

RTk D f� 2 H.div;˝/ W �jK 2 Pk.K/2 C Pk.K/.x; y/
t 8K 2 Thg:

Due to regularity results (see [7]), there exists a constant s > 1=2 (depending
on ˝), such that .� ; '/ belongs to the space Hs.˝/2 � H1Cs.˝/. Furthermore,
the following estimate holds true:

k�ks C kdiv �k1Cs � Ck�k0; (77)

where C is a constant depending on the eigenvalue �. In (77), s is at least one if
˝ is convex, while s is at least �=! � " for any " > 0 for a non convex domain,
! < 2� being the maximum interior angle of ˝ .

Let .�; � / be an eigensolution of (75) such that � is a simple eigenvalue and
k�k0 D 1. From the abstract theory (see [12, 21]) and known a priori estimates it
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follows that, for h small enough (depending on �), there exists .�h; � h/ eigenpair
of (76) with k� hk0 D 1 such that

k� � � hkdiv D O.ht / (78)

k� � � hk0 D O.ht / (79)

j� � �hj D O.h2t /; (80)

where t D minfs; k C 1g.
In the following we denote by eh D � � � h the error in the approximation of the

eigenfunction and by Ph the L2-projection on ˚h.
The main result of this section is stated in the following theorem.

Theorem 15. If kPh' � 'hk0 is of higher order than kehk0, then there exist a
constant C , depending on the regularity of the mesh, such that

kehk0 � C	2 C h.o.t.;

where “h.o.t.” denotes higher order terms.

The error indicator 	2 in the above theorem is the one introduced in Sect. 6.4.1
and it is given by

	22;K D h2Kk rot � hk20;K C 1

2

X
e2EK

hek�� h � t�ek20;e:

As for Brezzi-Douglas-Marini approximation, the a posteriori error analysis
starts from the Helmholtz decomposition of the error

eh D r˛ C rotˇ:

The rot-part of theL2-norm of the error is then bounded above by the error indicator
	2, as it has been done in Sect. 6.4.1. But, contrary to what has been done for Brezzi-
Douglas-Marini approximation, we prove that if a superconvergence property holds,
then the grad-part of the L2-norm of the error .eh;r˛/ is of higher order than
kehk20. It is known that a similar result holds true for the source problem, provided
the solution is smooth enough. Indeed, thanks to the Helmholtz decomposition, it
holds

k� s � � shk20 D .� s � � sh;ra/C .� s � � sh; rot b/;

where � s and � sh denote the solution of the continuous and discrete source problem,
respectively. Moreover, due to the Galerkin orthogonality property, we have

.� s � � sh;ra/ D �.div.� s � � sh/; a/ D �.div.� s � � sh/; a � Pha/: (81)
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Therefore, if � s is smooth enough, then from the standard a priori error analysis for
mixed problems it follows that

.� s � � sh;ra/ � ChkC2k� s � � shk0; (82)

and hence it turns out to be of higher order than k� s � � shk20.
We observe that the previous proof cannot be generalized in a straightforward

way to the eigenvalue problem. In fact in this case, the Galerkin orthogonality does
not hold and hence we are not allowed to subtract Pha in the right hand side of (81).
In what follows we shall generalize equation (82) to the eigenvalue problem and we
will use it to prove Theorem 15.

We start proving the following theorem.

Theorem 16. There exist a constant C , depending on the regularity of the mesh,
such that

kehk0 � C.	2 C j� � �hj C k' � Ph'k.H1=R/� C kPh' � 'hk0/ (83)

Proof. By the Helmholtz decomposition, we write the error as

eh D r˛ C rotˇ;

where ˛ 2 H1.˝/=R and ˇ 2 H1
0 .˝/ are the solutions of the Laplace problem

with homogeneous Neumann and Dirichlet boundary condition and datum � div eh
and rot eh, respectively. Then the L2-norm of the error is given by

kehk20 D .eh;r˛/C .eh; rotˇ/:

Arguing as in the proof of Proposition 1, we have that

.eh; rotˇ/ � C	2kehk0:

Hence, it remains to prove that

.eh;r˛/ � C.j� � �hj C k' � Ph'k.H1=R/� C kPh' � 'hk0/kehk0:

Integrating .eh;r˛/ by parts and using the second equation of problems (75)
and (76), we get

.eh;r˛/ D �.div.� � � h/; ˛/ D �.�' � �h'h; ˛/:

We now estimate .�' � �h'h; ˛/ in the following way:

.�' � �h'h; ˛/ � k�' � �h'hk.H1=R/�k˛kH1=R � Ck�' � �h'hk.H1=R/�kehk0:
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Finally, we bound k�' � �h'hk.H1=R/� as follows:

k�' � �h'hk.H1=R/� � j� � �hjk'k0 C j�hjk' � 'hk.H1=R/� :

We conclude the proof by adding and subtracting Ph' in the last term of the above
equation, and a applying triangular inequality.

The following corollary, which states the reliability of the error estimator 	2,
holds true.

Corollary 6. If kPh' � 'hk0 is of higher order than kehk0, then there exists a
constant C , depending on the regularity of the mesh, such that

kehk0 � C	2 C h.o.t.:

Proof. The terms j� � �hj and k' � Ph'k.H1=R/� in (83) are of higher order than
kehk0. Indeed, thanks to the a priori error estimate (80),

j� � �hj D O.h2t /;

while, taking into account the properties of the L2-projection Ph together with the a
priori estimate (77), the second term is bounded in this way

k' � Ph'k.H1=R/� D sup
 2H1=R

.' � Ph'; � Ph /
k kH1=R

� Chhminfk;sgC1: (84)

The superconvergence result required by Corollary 6 has been proved for the
lowest order Raviart-Thomas elements in [46]. Moreover, numerical evidence of
the superconvergence property for Brezzi-Douglas-Marini space of lowest order has
also been shown.

In order to prove that the local error indicator 	2;K is bounded above by the L2-
norm of the error in the neighborhood of the element K , we can argue in the same
way as it has been done in Sect. 6.4.1 for Brezzi-Douglas-Marini approximation.
Indeed, the following propositions holds true for Raviart-Thomas finite elements as
well.

Proposition 8. There exists a constant C , depending only on the regularity of the
element K , such that

h2Kk rot � hk20;K � Ckehk20;K :
Proposition 9. Let Ne 2 E . There exists a constant C , depending only on the
regularity of K1Ne andK2Ne , such that

1

2
hNek�� h � t�ek20;Ne � Ckehk20;K1

Ne
[K2

Ne

;

where K1Ne andK2Ne denote the two elements in Th sharing Ne.
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We omit the details of the proof, which are as in Sect. 6.4.1. Collecting the results
of the above propositions, we can state the following theorem.

Theorem 17. For each element K 2 Th there exists a constant C , depending only
on the regularity of the elements in K�, such that

	2;K � Ckehk0;K� :

Moreover the following global estimate holds

	2 � Ckehk0;
with C constant depending only on the regularity of the mesh.

The following theorem summarizes the results we proved.

Theorem 18. For each element K 2 Th there exists a constant C , depending only
on the regularity of the elements in K�, such that

	2;K � Ckehk0;K� :

Moreover if kPh' � 'k0 is h.o.t., then there exist a constant C , depending on the
regularity of the mesh, such that

kehk0 � C	2 C h.o.t.;

where “h.o.t.” denotes higher order terms.

6.5 Numerical Results

In this section we present the results of some preliminary numerical computation
which confirm the good behavior of the error indicators introduced in Sects. 6.4.1
and 6.4.2 when used to mark the elements to be refined.

The numerical tests concern the problem of a rigid L-shaped cavity, as shown in
Fig. 11. Since the domain has a re-entrant corner, eigenfunctions with singularities
are expected.

Fig. 11 L-shaped domain

π

π

0
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Fig. 12 Initial triangulation

We present the results obtained with meshes generated by the adaptive method
described in Sect. 6.2. We use the longest edge bisection refinement and the
refinement strategy 2 with � D 0:5. The process starts with a coarse uniform
triangulation T0 shown in Fig. 12.

The tests have been performed taking as approximation spaces the lowest order
Brezzi-Douglas-Marini (BDM1) and Raviart-Thomas elements (RT0), respectively.
In this particular case, the error indicators introduced in Sects. 6.4.1 and 6.4.2
reduce to

	K D 	1;K C 	2;K

with

	21;K D h2K�
2
hk� hk20;K C 1

2

X
e2EK

hek�div � h�ek20;e
and

	22;K D h2Kk rot � hk20;K C 1

2

X
e2EK

hek�� h � t�ek20;e
for the first order Brezzi-Douglas-Marini finite element, while

	2K D 1

2

X
e2EK

hek�� h � t�ek20;e

for the lowest order Raviart-Thomas elements.
The numerical computations concern the first eigensolution, which is the one

which presents local singularities in the neighborhood of the re-entrant corner.
Figure 13 shows the triangulations obtained after four, six and seven steps

of the refinement process for BDM approximation, whereas Fig. 14 uses the RT
approximation. As can be seen, in both cases the error indicators correctly detect
the elements which have to be refined, namely the ones in the neighborhood regions
of the singularities.
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Fig. 13 Fourth, sixth, and seventh refinement steps (BDM1)

Fig. 14 Fourth, sixth, and seventh refinement steps (RT0)
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19. A. Bermúdez, R. Durán, M. A. Muschietti, R. Rodrı́guez, and J. Solomin. Finite element
vibration analysis of fluid-solid systems without spurious modes. SIAM J. Numer. Anal.,
32(4):1280–1295, 1995.
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C 0 Interior Penalty Methods

Susanne C. Brenner

Abstract C0 interior penalty methods are discontinuous Galerkin methods for
fourth order problems. In this article we discuss various aspects of such methods
including a priori error analysis, a posteriori error analysis and fast solution
techniques.

1 Introduction

There are three classical approaches in finite element methods for fourth order
problems. The first one uses conforming finite element methods [6, 43, 97]. The
advantage of this approach is that convergence is automatically guaranteed. The
disadvantage is that it requires C1 finite elements, which can be quite complicated,
especially in three dimensions. The second approach uses nonconforming finite ele-
ment methods [12,74,83,84]. The advantage of this approach is that nonconforming
finite elements are simpler. The disadvantage is that such elements do not come
in a natural hierarchy. The existing nonconforming elements only use low order
polynomials and hence are not efficient for capturing smooth solutions. It is also
nontrivial to design nonconforming finite element methods that converge, especially
in three dimensions. The third approach uses a mixed formulation [42, 45, 61, 71].
The advantage of this approach is that it only requires C 0 finite elements. The
disadvantage is that it replaces the symmetric positive definite continuous problem
by a saddle point problem, and it is not easy to choose finite element pairs that
satisfy the Ladyshenskaya-Babušhka-Brezzi stability condition [8,41]. Furthermore
it is nontrivial to design a good mixed formulation for complicated problems.

S.C. Brenner (�)
Department of Mathematics and Center for Computation & Technology, Louisiana State
University, Baton Rouge, LA 70803, USA
e-mail: brenner@math.lsu.edu

J. Blowey and M. Jensen (eds.), Frontiers in Numerical Analysis – Durham 2010,
Lecture Notes in Computational Science and Engineering 85,
DOI 10.1007/978-3-642-23914-4 2, © Springer-Verlag Berlin Heidelberg 2012

79



80 S.C. Brenner

C0 interior penalty methods [52] are discontinuous Galerkin methods [7, 81]
for fourth order problems that can overcome the shortcomings of the classical
approaches. These methods use standard C0 Lagrange finite elements for second
order problems. They are simpler than C1 elements and they come in a natural
hierarchy. The higher order C0 interior penalty methods can capture smooth
solutions efficiently. Unlike mixed methods, they preserve the positive definiteness
of the continuous problem and their derivation is straight-forward, which makes
them attractive for complicated problems. Moreover, since C0 interior penalty
methods use standard finite element spaces for second order problems, fast solvers
for second order problems can be naturally employed as preconditioners for the
resulting discrete problems.

Below we will derive C0 interior penalty methods for several two dimensional
model problems, present the error analysis of these methods, and discuss fast
solution techniques for the discrete problems.

1.1 Basic Notations and Definitions

For later reference we collect here some basic notations and definitions for finite
element methods, differential operators and Sobolev spaces. Detailed information
on these concepts can be found for example in [1, 32, 44].

Finite Element Methods

• ˝ � R
2 is a bounded polygonal domain.

• Th is a triangulation of ˝ .
• Vh .� H1.˝// is a C0 Lagrange finite element space associated with Th.
• ˘h W C. N̋ / �! Vh is the nodal interpolation operator for Vh.
• vT is the restriction of v 2 Vh to the element T .
• E i

h is the set of the interior edges of Th.
• E b

h is the set of the boundary edges of Th.
• Eh D E i

h [ E b
h is the set of all the edges of Th.

• hT is the diameter of an element T 2 Th and h D maxT2Th
hT .

• jej is the length of an edge e 2 Eh.
• Tp is the set of the elements in Th that share the common vertex p.
• Te is the set of the elements in Th that share the common edge e.
• jTpj (resp. jTej) is the number of elements (resp. edges) in Tp (resp. Te).

Differential Operators

• The order of ˛ D .˛1; ˛2/ is j˛j D ˛1 C ˛2, and @˛v D @˛1C˛2v=@x˛11 @x
˛2
2 .

• � D .@2=@x21/ C .@2=@x22/ is the Laplacian operator and �2 is the biharmonic
operator.

• rv is the 2 � 1 gradient vector of v and r2v is the 2 � 2 Hessian matrix of v.
• The outer normal derivative along @˝ is denoted by @=@n.
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Sobolev Spaces

• Hm.˝/ is the Sobolev space of square integrable functions whose weak
derivatives up to orderm are also square integrable.

• jvjHk.˝/ is the seminorm defined by jvj2
Hk.˝/

D
X

j˛jDk
k@˛vk2L2.˝/.

• kvkHm.˝/ is the norm of Hm.˝/ defined by kvk2Hm.˝/ D
X

0�k�m
jvj2

Hk.˝/
.

• For a positive number s that is not an integer, Hs.˝/ is the fractional order
Sobolev space. Let m D bsc be the largest integer < s and � D s �m. Then the
seminorm jvjHs.˝/ and the norm kvkHs.˝/ are given by

jvj2Hs.˝/ D
X

j˛jDm

Z
˝

Z
˝

j.@˛v/.x/ � .@˛v/.y/j2
jx � yj2C2� dx dy;

kvk2Hs.˝/ D kvk2Hm.˝/ C jvj2Hs.˝/:

• For s � 0, Hs
0 .˝/ is the closure in Hs.˝/ of the space of C1 functions with

compact supports in ˝ , andH�s.˝/ is the dual space of Hs
0 .˝/.

Piecewise Sobolev Spaces

• Hs.˝;Th/ D fv 2 L2.˝/ W v
ˇ̌
T

2 Hs.T / 8T 2 Thg is the piecewise Sobolev
space with respect to the triangulation Th.

We will use C with or without a subscript to represent a generic positive constant
that can depend on the shape regularity of the triangulation Th and the polynomial
degree of the finite element space, but not on the mesh parameter h.

Remark 1. The results in this article are also valid for the Qk tensor product
Lagrange finite element spaces.

2 Model Problems

For simplicity we consider the two dimensional biharmonic equation with various
boundary conditions as our model problems, but the results discussed in this article
can be extended to more complicated problems in three dimensions [52].

Example 1.

�2u D f in ˝ (2.1a)

u D @u

@n
D 0 on @˝ (2.1b)

This boundary value problem is related to the bending of clamped Kirchhoff plates
and stationary incompressible Stokes equations with the no-slip boundary condition.
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Example 2.

�2u D f in ˝ (2.2a)

u D �u D 0 on @˝ (2.2b)

This boundary value problem is related to the bending of simply supported
Kirchhoff plates

Example 3.

�2u D f in ˝ (2.3a)

@u

@n
D @�u

@n
D 0 on @˝ (2.3b)

This boundary value problem is related to the Cahn-Hilliard model for phase
separation phenomena.

We assume f 2 L2.˝/ in all the examples. For Example 3 we also assume the
solvability condition Z

˝

f dx D 0: (2.4)

2.1 Weak Formulations

The weak formulation of the model problems is to find u 2 V such that

a.u; v/ D
Z
˝

f v dx 8 v 2 V; (2.5)

where

a.w; v/ D
Z
˝

r2w W r2v dx; (2.6)

r2w W r2v is the inner product of the Hessian matrices of w and v, and V is a closed
subspace of the Sobolev space H2.˝/ chosen as follows:

• V D H2
0 .˝/ for (2.1)

• V D H2.˝/\H1
0 .˝/ for (2.2)

• V D fv 2 H2.˝/ W @v=@n D 0 on @˝g for (2.3)

The well-posedness of the weak formulations follow from Poincaré-Friedrichs
inequalities [79] for H2.˝/. For the model problem (2.3) the solution is unique up
to an additive constant under the solvability condition (2.4).
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2.2 Elliptic Regularity

If the domain is smooth, the solution u of (2.5) belongs to H4.˝/ by classical
elliptic regularity results [2]. This is however not the case for a polygonal domain.
The weak solutions of the boundary value problem in Example 1 belong in general
to H2C˛.˝/ for some ˛ 2 .1=2; 2�. The value of ˛ depends on the interior angles
at the corners of ˝ . For a convex ˝ , we have ˛ > 1 and ˛ is close to 1 if one of
the interior angles of ˝ is close to � . The weak solutions of the boundary value
problems in Example 2 and Example 3 belong in general toH2C˛.˝/ for some ˛ 2
.0; 2�, and ˛ can be close to 0 if one of the interior angle is close to � . Thus for these
two model problems ˛ can be close to 0 even for convex ˝ . Details of the elliptic
regularity theory for the biharmonic equations can be found in [15,46,57,63,64,77].

We will refer to ˛ as the index of elliptic regularity, and the elliptic regularity
estimate

jujH2C˛.˝/ � C˝kf kL2.˝/ (2.7)

holds for the solution u of the model problems.

2.3 Ramifications of Elliptic Regularity

The regularity of the solutions of the model problems will play an important role in
their error analysis. But there is another important consequence of elliptic regularity
for the boundary value problems in Example 2 and Example 3.

The boundary value problem in Example 2 is formally equivalent to the following
two second order boundary value problems:

��u D v in ˝ ��v D f in ˝

u D 0 on @˝ v D 0 on @˝

However, the solution obtained from the second order equations coincides with the
solution of the fourth order problem if and only if ˝ is convex. Indeed the solution
obtained from the second order equations in general does not belong to H2.˝/

when˝ is nonconvex.
A similar phenomenon holds for the boundary value problem in Example 3.

These observations indicate that mixed finite element methods for the model
problems in Example 2 and Example 3 are problematic when ˝ is nonconvex.

3 C 0 Interior Penalty Methods

We will only provide details for the derivation of C0 interior penalty methods for
the model problem (2.1). In the following derivation we assume that u is sufficiently
smooth, say u 2 H4.˝/.
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Let Vh � H1
0 .˝/ be the Pk (k � 2) Lagrange finite element space associated

with the triangulation Th of ˝ whose members vanish on @˝ . We begin with the
following integration by parts formula:

Z
T

.�2w/v dx D
Z
@T

��@�w

@n

�
v �

�@2w
@n2

�� @v

@n

�
�
� @2w
@n@t

��@v

@t

��
ds (3.1)

C
Z
T

.r2w W r2v/ dx;

where T is a triangle, w 2 H4.T /, v 2 H2.T /, and @=@n (resp. @=@t) denotes
the exterior normal derivative (resp. the counterclockwise tangential derivative).
Summing up (3.1) (with w D u and v 2 Vh) over all the triangles in Th, we have,
after cancelations

X
T2Th

Z
T

.�2u/v dx D �
X
T2Th

Z
@T

� @2u
@n2

�� @v

@n

�
ds C

X
T2Th

Z
T

.r2u W r2v/ dx;

(3.2)
and, since �2u D f ,

X
T2Th

Z
T

.�2u/v dx D
Z
˝

f v dx: (3.3)

We can rewrite the first sum on the right-hand side of (3.2) as a sum over the
edges in Eh:

�
X
T2Th

Z
@T

� @2u
@n2

�� @v

@n

�
ds D

X
e2Eh

Z
e

� @2u
@n2e

�hh @v

@ne

ii
ds; (3.4)

where ne is a unit vector normal to the edge e and the jump ŒŒ@v=@ne�� is defined as
follows.

For an interior edge e shared by two triangles T˙ where ne points from T� to TC
(cf. Fig. 1), we define on the edge e

hh @v

@ne

ii
D ne � .rvC � rv�/; (3.5)

Fig. 1 An interior edge
shared by two triangles T

˙

with the unit normal ne and
the unit tangent te

T+

e

ne

T–

te
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@2u

@n2e
D ne � .r2u/ne; (3.6)

where v˙ D v
ˇ̌
T

˙

. Note that the definitions of ŒŒ@v=@ne�� and @2u=@n2e are
independent of the choice of T˙, or equivalently, independent of the choice of ne .

For a boundary edge e which is an edge of the triangle T 2 Th, we take ne to be
the unit normal pointing towards the outside of ˝ and define on the edge e

hh @v

@ne

ii
D �ne � rvT ; (3.7)

@2u

@n2e
D ne � .r2u/ne: (3.8)

where vT D v
ˇ̌
T

.
Combining (3.2)–(3.4), we find

X
T2Th

Z
T

.r2u W r2v/ dx C
X
e2Eh

Z
e

� @2u
@n2e

�hh @v

@ne

ii
ds D

Z
˝

f v dx 8 v 2 Vh:

(3.9)

Since @2u=@n2e has the same trace from either side of the edge e, we can write

@2u

@n2e
D
��
@2u

@n2e

��
; (3.10)

where the average of the second order normal derivative from the two sides of e is
defined as follows.

Let w 2 H3.˝;Th/ be a piecewise H3 function. Then we define

��
@2w

@n2e

��
D 1

2

�
@2w�
@n2e

C @2wC
@n2e

	
(3.11)

on an interior edge and ��
@2w

@n2e

��
D @2wT

@n2e
(3.12)

on a boundary edge. These definitions are independent of the choice of ne .
Now we have, by (3.9) and (3.10),

X
T2Th

Z
T

.r2u W r2v/ dx C
X
e2Eh

Z
e

��
@2u

@n2e

�� hh @v

@ne

ii
ds D

Z
˝

f v dx 8 v 2 Vh:
(3.13)
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Since ŒŒ@u=@ne�� D 0 for all e 2 Eh, we can rewrite (3.13) as

X
T2Th

Z
T

.r2u W r2v/ dx C
X
e2Eh

Z
e

��
@2u

@n2e

�� hh @v

@ne

ii
ds

C
X
e2Eh

Z
e

��
@2v

@n2e

�� hh @u

@ne

ii
ds D

Z
˝

f v dx 8 v 2 Vh; (3.14)

and finally as

X
T2Th

Z
T

.r2u W r2v/ dx C
X
e2Eh

Z
e

��
@2u

@n2e

�� hh @v

@ne

ii
ds

C
X
e2Eh

Z
e

��
@2v

@n2e

�� hh @u

@ne

ii
ds C �

X
e2Eh

1

jej
Z
e

hh @u

@ne

iihh @v

@ne

ii
ds (3.15)

D
Z
˝

f v dx 8 v 2 Vh;

where � > 0 is a penalty parameter to be chosen.
In summary, the solution u of (2.1) satisfies the mesh-dependent problem

ah.u; v/ D
Z
˝

fv dx 8 v 2 Vh; (3.16)

where the bilinear form ah.�; �/ is defined on the piecewise Sobolev space
H3.˝;Th/ by

ah.w; v/ D
X
T2Th

Z
T

.r2w W r2v/ dx C
X
e2Eh

Z
e

��
@2w

@n2e

�� hh @v

@ne

ii
ds

C
X
e2Eh

Z
e

��
@2v

@n2e

�� hh @w

@ne

ii
ds C �

X
e2Eh

1

jej
Z
e

hh @w

@ne

iihh @v

@ne

ii
ds: (3.17)

We can now formulate the C0 interior penalty method for (2.1) as follows.

Find uh 2 Vh such that

ah.uh; v/ D
Z
˝

f v dx 8 v 2 Vh: (3.18)

Remark 2. The two (3.9) and (3.15) are equivalent for the solution u of the continu-
ous problem (2.1). But they are not equivalent for uh 2Vh. The two additional terms
in (3.15) symmetrize and stabilize the discrete problem (3.18).
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Similarly we can derive C0 interior penalty methods for the model problems
(2.2) and (2.3) through integration by parts, symmetrization and stabilization. For
the model problem (2.2), we take Vh � H1

0 .˝/ to be the Pk Lagrange finite element
space as before. But we change the definition of the bilinear form ah.�; �/ to

ah.w; v/ D
X
T2Th

Z
T

.r2w W r2v/ dx C
X
e2E i

h

Z
e

��
@2w

@n2e

�� hh @v

@ne

ii
ds

C
X
e2E i

h

Z
e

��
@2v

@n2e

�� hh @w

@ne

ii
ds C �

X
e2E i

h

1

jej
Z
e

hh @w

@ne

iihh @v

@ne

ii
ds: (3.19)

Note that the only difference between (3.17) and (3.19) is in the set of edges over
which the sums take place.

For the model problem (2.3) we keep the same bilinear form defined by (3.17),
but we change Vh to be thePk Lagrange finite element space whose members vanish
at a chosen point on N̋ (say a corner of ˝).

3.1 Well-Posedness of the Discrete Problems

Again we only discuss the discrete problem for (2.1) in detail. By a standard inverse
estimate [32, 44] and the Cauchy-Schwarz inequality we have

X
e2Eh

ˇ̌̌ Z
e

��
@2w

@n2e

�� hh @v

@ne

ii
ds
ˇ̌̌

�
�X
e2Eh

jejk ˚̊ @2w=@n2e

 k2L2.e/
� 1
2
�X
e2Eh

jej�1k ŒŒ@v=@ne�� k2L2.e/
� 1
2

� C
�X
e2Eh

X
T2Te

jwj2
H2.T /

��X
e2Eh

jej�1k ŒŒ@v=@ne�� k2L2.e/
� 1
2

(3.20)

� C
� X
T2Th

jwj2
H2.T /

��X
e2Eh

jej�1k ŒŒ@v=@ne�� k2L2.e/
� 1
2

which implies
jah.w; v/j � Ckwkhkvkh 8 v;w 2 Vh; (3.21)

where the mesh-dependent norm k � kh is defined by

kvk2h D
X
T2Th

jvj2
H2.T /

C �
X
e2Eh

jej�1k ŒŒ@v=@ne�� k2L2.e/: (3.22)
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It also follows from (3.20) and the inequality of geometric and arithmetic means
that

ah.v; v/ �
X
T2Th

jvj2
H2.T /

� C
� X
T2Th

jvj2
H2.T /

� 1
2

�X
e2Eh

jej�1k ŒŒ@v=@ne�� k2L2.e/
� 1
2

C �
X
e2Eh

jej�1k ŒŒ@v=@ne�� k2L2.e/

� 1

2

X
T2Th

jvj2
H2.T /

C
�
� � C2

2

�X
e2Eh

jej�1k ŒŒ@v=@ne�� k2L2.e/ (3.23)

� 1

2
kvk2h 8 v 2 Vh;

provided the penalty parameter � is sufficiently large. From now on we assume this
is the case so that the discrete problem (3.18) is symmetric positive definite and
hence uniquely solvable. This also holds for the model problems (2.2) and (2.3).
Without loss of generality, we will assume from here on that

� � 1: (3.24)

Note that (3.21) and (3.23) imply

C1kvk2h � ah.v; v/ � C2kvk2h 8 v 2 Vh: (3.25)

3.2 Galerkin Orthogonality

It follows from (3.16) and (3.18) that

ah.u � uh; v/ D 0 8 v 2 Vh (3.26)

provided that u 2 H4.˝/. However, as was noted in Sect. 2.2, this is usually not
the case when ˝ is a polygon. Nevertheless it is possible to establish (3.26) for the
model problems using the singular function representation of u [15, 46, 57]. Details
for the model problem (2.1) can be found in [34].

3.3 A Standard Error Analysis

A standard error analysis can be carried out using the Galerkin orthogonality (3.26)
for the model problem (2.1). Let the norm jjj � jjjh be defined on Hs.˝;Th/ (s >
5=2) by
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jjjvjjj2h D
X
T2Th

jvj2
H2.T /

C �
X
e2Eh

jej�1k ŒŒ@v=@ne�� k2L2.e/

C 1

�

X
e2Eh

jej k ˚̊ @2v=@n2e

 k2L2.e/: (3.27)

It follows from the Cauchy-Schwarz inequality that

jah.w; v/j � 2jjjwjjjhjjjvjjjh 8 v;w 2 Hs.˝;Th/; s > 5=2: (3.28)

Note that we need the stronger norm jjj�jjjh for the estimate on the infinite dimensional
spaceHs.˝;Th/ that contains u. On the finite element space Vh the two norms k�kh
and jjj � jjjh are equivalent by (3.20).

Let v 2 Vh be arbitrary. It follows from (3.23), (3.26) and (3.28) that

jjju � uhjjjh � jjju � vjjjh C jjjv � uhjjjh

� jjju � vjjjh C C max
w2Vhnf0g

ah.v � uh;w/

jjjwjjjh
D jjju � vjjjh C C max

w2Vhnf0g
ah.v � u;w/

jjjwjjjh
� C jjju � vjjjh;

and hence
jjju � uhjjj � C inf

v2Vh
jjju � vjjjh: (3.29)

Let ˘h W C. N̋ / �! Vh be the Lagrange nodal interpolation operator. We have
the following standard interpolation error estimates [32, 44]:

h
�2�
T k� �˘h�k2L2.T / C h

2.1��/
T j� �˘h�j2H1.T /

C h
2.2��/
T j� �˘h�j2H2.T /

� Ck�k2Hs.T / 8T 2 Th; � 2 Hs.˝/; (3.30)

where � D min.s; k C 1/. It follows from the trace theorem with scaling and (3.30)
that

jjju �˘hujjjh � Ch˛kukH2C˛.˝/ � Ch˛kf kL2.˝/; (3.31)

where ˛ 2 .1=2; 2� is the index of elliptic regularity for the model problem (2.1)
that appears in (2.7).

3.4 Complications

The standard analysis works for the model problem (2.1) because the solution u
always belongs to H2C˛.˝/ for some ˛ > 1=2, which guarantees that the norm
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jjjujjjh is well-defined. Unfortunately this is not the case for the model problems
(3.19) and (2.3) because the elliptic regularity index for these problems can be
less than 1=2. Therefore the standard error analysis becomes problematic for these
problems.

We will consider an alternative error analysis in Sect. 5 using instead the norm
k � kh, which is well-defined for functions in H2.˝/. This alternative approach will
yield quasi-optimal error estimates (up to data oscillations) using only the weak
formulations of the model problems.

3.5 An Alternative Expression for the Discrete Bilinear Form

For the analysis in Sect. 5 it is convenient to use an alternative expression for (3.17).
Let w 2 H4.˝;Th/ \ H1

0 .˝/ and v 2 H2.˝;Th/ \ H1
0 .˝/. It follows from

(3.1) that

X
T2Th

Z
T

r2w W r2v dx D
X
T2Th

Z
T

.�2w/v dx �
X
T2Th

Z
@T

�@�w

@n

�
v ds

C
X
T2Th

Z
@T

�@2w
@n2

�� @v

@n

�
ds C

X
T2Th

Z
@T

� @2w
@n@t

��@v

@t

�
ds

D
X
T2Th

Z
T

.�2w/v dx C
X
e2E i

h

Z
e

hh@�w

@ne

ii
v ds (3.32)

�
X
e2Eh

Z
e

��
@2w

@n2e

��hh @v

@ne

ii
ds�

X
e2E i

h

Z
e

hh@2w
@n2e

ii�� @v

@ne

��
ds

�
X
e2E i

h

Z
e

hh @2w

@ne@te

ii @v

@te
ds

where

hh@�w

@ne

ii
D ne � �r.�wC/ � r.�w�/



for e 2 E i

h ; (3.33)

hh@2w
@n2e

ii
D ne � �r2wC � r2w�



ne for e 2 E i

h ; (3.34)

��
@v

@ne

��
D ne

2
� �rv� C rvC



for e 2 E i

h ; (3.35)

hh @2w

@ne@te

ii
D te � �r2wC � r2w�



ne for e 2 E i

h : (3.36)
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The convention (as before) is that ne is a unit normal of e pointing from T� into TC
and te is the unit tangent of e obtained by rotating ne by a counterclockwise right
angle (cf. Fig. 1).

After substitution and cancelation, we can rewrite (3.17) as

ah.w; v/ D
X
T2Th

Z
T

.�2w/v dx C
X
e2Eh

Z
e

��
@2v

@n2e

�� hh @w

@ne

ii
ds

C
X
e2E i

h

Z
e

�hh@�w

@ne

ii
v �

hh@2w
@n2e

ii �� @v

@ne

��
�
hh @2w

@ne@te

ii @v

@te

	
ds

C �
X
e2Eh

1

jej
Z
e

hh @w

@ne

iihh @v

@ne

ii
ds: (3.37)

Alternative bilinear forms for the model problems (2.2) and (2.3) can be obtained
similarly.

3.6 Conditioning

C0 interior penalty methods share the same ill-conditioning with other discretiza-
tions for fourth order problems. Using Poincaré-Friedrichs inequalities for piece-
wise H2 functions [39], it can be shown [68] that the condition number of the
discrete problem resulting from a C0 interior penalty method grows at the rate of
O.h�4/. Therefore it is important to have efficient solvers for the discrete problem.
This will be addressed in Sects. 8 and 9.

4 Enriching Operators

The distance between the C0 finite element space Vh (where the discrete problem
is posed) and the Sobolev space H2.˝/ (where the continuous problem is posed)
can be measured using an enriching operator Eh W Vh �! H2.˝/. The idea of
using enriching operators to analyze nonconforming methods was first introduced
in [23–25] in the context of fast solvers.

4.1 Enriching Operator Based on the Hsieh-Clough-Tocher
Macro Element

For concreteness we consider the case where Vh � H1
0 .˝/ is the Pk Lagrange finite

element space for the model problem (2.1). Enriching operators can be constructed
for the other model problems with similar properties.
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The construction ofEh uses the Hsieh-Clough-Tocher macro finite element space
Wh � H2

0 .˝/. The degrees of freedom (dofs) of w 2 Wh are (i) the values of the
derivatives of w up to order 1 at the interior vertices and (ii) the values of the normal
derivative of w at the midpoints of the edges in E i

h .
Let v 2 Vh. We define w D Ehv by averaging as follows. We take

w.p/ D v.p/ if p is an interior vertex: (4.1)

At an interior vertex p of Th, we assign the first order derivatives of w so that

.rw/.p/ D 1

jTpj
X
T2Tp

rvT : (4.2)

At the midpointme on an edge in E i
h , we define

@w

@n
.me/ D 1

2

X
T2Te

@vT
@n
.me/: (4.3)

Lemma 1. We haveX
T2Th

�
h�4
T

kv � Ehvk2L2.T / C h�2
T

jv � Ehvj2
H1.T /

C jv � Ehvj2
H2.T /

�

� C
X
e2Eh

1

jej k ŒŒ@v=@ne�� k2L2.e/ 8 v 2 Vh: (4.4)

Proof. Let T 2 Th be arbitrary. It follows from (4.1) and scaling that

h�4
T

kv �Ehvk2L2.T / D
X
p2VT

jr.vT �Ehv/.p/j2 C
X
p2MT

ˇ̌̌@.vT �Ehv/

@n
.p/

ˇ̌̌2
; (4.5)

where VT is the set of the three vertices of T and MT is the set of the midpoints of
the three edges of T .

At a vertex p 2 VT that is inside ˝ , we have, by (4.2),

r.vT � Ehv/.p/ D 1

jTpj
X
T 02Tp

�rvT .p/ � rvT 0.p/


: (4.6)

On the other hand, at a vertex p 2 VT that is on @˝ , we have

r.vT � Ehv/.p/ D .rvT /.p/: (4.7)

Since the difference between the gradient of v across an interior edge and the
gradient of v on a boundary edge can both be bounded in terms of the jump of
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the normal derivative, it follows from (4.6) and (4.7) that

X
p2VT

jr.vT � Ehv/.p/j2 � C
X
p2VT

X
e2Ep

1

jejk ŒŒ@v=@ne�� k2L2.e/; (4.8)

where Ep is the set of the edges in Eh that share the common endpoint p.
Similarly we have

X
p2MT

ˇ̌̌@.vT � Ehv/

@n
.p/

ˇ̌̌2 � C
X
e2ET

1

jejk ŒŒ@v=@ne�� k2L2.e/; (4.9)

where ET is the set of the three edges of T .
It follows from (4.5), (4.8) and (4.9) that

X
T2Th

h�4
T

kvT � Ehvk2L2.T / � C
X
e2Eh

1

jejk ŒŒ@v=@ne�� k2L2.e/:

The rest of the estimates in (4.4) then follow from standard inverse estimates. ut
The following corollary is immediate by standard inverse estimates.

Corollary 1. We have

jEhvjH2.˝/ � Ckvkh 8 v 2 Vh; (4.10)X
e2Eh

1

jejk ŒŒ@.v �Ehv/=@ne�� k2L2.e/ � Ckvk2h 8 v 2 Vh; (4.11)

X
e2E i

h

1

jejk ŒŒ@.v �Ehv/=@te�� k2L2.e/ � Ckvk2h 8 v 2 Vh; (4.12)

X
e2E i

h

1

jej k ff@.v � Ehv/=@negg k2L2.e/ � Ckvk2h 8 v 2 Vh; (4.13)

X
e2E i

h

1

jej3 kv �Ehvk2L2.e/ � Ckvk2h 8 v 2 Vh: (4.14)

4.2 Enriching Operator Based on C 1 Relatives

Next we consider a different type of enriching operator that will play important
roles in the design and convergence analysis of fast solvers for C0 interior penalty
methods.
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Fig. 2 Left figure: dofs of
the P2 Lagrange finite
element, Right figure: dofs of
the P6 Argyris finite element

For concreteness we discuss the quadratic case in detail. Let QVh � H1.˝/

be the P2 Lagrange finite element space associated with Th. The construction of
QEh W QVh �! H2.˝/ will use the P6 Argyris finite element space QWh � H2.˝/

(cf. [12, 97]). The dofs of the P2 finite element and the P6 Argyris finite element
are depicted in Fig. 2, where the solid dot represents the value of a shape function,
the first (resp. second) circle represent the values of the first (resp. second) order
derivatives of a shape function, and the arrow represents the value of the normal
derivative of a shape function.

Remark 3. Note that the shape functions and dofs of the P2 Lagrange finite element
are also shape functions and dofs of the P6 Argyris finite element. We will refer to
the Argyris element as a C1 relative of the C0 Lagrange element. C1 relatives for
higher order Lagrange finite elements can be found in [34].

The enriching operator QEh W QVh �! QWh is defined by averaging as follows. Let
p be a vertex, a midpoint or the center of a triangle, we define

. QEhv/.p/ D v.p/: (4.15)

At a vertex p, the function QEhv satisfies

�r. QEhv/


.p/ D 1

jTpj
X
T2Tp

.rvT /.p/;

�r2. QEhv/


.p/ D 1

jTpj
X
T2Tp

.r2vT /.p/: (4.16)

Finally, at a point p of an edge where the normal derivative is a dof for the Argyris
element, we define

@ QEhv
@n

.p/ D 1

jTej
X
T2Te

@vT
@n
.p/:

Lemma 2. We haveX
T2Th

�
h�4
T

kv � QEhvk2L2.T / C h�2
T

jv � QEhvj2
H1.T /

C jv � QEhvj2
H2.T /

�



C 0 Interior Penalty Methods 95

� C
� X
T2Th

jvj2
H2.T /

C
X
e2Eh

1

jejk ŒŒ@v=@ne�� k2L2.e/
�

8 v 2 QVh: (4.17)

Proof. Let T 2 Th be arbitrary. It follows from (4.15) and scaling that

h�4
T

kv � QEhvk2L2.T / D
X
p2VT

�jr.vT � QEhv/.p/j2 C h2
T
jr2.vT � QEhv/.p/j2

�

C
X
p2NT

ˇ̌̌@.vT � QEhv/
@n

.p/
ˇ̌̌2
: (4.18)

Here NT is the set of the six nodes on @T where the normal derivative is a dof. The
first and third sums on the right-hand side of (4.18) can be estimated as in the proof
of Lemma 1, and so we will focus on the second sum.

From (4.16) we have

r2.vT � QEhv/.p/ D 1

jTpj
X
T 02Tp

r2.vT 0 � vT /.p/: (4.19)

It then follows from scaling that

X
p2VT

h2
T
jr2.vT � QEhv/.p/j2 � C

X
T 02Tp

jvT 0 j2
H2.T /

:

The proof of the lemma is completed by following the arguments in the proof of
Lemma 1. ut

In view of (3.22) and (4.17), the following corollary is immediate.

Corollary 2. We have

j QEhvjH2.˝/ � Ckvkh 8 v 2 QVh: (4.20)

By a direct calculation, the nodal interpolation operator ˘h W C. N̋ / �! QVh
satisfies the following estimate:

X
T2Th

�
h�4
T

kw �˘hwk2L2.T / C h�2
T

jw �˘hwj2
H1.T /

C j˘hwj2
H2.T /

�

� C jwj2
H2.˝/

8 w 2 QWh: (4.21)

Moreover, we have
˘h. QEhv/ D v 8 v 2 QVh (4.22)
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since ˘h. QEhv/ and v have identical dofs, a benefit of using a C1 relative in the
construction of the enriching operator.

The following result shows that the composition QEh ı ˘h behaves like a quasi-
interpolation operator.

Lemma 3. We have, for s � 2,

j� � QEh.˘h�/jH2.˝/ � Chmin.s;3/�2j�jHs.˝/ 8 � 2 Hs.˝/: (4.23)

Proof. Let T 2 Th be arbitrary and

S.T / D
X
p2VT

[
T 02Tp

T 0

be the collection of triangles in Th that shares at least one common vertex with T .
It follows from the definition of QEh that

j QEh˘h�jH2.T / � Ck�kH2.S.T //

(cf. (3.30) and the estimates in the proofs of Lemma 1 and Lemma 2) and
QEh.˘h�/ D � on T if � 2 P2.S.T //. Hence we have

j� � QEh.˘h�/jH2.T / � Chmin.s;3/�2j�jHs.S.T // (4.24)

by the Bramble-Hilbert Lemma [18, 51].
The proof is completed by summing up (the square of) (4.24) over all the

triangles in Th. ut
The corresponding estimate for the enriching operator defined on the Pk

Lagrange finite element space reads

j� � QEh.˘h�/jH2.˝/ � Chmin.s;kC1/�2j�jHs.˝/ 8 � 2 Hs.˝/: (4.25)

Note that the results for QEh are also valid for Pk Lagrange finite element spaces
with boundary conditions, and they can be proved by a slight modification of the
estimates for the triangles near the boundary of the domain. Details can be found
in [34]. We will use QEh to denote the general enriching operator for Lagrange finite
element spaces with or without boundary conditions.

5 Medius Analysis

In this section we present an alternative error analysis for the C0 interior penalty
methods for the model problems that does not require additional information on the
regularity of the solution beyond the fact that u 2 H2.˝/. In particular, it does not
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rely on the Galerkin orthogonality (3.26) (cf. the discussion in Sect. 3.2). This new
approach was first introduced in [58] and it can be applied to many discontinuous
finite element methods. The name medius analysis indicates that both a priori and a
posteriori techniques are employed in this analysis.

We will present a detailed analysis for the model problem (2.1). Similar results
are also valid for the other model problems [28, 30].

5.1 Preliminaries

The first step is similar to the first step in the standard analysis presented in Sect. 3.3.
Let v 2 Vh be arbitrary. It follows from (3.23) that

ku � uhkh � ku � vkh C C max
w2Vhnf0g

ah.v � uh;w/

kwkh : (5.1)

But now, instead of using the Galerkin orthogonality, we will bound the numerator
of the second term on the right-hand side of (5.1) in terms of ku � vkh and data
oscillations.

Let Eh W Vh �! H2
0 .˝/ be the enriching operator from Sect. 4. It follows from

(3.18) that

ah.v � uh;w/ D ah.v; Ehw/C ah.v;w �Ehw/ �
Z
˝

f wdx: (5.2)

According to (2.5) and (3.17), we have

ah.v; Ehw/ D
X
T2Th

Z
T

r2v W r2.Ehw/ dx C
X
e2Eh

Z
e

��
@2.Ehw/

@n2e

�� hh @v

@ne

ii
ds

D
X
T2Th

Z
T

r2.v � u/ W r2.Ehw/ dx C
Z
˝

f .Ehw/ dx (5.3)

C
X
e2Eh

Z
e

��
@2.Ehw/

@n2e

�� hh @v

@ne

ii
ds:

Using the alternative expression (3.37) we can write the second term on the right-
hand side of (5.2) as

ah.v;w �Ehw/

D
X
T2Th

Z
T

.�2v/.w � Ehw/dxC
X
e2Eh

Z
e

��
@2.w �Ehw/

@n2e

�� hh @v

@ne

ii
ds
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C
X
e2E i

h

Z
e

�hh@�v

@ne

ii
.w �Ehw/�

hh @2v
@n2e

ii �� @.w � Ehw/

@ne

��	
ds (5.4)

�
X
e2E i

h

Z
e

hh @2v

@ne@te

ii@.w � Ehw/

@te
dsC �

X
e2Eh

1

jej
Z
e

hh @v

@ne

iihh@.w � Ehw/

@ne

ii
ds:

Combining (5.2)–(5.4) we find

ah.v � uh;w/ D
X
T2Th

Z
T

r2.v � u/ W r2.Ehw/ dx C
X
e2Eh

Z
e

��
@2w

@n2e

�� hh @v

@ne

ii
ds

C �
X
e2Eh

1

jej
Z
e

hh @v

@ne

iihh@.w �Ehw/
@ne

ii
ds

�
X
e2E i

h

Z
e

hh @2v

@ne@te

ii@.w �Ehw/

@te
ds

C
X
e2E i

h

Z
e

�hh@�v

@ne

ii
.w � Ehw/ �

hh @2v
@n2e

ii �� @.w � Ehw/

@ne

��	
ds

(5.5)

�
X
T2Th

Z
T

.f ��2v/.w � Ehw/dx:

5.2 First Estimates

Using the estimates for the enriching operator Eh in Sect. 4, the terms on the right-
hand side of (5.5) can be estimated as follows:

ˇ̌̌ X
T2Th

Z
T

r2.v � u/ W r2.Ehw/ dx
ˇ̌̌

� C
� X
T2Th

ju � vj2
H2.T /

� 1
2 kwkh (5.6)

by (4.10);

ˇ̌̌ X
e2Eh

Z
e

��
@2w

@n2e

�� hh @v

@ne

ii
ds
ˇ̌̌

D
ˇ̌̌ X
e2Eh

Z
e

��
@2w

@n2e

�� hh@.v � u/

@ne

ii
ds
ˇ̌̌

�
�X
e2Eh

1

jejk ŒŒ@.u � v/=@ne�� k2L2.e/
� 1
2
�X
e2Eh

jejk ˚̊ @2w=@n2e

 k2L2.e/
� 1
2
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� C
�X
e2Eh

1

jej k ŒŒ@.u � v/=@ne�� k2L2.e/
� 1
2
� X
T2Th

jwj2
H2.T /

� 1
2

(5.7)

� C
�X
e2Eh

1

jej k ŒŒ@.u � v/=@ne�� k2L2.e/
� 1
2 kwkh

by a direct calculation;

ˇ̌̌ X
e2Eh

1

jej
Z
e

hh @v

@ne

iihh@.w � Ehw/

@ne

ii
ds
ˇ̌̌

� C
�X
e2Eh

1

jej k ŒŒ@.u � v/=@ne�� k2L2.e/
� 1
2
�X
e2Eh

1

jej k ŒŒ@.w �Ehw/=@ne�� k2L2.e/
� 1
2

� C
�X
e2Eh

1

jej k ŒŒ@.u � v/=@ne�� k2L2.e/
� 1
2 kwkh (5.8)

by (4.11);

ˇ̌̌ X
e2E i

h

Z
e

hh @2v

@ne@te

ii@.w � Ehw/

@te
ds
ˇ̌̌

�
�X
e2Eh

jejk ��@2v=@ne@te

 k2L2.e/
� 1
2
� X
e2E i

h

1

jejk@.w �Ehw/=@tek2L2.e/
� 1
2

�
� X
e2E i

h

1

jej k ŒŒ@v=@ne�� k2L2.e/
� 1
2 kwkh (5.9)

� C
�X
e2E i

h

1

jejk ŒŒ@.u � v/=@ne�� k2L2.e/
� 1
2 kwkh

by (4.12) and a standard inverse estimate;

ˇ̌̌ X
e2E i

h

Z
e

hh@�v

@ne

ii
.w � Ehw/ ds

ˇ̌̌

�
� X
e2E i

h

jej3k ŒŒ@�v=@ne�� k2L2.e/
� 1
2
� X
e2E i

h

1

jej3 kw � Ehwk2L2.e/
� 1
2
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� C
�X
e2E i

h

jej3k ŒŒ@�v=@ne�� k2L2.e/
� 1
2 kwkh (5.10)

by (4.14);

ˇ̌̌ X
e2E i

h

Z
e

hh @2v
@n2e

ii �� @.w �Ehw/

@ne

��
ds
ˇ̌̌

�
� X
e2E i

h

jejk ��@2v=@n2e

 k2L2.e/
� 1
2
� X
e2E i

h

1

jejk ff@.w �Ehw/=@negg k2L2.e/
� 1
2

� C
�X
e2E i

h

jejk ��@2v=@n2e

 k2L2.e/
� 1
2 kwkh (5.11)

by (4.13);

ˇ̌̌ X
T2Th

Z
T

.f ��2v/.w �Ehw/dx
ˇ̌̌

�
� X
T2Th

h4
T
kf ��2vk2L2.T /

� 1
2
� X
T2Th

h�4
T

kw � Ehwk2L2.T /
� 1
2

(5.12)

�
� X
T2Th

h4
T
kf ��2vk2L2.T /

� 1
2 kwkh

by (4.4).
It follows from (5.5)–(5.12) and the Cauchy-Schwarz inequality that

ah.v � uh;w/ � C
� X
T2Th

ju � vj2
H2.T /

C
X
e2Eh

1

jejk ŒŒ@.u � v/=@ne�� k2L2.e/

C
X
e2E i

h

jej3k ŒŒ@�v=@ne�� k2L2.e/ C
X
e2E i

h

jejk ��@2v=@n2e

 k2L2.e/

C
X
T2Th

h4
T
kf ��2vk2L2.T /

� 1
2 kwkh: (5.13)
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5.3 Local Efficiency Estimates

To complete the medius analysis, we need to bound the last three terms inside the
bracket on the right-hand side of (5.13) in terms of ku � vkh and data oscillations.
We will accomplish this by using bubble function techniques from a posteriori error
analysis [3, 92, 93].

5.3.1 Data Oscillations

Let Pj .˝;Th/ be the space of piecewise polynomial functions of degree � j and
Nf 2 Pj .˝;Th/ be the L2 orthogonal projection of f , i.e.,

Z
˝

.f � Nf /v dx D 0 8 v 2 Pj .˝;Th/:

The oscillation of f (of order j ) is defined by

Oscj .f / D
� X
T2Th

h4
T
kf � Nf k2L2.T /

� 1
2
: (5.14)

Remark 4. We have flexibility in choosing the order for the data oscillation and we
take Nf D 0 if j < 0.

5.3.2 Estimate for h4
T
kf � �2vk2

L2.T /

Let T 2 Th be arbitrary and � 2 P6.T / be the bubble function that vanishes to the
first order on @T and equals 1 at the center of T . It follows from scaling that

j�jH2.T / � Ch�2
T

k�kL2.T / � Ch�1
T
: (5.15)

Moreover, by the equivalence of norms on finite dimensional spaces, we have

C1

Z
T

. Nf ��2v/2�2 dx � k Nf ��2vk2L2.T / � C2

Z
T

. Nf ��2v/2� dx: (5.16)

Let z D . Nf � �2v/�. We can identify z with its trivial extension, which
belongs toH2

0 .˝/. It follows from (2.5), (5.16), integration by parts (involving only
polynomials) and a standard inverse estimate that

k Nf ��2vk2L2.T / � C

Z
T

. Nf ��2v/zdx

D C
h Z

˝

f zdx �
Z
T

.�2v/zdx C
Z
T

. Nf � f /zdx
i
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D C
h Z

˝

r2u W r2zdx �
Z
T

r2v W r2zdx C
Z
T

. Nf � f /zdx
i

D C
h Z

T

.r2u � r2v/ W r2zdx C
Z
T

. Nf � f /zdx
i

� C
�ju � vjH2.T /jzjH2.T / C kf � Nf kL2.T /kzkL2.T /

� C
�
h�2
T

ju � vjH2.T / C kf � Nf kL2.T /

kzkL2.T /

� C
�
h�2
T

ju � vjH2.T / C kf � Nf kL2.T /

k Nf ��2vkL2.T /;

which implies

h2
T
k Nf ��2vkL2.T / � C

�ju � vjH2.T / C h2
T
kf � Nf kL2.T /



;

and hence, by the triangle inequality,

h4
T
kf ��2vk2L2.T / � C

�ju � vj2
H2.T /

C h4
T
kf � Nf k2L2.T /



: (5.17)

Summing up (5.17) over all the triangles in Th we find

X
T2Th

h4
T
kf ��2vk2L2.T / � C

h�
Oscj .f /


2 C
X
T2Th

ju � vj2
H2.T /

i
: (5.18)

5.3.3 Estimate for jejk ��
@2v=@n2

e

�� k2
L2.e/

Let e 2 E i
h be arbitrary and ne be the unit vector normal to e and pointing from the

triangle T� to TC (cf. Fig. 1). We construct a bubble function on T� [TC as follows.
Let ˇ 2 Pk�2.R2/ be the polynomial that equals the jump

��
@2v=@n2e




on

the edge e and which is constant on the lines perpendicular to e. We define
�1 2 Pk�1.T� [ TC/ to be the polynomial that satisfies

�1 D 0 on e and
@�1

@ne
D ˇ: (5.19)

It follows from a direct calculation and standard inverse estimates that

jej�1j�1jL2.T�
[T

C
/ C k�1kL

1
.T

�
[T

C
/ � C jej 12 k ��@2v=@n2e

 kL2.e/: (5.20)

Next we define �2 2 P8.T� [ TC/ by the following conditions: (i) �2 vanishes to
the first order on .@T� [ @TC/ n e (i.e., the boundary of the quadrilateral in Fig. 1),
and (ii) �2 equals 1 at the midpoint of e. It follows from scaling that
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jej�1j�2jL2.T�
[T

C
/ C k�2kL

1
.T

�
[T

C
/ � C; (5.21)

k ��@2v=@n2e

 k2L2.e/ � C

Z
e

��
@2v=@n2e



2
�2 ds: (5.22)

From (5.19) and (5.22) we have

k ��@2v=@n2e

 k2L2.e/ � C

Z
e

��
@2v=@n2e




ˇ�2 ds

D C

Z
e

��
@2v=@n2e




.@�1=@ne/�2 ds (5.23)

D C

Z
e

��
@2v=@n2e



 �
@.�1�2/=@ne



ds:

We can identify �1�2 with its trivial extension which belongs to H2
0 .˝/. It then

follows from (2.5) and the integration by parts formula (3.1) (involving only
polynomials) that

Z
e

��
@2v=@n2e



 �
@.�1�2/=@ne



ds

D
X
T2Te

�
�
Z
T

r2v W r2.�1�2/dx C
Z
T

.�2v/.�1�2/ dx
�

D
X
T2Te

Z
T

r2.u � v/ W r2.�1�2/dx �
Z
˝

r2u W r2.�1�2/dx

C
X
T2Te

Z
T

.�2v/.�1�2/ dx (5.24)

D
X
T2Te

Z
T

r2.u � v/ W r2.�1�2/dx �
X
T2Te

Z
T

.f ��2v/.�1�2/dx:

Combining (5.23) and (5.24), we find by the Cauchy-Schwarz inequality and a
standard inverse estimate

k ��@2v=@n2e

 k2L2.e/ � C
� X
T2Te

ju � vjH2.T /j�1�2jH2.T /

C
X
T2Te

kf ��2vkL2.T /k�1�2kL2.T /
�

(5.25)

� C
X
T2Te

�
h�2
T

ju � vjH2.T / C kf ��2vkL2.T /

k�1�2kL2.T /:

From (5.20) and (5.21) we have
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k�1�2kL2.T�
[T

C
/ � C jej 32 k ��@2v=@n2e

 kL2.e/;

which together with (5.25) implies

jej k ��@2v=@n2e

 k2L2.e/ � C
X
T2Te

�ju � vj2
H2.T /

C h4
T
kf ��2vk2L2.T /



;

and hence, in view of (5.17),

jej k ��@2v=@n2e

 k2L2.e/ � C
X
T2Te

�ju � vj2
H2.T /

C h4
T
kf � Nf k2L2.T /



: (5.26)

Summing up (5.26) over all the interior edges, we find

X
e2E i

h

jej k ��@2v=@n2e

 k2L2.e/ � C
h�

Oscj .f /

2 C

X
T2Th

ju � vj2
H2.T /

i
: (5.27)

5.3.4 Estimate for jej3k ŒŒ@�v=@ne�� k2
L2.e/

We will follow the convention in Sect. 5.3.3. Let e 2 E i
h be arbitrary and �2 2

P8.T� [ TC/ be defined as in Sect. 5.3.3.
Let �3 2 Pk�3.T� [ TC/ such that �3 D ŒŒ@.�v/=@ne�� on e and �3 is constant on

the lines perpendicular to e. By a direct calculation, we have

k�3kL2.T�
[T

C
/ � C jej 12 k ŒŒ@.�v/=@ne�� kL2.e/: (5.28)

It follows from the equivalence of norms on finite dimensional spaces and scaling
that

k ŒŒ@.�v/=@ne�� k2L2.e/ � C

Z
e

ŒŒ@.�v/=@ne��
2 �2 ds

D C

Z
e

ŒŒ@.�v/=@ne�� .�2�3/ds: (5.29)

We can identify �2�3 with its trivial extension which belongs to H2
0 .˝/. It

then follows from (2.5) and the integration by parts formula (3.1) (involving only
polynomials) that

Z
e

ŒŒ@.�v/=@ne�� .�2�3/ds

D
X
T2Te

� Z
T

r2v W r2.�2�3/dx �
Z
T

.�2v/.�2�3/dx
�
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C
Z
e

h ��
@2v=@n2e



 �
@.�2�3/=@ne

�C ��
@2v=@ne@te



 �
@.�2�3/=@te

�i
ds

D
X
T2Te

Z
T

r2.v � u/ W r2.�2�3/dx C
Z
˝

r2u W r2.�2�3/dx (5.30)

C
Z
e

h ��
@2v=@n2e



 �
@.�2�3/=@ne

�C ��
@2v=@ne@te



 �
@.�2�3/=@te

�i
ds

�
X
T2Te

Z
T

.�2v/.�2�3/dx

D
X
T2Te

Z
T

r2.v � u/ W r2.�2�3/dx C
X
T2Te

Z
T

.f ��2v/.�2�3/dx

C
Z
e

h ��
@2v=@n2e



 �
@.�2�3/=@ne

�C ��
@2v=@ne@te



 �
@.�2�3/=@te

�i
ds:

It follows from (5.29), (5.30), the Cauchy-Schwarz inequality and standard
inverse estimates that

k ŒŒ@.�v/=@ne�� k2L2.e/
� C

� X
T2Te

�ju � vjH2.T /j�2�3jH2.T / C kf ��2vkL2.T /k�2�3kL2.T /



C k ��@2v=@n2e

 kL2.e/k@.�2�3/=@nekL2.e/
C k ��@2v=@ne@te

 kL2.e/k@.�2�3/=@tekL2.e/

�
(5.31)

� C
� X
T2Te

�
h�2
T

ju � vjH2.T / C kf ��2vkL2.T /



C jej� 3
2 k ��@2v=@n2e

 kL2.e/ C jej� 5

2 k ŒŒ@v=@ne�� kL2.e/
�
k�2�3kL2.T /:

From (5.21) and (5.28) we have

k�2�3kL2.T / � C jej 12 k ŒŒ@.�v/=@ne�� kL2.e/;

which together with (5.31) implies that

jej3k ŒŒ@.�v/=@ne�� k2L2.e/ � C
� X
T2Te

�ju � vj2
H2.T /

C h4
T
kf ��2vk2L2.T /




C jejk ��@2v=@n2e

 k2L2.e/ C 1

jejk@.u � v/=@nek2L2.e/
�
;
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and hence, in view of (5.17) and (5.26),

jej3k ŒŒ@.�v/=@ne�� k2L2.e/ � C
� X
T2Te

�ju � vj2
H2.T /

C h4
T
kf � Nf k2L2.T /




C 1

jejk@.u � v/=@nek2L2.e/
�
: (5.32)

Summing up (5.32) over all the interior edges, we find

X
e2E i

h

jej3k ŒŒ@.�v/=@ne�� k2L2.e/ � C
��

Oscj .f /

2 C

X
T2Th

ju � vj2
H2.T /

C
X
e2E i

h

1

jej k@.u � v/=@nek2L2.e/
�
: (5.33)

5.4 An Abstract Error Estimate by the Medius Analysis

Putting the estimates (5.13), (5.18), (5.27) and (5.33) together, we arrive at

ah.v � uh;w/ � C
��

Oscj .f /

2 C

X
T2Th

ju � vj2
H2.T /

C
X
e2Eh

1

jej k ŒŒ@.u � v/=@ne�� k2L2.e/
� 1
2 kwkh;

which together with (5.1) implies

ku � uhkh � C
�ku � vkh C Oscj .f /


 8 v 2 Vh:

The following error estimate is immediate.

Theorem 1. We have

ku � uhkh � C
�

inf
v2Vh

ku � vkh C Oscj .f /


:

Remark 5. Note that throughout this section the integration by parts formula (3.1)
has only been applied to polynomials v and w. Therefore there is no need to justify
any integration by parts involving u. The only information of u used in the medius
analysis is that u 2 H2

0 .˝/ satisfies the weak problem (2.5). Thus the medius
approach puts the analysis of the C0 interior penalty method on an equal footing
with the analysis of conforming finite element methods.
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6 A Priori Error Estimates

In this section we derive a priori error estimates for the C0 interior penalty methods,
and for C1 approximate solutions obtained by a post-processing procedure. We also
derive error estimates for variants of the C0 interior penalty methods that can be
applied to problems with rough right-hand sides, and error estimates in a lower order
Sobolev norm. The techniques developed here are also useful for the convergence
analysis of multigrid methods (cf. Sect. 8.4.4).

6.1 Concrete Error Estimates in the Energy Norm

We can use the abstract result in Theorem 1 to derive concrete error estimates for
the model problem (2.1).

Theorem 2. Let f 2 H`.˝/ .` D 0; 1; 2; : : :/ and the solution u of the model
problem (2.1) belong to Hs.˝/ for s 2 .2; ` C 4�. We have the following error
estimate

ku � uhkh � Chmin.s;kC1/�2 (6.1)

for the solution uh of (3.18), where k � 2 is the order of the Lagrange finite element
space Vh.

Proof. It follows from (3.22) and (3.30) that

ku �˘hukh � Chmin.s;kC1/�2: (6.2)

Furthermore, by a standard error estimate for the L2 orthogonal projection into
Pk.˝;Th/, we have

Osck.f / D
� X
T2Th

h4
T
kf � Nf k2L2.T /

� 1
2 � Ch2Cmin.`; kC1/: (6.3)

The estimate (6.1) follows from Theorem 1 (with j D k), (6.2), (6.3) and the fact
that 2Cmin.`; kC1/ � min.2C`; kC3/ � min.s�2; k�1/ D min.s; kC1/�2.

ut
In the case where u 2 H`C4.˝/ and k � `C3, the convergence of theC0 interior

penalty method is of the optimal rate of O.h`C2/. In the case where u 2 H2C˛.˝/
for ˛ 2 .1=2; 2� and k � 1C ˛, the convergence rate is O.h˛/.

6.2 Post-Processing

Let QEh W Vh �! H2
0 .˝/ be the enriching operator introduced in Sect. 4.2. The

C1 finite element function QEhuh obtained from uh by post-processing provides an
approximation of u in the space H2.˝/.
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Theorem 3. Under the assumptions of Theorem 2, we have

ju � QEhuhjH2.˝/ � Chmin.s; kC1/�2: (6.4)

Proof. It follows from Corollary 2, (4.25), Theorem 2 and (6.2) that

ju � QEhuhjH2.˝/ � ju � QEh˘hujH2.˝/ C j QEh.˘hu � uh/jH2.˝/

� C
�
hmin.s;kC1/�2 C k˘hu � uhkh

�
� C

�
hmin.s;kC1/�2 C k˘hu � ukh C ku � uhkh

�
� Chmin.s;kC1/�2: ut

Therefore the C0 interior penalty method is also relevant for computing H2

approximate solutions for the model problems.

6.3 Extended C 0 Interior Penalty Methods

Since Vh 6� H2
0 .˝/, the C0 interior penalty method is not well-defined when

the right-hand side of the model problem (2.1) belongs to H�2.˝/ D ŒH2
0 .˝/�

0
while the model problem itself is well-defined for such right-hand sides. Using the
enriching operator QEh we can extend the C0 interior penalty methods to handle this
situation as follows:
Find u�

h 2 Vh such that

ah.u
�
h; v/ D hf; QEhvi 8 v 2 Vh; (6.5)

where h�; �i is the canonical bilinear form between a (normed) vector space and its
dual.

Let ˛ 2 . 1
2
; 2� be the index of elliptic regularity. In addition to (2.7), we also have

a regularity estimate [9, 46] of the form

kukH2C˛.˝/ � C˝;˛kf kH�2C˛.˝/ 8 f 2 H�2C˛.˝/: (6.6)

Theorem 4. We have the error estimate

ku � u�
hkh � Chmin.˛;k�1/kf kH�2C˛.˝/ (6.7)

for the extendedC 0 interior penalty method based on thePk Lagrange finite element
space.

Proof. Consider the case where ˛ 2 Œ1; 2� and k � 3. We have min.˛; k � 1/ D ˛,
and from (5.1),
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ku � u�
hkh � ku �˘

	

hukh C C max
w2Vhnf0g

ah.˘
	

hu � u�
h ;w/

kwkh ; (6.8)

where ˘	

h is the nodal interpolation operator for the cubic Lagrange finite element
space associated with Th.

Repeating the arguments in Sect. 5.1 but with Eh replaced by QEh and (3.18)
replaced by (6.5), we find the following analog of (5.5):

ah.˘
	

hu � u�
h ;w/ D

X
T2Th

Z
T

r2.˘
	

hu � u/ W r2. QEhw/ dx

C
X
e2Eh

Z
e

��
@2w

@n2e

��hh@˘	

h
u

@ne

ii
ds

C �
X
e2Eh

1

jej
Z
e

hh@˘	

hu

@ne

iihh@.w � QEhw/

@ne

ii
ds

�
X
e2E i

h

Z
e

hh@2˘	

hu

@ne@te

ii@.w � QEhw/

@te
ds

C
X
e2E i

h

Z
e

hh@.�˘	

hu/

@ne

ii
.w � QEhw/ds (6.9)

�
X
e2E i

h

Z
e

hh@2˘	

hu

@n2e

ii (( @.w � QEhw/
@ne

))
ds:

The first four terms on the right-hand side of (6.9), can be bounded as in Sect. 5.2
by h˛kf kH�2C˛.˝/kwkh, using (3.30), (4.17) and (6.6).

Let e 2 E i
h be the common edge of T˙. Note that

hh
@2˘

	

h
�=@n2e

ii
D 0 for any

polynomial � 2 P3.T� [ TC/. Hence it follows from the Bramble-Hilbert Lemma
[18, 51] and the trace theorem with scaling that

jejk
hh
@2.˘

	

hu/=@n2e

ii
k2L2.e/ � Ch2˛

X
T2Te

juj2
H2C˛.T /

(6.10)

and therefore, in view of (4.17),

ˇ̌̌ X
e2E i

h

Z
e

hh@2˘	

h
u

@n2e

ii (( @.w � QEhw/
@ne

))
ds
ˇ̌̌
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�
� X
e2E i

h

jejk
hh
@2˘

	

hu=@n2e
ii

k2L2.e/
� 1
2
� X
e2E i

h

1

jejk
˚̊
@.w � QEhw/=@ne



 k2L2.e/
� 1
2

� Ch˛kf kH�2C˛.˝/kwkh: (6.11)

Similarly, we have

ˇ̌̌ X
e2E i

h

Z
e

hh@.�˘	

hu/

@ne

ii
.w � QEhw/ds

ˇ̌̌

�
� X
e2E i

h

jej3k
hh
@.�˘

	

hu/=@ne
ii

k2L2.e/
� 1
2
� X
e2E i

h

1

jej3 kw � QEhwk2L2.e/
� 1
2

� Ch˛kf kH�2C˛ .˝/kwkh: (6.12)

The estimate (6.7) then follows from (3.30) and (6.8)–(6.12).
The case where ˛ 2 . 1

2
; 1/ and k � 3 and the case where ˛ 2 . 1

2
; 2� and k D 2

can be established by similar arguments, where˘	

h becomes the nodal interpolation
operator for the quadratic Lagrange finite element space. ut

6.4 Error Estimates in a Lower Order Norm

Let ˛ 2 . 1
2
; 2� be the index of elliptic regularity for the model problem (2.1). We

can compare QEhuh and u in the lower order Sobolev norm k � kH2�˛.˝/.

Theorem 5. We have

ku � QEhuhkH2�˛.˝/ � Ch2min.˛;k�1/kf kH�2C˛.˝/: (6.13)

Proof. Since u � QEhuh 2 H2
0 .˝/ � H2�˛

0 .˝/, we have, by duality,

ku � QEhuhkH2�˛.˝/ D sup

2H�2C˛.˝/nf0g

h
; u � QEhuhi
k
kH�2C˛.˝/

: (6.14)

Let � 2 H2
0 .˝/ satisfy

a.�; v/ D h
; vi 8 v 2 H2
0 .˝/; (6.15)

and ��
h

2 Vh satisfy

ah.�
�
h ; v/ D h
; QEhvi 8 v 2 Vh: (6.16)
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Then we have, by Theorem 4,

k� � ��
h kh � Chmin.˛;k�1/k
kH�2C˛ .˝/: (6.17)

Assume that ˛ 2 . 1
2
; 1/. It follows from (2.6), (3.17), (3.32), (6.15) and (6.16)

that

h
; u � QEhuhi
D a.�; u/� ah.�

�
h ; uh/

D
X
T2Th

Z
T

r2� W r2.u � uh/ dx C
X
T2Th

Z
T

r2.� � ��
h / W r2uh dx

�
X
e2Eh

Z
e

��
@2��

h

@n2e

�� hh@uh
@ne

ii
ds �

X
e2Eh

Z
e

��
@2uh
@n2e

�� hh@��
h

@ne

ii
ds

� �
X
e2Eh

1

jej
Z
e

hh@��
h

@ne

iihh@uh
@ne

ii
ds

D
X
T2Th

Z
T

r2.� �˘
	

h�/ W r2.u � uh/ dx

C
X
T2Th

Z
T

r2.� � ��
h / W r2.uh �˘	

hu/dx

C
X
e2Eh

Z
e

((
@2.˘

	

h����
h /

@n2e

)) hh @uh
@ne

ii
ds�

X
e2E i

h

Z
e

hh@2˘	

h�

@n2e

ii �� @.u�uh/

@ne

��
ds

�
X
e2E i

h

Z
e

hh@2˘	

h �

@ne@te

ii@.u�uh/

@te
dsC

X
e2Eh

Z
e

((
@2.˘

	

hu�uh/

@n2e

)) hh@��
h

@ne

ii
ds

�
X
e2E i

h

Z
e

hh@2˘	

hu

@n2e

ii �� @.����
h /

@ne

��
ds�

X
e2E i

h

Z
e

hh@2˘	

hu

@ne@te

ii@.����
h /

@te
ds

� �
X
e2Eh

1

jej
Z
e

hh@��
h

@ne

iihh@uh
@ne

ii
ds; (6.18)

where ˘	

h is the nodal interpolation operator for the quadratic Lagrange finite
element space associated with Th. Combining this relation with (3.30), (6.1), (6.2),
(6.10) (which is valid for the nodal interpolation operator for the quadratic finite
element) and (6.17), we find

h
; u � QEhuhi � Ch2˛kf kH�2C˛.˝/k
kH�2C˛.˝/;
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which together with (6.14) implies (6.13).
The case where ˛ 2 Œ1; 2� can be similarly established using the interpolation

operator for the cubic Lagrange finite element space. ut
The following result for the solution of the extended C0 interior penalty method

(6.5) is obtained by similar arguments.

Theorem 6. We have

ku � QEhu�
hkH2�˛.˝/ � Ch2min.˛;k�1/kf kH�2C˛.˝/:

7 A Posteriori Error Estimates

In this section we develop a reliable and efficient residual-based a posteriori error
estimator for the solution uh of (3.18). We will only discuss the model problem (2.1)
in detail. The results in this section generalize the results in [29] to higher order finite
elements. Results for the model problem (2.3) can be found in [28].

Note that the results from Sect. 5.3 are useful for proving the efficiency of the
error estimator.

7.1 An A Posteriori Error Estimator

Let T 2 Th be arbitrary. The residual error

�T D h2
T
kf ��2uhkL2.T / (7.1)

measures the extent to which uh fails to satisfy the biharmonic equation.
Let e 2 Eh be arbitrary. The residual

�e;1 D �

jej 12
k ŒŒ@uh=@ne�� kL2.e/ (7.2)

measures the extent to which uh fails to be in H2
0 .˝/.

Let e 2 E i
h be arbitrary. The residual

�e;2 D jej 12 k ��@2uh=@n2e

 kL2.e/ (7.3)

measures the extent that uh fails to be in H3.˝/, while the residual

�e;3 D jej 32 k ŒŒ@.�uh/=@ne�� kL2.e/ (7.4)

measures the extent that uh fails to be in H4.˝/.
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The residual-based error estimator �h is defined by

�h D
h X
T2Th

�2
T

C
X
e2Eh

�2e;1 C
X
e2E i

h

�
�2e;2 C �2e;3

�i 12
: (7.5)

Remark 6. We can replace the definition of �e;3 by jej 32 ��@3uh=@n3e

 kL2.e/. Note
that the error estimator �e;3 is identically 0 for the quadratic C0 interior penalty
method.

7.2 Reliability

In this section we show that the error estimator �h provides an upper bound of the
true error ku � uhkh.

It is clear from (3.24) and (7.2) that

�
X
e2Eh

1

jejk ŒŒ@.u � uh/=@ne�� k2L2.e/ D �
X
e2Eh

1

jejk ŒŒ@uh=@ne�� k2L2.e/ �
X
e2Eh

�2e;1;

(7.6)
so we only need to bound

P
T2Th

ju � uhj2H2.T /
.

It follows from (3.24), Lemma 1 and (7.2) that

X
T2Th

ju � uhj2H2.T /
� 2

X
T2Th

�ju � Ehuhj2H2.T /
C juh �Ehuhj2H2.T /

�

� 2ju � Ehuj2
H2.˝/

C C
X
e2Eh

�2e;1; (7.7)

and we have, by duality,

ju � EhuhjH2.˝/ D sup

2H2

0 .˝/nf0g

a.u �Ehuh; 
/

j
jH2.˝/

: (7.8)

We can use (2.5), (2.6) and (3.18) to rewrite the numerator on the right-hand side
of (7.8) as

a.u �Ehuh; 
/ D
Z
˝

r2.u � Ehuh/ W r2
 dx

D
X
T2Th

Z
T

r2.uh�Ehuh/ W r2
 dx�
X
T2Th

Z
T

r2uh W r2.
�˘h
/ dx
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C
Z
˝

r2u W r2
 dx �
X
T2Th

Z
T

r2uh W r2.˘h
/dx (7.9)

D
X
T2Th

Z
T

r2.uh�Ehuh/Wr2
 dx�
X
T2Th

Z
T

r2uh W r2.
�˘h
/ dx

C ah.uh;˘h
/�
X
T2Th

Z
T

r2uhWr2.˘h
/dxC
Z
˝

f .
�˘h
/dx:

We have, by (3.32),

X
T2Th

Z
T

r2uh W r2.
 �˘h
/ dx

D
X
T2Th

Z
T

.�2uh/.
 �˘h
/dx C
X
e2E i

h

Z
e

hh@.�uh/

@ne

ii
.
 �˘h
/ds

C
X
e2Eh

Z
e

��
@2uh
@n2e

�� hh@˘h


@ne

ii
ds �

X
e2E i

h

Z
e

hh@2uh
@n2e

ii �� @.
 �˘h
/

@ne

��
ds

�
X
e2E i

h

Z
e

hh @2uh
@ne@te

ii@.
 �˘h
/

@te
ds; (7.10)

and by (3.17),

ah.uh;˘h
/ �
X
T2Th

Z
T

r2uh W r2.˘h
/dx

D
X
e2Eh

Z
e

��
@2uh
@n2e

�� hh@˘h


@ne

ii
ds C

X
e2Eh

Z
e

��
@2˘h


@n2e

�� hh@uh
@ne

ii
ds

C �
X
e2Eh

1

jej
Z
e

hh @uh
@ne

iihh@˘h


@ne

ii
ds: (7.11)

Putting (7.9)–(7.11) together, we find

a.u � Ehu; 
/

D
X
T2Th

Z
T

r2.uh � Ehuh/ W r2
 dx

C
X
T2Th

Z
T

.f ��2uh/.
 �˘h
/dx
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�
X
e2E i

h

Z
e

hh@.�uh/

@ne

ii
.
�˘h
/ds C

X
e2E i

h

Z
e

hh@2uh
@n2e

ii �� @.
�˘h
/

@ne

��
ds

C
X
e2E i

h

Z
e

hh @2uh
@ne@te

ii@.
 �˘h
/

@te
ds C

X
e2Eh

Z
e

��
@2˘h


@n2e

�� hh@uh
@ne

ii
ds

C �
X
e2Eh

1

jej
Z
e

hh@uh
@ne

iihh@˘h


@ne

ii
ds: (7.12)

The terms on the right-hand side of (7.12) can be estimated as follows:

ˇ̌̌ X
T2Th

Z
T

r2.uh � Ehuh/ W r2
 dx
ˇ̌̌

� C
�X
e2Eh

�2e;1

� 1
2 j
jH2.˝/ (7.13)

by (3.24), Lemma 1 and (7.2);

ˇ̌̌ X
T2Th

Z
T

.f ��2uh/.
 �˘h
/dx
ˇ̌̌

�
� X
T2Th

h4
T
kf ��2uhk2L2.T /

� 1
2
� X
T2Th

h�4
T

k
 �˘h
k2L2.T /
� 1
2

�
� X
T2Th

�2
T

� 1
2 j
jH2.˝/ (7.14)

by (3.30) and (7.1);

ˇ̌̌ X
e2E i

h

Z
e

hh@.�uh/

@ne

ii
.
 �˘h
/ds

ˇ̌̌

�
� X
e2E i

h

jej3k ŒŒ@.�uh/=@ne�� k2L2.e/
� 1
2
� X
e2E i

h

jej�3k
 �˘h
k2L2.e/
� 1
2

� C
� X
e2E i

h

�2e;3

� 1
2 j
jH2.˝/ (7.15)

and

ˇ̌̌ X
e2E i

h

Z
e

hh@2uh
@n2e

ii �� @.
 �˘h
/

@ne

��
ds
ˇ̌̌
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�
� X
e2E i

h

jejk ��@2uh=@n2e

 k2L2.e/
� 1
2
� X
e2E i

h

jej�1k ff@.
 �˘h
/=@negg k2L2.e/
� 1
2

� C
� X
e2E i

h

�2e;2

� 1
2 j
jH2.˝/ (7.16)

by (3.30), (7.3), (7.4) and the trace theorem with scaling;

ˇ̌̌ X
e2E i

h

Z
e

hh @2uh
@ne@te

ii@.
 �˘h
/

@te
ds
ˇ̌̌

�
� X
e2E i

h

jejk ��@2uh=@ne@te

 k2L2.e/
� 1
2
� X
e2E i

h

jej�1k@.
 �˘h
/=@tek2L2.e/
� 1
2

� C
� X
e2E i

h

�2e;1

� 1
2 j
jH2.˝/ (7.17)

by (3.24), (3.30), (7.2), the trace theorem with scaling and a standard inverse
estimate;

ˇ̌̌ X
e2Eh

Z
e

��
@2˘h


@ne

�� hh @uh
@ne

ii
ds
ˇ̌̌

�
�X
e2Eh

�2e;1

� 1
2
�X
e2Eh

jejk ˚̊ @2˘h
=@n
2
e



 k2L2.e/
� 1
2

(7.18)

� C
�X
e2Eh

�2e;1

� 1
2
� X
T2Th

j˘h
j2
H2.T /

� 1
2 � C

�X
e2Eh

�2e;1

� 1
2 j
jH2.˝/

by (3.24), (3.30), (7.2) and scaling;

ˇ̌̌
�
X
e2Eh

1

jej
Z
e

hh@uh
@ne

iihh@˘h


@ne

ii
ds
ˇ̌̌

�
�X
e2Eh

�2e;1

� 1
2
�X
e2Eh

jej�1k ŒŒ@.˘h
 � 
/=@ne�� k2L2.e/
� 1
2

�
�X
e2Eh

�2e;1

� 1
2 j
jH2.˝/ (7.19)

by (3.30), (7.2) and the trace theorem with scaling.
It follows from (7.5) and (7.12)–(7.19) that
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a.u �Ehuh; 
/ � C�hj
jH2.˝/: (7.20)

Combining (7.6)–(7.8) and (7.20) we have the following result.

Theorem 7. There exists a positive constant C independent of h and � such that

ku � uhkh � C�h:

7.3 Efficiency

The error estimator �h also provides a lower bound for the true error ju � uhjH2.˝/

up to data oscillation.

Theorem 8. There exists a positive constant C independent of h and � such that

�h � C
�
�
1
2 ku � uhkh C Osck�3.f /



:

Proof. Let Nf be the L2 orthogonal projection of f in Pk�3.˝;Th/. It follows from
(5.17), (5.26), (5.32) and (7.1)–(7.5) that

�2h �
X
T2Th

ju�uhj2H2.T /
C�2

X
e2Eh

1

jejk ŒŒ@.u � uh/=@ne�� k2L2.e/C
X
T2Th

h4
T
kf � Nf k2L2.T /

which together with (5.14) completes the proof. ut
Remark 7. Note that Osck�3.f / is asymptotically smaller than ku � uhkh. Indeed,
the magnitude of the error in k � kh for the C0 interior penalty method based on
the Pk Lagrange finite element space is at best O.hk�1/, which can only happen
if u 2 HkC1.˝/. In this case f 2 Hk�3.˝/ and the magnitude of Osck�3.f / is
o.hk�1/.

7.4 Adaptive Algorithms

Adaptive algorithms based on the error estimator �h and the bulk marking criteria of
Dörfler [47, 73] can be developed for the C0 interior penalty methods, and optimal
convergence is observed in numerical experiments [28, 29]. We note that while
rigorous convergence results for discontinuous Galerkin methods for second order
problems have been obtained recently [16, 60, 62], a rigorous convergence analysis
for adaptive C0 interior penalty methods (or other discontinuous Galerkin methods)
for fourth order problems remains open.
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8 Multigrid Methods

As mentioned in Sect. 3.6, it is crucial to have efficient solvers for the very ill-
conditioned discrete problems resulting from C0 interior penalty methods. In this
section we will develop and analyze multigrid methods for the discrete problems.
We will focus on the model problem (2.1). But the methodology of the convergence
analysis, which is different from the one in [35] (cf. Sect. 8.4.4), can also be applied
to the other model problems.

8.1 Set-Up

Let Tj (j � 0) be a sequence of triangulations of ˝ such that Tj .j � 1) is
obtained from Tj�1 by a uniform subdivision, and hj D maxT2Tj hT (so that
hj�1 D 2hj ). The set of the edges (resp. interior edges) of Tj is denoted by Ej
(resp. E i

j ).
Let Vj be the Pk (k � 2) Lagrange finite element space associated with Tj , and

uj 2 Vj be the solution of the model problem (2.1) on level j obtained by the C0

interior penalty method. We can rewrite the discrete problem (3.18) as

Ajuj D 
j ; (8.1)

where Aj W Vj �! V 0
j and 
j 2 V 0

j are defined by

hAjw; vi D aj .w; v/ 8 v;w 2 Vj ; (8.2)

h
j ; vi D
Z
˝

f v dx 8 v 2 Vj : (8.3)

Here the bilinear form aj .�; �/ is the analog of (3.17) on Vj and h�; �i is the canonical
bilinear form between a vector space and its dual.

Multigrid algorithms [17, 21, 32, 59, 69, 91] are iterative methods for solving
equations of the form

Aj z D  (8.4)

where  2 V 0
j and z 2 Vj .

Remark 8. We follow the convention that finite element functions are denoted by
Roman letters and functionals on the finite element spaces are denoted by Greek
letters.

8.2 Intergrid Transfer Operators and Smoothers

There are two ingredients in the design of multigrid algorithms. First we need
intergrid transfer operators to move functions and functionals between grids. Since
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the finite element spaces are nested, i.e., V0 � V1 � � � � , we can take the coarse-
to-fine operator I jj�1 W Vj�1 �! Vj (j � 1) to be the natural injection and the

fine-to-coarse operator I j�1
j W V 0

j �! V 0
j�1 to be the transpose of I jj�1, i.e.,

hI j�1
j �; vi D h�; I jj�1vi 8 � 2 V 0

j ; v 2 Vj�1: (8.5)

Secondly we need a smoothing scheme to damp out the highly oscillatory part
of the error of an approximate solution of (8.4) so that the remaining error can be
captured accurately on a coarser grid. The smoothing step is given by

znew D zold C �jS
�1
j . �Aj zold/; (8.6)

where Sj W Vj �! V 0
j and �j is a damping factor chosen so that

spectral radius of
�
�jS

�1
j Aj / � 1: (8.7)

Below we will discuss two choices for Sj that will lead to two smoothing schemes.

8.2.1 A Standard Smoother

Let Nj be the set of all the nodes for the Pk Lagrange finite element space that are
interior to ˝ . The operator Sj W Vj �! V 0

j is defined by

hSjw; vi D h2j

X
p2Nj

w.p/v.p/:

Note that we have

C1kvk2L2.˝ � hSjv; vi � C2kvk2L2.˝/ 8 v 2 Vj ; (8.8)

and the computational cost for the evaluation of S�1
j � (� 2 V 0

j ) is of order O.nj /,
where nj D dimVj . By (8.8) and standard inverse estimates, we can choose

�j D Ch4j (8.9)

so that (8.7) holds.

8.2.2 A Nonstandard Smoother

Let Lj W Vj �! V 0
j be the discrete Laplace operator defined by
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hLjw; vi D
Z
˝

rw � rv dx 8 v;w 2 Vj :

We take S�1
j W V 0

j �! Vj to be an approximate inverse of Lj obtained by a
multigrid Poisson solve such that

C1jvj2
H1.˝/

� hSj v; vi � C2jvj2
H1.˝/

8 v 2 Vj : (8.10)

Note that it is easy to implement a multigrid Poisson solve because the finite
element spaces for the C0 interior penalty methods are standard finite element
spaces for second order problems, and the computational cost for the evaluation
of S�1

j � (� 2 V 0
j ) is of order O.nj /. By (8.10) and standard inverse estimates, we

can choose
�j D Ch2j (8.11)

so that (8.7) holds.

8.3 Multigrid Algorithms

We will consider the V -cycle,W -cycle and F -cycle algorithms for (8.4).

8.3.1 V -Cycle Algorithm

The V -cycle algorithm computes an approximate solution MGV .j;  ; z0;m/ of (8.4)
with initial guess z0 2 Vj and m pre-smoothing andm post-smoothing steps.

For j D 0, we take MGV .0;  ; z0;m/ to be A�1
0  . For j � 1, we compute

MGV .j;  ; z0;m/ recursively in three steps.

Pre-smoothing For 1 � ` � m, compute z` recursively by

z` D z`�1 C �j S
�1
j . � Aj z`�1/: (8.12)

Coarse Grid Correction Compute

zmC1 D zm C I
j
j�1MGV .j � 1; 
j�1; 0;m/; (8.13)

where 
j�1 D I
j�1
j . � Aj zm/ 2 V 0

j�1 is the transferred residual of zm.

Post-smoothing For mC 2 � ` � 2mC 1, compute z` recursively by

z` D z`�1 C �j S
�1
j . � Aj z`�1/: (8.14)

Final Output
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MGV .j;  ; z0;m/ D z2mC1 (8.15)

Remark 9. MGV .j � 1; 
j�1; 0;m/ is the approximate solution of the coarse grid
residual equation

Aj�1ej�1 D I
j�1
j . � Aj zm/ D I

j�1
j Aj .z � zm/ (8.16)

obtained by the .j � 1/-st level V -cycle algorithm with initial guess 0.

8.3.2 W -Cycle Algorithm

The W -cycle algorithm computes an approximate solution MGW .j;  ; z0;m/ of
(8.4) with initial guess z0 2 Vj andm pre-smoothing andm post-smoothing steps.

The only difference between the V -cycle algorithm and the W -cycle algorithm
is in the coarse grid correction step, where the coarse grid algorithm is applied twice
to the coarse grid residual equation. More precisely, we have

zmC 1
2

D MGW .j � 1; 
j�1; 0;m/;

zmC1 D zm C MGW .j � 1; 
j�1; zmC 1
2
; m/:

(8.17)

8.3.3 F -Cycle Algorithm

TheF -cycle algorithm computes an approximate solution MGF .j;  ; z0;m/ of (8.4)
with initial guess z0 2 Vj and m pre-smoothing andm post-smoothing steps.

The only difference between the V -cycle algorithm and the F -cycle algorithm
is again in the coarse grid correction step, where the coarse grid algorithm is
applied once followed by one application of the coarse grid V -cycle algorithm. More
precisely, we have

zmC 1
2

D MGF .j � 1; 
j�1; 0;m/;

zmC1 D zm C MGV .j � 1; 
j�1; zmC 1
2
; m/:

(8.18)

8.4 Convergence Analysis

Throughout this section we assume that the index of elliptic regularity ˛ and the
order k of the Lagrange finite element space satisfy the relation

˛ � k � 1: (8.19)
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Furthermore we assume that ˛ … f 1
4
; 1
2
; 3
4
g (cf. Lemma 7).

From (8.4) and (8.6) we see that

z � znew D z � �
zold C �j .Aj z � Aj zold/


 D .Idj � �jS
�1
j Aj /.z � zold/; (8.20)

where Idj is the identity operator on Vj . Therefore the error reduction operator for
one smoothing step is given by

Rj D Idj � �j S�1
j Aj : (8.21)

We define P j�1
j W Vj �! Vj�1 (j � 1) to be the transpose of I jj�1 with respect

to the bilinear forms for the C0 interior penalty methods, i.e.,

aj�1.P j�1
j w; v/ D aj .w; I

j
j�1v/ 8 v 2 Vj�1; w 2 Vj : (8.22)

Remark 10. In the case of a conforming method with nested finite element spaces,
the operator Pj�1

j is just the restriction to Vj of the Ritz projection operator that
projectsH2

0 .˝/ onto Vj�1.

Lemma 4. The following relation holds W

P
j�1
j D A�1

j�1I
j�1
j Aj : (8.23)

Proof. Using (8.2), (8.5) and (8.22) we find

hAj�1P j�1
j w; vi D aj�1.P j�1

j w; v/

D aj .w; I
j
j�1vi D hAjw; I jj�1vi D hI j�1

j Ajw; vi

for any w 2 Vj and v 2 Vj�1, which implies (8.23). ut
It follows from (8.16) and Lemma 4 that the solution of the coarse grid residual

equation is given by

ej�1 D A�1
j�1I

j�1
j Aj .z � zm/ D P

j�1
j .z � zm/: (8.24)

8.4.1 Recurrence Relations for Error Propagation Operators

Let EV
j W Vj �! Vj be the error reduction operator for the V -cycle algorithm

applied to (8.4), i.e.

E
V
j .z � z0/ D z � MGV .j;  ; z0;m/: (8.25)

From (8.12), (8.14) and (8.20), we have
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z � zm D Rmj .z � z0/; (8.26)

z � z2mC1 D Rmj .z � zmC1/: (8.27)

We can connect z � zmC1 to z � zm through the coarse grid correction step. Since
P
j�1
j .z � zm/ is the exact solution of (8.16) (cf. (8.24)), it follows from (8.13) and

(8.25) (applied to the coarse grid equation (8.16)) that

z � zmC1 D .z � zm/� I
j
j�1MGV .j � 1; 
j�1; 0;m/

D .z � zm/� IJj�1
�
P
j�1
j .z � zm/ � E

V
j�1P

j�1
j .z � zm/



(8.28)

D �
.Idj � I jj�1P

j�1
j /C I

j
j�1E

V
j�1P

j�1
j



.z � zm/:

Combining (8.25)–(8.28), we find the recurrence relation for the V -cycle error
propagation operator:

E
V
j D Rmj

�
.Idj � I

j
j�1P

j�1
j /C I

j
j�1E

V
j�1P

j�1
j



Rmj : (8.29)

Similarly we have the following recurrence relations for the error propagation
operators EW

j and E
F
j for the W -cycle and F -cycle algorithms:

E
W
j D Rmj

�
.Idj � I jj�1P

j�1
j /C I

j
j�1.E

W
j�1/2P

j�1
j



Rmj ; (8.30)

E
F
j D Rmj

�
.Idj � I jj�1P

j�1
j /C I

j
j�1E

V
j�1EF

j�1P
j�1
j



Rmj : (8.31)

Remark 11. Note thatEV
j z D z�MGV .j;  ; 0;m/ by (8.25). Since MGV .j;  ; 0;m/

is linear in DAj z, we can write MGV .j;  ; 0;m/DBjAj z whereBj W V 0
j �! Vj

is linear, and hence we have

E
V
j D Idj � BjAj : (8.32)

Using (8.4), (8.32) we can rewrite (8.25) as

MGV .j;  ; z0;m/ D z � E
V
j .z � z0/

D z0 C .Idj � E
V
j /.z � z0/ D z0 C Bj . � Aj z0/: (8.33)

Therefore the V -cycle algorithm and its error propagation operator can be expressed
alternatively by (8.33) and (8.32). Similar alternative expressions for the W -cycle
and F -cycle algorithms can also be derived [17, 21].

It is clear from (8.29), (8.30) and (8.31) that we need to understand the effects of
Rmj (smoothing property) and Idj � I

j
j�1P

j�1
j (approximation property). We will

measure these effects by certain mesh-dependent norms.
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8.4.2 Mesh-Dependent Norms and Smoothing Properties

Observe that the operator S�1
j Aj W Vj �! Vj is symmetric positive definite with

respect to the inner product hSj �; �i. Therefore for any t 2 R we can define the
mesh-dependent norm

jjjvjjjt;j D �hSj .S�1
j Aj /

tv; vi
 12 8 v 2 Vj : (8.34)

It is clear that

jjjvjjj1;j D hAj v; vi 12 D
q
aj .v; v/ 8 v 2 Vj : (8.35)

For the standard smoother defined in Sect. 8.2.1 we have, by (8.8),

C1kvk2L2.˝/ � jjjvjjj20;j D hSj v; vi � C2kvk2L2.˝/ 8 v 2 Vj I (8.36)

while for the nonstandard smoother defined in Sect. 8.2.2 we have, by (8.10),

C1kvk2
H1.˝/

� jjjvjjj20;j D hSj v; vi � C2kvk2
H1.˝/

8 v 2 Vj : (8.37)

The following generalized Cauchy-Schwarz inequality can be easily derived from
(8.2), (8.35) and the standard Cauchy-Schwarz inequality:

jjjvjjj1Cs;j D max
w2Vj nf0g

ah.v;w/

jjjwjjj1�s;j : (8.38)

The effect of the smoothing steps is given by the next lemma.

Lemma 5. The following smoothing property holds W

jjjRmj vjjjs;j � Ch
�.t�s/
j m.t�s/=2jjjvjjjt;j 8 v 2 Vj and 0 � t � s � 2; (8.39)

where � D 2 for the standard smoother defined in Sect. 8.2.1 and � D 1 for the
nonstandard smoother defined in Sect. 8.2.2.

Proof. Let rj be the spectral radius of S�1
j Aj . Then �j rj � 1 by (8.7) and it follows

from (8.9), (8.11) and the spectral theorem that

jjjRmj vjjj2s;j D ˝
Sj .S

�1
j Aj /

s.Idj � �j S�1
j Aj /

mv; .Idj � �jS
�1
j Aj /

mv
˛

� �t�sj

˝
Sj .S

�1
j Aj /

t .�j S
�1
j Aj /

.s�t /.Idj � �jS
�1
j Aj /

mv;

.Idj � �jS�1
j Aj /

mv
˛
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� Ch
2�.t�s/
j

�
max
0�x�1 x

.s�t /.1 � x/2m

hSj .S�1

j Aj /
tv; vi

� Ch
2�.t�s/
j m.t�s/jjjvjjj2t;j : ut

In the case where s D t , the constant C in (8.39) can be taken to be 1, i.e., we
have

jjjRj vjjjt;j � jjjvjjjt;j 8 v 2 Vj and t 2 R: (8.40)

8.4.3 Relations Between Mesh-Dependent Norms and Sobolev Norms

Let QEj W Vj �! H2
0 .˝/ be the enriching operator introduced in Sect. 4.2. From

Lemma 2 and standard inverse estimates we have

k QEj vk2L2.˝/ � C
� X
T2Th

k QEj v � vk2L2.T / C kvk2L2.T /
�

� Ckvk2L2.˝/ 8 v 2 Vj ;
(8.41)

and similarly
k QEj vkH1.˝/ � C jvjH1.˝/ 8 v 2 Vj : (8.42)

It follows from (3.25), (4.20), (8.35), (8.36), (8.41), and interpolation between
Hilbert scales [17, 65, 88, 90] that

k QEj vkH2s.˝/ � C jjjvjjjs;j 8 v 2 Vj ; 0 � s � 1 (8.43)

for the mesh-dependent norms associated with the standard smoother in Sect. 8.2.1.
Similarly, it follows from (3.25), (4.20), (8.35), (8.37) and (8.42) that

k QEj vkH1Cs.˝/ � C jjjvjjjs;j 8 v 2 Vj ; 0 � s � 1 (8.44)

for the mesh-dependent norms associated with the nonstandard smoother in
Sect. 8.2.2.

We can connect the scale of Sobolev spaces to the finite element space Vj by an
operator Jj W L2.˝/ �! Vj defined by

Jj v D ˘j .Qj v/ 8 v 2 L2.˝/; (8.45)

where˘j W C. N̋ / �! Vj is the nodal interpolation operator for the Lagrange finite
element space Vj , and Qj is the orthogonal projection from L2.˝/ onto QWj , the
C1 finite element space that appeared in the construction of QEj (cf. Sect. 4.2).

Since the dofs of Vh are also dofs of QWh, we can obtain the following estimates
by direct element by element calculations:

k˘j QwkL2.˝/ � Ck QwkL2.˝/ 8 Qw 2 QWh; (8.46)

j˘j QwjH1.˝/ � C j QwjH1.˝/ 8 Qw 2 QWh: (8.47)
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Lemma 6. We have

Jj . QEj v/ D v 8 v 2 Vj ; (8.48)

kJj �kh � C j�jH2.˝/ 8 � 2 H2
0 .˝/; (8.49)

jJj �jH1.˝/ � C j�jH1.˝/ 8 � 2 H1
0 .˝/; (8.50)

kJj �kL2.˝/ � Ck�kL2.˝/ 8 � 2 L2.˝/: (8.51)

Proof. The relation (8.48) follows immediately from (4.22) and (8.45), and the
bound (8.51) is a direct consequence of (8.45) and (8.46).

The estimates (8.49) and (8.50) follow from (4.21), (8.45), (8.47) and two well-
known bounds [19] for Qj W

kQj �kH2.˝/ � Ck�kH2.˝/ 8 � 2 H2
0 .˝/;

kQj �kH1.˝/ � Ck�kH1.˝/ 8 � 2 H1
0 .˝/: ut

The following lemma establishes the links between mesh-dependent norms and
Sobolev norms.

Lemma 7. We have

C1jjjvjjjs;j � k QEj vkH2s.˝/ � C2jjjvjjjs;j 8 v 2 Vj ; s 2 Œ0; 1� n
�
1

4
;
3

4

�
(8.52)

for the mesh-dependent norms associated with the standard smoother in Sect. 8.2.1,
and

C1jjjvjjjs;j � k QEj vkH1Cs .˝/ � C2jjjvjjjs;j 8 v 2 Vj ; s 2 Œ0; 1� n
�
1

2

�
(8.53)

for the mesh-dependent norms associated with the nonstandard smoother in
Sect. 8.2.2.

Proof. For the mesh-dependent norms associated with the standard smoother, it
follows from (8.49), (8.51) and interpolation theory for Sobolev spaces [88,90] that

jjjJj �jjjs;j � Ck�kH2s.˝/ 8 � 2 H2s
0 .˝/ and s 2 Œ0; 1� n

�
1

4
;
3

4

�
;

and hence, in view of (8.48),

jjjvjjjs;j D jjjJj QEj vjjjs;j � Ck QEj vkH2s.˝/: (8.54)

The estimate (8.52) follows from (8.43) and (8.54).
Similarly, we can prove (8.53) using (8.44) and (8.48)–(8.50). ut



C 0 Interior Penalty Methods 127

Remark 12. The results of Lemma 7 are also valid for the exceptional values
provided the corresponding Sobolev space Ht.˝/ is replaced by the space QHt.˝/

(orHt
00
.˝/) (cf. [88, 90]).

8.4.4 Approximation Properties

The effects of the coarse grid correction is measured by appropriate norms of the
operator Idj � I

j
j�1P

j�1
j . We begin with a technical lemma which is an analog of

Theorem 5 and Theorem 6.

Lemma 8. Let 
 2 H�2C˛.˝/, � 2 H2
0 .˝/ satisfy

a.�; v/ D h
; vi 8 v 2 H2
0 .˝/;

and �	j�1 2 Vj�1 satisfy

aj�1.�	j�1; v/ D h
; QEj vi 8 v 2 Vj�1 � Vj :

Then we have
k� � QEj �	j�1kH2�˛.˝/ � Ch2˛k
kH�2C˛ .˝/: (8.55)

Proof. We will focus on the case where ˛ 2 . 1
2
; 1/. We have an analog of (6.8):

k���	j�1khj�1 � k��˘]
j�1�khj�1 CC max

w2Vj�1nf0g
aj�1.˘]

j�1� � �
	
j�1;w/

kwkhj�1

(8.56)

where ˘]
j�1 is the nodal interpolation operator for the quadratic Lagrange finite

element space associated with Tj�1, and also an analog of (6.9):

aj�1.˘]
j�1� � �

	
j�1;w/ D

X
T2Tj�1

Z
T

r2.˘
]
j�1� � �/ W r2. QEjw/ dx

C
X

e2Ej�1

Z
e

��
@2w

@n2e

�� hh@˘]
j�1�
@ne

ii
ds

C �
X

e2Ej�1

1

jej
Z
e

hh@˘]
j�1�
@ne

iihh@.w � QEjw/

@ne

ii
ds

(8.57)

�
X

e2E i
j�1

Z
e

hh@2˘]
j�1�

@ne@te

ii@.w � QEjw/

@te
ds
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�
X

e2E i
j�1

Z
e

hh@2˘]
j�1�
@n2e

ii (( @.w � QEjw/

@ne

))
ds:

It follows from (3.30), (4.17), (6.6), (8.56) and (8.57) that we have the following
analog of (6.7):

k� � �
	
j�1khj�1 � Ch˛j�1k
kH�2C˛ .˝/: (8.58)

Now we turn to the error estimate in the lower order Sobolev norm. By duality,
we can write

k� � QEj �	j�1kH2�˛.˝/ D sup
 2H�2C˛.˝/nf0g

h ; � � QEj �	j�1i
k kH�2C˛ .˝/

: (8.59)

Let � 2 H2
0 .˝/ satisfy

a.�; v/ D h ; vi 8 v 2 H2
0 .˝/;

and ��
j 2 Vj satisfy

aj .�
�
j ; v/ D h ; QEj vi 8 v 2 Vj :

Then we have, by Theorem 4,

k� � ��
j khj � Ch˛k kH�2C˛ .˝/: (8.60)

We also have an analog of (6.18):

h ; � � QEj �	j�1i

D
X
T2Tj

Z
T

r2.� �˘]
j �/ W r2.� � �	j�1/ dx

C
X
T2Tj

Z
T

r2.� � ��
j / W r2.�

	
j�1 �˘]

j �/dx

C
X
e2Ej

Z
e

((
@2.˘

]
j � � ��

j /

@n2e

)) hh@�	j�1
@ne

ii
ds

�
X
e2E i

j

Z
e

hh@2˘]
j �

@n2e

ii (( @.� � �	j�1/
@ne

))
ds �

X
e2E i

j

Z
e

hh@2˘]
j �

@ne@te

ii@.� � �
	
j�1/

@te
ds
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C
X
e2Ej

Z
e

((
@2.˘

]
j � � �

	
j�1/

@n2e

)) hh@��
j

@ne

ii
ds�

X
e2E i

j

Z
e

hh@2˘]
j �

@n2e

ii�� @.� � ��
j /

@ne

��
ds

�
X
e2E i

j

Z
e

hh@2˘]
j �

@ne@te

ii@.� � ��
j /

@te
ds � �

X
e2Ej

1

jej
Z
e

hh@��
j

@ne

iihh@�	j�1
@ne

ii
ds;

where ˘]
j is the nodal interpolation operator for the quadratic Lagrange finite

element space associated with Tj . It then follows from (3.30), (6.10), (8.58) and
(8.60) that

h ; � � QEj �	j�1i � Ch2˛k
kH�2C˛ .˝/k kH�2C˛ .˝/;

which together with (8.59) implies (8.55).
The case where ˛ 2 Œ1; 2� can be handled in a similar fashion by using the nodal

interpolation operator for the cubic Lagrange finite element. ut
We can now establish the approximation properties.

Lemma 9. We have

jjj.Idj � I jj�1P
j�1
j /vjjj1�˛;j � Ch2˛j jjjvjjj1C˛;j 8 v 2 Vj (8.61)

for the mesh-dependent norm associated with the nonstandard smoother in
Sect. 8.2.2.

Proof. Let vj 2 Vj be arbitrary. We will prove (8.61) by a duality argument. From
(8.53) and duality, we have

jjj.Idj � I
j
j�1P

j�1
j /vjjj1�˛;j � Ck QEj .Idj � I

j
j�1P

j�1
j /vkH2�˛.˝/

D C sup

2H�2C˛.˝/nf0g

h
; QEj .Idj � I
j
j�1P

j�1
j /vi

k
kH�2C˛.˝/

: (8.62)

Let 
 2 H�2C˛.˝/ be arbitrary, � 2 H2
0 .˝/ satisfy

a.�; v/ D h
; vi 8 v 2 H2
0 .˝/; (8.63)

and ��
j 2 Vj satisfy

aj .�
�
j ; v/ D h
; QEj vi 8 v 2 Vj : (8.64)

It follows from Theorem 6 and (8.19) that
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k� � QEj ��
j kH2�˛.˝/ � Ch2˛k
kH�2C˛ .˝/: (8.65)

Using (8.5) and (8.64) we can write

h
; QEj .Idj � I jj�1P
j�1
j /vi D aj

�
��
j ; .Idj � I

j
j�1P

j�1
j /v

�
D aj .�

�
j ; v/ � aj�1.P j�1

j ��
j ; P

j�1
j v/ (8.66)

D aj .�
�
j � I jj�1�

	
j�1; v/;

where �	j�1 D P
j�1
j ��

j satisfies

aj�1.�	j�1;w/ D aj .�
�
j ; I

j
j�1w/ D h
; QEjwi 8 w 2 Vj�1: (8.67)

By Lemma 8, we have

k� � QEj �	j�1kH2�˛.˝/ � Ch2˛k
kH�2C˛ .˝/: (8.68)

It then follows from (8.38), (8.53), (8.65) and (8.68) that

ˇ̌
aj .�

�

j � I jj�1�
	
j�1; v/

ˇ̌ � jjj��

j � I jj�1�
	
j�1jjj1�˛;j jjjvjjj1C˛;j

� C k QEj .��

j � I jj�1�
	
j�1/kH2�˛.˝/jjjvjjj1C˛;j

�C �k QEj ��

j ��kH2�˛.˝/Ck�� QEjI jj�1�
	
j�1kH2�˛.˝/

�jjjvjjj1C˛;j

� Ch2˛k
kH�2C˛.˝/jjjvjjj1C˛;j ;

which together with (8.62) and (8.66) implies (8.61). ut
The following result for the standard smoother can be established by similar

arguments.

Lemma 10. We have

jjj.Idj � I jj�1P
j�1
j /vjjj1� ˛

2 ;j
� Ch2˛j jjjvjjj1C ˛

2 ;j
8 v 2 Vj (8.69)

for the mesh-dependent norm associated with the standard smoother in Sect. 8.2.1.

8.4.5 Analysis of the Two-Grid Algorithm

In the two-grid algorithm the coarse grid residual equation (8.16) is solved exactly.
Therefore (cf. (8.29)) the error propagation operator ETG

j of the two-grid algorithm
is given by

E
TG
j D Rmj .Idj � I

j
j�1P

j�1
j /Rmj : (8.70)
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Lemma 11. We have

jjjETG
j vjjj1;j � CTGm

�˛jjjvjjj1;j 8 v 2 Vj (8.71)

for the mesh-dependent norm associated with the nonstandard smoother, and

jjjETG
j vjjj1;j � CTGm

�.˛=2/jjjvjjj1;j 8 v 2 Vj (8.72)

for the mesh-dependent norm associated with the standard smoother.

Proof. Let v 2 Vj be arbitrary. It follows from (8.39) (with � D 1), (8.61) and
(8.70) that

jjjETG
j vjjj1;j D jjjRmj .Idj � I jj�1P

j�1
j /Rmj vjjjj;1

� Ch�˛
j m�.˛=2/jjj.Idj � I

j
j�1P

j�1
j /Rmj vjjj1�˛;1

� Ch˛jm
�.˛=2/jjjRmj vjjj1C˛;j

� Cm�˛jjjvjjj1;j ;

which yields (8.71).
The estimate (8.72) can be established by similar arguments using (8.39) (with

� D 2) and (8.69). ut
Therefore the two-grid algorithm is a contraction for m sufficiently large (but

independent of j ). Moreover, the algorithm based on the nonstandard smoother
that takes advantage of a multigrid Poisson solve in the smoothing steps is more
effective than the standard smoother. This is another important advantage of C0

interior penalty methods. Note that all other existing multigrid algorithms for fourth
order problems [20, 22, 80, 85, 98, 100, 101] share the less effective estimate (8.72).

8.4.6 Analysis of the W -Cycle Algorithm

We can establish the convergence property of the W -cycle algorithm using Lem-
ma 11 and a perturbation argument. First we note that, by (3.22), (3.25), (8.35) and
a direct calculation,

jjjI jj�1vjjj1;j � CCFjjjvjjj1;j�1 8 v 2 Vj�1; (8.73)

and hence, by (8.22),

jjjP j�1
j vjjj1;j�1 � CCFjjjvjjj1;j 8 v 2 Vj : (8.74)
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Theorem 9. Given any C� > CTG, there exists a positive integer m� independent
of j such that

jjjEW
j vjjj1;j � C�

m˛=�
jjjvjjj1;j 8 v 2 Vj (8.75)

provided m � m�, where � D 1 for the nonstandard smoother and � D 2 for the
standard smoother.

Proof. We will prove (8.75) by mathematical induction. The case j D 0 holds for
any m� since E

W
0 D 0. Assume that j � 1 and (8.75) is valid for j � 1. Let v 2 Vj

be arbitrary. From (8.30), (8.40), (8.70), Lemma 11, (8.73), (8.74) and the induction
hypothesis, we have

jjjEW
j vjjj1;j � �

CTGm
�.˛=�/ C C 2�C2

CFm
�2.˛=�/�jjjvjjj1;j :

If we choose m� > 0 so that

m
�.˛=�/� � C� � CTG

C2
CFC

2�
;

then form � m� we have

CTGm
�.˛=�/ C C2�C2

CFm
�2.˛=�/ � �

CTG C C 2�C2
CFm

�.˛=�/
�

�
m�.˛=�/ � C�

m˛=�

and hence (8.75) also holds for j . ut
Remark 13. It follows from (8.75) that theW -cycle algorithm is a contraction with
a contraction number independent of grid levels, provided that m is sufficiently
large (but independent of the grid levels). Thus the W -cycle algorithm is uniformly
convergent.

8.4.7 Results for the V -Cycle and F -Cycle Algorithms

The convergence property in Theorem 9 can also be established for the V -cycle and
F -cycle algorithms using the additive multigrid theory developed in [26,27]. Details
can be found in [35].

Note that the F -cycle algorithm is very attractive for C0 interior penalty methods
(and other discontinuous Galerkin methods). It is more robust than the V -cycle
algorithm in the sense that it takes fewer smoothing steps for the F -cycle algorithm
to become uniformly convergent. It is less expensive than the W -cycle algorithm.
But when both F -cycle and W -cycle algorithms are convergent, they have almost
identical performance.

Remark 14. Multigrid convergence results for discontinuous Galerkin methods for
second order problems can be found in [40].
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9 Domain Decomposition Methods

Domain decomposition methods [32, 70, 86, 89] provide another efficient approach
to solving the discrete problems resulting from C0 interior penalty methods. We
will focus on additive Schwarz domain decomposition preconditioners which have
a high level of built-in parallelism and can be used in a preconditioned conjugate
gradient algorithm that solves the discrete problem efficiently.

Below we will discuss an abstract theory for the additive Schwarz precondi-
tioners and consider an overlapping domain decomposition preconditioner [37] for
C 0 interior penalty methods. A Bramble-Pasciak-Schatz nonoverlapping domain
decomposition preconditioner for C 0 interior penalty methods is studied in [38].
Other domain decomposition algorithms for discontinuous Galerkin methods can
be found in [4, 5, 11, 48, 53, 54, 66].

9.1 An Abstract Theory of Additive Schwarz Preconditioners

Let V be a finite dimensional vector space and the linear operator A W V �! V 0 be
symmetric positive definite (SPD), i.e.,

hAv;wi D hAw; vi 8 v;w 2 V; (9.1)

hAv; vi > 0 8 v 2 V: (9.2)

An abstract additive Schwarz preconditioner B W V 0 �! V for A is defined by
the formula

B D
JX
jD0

IjA
�1
j I

t
j ; (9.3)

where the linear operators Aj W Vj �! V 0
j are SPD for 0 � j � J , and the

auxiliary vector spaces V0; V1; : : : ; VJ are connected to V by the linear operators
Ij W Vj �! V for 0 � j � J .

The algebraic theory of additive Schwarz preconditioners [14, 32, 49, 56, 70, 78,
86, 89, 96, 99] is given in the following theorem.

Theorem 10. Under the condition that

V D
JX
jD0

Ij Vj ; (9.4)

the operator B is SPD and the eigenvalues of BA are positive. Moreover, we have
the following characterizations of the maximum and minimum eigenvalues of BA W
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�max.BA/ D max
v2V nf0g

hAv; vi

min
vDPJ

jD0 Ij vj

vj2Vj

JX
jD0

hAj vj ; vj i
; (9.5)

�min.BA/ D min
v2V nf0g

hAv; vi

min
vDPJ

jD0 Ij vj

vj2Vj

JX
jD0

hAj vj ; vj i
: (9.6)

Proof. It is clear that B is symmetric and h�; B�i � 0 8 � 2 V 0. Suppose
h�; B�i D 0 for some � 2 V 0. We have

0 D
*
�;

JX
jD0

IjA
�1
j I

t
j �

+
D

JX
jD0

hI tj �; A�1
j I

t
j �i;

which implies I tj � D 0 for 0 � j � J because Aj W Vj �! V 0
j is SPD. It then

follows from (9.4) that, given any v 2 V , we have

h�; vi D
*
�;

JX
jD0

Ij vj

+
D

JX
jD0

hI tj �; vj i D 0;

which implies � D 0 and hence B is SPD.
Note that the operator BA W V �! V is SPD with respect to the inner

product hB�1�; �i, and hence all the eigenvalues of BA are positive. Moreover we
can characterize the maximum and minimum eigenvalues of BA by the following
Raleigh quotient formulas (cf. [55]):

�max.BA/ D max
v2V nf0g

hAv; vi
hB�1v; vi and �min.BA/ D min

v2V nf0g
hAv; vi

hB�1v; vi :

We can therefore establish (9.5) and (9.6) by showing that

hB�1v; vi D min
vDPJ

jD0 Ij vj

vj2Vj

JX
jD0

hAj vj ; vj i 8 v 2 V: (9.7)

Indeed we have, by the Cauchy-Schwarz inequality for the Euclidean inner
product and for the inner product hA�; �i,
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hB�1v; vi D hB�1v;
JX
jD0

Ij vj i

D
JX
jD0

hAj vj ; A
�1
j I

t
jB

�1vi

�
JX
jD0

hAj vj ; vj i 12 hI tjB�1v; A�1
j I

t
jB

�1vi 12

D
0
@ JX
jD0

hAj vj ; vj i
1
A

1
2
0
@ JX
jD0

hI tjB�1v; A�1
j I

t
jB

�1vi
1
A

1
2

D
0
@ JX
jD0

hAj vj ; vj i
1
A

1
2
0
@hB�1v;

JX
jD0

IjA
�1
j I

t
jB

�1vi
1
A

1
2

D
0
@ JX
jD0

hAj vj ; vj i
1
A

1
2

hB�1v; vi 12 ;

which implies

hB�1v; vi �
JX
jD0

hAj vj ; vj i (9.8)

whenever v D PJ
jD0 Ij vj and vj 2 Vj for 0 � j � J .

On the other hand, for the special decomposition

v D BB�1v D
JX
jD0

Ij .A
�1
j I

t
jB

�1v/ D
JX
jD0

Ij vj ;

where vj D A�1
j I

t
jB

�1v 2 Vj , we have

JX
jD0

˝
Aj vj ; vj

˛ D
JX
jD0

˝
I tjB

�1v; A�1
j I

t
jB

�1
j v

˛

D
*
B�1v;

JX
jD0

IjA
�1
j I

t
jB

�1
j v

+
D hB�1v; vi: (9.9)

The relation (9.7) follows from (9.8) and (9.9). ut
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By combining the elegant formulas (9.5) and (9.6) with analytical tools that
provide two-sided estimates for (9.7) in terms of hAv; vi, we can obtain concrete
condition number estimates for a specific additive Schwarz preconditioner.

9.2 A Two-Level Additive Schwarz Domain Decomposition
Preconditioner

In this section we consider a two-level additive Schwarz preconditioner for the
discrete problem resulting from a C0 interior penalty method for the model problem
(2.1). This overlapping domain decomposition preconditioner was first introduced
in [49] for conforming finite element methods for second order problems.

9.2.1 Set-Up

Let ˝ be divided into J nonoverlapping polygonal subdomains that are aligned
with the triangulation Th. By extending these subdomains we obtain J overlapping
subdomains ˝1; : : : ;˝J which are also aligned with Th. The overlap among the
subdomains is measured by ı. Furthermore we assume there is a coarse triangulation
TH of ˝ aligned with Th. (A typical example is given by Fig. 3, where Th is
represented by the middle figure, TH is represented by the left figure, and one of
the overlapping subdomain is depicted in the right figure.)

As a consequence of the geometric assumptions, we can construct a partition of
unity �j 2 C1. N̋ / for 1 � j � J (cf. [82]) such that

0 � �j � 1; (9.10)

�j D 0 on ˝ n˝j ; (9.11)

JX
jD1

�j D 1 on N̋ ; (9.12)

kr�j kL
1
.˝/ � C

ı
and kr2�jkL

1
.˝/ � C

ı2
: (9.13)

Fig. 3 An overlapping domain decomposition
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We also assume that there exists a positive integer Nc such that

the closure of each subdomain can have nonempty intersection with

the closures of at most Nc many other subdomains. (9.14)

Recall Vh is the Pk .k � 2) Lagrange finite element space associated with Th.
The operator Ah W Vh �! V 0

h represents the bilinear form (3.17), i.e.,

hAhw; vi D ah.w; v/ 8 v;w 2 Vh: (9.15)

It is the operator to be preconditioned.
We will denote by V0 D VH the P2 Lagrange finite element space associated

with TH . The operatorA0 D AH W VH �! V 0
H represents the bilinear form aH .�; �/

associated with the coarse triangulation TH .
The subdomain space Vj .1 � j � J / is defined by

Vj D fv 2 Vh W v D 0 on ˝ n˝j g: (9.16)

The bilinear form aj .�; �/ on Vj is the analog of ah.�; �/ for the subdomain˝j , i.e.,

aj .w; v/ D
X

T2Th;j

Z
T

.r2w W r2v/ dx C
X
e2Eh;j

Z
e

��
@2w

@n2e

�� hh @v

@ne

ii
ds

C
X
e2Eh;j

Z
e

��
@2v

@n2e

�� hh @w

@ne

ii
ds C �

X
e2Eh;j

1

jej
Z
e

hh @w

@ne

iihh @v

@ne

ii
ds;

(9.17)

where Th;j is the set of the triangles in Th that are subsets of ˝j , Eh;j is the set of
the edges of the triangles in Th;j , the jumps ŒŒ��� and averages are defined by (3.5)
and (3.11) if e � ˝j , and by (3.7) and (3.12) if e � @˝j .

The operator Aj W Vj �! V 0
j (1 � j � J ) is defined by

hAjw; vi D aj .w; v/ 8 v;w 2 Vj : (9.18)

The auxiliary spaces V1; : : : ; VJ are connected to Vh by the natural injections Ij
for 1 � j � J . For the coarse space VH , we define I0 W VH �! Vh by

I0 D ˘h ı QEH; (9.19)

where QEH W VH �! H2
0 .˝/ is the enriching operator introduced in Sect. 4.2 and

˘h is the nodal interpolation operator for Vh.
The two-level additive Schwarz preconditionerBTL WV 0

h �!Vh is then defined by
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BTL D
JX
jD0

IjA
�1
j I

t
j : (9.20)

Remark 15. If we use the natural injection from VH into Vh as I0, then the different
scalings that appear in the penalty terms of the C0 interior penalty methods on Th

and TH will adversely affect the performance of the preconditionerBTL. Numerical
evidence to this effect can be found in [37]. This problem is eliminated by the
operator I0 defined by (9.19). (See the estimate (9.23) below.)

Given any v 2 Vh, we have, by (9.12),

v D ˘hv D ˘h

JX
jD1

�j v D
JX
jD1

˘h.�j v/:

Therefore the condition (9.4) is satisfied because vj D ˘h.�j v/ 2 Vj by (9.11) and
(9.16).

9.3 Estimate for �max.BTLAh/

Let v 2 Vh be arbitrary and v D PJ
jD0 Ij vj , where vj 2 Vj . It follows from the

Cauchy-Schwarz inequality and the condition (9.14) that

hAhv; vi � 2hAhI0v0; I0v0i C 2

*
Ah

JX
jD1

vj ;
JX
jD1

vj

+

� 2hAhI0v0; I0v0i C C

JX
jD1

hAhvj ; vj i: (9.21)

In view of (3.17), (3.22), (3.25) (and the analog for aj .�; �/), (9.15), (9.17) and
(9.18), we have

hAhvj ; vj i � C hAj vj ; vj i 8 vj 2 Vj and 1 � j � J: (9.22)

The following lemma provides the key properties of I0.

Lemma 12. We have

kvH � I0vHkL2.˝/ CH jvH � I0vH jH1.˝/ CH2kI0vHkh � CH2kvHkH
for all vH 2 VH , where k � kH is the analog of k � kh .cf. (3.22)/ for TH .

Proof. It follows from (3.30), Lemma 2 and Corollary 2 that
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kvH � I0vHkL2.˝/ � kvH � QEHvHkL2.˝/ C k˘h
QEH vH � QEHvHkL2.˝/

� C
�
H2kvHkH C h2j QEHvH jH2.˝/

�
� CH2kvHkH ;

and the estimate for jvH � I0vH jH1.˝/ can be established similarly. From (3.30) and
Corollary 2 we have

X
T2Th

jI0vH j2
H2.T /

D
X
T2Th

j˘h
QEHvH j2

H2.T /
� C j QEHvH j2

H2.˝/
� CkvHk2

H
:

Finally, we obtain from (3.30), the trace theorem with scaling and Corollary 2

X
e2Eh

1

jej k ŒŒ@.I0vH /=@ne�� k
2
L2.e/

D
X
e2Eh

1

jejk
��
@.˘h

QEH vH � QEHvH /=@ne


 k2L2.e/

� C j QEHvH j2
H2.˝/

� CkvHk2
H

(9.23)

and the estimate for kI0vHkh follows. ut
Remark 16. The estimate (9.23) does not hold if I0 is just the natural injection from
VH into Vh.

We can now use (3.25) and Lemma 12 to conclude that

hAhI0v0; I0v0i � CkI0v0k2h � Ckv0k2H � C hA0v0; v0i: (9.24)

Combining (9.21), (9.22) and (9.24), we find

hAhv; vi � C

JX
jD0

hAj vj ; vj i;

which implies

hAhv; vi � C min
vDPJ

jD0 Ij vj

vj2Vj

JX
jD0

hAj vj ; vj i 8 v 2 Vh: (9.25)

The estimates (9.5) and (9.25) yield the following result.

Lemma 13. There exists a positive constant C independent of h, H , ı and J such
that

�max.BTLAh/ � C:
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9.4 Estimate for �min.BTLAh/

First we introduce an operator JHh W Vh �! VH defined by

JHh D ˘H ı QEh: (9.26)

The following analog of Lemma 12 can be established by similar arguments.

Lemma 14. We have

kv � JHh vkL2.˝/ CH jv � JHh vjH1.˝/ CH2kJHh vkH
� CH2kvkh 8 v 2 Vh:

The following lemma provides a lower bound for the eigenvalues of BTLAh.

Lemma 15. There exists a positive constant C independent of h, H , ı and J such
that

�min.BTLAh/ � C
�
1C H4

ı4

��1
:

Proof. Let v 2 Vh be arbitrary, v0 D JHh v and vj D ˘h

�
�j .v � I0v0/

�
. It follows

from (9.11) and (9.12) that vj 2 Vj for 0 � j � J and v D PJ
jD0 Ij vj .

In order to apply (9.6), we need to estimate the energy of vj by the energy of v.
We begin with v0. From (3.25) and Lemma 14, we have

hA0v0; v0i � Ckv0k2H D CkJHh vk2
H

� Ckvk2h � C hAhv; vi: (9.27)

Next we consider vj for 1 � j � J . Let w D v � I0v0 and wj D �jw, so that
vj D ˘hwj . It follows from Lemma 12 and Lemma 14 that

kwkL2.˝/ D kv � I0J
H
h vkL2.˝/

� kv � JHh vkL2.˝/ C kI0JHh v � JHh vkL2.˝/
� C

�
H2kvkh CH2kJHh vkH

�
(9.28)

� CH2kvkh:

Similarly we have

jwjH1.˝/ � CHkvkh and kwkh � Ckvkh: (9.29)

Let T 2 Th;j be arbitrary and Q�j;T be the P1 interpolant of �j on T that agrees
with �j at the vertices of T . The following interpolation error estimates are standard
[32, 44]:
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k Q�j;T kL
1
.T / � k�jkL

1
.T /; (9.30)

kr Q�j;T kL
1
.T / � Ckr�jkL

1
.T /; (9.31)

k Q�j;T � �j kL
1
.T / � Ch2

T
kr2�jkL

1
.T /: (9.32)

It follows from (3.30), (9.10), (9.13), (9.30)–(9.32), a standard inverse estimate
and the product rule that

jvj j2
H2.T /

� 2j˘h. Q�j;Tw/j2
H2.T /

C 2j˘h

�
.�j � Q�j;T /w

�j2
H2.T /

� C
�j Q�j;Twj2

H2.T /
C h�4

T
k˘h

�
.�j � Q�j;T /w

�k2L2.T /

� C

�k Q�j;T k2L
1
.T /jwj2

H2.T /
C kr Q�j;T k2L

1
.T /jwj2

H1.T /
(9.33)

C h�4
T

k.�j � Q�j;T /k2L
1
.T /kwk2L2.T /



� C

�jwj2
H2.T /

C 1

ı2
jwj2

H1.T /
C 1

ı4
kwk2L2.T /



:

For any e 2 Eh;j , we have

1

jej k
��
@vj =@ne



 k2L2.e/

� 2

jej k
��
@wj =@ne



 k2L2.e/ C 2

jejk
��
@.˘hwj � wj /=@ne



 k2L2.e/: (9.34)

The first term on the right-hand side of (9.34) can be estimated as follows:

1

jejk
��
@wj =@ne



 k2L2.e/ D 1

jej k
��
@.�jw/=@ne



 k2L2.e/

D 1

jej k�j ŒŒ@w=@ne�� k2L2.e/

� 1

jej k ŒŒ@w=@ne�� k2L2.e/ (9.35)

� 2

jej k ŒŒ@v=@ne�� k2L2.e/ C 2

jejk ŒŒ@.I0v0/=@ne�� k
2
L2.e/

:

For the second term on the right-hand side of (9.34), we can use (3.30), the trace
theorem with scaling, (9.10) and (9.13) to obtain

1

jejk
��
@.˘hwj � wj /=@ne



 k2L2.e/ � C
X
T2Te

jwj j2
H2.T /

� C
X
T2Te

�k�j k2L
1
.T /jwj2

H2.T /
C kr�j k2L

1
.T /jwj2

H1.T /



(9.36)
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� C
X
T2Te

�jwj2
H2.T /

C 1

ı2
jwj2

H1.T /



:

It follows from (3.22), (3.25), (9.17), (9.18), Lemma 12, (9.28)–(9.29), (9.33)–
(9.36) that

JX
jD1

hAj vj ; vj i � C

JX
jD1

� X
T2Th;j

jvj j2
H2.T /

C
X
e2Eh;j

1

jejk
��
@vj =@ne



 k2L2.e/
�

� C
�
kvk2h C kI0v0k2hC

X
T2Th

�jwj2
H2.T /

C 1

ı2
jwj2

H1.T /
C 1

ı4
kwk2L2.T /


�

� C
�
1C H4

ı4

�
kvk2h D C

�
1C H4

ı4

�
hAhv; vi: (9.37)

Combining (9.27) and (9.37) we find

JX
jD0

hAj vj ; vj i � C
�
1C H4

ı4

�
hAhv; vi;

which implies

min
vDPJ

jD0 Ij vj

vj2Vj

JX
jD0

hAj vj ; vj i � C
�
1C H4

ı4

�
hAhv; vi 8 v 2 Vh: (9.38)

The estimate for �min.BTLAh/ follows from (9.6) and (9.38).

9.5 Condition Number Estimates

In view of Lemma 13 and Lemma 15, the following result is immediate.

Theorem 11. There exists a positive constantC independent of h,H , ı and J such
that

�.BTLAh/ D �max.BTLAh/

�min.BTLAh/
� C

�
1C H4

ı4

�
:

In particular, in the case of generous overlap where ı is comparable to H , the
two-level additive Schwarz preconditioner is an optimal preconditioner. Note that
this is made possible by the correct definition of I0 (cf. Remark 16).

In the case of small overlap (say ı D h), the magnitude ofH=ı becomes signifi-
cant and one can improve the condition number estimate under additional shape reg-
ularity assumptions on the subdomains˝1; : : : ;˝J . This was first discussed in [50]
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for conforming finite element methods for second order problems. For the C0 inte-
rior penalty method the condition number estimate for BTLAh can be improved to

�.BTLAh/ D �max.BTLAh/

�min.BTLAh/
� C

�
1C H3

ı3

�
: (9.39)

Details can be found in [37].

Remark 17. The condition number estimate (9.39) is sharp [33, 37].

10 Concluding Remarks

For simplicity we have restricted our discussion of C0 interior penalty methods to
polygonal domains. But these methods can be naturally combined with the isopara-
metric technique [13, 32, 44, 67] to handle domains with smooth boundaries. This
is again due to the fact that the underlying finite element spaces are standard finite
element spaces for second order problems where the isoparametric methodology has
proven successes. Details can be found in [31].

Finally we mention that C0 interior penalty methods have also been applied to
many other problems [28, 30, 36, 52, 72, 94, 95]. The techniques developed in this
article are also relevant for these applications and also other discontinuous Galerkin
methods for fourth order problems [10, 75, 76, 87].
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87. E. Süli and I. Mozolevski. hp-version interior penalty DGFEMs for the biharmonic equation.

Comput. Methods Appl. Mech. Engrg., 196:1851–1863, 2007.
88. L. Tartar. An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, Berlin,

2007.
89. A. Toselli and O.B. Widlund. Domain Decomposition Methods - Algorithms and Theory.

Springer, New York, 2005.
90. H. Triebel. Interpolation Theory, Function Spaces, Differential Operators. North-Holland,

Amsterdam, 1978.
91. U. Trottenberg, C. Oosterlee, and A. Schüller. Multigrid. Academic Press, San Diego, 2001.
92. R. Verfürth. A posteriori error estimation and adaptive mesh-refinement techniques. In

Proceedings of the Fifth International Congress on Computational and Applied Mathematics
.Leuven, 1992/, volume 50, pages 67–83, 1994.

93. R. Verfürth. A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement
Techniques. Wiley-Teubner, Chichester, 1995.

94. G.N. Wells, K. Garikipati, and L. Molari. A discontinuous Galerkin formulation for a strain
gradient-dependent damage model. Comput. Methods Appl. Mech. Engrg., 193:3633–3645,
2004.

95. G.N. Wells, E. Kuhl, and K. Garikipati. A discontinuous Galerkin method for the Cahn-
Hilliard equation. J. Comput. Phys., 218:860–877, 2006.

96. J. Xu. Iterative methods by space decomposition and subspace correction. SIAM Review,
34:581–613, 1992.
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Introduction to Applications of Numerical
Analysis in Time Domain Computational
Electromagnetism

Qiang Chen and Peter Monk

Abstract We discuss two techniques for the solution of the time domain Maxwell
system. The first is a partial differential equation based approach using conforming
finite elements and implicit time stepping that is suitable when stiff problems are
encountered, and where the medium is inhomogeneous. In particular we analyze
the use of edge elements and certain A-stable schemes using the Fourier-Laplace
transform. For a homogeneous medium, an integral equation approach can be used
and we describe and analyze the convolution quadrature method applied to the
electric field integral equation. In either case we emphasize that the convergence
analysis depends on energy estimates for the continuous problem.

1 Introduction

Electromagnetic wave propagation underlies many technologies that are central to
modern life including, for example, cell phones, wi-fi and radar. The need to design
better antennas, assess their safety, and ensure that electromagnetic emissions do not
interfere with other devices all require the capability of simulating electromagnetic
wave propagation. Computational Electromagnetics (CEM) seeks to provide the
tools to do this and so to further the current explosion of applications.

Indeed there are so many potential applications, each with its own special
peculiarities, that it is impossible to cover all of CEM in one introductory article.
For example, depending on the time-scale of interest, one might solve the full
Maxwell system, a reduced eddy current problem, or even a static problem. Here
we shall only consider the full Maxwell system, limiting us to relatively short
time simulations. Special problems also arise in applications to wave-guides [117],
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Table 1 Fundamental variables in Maxwell’s equations. All are functions of position x 2 R
3 and

time t
E : Electric field (vector) H : Magnetic field (vector)
B: Magnetic induction (vector) D : Electric displacement (vector)
J : Current density (vector) � : Charge density (scalar)
t : Time x: Position

diffraction gratings and periodic structures [83], but we will also avoid these very
interesting and important applications here.

Non-linear problems arise in many areas, for example at high field intensity
[57], when simulating super-conduction [39], magnetic materials [26] or magneto
hydrodynamics (MHD) [27] but we will also ignore them here. Fortunately, in most
other areas, electromagnetic wave propagation is often described well by a linear
system of differential equations which will be our focus.

We shall be interested in computing solutions of Maxwell’s equations. These
relate five vector functions (the electric field E D E .x; t/ 2 R

3 etc) and one scalar
function of position x 2 R

3 and time t given in Table 1. The basic Maxwell system
is then:

PD � r� H D �J ; (1)

PB C r� E D 0; (2)

r� D D �; (3)

r� B D 0; (4)

where these equations hold in the relevant domain of the field. Here PD D
@D=@t and similarly for PB. To close the system we make several assumptions
on constitutive equations relating these quantities. At this stage we simply assume
that there are bounded piecewise smooth functions � D �.x/ (called electric
permittivity), � D �.x/ (called magnetic permeability), and � D �.x/ (called
conductivity), such that

0 < �min � �.x/ � �max < 1
0 < �min � �.x/ � �max < 1
0 � �.x/ � �max < 1

for all x. Then for a simple linear medium we assume the constitutive equations

D D �E ; B D �H and J D �E C J i (5)

where J i is the imposed current density assumed known (for example it might result
from modeling a source of radiation). Later we shall see that these coefficients
may be frequency dependent (and for metals it is possible that � is negative).
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Unless there are strong magnetic effects � can be considered constant (magnets
are one more place where our assumption of linearity breaks down). There are also
interesting cases where both � and � can be effectively negative (so called meta-
materials [93])).

A typical choice is to use the constitutive equations to eliminate D and H to
arrive at the system

� PE C �E � r���1B D �J i ; (6)

PB C r� E D 0; (7)

r� �E D � and r� B D 0: (8)

Note that, taking the divergence of (6) and using the fact that r�.r���1B/ D 0

(see for example [104]), we have

P�C r�.�E C J i / D 0; (9)

which is called “change conservation”.
It is quite possible, and even desirable, to base a numerical scheme on (6)–(8) but

we have one more step to our final system. By taking the time derivative of (6) and
using (7) we obtain the second order in time Maxwell system

� RE C � PE C r���1 r� E D � PJ i
; (10)

where RE D @2E=@t2. Equation (10) will be at the core of our time domain finite
element solver (TDFE) that will be described in detail in Sect. 3. The magnetic
induction can be reintroduced later if needed.

Another approach very often used in practice, is to formally take the Fourier

transform in time of (10). We denote by OE ; and OJ i
the Fourier transform of E ; and

J i respectively so that

OE.x; !/ D
Z 1

�1
E.x; t/ exp.i!t/ dt

where ! is the transform parameter. Now recall that OPE D �i! OE so that (10)
becomes the time-harmonic Maxwell system

!2
�
� C i�

!

�
OE � r���1 r� OE D �i! OJ i

: (11)

With suitable boundary conditions, we can solve (11), using, for example, finite
element methods [104]. However, when � D 0 (i.e. in a non-conducting medium),
we need to solve a matrix problem in which the matrix may be indefinite (and is
increasingly indefinite as ! increases). As a result it is not known how to solve the
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resulting linear system in an optimal way [63], and indeed designing a solver for
this problem is still the subject of research.

We can avoid this problem by working in the time domain. In addition, if
broadband results are needed (i.e. the solution for a wide range of !), it may be
more efficient to solve Maxwell’s equations once in the time domain rather than
solve multiple time-harmonic problems at different frequencies.

We now need to complete our discussion of Maxwell’s equations by discussing
boundary conditions and formulating the boundary value problems to be the focus
of this paper. At least at microwave and radar frequencies, metals are often modeled
as perfect conductors so that

E � n D 0 (12)

on the surface of the metal, where n is the unit normal pointing into the metal.
Another useful boundary condition that models an imperfect conductor is the
impedance boundary condition

H � n �ZET D 0 (13)

where Z > 0 is the surface impedance and E T D .n � E/ � n and the unit normal
n again points out of the domain of computation.

We will first consider an approximation to a scattering problem. Suppose D is
a bounded Lipschitz polyhedron with connected complement and boundary � and
D1 is a second bounded Lipschitz polyhedron with boundary ˙ containing � in
its interior. We solve Maxwell’s equations in the domain ˝ D D1 n D. It will be
convenient to keep the topology simple (although this is not a requirement for the
method, but makes some theoretical aspects easier to discuss) so we assume that ˙
and� (disjoint by construction) are both connected, and that˝ is simply connected.
The first problem we shall consider is to seek E D E.x; t/ that satisfies

� RE C � PE C r���1 r� E D � PJ i
(14)

in ˝ for 0 < t � T , where T is some fixed final time, subject to the boundary
conditions

.��1 r� E/ � n CZ PET D 0 on ˙; (15)

E � n D 0 on �; (16)

for 0 < t � T where (15) is obtained from the time derivative of (13) using (7) and
the constitutive relation between H and B . The initial data is

E.x; 0/ D E 0; PE.x; 0/ D E1 in ˝ (17)

where E 0 and E1 are given functions with r� �E j D 0, j D 0; 1. Usually we
choose E 0 D E 1 D 0 and in this case we shall show that (14)–(17) has a solution
provided J i is smooth enough.
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D Γ

Ω

Σ
n

D

D’
Γ n

Fig. 1 We shall use several domains for Maxwell’s equations in this paper. The first is the region˝
outside � (boundary of D) and inside˙ shown in the left panel. The unit normal on the boundary
points out of ˝. Later we will simplify the problem to computing in D (right figure), and in the
last two sections we will solve the problem simultaneously D and D0 D R

3 nD

We shall see that the impedance boundary condition and conductivity pose no
complications to time domain solvers, so in later sections, for simplicity we shall
take ˝ D D and solve (14) in ˝ subject to the boundary condition (16) and initial
conditions (17). See Fig. 1, a cartoon of these problems.

Particularly in radar or antenna applications, it is necessary to consider wave
propagation in an unbounded domain. Suppose we have a bounded object D (for
example an aircraft) illuminated by a field due to the current source J i . In the
absence of the aircraft (for this application the background parameters are � D 0;

� D �0; � D �0 where �0 and �0, the electromagnetic parameters for free space),
the source J i would give rise to a field .E i ;H i / which we assume vanishes for
t < 0 in the neighborhood of D. Then we want to find scattered field E s such that

�0 RE s C r���1
0 r� E s D 0 on D0 D R

3n ND; (18)

for 0 < t � T such that

E s � n D �E i � n on � D @D (19)

for 0 < t � T . The initial conditions are then

E s.x; 0/ D 0 PE s
.x; 0/ D 0 in D0: (20)

We shall show that (18)–(20) can be solved using time domain boundary integral
equations (TDBIE) that only involve calculations on � .

Scattering problems can also be approximated using the solution E of (14)–
(17) by selecting ˙ to be sufficiently far from � and by selecting Z D p

�0=�0,
the impedance of free space. In this case (15) is a crude absorbing boundary
condition, and the approximation improves as ˙ moves further from � . Better
absorbing boundary conditions can be used to replace (13), and there has been a
great deal of work in this area. However, this is beyond the scope of this paper.
We direct the reader to the classical paper of Engquist and Majda [59] and to the
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recent work of Hagstrom, Warbuton and Givoli [76] for more details. Alternatively,
the electromagnetic parameters � , � and � can be chosen in a special frequency
dependent and anisotropic manner to give a special layer that absorbs waves and
again allows for a good approximation if the layer is well designed and sufficiently
far from D (the main method for this is the Perfectly Matched Layer or PML
[25, 41, 104]).

The principal partial differential equation based algorithm for solving (14)–(17)
is the finite difference time domain (FDTD) method of [132]. This uses a staggered
finite difference grid in space and leap-frog time-stepping. It has been enormously
elaborated and tested over the years and is very popular in electrical engineering
(see for example the book of Taflove [121]). There are numerous commercial codes
that use this method as the underlying solver [130]. It is a difficult method to beat,
but it suffers from two general deficiencies: 1) it is most accurate when used with a
rectilinear grid, but this complicates fitting curved boundaries, 2) it is usually second
order accurate in the time and space step.

At first sight, the finite element method offers a simple way around the two
drawbacks of FDTD mentioned above. The use of tetrahedral or mapped hexahedral
elements allows for much greater flexibility in geometry modeling, and higher order
finite element methods are easy to construct. But as we shall see, the Finite Element
Time Domain (FETD) approach has a significant drawback particularly when
applied to wave propagation in simple media: a matrix equation must be solved at
each step. This is sometimes seen as undesirable for two reasons: 1) the time taken
to solve a linear system at every timestep will increase solution time compared to a
simple explicit method, 2) the solution of a hyperbolic problem should only depend
on data within the light cone, but solving a matrix at each timestep couples all the
unknowns at each timestep and hence could allow superluminal signal propagation.

The first objection is certainly a strong incentive to modify the method or seek a
new method. We shall give examples of two approaches to solving this problem
in the paper, but in some cases it maybe that an explicit timestepping scheme
imposes such a small timestep that it becomes too expensive to make progress. In
this case a fully implicit method may be a reasonable choice, and it is the one we
shall emphasize here. Furthermore, even with an implicit scheme we cannot take
arbitrarily large timesteps otherwise dispersion error will build up [2].

The second objection to FETD (concerning the light cone) is also very reasonable
on physical grounds, but if we can obtain a robust and accurate method, the
computed solution may still be sufficiently accurate to be of use even if the light
cone property is not exactly respected.

The use of FETD methods based on conforming finite elements has a long
history. Early work used standard continuous piecewise linear elements, but it soon
became apparent that special care is needed with these elements in order to produce
a robust method because of the possibility of exciting spurious modes in the solution
[13, 14, 44]. An alternative is to use the edge elements of Nédélec [106, 107] that
can control spurious modes as well as result in a discretization that respects charge
conservation. These elements are used by several groups in electrical engineering
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[90,91,112,113] and are also advocated in the recent review [42] that complements
this paper.

The plan of this paper is as follows. In the Sect. 2 we relate the Maxwell
system to the wave equation to point out that all the difficulties encountered in
approximating the wave equation are also encountered when solving Maxwell’s
equations. Furthermore lessons learned about the wave equation have immediate
consequences for Maxwell’s equations. In Sect. 3 we describe how conforming
finite elements can be used to discretize Maxwell’s equations in space and derive
semi-discrete error estimates via an energy argument. We also derive fully discrete
error estimates using the Fourier-Laplace transform. We briefly describe mass-
lumping, discontinuous Galerkin (DG) methods and frequency dependent media
(where implicit methods are often used). In Sects. 4 and 5 we show a different
approach to approximating Maxwell’s equations in a homogeneous medium using
time domain boundary integral equations. We start with some rather standard
background material in Sect. 4 and then, in Sect. 5 and again using the Fourier-
Laplace transform, we sketch how to derive error estimates for a non-standard
approach to timestepping the boundary integral equations. We try to draw some
conclusions and make some comments in Sect. 6.

Concerning notation, we use k � k to denote the Euclidean norm of a vector, and
k � kY to denote the Y -norm of a function. We do not use boldface to distinguish
between scalar and vector quantities - this should be clear from the context. We use
a generic constant C that may be everywhere different.

Although the FETD and TDBIE schemes in this paper are somewhat outside
mainstream research, many of the techniques used are quite standard and so
we hope this paper will be useful to all students interested in computational
electromagnetism. Out of a desire for simplicity of exposition, we have also not
been thorough in stating the function spaces needed for some of the results. We
hope that a mathematical audience will not find this too upsetting. Throughout we
have tried to give pointers to the main papers and techniques in the area.

Finally, no introductory paper can do justice to all of the many methods and
analytical studies of computational wave propagation. We have tried to reference
some of this vast literature (mainly from the mathematical point of view), but
undoubtedly have left out a large number of excellent and relevant contributions.
For this we apologize.

2 The Wave Equation in One Space Dimension

We can learn a good deal about solving the time domain Maxwell system by
studying the wave equation. To see why the wave equation is relevant, let � D �0,
� D �0, � D 0 in (14)–(17) and suppose J i D 0 (this choice of coefficients
describes electromagnetic wave propagation in a vacuum or air). We also assume
that the initial data satisfies r� �0E j D 0, j D 0; 1, then taking the divergence
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of (14) we see that r� � RE D 0 so r� �E D 0 for all t . Since � D �0 is constant,
r� E D 0 for all t . Then using the identity

r� r� E D ��E C r r� E (21)

we see that (14) may be written as

�0�0 RE D �E :

Thus, in free space each component of the electric field satisfies the scalar wave
equation.

Now, to further simplify the problem, suppose that E D .u.x1; t/; 0; 0/T where
x1 is the first component of x. Dropping the subscript 1, we then obtain the second
order wave equation

1

c2
Ru D uxx (22)

where c D .�0�0/
�1=2. The Cauchy problem of solving (22) for x 2 R and 0 < t �

T when
u.x; 0/ D f .x/; Pu.x; 0/ D 0 for all x 2 R

for some given f 2 C1
0 .R/ has the well-known solution

u.x; t/ D 1

2
.f .x C ct/C f .x � ct// (23)

as can be checked by direct substitution. It is clear from (23) that u consists of left
and right going solutions that move with wave speed c (in this case c denotes the
speed of light), and so there is finite speed of propagation (also true for Maxwell’s
equations with frequency independent coefficients, see e.g. [87]).

Boundary conditions complicate the picture a little since waves can be reflected
and absorbed there. Let us consider the problem of approximating the boundary
value problem of finding u.x; t/ such that

1

c2
Ru D uxx for x 2 .0; 1/; 0 < t � T (24)

subject to the boundary condition (corresponding to (12))

u.0; t/ D u.1; t/ D 0; 0 � t < T; (25)

and initial conditions

u.x; 0/ D f .x/; Pu.x; 0/ D 0; x 2 .0; 1/: (26)
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The analysis of numerical methods for linear hyperbolic problems usually rests,
more or less explicitly, on a discrete energy inequality motivated by an energy
inequality for the wave equation. The standard way to derive such an inequality for
the second order wave equation is to multiply (24) by Pu and integrate over x 2 .0; 1/
to obtain Z 1

0

�
1

c2
RuPu � uxx Pu

�
dx D 0:

Integrating the spatial derivative term by parts and using the boundary conditions
we get Z 1

0

�
1

c2
RuPu C ux Pux

�
dx D 0:

or
1

2

d

dt

Z 1

0

�
1

c2
jPuj2 C juxj2

�
dx D 0:

This gives the standard conservation of energy result for the wave equation:

Z 1

0

�
1

c2
jPu.x; t/j2 C jux.x; t/j2

�
dx D

Z 1

0

�
1

c2
jPu.x; 0/j2 C jux.x; 0/j2

�
dx:

We shall shortly see how a discrete version of this equality (allowing also for a non-
homogeneous source term) can be used to derive stability and error estimates for a
particular discretization of the wave equation. In the discrete case the integral will
be replaced by a weighted sum and the time derivative by a suitable finite difference
in time.

2.1 The Finite Difference Method

We should perhaps immediately introduce a finite element method in space to
discretize the wave equation, but for the purposes of this introductory material it
is easier to consider a finite difference method. Here a standard finite difference
approach to this problem (this is also a “mass-lumped” finite element method [47])
is to use a uniform mesh

˚
xj
�J
jD0 ; xj D jh; 0 < j � J , where the step size

h D 1=J . We start by discretizing only in space by seeking uj .t/ that we hope will
approximate u.xj ; t/, for each j . Obviously u0.t/ D uJ .t/ D 0 from the boundary
conditions (25). Using centered differences in space we obtain the semi-discrete
problem of finding fuj .t/gJjD0, such that

1

c2
Ruj D ujC1 � 2uj C uj�1

h2
; 1 � j � J � 1; 0 < t � T; (27)

with
u0.t/ D uJ .t/ D 0; 0 � t � T; (28)
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and

uj .0/ D f .xj /; 1 � j � J � 1I Puj .0/ D 0; 1 � j � J � 1: (29)

In principle one could now try any time-stepping scheme for systems of ordinary
differential equations on (27)–(29), but the standard choice for this problem is the
leap-frog scheme. We use a uniform grid in time and select a time-step �t > 0.
Then we seek unj ' u.xj ; tn/ where tn D n�t , for 1 � j � J and 0 � n � T=�t

such that
1

c2

 
unC1
j � 2unj C un�1

j

�t2

!
D unjC1 � 2unj C unj�1

h2
(30)

for 1 � j � J � 1, n � 0 and where u�1
j D u1j (implementing the condition

Pu.x; 0/ D 0).
These equations have some nice features: they are centered in space and time so

the local truncation error is O.�t2 Ch2/ (to see this, simply plug the exact solution
into (30) and use Taylor’s series about x D xj and t D tn). In addition, if funj gJjD0
and fun�1

j gJjD0 are known, we can solve (30) explicitly for each j to find funC1
j gJjD0:

unC1
j D 2unj � un�1

j C �t2c2

h2

�
unjC1 � 2unj C unj�1

�
:

No equations have to be solved so the method is said to be explicit.
We now proceed to investigate the convergence of this scheme. Let wnj D unj �

u.xj ; tn/. The errors
n
wnj

oJ
jD0 satisfy a system like (30) but with inhomogeneous

right hand side arising from the local truncation error. In particular, if we define
wnC1 D .wnC1

1 ;wnC1
2 ; : : : ;wnC1

J�1/T 2 R
J�1 and similarly for other discrete

quantities we can readily see that wnC1; wn and wn�1 are related by

1

c2
.wnC1 � 2wn C wn�1/

�t2
D � 1

h2
Awn C rn; n � 0 (31)

where w0 D 0 (we can assume we interpolate exactly the initial data) and jrnj j D
O.�t2 C h2/ for each j and n. The matrix A is the .J � 1/ � .J � 1/ symmetric
tridiagonal array corresponding to centered finite differences

A D

0
BBBBBB@

2 �1 0 � � � 0

�1 2 �1 � � � 0

0
: : : �1

:::
: : :

:::

0 �1 2

1
CCCCCCA
:
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To obtain an energy estimate we need to multiply (31) by the discrete analogue
of Pw and integrate over space. We do this by multiplying (31) by .wnC1 � wn�1/T
to obtain

1

c2

�kwnC1 � wnk2
�t2

� kwn � wn�1k2
�t2

�
D � 1

h2
wnC1T Awn C 1

h2
wnT Awn�1

C .wnC1 � wn�1/T rn; (32)

where kyk D p
yT y and where we have used the fact that A is symmetric. Adding

this equality over n and noting the telescoping sum we have

1

c2

�kwnC1 � wnk2
�t2

� kw1 � w0k2
�t2

�
D � 1

h2
wnC1T Awn C 1

h2
w1T Aw0 (33)

C
nX

mD1

	
.wmC1�wm/C .wm�wm�1/


T
rm:

This is the discrete analogue of conservation of energy.
Each term on the right hand side of (33) must now be estimated starting with

wnC1T Awn which we write as wnC1T Awn D .wnC1 � wn/T Awn C wnTAwn to
obtain:

h
kwnC1 � wnk2

c2�t2
C wnT Awn

h
C .wnC1 � wn/T Awn

h
(34)

D h
kw1 � w0k2
c2�t2

C w1T Aw0

h

Ch
nX

mD1
Œ.wmC1 � wm/C .wm � wm�1/	T rm:

where the factor h has been multiplied through since h1=2kwnC1 � wnk is the
discrete analogue of the L2.0; 1/ norm. Using the Cauchy-Schwarz inequality
jx � yj � kxk kyk; and arithmetic geometric mean inequality

kxk kyk � 1

2˛
kxk2 C ˛

2
kyk2

for any ˛ > 0 we obtain

j.wnC1 � wn/T Awnj � kwnC1 � wnk kAwnk

� h2

2˛

kwnC1 � wnk2
c2�t2

C ˛

2

c2�t2

h2
kAwnk2:
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Noting that A is positive semi-definite and has spectral radius less than 4 (by
Gerschgorin’s Theorem), we have kAwnk2 � 4wnT Awn: Thus, (34) becomes

�
1 � 1

2˛

�
h

kwnC1 � wnk2
c2�t2

C
�
1 � 2˛�t

2c2

h2

�
wnTAwn

h

D h
kw1 � w0k2
c2�t2

C w1T Aw0

h
C h

nX
mD1

Œ.wmC1 � wm/C .wm � wm�1/	T rm:

We can make the coefficients on the left hand side positive if we choose ˛ such that

1 � 1

2˛
> 0; 1 � 2˛�t

2

h2
c2 > 0

so

c2
�t2

h2
<

1

2˛
< 1:

In particular, for stability (at least by this argument) we need to choose �t and h to
satisfy a “Courant-Friedrichs-Lewy” or CFL condition

�t < h=c:

When using explicit time stepping, we expect some condition restricting the time
step in terms of the space step size. The only way to avoid a CFL condition is to use
an implicit method in time. We shall see that a different analysis suggests that the
best choice is actually �t D h=c in one dimension. If �t > h=c we will generally
see instability.

Continuing with our analysis, we can assume that w0 D 0 (i.e. we interpolate
the initial data exactly) and let us assume that ˛; h;�t are chosen so that there is a
constant ˇ > 0 with

1 � 1

2˛
> ˇ 1 � 2˛

�t2

h2
c2 > ˇ

then our energy estimate becomes

ˇ

 
hkwnC1 � wnk2

c2�t2
C wnT Awn

h

!

D h

c2
kw1k2
�t2

C h

nX
mD1

Œ.wmC1 � wm/C .wm � wm�1/	T � rm (35)

Now we need to perform a discrete Gronwall type argument to obtain our first
estimate. This argument is adapted to hyperbolic problems in order to obtain
polynomial growth of the constants appearing in the estimates as functions of T .
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Suppose T > 0 is the final time of the calculation and let N D T=�t . Denote by
n� the timestep at which

E � WD h1=2
kwn�C1 � wn�k

c�t
C
s

wn�T
Awn�

h

D max
0�n�N

2
4h1=2kwnC1 � wnk

c�t
C
s

wnT Awn

h

3
5 :

Then (35) may be written, choosing n D n�, as

1

2
ˇE �2 � hkw1k2

c2�t2
C h

n�X
mD1

.kwmC1 � wmk C kwm � wm�1k/krmk

� hkw1k2
c2�t2

C 2E �c�t
n�X
mD1

h1=2krmk:

Using the arithmetic geometric mean inequality there is a constant C > 0 such
that

E �2 � C

0
B@hkw1k2
c2�t2

C
0
@c�t n�X

mD1
h1=2krmk

1
A
2
1
CA :

However, rm is the vector of local truncation errors and so jrmj j D O.�t2 C h2/

for each j andm. Since there are O.1=h/ spatial points, h1=2krmk D O.�t2 C h2/

and assuming
p
hkw1k2
c�t

D O.h2C�t2/ (i.e. the first step is sufficiently accurate) we
have proved that

max
0�n�N h

1=2 kwnC1 � wnk
c�t

C
r
.wn/T Awn

h
� CT .�t2 C h2/: (36)

To obtain an estimate for wn itself we can either use the term .wn/T Awn=h

and a discrete Poincaré inequality or we can obtain a slightly less attractive bound
(because of the presence of an extra factor T ) in the following way. Note that wn DPn�1

mD0.wmC1 � wm/C w0 so using the triangle inequality and (36)

h1=2kwnk � c�t

n�1X
mD0

h1=2
kwnC1 � wmk

c�t

D c�t.n � 1/CT .�t2 C h2/

D c tnT .�t
2 C h2/:
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We have proved the following theorem:

Theorem 1. If the CFL condition �t < h=c is satisfied and if u1 is computed
sufficiently accurately, the error wnj D unj � u.xj ; tn/ satisfies

max
0�n�N h

1=2kwnk D O.�t2 C h2/

and this error bound increases quadratically with the final time T where T D N�t .

Remark 1. Using the fact thatA corresponds to second order spatial differences and
A D LLT where L is a matrix corresponding to first order differences, we could
use (36) to show that

h1=2
kLT wnk

h
D O.�t2 C h2/

with a constant growing linearity with T . This corresponds to an H1 error estimate
in finite element theory. A discrete Poincaré inequality then shows that kwnk �
CkLTwnk=h and so we can estimate kwnk with the same order as in our theorem
but a better T dependence.

This rather labored and trivial example illustrates a few points:

1. Error analysis follows from a local truncation or consistency analysis followed
by an energy argument which, for a linear problem, implies stability.

2. Explicit methods require a CFL condition that limits the time step in terms of the
spatial stepsize and wave speed.

3. The error grows polynomially with the final time T .

2.2 Dispersion Analysis

The analysis of the previous section shows we get optimal order of convergence but
that the error increases with the duration T of the simulation. So we need to refine
the spatial and temporal mesh if we increase T to ensure a fixed global error. We can
see this more clearly by considering the pure Cauchy problem (22). Using a Fourier
decomposition of the initial data, the solution can be decomposed into plane wave
components each having the following form

u D exp.i.kx � !t// (37)

where k and ! are related by the “dispersion relation”

! D ˙ck

relating the spatial wave number k and temporal wave number ! (also the Fourier
transform variable mentioned in the introduction). The group velocity is then



Introduction to Applications of Numerical Analysis 163

cg D j!j
jkj D c;

and is independent of frequency (for a plane wave the temporal frequency is f D
!=2
 , the spatial wave length is 2
=k).

Now let us consider the discrete problem (30) where now �1 < j < 1. We
can seek discrete plane wave solutions

unj D exp
�
i.kxj � !h;�t tn/

�
:

Substituting into (30) and dividing by unj we obtain

1

c2�t2
.exp.�i!h;�t�t/ � 2C exp.i!h;�t�t//

D 1

h2
.exp.ik h/ � 2C exp.�ik h//

or

sin2
�

wh;�t�t

2

�
D c2�t2

h2
sin2

�
k h

2

�
:

To avoid exponentially growing solutions we need c2�t2=h2 � 1 so the CFL
condition arises naturally (and now equality is allowed). Assuming that the CFL
condition is satisfied

!h;�t D ˙ 2

�t
sin�1

�
c�t

h
sin

�
kh

2

��

gives the “discrete dispersion relation”, and the discrete phase velocity

ch;�t D
ˇ̌̌
ˇ!h;�tk

ˇ̌̌
ˇ

is no longer independent of k. Different Fourier components travel at different
speeds. For h and �t small, Taylor series show that

!h;�t D ˙
�
ck � ck3

24
.h2 � c2�t2/C : : :

�
:

This reveals the unexpected fact that the first term in the error series vanishes if
�t D h=c. So the error is least (actually zero in this 1D example!) at the maximum
timestep. This is an artifact of the 1D wave equation, and in higher dimension we
cannot obtain perfect solutions. But even in 2 or 3 dimensions, for finite difference
methods with a well chosen time-stepping strategy, the maximum allowable time-
step is often best (in particular this is true for the FDTD scheme for Maxwell’s
equations).
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If c�t=h < 1 then generally wh;�t ¤ ˙ck. For small h and �t , the numerical
phase velocity is less than the true phase velocity and higher frequencies (large k)
have a phase velocity that is more in error. This causes numerical dispersion of the
wave. Since there is a velocity error, the solution error will grow with time as we
have seen from the error estimates.

For a fixed order method, numerical dispersion cannot be avoided in higher
dimensions [16]. However, the phase errors can be decreased by using higher order
methods. Ultimately (at large enough T ) phase error will accumulate sufficiently to
ruin the numerical solution. Given a desired final time and frequency content of the
solution, we have to choose the order of the method, space and time steps to give
acceptable error up to the final time T .

To illustrate these observations, let us now look at some numerical results. We
solve (30) with initial data f .x/ D exp.�80.x � 1=2/2/ and wave speed c D 1. To
illustrate dispersion error we need to avoid a perfect solution so we choose �t D
1=30 and h D 1=26. For small times the solution splits into left and right going
pulses as in (23). These then reflect from the ends of the interval. After one time
unit the reflected solution should coalesce to agree with the negative of the original
initial data, while after two time units it should agree precisely with the initial data.
Comparing initial data and the solution at t D 0:2; 2; 4 and 6 gives a way to visualize
phase error effects on the solution (Fig. 2).

In Fig. 3 we show the phase velocity for two choices of the CFL parameter. To
allow for a clearer interpretation we recall that for wave number k the wavelength
is 2
=k and hence the number of grid points per wavelength is G D 2
=kh. For a
fixed CFL parameter ˛ we set �t D ˛h and then plot the error in the phase velocity
1� !h;�t =k. For a small number of grid points per wavelength (around 3) the error
is very large, decreasing as G increases.

There remains the problem of how to choose the spatial discretization for a wave
calculation. There is no hard and fast rule, but it is necessary to consider the data
for the problem. By using a Fourier transform it may be possible to find the range
of important frequencies in the data, and then decide on the largest frequency that
needs to be accurately modeled. This translates into a wavelength in each part of the
domain (assuming piecewise constant coefficients) and in each part of the domain
we need to have “sufficiently many grid points per wavelength”. For low order
schemes a “rule of thumb” is that we need roughly 10 grid points per wavelength
to represent the wave (for conforming finite element methods, Ainsworth [5] shows
that even if very high order methods are used, at least 
 grid points per wavelength
are needed). But as we have seen, phase error accumulates as the simulation
proceeds, so the actual mesh density is dependent on the accuracy required at the
final time. Higher order methods have greatly improved phase error (see for example
[4, 5, 7, 47]) and for that reason should be considered. There is a well developed
theory of variable order methods for the finite element approximation of the time-
harmonic problem suggesting how the mesh parameter h and order of the finite
element approximation need to be chosen in that case [101] but this needs to be
extended to the time domain. Isogeometric elements have also been considered [38]
and may well prove to be a very attractive method due to their superior spectral
properties.
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Fig. 2 In each panel we show the solution at a particular time (solid line) and the initial data
(dashed line) for the discrete problem described in the text. In the top left panel t D :2 and the
single bell curve at t D 0 has split into a left going and right going part with half the amplitude.
In the top right panel t D 2 and the initial solution and final solution show close agreement as
expected. By t D 4, shown in the bottom left panel, the effect of dispersion is building and ripples
show in the solution. This error grows with time as can be seen in the bottom right panel at t D 6

3 Time Dependent Finite Element Method

We are now going to develop and analyze two partial differential equation based
approaches to solving the problem of finding the electric field E D E.x; t/ 2 R

3

that satisfies the second order Maxwell system discussed in the introduction:

� RE C � PE C r���1 r� E D F in ˝ for 0 < t � T; (38)

for some final time T where F is a given source function .F D � PJ i
/, subject to

the boundary conditions

E � n D 0 on �; 0 < t � T; (39)

.��1 r� E/ � n CZ PET D 0 on ˙; 0 < t � T: (40)
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Fig. 3 Phase error 1 � !h;�t =k against number of grid points per wavelength G for two values
of the CFL parameter ˛. This one dimensional example is unusual in that ˛ D 1 corresponds to a
perfect method, but when phase error is present and depending on the duration of the simulation
the number of grid points per wavelength needs to be chosen to obtain acceptable accuracy for the
highest wave number needed in a simulation. The vertical line marks 10 grid points per wavelength,
usually considered the minimum needed for a low order method like the one we have described in
this section

We shall assume the homogeneous initial conditions

E.x; 0/ D PE.x; 0/ D 0 for x 2 ˝: (41)

Proceeding formally we can obtain a weak form suitable for discretization (and
analysis!) by multiplying (38) by a smooth test vector � 2 �

C1.R3/
�3

and
integrating over ˝ , then using the identity that for u; � 2 H.curlI˝/ (see for
example [104])

Z
˝

r� u � � dV D
Z
@˝

n � u � �T dAC
Z
˝

u � r� � dV

where n is the unit outward normal to ˝ and �T D .n � �/ � n. We obtain

.� RE ; �/ C .� PE ; �/C .��1 r� E ;r� �/

�
Z
@˝

.��1 r�E/ � n � �T dA D .F ; �/ (42)

where .u; v/ D R
˝ u � v dV . On˙ we can use (40) but on � we need to enforce the

essential boundary condition (39). So we need to assume � 2 C1
0 .R

3n ND/ implying
that � � n D 0 on � . Then (42) becomes

.� RE ; �/ C .� PE ; �/C .��1 r� E ;r� �/CZh PET ; �T i D .F ; �/

for all � 2 C1
0 .R

3n ND/, where hu; �i D R
˙ u � � dA.
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We are thus lead to consider the energy space

H.curl I˝/ D ˚
u 2 L2.˝/ j r� u 2 L2.˝/� :

However, to take care of boundary conditions we actually need a nonstandard
subspace of this space:

X D ˚
u 2 H.curlI˝/ j n � u D 0 on �; uT 2 L2.˙/� :

We thus seek a suitably smooth in time solution E.t/ 2 X such that

.� RE ; �/C .� PE ; �/ C .��1 r� E ;r� �/C hZ PET ; �T i D .F ; �/ (43)

for all � 2 X and 0 < t � T , subject to the initial conditions (41).

3.1 Energy Estimates and Existence Theory

Assuming a suitable solution exists, let us look at some energy equalities for the
variational problem (43). As we saw in the last section, a good choice of test
functions is � D PE but here we show how to derive more estimates by taking
the more general choice � D PE exp.��t/ for some � � 0 (we are indebted to
Noel Walkington for pointing out this choice of test function to us). Using this test
function and noticing that

1

2

d

dt
.� PE ; e��t PE/ D .� RE ; e��t PE/� �

2
.� PE ; e��t PE/

with a similar equality for the curl term, we obtain

1

2

d

dt

h
.� PE ; e��t PE/C .��1 r� E ; e��t r� E/

i
C �

2
.� PE ; e��t PE /

C�

2
.r� E ;r� Ee��t /C .� PE ; e��t PE/CZh PET ; e��t PET i D .F ; e��t PE/:

Using the notation kuk2
L2� .˝/

D R
˝
�u � u dV , and similarly for kukL2� .˝/ and other

weighted norms, we get, by integration in time,

e��t

2

�
k PE.t/k2

L2� .˝/
C k r� E.t/k2

L2
��1 .˝/

�

C
Z t

0

e���
�
�

2
k PE.�/k2

L2� .˝/
C k PE.�/k2

L2� .˝/
C �

2
k r� E .�/k2

L2
��1 .˝/

�
d�

C
Z t

0

e���k PET .�/k2L2Z.˙/d� D
Z t

0

.F ; e��� PE /d�; (44)
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where we have used the initial data (41). This equality can now be used to provide
bounds on PE and r� E in various norms. For example choosing � D 0 and using
a Gronwall type argument as in the previous section we get

max
0�t�T

�
k PE .t/kL2� .˝/ C k r� E.t/kL2

��1 .˝/

�
� C

Z T

0

kF .�/kL2
��1

.˝/d�;

where C is independent of T , E and F . Alternatively, from (44) and using the
arithmetic geometric mean inequality

�

2

Z t

0

e���
�
k PE.�/k2

L2� .˝/
C k r� E.�/k2

L2
��1 .˝/

�
d� �

Z t

0

.F ; e��� PE/d�;

�
Z t

0

e���
�
1

�
kF k2L��1 .˝/ C �

4
k PEk2

L2�.˝/

�
d�:

Choosing � D 1=T gives,

Z T

0

�
k PE .�/k2

L2� .˝/
C k r� E.�/k2

L2
��1 .˝/

�
d� � CT 2

Z T

0

kF .�/k2
L2
��1

.˝/
d�:

Motivated by the exponentially weighted energy estimates, and to provide error
estimates for a general class of time stepping methods, we shall present an analysis
based on the Fourier-Laplace transform used by [48] for error estimates for the
semi-discrete wave equation (see also [19]). In doing so, we shall make critical use
of some time stepping estimates of Lubich [96].

Let OE denote the Fourier-Laplace transform of E defined by

OE.x; s/ D
Z 1

0

E .x; t/e�st dt

where s D ' C i!, '; ! 2 R, and ' � '0 for some fixed '0 > 0. Recalling that E

satisfies (43) and that OPE D s OE , we see that OE 2 X , the Fourier-Laplace transform
of E , satisfies

s2.� OE ; �/ C s.� OE ; �/C .��1 r� OE ;r� �/C shZ OET ; �T i D . OF ; �/ (45)

for all � 2 X . This is the Fourier-Laplace analogue of equation (11). It will prove
convenient to use the s weighted norm on X given by

kuk2X;s D ksuk2
L2� .˝/

C k r� uk2
L2
��1 .˝/

C ksuk2
L2� .˝/

C ksuT k2
L2Z.˙/

which has an obvious counterpart in our energy estimates, see (44).
It is now easy to prove that (45) has a solution. Let us define the sesquilinear

form a W X �X ! C by
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a. OE ; �/ D s2.� OE ; �/C s.� OE ; �/C .��1 r� OE ;r� �/C hsZ OET ; �T i (46)

for any OE 2 X and � 2 X , so that the solution OE 2 X of (45) satisfies

a. OE ; �/ D . OF ; �/ 8� 2 X:

The sesquilinear form is coercive, since choosing � D s OE (corresponding to the
exponentially weighted time derivative test function in the energy estimates) we
have:

a. OE ; s OE/ D jsj2s.� OE ; OE /C jsj2.� OE ; OE/C s.��1 r� OE ;r� OE/
Cjsj2hZ OET ; OET i: (47)

Recalling that s D ' C i!, we have

<.a. OE ; s OE// D '

�
ks OEk2

L2� .˝/
C k r� OEk2

L2
��1 .˝/

�
C ks OEk2

L2� .˝/
C ks OET k2

L2Z.˙/

� min.'; 1/ k OEk2X;s � min.'0; 1/ k OEk2X;s : (48)

In the application in this section we can assume 0 < '0 � 1. In some places, a
useful choice is '0 D O.1=T / which can be made small for large T .

The sesquilinear form a.�; �/ is also continuous since

ja. OE ; �/j � ks OEkL2� .˝/ks�kL2� .˝/ C 1

jsj ks
OEkL2� .˝/ks�kL2� .˝/

Ck r� OEkL2
��1 .˝/

k r� �kL2
��1 .˝/

C 1

jsj ks
OET kL2Z.˙/ks�T kL2Z.˙/

� max.1; 1='0/k OEkX;sk�kX;s:

Now using the Lax-Milgram Lemma (see for example [104]) we see that (45) has a
solution and

'0k OEk2X;s � ja. OE ; s OE /j D j.��1=2 OF ; s�1=2 OE /j � k OF kL2
��1

.˝/k OEkX;s;

and so we have, again assuming '0 � 1,

Theorem 2. For any OF 2 L2.˝/, (45) has a unique solution OE 2 X such that

k OEkX;s � 1

'0
k OF kL2

��1
.˝/:
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Remark 2. Note that 'k OEkL2� .˝/ � k OEkX;s . So the estimate of this theorem can be

used to bound the L2� norm of OE .

Now we can transform back to the time domain to obtain a solution of the time
Maxwell system. To do this we use Parseval’s Theorem. This is not valid for the
Laplace transform, but, following [19] and using the fact that s D ' C i! for
fixed ' and noting that Og.s/ is the standard Fourier transform of exp.�'t/g.t/ 2
L2.�1;1/ where g.t/ D 0 for t < 0, then

Z
'CiR

j Og.s/j2ds D
Z 1

0

e�2't jg.t/j2dt: (49)

For a Hilbert space Y let

L2.R; Y / D


f W R ! Y j

Z 1

�1
kf .t/k2Y dt < 1

�
;

then define (see e.g. [19] for more details),

Hp
' .RC; Y / D ˚

f W R ! Y j exp.�'t/@`f=@t` 2 L2.R; Y /; 0 � ` � p;

f D 0 for t < 0
�
:

Using the estimate in Theorem 2 and (49) gives a weak solution E of the time
domain problem. In particular if F 2 Hq

' .RC; L2��1 .˝// then E is such that

E2HqC1
'0

.RC; L2�.˝//; r� E 2 Hq
'0
.RC; L2��1 .˝//; ET2HqC1

'0
.RC; L2Z.˙//:

For our variational problem to make sense we need that RE .t/ and F .t/ to be well
defined for each t . It suffices that q D 2 so that E 2 H3

'0
.RC; L2�.˝// so that

RE 2 C 0.RC; L2�.˝//. For more details on the Fourier-Laplace approach to the wave
equation and Maxwell’s equations see [17, 19, 73, 96, 122]. An alternative approach
to existence theory is to use semigroup theory which is beyond the scope of this
introductory text [23, 135].

We have not implemented an explicit approximation to the divergence (this can
be done via Lagrange multipliers, see [23]). But it turns out that (43) automatically
gives control of the divergence. Recall our assumption that ˝ is simply connected
and ˙ and � are disjoint closed surfaces and each is individually connected (more
complex topology can be handled by more elaborate choices of the upcoming space
S [11]). Then define the electrostatic potentials by

S D ˚
p 2 H1.˝/ jp D 0 on �; p D c; constant on ˙

�
; (50)

so that rS � X and moreover if r� u D 0 then u D rp for some p 2 S (see [9])
so that ker (curl) D r S . We thus have a small part of the de Rham diagram
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S
r�����! X: (51)

Choosing � D r
; 
 2 S; in (43) shows that

.� RE ;r 
/C .� PE ;r 
/ D .F ;r 
/ for all 
 2 S: (52)

Integrating by parts (or interpreting this formula using distributional derivatives) we

have, recalling that F D � PJ i
,

r �.� RE/C r �.� PE C PJ i
/ D 0

which is the time derivative of the standard expression for charge conservation
(see (9)). Thus, our variational formula enforces energy and charge conservation.

3.2 Semi-Discrete Problem

We obtain a semi-discrete approximation scheme by discretizing in space using a
family of finite dimensional subspaces Xh � X parameterized by h > 0. We will
give concrete examples ofXh shortly, but we can proceed by seeking Eh D E h.t/ 2
Xh that satisfies

.� RE h; �h/ C .� PE h; �/C .��1 r �Eh;r ��h/
C hZ PEh;T ; �h;T i D .F ; �h/ 8�h 2 Xh; (53)

subject to the initial conditions (41). This is a system of second order linear ordinary
differential equations and so has a solution. Since the method is conforming and
semi-discrete, the energy analysis still holds. But discrete charge conservation can
only be realized if we have a sufficiently large subspace Sh � S such that r Sh �
Xh and this is one reason for our upcoming choice of edge finite elements.

We can now use an energy analysis to provide error estimates for the semi-
discrete scheme. For any �h D �h.t/ 2 Xh sufficiently smooth in time, let
eh D �h � Eh then

.� Reh; Peh/ C .� Peh; Peh/C .��1 r� eh;r� Peh/C hZ Peh;T ; Peh;T i D
.�. R�h � RE/; Peh/ C .�. P�h � PE/; Peh/C .��1 r�.�h � E/;r� Peh/

C hZ. P�h � PE/T ; Peh;T i

where we have used the fact that Eh and E both satisfy (53) when we choose the
test function � D �h D Peh 2 Xh. This equality may then be rewritten as
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1

2

d

dt

�
kPehk2L2� .˝/ C k r� ehk2L2

��1 .˝/

�
C kPehk2L2

�.˝/

C kPeh;T k2
L2Z.˙/

D .�. R�h � RE/; Peh/C .�. P�h � PE/; Peh/C .��1 r�.�h � E/;r� Peh/
ChZ. P�h � PE/T ; Peh;T i:

Integrating in time and using the Cauchy-Schwarz inequality, together with the
fact that we can choose �h.0/ D Eh.0/ D 0 and P�h.0/ D PEh.0/ D 0 we have (also
integrating also the curl term by parts on the right hand side)

1

2

�
kPeh.t/k2L2�.˝/ C k r� eh.t/k2L2

��1.˝/

�
C
Z t

0

�
kPehk2L2�.˝/ C kPeh;T k2

L2Z.˙/

�
d�

�
Z t

0

n
kR�h � REkL2� .˝/kPehkL2� .˝/ C k r�. P�h � PE/kL2

��1 .˝/
k r� ehkL2

��1 .˝/

C kP�h � PEkL2� .˝/kPehkL2� .˝/ C k. P�h � PE/T kL2Z.˙/kPeh;T kL2Z.˙/
o
d�

Ck r�.�h �E/.t/kL2
��1 .˝/

k r� eh.t/kL2
��1 .˝/

:

Note that if we could choose the function �h such that .��1 r�.�h�E /;r� �h/ D
0 for all �h 2 Xh, then we could avoid the integration by parts step, avoid the curl
terms on the right hand side of this inequality, and hence improve the final error
estimate. This is possible if we use the edge elements that we shall describe shortly.

Let

.E .eh//
2 D 1

2

�
kPeh.t/k2L2� .˝/ C k r� eh.t/k2L2

��1 .˝/

�

C
Z t

0

�
kPeh.�/k2L2� .˝/ C kPeh;T .�/k2L2Z.˙/

�
d�: (54)

We now apply a Gronwall type argument as before to derive the error estimate

max
0�t�T E .�h � Eh/.t/ � CR.�h � E/

for some constant C independent of T , h, 
h and E where

R.�h � E / D
Z T

0

kR�h � REkL2� .˝/ C k r�. P�h � PE/kL2
��1 .˝/

d�

C
�Z T

0

kP�h � PEk2
L2� .˝/

d� C
Z T

0

k. P
h � PE/T k2
L2Z.˙/

d�

�1=2
C max

0�t�T k r�.�h � E/.t/kL2
��1 .˝/

: (55)
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Using the triangle inequality

E .E � Eh/.t/ � E .E � �h/.t/C E .�h � Eh/.t/:

We have proved the following error estimate.

Lemma 1. The semi-discrete solution satisfies

max
0�t�T E .E � Eh/.t/ � max

0�t�T E .E � �h/C R.E � �h/ 8�h 2 Xh:

Using the fact that

1

2

d

dt
.�.E � Eh/; .E � Eh// D .�. PE � PEh/; .E � Eh//;

and integrating both sides, we have

1

2
max
0�t�T k.E � Eh/.t/kL2� .˝/ �

Z T

0

k PE � PEhkL2� .˝/d�

� T max
0�t�T k. PE � PEh/.t/kL2� .˝/ � T E .E � Eh/:

So we have the corollary

Corollary 1. The semi-discrete solution satisfies

max
0�t�T k.E � Eh/.t/kL2� .˝/ � T

�
max
0�t�T E .E � �h/C R.�h � E/

�
(56)

for any �h 2 Xh.

To derive other estimates we can use the Fourier-Laplace transform. The spatially
discrete Fourier-Laplace domain solution OEh 2 Xh of (53) satisfies

a. OE h; �h/ D . OF ; �h/ 8 �h 2 Xh: (57)

By Cea’s Lemma (see for example, [104]) we have the existence of OEh and,
assuming '0 � 1 the following theorem holds:

Theorem 3. Problem (57) has a unique solution OEh 2 Xh and this solution
satisfies the error estimate

k OE � OEhkX;s � C
jsj
'20

k OE � �hkX;s

for any �h 2 Xh where C is independent of OE , OEh, s, and h.
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Remark 3.

• This result reduces the error estimate to an approximation problem. The right
hand side is small if OE can be well approximated by a function in Xh.

• The factor jsj on the right hand side is typical for hyperbolic problems [52]. It
results in an unbalanced estimate in the time domain since the time domain norm
on the left hand side involves one less time derivative than the right hand side.

Now we can transform back to the time domain to obtain a semi-discrete error
estimate (for other norms see [48]) using (49).

Theorem 4. The semi-discrete solution OE h 2 Xh of (53) satisfies the error estimate

Z 1

0

e�2't
�

k PE� PEhk2L2� .˝/Ck r�.E�Eh/k2L2
��1 .˝/

Ck. PE � PE h/T k2
L2Z.˙/

�
dt

� 1

'20

Z 1

0

e�2't
�

k RE � R�hk2L2�.˝/ C k r�. PE � P�h/k2L2
��1 .˝/

C k PE � P�hk2L2� .˝/

C k. RE � R�h/T k2
L2Z.˙/

�
dt (58)

for all �h D �h.t/ 2 Xh.
Remark 4.

• An estimate in terms of powers of h can be obtained once we have given details
of Xh.

• We could have established this estimate using the exponential weighted energy
analysis culminating in (44) outlined previously by choosing � D '. We
presented the Fourier-Laplace approach because of its relevance to the next
section.

3.3 Discretization in Time

Whatever the choice of Xh, we can now proceed to a fully discrete problem
by applying a time-discretization technique to the system of ordinary differential
equations given by (53). Using the popular leap-frog discretization (see Sect. 2) we
seek En

h 2 Xh for n � 0 that approximates E.�; tn/; tn D n� t , and satisfies

1

� t2
.�.EnC1

h � 2En
h C En�1

h /; �h/C 1

2� t
.�.EnC1

h � En�1
h /; �h/ (59)

C.��1 r� En
h;r� �h/C 1

2� t
hZ.E nC1

h � En�1
h /T ; �h;T i D .F n; �h/

for all �h 2 Xh together with the initial condition En
h D 0 for n � 0. Although a

semi-discrete error analysis was given some time ago [102,103], it is only relatively
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recently that this fully discrete scheme has been analyzed [42]. In the previous
section we saw that once we have evaluated the local truncation error, we can obtain
a fully discrete error estimate by mimicking the energy proof to obtain stability.
This approach is given in detail in the excellent review [42] for edge elements and
we direct the reader there for details.

Equation (59) reveals the major disadvantage of the conforming finite element
approach described here. Suppose we have a basis f�hj gJhjD1 of Xh then, of course
there are scalar coefficientsEn

j , j D 1; � � � ; Jh, such that

En
h D

JhX
jD1

En
j �hj (60)

and similarly for EnC1
h and En�1

h . Substituting (60) into (59) and choosing the test
function �h D �hi we obtain a matrix equation equivalent to (59). More precisely,
let

En D .En
1 ; E

n
2 ; : : : ; E

n
Jh
/T

with similar expressions for EnC1;En�1. Let S;B;M � and M� denote the Jh � Jh
matrices with

M�
i;j D .��hj ; �

h
i /; M�

ij D .��hj ; �
h
i /;

Si;j D .��1 r� �hj ;r� �hi /; Bi;j D Zh�hj;T ; �hi;T i;

and let Fn D .F n
1 ; F

n
2 ; : : : ; F

n
Jh
/T where F n

i D .F ; �hi /; 1 � i � Jh: Then

�
M� C �t

2
M� C � t

2
B

�
EnC1 D 2M �En �M�En�1 �� t2SEn

C� t

2
M�En�1 C � t

2
BEn�1 C Fn: (61)

Even though we applied an “explicit” time stepping scheme, we need to solve a
linear system of equations at each time step having the matrix on the left hand side
of (61). This has lead many authors to abandon edge elements for time dependent
problems and instead develop discontinuous Galerkin methods to discretize (38),
see for example [36, 37, 46, 64, 69–71]. This is a major modern trend. However,
several practical codes use edge elements [93, 112, 113], and it is that approach we
take first.

We have chosen to use Xh � X . Because we must solve a matrix problem
at each time step, explicit methods no longer hold an overwhelming attraction.
In addition, there are some cases when (53) can become very stiff and impose a
crushing CFL condition. Causes can be small elements in the mesh, exotic materials
present, or the use of high order finite elements. So both engineers [112–114] and
mathematicians [89, 94, 98] have considered the use of implicit methods. The usual
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choice is backward Euler [45], a Newmark type method [113] or the trapezoidal
rule [94].

Now suppose that we wish to use an alternative multistep method. To do this, we
need to take a short detour into multistep methods! For a linear ordinary differential
equation

y 0 D Ay CG; y.0/ D 0

where y 2 R
n and A 2 R

n�n, and G is a smooth vector function, a general k-step
multistep method takes the form

kX
jD0

˛j yn�j D �t

kX
jD0

ˇj .Ayn�j CGn�j / (62)

where yn � y.tn/ and where the coefficients f˛j g and fˇj g define the method.
We will assume ˛0=ˇ0 > 0 (so the method is implicit). A method like this can be
conveniently summarized using generating functions. Let z 2 C, z 6D 0, and define

Y �t D
NX
nD0

z�nyn; G� t D
NX
nD0

z�nGn

where jzj is large enough that these sum’s converge. We assume yn D 0 andGn D 0

if n � 0.
Multiplying (62) by z�n and adding we obtain

1X
nD0

kX
jD0

˛j z�j .yn�j z�nCj / D �t

1X
nD0

kX
jD0

ˇj z�j �AYn�j z�nCj CGn�j z�nCj � :
So if we define

ı.z/ D
Pk

jD0 ˛j z�jPk
jD0 ˇj z�j (63)

we can summarize (62) by writing

ı.z/

� t
Y � t D AY �t CG�t (64)

where this holds for all z 2 C with jzj large enough. Although this nicely summa-
rizes the method, practically (62) is the way to compute the solution and (64) just a
convenient way of writing the scheme.

In fact, only two choices of multistep method are most relevant:

1. Backward Euler (BE). Here

yn � yn�1 D �t.Ayn CGn/

so ı.z/ D 1 � z�1.
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2. Backward Differentiation Formula (BDF2). Here

3yn � 4yn�1 C yn�2 D 2� t.Ayn CGn/;

and ı.z/ D .3 � 4z�1 C z�2/=2.

We have used the notation of the z-transform (z D ��1 in the notation of Lubich
[96]) to draw attention to the similarity between the approach here and analogue to
digital signal processing [109].

The fully discrete Maxwell problem is to seek En
h 2 Xh; n D 0; 1; : : : with

En
h D 0 for n � 0 such that if

E� t D
1X
nD0

z�nEn
h; F �t D

1X
nD0

z�nF n

then

ı2.z/

� t2
.�E�t ; �h/ C ı.z/

� t
.�E�t ; �h/C .��1 r� E�t ;r� �h/

C ı.z/

� t
hZE� t

T ; �h;T i D .F � t ; �h/ 8 �h 2 Xh: (65)

Using, for example, BE time stepping gives

1

� t2
.�.E nC1

h � 2En
h C En�1

h /; �h/C 1

� t
.�.E nC1

h � En
h/; �h/

C.��1 r� EnC1
h ;r� �h/C Z

�t
h.EnC1

h �En
h/T ; �h;T i D .F nC1; �h/ 8�h2Xh:

so given E n
h and En�1

h we compute EnC1
h 2 Xh by solving

1

� t2
.�E nC1

h ; �h/C 1

� t
.�E nC1

h ; �h/C .��1 r� EnC1
h ;r� �h/

C Z

� t
h.EnC1

h /T ; �h;T i D 1

� t2
.�.2En

h � En�1
h /; �h/C 1

� t
.�E n

h; �h/

C Z

� t
h.En

h/T ; �h;T i C .F nC1; �h/

for all �h 2 Xh. At each time step we must solve a matrix equation for EnC1
h ,

but the matrix is symmetric positive definite (compared to the indefinite, non
Hermitian matrix resulting from the time harmonic Maxwell problem). Note that
error estimates for the BE scheme for Maxwell’s equations were first proved in [45]
using energy arguments.
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We are now going to prove fully discrete error estimates using the convolution
quadrature theory of Lubich [95, 96]. In particular we shall use the following
theorem (in fact we quote a special case of Theorem 3.1 in [96]).

Theorem 5. Let Y denote a Hilbert space, and K.s/ W Y ! Y 0, <.s/ � '0, be
analytic and satisfy the bound

kK.s/k � C jsj�; Re.s/ > '0;

for some � > 0. Let ı.z/ correspond to an A-stable multistep method of order
p D 1; 2 such that

ı.z/ has no poles on the unit circle (66)

then for m � p C 2C � and smooth data F W Œ0; T 	 ! Y 0 with F .0/ D F 0.0/ D
F .m�1/.0/ D 0 we have

kK.@� tt /F .t/ �K.@t /F .t/k � C � tp
Z t

0

kF .m/.�/kd�:

Remark 5. The theorem excludes the trapezoidal rule, although this is known to
work perfectly well for the problem under consideration here [94]. In our case� D 1

and som � pC 3. IfpD 2we needmD 5 andF.0/ D F 0.0/ D � � � D F .4/.0/D 0!
This is surely very smooth data in time.

To apply this theorem we define suitable solution operators. Using the sesquilin-
ear form from (46), let

V.s/ W X ! X 0;

where X 0 is the dual space of X , be such that for u 2 X; V.s/u 2 X 0 satisfies

.V .s/u; �/ D a.u; �/ 8� 2 X:

Then from (48) we have the coercivity bound

j.V .s/u; su/j D ja.u; su/j � '0kuk2X;s :

Theorem 2 shows that V.s/�1 exists. Choosing u D V.s/�1�, the above inequality
shows that

'0kV �1.s/�k2X;s � js.�; V �1.s/�/j � jsjk�kX 0;skV �1.s/�kX;s:

Unfortunately, Lubich’s Theorem 5 above requires us to use s-independent norms.
So we define

kuk2X D kuk2
L2� .˝/

C k r� uk2
L2
��1 .˝/

C kuk2
L2� .˝/

C kuT k2
L2Z.˙/

:
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For each fixed s this is equivalent to the k � kX;s norm since

kuk2X;s D '20
jsj2
'20

kuk2
L2� .˝/

Ck r� uk2
L2
��1 .˝/

C'20
jsj2
'20

kuk2
L2� .˝/

C '20
jsj2
'20

kuT k2
L2Z.˙/

� '20kuk2X :

under our assumption that '0 � 1. In the same way,

kuk2X;s � jsj2
'20

kuk2X :

Thus, we have the following:

Corollary 2. Using the k � kX;s norm, the operator V W X ! X 0 defined by (62) is
invertible, analytic for s with ' � '0 and,

kV �1.s/k � jsj
'0
:

The same conclusion holds using the k � kX norm except that the bound becomes

kV �1.s/k � jsj
'20
:

The semi-discrete problem can also be written as an operator equation. Define
Vh W Xh ! Xh by

.Vh.s/uh; �h/ D a.uh; �h/ for all �h 2 Xh

then since Xh � X and

.Vh.s/uh; �h/ D .V .s/uh; �h/

the coercivity of V.s/ implies the coercivity of Vh.s/ and, as a map from X to X 0
using the k � kX norm,

kV �1
h .s/k � jsj

'20
: (67)

We may write the solution OE 2 X of (45) as

OE D V �1.s/ OF

and the discrete Fourier-Laplace transform solution OEh 2 Xh of (57)

OEh D V �1
h .s/Ph OF
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where Ph denotes the L2.˝/ projection onto Xh. Following Lubich [96], the time
domain solution

E D V �1.@t /F

V �1.@t /F is understood as a convolution so that

E D V �1.@t /F D L �1.V �1.s/ OF / (68)

where L �1 is the inverse Laplace transform. As we saw in Sect. 3.1, this provides a
rather round about way to prove the existence of a solution to Maxwell’s equations.

The solution Eh 2 Xh of the semi-discrete problem is given in the same way

Eh D V �1
h .@t /Ph OF : (69)

The fully discrete approximation in time is then

E� t .t/ D V �1.@� tt /F .t/ D
X
j�0

wj PhF .t � j � t/

and the weights are operators given by the identity [96]

1X
jD0

wj z�j D V �1
�
ı.z/

� t

�

for all jzj large enough. An important point about convolution quadrature is that
if two convolution operators K1.s/;K2.s/ both analytic in s for Re.s/ � '0 and
satisfying the bound

kKjk � C jsj�j ; � � 0; Re.s/ � '0;

we have
K1.@

� t
t /K2.@

� t
t / D .K1K2/.@

h
t /:

Hence
Vh.@

� t
t /Eh D PhF ;

and we see that (69) does indeed correspond to solving (53).
We can expand

E� t
h � E D .E� t

h � Eh/C .Eh � E/

where we will evaluate these terms at the timestep. Then .E h � E/ is estimated via
the semi-discrete approximation in Corollary 1. The term

E�t
h � Eh D V �1

h .@� tt /PhF � V �1
h .@t /PhF
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and this can be estimated by Lubich’s result (Theorem 5) with K.s/ D V �1
h .s/. We

have thus sketched how to prove the following theorem:

Theorem 6. Let the time discretization be a pth order A-stable multistep method
satisfying (66). For smooth compatible data F (satisfying the conditions of Theorem
5 with m D p C 3) we have, for 0 � tn � T ,

kE n
h � E.�; n� t/kL2� .˝/ D O.� tp C R.E � �h/C E .E � �h//

for all �h 2 Xh where R and E appear on the right hand side of (56).

3.4 Finite Element Spaces

So far we have not been at all specific about how to construct the subspacesXh � X .
It appears that provided the terms on the right hand side of the estimate in Theorem 6
can be made small, we can make use of any choice of elements. We now give a very
brief classical introduction to finite elements (see [10, 11, 29, 81, 82] for the more
enlightening but also more elaborate finite element exterior calculus viewpoint).

In general, to construct a finite element space Xh we need a family of meshes
indexed by h > 0. Suppose that˝ is covered by a collection of open sets or elements
Th D f˝h

k gNhkD1. Let hk D diam.˝h
k / for each k (the diameter of the smallest

circumscribed sphere). Then h D maxk hk . As h decreases the largest element in
the mesh becomes smaller and the mesh becomes finer and finer. These elements
need to be a conforming finite element mesh [43] in the sense that:

1. ˝ D [k˝
h

k , where overline denotes closure.
2. ˝h

j \˝h
k D ; if j 6D k.

3. If ˝
h

j \˝h

k 6D ; then one of the following conditions hold:

• The elements meet at a single point that is a vertex for both elements.
• The elements meet along a common edge and the endpoints of the edge are

vertices of the two elements.
• The elements meet at a common face and the vertices of the face are vertices

of both elements.

We also need the elements to be “regular” or non-degenerate by which we mean
that if �k denotes the diameter of the largest inscribed sphere in the kth element
then there is a constant � > 0 such that

hk

�k
< � for 1 � k � Nh; and for all h > 0:

This condition prevents elements from becoming too flat as the mesh is refined.
These conditions are from [43] where a more detailed discussion of meshes can be
found.
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Some of these requirements can be relaxed for discontinuous Galerkin methods,
but in our case these conditions rule out meshes of mixed tetrahedral and cube
elements. To have such mixed meshes requires a third element: pyramidal elements
having one rectangular face and four triangular faces. Finite elements of this type
have been constructed in [67, 108] and we direct the reader there for more details.

We shall now give a somewhat brief description of finite elements from the
classical point of view. This is elaborated in [104]. For a more sophisticated view
from the point of view of finite element exterior calculus see [10, 11, 29, 81, 82].
This theory motivates some of the choices we shall make and has resulted in
several technical advances that greatly improve the error estimates for finite element
methods. For a presentation related to computational electromagnetism see [42].
Because of the amount of overhead needed to lay the foundations for this approach,
we shall adopt the classical approach.

The simplest family of elements are subspaces ofH1.˝/. These scalar elements
are described in all textbooks on finite element methods. Let Pp denote the set
of all polynomials of total degree at most p (we denote by Pp.f / the space of
polynomials of degree at most p two variables in the plane of f , similarly Pp.e/
for an edge). Then the scalar subspace QSh � H1.˝/ of continuous piecewise p
degree polynomials is defined for tetrahedra by

QSh D fuh 2 H1.˝/ j uhj˝k 2 Pp for all tetrahedra ˝k 2 Thg:

Functions in QSh are continuous because continuity is required for any piecewise
polynomial to be in H1.˝/ [43].

On each element, the finite element can be described by giving dim .Pp/ scalar
numbers called degrees of freedom of the element. For tetrahedron ˝k these are
given by functionals of uhj˝k as follows: Any function uh 2 Pp is uniquely specified
by giving values for:

1. Vertex values uh.ak;j /1 � j � 4 where ak;j is the j th vertex of ˝k .
2. The integrals

R
e

uhq ds for all q 2 Pp�2.e/ where Pp�2.e/ is the set of polyno-
mials in arc length s along each of the six edges e of ˝k .

3. The integrals
R
f

uhq dA for all q 2 Pp�3.f / for each of the four faces f
of ˝k .

4. The integrals
R
˝k

uhq dV for all q 2 Pp�4.

In this definition we understand that P` D ; if ` < 0. By specifying these degrees
of freedom on all vertices (and edges, faces and volumes as needed), we uniquely
specify uh 2 QSh and the degrees of freedom shared between neighboring elements
guarantee the continuity of uh. For a given polynomial degree, these degrees of
freedom can then be used to construct a basis of QSh (if p is to vary from element to
element the situation is much more complex, see for example [55, 56]).

For parallelepipeds with edges parallel to the coordinate axes, the situation is
similar. Now the fundamental polynomial space is Qr;s;t , the tensor product space
of polynomials of degree at most r in x1; s in x2 and t in x3. For parallelepiped
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elements with edges parallel to the coordinate axis we now define

QSh D ˚
uh 2 H1.˝/ j uhj˝h 2 Qp;p;p for all parallelepipeds in Th

�
:

The degrees of freedom are similar to the tetrahedral case:

1. Vertex degrees: uh.ak;j / for the eight vertices of˝k .
2. Edge degrees:

R
e

uhq ds for all q 2 Pk�2.e/ and each edge of˝k .
3.
R
f

uh;q dA 8 q 2 Qp�2;p�2.f / for each of the 6 faces f of˝k .
4.
R
˝k

uhq dV 8 q 2 Qp�3;p�3;p�3.˝k/.

Again these degrees are H1 conforming (i.e. specifying all degrees on vertices,
edges, faces and volumes, specifies a function uh 2 QSh � H1.˝// and unisolvent
(uh is uniquely specified by giving the degrees of freedom).

For tetrahedral or hexahedral elements the degrees of freedom define an interpo-
lation operator 
S W H2.˝/ ! QSh.

Continuous piecewise linear elements have an important part to play in the
numerical solution of Maxwell’s equations by discretizing the scalar space S defined
in (50):

Sh D ˚
uh 2 QSh j uh D 0 on �; uh D constant on ˙

�
:

If we wish to mimic the argument leading to the conservation of charge result in
(52) we need to use a finite element subspace Xh � X such that r Sh � Xh and
furthermore ensure that if uh 2 Xh with uh 2 r S?

h then r� uh D 0 implies
uh D 0. All these desirable properties are provided by the edge elements of Nédélec
[106, 107].

To define the Nédélec elements on tetrahedra we need some extra auxiliary
spaces. Let QPp denote the space of polynomials of total degree exactly p and define

Sp D ˚
q 2 . QPp/3 j x � q D 0

�
then define

Rp D .Pp�1/3 ˚ Sp:

The space Rp can now be used to construct the first family of curl conforming
elements on tetrahedra. In particular we may define QXh � H.curlI ˝/ for p � 0 by

QXh D ˚
uh 2 H.curlI ˝/ j uhj˝k 2 Rp for 1 � k � Nh

�
:

The degrees of freedom on ˝k are:

1.
R
e

uh ��q ds for all q 2 Pp�1.e/ and all edges e of˝k where � is the unit tangent
along that edge.

2.
R
f

u � q dA for all q 2 .Pp�2.f //3 with q tangential to f for all faces f of ˝k .

3.
R
˝k

u � q dV for all q 2 .Pp�3.˝k//
3.
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The first set of degrees of freedom motivate the name for these elements: edge
elements. In fact, the above degrees of freedom may not be most convenient in
practice and there has been considerable effort expended to provide convenient
bases for these spaces [6, 126].

We can also define edge elements on parallelepipeds with edges parallel to the
coordinate axes [106]. On such an element we have we have

QXh D ˚
uh 2 H.curlI ˝/juhj˝k 2 Qp�1;p;p �Qp;p�1;p �Qp;p;p�1 8˝k 2 �h

�
with degrees of freedom.

1.
R
e

u � � q ds for q 2 Pp�1.e/ and each edge e of ˝k where � is the unit tangent
along e.

2.
R
f

u � q dA for all q 2 Qp�2;p�1 � Qp�1;p�2 tangential to the face f for each
face of ˝k .

3.
R
˝k

u � q dV for all q 2 Qp�1;p�2;p�2 �Qp�2;p�1;p�2 �Qp�2;p�2;p�1
A diagram showing the degrees of freedom for hexahedral elements for p D 1; 2 is
given in Fig. 4.

Particularly if one is interested in varying p from element to element, the above
description of edge elements needs to become a good deal more complex (see for
example [55, 56]). However, variable p is not common in the time domain yet
(but see [85] for a Discontinuous Galerkin method for the wave equation with
variable p).

For either tetrahedral or parallelepiped grids, we can now define

Xh D ˚
uh 2 QXh j uh � n D 0 on �

�
:

Note that imposing the zero perfect conducting boundary condition is easy: we
simply set the degrees of freedom associated with edges or faces on � to zero.
Of course the requirement that uh;T 2 L2Z.˙/ is always satisfied for piecewise
polynomial vector functions.

Fig. 4 Left: p D 1; the average value of tangential component of the finite element vector field
is given on each edge. Right: p D 2; only the degrees of freedom for the second component u2 of
the field are shown. By permission of Oxford University Press from [104]
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Both the tetrahedral and hexahedral edge elements have the same relationship
with the corresponding H1 vertex elements summarized in the following fragment
of the discrete de Rham diagram

S \ C1 r�����! X \ C1.˝/


S

??y 
X

??y
Sh

r�����! Xh

: (70)

To complete the discrete de Rham diagram, the picture is extended to the right to
include divergence conforming and L2 conforming elements in the full theory of
compatible discretizations [10, 11, 29, 81, 82, 104]. However, the fragment shown
here is most relevant to us in this paper.

Hidden in this diagram is the fact that if uh 2 Xh and r� uh D 0 then uh D r ph
for some ph 2 Sh. Moreover, we can show that if uh 2 .r Sh/? � Xh then there is
a constant C such that [11, 104]

k r� uhkL2
��1 .˝/

� CkuhkL2� .˝/:

This observation can be used to construct a projection that would allow us to avoid
the curl terms on the right hand side of our estimate in (55). This in turn improves
the error estimates, but we shall not pursue this point here.

Using the degrees of freedom we can define an interpolant 
X which is well
defined on functions in

Hr.curl I˝/ D fu 2 Hr.˝/ j r� u 2 Hr.˝/g ; r > 1=2;

(see for example [104]). We have the following error estimate (many other possible
interpolation error estimates appear in the literature [104], see also [82]).

Lemma 2. Suppose u 2 Hr.curlI˝/; 1 � r � p, then

ku � 
XukL2.˝/ C k r�.u � 
Xu/kL2.˝/
C k.u � 
Xu/T kL2.˙/ � ChrkukHr .curl I˝/:

Using this error estimate we can now provide estimates for the error in our previous
theory. By using the definition of E in (54) and choosing �h D 
XE then using the
previous lemma we obtain:

Lemma 3. Suppose Xh is constructed from degree p edge elements on regular
tetrahedral or cube meshes and suppose

E ; PE 2 L1.0; T IHr.curl I˝//; 1
2
< r � p;
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then there is a constant C depending on r , E and T but independent of h such that

inf
�h2Xh

E .E � �h/ � Chr:

Remark 6. Using a more sophisticated approximation operator, the “bounded
cochain projection” from [11], in place of 
X we could decrease the minimum
regularity for this theorem to r D 0.

Similarly, using the same choice of �h in (55) we can prove:

Lemma 4. If Xh is constructed from p degree edge elements then provided

RE ; PE ;E 2 Hr.curl I˝/; 1=2 < r � p;

there is a constant C depending on T , E and r but independent of h such that

inf

h2Xh

R.E � �h/ � Chr:

So we can obtain up to an O.hp/ convergence rate for the semi-discrete approxima-
tion if the solution is smooth enough.

Then we obtain a corollary to Theorem 6:

Corollary 3. Given a final time T , suppose we use a qth order A-stable multistep
method (satisfying (66)), and p-degree edge elements, then if the solution E of the
Maxwell system is sufficiently smooth

kEn
h � E.�; n� t/kL2� .˝/ D O.� tq C hp/

for 0 � n�t � T , where En
h is the fully discrete solution of (65).

This theorem begs the question: when is the solution “sufficiently smooth”.
This is a difficult question, see for example [135], involving a priori estimates for
hyperbolic problems.

3.5 The Use of Continuous Elements

We have presented the FETD method using edge elements, but there are arguments
for considering other elements. An obvious choice of finite element space consists
of continuous piecewise polynomial elements. These have the potential attraction
over edge elements that they are well understood, in many finite element packages,
and easier to use in graphics software by giving a smoother field. But as we shall
see the use of these elements faces several obstacles.

We could try to buildXh by taking three copies of QSh and adjusting for boundary
conditions:
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Xh D ˚
uh 2 QSh � QSh � QSh j uh � n D 0 on �

�
:

There is an immediate objection to this space: it is difficult for us to implement the
boundary condition since it imposes a face by face constraint on the elements (the
Nitsche method can be used to alleviate this problem [15]).

Leaving aside that difficulty we see a second difficulty: suppose � is discontinu-
ous across a surface S in the mesh having normal nS and suppose F and � vanish
in the neighborhood of S , then charge conservation r�.�E / D 0 implies nS � �E
is continuous across S so �1nS � E 1 D �2nS � E 2 where �1 and �1 are the values
of � on either side of S and E 1 and E 2 are the fields on either side. Thus, the field
E is discontinuous across S and so will be poorly approximated by continuous
finite elements. This difficulty can be handled using Lagrange multipliers [14],
discontinuous Galerkin techniques or the Nitsche method [15].

Lastly suppose we are solving in a metallic air filled cavity so that � and � are
constant, � vanishes, ˙ D �; and F D 0. As in our derivation of (61) the semi-
discrete in time problem is to solve

M� d
2E
dt2

C SE D 0

where E is the vector of degrees of freedom. This problem has solutions Ene�i!nt
where !n and En 6D 0 satisfy the generalized eigenvalue problem

� !2nM
�En C SEn D 0; n D 1; 2; � � � : (71)

Here S is symmetric and M� is positive definite and symmetric so the eigenvalues
are real and the discrete solution E is a superposition of modes En with frequency
!n where En ¤ 0 that satisfy the eigenvalue equation (71) so

E D
X
n

anEne�i!nt (72)

where fang are coefficients determined by the initial data. The solution given by (72)
will be accurate if the eigenmodes of (71) are a sufficiently accurate approximation
to the eigenvalues ! and eigenvectors E 2 X such that E 0 ¤ 0 of

!2E � r� r� E D 0 in ˝: (73)

Unfortunately, Boffi et al [28] (for more details see his paper in this volume) show
that piecewise linear elements result in discrete eigenvalues !n amongst the lowest
non-zero eigenvalues of (73) but having no physical counterparts. In addition, some
eigenvalues approximating physical eigenvalues have eigenspaces of the wrong
multiplicity.

Confusingly, our error estimates show that provided the exact solution can be
approximated well by finite elements, then for fixed T and for h small enough
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we will get convergence of the time domain method. But for a particular T and
particular h the initial data may be such as to excite a spurious mode. This
may then corrupt the solution (usually as an unexpected oscillatory feature in the
solution). This problem can be remedied by adding a carefully designed divergence
stabilization term [44].

So we see that to use continuous elements in a general purpose solver requires
several modifications to the basic FETD scheme. Since edge elements give a robust
discretization compatible with the conservation properties of the problem, we prefer
to base our conforming FETD solver on these elements.

3.6 Extensions to the Basic Solver

The physical parameters in Maxwell’s equations are not truly constant. In fact,
they depend on the frequency of the radiation. As we have seen this dependence
is often neglected either because we are interested in propagation in the air where
propagation is weakly dependent on frequency or because we are interested in
propagation in a relatively narrow band of frequencies. If the parameters �; � and
� in (11) depend on frequency, terms such as � RE in (14) need to be reinterpreted
as @=@t.� 	 @E=@t/ where 	 denotes convolution in time. For general frequency
dependent coefficient this requires storing all past history of E (causality requires
that future fields cannot be involved, so limiting the possible choices of the
coefficients).

More commonly, a model is usually assumed for the frequency dependence,
and this allows us to solve in the time domain without excessive storage demands.
To explain this in more detail, consider a generalization of the frequency domain
problem (11) with J i D 0 where we seek OE (subject to suitable boundary
conditions) such that

!2�0

�
O�R.!/C i�

!

�
OE � r���1

0 r� OE D 0

where the relative electric permittivity O�R depends on frequency via !. Formally
taking the inverse Fourier transform gives

�0
@

@t

�
�R 	 @E

@t

�
C � PE C r���1

0 r� E D 0

where �R is the inverse Fourier transform of O�R.
There are several models for O�R in common use: Debye, Drude or Lorentz

media being three examples [92,94]. Water, and therefore biological tissue, is often
modeled by a Debye model [88] where
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O�R.!/ D
�
�1 C .�s � �1/

1 � i!t0

�
:

Here �1 is the relative permittivity at infinite frequency ( O�R ! �1 as ! ! 1),
�s is the static relative permittivity .O�R.0/ D �s/ and t0 is a relaxation time. It is
assumed that �s > �1 [94].

The idea is to introduce additional variables such that, after inverse Fourier
transformation, we obtain a system of differential equations. In fact, we need only
introduce one auxiliary field in this case: define OP by

OP D �0
.�s � �1/
1 � i!t0

OE

so that we have
.1 � i!t0/ OP D �0.�s � �1/ OE

and taking the inverse Fourier transform

t0 PP C P D �0.�s � �1/E :

We obtain
!2�0�1 OE C i!� OE C r���1

0 r� OE C !2 OP D 0: (74)

Following [94], note that

�i! OP D 1

t0
.�0.�s � �1/ OE � OP/

so (74) can be written, in the time domain, as

�0�1 RE C � PE C r���1
0 r� E C 1

t0
.�0.�s � �1/ PE � PP/ D 0 (75)

t0 PP C P D �0.�s � �1/E : (76)

This is a second order version of the mixed system analyzed by Li and Zhang
[94]. Let us suppose that we use only the Perfect Electrically Conducting boundary
condition

E � n D 0 on � D @˝:

To obtain an energy equality we follow [94], suitably modified for the second
order system considered here, and multiply (75) by PE and integrate over˝ to obtain

1

2

d

dt

h
�1�0k PEk2

L2.˝/
C ��1

0 k r� Ek2
L2.˝/

i
C k PEk2

L2� .˝/

C�0

t0
.�s � �1/k PEk2

L2.˝/
� 1

t0
. PP; PE / D 0:
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Taking the time derivative of (76) and multiplying by PP , then integrating over ˝
we get

1

�0.�s � �1/

�
. RP; PP/C 1

t0
. PP; PP/

�
D 1

t0
. PE ; PP/:

Adding these equations gives

1

2

d

dt

�
�1�0k PEk2

L2.˝/
C ��1

0 k r� Ek2
L2.˝/

C 1

�0.�s � �1/
k PPk2

L2.˝/

�
(77)

Ck PEk2
L2� .˝/

C�0

t0
.�s��1/k PEk2

L2.˝/
C 1

�0.�s � �1/t0
k PPk2

L2.˝/
� 2

t0
. PE ; PP/ D 0:

The last three terms can be combined to give

1

2

d

dt

�
�1�0k PEk2

L2.˝/
C ��1

0 k r� Ek2
L2.˝/

C 1

�0.�s � �1/
k PPk2

L2.˝/

�
(78)

C 1

t0

����� 1p
�0.�s � �1/t0

PP �
s
�0.�s � �1/

t0
PE
�����
2

L2.˝/

C k PEk2
L2� .˝/

D 0:

This argument, and in particular the final step, follows directly the proof of
Lemma 2.1 in [94] with appropriate modifications for the second order equation.
It could now be used as the basis of an error analysis for the second order
approximation of this problem. Li and Zhang [94] take the alternative route of
analyzing the trapezoidal rule and edge elements applied to the first order system
governing .E ;B;P/. The reader should consult their paper for error estimates, as
well as extensions to Lorentz media and cold plasma.

An elegant alternative approach, using history integrals, can be found in [120].

3.7 Linear System Solver

If we use an implicit time stepping scheme, we need to solve a linear system at each
timestep. Let us suppose, for simplicity, that � D 0 and ˙ D ; then to implement
(65) we need to solve the problem of finding EnC1

h 2 Xh such that

�
a0

b0 � t

�2
.�E nC1

h ; �h/C .��1 r� EnC1
h ;r� �h/ D .G n; �h/ (79)

for all �h 2 Xh. Here Gn can be computed from Em
h and Fm for m � n so is

a known function. Obviously solving (79) is an extremely important task when
developing a practical implicit FETD code. Fortunately this is a problem with a



Introduction to Applications of Numerical Analysis 191

coercive bilinear form with a positive definite matrix on the left hand side and so is
solvable at each timestep.

Typically the matrix for (79) is too large to be factored in memory and so an
iterative scheme needs to be applied. There are several possible choices already
in the literature including Hiptmair [80] or Arnold-Falk-Winther [12] multigrid
methods or alternating Schwarz methods [66, 123].

3.8 Mass Lumping

An alternative approach, applicable when explicit timestepping like the leapfrog
method is used, is mass lumping to speed the solution algorithm. The approach we
shall take is from [47,49] (see also [42,62]). For this to work we need to assume that
the mesh consists of parallelepipeds with edges parallel to the coordinate axes. In
particular let us suppose we are using degree p D 1 edge elements (for extensions
to higher order elements, see [47]). Let us also assume that ˙ D ;, and � D 0.
The finite element space Xh has a basis f�hj gNhjD1 � Xh of shape functions (basis
functions) where Nh is the number of interior edges in the mesh. The basis function
�hj has vanishing tangential component on each edge except on the j th interior edge
of the mesh where the degree of freedom is unity. Of course the support of this basis
function is just the elements sharing this edge. Now we can expand the semidiscrete
solution as

Eh.x; t/ D
NhX
jD1

Ej .t/�
h
j .x/

then if E D .E1;E2; : : :/
T we have

M� d
2

dt2
E C SE D F:

Here the sparse Nh �Nh symmetric matrices M� and S are given by

M�
`;m D

Z
˝

��h` � �hm dV; and S`;m D
Z
˝

��1r � �h` � r � �hm dV:

To discretize in time we can use standard centered differences

M� .E
nC1 � 2En C En�1/

�t2
C SEn D F n:

Since S is symmetric positive semi-definite an energy analysis shows that the
method is stable.

But as we have seen there is a problem: at each timestep we must solve a
linear system with matrixM�(e.g. by diagonally preconditioned conjugate gradients
[105]). If we wish to avoid this cost, one further approximation saves the day: We
can approximate the integrals definingM� by a suitable quadrature. On an element



192 Q. Chen and P. Monk

˝k D Œ0; h	�Œ0; h	�Œ0; h	 (we can assume one corner is at the origin by translation)
we can use the quadrature

Z
˝k

u � v dV � Q˝k.u; v/

D h3

12

2
4 4X
jD1

u1.aj / � v1.aj /C
4X

jD1
u2.bj / � v2.bj /C

4X
jD1

u3.cj / � v3.cj /

3
5

where a1 D .h=2; 0; 0/, a2 D .h=2; h; 0/, a3 D .h=2; 0; h/, a4 D .h=2; h; h/ and
similarly for mid-points bj on edges parallel to the y axis, and cj on edges parallel
to the z-axis.

The mass lumped FETD method is then to approximateM� by a diagonal matrix
M�;Q computed using this special quadrature. In particular

M
�;Q

`;m D
NhX
kD1

Q˝k .�
h
` ; �

h
m/; F Q;n

m D
NhX
kD1

Q˝k.F
n; �hm/;

andM�;Q is diagonal. We can time-step

M�;Q .E
nC1 � 2En C En�1/

�t2
C SEn D FQ;n

without inverting a matrix. This is called the Finite Difference Time Domain method
(FDTD) [121,132]: we can show that the method converges with errorO.h2C�t2/

provided we satisfy the CFL condition�t � h=
p
3c. Obviously this is not the most

direct derivation of FDTD!
We also have discrete conservation of charge: if F D 0

X
K2Th

QK.E
nC1
h � 2En

h C En�1
h ;rph/ D 0 8ph 2 Sh

at each timestep n � 1. Hence, if the initial data is chosen so that

X
K2Th

QK.E
0
h;rph/ D

X
K2Th

QK.E
1
h;rph/ D 0 8ph 2 Sh

we have X
K2Th

QK.E
0
h;rph/ D 0 8ph 2 Sh

for each n. We say that the fields are “discrete divergence free”. On a uniform grid,
taking ph to be unity at one vertex and zero at all the rest we have that at that vertex

.EC
z �E�

z /C .EC
y � E�

y /C .EC
x � E�

x / D 0
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Fig. 5 Notation for the
discrete divergence at a node
in the mesh E+

y

E−
y

E−
x

E+
x

E−
z

E+
z

where the ˙ superscripts represent fields to the left/right, and above/below the
point at which ph is non-zero as shown in Fig. 5. This is just a finite difference
approximation of the divergence at each node.

FDTD is the workhorse of CEM and results are to be found in every issue of
the journal IEEE Transactions on Antennas and Propagation. The MAFIA code,
which is based on the integral formulation of Maxwell’s equations but results in the
same FDTD when applied to the simple case here, is an example of a sophisticated
implementation [100, 127, 128].

Unfortunately, if this method is used with hexahedral elements that are not
rectangular parallelepipeds it does not produce a lumped (i.e. diagonal) matrix. The
same technique can also be tried on lowest order edge elements on a tetrahedral
mesh [77, 78] but unfortunately the quadrature weights needed for zeroth order
accuracy of the quadrature may be negative (depending on the shape of the element).
In tests we have not been able to obtain an automatically generated mesh for which
all the weights are positive (necessary for stability). However, it is possible to obtain
a mass lumped tetrahedral method by using an extended family of edge elements
having extra basis function resulting in more degrees of freedom that give rise to
positive quadrature weights [58].

Convergence of the mass lumped scheme can be proved using the Strang Lemma
[42] and for a Fourier-Laplace domain based argument for the mass lumped wave
equations see [48].

3.9 Dispersion Analysis

It is difficult to carry out a general dispersion analysis for edge elements on
tetrahedra (see [105]), but for rectangular parallelepipeds an analysis is possible
and has been given for all orders of elements by Ainsworth [5].

The novel part of this review is the suggestion to use backward Euler or BDF2
for timestepping the Maxwell system. So here we will just consider the dispersion
error due to timestepping. Let ı�tt denote the relevant backward difference operator
and consider the time discrete Maxwell system

1

c2
.ı�tt /

2E�t C r� r� E�t D 0
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in all space. Assuming that the solution is divergence free, this can be rewritten as

1

c2
.ı�tt /

2E�t D �E�t

and as in Sect. 2 it suffices to consider the time discrete scalar wave equation

1

c2
.ı�tt /

2un D �un:

Using the BE method

1

c2
un � 2un�1 C un�2

.�t/2
D �un:

We then seek solutions of the form un D exp.i.k � x � !�t tn// and arrive at

4 exp.i!�t�t/

.�t/2
sin2.!�t�t=2/ D c2jkj2:

If the method has no dispersion error ! D ˙cjkj (see the one dimensional analysis
in Sect. 2), however for backward Euler we find

!�t D cjkj � 1

2
icjkj�t � 1

2
c3jkj3.�t/2 C � � � :

The method is in general dispersive at second order and dissipative of first order. It
will tend to damp out wave propagation. For BDF2, BDF3 and the trapezoidal rule
we find [40]

BDF2 W !�t D ˙jckj 
 1

3
jckj3�t2 C i

4
jckj4�t3 C � � � ;

BDF3 W !�t D ˙jckj C i

4
jckj4�t3 
 3

10
jckj5�t4 C � � � ;

Trapezoidal W !�t D ˙jckj 
 1

12
jckj3�t2 ˙ 1

80
jckj5�t4 C � � � ;

Thus, these methods are much less dissipative (now the dissipation is third order,
fourth order or non-existent). BDF2 and the trapezoidal rule have the same order of
dispersion error. Neither BDF3 nor the trapezoidal rule are covered by the theory
here.

To obtain better dispersion and dissipation error would require us to use an
implicit Runge-Kutta scheme if we want to stay within a straight forward application
of Lubich’s convergence theory [97].

Finally, we note that if one is willing to work with a modified mass matrix and
special quadrature, it is possible to improve the dispersion error from the space
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discretization very considerably [8] without ruining the overall convergence rate.
This does not make the mass matrix diagonal, but it does make higher order edge
elements on cubes particularly attractive.

3.10 A Discontinuous Galerkin Method

As we have seen, mass lumping is only possible for rectangular parallelepiped
edge elements in general. To avoid the problem of mass matrices many researchers
have turned to discontinuous Galerkin methods. We shall describe just one version:
the Symmetric Interior Penalty Galerkin method (SIPG). This method was first
analyzed in the time domain in [69–72, 79] and for the related eigenvalue problem
in [36, 37].

For simplicity let us assume that @˝ D � , so that the field satisfies the Perfectly
Electrically Conducting boundary condition on the boundary, and that � D 0. We
cover ˝ by a mesh Th of regular tetrahedra of maximum diameter h (we could
use cubes equally well). To develop the method in the classical way we proceed as
follows. On an element K D ˝k in the mesh, we multiply the interior Maxwell
system by a smooth test function �K and integrate over the domain. The key term is
the spatial derivative term:

Z
K

r � ��1r � E � �KdV D
Z
K

��1r � E � r � �KdV

C
Z
@K

��1r � E � �K � nKdA

where nK is the unit outward normal to K . Adding over all elements and letting �

denote the piecewise defined function �jK D �K and defining rh � �jK D r � �K

we haveZ
˝

r���1r � E � �dVD
Z
˝

��1rh � E � rh � �dVC
X
f 2Eh

Z
f

��1r�E � ŒŒ�		dA

where Eh denotes the set of all faces in the mesh and the jump ŒŒ�		 is defined by

ŒŒ�		 D
(

�K � nK C �K
0 � nK

0

if f D K \K
0

�K � nK if f 2 �:

We will allow the discrete approximation to E to jump so define the average value
operator ff�gg by

ff�gg D
(
.�K C �K

0

/=2 if f D K \K
0

�K if f 2 �:
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We are also motivated to define the “broken” space

H.curlI Th/ D fv 2 L2.˝/3 j r � vj˝k 2 L2.˝k/
3 8˝k 2 Thg:

Then for all � 2 H.curlI Th/ and sufficiently smooth E we have

Z
˝

r � ��1r � E � � dV D
Z
˝

��1rh � E � rh � � dV

C
X
f 2Eh

Z
f

ff��1r � Egg � ŒŒ�		 dA:

The right hand side is not symmetric (which we want so we can use an energy
analysis) so we add a consistent symmetrizing term

X
f 2Eh

Z
f

ff��1r � �gg � ŒŒE 		 dA

which vanishes for the exact solution.
So if E is smooth enough we have

Z
˝

r � ��1r � E � � dV D
Z
˝

��1rh � E � rh � � dV

C
X
f 2Eh

Z
f

ff��1r � Egg � ŒŒ�		C ff��1r � �gg � ŒŒE 		 dA:

The right hand side turns out not to be positive semidefinite (again needed for an
energy analysis) so we add a consistent stabilizing term

X
f 2Eh

Z
f

aŒŒE 		ŒŒ� 		dA

where a D ˛=h and

h D



min.hK; hK0/ f 2 K \K 0;
hK f 2 � \K;

The coefficient ˛ > 0 is a penalty parameter which will need to be chosen large
enough. We now use the discontinuous Galerkin space

Vh D fvh 2 L2.˝/ j vhjK 2 .Pp/3 8K 2 Thg

where Pp is the set of all polynomials of degree at most p. The semi-discrete
solution is E h.t/ 2 Vh such that
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Z
˝

� RE h � �hdV C aDG.Eh; �h/ D
Z

F � �h dV 8�h 2 Vh; (80)

where

aDG.E h; �h/ D
Z
˝

��1rh � Eh � rh � �hdV

C
X
f 2Eh

Z
f

ff��1r � Ehgg � ŒŒ�h		C ff�hgg � ŒŒ��1r � Eh		

C
X
f 2Eh

Z
aŒŒE h		 � ŒŒ�h		dA:

To show the stability of this method, a key finite element result is the local inverse
inequality (see Brenner’s paper in this volume): if vh 2 Vh then

kvhk2L2.@K/ � Ch�1
K kvhk2L2.K/:

So we can estimate the flux terms in aDG as follows: if v 2 Vh, z 2 Vh then

X
f 2Eh

Z
f

ŒŒv		ffzggdA �
X
f 2Eh

ka1=2ŒŒv		kL2.f /ka�1=2ffzggkL2.f /

� C˛�1=2
0
@X
f 2Eh

ka1=2ŒŒv		kL2.f /
1
A � kzkL2.˝/:

We can then show if ˛ is large enough, for all uh 2 Vh there is a constant C > 0

independent of h and uh such that

jaDG.uh;uh/j � Ckuhk2Vh
where

kuk2Vh D k��1rh � uk2
L2.˝/

C
X
f 2Eh

ka1=2ŒŒu		k2
L2.f /

:

So we will have a stable time marching scheme if we use centered differences in
time and a suitable CFL condition (decreasing in ˛).

Convergence can then be proved by Laplace transforms and a Strang Lemma
argument. By more classical arguments the following theorem is proved in [70]:

Theorem 7. Suppose for r > 1=2, and

E ; PE 2 L1.0; T IH1Cr .˝/3/; RE 2 L1.0; T IHr.˝/3/
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then if ˛ is large enough, and eh D E � Eh where Eh is the solution of the semi-
discrete SIPG method (80), we have the error estimate

kPehkL1.0;T IL2�.D/3/CkehkL1.0;T IV.h// � C1.kPeh.0/kL2� .˝/Ckeh.0/kVh/CC2hmin.r;p/

where C2 depends on the indicated norms of E , and the V.h/ norm is

kehk2V.h/ D kehk2L2� .˝/ C kehk2Vh :

Note that the matrix resulting from the time derivative term in the DG formula-
tion is block diagonal and so it can be inverted easily. Often explicit Runge-Kutta
is used for discontinuous Galerkin formulations [46], but in [69] a new flexible
alternative based on local time steps is formulated. This allows short timesteps
where needed and longer timesteps elsewhere up to the standard CFL condition.

Fully discrete error estimates, for the wave equation, using DG in space and
leapfrog in time can be found in [72]. Because the method uses discontinuous
piecewise polynomial elements, it has more degrees of freedom than the standard
conforming edge element scheme. So it does not seem to us that it is a good
candidate for implicit timestepping. On the other hand, when explicit timestepping
is applicable, it can be an extremely efficient and flexible method [64, 65, 116].

For another approach to building a DG method based on upwind fluxes, see [79]
and for central fluxes see [61].

4 Background on Time Domain Integral Equations

Integral equations reduce the solution of homogeneous boundary value problems
to equations on the boundary of the scatterer. This reduction in dimension carries
with it the lure of fewer degrees of freedom, and hence considerable effort has been
expended to develop solvers based on this formulation. In the time domain it is only
quite recently that stable and accurate integral equation formulations have appeared.
In some applications they are now the state of the art solver (see for example,
[1, 17, 51, 53, 54, 60, 73, 74, 118, 119, 122, 133, 134]).

The approach to formulating the Time Domain Boundary Integral Equation
(TDBIE) that we shall present here is from the work of Terrasse [122] and Pujols
[17] who developed a stable discretization of the time domain Electric Field Integral
Equation (EFIE). Their work was based on earlier work in [19] nicely summarized
in [73]. For a general survey of TDBIEs and methods of discretization for the wave
equation, Maxwell system and linear elasticity see [52].

We are now going to outline the derivation of a time domain boundary integral
equation for Maxwell’s equation. Suppose we want to solve

�0 PE � r � H D 0

�0 PH C r � E D 0

9=
; in D0 D R

3nD (81)
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subject to the perfect conducting boundary condition

E � n D g WD �E i � n;

on � where .E i ;H i / is a solution of the Maxwell system in the absence of D (see
Chap. 1), and we take n to be the unit outward normal to D. We assume E i D 0 in
a neighborhood of D of t D 0 and select

E.x; 0/ D H .x; 0/ D 0 at t D 0:

We will now show how to reduce this problem to a time domain integral equation.
The first point is that integral equations effectively solve the interior and exterior

problem simultaneously. So we now assume that (81) is satisfied both in D and in
D0 D R

3 nD. However, the field is in general discontinuous across the boundary�
of D.

Boundary integral equations are based on integral representations of the solution.
We are now going to outline how to derive a Fourier-Laplace domain “Stratton-Chu”
formula. This plays the role of Green’s representation formula for the Helmholtz
equation. We shall consider D and D0 separately. Suppose . OE ; OH / is a smooth
solution of the Fourier-Laplace domain Maxwell’s equations:

s�0 OE � r � OH D 0

s�0 OH C r � OE D 0

)
in D orD0: (82)

Taking the divergence of the first equation and recalling that <.s/ > 0, we see also
that r � OE D 0.

We shall make use of the fundamental solution of the Fourier-Laplace domain
Helmholtz equation. We need to find the solution O̊

0 of

s2

c2
O̊
0 �� O̊

0 D ı0;

with O̊
0 bounded at infinity, where s D 'Ci! with ' > '0 > 0, c D 1=

p
�0�0, and

ı0 is the Dirac delta at the origin. Separating variables and noting that the solution
is invariant with respect to rotation about the origin we see that the solution is

O̊
0.x/ D exp.�sjxj=c/

4
jxj :

More generally
O̊ .x;y/ WD O̊

0.jx � yj/ (83)

gives the fundamental solution for a source point at y evaluated at x.
Let p be a fixed vector and suppose that x 2 D, then using the definition of O̊

and the standard Laplacian vector identity
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p � OE .x/ D
Z
D

OE.y/ � p .��y
O̊ C s2

c2
O̊ /.x;y/ dV.y/

D
Z
D

�
OE � .ry � ry � .p O̊ /� ryry � . O̊ p//C s2

c2
OE � p˚

�
dV.y/:

Here ry denotes derivatives with respect y .
Integrating by parts, adding and subtracting terms and then performing a further

integration by parts shows that

p � OE.x/ D
Z
D

ry � OE � ry � .p O̊ /C ry � . O̊ p/ry � OE C s2

c2
OE � p O̊ dV.y/

C
Z
�

OE � n � ry � .p O̊ / � ry � . O̊ p/ OE � n dA.y/

D
Z
D

.ry � OE C s�0 OH / � ry � .p O̊ / dV.y/

C
Z
D

.
s2

c2
OE � p O̊ � s�0 OH � ry � .p O̊ // dV.y/

C
Z
�

. OE � n/ � ry � .p O̊ / � OE � n ry � . O̊ p/ dA.y/:

Now using Maxwell’s equations (82) this simplifies to

p � OE.x/ D
Z
�

. OE � n/ � ry � .p O̊ /� OE � n ry � . O̊ p/ � s�0 OH � n � p O̊ dA.y/:

Using vector calculus we can show that

ry � .p˚/ � �.y/ D p � rx � .˚�/;

ry � .p˚/ D �p � rx˚:

In addition, since the above equality holds for all p, we arrive at

OE.x/ D
Z
�

rx � Œ. OE � n/ O̊ 	C OE � n rx
O̊ � s�0. OH � n/ O̊ dA.y/:

But O̊ D �c2�x
O̊ =s2 since x 6D y and so, using the expansion for the Laplacian

in terms of curl-curl and grad-div,

OE.x/ D
Z
�

rx � .. OE � n/ O̊ /C OE � nrx
O̊

Cs�0 c
2

s2
Œrx � rx � . OH � n/ O̊ � rxrx � .H � n/ O̊ 	 dA:
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Now we need to integrate by parts again to show that

Z
�

rx � .. OH � n/ O̊ / dA.y/ D �
Z
�

OH � n � ry
O̊ dA.y/

D
Z
D

r � OH � ry
O̊ dV.y/ D

Z
D

s�0 OE � ry
O̊ dV.y/ D

Z
�

s�0 OE � n O̊ dA.y/

where we have used the fact that r � OE D 0:

By slightly more careful reasoning (see [50, 104]) we can fully justify the
following result:

Theorem 8 (Stratton-Chu). Suppose D is a bounded Lipschitz domain and
. OE ; OH / in H.curlID/ � H.curlID/ satisfies (81) then OE can be expressed as
follows

OE.x/ D r �
Z
�

. OE � n/.y/ O̊ .x;y/ dA.y/

C�0c
2

s
r � r �

Z
�

. OH � n/.y/ O̊ .x;y/ dA.y/:

Remark 7. A similar representation can easily be derived for H by taking the curl
of this expression.

It is convenient to rearrange terms yet more. Using the curl-curl vector identity
and the equation for O̊ as well as denoting by r� �, the surface divergence, we have

OE.x/ D r �
Z
�

OE � n O̊ dA.y/C 1

�0s
.��C rr�/

Z
�

OH � n O̊ dA.y/

D r �
Z
�

OE � n O̊ dA.y/� 1

�0s

s2

c2

Z
�

OH � n O̊ dA.y/

C 1

�0s
r
Z
�

r� � . OH � n/ O̊ dA.y/

D r �
Z
�

OE � n O̊ dA.y/� �0s

Z
�

OH � n O̊ dA.y/

C 1

�0s
r
Z
�

r� � . OH � n/ O̊ dA.y/:

Note that repeating the same calculation for x 2 D0 so that O̊ is smooth inD shows
that if the evaluation point Ox is outsideD, the right hand side above vanishes.

We conclude at last that, if x 2 D, using the traces OE � n and OH � n taken from
the field inside D, for . OE ; OH / 2 H.curlID/ �H.curlID/,
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� s

c2
cSL. OH � n/C1

s
rcSL.r� � . OH � n//C �0r�cSL. OE�n/D



0 if x2D0;
�0 OE .x/ if x2D;

where c D 1=
p
�0�0 and cSL is the single layer potential operator given by

cSL. Ou/ D 1

4


Z
�

e�sjx�yj=c

jx � y j Ou.y/ dA.y/:

We can perform similar calculations for x 2 D0 for the field outsideD to obtain for
x 2 R

3 n� the same result (with sign changes due to the assumed outward pointing
normal). Before quoting this result, we note that the appropriate space for traces of
fields where u 2 H.curlI˝/ is u�n 2 H�1=2.DivI� /where, for a smooth domain,

H�1=2.DivI� / D ˚
u 2 H�1=2.� /3 j u � n D 0 a.e. on �;r� � u 2 H�1=2.� /

�
:

For less smooth domains, this space is a good deal more technically difficult to
define, see [34], and for the use of these spaces to analyze time-harmonic integral
equations for Maxwell’s equations see [32, 33, 35]. We will give no details but
assume here that such a space is well defined. The dual space of H�1=2.DivI� /
is (again for smooth domains)

H�1=2.CurlI� / D ˚
u 2 H�1=2.� /3 j u � n D 0 a.e. on �;r� � u 2 H�1=2.� /

�
;

where r� �u D r� �.u�n/. This space can also be defined for polyhedral domains,
we again refer to [32, 33, 35].

These observations can then be combined to give (see [35] for the time-harmonic
case):

Theorem 9. Let � be a smooth boundary. Suppose . OE ; OH / 2 H.curlID [D0/ �
H.curlID [ D0/ are solutions of the Fourier-Laplace Maxwell system (82) in D0
andD, then

�0 OE .x/ D � s

c2
cSL. Oj /C 1

s
rcSL.r� � . Oj // � �0r � cSL. Om/

where Oj D ŒŒ OH � n		 and Om D ŒŒ OE � n		 where ŒŒ�		 denotes the jump across � from
outside to inside D so that for x 2 �

ŒŒ OH � n		.x/ D lim
�!0

. OH .x � ��.x// � n.x/ � OH .x C ��.x// � n.x//:

and Oj ; Om 2 H�1=2.DivI� /.
We can derive two distinct integral equation formulations by choosing Oj and

Om appropriately (the field inside � is an arbitrary solution of the Maxwell system
and so can be chosen to yield a desirable system). The one we will consider is
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the “indirect” single layer representation where we choose Om D 0 (the “direct”
formulation is to choose OE D OH D 0 inside � , and then use the boundary condition

to write Om D � OE i � n). The indirect representation gives

�0 OE.x/ D � s

c2
cSL
� Oj
�

C 1

s
rcSL

�
r� � Oj

�

where Oj 2 H�1=2.DivI� / is a tangential vector field on � . Note that

s�0 OE.x/ D � s
2

c2
cSL
� Oj
�

C rcSL.r� � Oj /: (84)

To obtain an integral equation we now let x ! � and define the tangential
projection

˘T .a/ D n � .a � n/:

The tangential component of the single layer potential operator is continuous across
� and we obtain the problem of finding Oj 2 H�1=2.DivI� / such that, on � ,

�0sn � Og D � s
2

c2
˘T

OS
� Oj
�

C r�
OS.r� � Oj /; (85)

where, for x 2 � , the single layer operator is given by

OS. Ou/ D 1

4


Z
�

e�sjx�yj=c

jx � y j Ou.y/ dA.y/

(see [52, 99] for mapping properties of the single layer operator). Equation (85) is
the Fourier-Laplace domain Electric Field Integral Equation.

We now define OV .s/ W H�1=2.DivI� / ! H�1=2.CurlI� / by

OV .s/ Oj D � s
2

c2
˘T

OS
� Oj
�

C r�
OS.r� � Oj /: (86)

Suppose n � Og 2 H�1=2.CurlI� /. To determine a Galerkin method for the
Fourier-Laplace EFIE, we multiply (85) by a test function and integrate over � ,
and then integrate the gradient term by parts to obtain the problem of finding
Oj 2 H�1=2.DivI� / such that

s2

c2

Z
�

OS. Oj / � � dAC
Z
�

OS.r� � Oj /r� � �dA D �
Z
�

�0n � s Og � � dA; (87)

for all � 2 H�1=2.DivI� /. We shall show in the next section that (87) has a solution
for any s with s D ' C i! with ' � '0 > 0.
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We shall now proceed formally to derive the time domain electric field integral
equation. Consider first the problem of computing the time domain fundamental
solution of the wave equation denoted ˚.x;y ; t; �/ due to a point source positioned
at y and active at time � . Taking the inverse Laplace transform of the fundamental
solution given by (83)

˚.x;y ; t; �/ D ı.t � jx � y j=c � �/

4
jx � y j : (88)

Applying the inverse Laplace transform to OS, we obtain the retarded potential single
layer operator [52]

S.u/.x; t/ D 1

4


Z 1

�1

Z
�

ı.t � jx � yj=c � �/
jx � y j u.y ; �/ dA.y/d�

D 1

4


Z
�

u.y; t � jx � yj=c/
jx � yj dA.y/;

and we obtain the problem of finding j such that

� 1

c2
˘T S

�
@2j

@t2

�
C r� S.r� � j / D ��0n � Pg on � for t > 0: (89)

This is the time domain Electric Field Integral Equation. Note that since Pj is difficult
to read we spell out the time derivatives of j explicitly. We now define the time
domain operator

V.@t /j D � 1

c2
˘T S

�
@2j

@t2

�
C r� S.r� � j /

using the left hand side of (89) where the argument @t reminds us of the connection
to OV .s/.

Once we have determined a solution j to (89) we can use the time domain version
of (84)

�0 PE D � 1

c2
S

�
@2j

@t2

�
C rS.r� � j /

and obtain E by a further integration. Note that for x 2 � , we have �0 PET D
V.@t /j .

To directly analyze the time-doman EFIE we could try to use an energy argument.
Let the electromagnetic energy E be given by

E .t/ D 1

2

Z
R3

�
1

c2

ˇ̌̌
PE
ˇ̌̌2 C jr � E j2

�
dV;
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Note that in writing this energy we have used the assumption that m D ŒŒE �n		 D 0

so the electric field is globally in H.curlIR3/. Then, using integration by parts,

dE

dt
D
Z
R3

�
1

c2
PE � RE C r � E � r � PE

�
dV (90)

D
Z
D[D0

�
1

c2
RE C r � r � E

�
� PE dV �

Z
�

ŒŒr � E � n		 � PE dA:

Now recall that

ŒŒr � E � n		 D ��0ŒŒ PH � n		 D ��0 @j
@t
;

Thus, using the fact that �0 PET D V.j /, we obtain (recalling that the impedance of
free space is Z D p

�0=�0)

dE

dt
D Z2

Z
�

@j

@t
� V.@t /j dA:

Integrating both sides, for any 
 > 0, assuming the various terms are well defined

Z 1

0

e�2
t E .t/ dt D �0

Z 1

0

e�2
t

2


Z
�

@j

@t
� V.@t /j dAdt: (91)

Thus, if V.@t /j D 0 then E .t/ D 0, so E D 0 and thus j D 0, and so V is
injective. To obtain explicit norm estimates, we would need a trace inequality for
some norm of j in terms of E . This is the approach we will take in the next section,
but using the Fourier-Laplace transform.

For the wave equation, a fully time domain approach to TDIEs is considered
in [3].

The above energy analysis shows that:

1. The space of test functions for a space-time discretization of (87) needs to include
@j =@t .

2. “Coercivity” is found in unusual norms defined by the energy integral.

5 Numerical Analysis of the Time Domain EFIE

We now look in more detail at the Time Domain EFIE. Completing this analysis is
highly technical and we shall only sketch a few arguments in the next section (see
[17, 122] for details). Given a bounded domain D with connected complement, we
want to find the solution E D E.x; t/ of the model time domain exterior scattering
problem of finding E such that
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1

c2
RE C r � r � E D 0 in D0 D R

3 nD for t 2 .0; T /;
E � n D g on � WD @D0;

E D PE D 0 at t D 0 in D0;

where g is a tangential vector field (g D �E i � n where E i is a smooth solution
of Maxwell’s equations vanishing for t < 0 in the neighborhood of � ). In addition,
n is the unit outward normal to � .

In the previous section we outlined how to show that if x 62 � then E has the
representation

�0 PE .x; t/ D � 1

c2

Z t

0

Z
�

˚.x;y; t; �/ Rj .y ; �/ dA.y/ d�

C r
Z t

0

Z
�

˚.x;y ; t; �/.r� � j /.y; �/ dA.y/ d� (92)

for some surface current j where the kernel ˚ is given by (88).
Recalling that ˘T u D .n � u/ � n on � and letting r� denote the surface

gradient and r� � denote the surface divergence, we then gave a heuristic argument
that j satisfies the time domain Electric Field Integral Equation:

� 1

c2
˘T

Z t

0

Z
�

˚.x;y; t; �/ Rj .y ; �/ dA.y/ d�

C r�

Z t

0

Z
�

˚.x;y ; t;�/.r� � j /.y ; �/ dA.y/ d� D �0n � Pg (93)

for all x 2 � and for 0 < t < T . We now want to discretize and solve the time
domain EFIE.

5.1 Space-Time Petrov-Galerkin Methods

Historically time discretization of (93) has been a challenge due to stability
problems. There have been several successful solutions including Band Limited
Interpolation and Extrapolation (BLIFS) [129] and Space-Time Petrov-Galerkin
methods [1,17,51,60,73,118,119,122,133,134]. BLIFS have yet to be analyzed. The
most widely used method is the Petrov-Galerkin method, or a related collocation
method, and this is probably the current method of choice for scattering problems.

Motivated by (91) we see that a reasonable space time bilinear form for
determining j is to require that

Z 1

0

e�2
t
Z
�

� � V.j / dAdt D
Z 1

0

e�2
t
Z
�

� � n � Pg dAdt; (94)
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for some suitable choice of test and trial functions. In practice, on finite time
intervals, the term e�2
t is dropped [73]. For a space-time Galerkin method, we
could use space-time function spaces U and W and seek j 2 U such that

Z T

0

Z
�

� � V.j / dAdt D
Z T

0

Z
�

� � n � Pg dAdt 8� 2 W:

For example, in [51], j is approximated by

j h.x; t/ D
NTX
iD1

NSX
nD1

ji;nT
�t
i .t/�hn.x/

where the basis functions �hn are the usual lowest order Raviart-Thomas (RT)
divergence conforming elements on a triangular mesh of elements of maximum
diameter h on � that we shall describe shortly. For time discretization, the authors
of [51] use continuous piecewise k > 1 degree polynomial functions T �tj . Denoting
by Jn the vector of degrees of freedom at tn D n�t , and collocating the equation at
the timesteps while using the usual Galerkin approach in space, a convolution type
equation is obtained where the convolution appears due to the retarded potential.

In particular, suppose we know J1; � � � ; Jn�1 then Jn satisfies a discrete system
of the form

nX
kD0

TkJn�k D Fn

where Tk are matrices arising from the spatial Galerkin scheme and retarded
potential integrals, and Fn is a suitable data vector. Since T0 is invertible, we can
solve

T0Jn D Fn �
nX
kD1

TkJn�k

to obtain Jn. This process is termed “Marching On in Time” in the engineering
literature. At this stage algorithmic aspects, such as fast operator evaluation and
preconditioning, become very important (for example see [31, 51, 60, 118] for more
details).

The method we have sketched is used very successfully in practical applications
[51] (see e.g. Terrasse [122] for other suggestions). Some difficulties remain
however:

• Due to the retarded potential, basis functions are evaluated at delayed times via
the argument .t � jx � y j=c/ and so the region of integration may only cover
part of an integration element. This makes Gaussian integration rules inaccurate
and can lead to instability unless great care is exercised. These integrals must be
performed with special rules that respect the light cone. See Fig. 6.

• The need to handle integrals accurately on complicated domains suggests a
difficulty in handling curved patches or higher order elements.
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Wave encroachment Integration points 

Fig. 6 Because of the shift in the retarded potential, integrals must be performed over domains
where light cones intersect spatial elements. This gives rise to complicated integration regions that
are not accurately integrated by standard Gaussian quadrature (marked with dots above). Special
accurate integration rules are used for the various possible intersections (thanks to Prof. Daniel
Weile for this graphic)

5.2 Discrete Convolution

Given the difficulties of implementing higher order versions of the standard Petrov-
Galerkin approach, it is reasonable to ask if other approaches could be used. We
shall take the rather non-standard approach of discretizing the retarded potential
using a method called Convolution Quadrature (CQ) due to Lubich [95,96]. This has
been used successfully in elastodynamics [115] and has been extensively developed
for the acoustic wave equation [20–22, 75, 84, 86]. For Maxwell’s equations see
[124, 125], while the analysis presented here is from [40].

The main problem is that we need to discretize integrals of the formZ t

0

ı.t �R=c � �/�.�/ d�

where R D jx � y j. This integral has a highly singular kernel that requires � at
arbitrary past times. Introducing a time step �t D T=N , N > 0 and tn D n�t , we
seek an approximation of the form

Z tn

0

ı.tn � R=c � �/�.�/ d� �
nX

jD1
wn�j .R=c/�j

where �j D �.tj / and the kernels wj .R=c/ are to be computed. CQ is targeted
at integrals of this type. It is based on the Fourier-Laplace transform, and before
proceeding it is useful to recall two facts about the Fourier-Laplace transform:

• 4ı.� �R=c/ D exp.�sR=c/.
• Multiplication by s corresponds to time differentiation.

To see how to proceed, consider the discrete “ideally sampled” function

f .t/ D
1X
nD0

fnı.t � n�t/
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with
P1

nD0 jfnj < 1. Then, setting z D exp.s�t/ in the Fourier-Laplace transform
Of of f , we see that

. Of /.ln.z/=�t/ D
1X
nD0

fnz�n

for jzj > 1. So we can define, for an absolutely summable sequence f D ffng1
nD0,

the z-transform by

Z .f/.z/ D
1X
nD0

fnz�n

for all z with jzj large enough. The inversion formula is

fn D 1

2
i

I
C

Z .f/.z/zn�1 d z

whereC encloses the origin, sufficiently far away. The z-transform (discrete Laplace
transform) is a standard control engineering technique for converting analogue
filters to digital filters [109].

An important property of the z-transform is as follows. Suppose f0 D 0 and we
define the delay operator by .Df/n D fn�1 then

Z .Df/ D z�1Z .f/:

Notice also the product property of the z-transform and discrete convolution: if .w 	
�/n D Pn

jD0 wn�j .R=c/�j , n D 0; � � � then

Z .w 	 �/ D
1X
nD0

nX
jD0

wn�j .R=c/�j z�n D
1X
nD0

nX
jD0

wn�j zn�j .R=c/�j z�j

D Z .w/Z .�/:

To transform from an analogue filter (a function w.s/) to a digital filter (a
sequence w), we need to replace s (related to @t ) by a discrete counterpart. It is
plausible to use a difference scheme to approximate the time derivative, and because
of the delay property of the z-transform a finite difference operator corresponds to a
polynomial in z�1 in z-space. More generally, a multistep difference operator corre-
sponds to a rational function in z-space and in particular, it is usual to replace s by
ı.z/=�t where ı.z/ is defined by (63). For an alternative argument following Lubich
see [84].

As in Sect. 3, it turns out, see [96], that a sub-class of A-stable schemes, as given
in Theorem 5, provide the way to construct ı for Maxwell’s equations. This class
includes BE and BDF2. As an example we use BE. We are interested in w.t/ D
ı.t � R=c/, the kernel we wish to discretize, then following the above prescription
replacing s and expanding the resulting function we have
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Z .w/.z/ D exp

��R.1 � z�1/
c�t

�
D exp.�R=c�t/

1X
nD0

1

nŠ

�
R

c�t

�n
z�n:

So for BE, the weights corresponding to the shifted delta function are

w.0/n D exp.�R=c�t/
nŠ

�
R

c�t

�n
:

where the super-script .0/ records that these weights are for the zeroth derivative of
the delta function. Similarly for Ow.s/ D s2 exp.�Rs=c/ we can derive weights w.2/n
corresponding to the second derivative term in the time domain EFIE (these weights
turn out to be divided differences of w.0/n , see [125] for more details). The weights
w.0/n for BE are shown graphically in Fig. 7.

The strong form of the semi-discrete time domain EFIE is to find the j n in
H�1=2.DivI� /, n D 0; 1; 2; � � � , such that

nX
jD0

(
˘T

Z
�

�w.2/n�j .jx � y j=c/
4
c2jx � y j j j .y/ dA.y/

Cr�

Z
�

w.0/n�j .jx � y j=c/
4
jx � yj .r� � j j /.y/ dA.y/

)
D �0n � Pgn

for n D 0; 1; 2; � � � ; N (of course j n D 0 for n � 0).

Temporal Snapshot Spatial Snapshot

Fig. 7 Here we show plots of w.0/k .R=c�t/ for the BE scheme. The left panel shows temporal
snapshots fixing k and plotting as a function of scaled distance R=c�t . In the right panel we show
spatial snapshots fixing the scaled distance � D R=c�t and plotting as a discrete function of time.
Note that the weights smear out back in time. Reproduced from [125] with permission c�2008
IEEE
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To allow spatial discretization we use the following weak form: for each n we
seek j n 2 H�1=2.DivI� / such that

nX
jD0

Z
�

Z
�

(
w.2/n�j .jx � y j=c/
4
c2jx � y j j j .y/ � �.x/C w.0/n�j .jx � y j=c/

4
jx � yj (95)

.r� � j j /.y/.r� � �/.x/
o
dA.y/ dA.x/ D ��0

Z
�

n � Pgn � � dA;

for all � 2 H�1=2.DivI� / and n D 0; 1; 2; � � � ; N .
We now need to discretize in space. As usual we start with a mesh Th of elements

of maximum diameter h. We have assumed a polyhedral domain so each mesh patch
on the boundary (we will not describe rectangular elements here) is a triangle. We
of course assume that the mesh is regular and satisfies the meshing constraints in
Sect. 3.4 reinterpreted for a surface mesh.

We use pth order Raviart-Thomas elements in H.DivI� / using the basis from
[68]. To describe the pth order Raviart-Thomas (RT) element [30, 111] we first
need a new polynomial space. Let us assume that the triangle lies in the .x1; x2/
plane (otherwise we need to use a local Cartesian coordinate system in the plane of
the triangle) and let

Pp D .Pp/
2 C xPp

where here we understand Pp to be the space of polynomials in two variables x D
.x1; x2/ of maximum degree p. Note that p D 0 is the lowest order element unlike
for the Nédélec elements where p D 1 is the lowest order element.

Then, for p � 0, the RT subspace Yh � H.DivI� / is given by

Yh D ˚
u 2 H.DivI� / j u 2 Pp for all elements K 2 Th

�
:

Of course to be useful we need a set of degrees of freedom. Each triangle K 2 Th

defines a plane, and in that plane the edges e of the triangle have normal nKe . This
is a tangent vector to K � � . In the local coordinates of the element K we can
thus view the normal as having two components. Then the degrees of freedom of a
function u 2 Pp on an elementK are:

1. The edge integrals
R
e

u � nKe q ds for each q 2 Pp.e/ and all three edges e of K .
2. The area integrals

R
K

u � q dA for all q 2 .Pp�1/2.

These degrees are unisolvent, and provided we allow for incoming and outgoing
normals, the element isH.DivI� / conforming. For a smooth domain, the elements
have to be defined using a mapping that from a planar triangle to a curvilinear
triangle in the mesh [24]. Note that higher order elements on curved surfaces
require curved patches to preserve accuracy. The fully discrete time domain EFIE is
obtained by replacingH�1=2.DivI� / in (95) by Yh.

For theoretical aspects of the discretization of the EFIE in the Fourier frequency
domain, including finite element error estimates and comments on meshing curved
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boundaries, see [24, 35]. In the electrical engineering literature the lowest order
elements in the RT family are known as Rao-Wilton-Glisson (RWG) elements [110].

5.3 Convergence

The analysis of CQ rests on understanding the Fourier-Laplace domain EFIE and
spatially discretized EFIE. In the Fourier-Laplace domain the EFIE is to find Oj 2
H�1=2.DivI� / such that

bs. Oj ; �/ D �
Z
�

n � s Og � � dA; 8� 2 H�1=2.DivI� /

where

bs. Oj ; �/ D
Z
�

Z
�

exp.�sjx � yj=c/
4
c2jx � yj

�
s2 Oj .y/ � �.x/C

.r� � Oj /.y/.r� � �/.x/
�
dA.y/ dA.x/

for s D ' C i! where ' � '0 > 0.
Often s dependent norms are used to analyze the Fourier-Laplace frequency

domain problem. But, as we have seen, Theorem 5 needs s independent norms so
we use standard H�1=2.DivI� / and H�1=2.CurlI� / norms. The integral operator
OV .s/ W H�1=2.DivI� / ! H�1=2.CurlI� / defined in (86) is related to the

sesquilinear form bs by

D OV .s/�; �
E

D bs.�; �/ 8� 2 H�1=2.DivI� /

for any � 2 H�1=2.DivI� /. We want to show that OV .s/ is invertible. Given Oj 2
H�1=2.DivI� /, let Ou 2 H.curlIR3/ denote the field due to Oj computed via (84).
Then

0 D
Z
D[D0

s2

c2
Ou � s Ou C r� r� Ou � s Ou dV

D sjsj2
c2

kOuk2
L2.R3/

C sk r� Ouk2
L2.R3/

�
Z
�

ŒŒr� Ou � n		 � s OuT dA:

This is the Fourier-Laplace domain analogue of (90). Noting that �0s Ou D OV .s/ Oj
and ŒŒr� Ou � n		 D �0s Oj on � we have shown that

<
�
Z2

Z
�

s Oj � OV .s/ Oj dA
�

D '

�
1

c2
ks Ouk2

L2.R3/
C k r� Ouk2

L2.R3/

�
:
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This shows that OV .s/ is coercive. Let us define s Ov D � r� Ou and recall that Oj D
ŒŒOv � n		. Then 1

c2
s Ou D r� Ov and rewriting the above equality in terms of Ov we have

<
�
Z2

Z
�

s Oj � OV .s/ Oj dA
�

D '
�
c2k r� Ovk2

L2.D[D0/
C ks Ovk2

L2.R3/

�
:

so estimating crudely

<
�
Z2

Z
�

s Oj � OV .s/ Oj dA
�

� min.'; '3/
�
k r� Ovk2

L2.D[D0/
C kOvk2

L2.R3/

�
;

and using the trace inequality for functions in H.curl;D [D0/ we have

<
�
Z2

Z
�

s Oj � OV .s/ Oj dA
�

� C min.'; '3/kŒŒOv � n		k2
H�1=2.DivI� /

D C min.'; '3/k Oj k2
H�1=2.DivI� /:

For a more rigorous and careful analysis see [122]. We obtain the following theorem
(a slight modification of one in [122]):

Theorem 10. The sesquilinear form bs is continuous and coercive on

H�1=2.DivI� / �H�1=2.DivI� /:

In particular
jh OV .s/�; s�ij � C.'0/k�k2

H�1=2.DivI� /:

for all � 2 H�1=2.DivI� / where we recall that s D ' C i! with ' � '0 > 0.

Note that this theorem could now be used to give a precise description of the space-
time function spaces in which the solution j is to be found, see [122].

From this theorem we can conclude that

k OV .s/�1k � C jsj:

Applying Theorem 5, assuming g and sufficiently many of its time derivatives
vanish at t D 0, we have:

Theorem 11. Using BDF2 we have the semi-discrete error estimate that for 0 �
n�t � T ,

kj n � j .�; n�t/kH�1=2.DivI� / � C �t2
Z t

0

kn � g.6/.�/kH�1=2.CurlI� // d�

for any g such that Pg.0/ D Rg.0/ D � � � D g.5/.0/ D 0.



214 Q. Chen and P. Monk

Similarly, we obtain first order convergence for BE with

n � g 2 H5
' .RC;H�1=2.CurlI� //:

We can then prove convergence of the fully discrete scheme using RT elements
in space by verifying that Theorem 5 can be applied to the fully discrete integral
operator as in [96]. For details see [40].

More interestingly, let ı�tt denote the relevant backward difference operator.
Following similar arguments to those in Lubich [96] for the wave equation we have:

Theorem 12. [40] For smooth compatible data (see Theorem 11), the solution of
the boundary integral equation is equivalent to solving

1

c2
.ı�tt /

2En C r � r � En D 0 in D0;

En � n D gn on �;

for n D 0; 1; 2; � � � where En D 0 for n � 0 and where .ı�tt /
2 is the BDF2

difference operator (the same theorem also holds for BE).

This theorem connects the CQ EFIE method to the time stepping methods consid-
ered in Sect. 3 and implies that the CQ method is dispersive and dissipative. This is
unusual for an integral equation based method, and a potential drawback. Dispersion
and dissipation can be controlled to some extent by using implicit Runge-Kutta
methods that give, for example, fifth order in time convergence and very low phase
error [20, 124]. For dispersion error results, see Sect. 3.9 of this paper.

5.4 Numerical Examples

In our numerical examples, which are reproduced from [40, 125], the incident
electric field is taken to be

E inc .r; t/ D Op exp

2
4 1

2�2

 
t � r � Ok

c
� tp

!235 cos

"
2
f0

 
t � r � Ok

c

!#

where � D 6
2
B

, tp D 8� , and Op � Ok D 0, B is a nominal bandwidth, and f0 is a
center frequency.

The time step is related to the frequency parameters and oversampling rate  
according to

 D 1

2 .f0 C B/�t
:
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Here  is defined to give a measure of how the timestep compares to the minimum
sampling rate of two points per temporal wavelength at the upper end of the nominal
frequency band.

We start with results from [40] showing scattering from a sphere of diameter 1m
which is convenient because we can compute the solution at each frequency by an
infinite Mie series (see e.g. [104]). The center frequency f0 D 120MHz, band width
B D 40MHz and we use p D 1RT elements on curvilinear patches. In each case we
solve the time domain problem, then Fourier transform the results to get the solution
at several desired frequency (e.g. f0). We can compare the resulting computed radar
cross-section (RCS, see [18]) from the time domain code with one computed by a
frequency domain integral equation using the same spatial elements and spatial grid
at several frequencies. The difference between these solutions gives an indication of
time discretization error.

Figures 8 and 9 show the average magnitude of the surface current j as the wave
passes over the sphere. Figure 8 shows a slight long term instability in the solution
which we believe is related to the well-known low frequency instability of the EFIE
(this is allowed in our estimates). The low frequency instability can be removed by
several techniques and we used the loop tree decomposition [131]. Once this is done,
no growth in the solution is seen. This is even true for BDF3 which is not covered
by our theory (although an overshoot is visible for BDF3 in Fig. 9). All remaining
results for EFIE are computed with this stabilization.

Usually the RCS is important for antenna calculations and in Fig. 10 we show the
RCS of the sphere computed from the surface current found by CQ EFIE with BE,
BDF2 and BDF3 using the oversampling factor  D 5 and  D 10. We compared
to the results from a frequency domain EFIE scheme with the same spatial elements
on the same spatial mesh called the Method-of-Moments (MoM).

Fig. 8 The average of the
surface current j computed
by the CQ EFIE using p D 1

RT elements on curvilinear
patches of the sphere with
and without the stabilization.
Reproduced from [40] with
permission



216 Q. Chen and P. Monk

Fig. 9 The average of the
surface current computed by
BE, BDF2 and BDF3 with
stabilization. Reproduced
from [40] with permission

Fig. 10 The RCS with oversampling factor  D 5 and  D 10 for the sphere as a function of
elevation angle. Reproduced from [40] with permission

The theoretical convergence rate for time discretization for BE is first order and
for BDF2 is second order. This is verified in Fig. 11. The range of oversampling
factor for which convergence is seen is very large and reflects the stability inherent
in the A-stable marching methods.

In electrical engineering it is common to use the Combined Field Integral
Equation (CFIE) on closed surfaces like the sphere. Next we reproduce some results
from [125] using the CQ CFIE. In Fig. 12 we show the results for BDF2 using
analytically computed CQ coefficients, and coefficients computed by the discrete
inverse z-transform. Results are shown for 360 spatial degrees of freedom with
polarization p along the z-axis and direction of propagation d along the x-axis
(Fig. 13).

In Fig. 14 we show the time step convergence rate of the CQ CFIE by comparing
the CFIE RCS to a frequency domain RCS on the same grid. We see convergence
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Fig. 11 Relative least square
RCS error as a function of the
oversampling factor. The
convergence rates agree with
our theory for BE and BDF2.
Reproduced from [40] with
permission

Fig. 12 Results for 1m
conducting sphere using
CFIE. Reproduced from
[125] with permission,
c�2008 IEEE

Fig. 13 RCS computed via
the CFIE by several methods
with oversampling factor
 D 10. Reproduced from
[125] with permission,
c�2008 IEEE
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Fig. 14 Convergence of the
RCS for the CFIE. We see the
expected convergence rate for
all the methods shown over a
wide range of oversampling
factor. Reproduced from
[125] with permission,
c�2008 IEEE

Fig. 15 The NASA Almond meshed using flat patches (note that the drawing is not to scale) and
lowest order divergence conforming elements. Here we have 1140 spatial unknowns. We use a
wave traveling along the x-axis and polarized along the z-axis. The center frequency f0 D 0 and
B D 400MHz. Reproduced from [125] with permission, c�2008 IEEE

even for BDF3, though this is not predicted by our theory (but we have also seen
cases where BDF3 did not converge).

Finally, we show a more challenging example: the NASA almond shown in
Fig. 15. This geometry is a standard test case for CEM codes. Results are compared
to an RCS computed by FDTD in Fig. 16. The convolution quadrature CFIE gives
comparable results to FDTD provided the oversampling factor is large enough.

6 Conclusion

We have tried to describe some issues and methods of analysis for finite element
methods in computational electromagnetics. We emphasized analysis based on
energy estimates, and we took the rather non-standard approach of concentrating
on Fourier-Laplace methods, with implicit timestepping because we wanted to draw
parallels between the boundary integral equation and volume based methods.
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Fig. 16 Comparison of RCS for the almond at 150MHz (left) and 250MHz (right). Reproduced
from [125] with permission, c�2008 IEEE

Whatever method is used, CEM usually results in very large computational
problems with vast memory requirements. This survey has barely touched on solvers
or implementational aspects.

Future work in CEM will probably focus on more exotic media, and the inclusion
of small features (such as wires) in simulations.
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Maxwell’s equations for numerical Vlasov-Maxwell simulations, Math. Meth. Appl. Sci., 17
(2007), pp. 659–80.

24. A. BENDALI, Numerical analysis of the exterior boundary value problem for the time
harmonic Maxwell equations by a boundary finite element method. Part ii: The discrete
problem, Math. Comput., 43 (1984), pp. 47–68.
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Numerical Approximation of Large Contrast
Problems with the Unfitted Nitsche Method

Erik Burman and Paolo Zunino

Abstract These notes are concerned with the numerical treatment of the coupling
between second order elliptic problems that feature large contrast between their
characteristic coefficients. In particular, we study the application of Nitsche’s
method to set up a robust approximation of interface conditions in the framework of
the finite element method. The notes are subdivided in three parts. Firstly, we review
the weak enforcement of Dirichlet boundary conditions with particular attention to
Nitsche’s method and we discuss the extension of such technique to the coupling of
Poisson equations. Secondly, we review the application of Nitsche’s method to large
contrast problems, discretised on computational meshes that capture the interface
of discontinuity between coefficients. Finally, we extend the previous schemes to
the case of unfitted meshes, which occurs when the computational mesh does not
conform with the interface between subproblems.

1 A Review of Nitsche’s Method

1.1 Weak Enforcement of Boundary Conditions for Poisson’s
Problem

The aim of this section is to review some well known techniques to enforce
boundary conditions of Dirichlet type for second order problems. In particular, we
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will focus on the techniques that allow to enforce such boundary conditions within
the definition of the bilinear form associated to the variational formulation of the
problem at hand, rather than enforcing the constraints at the boundary in the search
space for the solution. We refer to such schemes as those using weak enforcement
of Dirichlet boundary conditions, in contrast to the case where Dirichlet boundary
conditions appear in the definition of the trial space, often addressed as strong
enforcement of boundary constraints. Concerning Neumann or mixed type boundary
conditions we observe that they are naturally embedded in the set up of the problem
bilinear form. Some alternatives for the treatment of natural boundary conditions
have been recently addressed in [34].

We start from the simplest model problem, that is Poisson’s problem with Dirich-
let boundary conditions, which can be straightforwardly formulated as follows. Let
˝ be a convex polygonal domain in R

d . Given f 2 L2.˝/ and g 2 H 1
2 .@˝/, find

Ou 2 H1.˝/ a weak solution of

(
��u D f; in ˝;

u D g; on @˝:
(1)

The most straightforward way to enforce Dirichlet type constraints at the
boundary is to embed the variational formulation into an Hilbert space whose
functions satisfy the boundary constraints. Given Rg 2 H1.˝/, a lifting of g on
the entire ˝ , we aim to find u 2 H1

0 .˝/ such that

a.u; v/ D F.v/� a.Rg; v/ 8v 2 H1
0 .˝/; (2)

a.u; v/ WD .ru;rv/˝ ;

F.v/ WD .f; v/˝ ;

where .�; �/˝ denotes the L2 inner product on ˝ . In the framework of the finite
element method, the enforcement of Dirichlet boundary conditions in the trial space
is also easily translated to the discrete level. Thus, for the approximation of classical
second order problems there is no need to consider alternatives. However, the
continuous expansion of computational analysis in several engineering disciplines
often requires to consider non standard problem formulations. Among many other
examples we mention problems that feature multiple domains, accounting for the
contact between different materials or fluids, problems with moving boundaries,
such as the ones arising from fluid-structure interaction analysis, problems set
on domains with very complex dendritic shapes, which are often encountered
in the application of computational analysis to life sciences. In these cases, the
strong enforcement of Dirichlet boundary or interface conditions may turn out to
be cumbersome when applied at the discrete level, while the weak treatment of
Dirichlet constraints, which allows to relax their satisfaction, may lead to numerical
schemes that are more efficient or easily implemented.
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An effective technique for weak enforcement of Dirichlet boundary constraints
is the application of Lagrange multipliers. The original idea, due to Babuška [3], is
based on the fact that the weak formulation of the Poisson’s problem is equivalent
to the minimisation among all functions v 2 H1

0 .˝/ of the energy functional

J.u/ D min
v2H1

0 .˝/
J.v/ (3)

J.v/ WD a.v; v/� 2F.v/ 8v 2 H1.˝/: (4)

The problem of finding the minimum u 2 H1
0 .˝/ can be seen as a constrained

minimisation problem, because the solution is sought in a subspace H1
0 .˝/ of the

natural space H1.˝/ where the functional is well defined. This convex constrained
minimisation problem can be translated into an unconstrained problem by resorting
to the Lagrangian functional accounting for the constraint u D 0 on @˝ . Let
H� 1

2 .@˝/ be the dual space of H
1
2 .@˝/ with the duality pairing h�; �i@˝ , then

L.v; �/ WD J.v/C h�; vi; 8v 2 H1.˝/; � 2 H� 1
2 .@˝/

is the Lagrangian functional and we look for a couple .u; �/, where the additional
unknown � is called Lagrange multiplier such that,

L.u; �/ D inf
v2H1.˝/

sup
�2H�1=2.@˝/

L.v; �/:

This is an instance of a saddle point problem, involving minimisation with
respect to one unknown and maximisation with respect to the other. Owing to
fundamental results of convex analysis, this constrained minimisation problem
admits the following equivalent formulation: setting b.�; v/ WD h�; vi@˝ and given
f 2 L2.˝/, find u 2 H1.˝/, � 2 H� 1

2 .@˝/ such that

(
a.u; v/C b.�; v/ D F.v/ 8v 2 H1.˝/;

b.�; u/ D b.�; g/ 8� 2 H� 1
2 .@˝/:

(5)

We notice that the new formulation with Lagrange multipliers involves an
additional unknown that at the discrete level increases the computational cost of
the problem. However, this is not only a drawback, because the unknown � has a
relevant physical meaning,

�C @nu D 0 in H� 1
2 .@˝/:

Anyway, the most relevant remark concerning the weak enforcement of Dirichlet
boundary condition with Lagrange multipliers is the fact that the corresponding
variational problem does not conform with the assumptions of Lax-Milgram’s
Lemma, which ensures well posedness of the usual weak formulation of Poisson’s
problem. The crucial point is that the introduction of Lagrange multipliers breaks
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the coercivity of the entire weak problem, whose well posedness holds true under
the following set of conditions,

a.�; �/ and b.�; �/ are bilinear and continuous;

coercivity: 9 ˛ > 0 s.t. a.v; v/ � ˛kvk21;˝
8v 2 Z WD fv 2 H1.˝/ W b.�; v/ D 0; 8� 2 H� 1

2 .@˝/g;

“inf-sup”: 9 ˇ > 0 s.t. 8� 2 H� 1
2 .@˝/; sup

v2H1.˝/nf0g
b.�; v/

kvk1;˝ � ˇ:

It is immediately evident that the verification of such conditions is a more
challenging task than the check of Lax-Milgram’s assumptions. In the case of
the variational formulation of problem (1) with weak enforcement of boundary
conditions they are satisfied, see for instance [35].

However, a fundamental problem appears when we look at the discretisation
by means of finite elements. With a conforming finite element discretisation, the
classical Lax-Milgram’s coercivity is automatically inherited at the discrete level,
but this is not the case for the aforementioned “inf-sup”condition. According to
the particular choices for the approximation spaces of H1.˝/ and H� 1

2 .@˝/ such
condition may not be verified at the discrete level. The correct formalisation of
this difficulty and the constructive development of suitable couples of discrete
spaces for the approximation of saddle point problems have been an important
milestone of finite element analysis in the last decades, see [9, 39, 40] among many
others.

More precisely, given the finite element spaces Vh � H1.˝/, �h � H� 1
2 .@˝/,

the application of Galerkin method to (5) consists in finding uh 2 Vh and �h 2 �h

such that �
a.uh; vh/C b.�h; vh/ D F.vh/ 8vh 2 Vh;
b.�h; uh/ D b.�h; g/ 8�h 2 �h

(6)

and proceeding similarly to the infinite-dimensional case, it has been proved that,
see [3], the discrete problem is well posed provided that

9 ˛h > 0 s.t. a.vh; vh/ � ˛hkvhk21;˝ (7)

8vh 2 Zh WD fvh 2 Vh s:t: b.vh; �h/ D 0; 8�h 2 �hg;

9 ˇh > 0 uniformly independent of h s.t. (8)

8 �h 2 �h; sup
vh2Vhnf0g

b.�h; vh/

kvhk1;˝ � ˇh:

Note that, since the search space for the solution uh has been extended, by
removing the strong enforcement of the constraints at the boundary, coercivity of
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a.�; �/ is lost in Vh � H1.˝/. For this reason, the Lax-Milgram’s theory does not
apply any more. Furthermore, the satisfaction of the discrete “inf-sup” condition is
not straightforward, for instance intuitive choices of discrete spaces such as linear
finite elements in ˝ for uh and linear finite elements on @˝ for �h lead to an
unstable discrete problem. For standard H1-conforming affine finite elements for
the approximation of u, a piecewise constant approximation for � is stable provided
that the multiplier space is defined on a boundary mesh with size 3h, with h being
the characteristic element size. For Crouzeix-Raviart approximation of u, piecewise
constant multipliers on the unrestricted boundary mesh are stable. Recalling the
equation �C @nu D 0 one can expect that the regularity for the Lagrange multiplier
space should be lower than the one for the primal unknown uh. Such rule of thumb
is also confirmed by observing that a generalisation of the previous stable couple of
elements is given by k-order H1-conforming finite elements on ˝ combined with
fully discontinuous .k � 1/-order finite elements on @˝ . We refer the interested
reader to [39–41] for a detailed analysis.

The relaxation of the strong enforcement of Dirichlet boundary conditions by
means of Lagrange multipliers leads to an accurate but expensive problem at the
discrete level. For this reason, some alternatives have been developed, with the
aim to perform the weak approximation of boundary conditions using a numerical
method that can still be cast in the framework of Lax-Milgram’s lemma.

Starting from the minimisation problem (3), the most straightforward strategy
consists in the application of a penalty method. The idea is to enrich the energy
functional J.v/ with an additional quadratic term that takes its minimum when the
Dirichlet boundary conditions are exactly satisfied. The magnitude of the additional
functional should be modulated by means of a constant factor that ensures that
the minimum of the augmented functional accurately, but not exactly, satisfies the
prescribed boundary conditions. Given " > 0 the penalty method consists in finding
u" 2 H1.˝/ such that

J".u"/ D min
v2H1.˝/

J".v/; (9)

J".v/ WD J.v/C 1

2
"�1kv � gk20;@˝ ; 8v 2 H1.˝/; (10)

whose Euler equations require to find u" 2 H1.˝/ such that

a.u; v/C "�1 .u � g; v/@˝ D F.v/; 8v 2 H1.˝/; (11)

which seem to share all the good properties of (2) with the additional advantage that
the natural search and test spaces are the entireH1.˝/. The application of Galerkin
method to (11) consists in finding uh;" 2 Vh � H1.˝/ such that

a.uh;"; vh/C "�1 .uh;" � g; vh/@˝ D F.vh/; 8vh 2 Vh; (12)
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where Vh could be any H1-conformal finite element space on ˝ . However, to ana-
lyze the efficiency of the penalty method, we remind that (12) has been developed to
approximate (2). In this respect, the first property to be considered is the consistency
of such an approximation scheme. Starting from (12) and performing integration by
parts on ˝ we obtain a residual,

R.uh;"/ WD .��uh;" � f; vh/˝ C .@nuh;"; vh/@˝ C "�1 .uh;" � g; vh/@˝ 8vh 2 Vh:

Replacing uh;" with u 2 H1
0 .˝/ such that ��u � f D 0 weakly in ˝ and u D g

on @˝ we observe that the residual does not vanish, i.e.

R.u/ D .@nu; vh/@˝ ¤ 0:

This proves that the penalty method is not strongly consistent with the original
weak Poisson’s problem. Then, the fundamental question is how to choose the
penalty parameter " with respect to the characteristic mesh size h and the finite
element polynomial order k so that uh;" converges to u with possibly optimal rate
as h becomes infinitesimal. We refer to [4, 7] for a thorough discussion and error
analysis of the penalty method, which will be briefly summarized later on. Anyway,
the penalty method has received a considerable attention in literature, in particular
for the approximation of problems where the computational mesh is not fitted to the
boundary, because the penalty term can be easily implemented also in this setting.

Among several interpretations, Nitsche’s method can be seen as a variant to
override the major drawback of the penalty method, restoring the strong consistency
of the discrete scheme with respect to (2). More precisely, we aim to find uh;" 2
Vh � H1.˝/ such that

a".uh;"; vh/ D F".vh/ 8vh 2 Vh; (13)

with

a".uh;"; vh/ WD a.uh;"; vh/ � .@nuh;"; vh/@˝ � s .@nvh; uh;"/@˝ C "�1 .uh;"; vh/@˝ ;

F".vh/ WD F.vh/C "�1 .g; vh/@˝ � s .@nvh; g/@˝ ;

where " plays the role of penalty parameter and s .@nvh; uh;" � g/@˝ with s 2
f�1; 0; 1g is an additional term that if s D 1 restores the symmetry of a".uh;"; vh/,
according to the fact that a.u; v/ is supposed to be a symmetric bilinear form.
However, all choices s D ˙1 and s D 0 are admissible and will be discussed later
on. Another fundamental part of the scheme is the selection of the penalty parameter
that will clearly emerge from the error analysis of the scheme.

Quoting R. Stenberg 1995, [45], “In view of our analysis it seems that the Nitsche
method is the most straightforward method to use. Unfortunately, this method seems
to be quite unknown. We think, however, that it would be worthwhile to explore it in
applications such as contact problems, for fictitious domain methods and for domain
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decomposition”. Indeed, Nitsche’s method has been recently applied to all of these
cases with success and the scope of the present work is to review those studies,
developing and discussing further extensions.

1.2 Analysis of Nitsche’s Method

Let Th be a family of shape regular and quasi uniform triangulations of ˝ . Let K
be a generic element of Th and let hK be its diameter (the radius of the smallest ball
containing this set) and the characteristic mesh size is h WD maxK2Th

hK . Without
loss of generality, we refer with our notation and choice of symbols to the case of
two space dimensions. In particular, we apply the subscript E to denote element
edges (or faces in three dimensions). Let Bh be the collection of mesh edges lying
on the boundary @˝ . On each mesh Th we set up a Lagrangian finite element space
of order k denoted as

Vh WD fvh 2 C0.˝/ W vhjK 2 P
k.K/ 8K 2 Thg:

We endow the finite element space with the following norms that are adapted to
the analysis of the scheme

kvk2˙";@˝ WD
X
E2Bh

"�1kvk20;E ; 8v 2 L2.@˝/;

kvk21;";˝ WD jvj21;˝ C kvk2";@˝ ; 8v 2 H1.˝/:

For the forthcoming analysis we remind of the following basic inequalities, for
which we refer to [10]. For simplicity of notation, we write a . b if there exists a
positive constant C independent of h such that a � Cb. The standard L2 Cauchy-
Schwarz inequality can be straightforwardly extended to,

.v;w/@˝ � kvk˙";@˝kwk�";@˝; 8v;w 2 L2.@˝/:

We will also make use of a generalised Poincaré inequality, also known as
Poincaré-Friedrichs inequality, which holds in H1.˝/ provided that an additional
term is introduced to enrich the H1-seminorm in order to account for constant
functions,

kvk1;˝ . jvj21;˝ C kvk2";@˝; 8v 2 H1.˝/:

Finally, the following discrete inequalities will be fundamental for the analysis
of Nitsche’s method,

h
1
2

Ekvhk0;E . kvhk0;K; hKkrvhk0;K . kvhk0;K ; 8vh 2 Vh: (14)
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The first inequality implies that there exists a positive constant CI such that

X
E2Bh

hEkvhk20;E � CI
X
K2Th

kvhk20;K : (15)

We notice that problem (13) consists of a standard Galerkin method using an
H1-conformal approximation space. Then, owing to Lax-Milgram’s lemma its well
posedness is ensured by consistency, stability and boundedness of a".�; �/ together
with linearity and boundedness of the right hand side.

Recalling that Nitsche’s method can be seen as a correction of a simple penalty
method in order to recover consistency, it is easy to verify that, given u 2 H2.˝/\
H1
0 .˝/ the weak solution of ��u D f in˝ with u D g on @˝ , then problem (13)

satisfies a".u � uh;"; vh/ D 0 for any vh 2 Vh, which states that Nitsche’s method is
strongly consistent for any admissible value of " and s.

In the framework of Lax-Milgram’s lemma, stability is equivalent to coercivity
of a".�; �/ that holds true if there exists ˛ > 0, uniformly independent of h, such that

a".vh; vh/ � ˛kvhk21;";˝ ; 8vh 2 Vh:

To investigate the validity of such property in the particular case s D 1, we
proceed as follows

a".vh; vh/ D jvhj21;˝ C kvhk2";@˝ � 2 .vh; @nvh/

� jvhj21;˝ C kvhk2";@˝ � 2kvhk";@˝k@nvhk�";@˝

� jvhj21;˝ C kvhk2";@˝ � ı�1kvhk2";@˝ � ık@nvhk2�";@˝
� jvhj21;˝ C kvhk2";@˝ � ı�1kvhk2";@˝ � ı

X
E2Bh

"jvhj21;E: (16)

In order to combine the first with the fourth term of previous inequality, it is
convenient to select " such that it is " is directly proportional to hE on Bh. As a
result of that, the norm kvk�";@˝ is equivalent to

kvhk2˙ 1
2 ;h;@˝

WD
X
E2Bh

h�1
E kvk20;E ; 8v 2 L2.@˝/

and we denote kvk21;h;˝ WD jvj21;˝ C kvk21
2 ;h;@˝

accordingly. Owing to inverse

inequality (14), we notice that it holds

kvhk2� 1
2 ;h;@˝

D
X
E2Bh

hEkvhk2E .
X
K2Th

kvhk2K . kvhk20;˝; 8 vh 2 Vh:

Given a positive constant � we select " D hE=� for notational convenience. Then,
the bilinear form a".�; �/ and the right hand side F".�/ should be modified as follows,
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ah.uh; vh/ WD a.uh; vh/ � .@nuh; vh/@˝ � s .@nvh; uh/@˝ C �
X
E2Bh

h�1
E .uh; vh/E ;

Fh.vh/ WD F.vh/C �
X
E2Bh

h�1
E .g; vh/E � s .@nvh; g/@˝ ;

and we aim to find uh 2 Vh such that ah.uh; vh/ D Fh.vh/ for any vh 2 Vh, which
precisely define the Nitsche’s method, except from the constant � . To conclude the
analysis of coercivity of ah.�; �/, we mimic the reasoning of (16) for the case s D 1

and exploiting (15) we obtain

ah.vh; vh/ & .1 � ıCI /jvhj21;˝ C .� � ı�1/kvhk21
2 ;h;@˝

such that the coercivity of ah.�; �/ holds true for any C�1
I > ı > 0 provided that

the penalty parameter � is such that � > ı�1 > CI . An estimate of constant CI for
piecewise affine approximation is provided in [31].

Boundedness of Nitsche’s method is equivalent to continuity of ah.�; �/. In view
of the forthcoming error analysis, we introduce the augmented norm

jjjvjjj21;h;˝ WD jvj21;˝ C kvk2C 1
2 ;h;@˝

C k@nvk2� 1
2 ;h;@˝

; 8v 2 �H2.˝/C Vh
�
:

Then, there existsM > 0 uniformly independent of h such that

ah.u; v/ � M jjjujjj1;h;˝kvk1;h;˝ ; 8u 2 �H2.˝/C Vh
�
; 8v 2 Vh:

The proof of such property follows from a combination of Cauchy-Schwarz
inequalities,

ah.u; v/

�juj1;˝ jvj1;˝ C �kuk 1
2 ;h;@˝

kvk 1
2 ;h;@˝

Ckvk 1
2 ;h;@˝

k@nuk� 1
2 ;h;@˝

C kuk 1
2 ;h;@˝

k@nvk� 1
2 ;h;@˝

.juj1;˝ jvj1;˝ C �kuk 1
2 ;h;@˝

kvk 1
2 ;h;@˝

C kvk 1
2 ;h;@˝

k@nuk� 1
2 ;h;@˝

C kuk 1
2 ;h;@˝

jvj1;˝
.jjjujjj1;h;˝kvk1;h;˝ ; 8u 2 �H2.˝/C Vh

�
; 8v 2 Vh:

Combining consistency, stability and boundedness, we are able to perform the
error analysis of Nitsche’s method. We remind that the finite element space Vh
satisfies a well known approximation property in the H1 norm, which can be easily
extended to the mesh dependent norm jjj � jjj1;h;˝ owning to inverse inequalities, in
particular for any v 2 HkC1.˝/,

inf
vh2Vh

jjjv � vhjjj1;h;˝ . hkkvkkC1;˝ :
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Then, Strang’s lemma allows us to conclude that given u 2 HkC1.˝/with k � 1

the weak solution of ��u D f in ˝ with u D g on @˝ and given uh the solution
of Nitsche’s method with � large enough, the following a-priori error estimate holds
true,

ku � uhk1;h;˝ . inf
vh2Vh

jjju � vhjjj1;h;˝ . hkkukkC1;˝; (17)

and in case of self-adjoint problems and s D 1, exploiting Aubin-Nitsche’s Lemma
one obtains,

ku � uhk0;˝ . hkC1kukkC1;˝: (18)

The optimality of approximation properties in the L2-norm show the advantage
of Nitsche’s method with respect to the penalty technique, because the latter scheme
turns out to be slightly suboptimal in this norm. Indeed, the analysis of [7] shows
that, provided u 2 H4.˝/, for piece-wise linear elements on polygonal domains
with perfectly fitted boundaries the optimal penalty choice is " � h

5
3 and it leads to

ku � uhk1;˝ . hkuk4;˝ ; ku � uhk0;˝ . h
5
3 kuk4;˝ :

For quadratic Lagrangian elements with the choice " � h2, it is possible to prove
that the penalty method satisfies the following error estimates,

ku � uhk1;˝ . h2kuk5;˝ ; ku � uhk0;˝ . h2kuk5;˝ ;

which, under the strengthened regularity assumption u 2 H5.˝/, are optimal for the
H1-norm case, but suboptimal when the convergence is measured in the L2-norm.

Conversely, the Lagrange multipliers method provides optimal convergence rates
with respect to h. More precisely, we assume that the spaces Vh; �h satisfy the
following approximation properties respectively,

inf
vh2Vh

kv � vhk1;˝ . hkkvkkC1;˝ ; inf
�h2�h

k� � �hk0;@˝ . hlC1k�klC1;@˝ ;

for regular functions v 2 HkC1.˝/; � 2 HlC1.@˝/. Then, provided that
conditions (7)- (8) hold true for Vh; �h, the following error estimates are satisfied,
see [39–41],

ku � uhk1;˝ C k� � �hk� 1
2 ;h;@˝

. hkkukkC1;˝ C hlC
3
2 k�klC1;@˝ :

Thanks to the property � C @nu D 0, the Lagrange multipliers method has the
advantage to simultaneously provide an approximation of the solution u and of its
flux at the boundary. For Nitsche’s method, the calculation of fluxes can be achieved
after the solution of the problem determining uh. It is interesting to observe that
an accurate flux reconstruction involves both the normal gradient of the numerical
solution and the penalty term. Indeed, multiplying (1) with homogeneous Dirichlet
boundary data g D 0 by a test function vh 2 Vh, integrating over ˝ and applying
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Green’s formula, we straightforwardly obtain

.ru;rvh/˝ � .@nu; vh/@˝ D .f; vh/ ; 8vh 2 Vh:

Subtracting Nitsche’s scheme from previous equation we obtain,

.@nu; vh/@˝ D .@nuh; vh/@˝ C s .@nvh; uh/@˝

� �
X
E2Bh

h�1
E .uh; vh/E C .r.u � uh/;rvh/˝

and by selecting vh D 1 we obtain the following flux reconstruction formula,

Z
@˝

@nu D
Z
@˝

@nuh � �
X
E2Bh

h�1
E

Z
E

uh:

1.3 Nitsche’s Method for Interface Problems

The aim of this section is to briefly illustrate the application of Nitsche’s method
to a prototype of the interface problem. This subject has been and still is an active
field of research, and the topics addressed here represent a summary of the seminal
works by Hansbo et al, [8, 31].

Our simplified multi-domain problem consists of two non overlapping polygonal
subdomains, ˝i; i D 1; 2, with interface � WD ˝1 \ ˝2. We aim to find ui 2
H1.˝i / that weakly satisfy,

8̂̂
ˆ̂<
ˆ̂̂̂:

��ui D f; in ˝i;

ui D 0; on @˝ \ @˝i ;

u1 � u2 D 0; on �;

@nu1 � @nu2 D 0; on �;

(19)

where n denotes a unit normal vector associated to � and @nu WD ru � n, where
n on � can be either chosen as n WD n1 or equivalently n WD n2. Such ambiguity
does not affect the application of Nitsche’s method. To proceed, we define jumps
and averages of quantities across the interface � . In particular, given a function
v W ˝1 [ ˝2 ! R, its jump across the interface is defined as ŒŒv�� WD v1 � v2,
according to the sign of the vector n, which is here selected as n D n1, while the
average is fvg WD 1

2
.v1 C v2/. Problem (19) can be rewritten more conveniently as

follows,



238 E. Burman and P. Zunino

8̂̂̂
<̂
ˆ̂̂̂:

��ui D f; in ˝i;

ui D 0; on @˝ \ @˝i ;

ŒŒu�� D 0; on �;

ŒŒ@nu�� D 0; on �:

(20)

As an instance of the rich family of mortar methods for interface problems, the
peculiarity of Nitsche’s scheme is to provide an approximation uh WD Œuh;1; uh;2�
of (20) that is non conforming with H1.˝/, as alternative to most popular domain
decomposition techniques, such as Dirichlet-Neumann splitting.

For the discretisation of (20) let Th;i be a family of shape-regular, quasi-uniform
triangulations of ˝i . Note that Th;i with i D 1; 2 may be non conforming at the
interface. Let Bh;i and Gh;i the collections of the faces/edges at the boundary and
at the interface respectively. We look for discrete functions Œuh;1; uh;2� 2 Vh WD
Vh;1 � Vh;2, where Vh;i are Lagrangian finite element spaces on Th;i .

A weak formulation of the multi-domain problem that is prone to discretisation
by Nitsche’s method is obtained by multiplying (20)a with a test function vi 2
H1˝i and applying integration by parts, such that

X
iD1;2

� Z
˝i

ru � rv �
Z
@˝i

ru � niv
�

D
X
iD1;2

� Z
˝i

ru � rv �
Z
@˝in�

ru � niv
�

�
Z
�

ŒŒru � nv��:

Interface conditions prescribing continuity of fluxes, i.e. ŒŒ@nu�� D 0, can be
enforced in the bilinear form with the help of the following algebraic identity
ŒŒab�� D ŒŒa��fbg C ŒŒb��fag, such that

ŒŒru � nv�� D ŒŒru � n��fvg C fru � ngŒŒv�� D fru � ngŒŒv�� C frv � ngŒŒu��

where we exploit ŒŒu�� D 0 owing to the strong consistency. For interface conditions
prescribing continuity of the solution at the interface, we exploit penalty,

X
iD1;2

� X
E2Gh;i

�

hE

Z
E

ŒŒu��ŒŒv�� C
X

E2Bh;i

�

hE

Z
E

uv
�

where � is the penalty parameter already introduced for the approximation of
Poisson’s problem. Then, the extension of Nitsche’s method to interface conditions
consists in finding uh WD Œuh;1; uh;2� 2 Vh WD Vh;1 � Vh;2 such that

ah.uh; vh/ D Fh.vh/; 8vh 2 Vh (21)

with ai .u; v/ WD .rui ;rvi /˝i for any ui ; vi 2 H1.˝i/ and
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ah.uh; vh/ WD
X
iD1;2

�
ai .uh;i ; vh;i /C

X
E2Gh;i

�h�1
E .ŒŒuh��; ŒŒvh��/E

�

� .fruh � ng; ŒŒvh��/� � .frvh � ng; ŒŒuh��/�
C
X
iD1;2

� X
E2Bh;i

�h�1
E .uh; vh/E � .ruh � ni ; vh/@˝in�

� .rvh � ni ; uh/@˝in�
�
;

Fh.vh/ WD F.vh/ D
Z
˝

f vh; since u D 0 on @˝;

where for simplicity we restrict the setting to the case s D 1. This turns out to be a
Galerkin method with an approximation space that is not H1-conformal on ˝ .
Indeed, uh belongs to the broken Sobolev spaceH1.˝1[˝2/ WD H1.˝1/�H1.˝2/

and the natural norms for the analysis of the problem read as follows,

kvk2˙ 1
2 ;h;Gh;i

WD
X
E2Gh;i

h�1
E kvk20;E ; 8v 2 L2.� /;

kvk21;h;˝1[˝2 WD
X
iD1;2

�
jvi j21;˝i C kvik21

2 ;h;Bh;i
C kŒŒv��k21

2 ;h;Gh;i

�
; 8vi 2 H1.˝i/:

Then, proceeding analogously to the case of a single domain, it is possible to
verify that, if (20) admits a regular solution u 2 H2.˝1 [ ˝2/ \ H1

0 .˝/, then
ah.u; vh/ D Fh.vh/ for any vh 2 Vh and ah.u � uh; vh/ D 0 for any vh 2 Vh.
Furthermore, ah.�; �/ is bounded in the norm k � k1;h;˝1[˝2 and also stable with a
constant uniformly independent on the mesh characteristic size h. As a result of that,
following the lines of Cea’s lemma, we obtain an a priori estimate equivalent to (17).

We finally notice that Nitsche’s multi-domain scheme can be easily decomposed
into local problems, relative to each subdomain, and coupling terms that transfer
information from one subdomain to others. In particular we write,

ah.uh; vh/ D
X
iD1;2

X
j¤i

h
ah;i .uh;i ; vh;i / � ch;ij .uh;j ; vh;i /

i
;

where each single term is defined as follows,

ah;i .uh;i ; vh;i / WD ai .uh;i ; vh;i /C ch;i i .uh;i ; vh;i /C bh;i .uh;i ; vh;i /;

ch;i i .uh;i ; vh;i / WD
X
E2Gh;i

�h�1
E .uh;i ; vh;i /E �

�
1

2
ruh;i � ni ; vh;i

�
�

�
�
1

2
rvh;i � ni ; uh;i

�
�

;
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ch;ij .uh;j ; vh;i / WD
X
E2Gh;i

�h�1
E

�
uh;j ; vh;i

�
E

C
�
1

2
ruh;j � ni ; vh;i

�
�

�
�
1

2
rvh;i � ni ; uh;j

�
�

;

bh;i .uh;i ; vh;i / WD
X
iD1;2

h X
E2Bh;i

�h�1
E .uh; vh/E � .ruh � ni ; vh/@˝in�

� .rvh � ni ; uh/@˝in�
i
:

Such decomposition suggests that, starting from problem (21), it is possible to
devise an iterative splitting strategy that aims to decompose the solution of a multi-
domain problem on ˝ into a sequence of local problems on ˝i . Indeed, owing to
the introduction of the following relaxation operators, where the relaxation effect
from one iteration to another is again obtained through a penalty term similar to the
one of (11),

s	h;i .uh;i ; vh;i I u.old/
h;i

/ WD
X
E2Gh;i

	h�1
E

�
uh;i � u.old/

h;i
; vh;i

�
E
;

s	h .uh; vhI u.old/
h / WD

X
iD1;2

s	h;i .uh;i ; vh;i I u.old/
h;i /:

The iterative method obtained by giving u0
h;i 2 Vh;i for i D 1; 2 and looking for

a sequence of approximations ukh;i for any k > 0 such that,

ah;i .u
k
h;i ; vh;i /C s	h;i .u

k
h;i ; vh;i I uk�1

h;i / � ch;ij .uk�1
h;j ; vh;i / D Fh;i .vh;i /; 8vh;i 2 Vh;i ;

(22)
turns out to be convergent to Œuh;1; uh;2� provided that the relaxation parameter
	 is large enough. Such technique has already been profitably applied to the
approximation of advection dominated elliptic problems in [17] as well as to mixed
problems in [19]. The convergence analysis of the iterative scheme is more easily
performed if we rewrite it as follows

ah.u
k
h; vh/C s	h .u

k
h; vhI uk�1

h / D Fh.vh/� rh.u
k
h � uk�1

h ; vh/; (23)

rh.u
k
h � uk�1

h ; vh/ WD
X
iD1;2

X
j¤i

ch;ij .u
k
h;j � uk�1

h;j ; vh;i /;

which is obtained from (22) by summing up the equations for i D 1; 2 and intro-
ducing the new terms ˙ch;ij .ukh;j ; vh;i /. Notice that rh.ukh � uk�1

h ; vh/ plays the
role of iteration residual and the interplay of s	h with rh is the key point to prove
convergence of iterations. To this purpose, we look at the iteration error, that is
wkh WD uh�ukh. By subtracting (23) from (21), we obtain an equation for wkh, precisely
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ah.w
k
h; vh/C s	h .w

k
h; vhI wk�1

h / D �rh.wkh � wk�1
h ; vh/:

Then, convergence of uk
h relies on the following inequality

˛kwkhk21;h;˝1[˝2 C s	h .w
k
h;w

k
hI wk�1

h / � jrh.wkh � wk�1
h ;wkh/j;

combined with the following estimates for s	h and rh,

rh.w
k
h � wk�1

h ;wkh/ D
X

iD1;2Ij¤i

h �
r.wkh;j � wk�1

h;j / � ni ;wkh;i
�
�

�
�
rwkh;i � ni ;wkh;j � wk�1

h;j

�
�

C
X
E2Gh;i

�h�1
E

�
wkh;j � wk�1

h;j ;w
k
h;i

�
�

i
;

X
iD1;2

h �
r.wkh;j � wk�1

h;j / � ni ;wkh;i
�
�

�
�
rwkh;i � ni ;wkh;j � wk�1

h;j

�
�

i

.
X

iD1;2Ij¤i

h
ı.kwkh;ik21;h;˝iCkwk�1

h;i k21;h;˝i /Cı�1kwkh;i � wk�1
h;i k21

2 ;h;�

i
;

X
iD1;2Ij¤i

X
E2Gh;i

�h�1
E

�
wkh;j � wk�1

h;j ;w
k
h;i

�
�

.
X
iD1;2

�
h
kwkh;i�wk�1

h;i k21
2
;h;�

CkŒŒwkh��k21
2
;h;�

i
Cs�h .wkh;wkhI wk�1

h /;

s	h .w
k
h;w

k
hI wk�1

h / D 	

2

X
iD1;2

h
kwkh;ik21

2 ;h;�
� kwk�1

h;i k21
2 ;h;�

C kwkh;i � wk�1
h;i k21

2 ;h;�

i
:

Together with suitable choices of ı and � , the previous estimates can be suitably
applied to obtain the following inequality

ˇkwkhk21;h;˝1[˝2 C 

X
iD1;2

kwkh;i � wk�1
h;i k21

2
;h;�

. �
X
iD1;2

h
kwk�1

h;i k21
2 ;h;�

�kwkh;ik21
2 ;h;�

Ckwk�1
h;i k21;h;˝i �kwkh;ik21;h;˝i

i
:

Summing up over the index k we conclude that there exists a constant C > 0

independent on k, but possibly depending on the initial state, such that

1X
kD1

kwkhk1;h;˝1[˝2 � C;

which implies convergence of the sequence ukh to uh in the natural norm.
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1.4 The Unfitted Version of Nitsche’s Method

The increasing complexity of geometrical configurations in applications addressed
by means of computational analysis has motivated the research of finite element
schemes capable to handle the case where the computational mesh is not fitted
to boundaries or interfaces. Instead, a physical domain with a possibly complex
shape is embedded into a computational domain with simple shape that is easily
partitioned into elements. Thanks to their flexibility in the treatment of Dirichlet
boundary conditions, the method of Lagrange multipliers and Nitsche’s scheme
have been profitably applied to such purpose. We report here simple examples for
such schemes, together with a brief discussion of their intrinsic drawbacks. We refer
to Sect. 3 for a detailed development of suitable stabilisation techniques to obtain
efficient and robust schemes for the approximation of problems on boundaries or
interfaces that do not fit with the computational mesh.

For the set up of a finite element method with unfitted boundary, we denote by˝
the physical domain, embedded into a computational domain˝T corresponding to
a computational mesh Th. The basic restrictive assumption for the correct definition
of unfitted boundary methods is the requirement that each element K 2 Th must
have a non vanishing intersection with ˝ and that the boundary @˝ is regular and
intersects each element boundary @K at most twice and each open edge E at most
once. We refer to Fig. 1 for an example of physical and computational domains. The
approximation space consists on linear Lagrangian finite elements on ˝T ,

Vh WD fvh 2 C0.˝T / W vhjK 2 P
1.K/ 8K 2 Thg:

Because of its simplicity, the penalty method turns out to be very attractive
to build up finite element approximations on meshes not fitting the boundary of
the physical domain. Under the assumption dist.˝;˝T / . h2, it is shown in
[7] that the application of the simple penalty term h�2 .uh � g; vh/@˝T

to a linear

Fig. 1 A sketch of the
physical domain, ˝, and the
computational domain ˝T ,
with the notation used to set
up the fictitious domain
method

W

W
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finite element approximation without boundary constraints is sufficient to recover a
discrete solution that satisfies the error estimates

ku � uhk1;˝ . hkuk4;˝ ; ku � uhk0;˝ . h
3
2 kuk4;˝ ;

for Poisson’s problem (or any other second-order self-adjoint variant) with regular
solution u 2 H4.˝/.

To extend the method of Lagrange multipliers to unfitted meshes, a major
difficulty is the construction of a suitable multiplier space for a boundary that
does not coincide with the edges of the mesh. An effective and simple solution
is studied in [26] where piecewise constant multipliers are applied on ˝ . If the
multiplier mesh is suitably coarser than the one relative to the primal unknown, the
application of piecewise linear approximations with piecewise constant multipliers
gives rise to a stable scheme. Unless the finite element spaces are chosen so that the
discrete inf-sup condition is satisfied, some stabilisation must be introduced. One of
the most popular stabilised methods was introduced by Hughes and Barbosa [5, 6].
In this case the difference between the discrete Lagrange multiplier and the discrete
normal derivative is penalised. Such a method was proposed in the fictitious domain
framework by Renard et al. [33]. Another recent stabilised method is based on
the idea of interior penalty, where the stabilisation acts on the Lagrange multiplier
alone and acts as a coarsening operator effectively penalising the distance of the
discrete Lagrange multiplier to a stable subspace. We give an example of this later
formulation taken from [15] below.

For the construction of such a space we assume that @˝ is a curved boundary
without corners (for the extension to the polygonal case we refer to [15]) and we
define the collection of all elements cut by the unfitted boundary as Ch WD fK 2
Th W K \ @˝ ¤ ;g, then the space of multipliers is

�h WD fvh 2 L2.Ch/ W vhjK 2 P
0.K/ 8K 2 Chg:

For the approximation of problem (1) on an unfitted mesh we aim to find a couple
.uh; �h/ 2 Vh ��h such that

(
a.uh; vh/C b.�h; vh/ D F.vh/ 8vh 2 Vh;
b.�h; uh/ � J.�h; �h/ D b.�h; g/ 8�h 2 �h;

(24)

where the definitions of a.�; �/ and b.�; �/ do not change with respect to (6), while
J.�h; vh/ is a stabilisation term proposed in [15] and defined as follows,

J.�h; �h/ D
X
E2EB

.�hŒŒ�h��; ŒŒ�h��/E ;

where EB is the set of edges or faces in Ch intersected by the boundary @˝ , the
jump of the piecewise constant function �h across such edges is denoted by ŒŒ�h��
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and � is a stabilisation parameter that should be selected large enough according
to the analysis performed in [15]. Problem (24) features a remarkable advantage
for unfitted boundaries, because the primal and the dual variables uh and �h
respectively, are defined on the same computational mesh Th, in contrast to a more
classical choice for Lagrange multipliers that needs an independent partition of the
boundary @˝ .

The application of Nitsche’s method to the case of unfitted boundary only
requires a minor modification with respect to the standard case. We notice that
the concept of edges or faces on the unfitted boundary is not properly defined
yet. Then, instead of defining the penalty term on each edges, we simply consider
�h�1 .uh; vh/� . As a result of that, Nitsche’s method for an unfitted boundary
requires to find uh 2 Vh such that ah.uh; vh/ D Fh.vh/ for any vh 2 Vh with

ah.uh; vh/ WD a.uh; vh/ � .@nuh; vh/@˝ � s .@nvh; uh/@˝ C �h�1 .uh; vh/@˝ ;

Fh.vh/ WD F.vh/C h�1 .g; vh/@˝ � s .@nvh; g/@˝ :

The main drawback of such a scheme is its lack of robustness with respect to the
position of the boundary. Indeed, an unfitted boundary� may cut the computational
mesh such that some intersections of elements with the physical domain are very
small and/or feature very large aspect ratios. In such cases, as illustrated in [12],
the linear system arising from Nitsche’s discrete problem may be ill posed. Let xk
be the vertexes of the computational mesh Th and let Pk be the patch of elements
relative to the vertex xk . Given a generic function vh 2 Vh, let v the vector of its
degrees of freedom endowed with the Euclidean norm kvk, namely these are the
values of vh in the vertexes xk for linear Lagrangian finite elements. We denote with
� a non-dimensional parameter that quantifies the size of the minimal intersection
of finite element patches with the physical domain. Precisely, we define

� D min
k

jPk \˝j
jPkj ;

where from now on j˝j will denote the d -dimensional volume of ˝ � R
d .

According to the analysis developed in [12, 43], there exists a function v�
h 2 Vh

such that
kv�
hk21;";˝ . hd�2�kv�k2:

Denoting with Ah the stiffness matrix related to Nitsche’s method, such an estimate
directly implies that its spectral condition number admits the lower boundK2.Ah/ &
��1h�2. For any boundary configuration such that � ! 0, matrix Ah becomes
ill posed and almost singular. In conclusion, the development of stabilisation
techniques to complement the unfitted Nitsche’s scheme and make it fully robust
with respect to any boundary configuration is a vivid field of research on which we
will concentrate in Sect. 3.
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2 A Modified Nitsche’s Method for Large Contrast Problems

In the previous section we have studied how to apply Nitsche’s method to enforce
interface conditions to couple second order problems of the same type on adjacent
domains. The purpose of this section is to extend this method to problems that
vary in character form one part of the domain to another. To be more precise,
we restrict to interface problems where the governing equations are similar on
adjacent subdomains, but they may be characterized by heterogeneous coefficients.
We refer to this large family of problems with the general name of large contrast
problems and we remark that they are encountered in relevant applications such as
computational mechanics, for the study of the deformation of heterogeneous bodies,
or geosciences, for the analysis of flow and mass transport in soils or aquifers.

Several authors have already successfully applied Nitsche’s method to the
discretization of large contrast problems. For the case of computational mechanics
we refer for instance to [31], while for the analysis of a generic singularly perturbed
advection diffusion problem we refer to [17]. In this section we focus on the
latter case, in particular we study the coupling of a second order scalar problem
where one of the subproblems features a singularly perturbed behaviour. Typical
model problems are advection / diffusion equations with heterogeneous diffusion
coefficients between subregions, i.e.

�r � ."ru/C ˇ � ru D f in ˝;

where " denotes the diffusivity of a given medium and ˇ is a given advective field,
which for simplicity we assume to be solenoidal. Provided that " is a positive and
bounded function, the advection / diffusion problem turns out to be well posed
owing to a straightforward application of Lax-Milgram’s lemma. In the case of
variable, possibly discontinuous diffusivity " the interest in rewriting the problem as
a multi-domain problem, subdividing regions with uniform properties, arises from
the observation that internal layers of the solution may appear in the neighbourhood
of the interfaces where coefficients are discontinuous. In several applications, such
as heat or mass transfer problems, the configuration of such layers determine the
fluxes exchanged between different bodies, and thus a correct approximation of
them is necessary.

2.1 Approximation of Large Contrast Problems with Locally
Vanishing Diffusion

We consider for simplicity two non overlapping polygonal subdomains, ˝i ; i D
1; 2, with interface � WD ˝1 [˝2 as an instance of a more general multi-material
problem depicted in Figure 2. Furthermore, without significant loss of generality,
we restrict to the case of uniform coefficients on each subregion. In particular, given
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Fig. 2 A general
multi-material problem (left)
restricted to a two-domain
case (right)

b

W2W1

e1 e2

G

two constant parameters "i > 0; i D 1; 2 and ˇ 2 ŒC 1.˝/�d with r � ˇ D 0,
jˇj ' 1, we aim to find ui such that

8̂̂
ˆ̂<
ˆ̂̂̂:

r � � � "irui C ˇui
� D fi ; in ˝i;

ui D 0; on @˝ \ @˝i ;

ŒŒu�� D 0; on �;

ŒŒ�"ru � n C ˇ � nu�� D 0; on �:

(25)

First of all, we notice that an internal layer may appear in the neighborhood of �
when "1 ¤ "2. This happens for instance if "1 	 "2 and the interface� (or part of it)
is an outflow region for the advective field ˇ. In this case the internal layer is located
upwind to the interface, in other words it is confined into the domain˝1. Moreover,
in the singularly perturbed limit case, i.e. "1 ! 0, "2 > 0 the internal layer becomes
thinner and stiffer, while the global solution u of (25) approaches a discontinuous
function. In conclusion, under these particular conditions, the solution of the limit
problem (25) with "1 ! 0 fails to be H1-conformal. Thus, we focus on Nitsche’s
technique as a discretization method for interface problems pursuing the idea that
only a H1 non-conformal discretization technique can robustly approximate the
problem under all possible conditions including the singularly perturbed limit.

For the discretization of problem (25) we could proceed in analogy with Poisson
problem, already addressed in Sect. 1.3. Since problem (25) is written in divergence
form, it is easy to extend the treatment of natural interface conditions of type
ŒŒ@nu�� D 0 to the case of the conormal derivative ŒŒ�"ru�nCˇ �nu��. We will see later
on that such an approach will only partially fulfill the objective to set up a robust dis-
cretization scheme for local singularly perturbed problems. To further improve the
resulting scheme, we look at interface conditions with a bias to domain decomposi-
tion methods. Observing that in the limit case "1 ! 0 the sub-problem in˝1 tends to
an hyperbolic problem coupled to an elliptic problem on ˝2, we consider the set up
of a new Nitsche method arising from a set of generalized interface conditions, intro-
duced in [24] to couple both elliptic and hyperbolic problems, which give rise to the
so called heterogeneous domain decomposition methods, see [42]. Our purpose is to
obtain a weak coupling scheme that inherits the robustness of heterogeneous domain
decomposition methods for the approximation of problems that vary in character
form one part of the domain to another. As a result of that, such a method will turn
out to be effective for problems whose solution features sharp internal layers.
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The starting point of such a procedure is the definition and analysis of the
coupling conditions between an advection / diffusion (elliptic) equation with a
purely advective model (hyperbolic problem). Setting "1 D 0; "2 > 0 in (25),
we identify ˝1 as the hyperbolic and ˝2 as the elliptic subregion. Let nhy be the
outward unit normal with respect to ˝hy and let @˝in WD fx 2 @˝hy W ˇ � nhy < 0g.
According to this definition, the interface can be split in two parts �in WD � \ @˝in

and the complementary �out WD � n �in. We look for uhy D u1; uel D u2 such that

8̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂:

r�.�"ruel C ˇuel / D f in ˝el ;

r�.ˇuhy/ D f in ˝hy;

�"ruel � nC ˇ � nuel D ˇ � nuhy on �;

uel D uhy on �in;

uel D 0 on @˝ \ @˝el ;

uhy D 0 on @˝ \ @˝in:

(26)

Comparing problem (25) with (26), we notice that interface conditions involving
mass fluxes are naturally extended to the limit case "1 D 0, because the diffusive flux
has disappeared from the right hand side of (26)c . Conversely, interface conditions
for the solution itself feature a singular behaviour in the vanishing viscosity case.
Indeed, continuity of the solution is only enforced on the inflow part of the interface,
referred to as the hyperbolic boundary, i.e. � \ @˝in, while on the complementary
outflow interface the solutions uel and uhy do not conform; that is the global
solution of the heterogeneous problem, u, can be discontinuous across this part of
the interface. Nitsche’s method turns out to be particularly effective to handle such
conditions in a general setting. On the one hand, as for the aforementioned Poisson
problem, the continuity of mass fluxes can be naturally handled by integrating by
parts the local governing equations and exploiting the algebraic inequality ŒŒab�� D
ŒŒa��fbg C ŒŒb��fag. On the other hand, the singular behaviour of the continuity of the
solution u can be addressed by a suitable manipulation of the interface penalty term.
Exploiting the flexibility of Nitsche’s technique, we aim to set up a discrete interface
problem that is strongly consistent with both problems (25), (26), resorting to a
robust finite element scheme for the local singularly perturbed limit case. To perform
this task we start from a unified formulation of continuity interface conditions for
problems (25) and (26) in a sufficiently general setting that allows the extension of
similar concepts to the case of fluid dynamics, like the case addressed in [19].

If "i were positive and quasi-uniform on˝ , the standard condition to enforce the
continuity of the solution would be,

	
1

2
jˇ � n� j C f"g



ŒŒu�� D 0 on � n @˝:

where we the factor
�
1
2
jˇ � n� j C f"g� appears to modulate the intensity of the

penalty term that weakly enforces the continuity requirement. In order to correct
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this condition in the case where "i significantly varies from region to region,
we introduce an heterogeneity factor, which quantifies the variation of " on the
interface, �.x/j� W � ! Œ�1; 1� such that

�.x/j� WD
8<
:

1
2

ŒŒ".x/��

f".x/g ; if f".x/g > 0;

0; if f".x/g D 0:

Then, starting from the case of uniform diffusivity considered above, we propose
the following generalized interface conditions for the continuity of the solution,

	
1

2
jˇ � n� j�1 � sign.ˇ � n� /'� .�/

�C f"g�1 � 
� .�/
�

ŒŒu�� D 0 on �; (27)

where '� .�/ and 
� .�/ are scaling functions that must satisfy the following
requirements in order to make sure that in the limit case the continuity of the solution
is enforced on � \ @˝in solely. Precisely, we assume that they satisfy j
� .�/j � 1,
j'� .�/j � 1 and,


� .�/ D 0 if �j� D 0;


� .�/ D 1 if �j� D ˙1;
'� .�/ D 0 if �j� D 0;

'� .�/ D 
1 if �j� D ˙1:
According to these properties, we further assume that 
� .�/ is a symmetric

function while '� .�/ is skew-symmetric.
It is straightforward to verify that when "1 D "2 and thus �."/ D 0, condition

(27) coincides with
�
1
2
jˇ � n� j C f"g�ŒŒu�� D 0. In the vanishing viscosity case let us

fix n D nhy as reference orientation of the interface. Then, we obtain

� D "hy � "el

"hy C "el
D �1

and by consequence '� .� D �1/ D 1. As a result of that, it turns out that, for
the elliptic / hyperbolic coupling, condition (27) is equivalent to

�
1 � sign.ˇ � n/

'� .�/
� D 2 on �in and

�
1 � sign.ˇ � n/'� .�/

� D 0 on �out , which coincides with
the continuity condition of (26).

In conclusion, to set up Nitsche’s method that suits problem (25) and (26) we
start from the following general formulation that combines both,

8̂̂
ˆ̂<
ˆ̂̂̂:

r � � � "irui C ˇui
� D fi in ˝i ;�

1
2
jˇ � ni j � 1

2
ˇ � ni C "

�
ui D 0 on @˝ \ @˝i ;

ŒŒ�"ru � n C ˇ � nu�� D 0 on �;�
1
2
jˇ � nj�1 � sign.ˇ � n/'� .�/

�C f"g�1 � 
� .�/
��
ŒŒu�� D 0 on �:

(28)
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2.1.1 Variational Formulation and Analysis

To proceed with the variational formulation of problem (28), propaedeutic to the
application of Nitsche’s coupling technique, we integrate the governing equations
on each sub-region and applying Green’s formula (including the advective terms)
we obtain,

X
iD1;2

h Z
˝i

�
"irui � rvi � ˇui � rvi

�C
Z
@˝i

� � "irui � nivi C ˇ � niuivi
�i

D
X
iD1;2

h Z
˝i

�
"irui � rvi � ˇui � rvi

�C
Z
@˝in�

� � "irui � nivi C ˇ � niuivi
�i

C
Z
�

ŒŒ�"ru � nv C ˇ � nuv��: (29)

The term ŒŒ�"ru � nv C ˇ � nuv�� allows us to weakly enforce continuity of the
conormal derivatives. However, to maintain strong consistency with problem (28),
it is necessary to generalize the technique already described for Poisson’s equation,
to the case of weighted averages,

fv.x/gw WD wi .x/vi .x/C wj .x/vj .x/;

fv.x/gw WD wj .x/vi .x/C wi .x/vj .x/;

with i D 1; 2; j ¤ i , where v is a regular function, x 2 � and the weights
necessarily satisfy w1.x/ C w2.x/ D 1. We say that these averages are conjugate,
because they fulfill the following identity,

ŒŒab�� D fagwŒŒb��C fbgwŒŒa��;

that can be exploited to obtain,

ŒŒ.�"ru � n C ˇ � nu/v�� D ŒŒ�"ru � n C ˇ � nu��fvgw C f�"ru � n C ˇ � nugwŒŒv��

D ŒŒ�"ru � nCˇ � nu��fvgw�f"ru � ngwŒŒv��Cfˇ � nugwŒŒv��:

First, the previous identity allows to weakly enforce the continuity of fluxes at the
interface, by setting ŒŒ�"ru � nCˇ � nu�� D 0. Second, it shows that the choice of the
averaging weights wi is not completely arbitrary. Indeed, to reproduce the interface
condition �"ruel �nCˇ �nuel D ˇ �nuhy at the level of the variational formulation,
that is to maintain strong consistency with problem (26), we have to make sure that
the term f"ru�ngwŒŒv�� vanishes when "1 D "hy D 0while fˇ �nugwŒŒv�� D ˇ �nuhyŒŒv��.
Such requirements correspond to the following constraint:

w1 D 1; w2 D 0 when "1 ! 0
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We conclude that, for a strongly consistent treatment of the interface conditions
with Nitsche’s method, not only the intensity of the penalty terms, but also the
averaging weights must suitably depend on the coefficients of the problem, and in
particular on their heterogeneity. We will discuss later on suitable expressions for
these problem dependent parameters.

Defining the following problem dependent penalty factors that modulate the
enforcement of interface and boundary conditions, respectively,


� ."; ˇ/ WD 1

2

�jˇ � nj � ˇ � n'� .�j� /
�C f"g�1 � 
� .�j� /�h�1

E

�
;


i;@˝."; ˇ/ WD 1

2

�jˇ � ni j � ˇ � ni
�C "�h�1

E ;

where � > 0 is a penalty parameter to be selected large enough in order to
ensure stability of the resulting scheme, the bilinear form corresponding to Nitsche’s
method for the discretization of problem (28) is assembled adding the following
penalty terms

X
iD1;2

� X
E2Gh;i


� ."; ˇ/

Z
E

ŒŒuh��ŒŒvh��C
X

E2Bh;i


i;@˝."; ˇ/

Z
E

uhvh
�
;

to the equation arising from (29) after weak enforcement of flux continuity.
Exploiting the same finite element approximation defined for Poisson’s problem,
see Sect. 1.3, we aim to find discrete functions Œuh;1; uh;2� 2 Vh WD Vh;1 � Vh;2,
where Vh;i are Lagrangian finite element spaces on Th;i relative to each subregion
˝i , such that

ah.uh; vh/ D Fh.vh/; 8vh 2 Vh;
with

ah.uh; vh/ WD
X
iD1;2

."iruh;i � ˇuh;i ;rvh;i /˝i

C
X
iD1;2

2
4 X
E2Gh;i


� ."; ˇ/ .ŒŒuh��; ŒŒvh��/E C
X

E2Bh;i


i;@˝."; ˇ/ .uh;i ; vh;i /E

3
5

� .f"ruh � ngw; ŒŒvh��/� � .f"rvh � ngw; ŒŒuh��/� C .fˇ � nuhgw; ŒŒvh��/�

� ."iruh;i � ni ; vh;i /@˝in� � ."irvh;i � ni ; uh;i /@˝in�
C .ˇ � niuh;i ; vh;i /@˝in� ;

Fh.vh/ WD F.vh/ D
Z
˝

f vh; if u D 0 on @˝:

Three remarks are in order. First, we restrict ourselves to homogeneous Dirich-
let boundary conditions, but the corresponding schemes for non-homogeneous
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Dirichlet or Neumann conditions can be obtained similarly. Secondly, we have
applied the symmetrization technique already addressed for Poisson problem.
For non symmetric problems such as advection / diffusion equations, also skew
symmetrization turns out to be an interesting option. We will not dwell here on a
detailed comparison of the two possibilities, but for a detailed discussion on the
benefits of the non symmetric option we refer the interested reader to [38, 44].
Finally, we remind that the bilinear form ah.�; �/ is not yet completely determined,
because the scaling functions '� .�/; 
� .�/ and the averaging weights wi still
require a precise definition. Since there are infinitely many expressions that satisfy
the aforementioned consistency requirements, we propose some criteria that allow
to identify an admissible and effective choice for such parameters.

According to the usual practice for advection / diffusion equations, we split the
bilinear form into its diffusive and advective components, denoted with a"

h.�; �/ and

a
ˇ

h .�; �/ respectively,

a"h.uh; vh/ WD
X
iD1;2

."iruh;i ;rvh;i /˝i

C
X
iD1;2

X
E2Gh;i

	
1

2
jˇ � nj C f"g�1 � 
� .�j� /�h�1

E

�

.ŒŒuh��; ŒŒvh��/E

C
X
iD1;2

X
E2Bh;i

�
1

2
jˇ � ni j C "�h�1

E

�
.uh;i ; vh;i /E

� .f"ruh � ngw; ŒŒvh��/� � .f"rvh � ngw; ŒŒuh��/�

� ."iruh;i � ni ; vh;i /@˝in� � ."irvh;i � ni ; uh;i /@˝in� ;

a
ˇ

h .uh; vh/ WD
X
iD1;2

h
� .ˇuh;i ;rvh;i /˝i C 1

2
.ˇ � niuh;i ; vh;i /@˝in�

i

C
�

fˇ � nuhgw � 1

2
ˇ � n'� .�j� /; ŒŒvh��

�
�

:

The aforementioned assumption that 
� .�/ is a symmetric function together
with the choice of exploiting the symmetric Nitsche formulation, makes sure
that the diffusion bilinear form a"

h.�; �/ respects the symmetry of the underlying

operator. Correspondingly, we want to make sure that aˇh .�; �/ is skew-symmetric,

i.e. aˇh .uh; vh/ D �aˇh .vh; uh/. Since the satisfaction of such property depends on
'� .�/, this is our criterion to determine the expression of this function. Exploiting
integration by parts, we observe that aˇh .uh; vh/ becomes skew-symmetric provided
that the following equality holds true for any test function vh,

fvhgw C 1

2
'� .�/ŒŒvh�� D fvhgw � 1

2
'� .�/ŒŒvh��;
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which is equivalent to define

'� .�/ WD �
wi � wj

�
in the particular case when the reference normal vector on the interface � , namely
n, points from˝i to ˝j . Moreover, the following identity holds true,

ˇ � nfvhgw � 1

2
ˇ � n

�
wi � wj

�
ŒŒvh�� D ˇ � nfvhg;

and we notice that the advective bilinear form becomes,

a
ˇ

h .uh; vh/D
X
iD1;2

h
�.ˇuh;i ;rvh;i /˝i C1

2
.ˇ � niuh;i ; vh;i /@˝in�

i
C .fˇ � nuhg; ŒŒvh��/� ;

which, together with the penalty term proportional to 1
2
jˇ � ni j, corresponds to the

treatment of advective fluxes through the interface by means of a standard upwind
method.

For the identification of a suitable function 
� .�/ and of the weights wi in terms
of " and ˇ, we formulate some technical requirements that will facilitate the proof
of coercivity of a"h.�; �/ in the forthcoming analysis of the scheme. First, we select

� .�/ such that,

f"g�1 � 
� .�/
� D f"gw:

Noticing that for any regular function v it holds fvgw D fvg � .wj � wi /ŒŒv�� and
reminding of the definition of the heterogeneity factor � D ŒŒ"��=.2f"g/, we conclude
that the aforementioned requirement for 
� .�/ corresponds to set,


� .�j� / D 1 � f"gw

f"g D .wj � wi /�:

Finally, the weights wi are conveniently selected in order to satisfy the following
equality for any test function v,

f"vgw D f"gwfvg;

that implies that 2f"gw D "iwi D "jwj being equivalent to set

wi D "j

"i C "j
; wj D "i

"i C "j
and f"gw D 2"i"j

"i C "j
:

We observe that the aforementioned requirement w1 D 1; w2 D 0 when "1 ! 0 is
satisfied and that the term f"ru � ngwŒŒv�� D f"gwf"ru � ngŒŒv�� vanishes together with
the diffusivity parameter.

With these particular choices of scaling functions and weights, the stability of the
discrete scheme, i.e. the consistency of its bilinear form, is readily proved. Indeed,
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it is sufficient to consider the diffusive (symmetric) part a"h.�; �/, because we have

shown that aˇh .�; �/ is skew symmetric and it does not contribute to the energy of the
system. First of all, we straightforwardly verify that,

a"h.vh; vh/ D
X
iD1;2

k" 12rvhk20;˝i

C
X
iD1;2

X
E2Gh;i

k�1
2

jˇ � nj C �f"gwh
�1
E

� 1
2 ŒŒvh��k20;E

C
X
iD1;2

X
E2Bh;i

k�1
2

jˇ � nj C "�h�1
E

� 1
2 vhk20;E

� 2 .f"rvhgw � n; ŒŒvh��/� � 2 ."rvh � n; vh/@˝ ;

where the first three terms on the right hand side represent the energy norm that is
applied for the stability and convergence analysis of the scheme. For the remaining
terms of a"

h
.�; �/, we exploit that f"gw D 2wi "i � 2"i to obtain the following upper

bound,

2 .f"rvhgw � n; ŒŒvh��/� C 2 ."rvh � n; vh/@˝

D
X
iD1;2

2 ."iwirvh;i � n; ŒŒvh��/� C 2 ."rvh � n; vh/@˝

�
X
iD1;2

X
E2Gh;i

h
ıhEk."i / 12 rvh;i � nk20;E C 1

ıhE
kf"g 12w ŒŒvh��k20;E

i

C
X
iD1;2

X
E2Bh;i

h
ıhEk" 12i rvh;i � nk20;E C 1

ıhE
k" 12 vhk20;E

i

.
X
iD1;2

ık" 12 rvhk20;˝i C 1

ı
kf"g 12w ŒŒvh��k21

2 ;h;�
C 1

ı
k" 12 vhk21

2 ;h;@˝
:

Then, a"
h.�; �/ turns out to be coercive for a sufficiently small ı and large � .

In [23] the scheme has been extended to Problem (25) with an anisotropic
symmetric positive definite diffusion tensor K W ˝ ! R

d�d replacing the scalar
diffusivity ", under the practical assumption that K is a constant on each sub-
region denoted with Ki . With the aforementioned choice of the scaling function

� .�j� / D .wj � wi /�, the diffusive part of the bilinear form becomes

aKh .uh; vh/ WD
X
iD1;2

.Kiruh;i ;rvh;i /˝i

C
X
iD1;2

X
E2Gh;i

	
1

2
jˇ � nj C �f�gwh

�1
E

�

.ŒŒuh��; ŒŒvh��/E
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C
X
iD1;2

X
E2Bh;i

�
1

2
jˇ � ni j C ��ih

�1
E

�
.uh;i ; vh;i /E

� �fnTKruh � ngw; ŒŒvh��
�
�

� �fnTKrvh � ngw; ŒŒuh��
�
�

� �
nTi Kiruh;i � ni ; vh;i

�
@˝in� � �

nTi Kirvh;i � ni ; uh;i
�
@˝in� ;

where the averaging weights are selected as follows

�i WD nTKin; wi D �j

�i C �j
; wj D �i

�i C �j
; and f�gw D 2�i�j

�i C �j
:

2.1.2 Stabilized Galerkin Methods for Singularly Perturbed Equations

The aforementioned Nitsche technique allows to robustly enforce interface con-
ditions among second order elliptic problems with discontinuous diffusion coef-
ficients, but such technique does not cure the intrinsic instability of any standard
Galerkin approximation applied to singularly perturbed equations. For this reason,
the previously developed scheme should be complemented with a stabilisation
technique acting on each subregion˝i where the local Péclét number is large.

It is not our aim to review here the wide area of numerical schemes devoted to
stabilisation of Galerkin method for transport dominated problems. We will simply
present two options that suitably fit the present discretisation framework and are
also related to Nitsche’s idea.

Following [17], the first stabilisation strategy that we consider is suited for locally
H1-conforming approximations. More precisely, we use standard Lagrangian finite
elements on each subdomain and obtain stability for high Péclét numbers by
adding a penalty term on the gradient jumps over element faces. Combined with
the previously presented Nitsche interface conditions, it will result in a robust
continuous / discontinuous approximation of large contrast problems, where the
discontinuous approximation functions are localized only along the discontinuities
of problem coefficients. Denoting by Eh;i the collection of interior edges belonging
to elements of Th;i , the stabilisation effect is then obtained by complementing the
bilinear form ah.�; �/ with the following additional terms on each ˝i ,

Ji .uh; vh/ WD
X
E2Eh;i

�
�ciph

2
Ekˇ � nkL1.E/ŒŒruh � nE��; ŒŒrvh � nE��

�
E
;

proposed and thoroughly analysed in [11, 13, 14], which consist of interior penalty
forms controlling the jumps in the gradient over interior faces of each sub-domain
˝i . Since the finite element approximation to which this stabilisation is applied
involves continuous functions, the resulting scheme has been called continuous
interior penalty (CIP). The main idea behind the stabilisation based on the jump in
the gradient between adjacent elements is to introduce a least squares control over
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the part of the convective derivative that is not in the finite element space. A key
result is the following property of the Oswald quasi-interpolant

��
h W fv2L2.˝/ W vjK 2 P

k.K/;8K 2 Thg ! fv 2 C0.˝/ W vjK2P1.K/;8K2Thg

��
h v.xj / WD 1

nj

X
fK W xj2Kg

vjK.xj /; 8v 2 fv 2 L2.˝/ W vjK 2 P
k.K/g;

where xj are the nodes of the local finite element meshes Th;i , and nj is the number
of elements containing xj as a node. Let ˇh be the piecewise affine Lagrange
interpolant of ˇ and let uh 2 Vh;i . Then there exists a constant �cip � c0 > 0,
depending only on the local mesh geometry, such that

kh 1
2 .ˇh � ruh � ��

h .ˇh � ruh//k20;˝i � Ji .uh; uh/:

Assuming that ˇ 2 ŒW 1;1.˝/�d with r � ˇ D 0, " 2 L1.˝/ and that the exact
solution of the multi-domain problem satisfies u 2 Hs.˝1 [ ˝2/ \ H1

0 .˝/ with
s � kC1 � 2 it has been shown in [17] that the following error estimate holds true,

jjju � uhjjj1;h;˝1[˝2 .
�
k"k 1

2

L1.˝/
H .0; u/C kˇk 1

2

L1.˝/
H .1; u/

�

where for any v 2 Hs.˝1 [˝2/\H1
0 .˝/

jjjvjjj21;h;˝1[˝2 WD
X
iD1;2

�
j"

1
2

i vi j21;˝i C k" 12i vik21
2 ;h;Bh;i

C kf"g 12w ŒŒv��k21
2 ;h;Gh;i

C Ji .v; v/
�
;

and

H .˛; u/ D
0
@ NX
iD1

X
K2Th;i

h2kC˛
K kuk2kC1;K

1
A

1
2

:

The CIP stabilisation is a suitable method when heterogeneities of the diffusion
coefficient appear at a scale that is much larger than the element size. Conversely,
if the bulk is so fractured that the diffusivity varies at the scale of single elements,
the following approach, based on a fully discontinuous approximation space, seems
to be more appropriate. The main idea consists in exploiting the robustness of
the proposed Nitsche’s method for the enforcement of transmission conditions,
combined with the observation that fully discontinuous finite elements provide
stable approximation of transport problems. This turns out to transform the pre-
vious continuous / discontinuous approximation of multi-domain (25) into a fully
discontinuous approximation where each element plays the role of a domain, giving
rise to an instance of the so called interior penalty discontinuous Galerkin methods,
[1]. Different variants of such a method have been applied to the discretization of
elliptic, possibly singularly perturbed problems, [2]. Because of the application of
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weighted averages, we will denote the scheme proposed here as weighted interior
penalty method (WIPG) and we will compare it with similar formulations such
as the symmetric interior penalty (SIPG) and the non symmetric interior penalty
(NIPG). We refer the interested reader to [2] for a broad review of literature and to
[22,23,47] for further details about the present approach. Consistently with the fact
that this new approximation scheme is stable also for transport dominated problems,
we notice that the continuous interior penalty term on the gradient jumps vanishes
since there are no interior faces in the element-based subdomains. To set up such
discontinuous Galerkin scheme we reformulate problem (28) at the level of single
elements K 2 Th,

8̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
:̂

�"�u C ˇ � ru D f in K;

ŒŒ�"ru C ˇu��@K � n@K D 0 on @K n @˝;
�h;E."; ˇ/ŒŒu��@K D 0 on @K n @˝;
�h;@˝."; ˇ/u D 0 on @K \ @˝;

and proceeding as for Nitsche’s method we look for uh 2 Vh WD fvh 2 L2.˝/ W
vhjK 2 P

k; 8K 2 Thg such that

a
.DG/

h
.uh; vh/ WD

X
K2Th

��
"ruh � ˇuh

�
;rvh

�
K

C
X
E2Eh

h
.fˇuhgw � nE; ŒŒvh��/E

� .f"ruhgw � nE; ŒŒvh��/E � .f"rvhgw � nE; ŒŒuh��/E

C
�
1

2
jˇ � nE j � 1

2
ˇ � nE.w�

E � wC
E /C �f"gwh

�1
E

�
.ŒŒuh��; ŒŒvh��/E

i

C
X
E2Bh

h�1
2
ˇ � nEuh; vh

�
E

� ."ruh � nE; vh/E � ."rvh � nE; uh/E

C
�
1

2
jˇ � nj C "�h�1

E

�
.uh; vh/E

i
D F.vh/;

where Eh is the collection of interior edges, nE denotes the reference unit normal
vector to each inter-element interface and w�

E; wC
E represent the weights relative to

the inner element .�/ and outer element .C/ neighbouring the edgeE, with respect
to the reference direction nE , as depicted in Fig. 3.

For the numerical validation of the robustness of weighted Nitsche’s transmission
conditions in presence of locally singularly perturbed problems, we will apply the
element-wise version.
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Fig. 3 A sketch of the
element setting for the
extension of Nitsche’s
method to a discontinuous
Galerkin scheme

nE

{e}
e+

e−

K

[[ε]]

Fig. 4 The domain ˝ and the subregions ˝1; ˝2 together with the computational mesh Th and
the advective field ˇ

2.1.3 Numerical Results and Discussion

To conclude this section, we will compare the efficiency of the proposed Nitsche
technique for singularly perturbed problems (WIPG) with the symmetric interior
penalty method (SIPG) and the non symmetric version (NIPG). Such methods are
obtained from WIPG by setting wĖ D 1

2
, not depending on the diffusivity parameter.

The latter NIPG variant has the advantage that it only requires the condition � > 0

to ensure stability. Consequently, we will set � D 2 10�2 for NIPG while 
 D 2

for SIPG and WIPG, to study how this parameter influences the accuracy when " is
vanishing.

To set up a test problem, featuring discontinuous coefficients, that allows us
to analytically compute the exact solution we consider a domain ˝ � R

2

corresponding to the rectangle Ő D .0; �=2/ � .1 � �=4; 1/ in polar coordinates
.�; r/. We split Ő into two subregions, Ő

1 D .0; �=4/ � .1 � �=4; 1/, ˝2 D
.�=4; �=2/ � .1 � �=4; 1/. Then the domain ˝ is split into ˝1 and ˝2, see Fig. 4,
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owing to the mapping from polar to Cartesian coordinates. The viscosity ".x; y/ is a
discontinuous function across the interface between˝1 and˝2, namely the segment
x � y D 0 with x 2 ..1 � �=4/ cos�=4; cos�=4/. Precisely, we will consider
a constant ".x; y/ in each subregion with several values of "1 in ˝1 and a fixed
"2 D 1:0 in˝2. Moreover, we set ˇ D Œˇx D �y.x2Cy2/�1; ˇy D x.x2Cy2/�1�,
f D 0 and the boundary conditions u.x; y D 0/ D 1, u.x D 0; y/ D 0 and
ru � n D 0 otherwise. Then, the exact solution of the problem on each subregion
Ő
1; Ő

2 can be expressed in polar coordinates as an exponential function with respect
to � independently from r . The global solution u.�; r/ is provided by choosing the
value at the interface � D �=4 in order to ensure the following matching conditions,

lim
�! �

4
�

u.�; r/ D lim
�! �

4
C

u.�; r/;

lim
�! �

4
�

�".�; r/@�u.�; r/ D lim
�! �

4
C

�".�; r/@�u.�; r/:

In the Cartesian coordinate system .x; y/, this is a genuinely 2-dimensional test
case, because the gradient of the solution is not constant along the interface where
" is discontinuous, and it decreases from the inner to the outer side of the domain
˝ . Furthermore, it is easy to see that when 0 ' "1 	 "2 D 1 the global solution, u,
features a sharp internal layer upwind to the discontinuity of ".

The results, depicted in Fig. 5 and also quantified in Table 1, give evidence
that the WIPG scheme performs better than standard interior penalty methods,
particularly in those cases where the solution is non smooth and at the same time
the computational mesh with h D 0:0654 is not completely adequate to capture the
singularities. From the analysis of Fig. 5, it is possible to identify three regimens
where the numerical methods behave differently. The first one consists of the
diffusive region, where all methods provide similar results. For the intermediate
value of " a transition takes place, because the computational mesh is not ade-
quate anymore to capture the sharp internal layer that originates upwind to the
discontinuity of ". Initially, the error relative to each method increases when " is
reduced, but this trend is inverted for the WIPG method solely, after the threshold
" D 10�6, while the error monotonically increases for SIPG and NIPG. Finally,
the smallest value of "1 corresponds to the hyperbolic regimen. In the limit case
"1 ! 0, the discontinuities of the global solution u are aligned with those of ".
However, we observe that the standard interior penalty schemes (SIPG or NIPG
equivalently) provide solutions that are almost continuous, as reported in Fig. 5. This
behaviour promotes the instability of the approximate solution in the neighborhood
of the boundary layer, because the computational mesh is not adequate to smoothly
approximate the high gradients across the interface. Conversely, the WIPG method
is more effective, thanks to the consistency with the elliptic/hyperbolic limit case,
because it replaces the part of the boundary layer with a jump that cannot be captured
by the computational mesh.
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Fig. 5 A comparison of Nitsche’s method with (WIPG) and without (SIPG) the application
weighing technique
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Table 1 The L2 norm error for WIPG, SIPG, NIPG for different values of "1 D 2�i and a fixed
value of "2 D 1 in the test problem depicted in Fig. 4

ku � uhkL2 i "1 D 2�i SIPG NIPG WIPG

Diffusive region 0 1 0.00101853 0.00123078 0.00101853
�1 0.5 0.00123921 0.00134626 0.00121052
�2 0.25 0.00200825 0.00167944 0.00182993
�3 0.125 0.00393471 0.00333855 0.00315595

Transition region �4 0.0625 0.0079422 0.00703319 0.00532886
�5 0.03125 0.0144257 0.0130603 0.00780319
�6 0.015625 0.0224454 0.0207315 0.00908097
�7 0.0078125 0.0307374 0.0289709 0.00831401
�8 0.00390625 0.0380299 0.0363924 0.00655286

Hyperbolic region �9 0.00195312 0.0429129 0.0414616 0.0049148
�10 0.000976562 0.0452834 0.0440218 0.00329726
�11 0.000488281 0.0463316 0.0452286 0.00204598
�12 0.000244141 0.0468732 0.0458791 0.00143603
�13 0.00012207 0.0471628 0.0462332 0.00122399

3 Stabilized Nitsche’s Method for Unfitted Boundaries
and Interfaces

Fictitious domain methods turn out to be particularly effective for the approximation
of boundary value problems on domains of complex shape and for free interface
problems. The parametric description of the boundary with the subsequent mesh
generation and the application of interface tracking techniques represent difficulties
for the application of finite element methods. The idea of fictitious domain schemes
consists in embedding the physical domain into a larger domain with reasonably
simple shape. However, as discussed in [36], to preserve the accuracy of the selected
finite element method, it is necessary to restrict the integration of the discrete
variational formulation to the physical domain.

To illustrate the limitations of standard finite element approximations of unfitted
interface problems, let us split the interval ˝ WD .0; 1/ in two parts ˝1 WD
.0; � /; ˝2 WD .�; 1/ and look for u.x/ such that,

8̂̂
ˆ̂<
ˆ̂̂̂:

�"iu00
i D 1 in ˝i;

u1 D u2 on �;

"1u0
1 D "2u0

2 on �;

u1 D u2 D 0 on @˝:

Let us approximate u with piecewise linear finite elements on a uniform partition of
width h. For any positive "1 ¤ "2 we have u 62 H2.˝/. Then optimal convergence
cannot be expected. In particular, as confirmed by numerical results reported in
Table 2, sub-optimal convergence is verified if we select � such that it never
coincides with a vertex of the partitions underlying the finite element space.
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Table 2 Convergence rate of the error ku�uhk0;˝ of linear finite elements for an unfitted interface
problem. The physical domain ˝ D Œ0; 1� is divided in two subdomains ˝1 D Œ0; 1

p

5
� and ˝2 D

Œ 1
p

5
; 1�. The exact solution is of the form ui .x/ D � x2

2"i
C bi x C ci . The coefficient bi and ci are

chosen such that the functions ui satisfy the boundary conditions and the continuity conditions at
interface

h "1 D "2 D 1 "1 D 1; "2 D 10�2

5:00 � 10�2 2:28� 10�4 4:60� 10�2

2:50 � 10�2 5:70� 10�5 3:49� 10�2

1:25 � 10�2 1:42� 10�5 3:23� 10�2

6:25 � 10�3 3:56� 10�6 3:15� 10�2

3:12 � 10�3 8:91� 10�7 2:92� 10�2

p 1.99 0.15

Since the boundary and the interface do not necessarily conform with the mesh,
an optimally convergent finite element method must be defined on sub-elements. In
the case of interface problems, this additional difficulty can be taken into account
by enriching the approximation space with additional basis functions that lie on a
portion of the mesh elements. Such a technique is often called the extended finite
element method (XFEM) and has been successfully applied to different applications
such as crack propagation problems [21] and free interface problems in fluid
dynamics [27, 43].

The approximation of elliptic problems with unfitted boundary or interface has
already been investigated in recent works, we mention for instance [18, 20, 25, 32,
37]. The discretisation schemes that we consider are closely related to [28, 30],
where an extended finite element method has been combined with a Nitsche
technique to enforce the matching conditions between contiguous sub-regions.
However, the application of Nitsche’s method for the treatment of boundary or
interface conditions may give rise to numerical instabilities in presence of small
element cuts. More precisely, it has been observed in [12,15,16,43] that the stability
and the condition number of the finite element scheme depend on how the interface
cuts the computational mesh. To cure them, the application of interior penalty
stabilisation techniques has been successfully considered in a sequel of papers
[12, 15, 16]. The idea of such stabilisation methods is to introduce in the discrete
formulation a minimum of artificial diffusion to ensure the positivity of the discrete
bilinear form for any configuration of the boundary or interface.

For interface problems, the need to introduce additional finite element basis
functions lying on sub-elements to restore optimal convergence represents a second
source of instability. Following the approach proposed in [43], we study the H1

stability of the extended finite element space in the case of piecewise linear
approximation. We analyse the condition number of the corresponding mass and
stiffness matrices in presence of small sub-elements and we conclude that their
spectrum is affected by how elements are cut.

Finally, we will apply Nitsche’s method to enforce transmission conditions in the
extended finite element space for interface problems governed by symmetric elliptic



262 E. Burman and P. Zunino

equations with large contrast between diffusion coefficients. We aim to develop a
scheme that is robust with respect to the configuration of sub-elements as well as
the heterogeneity of the diffusion coefficients.

3.1 The Unfitted Nitsche Method for Boundary Conditions

We recall and analyse the Nitsche’s method for the approximation of boundary
conditions on a computational mesh that does not fit the physical domain. Let T 0

h be
a given admissible computational mesh whose elements entirely cover the physical
domain ˝ . We also assume that all elements of T 0

h have non-empty intersection
with ˝ . Let ˝T be the domain covered by T 0

h . To improve this possibly coarse
approximation, we will also consider a family of shape regular, quasi-uniform
triangulations, Th, built by recursive refinement of T 0

h , omitting any elements
whose intersection with ˝ is empty. As previously mentioned in Sect. 1.4, to keep
the analysis of the schemes as simple as possible, we consider linear Lagrangian
finite elements

Vh WD fvh 2 C0.˝T / W vhjK 2 P
1.K/ 8K 2 Thg:

Referring to Poisson problem (1) with homogeneous boundary conditions i.e.
g D 0, Nitsche’s method requires to find uh 2 Vh such that ah.uh; vh/ D Fh.vh/ for
any vh 2 Vh with

ah.uh; vh/ WD a.uh; vh/ � .@nuh; vh/@˝ � s .@nvh; uh/@˝ C �h�1 .uh; vh/@˝ ; (30)

Fh.vh/ WD F.vh/:

where s D ˙1 gives rise to the symmetric or non symmetric formulations.
Although formally equivalent to the case of fitted boundary, the treatment of the

unfitted case hides some additional difficulties for the set up of the discrete problem.
Firstly, for the assembly of mass and stiffness matrices, integrals over cut

elements must be computed, such as

Z
K\˝

uh � vh;
Z
K\˝

ruh � rvh;

where K \ ˝ is a portion of a triangle or a tetrahedron. In two or three space
dimensions, K \ ˝ may not be a simplex. For these reasons, the computation of
these integrals requires particular attention, and the fact that jK \ ˝j may vanish
affects the condition number of mass and stiffness matrices, as it will be discussed
in the forthcoming sections.
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Secondly, the assembly of boundary terms involves integrals over manifolds that
do not coincide with edges or faces. To automatically perform such calculations,
some approximation of the boundary configuration is necessary. For instance, the
boundary can be represented by means of the level set of a discrete distance function.
This means that there exists a discrete implicit surface (or hyper-surface when
d D 3) 'h 2 Vh that defines @˝ as its zero level set. Coherently with the notation
adopted in the previous sections, we apply here a two-dimensional notation and we
denote quantities related to element edges of faces with E.

We denote with Ch WD fK 2 Th W jK \ @˝jRd�1 > 0g a crust of elements
with non vanishing intersection with the boundary, measured in R

d�1 topology.
Assuming that each element K is an open set, with the piecewise linear description
of the boundary we observe that for all K 2 Ch the set @˝ \ @K consists on two
points (in the two-dimensional case) and the portion of @˝ that connects them is a
straight line (or a planar surface in three dimensions). An example is illustrated in
Fig. 1. If @˝ lies on an entire edge of an element K , then such element does not
belong to Ch. We denote with E@˝ WD K \ @˝ the cut edges and with B@˝

h their
collection, see Fig. 1. For a fixed regular mesh Th, the size of any E@˝ 2 B@˝

h

is upper bounded by the mesh characteristic size, h, but it can become arbitrarily
small. For this reason, the penalty term cannot be scaled with respect of the size
of edges or faces lying on @˝ , but it has been taken inversely proportional to the
characteristic mesh size.

In order to analyse how the configuration of the boundary with respect to the
mesh affects the stability of the scheme, we introduce the following indicator,

�0 WD min
K2Ch

jK \˝j
jKj ;

that corresponds to the minimum relative intersection of an element with the
physical domain ˝ . Since the unfitted Nitsche’s method requires to evaluate
integrals over cut elements or cut edges, we expect that the parameter �0 may affect
the stability properties of the scheme.

Before addressing the analysis of the present unfitted Nitsche method, it is
useful to recall some norms and related discrete inequalities as the basis for the
forthcoming investigation. Concerning the norms, we notice that the definition of
k � k˙ 1

2 ;h;@˝
should be adapted to the present scheme as follows,

kvk˙ 1
2 ;h;@˝

WD h� 1
2 kvk0;@˝ ;

while the definition of the energy and augmented norms is unchanged,

kvk21;h;˝ WD jvj21;˝ C kvk21
2 ;h;@˝

;

jjjvjjj21;h;˝ WD kvk21;h;˝ C k@nvhk2� 1
2 ;h;@˝

:
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Exploiting inverse inequalities we easily prove that,

kvhk� 1
2 ;h;@˝

D
X

E@˝2B@˝
h

hkvhk2E@˝ .
X
K2Ch

kvhk2K . kvhk20;˝T
;

which is not satisfactory for our purpose, because the right hand side involves the
entire computational domain and not the physical domain ˝ solely. Proceeding
similarly, the desired right hand side can be obtained,

kvhk� 1
2 ;h;@˝

. max
K2Ch

jKj
jK \˝j

X
K2Ch

kvhk20;K\˝ . .� 0/�1kvhk20;˝ : (31)

Since, given ˝ , it is possible to construct a triangulation Th with an arbitrarily
small �, (31) shows that unfitted Nitsche’s method is not robust with respect to the
configuration of the boundary. Precisely, we say that a scheme is robust with respect
to the parameter � if the spectrum of the discrete problem admits lower and upper
bounds that are independent on the parameter itself.

Our main purpose is to study how small cut elements affect the fundamental
properties of the numerical scheme. We perform such analysis simultaneously for
symmetric (s D 1) and non symmetric (s D �1) schemes. To quantify the stability
of the scheme, we look at the coercivity of the bilinear form and we exploit (31) to
observe that

ah.vh; vh/ D jvhj21;˝ C �kvhk21
2 ;h;@˝

� .s C 1/ .@nvh; vh/@˝

&
�
1 � .ı1 C ı2.s C 1//.�0/�1

�jvhj21;˝ C ı1k@nvhk2� 1
2
;h;@˝

C �
� � .s C 1/ı�1

2

�kvhk21
2 ;h;@˝

;

where ı1; ı2 are positive constants to be suitably chosen.
Three conclusions come out immediately. For the non symmetric case, i.e. s D

�1, coercivity of ah.�; �/ holds in the energy norm k � k1;h;˝ with ı1 D 0 and for
any positive ı2 and � . As a result of that, the stability estimate of the non symmetric
variant is robust with respect to the configuration of the interface. This is never true
for the symmetric case because s C 1 D 2. If we analyse coercivity in the norm
k � k1;h;˝ , we can set ı1 D 0, but to make sure that the first term on the right hand
side is positive it is necessary to satisfy ı2 . �0. Such a restriction entails that � &
.�0/�1, which is unsatisfactory because the penalty term depends on the interface
configuration and it becomes arbitrarily large for small element cuts. Finally, neither
the non symmetric nor the symmetric cases feature robust stability properties in the
augmented norm jjj�jjj1;h;˝ . Indeed, coercivity of ah.�; �/ in this norm can be only
proved under the condition ı1 . � 0, but in this case the control on the additional
term ı1k@nvhk2� 1

2 ;h;@˝
is lost for small element cuts.
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Concerning the boundedness of the bilinear form for discrete test functions, the
consistency term .@nuh; vh/@˝ must be controlled by means of the energy or the
augmented norms. To this purpose, the choice of the norm makes a significant
difference. Since jjjvhjjj1;h;˝ directly controls k@nvhk� 1

2 ;h;@˝
, owing to a Cauchy-

Schwarz inequality it is straightforward to conclude that

.@nuh; vh/@˝ � k@nuhk� 1
2
;h;@˝ kvhkC 1

2
;h;@˝ � jjjuhjjj1;h;˝ jjjvhjjj1;h;˝ :

Conversely, if we perform our analysis in the energy norm k � k1;h;˝ , resorting to
inverse inequality (31) is necessary to obtain an upper bound of the consistency
term,

.@nuh; vh/@˝ � k@nuhk� 1
2 ;h;@˝

kvhkC 1
2 ;h;@˝

. .� 0/�1kruhk0;˝ kvhkC 1
2 ;h;@˝

. .�0/�1kuhk1;h;˝ kvhk1;h;˝ :

In the latter case, however, the fact that the continuity constant is proportional to
.� 0/�1 spoils the robustness of the scheme.

In conclusion, such analysis shows that both the symmetric and non symmetric
variants of the unfitted Nitsche’s method are unsatisfactory if we aim to set up a
scheme that is fully robust with respect to the configuration of the computational
mesh with respect to the boundary and the possibility to produce small element cuts.
For this reason, in the forthcoming section we will propose a stabilisation technique
to override this limitation of Nitsche’s method.

3.2 The Ghost Penalty Stabilisation Method

In order to design a fully robust fictitious domain method, stability must be obtained
in a norm at least as strong as the norm jjjuhjjj1;h;˝ . This can be achieved by
modifying the bilinear form in the interface zone. The idea is to add a penalty term
that improves the stability in the elements cut by the interface and distributes the
coercivity to the parts of the triangulation outside the physical domain. This added
term must guarantee stability but at the same time be weakly consistent to the right
order. Since the nodes outside the physical domain are often referred to as ghost
nodes, this term is called the ghost penalty term.

Below we will follow the approach proposed in [16] with the higher order
generalisation of [12]. For the proofs of the results we refer to these references.
Recalling the definitions of (30) we propose the formulation: find uh 2 Vh such that

ah.uh; vh/C gh.uh; vh/ D Fh.vh/; 8vh 2 Vh: (32)
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where gh.�; �/ is the ghost penalty stabilisation term. Define the set of element edges
in the boundary zone by

EB WD fF D K \K 0; where either K 2 Ch or K 0 2 Chg:

A possible ghost penalty term for piecewise affine approximations is then given by
a penalty on the jumps of the gradients over the element edges of EB ,

gh.uh; vh/ WD
X
E2EB

.�ghEŒŒruh � nE��; ŒŒrvh � nE��/E:

We also introduce the discreteH1.˝Th
/-norm

kvhk21;h;˝T
WD krvhk20;˝T

C kvhk21
2
;h;@˝

with kvhk20;˝T
WD

X
K2Th

kvhk20;K:

The enhanced stability obtained by adding gh.�; �/, is reflected in the coercivity
estimate

jjjvhjjj21;h;˝ . kvhk21;h;˝Th
. ah.vh; vh/C gh.vh; vh/; 8vh 2 Vh: (33)

The first inequality is a consequence of the discrete trace inequality

krvh � nk� 1
2 ;h;@˝

. krvhk0;Ch

and the second holds thanks to the following fundamental property of the ghost
penalty term

krvhk20;˝T
. krvhk20;˝ C gh.vh; vh/: (34)

For piecewise affine Lagrangian finite element approximations, the idea in [16] to
prove such an inequality is to observe that the gradient over any cut elementK 2 Ch
is a piecewise constant function that is bounded from above by the gradient on
another elementK 0 62 Ch plus the jumps of gradients across all elements that should
be crossed to connect K with K 0. Indeed, the ghost penalty stabilisation provides
control on the additional terms involving jumps.

Under regularity assumptions on ˝ , for all v 2 H2.˝/, we may introduce an
extension operator E W H2.˝/ 7! H2.˝T / such that Evj˝ D v and kEvkH2.˝T / .
kvkH2.˝/. It is then convenient to introduce an interpolation operator ih W H2.˝/ 7!
Vh by ihv WD IhEv where Ih is the standard nodal Lagrange interpolator. It is then
straightforward to show that

jjjv � ihvjjjg WD jjjv � ihvjjj1;h;˝ C
p
gh.Ev � ihv;Ev � ihv/ . hkvkH2.˝/: (35)

For the convergence analysis we need the following continuity result, that is
a straightforward application of Cauchy-Schwarz inequalities and local trace
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inequalities. For all v 2 H2.˝/ and wh 2 Vh there holds

jah.v � ihv;wh/C gh.v � ihv;wh/j

. jjjv � ihvjjjg
� X
K2Th

krwhk2K C kwhk21
2 ;h;@˝

�1=2
: (36)

The optimal convergence estimate

jjju � uhjjj1;h;˝ . hkukH2.˝/

is an immediate consequence of (33), (35) and (36). Using a duality argument one
may also prove that

ku � uhk0;˝ . h2kukH2.˝/:

In a similar fashion exploiting the uniform upper and lower bounds of the bilinear
form one may show that the condition number of the system matrix is robust with
respect to the interface position. We will give some detail on this analysis in Sect. 3.3
in the case of multi-domain problems with large contrast.

In the case of high order approximations a penalty on the normal gradient is
insufficient. Either one has to resort to a multi-penalty method or a stabilisation of
local projection type, [12]. For example if we instead consider a Lagrangian finite
element space where the polynomials are of degree k, the following multi-penalty
operator will allow for a similar analysis in the high order case:

gh.uh; vh/ WD
X
E2EB

kX
iD1
.�gh

2i�1
E ŒŒ@inuh��; ŒŒ@

i
nvh��/E ;

where @inu denotes the i -th order normal derivative of u across the edge E. Since
such a quantity is combined with the jump across E, the orientation of the unit
normal vector is irrelevant for the definition of ŒŒ@inuh��.

The role of this multi-penalty operator for the stabilisation of the unfitted method
is better understood if we look at its connection with local projection operators. For
any given element K 2 Ch, let PK be the patch containing the shortest piecewise
linear path connecting all the centres of mass to move from the centre of mass of
K to the centre of K 0 62 Ch. Let EK be the set of edges cut by such path. It is
straightforward to verify that for any elementK 2 Ch and any corresponding patch
PK the ratio

jPK j
jPK \˝j

is uniformly bounded with respect to the position of the interface. Furthermore, for
shape-regular and quasi-uniform meshes we expect that the number of individual
elements contained in PK is uniformly bounded from above. As a result of that, we
have
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X
K2Ch

kvhk20;PK
'

X
K2Ch

kvhk20;K;

where a ' b means that there exist two constants c; C , uniformly independent of
the mesh characteristic size h, such that ca � b � Ca.

Let us define by �h W L2.PK/ ! P
k.PK/ the localL2 projection onto Pk.PK/.

The following equivalence can be proven, see [12] and references therein,

.vh � �hvh; vh/PK
'

kX
iD1

X
E2EK

Z
E

ŒŒ@invh��
2:

We will then use the local projection operator to prove that the following local
counterpart of (34) holds true for any polynomial order k � 1,

kvhk20;PK
. kvhk20;PK\˝ C h�2

Z
PK

�
vh � �hvh

�2
: (37)

To prove (37) we look at the restriction on PK of any vh 2 Vh and we split it as
vh D �hvh C rk where rk D vh ��hvh. We notice that either �hvh D 0 on the entire
patch, or �hvh ¤ 0 on any subset of Pk with non zero measure. As a result of that
we obtain,

kr�hvhk20;PK
. jPK j

jPK \˝j kr�hvhk20;PK\˝: (38)

When the residual rk ¤ 0, exploiting (38), we notice that

krvhk20;PK
. kr�hvhk20;PK

C krrkk20;PK
. kr�hvhk20;PK\˝ C krrkk20;PK

:

Owing to the inverse inequality we observe that,

krrkk20;PK\˝ . krrkk20;PK
. h�2krkk20;PK

and combining the previous estimates we conclude that,

jrvhk20;PK
. kr�hvhk20;PK\˝ � krrkk20;PK\˝ C 2h�2krkk20;PK

. kr�hvh C rrkk20;PK\˝ C 2h�2krkk20;PK

. krvhk20;PK\˝ C 2h�2
Z

PK

�
vh � �hvh

�2
:

In conclusion, summing up over all elements K 2 ˝T , applying the previous
estimate for any element cut by the interfaceK 2 Ch and exploiting the equivalence
between multi-penalty and the local projection we conclude that,
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krvhk2˝T
. krvhk2˝ C

kX
iD1

X
E2EB

Z
E

ŒŒ@invh��
2;

which generalizes (34) to high order Lagrangian finite elements.

3.3 The Unfitted Nitsche Method for Large Contrast Problems

We now place ourselves in the setting of Sect. 2, considering two non-overlapping
subdomains, ˝i; i D 1; 2, with interface � WD ˝1 \˝2. This time, however, the
mesh will not be fitted to the interface. For simplicity we assume that � is a plane
separating the two domains. The problem that we will study is (25), but this time
we let ˇ D 0. We recall the equations here for convenience

8̂̂̂
<̂
ˆ̂̂̂:

r � � � "irui
� D fi ; in ˝i;

ui D 0; on @˝ \ @˝i ;

ŒŒu�� D 0; on �;

ŒŒ�"ru � n�� D 0; on �:

(39)

We let Thi denote a triangulation fitted to @˝i n � , but not to � . Let Th1 and Th2

match across the interface so that Th1[Th2 is a conforming triangulation of˝ . Let

Vh;i WD fvh 2 C0.˝Thi
/ W vhjK 2 P1.K/; for all K 2 Thi I vhj@˝ D 0g;

with P1.K/ denoting the set of polynomials of degree less than or equal to 1 on K .
We denote by Th WD Th1[Th2 the triangulation of the physical domain and by V ˝

h

the corresponding piecewise affine finite element space. Here we have for simplicity
included the boundary conditions in the approximation space.

We may then write the following formulation, similar to that of Sect. 2. Find
Œuh;1; uh;2� 2 Vh WD Vh;1 � Vh;2, such that

ah.uh; vh/ D Fh.vh/; 8vh 2 Vh (40)

where now

ah.uh; vh/ WD
X
iD1;2

."iruh;i ;rvh;i /˝i C �
."/h�1 .ŒŒuh��; ŒŒvh��/�

� .f"ruh � ngw; ŒŒvh��/� � .f"rvh � ngw; ŒŒuh��/� ; (41)

Fh.vh/ WD F.vh/ D .f; vh/˝ :
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Table 3 Convergence rate of (40) with linear finite elements for the test case already considered
for Table 2

ku � uhk0;˝ ku � uhk1;h;˝
h "1 D "2 D 1 "1 D 1; "2 D 10�2 "1 D "2 D 1 "1 D 1; "2 D 10�2

5:00 � 10�2 2:24 � 10�4 1:69 � 10�2 1:48 � 10�2 1:08 � 10�1

2:50 � 10�2 5:65 � 10�5 4:20 � 10�3 7:30 � 10�3 5:41 � 10�2

1:25 � 10�2 1:41 � 10�5 1:00 � 10�3 3:60 � 10�3 2:70 � 10�2

6:25 � 10�3 3:55 � 10�6 2:64 � 10�4 1:80 � 10�3 1:35 � 10�2

3:12 � 10�3 8:90 � 10�7 6:62 � 10�5 9:02 � 10�4 6:70 � 10�3

p 1.99 1.99 1.00 1.00

The main advantage of method (40) consists in the fact that it restores the optimal
convergence rate that is lost for the approximation of problem (39) with standard
Lagrangian finite elements when the mesh does not fit with the interface. Indeed,
for the test case already addressed for Table 2, we observe the convergence rates
reported in Table 3, where kvk21;h;˝ WD P

iD1;2 k"1=2i rvk20;˝Ckf"g1=2w ŒŒv��k21
2 ;h;�

being

kvk˙ 1
2 ;h;�

WD h�1=2kvk0;� as for Nitsche’s fictitious domain method.
However, this method has two major drawbacks that will be discussed thor-

oughly. Firstly, the corresponding matrix may become ill conditioned in case
jK \˝i j is small for all the triangles in the support of a basis function. Secondly,
the scheme cannot be simultaneously robust with respect to small cut elements and
large contrast problems. A partial remedy exploiting the arbitrary choice of the
averaging weights wi will be proposed below, but a robust stability estimate can
be only achieved with the help of a stabilisation term.

3.3.1 Stability Analysis of the Discrete Space with Cut Elements

The objective of this section is to reformulate the definition of Vh D Vh;1 � Vh;2
as an approximation space of functions with support on the physical domain ˝ . As
discussed in [43, 48], this allows us to exhibit and analyse the instabilities arising
from the presence of small cut elements.

We consider the alternative representation of Vh proposed in [43], which exploits
a hierarchical representation in terms of a standard Lagrangian finite element space,
enriched with additional basis functions over cut elements. We start by defining the
following restriction operator :

Ri W L2.˝/ ! L2.˝/; Riv WD
�

vj˝i in ˝i ;

0 in ˝ n˝i :

Mimicking the Nitsche’s fictitious domain method, we denote by Ch WD fK 2 Th W
jK \ � jRd�1 > 0g the crust of elements with non vanishing intersection with the
interface. Let I be the set of indexes numbering the nodes associated to V ˝

h and let



Numerical Approximation of Large Contrast Problems 271

fxkgk2I be the corresponding set of points on ˝ . We define collections of nodes
neighbouring the interface and we apply them to construct enrichment spaces,

I �
i WD fk 2 I W xk 2 ˝j ; supp.�k/\ Ch ¤ ;g; 8i; j D 1; 2; j ¤ i

V �
h;i WD spanfRi�k W k 2 I �

i g;

where �k denotes the hat basis function associated to the node xk . Owing to
Theorem 2 in [43], the following direct decomposition holds:

Vh D V ˝
h ˚ V �

h;1 ˚ V �
h;2;

i.e. any function v 2 Vh can be uniquely decomposed as v D v˝ C v�1 C v�2 with
v˝ 2 V ˝

h , v�i 2 V �
h;i . We notice that the spaces V �

h;1; V
�
h;2 are L2-orthogonal on ˝ ,

because their basis functions have disjoint supports.
Owing to this decomposition, finite element matrices in Vh feature the following

block structure that can be exploited in their analysis. Let us denote with M 2
R
Nh�Nh and L 2 R

Nh�Nh the standard mass and stiffness matrices in the finite
element space Vh,

v0Mw D .v;w/0;˝ ; v0Lw D .rv;rw/0;[˝i ; 8v;w 2 Vh
which can be rearranged as follows

M D
2
4 M˝ M˝�

1 M˝�
2

.M˝�
1 /0 M�

1 0

.M˝�
2 /0 0 M�

2

3
5 L D

2
4 L˝ L˝�1 L˝�2
.L˝�1 /0 L�1 0

.L˝�2 /0 0 L�2

3
5 :

To quantify how the presence of small cut elements affects the spectrum of finite
element mass and stiffness matrices, we introduce the following mesh dependent
indicators. Let xk 2 I �

i be any vertex associated to the enrichment spaces V �
h;i ,

let �k be the corresponding basis function and Pk be its patch. The indicators that
affect the conditioning of a finite element method with respect to small sub-elements
can be defined as

�i WD min
k2I �

i

jPk \˝i j
jPk j ; �i WD max

k2I �
i

jPk \˝i j
jPkj ;

� WD min
i

min
k2I �

i

jPk \˝i j
jPkj :

Furthermore, we assume that for any index k, the corresponding patch satisfies Pk\�
˝ n ˝�

� ¤ ;, i.e. there exists at least one element in the patch that is not cut by
the interface.
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Under the previous assumption on the mesh and owing to Lemma 2 of [43]
the following strengthened Cauchy-Schwarz inequality hold true for any v˝ 2
V ˝
h ; v� 2 V �

h;1 ˚ V �
h;2. There exist constants 0 < c0cs; c

1
cs < 1 such that

.v˝; v� /˝ � c0cskv˝k0;˝kv� k0;˝;
.rv˝;rv� /[˝i � c1cskrv˝k0;[˝i krv� k0;[˝i :

Then, exploiting the decomposition v D v˝ Cv�1 Cv�2 together with Pythagoras’
theorem, straightforward computations show that

.1 � c0cs/.kv˝k20;˝ C kv�1 k20;˝1 C kv�2 k20;˝2/
� kvk20;˝ � 2.kv˝k20;˝ C kv�1 k20;˝1 C kv�2 k20;˝2/;

.1 � c1cs/.krv˝k20;˝ C krv�1 k20;˝1 C krv�2 k20;˝2/
� krvk20;[˝i � 2.krv˝k20;˝ C krv�1 k20;˝1 C krv�2 k20;˝2 /:

The previous inequalities directly imply that the mass and stiffness matrices are
spectrally equivalent to their block diagonals,

v0Mv ' .v˝/0M˝v˝ C .v�1 /
0M�

1 v�1 C .v�2 /
0M�

2 v�2 ; (42)

v0Lv ' .v˝/0L˝v˝ C .v�1 /
0L�1 v�1 C .v�2 /

0L�2 v�2 : (43)

Since the spectral properties of M˝ and L˝ are well known, we focus on the
analysis of M�

i , L�i . As shown in [43], Lemma 3, for any v�i 2 V �
h;i there exist

positive constants c˝0 ; c
˝
0 , independent on how the interface � cuts the mesh Th,

such that

c˝0

X
k2I �

i

�
ˇik

�2kRi�kk20;˝i � kv�i k20;˝i � c˝0

X
k2I �

i

�
ˇik

�2kRi�kk20;˝i : (44)

The extension of this analysis to the H1-norm holds true due to the fact that
gradients of the local basis functions on V �

h;i are linearly independent functions.

Indeed, for any v�i 2 V �
h;i there exist positive constants c˝1 ; c

˝
1 , independent on how

the interface � cuts the mesh Th, such that

c˝1

X
k2I �

i

�
ˇik

�2kRir�kk20;˝i � krv�i k20;˝i � c˝1

X
k2I �

i

�
ˇik

�2kRir�kk20;˝i : (45)

Let v denote the vector of degrees of freedom that identify a generic function
v 2 Vh and let kvk be its Euclidean norm. Let v�i and v˝ be the vectors relative
to v�i 2 V �

h;i and v˝ 2 V ˝
h , respectively. For any v�i 2 V �

h;i there exist positive
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constants c�0 ; c
�
0 , independent on �; h, such that

c�0 h
d�

2=dC1
i kv�i k2 � kv�i k20;˝i � c�0 h

d�
2=dC1
i kv�i k2; (46)

and there exists v�i 2 V �
h;i such that

kv�i k20;˝i � c�0 h
d�

2=dC1
i kv�i k2: (47)

To prove (46) we have to estimate the smallest kRi�kk20;˝i . We split the integrals
over the elements that belong to the patch of Ri�k and we apply a suitable
quadrature formula. We notice that the measure of the support where the integrals
are evaluated is proportional to hd�i while the pointwise evaluations of the function
to be integrated can be at most equivalent to .�1=di /2. The upper bound is obtained
replacing the smallest kRi�kk20;˝i with the largest. By the same argument, (47) holds
true if we select v�i WD Ri�k corresponding to mink2I �

i
kRi�kk20;˝ .

By means of the same reasoning applied to (45), a similar result can be shown
for gradients of discrete functions, with a different scaling with respect to �,
becauseRir�k are constant functions proportional to h�1 and thus kRir�kk20;Ki '
hd�2�Ki . As a result of that, there exist c�1 ; c

�
1 > 0, independent on �; h such that

c�1 h
d�2�ikv�i k2 � krv�i k20;˝ � c�1 h

d�2�ikv�i k2: (48)

Furthermore, for the same v�i 2 V �
h;i of (47) we have

krv� k20;˝ � c�1 h
d�2�ikv� k2: (49)

Inequalities (47) and (49) show that minimal eigenvalues of M�
i L

�
i become

arbitrarily small in presence of small element cuts. This clearly influences the
conditioning of the finite element scheme, which will be affected by a factor ��1.
However, the present analysis immediately points out a cure for this drawback.
Indeed, combining (42) and (43) with (47) and (49) we conclude that the mass and
stiffness matrices of the enriched finite element space Vh are spectrally equivalent to

M '
2
4M˝ 0 0

0 diag.M�
1 / 0

0 0 diag.M�
2 /

3
5 L '

2
4L˝ 0 0

0 diag.L�1 / 0

0 0 diag.L�2 /

3
5 :

where, given a real square matrix B , we denote with diag.B/ its diagonal. This
shows that solving a finite element scheme in the enriched space Vh is computation-
ally equivalent to solving it in the standard space V ˝

h , because the only genuinely
stiff block is L˝ . Another way to formulate this conclusion is based on the optimal
condition number of the problem, see [46]. More precisely, given A 2 R

N�N the
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optimal condition number is

Kopt.A/ WD min
D2RN�N

K2.DAD/

and the previous analysis shows thatKopt.˛MMC˛LL/ D Kopt.˛MM
˝C˛LL˝/

for any positive constants ˛M ; ˛L.

3.3.2 Stability Issues for the Unfitted Nitsche Method

An important question concerning the stability of the scheme is how to choose the
averages in the interface terms. In [29], Hansbo and Hansbo proposed a method
for which they could prove stability and optimal convergence. In their analysis they
chose mesh dependent weights,

wi jK D jK \˝i j
jKj ; and 
."/ D maxf"1; "2g:

As a result of that, integrals of the normal derivative on the interface on elements
with a very small fraction intersecting one of the physical domains will get a small
weight, which will balance the factor of order jKj appearing after taking the trace
inequality. In Sect. 2 we showed that

w1 D "2

"1 C "2
; w2 D "1

"1 C "2
and 
."/ D f"gw D 2"1"2

"1 C "2
: (50)

leads to robustness with respect to the jump in the diffusivities.
This poses a situation in which the unfitted character of the method requires

a certain set of weights, and the large contrast character requires another set. For
instance, these contradictory requirements clearly appear in the following estimate,

Z
@K\�

f"gw.rvh;i /
2 . h�1wi

�
1C ."jwj /jK

."iwi /jK
� jKj

jK \˝i j k"
1
2

i rvh;ik20;K\˝i ;

which is needed to quantify an upper bound for the spectrum of the discrete problem.
Indeed, the constant �

1C ."jwj /jK
."iwi /jK

� jKj
jK \˝i j ;

may become arbitrarily large for some configuration of the interface or highly
heterogeneous weights. A partial remedy consists selecting the weights wi to
minimise the dominating effect. If the worse case comes from the way the interface
is cut, then we define

wi D jK \˝i j
jKj satisfying w1 C w2 D 1;
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otherwise, when the heterogeneity of coefficients is dominating, we choose

wi D "j

"i C "j
such that

�
1C ."jwj /jK

."iwi /jK
�

D 2:

Nevertheless, this technique does not work in situations where both difficulties
arise simultaneously. To handle both effects at the same time, we may draw from
the fictitious domain formulation proposed in the previous section. The introduction
of a ghost penalty term on the interface elements both in Th1 and Th2 gives the
same extended coercivity as in the fictitious domain case and we are then allowed
to choose the weights so as to control the large contrast in diffusivity.

3.3.3 The Stabilized Unfitted Nitsche Method

The stabilised method that we propose takes the form: find Œuh;1; uh;2� 2 Vh WD
Vh;1 � Vh;2, such that

ah.uh; vh/C gh.uh; vh/ D Fh.vh/; 8vh 2 Vh; (51)

where the weights have been chosen as in (50) and

gh.uh; vh/ WD
2X
iD1

X
E2EBi

.�g"ihEŒŒruh;i � nE��; ŒŒrvh;i � nE��/E ;

with

EBi WD fEDK\K 0 W K 2 Thi ; K
0 2 Thi where eitherK\� ¤ ; or K 0 \�¤;g:

For the analysis of Nitsche’s method for unfitted interfaces, we introduce the
norms

kvhk21;h;˝T
WD

2X
iD1

X
K2Thi

k" 12i rvh;ik20;K C kf"g 12w ŒŒvh;i ��k21
2 ;h;�

and

jjjvhjjj21;h;˝ WD
2X
iD1

k" 12i rvh;ik20;˝ C kf"g 12wfrvh � ngk2� 1
2 ;h;�

C kf"g 12w ŒŒvh��kC 1
2 ;h;�

:

To obtain a robust stability estimate, we use the extended coercivity obtained
thanks to the ghost penalty term combined with the inverse inequality to conclude
that,

jjjvhjjj21;h;˝ . kvhk21;h;˝T
. ah.vh; vh/C gh.vh; vh/; 8vh 2 Vh: (52)
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This is obtained in the same fashion as the analogous result for the fictitious domain
method. The boundedness of the stabilised bilinear form is also guaranteed by
means of standard arguments, see [12],

ah.uh; vh/C gh.uh; vh/ . jjjuhjjj1;h;˝ jjjvhjjj1;h;˝
. kuhk1;h;˝T kvhk1;h;˝T 8uh; vh 2 Vh:

To proceed with the convergence analysis, we introduce extension operators Ei W
H2.˝i / 7! H2.˝T i / such that Eivj˝i D vj˝i and kEivkH2.˝T i /

. kvkH2.˝i /:

In a similar fashion as above, we define an interpolation operator ih W H2.˝1/ �
H2.˝2/ 7! Vh by ihv WD ŒIhE1v; IhE2v� where Ih is the standard nodal Lagrange
interpolator. It is straightforward to show that

jjjv � ihvjjjg WD jjjv � ihvjjj1;h;˝ Cp
gh .Ev � ihv;Ev � ihv/ . hkvkH2.˝1[˝2/:

For the convergence analysis we need the following continuity result, that is a
straightforward application of Cauchy-Schwarz inequalities and local trace inequal-
ities. For all v 2 H2.˝/ and wh 2 Vh there holds

jah.v � ihv;wh/C gh.v � ihv;wh/j

. jjjv � ihvjjjg
� X
iD1;2

X
K2Th;i

krwh;ik2K C kwhk21
2 ;h;@˝

�1=2
:

Then, the optimal convergence estimate jjju � uhjjj1;h;˝ . hkukH2.˝/, is an
immediate consequence of (52).

3.3.4 Bounded Condition Number

In this section we will show that the choice of weights (50) together with the use of
ghost penalty term leads to a method with a system matrix whose condition number,
after diagonal scaling with the diffusivity, has the same asymptotic scaling as the
standard Galerkin method for the Poisson problem with fitted mesh and constant
coefficients. This means that the conditioning is independent both of the interface
configuration and the jump of the diffusivities. To fix the ideas let "1 D 1 and
0 < "2 < "1. Other configurations can be obtained by scaling.

Let f�k;ig denote the nodal basis of Vh;i with i D 1; 2. Consequently we may
write uh;i 2 Vh;i in the form uh;i WD PNi

kD1 Uk;i �k;i . The formulation (41) may then
be written as the linear system

2
4 "1A11 C f"gwA�

11 f"gwA�
12

f"gwA�
21 "2A22 C f"gwA�

22

3
5
2
4U1

U2

3
5 D

2
4F1

F2

3
5 ; (53)
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where for symmetry it holds that A�
12 D �

A�
21

�T
and the vectors are defined by

Ui WD fUk;igNikD1; and Fi WD fFh.�k;i /gNikD1

and the weight function f"gw is given in (50). Examining formulation (40) we see
that the matrices are given by

Ai i WD f."ir�k;i ;r�l;i /˝i C "igi .�k;i ; �l;i /gNik;lD1; i D 1; 2

where gi .�k;i ; �l;i / denotes a ghost penalty term on the subdomain˝i ,

A�
i i WD f� �r�k;i � n C h�1��k;i ; �l;i

�
�

gNi
k;lD1 i D 1; 2

which is independent of "i , and

A�
ij WD

�
1

2

�r�k;i � n C h�1��k;i ; �l;j
�
�

C 1

2

�r�l;j � n C h�1��l;j ; �k;i
�
�



;

with k D 1; : : : ; Ni , l D 1; : : : ; Nj and i; j D 1; 2, i ¤ j . After diagonal
symmetric scaling, the system matrix takes the form

Ascal WD

2
6664

A11 C f"gw

"1
A�
11

f"gwp
"1"2

A�
12

f"gwp
"1"2

A�
21 A22 C f"gw

"2
A�
22:

3
7775 :

To study the behaviour of the unfitted Nitsche method in the case of highly
heterogeneous coefficients, we notice that the matrix Ascal converges to

lim
"2!0

Ascal D
2
4A11 0

0 A22 C A�
22:

3
5

in the limit "2 ! 0.
Under the assumption that � is a planar interface we know that for each

subdomain ˝i it holds @˝i \ @˝ ¤ ;. Furthermore, since the homogeneous
Dirichlet boundary conditions are strongly enforced in the finite element space,
we conclude that the stiffness matrices Ai i are symmetric positive definite. Owing
to an inverse inequality and with the stabilisation parameter � large enough, this
conclusion holds true even though we extend it to Ai i C A�

i i . This illustrates that the
stabilised Nitsche’s method with symmetric diagonal scaling becomes robust with
respect to the heterogeneity of coefficients provided that the averaging weights are
selected as in (50).
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To quantify the robustness of the scheme with respect to the configuration of
the interface, we exploit the strengthened coercivity ensured by the ghost penalty
term. Under the aforementioned assumption on the stiffness matrices, inverse and
Poincaré inequalities imply that

2X
iD1

X
K2Thi

k"ivh;ik20;K . kvhk21;h;˝Th
. ah.vh; vh/C gh.vh; vh/

. kvhk21;h;˝Th
. h�2

2X
iD1

X
K2Thi

k"ivh;ik20;K; 8vh 2 Vh:

The matrix of system (53) is thus spectrally equivalent to a block diagonal matrix
that is uniformly independent of the configuration of the interface. Furthermore,
when diagonal scaling is applied to such matrix, the equivalent system becomes
independent of the heterogeneity for diffusion coefficients.

3.3.5 Asymptotic Convergence to the Fictitious Domain Method

The aim of this section is to show that unfitted Nitsche method for interface
problems coincides with the corresponding unfitted boundary method in the case
that the diffusion coefficient on one of the subdomains becomes arbitrarily large.

This property has two interesting consequences. On the one hand, it shows
that the choice of the balancing weights proposed for large contrast problems is
consistent with the unfitted boundary case. On the other hand, it allows to exploit
the unfitted interface formulation as a fictitious domain method, where the choice of
the computational domain ˝T is completely arbitrary with respect to the physical
domain˝ , provided that in the complementary domain˝T n˝ a sufficiently large
diffusivity is applied.

To fix the ideas, we assume that "1 D 1 and study the case "2 ! 1.
Accordingly, we denote the fictitious domain bilinear forms (30) defined on ˝1

by afd .�; �/; gfd .�; �/ and denote the domain decomposition bilinear forms (41) by
add .�; �/; gdd .�; �/. Let uh;fd denote the solution of (32) and uh;dd the solution of
(40) with ghost penalty stabilisation. We assume that the penalty parameters for
both formulations are set to the same values. We are interested in the behaviour
of the discrete error between the two formulations in the limit as "2 ! 1. We
therefore define eh WD .uh;fd � uh;dd /j˝1 . Using the coercivity of the formulation
(32) we have

kehk21;h;˝Th1
� afd .eh; eh/C gdd .eh; eh/:

Note that since ehjTh2
D 0, gfd .eh; eh/ D gdd .eh; eh/. By the definition of the

discrete problems we have
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kehk21;h;˝Th1
� Fh.eh/ � afd .uh;dd ; eh/ � gdd .uh;dd ; eh/
D add .uh;dd ; eh/ � afd .uh;dd ; eh/:

It is straightforward to show that

add .uh;dd ; eh/ � afd .uh;dd ; eh/ D
�
.1 � "2

"2 C 1
/@nuh;dd j@˝1 ; ehj@˝1

�
@˝1

C
�
.1 � "2

"2 C 1
/@nehj@˝1; uh;dd j@˝1

�
@˝1

�
�
.
"2

"2 C 1
/@nuh;dd j@˝2; ehj@˝1

�
@˝1

�
�
.
"2

"2 C 1
/@nehj@˝1; uh;dd j@˝2

�
@˝1

C
�
.1 � "2

"2 C 1
/�bch

�1uh;dd j@˝1; ehj@˝1
�
@˝1

�
�

"2

"2 C 1
�h�1uh;dd j@˝2; ehj@˝1

�
@˝1

:

By repeated application of the mesh weighted Cauchy-Schwarz inequality and trace
inequalities in the right hand side we arrive at the bound

jadd .uh;dd ; eh/� afd .uh;dd ; eh/j

.
�
1 � "2

"2 C 1

�
.
X
K2Th1

.1C h�1
K /kruh;ddk2K/

1
2 kehk1;h;˝Th1

C "2

."2 C 1/
.
X
K2Th2

.1C h�1
K /kruh;ddk2K/

1
2 kehk1;h;˝Th1

:

Using the formulation (40), (41) with ghost penalty stabilisation, observing that
there exists a positive constant CF such that Fh.vh/ � CF kvhk1;h;˝T and exploiting
the stability (52), we obtain the following estimates for uh;dd j˝1 and uh;dd j˝2 ,

s X
K2Th1

kruh;ddk2K � CF ;

s X
K2Th2

k" 122 ruh;ddk2K � CF :

We conclude that we have the bound

kehk1;h;˝Th1
� 1

."2 C 1/
.1C h�1/CF
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and that lim
"2!1 kehk1;h;˝Th1

D 0: Hence, the unfitted Nitsche interface method

reduces to the fictitious domain method in the limit of infinite diffusivity.
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53. H.-J. Bungartz, M. Schäfer (eds.), Fluid-Structure Interaction.

54. J. Behrens, Adaptive Atmospheric Modeling.

55. O. Widlund, D. Keyes (eds.), Domain Decomposition Methods in Science and Engineering XVI.

56. S. Kassinos, C. Langer, G. Iaccarino, P. Moin (eds.), Complex Effects in Large Eddy Simulations.

57. M. Griebel, M.A Schweitzer (eds.), Meshfree Methods for Partial Differential Equations III.
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