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Preface

This collection is a tribute to the intellectual leadership and legacy of Prof. Ahmed
H. Sameh. His significant contributions to the field of Parallel Computing, over his
long and distinguished career, have had a profound influence on high performance
computing algorithms, applications, and systems. His defining contributions to the
field of Computational Science and Engineering, and its associated educational pro-
gram, resulted in a generation of highly trained researchers and practitioners. His
high moral character and fortitude serve as exemplars for many in the community
and beyond.

Prof. Sameh did his graduate studies in Civil Engineering at the University of
Illinois at Urbana-Champaign (UIUC). Upon completion of his Ph.D. in 1966, he
was recruited by Daniel L. Slotnick, Professor and Director of the Illiac IV project,
to develop various numerical algorithms. Prof. Sameh joined the Department of
Computer Science as a Research Assistant Professor, subsequently becoming a Pro-
fessor, and along with Profs. Duncan Lawrie, Daniel Gajski and Edward Davidson
served as the Associate Director of the Center for Supercomputing Research and
Development (CSRD). CSRD was established in 1984 under the leadership of Prof.
David J. Kuck to build the University of Illinois Cedar multiprocessor. Prof. Sameh
directed the CSRD Algorithms and Applications Group. His visionary, yet practical
outlook, in which algorithms were never isolated either from real applications or
from architecture and software, resulted in seminal contributions. By 1995 CSRD’s
main mission had been accomplished, and Prof. Sameh moved to the University
of Minnesota as Head of the Computer Science Department and William Norris
Chair for Large-Scale Computing. After a brief interlude, back at UIUC, to lead
CSRD, during which he was very active in planning the establishment of Computa-
tional Science and Engineering as a discipline and an associated graduate program
at UIUC, he returned to Minnesota, where he remained until 1997. He moved to
Purdue University as the Head and Samuel D. Conte Professor of Computer Sci-
ence. Prof. Sameh, who is a Fellow of SIAM, ACM and IEEE, was honored with
the IEEE 1999 Harry H. Goode Memorial Award “For seminal and influential work
in parallel numerical algorithms”.

It was at Purdue that over 50 researchers and academic progeny of Prof. Sameh
gathered in October 2010 to celebrate his 70th birthday. The occasion was the Con-
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vi Preface

ference on High Performance Scientific Computing: Architectures, Algorithms, and
Applications held in his honor. The attendees recalled Prof. Sameh’s many academic
achievements, including, not only his research but also his efforts in defining the in-
terdisciplinary field of Computational Science and Engineering and his leadership
and founding Editor-in-Chief role in the IEEE CS&E Magazine as well as the many
doctoral candidates that he has graduated: At UIUC, Jonathan Lermit (1971), John
Larson (1978), John Wisniewski (1981), Joseph Grcar (1981), Emmanuel Kamgnia
(1983), Chandrika Kamath (1986), Mark Schaefer (1987), Hsin-Chu Chen (1988),
Randall Bramley (1988), Gung-Chung Yang (1990), Michael Berry (1990), Felix G.
Lou (1992), Bart Semeraro (1992) and Vivek Sarin (1997); Ananth Grama (1996)
at the University of Minnesota; and Zhanye Tong (1999), Matt Knepley (2000), Ab-
delkader Baggag (2003), Murat Manguoglu (2009) and Carl Christian Kjelgaard
Mikkelsen (2009) at Purdue.

This volume consists of a survey of Prof. Sameh’s contributions to the develop-
ment high performance computing and sixteen editorially reviewed papers written
to commemorate the occasion of his 70th birthday.

Michael W. Berry
Kyle A. Gallivan
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Bernard Philippe
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Knoxville, USA
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Patras, Greece
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Abstract As exascale computing is looming on the horizon while multicore and
GPU’s are routinely used, we survey the achievements of Ahmed H. Sameh, a pio-
neer in parallel matrix algorithms. Studying his contributions since the days of Illiac
IV as well as the work that he directed and inspired in the building of the Cedar mul-
tiprocessor and his recent research unfolds a useful historical perspective in the field
of parallel scientific computing.

1.1 Illiac IV and Cedar Legacies on Parallel Numerical
Algorithms

Ahmed Sameh’s research on parallel matrix algorithms spans more than four
decades. It started in 1966 at the University of Illinois at Urbana-Champaign (UIUC)
when he became involved in the Illiac IV project [22] as research assistant while
pursuing his Ph.D. in Civil Engineering, following his undergraduate engineering
studies at the University of Alexandria in Egypt and a M.Sc. as Fulbright scholar
at Georgia Tech. Via his advisor, Professor Alfredo Ang at UIUC, Sameh became a
descendent of Nathan Newmark, Hardy Cross, and David Hilbert (see Fig. 1.1).

At the invitation of Daniel Slotnick (also a Hilbert descendant), who was the
director of the Illiac IV project Sameh looked at eigenvalue problems. The result
of that effort was the first genuinely parallel algorithm (and accompanying Illiac IV
assembly code) for the computation of eigenvalues of symmetric matrices [111]; see
Sect. 1.2.2. By the time he completed his doctoral thesis (on “Numerical analysis of
axisymmetric wave propagation in elastic-plastic layered media”) in 1968 [107] (see
also [108]) Sameh was deeply involved in the Illiac IV project [6]. It was the most
significant parallel computing project in a U.S. academic institution, in fact the first
large-scale attempt to build a parallel supercomputer, following the early prototypes
of Solomon I at Westinghouse [130]. Not surprisingly, at that time there were very
few publications on parallel numerical algorithms, even fewer on parallel matrix
computations and practically no implementations since no parallel computers were
available. The reasons for abandoning the classical von Neumann architecture and
the motivation for the Illiac IV model of parallel computing were outlined in detail
in [22]. Quoting from the paper:

“The turning away from the conventional organization came in the middle
1950s, when the law of diminishing returns began to take effect in the effort
to increase the operational speed of a computer. Up until this point the ap-
proach was simply to speed up the operation of the electronic circuitry which
comprised the four major functional components.”

The Illiac IV, modeled after the earlier Solomon I [130], was an SIMD computer
initially designed to have 256 processors, though only a quadrant of 64 PEs was
finally built.

One can say that the Illiac IV work initiated a new era by bringing fundamental
change. Though the hardware side of the project faced difficulties due to the chal-
lenges of the technologies adopted, the results and by-products of this work have
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Fig. 1.1 Ahmed H. Sameh’s 10 most recent scientific ancestors (from the Mathematics Genealogy
project)

been felt for decades. In particular, it had a tremendous vitalizing effect on parallel
numerical algorithms [129].

In 1985, about a decade after the Illiac IV was finally deployed, Sameh joined
the Center for Supercomputing Research and Development (CSRD) to participate
in the development of another groundbreaking Illinois parallel computing system,
called Cedar, an effort led by David Kuck.1 Sameh served as Associate Director of
CSRD leading the Algorithms and Applications group until 1991 and was Director
of CSRD in 1992.

Cedar was a cluster-based multiprocessor with an hierarchical structure that will
seem familiar to those acquainted with today’s systems. It comprised multiple clus-
ters, each of which was a tightly coupled hierarchical shared memory multivector
processor (an Alliant FX/8) [40, 83]. The computational elements were register-
based vector processors that shared an interleaved multi-bank cache. Memory-based
synchronization and a dedicated concurrency control bus provided low-overhead
synchronization and dynamic scheduling on the eight computational elements.

1David J. Kuck was the 2011 recipient of the IEEE Computer Society Computer Pioneer Award
“for pioneering parallel architectures including the Illiac IV, the Burroughs BSP, and Cedar; and,
for revolutionary parallel compiler technology including Parafrase and KAP.2009”.



4 K.A. Gallivan et al.

A modified backplane provided each computational element an interface to the mul-
tistage interconnection network connecting to the shared interleaved global memory.
Each interface supported a prefetch unit controlled by instructions added to the Al-
liant vector instruction set that could be inserted by a compiler during restructuring
or directly by algorithm developers when implementing Cedar’s high-performance
numerical libraries in assembly language. The global memory was designed to sup-
port the Zhu-Yew memory-based synchronization primitives that were more sophis-
ticated than other approaches such as fetch-and-add [136].

The operating system, Xylem [39], supported tasks at multiple levels including a
large grain task meant to be assigned to, and possibly migrated from, a cluster. The
large grain task, in turn, could exploit computational element parallelism and vector
processing within its current cluster. This intracluster parallelism could be loop-
based or lightweight task-based. Xylem’s virtual memory system supported global
address space pages, stored in global memory when active, that could be shared
between tasks or private to a task; cluster address space pages that were private to
a task and its lower level parallel computations within a cluster; and the ability to
efficiently manage the migration of global and cluster pages to the disks accessible
through each cluster. Xylem also supported the data collection and coordination of
hardware and software performance monitors of the Cedar Performance Evaluation
System [126].

Cedar was programmable in multiple languages from assembler to the usual
high-level languages of the time and Cedar Fortran, an explicit dialect of Fortran
that supported hierarchical task-based and hierarchical loop-based parallelism as
well as combinations of the two. In the hierarchical loop-based approach, loops at
the outer level were spread across clusters, loops at the middle level were spread
across computational elements within a cluster, and loops at the inner level were
vectorized [69]. In addition to explicit parallel coding, a Cedar Fortran restructuring
compiler provided directive-based restructuring for parallelism.

The Cedar system was very flexible in the viewpoints that could be adopted when
investigating algorithm, architecture, and application interaction—a characteristic
that was exploited extensively in the work of the Algorithms and Application group
with the strong encouragement of Sameh. Indeed, the significant level of research
and its continuing influence was attributable as much to the leadership of Sameh as
it was to the state-of-the-art hardware and software architecture of Cedar. Below,
we review a few of Sameh’s contributions, specifically those related to high perfor-
mance numerical linear algebra but in closing this section we briefly mention his
view of the research strategies and priorities of the Algorithms and Applications
group and a few of the resulting multidisciplinary activities.

Sameh based his motivation on the premise that fundamental research and devel-
opment in architecture (hardware and software), applications and algorithms must
be equally responsible for motivating progress in high performance computation and
its use in science and engineering. As a result, it was the responsibility of the Al-
gorithms and Applications group to identify critical applications and the algorithms
that were vital to their computations and similarly identify algorithms that were vi-
tal components of multiple critical applications. The resulting matrix, see Table 1.1,
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Table 1.1 Applications vs.
Computational Kernels [32]

1—linear systems, 2—least
squares, 3—nonlinear
systems,
4—eigenvalues/SVD’s,
5—fast transforms, 6—rapid
elliptic solvers, 7—multigrid,
8—stiff ODE, 9—Monte
Carlo, 10—integral
transforms

1 2 3 4 5 6 7 8 9 10

lattice gauge (QCD) X – – X – – – – X –

quantum mechanics – – – X – – – X – X

weather – – – – X X – – – –

CFD X – X – X X X – – –

geodesy X X – – – – – – – –

inverse problems – X – – X – – – – –

structures X – X X – – – – – –

device simulation X – X – – X X – X –

circuit simulation X – X – – – – X – –

electromagnetics X X X X X X – – – –

identified efforts where fundamental research in algorithms could promote progress
in applications and demands for increasingly sophisticated computational capabili-
ties in applications could promote progress in algorithms research.2 Implicit in this,
of course, is an unseen third dimension to the table—system architecture. All ap-
plication/algorithm interaction was driven by assessing the current capabilities of
system architecture in hardware and software to identify good fits and to facilitate
critiques leading to improved systems design. Effectively considering these three
legs of the triad required a fairly wide range of variation in each hence the value
of the flexibility of Cedar and the resulting breadth of Algorithm and Applications
group research.

The group interacted with many external application specialists to improve algo-
rithmic approaches, algorithm/architecture/application mixes and application capa-
bilities in a variety of areas including: circuit and device simulation, molecular dy-
namics, geodesy, computational fluid mechanics, computational structural mechan-
ics, and ocean circulation modeling. In addition to this and a significant amount
of algorithm research—a glimpse of which is evident in the rest of this article—
members of the group collaborated with the other groups in CSRD and external
parties in many areas but in particular in performance evaluation of Cedar and other
systems, benchmarking, performance prediction and improvement, problem solving
environments and restructuring compilers. These activities included: intense perfor-
mance evaluation of the Cedar system as it evolved [46, 79]; memory system and
compiler-driven characterization and prediction of performance for numerical algo-
rithms [45] benchmarking of performance for sparse matrix computing [105, 106];
the Perfect Club for systematic application-level performance evaluation of super-
computers [15]; data dependence analysis [56]; restructuring of codes exploiting
matrix structure such as sparsity [16, 17, 93]; defining the area of problem solving

2It is interesting to note that this table is occasionally referenced as the “Sameh table” in the
literature; see e.g. [36]. Indeed, it is possible to see this as an early precursor of the “Berkeley
Dwarfs” [5].
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environments [52]; and algebraically driven restructuring within a problem solving
environment [35]. Sameh’s leadership of the group was instrumental in making this
research successful.

1.2 Algorithms for Dense Matrices

1.2.1 Primitives, Dense and Banded Systems

The evolution of the state-of-the-art in the understanding of the interaction of algo-
rithm and architecture for numerical linear algebra can be traced in Sameh’s contri-
butions to the Illiac IV and Cedar projects. In particular, comparing the focus and
depth of Sameh’s survey in 1977 [115] or Heller’s from 1978 [70] to Sameh’s survey
of 1990 [50] shows the significant improvement in the area. The discussions moved
from complexity analysis of simple approaches under unrealistic or idealized archi-
tectural assumptions to detailed models and systematic experiments combined with
algebraic characterizations of the algorithms that ease the mapping to any target
architecture.

The early papers separated the algorithms and analyses into unlimited and limited
parallelism versions with the former essentially complexity analyses and the latter
more practical approaches. A good example of the unlimited parallelism class is the
work of Sameh and Brent [117] on solving dense and banded triangular systems in
0.5 log2 n + O(logn) time and logm logn + O(log2 m) time respectively where m

is the bandwidth. The results are unlimited parallelism since n3/68 + O(n2) and
0.5m2n + O(mn) processors are required respectively. This renders the dense tri-
angular solver impractical for even moderately sized systems in floating point arith-
metic but it does have uses in other situations, e.g., boolean recurrences, and was
consider for such alternatives in [135]. For small m the complexity for banded tri-
angular systems is reasonable on array processors but there is a superior limited
parallelism approach that is more significant to this discussion.

The key contribution that has lasted in this “product form” algorithm for dense
triangular systems is the emphasis on using an algebraic characterization to derive
the algorithm and show its relationship to other approaches. The algorithm is simply
derived by applying associativity to a factorization of the triangular matrix L to yield
a fan-in tree of matrix-matrix and matrix-vector products. The particular factors
chosen in this case are the elementary triangular matrices that each correspond to a
column or row of L but many others are possible. The product form for n = 8 and
L = M1M2 · · ·M7 is given by the expression

x = (((
M−1

7 M−1
6

)(
M−1

5 M−1
4

))((
M−1

3 M−1
2

)(
M−1

1 f
)))

and the log time is easily seen. It is also clear that a portion of L−1 is computed
leading to the need for O(n3) processors and a significant computational redun-
dancy compared to the standard O(n2) sequential row or column-based algorithm
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given by

x = (
M−1

7

(
M−1

6

(
M−1

5

(
M−1

4

(
M−1

3

(
M−1

2

(
M−1

1 f
)))))))

.

The notion of simple pairwise grouping can be altered to exploit or maintain struc-
ture, e.g., sparsity, for a potentially practical algorithm.

In [28] Chen, Kuck and Sameh introduced a limited parallelism algorithm for
the solution of banded triangular systems using an idea that is the basis for much
of the discussion in the remainder of this chapter. When solving a lower triangular
system of equations, i.e., a linear recurrence, that is banded, ideally one would be
able to solve p independent systems yielding a speedup of p. This is not possible, in
general, but it is the first step in the algorithm and corresponds to a block diagonal
transformation on the system, e.g.,

D−1Lx = D−1f

where D = diag(L1, L2, . . . ,Lp) contains the block diagonal part of L. The system
then has a special form as seen in this example with n = 12 and p = 3:

⎛

⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 a 1 0 0 0 0 0 0 0
0 0 0 b 0 1 0 0 0 0 0 0
0 0 0 c 0 0 1 0 0 0 0 0
0 0 0 d 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 e 1 0 0 0
0 0 0 0 0 0 0 f 0 1 0 0
0 0 0 0 0 0 0 g 0 0 1 0
0 0 0 0 0 0 0 h 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ξ1
ξ2
ξ3
ξ4

ξ5
ξ6
ξ7
ξ8

ξ9
ξ10
ξ11
ξ12

⎞

⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

γ1
γ2
γ3
γ4

γ5
γ6
γ7
γ8

γ9
γ10
γ11
γ12

⎞

⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The equations defined by rows 4, 5, 8, 9, and 12, i.e., those above and below the
partitioning lines and the last equation, can then be solved for the corresponding
unknowns. If all that is required is the final value, as is sometimes the case with
a recurrence, the algorithm terminates, otherwise the rest of the unknowns can be
recovered by independent vector operations.

Unlimited and limited parallelism approaches to solving dense linear systems
were presented in [120] and [110] respectively. Both were based on orthogonal
factorization to ensure stability without pivoting but nonorthogonal factorization
versions were also developed and used on several machines including Cedar. The
unlimited parallelism factorization algorithm computes the QR factorization based
on Givens rotations and yields the classic knight’s move pattern in the elements that
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can be eliminated simultaneously. For example, for n = 6 we have

The elements can be eliminated simultaneously in the set indicated by the number in
their positions. The elimination is done by rotating the row containing the element
and the one above it. This algorithm yields O(n) time given O(n2) processors.
While it was considered unlimited parallelism due to the need for O(n2) it is easily
adapted as the basis for practical algorithms on semi-systolic and systolic arrays
and was effectively used on a geodesy problem on Cedar. This pattern can also be
applied to the pairwise pivoting approach for factorization analyzed by Sorensen
[131].

The limited parallelism QR algorithm of [110] assumes p processors and consists
of an initial set of independent factorizations followed by a series of “waves” that
eliminate the remaining elements. If the matrix to be factored A is partitioned into p

blocks by grouping consecutive sets of rows, i.e., AT = (AT
1 ... AT

p ) then each block
can be reduced to upper triangular independently yielding RT = ( RT

1 ... RT
p ) where

Ri is upper triangular.
The first row of R1 can be used to eliminate the (1,1) element of R2, then af-

ter this modification, it can be passed on to eliminate the (1,1) element of R3,
and the process can be repeated to eliminate all (1,1) elements of the blocks. Note
that after each (1,1) element is eliminated from Ri the same processor can elim-
inate the entire nonzero diagonal to create a triangular matrix of nonzeros with
dimension reduced by 1 by a series of Givens rotations. These diagonal elimi-
nations can overlap the elimination of the (1,1) elements and diagonals of later
blocks.

The second row of R1 can then be used in a similar fashion to eliminate the (2,2)

elements in R2 to Rp followed by independent diagonal elimination. After each row
of R1 has been used in this manner all blocks other than the updated R1 are 0 and
the factorization is complete. The algorithm offers many possible patterns of com-
munication and is easily adaptable to shared or distributed memory organizations. It
was modified for Cedar as described in [50] and has been reintroduced many times
subsequently in parallel dense factorization algorithms.

The divide and conquer algorithm presented above for banded triangular sys-
tems was generalized by Sameh and Kuck for solving tridiagonal systems [120].
The method assumes A is nonsingular and that A and AT are unreduced tridiago-
nal matrices. The unreduced assumptions are required to adapt the algorithm to be
robust when a diagonal block was singular. The assumptions guarantee that a d × d

diagonal block’s rank is at least d − 1.
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Suppose we are to solve a linear system Ax = b where A is tridiagonal, i.e.,
nonzero elements are restricted to the main diagonal and the first super and sub-
diagonal. The cost of solving a tridiagonal system on a scalar machine is O(n)

computations using standard Gaussian elimination. The standard algorithm for do-
ing this may, at first, appear to be intrinsically sequential and a major question was
whether or not it was possible to solve a tridiagonal system in time less than O(n)

computations. A few authors started addressing this problem in the mid 1960s and
methods were discovered that required O(log(n)) computations. Two algorithms
in this category are worth noting, one is the recursing doubling method by Stone
[133], and the second is the cyclic reduction algorithm, first discussed by Hock-
ney [72] in 1965. While both of these algorithms dealt with cases that required
no pivoting, Kuck and Sameh presented a method for the general case described
above.

Their divide and conquer algorithm [120], consists of five stages. In what fol-
lows, p is the number of processors, j is the processor number, and m = n/p. The
first stage is simply a preparation phase. The system is scaled and partitioned. The
second stage consists of using unitary transformations in each processor (e.g., plane
rotations) to transform each local tridiagonal system into upper triangular form. If a
diagonal block is singular then its (m,m) element will be 0. When such blocks ex-
ist, each column of the transformed matrix containing such a 0 element is replaced
by its sum with the following column yielding the matrix, A(1). This is a simple
nonsingular transformation applied from the right and guarantees that all diagonal
blocks are nonsingular and upper triangular.

Stage 3 consists of a backward-elimination to transform each diagonal block into
the identity and create dense “spikes” in the columns immediately before and after
each diagonal block yielding the matrix, A(2). The matrices, A(1) and A(2), resulting
from these (local) transformations have the forms

A(1) =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

x x x 0 0 0 0 0 0 0 0 0
0 x x x 0 0 0 0 0 0 0 0
0 0 x x x 0 0 0 0 0 0 0
0 0 0 x x 0 0 0 0 0 0 0

0 0 0 x x x x 0 0 0 0 0
0 0 0 x 0 x x x 0 0 0 0
0 0 0 x 0 0 x x x 0 0 0
0 0 0 x 0 0 0 x x 0 0 0

0 0 0 0 0 0 0 x x x x 0
0 0 0 0 0 0 0 x 0 x x x

0 0 0 0 0 0 0 x 0 0 x x

0 0 0 0 0 0 0 x 0 0 0 x

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

, A(2) =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

1 0 0 0 x 0 0 0 0 0 0 0
0 1 0 0 x 0 0 0 0 0 0 0
0 0 1 0 x 0 0 0 0 0 0 0
0 0 0 1 x 0 0 0 0 0 0 0

0 0 0 x 1 0 0 0 x 0 0 0
0 0 0 x 0 1 0 0 x 0 0 0
0 0 0 x 0 0 1 0 x 0 0 0
0 0 0 x 0 0 0 1 x 0 0 0

0 0 0 0 0 0 0 x 1 0 0 0
0 0 0 0 0 0 0 x 0 1 0 0
0 0 0 0 0 0 0 x 0 0 1 0
0 0 0 0 0 0 0 x 0 0 0 1

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

.

Applying a permutation on the right to interchange the columns on either side of
the vertical partitioning lines moves the spikes into the blocks. The resulting matrix,
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A(3) = A(2)P , has the form

A(3) = A(2)P =

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

1 0 0 x 0 0 0 0 0 0 0 0
0 1 0 x 0 0 0 0 0 0 0 0
0 0 1 x 0 0 0 0 0 0 0 0
0 0 0 x 1 0 0 0 0 0 0 0

0 0 0 1 x 0 0 x 0 0 0 0
0 0 0 0 x 1 0 x 0 0 0 0
0 0 0 0 x 0 1 x 0 0 0 0
0 0 0 0 x 0 0 x 1 0 0 0

0 0 0 0 0 0 0 1 x 0 0 0
0 0 0 0 0 0 0 0 x 1 0 0
0 0 0 0 0 0 0 0 x 0 1 0
0 0 0 0 0 0 0 0 x 0 0 1

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

.

Finally, Kuck and Sameh observe that unknowns m, m+ 1, 2m, 2m+ 1, . . . , (p −
1)m, (p − 1)m + 1, pm satisfy an independent tridiagonal system of 2p − 1 equa-
tions. In Stage 4, this system is solved. Stage 5 consists on a back-substitution to get
the remaining unknowns.

Kuck and Sameh show that a tridiagonal linear system of dimension n can be
solved in 11 + 9 logn steps and the evaluation of a square root, using 3n processors.
Schemes for solving banded systems were later developed based on related divide
and conquer ideas, see [37, 88] and the method was adapted and analyzed for Cedar
for block tridiagonal systems by Berry and Sameh [13]. The idea was later general-
ized to yield a class of methods under the name of “Spike” solvers, see, e.g, [100,
101], which are the object of another section of this survey.

One of the most enduring contributions of Sameh and the Algorithm and Appli-
cations group is their work on the design and analysis of numerical linear algebra al-
gorithms that efficiently exploit the complicated multilevel memory and parallelism
hierarchies of Cedar. These issues have reappeared several times since CSRD as new
combinations of the basic computational and memory building blocks are exploited
in new implementations of systems. As a result, the practice on Cedar of analyzing
these building blocks with various relative contributions to the performance of an ar-
chitecture created a solid foundation for performance analysis, algorithm design and
algorithm modification on many of the systems currently available. Sameh’s contri-
bution in [47] and in an expanded form in [50] was significant and crucial. The
Algorithm and Applications group combined algorithm characteristics, architecture
characteristics, and empirical characterizations into an effective performance mod-
eling and design strategy (see [50] for a summary of contemporary investigations of
the influence of memory architecture).

In [47] this approach was used to present a systematic analysis of the perfor-
mance implications of the BLAS level-3 primitives for numerical linear algebra
computation on hierarchical memory machines. The contributions included design
techniques for achieving high performance in the critical BLAS level-3 kernels as
well as the design and analysis of high performance implementations of the LU
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factorization and the Modified Gram-Schmidt (MGS) algorithm. The performance
trends were analyzed in terms of the various blocking parameters available at the
kernel and algorithm level, and the resulting predictions were evaluated empirically.
Performance improvements such as multi-level blocking in both LU and MGS were
justified based on the models and verified empirically. The numerical properties of
the multilevel block MGS algorithm were subsequently investigated by Jalby and
Philippe in [76] and further improvements to the algorithm suggested. The insights
gained in this work were the basis for the entire Cedar numerical library and for
portions of the performance improving compiler work and problem solving envi-
ronment work mentioned earlier. The algorithms and insights have been of continu-
ing interest since then (see for example the use of block MGS and a version of the
limited parallelism QR algorithm of [110] mentioned above in the recent thesis of
M. Hoemmen [73]).

1.2.2 Jacobi Sweeps and Sturm Sequences

For diagonalizing a symmetric matrix, the oldest method, introduced by Jacobi in
1846 [75], consists of annihilating successively off-diagonal entries of the matrix
via orthogonal similarity transformations. The scheme is organized into sweeps of
n(n−1)/2 rotations to annihilate every off-diagonal pairs of symmetric entries once.
One sweep involves 6 n3 + O(n2) operations when symmetry is exploited in the
computation. The method was abandoned due to high computational cost but has
been revived with the advent of parallelism.

A parallel version of the cyclic Jacobi algorithm was given by Sameh [114]. It
is obtained by the simultaneous annihilation of several off-diagonal elements by a
given orthogonal matrix Uk , rather than only one rotation as is done in the serial
version. For example, let A be of order 8 (see Fig. 1.2) and consider the orthogo-
nal matrix Uk as the direct sum of four independent plane rotations simultaneously
determined. An example of such a matrix is

Uk = Rk(1,3) ⊕ Rk(2,8) ⊕ Rk(4,7) ⊕ Rk(5,6),

where Rk(i, j) is that rotation which annihilates the (i, j) off-diagonal element (⊕
indicates that the rotations are assembled in a single matrix and extended to order
n by the identity). Let one sweep be the collection of such orthogonal similarity
transformations that annihilate the element in each of the 1

2n(n − 1) off-diagonal
positions (above the main diagonal) only once, then for a matrix of order 8, the first
sweep will consist of seven successive orthogonal transformations with each one
annihilating distinct groups of maximum 4 elements simultaneously as described in
Fig. 1.2.

For symmetric tridiagonal matrices, Sturm sequences are often used when only
the part of the spectrum, in an interval [a, b], is sought. Since the parallel com-
putation of a Sturm sequence is poorly efficient it is more beneficial to consider
simultaneous computation of Sturm sequences by replacing the traditional bisection
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Fig. 1.2 Annihilation
scheme as in [114] (First
regime)

of intervals by multisection. This approach has been defined for the Illiac IV [74,
82] in the 1970s and revisited by A. Sameh and his coauthors in [89]. Multisections
are efficient only when most of the created sub-intervals contain eigenvalues. There-
fore a two-step strategy was proposed: (i) Isolating all the eigenvalues with disjoint
intervals, (ii) extracting each eigenvalue from its interval. Multisections are used
for step (i) and bisections or other root finders are used for step (ii). This approach
proved to be very efficient. When the eigenvectors are needed, they are computed in-
dependently by Inverse Iterations. A difficulty could arise if one wishes to compute
all the eigenvectors corresponding to a cluster of very poorly separated eigenvalues.
Demmel, Dhillon and Ren in [34], discussed the reliability of the Sturm sequence
computation in floating point arithmetic where the sequence is no longer monotonic.

1.2.3 Fast Poisson Solvers and Structured Matrices

One exciting research topic in scientific computing “making headlines” in the early
1970s was Fast Poisson Solvers, that is, direct numerical methods for the solution of
linear systems obtained from the discretization of certain partial differential equa-
tions, typically elliptic and separable, defined on rectangular domains, with sequen-
tial computational complexity O(N log2 N) or less, where N is the number of un-
knowns (see [51] for an outline of these methods). At the University of Illinois, the
Center for Advanced Computation (CAC), an organization engaged in the Illiac IV
project, issued a report of what is, to the best of our knowledge, the earliest pub-
lished investigation on parallel algorithms in this area. That was the Master’s thesis
of James H. Ericksen [41], presenting an adaptation of the groundbreaking FACR
algorithm of Hockney for the Illiac IV. It used the algorithms of Cooley et al. for the
FFT [30] and the well-known Thomas algorithm for solving the tridiagonal systems
instead of Hockney’s cyclic reduction. Ericksen was from the Department of Atmo-
spheric Sciences and a goal of that research was the solution of a CFD problem (the
non-dimensional Boussinesq equations in a two-dimensional rectangular region de-
scribing Bernard-Rayleigh convection) in the streamfunction-vorticity formulation
which required the repeated solution of Poisson’s equation. A modified version of
FACR, MFACR, that did not contain odd-even reduction was also implemented.
This CAC report did not report on the results of an implementation, but provided
codes in GLYPNIR (the Illiac IV Algol-like language), partial implementations in
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the ASK assembly and timing estimates based on the clocks required by the instruc-
tions in these codes. The direct method was found to be faster and to require less
memory than competing ones based on SOR and ADI. Some results from this study
were reported by Wilhelmson in [134] and later extended in [42], where odd-even
reduction was also applied to economize in storage for a system that could not be
solved in core.

At about the time that the first Erickson report was issued, Bill Buzbee outlined
in a widely cited paper [25] the opportunities for parallelism in the simplest version
of FACR (like MFACR, which is the Fourier Matrix Decomposition method [26];
see also [51]) “It seldom happens that the application of L processors would yield
an L-fold increase in efficiency relative to a single processor, but that is the case
with the MD algorithm.” Recalling that effort Buzbee noted in [127] “Then, by that
point we were getting increasingly interested in parallel computing at Los Alamos,
and I saw some opportunities with Hockney’s scheme for parallel computing, so I
wrote a paper on that.”

Given this background, the 1974 Sameh, Chen and Kuck Technical Report [118],
entitled Parallel direct Poisson and biharmonic solvers, and the follow-up paper
[119] appear to have been the first detailed studies of rapid elliptic solvers for a
parallel computational model that for many years dominated the analyses of many
algorithms. Comparisons with competing iterative algorithms were also provided.
The theoretical analysis in these papers together with the practical Illiac IV study in
[42] are essential references in the early history of rapid elliptic solvers.

The methods presented in the paper built on earlier work of Kuck and coauthors
on the fast solution of triangular systems. They are also based on the fundamental
work on the parallel computation of the FFT, the matrix decomposition by Buzbee,
Dorr, Golub and Nielson [26] as well as work in [44] on the use of the Toeplitz
structure of the matrices occurring when discretizing the Poisson equation. One
major result was that the n2 ×b2 block Toeplitz tridiagonal system resulting from the
discretization of the Poisson equation on the unit square with the standard 5-point
finite difference approximation can be solved in Tp = 12 logn steps (omitting terms
of O(1)) using at most n2 processors with speedup O(n2) and efficiency O(1). In
order to evaluate the performance of these methods on the parallel computational
model mentioned earlier, their performance characteristics were compared to those
of SOR and ADI.

It is remarkable that [118, 119] also contained the first published parallel algo-
rithm for the biharmonic equation. That relies on the fact that the coefficient matrix
of order n2 has the form G+2FF�, where F ∈R

n2×2n is F = diag(E, . . . ,E), and
hence is of rank 2n and G is the square of the usual discrete Poisson operator slightly
modified. It is worth noting that even recent approaches to the fast solution of the
biharmonic equation are based on similar techniques, see e.g. [7]. It was shown in
[119] that the biharmonic equation can be solved in Tp = 6n + 1

2 log2 n + 28.5 logn

steps using O(n3) processors. It was also proved that the equation can be solved in
Tp = 50n logn + O(n) steps when there are only 4n2 processors. The complexity
can be further reduced if some preprocessing is permitted.
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Another significant paper of Sameh on rapid elliptic solvers, entitled A fast Pois-
son solver for multiprocessors, appeared in 1984 [116]. Therein, a parallel matrix-
decomposition framework for the standard discrete Poisson equation in two and
three dimensions is proposed. A close study of these methods reveals that they can
be viewed as special cases of the Spike banded solver method, which emerged, as is
evident in this volume, as an important algorithmic kernel in Sameh’s work. They
are also related to domain decomposition. The three-dimensional version is based
on a six phase parallel matrix-decomposition framework that combines independent
FFTs in two dimensions and tridiagonal system solutions along the third dimension.
The computational models used were a ring of p < n processors for the two dimen-
sional problem and a mesh of n2 processors consisting of n rings of n processors
each for the 3-d problem. In these rings, each processor has immediate access to
a small local memory while one processor has access to a much larger memory. It
was assumed that each processor was able to perform simultaneously an arithmetic
operation as well as to receive one floating-point number and transmit another from
and to a neighboring processor. The influence of the work presented in [116] can be
seen in papers that appeared much later, e.g. the solvers for the Cray T3E presented
in [57].

Sameh’s suggestion to E. Gallopoulos to study the “Charge Simulation Method”,
was also pivotal as it led to interesting novel work by Daeshik Lee, then Ph.D. stu-
dent at CSRD, who studied the use of these “boundary-integral” type methods to
perform non-iterated domain decomposition and then apply suitable rapid elliptic
solvers (cf. [53] and [54]). The area of CSM-based methods for solving elliptic
equations dramatically expanded later on and is still evolving, especially in the con-
text of meshless methods (see e.g. [43]).

Algorithms for matrix problems with special structure have emerged as an im-
portant topic in matrix computations. In our opinion, together with the FFT, rapid
elliptic solvers have been the first example of research in this area. Historically
then, parallel FFT and rapid elliptic solver algorithms can be considered as the first
examples of parallel algorithms for structured matrices. Toeplitz structure, that is,
matrices in which individual elements or submatrices (blocks) are constant along
diagonals are of great importance in a variety of areas, from signal processing to
the solution of partial differential equations. Sameh’s contribution in this area is sig-
nificant and can be considered groundbreaking. In the article On Certain Parallel
Toeplitz Linear System Solvers [67], coauthored with his Ph.D. student J. Grcar, they
described fast parallel algorithms for banded Toeplitz matrices of semi-bandwidth
m. Specifically, they described a practical algorithm of parallel complexity O(logn)

for the solution of banded Toeplitz systems useful when the matrix can be embed-
ded in a nonsingular circulant matrix. When this assumption does not hold but the
matrix is spd they described an O(m logn) algorithm under the weaker assumption
that all principal minors are nonzero. Under somewhat more restrictive conditions
(related to the factorization of the “symbol” of A), a less expensive, O(logm logn)

algorithm was also described. The numerical behavior of all algorithms was also in-
vestigated. This is probably the first published paper proposing parallel algorithms
for banded Toeplitz systems, laying groundwork for important subsequent devel-
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opments by experts from the fast growing structured matrix algorithms community
(see for example [18, 20] and the survey [19]).

Structured matrices were also central in the work by Sameh and Hsin-Chu Chen,
on linear systems with matrices that satisfy the relation A = PAP , where P is
some symmetrical signed permutation matrix. These matrices are called reflexive
and also said to possess the SAS property. Based on this they showed, in the 1987
paper Numerical linear algebra algorithms on the Cedar system and then expanded
in Chen’s Ph.D. thesis and the follow-up article [27], that for matrices with this
structure, it is possible to decompose the original problem into two or more in-
dependent subproblems (in what they termed SAS decomposition) via orthogonal
transformations, leading to algorithms possessing hierarchical parallelism suitable
for a variety of parallel architectures. Actually, the advantage of these techniques
was demonstrated over a variety of architectures (such as the Alliant FX/8 vector
multiprocessor and the University of Illinois Cedar system).

1.3 Algorithms for Sparse Matrices

1.3.1 Computing Intermediate Eigenvalues

Sameh has had a keen interest in solvers for large eigenvalue problems throughout
his career. During the 1970s, the most popular eigenvalue methods for large sym-
metric matrices were the Simultaneous Iteration method as studied by Rutishauser
[102] and the Lanczos method [84]. These two methods are efficient for the compu-
tation of extreme eigenvalues, particularly those of largest absolute value.

For computing interior eigenvalues, methods based on spectral transformations
were introduced and thoroughly discussed during the 1980s. The most effective
approach to computing interior eigenvalues was the Shift-and-Invert technique
which enables the computation of those eigenvalues of A that are the nearest to
a given σ ∈ R by applying the Lanczos processes on (A − σI)−1 in place of A.
If (A − σI)−1q = qμ, then Aq = qλ with λ = σ + 1/μ, and thus the extreme
eigenvalues of (A − σI)−1 transform to the eigenvalues of A closest to the shift σ .
The shift-inverse approach is very effective and is the most commonly used tech-
nique for computing interior eigenvalues. However, shift-invert requires an accu-
rate numerical solution of a linear system at each iteration. Sameh and his coau-
thors were pioneers in considering a well constructed polynomial transformation
p(A) in place of (A − σI)−1. In [121], they combined a quadratic transformation
B = I − c(A − aI)(A − bI) with the method of simultaneous iteration for com-
puting all the eigenvalues of A lying in a given interval [a, b]. The scaling factor
c is chosen so that min(p(c1),p(c2)) = −1 where the interval [c1, c2] includes as
closely as possible the spectrum of A. They provide an analysis of the rate of con-
vergence based upon Chebyshev polynomials.

Although polynomial transformations usually give rise to a considerably higher
number of iterations than Shift-and-Invert transformations, they are still useful be-
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cause of their ability to cope with extremely large matrices and to run efficiently on
modern high performance computing architectures.

As an alternative to both of these approaches, Sameh and his students developed
an algorithm that allows preconditioning and inaccurate solves of linear systems
so that the efficiency of shift-invert is nearly recovered but no factorizations of the
shit-invert matrix are required. This approach is described in the next section.

1.3.2 The Trace Minimization Algorithm

The generalized eigenvalue problem

Aq = Bqλ,

with A,B matrices of order n, q a non-zero vector and λ a scalar provides a signif-
icant challenge for large scale iterative methods. For example, methods based upon
an Arnoldi or Lanczos process will typically require a spectral transformation

(A − σB)−1Bq = qμ, with λ = σ + 1

μ
(1.1)

to convert the system to a standard eigenvalue problem. The spectral transformation
enables rapid convergence to eigenvalues near the shift σ . As mentioned previously,
this transformation is highly effective, but its implementation requires a sparse direct
factorization of the shifted matrix A − σB . When this is not possible due to storage
or computational costs, one is forced to turn to an inner–outer approach with an
iterative method replacing the sparse direct solution. There are numerous difficulties
with such an approach.

The Trace Minimization Algorithm (Trace Min) offers a very different subspace
iteration approach that does not require an explicit matrix factorization. Trace Min
remains as a unique and important contribution to large scale eigenvalue problems.
It addresses the special case of Eq. (1.1) assuming that

A = AT , B = BT pos.def.

Some important features of Trace Min are

1. There is no need to factor (A − σB).
2. Often there is a sequence of related parametrically dependent eigenvalue prob-

lems to solve. Since Trace Min is a type of subspace iteration, the previous basis
V may be used to start the iteration of a subsequent problem with new parameter.

3. At each iteration, a linear system must be solved approximately. Preconditioning
for this task is possible and natural. In Trace Min, inaccurate solves of these
linear systems are readily accommodated.

4. Trace Min is ideal suited for parallel computation.
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1.3.2.1 The Trace Min Idea

The foundation of the Trace Min algorithm is the fact that the smallest eigenvalue
of the problem must satisfy

λmin = min
v �=0

vT Av

vT Bv
.

This is a Raleigh quotient for A in a norm weighted by B . If the eigenvalues of
the pair (A,B) are ordered so that λ1 ≤ λ2 ≤ · · · ≤ λn, then there is a well-known
subspace variant of this Raleigh condition:

λ1 + λ2 + · · · + λk = min tr
{
V T AV

}

s.t. V T BV = Ik.

Courant–Fischer Theory implies that the optimal V satisfies

V T AV = Λk, V T BV = Ik, Λk = diag(λ1, λ2, . . . , λk).

An iteration that amounts to a sequence of local tangent space minimization steps
will lead to Trace Min. If V is the current basis with V T BV = Ik then a local tangent
space search is facilitated by noting that

(V − Δ)T B(V − Δ) = Ik + ΔT BΔ

if V T BΔ = 0.
The local tangent space minimization subproblem is given by

min
{
tr
{
(V − Δ)T A(V − Δ)

}}
s.t. V T BΔ = 0.

The symmetry of A may be used to derive the equivalent formulation

min
{
tr
(−2ΔT AV + ΔT AΔ

)}
s.t. V T BΔ = 0.

The KKT conditions for this formulation provide a block bordered system of linear
equations that are suitable for computation:

[
A BV

V T B 0

][
Δ

L

]
=

[
AV

0

]
.

The correction required to update V is V − Δ and this must be rescaled so that

V+ = (V − Δ)S (1.2)

with

V T+ BV+ = Ik and V T+ AV+ = Λ+.
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This rescaling may be accomplished with the formula

(V − Δ)T B(V − Δ) = Ik + ΔT BΔ = U
(
Ik + D2)UT ,

where UD2UT = ΔT BΔ is the eigensystem of the symmetric positive definite ma-
trix ΔT BΔ. The scaling matrix is given by S = U(Ik + D2)−1/2W , with

WΛWT = V̂ T AV̂

is the eigensystem of V̂ T AV̂ with V̂ = U(Ik + D2)−1/2. Alternatively, one may
take S = L−T W where LLT = Ik + ΔT BΔ is the Cholesky factorization.

It is easily seen that

tr
{−2ΔT AV + ΔT AΔ

} = tr
{
(V − Δ)T A(V − Δ)

} − tr
{
V T AV

}

is a strictly convex function of Δ and hence the problem

min
{
tr
{(−2ΔT AV + ΔT AΔ

)}}
s.t. V T BΔ = 0

has a strictly convex objective subject to convex constraints. Moreover, at the opti-
mal Δ,

tr
{
(V − Δ)T A(V − Δ)

}
< tr

{
V T AV

}

(unless Δ = 0 and V optimal). It is also possible to show that the scaled V+ in Eq.
(1.2) also satisfies

tr
{
V T+ AV+

}
< tr

{
V T AV

}

so that rescaling still gives descent at each iteration.
Since the optimal Δ must satisfy the KKT equations

[
A BV

V T B 0

][
Δ

Ł

]
=

[
AV

0

]
, (1.3)

the algorithm will be fully specified with a procedure to solve this system. To this
end, let

BV = QR = [Q1,Q2]
[
R̂

0

]

be the long form QR-factorization. Then Eq. (1.3) will be equivalent to

[
QT AQ R

RT 0

][
G

L

]
=

[
F

0

]
. (1.4)

Equation (1.4) may be further partitioned into
⎡

⎣
A11 A12 R̂

A21 A22 0
RT 0 0

⎤

⎦

⎡

⎣
G1
G2
L

⎤

⎦ =
⎡

⎣
F1
F2
0

⎤

⎦ (1.5)
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where Aij = QT
i AQj , Gi = QT

i Δ, and Fi := QT
i AV for i, j ∈ {1,2}. The last

block of these equations will imply G1 = 0 since BV is full rank and R̂ must be
nonsingular. Thus

Δ = QG = Q1G1 + Q2G2 = Q2G2.

Hence, Eq. (1.5) reduces to the auxiliary system

(i) Solve QT
2 AQ2G2 = QT

2 AV for G2.
(ii) Put Δ = Q2G2.

Unfortunately, Q2 is size n × (n − k) so that A22 is an order n − k matrix with
k � n (recall n is huge and k is small). Most likely, it will not even be possible to
compute Q2 for large n. However, there is an effective remedy to this problem. Since
Q2Q

T
2 = I − Q1Q

T
1 and Q2Q

T
2 AQ2Q

T
2 G = Q2Q

T
2 AV , the following system is

equivalent:
(
I − Q1Q

T
1

)
A

(
I − Q1Q

T
1

)
Δ = (

I − Q1Q
T
1

)
AV, (1.6)

which derives from the fact Δ = Q2G2 and (I − Q1Q
T
1 )Q2 = Q2.

Note that Eq. (1.6) is a consistent symmetric positive semi-definite system and
hence may be solved via the preconditioned conjugate gradient method (PCG). In
PCG we only need matrix-vector products of the form w = (I − Q1Q

T
1 )A(I −

Q1Q
T
1 )v which, of course, may be implemented in the form

1. z1 = QT
1 v,

2. y1 = v − Q1z1,
3. q = Ay1,
4. z2 = QT

1 q ,
5. y2 = v − Q1z2.

Global and Rapid Convergence: Using relations to Rutishauser’s simultaneous
iteration for eigenvalues of A−1B Sameh and Wisniewski were able to prove

Theorem 1.1 Assume λ1 ≤ λ2 ≤ · · · ≤ λk < λk+1 with corresponding generalized
eigenvectors vi . Let v

(j)
i be the ith column of V = V (j) at the j th iteration. Then

(i) v
(j)
i → vi , at rate asymptotic to λi/λk+1

(ii) (v
(j)
i − vi)

T A(v
(j)
i − vi) is reduced asymptotically by factor (λi/λk+1)

2.

Putting all this together provides the Trace Min algorithm which is shown as Al-
gorithm 1.1. Many more computational details and insights plus several convincing
numerical experiments are presented in the Sameh and Wisniewski paper.

Trace Min is one of the very few methods for solving the generalized eigen-
value problem without factoring a matrix. Another such method called the Jacobi–
Davidson method was published by Van der Vorst and Sleijpen [128]. It is interesting
to note that Trace Min preceded Jacobi–Davidson by a decade. Moreover, from the
derivation given above, it is readily seen that these two methods have a great deal in
common.
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Algorithm 1.1: The Tracemin algorithm

1 Algorithm: [V,D] = Tracemin((A,B, k, tol))

Data: A an n × n spd matrix; B an n × n spd matrix; k a positive integer
(k ≤ n); tol requested accuracy tolerance;

Result: V an n × k B-orthogonal matrix; D a k × k positive diagonal matrix
with AV = BV D;

2 [V,R] = qr(randn(n, k),0);
3 [U,S] = eig(V T BV ); S = diag(sqrt(diag(S))) ;
4 V = VUS−1;
5 Resid = 10 · tol ;
6 while (Resid > tol) do
7 [Q,R] = qr(BV,0);

/* Solve (I − QQT )A(I − QQT )Z = AV with
pcg--Preconditioned Conjugate Gradient */

8 Z = pcg(A,Q,AV );
9 V = V − Z ;

10 [U,S] = eig(V T BV );S = diag(sqrt(diag(S))) ;
11 V = V US−1 ;
12 H = V T AV ;
13 W = AV ; H = V ′ ∗ W ; H = .5 ∗ (H + HT );
14 [Y,D] = eig(H);
15 [s,p] = sort(diag(D)); V = V ∗ Y(:,p); D = D(p,p);
16 Resid = ‖AV − BV D‖

1.3.2.2 Trace Minimization and Davidson

We have seen that Trace Min is a subspace iteration approach that is a consider-
able advance over the existing simultaneous iteration that preceded it. However, the
subspace iteration approach languished within the numerical analysis and numeri-
cal linear algebra communities which tended to favor Krylov subspace approaches
such as Arnoldi and Lanczos. However, the rigid structure of Krylov spaces did not
lend itself well to modifications that would accelerate convergence other than the
previously mentioned shift-invert transformation.

Quite a different approach emerged from the computational chemistry commu-
nity in the form of Davidson’s method. For various reasons, the chemists preferred
this over the Lanczos method. The Davidson method can be viewed as a modifica-
tion of Newton’s method applied to the KKT system that arises from treating the
symmetric eigenvalue problem as a constrained optimization problem involving the
Rayleigh quotient. From our previous discussion of Trace Min, there is an obvious
connection. The Jacobi–Davidson method is a related approach that is now viewed
as a significant advance over the original Davidson method. However, much of tech-
nology in Jacobi–Davidson had already been developed in Trace Min.
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These approaches essentially take the viewpoint that the eigenvalue problem is
a nonlinear system of equations and attempt to find a good way to correct a given
approximate eigenpair (λ̃, ũ), by enriching the most recent subspace of approxi-
mants with Newton-like directions. In practice, this means that we need to solve
the correction equation, i.e., the equation which updates the current approximate
eigenvector, in a subspace that is orthogonal to the most current approximate eigen-
vectors.

Let us consider that, at a given iteration, the current approximate eigenpair (λ̃, ũ)

is a Ritz pair obtained from the current subspace spanned by the orthonormal
columns of V ∈ R

n×k (k � n and V T V = Ik). Denoting ũ = V w and assuming
that ‖ũ‖2 = 1 reveals that the Ritz value λ̃ = ũT Aũ is the Rayleigh quotient of ũ

and w is the corresponding eigenvector of the reduced problem (V T AV )w = λ̃w.
The residual r = Aũ− λ̃ũ satisfies V T r = 0. One can think of the problem as that of
solving (A− (λ̃+ δ)I )(ũ+ z) = 0, but since there are n+ 1 unknowns, a constraint
must be added, for example, ‖ũ + z‖2 = 1,

{
((A − λ̃I ) − δI )(ũ + z) = 0,

(ũ + z)T (ũ + z) = 1 .
(1.7)

Ignoring second order terms, this yields the system of equations

(
A − λ̃I

)
z − V w δ = −r, (1.8)

−wT V T z = 0. (1.9)

Equation (1.8) is a linear system of rank n − k: for any solution z0 of the system all
the vectors z0 + V w are also solutions. Since only non-redundant information must
be appended to V to define the next subspace, Eq. (1.9) is replaced by

V T z = 0 (1.10)

to reach a full rank for the global system. By invoking the orthogonal projector
P = I − V V T , and observing that P ũ = 0 and Pr = r , it yields,

P
(
A − λ̃I

)
Pz = −r, (1.11)

Pz = z. (1.12)

Note that the correction δ to λ̃ can be ignored since the new approximate eigen-
value will just be defined as the new Rayleigh quotient. So we are left with the
Eq. (1.11). We look now at several attempts that have been considered to solve ap-
proximately this equation.

In 1982, Sameh and Wisjniewski derived that system (see Eq. (2.20) in [123])
except that the entire derivation of the method is written in the context of the gener-
alized eigenvalue problem.



22 K.A. Gallivan et al.

In 1986, Morgan and Scott generalized the Davidson method, which was already
known in chemistry [97]. They defined an approximate equation which may be writ-
ten:

(
M − λ̃I

)
z = −r, (1.13)

where M is a preconditioner (i.e. an approximation of A). Later in 1994, Crouzeix
et al. proved the convergence of the method in [31].

In 1996, Sleijpen and van der Vorst rederived Eq. (1.11) in [128], for their famous
Jacobi–Davidson method. In 2000, Sameh and Tong revisited Trace Min in [113],
and discussed some comparisons with a block version of Jacobi–Davidson. The
main difference comes from the strategy for selecting the shifts in the correction
step.

From this discussion, it is clear that the eigenvalue solvers based on the Trace
Min or the Jacobi–Davidson method should behave similarly. One of the differ-
ences concerns the sequence of subspaces that are constructed in each method: the
subspaces are of increasing dimension for the latter but of fixed dimension for the
former. However, both of these methods can give rise to a large range of versions
which may be commonly derived from them.

1.3.3 Algorithms for Large Scale SVD

In the late 1980s, research of Michael Berry supervised by Sameh at CSRD led
to a host of algorithms for computing the singular value decomposition on multi-
processors. After initial work on the dense problem [14]. Berry in his Ph.D. thesis
considered Lanczos and block Lanczos, subspace iteration and trace minimization
algorithms for approximating one or more of the largest or smallest singular values
and vectors of unstructured sparse matrices and their implementations on Alliant
and Cray multiprocessors [8, 9]. One novelty of these works is their emphasis on
information retrieval (IR), especially the Latent Semantic Indexing model that had
just appeared in the literature. This work played a major role in the development of
algorithms for large scale SVD computations and their use in IR; cf. [10–12]. It was
also key in publicizing the topic of IR to the linear algebra and scientific computing
communities.

1.3.4 Iterative Methods for Linear Systems of Equations

When it comes to solving large sparse linear systems of equations, iterative meth-
ods have a definite advantage over direct methods in that they are easy to paral-
lelize. In addition, their memory requirements are generally quite modest. Sameh
and coworkers considered a number of parallel iterative methods, see, e.g., [23, 24,
77, 78, 103, 104].
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A particular scheme which is sketched here is one based on variants of row-
projection methods. A row-projection method, such as the Kaczmarz method uses
a row of the matrix to define a search direction for reducing a certain objective
function (error norm or residual norm). For example, if r is the current residual
vector r = b − Ax, and if ei is the ith column of the identity, the Kaczmarz update

x := x + eT
i r

‖AT ei‖2
2

AT ei (1.14)

simply performs a relaxation step (Gauss–Seidel) for solving the normal equation
AAT y = b, where the unknown x is set to x = AT y. It can also be viewed as a pro-
jection method along the direction AT ei for solving Ax = b, by minimizing the next
error norm. Regardless of the viewpoint taken, when Eq. (1.14) is executed cycli-
cally from i = 1 through i = n, we would essentially accomplish a Gauss–Seidel
sweep for solving AAT y = b. Generally this scheme is sensitive to the condition
number of A, so block schemes were sought by Sameh and coworkers in an effort
to improve convergence rates on the one hand and improve parallelism at the same
time. In particular, an important idea discussed in [23, 24, 77, 78] is one in which
rows are grouped in blocks so that a block SOR scheme would lead to parallel
steps. This means that rows which have no overlap must be identified and grouped
together.

Consider a generalization of the scheme Eq. (1.14) in which the vector ei is
replaced by a block Vi of p columns of ej ’s. Then since we are performing a pro-
jection step in the space span(AT Vi) the scheme in Eq. (1.14) will be replaced by a
step like

x := x + (
AT Vi

)
ui (1.15)

where ui is now a vector determined by the requirement that the new residual be
orthogonal to Vi , giving

V T
i

(
r − A

(
AT Vi

)
ui

) = 0 → ui = [(
AT Vi

)T (
AT Vi

)]−1
V T

i r.

The p × p matrix Si = (AT Vi)
T (AT Vi) can have an advantageous structure for

parallel environments provided a good selection of the sets of rows is made. For
example, Si can be diagonal if the rows AT ej are orthogonal to each other for the
columns ej s of the associated Vi . This is the basis of the contribution by Kamath and
Sameh [78]. Later the idea was further refined to improve convergence properties
and give specific partition vectors for 3-D elliptic Partial Differential Equations [23,
24]. This class of methods can be quite effective for problems that are very highly
indefinite since other methods will most likely fail in this particular situation.

In [103] and later in [104] a combination of Chebyshev iteration and block
Krylov methods was exploited. The Chebyshev iteration has clear advantages in
a parallel computing environment as it is easy to parallelize and has no inner prod-
ucts. The block-Krylov method can be used to extract eigenvalue information and,
at the same time, to perform a projection step to speed-up convergence. The method
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has great appeal even today, though implementation can be difficult and this can
discourage potential users.

One of the most successful alternatives to direct solution techniques for solving
symmetric linear systems is the preconditioned conjugate gradient algorithm and at
the time when Cedar was being built it was imperative to study this approach in
detail. Sameh and coauthors published several papers on this. One of these papers,
the article [94] by Meier and Sameh, considered in detail the performance of a few
different schemes of the preconditioned Conjugate Gradient algorithm in a parallel
environment. The issue was revisited a few years later in collaboration with Gupta
and Kumar [68]. For solving general sparse linear systems, the authors of [48, 49]
explore ‘hybrid methods’. The idea is to use a direct solver and drop small terms
when computing the factorization. The authors show that a hybrid method of this
type is often better than the corresponding direct and pure iterative methods, or
methods based on level-of-fill preconditioners.

Another interesting contribution was related to the very complex application of
particulate flow [124]. This application brings together many challenges. First, the
problem itself is quite difficult to solve because the particles must satisfy physical
constraints and this leads to the use of Arbitrary Lagrangian Eulerian (ALE) formu-
lations. When finite elements are used the problem must be remeshed as the time
discretization progresses and with the remeshing a re-partitioning must also be ap-
plied. Finally, standard preconditioners encounter serious difficulties. Sameh and
his team contributed several key ideas to this project. One idea [124] is a projection
type method to perform the simulation. The simulation was performed matrix-free
on a space constrained to be incompressible in the discrete space. A multilevel pre-
conditioner is also devised by Sarin and Sameh [122] to build a basis of the space
of divergence-free functions. The algorithm showed good scalability and efficiency
for particle benchmarks on the SGI Origin 2000.

The above overview of Sameh’s contributions to parallel iterative methods has
deliberately put an emphasis on work done around the Cedar project and before.
Sameh has continued to make contributions to parallel iterative methods and a few
of the papers in this volume discuss his more recent work.

1.3.5 The Spike Algorithm

Sparse linear systems Ax = b can often be reordered to produce either banded sys-
tems or low-rank perturbations of banded systems in which the width of the band
is but a small fraction of the size of the overall system. In other instances, banded
systems can act as effective preconditioners to general sparse systems which are
solved via iterative methods. Existing algorithms and software using direct methods
for banded matrices are commonly based on the LU factorization that represents
a matrix A as a product of lower and upper triangular matrices i.e. A = LU. Con-
sequently, solving Ax = b can be achieved by solutions of two triangular systems
Lg = b and Ux = g. In contrast to the LU factorization, the Spike algorithm, in-
troduced by Sameh in the late 1970s [115, 120], relies on a DS factorization of the
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Fig. 1.3 Example of DS factorization of the banded matrix A for the case of three partitions.
The diagonal blocks in D are supposed non-singular, and their size much larger than the size the
off-diagonal blocks B and C (the system is said to be narrow banded)

banded matrix A where D is a block-diagonal matrix, and S has the structure of an
identity matrix with some extra “spikes” (S is called the spike matrix). Assuming a
direct partitioning of the banded matrix A in the context of parallel processing, the
resulting DS factorization procedure is illustrated in Fig. 1.3.

As a result, solving Ax = b can be achieved by solving for a modified right hand
side Dg = b which consists of decoupled block diagonal systems, and the spike sys-
tem Sx = g which is also decoupled to a large extent except for a reduced system
that can be extracted near the interfaces of each of the identity blocks. The Spike
algorithm is then similar to a domain decomposition technique that allows perform-
ing independent calculations on each subdomain or partition of the linear system,
while the interface problem leads to a reduced linear system of much smaller size
than that of the original one. Multiple arithmetic operations can indeed be processed
simultaneously in parallel such as the factorization of each partition of the diagonal
matrix D (using for example a LU factorization), the generation of the spike ma-
trix S, or the retrieval of the entire solution once the reduced system solved. All the
communication operations are then concentrated in solving the reduced system. The
Spike algorithm is then ideally suited for achieving linear scalability in parallel im-
plementation since it naturally leads to low communication cost. In addition and in
comparison to other divide-and-conquer approach which enforces the LU factoriza-
tion paradigm [4, 29], Spike naturally minimizes memory references (no reordering
needed for performing the DS factorization on banded systems) as well as the arith-
metic cost for obtaining the reduced system (the reduced system is directly extracted
from the spike matrix and not generated via Schur complement for example). Since
its first publications several enhancements and variants of the Spike algorithm have
been proposed by Sameh and coauthors in [13, 37, 58, 88, 91, 92, 99, 100, 109, 112].
Spike can be cast as a hybrid and polyalgorithm that uses many different strategies
for solving large banded linear systems in parallel and can be used either as a direct
scheme or a preconditioned iterative scheme. In the following, Sect. 1.3.5.1 briefly
summarizes the basic Spike algorithm, while Sect. 1.3.5.2 presents the polyalgo-
rithm nature of Spike. From all the different possible options for Spike, two highly
efficient direct methods recently introduced in [100, 101] for solving dense banded
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systems, have demonstrated significant improvement in performance and scalability
over the LU parallel state-of-the-art implementations available in the ScaLAPACK
package [21]. Sections 1.3.5.3 and 1.3.5.4 focus particularly on the presentation of
Spike schemes which have been named “truncated scheme” for handling diagonally
dominant systems, and “recursive scheme” for non-diagonally dominant systems.

1.3.5.1 Basic Spike Algorithm

As illustrated in Fig. 1.3, a (n × n) banded matrix A can be partitioned into a block
tridiagonal form {Cj ,Aj ,Bj } where Aj is the (nj × nj ) diagonal block j , and Bj

(i.e. Cj ) is the (ku × ku) (i.e. (kl × kl)) right block (i.e. left block). Using p par-
titions, it comes that nj is roughly equal to n/p. In order to ease the description of
the Spike algorithm but without loss of generality, the size off-diagonal blocks are
both supposed equal to m (kl = ku = m). The size of the bandwidth is then defined
by bd = 2m + 1 where bd � nj . Each partition j (j = 1, . . . , p), can be associated
to one processor or one node allowing multilevel of parallelism. Using the DS fac-
torization, the obtained spike matrix S has a block tridiagonal form {Wj, Ij ,Vj },
where Ij is the (nj × nj ) identity matrix, Vj and Wj are the (nj × m) right and left
spikes. The spikes Vj and Wj are solutions of the following linear systems:

AjVj =

⎡

⎢⎢
⎢
⎣

0
...

0
Bj

⎤

⎥⎥
⎥
⎦

, and AjWj =

⎡

⎢⎢
⎢
⎣

Cj

0
...

0

⎤

⎥⎥
⎥
⎦

(1.16)

respectively for j = 1, . . . , p − 1 and j = 2, . . . , p.
Solving the system Ax = b now consists of two steps:

(a) solve Dg = b, (1.17)

(b) solve Sx = g. (1.18)

The solution of the linear system Dg = b in Step (a), yields the modified right-
hand side g needed for Step (b). In case of assigning one partition to each processor,
Step (a) is performed with perfect parallelism. To solve Sx = g in Step (b), one
should observe that the problem can be reduced further by solving a system of much
smaller size which consists of the m rows of S immediately above and below each
partitioning line. Indeed, the spikes Vj and Wj can also be partitioned as follows:

Vj =
⎡

⎢
⎣

V
(t)
j

V ′
j

V
(b)
j

⎤

⎥
⎦ and Wj =

⎡

⎢
⎣

W
(t)
j

W ′
j

W
(b)
j

⎤

⎥
⎦ (1.19)
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where V
(t)
j , V ′

j , V
(b)
j , and W

(t)
j , W ′

j , W
(b)
j , are the top m, the middle nj − 2m and

the bottom m rows of Vj and Wj , respectively. Here,

V
(b)
j = [0 Im]Vj ; W

(t)
j = [Im 0]Wj, (1.20)

and

V
(t)
j = [Im 0]Vj ; W

(b)
j = [0 Im]Wj. (1.21)

Similarly, if xj and gj are the j th partitions of x and g, it comes

xj =

⎡

⎢
⎢
⎣

x
(t)
j

x ′
j

x
(b)
j

⎤

⎥
⎥
⎦ and gj =

⎡

⎢
⎢
⎣

g
(t)
j

g′
j

g
(b)
j

⎤

⎥
⎥
⎦ . (1.22)

It is then possible to extract from a block tridiagonal reduced linear system of size
2(p − 1)m which involves only the top and bottom elements of Vj , Wj , xj and gj .

As example, the reduced system obtained for the case of four partitions (p = 4)
is given by

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎣

Im V
(b)
1

W
(t)
2 Im V

(t)
2

W
(b)
2 Im V

(b)
2

W
(t)
3 Im V

(t)
3

W
(b)
3 Im V

(b)
3

W
(t)
4 Im

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎣

x
(b)
1

x
(t)
2

x
(b)
2

x
(t)
3

x
(b)
3

x
(t)
4

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎣

g
(b)
1

g
(t)
2

g
(b)
2

g
(t)
3

g
(b)
3

g
(t)
4

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎦

. (1.23)

Finally once the solution of the reduced system is obtained, the global solution x

can be reconstructed from x
(b)
k (k = 1, . . . , p − 1) and x

(t)
k (k = 2, . . . , p) either by

computing

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ′
1 = g′

1 − V ′
1x

(t)
2 ,

x ′
j = g′

j − V ′
j x

(t)
j+1 − W ′

j x
(b)
j−1, j = 2, . . . , p − 1,

x ′
p = g′

p − W ′
j x

(b)
p−1,

(1.24)

or by solving

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A1 x1 = b1 − [ 0
Im

]
Bjx

(t)
2 ,

Aj xj = bj − [ 0
Im

]
Bjx

(t)
j+1 − [

Im

0

]
Cjx

(b)
j−1, j = 2, . . . , p − 1,

Ap xp = bp − [
Im
0

]
Cjx

(b)
p−1.

(1.25)
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1.3.5.2 Spike: A Hybrid and Polyalgorithm

Multiple options are available for efficient parallel implementation of the Spike al-
gorithm depending on the properties of the linear system as well as the architecture
of the parallel platform. More specifically, the following stages of the Spike algo-
rithm can be handled in several ways resulting in a polyalgorithm.

Factorization of the Diagonal Blocks Aj Depending on the sparsity pattern of
the matrix and the size of the bandwidth, these diagonal blocks could be considered
either dense or sparse within the band.

• For the dense banded case, different strategies based on the LU decomposition
of each Ai can be applied. Those include variants such as LU with pivoting, LU
without any pivoting but diagonal boosting, as well as a combination of LU and
UL decompositions, either with or without pivoting. In order to minimize memory
references, it is indeed advantageous to factorize the diagonal blocks Aj using LU
without any pivoting but adding a diagonal boosting if a “zero-pivot” is detected.
Hence the original A matrix is not exactly the product DS and rather takes the
form A = DS + R, where R represents the correction which, even if non-zero,
is by design small in some sense. Outer iterations via Krylov subspace schemes
or iterative refinement, would then be necessary to obtain sufficient accuracy as
Spike would act on M = DS (i.e. the approximate Spike decomposition for M is
used as effective preconditioner).

• For the sparse banded case, it is common to use a sparse direct linear system
solver to reorder and then factorize the diagonal blocks. However, solving the
various linear systems for Aj can also be achieved using an iterative solver with
preconditioner.

• In order to address the case where the block diagonal Aj are nearly singular
(i.e. ill-conditioned), and when even the LU decomposition with partial pivoting
is expected to fail, a Spike-balance scheme has also been proposed by Golub,
Sameh and Sarin in [58].

Finally, each partition in the decomposition can be associated with one or several
processors (one node), enabling multilevel parallelism.

Computation of the spikes If the spikes Vj and Wj are determined entirely,
Eq. (1.24) can be used to retrieve the entire solution once the reduced system of
Eq. (1.23) solved. Since Eq. (1.25) can also be used to retrieve the solution, the
spikes may not be computed entirely but only for the top and bottom (m×m) blocks
of Vj and Wj needed to form the reduced system. The spike tips W

(t)
j , W

(b)
j , V

(t)
j ,

and V
(b)
j , can be respectively defined by (Im 0)A−1

j ( Im

0 )Cj , (0 Im)A−1
j ( Im

0 )Cj ,

(Im 0)A−1
j ( Im

0 )Bj , (0 Im)A−1
j ( Im

0 )Bj . It is then easy to show that computing the

spike tips is also equivalent to obtaining the four (m × m) corners of A−1
j as illus-

trated in Fig. 1.4
Finally, it is important to note that the determination of the top and bottom spikes

is also not explicitly needed for computing the actions of the multiplications with
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Fig. 1.4 Representation of
the four corners of the inverse
of the diagonal block Aj ,
which can be used to compute
the spike tips

W
(t)
j , W

(b)
j , V

(t)
j and V

(b)
j . These latter can then be performed “on-the-fly” in the

case where the bandwidth becomes too large (i.e. systems with large sparse band-
width).

Solution Scheme for the Reduced System The reduced system of Eq. (1.23) can
be solved either iteratively or directly.

• Iterative Krylov-subspace based methods for solving the reduced system con-
ferred to Spike its hybrid nature. Most often, they can be used along with a block
Jacobi preconditioner (i.e. diagonal blocks of the reduced system) if the bottom
of the Vj spikes and the top of the Wj spikes are computed explicitly. In turn, the
matrix-vector multiplication operations of the iterative technique, can be done
explicitly or implicitly (i.e. “on-the-fly”).

• For large number of partitions, solving the reduced system using iterative methods
with or without preconditioner, may result in high interprocessor communication
cost. Direct methods such as the truncated and the recursive schemes, have then
been recently introduced in [100, 101] to enhance robustness and scalability for
solving the reduced system. The truncated Spike scheme represents an optimized
version of the Spike algorithm with enhanced use of parallelism for handling
diagonally dominant systems. The recursive Spike scheme can be used more gen-
erally for solving non-diagonally dominant systems and consists of successive
iterations of the Spike algorithm from solving the reduced system.

1.3.5.3 The Truncated Spike Scheme for Diagonally Dominant Systems

Diagonally dominant systems may arise from several science and engineering ap-
plications, and are defined if the degree of diagonally dominance, dd , of the matrix
A is greater than one; where dd is given by min{|Ai,i |/∑

j �=i |Ai,j |}. If this property
is satisfied, one can show that the magnitude of the elements of the right spikes Vj ,
would decay from bottom to top, while the elements of the left spikes Wj would de-
cay in magnitude from top to bottom [33, 96]. Since the size of the diagonal blocks
Aj is assumed much larger than the size m of the blocks Bj and Cj , the bottom

blocks of the left spikes W
(b)
j and the top blocks of the right spikes V

(t)
j can be ap-

proximately set equal to zero. More generally, the truncated Spike scheme described
here is valid as long as the two (m × m) blocks at the top right and bottom left cor-
ners of A−1

j in Fig. 1.4 are approximately equal to zero (which is always satisfied
if dd > 1 and the matrix is narrow banded). It follows that the resulting “truncated”
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reduced system is simply block diagonal composed by p − 1 independent 2m × 2m

block systems (p represents the number of partitions) of this form:

[
Im V

(b)
j

W
(t)
j+1 Im

][
x

(b)
j

x
(t)
j+1

]

=
[

g
(b)
j

g
(t)
j+1

]

, j = 1, . . . , p − 1. (1.26)

The reduced linear systems are then decoupled and can be solved in parallel.
Within the framework of the truncated scheme, two other major contributions

have also been proposed for improving computing performance of the factorization
and solve stages: (i) a LU/UL strategy [100], and (ii) a new unconventional parti-
tioning scheme [95]. The LU/UL strategy can be used to avoid computing (gener-
ating) the entire spikes in order to obtain the tips V b

j and Wt
j+1 (j = 1, . . . , p − 1).

For a number of partitions greater than two, however, each middle partition j =
2, . . . , p − 1 has now to perform both LU and UL factorizations. In order to de-
crease the number of arithmetic operations, a new parallel distribution of the system
matrix can be considered, which involves using fewer partitions p than number of
processors k (where p = (k +2)/2). As compared to a sequential LU algorithm, the
speed-up for the factorization stage of this Spike scheme, named the TA-scheme, is
then expected ideally to be equal to the new number of partitions, i.e. 2× on two
processors, 3× on four, 5× on eight, etc.

1.3.5.4 The Recursive Spike Scheme for Non-diagonally Dominant Systems

In contrast to diagonally dominant systems, the tips V t
j and Wb

j+1 (j = 1, . . . , p−1)
cannot be set equal to zero if the system is non-diagonally dominant. Additionally,
the probable appearance of “zero-pivot” in the LU and UL factorization stages ne-
cessitates the use of a diagonal boosting strategy along with outer-refinement steps.
For larger number of partitions, a recursive scheme has been proposed for solving
the reduced system which results in better balance between the costs of computation
and communication as compared to iterative methods. In contrast to a cyclic reduc-
tion approach often used in LU parallel banded schemes [4], the recursive scheme
comes very naturally as it consists of successive iterations of the Spike algorithm
for solving the reduced system.

The recursive scheme assumes that the original number of (conventional) parti-
tions for the reduced system is given by p = 2d (d > 1). The bottom and top blocks
of the Vj and Wj spikes are then computed explicitly to form the reduced system
(i.e. all four corners of A−1

j in Fig. 1.4 are computed). In practice, a modified ver-
sion of the reduced system is preferred which also includes the top block V t

1 and
bottom block Wb

p . For the case p = 4, the reduced system in Eq. (1.23) can also
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take the form of the following “reduced spike system” Ŝx̂ = ĝ :
⎛
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This reduced spike system contains p partitions with p diagonal identity blocks.
The system can be easily redistributed in parallel using only p/2 partitions which
are factorized by Spike recursively up until obtaining two partitions only. For the
case p = 4 where only one recursion can happen, the new spike matrix is obtained
from the DS factorization of Eq. (1.27) which takes the form

⎛
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. (1.28)

Here, the spikes V1,2 and W3,4 are associated to the partitions named {1,2} and
{3,4} of the new spike matrix. It can be shown [100] that the main computational
kernel for obtaining the new spikes consists of a succession of 2m × 2m linear sys-
tem similar to the one presented in Eq. (1.26). Since the Spike algorithm is applied
on the reduced system and then does not generate long vectors V and W , those can
be computed explicitly (for example the middle of spikes V

′
, V

′′
, W

′
and W

′′
in

Eq. (1.28) would explicitly be generated). From the recursion of DS factorization,
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the right hand side can be modified recursively as well by solving block diagonal
systems in parallel using relation similar to Eq. (1.24). Finally, the entire solution
x̂ can be retrieved explicitly using Eq. (1.24) from the final two partitions reduced
spike system (as the one in Eq. (1.28) for the case p = 4).

1.3.5.5 Spike: Current and Future Directions

Since the publications of the first Spike algorithm in the late 1970s [115, 120], many
variations and new schemes have been proposed and implemented. In recent years, a
comprehensive MPI-Fortran 90 Spike package for distributed memory architecture
has been developed which includes, in particular, all the different family of Spike al-
gorithms: recursive, truncated and on-the-fly schemes. These Spike solvers rely on a
hierarchy of computational modules, starting with the data locality-rich BLAS level-
3, up to the blocked LAPACK [3] algorithms for handling dense banded systems,
or up to the direct sparse solver PARDISO [125] for handling sparse banded sys-
tems, with Spike being on the outermost level of the hierarchy. The Spike package
also includes new primitives for banded matrices that make efficient use of BLAS
level-3 routines. Those include: banded triangular solvers with multiple right-hand
sides, banded matrix-matrix multiplications, and LU, UL factorizations with diag-
onal boosting strategy. Using this new Spike implementation for solving the dense
banded systems, both truncated and recursive Spike solvers exhibit the same degree
of accuracy as compared to the corresponding LAPACK computational routines,
and with significant improvements in performance and scalability as compared to
the ScaLAPACK ones for large number of processors on high-end computing plat-
forms [100]. It is also important to note that the capabilities and domain applica-
bility of the Spike-PARDISO scheme have recently been significantly enhanced by
Manguoglu, Sameh and Schenk in [92]. In addition, it has been shown that Spike
can effectively be used to enhance the parallel scalability of iterative solvers using
banded preconditioners for solving general sparse systems [90].

In addition, the large number of options/decision schemes available for Spike
created the need for the automatic generation of a sophisticated runtime decision
tree “Spike-ADAPT” that has been proposed by Kuck and developed at Intel. This
adaptive layer indicates the most appropriate version of the Spike algorithm capable
of achieving the highest performance for solving banded systems that are dense
within the band. The relevant linear system parameters in this case are: system size,
number of nodes/processors to be used, bandwidth of the linear system, and degree
of diagonal dominance. Spike and Spike-ADAPT have been regrouped into one
library package and released to the public in June 2008 on the Intel experimental
website [132].

Finally, the emergence of multicore computing platforms these recent years have
brought new emphasis on parallel algorithms and linear system solvers in particular,
for achieving better net speed-up over the corresponding best sequential algorithms
starting from a small number of processors/cores. Typical speed-up performance re-
sults for narrow banded matrix are presented and discussed in Fig. 1.5 for the Spike
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Fig. 1.5 In these experiments, a banded linear system of size n = 1,000,000 and bandwidth 321
(m = 160) with only one right hand side, is considered. On the left a diagonally dominant system
and the Spike-TA scheme are considered, while on the right the experiment are performed using a
non-diagonally dominant system along with the Spike recursive scheme. Both Spike and ScaLA-
PACK are running on a Linux Intel Nehalem cluster X5550 featuring eight nodes with infiniband,
eight cores per node running at 2.66 GHz, and with 48 Gb total memory per node. The computa-
tional modules run using real double precision Intel MKL BLAS, LAPACK and ScaLAPACK. The
total time taken by MKL-LAPACK to solve the banded system is 10 s on one core. The accuracy
results on the residuals obtained by both LAPACK, Spike, and ScaLAPACK, not reported here, are
comparable (accuracy machine). For the non-diagonally dominant case on the right, outer-iterative
refinements have not been performed for Spike as no zero-pivot has been detected in the factor-
ization stage. In case of boosting, however, iterative refinements often represent only a very small
fraction of the total Spike time

and ScaLAPACK algorithms versus the corresponding best sequential routines in
LAPACK on recent Intel Nehalem cluster architecture from 2 to 64 cores. These
overall performance and scalability results are very similar to the ones obtained on
high-end computing architectures [100] (the loss of linear scalability going from 32
to 64 cores for the non-diagonally dominant case can be attributed to limitations
of the multicore architecture). In addition, one can note that Spike aims at achiev-
ing linear scalability from small number of processors/cores since 2× speed-up are
obtained from only two cores. These performances have recently motivated the de-
velopment of a shared-memory version of the Spike package [95] to offer a high
efficient alternative parallel strategy to the LAPACK-BLAS-threaded LU model for
solving banded linear systems on current and emerging multicore architectures.

After more than thirty years of innovations in parallel architectures, parallel pro-
gramming models and numerical libraries, it is remarkable that the Spike algorithm
continues to produce such sustainable scalability and ideal speed-up performances.
Spike finds its strength from a deceptively simple algorithm which leads to a rich and
complex variety of numerical schemes ideally suited for addressing the challenges
in modern large-scale applications on a wide range of parallel computing platforms.
Over the years, Spike has been a valuable tool to many applications in computa-
tional science and engineering including nanoelectronics, oil reservoirs modeling,
structural mechanics, fluid-structure interactions, graphic animation, etc. It can be
expected that new functionalities and domain of applicability for Spike will continue
to flourish in the future.
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1.4 Floating-Point Arithmetic and Error Analysis

Today, since the IEEE floating-point standard has been widely adopted, one some-
times forgets the pain and many efforts that have gone in understanding the role
of floating-point arithmetic, its interplay with architectures and applications and
finally the culmination of these efforts into the standard. These are documented in
extensive on-line publications of W. Kahan (http://www.cs.berkeley.edu/~wkahan/),
the seminal monograph of N. Higham [71] and the comprehensive handbook [98].
In 1975, Kuck, Parker and Sameh proposed a new rounding scheme called ROM
rounding [80]. In [81], they provided a systematic study of the error properties of
floating-point arithmetic using ROM rounding and other rounding methods. They
also explained and evaluated the fundamental role of extra bits (guard digits and the
sticky bit) in floating-point arithmetic. Error analysis was the subject of the Ph.D.
work of John Larson directed by Sameh [85]. In [87], they extended work by Bauer
on the propagation of relative errors and obtained a system of equations relating
roundoff errors and their effects. They proved that this could be done in linear rather
than quadratic time and storage with respect to the length of the straight-line pro-
gram for the algorithm under consideration. These ideas were also applied in [86]
to automate forward and backward error analyses as well as a mixture of the two.

1.5 Contributions to n-Body Methods, Fast Multipole Methods,
Boundary Integral Solvers, and Their Applications

Sameh recognized early on the power of hierarchical approximations and multipole
methods. Working with his colleagues at the University of Minnesota (in particular,
Vipin Kumar) and his students at that time (Ananth Grama and Vivek Sarin), he
made a number of key contributions on parallel algorithms, error control, linear
system solvers and preconditioners (with suitable Green’s function kernels), and
applications in boundary element solvers. More recently, this work was also applied
to a class of molecular dynamics methods, called reactive molecular dynamics, for
charge equilibration.

1.5.1 Multipole-Based Hierarchical Approximation Techniques

The problem of simulating the motion of a large set of bodies arises in a variety of
domains such as astrophysics, electrostatics, molecular dynamics, fluid dynamics,
and high energy physics. The all-to-all nature of interaction between various bodies
renders this problem extremely computation-intensive. Techniques based on hier-
archical approximations have effectively reduced the complexity of this problem.
Coupled with parallel processing, these techniques hold the promise of large scale
n-body simulations.
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Sameh and his group developed parallel formulations of multipole-based
Barnes–Hut methods that are highly scalable to large machine configurations and
yield excellent performance for highly unstructured particle distributions. The key
difference between these new schemes and other schemes is the use of function
shipping, as opposed to more traditional data-shipping. In function shipping, a par-
ticle needing to interact with a subdomain at a remote processor is shipped to the
remote processor (and the result of the interaction—typically the force or poten-
tial is returned). This is in contrast to other approaches where the data associated
with the remote subdomain are shipped to the local processor on demand and the
computation performed locally. A direct consequence of this is that as accuracy
of the simulation is increased by increasing multipole degree, the efficiency of the
scheme increases. This is not the case with competing approaches. Furthermore,
these schemes have the advantage that all communication is sender initiated and
the associated communication overhead is very low. Combined with an effective
load balancing scheme that distributes the domain across processors, Sameh and
his colleagues demonstrated very high efficiencies and raw performance large con-
figurations of the Cray T3D (and earlier versions on a TMC CM5, both of which
were state-of-the-art machines at the time of the research). These evaluations were
based on astrophysical simulations of a variety of Gaussian and Plummer galaxies.
Detailed results of this study are published in [59, 63].

1.5.2 Multipole Based Dense Linear System Solvers and
Preconditioners

An important application of hierarchical multipole methods such as Barnes–Hut
and FMM is in solving dense linear systems arising from boundary element mod-
eling of a variety of phenomena in electromagnetics. Boundary element modeling
is useful in domains where the Sommerfeld radiation conditions must be satisfied
at infinity. Consequently, a finite element modeling of such domains would have to
use accurate absorbing boundary conditions (ABCs) for satisfying these radiation
conditions. The main drawback of boundary element methods is that the linear sys-
tems resulting from them are dense, consequently, having significant compute and
memory requirements.

Multipole methods can be used to effectively reduce the complexity of the un-
derlying matrix-vector product from O(n2) to O(n logn) and its memory require-
ment to O(n). This algorithmic speedup from approximation can be combined with
parallelism to yield very fast dense solvers. Sameh’s group was among the first to
develop efficient parallel formulations of dense iterative solvers based on hierarchi-
cal approximations for solving potential integral equations of the first kind. They
studied the impact of various parameters on the accuracy and performance of the
parallel solver and demonstrated that their parallel formulation incurs minimal par-
allel processing overhead and scales up to a large number of processors. They also
proposed two preconditioning techniques for accelerating the convergence of the
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iterative solver. These techniques are based on an inner–outer scheme and a block
diagonal scheme based on a truncated Green’s function. Detailed experimental re-
sults on moderate configurations of a Cray T3D demonstrated excellent raw perfor-
mance and scalability. This was among the first parallel dense solver-preconditioner
toolkits based on multipole methods [60–62]. This work also provides the basis for
a number of more recent results that require solution to dense linear systems with
electrostatic (1/r) kernels in atomistic modeling.

1.5.3 Improving Error Bounds for Hierarchical Approximation
Techniques

Multipole-based hierarchical approximation techniques relied on fixed-degree mul-
tipole approximations of clusters of charges (or masses). Sameh et al. presented
analysis and experiments to illustrate that fixed-degree multipole approximations
can lead to large aggregate errors. They developed an alternate strategy based on
careful selection of the multipole degree that leads to asymptotically lower errors,
while incurring minimal computation overhead. First, they estimate the error asso-
ciated with each particle-cluster interaction and the aggregate error for each par-
ticle. They then describe a technique for computing the multipole degree of each
interaction with a view to reducing aggregate error, and establish the computational
complexity of the new method. Numerical experiments demonstrate significantly
enhanced error properties of the new method, at the expense of marginal increase in
computation [64–66].

1.5.4 Algorithms for Atomistic Modeling

Sameh’s results on linear system solvers have found significant recent applications
in atomistic modeling of large reactive systems. Modeling atomic and molecular
systems requires computation-intensive quantum mechanical methods such as, but
not limited to, density functional theory (DFT). These methods have been success-
ful in predicting various properties of chemical systems at atomistic detail. Due to
the inherent nonlocality of quantum mechanics, the scalability of these methods
ranges from O(N3) to O(N7) for an N -atom system, depending on the method used
and approximations involved. This significantly limits the size of simulated sys-
tems to a few thousands of atoms, even on large scale parallel platforms. On the
other hand, classical approximations of quantum systems, although computation-
ally (relatively) easy to implement, yield simpler models that lack essential chem-
ical properties such as reactivity and charge transfer. The recent work of van Duin
et al. [38] overcomes the limitations of non-reactive classical molecular dynam-
ics (MD) approximations by carefully incorporating limited nonlocality (to mimic
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quantum behavior) through an empirical bond order potential. This reactive classi-
cal MD method, called ReaxFF, achieves essential quantum properties, while retain-
ing the computational simplicity of classical molecular dynamics, to a large extent.
Implementation of reactive force fields presents significant algorithmic challenges.
Since these methods model bond breaking and formation, efficient implementations
must rely on complex dynamic data structures. Charge transfer in these methods
is accomplished by minimizing electrostatic energy through charge equilibration.
This requires the solution of large linear systems (108 degrees of freedom and be-
yond) with shielded electrostatic kernels at each time-step. Individual time-steps are
themselves typically in the range of tenths of femtoseconds, requiring optimizations
within and across time-steps to scale simulations to nanoseconds and beyond, where
interesting phenomena may be observed.

Based on Sameh’s work, the group of Grama et al. [2] developed the sPuReMD
(serial Purdue Reactive Molecular Dynamics) program, a unique reactive classical
MD code. At the heart of this code is a Krylov subspace solver relies on a precon-
ditioner based on incomplete LU factorization (ILUT), specially designed for the
application. sPuReMD has been validated for performance and accuracy on a va-
riety of systems, ranging from hydrocarbons and biophysical systems to nanoscale
devices (Si-Ge nanorods) and explosives (RDX). Parallel versions of PuReMD have
now been integrated into commonly used MD package LAMMPS and are widely
used [1].

The breadth and depth of Sameh’s contributions in this area have served as one
of the bases for a large class of simulations on current high performance computing
platforms.

1.6 Computational Science and Engineering

Sameh was among the earliest proponents of the discipline of Computational Sci-
ence Engineering (CSE). A position paper by George Cybenko, David Kuck and
Ahmed Sameh was written in 1990 that described a proposal to create a CSE pro-
gram at the University of Illinois at Urbana-Champaign. This paper was widely
circulated on the UIUC campus and gave a crucial impulse to the idea of a CS&E
program.

The importance of this proposal was recognized by the IEEE, where the Com-
puter Society’s Technical Segment Committee (TSC) on CSE under the chairman-
ship of John Riganati proposed in April 1992 setting up an IEEE magazine devoted
to CSE. The formal approval came in February 1993. The October 1993 issue of the
IEEE Computer Magazine was devoted to Computational Science and Engineering,
with Sameh and John Riganati as Guest Editors. This issue served as a prototype of
the new magazine. Ted Lewis, the Editor-in-Chief of the Computer magazine at the
time, was a key supporter at IEEE. In their introduction the Guest Editors write

The term “computational science” was first used by Ken Wilson (awarded the Nobel Prize
for his work in physics) to refer to those activities in science and engineering that exploit
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computing as their main tool. Indeed, in the past 10 years, computing has become an es-
sential tool for advancing various science and engineering disciplines. Moreover, with the
advent of parallel computers, it has become clear that parallel computing has become an in-
tegral part of many of aspects of these disciplines An understanding of parallel or distributed
(heterogeneous) computer systems often motivates new solution strategies not previously
envisioned when only uniprocessors were used. Such interaction between the applications,
algorithms, architectures, and underlying system software characterizes computational sci-
ence and engineering (CSE).

The first issue of the IEEE Computational Science and Engineering Magazine
appeared in Spring 1994, with Sameh as Editor-in-Chief and Francis Sullivan as As-
sociate Editor-in-Chief. Contributors to the first issue included many distinguished
researchers who were important leaders in various areas of CSE: S. Kamal Ab-
dali, Bill Buzbee, George Cybenko, David P. Dobkin, David K. Ferry, Efstratios
(Stratis) Gallopoulos, Eric Gross, Karl Hess, Charles H. Holland, Malvin H. Ka-
los, Jacob V. Maizel, Jr., Edmund K. Miller, Ahmed K. Noor, William H. Press,
John R. Rice, John P. Riganati, Bruce Shriver, Tayfun Tezduyar, Donald G. Truhlar,
Adan Wheeler, Paul Woodward, Richard N. Draper, William Jalby, David K. Ka-
haner, Alvin K. Thaler, Robert G. Voigt, and Harry A.G. Wijshoff. This trend of
very high quality contributions was continued in subsequent issues of the magazine.
In keeping with Sameh’s vision, the magazine developed into an important forum
for articles on interdisciplinary CSE research that reaches a very broad audience.
The paper [55] by Gallopoulos and Sameh expands on the notion of CSE, its rela-
tion with Computer Science, and the key role of problem solving environments [52].
“Doing” CSE was described as research and development activities surrounding the
traversal of data and information across concentric layers of various “models” (es-
pecially the discrete, arithmetic, and computational) and investigating questions of
concept (How many steps can be automated?) design (What is the system that will
make this possible?), implementation (What are the enabling technologies and how
can a system be implemented?) and progress (How does the system adapt to evolv-
ing requirements? How is it evaluated?) It is worth noting that this view also makes
natural the notion of “information loss” as model layers are traversed. Discretiza-
tion and roundoff errors, computer performance obfuscation by pseudocode and
programming language can be put and studied in this framework.

The last issue of IEEE Computational Science and Engineering with Sameh as
Editor-in-Chief was the Winter 1995 issue. In 1999, the CSE magazine was merged
with the publication Computers in Physics, with the new name Computing in Sci-
ence and Engineering (CISE).
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Chapter 2
Computational Capacity-Based Codesign
of Computer Systems

David J. Kuck

Abstract This paper proposes a fast, novel approach for the HW/SW codesign of
computer systems based on a computational capacity model. System node band-
widths and bandwidths used by the SW load underlie three sets of linear equations:
a model system representing a load running on a computer, a design equation and
objective function with goals as inputs, and a capacity sensitivity equation. These
are augmented with nonlinear techniques to analyze multirate HW nodes as well as
to synthesize system nodes when codesign goals exceed feasible engineering HW
choices. Solving the equations rapidly finds the optimal costs of a broad class of
architectures for a given computational load. The performance of each component
can be determined globally and for each computational phase. The ideas are devel-
oped theoretically and illustrated by numerical examples plus results produced by a
prototype CAPE tool implementation.

2.1 Introduction

System performance is dominated by the performance of individual system compo-
nents, and balanced component use in a computation. Designers of computer sys-
tems and system HW/SW components must face potential system performance in-
stabilities due to component nonlinear performance behavior and imbalanced use.
Instability appears in two forms: a given system yields widely varying performances
over program types, or a given program runs at widely varying performances across
(similar) system types. Both are common phenomena.

Traditionally, systems that are more stable and productive arise from application-
specialization of system components and architectures. Bandwidth metrics can be
used to characterize computations by their dominant constituent phases. Matching
system HW/SW components to dominant phases for given sets of computations can
increase stability. This can be achieved for any program by decreasing that pro-
gram’s performance deviation from the stable value expected for a target system
architecture.
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This leads to specialization in the marketplace—from embedded processors to
GPUs and HPC systems. As computer usage broadens, future designs will continue
moving toward more-specialized chips and SW that can exploit them effectively in
key markets. Computer system designers and application SW providers need tools
and analyses to help them design highly productive systems. Success will depend
upon developing methods that can approximate the analysis of future-oriented ap-
plications to drive the HW/SW co-design of products.

Significant changes are needed in several areas to meet these needs:
Future-oriented application workloads must be used in computer system design.
These may include libraries, reference platform application implementations, or
whole-application prototypes, plus the full range of data and usage scenarios.
Leading application development tools must drive the HW design to get top perfor-
mance and avoid regressions. Tools, compilers, and libraries must be available in
advance to allow SW developers to provide the applications above.
System and SW codesign process must allow architects to know deliverable design
performance in future markets. Beyond the above, this requires a fast, accurate,
mixed fidelity, and comprehensive codesign process.

The performance of a communication network, traffic system, or conference
room depends on intrinsic physical characteristics as well as type of load and exter-
nal ambient factors. For each, peak performance can be defined, but in these exam-
ples, noise, weather, and event type, respectively, affect usable capacity, in practice.
This notion, and the term capacity, have been used in several ways relative to com-
puter systems. This paper gives the term a precise, comprehensive meaning.

The paper’s contributions are a linear capacity-based codesign process and
model (Sects. 2.2, 2.3), methods of formulating and optimizing codesign equations
(Sects. 2.4, 2.5), initial numerical codesign results (Sect. 2.6), and an overview of
multirate nodes and nonlinearities (Sect. 2.7). Computer HW bandwidth, system ar-
chitecture, and applications load are all captured in the methodology described. SW
performance tuning is reviewed (Sect. 2.8).

2.1.1 Background: Performance Basics

Four main contributors determine computer system performance for a given compu-
tation: hardware, architecture, system software, and the application code (including
data sets) being run, expressed as in formula (2.1):

perf (computation(hw,arch, sw, code)) (2.1)

Performance can be expressed as the time consumed or as a rate delivered in
running a computation. We will discuss several performance metrics; specific engi-
neering details dictate which are used in a particular codesign effort.

• Computational capacity C [4, 5] is a fractional-use metric, ranging between 0 and
a maximum value (defined here), and it spans one or more HW components. It is
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a joint property of the HW and the computation being performed. For simplicity,
we refer to it as capacity. At the computer control level, capacity is expressed as
Eq. (2.2).

C [instructions/sec] = clock frequency [clock cycles/sec]
CPI [clock cycles/instruction] (2.2)

When operations are a more natural metric than instructions, we use operations
O, defined as processing a fixed number of bits. On other occasions, e.g. when
data paths are under discussion, capacity measured as BW used in [bits/sec] or
[words/sec] is most natural and this will be used throughout the paper.

• Bandwidth (BW) is the standard rate metric for HW design. We use BW to de-
scribe individual HW nodes in codesign problems, and as a surrogate for cost.
HW nodes have a path width measured in [bits], and a delay measured in [sec].
BW is expressed in Eq. (2.3).

B = path width [bits]
delay [sec] (2.3)

• BW used by a single HW node is written Bu [bits/sec] as one capacity defini-
tion. Also, Bu [ops or inst/sec] is required by specific codesign problems. Using
Eq. (2.2), assuming CPImin = 1, i.e. one instruction issued per clock,

B = Bu
max = clock frequency

CPImin
= clock frequency [inst/sec] (2.4)

• Time used in running a computation as defined with performance [sec] units as
Eq. (2.5), is particularly useful to compare several computer systems running one
code. In the form O = T uC, constant load O is forced through the knothole
of usable B in used-time T u. Thus O is a pivot point for time and capacity.
Expressions of T are time-domain (Eq. (2.5)) and of B or C are bandwidth- or
capacity-domain (Eqs. (2.2), (2.3)) performance views, respectively.

T u = O

C
(2.5)

C [operations or bits/sec] = O

T u
(2.6)

• Efficiency is the ratio of delivered performance of one or more HW components to
its best possible performance, for a given computation defined in the BW domain.
Efficiency Eq. (2.7) is usually discussed globally, but Eq. (2.8) expresses a single
node x. Their numerators are used as perf functions, so Eqs. (2.7) and (2.8) are
perf /cost surrogates.

E = C

B
≤ 1 (2.7)

Ex = Bu
x

Bx

(2.8)
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• Bandwidth wasted is an important diagnostic variable, and can be expressed
as Eq. (2.9). Combining Eqs. (2.5), (2.7) and (2.9) for a uniprocessor gives
Eq. (2.10), where T min is the time the computation requires with Bwaste = 0.
Equation (2.10) shows that to minimize execution time, for constant O and B ,
Bwaste must be minimized.

Bwaste = B − C = B − EB = B(1 − E) (2.9)

T u = O

EB
= T min

E
= O

B − Bwaste (2.10)

• Balance refers to a component pair working together perfectly on a computation,
and imbalance to one component slowing the other. Imbalanced computation is
sometimes referred to as component-saturated or component-bound computation.
Balance is closely related to capacity (see Definition 2.1, Sect. 2.3.1).

Generally, capacity and BW-domain analysis are useful for machine design in-
sight, and time-domain analysis is useful for comparing computational performance.
Throughout, we assume fixed O across changes to architectures and compilers—this
is an idealization, especially for parallelism which often leads to redundancy.

2.1.2 Performance Background Summary

Increasing the system clock frequency may boost a computation’s performance
directly (unless e.g. latency limits BW), for a fixed architecture. For a constant
clock, architecture, BW, SW, or a code’s data set affects performance. An impor-
tant premise for the following is that an initial computer system design is in place
for detailed analysis and improvement. The paper discusses methods for improving
various bottlenecked parts of a given HW/SW system.

2.2 Codesign Process

Codesign has been used by computer designers with many meanings. We have two
symmetrical reasons for using the term: our overall goal is to select HW component
speeds, compiler and application structures, and to synthesize specific architectural
components. Also, we drive the process using comprehensive measurements of ap-
plications running on existing architectures. We use global HW and SW data to-
gether, to improve both HW and SW in the codesign process.

The goals of codesign using global architecture and SW measurements are to
avoid design instabilities and regressions by exploring all important aspects of the
design space in advance. The codesign process begins with an existing architecture
or design, and existing/proposed applications, to produce optimal designs. However,
when major performance increments are required to meet design goals, architectural
synthesis steps are introduced (Sect. 2.7).
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Fig. 2.1 Load normalized to cost-performance plane

2.2.1 Three Dimensions of Codesign

Performance, cost and load are the three dimensions considered in capacity-based
codesign. The codesign process can accept each as input, and produce each as out-
put; parameters not specified as input are computed as process output.

Performance: As input, a designer chooses specific overall goals or bounds on the
performance of specific nodes. The codesign process computes the performance
for nodes with unspecified goals.

Cost: A designer can choose specific overall cost goals or bounds for particular
nodes; the process computes costs for all other nodes. Cost units can be defined
flexibly (to include power, $, etc. as above); here total BW is a cost surrogate.

Load: This is determined by expected market usage of each application and may be
hard to specify. The codesign process can reflect variation in BW used per code
type (codelet, see Sect. 2.2.2.1) and weights of percent codelet usage. As output,
the process can describe performance and cost ranges, when driven by inputs of
load uncertainty.

These three dimensions are considered simultaneously here, not incrementally
as in current practice. The codesign process we describe cannot be fully automated.
Ultimately, designer interaction is integral to the codesign process, e.g. feasible en-
gineering choices for HW nodes and BW values. The key contribution of this ap-
proach, however, is to automate far more of the design process than is currently
possible without the capacity-based model.

The three codesign dimensions are shown in Fig. 2.1, which illustrates several
important points in the space. Suppose an existing design lies at point 1 in Fig. 2.1.
We position the origin of the performance/cost plane in codesign 3-space at the SW
load’s initial measurement. If the load is constant, cost-performance tradeoffs can
be made in the plane shown. Two important codesign transitions within that plane
are shown as points 2 and 3.
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For any given system and load, the question of reducing its cost arises. In general,
it is possible to maintain performance and move horizontally in the cost-reduction
direction to the minimum perf/cost contour shown passing through point 2. Round
point 1 is shown widened a bit, expressing the desirability of taking this step while
also allowing for a wider application range. This widening is done by shifting phase
weights to represent alternate paths through programs or shifts in usage fractions
of various applications, and varying BW used, as may happen with mobile devices
that operate over a range of data input BWs. Finally, shifting from point 2 to point 3
enhances performance to a perf/cost contour between points 1 and 2 and further
enhances the load with a widened point 3.

The progression of Fig. 2.1 continues with shifts off the original load plane. For
example, to transitions within the original perf/cost plane, but to enhanced loads,
or to a completely different perf/cost plane for a family of market-focused systems.
A client microprocessor may be applicable to a family of hand-held devices with
new application loads, but only after re-engineering by changing design BW goals as
well as load characteristics—i.e. using new sets of codelets in the codesign process.

2.2.2 Models

The models used for codesign must cover the complete range of HW and SW uses.
Each codesign problem considers a system of linked HW nodes (a HW connec-
tion exists from each node to at least one other system node); similarly we consider
directly or indirectly linked SW units. A single application is assumed to be con-
trol/data dependence linked. To include multiprogrammed systems, applications that
share HW concurrently can be regarded as indirectly linked.

2.2.2.1 SW Models

SW load on a system will be represented by a collection of computational phases
that exhibit steady-state Bu on each HW node. Transient Bu behavior is captured
by phase transitions. We represent phases by canonical patterns called codelets. The
two codelet parameters of interest are Bu and weights representing percent-used of
total computation time. Ideally, this method will be used to represent every impor-
tant computation in the design space of interest, in contrast to the benchmark suites
frequently used as simplifications. We define the key SW terms:

Codelet: The term codelet is used to represent a small, parameterized segment of
code that has properties useful in codesign. Ideal codelets will be discussed here,
but the codesign process can proceed using only approximations of the ideal, as
will be discussed later. The characteristics defining codelets and their use are:

1. Each codelet has approximately steady-state Bu, constant Bu provides ideal
codesign results
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2. Adequate dynamic coverage of important applications
3. Maximum codelet reuse across applications—minimal number of codelet

classes stored in repository
4. Codelets are compiler recognizable and achieve optimized performance via

compilation—codelet size is small enough to analyze automatically, but large
enough for maximal system performance.

Phase: A phase is a sequence of executed instructions with relatively uniform Bu

throughout each phase executed for each modeled system component. In prac-
tice, a phase will always be measured dynamically in 100s to 1000s of instruc-
tions, as Bu uniformity cannot be observed at the finest granularity. A single
phase may represent a single simple algorithm in a monoprogrammed system, or
several simple algorithms in a multiprogrammed system.

Computation: A computation is a sequence of phases. Any idle time encountered
in a running computer is ignored.

SW Modeling Objective: The objective of SW modeling is to map phases discovered
in real application computations to codelets in a codelet repository used with a
range of data sets per codelet.

The codesign process does not depend critically on finding ideal codelets, but
the accuracy and optimality of results will erode as the load is represented by cruder
approximations of ideal codelets. For example, a special-purpose design for a partic-
ular algorithm whose computation consists of a single phase simplifies the codesign
process; highly efficient designs are possible in this case (Sect. 2.4.4). When com-
putations include more phases/codelets, phase transitions from one phase to another
tend to cause performance sensitivity and can lead to instabilities (Sect. 2.6.2).

2.2.2.2 Computer System HW Models

HW is represented by nodes with peak BW values; this can be extended beyond BW
to include power consumption, physical area, $ cost, and so on. Fidelity [2] in a given
system refers to the node resolution on which a designer chooses to focus, e.g. at a
high level one could choose a microprocessor, memory, bus, and network as nodes,
and combine these four nodes with a large set of nodes representing individual disks
and other I/O devices and controllers. The nodes can be chosen at any fidelity and
nodes of various fidelities may be used in one model.

We represent a computer system architecture by a graph consisting of nodes
denoting computer system HW components chosen at any fidelity level, con-
nected by arcs, denoting only graph connectivity, i.e. arcs have infinite BW, zero-
delay and bidirectional capability. Multiple arcs incident to a node are multi-
plexed/demultiplexed to and from the node. The following are several types of
nodes.

Linear nodes: Linear nodes correspond to most low-level system components (e.g.
register or arithmetic op). As in Eq. (2.3), their path width is measured in bits and
delay is measured in time. Node x has linear behavior if its BW is constant and
its capacity is a linear function of other node capacities (Eqs. (2.29a), (2.29b)).
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Nonlinear nodes: As the modeling abstraction level rises, to vector processors,
caches or multicore chips, modeling is harder. A nonlinear node has a BW that is
a nonlinear function of its linear sub-nodes’ capacities. Nonlinear node BW de-
pends on the computation being done, as well as the point at which performance
is measured, see [3].

Latency: Since latency is delay, the denominator of Eq. (2.3) can be used as a la-
tency surrogate. HW components with BW and latency design issues are repre-
sented as two nodes. A memory unit with BW determined by read/write (r/w)
cycle time, whose latency depends on wire length (e.g. off-chip delay), is rep-
resented by a memory BW supernode (Sect. 2.7) containing two linear nodes:
latency and r/w BW. The total delay in Eq. (2.3) is tlat + tr/w. For word size w,
we have Eqs. (2.11), and (2.12). Bmem is not a linear function of its constituent
BWs, latency or r/w time. In a plot of Cmem vs. Cr/w, for a given Br/w, vary-
ing latency (e.g. disk rotation time) defines a Cmem family of load-based Bmem
values.

Bmem = w

tlat + tr/w
(2.11)

B−1
mem = B−1

lat + B−1
r/w (2.12)

2.2.3 Model Philosophy and Codesign Realities

Several realities separate linear analysis and linear performance response from the
real design world. These range from the nonlinearities of HW nodes, through SW
variations, to measurement issues, as discussed throughout the paper.

The flow of performance data ranges from continuous (server workloads) to ir-
regularly discrete (laptop use: computation bursts commingled with idle time), and
data measurement qualities range from nearly ideal (simulator probes) to crude (Mi-
crosoft process-level tools). But if we regard the modeling process as a linear scaling
of input data, then even crude approximations can be effectively scaled, if an inverse
process exists to carry computed design results faithfully back to the input space. In
general, virtual HW nodes may be used, if based on appropriate measurement and
analysis [2]. For example, a page fault node can be used if there is a way of translat-
ing results to and from memory system design (i.e. by virtualizing and devirtualizing
the instruction stream measurements).

Figure 2.2 outlines the process of system modeling and obtaining a capacity-
based design. The two parameters needed for linear modeling are BW and capacity
for each linear node in the model. The details of determining node BW may vary
(theoretical peak, microbenchmarking, etc.) but as long as we interpret the results
similarly, the method doesn’t depend on specific choices. Also, capacity must first
be measured and then interpreted for resulting designs.

Mapping is straightforward for linear nodes, following Sects. 2.3, 2.4, and 2.5,
and the results are easily mapped back to real hardware. Nonlinear nodes can be
dealt with using nonlinear models.
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Fig. 2.2 Capacity codesign process

2.3 Linear Computational Capacity Theory

Capacity analysis can be defined on a per computation basis across a system: some
simple examples follow.

2.3.1 General Equations for Single Phase Computations

2.3.1.1 Capacity Definitions

For a given system, we define the computational capacity of a node pair 〈x, y〉 as its
effective processing bandwidth (BW), either x- or y-bound. The physical definitions
of Sect. 2.1.1 will not be detailed further, as specific engineering abstraction and
measurement of the real world is required for each codesign problem. The BWs of
system nodes x and y are represented by Bx and By , respectively, according to some
abstraction of the system. Bx and By represent amounts of those BWs actually used
in a computation, by nodes x and y, respectively, giving Eqs. (2.13).

0 < Bu
x ≤ Bx and 0 < Bu

y ≤ By (2.13)

We define the x-y BW ratio in Eq. (2.14) and the x-y used-BW ratio for a given
steady-state computation in Eq. (2.15)

αx,y = By

Bx

(2.14)

μx,y = Bu
y

Bu
x

= 1

μy,x

(2.15)
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Definition 2.1 (Node Saturation & Balance) Any node x is saturated by a compu-
tation if Bu

x = Bx . A pair of nodes 〈x, y〉 is balanced if both are saturated, which
implies that μx,y = αx,y .

The following holds for any system under a wide range of conditions (e.g. nodes
reflect complete connected HW configuration, continuous operation, no deadlock,
etc.), which we assume throughout.

Assumption 1 A running codelet saturates one or more nodes of a given system at
each time step.

2.3.1.2 Two Node Systems

Without loss of generality, we analyze the two node system from the point of view
of node x.

Definition 2.2 (Computational Capacity with Saturated Node) The computational
capacity of node x is defined as Eq. (2.16), so from the above we have Eq. (2.17).

Cx = Bu
x (2.16)

Cx =
{

Bx if Bu
x = Bx node x saturated

Bu
x if Bu

x < Bx node x unsaturated
(2.17)

In terms of the activity on node y, the second case can be rewritten assuming that
node y is saturated, as Eq. (2.18), which we define as the computational capacity
of node x relative to saturated node y, Eq. (2.19). Because Bx and By are defined
as non-zero (Eq. (2.13)), capacity is defined only for a pair of nodes that are both
actually used a computation. Summarizing, for a pair of nodes, at least one of which
is saturated,

Bu
x =

(
αx,y

μx,y

)
Bx = μy,xBy, for Bu

y = By (2.18)

Cx = μy,xBy = Bu
x (2.19)

Saturated Node Capacity

Cx =
{

Bx if Bu
x = Bx and (Bu

y = By or Bu
y < By), i.e. αx,y ≥ μx,y

αx,yBx/μx,y = μy,xBy if Bu
x < Bx and Bu

y = By, i.e. αx,y < μx,y

(2.20)
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2.3.1.3 Greater than Two Node Systems

Systems of more than two nodes may lead to neither node x nor node y being
saturated, unlike the above discussion. This can happen because a system need only
have a single saturated node (Assumption 1). Analysis of a multinode system can be
built from node-pair analysis, and if one of a pair is saturated, the analysis proceeds
as above. Otherwise, a pair of nodes x and y, neither of which is saturated, gives
Eq. (2.21). In this case, it is impossible to bound the αx,y/μx,y ratio relative to 1 as
for the saturated node case in Eq. (2.20). Following Definition 2.2, and since node
x is

Bu
x < Bx, and Bu

y < By (2.21)

Cx = Bu
x for Bu

x < Bx (2.22)

unsaturated (Eq. (2.21)) we write Eq. (2.22). Furthermore, expanding Eq. (2.15),

Bu
x = Bu

x

Bu
y

Bu
y = μy,x for Bu

y < By (2.23)

Combining Eqs. (2.22) and (2.23), analogously to Eq. (2.19), we have

Definition 2.3 (Computational Capacity with No Saturated Node) The computa-
tional capacity of unsaturated node x relative to unsaturated node y is defined as

Cx = Bu
x = μy,x Bu

y for neither node saturated. (2.24)

Combining (2.22) and (2.24) we have Eq. (2.25).

Unsaturated Node Capacity

Cx =
{

Bu
x if Bu

x < Bx

μy,xB
u
y if Bu

x < Bx and Bu
y < By

(2.25)

Comparing Eq. (2.20) and (2.25) we see that Bs in Eq. (2.20) become Bus in
Eq. (2.25), and the condition By = By in Eq. (2.20) becomes By < By in Eq. (2.25).
Finally, as nodes x and y saturate, Eqs. (2.20) and (2.25) become identical.

2.3.1.4 General Two-Node Capacity Rule

Combining Eqs. (2.20), (2.22), and (2.25), the general rules are summarized in Ta-
ble 2.1 (Rule 4 is appended for completeness). At this point the relation between
Bu and C can be clarified. Definition 2.2 sets them equal, and in subsequent sec-
tions we will generalize the notion of capacity to nodes with multiple connections.
However, we use both terms to distinguish contexts. Bu refers to the empirical mea-
surements that are used to define μ (Eq. (2.15)), while C terms are variables used
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Table 2.1 Two-node
capacity rules

Fig. 2.3 Processor and heterogeneous memory system

to define capacities, (i.e. BW used) in new designs. Finally, μ values are held in-
variant throughout this paper (cf. Sect. 2.5.3). In other words, while Bu values may
change when a given program is run on various machines, once a μ value is com-
puted for a computation on any machine, that SW property remains invariant across
all machines.

Definition 2.4 (Relative Saturation and Saturation State) The n-node relative satu-
ration vector is σ = (σ1, . . . , σn) where 0 < σi = Ci/Bi = Ei ≤ 1. If neither node
of the pair 〈x, y〉 is saturated and σx > σy , node x is relatively saturated to node y,
σx,y = σy/σx < 1. σ s is called the saturation state vector, where σi = 1 if node i is
saturated, and 0 otherwise. σ s varies with a design’s B values.

2.3.2 Example: Single Processor-Heterogeneous Memory

To illustrate the use of the theory of Sect. 2.3.1, consider the simple machine model
in Fig. 2.3, with two memory units and one processor. This could be an abstraction
of a system with a register set, memory and arithmetic unit, for example. The nodes
are marked with BW values, and the codelets shown are assumed to execute in a
loop indexed by i. Architectural assumptions play an important part here, so we
sketch those used in this example.
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Counting clocks in a cycle-level execution diagram for this model can give Bu

values by simply counting cycles used in a periodic instruction pattern. Assume that
data are initially stored in mem 2. Codelet 1 execution starts by fetching e1 and f1

from mem2, and writing them one clock later, respectively, in mem1. When both
arguments are in mem1, processing begins with two multiplies followed by an add.
The d1 result is then written back directly to mem2, completing the first iteration of
the codelet execution. Other iterations are overlapped, so eventually a steady state
execution pattern emerges in a 3-clock cycle.

In practice, these numbers would be collected from running computations on a
real system using hardware performance monitoring tools, or could be collected
from a simulator for an emerging design. Bu boxes correspond to the system load,
codelet 1. The overbar on Bu

m2
indicates mem2 saturation. If this system were

improved by increasing Bm2 , mem1 would saturate before the processor because
σm1 > σp . Codelet 2 will be discussed in Sect. 2.6.1.

2.4 Single Phase Codesign Equations

2.4.1 Capacity Equation Generation

For a single codelet, equations may be generated for each arc in a graph to capture
all BW and capacity information, but this is not necessary. The (n − 1) arcs in a
spanning tree for an n-node graph, is the minimum needed to capture each node in
relation to some other node, but no equations need to be written for arcs that close
cycles in the graph.

2.4.1.1 Capacity Equation Generation Algorithm

This algorithm suffices to capture the capacity equations for any graph.

Step 1. Start with any node and build a spanning tree for the entire graph from that
root.

Step 2. Write capacity equations for each arc in the spanning tree using Table 2.1.
As saturation patterns for a new design are unknown, codesign model equations
(Sect. 2.4.3) use only Rule 3 in either orientation. (Initial equations can capture
the original system and computation by using all three rules, for 2, 1, and 0
nodes saturated, respectively.)

Step 3. This generates n − 1 equations for a graph of n nodes, as there is one equa-
tion per arc in the spanning tree. If we think of capacity as a nodal relation on a
spanning tree, transitive relations may be formed between non-adjacent nodes
in the graph. This idea and Definition 2.4 are useful in analyzing the sensitiv-
ity of solutions (as in the example of Sect. 2.3.2) or in expediting specialized
solutions for specified nodes.
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Fig. 2.4 Two-node graph

2.4.2 Codesign Equations

We assume that μ values are constant, while B and C values are variables, i.e. that
we are designing HW (B values) to suit given SW (μ) needs. In Sect. 2.5.3, the
design of SW in terms of HW will be discussed briefly.

Physical constraints as well as capacity equations are needed to form a complete
design equation set. This section contains examples of linear capacity and physical
equations that describe a computer system and computation. The nodes can repre-
sent any fidelity, but at a high level one may choose multirate nodes whose behaviors
vary, depending on their load. Multirate and nonlinear nodes will be discussed fur-
ther in Sect. 2.7. For this section, it suffices to assume that nodes are chosen at a
level that allows linear performance equations to hold.

Physical Constraints It is generally true that for any node x, 0 < Bu
x ≤ Bx . This

follows from obvious physical considerations, and because capacity is defined only
for nodes where Bu > 0 (Eq. (2.13)). To formulate general equations, we represent
unknown Bu by C variables, so we rewrite 0 < Cx ≤ Bx as two inequalities which
must be satisfied in all solutions:

Bx − Cx ≥ 0 (2.26)

Cx > 0 (2.27)

2.4.3 Single Phase Models and Characteristic Equation

We introduce the form of the general design equations by starting with a single
phase running on simple systems.

Two Node Systems Figure 2.4, the two node graph case, with saturated node x,
has the initial capacity

μxy Bx − Cy = 0 (2.28)

Equation (2.28) using Rule 2 of Table 2.1 (rewriting Cyx = Cy ). To cover all
possible BW values in system designs executing this computation, Fig. 2.4 is rep-
resented by either of Eqs. (2.29a), (2.29b) (Rule 3 Table 2.1) as in general, given a
constant μ value, either node x or node y may be saturated in a solution for partic-
ular B values (Eq. (2.29a) reduces to Eq. (2.28) if node x is saturated). For any two
node system with Bx = By and Bu

x = Bu
y , node x will saturate in a new design with

Bx � By , while node y will saturate if Bx � By . Equation (2.29a) for constant μxy

defines x as a linear node relative to other nodes y. For Bx > By , Fig. 2.5 shows the
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Fig. 2.5 Linear node-pair
capacity

behavior of Fig. 2.4, beginning with the slope of Eq. (2.29a) (Rules 3, 4; Table 2.1),
then Cy = By when By saturates (Rule 1; horizontal break), and becomes undefined
for Cx > Bx (no Rule). Since Bx > By , Rule 3 applies until Cx > Bx . A spanning
tree has n − 1 nodes, so Fig. 2.4 has one capacity equation. Following Eqs. (2.26)
and (2.27), the physical equations are Eqs. (2.30) and (2.31).

Cy = μxyCx (2.29a)

or

Cx = μyx Cy (2.29b)

Bx − Cx ≥ 0, and By − Cy ≥ 0 (2.30)

Cx > 0, and Cy > 0 (2.31)

We combine these in the single-phase model system, Eq. (2.32) as the product of
computational parameter matrix M containing parameters μ, 0 and ±1, and design
vector d, partitioned into b and c. Capacity vector c corresponds to the performance
of a given design, measured in B , and bandwidth vector b represents the cost of
obtaining that performance, measured in B . The positions of equality and inequality
signs in Eq. (2.32) denote numbers of equalities (starting at =) and inequalities
(starting at ≤), and 0 is a zero column.

Md = M

[
b

c

]
=

⎡

⎢⎢⎢⎢
⎣

0 0 μxy −1
1 0 −1 0
0 1 0 −1
0 0 1 0
0 0 0 1

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢
⎣

Bx

By

Cx

Cy

⎤

⎥⎥
⎦

= 0
≥0

>0
(2.32)

M =
⎡

⎣
M11 M12
M21 M22
M31 M32

⎤

⎦ =
⎡

⎣
0 M

I −I

0 I

⎤

⎦ (2.33)

General Systems The above discussion easily generalizes to a system of n nodes.
M is a (3n − 1) × 2n matrix representing the computation. The 2n columns corre-
spond to a B and C per node. The 3n−1 rows include n−1 capacity equation rows
plus 2n for physical inequalities, while b and c are n-element vectors representing
bandwidth and capacity, respectively. We can partition M as Eq. (2.33), where M is
a matrix of μ, 0 and −1 values, I is the identity, and 0 the null matrix. M11 and M12
are (n − 1) × n, and the other Mij are n × n matrices. As each Ci represents one
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node’s performance, by combining these we can summarize the overall system per-
formance as a linear metric where the wi represent design-importance or emphases
on each node’s contribution to overall system performance.

perf (overall system) = Csystem =
∑

nodes

wiCi (2.34)

From Eq. (2.32), we derive the single-phase characteristic equation of an n-node
computation, Eq. (2.35), where the inequalities of Eqs. (2.30) and (2.31) have been
augmented with one slack variable per physical equation (indicated by primes) to
obtain a (3n−1)×4n underdetermined system of equations. Identical graph topolo-
gies arising from distinct architectures lead to equations of the same nonzero pat-
terns, but represent distinct architectural behavior via distinct μ values per position.

M ′d ′ = M ′[b′, c′ ]T = 0 (2.35)

The characteristic equation contains complete information about performance
and cost for any HW system running the single-phase computation used to generate
it. The specifics of each computation are represented by μ values. The solution
will have k ≥ 1 saturated nodes. Myriad real HW systems are described by one
characteristic equation, in general. Section 2.5.6, gives codesign optimizations for
selecting a few practical candidate system designs.

2.4.4 Observations

Obs. SP1: For a single phase computation, it is always possible to design an n-node
system with all nodes saturated.

Obs. SP2: Any one node’s performance can be set to an arbitrary goal (Sect. 2.5.2)
while maintaining Obs. SP1.

Obs. SP3: In any single-phase computation with some unsaturated nodes, changing
the BW of saturated nodes changes system-wide performance; for any unsatu-
rated node x, changing Bx such that Bx < Bx does not affect performance.

Observations SP1 and SP2 show how effectively the codesign process can be car-
ried out for single phase computations. They provide a heuristic justification for the
many demonstrations since the beginning of computing history that HW specialized
to a single algorithm can be far more cost-effective than general purpose systems.
In the future, massively multicore chips could allocate substantial real estate to an
extensive set of algorithm-level processors. By Obs. SP3, unsaturated node BWs
can float until they all reach saturation in the form of Obs. SP1.
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2.5 Multiphase Codesign Equations

2.5.1 Multiphase Model and Characteristic Equations

Adding multiple computational phases does not affect the vector b in Eq. (2.32), as
the machine BW is defined by one set of nodes used in all phases. However, using
the designed HW, each phase generally produces distinct performance characteris-
tics. Thus, if a computation has m phases, the c vector becomes m times larger than
for the single-phase case. We represent the collection of phase performance vectors
in Eq. (2.36), where m phases are represented in Eq. (2.37).

Md = M
[
b, cloc]T (2.36)

cloc = [b1, . . . , cm]T (2.37)

As an example, expanding on Sect. 2.4.3, we show a 2-node two-phase model
system in Eq. (2.38). Assume that in the second phase the saturation is reversed from
Fig. 2.4; y is saturated and x is not. Per phase, this gives one capacity equation; third
subscripts denote phase numbers. In the Mphy partition of M (Eq. (2.38)), rows 3–6
are physical equations of the form B −C ≥ 0 (Eq. (2.30)); the next four rows are an
identity matrix corresponding to Eq. (2.31) for the two phases. There are n elements
in b and in each c vector, for a total of n(m + 1) columns in M and rows in d .

Md =
⎡

⎣
MCloc

Mphy
MCglob

⎤

⎦

⎡

⎣
b

cloc

cglob

⎤

⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0 μxy,1 −1 0 0 0 0
0 0 0 0 −1 μyx,2 0 0
1 −1 0 0

1 −1 0 0
1 −1 0 0

1 −1 0 0
1 0 0

1 0 0
1 0 0

1 0 0
0 0 φ1 0 φ2 0 −1 0
0 0 0 φ1 0 φ2 0 −1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

Bx

By

Cx,1
Cy,1
Cx,2
Cy,2

C
glob
x

C
glob
y

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

= 0

≥ 0

> 0

= 0

(2.38)

In general, we will write a block of equations as above for each of m phases,
so from Eq. (2.32), M is an m(3n − 1) × (m + 1)n matrix. Some nodes may not
be used in a particular phase, e.g. no disk accesses are made, so, as capacity Cxy

is undefined for unused node y (Eq. (2.13)), it may be dropped from the equation
set for that phase. In solving such systems, we can drop nodes for phases whose
use approaches the machine’s zero value. This leads to a linear system where each
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phase is reduced in size to represent those nodes active per phase. Generalizing
Sect. 2.4.3 with slack variables leads to an underdetermined system, as each phase
is underdetermined.

Global component performance in the multiphase case is determined by con-
tributions from each phase. Each phase has a weight φj , 1 ≤ j ≤ m, defined
by some combination of the running time of an application segment, the impor-
tance of an application containing the segment, etc. The multiphase global perfor-
mance of a HW node x is Eq. (2.39). The last two global performance rows of
the model system Eq. (2.38) correspond to Eq. (2.39), for each node, x and y. For
an n-node system, this adds n more rows and columns to Eq. (2.38), so M is an
[m(3n − 1) + n] × [(m + 2)n] matrix. Equation (2.38) yields all BW and perfor-
mance values for a computation on a computer system, given the μ ratios and φ

weights.

global perf (node x) = C
glob
x =

∑

phases j

φjCx,j (2.39)

The φj phase-weights are functions of node BW in general, because running
times of individual phases may vary relative to each other based on specific node
BWs. Boosting the BW during the design process of node x, unsaturated in phase k,
can reduce the running time of phases for nodes that were Bx -bound. In principle,
we should readjust the φj (x) values for all nodes (or the most sensitive nodes). As
the sizes of changes may be small, and φj also depends on other qualitative weights,
we avoid the complexity of varying φj , which could be done iteratively.

For multiphase systems, we expand the characteristic equation (Eq. (2.35)) to
include global performance equations, and augmenting Eq. (2.38) with 2mn slack
variables yields Eq. (2.40), an underdetermined multiphase characteristic equation,
where M is a [(3m + 1)n − m] × (3m + 2)n matrix.

M ′d ′ = M ′[b′, c′loc, c′glob]T = 0 (2.40)

2.5.2 Codesign Equation

For system design, we rewrite Eq. (2.38) as the multiphase codesign equation,
Eq. (2.41). Chosen coefficients of b and cglob are removed from M and d , and corre-
sponding positions are set to constant goal values in g with appropriate sign changes.
The codesign equation can be used to set any BW, capacity or weight goals a de-
signer chooses to target. This reduces the number of columns of M and the size of d

by g, the number of elements moved to g. A codesign study may select ≤ n global
performance equations of the form Eq. (2.39), so [m(3n−1)+p]× [(m+2)n−g],
p ≤ n is the size of M . In a codesign study, the g values may be chosen to sweep
out regions of the overall design space to find optimal designs. See Sect. 2.6.

Md = M

⎡

⎣
b

cloc

cglob

⎤

⎦
=
≥
≥

⎡

⎣
bgoal

0
cgoal

⎤

⎦ = g (2.41)
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2.5.3 Software Design Equations

Although it will not be explored in any detail here, the model Eq. (2.38) has a second
interpretation. This paper assumes BWs are variables and μ values are constants.
Inverting these relationships, assume a fixed HW system, and instead of Eq. (2.38),
write Eq. (2.42), where B is a matrix of BW values and μ is a vector of measured
or unknown μ values. Setting capacity and μ goals allows the computation of C

and μ values, by reasoning analogous to the ideas of this paper. A key difference
of SW tuning for given HW, from HW design is that via cloc, each phase can be
tuned to achieve desired C and μ values, allowing more degrees of freedom than
choosing node BW values. It can be viewed as a way of tuning codelets to specific
applications. Substantial tuning work may be involved, but performance targets are
guaranteed if it succeeds. Some performance tuning methods related to the equations
of this paper (ranging from basic capacity to sensitivity analysis) are outlined in
Sect. 2.8.

Bd = B
[
μ,cloc, cglob]T (2.42)

2.5.4 Multiphase Performance Observations

Obs. MP1: Generally, no system can have all nodes remain saturated throughout a
multiphase computation.

Obs. MP2: For a given computation on a well-designed system, each phase satu-
rates some node(s); and each node will be saturated by at least one phase.

Obs. MP3: Linearly scaling all linear model BWs by factor a scales all phase and
global capacities by a factor of a.

These observations raise a question. Since we cannot achieve saturation of all
nodes throughout a multiphase computation, how should a good design be defined?
As discussed earlier, the benefits of a design are represented by capacities, and the
costs of obtaining capacities are BWs. A desirable goal is minimizing BW wasted
per node, Bwaste

i = (Bi − Ci), summed across all nodes. It is exactly the achieve-
ment of all-node saturation that is made by optimized single phase computations,
Obs. SP1. From Eq. (2.10) minimizing BW waste is equivalent to minimizing time,
overall.

2.5.5 Overall System Optimization

In the multiphase case, using Eq. (2.39) the overall system performance correspond-
ing to Eq. (2.34) is Eq. (2.43). For n nodes and m phases, the overall system cost
is Eq. (2.44), so the objective of minimizing total wasted BW, Bwaste, Eq. (2.45), is
the difference between Eqs. (2.43) and (2.44). In a codesign problem, certain BW
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values and performance goals may be chosen a priori, using Eq. (2.45) to minimize
the remaining unknown cost (BW) values.

perf (overall system) = Csystem =
∑

nodes

wi

∑

phases

φjCi,j (2.43)

cost (overall system) = Bsystem =
∑

nodes

Bi (2.44)

The system codesign problem formulation thus becomes the optimization prob-
lem of minimizing an objective function (Eq. (2.45)), subject to a set of linear con-
straints (Eq. (2.41)), a linear programming formulation of system codesign. Eval-
uating simplex solutions at many design points can lead to nonlinear surfaces in
codesign space (see Sect. 2.6).

minBwaste
system = min

n∑

i=1

(

Bi − wi

m∑

j=1

φjCi,j

)

(2.45)

2.5.6 Sensitivity Analysis

Several sensitivities are of interest in codesign studies.

Definition 2.4 (continued) The n-node m-phase generalization of relative satu-
ration state (Definition 2.4, Sect. 2.3.1) is the n × m saturation matrix

∑ =
[σ 1, . . . , σm] = [Ci,j /Bi] = [Ei,j ] = [σi,j ], where σT

j , 1 ≤ j ≤ m has the form
of Definition 2.4. Each set of Σ values defines a computation’s saturation state Σs ,
where σi,j = 1 for saturated node i in phase j , and 0 otherwise. Σs varies with
phases as well as the B values chosen in each design.

The collective performance- or cost-sensitivity of a given computer system and
computation set can be analyzed by examining the saturation matrix. We define
capacity sensitivity, relating all nodes i to any particular node y in phase j , as
Eq. (2.46). Similarly, bandwidth sensitivity relating all nodes i to any particular
node y in phase j is defined as Eq. (2.47). Using Definition 2.4 for y = i, the rela-
tion between Eqs. (2.46) and (2.47) is Σ ′

B = E ⊗ Σ ′
C ; ⊗ is the Hadamard product.

Σ ′
Cy =

[
∂σi,j

∂Ci,j

]
=

[
μyi,j

Bi

]
= [

σ ′
Cyi,j

]
(2.46)

Σ ′
By =

[
∂σi,j

∂Bi

]
= [−μyi,jCy,j /B

2
i

] = [
σ ′

Byi,j

]
(2.47)

Σ ′
B offers a view of the most effective BW changes to reduce a design’s relative

saturation (or efficiency) sensitivity, across all node BWs in the codesign process.
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Σ ′
C provides a similar effect in reducing the sensitivity of a key node across the

capacity sensitivities of all other nodes. Both could be phase-weighted in practice.
This section shows that capacity sensitivity, Eq. (2.46), a function of the model

system, joins the model system and codesign optimization equations as a third key
element in understanding the codesign problem.

2.6 Using the Codesign Model

Next we explore some codesign issues by sweeping through parts of the design
space for noncontrived, simple 3-node, 2-phase examples. Realistic numbers of
nodes and phases would make the picture more complex, but follow similar patterns.
Sections 2.6.1 and 2.6.2 concern cost and performance sensitivity, respectively, and
performance sensitivity is broken into several cases in Sect. 2.6.2. We define per-
formance stability as the ratio of maximum to minimum performance over a collec-
tion of computations; when an empirical threshold is exceeded, a system is said to
be unstable. Potential sources of performance sensitivity and nonlinearity that are
discussed here and can lead to instability include variations in saturation state by
discrete choices of node BW values, architecture changes, and variations in phase
weights. A prototype codesign tool CAPE was used to produce the figures shown.

2.6.1 Cost Reduction

Computer manufacturers build only a discrete set of computer systems, and these
are made from a discrete set of subsystems, each of which is built from a discrete set
of components. For example, most sizes and speeds of memory along a continuum
are not feasible design choices for real memory systems—designers use what is
reasonable to fabricate in volume. A codesign tool must be constrained to choose
among these engineering options. Linear analyses over ranges of discrete constraint
choices create nonlinear codesign surfaces that approximate design realities.

Consider the 3-nodes of Fig. 2.3, plus a second phase codelet 2, which yields
Bu

m2
= 17/18, B

u

m1
= 36/18 = 2, and Bu

p = 22/18 = 11/9. In contrast to phase 1,
mem1 is saturated here, so μm1,m2,2 = Bu

m2
/Bm1 = 0.944 2 = 0.472, and μm2,p,2 =

Bu
p/Bu

m2
= 1.22/0.944 = 1.29. Assuming that φ1 = φ2 = 0.5, we can find minimum

cost solutions among discrete BW values, satisfying engineering codesign con-
straints. We define system performance in terms of the processor as C

glob
p = (Cp,1 +

Cp,2)/2 = 1.11. Varying processor and memory BW with a step size of 0.1 to sim-
ulate engineering constraints, while maintaining original performance, Table 2.2
shows several cost-reduced solutions relative to the original Bsystem = 5 (Eq. (2.44)).
These range from Bsystem = 4.1, an 18% cost reduction, to Bsystem = 4.3. The range
of BW options covered may have important engineering consequences. For exam-
ple, the mem1 and proc BWs are reduced from the original design, while mem2
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Table 2.2 Low cost
solutions vs. orig. cost = 5 Bsystem C

glob
p Bandwidths

Cost m1 m2 p

4.100 1.7000 1.2000 12000

4.200 1.7000 1.2000 13000

4.200 1.8000 1.2000 12000

4.200 1.9000 1.1000 12000

4.300 1.7000 1.2000 14000

4.300 1.8000 1.2000 13000

4.300 1.9000 1.1000 13000

4.300 1.9000 1.2000 12000

4.300 2 1 13000

4.300 2 1.1000 12000

ranges up to 20% higher than the original. From a design flexibility point of view,
note that for each component, this approach provides the designer with component
BW choices in a 15% to 20% range. Table 2.2 is the type of tool output that brings
designers’ decision-making into the codesign process.

Variations of the performance goal for a single node can be satisfied by linearly
scaling system cost. However, when minimum cost is sought, or two or more node
performance goals change independently, the resulting cost surface can become non-
linear. For example, the most demanding performance goal can require dispropor-
tionate BW for that node compared to other nodes. We refer to this as a nonlinear
cost function of performance.

2.6.2 Performance Sensitivities and Instabilities

We consider performance (Eq. (2.1)), in Sect. 2.6.2.1 with variable HW/architecture
and constant SW/code, and in Sect. 2.6.2.2 with variable SW/code and constant
HW/architecture. Exploring the solution space at phase transitions in computa-
tions reveals a source of nonlinear performance behavior caused by saturation state
changes (Sect. 2.5.6). For each HW node i, as a program’s Ci,j changes across
phase j transitions or within phases as data sets vary, the Σ row values change,
and as a program is moved from one machine to another, the column values also
change. C

glob
p , as a function of Bm1 and Bm2 , exhibits three distinct linear regions

in Fig. 2.6, where three planes (breaks at dotted lines) form a performance surface
viewed from below (higher is better). The heavy line shows the Bm2 = 0.8 con-
tour. Discrete choices of node BW values and variations in phase weights are other
potential sources of performance sensitivity and instability (in cases of extreme sen-
sitivity).

Figure 2.7 shows a C
glob
p vs. Bm1 slice through the surface of Fig. 2.6 for Bm2 =

0.775, cutting across three regions. This value illustrates some difficulties of doing
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Fig. 2.6 Processor
performance vs. memory BW

Fig. 2.7 Processor
performance vs. Bm1 ,
showing perf regions;
Bm2 = 0.775

reduced-performance and cost redesign of the original system. The * on the right is
the original design point, with C

glob
p = 1.11. The 〈m1,m2〉 balance points for each

phase can be computed using μxy = αxy (Definition 2.1). With Bm2 = 0.775 for
phase 1, μm1m2 = αm1m2 , so Bm1 = Bm2/μm1m2,1 = 0.775/0.75 = 1.033, and for
phase 2, Bm1 = 1.64. These breaks are shown in Fig. 2.7 labeled as balance points
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for each of the phases. For Bp = 1, they define three saturation states,

Σs
left =

⎡

⎣
0 0
1 1
0 0

⎤

⎦ , Σs
center =

⎡

⎣
0 0
0 1
1 0

⎤

⎦ , and Σs
right =

⎡

⎣
0 1
0 0
1 1

⎤

⎦ ,

following Definition 2.4, Sect. 2.5.6, with σj = [p,m1,m2]. Bwaste > 0 is indicated
by 0-rows, which right-state designs offset by Bm1 insensitivity.

2.6.2.1 Sensitivity of Performance to the System

Consider the system sensitivity caused by saturation state transitions in moving an
application from one system to a similar one. In the leftmost region of Fig. 2.7 (Bm1

saturated in both phases), if Bm1 values differ on two similar architectures perfor-
mance will be affected more than in the other two regions due to a linear tradeoff
between Bm1 and processor performance. In the center region, the performance ben-
efit of incremental Bm1 change is about half as great. The rightmost region is insen-
sitive, as Cp is independent of Bm1 . Two machines to the right of the φ2 balance
point show no performance change as Bm1 varies; two machines to the left of the φ1
balance point show a 20% performance variation in the region graphed.

Analyzing this via Eq. (2.46), with Bm1 values at phase balance points and μ’s
computed from data above gives

σ ′
Bp Bm1, φ1 bal = −μp m1,1Cp,1

B2
m1

= −1.33 × 0.7

(1.033)2
= −0.87

σ ′
Bp Bm1, φ2 bal = −μpm1,2Cp,2

B2
m1

= −1.64 × 0.89

(1.64)2 = −0.54

The numerical sensitivity at the left balance point exceeds that at the right by a
factor of 1.6, and evaluation at the midpoints of the two sloping lines yields a ratio
of 1.4, in general agreement with the plot for related concepts. Similar results can
be obtained for Bm2 sensitivity, corresponding to a slice across Fig. 2.6 along the
Bm2 axis.

To explain how real-world design efforts might produce systems with perfor-
mance sensitivity that varies more than necessary, imagine two design teams, one
working to the left of the phase 1 balance point, and one to the right. Assume that
neither team has a global view of the design space beyond what typical simulation
studies allow [9]. The first team will be more easily inclined to increase Bm1 based
on incremental studies, subject to cost constraints. In competition with other teams
working in the leftmost region, under fixed cost budgets, team 1 designers could
make bigger design errors, by insufficiently incrementing Bm1 , than team 2 or other
design teams working to the right of the balance point. In general, operating at a
balance point is locally optimal, but without global oversight all design teams are
likely to err. Adding more-detailed nodes at sensitive points provides zoom-in on
hot spot design.
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Fig. 2.8 Phase weight
sensitivity

2.6.2.2 Sensitivity of Performance to the SW Load

Future workloads are impossible to know with certainty, but the capacity-based
process allows approximating them as changes to current workloads. Varying BW
used and codelet weights allows approximation of new paths through existing ap-
plications (data set changes), emerging algorithms and applications (codelet varia-
tions), and ranges of data rate inputs. Driving the linear analysis with such perturba-
tions also leads to nonlinear performance surfaces. To simulate uncertainty in data-
dependent program paths, or application market-importance variation over time, we
can vary the phase weights in some range (UB − LB), where LB ≤ φ1, φ2 ≤ UB,∑

j φj = 1, using a constant increment. The choice of UB and LB depend on spe-
cific design constraints. This has the effect of varying Ci,j in saturation states.

Figure 2.8 plots the combinatorial magnitude of the distribution of phase weights,
ranging here from 0 to 1 in steps of 0.2. The maximum variation of C

glob
p in this

example is 30%—from 0.80 to 1.04. The details are not shown, but as the phase
weight range increases, maximum proc performance variation increases: from 9%
(not shown for phase weight range 0.3 to 0.7) to 30% (Fig. 2.8). Comparison at the
two balance points (Fig. 2.7) shows greater stability at the φ1 balance point; the
opposite of the HW stability conclusion (Sect. 2.6.2.1). The explanation of this may
depend on the higher peak and average performance values achieved for higher Bm1 .
Thus, load instability can be manifest on a single system by running two similar
applications, or one application with varying data sets.
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2.6.2.3 Performance Instability Conclusions

Explaining performance instability is a complex subject, and one simple example
can only provide an illustration. This section demonstrated performance variations
in one application under architectural changes in Fig. 2.7, where the left region
demonstrates a 20% performance range, and load changes in Fig. 2.8, where 10% to
30% performance variations arise as a function of one computation’s phase weight
variation on a fixed architecture.

For this simple system, it is easy to demonstrate the basic mechanisms by which
instabilities in real computer systems arise. This heuristic discussion proves nothing
about instability, but points the way to more analytical methods for finding and
evaluating performance instabilities based on BW/architectural change as well as
load change.

2.6.3 Architectural Variations Affecting Capacity

Using the methods of this section, a design space can be explored for critical archi-
tectural changes. For example, given an accurate laptop model for a comprehensive
workload, how would a solid-state disk noticeably improve performance. By reduc-
ing disk latency appropriately, the shift from hard drive to SSD could be modeled,
and those phases (applications) could be discovered for which delivered processor
performance increased significantly. Further, designers could examine the potential
of small on-chip RAM supplemented by SSD.

The appropriate model could be driven by C and μ values estimated from the
original system—on-chip RAM and SSD latencies would be much reduced, while
page faults would increase. The tool would show performance improvement per ap-
plication together with sensitivities to the C and μ parameter estimates. This could
quickly provide a crude view of potential architecture vs. market tradeoffs, together
with some sensitivities.

2.7 Multirate Nodes

The two types of multirate node have BWs that vary with computational load.

Supernode: A supernode is any connected set of linear nodes. It can be used to de-
note a subsystem’s variable performance behavior in either HW (e.g. memory
latency) or architecture (e.g. queues with variable internal latency).

Nonlinear node: A nonlinear node’s BW is a nonlinear function of other nodes’
capacities. Examples include a parallel processor, cache hierarchy or vector
processing unit.
Multirate nodes arise in two ways:
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1. A designer chooses a model fidelity that includes supernodes or nonlinear
nodes, forcing their analysis.

2. Capacity analysis yields a BW objective exceeding current technology lim-
its, forcing multirate node synthesis.

Analysis: Most RTL-level component performance responses are linear relative to
BW or latency. But when architecturally linked and driven by applications im-
perfectly matched to the architecture, overall performance response can be non-
linear. Multirate node C and μ values generally depend nonlinearly on HW
component size metrics and how the computation interacts with the detailed
node structure, e.g. loop vectorization or blocking for cache reuse [2].

Synthesis: When linear analysis applied to performance enhancement of a design
calls for a node BW that is infeasible using available linear components, a
multirate node may be synthesized. Using performance objectives obtained by
the capacity-based solver as the multirate node BW requirement, a secondary
method can specify its internal structure, e.g. the required number of cores for
a multicore component.

2.8 Related Work

Discussion of compute vs. memory or I/O bound programs, the von Neumann archi-
tecture bottleneck, and designing systems to match given applications or algorithms,
have driven computer design for 50 years [6]. Obtaining, analyzing and interpreting
large volumes of performance data present major obstacles that have been addressed
in many ways. Deterministic and stochastic models with sampling from the appli-
cation level (benchmarks) to the trace level (HW performance counters) followed
by various discrete event simulators and statistical models are used in specialized
or combined ways. Stochastic methods tend to work well for steady-state computa-
tions, while discrete event simulation handles all situations but much more slowly.
Multiple system types have evolved to cover multiple market needs.

Capacity-based codesign can handle at linear programming speeds, both steady-
state and transient system behavior. Codelet coverage is the key need; it can succeed
either by reuse of common source- or assembly-codelets. The method explicitly rep-
resents the performance of phases and whole computations, so solutions can yield
extensive architectural insight (Sect. 2.6). The method’s speed of solving codesign
problems depends on solving LP problems, doing sensitivity analyses, and exploring
design space in various ways. Several statistical methods are emerging [7] that may
help in reducing the time and enhancing the insights of design space exploration.

Another codesign issue is application performance enhancement. Potential ap-
proaches are given in Sects. 2.5.3 and 2.5.6 to find hotspots by roughening pro-
files across whole computations. Many papers discuss the two- node case [1]
seeks memory-processor balance (Definition 2.1) through formulas to analyze loops
for compiler transformations. Using two node capacity Eq. (2.29b) with variable
μxy and constant Cx , switches the Fig. 2.5 labels (Sect. 2.5.3); [10] explores the
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Cx = Cm = Bm case (roofline model). For several algorithms, [8] uses memory
access intensity analysis—equivalent to BW sensitivity (Eq. (2.47)) with saturated
memory—to predict when blocking performance-sensitive loops will be beneficial.

The potential to partition design space and move toward specialized systems for
distinct applications exists within this method. This can be done manually by iter-
atively removing similarly performing phases. Perhaps algebraic analysis may lead
to semi-automatic methods of partitioning the computational parameter matrix.

2.9 Conclusions

A number of codesign problems have been posed, together with capacity-based
methods of finding BWs of HW system nodes that satisfy given goals, for a given
set of computations. System recommendation is a related problem, i.e. for a fixed
set of computations, select one of several specific systems as the best in perf/cost.
Also, codesign can be expressed as solving for SW variables in terms of fixed HW.
The ideas presented can be used for many specific problems, but there are some
underlying commonalities:

1. Top-down codesign of optimal systems

• Mixed fidelity modeling allows focus on exactly those parts of the HW system
of interest

• All computations are modeled by weighted combinations of SW repository
codelets

2. Simultaneous use of comprehensive load and BW information

• LP equations are optimized faster than discrete event simulation, combining
SW and HW specifics

• Global sweeps of 3D codesign space show parametric relations among many
optimal design points

3. Design of robust, focused-system families under uncertainty

• Perfect solutions (Bwaste = 0) for single phases, optimal designs for applica-
tion classes

• Pre-Si exploration of design sensitivities; market-segment design partitioning.

Key features of the approach include:

• Rich codelet set relative to benchmark/trace-driven simulation helps prevent ap-
plication performance regressions

• Capturing system-wide interactions avoids the local optimization traps typical in
component-wise design

• Automating the process overcomes design complexities that overwhelm human
designers

• Meeting infeasible goals with higher-performance synthesis, only when needed.

The consequences are savings of human design and CAE machine time, as well as
better system designs.
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Chapter 3
Measuring Computer Performance

William Jalby, David C. Wong, David J. Kuck, Jean-Thomas Acquaviva,
and Jean-Christophe Beyler

Abstract Computer performance improvement embraces many issues, but is
severely hampered by existing approaches that examine one or a few topics at a
time. Each problem solved leads to another saturation point and serious problem. In
the most frustrating cases, solving some problems exacerbates others and achieves
no net performance gain. This paper discusses how to measure a large computational
load globally, using as much architectural detail as needed. Besides the traditional
goals of sequential and parallel system performance, these methods are useful for
energy optimization.

3.1 Introduction

Overall computer performance time or rate can be measured reasonably well, but
breaking out the contributory details of performance, per HW node and compu-
tational phase, is much harder. Ideally, performance numbers should result from
measurement and modeling procedures that have several desired properties:

1. Available for any HW node, i.e. any level of HW modeling from RTL to whole
system block diagram.
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2. Represents accurate performance time and rate per node, using unobtrusive mea-
surement techniques.

3. Overall performance should be expressible in terms of node performance.
4. Node performance should be expressible SW terms, e.g. machine and HLL in-

structions.
5. Universal modeling techniques should be used, which are fast and not unique to

a given architecture.

Several issues have stood in the way of achieving all of these goals.

A. Cycle accurate simulation is very accurate, but prohibitively slow for large ap-
plications

B. Using SW methods alone has been thwarted by architectural complexity
C. Performance HW counters offer hope but are notoriously difficult to use in prac-

tice (see Sect. 3.3)
D. Performance nonlinearity at a high level (cache, vectors, parallelism) makes the

process very complex

This paper proposes an approach that reasonably satisfies the desired properties,
but avoids the issues listed above. The methodology rests on several basic princi-
ples and new tools that will be outlined in this paper. While the method has not been
demonstrated end-to-end, the key parts have been implemented and tested indepen-
dently.

The paper discusses the details of obtaining necessary parameters for linear mod-
eling, by using novel ways of measuring program phase performance. This includes
simplifying the nonlinearities inherent in some physical nodes that are a function of
program parameters, by introducing virtual nodes that combine HW and SW con-
cepts. Section 3.2 surveys problems with using traditional methods, and Sects. 3.3
and 3.4 introduce the computational capacity abstraction and piecewise virtual-node
modeling that allows simplifying the problem. Sections 3.5 and 3.6 give more de-
tails of the overall process and an example of how the process works. Section 3.7
discusses conclusions, next steps and open questions.

3.2 Traditional Measurement and Modeling

Traditional measurement methods use HW performance registers, and modeling
methods include the use of simulation and abstract modeling to understand system
performance, energy use, and architectural design. This paper discusses new mea-
surement methods based on the virtual-node abstraction, and modeling methods that
are designed to be much faster than simulation, more accurate than most abstract
models, and produce detailed measurements of the modeled system. The issues of
performance counters are discussed next.

Over the past 25 years, HW performance counters (HPCs) have become widely
used for various purposes. However, the registers themselves as well as their usabil-
ity still present major problems, as listed below.
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1. HPC fine grain HW focus means low granularity SW information
By definition, HPCs are able to measure HW behavior primarily, and SW behav-
ior only indirectly. However, SW performance improvement often requires fo-
cused changes to carefully selected instructions in particular parts of a program.
HPCs do not have instruction-centric capabilities, instead they give aggregated
views of large numbers of instructions.

2. Linkage of HPCs to performance realities
The linkage of the HPC data to overall performance can be blurred by archi-
tectural complexities that are missed by the HPC numbers. For example, OOO
execution can mask a great deal of the time that may seem to be incurred, from
the analysis of only HPC data. Another example is the inability to detect poor
spatial locality. For example, a stride-4 load from L2 cache may have equivalent
performance to a stride-2 load from L3, so be invisible from an HPC point of
view that is stride blind.

3. HPC register technology per se
There are several intrinsic weaknesses of HPC registers, beyond the above. One
is that they are neither standardized across manufacturers, nor from system to
system or over time within one manufacturer. This makes their use ad hoc by
definition. Furthermore, while the sampling methods employed are often ade-
quate, sometimes they seem to deliver very distorted results; quality assurance of
the data is not provided by any manufacturer.

This paper offers measurement approaches that are more direct relative to HW
and SW, are closely linked to overall performance via capacity (Sect. 3.3), and are
not linked to specific architectures.

3.3 Computational Capacity Model

Computational capacity Ci,j is the BW actually used in each HW node i, by a
specific computational phase j , as defined in [4], and is central to measurement
and modeling. Besides being intuitively meaningful in both architecture and SW
discussions, it leads to fast and effective analytical techniques, and as shown below,
simplifies some measurement activities because it is jointly defined by the HW and
SW parameters of a given computation.

3.3.1 Basic Variables and Measurements

Many important characteristics of a computation can be defined in terms of the five
independent variables below: three HW, one SW, and one joint HW/SW. The values
of the HW variables may be obtained from first principles (perhaps as manufacturers
specs) or empirically from a large computational load. The latter method will be
discussed in this paper as it may be regarded as more germane, and because in
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the case of v-nodes (Sect. 3.5) it is the only feasible approach. In general, if linear
scaling is used, results obtained either way should be equivalent [4]. The SW and
joint variables must be empirically determined.

• Three HW variables

a. HW node BW B measured as [b/s] peak.
b. Two of: power dissipation W [watts] consumed by B operating at full BW,

and idle power W idle [watts] of B or γ [energy/b] consumed when operating.

• SW variable
Each codelet performs O operations during a computation. These can be mea-
sured abstractly, e.g. in an algorithm or in terms of a given instruction set.

• Joint HW/SW variable
Capacity C [b/s] used by a computation on each node, is determined by the struc-
ture of each program and its linear or nonlinear interactions with the architectural
structure of the HW nodes in a given system, which in this paper will be masked
during measurement, see Sect. 3.4.1.

From these five independent variables, a running computation yields many de-
pendent variables including overall and per node performance (running time) and
energy (operating cost).

An empirically complete set of measurements consists of only three: capacity
Ci,j and Wi,j for node i and phase j , and Oi,j or time. The others can be estimated
practically from these, using Bi = maxi {Ci,j } and several values of Wi,j plotted vs.
Ci,j give approximate values for Wi and W idle

i . Alternatively, measuring only Wmax
i

suffices if γi,j (slope of power model [energy/bit]) is known from first principles.

3.3.2 Single Phase CAPE Simulation

With the measurements described in Sect. 3.3.1, performance is projected for sce-
narios where the BWs of HW nodes are changed using CAPE simulation. Unlike
traditional simulation, CAPE simulation does not simulate or emulate individual
execution steps. It projects performance by analyzing the utilization of individual
components in a macroscopic manner. This section describes how to do CAPE sim-
ulation for a single phase workload. Section 3.3.3 shows how to extend this to mul-
tiple phase workloads. Consider an m node system shown in Fig. 3.1 with the fol-
lowing measurements:

• Original bandwidths: B1,B2, . . . ,Bm

• Original capacities: C1,C2, . . . ,Cm

• Original execution time: T

Using a new set of bandwidth inputs B ′
1,B

′
2, . . . ,B

′
m, CAPE can compute new ca-

pacities C′
1,C

′
2, . . . ,C

′
m and overall time for the new system to execute the original

load.
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Fig. 3.1 Original single phase m node system

For each node i, the relative saturation, σi = Ci/B
′
i tells us how far node i is from

saturation in the new scenario. Multiplying 1/σi by the capacity of ni will saturate
the node. As shown in [6], using s = min(1/σi) as the scaling factor for all the
capacity values (C′

i = sCi), the resulting system will have the following properties:

• For any node i, Ci ≤ B ′
i• There will be at least one saturated node, namely node k where 1 ≤ k ≤ m with

relative saturation 1/s, i.e. Ck/B
′
k = 1/s. For that node, the new capacity is C′

k =
sCk = B ′

k .

With the above established properties, we have a simple algorithm to compute
the capacities given new bandwidth settings (B ′

1,B
′
2, . . . ,B

′
m):

1 Algorithm:
COMPUTE-ONE-PHASE-CAPACITY(B ′

1,B
′
2, . . . ,B

′
m,C1,C2, . . . ,Cm)

2 s ← ∞ ;
3 for i ← 1 to m do
4 do s ← min(s,

Ci

B ′
i

) ;

5 for i ← 1 to m do
6 do C ′

i ← sCi

7 T ′ ← T
s

;

3.3.3 Multiple Phase CAPE Simulation

To generalize the single phase problem to the multi-phase case, the same procedure
is applied to each phase. Following are the inputs of the n node p phase problem:

• Original Bandwidths: (Bi,j ) for 1 ≤ i ≤ m and 1 ≤ j ≤ p

• New Bandwidths: (B ′
i,j ) for 1 ≤ i ≤ m and 1 ≤ j ≤ p
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Fig. 3.2 Memory latency
and bandwidth graph

• Original capacities: (Ci,j ) for 1 ≤ i ≤ m and 1 ≤ j ≤ p

• Original execution times for each phase: Tj for 1 ≤ j ≤ p.

The prediction problem is to compute the computational capacities (C′
i,j ) and new

total execution time T ′ for the scenario when the system is under new bandwidth
settings.

Following is a generalized version of the algorithm described in the previous
section:

1 Algorithm:
COMPUTE-ALL-PHASE-CAPACITY(B ′

1,1, . . . ,B
′
m,p,C1,1, . . . ,Cm,p)

2 for j ← 1 to p do
3 do sj ← ∞ ;
4 for i ← 1 to m do
5 do sj = min(sj ,

Ci,j

B ′
i,j

)

6

⎛

⎜
⎝

C′
1,1 . . . C′

1,p
...

. . .
...

C′
m,1 . . . C′

m,p

⎞

⎟
⎠ ←

⎛

⎜
⎝

C1,1 . . . C1,p

...
. . .

...

Cm,1 . . . Cm,p

⎞

⎟
⎠

⎛

⎜⎜⎜
⎝

s1 0 0 . . . 0 0
0 s2 0 . . . 0 0
...

. . .
...

0 0 0 . . . 0 sp

⎞

⎟⎟⎟
⎠

;

7 T ′ ← (T1 . . . Tp) · (1/s1 . . .1/sp)t

3.4 Dealing with Nonlinearity

3.4.1 Nonlinear Multirate Performance Model

The total bandwidth provided in complex computer system nodes can be fully ex-
ploited only under ideal operating conditions within the node. Two types of multirate
node are described here.

Variable latency arises due to the load on a bus or network, memory access
conflicts, or disk rotation time. Fig. 3.2 is a memory example, which following
Eq. (II.2) [4] and using capacity terms, leads to Eq. (3.1).

Since BW and latency (λ) are reciprocals, Eq. (3.1) can be rewritten as Eq. (3.2):

Cmem = ClatCr/w

Clat + Cr/w

(3.1)
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using λlat = 1/Clat. This memory supernode has nonlinear capacity Cmem depend-
ing on memory read/write capacity, but is also subject to the variable nature of the
node’s latency (Cmem = Cr/w , if λlat = 0):

Cmem = Cr/w

1 + Cr/w/Clat
= Cr/w

1 + λlatCr/w

(3.2)

Two other examples of complex nodes that may be modeled directly as nonlin-
ear nodes follow. For best performance, caches require high hit ratios and parallel
processors require high SW parallelization, which depend on how well program
structures and compiler algorithms match a given architecture. To model a node that
can operate at various speeds, we use a model whose bandwidth B varies, and write
Eq. (3.3). The computation time for a saturated node is T u = O/C,

Bmin ≤ C ≤ Bmax (3.3)

(Eq. (I.5) [4]) and the speedup in fully exploiting a node, over its slowest running
time is Eq. (3.4). Using ρ = Bmin/Bmax ≤ 1, and θmax ≤ 1

1 ≤ S = Tmax/T u = O/Bmin

O/C
= C

Bmin
≤ Bmax

Bmin
(3.4)

as the fraction of total time Tmax run at bandwidth Bmax leads to S ≤
Tmax

θmaxρTmax+(1−θmax)Tmax
= 1

1+θmax(ρ−1)
, and replacing θmax by θav (a weighted aver-

age across all p values in a computation) yields the equality of Eq. (3.5):

S = 1

1 + θav(ρ − 1)
(3.5)

For parallel processors, ρ = 1/P , for a P -processor parallel system and θav =
fraction of serial code execution time run fully parallel on P processors, with the
P -processor speedup Sp of Eq. (3.6).

P ≥ Sp = 1

1 + θav(1/P − 1)
≥ 1, 0 ≤ θav ≤ 1. (3.6)

For cache hierarchies, to look at slowdown, we “invert” the interpretation
of Eq. (3.5) using the BW ratio of two cache levels ρ = BLi/BLi+1 > 1, or
cache/memory ρ = Bc/Bm > 1, and θav = m = cache miss ratio, 0 ≤ m ≤ 1, so
the cache slowdown factor σu

c is given by Eq. (3.7).

σu
c = 1 + mi(ρ − 1) ≥ 1, 0 ≤ mi ≤ 1, ρ > 1 (3.7)

Equations (3.2), (3.6), and (3.7) are basic performance formulas for parallelism
(Amdahl’s Law) and memory hierarchy, respectively. Equation (3.7) can be ex-
panded to cover multiple levels and applied using multi-level cache measurement
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data. Parallelism is usually regarded as a speedup for P processors, but by mea-
suring the amount of 2, 3, 4, etc. degree parallelism for < P processors, could be
useful in computing θav. For parallel computing, using T1 and TP for uniprocessor
and P -processor times, respectively, and B1 and BP similarly for BW, we can write
Eq. (3.8):

Tp = T1/Sp, and Bp = B1SP (3.8)

3.4.2 Piecewise-Linear Approximation

Equations (3.6) and (3.7) define nonlinear performance curves that are functions
of SW parameters. If a discrete set of SW parameters is chosen for analysis, each
of these nonlinear performance functions can be approximated by a discrete set of
performance points, leading to a piecewise-linear plot. If one knew the values of
applicable parameters for each program phase encountered, then the equations of
Sect. 3.4.1 could be used directly to get capacity values. Determining these values
online or offline would be a complex and open-ended process that is practically
infeasible.

Alternatively, if many program phases are analyzed offline, automatically, and
decomposed into codelets [4], each of which has linear performance characteris-
tics, then linear analysis may be used online for each codelet. Furthermore, the
overall nonlinear performance function is dealt with by using multiple codelets to
piecewise-linearize the original node’s nonlinear performance function. The off line
choice of codelets is a closed process, with occasional exceptions for new codelets
that must be entered into the repository.

This defines a two-step process for linearizing the nonlinear performance curves
of Sect. 3.4.1.

1. Decompose any phase into a discrete set of codelets that provide sufficient cov-
erage to define a reasonable piecewise-linear approximation of the original non-
linear performance curve.

2. Guarantee that each resulting codelet is itself a linear function of the B and C

values for the virtual node used by the codelet.

To implement this process following the procedure of Sect. 3.5, assume that the
codelets chosen above are macro instantiations and the SW parameters are those that
produce macros and SV-nodes. Each point chosen must be linear, so the decompo-
sition of a given nonlinear node is continued until the linearity test shows that the
decomposition is complete.

Note that “minor nonlinearities” are acceptable in the sense that the overall
piecewise-linear curve gives a good approximation of the true nonlinear curve. For
example, when measuring cache level Li and assuming all hits, the error included
by allowing a few misses is acceptable. (In the worst case, this is leads to ignoring
the nonlinear curve defined in Sect. 3.4.1 and connecting its ends with a straight
line.) The effect will be to shift the slopes of μL,x values per phase [4] and thereby
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skew design results in proportion to the degree of “minor nonlinearity” acceptable.
A quality test that can be made per codelet is to test for steady-state behavior by
comparing overall codelet capacity values with sampled capacity values throughout
the phase running time.

In general, this leads to a set of non-uniformly spaced SW parameter points that
each behave linearly, and collectively yield a piecewise-linear approximation of the
performance curve, which improves with the number of points chosen. Choosing
intuitively important codelets (macros) to cover the code segments expected in real
programs will lead to effective coverage of each nonlinear curve and results that are
easy to interpret. The final result is a set of linear SV-nodes that provide piecewise
linear coverage of the important parts of codesign space.

The general shape of nonlinear performance curves may be smooth, as above,
or may have periodic irregularities, as in vector performance that is punctuated by
sawteeth corresponding to vector register size [2]. Such phenomena may be mod-
eled by choosing v-nodes at the sawteeth. Most difficult are sporadic punctuations,
caused by irregular events that may have serious performance effects (e.g. in satu-
rated v-nodes). The following is a list of well-known problems that may be corrected
to prevent skewing of the modeling results, or if uncorrected should be regarded as
potential sources of error in the modeling. Each is followed by short description of
methods for detecting and mitigating the problems.

1. Data alignment: depending upon the starting address of a block of 128 bits, dif-
ferent SSE instructions (with different performance) have to be used. Such prob-
lems can be easily detected by an automated analysis of assembly code and can
be solved by array padding or array reshaping.

2. Cache bank conflicts: two memory references can hit the same bank during the
same cycle, forcing one of them to be delayed while the other one is serviced. In
general (arbitrary memory reference patterns), such problems are hard to detect.
Fortunately for most HPC codes, array access are very regular and cache conflicts
can be easily detected by memory tracing techniques. In general, techniques such
as array padding and/or reshaping will alleviate the problem.

3. 4K Load Store aliasing: a load and a store instruction accessing two different
memory locations having the same identical low order 12 bits. As for cache bank
conflicts, regular array access very frequent in HPC codes allows to use memory
tracing for detecting such cases. Instruction reordering (moving far apart the load
and store colliding) will reduce performance impact.

4. Associativity conflicts: although modern caches use a high degree of associativ-
ity, cache conflicts can still occur due to associativity. There, the problem can
be fairly difficult to detect because in general it will involve the mapping from
virtual pages to physical pages. Furthermore the phenomenon can be hard to re-
produce because it will depend upon the initial state of memory fragmentation. In
general techniques such as array restructuring (for minimizing cache foot print)
will reduce performance impact.

5. TLB misses: when walking through too many pages at the same time, the TLB
can thrash, generating costly misses. As for cache bank conflicts, memory trac-
ing techniques will allow quick identification of the issue. Very often, a high
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degree of TLB misses occurs due to access along the “wrong” dimensions in
multidimensional arrays and the problem can be resolved by array restructuring.

6. False sharing; this phenomenon occurs when two cores are writing repetitively
to the same cache. Again memory tracing will allow quick identification of the
issue and array restructuring to avoid cache line split between different cores will
resolve most of the cases.

It should be noted that most of the problems listed above are due to very specific
“local” and “periodic” properties of the memory access stream: in general, simply
changing array sizes will make the problem disappear or at least be drastically re-
duced. As such, they should be considered as secondary performance effects or more
generally as perturbations to the general performance model developed in this pa-
per. Furthermore, their detection and resolution can be decoupled from our general
performance analysis.

3.5 Model Synthesis

The two major steps in codesign modeling are model synthesis (to be described
in this section) and computational capacity simulation (described in Sects. 3.3.2
and 3.3.3), as shown in Fig. 3.3. Model synthesis is performed by four SW tools—
macro generation, microbenchmarking, Maqao (static assembly-code analysis) [1]
and DECAN (dynamic binary-code decremental analysis) [3]. This produces, for
each v-node chosen, B , C and W power model information. The CAPE tool is then
initialized by a designer with simulation study goals, and is used to simulate a wide
range of systems. Finally, the CAPE post-processor can be used to filter and interpret
the results in terms of either phy-nodes or v-nodes, for use by designers to estimate
the performance impact of various design decisions.

3.5.1 Overview

The modeling framework will be described in a series of steps that lead to a block
diagram of the codesign process. The concept is to proceed from instruction sets
to SW macros to single rate v-nodes (SV-nodes), through computational capacity
simulation, to analysis in terms of general, multirate v-nodes. Figure 3.3 shows the
CAPE tool inputs Bsvi,j , Csvi,j , and Tj . CAPE has three sections:

1. Set original node B , C and T values
2. Define codesign experiment
3. Post-process results for designers.

Figure 3.4 shows how the model synthesis tools work together to take instruc-
tion set, node definition and apps as inputs to produce Bsvi,j , Csvi,j , and Tj . The
tool decomposes applications into codelets, macros and SV-nodes (not shown in the
diagram) with the following definitions:
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Fig. 3.3 Overall process

Fig. 3.4 Details of model synthesis tools

• Codelets are application fragments with significant execution times.
• Macros are decomposed from codelets. The execution of a macro contains uni-

form/steady streams of operations. Using the algorithm described in Sect. 3.5.4,
a generated macro does not overlap with another.

• SV-nodes stands for single-rate virtual nodes. They are decomposed from macros.
Each SV-node contains instructions using the same physical node in a similar
access pattern. An SV-node is single-rate because given a fixed access pattern,
the rate to execute the SV-node instructions is a constant, resulting in a linear
capacity model.

The following sections cover individual model synthesis tools:

• Section 3.5.2 describes how microbenchmarking generates a bandwidth table
used by SV-node analysis. In addition to instruction set knowledge, the defini-
tion of SV-nodes in terms of instruction sequences is known a priori. Initially,
the definition can be generic, which is then refined as each codesign exercise pro-
ceeds; a memory node can be defined as memory instructions operating on several
levels of cache. The node definition refinement is guided by the need of designers
and developers, and may be implemented in several ways.

• Section 3.5.3 describes application decomposition using the codelet extraction
tools.

• Section 3.5.4 describes how a macro generation algorithm uses execution time
to decompose a codelet further into macros. The algorithm also determines the
execution time of each macro as an output.

• Section 3.5.5 describes how SV-node analysis uses the bandwidth table, the macro
and its execution time to determine the B and C values.
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3.5.2 Microbenchmarking

Microbenchmarking is a technique used to measure the bandwidth of various hard-
ware components under well defined (controlled) conditions. For example, for mem-
ory access, these conditions include:

• Type of instruction used: MOVSS, MOVSD, MOVUPS, MOVAPS, etc.
• Sequence of Load/Store instructions: LSS corresponds to a load followed by two

stores
• Address stream: start address, stride, unrolling degree, short-term temporal lo-

cality degree (to handle patterns such as A(I) + A(I+1), single array access
versus multiple array access, etc.

• Memory level accessed: L1, L2, L3, RAM

This large number of parameters allows one to “emulate” (mimic) any arbitrary
pattern of memory access occurring in applications.

Due to the wealth of parameters (see list above), the process of generating all
of these microbenchmarks has been fully automated i.e. a description language is
used which allows a compact and easy description of the microbenchmarks, and
from that description, the various microbenchmarks are generated. The launching
and running of this large set of microbenchmarks has also been fully automated to
take into account different running execution parameters such as number of cores,
frequencies, etc.

The microbenchmarks produce a large database which can be accessed using
instruction patterns, memory stream access characteristics, etc.

3.5.3 Codelet Extraction Tools

To decompose an application into manageable fragments, each application is de-
composed into codelets using Astex [5]. The decomposition is based on syntactic
structure and codelet execution frequency for a given data set. Astex keeps track of
the codelet run time data, so the output of Astex is both the codelet and the associ-
ated input data. As the codelet is being processed down the tool chain, the data will
be carried along as well. This paper assumes data propagation and focuses on the
codelet processing. Also, this paper assumes each codelet is a loop nest.

3.5.4 Macro Generation

We use the linearity condition to identify mutually exclusive operations:

Definition 3.1 (Linearity Condition/Test) For two streams of instructions x and y,
if t (xy) = t (x) + t (y) then x and y are mutually exclusive.



3 Measuring Computer Performance 87

Fig. 3.5 A phase/loop decomposed into macros

This is based on the observation of execution times of each instruction stream.
When the condition holds, we observe that executing the two streams of instructions
together takes the same amount of time executing them separately. From this, we
infer that the execution of the instructions is done mutually exclusively.

The macro generation process visits instructions in a loop sequentially and ap-
plies the linearity test to the visited instruction and the instructions before that, to
decompose a loop body into distinct instruction streams called macros (see Fig. 3.5).

The MACRO-GENERATION algorithm accepts two inputs, returning a set of
macros:

• I is the instruction sequence of the loop to decompose.
• Cerr is a tolerance value ranging between 0 and 1. When Cerr = 1, we tolerate

no experimental noise. On the other hand, when Cerr = 0, all instructions will be
considered mutually exclusive and the algorithm will return a set of singletons.

• ExeTime() is a function used by the algorithm to run the provided instruction
sequence and return the measured execution time.

1 Algorithm: MACRO-GENERATION(I,Cerr)

2 Macros ← ∅ ;
3 CurrentMacro ← {I [1]};
4 for i ← 2 to length[I ] do
5 Tcurrent ← ExeTime(CurrentMacro);
6 Ti ← ExeTime(I [i]) ;
7 Tcombined ← ExeTime(CurrentMacro ∪ I [i]);
8 if Tcombined × Cerr ≤ Tcurrent + Ti then
9 Macros ← Macros ∪ {CurrentMacro}CurrentMacro ← {I [i]}

10 else CurrentMacro ← CurrentMacro ∪ {I [i]}
11 if length[CurrentMacro] 	= 0 then
12 Macros ← Macros ∪ {CurrentMacro}
13 return Macros

The algorithm sequentially visits every instruction I [i] contained in I . It uses
CurrentMacro to keep track of a set of instructions found to be overlapping. Line 8
is the linearity test using the tolerance value Cerr:
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• If the test is true, the new instruction I [i] is mutually exclusive with instructions
contained in CurrentMacro, so the algorithm adds CurrentMacro to the macro set
Macros and reinitializes CurrentMacro to this new instruction I [i].

• If the test is false, the new instruction I [i] overlaps in time with instructions
contained in CurrentMacro, so the algorithm adds I [i] to CurrentMacro to record
they all overlap.

After iterating through all the I [i], the leftover instructions contained in
CurrentMacro are considered a macro, so the algorithm adds CurrentMacro to
Macros.

The rationale of the algorithm is to group concurrently executing instructions
into the same macro. By grouping instructions this way, two instructions from two
different macros will be executed mutually exclusively. Since there is no execution
time overlap between macros, the total execution time of all macros is just the sum
of execution times of individual macros. Using this property, a CAPE simulation of
the codelet can be done by adding up the results of CAPE simulations for individ-
ual macros. Note that instructions within a macro may operate on distinct physical
nodes. A deeper analysis of instructions within a macro is required, as follows.

3.5.5 SV-Node Analysis

Within a macro, the execution of an instruction overlaps with another instruction
from the same macro. These instructions may or may not operate on the same phys-
ical node(s).1 To ease reasoning about the execution of the application, it is useful to
group together instructions operating on the same physical node to form SV-nodes
as described in Sect. 3.5.1. To ensure SV-nodes are executed at a single rate, some
of them are parameterized by usage patterns. An example of an SV-node could be
“stride one LOAD”. SV-nodes are useful to application developers and architects.
Application developers can simulate various optimizations by changing the usage
(bandwidth used) of SV-nodes. Simulated execution can help them to identify the
most effective optimization to implement. Architects can simulate the hardware im-
pact by changing the speed (bandwidth) of the SV-nodes.

By construction of the macro, the execution of one SV-node is expected to over-
lap with the execution of another SV-node. Therefore, changes in SV-node execution
time may be (partially) hidden by another SV-node’s execution. To model and facil-
itate CAPE simulation, it is important to quantify this effect and DECAN (described
in Sect. 3.5.5.1) is a useful tool for this purpose because it tells us the performance
impact of SV-node changes. Section 3.5.5.2 describes how the SV-node saturation
is found using DECAN and Sect. 3.5.5.3 describes how to refine the SV-node satu-
ration.

1In fact, every instruction must use the processor to dispatch the instruction. In some preliminary
experiments, we have found that even for LOAD instructions, for some access patterns, the instruc-
tion can show processor bound behavior.
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3.5.5.1 DECAN

DECAN is a tool that allows one to patch binaries. Through patching, specific
groups of instructions are modified. Then by comparing the original execution time
(corresponding to the unmodified binary) with the execution time of the modified
binary, the performance impact of the modified group of instructions can be accu-
rately assessed. For now, the target instructions (to be modified) are SSE instructions
(FP as well as data access instructions). Several types of modification are proposed:

• “Iso nopping”: the target instruction is replaced by a NOP of exactly the same
size: the loop body size is not altered. For the loop modified by “iso nopping”,
the pipeline front end behavior is close to the original loop.

• “Simple nopping”: the target instruction is replaced by a simple 1 byte NOP. Loop
size is altered but the number of instructions for the modified loop is identical to
the original one.

• “Suppression”: the target instruction is simply deleted. Loop size and pipeline
front end behavior are deeply altered.

It should be noted that such modifications do not preserve original code seman-
tics: numerical values produced by the execution of the modified binary are a priori
different from the ones produced by the original code. Worse, some patching can
result in codes which cannot be executed: for example nopping the load which pro-
vides the value for the denominator of a division can result in a division by zero. In
practice such cases are rather infrequent and systematic workarounds can be easily
developed. Losing the exact code semantics is not an issue since our primary focus
is on performance behavior.

Furthermore, due to X86 instruction set characteristics, such modifications as
listed above could introduce spurious dependencies between instruction. To prevent
the occurrence of such cases (for example when nopping loads), an additional PXOR
instruction is inserted, which zeroes register content and breaks any dependencies.
The rest of this paper refers to these code modifications as nopping without distin-
guishing the details. In practice, the default modification used was “Suppression” of
the target instruction.

3.5.5.2 Finding SV-Node Saturation Time and Bandwidth by Nopping All but
One SV-Node

To model the execution of SV-nodes inside the macro, we determine the duration
when an SV-node is saturated. This is achieved by nopping instructions not corre-
sponding to the SV-node and measuring the execution times after this code change,
as shown in Fig. 3.6. DECAN is used to perform this analysis.

By nopping all but the instructions of node svi, the macro is converted to the
microbenchmarking kernel of node svi plus extra nops originating from other SV-
nodes. The new execution time approximates the saturation duration of the SV-node
when it is executed in the original macro.
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Fig. 3.6 Nopping all but one SV-node reveals overall SV-node saturation duration

Definition 3.2 (Execution time of nopped macro) Given a macro m and a set of SV-
nodes S, τm

S denotes the execution time of the macro by nopping out instructions
corresponding to the SV-nodes in S found in m. For brevity, when the meaning of
the macro is clear, we simplify the notation as τS . Following are two special cases:

• The execution time obtained by nopping all but the instructions of an SV-node
svi is τS\{svi}.

• The execution time obtained by nopping the instructions of an SV-node svi is τsvi .

Suppose the node svi is executed R times during the macro execution, the pre-
adjusted bandwidth value, ˆBsvi , can be computed using the equation ˆBsvi � wR

τS\{svi}
where w is 1 for processor SV-nodes, and is the number of bytes accessed, for
memory SV-nodes. It is the rate when the SV-node is fully saturated. The bandwidth
value used for CAPE simulation, Bsvi , is obtained by looking up the bandwidth table
generated by microbenchmarking using ˆBsvi . This table look up is performed by
matching the characteristics of the SV-node with the microbenchmark parameters
(instruction type, load/store sequence, stride, etc.). The capacity for svi, Csvi , can
be computed using the equation Csvi � τS\{svi}

T
Bsvi where T is the total execution

time of the macro. This value corresponds to the Csvi,j value shown in Fig. 3.4.

3.5.5.3 Refining SV-Node Saturation Time by Nopping Single SV-Node

To refine the saturation time of SV-nodes found in Sect. 3.5.5.2, we determine how
individual SV-node speed scaling contributes to the execution time of the macro.
This is achieved by nopping instructions corresponding to the SV-node and measur-
ing the execution times before and after nopping as shown in Fig. 3.7.

In Fig. 3.7, there are observable execution time changes when we nop sv1 and
sv3, but not for sv2. These timing differences give an estimate of the best case we
could get by improving the speed of SV-nodes. By nopping SV-nodes one by one,
we can break down the execution time of a macro as shown in Fig. 3.8.

It is expected that a portion of the macro execution time cannot be accounted for
by nopping a single SV-node. With this abstraction, given m SV-nodes sv1, . . . , svm,
we can create an m + 1 phase model with the following B , C and T values:
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Fig. 3.7 Single SV-node nopping reveals execution time impact

Fig. 3.8 Execution time decomposed by simple SV-node nopping

• For each SV-node svi, the bandwidth value Bsvi is determined as described in
Sect. 3.5.5.2. This bandwidth value is assumed for all the phases, so Bsvi,j = Bsvi

• The capacity and phase time values are determined as follows:
– In Phase j where 1 ≤ j ≤ m, svj is the only node having non-zero capacity:

– The phase time, Tj = τsvj .

– The capacity value, Csvi,j =
{

Bsvi if i = j

0 otherwise.

– In Phase m + 1, multiple nodes have non-zero capacity.
– The phase time, Tm+1 = T −∑m

i=1 τsvi where T is the macro execution time.

– The capacity value, Csvi,m+1 = τS\{svi}−τsvi
Tm+1

Bsvi .

3.6 Experimental Results

The following experimental results demonstrate the validity of the v-node approach,
using a real code from MAGMAsoft, a leading supplier of metal casting SW (more
details about the code used are given in the following Sect. 3.6.1).

3.6.1 Experimental Setting: Hardware, Software and Methodology

The target machine is a dual-socket (2 × 6 cores) Nehalem architecture. Caches L1
and L2 are private to each while L3 is shared by six cores. Frequency scaling only
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affects core, L1 and L2 levels while L3 (referred to as uncore) and memory are not
affected by frequency changes.

The target routines are extracted from the solver used in MAGMAstress, a code
developed by MAGMASoft for the simulation of the thermal stresses and distortion
during the casting process. This solver represents over 80% of the computation time
of the whole application and consists of an iterative loop around the four following
routines:

• scalprod corresponds to scalar products computation.
• scalpnorm corresponds to vector norms computation.
• saxpy2 corresponds to linear combination of vectors computation.
• matvec corresponds to a sparse matrix-vector multiply associated with a 3D

stencil operator with non-constant coefficients.

The four routines are composed of triply nested DO loops corresponding to the
3D structure of the objects simulated. These four routines, with different input data
sizes, exhibit fairly different behaviors and allow us to stress capabilities of our
modeling system. One of the key difficulties of these routines is that while most of
the operands are single-precision floating-point, many computations are performed
in double-precision, inducing a fairly complex code organization for converting
back and forth between the two formats. The compiler used was IFC 12.0 with
the -O3 flags: it achieved perfect vectorization and fully used all of the power of the
SSE instruction set: in particular throughout the four routines, most of the variants
(scalar/packed, single/double precision were generated by the compiler.

Measurements were performed on a standalone system, every experiment was
run 30 times, and standard statistical metrics were computed. Overall, across these
30 runs, performance numbers were stable, less than 3% performance variation.

3.6.2 Model

Runs were made on a 12-core system with a medium-size data set, such that each
routine reached a steady state behavior, called a phase in the sequel. Our model sim-
ply used two v-nodes: core operations (arithmetic instructions using registers) and
data access. Such a coarse model was satisfactory because for each routine (depend-
ing upon frequency setting), one of the v-nodes was saturated. The performance was
measured at two core frequencies, 1.6 and 2.7 GHz, the memory frequency remain-
ing constant. This may be regarded as two systems, one with a slow, and the other
with a fast core. The data from each measurement set were used to build a high and
low frequency model. Then the CAPE tool was used to evaluate the model and ob-
tain the performance of a system at the other frequency: i.e. 1.6 GHz measurements
were used to predict/simulate performance at 2.6 GHz (high frequency model) and
vice versa (low frequency model). This leads to eight times being computed, one
for each of four phases, at each of two frequencies. The CAPE errors in the eight
simulated system times were all within 5% of the correct value. However, there are
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cases with 10% errors in simulated capacity due to high measured variation in μ

values; this is unacceptable for detailed design studies of all nodes in a system.
Better results may be obtained by using a more refined model relying on a larger

number of v-nodes. For the 4 routines under study, around 20 v-nodes would provide
a good coverage with an increased accuracy. Such a refined model should provide
less variation in μ from steady state values. Further experiments will report on more
details of the simulated capacity and μ results for each node using the lower level
v-nodes, which are expected to approach steady state μ values.

3.6.3 Model Validation Results

Using the framework presented in Sects. 3.6.1 and 3.6.2, a 2-node model is built
for low and high frequency. The two nodes in the model are Mistream (memory)
and Fpistream (floating point). In this study, we create the model as described in
Sect. 3.5.5.2 without the refinement described in Sect. 3.5.5.3.

In practice, the computed capacity of a saturated node may be slightly off from
the theoretical bandwidth of that node found by microbenchmarking, so an adjust-
ment is done to scale the node capacities and execution times to make the values
consistent with our modeling assumptions described in Sect. 3.3.2. Suppose SN is a
saturated node in the workload and UNis the unsaturated node:

C
adjusted
SN = BSN

CSN
CSN = BSN C

adjusted
UN = BSN

CSN
CUN T adjusted = BSN

CSN
T

The scaling factor, BSN/CSN , adjusts the capacity value of a saturated node to make
it equal to the bandwidth value. The same factor is applied to the capacity values
of other nodes to make the μ value unchanged. The original execution time T is
multiplied by the reciprocal of the scaling factor, CSN/BSN . This ensures the scaling
of capacities cancels out the scaling of time, making the product of capacity and time
invariant.

The adjusted capacity values are entered into the CAPE tool, which then eval-
uates the model and projects the performance of a system at the other frequency.
Following are the results of the CAPE simulations.

The rows in each table correspond to one CAPE simulation. For each loop, there
are two simulations—“low to high” and “high to low”. The “low to high” simula-
tion creates a model using adjusted capacities and time collected from low CPU fre-
quency setting runs (shown in the columns marked as “Measured”). CAPE projects
the performance at the high CPU frequency (shown in the columns marked as “Sim-
ulated”). The variation between the simulated values from the collected ones are
shown in the columns marked as “Error”.

The error in time projection is generally small (maximum error: 4.17%). Since
we adjust capacity for saturated nodes, their capacities are always equal to the BW
of that node, so the errors in saturated node capacity are all zero. For scalprod,
scalpnorm and high to low simulation of saxpy2, Fpistream is saturated, so the
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Table 3.1 CAPE simulation
of four loops from
Magmasoft (part 1)

Loop Simulation
mode

Time [Cycle/Iteration]

Measured Simulated Error

scalprod high to low 3.35 3.22 4.00%

low to high 2.01 2.09 4.17%

scalpnorm high to low 9.51 9.14 3.93%

low to high 5.71 5.94 4.09%

saxpy2 high to low 4.61 4.43 3.99%

low to high 3.64 3.51 3.64%

matvec high to low 28.72 29.71 3.45%

low to high 28.14 27.20 3.34%

Table 3.2 CAPE simulation of four loops from Magmasoft (part 2)

Loop Simulation
mode

Capacities

Mistream [Byte/Cycle] Fpistream [FP/Cycle]

Measured Simulated Error Measured Simulated Error

scalprod high to low 2.73 3.01 10.26% 2.50 2.50 0.00%

low to high 4.82 4.37 9.37% 4.00 4.00 0.00%

scalpnorm high to low 0.74 0.83 10.61% 2.50 2.50 0.00%

low to high 1.32 1.18 12.16% 4.00 4.00 0.00%

saxpy2 high to low 2.80 3.03 8.21% 2.50 2.50 0.00%

low to high 3.68 3.68 0.00% 3.04 3.29 8.22%

matvec high to low 3.58 3.58 0.00% 0.48 0.45 6.25%

low to high 3.78 3.78 0.00% 0.47 0.51 8.51%

errors for Fpistream capacity are all zero. On the other hand, matvec and low to
high simulation of saxpy2 have Mistream saturated, so the error for Mistream ca-
pacity is zero. The non-zero error columns in Tables 3.1 and 3.2 tell us the accuracy
of CAPE simulation w.r.t. capacity projections.
saxpy2 is an interesting case because for low CPU frequency it is Fpistream

saturated while for high CPU frequency, it is Mistream saturated. CAPE simulation
properly simulates this behavior. The errors are related to μ variations as shown in
Table 3.3.

The μ variations for scalpnorm, saxpy2 and matvec across two CPU fre-
quencies are small (< 3%). Unlike these loops, scalprod has a much bigger μ

variation (> 20%). The correlation between big μ variation and big capacity error
is expected because CAPE holds constant the μ values of nodes when simulating
for another frequency.

The μ variations for scalprod and scalpnorm are greater than 10% and the
errors in simulated capacities are of that order. For saxpy2 and matvec, the μ

variations are less than 10% and so are the simulated capacities errors.
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Table 3.3 μ values of loops and their variations

Loop μFpistream,Mistream
value at low frequency

μFpistream,Mistream
value at high frequency

Variation

scalprod 0.916 0.830 10.39%

scalpnorm 3.378 3.030 11.49%

saxpy2 0.893 0.826 8.08%

matvec 0.134 0.124 7.83%

3.7 Conclusions

This paper describes how to measure a large computational load globally and use
the measured data to synthesize the computational capacity model. To demonstrate
the validity of our approach, we measured the performance of a real code from
Magamasoft and created models to describe the workload under high and low CPU
frequency. The CAPE tool was used to evaluate the models and obtain the perfor-
mance of a system at the other frequency. The preliminary results show that the error
in time projection is small while the errors in simulated node capacities are higher.
We expect to achieve lower performance projection errors by refining our v-node
definition to reduce the μ variation. In addition to this, we are extending the CAPE
tool for energy optimization.
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Chapter 4
A Compilation Framework for the Automatic
Restructuring of Pointer-Linked Data Structures

Harmen L.A. van der Spek, C.W. Mattias Holm, and Harry A.G. Wijshoff

Abstract Memory access patterns are a key factor in the performance of data-
intensive applications. Unfortunately, changing the layout in memory of pointer-
linked data structures is not a trivial task; certainly not if this is to be done by com-
piler techniques. The presence of type-unsafe constructs complicates this problem
even further. In this chapter, we describe a new, generic restructuring framework
for the optimization of data layout of pointer-linked data structures. Our techniques
are based on two compiler techniques, pool allocation and structure splitting. By
determining a type-safe subset of the data structures of the application, addressing
can be done in a logical way (by pool, object identifier and field) instead of tradi-
tional pointers. This enables tracing and restructuring per data structure. Further, we
describe and evaluate our restructuring methodology, which involves compile-time
analysis, run-time rewriting of memory regions and updating referring pointers on
both the heap and the stack. Our experiments show that restructuring of pointer-
linked data structures can significantly improve performance, while the overhead
incurred by the tracing and rewriting is worth paying for.

4.1 Introduction

Predictability in memory reference sequences is a key requirement for obtaining
high performance on applications using pointer-linked data structures. This contra-
dicts the dynamic nature of such data structures, as pointer-linked data structures
are often used to represent data that dynamically change over time. Also, different
traversal orders of data structures cause radical differences in behavior.

Thus, having control on data layout is essential for getting high performance.
For example, architectures like the IBM Cell and GPU architectures each have their
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own characteristics and if algorithms using pointer-structures are to be executed on
such architectures, the programmer must mold the data structure in a suitable form.
For each new architecture, this means rewriting code manually. Another common
pattern in code using pointer-linked data structures is the use of custom memory al-
locators. Drawbacks of this approach are that such allocators must be implemented
for various problem domains and that the allocators depend on the knowledge of the
programmer, not on the actual behavior of the program. Our restructuring frame-
work is a first step in the direction to liberate the programmer from having to deal
with domain specific memory allocation and rewriting of data structures.

In this chapter, we present a compiler transformation chain that determines a
type-safe subset of the application and enables run-time restructuring of type-safe
pointer-linked data structures. This transformation chain consists of type-safety
analysis after which disjoint data structures can be allocated from separate mem-
ory pools. At runtime, accesses to the memory pools are traced temporarily, in order
to gather actual memory access patterns. From these access patterns, a permutation
is generated which enables the memory pool to be reordered. Note that these traces
are not fed back into a compiler, but are rather used to restructure data layout at
run-time without any modification of the original application. Pointers in the heap
and on the stack are rewritten if the target they are pointing to has been relocated.
After restructuring, the program resumes execution using a new data layout.

Restructuring of linked data structures cannot be performed unless a type-safe
subset of an application is determined. This information is provided by Lattner and
Adve’s Data Structure Analysis (DSA), a conservative whole-program analysis re-
porting on the usage of data structures in applications [10, 11]. The analysis results
of DSA can be used to segment disjoint data structures into different memory re-
gions, the memory pools. Often, memory pools turn out to be type-homogeneous,
i.e. they store only data of a specific (structured) type.

For type-homogeneous pools, we have implemented structure splitting, similar
to MPADS [3], the memory-pooling-assisted data splitting framework by Curial et
al. This changes the physical layout of the structures, but logically they are still
addressed in the same way (any data access can be characterized by a pool, objectid
and field triplet). Structure splitting is not a strict requirement for restructuring, but it
simplifies the implementation and results in higher performance after restructuring.

In order to restructure, a permutation vector must be supplied. This permutation
vector is obtained by tracing memory pool accesses. Tracing does have a significant
impact on performance, so in our framework tracing can be disabled after a memory
pool has been restructured. The application itself does not need to be aware of this
process at all. While in principle such a trace can also be used as feedback to the
memory allocator the next time the application is executed, we have not done so at
this moment. It is important to note that tracing and restructuring all happen within
a single run of an application.

In order to illustrate the need for restructuring, it is interesting to have a look
at what could potentially be achieved by controlling data layout. For this, we used
SPARK00 [17, 19], a benchmark set in which the initial data layout can be explicitly
controlled. Figure 4.1 shows the potential speedups on an Intel Core 2 system (which
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Fig. 4.1 Speedup on SPMATVEC when using data layout with sequential memory access vs.
layout with random memory access on the Intel Core 2 architecture

is also used in the other experiments, together with its successor, the Core i7) if
the data layout is such that the pointer traversals result in a sequential traversal of
the main memory, compared to a layout that results in random memory references.
This figure illustrates the potential for performance improvements if data layout
could be optimized. Our framework intends to exploit this potential for performance
improvements.

Section 4.2 starts with an explanation of work on Data Structure Analysis that
our restructuring framework depends on. Section 4.3 describes the compile-time
parts of our framework, while Sect. 4.4 treats the run-time components. Section 4.5
contains the experimental evaluation of our framework. Considerable speedups are
shown on the SPARK00 benchmarks. The challenge of SPARK00 lies in closing
the performance gap between pointer traversals resulting in random access behavior
and traversals resulting in perfectly sequential access behavior. As such, it illustrates
the potential, but it does not guarantee that such speedups will be obtained for any
application. The section also goes into the overhead of the tracing mechanism. It
is shown that the performance gains do compensate for this overhead within rela-
tively few consecutive uses of the restructured data structure. Different mechanisms
for stack management and their implications are discussed and evaluated. Further,
the improved address calculations, compared to the address calculations in Curial’s
work [3], used for addressing split memory pools are discussed. Related work is
discussed in Sect. 4.6. Future work and conclusions are given in Sect. 4.7. Part of
this work has appeared in a previous paper [18].

4.2 Preliminaries

The restructuring framework presented in this chapter relies on the fact that a type-
safe subset of the program has been identified. This is achieved by applying Lat-
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tner and Adve’s Data Structure Analysis (DSA) [9–11]. DSA is an efficient, inter-
procedural, context- and field-sensitive pointer analysis. It is able to identify (con-
servatively) disjoint instances of data structures even if these data structures show
an overlap in the functions that operate on them. Such disjoint data structures can
be allocated in their own designated memory area, called a memory pool. We will
not describe how DSA works in detail, but we will explain the meaning of resulting
Data Structure Graph (DS Graph) as this forms the basis for our further analyses
and transformations.

The pool restructuring framework that we propose in this chapter is based on two
techniques: automatic pool allocation and structure splitting. The structure split-
ting transformations remaps memory pools of records into structured data that are
grouped by field instead (essentially, it is mapping from an array of structs (the
memory pool after pool allocation) to a struct of arrays). The implementation devel-
oped is similar to the MPADS framework of Curial et al. [3], though we optimized
the address calculations for commonly occurring structure layouts (Sect. 4.5).

In this section, both DSA and structure splitting, which our analysis passes and
transformations depend on, are explained in further detail.

Data Structure Analysis Data Structure Analysis (DSA) provides information on
the way data structures are actually used in a program. DSA determines which data
structures can be proved disjoint in memory. Such a data structure can be a linked
list, a tree, a graph or any other pointer-linked data structure, DSA does however not
determine the shape.

The result of DSA is the Data Structure Graph (DS Graph). Within this graph,
the nodes represent memory objects. A node is described as follows [9]:

Each DS graph node represents a (potentially unbounded) set of dynamic memory objects
and distinct nodes represent disjoint sets of objects, i.e., the graph is a finite, static parti-
tioning of the memory objects. Because we use a unification-based approach, all dynamic
objects which may be pointed to by a single static pointer variable or field (in some context)
are represented as a single node in the graph.

Construction of the DS graph occurs in three phases. The Local Analysis Phase
during which the DS graphs are constructed for all functions, taking only local in-
formation into account. The bottom-up phase, combines the information on the local
functions with results from their callees, by propagating this information bottom-up.
This phase is context sensitive. The top-down phase, is not used by our restructuring
framework. We use the result from the bottom-up phase.

Figure 4.2 shows a part of the main function of SPMATVEC, one of the bench-
marks used in the evaluation of our method (see Sect. 4.5). Figure 4.3 shows the
associated DSGraph and the two stack variables %tmp and %Matrix. Each of these
variables has its own storage space on the stack and is therefore represented by
separate nodes. The MatrixFrame structure they are both pointing to is one node,
indicating that the analysis cannot prove that they are pointing to disjoint structures.
The MatrixFrame structure contains three pointers to arrays that point to the start of
a row, the start of a column and the diagonal elements. The MatrixElement structure
is the structure containing the matrix data. It has two self references, which are the
two pointers used to traverse the matrix row- and column-wise.
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Fig. 4.2 Code excerpt of main function of SPMATVEC

Fig. 4.3 DSGraph for main function of SPMATVEC benchmark

Each function has its own bottom-up DS graph. Nodes that do not correspond
to a formal argument depict data structures that are instantiated within this func-
tion. These nodes incorporate all information on how they are used in all callees
(including whether the usage is type-safe or not).

Automatic Pool Allocation On top of DSA, Lattner et al. implemented automatic
pool allocation [10, 11]. Pool allocation is a transformation that replaces calls to
memory allocation functions by custom pool-based memory allocators. Each prov-
ably disjoint data structure may then be placed in separate type homogeneous pools.
Pool allocated structures allow for precise control on data layout, as it is known that
all allocated elements within a particular region have the same type. We use this
property to modify the way structures are laid out in main memory.
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Fig. 4.4 Overview of the
pool restructuring
compilation chain. GEPI
refers to the LLVM
GetElementPtrInst instruction

Pool-Assisted Structure Splitting A useful data layout transformation when a
data structure is known to be type-safe is structure splitting. If a pool has a fixed
size, we can view the pool as an array of structures (AOS) and transform it to a
structure of arrays (SOA).

Splitting structures has some advantages over normal pool allocation. For exam-
ple, it is possible to do away with most padding. This means that the fields can be
packed much more efficiently in the many cases where padding is normally inserted.
Secondly, another advantage is that a field in a structure that is not accessed will not
pollute the cache.

Structure splitting has limitations, for example, a split structure will typically be
split over multiple memory pages and thus require more active TLB1 entries. Also,
multiple cache lines will be needed to cache an entire object. As a consequence
of this, a structure that is not used in sequential access (e.g. by following pointer
chains), is not likely to yield any performance benefits when split.

The implementation of our structure splitting transformation is similar to the
DSA-based implementation of Curial et al. [3], who implemented structure splitting
in the IBM XL compiler.

4.3 Compile-Time Analysis and Transformation

At compile time, a whole program transformation is applied in order to rewrite pools
to use a split structure layout that supports run-time restructuring. Figure 4.4 shows
an overview of the entire compilation chain for our framework. In this section, the
analyses and compiler passes that rewrite the code are discussed.

1Translation Look-aside Buffer.
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4.3.1 Structure Splitting

Our analysis and transformation chain starts at the point where DSA has been per-
formed on a whole program and pool allocatable data structures have been de-
termined. We then start at the main function and traverse all reachable functions,
cloning each function that needs to be rewritten to support the data layout of split
structures. Note that cloning is only done along execution paths that are known to
have type-safe data structures that can be split safely. Functions are cloned because
there might also be calling contexts in which splitting cannot be applied, and these
cases must also be dealt with correctly (see Lattner and Adve’s work [10, 11]). We
also use the their technique for the identification of the memory pools. It is not
possible to split pools that are not type homogeneous as addressing of object fields
would become ambiguous and fields of different types and length would introduce
aliasing of field values. This information is however available from the DSA and
pool allocation passes.

Rewriting of other instructions, such as address calculations are deferred to a later
stage, because they are nothing more than a simple rewrite of the address calculation
instruction (GetElementPtrInst) in LLVM.

Some information is gathered in the structure splitting analysis pass to be used in
subsequent passes. All loads and stores to pool data are identified as well as all loads
and stores that store a pointer into a pool. These loads are needed to support the use
of object identifiers instead of pointers (see Sect. 4.3.5). The structure splitting pass
ensures that all the address calculation expressions (GetElementPtrInst in LLVM)
whose result points to data in split pools are identified. These expressions must be
rewritten before the final code generation. The rewriting is deferred as later passes
may need to do additional analysis on the get element pointer instructions.

4.3.2 Pool Access Analysis

Pool access analysis is a pass in which all pool accesses (loads and stores) are an-
alyzed. The result of the analysis is that instead of using a specific pointer, a triplet
(pool, object, field) is used to represent location read from or written to. Pool is the
pool descriptor used at runtime, object the pointer to the object the data belong to
and field is the field number that is accessed. This is analogous to data access in a
database (table, row and column).

For each load and store from a split pool we determine the underlying base ob-
ject by following the chain of instructions attached to the load/store instruction. The
previous analysis will already have associated a pool descriptor with the base ob-
ject, and the accessed field can be determined by inspecting the get element pointer
instruction used by the load/store.

Note that for each access to a pool, it must be possible to determine which field is
accessed. This property cannot always be proved if the address of one of the fields
is taken, and therefore we do not allow that any address of a field is written to
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Table 4.1 The three stack
management options and
their individual pros and cons

Method Advantages Disadvantages

Pointer Tracking Simple Slow

Portable Interferes with IR

Shadow Stack Fast Interferes with IR

Portable

Stack Map Fast Backend modifications

No IR Interference Stack walking not portable

any memory location using the LLVM StoreInst. For example, the following C-code
snippet will never be restructured:

obj->ptr = &p1->y;
...

*obj->ptr = val;

This might be a bit over-conservative, and in a future version, we might define this
more precisely. Lattner and Adve’s pointer compression applies the same restriction
on field accesses [12].

4.3.3 Stack Management

The primary requirement for structure splitting to work (in terms of code modifi-
cations) is the remapping of address calculation expressions so that data are read
and written to the relocated location in the split pool. However, if reordering of the
pool contents is to be accomplished this is not sufficient. Other pools may for ex-
ample contain references to the reordered pool (which means that those references
need to be updated). However, these on-heap pointers are not the only references to
pool objects that the system needs to deal with. The other type of references that
need to be managed are pointers that are stored on the stack and that point into the
pool. This problem is similar to what garbage collectors have to do, and in their ter-
minology, the on-stack pointers are known as roots. Tracking the on-heap pointers
can be done by adding additional meta data to the pool descriptor, these meta data
are derived from the DSA (that keeps track of connectivity information between
pools).

Three different alternatives to accurate stack management were explored and
evaluated. These approaches include explicit pointer tracking, shadow stacks and
stack maps. However, only the first method was fully implemented for reasons that
will become clear later on. The three different investigated methods for stack man-
agement are summarized in Table 4.1.
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Explicit Pointer Tracking One approach to the stack root issue, is to ensure that
all pointers are explicitly tracked at the LLVM level. We call this technique pointer
tracking. When a pool descriptor is allocated, a special segment of data is acquired
that will be used to track all stack local pointers pointing into the pool, whenever a
pointer is allocated on the stack, the location of this pointer is inserted in the per-
pool stack tracking block. A frame marker is in this case also needed to enable the
removal of all the pointer tracking entries associated with a returning function. In
LLVM this means that any pointer that is an SSA register must explicitly stored on
the stack. The following LLVM function illustrates this a bit further:

void @func(pooldesc *pool0) {
entry:
bb0:
%x = load {i32, i32}** %heapObjectAddr
call void @foo %x
ret

}

The function listed above is then transformed into the following:

void @func(pooldesc *pool0) {
entry:
%xptr = alloca {i32, i32}**
call void @split_st_reg_stack_obj %pool0, %xptr
call void @split_st_push_frame %pool0

bb0:
%x = load {i32, i32}* %heapObjectAddr
store %x, %xptr
%x_foo_arg = load {i32, i32}* %xptr
call void @foo %x_foo_arg
call void @split_st_pop_frame %pool0
ret

}

In the transformed function the pointer %x is explicitly backed by a stack variable
and this variable is then registered with the run-time function split_st_reg_stack_obj.
After the pointer registrations, a call to the run-time function split_st_push_frame
is executed; this function will close the stack frame for the current function in order
to speed up the pop operation of the stack. These run-time functions are very short
(a few instructions) and will be inlined and thus not induce any function-calling
overhead. Figure 4.5 shows how the pointer tracking block is constructed at run-
time.

In order to reduce this overhead, an approach where stack tracking is disabled
in certain functions has been chosen. The pseudo code in the following example
illustrates why this is useful:
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Fig. 4.5 Pointer tracking
layout

Pool pool;
Matrix *mtx = readMatrix(pool);

doMatrixOperation(pool, mtx);

PoolRestructure(pool, mtx);

for (int i = 1 ; i < N ; i ++) {
doMatrixOperation(pool, mtx);
}

Here the critical code is the doMatrixOperation, but if this operation does not call
the PoolRestructure function, then this function does not need to track the pointers.

The most important point with explicit pointer tracking is that it is very easy to
get running. In terms of implementation effort it was small compared to the methods
described further on in Sects. 4.3.3 and 4.3.3. Though, while the method (as shown
in experiments later on) is not a good choice for a fielded deployment, it takes very
little code to implement both passes and the run-time support for the explicit pointer
tracking.

The pointer tracking method was selected for implementation due to its imple-
mentation simplicity, but not before two other stack managing methods had been
evaluated.

Shadow Stacks The second approach that we investigated for tracking pointers
on the stack, was the utilization of a shadow stack. This technique is based on
the garbage-collection method described by Henderson [7]. To implement shadow
stacks the compiler creates a per-function data structure where pointers that are
stored on the stack will be stored as a group, such that each pointer can be addressed
relative to the base of this data structure. When a function is called, such a structure
is allocated on the stack and this structure is then registered with the run-time. This
pre-registration cuts down on the additional registration overhead compared to the
pointer tracking, by only inferring one registered pointer per function call.

Stack Maps The third alternative is the construction of stack maps (for example
described by Agesen in [1]). Stack maps are structures that are generated statically
for each function; these structures describe the stack frames of the corresponding
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functions. The maps are computed during the code generation phase and contain
information about, for example, frame-pointer offsets of the pointers allocated by
the function. The main advantage of delaying this to the code generation phase is
that the transformation will not interact in any way with earlier optimizations. The
main drawback is that the stack walking will become platform dependent and this
may not necessarily suit every compiler.

4.3.4 In-Pool Addressing Expression Rewriting

For non-split structures, the derived pointers to fields in the structures can easily
be computed by adding a constant offset to the base pointer of the structure. For
split structures however, this is not possible anymore. In a split structure the field
addresses no longer have constant offsets from the base pointer of the structure.

It is obvious that calculating addresses for the fields in the structures must be
very efficient. This fact was already stressed by Curial [3], but he did not optimize
the address calculation expressions and their selection rules to the same extent as we
did. If this calculation is inefficient, it potentially nullifies much of the performance
improvement gained from the more cache-efficient split structure representation. In
general, the offset for field n can be represented by the following equation:

offsetn = kn + sizeof n

p&(sizeof pool − 1)

sizeof 0
− p&(sizeof pool − 1) (4.1)

where kn is the constant offset to field array n from the pool base. The sub-
expression p&(sizeof pool − 1) calculates the object pointer p’s offset from the pool

base and the expression
p&(sizeof pool−1)

sizeof 0
calculates the object index in the pool.2

When the accessed field is the first field of the structure then offset0 = 0 and
if the size of the accessed field is the same as the first field of the structure then
offsetn = kn.

We have observed that in many common cases the size difference between the
accessed field and the first field is a power of two. Taking this observation into
account, we introduce two additional expressions. When the size of the accessed
field is greater than the first field of the structure we have

offsetn = kn + (sizeof n − sizeof 0)
p&(sizeof pool − 1)

sizeof 0
(4.2)

and when the size of the first field is greater than the accessed field use the following
expression:

offsetn = kn − (sizeof 0 − sizeof n)
p&(sizeof pool − 1)

sizeof 0
(4.3)

2Note that in this context, & is the C-operator for a bitwise AND.
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Equation (4.1) can be viewed as adding the pool base to the offset from the ad-
dress of the nth field of the first object. Equations (4.2) and (4.3) take into account
the linear drift of field n due to the size differences between fields 0 and n, with
respect to the object’s pool index and the constant offset kn.

It is assumed that further passes of the compiler will apply strength reduction on
all multiply and divides involving a power of two constant. Fog [4] gives the cost
for various instructions for a 45 nm Intel Core 2 CPU. These numbers have been
used to estimate the cost in cycles for the various equations calculating the offsets.
Assuming that the expressions have been simplified as much as possible through,
for example, constant folding and evaluation, we see that when neither sizeof 0 nor
sizeof n are powers of two, Eq. (4.1) will take 26 cycles. If sizeof 0 is a power of two
the same equation will take six cycles (as the very costly divide will be reduced to
a shift) and if both sizes are powers of two it will take four cycles. Equation (4.3)
will take three cycles, and Eq. (4.2) will take three cycles in the normal case (or two
cycles if sizeof n − sizeof 0 = sizeof 0).

The address calculations as defined by Eq. (4.1) and the elimination of calcula-
tions if accessing the first field are already used in MPADS [3], but our additional
Eqs. (4.2) and (4.3), have some important properties. They allow the calculation of
the field offsets to be reduced to two or three instructions instead of four, as the
code generator will merge the divide and the multiplication operation into a single
shift operation and that the third term in Eq. (4.1) has been eliminated. Note that
for Eq. (4.2) when sizen − size0 = size0, LLVM will automatically eliminate the
multiply and the divide instruction, giving even more savings.

The most notable equation cost (26 cycles) come from the existence of a divide
instruction in the expression. This will, for example, happen when the first field of a
structure is an array of three 32-bit values (arrays are not split since they are already
sequential) and the next element is a 32 or 64 bit value. In those cases up to 23
cycles may be saved on the address calculation because the divide instruction has
been eliminated through strength reduction introduced by Eq. (4.3).

Overall it can be said that a compiler that splits structures should also reorder the
fields in a structure so that address calculations are made as simple as possible. For
example, if a structure contains three fields of lengths 1, 2 and 4 bytes, then the field
ordering should place the 2-byte element first under the condition that the access
frequency of the fields is the same. Though, at this moment our implementation
does not do this and this field reordering remains on the future work list.

4.3.5 Converting Between Pointers and Object Identifiers

Instead of storing pointers in split memory pools, object identifiers are used. Object
identifiers can be used in type-homogeneous pools to uniquely identify an object
within a pool. Together with a field number, each data element can be addressed.
Object identifiers are indices within a pool and thus a more compact representation
than pointers or byte offsets in the pool, as used in Latttner and Adve’s static pointer
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compression [12]. Their dynamic pointer compression transformation also uses ob-
ject identifiers. In that case, it provides a representation independent of the size of
fields, whereas byte offsets would need to be rewritten if field sizes change.

Our motivation to use object identifiers is different. While our framework would
also benefit from pointer compression (currently object identifiers are stored as 64-
bit unsigned integers), we use object identifiers because they can be used as indices
in permutation vectors and because they provide position independence for data
structures.

Section 4.3.2 described how all loads and stores to memory pools can be repre-
sented as a (pool, object, field) triplet. In the case that field is a field that is pointing
to pool-allocated data (whether this defines a recursive data structure or a link to
another data structure does not matter), the pointer value that will be stored into the
memory pool needs to be converted to an object identifier before it is stored. When
such a pointer value is loaded from a memory pool, it must be converted from an ob-
ject identifier to a pointer. Loads and stores to the stack are unaffected and thus will
contain real pointers. As no pointers to fields, but only pointers to objects will be
stored to the memory pools, we only need conversion functions for object pointers.

For stores the value to store is rewritten as follows:

uintptr_t ptr_to_objid(split_pooldesc_t *pool, void *obj)
{
uintptr_t objIdx;
if( obj == 0 ) return 0; // Special case: NULL pointer
else {

uintptr_t poolBase = (uintptr_t)pool->data;
uintptr_t objOffset = poolBase - (uintptr_t)obj;
objIdx = objOffset / sizeof_field(0);

}
return objIdx;

}

And for loads the loaded value is rewritten as follows:

void *objid_to_ptr(split_pooldesc_t *pool, uint64_t *objIdx)
{
if( objIdx == 0 ) return 0; // Special case: NULL pointer
else {

uintptr_t poolBase = (uintptr_t)pool->data;
uintptr_t objOffset = objIdx * sizeof_field(0);
uintptr_t obj = poolBase + objOffset;
return (void *)obj;

}
}

Note that the actual implementation uses LLVM bit code and uses a bitmask instead
of an if-statement to handle the NULL pointer.

Compared to the description of object indexing used in the pointer compression
transformation by Lattner and Adve [12], our implementation differs in some ways.
In their work, object indices are not only present in the heap, but are also used on
the stack. Pointer comparisons and assignments do not need the object identifier to
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be expanded to a full pointer in their framework. In our framework, only loads and
stores of pointers (only to pool objects) to split pools need rewriting, and the rest of
the code will run unchanged; this substantially simplifies the restructuring step.

4.3.6 Restructuring Instrumentation

Pool tracing and restructuring of data structures requires instrumentation of the code
with calls to the tracing runtime. During pool access analysis, all loads and stores
to pools have been identified and are represented using the triplet (pool, object and
field). All these instructions can be instrumented such that a per pool and field trace
of object identifiers is recorded. Currently, we only trace load instructions.

Tracing is only done for one execution of a function as continuous tracing would
be very costly. After this first tracing, the data are restructured and tracing is dis-
abled. This is accomplished by generating two versions of the function, one with
and one without tracing. Selecting the proper function is done through a global
function pointer that is set to the non-traced version after a trace has been obtained.

4.4 Run-Time Support

Extracting a type-safe subset of the program and replacing its memory allocation
by a split-pool-based implementation requires run-time support, similar to the run-
time provided for regular pool allocation. The split-pool runtime provides create
and destroy split pool functions and memory allocation and deallocation functions.
In addition, some common operations implemented in the standard C library are also
provided, such as a split memcpy function (which needs to copy data from multiple
regions due to the split layout).

Tracing and Permutation Vector Generation In order to restructure a memory
pool a permutation must be supplied to the restructuring runtime. The pool access
analysis pass (Sect. 4.3.2) provides the compile-time information (pool, object and
field) about all memory references and these memory references can all be traced.
Traces are generated per pool, per field. For each pool/field combination, this results
in a trace of object identifiers. From any of these traces, a permutation vector can be
derived which can be used to permute a pool. The permutation vector is computed
by scanning the trace sequentially and appending the object identifiers encountered
to the vector, avoiding duplicates:

perm[0] = 0;
permLen = 1;
for (i = 0; i < maxTraceEntry; i++)
if ( !perm[trace[i]] ) {

perm[trace[i]] = permLen;
permLen++;

}



4 A Compilation Framework for the Automatic Restructuring 111

Element 0 is reserved to represent the NULL pointer and is thus never permuted.
Since tracing is expensive, it should be avoided if it is not necessary. For the

evaluation of our restructuring method we choose to trace the first execution of a
specified function (compiler option specifies which function). After the trace, the
pools are restructured and tracing disabled. In a future implementation, this will be
dynamic and tracing could be triggered if a decrease in performance is detected (for
example by using hardware counters).

Pool Reordering One of the more important parts of our system is the pool-
rewriting support. Rewriting in this context means that a pool is reordered in mem-
ory, so that it is placed in a hopefully more optimal way with respect to memory
access sequences. This is done at runtime, and the rewriting is based on passing in
a permutation vector generated during runtime as described in Sect. 4.4. We have
implemented a copying rewriting system that uses permutation vectors that specify
the new memory order of the pool. Although this vector could be generated auto-
matically in some cases (e.g. for single linked lists) this is not done at this point in
time.

The pools rewriting algorithm has three distinct phases:

1. Pool rewrite, where the actual pool-objects are being reordered
2. Referring pool rewrite, where pointers in other pools that refer to the rewritten

pool are updated to the new locations
3. Stack update, where the on-stack references to objects in the rewritten pool are

updated

The basic algorithm for the interior pool update is as follows:

newData = mmap(pool.size);
foreach field in pool
foreach element in field

if field contains recursive pointers
newData[field][permVec[element]]
= permVec[pool.data[field][element]];

else
newData[field][permVec[element]]
= pool.data[field][element];

munmap(pool.data);
pool.data = newData;

In this case each field in the split pool is copied into the new address space, and
relocated according to the permutation specified in the permutation vector. If the
value in the field is itself a pointer to another object in the pool, that pointer is
remapped to its new value. For the second phase where all the referring pools are
updated, the rewrite is even simpler:

foreach referrer in pool.referrers
foreach entry in referrer.field

referrer.field[entry] = permVec[referrer.field[entry]];



112 H.L.A. van der Spek et al.

Here, each pool that refers to the rewritten pool will have the field containing those
pointers updated with the new locations.

The algorithm detailed here assumes that each pool descriptor has information
available regarding the pool connectivity (i.e. which fields in other pools that point
out objects in the rewritten pool). This information can be derived from the DSA
discussed earlier. This connectivity information is therefore registered as soon as
the pool is created.

Stack Rewriting As already discussed in Sect. 4.3.3, the program stack is man-
aged through explicit pointer tracking. When a pool descriptor is allocated, a special
segment of data is acquired that is used to track all pointers on the stack pointing into
the pool. Whenever a pointer is allocated on the stack, the location of this pointer is
inserted in the per-pool stack-tracking block together with some meta information
such as whether the pointer is a base or derived pointer and in the latter case the
field.

When a pool is rewritten, the current stack will be traversed and all base and
derived pointers to locations within the pool are rewritten to reflect the new location
of the object.

4.5 Experiments

The challenge of a restructuring compiler is to generate code that will automatically
restructure data, either at compile time or runtime, in order to achieve performance
that matches the performance when an optimal layout would be used. In the in-
troduction the potential of restructuring was shown. In the experiments here, we
ideally want to obtain similar performance gains, but by automatic restructuring of
data layout of the pointer-linked data structures.

We use the benchmark set SPARK00 which contains pointer benchmarks whose
layout can be controlled precisely [16, 17, 19]. The pointer-based benchmarks used
are: SPMATVEC (sparse matrix times vector), SPMATMAT (sparse matrix times
matrix), DSOLVE (direct solver using forward and backward substitution), PCG
(preconditioned conjugate gradient) and JACIT (Jacobi iteration).

These benchmarks implement matrices using orthogonal linked lists (elements
are linked row-wise and column-wise). All of them traverse the matrix row-wise,
except DSOLVE, which traverses the lower triangle row-wise and the upper triangle
column-wise.

For all benchmarks, one iteration of the kernel is traced, after which the data
layout is restructured and tracing disabled. This all happens at run-time, without
any hand-modification the application itself.

The experiments have been run on two platforms. The first is the Intel Xeon
E5420 2.5 GHz processor with 32 GB of main memory, running Debian 4.0. The
other system is an Intel Core i7 920 2.67GHz based system with 6 GB of main
memory, running Ubuntu 9.04.
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Pool Reordering As shown in the introduction, being able to switch to an alterna-
tive data layout can be very beneficial. We applied our restructuring transformations
to the SPARK00 benchmarks and show that in ideal cases, speedups exceeding 20
times are possible by regularizing memory reference streams in combination with
structure splitting. Of course, the run-time introduces a considerable amount of over-
head and is a constant component in our benchmarks. We will consider this overhead
separately in Sect. 4.5 to allow a better comparison between the different data sets.

We first determine the maximal improvement possible, by using an initial lay-
out that causes random memory access. Figure 4.6a and 4.6b show the results of
restructuring on the pointer-based SPARK00 benchmarks (except DSOLVE, which
is treated separately), if the initial data layout causes random memory access, on
the Intel Core 2 and Core i7, respectively. The data set size increases from left to
right. As shown in previous work [17, 19], optimizing data layout of smaller data
sets is not expected to improve performance that much and this fact is reflected in
the results. As expected, restructuring had no significant effect for data sets fitting
into L1 cache and will therefore not be included in the figures. For sets fitting in the
L2 and L3 cache levels, speedups of 1–6× are observed. The Core i7 has a 8 MB L3
cache, whereas the Core 2 only has two cache levels. This explains the difference in
behavior for the matrix Sandia/ASIC_100ks, which shows higher speedups for the
Core 2 for most benchmarks. However, it turns out that the Core i7 runs almost 3×
faster when no optimizations are applied on SPMATVEC for this data set. There-
fore, restructuring is certainly effective on this data set, but the greatest benefit is
obtained when using data sets that do not fit in the caches.

An interesting case is DSOLVE, in which the lower triangle of the matrix is
traversed row-wise, but the upper triangle is traversed column-wise. As the available
data layouts of the matrices are row-wise sequential (CSR), column-wise sequential
(CSC) or random (RND), none of these orders matches the traversal order used by
DSOLVE. Figure 4.7a and 4.7b show the results for DSOLVE using the different
memory layouts on the Core 2 and Core i7, respectively. The matrices are ordered
differently than in the other figures, as DSOLVE uses LU-factorized matrices as
its input, which have different sizes depending on the number of fill-ins generated
during factorization. The matrices have been ordered from small to large (in the case
of DSOLVE, this is the size after LU-factorization).

For the lung1 data set, a decrease in performance is observed, but for the larger
data sets, restructuring becomes beneficial again. Speedups of over 6× are observed
for the Core i7, using CSC (column-wise traversal would yield a sequential memory
access pattern) as initial data layout. In principle, the RND (initial traversal yields a
random memory reference sequence) data set could achieve much higher speedups
if after restructuring the best layout has been chosen. Currently, this is not the case
for DSOLVE and we attribute this to the very simple permutation vector generation
algorithm that we use (see Sect. 4.4).

Tracing- and Restructuring Overhead Our framework uses tracing to generate
a permutation vector that is used to rewrite the memory pool. Currently, the trace to
be used is specified as a compiler option, but this could potentially be extended to a
system that autonomously selects an appropriate trace.
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Fig. 4.6 Speedups obtained using restructuring on the SPARK00 benchmarks. The initial data
layout is random

In the benchmarks, we choose to only trace the first iteration of the execution of
the kernel due to the time and memory overhead coming from the tracing. In order
to minimize the overhead, the trace will only contain object identifiers, as described
in Sect. 4.4. For instance, if a linked list contains a floating point field and this
list is summed using a list traversal, then if both the pointer field and the floating-
point field are traced there is an overhead of two trace entries per node visited. The
structure operated on is 32 bytes in size and tracing the above-mentioned traversal
would add 16 bytes per node extra storage requirements (when using 64-bit object
identifiers). Subsequently, the memory pool is restructured using the information
of the trace which relates to the field that contains the floating point values of the
linked list nodes.

The overhead of the tracing and restructuring has been estimated by running a
single iteration of each kernel with and without tracing and restructuring enabled,
using a data layout causing random memory access. Figure 4.8 shows the interpo-
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Fig. 4.7 Speedups obtained using restructuring on DSOLVE for all different initial layouts. Input
data sets are ordered by size (after LU-factorization)

lated execution times of the benchmark PCG, both with and without restructuring
for the Core 2 and Core i7 architectures. The initial data layout produces random
memory access behavior of the application, which is eliminated after the restruc-
turing. Four different matrices have been used which are representative in terms of
performance characteristics (see Fig. 4.6a and 4.6b). The break-even points for all
matrices are included in Table 4.2.

The figures show that tracing does come with an additional cost, but for most
(larger) data sets the break-even point is reached within only a few iterations. For in-
stance, for all data sets shown in Fig. 4.8, the break-even point is reached within four
iterations, except for cage9, which is the smallest data set depicted. Interestingly, on
the Core i7, the break-even point is reached even quicker, making restructuring more
attractive on this architecture.

Although we have shown that the additional costs of tracing are manageable, it
should be noted that we only showed this on computational kernels. In general, it
is not recommended to trace a full application code. Therefore, as we have noted
earlier in this chapter, tracing should only be turned on selectively on some func-
tions.

Run-Time Stack Overhead In order to quantify the overhead from the stack man-
agement that is needed when restructuring a pool, a few custom programs have been
written. The interesting overhead in this case will be a measurement of per-function
and per-pointer overhead.

An experiment was carried out where a function is called that declares (and links
together) a certain number of pointers that point into a pool. This was repeated for
a multiple number of pointers and for both a version of the program built without
the semi-managed stack and one version that was built with the semi-managed stack
enabled. The function was in turn executed a couple of million times.
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Fig. 4.8 Execution times with and without restructuring. The break-even points are marked with
a dot

The following code demonstrates how this experiment was conducted:

listelem_t*
nextElem(list_t *list)
{
if (list->current)
list->current = list->current->next;

#pragma MAKE_POINTERS

return list->current;
}

where the MAKE_POINTERS pragma was replaced by

listelem_t *a0 = list->current;
listelem_t *a1 = a0;
...
listelem_t *aN-1 = aN;

The execution time for the loop calling the nextElem function was measured and
the difference between the managed version and unmanaged version should thus
represent the overhead introduced for that number of pointers.

Figure 4.9 shows the execution time on a 2.5 GHz Intel Core 2 Duo, of 4 mil-
lion calls to the function above. The data evaluate to a base cost of five cycles per
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Table 4.2 Number of iterations for the break-even points when tracing and restructuring is en-
abled, when using an initial random data layout. The matrices are ordered by increasing size. The
lower part of the table contains the larger data sets, which do not fit in the caches. DSOLVE per-
forms worse using lung1 therefore a break-even point is not applicable. The missing entries for
JACIT are due to zero elements on the diagonal. For DSOLVE the missing entries are due to ma-
trices that take too long to factorize

Matrix spmatvec spmatmat pcg jacit dsolve

C2 Ci7 C2 Ci7 C2 Ci7 C2 Ci7 C2 Ci7

lung1 42.1 51.8 113.9 58.3 388.5 31.5 98.8 55.4 N/A N/A

bcsstm34 24.3 6.2 53.6 29.5 22.7 5.6 27.2 6.7 19.8 4.0

cage9 21.0 8.1 44.3 26.1 22.1 8.1 28.6 10.3 2.9 2.0

rdist3a 17.9 5.6 39.5 21.1 17.7 5.2 – – 3.2 2.1

jan99jac040 16.0 8.0 16.3 15.3 17.8 8.2 – – 1.1 1.3

crystm01 8.3 4.9 17.1 17.0 9.1 4.9 10.8 5.8 2.2 1.8

ASIC_100ks 2.3 3.9 4.4 5.0 4.0 4.1 2.4 4.4 – –

heart3 2.4 1.7 4.6 4.8 2.4 1.5 – – 3.1 2.2

Zd_Jac3_db 2.5 1.6 4.6 4.8 2.6 1.7 2.6 1.9 – –

Pres_Poisson 2.6 1.7 4.7 5.0 2.6 1.7 2.7 2.0 3.8 3.0

G2_circuit 2.6 4.7 4.6 4.7 5.0 5.1 2.6 5.7 – –

bcsstk36 3.0 1.7 5.1 5.0 3.1 1.8 3.1 2.0 – –

nd3k 3.5 1.9 5.4 5.2 3.5 1.9 3.6 2.1 – –

Fig. 4.9 Execution time of a
function with different stack
management approaches

pointer being linked, for the pointer tracking alternative the cost is around 27 cycles
per pointer being registered and linked. This gives the penalty of explicit pointer-
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tracking to 22 cycles per pointer being tracked. This overhead is obviously quite
substantial, but the compilation chain employed a simple optimization where pointer
tracking was only enabled when needed. For example, descendant functions from
the one that calls the restructuring run-time will not need pointer tracking.

Since the shadow stack and stack map strategies where not implemented, these
strategies have not been evaluated using compiler generated code, a hand-written
implementation of these strategies has been used to estimate the overhead of these
techniques.

Shadow stacks work by pooling all the pointers associated with a pool in a func-
tion into a single per-function data structure, it is possible to eliminate all per-pointer
overhead associated with registering each pointer. In this case, only the address of
the record containing all the pointers would need to be registered (in this case on a
shadow stack). This has its own problems, as it prevents certain optimizations such
as the elimination of unused pointers (though the pointer tracking suffers from the
same issue).

The stack map approach offers none of the run-time overhead (except during the
stack walks when program counter entries on the stack are translated into function
ids), but does on the other hand require modifications in the compiler’s backend.

Address Calculations The address calculation expressions used are an improved
variant of those introduced by Curial et al. [3]. These improvements have been ver-
ified experimentally by running two versions of the pointer-based applications from
the SPARK00 benchmark suite, one with the new optimized address calculation ex-
pressions enabled, and one version with only the general addressing equations used
by MPADS enabled. Note that the implementation described in this chapter is not
using the same compiler framework as MPADS which is based on XLC. Thus a
direct comparison between Curial’s work and the compiler chain introduced in this
chapter has not been carried out.

The matrix input files are loaded in row-wise order, leading to a regular access
pattern upon traversal. For the SPMATMAT benchmark the matrices are used three
times each: one pass using one column of the right-hand side matrix, the second
pass using seven columns and the third pass using 30 columns. Note that the matrix
multiplication in SPMATMAT is multiplying a sparse matrix with a dense matrix.
The result of this multiplication is a dense matrix.

When running the experiments, it was expected that the new field offset equations
will in principle never be less efficient than the generic ones, excluding effects on
instruction caches and any reordering that the compiler may or may not do due to
the changed instruction stream.

Table 4.3 gives the average improvements of the addressing optimizations. In
Table 4.3, the SPMATVEC benchmark actually lost in performance, this was due
to instruction cache conflicts in the new code. From the SPMATVEC example we
can also see that the improvements go down when the memory usage goes up as the
programs get more bounded to memory latency.
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Table 4.3 Performance gain averages in percent for pool allocation and the improved field offset
equations. Note that SPMATVEC has a negative improvement due to instruction cache conflicts.
For SPMATMAT, different figures are given in parentheses for 1, 7 and 30 columns in the right
hand matrix

Bench Name Address Calc Improvements

DSOLVE 4.87%

JACIT 4.59%

PCG 1.99%

SPMATMAT 3.81% (6.22%/4.16%/1.05%)

SPMATVEC −6.11%

4.6 Related Work

Optimization of data access in order to improve performance of data-intensive ap-
plications has been applied extensively, either by automatic transformations or by
hand-tuning applications for efficient access. In some cases, memory access patterns
can be determined symbolically at compile-time and in such cases, the traditional
transformations such as loop unrolling, loop fusion or fission and loop tiling can be
applied. For applications using pointer-linked data structures, such techniques can
in general not be applied.

The traditional methods mentioned above change the order of instruction exe-
cution such that data are accessed in a different way, without affecting the result.
One might as well change the underlying data layout, without affecting the compu-
tations. This is exactly what has been done on pointer-linked data structures in this
chapter.

In order to be able to automatically control the layout within type-unsafe lan-
guages such as C, a type-safe subset must be determined. The Data Structure Anal-
ysis (DSA) developed by Lattner and Adve does exactly that [10, 11]. It deter-
mines how data structures are used within an application. This has been discussed
in Sect. 4.2.

DSA should not be confused with shape analysis. Shape analysis concerns the
shape (e.g. tree, DAG or cyclic graph) of pointer-linked data structures. Ghiya and
Hendren proposed a pointer analysis that classifies heap directed pointers as a tree,
a DAG or a cyclic graph [5]. Hwang and Saltz realized that it is of more importance
how data structures are actually traversed instead of knowing the exact layout of a
data structure. They integrated this idea in what they call traversal-pattern-sensitive
shape analysis [8]. Integrating such an approach in our compiler could help in reduc-
ing the overhead introduced by the pool access tracing by traversing data structures
autonomously in the run-time.

Type-safety is essential for data restructuring techniques. Two other transforma-
tions that use information provided by the DSA are structure splitting and pointer
compression. Curial et al. implemented structure splitting in the IBM XL compiler,
based on the analysis information provided by the DSA [3]. Hagog and Tice have
implemented a similar method in GCC [6]. The GCC-based implementation does
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not seem to provide the same information as DSA. Strictly taken, structure split-
ting is not necessary for dynamic remapping of pointer structures, but it simplifies
tasks like restructuring and relocation considerably. Moreover, splitting simply has
performance benefits because data from unused fields will not pollute the cache.

Data layout optimization can also be provided by libraries. Bender and Hu pro-
posed an adaptive packed-memory array, which is a sparse array that allows for
efficient insertion and deletion of elements while preserving locality [2]. Rubin et
al. take a similar approach by grouping adjacent linked-list nodes such that they
are colocated in the same cache line. They call this approach virtual cache lines
(VCL) [13]. In their abstract, they state that they believe that compilers will be able
to generate VCL-based code. We believe our pool restructuring achieves this auto-
matic remapping on cache lines (albeit in a different way). In addition, cache usage
is very efficient after restructuring a memory pool because our implementation em-
ploys full structure splitting,

Rus et al. implemented their Hybrid Analysis that integrates static and run-time
analysis of memory references [14]. Eventually, such an approach might be useful in
conjunction with our restructuring framework to describe access patterns of pointer
traversals. Saltz et al. describe the run-time parallelization and scheduling of loops,
which is an inspector/executor approach [15]. Our tracing mechanism is similar to
this approach, as it inspects and then restructures. The future challenge will be to
extend the system such that it inspects, restructures and parallelizes.

4.7 Conclusions

In this chapter, we presented and evaluated our restructuring compiler transforma-
tion chain for pointer-linked data structures in type-unsafe languages. Our transfor-
mation chain relies on run-time restructuring using run-time trace information, and
we have shown that the potential gains of restructuring access to pointer-based data
structures can be substantial.

Curial et al. mention that relying on traces for analysis is not acceptable for com-
mercial compilers [3]. For static analysis, we agree. For dynamic analysis, relying
on tracing is not necessarily undesirable and we have shown that the overhead in-
curred by the tracing and restructuring of pointer-linked data structures is usually
compensated for within a reasonable amount of time when data structures are used
repetitively.

The restructuring framework described in this chapter opens up more optimiza-
tion opportunities that we have not explored yet. For example, after data restruc-
turing extra information on the data layout is available and could be exploited in
order to apply techniques such as vectorization on code using pointer-linked data
structures. This is a subject of future research.

Data structures that are stored on the heap contain object identifiers instead of full
pointers. This makes the representation position independent, which provides new
means to distribute data structures over disjoint memory spaces. Translation to full
pointers would then be dependent on the memory pool location and the architecture.
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This position independence using object identifiers has been mentioned before by
Lattner and Adve in the context of pointer compression [12]. However, with the pool
restructuring presented in this chapter, a more detailed segmentation of the pools
can be made and restructuring could be extended to a distributed pool restructuring
framework.

The implementation presented in this chapter uses some run-time support func-
tions to remap access to the proper locations for split pools. The use of object identi-
fiers implies a translation step upon each load and store to the heap. These run-time
functions are efficiently inlined by the LLVM compiler and have a negligible effect
when applications are bounded by the memory system. The run-time support could
in principle be implemented in hardware and this would reduce the run-time over-
head considerably. We envision an implementation in which pools and their layout
are exposed to the processor, such that address calculations can be performed trans-
parently. Memory pools could then be treated similarly to virtual memory in which
the processors also take care of address calculations.

We believe the restructuring transformations for pointer-linked data structures
that have been described in this chapter do not only enable data layout remapping,
but also provide the basis for new techniques to enable parallelizing transformations
on such data structures.
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Chapter 5
Dense Linear Algebra on Accelerated Multicore
Hardware

Jack Dongarra, Jakub Kurzak, Piotr Luszczek, and Stanimire Tomov

Abstract Design of systems exceeding 1 Pflop/s and inching towards 1 Eflop/s
forced a dramatic shift in hardware design. Various physical and engineering con-
straints resulted in introduction of massive parallelism and functional hybridization
with the use of accelerator units. This paradigm change brings about a serious chal-
lenge for application developers as the management of multicore proliferation and
heterogeneity rests on software. And it is reasonable to expect that this situation
will not change in the foreseeable future. This chapter presents a methodology of
dealing with this issue in three common scenarios. In the context of shared-memory
multicore installations, we show how high performance and scalability go hand in
hand when the well-known linear algebra algorithms are recast in terms of Direct
Acyclic Graphs (DAGs) which are then transparently scheduled at runtime inside the
Parallel Linear Algebra Software for Multicore Architectures (PLASMA) project.
Similarly, Matrix Algebra on GPU and Multicore Architectures (MAGMA) sched-
ules DAG-driven computations on multicore processors and accelerators. Finally,
Distributed PLASMA (DPLASMA), takes the approach to distributed-memory ma-
chines with the use of automatic dependence analysis and the Direct Acyclic Graph
Engine (DAGuE) to deliver high performance at the scale of many thousands of
cores.
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5.1 Introduction and Motivation

Among the various factors that drive the momentous changes occurring in the design
of microprocessors and high end systems [14], three stand out as especially notable:

1. the number of transistors per chip will continue the current trend, i.e. double
roughly every 18 months, while the speed of processor clocks will cease to in-
crease;

2. we are getting closer to the physical limit for the number and bandwidth of pins
on the CPUs and

3. there will be a strong drift toward hybrid/heterogeneous systems for petascale
(and larger) systems.

While the first two involve fundamental physical limitations that the state-of-art
research today is unlikely to prevail over in the near term, the third is an obvious
consequence of the first two, combined with the economic necessity of using many
thousands of CPUs to scale up to petascale and larger systems.

More transistors and slower clocks means multicore designs and more paral-
lelism required. The fundamental laws of traditional processor design—increasing
transistor density, speeding up clock rate, lowering voltage—have now been blocked
by a set of physical barriers: excess heat produced, too much power consumed,
too much energy leaked, useful signal overcome by noise. Multicore designs are a
natural response to this situation. By putting multiple processor cores on a single
die, architects can overcome the previous limitations, and continue to increase the
number of gates per chip without increasing the power densities. However, since
excess heat production means that frequencies cannot be further increased, deep-
and-narrow pipeline models will tend to recede as shallow-and-wide pipeline de-
signs become the norm. Moreover, despite obvious similarities, multicore proces-
sors are not equivalent to multiple-CPUs or to SMPs. Multiple cores on the same
chip can share various caches (including TLB—Translation Look-aside Buffer) and
they compete for memory bandwidth. Extracting performance from such configu-
rations of resources means that programmers must exploit increased thread-level
parallelism (TLP) and efficient mechanisms for inter-processor communication and
synchronization to manage resources effectively. The complexity of parallel pro-
cessing will no longer be hidden in hardware by a combination of increased in-
struction level parallelism (ILP) and pipeline techniques, as it was with superscalar
designs. It will have to be addressed at an upper level, in software, either directly
in the context of the applications or in the programming environment. As portabil-
ity remains a requirement, clearly the programming environment has to drastically
change.

A thicker memory wall means that communication efficiency will be even more
essential. The pins that connect the processor to main memory have become a stran-
gle point, with both the rate of pin growth and the bandwidth per pin slowing down,
if not flattening out. Thus the processor to memory performance gap, which is al-
ready approaching a thousand cycles, is expected to grow, by 50% per year accord-
ing to some estimates. At the same time, the number of cores on a single chip is



5 Dense Linear Algebra on Accelerated Multicore Hardware 125

expected to continue to double every 18 months, and since limitations on space will
keep the cache resources from growing as quickly, cache per core ratio will continue
to go down. Problems with memory bandwidth and latency, and cache fragmenta-
tion will, therefore, tend to become more severe, and that means that communication
costs will present an especially notable problem. To quantify the growing cost of
communication, we can note that time per flop, network bandwidth (between paral-
lel processors), and network latency are all improving, but at significantly different
rates: 59%/year, 26%/year and 15%/year, respectively [18]. Therefore, it is expected
to see a shift in algorithms’ properties, from computation-bound, i.e. running close
to peak today, toward communication-bound in the near future. The same holds for
communication between levels of the memory hierarchy: memory bandwidth is im-
proving 23%/year, and memory latency only 5.5%/year. Many familiar and widely
used algorithms and libraries will become obsolete, especially dense linear algebra
algorithms which try to fully exploit all these architecture parameters. They will
need to be reengineered and rewritten in order to fully exploit the power of the new
architectures.

In this context, the PLASMA project [24] has developed several new algorithms
for dense linear algebra on shared memory system based on tile algorithms. Here,
we present DPLASMA, a follow up project related to PLASMA that operates in
the distributed-memory environment. DPLASMA introduces a novel approach to
schedule dynamically dense linear algebra algorithms on distributed systems. It, too,
is based on tile algorithms, and takes advantage of DAGuE [8], a new generic dis-
tributed Direct Acyclic Graph Engine for high performance computing. This engine
supports a DAG representation independent of problem-size, overlaps communica-
tions with computation, prioritizes tasks, schedules in an architecture-aware man-
ner and manages micro-tasks on distributed architectures featuring heterogeneous
many-core nodes. The originality of this engine resides in its capability of translat-
ing a sequential nested-loop code into a concise and synthetic format which it can
interpret and then execute in a distributed environment. We consider three common
dense linear algebra algorithms, namely: Cholesky, LU and QR factorizations, to
investigate through the DAGuE framework their data driven expression and execu-
tion in a distributed system. We demonstrate through performance results at scale
that our DAG-based approach has the potential to bridge the gap between the peak
and the achieved performance that is characteristic in the state-of-the-art distributed
numerical software on current and emerging architectures. However, the most es-
sential contribution, in our view, is the ease with which new algorithmic variants
may be developed and how they can be simply launched on a massively parallel
architecture without much consideration to the underlying hardware structure. It is
due to the flexibility of the underlying DAG scheduling engine and straightforward
expression of parallel data distributions.

5.2 PLASMA

Parallel Linear Algebra Software for Multicore Architectures (PLASMA) is a nu-
merical software library for solving problems in dense linear algebra on systems
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multicore processors and multi-socket systems of multicore processors. PLASMA
offers routines for solving a wide range of problems in dense linear algebra, such
as: non-symmetric, symmetric and symmetric positive definite systems of linear
equations, least square problems, singular value problems and eigenvalue prob-
lems (currently only symmetric eigenvalue problems). PLASMA solves these prob-
lems in real and complex arithmetic and in single and double precision. PLASMA
is designed to give high efficiency on homogeneous multicore processors and
multi-socket systems of multicore processors. As of today, the majority of such sys-
tems are on-chip symmetric multiprocessors with classic super-scalar processors as
their building blocks (x86 and alike) augmented with short-vector SIMD extensions
(SSE and alike). PLASMA has been designed to supersede LAPACK, principally by
restructuring the software to achieve much greater efficiency on modern computers
based on multicore processors.

The interesting part of PLASMA from the multithreading perspective is the vari-
ety of scheduling mechanism utilized by PLASMA. In the next two subsections, the
different options for programming multicore processors are briefly reiterated and
then the main design principles of PLASMA introduced.

5.2.1 PLASMA Design Principles

The main motivation behind the PLASMA project are performance shortcomings of
LAPACK and ScaLAPACK on shared memory systems, specifically systems con-
sisting of multiple sockets of multicore processors. The three crucial elements that
allow PLASMA to achieve performance greatly exceeding that of LAPACK and
ScaLAPACK are: the implementation of tile algorithms, the application of tile data
layout and the use of dynamic scheduling. Although some performance benefits can
be delivered by each one of these techniques on its own, it is only the combination
of all of them that delivers maximum performance and highest hardware utilization.

Tile algorithms are based on the idea of processing the matrix by square tiles of
relatively small size, such that a tile fits entirely in one of the cache levels associated
with one core. This way a tile can be loaded to the cache and processed completely
before being evicted back to the main memory. Of the three types of cache misses,
compulsory, capacity and conflict, the use of tile algorithms minimizes the num-
ber of capacity misses, since each operation loads the amount of data that do not
“overflow” the cache.

Tile layout is based on the idea of storing the matrix by square tiles of relatively
small size, such that each tile occupies a continuous memory region. This way a tile
can be loaded to the cache memory efficiently and the risk of evicting it from the
cache memory before it is completely processed is minimized. Of the three types of
cache misses, compulsory, capacity and conflict, the use of tile layout minimizes the
number of conflict misses, since a continuous region of memory will completely fill
out a set-associative cache memory before an eviction can happen. Also, from the
standpoint of multithreaded execution, the probability of false sharing is minimized.
It can only affect the cache lines containing the beginning and the ending of a tile.



5 Dense Linear Algebra on Accelerated Multicore Hardware 127

Fig. 5.1 The software stack of PLASMA, version 2.3

Dynamic scheduling is the idea of assigning work to cores based on the avail-
ability of data for processing at any given point in time and is also referred to as
data-driven scheduling. The concept is related closely to the idea of expressing
computation through a task graph, often referred to as the DAG (Direct Acyclic
Graph), and the flexibility exploring the DAG at runtime. Thus, to a large extent,
dynamic scheduling is synonymous with runtime scheduling. An important concept
here is that of the critical path, which defines the upper bound on the achievable
parallelism, and needs to be pursued at the maximum speed. This is in direct op-
position to the fork-and-join or data-parallel programming models, where artificial
synchronization points expose serial sections of the code, where multiple cores are
idle, while sequential processing takes place.

5.2.2 PLASMA Software Stack

Starting from the PLASMA, version 2.2, released in July 2010, the library is built on
top of standard software components, all of which are either available as open source
or are standard OS facilities. Some of them can be replaced by packages provided by
hardware vendors for efficiency reasons. Figure 5.1 presents the current structure of
PLASMA’s software stack. Following is a brief bottom-up description of individual
components.

Basic Linear Algebra Subprograms (BLAS) is a, de facto standard, set of basic
linear algebra operations, such as vector and matrix multiplication. CBLAS is the
C language interface to BLAS. Most commercial and academic implementations
of BLAS also provide CBLAS. Linear Algebra PACKage (LAPACK) is a software
library for numerical linear algebra, a direct predecessor of PLASMA, providing
routines for solving linear systems of equations, linear least square problems, eigen-
value problems and singular value problems. CLAPACK is a version of LAPACK
available from Netlib, created by automatically translating FORTRAN LAPACK to
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C with the help of the F2C utility. It provides the same, FORTRAN, calling conven-
tion as the “original” LAPACK. LAPACKE C API is a proper C language interface
to LAPACK (or CLAPACK).

The layer named “core BLAS” is a set of serial kernels, the building blocks for
PLASMA’s parallel algorithms. PLASMA scheduling mechanisms coordinate the
execution of these kernels in parallel on multiple cores. PLASMA relies on POSIX
threads for access to the systems multithreading capabilities and on the hwloc library
for the control of thread affinity. PLASMA employs static scheduling, where threads
have their work statically assigned and coordinate synchronize execution through
progress tables, but can also rely on the QUARK scheduler for dynamic (runtime)
scheduling of work to threads.

5.2.3 PLASMA Scheduling

By now, multicore processors are ubiquitous in both low-end consumer electronics
and high-end servers and supercomputer installations. This let to the emergence of
a myriad of multithreading frameworks, both academic and commercial, embrac-
ing the idea of task scheduling: Cilk, OpenMP (tasking features), Intel Threading
Building Blocks, just to name a few prominent examples. One especially important
category are multithreading systems based on dataflow principles, which represent
the computation as a Direct Acyclic Graph (DAG) and schedule tasks at runtime
through resolution of data hazards: Read after Write (RaW), Write after Read (WaR)
and Write after Write (WaW). PLASMA’s scheduler QUARK is an example of
such a system. Two other, very similar, academic projects are also available: StarSs
from Barcelona Supercomputer Center and StarPU from INRIA Bordeaux. While
all three systems have their strength and weaknesses, QUARK has vital extensions
for use in a numerical library.

5.2.4 DAGs for One-Sided Factorizations

The three common one-sided factorizations included in PLASMA are Cholesky,
LU, and QR. Their corresponding DAGs are shown in Fig. 5.2. In the figure, each
node represents a task. The node label consists of the name of the routine invoked
by the task followed by the coordinates of the tiles that the routine operates on. The
edges of DAG represent data dependencies between the tasks. To the left of each
DAG there are boxes with the step number and the available parallelism at each
step. The DAG’s are drawn with the minimum number of steps without violating the
dependencies between tasks. It turns out that for a 3-by-3 matrix that the minimum
height of the DAG is the same for each of the three factorizations. This minimum
height of the DAG is the same as the length of the DAGs critical path.
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Fig. 5.2 DAGs of three common one-sided factorizations for a 3-by-3 matrix

5.2.5 Performance for One-Sided Factorizations

To illustrate PLASMA’s performance for the three one-sided factorizations we com-
pare it to equivalent implementations1 from Intel’s MKL and the source code distri-
bution of LAPACK from www.netlib.org. Figure 5.3 shows such a comparison on a
48-core machine that features 8 AMD Istanbul processors, each with 6 cores running
at 2.8 GHz. PLASMA clearly outperforms the other two libraries by a comfortable
performance margin for all the tested matrix sizes. This serves as the validation of
its design principles based on dynamic scheduling, tile storage, and tile algorithms.

1In terms of numerical accuracy, the incremental pivoting used in PLASMA’s LU implementation
has a higher upper bound on the backward error than the LU with partial pivoting featured in
LAPACK and MKL.
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Fig. 5.3 Performance for three common one-sided factorizations run on a 48-core machine that
features 8 AMD Istanbul processors, each with 6 cores running at 2.8 GHz

5.3 MAGMA

Numerical linear algebra is a fundamental building block in engineering and com-
putational science software applications. It arises in areas such as image and signal
processing, data mining, computational biology, materials science, fluid dynamics,
and many others. Therefore, highly optimized libraries, implementing the most ba-
sic algorithms in numerical linear algebra, are greatly needed. The development and
availability of these libraries is crucial for the establishment and use of new archi-
tectures for high-performance scientific computing.

In this paper we review and extend some state-of-the-art algorithms and tech-
niques for high performance linear algebra on GPU architectures. The main goal of
the development is to map algorithmic requirements to the architectural strengths of
the GPUs. For example, GPUs are manycore based architectures and hence, in order
to map well, algorithms must be of high parallelism and new data structures must
be designed to facilitate parallel (coalescent) memory accesses. The introduction of
shared memory and levels of memory hierarchy [19] has enabled memory reuse,
giving rise to blocking techniques for increased memory reuse. Furthermore, hy-
bridization techniques have been developed are motivated by the fact that GPUs are
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currently used through CPU applications—queuing computational tasks/requests to
be executed on the GPU.

We consider basic dense linear algebra kernels, and higher-level routines such as
linear and eigen/singular-value solvers. For dense linear algebra we highlight some
Level 2 and 3 BLAS and their use in basic factorizations and solvers.

We show that basic linear algebra kernels achieve a high fraction of their theo-
retical performance peaks on GPUs. Implementations of most of the dense linear
algebra described are available through the MAGMA library [23].

5.3.1 Acceleration Techniques for GPUs

5.3.1.1 Blocking

Blocking is a well known linear algebra optimization technique where the compu-
tation is organized to operate on blocks/submatrices of the original matrix. The idea
is that blocks are of small enough size to fit into a particular memory hierarchy level
so that once loaded, the blocks’ data are to be reused in all the arithmetic opera-
tions that they are involved in. This idea can be applied for GPUs, using GPUs’
shared memory. As it would be demonstrated throughout the paper, the application
of blocking is crucial for the performance of numerous kernels and high level algo-
rithms for both sparse and dense linear algebra.

5.3.1.2 Hybridization

Hybridization refers to a methodology that we follow in developing high level linear
algebra algorithms:

• Represent the algorithm as a collection of basic kernels/tasks and dependencies
among them (see Fig. 5.4):
– Use parametrized task granularity to facilitate auto-tuning;
– Use performance models to facilitate the task splitting/mapping.

• Schedule the execution of the basic kernels/tasks over the multicore and the GPU:
– Schedule small, non-parallelizable task on the CPU and large, parallelizable on

the GPU;
– Define the algorithm’s critical path and prioritize its execution/scheduling.

5.3.1.3 Data Structures

A great deal of research in GPU computing is on data structures. Data should be
organized in a way that facilitates parallel memory accesses (see also Sect. 5.3.1.4
below) so that applications can achieve the inherent for GPUs high memory through-
put. This is especially true for sparse matrix-vector kernel, where researchers have
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Fig. 5.4 Algorithms as a
collection of basic
kernels/tasks and
dependencies among them
(DAGs) for hybrid
GPU-based computing

proposed numerous data formats. Even in dense linear algebra, where input/output
data structure interfaces are more standardized, there are numerous algorithms
where intermediate steps involve rearranging data to facilitate fast memory accesses
(see Sect. 5.3.2).

5.3.1.4 Parallel Memory Access

GPU global memory accesses are costly and in general not cached (except in Fermi,
the latest generation of GPUs from NVIDIA [19]), making it crucial for the perfor-
mance to have the right access pattern to get maximum memory bandwidth. There
are two access requirements to high throughput [20, 21]. The first is to organize
global memory accesses in terms of parallel consecutive memory accesses—16 con-
secutive elements at a time by the threads of a half-warp (16 threads)—so that mem-
ory accesses (to 16 elements at a time) be coalesced into a single memory access.
This is demonstrated in the kernels’ design throughout the paper. Second, the data
should be properly aligned. In particular, the data to be accessed by half-warp should
be aligned at 16 ∗ sizeof(element), e.g., 64 for single precision elements.

5.3.1.5 Pointer Redirecting

Pointer redirecting is a set of GPU specific optimization techniques that allows to
easily remove performance oscillations in cases where the input data are not aligned
to directly allow coalescent memory accesses, or when the problem sizes are not
divisible by the partitioning sizes required for achieving high performance [17].
For example, applied to the dense matrix–matrix multiplication routines, depending
on the hardware configuration and routine parameters, this can lead to two times
faster algorithms. Similarly, the dense matrix–vector multiplication can be acceler-
ated more than two times in both single and double precision arithmetic.
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5.3.1.6 Padding

Padding, similar to pointer redirecting, is another technique for obtaining high over-
all performance (no performance oscillations) when input data are not aligned to
allow coalescent memory accesses, or when the problem sizes are not divisible by
certain blocking sizes. The difference is that in padding the problem dimensions
are increased and the extra space is filled up with zeroes (referred to as padding).
A drawback of the padding is that it requires extra memory and it may involve extra
data copies. Comparing the padding and pointer redirecting approaches for dense
matrix–matrix multiplication show that for small matrix sizes the pointer redirect-
ing gives better performance, and for larger matrices the two approaches are almost
identical, as it is actually expected. An advantage of using padding is that users may
design the input data to achieve highest performance with libraries at hand (e.g., not
supporting pointer redirecting, experiencing non-uniform performance).

5.3.1.7 Auto-tuning

Automatic performance tuning (optimization), or auto-tuning in short, is a technique
that has been used intensively on CPUs to automatically generate near-optimal nu-
merical libraries. For example, ATLAS [26] and PHiPAC [2] are used to generate
highly optimized BLAS.

Auto-tuning can also be applied to tune linear algebra for GPUs. Work in the
area of dense linear algebra [15] shows that auto-tuning for GPUs is very practi-
cal solution to easily port existing algorithmic solutions on quickly evolving GPU
architectures and to substantially speed up even highly hand-tuned kernels.

There are two core components in a complete auto-tuning system:

• Code generator: The code generator produces code variants according to a set of
pre-defined, parametrized templates/algorithms. The code generator also applies
certain state of the art optimization techniques.

• Heuristic search engine: The heuristic search engine runs the variants produced
by the code generator and finds out the best one using a feedback loop, e.g., the
performance results of previously evaluated variants are used as a guidance for
the search on currently unevaluated variants.

Autotuning is used to determine best performing kernels, partitioning sizes, and
other parameters for the various algorithms described in this paper.

5.3.2 Accelerating Dense Linear Algebra Kernels and
Factorizations

Implementations of the BLAS interface are a major building block of dense lin-
ear algebra (DLA) libraries, and therefore must be highly optimized. This is true
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Fig. 5.5 Performance of
MAGMA’s implementation of
matrix–matrix multiplication
routine DGEMM on NVIDIA
GTX 280

Fig. 5.6 Performance of MAGMA’s implementation of matrix–matrix multiplication routine
DGEMM on NVIDIA Fermi C2050

for GPU computing as well, especially after the introduction of shared memory in
modern GPUs. This is important because it enabled fast Level 3 BLAS implemen-
tations, which in turn made possible the development of DLA for GPUs to be based
on BLAS for GPUs.

Despite the current success in developing highly optimized BLAS for GPUs [10,
25], the area is still new and presents numerous opportunities for improvements. For
example, we address cases of the matrix–matrix and the matrix–vector multiplica-
tions, along with discussion on the techniques used to achieve these improvements.

Figure 5.5 shows the performance for GEMM in double precision arithmetic
on NVIDIA GTX 280. Note the performance oscillations that CUBLAS experi-
ences for problem sizes not divisible by 32. This performance degradation can be
removed using the pointer redirecting technique [17] as the figure clearly illustrates.
We see an improvement of 24 Gflops/s in double and 170 Gflops/s in single preci-
sion arithmetic. We extended this technique to other Level 3 BLAS kernels to see
similar performance improvements. Figure 5.6 show the performance of both single



5 Dense Linear Algebra on Accelerated Multicore Hardware 135

Table 5.1 Detailed description of NVIDIA Tesla GTX 280 and the server version of NVIDIA
Fermi GPU: C2050

Feature Tesla GTX 280 Fermi C2050

Frequency 602 MHz 1150 MHz

CUDA cores (vertex shaders) 240 448

Streaming Multiprocessors (SM) 30 14

Shared memory per SM 16 kB 16 kB or 48 kB

L1 cache per SM – 16 kB or 48 kB

L2 cache per SM – 768 kB

Theoretical peak in single precision 933 Gflop/s 1030 Gflop/s

Theoretical peak in double precision 80 Gflop/s 515 Gflop/s

Address width 32 bits 64 bits

and double precision GEMM routines on NVIDIA Fermi C2050. Comparison of
specification of both platforms is summarized in Table 5.1.

Padding can be applied as well but in many cases copying user data may not
be feasible. This is the case for algorithms that involve Level 2 BLAS that has
to be applied for matrices of continuously decreasing sizes, e.g., in the bidiagonal
reduction for the symmetric eigenvalue problem. This motivated us to extend the
technique to Level 2 BLAS to see similar improvements.

Conceptually, above the level of basic computational kernels provided by BLAS
are the factorization one-sided factorization codes. Most commonly used ones are
Cholesky, LU, and QR factorizations. When the aforementioned hybridization tech-
niques are combined with good quality BLAS then a high fraction of the peak per-
formance may indeed be achieved as shown in Fig. 5.7.

5.4 DPLASMA

DPLASMA (Distributed PLASMA) is a framework for developing dense linear
algebra algorithms that seamlessly scales to thousands of cores. Its goals can be
achieved with a use of a novel generic distributed Direct Acyclic Graph Engine
(DAGuE). The engine has been designed for high performance computing and
thus it enables scaling of tile algorithms, originating in PLASMA, on large dis-
tributed memory systems. The underlying DAGuE framework has many appealing
features when considering distributed-memory platforms with heterogeneous multi-
core nodes: DAG representation that is independent of the problem-size, automatic
extraction of the communication from the dependencies, overlapping of communi-
cation and computation, task prioritization, and architecture-aware scheduling and
management of tasks. The originality of this engine lies in its capacity to translate
a sequential code with nested-loops into a concise and synthetic format which can
then be interpreted and executed in a distributed environment. We present three com-
mon dense linear algebra algorithms from PLASMA (Parallel Linear Algebra for
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Fig. 5.7 Performance of MAGMA’s one sided factorizations on Fermi C2050

Fig. 5.8 Pseudo code of the
tile Cholesky factorization
(right-looking version)

Scalable Multi-core Architectures), namely: Cholesky, LU, and QR factorizations,
to investigate their data driven expression and execution in a distributed system. We
demonstrate through experimental results on the Cray XT5 Kraken system that our
DAG-based approach has the potential to achieve sizable fraction of peak perfor-
mance which is characteristic of the state-of-the-art distributed numerical software
on current and emerging architectures.

5.4.1 Dependence Analysis

We will apply the DAGuE framework to three of the most fundamental one-sided
factorizations of numerical linear algebra: Cholesky, LU, and QR factorizations.
Figure 5.8 shows the pseudo code of the Cholesky factorization (the right-looking
variant). Figure 5.9 shows the pseudo code of the tile QR factorization. Figure 5.10
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Fig. 5.9 Pseudo code of the
tile QR factorization

Fig. 5.10 Pseudo code of the
tile LU factorization

shows the pseudo code of the tile LU factorization. Each of the figures shows the
tile formulation of the respective algorithm: a single tile of the matrix is denoted by
double-index notation A[i][j].

The DAGuE framework is generic by design and requires from a specific algo-
rithm to be represented as a DAG of dependencies. This may be readily achieved
for the three linear algebra factorizations by recasting the linear algebra meaning of
the computational kernels into dependence scheduling nomenclature [1] commonly
used in the compiler community. To start with a simple example, in Fig. 5.8, the first
(and only) invocation of the DPOTRF computational kernel has a form:

A[k][k] <- DPOTRF(A[k][k])

From the compiler stand point, this operation reads from A[k][k] (input dependence)
and writes to A[k][k] (output dependence). To simplify the dependence analysis we
could rewrite the operation as:

A[k][k] <- A[k][k] + 1

The loss of semantics (the new form is not equivalent to the original) may easily
be compensated by preserving a reference to the original code. It is trivial for most
of mainstream compiler frameworks to analyze the modified form of the statement:
it is both input and output dependence—INOUT for short (following the notation
borrowed from Fortran 90’s function parameter annotation). It is also possible to
have input-only dependencies:

A[m][k] <- DTRSM(A[k][k], A[m][k])
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A[k][k] carries input dependence and the whole statement may be rewritten in simpler
(but dependence preserving) form:

A[m][k] <- A[k][k] + A[m][k]

For output-only dependencies:

A[k][k], T[k][k] <- DGEQRT(A[k][k])

T[k][k] carry output dependence. And the equivalent form could be

T[k][k] <- A[k][k] + 1
A[k][k] <- A[k][k] + 1

Finally, it is also possible to have SCRATCH designation for temporary storage
that doesn’t carry any dependence but is necessary for proper functioning of the
algorithm (this is again borrowed from Fortran 2008’s SCRATCH designation). The
SCRATCH parameters allow for dynamic allocation of memory of size not known
before runtime (i.e. at compile time). In addition, the allocated memory is automat-
ically deallocated upon exiting the lexical scope where such allocation occurred.

By rewriting the original statement we can simplify the original code and have
it accessible for loop-carried dependence analysis. An alternative approach is to use
the dependence designation introduced above (IN, OUT, INOUT, and SCRATCH)
inserted into the original code and have the rewriting and dependence analysis done
automatically. This is in fact the approach taken by the DAGuE framework as it
separates the semantics of the domain specific code from its DAG representation
required for efficient scheduling. For example, the DPOTRF function is designated
to accept a single argument (a matrix tile) that carries input and output dependence:

DPOTRF(A : INOUT)

And this is the only change required from the end user in the implementation of
DPOTRF() which otherwise should just be a standard sequential function: an LA-
PACK subroutine in this case.

5.4.2 The DAGuE Framework

This section introduces the DAGuE framework [8], a new runtime environment
which schedules tasks dynamically in a distributed environment. The tile QR fac-
torization is used as a test case to explain how the overall execution is performed in
parallel.

5.4.2.1 Description

The originality of this framework for distributed environment resides in the fact that
its starting point is a sequential nested-loop user-application, similar to the pseudo
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code from Figs. 5.8, 5.9 and 5.10. The framework then translates it in DAGuE’s
internal representation called JDF (Job Description Format), which is a concise
parameterized representation of the sequential program’s DAG. This intermediate
representation is eventually used as input to trigger the parallel execution by the
DAGuE engine. It includes the input and output dependencies for each task, deco-
rated with additional information about the behavior of the task.

For an NT × NT tile matrix, there are O(NT 3) tasks. The memory require-
ment to store the full DAG quickly increases with NT . In order to have a scalable
approach however, DAGuE uses symbolic interpretation to schedule tasks without
unrolling the JDF in memory at any given time, and thus spares computation cy-
cles to walk the DAG, and memory to keep a global representation. So, basically
this synthetic representation allows the internal dependence management mecha-
nism to efficiently compute the flow of data between tasks without having to un-
roll the whole DAG, and to discover on the fly the communications required to
satisfy these dependencies. Indeed, the knowledge of the IN and OUT dependen-
cies, accessible anywhere in the DAG execution, is sufficient to implement a fully
distributed scheduling engine for the underlying DAG. At the same time, the con-
cept of looking variants (i.e., right-looking, left-looking, top-looking) in the context
of LAPACK and ScaLAPACK becomes irrelevant with this representation: instead
of hard-coding a particular variant of tasks ordering, the execution is now data-
driven and dynamically scheduled. The issue of which “looking” variant to choose
is avoided because the execution of a task is scheduled when the data are available.
On the other hand, it is still possible to insist on a particular traversal order of the
DAG which would yield a particular “looking” variant. This kind of extension to
DAGuE is supported mostly for educational purposes.

Such representation is expected to be internal to the DAGuE framework though,
and not a programming language at user disposal. The framework, as described
here, does not automate the computation of the data and task distribution. The user
is thus required to manually add such information in the JDF. The process of such
automation is beyond the scope of this writing as we are trying to compare against
the established practices of distributed linear algebra software which assumes fixed
data distribution. The internal representation of the DAG used by DAGuE is called
JDF. It is also a language that is used to describe the DAG of tasks in a synthetic
and concise way.

From a technical point of view, the main goal of the distributed scheduling engine
is to select a local task for which all the IN dependencies are satisfied, i.e. the data
are available locally, select one of the local cores where to run the task and execute
the body of the task when it is scheduled. Once executed, the scheduling engine
releases all the OUT dependencies of this task, thus making more tasks available to
be scheduled, locally or remotely. It is noteworthy to mention that the scheduling
mechanism is architecture aware, taking into account not only the physical layout
of the cores, but also the way different cache levels and memory nodes are shared
between the cores. This allows to determine the best local core, i.e. the one that
minimizes the number of cache misses and data movements over the memory bus.

The DAGuE engine is obviously responsible for moving data from one node to
another when necessary. These data movements are necessary to release dependen-
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Fig. 5.11 Concise representation of tile QR factorization

cies of remote tasks. The framework language introduces a type qualifier called
modifier, expressed as MPI data types in the current version. It tells the communica-
tion engine what is the shape of the data to be transferred from a remote location to
another. By default, the communication engine uses a default data type for the tiles
(the user defines it to fit the tile size of the program). But the framework has also the
capability to transfer data of any shape. Indeed, sometimes, only a particular area of
the default data type must be conveyed. Again, at this stage, the user has still to man-
ually specify how the transfers must be done using these modifiers. Moreover, the
data tracking engine is capable to understand if the different modifiers overlap, and
behaves appropriately when tracking the data dependencies. One should note that
the DAGuE engine allows modifier settings on both input and output dependencies,
so that one can change the shape of the data on the fly during the communication.

Based on this representation the engine can move in the execution space and
easily find the tasks that have to be executed on each computing node, solve their
dependencies and take scheduling decisions. However, at any moment during the
execution the complete DAG is developed. Each node only unroll its own section of
the DAG and this only based on the available inputs.

5.4.2.2 A Test Case: QR Factorization

A realistic example of the DAGuE’s internal representation for the QR factoriza-
tion is given in Fig. 5.11. As stated in the previous section, this example has been
obtained starting from the sequential pseudo code shown in Fig. 5.9 using the
DAGuE’s translation tools. The logic to determine the task distribution scheme has
been hard-coded and could be eventually provided by auto-tuning techniques. The
tile QR consists of four kernel operations: DGEQRT, DSSMQR, DORMQR, and
DTSQRT. For each operation, we define a function (lines 1 to 10 for DGEQRT) that
consists of



5 Dense Linear Algebra on Accelerated Multicore Hardware 141

• a definition space (DGEQRT is parameterized by k, the step of the factorization,
which takes values between 0 and NT-1);

• how task distribution maps the data distribution (DGEQRT(k) runs on the process
that holds the tile A(k, k));

• a set of data flows (lines 5 to 10 for DGEQRT(k)); and
• a body that holds the effective C-code that will eventually be executed by the

scheduling engine (the body has been excluded from the picture). It is a simple C
code to call the DGEQRT routine of LAPACK on the variables V and T which are
instantiated to the corresponding memory locations of the process by the DAGuE
framework before the execution of the body.

Dependencies apply on data that are necessary for the execution of the task, or
that are produced by the task. For example, the task DGEQRT uses one data item
V as input, and produces two data, a modified version of the input V, and T a data
item locally produced by the task. Input data, such as V, are indicated using the left
arrow. They can come either from input matrix (local to the task, or located on a
remote process), or from the output data of another task (executed either locally, or
remotely). For example, the V of DGEQRT(k) comes either from the original matrix
located in tile A(0, 0) if k==0, or from the output data C2 of task DSSMQR(k-1, k, k)
otherwise. Output dependencies, marked with a right arrow, work in the same man-
ner. In particular, DGEQRT produces V which can be sent to DTSQRT and DORMQR
depending on the values of k. These dependencies are marked with a modifier (line
6 and 7) at their end: [U] and [L] for DTSQRT and DORMQR, respectively. This tells
the DAGuE engine that the functions DTSQRT and DORMQR only require the strict
lower part of V and only the upper part of V as inputs, respectively. The whole tile
could have been transferred instead, but this would engender two main drawbacks:
(1) communicating more data than required and (2) add extra dependencies into the
DAG which will eventually serialize the DORMQR and DTSQRT calls. This works
in the same manner for output dependencies. For example, in line 8, only the lower
part of V is written and stored on the memory in the lower part of the tile pointed by
A(k, k). Also, a data item that is sent to memory is final, meaning that no other task
will modify its contents until the end of the DAG execution. However, this does not
prevent other tasks from using it as a read-only input.

Figure 5.12 depicts the complete unrolled DAG of a 4x4 tiles QR, as resulting
from the execution of the previously described DAG on a 2-by-2 processor grid.
The color represents the task to be executed (DGEQRT, DORMQR, DTSQRT and
DSSMQR), while the border of the circles represents the node where the tasks has
been executed. The edges between the tasks represents the data flowing from one
tasks to another. A solid edge indicates that the data are coming from a remote
resource, while a dashed edge indicates a local output of another task.

5.4.2.3 DPLASMA and the DAGuE Framework

DPLASMA is an extension of the PLASMA idea using the DAGuE framework. It
implements a subset of PLASMA’s tile algorithms for some of the linear algebra
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Fig. 5.12 DAG of QR for a
4x4 tile matrix

operations of LAPACK inside the DAGuE system. It provides an implementation of
these algorithms for a distributed-memory system with multicore nodes. Four op-
erations have been implemented in DPLASMA today: the Cholesky, QR and LU
factorizations, as well as the distributed matrix matrix multiply (GEMM). Although
DPLASMA is implemented on top of DAGuE, it is usable in any scientific appli-
cation that uses MPI. Thus, in this context, DPLASMA provides a replacement for
ScaLAPACK, as PLASMA replaces LAPACK for shared-memory multicore sys-
tems.

5.4.3 Performance of DPLASMA

The performance of the DAGuE runtime have been extensively studied in related
publications [5–7, 9]. The goal here is to present the compiler process that is part
of the framework of DAGuE. Therefore, we present a summary of these result, to
demonstrate that the tool chain achieves its main goals of overall performance, per-
formance portability, and capability to process different non-trivial algorithms.

The experiments we summarize here have been conducted on two different plat-
forms. The Griffon platform is one of the clusters of Grid’5000 [4]. We used 81
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dual socket Intel Xeon L5420 quad core processors at 2.5 GHz to gather 648 cores.
Each node has 16 GB of memory, and is interconnected to the others by a 20 Gbs
Infiniband network. Linux 2.6.24 (Debian Sid) is deployed on these nodes.

The benchmark consists of three popular dense matrix factorization: Cholesky,
LU and QR. The Cholesky factorization solves the problem Ax = b, where A is
symmetric and positive definite. It computes the real lower triangular matrix with
positive diagonal elements L such that A = LLT . The QR factorization offers a
numerically stable way of solving full rank underdetermined, overdetermined, and
regular square linear systems of equation. It computes Q and R such that A = QR,
Q is a real orthogonal matrix, and R is a real upper triangular matrix. The LU
factorization with partial pivoting of a real matrix A has the form PA = LU where
L is a real unit lower triangular matrix, U is a real upper triangular matrix, and P is
a permutation matrix.

All these three operations are implemented in the ScaLAPACK numerical li-
brary [3]. Moreover, the Cholesky factorization has been implemented in a more
optimized way in the DSBP software [13], using static scheduling of tasks, and a
specific, more efficient, data distribution, and the LU factorization with partial piv-
oting is also solved by the well known High Performance LINPACK benchmark
(HPL) [12], used to measure the performance of high performance computers.

We have re-implemented these operations in DAGuE, using the DAGuE compiler
to generate the JDF symbolic representation from the simple sequential algorithms
that are given in Figs. 5.8, 5.9, 5.10. Some parameters of the kernels are omitted
to increase clarity and reduce the space. Then, we have distributed the initial data
following a classical 2D-block cyclic distribution used by ScaLAPACK, and used
the DAGuE runtime engine to schedule the operations on the distributed data. The
kernels consist of the BLAS operations referenced by the sequential codes, and their
implementation was the most efficient available on each of the machine. The same
kernel implementation for ScaLAPACK, DAGuE, HPL and DSBP was used on each
of the machines.

Figure 5.13 presents the performance measured for DAGuE and ScaLAPACK,
and when applicable DSBP and HPL, as function of the problem size. 648 cores
participated to the distributed run, and the data were distributed according to a 9 × 9
2D block-cyclic grid for DAGuE. A similar distribution was used for ScaLAPACK,
and the other benchmarks when appropriate, and the block size was tuned to provide
the best performance on each setup. As the figures illustrate, on all benchmarks, and
for all problem sizes, the DAGuE framework was able to outperform ScaLAPACK,
and perform as well as the state of the art, hand-tuned codes for specific problems.
The DAGuE solution goes from the sequential code to the parallel run completely
automatically, but is still able to outperform DSBP, and competes with the HPL
implementation on this machine.

5.5 Summary

The tumultuous changes occurring in the computer hardware space such as flatlining
of processor clock speeds after more than 15 years of exponential increases mark
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Fig. 5.13 Performance comparison on the Griffon platform with 648 cores

the end of the era of routine and near automatic performance improvements that
the research community had previously enjoyed [22]. Three main factors converged
to force processor architects to turn to multicore and heterogeneous designs and,
consequently, bring an end to the “free ride.” First, system builders have encoun-
tered intractable physical barriers—too much heat, too much power consumption,
and too much leaking voltage—to further increases in clock speeds. Second, phys-
ical limits on the number of pins and bandwidth on a single chip mean that the
gap between processor performance and memory performance, which was already
bad, has gotten increasingly worse. Consequently, the design trade-offs made to ad-
dress the previous two factors rendered commodity processors, absent any further
augmentation, inadequate for the purposes of extreme scale systems for advanced
applications. And finally, the exponential growth of transistor count on the heels of
the stubbornly alive Moore’s law [16] and Dennard’s scaling law [11]. This daunting
combination of obstacles forced the designers of new multicore and hybrid systems
to explore architectures that software built on the old model are unable to effectively
exploit without radical modification.

To develop software that will perform well on extreme scale systems with thou-
sands of nodes and millions of cores, the list of major challenges that must now be
confronted is formidable:
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• dramatic escalation in the costs of intrasystem communication between proces-
sors and/or levels of memory hierarchy;

• increased hybridization of processor architectures (mixing CPUs, GPUs, etc.), in
varying and unexpected design combinations;

• cooperating processes must be dynamically and unpredictably scheduled for
asynchronous execution due to high levels of parallelism and more complex con-
straints;

• software will not run at scale without much better resilience to faults and far more
robustness; and

• new levels of self-adaptivity will be required to enable software to modulate pro-
cess speed in order to satisfy limited energy budgets.

The software projects presented above meet the aforementioned challenges and
allow the users to run their computationally intensive codes at scale and to achieve a
significant percentage of peak performance on the contemporary hardware systems
that may soon break the barrier of 100 Pflop/s. This is achieved by finding and
integrating solutions to problems in two critical areas: novel algorithm design as
well as management of parallelism and hybridization.
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Chapter 6
The Explicit Spike Algorithm: Iterative Solution
of the Reduced System

Carl Christian Kjelgaard Mikkelsen

Abstract The explicit Spike algorithm applies to narrow banded linear systems
which are strictly diagonally dominant by rows. The parallel bottleneck is the so-
lution of the so-called reduced system which is block tridiagonal and strictly diag-
onally dominant by rows. The reduced system can be solved iteratively using the
truncated reduced system matrix as a preconditioner. In this paper we derive a tight
estimate for the quality of this preconditioner.

6.1 Introduction

A matrix A = [aij ] ∈R
n×n is diagonally dominant by rows if

∀i :
∑

j �=i

|aij | ≤ |aii |.

If the inequality is sharp, then A is strictly diagonally dominant by rows. If A is
nonsingular and diagonally dominant by rows or if A is strictly diagonally dominant
by rows, then aii �= 0, and the dominance factor ε given by

ε = max
i

{∑
j �=i |aij |
|aii |

}

is well defined.
The matrix A has lower bandwidth bl if aij = 0 for i > j + bl and upper band-

width bu if aij = 0 for j > i + bu. If b = max{bl, bu} � n, then we say that A is
narrow banded. Every square banded matrix can be partitioned as a block tridiagonal
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matrix with square diagonal blocks, i.e.

A =

⎡

⎢⎢⎢⎢
⎣

A1 C1

B1
. . .

. . .

. . .
. . . Cm−1
Bm Am

⎤

⎥⎥⎥⎥
⎦

, (6.1)

only the dimension of each diagonal block must be bounded from below by b. In
particular, we do not have to choose the same dimension for each diagonal block,
even in the exceptional case where b divides n.

The Spike algorithms are designed to solve banded systems on a parallel ma-
chine. The central idea was introduced by Sameh and Kuck [9] who considered the
tridiagonal case and Chen, Kuck and Sameh [1] who studied the triangular case.
Lawrie and Sameh [3] applied the algorithm to the symmetric positive definite case
while Dongarra and Sameh [2] considered the diagonally dominant case. Polizzi
and Sameh [7, 8] introduced the truncated Spike algorithm for systems which are
strictly diagonally dominant by rows. Recently, Manguoglu, Sameh, and Schenk [4]
have combined PARDISO with Spike in the PSPIKE package.

The explicit Spike algorithm by Dongarra and Sameh [2] can be used to solve
narrow banded linear systems which are strictly diagonally dominant by rows. The
algorithm extends naturally to systems which are block tridiagonal. Moreover, the
analysis is simplified if we focus on the number of diagonal blocks, rather than the
bandwidth of the matrix.

In Sect. 6.2 we state the explicit Spike algorithm for systems which are block
tridiagonal and strictly diagonally dominant by rows. The parallel bottleneck is the
solution of a reduced system which is block tridiagonal and strictly diagonally dom-
inant by rows. The reduced system can be solved iteratively using the main block
diagonal as a preconditioner. We derive a tight estimate for the quality of this precon-
ditioner in Sect. 6.3. This is a special case of a more general theorem by Mikkelsen
[5].

6.2 The Explicit Spike Algorithm

In this section we state the explicit Spike algorithm for systems which are block
tridiagonal and strictly diagonally dominant by rows. The validity and the basic
analysis of the algorithm hinges on the following lemma.

Lemma 6.1 Let G = [E,D,F ] be a matrix such that [D,E,F ] is strictly diag-
onally dominant by rows with dominance factor ε. Then G is row equivalent to a
unique matrix K = [U,I,V ]. Moreover, the matrix [U,V ] satisfies

‖[U,V ]‖∞ ≤ ε.
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[
A f

] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

A
(1)
1 C

(1)
1 f

(1)
1

B
(1)
2

. . .
. . .

...

. . .
. . . C

(1)
q−1

...

B
(1)
q A

(1)
q C

(1)
q f

(1)
q

B
(2)
1 A

(2)
1 C

(2)
1 f

(2)
1

B
(2)
2

. . .
. . .

...

. . .
. . . C

(2)
q−1

...

B
(2)
q A

(2)
q C

(2)
q f

(2)
q

B
(3)
1 A

(3)
1 C

(3)
1 f

(3)
1

B
(3)
2

. . .
. . .

...

. . .
. . . C

(3)
q−1

...

B
(3)
q A

(3)
q f

(3)
q

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

Fig. 6.1 The Spike partitioning for p = 3 processors

Proof Mikkelsen and Manguoglu [6] contains an elementary proof. �

Now consider the solution of a block tridiagonal linear system

Ax = f

on a parallel machine with p processors. Given a small tolerance δ > 0, we shall
now seek an approximation y, such that the forward error satisfies

‖x − y‖∞ ≤ δ‖x‖∞.

We assume that A has m = pq diagonal blocks and we assign q consecutive block
rows to each processor. The case of p = 3 is illustrated in Fig. 6.1. If A is strictly
diagonally dominant by rows, then we can predivide with the main block diagonal
in order to obtain an equivalent linear system

Sx = g.

The case of p = 3 is displayed in Fig. 6.2. It is from the narrow columns or spikes
protruding from the main diagonal that the original algorithm has derived it name.
The matrix S is called the Spike matrix; the vector g is called the modified right
hand side. By Lemma 6.1,

‖S − I‖∞ ≤ ε < 1,

so S is strictly diagonally dominant by rows.
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[
S g

] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

I V
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1 g
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. . .
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. . .
...

...

I V
(1)
q g

(1)
q

U
(2)
1 I V

(2)
1 g

(2)
2

...
. . .

...
...

...
. . .

...
...

U
(2)
q I V

(2)
q g

(2)
q

U
(3)
1 I g

(3)
1

...
. . .

...
...

. . .
...

U
(3)
q I g

(3)
q

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

Fig. 6.2 The Spike matrix corresponding to p = 3 processors

[
R gr

] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

I V
(1)
q g

(1)
q

U
(2)
1 I V

(2)
1 g

(2)
1

U
(2)
q I V

(2)
q

. . . g
(2)
q

U
(3)
1 I

. . . g
(3)
1

. . .
. . .

...

. . .
. . . V

(p−1)

1

...

U
(p−1)
q I V

(p−1)
q g

(p−1)
q

U
(p)
q I g

(p)

1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

Fig. 6.3 The general structure of the reduced system

The equations within a single block row of each the main partitions lines form a
reduced system,

Rxr = gr

which can be solved independently. The general structure of the reduced system
is given in Fig. 6.3. Once the reduced system has been solved, the solution of the
original system can be retrieved by backsubstitution. Specifically, we have

x
(j)
i = g

(j)
i − U

(j)
i x

(j−1)
q − V

(j)
i x

(j+1)

1 , 1 ≤ i ≤ q, 1 ≤ j ≤ p, (6.2)
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[
T gr

] =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢
⎣

I V
(1)
q g

(1)
q

U
(2)
1 I g

(2)
1

I V
(2)
q g

(2)
q

U
(3)
1 I g

(3)
1

. . .
...

. . .
...

I V
(p−1)
q g

(p−1)
q

U
(p)
q I g
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⎤

⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥
⎦

Fig. 6.4 The structure of the truncated reduced system

where U
(1)
i , V

(p)
i , x

(0)
q , and x

(p+1)

1 are undefined and should be taken as zero.
Suppose for the moment that we have somehow solved the reduced system with

a small normwise relative forward error, say,

‖xr − yr‖ ≤ δ‖xr‖∞
In view of Eq. (6.2) it is natural to partition yr conformally with xr , i.e.

yr = (
x(1)
q

T
, x

(2)
1

T
, . . . , x

(p−1)
q

T
, x

(p)

1

T )T

and define a vector y ∈R
n using

y
(j)
i = g

(j)
i − U

(j)
i y

(j−1)
q − V

(j)
i y

(j+1)

1 , 1 ≤ i ≤ q, 1 ≤ j ≤ p.

Then

x
(j)
i − y

(j)
i = −

[
U

(j)
i , V

(j)
i

][
x

(j−1)
q − y

(j−1)
q

x
(j+1)

1 − y
(j+1)

1

]

,

and it follows immediately that

‖x − y‖∞ ≤ ε‖xr − yr‖∞ ≤ εδ‖xr‖∞ ≤ δ‖x‖∞.

It is clear that we must solve the reduced system accurately in order to achieve a
small forward normwise relative error. We now consider the solution of the reduced
system.

The reduced system matrix R is block tridiagonal and strictly diagonally domi-
nant by rows. The inequality

‖R − I‖∞ ≤ ε < 1

is inherited from the Spike matrix S. Frequently, but not universally, the off diagonal
blocks are insignificant and can be dropped. This phenomenon is exploited heavily
in the truncated Spike algorithm by Polizzi and Sameh [7, 8]. Let T denote the main
block diagonal of R, see Fig. 6.4. Mikkelsen and Manguoglu [6] showed that



152 C.C.K. Mikkelsen

‖T − R‖∞ ≤ εq

when A is banded and strictly diagonally dominant by rows.
In this paper we consider the significance of the off diagonal blocks relative to

the main block diagonal. To this end we define an auxiliary matrix B by

B = T −1(T − R).

Now, let xtr be the solution of the truncated reduced system

T xtr = gr .

Then

T (xr − xtr) = (R − (T − R))xr − gr = (Rxr − gr) − (T − R))xr = −(T − R)xr

from which it immediately follows that, if xr �= 0, then

‖xtr − xr‖∞
‖xr‖∞

≤ ‖B‖∞.

We have already understood the need to solve the reduced system with a forward
normwise relative error of at most δ. If ‖B‖∞ ≤ δ, then we simply drop the off
diagonal blocks and approximate xr with xtr . If ‖B‖∞ > δ, then we can solve the
reduced system iteratively using the main block diagonal as a preconditioner. If we
use the stationary iteration

T x(i)
r = (T − R)x(i−1)

r + gr , i = 1,2, . . . ,

where x
(0)
r = 0, then

∥∥xr − x(i)
r

∥∥∞ ≤ ‖B‖i∞‖xr‖∞
and we can stop the iteration whenever

‖B‖i∞ ≤ δ.

In the next section we establish a tight upper bound on the central parameter ‖B‖∞.
The Spike and the PSPIKE packages both apply BiCG, rather than the stationary
iteration. Nevertheless, the size of ‖B‖∞ remains an interesting question.

6.3 The Main Result

Our purpose is to establish Theorem 6.1.

Theorem 6.1 The auxiliary matrix B satisfies

‖B‖∞ ≤ εq,

where q is the number of diagonal blocks assigned to each processor and equality
is possible.
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We shall reduce the problem of proving Theorem 6.1 to a single application of
the following theorem.

Theorem 6.2 (Mikkelsen [5]) Let Gk be a representation of 2k − 1 consecutive
block rows of a block tridiagonal matrix A which is strictly diagonally dominant by
rows with dominance factor ε, i.e.

Gk =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

B1−k A1−k C1−k

. . .
. . .

. . .

. . .
. . .

. . .

B−1 A−1 C−1

B0 A0 C0

B1 A1 C1
. . .

. . .
. . .

. . .
. . .

. . .

Bk−1 Ak−1 Ck−1

⎤

⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

Then Gk is row equivalent to a unique matrix Kk of the form

Kk =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢
⎣

U (k)
1−k I V (k)

1−k
...

. . .
...

...
. . .

...

U (k)
−1 I V (k)

−1

U (k)
0 I V (k)

0

U (k)
1 I V (k)

1
...

. . .
...

...
. . .

...

U (k)
k−1 I V (k)

k−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(6.3)

where the spikes decay exponentially as we move toward the main block row. Specif-
ically, if we define

Z
(k)
i =

[
U (k)

−i V (k)
−i

U (k)
i V (k)

i

]

, 0 < i < k,

and

Z
(k)
0 =

[
U (k)

0 ,V (k)
0

]

then
∥∥Z

(k)
i

∥∥∞ ≤ εk−i , 0 ≤ i < k.
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Proof The existence and uniqueness of Kk follows immediately from Lemma 6.1.
The central inequality can be established using the well ordering principle. The
details can be found in a report by Mikkelsen and Kågström [5]. �

We now move to prove the estimate given by Theorem 6.1. It is straightforward
to verify that equality is achieved for matrices A given by Eq. (6.1) where

Bi = Ok, Ai = Ik, Ci = εIk,

and Ok is the k by k zero matrix, Ik is the k by k identity matrix and ε < 1.
In order to prove the general inequality it suffices to consider the interaction

between two neighboring partitions. This follows immediately from the properties
of the infinity norm. Let Gk be a compact representation of 2k block rows drawn
from the original matrix A, i.e.

Gk =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

B−k A−k C−k

. . .
. . .

. . .

. . .
. . .

. . .

B−1 A−1 C−1

B1 A1 C1
. . .

. . .
. . .

. . .
. . .

. . .

Bk Ak Ck

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

and let Hk be a compact representation of the corresponding rows of the associated
Spike matrix. Then Gk ∼ Hk and Hk has the form

Hk =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

U−k I V−k

...
. . .

...
...

. . .
...

U−1 I V−1

U1 I V1
...

. . .
...

...
. . .

...

Uk I Vk

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

. (6.4)

Our task is to show that the auxiliary matrix Zk given by

Zk =
[
Z11 Z12
Z21 Z22

]
=

[
I V−1
U1 I

]−1 [
U−1 0

0 V1

]
(6.5)

satisfies

‖Zk‖∞ ≤ εk, k = 1,2, . . . , q.
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We continue to reduce Hk using row operations. We repartition Hk in order to focus
our attention on the two central block rows, i.e.

Gk ∼

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

U−k I V−k

...
. . .

...
...

. . .
...

U−1 I V−1
U1 I V1
...

. . .
...

...
. . .

...

Uk I Vk

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

Then we predivide with the central 2 by 2 block matrix and obtain

Gk ∼

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

U−k I V−k

...
. . .

...
...

. . .
...

Z11 I Z12
Z21 I Z22

...
. . .

...
...

. . .
...

Uk I Vk

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

and it is clear that there exists a matrix Kk such that Gk ∼ Kk and

Kk =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

U−q I V−q

...
. . .

...
...

. . .
...

U−2 I V−2

U−1 I V−1
U1 I V1

U2 I V2
...

. . .
...

...
. . .

...

Uq I Vq

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

(6.6)

and the matrix Zk satisfies

Zk =
[
U−1 V−1
U1 V1

]
. (6.7)
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At this point we have reduced the problem of proving Theorem 6.1 to a straightfor-
ward application of Theorem 6.2.

6.4 Conclusion

The explicit Spike algorithm by Dongarra and Sameh [2] extends naturally to sys-
tems which are block tridiagonal and strictly diagonally dominant by rows. More-
over, the analysis of the method is simplified by focusing on the number of diagonal
blocks rather than the bandwidth. The parallel bottleneck remains the solution of the
reduced system Rxr = gr which is strictly diagonally dominant and block tridiago-
nal. The significance of the off diagonal blocks can be measured using the auxiliary
matrix B given by

B = T −1(T − R) = I − T −1R,

where T denotes the main block diagonal of R. If ‖B‖∞ is sufficiently small, then
we can ignore the off diagonal blocks and approximate xr with the solution of the
truncated reduced system T xtr = gr . In general, we can solve the reduced system
iteratively using the main block diagonal T as a preconditioner and the convergence
rate is controlled by the size of ‖B‖∞. Our main contribution is Theorem 6.1 which
establishes a tight upper bound on ‖B‖∞.
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Chapter 7
The Spike Factorization as Domain
Decomposition Method; Equivalent and Variant
Approaches

Victor Eijkhout and Robert van de Geijn

Abstract In this paper we present the Spike algorithm of Sameh and Polizzi in the
context of domain decomposition methods. We present several variants that differ
in their treatment of the separators, showing that one of these is equivalent to the
Spike algorithm.

7.1 Introduction

The parallel solution of linear systems has a long history, spanning both direct and
iterative methods. While direct methods exist that have great generality, here we
consider a subcase of practical importance: that of banded matrices. We note that
many PDE problems naturally give rise to banded systems, given a large enough
bandwidth.

For any banded matrix, we can impose a block structure such that the matrix
is block tridiagonal. This structure gives each processor a contiguous block row of
the matrix; we assume that the number of processors is low enough that the part
owned by any processor comprises one or more of the blocks that define the block
tridiagional structure.

In this paper we present a number of variants on the Spike factorization of Polizzi
and Sameh [7], but going back to Sameh and Kuck [8]. Instead of the customary
algebraic presentation we view this algorithm as a domain decomposition method,
where each processor corresponds to a subdomain, and the problem variables are
divided in interior regions and separators. We will make a cost analysis for the case
where the algorithm is applied to a finite element type matrix. Note that our analysis
is only in terms of flop counting; in practice the merits of the Spike algorithm and
other banded solvers are determined to a large extent by memory access patterns
and other considerations related to computer architecture.
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Fig. 7.1 A one-dimensionally partitioned domain with four subdomains and three separators

Throughout this paper, we will discuss the 1D domain decomposition model
problem, pictured in Fig. 7.1. This leads to a matrix of the form:

∗ · · ·
∗

∗ ∗ ∗
∗

∗ · · ·
∗

∗ ∗ ∗
∗

∗ . . .

. . .
. . .

(7.1)

where the large blocks correspond to subdomains and the small ones to separators.
However, this is only for ease of analysis; in practice the only requirement for ap-

plicability of our ideas is that the matrix is partitioned with an alternating sequence
of separators and subdomain interiors.

We will say that this matrix has block dimension N , where each block comprises
a subdomain and a separator. For a model cost analysis, we assume that each sub-
domain interior consists of m lines of size n each, and that the matrix has a typical
sparsity pattern based on some finite difference or finite element scheme. Thus, in
the natural ordering, the matrix has dimension N × (m + 1) × n ≈ Nmn and half-
bandwith n. The cost of a sequential factorization is then Nmn ·n2 muladds and the
cost of solving a system with the resulting LU factorization Nmn · n muladds.

7.2 Single Separator Case

We will now describe the factorization of the matrix of Eq. (7.1). The first steps of
the factorization are in parallel over the subdomains; we will illustrate the factoriza-
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tion by considering a subdomain with the two surrounding separators.

A =

Ai−1i−1 Ai−1i

Aii−1 Aii Aii+1

Ai+1i Ai+1i+1

, Aii−1 =

⎛

⎜⎜⎜
⎝

∗
0
...

0

⎞

⎟⎟⎟
⎠

, Aii+1 =

⎛

⎜⎜⎜
⎝

0
...

0
∗

⎞

⎟⎟⎟
⎠

.

The matrix blocks are of dimensions
{

Aii size mn, halfbandwidth n,

Aii−1,Aii+1 size n, halfbandwidth O(1).

We make an LU factorization of the large subdomain diagonal blocks.

L−1A =

1

Lii

1

−1

, A =

Ai−1i−1 Ai−1i

L−1
ii Aii−1 Uii L−1

ii Aii+1

Ai+1i Ai+1i+1

.

Next the U factor:

1

Uii

1

−1

(L−1A) =

Ai−1i−1 Ai−1i

A−1
ii Aii−1 I A−1

ii Aii+1

Ai+1i Ai+1i+1

.

Next we left-multiply in parallel by a matrix T to eliminate the connection between
the subdomain interior and the separators:

I Ai−1i

I

Ai+1i I

−1

U−1(L−1A) =

Ai−1i−1 ∅ −Ai−1iA
−1
ii Aii+1

−Ai−1iA
−1
ii Aii−1

−A−1
ii Aii−1 I −A−1

ii Aii+1

−Ai+1iA
−1
ii Ai−1 ∅ Ai+1i+1

−Ai+1iA
−1
ii Aii+1

(7.2)

noting that the cost of forming the various products is limited to O(n3) since
Ai−1i ,Ai+1i are of size n × mn, but have only one nonzero n × n block.

We now have a factorization A = LUT S, where S is called a ‘spike’ matrix after
the dense columns flanking the large identity blocks. Note that the spikes need not

be stored explicitly: we can multiply by A−1
ii Aii−1 by solving a linear system with

Aii and multiplying by Aii−1.
The cost analysis of this factorization is as follows:
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• The Aii blocks that describe the subdomain interior are of size mn with halfband-
width n, so factoring them takes mn2 muladds, ignoring lower order terms: each
elimination step adds a row to the n rows below it.

Solving a system with the matrix Aii takes 2mn2 operations: in both the for-
ward and backward solve each element of the factors is touched once, and the
factors have size mn and bandwidth n. Note that the factors are dense inside the
band, unlike the original matrix.

• The blocks A−1
ii Aii±1 are of size mn × n and fully dense, which is larger than

storing the coefficient matrix Aii of the interior by a factor O(n). Multiplying by
such an explicitly stored matrix takes mn2 muladds.

• Forming A−1
ii Aii±1 involves solving n linear systems, for a total cost of 2mn3

• Multiplying a vector by an explicitly stored block A−1
ii Aii±1 takes mn2 opera-

tions; doing this with an implicitly formed block takes O(n) operations for the
multiplication by Aii±1, and 2mn2 operations for the solution with Aii . This is
on the same order as the explicit multiplication.

• We note that because of the sparsity pattern of Aii+1 only the backward sweep of
Aii is needed, halving the cost of applying the spike block A−1

ii Aii+1.

The preliminary conclusion of this analysis is that the flop count for factoring the
subdomain interiors equals (up to lower order terms) that of factoring the matrix se-
quentially, and performing a system solve on the subdomains has the cost of solving
a system sequentially. Clearly, dealing with the spike matrix S is parallel overhead.

Next we factor the matrix S. This is no longer parallel over the subdomains, so
we use two subdomains with separators to illustrate the inductive process.

S =

Si−1i−1 Si−1i

Sii−1 I Sii+1

Si+1i−1 Si+1i+1 Si+1i+3

Si+2i+1 I Si+2i+3

Si+3i+1 Si+3i+3

.

We sweep the first column with a lower triangular matrix Li−1:

I

Sii−1S
−1
i−1i−1 I

Si+1i−1S
−1
i−1i−1 I

I

I

−1

· S =

Si−1i−1 Si−1i

∅ I S̃ii+1

∅ S̃i+1i+1 Si+1i+3

Si+2i+1 I Si+2i+3

Si+3i+1 Si+3i+3



7 Spike as Domain Decomposition 161

where we note that elements are updated:

S̃ii+1 = Sii+1 − Sii−1S
−1
i−1i−1Si−1i+1,

S̃i+1i+1 = Si+1i+1 − Si+1i−1S
−1
i−1i−1Si−1i+1.

For this we need to factor the dense blocks Si−1i−1, Si+1i+1.
We are left with a matrix that is (block) upper triangular on the first subdomain,

and has the same structure on the next subdomain as what we started out with. This
is enough to continue the inductive process. In the end this leaves us with

S = ΠiLiΠiUi.

The diagonal blocks Si±1,i±1 are of size n × n and dense so to solve a system with
them they have to be factored. The blocks Si±1,i∓1 are of the same size and dense.

Factorization Cost Analysis The operation count for the factorization is as fol-
lows.

• The separator block Si−1i−1 is dense of size n, so there is a cost of 1/3n3 muladds
in factoring it.

• A further cubic cost of 2n3 comes from the update S̃i+1i+1 = Si+1i+1 −
Si+1i−1S

−1
i−1i−1Si−1i+1.

• The update S̃ii+1 = Sii+1 − Sii−1S
−1
i−1i−1Si−1i+1 takes 2mn3 muladds.

Taking this together, the factorization of the spike matrix takes the same 2Nmn3

operation count as factoring the interiors, which was the same as doing the sequen-
tial factorization, making the Spike factorization roughly twice as expensive as the
sequential method.

In parallel, the dominant cost of forming S̃ii+1 is not on the path of sequen-
tial dependencies, so it can be done in parallel, or by any inactive processors. The
remaining cost is then forming the sequence of updated diagonal blocks S̃i+1i+1,
which adds a sequential time of 2Nn3, which is O(m) lower than the cost of factor-
ing the interiors.

Solution Cost Analysis The solution of a system Ax = y involves the parallel
subdomain solves with the Aii blocks, and a sequential solve with the lower and
upper factors of S. The important observation is that these carry sequential depen-
dencies only between the separator blocks; the subdomain interiors depend on them,
but carry no further dependencies. Hence, their solution can be happen after solving
the separators system, or interweaved with it.

In terms of operations counts, the cost is dominated by subdomain solves that
occur both in the block diagonal L and U factors, and in multiplying with the Sii−1
and Sii+1 spike blocks. Note that solving a spike system Sx = y involves solving
with the subdomain interiors twice, once in the forward and once in the backward
solve, since Sii−1 = −A−1

ii Aii−1 and Sii+1 = −A−1
ii Aii+1. As argued above, the

right spike only needs the backward solve.
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Comparison to Domain Decomposition Methods Traditionally, parallel factor-
izations are a variant of LU applied to a partitioned and permuted domain. This
partitioning can be based on a multi-coloring (see [3, 4]), or on a division in sub-
domains and separators, see for instance [1, 2, 5]. This latter approach leads to a
factorization LSU with a similar analysis as we just saw: a parallel solution of the
subdomain interiors, and a sequential system that couples the separators. In the tra-
ditional case there is a solve on the interior during both the parallel forward and
backward sweep, giving a total cost of 2 · (|L|+ |U |), where | · | indicates the cost of
applying a matrix. In the Spike factorization there is a parallel interior solve plus an
interior solve in multiplying by the spike matrices Aii±1, where we note that Aii+1
only requires the backward solve.

Yet another banded solver based on single separators can be found in [6].
We can now resume the discussion of parallel solve time that was started in

Sect. 7.2. Solving a system with S has a sequential component:

T (S) =
N∑

i=1

[
T

(
L

(1)
i

) + T
(
L

(2)
i

) + T
(
L

(3)
i

)] + T (S̃).

• Solving L(1)x = y has both a parallel and sequential time O(1) in terms of a line
block solve.

• Solving a system L(2)x = y is a parallel operation if Si+2i+1 is stored explic-
itly. However, note that Si+2i+1 = A−1

i+2i+2Ai+2i+1, so in practice we will do a
subdomain solve, with a solve time T (L(2)) = T (Li+1i+1) + T (Ui+1i+1).

• Solving L(3)x = y involves applying S−1
i+1i+1 which is of the size of a line block,

so this operation is parallel.
• Solving S̃x = y is determined by the application of Sii+1 which is A−1

ii Aii+1. As
with L(2), this could be stored explicitly, but more likely we will do a subdomain
solve with Aii .

7.3 Double Separator Case

One problem with domain decomposition methods using separators is the matter of
distributing the separators. Since they are located between two subdomains, their
processing does not trivially belong on either. We will now consider a method
that allows for simpler work assignment, since it splits each separator in two; see
Fig. 7.2.
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Fig. 7.2 One dimensional partitioning of a domain, with separators divided over the processors

The resulting matrix has the structure

∗ ∗
∗

∗
∗

∗ ∗ ∗
∗ ∗ ∗

∗
∗

∗
∗ ∗ . . .

. . .
. . .

(7.3)

where the large blocks correspond to subdomain interiors and the small ones to
separators, and the heavy lines indicate the boundary between processors.

To factor this we consider a subdomain with its separators and the connections
to the previous and next subdomain:

A =

Ai−1i−2 Ai−1i−1 Ai−1i

Aii−1 Aii Aii+1

Ai+1i Ai+1i+1 Ai+1i+2

.

First we eliminate the subdomain interior. Applying the forward sweep gives

L−1A =

1

Lii

1

−1

, A =

Ai−1i−2 Ai−1i−1 Ai−1i

L−1
ii Aii−1 Uii L−1

ii Aii+1

Ai+1i Ai+1i+1 Ai+1i+2
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and after the backward sweep:

U−1(L−1A
) =

1

Uii

1

−1

,

(
L−1A

) =

Ai−1i−2 Ai−1i−1 Ai−1i

A−1
ii Aii−1 I A−1

ii Aii+1

Ai+1i Ai+1i+1 Ai+1i+2

.

Next we left-multiply by a matrix T to eliminate the connection between the sub-
domain interior and the separators:

S = T −1U−1L−1A

=

I Ai−1i

I

Ai+1i I

−1

U−1(L−1A
) =

Si−1i−2 Si−1i−1 ∅ Si−1i+1

Sii−1 I Sii+1

Si+1i−1 ∅ Si+1i+1 Si+1i+2

(7.4)

where Si−1i−2 = Ai−1i−2, Si+1i+2 = Ai+1i+2 and the following matrices will be
explicitly formed:

Si−1i−1 = Ai−1i−1 − Ai−1iA
−1
ii Aii−1, Si+1i+1 = Ai+1i+1 − Ai+1iA

−1
ii Aii+1,

Si+1i−1 = −Ai+1iA
−1
ii Ai−1, Si−1i+1 = −Ai−1iA

−1
ii Aii+1

the blocks

Sii−1 = A−1
ii Aii−1, A−1

ii Aii+1

are not explicitly formed, and their application involves a subdomain solve with Aii .
Together we now have a factorization

A = LUT S

where the first three factors can be processed in parallel, both during the factoriza-
tion and the system solution. It remains to analyze S. We see that the interior of the
subdomain depends on the two separators, but not the other way around: in effect
we now have a linear system where only the separators, two per subdomain, are
mutually coupled. We can now proceed in two different ways.
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7.3.1 Direct Factorization

To make an inductive analysis of the factorization of S we consider, for purposes of
illustration, two full subdomains with separators.

Si−1i−1 Si−1i

Sii−1 I Sii+1

Si+1i−1 Si+1i+1 Si+1i+2

Si+2i+1 Si+2i+2 Si+2i+4

Si+3i+2 I Si+3i+4

Si+4i+3 Si+4i+4

.

We make an LU factorization of this matrix. The first step of forward sweep is
applying a matrix L

(1)
i to sweep the first column:

L
(1)−1

i S =

I

Sii−1S
−1
i−1i−1 I

Si+1i−1S
−1
i−1i−1 I

I

−1

,

S =

Si−1i−1 Si−1i

∅ I S̃ii+1

∅ S̃i+1i+1 Si+1i+2

Si+2i+1 Si+2i+2 Si+2i+4

Si+3i+2 I Si+3i+4

Si+4i+3 Si+4i+4

where

S̃ii+1 = Sii+1 − Sii−1S
−1
i−1i−1Si−1i+1,

S̃i+1i+1 = Si+1i+1 − Si+1i−1S
−1
i−1i−1Si−1i+1.
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Secondly, we apply a matrix L
(2)
i to communicate with the left separator of the next

subdomain:

I

I

I

S̃i+2i+1S̃
−1
i+1i+1 I

I

I

−1

L(1)−1
S =

Si−1i−1 Si−1i

∅ I S̃ii+1

∅ S̃i+1i+1 Si+1i+2

∅ S̃i+2i+2 Si+2i+4

Si+3i+2 I Si+3i+4

Si+4i+3 Si+4i+4

where

S̃i+2i+2 = Si+2i+2 − S̃i+2i+1S̃
−1
i+1i+1Si+1i+2.

The second subdomain now has the same connections as the first had, so we can
continue inductively.

Parallel Solve Time We see that the spike matrix can be factored as a product
of L(1),L(2),U matrices per subdomain. Solving a system with any of these takes
solving a system on a separator. The interiors are not on the critical path, so the
parallel solve consists of solving the separator system sequentially, and then the
interiors in parallel.

Comparison to Single Separators This factorization behaves much like the
single-separator case in Sect. 7.2. The only difference is the introduction of the
L(2) matrix connecting the right separator of one domain and the left separator of
the next. This mostly adds one solution with an n × n dense matrix per subdomain
to the sequential time.

7.3.2 Full Elimination of the Subdomain

There is a second way of dealing with the spike matrix, which we show using only
a single subdomain:

S =

Si−1i−2 Si−1i−1 Si−1i+1

Sii−1 I Sii+1

Si+1i−1 Si+1i+1 Si+1i+2

.
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We first sweep the left separator by applying a lower triangular matrix L(s):

L(s)−1
S =

Si−1i−1 ∅

Sii−1 I

Si+1i−1 ∅ I

−1

, S =

Si−1i−2 I Si−1i+1

S̃ii−2 ∅ I Sii+1

S̃i+1i−2 ∅ Si+1i+1 Si+1i+2

.

Next we sweep the second separator with a matrix U(s):

U(s)−1
L(s)−1

S =

I Si−1i+1

I Sii+1

Si+1i+1

−1

, L(s)−1
S =

Si−1i−2 I ∅ S̃i−1i+2

S̃ii−2 ∅ I ∅ S̃ii+1

S̃i+1i−2 ∅ I Si+1i+2

.

The resulting factorization

A = LUL(s)U(s)Z

gives the matrix Z appearing in the original Spike algorithm, and is fully parallel in
the parts just considered: any sequential component is entirely in the Z matrix.

We show the factorization of the Z matrix by considering two subsequent sub-
domains. The factorization is then

I Si−1i+2

I Sii+2

I Si+1i+2

Si+2i+1 I

Si+3i+1 I

Si+4i+1 I

=

I

I

I

Si+2i+1 I

Si+3i+1 I

Si+4i+1 I

I

I

I

I −
Si+2i+1Si+1i+2

−Si+3i+1Si+1i+2 I

−Si+4i+1Si+1i+2 I

I Si−1i+2

I Sii+2

I Si+1i+2

I

I

I

.
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As before, we observe that only the separators are mutually dependent; the interiors
are dependent on the separators but not the other way around.

7.3.3 Original Derivation of the Spike Algorithm

Instead of going through the S matrix, we can also derive Z directly. As before, we
eliminate the subdomain interiors, and their connections with the separators; see the
derivation of Eq. (7.2). Thus we start with

Ai−1i−2 Ai−1i−1 Ai−1i+1

Aii−1 I Aii+1

Ai+1i−1 Ai+1i+1 Ai+1i+2

.

Note that these are no longer the original matrix blocks. We continue factoring by
sweeping the column of the first separator: A(1) = LA(2)

I

Aii−1A
−1
i−1i−1 I

Ai+1i−1A
−1
i−1i−1 I

Ai−1i−2 Ai−1i−1 Ai−1i+1

Aii−2 ∅ I Aii+1

Ai+1i−2 Ai+1i+1 Ai+1i+2

where
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Aii−2 = −Aii−1A
−1
i−1i−1Ai−1i−2,

Ai+1i−2 = −Ai+1i−1A
−1
i−1i−1Ai−1i−2,

Aii+1 ← Aii+1 − Aii−1A
−1
i−1i−1Ai−1i+1,

Aii+1 ← Aii+1 − Aii−1A
−1
i−1i−1Ai−1i+1.

Now we sweep the upper part of the column of the second separator: A(2) = UA(3)

I Ai−1i+1A
−1
i+1i+1

I Aii+1A
−1
i+1i+1

I

Ai−1i−2 Ai−1i−1 Ai−1i+2

Aii−2 ∅ I Aii+2

Ai+1i−2 Ai+1i+1 Ai+1i+2

where now blocks in the right spike are newly formed, and ones in the left spike get
updated. After normalizing the diagonal blocks on the separators, we now have an
identity block for the whole subdomain, and the traditional spikes flanking it, which
is the Z matrix of the previous subsection.
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7.4 Discussion

We have given three one-sided factorization algorithms, of which one is a computa-
tional variant of the Spike algorithm. The factorizations are presented using the inte-
rior/separator division of the subdomains that is commonly associated with domain
decomposition methods. These methods, applied to sparse finite element type ma-
trices, are seen to have an essentially similar operation count to traditional domain
decomposition methods. It should be noted, however, that the actual performance
of methods depends on memory access patterns and other matters not considered in
this paper.
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Chapter 8
Parallel Solution of Sparse Linear Systems

Murat Manguoglu

Abstract Many simulations in science and engineering give rise to sparse linear
systems of equations. It is a well known fact that the cost of the simulation process
is almost always governed by the solution of the linear systems especially for large-
scale problems. The emergence of extreme-scale parallel platforms, along with the
increasing number of processing cores available on a single chip pose significant
challenges for algorithm development. Machines with tens of thousands of mul-
ticore processors place tremendous constraints on the communication as well as
memory access requirements of algorithms. The increase in number of cores in a
processing unit without an increase in memory bandwidth aggravates an already
significant memory bottleneck. Sparse linear algebra kernels are well-known for
their poor processor utilization. This is a result of limited memory reuse, which ren-
ders data caching less effective. In view of emerging hardware trends, it is necessary
to develop algorithms that strike a more meaningful balance between memory ac-
cesses, communication, and computation. Specifically, an algorithm that performs
more floating point operations at the expense of reduced memory accesses and com-
munication is likely to yield better performance. We present two alternative varia-
tions of DS factorization based methods for solution of sparse linear systems on
parallel computing platforms. Performance comparisons to traditional LU factor-
ization based parallel solvers are also discussed. We show that combining iterative
methods with direct solvers and using DS factorization, one can achieve better scal-
ability and shorter time to solution.

8.1 Introduction

Many simulations in science and engineering give rise to sparse linear systems of
equations. It is a well known fact that the cost of the solution process is almost al-
ways governed by the solution of the linear systems especially for large-scale prob-
lems. The emergence of extreme-scale parallel platforms, along with the increasing
number of processing cores available on a single chip pose significant challenges
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for algorithm development. Machines with tens of thousands of multicore proces-
sors place tremendous constraints on the communication as well as memory access
requirements of algorithms. The increase in number of cores in a processing unit
without an increase in memory bandwidth aggravates an already significant mem-
ory bottleneck. Sparse linear algebra kernels are well-known for their poor processor
utilization. This is a result of limited memory reuse, which renders data caching less
effective. In view of emerging hardware trends, it is necessary to develop algorithms
that strike a more meaningful balance between memory accesses, communication,
and computation. Specifically, an algorithm that performs more floating point oper-
ations at the expense of reduced memory accesses and communication is likely to
yield better performance.

Significant amount of effort has been devoted to design and implementation of
parallel sparse linear systems solvers. Existing parallel sparse direct solvers, such
as MUMPS [1–3], Pardiso [39, 40], SuperLU [22], and WSMP [13, 14], are based
on LU factorization. Therefore, the speed improvements realized by such solvers
are often limited due to the inherited limitations of sparse LU factorizations and
sparse triangular forward-backward sweeps. Iterative solvers, such as precondi-
tioned Krylov subspace methods with sparse approximate inverse or incomplete LU
factorization based preconditioners, on the other hand, are often more scalable but
not as robust as direct solvers.

We present two robust hybrid algorithms based on DS factorization for parallel
solution of general sparse linear systems. At the cost of increased computation, DS
factorization for solving the system allows us to minimize the interprocess commu-
nications and, hence, enhances concurrency. The remainder of this chapter is orga-
nized as follows. In Sect. 8.2, we present banded and sparse variations of DS fac-
torization. In Sect. 8.3, we develop two hybrid general sparse linear system solvers
that use DS factorization to solve the preconditioned system.

8.2 Banded and Sparse Parallel DS Factorizations

A number of banded solvers have been proposed and implemented in software pack-
ages such as, LAPACK [4] for uniprocessors, ScaLAPACK [7], and Spike [6, 9, 21,
30, 31, 34, 36, 37] for parallel architectures. The central idea of Spike is to parti-
tion the matrix so that each process (or processing element) can work on its own
part of the matrix, with the processes communicating only during the solution of
the common reduced system. The size of the reduced system is determined by the
bandwidth of the matrix and the number of partitions.

Unlike classical sequential LU factorization of the coefficient matrix A, for solv-
ing a banded linear system Ax = f , the Spike scheme employs the factorization:

A = DS, (8.1)

where D is the block diagonal of A for a given number of partitions. The factor S,
given by D−1A (assuming D is nonsingular), called the spike matrix, consists of the
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Fig. 8.1 Partitioning of the
system (Ax = f ) into three
parts, boxes represent
nonzeros

Fig. 8.2 Spike system:
Sx = g where g = D−1f and
S = D−1A for the system in
Fig. 8.1

block diagonal identity matrix modified by “spikes” to the right and left of each par-
tition. The process of solving Ax = f , then, reduces to a sequence of the following
steps:

• g ← D−1f (modification of the right hand side)
• S ← D−1A (forming the spike system coefficient matrix)
• x̂ ← Ŝ−1ĝ (solving a smaller independent reduced system)
• x ← S−1g (retrieving the full solution).

All the steps of the solution process can be executed in perfect parallelism with
the exception of the solution of the small reduced system. The size of the reduced
system will increase as we increase the number of partitions (or processors). Fur-
thermore, each step can be accomplished using one of several available methods,
depending on the specific parallel architecture and the linear system at hand. This
gives rise to a family of optimized variants of the basic Spike algorithm. For a small
banded system we illustrate the partitioning of the system among three processors
in Fig. 8.1. Figure 8.2 depicts the spike system Sx = g. Finally, Fig. 8.3 shows the
smaller reduced system. Dashed boxes in figures show those elements which could
be near machine precision if A is diagonally dominant system. Ignoring those small
elements will give rise to “truncated” variation of the algorithm allowing more par-
allelism in the solution of the reduced system.
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Fig. 8.3 Reduced system:
Ŝx̂ = ĝ obtained from the
spike system in Fig. 8.2

Fig. 8.4 Partitioning of the
system (Ax = f ) into three
parts, boxes represent
nonzeros

Fig. 8.5 Spike system:
Sx = g where g = D−1f and
S = D−1A for the system in
Fig. 8.4

For the solution of general sparse linear systems (where A is sparse) a new al-
gorithm has been proposed in [24, 28]. Inspired by the banded Spike solver, this al-
gorithm also uses the DS factorization and partitioning of the system (see Figs. 8.4
and 8.5). The resulting S matrix, however, is not banded and consists of “sparse”
spikes. Nevertheless, a smaller reduced system can still be obtained (see Fig. 8.6).
Solution stages follow exactly the banded case.

Both banded and sparse DS factorization based algorithms can be adapted for
efficient and scalable solution of general sparse linear systems as will be discussed
in Sect. 8.3.
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Fig. 8.6 Reduced system:
Ŝx̂ = ĝ obtained from the
spike system in Fig. 8.5

8.3 Solution of General Sparse Linear Systems

In this section, we present two hybrid methods for the solution of general sparse
linear systems which use an iterative method as the outer layer with preconditioning.
In both methods, the solution of preconditioned linear systems are handled by one
of the variations of the DS factorization based banded or sparse solvers described
in Sect. 8.2. The first method relies on reordering systems so that the large entries
in the coefficient matrix are moved closer to the main diagonal. After reordering,
an effective banded preconditioner, M, can be extracted and used for solving the
system with an outer iterative layer. M could be treated as dense or sparse within
the band and hence the diagonal blocks can be handled by a variety of algorithms.
The second method, on the other hand, eliminates the need for the reordering with
weights by dropping small elements when forming the preconditioner. An outer
iterative method is also used for the second method and preconditioned systems are
handled by the sparse variation of the DS factorization.

8.3.1 Weighted Reordering and Banded Preconditioning

Given a linear system of equations, Ax = f , we first apply a nonsymmetric row
permutation as follows:

QAx = Qf. (8.2)

Here, Q is the row permutation matrix that either maximizes the number of nonzeros
on the diagonal of A, or the permutation that maximizes the product of the absolute
values of the diagonal entries [11]. The first algorithm is known as maximum traver-
sal search, while the second algorithm provides scaling factors so that the absolute
values of the diagonal entries are equal to one and all other elements are less than
or equal to one. This scaling can be applied as follows:

(QD2AD1)
(
D−1

1 x
) = (QD2f ). (8.3)

Both algorithms are implemented in subroutine MC64 [10] of the HSL [17] library.
Following the above nonsymmetric reordering and optional scaling, we apply the

symmetric permutation P as follows:
(
PQD2AD1PT

)(
PD−1

1 x
) = (PQD2f ). (8.4)
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The permutation, P, can be chosen such that the magnitude of the nonzeros closer
to the main diagonal are larger than the ones that are far away. Such a reordering
can be obtained by solving the following eigenvalue problem. The second smallest
eigenvalue and the corresponding eigenvector of the Laplacian of a graph have been
used in a number of application areas including matrix reordering [5, 23, 26], graph
partitioning [32, 33], machine learning [29], protein analysis and data mining [16,
20, 42], and web search [15]. The second smallest eigenvalue of the Laplacian of
a graph is sometimes called the algebraic connectivity of the graph, and the cor-
responding eigenvector is known as the Fiedler vector, due to the work of Fiedler
[12].

For a given n × n sparse symmetric matrix A, or an undirected weighted graph
with positive weights, one can form the weighted-Laplacian matrix, Lw , as follows:

Lw(i, j) =
{∑

ĵ �=i
|A(i, ĵ )| if i = j,

−|A(i, j)| if i �= j .
(8.5)

Since the Fiedler vector can be computed independently for disconnected graphs,
we assume that the graph is connected. The eigenvalues of Lw are different than zero
except λ1. The eigenvector x2 corresponding to smallest nontrivial eigenvalue λ2 is
called the Fiedler vector. Since we assume a connected graph, the trivial eigenvector,
x1, is a vector of all ones. In case the matrix, A, is nonsymmetric one can use
(|A| + |AT |)/2, instead.

A state of the art multilevel solver [18] called MC73_Fiedler for computing the
Fiedler vector is implemented in the Harwell Subroutine Library (HSL) [17]. It uses
a series of levels of coarser graphs where the eigenvalue problem corresponding
to the coarsest level is solved via the Lanczos method for estimating the Fiedler
vector. The results are then prolongated to the finer graphs and Rayleigh Quotient
Iterations (RQI) with shift and invert are used for refining the eigenvector. Linear
systems encountered in RQI are solved via the SYMMLQ algorithm. We consider
MC73_Fiedler as one of the best uniprocessor implementation for determining the
Fiedler vector. A new parallel algorithm TraceMin-Fiedler is developed based on the
Trace Minimization algorithm (TraceMin) [35, 38], and parallel results comparing
it to MC73_Fiedler is presented in [25].

We consider solving the standard symmetric eigenvalue problem

Lx = λx (8.6)

where L denotes the weighted Laplacian, using the TraceMin scheme for ob-
taining the Fiedler vector. The basic TraceMin algorithm can be summarized as
follows. Let Xk be an approximation of the eigenvectors corresponding to the
p smallest eigenvalues such that XT

k LXk = Σk and XT
k Xk = I, where Σk =

DIAG(ρ
(k)
1 , ρ

(k)
2 , . . . , ρ

(k)
p ). The updated approximation is obtained by solving the

minimization problem

min tr(Xk − Δk)
T L(Xk − Δk), subject to ΔT

k Xk = 0. (8.7)
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Fig. 8.7 Speed improvement: Time (MC73_Fiedler)/Time (TraceMin-Fiedler) for 9 test problems

This in turn leads to the need for solving a saddle point problem, in each iteration
of the TraceMin algorithm, of the form

[
L Xk

XT
k 0

][
Δk

Nk

]
=

[
LXk

0

]
. (8.8)

We solve first the Schur complement system (XT
k L−1Xk)Nk = XT

k Xk for obtaining
Nk . After Δk is retrieved, (Xk − Δk) is then used to obtain Xk+1 which forms the
section

XT
k+1LXk+1 = Σk+1, XT

k+1Xk+1 = I. (8.9)

The TraceMin-Fiedler algorithm, which is based on the basic TraceMin algorithm,
is given in Algorithm 8.1.

Using the above algorithm, speed improvements over the uniprocessor
MC73_Fiedler using TraceMin-Fiedler on 1, 8, 16, 32, and 64 cores are shown
in Fig. 8.7 for matrices obtained from the University of Florida Sparse Matrix Col-
lection [8]. The platform we use is a cluster with Infiniband interconnection where
each node consists of two six-core Intel Xeon CPUs (Westmere X5670) running at
2.93 GHz (12 cores per node).

Reordering using the Fiedler vector provides matrices in which the large ele-
ments are clustered around the main diagonal as shown in Fig. 8.8 for a matrix
obtained from the University of Florida Sparse Matrix Collection.

Once the reordered system is obtained one can extract a banded preconditioner
and solve the general system using a preconditioned iterative method. Systems in-
volving the preconditioner are solved at each iteration using the DS factorization. In
which systems involving the diagonal blocks in D can be solved by using (i) dense
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Algorithm 8.1: TraceMin-Fiedler algorithm
Data: L is the n × n Laplacian matrix defined in Eq. (8.5), εout is the stopping

criterion for the ‖.‖∞ of the eigenvalue problem residual, p is the
number of eigenpairs to be computed, and q is the dimension of the
search space

Result: x2 is the eigenvector corresponding to the second smallest eigenvalue
of L

1 p ←− 2; q ←− p + 2 ;
2 nconv ←− 0; Xconv ←− [ ];
3 L̂ ←− L + ‖L‖∞10−12 × I ;
4 D ←− the diagonal of L ;

5 D̂ ←− the diagonal of L̂ ;
6 X1 ←− rand(n, q);
7 for k = 1,2, . . . max_it do
8 1. Orthonormalize Xk into Vk ;
9 2. Compute the interaction matrix Hk ←− VT

k LVk ;
10 3. Compute the eigendecomposition HkYk = YkΣk of Hk . The

eigenvalues Σk are arranged in ascending order and the eigenvectors are
chosen to be orthogonal;

11 4. Compute the corresponding Ritz vectors Xk ←− VkYk ;
12 Note that Xk is a section, i.e. XT

k LXk = Σk,XT
k Xk = I;

13 5. Compute the relative residual ‖LXk − XkΣk‖∞/‖L‖∞;
14 6. Test for convergence: If the relative residual of an approximate

eigenvector is less than εout, move that vector from Xk to Xconv and
replace nconv by nconv + 1 increment. If nconv ≥ p, stop;

15 7. Deflate: If nconv > 0,Xk ←− Xk − Xconv(XT
convXk);

16 8. if nconv = 0 then
17 Solve the linear system L̂Wk = Xk approximately with relative

residual εin via the PCG scheme using the diagonal preconditioner D̂;
18 else
19 Solve the linear system LWk = Xk approximately with relative

residual εin via the PCG scheme using the diagonal preconditioner D;

20 9. Form the Schur complement Sk ←− XT
k Wk ;

21 10. Solve the linear system SkNk = XT
k Xk for Nk ;

22 11. Update Xk+1 ←− Xk − Δk = WkNk ;

sequential or multithreaded banded solvers [26] or (ii) a sparse sequential or multi-
threaded direct solver. Second variation has been implemented in [23, 27, 41] and is
called PSPIKE.

We obtained the g3_circuit (1,585,478 unknowns and 7,660,826 nonzeros) ma-
trix from the University of Florida Sparse Matrix Collection. In Fig. 8.9, speed
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Fig. 8.8 Sparsity plots of eurqsa; red and blue indicates the largest and the smallest elements,
respectively

Fig. 8.9 The speed
improvement for g3_circuit
compared to Pardiso using
one core (73.5 seconds)

improvements of PSPIKE, MUMPS and Pardiso are presented for g3_circuit sys-
tem is presented. The platform we use is an Intel Xeon (X5560@2.8GHz) clus-
ter with Infini-band interconnection and 16 GB memory per node. In PSPIKE,
BiCGStab [43] is used as the outer iterative solver and the iterations are stopped
when ‖f − Ax‖∞/‖f ‖∞ ≤ 10−6. The reduced system is truncated to enhance par-
allelism and solved directly.

8.3.2 Domain Decomposing Parallel Sparse Solver

Given a general sparse linear system Ax = f , we partition A ∈ Rn×n into p block
rows A = [A1,A2, . . . ,Ap]T . Let

A = D + R, (8.10)
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Algorithm 8.2: DDPS algorithm
Data: Ax = f and p

Result: x

1 1. D + R ←− A for a given p;

2 2. L̃iŨi ←− Aii (approximate or exact) for i = 1,2, . . . , p;

3 3. R̃ ←− R (by dropping some elements);

4 4. S ←− D̃−1R̃;
5 5. identify nonzero columns of S and store their indices in array c;
6 6. solve Ax = f via a Krylov subspace method with a preconditioner

P = D̃ + R̃ and stopping tolerance εout
7 solve Pz = y

8 (D̃−1Pz = D̃−1y ⇒ (I + S)z = g);

9 6.1. g ←− D̃−1y;

10 6.2. Ŝ ←− (I(c, c) + S(c, c)); ẑ ←− z(c); ĝ ←− g(c);

11 6.3. solve the smaller independent system: Ŝẑ = ĝ (directly or
iteratively with stopping tolerance εin);

12 6.4. z(c) ←− ẑ;
13 6.5. z ←− g − Sz;

where D consists of the p block diagonals of A,

D =

⎛

⎜⎜⎜
⎝

A11
A22

. . .

App

⎞

⎟⎟⎟
⎠

, (8.11)

and R consists of the remaining elements (i.e. R = A − D). We note that the pro-
cess can be viewed as an algebraic domain decomposition. Therefore, we will call
the method described in this section Domain Decomposing Parallel Sparse Solver
(DDPS). The DS factorization in DDPS is for solving the systems involving the
preconditioner.

Let L̃i and Ũi be the incomplete or complete LU factorizations of Aii , where
i = 1,2, . . . , p. We define

D̃ =

⎛

⎜⎜⎜
⎝

Ã11

Ã22
. . .

Ãpp

⎞

⎟⎟⎟
⎠

(8.12)

in which Ãii = L̃iŨi . The DDPS algorithm is shown in Algorithm 8.2.
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Stages 1–5 are preprocessing stages where the right-hand-side is not required.
After preprocessing we solve the system via a Krylov subspace method and using a
preconditioner. The major operations in a Krylov subspace method are: (i) matrix–
vector multiplications, (ii) inner products, and (iii) preconditioning operations in
the form of Pz = y. Details of the preconditioning operations for DDPS are given
in Algorithm 8.2.

Each stage, with the exception of Stage 6.3, can be executed with perfect par-
allelism, requiring no interprocessor communication. In Stage 6.3, the solution of
the smaller system Ŝẑ = ĝ is the only part of the algorithm that requires commu-
nication. We solve this smaller reduced system iteratively via BiCGStab without
preconditioning. The size of Ŝ, which is determined by the nonzero columns it has,
is problem dependent and is expected to have an influence on the overall scalabil-
ity of the algorithm. We employ several techniques to reduce the dimension of Ŝ.
First, we use METIS [19] reordering to minimize the total communication volume,
hence reducing the size of Ŝ. We also use the following dropping strategy: if for
any column j in Ri‖R(:, j)i‖∞ ≤ δ × maxl ‖R(:, l)i‖∞ (i = 1,2, . . . , p) we do not
consider that column when forming Ŝ. Here Ri is the block row partition of R (i.e.
R = [R1,R2, . . . ,Rp]T ). We call this dropping strategy a priori dropping and use it
for obtaining the results in this section. Another possibility is to drop elements after
computing S a posteriori dropping.

We note that dropping elements from R in Stage 3 to reduce the size of Ŝ results
in an approximation of the solution. Furthermore, we can use approximate LU fac-
torization of the diagonal blocks in Stage 2 and solve Ŝẑ = ĝ iteratively in Stage 6.3.
Therefore, we place an outer iterative layer (e.g. BiCGStab) where we use the above
algorithm as a solver for systems involving the preconditioner P = D̃ + R̃, where R̃
consists only of the columns that are not dropped. We stop the outer iterations when
the relative residual at the kth iteration ‖rk‖∞/‖r0‖∞ ≤ εout.

DDPS is a direct solver if (i) nothing is dropped from R, (ii) exact LU factoriza-
tion of Aii is computed, and (iii) Ŝẑ = ĝ is solved exactly. In the case of using DDPS
as a direct solver, an outer iterative scheme is not required. The choices we make in
Stages 2, 3 and 6.3, result in a solver that can be as robust as a direct solver or as
scalable as an iterative solver, or anything in between. We note that the outer itera-
tive layer also benefits from our partitioning strategy as METIS minimizes the total
communication volume in parallel sparse matrix vector multiplications. We further
note that Ŝ consists of dense columns, which we store as a two-dimensional array in
memory, and as a result matrix–vector multiplications can be done via BLAS2 (or
BLAS3 in case of multiple right hand sides).

We obtained the torso3 matrix (259,156 unknowns and 4,429,042 nonzeros)
from the University of Florida sparse matrix collection. In Fig. 8.10 we present for
this matrix the speed improvements of DDPS and MUMPS solvers compared to
Pardiso on a single core of an Intel Xeon (X5560@2.8GHz) cluster with Infini-band
interconnection and 16 GB memory per node, and with εout = 10−6. In this example,
DDPS uses Pardiso for solving systems involving the diagonal blocks of D.
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Fig. 8.10 The speed
improvement for torso3
compared to Pardiso using
one core (49.4 seconds)

8.4 Conclusions

We have presented two alternative formulations of DS factorization based methods
for solution of sparse linear systems on parallel computing platforms. Performance
comparisons to traditional LU factorization based parallel solvers show that com-
bining iterative methods with direct solvers and using DS factorization, one can
achieve better scalability and shorter time to solution.
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Chapter 9
Parallel Block-Jacobi SVD Methods

Martin Bečka, Gabriel Okša, and Marián Vajteršic

Abstract The serial Jacobi algorithm (either one-sided or two-sided) for the com-
putation of a singular value decomposition (SVD) of a general matrix has excel-
lent numerical properties and parallelization potential, but it is considered to be the
slowest method for computing the SVD. Even its parallelization with some parallel
cyclic (static) ordering of subproblems does not lead to much improvement when
comparing with parallel methods based on the matrix bi-diagonalization principle.
However, in the last 10 years some progress has been achieved in increasing the effi-
ciency of the parallel block-Jacobi SVD method by using two new ideas: (i) the new
parallel dynamic ordering of subproblems, and, (ii) the matrix pre-processing by
QR iterations. For the parallel two-sided block-Jacobi algorithm, these ideas were
already thoroughly tested on various parallel platforms, and our implementation can
be faster than the ScaLAPACK routine PDGESVD for some distributions of singular
values. With respect to the one-sided variant, the new parallel dynamic ordering,
when compared to parallel cyclic ordering, can substantially decrease the number
of parallel iteration steps needed for the convergence. However, its more scalable
implementation is desirable because currently it occupies a relatively high portion
of the total parallel execution time.

9.1 Background

This section contains a very brief introduction into the mathematical background be-
hind the Singular Value Decomposition (SVD) of a matrix. Full SVD theory can be
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found in many excellent books, e.g. [7, 13, 16]. Afterwards, some serial algorithms
for the SVD computation, other than the Jacobi method, are briefly mentioned. We
concentrate on dense matrices, so some projection methods that are well-suited for
sparse matrices are omitted.

In what follows, AH denotes the Hermitian operation over the elements of matrix
A, i.e., their complex conjugation and transposition. Further, ‖A‖F and ‖A‖2 are the
Frobenius and spectral norms of matrix A, respectively.

9.1.1 Singular Value Decomposition

The SVD of a complex matrix A of size m × n, (m ≥ n), is defined by

A = UΣV H , (9.1)

where U and V are unitary matrices of orders m and n, respectively, and Σ is an
m × n diagonal matrix. The real, nonnegative diagonal elements σ1 ≥ σ2 ≥ · · · ≥
σn ≥ 0 of Σ are the singular values of A, and the columns of U and V are the left
and right singular vectors, respectively. When m > n, the matrix Σ contains the
zero block of size (m − n) × n at the bottom.

The decomposition A = UΣV H can be also written as AV = UΣ or Avi = σiui

for i = 1,2, . . . , n. The alternative way of saying the same thing is AH U = V ΣH

or AH ui = σivi for i = 1,2, . . . , n and AH ui = 0 for i = n + 1, . . . ,m. When m >

n, the so called thin (or economy-sized) SVD is often computed in the form A =
UnΣnV

H , where Un = [u1, u2, . . . , un] (i.e., only first n left singular vectors are
computed), and Σn = diag(σ1, . . . , σn).

If rank(A) = r with r < n then last n − r singular values are zero and A =
UrΣrV

H
r where Vr = [v1, v2, . . . , vr ]. This is the so-called compact SVD of A

where only first r left and right singular vectors play a role.
Taking only first t, t < r , left and right singular vectors and singular values,

one obtains the rank-t approximation At = UtΣtV
H
t , which is called the rank-t

truncated (partial) SVD of A. Among all rank-t matrices B , B = At is the unique
minimizer of ‖A − B‖F . The truncated SVD is much smaller to store and cheaper
to compute than the compact SVD when t � r and it is the most often used form
of the SVD in applications where the small singular values are of no interest to the
user (e.g. in signal and image filtration, data retrieval computations, etc.).

9.1.2 Serial SVD Algorithms

As is well known, there exists a connection between the SVD of A and the Eigen-
value Decomposition (EVD) of Hermitian matrices AH A, AAH and H(A) =( 0 A

AH 0

)
. There are special algorithms for the EVD of Hermitian matrices; see [1,

7, 13]. Hence, the straightforward approach for the SVD computation of A is to
work with one of these matrices and compute its EVD. However, the explicit com-
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putation of AHA (or AAH ) is not advisable from the numerical point of view. When
A has very small singular values, they are squared, become even smaller and can be
computed with much less accuracy than required. On the other hand, squaring makes
gaps between consecutive singular values even larger, so that the largest eigenvalues
are well separated from the rest of the spectrum and are computed faster. Thus, EVD
methods working with AH A (or AAH ) may be well-suited for the computation of
largest singular values of A only.

In the case of H(A), the dimension of the EVD problem is m + n, which can be
prohibitive in the case of large matrices. Also small singular values of A become
eigenvalues of H(A) in the middle of its spectrum; to compute them accurately re-
quires to use the shift-and-invert method or the Jacobi–Davidson method [1]. Both
methods are rather expensive, because they require the solution of large linear sys-
tems in each iteration step. Also they are used only to compute a limited number of
singular values near some target τ and are not well-suited for the computation of
the whole SVD (or thin SVD).

Therefore, it is common practice to compute the SVD of A using directly ma-
trix A. Most serial SVD algorithms apply some transformations to compute the thin
SVD of A in three phases:

1. Find an n×n unitary matrix V1 and m×n matrix U1 with orthonormal columns
such that UH

1 AV1 = B is n × n bi-diagonal matrix (i.e., only main diagonal and
first superdiagonal are nonzero).

2. Compute the SVD of B: B = U2ΣV H
2 .

3. Multiply U = U1U2 and V = V1V2 to obtain the thin SVD of A: A = UΣV H .

Phase 1, reduction to the bidiagonal form, is computed using a sequence of uni-
tary Householder reflections from the right and left. Its approximate cost is O(mn2)

floating point operations. If singular values only are required, phase 2 costs just
O(n2) floating point operations and phase 3 is omitted. If all left and right singu-
lar vectors are desired, the cost depends strongly on how the SVD of a bidiagonal
matrix B is computed as described below.

Computing the SVD of a bidiagonal matrix B is in some sense similar to the EVD
of a Hermitian, tridiagonal matrix [1, 7, 13]. Hence, modified EVD procedures are
used including:

• The QR algorithm (not to be confused with the QR decomposition): This algo-
rithm computes all singular values and optionally all the left and right singular
vectors of a bidiagonal matrix [8]. The cost is O(n2) for singular values only and
O(n3) for the whole thin SVD.

• Divide-and-conquer algorithm: It divides the matrix in two halves, computes the
SVD of each half, and then “glues” the solutions together by solving a special
rational equation [7]. Halving the matrix can be recursively repeated until a small
submatrices are obtained (say, of order 20), for which the QR algorithm can be
used. The cost depends on the number of halving steps, but in general it is com-
parable with the QR algorithm [1].

• Bisection and inverse iteration: This algorithm is used to find only singular val-
ues and vectors of interest (i.e., singular values are restricted to some interval).
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It works in time O(n) per singular triplet, but has big problems in the case of
clustered singular values when the work can be as high as O(n3), and the orthog-
onality of computed singular vectors may not be guaranteed [10].

The Golub–Kahan–Lanczos algorithm applies the Lanczos algorithm to the Jordan–
Wielandt matrix H(A) and computes the set of left and right singular vectors of A,
and, simultaneously, the bi-diagonalization of A [13]. Singular values are computed
separately from the bidiagonal form. This algorithm requires matrix-vector multipli-
cations both with A and AH and is well-suited especially for large, sparse matrices.
The reduction of the bidiagonal form to the diagonal matrix together with the update
of all left and right singular vectors requires O(m2n + n3) flops.

In summary, SVD methods based on bi-diagonalization can suffer from the loss
of accuracy in computing the smallest singular values [9], since the high relative
accuracy is not guaranteed.

9.2 Two-Sided Block Jacobi SVD Method

Next we shortly discuss the progress achieved in the two-sided block Jacobi SVD
method, when a matrix A ∈C

m×n, m ≥ n, is cut row-wise and column-wise into an
� × � block structure. Details can be found in our published papers [2–4, 15].

Having p processors, each processor contains exactly two block columns of
A, U and V , so that the blocking factor is � = 2p. Notice that this is a rather natural
partition of matrices, because each processor has to solve one 2 × 2 SVD subprob-
lem in each parallel iteration step.

The rate of convergence measured by the decrease of the off-diagonal norm de-
pends on the ordering of p subproblems that are solved in parallel. To achieve faster
convergence, one should maximize the off-diagonal norm that is nullified in each
parallel iteration step. Jacobi’s approach [14] is optimal for the scalar case, because
it annihilates the element with a maximum absolute value in each serial iteration
step. We extended his idea to the parallel, block formulation in paper [4] using the
solution of the maximum-weight perfect matching problem, and we obtained the new
dynamic ordering. As opposed to any fixed, static list of subproblems, the dynamic
ordering takes into account the actual status of the matrix w.r.t. the distribution of
its off-diagonal norm.

Another way, how to further decrease the number of outer parallel iteration steps,
can be based on applying an appropriate preconditioner to the original matrix A at
the beginning of iteration process. Ideally, such a preconditioner should concentrate
the Frobenius norm of A toward diagonal as much as possible.

The connection between diagonal elements of the R- or L-factor of a general ma-
trix A and its singular values (SVs) was studied by Stewart in [16]. He has shown
experimentally that after the QR factorization with column pivoting, followed op-
tionally by the LQ factorization of the R-factor with or without column pivoting,
the absolute values of diagonal elements in the resulting upper or lower triangular
matrix (so called R-values or L-values) are, in general, very good approximations of
SVs of A.
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In paper [15], we have extended this serial preconditioner to the parallel case and
shown that its combination with dynamic ordering can lead to a substantial decrease
of the number of parallel iteration steps. The best results were achieved for well-
conditioned matrices with a multiple minimal SV, where the reduction can be as
large as two orders of magnitude.

In paper [2], the pre-processing step was extended to the method of QR iterations
(QRI) using the optimal data layout for the QR (LQ) factorization. In general, the
use of about six QRI steps can be recommended in the pre-processing, followed by
a (quite limited) number of parallel iterations in the Jacobi algorithm with dynamic
ordering. Such a strategy usually leads to a significant reduction of the total parallel
execution time of the whole algorithm for almost all tested distributions of SVs.

9.3 One-Sided Block Jacobi SVD Algorithm

The one-sided block Jacobi SVD algorithm is suited for the SVD computation of
a general complex matrix A of order m × n, m ≥ n. However, we will restrict
ourselves to real matrices with obvious modifications in the complex case.

We start with the block-column partitioning of A in the form

A = [A1,A2, . . . ,A�],
where the width of Ai is ni, 1 ≤ i ≤ �, so that n1 + n2 + · · · + n� = n.

The serial algorithm can be written as an iterative process:

A(0) = A, V (0) = In,

A(k+1) = A(k)U(k), V (k+1) = V (k)U(k), k ≥ 0.
(9.2)

Here the n × n orthogonal matrix U(k) is the so-called block rotation of the form

U(k) =

⎛

⎜⎜⎜⎜⎜
⎝

I

U
(k)
ii U

(k)
ij

I

U
(k)
ji U

(k)
jj

I

⎞

⎟⎟⎟⎟⎟
⎠

, (9.3)

where the unidentified matrix blocks are zero. The purpose of matrix multiplication
A(k)U(k) in Eq. (9.2) is to mutually orthogonalize the columns between column-
blocks i and j of A(k). The matrix blocks U

(k)
ii and U

(k)
jj are square of order ni

and nj , respectively, while the first, middle and last identity matrix is of order
∑i−1

s=1 ns,
∑j−1

s=i+1 ns and
∑�

s=j+1 ns , respectively. The orthogonal matrix

Û (k) =
(

U
(k)
ii U

(k)
ij

U
(k)
ji U

(k)
jj

)

(9.4)

of order ni + nj is called the pivot submatrix of U(k) at step k. During the iterative
process Eq. (9.2), two index functions are defined: i = i(k), j = j (k) whereby
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1 ≤ i < j ≤ �. At each step k, the pivot pair (i, j) is chosen according to a given
pivot strategy that can be identified with a function F : {0,1, . . .} → Pr = {(l,m) :
1 ≤ l < m ≤ �}. If O = {(l1,m1), (l2,m2), . . . , (lN(�),mN(�))} is some ordering of
P� with N(�) = � (� − 1)/2, then the cyclic strategy is defined by

If k ≡ � − 1 mod N(�) then (i(k), j (k)) = (ls,ms) for 1 ≤ s ≤ N(�).

The most common cyclic strategies are the row-cyclic one and the column-cyclic
one, where the orderings are given row-wise and column-wise, respectively, with
regard to the upper triangle of A. The first N(�) iterations constitute the first sweep.
When the first sweep is completed, the pivot pairs (i, j) are repeated during the
second sweep, and so on, up to the convergence of the entire algorithm.

Notice that in Eq. (9.2) only the matrix of right singular vectors V (k) is iteratively
computed by orthogonal updates. If the process ends at iteration t , say, then A(t) has
mutually highly orthogonal columns. Their norms are the singular values of A, and
the normalized columns (with unit 2-norm) constitute the matrix of left singular
vectors.

The parallel version of the one-sided block Jacobi SVD algorithm implemented
on p processors with the blocking factor � = 2p is given in the form of Algo-
rithm 9.1.

Algorithm 9.1: Parallel one-sided block Jacobi SVD algorithm
1: V = In, � = 2 ∗ p

2: 
 each processor has 2 block columns of A : AL and AR

3: G =
(

GLL GLR

GT
LR GRR

)
=

(
AT

LAL AT
LAR

AT
RAL AT

RAR

)

4: 
 global convergence criterion with a constant ε, 0 < ε � 1
5: while (F (A,�) ≥ ε) do
6: 
 local convergence criterion with a constant δ, 0 < δ � 1
7: if (F (G,�) ≥ δ) then
8: 
 diagonalization of G

9: EVD(G,X)
10: 
 update of block columns
11: (AL,AR) = (AL,AR) ∗ X

12: (VL,VR) = (VL,VR) ∗ X

13: end if
14: 
 parallel ordering–choice of p independent pairs (i, j) of block columns
15: ReOrderingComp(p)

16: Send-Receive(Ak,Vk,Gkk), where k is either L or R

17: end while
18: svL : square roots of diagonal elements of GLL

19: svR : square roots of diagonal elements of GRR

20: 
 two block columns of left singular vectors
21: UL = AL ∗ diag(1/svL), UR = AR ∗ diag(1/svR)



9 Parallel Block-Jacobi SVD Methods 191

Note that the diagonalization of the auxiliary matrix G is equivalent to the mutual
orthogonalization of block columns AL and AR of matrix A. Some parallel ordering
is required in the procedure ReOrderingComp that defines p independent pairs
of block columns of A which are simultaneously mutually orthogonalized in a given
parallel iteration step by computing p eigenvalue decompositions EVD(G,X) of p

auxiliary matrices G. Up to now, some cyclic (static) parallel ordering (see [5, 6])
has been used. In next subsection, we describe a new dynamic ordering that takes
into account the actual status of matrix A with respect to the mutual inclination of
its block columns.

9.3.1 Dynamic Ordering

A big disadvantage of any fixed ordering is the fact that the actual status of orthog-
onality is usually checked only after a whole sweep and one has no information
about the quality of this process at the beginning of a parallel iteration step. In other
words, in a given parallel iteration step one can try to orthogonalize some mutually
‘almost orthogonal’ block columns while neglecting pairs that are far from being
orthogonal. It is clear, at least intuitively, that orthogonalizing block columns with
small mutual angles first would mean to eliminate the ‘worst’ pairs first, and this
would mean (hopefully) the faster convergence of the whole algorithm as compared
with any fixed, cyclic ordering.

Hence, the main question is how to choose p pairs of block columns with small-
est principal angles among all �(� − 1)/2 = p(2p − 1) pairs. The obvious, but very
naive way is to compute, for each column block X, all possible matrix products
XT Y , then to compute the SVD of XT Y and look at the singular values, which are
the cosines of acute principal angles (the smaller angle, the larger cosine). When the
block columns are distributed in processors, to compute matrix products XT Y for
each two different block columns X and Y means to move block columns across
processors, i.e., it leads to heavy communication at the beginning of each parallel
iteration step. Besides that, one needs to compute many matrix products and SVDs.
Moreover, when p pairs of column blocks with smallest principal angles are chosen,
they must meet in processors, which means yet another communication.

Our idea is different. After the first parallel iteration step, the block columns
inside contain mutually orthogonal columns. Suppose that each processor contains
exactly two block columns (this is not substantial for the following discussion).
Moreover, suppose that k ≡ n/2p columns in each block column are normalized so
that each has the unit Euclidean norm. Hence, each column block is the orthonormal
basis of the k-dimensional subspace which is spanned by the column vectors of a
given block column.

Now take two block columns Ai, Aj which should be orthogonalized in a given
parallel iteration step. Having p processors, our goal is to choose p pairs of those
block columns that are maximally inclined to each other, i.e., their mutual position
differs maximally from the orthogonal one.
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This vague description can be made mathematically correct using the notion
of principal angles between two k-dimensional subspaces spanned by two block
columns Ai, Aj . Since Ai and Aj are orthonormal bases of two subspaces with the
equal dimension, the cosines of principal angles are defined as the singular values
of the matrix AT

i Aj . Let σ1 ≥ σ2 ≥ · · · ≥ σk be k singular values of the k × k matrix
AT

i Aj . Then the principal angles θ1 ≤ θ2 ≤ · · · ≤ θk, θi ∈ [0,π/2], 1 ≤ i ≤ k, are
defined as

θi = arccos(σi), 1 ≤ i ≤ k. (9.5)

Since Ai and Aj have orthonormal columns, all singular values of AT
i Aj are in the

interval [0,1], so that the relation (9.5) is well defined.
We are interested in, say, L smallest principal angles, i.e., in L largest cosines

(largest singular values) σ1 ≥ σ2 ≥ · · · ≥ σL. When σ1 = 0, then all σi = 0, 2 ≤ i ≤
k, and two block columns Ai and Aj are perfectly orthogonal; we do not need to or-
thogonalize them explicitly. On the other hand, when all σk are significantly greater
than 0, column blocks Ai and Aj are certainly far from the mutual orthogonality.

However, this approach means that we must explicitly compute the matrix AT
i Aj .

When two block columns Ai and Aj are placed in two different processors, we can
either compute this matrix product in parallel (but for each pair of block columns),
or store both blocks in one processor and compute the matrix product locally using
the LAPACK library. Afterwards, we must compute (or at least somehow estimate)
the largest L singular values and afterwards compute some function of them (e.g.,
the sum of their squares) to get our weight wij for the maximal perfect matching. In
both cases we need again too much communication at the beginning of each parallel
iteration step to construct the actual parallel ordering for that step.

To estimate L largest singular value of the k × k matrix AT
i Aj , we suggest to use

the Lanczos process applied to the symmetric Jordan–Wielandt matrix C,

C ≡
(

0 AT
i Aj

AT
j Ai 0

)
. (9.6)

It is well known that the eigenvalues of the 2k×2k matrix C are ±σ1,±σ2, . . . ,±σk .
Notice that there are k pairs of eigenvalues with the same absolute value.

It follows from the theory of Krylov space methods that the Lanzcos algorithm
applied to a symmetric matrix is the good iterative method for estimating its largest
(in absolute value) eigenvalues. This algorithm, applied to the symmetric Jordan–
Wielandt matrix C, is listed as Algorithm 9.2 for a fixed number of iteration steps L.
Steps 2–9 constitute an adaptation of the Arnoldi method for a symmetric matrix.
Due to the special structure of C (see Eq. (9.6)), the matrix-vector product in step 2
is applied in two substeps: w1

s = AT
i Ajv

1
s , w2

s = AT
j Aiv

2
s , where vs = (v1T

s , v2T
s )T

and ws = (w1T
s ,w2T

s )T .
The result is the orthonormal basis of the Krylov subspace KL(C,x0) formed by

vectors vs, 1 ≤ s ≤ L. Besides that, the coefficients αs and βs are computed that are
stored in the symmetric, tri-diagonal matrix TL (step 10).

In our application, the orthonormal vectors vs are not important (they are used,
for example, in the solution of a linear system of equations). What is most important,
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Algorithm 9.2: Lanczos algorithm for the symmetric Jordan–Wielandt ma-
trix C

1: Choose an even integer L and the vector x0 of length 2k, and compute
β1 = ‖x0‖; v1 = x0/β

2: for s = 1 to L do
3: ws = Cvs

4: if (s �= 1) then
5: ws = ws − βsvs−1
6: end if
7: αs = wT

s vs

8: ws = ws − αsvs

9: βs+1 = ‖ws‖
10: if (βs+1 �= 0) then
11: vs+1 = ws/βs+1
12: end if
13: if (βs+1 == 0) then
14: s = L

15: end if
16: end for
17: Set: TL = tridiag(βi, αi, βi+1)

18: Compute the Frobenius norm of TL.

is the square of the Frobenius norm of TL written in terms of its eigenvalues ωs, 1 ≤
s ≤ L (they are known as Ritz values):

‖TL‖2
F =

L∑

s=1

ω2
s .

As already mentioned, the L Ritz values approximate reasonably well L largest (in
the absolute value) eigenvalues λs of the Jordan–Wielandt matrix C. However, in
our application, there are exactly two eigenvalues of C with the same absolute value
(with opposite signs) and they are related to the squares of singular values of AT

i Aj .
Therefore,

‖TL‖2
F =

L∑

s=1

ω2
s ≈

L∑

s=1

λ2
s = 2

L/2∑

s=1

σ 2
s = 2

L/2∑

s=1

cos2(θs),

i.e., the Frobenius norm of TL can be used as the (good) approximation for the sum
of L/2 largest cosines defining L/2 smallest principal angles between subspaces
span(Ai) and span(Aj ). In other words, we have found an easily computable weight
wij for the maximum perfect matching in the one-sided block Jacobi method. We
stress that we do not need to compute the Ritz values (i.e., the EVD of TL)—the
Frobenius norm squared is enough.
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Moreover, note that in our application TL is not needed in its explicit form. All
that is needed is the square of its Frobenius norm. Since

wij = ‖TL‖2
F =

L∑

s=1

α2
s + 2

L∑

s=2

β2
s ,

‖TL‖2
F can be updated recursively immediately after computing αs and βs+1 in the

sth iteration step of the Lanczos algorithm.
Note that the weight wij takes into account the actual mutual position of two

subspaces span(Ai) and span(Aj ). Therefore, we can simply choose the ‘worst’ p

pairs of column blocks for their parallel orthogonalization by choosing the pairs
with highest values of wij . This is an analogy to the two-sided dynamic ordering
where the actual Frobenius norm of the off-diagonal blocks was taken into account.
Therefore, the above described ordering can be defined as the one-sided dynamic
ordering. To choose the p ‘worst’ block columns for the parallel orthogonalization,
the same maximum-weight perfect matching algorithm on the complete graph with
� vertices and weights wij can be used as in the two-sided case (see [4]).

We have just described how we can quite cheaply compute the weight wij that
is the function of L/2 (estimated) largest cosines of principal angles between sub-
spaces span(Ai) and span(Aj ). The larger the weight, the lower the degree of mutual
orthogonality between these two subspaces. However, at the beginning of each par-
allel iteration step we have to compute those weights for all pairs of block columns
of matrix A. Next we describe how this computation can be done in parallel with-
out sending/receiving whole block columns and without computing explicitly the
matrix products AT

i Aj .
In a parallel environment with p processors and the blocking factor � = 2p,

these computations must be done for all 2(p − 1) Lanczos processes for which each
processor Pj is the master and this work is serialized inside processors. Each pro-
cessor stores the information about two block columns that it currently overviews,
and about all Lanczos processes for which it serves as the master. Therefore, each
processor can read/write from/to the data structure the data/results of its own com-
putations for all Lanczos processes for which it is the master (matrix-vector prod-
ucts, updates of Frobenius norms). To communicate data between all processors, the
MPI collective communication ALLTOALL is used. Two such communications are
needed per one parallel iteration step, i.e., together 2L collective communications
are needed. These communications serve also like the global synchronization steps
in the whole computation.

At the end of computation with Lanczos processes, all processors contain all
weights wij for all block column pairs (excluding those residing in p processors),
which are simply the squares of Frobenius norms of all matrices TL produced in all
Lanczos processes. Therefore, each processor can compute the maximum-weight
perfect matching and the resulting parallel ordering; the algorithm is the same as
for the parallel two-sided block Jacobi method (see [4]). For transferring the chosen
pairs in processors, the optimal parallel scheduling is used (see [3]).
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The global stopping criterion of the iteration process is based on the maximum
value of currently computed weights wij . When using a computer with machine
precision ε, the convergence is reached when

max
i,j

wij < nLε, (9.7)

where n is the matrix order and L is the number of steps in Lanczos processes. In
other words, the computation is finished when the cosines of L/2 largest princi-
pal angles between all column blocks are ‘sufficiently’ small. The local stopping
criterion is similar: A given pair (i, j) of block columns is not orthogonalized when

wij < nLε. (9.8)

In the following tables, we present first numerical results comparing the behavior
of the parallel one-sided block Jacobi SVD algorithm with dynamic ordering with
two different cyclic (static) orderings, static1 (the odd-even ordering CO(0),
see [5]) and static2 (the robin-round ordering DO(0), see [5]). Computations
were performed on the Woodcrest Cluster at Nuernberg-Erlangen University for
random matrices with six various distributions of SVs defined by the variable mode.
mode= 1 corresponds to a multiple minimal singular value, mode= 2 to a multiple
maximal SV, mode= 3 describes a geometric sequence of SVs, mode= 4 defines
an arithmetic sequence of SVs, mode= 5 defines the SVs as random numbers such
that their logarithms are uniformly distributed, and, finally, mode= 6 sets the SVs
to random numbers from the same distribution as the rest of a matrix (i.e., in our
case they were normally distributed).

Table 9.1 contains the results for the SVD of well-conditioned matrices (with
the condition number κ = 101) of order n = 4000 with a variable number of Lanc-
zos steps L. For both static cyclic orderings, the number of sweeps is given by
nit/15 where nit is the number of parallel iterations needed for the convergence of
the whole algorithm. The total parallel execution time Tp is given in seconds. For
mode = 1 and 2, our dynamic ordering needs about five times less parallel itera-
tions than a static ordering. For harder cases, with mode≥ 3, the ratio is about 2–3.
But notice, that the decrease of Tp is much less. The dynamic ordering is about 2.5
times faster for mode = 1 and 2, but only about 1.5 faster for other modes. Also,
Tp increases with L, the number of Lanczos steps, suggesting that the estimation of
weights at the beginning of each parallel iteration step is quite time-demanding.

This conclusion is confirmed in Table 9.2 with results for ill-conditioned matrices
(with κ = 108) where the last row depicts the average time TWC of weight compu-
tations for a given number of Lanzcos steps for mode= 5. With respect to nit, the
situation is similar to well-conditioned matrices. However, it is clearly seen that our
current implementation of the dynamic ordering is not very efficient. For example,
in the case of L = 6 Lanczos steps the time spent in the computation of weights is
60 per cent of Tp. If this portion of algorithm were faster, one would substantially
decrease Tp and be even more efficient as compared to the static ordering.
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Table 9.1 Performance for
n = 4000, p = 8, κ = 101 mode L = 1 L = 2 L = 4 L = 6 static1 static2

1 nit 4 4 4 4 30 30

Tp [s] 5 6 9 11 13 13

2 nit 4 4 4 4 30 30

Tp [s] 5 6 9 11 13 12

3 nit 108 99 98 99 240 270

Tp [s] 225 234 292 354 354 390

4 nit 103 97 98 97 225 240

Tp [s] 212 228 289 345 327 354

5 nit 109 103 99 100 255 285

Tp [s] 230 242 293 360 367 409

6 nit 108 107 106 103 270 285

Tp [s] 226 252 315 371 395 420

Table 9.2 Performance for
n = 4000, p = 8, κ = 108 mode L = 1 L = 2 L = 4 L = 6 static1 static2

2 nit 19 19 19 19 45 45

Tp [s] 21 26 38 50 25 24

3 nit 226 205 169 183 780 795

Tp [s] 515 535 552 696 1233 1252

4 nit 111 105 103 101 240 270

Tp [s] 225 241 303 358 347 390

5 nit 219 208 184 177 795 795

Tp [s] 501 538 597 688 1243 1266

TWC [s] 159 250 345 413

6 nit 219 208 184 177 795 795

Tp [s] 501 538 597 688 1243 1266

9.4 Conclusions

Recent progress in the parallel block Jacobi SVD algorithm has been achieved by
applying two ideas: (i) the new parallel dynamic ordering of subproblems, and (ii)
the matrix pre-processing by QR iterations. For the parallel two-sided block Jacobi
method, these ideas were implemented and tested on various parallel platforms dur-
ing last 10 years and results were published in papers [2–4, 15]. In the case of the
one-sided variant, the results presented here using the new parallel dynamic ordering
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are the most recent ones. They are quite promising, but a more efficient implementa-
tion of the estimation of principal angles between any two block matrix columns is
needed. In other words, one should spend much less portion of the parallel execution
time in the computation and distribution of weights for the dynamic ordering.

It should be stressed, however, that the new dynamic ordering alone cannot make
the parallel one-sided block Jacobi SVD algorithm competitive to the ScaLAPACK
routine PDGESVD. Again, some sort of matrix pre-processing has to be included
similarly as was the case in the two-sided variant [15]. A concentration of the Frobe-
nius norm near the main matrix diagonal is not enough. It has to be coupled with
a special ordering inside EVDs of 2 × 2 subproblems computed in each proces-
sor within a given parallel iteration step (see [11, 12]). We plan to investigate and
implement these ideas in the near future.
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Chapter 10
Robust and Efficient Multifrontal Solver
for Large Discretized PDEs

Jianlin Xia

Abstract This paper presents a robust structured multifrontal factorization method
for large symmetric positive definite sparse matrices arising from the discretization
of partial differential equations (PDEs). For PDEs such as 2D and 3D elliptic equa-
tions, the method costs roughly O(n) and O(n4/3) flops, respectively. The algorithm
takes advantage of a low-rank property in the direct factorization of some discretized
matrices. We organize the factorization with a supernodal multifrontal method af-
ter the nested dissection ordering of the matrix. Dense intermediate matrices in the
factorization are approximately factorized into hierarchically semiseparable (HSS)
forms, so that a data-sparse Cholesky factor is computed and is guaranteed to exist,
regardless of the accuracy of the approximation. We also use an idea of rank relax-
ation for HSS methods so as to achieve similar performance with flexible structures
in broader types of PDE. Due to the structures and the rank relaxation, the per-
formance of the method is relatively insensitive to parameters such as frequencies
and sizes of discontinuities. Our method is also much simpler than similar struc-
tured multifrontal methods, and is more generally applicable (to PDEs on irregular
meshes and to general sparse matrices as a black-box direct solver). The method
also has the potential to work as a robust and effective preconditioner even if the
low-rank property is insignificant. We demonstrate the efficiency and effectiveness
of the method with several important PDEs. Various comparisons with other similar
methods are given.

10.1 Introduction

Large sparse linear systems arise frequently from numerical and engineering prob-
lems, in particular, the discretization of partial differential equations (PDEs). Typi-
cally, there are two types of linear system solver, direct methods and iterative meth-
ods. Direct methods are reliable and are efficient for multiple right-hand sides, but
are often expensive due to the generation of fill-in or loss of sparsity. Iterative meth-
ods take good advantage of sparsity and require less storage, but may diverge or
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converge slowly if no effective preconditioners are available. Also, classical ILU
preconditioners may suffer from breakdown.

Assume we have a system

Ax = b, (10.1)

where A is an n × n symmetric positive definite (SPD) matrix. If A arises from
the discretization of some PDEs. It may be associated with a mesh. In the direct
solution of the system, A or the mesh points can be reordered so as to reduce fill-in.
For example, the nested dissection ordering [12] and its generalizations can be used
to get nearly optimal exact factorization complexity, which is generally O(n3/2) in
2D or O(n2) in 3D [17]. In nested dissection, a mesh is recursively divided with
separators (small sets of mesh points). However, notice that some iterative methods
such as multigrid converge with O(n) complexity for some PDEs.

In the recent years, nearly linear complexity structured approximate factorization
methods have been developed based on a low-rank property. It has been noticed
that, during the direct solution of some PDEs such as elliptic equations, certain off-
diagonal blocks of the intermediate dense matrices or fill-in have small numerical
ranks [1, 2, 4, 19, 33, etc.]. This property is closely related to the idea of the fast mul-
tipole method [14] and the property of certain Green’s functions which are smooth
away from the diagonal singularity under certain conditions. This property can be
used to improve the computational efficiency, with dense intermediate matrices ap-
proximated by rank structured matrices such as quasiseparable, semiseparable, or
hierarchical matrices [2, 10, 15, 16, 28, etc.]. This idea is widely used in the de-
velopment of new fast algorithms. Related techniques have also been shown very
useful in high performance scientific computing [23, 24, 29].

Rank structured methods can be fully integrated into sparse matrix techniques
to provide new fast solvers. In [33] and [25, 26], structured sparse factorization
algorithms are proposed based on the multifrontal method [9, 20] and hierarchi-
cally semiseparable (HSS) matrices [3, 5, 34] or hierarchical matrices. The algo-
rithms have nearly linear complexity and linear storage requirement for some prob-
lems. The method in [33] involves complicated HSS operations, and are mainly
applicable to regular meshes. Later, more general structured multifrontal meth-
ods have been discussed in [30, 31] and [25]. The method in [25] also requires
the mesh to be nearly regular (or the location and layout of the separators in
nested dissection follow the patterns of those in a regular mesh). Both meth-
ods in [25, 33] only work for 2D problems. The 3D method in [26] only works
for regular meshes. All these methods may suffer from the problem of break-
down, especially when a low accuracy is used, say, in preconditioning. In addition,
these methods generally require bounded off-diagonal ranks in the low-rank prop-
erty.

In this paper, we propose a more robust and more general structured multi-
frontal algorithm, following the preliminary discussions in the report [30]. We
use a flexible nested dissection algorithm that works for irregular meshes in
both 2D and 3D. In the meantime, a robust HSS Cholesky factorization algo-
rithm in [35] is generalized to the context of the multifrontal method, so that
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an approximate multifrontal factorization can always be computed without break-
down, in general. We also simplify the process by preserving certain dense op-
erations, which keeps the performance to be similar to the fully structured ver-
sion.

An optimization step is used in the multifrontal scheme (Theorem 10.1 below),
so that the complexity can be lower than similar methods in [11, 25] by up to a
factor of O(logn). Moreover, we relax the classical rank requirement in [25, 33], so
that the structured sparse solution is fast even if the related numerical ranks are not
bounded. Traditionally, HSS operations require the off-diagonal (numerical) ranks
of a dense matrix to be bounded in order to achieve linear complexity. Here, the rank
relaxation idea in [32] indicates that similar complexity can be achieved without
this requirement. That is, the ranks are actually allowed to increase along the block
sizes. This is then generalized to the rank relaxation in our robust sparse solution.
It enhances the flexibility and applicability of structured multifrontal solvers, and
is especially useful for difficult problems such as Helmholtz equations with high
frequencies and 3D equations.

With the relaxed rank requirement, this new method has complexity similar to
the one in [33], but applies to more general sparse matrices including 3D dis-
cretized ones. The factorization costs for some 2D and 3D discretized equations
(elliptic, Helmholtz, etc.) are roughly O(n) and O(n4/3) flops, respectively (see
Theorem 10.1 and Remark 10.1). In contrast, the exact factorization generally costs
at least O(n3/2) in 2D and O(n2) in 3D. We point out that, after the factorization,
the solution cost and the storage requirement are both nearly O(n), including for
3D. Furthermore, the rank structures and the rank relaxation idea indicate that the
performance of the method is relatively insensitive to parameters such as frequen-
cies in some problems.

Our method is especially useful for direct solutions of sparse linear systems with
multiple right-hand sides, involving some parameters, and/or with only modest ac-
curacy desired. It also has the potential to be used as a robust and effective pre-
conditioner when the rank property is insignificant. The method uses two layers of
tree structures, an outer one for the multifrontal method, and an inner one for each
intermediate HSS matrix. It is thus suitable for parallel implementations. Several
numerical examples are shown, including a Poisson equation, an interface problem,
and a linear elasticity equation. The later two are ill conditioned, but our method (as
a solver or a preconditioner) has similar performance for a large range of param-
eters. Both analytical and numerical comparisons with other similar methods are
given.

The remaining sections are organized as follows. Section 10.2 reviews a dense
HSS Cholesky factorization method. New structured multifrontal factorization
and solution algorithms are developed in Sect. 10.4. Section 10.5 shows the al-
gorithm and its complexity analysis. The numerical experiments are given in
Sect. 10.6.
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10.2 Review of HSS Cholesky Factorization of a Dense Matrix

10.2.1 Hierarchically Semiseparable Structures

HSS structures are very useful in handling dense matrices with the low-rank prop-
erty. The definition of a postordering HSS form is as follows [34].

Definition 10.1 Assume F is an N ×N (real) matrix, and I = {1,2, . . . ,N}. Let T

be a binary tree with k nodes, and ti ⊂ I be an index set associated with each node
i of T . Let F |ti×tj denote the submatrix of F with a row index set ti and a column
index set tj in I . We say F is in an HSS form with the corresponding HSS tree T if:

1. T is a postordered full binary tree: each node i is either a leaf or is a non-leaf
node with two children c1 and c2 which are ordered as c1 < c2 < i.

2. For each non-leaf node i, tc1 ∪ tc2 = ti , tc1 ∩ tc2 = φ, and t2k−1 = I .
3. There exists matrices Di,Ui,Vi,Ri,Wi,Bi (called HSS generators) associated

with each node i satisfying

Di =
(

Dc1 Uc1Bc1V
T
c2

Uc2Bc2V
T
c1

Dc2

)
, Ui =

(
Uc1 Rc1

Uc2 Rc2

)
,

Vi =
(

Vc1 Wc1

Vc2 Wc2

)
,

(10.2)

so that Di ≡ F |ti×ti . Here, the generators associated with the root k are empty
matrices except Dk ≡ F .

The HSS form of F is given by the generators. For a non-leaf node i, the genera-
tors Di,Ui,Vi are recursively defined and are not explicitly stored. Clearly, Ui is a
basis for the column space of F −

i = F |ti×(I\ti ), and V T
i is a basis for the row space

of F
|
i = F |(I\ti )×ti . These off-diagonal blocks F−

i and F
|
i are called HSS blocks.

The maximum (numerical) rank of all the HSS blocks is called the HSS rank of F .
If F is symmetric, we can set [34]

Di = DT
i , Vi = Ui, Bj = BT

i (j : sibling of i).

10.2.2 Robust HSS Cholesky Factorization

Given a dense real SPD matrix F , we can use the method in [35] to compute an
approximate Cholesky factorization F ≈ LLT , where L is a lower triangular HSS
matrix. LLT generally exists for any given approximation accuracy. The fundamen-
tal idea can be illustrated in terms of a block 2 × 2 SPD matrix. Factorize the (1,1)
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block of the following matrix:

F ≡
(

F1,1 FT
2,1

F2,1 F2,2

)
=

(
D1

F2,1D
−T
1 I

)(
DT

1 D−1
1 FT

2,1
S

)
,

where F1,1 = D1D
T
1 is the Cholesky factorization of F1,1, and S = F22 −

(F2,1D
−T
1 ) · (D−1

1 FT
2,1)

T is the Schur complement. Compute an SVD F2,1D
−T
1 =

U2B
T
1 UT

1 + Û2B̂
T
1 ÛT

1 , where all the singular values greater than a tolerance τ are
in B1. (The number of singular values in B1 is the off-diagonal numerical rank r .)
Then

F ≈
(

D1

U2B
T
1 UT

1 I

)(
DT

1 U1B1U
T
2

S̃

)
,

where S̃ is an approximate Schur complement given by

S̃ = F2,2 − U2B
2
1UT

2 = S + O
(
τ 2).

That is, a positive semidefinite term is implicitly added to the Schur complement.
Then a Cholesky factorization S̃ = D2D

T
2 yields

F ≈ LLT , L =
(

D1

U2B
T
1 UT

1 D2

)
.

Therefore, we obtain an approximate Cholesky factor L which is a block 2 × 2
HSS form. It is also shown in [35] that, with certain modifications, L can work as
an effective preconditioner when the low-rank property is insignificant. That is, if
the HSS rank of A for a small tolerance is large, L can be obtained by manually
choosing a small rank r (and a large tolerance). The idea can be generalized to
multiple blocks so that L is a general lower-triangular HSS matrix.

10.3 Nested Dissection for General Graphs

Before the numerical factorization of a sparse SPD matrix A, it is often reordered
so as to reduce fill-in. Nested dissection generally leads to the optimal complexity
for 2D and 3D discretized matrices [17].

In the following discussions, we focus on discretized matrices. For general sparse
matrices, we can similarly consider the adjacency graph. Treat the mesh in the
discretization as an undirected graph (V,E). Each mesh point i ∈ V corresponds
to a row and a column of A, and each edge (i, j) ∈ E corresponds to the entries
Aij = Aji �= 0. A separator in V is found to divide the entire mesh into to two sub-
regions, which are further divided recursively. Unlike the method in [33] which uses
coordinates of mesh points, graph partition tools can be employed to handle more
general meshes. Here, we use METIS [18], and follow the basic ideas in Meshpart
[13]. See Figs. 10.1, 10.2 for some examples.
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Fig. 10.1 Multiple levels of separators in nested dissection for an irregular mesh from Meshpart
[13]

Fig. 10.2 Multiple levels of separators in nested dissection for an irregular mesh with a missing
piece, where the matrix is from the University of Florida sparse matrix collection [7]

Lower level separators are ordered before upper level ones. For example,
Fig. 10.3 shows the nonzero pattern of a discretized matrix A after the reordering of
a 3D mesh. During the factorization of A, the elimination of a mesh point mutually
connects points which are previously connected to it [22, 27]. This creates fill-in.

As compared with the methods in [25, 33], our work has more flexibility:

1. The domains can be in any shape, such as with missing pieces (Fig. 10.2).
2. Both 2D and 3D domains can be handled (Fig. 10.3).
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Fig. 10.3 Three levels of
partition of a 3D mesh and
the corresponding nonzero
pattern of A after the nested
dissection ordering

3. The mesh points and separators can be arbitrarily located, and the separators can
be arbitrarily connected to each other.

4. Our method can also work as a black box for general sparse matrices.

10.4 Robust Structured Multifrontal Factorization

In this section, we consider the direct factorization of sparse SPD matrices with the
multifrontal method [9, 20], which is one of the most important sparse factorization
algorithms. During the factorization, if the dense intermediate matrices have the
low-rank property, we use fast robust HSS methods to replace the dense operations.

10.4.1 Multifrontal Method

The multifrontal method [9, 20] reorganizes the sparse Cholesky factorization
A = LLT into local factorizations of intermediate dense matrices, where L is lower
triangular. The factorization is conducted following a tree called elimination tree, or
more generally, an assembly tree. In general, an elimination tree T has n nodes and
a node p is the parent of i if and only if

p = min{j > i|L|j×i �= 0},
where L|j×i represents the (j, i) entry of L. Use T [i] to denote the subtree of T
with root i. Let Ni ≡ {j1, j2, . . . , jd } be the set of row indices of nonzeros in L:,i
(the ith column of L) with i excluded. The ith frontal matrix is defined to be

Fi =
(

A|i×i (A|Ni×i )
T

A|Ni×i 0

)
−

∑

j∈T [i]\i
L|(i∪Ni )×j (L|(i∪Ni )×j )

T .

One step of elimination applied to Fi provides the column L(i∪Ni )×i :

Fi =
(

L|i×i 0
L|Ni×i I

)(
(L|i×i )

T (L|Ni×i )
T

0 Ui

)
,
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Fig. 10.4 Supernodal version elimination tree for the problem in Fig. 10.3, and also a general
pattern of triangular structured multifrontal factorization, where a switching level ls is marked

where Ui is the contribution from T [i] to p and is called the ith update matrix:

Ui = −
∑

j∈T [i]
L|Ni×j (L|Ni×j )

T .

Update matrices are used to form upper level frontal matrices. This process is
called an extend–add operation, which matches indices and add entries, denoted

Fi =
(

A|j×j (A|Ni×i )
T

A|Ni×i 0

)
↔
 Uc1↔
 Uc2↔
 · · ·↔
 Ucq ,

where nodes c1, c2, . . . , cq are the children of i in the elimination tree. The elimina-
tion process then repeats along the elimination tree.

10.4.2 Structured Supernodal Multifrontal Factorization

Here, we use nested dissection to reorder A and to produce a binary tree T as the
assembly tree in a supernodal version of the multifrontal method, where each sepa-
rator is treated as a node in the tree. Figure 10.4(i) shows the assembly tree for the
mesh in Fig. 10.3.

Assume the root of T is at level 0, and the leaves are at the largest level. For
a separator i, let Ni ≡ {j1, j2, . . . , jd} be the set of neighbor separators of i at the
same or upper levels of i in T . Also let tj denote the index set of the neighbor j in
A, and let t̂j denote the subset of tj that is connected to i due to lower level elimi-
nations. The frontal matrix Fi is formed by the block form extend–add operation

Fi = F0
i ↔
 Uc1↔
 Uc2 , F0

i ≡
⎛

⎝ A|ti×ti

(
A|(∪d

j=1 t̂j )×ti

)T

A|(∪d
j=1 t̂j )×ti

0

⎞

⎠ , (10.3)
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Fig. 10.5 Partial
factorization of a frontal
matrix Fi and the HSS tree
used. Fi is shown with its
leading block Fi,i represented
by structured factors. The
subtree T [k] is the HSS tree
for Fi,i

where c1 and c2 are the children of i. For notational convenience, rewrite Fi as

Fi ≡
(

Fi,i F T
Ni ,i

FNi ,i FNi ,Ni

)
. (10.4)

In our structured multifrontal method, we set a switching level ls so that if a
separator i is at level l of T and l > ls , we use exact Cholesky factorizations, and
otherwise, we use HSS Cholesky factorizations. Similar to [33], we can show that
this can help minimize the cost, which is smaller than using structured factorizations
at all levels as in [25] by a factor up to O(logn). This is justified by Theorem 10.1
below. See Fig. 10.4(ii).

Here, we only need to describe the structured factorization part, which includes:

1. Factorizing Fi with the robust HSS method in Sect. 10.2.2, except that the last
diagonal block FNi ,Ni

is not factorized. Then Fi,i ≈ Li,iL
T
i,i .

2. In the meantime, L−1
i,i FNi ,i is compressed into a low-rank form.

3. Computing the update matrix or Schur complement Ui with a low-rank update.

Then Ui participates in the extend–add operation to form the parent frontal ma-
trix. The details are elaborated as follows.

In order to perform the partial factorization of Fi , we use a full HSS tree T with
k+2 nodes, where the left and right children of the root are k and k+1 respectively.
See Fig. 10.5. The subtree T [k] is used as the HSS tree for completely factorizing
Fi,i , and the single node k + 1 is for the unfactorized part FNi ,Ni

. The algorithm
in [35] is applied to Fi following the postordering traversal of the nodes of T . The
factorization stops after the entire T [k] is visited (or after the Schur complement Ui

is computed). At the point, we have an approximate HSS Cholesky factorization

Fi,i ≈ Li,iL
T
i,i, Li,i =

⎛

⎜⎜⎜⎜
⎜⎜
⎝

⎛

⎝
. . . 0

Uck,1,2Bck,1,2U
T
ck,1,1

. . .

⎞

⎠ 0

Uck,2Bck,2U
T
ck,1

⎛

⎝
. . . 0

Uck,2,2Bck,2,2U
T
ck,2,1

. . .

⎞

⎠

⎞

⎟⎟⎟⎟
⎟⎟
⎠

,

(10.5)
where Li,i is a lower-triangular HSS matrix and ck,1, ck,2, . . . are the children of
appropriate nodes as shown in Fig. 10.5.
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Fig. 10.6 The nonzero pattern of a structured multifrontal factor of the matrix A in Fig. 10.3, as
compared with the factor from the exact factorization

Then the frontal matrix Fj in Eq. (10.3) is (approximately) factorized as

Fi ≈
(

Li,i

LNi ,i I

)(
I

Ui

)(
LT

i,i LT
Ni ,i

I

)
, (10.6)

where

LNi ,i = Uk+1B
T
k UT

k , (10.7)

Note that Uk+1 and Bk are explicitly available, and Uk is implicitly represented by
lower level U and R generators and has orthonormal columns (see Eq. (10.2)). Thus,
Ui can be formed explicitly with a low-rank update

Ui = FNi ,Ni
− (

Uk+1B
T
k UT

k

)(
Uk+1B

T
k UT

k

)T

= FNi ,Ni
− (

Uk+1B
T
k

)(
Uk+1B

T
k

)T
. (10.8)

Here, for simplicity, we keep Ui as a dense matrix so that the extend–add opera-
tion is the same as in the standard supernodal multifrontal method (see Remark 10.2
below for more explanations). According to the idea of Schur compensation in [35],
Ui is roughly equal to the exact Schur complement of Fi,i plus a positive semi-
definite term, and is always positive definite, in general. Ui then participates in
the construction of the parent frontal matrix just like in the standard multifrontal
method. Similarly, the parent frontal matrix is also guaranteed to be positive defi-
nite.

This process then proceeds along the assembly tree T . After the elimination, we
have an approximate factorization

A ≈ LLT ,

where L always exists and is called a triangular structured multifrontal factor. See
Fig. 10.6 for an example. L is associated with two layers of postordering trees, the
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outer layer assembly tree T , and an inner layer HSS tree T for each node of T . For
a node i of T , we store a triangular HSS form Li,i and also the U and B generators
in Eq. (10.8). These are used in the structured multifrontal solution.

10.4.3 Structured Multifrontal Solution

Next, we consider the solution of Eq. (10.1) with the structured multifrontal factor.
We solve two structured triangular systems

Ly = b, (10.9)

LT x = y. (10.10)

For convenience, assume b, x, y are partitioned conformably according to the sizes
of the separators. For example, b = (bT

1 , bT
2 , . . . , bT

K)T with the length of bi equal to
the number of mesh points in separator i. Since the situation for a node i at a level
l greater than the switching level ls is trivial (with regular dense solutions), we only
focus on structured solutions when describing the algorithm.

The solution of Eq. (10.9) with forward substitution involves forward (or post-
ordering) traversal of the assembly tree T . For a node i of T , according to
Eq. (10.6), we need to solve a system of the following form for yi :

(
Li,i

LNi ,i I

)(
yi

b̃Ni

)
=

(
bi

bNi

)
, (10.11)

where bNi
is related to bj1 , bj2 , . . . , bjd

(the separators j1, j2, . . . , jd ∈ Ni are con-
nected to i and partially contribute to bNi

). Here, bi is either from b (when i is a
leaf), or is an updated vector due to the solution steps associated with lower level
nodes. (We still use bi for notational convenience. See Eq. (10.12).)

We first solve Li,iyi = bi with a lower triangular HSS solver in [21]. Then
LNi ,iyi is the contribution of separator i to its neighbors. That is, we update bNi

by

bNi
← bNi

− LNi ,iyi = bNi
− Uk+1

(
BT

k

(
UT

k yi

))
, (10.12)

where Eq. (10.7) is used. Again, Uk+1 and Bk are explicitly available, and UT
k yi

can be quickly computed since it is partially formed in the HSS solution of
Li,iyi = bi [21]. Thus, bNi

can be convenient computed, and is then used to up-
date bj1 , bj2, . . . , bjd

.
In the backward substitution stage for solving Eq. (10.10), we traverse the elimi-

nation tree top-down. Similarly for each node i, according to Eqs. (10.6)–(10.7), we
need to solve a system of the following form for xi :

(
LT

i,i UkBkU
T
k+1

I

)(
xi

xNi

)
=

(
yi

xNi

)
,
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Algorithm 10.1: Robust structured multifrontal factorization (RSMF)

1 for nodes (separators) i = 1,2, . . . of T do
2 if i is a leaf then
3 form Fi ≡ F0

i , where F0
i is given in Eq. (10.3)

4 if i is at level l > ls then
5 Compute traditional Cholesky factorization Fi,i = L̂iL̂

T
i of Fi,i in

Eq. (10.4);
6 Compute the Schur complement Ui

7 else
8 Apply the robust HSS Cholesky factorization to Fi so that Eqs. (10.5)

and (10.7) in Eq. (10.6) are computed;
9 Compute Ui with a low-rank update as in Eq. (10.8)

10 if i is a left node then
11 push Ui onto the update matrix stack
12 else
13 Pop Uj from the update matrix stack;
14 Fp = F0

p↔
 Ui↔
 Uj , where p is the parent of i

where xNi
is already available from the solution steps associated with the upper

level separators. This just needs the solution of an upper triangular HSS system
LT

i,ixi = yi − Uk(Bk(U
T
k+1xNi

)).
Note that the space of b can be used to store y and then x. After all the updates

and solutions are performed, b is transformed into x.

10.5 Algorithm, Complexity, and Rank Relaxation

The structured multifrontal factorization algorithm is summarized as follows.
In a parallel implementation, we can traverse the assembly tree levelwise. The

algorithm can be applied to general sparse SPD matrices. But we only consider its
complexity in terms of sparse matrices arising from 2D and 3D discretized PDEs.
The detailed flop count uses an idea of rank relaxation. The following lemma is a
simple extension of the results in [32].

Lemma 10.1 (Dense rank relaxation) Suppose an order N matrix F is hierarchi-
cally partitioned into O(logN) levels of HSS blocks following a perfect binary tree.
Let Nl = O(N/2l ) be the row dimension of the HSS block rows at level l, and rl be
their maximum numerical rank. Then for a given rl , a triangular HSS factorization
of A can be computed in ξfact flops, the HSS system can be solved in ξsol flops, and
the HSS form needs memory size σmem, where the values are given in Table 10.1.
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Table 10.1 Costs and storage of dense-to-triangular-HSS factorization and solution with rank
relaxation, where p ∈ N, and r = max rl is the HSS rank

rl r = max rl ξfact ξsol σmem

O(1) O(1)

O(N2) O(N) O(N)O((log2 Nl)
p), p ≥ 0 O((log2 N)p)

O(N
1/p
l ) p > 3 O(N1/p)

p = 3 O(N1/3) O(N2) O(N logN) O(N)

p = 2 O(N1/2) O(N2 logN) O(N3/2) O(N logN)

Table 10.2 Factorization cost ξfact, solution cost ξsol, and storage σmem of the structured mul-
tifrontal method applied to a discretized matrix A of order n on a 2D n1/2 × n1/2 mesh, where
p ∈ N

rl r = maxi max rl ξfact ξsol σmem

O(1) O(1)
O(n logn)

O(n log logn) O(n log logn)
O((logNl)

p), p ≥ 0 O((logN)p)

O(N
1/p
l ) p ≥ 3 O(N1/p)

p = 2 O(N1/2) O(n log2 n)

Lemma 10.1 and an extension of the derivations in [31] yield the following re-
sults.

Theorem 10.1 (Sparse rank relaxation) Suppose the robust structured multifrontal
factorization method (Algorithm 10.1) and the solution method (Sect. 10.4.3) are
applied to a discretized matrix A of order n on a regular mesh. Assume each frontal
matrix Fi has order O(N) and is treated as F in Lemma 10.1 so that the HSS blocks
at level l of the HSS tree of Fi has row dimension Nl and rank rl . Let the factoriza-
tion cost, solution cost, and memory size of the structured multifrontal method be
ξfact, ξsol, and σmem, respectively. Then if rl satisfies the patterns as in Lemma 10.1,

• If A is obtained from a 2D n1/2 × n1/2 mesh, the results are given in Table 10.2.
The switching level ls = O(logn1/2) is chosen so that the factorization costs be-
fore and after the switching level are the same.

• If A is obtained from a 3D n1/3 × n1/3 × n1/3 mesh, the results are given in
Table 10.3. The switching level ls = O(logn1/3) is chosen so that the solution
costs before and after the switching level are the same.

As an example, for problems such as 2D discrete Poisson’s equations, it is shown
that the maximum rank bound for all nodes i of T is r = maxi maxl = O(1) [4].
Thus, Table 10.2 applies and our solver has nearly linear complexity and nearly
linear storage. In contrast, the factorization method in [11] costs O(n log2 n). More-
over, Theorem 10.1 indicates that we can relax the rank requirement to get similar
complexity. For 3D discrete Poisson’s equations, it is shown that r = O(n1/3) [4].
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Table 10.3 Factorization cost ξfact, solution cost ξsol, and storage σmem of the structured multi-
frontal method applied to a discretized matrix A of order n on a 3D n1/3 ×n1/3 ×n1/3 mesh, where
p ∈ N

rl r = maxi max rl ξfact ξsol σmem

O(1) O(1)

O(n4/3) O(n) O(n)O((log2 Nl)
p), p ≥ 0 O((log2 N)p)

O(N
1/p
l ), p > 3 O(N1/p)

O(N
1/p
l ) p = 3 O(N1/3) O(n4/3) O(n log1/2 n) O(n log1/2 n)

p = 2 O(N1/2) O(n4/3 logn) O(n logn) O(n logn)

In some numerical tests, the pattern of rl is observed to follow the last row of Ta-
ble 10.3.

Remark 10.1 For 2D Helmholtz equations, the rank bound is r = O(logn) with
certain assumptions [11], which only depends on the logarithm of the frequency.
Thus, not only our method has nearly O(n) complexity, but also its performance
is relatively insensitive to the frequency, because of the rank bound and the rank
relaxation. Similar results are also observed for other problems with parameters such
as sizes of discontinuities and Poisson’s ratios. See Sect. 10.6 for some examples.

Remark 10.2 In our discussions, we keep Ui as a dense matrix. It turns out that
this is at most O(logn) times slower than a fully structured version where an HSS
form of Ui is used, but it significantly simplifies the descriptions and implementa-
tions. Moreover, our solution cost is very close to O(n) (such as O(n log logn) ∼
O(n log1/2 n) in Theorem 10.1). The storage for a stack needed for the update matri-
ces is about the same as the factor size. A fully structured robust multifrontal solver
with HSS form extend–add operations will appear in our future work.

Remark 10.3 Moreover, our method has various other advantages:

• Our method applies to PDEs on irregular grids and general sparse problems. The
method in [26, 33] is mainly designed for regular grids, and the one in [25] re-
quires that the mesh is nearly regular, or the separators in the partition roughly
follow the layout in a regular grid.

• Our method applies to both 2D and 3D PDEs, while it is not clear how the ones
in [11, 25, 33] perform in 3D.

• We use a switching level to optimize the cost, and the factorization cost in 2D is
faster than the one in [11] by a factor of O(logn).

• We incorporate robustness enhancement so that, for an SPD matrix A, the struc-
tured factor L always exists and LLT is positive definite, in general. This does
not hold for the methods in [11, 25, 26, 33].

• The algorithm is parallelizable, while the one in [11] is sequential.
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Fig. 10.7 Performance of the new robust structured multifrontal method (NEW) for Eq. (10.13),
as compared with SuperLU [8] and the classical multifrontal method, where NEW uses a relative
tolerance τ = 10−6, the total number of levels in T increases from 14 to 21 when n increases, and
there are about nine levels below the switching level ls

10.6 Numerical Experiments

The method is implemented in Fortran 90, and can work as a fast direct solver. If the
low-rank property is insignificant, the method can serve as an efficient and effective
preconditioner. We test it on various important discretized PDE examples.

Example 10.1 We first demonstrate the efficiency of the solver for the standard five-
point discretized Laplacian from the 2D Poisson equation with a Dirichlet boundary
condition:

−�u = f, u ∈R
2. (10.13)

Here, we let the matrix size n range from 2552 to 40952. Every time n nearly
quadruples. See Fig. 10.7 for the timing and flops of the factorizations. We see that
the robust structured method is much faster than both SuperLU [8] and the exact
multifrontal method when n is large.

The results of the structured solution are shown in Table 10.4. We observe that
both the storage and the solution cost scale nearly linearly in terms of n. The accu-
racy is also well controlled. In addition, with few steps of iterative refinement, the
full computer precision is reached.

Example 10.2 Next, we solve a 3D interface problem with jumps in the coefficient:

−∇ · (c(δ)∇u) = f, u ∈R
3,

c(δ) = 1 or δ.
(10.14)

We follow the choice of c(δ) and the boundary condition in i FEM [6]. The
smaller δ is, the more ill conditioned the problem is. As compared with the exact
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Table 10.4 Storage (number of nonzero entries in L), solution cost, and relative residual of the
new robust structured multifrontal solution for Eq. (10.13)

n 2502 5002 10003 20003 40002

Solution time (s) 7.37e–2 2.52e–1 1.06e0 4.38e0 1.80e1

Solution flops 9.63e6 4.62e7 2.00e8 8.38e8 3.54e8

Storage 2.55e6 1.25e7 5.30e7 2.19e8 9.36e8
‖Ax−b‖2‖b‖2

7.95e–9 1.74e–8 2.31e–8 2.29e–8 1.85e–8

Table 10.5 Solution of Eq. (10.14) in 3D (with discontinuities in the coefficient) using the classi-
cal multifrontal factorization (MF) and our new robust structured factorization (NEW) with a relative
tolerance τ = 10−3, where δ = 10−8

n Flops Storage (Number of nonzeros in L)

1.70e5 2.75e5 5.37e5 12.7e5 1.70e5 2.75e5 5.37e5 12.7e5

MF 0.91e11 4.21e11 12.5e11 41.0e11 1.11e8 2.01e8 4.20e8 9.21e8

NEW 0.80e11 2.44e11 6.44e11 17.2e11 1.05e8 1.39e8 2.34e8 4.60e8

Table 10.6 Solution of Eq. (10.14) in 3D (with discontinuities in the coefficient) using our new
robust structured factorization with a relative tolerance τ = 10−3 for different δ, where the storage
is measured by the number of nonzero entries in L

δ 10−2 10−4 10−6 10−8

Flops 9.84e11 8.90e11 8.15e11 6.44e11

Storage 2.71e8 2.60e8 2.50e8 2.34e8

multifrontal method, our robust structured factorization attains satisfactory speedup
with modest accuracy τ . See Table 10.5. We also test the structured method for
different δ. Table 10.6 indicates that the performance is relatively insensitive to δ.

Example 10.3 Finally, we consider the preconditioning of a linear elasticity equa-
tion

−(μ�u + (λ + μ)∇∇ · u) = f in 	 = (0,1) × (0,1). (10.15)

This equation is frequently solved in structural mechanics. Standard solvers in-
cluding multigrid often suffer from the deterioration of the convergence rate for
large Poisson’s ratios λ/μ or near the incompressible limit. When λ/μ grows, the
condition number of the discretized matrix A grows quickly. Here, we demonstrate
the effectiveness of our structured solver as a preconditioner (although direct factor-
izations may cost less). For A with size n ≈ 1.28 × 106, we manually specify a nu-
merical rank r = 40 in the structured multifrontal preconditioner. The convergence
results for λ/μ varying from 1 to 106 is shown in Table 10.7. The convergence be-
havior is illustrated in Fig. 10.8. We observe that the preconditioned conjugate gra-
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Table 10.7 Convergence of direct CG and preconditioned CG with our robust structured multi-
frontal solver (CG-RSMF) as a preconditioner for solving Eq. (10.15), where direct CG is set to
stop when certain number of iterations is reached, and Niter is the number of iterations.

λ/μ 1 102 104 106

Direct CG Niter 3917 7997 14950 31004

Flops 1.28e16 2.61e16 4.87e16 1.01e17
‖Ax−b‖2‖b‖2

1.00e–12 1.33e–9 3.92e–9 4.89e–10

CG-RSMF Niter 40 47 72 141

Flops 1.31e14 1.54e14 2.36e14 4.61e14
‖Ax−b‖2‖b‖2

8.17e–16 6.54e–16 7.73e–16 4.66e–16

Fig. 10.8 Convergence of
direct CG and preconditioned
CG with our robust structured
multifrontal solver
(CG-RSMF) as a
preconditioner for solving
Eq. (10.15)

dient (CG) method converges quickly for all λ/μ. In comparison, direct CG costs
more and has difficulty converging for large λ/μ.
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Chapter 11
A Preconditioned Scheme for Nonsymmetric
Saddle-Point Problems

Abdelkader Baggag

Abstract In this paper, we present an effective preconditioning technique for solv-
ing nonsymmetric saddle-point problems. In particular, we consider those saddle-
point problems that arise in the numerical simulation of particulate flows—flow of
solid particles in incompressible fluids, using mixed finite element discretization of
the Navier–Stokes equations.

These indefinite linear systems are solved using a preconditioned Krylov sub-
space method with an indefinite preconditioner. This creates an inner–outer itera-
tion, in which the inner iteration is handled via a preconditioned Richardson scheme.
We provide an analysis of our approach that relates the convergence properties of
the inner to the outer iterations. Also “optimal” approaches are proposed for the
implicit construction of the Richardson’s iteration preconditioner. The analysis is
validated by numerical experiments that demonstrate the robustness of our scheme,
its lack of sensitivity to changes in the fluid–particle system, and its “scalability”.

11.1 Introduction

Many scientific applications require the solution of saddle-point problems of the
form

[
A B

BT 0

][
u
p

]
=
[

a
b

]
, (11.1)

where A ∈ R
n×n and B ∈ R

n×m with m ≤ n, and where the (n + m) × (n + m)

coefficient matrix

A =
[

A B

BT 0

]
,

is assumed to be nonsingular. Such systems are typically obtained when “Lagrange
multipliers” or mixed finite element discretization techniques are employed. Exam-
ples of these include, but are not limited to, the equality-constrained quadratic pro-
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gramming problems, the discrete equations which result from the approximation of
elasticity problems, Stokes equations, and the linearization of Navier–Stokes equa-
tions [2, 15, 16, 29, 39, 47]. When the matrix A is symmetric and positive definite,
the problem (11.1) has n positive and m negative eigenvalues, with well defined
bounds [57]. If the matrix A is symmetric indefinite or nonsymmetric, little can be
said about the spectrum of the indefinite matrix A .

Much attention has been paid to the case when A is symmetric positive defi-
nite, e.g. see [1, 6, 8, 9, 11–13, 18, 22, 25–28, 32, 40, 46, 54–56, 64, 71–75], and
more recently to the case when A is nonsymmetric [3, 4, 10, 14, 17, 19–21, 23, 24,
31, 41, 44, 45, 61–63, 65]. In this paper, A is assumed to be nonsymmetric and B

of full column rank. Here, we adopt one of the symmetric indefinite precondition-
ers studied, among others, by Golub and Wathen [31], for solving Eq. (11.1) via a
preconditioned Krylov subspace method, such as GMRES, with the preconditioner
given by

M = 1

2

(
A + A T

) =
[
As B

BT 0

]
. (11.2)

Here, As is the symmetric part of A, i.e., As = (A + AT )/2. The motivating
application in our paper produces a block diagonal matrix As in which each block
has the following properties:

1. positive definite and irreducibly diagonally dominant, i.e., for each diagonal
block A

(k)
s = [a(s)

ij ] is irreducible, and a
(s)
ii ≥∑j �=i |a(s)

ij | with strict inequality
holding for at least one i, and

2. ‖As ‖F ≥ ‖Ass ‖F where ‖ · ‖F denotes the Frobenius norm, and Ass = (A −
AT )/2 is the skew symmetric part of A.

Thus, the preconditioner M is nonsingular, and the Schur complement,
−(BT A−1

s B), is symmetric negative definite.
The application of the preconditioner M in each Krylov iteration requires the

solution of a linear system of the form
[
As B

BT 0

][
x
y

]
=
[

f
g

]
. (11.3)

The focus of our study is the development of a preconditioned Richardson iter-
ative scheme for solving the above symmetric indefinite system (11.3) in a nested
iterations setting that ensures the convergence of the inner iterations.

This system can be reformulated as

As x = f − B y, (11.4)
(
BT A−1

s B
)

y = BT A−1
s f − g. (11.5)

Thus, one may first solve Eq. (11.5) to obtain y, then solve Eq. (11.4) to get x.
Using a conjugate gradient algorithm for solving Eqs. (11.5), and (11.4), one cre-
ates an inner–outer iterative scheme [11]. This is the approach used in the classical
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Uzawa scheme [1]. It turns out that in order to ensure convergence of the outer it-
eration, it is necessary to solve systems in the inner iteration with relatively high
accuracy [13, 22]. For large-scale applications, such as the numerical simulation of
particulate flows, solving linear systems involving As or (BT A−1

s B) is not practi-
cal, as the action of A−1

s must be computed on various vectors. Consequently, the
approach we adopt here is to replace the cost of computing the action of A−1

s by
the cost of evaluating the action of some other “more economical” symmetric posi-
tive definite operator Â−1 which approximates A−1

s in some sense. Thus, the linear
system (11.4) is solved via the iteration

xk+1 = (
I − Â−1As

)
xk + Â−1f, (11.6)

where f = f − B y and Â is an appropriate symmetric positive definite splitting that
assures convergence, i.e., α = ρ(I − Â−1As) < 1, where ρ(·) is the spectral radius.

Similarly, we replace As by Â in (11.5) and solve the resulting “inexact” system,

(
BT Â−1B

)
y = BT Â−1f − g, (11.7)

instead of the original system Eq. (11.5), via the iteration

yk+1 = [
I − Ĝ−1(BT Â−1B

)]
yk + Ĝ−1ŝ, (11.8)

where ŝ = BT Â−1f − g, and Ĝ−1 is an inexpensive symmetric positive definite

approximation of the inverse of the inexact Schur complement (BT Â−1B)
−1

that
assures convergence of Eq. (11.8), i.e., β = ρ(I − Ĝ−1(BT Â−1B)) < 1. Moreover,

Ĝ−1 is chosen such that (I − Ĝ− 1
2 (BT Â−1B)Ĝ− 1

2 ) is positive definite.
Similarly, if we define the symmetric preconditioner M̂ to the system (11.3) as

M̂ =
[

Â B

BT −Ĝ + (BT Â−1B)

]
, (11.9)

we obtain the following preconditioned Richardson iterative scheme for solving Eq.
(11.3):

[
xk+1
yk+1

]
=
[

xk

yk

]
+
[

Â B

BT −Ĝ + BT Â−1B

]−1 {[
f
g

]
−
[
As B

BT 0

][
xk

yk

]}
, (11.10)

that is convergent if and only if ρ(I − M̂ −1M ) < 1.
Thus, our proposed nested iterative scheme is shown in Fig. 11.1 in which the

outermost iteration is that of a Krylov subspace method (we use restarted GMRES
throughout this paper), and the preconditioning operation itself is doubly nested.
Our focus here is the development of an algorithm for the most inner iteration, i.e.
solving systems involving the symmetric indefinite preconditioner (11.2) using the
preconditioned Richardson iteration (11.10).
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Fig. 11.1 A nested iterative
scheme

In the Golub–Wathen study [31], an iteration of the form
[
As B

BT 0

][
uk+1
pk+1

]
=
[
(As − A) 0

0 0

][
uk

pk

]
+
[

a
b

]
,

is used, which does not always converge, and when used as an inner iteration within
full GMRES, systems of the form M z = r, in the inner-most loop {c} of Fig. 11.1,
are solved using a direct scheme. This could be as time-consuming as solving di-
rectly the nonsymmetric system (11.1), especially for very large systems.

In our study, the monotone convergence of our inner iteration (11.10) is guaran-
teed, and the performance of our nested scheme in Fig. 11.1 does not degrade as
the mesh size decreases. Moreover, the construction of the preconditioner M̂ of the
Richardson iteration is simple and economical.

In this paper, we analyze the iterative scheme (11.10) and show that a sufficient
condition for monotone convergence is max{α,β } < (

√
5 − 1)/2, and thus relating

the rate of convergence of the inner iterations to the outer iteration, even though Eq.
(11.8) is not the iteration that corresponds to the exact system (11.5) to be solved
but to a modified one, (11.7), which, we will show, is not required to be solved
accurately.

We use a simple explicit approximate inverse A−1
0 of A−1

s for which α0 =
ρ(I − A−1

0 As) < 1 and obtain an iteration for improving the convergence rate of

Eq. (11.6). The matrix Ĝ−1 is not formed explicitly and the solution of systems
involving Ĝ is achieved via the CG scheme, thus the only operations involved in
the proposed nested iterative scheme (11.10) are matrix-vector multiplications and
vector operations.

Our preconditioning strategy of the inner Richardson iteration is motivated by
the study of Bank, Welfert and Yserentant [6] on a class of iterative methods for
solving saddle-point problems. We extend it in this paper with some new results
and a new analysis that relates the proposed iterative scheme to Uzawa’s method.
Further, we use our scheme for solving those indefinite linear systems that arise
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from the mixed finite element discretization of 2D particulate flow problems, using
P2-P1 type elements.

In what follows, we introduce the motivating application, the proposed nested
iterative scheme, and analyze its convergence properties. We propose “opti-
mal” approaches for the construction of Â−1 and Ĝ−1 approximating A−1

s and

(BT Â−1B)
−1

, or their actions on vectors, so as to assure convergence of our
scheme. We also demonstrate the robustness of our nested iterative scheme as a
preconditioner, its lack of sensitivity to changes in the fluid–particle systems, and
its “scalability”.

11.2 Motivating Application

Direct numerical simulation of particulate flows is of great value in a wide range
of industrial applications such as enhancing productivity of oil reservoirs and the
manufacturing process of polymers. From the numerical point of view, there are
three classes of algorithms to handle such direct simulations, namely the space-time
technique [35–38, 69], the “fictitious domain” formulation [30], and the “Arbitrary
Lagrangian Eulerian” formulation, e.g. see [34, 42, 43, 48–51, 70]. All use finite
elements for spatial discretization, and are based on a combined weak formulation,
in which fluid and particle equations of motion are combined into a single weak
equation of motion from which the hydrodynamic forces and torques on the particles
have been eliminated, e.g. see [3, 4, 42] for details.

The particulate flow system is represented via the use of projection matrices that
describe the constraints imposed on the system by the boundary conditions on the

particle surfaces, where the vector velocity is reordered as [uT
I , uT

Γ ]T , in which
uΓ contains the components of the velocity field associated with the vertices on
the particle boundaries, with the projection matrix applied to the decoupled system
leading to a nonsymmetric (indefinite) saddle-point matrix with “borders”.

For the direct numerical simulation of particulate flows, one must simultaneously
integrate the Navier–Stokes equations, which govern the motion of the fluid, and
the equations of rigid-body motion. These equations are coupled through the no-
slip condition on the particle boundaries, and through the hydrodynamic forces and
torques which appear in the equations of the rigid-body motion, e.g. see [3, 4, 42].

To establish a structurally symmetric matrix formulation of the coupled fluid–
particle system, e.g. see [51] or [42], the first step is to assemble the matrices cor-
responding to the decoupled problem, where the no-slip condition is not taken into
consideration. The Jacobian J̃ of the decoupled fluid–particle system has the fol-
lowing algebraic form:

J̃ =
⎡

⎣
A B

BT 0
Mp

⎤

⎦ ,
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in which case, the variable unknowns are ordered as follows

⎡

⎣
u
p
U

⎤

⎦
u : fluid velocity at each node
p : fluid pressure
U : particles velocity vector

and where Mp denotes the mass matrix of the np particles. Mp is block-diagonal
and its size is 3np for 2D motion.

Since the approximate solution of the particulate flow problem is to be found
in the subspace satisfying the no-slip condition, the constraints can be described in
terms of a projection matrix. To clarify this further, the velocity unknowns may be
divided into two categories, uI for interior velocity unknowns and uΓ for veloc-
ity unknowns on the surface of the particles. The Jacobian of the decoupled fluid–
particle system is reordered accordingly, and hence the corresponding linear system
is expressed in the following form:

⎡

⎢⎢
⎣

AII AIΓ BI

AΓ I AΓ Γ BΓ

BT
I BT

Γ 0
Mp

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

uI

uΓ

p
U

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

fI
fΓ
g
fp

⎤

⎥⎥
⎦ .

The no-slip condition on the surface of the particles requires that uΓ = QU,
where Q is the projection matrix from the space of the surface unknowns onto the
particle unknowns. Hence,

⎡

⎢⎢
⎣

uI

uΓ

p
U

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

In×n 0 0
0 0 Q

0 Im×m 0
0 0 I3np×3np

⎤

⎥⎥
⎦

⎡

⎣
uI

p
U

⎤

⎦ = Q̃

⎡

⎣
uI

p
U

⎤

⎦ .

Finally, the Jacobian of the nonlinear coupled fluid–particle system can be writ-
ten as J = Q̃T J̃ Q̃, and we obtain the nonsymmetric bordered “saddle-point” prob-
lem,

⎡

⎣
AII BI AIΓ Q

BT
I 0 BT

Γ Q

QT AΓ I QT BΓ QT AΓ Γ Q + Mp

⎤

⎦

⎡

⎣
uI

p
U

⎤

⎦ =
⎡

⎣
fI
g
f̄p

⎤

⎦ , (11.11)

where the last block-column has a size equal to 3np for 2D motion.
Writing the Jacobian as

J =

⎡

⎢⎢
⎣

A B

C T D

⎤

⎥⎥
⎦ , (11.12)
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Fig. 11.2 Field ordering

in which case, the variable unknowns are (always) ordered as follows, see Fig. 11.2
⎡

⎣
uI

p
U

⎤

⎦
uI : fluid velocity for the interior nodes
p : fluid pressure
U : particles velocity vector

and where the different block matrices are given by

A =
[
AII BI

BT
I 0

]
∈ R

(n+m)×(n+m), B =
[
AIΓ

BT
Γ

]
Q ∈ R

(n+m)×3np ,

C T = QT
[
AΓ I BΓ

] ∈ R
3np×(n+m), D = QT AΓ Γ Q + Mp ∈ R

3np×3np .

It can be shown, e.g. see [3, 4], that

1. A and D are nonsingular, with (D + DT )/2 symmetric positive definite,
2. B and C are of full-column rank,
3. As = (AII + AT

II )/2 is symmetric positive definite, and that AII and AΓ Γ are
positive stable, and

4. for the application considered here, Reynolds number ≤ 100, our choice of an
effective time step, �t = 0.01, and the discretization scheme adopted, the block
diagonal matrix As is assured of having irreducibly diagonally dominant blocks.

Example 11.1 To verify numerically the above observations, we have conducted the
simulation of a sedimentation experiment with 20 circular particles of diameter 1.0
in a channel of width 12.8 and length 124.0. Some information about the associated
linear systems are displayed in Table 11.1, and the eigenvalue distribution of AII is
shown in Fig. 11.3. We clearly see that all the eigenvalues of AII are on the right
half of the complex plane, i.e., they all have positive real parts.
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Table 11.1 Description of a small problem

Time �t = 0.01, Re = 100.0, Newton Iteration 5, 20 Particles
1

2
‖AII + AT

II ‖F

1

2
‖AII − AT

II ‖F size(AII ) size(A ) cond(A )

5�t 4 × 103 13 3994 4733 108

Fig. 11.3 Eigenvalue distribution of AII at time step 5 (zoomed)

11.2.1 Properties of the Matrices

As the simulation time progresses, the structure of A , its size and bandwidth vary,
and its condition number increases. Generally, the flow simulation is characterized
by three stages: the beginning, middle, and end of the simulation. Throughout the
beginning and end stages, ‖As‖F � ‖Ass‖F . In the middle stage, however, as the
particulate flow becomes fully coupled, the Frobenius norm of the skew-symmetric
part, ‖Ass‖F , increases to approach ‖As‖F . Our experience indicates that Krylov
subspace methods fail in solving Eq. (11.11) with classical (“black-box”) precondi-
tioners, even after only a few time steps, e.g., see [34, 42].
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11.3 Solution Strategy

Since D is of much smaller dimension than A in Eq. (11.12), we solve Eq. (11.11)
using the Schur complement approach by solving,

⎡

⎢
⎢
⎣

A B

S1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x̃

ỹ

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

f

f̂p

⎤

⎥
⎥
⎦ .

We first solve the Schur complement system S1̃y = f̂p for ỹ, where

S1 = [
D − C T A −1 B

]
and f̂p = [

f̄p − C T A −1 f
]
,

and once ỹ is obtained, x̃ is recovered by solving,

A x̃ = f − B ỹ,

via a preconditioned Krylov subspace method, such as GMRES [59]. In any case,
the major task in solving Eq. (11.11) is the solution of a nonsymmetric saddle-point
problem.

In the remainder of this paper, we concentrate on solving saddle-point systems
of the form A x̃ = b using a Krylov subspace method such as GMRES, see Algo-
rithm 11.1, with the indefinite preconditioner,

M = 1

2

(
A + A T

) =
[
As BI

BT
I 0

]
.

The inclusion of the exact representation of the (1,2) and (2,1) blocks of the pre-
conditioner M leads one to hope for a more favorable distribution of the eigenvalues
of the (left-)preconditioned linear system. The eigenvalues of the preconditioned co-
efficient matrix M −1A may be derived by considering the generalized eigenvalue
problem

[
AII BI

BT
I 0

][
x
y

]
= λ

[
As BI

BT
I 0

][
x
y

]
,

which has an eigenvalue at 1 with multiplicity 2m, and (n − m) eigenvalues which
are defined by the generalized eigenvalue problem, e.g. see [39]

QT
2 AII Q2 z = λ QT

2 As Q2 z, (11.13)

where BI = [Q1Q2][R
0 ]. Thus, since AII = As + Ass , Eq. (11.13) is equivalent to

(λ − 1) = z� QT
2 Ass Q2 z

z� QT
2 As Q2 z

, ∀z �= 0,



228 A. Baggag

Algorithm 11.1: Generalized Minimum RESidual (GMRES) [59]

1: Compute r0 = M −1(b − A x̃0),β = ‖ r0 ‖2, v1 = r0/β .
2: for j = 1, . . . ,m do
3: Compute w = M −1(A vj ).
4: for i = 1, . . . , j do
5: hi,j = 〈w, vi〉.
6: w = w − hi,j vi .
7: end for
8: Compute hj+1,j = ‖w‖2 ;

andvj+1 = w/hj+1,j .
9: end for

10: Define Vm = [v1 · · · vm

]
, H̄m = {hi,j }1≤i≤j+1;1≤j≤m

11: Compute ȳm = argminȳ ‖β e1 − H̄m ȳ‖2 ;
and ;
x̃m = x̃0 + Vm ȳm.

12: If satisfied Stop, else set x̃0 = x̃m ;
and GOTO 1.

which means that if As is dominant, the eigenvalues λ are clustered around (1 ±
iγ ). Hence, the solution procedure is as follows. Solve linear systems involving the
matrix A , which is the (1,1) (indefinite) saddle-point block of the Jacobian given in
Eq. (11.11), by a preconditioned Krylov subspace method. Choosing an indefinite
preconditioner M of the form Eq. (11.2), Step 3 of Algorithm 11.1, i.e., operations
of the form w = M −1(A v) are handled via the proposed nested iterative scheme.
Thus the algorithms presented in this paper are for solving the systems in the inner-
most loop of Fig. 11.1.

In what follows, we drop the subscript “I”.

11.4 Proposed Nested Iterative Scheme

The matrix M can be factored as

M =
[

As 0
BT I

][
A−1

s 0
0 −G

][
As B

0 I

]
, (11.14)

where G = (BT A−1
s B). For many practical problems, an important feature of the

system (11.14) is that the action of the matrices A−1
s and G−1 can be approximated

by “simple” matrices Â−1 and Ĝ−1, in the sense that even though the computational
cost of solving linear systems with the coefficient matrices Â and Ĝ is low, the
overall behavior of the algorithm lends itself to fast convergence. Other methods,
with optimal order of computational complexity, are available for solving linear
systems involving As , such as multigrid methods, e.g. see [5, 18, 71, 72].
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The factorization (11.14) suggests an approximation of M given by

M̂ =
[

Â 0
BT I

][
Â−1 0

0 −Ĝ

][
Â B

0 I

]
, (11.15)

where Â−1 and Ĝ−1 are approximations of A−1
s and (BT Â−1 B)

−1
, respectively,

and are assumed to be symmetric and positive definite.
Observing that the symmetric indefinite preconditioner M̂ in Eq. (11.15) is non-

singular, with exactly n positive and m negative eigenvalues, the nested iterative
scheme for solving the symmetric saddle-point problem (11.3) consists of the pre-
conditioned Richardson iteration (11.10),

[
xk+1
yk+1

]
=
[

xk

yk

]
+
[

Â B

BT −Ĝ + BT Â−1B

]−1 {[
f
g

]
−
[
As B

BT 0

][
xk

yk

]}
,

where we consider the splitting M = M̂ − N , with N being the defect matrix of
the splitting.

This is equivalent to solving the following set of equations, which may be re-
garded as a version of a preconditioned inexact Uzawa algorithm with an additional
correction step for x, e.g. see [6, 74, 75]:

Â
(
x̂k+1 − xk

) = f − [As xk + B yk],
Ĝ (yk+1 − yk) = BT x̂k+1 − g,

Â
(
xk+1 − x̂k+1

) = −B (yk+1 − yk).

The corresponding algorithm is outlined by the following steps in Algo-
rithm 11.2.

Algorithm 11.2: Nested iterative scheme
1: Initialize: x = x0, y = y0.
2: for k = 0,1, . . . , until convergence do
3: Compute rk = f − [As xk + B yk

]
.

4: Compute sk = g − BT xk .
5: Solve Â ck = rk .
6: Solve Ĝdk = BT ck − sk .
7: Solve Â ck = rk − B dk .

8: Update

[
xk+1
yk+1

]
=
[

xk

yk

]
+
[

ck

dk

]
.

9: end for

Remark 11.1 Step 7 in Algorithm 11.2 may be rearranged as

ck := ck − Â−1(B dk),
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where Â−1(B dk) is obtained as a byproduct of Step 6. This can save the application
of Â−1 at the end of every outer iteration, and thus improves the efficiency of the
algorithm.

In each iteration step k of the nested iterative algorithm, five matrix-vector mul-
tiplications are required, namely As xk , B yk , BT xk , BT ck , and B dk ; in addition to
solving three systems, two of them involve Â and the third involves Ĝ.

11.5 Convergence Analysis of the Nested Iterative Scheme

The iteration matrix of the preconditioned Richardson iteration (11.10) is given by

K = (I − M̂ −1 M
)= M̂ −1(M̂ − M ),

where M and M̂ are given by Eqs. (11.2) and (11.9), respectively. Observing that

M̂ − M =
[
Â − As 0

0 −Ĝ + (BT Â−1B)

]
,

and assuming that Â and Ĝ are symmetric positive definite, then

¯K =
[
Â

1
2 0

0 Ĝ
1
2

]

K

[
Â− 1

2 0

0 Ĝ− 1
2

]

,

has the same eigenvalues as K , and is given by

¯K =
[
I − B̄B̄T B̄

B̄T −I

][
(I − Ā) 0

0 −(I − Ḡ)

]
, (11.16)

in which

Ā = Â− 1
2 As Â− 1

2 ∈ R
n×n, (11.17)

B̄ = Â− 1
2 B Ĝ− 1

2 ∈ R
n×m, (11.18)

Ḡ = Ĝ− 1
2
(
BT Â−1B

)
Ĝ− 1

2 = B̄T B̄ ∈ R
m×m. (11.19)

Hence, the eigenvalues of K are close to zero when Â−1 and Ĝ−1 are close to

A−1
s and (BT Â−1B)

−1
, respectively.

Theorem 11.1 Let α and β be the rates of convergence of the inner iterations (11.6)
and (11.8), respectively, defined by

α = ρ
(
I − Â−1As

) = ∥∥ I − Ā
∥∥

2 < 1,
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and

β = ρ
(
I − Ĝ−1(BT Â−1B

) ) = ∥∥ I − Ḡ
∥∥

2 < 1,

then, in general, the iterative scheme (11.10) is monotonically convergent if

max{α, β} <

√
5 − 1

2
≈ 0.6180.

Moreover, if β ≡ 0, then a sufficient condition for convergence is α < 1, and
conversely, if α ≡ 0, then it suffices to have β < 1 to guarantee convergence of Eq.
(11.10).

Proof We divide the proof into three cases.

Case 1: α ≡ 0.
This special case corresponds to (I − Ā) ≡ 0, i.e.,

¯K =
[
0 −B̄ (I − Ḡ)

0 (I − Ḡ)

]
=⇒ ρ( ¯K ) = ∥∥ I − Ḡ

∥∥
2 = β.

Case 2: β ≡ 0.
This special case corresponds to (I − Ḡ) ≡ 0, i.e.,

¯K =
[
(I − B̄ B̄T )(I − Ā) 0

B̄T (I − Ā) 0

]
=⇒ ρ( ¯K ) = ρ

[(
I − B̄ B̄T

)(
I − Ā

)]
.

Therefore since α = ‖ I − Ā‖2, ρ( ¯K ) ≤ α ‖ I − B̄ B̄T ‖2.
Observing that in this case,

I − B̄ B̄T = I − Â− 1
2 B
(
BT Â−1B

)−1
BT Â− 1

2 ,

is an orthogonal projector, we have ‖ I − B̄ B̄T ‖2 = 1, and ρ( ¯K ) ≤ α.
Case 3: This is the general case in which α, β < 1. From Eq. (11.16), it is clear

that

ρ ( ¯K ) ≤
∥∥∥∥

[
( I − Ā ) 0

0 −( I − Ḡ
)
]∥∥∥∥

2
×
∥∥∥∥

[
I − B̄ B̄T B̄

B̄T −I

]∥∥∥∥
2
,

≤ max {α,β }
∥∥∥∥

[
I − B̄ B̄T B̄

B̄T −I

]∥∥∥∥
2
.

Let the singular value decomposition of B̄ = Â− 1
2 B Ĝ− 1

2 be given by

B̄ = W

[
Ω

0

]
YT , (11.20)

then

I − B̄ B̄T = W

[
Im − Ω2 0

0 In−m

]
WT ,
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where W ∈ R
n×n and Y ∈ R

m×m are orthogonal matrices and Ω ∈ R
m×m is a

diagonal matrix containing the singular values ωi of Â− 1
2 B Ĝ− 1

2 such that 1 >

ω1 ≥ ω2 ≥ · · · ≥ ωm > 0. Therefore,

[
I − B̄ B̄T B̄

B̄T −I

]
=
[
W

Y

]⎡

⎣
Im − Ω2 0 Ω

0 In−m 0
Ω 0 −Im

⎤

⎦
[
WT

YT

]
,

and

∥∥∥∥

[
I − B̄ B̄T B̄

B̄T −I

]∥∥∥∥
2
=
∥∥∥∥∥∥

⎡

⎣
Im − Ω2 Ω

Ω −Im

In−m

⎤

⎦

∥∥∥∥∥∥
2

= max{1,‖T ‖2},

in which T is the symmetric matrix

T =
[
Im − Ω2 Ω

Ω −Im

]
,

and where the eigenvalues of T are given by

ψi = −1

2

[
ω2

i ±
√

ω4
i + 4

]
, i = 1,2, . . . ,m.

Since ω2
i < 1 due to the fact that (I − Ḡ) is positive definite, then

‖T ‖2 = 1

2

[
ω2

1 +
√

ω4
1 + 4

]
<

1 + √
5

2
,

and

ρ( ¯K ) <
1

2

(
1 + √

5
)

max {α, β}.

Thus, to guarantee that ρ( ¯K ) < 1, it is sufficient to have

1

2

(√
5 + 1

)
max {α, β } < 1,

or

max {α, β } <
1

2

(√
5 − 1

) ≈ 0.6180,

which completes the proof of Theorem 11.1. �

Remark 11.2 The previous results can be summarized as follows:

• If α = 0 then ρ(K ) = β , and all eigenvalues λ(K ) are real.
• If β = 0 then ρ(K ) ≤ α, and all eigenvalues λ(K ) are real, as will be seen

later in Lemma 11.2.



11 A Preconditioned Scheme for Nonsymmetric Saddle-Point Problems 233

• Otherwise the eigenvalues λ(K ) are complex, and with the appropriate α-β re-
lationship, ρ(K ) < 1.

Lemma 11.1 Let max {α, β } < (
√

5−1)/2, and (I −Ā) be positive definite. Then
the eigenvalues of the iteration matrix K = I − M̂ −1M , of the preconditioned
Richardson iteration (11.10), lie to the right of the imaginary axis, i.e., � (λ(K )) >

0, in addition to the fact that |λ(K )| < 1.

Proof Consider the eigenvalue problem K v = λv and let

D =
[
Â

1
2 0

0 Ĝ
1
2

]

,

then
(
D K D−1)(D v) = λ (D v),

or
[
I − Ā 0

0 I − Ḡ

][
w1
w2

]
= λ

[
I B̄

−B̄T I − B̄T B̄

][
w1
w2

]
,

where Ā, B̄, and Ḡ are as given in Eqs. (11.17)–(11.19). Using the singular value
decomposition of B̄ in Eq. (11.20), we get the eigenvalue problem

⎡

⎣
Im 0 Ω

0 In−m 0

−Ω 0 Im − Ω2

⎤

⎦ z = 1

λ

[
Ã 0
0 I − Ω2

]
z,

where Ã = WT (I − Â− 1
2 AsÂ

− 1
2 )W is symmetric positive definite. Since ωi < 1,

we have

τ ‖ z‖2
2 = z�

[
Ã 0
0 I − Ω2

]
z > 0,

where z� = [z�
1 z�

2 z�
3], and

�
(

1

λ

)
= ‖ z‖2

2 − z�
3Ω

2z3

τ ‖ z‖2
2

,

≥ 1 − ω2
1

τ
> 0.

Hence, �(λ) > 0, i.e., all the eigenvalues of K lie to the right of the imaginary
axis, an ideal situation for acceleration via GMRES. �
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Lemma 11.2 For special case 2, when Ĝ = (BT Â−1B), i.e., β = 0, the Richardson
iteration matrix is given by

K =
[
Â− 1

2 0

0 Ĝ− 1
2

][
M 0
N 0

][
Â

1
2 0

0 Ĝ
1
2

]

,

where

M = (I − P)(I − Ā) ∈ R
n×n,

N = B̄T (I − Ā) ∈ R
m×n,

in which Ā and B̄ are as given in Eqs. (11.17) and (11.18), and P is the orthogonal
projector,

P = B̄B̄T = Â− 1
2 B
(
BT Â−1B

)−1
BT Â− 1

2 .

Then K has 2m zero eigenvalues, with ρ(K ) ≤ ρ(I − Ā) = α < 1, and the
submatrix of interest,

K11 = Â− 1
2 (I − P)

(
I − Ā

)
Â

1
2 ,

has a complete set of eigenvectors X with

κ2(X) ≤ (1 + μ̂),

where κ2(·) denotes the spectral condition number, and

μ̂ <

(
1 + √

5

2

)(
1

λ2
min(C)

)

.

Here,

C = (I − P)(I − Ā)(I − P), (11.21)

and 0 < |λmin(C)| = mini{|λi(C)| �= 0}.

Proof The fact that K has 2m zero eigenvalues is obvious from its structure and
the fact that (I − P) is an orthogonal projector of rank (n − m). Also, from The-
orem 11.1, we have ρ(K ) ≤ ‖I − Ā‖2 = α < 1. Next, we consider the eigenvalue
problem K11z = λz, or

(I − P)
(
I − Ā

)
w = λw, (11.22)

where w = Â
1
2 z. Observing that the symmetric matrix C given by Eq. (11.21) has

the same eigenvalues as Eq. (11.22) with an orthogonal set of eigenvectors V =
[V1,V2] such that

(I − P)
(
I − Ā

)
(I − P)V1 = V1Λ,
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and

(I − P)
(
I − Ā

)
(I − P)V2 = 0,

in which Λ = diag(λi), with λi �= 0, i = 1,2, . . . , n − 2m. Hence

(I − P)V1 = V1,

and

(I − P)V2 = 0.

Since

V T (I − P)(I − Ā)V =
[
V T

1 (I − Ā)V1 V T
1 (I − Ā)V2

0 0

]
,

=
[
Λ Ê

0 0

]
,

we can construct the nonsingular matrix

X = V

[
In−2m −Λ−1Ê

0 I2m

]
,

so that

X−1(I − P)
(
I − Ā

)
X =

[
Λ 0
0 0

]
.

Consider the matrix

Ĥ =
[
In−2m −H

0 I2m

]
,

where H = Λ−1Ê, then

‖Ĥ‖2
2 = 1 + μ̂,

in which

μ̂ =
[
μ2 +

√
μ4 + 4μ2

]/
2,

with μ being the largest singular value of H . Consequently,

‖X‖2
2 ≤ (1 + μ̂).

This upper bound can be simplified further by observing that

‖H‖2
2 ≤ α2

λ2
min(C)

<
1

λ2
min(C)

,
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in which α = ‖I − Ā‖2 and λmin(C) is the smallest nonzero eigenvalue of C. Hence

μ̂ <

(
1 + √

5

2

)(
1

λ2
min(C)

)

,

and

κ2(X) < 1 + 1.618

λ2
min(C)

,

which completes the proof. �

11.6 Construction of Â−1 and Ĝ−1

Â−1 and Ĝ−1 are approximations of A−1
s and (BT Â−1B)

−1
, respectively. They are

assumed to be symmetric and positive definite and are chosen such that α < 1 and
β < 1.

There are many ways to construct Â−1 and Ĝ−1. For example, Â can be
taken as the incomplete Cholesky decomposition of As or other preconditioners
of As . In this study, we always consider Â and Ĝ corresponding to several itera-
tion steps of a given iterative scheme for solving systems in Steps 5–7 of Algo-
rithm 11.2. For example, suppose A0 is a “simple” preconditioner for As , such that
α0 = ρ(I − A−1

0 As) < 1, in which A0 is obtained via a sparse approximate inverse
scheme (SPAI), e.g. see [7, 33]. If we use the following “convergent” scheme, see
Eq. (11.6), we have

xk+1 = (
I − A−1

0 As

)
xk + A−1

0 f, k = 0,1,2, (11.23)

for solving As x = f. Choosing the initial iterate x0 = 0, we obtain

x3 =
[(

I − A−1
0 As

)2 + (
I − A−1

0 As

) + I
]
A−1

0 f.

Thus, we have implicitly generated Â−1 as

Â−1 =
[(

I − A−1
0 As

)2 + (
I − A−1

0 As

) + I
]
A−1

0 ,

in which case it is easy to verify that

ρ
(
I − Â−1As

) = ρ3(I − A−1
0 As

) � 1.

Remark 11.3 One implicit matrix-vector multiplication with Â−1 consists of 3
matrix-vector multiplications with A−1

0 and 2 matrix-vector multiplications with As .
So the implicit acceleration via Eq. (11.23) results in more matrix-vector multipli-
cations, but if A−1

0 is a diagonal matrix, for example, the additional cost is minimal,
and the overall approach may be more economical than choosing a more accurate
approximation of A−1

s .
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Remark 11.4 In solving the linear system in Step 6 of Algorithm 11.2, we use
the conjugate gradient (CG) algorithm with Ĝ = BT Â−1B , i.e., β = 0. Note the
BT Â−1B is never formed explicitly, and the major operation in each CG iteration
is multiplying Ĝ by a vector. In our implementation in this study, however, we only
solve the system in Step 6 approximately using a relaxed stopping criterion.

11.6.1 Construction of Â−1

Recalling that each diagonal block of As is symmetric positive definite, and irre-
ducibly diagonally dominant, one can construct a diagonal matrix A−1

0 , with posi-

tive elements such that ρ(I − A
− 1

2
0 AsA

− 1
2

0 ) < 1. Moreover, it can be easily verified

that given such A−1
0 , then the action of the matrix Â−1 can be implicitly generated

via Eq. (11.23), such that ρ(I − Â− 1
2 AsÂ

− 1
2 ) = ρ3(I − A

− 1
2

0 AsA
− 1

2
0 ) = α3

0 � 1.

Theorem 11.2 Let the block diagonal matrix As = [a(s)
ij ] be symmetric positive def-

inite with each of its blocks irreducibly diagonally dominant, and let A−1
0 = diag(δi)

be the diagonal matrix that minimizes ‖ In − AsA
−1
0 ‖2

F
. Then

δi = a
(s)
ii

‖a(s)
i ‖2

2

,

where a(s)
i is the ith column of As , and the spectral radius

ρ
(
I − AsA

−1
0

)
< 1.

Proof Let

ϕ = ∥∥ In − AsA
−1
0

∥∥2
F

=
n∑

j=1

∥∥ ej − δj a(s)
j

∥∥2

2
;

then ϕ is minimized when δj is chosen such that it minimizes ‖ ej − δj a(s)
j ‖2

2
, or

δj = a
(s)
jj

‖a(s)
j ‖2

2

.

The eigenvalue problem,

(
In − AsA

−1
0

)
u = λu,
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yields

(1 − λ) = vT Asv
vT A0v

,

where v = A−1
0 u. Since both As and A0 are symmetric positive definite, we have

(1 − λ) > 0,

i.e., either λ is negative or has a positive value less than 1.
Next, consider the symmetric matrix S = 2A0 − As , and let

D = diag
(
a

(s)
11 , a

(s)
22 , . . . , a(s)

nn

)
,

As = D − E,

thus D− 1
2 AsD

− 1
2 = I − D− 1

2 ED− 1
2 , with ρ(D− 1

2 ED− 1
2 ) < 1, e.g., see [53,

Theorem 7.1.5, page 120].
Consequently,

D− 1
2 SD− 1

2 = Θ + D− 1
2 ED− 1

2 ,

where

Θ = diag

⎛

⎝2
‖a(s)

j ‖2

2

a
(s)
jj

2
− 1

⎞

⎠ = diag(1 + γj ) = I + �,

in which � = diag(γj ), and γj = 1

a
(s)
jj

2

∑
j �=i a

(s)
ij

2
> 0.

Thus,

D− 1
2 SD− 1

2 = Γ + (I + D− 1
2 ED− 1

2
)
,

and since ρ(D− 1
2 ED− 1

2 ) < 1, we see that S is symmetric positive definite. More-
over, it is easy to verify that

vT Sv = 2vT A0v − vT Asv,

= (1 + λ)

(1 − λ)
vT Asv,

and as a result we have −1 < λ < 1, or ρ(I − AsA
−1
0 ) < 1. �

In our numerical experiments, we consider also the more expensive approximate
Cholesky factorization for obtaining Â = RT R ≈ As . In this case, we obtain the
approximate factorization using a numerical drop tolerance as well as a prescribed
maximum fill-in per row.

Table 11.2 shows a few problem instances in the particulate flow simulation.
Results in Table 11.3 show that the reduction in the number of inner iterations



11 A Preconditioned Scheme for Nonsymmetric Saddle-Point Problems 239

Table 11.2 Description of the set of problems

Time �t = 0.01, Re = 100.0, Newton Iteration 5, 20 Particles
1

2
‖AII + AT

II ‖F

1

2
‖AII − AT

II ‖F size(AII ) size(A ) cond(A )

5�t 4 × 103 13 3994 4733 108

10�t 4 × 103 8 4336 5213 108

20�t 4 × 103 15 4179 4920 108

Table 11.3 Results with SPAI(As , diag) vs. IC(As , 15, 1.0e-3)

GMRES(20)

Problem SPAI(As ,diag) IC(As ,15,1.0e-3)

Instance α0 α = α3
0 inner outer α inner outer

5�t 0.8748 0.6694 12 1 0.4912 8 1

10�t 0.8842 0.6913 11 1 0.5217 8 1

20�t 0.8617 0.6398 12 1 0.5021 8 1

(Richardson iterations in Algorithm 11.2) realized by using the expensive explicit
generation of Â via the approximate Cholesky factorization, is not sufficient to jus-
tify its use. Note that the number of inner iterations listed in Table 11.3 represents the
number of iterations needed for a single call of Algorithm 11.2. Thus, for example,
for the problem arising at time 5�t , with 1 outer iteration of GMRES(20), the total
number of inner iterations is 240, which is still much more economical than solving
systems of the form Eq. (11.3) directly within GMRES; see also Sect. 11.7.1.

11.6.2 Implicit Generation of Variable Ĝ−1
k

In Step 6 of Algorithm 11.2, we need to solve linear systems of the form

Ĝdk = hk,

to determine an approximate solution d̂ via the conjugate gradient (CG) scheme
where we replace Ĝ by (BT Â−1B). Thus, the approximation of the action of

(BT Â−1B)
−1

on hk varies in each CG iteration.
The following theorem gives an explanation as to why there is no need to solve

the inner system (Step 6) accurately, i.e., at each CG iteration j , there is Ĝj such
that Ĝj d̂ = (BT Â−1B)d, where d̂ is close to d in the (BT Â−1B)-norm defined by

‖y‖2
(BT Â−1B)

= 〈
y,
(
BT Â−1B

)
y
〉
, ∀y ∈ R

m,

where 〈·, ·〉 is the usual Euclidean inner-product.
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Theorem 11.3 (Bank, Welfert and Yserentant [6]) Let (BT Â−1B) be a symmetric
and positive definite m × m matrix, and let d, d̂ ∈R

m satisfy
∥∥d − d̂

∥∥
(BT Â−1B)

≤ β ‖d‖
(BT Â−1B)

,

with 0 ≤ β < 1. Then there exists a symmetric positive definite matrix Ĝ with

Ĝ d̂ = (
BT Â−1B

)
d,

and
∥∥ I − Ĝ− 1

2
(
BT Â−1B

)
Ĝ− 1

2
∥∥

2 ≤ β.

Proof The proof is by construction and can be found in [6]. �

Let each CG iteration j yield an approximate solution dk,j with residual rk,j

given by

rk,j = hk − (
BT Â−1B

)
dk,j ,

= hk − (
BT Â−1B

)
Ĝ−1

j hk,

=
[
I − (BT Â−1B

)
Ĝ−1

j

]
hk.

Therefore,
∥
∥∥ I − Ĝ

− 1
2

j

(
BT Â−1B

)
Ĝ

− 1
2

j

∥
∥∥

2
≥ ‖ rk,j ‖2

‖hk ‖ .

In general, there exists a γ̂ ≈ 1, e.g. see [68, p. 194], such that

∥∥∥ I − Ĝ
− 1

2
j

(
BT Â−1B

)
Ĝ

− 1
2

j

∥∥∥
2

≈ γ̂
‖ rk,j ‖2

‖hk,j ‖2
.

Consequently, choosing the stopping criterion ‖ rk,j ‖2/‖hk ‖2 ≤ 10−2 will al-
most guarantee a value of β = O(10−2).

In order to verify this last observation, we conducted a set of numerical experi-
ments in which we solve Eq. (11.3) using the preconditioned Richardson iteration
(11.10) using Algorithm 11.2 with a relative residual stopping criterion of 10−6.
Here, the system in Step 6 is solved using the conjugate gradient algorithm (without
preconditioning) with Ĝ replaced by (BT Â−1B). Table 11.4 shows the results for
varying levels of the CG relative residuals stopping criterion (tol_CG), from 10−6

to 10−1, for a sample problem.

The vectors b = [fT gT ]T , r̃k = [rT
k sT

k ]T , and wk = [xT
k yT

k ]T are as given in
Algorithm 11.2, and δwk = w� − wk , in which w� is the exact solution of (11.3). It
is clear that using a tol_CG of 10−2 produces just as satisfactory a result had we
used a tol_CG of 10−6. This result confirms Theorem 11.3.
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Table 11.4 Inner-inner iteration: CG method in Step 6 of Algorithm 11.2

Problem Instance: t = 20�t

tol_CG Richardson iters ‖ r̃k ‖2/‖ r̃0 ‖2 ‖ δwk ‖2/‖b‖2

1.0e-6 12 8.4 × 10−7 10−4

1.0e-5 12 8.4 × 10−7 10−4

1.0e-4 12 8.4 × 10−7 10−4

1.0e-3 12 8.4 × 10−7 10−4

1.0e-2 12 8.4 × 10−7 10−4

1.0e-1 8 4.7 × 10−7 10−3

Table 11.5 Values of α
Problem SPAI-0 IC

Instance α0 α = α3
0 α

5�t 0.8748 0.6694 0.4912

10�t 0.8842 0.6913 0.5217

20�t 0.8617 0.6398 0.5021

Table 11.6 Inner-outer iterations

Ĝ = (BT Â−1B) =⇒ β ≈ 0

Problem GMRES(20)

Instance
SPAI(As , diag) IC(As , 15, 1.0e−4)

Richardson iters outer Richardson iters outer

5�t 12 1 8 1

10�t 11 1 8 1

20�t 12 1 8 1

In what follows, we generate A−1
0 via SPAI-0, and then obtain implicitly the

action of Â−1 on a vector via Eq. (11.23). For a sample problem at different time
Steps, Table 11.5 shows the spectral radii α = ρ(I − Â−1As) as well as those when
Â = RT R in which RT is the approximate Cholesky factor of As . Also, for solving
systems in Step 6 of Algorithm 11.2, Ĝd = h, we use the conjugate gradient scheme
with a relaxed stopping criterion, in which Ĝ = (BT Â−1B).

Now, using our complete nested iterative scheme, illustrated in Fig. 11.1, on the
same set of sample problems, with GMRES(20), yields a solution satisfying the
outer iteration stopping criterion of a relative residual less than or equal to 10−6,
only after one outer GMRES iteration, see Table 11.6.

Again, we show that using an approximate Cholesky factorization to generate Â

does not reduce the number of inner (Richardson) iterations sufficiently to justify
the additional cost in each time step.
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Table 11.7 Robustness of the nested iterative scheme

Ĝ = (BT Â−1B) =⇒ β ≈ 0 : CG method with ‖ r̃k ‖2/‖ r̃0 ‖2 ≤ 10−3

t np (n + m) Â α = α3
0 GMRES(k)

inner outer k ARMS

20�t 20 8777 SPAI(As , diag) 0.6913 13 1 20 10

100�t 240 95749 IC(As , 15, 10−4) 0.6514 10 2 50 †

SPAI(As , diag) 0.7216 14 3 50 †

200�t 240 111326 IC(As , 15, 10−4) 0.6911 12 3 50 †

SPAI(As , diag) 0.7502 15 4 50 †

Table 11.8 Parameters for ARMS

bsize nlev fillI filllast fillILUT droptolI droptollast

500–1000 2–5 60 50 50 0.0001 0.001

11.7 Numerical Experiments

We show the robustness of our nested iterative scheme illustrated in Fig. 11.1 by
solving linear systems (11.1) for varying sizes, as the number of particles increases
and the mesh size decreases, and at different time steps from 10�t to 200�t , as the
dominance of As (vs. Ass ) decreases.

Adopting a stopping criterion of a 10−6 relative residual for the outer GMRES
iterations, our results are shown in Tables 11.7, 11.8 and 11.10. In Table 11.7 we
give the number of inner (Richardson) and outer (GMRES) iterations. We also note
that for Â−1 generated via SPAI-0, with the implicit acceleration (11.23), and the
systems (BT Â−1B)d = h solved via the CG scheme with a relaxed stopping crite-
rion, the scheme is remarkably robust succeeding in solving all the linear systems
arising in the particulate flow simulations of Newtonian fluids.

In Table 11.7, we compare our nested iterative scheme, and GMRES with Saad’s
“black-box” preconditioner, “Algebraic Recursive Multilevel Solver”, see [60], ap-
plied to Eq. (11.1). In using ARMS(nlev), we employ nlev = 2 levels and in case of
failure we increase nlev to 5. Table 11.8 shows the parameters that need to be set
up for ARMS. These parameters can be fine-tuned for a particular system to assure
success. In Table 11.9, we compare our scheme with GMRES preconditioned via
the ILUT factorization of A . Note that both general purpose preconditioners, ILUT
and ARMS, could fail for our saddle-point problems. Finally, in Table 11.10 we il-
lustrate “scalability” of our nested iterative scheme in the sense that the number of
inner iterations in any given pass of Algorithm 11.2 remains almost constant with
only a modest increase in the number of outer (GMRES) iterations.
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Table 11.9 Comparison with ILUT

Size(A ) GMRES(k)

nested scheme ILUT(p,τ )

Â α = α3
0 k inner outer p τ iters k

29816 IC(As , 15, 10−3) 0.5198 20 8 2 15 0.0001 89 20

65471 IC(As , 15, 10−3) 10−4 20 2 2 15 0.0001 42 20

80945 IC(As , 15, 10−3) 10−4 50 2 2 15 0.0001 – 100

95749 SPAI(As , diag) 0.7216 50 14 3 15 0.0001 – 100

111326 SPAI(As , diag) 0.7502 50 15 4 15 0.0001 – 100

Table 11.10 “Scalability” of
nested iterative scheme np = 20, t = 70�t , Â−1 = SPAI(As ,diag)

(n + m) α = α3
0 GMRES(k)

inner outer k

3872 0.6782 12 1 20

6157 0.6973 12 1 20

10217 0.7012 13 2 20

31786 0.7314 14 2 20

56739 0.7196 14 3 20

81206 0.7512 15 3 40

105213 0.7419 15 3 40

11.7.1 Comparison with Other Preconditioners

We compare our scheme with algorithms of the form displayed in Fig. 11.4, i.e.,
GMRES inner–outer iterations. Here we consider two preconditioners

M1 =
[
A 0
0 BT A−1B

]
, and M2 =

[
As B

BT 0

]
.

In the block-diagonal preconditioner case, the preconditioned matrix P1 =
M −1

1 A has at most four distinct eigenvalues [52], namely 0, 1, and (1 ± √
5)/2.

Thus, it directly follows that for any vector, the associated Krylov subspace is of
dimension at most three if P1 is nonsingular (or four if P1 is singular). Thus,
any Krylov subspace iterative method with an optimality property, such as GM-
RES, will terminate in at most three iterations in exact arithmetic. As for the in-
definite preconditioner M2, more favorable distribution of the eigenvalues of the
(left-)preconditioned linear system P2 = M −1

2 A , is expected. Since solving with
the Schur complement (BT A−1B) is too expensive, the block-diagonal precondi-
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Fig. 11.4 A preconditioned
Krylov method

tioner M1 is approximated by

M̃1 =
[

diag(A) 0
0 BT (diag(A))−1B

]
,

and

M̃2 =
[
A 0
0 BT (diag(A))−1B

]
.

For the sake of completeness, we have added another popular symmetric indef-
inite preconditioner considered by Perugia and Simoncini in [55] for the solution
of the stabilized symmetric saddle point problem that arises in mixed finite element
approximations of magnetostatic problems,

M3 =
[

I B

BT 0

]
,

which is essentially a special case of Eq. (11.9) with Â = I and Ĝ = BT B .
To evaluate the performance of the different preconditioners used in conjunction

with inner–outer GMRES, e.g. see [58, 66, 67], numerical experiments have been
performed on the set of problems displayed in Table 11.2. The results presented
in Table 11.11 show that preconditioners M̃1, M̃2 and M3 require more than one
outer iteration, whereas M2 seems to be the most effective competitor to our nested
iterative scheme. Timing experiments on a uniprocessor, however, show that our
nested scheme is at least 8 times faster than the other preconditioners shown in
Table 11.11, used in the inner–outer GMRES setting of Fig. 11.4.

11.7.2 The Driven-Cavity Steady-State Case

Finally, we have used our nested scheme for obtaining the steady state solution
of the Navier–Stokes equations modeling the incompressible fluid flow within a
“leaky” two-dimensional lid-driven cavity problem in a square domain −1 ≤ x, y ≤
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Table 11.11 Performance of GMRES(20) with the different preconditioners

Time
instance

�t = 0.01, Re = 100.0, Newton Iteration 5

inner–outer
iterations

Block-diagonal Indefinite

M̃1 M̃2 M2 M3

5�t inner iters 10 6 7 14

nA = 4733 outer iters 8 2 1 11

10�t inner iters 14 8 15 20

nA = 5213 outer iters 8 2 1 12

20�t inner iters 12 7 10 16

nA = 4920 outer iters 8 2 1 11

Table 11.12 outer iteration: GMRES(k); a direct method for solving (11.3)

GMRES(10)

mesh outer ‖ residual‖2

8 × 8 3 1 × 10−6

16 × 16 4 2 × 10−7

32 × 32 4 1 × 10−7

GMRES(20)

mesh outer ‖ residual‖2

8 × 8 2 5 × 10−10

16 × 16 2 2 × 10−8

32 × 32 2 2 × 10−8

1 with fluid viscosity of 0.01. The boundary condition for this model problem is
ux = uy = 0 on the three walls (x, y = −1; x = 1), and ux = 1, uy = 0 on the
moving wall (y = 1). Using Picard’s iteration and mixed finite element (Q2/Q1)

approximation of the resulting linearized equations (Oseen problems), we obtain
systems of the form (11.1), derived from Picard’s ninth iteration. Moreover, we see
that even though the (1,1) block in Eq. (11.1) no longer has the advantage of the
term [(1/�t)× mass matrix], all the properties outlined above of its symmetric part
still hold. Using a uniform mesh, the tables below show the effectiveness of our
nested iterative scheme and its independence of the mesh size.

In Tables 11.12–11.13 we give the number of outer iterations of GMRES(10)
and GMRES(20) needed to reach a residual of 2-norm less than or equal to 10−6

for solving Eq. (11.1). In Tables 11.12, similar to the Golub–Wathen study [31], we
solve systems involving the preconditioner (11.2) using a direct scheme.

In Tables 11.13, we present similar results, except that we use our nested scheme
shown in Fig. 11.1, with Algorithm 11.2 limited to only four iterations. The results
shown in Tables 11.13 are the same whether the linear system in Step 6 of Algo-
rithm 11.2 is solved directly, or solved using the conjugate gradient scheme with
a relative residual stopping criterion of 10−2. For much larger problems, however,
the cost of direct solvers will be much higher than the CG scheme with a relaxed
stopping criterion. Furthermore, the 2-norm of the residuals in Tables 11.12 and
11.13 are essentially the same. This demonstrates the effectiveness of our nested
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Table 11.13 outer iteration: GMRES(k); the nested iterative scheme for solving (11.3)

GMRES(10)

mesh outer ‖ residual‖2 inner

8 × 8 3 9 × 10−7 4

16 × 16 4 4 × 10−7 4

32 × 32 8 2 × 10−7 4

GMRES(20)

mesh outer ‖ residual‖2 inner

8 × 8 2 5 × 10−10 4

16 × 16 2 7 × 10−8 4

32 × 32 4 5 × 10−8 4

iterative scheme, not only for obtaining time-accurate solutions of the particulate
flow problems, but also for the steady-state for driven cavity problem outlined here.

Finally, we would like to state that using flexible-type GMRES, to allow for
changes in the preconditioner from one outer iteration to another, has resulted in
inferior performance compared to that reported in Table 11.13. We would like also
to mention that GMRES(20), without preconditioning, requires 592 iterations for the
8 × 8 mesh, and failed to achieve a residual of 2-norm ≤ 10−5 after 2000 iterations,
for the 16 × 16 and 32 × 32 meshes.

11.8 Conclusion

We have presented a “nested iterative scheme” for solving saddle-point problems
which can be regarded as a preconditioned inexact Uzawa algorithm with an ad-
ditional correction step. The algorithm is essentially a preconditioned Krylov sub-
space method in which the preconditioner is itself a saddle-point problem. We pro-
pose a preconditioned Richardson iteration, with monotone convergence, for han-
dling those inner iterations, i.e. for solving those systems involving the precondi-
tioner. It should be noted that this Richardson scheme can be very effective in solv-
ing symmetric saddle-point problems in which the (1,1) block is symmetric positive
definite.

We have used our nested iterative scheme for solving those nonsymmetric saddle-
point problems that arise from the mixed finite element discretization of particulate
flows, in which the fluid is incompressible. We have shown that an “inexpensive”
preconditioner can be easily constructed, i.e. by constructing Â−1 and Ĝ−1. In par-
ticular, we have shown that it is sufficient to have Â−1 = SPAI(As,diag), acceler-
ated implicitly by three iterations, and to have the action of Ĝ−1 a close approxi-

mation of the action of (BT Â−1B)
−1

. This latter implicit construction of Ĝ−1 is
accomplished by solving systems involving (BT Â−1B) via the Conjugate Gradient
method with a relaxed stopping criterion.

We have compared our solution strategy of systems involving the adopted pre-
conditioner with other preconditioners available in the literature. The resulting
nested scheme proved to be more robust and more economical than others for han-
dling those particulate flow simulations. Moreover, our scheme proved to be “scal-
able”, and insensitive to changes in the fluid–particle system.
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Finally, we should point out that all basic operations of our nested iterative
scheme are amenable to efficient implementation on parallel computers.
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Chapter 12
Effect of Ordering for Iterative Solvers
in Structural Mechanics Problems

Sami A. Kilic

Abstract Direct solvers are commonly used in implicit finite element codes for
structural mechanics problems. This study explores an alternative approach to solv-
ing the resulting linear systems by using the Conjugate Gradient algorithm. Pre-
conditioning is applied by using the incomplete Cholesky factorization. The effect
of ordering is investigated for the Reverse Cuthill–McKee scheme and the Approx-
imate Minimum Degree Method. The solution time and the required storage space
are reported for two test problems involving thin shell finite elements and hexahe-
dral solid elements.

12.1 Introduction

Iterative solvers are gaining momentum in the area of structural mechanics. Prob-
lem sizes are getting larger as users access more powerful computer hardware. Di-
rect solvers require large amounts of memory, and the full factorization procedure
elongates the solution process.

In this study the effects of two ordering schemes on the iterative solver perfor-
mance are demonstrated for two test problems obtained from the automotive in-
dustry. The Pre-conditioned Conjugate Gradient algorithm in combination with the
incomplete Cholesky factorization is utilized to obtain the solution vectors [2]. The
first problem consists of four node shell elements. The second problem contains
eight node hexahedral volume elements. The performance of the iterative solver is
demonstrated for the two problems with different topology of finite elements.

12.2 Description of the Test Problems

Table 12.1 shows the relevant properties of the test matrices provided by Dr. Roger
Grimes of the Livermore Software Technology Company that develops the LS-Dyna
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Table 12.1 Properties of test matrices

Problem N nzA Condest(A) Topology of finite elements

CAR_HOOD 235,962 12,860,848 7.13E + 12 All shell elements

S_BLOCK 183,768 13,411,340 7.54E + 08 All hexahedral elements

Fig. 12.1 Illustrations of the CAR_HOOD test problem

finite element analysis software. The matrices are provided in order to test the per-
formance of iterative solvers. The parameter N denotes the size of the matrix. The
parameter nzA gives the number of non-zero entries in the upper triangular part of
A. The test matrices represent the stiffness components of the non-linear static prob-
lems using the implicit solver of the commercial finite element code LS-Dyna [4].

Condition numbers (cond(A)) of the diagonally scaled coefficient matrix, A =
D−1/2AD1/2 and the description of the finite element topology is also given in
Table 12.1. The “CAR_HOOD” matrix was hand-picked from a set of problems
coming from the commercial automobile industry users of LS-Dyna. It is a diffi-
cult problem to solve as it contains thin shell finite elements in a mesh with poor
element aspect ratios and large variations in element sizes. The finite element mesh
consists of four node shell elements. The type of the finite element analysis is sheet
metal forming process during which the flat sheet of metal is stamped with a rigid
surface in order to form the curved shape of the automobile engine hood. Implicit
solver is used to simulate the spring-back of the metal sheet when it is released
from the stamping process. It contains 40,241 four node shell elements and 41,425
nodes, and very few constraints. The shell element type is chosen as the Belytschko–
Tsay shell element [1]. Figures 12.1a and 12.1b show the geometric shape of the
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Fig. 12.2 Views of the
S_BLOCK test problem

“CAR_HOOD” problem. Figure 12.1c shows the finite element mesh density for
the shell elements used in the analysis.

The second problem “S_BLOCK” is a generic S-shaped solid with eight node
hexahedral elements as shown in Fig. 12.2. There are 10 elements through the thick-
ness, 27 elements across the width, and 200 elements along the length. Figure 12.2b
shows the finite element mesh with 54,000 hexahedral elements and 61,721 nodes.
The S_BLOCK provides an opportunity for iterative solvers. Due to the 3-D topol-
ogy of the hexahedral elements there is a large fill-in in the full factorization pro-
cess [3]. Problems involving hexahedral elements generally yield better conditioned
stiffness matrices compared to problems involving thin shell elements with 2-D
topology. This is illustrated in Table 12.1 by the condition estimate (Condest(A)

value) of the coefficient matrices. The CAR_HOOD problem has a condition esti-
mate of 7.13E + 12, whereas the corresponding value for the S_BLOCK problem
is 7.54E + 08. The shell elements have membrane and bending stiffness compo-
nents [6]. The membrane stiffness is proportional to the thickness of the shell ele-
ment. The bending stiffness is a function of the cube of the thickness. For thin shell
elements the two types of stiffness yield values that are orders of magnitude apart.
This physical fact causes a large condition number for the coefficient matrix that
contains both types of stiffness component.

The coefficient matrices that represent the stiffness of the test problems are sym-
metric and positive-definite. For the non-linear static analyses of the test problems
the stiffness matrix is updated at certain stages of the simulation process. How-
ever, the matrices remain symmetric and positive-definite during the entire simula-
tion.
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Fig. 12.3 Spy plots of the original CAR_HOOD matrix, re-ordered matrix using the Approximate
Minimum Degree scheme, and re-ordered matrix using the Reverse Cuthill–McKee scheme

12.3 Ordering Schemes and Pre-conditioning

The Reverse Cuthill–McKee algorithm is designed to reduce the bandwidth of
sparse symmetric matrices [3]. It is an application of the graph theory by the use
of level sets. A level set is defined recursively as the set of all unmarked neighbors
of all the nodes of a previous level set. As soon as a level set is traced, its nodes
are marked and numbered. In the Cuthill–McKee ordering scheme the elements of
a level set are numbered from the nodes of lowest degree to those of the highest
degree. The Reverse Cuthill–McKee algorithm is obtained by reversing the index
numbers of the Cuthill–McKee algorithm, which generally results in a better solu-
tion.

The minimum degree algorithm is used to permute the rows and columns of
a symmetric sparse matrix before applying the Cholesky decomposition in order
to reduce the number of non-zeros in the factorization process [3]. This results in
reduced storage requirements and also fewer arithmetic operations in the iterative
solution process.

At each step of the Gaussian elimination process row and column permutations
are performed so as to minimize the number of off-diagonal non-zeros in the pivot
row and column. The main goal is to find a permutation matrix P so that the
Cholesky factorization of PAP� = LL� has fewer nonzero entries than the Cholesky
factorization of A. The most costly part of the minimum degree algorithm is the re-
computation of the degrees of nodes adjacent to the current pivot element. Rather
than keeping track of the exact degree, the approximate minimum degree algorithm
finds an upper bound on the degree that is easier to compute. For nodes of least de-
gree, this bound tends to be tight. Using the approximate degree instead of the exact
degree leads to substantial savings in the solution time, particularly for irregularly
structured matrices.

Figures 12.3 and 12.4 show the spy plots of the two test matrices obtained from
the MATLAB software [7]. The first spy plot shows the original matrix, the second
spy plot shows the effect of the Approximate Minimum Degree ordering, and the
third spy plot shows the effect of the Reverse Cuthill–McKee ordering. The elements
of the matrix are clustered around the main diagonal for the Reverse Cuthill–McKee
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Fig. 12.4 Spy plots of the original S_BLOCK matrix, re-ordered matrix using the Approximate
Minimum Degree scheme, and re-ordered matrix using the Reverse Cuthill–McKee scheme

ordering since the goal is to reduce the bandwidth. This effect is clearly illustrated
in Figures 12.3 and 12.4.

The Pre-conditioned Conjugate Gradient method was used in order to obtain
the solution vectors. All calculations were done using the MATLAB software [7].
The incomplete Cholesky factorization of the coefficient matrix A constructs the
pre-conditioner in the Conjugate Gradient iterations. In this study the incomplete
Cholesky function cholinc of the MATLAB software with a user-specified drop
tolerance was utilized for the factorization process. The drop tolerance of the
“cholinc” function was chosen as 1.E − 06. An initial parametric study was done in
order to assess the effect of the drop tolerance on the number of iterations and the
solution time for the values of 1.E − 04,1.E − 05,1.E − 06, and 1.E − 07. The
value of 1.E − 06 provided the optimal results for the set considered. The larger
values of 1.E − 04 and 1.E − 05 for the drop tolerance tend to produce a pre-
conditioner that poorly represents the original coefficient matrix. The smallest value
of 1.E − 07 causes excessive run times for the Incomplete Cholesky factorization
of the pre-conditioner.

12.4 Iterative Solver Performance Results

The timing results for the CAR_HOOD problem are given in Table 12.2. The
Approximate Minimum Degree ordering has a clear advantage over the Reverse
Cuthill–McKee problem. The CAR_HOOD problem represents the typical case in
automotive engineering and aerospace engineering applications. The body of an
automobile is made of sheet metal, which is modeled with thin shell elements. Sim-
ilarly, the fuselage skin of airplanes is also modeled with thin shell elements. These
problems usually have large condition numbers due to their reduced shell thickness
values. The large condition number is attributed to the gap between the bending
and membrane stiffness coefficients of the thin shell elements [6]. As the thickness
value gets smaller, the gap between the bending and membrane stiffness coefficients
widens further, resulting in large condition numbers. The thin shell problems repre-
sent the most difficult set of solid mechanics domain for the application of iterative
solvers.
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Table 12.2 Timing results for the Reverse Cuthill–McKee (RCM) and the Approximate Minimum
Degree (AMD) ordering schemes for the CAR_HOOD test problem

Problem Factorization (s) PCG iterations (s) Iteration count Total time (s)

No ordering 12,790 746 90 13,536

RCM 3,832 47,083 3,748 50,915

AMD 319 110 36 429

Fig. 12.5 2-norm of the
residual vector versus PCG
iterations for the
CAR_HOOD problem
without ordering

Fig. 12.6 2-norm of the
residual vector versus PCG
iterations for the
CAR_HOOD problem with
RCM ordering

Figure 12.5 shows the 2-norm of the residual versus the PCG iterations for the
CAR_HOOD matrix without ordering. The total number of iterations is 90 and the
total solution time is 13,536 seconds.

Figure 12.6 shows the 2-norm of the residual versus the PCG iterations for the
CAR_HOOD matrix with the RCM ordering. The total number of iterations is 3,748
and the total solution time is 50,915 seconds. The RCM ordering makes the PCG
method perform with a poor performance for the thin shell finite elements.

Figure 12.7 shows the 2-norm of the residual versus the PCG iterations for the
CAR_HOOD matrix for the AMD ordering. The total number of iterations is 36 and
the total solution time is 429 seconds. The AMD ordering provides the least number
of iterations and the fastest timing results for the PCG solver. The AMD ordering
provides a clear advantage over the original ordering and the RCM ordering cases
for thin shell problems.
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Fig. 12.7 2-norm of the
residual vector versus PCG
iterations for the
CAR_HOOD problem with
AMD ordering

Table 12.3 Timing results for the S_BLOCK test problem consisting of hexahedral elements

Problem Factorization (s) PCG iterations (s) Iteration count Total time (s)

No ordering 5,797 16,313 106 22,110

RCM 1,755 295 17 2,050

AMD 4,335 1,039 77 5,374

Table 12.4 Storage required for the factorization process for the ordering schemes used in the
study

Problem Nnz of factorized matrix
for no ordering

Nnz of factorized matrix
for RCM

Nnz of factorized matrix
for AMD

CAR_HOOD 122,386,086 219,958,874 50,427,528

S_BLOCK 258,263,545 188,533,104 175,503,315

The timing results for the S_BLOCK problem are given in Table 12.3. The fastest
time to solution is obtained by the RCM ordering of the coefficient matrix. The
S_BLOCK problem contains eight node hexahedral elements. The relative advan-
tage of the AMD ordering scheme is lost when the topology of the problem consists
of volumetric finite elements.

Table 12.4 gives the number of non-zeros in the factorized coefficient matrix for
the CAR_HOOD and the S_BLOCK problems. For the CAR_HOOD problem the
AMD ordering significantly reduces the amount of fill-in. The superior performance
of the Pre-conditioned Conjugate Gradient solver can be attributed to the reduction
of the fill-in. On the other hand, the RCM ordering produces a large fill-in, which
leads to the large number of iterations as shown in Table 12.2. The original or-
dering of the coefficient matrix yields the medium level in the fill-in results, and
provides the medium level of performance in terms of the timing values presented
in Table 12.2. The amount of fill-in for the S_BLOCK problem is also presented in
Table 12.4. The AMD ordering scheme again provides the least amount of fill-in for
the incomplete Cholesky factorization. However, the RCM ordering scheme yields
fewer number of PCG iterations and faster time to solution as given in Table 12.3.
The S_BLOCK problem consists of hexahedral elements with 3-D topology. The
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Fig. 12.8 2-norm of the
residual vector versus PCG
iterations for the S_BLOCK
problem without ordering

Fig. 12.9 2-norm of the
residual vector versus PCG
iterations for the S_ BLOCK
problem with RCM ordering

RCM scheme provides an opportunity for iterative solvers to perform faster. For
problems with 3-D finite element topology direct solvers produce even a higher
level of fill-in in the full factorization process. Therefore, iterative solvers have the
upper hand for such finite element mesh topologies [5].

Figure 12.8 shows the 2-norm of the residual versus the PCG iterations for the
S_BLOCK matrix without ordering. The total number of iterations is 106 and the
total solution time is 22,110 seconds.

Figure 12.9 shows the 2-norm of the residual versus the PCG iterations for the
S_BLOCK matrix with the RCM ordering. The total number of iterations is 17 and
the total solution time is 2,050 seconds. The RCM ordering provides the fastest
solution time for the PCG iterations.

Figure 12.10 shows the 2-norm of the residual versus the PCG iterations for the
S_BLOCK matrix for the AMD ordering. The total number of iterations is 77 and
the total solution time is 5,374 seconds. Although the AMD ordering results in the
least amount of fill-in, it does not provide the fastest time to solution and causes a
higher number of iterations for the PCG solver for problems involving 3-D topology
of finite elements.
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Fig. 12.10 2-norm of the
residual vector versus PCG
iterations for the S_ BLOCK
problem with AMD ordering

12.5 Conclusions and Recommendations

The solution of linear systems of equations for the structural mechanics problems
involving thin shell finite elements is a challenging task. A large number of appli-
cations in the automotive and the aeronautical industry contain thin shell problems.
The body panels of cars and the fuselage of aircraft are examples of the thin shell
problems. Thin shell elements yield ill-conditioned coefficient matrices with large
condition numbers. The type of ordering in fact affects the performance of the Pre-
conditioned Conjugate Gradient method. For the thin shell problem investigated in
this study the Approximate Minimum Degree ordering showed an advantage over
the Reverse Cuthill–McKee method due to the reduced amount of fill-in. On the
other hand, the Reverse Cuthill–McKee method provided a better solution time for
the hexahedral topology problem presented in this study. The advantage of the Ap-
proximate Minimum Degree ordering requires further investigation for problems
involving a mixture of thin shell and hexahedral finite elements. Therefore, further
work is suggested in order to extend the conclusions obtained from the test problems
investigated in this study.
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Chapter 13
Scaling Hypre’s Multigrid Solvers to 100,000
Cores

Allison H. Baker, Robert D. Falgout, Tzanio V. Kolev, and Ulrike Meier Yang

Abstract The hypre software library (http://www.llnl.gov/CASC/hypre/) is a col-
lection of high performance preconditioners and solvers for large sparse linear sys-
tems of equations on massively parallel machines. This paper investigates the scal-
ing properties of several of the popular multigrid solvers and system building inter-
faces in hypre on two modern parallel platforms. We present scaling results on over
100,000 cores and even solve a problem with over a trillion unknowns.

13.1 Introduction

The need to solve increasingly large, sparse linear systems of equations on parallel
computers is ubiquitous in scientific computing. Such systems arise in the numeri-
cal simulation codes of a diverse range of phenomena, including stellar evolution,
groundwater flow, fusion plasmas, explosions, fluid pressures in the human eye, and
many more. Generally these systems are solved with iterative linear solvers, such
as the conjugate gradient method, combined with suitable preconditioners, see e.g.
[17, 19].

A particular challenge for parallel linear solver algorithms is scalability. An ap-
plication code is scalable if it can use additional computational resources effectively.
In particular, in this paper we focus on weak scalability, which requires that if the
size of a problem and the number of cores are increased proportionally, the comput-
ing time should remain approximately the same. Unfortunately, in practice, as sim-
ulations grow to be more realistic and detailed, computing time may increase dra-
matically even when more cores are added to solve the problem. Recent machines

A.H. Baker (�) · R.D. Falgout · T.V. Kolev · U.M. Yang
Lawrence Livermore National Laboratory, Center for Applied Scientific Computing, Livermore,
CA 94551-0808, USA
e-mail: abaker@llnl.gov

R.D. Falgout
e-mail: rfalgout@llnl.gov

T.V. Kolev
e-mail: tzanio@llnl.gov

U.M. Yang
e-mail: umyang@llnl.gov

M.W. Berry et al. (eds.), High-Performance Scientific Computing,
DOI 10.1007/978-1-4471-2437-5_13, © Springer-Verlag London Limited 2012

261



262 A.H. Baker et al.

with tens or even hundreds of thousands of cores offer both enormous computing
possibilities and unprecedented challenges for achieving scalability.

The hypre library was developed with the specific goal of providing users with
advanced parallel linear solvers and preconditioners that are scalable on massively
parallel architectures. Scalable algorithms are essential for combating growing com-
puting times. The library features parallel multigrid solvers for both structured
and unstructured problems. Multigrid solvers are attractive for parallel computing
because of their scalable convergence properties. In particular, if they are well-
designed, then the computational cost depends linearly on the problem size, and
increasingly larger problems can be solved on (proportionally) increasingly larger
numbers of cores with approximately the same number of iterations to solution. This
natural algorithmic scalability of the multigrid methods combined with the robust
and efficient parallel algorithm implementations in hypre result in preconditioners
that are well-suited for large numbers of cores.

The hypre library is a vital component of a broad array of application codes both
at and outside of Lawrence Livermore National Laboratory (LLNL). For example,
the library was downloaded more than 1800 times from 42 countries in 2010 alone,
approaching nearly 10,000 total downloads from 70 countries since its first open
source release in September of 2000. The scalability of its multigrid solvers has
a large impact on many applications, particularly because simulation codes often
spend the majority of their runtime in the linear solve.

The objective of this paper is to demonstrate the scalability of the most popu-
lar multigrid solvers in hypre on current supercomputers. We present scaling stud-
ies for conjugate gradient, preconditioned with the structured-grid solvers PFMG,
SMG, SysPFMG, as well as the algebraic solver BoomerAMG, and the unstructured
Maxwell solver AMS. Note that previous investigations beyond 100,000 cores fo-
cused only on the scalability of BoomerAMG on various architectures and can be
found in [2, 5].

The paper is organized as follows. First we provide more details about the overall
hypre library in Sect. 13.2 and the considered multigrid linear solvers in Sect. 13.3.
Next, in Sect. 13.4, we specify the machines and the test problems we used in our
experimental setup. We present and discuss the corresponding scalability results in
Sect. 13.5, and we conclude by summarizing our findings in Sect. 13.6.

13.2 The hypre Library

In this section we give a general overview of the hypre library. More detailed infor-
mation can be found in the User’s Manual available on the hypre web page [15].

13.2.1 Conceptual Interfaces

We first discuss three of the so-called conceptual interfaces in hypre, which provide
different mechanisms for describing a linear system on a parallel machine. These in-
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terfaces not only facilitate the use of the library, but they make it possible to provide
linear solvers that take advantage of additional information about the application.

The Structured Grid Interface (Struct) is a stencil-based interface that is most
appropriate for scalar finite-difference applications whose grids consist of unions of
logically rectangular (sub)grids. The user defines the matrix and right-hand side in
terms of the stencil and the grid coordinates. This geometric description, for exam-
ple, allows the use of the PFMG solver, a parallel algebraic multigrid solver with
geometric coarsening, described in more detail in the next section.

The Semi-Structured Grid Interface (SStruct) is essentially an extension of the
Structured Grid Interface that can accommodate problems that are mostly struc-
tured, but have some unstructured features (e.g., block-structured, composite or
overset grids). It can also accommodate multiple variables and variable types (e.g.,
cell-centered, edge-centered, etc.), which allows for the solution of more general
problems. This interface requires the user to describe the problem in terms of struc-
tured grid parts, and then describe the relationship between the data in each part
using either stencils or finite element stiffness matrices.

The Linear-algebraic Interface (IJ) is a standard linear-algebraic interface that
requires that the users map the discretization of their equations into row-column
entries in a matrix structure. Matrices are assumed to be distributed across P MPI
tasks in contiguous blocks of rows. In each task, the matrix block is split into two
components which are each stored in compressed sparse row (CSR) format. One
component contains the coefficients that are local to the task, and the second, which
is generally much smaller than the local one, contains the coefficients whose col-
umn indices point to rows located in other tasks. More details of the parallel matrix
structure, called ParCSR, can be found in [10].

13.2.2 Solvers

The hypre library contains highly efficient and scalable specialized solvers as well
as more general-purpose solvers that are well-suited for a variety of applications.

The specialized multigrid solvers use more than just the matrix to solve cer-
tain classes of problems, a distinct advantage provided by the conceptual interfaces.
For example, the structured multigrid solvers SMG, PFMG, and SysPFMG all take
advantage of the structure of the problem. As a result, these solves are typically
more efficient and scalable than a general-purpose solver alternative. The SMG and
PFMG solvers require the use of the Struct interface, and SysPFMG requires the
SStruct interface.

For electromagnetic problems, hypre provides the unstructured Maxwell solver,
AMS, which is the first provably scalable solver for definite electromagnetic prob-
lems on general unstructured meshes. The AMS solver requires matrix coefficients
plus the discrete gradient matrix and the vertex coordinates which can be described
with the IJ or SStruct interface.

For problems on arbitrary unstructured grids, hypre provides a robust parallel
implementation of algebraic multigrid (AMG), called BoomerAMG. BoomerAMG
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can be used with any interface (currently not supported through Struct), as it only
requires the matrix coefficient information.

The hypre library also provides common general-purpose iterative solvers, such
as the GMRES and Conjugate Gradient (CG) methods. While these algorithms are
not scalable as stand-alone solvers, they are particularly effective (and scalable)
when used in combination with a scalable multigrid preconditioner.

13.2.3 Considerations for Large-Scale Computing

Several features of the hypre library are required to efficiently solve very large prob-
lems on current supercomputers. Here we describe three of these features: support
for 64-bit integers, scalable interface support for large numbers of MPI tasks, and
the use of a hybrid programming model.

64-bit integer support has recently been added in hypre. This support is needed
to solve problems in ParCSR format with more than 2 billion unknowns (previously
a limitation due to 32-bit integers). To enable the 64-bit integer support, hypre must
be configured with the -enable-bigint option. When this feature is turned on,
the user must pass hypre integers of type HYPRE_Int, which is the 64-bit integer
(usually a ‘long long int’ type in C). Note that this 64-bit integer option converts all
integers to 64-bit, which does affect performance and increases memory use.

Scalable interfaces as well as solver algorithms are required for a code utilizing
hypre to be scalable. When using one of hypre’s interfaces, the problem data is
passed to hypre in its distributed form. However, to obtain a solution via a multigrid
method or any other linear solver algorithm, MPI tasks need to obtain nearby data
from other tasks. For a task to determine which tasks own the data that it needs, i.e.
their communication partners or neighbors, some information regarding the global
distribution of the data is required. Storing and querying a global description of the
data, which is the information detailing which MPI task owns what data or the global
partition, is either too costly or not possible when dealing with tens of thousands or
more tasks. Therefore, to determine inter-task communication in a scalable manner,
we developed new algorithms that employ an assumed partition to answer queries
through a type of rendezvous algorithm, instead of storing global data descriptions.
This strategy significantly reduces storage, communication, and computational costs
for the solvers in hypre and improves scalability as shown in [4]. Note that this
optimization requires configuring hypre with the -no-global-partition option
and is most beneficial when using tens of thousands of tasks.

A hybrid programming model is used in hypre. While we have obtained good
scaling results in the past using an MPI-only programming model, see e.g. [11],
with increasing numbers of cores per node on multicore architectures, the MPI-
only model is expected to be increasingly insufficient due to the limited off-node
bandwidth and decreasing amounts of memory per core. Therefore, in hypre we
also employ a mixed or hybrid programming model which combines both MPI and
the shared memory programming model OpenMP. The OpenMP code in hypre is
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largely used in loops and divides a loop among k threads into roughly k equal-
sized portions. Therefore, basic matrix and vector operations, such as the matrix-
vector multiply or dot product, are straightforward, but the use of OpenMP within
other more complex parts of the multigrid solver algorithm, such as in parts of the
setup phase (described in Sect. 13.3), may be non-trivial. The right choice for hy-
brid MPI/OpenMP partitioning in terms of obtaining optimal performance is depen-
dent on the specific target machine’s node architecture, interconnect, and operating
system capabilities [5]. See [5] or [2] for more discussion on the performance of
BoomerAMG with a hybrid programming model.

13.3 The Multigrid Solvers

As mentioned in Sect. 13.1, multigrid solvers are algorithmically scalable, mean-
ing that they require O(N ) computations to solve a linear system with N variables.
This desirable property is obtained by cleverly utilizing a sequence of smaller (or
coarser) grids, which are computationally cheaper to compute on than the original
(finest) grid. A multigrid method works as follows. At each grid level, a smoother is
applied to the system, which serves to resolve the high-frequency error on that level.
The improved guess is then transferred to a smaller, or coarser, grid, the smoother
is applied again, and the process continues. The coarsest level is generally chosen
to be a size that is reasonable to solve directly, and the goal is to eliminate a signif-
icant part of the error by the time this coarsest level is reached. The solution to the
coarse grid solve is then interpolated, level by level, back up to the finest grid level,
applying the smoother again at each level. A simple cycle down and up the grid is
referred to as a V-cycle. To obtain good convergence, the smoother and the coarse-
grid correction process must complement each other to remove all components of
the error.

A multigrid method has two phases: the setup phase and the solve phase. The
setup phase consists of defining the coarse grids, interpolation operators, and coarse-
grid operators for each of the coarse-grid levels. The solve phase consists of per-
forming the multilevel cycles (i.e., iterations) until the desired convergence is ob-
tained. In the scaling studies, we often time the setup phase and solve phase sep-
arately. Note that while multigrid methods may be used as linear solvers, they are
more typically used as preconditioners for Krylov methods such as GMRES or con-
jugate gradient.

The challenge for multigrid methods on supercomputers is turning an efficient
serial algorithm into a robust and scalable parallel algorithm. Good numerical prop-
erties need to be preserved when making algorithmic changes needed for paral-
lelism. This non-trivial task affects all aspects of a multigrid algorithm, including
coarsening, interpolation, and smoothing.

In the remainder of this section, we provide more details for the most commonly
used solvers in hypre for which we perform our scaling study.
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13.3.1 PFMG, SMG, and SysPFMG

PFMG [1, 12] is a semicoarsening multigrid method for solving scalar diffusion
equations on logically rectangular grids discretized with up to 9-point stencils in 2D
and up to 27-point stencils in 3D. It is effective for problems with variable coef-
ficients and anisotropies that are uniform and grid-aligned throughout the domain.
The solver automatically determines the “best” direction of semicoarsening, but the
user may also control this manually. Interpolation is determined algebraically. The
coarse-grid operators are also formed algebraically, either by Galerkin or by the
non-Galerkin process described in [1]. The latter is available only for 5-point (2D)
and 7-point (3D) problems, but maintains these stencil patterns on all coarse grids,
reducing cost and improving performance. Relaxation options are either weighted
Jacobi or red/black Gauss–Seidel. The solver can also be run in a mode that skips
relaxation on certain grid levels when the problem is (or becomes) isotropic, further
reducing cost and increasing performance.

PFMG also has two constant-coefficient modes, one where the entire stencil is
constant throughout the domain, and another where the diagonal is allowed to vary.
Both modes require significantly less storage and can also be somewhat faster than
the full variable-coefficient solver, depending on the machine. The variable diagonal
case is the most effective and flexible of the two modes. The non-Galerkin options
here are similar to the variable case, but maintain the constant-coefficient format on
all grid levels.

SMG [7, 9, 12, 20] is also a semicoarsening multigrid method for solving scalar
diffusion equations on logically rectangular grids. It is more robust than PFMG,
especially when the equations exhibit anisotropies that vary in either strength or
direction across the domain, but it is also much more expensive per iteration. SMG
coarsens in the z direction and uses a plane smoother. The xy plane solves in the
smoother are approximated by employing one cycle of a 2D SMG method, which
in turn coarsens in y and uses x-line smoothing. The plane and line solves are also
used to define interpolation, and the solver uses Galerkin coarse-grid operators.

SysPFMG is a generalization of PFMG for solving systems of elliptic PDEs.
Interpolation is defined only within the same variable using the same approach as
PFMG, and the coarse-grid operators are Galerkin. The smoother is of nodal type
and solves all variables at a given point simultaneously.

13.3.2 BoomerAMG

BoomerAMG [14] is the unstructured algebraic multigrid (AMG) solver in hypre.
AMG is a particular type of multigrid method that is unique because it does not re-
quire an explicit grid geometry. This attribute greatly increases the types of problem
that can be solved with multigrid because often the actual grid information may not
be known or the grid may be highly unstructured. Therefore, in AMG the “grid” is
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simply the set of variables, and the coarsening and interpolation processes are deter-
mined entirely based on the entries of the matrix. For this reason, AMG is a rather
complex algorithm, and it is challenging to design parallel coarsening and interpo-
lation algorithms that combine good convergence, low computational complexity as
well as low memory requirements. See [25], for example, for an overview of par-
allel AMG. Note that the AMG setup phase can be costly, compared to that of a
geometric multigrid method. Classical coarsening schemes [8, 18] have led to slow
coarsening, especially for 3D problems, resulting in large computational complexi-
ties per V-cycle, increased memory requirements and decreased scalability. In order
to achieve scalable performance, one needs to use reduced complexity coarsening
methods, such as HMIS and PMIS [23], which require distance-two interpolation
operators, such as extended+i interpolation [22], or even more aggressive coarsening
schemes, which need interpolation with an even longer range [24, 26]. The parallel
implementation of long range interpolation schemes generally involves much more
complicated and costly communication patterns than nearest neighbor interpolation.
Additionally, communication requirements on coarser grid levels can become more
costly as the stencil size typically increases with coarsening, which results in MPI
tasks having many more neighbors (see, e.g., [13] for a discussion). The AMG solve
phase consists largely of matrix-vector multiplies and the application of a (typically)
inexpensive smoother, such as hybrid (symmetric) Gauss–Seidel, which applies se-
quential (symmetric) Gauss–Seidel locally on each core and uses delayed updates
across cores. Note that hybrid smoothers depend on the number of cores as well
as the distribution of data across tasks, and therefore one cannot expect to achieve
exactly the same results or the same number of iterations when using different con-
figurations. However, the number of iterations required to converge to the desired
tolerance should be fairly close.

13.3.3 AMS

The Auxiliary-space Maxwell Solver (AMS) is an algebraic solver for electromag-
netic diffusion problems discretized with Nedelec (edge) finite elements. AMS can
be viewed as an AMG-type method with multiple coarse spaces, in each of which
a BoomerAMG V-cycle is applied to a variationally constructed scalar/vector nodal
problems. Unlike BoomerAMG, AMS requires some fine-grid information besides
the matrix: the coordinates of the vertices and the list of edges in terms of their
vertices (the so-called discrete gradient matrix), which allows it to be scalable and
robust with respect to jumps in material coefficients. More details about the AMS
algorithm and its performance can be found in [16].

13.4 Experimental Setup

For the results in this paper, we used version 2.7.1a of the hypre software library. In
this section, we describe the machines and test runs used in our scaling studies.
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13.4.1 Machine Descriptions

The Dawn machine is a Blue Gene/P system at LLNL. This system consists of
36,864 compute nodes, and each node contains a quad-core 850 MHz PowerPC 450
processor, bringing the total number of cores to 147,456. All four cores on a node
have a common and shared access to the complete main memory of 4.0 GB. This
guarantees uniform memory access (UMA) characteristics. All nodes are connected
by a 3D torus network. We compile our code using IBM’s C and OpenMP/C com-
pilers and use IBM’s MPICH2-based MPI implementation.

The Hera machine is a multicore/multi-socket Linux cluster at LLNL with 864
compute nodes connected by Infiniband network. Each compute node has four sock-
ets, each with an AMD Quadcore (8356) 2.3 GHz processor. Each processor has its
own memory controller and is attached to a quarter of the node’s 32 GB memory.
While a core can access any memory location, the non-uniform memory access
(NUMA) times depend on the location of the memory. Each node runs CHAOS
4, a high-performance computing Linux variant based on Redhat Enterprise Linux.
Our code is compiled using Intel’s C and OpenMP/C compiler and uses MVAPICH
for the MPI implementation.

13.4.2 Test Runs

Because we are presenting a scaling study, and not a convergence study, we chose
relatively simple problems from a mathematical point of view. However, these prob-
lems are sufficient for revealing issues with scaling performance.

3D Laplace: A 3D Laplace equation with Dirichlet boundary conditions, dis-
cretized with seven-point finite differences on a uniform Cartesian grid.

3D Laplace System: A system of two 3D Laplace equations as above, with weak
inter-variable coupling at each grid point. Each Laplacian stencil had a coefficient
of 6 on the diagonal and −1 on the off-diagonals, and the inter-variable coupling
coefficient was 10−5.

3D Electromagnetic Diffusion: A simple 3D electromagnetic diffusion problem
posed on a structured grid of the unit cube. The problem has unit conductivity and
homogeneous Dirichlet boundary conditions and corresponds to the example code
ex15 from the hypre distribution.

We use the notation PFMG-n, CPFMG-n, SMG-n, SysPFMG, AMG-n, and
AMS-n to represent conjugate gradient solvers preconditioned respectively by
PFMG, constant-coefficient PFMG, SMG, SysPFMG, BoomerAMG, and AMS,
where n signifies a local grid of dimension n × n × n on each core. We use two
different parameter choices for PFMG (and CPFMG), and denote them by append-
ing a ‘−1’ or ‘−2’ to the name as follows:

• PFMG-n-1—Weighted Jacobi smoother and Galerkin coarse-grid operators;
• PFMG-n-2—Red/black GS smoother, non-Galerkin coarse-grid operators, and

relaxation skipping.
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For AMG, we use aggressive coarsening with multipass interpolation on the finest
level, and HMIS coarsening with extended+i interpolation truncated to at most 4 el-
ements per row on the coarser levels. The coarsest system is solved using Gaussian
elimination. The smoother is one iteration of symmetric hybrid Gauss–Seidel. For
AMS, we use the default parameters of ex15 plus the �∗

1-GS smoother from [3]
(option -rlx 4).

For PFMG, CPFMG, SMG, and AMG, we solve the 3D Laplace problem with
global grid size N = np × np × np, where P = p3 is the total number of cores.
For SysPFMG, we solve the 3D Laplace System problem with a local grid size of
403. For AMS, we solve the 3D Electromagnetic Diffusion problem, where here n3

specifies the local number of finite elements on each core.
In the scaling studies, P ranged from 64 to 125,000 on Dawn and 64 to 4096 on

Hera, with specific values for p given as follows:

• p = 4,8,12,16,20,24,28,32,36,40,44,48,50 on Dawn; and
• p = 4,8,12,16 on Hera.

For the hybrid MPI/OpenMP runs, the same global problems were run, but they
were configured as in the following table.

Machine Threads Problem size per
MPI task

Number of
MPI tasks

Dawn (smp) 4 2n × 2n × n p/2 × p/2 × p

Hera (4 × 4) 4 n × 2n × 2n p × p/2 × p/2
Hera (1 × 16) 16 2n × 2n × 4n p/2 × p/2 × p/4

13.5 Scaling Studies

In this section, we present the scaling results. We first comment on the solver per-
formance and conclude the section with comments on the times spent to set up the
problems using hypre’s interfaces. For all solvers, iterations were stopped when the
L2 norm of the relative residual was smaller than 10−6. The number of iterations
are listed in Table 13.1.

In Fig. 13.1, we give results for PFMG using MPI only. Since communication
latency speeds are several orders of magnitude slower than MFLOP speeds on to-
days architectures (Dawn included), communication costs tend to dominate for the
smaller PFMG-16 problems. Because of this, the setup phase is slower than the
solve phase, due primarily to the assumed partition and global partition compo-
nents of the code. The global partition requires O(P logP) communications in the
setup phase, while the current implementation of the assumed partition requires
O((logP)2) communications (the latter is easier to see in Fig. 13.2). It should be
possible to reduce the communication overhead of the assumed partition algorithm
in the setup phase to O(logP) by implementing a feature for coarsening the box
manager in hypre (the box manager serves the role of the distributed directory in
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Table 13.1 Iteration counts on Dawn (top two tables) and Hera (bottom table). For all solvers,
iterations were stopped when the relative residual was smaller than 10−6

P PFMG- CPFMG- SMG-40 SysPFMG

16-1 16-2 40-1 40-2 16-1 16-2 40-1 40-2

64 9 9 10 10 9 9 9 9 5 9

512 9 10 10 11 9 9 10 10 5 9

1728 10 10 10 11 9 9 10 10 5 9

4096 10 10 10 11 10 9 10 10 5 9

8000 10 11 10 11 10 10 10 10 6 9

13824 10 11 11 11 10 10 10 10 6 9

21952 10 11 11 12 10 10 10 11 6 9

32768 10 11 11 12 10 10 10 10 6 9

46656 10 11 11 12 10 10 10 11 6 9

64000 10 11 11 12 10 10 10 10 6 9

85184 10 11 11 13 10 10 10 10 6 9

110592 10 11 11 13 10 10 10 11 6

125000 10 11 11 13 10 10 10 12 6

P AMG- AMS-

16 16 (smp) 40 40 (smp) 16 32

64 12 13

512 14 14 15 16 9 10

1728 15 17 10 10

4096 15 15 18 18 10 11

8000 16 19 11 11

13824 17 16 21 20 11 11

21952 17 22 11 12

32768 18 17 22 22 11 13

46656 18 23 11 14

64000 19 18 24 23 12 13

85184 19 24 12 14

110592 19 19 24 24 12 14

125000 19 27 12 14

P AMG-16 AMG-40

(16x1) (4x4) (1x16) (16x1) (4x4) (1x16)

64 12 12 12 13 13 14

512 14 13 14 15 16 16

1728 15 14 14 17 17 18

4096 15 15 15 18 19 20
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Fig. 13.1 PFMG results on Dawn for two different local problem sizes, 163 (left) and 403 (right).
The top and bottom rows use one box to describe the local problem, while the second row splits the
local problem into 64 = 4×4×4 boxes. The top two rows use the assumed partition algorithm and
the bottom row uses the global partition. Setup and solve phase times are given for two different
parameter choices

[4]). For PFMG-40 with the assumed partition, the setup phase is cheaper than the
solve phase for the single box case, and roughly the same cost for the multi-box
case. For both multi-box cases, describing the data with 64 boxes leads to additional
overhead in all phases, but the effect is more pronounced for the setup phase. The
problem setup uses the Struct interface and is the least expensive component.

In Fig. 13.2, we give results for PFMG, comparing MPI to hybrid MPI/OpenMP.
With the exception of the setup phase in the single box cases, the hybrid results are
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Fig. 13.2 PFMG results on Dawn comparing MPI and hybrid MPI/OpenMP for parameter choice
2 and two different local problem sizes, 163 (top) and 403 (bottom). The left column uses one box
to describe the local problem and the right column uses 64. The assumed partition is used in all
cases, and the results are plotted on a log scale

slower than the MPI-only results due most likely to unnecessary thread overhead
generated by the OpenMP compiler (the Hera results in Fig. 13.5 show that our
hybrid model can be faster than pure MPI). In the single box cases, the O((logP)2)

communications in the assumed partition algorithm dominates the time in the setup
phase, so the pure MPI runs are slower than the hybrid runs due to the larger number
of boxes to manage. This scaling trend is especially apparent in the PFMG-16-2
plot. For the multi-box cases, thread overhead is multiplied by a factor of 64 (each
threaded loop becomes 64 threaded loops) and becomes the dominant cost.

The constant-coefficient CPFMG solver saves significantly on memory, but it was
only slightly faster than the variable-coefficient PFMG case with nearly identical
scaling results. The memory savings allowed us to run CPFMG-200-2 to solve a
1.049 trillion unknown problem on 131,072 cores (64 × 64 × 32) in 11 iterations
and 83.03 seconds. Problem setup took 0.84 seconds and solver setup took 1.10
seconds.

In Fig. 13.3, we show results for SMG-40 and SysPFMG. We see that SMG is
a much more expensive solver than PFMG, albeit more robust. We also see that
the setup phase scales quite poorly, likely due to the O((logP)3) number of coarse
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Fig. 13.3 SMG-40 and SysPFMG results on Dawn using the assumed partition algorithm

grids and our current approach for building a box manager on each grid level. See
[12] for more discussion on expected scaling behavior of SMG (and PFMG).

For SysPFMG, we see that the scaling of both the setup and solve phases are
not flat, even though the iteration counts in Table 13.1 are constant. However, this
increase is the same increase seen for PFMG-40 at 85,184 cores, so we expect
the times to similarly decrease at larger core counts. The problem setup uses the
SStruct interface and is the least expensive component.

Figure 13.4 presents the performance of BoomerAMG-CG on Dawn. The two
top figures show the performance obtained when using MPI only and the effect of
using 32-bit integers versus 64-bit integers. The 32-bit version could only be used
to up to 32,768 cores for the 403 Laplace problem. We also include results that were
obtained using the Sequoia benchmark AMG [21], which is a stand-alone version
of BoomerAMG, in which only those integers that are required to have a longer
format were converted, an approach that was unfortunately too work extensive to be
applied to all of hypre. The benchmark results are very close to the 32-bit integer
results.

The two bottom figures show the effect of using a global partition when setting up
the communication pattern and its linear dependence on the number of MPI tasks.
The problem setup uses the IJ interface and takes very little time compared to solve
and setup.

The middle figures show timings obtained using a hybrid OpenMP/MPI pro-
gramming model with one MPI task per node using 4 OpenMP threads on Dawn.
On Dawn, the use of OpenMP for AMG leads to larger run times than using MPI
only and is therefore not recommended. While the solve phase of BoomerAMG
is completely threaded, portions of it, like the multiplication of the transpose of
the interpolation operator with a vector cannot be implemented as efficiently using
OpenMP as MPI with our current data structure. Also, portions of the setup phase,
like the coarsening and part of the interpolation, are currently not threaded, which
also negatively affects the performance when using OpenMP.

On Hera, the use of a hybrid MPI/OpenMP versus an MPI only programming
model yields different results, see Fig. 13.5. Since at most 4096 cores were available
to us, we used the global partition. We compare the MPI only implementations with
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Fig. 13.4 AMG results on Dawn for two different local problem sizes, 163 (left) and 403 (right).
The top figures show setup and solve times for the 32-bit version of hypre, the 64-bit version (big),
and the AMG Sequoia benchmark (bench), using MPI only and assumed partitioning. The middle
figures show times using the hybrid programming model MPI/OpenMP and assumed partitioning
and include the problem setup times. The bottom figures use MPI only and global partitioning

16 MPI tasks per node (16x1) to a hybrid model using 4 MPI tasks with 4 OpenMP
threads each (4x4), which is best adapted to the architecture, and a hybrid model
using 1 MPI task with 16 OpenMP threads per node (1x16). For the smaller problem
with 163 unknowns per core, we obtain the worst times using MPI only, followed
by the 4x4 hybrid model. The best times are achieved using the 1x16 hybrid model,
which requires the least amount of communication, since communication is very
expensive compared to computation on Hera and communication dominates over
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Fig. 13.5 Setup and solve times on Hera for PFMG and AMG, using an MPI only program-
ming model (16x1), and two hybrid MPI/OpenMP programming models using 4 MPI tasks with 4
OpenMP threads each (4x4) and using 1 MPI task with 16 OpenMP threads (1x16) per node

computation for smaller problem sizes. The picture changes for the larger problem
with 403 unknowns per core. Now the overall best times are achieved using the 4x4
hybrid model, which has less communication overhead than the MPI only model,
but is not plagued by NUMA effects like the 1x16 hybrid model, where all memory
is located in the first memory module, causing large access times and contention for
the remaining 12 cores, see also [6].

In Fig. 13.6 we show the scalability results for CG with AMS preconditioner
applied to the constant coefficient electromagnetic diffusion problem described in
the previous section. We consider a coarse (AMS-16) and a 64-bit fine problem
(AMS-32) with parallel setups corresponding to 163 and 323 elements per core. The
respective largest problem sizes were around 1.5 and 12 billion on 125,000 cores.
Both cases were run with the assumed partition version of hypre.

Though not perfect, both the AMS setup and solve times in Fig. 13.6 show good
parallel scalability, especially in the case of AMS-32 where the larger amount of
local computations offsets better the communications cost. The slight growth in
the solve times can be partially explained by the fact that the number of AMS-CG
iterations varies between 9 to 12, for AMS-16, and 10 to 14, for AMS-32.

In Fig. 13.7, we show timings for one iteration (cycle) of a few solvers considered
earlier. This removes the effect of the iteration counts given in Table 13.1 on the
overall solve times. We see that the cycle time for AMG-40 is only slightly larger
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Fig. 13.6 AMS results on Dawn for two different local problem sizes, 163 (left) and 323 (right).
Shown are the problem generation time and the solver setup and solve times. The AMS-32 problem
uses the 64-bit version of hypre

Fig. 13.7 Cycle times on
Dawn for CG with various
multigrid preconditioners

than PFMG-40-1, even though it is a fully unstructured code. This is mainly due to
the dominant cost of communication, but it also suggests that improvements may be
possible in the PFMG computational kernels where we should be able to take better
advantage of structure. PFMG-40-2 is faster than PFMG-40-1 because it maintains
7-pt operators on all grid levels, reducing both communication and computation
costs. AMS-16 is the slowest even though the grid is smaller, because it is solving
a much harder problem that involves essentially four AMG V-cycle plus additional
smoothing. It is interesting to note that all of the curves have almost the same shape,
with a slight increase at 85,184 cores. This is most likely due to a poor mapping
of the problem data to the hardware, which resulted in more costly long-distance
communication.

We now comment on the performance improvements that can be achieved when
using the struct interface and PFMG or CPFMG over the IJ interface and Boomer-
AMG for suitable structured problems. For the smaller Laplace problem, PFMG-16-
1 is about 2.5 times faster than the 32-version of AMG-16 and the AMG benchmark,
and 3 times faster than the 64-bit version. The non-Galerkin version, PFMG-16-2,
is about 3 to 4 times faster than AMG. For the larger problem, PFMG-40-2 is about
7 times faster than the 64-bit version of AMG and about 5 times faster than the
benchmark.
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Fig. 13.8 Scaling results on Dawn for the SStruct interface, comparing the cost of setting up
the SSTRUCT and PARCSR object types, and the cost of using a stencil-based or FEM-based
approach

Finally, we comment on the times it takes to set up the problems via hypre’s
interfaces. Figures 13.1, 13.3, and 13.4 showed that for many problems, the setup
takes very little time compared to setup and solve times of the solvers. Note that
the times for the problem setup via the IJ interface in Fig. 13.4 includes setting up
the problem directly in the ParCSR data structure and then using the information to
set up the matrix using the IJ data interface. Using the IJ interface directly for the
problem setup takes only about half as much time.

The problem generation time in Fig. 13.6 corresponds to the assembly of the
edge element Maxwell stiffness matrix and load vector, as well as the computation
of the rectangular discrete gradient matrix and the nodal vertex coordinates needed
for AMS. These are all done with the SStruct interface, using its finite element
functionality for the stiffness matrix and load vector. Overall, the problem genera-
tion time scales very well. Though its magnitude may appear somewhat large, one
should account that it also includes the (redundant) computation of all local stiffness
matrices, and the penalty from the use of the 64-bit version of hypre in AMS-32.

In Fig. 13.8, we give results for the SStruct interface. The BCube stencil-based
results involve one cell-centered variable and two parts connected by the Grid-

SetNeighborPart() routine, while the BCube FEM-based results use a node-
centered variable. The All-FEM results involve 7 different variable types (all of the
supported types except for cell-centered) and three parts.

For the BCube example, we see that building the SSTRUCT and PARCSR objects
takes about the same time for the stencil-based case, with SSTRUCT taking slightly
longer in the FEM-based case. This is probably due to the extra communication
required to assemble the structured part of the matrix for non-cell-centered variable
types along part boundaries. This difference is even more pronounced in the All-
FEM example. We also see from the BCube example that the FEM-based approach
is more expensive than the stencil-based approach. This is due to the additional cost
of assembling the matrix and also partly due to the fact that the FEM interface does
not currently support assembling a box of stiffness matrices in one call to reduce
overhead.
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13.6 Concluding Remarks

We performed a scaling study of the interfaces and various multigrid solvers of
the hypre library. The results show overall good scaling on the IBM BG/P ma-
chine Dawn at LLNL. We demonstrated that in order to achieve scalability, it is
crucial to use an assumed partition instead of a global partition. On Dawn, using
an MPI only programming model gave generally better timings than using a hy-
brid MPI/OpenMP programming model. However the use of MPI/OpenMP showed
improved times on the multicore/multi-socket Linux cluster Hera at LLNL. In the
future, we plan to investigate how to reduce communication, to improve the use of
threads, as well as to employ more suitable data structures. Our goal is to achieve
good performance on exascale computers, which are expected to have millions of
cores with memories that are orders of magnitudes smaller than on current ma-
chines.

Acknowledgements This work performed under the auspices of the U.S. Department of En-
ergy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-
JRNL-479591).
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Chapter 14
A Riemannian Dennis-Moré Condition

Kyle A. Gallivan, Chunhong Qi, and P.-A. Absil

Abstract In this paper, we generalize from Euclidean spaces to Riemannian mani-
folds an important result in optimization that guarantees Riemannian quasi-Newton
algorithms converge superlinearly.

14.1 Introduction

Roughly speaking, a manifold is a generalization of the Euclidean space R
n on

which the notion of a differentiable scalar field still exists. One can think of a non-
linear manifold as a smooth, curved surface, even though this simple picture does
not fully do justice to the generality of the concept. Retaining the notion of differ-
entiability opens the way for preserving concepts such as gradient vector fields and
derivatives of vector fields, which are instrumental in many well-known optimiza-
tion methods in R

n, such as steepest descent, Newton, trust regions or conjugate
gradients.

Optimization on manifolds can be intuitively thought of as unconstrained opti-
mization over a constrained search space. As such, optimization algorithms on man-
ifolds are not fundamentally different from classical algorithms for unconstrained
optimization in R

n. Indeed, new optimization algorithms on manifolds are often
obtained by starting from an algorithm for unconstrained optimization in R

n, ex-
tracting the underlying concepts, and rewriting them in such a way that they are
well-defined on abstract manifolds. Generally speaking, applying the techniques of
optimization on manifolds to a given computational problem involves the follow-
ing steps. First, one needs to rephrase the problem as an optimization problem on
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a manifold. Clearly, this is not possible for all problems, but examples abound [2,
7, 9]. Second, one needs to pick an optimization method, typically from the several
classical optimization methods that have been formulated and analyzed for mani-
fold search spaces; these include line-search methods [12], conjugate gradients [11],
BFGS [8, 10], various direct-search methods [6], and trust-region methods [1, 4].

The final step is to turn the generic optimization method into a practical nu-
merical algorithm. This entails choosing a representation of the manifold, e.g.,
encoding via a particular quotient manifold or embedded submanifold, and pro-
viding numerical expressions for a handful of differential-geometric objects, such
as a Riemannian metric and a retraction. The compartmentalization of the repre-
sentation of the elements of the manifold, the differential-geometric objects and
the algorithm that uses them lends itself to the development of very general and
quite powerful software. Generic prototype implementation of algorithms on a Rie-
mannian manifold as well as more specific implementations exploiting the struc-
ture of particular problems and manifolds can be obtained, for example, from
http://www.math.fsu.edu/~cbaker/GenRTR.

Some basic intuition behind the adaptation of algorithms for unconstrained opti-
mization in R

n can be seen by considering the fact that many have a basic step of
xk+1 = xk + αkpk where the direction vector pk may be determined first followed
by a one-dimensional search to set the step αk as in a line search method, or αkpk

may be set by considering a local constrained optimization of a simplified model
of the cost function as in a trust-region method. In either case, the main concern is
the ability to generalize the notion of motion for some distance on a line given by
a direction vector. Hence, much of the initial manifold work centered around the
evaluation of geodesics with the associated concern over excessive computational
cost.

As an example, consider Newton’s method for finding a stationary point of a
differentiable function f . In R

n, the method reads

x+ = x − (Hessf (x))−1gradf (x),

where x is the current iterate, x+ is the new iterate, gradf (x) =[
∂1f (x) . . . ∂nf (x)

]T
is the gradient of f at x and Hessf (x) is the Hessian matrix

of f at x defined by (Hessf (x))ij = ∂i∂jf (x). When f is a function on a nonlinear
Riemannian manifold M , most of these operations become undefined. However, the
notion of a gradient still exists on an abstract Riemannian manifold. Given a smooth
scalar field f on a Riemannian manifold M with Riemannian metric g defined at
each x ∈ M , denoted gx , the gradient of f at x, denoted by gradf (x), is defined as
the unique element of TxM , the tangent space of x, that satisfies

gx(gradf (x), ξ) = Df (x)[ξ ], ∀ξ ∈ TxM . (14.1)

where Df (x)[ξ ] is the Riemannian directional derivative. Therefore, if one sees the
Newton method as iteration that defines x+ as x + ηx where ηx is the vector along
which the derivative of the gradient is equal to the negative of the gradient, one is
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led to the following Riemannian Newton equation:

∇ηx gradf = −gradf (x)

where ∇ is the Levi-Civita connection. When taking a step on a manifold M from
a point x ∈ M along a vector ηx ∈ TxM , it is natural to think about following the
geodesic curve γ with initial velocity ηx and define the new point as γ (1). This
yields the update x+ = Expx(ηx), where Exp denotes the Riemannian exponen-
tial. In the 1990s, this was considered “the” Newton iteration on manifolds; see,
e.g., [11].

However, whereas geodesics admit closed-form expressions for some specific
manifolds, in general, they are the solution of an ordinary differential equation,
and are thus costly to compute accurately. Fortunately, in most optimization algo-
rithms one is content with first-order approximations of the geodesic. This prompted
Adler et al. [3] to introduce the concept of retraction.

Quite similarly, when one has to subtract two tangent vectors ξx and ξy at two dif-
ferent points x and y = Expx(ηx), it is natural to think about parallel translating one
tangent vector to the foot of the other along the curve t �→ Expx(tηx). Here again,
apart from some specific manifolds where parallel translation admits a closed-form
expression, in general, parallel translation requires solving an ordinary differential
equation. This prompted the relaxation of the idea and the introduction of the con-
cept of vector transport, of which parallel translation is a particular instance [2].
The definition below invokes the Whitney sum T M ⊕T M , which is defined as the
set of all ordered pairs of tangent vectors with same foot.

Definition 14.1 A vector transport on a manifold M is a smooth mapping

T M ⊕ T M → T M : (ηx, ξx) �→ Tηx
(ξx) ∈ T M

satisfying the following properties for all x ∈ M .

• (Associated retraction) There exists a retraction R, called the retraction associ-
ated with T , such that the following diagram commutes:

(ηx, ξx) Tηx (ξx)

ηx π(Tηx
(ξx))

T

π

R

where π(Tηx (ξx)) denotes the foot of the tangent vector Tηx (ξx).
• (Consistency) T0x ξx = ξx for all ξx ∈ TxM ;
• (Linearity) Tηx

(aξx + bζx) = aTηx
(ξx) + bTηx

(ζx).

The first point in Definition 14.1 means that Tηx ξx is a tangent vector in TRx(ηx)M ,
where R is the retraction associated with T . When it exists, (Tηx )

−1(ξRx(ηx)) be-
longs to TxM . If η and ξ are two vector fields on M , then (Tη)

−1ξ is naturally
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defined as the vector field satisfying

(
(Tη)

−1ξ
)
x

= (Tηx )
−1(ξRx(ηx)).

It was shown in [2, Sect. 8.2.1] that when any vector transport is used in an ap-
proximate Newton method to find zeros of functions defined on a manifold where
the Jacobian (or Hessian if in an optimization context) is approximated by finite
differences, the resulting algorithm enjoys convergence properties akin to those of
approximate Newton method in R

n. As with the introduction of retraction to replace
the exponential map, replacing parallel translation by the more general, and some-
times more efficient, concept of vector transport is a key part of developing efficient
Riemannian optimization algorithms.

Recently, a Riemannian BFGS method (RBFGS) based on vector transport was
developed and a convergence theory derived in the Ph.D. thesis of C. Qi [10]. A key
element of that theory is proving that RBFGS has superlinear convergence. The
proof relies on a Riemannian version of the Dennis-Moré Condition on Euclidean
spaces [5, Theorem 8.2.4].

In this paper, we generalize the Dennis-Moré Condition to Riemannian mani-
folds to give conditions when it is guaranteed the basic Riemannian quasi-Newton
algorithm xk+1 = Rxk

(ηk), where ηk = −B−1
k F (xk) and Bk is a linear operator on

Txk
M , converges superlinearly.

14.2 The Riemannian Dennis-Moré Condition

In the discussions that follow, coordinate expressions in a neighborhood and in tan-
gent spaces are used. For elements of the manifold, v ∈ M , v̂ ∈ R

d will denote the
coordinates defined by a chart φ over a neighborhood U , i.e., v̂ = φ(v) for v ∈ U .
Coordinate expressions, F̂ (x), for elements, F(x), of a vector field F on M are
written in terms of the canonical basis of the associated tangent space, TxM via the
coordinate vector fields defined by the chart φ (see, e.g., [2, Sect. 3.5]). The main
result is stated as Theorem 14.1, but several preparatory lemmas are needed, some
of which are interesting for their own sake.

Lemma 14.1 Let M be a Riemannian manifold and U be a compact coordinate
neighborhood in M , and let the hat denote coordinate expressions. Then there are
c2 > c1 > 0 such that, for all x, y ∈ U , we have

c1‖x̂ − ŷ‖ ≤ dist(x, y) ≤ c2‖x̂ − ŷ‖,
where ‖ · ‖ denotes the Euclidean norm.

Proof Proof of the first inequality:
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Let Γx̂,ŷ be the set of all smooth curves γ̂ with γ̂ (0) = x̂ and γ̂ (1) = ŷ. We have

dist(x, y) = inf
γ̂∈Γx̂,ŷ

∫ 1

0

√
˙̂γ (t)T Ĝ(γ̂ (t)) ˙̂γ (t)dt

≥ √
λmin inf

γ̂∈Γx̂,ŷ

∫ 1

0

√
˙̂γ (t)T ˙̂γ (t)dt

≥ √
λmin

∥∥ŷ − x̂
∥∥,

where Ĝ(v̂) is the matrix expression of the Riemannian metric on TvM (see,
e.g., [2, (3.29)]) and where

λmin = min
x̂∈Û

λmin
(
Ĝ(x̂)

)
.

Proof of the second inequality:
Taking γ̂ (t) = x̂ + t (ŷ − x̂), we have

dist(x, y) ≤
∫ 1

0

√
˙̂γ (t)T Ĝγ̂ (t)

˙̂γ (t)dt ≤ √
λmax

∫ 1

0

√
˙̂γ (t)T ˙̂γ (t)dt

= √
λmax

∥∥x̂ − ŷ
∥∥,

where

λmax = max
x̂∈U

λmax
(
Ĝ(x̂)

)
.

We have the proof by taking c1 =
√

min
x̂∈Û

λmin(Ĝ(x̂)) and c2 = √
λmax. �

Lemma 14.2 Let M be a Riemannian manifold endowed with a vector transport
T and an associated retraction R, and let x∗ ∈ M . Let F be a smooth vector field
on M . Then there is a neighborhood U of x∗ and L > 0 s.t., ∀x, y ∈ U :

∣∣∥∥T −1
R−1

y x
F (x)

∥∥2
y

− ‖F(x)‖2
x

∣∣ ≤ L‖F(x)‖2
xdist(x, y),

where ‖F(v)‖v denotes the norm in TvM defined by the Riemannian metric.

Proof Let L(y, x) denote T −1
R−1

y x
. We work in a coordinate chart and let the hat

denote the coordinate expressions. We have
∣∣∥∥T −1

R−1
y x

F (x)
∥∥2

y
− ‖F(x)‖2

x

∣∣ = ∣∣F̂ (x)T
(
L̂

(
ŷ, x̂

)T
Ĝ(ŷ)L̂

(
ŷ, x̂

) − Ĝ(x̂)
)
F̂ (x)

∣∣

(14.2)

≤ ∥∥F̂ (x)
∥∥2∥∥H(ŷ, x̂)

∥∥ (14.3)

≤ c1
∥∥F̂ (x)

∥∥2∥∥ŷ − x̂
∥∥ (14.4)

≤ c2‖F(x)‖2
xdist(x, y), (14.5)
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where H(ŷ, x̂) = L̂(ŷ, x̂)T Ĝ(ŷ)L̂(ŷ, x̂) − Ĝ(x̂), ‖F̂ (x)‖ denotes the classical Eu-
clidean norm of F̂ (x) ∈ R

d , where d is the dimension of M , and ‖H(ŷ, x̂)‖ denotes
the induced matrix norm (spectral norm). To get Eq. (14.4), take U bounded and
observe that H is smooth and that H(x̂, x̂) = 0 for all x̂. To get Eq. (14.5), use
Lemma 14.1. �

Lemma 14.3 Under the assumptions of Lemma 14.2, there is a neighborhood U
of x∗ and L′ > 0 s.t., ∀x, y ∈ U :

∣∣∥∥T −1
R−1

y x
F (x)

∥∥
y
− ‖F(x)‖x

∣∣ ≤ L′‖F(x)‖xdist(x, y). (14.6)

Proof If ‖T −1
R−1

y x
F (x)‖y + ‖F(x)‖x = 0, then both sides of Eq. (14.6) are zero and

the claim holds. Otherwise,

∣
∣
∥
∥T −1

R−1
y x

F (x)
∥
∥

y
− ‖F(x)‖x

∣
∣ =

|‖T −1
R−1

y x
F (x)‖2

y − ‖F(x)‖2
x |

‖T −1
R−1

y x
F (x)‖y + ‖F(x)‖x

≤ L‖F(x)‖2dist(x, y)

c3‖F(x)‖
≤ L′‖F(x)‖xdist(x, y). �

Definition 14.2 (Nondegenerate zero) Let F be a smooth vector field on a Rie-
mannian manifold M . A point x∗ ∈ M is termed a nondegenerate zero of F if
F(x∗) = 0 and ∇ξx∗ F �= 0, ∀ξx∗ �= 0 ∈ Tx∗M for some (and thus all, see [2, p. 96])
affine connection ∇ on M .

Lemma 14.4 (Lemma 7.4.7, [2]) Let M be a Riemannian manifold with Levi-
Civita connection ∇ . Let x ∈ M , let U be a normal neighborhood of x, and let ζ

be a C1 tangent vector field on M , then, for all y ∈ U ,

P 0←1
γ ζy = ζx + ∇ξ ζ +

∫ 1

0

(
P 0←τ

γ ∇γ ′(τ )ζ − ∇ξ ζ
)

dτ,

where γ is the unique geodesic in U satisfying γ (0) = x and γ (1) = y, P b←a
γ

denotes parallel transport along γ (t) from a to b, and ξ = Exp−1
x y = γ ′(0).

Lemma 14.5 Let F be a smooth vector field on a Riemannian manifold M . Let
x∗ ∈ M be a nondegenerate zero of F , then there exists a neighborhood U of x∗
and c0, c1 > 0 such that, for all x ∈ U ,

c0 dist(x, x∗) ≤ ‖F(x)‖ ≤ c1 dist(x, x∗). (14.7)

Proof Let DF(x) denote the linear transformation of TxM defined by DF(x)[ξx ] =
∇ξx F,∀ξx ∈ TxM , where ∇ denotes the Levi-Civita connection. Let U be a normal
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neighborhood of x∗ and, for all x ∈ U , let γx denote the unique geodesic in U
satisfying γx(0) = x∗ and γx(1) = x.

From Taylor (Lemma 14.4), it follows that

P 0←1
γx

F (x) = DF(x∗)
[
γ ′
x(0)

]

+
∫ 1

0

(
P 0←τ

γx
DF(γx(τ ))

[
γ ′
x(τ )

] −DF(x∗)
[
γ ′
x(0)

])
dτ. (14.8)

Since F is smooth and since ‖γ ′
x(τ )‖ = dist(x∗, x),∀τ ∈ [0,1], we have the follow-

ing bound for the integral:
∥∥
∥∥

∫ 1

0

(
P 0←τ

γx
DF(γx(τ ))

[
γ ′
x(τ )

] −DF(x∗)
[
γ ′
x(0)

])
dτ

∥∥
∥∥

=
∥∥∥∥

∫ 1

0

(
P 0←τ

γx
◦DF(γx(τ )) ◦ P τ←0

γx
−DF(x∗)

)[
γ ′
x(0)

]
dτ

∥∥∥∥

≤ ε(dist(x∗, x))dist(x∗, x),

where limt→0 ε(t) = 0.
Since DF(x∗) is nonsingular, there exists c0, c1 such that

2c0‖ξx∗‖ ≤ ‖DF(x∗)[ξx∗ ]‖ ≤ 1

2
c1‖ξx∗‖, ∀ξx∗ ∈ Tx∗M. (14.9)

Take U sufficiently small such that ε(dist(x∗, x)) < c0 and < 1
2c1 for all x ∈ U .

Applying Eq. (14.8) yields

‖F(x)‖ = ∥∥P 0←1
γx

F (x)
∥∥ ≤ 1

2
c1dist(x∗, x) + 1

2
c1dist(x∗, x)

= c1dist(x∗, x), for all x ∈ U

and

‖F(x)‖ = ∥∥P 0←1
γx

F (x)
∥∥ ≥ 2c0dist(x∗, x) − c0dist(x∗, x)

= c0dist(x∗, x), for all x ∈ U . �

Lemma 14.6 Let F be a smooth vector field on a Riemannian manifold M en-
dowed with a vector transport T and associated retraction R. Let x∗ ∈ M be a
nondegenerate zero of F . Then there exists a neighborhood V of 0x∗ ∈ Tx∗M and
c0, c1 > 0 such that, for all ξ ∈ V ,

c0‖ξ‖ ≤ ‖T −1
ξ

(
F(Rx∗(ξ))

)‖ ≤ c1‖ξ‖. (14.10)

Proof Let G(ξ) = T −1
ξ (F (Rx∗(ξ))) and E(ε) = G(εξ). Let D̃F(x) denote the

derivative at 0x of the function TxM → TxM : η �→ T −1
η F (Rx(η)). We have

T −1
ξ

(
F(Rx∗(ξ))

) = E(1)
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= E(0) + E′(0) +
∫ 1

0
E′(τ ) − E′(0)dτ (14.11)

= E(0) + DG(0)ξ +
∫ 1

0
[DG(τξ) − DG(0)]ξ dτ (14.12)

= 0 + D̃F(x∗)ξ +
∫ 1

0
[DG(τξ) − DG(0)]ξ dτ . (14.13)

The above Eq. (14.11) follows from the fundamental theorem E(1) − E(0) =∫ 1
0 E′(τ )dτ , and Eq. (14.12) comes by the chain rule. Observe that G is a function

from Tx∗M to Tx∗M , which are vector spaces, thus DG is the classical derivative
of G. To get Eq. (14.13), observe that E(0) = T −1

0x∗ (F (Rx∗(0x∗))) = F(x∗) = 0.

It can be checked that D̃ is an affine connection. Hence, since x∗ is a nondegen-
erate zero of F, D̃F(x∗) is invertible. We have

‖ξ‖ = ∥
∥D̃F(x∗)−1

D̃F(x∗)ξ
∥
∥ ≤ ∥

∥D̃F(x∗)−1
∥
∥
∥
∥D̃F(x∗)ξ

∥
∥,

i.e.
∥∥D̃F(x∗)ξ

∥∥ ≥ ‖ξ‖
‖D̃F(x∗)−1‖ . (14.14)

From Eq. (14.13), we have

∥∥T −1
ξ

(
F(Rx∗(ξ))

)∥∥ ≥ ∥∥D̃F(x∗)ξ
∥∥ −

∥∥∥∥

∫ 1

0
[DG(τξ) − DG(0)]ξ dτ

∥∥∥∥

≥ 1

‖D̃F(x∗)−1‖‖ξ‖ −
∫ 1

0
‖DG(τξ) − DG(0)‖‖ξ‖dτ

≥ 1

‖D̃F(x∗)−1‖‖ξ‖ −
∫ 1

0
ατ‖ξ‖‖ξ‖dτ, ∀ξ ∈ V ,

≥ 1

‖D̃F(x∗)−1‖‖ξ‖ − 1

2
α‖ξ‖2, ∀ξ ∈ V , (14.15)

where Eq. (14.15) relies on Lipschitz continuity of DG, which holds by taking V
bounded since G is smooth. Taking V smaller if necessary, we have

∥∥T −1
ξ

(
F(Rx∗(ξ))

)∥∥ ≥ 1

2‖(̃DF(x∗))−1‖‖ξ‖, ∀ξ ∈ V .

Let c0 = 1
2‖(̃DF(x∗))−1‖ , this concludes the first inequality in Eq. (14.10).

From Eq. (14.13), we have

∥∥T −1
ξ

(
F(Rx∗(ξ))

)∥∥ ≤ ∥∥D̃F(x∗)ξ
∥∥ +

∥∥∥
∥

∫ 1

0
[DG(τξ) − DG(0)]ξ dτ

∥∥∥
∥
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≤ ∥∥D̃F(x∗)
∥∥‖ξ‖ +

∫ 1

0
‖DG(τξ) − DG(0)‖‖ξ‖dτ

≤ ∥∥D̃F(x∗)
∥∥‖ξ‖ +

∫ 1

0
ατ‖ξ‖‖ξ‖dτ, ∀ξ ∈ V ,

≤ ∥∥D̃F(x∗)
∥∥‖ξ‖ + 1

2
α‖ξ‖2, ∀ξ ∈ V

≤ ∥∥D̃F(x∗)
∥∥‖ξ‖ + 1

2
α‖ξ‖, ∀ξ ∈ V , (‖ξ‖ ≤ 1).

Let c1 = ‖D̃F(x∗)‖ + 1
2α, this concludes the second inequality in Eq. (14.10). �

Finally we note that since c1‖R̂x(ξ) − x̂‖ ≤ dist(x,Rx(ξ)) ≤ c2‖R̂x(ξ) − x̂‖, by
Lemma 14.1, and R̂x(ξ) = ξ̂ + O(ξ̂ 2), for the retraction R there exist μ > 0, μ̃ >

0 and δμ,μ̃ > 0 such that ∀x in a sufficiently small neighborhood of x∗ and ξ ∈
TxM ,‖ξ‖ ≤ δμ,μ̃

1

μ̃
‖ξ‖ ≤ dist(x,Rx(ξ)) ≤ 1

μ
‖ξ‖. (14.16)

We are now in a position to state and prove the main result of a necessary and
sufficient condition for superlinear convergence of a Riemannian quasi-Newton al-
gorithm.

Theorem 14.1 (Riemannian Dennis-Moré Condition) Let M be a Riemannian
manifold endowed with a C2 vector transport T and an associated retraction R.
Let F be a C2 tangent vector field on M . Also let M be endowed with an affine
connection ∇ . Let DF(x) denote the linear transformation of TxM defined by
DF(x)[ξx] = ∇ξx

F for all tangent vectors ξx to M at x. Let {Bk} be a bounded se-
quence of nonsingular linear transformations of Txk

M , where k = 0,1, . . . , xk+1 =
Rxk

(ηk), and ηk = −B−1
k F (xk). Assume that DF(x∗) is nonsingular, xk �= x∗,∀k,

and limk→∞ xk = x∗. Then {xk} converges superlinearly to x∗ and F(x∗) = 0 if and
only if

lim
k→∞

‖[Bk − Tξk
DF(x∗)T −1

ξk
]ηk‖

‖ηk‖ = 0, (14.17)

where ξk ∈ Tx∗M is defined by ξk = R−1
x∗ (xk), i.e. Rx∗(ξk) = xk .

Proof Assume first that Eq. (14.17) holds. Since, for ξk ∈ Tx∗M and ηk ∈ Txk
M

we have

0 = Bkηk + F(xk)

= (
Bk − Tξk

DF(x∗)T −1
ξk

)
ηk + F(xk) + Tξk

DF(x∗)T −1
ξk

ηk, (14.18)
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and we have

−T −1
ηk

F (xk+1) = (
Bk − Tξk

DF(x∗)T −1
ξk

)
ηk

+ (−T −1
ηk

F (xk+1) + F(xk) + Tξk
DF(x∗)T −1

ξk
ηk

)

= (
Bk − Tξk

DF(x∗)T −1
ξk

)
ηk

+ (−T −1
ηk

F (xk+1) + F(xk) + D̃F(xk)ηk

)

+ (
Tξk

D̃F(x∗)T −1
ξk

− D̃F(xk)
)
ηk

+ Tξk

(
DF(x∗) − D̃F(x∗)

)
T −1

ξk
ηk. (14.19)

Recall that D̃F(x) denotes the derivative at 0x of the function TxM → TxM :
η �→ T −1

η F (Rx(η)), so we have

lim
k→∞

‖(−T −1
ηk

F (xk+1) + F(xk) + D̃F(xk)ηk)‖
‖ηk‖ = 0. (14.20)

Since F is C2, we have

lim
k→∞

‖(Tξk
D̃F(x∗)T −1

ξk
− D̃F(xk))ηk‖

‖ηk‖ = 0. (14.21)

Since limk→∞ xk = x∗, we have limk→∞ ‖ηk‖ = 0 and limk→∞ ‖F(xk)‖ = 0 if Bk

is bounded. So F(x∗) = 0.
Since F(x∗) = 0, we have D̃F(x∗) = DF(x∗), [2, p. 96], hence

‖Tξk
(DF(x∗) − D̃F(x∗))T −1

ξk
ηk‖

‖ηk‖ = 0. (14.22)

Thus Eq. (14.19) yields

lim
k→∞

‖T −1
ηk

F (xk+1)‖
‖ηk‖ = 0. (14.23)

From Lemma 14.6, we have
∥∥T −1

ξk+1
F(xk+1)

∥∥ ≥ α‖ξk+1‖, ∀k ≥ k0 (14.24)

where ξk+1 ∈ Tx∗M and Rx∗(ξk+1) = xk+1. Therefore, we have
∥∥T −1

ηk
F (xk+1)

∥∥ (14.25)

= ∥∥T −1
ηk

F (xk+1)
∥∥ − ‖F(xk+1)‖ + ‖F(xk+1)‖

− ∥
∥T −1

ξk+1
F(xk+1)

∥
∥ + ∥

∥T −1
ξk+1

F(xk+1)
∥
∥
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≥ ∥∥T −1
ξk+1

F(xk+1)
∥∥

− ∣∣∥∥T −1
ηk

F (xk+1)
∥∥ − ‖F(xk+1)‖

∣∣ − ∣∣‖F(xk+1)‖ − ∥∥T −1
ξk+1

F(xk+1)
∥∥∣∣

≥ α‖ξk+1‖ − L′‖F(xk+1)‖dist(xk, xk+1) − L′‖F(xk+1)‖dist(x∗, xk+1)(14.26)

≥ α‖ξk+1‖ − c4‖ξk+1‖(dist(xk, xk+1) + dist(x∗, xk+1)), (14.27)

where Eq. (14.26) follows from Eq. (14.24) with k0 sufficiently large and Lemma
14.3, and Eq. (14.27) follows from Lemma 14.5 and Eq. (14.16).

We have also

1/μ̃‖ηk‖ ≤ dist(xk, xk+1) ≤ dist(xk, x∗) + dist(xk+1, x∗) ≤ 1/μ‖ξk‖ + 1/μ‖ξk+1‖,
that is

‖ηk‖ ≤ μ̃/μ(‖ξk‖ + ‖ξk+1‖).
We also have

0 = lim
k→∞

‖T −1
ηk

F (xk+1)‖
‖ηk‖

≥ lim
k→∞

α‖ξk+1‖
‖ηk‖

(
1 − c4

α
(dist(xk, xk+1) + dist(xk+1, x∗))

)

= lim
k→∞

α‖ξk+1‖
‖ηk‖ ≥ lim

k→∞
α‖ξk+1‖

μ̃/μ(‖ξk‖ + ‖ξk+1‖)
= lim

k→∞
α‖ξk+1‖/‖ξk‖

μ̃/μ(1 + ‖ξk+1‖/‖ξk‖) .

Hence

lim
k→∞

‖ξk+1‖
‖ξk‖ = 0.

This is superlinear convergence and this concludes the if portion of the proof.
Conversely, assume that {xk} converges superlinearly to x∗ and F(x∗) = 0. It is

sufficient to show that

lim
k→∞

‖T −1
ηk

F (xk+1)‖
‖ηk‖ = 0, (14.28)

as this allows us to conclude using Eqs. (14.19), (14.20), (14.21), and (14.22). To
show Eq. (14.28), observe that

∥∥T −1
ηk

F (xk+1)
∥∥ = ∥∥T −1

ηk
F (xk+1)

∥∥ − ‖F(xk+1)‖ + ‖F(xk+1)‖
− ∥∥T −1

ξk+1
F(xk+1)

∥∥ + ∥∥T −1
ξk+1

F(xk+1)
∥∥

≤ ∥
∥T −1

ξk+1
F(xk+1)

∥
∥ + ∣

∣
∥
∥T −1

ηk
F (xk+1)

∥
∥ − ‖F(xk+1)‖

∣
∣
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+ ∣∣‖F(xk+1)‖ − ∥∥T −1
ξk+1

F(xk+1)
∥∥∣∣

≤ c1‖ξk+1‖ + c4‖ξk+1‖dist(xk, xk+1) + (dist(x∗, xk+1))

and that

‖ηk‖ ≥ μdist(xk, xk+1) ≥ μ(dist(xk, x∗) − dist(xk+1, x∗)) ≥ μ

μ̃
(‖ξk‖ − ‖ξk+1‖).

Hence

lim
k→∞

‖T −1
ηk

F (xk+1)‖
‖ηk‖ ≤ lim

k→∞
c1‖ξk+1‖

μ
μ̃
(‖ξk‖ − ‖ξk+1‖)

≤ lim
k→∞

c1μ̃

μ

‖ξk+1‖/‖ξk‖
1 − ‖ξk+1‖/‖ξk‖ = 0

since

lim
k→∞

‖ξk+1‖
‖ξk‖ = 0

by the superlinear convergence assumption. �
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Chapter 15
A Jump-Start of Non-negative Least Squares
Solvers

Mu Wang and Xiaoge Wang

Abstract Non-negative least squares fitting is a basic block in many applications.
Following the classical active-set method by Lawson and Hanson (Solving least
squares problems, Prentice-Hall, 1974), much research has been directed toward
improving that algorithm. In this paper we present a new method that produces an
initial setting for this classical algorithm. This initialization method exploits the
relationship between projection based methods and the active set methods. Two
quantitative measurements are introduced to evaluate the quality of initial settings
for active set method. Experimental results indicate that the proposed initialization
provides a good jump-start for the active set method leading to a reduction of the
number of iterations of active set methods.

15.1 Introduction

The non-negative least squares (NNLS) problem has many applications [18, 20], for
instance in image processing and data mining. In some scenarios, the non-negative
constraint comes from the requirements of the background application or the de-
mand to reduce dimensions. The non-negativity constraint makes the solution meth-
ods very different than the solution methods for the unconstrained least squares
(ULS) problems The latter may be direct or iterative while the former are always
iterative. In iterative methods, initialization can influence the number of iterations
used to reach a satisfactory approximation to the solution. For example, as shown
in [4], a scheme based on the singular value decomposition (SVD) can be used to
“jump-start” algorithms for non-negative matrix factorization (NMF). In this paper,
the initialization for active set methods is studied and a new initialization method is
proposed.

The main contributions of this article are:
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1. The relation between two classes of solvers, active set methods and projection
based iterative methods, is studied. We show that a sequence of sets induced
from the sequence of solution vectors generated by a projection based algorithm
converges to the slack set of the active set methods.

2. Two quantitative measurements, Precision and Recall, are introduced to
evaluate the quality of initialization of active set methods.

3. A projection based initialization method for active set methods is proposed. Ex-
perimental results indicate that the proposed initialization method could generate
better initialization and achieve better performance than active set method due to
the better initial setting.

The rest of the paper is organized as follows. In Sect. 15.2 we review the two
main categories of existing methods and briefly discuss their characteristics. The
description of the proposed initialization algorithm, its principles and design are
given in Sect. 15.3. Numerical experiments programmed in MATLAB are described
in Sect. 15.4. Section 15.5 contains our conclusion and comments on some possible
directions of future work.

15.2 Background and Related Work

The NNLS problem to be solved is the following: Given a matrix A ∈ Rm×n and
vector b ∈ Rm×1, find the vector x ∈ Rn×1 with the constraint x ≥ 0 that minimizes
the objective function f (x) = ‖Ax − b‖2, where ‖ · ‖2 is the L2-norm. It can be
denoted as

min‖Ax − b‖2, subject to x ≥ 0 (15.1)

A non-negative vector x is the solution to the above problem if and only if it
satisfies the Karush–Kuhn–Tucker (KKT) conditions [13, 14], namely that if w =
AT (b − Ax), there exists a partitioning of the integers from 1 to n into two sets S

and E such that

∀j ∈ S, xj > 0 and ∀j ∈ E, xj = 0

∀j ∈ S, wj = 0 and ∀j ∈ E, wj ≤ 0

In addition, if A is full column rank, then the solution is unique. Moreover, let
AS denote the m× n matrix by constrain A on set S such that the j th column of AS

equals to j th column of A for ∀j ∈ S, otherwise it equals to the vector of all zeros.
x is the solution vector of the associated unconstrained least squares (ULS) problem
defined by S (cf. [14]):

min‖ASx − b‖2 (15.2)

In the rest of the paper, the set S is called slack set, and the set E is called equality
set. Solving NNLS problem is equivalent to determine the slack (equality) set S(E)
followed by solving the corresponding ULS problem shown in Eq. (15.2).
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A comprehensive review of NNLS solvers is given in [6]. The algorithms for
solving NNLS problems can be classified into two categories: active set methods
which focus on determining the slack set by iteratively moving candidate elements
from active set to passive set, and projection based methods which focus on compu-
tation of feasible solution vector. The work presented in this paper is related to both
approaches. In the following subsections we briefly review the two types of method.

15.2.1 Active Set Methods

In 1974, Lawson and Hanson [14] proposed the first widely used active set algo-
rithm. The main idea of the algorithm is to find the slack set iteratively. It defines
an index set P called passive set and its complement set Z called active set. The
algorithm starts with empty passive set P . It consists of two nested loops. In each
step of the outer loop k, a candidate index is chose from active set to be added to
the passive set P , and then computes the solution x of the associated ULS problem
defined by P . If the solution contains zero or negative elements, the P cannot be
a valid candidate of the slack set, so the inner loop is invoked. The function of the
inner loop is to modify the passive set to become a valid candidate. In the inner
loop, the indices whose corresponding position in the solution vector x is zero or
negative are removed form the passive set. After the update of the passive set, the
solution of the associated ULS problem defined by the updated passive set is recom-
puted and checked. This process is repeated until there is no further update. Then
whether the passive set is the slack set is tested by checking whether the Karush–
Kuhn–Tucker conditions is satisfied. If the condition is satisfied, the outer loop is
terminated. Since there are only finite possible combinations of the passive set, and
the objective function strictly decreases during the course of the iterations as proved
in [14], this algorithm must stop in a finite iterations. The solution at the termina-
tion of the outer iteration is the solution to the NNLS problem. Later works were
aimed at reducing redundant computations as well as taking advantage of the fact
that many times, several NNLS problems with the same coefficient matrix A need
to be solved; cf. [5] and [19]. Reference [9] deals with active set methods when the
coefficient matrix is sparse and has more columns than rows. There has also been
research on how to improve the implementation of NNLS algorithms on modern
computer systems, e.g. taking advantage of multicore technology [16].

The main weakness of the standard active set method is that the algorithm starts
from empty passive set and only one index is added in each outer iteration step.
Although the QR up-dating and down-dating techniques can be applied to speed up
computing the solutions of associated ULS problems, these computations consist
mostly of level 1 or 2 BLAS, which may not fully take advantages of modern com-
puter architecture in the implementation. So some modifications have been proposed
to further improve its performance.

One way to improve the performance of active set methods is to add two or more
indices at each outer iteration. but this should be done very carefully because it may
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cause the endless loop in the algorithm. A “backup exchange rule” introduced in
[12, 17] is one way to deal with this problem. It consists of a method to select a
block of indices and a rule of backup to ensure the correct function of the algorithm.
The method is expected to work well when A is full column rank but may fail
otherwise. Another way is to start the outer iteration with a non-empty initial passive
set, which could be considered as a jump-start for active set methods compared with
the original versions which start with an empty set. The work presented in [19]
uses the initial passive set that comes from the solution to the LS problem. Such
initialization may work well when there is only little difference in the solutions
of two successive problems or when the non-negative constraint is enforced only
to eliminate the noise caused by observation, measurement or rounding errors of
floating point computation. In those cases, the solution of the ULS problem provides
a reasonable guess of the solution to the NNLS problem.

15.2.2 Projection Based Methods

The methods in this category use gradient information to approach to the solution.
Their advantage is that they can handle multiple active constraints at each iteration.
A state-of-the-art method in this category is the Projected Quasi-Newton (PQN)
method by Kim, Sra, and Dhillon [10, 11]. As its name indicates, the idea of PQN is
like the Newton method. At iteration k, a “search direction” is determined based on
current solution vector xk and the gradient scaling matrix, along which the objective
function decrease in a neighborhood. Along that direction an adjustment of solution
vector is made so that the new solution vector would reduce the objective function
and satisfy the non-negative constraint as well. In the course of the iterations, a
sequence of solution vectors is generated whose corresponding objective function
values are strictly decreasing. Theoretical termination is when the KKT condition is
satisfied; in practice, some specific stopping criteria are set and tested.

As indicated in [10], a characteristic of the above projection based methods is
that in the course of the iterations, the objective function decreases fast early on
but after a few steps, this decrease slows down considerably. This phenomenon is
known as “jamming”. This phenomenon was also observed in other projection based
methods, e.g. [2, 3, 15]. It is thus interesting to see if it is possible to design NNLS
solvers in which the good performance of projection based methods is preserved,
while the jamming in the later iterations is avoided. This is exactly the inspiration
of the method proposed in this paper.

There are some other methods in this category. The approach presented in [8]
is to optimize at a single coordinate with all other coordinates fixed. Because this
method is sequential and most of the computation is in the form of vector-vector
(Level 1 BLAS) computation, it may not suitable for optimizations designed to take
advantage of modern computer systems. The random projection method [7] only
gives a vector which is close to the final solution in a relative error approximation
sense with high probability. These works are not as much related to the ideas pre-
sented in this paper, so we do not discuss them any further.
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15.3 Jump-Start for Active Set Methods

In this section, two quantitative measurements of the quality of an initial passive set
for active set algorithm are introduced. Then a study on the relationship between
projection based methods and active set methods is presented. Based on the theoret-
ical analysis and observations, a projection based initialization strategy for acceler-
ating active set methods is introduced and discussed. Then, PiNNLS, the algorithm
of solving NNLS with the initialization, is presented.

15.3.1 Performance Indicators

Intuitively, if we wish to provide a jump-start for active set methods, we would
like for the initial passive set to be close to the slack set, that is, the initial guess
should include more elements in the slack set and fewer elements in the equality set.
Unfortunately, to the best of our knowledge, there is no quantitative measurement
about this. So our investigation starts from the introduction of two quantities which
measure the quality of the initial passive set in active set methods. We require the
matrix A to be to be full column rank here for convenience, so the final solution and
the slack set is unique. We will show later that this requirement could be removed
without tampering the correctness of our method.

Let S be the slack set and P0 be the initial passive set. Let | · | denote the number
of elements in a set. To quantify the measurement on how close the initial guess P0
is to S, we borrow the concepts of recall and precision from the field of informa-
tion retrieval with S corresponding to the relevant documents and P0 correspond-
ing to the retrieved documents. Similarly, we define two quantities, Recall and
Precision, as follows:

Recall= |P0 ∩ S|
|S| (15.3)

Precision= |P0 ∩ S|
|P0| (15.4)

Recall is the fraction of the elements that are correctly guessed by initial pas-
sive set among all the elements of the slack set. It measures the probability of ele-
ments in the slack set to be correctly included by the initial guess.

Precision is the fraction of the elements of correct guess among all guessed
elements by initial guess. It quantitatively measures the precision of the initial pas-
sive set.

1 − Precision= |P0 \ S|
|P0| (15.5)

gives the information on how many incorrect guesses among the initial guesses.
Together, these two quantities give the evaluation on how close is the set P0 to S.

Recall indicates how much benefits we could get from the initialization and the
Precision indicates how much extra cost we have to pay to remove the false
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elements from the initial guess. In the ideal case, when both quantities are 100%, it
means P0 is exactly the same as S.

15.3.2 Relation Between Projection Based Methods and Active Set
Methods

As mentioned in previous section, Active set methods deal with the passive set and
the solution vector of the associated ULS problem defined by the passive set, while
projection based methods deal with only the solution vectors. We denote xk , k =
1,2, . . . the vector sequence generated by a projection based algorithm. As proved
in [11], this sequence converges to the solution x. Does this sequence of vectors tell
us something about the slack set? To answer this question, we prove the following.

Theorem 15.3.1 Let xk , k = 1,2, . . . be the solution vector sequence generated by
a projection based algorithm that converges to the final solution x. Then there exists
δ > 0 such that if we define Pk = {i|xi

k > δ}, k = 1,2, . . . , where the superscript i

denotes the ith element, then there exists K , such that for all k > K , Pk = S, where
S = {i|xi > 0} is the slack set.

Proof From xk convergent to x, we know that

∀ε > 0, ∃K, s.t., ∀k > K, i ∈ {1, . . . , n}, ∣
∣xi

k − xi
∣
∣ < ε

Then, we have

∀k > K, i ∈ {1, . . . , n}, xi
k > xi − ε and xi

k < xi + ε

Notice that xk and x are non-negative, so if we choose δ so that

0 < δ < min
{
xi |xi > 0

}
and ε = min

{
min

i∈1,...,n

{
xi

∣∣xi > 0
} − δ, δ

}

Then, we have

xi > 0 ⇒ xi
k > δ, and, xi = 0 ⇒ xi

k < δ

Recall the definition of S and Pk ,

S = {
i|xi > 0

}
and Pk = {

i|xi
k > δ

}

And this leads to

∀k > K, j ∈ {1, · · · , n}, j ∈ S ⇔ j ∈ Pk

∀k > K, Pk = S. �

From the proof of the theorem, we can see that δ plays the role of threshold to
distinguish small values from zero in order to rule out the inconsistency brought by
the convergence to zero because a sequence could converge to zero with all its ele-
ments being positive. It would need fewer steps to reach the slack set if δ is properly
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chosen. Theoretically, any value satisfying the condition 0 < δ < min{xi |xi > 0} is
enough from the proof. But in practice, such value is not known until we get the
final solution. Therefore, we simply assign δ to be the numerical tolerance consider-
ing that, in a numerical implementation, the tolerance is used to differentiate small
values from zero.

The theorem says that projection based methods can be used to determine the
slack set. The theorem proves the existence of K by the convergence condition,
though we do not know quantitatively how large K would be. If K is relatively
small in practice, then the slack set can be determined in several projection iteration
steps. If K is very large, which means Pk is equal to S only at convergence, will
Pk with small k be useful? Recall the discussion in Sect. 15.2.2 where we said that
after few iterations of a projection based method, the objective function decreases
at a slow pace. We assume that this means that xk is close to the final solution x but
still has some way to go to be considered a satisfactory approximation. So it could
be that after few steps, Pk is close, but not equal, to the slack set S. This inspires the
basic idea of our algorithm, namely to use a projection based algorithms to generate
an initial passive set for active set methods.

When finding an initial passive set for an active set algorithm, there are two
requirements.

• Quality requirement: the initial passive set should be close to the slack set.
• Cost requirement: the computation of the initialization should not be costly.

These two requirements are important to make sure that the initialization is appli-
cable. Otherwise, it may not be better than simply using an empty passive set. We
next elaborate on these issues.

15.3.3 Observations

Let FNNLSi be the active set method with the initial passive set taken from the solu-
tion vector of ULS problem. Take FNNLSi as an example to show the applicability
according to the two requirements. Suppose P0 is the initial passive set and S is the
slack set. The Recall and Precision are defined as in Eqs. (15.3) and (15.4).
In FNNLSi, P0 = {i|xi > 0}, where x is the solution of min‖Ax − b‖2. Solving
the ULS does not impose a heavy computational burden compared to the total cost
of an active set algorithm. So the cost requirement is met. To evaluate the quality,
we take three matrices from the University of Florida Sparse Matrix Collection (UF
Collection) and measure the Recall and Precision of P0 of FNNLSi.

The results are given in Table 15.1. It can be seen that the quality of P0 in
FNNLSi is not satisfactory. For example, Precision for the matrix HB/illc1850
is as low as 57.71%, which means lots of computation is required to remove the
elements in the equality set from the initial passive set. While Recall of matrix
HB/well1850 is as low as 58.76%, which means large among of slack set elements
are not in the initial passive set, so large number of iteration steps may still be
needed.
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Table 15.1 Recall and
Precision of P0 in
FNNLSi(%)

Matrix Recall Precision

HB/illc1850 60.84 57.71

HB/well1850 58.76 72.89

LPnetlib/lp_degen3 82.24 67.83

Fig. 15.1 Recall and
Precision at each iteration
(test matrix: illc1850)

Fig. 15.2 Recall and
Precision at each iteration
(test matrix: lp_degen3)

To investigate the quality of projection based initialization method, suppose xk

and Pk are defined as in the proof of Theorem 15.3.1, we examined the evolution of
Recall and Precision in the course of the iterations. Two representative cases
are given in Figs. 15.1 and 15.2. From the figures, we have two observations:

First, the starting values of both Recall and Precision for the two test ma-
trices are higher than before. For Recall, it is above 75%, and for Precision it
is about 65%. Subsequently, both Recall and Precision generally increase as
the iterations proceed. Even when there is an occasional decrease,. e.g., in the first
several steps for matrix HB/illc1850, Recall decreases from 100% to about 87%,
it does not alter much the general increasing trend. We thus hope that the initial
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passive set obtained from a few steps of the projection based algorithm is close to
the slack set.

Second, we can see that the increase of Recall and Precision is much more
in the earlier steps than in the later steps. For example, after 20 iteration steps,
Recall and Precision are about 90% and 80% respectively, but after 200 it-
erations steps, they are just about 95%. This means that if we use projection based
algorithm as initialization for active set methods, it should not take many iteration
steps, because the main benefits are obtained in the course of the early steps.

Based on the these observations, we conclude that it is applicable to use projec-
tion based methods to initialize the passive set for active set methods. More dis-
cussion and the description of an implementation, PiNNLS, are given in the next
subsection.

15.3.4 PiNNLS

The above observations suggest that projection based methods could be used as
initialization for active set methods. We name this approach as projection based ini-
tialization. We next need to discuss some issues pertaining to such an initialization.

First, the active set methods need to be modified in order to handle the case of
a non-empty initial passive set. In active set methods, a valid passive set is one
for which the solution to the corresponding ULS problem does not contain zero
or negative elements. If the initial passive set is not valid, it may cause the active
set method generate incorrect result or ignore the initialization. To ensure correct-
ness there should be a validation loop to validate the initial passive set; cf. [5]. The
validation loop is exactly the same as the inner loop in active set methods.

Second, unlike in FNNLSi, where the initialization finishes after the solve of
the ULS problem, it needs a stopping condition for projection based initialization.
Because the slack set S is unknown until the final solution is obtained, we cannot
simply compare Pk to S to decide whether we should stop the initialization. A sim-
ple way to control the number of iterations is to set the number of iteration steps λ.
If λ = 1, that means the initial passive set comes directly from the gradient. In gen-
eral, λ should not be large because we know from the observations in Sect. 15.3.3
that prolonging the initialization will not bring much additional benefit.

In general, any projection based method that satisfies the conditions in Theo-
rem 15.3.1 could be used for initialization, and any active set method could be
used after the initialization. In this paper, we choose Projected Quasi-Newton (PQN)
method [11] for the initialization and FNNLS [5] as the active set method to form
an algorithm of solving NNLS problem. We name this specific algorithm PiNNLS
(Projection initialized NNLS solver).

In PiNNLS, the PQN method is implemented with some specializations and ad-
justments for the initialization. Some details are specified as the following:

1. The gradient scaling step is omitted because it is not expected to improve the
results significantly while taking additional storage and computation. We directly
use the gradient as the “search direction” (Line 5).
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2. We use both the APA rule [1] (Line 6 to Line 12) and line-search techniques
(Line 13 to Line 14) to determine how far the current solution vector x should go
along the “search direction” (Line 15). The parameters σ , s and τ are introduced
by the APA rule. In our experiment reported in the next section, these parameters
are set as σ = 1, s = 0.3, τ = 0.35 respectively.

3. The δ is the same as the numerical tolerance and we have discussed the reasons
in Sect. 15.3.2.

4. The iteration terminates when the number of steps reaches λ (Line 18).
5. An initial passive set P is determined (Line 19). The validation loop is followed

to make sure the passive set is valid (Line 20 to Line 24). After the validation,
the results are the input for the active set method FNNLS (Line 25), on which
our algorithm relies to get the final solution.

The description of the PiNNLS is given in the following. The description of
FNNLS part is ignored. Refer to [5] for details.

PiNNLS:
Inputs(A ∈ Rm×n, b ∈ Rm×1, x ∈ Rn×1)
Parameters(λ, δ, σ , s, τ )

1 repeat
2 ω = A�b − A�Ax

3 I = {i | xi = 0 and ωi < 0},J = {i | xi > 0 or ωi ≥ 0}
4 y = xJ , ∀i ∈ J, yi = xi and ∀i ∈ I, yi = 0
5 d = ωJ , ∀i ∈ J, di = ωi and ∀i ∈ I, di = 0
6 f̄ = 1

2‖Ay − b‖2, ω̄ = A�b − A�Ay, β = σ

7 repeat
8 β = βs,γ = γ + βd

9 γ = (γ+|γ |)
2

10 f = 1
2‖Aγ − b‖2

11 g = τ × ω̄T (y − γ )

12 until (f̄ − f ) > g

13 u = γ − y

14 α = u�(A�b−A�Ay)

u�A�Au
, α = mid{0,1, α}

15 x = y + α(γ − y)

16 k = k + 1
17 Pk = {i | xi > δ}
18 until (k = λ)
19 P = Pk , z = argmin‖AP z − b‖2, zi = 0,∀i /∈ P

20 while(∃i, zi < 0)

21 α = min{ xj

xi−zi : zi < 0, i ∈ P }
22 x = x + α(z − x)

23 P = find(x > 0), z = argmin{‖AP z − b‖2, zi = 0,∀i /∈ P }
24 end
25 x = FNNLS(A,b, x,P )
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Table 15.2 The synthetic dense matrices

Name D1 D2 D3 D4 D5 D6

m 4000 4000 4000 6000 6000 6000

n 2000 2000 2000 3000 3000 3000

cond 1.61 × 103 6.71 × 104 3.66 × 107 3.95 × 103 2.19 × 104 4.63 × 106

15.4 Numerical Experiments

The experiments are designed and conducted to evaluate the effectiveness of the
proposed initialization method as a jump-start for the active set methods and to test
the performance of PiNNLS as a solver for the NNLS problem. In this section, we
explain some details of our experiments and discuss the numerical results.

15.4.1 Experiments Design and Implementation

Experiments are designed to verify two assumptions. First, that the initialization
used in PiNNLS is of good quality. When verifying this, we use FNNLSi as the ref-
erence for the comparison because it has the similar structure as PiNNLS. Second,
due to the initialization, the overall computation is reduced for active set methods
compare to the same method without initialization.

In the experiment, the methods are implemented in MATLAB. As active set al-
gorithm we used the FNNLS code by Bro in [5]. The same algorithm was used
in FNNLSi and PiNNLS. It is also used in FNNLSi and PiNNLS as the active set
method to be initialized. In FNNLSi, the initialization is implemented by solving
the ULS problem followed by the validation of initial passive set, which is the same
as in PiNNLS Line 20 to 24. In PiNNLS, the initialization is implemented as shown
in Sect. 15.3.4. The MATLAB version used is 2009a for Windows XP. The test are
performed on a computer with an Intel E5400@2.7GHz CPU and 4 GB RAM.

Due to the limitation of the computation resources, the size of test problems is
limited in the scale of thousands. The matrices of test problems include both dense
and sparse matrices.

The first set of test problems consist of synthetic dense matrices. For each test
problem, the matrix A and the corresponding vector b are generated by MATLAB
rand function. We take the singular value decomposition (SVD) of a randomly
generated matrix and manually scale the singular values to get matrices with differ-
ent condition numbers. The size and condition number of the matrices are given in
Table 15.2.

The second set of test matrices is sparse matrices from University of Florida (UF)
collection. The information of the matrices are given in Table 15.3.
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Table 15.3 The matrices from the UF collection

Name S1 S2 S3 S4 S5 S6

matrix illc1850 well1850 blckhole lp_nug12 lp_pilot87 lp_ degen3

m 1850 1850 2132 8856 6680 2604

n 712 712 2132 3192 2030 1503

cond 1.40 × 103 1.11 × 102 4.17 × 103 1.22 × 1017 8.15 × 103 1.76 × 1016

sparsity 99.34% 99.34% 99.67% 99.86% 99.45% 99.35%

Table 15.4 Recall and Precision of initial guess in FNNLSi and PiNNLS (%)

D1 D2 D3 D4 D5 D6 mean

FNNLSi recall 51.54 47.42 48.77 52.72 50.00 50.00 49.96

precision 52.17 46.79 48.52 52.61 52.21 52.21 50.10

PiNNLS recall 97.11 99.07 98.26 97.97 98.31 95.70 97.64

precision 87.06 96.71 96.87 97.20 96.91 94.58 95.37

Table 15.5 Recall and Precision of initial guess in FNNLSi and PiNNLS (%)

S1 S2 S3 S4 S5 S6 mean

FNNLSi recall 60.84 58.76 51.83 50.11 75.71 82.24 63.20

precision 57.71 72.89 17.77 29.83 92.99 67.83 56.50

PiNNLS recall 89.16 93.60 99.73 99.89 75.88 85.01 90.55

precision 76.21 86.28 87.80 99.15 87.87 71.92 84.87

15.4.2 Quality of Initialization

Our first set of experiments is designed to compare the quality of the initial passive
sets generated by PiNNLS and FNNLSi. For the results reported here, the param-
eters in PQN based initialization are set as described in Sect. 15.3.4 while t the
projection iteration steps is set to λ = 10. The Recall and Precision of initial
guesses of both FNNLSi and PiNNLS methods are measured for each test problem.
Results are shown in Tables 15.4 and 15.5.

From Table 15.4 we can see that 10 steps sufficed for PiNNLS to get an initial
passive set with much higher Recall and Precision than by solving the ULS
problem. For FNNLSi, the Recall and Precision of the initial passive set are
all around 50%, while for PiNNLS the Recall and Precision are all above
90% except the precision = 87.06% for the test problem D1 which is also close to
90%. The last column of Table 15.5 shows the mean of the quantity. It tells that
in average Recall and Precision are in about 50% in FNNLSi. This agrees
with the intuition that the positive and negative elements would each take about
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Fig. 15.3 Execution time of
FNNLS and PiNNLS on test
problems

50% among the total elements of the solution vector if the test problem matrices are
randomly generated with the uniform distribution.

The test results are similar for the sparse test problems although the data are
not as consistent as in dense cases. As in Table 15.4, Table 15.5 also shows that
the initial passive set in PiNNLS also has higher Recall and Precision than
that guessed by solving the associated ULS problem. On average, PiNNLS has 27%
higher Recall and about 28% higher Precision. It shows in the table that the
Precision of FNNLSi vary greatly from 17.77% in S3 to 92.99% in S5. This
indicates that the initial guess by using the ULS solution may not be a reliable
general method. Its performance may be problem dependent, e.g., for S6, the initial
passive by FNNLSi is with higher Recall and Precision than by PiNNLS.

15.4.3 Performance of PiNNLS

In this section, we compare the performance of PiNNLS to that of FNNLS. Two
metrics, execution time and iteration count, are used for the evaluation. It should
be pointed out that the size of the operands in the operations may vary with the
iterations. The size of the vector or matrix operands is directly proportional to the
size of passive set. The parameters are set as mentioned in Sect. 15.3.4 and λ = 10.
Due to the widely different scales in the execution times, results in Fig. 15.3 are
plotted in logarithmic scale. A lower bar means less execution time. The two bars
in one group represent the execution time of the two methods respectively on one
test problem. The results of iteration count are shown in Table 15.6 for dense test
problems and Table 15.7 for sparse test problems. The number of iterations of the
validation, inner and outer loops are counted separately. No validation is needed for
FNNLS.

For dense test problems, PiNNLS outperforms FNNLS in both execution time
and iteration count. The data in Table 15.4 could explain these results. High
Precision leads to less iterations of the validation loop and high Recall leads
to less iterations in the inner and outer loop in the active set method. The results in
Table 15.7 also testify the relation. For PiNNLS, due to a good initial passive set, the
subsequent active set method only needs an order of ten iterations to determine the
slack set. If instead we start with an empty passive set, as in FNNLS, the number of
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Table 15.6 Number of iterations in FNNLS and PiNNLS

D1 D2 D3 D4 D5 D6

FNNLS inner 2 2 3 4 7 1

outer 1007 970 981 1529 1541 1476

PiNNLS validation 143 36 14 34 48 3

inner 5 1 1 5 3 0

outer 32 11 18 35 29 91

Table 15.7 Number of iterations in FNNLS and PiNNLS

S1 S2 S3 S4 S5 S6

FNNLS inner 16 52 0 0 46 2

outer 422 583 368 940 1240 689

PiNNLS validation 83 78 50 8 153 231

inner 41 11 0 0 29 27

outer 55 44 1 1 350 133

iterations is of the order of hundreds and sometimes thousands. Since only λ = 10
iteration steps are used in projection based initialization, the overall computation is
greatly reduced with low cost initialization.

For sparse test problems, the situation appears a little more complicated. Overall,
PiNNLS is faster than FNNLS except for problem S6. In terms of iteration count,
PiNNLS outperforms FNNLS in all cases (see Table 15.7). We use Table 15.5 to ex-
plain. It shows that S6 has the lowest Precision. The reason that PiNNLS cannot
be faster than FNNLS even though it takes fewer iterations is that the computational
cost for each iteration is not the same as we have already pointed out. For FNNLS,
the passive set starts empty, so that the operand size starts from zero and then grows.
In PiNNLS, on the other hand, the low Precision and high Recall lead to a
large but inaccurate initial passive set, so that the size of the operands in the valida-
tion loop start large (corresponding to the number of elements in the initial passive
set) and then decrease with the removal of false elements. Therefore, although the
number of iterations for PiNNLS is smaller than that for FNNLS, the overall compu-
tational cost may not. In other cases, due to the high Precision, their validation
loop is not iterated many times, so the PiNNLS returns better performance. On the
other hand, S5 has higher Precision and lower Recall than S6. This means the
initial passive set is smaller but more accurate. It may need more iterations in the
subsequent active set method, but the cost of the validation loops would be lower.
From these two cases we conclude that the performance of PiNNLS is more sensi-
tive to Precision, especially when Recall is high because the validation loop
is more costly than the outer loop when the initial passive set is large.

Finally, we show by means of an example how the parameter setting could ef-
fect the performance of PiNNLS. It is seen in the previous results that for S6, the
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Table 15.8 Parameter tuning
for S6 λ 10 30

recall(%) 85.01 89.96

precision(%) 71.92 80.89

FNNLS execution time (S) 4.36 4.36

PiNNLS execution time (S) 5.70 3.81

PiNNLS initialization (S) 0.25 0.63

PiNNLS validation loop (S) 3.59 1.97

PiNNLS active set (S) 1.85 1.21

initial passive set is not good enough if λ = 10. We also know that more iteration
steps can lead to better initial guess of slack set. So we try to increase the number
of iterations in initialization to gain better result. As a test, we set the iteration steps
as λ = 30, then PiNNLS could outperform FNNLS. The details are shown in Ta-
ble 15.8. The 20 more iteration steps enhance the Recall from 85.01% to 89.89%
and the Precision from 71.92% to 80.89% with the cost of 0.38 additional sec-
onds. As expected, higher Precision leads to the reduction in execution time of
the validation loop from 3.59 to 1.97 seconds. The higher Recall leads to the re-
duction of the number of iterations, as well as the execution time, of the active set
algorithm FNNLS. The total runtime is also reduced from 5.70 to 3.81 seconds.

15.5 Conclusion and Future Work

In this paper, a projection based initialization algorithm for active set methods for
solving NNLS problems is proposed. Experiments indicate that this algorithm can
speed-up active set methods. This is work in progress and we point to some open
questions and research issues. First, in our implementation, PiNNLS, the iteration
steps λ in initialization is predetermined as an input parameter. Its best value is ob-
viously problem dependent. A better choice for implementation should be adaptive.
Secondly, in large scale parallel computing, global reductions are costly. Therefore
we expect that PiNNLS would be more suitable than FNNLS because there is only
one global reduction operation in each inner or outer loop, and the experimental re-
sults suggest that PiNNLS can lower the number of loops so as the number of global
reduction operations. This needs to be validated in a parallel environment. Finally,
in this study of projection based initializations of active set methods we focused on
one special method of this kind. An extensive study for evaluating several projection
based methods with different parameters remains to be done.
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Chapter 16
Fast Nonnegative Tensor Factorization
with an Active-Set-Like Method

Jingu Kim and Haesun Park

Abstract We introduce an efficient algorithm for computing a low-rank nonneg-
ative CANDECOMP/PARAFAC (NNCP) decomposition. In text mining, signal
processing, and computer vision among other areas, imposing nonnegativity con-
straints to the low-rank factors of matrices and tensors has been shown an effective
technique providing physically meaningful interpretation. A principled methodol-
ogy for computing NNCP is alternating nonnegative least squares, in which the
nonnegativity-constrained least squares (NNLS) problems are solved in each iter-
ation. In this chapter, we propose to solve the NNLS problems using the block
principal pivoting method. The block principal pivoting method overcomes some
difficulties of the classical active method for the NNLS problems with a large num-
ber of variables. We introduce techniques to accelerate the block principal pivot-
ing method for multiple right-hand sides, which is typical in NNCP computation.
Computational experiments show the state-of-the-art performance of the proposed
method.

16.1 Introduction

Tensors are mathematical objects for representing multidimensional arrays. Tensors
include vectors and matrices as first-order and second-order special cases, respec-
tively, and more generally, tensors of N th-order can represent an outer product of
N vector spaces. Recently, decompositions and low-rank approximations of tensors
have been actively studied and applied in numerous areas including signal process-
ing, image processing, data mining, and neuroscience. Several different decomposi-
tion models, their algorithms, and applications are summarized in recent reviews by
Kolda and Bader [19] and Acar and Yener [1].
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In this chapter, we discuss tensors with nonnegative elements and their low-
rank approximations. In particular, we are interested in computing a CANDE-
COMP/PARAFAC decomposition [5, 11] with nonnegativity constraints on fac-
tors. In the context of matrices, when data or signals are inherently represented by
nonnegative numbers, imposing nonnegativity constraints to low-rank factors was
shown to provide physically meaningful interpretation [21, 26]. Widely known as
nonnegative matrix factorization (NMF), it has been extensively investigated and
utilized in areas of computer vision, text mining, and bioinformatics. In higher-
order tensors with nonnegative elements, tensor factorizations with nonnegativity
constraints on factors have been developed in several papers [4, 6, 24, 29]. Interest-
ingly, some method for finding nonnegative factors of higher-order tensors, such as
[6], were introduced even before NMF. Recent work dealt with properties such as
degeneracy [23] and applications such as sound source separation [9], text mining
[2], and computer vision [27].

Suppose a tensor of order three, X ∈ R
M1×M2×M3 , is given. We will introduce

main concepts using this third-order tensor for the sake of simplicity, and will
deal with a tensor with a general order later. A canonical decomposition (CAN-
DECOMP) [5], or equivalently the parallel factor analysis (PARAFAC) [11], of X
can be written as

X =
K∑

k=1

ak ◦ bk ◦ ck, (16.1)

where ak ∈ R
M1 , bk ∈ R

M2 , ck ∈ R
M3 , and “◦” represents an outer product of vec-

tors. Following [19], we will call a decomposition in the form of Eq. (16.1) the CP
(CANDECOMP/PARAFAC) decomposition. A tensor in a form of a◦b◦ c is called
a rank-one tensor: In the CP decomposition, tensor X is represented as a sum of
K rank-one tensors. A smallest integer K for which Eq. (16.1) holds with some
vectors ak , bk , and ck for k ∈ {1, . . . ,K} is called the rank of tensor X . The CP
decomposition can be more compactly represented with factor matrices (or loading
matrices), A = [a1 · · ·aK ], B = [b1 · · ·bK ], and C = [c1 · · · cK ], as follows:

X = �A,B,C�,

where �A,B,C� = ∑K
k=1 ak ◦ bk ◦ ck (see [19]). With a tensor X of rank R, given

an integer K ≤ R, the computational problem of the CP decomposition is finding
factor matrices A, B, and C that best approximates X .

Now, for a tensor X with only nonnegative elements, we are interested in recov-
ering factor matrices A, B, and C that also contain only nonnegative components.
Using the Frobenius norm as a criterion for approximation, the factor matrices can
be found by solving an optimization problem:

min
A,B,C

∥∥X − �A,B,C�
∥∥2

F
s.t. A,B,C ≥ 0. (16.2)

Inequalities A,B,C ≥ 0 denote that all the elements of A,B, and C are nonnegative.
The factorization problem in Eq. (16.2) is known as nonnegative CP (NNCP). The
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computation of NNCP is demanding not only because many variables are involved
in optimization but also because nonnegativity constraints are imposed on the fac-
tors. A number of algorithms have been developed for NNCP [4, 10, 15, 29], and
we will review them in Sect. 16.2.

In this chapter, extending our prior work on NMF [17], we present a new and
efficient algorithm for computing NNCP. Our algorithm is based on alternating
nonnegativity-constrained least squares (ANLS) framework, where in each itera-
tion the nonnegativity-constrained least squares (NNLS) subproblems are solved.
We propose to solve the NNLS problems based on the block principal pivoting
method [12]. The block principal pivoting method accelerates the traditional active-
set method [20] by allowing exchanges of multiple variables between index groups
per iteration. We adopt ideas that improve the block principal pivoting method in
multiple right-hand sides [17].

The remaining of this chapter is organized as follows. In Sect. 16.2, related work
is reviewed. In Sect. 16.3, the ANLS framework is described, and in Sect. 16.4, the
block principal pivoting method is introduced as well as ideas for improvements for
multiple right-hand sides. In Sect. 16.5, we describe how the proposed method can
be used to solve regularized and sparse formulations. In Sect. 16.6, experimentation
settings and results are shown. We conclude this chapter in Sect. 16.7.

Notations Let us summarize some notations used in this chapter. A lowercase or
an uppercase letter, such as x or X, is used to denote a scalar; a boldface lowercase
letter, such as x, is used to denote a vector; a boldface uppercase letter, such as X,
is used to denote a matrix; and a boldface Euler script letter, such as X , is used
to denote a tensor of order three or higher. Indices typically grow from 1 to its
uppercase letter: For example, n ∈ {1, . . . ,N}. Elements of a sequence of vectors,
matrices, or tensors are denoted by superscripts within parentheses: X(1), . . . ,X(N).
For a matrix X, xi denotes its ith column, and xij denotes its (i, j) component.

16.2 Related Work

Several computational methods have been developed for solving NNCP. Within the
ANLS framework, different methods for solving the NNLS subproblems have been
proposed. A classical method for solving the NNLS problem is the active set method
of Lawson and Hanson [20]; however, applying Lawson and Hanson’s method di-
rectly to NNCP is extremely slow. Bro and De Jong [4] suggested an improved
active-set method to solve the NNLS problems, and Ven Benthem and Keenan [28]
further accelerated the active-set method, which was later utilized in NMF [14] and
NNCP [15]. In Friedlander and Hatz [10], the NNCP subproblems are solved by a
two-metric projected gradient descent method.

In our work of this chapter, we solve the NNLS subproblems using the block
principal pivoting method [12, 17]. The block principal pivoting method is similar
to the active set method in that (1) the groups of zero and nonzero variables are
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explicitly kept track of, and (2) a system of linear equations is solved at each it-
eration. However, unlike the active set method, the objective function value in the
block principal pivoting method does not monotonically decrease. Instead, by ex-
changing multiple variables between variable groups after each iteration, the block
principal pivoting method is much faster than the active set method. Due the rela-
tionship with the active set method, we note the block principal pivoting method as
an active-set-like method.

Numerous other algorithms that are not based on the ANLS framework were
suggested. Paatero discussed a Gauss-Newton method [24] and a conjugate gradi-
ent method [25], but nonnegativity constraints were not rigorously handled in those
work. Extending the multiplicative updating rule of Lee and Seung [22], Welling
and Weber [29] proposed a multiplicative updating method for NNCP. Earlier in
[6], Carroll et al. proposed a simple procedure that focuses on a rank-one approxi-
mation conditioned that other variables are fixed. Recently, Cichocki et al. proposed
a similar algorithm, called hierarchical alternating least squares (HALS), which up-
dates each column of factor matrices at a time [8].

16.3 ANLS Framework

We describe the ANLS framework for solving NNCP. Let us consider the a N th-
order tensor X ∈ R

M1×···×MN and a corresponding factorization problem

min
A(1),...,A(N)

f
(
A(1), . . . ,A(N)

) = ∥∥X − �
A(1), . . . ,A(N)

�∥∥2
F

s.t. A(n) ≥ 0 for n = 1, . . . ,N,
(16.3)

where A(n) ∈ R
Mn×K for n = 1, . . . ,N , and

�
A(1), . . . ,A(N)

� =
K∑

k=1

a(1)
k ◦ · · · ◦ a(N)

k .

In order to introduce the ANLS framework, we need definitions of some tensor
operations. See Kolda and Bader [19] and references therein for more details of
these operations.

Mode-n matricization The mode-n matricization of a tensor X , denoted by X(n),
is a matrix obtained by linearizing all indices except n. More formally, X(n) is a
matrix of size Mn ×∏N

k=1,k �=n Mk , and the (m1, . . . ,mN)th element of X is mapped
to the (mn, I )th element of X(n) where

I = 1 +
N∑

k=1

(mk − 1)Ik, and Ik =
k−1∏

j=1,j �=n

Mj .
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Khatri–Rao product The Khatri–Rao product of two matrices A ∈ R
J1×L and

B ∈ R
J2×L, denoted by A � B, is defined as

A � B =

⎡

⎢⎢⎢
⎣

a11b1 a12b2 · · · a1LbL

a21b1 a22b2 · · · a2LbL

...
...

. . .
...

aJ11b1 aJ12b2 · · · aJ1LbL

⎤

⎥⎥⎥
⎦

.

Using above notations, the approximation model

X ≈ �
A(1), . . . ,A(N)

�

can be written as, for any n ∈ {1, . . . ,N},
X(n) ≈ A(n) × (

B(n)
)T

, (16.4)

where

B(n) = A(N) � · · · � A(n+1) � A(n−1) � · · · � A(1) ∈ R
(
∏N

k=1,k �=n Mk)×K
. (16.5)

Equation (16.4) is a key relationship that is utilized in the ANLS framework.
The ANLS framework is a block-coordinate-descent method applied to Eq. (16.3).
First, A(2), . . . ,A(N) are initialized with nonnegative components. Then, for n =
1, . . . ,N , the following subproblem is solved iteratively:

minA(n)

∥∥B(n) × (
A(n)

)T − (
X(n)

)T ∥∥2
F

s.t. A(n) ≥ 0.
(16.6)

The convergence property of a block-coordinate-descent method [3] states that if
each subproblem in the form of Eq. (16.6) has a unique solution, then every limit
point produced by the ANLS framework is a stationary point. In particular, if matri-
ces B(n) are of full column rank, each subproblem has a unique solution.

The problem in Eq. (16.6) is in the form of the nonnegativity-constrained least
squares (NNLS) problems, and an efficient algorithm to solve the problem will be
the subject of next section. For now, typical characteristics of the subproblem in Eq.
(16.6) deserves to be noted. Due to the flattening by the Khatri–Rao product, matrix
B(n) in Eq. (16.6) is typically long and thin. Also, as NNCP is often used for low-
rank approximation, matrix (A(n))T in Eq. (16.6) is typically flat and wide. These
properties will be important in designing efficient algorithms for solving Eq. (16.6),
which we now describe.

16.4 Block Principal Pivoting Method

The block principal pivoting method, which we adopt in this work to solve
Eq. (16.6), was earlier proposed by Judice and Pires [12] for a single right-hand
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side case. We will first explain this method and then explain efficient ways to accel-
erate the multiple right-hand side case as proposed in [17].

The motivation of the block principal pivoting method comes from the difficulty
of conventional active set algorithms which occur when the number of variables in-
creases. In the active set method, because typically only one variable is exchanged
per iteration between working sets, the number of iterations until termination heav-
ily depends on the number of variables. To accelerate computation, an algorithm
whose iteration count does not depend on the number of variables is desirable. The
block principal pivoting method manages to do so by exchanging multiple variables
at a time.

For the moment, consider an NNLS problem with a single right-hand side vector:

min
x≥0

‖Vx − w‖2
2 , (16.7)

where V ∈ R
P×Q, x ∈ R

Q×1, and w ∈ R
P×1. The subproblems in Eq. (16.6) are

decomposed to independent instances of Eq. (16.7) with respect to each column
vector of (A(n))T . Hence, an algorithm for Eq. (16.7) is a basic building block of an
algorithm for Eq. (16.6).

The Karush–Kuhn–Tucker (KKT) optimality conditions for Eq. (16.7) are given
as

y = VT Vx − VT w, (16.8a)

y ≥ 0, x ≥ 0, (16.8b)

xqyq = 0, q = 1, . . . ,Q. (16.8c)

We assume that the matrix V has full column rank. In this case, a solution x that
satisfies the conditions in Eqs. (16.8a)–(16.8c) is the optimal solution of Eq. (16.7).

We divide the index set {1, . . . ,Q} into two subgroups F and G where F ∪G =
{1, . . . ,Q} and F ∩G = ∅. Let xF , xG , yF , and yG denote the subsets of variables
with corresponding indices, and let VF and VG denote the submatrices of V with
corresponding column indices. Initially, we assign zeros to xG and yF . Then, by
construction, x = (xF ,xG) and y = (yF ,yG) always satisfy Eq. (16.8c) for any xF
and yG . Now, we compute xF and yG using Eq. (16.8a) and check whether the
computed values of xF and yG satisfy Eq. (16.8b). Computation of xF and yG is
done as follows:

VT
FVFxF = VT

Fw, (16.9a)

yG = VT
G(VFxF − w). (16.9b)

One can first solve for xF in Eq. (16.9a) and use it to compute yG in Eq. (16.9b).
We call the computed pair (xF ,yG) a complementary basic solution.

If a complementary basic solution (xF ,yG) satisfies xF ≥ 0 and yG ≥ 0, then
it is called feasible. In this case, x = (xF ,0) is the optimal solution of Eq. (16.7),
and the algorithm terminates. Otherwise, a complementary basic solution (xF ,yG)
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is infeasible, and we need to update F and G by exchanging variables for which
Eq. (16.8b) does not hold. Formally, we define the following index set:

H = {q ∈ F : xq < 0} ∪ {q ∈ G : yq < 0} (16.10)

and choose a nonempty subset Ĥ ⊂ H. Then, F and G are updated by the following
rules:

F = (
F − Ĥ

) ∪ (
Ĥ∩G

)
, (16.11a)

G = (
G − Ĥ

) ∪ (
Ĥ∩F

)
. (16.11b)

The number of elements in set Ĥ, which we denote by |Ĥ|, represents how many
variables are exchanged per iteration between F and G. If |Ĥ| > 1, then an algo-
rithm is called a block principal pivoting algorithm; if |Ĥ| = 1, then an algorithm is
called a single principal pivoting algorithm. The active set algorithm can be under-
stood as an instance of single principal pivoting algorithms. An algorithm repeats
this procedure until the number of infeasible variables (i.e., |Ĥ|) becomes zero.

In order to speed up the search procedure, one usually uses Ĥ = H, which we
call the full exchange rule. The full exchange rule means that we exchange all vari-
ables of F and G that do not satisfy Eqs. (16.8a)–(16.8b), and the rule accelerates
computation by reducing the number of iterations. However, contrary to the active
set algorithm in which the variable to exchange is carefully selected to reduce the
residual, the full exchange rule may lead to a cycle and fail to find an optimal so-
lution although it occurs rarely. To ensure finite termination, we need to employ a
backup rule, which uses the following exchange set for Eqs. (16.11a) and (16.11b):

Ĥ = {
q : q = max {q ∈ H}}. (16.12)

The backup rule, where only the infeasible variable with the largest index is ex-
changed, is a single principal pivoting rule. This simple exchange rule guarantees
a finite termination: Assuming that matrix V has full column rank, the exchange
rule in Eq. (16.12) returns the solution of Eqs. (16.8a)–(16.8c) in a finite number
of iterations [12]. Combining the full exchange rule and the backup rule, the block
principal pivoting method for Eq. (16.7) that terminates within a finite number of
iterations is summarized in [12].

Now, let us move on to the multiple right-hand side case:

min
X≥0

‖VX − W‖2
F , (16.13)

where V ∈ R
P×Q, X ∈ R

Q×L and W ∈ R
P×L. One can solve Eq. (16.13) by sep-

arately solving NNLS problems for each right-hand side vector. Although this ap-
proach is possible, we will see that there exist efficient ways to accelerate the multi-
ple right-hand side case employing two important improvements suggested in [17].

Observe that the sets F and G change over iterations, and Eqs. (16.9a) and
(16.9b) has to be solved for varying F and G every time. The first improvement
is based on the observation that matrix V, which corresponds to B(n) of Eq. (16.6),
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Algorithm 16.1: Block principal pivoting algorithm for the NNLS with multi-
ple right-hand side vectors. xFl

and yGl
represents the subsets of lth column of

X and Y indexed by Fl and Gl , respectively

1 Input: V ∈R
P×Q,W ∈R

Q×L

2 Output: X(∈R
Q×L) = arg minX≥0 ‖VX − W‖2

F

1: Compute VT V and VT W.
2: Initialize Fl = ∅ and Gl = {1, . . . , q} for all l ∈ {1, . . . ,L}. Set X = 0,

Y = −VT W, α(∈ R
r ) = 3, and β(∈R

r ) = q + 1.
3: Compute xFl

and yGl
for all l ∈ {1, . . . ,L} by Eqs. (16.9a) and (16.9b)

using column grouping.
4: while any (xFl

,yGl
) is infeasible do

5: Find the indices of columns in which the solution is infeasible:
I = {j : (xFj

,yGj
) is infeasible}.

6: Compute Hl for all l ∈ I by Eq. (16.10).
7: For all l ∈ I with |Hl | < βl , set βl = |Hl |, αl = 3 and Ĥl = Hl .
8: For all l ∈ I with |Hl | ≥ βl and αl ≥ 1, set αl = αl − 1 and Ĥl = Hl .

9: For all l ∈ I with |Hl | ≥ βl and αl = 0, set Ĥl by Eq. (16.12).
10: Update Fl and Gl for all l ∈ I by Eqs. (16.11a)–(16.11b).
11: Update xFl

and yGl
for all l ∈ I by Eqs. (16.9a) and (16.9b) using column

grouping.
12: end while

is typically very long and thin. In this case, constructing matrices VT
FVF , VT

Fw,
VT
GVF , and VT

Gw before solving Eqs. (16.9a) and (16.9b) is computationally very
expensive. To ease this difficulty, VT V and VT W can be computed in the beginning
and reused in later iterations. One can easily see that VT

FVF , VT
Fwl , VT

GVF , and
VT
Gwl , l ∈ {1, . . . ,L}, can be directly retrieved as a submatrix of VT V or VT W.

Because the column size of V is small, storage needed for VT V and VT W is also
small.

The second improvement involves exploiting common computations in solving
Eq. (16.9a). Here we simultaneously run the block principal pivoting algorithm for
multiple right-hand side vectors. At each iteration, we have index sets Fl and Gl for
each column l ∈ {1, . . . ,L}, and we must compute xFl

and yGl
using Eqs. (16.9a)

and (16.9b). The idea is to find groups of columns that share the same index sets Fl

and Gl . We reorder the columns with respect to these groups and solve Eqs. (16.9a)
and (16.9b) for the columns in the same group. By doing so, we avoid repeated
Cholesky factorization computations required for solving Eq. (16.9a). When ma-

trix X is flat and wide, which is typically the case for (A(n))T in Eq. (16.6), more
columns are likely to share their index sets Fl and Gl , allowing bigger speed-up.

Incorporating these improvements, a full description of the block principal piv-
oting method for Eq. (16.13) is shown in Algorithm 16.1. Finite termination of Al-
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gorithm 16.1 is achieved by controlling the number of infeasible variables using α
and β . For more details of how it is controlled, see [17, 18].

16.5 Regularized and Sparse NNCP

The ANLS framework described in Sect. 16.3 can be easily extended to formulations
with regularization. In a general form, a regularized formulation appears as

min
A(1),...,A(N)

∥∥X − �
A(1), . . . ,A(N)

�∥∥2
F

+
N∑

n=1

λnφn

(
A(n)

)
,

s.t. A(n) ≥ 0 for n = 1, · · · ,N,

(16.14)

where φn(A(n)) represents a regularization term and λn ≥ 0 is a parameter to be
chosen. A commonly used regularization term is the Frobenius norm:

φn

(
A(n)

) = ∥
∥A(n)

∥
∥2

F
.

In this case, the subproblem for finding A(n) is modified as

min
A(n)

∥∥∥∥

(
B(n)√

λnIK×K

)
× (

A(n)
)T − (

X(n)
)T

∥∥∥∥

2

F

s.t. A(n) ≥ 0,

(16.15)

where IK×K is a K × K identity matrix. Observe that matrix ( B(n)√
λnIK×K

) is always

of full column rank; hence, when B(n) is not necessarily of full column rank, the
Frobenius norm regularization can be adopted to ensure that the NNLS subproblem
is of full column rank, satisfying the requirement of the convergence property of
a block-coordinate-descent method, mentioned in Sect. 16.3. In addition, the block
principal pivoting method assumes that the matrix V in Eq. (16.13) is of full column
rank, and the Frobenius norm regularization automatically satisfies this condition.

If it is desired to promote sparsity on factor matrix A(n), l1-norm regularization
can be used:

φn(A(n)) =
Mn∑

j=1

∥∥∥
(
A(n)

)T
(:, j)

∥∥∥
2

1
,

where (A(n))T (:, j) represents the j th column of (A(n))T . See [13, 16] for appli-
cations of this l1-norm regularization in microarray data analysis and clustering. In
this case, the subproblem for finding A(n) is modified as

min
A(n)

∥
∥∥∥

(
B(n)√
λn11×K

)
× (A(n))T − (X(n))T

∥
∥∥∥

2

F

s.t. A(n) ≥ 0,

(16.16)
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where 11×K is a row vector of ones. Regularization term φn(·) can be separately
chosen for each factor A(n), and if necessary, both of the Frobenius norm and the
l1-norm may be used.

16.6 Implementation and Results

In this section, we describe the details of our implementation, data sets used,
and comparison results. All experiments were executed in MATLAB on a Linux
machine with a 2.66 GHz Intel Quad-core processor and 6 GB memory. The multi-
threading option of MATLAB was disabled. In all the executions, all the algorithms
were provided with the same initial values.

16.6.1 Algorithms for NNCP Used for Comparisons

The following algorithms for NNCP were included in our comparison.

1. (ANLS-BPP) ANLS with the block principal pivoting method proposed in this
chapter

2. (ANLS-AS) ANLS with H. Kim and Park’s active set method [15]
3. (HALS) Cichocki and Phan’s hierarchical alternating least squares algorithm

[7, 8]
4. (MU) Welling and Weber’s multiplicative updating algorithm [29].

We implemented all algorithms in MATLAB. Besides above methods, we also have
tested Friedlander and Hatz’s two-metric projected gradient method [10] using their
MATLAB code;1 however, not only it was much slower than methods listed above,
but it also required so much memory that we could not execute all comparison cases.
We hence do not include the results of Friedlander and Hatz’s method here. In all the
algorithms, once we obtain factors {A(1), . . . ,A(N)}, they are used as initial values
of the next iteration.

16.6.2 Data Sets

We have used three data sets for comparisons. The first data set include dense tensors
using synthetically generated factors. For each of K = 10, 20, 60, and 120, we
constructed A(1), A(2), and A(3) of size 300 × K using random numbers from the
uniform distribution over [0,1]. Then, we randomly selected 50 percent of elements

1http://www.cs.ubc.ca/~mpf/2008-computing-nntf.html.
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in A(1), A(2), and A(3) to make them zero. Finally, a three way tensor of size 300 ×
300 × 300 is constructed by �A(1),A(2),A(3)�. Different tensors were created for
different K values.

The second data set is a dense tensor obtained from Extended Yale Face Database
B2. We used aligned and cropped images of size 168×192. From total 2424 images,
we obtained a three-way tensor of size 168 × 192 × 2424.

The third data set is a sparse tensor from NIPS conference papers.3 This data
set contains NIPS papers volume 0 to 12, and a tensor is constructed as a four-
way tensor representing author×documents×term×year. By counting the occur-
rence of each entry, a sparse tensor of size 2037 × 1740 × 13649 × 13 was cre-
ated.

16.6.3 Experimental Results

To observe the performance of several algorithms, at the end of each iteration we
have recorded the relative objective value, ‖X − �A(1), . . . ,A(N)�‖F /‖X‖F . Time
spent to compute the objective value is excluded from the execution time. One ex-
ecution result involves relative objective values measured at discrete time points
and appears as a piecewise-linear function. We averaged piecewise-linear functions
from different random initializations to plot figures.

Results on the synthetic data set are shown in Fig. 16.1. This data set was syn-
thetically created, and the value of global optimum is zero. From Fig. 16.1, it can be
seen that ANLS-AS and ANLS-BPP performed the best among the algorithms we
tested. The HALS method showed convergence within the time window we have
observed, but the MU method was too slow to show convergence. ANLS-AS and
ANLS-BPP showed almost the same performance although ANLS-BPP was slightly
faster when k = 120. The difference between these two methods are better shown in
next results.

Results on YaleB and NIPS data sets are shown in Fig. 16.2. Similarly to the
results in Fig. 16.1, ANLS-AS and ANLS-BPP showed the best performance. In
Fig. 16.2, it can be clearly observed that ANLS-BPP outperforms ANLS-AS for
k = 60 and k = 120 cases. Such a difference demonstrates a difficulty of the active-
set method: Since typically only one variable is exchanged between working sets,
the active-set method is slow for a problem with a large number of variables. On
the other hand, the block principal pivoting method quickly solves large problems
by allowing exchanges of multiple variables between F and G. The convergence of
HALS and MU was slower than ANLS-AS and ANLS-BPP. Although the conver-
gence of HALS was faster than MU in the YaleB data set, the initial convergence of
MU was faster than HALS in the NIPS data set.

2http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html.
3http://www.cs.nyu.edu/~roweis/data.html.
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Fig. 16.1 Relative objective value (‖X − �A(1), . . . ,A(N)�‖F /‖X‖F ) vs. execution time on the
synthetic tensors. Average results of 5 different random initializations are shown. Top row: k = 10
and k = 20, bottom row: k = 60 and k = 120

Lastly, we present more detailed information regarding the executions of ANLS-
AS and ANLS-BPP in Fig. 16.3. In Fig. 16.1 and Fig. 16.2, we have observed that
ANLS-BPP clearly outperforms ANLS-AS for large k’s. Because both of the meth-
ods solve each NNLS subproblem exactly, solutions after each iteration from the
two methods are the same up to numerical rounding errors. Hence, it suffices to
compare the amount of time spent at each iteration. In Fig 16.3, we showed average
execution time of each iteration of the two methods. It can be seen that the time
required for ANLS-BPP is significantly shorter than the time required for ANLS-
AS in early iterations, and their time requirements became gradually closer to each
other. The types of NNLS problem in which ANLS-BPP accelerates ANLS-AS
is the case that there is much difference in the zero and nonzero pattern between
the initial value and the final solution of the NNLS problem. As iteration goes
on, factors {A(1), . . . ,A(N)} do not change much from one iteration to the next;
hence there are little differences between the computational costs of the two meth-
ods.
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Fig. 16.2 Relative objective value (‖X − �A(1), . . . ,A(N)�‖F /‖X‖F ) vs. execution time on the
YaleB and NIPS data sets. Average results of 5 different random initializations are shown. Left:
NIPS data set, right: YaleB data set, top row: k = 10, middle row: k = 60, and bottom row: k = 120

16.7 Conclusions and Discussion

We have introduced an efficient algorithm for nonnegative CP (NNCP). The new
method is based on the block principal pivoting method for the nonnegativity-
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Fig. 16.3 Execution time of each iteration of the active set (ANLS-AS) and the block principal
pivoting method (ANLS-BPP) for k = 120 cases of each data set. Average results of five different
random initializations are shown. Left: synthetic data set, center: YaleB data set, right: NIPS data
set

constrained least squares (NNLS) problems. The block principal pivoting method
accelerates the classical active-set method by allowing exchanges of multiple vari-
ables per iteration. We have presented ideas for improving the block principal
method for the NNLS problems with multiple right-hand sides. Computational com-
parisons showed the state-of-the-art performance of the proposed method for NNCP.

A drawback of an NNCP algorithm based on the active set or the block principal
pivoting method is that the methods assume that the Khatri–Rao product in Eq.
(16.5) is of full column rank for all n ∈ {1, . . . ,N} throughout iterations. To alleviate
this concern, as noted in Sect. 16.5, Frobenius norm-based regularization can be
used to avoid rank-deficient cases. In practice, the algorithms performed well in our
experiments without the regularization.

An interesting direction of future work is to investigate the conditions in which
HALS performs better than the block principal pivoting method. In nonnegative ma-
trix factorization, which can be considered as a special case of NNCP discussed in
this chapter, we have observed that the HALS method converges very quickly [18].
In our results for NNCP in this chapter, however, HALS showed slower convergence
than the block principal pivoting method.

Acknowledgements The work in this chapter was supported in part by the National Science
Foundation grants CCF-0732318, CCF-0808863, and CCF-0956517. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

References

1. Acar, E., Yener, B.: Unsupervised multiway data analysis: A literature survey. IEEE Trans.
Knowl. Data Eng. 21(1), 6–20 (2009)

2. Bader, B.W., Berry, M.W., Browne, M.: Discussion tracking in Enron email using PARAFAC.
In: Survey of Text Mining II: Clustering, Classification, and Retrieval, pp. 147–163. Springer,
Berlin (2008)

3. Bertsekas, D.P.: Nonlinear Programming. Scientific, Athena (1999)



16 Fast Nonnegative Tensor Factorization with an Active-Set-Like Method 325

4. Bro, R., De Jong, S.: A fast non-negativity-constrained least squares algorithm. J. Chem. 11,
393–401 (1997)

5. Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via
an N-way generalization of “Eckart-Young” decomposition. Psychometrika 35(3), 283–319
(1970)

6. Carroll, J.D., Soete, G.D., Pruzansky, S.: Fitting of the latent class model via iteratively
reweighted least squares CANDECOMP with nonnegativity constraints. In: Multiway data
analysis, pp. 463–472. North-Holland, Amsterdam (1989). http://portal.acm.org/citation.cfm?
id=120565.120614

7. Cichocki, A., Phan, A.H.: Fast local algorithms for large scale nonnegative matrix and tensor
factorizations. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E92-A(3), 708–721
(2009)

8. Cichocki, A., Zdunek, R., Amari, S.I.: Hierarchical ALS algorithms for nonnegative matrix
and 3D tensor factorization. In: Lecture Notes in Computer Science, vol. 4666, pp. 169–176.
Springer, Berlin (2007)

9. FitzGerald, D., Cranitch, M., Coyle, E.: Non-negative tensor factorisation for sound source
separation. In: Proceedings of the Irish Signals and Systems Conference (2005)

10. Friedlander, M.P., Hatz, K.: Computing nonnegative tensor factorizations. Comput. Optim.
Appl. 23(4), 631–647 (2008). doi:10.1080/10556780801996244

11. Harshman, R.A.: Foundations of the PARAFAC procedure: Models and conditions for an “ex-
planatory” multi-modal factor analysis. In: UCLA Working Papers in Phonetics, vol. 16, pp.
1–84 (1970)

12. Júdice, J.J., Pires, F.M.: A block principal pivoting algorithm for large-scale strictly monotone
linear complementarity problems. Comput. Oper. Res. 21(5), 587–596 (1994)

13. Kim, H., Park, H.: Sparse non-negative matrix factorizations via alternating non-negativity-
constrained least squares for microarray data analysis. Bioinformatics 23(12), 1495–1502
(2007)

14. Kim, H., Park, H.: Nonnegative matrix factorization based on alternating nonnegativity con-
strained least squares and active set method. SIAM J. Matrix Anal. Appl. 30(2), 713–730
(2008). doi:10.1137/07069239X

15. Kim, H., Park, H., Eldén, L.: Non-negative tensor factorization based on alternating large-scale
non-negativity-constrained least squares. In: Proceedings of IEEE 7th International Confer-
ence on Bioinformatics and Bioengineering (BIBE07), vol. 2, pp. 1147–1151 (2007)

16. Kim, J., Park, H.: Sparse nonnegative matrix factorization for clustering. Tech. rep., Georgia
Institute of Technology Technical Report GT-CSE-08-01 (2008)

17. Kim, J., Park, H.: Toward faster nonnegative matrix factorization: A new algorithm and com-
parisons. In: Proceedings of the 2008 Eighth IEEE International Conference on Data Mining
(ICDM), pp. 353–362 (2008)

18. Kim, J., Park, H.: Fast nonnegative matrix factorization: An active-set-like method and com-
parisons. SIAM J. Sci. Comput. 33, 3261 (2011)

19. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–
500 (2009)

20. Lawson, C.L., Hanson, R.J.: Solving Least Squares Problems. Prentice Hall, New York (1974)
21. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization.

Nature 401(6755), 788–791 (1999)
22. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Advances in

Neural Information Processing Systems, vol. 13, pp. 556–562. MIT Press, Cambridge (2001)
23. Lim, L.H., Comon, P.: Nonnegative approximations of nonnegative tensors. J. Chem., 23(7–8),

432–441 (2009)
24. Paatero, P.: A weighted non-negative least squares algorithm for three-way PARAFAC factor

analysis. Chemom. Intell. Lab. Syst. 38(2), 223–242 (1997)
25. Paatero, P.: The multilinear engine: A table-driven, least squares program for solving multi-

linear problems, including the n-way parallel factor analysis model. J. Comput. Graph. Stat.
8, 854–888 (1999)



326 J. Kim and H. Park

26. Paatero, P., Tapper, U.: Positive matrix factorization: A non-negative factor model with opti-
mal utilization of error estimates of data values. EnvironMetrics 5(1), 111–126 (1994)

27. Shashua, A., Hazan, T.: Non-negative tensor factorization with applications to statistics and
computer vision. In: ICML ’05: Proceedings of the 22nd International Conference on Machine
Learning, pp. 792–799. ACM, New York (2005). doi: http://doi.acm.org/10.1145/1102351.
1102451

28. Van Benthem, M.H., Keenan, M.R.: Fast algorithm for the solution of large-scale non-
negativity-constrained least squares problems. J. Chem. 18, 441–450 (2004). doi:10.1002/
cem.889

29. Welling, M., Weber, M.: Positive tensor factorization. Pattern Recognit. Lett. 22(12), 1255–
1261 (2001). doi:10.1016/S0167-8655(01)00070-8



Chapter 17
Knowledge Discovery Using Nonnegative Tensor
Factorization with Visual Analytics

Andrey A. Puretskiy and Michael W. Berry

Abstract Non-negative tensor factorization (NTF) is a technique that has been used
effectively for the purposes of analyzing large textual datasets. This article describes
the improvements achieved by creating a Python implementation of the NTF algo-
rithm, and by integrating it with several pre-processing and post-processing func-
tions within a single Python-based analysis environment. The improved implemen-
tation allows the user to construct and modify the contents of the tensor, experiment
with relative term weights and trust measures, and experiment with the total num-
ber of algorithm output features. Non-negative tensor factorization output feature
production is closely integrated with a visual post-processing tool, FutureLens, that
allows the user to perform in-depth analysis of textual data, facilitating scenario
extraction and knowledge discovery.

17.1 Background

A wide variety of fields, such as biology, medical science, various social sciences,
the legal field, and business have the potential to greatly benefit from an ability to an-
alyze vast amounts of textual data. The digitalization trend of recent decades, com-
bined with the readily available and increasingly inexpensive digital storage capa-
bilities, has resulted in a newfound ability to gather, organize, store, and analyze vast
repositories of knowledge in all of those fields and many others. As computing and
digitalization increasingly permeate virtually every aspect of society, researchers
and analysts sometimes find themselves overwhelmed with enormous quantities of
information. The fields of data mining and visual analytics developed alongside the
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ever-increasing information stores in order to provide analytical knowledge discov-
ery capabilities.

17.1.1 NTF-PARAFAC: Background

There exists a plethora of approaches to analyzing large amounts of textual infor-
mation. The exact nature of the dataset and the goals of the analysis process influ-
ence which approach has the potential to be most effective in each particular case.
For cases where the dataset contains tagged entities and a clearly defined time-line,
nonnegative tensor factorization (NTF) techniques have been shown to be highly ef-
fective. NTF allows the analyst to extract term-by-entity associations from the data.
With the addition of a visual post-processing tool (FutureLens), it becomes possi-
ble to trace the progression of term-entity, term-term, and entity-entity relationships
through the data space over time. One example of such a study involved scenario
discovery using the fictional news article dataset from the IEEE VAST-2007 con-
test [2, 7]. As shown by this example, NTF based on the well-known PARAFAC
[4] model for multidimensional data can be highly effective in extracting important
features from a large textual dataset.

17.1.2 NTF-PARAFAC: The Algorithm

The Parallel Factors (PARAFAC) model, also known as Canonical Decomposition,
was proposed by Harshman in 1970 [3, 4]. Given a third-order tensor X of size
m × n × p and a desired approximation rank r , the PARAFAC model approximates
X as a sum of r rank-1 tensors formed by the outer products of three vectors, i.e.,

X ≈
r∑

i=1

ai ◦ bi ◦ ci, (17.1)

where the symbol ◦ denotes the outer (tensor) product.
The goal of NTF is to find best fitting nonnegative matrices, A, B , and C, that fit

the data in X. That is,

min
A,B,C

=
∥∥∥∥∥
X −

r∑

i=1

ai ◦ bi ◦ ci

∥∥∥∥∥
. (17.2)

Graphically, this process may be illustrated by as a decomposition of a datacube into
component features. For example, for an email-based dataset, the corresponding dat-
acube may be term-by-author-by-time. The term-by-author-by-time decomposition
[6] is illustrated in Fig. 17.1. Each of the groups resulting from the decomposition
can be said to represent a feature of the data—some group of interrelated compo-
nents found within the dataset.
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Fig. 17.1 The 3-way NTF PARAFAC decomposition model produces a number of data features,
each one corresponding to a potentially significant underlying theme or scenario contained in the
email dataset

17.1.3 NTF-PARAFAC: Example of Effective Use

In the study described in [2], NTF-PARAFAC was applied to a 12,121 × 7,141 ×
15 sparse tensor that contained 1,142,077 nonzeros. This resulted in twenty-five
total output groups, each described by fifteen interrelated entities and thirty-five
interrelated terms.

The groups corresponding to the two fictional hidden scenarios were correctly
identified, although the identification process required a significant time commit-
ment and several post-processing steps. The study was subsequently replicated us-
ing a visual post-processing software tool, FutureLens, in order to improve the ef-
fectiveness and efficiency of processing NTF output group results [8]. The two fig-
ures below illustrate how FutureLens was used to identify and gather evidence for
the IEEE VAST-2007 scenario involving a bioterrorism-induced monkeypox out-
break.

Figure 17.2 hows one of the NTF output files (“Tensor Group 15”) loaded into
FutureLens. This group is described by a list of top 15 most relevant entities and
35 most relevant terms. In this figure, the user has selected two of the top terms
(monkeypox and outbreak), and then combined them into a collection of terms (mon-
keypox, outbreak). FutureLens located two articles containing both terms. The first
article describes much of the bioterrorism scenario, however, a few crucial details
regarding the perpetrator are missing in this article.

In order to locate addition information pertaining to this scenario, the user adds
the entity corresponding to the suspect’s name (Cesar Gil), and a collection of terms
(chinchilla, Gil), to the FutureLens display. Doing so allows the user to locate an ar-
ticle where Cesar Gil explains his philosophy regarding the trade in exotic animals
(he states that breaking a few laws is an acceptable tactic in stopping such trade).
In addition, as shown in Fig. 17.3 below, the user is also able to locate an arti-
cle corresponding to an advertisement of chinchillas for sale by a business called
“Gil Breeders”. A complete storyline corresponding to this NTF output feature now
emerges.
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Fig. 17.2 FutureLens can greatly facilitate the interpretation of an NTF output file. Here, a collec-
tion including two top terms (monkeypox and outbreak) has been created by the user and relevant
articles located within the data

Fig. 17.3 A more complete description of the scenario corresponding to this NTF output feature
can be obtained using FutureLens
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Fig. 17.4 Summary of the design of the NTF-based text analysis environment. This design allows
the user to easily perform a number of operations on an input dataset, such as entity tagging,
timestamp insertion, and tensor term weight adjustment. The environment also allows the user to
easily execute the NTF algorithm, and analyze the results. Among the most important aids in results
analysis is the environment’s capability to automatically label the resulting NTF output features in
accordance with a user-defined categorization scheme

17.2 Python Implementation: Goals and Purpose

While the Matlab-based NTF algorithm has been shown effective, a recent Python
conversion adds a number of significant improvements that greatly facilitate the
analysis process. One of the main goals of the conversion process was to create
a single, unified, user-friendly textual dataset analysis environment. Most signifi-
cantly, the conversion attempts a novel integration of techniques from such vastly
different fields as text mining, visual analytics, and sentiment tracking into a sin-
gle, convenient, portable, and highly usable text analysis environment. The overall
design of the integrated analysis environment is summarized in Fig. 17.4.

17.2.1 Portability, Flexibility, Cost of Use

One of the most significant goals of the integrated analysis environment project is
portability and flexibility. A great amount of NTF-related work has in the past been
performed using Matlab. The Matlab Tensor Toolbox that was created at Sandia Na-
tional Laboratory is a great example of such work [1]. However, experience suggests
that even though Matlab is a powerful programming environment for scientific ap-
plications, code written in it does not transition well into general usage, particularly
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in the business analytics community. Since one of the main goals of this project is
to create a highly usable textual data analysis tool, it is therefore critical to gen-
erate code in languages that are more portable and flexible than Matlab. Python is
an appropriate choice, since in addition to being highly portable, its NumPy/Pylab
libraries have been proven on many occasions to be effective alternatives to Matlab
[5]. Python has the crucial additional advantages of being freely available to pro-
grammers and users, and completely cross-platform. For the visualization portion
of the analysis environment, a Java-based graphical post-processing tool (Future-
Lens) has been previously shown to be helpful to the text analysis process. Java,
being a cross-platform language, is another appropriate choice for accomplishing
the portability/flexibility goal.

17.2.2 Additional Dimension Creation Through Entity Tagging

Giving the user an ability to create an additional tensor dimension through tagging
a subset of significant terms or entities is one of the major NTF improvements in-
cluded in the integrated analysis environment [6]. This is distinct from the trust
measures described in the subsequent section, because relative significance in the
case of entities is the result of their type, rather than of the nature of the specific
terms. For example, Person-type entities could include all the people’s names found
in the dataset. Location-type entities could include a wide variety of geographical
labels: city names, state/province names, countries, mountain ranges, lakes, etc. In
other words, a user could emphasize an entire group of terms (created because of
common type), without having to consider each individual term’s potential signifi-
cance.

17.2.3 Significance or Trust Measure Integration into NTF

Under some circumstances, it could be greatly helpful to the analysis process for
the environment to include an integrated significance or trust measures capability. It
is possible, indeed likely, that a knowledgeable user will have access to potentially
important information which normally would be inaccessible to the NTF algorithm.
In other words, different elements of the data may have different levels of signifi-
cance to the user because of the user’s prior knowledge about the data. Alternatively,
this may be viewed as a trustworthiness issue-meaning, for example, that the user
may consider certain sources as inherently worthy of trust, while others may be en-
tirely untrustworthy in the user’s mind. The Python NTF implementation includes
the ability to alter the tensor values in accordance with a user-supplied trust list.
The trust list is simply a list of terms and corresponding weights. Terms that are
more worthy of consideration may be assigned a higher weight by the user, while
some other terms may be assigned a lower weight. The NTF-PARAFAC approach
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then integrates these significance/trust measures into the factorization process. In-
corporation of different term weighting schemes could also be included as part of
this user-influenced NTF approach. The integrated analysis environment provides
the user with significance/trust controls that do not requiring the user to be exposed
to the underlying NTF code.

17.3 Integrated Analysis Environment Capabilities

The following sections describe the various capabilities of the analysis environment.
The required input formats and pre-processing steps needed to build an NTF model
are well described in [6]. Here, we focus on how the NTF can be used within Fu-
tureLens to facilitate knowledge discovery.

17.3.1 Deployment of NTF Algorithm (in Python)

While the features of analysis environment described in [6] are important and en-
hance the potential effectiveness of the environment as it relates to knowledge dis-
covery, the NTF step is by far the most significant. In order to utilize this feature,
the user will need to provide an NTF input file that may or may not contain tagged
entities. The inclusion of tagged entities, however, may greatly enhance the analysis
process. The additional dimension that can be constructed based on the tagged en-
tities may allow for the establishment of connections that would not have otherwise
been revealed.

The user chooses the number of desired NTF output features, and the NTF algo-
rithm attempts to create that number of output groups, each described in a separate
file and labeled GroupX.txt, where X is the arbitrarily assigned group number. It
should be noted that the group number does not carry any significance. For ex-
ample, Group1.txt does not necessarily describe a feature of the data that is more
interesting or important than that described by Group20.txt. This is in large part due
to the highly subjective and context-dependent nature of concepts such as “interest-
ing” and “important”. These concepts depend on the nature and the context of the
analysis, the nature of the dataset and the problem, as well as the user’s personal
opinions and biases. It is impossible to quantify all of these highly subjective and
unstable variables to incorporate them into a deterministic computer algorithm.

When entities are included in the dataset, each NTF output group file includes a
list of top 15 most relevant entities and top 35 most relevant terms. The entities and
terms are ranked in accordance with an internally generated relevance score. The
score attempts to quantify the term’s relative importance to this particular feature. As
shown in Fig. 17.5, both the terms and the entities are listed in descending order of
importance in an NTF output group file. However, it is again important to remember
that this quantification is just an attempt at reflecting subjective, human judgment,
and may not reflect the opinions of a human analyst precisely.

As demonstrated in Fig. 17.5, the output of the NTF algorithm is simply a series
of lists of terms, each list describing some feature of the dataset. Further human
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Fig. 17.5 A sample NTF
output file. This file was
generated by the
Python-based analysis
environment using the
NTF-PARAFAC algorithm.
The algorithm was applied to
a dataset of news articles
about Kenya, covering the
years of 2001–2009. As can
be seen in this figure, this
NTF output feature describes
a drought-related theme in the
dataset. Terms such as rains,
water, drought, emergency,
and aid appear near the top of
the terms list

analysis and knowledge discovery may be difficult to accomplish based on nothing
more than a list of terms. This was the motivation for the creation of the visual NTF
output analysis tool called FutureLens [8].

FutureLens allows the user to import the output of the NTF algorithm and analyze
it further, while connecting it back to the original dataset. The user has the option
of loading any number of NTF output groups at the same time, and in any combina-
tion. Each group is allocated its own separate tab in the graphical user interface. The
button labeled with a “+” symbol that appears to the left of each term may be used to
add that term to the main FutureLens display. Once a term has been added, Future-
Lens will plot that term’s temporal distribution summary in the top-center display
panel (see Fig. 17.6). This allows the user to get a quick impression of how the term
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Fig. 17.6 FutureLens allows the user to analyze NTF output results in depth by tracking the con-
stituent NTF group terms through the dataset

is used throughout the dataset, perhaps taking note of peak usage times. FutureLens
also locates and color-codes the term within the dataset’s document space. This is
shown in the central display panel, where every line segment is clickable and corre-
sponds to a single document within the dataset. If the user clicks on one of these line
segments, the corresponding document will be displayed in the panel on the right.

It is important to note that FutureLens may be highly useful as a text analysis tool
even without NTF output results, since it functions quite effectively as stand-alone
software. For instance, the user has the ability to load a dataset into FutureLens
independently of NTF output groups. Once a dataset is loaded, the user may search
for particular terms and track their occurrence temporally through the dataset (if the
dataset contains SGML-style date tags, which can be added using the feature of the
analysis environment [6]). It is also possible to display all of the terms contained
within the dataset (excluding the ones on a user-defined stop words list), sorted
either alphabetically or by frequency. FutureLens displays the terms thirty at a time,
providing the user with Next Page and Previous Page buttons.

Automated NTF output labeling is a significant addition to FutureLens that was
made as part of its integration into the analysis environment. Automated NTF group
labeling has the ability to speed up the analysis process by allowing the user to
quickly focus attention of most relevant groups. Naturally, relevance and relative
importance are highly subjective and depend on the exact nature of the user’s par-
ticular research study. It is therefore highly beneficial to allow easily customizable,
plain-text files to serve as category descriptors. The format of these files is extremely
straightforward, as shown in Fig. 17.7.
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Fig. 17.7 Sample category
description files that are
required to use FutureLens’s
automated NTF output
labeling feature. The first
term in a file is used as the
category label. The number of
terms in each file may be
different—there is no
required minimum number of
a maximum limit

Fig. 17.8 After adjusting the NTF algorithm to have an agriculture focus, the user may utilize
FutureLens for further visual analysis of the NTF results. Shown here, the discovery of the impact
of a 2004–2005 drought on Kenyan agriculture and the corresponding social unrest it caused

The category descriptor files can be very easily created and/or modified by the
user, in accordance with the exact nature of the goals and desired focus of each
particular study or model. Any number of categories is possible, but experience
has shown that it is generally more helpful to keep the number relatively small.
After the categories have been loaded, FutureLens compares the terms constitut-
ing each NTF output group with the terms found in the category descriptor files.
The category with the highest number of matches becomes the label for that NTF
group. Figures 17.8 and 17.9 demonstrate how this feature may be highly useful
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Fig. 17.9 The situation in Kenya’s Rift Valley seems to have become even more dangerous by
February of 2006. The articles corresponding to the spike in the selected term collection described
a region “flooded” with weapons and on the brink of an outbreak of major violent conflict. This
makes the subsequent leveling off in the frequency of this collection all the more mysterious

to furthering text analysis. In this example, the user can immediately see that of
the ten NTF output groups loaded into FutureLens, five have been labeled as be-
longing to the weather category (light yellow), four have been labeled under the
water category (dark green), and one has been labeled as belonging to the food cat-
egory (dark red). It should be noted that the category labels also appear as a tool-tip
if the user places the mouse cursor over GUI tab containing the NTF group file
name.

As discussed in this section, the integrated analysis environment provides the
analyst with a number of significant features, ranging from data pre-processing, to
NTF execution, to deeper, post-processing NTF results analysis. The next section
goes into greater detail in describing the potential effectiveness of this approach,
focusing on two newly added features: term weight adjustment capability and auto-
mated NTF results labeling.

17.4 Examples of Knowledge Discovery

The two examples described in this section demonstrate the potential effectiveness
of the integrated analysis environment and its potential for knowledge discovery.
The first example focuses on demonstrating the potential effectiveness of adjust-
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ing term weights as it applies to knowledge discovery. This example utilizes a
dataset of 900 news articles about Kenya, written between 2001 and 2009. The sec-
ond example shows the potential of the automated category labeling feature, and
uses a dataset of 818 news articles about Bangladesh, written between 1972 and
1976.

17.4.1 Effect of Tensor Weights Adjustment on Analysis

The Kenya 2001–2009 dataset is fascinating in many regards, as it includes a num-
ber of greatly varied themes that appear and change in prominence over the dataset’s
decade-long time span. It is easy to imagine an analyst with a significant amount of
prior knowledge about the dataset, and a desire to focus on a particular theme. For
the purpose of this example, the hypothetical analyst is interested in agriculture-
and animal husbandry-related features of the dataset, as revealed through nonnega-
tive tensor factorization. The first step in focusing the NTF algorithm on the themes
of interest is the creation of a term weights adjustment file (see [6] for more de-
tails). For the purposes of this example, the file would contain terms pertaining to
agriculture, giving them increased weight.

Figure 17.8 shows a significant spike in the user-created term collection (Ox-
fam, Humanitarian, Agencies, Livestock), which occurs starting in mid-2005 and
levels off by mid-2006. Selecting one of the color-coded (blue) bars in the June
2005 box in the central panel causes the corresponding article to be displayed in
the panel on the right. Here, the user quickly learns about a recent spike in con-
flict over limited resources and grazing rights in Kenya’s Rift Valley, partly caused
by a recent drought’s wiping out of 70 percent of the livestock in the Turkana
province.

The dataset, however, includes news articles from 2001 through 2009, and the
peak in the selected term group levels off in mid-2006. It may be interesting to
track this collection further temporally, in order to attempt to determine why its
importance decreased toward the end of this time period. Taking a look at a strong
February 2006 spike in this collection’s frequency, one may note that matters have
in fact gotten worse at this time. The article shown in Fig. 17.9 discusses escalating
and increasingly violent conflict, made even worse by the fact that the region is
“flooded” with weapons due to continuing military conflict in neighboring Sudan.
This dire description of the situation makes the subsequent leveling off all the more
mysterious.

To explore this mystery further, the user simply has to continue tracking the
term collection temporally through the dataset, reading only a very small portion
of the articles contained in the entire dataset. This is has the potential to greatly
increase analyst efficiency, saving significant time and resources. The subsequent
months’ articles that were revealed by continued tracking of this term collection
show the causes of the eventual sudden leveling off that indicates that the conflicts
described in the previous articles may have been resolved. As shown in Fig. 17.10,
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Fig. 17.10 Continuing to track the term collection further through the dataset reveals that the
dangerous situation described in Figs. 17.8 and 17.9 had been resolved largely due to a high amount
of rainfall that occurred in April and May of 2006

the growing conflict was alleviated by a significant amount of rainfall that occurred
in April and May of 2006 in this area of Kenya. The rainfall amount was in fact
so great that it even caused some additional danger through a risk of flooding.
However, it did eventually stabilize the situation in the area by eliminating the
drought. While the crisis had not been completely resolved, positive trends had
began to emerge and cattle herders had began to return to previously abandoned
land.

Thus, the use of a number of different features of the integrated analysis devel-
opment environment has lead to significant knowledge discovery. Even an analyst
who is completely new to this environment, having gone through the process de-
scribed above, could learn a number of important pieces of information in just an
hour or two. First, an agriculture-themed initial exploration had revealed serious and
potentially critically important agriculture-based conflicts in the region of interest.
Second, tracking the evolution of these conflicts through the dataset had revealed
that these conflicts are by no means fully resolved. Even though they were alle-
viated before turning strongly violent, the alleviation was essentially just a lucky,
weather-related break. The underlying risk factors and dangers, such as the flood of
weapons and competition for scarce resources remain. And thus one might conclude
that the situation in this region remains dangerous, though perhaps not immediately
so.
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Fig. 17.11 A realistic set of categories that someone involved in research on 1970s South East
Asia could potentially find interesting

17.4.2 Effect of Automated NTF Output Labeling on Analysis

The integrated analysis environment’s automated NTF output labeling capability is
one of its most important features. As will be shown in this section, it can enor-
mously improve an analyst’s efficiency by providing a quick automatic ability to
sort NTF results in accordance with analyst-defined categories of interest.

For this example, the Bangladesh 1972–1976 dataset was processed using the
analysis environment. As the first step, several category descriptor files were cre-
ated. These categories represent realistic potential areas of interest to someone in-
volved in research on 1970s South East Asia. However, for the purposes of this ex-
ample, let us assume that the analyst is most interested in developments pertaining
to Islam. The category described by the files shown in Fig. 17.11, include Commu-
nism, Diplomacy, Islam, and Military.

Following the creation of these category descriptors and the previously described
process of execution of the NTF algorithm to generate NTF output group files, the
user may utilize FutureLens’s automated group labeling feature. Without the auto-
mated labeling feature, the analyst must focus in great detail on every single one of
the NTF output groups (25 total, for this example). This could take a considerable
amount of time, and the process would be prone to human error. Using the auto-
mated NTF group labeling feature of the analysis environment, however, takes just
a few second. The results are shown in Fig. 17.12, where those groups that did not
fit into any one of the four categories of interest have already been closed. Of the la-
beled groups, one fit into the Islam category, four were labeled as Military-related,
ten had a Diplomacy theme, while the rest did not fit into any of the categories
created by the user. There were no Communism-labeled groups in this set.
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Fig. 17.12 NTF output groups have been automatically labeled in accordance with the categories
loaded by the user (shown in the legend window on the right)

As one may recall, the hypothetical analyst in this scenario is most interested in
developments pertaining to Islam. It just happens that only one of the NTF out-
put features has been automatically labeled as belonging to the Islam category.
This already provides the analyst with some important and potentially new knowl-
edge, namely that Islam did not figure prominently into the news coming out of
Bangladesh in the 1970s. Even more importantly, the analyst can save a great deal of
time by focusing exclusively on just one of the twenty-five total NTF output groups.
Shown in Fig. 17.13, the analyst performs a detailed analysis of Group 15, labeled
as belonging to the Islam category. Quickly revealed in the articles belonging to this
category are Pakistan’s efforts to improve its diplomatic position by strengthening
ties with Islamic countries inside and outside of the South East Asia region.

17.5 Conclusions and Future Work

In this paper, we have presented a new text analysis environment that effectively
integrates nonnegative tensor factorization with visual post-processing tools. The
integrated environment also provides effective pre-processing tools for the construc-
tion and evaluation of NTF-based models. Non-negative tensor factorization output
feature production and interpretation is facilitated by a visual post-processing tool,
FutureLens. This Java-based software allows the user to easily mine tensor factors
for the purpose of discovering new, interesting patterns or communications from
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Fig. 17.13 The automated NTF group labeling feature allows the analyst to very quickly focus on
the one most relevant group. Quickly revealed through deeper analysis of this group are Pakistan’s
efforts at diplomacy involving Islamic countries inside and outside of the South East Asia region

large text-based corpora. Customizing FutureLens and NTF for applications such as
bioinformatics and spatial-temporal data mining with geocoding (addition of geo-
graphic descriptors) is planned.
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