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Introduction

Researchers in computational sciences are faced with the problem of solving a va-
riety of equations. A large number of problems are solved by finding the solutions
of certain equations. For example, dynamic systems are mathematically modeled by
difference or differential equations, and their solutions represent usually the states
of the systems. For the sake of simplicity, assume that a time-invariant system is
driven by the equation x ′ = f (x), where x is the state, then the equilibrium states
are determined by solving the equations f (x) = 0. Similar equations are used in the
case of discrete systems. The unknowns of engineering equations can be functions
(difference, differential, integral equations), vectors (systems of linear or nonlinear
algebraic equations), or real or complex numbers (single algebraic equations with
single unknowns). Except special cases, the most commonly used solutions methods
are iterative; when starting from one or several initial approximations, a sequence is
constructed, which converges to a solution of the equation. Iteration methods are ap-
plied also for solving optimization problems. In such cases, the iteration sequences
converge to an optimal solution of the problem in hand. Because all of these methods
have the same recursive structure, they can be introduced and discussed in a general
framework.

To complicate the matter further, many of these equations are nonlinear. How-
ever, all may be formulated in terms of operators mapping a linear space into an-
other, the solutions being sought as points in the corresponding space. Consequently,
computational methods that work in this general setting for the solution of equations
apply to a large number of problems and lead directly to the development of suit-
able computer programs to obtain accurate approximate solutions to equations in the
appropriate space.

This monograph is written with optimization considerations including the weak-
ening of existing hypotheses for solving equations. It can also be used as a reference
book for an advanced numerical-functional analysis course. The goal is to introduce
these powerful concepts and techniques at the earliest possible stage. The reader is
assumed to have had courses in numerical functional analysis and linear algebra.

We have divided the material into 11 chapters. Each chapter contains several new
theoretical results and important applications in engineering, in dynamic economic
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systems, in input-output systems, in the solution of nonlinear and linear differen-
tial equations, and optimization problems. The applications appear in the form of
Examples or Applications or Exercises or they are implied as our results improve
(weaken) (extend the applicability of) earlier ones that have already been applied in
concrete problems. Sections have been written as independent of each other as pos-
sible. Hence the interested reader can go directly to a certain section and understand
the material without having to go back and forth in the whole textbook to find related
material.

There are four basic problems connected with iterative methods.

Problem 1: Show that the iterates are well defined. For example, if the algorithm
requires the evaluation of F at each xn , it has to be guaranteed that the iterates remain
in the domain of F . It is, in general, impossible to find the exact set of all initial
data for which a given process is well defined, and we restrict ourselves to giving
conditions that guarantee that an iteration sequence is well defined for certain specific
initial guesses.

Problem 2: Concerns the convergence of the sequences generated by a process and
the question of whether their limit points are, in fact, solutions of the equation. There
are several types of such convergence results. The first, which we call a local conver-
gence theorem, begins with the assumption that a particular solution x∗ exists, and
then asserts that there is a neighborhood U of x∗ such that for all initial vectors in U
the iterates generated by the process are well defined and converge to x∗. The second
type of convergence theorem, which we call semilocal, does not require knowledge
of the existence of a solution, but states that, starting from initial vectors for which
certain—usually stringent—conditions are satisfied, convergence to some (generally
nearby) solutions x∗ is guaranteed. Moreover, theorems of this type usually include
computable (at least in principle) estimates for the error xn − x∗, a possibility not
afforded by the local convergence theorems. Finally, the third and most elegant type
of convergence result, the global theorem, asserts that starting anywhere in a linear
space, or at least in a large part of it, convergence to a solution is ensured.

Problem 3: Concerns the economy of the entire operations and, in particular, the
question of how fast a given sequence will converge. Here, there are two approaches,
which correspond with the local and semilocal convergence theorems. As mentioned
above, the analysis that leads to the semilocal type of theorem frequently produces
error estimates, and these, in turn, may sometimes be reinterpreted as estimates of
the rate of convergence of the sequence. Unfortunately, however, these are usually
overly pessimistic. The second approach deals with the behavior of the sequence {xn}
when n is large, and hence when xn is near the solutions x∗. This behavior may then
be determined, to a first approximation, by the properties of the iteration function
near x∗ and leads to so-called asymptotic rates of convergence.

Problem 4: Concerns with how to best choose a method, algorithm, or software pro-
gram to solve a specific type of problem and its descriptions of when a given algo-
rithm or method succeeds or fails.
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We have included a variety of new results dealing with Problems 1–4.
This monograph is an outgrowth of research work undertaken by us and comple-

ments/updates earlier works of ours focusing on in-depth treatment of convergence
theory for iterative methods [7]–[43]. Such a comprehensive study of optimal itera-
tive procedures appears to be needed and should benefit not only those working in the
field but also those interested in, or in need of, information about specific results or
techniques. We have endeavored to make the main text as self-contained as possible,
to prove all results in full detail, and to include a number of exercises throughout the
monograph. In order to make the study useful as a reference source, we have comple-
mented each section with a set of “Remarks” in which literature citations are given,
other related results are discussed, and various possible extensions of the results of
the text are indicated. For completion, the monograph ends with a comprehensive list
of references. Because we believe our readers come from diverse backgrounds and
have varied interests, we provide “recommended reading” throughout the textbook.
Often a long textbook summarizes knowledge in a field. This monograph, however,
may be viewed as a report on work in progress. We provide a foundation for a scien-
tific field that is rapidly changing. Therefore we list numerous conjectures and open
problems as well as alternative models that need to be explored.

The monograph is organized as follows:
Chapter 1: The essentials on the solution of equations are provided.
Newton-type methods and their implications/applications are covered in the rest

of the chapters.
The Newton-Kantorovich Theorem 2.2.4 for solving nonlinear equations is one

of the most important tools in nonlinear analysis and in classic numerical analysis.
This theorem has been successfully used for obtaining optimal bounds for many iter-
ative procedures. The original paper or Kantorovich [124] contains optimal a priori
bounds for the Newton-Kantorovich (NK) method (2.1.3), albeit not in explicit form.
Explicit forms of those a priori bounds were obtained independently by Ostrowski
[155], Gragg and Tapia [102].

The paper of Gragg and Tapia [102] also contains sharp a posteriori bounds for
the NK method. By using different techniques and/or different a posteriori informa-
tion, these bounds were refined by others [6], [53], [58], [59], [64], [74], [76]–[78],
[128], [135], [139]–[142], [154], [162], [167], [184], [191], [209]–[212], [214]–
[216], [218]–[220], and us [11]–[43]. Various extensions of the NK theorem also
have been used to obtain error bounds for Newton-like (or Newton-type) methods:
Inexact Newton method, the secant method, Halley’s method, etc. A survey of such
methods can be found in [26], [43].

The NK theorem has also been used in concrete applications for proving exis-
tence and uniqueness of solutions for nonlinear equations arising in various fields.
The spectrum of applications of this theorem is immense. An Internet search seek-
ing “Newton-Kantorovich Theorem” leads to hundreds if not thousands of works
related/based on this theorem.

The list given below is therefore incomplete. However, we have included di-
verse problems such as the NK method on a cone, Robinson [178] (Section 2.6);
the weak NK method, Tapia [188] (Section 2.4); bounds on manifolds, Argyros [39],
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Paardekooper [156] (Section 2.10); radius of convergence and one-parameter imbed-
ding Meyer [139] (Section 2.11); NK method on Riemannian manifolds, Ferreira
and Svaiter [94] (Section 2.12); shadowing orbits in dynamical systems, Hadeller
[108] (Section 2.13); computation of continuation curves, Deuflhard, Pesh, Rentrop
[77], Rheinboldt [176] (Section 2.14); Moore’s theorem [143] from interval anal-
ysis, Rall [171], Neumaier and Shen [146], Zuhe and Wolfe [220] (Section 3.1);
Miranda’s theorem [142] for enclosing solutions of equations, Mayer [136] (Sec-
tion 3.2); point-based approximation (PBA) used successfully by Robinson [179],
[180] in Mathematical Programming (Section 3.3); curve tracing, Allgower [2], Chu
[62], Rheinboldt [176] (Section 3.4); finite element analysis for boundary value prob-
lems, Tsuchiya [194], Pousin [168], Feinstauer-Zernicek [93] (Section 3.5); PSB
updates in Hilbert spaces using quasi-NK method, Laumen [134] (Section 3.6); shad-
owing Lemma and chaotic behavior for nonlinear equations, Palmer [156], Stoffer
[186] (Section 3.7); mesh independence principle for optimal design problems, Lau-
men [133], Allgower, Böhmer, Potra, Rheinboldt [2] (Section 3.8); conditioning of
semidefinite programs, Nayakkankuppam [144], Alizadeh [1], Haeberly [109] (Sec-
tion 3.9); analytic complexity/enlarging the set of initial guesses for the NK method,
Kung [131], Traub [192] (Chapter 6, Sections 6.1, 6.2, 6.3); interior point meth-
ods, Potra [165] (Section 11.1); LP methods, Rheinboldt [177], Wang-Zhao [206],
Renegar-Shub [174], Smale [184] (Section 11.2).

The foundation of the NK theorem is famous for its simplicity and clarity of NK
hypothesis (2.2.17) (or (2.2.37) in affine invariant form).

This hypothesis is the crucial sufficient condition for the convergence of New-
ton’s method. However, convergence of Newton’s method can be obtained even if
the NK hypothesis is violated (see, e.g., Example 2.2.14). Therefore weakening this
condition is of extreme importance because the applicability of this powerful method
will be extended. Recently we showed [39] by considering more precise majorizing
sequences that the NK hypothesis can always be replaced by the weaker (2.2.52) (if
�0 �= �) (see also Theorem 2.2.11) which doubles (at most if �0 = 0) the applicabil-
ity of this theorem. Note that the verification of condition (2.2.56) requires the same
information and computational cost as (2.2.37) because in practice the computation
of Lipschitz constant � requires the evaluation of center-Lipschitz constant �0 too.

Moreover the following advantages hold (see Theorem 2.2.11 and the Remarks
that follow): semilocal case: finer error estimates on the distances involved and an
at least as precise information on the location of the solution; local case: finer error
bounds and larger trust regions (radius of convergence).

The following advantages carry over if our approach is extended to related
methods/hypotheses: Below we provide a list: secant method, Argyros [12], [43],
Dennis [74], Potra [162], Hernandez [116], [117] (Section 2.3); “Terra Incognita”
and Hölder continuity, Argyros [32], [35], Lysenko [135], Ciancarruso, De Pascale
[64] (Section 2.4); NK method under regular smoothness conditions, Galperin [98],
Galperin and Waksman [99] (Section 2.5); enlarging the radius of convergence for
the NK method using hypotheses on the m (m > 1 an integer) Fréchet-differentiable
operators, Argyros [27], [43], Ypma [216] (Section 2.8); Gauss-Newton method,
Ben-Israel [46], Häussler [110] (Section 2.15); Broyden’s method [52], Dennis [75]
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(Section 4.1); Stirling’s method [185], Rall [170] (Section 4.2); Steffenssen-Aitken
method, Catinas [54], Pavaloiu [158], [159]; method of tangent hyperbolas, Kanno
[123], Yamamoto [211] (Section 4.5); modified secant method with applications in
function optimization, Amat, Busquier, Gutierrez [4], Bi, Ren, Wu [47], Ren [172]
(Section 4.6); the King-Werner method, Ren [172]; Newton methods (including two-
point), Argyros [34], [35], [43] Dennis [74], [75], Chen, Yamamoto, [58], [59], [60],
(in Chapters 5 and 8); variational inequalities in Chapter 7, K-theory and conver-
gence on generalized Banach spaces with a convergence structure, Caponetti, De
Pascale, Zabrejko [53], Meyer [139]–[141] in Chapter 9, and extensions to set-to-set
mappings in Chapter 10.

Earlier results by us or others are included in sections mentioned above directly
or indirectly as special cases of our results. Note that revisiting all results to date
that have used the NK hypothesis (2.2.37) and replacing (2.2.37) with our weaker
hypothesis (2.2.56) is worth it for the reasons/benefits mentioned above. However,
this will be an enormous or even impossible task. That is why in this monograph
we decided to include only the above chapters and leave the rest for the motivated
reader. Note that some results are also listed as exercises to reduce the size of the
book.

Finally we state that although the refinement of majorizing sequences technique
inaugurated by us in [39] is very recent, several authors have already succesfully used
it: Amat, Busquier, Gutierrez [4] (see Section 4.8), Bi, Ren, Wu [47] (see Section
4.6), and Ren [172] (see Section 4.7).



1

Operators and Equations

The basic background for solving equations is introduced here.

1.1 Operators on linear spaces

Some mathematical operations have certain properties in common. These properties
are given in the following definition.

Definition 1.1.1. An operator T that maps a linear space X into a linear space Y
over the same scalar field S is said to be additive if

T (x + y) = T (x) + T (y), for all x, y ∈ X,

and homogeneous if

T (sx) = sT (x), for all x ∈ X, s ∈ S.

An operator that is additive and homogeneous is called a linear operator.

Many examples of linear operators exist.

Example 1.1.2. Define an operator T from a linear space X into itself by T (x) = sx ,
s ∈ S. Then T is a linear operator.

Example 1.1.3. The operator D = d
dt mapping X = C1 [0, 1] into Y = C [0, 1]

given by

D (x) = dx

dt
= y (t) , 0 ≤ t ≤ 1,

is linear.

If X and Y are linear spaces over the same scalar field S, then the set L(X, Y )

containing all linear operators from X into Y is a linear space over S if addition is
defined by

I.K. Argyros, Convergence and Applications of Newton-type Iterations,
DOI: 10.1007/978-0-387-72743-1 1, c© Springer Science+Business Media, LLC 2008
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(T1 + T2)(x) = T1(x) + T2(x), for all x ∈ X,

and scalar multiplication by

(sT )(x) = s(T (x)), for all x ∈ X, s ∈ S.

We may also consider linear operators B mapping X into L(X, Y ). For an x ∈ X
we have

B(x) = T,

a linear operator from X into Y . Hence, we have

B(x1, x2) = (B(x1))(x2) = y ∈ Y.

B is called a bilinear operator from X into Y . The linear operators B from X into
L(X, Y ) form a linear space L(X, L(X, Y )). This process can be repeated to generate
j-linear operators ( j > 1 an integer).

Definition 1.1.4. A linear operator mapping a linear space X into its scalar S is
called a linear functional in X.

Definition 1.1.5. An operator Q mapping a linear space X into a linear space Y is
said to be nonlinear if it is not a linear operator from X into Y .

Some metric concepts of importance are now introduced.

Definition 1.1.6. An operator F from a Banach space X into a Banach space Y is
continuous at x = x∗ if

lim
n→∞

∥
∥xn − x∗∥∥

X = 0 =⇒ lim
n→∞

∥
∥F (xn) − F

(

x∗)∥∥
Y = 0

Theorem 1.1.7. If a linear operator T from a Banach space X into a Banach space
Y is continuous at x∗ = 0, then it is continuous at every point x of space X.

Proof. We have T (0) = 0, and from lim n→∞ ‖xn‖ = 0 we get limn→∞ ‖T (xn)‖ =
0. If sequence {xn} (n ≥ 0) converges to x∗ in X , by setting yn = xn − x∗ we obtain
limn→∞ ‖yn‖ = 0. By hypothesis this implies that

lim
n→∞ ‖T (xn)‖ = lim

n→∞
∥
∥T

(

xn − x∗)∥∥ = lim
n→∞

∥
∥T (xn) − T

(

x∗)∥∥ = 0.

Definition 1.1.8. An operator F from a Banach space X into a Banach space Y is
Lipschitz continuous on the set A in X if there exists a constant c < ∞ such that

‖F (x) − F (y)‖ ≤ c ‖x − y‖ , for all x, y ∈ A.

The greatest lower bound (infimum) of numbers c satisfying the above inequality for
x �= y is called the bound of F on A. An operator that is bounded on a ball (open)
U (z, r) = {x ∈ X | ‖x − z‖ < r} is continuous at z. It turns out that for linear
operators, the converse is also true.
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Theorem 1.1.9. A continuous linear operator T from a Banach space X into a Ba-
nach space Y is bounded on X.

Proof. By the continuity of T there exists ε > 0 such that ‖T (z)‖ < 1, if ‖z‖ < ε.
For 0 �= z ∈ X

‖T (z)‖ ≤ 1
ε
‖z‖ , (1.1.1)

because ‖cz‖ < ε for |c| < ε
‖z‖ , and ‖T (cz)‖ = |c| · ‖T (z)‖ < 1. Letting z = x − y

and c = ε−1 in (1.1.1), we conclude that operator T is bounded on X .

The bound on X of a linear operator T denoted by ‖T ‖X or simply ‖T ‖ is called
the norm of T . As in Theorem 1.1.9 we get

‖T ‖ = sup
‖x‖=1

‖T (x)‖. (1.1.2)

Hence, for any bounded linear operator T

‖T (x)‖ ≤ ‖T ‖ · ‖x‖, for all x ∈ X. (1.1.3)

From now on, L(X, Y ) denotes the set of all bounded linear operators from a Ba-
nach space X into another Banach space Y . It also follows immediately that L(X, Y )

is a linear space if equipped with the rules of addition and scalar multiplication in-
troduced in Definition 1.1.1.

The proof of the following result is left as an exercise (see also [119], [125]).

Theorem 1.1.10. The set L(X, Y ) is a Banach space for the norm (1.1.2).

In a Banach space X , solving a linear equation can be stated as follows: given a
bounded linear operator T mapping X into itself and some y ∈ X , find an x ∈ X
such that

T (x) = y. (1.1.4)

The point x (if it exists) is called a solution of Equation (1.1.4).

Definition 1.1.11. If T is a bounded linear operator in X and a bounded linear op-
erator T1 exists such that

T1T = T T1 = I, (1.1.5)

where I is the identity operator in X (i.e., I (x) = x for all x ∈ X), then T1 is called
the inverse of T and we write T1 = T −1. That is,

T −1T = T T −1 = I. (1.1.6)

If T −1 exists, then Equation (1.1.4) has the unique solution

x = T −1(y). (1.1.7)

The proof of the following result is left as an exercise (see also [130]).
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Theorem 1.1.12. (Banach Lemma on Invertible Operators) [125]. If T is a bounded
linear operator in X, T −1 exists if and only if there is a bounded linear operator P
in X such that P−1 exists and

‖I − PT ‖ < 1. (1.1.8)

If T −1 exists, then

T −1 =
∞
∑

n=0

(I − PT )n P (Neumann Series) (1.1.9)

and
∥
∥
∥T −1

∥
∥
∥ ≤ ‖P‖

1 − ‖I − PT ‖ . (1.1.10)

Based on Theorem 1.1.12, we can immediately introduce a computational theory
for Equation (1.1.4) composed by three factors:

(A) Existence and Uniqueness. Under the hypotheses of Theorem 1.1.12, Equa-
tion (1.1.4) has a unique solution x∗.

(B) Approximation. The iteration

xn+1 = P(y) + (I − PT )(xn) (n ≥ 0) (1.1.11)

gives a sequence {xn} (n ≥ 0) of successive approximations, which converges to x∗
for any initial guess x0 ∈ X .

(C) Error Bounds. Clearly the speed of convergence of iteration {xn} (n ≥ 0) to
x∗ is governed by the estimate:

‖xn − x∗‖ ≤ ‖I − PT ‖n

1 − ‖I − PT ‖‖P(y)‖ + ‖I − PT ‖n‖x0‖. (1.1.12)

Let T be a bounded linear operator in X . One way to obtain an approximate
inverse is to make use of an operator sufficiently close to T .

Theorem 1.1.13. If T is a bounded linear operator in X, T −1 exists if and only if
there is a bounded linear operator P1 in X such that P−1

1 exists, and

‖P1 − T ‖ ≤
∥
∥
∥P−1

1

∥
∥
∥

−1
. (1.1.13)

If T −1 exists, then

T −1 =
∞
∑

n=0

(

I − P−1
1 T

)n
P−1

1 (1.1.14)

and
∥
∥
∥T −1

∥
∥
∥ ≤

∥
∥P−1

∥
∥

1 −
∥
∥
∥I − P−1

1 T
∥
∥
∥

≤

∥
∥
∥P−1

1

∥
∥
∥

1 −
∥
∥
∥P−1

1

∥
∥
∥ ‖P1 − T ‖

. (1.1.15)
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Proof. Let P = P−1
1 in Theorem 1.1.12 and note that by (1.1.13)

∥
∥
∥I − P−1

1 T
∥
∥
∥ =

∥
∥
∥P−1

1 (P1 − T )

∥
∥
∥ ≤

∥
∥
∥P−1

1

∥
∥
∥ · ‖P1 − T ‖ < 1. (1.1.16)

That is, (1.1.8) is satisfied. The bounds (1.1.15) follow from (1.1.10) and (1.1.16).
That proves the sufficiency. The necessity is proved by setting P1 = T , if T −1 exists.

The following result is equivalent to Theorem 1.1.12.

Theorem 1.1.14. A bounded linear operator T in a Banach space X has an inverse
T −1 if and only if linear operators P, P−1 exist such that the series

∞
∑

n=0

(I − PT )n P (1.1.17)

converges. In this case we have

T −1 =
∞
∑

n=0

(I − PT )n P.

Proof. If series (1.1.17) converges, then it converges to T −1 (see Theorem 1.1.12).
The existence of P , P−1 and the convergence of series (1.1.17) is again established
as in Theorem 1.1.12, by taking P = T −1, when it exists.

Definition 1.1.15. A linear operator N in a Banach space X is said to be nilpotent if

N m = 0, (1.1.18)

for some positive integer m.

Theorem 1.1.16. A bounded linear operator T in a Banach space X has an inverse
T −1 and only if there exist linear operators P, P−1 such that I − PT is nilpotent.

Proof. If P , P−1 exists and I − PT is nilpotent, then series

∞
∑

n=0

(I − PT )n P =
m−1
∑

n=0

(I − PT )n P

converges to T −1 by Theorem 1.1.14. Moreover, if T −1 exists, then P = T −1,
P−1 = T exists, and I − PT = I − T −1T = 0 is nilpotent.

The computational techniques to be considered later make use of the derivative
in the sense of Fréchet [125], [204].

Definition 1.1.17. Let F be an operator mapping a Banach space X into a Banach
space Y . If there exists a bounded linear operator L from X into Y such that
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lim
‖�x‖→0

‖F (x0 + �x) − F (x0) − L (�x)‖
‖�x‖ = 0, (1.1.19)

then F is said to be Fréchet-differentiable at x0, and the bounded linear operator

F ′ (x0) = L (1.1.20)

is called the first Fréchet derivative of F at x0. The limit in (1.1.19) is supposed to
hold independently of the way that �x approaches 0. Moreover, the Fréchet differ-
ential

δF (x0,�x) = F ′ (x0)�x (1.1.21)

is an arbitrary close approximation to the difference F (x0 + �x) − F (x0) relative
to ‖�x‖, for ‖�x‖ small.

If F1 and F2 are differentiable at x0, then

(F1 + F2)
′(x0) = F ′

1(x0) + F ′
2(x0). (1.1.22)

Moreover, if F2 is an operator from a Banach space X into a Banach space Z , and
F1 is an operator from Z into a Banach space Y , their composition F1 ◦ F2 is defined
by

(F1 ◦ F2)(x) = F1(F2(x)), for all x ∈ X. (1.1.23)

It follows from Definition 1.1.17 that F1 ◦ F2 is differentiable at x0 if F2 is differen-
tiable at x0 and F1 is differentiable at F2(x0) of Z , with (chain rule):

(F1 ◦ F2)
′(x0) = F ′

1(F2(x0))F ′
2(x0). (1.1.24)

In order to differentiate an operator F we write:

F(x0 + �x) − F(x0) = L(x0,�x)�x + η(x0,�x), (1.1.25)

where L(x0,�x) is a bounded linear operator for given x0,�x with

lim
‖�x‖→0

L(x0,�x) = L , (1.1.26)

and

lim
‖�x‖→0

‖η(x0,�x)‖
‖�x‖ = 0. (1.1.27)

Estimates (1.1.26) and (1.1.27) give

lim
‖�x‖→0

L(x0,�x) = F ′(x0). (1.1.28)

If L(x0,�x) is a continuous function of �x in some ball U (0, R) (R > 0), then

L(x0, 0) = F ′(x0). (1.1.29)

Higher-order derivatives can be defined by induction:
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Definition 1.1.18. If F is (m − 1)-times Fréchet-differentiable (m ≥ 2 an integer),
and an m-linear operator A from X into Y exists such that

lim
‖�x‖→0

∥
∥F (m−1) (x0 + �x) − F (m−1) (x0) − A (�x)

∥
∥

‖�x‖ = 0, (1.1.30)

then A is called the m-Fréchet derivative of F at x0, and

A = F (m) (x0) (1.1.31)

Higher partial derivatives in product spaces can be defined as follows: Define

Xi j = L(X j , Xi ), (1.1.32)

where X1, X2, . . . are Banach spaces and L(X j , Xi ) is the space of bounded linear
operators from X j into Xi . The elements of Xi j are denoted by Li j , etc. Similarly,

Xi jm = L(Xm, Xi j ) = L(Xm, L(X j , Xi )) (1.1.33)

denotes the space of bounded bilinear operators from Xk into Xi j . Finally, we write

Xi j1 j2··· jm = L
(

X jk, Xi j1 j2··· jm−1

)

, (1.1.34)

which denotes the space of bounded linear operators from X jm into Xi j1 j2··· jm−1 . The
elements A = Ai j1 j2··· jm of Xi j1 j2··· jm are a generalization of m-linear operators [10],
[125].

Consider an operator Fi from space

X =
n
∏

p=1

X jp (1.1.35)

into Xi , and that Fi has partial derivatives of orders 1, 2, . . . , m − 1 in some ball
U (x0, R), where R > 0 and

x0 =
(

x (0)
j1

, x (0)
j2

, . . . , x (0)
jn

)

∈ X. (1.1.36)

For simplicity and without loss of generality we renumber the original spaces so
that

j1 = 1, j2 = 2, . . . , jn = n. (1.1.37)

Hence, we write
x0 = (x (0)

1 , x (0)
2 , . . . , x (0)

n ). (1.1.38)

A partial derivative of order (m − 1) of Fi at x0 is an operator

Aiq1q2···qm−1 = ∂(m−1)Fi (x0)

∂xq1∂xq2 · · · ∂xqm−1

(1.1.39)

(in Xiq1q2···qm−1 ) where
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1 ≤ q1, q2, . . . , qm−1 ≤ n. (1.1.40)

Let P(Xqm ) denote the operator from Xqm into Xiq1q2···qm−1 obtained from (1.1.39)
by letting

x j = x (0)
j , j �= qm, (1.1.41)

for some qm , 1 ≤ qm ≤ n. Moreover, if

P ′(x (0)
qm

) = ∂

∂xqm

· ∂m−1 Fi (x0)

∂xq1∂xq2 · · · ∂xqm−1

= ∂m Fi (x0)

∂xq1 · · · ∂xqm

, (1.1.42)

exists, it will be called the partial Fréchet derivative of order m of Fi with respect to
xq1 , . . . , xqm at x0.

Furthermore, if Fi is Fréchet-differentiable m times at x0, then

∂m Fi (x0)

∂xq1 · · · ∂xqm

xq1 · · · xqm = ∂m Fi (x0)

∂xs1∂xs2 · · · ∂xsm

xs1 · · · xsm (1.1.43)

for any permutation s1, s2, . . . , sm of integers q1, q2, . . . , qm and any choice of points
xq1 , . . . , xqm , from Xq1 , . . . , Xqm respectively. Hence, if F = (F1, . . . , Ft ) is an
operator from X = X1 × X2 × · · · × Xn into Y = Y1 × Y2 × · · · × Yt , then

F (m)(x0) =
(

∂m Fi

∂x j1 · · · ∂x jm

)

x=x0

(1.1.44)

i = 1, 2, . . . , t , j1, j2, . . . , jm = 1, 2, . . . , n, is called the m-Fréchet derivative of F
at x0 = (x (0)

1 , x (0)
2 , . . . , x (0)

n ).
We now state results concerning the mean value theorem, Taylor’s theorem, and

Riemannian integration. The proofs are left out as exercises [125], [186].
The mean value theoremfor differentiable real functions f :

f (b) − f (a) = f ′(c)(b − a), (1.1.45)

where c ∈ (a, b), does not hold in a Banach space setting. However, if F is a differ-
entiable operator between two Banach spaces X and Y , then

‖F(x) − F(y)‖ ≤ sup
x̄∈L(x,y)

‖F ′(x̄)‖ · ‖x − y‖, (1.1.46)

where
L(x, y) = {z .. z = λy + (1 − λ)x, 0 ≤ λ ≤ 1}. (1.1.47)

Set
z(λ) = λy + (1 − λ)x, 0 ≤ λ ≤ 1, (1.1.48)

and
F(λ) = F(z(λ)) = F(λy + (1 − λ)x). (1.1.49)

Divide the interval 0 ≤ λ ≤ 1 into n subintervals of lengths �λi , i = 1, 2, . . . , n,
choose points λi inside corresponding subintervals and as in the real Riemann inte-
gral consider sums
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∑

σ

F(λi )�λi =
n
∑

i=1

F(λi )�λi , (1.1.50)

where σ is the partition of the interval, and set

|σ | = max
(i)

�λi . (1.1.51)

Definition 1.1.19. If
S = lim

|σ |→0

∑

σ

F (λi ) �λi (1.1.52)

exists, then it is called the Riemann integral from F (λ) from 0 and 1, denoted by

S =
∫ 1

0
F (λ) dλ =

∫ y

x
F (λ) dλ. (1.1.53)

Note that a bounded operator P (λ) on [0, 1] such that the set of points of dis-
continuity is of measure zero is said to be integrable on [0, 1].

We now state the famous Taylor theorem [103].

Theorem 1.1.20. If F is m-times Fréchet-differentiable in U (x0, R), R > 0, and
F (m)(x) is integrable from x to any y ∈ U (x0, R), then

F(y) = F(x) +
m−1
∑

n=1

1
n! F (n)(x)(y − x)n + Rm(x, y), (1.1.54)

∥
∥
∥
∥

F (y) −
m−1
∑

n=0

1
n! F (n)(x)(y − x)n

∥
∥
∥
∥

≤ sup
x̄∈L(x,y)

∥
∥F (m) (x̄)

∥
∥
‖y − x‖m

m!
, (1.1.55)

where

Rm(x, y) =
∫ 1

0
F (m)

(

λy + (1 − λ) x
)

(y − x)m (1−λ)m−1

(m−1)! dλ. (1.1.56)

1.2 Divided differences of operators

This section introduces the fundamentals of the theory of divided differences of a
nonlinear operator. Several results are also provided using differences as well as
Fréchet derivatives satisfying Lipschitz or monotone-type conditions.

Let X be a linear space. We introduce the following definition:

Definition 1.2.1. A partially ordered topological linear space (POTL-space) is a lo-
cally convex topological linear space X which has a closed proper convex cone.
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A proper convex cone is a subset K such that K + K ⊂ K , αK ⊂ K for
α > 0, and K ∩ (−K ) = {0} . Thus the order relation ≤, defined by x ≤ y if
and only if y − x ∈ K , gives a partial ordering that is compatible with the linear
structure of the space. The cone K that defines the ordering is called the positive
cone as K = {x ∈ X | x ≥ 0} . The fact that K is closed implies also that intervals,
[a, b] = {z ∈ X | a ≤ z ≤ b}, are closed sets.

Example 1.2.2. Some simple examples of POTL-spaces are:

(1) X = En , n-dimensional Euclidean space, with

K = {

(x1, x2, ..., xn) ∈ En | xi ≥ 0, i = 1, 2, ..., n
} ;

(2) X = En with K = {(x1, x2, ..., xn) ∈ En | xi ≥ 0, i = 1, 2, ..., n − 1, xn = 0} ;
(3) X = Cn [0, 1], continuous functions, maximum norm topology, pointwise order-

ing;
(4) X = Cn [0, 1], n-times continuously differentiable functions with

‖ f ‖ =
n
∑

k=0

max
∣
∣
∣ f (K ) (t)

∣
∣
∣ , and pointwise ordering;

(5) C = L p [0, 1] , 0 ≤ p ≤ ∞ usual topology,

K = {

f ∈ L p [0, 1] | f (t) ≤ 0 a.e.
}

.

Remark 1.2.3. Using the above examples, it is easy to see that the closedness of the
positive cone is not, in general, a strong enough connection between the ordering
and the topology. Consider, for example, the following properties of sequences of
real numbers:

(1) x1 ≤ x2 ≤ · · · ≤ x∗, and sup {xn} x∗ implies lim
n→∞ xn = x∗;

(2) lim
n→∞ xn = 0 implies that there exists a sequence {yn} with y1 ≥ y2 ≥ · · · ≥ 0,

inf {yn} = 0 and −yn ≤ xn ≤ yn;
(3) 0 ≤ xn ≤ yn , and lim

n→∞ yn = 0 imply lim
n→∞ xn = 0.

Unfortunately, these statements are not true for all POTL-spaces:

(a) In X = C [0, 1] let xn (t) = −tn . Then x1 ≤ x2 ≤ · · · ≤ 0, and sup {xn} = 0,
but ‖xn‖ = 1 for all n, so lim

n→∞ xn does not exist. Hence (1) does not hold.

(b) In X = L1 [0, 1] let xn (t) = n for 1
n+1 ≤ t ≤ 1

n and zero elsewhere. Then
lim

n→∞ ‖xn‖ = 0 but clearly property (2) does not hold.

(c) In X = C1 [0, 1] let xn (t) = tn

n , yn (t) = 1
n . Then 0Šxn ≤ yn, and lim

n→∞ yn = 0,

but ‖xn‖ = max
∣
∣
∣

tn

n

∣
∣
∣+ max

∣
∣tn−1

∣
∣ = 1

n + 1 > 1; hence xn does not converge to
zero.
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We will now devote a brief discussion of certain types of POTL-spaces in which
some of the above statements are true.

Definition 1.2.4. A POTL-space is called regular if every order-bounded increasing
sequence has a limit.

Remark 1.2.5. Examples of regular POTL-spaces are En and L p, 0 ≤ p ≤ ∞,
whereas C [0, 1] , Cn [0, 1] and L∞ [0, 1] are not regular, as was shown in (a) of the
above remark. If {xn} n ≥ 0 is a monotone increasing sequence and limn→∞ xn = x∗
exists, then for any k0, n ≥ k0 implies xn ≥ xk0 . Hence x∗ = limn→∞ xn ≥ xk0 , i.e.,
x∗ is an upper bound on {xn} n = 0. Moreover, if y is any other upper bound, then
xn ≤ y, and hence x∗ = limn→∞ xn ≤ y, i.e., x∗ = sup {xn} . This shows that in
any POTL-space, the closedness of the positive cone guarantees that, if a monotone
increasing sequence has a limit, then it is also a supremum. In a regular space, the
converse of this is true; i.e., if a monotone increasing sequence has a supremum, then
it also has a limit. It is important to note that the definition of regularity involves both
an order concept (monotone boundedness) and a topological concept (limit).

Definition 1.2.6. A POTL-space is called normal if, given a local base U for the
topology, there exists a positive number η so that if 0 ≤ x ∈ V ∈ U then [0, x] ⊆ ηU .

Remark 1.2.7. If the topology of a POTL-space is given by a norm then this space
is called a partially ordered normed space (PON)-space. If a PON-space is complete
with respect to its topology then it is called a partially ordered Banach space (POB)-
space. According to Definition 1.2.6. A PON-space is normal if and only if there
exists a positive number α such that

‖x‖ ≤ α ‖y‖ for all x, y ∈ X with 0 ≤ x ≤ y.

Let us note that any regular POB-space is normal. The converse is not true. For
example, the space C [0, 1] , ordered by the cone of nonnegative functions, is normal
but is not regular. All finite-dimensional POTL-spaces are both normal and regular.

Remark 1.2.8. Let us now define some special types of operators acting between two
POTL-spaces. First we introduce some notation if X and Y are two linear spaces
then we denote by (X, Y ) the set of all operators from X into Y and by L (X, Y )

the set of all linear operators from X into Y. If X and Y are topological linear
spaces, then we denote by L B (X, Y ) the set of all continuous linear operators from
X into Y . For simplicity, the spaces L (X, X) and L B (X, X) will be denoted by
L (X) and L B (X) . Now let X and Y be two POTL-spaces and consider an operator
G ∈ (X, Y ). G is called isotone (resp. antitone) if x ≥ y implies G (x) ≤ G (y)

(resp. G (x) ≤ G (y)). G is called nonnegative if x ≥ 0 implies G (x) ≥ 0. For lin-
ear operators, the nonnegativity is clearly equivalent with the isotony. Also, a linear
operator is inverse nonnegative if and only if it is invertible and its inverse is non-
negative. If G is a nonnegative operator, then we write G ≥ 0. If G and H are two
operators from X into Y such that H − G is nonnegative, then we write G ≤ H . If Z
is a linear space, then we denote by I = Iz the identity operator in Z (i.e., I (x) = x
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for all x ∈ Z). If Z is a POTL-space, then we have obviously I ≥ 0. Suppose
that X and Y are two POTL-spaces and consider the operators T ∈ L (X, Y ) and
S ∈ L (Y, X). If ST ≤ Ix (resp. ST ≥ Ix ), then S is called a left subinverse (resp.
superinverse) of T and T is called a right subinverse (resp. superinverse) of S. We
say that S is a subinverse of T if S is a left as well as a right subinverse of T .

We finally end this section by noting that for the theory of partially ordered linear
spaces, the reader may consult M.A. Krasnosel’skii [128], [129], Vandergraft [199],
or Argyros and Szidarovszky [43].

The concept of a divided difference of a nonlinear operator generalizes the usual
notion of a divided difference of a scalar function in the same way in which the
Fréchet derivative generalizes the notion of a derivative of a function.

Definition 1.2.9. Let F be a nonlinear operator defined on a subset D of a linear
space X with values in a linear space Y , i.e., F ∈ (D, Y ) and let x, y be two points
of D. A linear operator from X into Y , denoted [x, y] , which satisfies the condition

[x, y] (x − y) = F (x) − F (y) (1.2.1)

is called a divided difference of F at the points x and y.

Remark 1.2.10. If X and Y are topological linear spaces, then we shall always as-
sume the continuity of the linear operator [x, y]. (Generally, [x, y] ∈ L (X, Y ) if
X, Y are POTL-spaces then [x, y] ∈ L B (X, Y )).

Obviously, condition (1.2.1) does not uniquely determine the divided difference,
with the exception of the case when X is one-dimensional. An operator [·, ·] .. D ×
D → L (X, Y ) satisfying (1.2.1) is called a divided difference of F on D. If we fix
the first variable, we get an operator

[

x0, ·
]

.. D → L (X, Y ) . (1.2.2)

Let x1, x2 be two points of D. A divided difference of the operator (1.2.2) at the
points x1, x2 will be called a divided difference of the second order of F at the points
x0, x1, x2 and will be denoted by

[

x0, x1, x2
]

. We have by definition

[

x0, x1, x2
] (

x1 − x2
)

=
[

x0, x1
]

−
[

x0, x2
]

. (1.2.3)

Obviously,
[

x0, x1, x2
] ∈ L (X, L (X, Y )) .

Let us now state a well-known result due to Kantorovich concerning the location
of fixed points, which will be used extensively later [125].

Theorem 1.2.11. Let X be a regular POTL-space and let x, y be two points of X
such that x ≤ y. If H.. [x, y] → X is a continuous isotone operator having the
property that x ≤ H (x) and y ≥ H (y) , then there exists a point z ∈ [x, y] such
that H (z) = z.
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We now assume that X and Y are Banach spaces. Accordingly we shall have
[x, y] ∈ L B (X, Y ) , [x, y, z] ∈ L B (X, L B (X, Y )) . As we will see in later chap-
ters, most convergence theorems in a Banach space require that the divided differ-
ences of F satisfy Lipschitz conditions of the form:

‖[x, y] − [x, z]‖ ≤ c0 ‖y − z‖ (1.2.4)

‖[y, x] − [z, x]‖ ≤ c1 ‖y − z‖ (1.2.5)

‖[x, y, z] − [u, y, z]‖ ≤ c2 ‖x − y‖ for all x, y, z, u ∈ D. (1.2.6)

It is a simple exercise to show that if [·, ·] is a divided difference of F satisfying
(1.2.4) or (1.2.5), then F is Fréchet-differentiable on D and we have

F ′ (x) = [x, x] for all x ∈ D. (1.2.7)

Moreover, if (1.2.4) and (1.2.5) are both satisfied, then the Fréchet derivative F ′ is
Lipschitz continuous on D with Lipschitz constant I = c0 + c1.

We shall also give an example of divided differences of the first and of the second
order in the finite-dimensional case. We shall consider the space |Rq equipped with
the Chebysheff norm, which is given by

‖x‖ = max {|xi | ∈ R .. 1 ≤ I ≤ q} for x = (

x1, x2, ..., xq
) ∈ Rq . (1.2.8)

It follows that the norm of a linear operator L ∈ L B (Rq) represented by the
matrix with entries Ii j is given by

‖L‖ = max
{
∑q

j=1

∣
∣Ii j

∣
∣ | |1 ≤ i ≤ q

}

. (1.2.9)

We cannot give a formula for the norm of a bilinear operator. However, if B is a
bilinear operator with entries bi jk , then we have the estimate

‖B‖ ≤ max
{
∑q

j=1

∑q
k=1

∣
∣bi jk

∣
∣ |1 ≤ i ≤ q

}

. (1.2.10)

Let U be an open ball of |Rq and let F be an operator defined on U with values
in Rq . We denote by f1, ..., fq the components of F . For each x ∈ U we have

F (x) = (

f1 (x) , ..., fq (x)
)T

. (1.2.11)

Moreover, we introduce the notation

D j fi (x) = ∂ f (x)

∂x j
, Dkj fi (x) = ∂2 fi (x)

∂x j∂xk
. (1.2.12)

Let x, y be two points of U and let us denote by [x, y] the matrix with entries

[x, y]i j = 1

x j − y j

(

fi
(

x1, ..., x j , y j+1, ..., yq
)− fi

(

x1, ..., x j−1, y j , ..., yq
))

.

(1.2.13)
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The linear operator [x, y] ∈ L B (Rq) defined in this way obviously satisfies
condition (1.2.1). If the partial derivatives D j fi satisfy some Lipschitz conditions of
the form

∣
∣D j fi

(

x1, ..., xk + t, ..., xq
)− D j fi

(

x1, ..., xk, ..., xq
)∣
∣ ≤ pi

jk |t | (1.2.14)

then condition (1.2.4) and (1.2.5) will be satisfied with

c0 = max

{
1

2

∑q

j=1

(

pi
j j +

∑q

k= j+1
pi

jk

)

|1 ≤ i ≤ q

}

(1.2.15)

and

c1 = max

{
1

2

∑q

j=1

(

pi
j j +

∑ j−1

k=1
pi

jk

)

|1 ≤ i ≤ q

}

. (1.2.16)

We shall prove (1.2.4) only as (1.2.5) can be proved similarly.
Let x, y, z be three points of U . We shall have in turn

[x, y]i j − [x, z] =
q
∑

k=1

{[

x,
(

y1, ..., yk, zk+1, ..., zq
)]

i j

− [

x
(

y1, ..., yk−1, zk, ..., zq
)]

i j

}

by (1.2.13). (1.2.17)

If k ≤ j then we have
[

x,
(

y1, ..., yk, zk+1, ..., zq
)]

i j − [

x,
(

y1, ..., yk−1, zk, ..., zq
)]

i j

= 1

x j − z j

{

fi
(

x1, ..., x j , z j+1, ..., zq
)− fi

(

x1, ..., x j−1, z j , ..., zq
)}

− 1

x j − z j

{

fi
(

x1, ..., x j , z j+1, ..., zq
)− fi

(

x1, ..., x j−1, z j , ..., zq
)} = 0.

For k = j we have
∣
∣
∣

[

x,
(

y1, ..., y j , z j+1, ..., zq
)]

i j −
[

x,
(

y1, ..., y j−1, z j , ..., zq
)

i j

]∣
∣
∣

=
∣
∣
∣
∣

1

x j − y j

{

fi
(

x1, ..., x j , z j+1, ..., zq
)− fi

(

x1, ..., x j−1, yi , z j+1, ..., zq
)}

− 1

x j − y j

{

fi
(

x1, ..., x j , z j+1, ..., zq
)− fi

(

x1, ..., x j−1, z j , ..., zq
)}
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

∫ 1

0

{

D j fi
(

x1, ..., x j , y j + t
(

x j − y j
)

, z j+1, ..., zq
)

− D j fi
(

x1, ..., x j , z j + t
(

x j − z j
)

, z j+1, ..., zq
)}

dt

∣
∣
∣
∣
∣

≤ ∣
∣y j − z j

∣
∣ pi

j j

∫ 1

0
tdt = 1

2

∣
∣x j − z j

∣
∣ pi

j j

(by (1.2.14)).



1.2 Divided differences of operators 15

Finally for k > j we have using (1.2.13) and (1.2.17) again
∣
∣
∣

[

x,
(

y1, ..., yk, zk+1, ..., zq
)]

i j − [

x,
(

y1, ..., yk−1, zk, ..., zq
)]

i j

∣
∣
∣

=
∣
∣
∣
∣

1

x j − y j

{

fi
(

x1, ..., x j , y j+1, ..., yk, zk+1, ..., zq
)

− fi
(

x1, ..., x j−1, y j , ..., yk, zk+1, ..., zq
)

− fi
(

x1, ..., x j , y j+1, ..., yk−1, zk, ..., zq
)

+ fi
(

x1, ..., x j−1, y j , ..., yk−1, zk, ..., zq
)}
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

∫ 1

0

{

fi
(

x1, ..., x j−1, y j + t
(

x j − y j
)

, y j+1, ..., yk, zk+1, ..., zq
)

− fi
(

x1, ..., x j−1, y j + t
(

x j − y j
)

, y j+1, ..., yk−1, zk, ..., zq
)}

dt

∣
∣
∣
∣
∣

≤ |yk − zk | pi
jk .

By adding all the above, we get

∣
∣[x, y]i j − [x, z]i j

∣
∣ ≤ 1

2

∣
∣y j − z j

∣
∣ pi

j j +∑q
k= j+1 |yk − zk | pi

jk

≤ ‖y − z‖
{

1

2

∑q
j=1

(

pi
j j +∑q

k= j+1 pi
jk

)}

.

Consequently, condition (1.2.4) is satisfied with c0 given by (1.2.15). If each f j

has continuous second-order partial derivatives that are bounded on U , we have

pi
jk = sup

{∣
∣D jk fi (x)

∣
∣ |x ∈ U

}

.

In this case pi
jk = pi

k j so that c0 = c1.

Moreover, consider again three points x, y, z of U . Similarly with (1.2.17), the
second divided difference of F at x, y, z is the bilinear operators defined by

[x, y, z]i jk = 1
yk−zk

{[

x,
(

y1, ..., yk, zk+1, ..., zq
)]

i j

− [

x,
(

y1, ..., yk−1, zk, ..., zq
)]

i j

}

. (1.2.18)

It is easy to see as before that [x, y, z]i jk = 0 for k < j. For k = j we have

[x, y, z]i j j = [

x j , y j , z j
]

t fi
(

x1, ..., xi−1, t, z j+1, ..., zq
)

(1.2.19)

where the right-hand side of (1.2.19) represents the divided difference of fi
(

x1, ...,

x j−1, t, z j+1, ..., zq
)

as a function of t, at the points x j , y j , z j . Using Genocchi’s
integral representation of divided differences of scalar functions [154], we get
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[x, y, z]i j j =
∫ 1

0

∫ 1

0
t D j j fi

(

x1, ..., x j−1, x j

+ t
(

y j − x j
)+ ts

(

z j − y j
)

, z j+1, ..., zq
)

dsdt. (1.2.20)

Hence, for k > j we obtain

[x, y, z]i jk = 1

(yk − zk)
(

x j − y j
)
{

fi
(

x1, ..., x j , y j+1, ..., yk, zk+1, ..., zq
)

− fi
(

x1, ..., x j , x j+1, ..., yk−1, zk, ..., zq
)

− fi
(

x1, ..., x j−1, y j , ..., yk, zk+1, ..., zq
)

+ fi
(

x1, ..., x j−1, y j , ..., yk−1, zk, ..., zq
)}

× 1

x j − y j

∫ 1

0

{

Dk fi
(

x1, ..., x j , y j+1, ..., yk−1, zk + t (yk − zk) , zk+1, ..., zq
)

− Dk fi
(

x1, ..., x j−1, y j , ..., yk−1, zk + t (yk − zk) , zk+1, ..., zq
)}

dt

=
∫ 1

0

∫ 1

0
Dkj fi

(

x1, ..., x j−1, y j

+ s
(

x j − yi
)

, y j+1, ..., yk−1, zk + t (yk − zk) , zk+1, ..., zq
)

dsdt. (1.2.21)

We now want to show that if

∣
∣Dkj fi

(

v1, ..., vm + t, ..., vq
)− Dkj fi

(

v1, ..., vm, ...vq
)∣
∣ ≤ qi j

km |t |
for all v = (

v1, ..., vq
) ∈ U, 1 ≤ i, j, k, m ≤ q, (1.2.22)

then the divided difference of F of the second order defined by (1.2.18) satisfies
condition (1.2.6) with the constant

c2 = max
1≤i≤q

q
∑

j=1

⎧

⎨

⎩

1

6
qi j

j j + 1

2

j−1
∑

m=1

qi j
jm + 1

2

q
∑

k= j+1

qi j
k j +

q
∑

k= j+1

j−1
∑

m=1

qi j
km

⎫

⎬

⎭
. (1.2.23)

Let u, x, y, z be four points of U . Then using (1.2.18), we can easily have

[x, y, z]i jk − [u, y, z]i jk =
q
∑

m=1

{[(

x1, ..., xm, um+1, ..., uq
)

, y, z
]

i jk

[(

x1, ..., xm−1, um, ..., uq
)

, y, z
]

i jk

}

. (1.2.24)

If m = j , the terms in (1.2.24) vanish so that using (1.2.21) and (1.2.22), we deduce
that for k > j
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∣
∣[x, y, z]i jk − [u, y, z]i jk

∣
∣

=
∣
∣
∣
∣
∣
∣

j−1
∑

m=1

∫ 1

0

∫ 1

0

{

Dkj fi
(

x1, ..., xm, um+1, ..., u j−1, y j + s
(

x j − y j
)

,

y j+1, ..., yk−1, zk + t (yk − zk) , zk+1, ..., zq
)

− Dkj fi
(

x1, ..., xm−1, um, ..., u j−1, y j + s
(

x j − y j
)

,

y j+1, ..., yk−1zk + t (yk − zk) , zk+1, ..., zq
)}

dsdt

+
∫ 1

0

∫ 1

0

{

Dkj fi
(

x1, ..., x j−1, y j + s
(

x j − y j
)

,

y j+1, ..., yk−1, zk + t (yk − zk) , zk+1, ..., zq
)

− Dkj fi
(

x1, ..., x j−1, y j + s
(

u j − y j
)

,

y j+1, ..., yk−1, zk + t (yk − zk) , zk+1, ..., zq
)}

dsdt

∣
∣
∣
∣
∣
∣

≤ 1

2

∣
∣x j − u j

∣
∣ qi j

k j +
j−1
∑

m=1

|xm − um | qi j
km .

Similarly for k = j , we obtain in turn
∣
∣[x, y, z]i j j − [u, y, z]i j j

∣
∣

=
∣
∣
∣
∣
∣

∫ 1

0

∫ 1

0
t
{

D j j fi
(

x1, ..., x j−1, x j + t
(

y j − x j
)+ ts

(

z j − y j
)

, z j+1, ..., zq
)

− D j j fi
(

x1, ..., x j−1, u j + t
(

y j − u j
)+ ts

(

z j − y j
)

, z j+1, ..., zq
)}

dsdt

+
j−1
∑

m=1

∫ 1

0

∫ 1

0
t
{

D j j fi
(

x1, ..., xm, um+1, ..., u j−1,

x j + t
(

x j − y j
)+ ts

(

z j − y
)

j, z j+1, ..., zq
)

− D j j fi
(

x1, ..., xm−1, um, ..., u j−1,

x j + t
(

y j − x j
)+ ts

(

z j − y j
)

, z j+1, ..., zq
)}

dsdt

∣
∣
∣
∣
∣

≤ 1

6

∣
∣x j − u j

∣
∣ qi j

j j + 1

2

j−1
∑

m=1

|xm − um | qi j
jm .

Finally using the estimate (1.2.10) of the norm of a bilinear operator, we deduce
that condition (1.2.6) holds with c2 given by (1.2.23).

We make an introduction to the problem of approximating a locally unique so-
lution x∗ of the nonlinear operator equation F (x) = 0, in a POTL-space X . In
particular, consider an operator F .. D ⊆ X → Y where X is a POTL-space with
values in a POTL-space Y . Let x0, y0, y−1 be three points of D such that
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x0 ≤ y0 ≤ y−1,
[

x0, y−1
]

,

and denote

D1 =
{

(x, y) ∈ X2 | x0 ≤ x ≤ y ≤ y0

}

,

D2 =
{

(y, y−1) ∈ X2 | x0 ≤ u ≤ y0

}

,

D3 = D1 ∪ D2. (1.2.25)

Assume there exist operators A0.. D3 → L B (X, Y ) , A.. D1 → L (X, Y ) such
that:

(a)
F (y) − F (x) ≤ A0 (w, z) (y − x)

for all (x, y) , (y, w) ∈ D1, (w, z) ∈ D3; (1.2.26)

(b) the linear operator A0 (u, v) has a continuous nonsingular nonnegative left subin-
verse;

(c)
F (y) − F (x) ≥ A (x, y) (y − x) for all (x, y) ∈ D1; (1.2.27)

(d) the linear operator A (x, y) has a nonnegative left superinverse for each (x, y) ∈
D1

F (y) − F (x) ≤ A0 (y, z) (y − x) for all x, y ∈ D1, (y, z) ∈ D3. (1.2.28)

Moreover, let us define approximations

F (yn) + A0 (yn, yn−1) (yn+1 − yn) = 0 (1.2.29)

F (xn) + A0 (yn, yn−1) (xn+1 − xn) = 0 (1.2.30)

yn+1 = yn − Bn F (yn) n ≥ 0 (1.2.31)

xn+1 = xn − B1
n F (xn) n ≥ 0, (1.2.32)

where Bn and B1
n are nonnegative subinverses of A0 (yn, yn−1) n ≥ 0.

Under very natural conditions, hypotheses of the form (1.2.26) or (1.2.27) or
(1.2.28) have been used extensively to show that the approximations (1.2.26) and
(1.2.30) or (1.2.31) and (1.2.32) generate two sequences {xn} n ≥ 1, {yn} n ≥ 1 such
that

x0 ≤ x1 ≤ · · · ≤ xn ≤ xn+1 ≤ yn+1 ≤ yn ≤ · · · ≤ y1 ≤ y0 (1.2.33)

lim
n→∞ xn = x∗ = y∗ = lim

n→∞ yn and F
(

x∗) = 0. (1.2.34)

For a complete survey on these results, we refer to the works of Potra [164] and
Argyros and Szidarovszky [42]–[44].

Here we will use similar conditions (i.e., like (1.2.26), (1.2.27), (1.2.28)) for two-
point approximations of the form (1.2.29) and (1.2.30) or (1.2.31) and (1.2.32).

Consequently, a discussion must follow on the possible choices of the linear op-
erators A0 and A.
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Remark 1.2.12. Let us now consider an operator F .. D ⊆ X → Y, where X, Y are
both POTL-spaces. The operator F is called order-convex on an interval [x0, y0] ⊆
D if

F (λx + (1 − λ) y) ≤ λF (x) + (1 − λ) F (y) (1.2.35)

for all comparable x, y ∈ [x0, y0] and λ ∈ [0, 1]. If F has a linear G-derivative
F ′ (x) at each point [x0, y0], then (1.2.35) holds if and only if

F ′ (x) (y − x) ≤ F (y)−F (x) ≤ F ′ (y) (y − x) for x0 ≤ x ≤ y ≤ y0. (1.2.36)

(See, e.g., Ortega and Rheinboldt [154] or Exercise 1.4.65 for the properties of the
Gâteaux derivative.)

Hence, for order-convex G-differentiable operators, conditions (1.2.27) and
(1.2.28) are satisfied with A0 (y, v) = A (y, v) = F ′ (u). In the unidimensional
case, (1.2.36) is equivalent with the isotony of the operator x → F ′ (x) but in general
the latter property is stronger. Assuming the isotony of the operator x → F ′ (x), it
follows that

F (y) − F (x) ≤ F ′ (w) (y − x) for x0 ≤ x ≤ y ≤ w ≤ y0.

Hence, in this case condition (1.2.26) is satisfied for A0 (w, z) = F ′ (w).
The above observations show one to choose A and A0 for single- or two-step

Newton methods. We note that the iterative algorithm (1.2.29)–(1.2.30) with

A0 (u, v) = F ′ (u)

is the algorithm proposed by Fourier in 1818 in the unidimensional case and extended
by Baluev in 1952 in the general case. The idea of using an algorithm of the form
(1.2.31)–(1.2.32) goes back to Slugin [183]. In Ortega and Rheinboldt [154], it is
shown that with Bn properly chosen, (1.2.31) reduces to a general Newton-SOR
algorithm. In particular, suppose (in the finite-dimensional case) that F ′ (yn) is an
M-matrix and let F ′ (y) = Dn − Ln − Un be the partition of F ′ (yn) into diagonal,
strictly lower- and strictly upper-triangular parts, respectively, for all n ≥ 0. Consider
an integer mn ≥ 1, a real parameter wn ∈ (0, 1] and denote

Pn = w−1
n (Dn − wn Ln) , Qn = w−1

n [(1 − wn) Dn + wnUn] , (1.2.37)

Hn = P−1
n Qn, and Bn =

(

I + Hn + · · · + Hmn−1
n

)

P−1
n . (1.2.38)

It can easily be seen that Bn n ≥ 0 is a nonnegative subinverse of F ′ (yn) (see also
[164]). If f .. [a, b] → | R is a real function of a real variable, then f is (order) convex
if and only if

f (x) − f (y)

x − y
≤ f (u) − f (v)

u − v

for all x, y, u, v from [a, b] such that x ≤ u and y ≤ v.



20 1 Operators and Equations

This fact motivates the notion of convexity with respect to a divided difference con-
sidered by J.W. Schmidt and H. Leonhardt [181]. Let F .. D ⊆ X → Y be a nonlinear
operator between the POTL-spaces X and Y. Assume that the nonlinear operator F
has a divided difference [·, ·] on D. F is called convex with respect to the divided
difference [·, ·] on D if

[x, y] ≤ [u, v] for all x, y, u, v ∈ D with x ≤ u and y ≤ v. (1.2.39)

In the above quoted study, Schmidt and Leonhardt studied (1.2.29)–(1.2.30) with
A0 (u, v) = [u, v] in case the nonlinear operator F is convex with respect to [·, ·].
Their result was extended by N. Schneider [43] who assumed the milder condition

[u, v] (u − v) ≥ F (u) − F (v) for all comparable u, v ∈ D. (1.2.40)

An operator [·, ·] .. D × D → L (X, Y ) satisfying (1.2.40) is called a generalized
divided difference of F on D. If both (1.2.39) and (1.2.40) are satisfied, then we say
that F is convex with respect to the generalized divided difference of [·, ·]. It is easily
seen that if (1.2.39) and (1.2.40) are satisfied on D = [

x0, y−1
]

, then conditions
(1.2.26) and (1.2.27) are satisfied with A = A0 = [·, ·]. Indeed for x0 ≤ x ≤ y ≤
w ≤ z ≤ y−1 we have

[x, y] (y − x) ≤ F (y) − F (x) ≤ [y, x] (y − x) ≤ [w, z] (y − x) .

The monotonicity results can also be used to study general secant-SOR methods,
in case the generalized difference

[

yn, yn−1
]

is an M-matrix and if Bn n ≥ 0 is
computed according to (1.2.37) and (1.2.38) where

[

yn, yn−1
] = Dn − Ln − Un

n ≥ 0 is the partition of
[

yn, yn−1
]

into its diagonal, strictly lower- and strictly
upper-triangular parts.

We remark that an operator that is convex with respect to a generalized divided
difference is also order-convex. To see that, consider x, y ∈ D, x ≤ y, λ ∈ [0, 1] and
set z = λx + (I − λ) y. Observing that y − x = (1 − λ)−1 (z − x) = λ−1 (y − z)
and applying (1.2.40), we have in turn:

(1 − λ)−1 (F (z) − F (x)) ≤ (1 − λ)−1 [z, x] (z − x)

= [z, x] (y − x) ≤ [z, y] (y − x)

= λ−1 [z, y] (y − z) ≤1 (F (y) − F (z)) .

By the first and last term we deduce that F (z) ≤ λF (x) + (1 − λ) F (y) . Thus,
Schneider’s result can be applied only to order-convex operators, and its importance
resides in the fact that the use of a generalized divided difference instead of the
G-derivative may be more advantageous from a numerical point of view. We note,
however, that conditions (1.2.26) and (1.2.27) do not necessarily imply convexity.
For example, if f is a real function of a real variable such that

inf
x,y∈[x0,y0]

f (x) − f (y)

x − y
= m > 0, sup

x,y∈[x0,y0]

f (x) − f (y)

x − y
= M < ∞
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then (1.2.26) and (1.2.27) are satisfied for A0 (u, v) = M and A (u, v) = m. It is
not difficult to find examples of nonconvex operators in the finite- (or even in the
infinite-) dimensional case satisfying a condition of the form

A (y − x) ≤ F (y) − F (x) ≤ A0 (y, x) , x0 ≤ x ≤ y ≤ y0,

where A0 and A are fixed linear operators. If A0 has a continuous nonsingular non-
negative left subinverse and A has a nonnegative right superinverse, then conver-
gence of the algorithm (1.2.29)–(1.2.30) can be discussed. This algorithm becomes
extremely simple in this case. The monotone convergence of such an iterative proce-
dure seems to have been first investigated by S. Slugin [183].

In the end of this section, we shall consider a class of nonconvex operators that
satisfy condition (1.2.26) but do not necessarily satisfy condition (1.2.27). Conse-
quently from convergence theorems involving (1.2.29) and (1.2.30), it will follow
that Jacobi-Newton and the Jacobi-secant methods have monotonous convergence
for operators belonging to this class (see also the elegant papers by F. Potra [163],
[164]).

Let F = (

f1, ..., fq
)T 0 be an operator acting in the finite-dimensional space Rq ,

endowed with the natural (componentwise) partial ordering. Let us denote by ei the
i th coordinate vector of Rq . We say that F is off-diagonally antitone if the functions

gi j .. R → R, gi j (t) = fi
(

x + te j
)

, i �= j, i, j = 1, ..., q

are antitone. Suppose that at each point x belonging to an interval U = [

x0, y−1
]

the
partial derivatives ∂i Fi (x) , i = 1, 2, ..., q, exist and are positive. For any two points
x, y ∈ U , we consider the quotients

[x, y]i =
{

fi (y)− fi
(

y−eT
i (y−x)ei

)

eT
i (y−x)

, if eT
i (y − x) �= 0

∂i Fi (x) if eT
i (y − x) = 0.

(1.2.41)

Let us denote � [x, y] the diagonal matrix having as elements the number [x, y]i ,
i = 1, 2, ..., q. For the diagonal matrix � [x, y] formed by the partial derivatives
∂i fi (x), i = 1, 2, ..., q, we shall also use the notation DF (x) .

Suppose now that F is off-diagonally antitone and that the operator DF .. U →
L B (Rq) is isotone (i.e., all functions ∂i Fi .. R → R are isotone). In this case for all
x0 ≤ x ≤ y ≤ w ≤ z ≤ y−1 and all i ∈ {1, 2, ..., q}, there exist λ,μ ∈ [0, 1] such
that

fi (y) − fi (x) ≤ fi (y) − fi

(

y − eT
i (y − x) ei

)

= ∂i fi

(

y − λeT
i (y − x) ei

)

,

eT
i (y − x) ≤ ∂i fi (y) eT

i (y − x) ≤ ∂i fi (w) eT
i (y − x)

≤ ∂i fi

(

z − μeT
i (z − w)

)

eT
i (y − x) = [w, z]i eT

i (y − x) .

It follows that condition (1.2.26) is satisfied for A0 (w, z) = DF (w) as well as for
A0 (w, z) = [�w, z] . With the choice A0 (w, z) = � [w, z], the iterative procedure
(1.2.29) is a Jacobi-secant method whereas with the choice A0 (w, z) = DF (w) it
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reduces to the Jacobi-Newton method. For some applications of the latter method,
see W. Torning [190].

We now connect divided differences and Fréchet derivatives.
Let F be a nonlinear operator defined on an open subset D of a Banach space X

with values in a Banach space Y.

Let x, y be two points in D and suppose that the segment

S = {x + t (y − x) |t ∈ [0, 1]} ⊆ D.

Let y′ be a continuous linear functional, set h = y − x and define

ϕ (t) = (

F (x + th) , y′) .

If F is Fréchet-differentiable at each point of the segment S, then ϕ is differentiable
on [0, 1] and

ϕ (t) = (

F ′ (x + th) , y′) .

Let us now suppose that

α = sup
t∈[0,1]

∥
∥F ′ (x + t (y − x))

∥
∥ < ∞;

then we have
∥
∥
(

F (y) − F (x) , y′)∥∥ = ‖ϕ (1) − ϕ (0)‖
≤ sup

t∈[0,1]

∥
∥ϕ′ (t)

∥
∥ ≤ α

∥
∥y′∥∥ ‖y − x‖ .

But, we also have

‖F (y) − F (x)‖ = sup
‖y′‖≤1

∥
∥
(

F (y) − F (x) , y′)∥∥ ,

we deduce that

‖F (y) − F (x)‖ ≤ sup
t∈[0,1]

∥
∥F ′ (x + t (y − x))

∥
∥ · ‖y − x‖ (1.2.42)

so, we proved:

Theorem 1.2.13. Let D be a convex subset of a Banach space X and F.. D ⊆ X →
Y . If F is Fréchet-differentiable on D and if there exists a constant c such that
∥
∥F ′ (x)

∥
∥ ≤ M for all x ∈ D ⇒ ‖F (x) − F (y)‖ ≤ c ‖x − y‖ for all x ∈ D.

(1.2.43)

The estimate (1.2.42) is the analogue of the famous mean value formula from
real analysis. If the operator F ′ is Riemann integrable on the segment S, we can give
the following integral representation of the mean value formula
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F (x) − F (y) =
∫ 1

0
F ′ (x + t (y − x)) dt (x − y) . (1.2.44)

Let now D be a convex open subset of X and let us suppose that we have as-
sociated to each pair (x, y) of distinct points from D a divided difference [x, y]
of F at these points. In applications, one often has to require that the operator
(x, y) → [x, y] satisfies a Lipschitz condition. We suppose that there exists a non-
negative c > 0 such that

‖[x, y] − [x1, y1]‖ ≤ c (‖x − x1‖ + ‖y − y1‖) (1.2.45)

for all x, y, x1, y1 ∈ D with x �= y and x1 = y1.

We say in this case that F has a Lipschitz continuous difference on D. This
condition allows us to extend by continuity the operator (x, y) → [x, y] to the whole
Cartesian product D × D. It follows that F is Fréchet-differentiable on D and that
[x, x] = F ′ (x). It also follows that

∥
∥F ′ (x) − F ′ (y)

∥
∥ ≤ c1 ‖x − y‖ with c1 = 2c (1.2.46)

and
∥
∥[x, y] − F ′ (z)

∥
∥ ≤ c (‖x − z‖ + ‖y − z‖) (1.2.47)

for all x, y ∈ D. Conversely, if we assume that F is Fréchet-differentiable on D and
that its Fréchet derivative satisfies (1.2.46), then it follows that F has a Lipschitz
continuous divided difference on D. We can certainly take

[x, y] =
∫ 1

0
F ′ (x + t (y − x)) dt. (1.2.48)

We now want to give the definition of the second Fréchet derivative of F . We
must first introduce the definition of bounded multilinear operators (which will also
be used later).

Definition 1.2.14. Let X and Y be two Banach spaces. An operator A.. Xn → y
(n ∈ N ) will be called n-linear operator from X to Y if the following conditions are
satisfied:

(a) The operator (x1, ..., xn) → A (x1, ..., xn) is linear in each variable xk k =
1, 2, ..., n.

(b) There exists a constant c such that

‖A (x1, x2, ..., xn)‖ ≤ c ‖x1‖ ... ‖xn‖ . (1.2.49)

The norm of a bounded n-linear operator can be defined by the formula

‖A‖ = sup {‖A (x1, ..., xn)‖ | ‖xn‖ = 1} . (1.2.50)

Set L B(1) (X, Y ) = L B (X, Y ) and define recursively
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L B(k+1) (X, Y ) = L B
(

X, L B(k) (X, Y )
)

, k ≥ 0. (1.2.51)

In this way we obtain a sequence of Banach spaces L B(n) (X, Y ) (n ≥ 0). Every
A ∈ L B(n) (X, Y ) can be viewed as a bounded n-linear operator if one takes

A (x1, ..., xn) = (... (A (x1) (x2) (x3)) ...) (xn) . (1.2.52)

In the right-hand side of (1.2.52) we have

A (x1) ∈ L B(n−1) (X, Y ) , (A (x1)) (x2) ∈ L B(n−2) (X, Y ) , etc.

Conversely, any bounded n-linear operator A from X to Y can be interpreted
as an element of B(n) (X, Y ). Moreover, the norm of A as a bounded n-linear
operator coincides with the norm as an element of the space L B(n) (X, Y ). Thus
we may identify this space with the space of all bounded n-linear operators from
X to Y . In the sequel, we will identify A (x, x, ..., x) = Axn, and

A (x1) (x2) ... (xn) = A (x1, x2, ..., xn) = Ax1x2...xn .

Let us now consider a nonlinear operator F.. D ⊆ X → Y where D is open.
Suppose that F is Fréchet-differentiable on D. Then we may consider the oper-
ator F ′.. D → L B (X, Y ) that associates to each point x the Fréchet derivative
of F at x. If the operator F ′ is Fréchet-differentiable at a point x0 ∈ D, then we
say that F is twice Fréchet-differentiable at x0. The Fréchet derivative of F ′ at
x0 will be denoted by F ′′ (x0) and will be called the second Fréchet derivative
of F at x0. Note that F ′′ (x0) ∈ L B(2) (X, Y ). Similarly, we can define Fréchet
derivatives of higher order. Finally by analogy with (1.2.48)

[x0, ..., xk] =
∫ 1

0
· · ·

∫ 1

0
tk−1
1 tk−2

2 · · · tk−1 F (x0 + t1 (x1 − x0) + t1t2 (x2 − x1)

+ · · · + t1t2, ..., tk (xk − xk−1)) dt1dt2...dtk . (1.2.53)

It is easy to see that the multilinear operators defined above verify
[

x0, ..., xk−1, xk, xk+1
]

(xk − xk+1) = [

x0, ..., xk−1, xk+1
]

. (1.2.54)

We note that throughout this sequel, a 2-linear operator will also be called bilin-
ear.

Finally, we will also need the definition of a n-linear symmetric operator. Given
a n-linear operator A.. Xn → Y and a permutation i = (i1, i2, ..., in) of the integers
1, 2, ..., n, the notation A (i) (or An (i) if we want to emphasize the n-linearity of A)
can be used for the n-linear operator A (i) = An (i) such that

A (i) (x1, x2, ..., xn) = An (i) (x1, x2, ..., xn) = An
(

xi1 , xi2 , ..., xin

)

An xi1 xi2 ...xin

(1.2.55)
for all x1, x2, ..., xn ∈ X . Thus, there are n! n-linear operators A (i) = An (i) asso-
ciated with a given n-linear operator A = An .
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Definition 1.2.15. A n-linear operator A = An.. Xn → Y is said to be symmetric if

A = An = An (i) (1.2.56)

for all i belonging in Rn, which denotes the set of all permutations of the integers
1, 2, ..., n. The symmetric n-linear operator

A = An = 1

n!

∑

i∈Rn
An (i) (1.2.57)

is called the mean of A = An.

Notation 1.2.16. The notation

An X P = An xx ...x (p-times) (1.2.58)

p ≤ n, A = An.. Xn → Y , for the result of applying An to x ∈ X p times will be
used. If p < n, then (1.2.58) will represent a (n − p)-linear operator. For p = n,

note that
Ak xk = Ak xk = Ak (i) xk (1.2.59)

for all i ∈ Rk, x ∈ X. It follows from (1.2.59) that whenever we are dealing with an
equation involving n-linear operators An, we may assume that they are symmetric
without loss of generality, as each An may be replaced by An without changing the
value of the expression at hand.

1.3 Fixed points of operators

The ideas of a contraction operator and its fixed points are fundamental to many
questions in applied mathematics. We outline the essential ideas.

Definition 1.3.1. Let F be an operator mapping a set X into itself. A point x ∈ X is
called a fixed point of F if

x = F(x). (1.3.1)

Equation (1.3.1) leads naturally to the construction of the method of successive
approximations or substitutions or the Picard iteration

xn+1 = F (xn) (n ≥ 0) x0 ∈ X. (1.3.2)

If sequence {xn} (n ≥ 0) converges to some point x∗ ∈ X for some initial guess
x0 ∈ X , and F is a continuous operator in a Banach space X , we can have

x∗ = lim
n→∞ xn+1 = lim

n→∞ F (xn) = F
(

lim
n→∞ xn

)

= F
(

x∗) .

That is, x∗ is a fixed point of operator F . Hence, we showed:
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Theorem 1.3.2. If F is a continuous operator in a Banach space X, and the sequence
{xn} (n ≥ 0) generated by (1.3.2) converges to some point x∗ ∈ X for some initial
guess x0 ∈ X, then x∗ is a fixed point of operator F.

We need information on the uniqueness of x∗ and the distances ‖xn − x∗‖,
‖xn+1 − xn‖ (n ≥ 0). That is why we introduce the concept:

Definition 1.3.3. Let (X, ‖ ‖) be a metric space and F a mapping of X into itself.
The operator F is said to be a contraction or a contraction mapping if there exists a
real number c, 0 ≤ c < 1, such that

‖F (x) − F (y)‖ ≤ c ‖x − y‖ , for all x, y ∈ X. (1.3.3)

It follows immediately from (1.3.3) that every contraction mapping F is uni-
formly continuous. Indeed, F is Lipschitz continuous with a Lipschitz constant c.
The point c is called the contraction constant for F .

We now arrive at the Banach contraction mapping principle.

Theorem 1.3.4. Let (X, ‖·‖) be a Banach space and F.. X → X be a contraction
mapping. Then F has a unique fixed point.

Proof. Uniqueness: Suppose there are two fixed points x, y of F . Because F is a
contraction mapping,

‖x − y‖ = ‖F (x) − F (y)‖ ≤ c ‖x − y‖ < ‖x − y‖ ,

which is impossible. That shows uniqueness of the fixed point of F .
Existence: Using (1.3.2) we obtain

‖x2 − x1‖ ≤ c ‖x1 − x0‖
‖x3 − x2‖ ≤ x ‖x2 − x1‖ ≤ c2 ‖x1 − x0‖ (1.3.4)

...

‖xn+1 − xn‖ ≤ cn ‖x1 − x0‖

and, so

‖xn+m − xn‖ ≤ ‖xn+m − xn+m−1‖ + · · · + ‖xn+1 − xn‖

≤
(

cm+1 + · · · + c + 1
)

cn ‖x1 − x0‖

≤ cn

1 − c
‖x1 − x0‖ .

Hence, sequence {xn}(n ≥ 0) is Cauchy in a Banach space X and such it converges
to some x∗. The rest of the theorem follows from Theorem 1.3.2.
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Remark 1.3.5. It follows from (1.3.1), (1.3.3) and x∗ = F(x∗) that
∥
∥xn − x∗∥∥ = ∥

∥F (xn−1) − F
(

x∗)∥∥ ≤ c
∥
∥xn−1 − x∗∥∥ ≤ cn

∥
∥x0 − x∗∥∥ (n ≥ 1) .

(1.3.5)
Inequality (1.3.5) describes the convergence rate. This is convenient only when an
a priori estimate for x0 − x∗ is available. Such an estimate can be derived from the
inequality
∥
∥x0 − x∗∥∥ ≤ ‖x0 − F (x0)‖+ ∥

∥F (x0) − F
(

x∗)∥∥ ≤ ‖x0 − F (x0)‖+ c
∥
∥x0 − x∗∥∥ ,

which leads to
∥
∥x0 − x∗∥∥ ≤ 1

1 − c
‖x0 − F (x0)‖ . (1.3.6)

By (1.3.5) and (1.3.6), we obtain

∥
∥xn − x∗∥∥ ≤ cn

1 − c
‖x0 − F (x0)‖ (n ≥ 1) . (1.3.7)

Estimates (1.3.5) and (1.3.7) can be used to determine the number of steps needed
to solve Equation (1.3.1). For example if the error tolerance is ε > 0, that is, we use
‖xn − x∗‖ < ε, then this will certainly hold if

n >
1

ln c
ln

ε (1 − c)

‖x0 − F (x0)‖ . (1.3.8)

Example 1.3.6. Let F .. R → R, q > 1, F(x) = qx + 1. Operator F is not a contrac-
tion, but it has a unique fixed point x = (1 − q)−1.

Example 1.3.7. Let F .. X → X , x =
(

0, 1/
√

6
]

, F(x) = x3. We have

|F (x) − F (y)| =
∣
∣
∣x3 − y3

∣
∣
∣ ≤ ( |x |2 + |x | · |y| + |y|2 ) |x − y| ≤ 1

2 |x − y| .

That is, F is a contraction with c = 1
2 , with no fixed points in X . This is not violating

Theorem 1.3.4 because X is not a Banach space.

Example 1.3.8. Let F .. [a, b] → [a, b], F differentiable at every x ∈ (a, b) and
∣
∣F ′ (x)

∣
∣ ≤ c < 1. By the mean value theorem, if x, y ∈ [a, b] there exists a point z

between x and y such that

F (x) − F (y) = F ′ (z) (z − y) ,

from which it follows that F is a contraction with constant c.

Example 1.3.9. Let F .. [a, b] → R. Assume there exist constants p1, p2 such that
p1 p2 < 0 and 0 < p1 < F ′ (x) ≤ p−1

2 and assume that F(a) < 0 < F(b). How
can we find the zero of F(x) guaranteed to exist by the intermediate value theorem?
Define a function P by

P(x) = x − p2 F(x).
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Using the hypotheses, we obtain P(a) = a − p2 F(a) > a, P(b) = b − F(b) < b,
P ′(x) = 1 − p2 F ′(x) ≥ 0, and P ′(x) ≤ 1 − p1 p2 < 1. Hence P maps [a, b] into
itself and

∣
∣p′ (x)

∣
∣ ≤ 1 for all x ∈ [a, b]. By Example 1.3.8, P(x) is a contraction

mapping. Hence, P has a fixed point that is clearly a zero of F .

Example 1.3.10. (Fredholm integral equation). Let K (x, y) be a continuous function
on [a, b] × [a, b], f0 (x) be continuous on [a, b] and consider the equation

f (x) = f0(x) + λ

∫ b

a
K (x, y) f (y) dy.

Define the operator P .. C [a, b] → C [a, b] by p( f ) = g given by

g (x) = f0 (x) + λ

∫ b

a
K (x, y) f (y) dy.

Note that a fixed point of P is a solution of the integral equation. We get from p( f ) =
g:

‖P (q1) − P (q2)‖ = sup
x∈[a,b]

∣
∣p (q1 (x)) − P (q2 (x))

∣
∣

= |λ| sup
x∈[a,b]

∣
∣
∣
∣

∫ b

a
k (x, y) (q1 (y) − q2 (y)) dy

∣
∣
∣
∣

≤ |λ| δ
∣
∣
∣
∣

∫ b

a
(q1 (y) − q2 (y)) dy

∣
∣
∣
∣

(by )

≤ |λ| δ (b − a) sup
x∈[a,b]

|q1 (y) − q2 (y)|

≤ |λ| δ (b − a) ‖q1 − q2‖ .

Hence, P is a contraction mapping if there exists a c < 1 such that

|λ| δ (b − a) ≤ c.

We need the definition:

Definition 1.3.11. Let {xn} be a sequence in a normed space X. Then a nonnegative
sequence {vn} for which

‖xn+1 − xn‖ ≤ vn+1 − vn, ∀n ≥ 0, (1.3.9)

holds is a majorizing sequence for {xn}.
Note that any majorizing sequence is necessarily nondecreasing.
The following will be a frequently used result on majorization.

Lemma 1.3.12. Let {vn} be a majorizing sequence for {xn} in X where X is a Banach
space. Assume limn→∞ vn = v∗ < ∞ exists. Then x∗ = limn→∞ xn exists and

∥
∥x∗ − xn

∥
∥ ≤ v∗ − vn, ∀n ≥ 0. (1.3.10)
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Proof. The estimate

‖xn+m − xn‖ ≤
n+m−1
∑

j=n

∥
∥x j+1 − x j

∥
∥ ≤

n+m−1
∑

j=n

(

v j+1 − v j
) = vn+m − vn (1.3.11)

shows that {xn} is a Cauchy sequence in the Banach space X and as such it converges
to some x∗ and the error estimates (1.3.10) follow from (1.3.11) as m → ∞.

1.4 Exercises

1.4.1. Show that the operators introduced in Examples 1.1.2 and 1.1.3 are indeed
linear.

1.4.2. Show that the Laplace transform

� = ∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

is a linear operator mapping the space of real functions x = x(x1, x2, x3) with
continuous second derivatives on some subset D of R3 into the space of contin-
uous real functions on D.

1.4.3. Define T .. C ′′ [0, 1] × C ′ [0, 1] → C [0, 1] by

T (x, y) = α
d2x

dt2
+ β

dy

dt
, for any real constants α, β and 0 ≤ t ≤ 1.

Show that T is a linear operator.
1.4.4. In an inner product 〈·, ·〉 space X show that for any fixed z in X

T (x) = 〈x, z〉
is a linear functional.

1.4.5. Show that an additive operator T from a real Banach space X into a real
Banach space Y is homogeneous if it is continuous.

1.4.6. Show that matrix A = {ai j }, i, j = 1, 2, . . . , n has an inverse if

|aii | > 1
2

n
∑

j=1

|ai j | > 0, i = 1, 2, . . . , n.

1.4.7. Show that the linear integral equation of second Fredholm kind in C [0, 1]

x(s) − λ

∫ 1

0
K (s, t)x(t)dt = y(s), 0 ≤ λ ≤ 1,

where K (s, t) is continuous on 0 ≤ s, t ≤ 1, has a unique solution x(s) for
y(s) ∈ C [0, 1] if

|λ| <

[

max
[0,1]

∫ 1

0
|K (s, t)|dt

]−1

.
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1.4.8. Prove Theorem 1.1.10.
1.4.9. Prove Theorem 1.1.12.
1.4.10. Show that the operators defined below are all linear.

(a) Identity operator. The identity operator IX .. X → X given by IX (x) = x , for
all x ∈ X .

(b) Zero operator. The zero operator O .. X → Y given by O(x) = 0, for all
x ∈ X .

(c) Integration. T .. C [a, b] → C [a, b] given by T (x(t)) = ∫ 1
0 x(s)ds, t ∈

[a, b].
(d) Differentiation. Let X be the vector space of all polynomials on [a, b]. Define

T on X by T (x(t)) = x ′(t).
(e) Vector algebra. The cross product with one factor kept fixed. Define T1.. R3 →

R5. Similarly, the dot product with one fixed factor. Define T2.. R3 → R.
(f) Matrices. A real matrix A = {ai j } with m rows and n columns. Define

T .. Rn → Rm given by y = Ax .

1.4.11. Let T be a linear operator. Show:

(a) the R(T ) (range of T ) is a vector space;
(b) if dim(T ) = n < ∞, then dim R(T ) ≤ n;
(c) the null/space N (T ) is a vector space.

1.4.12. Let X, Y be vector spaces, both real or both complex. Let T .. D(T ) → Y
(domain of T ) be a linear operator with D(T ) ⊆ X and R(T ) ⊆ Y . Then, show:

(a) the inverse T −1.. R(T ) → D(T ) exists if and only if

T (x) = 0 ⇒ x = 0;

(b) if T −1 exists, it is a linear operator;
(c) if dim D(T ) = n < ∞ and T −1 exists, then dim R(T ) = dim D(T ).

1.4.13. Let T .. X → Y , P .. Y → Z be bijective linear operators, where X , Y , Z
are vector spaces. Then, show: the inverse (ST )−1.. Z → X of the product ST
exists, and

(ST )−1 = T −1S−1.

1.4.14. If the product (composite) of two linear operators exists, show that it is linear.
1.4.15. Let X be the vector space of all complex 2 × 2 matrices and define T .. X →

X by T (x) = cx , where c ∈ X is fixed and cx denotes the usual product of
matrices. Show that T is linear. Under what conditions does T −1 exist?

1.4.16. Let T .. X → Y be a linear operator and dim X = dim Y = n < ∞. Show
that R(T ) = Y if and only if T −1 exists.

1.4.17. Define the integral operator T .. C [0, 1] → C [0, 1] by y = T (x), where
y(t) = ∫ 1

0 k(x, s)x(s)ds and k is continuous on [0, 1] × [0, 1]. Show that T is
linear and bounded.

1.4.18. Show that the operator T defined in 1.4.10(f) is bounded.
1.4.19. If a normed space X is finite-dimensional, then show that every linear func-

tional on X is bounded.
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1.4.20. Let T .. D(T ) → Y be a linear operator, where D(T ) ⊆ X and X, Y are
normed spaces. Show:

(a) T is continuous if and only if it is bounded;
(b) if T is continuous at a single point, it is continuous.

1.4.21. Let T be a bounded linear operator. Show:

(a) xn → x (where xn , x ∈ D(T )) ⇒ T (xn) → T (x);
(b) the null space N (T ) is closed.

1.4.22. If T �= 0 is a bounded linear operator, show that for any x ∈ D(T ) such that
‖x‖ < 1, we have ‖T (x)‖ < ‖T ‖.

1.4.23. Show that the operator T .. �∞ → �∞ defined by y = (yi ) = T (x), yi = xi
i ,

x = (xi ), is linear and bounded.
1.4.24. Let T .. C [0, 1] → C [0, 1] be defined by

y(t) =
∫ t

0
x(s)ds.

Find R(T ) and T −1.. R(T ) → C [0, 1]. Is T −1 linear and bounded?
1.4.25. Show that the functionals defined on C [a, b] by

f1(x) =
∫ b

a
x(t)y0(t)dt (y0 ∈ C [a, b])

f2(x) = c1x(a) + c2x(b) (c1, c2 fixed)

are linear and bounded.
1.4.26. Find the norm of the linear functional f defined on C [−1, 1] by

f (x) =
∫ 0

−1
x(t)dt −

∫ 1

0
x(t)dt.

1.4.27. Show that

f1(x) = max
t∈J

x(t), f2(x) = min
t∈J

x(t), J = [a, b]

define functionals on C [a, b]. Are they linear? Bounded?
1.4.28. Show that a function can be additive but not homogeneous. For example, let

z = x + iy denote a complex number, and let T .. C → C be given by

T (z) = z̄ = x − iy.

1.4.29. Show that a function can be homogeneous but not additive. For example,
consider the operator T .. R2 → R given by

T ((x1, x2)) = x2
1

x2
.
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1.4.30. Let F be an operator in C [0, 1] defined by

F(x, y) = x(s)
∫ 1

0

s

s + t
x(t)dt, 0 ≤ λ ≤ 1.

Show that for x0, z ∈ C [0, 1]

F ′(x0)z = x0(s)
∫ 1

0

s

s + t
z(t)dt + z(s)

∫ 1

0

s

s + t
x0(t)dt.

1.4.31. Find the Fréchet derivative of the operator F in R2∞ given by

F
(x

y

) =
(

x2 + 7x + 2xy − 3
x + y3

)

.

1.4.32. Find the first and second Fréchet derivatives of the Uryson operator

U (x) =
∫ 1

0
k(s, t, x(t))dt

in C [0, 1] at x0 = x0(s).
1.4.33. Find the Fréchet derivative of the Riccati differential operator

R(z) = dz

dt
+ p(t)z2 + q(t)z + r(t),

from C ′ [0, s] into C [0, s] at z0 = z0(t) in C ′ [0, s],for p, q, r being given dif-
ferentiable functions on [0, s].

1.4.34. Find the first two Fréchet derivatives of the operator

F
(x

y

) =
(

x2 + y2 − 3
x sin y

)

in R2.

1.4.35. Consider the partial differential operator

F(x) = �x − x2

from C2(I ) into C(I ), the space of all continuous functions on the square 0 ≤
α, β ≤ 1. Show that

F ′(x0)z = �z(α, β) − 2x0(α, β)z(α, β),

where � is the usual Laplace operator.
1.4.36. Let F(L) = L3, in L(x). Show:

F ′(L0) = L0 [ ] L0 + L2
0 [ ] + [ ] L0.

1.4.37. Let F(L) = L−1, in L(x). Show:

F ′(L0) = −L−1
0 [ ] L−1

0 ,

provided that L−1
0 exists.
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1.4.38. Show estimates (1.1.45) and (1.1.46).
1.4.39. Show Taylor’s Theorem 1.1.20.
1.4.40. Integrate the operator

F(L) = L−1 in L(X)

from L0 = I to L1 = A, where ‖I − A‖ < 1.
1.4.41. Show that the spaces defined in Examples 1.2.2 are POTL.
1.4.42. Show that any regular POB-space is normal but the converse is not necessar-

ily true.
1.4.43. Prove Theorem 1.2.11.
1.4.44. Show that if (1.2.4) or (1.2.5) are satisfied then F ′ (x) = [x, x] for all x ∈ D.

Moreover show that if both (1.2.4) and (1.2.5) are satisfied, then F ′ is Lipschitz
continuous with I = c0 + c1.

1.4.45. Find sufficient conditions so that estimates (1.2.33) and (1.2.34) are both
satisfied.

1.4.46. Show that Bn (n ≥ 0) in (1.2.38) is a nonnegative subinverse of F ′ (yn)

(n ≥ 0).
1.4.47. Let x0, x1, ..., xn be distinct real numbers, and let f be a given real-valued

function. Show that:

[x0, x1, ..., xn] =
n
∑

j=0

f
(

x j
)

g′
n

(

x j
)

and
[x0, x1, ..., xn] (xn − x0) = [x1, ..., xn] − [

x0, ..., xn−1
]

where
gn (x) = (x − x0) ... (x − xn) .

1.4.48. Let x0, x1, ..., xn be distinct real numbers, and let f be n times continuously
differentiable function on the interval I {x0, x1, ..., xn} . Then show that

[x0, x1, ..., xn] =
∫

τn

· · ·
∫

f (n) (t0x0 + · · · + tn xn) dt1 · · · dtn

in which

τn =
{

(t1, ..., tn) |t1 ≥ 0, ..., tn ≥ 0,
∑n

i=1
t i ≤ 1

}

t0 = 1 −
∑n

i=1
ti .

1.4.49. If f is a real polynomial of degree m, then show:

[x0, x1, ..., xn, x] =
⎧

⎨

⎩

polynomial of degree m − n − 1, n ≤ m − 1
am n = m − 1
0 n > m − 1

where f (x) = am xn+ lower-degree terms.
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1.4.50. The tensor product of two matrices M, N ∈ L (Rn) is defined as the
n2 × n2 matrix M × N = (

mi j N | i, j = 1, ..., n
)

, where M = (

mi j
)

. Con-
sider two F-differentiable operators H, K .. L (Rn) → L (Rn) and set F (X) =
H (X) K (X) for all X ∈ L (Rn). Show that F ′ (X) = [H (X) × I ] K ′ (X) +
[

I × K (X)T ] H ′ (X) for all X ∈ L (Rn).
1.4.51. Let F .. R2 → R2 be defined by f1 (x) = x3

1 , f2 (x) = x2
2 . Set x = 0

and y = (1, 1)T . Show that there is no z ∈ [x, y] such that F (y) − F (x) =
F ′ (z) (y − x) .

1.4.52. Let F .. D ⊂ Rn → Rm and assume that F is continuously differentiable on
a convex set D0 ⊂ D. For and x, y ∈ D0, show that

∥
∥F (y) − F (x) − F ′ (x) (y − x)

∥
∥ ≤ ‖y − x‖ w (‖y − x‖) ,

where w is the modulus of continuity of F ′ on [x, y] . That is

w (t) = sup
{∥
∥F ′ (x) − F ′ (y)

∥
∥ | x, y ∈ D0, ‖x − y‖ ≤ t

}

.

1.4.53. Let F .. D ⊂ Rn → Rm . Show that F ′′ is continuous at z ∈ D if and only if
all second partial derivatives of the components f1, ..., fm of F are continuous
at z.

1.4.54. Let F .. D ⊂ Rn → Rm . Show that F ′′ (z) is symmetric if and only if each
Hessian matrix H1 (z) , ..., Hm (z) is symmetric.

1.4.55. Let M ∈ L (Rn) be symmetric, and define f .. Rn → R by f (x) = xT Mx .

Show, directly from the definition that f is convex if and only if M is positive
semidefinite.

1.4.56. Show that f .. D ⊂ Rn → R is convex on the set D if and only if, for any
x, y ∈ D, the function g.. [0, 1] → R, g (t) = g (t x + (1 − t) y), is convex on
[0, 1].

1.4.57. Show that if gi .. Rn → R is convex and ci ≥ 0, i = 1, 2, ..., m, then g =
m∑

t=1
ci gi is convex.

1.4.58. Suppose that g.. D ⊂ Rn → R is continuous on a convex set D0 ⊂ D and
satisfies

1

2
g (x) + 1

2
g (y) − g

(
1

2
(x + y)

)

≥ γ ‖x − y‖2

for all x, y ∈ D0. Show that g is convex on D0 if γ = 0.
1.4.59. Let M ∈ L (Rn). Show that M is a nonnegative matrix if and only if it is an

isotone operator.
1.4.60. Let M ∈ L (Rn) be diagonal, nonsingular, and nonnegative. Show that

‖x‖ = ‖D (x)‖ is a monotonic norm on Rn .
1.4.61. Let M ∈ L (Rn). Show that M is invertible and M−1 ≥ 0 if and only if there

exist nonsingular, nonnegative matrices M1, M2 ∈ L (Rn) such that M1 M M2 =
1.

1.4.62. Let [·, ·] .. D × D be an operator satisfying conditions (1.2.1) and (1.2.44).
The following two assertions are equivalent:
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(a) Equality (1.2.48) holds for all x, y ∈ D.

(b) For all points u, v ∈ D such that 2v − u ∈ D we have

[u, v] = 2 [u, 2v − u] − [v, 2v − u] .

1.4.63. If δ F is a consistent approximation F ′ on D, show that each of the following
four expressions

c1 = h (‖x − u‖ + ‖y − u‖ + ‖u − v‖) ‖x − y‖ ,

c2 = h (‖x − v‖ + ‖y − v‖ + ‖u − v‖) ‖x − y‖ ,

c3 = h (‖x − y‖ + ‖y − u‖ + ‖y − v‖) ‖x − y‖ ,

and

c4 = h (‖x − y‖ + ‖x − u‖ + ‖x − v‖) ‖x − y‖

is an estimate for

‖F (x) − F (y) − δF (u, v) (x − y)‖ .

1.4.64. Show that the integral representation of [x0, ..., xk] is indeed a divided dif-
ference of kth order of F . Let us assume that all divided differences have such
an integral representation. In this case for x0 = x1 = · · · = xk = x , we shall
have

[x, x, ..., x]
︸ ︷︷ ︸

k+1 times

= 1

k
f (k) (x) .

Suppose now that the nth Fréchet derivative of F is Lipschitz continuous on D,
i.e., there exists a constant cn+1 such that

∥
∥
∥F (n) (u) − F (n) (v)

∥
∥
∥ ≤ cn+1 ‖u − v‖

for all u, v ∈ D. In this case, set

Rn (y) = ([

x0, ..., xn−1, y
]− [

x0, ..., xn−1, xn
])

(y − xn−1) , ..., (y − x0)

and show that

‖Rn (y)‖ ≤ cn+1

(n + 1) !
‖y − xn‖ · ‖y − xn−1‖ · · · ‖y − x0‖

and
∥
∥
∥
∥

F (x + h) −
(

F (x) + F ′ (x) h + 1

2
F ′′ (x) h2 + · · · + 1

n!
F (n) (x) hn

)∥
∥
∥
∥

≤ cn+1

(n + 1) !
‖h‖n+1 .
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1.4.65. We recall the definitions:
(a) An operator F .. D ⊂ Rn → Rm is Gâteaux- (or G-) differentiable at an interior

point x of D if there exists a linear operator L ∈ L (Rn, Rm) such that, for any
h ∈ Rn

lim
t→0

1

t
‖F (x + th) − F (x) − t L (h)‖ = 0.

L is denoted by F ′ (x) and called the G-derivative of F at x .

(b) An operator F .. D ⊂ Rn → Rm is hemicontinuous at x ∈ D if, for any h ∈ Rn

and ε > 0, there is a δ = δ (ε, h) so that whenever |t | < δ and x + th ∈ D, then
‖F (x + th) − F (x)‖ < ε.

(c) If F .. D ⊂ Rn → Rm and if for some interior point x of D, and h ∈ Rn , the limit

lim
t→0

1

t
[F (x + th) − F (x)] = A (x, h)

exists, then F is said to have a Gâteaux differential at x in the direction h.
(d) If the G-differential exists at x for all h and if, in addition

lim
h→0

1

‖h‖ ‖ f (x + H) − F (x) − A (x, h)‖ = 0,

then F has a Fréchet differential at x .
Show:
(i) The linear operator L is unique;
(ii) If F .. D ⊂ Rn → Rm is G-differentiable at x ∈ D, then F is hemicontin-

uous at x .
(iii) G-differential and “uniform in h” implies F-differential;
(iv) F-differential and “linear in h” implies F-derivative;
(v) G-differential and “linear in h” implies G-derivative;
(vi) G-derivative and “uniform in h” implies F-derivative;

Here “uniform in h” indicated the validity of (d).
Linear in h means that A (x, h) exists for all h ∈ Rn and

A (x, h) = M (x) h, where M (x) ∈ L
(

Rn, Rm) .

Define F .. R2 → R by F (x) = sgn (x2) min (|x1| , |x2|).
Show that, for any h ∈ R2, A (0, h) = F (h), but F does not have a
G-derivative at 0.

(vii) Define F .. R2 → R by F (0) = 0 if x = 0 and

F (x) = x2

(

x2
1 + x2

2

) 3
2
/[(

x2
1 + x2

2

)2 + x2
2

]

, if x �= 0.

Show that F has a G-derivative at 0, but not an F-derivative. Show, more-
over, that the G-derivative is hemicontinuous at 0.

(viii) If the g-differential A (x, h) exists for all x in an open neighborhood of an
interior point x0 of D and for all h ∈ Rn , then F has an F-derivative at x0
provided that for each fixed h, A (x, h) is continuous in x at x0.
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(e) Assume that F .. D ⊂ Rn → Rm has a G-derivative at each point of an open
set D0 ⊂ D. If the operator F ′.. D0 ⊂ Rn → L (Rn, Rm) has a G-derivative at
x ∈ D0, then

(

F ′)′ (x) is denoted by F ′′ (x) and called the second G-derivative
of F at x .

Show:

(i) If F .. Rn → Rm has a G-derivative at each point of an open neighborhood
of x , then F ′ is continuous at x if and only if all partial derivatives ∂i Fi are
continuous at x .

(ii) F ′′ is continuous at x0 ∈ D if and only if all second partial derivatives of
the components f1, ..., fm of F are continuous at x0. F ′′ (x0) is symmetric
if and only if each Hessian matrix H1 (x0) , ..., Hm (x0) is symmetric.

1.4.66. Consider the problem of approximating a solution y ∈ C ′ [0, t0] of the non-
linear ordinary differential equation

dy

dt
= K (t, y(t)), 0 ≤ t ≤ t0, y(0) = y0.

The above equation may be turned into a fixed point problem of the form

y(t) = y0 +
∫ t

0
K (s, y(s))ds, 0 ≤ t ≤ t0.

Assume K (x, y) is continuous on [0, t0]× [0, t0] and satisfies the Lipschitz con-
dition

max
[0,t0]

∣
∣K (s, q1(s)) − K (s, q2(s))

∣
∣ ≤ M‖q1 − q2‖,

for all q1, q2 ∈ C [0, t0] .

Note that the integral equation above defines an operator P from C [0, t0] into
itself. As in Example 1.3.10 find a sufficient condition for P to be a contraction
mapping.

1.4.67. Let F be a contraction mapping on the ball Ū (x0, r) in a Banach space X ,
and let

‖F(x0) − x0‖ ≤ (1 − c)r.

Show F has a unique fixed point in Ū (x0, r).
1.4.68. Under the assumptions of Theorem 1.3.4, show that the sequence generalized

by (1.3.2) minimizes the functional

f (x) = ‖x − F(x)‖

for any x0 belonging to a closed set A such that F(A) ⊆ A.
1.4.69. Let the equation F(x) = x have a unique solution in a closed subset A of a

Banach space X . Assume that there exists an operator F1 that F1(A) ⊆ A and F1
commutes with F on A. Show the equation x = F1(x) has at least one solution
in A.
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1.4.70. Assume that operator F maps a closed set A into a compact subset of itself
and satisfies

‖F(x) − F(y)‖ < ‖x − y‖ (x �= y), for all x, y ∈ A.

Show F has a unique fixed point in A. Apply these results to the mapping

F(x) = x − x2

2 of the interval [0, 1] into itself.
1.4.71. Show that operator F defined by

F(x) = x + 1
x

maps the half line [1,∞) into itself and satisfies

‖F(x) − F(y)‖ < ‖x − y‖
but has no fixed point in this set.

1.4.72. Consider condition

‖F(x) − F(y)‖ ≤ ‖x − y‖ (x, y ∈ A).

Let A be either an interval [a, b] or a disk x2 + y2 ≤ r2. Find conditions in both
cases under which F has a fixed point.

1.4.73. Consider the set c0 of null sequences x = {x1, x2, . . .} (xn → 0) equipped
with the norm ‖x‖ = maxn |xn|. Define the operator F by

F(x) =
{

1
2 (1 + ‖x‖), 3

4 x1,
7
8 x2, . . . ,

(

1 − 1
2n+1

)

xn, . . .
}

.

Show that F .. Ū (0, 1) → Ū (0, 1) satisfies

‖F(x) − F(y)‖ < ‖x − y‖,
but has no fixed points.

1.4.74. Repeat Exercise 1.4.73 for the operator F defined in c0 by

F(x) = {y1, . . . , yn, . . .},
where yn = n−1

n xn + 1
n sin(n) (n ≥ 1).

1.4.75. Repeat Exercise 1.4.73 for the operator F defined in C [0, 1] by

Fx(t) = (1 − t)x(t) + t sin
(

1
t

)

.

1.4.76. Let F be a nonlinear operator on a Banach space X which satisfies (1.3.3)
on Ū (0, r). Let F(0) = 0. Define the resolvent R(x) of F by

F(x) f = x F R(x) f + f.

Show:
(a) R(x) is defined on the ball ‖ f ‖ ≤ (1 − |x |c)r if |x | < c−1;
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(b) 1
1+|x |c ‖ f − g‖ ≤ ‖R(x) f − R(x)g‖ ≤ 1

1−|x |c ‖ f − g‖;

(c) ‖R(x) f − R(y) f ‖ ≤ c‖ f ‖ |x−y|
(1−|x |c)(1−|y|c) .

1.4.77. Let A be an operator mapping a closed set A of a Banach space X into
itself. Assume that there exists a positive integer m such that Am is a contraction
operator. Prove that sequence (1.3.2) converges to a unique fixed point of F in
A.

1.4.78. Let F be an operator mapping a compact set A ⊆ X into itself with ‖F(x)−
F(y)‖ < ‖x − y‖ (x �= y, all x, y ∈ A). Show that sequence (1.3.2) converges
to a fixed point of (1.3.1).

1.4.79. Let F be a continuous function on [0, 1] with 0 ≤ f (x) ≤ 1 for all x ∈
[0, 1]. Define the sequence

xn+1 = xn + 1
n+1 (F(xn) − xn).

Show that for any x0 ∈ [0, 1] sequence {xn} (n ≥ 0) converges to a fixed point
of F .

1.4.80. Show:
(a) A system x = Ax + b of n linear equations in n unknowns x1, x2, . . . , xn

(the components of x) with A = {a jk}, j, k = 1, 2, . . . , n, b given, has a
unique solution x∗ if

n
∑

k=1

|a jk | < 1, j = 1, 2, . . . , n.

(b) The solution x∗ can be obtained as the limit of the iteration (x (0), x (1),
x (2), . . .}, where x (0) is arbitrary and

x (m+1) = Ax (m) + b (m ≥ 0).

(c) The following error bounds hold:

‖x (m) − x∗‖ ≤ c

1 − c
‖x (m−1) − x (m)‖ ≤ cm

1 − c
‖x (0) − x (1)‖,

where

c = max
j

n
∑

k=1

|a jk | and ‖x − z‖ = max
j

|xi − zi |, j = 1, 2, . . . , n.

1.4.81. (Gershgorin’s theorem: If λ is an eigenvalue of a square matrix A = {a jk},
then for some j , where 1 ≤ j ≤ n,

|a j j − λ| ≤
n
∑

k=1
k �= j

|a jk |. )

Show that x = Ax + b can be written Bx = b, where B = I − A, and
∑n

k=1 |a jk | < 1 together with the theorem imply that 0 is not an eigenvalue
of B and A has spectral radius less than 1.
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1.4.82. Let (X, d), (X, d1), (X, d2) be metric spaces with d(x, z) = max j |x j − z j |,
j = 1, 2, . . . , n,

d1(x, z) =
n
∑

j=1

|x j − z j | and d2(x, z) =
[ n
∑

j=1

(x j − z j )
2
]1/2

,

respectively. Show that instead of
∑n

k=1 |a jk | < 1, j = 1, 2, . . . , n, we obtain
the conditions

n
∑

j=1

|a jk | < 1, k = 1, 2, . . . , n and
n
∑

j=1

n
∑

k=1

a2
jk < 1.

1.4.83. Let us consider the ordinary differential equation of the first order (ODE)

x ′ = f (t, x), x(t0) = x0,

where t0 and x0 are given real numbers. Assume:

| f (t, x)| ≤ c0

on R = {(t, x) | |t − t0| ≤ a, |x − x0| ≤ b},
| f (t, x) − f (t, v)| ≤ c1|x − v|, for all (t, x), (t, v) ∈ R.

Then show: the (ODE) has a unique solution on [t0 − c2, t0 + c2], where

c2 < min
{

a, b
c0

, 1
c1

}

.

1.4.84. Show that f defined by f (x, y) = | sin y| + x satisfies a Lipschitz condition
with respect to the second variable (on the whole xy-plane).

1.4.85. Does f defined by f (t, x) = |x |1/2 satisfy a Lipschitz condition?
1.4.86. Apply Picard’s iteration xn+1(t) = ∫ t

t0
f (s, xn(s))ds used for the (ODE)

x ′ = f (t, x), x(t0) = x0 +0, x ′ = 1+ x2, x(0) = 0. Verify that for x3, the terms
involving t, t2, . . . , t5 are the same as those of the exact solution.

1.4.87. Show that x ′ = 3x2/3, x(0) = 0 has infinitely many solutions x .
1.4.88. Assume that the hypotheses of the contraction mapping principle hold, then

show that x∗ is accessible from any point Ū (x0, r0).
1.4.89. Define the sequence {x̄n} (n ≥ 0) by x̄0 = x0, x̄n+1 = F(x̄n) + εn (n ≥ 0).

Assume:
‖εn‖ ≤ λnε (n ≥ 0) (0 ≤ λ < 1);

F is a c-contraction operator on U (x0, r). Then show sequence {x̄n} (n ≥ 0)

converges to the unique fixed point x∗ of F in Ū (x0, r) provided that

r ≥ r0 + ε

1 − c
.
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The Newton-Kantorovich (NK) Method

We study the problem of approximating locally unique solution of an equation in
a Banach space. The Newton-Kantorovich method is undoubtedly the most popular
method for solving such equations.

2.1 Linearization of equations

Let F be a Fréchet-differentiable operator mapping a convex subset D of a Banach
space X into a Banach space Y . Consider the equation

F (x) = 0. (2.1.1)

We will assume D is an open set, unless otherwise stated.
The principal method for constructing successive approximations xn to a solu-

tion x∗ (if it exists) of Equations (2.1.1) is based on successive linearization of the
equation.

The interpretation of (2.1.1) is that we model F at the current iterate xn with a
linear function:

Ln (x) = F (xn) + F ′ (xn) (x − xn) . (2.1.2)

Ln is called the local linear model. If F ′ (xn)−1 ∈ L (Y, X) the space of bounded
linear operators from Y into X , then approximation xn+1, which is the root of
Ln (xn+1) = 0, is given by

xn+1 = xn − F ′ (xn)−1 F (xn) (n ≥ 0) . (2.1.3)

The iterative procedure generated by (2.1.3) is the famous Newton-Kantorovich
(NK) method [125]. The geometric interpretation of this method is well-known, if
F is a real function. In such a case, xn+1 is the point where the tangential line y −
F (xn) = F ′(xn)(x − xn) of function F at the point (x, F(xn)) intersects the x-axis.

The basic defect of method (2.1.3) is that each step involves the solution of a
linear equation with a different linear operator F ′(xn). For this reason, one often

I.K. Argyros, Convergence and Applications of Newton-type Iterations,
DOI: 10.1007/978-0-387-72743-1 2, c© Springer Science+Business Media, LLC 2008
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constructs successive approximations that employ linear equations other than (2.1.2),
though similar to them.

The most frequently used substitute for (2.1.2) is the equation

F (xn) + F ′ (x0) (x − xn) , (2.1.4)

where x0 is the initial approximation. The successive approximations are then de-
fined by the recurrence relation

xn+1 = xn − F ′ (x0)
−1 F (xn) (n ≥ 0) . (2.1.5)

We will call this method the modified Newton-Kantorovich method (MNK).
We are concerned about the following aspects:

(a) finding effectively verifiable conditions for its applicability;
(b) computing convergence rates and a priori error estimates;
(c) choosing an initial approximation x0 for which the method converges; and
(d) the degree of “stability” of the method.

2.2 Semilocal convergence of the NK method

Define the operator P by

P (x) = x − F ′ (x)−1 F (x) (2.2.1)

Then the NK method (2.1.3) may be regarded as the usual iterative method

xn+1 = P (xn) (n ≥ 0) , (2.2.2)

for approximating solution x∗ of the equation

x = P (x) (2.2.3)

Suppose that
lim

n→∞ xn = x∗. (2.2.4)

We would like to know under what conditions on F and F ′ the point x∗ is a solution
of Equation (2.1.1).

Proposition 2.2.1. If F ′ is continuous at x = x∗, then we have

F
(

x∗) = 0. (2.2.5)

Proof. The approximations xn satisfy the equation

F ′ (xn) (xn+1 − xn) = −F (xn) . (2.2.6)

Because the continuity of F at x∗ follows from the continuity of F ′, taking the limit
as n → ∞ in (2.2.6) we obtain (2.2.5).
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Proposition 2.2.2. If
∥
∥F ′ (x)

∥
∥ ≤ b (2.2.7)

in some closed ball that contains {xn}, then x∗ is a solution of F (x) = 0.

Proof. By (2.2.7) we get
lim

n→∞ F (xn) = F
(

x∗) , (2.2.8)

and as
‖F (xn)‖ ≤ b ‖xn+1 − xn‖ , (2.2.9)

(2.2.5) is obtained by taking the limit as n → ∞ in (2.2.4).

Proposition 2.2.3. If
∥
∥F ′′ (x)

∥
∥ ≤ K (2.2.10)

in some closed ball U (x0, r) = {x ∈ X | ‖x − x0‖ ≤ r} , 0 < r < ∞, which con-
tains {xn}, then x∗ is a solution of equation F (x) = 0.

Proof. By (2.2.10)
∥
∥F ′ (x) − F ′ (x0)

∥
∥ ≤ K ‖x − x0‖ ≤ Kr (2.2.11)

for all x ∈ U (x0, r). Moreover we can write
∥
∥F ′ (x)

∥
∥ ≤ ∥

∥F ′ (x0)
∥
∥+ ∥

∥F ′ (x) − F ′ (x0)
∥
∥ , (2.2.12)

so the conditions of Proposition 2.2.2 hold with

b = ∥
∥F ′ (x0)

∥
∥+ Kr (2.2.13)

Let us assume that the operator F is Fréchet-differentiable on D, where x0 is an
initial approximation for the NK method (2.1.3) and that the operator F ′(x) satisfies
a Lipschitz condition

∥
∥F ′ (x) − F ′ (y)

∥
∥ ≤ � ‖x − y‖ , for all x, y ∈ D. (2.2.14)

Throughout the sequel, we shall assume that the operator �0 = F ′ (x0)
−1 exists.

We shall now state and prove the famous Newton-Kantorovich theorem for ap-
proximating solutions of equation (2.1.1) [125]:

Theorem 2.2.4. Assume that

�0 ≤ b0, (2.2.15)

‖�0 F (x0)‖ ≤ η0 = η (2.2.16)

h0 = b0�η0 ≤ 1
2 (2.2.17)

r0 = 1−√
1−2h0
h0

η0, (2.2.18)

and
Ū (x0, r) ⊆ D

then the NK method (2.1.3) converges to a solution x∗ of equation (2.1.1) in the ball
U (x0, r) .
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There are several proofs of this theorem; we present one due to Kantorovich
[125].

Proof. Define a number sequence

bn+1 = bn
1−hn

, ηn+1 = hn
2(1−hn)

ηn, hn+1 = bn+1�ηn+1, (2.2.19)

rn+1 = 1−
√

1−2hn+1
hn+1

ηn+1. (2.2.20)

We claim that under the assumptions (2.2.15), (2.2.18) the successive approxi-
mations (2.1.3) exists; moreover

‖�(xn)‖ ≤ bn, ‖�(xn)F(xn)‖ ≤ ηn, hn ≤ 1
2 (2.2.21)

and
U (xn, rn) ⊂ U (xn−1, rn−1) . (2.2.22)

The proof is by induction. Assume that (2.2.21) and (2.2.22) hold for n = m. Because
‖xm+1 − xm‖ = ‖�(xm)F(xm)‖ ≤ ηm, it follows from the definition of rm that
xm+1 ∈ U (xm, rm) ; a fortiori, xm+1 ∈ D. The derivative F ′ (xm+1) therefore exists.
By (2.2.14)

∥
∥�(xm)

(

F ′(xm+1) − F ′(xm)
)∥
∥ ≤ bm� ‖xm+1 − xm‖ ≤ hm ≤ 1

2 ;

the operator �(xm+1) = F ′(xm+1)
−1 therefore exists, and has the representation

�(xm+1) = {

I + �(xm)
[

F ′(xm+1) − F ′(xm)
]}−1

�(xm)

=
∞
∑

i=0

(−1)i {�(xm)
[

F ′(xm+1) − F ′(xm)
]}i

�(xm) (2.2.23)

Hence

‖�(xm+1)‖ ≤
∞
∑

i=0

∥
∥�(xm)

[

F ′(xm+1) − F ′(xm)
]∥
∥i

bm ≤ bm
1−hm

= bm+1. (2.2.24)

Now consider the second inequality of (2.2.21) (for n = m + 1). It follows from the
identity

F(xm+1) = F(xm+1) − F(xm) − F ′(xm) (xm+1 − xm) (2.2.25)

that
‖F(xm+1)‖ ≤ �

2 ‖xm+1 − xm‖2 ≤ �
2η2

m, (2.2.26)

and, by (2.2.24),

‖�(xm+1)F(xm+1)‖ ≤ bm�η2
m

2(1−hm)
= hm

2(1−hm)
ηm = ηm+1.

The third inequality of (2.2.21) is easily proved; by definition,
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hm+1 = bm+1�ηm+1 = bm
1−hm

� hm
2(1−hm)

ηm = h2
m

2(1−hm)2 ≤ 1
2 . (2.2.27)

To prove the inclusion (2.2.22) it suffices to note that if ‖x − xk+1‖ ≤ rk+1 then

‖x − xk‖ ≤ ‖x − xk+1‖ + ‖xk+1 − xk‖ ≤ rk+1 + ηk, (2.2.28)

as the right-hand side is identically equal to rk (the simple computation is left to the
reader).

Thus the successive approximations (2.1.3) are well defined.
The third inequality of (2.2.21) implies that ηm+1 ≤ 1

2ηm ; therefore rn → 0
as n → ∞. Thus the successive approximations converge to some point x∗ ∈
U (x0, r0). To complete the proof, it suffices to leave m → ∞ in (2.2.26).

Remark 2.2.5. (a) It is clear from the proof that, under the assumptions of Theorem
2.2.4,

∥
∥xn − x∗∥∥ ≤ rn (n = 1, 2, ...).

(b) Under the assumptions of Theorem 2.2.4, one can easily prove that
∥
∥xn − x∗∥∥ ≤ 1

2n (2h0)
2n−1 η0.

(c) In Exercise 2.16.9 we have provided a list of error bounds and the relationship
between them.

It is natural to call a solution x∗ of equation (2.1.1) a simple zero of the operator
F if the operator � (x∗) exists and is continuous.

Theorem 2.2.6. If, under the assumptions of Theorem 2.2.4, h0 < 1
2 , then the zero

x∗ of F to which the successive approximations (2.1.3) converge is simple.

Proof. It suffices to note that r0 < (�b0)
−1 for h0 < 1

2 , and that ‖x − x0‖ < (�b0)
−1

implies
∥
∥�0 F ′ (x) − I

∥
∥ < 1. Thus both operators �0 F ′ (x) and F ′ (x) are invertible.

Note that when h0 = 1
2 the successive approximations may converge to a “mul-

tiple” zero. An example is the scalar equation x2 = 0 for any x0 �= 0.

We now examine the convergence of the MNK method (2.1.5).
The method (2.1.5) coincides with the usual iterative method

xn+1 = Axn (n = 0, 1, 2, ...) (2.2.29)

for approximate solution of the equation

x = Ax (2.2.30)

where
Ax = x − �0 Fx . (2.2.31)

Theorem 2.2.7. Under the hypotheses of Theorem 2.2.4 with (2.2.15) holding as
strict inequality the successive approximations (2.1.5) converge to a solution x∗ ∈
U (x0, r0) of equation (2.1.1).
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Proof. First note that equation (2.1.1) indeed has a solution in the ball U (x0, r0)—
this follows from Theorem 2.2.4. Below we shall prove that the operator (2.2.31)
satisfies the assumptions of the contractive mapping principle Theorem 1.3.4 in the
ball U (x0, r0). This will imply that the solution x∗ in the ball U (x0, r0) is unique,
and that the approximations (2.1.5) converge.

Obviously, for any x, y ∈ U (x0, r) (r ≤ R),

Ax − Ay = x − y − �0(Fx − Fy)

= �0

∫ 1

0

[

F ′ (x0) − F ′ (y + t (x − y))
]

(x − y) dt. (2.2.32)

This identity, together with (2.2.14) implies the estimate

‖Ax − Ay‖ ≤ b0Lr ‖x − y‖ . (2.2.33)

Consequently, A is a contraction operator in the ball U (x0, r0). To complete the
proof, it remains to show that

AU (x0, r0) ⊆ U (x0, r0).

Let x0 ∈ D. Then, by (2.2.32)

‖Ax − x0‖ ≤ ‖Ax − Ax0‖ + ‖Ax0 − x0‖

≤
∥
∥
∥
∥
∥
�0

∫ 1

0

[

F ′ (x0) − F ′ (x0 + t (x − x0))
]

(x − x0) dt

∥
∥
∥
∥
∥

+ η0.

Therefore, when ‖x − x0‖ ≤ r0,

‖Ax − x0‖ ≤ b0Lr2
0

2
+ η0 = r0.

Note that, by (2.2.33), the operator A satisfies a Lipschitz condition with constant
q = 1 − √

1 − 2h0 (see also (1.3.3)).
The above analysis of the modified Newton-Kantorovich method relates the sim-

plest case. More subtle arguments (see, e.g., Kantorovich and Akilov [67]) show that
Theorem 2.2.7 remains valid if the sign < in (2.2.17) is replaced by ≤ .

If D = U (x0, R) , consider the operator A defined by (2.2.31). Assume that the
conditions of Theorem 2.2.6 hold, and set

α(r) = sup
‖x−x0‖≤r

‖Ax − x0‖ . (2.2.34)

The function α(r) is obviously continuous and nondecreasing. It was shown in the
proof of Theorem 2.2.6 that

‖Ax − x0‖ ≤ b0L ‖x − x0‖2

2
+ η0 (‖x − x0‖ ≤ R). (2.2.35)

Hence it follows:
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Lemma 2.2.8. The function α(r) satisfies the inequality

α(r) ≤ b0Lr2

2
+ η0 (r0 ≤ r ≤ R).

Theorem 2.2.9. If, under the assumptions of Theorem 2.2.4,

r0 = 1 − √
1 − 2h0

h0
η0 ≤ R <

1 + √
1 − 2h0

h0
η0,

as the quadratic trinomial 1
2 b0Lr2 − r + η0 is negative in the interval

(

r0,
1 + √

1 − 2h0

h0
η0

)

.

Remark 2.2.10. If one repeats the proofs of Theorem 2.2.4 and 2.2.7 using
F ′ (x0)

−1 F (x) instead of the operator F (x) , condition
∥
∥
∥F ′ (x0)

−1 (F ′ (x) − F ′(y
)
∥
∥
∥ ≤ � ‖x − y‖ (2.2.36)

for all x, y ∈ U (x0, R) instead of (2.2.14), condition

h = 1

2
�η (2.2.37)

instead of (2.2.17), and finally

s∗ = 1 − √
1 − 2h

h
η, U

(

x0, s∗) ⊆ D (2.2.38)

instead of (2.2.38) then the results hold in an affine invariant setting. The advantages
of such an approach have elegantly been explained in [78] and also in [43]. From
now on we shall be referring to (2.2.37) as the famous for its simplicity and clarity
Newton-Kantorovich hypothesis.

Note that we are using for simplicity the same symbol � to denote the Lipschitz
constant in both conditions (2.2.14) and (2.2.36).

It also turns out from the proof of Theorem 2.2.4 that the scalar sequence {sn}
(n ≥ 0) given by

s0 = 0, s1 = η, sn+2 = sn+1 + � (sn+1 − sn)2

2 (1 − �sn)
(2.2.39)

is a majorizing sequence for {xn} such that

0 ≤ s0 ≤ s1 ≤ ... ≤ sn ≤ ... ≤ s∗ (2.2.40)

and
lim

n→∞ sn = s∗
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[43], [67], [96].
Moreover the following error estimates hold for all n ≥ 0:

‖xn+1 − xn‖ ≤ sn+1 − sn (2.2.41)

and
∥
∥xn − x∗∥∥ ≤ s∗ − sn . (2.2.42)

In the rest of the book motivated by optimization considerations using the same
information (F, x0, �, η) we attempt to weaken crucial condition (2.2.37) and also
provide a finer majorizing sequence than {sn}. We also investigate in applications
how is this effecting results by others based on (2.2.37).

To achieve all the above we introduce the center-Lipschitz condition
∥
∥
∥F ′ (x0)

−1 (F ′ (x) − F ′(x0
)
∥
∥
∥ ≤ �0 ‖x − x0‖ (2.2.43)

for all x ∈ D, where D is an open convex subset of X .
We also define scalar sequence {tn} by

t0 = 0, t1 = η, tn+2 = tn+1 + � (tn+1 − tn)2

2 (1 − �0tn+1)
(n ≥ 0). (2.2.44)

In [24] we showed:

Theorem 2.2.11. Let F.. D ⊆ X → Y be a Fréchet-differentiable operator and for
x0 ∈ D, assume

F ′ (x0)
−1 ∈ L(Y, X); (2.2.45)

conditions (2.2.36), (2.2.43), and

Ū (x0, t∗) ⊆ D (2.2.46)

hold, where
t∗ = lim

n→∞ tn . (2.2.47)

Moreover, assume that the following conditions hold:

hδ = (δ�0 + �) η ≤ δ, for δ ∈ [0, 1] (2.2.48)

or

hδ ≤ δ,
2�0η

2 − δ
≤ 1,

�0δ
2

2 − δ
≤ �, for δ ∈ [0, 2) (2.2.49)

or

hδ ≤ δ, �0η ≤ 1 − 1

2
δ, for δ ∈ [δ0, 2) , (2.2.50)

where

δ0 =
− �

�0
+
√
(

�
�0

)2 + 8 �
�0

2
(�0 �= 0) (2.2.51)
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Then sequence {xn} generated by the NK method (2.1.3) is well defined, remains
in Ū (x0, t∗) for all n ≥ 0 and converges to a solution x∗ ∈ Ū (x0, t∗) of equation
F(x) = 0.

Moreover the following error estimates hold for all n ≥ 0:

‖xn+2 − xn+1‖ ≤ � ‖xn+1 − xn‖2

2
[

1 − �0 ‖xn+1 − x0‖
] ≤ tn+2 − tn+1 (2.2.52)

and
∥
∥xn − x∗∥∥ ≤ t∗ − tn, (2.2.53)

where tn, t∗ are given by (2.2.44) and (2.2.47) respectively.
Furthermore, if there exists t∗∗ ≥ t∗ such that

U
(

x0, t∗∗) ∈ D (2.2.54)

and
�0
(

t∗ + t∗∗) ≤ 2, (2.2.55)

the solution x∗ is unique in U (x0, t∗∗) .

Note that optimum condition is given by (2.2.50) for δ = δ0. However, we will
be mostly using condition (2.2.48) for δ = 1, which is the simplest, in the rest of this
book.

We now compare our results with the ones obtained in Theorem 2.2.4 for the NK
method (2.1.3).

Remark 2.2.12. Let us set δ = 1 in condition (2.2.48). That is, consider

h1 = (� + �0) ≤ 1. (2.2.56)

Although (2.2.56) is not the weakest condition among (2.2.48)–(2.2.50) we will only
compare this one with condition (2.2.37), since it seems to be the simplest.

(a) Note that
�0 ≤ � (2.2.57)

holds in general and �
�0

can be arbitrarily large as the following example indicates:

Example 2.2.13. Let X = Y = D = R, x0 = 0 and define function F on D by

F(x) = c0 + c1x + c2 sin ec3x (2.2.58)

where ci , i = 0, 1, 2, 3 are given parameters. Then it can easily be seen that for c3
large and c2 sufficiently small, �

�0
can be arbitrarily large.

(b) We have

h ≤ 1

2
⇒ h1 ≤ 1 (2.2.59)

but not vice versa unless if � = �0. Indeed, for � = �0, the NK theorem 2.2.4 is a
special case of our Theorem 2.2.11. Otherwise our Theorem 2.2.11 can double the
applicability of the NK theorem 2.2.4 as �0 ∈ [0, �]:
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Example 2.2.14. Let X = Y = R, D = [a, 2 − a], a ∈
[

0, 1
2

)

, x0 = 1, and define
function F on D by

F (x) = x3 − a. (2.2.60)

Using (2.2.16), (2.2.36), and (2.2.43), we obtain

η = 1

3
(1 − a) , � = 2 (2 − a) > �0 = 3 − a. (2.2.61)

The Newton-Kantorovich hypothesis (2.2.37) cannot hold since

h = 2

3
(1 − a) (2 − a) >

1

2
, for all a ∈

[

0,
1

2

)

. (2.2.62)

That is, there is no guarantee that NK method (2.1.3) converges to a solution of
equation F (x) = 0.

However our condition (2.2.56), which becomes

h1 = 1

3
(1 − a) [3 − a + 2 (2 − a)] ≤ 1, (2.2.63)

holds for all a ∈
[

5−√
13

3 , 1
2

)

.

In fact we can do better if we use (2.2.50) for

.4505 <
5 − √

13

3
= .464816242...,

as we get η = .183166..., �0 = 2.5495, � = 3.099, and δ0 = 1.0656867.

Choose δ = δ0. Then we get that the interval
[

5−√
13

3 , 1
2

)

can be extended to
[

.450339002, 1
2

)

.

(c) Using simple induction (see [24]) we showed:

tn ≤ sn (2.2.64)

tn+1 − tn ≤ sn+1 − sn (2.2.65)

t∗ ≤ s∗ = lim
n→∞ sn (2.2.66)

and

t∗ − tn ≤ s∗ − sn . (2.2.67)

Note also that strict inequality holds in (2.2.64) and (2.2.65) if �0 < �.
That is, in this case our error estimates are finer and the information on the loca-

tion of the solution at least as precise.
Note that all the above advantages are obtained using the same information and

with the same computational cost since in practice the evaluation of � requires the
evaluation of �0.

We now compare our results with the ones obtained in Theorem 2.2.7 for the
MNK method (2.1.5).
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Remark 2.2.15. (a) Conditions (2.2.36), (2.2.37), and (2.2.38) can be replaced by

h0 = �0η ≤ 1

2
, (2.2.68)

s∗
0 = 1 − √

1 − 2h0

h0
η, (2.2.69)

and (2.2.43), respectively.
Indeed the proof of Theorem 2.2.7 can simply be rewritten with the above

changes as condition (2.2.36) is never used full strength. This observation is im-
portant in computational mathematics for the following reasons: condition (2.2.68)
is weaker than (2.2.37) if �0 < �. That increases the applicability of Theorem 2.2.7
(see also Example 2.2.13); the error estimates are finer since the ratio q becomes
smaller for �0 < �; it is easier to compute �0 than computing � (see also the three
examples that follow). Finally by comparing (2.2.38) with (2.2.69) for �0 < � we
obtain

s∗
0 < s∗. (2.2.70)

That is, we also obtain a more precise information on the location of the solution s∗.

Example 2.2.16. Returning back to Example 2.2.14 we see that Theorem 2.2.7 can-
not be applied as condition (2.2.37) is violated. However, our condition (2.2.68)
which becomes

h0 = 1

3
(1 − a) (3 − a) ≤ 1

2
(2.2.71)

holds for a ∈
[

4−√
10

2 , 1
2

)

.

Our motivation for introducing condition (2.2.39) instead of (2.2.36) can also be
seen in the following example:

Example 2.2.17. Let X = Y = R, D = [0,∞), x0 = 1 and define function F on D
by

F (x) = x1+ 1
i

1 + 1
i

+ c1x + c2, (2.2.72)

where c1, c2 are real parameters and i > 2 an integer. Then F ′ (x) = x
1
i + c1 is

not Lipschitz on D. However, center-Lipschitz condition (2.2.43) holds for �0 =
(1 + c1)

−1 (c1 �= −1).

Indeed, we have

∥
∥
∥F ′ (x0)

−1 [F ′ (x) − F ′ (x0)
]
∥
∥
∥ = (1 + c1)

−1
∣
∣
∣
∣
x

1
i − x

1
i

0

∣
∣
∣
∣

= (1 + c1)
−1 |x − x0|

x
i−1

i
0 + ... + x

i−1
i

≤ �0 |x − x0| . (2.2.73)
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Example 2.2.18. We consider the integral equation

u (s) = f (s) + λ

∫ b

a
G (s, t) u (t)1+ 1

n dt, n ∈ N. (2.2.74)

Here, f is a given continuous function satisfying f (s) > 0, s ∈ [a, b] , λ is a real
number, and the kernel G is continuous and positive in [a, b] × [a, b] .

For example, when G (s, t) is the Green kernel, the corresponding integral equa-
tion is equivalent to the boundary value problem

u′′ = λu1+ 1
n ,

u (a) = f (a) , u (b) = f (b) .

These type of problems have been considered in [71].
Equations of the form (2.2.74) generalize equations of the form

u (s) =
∫ b

a
G (s, t) u (t)n dt (2.2.75)

studied in [45].
Instead of (2.2.74), we can try to solve the equation F (u) = 0 where

F .. � ⊆ C [a, b] → C [a, b] , � = {u ∈ C [a, b] .. u (s) ≥ 0, s ∈ [a, b]} ,

and

F (u) (s) = u (s) − f (s) − λ

∫ b

a
G (s, t) u (t)1+ 1

n dt.

The norm we consider is the max-norm.
The derivative F ′ is given by

F ′ (u) v (s) = v (s) − λ

(

1 + 1

n

)∫ b

a
G (s, t) u (t)

1
n v (t) dt, v ∈ �.

First of all, we notice that F ′ does not satisfy a Lipschitz-type condition in �.

Let us consider, for instance, [a, b] = [0, 1], G (s, t) = 1 and y (t) = 0. Then
F ′ (y) v (s) = v (s) and

∥
∥F ′ (x) − F ′ (y)

∥
∥ = |λ|

(

1 + 1

n

)∫ 1

0
x (t)

1
n dt.

If F ′ were a Lipschitz function, then
∥
∥F ′ (x) − F ′ (y)

∥
∥ ≤ L1 ‖x − y‖ ,

or, equivalently, the inequality

∫ 1

0
x (t)

1
n dt ≤ L2 max

x∈[0,1]
x (s) , (2.2.76)
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would hold for all x ∈ � and for a constant L2. But this is not true. Consider, for
example, the functions

x j (t) = t

j
, j ≥ 1, t ∈ [0, 1] .

If these are substituted into (2.2.76)

1

j1/n
(

1 + 1
n

) ≤ L2

j
⇐⇒ j1−1/n ≤ L2

(

1 + 1

n

)

, ∀ j ≥ 1.

This inequality is not true when j → ∞.
Therefore, condition (2.2.36) fails in this case. However, condition (2.2.43)

holds. To show this, let x0 (t) = f (t) and α = mins∈[a,b] f (s), α > 0. Then,
for v ∈ �,
∥
∥
[

F ′ (x) − F ′ (x0)
]

v
∥
∥

= |λ|
(

1 + 1

n

)

max
s∈[a,b]

∣
∣
∣
∣

∫ b

a
G (s, t)

(

x (t)
1
n − f (t)

1
n

)

v (t) dt

∣
∣
∣
∣

≤ |λ|
(

1 + 1

n

)

·
∫ b

a
max

s∈[a,b]

G (s, t) |x (t) − f (t)|
x (t)(n−1)/n + x (t)(n−2)/n f (t)1/n + ... + f (t)(n−1)/n

dt ‖v‖ .

Hence,

∥
∥F ′ (x) − F ′ (x0)

∥
∥ ≤

|λ|
(

1 + 1
n

)

α(n−1)/n
max

s∈[a,b]

∫ b

a
G (s, t) dt ‖x − x0‖

≤ K ‖x − x0‖ ,

where K = |λ|
(

1+ 1
n

)

α(n−1)/n N and N = maxs∈[a,b]
∫ b

a G (s, t) dt .

Set �0 = ∥
∥F ′ (x0)

−1 K
∥
∥ . Then condition (2.2.68) holds for sufficiently small λ.

Remark 2.2.19. (a) We showed above that although the convergence of NK method
(2.1.5) is quadratic (for h < 1

2 ) there are cases when MNK method is preferred over
the NK method.

(b) Although t∗ ∈ [η, 2η] say if condition (2.2.56) holds, we do not have an
explicit form for it like, e.g., (2.2.38).

In practice though we can handle this problem in several ways. It follows from
(2.2.56) that condition (2.2.68) also holds. Therefore we know that the solution x∗
is unique in U

(

x0, s∗
0

)

. That is, there exists a finite n0 ≥ 1 such that if n ≥ n0 the
sequence {xn} will enter the ball U

(

x0, s∗
0

)

and enjoy quadratic convergence accord-
ing to Theorem 2.2.11. Note that if t∗ ≤ s∗

0 then we can take n0 = 1. Moreover, if
(2.2.37) also holds, then t∗ ∈ [

η, s∗], with s∗ ≤ 2η.
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2.3 New sufficient conditions for the secant method

It turns out that the ideas introduced in Section 2.2 for Newton’s method can be
extended to the method of chord or the secant method.

In this section, we are concerned with the problem of approximating a locally
unique solution x∗ of equation

F(x) = 0, (2.3.1)

where F is a nonlinear operator defined on a convex subset D of a Banach space X
with values in a Banach space Y .

We consider the secant method in the form

xn+1 = xn − δF(xn−1, xn)−1 F(xn) (n ≥ 0), (2.3.2)

where δF(x, y) ∈ L(X, Y ) (x, y ∈ D) is a consistent approximation of the Fréchet
derivative of F , Dennis [74], Potra [162], Argyros [12], [43], Hernandez [116],
[117], and others have provided sufficient convergence conditions for the secant
method based on “Lipschitz-type” conditions on δF (see also Section 1.2). Here us-
ing “Lipschitz-type” and center-“Lipschitz-type” conditions, we provide a semilocal
convergence analysis for (2.3.2). It turns out that our error bounds are more precise
and our convergence conditions hold in cases where the corresponding hypotheses
mentioned in earlier references mentioned above are violated.

We need the following result on majorizing sequences.

Lemma 2.3.1. Assume there exist nonnegative parameters �, �0, η, c, and a ∈ [0, 1],

δ ∈

⎧

⎪⎨

⎪⎩

[

0,
−1 + √

1 + 4a

2a

]

, a �= 0

[0, 1) , a = 0

(2.3.3)

such that:

(� + δ�0)(c + η) ≤ δ, (2.3.4)

η ≤ δc, (2.3.5)

�0 ≤ a�. (2.3.6)

Then,
(a) iteration {tn} (n ≥ −1) given by

t−1 = 0, t0 = c, t1 = c + η,

tn+2 = tn+1 + �(tn+1 − tn−1)

1 − �0
[

tn+1 − t0 + tn
] (tn+1 − tn) (n ≥ 0) (2.3.7)

is nondecreasing, bounded above by

t∗∗ = η

1 − δ
+ c (2.3.8)
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and converges to some t∗ such that

0 ≤ t∗ ≤ t∗∗. (2.3.9)

Moreover, the following estimates hold for all n ≥ 0

0 ≤ tn+2 − tn+1 ≤ δ(tn+1 − tn) ≤ δn+1η. (2.3.10)

(b) Iteration {sn} (n ≥ 0) given by

s−1 − s0 = c, s0 − s1 = η,

sn+1 − sn+2 = �(sn−1 − sn+1)

1 − �0
[

(s0 + s−1) − (sn + sn+1)
] (sn − sn+1) (n ≥ 0) (2.3.11)

for s−1, s0, s1 ≥ 0 is nonincreasing, bounded below by

s∗∗ = s0 − η

1 − δ
(2.3.12)

and converges to some s∗ such that

0 ≤ s∗∗ ≤ s∗. (2.3.13)

Moreover, the following estimates hold for all n ≥ 0

0 ≤ sn+1 − sn+2 ≤ δ(sn − sn+1) ≤ δn+1η. (2.3.14)

Proof. (a) The result clearly holds if δ = 0 or � = 0 or c = 0. Let us assume δ �= 0,
� �= 0 and c �= 0. We must show for all k ≥ 0:

�(tk+1−tk−1)+δ�0
[

(tk+1 − t0) + tk
] ≤ δ, 1−�0

[

(tk+1 − t0) + tk
]

> 0. (2.3.15)

Inequalities (2.3.15) hold for k = 0 by the initial conditions. But then (2.3.7) gives

0 ≤ t2 − t1 ≤ δ(t1 − t0).

Let us assume (2.3.10) and (2.3.15) hold for all k ≤ n +1. By the induction hypothe-
ses we can have in turn:

�(tk+2 − tk) + δ�0
[

(tk+2 − t0) + tk+1
]

≤ �
[

(tk+2 − tk+1) + (tk+1 − tk)
]+ δ�0

[
1−δk+2

1−δ
+ 1−δk+1

1−δ

]

η + δ�0c

≤ �(δk+1 + δk)η + δ�0
1−δ

(2 − δk+1 − δk+2)η + δ�0c. (2.3.16)

We must show that δ is the upper bound in (2.3.16). Instead by (2.3.5) we can show

�δk(1 + δ)η + δ�0
1−δ

(2 − δk+2 − δk+1)η + δ�0c ≤ (� + δ�0)(c + η)

or
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δ�0

[
2−δk+2−δk+1

1−δ
− 1

]

η ≤ �
[

c + η − δk(1 + δ)η
]

or
aδ�

1+δ−δk+1(1+δ)
1−δ

η ≤ �
[

η
δ

+ η − δk(1 + δ)η
]

or
aδ2(1 + δ)(1 − δk+1) ≤ (1 − δ)(1 + δ)(1 − δk+1)

or
aδ2 + δ − 1 ≤ 0,

which is true by the choice of δ. Moreover, by (2.3.5) and (2.3.10)

δ�0
[

(tk+2 − t0) + tk+1
] ≤ δ�0

1−δ
(2 − δk+2 − δk+1)η + δ�oc

< (� + δ�0)(c + η) ≤ δ, (2.3.17)

which shows the second inequality in (2.3.15). We must also show:

tk ≤ t∗∗ (k ≥ −1). (2.3.18)

For k = −1, 0, 1, 2 we have t−1 = 0 ≤ t∗∗, t0 = η ≤ t∗∗, t1 = η + c ≤ t∗∗ by
(2.3.8), and t2 = c + η + δη = c + (1 + δ)η ≤ t∗∗ by the choice of δ. Assume
(2.3.18) holds for all k ≤ n + 1. It follows from (2.3.10)

tk+2 ≤ tk+1 + δ(tk+1 − tk) ≤ tk + δ(tk − tk−1) + δ(tk+1 − tk)

≤ · · · ≤ t1 + δ(t1 − t0) + · · · + δ(tk+1 − tk)

≤ c + η + δη + · · · + δk+1η = c + 1−δk+2

1−δ
η

<
η

1−δ
+ c = t∗∗.

That is {tn} (n ≥ −1) is bounded above by t∗∗. It also follows from (2.3.7) and
(2.3.15) that it is also nondecreasing and as such it converges to some t∗ satisfying
(2.3.9).

(b) As in part (a) but we show {sn} (n ≥ −1) is nonincreasing and bounded
below by s∗∗. Note that the inequality corresponding with (2.3.16) is

�(sk − sk+2) ≤ δ
[

1 − β(s0 + s−1) + β(sk+1 + sk+2)
]

or

�
[

δk(s0 − s1) + δk+1(s0 − s1)
]

≤ δ
[

1 − �0(s0 + s−1) + �0

(

s0 − 1−δk+1

1−δ
(s0 − s1)

)

+ �
(

s0 − 1−δk+2

1−δ
(s0 − s1)

)]

or
�δk(1 + δ)η + δ�0

[
2−δk+1−δk+2

1−δ
η + c

]

must be bounded above by δ which was shown in part (a).
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Remark 2.3.2. It follows from (2.3.16) and (2.3.17) that the conclusions of Lemma
2.3.1 hold if (2.3.3), (2.3.5), (2.3.6) are replaced by the weaker conditions:

for all n ≥ 0 there exists δ ∈ [0, 1) such that:

�δn(1 + δ)η + δ�0
1−δ

(2 − δn+2 − δn+1)η + δ�0c ≤ δ,

and
δ�0
1−δ

(2 − δn+2 − δn+1)η + δ�oc < 1.

The above conditions hold in many cases for all n ≥ 0. One such stronger case is

�(1 + δ)η + 2δ�0η
1−δ

+ δ�0c ≤ δ,

and
2δ�0η
1−δ

+ δ�0c < 1.

We shall study the iterative procedure (2.3.2) for triplets (F, x−1, x0) belonging
to the class C(�, �0, η, c) defined as follows:

Definition 2.3.3. Let �, �0, η, c be nonnegative parameters satisfying the hypotheses
of Lemma 2.3.1 or Remark 2.3.2 (including (2.3.4)).

We say that a triplet (F, x−1, x0) belongs to the class C(�, �0, η, c) if:
(c1) F is a nonlinear operator defined on a convex subset D of a Banach space

X with values in a Banach space Y ;
(c2) x−1 and x0 are two points belonging to the interior D0 of D and satisfying

the inequality
‖x0 − x−1‖ ≤ c; (2.3.19)

(c3) F is Fréchet-differentiable on D0 and there exists an operator δF.. D0 ×
D0 → L(X, Y ) such that:

the linear operator A = δF(x−1, x0) is invertible, its inverse A−1 is bounded
and:

‖A−1 F(x0)‖ ≤ η; (2.3.20)

‖A
[

δF(x, y) − F ′(z)
] ‖ ≤ �(‖x − z‖ + ‖y − z‖), (2.3.21)

‖A
[

δF(x, y) − F ′(x0)
] ‖ ≤ �0(‖x − x0‖ + ‖y − x0‖) (2.3.22)

for all x, y, z ∈ D.
(c4) the set Dc = {x ∈ D; F is continuous at x} contains the closed ball

Ū (x0, s∗) where s∗ is given in Lemma 2.3.1.

We present the following semilocal convergence theorem for secant method
(2.3.2).

Theorem 2.3.4. If (F, x−1, x0) ∈ C(�, �0, η, c) then sequence {xn} (n ≥ −1) gen-
erated by secant method (2.3.2) is well defined, remains in Ū (x0, s∗) for all n ≥ 0
and converges to a solution x∗ ∈ Ū (x0, s∗) of equation F(x) = 0.
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Moreover the following estimates hold for all n ≥ 0

‖xn+2 − xn+1‖ ≤ sn+1 − sn+2, (2.3.23)

‖xn − x∗‖ ≤ αn (2.3.24)

and
‖xn − x∗‖ ≥ βn (2.3.25)

where,

s−1 = 1 + �0c

2�0
, s0 = 1 − �0c

2�0
for �0 �= 0, (2.3.26)

sequence {sn} (n ≥ 0) given by (2.3.11), αn, βn are respectively the nonnegative
solutions of equations

�0t2 − 2�0(s0 − ‖xn − x0‖)t − �(‖xn − xn−1‖ + ‖xn−1 − xn−2‖)‖xn − xn−1‖ = 0,

(2.3.27)
and

�t2 + [

�‖xn − xn−1‖ + 1 − �0(‖xn − x0‖ + ‖xn−1 − x0‖ + c)
]

t

+ [

�0(‖xn − x0‖ + ‖xn−1 − x0‖ + c) − 1
] ‖xn+1 − xn‖ = 0. (2.3.28)

Proof. We first show operator L = δF(u, v) is invertible for all u, v ∈ D0 with

‖u − x0‖ + ‖v − x0‖ < 2s0. (2.3.29)

It follows from (2.3.22) and (2.3.29)

‖I − A−1L‖ = ‖A−1(L − A)‖ ≤ ‖A−1(L − F ′(x0))‖ + ‖A−1(F ′(x0) − A)‖
≤ �0(‖u − x0‖ + ‖v − x0‖ + ‖x0 − x−1‖) < 1. (2.3.30)

According to the Banach Lemma on invertible operators and (2.3.30), L is invertible
and

‖L−1 A‖ ≤ [1 − �0(‖u − x0‖ + ‖v − x0‖ + c)]−1 . (2.3.31)

Condition (2.3.21) implies the Lipschitz condition for F ′

‖A−1(F ′(u) − F ′(v))‖ ≤ 2�‖u − v‖, u, v ∈ D0. (2.3.32)

By the identity,

F(x) − F(y) =
∫ 1

0
F ′(y + t (x − y))dt (x − y) (2.3.33)

we get

‖A−1
0

[

F(x) − F(y) − F ′(u)(x − y)
] ‖ ≤ �(‖x − u‖ + ‖y − u‖)‖x − y‖ (2.3.34)

and
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‖A−1
0 [F(x) − F(y) − δF(u, v)(x − y)] ‖ ≤ �(‖x −v‖+‖y−v‖+‖u−v‖)‖x − y‖

(2.3.35)
for all x, y, u, v ∈ D0. By a continuity argument (2.3.33)–(2.3.35) remain valid if x
and/or y belong to Dc.

We first show (2.3.23). If (2.3.23) hold for all η ≤ k and if {xn} (n ≥ 0) is well
defined for n = 0, 1, 2, . . . , k then

‖x0 − xn‖ ≤ s0 − sn < s0 − s∗, n ≤ k. (2.3.36)

Hence (2.3.29) holds for u = xi and v = x j (i, j ≤ k). That is (2.3.2) is well defined
for n = k + 1. For n = −1 and n = 0, (2.3.23) reduces to ‖x−1 − x0‖ ≤ c and
‖x0 − x1‖ ≤ η. Suppose (2.3.23) holds for n = −1, 0, 1, . . . , k (k ≥ 0). Using
(2.3.31), (2.3.35) and

F(xk+1) = F(xk+1) − F(xk) − δF(xk−1, xk)(xk+1 − xk) (2.3.37)

we obtain in turn

‖xk+2 − xk+1‖ = ‖δF(xk, xk+1)
−1 F(xk+1)‖

≤ ‖δF(xk, xk+1)
−1 A‖ ‖A−1 F(xk+1)‖

≤ �(‖xk+1−xk‖+‖xk−xk−1‖)
1−�0[‖xk+1−x0‖+‖xk−x0‖+c]‖xk+1 − xk‖

≤ �(sk−sk+1+sk−1−sk )

1−�0[s0−sk+1+s0−sk+s−1−s0] (sk − sk+1) = sk+1 − sk+2. (2.3.38)

The induction for (2.3.23) is now complete. It follows from (2.3.23) and Lemma
2.3.1 that sequence {xn} (n ≥ −1) is Cauchy in a Banach space X and as such it
converges to some x∗ ∈ Ū (x0, s∗) (as Ū (x0, s∗) is a closed set) so that

‖xn − x∗‖ ≤ sn − s∗. (2.3.39)

By letting k → ∞ in (2.3.38), we obtain F(x∗) = 0.
Set x = xn and y = x∗ in (2.3.33), M = ∫ 1

0 F ′(x∗ + t (xn − x∗))dt . Using
(2.3.23) and (2.3.39) we get in turn

‖xn − x0‖ + ‖x∗ − x0‖ + ‖x0 − x−1‖ ≤ 2‖xn − x0‖ + ‖xn − x∗‖ + c

< 2(‖xn − x0‖ + ‖xn − x∗‖)
≤ 2(s0 − sn + sn − s∗) + c ≤ 2s0 + c = 1

�0
. (2.3.40)

By (2.3.40) and the Banach Lemma on invertible operators we get

‖M−1 A‖ ≤ [

1 − �0(2‖xn − x0‖ + ‖xn − x∗‖ + c)
]−1

. (2.3.41)

It follows from (2.3.2) and (2.3.41)

‖xn − x∗‖ ≤ ‖M−1 A‖ · ‖A−1 F(xn)‖
≤ �[‖xn−xn−1‖+‖xn−1−xn−2‖]

1−�0[2‖xn−x0‖+‖xn−x∗‖+c]‖xn − xn−1‖, (2.3.42)
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which shows (2.3.24).
Using the approximation

xn+1 − x∗ = x∗ − xn + [AδF(xn−1, xn)]−1

· A [F(x∗) − F(xn) − δF(xn−1, xn)(x∗ − xn)] (2.3.43)

and estimates (2.3.30), (2.3.35) we get

‖xn+1 − xn‖ ≤ �[‖x∗−xn‖+‖xn−xn−1‖]
1−�0[‖xn−x0‖+‖xn−1+x0‖+c]‖xn − x∗‖ + ‖xn − x∗‖, (2.3.44)

which shows (2.3.25).

In the next result we examine the uniqueness of the solution x∗.

Theorem 2.3.5. If (F, x−1, x0) ∈ C(�, �0, η, c) equation (2.3.1) has a solution x∗ ∈
Ū (x0, s∗). This solution is unique in the set U1 = {x ∈ Dc | ‖x − x0‖ < s0 + γ } if
γ > 0 or in the set U2 = {x ∈ Dc | ‖x − x0‖ ≤ s0} if γ = 0.

Proof. Case 1: γ > 0. Let x∗ ∈ Ū (x0, s∗) and y∗ ∈ U1 be solutions of equation
F(x) = 0. Set P = ∫ 1

0 F ′(y + t (x − y))dt . Using (2.3.22) we get

‖I − A−1 P‖ = ‖A−1(A − P)‖ ≤ �0(‖y∗ − x0‖ + ‖x∗ − x0‖ + ‖x0 − x−1‖)
< �0(s0 + γ + s0 − γ + c) = 1.

Hence, P is invertible and from (2.3.33) we get x∗ = y∗.

Case 2: γ = 0. Consider the modified secant method

sn+1 = sn − A−1 F(yn) (n ≥ 0). (2.3.45)

By Theorem 2.3.4 sequence {yn} (n ≥ 0) converges to x∗ and

‖xn − xn+1‖ ≤ s̄n − s̄n+1 (2.3.46)

where,

s̄0 =
√

n
�
, s̄n+1 = s̄n − �s2

n (n ≥ 0), for � > 0. (2.3.47)

Using induction on n ≥ 0 we get

s̄n ≥
√

η
�

n+1 (n ≥ 0). (2.3.48)

Let y∗ be a solution of F(x) = 0. Set Pn = ∫ 1
0 F ′(y∗ + t (xn − y∗))dt . It follows

from (2.3.22), (2.3.33), (2.3.45), and (2.3.48)

‖xn+1 − y∗‖ = ‖A−1(A − Pn)(xn − y∗)‖
≤ �(‖y∗ − x0‖ + ‖xn − x0‖ + ‖x0 − x−1‖)‖xn − y∗‖

≤ (1 − �s̄n)‖xn − y∗‖ ≤ · · · ≤
n
∏

i=1

(1 − �s̄i )‖x1 − y∗‖. (2.3.49)

By (2.3.49), we get lim
n→∞

∏n
i=1(1 − �s̄i ) = 0. Hence, we deduce x∗ = y∗.

That completes the proof of the theorem.
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Remark 2.3.6. The parameter s∗ can be computed as the limit of sequence {sn} (n ≥
−1) using (2.3.11). Simply set

s∗ = lim
n→∞ sn . (2.3.50)

Remark 2.3.7. A similar convergence analysis can be provided if sequence {sn} is
replaced by {tn}. Indeed under the hypotheses of Theorem 2.3.4 we have for all
n ≥ 0

‖xn+2 − xn+1‖ ≤ tn+2 − tn+1 (2.3.51)

and
‖x∗ − xn‖ ≤ t∗ − tn . (2.3.52)

In order for us to compare with earlier results we first need the definition:

Definition 2.3.8. Let �, η, c be three nonnegative numbers satisfying the inequality

�c + 2
√

�η ≤ 1. (2.3.53)

We say that a triplet (F, x−1, x0) ∈ C1(�, η, c) (� > 0 if conditions (c1)–(c4) hold
(excluding (2.3.22)). Define iteration {pn} (n ≥ −1) by

p−1 = 1+�c
2�

, p0 = 1−�c
2�

, pn+1 = pn − p2
n−p2

pn+pn−1
, (2.3.54)

where,

p = 1
2�

√

(1 − �c)2 − 4�η . (2.3.55)

The proof of the following semilocal convergence theorem can be found in [164].

Theorem 2.3.9. If (F, x−1, x0) ∈ C1(�, η, c) sequence {xn} (n ≥ −1) generated
by secant method (2.3.2) is well defined, remains in Ū (x0, p) for all n ≥ 0 and
converges to a unique solution x∗ ∈ Ū (x0, p) of equation F(x) = 0.

Moreover the following error bounds hold for all n ≥ 0:

‖xn+1 − xn‖ ≤ pn − pn+1 (2.3.56)

and
‖xn − x∗‖ ≤ pn − p. (2.3.57)

Using induction on n we can easily show the following favorable comparison of
error bounds between Theorems 2.3.4 and 2.3.9.

Proposition 2.3.10. Under the hypotheses of Theorems 2.3.4 and 2.3.9 the following
estimates hold for all n ≥ 0

pn ≤ sn (2.3.58)

sn − sn+1 ≤ pn − pn+1 (2.3.59)

and
sn − s∗ ≤ pn − p. (2.3.60)
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Remark 2.3.11. We cannot compare conditions (2.3.4) and (2.3.53) in general be-
cause of �0. However in the special case � = �0 �= 0, we can set a = 1 to obtain

δ =
√

5−1
2 . Condition (2.3.4) can be written

�c + �η ≤ β = δ

1 + δ
= .381966011.

It can then easily be seen that if

0 < �c < 2
√

β − 1 = .236067977,

condition (2.3.4) holds but (2.3.53) is violated. That is, even in the special case of
� = �0, our Theorem 2.3.4 can be applied in cases not covered by Theorem 2.3.9.

2.4 Concerning the “terra incognita” between convergence
regions of two Newton methods

There is an unknown area, between the convergence regions (“terra incognita”) of
the NK method, and the corresponding MNK method, when F ′ is an λ-Hölder con-
tinuous operator, λ ∈ [0, 1). Note that according to Kantorovich theorems 2.2.4 and
2.2.7, these regions coincide when λ = 1. However, we already showed (see (2.2.70))
that this is not the case unless if �0 = �. Here, we show how to investigate this region
and improve on earlier attempts in this direction for λ ∈ [0, 1) [32], [35], [64].

To make the study as self-contained as possible, we briefly reintroduce some
results (until Remark 2.4.3) that can originally be found in [32], [64].

Let x0 ∈ D be such that F ′(x0)
−1 ∈ L(Y, X). Assume F ′ satisfies a center-

Hölder condition

‖F ′(x0)
−1(F ′(x) − F ′(x0))‖ ≤ �0‖x − x0‖λ, (2.4.1)

and a Hölder condition

‖F ′(x0)
−1(F ′(x) − F ′(y))‖ ≤ �‖x − y‖λ (2.4.2)

for all x, y ∈ U (x0, R) ⊆ D.
The results in [64] were given in non-affine invariant form. Here we reproduce

them in affine invariant form. The advantages of such an approach have been well
explained in [43], [78].

Define:

h0 = �0η
λ, (2.4.3)

h = �ηλ (2.4.4)

and function
ψ(r) = �

1+λ
r1+λ − r + η, (2.4.5)

where η is given by (2.2.16).
The first semilocal convergence result for methods NK and MNK under Hölder

conditions were given in [135]:
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Theorem 2.4.1. Assume:

h ≤
(

λ
1+λ

)λ

(2.4.6)

and
r∗ ≤ R, (2.4.7)

where r∗ is the smallest positive zero of function ψ . Then sequence {xn} (n ≥ 0)

generated by MNK method is well defined, remains in U (x0, r∗) for all n ≥ 0 and
converges to a unique solution x∗ of equation (2.1.1) in U (x0, r∗). If r∗ is the unique
zero of ψ on [0, R] and ψ(R) ≤ 0, then x∗ is unique in U (x0, R).

Moreover, if
h ≤ hν, (2.4.8)

where hν is the unique solution in (0, 1) of equation

(
t

1+λ

)λ = (1 − t)1+λ (2.4.9)

method NK converges as well.

Theorem 2.4.1 holds [135] if condition (2.4.6) is replaced by the weaker

h ≤ 2λ−1
(

λ
1+λ

)λ

. (2.4.10)

Later in [64], (2.4.10) was replaced by an even weaker condition

h ≤ 1
g(λ)

(
λ

1+λ

)λ

, (2.4.11)

where,

g(λ) = max
t≥0

f (t), (2.4.12)

f (t) = t1+λ+(1+λ)t
(1+t)1+λ−1

(2.4.13)

with
g(λ) < 21−λ for all λ ∈ (0, 1). (2.4.14)

Recently in [64], (2.4.11) was replaced by

h ≤ 1
a(λ)

(
λ

1+λ

)λ

, (2.4.15)

where,

a(λ) = min

{

b ≥ 1.. max
0≤t≤t (b)

f (t) ≤ b

}

, (2.4.16)

t (b) = bλλ

(1+λ)[b(1+λ)λ−λλ] . (2.4.17)
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The idea is to optimize b in the equation

ψb(r) = 0, (2.4.18)

where,
ψb(r) = b�

1+λ
r1+λ − r + η (2.4.19)

assuming

h ≤ 1
b

(
λ

1+λ

)λ

. (2.4.20)

Note that condition (2.4.20) guarantees that equation (2.4.18) is solvable (see Propo-
sition 1.1 in [64]).

With the above notation it was shown in [64] (Theorem 2.2, p. 719):

Theorem 2.4.2. Assume (2.4.15) holds and that r∗ ≤ R, where r∗ is the smallest
solution of the scalar equation

ψa(r) = a(λ)�
1+λ

r1+λ − r + η = 0. (2.4.21)

Then sequence {xn} (n ≥ 0) generated by NK method is well defined, remains in
U (x0, r∗) for all n ≥ 0, and converges to a unique solution x∗ of equation F(x) = 0
in U (x0, r∗).

Moreover if sequence rn is defined by

r0 = 0, rn = rn−1 − ψa(rn−1)

ψ ′(rn−1)
(n ≥ 1) (2.4.22)

then the following estimates hold for all n ≥ 1:

‖xn − xn−1‖ ≤ rn − rn−1 (2.4.23)

and
‖xn − x∗‖ ≤ r∗ − rn . (2.4.24)

Remark 2.4.3. It was also shown in [64] (see Theorem 2.3) that

a(λ) < f (2) < g(λ) for all λ ∈ (0, 1), (2.4.25)

which shows that (2.4.15) is a real improvement over (2.4.10) and (2.4.11).

We can summarize as follows:

hν < 2λ−1
(

λ
1+λ

)λ

< 1
g(λ)

(
λ

1+λ

)λ

< 1
a(λ)

(
λ

1+λ

)λ ≤
(

λ
1+λ

)λ = hexi . (2.4.26)

Below we present our contributions/improvements in the exploration of “terra
incognita.”

First of all, we have observed that the Vertgeim result given in Theorem 2.4.1
holds under weaker conditions. Indeed:
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Theorem 2.4.4. Assume:

h0 ≤
(

λ
1+λ

)λ

(2.4.27)

replaces condition (2.4.6) in Theorem 2.4.1. Then under the rest of the hypotheses of
Theorem 2.4.1, the conclusions for method (2.1.5) and equation (2.1.1) hold.

Proof. We note that (2.4.1) can be used instead of (2.4.2) in the proof of Theorem 1
given in [135].

Remark 2.4.5. Condition (2.4.27) is weaker than (2.4.6) because

h ≤
(

λ
1+λ

)λ ⇒ h0 ≤
(

λ
1+λ

)λ

(2.4.28)

but not vice versa unless if � = �0. Therefore our Theorem 2.4.4 improves the con-
vergence region for MNK method under weaker conditions and cheaper computa-
tional cost.

It turns out that we can improve on the error bounds given in Theorem 2.4.2
under the same hypotheses and computational cost. Indeed:

Theorem 2.4.6. Assume hypotheses of Theorem 2.4.1 and condition (2.4.1) hold.
Then sequence {xn} (n ≥ 0) generated by NK method is well defined, remains in

U (x0, r∗) for all n ≥ 0, and converges to a unique solution x∗ of equation F(x) = 0
in U (x0, r∗). Moreover, if scalar sequence sn is defined by

s0 = 0, sn = sn−1 − ψa(sn−1)

a(λ)�0sλ
n−1−1

(n ≥ 1), (2.4.29)

then the following estimates hold for all n ≥ 1

‖xn − xn−1‖ ≤ sn − sn−1 (2.4.30)

and
‖xn − x∗‖ ≤ r∗ − sn . (2.4.31)

Furthermore, if �0 < �, then we have:

sn < rn (n ≥ 2), (2.4.32)

sn − sn−1 < rn − rn−1 (n ≥ 2), (2.4.33)

and
s∗ − sn ≤ r∗ − rn (n ≥ 0). (2.4.34)

Proof. We simply arrive at the more precise estimate

‖F ′(x)−1 F ′(x0)‖ ≤ [

1 − �0‖x − x0‖λ
]−1

(2.4.35)

instead of
‖F ′(x)−1 F ′(x0)‖ ≤ (1 − �‖x − x0‖λ) (2.4.36)
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used in the proof of Theorem 1.4.2 in [64, pp. 720], for all x ∈ U (x0, R). Moreover
note that if �0 < �, {sn} is a more precise majorizing sequence of {xn} than sequence
{rn} otherwise rn = sn (n ≥ 0)). With the above changes, the proof of Theorem 2.4.2
can be utilized so we can reach until (2.4.31).

Using (2.4.22), (2.4.29), and simple induction on n, we immediately obtain
(2.4.32) and (2.4.33), whereas (2.4.34) is obtained from (2.4.33) by using standard
majorization techniques.

At this point we wonder if:
(a) condition (2.4.15) can be weakened, by using more precise majorizing se-

quences along the lines of the proof of Theorem 2.4.4;
(b) even more precise majorizing sequences than {sn} can be found.
We need the following result on majorizing sequences for the NK method.

Lemma 2.4.7. Assume there exist parameters � ≥ 0, �0 ≥ 0, η ≥ 0, λ ∈ [0, 1], and
q ∈ [0, 1) with η and λ not zero at the same time such that:
(a)

[

� + δ�0
(1−q)λ

]

ηλ ≤ δ, for δ = (1 + λ)q λ ∈ [0, 1) , (2.4.37)

or
(b)

(� + δ�0)η ≤ δ, for λ = 1, �0 ≤ �, and δ ∈ [0, 1] . (2.4.38)

Then, iteration {tn} (n ≥ 0) given by

t0 = 0, t1 = η,

tn+2 = tn+1 + �

(1+λ)
[

1−�0tλn+1

] (tn+1 − tn)1+λ (2.4.39)

is nondecreasing, bounded above by

(a) t∗∗ = η
1−q , or (b) t∗∗ = 2η

2−δ
, δ ∈ [0, 1] (2.4.40)

and converges to some t∗ such that

0 ≤ t∗ ≤ t∗∗. (2.4.41)

Moreover, the following estimates hold for all n ≥ 0:

(a) 0 ≤ tn+2 − tn+1 ≤ q(tn+1 − tn) ≤ qn+1η, (2.4.42)

or

(b) 0 ≤ tn+2 − tn+1 ≤ δ
2 (tn+1 − tn) ≤

(
δ
2

)n+1
η,

respectively.
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Proof. (a) The result clearly holds if q or � or n or �0 = 0. Let us assume q, �, η,
�0 �= 0. We must show:

�(tk+1−tk)
λ+δ�0tλk+1 ≤ δ, tk+1−tk ≥ 0, 1−�0tλk+1 > 0 for all k ≥ 0. (2.4.43)

Estimate (2.4.42) can then follow immediately from (2.4.39) and (2.4.43). Using
induction on the integer k, we have for k = 0, �ηλ + δ�0η

λ = (� + δ�0)η
λ ≤ δ (by

(2.4.37)) and 1 − �0η
p > 0. But then (2.4.43) gives

0 ≤ t2 − t1 ≤ q(t1 − t0).

Assume (2.4.43) holds for all k ≤ n + 1. We can have in turn

�(tk+2 − tk+1)
λ + δ�λ

0 tk+2

≤ �ηλqk+1 + δ�0

[

t1 + q(t1 − t0) + q2(t1 − t0) + · · · + qk+1(t1 − t0)
]λ

≤ �ηλq(k+1)λ + δ�0η
λ
[

1−qk+2

1−q

]λ

=
[

�q(k+1)λ + δ�0
(1−q)λ

(1 − qk+2)λ
]

ηλ ≤
[

� + δ�0
(1−q)λ

]

ηλ (2.4.44)

which is smaller or equal to δ by (2.4.37). Hence, the first estimate in (2.4.43) holds
for all k ≥ 0. We must also show:

tk ≤ t∗∗ (k ≥ 0). (2.4.45)

For k = 0, 1, 2 we have

t0 = η ≤ t∗∗, t1 = η ≤ t∗∗ and t2 ≤ η + qη = (1 + q)η ≤ t∗∗.

Assume (2.4.45) holds for all k ≤ n + 1. We also can get

tk+2 ≤ tk+1 + q(tk+1 − tk) ≤ tk + q(tk − tk−1) + q(tk+1 − tk)

≤ · · · ≤ t1 + q(t1 − t0) + · · · + q(tk − tk−1) + q(tk+1 − tk)

≤ η + qη + q2η + · · · + qk+1η = 1−qk+2

1−q η <
η

1−q = t∗∗. (2.4.46)

Moreover the second inequality in (2.4.43) holds since

�0tλk+2 ≤ �0

(
η

1−q

)λ

< 1 by (2.4.37).

Furthermore the third inequality in (2.4.43) holds by (2.4.39), (2.4.44), and (2.4.46).
Hence (2.4.43) holds for all k ≥ 0. Iteration {tn} is nondecreasing and bounded above
by t∗∗ and as such it converges to some t∗ satisfying (2.4.41).

(b) See [39] and the proof of part (a).

We can show the main semilocal convergence theorem for the NK method:
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Theorem 2.4.8. Let F.. D ⊆ X → Y be a Fréchet-differentiable operator. Assume:
there exist a point x0 ∈ D and parameters η ≥ 0, �0 ≥ 0, � ≥ 0, λ ∈ [0, 1],
q ∈ [0, 1), δ ∈ [0, 1], R ≥ 0 such that: conditions (2.4.1), (2.4.2), and hypotheses of
Lemma 2.4.7 hold, and

U (x0, t∗) ⊆ U (x0, R). (2.4.47)

Then, {xn} (n ≥ 0) generated by NK method is well defined, remains in U (x0, t∗) for
all n ≥ 0 and converges to a unique solution x∗ ∈ U (x0, t∗) of equation F(x) = 0.

Moreover the following estimates hold for all n ≥ 0:

‖xn+2 − xn+1‖ ≤ �‖xn+1−xn‖1+λ

(1+λ)[1−�0‖xn+1−x0‖λ] ≤ tn+2 − tn+1 (2.4.48)

and
‖xn − x∗‖ ≤ t∗ − tn, (2.4.49)

where iteration {tn} (n ≥ 0) and point t∗ are given in Lemma 2.4.7.
Furthermore, if there exists R > t∗ such that

R0 ≤ R (2.4.50)

and

�0

∫ 1

0

[

θ t∗ + (1 − θ)R
]λ

dθ ≤ 1, (2.4.51)

the solution x∗ is unique in U (x0, R0).

Proof. We shall prove:
‖xk+1 − xk‖ ≤ tk+1 − tk, (2.4.52)

and
U (xk+1, t∗ − tk+1) ⊆ U (xk, t∗ − tk) (2.4.53)

hold for all n ≥ 0.
For every z ∈ U (x1, t∗ − t1)

‖z − x0‖ ≤ ‖z − x1‖ + ‖x1 − x0‖ ≤ t∗ − t1 + t1 = t∗ − t0

implies z ∈ U (x0, t∗ − t0). Because also

‖x1 − x0‖ = ‖F ′(x0)
−1 F(x0)‖ ≤ η = t1

(2.4.52) and (2.4.53) hold for n = 0. Given they hold for n = 0, 1, . . . , k, then

‖xk+1 − x0‖ ≤
k+1
∑

i=1

‖xi − xi−1‖ ≤
k+1
∑

i=1

(ti − ti−1) = tk+1 − t0 = tk+1 (2.4.54)

and

‖xk + θ(xk+1 − xk) − x0‖ ≤ tk + θ(tk+1 − tk) < t∗, θ ∈ [0, 1] . (2.4.55)
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Using NK we obtain the approximation

F(xk+1) = F(xk+1) − F(xk) − F ′(xk)(xk+1 − xk)

=
∫ 1

0

[

F ′(xk + θ(xk+1 − xk)) − F ′(xk)
]

(xk+1 − xk)dθ, (2.4.56)

and by (2.4.2)

‖F ′(x0)
−1 F(xk+1)‖ ≤

≤
∫ 1

0
‖F ′(x0)

−1 [F ′(xk + θ(xk+1 − xk)) − F ′(xk)
] ‖dθ‖xk+1 − xk‖

≤ �
1+λ

‖xk+1 − xk‖1+λ. (2.4.57)

By (2.4.1), the estimate

‖F ′(x0)
−1 [F ′(xk+1) − F ′(x0)

] ‖ ≤ �0‖xk+1 − x0‖λ ≤ �0tλk+1 < 1

and the Banach Lemma on invertible operators F ′(xk+1)
−1 exists and

‖F ′(x0)F ′(xk+1)
−1‖ ≤ 1

1−�0‖xk+1−x0‖λ ≤ 1
1−�0tλk+1

. (2.4.58)

Therefore, by NK, (2.4.39), (2.4.57), and (2.4.58) we obtain in turn

‖xk+2 − xk+1‖ = ‖F ′(xk+1)
−1 F(xk+1)‖

≤ ‖F ′(xk+1)
−1 F ′(x0)‖ · ‖F ′(x0)

−1 F(xk+1)‖
≤ �‖xk+1−xk‖1+λ

(1+λ)[1−�0‖xk+1−x0‖λ]

≤ �(tk+1−tk )1+λ

(1+λ)
[

1−�0tλk+1

] = tk+2 − tk+1. (2.4.59)

Thus for every z ∈ U (xk+2, t∗ − tk+2), we have

‖z − xk+1‖ ≤ ‖z − xk+2‖ + ‖xk+2 − xk+2‖ ≤ t∗ − tk+2 + tk+2 − tk+2 = t∗ − tk+1.

That is
z ∈ U (xk+1, t∗ − tk+1). (2.4.60)

Estimates (2.4.59) and (2.4.60) imply that (2.4.52) and (2.4.53) hold for n = k + 1.
By induction the proof of (2.4.52) and (2.4.53) is completed.

Lemma 2.4.7 implies that {tn} (n ≥ 0) is a Cauchy sequence. From (2.4.52) and
(2.4.53) {xn} (n ≥ 0) becomes a Cauchy sequence, too, and as such it converges to
some x∗ ∈ U (x0, t∗) so that (2.4.49) holds.

The combination of (2.4.59) and (2.4.60) yields F(x∗) = 0. Finally to show
uniqueness let y∗ be a solution of equation F(x) = 0 in U (x0, R). It follows from
(2.4.1), the estimate
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∥
∥
∥
∥
∥

F ′(x0)
−1
∫ 1

0

[

F ′(y∗ + θ(x∗ − y∗)) − F ′(x0)
]

dθ

∥
∥
∥
∥
∥

≤

≤ �0

∫ 1

0
‖y∗ + θ(x∗ − y∗) − x0‖λdθ

≤ �0

∫ 1

0

[

θ‖x∗ − x0‖ + (1 − θ)‖y∗ − x0‖
]λ

dθ

< �0

∫ 1

0

[

θ t∗ + (1 − θ)R0
]λ

dθ ≤ 1 (by (2.4.51)) (2.4.61)

and the Banach Lemma on invertible operators that linear operator

L =
∫ 1

0
F ′(y∗ + θ(x∗ − y∗))dθ (2.4.62)

is invertible.
Using the identity

0 = F(y∗) − F(x∗) = L(x∗ − y∗) (2.4.63)

we deduce x∗ = y∗. To show uniqueness in U (x0, t∗) as in (2.4.61), we get:

‖F ′(x0)
−1(L − F ′(x0))‖ ≤ �0

1+λ
(t∗)1+λ < 1 (by Lemma 2.4.7)

which implies again x∗ = y∗.

Remark 2.4.9. In the result that follows we show that our error bounds on the dis-
tances involved are finer and the location of the solution x∗ at least as precise.

Proposition 2.4.10. Under hypotheses of Theorems 2.4.6 and 2.4.8 with �0 < � the
following estimates hold:

r0 = t0 = s0 = 0, r1 = t1 = s1 = η,

tn+1 < sn+1 < rn+1 (n ≥ 1), (2.4.64)

tn+1 − tn < sn+1 − sn < rn+1 − rn (n ≥ 1), (2.4.65)

t∗ − tn ≤ s∗ − sn ≤ r∗ − rn (n ≥ 0), (2.4.66)

and
t∗ ≤ s∗ ≤ r∗. (2.4.67)

Proof. We use induction on the integer k to show the left-hand sides of (2.4.64) and
(2.4.65) first. By (2.4.29) and (2.4.39), we obtain

t2 − t1 = �η1+λ

(1+λ)[1−�0η
λ] <

ψa(s1)

(1+λ)[1−�0η
λ] = s2 − s1,

and
t2 < s2.
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Assume:
tk+1 < sk+1, tk+1 − tk < sk+1 − sk (k ≤ n). (2.4.68)

Using (2.4.29), and (2.4.39), we get

tk+2 − tk+1 = �(tk+1 − tk)1+λ

(1 + λ)
[

1 − �0tλk+1

] <
�(sk+1 − sk)

1+λ

(1 + λ)
[

1 − �tλk+1

] ≤ sk+2 − sk+1,

(by the proof of Theorem 2.2 in [64], end of page 720 and first half of page 721) and

tk+2 < sk+2.

Let m ≥ 0, we can obtain

tk+m − tk < (tk+m − tk+m−1) + (tk+m−1 − tk+m−2) + · · · + (tk+1 − tk)

< (sk+m − sk+m−1) + (sk+m−1 − sk+m−2) + · · · + (sk+1 − sk)

= sk+m − sk . (2.4.69)

By letting m → ∞ in (2.4.69) we obtain (2.4.66). For n = 1 in (2.4.66) we get
(2.4.67).

That completes the proof of Proposition 2.4.10, as the right-hand side estimates
in (2.4.65)–(2.4.67) were shown in Theorem 2.4.6.

In the next remark, we also show that our sufficient convergence conditions are
weaker in general than the earlier ones (i.e., the Lipschitz case):

Remark 2.4.11. Case λ = 1. (see Section 2.2 of Chapter 2)
Case λ = 0. It was examined here but not in [64], [78], [135].

Case λ ∈ (0, 1). We can compare condition (2.4.37) with (2.4.15) (or (2.4.11) or
(2.4.10) or (2.4.6)). For example set

q = 1

λ + 1
. (2.4.70)

Then for
�0 = �d, d ∈ [0, 1] , (2.4.71)

and

c(λ, d) = d +
(

λ

1 + λ

)λ

, (2.4.72)

condition (2.4.37) becomes:

h ≤ 1
c(λ,d)

(
λ

1 + λ

)λ

. (2.4.73)

(a) Choose d = 1
2 , then using Mathematica we compare the magnitude of a(λ) with

c
(

λ, 1
2

)

to obtain the following favorable for our approach table:
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Comparison table
λ .1 .2 .3 .4 .5 .6 .7 .8 .9

a(λ) 1.842 1.695 1.562 1.445 1.341 1.252 1.174 1.108 1.050

c
(

λ, 1
2

)

1.287 1.200 1.444 1.106 1.080 1.055 1.037 1.023 1.010

See also the corresponding table in [64, pp. 722].
(b) If d = 1 (i.e., � = �0), say for λ = .1 we found

c(.1, 1) = 1.787 < a(.1) = 1.842.

(c) Because �
�0

can be arbitrarily large (see Example 2.2.13) for

d = 1 −
(

λ

1 + λ

)λ

= p, (2.4.74)

condition (2.4.73) reduces to (2.4.6), whereas for

0 ≤ d < p (2.4.75)

(2.4.73) improves (2.4.6), which is the weakest of all conditions given before (see
[64]).

Other favorable comparisons can also be made when q is not necessarily given
by (2.4.70). However we leave the details to the motivated reader.

We state the following local convergence result for the NK method.

Theorem 2.4.12. Let F.. D ⊆ X → Y be a Fréchet-differentiable operator. Assume:
(a) there exist a simple zero x∗ ∈ D of equation F(x) = 0, parameters �0 ≥ 0,
� ≥ 0, μ ∈ [0, 1] not all zero at the same time such that:

‖F ′(x∗)−1 [F ′(x) − F ′(y)
] ‖ ≤ �‖x − y‖μ, (2.4.76)

‖F ′(x∗)−1 [F ′(x) − F ′(x∗)
] ‖ ≤ �0‖x − x∗‖μ (2.4.77)

for all x, y ∈ U (x0, R) ⊆ D (R ≥ 0);
(b) Define:

q =

⎧

⎪⎨

⎪⎩

[
1 + μ

� + (1 + μ)�0

]1/μ

μ �= 0

R and � + �0 ≤ 1 for μ = 0

(2.4.78)

and
q ≤ R. (2.4.79)

Then, sequence {xn} (n ≥ 0) generated by NK is well defined, remains in U (x∗, q)

for all n ≥ 0 and converges to x∗, provided that x0 ∈ U (x∗, q). Moreover the
following estimates hold for all n ≥ 0:

‖xn+1 − x∗‖ ≤ �‖xn − x∗‖1+μ

(1 + μ)
[

1 − �0‖xn − x∗‖μ
] . (2.4.80)
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Proof. Inequality (2.4.80) follows from the approximation

xn+1 − x∗ =
= xn − x∗ − F ′(xn)−1 F(xn)

= −
[

F ′(xn)−1 F ′(x∗)
]

×

×
{

F ′(x∗)−1
∫ 1

0

[

F ′(x∗ + t (xn − x∗)) − F ′(xn)
]

(xn − x∗)dt

}

, (2.4.81)

and estimates

‖F ′(xn)−1 F ′(x∗)‖ ≤ [

1 − �0‖xn − x∗‖μ
]−1

(see (2.4.58)) (2.4.82)
∥
∥
∥
∥
∥

F ′(x∗)−1
∫ 1

0

[

F ′(x∗ + t (xn − x∗)) − F ′(xn)
]

(xn − x∗)dt

∥
∥
∥
∥
∥

≤

≤ �
1+μ

‖xn − x∗‖1+μ, (see (2.4.57)) (2.4.83)

The rest follows using induction on the integer n, (2.4.81)–(2.4.83), and along the
lines of the proof of Theorem 2.4.8.

The corresponding local result for the MNK method is:

Remark 2.4.13. Using only condition (2.4.76) and the approximation

yn+1 − x∗ = F ′(y0)
−1
∫ 1

0

[

F ′(x∗ + t (yn − x∗)) − F ′(y0)
]

(yn − x∗)dt, (2.4.84)

as in the proof of Theorem 2.4.12 we obtain the convergence radius

q̄0 =

⎧

⎪⎨

⎪⎩

[
1 + μ

(21+μ − 1)�

]1/μ

, � �= 0, μ �= 0

R, μ = 0,

(2.4.85)

and the corresponding estimates

‖yn+1 − x∗‖ ≤ �

∫ 1

0

[‖x∗ − y0‖ + t‖yn − x∗‖]μ dt‖yn − x∗‖

≤ �(21+μ − 1)

1 + μ
q̄μ

0 ‖yn − x∗‖ (n ≥ 0). (2.4.86)

Remark 2.4.14. As noted in [43] and [216], the local results obtained here can be
used for projection methods such as Arnoldi’s, the Generalized Minimum Residual
method (GMRES), the generalized conjugate residual method (GCR), for combined
Newton/finite-difference projection methods, and in connection with the mesh inde-
pendence principle in order to develop the cheapest mesh refinement strategies.
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Remark 2.4.15. The local results obtained here can also be used to solve equations
of the form F(x) = 0, where F ′ satisfies the autonomous differential equation [71]:

F ′(x) = T (F(x)), (2.4.87)

where T .. Y → X is a known continuous operator. Because F ′(x∗) = T (F(x∗)) =
T (0), we can apply the results obtained here without actually knowing the solution
x∗ of the equation F(x) = 0.

We complete this section with a numerical example to show that through Theo-
rem 2.4.6 we can obtain a wider choice of initial guesses x0 than before.

Example 2.4.16. Let X = Y = R, D = U (0, 1) and define function F on D by

F(x) = ex − 1. (2.4.88)

Then it can easily be seen that we can set T (x) = x +1 in [35]. Because F ′(x∗) = 1,
we get ‖F ′(x)− F ′(y)‖ ≤ e‖x − y‖. Hence we set � = e, μ = 1. Moreover, because
x∗ = 0, we obtain in turn

F ′(x) − F ′(x∗) = ex − 1 = x + x2

2!
+ · · · + xn

n!
+ · · ·

=
(

1 + x

2!
+ · · · + xn−1

n!
+ · · ·

)

(x − x∗)

and for x ∈ U (0, 1),

‖F ′(x) − F ′(x∗)‖ ≤ (e − 1)‖x − x∗‖.
That is, �0 = e − 1. Using (2.4.85) we obtain

r∗ = .254028662 .

Rheinboldt’s radius [175] is given by

p = 2

3�
.

Note that
p < r∗ (as �̄0 < �̄ ).

In particular, in this case we obtain

p = .245252961 .

Note also that our error estimates are finer as �̄0 < �̄. That is our convergence radius
r∗ is larger than the corresponding one p due to Rheinboldt [175]. This observation
is very important in computational mathematics (see Remark 2.4.15). Note also that
local results were not given in [64].

The case μ ∈ [0, 1) was not covered in [64]. The “terra incognita” can be ex-
amined along the lines of the semilocal case studied above. However, we leave the
details to the motivated reader.
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2.5 Enlarging the convergence domain of the NK method under
regular smoothness conditions

Sufficient convergence conditions such as the famous Newton-Kantorovich hypoth-
esis (see Chapter 2, Sections 2.2 and 2.4) have been given under the hypotheses for
all x, y ∈ D

∥
∥F ′ (x) − F ′ (y)

∥
∥ ≤ L ‖x − y‖λ λ ∈ [0, 1] , (2.5.1)

or the w-smoothness
∥
∥F ′ (x) − F ′ (y)

∥
∥ ≤ w (‖x − y‖) (2.5.2)

for some increasing conditions function w.. [0,∞) → [0,∞) with w (0) = 0 [6],
[35], [43], [58], [98], [99], [146].

Under (2.5.1) the error bound
∥
∥F (y) − F (x) − F ′ (x) (y − x)

∥
∥ ≤ L

1+λ
‖x − y‖1+λ (2.5.3)

crucial in any convergence analysis of method NK has been improved only if λ ∈
(0, 1) under an even more flexible condition than (2.5.2) called w-regular smoothness
(to be precised later).

Here motivated by the elegant works in [98], [99] but using more precise ma-
jorizing sequences and under the same computational cost, we provide a semilocal
convergence analysis for NK method under w-regular smoothness conditions on F ′
with the following advantages:

(a) finer estimates on the distances

‖xn+1 − xn‖ ,
∥
∥xn − x∗∥∥ (n ≥ 0) ;

(b) an at least as precise information on the location of the solution;
and

(c) a larger convergence domain.
Expressions r → crλ, λ ∈ (0, 1] are typical representations of the class C of

nondecreasing functions w.. (0,∞] → (0,∞] that are concave and vanishing at zero.
By w−1 we denote the function whose closed epigraph cl{(s, t) , s ≥ 0, and t ≥
w−1 (s)} is symmetrical to closure of the subgraph of w with respect to the axis
t = s [98], [99]. Consider T ∈ L (X, Y ) and denote h (T ) the inf ‖T (x)‖. Given an
w0 ∈ C and x0 ∈ D, we say that T is w0-regularly continuous on D with respect
to x = x0 ∈ D or, equivalently, that w0 is a regular continuity modulus of T on D
relative to x0, if there exists h = h (x0) ∈ [

0, h (T )
]

such that for all x ∈ D:

w−1
0 (hT (x0, x) + ‖T (x) − T (x0)‖) − w−1

0 (hT (x0, x)) ≤ ‖x − x0‖ , (2.5.4)

where
h0T (x0, x) = ‖T (x)‖ − h0.

Given w ∈ C , we say T is w-regularly continuous on D if there exists h ∈
[

0, h (T )
]

such that for all x, y ∈ D
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w−1 (hT (x, y) + ‖T (y) − T (x)‖) − w−1 (hT (x, y)) ≤ ‖y − x‖ , (2.5.5)

where
hT (y, x) = min {‖T (x)‖ , ‖T (y)‖} − h.

The operator F is w0-regularly smooth on D with respect to a given point x0 ∈
D, if its Fréchet derivative F ′ is w0-regularly continuous with respect to x0. Operator
F is w-regularly smooth on D, if its Fréchet derivative F ′ is w-regularly continuous
there [98], [99].

Note that in general

w0 (r) ≤ w (r) for all r ∈ [0,∞) (2.5.6)

holds.
Given w ∈ C , set Q0 (t) = ∫ t

0 w (θ) dθ and define function Q by

Q (u, t) =
{

tw (u) − Q0 (u) + Q0 (u − t) for t ∈ [0, u] , u ≥ 0
uw (u) − 2Q0 (u) + Q0 (t) for t ≥ u, u ≥ 0.

(2.5.7)

Denote by the superscript+ the nonnegative part of a real number

a+ = max {a, 0} . (2.5.8)

Given x0 ∈ D, if the operator F0 = F ′ (x0)
−1 F is w0-regularly smooth with re-

spect to x0 and w-regularly smooth on D, define the sequence un =
(

tn, αn,
=
αn, εn

)

by

tn = ‖xn − x0‖ , αn = w−1 (
∥
∥F ′

0 (xn)
∥
∥− h

)

,
=
αn = w−1

0

(∥
∥F ′

0 (xn)
∥
∥− h0

)

,
(

or ,
=
αn = w−1

0

(∥
∥F ′

0 (xn)
∥
∥− h

))

(2.5.9)

εn =
∥
∥
∥F ′

0 (xn)−1 F0 (xn)

∥
∥
∥ (n ≥ 0) .

As in Theorem 4.3 in [98, pp. 831] but using w0 (i.e., (2.5.4)) instead of w (i.e.,
(2.5.5)) for the computation of the upper bounds of the inverses F ′

0 (xn)−1 we show:

tn ≤ tn + εn, αn+1 ≥ (αn − εn)+ ,
=
αn+1 ≥

(=
αn − εn

)+
, (2.5.10)

εn+1 ≤ Q(αn ,εn)

1−w0

(=
αn+1+tn+1

)

+w0

(=
αn+1

) (2.5.11)

where function Q is given by (2.5.7).
Consider the sequence un = (

tn, αn, α0
n, εn

)

given by

tn+1 = tn + εn, αn+1 = (αn − εn)+ , α0
n+1 =

(

α0
n+1 − εn

)

, (2.5.12)

(or α0
n+1 = αn+1 n ≥ 0)
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εn+1 = Q (αn, εn)

1 − w0
(

α0
n+1 + tn+1

)+ w0
(

α0
n+1

) (2.5.13)

for

t0 = 0, α0 = w−1 (1 − h
)

, α0
0 = w−1

0

(

1 − h0

)

and ε0 ≥ ε0 [98], [99]. (2.5.14)

The sequence {un} is well defined and converges if for all n ≥ 0

w0

(

α0
n+1 + tn+1

)

+ w0

(

α0
n+1

)

< 1, (2.5.15)

or, equivalently
tn < w−1

0 (1) (2.5.16)

(as sequence un will then be increasing and bounded above by the number w−1
0 (1)).

Denote by sn the sequence given by (2.5.12), (2.5.13) when w0 = w. If strict
inequality holds in (2.5.6) we get by induction on n ≥ 0

tn < sn (2.5.17)

tn+1 − tn < sn+1 − sn (2.5.18)

and
t∗ = lim

n→∞ ≤ lim
n→∞ sn = s∗ (2.5.19)

We can now show the following semilocal convergence result for Newton’s
method under regular smoothness:

Theorem 2.5.1. Assume:
Operator F0 is w0-regularly smooth with respect to x0 ∈ D, and w-regularly smooth
on D;
condition (2.5.16) holds;
and for t∗ = lim

n→∞ tn

U
(

x0, t∗
) ⊆ D. (2.5.20)

Then sequence {xn} (n ≥ 0) generated by NK is well defined, remains in U (x0, t∗)
for all n ≥ 0, and converges to a solution x∗ ∈ U (x0, t∗) of equation F (x) = 0.
Moreover the following bounds hold for all n ≥ 0:

∥
∥
∥F ′

0 (xn)−1
∥
∥
∥ ≤ γ −1

n =
[

1 − w0

(

α0
n + tn

)

+ w0

(

α0
n

)]−1
, (2.5.21)

(or [1 − w0 (αn + tn) + w0 (αn)]−1)

‖xn+1 − xn‖ ≤ εn+1 ≤ εn+1, (2.5.22)

and
∥
∥xn − x∗∥∥ ≤ t∗ − tn . (2.5.23)

Furthermore if ε0 is such that
t∗ ≤ α0

0, (2.5.24)
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then the solution x∗ is unique in U
(

x0,P−1
h,2 (0)

)

, where function P−1
h,2 is the inverse

of the restriction of Ph to
[

w−1
0 (1) ,∞

]

, and function Ph was defined in [98, pp.

830].

Proof. We state that the derivation of (2.5.21) requires only (2.5.4) and not the
stronger (2.5.5) used in [98, pp. 831] (see also (2.5.6)). The rest follows exactly
in the proof of Theorem 4.3 in [98, pp. 831].

That completes the proof of the theorem.

Remark 2.5.2. (a) If equality holds in (2.5.6) then our Theorem 2.5.1 reduces to The-
orem 4.3 in [98]. However if strict inequality holds in (2.5.6) then our error bounds
on the distances ‖xn+1 − xn‖ (see (2.5.18) and (2.5.22)) are finer (smaller) than the
corresponding ones in [98], [99]. Moreover condition (2.5.16) is weaker than the
corresponding one in [98] (see 4.4 there) given by

sn < w−1 (1) (n ≥ 0) . (2.5.25)

Furthermore the information on the location of the solution x∗ is at least as precise,
as our majorizing sequence is finer (smaller) (see (2.5.19)).

All the above advantages hold even if we choose

αn = =
αn and we set αn = α0

n (n ≥ 0) . (2.5.26)

Note also that the above results are obtained under the same computational cost
since computing function w requires the computation of w0.

Definition 2.5.3. Given a continuous operator f .. Rm → U ⊆ D, the set

U (p) = {

u0 ∈ U
∣
∣ f n (u0) → p

}

(2.5.27)

is called the attraction basin of p [81].

This set is not empty if and only of p is a fixed point f as it can be seen from the
equality

un+1 = f (un) . (2.5.28)

It follows that the convergence domain

Uc = {u0 ∈ U |sequence {un} converges }
=
⋃

p∈U

U (p) =
⋃

a∈U f

U (p) (2.5.29)

where
U f = {p | f (p) = p } . (2.5.30)

Hence, the convergence domain of f can be constructed as the union of the at-
traction basins of its fixed points.
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Example 2.5.4. Iteration (2.5.12), (2.5.13) can be rewritten as

t+ = t + ε, ε+ = Q
(

(α0 − t)+ , ε
)

1 − w0
(

α0
0 + t+

)+ w0
(

α0
0

) (2.5.31)

(see also [99, p. 789]).

Its fixed points constitute the segment
[

0, w−1
0 (1)

)

of the t-axis. When F0 is

Lipschitz smooth at x0 with w0 (t) = L0t (L0 ≥ 0) and Lipschitz smooth on D with
w (t) = Lt (L ≥ 0), (2.5.31) reduces to:

t+ = t + ε, ε+ = .5Lε2

1 − L0t+
, (2.5.32)

and in the special case L0 = L

s+ = t + ε, ε+ = .5Lε2

1 − Ls+
. (2.5.33)

It was shown in [99, p. 789] (i.e., using (2.5.33)) that

UG = U L=L0
c =

{

(t, ε) |0 ≤ ε < .5
(

L−1 − t
)}

. (2.5.34)

Denote by UA the convergence domain if

L0 = L (2.5.35)

or
L0 < L . (2.5.36)

Then we can show that our convergence domain UA contains Uw:

Proposition 2.5.5. Under hypotheses of Theorem 4.3 in [98] (i.e., (2.5.25))

UG ⊂ UA (2.5.37)

where ⊂ denotes strict inequality if (2.5.36) holds.

Proof. Condition (2.5.16) follows from (2.5.25). Hence the conclusions of Theorem
2.5.1 also hold. The rest follows from (2.5.32), (2.5.33), (2.5.35) and the definitions
of sets UG and UA.

Remark 2.5.6. It was shown in Section 2.2 of this chapter that for δ ∈ [0, 2) the set

Uδ (L0, L) = (2.5.38)

=
{

(t, ε)
∣
∣
∣Kδ = L (t + ε) + δL0ε ≤ δ, L0

(

t + 2δε
2−δ

)

≤ 1,
L0δ

2

2−δ
≤ L

}

contains pairs (t, ε) such that method (2.5.32) converges.
Clearly we have:

Uδ (L0, L) ⊂ UA. (2.5.39)

Moreover, we have
UG ⊆ Uδ (L0, L) , (2.5.40)

as
U1 (L0, L) ⊆ Uδ (L0, L) . (2.5.41)
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Furthermore if t = 0 we get from (2.5.34), and (2.5.38) (for say δ = 1)

K = 2Ln ≤ 1, (2.5.42)

and
K1 = (L0 + L) n ≤ 1, (2.5.43)

respectively.

Remark 2.5.7. It follows from the above that we also managed to enlarge the conver-
gence domain UG found in [99], and under the same computational cost.

Note also that condition (2.5.37) holds obviously for all possible choices of func-
tions w0 and w satisfying (2.5.6) (not only the ones given in Example 2.5.4). Claims
(a)–(c) made in the introduction have now been justified.

Finally note that our technique used here only for NK method has been also
illustrative and can be used easily on other methods appearing in [99] or elsewhere
[43].

2.6 Convergence of NK method and operators with values in a
cone

In this section, we are concerned with the solution of problems of the form

Find x∗ such that F
(

x∗) ∈ C, (2.6.1)

where C is a nonempty closed convex cone in a Banach space Y , and F is a reflexive
and continuously Fréchet-differentiable operator from a subset D0 of a Banach space
X into Y .

We used an extension of Newton’s method to solve (2.6.1). The usual Newton’s
method corresponds with the special case when C is the degenerate cone {0} ⊆ Y .
We provide a semilocal convergence analysis for Newton’s method that generalizes
the Newton-Kantorovich theorem. It turns out that our sufficient convergence con-
ditions are weaker than the ones given by Robinson in [178], and under the same
computational cost.

Let p ∈ D0 be fixed. Define set-valued operator G (p) from X into Y and its
inverse by

G (p) x = F ′ (p) x − C, x ∈ X, (2.6.2)

G−1 (p) y = {

z ∈ F ′ (p) z ∈ y + C
}

, y ∈ Y, (2.6.3)

where F ′ (x) denotes the Fréchet-decreative of F evaluated at x . It is well-known
that operator G (p) as well as its inverse are convex [178]. Assume there exists an
initial guess x0 ∈ D0 such that

G−1 (x0) [−F (x0)] �= ∅. (2.6.4)
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Introduce algorithm so that given xn , we choose xn+1 to be any solution of

minimize
n≥0

{‖x − xn‖ | F (xn) + F ′ (xn) (x − xn) ∈ C
}

. (2.6.5)

The similarity with the usual NK method is now clear. We expect that problem
(2.6.2) will be easier to solve than problem (2.6.1) [178].

We need the following lemma on majorizing sequences. The proof can essentially
be found in Lemma 2.4.7 (see also Section 2.3):

Lemma 2.6.1. Assume there exist parameters b > 0, � ≥ 0, �0 ≥ 0, with �0 ≤ �,
η ≥ 0, and

hδ = b (δ�0 + �) n ≤ δ, δ ∈ [0, 1] (2.6.6)

or

hδ ≤ δ,
2b�0n

2δ
≤ 1,

�0δ
2

2 − δ
≤ �, δ ∈ [0, 2) (2.6.7)

or
�0n ≤ 1 − 1

2δ, δ ∈ [δ0, 2) (2.6.8)

where

δ0 =
−b0 +

√

b2
0 + 8b0

2
, b0 = �

�0
for �0 �= 0. (2.6.9)

Then, iteration {tn} (n ≥ 0) given by

t0 = 0, t1 = η, tn+2 = tn+1 + b� (tn+1 − tn)2

2 (1 − b�0tn+1)
(n ≥ 0) (2.6.10)

is nondecreasing, bounded by t∗∗ = 2η
2−δ

, and converges to some t∗ such that

0 ≤ t∗ ≤ t∗∗. (2.6.11)

Moreover, the following error bounds hold for all n ≥ 0:

0 ≤ tn+2 − tn+1 ≤ δ

2
(tn+1 − tn) ≤

(
δ

2

)n+1

η. (2.6.12)

We can show the following generalization of the Newton-Kantorovich theorem:

Theorem 2.6.2. Let D0, X, Y , C, F, and G be as above.
Assume: there exists a point x0 ∈ D0 and nonnegative numbers b, �0, �, η, δ such
that (2.6.6) or (2.6.7) or (2.6.8) hold;

∥
∥
∥G−1 (x0)

∥
∥
∥ ≤ b, (2.6.13)

∥
∥F ′ (x) − F ′ (x0)

∥
∥ ≤ �0 ‖x − x0‖ , (2.6.14)

∥
∥F ′ (x) − F ′ (y)

∥
∥ ≤ � ‖x − y‖ , (2.6.15)

U
(

x0, t∗
) ⊆ D0, (2.6.16)
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and
‖x1 − x0‖ ≤ η, (2.6.17)

where x1 is any point obtained from (2.6.5) (given x0 satisfying (2.6.4) and t∗ is
given in Lemma 2.6.1).

Then, algorithm (2.6.4)–(2.6.5) generates at least one Newton-iteration {xn}
(n ≥ 0), which is well defined, remains in U (x0, t∗) for all n ≥ 0 and converges
to some x∗ ∈ U (x0, t∗) such that F (x∗) ∈ C. Moreover the following estimates
hold for all n ≥ 0

‖xn+1 − xn‖ ≤ tn+1 − tn (2.6.18)

and
∥
∥xn − x∗∥∥ ≤ t∗ − tn . (2.6.19)

Proof. We first show sequence {xn} (n ≥ 0) exists, xn ∈ U (x0, t∗) and

‖xk+1 − xk‖ ≤ tk+1 − tk (n ≥ 0) . (2.6.20)

Point x1 exists as G (x0) is an onto operator, which solves (2.6.5) for n = 0, and
(2.6.20) holds for k = 0 (by (2.6.17)). Moreover we get

x1 ∈ U
(

x0, t∗
)

.

If (2.6.5) is feasible it must be solvable. Indeed, because F ′ (xk) is continuous
and C is closed and convex the feasible set of (2.6.5) is also closed and convex.
The existence of a feasible point q implies that any solution of (2.6.5) lie in the
intersection of the feasible set of (2.6.5) and U (|xk, 1 ‖q − xk‖) . Moreover this
intersection is a closed, convex and bounded set. Furthermore because X is reflexive
and function ‖x − xk‖ is weakly lower semicontinuous a solution of (2.6.5) exists
[178]. Finally, because (2.6.5) is a convex minimization problem, any solution will
be a global solution.

Now assume x1, x2, ..., xn+1 exists satisfying (2.6.20).
Then, we get

‖xk+1 − x0‖ ≤ ‖xk+1 − xk‖ + ‖xn − xk−1‖ + · · · + ‖x1 − x0‖ (2.6.21)

≤ (tk+1 − tk) + (tk − tk−1) + · · · + (t1 − t0) = tk+1 ≤ t∗.

Hence, xk+1 ∈ U (x0, t∗).
By (2.6.14) we have:

∥
∥
∥G−1 (x0)

∥
∥
∥

∥
∥F ′ (xk+1) − F ′ (x0)

∥
∥ ≤ b�0 ‖xk+1 − x0‖

≤ b�0tk+1 < 1. (2.6.22)

Therefore the convexity of G (xk+1) carries to

F ′ (xk+1) x − C = {

F ′ (x0) + [

F (xk+1) − F ′ (x0)
]}

x − C, (2.6.23)
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and by the Banach Lemma

∥
∥
∥G−1 (xk+1)

∥
∥
∥ ≤

∥
∥G−1 (x0)

∥
∥

1 − ∥
∥G−1 (x0)

∥
∥ ‖F ′ (xk+1) − F ′ (x0)‖

(2.6.24)

≤ b

1 − b�0 ‖xk+1 − x0‖ .

It follows that (2.6.5) is feasible, and hence solvable for n = k = 1, so that xk+1
exists. We need to solve for x :

F (xk+1) + F ′ (xk+1) (x − xk+1) ∈ F (xk) + F ′ (xk) (xk+1 − xk) + C. (2.6.25)

But xk+1 solves (2.6.5) with n = k, so the right-hand side of (2.6.25) is contained
in C . Hence any x satisfying (2.6.25) also satisfies (2.6.5) for n = k + 1. We can
rewrite (2.6.25) as

x − xk+1 ∈ G−1 (xk+1)
[−F (xk+1) + F (xk) + F ′ (xk) (xk+1 − xk)

]

. (2.6.26)

Using (2.6.15) we get
∥
∥−F (xn+1) + F (xk) + F ′ (xk) (xk+1 − xk)

∥
∥ ≤ 1

2� ‖xk+1 − xk‖2 . (2.6.27)

Because the right-hand side of (2.6.26) contains an element of least norms, there
exists some q satisfying (2.6.26) and consequently (2.6.25) so that

‖q − xk+1‖ ≤
∥
∥
∥G−1 (xk+1)

∥
∥
∥

∥
∥−F (xk+1) + F ′ (xk) (xk+1 − xk)

∥
∥

≤
1
2 b� ‖xk+1 − xk‖2

1 − b�0 ‖xk+1 − x0‖ ≤
1
2 b� (tk+1 − tk)2

1 − b�0tk+1
(2.6.28)

That is q is also feasible for (b) with n = k, we have

‖xk+2 − xk+1‖ ≤ ‖q − xk+1‖ ≤ tk+2 − tk+1 (2.6.29)

and xk+2 ∈ U (x0, t∗) which completes the induction. Hence sequence {xn} is
Cauchy in X and as such it converges to some x∗ ∈ U (x0, t∗). Then for any k

[

F (xk+1) − F
(

x∗)]− [

F (xk+1) − F (xk) − F ′ (xk) (xk+1 − xk)
] ∈ C − F

(

x∗) .
(2.6.30)

The left-hand side of (2.6.30) approaches zero by the continuity assumptions,
and as C − F (x∗) is closed we get F (x∗) ∈ C .

Finally (2.6.19) follows from (2.6.18) by standard majorization techniques.

Remark 2.6.3. Our Theorem 2.6.2 reduces to Theorem 2 in [178, pp. 343] if �0 = �.

The advantages of this approach have already been explained in Section 2.2 of
Chapter 2.
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2.7 Convergence theorems involving center-Lipschitz conditions

In this section, we are concerned with the problem of approximating a locally unique
solution x∗ of equation (2.1.1).

Most authors have used a Lipschitz-type hypotheses of the form
∥
∥
∥F ′ (x0)

−1 [F ′ (x) − F ′ (y)
]
∥
∥
∥ ≤ α (r) (2.7.1)

for all x, y,∈ U (x0, r) ⊆ U (x0, R) ⊆ D for some R > 0 and a continuous non-
negative function α in connection with the NK method. The computation of function
α is very difficult or impossible in general (see Example 2.2.18). That is why we
use instead hypotheses (2.7.4) in which the corresponding function w0 is easier to
compute.

Based on this idea, we produce local and semilocal convergence theorems for
the NK. Our results can be weaker than the corresponding ones using (2.7.1). In the
local case, we show that a larger convergence radius can be obtained.

We provide the following semilocal convergence results involving center-
Lipschitz conditions:

Theorem 2.7.1. Let F.. D ⊆ X → Y be a Fréchet-differentiable operator. Assume:
there exist a point x0 ∈ D, η ≥ 0, R > 0, and nonnegative continuous functions

w0, w such that:

F ′ (x0)
−1 ∈ L (X, Y ) , (2.7.2)

∥
∥
∥F ′ (x0)

−1 F (x0)

∥
∥
∥ ≤ η (2.7.3)

∥
∥
∥F ′ (x0)

−1 [F ′ (x) − F ′ (x0)
]
∥
∥
∥ ≤ w0 (‖x − x0‖) , (2.7.4)

∥
∥
∥F ′ (x)−1 F ′ (x0)

∥
∥
∥ ≤ w (‖x − x0‖) (2.7.5)

for all x ∈ D (x0, r) ⊆ U (x0, r);
equation

w (r)

{[
∫ 1

0
w0 (tr) dt + w0 (r)

]

r + η

}

= r (2.7.6)

has solutions on (0, R]. Denote by r0 the smallest positive solution of equation
(2.7.6):

q = 2w0 (r0) w (r0) < 1; (2.7.7)

and
U (x0, R) ⊆ D. (2.7.8)

Then, sequence {xn} (n ≥ 0) generated by NK method is well defined and remains in
U (x0, r0) for all n ≥ 0 and converges to a unique solution x∗ of equation F (x) = 0
in U (x0, r0). Moreover the following estimates hold for all n ≥ 0:

‖xn+2 − xn+1‖ ≤ q ‖xn+1 − xn‖ (2.7.9)
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and
∥
∥xn − x∗∥∥ ≤ η

1 − q
qn . (2.7.10)

Moreover if there exists r1 ∈ (r0, R] such that

w (r0)

[
∫ 1

0
w0 [(1 − t) r0 + tr1] dt + w0 (r0)

]

≤ 1 (2.7.11)

the solution x∗ is in U (x0, r1).

Proof. By (2.7.1), (2.7.3), (2.7.6) and the definition of r0 ‖x1 − x0‖ ≤ η ≤ r0. Hence
x1 ∈ U (x0, r0). Assume xk ∈ U (x0, r0), k = 0, 1, ..., n. Using (2.7.1) we obtain the
approximation

xk+1 − x0 =
= xk − F ′ (xk)

−1 F (xk) − x0

= −
[

F ′ (xk)
−1 F ′ (x0)

]

F ′ (x0)
−1
{∫ 1

0

[

F ′ (x0 + t (xk − x0)) − F ′ (x0)
]

· (xk − x0) dt + (

F ′ (x0) − F ′ (xk)
)

(xk − x0) + F (x0)

}

. (2.7.12)

By (2.7.3)–(2.7.6) and (2.7.12) we get in turn

‖xk+1 − x0‖ ≤
∥
∥
∥F ′ (xk)

−1 F ′ (x0)

∥
∥
∥

·
{∥
∥
∥F ′ (x0)

−1 [F ′ (x0 + t (xk − x0)) − F ′ (x0)
]
∥
∥
∥ ‖xk − x0‖ dt

+
∥
∥
∥F ′ (x0)

−1 [F ′ (x0) − F ′ (xk)
]
∥
∥
∥

· ‖xk − x0‖ +
∥
∥
∥F ′ (x0)

−1 F (x0)

∥
∥
∥

}

≤ w (‖xk − x0‖)
{[

∫ 1

0
w0 (t ‖xk − x0‖) dt

+w0 (‖xk − x0‖)] ‖xk − x0‖ + η}

≤ w (r)

{[
∫ 1

0
w0 (tr) dt + w0 (r)

]

r + η

}

= r. (2.7.13)

That is xk+1 ∈ U (x0, r0). Moreover by (2.7.1) we obtain the approximation

F ′ (x0)
−1 F (xk+1) = F ′ (x0)

−1 [F (xk+1) − F (xk) − F ′ (xk) (xk+1 − xk)
]

= F ′ (x0)
−1

{
∫ 1

0

[

F ′ (xk + t (xk+1 − xk)) − F ′ (x0)
]

dt

+F ′ (x0)
−1 [F ′ (x0) − F ′ (xk)

]}

(xk+1 − xk) . (2.7.14)



86 2 The Newton-Kantorovich (NK) Method

By (2.7.4) and (2.7.14) we get in turn
∥
∥
∥F ′ (x0)

−1 F (xk+1)

∥
∥
∥ (2.7.15)

≤
{∥
∥
∥
∥
∥

F ′ (x0)
−1
∫ 1−1

0

[

F ′ (xk + t (xk+1 − xk)) − F ′ (x0)
]

∥
∥
∥
∥
∥

dt

+
∥
∥
∥F ′ (x0)

−1 [F ′ (x0) − F ′ (xk)
]
∥
∥
∥

}

‖xk+1 − xk‖

≤
{
∫ 1

0
w0

[

(1 − t) ‖xk − x0‖ + t ‖xk+1 − x0‖
]

dt

+w0 (‖xk − x0‖)} ‖xk+1 − xk‖

≤
[
∫ 1

0
w0 [(1 − t) r0 + tr0] dt + w0 (r0)

]

‖xk+1 − xk‖

= 2w0 (r0) ‖xk+1 − xk‖ .

Hence by (2.7.1), (2.7.5) and (2.7.15) we obtain

‖xk+2 − xk+1‖ =
∥
∥
∥

[

F ′ (xk+1)
−1 F ′ (x0)

] [

F ′ (x0)
−1 F (xk+1)

]∥
∥
∥ (2.7.16)

≤
∥
∥
∥F ′ (xk+1)

−1 F ′ (x0)

∥
∥
∥ ·

∥
∥
∥F ′ (x0)

−1 F (xk+1)

∥
∥
∥

≤ w (r0) 2w (r0) ‖xk+1 − xk‖
= q ‖xk+1 − xk‖ ≤ qk+1η,

which shows (2.7.9) for all n ≥ 0.

Let m > 1, then we get using (2.7.9),

xn+m − xn+1 = (xn+m − xn+m−1) + (xn+m−1 − xn+m−2) (2.7.17)

+ · · · + (xn+2 − xn+1) ,

and

‖xn+m − xn+1‖ ≤ q ‖xn+m−1 − xn+m−2‖ ≤ · · · ≤ qm−1 ‖xn+1 − xn‖ (2.7.18)

that

‖xn+m − xn+1‖ ≤
(

q + · · · + qm−2 + qm−1
)

‖xn+1 − xn‖ (2.7.19)

≤ q
1 − qm−1

1 − q
qnη.

It follows from (2.7.19) and (2.7.7) that sequence {xn} (n ≥ 0) is Cauchy in a Ba-
nach space X and as such it converges to some x∗ ∈ U (x0, r0). By letting k → ∞,
m → ∞ in (2.7.16) and (2.7.19) we get (2.7.10) and (2.7.19) we get (2.7.10) and
F (x∗) = 0 respectively.



2.7 Convergence theorems involving center-Lipschitz conditions 87

To show uniqueness in U (x0, r0) let x∗
1 be a solution in U (x0, r0). Using the

approximation

xn+1 − x∗
1 = (2.7.20)

= xn − F ′ (xn)−1 F (xn) − x∗
1

= F ′ (xn)−1 [F
(

x∗)− F (xn) − F ′ (xn)
(

x∗
1 − xn

)]

=
[

F ′ (xn)−1 F ′ (x0)
]

F ′ (x0)
−1

{
∫ 1

0

[

F ′ (xn + t
(

x∗
1 − xn

))− F ′ (x0)
]

dt

+ [

F ′ (x0) − F ′ (xn)
]

}

(

x∗
1 − xn

)

as in (2.7.13) we get
∥
∥xn+1 − x∗

1

∥
∥ ≤ w (‖xn − x0‖)

[
∫ 1

0
w0

[

(1 − t) ‖xn − x0‖ (2.7.21)

+ t
∥
∥x∗

1 − x0
∥
∥
]+ w0 (‖xn − x0‖)

]

∥
∥xn − x∗

1

∥
∥

≤q
∥
∥xn − x∗

1

∥
∥ . (2.7.22)

By (2.7.7) and (2.7.22) lim
n→∞ xn = x∗

1 . But we already showed lim
n→∞ xn = x∗. Hence,

we conclude
x∗ = x∗

1 .

Finally to show uniqueness in U (x0, r1), let x∗
1 be a solution of F (x) = 0 in

U (x0, r1). As in (2.7.21) we get

∥
∥xn+1 − x∗

1

∥
∥ < w (r0)

[
∫ 1

0
w0 [(1 − t) r0 + tr1] dt + w0 (r0)

]

∥
∥xn − x∗

1

∥
∥

≤ ∥
∥xn − x∗

1

∥
∥ . (2.7.23)

By (2.7.23) we get
lim

n→∞ xn = x∗
1 .

Hence, again we deduce:
x∗ = x∗

1 .

Remark 2.7.2. In order for us to compare our results with earlier ones, consider the
Lipschitz condition (2.2.36) and the Newton-Kantorovich hypothesis (2.2.37). De-
fine

w0 (r) = �0rλ, (2.7.24)

w (r) = �1 (2.7.25)

for some λ ≥ 0, �0 ≥ 0, �1 > 0 and all r ∈ [0, R]. Assuming conditions (2.7.4),
(2.7.5) and (2.7.7) hold with the above choices then (2.7.6) and (2.7.7) reduce to



88 2 The Newton-Kantorovich (NK) Method

(λ + 2)

λ + 1
�0rλ+1 − r

�1
+ η = 0, (2.7.26)

and
2�0�1rλ < 1. (2.7.27)

Set λ = 1 then (2.7.26) and (2.7.27) are satisfied if

h0 = 6�0�
2
1η ≤ 1 (2.7.28)

with r0 being the small solution of equation (2.7.26). By comparing (2.2.37) and
(2.7.28) we see that (2.7.28) is weaker if (2.7.28) holds, and

3�2
1 <

�

�0
(�0 �= 0) . (2.7.29)

This can happen in practice as �
�0

can be arbitrarily large and hence larger than 3�2
1

(see Section 2.2).

This comparison can become even more favorable if λ > 1. Such a case is pro-
vided in Example 2.7.4.

Assume there exist a zero x∗ of F, R > 0, and nonnegative continuous functions
v0, v such that

F ′ (x∗)−1 ∈ L (Y, X) , (2.7.30)
∥
∥
∥F ′ (x∗)−1 [

F ′ (x) − F ′ (x∗)]
∥
∥
∥ ≤ v0

(∥
∥x − x∗∥∥) , (2.7.31)

∥
∥
∥F ′ (x)−1 F ′ (x∗)

∥
∥
∥ ≤ v

(∥
∥x − x∗∥∥) (2.7.32)

for all x ∈ U (x∗, r) ⊆ U (x∗, R); equation

v (r)

[
∫ 1

0
v0 [(1 − t) r ] dt + v0 (r)

]

= 1 (2.7.33)

has solutions in [0, R]. Denote by r∗ the smallest;

U
(

x∗, R
) ⊆ D. (2.7.34)

Then the following local convergence result holds for NK method.

Theorem 2.7.3. Under the above stated hypotheses sequence {xn} (n ≥ 0) gener-
ated by NK method is well defined, remains in U (x∗, r∗) for all n ≥ 0, and con-
verges to x∗ provided that x0 ∈ U (x∗, r∗).

Moreover the following estimates hold for all n ≥ 0
∥
∥xn+1 − x∗∥∥ ≤ an

∥
∥xn − x∗∥∥ ≤ a

∥
∥xn − x∗∥∥ , (2.7.35)

where
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an = w
(∥
∥xn − x∗∥∥)

[
∫ 1

0
w0

(

(1 − t)
∥
∥xn − x∗∥∥) dt + w0

(∥
∥xn − x∗∥∥)

]

(2.7.36)

and

a = w
(

r∗)
[
∫ 1

0
w0

(

(1 − t) r∗) dt + w0
(

r∗)
]

. (2.7.37)

Proof. It follows as in Theorem 2.7.1 by using (2.7.30)–(2.7.34), induction on n and
the approximation

xn+1 − x∗ = (2.7.38)

=
[

F ′ (xn)−1 F ′ (x∗)
]
{
∫ 1

0

[

F ′ (xn + t
(

x∗ − xn
))

− F ′ (x∗)] dt + [

F ′ (x∗)− F ′ (xn)
]

}

(

x∗ − xn
)

.

We complete this section with a numerical example to show that we can obtain a
larger convergence radius than in earlier results.

Example 2.7.4. Let X = Y = R, D = U (0, 1), and define function F on D by

F (x) = 1
5 ex5 − x − 1

5 . (2.7.39)

Choose v0 (r) = �0rμ, v (r) = b. Then it can easily be seen from (2.7.30)–(2.7.32),
(2.7.39) that �0 = e, μ = 4, and

b = 1.581976707 =
∥
∥
∥F ′ (−1)−1 F ′ (0)

∥
∥
∥ .

Equation (2.7.33) becomes
[
∫ 1

0
e [(1 − t) r ]4 dt + er4

]

b = 1 (2.7.40)

or

r∗ =
[

5

6eb

] 1
4

= .663484905. (2.7.41)

We saw earlier in Example 2.4.16 that Rheinboldt radius [175] is given by

r∗
1 = .245252961. (2.7.42)

Hence, we conclude:
r∗

1 < r∗. (2.7.43)

Example 2.7.5. We refer the reader to Example 2.2.18.
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2.8 The radius of convergence for the NK method

Let F .. D ⊆ X → Y be an m-times continuously Fréchet-differentiable operator
(m ≥ 2 an integer) defined on an open convex subset D of a Banach space X with
values in a Banach space Y . Suppose there exists x∗ ∈ D that is a solution of the
equation

F (x) = 0. (2.8.1)

The most popular method for approximating such a point x∗ is Newton’s method

xn+1 = G (xn) (n ≥ 0) , (x0 ∈ D) , (2.8.2)

where
G (x) ≡ x − F ′ (x)−1 F (x) (x ∈ D) . (2.8.3)

In the elegant paper by Ypma [216], affine invariant results have been given con-
cerning the radius of convergence of Newton’s method. Ypma used Lipschitz con-
ditions on the first Fréchet derivative as the basis for his analysis. In this study, we
use Lipschitz-like conditions on the mth Fréchet derivative F (m) (x) ∈ L

(

Xm
1 , Y2

)

(x ∈ D) (m ≥ 2) an integer. This way we manage to enlarge the radius of conver-
gence for Newton’s method (2.8.2). Finally we provide numerical examples to show
that our results guarantee convergence, where earlier ones do not [216]. This is im-
portant in numerical computations [43], [216].

We give an affine invariant form of the Banach lemma on invertible operators.

Lemma 2.8.1. Let m ≥ 2 be an integer, αi ≥ 2m (2 ≤ i ≤ m), η ≥ 0, X, Y Banach
spaces, D a convex subset of X and F.. D → Y an m-times Fréchet-differentiable
operator. Assume there exist z ∈ D so that F ′ (z)−1 exists, and some convex neigh-
borhood N (z) ⊆ D

∥
∥
∥F ′ (z)−1 F (i) (z)

∥
∥
∥ ≤ αi , i = 2, ..., m (2.8.4)

and
∥
∥
∥F ′ (z)−1

[

F (m) (x) − F (m) (z)
]∥
∥
∥ ≤ ε0 for all x ∈ N (z) , ε0 > 0. (2.8.5)

If x ∈ N (z) ∩ U (z, δ), where δ is the positive zero of the equation f ′ (t) = 0, where

f (t) = αm + ε0

m!
tm + · · · + α2

2!
t2 − t + d (2.8.6)

then F ′ (x)−1 exists and for ‖x − z‖ < t ≤ δ

∥
∥
∥F ′ (z)−1 F ′′ (x)

∥
∥
∥ s < f ′′ (t) (2.8.7)

and ∥
∥
∥F ′′ (x)−1 F ′ (z)

∥
∥
∥ ≤ − f ′ (t)−1 . (2.8.8)
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Proof. It is convenient to define ε, b1, bi , i = 2, ..., m by

ε = x − z0,

b1 = z + θε,

bi = z + θi (bi−1 − z) , θ ∈ [0, 1] .

We can have in turn

F ′′ (x)

= F ′′ (z) + [

F ′′ (x) − F ′′ (z)
]

= F ′′ (z) +
∫ 1

0
F ′′′ [z + θ1 (x − z)] (x − z) dθ1

= F ′′ (z) +
∫ 1

0

[

F ′′′ (z + θ1 (x − z)) − F ′′′ (z)
]

(x − z) dθ1

+
∫ 1

0
F ′′′ (z) (x − z) dθ1

= F ′′ (z) +
∫ 1

0
F ′′′ (z) (x − z) dθ1 +

∫ 1

0

∫ 1

0
F (4) {z + θ2

· [z + θ1 (x − z) − z]} [z + θ1 (x − z) z] (x − z) dθ2dθ1

= F ′′ (z) +
∫ 1

0
F ′′′ (z) εdθ1 +

∫ 1

0

∫ 1

0
F (4) (b2) (b1 − z0) εdθ2dθ1

= · · ·

= F ′′ (z) +
∫ 1

0
F ′′′ (z) εdθ1 + · · · +

∫ 1

0
· · ·

∫ 1

0
F (m) (bm−2) (bm−3 − z)

· · · (b1 − z) dθm−2 · · · dθ1

= F ′′ (z) +
∫ 1

0
F ′′′ (z) εdθ1 + · · · +

∫ 1

0
· · ·

∫ 1

0
F (m) (z) (bm−3 − z)

· · · (b1 − z) εdθm−2 · · · dθ1

+
∫ 1

0
· · ·

∫ 1

0

[

F (m) (bm−2) − F (m) (z)
]

(bm−3 − z)

· · · (b1 − z) εdθm−2 · · · dθ1. (2.8.9)

Using the triangle inequality, (2.8.4), (2.8.5), (2.8.6) in (2.8.9) after composing by
F ′ (z)−1 , we obtain (2.8.7).
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We also get

−F ′ (z)−1 [F ′ (z) − F ′ (x)
]

= F ′ (z)−1 [F ′ (x) − F ′ (z) − F ′′ (z) (x − z) + F ′′ (z) (x − z)
]

=
∫ 1

0
F ′ (z)−1 {F ′′ [z + θ1ε] − F ′′ (z)

}

dθ1ε + F ′ (z)−1
∫ 1

0
F ′′ (z) εdθ1

=
∫ 1

0

∫ 1

0
F ′ (z) F ′′′ (b2) (b1 − z) εdθ2dθ1 + F ′ (z)−1

∫ 1

0
F ′′ (z) εdθ1

= · · ·

=
∫ 1

0
· · ·

∫ 1

0
F (m) (bm−1) (bm−2 − z)

· · · (b1 − z) εdθm−1εdθm−2 · · · dθ2dθ1

+
∫ 1

0
· · ·

∫ 1

0
F (m−1) (bm−2) (bm−3 − z) · · · (b1 − z) εdθm−2 · · · dθ2dθ1

+ · · · +
∫ 1

0
F ′ (z)−1 F ′′ (z) εdθ1

=
∫ 1

0

∫ 1

0
F ′ (z)−1

[

F (m) (bm−1) − F (m) (z)
]

(bm−2 − z)

· · · (b1 − z) εdθm−2 · · · dθ1

+
∫ 1

0
· · ·

∫ 1

0
F ′ (z)−1 F (m) (z) (bm−2 − z) · · · (b1 − z) εdθm−1 · · · dθ1

+
∫ 1

0
· · ·

∫ 1

0
F ′ (z)−1 F (m−1) (z) (bm−3 − z) · · · (b1 − z) εdθm−2 · · · dθ1

+ · · · +
∫ 1

0
F ′ (z)−1 F ′′ (z) εdθ1. (2.8.10)

Because f ′ (t) < 0 on [0, δ], using (2.8.4), (2.8.5), (2.8.6) in (2.8.10) we obtain for
‖x − z‖ < t

∥
∥
∥−F ′ (z)−1 [F ′ (z) − F ′ (x)

]
∥
∥
∥ ≤ 1 + f ′ (‖x − z‖) < 1 + f ′ (t) < 1. (2.8.11)

It follows from the Banach Lemma on invertible operators (2.8.11) F ′ (x)−1 exists,
and

∥
∥
∥F ′ (x)−1 F ′ (z)

∥
∥
∥ ≤

[

1 −
∥
∥
∥F ′ (z)−1 [F ′ (z) − F ′ (x)

]
∥
∥
∥

]−1 ≤ − f ′ (t)−1 .

which shows (2.8.8).
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We need the following affine invariant form of the mean value theorem for m-
Fréchet-differentiable operators.

Lemma 2.8.2. Let m ≥ 2 be an integer, αi ≥ 0 (2 ≤ i ≤ m) , X, Y Banach spaces,
D a convex subset of X and F; D → Y an m-times Fréchet-differentiable operator.
Assume there exist z ∈ D so that F ′ (z)−1 exists, and some convex neighborhood
N (z) of z such that N (z) ⊆ D,

∥
∥
∥F ′ (z)−1 F (i) (z)

∥
∥
∥ ≤ αi , i = 2, ..., m,

and
∥
∥
∥F ′ (z)−1

[

F (m) (x) − F (m) (z)
]∥
∥
∥ ≤ ε0 for all x ∈ N (z) , ε0 > 0.

Then for all x ∈ N (z)
∥
∥
∥F ′ (z)−1 [F (z) − F (x) (z − x)]

∥
∥
∥ (2.8.12)

≤ αm + ε

m!
‖x − z‖m + αm−1

(m − 1) !
‖x − z‖m−1 + · · · + α2

2!
‖x − z‖2 .

Proof. We can write in turn:

F (z) − F (x) − F ′ (x) (z − x)

=
∫ 1

0

[

F ′ (x + θ1 (z − x)) − F ′ (x)
]

(z − x) dθ1

=
∫ 1

0

[

F ′′ (z + θ1 (x − z)) − F ′′ (z)
]

θ1dθ1 (x − z)2 +
∫ 1

0
θ1 F ′′ (z) (x − z)2 θ1

=
∫ 1

0

∫ 1

0

[

F ′′′ (z + θ2θ1 (x − z)) − F ′′′ (z)
]

θ1 (x − z) dθ2θ1dθ1 (x − z)2

+
∫ 1

0

∫ 1

0
F ′′′ (z) θ1 (x − z) dθ2θ1dθ1 (x − z)2 +

∫ 1

0
θ1 F ′′ (z) (x − z)2 dθ1

= · · ·

=
∫ 1

0

∫ 1

0
· · ·

∫ 1

0

[

F (m) (z + θm−1θm−2 · · · θ1 (x − z)) − F (m) (z)
]

θ1
m−2

· · · θm−4
3 θm−3

2 θm−1
1 (x − z)m dθm−1dθm−2 · · · dθ3dθ2dθ1

+ · · · +
∫ 1

0

∫ 1

0
F ′′′ (z) θ2

1 (x − z)3 dθ2dθ1 +
∫ 1

0
θ1 F ′′ (z) (x − z)2 dθ1.

(2.8.13)

Composing both sides by F ′ (z)−1, using the triangle inequality, (2.8.5) and (2.8.6)
we obtain (2.8.12).
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Based on the above lemmas, we derive affine invariant convergence results for
the class T ≡ T ({αi } , 2 ≤ i ≤ m, α) (α > 0, αi ≥ 0, 2 ≤ i ≤ m) of operators F
defined by T ≡ {F |F .. D ⊆ X → Y ; D open and convex set, F m-times con-
tinuously Fréchet-differentiable on D; there exists x∗ ∈ D such that F (x∗) = 0;
F ′ (x)−1 exists; U (x∗, α) ⊆ D; x∗ is the only solution of equation F (x) = 0 in
U (x∗, α); and for all x ∈ U (x∗, α),

∥
∥
∥F ′ (x∗)−1

[

F (m)
(

x∗)− F (m) (x)
]∥
∥
∥ s < ε0, ε0 > 0, (2.8.14)

and ∥
∥
∥F ′ (x∗)−1

F (i) (x∗)
∥
∥
∥ ≤ αi , i = 2, ..., m. (2.8.15)

Let F ∈ T and x ∈ U (x∗, b) where b ≤ min {α, δ}. By Lemma 2.8.1, F ′ (x)−1

exists. Define

μ (F, x) ≡ sup
{∥
∥
∥F ′ (x)−1

[

F (m) (y) − F (m)
]∥
∥
∥ | y ∈ U

(

x∗, b
)}

, (2.8.16)

qi = qi (F, x) ≡
∥
∥
∥F ′ (x)−1 F (i) (x∗)

∥
∥
∥ , 2 ≤ i ≤ m, x ∈ U

(

x∗, b
)

. (2.8.17)

It follows from (2.8.14)–(2.8.17) that

μ
(

F, x∗) ≤ ε0 = ε
(

x∗) , qi
(

F, x∗) ≤ αi , 2s < i ≤ m, (2.8.18)

F ∈ T ({qi } , 2 ≤ i ≤ m, μ (F, x∗) , α) , and by Lemma 2.8.1

μ (F, x) ≤ μ (F, x∗)
1 − q2 ‖x − x∗‖ − · · · − μ(F,x∗)+ε0

(m−1)! ‖x − x∗‖m−1
≡ μ (x) . (2.8.19)

We also have the estimates
∥
∥
∥F ′ (x)−1 F (i) (x∗)

∥
∥
∥ ≤

∥
∥
∥F ′ (x)−1 F ′ (x∗)

∥
∥
∥

∥
∥
∥F ′ (x∗)−1

F (i) (x∗)
∥
∥
∥

≤ qi

∥
∥
∥F ′ (x)−1 F ′ (x∗)

∥
∥
∥ (2.8.20)

≤ qi

1 − α2 ‖x − x∗‖ − · · · − αm+ε0
(m−1)! ‖x − x∗‖m−1

≡ qi (x) .

The following lemma on fixed points is important.

Lemma 2.8.3. Let F, x be as above. Then, the Newton operator G defined in (2.8.3)
satisfies:

∥
∥G (x) − x∗∥∥ ≤ μ (F, x) + qm

m!

∥
∥x − x∗∥∥+ qm−1

(m − 1) !

∥
∥x − x∗∥∥m−1

+ · · · + q2

2!

∥
∥x − x∗∥∥2 (2.8.21)

and

∥
∥G (x) − x∗∥∥ ≤

αm+ε0
m! ‖x − x∗‖ + αm−1

(m−1)! ‖x − x∗‖m−1 + · · · + α2
2! ‖x − x∗‖2

1 − α2 ‖x − x∗‖ − · · · − (αm+ε0)
(m−1)! ‖x − x∗‖m−1

.

(2.8.22)
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Proof. Using (2.8.3), we can write

G (x) − x∗ =
= x − F ′ (x)−1 F (x) − x∗ = F ′ (x)−1 [F ′ (x)

(

x − x∗)− F (x)
]

= F ′ (x)−1 [F
(

x∗)− F (x) − F ′ (x)
(

x∗ − x
)]

=
[

F ′ (x)−1 F ′ (x∗)
] {

F ′ (x∗)−1 [
F
(

x∗)− F (x) − F ′ (x)
(

x∗ − x
)]}

(2.8.23)

As in Lemma 2.8.1 by taking norms in (2.8.23) and using (2.8.14), (2.8.15) we obtain
(2.8.21). Moreover using Lemma 2.8.2 and (2.8.12) we get (2.8.22).

Remark 2.8.4. Consider Newton method (2.8.2)–(2.8.3) for some x0 ∈ U (x∗, b).
Define sequence {cn} (n ≥ 0) by

cn ≡ ∥
∥xn − x∗∥∥ (n ≥ 0) (2.8.24)

and function g on [0, δ) by

g (t) ≡
αm+ε0

m! tm + αm−1
(m−1)! tm−1 + · · · + α2

2! t2

1 − α2t − · · · − αm+ε0
(m−1)! tm−1

. (2.8.25)

Using (2.8.24) and (2.8.25), estimate (2.8.22) becomes

cn+1 ≤ g (cn) (n ≥ 0) . (2.8.26)

It is simple algebra to show that g (t) < t iff t < δ0, where δ0 is the positive zero of
the equation

h (t) = 0, (2.8.27)

where

h (t) = (αm + ε0) (m + 1)

m!
tm−1 + mαm−1

(m − 1) !
tm−2 + · · · + 3

2!
α2t − 1. (2.8.28)

Note that for m = 2, using (2.8.28) we obtain

δ0 = 2

3 (α2 + ε0)
. (2.8.29)

Hence, we proved the following local convergence result for the NK method
(2.8.2)–(2.8.3).

Theorem 2.8.5. NK method {xn} (n ≥ 0) generated by (2.8.2)–(2.8.3) converges to
the solution x∗ of equation F (x) = 0, for all F ∈ T , iff the initial guess x0 satisfies

∥
∥x0 − x∗∥∥ < min {α, δ0} . (2.8.30)

We also have the following consequence of Theorem 2.8.5.
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Theorem 2.8.6. NK method {xn} (n ≥ 0) generated by (2.8.2)–(2.8.3) converges to
the solution x∗ of equation F (x) = 0, for all F ∈ T , if F ′ (x0)

−1 exists at the initial
guess x0, and

∥
∥x0 − x∗∥∥ < min

{

α, δ0
}

, (2.8.31)

where δ0 is the positive zero of the equation resulting from (2.8.28) by replacing
αm+1 by μ (F, x0) (defined by (2.8.10)) and αi , 2 ≤ i ≤ m by qi (F, x0) (defined by
(2.8.17)).

Proof. By Lemma 2.8.1, because F ′ (x0)
−1 exists and ‖x0 − x∗‖ < δ0, we get

μ
(

F, x∗) ≤ m0 ≡ μ(F,x0)

1−q2(F,x0)‖x0−x∗‖−···− μ(F,x0)+ε0
(m−1)! ‖x−x0‖m−1

. (2.8.32)

Moreover, we have

qi
(

F, x∗) =
=
∥
∥
∥F ′ (x∗)−1

F (i) (x∗)
∥
∥
∥ ≤

∥
∥
∥F ′ (x∗)−1

F ′ (x0)

∥
∥
∥

∥
∥
∥F ′ (x0)

−1 F (i) (x∗)
∥
∥
∥

≤ qi
0 ≡ qi (F,x0)

1−q2(F,x0)‖x0−x∗‖−···− μ(F,x0)+ε0
(m−1)! ‖x0−x∗‖m−1

. (2.8.33)

Denote by
=
δ0 the positive zero of the equation resulting from (2.8.28) by replacing

ε0 by μ (F, x∗) (defined by (2.8.16)) and αi , 2 ≤ i ≤ m by qi (F, x∗). Furthermore

denote by
≡
δ0 the positive zero of the equation resulting from (2.8.28) by replacing

ε0 by m0 and αi , 2 ≤ i ≤ m by qi
0.

Using the above definitions we get

=
δ0 ≥ ≡

δ0 ≥ qm (F, x0) + μ (F, x0)

m!

∥
∥x0 − x∗∥∥m + q2 (F, x0)

(m − 1) !

∥
∥x0 − x∗∥∥m−1

+ · · · + q2 (F, x0)

2!

∥
∥x0 − x∗∥∥ ≥ ∥

∥G (x0) − x∗∥∥ . (2.8.34)

The result now follows from (2.8.34) and Theorem 2.8.5.

Remark 2.8.7. Let us assume equality in (2.8.26) and consider the iteration cn+1 =
g (cn) (n ≥ 0). Denote the numerator of function g by g1 and the denominator by g2.
By Ostrowski’s theorem for convex functions [155] iteration {cn} (n ≥ 0) converges

to 0 if c0 ∈
[

0,
=
δ

)

, g′ (c0) < 1. Define the real function h0 by

h0 (t) = g2 (t)2 − g′
1 (t) g2 (t) + g′

2 (t) g1 (t) , (2.8.35)

where ε0 (x∗) = μ (F, x∗) and αi = qi (F, x∗), 2 ≤ i ≤ m replace αm+1 and αi in
the definition of g respectively. Note that h is a polynomial of degree 2 (m − 1) and
can be written in the form

h0 (t) = m2 − m + 2

(m − 1) !
ε2

0

(

x∗) t2(m−1) + (other lower order terms) + 1. (2.8.36)
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Because h0 is continuous, and

h0 (0) = 1 > 0, (2.8.37)

we deduce that there exists t0 > 0 such that h0 (t) > 0 for all t ∈ [0, t0) .

Set
c0 = min

{

t0,
=
δ

}

. (2.8.38)

It is simple algebra to show that g′ (c0) < 1 iff h0 (c0) > 0. Hence, NK method
converges to x∗ for all F ∈ T if the initial guess x0 satisfies

∥
∥x0 − x∗∥∥ ≤ min {α, c0} . (2.8.39)

Condition (2.8.39) is weaker than (2.8.31).
Although Theorem 2.8.5 gives an optimal domain of convergence for Newton’s

method, the rate of convergence may be slow for x0 near the boundaries of that do-
main. However, it is known that if the conditions of the Newton-Kantorovich theorem
are satisfied at x0 then convergence is rapid. The proof of this theorem can be found
in [27].

Theorem 2.8.8. Let m ≥ 2 be an integer, X, Y be Banach spaces, D an open convex
subset of X, F.. D → Y , and an m-times Fréchet-differentiable operator. Let x0 ∈
D be such that F ′ (x0)

−1 exists, and suppose the positive numbers δ∗, d (F, x0),
αi (F, x0), 2 ≤ i ≤ m satisfy

∥
∥
∥F ′ (x0)

−1 F (x0)

∥
∥
∥ ≤ d (F, x0) , (2.8.40)

∥
∥
∥F ′ (x0)

−1 F (i) (x0)

∥
∥
∥ ≤ αi (F, x0) , i = 2, ..., m, (2.8.41)

and
∥
∥
∥F ′ (x0)

−1
[

F (m) (x) − F (m) (x0)
]∥
∥
∥ ≤ ε0, ε0 = ε0 (F, x0) (2.8.42)

for all x ∈ U (x0, δ
∗) ⊆ D.

Denote by s the positive zero of the scalar equation

p′ (t) = 0, (2.8.43)

where

p (t) = αm (F, x0) + ε0

m!
tm + αm−1 (F, x0)

(m − 1) !
tm−1

+ · · · + α2 (F, x0)

2!
t2 − t + d (F, x0) . (2.8.44)

If
p (s) ≤ 0, (2.8.45)
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and
δ∗ ≥ r1, (2.8.46)

where r1 is the smallest nonnegative zero of equation

p (t) = 0

guaranteed to exist by (2.8.45), then NK method (2.8.2)–(2.8.3) starting from x0 gen-
erates a sequence that converges quadratically to an isolated solution x∗ of equation
F (x) = 0.

Remark 2.8.9. Using this theorem we obtain two further sufficiency conditions for
the convergence of NK method.

It is convenient for us to set ε0 = μ (F, x0), and αi (F, x0) = qi (qi evaluated at
x0) 2 ≤ i ≤ m. Condition can be written as

d (F, x0) ≤ s0, (2.8.47)

where
s0 = s −

[
q2
2! s2 + · · · + ε0+qm

m! sm
]

> 0 (2.8.48)

by the definition of s. Define functions h1, h2 by

h1 (t) = qm+ε0
m! tm + qm−1

(m−1)! tm−1 + · · · + q2
2! t2 + t − s0, (2.8.49)

and

h2 (t) = qm (x0)+ε0
m! tm + qm−1(x0)

(m−1)! tm−1 + · · · + q2(x0)

2! t2 + t − s0. (2.8.50)

Because h1 (0) = h2 (0) = −s0 < 0, we deduce that there exist minimum t1 > 0,
t2 > 0 such that

h1 (t) ≤ 0 for all t ∈ [0, t1] (2.8.51)

and
h2 (t) ≤ 0 for all t ∈ [0, t2] . (2.8.52)

Theorem 2.8.10. Let F ∈ T , and x0 ∈ U (x∗, α). Then condition (2.8.45) holds, if
either
(a) F ′ (x0)

−1 exists and ‖x0 − x∗‖ ≤ min {α, t1};
(b) F ′ (x0)

−1 exists and ‖x0 − x∗‖ ≤ min {α, t2},
where t1 and t2 are defined in (2.8.51), and (2.8.52), respectively.

Proof. Choose δ∗ > 0 such that U (x0, δ
∗) ⊆ U (x∗, α). By (2.8.3), and (2.8.21), we

get (for ε0 (G, x0) = μ (F, x0), and αi (F, x0) = qi (qi evaluated at x0) g ≤ i ≤ m):
∥
∥
∥F ′ (x0)

−1 F (x0)

∥
∥
∥ = ‖G (x0) − x0‖ ≤ ∥

∥F (x0) − x∗∥∥+ ∥
∥x∗ − x0

∥
∥

≤ qm+ε0
m!

∥
∥x0 − x∗∥∥m + qm−1

(m−1)!

∥
∥x0 − x∗∥∥m−1

+ · · · + q2
2!

∥
∥x0 − x∗∥∥2 + ∥

∥x0 − x∗∥∥ . (2.8.53)
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Using (2.8.53) to replace d (F, x0) in (2.8.44), and setting ‖x0 − x∗‖ ≤ t , we deduce
that (2.8.45) holds if h1 (t) ≤ 0, which is true by the choice of t1, and (a). Moreover,
by replacing μ (G, x0) and qi , 2 ≤ i ≤ m using (2.8.19), and (2.8.20), respectively,
condition (2.8.45) holds if h2 (t) ≤ 0, which is true by the choice of t2, and (b).

In order for us to cover the case m = 1, we start from the identity

xn+1 − x∗ =
= xn − F ′ (xn)−1 F (xn)

=
[

F ′ (xn)−1 F ′ (x∗)
]

F ′ (x∗)−1 1
[

F
(

x∗)− F (xn) − F ′ (xn)
(

x∗ − x
)]

=
[

F ′ (xn)−1 F ′ (x∗)
]

F ′ (x∗)−1
∫ 1

0

[

F ′ (xn + t
(

x∗ − xn
))− F ′ (xn)

] (

x∗ − xn
)

dt

=
[

F ′ (xn)−1 F ′ (x∗)
]

F ′ (x∗)−1
∫ 1

0

[

F ′ (xn + t
(

x∗ − xn
))− F ′ (x∗)] (x∗ − xn

)

dt

+
[

F ′ (xn)−1 F ′ (x∗)
]

F ′ (x∗)−1 [
F ′ (x∗)− F ′ (xn)

] (

x∗ − xn
)

.

to show as in Lemma 2.8.3.

Theorem 2.8.11. Let F.. D → Y be a Fréchet-differentiable operator. Assume there
exists a simple zero x∗ of F (x) = 0, and for ε1 > 0 there exists � > 0 such that

∥
∥
∥F ′ (x∗)−1 [

F ′ (x) − F ′ (x∗)]
∥
∥
∥ < ε1

for all x ∈ U (x∗, �).
Then, NK method {xn} (n ≥ 0) generated by (2.8.2)–(2.8.3) is well defined, re-

mains in U (x∗, l), and converges to x∗ with
∥
∥xn+1 − x∗∥∥ ≤ 2ε1

1−ε1

∥
∥xn − x∗∥∥ (n ≥ 0)

provided that
3ε1 < 1

and
x0 ∈ U

(

x∗, l1
)

.

Example 2.8.12. Returning back to Example 2.4.16, for m = 3, α2 = α3 = 1 and
ε0 = e − 1.
We get using (2.8.28)

δ3
0 = .43649019. (2.8.54)

To compare our results with earlier ones, note that in Theorem 3.7 [216, p. 111] the
condition is

∥
∥x0 − x∗∥∥ < min

{

σ, 2
3ρ

}

= ρ0, (2.8.55)

where σ, ρ are such that U (x∗, σ ) ⊆ D, and
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∥
∥
∥F ′ (x∗)−1 (

F ′ (x) − F ′ (y)
)
∥
∥
∥ ≤ ρ ‖x − y‖ for all x, y ∈ U

(

x∗, σ
)

. (2.8.56)

Letting σ = α = 1, we get using (2.8.56) ρ = e, and condition (2.8.55) becomes
∥
∥x0 − x∗∥∥ < ρ ≡ .245253. (2.8.57)

Remark 2.8.13. For m = 2, (2.8.28) gives (2.8.29). In general α2 < ρ. Hence, there
exists ε0 > 0 such that α2 + ε0 < ρ, which shows that

ρ0 > ρ0. (2.8.58)

(See Example 2.8.15 for such a case.)

Remark 2.8.14. Our analysis can be simplified if instead of (2.8.22) we consider the
following estimate: because x ∈ U (x∗, α), there exist γ1, γ2 such that

2
[

αm+ε0
m!

∥
∥x0 − x∗∥∥m−2 + · · · + α2

2!

]

≤ γ1, (2.8.59)

and
αm+ε0
(m−1)!

∥
∥x0 − x∗∥∥m−2 + · · · + α2 ≤ γ2. (2.8.60)

Hence estimate (2.8.22) can be written

∥
∥G (x) − x∗∥∥ ≤ γ1

2(1−γ2‖x−x∗‖)
∥
∥x − x∗∥∥2

, (2.8.61)

and for γ ∗ = max {γ1, γ2}
∥
∥G (x) − x∗∥∥ ≤ γ ∗

2(1−γ ∗‖x−x∗‖)
∥
∥x − x∗∥∥2

. (2.8.62)

The convergence condition of Theorem 3.7 [216, p. 111] and (2.8.61), (2.8.62), be-
comes respectively

∥
∥x0 − x∗∥∥ ≤ min {α, γ } , γ = 2

γ1+2γ2
, (2.8.63)

and
∥
∥x0 − x∗∥∥ ≤ min

{

σ, 2
3γ ∗

}

. (2.8.64)

In particular, estimate (2.8.64) is similar to (2.8.55), and if γ < ρ, then (2.8.63)
allows a wider range for the initial guess x0 than (2.8.55).

Furthermore, assuming (2.8.4), (2.8.5), and (2.8.55) hold, our analysis can be
based on the following variations of (2.8.22):

∥
∥G (x) − x∗∥∥ ≤

qm+ε0
m! ‖x−x∗‖m+···+ q2

2! ‖x−x∗‖2

1−ρ‖x−x∗‖ , (2.8.65)

and
∥
∥G (x) − x∗∥∥ ≤ ρ

2
[

1−α2‖x−x∗‖−···− αm+ε0
(m−1)! ‖x−x∗‖m−1

]

∥
∥x − x∗∥∥2

. (2.8.66)
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Example 2.8.15. Let us consider the system of equations

F (x, y) = 0,

where
F .. R2 → R2,

and
F (x, y) = (xy − 1, xy + x − 2y) .

Then, we get

F ′ (x, y) =
[

y x
y + 1 x − 2

]

,

and

F ′ (x, y)−1 = 1

x + 2y

[

2 − x x
y + 1 −y

]

,

provided that (x, y) does not belong on the straight line x + 2y = 0. The second
derivative is a bilinear operator on R2 given by the following matrix

F ′′ (x, y) =

⎡

⎢
⎢
⎢
⎢
⎣

0 1
1 0
− −
0 1
1 0

⎤

⎥
⎥
⎥
⎥
⎦

.

We consider the max-norm in R2. Moreover in L
(

R2, R2
)

we use for

A =
[

a11 a12
a21 a22

]

the norm
‖A‖ = max {|a11| + |a12| , |a21| + |a22|} .

As in [7], we define the norm of a bilinear operator B on R2 by

‖B‖ = sup
‖z‖=1

max
i

2
∑

j=1

∣
∣
∣
∣
∣

2
∑

k=1

b jk
i zk

∣
∣
∣
∣
∣
,

where

z = (z1, z2) and B =

⎡

⎢
⎢
⎢
⎢
⎣

b11
1 b12

1
b21

1 b22
1− −

b11
2 b12

2
b21

2 b22
2

⎤

⎥
⎥
⎥
⎥
⎦

.

Using (2.8.4), (2.8.5), (2.8.29), (2.8.55), (2.8.56), for m = 2 and (x∗, y∗) = (1, 1),
we get ρ = 4

3 , ρ0 = .5, α2 = 1. We can set ε0 = .001 to obtain δ2
0 = .666444519.

Because ρ0 < δ2
0, a remark similar to the one at the end of Example 2.8.12 can now

follow.
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2.9 On a weak NK method

R. Tapia in [188] showed that the weak Newton method (to be precised later) con-
verges in cases NK cannot under the famous Newton-Kantorovich hypothesis (see
(2.9.9)). Using the technique we recently developed in Section 2.2, we show that
(2.9.9) can always be replaced by the weaker (2.9.6), which is obtained under the
same computational cost. This way we can cover cases [39] that cannot be handled
by the work in [188].

We need the following definitions and Lemma whose proof can be found in [188,
p. 540]:

Definition 2.9.1. Let D0 ⊆ D be a closed subset of X, D1 and open subset of D0.
For x ∈ D1, M (x) is a left inverse for F ′ (x) relative to D0 if:

(a) M (x) ∈ L (Yx , X), where Yx is a closed linear subspace of Y containing
F (D1) ;

(b) M (x) F (D1) ⊆ D0;
and

(c) M (x) F ′ (x) = I
where I is the identity operator from D0 into D0.

Lemma 2.9.2. Hypotheses (a) and (b) imply that for all y ∈ D1;
(d) F ′ (y) (D0) ⊆ Yx ,

and
(e) M (x) F ′ (y) (D0) ⊆ D0.

Definition 2.9.3. If x0 ∈ D1, then

xn+1 = xn − M (xn) F (xn) (n ≥ 0) (2.9.1)

is called the weak Newton method.

The following result is a version of Theorem 2 in [39] (see also Section 2.3):

Theorem 2.9.4. If there exist M ∈ L (Y, X) and constants η, δ, �, �0, t∗ such that:

M−1 exists;

‖M F (x0)‖ ≤ η; (2.9.2)
∥
∥I − M F ′ (x0)

∥
∥ ≤ δ < 1; (2.9.3)

∥
∥M

(

F ′ (x) − F ′ (x0)
)∥
∥ ≤ �0 ‖x − x0‖ ; (2.9.4)

∥
∥M

(

F ′ (x) − F ′ (y)
)∥
∥ ≤ � ‖x − y‖ (2.9.5)

for all x, y ∈ D;
h0 = �η

(1−δ)2 ≤ 1
2 , � = �0+�

2 (2.9.6)

and
U
(

x0, t∗
) ⊆ U (x0, 2η) ⊆ D. (2.9.7)

Then, sequence {xn} (n ≥ 0) generated by NK is well defined, remains in U (x0, t∗)
for all n ≥ 0, and converges to a unique solution x∗ of equation F (x) = 0 in
U (x0, t∗).
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Proof. Simply use M F, D0 instead of F, X respectively in the proof of Theorem 2
in [39] (see also Section 2.2).

Lemma 2.9.5. [188] Newton sequences in Theorem 2.9.4 exists if and only if M is
invertible.
If M is not invertible, we can have the following Corollary of Theorem 2.9.4.

Corollary 2.9.6. If there exists M ∈ L (S, X), such that M F (U (x0, 2η)) ⊆ D0,
where S is a closed linear subspace of Y containing F (U (x0, 2η)), and (2.9.2)–
(2.9.7) hold, then
(a) sequence {xn} (n ≥ 0) generated by the weak Newton method (2.9.1) is well
defined, remains in U (x0, t∗) for all n ≥ 0, and converges to some point x∗ ∈
U (x0, t∗).
(b) If M is one-to-one, then F (x∗) = 0; or if t∗ < 2η, and F has a solution in
U (x0, t∗), then again F (x∗) = 0.

Proof. It follows from Lemma 2.9.5 that for any x ∈ D1, F ′ (x) .. D0 → S, and
M F ′ (x) .. D1 → D0 so that

[

M F ′ (x)
]−1

M F .. D1 → D0 whenever it exists. The
rest follows as in the proof of Theorem 2 in [39] with F, X replaced by M F, D0
respectively.

Remark 2.9.7. If
�0 = �, (2.9.8)

then Theorem 2.9.4 and Corollary 2.9.6 reduce to Theorem 3.1 and Corollary 3.1
respectively in [188] (if F is twice Fréchet-differentiable on D). However �0 ≤ �,

holds in general (see Section 2.2). It follows that the Newton-Kantorovich hypothesis

h = �η

(1−δ)2 ≤ 1
2 (2.9.9)

used in the results in [188] mentioned above always implies (2.9.6) but not vice versa
unless if (2.9.8) holds.

2.10 Bounds on manifolds

We recently showed the following weaker version of the Newton-Kantorovich theo-
rem [39] (see Section 2.2):

Theorem 2.10.1. Let F.. D = U (0, r) ⊆ X → Y be a Fréchet-differentiable opera-
tor. Assume:

F ′ (0)−1 ∈ L (Y, X) , (2.10.1)

and there exist positive constants a, �, �0, η such that:

‖F ′ (0)−1 ‖ ≤ a−1, (2.10.2)

‖F ′ (0)−1 F (0) ‖ ≤ η0 ≤ η (2.10.3)

‖F ′ (x) − F ′ (y) ‖ ≤ � ‖x − y‖ , (2.10.4)

‖F ′ (x) − F ′ (0) ‖ ≤ �0 ‖x‖ (2.10.5)
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for all x, y ∈ D,

h0 = La−1η < 1
2 , L = �0+�

2 , (2.10.6)

M = lim
n→∞ tn < r, (2.10.7)

where,

t0 = 0, t1 = η, tn+2 = tn+1 − �(tn+1−tn)
2

2(1−�0tn+1)
. (2.10.8)

Then equation F (x) = 0 has a solution x∗ ∈ D that is the unique zero of F in
U (0, 2η).

Remark 2.10.2. The above result was also shown in affine invariant form and for
any initial guess including 0. However, we want the result in the above form for
simplicity, and in order to compare it with earlier ones [156].

Let us assume for X , Y being Hilbert spaces:
A = F ′ (0) ∈ L (X, Y ) is surjective, A+ ∈ L (Y, X) is a right inverse of A, and

∥
∥A+∥∥ ≤ a−1, (2.10.9)

∥
∥A+F (0)

∥
∥ = η̄ ≤ η; (2.10.10)

Conditions (2.10.3)–(2.10.6) hold (for F ′ (0)−1 replaced by A+).
It is convenient for us to introduce:

S = {x ∈ D | F (x) = 0} , (2.10.11)

S0 = {x ∈ D | F (x) = F (0)} , (2.10.12)

N1 = Ker (A) , (2.10.13)

and
N2 the orthogonal complement of N1.

In Theorem 2.10.3 we provide an analysis in the normal space N2 at 0 of S0,
which leads to an upper bound of d (0, S).

Newton-Kantorovich-type condition (2.10.6) effects S to be locally in a convex
cone. Theorem 2.10.8 gives the distance of 0 to that cone as a lower bound of d (0, S).

This technique leads to a manageable way of determining for example sharp error
bounds for an approximate solution of an undetermined system.

Finally we show that our approach provides better bounds than the ones given
before in [156] (and the references there), and under the same computational cost.

The following results can be shown by simply using (2.10.4), (2.10.5) instead of
(2.10.4) in the proofs of Theorem 2.10.3, Lemmas 2.10.4–2.10.7, Theorem 2.10.8,
and Corollary 2.10.9, respectively.

Theorem 2.10.3. Operator F.. D ⊆ X → Y has a zero x∗ in U (0, M) ∩ N2; x∗ is
the unique zero of F/N2 in U (0, 2η) ∩ N2.
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Lemma 2.10.4. The following bounds hold:

r∗ ≤ ∥
∥x∗∥∥ = b, (2.10.14)

b < M < 2η, (2.10.15)

and
�0b < 2�0η < a, (2.10.16)

where,

r∗ = a
�0

(

−1 +
√

1 + 2h1

)

, (2.10.17)

and
h1 = �0η0a−1. (2.10.18)

It is convenient for us to introduce the notion:

V = {x ∈ X | ‖x‖ < b} , P (x) = F ′ (x) /N1, (2.10.19)

Q (x) = F ′ (x) /N2, x ∈ V, (2.10.20)

and
α = �0b

λ−�0b . (2.10.21)

Lemma 2.10.5. The following hold

Q (x) is regular for all x ∈ V

and
‖Q (x)−1 P (x) ‖ ≤ α, for all x ∈ V . (2.10.22)

Let us define:

W = {x = x1 + x2 ∈ X | α ‖x1‖ + ‖x2‖ < b, xi ∈ Ni , i = 1, 2, } (2.10.23)

and

K (w) = {(1 − θ)w1 + x2 | θ ∈ [0, 1] , x2 ∈ N2, ‖x2 − w2‖ ≤ α ‖w1‖ θ}
(2.10.24)

where,
w = w1 + w2 ∈ X, wi ∈ Ni , i = 1, 2.

Lemma 2.10.6. If w = w1 + w2 ∈ W ∩ V , then K (w) ⊆ V ∩ W.

Lemma 2.10.7. Operator F has no zeros in W ∩ V .
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Theorem 2.10.8. Let us define real function g by

g (t) = t
(

a
�0

− t
) (

t2 + ( a
�0

− t)2
)− 1

2
, for t ∈

(

0, a
�0

)

. (2.10.25)

Then, the following bounds hold:

d (0, S) ≥ m =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

g (M) , if 1
4

√
3 ≤ h0 < 1

2 ,√
1 − 2h0 + 1

2 (1 − 2h0) ≤ h1 ≤ h0

g (r∗) , if 0 < h0 < 1
2 ,

h1 ≤ min
{

h0,
√

1 − 2h0 + 1
2 (1 − 2h0)

}

,

(2.10.26)
where M and r∗ are given by (2.10.7) and (2.10.14), respectively.

Corollary 2.10.9. If η0 = η then the following bounds hold:

m = d (0, S) ≥
{

g (M) , if
√

3
4 ≤ h0 < 1

2

g (r∗) , if h0 <
√

3
4 .

(2.10.27)

Remark 2.10.10. (a) Theorem 2.10.1 reduces to the corresponding one in [156] if

�0 = �. (2.10.28)

However, in general,
�0 ≤ � (2.10.29)

holds. Let
h = �η < 1

2 . (2.10.30)

Then note by (2.10.6) and (2.10.30)

h < 1
2 =⇒ h0 < 1

2 (2.10.31)

but not necessarily vice versa unless if (2.10.28) holds.
(b) Our results reduce to the corresponding ones in [156] again if (2.10.28) holds.

However, if strict inequality holds in (2.10.29), then our interval of bounds [m, M]
is always more precise than the corresponding one in [156] and are found under the
same computational cost.

2.11 The radius of convergence and one-parameter operator
embedding

In this section, we are concerned with the problem of approximating a locally unique
solution of the nonlinear equation

F (x) = 0, (2.11.1)
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where F is a Fréchet-differentiable operator defined on closed convex subset of the
mth Euclidean space Xm into Xm .

NK method when applied to (2.11.1) converges if the initial guess is “close”
enough to the root of F . If no approximate roots are known, this and other iterative
methods may be of little use. Here we are concerned with enlarging the region of
convergence for Newton’s method. Our technique applies to other iterative methods.
That is, the use of Newton’s method is only illustrative. The results obtained here
extend immediately to hold when F is defined on a Banach spaces with values in a
Banach space.

We assume operator F is differentiably embedded into a one-parameter family of
operators {H (t, ·)} such that H (t0, x0) = 0, and H (t1, x) = F (x) for some x0 ∈ D
and two values t0 and t1 of the parameter.

We consider the commonly used embedding (homotopy)

H (t, x) = F (x) + (t − 1) F (x0) (2.11.2)

The solution of F (x) = 0 is then found by continuing the solution curve x (t) of
H (t, x) = 0 from t0 until t1.

Homotopies have been employed to prove existence results for linear and non-
linear equations (see [139] and the references there).

In particular, the results obtained in [139] can be weakened, and the region of
convergence for NK method can be enlarged if we simply replace the Lipschitz con-
stant by the average between the Lipschitz constant and the center-Lipschitz con-
stant. Moreover our results can be used in cases not covered in [139].

Motivated by advantages of the weaker version of the Newton-Kantorovich the-
orem that we provided in Section 2.2, we hope that the homotopy approach will be
successful under the same hypotheses. In particular, we can show:

Theorem 2.11.1. Let F.. D ⊆ Xm → Xm be Fréchet-differentiable. Assume there
exist x0 ∈ D, �0 ≥ 0, � ≥ 0 and η ≥ 0 such that:

F ′ (x0)
−1 ∈ L

(

Xm, Xm) , (2.11.3)

‖F ′ (x0)
−1 [F ′ (x) − F ′ (x0)

] ‖ ≤ �0 ‖x − x0‖ , (2.11.4)

‖F ′ (x0)
−1 [F ′ (x) − F ′ (y)

] ‖ ≤ � ‖x − y‖ , (2.11.5)

‖F ′ (x0)
−1 F (x0) ‖ ≤ η, (2.11.6)

h0 = L0η ≤ 1
2 for �̇ < �, (2.11.7)

or
h0 < 1

2 for �0 = �, (2.11.8)

where
L0 = �0+�

2 , (2.11.9)

and
U (x0, 2η) ⊆ D. (2.11.10)
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Then the solution
x = −F ′ (x)−1 F (x0) , x (0) = x0 (2.11.11)

exists, belongs in U (x0, r0) for all t ∈ [0, 1], and F (x (1)) = 0.

Proof. Using (2.11.4), (2.11.6) for x ∈ U ∈ (x0, r0), we obtain in turn

‖F ′ (x)−1 F (x0) ‖ ≤‖F ′ (x0)
−1 [F ′ (x0) − F ′ (x)

]

F ′ (x)−1 F (x0) ‖
+ ‖F ′ (x0)

−1 F (x0) ‖
≤�0 ‖x − x0‖ ‖F ′ (x)−1 F (x0) ‖ + η

or
‖F ′ (x)−1 F (x0) ‖ ≤ η

1−�0‖x−x0‖ (2.11.12)

(as �0 ‖x − x0‖ ≤ �02η < 1 by (2.11.7)).
Define function h by

h (t, r) = η
1−�0r . (2.11.13)

Then it is simple calculus to see that

r ′ (t) = h (t, r) (2.11.14)

has a unique solution r ≤ r0, r (0) = 0 for t ∈ [0, 1]. Moreover by (2.11.7) we get
h (t, r) < ∞ for t ∈ [0, 1]. Hence by Lemma 1.2 in [139], equation (2.11.2) has a
solution x (t) and F (x (1)) = 0.

Remark 2.11.2. (a) If F is twice Fréchet-differentiable, and

�0 = �, (2.11.15)

then Theorem 2.11.1 reduces to Corollary 2.1 in [139, p. 743]. However

�0 ≤ � (2.11.16)

holds in general. Meyer in [139] used the famous Newton-Kantorovich hypothesis

h = �η < 1
2 (2.11.17)

to show Corollary 2.1 in [139]. Note that

h ≤ 1
2 =⇒ h0 ≤ 1

2 . (2.11.18)

(b) The conclusion of the theorem holds if r∗ = 2η is replaced by

r0 = lim
n→∞ tn ≤ 2η, (2.11.19)

where,

t0 = 0, t1 = η, tn+2 = tn+1 + �(tn+1−tn)
2

2(1−�0tn+1)
(n ≥ 0) (see Section 2.2), [39].

(2.11.20)
Note also that

r0 ≤ η
h

(

1 − √
1 − 2h

)

= r∗ (2.11.21)

in case (2.11.17) holds [39]. Note that r∗ was used in Corollary 2.1 [139].
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NK method corresponds with integrating

x ′ (λ) = −F ′ (x)−1 F (x) , x (0) = x0, λ ∈ [0,∞) , (2.11.22)

with Euler’s method of step size 1, or equivalently,

x ′ (t) = −F ′ (x)−1 F (x0) , x (0) = x0, t ∈ [0, 1] , (2.11.23)

with Euler’s method and variable step size

hk+1 = e−k
(

1 − e−1
)

, k ≥ 0. (2.11.24)

Hence the initial step is h1 ∼= .63, which is too large. This is a large step for
approximating x

(

1 − e−1
)

unless if F (x) is sufficiently controlled.
As in Meyer [139] we suggest an alternative: Integrate (2.11.23) with step size

h = 1
N . Choose the approximate solution

x (Nh) = xN (2.11.25)

as the initial guess for NK method.
This way we have the result:

Theorem 2.11.3. Let F.. Xm → Xm be Fréchet-differentiable and satisfying

‖F ′ (x)−1 ‖ ≤ a ‖x‖ + b for all x ∈ Xm . (2.11.26)

Let x0 ∈ Xm be arbitrary and define ball U (x0, r + δ) for δ > 0 by

r =
{[‖x0‖ + b

a

]

exp (a ‖F (x0)‖) − (‖x0‖ + b
a

)

, if a �= 0,

b ‖F (x0)‖ , if a = 0.
(2.11.27)

Assume (2.11.23) is integrated from 0 to 1 with a numerical method of order h p,
denoted by

xk+1 = G (xk, h) (2.11.28)

and satisfying
‖x (1) − xN ‖ ≤ ch p, (2.11.29)

where c does not depend on h.
Moreover assume there exist constants d, �0, � such that:

‖F ′ (x)−1 ‖ ≤ d, (2.11.30)
∥
∥F ′ (x) − F ′ (x0)

∥
∥ ≤ �0 ‖x − x0‖ (2.11.31)

and
∥
∥F ′ (x) − F ′ (y)

∥
∥ ≤ � ‖x − y‖ (2.11.32)

for all x, y ∈ U (x0, r + δ) .
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Then iteration

xk+1 = G (xk, h) k = 1, ..., N − 1 (2.11.33)

xk+1 = xn − F ′ (xk)
−1 F (xk) k = N , ... , (2.11.34)

converges to the unique solution of equation F (x) = 0 in U (x0, r + δ) provided
that

h = 1
N ≤

(√
2−1

d L0c

) 1
p
, (2.11.35)

and
chp < S. (2.11.36)

Proof. Simply replace � (Meyer denotes � by L in [139]) by L0 in the proof of
Theorem 4.1 in [139, p. 750].

Remark 2.11.4. If �0 = � and F is twice Fréchet-differentiable then Theorem 2.11.3
reduces to Theorem 4.1 in [139]. However if strict inequality holds in (2.11.16),
because the corresponding estimate (2.11.35) in [139] is given by

hM = 1
N ≤

(√
2−1

d�c

) 1
p

(2.11.37)

we get
hM < h. (2.11.38)

Hence our technique allows a under step size h, and under the same computa-
tional cost, as the computations of � require in practice the computation of �0.

2.12 NK method and Riemannian manifolds

In this section, we are concerned with the problem of approximating a locally unique
solution x∗ of equation

F (x) = 0, (2.12.1)

where F is C1 and defined on an open convex subset S of Rm (m a natural number)
with values in Rm .

Newton-like methods are the most efficient iterative procedures for solving
(2.12.1) when F is sufficiently many times continuously differentiable. In particu-
lar, Newton’s method is given by

yn = −F ′ (xn)−1 F (xn) (x0 ∈ S) (2.12.2)

xn+1 = xn + yn (n ≥ 0) . (2.12.3)

We can extend this method to approximate a singularity of a vectorial field G
defined on a Riemannian manifold M :
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G (z) = 0, z ∈ M. (2.12.4)

Operator F ′ (xn) is replaced by the covariant derivative of G at zn :

∇Gzn .. Tzn (M) → Tzn (M) (2.12.5)

y → ∇yG

(we use ∇Gz y = ∇yG). Therefore approximation (2.12.2) becomes:

yn = −∇G−1
zn

G (zn) , (2.12.6)

and yn ∈ Tzn (M) (if (2.12.6) is well defined for all n ≥ 0).
In Rm , xn+1 is obtained from xn using the secant line which passes through

xn with direction yn , and at n distance ‖yn‖. In a Riemannian manifold, geodesics
replace straight lines. Hence Newton’s method in a Riemannian manifold becomes:

zn+1 = expzn
(yn) (n ≥ 0) , (2.12.7)

where yn is given by (2.12.6) for all n ≥ 0.
Ferreira and Svaiter in [94] extended the Newton-Kantorovich theorem to Rie-

mannian manifolds. This elegant semilocal convergence theorem for Newton’s
method is based on the Newton-Kantorovich hypothesis (see (2.12.19)). Recently
[39] they developed a new technique that on the one hand weakens (2.12.19) un-
der the same computational cost, and on the other hand applies to cases not covered
by the Newton-Kantorovich theorem (i.e., (2.12.19) is violated whereas (2.12.12)
holds); fine error bounds on the distances involved are obtained and an at least as
precise information on the location of the solution (if center-Lipschitz constant L0 is
smaller than Lipschitz constant L).

Here we extend our result from Banach spaces to Riemannian manifolds to gain
the advantages stated above (in this new setting).

We refer the reader to [94] for fundamental properties and notations of Rieman-
nian manifolds. Instead of working with Frobenius norm of rank-two tensors, we use
“operator norm” of linear transformations on each tangent space.

We need the definitions:

Definition 2.12.1. Let Sz.. Tz M → Tz M be a linear operator. Define

‖Sz‖op = sup {‖Sz y‖ , y ∈ Tz M, ‖y‖ = 1} (2.12.8)

Definition 2.12.2. Let D be an open and convex subset of M, and let G be a C1

vector field defined on D. We say: covariant derivative ∇G is Lipschitz if there exist
a constant L for any geodesic γ , and a, b ∈ R with γ ([a, b]) ⊆ D such that

∥
∥
∥P (γ )a

b ∇Gγ (b) P (γ )b
a − ∇Gγ (a)

∥
∥
∥ ≤ L

∫ b

a

∥
∥γ ′ (t)

∥
∥ dt, (2.12.9)

where P (γ ) is the parallel transport along γ [94].
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We use the notation ∇G ∈ LipL (D), and for the corresponding center-Lipschitz
condition for z0 ∈ D fixed ∇Gz0 ∈ LipL0

(D).
Note that in general

L0 ≤ L (2.12.10)

holds. Moreover L
L0

can be arbitrarily large (see Section 2.2).
We can now show the following extension of the Newton-Kantorovich theorem

on Riemannian manifolds using method (2.12.7):

Theorem 2.12.3. Let D be an open and convex subset of a complete Riemannian
manifold M. Let G be a continuous vector field defined on D that is C1 on D with
∇G ∈ LipL (D), and for z0 ∈ D fixed ∇Gz0 ∈ LipL0

(D).
Assume:

∇Gz0 is invertible;

there exist constants c0 and c1 such that
∥
∥
∥∇G−1

z0

∥
∥
∥ ≤ c0,

∥
∥
∥∇G−1

z0
G (z0)

∥
∥
∥ ≤ c1 (2.12.11)

h0 = c0c1 ⊂ ≤ 1
2 , c = L0+L

2 , (2.12.12)

and
U
(

z0, t∗
) ⊆ D (2.12.13)

where,
t∗ = lim

n→∞ tn, (2.12.14)

t0 = 0, t1 = c1, tn+2 = tn+1 + L(tn+1−tn)
2

2(1−L0tn+1)
(n ≥ 0) . (2.12.15)

Then
(a) sequence {tn} (n ≥ 0) is monotonically increasing and converges to t∗ with

t∗ ≤ 2n; (2.12.16)

(b) sequence {zn} (n ≥ 0) generated by Newton’s method (2.12.7) is well defined, re-
mains in U (z0, t∗) for all n ≥ 0, and converges to z∗, which is the unique singularity
of G in U (z0, t∗). Moreover if strict inequality holds in (2.12.10), z∗ is the unique
singularity of G in U (z0, 2n). Furthermore the following error bounds hold:

d (zn+1, zn) ≤ tn+1 − tn; (2.12.17)

and
d
(

zn, z∗) ≤ t∗ − tn (n ≥ 0) . (2.12.18)

Proof. Simply use L0 instead of L where the use of the center-Lipschitz (and not
L) suffices in the proof of Theorem 3.1 in [94] (e.g., in the computation of an upper
bound on

∥
∥∇G−1

zn

∥
∥).
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Remark 2.12.4. If equality holds in (2.12.10) then Theorem 2.12.3 reduces to The-
orem 3.1 in [94]. Denote the corresponding Newton-Kantorovich-type hypothesis
there by:

h = c0c1 ≤ 1
2 . (2.12.19)

By (2.12.10), (2.12.12), and (2.12.18) we see

h ≤ 1
2 =⇒ h0 ≤ 1

2 (2.12.20)

but not vice versa unless if equality holds in (2.12.10).

The rest of the claims made at the introduction can now follow along the same
lines of our work in Section 2.2 [39].

2.13 Computation of shadowing orbits

In this section, we are concerned with the problem of approximating shadowing or-
bits for dynamical systems. It is well-known in the theory of dynamical systems that
actual computations of complicated orbits rarely produce good approximations to
the trajectory. However under certain conditions, the computed section of an orbit
lies in the shadow of a true orbit. Hence using product spaces and a recent result of
ours (Section 2.2) [39], we show that the sufficient conditions for the convergence of
Newton’s method to a true orbit can be weakened under the same computational cost
as in the elegant work by Hadeller in [108]. Moreover the information on the location
of the solutions is more precise and the corresponding error bounds are finer.

Let f be a Fréchet-differentiable operator defined on an open convex subset D
of a Banach space X with values in X .

The operator f defines a local dynamical system as follows:

xn+1 = f (xk) (x0 ∈ D) (2.13.1)

as long as xk ∈ D.

A sequence {xm}N
i=0 in D with xm+1 = f (xm) , i = 0, ..., N − 1 is called an

orbit. Any sequence {xm}N
i=0, xm ∈ D, m = 0, ..., N is called a pseudo-orbit of

length N .
We can now pass to product spaces. Let y = X N+1 equipped with maximum

norm. The norm x = (x0, ..., xN ) ∈ Y is given by

‖x‖ = max
0≤m≤N

‖xm‖ .

Set S = DN+1. Let F .. S → Y be an operator associated with ḟ :

F (x) = F

⎡

⎢
⎣

xo
...

xN

⎤

⎥
⎦ =

⎡

⎢
⎣

f (x0) − x1
...

f (xN )

⎤

⎥
⎦ .
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Assume there exist constants l0, l, L0, L such that:
∥
∥ f ′ (u) − f ′ (x0)

∥
∥ ≤ l0 ‖u − x0‖

∥
∥ f ′ (u) − f ′ (v)

∥
∥ ≤ l ‖u − v‖

∥
∥F ′ (u) − F ′ (x0)

∥
∥ ≤ L0 ‖u − x0‖

∥
∥F ′ (u) − F ′ (v)

∥
∥ ≤ L ‖u − v‖

for all u, v ∈ D, u, v ∈ S.
From now on we assume: l0 = L0 and l = L .
For y ∈ X define an operator

Fy .. S → Y

by

Fy (x) =

∥
∥
∥
∥
∥
∥
∥

f (x0) − x1
...

f (xN ) − y

∥
∥
∥
∥
∥
∥
∥

.

It follows that F ′
y (x) = F ′ (x).

As in [108], define the quantities

a (x) = max
0≤i≤N

N
∑

j=i

∥
∥ f ′ (xi ) ... f ′ (x j

)∥
∥

−1
,

b (x) = max
0≤i≤N−1

∥
∥
∥
∥
∥
∥

N−1
∑

j=i

f ′ (xi ) ... f ′ (x j
) (

f
(

x j
)− x j+1

)

∥
∥
∥
∥
∥
∥

,

and
by (x) = b (x) + ∥

∥ f ′ (xN ) ( f (xN ) − y)
∥
∥

for x ∈ Y .
That is a (x) is the operator norm of F ′ (x)−1 and by (x) is the norm of the

Newton convection F ′ (x)−1 Fy (x).

Remark 2.13.1. The interpretation to the measures studied in [61], [108] is given by:
(a) The dilation measures a (x) and by (x) are the norm of F ′ (x)−1 and the norm

of the Newton-correction F ′ (x)−1 Fy (x), respectively;
(b) the solution of equation

Fy (x) = 0

yields a section (x0, ..., xN ) of length N + 1 of a true orbit that meets the prescribed
point y at the N th iteration step [108].

Using a weak variant of the Newton-Kantorovich theorem, we recently showed
in [39] (see Section 2.2) we obtain the following existence and uniqueness result for
a true orbit:
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Theorem 2.13.2. Let x ∈ Y, y ∈ X a (x), by (x) be as above and {xi }N
i=0 be a

pseudo-orbit.
Assume:

h0 = L̄, a (x) by (x) ≤ 1
2 , L̄ = L0+L

2 (2.13.2)

and
U
(

x0 = x, r∗ = 2by (x) = {

z ∈ Y | ‖x − z‖ ≤ r∗}) ⊆ S.

Then there is a unique true orbit x∗ = (

x∗
0 , ..., x∗

N

)

inside U (x, r∗) satisfying
f
(

x∗
N

) = y.

We also have a more neutral form of Theorem 2.13.2:

Theorem 2.13.3. Let {xi }N
i=0 be a pseudo-orbit of length N + 1. Assume:

h1
0 = L̄ a (x) b (x) ≤ 1

2 (2.13.3)

and
U
(

x, r∗
1 = 2b (x)

) ⊆ S,

where a (x), b (x), r∗, L̄ are as defined above. Then there is a unique true orbit

x∗ = (

x∗
0 , ..., x∗

N

) ∈ U
(

x, r∗
1

)

satisfying f
(

x∗
N

) = f (xN ) .

Remark 2.13.4. If
L0 = L , (2.13.4)

then Theorems 2.13.2 and 2.13.3 reduce to Theorems 1 and 2 in [108], respectively.
However in general

L0 ≤ L . (2.13.5)

The conditions corresponding with (2.13.2) and (2.13.3), respectively, in Theo-
rem 1 and 2 in [108] are given by

h = La (x) by (x) ≤ 1
2 (2.13.6)

and
h1 = L a (x) b (x) ≤ 1

2 . (2.13.7)

It follows from (2.13.2), (2.13.3), (2.13.5), (2.13.6), and (2.13.7) that:

h ≤ 1
2 =⇒ h0 ≤ 1

2 (2.13.8)

h1 ≤ 1
2 =⇒ h1

0 ≤ 1
2 (2.13.9)

but not vice versa unless if (2.13.4) holds. Hence we managed to weaken the suffi-
cient convergence conditions given in [108], and under the same computational cost,
as the evaluation of L requires in precise the evaluation of L0.

Moreover the information on the location of the true orbit is more precise and the
corresponding error bounds are finer [39] (see also Section 2.2).



116 2 The Newton-Kantorovich (NK) Method

2.14 Computation of continuation curves

In this study, we are concerned with approximating a locally unique solution x∗ of
the nonlinear equation

F (x) = 0, (2.14.1)

where F is a continuously Fréchet-differentiable operator defined on an open convex
subset D of Rm (a positive integer) in to Rm .

In recent years, a number of approaches have been proposed for the numeri-
cal computation of continuation curves, and with techniques for overcoming turning
points [175], [205]. It turns out that all numerical continuation methods are of the
predictor-corrector type. That is, information on the already computed portion of the
curve is used to calculate an extrapolation approximating an additional curve portion.
At the end, a point on the so constructed curve is chosen as the initial guess for the
corrector method to converge to some point of the continuation curve.

Consider the system of n equations

F (x) = F
(

x0
)

, x ∈ R (F) , x0 ∈ R (F) , (2.14.2)

together with the (popular) choice [77], [176]

uT x = z, (2.14.3)

where u is derived from fixing the value of one of the variables. For example, set
u = ei , where ei is the i th unit-basis vector of Rn+1.

System (2.14.2)–(2.14.3) can now be rewritten as

G (x) = 0, (2.14.4)

where

G (x) =
[

F (x) − F
(

x0
)

(

ei
)T

x − z

]

(2.14.5)

with z a not known yet constant.
Clearly, for T (x) = u:

det G ′ (x) = det

[
F ′ (x)
(

ei
)T

]

=
[

F ′ (x)

(T (x))T

] [

I + T (x)
(

ei − T (x)
)T
]

=
[

T (x)T ei
]

det

[
F ′ (x)

(T (x))T

]

. (2.14.6)

Therefore i should be chosen so that
∣
∣T (x)T ei

∣
∣ is as large as possible.

Here we address the length of the step-size. In particular, we show that under the
same hypotheses and computational cost as before, we can enlarge the step size of
the iteration process [39] (see Section 2.2). This observation is important in compu-
tational mathematics.
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As in the elegant paper by Rheinboldt [176], we use NK method as the corrector
method.

We need the following local convergence result of ours concerning the radius of
convergence for NK method [39]:

Lemma 2.14.1. Let G.. D ⊆ Rm → Rm be a Fréchet-differentiable operator. As-
sume: there exists a solution x∗ of equation G (x) = 0 such that G ′ (x∗)−1 is irre-
vertible;

∥
∥
∥G ′ (x∗)−1 [

G ′ (x) − G ′ (y)
]
∥
∥
∥ ≤ � ‖x − y‖ (2.14.7)

∥
∥
∥G ′ (x∗)−1 [

G ′ (x) − G ′ (x∗)]
∥
∥
∥ ≤ �0

∥
∥x − x∗∥∥ (2.14.8)

for all x, y ∈ D;
and

U
(

x∗, rA
) ⊆ D, (2.14.9)

where
rA = 2

�0+�
. (2.14.10)

Then NK method applied to G is well defined, remains in U (x∗, rA) , and converges
to x∗ provided that x0 ∈ U (x∗, rA).

Moreover the following error bounds hold for all n ≥ 0:

∥
∥xn+1 − x∗∥∥ ≤ �

[1−�0‖xn−x∗‖]

∥
∥xn − x∗∥∥2

. (2.14.11)

Remark 2.14.2. In general
�0 ≤ � (2.14.12)

holds.

The corresponding radius rR given by Rheinboldt [175]:

rR = 2
3�

(2.14.13)

is smaller than rA if strict inequality holds in (2.14.12). Consequently, the step-size
used with Newton’s method as corrector can be increased (as it depends on rA).

Indeed as in [176], the Lipschitz conditions (2.14.7) and (2.14.8) hold in compact
subset C of Rn+1. We can have:

∥
∥
∥G ′ (x)−1

∥
∥
∥ ≤

(

1 + 2
|T (x)T ei |

)√

1 + b (x), (2.14.14)

(see (4.9) in [176]),
where,

b (x) = ‖F ′ (x) (F ′ (x)T )−1‖2. (2.14.15)

If x∗ ∈ R (F) is n solution of equation (2.14.5), let

τ
(

x∗) = max
j=1,...,n

∣
∣
∣T
(

x∗) e j
∣
∣
∣ δ
(

x∗, C
) = dist

(

x∗, δC
)

. (2.14.16)
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For θ ∈ (0, 1) ∪ (x∗, rA (x∗)) with

rA
(

x∗) = min

{

δ
(

x∗, C
)

,
2θτ(x∗)

(2+τ(x∗))(2�0+�)
√

1+b(x∗)2

}

≥ rR
(

x∗) , (2.14.17)

where �0, � depend on C (not D) but we used the same symbol, and rR (x∗) is defined
as rA (with �0 = � in (2.14.17)) (clearly U x∗, rA (x∗) ⊆ R (F)). By Lemma 2.14.1,
NK iteration for (2.14.5) converges to x∗.

Continuing as in [176], let

x .. I → R → R (F) ,
∥
∥x ′ (s)

∥
∥

2 = 1 for all x ∈ I, x (s0) = x0, s0 ∈ I (2.14.18)

be the unique C1 operator—parameterized in terms of the path length—that solves
equation (2.14.2). We use the Euler-line

yE (s) = x (s0) + T (x) (s0) (s − s0) s ∈ I (2.14.19)

as predictor with Newton’s method as corrector. Let xk ∈ R (F) be n known approx-
imation to x (sk), sk ∈ I ; then one step of the process is:

1. Compute T
(

xk
) ;

2. Determine i such that
∣
∣
∣

(

ei
)T (

xk
)
∣
∣
∣ = max

j=1,...,n+1

∣
∣
∣

(

e j
)T

(T (x∗))
∣
∣
∣ ;

3. Choose the step-size hk+1 > 0;
4. Compute the predicted point y = xk + hk+1

(

T
(

xk
))

;

5. Apply Newton’s method to (2.14.5) with z = (

ei
)T

(y) with y as starting point;
6. If “satisfactory convergence,” then xk+1 = last iterate;

else replace hk+1 by qhk (2.14.20)

for some q ∈ (0, 1) and go to step 4.
7. Sk+1 = Sk + ∥

∥xk+1 − xk
∥
∥

2.

(A) Assume: We want to compute x .. I 0 → R (F) of (2.14.18) for I 0 = [

s, s
] ⊂

I, s < s. There exists δ > 0 such that

C =
{

x ∈ Rn+1/ dist
(

x, x
(

I 0
)) ≤ δ

}

⊆ R (F) . (2.14.21)

We can have:

rA (x) ≥ r0
A = min

(

δ,
θτ0

(2+τ0)(2�0+�)

√

1+(b)2

)

≥ r0
R = min

(

δ,
2θτ0

3(2+τ0)

√

1+(b)2

)

> 0 (2.14.22)

for all s ∈ I 0, θ ∈ (0, 1),
where
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b = sup
{

b (x (s)) , s ∈ I 0
}

< ∞,

τ0 = inf

{

max
j=1,...,n+1

∣
∣
∣T (x)T e j |, x ∈ C

∣
∣
∣

}

> 0.
(2.14.23)

(B) Moreover assume:
approximation xk of x (sk) , sk ∈ I 0 satisfies:

(

ei
)T (

xk − x (sk)
)

= 0,

∥
∥
∥xk − x (sk)

∥
∥
∥

2
≤ min

(

δ,r0
A

)

2 (2.14.24)

(C) Furthermore assume:

nk = min
{

s − sk,
1
2τ0δ,

τ0
2�1

}

> 0, (2.14.25)

where �1 is the Lipschitz constant of T on C . For any point x (sk + σ) on
(2.14.18) with σ ∈ I k = [sk, sk + nk] there exists y = xk + g (σ ) T

(

xk
)

on
the Euler line with the same ith component, i.e., point y with

g (σ ) =
(

ei
)T (

x(sk+σ)−xk
)

(ei)
T T (xk)

. (2.14.26)

By Rheinboldt [176] we have:

|g (σ )| ≤ 1
2δ, (2.14.27)

xk + g (σ ) T
(

xk
)

∈ C for all σ ∈ I k (2.14.28)

and
y = xk + hk+1T

(

xk
)

∈ U (x (sk + σk) , r0) (2.14.29)

with
h A

k+1 = g
(

σ A
k

)

≥ g
(

σ R
k

)

(2.14.30)

0 < σ A
k = min

(

nk,

[

τ0r0
A

�1(1+τ0)

]1/2
)

≥ σ R
k = min

(

nk,
[

τ0ro
R

�1(1+τ0)

]1/2
)

.

(2.14.31)
Hence the convergence of NK method for (2.14.5) from y to x

(

sk + σ A
k

)

is
ensured.
Define

σ A
∗ = min

(

1
2τ0δ,

τ0
2�1

,

[

τ0r A
0

�1(1+τ0)

]1/2
)

≥ min

(

1
2τ0δ,

τ0
2�1

,

[

τ0r R
0

�1(1+τ0)

]1/2
)

= σ R
∗ . (2.14.32)

Then we get
σ A

∗ = σ A
∗ for 0 ≤ sk ≤ s − σ∗ (2.14.33)

and for sk ∈ [

s − s∗, s
]

we reach s in one step, whereas interval I 0 is traversed
in finitely many steps.



120 2 The Newton-Kantorovich (NK) Method

Hence we showed as in Theorem 4.2 in [176]:

Theorem 2.14.3. Under hypotheses (A)–(C) there exists sk ∈ I 0, a step hk+1 > 0
along the euler line such that Newton’s method of step 5 is well defined and converges
to some x

(

sk + σ A
k

)

, σ A
k > 0. Starting from s0 = s, we can choose h A

k k = 0, 1, ...

such that sk = σ + kσ A∗ , k = 0, 1, ..., M A, sm+1 = s with a constant σ A∗ > 0 for
which

M Aσ A
∗ ≤ σ − σ ≤

(

M A + 1
)

σ A
∗ . (2.14.34)

Remark 2.14.4. Under hypotheses of Theorem 2.14.3 and Theorem 4.2 in [176], be-
cause of (2.14.17), (2.14.22), (2.14.31), and (2.14.32) (if strict inequality holds in
(2.14.12) for C instead of D), we conclude:

h R
k ≤ h A

k (2.14.35)

σ R
∗ ≤ σ A

∗ (2.14.36)

σ R
k ≤ σ A

k (2.14.37)

and
M A ≤ M R . (2.14.38)

Estimates (2.14.35)–(2.14.38) justify the claims made in the introduction about
the improvements on the step-size. Note also that strict inequalities will hold in
(2.14.35)–(2.14.38) if the “minimum” is expressed in terms of r A

0 in the definition of
the above quantities (see (2.14.22)).

Some comments on a posteriori, asymptotic estimates are given next:

Remark 2.14.5. Rheinboldt also showed [176, p. 233] that if the solution (2.14.18)
of equation (2.14.2) is three times continuously Fréchet-differentiable on the open
interval I , then σ should be chosen by

σ R = θ

√

ρR
∥
∥wk − γk T

(

xk
)∥
∥

2

(2.14.39)

where wk , γk are given (4.27) and (4.29) in [176, p. 233], θ ∈ (0, 1) and ρR is
a “safe” radius of convergence of NK method at x

(

sk + σ R
)

. Because again our
corresponding radius of convergence ρA is such that

ρR < ρA (2.14.40)

we deduce (if strict inequality holds in (2.14.12)):

σ R < σ A, (2.14.41)

where σ A is given by (2.14.39) for ρR replaced by ρA.
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2.15 Gauss-Newton method

In this section, we are concerned with the problem of approximating a point x∗ min-
imizing the objective operator

Q (x) = 1
2 ‖F (x)‖2

2 = 1
2 FT (x) F (x) (2.15.1)

where F is a Fréchet-differentiable regression operator defined on an open subset D
of R j with values in Rm ( j ≤ m).

It is well-known that for x∗ to be a local minimum, it is necessary to be a zero of
the gradient ∇Q of Q, too.

That is why Ben-Israel [46] suggested the so called Gauss-Newton method:

xn+1 = xn − J+ (xn) F (xn) (n ≥ 0) , (2.15.2)

where, J (x) = F ′ (x), the Fréchet derivative of F . Here M+ denotes the pseudo
inverse of a matrix M satisfying:

(

M+M
)T = M+M,

(

M M+)T = M M+, M+M M+ = M+, M M+M = M.

(2.15.3)
Moreover, if rank-(m, j) matrix M is of full rank, then its pseudo inverse be-

comes

M+ =
(

MT M
)−1

MT . (2.15.4)

A semilocal convergence analysis for method (2.15.2) has already been given in
the elegant paper in [110]. However, we noticed that under weaker hypotheses, we
can provide a similar analysis with the following advantages over the ones in [110],
and under the same computational cost:

(a) our results apply whenever the ones in [110] do but not vice versa;
(b) error bounds ‖xn+1 − xn‖, ‖xn − x∗‖ (n ≥ 0) are finer;
(c) the information on the location of the solution x∗ is more precise.
The results obtained here can be naturally extended to hold in arbitrary Banach

spaces using outer or generalized inverses [59] (see also Chapter 8).
We need the following result on majorizing sequences for method (2.15.2).

Lemma 2.15.1. Let a ≥ 0, b > 0, c ≥ 0, L0 ≥ 0, L ≥ 0 be given parameters.
Assume there exists d ∈ [0, 1) with c ≤ d such that for all k ≥ 0

[
1
2 bL (1 − d) dk + dbL0

(

1 − dk+1
)]

a + (c − d) (1 − d) ≤ 0, (2.15.5)

and
bL0a
1−d

(

1 − dk
)

< 1. (2.15.6)

Then, iteration {sn} (n ≥ 0) given by

s0 = 0, s1 = a, sn+2 = sn+1 +
1
2 bL(sn+1−sn)+c

1−bL0sn+1
· (sn+1 − sn) (2.15.7)
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is nondecreasing, bounded above by s∗∗ = a
1−d , and converges to some s∗ such that

0 ≤ s∗ ≤ s∗∗. (2.15.8)

Moreover, the following estimates hold for all n ≥ 0:

0 ≤ sn+2 − sn+1 ≤ d (sn+1 − sn) ≤ dn+1a. (2.15.9)

Proof. We shall show using induction that for all k ≥ 0

1
2 bL (sk+1 − sk) + dbL0sk+1 + c ≤ d, (2.15.10)

sk+1 − sk ≥ 0, (2.15.11)

and
1 − bL0sk+1 > 0. (2.15.12)

Using (2.15.5)–(2.15.7), estimates (2.15.10)–(2.15.12) hold. But then (2.15.7) gives

0 ≤ s2 − s1 ≤ d (s1 − s0) .

Let us assume (2.15.9)–(2.15.12) hold for all k ≤ n + 1.

We can have in turn

1
2 bL (sk+2 − sk+1) + dbL0sk+2 + c ≤ (2.15.13)

≤ 1
2 bLdk+1 + dbL0

[

s1 + d (s1 − s0) + d2 (s1 − s0) + · · · + dk+1 (s1 − s0)
]

+ c

≤ 1
2 bLdk+1 + dbL0

1−dk+2

1−d a + c ≤ d (by (2.15.5)).

Moreover we show:
sk ≤ s∗∗. (2.15.14)

For k = 0, 1, 2, s0 = 0 ≤ s∗∗, s1 = a ≤ s∗∗, s2 ≤ a + da = (1 + d) a ≤ s∗∗.
It follows from (2.15.9) that for all k ≤ n + 1

sk+2 ≤ sk+1 + d (sk+1 − sk) ≤ · · · ≤ s1 + d (s1 − s0) + · · · + d (sk+1 − sk)

(2.15.15)

≤
[

1 + d + d2 + · · · + dk+1
]

a = 1−dk+2

1−d a ≤ s∗∗.

Furthermore, we get

bL0sk+1 ≤ bL0
1−dk+1

1−d a < 1. (2.15.16)

Finally (2.15.9), (2.15.11) hold by (2.15.7), (2.15.13)–(2.15.16).
The induction is now complete.
Hence, sequence {sn} (n ≥ 0) is nondecreasing and bounded above by s∗∗, and

as such it converges to some s∗ satisfying (2.15.8).
That completes the proof of the Lemma.
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We can show the following main semilocal convergence result for method
(2.15.2).

Theorem 2.15.2. Let F.. D0 ⊆ D ⊆ R j → Rm be a Fréchet-differentiable operator,
where D0 is a convex set. Assume:
there exists x0 ∈ D0 with rank (J (x0)) = r ≤ m, r ≥ 1 and rank (J (x)) ≤ r for all
x ∈ D0;

∥
∥J+ (x0) F (x0)

∥
∥ ≤ a, (2.15.17)

‖J (x) − J (x0)‖ ≤ L0 ‖x − x0‖ , (2.15.18)

‖J (x) − J (y)‖ ≤ L ‖x − y‖ , (2.15.19)
∥
∥J+ (x0)

∥
∥ ≤ b, (2.15.20)

∥
∥J+ (y) q (x)

∥
∥ ≤ c (x) ‖x − y‖ (2.15.21)

with q (x) = (

I − J (x) J+ (x)
)

F (x), and q (x) ≤ c < 1, for all x, y ∈ D0;
conditions (2.15.5) and (2.15.6) hold;
and

U
(

x0, s∗) ⊆ D0, (2.15.22)

where s∗ is defined in Lemma 2.15.1.
Then,

(a) sequence {xn} (n ≥ 0) generated by method (2.15.2) is well defined, remains in
U (x0, s∗) for all n ≥ 0, and converges to a solution x∗ ∈ U (x0, s∗) of equation
J+ (x) F (x) = 0;

(b) rank (J (x)) = r for all x ∈ U (x0, s∗);
(c) rank

(

J
(

x0
)) = r if strict inequality holds in (2.15.5) or equality and c > 0.

Moreover the following estimates hold for all n ≥ 0

‖xn+1 − xn‖ ≤ sn+1 − sn, (2.15.23)

and
∥
∥xn − x∗∥∥ ≤ s∗ − sn . (2.15.24)

Furthermore, if
rank (J (x0)) = m, and F

(

x∗) = 0, (2.15.25)

then x∗ is the unique solution of equation F (x) = 0 in U (x0, s∗∗), and the unique
zero of equation J+ (x) F (x) = 0 in U (x0, s∗).

Proof. We shall show {sn} (n ≥ 0) is a majorizing sequence for {xn} so that estimate
(2.15.23) holds, and iterates sn ∈ U (x0, s∗) (n ≥ 0).

It follows from the Banach Lemma, and the estimate

‖J (x) − J (x0)‖ ≤ L0 ‖x − x0‖ ≤ L0s∗ < 1 (by (2.15.6))

for all x ∈ U (x0, s∗) that (b) and (c) above hold, with
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∥
∥J+ (x)

∥
∥ ≤ b

1−bL‖x−x0‖ for all x ∈ U
(

x0, s∗) . (2.15.26)

Consequently, operator

P (x) = x − J+ (x) F (x) (2.15.27)

is well defined on U (x0, s∗). If x, P (x) ∈ U (x0, s∗) using (2.15.2), (2.15.17)–
(2.15.21) we can obtain in turn:

‖P (P (x)) − P (x)‖ =

=
∥
∥
∥
∥

J+ (P (x))

∫ 1

0
{J (x + t (P (x) − x)) − J (x)} (P (x) − x) dt (2.15.28)

+ J+ (P (x)
(

I − J (x) J+ (x)
))

F (x)

∥
∥
∥
∥

≤ 1
1−bL0‖P(x)−x0‖

(
1
2 bL ‖P (x) − x‖ + c

)

‖P (x) − x‖ .

Estimate (2.15.23) holds for n = 0 by the initial conditions. Assuming by induc-
tion: ‖xi − xi−1‖ ≤ si − si−1 (i = 1, 2, ..., k) it follows

‖xi − x0‖ ≤ sk − s0 for i = 1, 2, ..., k. (2.15.29)

Hence, we get {xn} ⊂ (x0, s∗).
It follows from (2.15.7) and (2.15.29) that (2.15.23) holds for all n ≥ 0.
That is {xn} (n ≥ 0) is a Cauchy sequence in Rm and as such it converges to some

x∗ ∈ U (x0, s∗) (because U (x0, s∗) is a closed set).
Using the continuity of J (x), F (x), and the estimate
∥
∥J+F (xk)

∥
∥ ≤ ∥

∥J+ (x∗) (I − J (xk) J+ (xk) F (xk)
)∥
∥

+ ∥
∥J+ (x∗)∥∥ · ∥∥J (xk) J+ (xk) F (xk)

∥
∥

≤c
∥
∥xk − x∗∥∥+ ∥

∥J+ (x∗)∥∥ ‖J (xk)‖ ‖xk+1 − xk‖ (2.15.30)

we conclude J+ (x∗) F (x∗) = 0.

The uniqueness part follows exactly as in Theorem 2.4 in [110] (see also [39] or
Section 2.2, or Theorem 12.5.5 in [154]).

Remark 2.15.3. Conditions (2.15.5), (2.15.6) are always present in the study of
Newton-type methods. We wanted to leave conditions (2.15.5) and (2.15.6) as un-
cluttered as possible. We may replace (2.15.5) and (2.15.6) by the stronger

[
1
2 bL (1 − d) + dbL0

]

a + (c − d) (1 − d) ≤ 0 (2.15.31)

and
bL0a
1−d < 1, (2.15.32)

respectively. Clearly conditions (2.15.5) and (2.15.6) are weaker than the Newton-
Kantorovich-type hypothesis
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h = abL
(1−c)2 ≤ 1

2 (2.15.33)

used in Theorem 2.4 in [110, p. 120].
Indeed first of all

L0 ≤ L (2.15.34)

holds in general. If equality holds in (2.15.35), then iteration {sn} reduces to {tn}
(n ≥ 0) in [110] (simply set L0 = L in (2.15.7)), and Theorem 2.15.2 reduces to
Theorem 2.4 in [110]. However, if strict inequality holds in (2.15.34), then our es-
timates on the distances ‖xn+1 − xn‖ , ‖xn − x∗‖ are more precise than the ones in
[110]. Indeed we immediately get

sn+1 − sn < tn+1 − tn (n ≥ 1) , (2.15.35)

s∗ − sn ≤ t∗ − tn (n ≥ 0) (2.15.36)

and
s∗ ≤ t∗. (2.15.37)

For c = 0 and d = 1
2 , conditions (2.15.5) and (2.15.6) hold provided that

h1 = abL1 ≤ 1
2 (2.15.38)

where,
L1 = L0+L1

2 . (2.15.39)

Corresponding condition (e) in Theorem 2.4 in [110] becomes the famous Newton-
Kantorovich hypothesis

h2 = abL ≤ 1
2 . (2.15.40)

Note that (2.15.39) is weaker than (2.15.41) if strict inequality holds in (2.15.35).
Hence, we have

h2 ≤ 1
2 =⇒ h1 ≤ 1

2 (2.15.41)

but not necessarily vice versa unless if L0 = L .

Remark 2.15.4. Along the lines of our comments above, the corresponding results in
[110, pp. 122–124] can now be improved (see also Section 2.2).

2.16 Exercises

2.16.1. Show that f defined by f (x, y) = | sin y| + x satisfies a Lipschitz condition
with respect to the second variable (on the whole xy-plane).

2.16.2. Does f defined by f (t, x) = |x |1/2 satisfy a Lipschitz condition?
2.16.3.
(a) Let F .. D ⊆ X → X be an analytic operator. Assume:

• there exists α ∈ [0, 1) such that

‖F ′(x)‖ ≤ α (x ∈ D); (2.16.1)
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•
γ = sup

k>1
x∈D

∥
∥
∥

1
k! F (k)(x)

∥
∥
∥

1
k−1

is finite;

• there exists x0 ∈ D such that

‖x0 − F(x0)‖ ≤ η ≤ 3−α−2
√

2−α
γ

, γ �= 0;

• Ū (x0, r1) ⊆ D, where, r1, r2 with 0 ≤ r1 ≤ r2 are the two zeros of function
f , given by

f (r) = γ (2 − α)r2 − (1 + ηγ − α)r + η.

Show: method of successive substitutions is well defined, remains in Ū (x0, r1)

for all n ≥ 0 and converges to a fixed point x∗ ∈ Ū (x0, r1) of operator F .
Moreover, x∗ is the unique fixed point of F in Ū (x0, r2). Furthermore, the fol-
lowing estimates hold for all n ≥ 0:

‖xn+2 − xn+1‖ ≤ β‖xn+1 − xn‖
and

‖xn − x∗‖ ≤ βn

1−β
η,

where
β = γ η

1−γ η
+ α.

The above result is based on the assumption that the sequence

γk =
∥
∥
∥

1
k! F (k)(x)

∥
∥
∥

1
k−1

(x ∈ D), (k > 1)

is bounded above by γ . This kind of assumption does not always hold. Let us
then not assume sequence {γk} (k > 1) is bounded and define “function” f1 by

f1(r) = η − (1 − α)r +
∞
∑

k=2

γ k−1
k rk .

(b) Let F .. D ⊆ X → X be an analytic operator. Assume (2.16.1) holds and for
x0 ∈ D function f1 has a minimum positive zero r3 such that

Ū (x0, r3) ⊆ D.

Show: method of successive substitutions is well defined, remains in Ū (x0, r3)

for all n ≥ 0 and converges to a unique fixed point x∗ ∈ Ū (x0, r3) of operator
F . Moreover the following estimates hold for all n ≥ 0

‖xn+2 − xn+1‖ ≤ β1‖xn+1 − xn‖
and
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‖xn − x∗‖ ≤ βn
1

1−β1
η,

where,

β1 =
∞
∑

k=2

γ k−1
k ηk−1 + α.

2.16.4.
(a) It is convenient to define:

γ = sup
k>1

∥
∥ 1

k! F (k)(x∗)
∥
∥

1
k−1

with γ = ∞, if the supremum does not exist. Let F .. D ⊆ X → X be an analytic
operator and x∗ ∈ D be a fixed point of F . Moreover, assume that there exists α

such that
‖F ′(x∗)‖ ≤ α, (2.16.2)

and
Ū (x∗, r∗) ⊆ D,

where,

r∗ =
{ ∞, if γ = 0

1
γ

· 1−α
2−α

, if γ �= 0.

Then, if
β = α + γ r∗

1−γ r∗ < 1,

show: the method of successive substitutions remains in Ū (x∗, r∗) for all n ≥ 0
and converges to x∗ for any x0 ∈ U (x∗, r∗). Moreover, the following estimates
hold for all n ≥ 0:

‖xn+1 − x∗‖ ≤ βn‖xn − x∗‖ ≤ β‖xn − x∗‖,

where,
β0 = 1, βn+1 = α + γ r∗βn

1−γ r∗βn
(n ≥ 0).

The above result was based on the assumption that the sequence

γk = ∥
∥ 1

k! F (k)(x∗)
∥
∥

1
k−1 (k ≥ 2)

is bounded by γ . In the case where the assumption of boundedness does not
necessarily hold, we have the following local alternative.

(b) Let F .. D ⊆ X → X be an analytic operator and x∗ ∈ D be a fixed point of F .

Moreover, assume: max
r>0

∞∑

k=2
(γkr)k−1 exists and is attained at some r0 > 0. Set

p =
∞
∑

k=2

(γkr0)
k−1;
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there exist α, δ with α ∈ [0, 1), δ ∈ (α, 1) such that (2.16.2) holds,

p + α − δ ≤ 0

and
Ū (x∗, r0) ⊆ D.

Show: the method of successive substitutions {xn} (n ≥ 0) remains in Ū (x∗, r0)

for all n ≥ 0 and converges to x∗ for any x0 ∈ Ū (x∗, r0). Moveover the follow-
ing error bounds hold for all n ≥ 0:

‖xn+1 − x∗‖ ≤ α‖xn − x∗‖ +
∞
∑

k=2

γ k−1
k ‖xn − x∗‖k ≤ δ‖xn − x∗‖.

2.16.5. Let x∗ be a solution of Equation (2.1.1). If the linear operator F ′ (x∗) has
a bounded inverse, and lim‖x−x∗‖→0

∥
∥F ′ (x) − F ′ (x∗)

∥
∥ = 0, then show NK

method converges to x∗ if x0 is sufficiently close to x∗ and
∥
∥xn − x∗∥∥ ≤ dεn (n ≤ 0) ,

where ε is any positive number; d is a constant depending on x0 and ε.
2.16.6. The above result cannot be strengthened, in the sense that for every sequence

of positive numbers cn such that: limn→∞ cn+1
cn

= 0, there is an equation for
which NK converges less rapidly than cn . Define

sn =
{

cn/2, if n is even√
c(n−1)/2c(n+1)/2, if n is odd.

Show: sn → 0,
sn+1

sn
→ 0, and limn→∞ cn

sn+k
= 0, (k ≥ 1).

2.16.7. Assume operator F ′ (x) satisfies a Hölder condition
∥
∥F ′ (x) − F ′ (y)

∥
∥ ≤ a ‖x − y‖b ,

with 0 < b < 1 and U (x0, R). Define h0 = b0aηb
0 ≤ c0, where c0 is a root of

(
c

1+b

)b = (1 − c)1+b (0 ≤ c ≤ 1)

and let R ≥ η0
1−d0

= r0, where d0 = h0
(1+b)(1−h0)

. Show that NK method con-
verges to a solution x∗ of Equation F (x) = 0 in U (x0, r0).

2.16.8. Let K , B0, η0 be as in Theorem 2.2.4. If h0 = b0η0 K < 1
2 , and

r0 = 1−√
1−2h0
h0

η0 ≤ r.

Then show: modified Newton’s method (2.1.5) converges to a solution x∗ ∈
U (x0, r0) of Equation (2.1.1). Moreover, if

r0 ≤ r <
1+√

1−2h0
h0

η0,

then show: Equation (2.1.1) has a unique solution x∗ in U (x0, r). Furthermore
show: x̄n+1 = x̄n − F ′ (x0)

−1 F (x̄n) (n ≥ 0) converges to a solution x∗ of
Equation (2.1.1) for any initial guess x̄0 ∈ U (x0, r).
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2.16.9. Under the hypotheses of Theorem 2.2.4, let us introduce Ū = Ū (x1, r0 − η),
sequence {tn} (n ≥ 0), t0 = 0, tn+1 = tn − f (tn)

f ′(tn)
, f (t) = 1

2 K t2 − t + η,

� = r∗ − r0, θ = r0
r∗ , �tn+1 = tn+1 − tn , dn = ‖xn+1 − xn‖, �n = ‖xn − x0‖,

Ū0 = Ū , Ūn = Ū (xn, r0 − tn) (n ≥ 1), K0 = L0 = K ,

Kn = sup
x,y∈Ūn

x �=y

‖F ′(xn)−1(F ′(x)−F ′(y))‖
‖x−y‖ (n ≥ 1) ,

Ln = sup
x,y∈Ū
x �=y

‖F ′(xn)−1(F ′(x)−F ′(y))‖
‖x−y‖ (n ≥ 1) ,

λn = 2dn
1+√

1+2Lndn
(n ≥ 0) ,

λn = 2dn
1+√

1−2Lndn
(n ≥ 0) , κn = 2dn

1+√
1+2Kndn

,

kn = 2dn
1+√

1−2Kndn
(n ≥ 0) ,

s0 = 1, sn = s2
n−1

2n−1
√

1−2h+sn−1
(

1−√
1−2h

)2n−1 (n ≥ 0) .

With the notation introduced above show (Yamamoto [206]):
∥
∥x∗ − xn

∥
∥ ≤ Kn (n ≥ 0) ≤ λn (n ≥ 0)

≤ 2dn

1 +
√

1 − 2K (1 − K�n)
−1 dn

(n ≥ 0)

≤ 2dn

1 +
√

1 − 2K (1 − K tn)−1 dn

(n ≥ 0)

= 2dn

1 + √
1 − 2K Bndn

(n ≥ 0)

=

⎧

⎪⎪⎨

⎪⎪⎩

2dn

1+
√

1− 4
�

· 1−θ2n

1+θ2n dn

(2h < 1)

2dn

1+
√

1− 2n
η

dn

(2h = 1) (n ≥ 0)

≤ r0 − tn
�tn+1

dn (n ≥ 0)

= 2dn

1 + √
1 − 2hn

(n ≥ 0)

≤ K Bnd2
n−1

1+√
1−2hn

(n ≥ 0)

= r0 − tn
(�tn)2

d2
n−1 (n ≥ 0)

=
⎧

⎨

⎩

1−θ2n

�
d2

n−1 (2h < 1)

2n−1

η
d2

n−1 (2h = 1) (n ≥ 1)
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≤ K d2
n−1

√
1 − 2h +

√

1 − 2h + (K dn−1)
2

(n ≥ 1)

≤ Kηn−1dn−1
√

1 − 2h +
√

1 − 2h + (Kηn−1)
2

(n ≥ 1)

= e−2n−1ϕdn−1 (n ≥ 1)

= θ2n−1
dn−1 (n ≥ 1)

= r0 − tn
�tn

dn−1 (n ≥ 1)

≤ r0 − tn (n ≥ 0)

= 2ηn

1 + √
1 − 2hn

(n ≥ 0)

=
⎧

⎨

⎩

e
−2n−1ϕ

sinh ϕ

sinh 2n−1ϕ
η

(2h < 1)

21−nη (2h < 1)

=

⎧

⎪⎨

⎪⎩

�θ2n

1 − θ2n (2h < 1)

21−nη (2h = 1) (n ≥ 0)

= sn

2n K

(
2h

1 + √
1 − 2h

)2n

(n ≥ 0)

≤ 1

2n
K

(
2h

1 + √
1 − 2h

)2n

(n ≥ 0)

≤ 1

2n−1 (2h)2n−1 η (n ≥ 0) ,

∥
∥x∗ − xn

∥
∥ ≤ λn (n ≥ 0)

≤ Lnd2
n−1

1 +
√

1 − (Lndn−1)
2

(n ≥ 1)

≤ Ln−1d2
n−1

1 − Ln−1dn−1 + √
1 − 2Ln−1dn−1

(n ≥ 1)

≤ Ln−1d2
n−1

1 − Ln−1dn−1
(n ≥ 1) ,

∥
∥x∗ − xn

∥
∥≤ λn

≤ 2dn

1 +
√

1 − 2L0 (1 − L0�n)−1 dn
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≤ 2‖F ′ (x0)
−1 F (xn) ‖

1 − L0�n +
√

(1 − L0�n)2 − 2L0‖F ′ (x0)
−1 F (xn) ‖

≤ L0d2
n−1

1 − L0�n +
√

(1 − L0�n)2 − (L0dn−1)
2
,

∥
∥x∗ − xn

∥
∥ ≥ κn (n ≥ 0) ≥ λn (n ≥ 0)

≥ 2dn

1 +
√

1 + 2K (1 − K�n)−1 dn

(n ≥ 0)

≥ 2dn

1 +
√

1 + 2K (1 − K tn)−1 dn

(n ≥ 0)

= 2dn

1 + √
1 + 2K Bndn

(n ≥ 0)

= 2dn

1 +
√

1 + 4 · r0−tn+1

(r0−tn)2 dn

(n ≥ 0)

= 2dn

1 +
√

1 + 4 · �tn+1

(�tn)2 dn

(n ≥ 0)

= 2dn

1 +
√

1 + 2K dn√

1−2h+(Kηn−1)
2

(n ≥ 0)

≥ 2dn

1 +
√

1 + 2K dn√

1−2h+(K dn−1)
2

(n ≥ 0)

= 2dn

1 +
√

1 + 2dn√

a2+d2
n−1

(

a = √
1 − 2h/K , n ≥ 1

)

≥ 2dn

1+
√

1+ 2dn

dn+
√

a2+d2
n

(n ≥ 0)

≥ 2dn

1 + √
1 + 2hn

(n ≥ 0)

= 2dn

1 +
√

1 + 4θ2n

(1+θ2n
)

2

(n ≥ 0) ,

∥
∥x∗ − xn+1

∥
∥ ≤ κn+1 ≤ κn − dn ≤ r0 − tn+1

�tn+1
dn,

∥
∥x∗ − xn+1

∥
∥ ≤ λn+1 ≤ λn − dn ≤ r0 − tn+1

�tn+1
dn,
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dn ≤ 1
2 Knd2

n−1

≤ 1
2 Lnd2

n−1

≤ 1
2 K (1 − K�n)

−1 d2
n−1

≤ 1
2 K (1 − K�n−1 − K dn−1)

−1 d2
n−1

≤ 1
2 K (1 − K tn)

−1 d2
n−1

= 1
2 K Bnd2

n−1

= r0 − tn+1

(r0 − tn)2
d2

n−1

= �tn+1

(�tn)2
d2

n−1

= d2
n−1

2
√

a2 + η2
n−1

≤ d2
n−1

2
√

a2 + d2
n−1

≤ �tn+1

�tn
dn−1

= ηn

ηn−1
dn−1

= 1

2 cosh 2n−1ϕ
dn−1

≤ 1
2 dn−1

≤ 1
2ηn−1 = 1

2�tn,

and

dn ≤ ηn

= �tn+1

= (r0 − tn+1) θ−2n

= (r0 − tn+1) e2n
ϕ

=
⎧

⎨

⎩

sinh ϕ

sinh 2nϕ
η (2h < 1)

2−nη (2h = 1)

= �θ2n

1 − θ2n+1 (2h < 1) .
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Applications of the Weaker Version of the NK
Theorem

There is a very extensive literature on popular results that have used the NK Theorem
2.2.4 on specific real-life problems. Here we provide an incomplete list of the most
popular of them and replace the NK Theorem by its weaker version introduced in
Section 2.2. The advantages of this approach have already been explained in detail
in Section 2.2.

3.1 Comparison of Kantorovich and Moore theorems

In this section, we are concerned with the problem of approximating a locally unique
solution x∗ of equation

F(x) = 0 (3.1.1)

where F .. D ⊆ R
k → R

k is continuously differentiable on an open convex set D,
and k is a positive integer.

Rall in [171] compared the theorems of Kantorovich and Moore. This compari-
son showed that the Kantorovich theorem has only a slight advantage over the Moore
theorem with regard to sensitivity and precision, whereas the latter requires less com-
putational cost. Later Neumaier and Shen [146] showed that when the derivative in
the Krawczyk operator is replaced with a suitable slope, then the corresponding ex-
istence theorem is at least as effective as the Kantorovich theorem with respect to
sensitivity and precision. At the same time, Zuhe and Wolfe [148] showed that the
hypotheses in the affine invariant form of the Moore theorem are always implied by
the Kantorovich theorem but not necessarily vice versa.

Here we show that this implication is not true in general for a weaker version of
the Kantorovich theorem shown in Section 2.2.

We will need the following semilocal convergence theorem for NK method due
to Deuflhard and Heindl [78]:

Theorem 3.1.1. Let F be a Fréchet-differentiable operator defined on an open con-
vex subset D of a Banach space X with values in a Banach space Y . Suppose that
x0 ∈ D is such that:

I.K. Argyros, Convergence and Applications of Newton-type Iterations,
DOI: 10.1007/978-0-387-72743-1 3, c© Springer Science+Business Media, LLC 2008
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F ′(x0)
−1 ∈ L(Y, X), (3.1.2)

‖F ′(x0)
−1 F(x0)‖ ≤ η, (3.1.3)

‖F ′(x0)
−1 [F ′(x) − F ′(y)

] ‖ ≤ �‖x − y‖ for all x, y ∈ D, (3.1.4)

h = 2�η ≤ 1, (3.1.5)

and
Ū (x0, r1) ⊆ D (3.1.6)

where,

r1 = 1 − √
1 − h

�
(� �= 0). (3.1.7)

Then sequence {xn} generated by Newton’s method

xn+1 = xn − F ′(xn)−1 F(xn) (x0 ∈ D) (n ≥ 0) (3.1.8)

is well defined, remains in U (x0, r1) for all n ≥ 0, and converges to a solution x∗ of
equation F(x) = 0 that is unique in U (x0, r1) ∪ (D ∩ U (x0, r2)), where,

r2 = 1 + √
1 − h

�
. (3.1.9)

Moreover the following error bounds hold for all n ≥ 0:

‖xn+1 − xn‖ ≤ sn+1 − sn (3.1.10)

and
‖xn − x∗‖ ≤ r1 − sn, (3.1.11)

where

s0 = 0, s1 = η, sn+2 = sn+1 + �(sn+1 − sn)2

2(1 − � − sn+1)
(n ≥ 0). (3.1.12)

Remark 3.1.2. In the case of Moore’s theorem [143] suppose that hypotheses of The-
orem 3.1.1 are valid with X = Y = R

k , x0 = z = mid(xγ ), where xγ ∈ I (D) is
given by

xγ = U∞ [z, γ ] = [z − γ e, z + γ e] , e = (1, . . . , 1)T ∈ R
n, γ > 0, (3.1.13)

and define the Krawczyk operator

K (xγ ) = w − γ {F ′(z)−1 F
[

z, xγ

]

− I } [−e, e] , (3.1.14)

where
w = z − F ′(z)−1 F(z), (3.1.15)

and

F
[

z, xγ

]

=
∫ 1

0
F ′(z + t (xγ − z))dt (3.1.16)

in which integration is defined as in [143].
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The following result relates a weaker version of Theorem 3.1.1 with Moore’s
theorem.

Theorem 3.1.3. Assume for x0 = z = mid(xγ ).. hypotheses (3.1.2) and (3.1.3) of
Theorem 3.1.1 hold;

‖F ′(x0)
−1 [F ′(x) − F ′(x0)

] ‖ ≤ �0‖x − x0‖ for all x ∈ D; (3.1.17)

h̄ = 2�0η ≤ 1; (3.1.18)

and
Ū (x0, r3) ⊆ D, (3.1.19)

where,

r3 = 1 −
√

1 − h̄

�0
(�0 �= 0). (3.1.20)

Then
K
(

xγ

)

⊆ xγ , (3.1.21)

where xγ , K are given by (3.1.13) and (3.1.14)–(3.1.16), respectively.

Proof. If u ∈ K (xγ ), then u = w + v

v = γ
{[

F ′(z)−1 F
[

z, xγ

]

− I
}

[−e, e] (3.1.22)

(by (3.1.15) and (3.1.16)).
We have in turn

‖z − u‖∞ ≤ ‖z − w‖∞ + ‖v‖∞

≤ η + γ ‖F ′(z)−1{F
[

z, xγ

]

− F ′(z)}‖∞

≤ η + 1
2�0γ

2. (3.1.23)

Hence (3.1.21) holds if
η + 1

2�0γ
2 ≤ γ, (3.1.24)

which is true by (3.1.18)–(3.1.20).
That completes the proof of the Theorem.

Remark 3.1.4. (a) Note that Moore’s theorem [143] guarantees the existence of a
solution x∗ of equation (3.1.1) if (3.1.21) holds.

(b) Theorem 3.1.3 reduces to Theorem 2 in [146] if �0 = �. However in general

�0 ≤ � (3.1.25)

holds. Note also that
h ≤ 1 ⇒ h̄ ≤ 1 (3.1.26)

but not vice versa unless if �0 = �. Hence our Theorem 3.1.3 weakens Theorem 2 in
[146] and can be used in cases not covered by the latter.



136 3 The Weaker Version of the NK Theorem

An example was given in [171] and [146] to show that the hypotheses of the affine
invariant form of the Moore theorem may be satisfied even when those of Theorem
3.1.1 are not.

Example 3.1.5. Let k = 1, a ∈
[

0, 1
2

)

, x ∈ xγ = [a, 2 − a] and define function

F .. xγ → R by

F(x) = x3 − a. (3.1.27)

Choose z = mid(xγ ) then (3.1.5) becomes

h = 4

3
(1 − a)(2 − a) > 1 for all a ∈

[

0,
1

2

)

. (3.1.28)

That is, there is no guarantee that NK method generated by (3.1.8) converges to a
solution of F(x) = 0, as the Newton-Kantorovich hypothesis (3.1.5) is violated.
However using (3.1.13)–(3.1.16) and (3.1.27) we get

K (xγ ) = 1

3

[

a3 − 6a2 + 10a + 2,−a3 + 3a2 − 8a + 6
]

(3.1.29)

and if

a ∈
[

.44,
1

2

)

(3.1.30)

then (3.1.21) holds. That is Moore’s theorem guarantees convergence of NK method
(3.1.8) to a solution x∗ of equation F(x) = 0 provided that (3.1.30) holds.

However we can do better. Indeed, because �0 = 3 − a

h̄ = 2

3
(1 − a)(3 − a) ≤ 1 (3.1.31)

if

a ∈
[

4 − √
10

2
,

1

2

)

, (3.1.32)

which improves (3.1.30).

Remark 3.1.6. If (3.1.5) holds as a strict inequality NK method (3.1.8) converges
quadratically to x∗. However (3.1.18) guarantees only the linear convergence to x∗
of the modified MNK method.

yn+1 = yn − F ′(y0)
−1 F(yn) (y0 = x0), (n ≥ 0). (3.1.33)

In practice, the quadratic convergence of NK method is desirable. So we wonder
if it is possible to find a condition weaker than (3.1.5) (but probably stronger than
(3.1.18)) so that the quadratic convergence of Newton’s method is guaranteed.
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3.2 Comparison of Kantorovich and Miranda theorems

In this section, we are concerned with the problem of approximating a locally unique
solution x∗ of an equation

F(x) = 0, (3.2.1)

where F is defined on an open convex subset S of R
n (n a positive integer) with

values in R
n .

NK method

xm+1 = xm − F ′(xm)−1 F(xm) (x0 ∈ S) (m ≥ 0) (3.2.2)

has been used to generate a sequence approximating x∗.
Here we first weaken the generalization of Miranda’s theorem (Theorem 4.3 in

[136]). Then we show that operators satisfying the weakened Newton-Kantorovich
conditions satisfy those of the weakened Miranda’s theorem.

In order for us to compare our results with earlier ones, we need to list the fol-
lowing theorems guaranteeing the existence of solution x∗ of equation (3.2.1) (see
Chapter 2).

Theorem 3.2.1. Let F.. S → Rn be a Fréchet-differentiable operator. Assume:
there exists x0 ∈ S such that F ′(x0)

−1 ∈ L(Y, X), and set

G(x) = F ′(x0)
−1 F(x) (x ∈ S); (3.2.3)

there exists an η ≥ 0 such that

‖G(x0)‖ ≤ η; (3.2.4)

there exists an � > 0 such that

‖G ′(x) − G ′(y)‖ ≤ �‖x − y‖ for all x, y ∈ S; (3.2.5)

h = 2�η ≤ 1, (3.2.6)

and
Ū (x0, r∗) ⊆ S, (3.2.7)

where,

r∗ = 1 − √
1 − h

�
. (3.2.8)

Then there exists a unique solution x∗ ∈ Ū (x0, r∗) of equation F(x) = 0.

Remark 3.2.2. Theorem 3.2.1 is the portion of the famous Newton-Kantorovich the-
orem (see Chapter 2). The following theorem is due to Miranda [142], which is a
generalization of the intermediate value theorem:
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Theorem 3.2.3. Let b > 0, x0 ∈ Rn, and define

Q = {x ∈ R
n | ‖x − x0‖∞ ≤ b}, (3.2.9)

Q+
k = {x ∈ Q.. xk = x0,k + b}, (3.2.10)

and
Q−

k = {x ∈ Q.. xk = x0,k − d} for k = 1, . . . , n. (3.2.11)

Let F = (Fk) (1 ≤ k ≤ n).. Q → Rn be a continuous operator satisfying for all
k = 1, 2, . . . , n,

Fk(x)Fk(y) ≤ 0 for all x ∈ Q+
k and y ∈ Q−

k . (3.2.12)

Then there exists x∗ ∈ Q such that F(x∗) = 0.
The following result connected Theorems 3.2.1 and 3.2.3.

Theorem 3.2.4. Suppose F.. S → Rn satisfies all hypotheses of Theorem 3.2.1 in the
maximum norm, then G satisfies the conditions of Theorem 3.2.4 on Ū (x0, r∗).

In the elegant study [136], a generalization of Theorem 3.2.4 was given (Theorem
4.3). We first weaken this generalization.

Let R
n be equipped with a norm denoted by ‖ · ‖ and R

n×n with a norm ‖ · ‖
such that ‖M · x‖ ≤ ‖M‖ · ‖x‖ for all M ∈ R

n×n and x ∈ R
n . Choose constants

c0, c1 > 0 such that for all x ∈ R
n

c0‖x‖∞ ≤ ‖x‖ ≤ c1‖x‖∞, (3.2.13)

since all norms on finite-dimensional spaces are equivalent.
Set

c = c0

c1
≤ 1. (3.2.14)

Definition 3.2.5. Let S ⊆ R
n be an open convex set, and let G.. S → R

n be a differ-
entiable operator on S. Let x0 ∈ S, and assume:

G ′(x0) = I (the identity matrix) (3.2.15)

there exists η ≥ 0 such that
‖G(x0)‖ ≤ η; (3.2.16)

there exists an �0 ≥ 0 such that

‖G ′(x) − G ′(x0)‖ ≤ �0‖x − x0‖ for all x ∈ S. (3.2.17)

Define:
h0 = 2�0η. (3.2.18)

We say that G satisfies the weak center-Kantorovich conditions in x0 if

h0 ≤ 1. (3.2.19)
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We also say that G satisfies the strong center-Kantorovich conditions in x0 if

h0 ≤ c2

2
. (3.2.20)

Moreover define

r1 = c −
√

c2 − h0

�0
, (3.2.21)

r2 = c +
√

c2 − h0

�0
(3.2.22)

and
R = [r1, r2] for �0 �= 0. (3.2.23)

Furthermore if �0 = 0, define

r1 = η

c
(3.2.24)

and
R = [r1,∞) . (3.2.25)

Remark 3.2.6. The weak and strong center-Kantorovich conditions are equivalent
only for the maximum norm.

As in [136], we need to define certain concepts. Let r > 0, x0 ∈ R
n , and define

U (r) = {z ∈ R
n | ‖z‖ ≤ r}, (3.2.26)

U (x0, r) = {x = x0 + z ∈ R
n | z ∈ U (r)}, (3.2.27)

U+
k (r) = {z ∈ R

n | ‖z‖ = r, zk = ‖z‖∞}, (3.2.28)

U−
k (r) = {z ∈ R

n | ‖z‖ = r, zk = −‖z‖∞}, (3.2.29)

U+
k (x0, r) = {x = x0 + z ∈ R

n | z ∈ U+
k (r)}, (3.2.30)

U−
k (x0, r) = {x = x0 + z ∈ R

n | z ∈ U−
k (r)} for all k = 1, 2, . . . , n. (3.2.31)

We show the main result:

Theorem 3.2.7. Let G.. S → Rn be a differentiable operator defined on an open
convex subset of Rn. Assume G satisfies the strong center-Kantorovich conditions.
Then, for any r ∈ R with U (x0, r) ⊆ S the following hold:

(a) U = U (r) = U (x0, r) is a Miranda domain, (3.2.32)

and

U1 = U1(r) = {U+
1 (x0, r), U−

1 (x0, r), . . . , U+
n (x0, r), U−

n (x0, r)} (3.2.33)

is a Miranda partition [136] of the boundary ∂U. It is a canonical Miranda partition
[136] for r > 0 and a trivial Miranda domain and partition for r = 0;
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(b) Gk(x) ≥ 0 for all x ∈ U+
k (x0, r), k = 1, . . . , n (3.2.34)

and
Gk(x) ≤ 0 for all x ∈ U−

k (x0, r), k = 1, . . . , n; (3.2.35)

(c) G satisfies the Miranda conditions on (U, U1);
(d) if G(x0) = 0 and �0 > 0, then G satisfies the Miranda conditions on (U, U1)

for any r ∈
[

0, 2c
�0

]

such that U (x0, r) ⊆ S.

Proof. The first point of the theorem follows exactly as in Theorem 4.3 in [136].
For the rest, we follow the proof of Theorem 4.3 in [136] (which is essentially the
reasoning of Theorem 3.2.4) but with some differences stretching the use of center-
Lipschitz condition (3.2.17) instead of the stronger Lipschitz condition (3.2.5), which
is not really needed in the proof. However, it was used in both proofs mentioned
above.

Using the intermediate value theorem for integration we first obtain the identity

G(x0 + r z) − G(x0)

=
∫ 1

0
G ′(x0 + r t z)r z dt

=
∫ 1

0

[

G ′(x0 + r t z) − G ′(x0)
]

r z dt +
∫ 1

0
G ′(x0)r z dt

=
∫ 1

0

[

G ′(x0 + r t z) − G ′(x0)
]

r z dt + r z
∫ 1

0
dt (G ′(x0) = I ). (3.2.36)

Let ek denote the kth unit vector. Then we can have:

Gk(x0 + r z) = Gk(x0) +
∫ 1

0
eT

k

[

G ′(x0 + r t z) − G ′(x0)
]

r z dt + r zk, (3.2.37)

and by (3.2.17)
∣
∣
∣
∣
∣

∫ 1

0
eT

k

[

G ′(x0 + r t z) − G ′(x0)
]

r z dt

∣
∣
∣
∣
∣
≤

∫ 1

0

∣
∣
∣eT

k

[

G ′(x0 + r t z) − G ′(x0)
]

r z dt
∣
∣
∣

≤
∫ 1

0

1

c1
‖(G ′(x0 + r t z) − G ′(x0))r z‖ dt

≤
∫ 1

0

1

c1
‖G ′(x0 + r t z) − G ′(x0)‖ ‖r z‖ dt

≤ 1

c1

∫ 1

0
�0‖r t z‖ ‖r z‖ dt

= �0r2

c1

∫ 1

0
t dt = �0r2

2c1
. (3.2.38)

Let z ∈ U+
k (1). Using (3.2.38), and
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|Gk(x0)| ≤ 1

c1
‖G(x0)‖ ≤ η

c1
, (3.2.39)

zk ≥ 1

c2
for u ∈ U+

k (1), (3.2.40)

zk ≤ − 1

c2
for u ∈ U−

k (1), (3.2.41)

we get from (3.2.37)

Gk(x0 + r z) ≥ −|G(x0)| − �0r2

2c1
+ r zk ≥ − η

c1
− �0r2

2c1
+ r

c2
≥ 0 (3.2.42)

for r ∈ R (by (3.2.20) and (3.2.23)). Similarly,

Gk(x0 + r z) ≤ |G(x0)| + �0r2

2c1
+ r zk ≤ η

c1
+ �0r2

2c1
− r

c2
≤ 0 (3.2.43)

for r ∈ R. If G(x0) = 0, let η = 0, which implies h0 = 0.

Remark 3.2.8. If � = �0, then our Theorem 3.2.7 becomes Theorem 4.3 in [136].
Moreover if ‖·‖ is the maximum norm, then Theorem 3.2.7 becomes Theorem 3.2.4.
However in general

�0 ≤ �. (3.2.44)

Hence the strong Kantorovich condition is such that

h1 = 2�η ≤ c2

2
, (3.2.45)

h1 ≤ c2

2
⇒ h0 ≤ c2

2
. (3.2.46)

Similarly, the Kantorovich condition (3.2.6) is such that

h ≤ 1 ⇒ h2 = 2�0η ≤ 1, (3.2.47)

but not vice versa unless if �0 = �. If strict inequality holds in (3.2.44) and conditions
(3.2.45) or (3.2.6) are not satisfied, then the conclusions of Theorem 4.3 in [136]
respectively do not necessarily hold. However if (3.2.9) holds, the conclusions of our
Theorem 3.2.7 hold.

Remark 3.2.9. Condition (3.2.6) guarantees the quadratic convergence of NK method
to x∗. However this is not the case for condition (3.2.19). To rectify this and still use
a condition weaker than (3.2.6) (or (3.2.45)), define

p(δ) = pδ = (� + δ�0)η, δ ∈ [0, 2) . (3.2.48)

We showed in Section 2.2 that if
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pδ ≤ δ, (3.2.49)

2�0η

2 − δ
≤ 1, (3.2.50)

and
�0δ

2

2 − δ
≤ � (3.2.51)

replace (3.2.6) then NK method converges to x∗ ∈ Ū (x0, r3) with r3 ≤ r∗. Moreover
finer error bounds on the distances between iterates or between iterates and x∗ are
obtained. If we restrict δ ∈ [0, 1], then (3.2.50) and (3.2.51) hold if only (3.2.49) is
satisfied. Choose δ = 1 for simplicity in (3.2.49). Then again

h ≤ 1 ⇒ p1 ≤ 1, (3.2.52)

h1 ≤ c2

2
⇒ p1 ≤ c2

2
(3.2.53)

but not vice versa unless if � = �0. Hence if (3.2.19) is replaced by

p1 ≤ c2

2
(3.2.54)

then all conclusions of Theorem 3.2.7 hold.

3.3 The secant method and nonsmooth equations

In this section, we are concerned with the problem of approximating a locally unique
solution x∗ of equation (2.1.1). Here we take D to be a closed convex subset of X.

The most popular iterative procedures for approximations x∗ are the so-called
Newton-like methods. The essence of these methods is to replace F by an approxi-
mate operator (linearization) that can be solved more easily.

When operator F is nonsmooth, the linearization is no longer available. In [180],
a replacement was introduced through the notion of a point-based approximation
(to be precised later). The properties of this approximation are similar to those of
linearization and were successfully used for the NK method. However, we noticed
(see the numerical example at the end of the section) that such an approximation may
not exist. Therefore in order to solve a wider range of problems, we introduce a more
flexible and precise point-based approximation that is more suitable for Newton-like
methods and in particular for secant-type iterative procedures.

A local as well as a semilocal convergence analysis for the secant method is
provided, and our approach is justified through numerical examples.

We need a definition of a point-based approximation (PBA) for operator F that
is suitable for the secant method.

Definition 3.3.1. Let F be an operator from a closed subset D of a metric space
(X, d) into a normed linear space Y . Operator F has a (PBA) on D at the point
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x0 ∈ D if there exists an operator A.. D × D × D → Y and scalars �0, � such that
u, v, w, x, y and z in D,

‖F(w) − A(u, v, w)‖ ≤ �d(u, w)d(v,w), (3.3.1)

‖ [A(x, y, z) − A(x0, x0, z)] − [A(x, y, w) − A(x0, x0, w)] ‖ (3.3.2)

≤ �0 [d(x, x0) + d(y, x0)] d(z, w),

and

‖ [A(x, y, z) − A(u, v, z)] − [A(x, y, w) − A(u, v, w)] ‖
≤ � [d(x, u) + d(u, v)] d(z, w), (3.3.3)

where x0 is a given point in D.

We then say A is a (PBA) for F.

This definition is suitable for the application of the secant method. Indeed let X
be also a normed linear space, D a convex set and F having a divided difference of
order one on D × D denoted by [x, y; F] and satisfying the standard condition (see
Section 1.2):

‖ [u, v; F] − [w, x; F] ‖ ≤ �(‖u − w‖ + ‖v − x‖) (3.3.4)

for all u, v, w and x in D. If we set

A(u, v, w) = F(v) + [u, v; F] (w − v) (3.3.5)

then (3.3.1) becomes

‖F(w) − F(v) − [u, v; F] (w − v)‖ ≤ �‖u − w‖ ‖v − w‖, (3.3.6)

whereas (3.3.2) and (3.3.3) are equivalent to property (3.3.4) of linear operator
[·, ·; F]. Note that a (PBA) does not imply differentiability.

It follows by (3.3.1) that one way of finding a solution x∗ of equation (2.1.1) is
to solve for w the equation

A(x, y, w) = 0 (3.3.7)

provided that x and y are given.
We now need a definition also used in [179], [180], which amounts to the recip-

rocal of a Lipschitz constant for the inverse operator.

Definition 3.3.2. Let X, D, Y and F be as in Definition 3.3.1, and let F.. D → Y .
Then

δ(F, D) = inf

{‖F(u) − F(v)‖
d(u, v)

, u �= v, u, v ∈ D

}

. (3.3.8)

Clearly, if δ(F, D) �= 0, then F is 1 − 1 on D. We also define

δ0(F, D) = inf

{‖F(u) − F(x0)‖
d(u, x0)

, u �= x0, u, x0 ∈ D

}

.

Set d = δ(F, D) and d1 = δ0(F, D).
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We state and prove the following generalization of the classic Banach Lemma on
invertible operators:

Lemma 3.3.3. Let X, D and Y be as in Definition 3.3.1. Assume further X is a
Banach space. Let F and G be operators from D into Y with G being Lipschitzian
with modulus � and center-Lipschitzian with modulus �0. Let x0 ∈ D with F(x0) =
y0. Assume that:

Ū (y0, α) ⊆ F(D); (3.3.9)

0 ≤ � < d; (3.3.10)

Ū (x0, d−1
1 α) ⊆ D, (3.3.11)

and
θ0 = (1 − �0d−1

1 )α − ‖G(x0)‖ ≥ 0. (3.3.12)

Then the following hold:

Ū (y0, θ0) ⊆ (F + G)(Ū (x0, d−1
1 α)) (3.3.13)

and
δ(F + G, D) ≥ d − � > 0. (3.3.14)

Proof. Define operator T y(x) = F−1(y − G(x)), for each fixed y ∈ Ū (y0, θ0), and
x ∈ Ū (x0, d−1

1 α). We can get:

‖y − G(x) − y0‖ ≤ ‖y − y0‖ + ‖G(x) − G(x0)‖ + ‖G(x0)‖
≤ θ0 + �0d−1

1 α + ‖G(x0)‖ = α.

Therefore T y(x) is a singleton set as d1 ≥ d > 0. That is, T y is an opera-
tor on Ū (x0, d−1

1 α). This operator maps Ū (x0, d−1
1 α) into itself. Indeed for x ∈

Ū (x0, d−1
1 α):

d(T y(x), x0) = d(F−1(y − G(x)), F−1(y0)) ≤ d−1
1 α.

Moreover let u, v be in Ū (x0, d−1
1 α), then

d(T y(u), T y(v)) ≤ d(F−1(y − G(u)), F−1(y − G(v)))

≤ d−1
1 �d(u, v). (3.3.15)

It follows by the contraction mapping principle (see Section 1.3) and (3.3.11) that op-
erator T y is a strong contraction, and as such it has a fixed point x(y) in U (x0, d−1

1 α)

with (F + G)(x(y)) = y. Such a point x(y) in D is unique in D because

δ(F + G, D) = inf

{‖ [F(u) − F(v)] + [G(u) − G(v)] ‖
d(u, v)

, u �= v, u, v ∈ D

}

≥ δ(F, D) − sup

{‖G(u) − G(v)‖
d(u, v)

, u �= v, u, v ∈ D

}

≥ d − � > 0.

That is F + G is one-to-one on D.
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Remark 3.3.4. In general
�0 ≤ �, and d ≤ d1 (3.3.16)

hold and �
�0

, d1
d can be arbitrarily large (see Section 2.2). If equality holds in both

inequalities in (3.3.16) then our Lemma 3.3.3 reduces to the corresponding Lemma
3.1 in [179, p. 298]. Otherwise our Lemma 3.3.3 improves (enlarges) the range for
θ given in [179, p. 298], and under the same computational cost because in practice
the computation of � (or d) requires that of �0 (or d1). This observation is important
in computational mathematics.

The following lemma is used to show uniqueness of the solution in the semilocal
case and convergence of secant method in the local case.

Lemma 3.3.5. Let X and Y be normed linear spaces, and let D be a closed subset
of X. Let F.. D → Y , and let A be a (PBA) for operator F on D at the point x0 ∈ D.
Denote by d the quantity δ(A(x0, x0, ·), D). If U (x0, ρ) ⊆ D, then

δ(F, U (x0, ρ)) ≥ d − (2�0 + �)ρ. (3.3.17)

In particular, if d − (2�0 + �)ρ > 0, then F is one-to-one on U (x0, ρ).

Proof. Let w, z be points in U (x0, ρ). We can write

F(w) − F(z) = [F(w) − A(x, y, w)] + [A(x, y, w) − A(x, y, z)]

+ [A(x, y, z) − F(z)] (3.3.18)

By (3.3.1) we can have

‖F(w) − A(x, y, w)‖ ≤ �‖x − w‖ ‖y − w‖
and

‖F(z) − A(x, y, z)‖ ≤ �‖x − z‖ ‖y − z‖.
Moreover we can find

‖A(x, y, u) − A(x, y, v)‖ ≥ ‖A(x0, x0, u) − A(x0, x0, v)‖
− ‖ [A(x, y, u) − A(x0, x0, u)] − [A(x, y, v) − A(x0, x0, v)] ‖

and therefore

δ(A(x, y, ·), D)

≥ δ(A(x0, x0, ·), D)

− sup

{‖ [A(x, y, u) − A(x0, x0, u)] − [A(x, y, v) − A(x0, x0, v)] ‖
‖u − v‖ ,

u �= v, u, v ∈ D

}

≥ d − �0(‖x − x0‖ + ‖y − x0‖) ≥ d − 2�0ρ.
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Furthermore, we can now have

‖F(w) − F(z)‖ ≥ (d − 2�0ρ)‖w − z‖ − � [‖x − w‖ ‖y − w‖ + ‖x − z‖ ‖y − z‖]

≥ (d − 2�0ρ)‖w − z‖ − �

2
‖w − z‖2

and for w �= z,
‖F(w) − F(z)‖

‖w − z‖ ≥ d − (2�0 + �)ρ.

That completes the proof of our Lemma.

Remark 3.3.6. In order for us to compare our result with the corresponding Lemma
2.4 in [180, p. 294], first note that if:

(a) equality holds in both inequalities in (3.3.16), u = v and x = y in (3.3.1)–
(3.3.3), then our result reduces to Lemma 2.4 by setting k

2 = � = �0.
(b) Strict inequality holds in any of the inequalities in (3.3.16), u = v and x =

y then our Lemma 3.3.5 improves (enlarges) the range for ρ, and under the same
computational cost. The implications of that are twofold (see Theorems 3.3.8 and
3.3.10 that follow): in the semilocal case the uniqueness ball is more precise, and in
the local case the radius of convergence is enlarged.

We will need our result on majorizing sequences for the secant method. The proof
using conditions (C1)–(C3) can be found in Section 2.3, whereas for well-known
condition (C4) see, e.g., [162]. Detailed comparisons between conditions (C1)–(C4)

were given in Section 2.3. In particular if strict inequality holds in (3.3.16) (first
inequality) the error bounds under (C1)–(C3) are more precise and the limit of ma-
jorizing sequence more accurate than under condition (C4).

Lemma 3.3.7. Assume for η ≥ 0, c ≥ 0, d0 > 0:
(C1) for all n ≥ 0 there exists δ ∈ [0, 1) such that:

�δn(1 + δ)η + δ�0

1 − δ
(2 − δn+2 − δn+1)η + δ�0c ≤ δd0,

and
δ�0

1 − δ
(2 − δn+2 − δn+1)η + δ�0c < d0,

or
(C2) there exists δ ∈ [0, 1) such that:

�(1 + δ)η + 2δ�0η

1 − δ
+ δ�0c ≤ δd0,

and
2δ�0η

1 − δ
+ δ�0c < d0,

or
(C3) there exists a ∈ [0, 1] and
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δ ∈

⎧

⎪⎨

⎪⎩

[

0,
−1 + √

1 + 4a

2a

]

, a �= 0

[0, 1) , a = 0

such that
(� + δ�0)(c + η) ≤ d0δ, η ≤ δc and �0 ≤ a�,

or

(C4) d−1
0 �c + 2

√

d−1
0 �η ≤ 1 for �0 = �.

Then,
(a) iteration {tn} (n ≥ −1) given by

t−1 = 0, t0 = c, t1 = c + η,

tn+2 = tn+1 + d−1
0 �(tn+1 − tn−1)

1 − d−1
0 �0

[

tn+1 − t0 + tn
] (tn+1 − tn), (3.3.19)

is nondecreasing, bounded above by r

r = η

1 − δ
+ c,

and converges to some t∗ such that

0 ≤ t∗ ≤ r.

Moreover, the following estimates hold for all n ≥ 0:

0 ≤ tn+2 − tn+1 ≤ δ(tn+1 − tn) ≤ δn+1η.

(b) Iteration {sn} (n ≥ −1) given by

s−1 − s0 = c, s0 − s1 = η,

sn+1 = sn+2 + d−1
0 �(sn−1 − sn+1)

1 − d−1
0 �0

[

(s0 + s−1) − (sn + sn+1)
] (sn − sn+1), (3.3.20)

provided that s−1 ≥ 0, s0 ≥ 0, s1 ≥ 0 is nonincreasing, bounded below by s given
by

s = s0 − η

1 − δ
,

and converges to some s∗ such that

0 ≤ s∗ ≤ s.

Moreover, the following estimates hold for all n ≥ 0:

0 ≤ sn+1 − sn ≤ δ(sn − sn+1) ≤ δn+1η.
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We denote by (C), Conditions (C1) or (C2) or (C3) or (C4).
We can state and prove the main semilocal convergence result for the secant

method involving a (PBA).

Theorem 3.3.8. Let X and Y be Banach spaces, D a closed convex subset of X,
x−1, and x0 ∈ D with ‖x−1 − x0‖ ≤ c, and F a continuous operator from D into Y .
Suppose operator F has a (PBA) on D at the point x0. Moreover assume:

δ(A(x−1, x0, ·), D) ≥ d0 > 0;
Condition (C) holds;
for each y ∈ U (x0, d0(t∗ − t1) the equation A(x−1, x0, x) = y has a solution x;
the solution S(x−1, x0) of A(x−1, x0, S(x−1, x0)) = 0 satisfies

‖S(x−1, x0) − x0‖ ≤ η;
and

U (x0, t∗) ⊆ D.

Then the secant iteration defining xn+1 by

A(xn−1, xn, xn+1) = 0 (3.3.21)

remains in U (x0, t∗), and converges to a solution x∗ ∈ U (x0, t∗) of equation F(x) =
0.

Moreover the following estimates hold for all n ≥ 0:

‖xn+1 − xn‖ ≤ tn+1 − tn (3.3.22)

and
‖xn − x∗‖ ≤ t∗ − tn, (3.3.23)

where sequence {tn} is defined by (3.3.19) and t∗ = lim
n→∞ tn.

Proof. We use Lemma 3.3.3 with quantities F , G, x0 and y0 replaced by A(w, x, ·),
A(x0, x1, ·) − A(v, x, ·), x1 = S(x−1, x0), and 0 respectively. Hypothesis (3.3.9) of
the Lemma follows from the fact that A(x−1, x0, x) = y has a unique solution x1.

For hypothesis (3.3.10) we have using (3.3.2)

δ(A(x0, x1, ·), D) ≥ δ(A(x−1, x0, ·), D) − �0(‖x0 − x−1‖ + ‖x1 − x0‖)
≥ d0 − �0t1 > 0 by (C)). (3.3.24)

To show (3.3.11), we must have U (x1, t∗ − t1) ⊆ D. Instead by hypothesis
U (x0, t∗) ⊆ D, it suffices to show:

U (x1, t∗ − t1) ⊂ U (x0, t∗)

which is true because
‖x1 − x0‖ + t∗ − t1 ≤ t∗.
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We also have by (3.3.1)

‖A(x−1, x0, x1) − A(x1, x1, x1)‖ ≤ �(t1 − t−1)(t1 − t0). (3.3.25)

It follows by (3.3.12) and (3.3.25) that θ0 ≥ 0 if

θ0 ≥
[

1 − �0d−1
1 (c + η)

]

d0η − �(t1 − t−1)(t1 − t0) ≥ 0, (3.3.26)

which is true by (3.3.19) and because d0 ≤ d1 = δ0(A(x−1, x0, ·), D).
It follows from Lemma 3.3.3 that for each y ∈ U (0, r −‖x1 − x0‖), the equation

A(x0, x1, z) = y has a unique solution because δ(A(x0, x1, ·), D) > 0. We also have

A(x0, x1, x2) = A(x−1, x0, x1) = 0.

By Definition 3.3.2, the induction hypothesis, (3.3.1) and (3.3.19) we get in turn:

‖x2 − x1‖ ≤ δ(A(x0, x1, ·), D)−1‖A(x−1, x0, x1) − F(x1)‖
≤ �‖x−1 − x0‖ ‖x0 − x1‖

d0 − �0(‖x0 − x−1‖ + ‖x1 − x0‖)

≤ d−1
0 �(t1 − t−1)(t1 − t0)

1 − d−1
0 �0t1

= t2 − t1. (3.3.27)

Hence we showed:
‖xn+1 − xn‖ ≤ tn+1 − tn, (3.3.28)

and
U (xn+1, t∗ − tn+1) ⊂ U (xn, t∗ − tn) (3.3.29)

hold for n = 0, 1. Moreover for every v ∈ U (x1, t∗ − t1)

‖v − x0‖ ≤ ‖v − x1‖ + ‖x1 − x0‖ ≤ t∗ − t1 + t1 − t0,

implies v ∈ U (x0, t∗ − t0). Given they hold for n = 0, 1, . . . , j , then

‖x j+1 − x0‖ ≤
j+1
∑

i=1

‖xi − xi−1‖ ≤
j+1
∑

i=1

(ti − ti−1) = t j+1 − t0.

The induction for (3.3.28) and (3.3.29) can easily be completed by simply replacing
x−1, x0, x1, by xn−1, xn , xn+1, respectively. Indeed, corresponding with (3.3.26), we
have:

θ0 ≥
[

1 − �0d−1
1 (tn+1 − t0 + tn)

]

d0(tn+2 − tn+1) − �(tn+1 − tn−1)(tn+1 − tn) = 0,

(3.3.30)
which is true by (3.3.19).

Scalar sequence {tn} is Cauchy. From (3.3.28) and (3.3.29) it follows {xn} is
Cauchy, too, in a Banach space X , and as such it converges to some x∗ ∈ U (x0, t∗).

Moreover we have by (3.3.1) and (3.3.28)
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‖F(xn+1)‖ = ‖F(xn+1) − A(xn−1, xn, xn+1)‖
≤ �‖xn − xn−1‖ ‖xn − xn+1‖
≤ �(tn − tn−1)(tn+1 − tn) −→ 0 as n → ∞.

By the continuity of F we deduce F(x∗) = 0. Finally estimate (3.3.23) follows from
(3.3.22) by using standard majorization techniques.

That completes the proof of the Theorem.

Remark 3.3.9. The uniqueness of the solution x∗ was not considered in Theorem
3.3.8. Indeed, we do not know if under the conditions stated above the solution x∗ is
unique, say in U (x0, t∗). However using Lemma 3.3.5 we can obtain a uniqueness
result, so that if ρ satisfies

t∗ < ρ <
d0

2�0 + �
, (3.3.31)

then operator F is one-to-one in a neighborhood of x∗, as x∗ ∈ U (x0, t∗). That is,
x∗ is an isolated zero of F in this case.

The corresponding local convergence result for the secant method is given by:

Theorem 3.3.10. Assume:
x∗ ∈ D is an isolated zero if F on D;
operator F has a (PBA) on D at the point x∗ of modulus (L , L0).
Moreover assume that the following hold:

δ(A(x∗, x∗, ·), D) ≥ d∗ > 0;

0 ≤ r∗ <
d∗

2L0 + 3L
;

for each y ∈ U (0, d∗r∗) the equation A(x−1, x0, x) = y has a solution x satisfying

‖x − x∗‖ ≤ r∗;

and
U (x∗, r∗) ⊆ D.

Then secant method {xn} generated by (3.3.21) is well defined, remains in U (x∗, r∗)
for all n ≥ 0, and converges to x∗ provided x−1, x0 ∈ U 0(x∗, r∗).

Moreover the following estimates hold for all n ≥ 0:

‖xn+1 − x∗‖ ≤ (d∗)−1L(‖xn−1 − xn‖ + ‖xn − x∗‖)
1 − (d∗)−1L0(‖xn−1 − x∗‖ + ‖xn − x∗‖)‖xn − x∗‖.

Proof. The proof is omitted as it is similar to Theorem 3.3.8. Note that local results
were not given in [180].

We now show how to choose operator A in cases not covered in [180].
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Example 3.3.11. Let X = Y = (R2, ‖ · ‖∞). Consider the system

3x2 y + y2 − 1 + |x − 1| = 0
x4 + xy3 − 1 + |y| = 0.

(3.3.32)

Set for v = (v1, v2), ‖v‖∞ = ‖(v1, v2)‖∞ = max{|v1|, |v2|}, F(v) = P(v)+ Q(v),
P = (P1, P2), Q = (Q1, Q2). Define

P1(v) = 3v2
1v2 + v2

2 − 1, P2(v) = v4
1 + v1v

3
2 − 1,

Q1(v) = |v1 − 1|, Q2(v) = |v2|.
We shall take divided differences of order one [x, y; P], [x, y; Q] ∈ M2×2(R) to be
for w = (w1, w2):

[v,w, P]i,1 = Pi (w1, w2) − Pi (v1, w2)

w1 − v1
,

[v,w, P]i,2 = Pi (v1, w2) − Pi (v1, v2)

w2 − v2

provided that w1 �= v1 and w2 �= v2. If w1 = v1 or w2 = v2 replace [x, y; P] by P ′.
Similarly we define

[v,w; Q]i,1 = Qi (w1, w2) − Qi (v1, w2)

w1 − v1
,

[v,w; Q]i,2 = Qi (v1, w2) − Qi (v1, v2)

w2 − v2

for w1 �= v1 and w2 �= v2. If w1 = v1 or w2 = v2 replace [x, y; Q] by the zero 2 × 2
matrix in M2×2(R).

We consider three interesting choices for operator A:

A(v, v,w) = P(v) + Q(v) + P ′(v)(w − v), (3.3.33)

A(u, v, w) = P(v) + Q(v) + ([u, v; P] + [u, v; Q])(w − v) (3.3.34)

and

A(u, v, w) = P(v) + Q(v) + (P ′(v) + [u, v; Q])(w − v). (3.3.35)

Using method (3.3.33) for x0 = (1, 0), and both methods (3.3.34) and (3.3.35)
for x−1 = (5, 5), x0 = (1, 0) we obtain the following three tables respectively.

We did not verify the hypotheses of Theorem 3.3.8 for the above starting points.
However, it is clear that the hypotheses of Theorem 3.3.8 are satisfied for all three
methods for starting points closer to the solution

x∗ = (.894655373334687, .327826521746298),

chosen from the lists of the tables displayed in Tables 3.3.1–3.3.3.
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Table 3.3.1. Newton’s method (3.3.33)

n x(1)
n x(2)

n ‖xn−xn−1‖
0 1 0
1 1 0.333333333333333 3.333E–1
2 0.906550218340611 0.354002911208151 9.344E–2
3 0.885328400663412 0.338027276361322 2.122E–2
4 0.891329556832800 0.326613976593566 1.141E–2
5 0.895238815463844 0.326406852843625 3.909E–3
6 0.895154671372635 0.327730334045043 1.323E–3
7 0.894673743471137 0.327979154372032 4.809E–4
8 0.894598908977448 0.327865059348755 1.140E–4
9 0.894643228355865 0.327815039208286 5.002E–5
10 0.894659993615645 0.327819889264891 1.676E–5
11 0.894657640195329 0.327826728208560 6.838E–6
12 0.894655219565091 0.327827351826856 2.420E–6
13 0.894655074977661 0.327826643198819 7.086E–7
· · ·
39 0.894655373334687 0.327826521746298 5.149E–19

Table 3.3.2. Secant method (3.3.34)

n x(1)
n x(2)

n ‖xn−xn−1‖
−1 5 5

0 1 0 5.000E+00
1 0.989800874210782 0.012627489072365 1.262E–02
2 0.921814765493287 0.307939916152262 2.953E–01
3 0.900073765669214 0.325927010697792 2.174E–02
4 0.894939851625105 0.327725437396226 5.133E–03
5 0.894658420586013 0.327825363500783 2.814E–04
6 0.894655375077418 0.327826521051833 3.045E–04
7 0.894655373334698 0.327826521746293 1.742E–09
8 0.894655373334687 0.327826521746298 1.076E–14
9 0.894655373334687 0.327826521746298 5.421E–20

Table 3.3.3. Newton’s method (3.3.35)

n x(1)
n x(2)

n ‖xn−xn−1‖
−1 5 5

0 1 0 5
1 0.909090909090909 0.363636363636364 3.636E–01
2 0.894886945874111 0.329098638203090 3.453E–02
3 0.894655531991499 0.327827544745569 1.271E–03
4 0.894655373334793 0.327826521746906 1.022E–06
5 0.894655373334687 0.327826521746298 6.089E–13
6 0.894655373334687 0.327826521746298 2.710E–20
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Note that the results in [18] cannot apply here because operator A no matter how
it is chosen cannot satisfy the Lipschitz conditions (a) or (b) in Definition 2.1 in [180,
p. 293] needed for the application of Theorem 3.2 in the same paper.

Other possible applications of operators equations with a (PBA) are already noted
in [43], [180, p. 293] and the references there.

Hence method (3.3.1) (i.e., method (3.3.35) in this case) converges faster than
(3.3.33) suggested in Chen and Yamamoto [58], Zabrejko and Nguen [146] in this
case, and the method of chord (3.3.34) (see also Section 5.3).

Application 3.3.12. In the case of the NK method, the proof of Robinson’s theorem
32 in [180] was based on the crucial Newton-Kantorovich-type hypothesis

hK = d−1
0 Lr0 ≤ 1

2
(3.3.36)

which is the sufficient condition for the monotone convergence of majorizing se-
quence {vn} (n ≥ 0) given by

vn+2 = vn+1 + d−1
0 L (vn+1 − vn)2

2
(

1 − d−1
0 Lvn+1

) , v0 = 0, v1 = r0,

where L is the Lipschitzian constant appearing in the definition of a (PBA) approxi-
mation for F on D, i.e.,

‖F (v) − A (u, v)‖ ≤ 1

2
Ld (u, v)2 .

Moreover, by assuming operator A (u, ·)− A (x0, ·) is Lipschitzian on D with modu-
lus L0d (u, x0), we can show by simply repeating the proof of Theorem 3.2 in [180]
or our Theorem 4.3.1 (or Theorem 2.2.11) that hypothesis (3.3.36) can be replaced
by

h A = d−1
0 L̄r0 ≤ 1

2
, L̄ = L + L0

2
,

and {vn} by the finer majorizing sequence {wn} given by

wn+2 = wn+1 + d−1
0 L (wn+1 − wn)

2

2
(

1 − d−1
0 L0wn+1

) , w0 = 0, w1 = r0.

Note that if L0 = L, our hypotheses reduce to the ones in Robinson’s Theorem
3.2 [180]. Otherwise, i.e., if L0 < L, then our results are weaker. The rest of the
advantages of our approach have already been explained in Section 2.2.

3.4 Improvements on curve tracing of the homotopy method

The local convergence of the NK method for the tracing of an implicitly defined
smooth curve is analyzed. The domain of attraction is shown to be larger than be-
fore [62]. Moreover, finer error bounds on the distances involved are obtained and
quadratic instead of geometrical order is established.
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Finally, a numerical example is provided to justify our theoretical results.
Local convergence for the curve tracing of the homotopy method
We are concerned with the following problem: Suppose that a smooth curve � ⊂

Rn+1 is implicitly defined by
F(x, t) = 0 (3.4.1)

where F .. Rn × R → Rn is a C2 function. We intend to numerically trace curve �

from the point (x0, t0) to the point (x∗, t∗). We assume the n × (n + 1) Jacobian
matrix DF(x, t) has full rank at every point in �.

A survey of such tehniques can be found in [2], [176] and the references there.
We will use the following algorithmic form:
(a) Let yi = (xi , ti ) ∈ Rn+1 be an approximation for �. Use the predictor

z0 = yi + hiτi (3.4.2)

for the next approximating point, where hi is an appropriate step length and τi is the
tangent vector of � at yi ;

(b) Starting from z0, take a sequence of Newton iterations by requiring zk to lie
on the hyperplane normal to a certain vector (usually the tangent vector τi ).

(c) Set yi+1 = z where z is the point of convergence for the sequence {zk}.
We need some preliminaries:
A point (x, t) in Rn+1 will be denoted by y. Let σ be the arc length, along the

curve �, then an initial value problem is implicitly defined by

DF (y) · ẏ = 0; y (0) = y0, (3.4.3)

where · = d
dσ

. It is known that vector field ẏ is locally Lipschitzian [176].
We assume DF (y) is full rank along the solution curve, then equation

DF (y) y′ = −F (y) (3.4.4)

can be reduced to
y′ = −DF+ (y) F (y) (3.4.5)

where DF+ (y) = DFT (y)
[

DF (y) DFT (y)
]−1

is the Moore-Penrose general-
ized inverse of DF (y) . By the result

Rang
(

DF+) = Rang
(

DFT
)

= Kernel (DF)⊥ (3.4.6)

and equation
F (y (τ )) = e−τ F (y (0)) (3.4.7)

we conclude a solution y (τ ) of (3.4.5) is such that the magnitude of F (y) is reduced
and also remains perpendicular to the 1-dimensional kernel space of F (y).

Consider the Euler step of (3.4.5). This corresponds with the Newton method in
the form

yk+1 = yk − DF+ (yk) F (yk) . (3.4.8)

In the next section, we analyze the local convergence of method (3.4.8).
We state a result whose proof can be found in [62, p. 327]:
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Theorem 3.4.1. Let F.. D ⊆ Rn+1 → Rn be a C2 function such that

‖DF (x) − DF (y)‖ ≤ � ‖x − y‖ , for all x, y ∈ D. (3.4.9)

Suppose that F (x∗) and DF (x∗) is full rank. Let δ ∈ (0, 3−√
5

2 ) and define

M = min

{

2

3
∥
∥DF+ (x∗)

∥
∥ �

, dist(x∗, ∂ D)

}

. (3.4.10)

If r ∈ (0, δM = r0) is such that for every x ∈ U (x∗, r) we have

‖F (x)‖ ≤ δ�M2

2
, (3.4.11)

then for any x0 ∈ U (x∗, r) ⊆ D, method (3.4.8) is well defined and converges
geometrically to a point in � ∩ U (x∗, M) .

Remark 3.4.2. Under the hypotheses of Theorem 3.4.1, method (3.4.8) converges
only geometrically and condition (3.4.1) should hold. To do so we first introduce the
center-Lipschitz condition

∥
∥DF (x) − DF

(

x∗)∥∥ ≤ �0
∥
∥x − x∗∥∥ , for all x ∈ D. (3.4.12)

We note that in general
�0 ≤ � (3.4.13)

holds and �
�0

can be arbitrarily large. In practice the computation of � requires that
of �0.

Then we can show the following improvement over Theorem 3.4.1.

Theorem 3.4.3. Suppose hypotheses of Theorem 3.4.1 and (3.4.12) hold but M is
defined as

M0 = min

{

2

(2�0 + �)
∥
∥DF+ (x∗)

∥
∥
, dist

(

x∗, ∂ D
)

}

(3.4.14)

then the conclusions of Theorem 3.4.1 hold with M0 replacing M.

Proof. For any x ∈ U (x∗, M0) , we get using Lemma 3.1 in [62, p. 326] and (3.4.12)
∥
∥DF (x) − DF

(

x∗)∥∥ ∥∥DF+ (x∗)∥∥ ≤ �0
∥
∥x − x∗∥∥ ∥∥DF+ (x∗)∥∥

<
2

3
< 1. (3.4.15)

The rest of the proof follows exactly as in Theorem 1 in [62, p. 326] (with M0 re-
placing M).

That completes the proof of the theorem.
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Remark 3.4.4. If equality holds in (3.4.13), then Theorem 3.4.3 reduces to Theorem
3.4.1. Otherwise

M < M0 (3.4.16)

holds and the bounds on the distances ‖yn+1 − yn‖ , ‖yn+1 − x∗‖ (n ≥ 0) are finer
in Theorem 3.4.3. This improvement allows a wider choice of initial guesses x0. Such
an observation is important in computational mathematics. By comparing (3.4.10)
and (3.4.14), we see that M0 can be (at most) three times larger than M (if �0 = �).

In order to show that it is possible to achieve quadratic convergence and drop
strong condition (3.4.11) we use a modification of our Theorem 2 in [40] (where we
have replaced F ′ (x)−1 by DF (x)+) and use Lemma 3.1 in [62] instead of Banach
Lemma on invertible operators in the proof of Theorem 2 in [40] to obtain the proof
of Theorem 3.4.5 that follows:

Theorem 3.4.5. Assume conditions of Theorem 3.4.3 hold excluding (3.4.11). If

U1
(

x∗, r1
) ⊆ D, (3.4.17)

where

r1 = 1

�0
∥
∥DF (x∗)+

∥
∥
, (3.4.18)

then for all x0 ∈ U2 (x∗, r2) , where

r2 = 2 + γ −
√

γ 2 + 2γ

(2 + γ ) �0
∥
∥DF (x∗)+

∥
∥
, for γ ≥ 2, � = γ

2
�0 (3.4.19)

the following hold:
Newton-Kantorovich hypothesis

h = 2�
∥
∥DF (x0)

+∥∥ ∥∥DF (x0)
+ F (x0)

∥
∥ ≤ 1 (3.4.20)

holds as strict inequality, and consequently the Newton-Kantorovich theorem guar-
antees method (3.4.8) is well-defined and converges quadratically to a point in
� ∩ U (x∗, r1) .

Remark 3.4.6. Even if equality holds in (3.4.13) we can set γ = 2 and r2 can be
written as

r2 = 2 − √
2

2�0
∥
∥DF (x∗)+

∥
∥

(3.4.21)

which is larger than r0 as

δ <
2 − √

2

2
. (3.4.22)

If strict inequality holds in (3.4.13), then r2 is enlarged even further (see also Exam-
ple 3.4.7 as follows).

Convergence radius r2 can be extended even further by using Theorem 3 in [40]
based on an even weaker hypothesis than (3.4.20) found by us in Section 2.2:

h0 = (� + �0)
∥
∥DF (x0)

+∥∥ ∥∥DF (x0)
+ F (x0)

∥
∥ ≤ 1. (3.4.23)

However we do not pursue this here, leaving it for the motivated reader.
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Instead we provide an example where strict inequality holds in (3.4.13).

Example 3.4.7. Let D = U (0, 1) and define function F on the real line by

F (x) = ex − 1. (3.4.24)

For simplicity we take x0 = x∗. We obtain

� = e,

�0 = e − 1,
∥
∥
∥DF

(

x∗)+
∥
∥
∥ = 1,

γ = 3.163953415,

δ = .381966011,

M = .245252961,

M0 = .324947231,

r0 = δM = .093678295,

r̄0 = δM0 = .124118798,

r1 = .581976707,

r2 = .126433594.

Therefore we conclude
M < M0 < r1

and
r0 < r̄0 < r2,

which demonstrate the superiority of our results over the ones in [62].

3.5 Nonlinear finite element analysis

We provide a discretization result to find finite element solutions of elliptic bound-
ary value problems. Our analysis is based on the weaker version of the Newton-
Kantorovich theorem established in Section 2.2 (see Theorem 2.2.11). The advan-
tages of this approach over Newton-Kantorovich theorem 2.2.4 have already been
explained in Section 2.2.

Finally we provide examples of elliptic boundary value problems where our re-
sults apply.

We state the version of our main Theorem 2.2.11 needed in this study.

Theorem 3.5.1. Let F.. D ⊆ A → B be a nonlinear Fréchet-differentiable operator.
Assume:

there exists a point x0 ∈ D such that the Fréchet derivative F ′ (x0) ∈ L (A, B)

is an isomorphism and F (x0) �= 0;
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there exists positive constants �0 and � such that the following center-Lipschitz
and Lipschitz conditions are satisfied:

∥
∥
∥F ′ (x0)

−1 [F ′ (x) − F ′ (x0)
]
∥
∥
∥ ≤ �0 ‖x − x0‖ (3.5.1)

∥
∥
∥F ′ (x0)

−1 [F ′ (x) − F ′ (y)
]
∥
∥
∥ ≤ � ‖x − y‖ (3.5.2)

for all x, y ∈ D;
Setting η = ∥

∥F ′ (x0)
−1 F (x0)

∥
∥ and h1 = (�0 + �) η, we further assume

h1 ≤ 1; (3.5.3)

Ū
(

x1, t∗ − η
) ⊆ D, (3.5.4)

where, x1 = x0 − F ′ (x0)
−1 F (x0) , and t∗ a well defined point in [η, 2η].

Then equation F (x) = 0 has a solution x∗ ∈ Ū (x1, t∗ − η) and this solution is
unique in U (x0, t∗) ∩ D, if �0 = � and h1 < 1, and Ū (x0, t∗) ∩ D, if �0 = � and
h1 = 1. If �0 �= � the solution x∗ is unique in U (x0, R) provided that 1

2 (t∗ + R) �0 ≤
1 and U (x0, R) ⊆ D.

Moreover, we have the estimate
∥
∥x∗ − x0

∥
∥ ≤ t∗. (3.5.5)

We will simply use ‖·‖ if the norm of the element involved is well understood.
Otherwise we will use ‖·‖X for the norm on a particular set X.

We assume the following:
(A1) there exist Banach spaces Z ⊆ X and U ⊆ Y such that the inclusions

are continuous, and the restriction of F to Z , denoted again by F , is a Fréchet-
differentiable operator from Z to U.

(A2) For any v ∈ Z the derivative F ′ (v) ∈ L (Z .U ) can be extended to F ′ (v) ∈
L (X, Y ) and it is:

—Locally Lipschitz continuous on Z , i.e., for any bounded convex set T ∈ Z
there exists a positive constant c1 depending on T such that

∥
∥F ′ (v) − F ′ (w)

∥
∥ ≤ c1 ‖v − w‖ , for all v.w ∈ T . (3.5.6)

—center locally Lipschitz continuous at a given u0 ∈ Z , i.e., for any bounded
convex set T ∈ Z with u0 ∈ T there exists a positive constant c0 depending on u0
and T such that

∥
∥F ′ (v) − F ′ (u0)

∥
∥ ≤ c0 ‖v − u0‖ , for all v ∈ T . (3.5.7)

(A3) There are Banach spaces V ⊆ Z and W ⊆ U such that the inclusions are
continuous. We suppose that there exists a subset S ⊆ V for which the following
holds: “if F ′ (u) ∈ L (V, W ) is an isomorphism between V and W at u ∈ S, then
F ′ (u) ∈ L (X, Y ) is an isomporhism between X and Y as well.”
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To define discretized solutions of F (u) = 0, we introduce the finite-dimensional
subspaces Sd ⊆ Z and Sd ⊆ U parameterized by d, 0 < d < 1 with the following
properties:

(A4) There exists r ≥ 0 and a positive constant c2 independent of d such that

‖Vh‖Z ≤ c2

dr
‖Vh‖X , for all vd ∈ Sd . (3.5.8)

(A5) There exists projection �d .. X → Sd for each Sd such that, if u0 ∈ S is a
solution of F (u) = 0, then

lim
d→0

d−r ‖u0 − �du0‖X = 0 (3.5.9)

and
lim
d→0

d−r ‖u0 − �du0‖Z = 0. (3.5.10)

We can show the following result concerning the existence of locally unique
solutions of discretized equations.

Theorem 3.5.2. Assume that conditions (A1)–(A5) hold. Suppose F ′ (u0) ∈ L (V, W )

is an isomorphism, and u0 ∈ S. Moreover, assume F ′ (u0) can be decomposed into
F ′ (u0) = Q + R, where Q ∈ L (X, Y ) and R ∈ L (X, Y ) is compact. The dis-
cretized nonlinear operator Fd .. Z → U is defined by

Fd (u) = (I − Pd) Q (u) + P Fd (u) (3.5.11)

where I is the identity of Y, and Pd .. Y → Sd is a projection such that

lim
d→0

‖v − Pdv‖Y = 0, for all v ∈ Y, (3.5.12)

and
(I − Pd) Q (vd) = 0, for all vd ∈ Sd . (3.5.13)

Then, for sufficiently small d > 0, there exists ud ∈ Sd such that Fd (ud) = 0,

and ud is locally unique.
Moreover the following estimate holds

‖ud − �d (u0)‖ ≤ �1 ‖u0 − �d (u0)‖ (3.5.14)

where �1 is a positive constant independent of h.

Proof. The proof is similar to the corresponding one in [136, Th. 2.1, p. 126]. How-
ever, there are some crucial differences where weaker (3.5.7) is used (needed) instead
of stronger condition (3.5.6).

Step 1. We claim that there exists a positive constant c3, independent of d, such
that, for sufficiently small h > 0,

∥
∥F ′

d (�d (u0)) vd
∥
∥

Y ≥ c3 ‖vd‖X , for all vd ∈ Sd . (3.5.15)
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From (A3) and u0 ∈ S, F ′ (u0) ∈ L (X, Y ) is an isomorphism. Set B0 =
∥
∥F ′ (u0)

−1
∥
∥ .

We can have in turn

F ′
d (�d (u0)) vd = F ′ (u0) vd + Pd

(

F ′ (�d (u0)) − F ′ (v0)
)

vd (3.5.16)

− (I − Pd)
(−Q + F ′ (u0)

)

vd .

Because −Q + F ′ (u0) ∈ L (X, Y ) is compact we get by (3.5.12) that

lim
d→0

∥
∥(I − Pd)

(−Q + F ′ (u0)
)∥
∥ = 0. (3.5.17)

By (3.5.12) there exists a positive constant c4 such that

sup
d>0

‖Pd‖ ≤ c4. (3.5.18)

That is, using (3.5.7) we get
∥
∥Pd

(

F ′ (�d (u0)) − F ′ (u0)
)∥
∥ ≤ c0c4 ‖�d (u0) − u0‖ . (3.5.19)

Hence, by (3.5.10) we can have

∥
∥F ′

d (�d (u0)) vd
∥
∥ ≥

(
1
B0

− δ (d)
)

‖vd‖ , (3.5.20)

where limd→0 δ (d) = 0, and (3.5.15) holds with c3 = B−1
0
2 .

Step 2. We shall show:

lim
d→0

d−r
∥
∥
∥F ′

d (�d (u0))
−1 Fd (�d (u0))

∥
∥
∥ = 0. (3.5.21)

Note that

‖Fd (�d (u0))‖ ≤ c4 ‖Fd (�d (u0)) − Fd (u0)‖

≤ c4

∫ 1

0
‖Gt‖ dt ‖�d (u0) − u0‖

≤ c4c5 ‖�d (u0) − u0‖ , (3.5.22)

where
Gt = F ′ ((1 − t) u0 + t�d (u0)) (3.5.23)

and we used

‖Gt‖ ≤ ∥
∥Gt − F ′ (u0)

∥
∥+ ∥

∥F ′ (u0)
∥
∥

≤ c0t ‖�d (u0) − u0‖ + ∥
∥F ′ (u0)

∥
∥ ≤ c5 (3.5.24)

where c5 is independent of d.

The claim is proved.
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Step 3. We use our modification of the Newton-Kantorovich theorem with the
following choices:

A = Sd ⊆ Z , with norm d−r ‖wd‖X ,

B = Sd ⊆ U with norm d−r ‖wd‖Y ,

x0 = �d (u0) ,

F = Fd .

Notice that ‖S‖L(A,B) = ‖S‖L(X,Y ) for any linear operator S ∈ L (Sd , Sd) .

By Step 1, we know F ′
d (�d (u0)) ∈ L (Sd , Sd) is an isomorphism.

It follows from (3.5.6) and (A4) that for any wd , vd ∈ Sd ,

∥
∥F ′

d (wd) − F ′
d (vd)

∥
∥ ≤ c1c4 ‖wd − vd‖Z

≤ c1c2c4d−r ‖wd − vd‖X (3.5.25)

Similarly, we get using (3.5.7) and (A4) that
∥
∥F ′

d (wd) − F ′
d (�d (u0))

∥
∥ ≤ c1c2c4d−r ‖wd − x0‖X .

Hence assumptions are satisfied with

� = c1c2c−1
3 c4 and �0 = c0c2c−1

3 c4. (3.5.26)

From Step 2, we may take sufficiently small d > 0 such that (�0 + �) η ≤ 1,

where
η = d−r

∥
∥
∥F ′

d (�d (u0))
−1 Fd (�d (u0))

∥
∥
∥

X
.

That is, assumption h1 ≤ 1 is satisfied.
Hence for sufficiently small d > 0 there exists a locally unique ud ∈ Sd such

that Fd (ud) = 0 and

‖ud − �d (u0)‖X ≤ 2drη ≤ 2c−1
3 ‖Fd (�d (u0))‖Y

≤ 2c−1
3 c4c5 ‖u0 − �d (u0)‖X .

It follows (3.5.14) holds with �1 = 2c−1
3 c4c5.

That completes the proof of the Theorem.

Remark 3.5.3. In general
c0 ≤ c1 (i.e., �0 ≤ �) (3.5.27)

holds and �
�0

can be arbitrarily large, where � and �0 are given by (3.5.26).
If � = �0 our Theorem 3.5.2 reduces to the corresponding Theorem 2.1 in [194,

p. 126].
Otherwise our condition h1 ≤ 1 is weaker than the corresponding one in [194]

using the Newton-Kantorovich hypothesis h = 2�η ≤ 1.

Note also that our parameter d will be smaller than the corresponding one in
[194], which in turn implies fewer computations and smaller dimension subspaces
Sd are used to approximate ud . This observation is very important in computational
mathematics.
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The above observations suggest that all results obtained in [194] can be improved
if rewritten with weaker h1 ≤ 1 instead of stronger h ≤ 1.

However, we do not attempt this here (leaving this task to the motivated reader).
Instead we provide examples of nonlinear problems already reported in [194] where
finite element methods apply along the lines of our theorem above.

Example 3.5.4. Find u ∈ H1
0 (J ), J = (b, c) ⊆ R such that

〈F (u) , v〉 =
∫

J

[

g0
(

x, u, u′) v′ + g
(

x, u, u′) v
]

dx

= 0, for all v ∈ H1
0 (J ) (3.5.28)

where g0 and g1 are sufficiently smooth functions from J × R × R to R.

Example 3.5.5. For the N -dimensional case (N = 2, 3) let D ⊆ RN be a bounded
domain with a Lipschitz boundary. Then consider the problem:

find u ∈ H1
0 (D) such that

〈F (u) , v〉 =
∫

D
[q0 (x, u,∇u) · ∇v + q (x, u,∇u) · v] dx

= 0, for all v ∈ H1
0 (D), (3.5.29)

where q0 ∈ D × R × RN to R are sufficiently smooth functions.

Example 3.5.6. Because equations (3.5.28) and (3.5.29) are defined in divergence
form, their finite element solutions are defined in a natural way. Finite element meth-
ods applied to nonlinear elliptic boundary value problems have also been considered
by other authors [93], [168].

3.6 Convergence of the structured PSB update in Hilbert space

A finer semilocal convergence analysis for the structured PSB update in Hilbert space
is provided here based on Theorem 2.2.11 instead of the NK Theorem 2.2.4 used in
[134]. Our results extend the applicability of the update algorithm. The advantages
of our approach have already been explained in Section 2.2.

The motivation and the definition of the quantities introduced in the algorithm
as well as applications to optimal shape design can be found in the elegant paper by
Laumen [134] (see also the references therein). Laumen used Theorem 3.2 given by
Dennis in [74, p. 438] to provide his Newton-Kantorovich-type Theorem 2.2 upon
which the semilocal convergence of the algorithm was based. In particular, he justi-
fied the choice of the PSB Update (Powell symmetric Broyden update),

B+ = B + [(q − Bw) ⊗ w + w ⊗ (q − Bw)] / 〈v,w〉
− [〈q − Bw,w〉] w ⊗ w/ 〈w,w〉2 .
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We are concerned with the problem of approximating a locally unique solution
u∗ of the minimization problem

min
u∈H

F (u) (3.6.1)

using the algorithm [134]:
Structured Quasi-Newton method in Hilbert Space H .
Step 1. Given u ∈ H, E ∈ L (H) , B = C (u) + E ∈ L (H) .

Step 2. Compute w as the solution of

〈Bw, v〉 = 〈−F ′ (u) , v
〉

, ∀v ∈ H.

Step 3. Set u+ = u + w.

Step 4. Choose q# approximately.
Step 5. Set q = C (u+) + q#.

Step 6. Update the quasi-Newton operator

E+ = B
(

E, q#, w
)

,

and set
B+ = C (u+) + E+.

We state and prove the main semilocal convergence result for the structured PSB
Update.

Theorem 3.6.1. Let H be a Hilbert space, and let F ′ (·) .. U ⊆ H → L (H) be
Fréchet-differentiable. Suppose there exist u0 ∈ U and parameters δ ∈ [0, 2) ,

γ, ρ, C0, L0
F ′′ , L F ′′ , Lc, such that

B−1
0 = [C (u0) + E0]−1 ∈ L (H) ,

∥
∥
∥B−1

0

(

B0 − F ′′ (u0)
)
∥
∥
∥ ≤ γ,

∥
∥
∥B−1

0 F (u0)

∥
∥
∥ ≤ ρ,

∥
∥F ′′ (u) − F ′′ (u0)

∥
∥ ≤ L0

F ′′ ‖u − u0‖ , ∀u ∈ U, (3.6.2)
∥
∥F ′′ (u) − F ′′ (w)

∥
∥ ≤ L F ′′ ‖u − w‖ , ∀u, w ∈ U,

‖C (u) − C (w)‖ ≤ LC ‖u − w‖ , ∀u, w ∈ U,
∥
∥
∥q# − D (u+) w

∥
∥
∥ ≤ C0 ‖w‖2 , ∀u, w ∈ U,

∥
∥Bη − F ′′ (uη

)∥
∥ ≤ ∥

∥B0 − F ′′ (u0)
∥
∥+ (2C0 + LC + L F ′′)

η
∑

j=1

∥
∥u j − u j−1

∥
∥ ,

hδ =
(

3L F ′′ + 4C0 + 2LC + L0
F ′′
)

ρ ≤ δ − [2γ + (γ0 + γ ) δ]

(3.6.3)

2γ + (γ0 + γ ) δ ≤ δ, (3.6.4)
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and

U

(

u0,
2ρ

2 − δ

)

⊆ U.

Then, the quasi-Newton method with structured PSB Update is well defined and con-

verges to u∗ ∈ U
(

u0,
2ρ

2−δ

)

, where u∗ is the unique solution of F ′ (u) = 0 in

U (u0, t∗), where

t∗ = lim
n→∞ tn ≤ 2ρ

2 − δ
,

t0 = 0, t1 = ρ,

tn+2 = tn+1 + 1

2an

[

L F ′′ (tn+1 − tn) + 2γ + 2 (2C0 + LC + L F ′′) tn
]

(tn+1 − tn)

and

an = 1 −
[

γ0 + γ + 2ρ

2 − δ

(

1 −
(

δ

2

)n+1
)
(

2C0 + LC + L F ′′ + L0
F ′′
)
]

.

Moreover, the solution u∗ is unique in U 0
(

u0, t∗1
)

, provided that

U 0 (u0, t∗1
) ⊆ U,

and
L0

F ′′

2

(

t∗ + t∗1
) ≤ 1.

Furthermore, the following estimates hold for all n ≥ 0:

‖un+1 − un‖ ≤ tn+1 − tn,

and
∥
∥un+1 − u∗∥∥ ≤ t∗ − tn .

Proof. It follows immediately from Lemma 5.1.1 and Theorem 5.1.2 in Section 5.1
by simply replacing bn − �, cn − an, hn

δ , K0, K1, K , d, qn given in Section 5.1 (see

also [41]) by γ, a, hδ = (2L F ′′+2C0+LC)ρ+2γ

a , L0
F ′′ , 2C0+LC +L F ′′ , γ, 1−a defined

above respectively.

Remark 3.6.2. Lemma 5.1.1 and Theorem 5.1.2 in Section 5.1 (see also [41]) were
shown under even weaker hypotheses. However in order for us to compare with
Theorem 2.2 [134, p. 404] given below it is preferred to provide only the above
stated results.

Although the results in [134] were not given in affine invariant form, we modify
and present them here in such a way that they will be comparable with the corre-
sponding ones in our Theorem 3.6.1 above, so that an equitable comparison can be
made.
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Theorem 3.6.3. [134, p. 404]. Assume conditions of Theorem 3.6.1 but replace
(3.6.2), (3.6.3), t∗, t∗1 by (3.6.5), (3.6.6) r∗, r∗

1

h = (4C0 + 2LC + 3L F ′′) ρ

(1 − 3γ )2
≤ 1

2
, (3.6.5)

3γ < 1 (3.6.6)

r∗ =
(

1 − √
1 − 2h

)

(1 − 3γ )

4C0 + 2LC + 3L F ′′

and

r∗
1 =

(

1 − √
1 − 2h1

)

(1 − γ )

L F ′′
,

where

h1 = C L F ′′

(1 − γ )2
≤ 1

2
,

respectively.
Then the conclusions of Theorem 3.6.1 hold in this setting.

Note that condition (3.6.2) is not used in Theorem 3.6.3. This allows a greater
flexibility. On one hand, Theorem 3.6.3 can be reduced to Theorem 3.6.1 if L0

F ′′ =
L F ′′ .

However, in general
L0

F ′′ ≤ L F ′′

holds and L F ′′
L0

F ′′
can be arbitrarily large. Moreover, it can easily be seen (simply com-

pare (3.6.5) with (3.6.3)) that condition (3.6.5) =⇒ (3.6.3), provided that (3.6.4)
holds together with

δ ∈ [δ0, 2) ,

and
4 (γ0 + 2γ ) + (1 − 3γ )2 < 4,

where

δ0 = 4γ + (1 − 3γ )2

2 [1 − (γ0 + γ )]
,

and ρ is sufficiently small.
Note also that in an even more general setting (see Theorem 2, Remark 1 in [41]

and Theorem 3.2 in [74]), it was shown in [41] that t∗ ≤ r∗ and upper bounds on the
distances ‖un − un−1‖ , ‖un − u∗‖ are finer.

Finally note that all the above advantages are obtained under the same computa-
tional cost because in practice the computation of L F ′′ requires that of L0

F ′′ .
Hence their usefulness in optimizing the convergence of the structured PSB Up-

date has been established.
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3.7 On the shadowing lemma for operators with chaotic behavior

It is well-known that complicated behavior of dynamical systems can easily be de-
tected via numerical experiments. However, it is very difficult to prove mathemati-
cally in general that a given system behaves chaotically.

Several authors have worked on various aspects of this problem, see, e.g., [157],
[186], and the references therein. In particular, the shadowing lemma [157, p. 1684]
proved via the celebrated Newton-Kantorovich Theorem 2.2.4 was used in [157] to
present a computer-assisted method that allows us to prove that a discrete dynamical
system admits the shift operator as a subsystem. Motivated by this work and using a
weaker version of the Newton-Kantorovich Theorem 2.2.4 reported by us in Theo-
rem 2.2.11 (see Theorem 3.7.1 that follows), we show that it is possible to weaken
the shadowing Lemma on on which the work in [157] is based. In particular, we
show that under weaker hypotheses and the same computational cost, a larger upper
bound on the crucial norm of operator L−1 (see (3.7.7)) is found and the information
on location of the shadowing orbit is more precise. Other advantages have already
been reported in Section 2.2. Clearly this approach widens the applicability of the
shadowing lemma.

We need the definitions: Let D ⊆ Rk be an open subset of Rk (k a natural num-
ber), and let f .. D → D be an injective operator. Then the pair (D, f ) is a discrete
dynamical system. Denote by S = l∞

(

Z, Rk
)

the space of Rk valued bounded se-
quences x = {xn} with norm ‖x‖ = supn∈Z |xn|2. Here we use the Euclidean norm
in Rk and denote it by |·|, ommitting the index 2. A δ0-pseudo-orbit is a sequence
y = {yn} ∈ DZ with |yn+1 − f (yn)| ≤ δ0 (n ∈ Z). A r -shadowing orbit x = {xn}
of a δ0-pseudo-orbit y is an orbit of (D, f ) with |yn − xn| ≤ 2 (n ∈ Z).

We need the following version for Theorem 2.2.11.

Theorem 3.7.1. Let F.. D ⊆ X → Y be a Fréchet-differentiable operator. Assume
there exist x0 ∈ D and positive constant η, β, L0 and L such that F ′ (x0)

−1 ∈
L (Y, X) ,

∥
∥
∥F ′ (x0)

−1
∥
∥
∥ ≤ β, (3.7.1)

∥
∥
∥F ′ (x0)

−1 F (x0)

∥
∥
∥ ≤ η, (3.7.2)

∥
∥F ′ (x) − F ′ (y)

∥
∥ ≤ L ‖x − y‖ , for all x, y ∈ D, (3.7.3)

∥
∥F ′ (x) − F ′ (x0)

∥
∥ ≤ L0 ‖x − x0‖ , for all x ∈ D, (3.7.4)

h A = β (L0 + L) η ≤ 1 (3.7.5)

and
Ū
(

x0, s∗) ⊆ D,

where s∗ = limn→∞ sn,

s0 = 0, s1 = η, sn+2 = sn+1 + L (sn+1 − sn)

2 (1 − L0sn+1)
(n ≥ 0) .
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Then sequence {yn} (n ≥ 0) generated by NK method

yn+1 = yn − F ′ (yn)−1 F (yn) (n ≥ 0)

is well defined, remains in Ū (x0, s∗) for all n ≥ 0 and converges to a unique solution
y∗ ∈ Ū (x0, s∗), so that estimates

‖yn+1 − yn‖ ≤ sn+1 − sn

and
∥
∥yn − y∗∥∥ ≤ s∗ − sn ≤ 2η − sn

hold for all n ≥ 0.

Moreover y∗ is the unique solution of equation F (y) = 0 in U (x0, R) provided
that

L0
(

s∗ + R
) ≤ 2

and
U (x0, R) ⊆ D.

The advantages of Theorem 3.7.1 over the Newton-Kantorovich Theorem 2.2.4
have been explained in detail in Section 2.2.

From now on we set X = Y = Rk .
Sufficient conditions for a δ0-pseudo-orbit y to admit a unique r -shadowing orbit

are given in the following main result.

Theorem 3.7.2. (Weak version of the shadowing lemma) Let D ⊆ Rk be open, f ∈
C1,Lip (D, D) be injective, y = {yn} ∈ DZ be a given sequence, {An} be a bounded
sequence of k × k matrices and let δ0, δ,�0, � be positive constants. Assume that for
the operator

L.. S → S with {Lz}n = zn+1 − Azn (3.7.6)

is invertible and
∥
∥
∥L−1

∥
∥
∥ ≤ a = 1

δ + √
(� + �0) δ0

. (3.7.7)

Then the numbers t∗, R given by

t∗ = lim
n→∞ tn (3.7.8)

and

R = 2

�0
− t∗ (3.7.9)

satisfy 0 < t∗ ≤ R, where sequence {tn} is given by

t0 = 0, t1 = η, tn+2 = tn+1 + � (tn+1 − tn)2

2 (1 − �0tn+1)
(n ≥ 0) (3.7.10)

and
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η = δ0
1

‖L−1‖ − δ
. (3.7.11)

Let r ∈ [

t∗, R
]

. Moreover, assume that

⋃

n∈Z

U (yn, r) ⊆ D (3.7.12)

and for every n ∈ Z

|yn+1 − f (yn)| ≤ δ0, (3.7.13)

|An − D f (yn)| ≤ δ, (3.7.14)
∣
∣F ′ (u) − F ′ (0)

∣
∣ ≤ �0 |u| (3.7.15)

and
∣
∣F ′ (u) − F ′ (v)

∣
∣ ≤ � |u − v| , (3.7.16)

for all u, v ∈ U (yn, r) .

Then there is a unique t∗-shadowing orbit x∗ = {xn} of y. Moreover, there is no
orbit x̄ other than x∗ such that

‖x̄ − y‖ ≤ r. (3.7.17)

Proof. We shall solve the difference equation

xn+1 = f (xn) (n ≥ 0) (3.7.18)

provided that xn is close to yn . Setting

xn = yn + zn (3.7.19)

and
gn (zn) = f (zn + yn) − Anzn − yn+1 (3.7.20)

we can have
zn+1 = Anzn + gn (zn) . (3.7.21)

Define D0 = {z = {zn} .. ‖z‖ ≤ 2} and nonlinear operator G.. D0 → S, by

(G (z))n = gn (zn) . (3.7.22)

Operator G can naturally be extended to a neighborhood of D0. Equation (3.7.21)
can be rewritten as

F (x) = Lx − G (x) = 0, (3.7.23)

where F is an operator from D0 into S.

We will show the existence and uniqueness of a solution x∗ = {xn} (n ≥ 0) of
equation (3.7.23) with ‖x∗‖ ≤ r using Theorem 3.7.1. Clearly we need to express
η, L0, L and β in terms of

∥
∥L−1

∥
∥ , δ0, δ, �0 and �.



3.7 The shadowing lemma 169

(i)
∥
∥F ′ (0)−1 F (0)

∥
∥ ≤ η.

Using (3.7.13), (3.7.14) and (3.7.20), we get ‖F (0)‖ ≤ δ0 and
∥
∥G ′ (0)

∥
∥ ≤ δ, as

[

G ′ (0) (w)
]

n = (

F ′ (yn) − An
)

wn .

By (3.7.7) and the Banach lemma on invertible operators we get F ′ (0)−1 exists
and

∥
∥
∥F ′ (0)−1

∥
∥
∥ ≤

(

1
∥
∥L−1

∥
∥

− δ

)−1

. (3.7.24)

That is, η can be given by (3.7.11).
(ii)

∥
∥F ′ (0)−1

∥
∥ ≤ β

By (3.7.24) we can set

β =
(

1
∥
∥L−1

∥
∥

− δ

)−1

. (3.7.25)

(iii)
∥
∥F ′ (u) − F ′ (v)

∥
∥ ≤ L ‖u − v‖

We can have using (3.7.16)
∣
∣
(

F ′ (u) − F ′ (v)
)

(w)n

∣
∣ = ∣

∣
(

F ′ (yn + un) − F ′ (yn + vn)
)

wn
∣
∣

≤ � |un − vn| |wn| . (3.7.26)

Hence we can set L = �.

(iv)
∥
∥F ′ (u) − F ′ (0)

∥
∥ ≤ L0 ‖u‖ .

By (3.7.17) we get
∣
∣
(

F ′ (u) − F ′ (0)
)

(w)n

∣
∣ = ∣

∣
(

F ′ (yn + un) − F ′ (yn + 0)
)

wn
∣
∣

≤ �0 |un| |wn| . (3.7.27)

That is, we can take L0 = �0.

Crucial condition (3.7.5) is satisfied by (3.7.7) and with the above choices of
η, β, L and L0.

Therefore the claims of Theorem 3.7.2 follow immediately from the conclusions
of Theorem 3.7.1.

That completes the proof of the theorem.

Remark 3.7.3. In general
�0 ≤ � (3.7.28)

holds and �
�0

can be arbitrarily large. If �0 = �, Theorem 3.7.2 reduces to Theorem
1 in [157, p. 1684]. Otherwise our Theorem 3.7.2 improves Theorem 1 in [157].
Indeed, the upper bound in [157, p. 1684] is given by

∥
∥
∥L−1

∥
∥
∥ ≤ b = 1

δ + √
2�δ0

. (3.7.29)

By comparing (3.7.7) with (3.7.29) we deduce

b < a

(if �0 < �).
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3.8 The mesh independence principle and optimal shape design
problems

Shape optimization is described by finding the geometry of a structure that is optimal
in the sense of a given minimization cost function with respect to certain constraints.
A Newton’s mesh independence principle was very efficiently used to solve optimal
design problems in [133]. Here motivated by optimization considerations, we show
that under the same computational cost, an even finer mesh independence principle
can be given.

We are concerned with the problem

min
u∈U

F (u) (3.8.1)

where F (u) = J (u, S (u) , z (u)) + ε
2 ‖u − uT ‖2, ε ∈ R, functions uT , S, z, and J

are defined on a function space (Banach or Hilbert) U with values in another function
space V . Many optimal shape design problems can be formulated as in (3.8.1) [133].
In the excellent paper by W. Laumen [133], the mesh independence principle (see
also [2]) was transferred to the minimization problem by the necessary first-order
condition

F ′ (u) = 0 in U. (3.8.2)

The most popular method for solving (3.8.2) is given for n ∈ N by Newton’s
method

F ′′ (un−1) (w) (v) = −F ′ (un−1) (v)

un = un−1 + w,

where F , F ′, and F ′′ also depend on functions defined on the infinite-dimensional
Hilbert space V . The discretization of this method is obtained by replacing the
infinite-dimensional space V and U with the finite-dimensional subspaces V M , U M

and the discretized NK method

F ′′
N

(

uM
n−1

) (

wM
) (

vM
)

= −F ′
N

(

uM
n−1

) (

vM
)

,

uM
n = uM

n−1 + wM .

Here we show that under the same hypotheses and computational cost, a finer mesh
independence principle can be given.

Let u0 be chosen in the closed ball

U∗ = U (u∗, r∗)

in order to guarantee convergence to the solution u∗. The assumptions concerning
the cost function FN , which are assumed to hold on a possible smaller ball Û∗ =
U
(

u∗, r̂∗
)

with r̂∗ ≤ r∗ are stated below.
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Assumption C1. There exist positive constants L0, L and δ such that for all u, v ∈
U∗

∥
∥F ′′ (u) − F ′′ (u∗)

∥
∥ ≤ L0 ‖u − u∗‖

∥
∥F ′′ (u) − F ′′ (v)

∥
∥ ≤ L ‖u − v‖

∥
∥
∥F ′′ (u∗)−1

∥
∥
∥ ≤ δ.

Assumption C2. There exist uniformly bounded Lipschitz constants L(i)
N , i =

1, 2, such that
∥
∥F ′

N (u) − F ′
N (v)

∥
∥ ≤ L(1)

N ‖u − v‖ , for all u, v ∈ Û∗, N ∈ N,
∥
∥F ′′

N (u) − F ′′
N (v)

∥
∥ ≤ L(2)

N ‖u − v‖ , for all u, v ∈ Û∗, N ∈ N.

Without loss of generality, we assume L(i)
N ≤ L , i = 1, 2, for all N .

Assumption C3. There exist a sequence z(1)
N with z(1)

N → 0 as N → ∞, such that

∥
∥F ′

N (u) − F ′ (u)
∥
∥ ≤ z(1)

N , for all u ∈ Û∗, N ∈ N,
∥
∥F ′′

N (u) − F ′′ (u)
∥
∥ ≤ z(2)

N , for all u ∈ Û∗, N ∈ N.

Assumption C4. There exists a sequence z(2)
N with z(2)

N → 0 as N → ∞ such
that for all N ∈ N there exists a ûN ∈ U N × Û∗ such that

∥
∥
∥ûN − u∗

∥
∥
∥ ≤ z(2)

N .

Assumption C5. F ′
N and F ′′

N correspond with the derivatives of FN .

The cost function F is assumed to be twice continuously Fréchet-differentiable.
Therefore, its first derivative is also Lipschitz continuous:

∥
∥F ′ (u) − F ′ (v)

∥
∥ ≤ L̂ ‖u − v‖ , for all u, v ∈ U∗.

Without loss of generality we assume L̂ ≤ L .

Remark 3.8.1. In general
L0 ≤ L (3.8.3)

holds and L
L0

can be arbitrarily large. If L0 = L , our Assumptions C1–C5 coincide
with the ones in [133, p. 1074].

Otherwise our assumptions are finer and under the same computational cost as in
practice the evaluation of L requires the evaluation of L0. This modification of the
assumptions in [133] will result in larger convergence balls U∗ and Û∗, which in turn
implies a wider choice of initial guesses for Newton’s method and finer bounds on
the distances involved. This observation is important in computational mathematics.
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We now justify the claims made in the previous remark, as follows:

δ

∥
∥
∥F ′′ (u∗) − F ′′

N

(

ûM
)∥
∥
∥ ≤ δ

[∥
∥
∥F ′′ (u∗) − F ′′

(

ûM
)∥
∥
∥+

∥
∥
∥F ′′

(

ûM
)

− F ′′
N

(

ûM
)∥
∥
∥

]

≤ δ
[

L0z(2)
M + z(1)

N

]

≤ δẑ < 1

hold for a constant ẑ if M and N are sufficiently large. It also follows by the Banach

Lemma on invertible operators that F ′′ (ûM
)−1

exists and
∥
∥
∥
∥

F ′′
(

ûM
)−1

∥
∥
∥
∥

≤ δ

1 − δẑ
= δ̂.

We showed in Section 2.4 that if

r∗ ≤ 2

(2L0 + L) δ
<

1

δL0
, (3.8.4)

then the estimates

δ
∥
∥F ′′ (ui ) − F ′′ (u∗)

∥
∥ ≤ δL0 ‖ui − u∗‖ ≤ δL0r∗ < 1

hold, which again also imply the existence of F ′′ (ui ) with
∥
∥
∥F ′′ (ui )

−1
∥
∥
∥ ≤ δ

1 − δL0r∗
= δ̂. (3.8.5)

Hence by redefining δ by δ̂ if necessary, we assume that
∥
∥
∥F ′′ (ui )

−1
∥
∥
∥ ≤ δ, for all i ∈ N (3.8.6)

∥
∥
∥
∥

F ′′
N

(

ûM
)−1

∥
∥
∥
∥

≤ δ, for all ûM ∈ U M , N ∈ N, (3.8.7)

for M and N satisfying

δ
[

L0z(2)
M + z(1)

N

]

≤ δẑ < 1. (3.8.8)

The next result is a refinement of Theorem 2.1 in [133, p. 1075], which also presents
sufficient conditions for the existence of a solution of the problem

min
u∈U M

FN

(

uM
)

(3.8.9)

and shows the convergence of Newton’s method for M, N → ∞.

Theorem 3.8.2. Assume C1–C5 hold and parameters M, N satisfy

Z M N = 2δ

[

max {1, L0} + 1

2δ

] (

z(1)
N + z(2)

M

)

≤ min

{

r∗,
1

δL

}

. (3.8.10)

Then the discretized Newton’s method has a local solution uM∗ ∈ Û∗ satisfying
∥
∥
∥uM

∗ − u∗
∥
∥
∥ < zM N . (3.8.11)
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Proof. We apply the Newton-Kantorovich Theorem 2.2.4 to Newton’s method start-
ing at uM

0 = ûM to obtain the existence of a solution uM∗ of the infinite-dimensional
minimization problem. Using C2–C4, (3.8.7), and (3.8.10), we obtain in turn

2h = 2δL

∥
∥
∥
∥

F ′′
N

(

ûM
)−1

F ′
N

(

ûM
)
∥
∥
∥
∥

≤ 2δL

∥
∥
∥
∥

F ′′
N

(

ûM
)−1

∥
∥
∥
∥

∥
∥
∥F ′

N

(

ûM
)∥
∥
∥

≤ 2δ2L
(∥
∥
∥F ′

N

(

ûM
)

− F ′
(

ûM
)∥
∥
∥+

∥
∥
∥F ′

(

ûM
)

− F ′ (u∗)
∥
∥
∥

)

≤ 2δ2L
(

z(1)
N + L0

∥
∥
∥ûM − u∗

∥
∥
∥

)

≤ 2δ2L

(

max {1, L0} + 1

2δ

)(

z(1)
N + z(2)

M

)

≤ δLzM N ≤ 1 (3.8.12)

which imply the required assumption 2h < 1 (for the quadratic convergence).
We also need to show U

(

ûM , r (h)
) ⊂ U

(

u∗, r̂∗
)

. By C4 is suffices to show

r (h) = 1

δL

(

1 − √
1 − 2h

)

≤ r̂∗ − z(2)
M . (3.8.13)

But by (3.8.10) and the definition of r (h), we get

r (h) = 2δ max {1, L0}
(

z(1)
N + z(2)

M

)

< 2δ

(

max {1, L0} + 1

2δ

)(

z(1)
N + z(2)

M

)

− z(2)
M

≤ zM N − z(2)
M

≤ r̂∗ − z(2)
M , (3.8.14)

which shows estimate (3.8.13).
Hence, there exists a solution uM∗ ∈ U

(

ûM , r (h)
)

such that

∥
∥
∥uM

∗ − u∗
∥
∥
∥ ≤

∥
∥
∥uM

∗ − ûM
∥
∥
∥+

∥
∥
∥ûM − u∗

∥
∥
∥ < zM N − z(2)

M + z(2)
M = zM N . (3.8.15)

That completes the proof of the Theorem.

Remark 3.8.3. If equalities hold in (3.8.7), then our Theorem 3.8.2 reduces to The-
orem 2.1 in [133]. Otherwise it is an improvement (and under the same computa-
tional cost) as ẑ, M, N , zM N are smaller and δ̂ (i.e., δ), r∗, r̂∗ are larger than the
corresponding ones in [133, p. 1075] and our condition (3.8.12) is weaker than the
corresponding (2.5) in [133] (i.e., set L0 = L in (3.8.12)).

That is, the claim made in Remark 3.8.1 is justified, and our Theorem extends
the applicability of the mesh independence principle.
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Remark 3.8.4. In practice, we want min
{

r∗, 1
δL

}

to be as large as possible. It then

immediately follows from (3.8.4), (3.8.12), and (3.8.14) that the conclusions of The-
orem 3.8.2 hold if zM N given in (3.8.10) is replaced by

z1
M N = 2δL

L0

[

max {1, L0} + 1

2δ

] (

z(1)
N + z(2)

M

)

≤ min

{

r∗,
1

δL0

}

. (3.8.16)

Another way is to rely on our Theorem 2.2.11 using the weaker (than (3.8.12))
Newton-Kantorovich-type hypothesis

h0 = (L0 + L) δ

∥
∥
∥
∥

F ′′
N

(

ûM
)−1

F ′
N

(

ûM
)
∥
∥
∥
∥

≤ 1 (3.8.17)

or as in (3.8.16) for (3.8.17) to hold we must have

h0 < L0

(

1 + L

L0

)

δ2
[

max {1, L0} + 1

2δ

] (

z(1)
N + z(2)

M

)

≤ δL0z0
M N ≤ 1,

provided that

z0
M N =

(

1 + L

L0

)

δ

[

max {1, L0} + 1

2δ

] (

z(1)
N + z(2)

M

)

≤ min

{

r∗,
1

δL0

}

. (3.8.18)

The other hypothesis for the application of our Theorem 2.2.11: U
(

ûM , r1 (h)
) ⊆

U
(

u∗, r̂∗
)

, where

r1 (h) = 2δ max {1, L0}
(

z(1)
N + z(2)

M

)

.

Hence we arrived at:

Theorem 3.8.5. Under the hypotheses of Theorem 3.8.2 with zM N replaced by z0
M N

(given in (3.8.15)) the conclusions of this theorem hold.

So far we showed that a solution

uM
∗ ∈ U

(

ûM , r (h)
)

(or
(

ûM , r1 (h)
)

) ⊂ U
(

u∗, r̂∗
)

of the discretized minimization problem exists.
Next, in the main results of this section we show two different ways of improv-

ing the corresponding Theorem 2.2 in [133, p. 1076], where it was shown that the
discretized Newton’s method converges to the solution uM∗ for any uM

0 ∈ U (u∗, r1)

for sufficiently small r1.
In order to further motivate the reader let us provide a simple numerical example.
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Example 3.8.6. Let U = R, U∗ = U (0, 1) and define the real function F on U∗ by

F (x) = ex − 1. (3.8.19)

Then we obtain using (3.8.19) that L = e, L0 = e − 1 and δ = 1. We let z(1)
N = 0,

z(2)
M = 1

M . Set
r∗ = r̂∗ and N = 0.
The convergence radius given in [133, p. 1075] is

r L
∗ = r̂ L

∗ = 2

3δL
= .24525246,

whereas by (3.8.4) ours is given by

r∗ = r̂∗ = 2

(2L0 + L) δ
= .324947231. (3.8.20)

That is, (3.8.3) holds as a strict inequality and

r L
∗ = r̂ L

∗ < r∗ = r̂∗.

The condition (2.4) used in [133, p. 1075] corresponding to ours (3.8.10) is given
by

zL
M N = 2δ

[

max {1, L0} + 1

2δ

] (

z(1)
N + z(2)

M

)

≤ min

{

r̂ L
∗ ,

1

δL

}

. (3.8.21)

We can tabulate the following results containing the minimum M for which con-
ditions (3.8.8), (3.8.10), (3.8.16), and (3.8.15) are satisfied.

M zM N (3.8.21) r L∗ (3.8.18) zM N (3.8.10) zM N (3.8.16) zM N (3.8.15) r∗(3.8.20)
27 .238391246 .24525296 .164317172 .259945939 .212131555 .324947231
22 .319024562
19 .23350335
18 .318197333

Table 3.8.1. Comparison table.

The above table indicates the superiority of our results over the ones in [133, p.
1075].

We can now present a finer version than Theorem 2.2 in [133] of the mesh inde-
pendence principle.

Theorem 3.8.7. Suppose:
Assumptions C1–C5 are satisfied and there exist discretization parameters M

and N such that
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zM N ≤ 1

6
min

{
r̂∗
4

,
1

(2L0 + 3L) δ + 1

}

. (3.8.22)

Then the discretized Newton’s method converges to uM∗ for all starting points
uM

0 ∈ U (u∗, r1) , where

r1 = 3

4
min

{
1

(2L0 + L) δ
,

r̂∗
2

}

. (3.8.23)

Moreover, if ∥
∥
∥uM

0 − u0

∥
∥
∥ ≤ τ,

where

τ =
2
(

1
2 + ‖u0 − u∗‖

)

zM N

b2 +
√

b2 − 6Lδ
(

1
2 + ‖u0 − u∗‖

)

zM N

(3.8.24)

and

b = 1 + 1

2
zM N − 2δL

∥
∥
∥uM

0 − u∗
∥
∥
∥

the following estimates hold for ci ∈ R, i = 1, 2, 3, 4, n ∈ N:

∥
∥
∥uM

n+1 − uM
∗
∥
∥
∥ ≤ c1

∥
∥
∥uM

n − uM
∗
∥
∥
∥

2
, (3.8.25)

∥
∥
∥uM

n − un

∥
∥
∥ ≤ c2zM N

∥
∥
∥F ′

N

(

uM
n

)

− F ′ (un)

∥
∥
∥ ≤ c3zM N

and ∥
∥
∥uM

n − uM
∗
∥
∥
∥ ≤ ‖un − u∗‖ + c4zM N .

Proof. We first show the convergence of the discretized Newton’s method for all uM
0

in a suitable ball around u∗. Because the assumptions of Theorem 3.8.2 are satisfied,
the existence of a solution uM∗ ∈ Û∗ is guaranteed. We shall show that the discretized
Newton method converges to uM∗ if uM

0 ∈ U (u∗, r2) , where

r2 = min

{
1

(2L0 + L) δ
,

r̂∗
2

}

.

The estimates
∥
∥
∥uM

∗ − u∗
∥
∥
∥+

∥
∥
∥uM

0 − uM
∗
∥
∥
∥ ≤ 2

∥
∥
∥uM

∗ − u∗
∥
∥
∥+

∥
∥
∥uM

0 − u∗
∥
∥
∥

≤ 2zM N + r2 ≤ r̂∗

imply

U
(

uM
∗ ,

∥
∥
∥uM

0 − uM
∗
∥
∥
∥

)

⊂ Û∗.

Hence, Assumptions C1–C5 hold in U
(

uM∗ ,
∥
∥uM

0 − uM∗
∥
∥
)

.
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We can also have
∥
∥
∥F ′′ (u∗)−1

∥
∥
∥

∥
∥
∥F ′′

N

(

uM
∗
)

− F ′′ (u∗)
∥
∥
∥ ≤

≤ δ
[∥
∥
∥F ′′

N

(

uM
∗
)

− F ′′
N (u∗)

∥
∥
∥+ ∥

∥F ′′
N (u∗) − F ′′ (u∗)

∥
∥

]

≤ δ
[

L
∥
∥
∥uM

∗ − u∗
∥
∥
∥+ zM N

]

≤ (δL + 1) zM N

≤ δL + 1
2

(20 + 3L) δ + 1
< 1, (3.8.26)

where we used

z(1)
n ≤ 1

2δ
zM N (by (3.8.10)).

It follows by (3.8.26) and the Banach Lemma on invertible operators that

F ′′
N

(

uM∗
)−1

exists and
∥
∥
∥
∥

F ′′
N

(

uM
∗
)−1

∥
∥
∥
∥

≤ δ

1 −
(

δL + 1
2

)

zM N

.

By the theorem on quadratic convergence of Newton’s method and since all assump-
tions hold, the convergence to uM∗ has been established.

Using a refined formulation of this theorem given by us in Section 2.4, the con-
vergence is guaranteed for all uM

0 ∈ U
(

uM∗ , r3
)

, where

r3 = 2

(2L0 + L)

∥
∥
∥F ′′

N

(

uM∗
)−1

∥
∥
∥

.

Therefore we should show

U (u∗, r2) ⊂ U
(

uM
∗ , r3

)

or equivalently
∥
∥
∥uM

0 − uM
∗
∥
∥
∥ ≤

∥
∥
∥uM

0 − u∗
∥
∥
∥+

∥
∥
∥u∗ − uM

∗
∥
∥
∥

≤ r2 + zM N

≤ 1

(2L0 + L) δ
+ zM N

= 1 + (2L0 + L) δ

(2L0 + L) δ

≤
2
(

1 − LδzM N − 1
2 zM N

)

(2L0 + L) δ

≤ 2

(2L0 + L)

∥
∥
∥F ′′

N

(

uM∗
)−1

∥
∥
∥

= r3.
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Hence, the discretized Newton’s method converges to uM∗ for all uM
0 ∈ U (u∗, r2)

such that (3.8.25) holds for c1 = δL .
Next a proof by induction is used to show

∥
∥
∥uM

n − un

∥
∥
∥ ≤ τ ≤ c2zM N (3.8.27)

for all uM
0 ∈ U (u∗, r1), r1 = 3

4r2, where τ is given by

τ =
2
(

1
2 + ‖u0 − u∗‖

)

zM N

b2 +
√

b2 − 6Lδ
(

1
2 + ‖u0 − u∗‖

)

zM N

≤
(

1
2 + ‖u0 − u∗‖

)

zM N

b2
=.. c2zM N

with b = 1 + 1
2 zM N − 2δL

∥
∥uM

0 − u∗
∥
∥. The constant τ is well defined, as the in-

equalities

6Lδ

(
1

2
+ ‖u0 − u∗‖

)

zM N ≤ 2Lδ + 1

4 ((2L0 + 3L) δ + 1)
<

1

4
and b ≥ 1 − 2δLρ1 ≥ 1

2

imply b2 ≥ 1
4 ≥ 6Lδ

(
1
2 + ‖u0 − u∗‖

)

zM N .

While the assertion (3.8.27) is fulfilled by assumption for n = 0, the induction
step is based on the simple decomposition

uM
i+1 − ui+1 = F ′′

N

(

uM
i

)−1 {

F ′′
N

(

uM
i

) (

uM
i − ui

)

− F ′
N

(

uM
i

)

+ F ′
N (ui )

+
(

F ′′
N

(

uM
i

)

− F ′′
N (ui )

)

F ′′ (ui )
−1 F ′ (ui )

+ F ′′
N (ui ) F ′′ (ui )

−1 F ′ (ui ) − F ′ (ui )

+ F ′ (ui ) − F ′
N (ui )

}

. (3.8.28)

Assumptions C1–C4, equation (3.8.27), and the definition of zM N imply

δ

∥
∥
∥F ′′

N

(

uM
i

)

− F ′′ (ui )

∥
∥
∥ ≤ δ

∥
∥
∥F ′′

N

(

uM
i

)

− F ′′ (ui )

∥
∥
∥+ δ

∥
∥F ′′

N (ui ) − F ′′ (ui )
∥
∥

≤ δ
(

Lτ + z(1)
N

)

≤ δLτ + 1

2
zM N

≤ δLzM N + 2 ‖u0 − u∗‖ δLzM N

1 − 2δL ‖u0 − u∗‖ + 1

2
zM N

≤
1
3δL + 1

4

(2L0 + 3L) δ + 1
< 1
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resulting in the inequality
∥
∥
∥F ′′

N

(

uM
i

)−1
∥
∥
∥ ≤ δ

1−
(

Lδτ+ 1
2 zM N

) . We obtain

∥
∥
∥F ′′

N

(

uM
i

) (

uM
i − ui

)

− F ′
N

(

uM
i

)

+ F ′
N (ui )

∥
∥
∥ ≤ 1

2
L
∥
∥
∥uM

i − ui

∥
∥
∥

2 ≤ 1

2
Lτ 2,

and the convergence assertion ‖ui − u∗‖ ≤ ‖u0 − u∗‖ yields
∥
∥
∥

(

F ′′
N

(

uM
i

)

− F ′′
N (ui )

)

F ′′ (ui )
−1 F ′ (ui )

∥
∥
∥ ≤ L

∥
∥
∥uM

i − ui

∥
∥
∥ ‖ui − ui+1‖

≤ 2Lτ ‖u0 − u∗‖ .

The assumptions of the Theorem lead to
∥
∥
∥F ′′

N (ui ) F ′′ (ui )
−1 F ′ (ui ) − F ′ (ui )

∥
∥
∥ ≤

≤ ∥
∥−F ′′

N (ui ) (ui+1 − ui ) + F ′′ (ui ) (ui+1 − ui )
∥
∥

≤ ∥
∥F ′′

N (ui ) − F ′′ (ui )
∥
∥ ‖ui+1 − ui‖

≤ z(1)
n 2 ‖u0 − u∗‖

≤ 1

δ
zM N ‖u0 − u∗‖

and
∥
∥F ′ (ui ) − F ′

N (ui )
∥
∥ ≤ z(1)

n ≤ 1
2δ

zM N . Using the decomposition (3.8.28), the
last inequalities complete the induction proof by
∥
∥
∥uM

i+1 − ui+1

∥
∥
∥ ≤

≤ δ

1 −
(

Lδτ + 1
2 zM N

)

{
1

2
Lτ 2 + 2L ‖u0 − u∗‖ τ +

(
1

2
+ ‖u0 − u∗‖

)
zM N

δ

}

= τ.

The last equality is based on the fact that τ is equal to the smallest solution of the

quadratic equation 3Lδτ 2 − 2bτ + 2zM N

(
1
2 + ‖u0 − u∗‖

)

= 0.

Finally, inequality (3.8.27) is shown by
∥
∥
∥F ′

N

(

uM
n

)

− F ′ (un)

∥
∥
∥ ≤

∥
∥
∥F ′

N

(

uM
n

)

− F ′
N (un)

∥
∥
∥+ ∥

∥F ′
N (un) − F ′ (un)

∥
∥

≤ L
∥
∥
∥uN

n − un

∥
∥
∥+ zM N

≤ (Lc2 + 1) zM N =.. c3zM N

and inequality (3.8.24) results from
∥
∥
∥

(

uM
n − uM

∗
)

− (un − u∗)
∥
∥
∥ ≤

∥
∥
∥uM

n − un

∥
∥
∥+

∥
∥
∥uM

∗ − u∗
∥
∥
∥

≤ c2zM N + zM N

≤ (c2 + 1) zM N =.. c4zM N
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Remark 3.8.8. The upper bounds on zM N and r1 were defined in [133] by

1

6
min

{
r̂∗
4

,
1

6Lδ + 1

}

(3.8.29)

and
3

4
min

{
1

3Lδ
,

r̂∗
2

}

(3.8.30)

respectively. By comparing (3.8.22) and (3.8.23) with (3.8.29) and (3.8.30), respec-
tively, we conclude that our choices of zM N and r1 (or r2 or r3) are finer than the
ones in [133]. However, we leave the details to the motivated reader.

3.9 The conditioning of semidefinite programs

In this section, we are motivated by the elegant work in [144] concerning the con-
ditioning of semidefinite programs (SDP). In particular, we show how to refine their
results by using a weaker version of the Newton-Kantorovich Theorem 2.2.4 given
by us in 2.2.11.

Let Sn be the space of real, symmetric n × n matrices. As in [144], we consider
the semidefinite program in the form

min C • X such that Ak • X = bk, k = 1, 2, . . . , m, X ≥ 0, (3.9.1)

where C , Ak , and X belong to Sn, bk are scalars, • denotes inner product, and by
X ≥ 0 we mean that X lies in the closed, convex cone of positive semidefinite
matrices. The dual of (3.9.1) is

max bT y such that
m
∑

k=1

yk Ak + Z = C; Z ≥ 0, (3.9.2)

where Z ∈ Sn is a positive semidefinite dual slack variable.
The following assumptions are used thorought the section:
Assumption 1. The matrices Ak are linearly independent.
Assumption 2. There exists a primal feasible X and a dual feasible (y, Z) with

X and Z strictly positive definite (slater condition).
Assumption 3. The primal (3.9.1) and the dual (3.9.2) programs have solutions

X0 and (y0, Z0) satisfying strict complementarity, primal nondegeneracy and dual
nondegeneracy.

We will mapping n × n symmetric matrices onto vectors of length n(n+1)
2 , so let

vec.. Sn → R
n(n+1)

2 be an isometry, then

A • B = (vec A)T (vec B) for all A, B ∈ Sn .

The primal and dual equality constraints become
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A vec X = b; AT y + vec Z = vec C,

where A ∈ Rm×n(n+1)/2 is a matrix whose k + h row is (vec Ak)
T , and b =

[b1, . . . , bm]T ∈ Rm .
The optimality conditions become:

A vec X = b; X ≥ 0 (3.9.3)

AT y + vec Z = vec C; Z ≥ 0, (3.9.4)

X Z = 0. (3.9.5)

Solving (3.9.3)–(3.9.5) reduces to finding a root of the function

F (X, y, Z) =
⎛

⎝

A vec X − b
AT y + vec(Z − C)
1
2 vec (X Z + Z X)

⎞

⎠ (3.9.6)

such that X ≥ 0, Y ≥ 0.

Let I be the identity matrix, and let mat.. R
n(n+1)

2 → Sn be the inverse of vec.
We use � to denote the symmetrized Kronecker product given by

(A1 � B1) v = 1

2
vec (A1 (mat v) B1 + B11 (mat v)) A1, (3.9.7)

where A1, B1 ∈ Sn, v ∈ R
n(n+1)

2 .

Because F is a map from Rm+n(n+1) to itself, the Jacobian of F is given by

J (X, y, Z) =
⎛

⎝

A 0 0
0 AT I � I

Z � I 0 X � I

⎞

⎠ . (3.9.8)

We will now define a certain type of norm already used in [144]. However we
note that all our results here can be reintroduced with different norms.

For any two vectors x = [

x1, . . . , xn
]T

and y = [

y1, . . . , ym
]T

, the pair (x, y)

is used to denote the vector
[

x1, . . . , xn, y1, . . . , ym
]T

.
We use the Euclidean norm ‖·‖ for vectors, and the induced 2-norm for matrices.

The Frobenius norm of a matrix is denoted by ‖·‖F . We have

‖A‖F = ‖vec A‖ =
√

A • A (3.9.9)

for any real and symmetric matrix A. Then for u = (X, y, Z) ∈ Sn × Rm × Sn = D
we use the norm

‖u‖ = ‖(vec X, y, vec Z)‖ =
[

‖X‖2
F + ‖y‖2 + ‖Z‖2

F

]

. (3.9.10)

We denote by
U (u, r) = {u1 ∈ D .. ‖u − u1 < r‖}
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and by Ū (u, r) the corresponding ball.
By Lipγ (U (u, r)), we mean the class of all functions that are Lipschitz contin-

uous in U (u, r), γ being the Lipschitz constant using the 2-norm. We also use the
compact notation [A, b, C] to denote the SQP’s in (3.9.1) and (3.9.2).

Consider a perturbation of the problem parameters Ak, b and C in (3.9.1) as
follows:

Ā = A + �A, b̄ = b + �b, C̄ = C + �C, (3.9.11)

where �C is symmetric, and �A is a matrix whose kth row is (vec �Ak)
T , with

�Ak symmetric.
Therefore (3.9.6) and (3.9.8) become for the perturbed system respectively

F̄ (u) = F̄ (X, y, Z) =
⎛

⎝

Ā vec X − b̄
ĀT y + vec(Z − C̄)
1
2 vec (X Z + Z X)

⎞

⎠ (3.9.12)

and

J̄ (X, y, Z) =
⎛

⎝

Ā 0 0
0 ĀT I � I

Z � I 0 X � I

⎞

⎠ . (3.9.13)

We shall denote the solution of the original problem by u0 = (X0, y0, Z0) and
the solution of the perturbed problem by ū0 = (

X̄0, ȳ0, Z̄0
)

.
We state a version of our main Theorem 2.2.11 suitable for our purposes here:

Theorem 3.9.1. Let r0 > 0, u0 ∈ Rp, G.. Rp → Rp, and that G is continuously
differentiable in U (u0, r0). Assume for a vector norm and the induced norm that the
Jacobian G ′ (u) ∈ Lipγ (U (u0, r0)) for u �= u0 and G ′ (u) ∈ Lipγ0

(U (u0, r0)) if
u = u0, with G ′ (u0) nonsingular. Set

β ≥
∥
∥
∥G ′ (u0)

−1
∥
∥
∥ , η ≥

∥
∥
∥G ′ (u0)

−1 G (u0)

∥
∥
∥ , h0 = βγ̄ η, γ̄ = γ + γ0

2
, (3.9.14)

r1 = lim
t→∞ tn, r2 = 2η, (3.9.15)

where scalar sequences {tk} (k ≥ 0) is given by

t0 = 0, t1 = η, ti+2 = ti+1 + γ (ti+1 − ti )2

2 (1 − γ0ti+1)
. (3.9.16)

If

(a) h0 ≤ 1

2
, (3.9.17)

and
(b) r1 ≤ r0(orr2 ≤ r0), (3.9.18)

then
(i) G has a unique zero ū0 in Ū (u0, r) , r1 ≤ r2, and
(ii) Newton’s method with unit steps, starting at u0 converges to the unique zero

ū0.
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Remark 3.9.2. If γ0 = γ , our Theorem 3.9.1 coincides with Theorem 1 in [144, p.
529]. Set h = βγ η. However

γ0 ≤ γ, (3.9.19)

holds in general and γ
γ0

can be arbitrarily large.
Then

h ≤ 1

2
=⇒ h0 ≤ 1

2
, (3.9.20)

but not vice versa unless if γ = γ0. Moreover finer bounds on the Newton distances
are obtained and at least as precise information on the location of the solution, as

r1 ≤ 1 − √
1 − 2h

βγ
= r3.

We assume from now on that condition (3.9.17) holds.
Motivated by these advantages, we improve the rest of the results in [144] as

follows:

Corollary 3.9.3. Under the hypotheses of Theorem 3.9.1 further assume h0 < 1
2 ,

then G ′ (ū0) is nonsingular, where ū0 is the zero of G guaranteed to exist by Theorem
3.9.1.

Proof. We have in turn
∥
∥G ′ (ū0) − G ′ (u0)

∥
∥ ≤ γ0 ‖ū0 − u0‖ ≤ 2γ0η

≤ (γ0 + γ ) η <
1

β
= 1
∥
∥G ′ (u0)

−1
∥
∥
. (3.9.21)

It follows by the Banach Lemma on invertible operators and (3.9.21) that G ′ (ū0)
−1

exists and
∥
∥
∥G ′ (ū0)

−1
∥
∥
∥ ≤ β

1 − 2βγ0η
.

We need two lemmas for the semilocal convergence analysis of Newton’s method:

Lemma 3.9.4. [1, Th. 1]. Let [A, b, C] define an SDP satisfying the Assumptions.
Then, the Jacobian at the solution, J (u0) is nonsingular. Conversely, if an SDP
has a solution u0 such that J (u0) is nonsingular, then strict complementarity and
nondegeneracy hold at u0 [109].

Lemma 3.9.5. [144, Th. 1]. Let [A, b, C] define an SDP, not necessarily satisfying
the Assumptions. Then the Jacobian J (u) satisfies

‖J (u2) − J (u1)‖ ≤ γ ‖u2 − u1‖ , (3.9.22)

for some fixed u1 = (X1, y1, Z1) ∈ Sn × Rm × Sn and for any u2 = (X2, y2, Z2) ∈
Sn × Rm × Sn and γ = 1.
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From now on, we assume u0 = (X0, y0, Z0) is a solution for an SDP [A, b, C]
satisfying the assumptions, and

Assumption 4. There exists γ0 such that

‖J (u1) − J (u0)‖ ≤ γ0 ‖u1 − u0‖ , (3.9.23)

for all u1 = (X1, y1, Z1) ∈ Sn × Rm × Sn .

It follows by (3.9.22) and (3.9.23) that

γ0 ≤ 1

holds in general and 1
γ0

can be arbitrarily large.
It is convenient to define the following quantities that will be used for the semilo-

cal convergence that follows:

β0 =
∥
∥
∥J (u0)

−1
∥
∥
∥ ,

β1 = ‖M‖ ,

where M consists of the first m + n(n+1)
2 columns of J (u0)

−1 , and

δ0 = min

(

min
1≤i≤n

{

λi
0 .. λi

0 > 0
}

, min
1≤i≤n

{

wi
0 .. wi

0 > 0
})

.

We can state the main result:

Theorem 3.9.6. Let u0 be the primal-dual solution of the SDP[A, b, C]. Suppose the
Assumptions 1–4 hold, and let

[

Ā, b̄, C̄
] = [A + �A, b + �b, C + �C] .

Set

ε0 = ‖�A‖ ‖(vec X0, y0)‖ + ‖(�b, vec �C)‖ ,

β = β0

1 − β0 ‖�A‖ ,

η = β0β1ε0

1 − β0 ‖�A‖ .

If

‖�A‖ ≤ a = 1

β0

[

1 − β0
√

β1ε0 (1 + γ0)
]

(3.9.24)

and either

ε0 < ε1 = 1

β2
0β1 (1 + γ0)

(3.9.25)

and
r1 < δ0, (3.9.26)
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or

ε0 < ε2 = 1

β0β1
min

{
1

β0 (1 + γ0)
,
δ0 (1 − β0 ‖�A‖)

2

}

, (3.9.27)

then
(i) the SDP defined by

[

Ā, b̄, C̄
]

has a unique solution u0 in Ū (u0, r1) provided
that (3.9.24)–(3.9.26) hold or in Ū (u0, r2) if (3.9.24) and (3.9.27) hold.

(ii) the solution to
[

Ā, b̄, C̄
]

is unique.

(iii) Newton’s method with unit steps applied to F̃ and starting from u0 converges
quadratically to ū0.

Proof. (i) In order to use Theorem 3.9.1, we first note that J (u0)
−1 exists and γ = 1.

Then we can have

�J = J̃ (u0) − J (u0) =
⎡

⎣

�A 0 0
0 �A 0
0 0 0

⎤

⎦ ,

and ∥
∥
∥J (u0)

−1 �J
∥
∥
∥ ≤ β0 ‖�A‖ < 1, by (3.9.24). (3.9.28)

It follows by (3.9.28) and the Banach Lemma on invertible operators that J (u0)

is nonsingular with
∥
∥
∥J (u0)

−1
∥
∥
∥ ≤ β.

We can write

F̃ (u0) =
⎡

⎣

(A + �A) vec X0 − (b + �b)

(A + �A)T y0 + vec Z0 − vec (C + �C)
1
2 vec (X0 Z0 + Z0 X0)

⎤

⎦

=
⎡

⎣

(�A) vec X0 − �b
(�A)T y0 − vec (�C)

0

⎤

⎦

and
∥
∥
∥J (u0)

−1 F̃ (u0)

∥
∥
∥ ≤ β1 (‖�A‖ ‖(vec X0, y0)‖ + ‖(�b, vec (�C))‖)

= β1ε0.

Therefore, we have
∥
∥
∥ J̃ (u0)

−1 F̃ (u0)

∥
∥
∥ ≤

∥
∥
∥ J̃ (u0)

−1
∥
∥
∥

∥
∥
∥F̃ (u0)

∥
∥
∥

≤ η.

Hence, we get

βηγ̄ = βη
1 + γ0

2
≤ 1

2
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by the choices of ε0 and ‖�A‖.
By Theorem 3.9.1, we conclude that F̃ has a unique zero ũ in Ū (x0, r1) if

(3.9.24)–(3.9.26) hold or in Ū (x0, r2) if (3.9.24) and (3.9.27) hold.
To show that this root is a solution of the SDP, we shall show X̄ ≥ 0 and Z̄0 ≥ 0.

First note that if either (3.9.24), (3.9.25), (3.9.26) or (3.9.24) and (3.9.27) hold, then

(∥
∥X̄0 − X0

∥
∥

2
F + ‖ȳ0 − y0‖ + ∥

∥Z̄0 − Z0
∥
∥

2
F

)1/2 = ‖ū0 − u0‖ < δ0.

Let λ0 (w0) be the vector of eigenvalues of X̄0 (of Z̄0), arranged in nonincreasing
(nondecreasing) order. For 1 ≤ j ≤ n

λ
j
0 > 0 =⇒ λ̄

j
0 > 0

and

λ
j
0 = 0 =⇒ w

j
0 > 0

=⇒ w̄
j
0 > 0 =⇒ λ̄

j
0 = 0.

That is, X̄0 ≥ 0. Similarly we show Z̄0 ≥ 0. The proof of part (i) is now completed.
The proof of (ii) follows from Corollary 3.9.3 and (iii) follows from (b) of The-

orem 3.9.1. and the existence of J̄ (ū0)
−1.

That completes the proof of the Theorem.

Remark 3.9.7. If γ0 = 1, our Theorem 3.9.6 reduces to Theorem 2 in [144].
Otherwise it is finer as a, ε1 (or ε2) are more flexible than a1 = 1

2β1
, ε3 =

min
{

σ−1
2σ 2β0β1

,
δ0

2σβ1

}

for some 1 < σ ≤ 2 given in [144] and as r1 ≤ r3.

The rest of the results given in [144] can be improved along the same lines.
However, we leave the details to the motivated reader.

3.10 Exercises

3.10.1. Consider an equation
F (z) = 0 (3.10.1)

where F is a nonlinear operator between the Banach spaces E , Ê . Under certain
conditions, Newton’s method

zn+1 = zn − F ′ (zn)−1 F (zn) , n = 0, 1, . . . , (3.10.2)

produces a sequence that converges quadratically to a solution z∗ of (3.10.1).
Because the formal procedure (3.10.2) can rarely be executed in infinite-
dimensional spaces, (3.10.1) is replaced in practice by a family of discretized
equations

φh (ζ ) = 0 (3.10.3)
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—indexed by some real numbers h > 0—where now φh is a nonlinear oper-
ator between finite-dimensional spaces Eh , Êh . Let the discretization on E be
defined by the bounded linear operators �h .. E → Eh . Then, under appropriate
assumptions, the equations (3.10.3) have solutions

ζ ∗
h = �hz∗ + (

h p)

which are the limit of the Newton sequence applied to (3.10.3) and started at
�hz0; that is,

ζ h
0 = �hz0, ζ h

n+1 = ζ h
n − φ′

h(ζ h
n )−1φh(ζ h

n ), n = 0, 1, . . . (3.10.4)

In many applications, it turns out that the solution z∗ of (3.10.1) as well as the
Newton iterates {zn} have “better smoothness” properties than the elements of
E . This is a motivation for considering a subset W ∗ ⊂ E such that

z∗ ∈ W ∗, zn ∈ W ∗, zn − z∗ ∈ W ∗, zn+1 − zn ∈ W ∗, n = 0, 1, . . . . (3.10.5)

The discretization methods are described by a family of triplets.
{

φh,�h, �̂h

}

, h > 0 (3.10.6)

where
φh .. Dh ⊂ Eh → Êh, h > 0

are nonlinear operators and

�h .. E → Eh, �̂h .. Ê → Êh, h > 0,

are bounded linear (discretization) operators such that

�h
(

W ∗ ∩ B∗) ⊂ Dh, h > 0. (3.10.7)

The discretization (3.10.6) is called Lipschitz uniform if there exist scalars ρ >

0, L > 0 such that
B̄
(

�h, z∗, ρ
) ⊂ Dh , h > 0, (3.10.8)

and
∥
∥φ′

h (η) − φ′
h (ξ)

∥
∥ ≤ L ‖η − ξ‖ , h > 0, η, ξ ∈ Ū

(

�hz∗, ρ
)

. (3.10.9)

Moreover, the discretization family (3.10.6) is called: bounded if there is a con-
stant q > 0 such that

‖�hu‖ ≤ q ‖u‖ , u ∈ W ∗, h > 0, (3.10.10)

stable if there is a constant σ > 0 such that
∥
∥
∥φ

′
h (�hu)−1

∥
∥
∥ ≤ σ, u ∈ W ∗ ∩ B∗, h > 0, (3.10.11)
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consistent of order p if there are two constants c0 > 0, c1 > 0 such that
∥
∥
∥�̂h F (z) − φh (�hz)

∥
∥
∥ ≤ c0h p, z ∈ W ∗ ∩ B∗, h > 0, (3.10.12)

∥
∥
∥�̂h

(

F ′ (u) v − φ′
h (�hu)�hv

)
∥
∥
∥ ≤ c1h p, u ∈ W ∗ ∩ B∗, v ∈ W ∗,

h > 0. (3.10.13)

Let F .. D ⊂ E → Ê be a nonlinear operator such that F ′ is γ Lipschitz con-
tinuous on U (z∗, r∗) ⊆ D with z∗ such that F (z∗) = 0, ‖F ′ (z∗)−1 ‖ = β

and r∗ = 2
3βγ

, and consider a Lipschitz uniform discretization (3.10.6) that is
bounded, stable, and consistent of order p. Then
Show:
(a) (3.10.3) has a locally unique solution

ζ ∗
h = �hz∗ + (

h p) (3.10.14)

for all h > 0 satisfying

0 < h ≤ h0 =
[

1

2σc0
min

(

ρ, (σ L)−1
)]1/p

(3.10.15)

(b) there exist constants h1 ∈ (0, h0] , r1 ∈ (0, r∗] such that the discrete process
(3.10.4) converges to ζ ∗

h , and that

ζ h
n = �hzn + (

h p) , n = 0, 1, . . . , (3.10.16)

φh(ζ h
n ) = �̂h F (zn) + (

h p) , n = 0, 1, . . . , (3.10.17)

ζ h
n − ζ ∗

h = �h
(

zn − z∗)+ (

h p) , n = 0, 1, . . . , (3.10.18)

for all h ∈ (0, h1], and all starting points z0 ∈ B (z∗, r1).
3.10.2. Suppose that the hypotheses of Exercise 3.10.1 hold and that there is a con-

stant δ > 0 for such

lim inf
h>0

‖�hu‖ ≥ 2δ ‖u‖ for each u ∈ W ∗. (3.10.19)

Then show that for some r̄ ∈ (0, r1] and for any fixed ε > 0 and z0 ∈ U (z∗, r̄)

there exists a constant h̄ = h̄ (ε, z0) ∈ (0, h1] such that
∣
∣
∣min

{

n ≥ 0,
∥
∥zn − z∗∥∥ < ε

}− min
{

n ≥ 0, ‖ζ h
n − ζ ∗

h ‖ < ε
}
∣
∣
∣ ≤ 1 (3.10.20)

for all h ∈ (

0, h̄
]

.
3.10.3. Suppose that the hypothesis of Exercise 3.10.1 is satisfied and that

lim
h→0

‖�hu‖ = ‖u‖

holds uniformly for u ∈ W ∗. Then show there exists a constant r̄1 ∈ (0, r1] and,
for any fixed ε > 0, some h̄1 = h̄ (ε) ∈ (0, h1] such that (3.10.20) holds for all
h ∈ (

0, h̄1
]

and all starting points z0 ∈ U (z∗, r̄1).
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3.10.4. Consider the operator F .. D ⊂ C2 [0, 1] → C [0, 1] × R
2,

F (y) = {

y′′ − f
(

x, y, y′) ; 0 ≤ x ≤ 1, y (0) − α, y (1) − β
}

,

where D and f are assumed to be such that (3.10.1) has a unique solution z∗ ∈
D, and

f ∈ C3 (U
(

z∗, ρ
))

,

U
(

z∗, ρ
) =

= {

(x1, x2, x3) ∈ R
3; 0 ≤ x1 ≤ 1,

∣
∣x2 − x∗ (x1)

∣
∣ ≤ ρ,

∣
∣x3 − z∗′ (x1)

∣
∣ ≤ ρ

}

.

Under these assumptions it follows that z∗ ∈ C5 [0, 1]. Indeed, from z∗′′ =
f
(

x, z∗, z∗′) we deduce that z∗′′′ exists and

z∗′′′ = f (1,0,0)
(

x, z∗, z∗′)+ f (0,1,0)
(

x, z∗, z∗′)+ f (0,0,1)
(

x, z∗, z∗′) z∗′′

which, in turn, gives the existence of z∗(iv), etc. Here f (1,0,0), etc., denotes the
partial derivatives of f .
As usual, we equip Ck [0, 1] , k ≥ 0, with the norm

‖u‖ =
{(

max |ui (x) |, 0 ≤ x ≤ 1
)

, i = 0, . . . , k
}

.

The Fréchet derivative of F is

F ′ (y) u =
=
{

u′′ − f (0,1,0)
(

x, y, y′) u − f (0,0,1)
(

x, y, y′) u′, 0 ≤ x ≤ 1, u (0) , u (1)
}

and hence, for given zn ∈ D, Newton’s method specifies zn+1 as the solution of
the linear equation

z′′
n+1 = f

(

x, zn, z′
n

)− f (0,1,0)
(

x, zn, z′
n

)

(zn − zn+1)

− f (0,0,1)
(

x, zn, z′
n

) (

z′
n − z′

n+1

)

(3.10.21)

subject to the boundary conditions zn+1 (0) = α, zn+1 (1) = β.
From (3.10.21) it follows easily that if z0 ∈ C3 [0, 1] then zn+1 ∈ C4 [0, 1] , n =
0, 1, 2, . . . . We shall assume also that z0 ∈ C4 [0, 1]. Moreover, (3.10.21) and
the fact that zn converges to z∗ in the norm of C2 [0, 1] imply that there exists a
constant K > 0 such that

zn ∈ WK =
{

z ∈ C4 [0, 1] ; sup
x

|z(i) (x) | ≤ K , i = 0, 1, 2, 3, 4
}

,

n = 0, 1, . . . . By choosing, if necessary, a larger K , it is not restrictive to assume
that z∗ ∈ WK , zn − z∗ ∈ WK and zn − zn+1 ∈ WK , n = 0, 1, . . ., which is
(3.10.5).
The discretization method

{

φh,�h, �̄h
}

is specified as follows
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h = 1/n, n = 1, 2, . . . ,

Gh = {xi = ih, i = 0, 1, . . . , n} , G̊h = Gh\ {0, 1} ,

Eh = {η.. Gh → R} , ηi = η (xi ) , i = 0, 1, . . . , n,

Êh =
{

(η, a, b) ; η.. G̊h → R, a, b ∈ R

}

,

�h y = y|Gh , �̂h (y, a, b) =
(

y|G̊h
, a, b

)

,

φh (η) =
{[

ηi+1−2ηi +ηi−1
h2 − f

(

xi , ηi ,
ηi+1−ηi−1

2h

)]

;

i = 1, 2, . . . , n − 1; (η0 − α) , (ηn − β)
}

.

We use the following norms

‖y‖ = max
{

|y(i) (x) |, 0 ≤ x ≤ 1, i = 0, 1, 2
}

, y ∈ C2 [0, 1] ,

‖v‖ = max {|u (x)| , a, b; 0 ≤ x ≤ 1} , v = (u, a, b) ∈ C [0, 1] × R
2,

‖η‖ =
{

|η0|, |ηn|, |ηi |,
∣
∣
∣
ηi+1−ηi−1

2h

∣
∣
∣ ,

∣
∣
∣
ηi+1−2ηi +ηi−1

h2

∣
∣
∣ ,

i = 1, . . . , n − 1
}

, η ∈ Eh .

It is easily seen that for y ∈ WK , we have
∣
∣
∣
∣

yi+1 − yi−1

2h

∣
∣
∣
∣
≤ 1

6 K h2,

∣
∣
∣
∣

yi+1 − 2yi + yi−1

h2
− y′′

i

∣
∣
∣
∣
≤ 1

12 K g2,

where yi = y (xi ), y′
i = y′ (xi ), y′′

i = y′′ (xi ), i = 1, 2, . . . , n − 1 . It is not
difficult to prove that, with the above norms, (3.10.10) holds with q = 1 and
(3.10.12), (3.10.13) are satisfied with p = 2. It is also easily seen that

‖�hu‖ ≤ ‖u‖ ≤ ‖�hu‖ + K
(

1
6 (h + 1)

)

h

for u ∈ WK and hence that limh→0 ‖Dhu‖ = ‖u‖ .

Thus the conclusions of Exercises 3.10.1 and 3.10.2.
3.10.5. (a) Let F be a Fréchet-differentiable operator defined on a convex subset

D of a Banach space X with values in a Banach space Y . Assume that the
equations F(x) = 0 has a simple zero x∗ ∈ D in the sense that F ′(x∗) has
an inverse F ′(x∗)−1 ∈ L(Y, X). Moreover assume

‖F ′(x∗)−1 [F ′(x) − F ′(x∗)
] ‖ ≤ �1‖x − x∗‖ for all x ∈ D. (3.10.22)

Then, show: sequence {xn} (n ≥ 0) generated by Newton’s method is well
defined, remains in U (x∗, r∗) for all n ≥ 0, and converges to x∗ with

‖xn+1 − x∗‖ ≤ 3�1

2 [1 − �1‖xn − x∗‖]
‖xn − x∗‖2, r∗ = 2

5�1
(n ≥ 0)

(3.10.23)
provided that x0 ∈ U (x∗, r∗) and U = U (x∗, r∗) ⊆ D.
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(b) Let F be as in (a).
Assume:

(1) there exists x0 ∈ D such that F ′(x0)
−1 ∈ L(Y, X);

(2) ‖F ′(x0)
−1 [F ′(x) − F ′(x0)

] ‖ ≤ �0‖x − x0‖ for all x ∈ D; (3.10.24)

(3) ‖F ′(x0)
−1 F(x0)‖ ≤ η some η ≥ 0, (3.10.25)

(5 + 2
√

6)�0η ≤ 1, (3.10.26)

(4) U (x0, r2) ⊆ D, where, r1, r2 are the real zeros (r1 ≤ r2) of equations

f (t) = 3�0r2 − (1 + �0η)r + η = 0. (3.10.27)

Then, show: sequence {xn} (n ≥ 0) generated by Newton’s method is well
defined, remains in U (x0, r1), and converges to a unique solution x∗ of equa-
tion F(x) = 0 in Ū (x0, r1). Moreover, the following estimates hold for all
n ≥ 0. The solution x∗ is unique in U (x0, r2).

‖xn+2 − xn+1‖ ≤ 2�0r1
1−�0r1

‖xn+1 − xn‖ (3.10.28)

and
‖xn+1 − x∗‖ ≤ cn

1−c ‖xn − x∗‖, (3.10.29)

where,
c = 2�0r1

1−�0r1
. (3.10.30)

(c) Let F .. D ⊆ X → Y be a nonlinear operator satisfying the hypotheses of (a),
and consider a Lipschitz uniform discretization that is bounded, stable, and
consistent of order p. Then equation Th(v) = 0 has a locally unique solution

y∗
h = Lh(x∗) + (h p)

for all h > 0 satisfying

0 < h ≤ h0 =
[

1
c0σ

min
{

ρ
2 , 5−2

√
6

�σ

}]1/p
.

Moreover, there exist constants h1 ∈ (0, h0] and r3 ∈ (0, r∗] such that the
discrete process converges to y∗

h for all h ∈ (0, h1] and all starting points
x0 ∈ U (x∗, r1).

3.10.6. (a) Let F be a Fréchet-differentiable operator defined on a convex subset
D of a Banach space X with values in a Banach space Y . Assume that the
equation F(x) = 0 has a simple zero x∗ ∈ D in the sense that F ′(x∗) has an
inverse F ′(x∗)−1 ∈ L(Y, X). Then
(1) for all ε1 > 0 there exists �1 > 0 such that

‖F ′(x∗)−1 [F ′(x) − F ′(y)
] ‖ < ε1

for all x, y ∈ U (x∗, �1) ⊆ D.
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(2) If ε1 ∈
[

0, 1
2

)

and x0 ∈ U (x∗, �1) then show: sequence {xn} (n ≥ 0)

generated by Newton’s method is well defined, remains in U (x∗, �1) for
all n ≥ 0, and converges to x∗ with

‖xn+1 − x∗‖ ≤ ε1
1−ε1

‖xn − x∗‖ (n ≥ 0).

(b) Let F be as in (a). Assume:
(1) there exist η ≥ 0, x0 ∈ D such that F ′(x0)

−1 ∈ L(Y, X),

‖F ′(x0)
−1 F(x0)‖ ≤ η;

Then, for all ε0 > 0 there exists �0 > 0 such that

‖F ′(x0)
−1 [F ′(x) − F ′(y)

] ‖ < ε0

for all x, y ∈ U (x0, �0) ⊆ D;
(2)

η(1−ε0)
1−2ε0

≤ �0

and
ε0 < 1

2 .

Then, show: sequence {xn} (n ≥ 0) generated by Newton’s method is well
defined, remains in U (x0, �0), and converges to a unique solution x∗ of equa-
tion F(x) = 0 in Ū (x0, �0). Moreover, the following estimates hold for all
n ≥ 0

‖xn+2 − xn+1‖ ≤ ε0
1−ε0

‖xn+1 − xn‖
and

‖xn+1 − x∗‖ ≤ cn

1−c ‖xn − x∗‖,
where

c = ε0
1−ε0

.

(c) Let F .. D ⊆ X → Y be a nonlinear operator satisfying a Fréchet uniform
discretization {Th, Lh, L̂h}, h > 0 that is bounded, stable, and consistent of
order p. Then show: equation Th(v) = 0 has a locally unique solution

y∗
h = Lh(x∗) + (h p)

for all h > 0 satisfying

0 < h ≤ h0 =
[

ρ(1−2�σ)
(1−�σ)σc0

]1/p
.

Moreover, there exist constants h1 ∈ (0, h0] and r1 ∈ (0, r∗] such that the
discrete process

yh
0 = Lh(x0), yh

n+1 = yh
n − T ′

h(yh
n )−1Th(yh

n ) (n ≥ 0)

converges to y∗
h for all h ∈ (0, h1] and all starting points x0 ∈ U (x∗, r1),

where r∗ = min ρ
{

1
2q , 1

}

.
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Special Methods

Efficient and special iterative methods other than NKs are studied under weaker con-
ditions than before.

4.1 Broyden’s method

In this section, we are concerned with the problem of approximating a locally unique
solution x∗ of the nonlinear equation

F (x) = 0, (4.1.1)

where F is a Fréchet-differentiable operator defined on an open subset D of a Banach
space X with values in a Banach space Y .

C.G. Broyden suggested the method

xn+1 = xn − Hn F (xn) (n ≥ 0) (x0 ∈ D) (4.1.2)

to generate a sequence approximating x∗, [52], [75]. Here Hn ∈ L (Y, X) (n ≥ 0).
Operators Hn are required to satisfy the equation

Hn+1 (yn) = Hn+1 (F (xn+1) − F (xn)) = xn+1 − xn (4.1.3)

or equivalently
∫ xn+1

xn

(

Hn+1 F ′ (x) − I
)

dx = 0, (4.1.4)

where F ′ (x) denotes the Fréchet derivative of operator F .
It seems that Hn+1 is a reasonable approximation to the inverse of F ′ (x) (Jaco-

bian) in the neighborhood between xn and xn+1 in the direction of xn+1 − xn .
In the case of X = Y = R j for example, and for single rank methods, we choose

Hn+1 from the class of j × j matrices satisfying (4.1.3) that are given by

Hn+1 = Hn − (Hn (yn) + Hn F (xn)) dT
n /dT

n (yn) (4.1.5)

I.K. Argyros, Convergence and Applications of Newton-type Iterations,
DOI: 10.1007/978-0-387-72743-1 4, c© Springer Science+Business Media, LLC 2008
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where dn ∈ R j , chosen so that dT
n (yn) �= 0.

If A (xn) = An = H−1
n , then

An+1 = An − (yn + F (xn)) dT
n An/dT

n F (xn) (n ≥ 0) . (4.1.6)

J.E. Dennis in [75] provided a local and a semilocal convergence analysis for
method (4.1.2) using a Newton-Kantorovich-type approach (see also Section 2.2).

Here we show by using more precise majorizing sequences first in the semilocal
case that under the same hypotheses and computational cost, we can find weaker
sufficient convergence conditions for method, finer error bounds on the distances
involved, and provide a more precise information on the location of the solution.
Moreover in the local case, we provide a larger radius of convergence.

We need the following result on majorizing sequences in order to study the
semilocal convergence of method (4.1.1)

Lemma 4.1.1. Assume there exist nonnegative numbers K , M, L , μ, η and δ ∈
[0, 2) such that for all n ≥ 0

hn
δ =

{

K
(

δ
2

)n + 2δ(L+M)
2−δ

[

1 − (
δ
2

)n+1
]

+ 4M
2−δ

[

1 − (
δ
2

)n
]}

η + 2δμ ≤ δ, (4.1.7)

and

(L + m)
1−

(
δ
2

)n

1− δ
2

η < 1 − 2μ. (4.1.8)

Then, iteration {tn} (n ≥ 0), given by

t0 = 0, t1 = η, tn+2 = tn+1 + 1
2

K(tn+1−tn)+2(μ+Mtn)

1−[2μ+(L+M)tn+1] (tn+1 − tn) (4.1.9)

is nondecreasing, bounded above by t∗∗ = 2η
2−δ

, and converges to some t∗ such that

0 ≤ t∗ ≤ t∗∗. (4.1.10)

Moreover, the following estimates hold for all n ≥ 0:

0 ≤ tn+2 − tn+1 ≤ δ
2 (tn+1 − tn) ≤ (

δ
2

)n+1
η. (4.1.11)

Proof. The result clearly holds if η = 0 or K = 0 or δ = 0. Let us assume K �=
0, n �= 0 and δ �= 0.

We shall show using induction on i ≥ 0:

K (ti+1 − ti ) + 2 (μ + Mti ) + 2δμ + δ (L + M) ti+1 ≤ δ (4.1.12)

1 − 2μ − (L + M) ti+1 > 0 (4.1.13)

and
ti+1 − ti ≥ 0. (4.1.14)

Estimate (4.1.11) can then follow immediately from (4.1.9) and (4.1.12)–(4.1.14).
For i = 0, (4.1.9), (4.1.12)–(4.1.14) hold by (4.1.7) and (4.1.8).
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We also get:
0 ≤ t2 − t1 ≤ δ

2 (t1 − t0) . (4.1.15)

Let us assume (4.1.11)–(4.1.14) hold for all i ≤ n + 1. We can have in turn:

K (ti+2 − ti+1) + 2 (Mti+1 + μ) + 2δμ + δ (L + M) ti+2 ≤
≤ Kη

(
δ
2

)i+1

+ 2
{

M
[

t1 + δ
2 (t1 − t0) + (

δ
2

)2
(t1 − t0) + · · · + (

δ
2

)i
(t1 − t0)

]

+ μ
}

+ δ (L + M)
[

t1 + δ
2 (t1 − t0) + · · · + (

δ
2

)i+1
(t1 − t0)

]

+ 2δμ

= hi+1
δ ≤ δ (by (4.1.7)). (4.1.16)

Moreover, we shall show:
ti ≤ t∗∗ (i ≥ 0) . (4.1.17)

Inequality (4.1.17) holds for i = 0, 1, 2 by the initial conditions. Assume (4.1.17)
holds for all i ≤ n. It then follows from (4.1.11)

ti+2 ≤ ti+1 + δ
2 (ti+1 − ti ) ≤ · · · ≤ η + δ

2η + · · · + (
δ
2

)i+1
η

=
[

1−
(

δ
2

)i+2
]

1− δ
2

η <
2η

2−δ
= t∗∗ (4.1.18)

Furthermore,

(L + M) ti+2 ≤ (L + M)
1−

(
δ
2

)i+2

1− δ
2

η < 1 − 2μ, (by (4.1.8)), (4.1.19)

which shows (4.1.13) for all i ≥ 0.
Then induction for (4.1.12)–(4.1.14) is now complete.
Hence, sequence {tn} (n ≥ 0) is: bounded above by t∗∗; nondecreasing and as

such it converges some t∗ satisfying (4.1.10).
That completes the proof of the Lemma.

Remark 4.1.2. We wanted to leave the conditions (4.1.7) and (4.1.8) as uncluttered as
possible. However if verification of (4.1.7) and (4.1.8) is difficult, we can use instead
respectively the pairs:

hδ =
[

K + 2δ(L+M)
2−δ

+ 4M
2−δ

]

η + 2δμ ≤ δ, (4.1.20)

and
2(L+M)

2−δ
≤ 1 − 2μ, (4.1.21)

or (4.1.21),

hδ =
[

K + (L + M) δ + 4M
2−δ

]

η + 2δμ ≤ δ, (4.1.22)

and
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(L+M)δ2

2−δ
≤ K . (4.1.23)

Note that (4.1.20) and (4.1.21) follow immediately from (4.1.7), and (4.1.8), respec-
tively, whereas for hn

δ to be bounded above by δ it suffices to have:

δ (L + M)
[

2
2−δ

(

1 − (
δ
2

)i+2
)

− 1
]

≤ K
[

1 − (
δ
2

)i+1
]

, (4.1.24)

and
4M
2−δ

[

1 − (
δ
2

)i+1
]

≤ 4M
2−δ

. (4.1.25)

Inequality (4.1.24) can be rewritten

(L+M)δ2

2−δ

[

1 − (
δ
2

)δ+1
]

≤ K
[

1 − (
δ
2

)δ+1
]

, (4.1.26)

which holds for all i ≥ 0 by (4.1.23).
Moreover, (4.1.25) also holds for all i ≥ 0.

We can show the following semilocal convergence result for method (4.1.2):

Theorem 4.1.3. Let F.. D ⊆ X → Y be a Fréchet-differentiable operator. Assume:
there exists an approximation A (x) ∈ L (X, Y ) of operator F ′ (x), an open convex
subset D0 of D, x0 ∈ D0, nonnegative parameters η, K , L , M, μ and δ ∈ [0, 2) such
that:

‖A (x0)
−1 F (x0) ‖ ≤ η, (4.1.27)

‖A (x0)
−1 [F ′ (x) − F ′ (y)

] ‖ ≤ K ‖x − y‖ , (4.1.28)

‖A (x0)
−1 [F ′ (x) − F ′ (x0)

] ‖ ≤ L ‖x − x0‖ , (4.1.29)

for all x, y ∈ D0,

‖A (x0)
−1 (A (xn+1) − F ′ (xn+1)

) ‖ ≤
≤ ‖A (x0)

−1 (A (x0) − F ′ (x0)
) ‖ + M

n∑

i=0
‖xi+1 − xi‖ , (4.1.30)

‖A (x0)
−1 (A (x0) − F ′ (x0)

) ‖ ≤ μ; (4.1.31)

conditions (4.1.7), (4.1.8) hold,
and

U
(

x0, t∗
) ⊆ D0, (4.1.32)

where t∗ is defined in Lemma 4.1.1.
Then, sequence {xn} (n ≥ 0) generated by Broyden’s method (4.1.2) is well de-

fined, remains in U (x0, t∗) for all n ≥ 0, and converges to a solution x∗ ∈ U (x0, t∗)
of equation F (x) = 0.

Moreover, the following estimates hold for all n ≥ 0:

‖xn+1 − xn‖ ≤ tn+1 − tn, (4.1.33)
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and
∥
∥xn − x∗∥∥ ≤ t∗ − tn . (4.1.34)

Furthermore, the solution x∗ is unique in U (x0, t∗) if M �= 0 or μ �= 0. Finally, if
there exists t∗1 > t∗ such that

U
(

x0, t∗1
) ⊆ D0, (4.1.35)

and
L
2

(

t∗ + t∗1
) ≤ 1, (4.1.36)

then the solution x∗ is unique in U
(

x0, t∗1
)

.

Proof. Using induction on the whole integer k, we shall show

‖xk+1 − xk‖ ≤ tk+1 − tk, (4.1.37)

and

xk+1 ∈ U
(

x0, t∗
)

,
k∑

i=0
‖xi+1 − xi‖ ≤ t∗, (4.1.38)

for all k ≥ 0.

Estimates (4.1.37) and (4.1.38) hold for k = 0. Assume they hold for all k ≤ n.
Then, we have:

‖xk+1 − x0‖ ≤ ‖xk+1 − xk‖ + ‖xk − xk−1‖ + · · · + ‖x1 − x0‖ (4.1.39)

≤ (tk+1 − tk) + (tk − tk−1) + · · · + (t1 − t0)

= tk+1 − t0 = tk+1 ≤ t∗,

and
k
∑

i=0

‖xi+1 − xi‖ ≤ t∗. (4.1.40)

By (4.1.8), (4.1.28)–(4.1.31), we obtain in turn:

‖A (x0)
−1 [A (xk+1) − A (x0)

] ‖ ≤
≤ ‖A (x0)

−1 (A (xk+1) − F ′ (xk+1)
) ‖ + ∥

∥
(

F ′ (xk+1) − F ′ (x0)
)∥
∥

+ ‖A (x0)
−1 A (x0) − F ′ (x0) ‖

≤ μ + M
k∑

i=0
‖xi+1 − xi‖ + L ‖xk+1 − x0‖

≤ μ + (L + M) tk+1 < 1. (4.1.41)

It follows from (4.1.41) and the Banach Lemma on invertible operators that
A (xk+1)

−1 exists and

‖A (xk+1)
−1 A (x0) ‖ ≤ [

1 − μ − (L + M) tk+1
]

. (4.1.42)
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Moreover, using (4.1.2), (4.1.28), (4.1.30), and (4.1.31), we obtain:

A (x0)
−1 F (xk+1) = (4.1.43)

= A (x0)
−1 [F (xk+1) − F (xk) − A (xk) (xk+1 − xk)

]

= A (x0)
−1

{
∫ 1

0

[

F ′ (xk+1 + θ (xk − xk+1)) − F ′ (xk)
]

(xk+1 − xk) dθ

+ [

F ′ (xk) − A (xk)
]

(xk+1 − xk)

}

,

and

‖A (x0)
−1 F (xk+1) ‖ ≤

≤ 1
2 K ‖xk+1 − xk‖2 +

(

μ + M
k−1
∑

i=0

‖xi+1 − xi‖
)

‖xk+1 − xk‖

≤ 1
2 K (tk+1 − tk)

2 + (μ + Mtk) (tk+1 − tk) . (4.1.44)

Furthermore, by (4.1.2), (4.1.9), (4.1.42), and (4.1.44), we have:

‖xk+2 − xk+1‖ =
∥
∥
∥

[

A (xk+1)
−1 A (x0)

] [

A (x0)
−1 F (xk+1)

]∥
∥
∥ (4.1.45)

≤
∥
∥
∥A (xk+1)

−1 A (x0)

∥
∥
∥

∥
∥
∥A (x0)

−1 F (xk+1)

∥
∥
∥

≤
1
2 K(tk+1−tk)

2+(μ+Mtk )(tk+1−tk)
1−μ−(L+M)tk+1

= tk+2 − tk+1,

which completes the induction for (4.1.37).
The induction is now completed, as

k+1
∑

i=0

‖xi+1 − xi‖ ≤ tk+1 ≤ r0 and ‖xk+2 − x0‖ ≤ tk+2 ≤ r0. (4.1.46)

It follows from (4.1.37) and (4.1.38) that sequence {xn} (n ≥ 0) is Cauchy in a
Banach space X , and as such it converges to same x∗ ∈ U (x0, t∗) (as U (x0, t∗) is a
closed set). By letting k → ∞ in (4.1.45), we obtain F (x∗) = 0.

Estimate (4.1.34) follows from (4.1.33). Indeed we have:

‖xk+i − xk‖ ≤ ‖xk+i − xk+i−1‖ + ‖xk+i−1 − xk+i−2‖ + · · · + ‖xk+1 − xk‖
≤ (tk+i − tk+i−1) + (tk+i−1 − tk+i−2) + · · · + (tk+1 − tk)

= tk+i − tk . (4.1.47)

By letting i → ∞ in (4.1.47), we obtain (4.1.34).
To show uniqueness in U (x0, t∗), let y∗ be a solution of equation F (x) = 0. By

(4.1.29) and (4.1.8) we can have:
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∥
∥
∥
∥
∥

A (x0)
−1
∫ 1

0

[

F ′ (y∗ + θ
(

x∗ − y∗))− F ′ (x0)
]

dθ

∥
∥
∥
∥
∥

≤ L
∫ 1

0

∥
∥
[

y∗ + θ
(

x∗ − y∗)− x0
]∥
∥ dθ

≤ L
∫ 1

0

[

θ
∥
∥x∗ − x0

∥
∥+ (1 − θ)

∥
∥y∗ − x0

∥
∥
]

dθ (4.1.48)

≤ Lt∗ < 1. (4.1.49)

It follows from (4.1.49), and the Banach Lemma on invertible operators, that
linear operator

L =
∫ 1

0
F ′ (y∗ + θ

(

x∗ − y∗)) dθ (4.1.50)

is invertible. Using the identity

0 = F
(

x∗)− F
(

y∗) = L
(

x∗ − y∗) (4.1.51)

we deduce
x∗ = y∗. (4.1.52)

Similarly if y∗ ∈ u
(

x0, t∗1
)

, we obtain again that linear operator L is invertible, as
by (4.1.48)

∥
∥
∥A (x0)

−1 [L − F ′ (x0)
]
∥
∥
∥ < L

2

(

t∗ + t∗1
) ≤ 1. (4.1.53)

Hence, again we get (4.1.52).
That completes the proof of the theorem.

Remark 4.1.4. Dennis in [75, Theorem 3, p. 562] has provided a similar semilocal
convergence result. He is not using condition (4.1.29), which is what is really needed,
but the stronger (4.1.28) to find upper bounds on the norms

∥
∥A (xn)−1 A (x0)

∥
∥

(n ≥ 0) (see Chapter 2). However in general, L ≤ K holds.

Finally note that the derivation of condition (4.1.30) and its significance has been
explained in [75, see Theorem 1] (for M = 3K

2 ).
Finally we can show the following local result for method (4.1.2)

Theorem 4.1.5. Let F.. D ⊆ X → Y be a Fréchet-differentiable operator. Assume:
there exist an approximation A (x) ∈ L (X, Y ) of operator F ′ (x), an open convex
subset D0 of D, a solution x∗ of equation (4.1.1) such that A (x∗) ∈ L (Y, X) and
nonnegative parameters αi , i = 0, 1, ..., 4 such that the following conditions hold
for all xn, x ∈ D0

∥
∥
∥A

(

x∗)−1 (
F ′ (x) − F ′ (x∗))

∥
∥
∥ ≤ α0

∥
∥x − x∗∥∥ , (4.1.54)

∥
∥
∥A

(

x∗)−1 (
A (x) − A

(

x∗))
∥
∥
∥ ≤ α1 + α2

∥
∥x − x∗∥∥ , (4.1.55)
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and ∥
∥
∥A

(

x∗)−1 (
A (xn) − F ′ (x∗))

∥
∥
∥ ≤ α3 + α4

∥
∥xn − x∗∥∥ ; (4.1.56)

equation
(

1
2α0 + αq + α4

)

r + α1 + α3 − 1 = 0 (4.1.57)

has a minimal nonnegative zero r∗ satisfying

α2r + α1 < 1, (4.1.58)

and
U
(

x∗, r∗) ⊆ D0. (4.1.59)

Then, sequence {xn} (n ≥ 0) generated by Broyden’s method (4.1.2) is well de-
fined, remains in U (x∗, r∗) for all n ≥ 0 and converges to x∗ provided that
x0 ∈ U (x∗, r∗) .

Moreover the following estimates hold for all n ≥ 0

∥
∥xn+1 − x∗∥∥ ≤

(
1
2 α0+α4

)

‖xn−x∗‖+α3

1−(α1+α2‖xn−x∗‖)
∥
∥xn − x∗∥∥ . (4.1.60)

Proof. By hypothesis x0 ∈ U (x∗, r∗). Let x ∈ U (x∗, r∗). Then by (4.1.55) and
(4.1.58) we get:

∥
∥
∥A

(

x∗)−1 (
A (x) − A

(

x∗))
∥
∥
∥ ≤ α1 + α2

∥
∥x − x∗∥∥ ≤ α1 + α2r∗ < 1. (4.1.61)

It follows from (4.1.61) and the Banach Lemma on invertible operators that A (x)−1

exists so that:
∥
∥
∥A (x)−1 A

(

x∗)
∥
∥
∥

1
1−(α1+α2‖x−x∗‖) ≤ 1

1−(α1+α2r∗) . (4.1.62)

Assume xk ∈ U (x∗, r∗) for all k ≤ n. Then using (4.1.2), (4.1.54)–(4.1.59), we
obtain in turn

∥
∥x∗ − xk+1

∥
∥ =

=
∥
∥
∥x∗ − xk + A (xn)−1 F (xk) − A (xk)

−1 F
(

x∗)
∥
∥
∥

≤
∥
∥
∥A (xk)

−1 A
(

x∗)
∥
∥
∥

{∥
∥
∥
∥
∥

∫ 1

0
A
(

x∗)−1 [
F ′ (x∗ + t

(

xk − x∗))]− F ′ (x∗)
∥
∥
∥
∥
∥

+
∥
∥
∥A

(

x∗)−1 (
F ′ (x∗)− A (xk)

)
∥
∥
∥

} ∥
∥x∗ − xk

∥
∥

≤ 1
1−(α1+α2‖x∗−xk‖)

[
1
2α0

∥
∥x∗ − xk

∥
∥+ α3 + α4

∥
∥x∗ − xk

∥
∥

]

<

(
1
2 α0+α4

)

r∗−α3

1−(α1+α2r∗)
∥
∥x∗ − xk

∥
∥ ,

which shows (4.1.60), and xk+1 ∈ U (x∗, r∗).
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Moreover, by (4.1.62) we have:
∥
∥x∗ − xk+1

∥
∥ ≤ ∥

∥x∗ − xk
∥
∥ <

∥
∥x∗ − x0

∥
∥ . (4.1.63)

Hence we deduce from (4.1.63) that lim
n→∞ xn = x∗.

That completes the proof of the theorem.

Remark 4.1.6. Dennis in [75, Theorem 5, p. 564] provided a local result for Broy-
den’s method (4.1.2) in the special case when X = Y = R j . In particular, he stated
that if

∥
∥F ′ (x) − F ′ (x∗)∥∥ ≤ α5

∥
∥x − x∗∥∥ , (4.1.64)

∥
∥
∥F ′ (x∗)−1

∥
∥
∥ ≤ α6 (4.1.65)

then there exist real positive numbers ε and ε0 such that if A (x0) is a real j × j
matrix,

∥
∥A (x0) − F ′ (x∗)

∥
∥ ≤ ε0 and ‖x0 − x∗‖ = rD < ε, Broyden’s method

(4.1.2) converges to x∗ from this starting point.

The proof was given for
ε0 ≤ 1

6α6
, (4.1.66)

and
ε ≤ 2ε0

5α5
. (4.1.67)

We now apply this result on a certain numerical example in order to compare it with
our Theorem 4.1.5.

Example 4.1.7. Let D = X = Y = R, D0 = U (0, 1), A (x) = F ′ (x) , and define
function F on D0 by

F (x) = ex − 1. (4.1.68)

Using (4.1.64)–(4.1.68) we see

α5 = e − 1, and α6 = 1. (4.1.69)

Consequently, the maximum possible convergence radius rD given by Dennis is

rD = 1
15α5

= .038798447. (4.1.70)

By (4.1.54)–(4.1.57) we get

α0 = e − 1, α1 = e − 1, α3 = 0, α4 = e − 1, (4.1.71)

and
r∗ = 2

7(e−1)
= .0232790683. (4.1.72)

Hence by (4.1.70) and (4.1.72), we deduce

rD < r∗.

That is we provide a six times larger convergence radius than Dennis’ no matter how
x0 is chosen in D0.
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4.2 Stirling’s method

In this section, we approximate a locally unique fixed point x∗ of the nonlinear equa-
tion

F (x) = x, (4.2.1)

were F is a nonlinear operator defined on a closed convex subset D of a Banach
space E with values on itself.

We propose Stirling’s method

xn+1 = xn − [

I − F ′ (P (xn))
]−1

(xn − F (xn)) (n ≥ 0) . (4.2.2)

Here P .. D ⊆ E → E is a continuous operator and F ′ (x) denotes the Fréchet
derivative of operator F . Special cases of (4.2.2), namely NK method (P (xn) = xn

(n ≥ 0)), the modified form of Newton’s method (P (xn) = x0 (n ≥ 0)), and the
ordinary Stirling’s method (P (xn) = F (xn) (n ≥ 0)), have been studied extensively
[43], [185]. Stirling’s method can be viewed as a combination of the method of suc-
cessive substitutions and Newton’s method. In terms of the computational effort,
Stirling’s and Newton’s methods require the same computational cost.

In this section, we provide sufficient conditions for the convergence of method
(4.2.2) to x∗. Moreover, we find a ball centered at a certain point x0 ∈ D including
same center convergence balls found in earlier works (see [43], [185], and the ref-
erences there). Consequently, we find a ring containing infinitely many new starting
points from which x∗ can be accessed via method (4.2.2).

To achieve this goal, we define the operator G.. D → E by

G (x) = x − [

I − F ′ (P (x))
]−1

(x − F (x)) . (4.2.3)

We then use the degree of logarithmic convexity of G, which is defined to be the
Fréchet derivative G ′ of G.

Finally, we complete our study with an example where our results compare fa-
vorably with earlier ones.

Let a ∈ [0, 1), b ≥ 0, and x0 ∈ D be given. Define the real function g
on [0,+∞),

g (r) = b (1 + a) r2 −
[

(1 − a)2 − b ‖x0 − F (x0)‖
]

r + (1 − a) ‖x0 − F (x0)‖ .

(4.2.4)
Set:

c = b ‖x0 − F (x0)‖ . (4.2.5)

It can easily be seen, that if

c <

(√

a2 + (1 − a)2 − a

)2

= d, (4.2.6)

then equation g (r) = 0 has two nonnegative zeros denoted by r1 and r2, with r1 ≤
r2.
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Define also:
r3 = (1−a)2−b‖x0−F(x0)‖

b(1+a)
. (4.2.7)

Finally, set:
I = [r1, r3) . (4.2.8)

We now state and prove the main semilocal convergence theorem for method
(4.2.2).

Theorem 4.2.1. Let F, P be continuous operators defined on a closed convex subset
D of a Banach space E with values on itself. For a ∈ [0, 1), b ≥ 0 and x0 ∈ D fixed,
assume:
(a) F is twice continuously Fréchet-differentiable on D, and

∥
∥F ′ (x) − F ′ (y)

∥
∥ ≤ b ‖x − y‖ , (4.2.9)

∥
∥F ′ (x)

∥
∥ ≤ a < 1, (4.2.10)

for all x, y ∈ D;
(b) U (x0, r) ⊆ D for any r ∈ I , where I is given by (4.2.8).
(c) c < d, where c, d are given by (4.2.5), and (4.2.6), respectively;
(d) P is continuously Fréchet-differentiable on D,

∥
∥P ′ (x)

∥
∥ ≤ a, (4.2.11)

P (x) ∈ U (x0, r) , (4.2.12)

and
‖x − P (x)‖ ≤ ‖x − F (x)‖ , (4.2.13)

for all x ∈ U (x0, r).
Then, the following hold:

(i)
∥
∥G ′ (x)

∥
∥ ≤ b

(1−a)2 ‖x − F (x)‖ ≤ h (r) < 1, (4.2.14)

where
h (r) = [(1 + a) r + ‖x0 − F (x0)‖] b

(1−a)2 , (4.2.15)

for all r ∈ I .
(ii) Iteration {xn} (n ≥ 0), generated by (4.2.2) is well defined, remains in U (x0r)

(r ∈ I ) for all n ≥ 0 and converges to a fixed point x∗ of G in U (x0, r1) which
is unique in U (x0, r4), where r4 ∈ [r1, r5) and r5 = min {r2, r3}.
Moreover, the following error estimates hold for all n ≥ 0:

∥
∥xn − x∗∥∥ ≤ hn (r) r, r ∈ I, (4.2.16)

and
∥
∥xn+1 − x∗∥∥ ≤ b

1−a

[‖xn − P (xn)‖ + ∥
∥P (xn) − x∗∥∥] ∥∥xn − x∗∥∥

≤ b(1+2a)
2(1−a)

∥
∥xn − x∗∥∥2

. (4.2.17)
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Proof. (i) By differentiating (4.2.3), we obtain in turn for x ∈ D (4.2.18)

G ′ (x) = (4.2.18)

= I −
([

I − F ′ (P (x))
]−1

)′
(x − F (x)) − [

I − F ′ (P (x))
]−1

(x − F (x))′

= I + [

I − F ′ (P (x))
]−1

F ′′ (P (x)) P ′ (x)
[

I − F ′ (P (x))
]−1

(x − F (x))

− [

I − F ′ (P (x))
]−1 (

I − F ′ (x)
)

= [

I − F ′ (P (x))
]−1 [

I − F ′ (P (x))

+F ′′ (P (x)) P ′ (x)
(

I − F ′ (P (x))−1 (x − F (x))
)

− I + F ′ (x)
]

= [

I − F ′ (P (x))
]−1 [

F ′ (x) − F ′ (P (x))

+F ′′ (P (x)) P ′ (x)
(

I − F ′ (P (x))
)−1

(x − F (x))
]

.

Using (4.2.9)–(4.2.13), and the Banach lemma on invertible operators we obtain from
(4.2.18)

∥
∥G ′ (x)

∥
∥ ≤ b

(1−a)2 ‖x − F (x)‖ . (4.2.19)

In particular for x ∈ U (x0, r), (4.2.19), the choice of r ∈ I , and the estimate

‖x − F (x)‖ = ‖(x − x0) + (x0 − F (x0)) + (F (x0) − F (x))‖
≤ r + ‖x0 − F (x0)‖ + ar,

we obtain (4.2.14).
(ii) It follows from (4.2.4) that

r ≥ ‖x0−G(x0)‖
1−h(r)

, r ∈ I. (4.2.20)

Hence, we can get

‖x1 − x0‖ = (1 − h (r)) r ≤ r, r ∈ I

which shows x1 ∈ U (x0, x) and (4.2.16) for n = 1. Assume that

xk ∈ U (x0, r) , and ‖xk − x0‖ ≤
(

1 − hk (r)
)

r ≤ r, r ∈ I (4.2.21)

for k = 1, 2, ..., n.

Using (4.2.2) and part (i), we obtain in turn

‖xn+1 − xn‖ = ‖G (xn) − G (xn−1)‖ ≤ sup
y∈[xn−1,xn]

∥
∥G ′ (y)

∥
∥ ‖xn − xn−1‖

(4.2.22)

≤ h (r) ‖xn − xn−1‖ ,

‖xn+1 − xn‖ ≤ h (r) ‖xn − xn−1‖ ≤ · · · ≤ hn (r) ‖x1 − x0‖ = (1 − h (r)) hn (r) r,
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and

‖xn+1 − x0‖ ≤ ‖xn+1 − xn‖ + ‖xn − x0‖
≤ (1 − h (r)) hn (r) r + (

1 − hn (r)
)

r

=
(

1 − hn+1 (r)
)

r ≤ r, r ∈ I.

That is, we showed (4.2.16) for all k ∈ N . Moreover by (4.2.22), we have for n, m ∈
N

‖xn+m − xn‖ ≤ (

1 − hm (r)
)

hn (r) r. (4.2.23)

Estimate (4.2.23) shows that {xn} (n ≥ 0) is a Cauchy sequence in a Banach space
E , and as such it converges to some x∗ ∈ U (x0, r). Because of the continuity of F ,
F ′, P , and (4.2.22), we obtain P (x∗) = x∗, G (x∗) = x∗, F (x∗) = x∗.

To show uniqueness, let y∗ be a fixed point of G in U (x0, r4). Then using
(4.2.14), we get

∥
∥x∗ − y∗∥∥ = ∥

∥G
(

x∗)− G
(

y∗)∥∥

≤ sup
y∈[x∗,y∗]

∥
∥G ′ (y)

∥
∥
∥
∥x∗ − y∗∥∥

≤ h (r)
∥
∥x∗ − y∗∥∥ ,

which shows x∗ = y∗.
Furthermore by letting m → ∞ in (4.2.23), we obtain (4.2.16). Finally by

(4.2.2), we obtain for all n ≥ 0

xn+1 − x∗ =
= xn − x∗ − [

I − F ′ (P (xn))
]−1

(xn − F (xn)) (4.2.24)

= [

I − F ′ (P (xn))
]−1 [(

I − F ′ (p (xn))
) (

xn − x∗)− (xn − F (xn))
]

= [

I − F ′ (P (xn))
]−1 [

F (xn) − F
(

x∗)− F ′ (P (xn))
(

xn − x∗)] .

But we can also have by (4.2.11) and (4.2.13) that for all n ≥ 0

‖xn − P (xn)‖ = ∥
∥xn − x∗ + P

(

x∗)− P (xn)
∥
∥ ≤ (1 + a)

∥
∥xn − x∗∥∥ , (4.2.25)

and
∥
∥P (xn) − x∗∥∥ = ∥

∥P (xn) − P
(

x∗)∥∥ ≤ a
∥
∥xn − x∗∥∥ . (4.2.26)

Estimate (4.2.17) now follows from (4.2.24)–(4.2.26) and the approximation

F (xn) − F
(

x∗)− F ′ (P (xn))
(

xn − x∗) =

=
∫ 1

0

[

F ′ (t xn + (1 − t) x∗) −F ′ (t P (xn) + (1 − t) P (xn))
] (

xn − x∗) dt.

(4.2.27)
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We now state the following theorem for comparison (see [169] and the references
there for a proof).

Theorem 4.2.2. Let F be a Fréchet-differentiable on D ⊆ E. Assume:

(a1) Condition (a) holds;
(b1)

P (x) = F (x) (x ∈ D) ; (4.2.28)

(c1) c < d0, where
d0 = 2(1−a)

1+2a ; (4.2.29)

(d1) U (x0, r0) ⊆ D, where

r0 = 2c
b(1−a)

, for b �= 0. (4.2.30)

Then, Stirling’s iteration {xn} (n ≥ 0) converges to the unique fixed point x∗ of
F in U (x0, r0) at the rate given by (4.2.17).

Remark 4.2.3. Favorable comparisons of Stirling’s over NK method have been made
in [169] and the references there.

Proposition 4.2.4. Under the hypotheses of Theorem 4.2.1 and 4.2.2, assume:

c <
(1−a)3

3+a = d1. (4.2.31)

Then the following hold:
r1 < r0 < r3, (4.2.32)

and
U (x0, r0) ⊆ U (x0, r3) . (4.2.33)

Proof. Estimates (4.2.32) and (4.2.33) follow immediately by the definition of r1, r0,
r3 and (4.2.31).

Remark 4.2.5. Let d2 = min {d1, d, d0}, under the hypotheses of Theorem 4.2.1 and
4.2.2. Then the conclusion of the proposition hold. This observation justifies the
claim made at the introduction.

We complete this study with an example.

Example 4.2.6. Let E = R, D = [−π
4 , π

4

]

, P (x) = F (x) and

F (x) = 1
2 sin x .

For x0 = .1396263 = 80, we obtain d = 3−√
2

4 = .428932, d0 = 1
2 = .5, d1 = 1

28 =
.0357143, a = b = 1

2 , ‖x0 − F (x0)‖ = .0700397, c = 0350199, r0 = .2801592
and r3 = .2866401. With the above values, the hypotheses of Theorems 4.2.1, 4.2.2,
and the Proposition 4.2.4 are satisfied. Hence we get
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0 = x∗ ∈ U (x0, r0) = [−.1405329, .4197855]

⊆ (−.1470138, .4262664) = U 0 (x0, r3) .

That is there are infinitely many new starting points U 0 (x0, r3)−U (x0, r0) for which
iteration (4.2.2) converges to x∗ but Theorem 4.2.2 does not guarantee that, whereas
Theorem 4.2.1 does.

4.3 Steffensen’s method

Let E , � be Banach spaces and denote by U (x0, R) the closed ball with center
x0 ∈ E and of radius R ≥ 0. We will use the same symbol for the norm ‖ ‖ in both
spaces. Let P be a projection operator (P = P2) that projects E on its subspace
E p and set Q = I − P . Suppose that the nonlinear operators F (x, λ) and G (x, λ)

with values in E are defined for x ∈ D, where D is some open convex subset of
E containing U (x0, R), and λ ∈ U (λ0, S) for some λ0 ∈ �, S ≥ 0. For each
fixed λ ∈ U (λ0, S), the operator P F (ω, λ) will be assumed to be Fréchet derivative
of the operator P F (ω, λ) with respect to the argument ω = x . Moreover for each
fixed λ ∈ U (λ0, S), the operator PG (ω, λ) will be assumed to be continuous for all
ω ∈ D.

In this study, we are concerned with the problem of approximating a solution
x∗ ..= x∗ (λ) of the equation

F (x, λ) + G (x, λ) = 0. (4.3.1)

We introduce the inexact Steffensen-Aitken-type method

xn+1 (λ) = (4.3.2)

= xn (λ) − A (xn (λ) , λ)−1 (F (xn (λ) , λ) + G (xn (λ) , λ)) − z (xn (λ) , λ) ,

(n ≥ 0)

where by x0 we mean x0 (λ). That is, x0 depends on the λ used in (4.3.2). A (x, λ) ∈
L (E × �, E) and is given by

A (xn (λ) , λ) =P
[

g1 (xn (λ) , λ) , g2 (xn (λ) , λ) ; F
]

(4.3.3)

+ P
[

g3 (xn (λ) , λ) , g4 (xn (λ) , λ) ; G
]

(n ≥ 0)

where [x (λ) , y (λ) ; F] (or [x (λ) , y (λ) ; G]) denotes divided difference of order
one on F (or G) at the points x (λ) , y (λ) ∈ D, satisfying

[x (λ) , y (λ) ; F] (y (λ) − x (λ)) = F (y (λ) , λ) − F (x (λ) , λ) (4.3.4)

for all x (λ) �= y (λ) , λ ∈ U (λ0, S) and

[x (λ) , x (λ) ; F] = F ′ (x (λ) , λ) , λ ∈ U (λ0, S) (4.3.5)
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if F (x (λ) , λ) is Fréchet-differentiable at x (λ) for all λ ∈ U (λ0, S). The opera-
tor z.. D × U (λ0, S) → E is chosen so that iteration {xn (λ)} (n ≥ 0) generated
by (4.3.2) converges to x∗. The operators g1, g2, g3, g4.. D × U (λ0, S) → E are
continuous.

The importance of studying inexact Steffensen-Aitken methods comes from the
fact that many commonly used variants can be considered procedures of this type.
Indeed, approximation (4.3.2) characterizes any iterative process in which correc-
tions are taken as approximate solutions of Steffensen-Aitken equations. Moreover,
we note that if for example an equation on the real line is solved F (xn (λ) , λ) +
G (xn (λ) , λ) ≥ 0 and A (xn (λ) , λ) overestimates the derivative

xn − A (xn (λ) , λ)−1 (F (xn (λ) , λ) + G (xn (λ) , λ))

is always “larger” than the corresponding Steffensen-Aitken iterate. In such cases, a
positive z (xn (λ) , λ) (n ≥ 0) correction term is appropriate.

It can easily be shown by induction on n that under the above hypotheses
F (xn (λ) , λ) + G (xn (λ) , λ) belong to the domain of A (xn (λ) , λ)−1 for all n ≥ 0.

Therefore, if the inverses exist (as it will be shown later in the theorem), then
the iterates {xn (λ)} can be computed for all n ≥ 0. The iterates generated when
P = I (identity operator on E) cannot easily be computed in infinite-dimensional
spaces as the inverses may be too difficult or impossible to find. It is easy to see,
however, that the solution of equation (4.3.2) reduces to solving certain operator
equations in the space E P . If, moreover, E P is a finite-dimensional space of dimen-
sion N , we obtain a system of linear algebraic equations of at most order N . Special
choices of the operators introduced above reduce our iteration (4.3.2) to earlier con-
sidered methods. Indeed we can have: for g1 (x (λ) , λ) = g2 (x (λ) , λ) = x (λ),
g3 (x (λ) , λ) = g4 (x (λ) , λ) = 0, z = 0 we obtain Newton methods, for P = I , no
λ, g1 (x) = g2 (x) = x (x ∈ D), g3 (xn) = xn−1 (n ≥ 1), g4 (xn) = xn (n ≥ 0) we
obtain Cătinaş method [54]; for P = I , no λ, G (x) = 0 (x ∈ D) m, zn = 0 (n ≥ 0),
g3 (x) = g4 (x) = 0, g2 (x) = g1 (F (x)) (x ∈ D), we obtain methods considered
by Păvăloiu in [158], [159]. Our choices of the operators because they include all
previous methods allow us to consider a wider class of problems.

We provide sufficient conditions for the convergence of iteration (4.3.2) to a lo-
cally unique solution x∗ (λ) of equation (4.3.1) as well as several error bounds on the
distances ‖xn+1 (λ) − xn (λ)‖ and ‖xn (λ) − x∗ (λ)‖ (n ≥ 0).

We can now state and prove the following semilocal convergence result:

Theorem 4.3.1. Let F, G, P, Q be as in the introduction. Assume:

(a) there exist x0 (λ) ∈ D, λ0 ∈ � such that C ..= C (λ) = A (x0 (λ) , λ0) is invert-
ible. Set B = C−1;

(b) there exist nonnegative numbers ai , R, S, i = 1, 2, ..., 15 such that:

‖B P ([x, y; F] − [v,w; F])‖ ≤ a1 (‖x − v‖ + ‖y − ω‖) , (4.3.6)
∥
∥
∥x − g1 (x, λ)

∥
∥
∥ ≤ a2

∥
∥
∥A (x, λ)−1 (F (x, λ) + G (x, λ)) − z (x, λ)

∥
∥
∥ (4.3.7)
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∥
∥
∥x − g2 (x, λ)

∥
∥
∥ ≤ a3

∥
∥
∥A (x, λ)−1 (F (x, λ) + G (x, λ)) − z (x, λ)

∥
∥
∥ , (4.3.8)

∥
∥
∥g1 (x, λ) − g1 (y, λ)

∥
∥
∥ ≤ a4 ‖x − y‖ a4 ∈ [0, 1) , (4.3.9)

∥
∥
∥g2 (x, λ) − g2 (y, λ)

∥
∥
∥ ≤ a5 ‖x − y‖ a5 ∈ [0, 1) , (4.3.10)

‖B (QF (x, λ) − QF (y, λ))‖ ≤ a6 ‖x − y‖ , (4.3.11)

‖B (A (xn+1, λ)) (z (xn+1, λ)) − A (xn, λ) (z (xn, λ))‖ ≤ (4.3.12)

≤ a7 ‖xn+1 − xn‖ (n ≥ 0) ,
∥
∥
∥B P

(

[x, y; G] −
[

g3 (x, λ) , g4 (x, λ) ; G
])∥
∥
∥ ≤ (4.3.13)

≤ a8

(∥
∥
∥x − g3 (x, λ)

∥
∥
∥+

∥
∥
∥y − g4 (x, λ)

∥
∥
∥

)

,
∥
∥
∥x − g3 (x, λ)

∥
∥
∥ ≤ a9

∥
∥
∥A (x, λ)−1 (F (x, λ) + G (x, λ)) − z (x, λ)

∥
∥
∥ , (4.3.14)

∥
∥
∥x − g4 (x, λ)

∥
∥
∥ ≤ a10

∥
∥
∥A (x, λ)−1 (F (x, λ) + G (x, λ)) − z (x, λ)

∥
∥
∥ (4.3.15)

∥
∥
∥g3 (x, λ) − g3 (y, λ)

∥
∥
∥ ≤ a11 ‖x − y‖ a11 ∈ [0, 1) , (4.3.16)

∥
∥
∥g4 (x, λ) − g4 (y, λ)

∥
∥
∥ ≤ a12 ‖x − y‖ a12 ∈ [0, 1) , (4.3.17)

‖B (QG (x, λ) − QG (y, λ))‖ ≤ a13 ‖x − y‖ , (4.3.18)
∥
∥
∥B

([

g1 (x0, λ) , g2 (x0, λ) ; F
]

−
[

g1 (x0, λ0) , g2 (x0, λ0) ; F
])∥
∥
∥ ≤

≤ a14 ‖λ − λ0‖ , (4.3.19)

and
∥
∥
∥B

([

g3 (x0, λ) , g4 (x0, λ) ; G
]

−
[

g3 (x0, λ0) , g4 (x0, λ0) ; G
])∥
∥
∥ ≤

≤ a15 ‖λ − λ0‖ , (4.3.20)

for all v,w, x, y ∈ U (x0, R), λ ∈ U (λ, S) ;
(c) the sequence {z (xn (λ) , λ)} (n ≥ 0) is null for all λ ∈ U (λ0, S);
(d) for each fixed λ ∈ U (λ0, S) there exists a minimum nonnegative number r∗ ..= r∗

λ

satisfying
Tλ

(

r∗) ≤ r∗ and r∗ ≤ R (4.3.21)

with r ..= r (λ),

Tλ (r) = n + b1r + b2

b (r) − b3r
r, (4.3.22)

where

n ..= n (λ) ≥ ‖x0 (λ) − x1 (λ)‖ , (4.3.23)

b1 = a1 (1 + a4 + a5) + a8 (1 + a11 + a12) ,

b2 = a6 + a13 + a7,

b3 = a1 (a2 + a3) + a8 (a9 + a10) ,
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b (r) ..= b (r, s) = 1 − (a1 (a4 + a5) + a8 (a11 + a12)) r − (a14 + a15) S; (4.3.24)

(e) r∗, R, S also satisfy:
b
(

r∗)− b3r∗ > 0, (4.3.25)

r∗ ≥ max

{∥
∥g1 (x0 (λ) , λ) − x0 (λ)

∥
∥

1 − a4
,

∥
∥g2 (x0 (λ) , λ) − x0 (λ)

∥
∥

1 − a5
,

∥
∥g3 (x0 (λ) , λ) − x0 (λ)

∥
∥

1 − a11
,

∥
∥g4 (x0 (λ) , λ) − x0 (λ)

∥
∥

1 − a12

}

, (4.3.26)

c ..= c (λ) = d (r, R) < 1, (4.3.27)

where

d (e1, e2) = b1 (e1 + e2) + b4

b (e1) − b3 (e1 + e2)
(4.3.28)

and
b4 = a6 + a13. (4.3.29)

Then
(i) For each fixed λ ∈ U (λ0, S) the scalar sequence {tn (λ)} (n ≥ 0) generated by

t0 (λ) = 0, t1 (λ) = n, (4.3.30)

tn+1 (λ) = tn (λ) + b1 (tn (λ) − tn−1 (λ)) + b2

αnβn
(tn (1) − tn−1 (λ))

(n ≥ 1) , (4.3.31)

αn ..= αn (λ) = 1 − b3γn (n ≥ 0) , (4.3.32)

βn ..= βn (λ) = 1 − (a14 + a15) S

− [a1 (a4 + a5) + a8 (a11 + a12)] tn (λ) (n ≥ 0) , (4.3.33)

and

γn ..= γn (λ) = (tn (λ) − tn−1 (λ)) β−1
n (n ≥ 1) , (4.3.34)

is monotonically increasing, bounded above by r∗ and limn→∞ tn (λ) = r∗;
(ii) the inexact Steffensen-Aitken method generated by (4.3.2) is well defined, re-

mains in U (x0 (λ) , r∗) for all n ≥ 0, and converges to a solution x∗ (λ) ∈
U (x0 (λ) , r∗) of equation (4.3.1). Moreover if z = 0 then x∗ (λ) is unique in
U (x0 (λ) , R). Furthermore, the following estimates are true:

‖xn+1 (λ) − xn (λ)‖ ≤ b1 ‖xn (λ) − xn−1 (λ)‖ + b2

αnβn

‖xn (λ) − xn−1 (λ)‖

(n ≥ 1) , (4.3.35)

‖xn+1 (λ) − xn (λ)‖ ≤ tn+1 (λ) − tn (λ) (n ≥ 0) , (4.3.36)
∥
∥xn (λ) − x∗ (λ)

∥
∥ ≤ r∗ − tn (λ) (n ≥ 0) , (4.3.37)
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where

αn ..= αn (λ) = 1 − b3γ n (n ≥ 0) , (4.3.38)

βn ..= βn (λ) = 1 − (a14 + a15) ‖λ − λ0‖
− [a1 (a4 + a5) + a8 (a11 + a12)] ‖xn (λ) − x0 (λ)‖ (n ≥ 0) , (4.3.39)

and

γ n ..= γ n (λ) = ‖xn (λ) − xn−1 (λ)‖ β
−1
n (n ≥ 1) . (4.3.40)

Proof. (i) By (4.3.21) and (4.3.30) we deduce 0 ≤ t0 (λ) ≤ t1 (λ) ≤ r∗. Let us
assume 0 ≤ tk−1 (λ) ≤ tk (λ) ≤ r∗ for k = 1, 2, ..., n. Then it follows from (4.3.30)
and (4.3.31) that 0 ≤ tk (λ) ≤ tk+1 (λ). Hence, the sequence {tn (λ)} (n ≥ 0) is
monotonically increasing. Moreover by (4.3.31) and the induction hypotheses, we
get in turn

tk+1 (λ) ≤ tk (λ) + b1r∗ + b2

b (r∗) − b3r∗ (tk (λ) − tk−1 (λ))

≤ · · ·
≤ n + b1r∗ + b2

b (r∗) − b3r∗ r∗

= Tλ

(

r∗) ≤ r∗ (by (4.3.21)).

That is the sequence {tn (λ)} (n ≥ 0) is also bounded above by r∗. Because for each
fixed λ ∈ U (λ0, S) r∗ is the minimum nonnegative number satisfying (4.3.21), it
follows that limn→∞ tn (λ) = r∗.

(ii) By hypotheses (4.3.30), (4.3.23), and (4.3.22) it follows that

x1 (λ) ∈ U
(

x0 (λ) , r∗) .

Moreover from (4.3.26), we deduce g1 (x0 (λ) , λ), g2 (x0 (λ) , λ), g3 (x0 (λ) , λ),
g4 (x0 (λ) , λ) ∈ U (x0 (λ) , r∗). Let us assume xk+1 (λ), g1 (xk (λ) , λ),
g2 (xk (λ) , λ), g3 (xk (λ) , λ), g4 (xk (λ) , λ) ∈ U (x0 (λ) , r∗) for k = 0, 1, 2, ..., n,
and that (4.3.36) is true for k = 1, 2, ..., n (as it is true for k = 0 by (4.3.23) and
(4.3.30)). Then from (4.3.9) and (4.3.26) we get

∥
∥
∥g1 (xk (λ) , λ) − x0 (λ)

∥
∥
∥ ≤

≤
∥
∥
∥g1 (xk (λ) , λ) − g1 (x0 (λ) , λ)

∥
∥
∥+

∥
∥
∥g1 (x0 (λ) , λ) − x0 (λ)

∥
∥
∥

≤ a4 ‖xk (λ) − x0 (λ)‖ +
∥
∥
∥g1

1 (x0 (λ) , λ) − x0 (λ)

∥
∥
∥ s < r∗.

That is, g1 (xn (λ) , λ) ∈ U (x0 (λ) , r∗). Similarly, we obtain g2 (xn (λ) , λ),
g3 (xn (λ) , λ), g4 (xn (λ) , λ) ∈ U (x0 (λ) , λ). Using (4.3.6), (4.3.9), (4.3.10),
(4.3.13), (4.3.16), (4.3.17), (4.3.19), and (4.3.20), we obtain
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∥
∥
∥
∥

B P

([

g1 (xk (λ) , λ) , g2 (xk (λ) , λ) ; F
]

+
[

g3 (xk (λ) , λ) , g4 (xk (λ) , λ) ; G
]

−
[

g1 (x0 (λ) , λ0) , g2 (x0 (λ) , λ0) ; F
]

−
[

g3 (x0 (λ) , λ0) , g4 (x0 (λ) , λ0) ; G
])
∥
∥
∥
∥

≤
∥
∥
∥
∥

B P

([

g1 (xk (λ) , λ) , g2 (xk (λ) , λ) ; F
]

−
[

g1 (x0 (λ) , λ0) , g2 (x0 (λ) , λ0) ; F
])
∥
∥
∥
∥

+
∥
∥
∥
∥

B P

([

g3 (xk (λ) , λ) , g4 (xk (λ) , λ) ; G
]

−
[

g3 (x0 (λ) , λ0) , g4 (x0 (λ) , λ0) ; G
])
∥
∥
∥
∥

≤
∥
∥
∥
∥

B P

([

g1 (xk (λ) , λ) , g2 (xk (λ) , λ) ; F
]

−
[

g1 (x0 (λ) , λ) , g2 (x0 (λ) , λ)
])
∥
∥
∥
∥

+
∥
∥
∥
∥

B P

([

g1 (x0 (λ) , λ) , g2 (x0 (λ) , λ) ; F
]

−
[

g1 (x0 (λ) , λ0) , g2 (x0 (λ) , λ0) ; F
])
∥
∥
∥
∥

+
∥
∥
∥
∥

B P

([

g3 (xk (λ) , λ) , g4 (xk (λ) , λ) ; G
]

−
[

g3 (xk (λ) , λ) , g4 (x0 (λ) , λ)
])
∥
∥
∥
∥

+
∥
∥
∥
∥

B P

([

g3 (x0 (λ) , λ) , g4 (x0 (λ) , λ) ; G
]

−
[

g3 (x0 (λ) , λ0) , g4 (x0 (λ) , λ0) ; G
])
∥
∥
∥
∥

≤ a1 (a4 + a5) ‖xk (λ) − x0 (λ)‖ + a14 ‖λ − λ0‖
+ a8 (a11 + a12) ‖xk (λ) − x0 (λ)‖ + a15 ‖λ − λ0‖

≤ [a1 (a4 + a5) + a8 (a11 + a12)] r∗ + (a14 + a15) S < 1 by (4.3.25)

It follows from the Banach lemma on invertible operators that A (xk (λ) , λ) is invert-
ible and ∥

∥
∥A (xk (λ) , λ)−1 B−1

∥
∥
∥ ≤ δks < δk, (4.3.41)

where
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γ k = (

αkβk
)−1

and δk = (αkβk)
−1 (k ≥ 0) .

Using (4.3.2) we obtain the approximation

xk+1 (λ) − xk (λ) =
=
(

A (xk (λ) , λ)−1 B−1
)

B
{[

P F (xk (λ) , λ) − P F (xk−1 (λ) , λ)

− P
[

g1 (xk (λ) , λ) , g2 (xk (λ) , λ) ; F
]

(xk (λ) − xk−1 (λ))
]

+ [

QF (xk (λ) , λ) − QF (xk−1 (λ) , λ)
]+ [A (xk (λ) , λ) (z (xk (λ) , λ))

− A (xk−1 (λ) , λ) (z (xk−1 (λ) , λ))
]+

[

PG (xk (λ) , λ) − PG (xk (λ) , λ)

− P
[

g3 (xk (λ) , λ) , g4 (xk (λ) , λ) ; G
]

(xk (λ) − xk−1 (λ))
]

+ [

QG (xk (λ) , λ) − QG (xk−1 (λ) , λ)
] }

(k ≥ 1) . (4.3.42)

By (4.3.6) we obtain
∥
∥
∥(B P F (xk (λ) , λ) − P F (xk−1 (λ) , λ)

− P
[

g1 (xk (λ) , λ) , g2 (xk (λ) ; F)
]

(xk (λ) − xk−1))

∥
∥
∥

≤
∥
∥
∥B P

([

xk−1 (λ) , xk (λ) ; F
])

−
[

g1 (xk−1 (λ) , λ) , g2 (xk−1 (λ) , λ) ; F
]∥
∥
∥ ‖xk (λ) − xk−1 (λ)‖

≤ a1

(∥
∥
∥xk−1 (λ) − g1 (xk−1 (λ) λ)

∥
∥
∥

+
∥
∥
∥xk (λ) − g2 (xk−1 (λ) , λ)

∥
∥
∥

)

‖xk−1 (λ)‖ . (4.3.43)

Moreover from (4.3.7), (4.3.8), (4.3.9), and (4.3.10), we obtain the estimates
∥
∥
∥xk−1 (λ) − g1 (xk−1 (λ) , λ)

∥
∥
∥ ≤ ‖xk−1 (λ) − xk (λ)‖ +

∥
∥
∥xk (λ) − g1 (xk (λ) , λ)

∥
∥
∥

≤
∥
∥
∥g1 (xk (λ) , λ) − g1 (xk−1 (λ) , λ)

∥
∥
∥

≤ ‖xk (λ) − xk−1 (λ)‖ + a2 ‖xk+1 (λ) − xk (λ)‖

+ a4 ‖xk (λ) − xk−1 (λ)‖ , (4.3.44)

∥
∥
∥xk (λ) − g2 (xk−1 (λ) , λ)

∥
∥
∥

≤
∥
∥
∥xk (λ) − g2 (xk (λ) , λ)

∥
∥
∥+

∥
∥
∥g2 (xk (λ) , λ) − g2 (xk−1 (λ) , λ)

∥
∥
∥

≤ a3 ‖xk+1 (λ) − xk (λ)‖ + a5 ‖xk (λ) − xk−1 (λ)‖ . (4.3.45)
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Hence from (4.3.43), (4.3.44), and (4.3.45), we get
∥
∥
∥B P(F (xk (λ) , λ) − F (xk−1 (λ) , λ)

−
[

g1 (xk (λ) λ) , g2xk (λ) , λ; F
]

(xk (λ) − xk−1 (λ)))

∥
∥
∥

≤ a1 (1 + a4 + a5) ‖xk (λ) − xk−1 (λ)‖2

+ a1 (a2 + a3) ‖xk+1 (λ) − xk (λ)‖ ‖xk (λ) − xk−1 (λ)‖ . (4.3.46)

As in (4.3.46) but using (4.3.13), (4.3.14), (4.3.15), (4.3.16), and (4.3.17), we obtain
∥
∥
∥B P(G (xk (λ) , λ) − G (xk−1 (λ) , λ)

−
[

g3 (xk (λ) , λ) , g4 (xk (λ) , λ) ; G
]

(xk (λ) − xk−1 (λ)))

∥
∥
∥

≤ a8 (1 + a11 + a12) ‖xk (λ) − xk−1 (λ)‖2

+ a8 (a9 + a10) ‖xk+1 (λ) − xk (λ)‖ ‖xk (λ) − xk−1 (λ)‖ . (4.3.47)

Furthermore from (4.3.11), (4.3.12), and (4.3.18), we get respectively

‖B (QF (xk (λ) , λ) − QF (xk−1 (λ) , λ))‖ ≤ a6 ‖xk (λ) − xk−1 (λ)‖ , (4.3.48)

‖B (A (xk) (λ) , λ) (z (xk (λ) , λ)) − A (xk−1 (λ) , λ) (z (xk−1 (λ) , λ))‖
≤ a7 ‖xk (λ) − xk−1 (λ)‖ (4.3.49)

and

‖B (QG (xk (λ) , λ) − QG (xk−1 (λ) , λ))‖ ≤ a13 ‖xk (λ) − xk−1 (λ)‖ . (4.3.50)

Finally from (4.3.31), (4.3.41), (4.3.42), (4.3.46)–(4.3.50), we deduce that estimates
(4.3.35) and (4.3.36) are true. By (4.3.36) and part (i) it follows that for each fixed
λ ∈ U (λ0, S) iteration {xn (λ)} (n ≥ 0) is Cauchy in a Banach space E and as such it
converges to some x∗ (λ) ∈ U (x0 (λ) , r∗). Using hypothesis (c) and letting n → ∞
in (4.3.2), we get F (x∗ (λ) , λ) + G (x∗ (λ) , λ) = 0. That is, x∗ (λ) is a solution
of equation (4.3.1). Estimate (4.3.37) follows immediately from (4.3.36) by using
standard majorization techniques.

To show uniqueness when z = 0, let us assume y∗ (λ) ∈ U (x0 (λ) , R) is a
solution of equation (4.3.1). Then from (4.3.2) we get

xn+1 (λ) − y∗ (λ) = xn (λ) − y∗ (λ) − A (xn (λ) , λ)−1 [(F (xn (λ) , λ)

− F
(

y∗ (λ) , λ
))+ (

G (xn (λ) , λ) − G
(

y∗ (λ) , λ
))]

. (4.3.51)

Analyzing the right-hand side of (4.3.51) as in (4.3.42) with y∗ (λ) “replacing” xk (λ)

and xn (λ) “replacing” xk−1 (λ), we get
∥
∥xn+1 − y∗ (λ)

∥
∥ ≤ c

∥
∥xn (λ) − y∗ (λ)

∥
∥ ≤ · · · ≤ cn+1

∥
∥x0 (λ) − y∗∥∥ ≤ cn+1 R.

(4.3.52)
By letting n → ∞ in (4.3.52) and using (4.3.27) we get limn→∞ xn+1 (λ) = y∗ (λ)

for each fixed λ ∈ U (λ0, S). By the uniqueness of the limit of the sequence {xn (λ)}
(n ≥ 0) we deduce x∗ (λ) = y∗ (λ).
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Remark 4.3.2. (1) Condition (4.3.6) implies that F (x (λ) , λ) is differentiable on
D, whereas condition (4.3.13) does not necessarily imply the differentiability of
G (x (λ) , λ) on D.

(2) Inequalities (4.3.21), (4.3.23), (4.3.25), (4.3.26), and (4.3.27) will determine
r∗, R, and S.

(3) If a2 + a4 ≤ 1, a3 + a5 ≤ 1, a9 + a11 ≤ 1 and a10 + a12 ≤ 1 for r∗ �= 0,
condition (4.3.26) is satisfied. Indeed from (4.3.7) we have

∥
∥
∥g1 (x0 (λ) , λ) − x0 (λ)

∥
∥
∥ ≤ a2 ‖x1 (λ) − x0 (λ)‖ ≤ a3r∗,

and from (4.3.26) we must have
∥
∥
∥g1 (x0 (λ) , λ) − x0 (λ)

∥
∥
∥ ≤ (1 − a4) r∗.

It suffices to show a2r∗ ≤ (1 − a4) or a2 + a4 ≤ 1 (r∗ �= 0), which is true by
hypothesis. Similarly, we can argue for the rest.

4.4 Computing zeros of operator satisfying autonomous
differential equations

In this section, we are concerned with the problem of approximating a locally unique
solution x∗ of equation

F (x) = 0, (4.4.1)

where F is a Fréchet-differentiable operator defined on an open convex subset D of
a Banach space X with values in a Banach space Y .

We use the Newton-like method:

xn+1 = xn − F ′ (yn)−1 F (xn) (n ≥ 0) (4.4.2)

to generate a sequence approximating x∗.
Here F ′ (x) ∈ L (X, Y ) denotes the Fréchet derivative.
We are interested in the case when:

yn = λn xn + (1 − λn) zn (n ≥ 0) (4.4.3)

where,

λn ∈ [0, 1] , (n ≥ 0) (4.4.4)

zn = x∗ (4.4.5)

or
zn = xn (n ≥ 0) , (4.4.6)

or other suitable choice [170].
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We provide a local and a semilocal convergence analysis for method (4.4.2)
which compare favorably with earlier results [170], and under the same computa-
tional cost.

Convergence for method (4.4.2) for zn given by (4.4.5) and λn = 0 (n ≥ 0)

We can show the following local result:

Theorem 4.4.1. Let F.. D ⊆ X → Y be a Fréchet-differentiable operator. Assume:
there exists a solution x∗ of equation

F (x) = 0 such that F ′ (x∗)−1 ∈ L (Y, X)

and
∥
∥
∥F ′ (x∗)−1

∥
∥
∥ ≤ b; (4.4.7)

∥
∥F ′ (x) − F ′ (x∗)∥∥ ≤ L0

∥
∥x − x∗∥∥ for all x ∈ D, (4.4.8)

and

U
(

x∗, r0
) ⊆ D, with r0 = 2

bL0
. (4.4.9)

Then sequence {xn} (n ≥ 0) generated by Newton-like method (4.4.2) is well
defined remains in U (x∗, r0) for all n ≥ 0, and converges to x∗ provided that x0 ∈
U (x∗, r0).

Moreover the following estimates hold for all n ≥ 0:
∥
∥xn − x∗∥∥ ≤ θ2n−1

0

∥
∥x0 − x∗∥∥ (n ≥ 1) , (4.4.10)

where
θ0 = 1

2 bL0
∥
∥x0 − x∗∥∥ . (4.4.11)

Proof. By (4.4.2) and F (x∗) = 0 we get for all n ≥ 0:

xn+1 − x∗ = −F ′ (x∗)−1

[
∫ 1

0

(

F ′ (x∗ + t
(

xn − x∗))

− F ′ (x∗)
) (

xn − x∗)
]

dt (4.4.12)

from which it follows
∥
∥xn+1 − x∗∥∥ ≤ 1

2 bL0
∥
∥xn − x∗∥∥2 (4.4.13)

from which (4.4.10) follows.
By (4.4.9) and (4.4.11), θ0 ∈ [0, 1). Hence it follows from (4.4.10) that xn ∈

U (x∗, r0) (n ≥ 0) and
lim

n→∞ xn = x∗ (4.4.14)
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Method (4.4.2) has the advantages of the quadratic convergence of NK method
and the simplicity of the modified Newton’s method, as the operator F ′ (x∗)−1 is
computed only once.

Moreover in order for us to compare Theorem 4.4.1 with earlier results, consider
the condition

∥
∥F ′ (x) − F ′ (y)

∥
∥ ≤ L ‖x − y‖ for all x ∈ D (4.4.15)

used in [170] instead of (4.4.8). The corresponding radius of convergence is given by

rR = 2

bL
. (4.4.16)

Because
L0 ≤ L (4.4.17)

holds in general, we obtain
rR ≤ r0. (4.4.18)

Furthermore in case strict inequality holds in (4.4.17), so it does in (4.4.18) (see
Chapter 2). Below we give an example of a case where strict inequality holds in
(4.4.17) and (4.4.18).

Example 4.4.2. Let X = Y = R, D = U (0, 1) and define F on D by

F (x) = ex − 1. (4.4.19)

Note that (4.4.19) satisfies (4.4.14) for T (x) = x + 1. Using (4.4.7), (4.4.8), (4.4.9),
(4.4.15), and (4.4.16), we obtain

b = 1, L0 = e − 1, L = e, (4.4.20)

r0 = 1.163953414, (4.4.21)

and
rR = .735758882. (4.4.22)

In order to keep the iterates inside D we can restrict r0 and choose

r0 = 1. (4.4.23)

In any case (4.4.17) and (4.4.18) holds as a strict inequalities.

We can show the following global result:

Theorem 4.4.3. Let F.. X → Y be Fréchet-differentiable operator, and G a continu-
ous operator from Y into Y . Assume:

condition (4.4.14) holds;

G (0)−1 ∈ L (Y, X) so that (4.4.7) holds;

F (x) ≤ c for all x ∈ X; (4.4.24)
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‖G (0) − G (z)‖ ≤ a0 ‖z‖ , for all z ∈ Y, (4.4.25)

and
h0 = α0bc < 1. (4.4.26)

Then, sequence {xn} (n ≥ 0) generated by method (4.4.2) is well defined and con-
verges to a unique solution x∗ of equation F (x) = 0.

Moreover the following estimates hold for all n ≥ 0:

∥
∥xn − x∗∥∥ ≤ hn

0

1 − h0
‖x1 − x0‖ (n ≥ 0) . (4.4.27)

Proof. It follows from the contraction mapping principle by using (4.4.25), (4.4.26)
instead of

‖G (v) − G (z)‖ ≤ a ‖v − z‖ for all v, z ∈ Y (4.4.28)

and
h = abc < 1. (4.4.29)

Remark 4.4.4. If F ′ is L0 Lipschitz continuous in a ball centered at x∗, then the
convergence of method (4.4.2) will be quadratic as soon as

bL0
∥
∥x0 − x∗∥∥ < 2 (4.4.30)

holds with x0 replaced by an iterate xn sufficiently close to x∗.

Remark 4.4.5. If (4.4.25) is replaced by the stronger (4.4.28), Theorem 4.4.3 reduces
to Theorem 2 in [170]. Otherwise our Theorem is weaker than Theorem 2 in [170]
as

a0 < a (4.4.31)

holds in general.

We note that if (4.4.25) holds and

‖F (x) − F (x0)‖ ≤ γ0 ‖x − x0‖ (4.4.32)

then

‖F (x)‖ ≤ ‖F (x) − F (x0)‖ + ‖F (x0)‖
≤ γ0 ‖x − x0‖ + ‖F (x0)‖ . (4.4.33)

Let r = ‖x − x0‖, and define

P (r) = a0b (‖F (x0)‖ + γ0r) . (4.4.34)

If P (0) = a0b ‖F (x0)‖ < 1, then as in Theorem 3 in [170, p. 114] inequality
(4.4.26) and the contraction mapping principle we obtain the following semilocal
result:
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Theorem 4.4.6. If

q = (1 − a0b ‖F (x0)‖)2 − 4ba0γ0

∥
∥
∥G (0)−1 F (x0)

∥
∥
∥ ≥ 0, (4.4.35)

then a solution x∗ of equation
F (x) = 0

exists in U (x0, r1) , and is unique in U (x0, r2), where

r1 = 1−a0b‖F(x0)‖−√
q

2ba0γ0
(4.4.36)

and
r2 = 1−a0b‖F(x0)‖

ba0γ0
. (4.4.37)

Remark 4.4.7. Theorem 4.4.6 reduces to Theorem 3 in [170, p. 114] if (4.4.25) and
(4.4.32) are replaced by the stronger (4.4.28) and

‖F (x) − F (y)‖ ≤ γ ‖x − y‖ (4.4.38)

respectively. Otherwise our Theorem is weaker than Theorem 3 in [170].

4.5 The method of tangent hyperbolas

In this section, we are concerned with the problem of approximating a locally unique
solution x∗ of equation

F(x) = 0, (4.5.1)

where F is a twice-Fréchet-differentiable operator on an open convex subset D of a
Banach space X with values in a Banach space Y .

The method of tangent hyperbolas (Halley)

xn+1 = xn −
{

I − 1
2�n F ′′(xn)�n F(xn)

}−1
�n F(xn),

�n = F ′(xn)−1 (n ≥ 0) (4.5.2)

is one of the best known cubically convergent iterative procedures for solving non-
linear equations like (4.5.1).

Here we provide a semilocal convergence analysis based on Lipschitz and center-
Lipschitz conditions on the first and second Fréchet derivatives of F . This way, ex-
isting convergence conditions are finer and the information on the location of the
solution more precise than before.

We need the following results on majorizing sequences.

Theorem 4.5.1. Let η, �i , i = 0, 1, . . . , 3 be nonnegative parameters. Define scalar
sequence {tn} (n ≥ 0) by

t0 = 0, t1 = 2η
2−�0η

= η0, tn+2 − tn+1 = bn+1cn+1ηn+1, (4.5.3)
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where,

cn = (1 − �1tn)−1, dn = �0 + �2tn, an = 1
2

�0+�2tn
(1−�1tn)2 ηn, (4.5.4)

bn = (1 − an)−1, ηn+1 = 1
4 dncnηn(tn+1 − tn)2 + 1

6�3(tn+1 − tn)3, (4.5.5)

and parameter α by

α =
[

1
2

�0+2�2η0
1−2�1η0

+ 1
3�3

]

η2
0. (4.5.6)

Assume:

�0η < 1, (4.5.7)

2�1η0 < 1, (4.5.8)
1
4

�0+2�2η0
(1−2�1η0)

2 η0 < 1, (4.5.9)

and
α ≤ min

{

1, (1 − 2�1η0)
[

1 − 1
2

�0+2�2η0
(1−2�1η0)

2 η0

]}

. (4.5.10)

Then, sequence {tn} (n ≥ 0) is nondecreasing, bounded above by

t∗∗ = 2η0, (4.5.11)

and converges to t∗ such that
0 ≤ t∗ ≤ t∗∗. (4.5.12)

Moreover, the following estimates hold for all n ≥ 0:

0 ≤ tn+2 − tn+1 ≤ 1
2 (tn+1 − tn) ≤

(
1
2

)n+1
η0. (4.5.13)

Proof. Using induction on k we show:
[

1
2

�2tk+�0
1−�1tk

ηk(tk+1 − tk) + 1
3�3(tk+1 − tk)

2
]

ck+1bk+1 ≤ 1, (4.5.14)

tk+1 − tk ≥ 0, (4.5.15)
1
2

�0+�2tk+1
(1−�1tk+1)

2 ηk+1 < 1, (4.5.16)

and
1 − �1tk+1 > 0. (4.5.17)

For k = 0 (4.5.14)–(4.5.17) hold by (4.5.3) and (4.5.7)–(4.5.9). By (4.5.3) we then
get

t2 − t1 ≤ α
2 (t1 − t0) ≤ 1

2 (t1 − t0). (4.5.18)

Let us assume (4.5.14)–(4.5.17)) hold for all k ≤ n + 1. We can easily obtain from
(4.5.3) that

tk+1 ≤ 1−
(

1
2

)k+1

1− 1
2

η0 = 2

[

1 −
(

1
2

)k+1
]

η0 ≤ t∗∗ (4.5.19)
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and the left-hand side of (4.5.14) is bounded above by one (see (4.5.9) and (4.5.10)).
That completes the induction for (4.5.14). Using (4.5.3) we get

tk+2 ≤ 2

[

1 −
(

1
2

)k+2
]

η0 ≤ t∗∗, (4.5.20)

which shows (4.5.17) and (4.5.16) (by (4.5.14) and as ηi ≤ 1
2η0, i ≥ 1). Finally

tk+2 − tk+1 ≥ 0 (4.5.21)

follows from (4.5.3), (4.5.14), (4.5.16), and (4.5.17).
The induction for (4.5.14)–(4.5.17) is now complete. Hence, sequence {tn} (n ≥

0) is bounded above by t∗∗, nondecreasing and as such it converges to some t∗ satis-
fying (4.5.12).

Similarly, we show the following result on majorizing sequences.

Theorem 4.5.2. Let η, �0, �2, �3 be nonnegative parameters. Define scalar sequence
{vn} (n ≥ 0) by

v0 = 0, v1 = η1
0 = 2η

2 − �0η
, vn+2 − vn+1 = b1

n+1c1
n+1η

1
n+1 (4.5.22)

where,

c1
n =

[

1 − vn

(

�0 + �2

2
vn

)]−1

, a1
n = 1

2
d1

n c1
nη1

n

(

c1
n

)2
, b1

n = (1 − a1
n)−1,

(4.5.23)

η1
n+1 = 1

4
d1

n c1
nη1

n(vn+1 − vn)2 + 1

6
�3(vn+1 − vn)2, (4.5.24)

and parameter α1 by

α1 =
[

1

2

�0 + 2�2v1

1 − 2�0v1 − 2�2v
2
1

+ 1

3
�3

]

v2
1 . (4.5.25)

Assume:

2(�0 + �2v1)v1 < 1, (4.5.26)

1

4

�0 + 2�2v1

1 − 2�0v1 − 2�1v
2
1

v1 < 1, (4.5.27)

and

α1 ≤ min

{

1, (1 − 2�0v1 − 2�2v
2
1)

[

1 − 1

2

�0 + 2�2v1

(1 − 2�0v1 − 2�2v
2
1)2

v1

]}

. (4.5.28)



222 4 Special Methods

Then, sequence {vn} (n ≥ 0) is nondecreasing, bounded above by

v∗∗ = 2v1, (4.5.29)

and converges to v∗ such that
0 ≤ v∗ ≤ v∗∗. (4.5.30)

Moreover the following estimates hold for all n ≥ 0

0 ≤ vn+2 − vn+1 ≤ 1
2 (vn+1 − vn) ≤

(
1
2

)n+1
v1. (4.5.31)

We can show the main semilocal convergence theorem for method (4.5.2).

Theorem 4.5.3. Let F.. D ⊆ X → Y be a twice Fréchet-differentiable operator.
Assume: there exist a point x0 ∈ D and nonnegative parameters η, �0, �1, �2, �3
such that

F ′(x0)
−1 ∈ L(Y, X), (4.5.32)

‖F ′(x0)
−1 F(x0)‖ ≤ η, (4.5.33)

‖F ′(x0)
−1 F ′′(x0)‖ ≤ �0, (4.5.34)

‖F ′(x0)
−1 [F ′(x) − F ′(x0)

] ‖ ≤ �1‖x − x0‖, (4.5.35)

‖F ′(x0)
−1 [F ′′(x) − F ′′(x0)

] ‖ ≤ �2‖x − x0‖ (4.5.36)

and

‖F ′(x0)
−1 [F ′′(x) − F ′′(y)

] ‖ ≤ �3‖x − y‖ for all x, y ∈ D. (4.5.37)

Moreover hypotheses of Theorem 4.5.1 hold, and

U (x0, t∗) ⊆ D. (4.5.38)

Then sequence {xn} (n ≥ 0) generated by method of tangent hyperbolas (4.5.2) is
well defined, remains in U (x0, t∗) for all n ≥ 0 and converges to a solution x∗ ∈
U (x0, t∗) of equation F(x) = 0. Moreover the following estimates hold for all n ≥
0:

‖xn+1 − xn‖ ≤ tn+1 − tn (4.5.39)

and
‖xn − x∗‖ ≤ t∗ − tn . (4.5.40)

Furthermore, if there exists R ≥ t∗ such that

U (x0, R) ⊆ D, (4.5.41)

and
�1(t

∗ + R) ≤ 2, (4.5.42)

the solution x∗ is unique in U (x0, R).
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Proof. Let us prove that

‖xk+1 − xk‖ ≤ tk+1 − tk, (4.5.43)

and
U (xk+1, t∗ − tk+1) ⊆ U (xk, t∗ − tk) for all k ≥ 0. (4.5.44)

For every z ∈ U (x1, t∗ − t1),

‖z − x0‖ ≤ ‖z − x1‖ + ‖x1 − x0‖ ≤ t∗ − t1 + t1 = t∗ − t0, (4.5.45)

implies z ∈ U (x0, t∗ − t0). Note also that

‖x1 − x0‖ =
∥
∥
∥
∥

[

I − 1
2 F ′(x0)

−1 F ′′(x0)F ′(x0)
−1 F(x0)

]−1
F ′(x0)

−1 F(x0)

∥
∥
∥
∥

≤
∥
∥F ′(x0)

−1 F(x0)
∥
∥

1 − 1
2

∥
∥F ′(x0)−1 F ′′(x0)

∥
∥
∥
∥F ′(x0)−1 F(x0)

∥
∥

= η0 ≤ η

1 − 1
2�0η

= η0.

Because also
‖x1 − x0‖ =

∥
∥
∥F ′(x0)

−1 F(x0)

∥
∥
∥ ≤ η ≤ t1 (4.5.46)

(4.5.43) and (4.5.44) hold for k = 0. Given they hold for n = 0, 1, . . . , k, then

‖xk+1 − x0‖ ≤
k+1
∑

i=1

‖xi − xi−1‖ ≤
k+1
∑

i=1

(ti − ti−1) = tk+1 − t0 = tk+1, (4.5.47)

and

‖xk + θ(xk+1 − xk) − x0‖ ≤ tk + θ(tk+1 − tk) < t∗ θ ∈ [0, 1] . (4.5.48)

It follows from (4.5.35),
∥
∥
∥F ′(x0)

−1 [F ′(xk+1) − F ′(x0)
]
∥
∥
∥ ≤ �1‖xk+1 − x0‖

≤ �1tk+1 ≤ 2�1η0 < 1 (by (4.5.8)), (4.5.49)

and the Banach Lemma on invertible operators that the inverse F ′(xk+1)
−1 exists,

and
∥
∥
∥F ′(xk+1)

−1 F ′(x0)‖ ≤ [1 − �1‖ xk+1 − x0‖
]−1 ≤ (1 − �1tk+1)

−1. (4.5.50)

Moreover, we have the estimates
∥
∥
∥F ′(x0)

−1 F ′′(xk)

∥
∥
∥ ≤

∥
∥
∥F ′(x0)

−1 [F ′′(xk) − F ′′(x0)
]
∥
∥
∥+

∥
∥
∥F ′(x0)

−1 F ′′(x0)

∥
∥
∥

≤ �2‖xk − x0‖ + �0 = dk ≤ dk, (4.5.51)
∥
∥
∥F ′(x0)

−1 F(xk)

∥
∥
∥ ≤ ηk, (4.5.52)
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∥
∥
∥

[

F ′(xk)
−1 F ′(x0)

] [

F ′(x0)
−1 F ′′(xk)

] [

F ′(xk)
−1 F ′(x0)

] [

F ′(x0)
−1 F(xk)

]∥
∥
∥

≤ (�2‖xk − x0‖ + �0)ηk

(1 − �1‖xk − x0‖)2
= 2ak ≤ 2ak < 2, (4.5.53)

the inverse of
[

I − 1
2 F ′(xk)

−1 F ′′(xk)F ′(xk)
−1 F(xk)

]

exists, and

∥
∥
∥
∥

[

I − 1
2 F ′(xk)

−1 F ′′(xk)F ′(xk)
−1 F(xk)

]−1
∥
∥
∥
∥

≤ bk = (1 − ak)
−1 ≤ (1 − ak)

−1.

(4.5.54)
Furthermore using the expression from (4.5.2) for xk+1 − xk , we have

F(xk) + F ′(xk)(xk+1 − xk) + 1
2 F ′′(xk)(xk+1 − xk)

2

= 1
4 F ′′(xk)F ′(xk)

−1 F ′′(xk)F ′(xk)
−1 F(xk)(xk+1 − xk)

2, (4.5.55)

so that
∥
∥
∥F ′(x0)

−1 F(xk+1)

∥
∥
∥

=
∥
∥
∥
∥

F ′(x0)
−1
{

1

4
F ′′(xk)F ′(xk)

−1 F ′′(xk)F ′(xk)
−1 F(xk)(xk+1 − xk)

2

+
∫ 1

0
(1 − θ)F ′′(xk + θ(xk+1 − xk))dθ(xk+1 − xk)

2

− 1

2
F ′′(xk)(xk+1 − xk)

2
}∥
∥
∥
∥

≤ 1

4

∥
∥
∥F ′(x0)

−1 F ′′(xk)

∥
∥
∥

∥
∥
∥F ′(xk)

−1 F ′(x0)

∥
∥
∥

∥
∥
∥F ′(x0)

−1 F(xk)

∥
∥
∥ · ‖xk+1 − xk‖2

+
∫ 1

0
(1 − θ)

∥
∥
∥F ′(x0)

−1 [F ′′(xk + θ(xk+1 − xk))

− F ′′(xk)
]
∥
∥
∥ ‖xk+1 − xk‖2 dθ

≤ 1

4
dkckηk‖xk+1 − xk‖2 + �3

6
‖xk+1 − xk‖3 = ηk+1 ≤ ηk+1. (4.5.56)

Using (4.5.2), (4.5.32)–(4.5.37), we get

‖xk+2 − xk+1‖ ≤
∥
∥
∥
∥

[

I − 1
2 F ′(xk+1)

−1 F ′(x0)F ′(x0)
−1

· F ′′(xk+1)F ′(xk+1)
−1 F ′(x0)F ′(x0)

−1 F(xk+1)
]−1

∥
∥
∥
∥

·
∥
∥
∥F ′(xk+1)

−1 F ′(x0)

∥
∥
∥

∥
∥
∥F ′(x0)

−1 F(xk+1)

∥
∥
∥

≤ bk+1ck+1ηk+1 ≤ bk+1ck+1ηk+1 = tk+2 − tk+1, (4.5.57)



4.5 The method of tangent hyperbolas 225

which together with (4.5.43) show (4.5.39) for all n ≥ 0. Thus for every z ∈
U (xk+2, t∗ − tk+2), we have

‖z − xk+1‖ ≤ ‖z − xk+2‖ + ‖xk+2 − xk+1‖
≤ t∗ − tk+2 + tk+2 − tk+1 = t∗ − tk+1. (4.5.58)

That is,
z ∈ U (xk+1, t∗ − tk+1). (4.5.59)

Estimates (4.5.57) and (4.5.59) imply that (4.5.43) and (4.5.44) hold for n = k + 1.
By induction the proof of (4.5.43) and (4.5.44) is completed.

Theorem 4.5.1 implies {tn} (n ≥ 0) is a Cauchy sequence. From (4.5.43) and
(4.5.44) {xn} (n ≥ 0) becomes a Cauchy sequence, too, and as such it converges to
some x∗ ∈ U (x0, t∗) (as U (x0, t∗) is a closed set) such that

‖xk − x∗‖ ≤ t∗ − tk . (4.5.60)

The combination of (4.5.43) and (4.5.60) yields F(x∗) = 0. Finally to show unique-
ness let y∗ be a solution of equation F(x) = 0 in U (x0, R). It follows from (4.5.35),
the estimate

∥
∥
∥
∥
∥

F ′(x0)
−1
∫ 1

0

[

F ′(y∗ + θ(x∗ − y∗)) − F ′(x0)
]

dθ

∥
∥
∥
∥
∥

≤ �1

∫ 1

0

∥
∥
[

y∗ + θ(x∗ − y∗) − x0
]∥
∥ dθ

≤ �1

∫ 1

0

[

θ‖x∗ − x0‖ + (1 − θ)‖y∗ − x0‖
]

dθ

<
�1

2
(t∗ + R) ≤ 1, (by (4.5.42)), (4.5.61)

and the Banach Lemma on invertible operators that linear operator

L =
∫ 1

0
F ′(y∗ + θ(x∗ − y∗))dθ (4.5.62)

is invertible.
Using the identity

0 = F(x∗) − F(y∗) = L(x∗ − y∗), (4.5.63)

we deduce
x∗ = y∗.

Similarly, we show the result:



226 4 Special Methods

Theorem 4.5.4. Let F.. D ⊆ X → Y be a twice Fréchet-differentiable operator.
Assume there exist a point x0 ∈ D and nonnegative parameters η, �0, �2, �3 such
that

F ′(x0)
−1 ∈ L(Y, X),

∥
∥
∥F ′(x0)

−1 F ′(x0)

∥
∥
∥ ≤ η,

∥
∥
∥F ′(x0)

−1 F ′′(x0)

∥
∥
∥ ≤ �0,

∥
∥
∥F ′(x0)

−1 [F ′′(x) − F ′′(x0)
]
∥
∥
∥ ≤ �2‖x − x0‖,

and
∥
∥
∥F ′(x0)

−1 [F ′′(x) − F ′′(y)
]
∥
∥
∥ ≤ �3‖x − y‖ for all x, y ∈ D.

Moreover, hypotheses of Theorem 4.5.2 hold, and

U (x0, v
∗) ⊆ D. (4.5.64)

Then the sequence {xn} (n ≥ 0) generated by method of tangent hyperbolas (4.5.2)
is well defined, remains in U (x0, v

∗) for all n ≥ 0 and converges to a solution
x∗ ∈ U (x0, v

∗) of equation F(x) = 0. Moreover the following estimates hold for all
n ≥ 0:

‖xn+1 − xn‖ ≤ vn+1 − vn, (4.5.65)

and
‖xn − x∗‖ ≤ v∗ − vn . (4.5.66)

Furthermore, if there exists R1 ≥ v∗ such that

U (x0, R1) ⊆ D, (4.5.67)

and

γ = 1

2

[

�0 + �2

4
(R1 + v∗)

]

(R1 + v∗) ∈ [0, 1] , (4.5.68)

the solution x∗ is unique in U (x0, R1).

Proof. The computation of the inverses F ′(xk)
−1, xk ∈ U (x0, v

∗) is carried out
using the identity

I − F ′(x0)
−1 F ′(xk)

= −F ′(x0)
−1 [F ′(xk) − F ′(x) − F ′′(x0)(xk − x0) + F ′′(x0)(xk − x0)

]

=
∫ 1

0
−F ′(x0)

−1 {F ′′ [x0 + θ(xk − x0)] − F ′′(x0)
}

dθ(xk − x0)

− F ′(x0)
−1 F ′′(x0)(xk − x0). (4.5.69)
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By (4.5.34), (4.5.36), and (4.5.9) we get

‖I − F ′(x0)
−1 F ′(xk)‖ ≤

∫ 1

0
�2θdθ‖xk − x0‖2 + �0‖xk − x0‖

≤ 1
2�2v

2
k + �0vk ≤ 1

2�2(2η0)
2 + �0(2η0) < 1 (4.5.70)

(by (4.5.26)). Hence

‖F ′(xk)
−1 F ′(x0)‖ ≤ c1

n =
[

1 −
(

1
2�2‖xk − x0‖2 + �0‖xk − x0‖

)]−1 ≤ c1
n .

(4.5.71)
The rest of the proof until the uniqueness part is identical to Theorem 4.5.3.

Let y∗ be a solution of equation F(x) = 0 in U (x0, R1). For z ∈ U (x0, R1) we
have

∥
∥
∥F ′(x0)

−1 [F ′(z) − F ′(x0)
]
∥
∥
∥ =

∥
∥
∥
∥
∥

F ′(x0)
−1
∫ 1

0
F ′′(x0 + θ1(z − x0))(z − x0)dθ1

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

F ′(x0)
−1
∫ 1

0

[

F ′′(x0 + θ1(z − x0)) − F ′′(x0)
]

dθ1

∥
∥
∥
∥
∥

‖z − x0‖

+
∥
∥
∥F ′(x0)

−1 F ′′(x0)

∥
∥
∥ · ‖z − x0‖

≤ �2

∫ 1

0
‖z − x0‖2 + �0‖z − x0‖ ≤ �2

2
‖z − x0‖2 + �0‖z − x0‖. (4.5.72)

Set

L =
∫ 1

0
F ′(y∗ + θ(x∗ − y∗))dθ. (4.5.73)

Then we have for z = y∗ + θ(x∗ − y∗), θ ∈ [0, 1]:

‖z−x0‖ ≤ (1−θ)‖y∗−x0‖+θ‖x∗−x0‖ < (1−θ)R1+θv∗ ≤ (1−θ)R1+θ R1 = R1.

Hence, we get

∥
∥
∥F ′(x0)

−1 [L − F ′(x0)
]
∥
∥
∥ ≤

∫ 1

0

[
�2

2
‖z − x0‖2 + �0‖z − x0‖

]

dθ

<
�2

8
(R1 + v∗)2 + �0

2
(R1 + v∗)

= γ ∈ [0, 1] . (4.5.74)

By the Banach Lemma on invertible operators and (4.5.74) L is invertible.
Using the identity

F(x∗) − F(y∗) = L(x∗ − y∗), (4.5.75)

we get
x∗ = y∗.
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Remark 4.5.5. It can easily be seen by using induction on n that if

�0 + �2η0 < �1, (4.5.76)

then hypotheses of Theorem 4.5.1 imply those of Theorem 4.5.2 and under the rest
of the hypotheses

vn+1 − vn < tn+1 − tn (n ≥ 1), (4.5.77)

vn < tn (n ≥ 1), (4.5.78)

and
v∗ ≤ t∗. (4.5.79)

Moreover, if equality holds in (4.5.76), then (4.5.77)–(4.5.79) also hold as equalities.
Furthermore if

�0 + �2η0 > �1, (4.5.80)

then

tn+1 − tn < vn+1 − vn (n ≥ 1), (4.5.81)

tn < vn (n ≥ 1), (4.5.82)

and
t∗ ≤ v∗. (4.5.83)

Remark 4.5.6. In order for us to compare our results with earlier ones in [123], [211]
define sequences {δn}, {Mn}, {Nn}, {βn} by

δ0 = η, M0 = �0, N0 = �3, (4.5.84)

σn =
(

1 − 1

2
Mnδn

)−1

, βn = σnδn, hn = Mnβn, (4.5.85)

εn = Nn

M2
n
, φn(h) = h + 1

2
εnh2, (4.5.86)

s2
n =

(
1

6
εnσn + 1

4

) /

(1 − ϕn(hn)) , (4.5.87)

�2
n = φ1

n(hn)s2
n h2

n

1 − φn(hn)
, (4.5.88)

δn+1 = s2
n h2

nδn, Mn+1 = Mnφ1
n(hn)

1 − φn(hn)
, (4.5.89)

Nn+1 = Nn

1 − φn(hn)
, (4.5.90)

function f by

f (t) = 1

6
�3t3 + 1

2
�0t2 − t + η (4.5.91)
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and sequence {wn} (n ≥ 0) by

w0 = 0, wn+1 = wn−
[

1 − f ′′(wn) f (wn)/2 f ′(wn)2
]−1

f (wn)/ f ′(wn). (4.5.92)

Assume:

δ0 M0 < 2, (4.5.93)

φ0(h0) < 1, (4.5.94)

�2
0 ≤ 1, (4.5.95)

U (x0, r) ⊆ D, r = β

1 − s2
0 h2

0

, (4.5.96)

or equation
f (t) = 0 (4.5.97)

has one negative and two positive roots w∗, w∗∗ such that w∗ ≤ w∗∗ and U (x0, w
∗)

⊆ D or equivalently

η ≤
�2

0 + 4�3 − �0

√

�2
0 + 2�3

3�3(�0 +
√

�2
0 + 2�3)

, �3 �= 0,
(

�0η ≤ 1
2 if �3 = 0

)

, (4.5.98)

and
U (x0, w

∗) ⊆ D. (4.5.99)

Then, the method of tangent parabolas {xn} (n ≥ 0) generated by (4.5.2) is
well defined, remains in U (x0, w

∗) for all n ≥ 0 and converges to a solution x∗ ∈
U (x0, w

∗) of equation F(x) = 0. Moreover, the following estimates hold for all
n ≥ 0:

‖xn+1 − xn‖ ≤ wn+1 − wn, (4.5.100)

and
‖xn − x∗‖ ≤ w∗ − wn . (4.5.101)

Furthermore, if: w∗ < w∗∗ the solution is unique in U (x0, w
∗∗) otherwise the solu-

tion is unique in U (x0, w
∗).

In general we have:
�2 ≤ �3. (4.5.102)

If strict inequality holds in (4.5.102) using induction on n we can easily show under
the hypotheses of Theorem 4.5.4 and (4.5.84)–(4.5.92), (4.5.98), (4.5.99) we get

vn+1 − vn < wn+1 − wn (n ≥ 1), (4.5.103)

vn < wn, (n ≥ 1) (4.5.104)

and
v∗ ≤ w∗. (4.5.105)

That is our Theorem 4.5.4 provides more precise error bunds and a better information
on the location of the solution x∗. In the case of �2 = �3, Theorem 4.5.4 reduces to
earlier ones mentioned in this remark.

We complete this study with one simple example:
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Example 4.5.7. Let �0 = �2 = 0, η = 1 and �3 = 1. Then, (4.5.99) is violated since

η = 1 >

√
2

2
. (4.5.106)

Hence the results in [208] cannot be used. However all hypotheses of Theorems
4.5.2, 4.5.4 are satisfied, as (4.5.26)–(4.5.28) hold.

Our idea of using a combination of Lipschitz and center-Lipschitz in the study
of iterative processes instead of only Lipschitz conditions, although very recent, has
already picked up by several authors [4], [47], [172]. Here in the remaining sections
of this chapter we report the results in [47], [172], [4] without proofs.

4.6 A modified secant method and function optimization

In this section, we are concerned with the problem of approximating a locally unique
solution x∗ of nonlinear equation

F ′ (x) = 0, (4.6.1)

where F is a twice differentiable function defined on a convex subset (open or closed)
D of the real R or complex space C.

This study is important especially in the optimization of functions.
Indeed the well-known K-T condition states that if F is differentiable, then the

optimal solution of
min F (x)

is a solution of equation (4.6.1) [154].
Recently [47] the modified secant method

xn+1 = xn + xn−1

2
−

[

xn, xn−1
]

2
[

xn, xn−1, xn−2
] , (n ≥ 0), (x−2, x−1, x0 ∈ D) (4.6.2)

was proposed to approximate x∗ as an alternative to the NK method

xn+1 = xn − F ′ (xn)

F ′′ (xn)
, (n ≥ 0), (x0 ∈ D), (4.6.3)

or the secant method

xn+1 = xn − xn − xn−1

F ′ (xn) − F ′ (xn−1)
, (n ≥ 0), (x−1, x0 ∈ D), (4.6.4)

where [x, y] , [x, y, z] denote divide differences of order one and two respectively
for function F (see Section 1.2).

Methods (4.6.3) and (4.6.4) are being avoided in general because of the evalua-
tions required on the first and second derivatives of F.

We can state the following local convergence result for the method (4.6.2):
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Theorem 4.6.1. Let x∗ be a solution of equation (4.6.1) such that F ′′ (x∗) �= 0.

Moreover, assume:
(a) there exist nondecreasing functions v,w such that

∣
∣
∣F ′′ (x∗)−1 (

F ′′ (x) − F ′′ (y)
)
∣
∣
∣ ≤ v (|x − y|) , ∀x, y ∈ D, (4.6.5)

and
∣
∣
∣F ′′ (x∗)−1 (

F ′′ (x) − F ′′ (x∗))
∣
∣
∣ ≤ v

(∣
∣x − x∗∣∣) , ∀x ∈ D, (4.6.6)

(b) equation

∫ 1

0
(1 − t) v ((1 − t) r) dt +

∫ 1

0

∫ 1

0
(1 − t) v ((1 − s) (1 − t) r) dsdt + w (r) = 1

has a minimum positive r0 such that

w (r0) < 1.

(c) U (x∗, r1) ⊆ D,

where r1 is the solution of equation

∫ 1

0
w (t) dt = r.

Then sequence {xn} generated by method (4.6.2) starting from any initial points
x−2, x−1, x0 ∈ U (x∗, r0) is well defined, remains in U (x∗, r0) for all n ≥ 0 and
converges to the unique solution x∗ of equation (4.6.1) in U (x∗, r1) and r0 ≤ r1.

Set
en = ∣

∣xn − x∗∣∣ , n ≥ −2.

Moreover, the following error estimates hold for all n ≥ 0:

en+1 ≤ an

bn
,

en ≤ cλn,

where

an =
∫ 1

0

∫ 1

0
(1 − t) v (s (1 − t) en−1 + (1 − s) (1 − t) en−2) dsdt

+ en−1

∫ 1

0

∫ 1

0
(1 − t) v ((1 − s) (1 − t) en−2) dsdt,

bn = 1 − 2
∫ 1

0

∫ 1

0
(1 − t) w (ten + s (1 − t) en−1 + (1 − s) (1 − t) en−2) dsdt

c = max
{

e0,
e1

λ

}
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λ = a + √
a2 + 4b

2
,

θ = max {e0, e−1, e−2} ,

a =
∫ 1

0 (1 − t) v ((1 − t) θ) dt

1 − w (r0)

and

b =
∫ 1

0

∫ 1
0 (1 − t) v ((1 − s) (1 − t) θ) dsdt

1 − w (r0)
.

We complete this section with an example dealing with the Hölder continuous
case.

Example 4.6.2. Let us consider the scalar function

F (x) = 4

15
x

5
2 − 1

2
x2, for all x ∈ D = [.81, 6.25] .

Then we get x∗ = 9
4,

F ′′ (x∗) = 1
2 �= 0,

∣
∣
∣F ′′ (x∗)−1 (

F ′′ (x) − F ′′ (y)
)
∣
∣
∣ = 2

∣
∣
∣x

1
2 − y

1
2

∣
∣
∣

= 2

(∣
∣
∣x

1
2 − y

1
2

∣
∣
∣

2
) 1

2

≤ 2
(∣
∣
∣x

1
2 − y

1
2

∣
∣
∣

∣
∣
∣x

1
2 + y

1
2

∣
∣
∣

) 1
2

= 2 |x − y| 1
2 ,

for all x, y ∈ D, and

∣
∣
∣F ′′ (x∗)−1 (

F ′′ (x) − F ′′ (x∗))
∣
∣
∣ = 2

∣
∣
∣
∣
x

1
2 − 3

2

∣
∣
∣
∣

1
2
∣
∣
∣
∣
x

1
2 − 3

2

∣
∣
∣
∣

1
2

. (4.6.7)

But as

4

∣
∣
∣
∣
x

1
2 − 3

2

∣
∣
∣
∣
≤ x

1
2 + 3

2

holds for all x ∈ D, we get

2

∣
∣
∣
∣
x

1
2 − 3

2

∣
∣
∣
∣
≤
(

x
1
2 − 3

2

) 1
2

, for all x ∈ D.

Therefore, (4.6.7) can be written as

∣
∣
∣F ′′ (x∗)−1 (

F ′′ (x) − F ′′ (y)
)
∣
∣
∣ ≤ ∣

∣x − x∗∣∣ 1
2 , for all x ∈ D.
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That is, according to (4.6.5) and (4.6.6), we can set v (t) = 2t
1
2 and w (t) = t

1
2 .

Then we obtain

r0 = 9

4
= .183673...

and

r1 = 9

4
.

However, using only condition (4.6.5) we obtain

r̄0 = .09 < r0.

That is, new condition (4.6.6) helps us enlarge the radius of convergence of method
(4.6.4).

4.7 Local convergence of a King-Werner-type method

In this section, we are concerned with the problem of approximating a locally unique
solution x∗ of equation (2.1.1), using the King-Werner method [127], [207], [43]

xn+1 = xn − F ′
(

xn + zn

2

)−1

F (xn) (4.7.1)

zn+1 = xn+1 − F ′
(

xn + zn

2

)−1

F (xn+1) , (n ≥ 0), (x0, z0 ∈ D).

Although the number of function evaluations increases by one when compared with
the NK method (2.1.3), the convergence order is raised from 2 to 1 + √

2 [127]. The
convergence of this method has been examined under several conditions in [127],
[207], [43].

Here a local convergence analysis is provided that compares favorably with the
ones mentioned above.

We state the following local convergence theorem for method (4.7.1):

Theorem 4.7.1. [172] Assume:
(a) there exists a solution x∗ of equation (2.1.1) such that F ′ (x∗) ∈ L (Y, X).
(b) There exist nondecreasing functions v and w such that

∥
∥
∥F ′′ (x∗)−1 (

F ′′ (x) − F ′′ (y)
)
∥
∥
∥ ≤ v (‖x − y‖) , ∀x, y ∈ D, (4.7.2)

and
∥
∥
∥F ′′ (x∗)−1 (

F ′′ (x) − F ′′ (x∗))
∥
∥
∥ ≤ v

(∥
∥x − x∗∥∥) , ∀x ∈ D, (4.7.3)

(c) equation

q (r)

∫ 1

0
v [(1 + tq (r)) r ] dt + w (r) = 1
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has a minimum zero r0 and
w (r0) < 1,

where

q (r) =
∫ 1

0 v
[(∣
∣
∣

1
2 − t

∣
∣
∣+ 1

2

)

r
]

dt

1 − w (r)
;

(d) U (x∗, r0) ⊆ D.
Then sequence {xn} generated by King-Werner-type method (4.7.1) is well de-

fined, remains in U (x∗, r0) for all n ≥ 0, and converges to x∗ provided that
x0, z0 ∈ U (x∗, r0).

Moreover, the following error estimates hold for all n ≥ 0:

∥
∥xn+1 − x∗∥∥ ≤ an

bn

∥
∥xn − x∗∥∥ ,

∥
∥zn+1 − x∗∥∥ ≤ cn

bn

∥
∥xn+1 − x∗∥∥ ,

an =
∫ 1

0
v

(∣
∣
∣
∣

1

2
− t

∣
∣
∣
∣

∥
∥xn − x∗∥∥+ 1

2

∥
∥zn − x∗∥∥

)

dt,

bn = 1 − w

(‖xn − x∗‖ + ‖zn − x∗‖
2

)

,

cn =
∫ 1

0
v

(
1

2

∥
∥xn − x∗∥∥+ 1

2

∥
∥zn − x∗∥∥+ t

∥
∥xn+1 − x∗∥∥

)

dt.

We complete this section with an example:

Example 4.7.2. Let X = Y = R, D = (−1, 1) and define function F on D by

F (x) = sin x .

It is easy to see, x∗ = 0, F ′ (x∗) = 1,

∥
∥
∥F ′′ (x∗)−1 (

F ′′ (x) − F ′′ (y)
)
∥
∥
∥ ≤ sin 1 ‖x − y‖ ,

and
∥
∥
∥F ′′ (x∗)−1 (

F ′′ (x) − F ′′ (x∗))
∥
∥
∥ = 1 − cos x

= x2

2!
− x4

4!
+ · · · + (−1)n x2n

(2n)!
+ · · ·

=
∥
∥
∥

x

2

∥
∥
∥

[

1 − 2x2

4!
+ 4x4

6!
− · · · + (−1)n−1 2x2n−1

(2n)!
+ · · ·

]

∥
∥x − x∗∥∥

≤ 1

2

∥
∥x − x∗∥∥ ,

for all x, y ∈ D.
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Therefore we can set v (r) = (sin 1) r and w (r) = 1
2r .

If we only use (4.7.2) we obtain r̄0 = .590173..., whereas if we use both (4.7.2)
and (4.7.3) we get

r0 = .739126... > r̄0.

Note that r̄0 is the value obtained if we were to use the results in the references
mentioned in the introduction of this section. That is, we managed to enlarge the
radius of convergence for the King-Werner-type method (4.7.1) (if w (r) < v (r)).

4.8 Secant-type methods

In this section (see also relevant Section 5.4) we study the local convergence of the
secant-type method [4]:

xn+1 = xn − [

xn, xn + αn (xn−1 − xn)
]−1

F (xn) , (n ≥ 0), (4.8.1)

where αn ∈ [0, 1] . The advantages of this method have been explained in [4]. In
practice, the αn are computed such that

tolc " ‖αn (xn−1 − xn)‖ ≤ tolu,

where tolc is related with the computer precision and tolu is a free parameter for the
user. The new iterative method is, in general, a good alternative to the NK method,
as
[

xn, xn + αn (xn−1 − xn)
]

is always a good approximation to F ′ (xn). Moreover,
even for semismooth operators, it is superlinearly convergent with Q-factor at least
near to 2 and its efficiency index is at least near to

√
2. So, it is more efficient than

the classic secant method with efficiency index 3√
2

in this cases.

Assume there exists a simple zero x∗ of equation (2.1.1) and nondecreasing func-
tions f , g such that:

∥
∥
∥F ′ (x∗)−1

([x, y] − [y, z])
∥
∥
∥ ≤ f (‖x − z‖) (4.8.2)

and
∥
∥
∥F ′ (x∗)−1 (

[x, y] − [

y, x∗])
∥
∥
∥ ≤ f

(∥
∥x − x∗∥∥) , for all x, y, z ∈ D. (4.8.3)

Theorem 4.8.1. Let F.. D ⊆ X → Y be a nonlinear Fréchet-differentiable operator
satisfying conditions (4.8.2) and (4.8.3) and let x∗ be a simple zero of F. In addition,
let us assume that

(a) equation
f (r) + 2g (r) = 1, (4.8.4)

has a minimum positive zero R.

(b) Ū (x∗, R) ⊂ D.

Then, the generalized secant’s method {xn} (4.8.1) is well defined, remains in
Ū (x∗, R) for all n > 0 and converges to x∗ provided that x0 ∈ Ū (x∗, R). Moreover,
the following error estimates hold for all n > 0:
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∥
∥xn+1 − x∗∥∥ ≤ f

(∥
∥x̂n − x∗∥∥)

1 − g
(‖xn − x∗‖ ,

∥
∥x̂n − x∗∥∥)

∥
∥xn − x∗∥∥ ,

where
x̂n = xn + αn (xn−1 − xn) .

We now analyze two particular cases.
Case 1 (Lipschitz case). Let us assume that

∥
∥
∥F ′ (x∗)−1

([x, y; F] − [y, z; F])
∥
∥
∥ ≤ l0 ‖x − z‖

∥
∥
∥F ′ (x∗)−1 (

[x, y; F] − [

y, x∗; F
])
∥
∥
∥ ≤ l1

∥
∥x − x∗∥∥ ,

where l1 ≤ l0.
In this case, equation (4.8.4) becomes

l0r + 2l1r = 1,

that has a unique solution R = 1/ (l0 + 2l1) .

Notice that this radius of convergence is greater than the one R0 obtained by
taking l1 = l0, which was the case considered previously (for instance, [9]). In fact,

R0 = 1

3l0
≤ 1

l0 + 2l1
.

Case 2 (Hölder case). Let us assume that
∥
∥
∥F ′ (x∗)−1

([x, y; F] − [y, z; F])
∥
∥
∥ ≤ l2 ‖x − z‖p

∥
∥
∥F ′ (x∗)−1 (

[x, y; F] − [

y, x∗; F
])
∥
∥
∥ ≤ l3

∥
∥x − x∗∥∥p

,

with 0 < p < 1.

In this case, equation (4.8.4) becomes

l2r p + 2l3r p = 1,

and the radius of convergence is R = (l2 + 2l3)−1/p.

Remark 4.8.2. A modified theorem can be asserted assuming that
(a) There exist functions f, g.. [0,∞) → [0,∞) nondecreasing such that
∥
∥
∥F ′ (x∗)−1 ([

x, x∗; F
]− [x, y; F]

)
∥
∥
∥ ≤ f

(∥
∥x∗ − y

∥
∥
)

∥
∥
∥F ′ (x∗)−1 ([

x∗, x∗; F
]− [x, y; F]

)
∥
∥
∥ ≤ g

(

max
(∥
∥x∗ − x

∥
∥ ,
∥
∥x∗ − y

∥
∥
))

,

for all x, y ∈ D.
(b) Equation

g (r) + f (r) = 1

has a minimum positive zero R.
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In the following example, we compare our results with the previous ones.

Example 4.8.3. Let D = (−1, 1) and F (x) = ex − 1. In this case, we have x∗ = 0
and F ′ (x∗) = 1. On the other hand, because F is differentiable, we can compute the
divided differences by [u, v; F] = ∫ 1

0 F ′ (u + t (v − u)) dt .
Thus,

∥
∥
∥[u, v; F] − [x, y; F]

∥
∥
∥ =

∥
∥
∥
∥
∥

∫ 1

0
F ′ (u + t (v − u)) − F ′ (x + t (y − x)) dt

∥
∥
∥
∥
∥

≤
∫ 1

0
e ‖(u + t (v − u)) − (x + t (y − x))‖ dt

≤ 2e max (‖u − x‖ , ‖v − y‖) ,

that is, the classic Lipschitz constant is k2 = 2e.
Similarly, it easy to check that our Lipschitz constants are l0 = e/2 and l1 = e.
Finally, the convergence conditions (4.8.2) and (4.8.3) considered in our theorem

can be modified in order to include non-Fréchet operators.
Let us consider x∗∗ ∈ U (x∗, ε). Assume the weaker conditions:
(a)
∥
∥
∥

[

x∗, x∗∗; F
]−1

([x, y; F] − [y, z; F])
∥
∥
∥ ≤ f (‖x − z‖) ,

∥
∥
∥

[

x∗, x∗∗; F
]−1 (

[x, y; F] − [

y, x∗; F
])
∥
∥
∥ ≤ g

(∥
∥x − x∗∥∥) , for all x, y, z ∈ D.

(b) Equation
f (r) + g (r + ε) + g (r) = 1

has a minimum positive R.

Example 4.8.4. We consider the nondifferentiable system

{

x3/2 − y = 0
y3/2 + x = 0.

The associated nonlinear operator F .. R2 → R2 is given by

F (x1, x2) =
(

F1 (x1, x2)

F2 (x1, x2)

)

,

where F1 (x1, x2) = x3/2
1 − x2 and F2 (x1, x2) = x3/2

2 + x1.

We use the infinity norm ‖x‖ = ‖x‖∞ = max (|x1| , |x2|), and the associated
matrix norms.

We consider the following divided differences of F , [u, v; F] for u, v ∈ R2, and
i = 1, 2.

[u, v; F]i1 = Fi (u1, v2) − Fi (v1, v2)

u1 − v1
.
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For example, we have

[u, v; H ] =

⎛

⎜
⎜
⎜
⎝

u3/2
1 − v

3/2
1

u1 − v1
−1

1
u3/2

2 − v
3/2
2

u2 − v2

⎞

⎟
⎟
⎟
⎠

.

Considering X∗∗ = (x∗∗, y∗∗) = (1, 1) we obtain

[

X∗, X∗∗; F
]−1 =

(

1/2 1/2
−1/2 1/2

)

.

Moreover, it is easy to check that

‖[X, Y ; F] − [Y, Z; F]‖ ≤ ‖Y − Z‖1/2

∥
∥[X, Y ; F] − [

Y, X∗; F
]∥
∥ ≤ ∥

∥Y − X∗∥∥1/2
,

and the hypothesis is fulfilled.

Example 4.8.5. We start with a semismooth example. Let us consider

f (x) =
{

x (x + 1) , x < 0

−2x (x − 1) , x ≥ 0.

In Table 4.8.1, we can see the advantage of using our modifications. We consider the
modified secant method (4.8.1) with αn = tolu / ‖xn−1 − xn‖ and tolu = 10−4. In
order to obtain a good approximation, secant method needs more than 21 function
evaluations and 20 inversions. On the other hand, modified secant method (4.8.1)
needs only 16 function evaluations and 8 inversions to arrive at the exact solution.

Iteration Secant Modified Secant
2 1.33 × 10−1 1.04 × 10−1

4 5.39 × 10−3 1.96 × 10−4

6 1.54 × 10−4 4.08 × 10−15

8 4.24 × 10−6 0
10 1.18 × 10−7

12 3.27 × 10−9

14 9.07 × 10−11

16 2.52 × 10−12

18 7.01 × 10−14

20 1.95 × 10−15

Table 4.8.1. Comparison table, case 1.

We study the sytems of nonlinear equations considered in Example 3.3.11. We
consider the same choice for the parameters αn than in the previous example and we
obtain similar results than in the 1-D case, as we show in Table 4.8.2.
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Iteration Secant Modified Secant
1 3.15 × 10−1 4.19 × 10−2

2 2.71 × 10−2 2.51 × 10−3

3 5.41 × 10−3 1.11 × 10−5

4 2.84 × 10−4 2.53 × 10−9

5 3.05 × 10−6 1.11 × 10−16

Table 4.8.2. Comparison table, case 2.

4.9 Exercises

4.9.1.
(a) Suppose that F ′, F ′′ are uniformly bounded by nonnegative constants α < 1, K

respectively, on a convex subset D of X and the ball

Ū
(

x0, r0 ≡ 2‖x0−F(x0)‖
1−α

) ⊆ D.

Moreover, if
hS = K

2
1+2α
1−α

‖x0−F(x0)‖
1−α

< 1,

holds, then Stirling’s method

xn+1 = xn − (

I − F ′(F(xn))
)

(xn − F(xn)) (n ≥ 0) (4.9.1)

converges to the unique fixed point x∗ of F in Ū (x0, r0). Moreover, the following
estimates hold for all n ≥ 0:

‖xn − x∗‖ ≤ h2n−1
S

‖x0−F(x0)‖
1−α

. (4.9.2)

(b) Let F .. D ⊆ X → Y be analytic. Assume:

‖F ′(x)‖ ≤ α < 1, for all x ∈ D,

x0 �= F(x0), x0 ∈ D,

γ (1+2α)‖x0−F(x0)‖
(1−α)2 < 1,

r0 < r1,

U (x0, r1) ⊆ D,

and
0 �= γ ≡ sup

k>1
x∈D

∥
∥ 1

k! F (k)(x0)
∥
∥

1
k−1 < ∞,

where,

r1 = 1
γ

[

1 − 3
√

γ (1+2α)‖x0−F(x0)‖
(1−α)2

]

.

Show: sequence {xn} (n ≥ 0) generated by Stirling’s method (4.9.1) is well
defined, remains in U (x0, r0) for all n ≥ 0 and converges to a unique fixed
point x∗ of operator F at the rate given by (4.9.2) with
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K = 2γ

(1−γ r0)
3 .

(c) Let X = D = R and define function F on D by

F(x) =

⎧

⎪⎨

⎪⎩

− 1
3 x, x ≤ 3

1
45 (x2 − 7x − 33), 3 ≤ x ≤ 4
1
3 (x − 7), x > 4.

Using Stirling’s method for x0 = 3, we obtain the fixed point x∗ = 0 of F
in one iteration, as x1 = 3 − (1 + 1

3 )−1(3 + 1) = 0.
Show: Newton’s method fails to converge.

4.9.2. It is convenient for us to define certain parameters, sequences, and functions.
Let {tn} (n ≥ 0) be a Fibonacci sequence given by

t0 = t1 = 1, tn+1 = tn + tn−1 (n ≥ 1).

Let also c, �, η be nonnegative parameters and define:
• the real function f by

f (x) = 1
1−x , x ∈ [0, 1) ,

• sequences {sn} (n ≥ −1), {an} (n ≥ −1), {An} (n ≥ −1) by

s−1 = η
c+η

, s0 = �(c + η), sn = f 2(sn−1)an−1an−2 (n ≥ 1),

a−1 = a−2 = 0, an−2 =
n−1
∑

j=0

c j , c j = t0 + t1 + · · · + t j+1,

An = [

xn, xn−1; F
]

,

for xn ∈ X , and
• parameters b, d, r0 by

b = max
{

�n
(1−s0)

2s0
,

s0
(1−s0)

2

}

, d = s0
1−s0

, r0 = η
1−d .

Let F .. D ⊆ X → Y be a nonlinear operator. Assume there exist x−1, x0 ∈ D
and nonnegative parameters c, �, η such that:

A−1
0 exists,

‖x0 − x−1‖ ≤ c,

‖A−1
0 F(x0)‖ ≤ η,

∥
∥A−1

0

(

[x, y; F] − [z, w; F]
)∥
∥ ≤ �

(‖x − z‖ + ‖y − w‖),
∀x, y, z ∈ D, x �= y, w �= z,

s0 < 3−√
5

2 ,

�η < (1 − s0)
2s0 = α,
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and
Ū (x0, r0) ⊆ D.

Show: sequence {xn} (n ≥ −1) generated by the secant method

xn+1 = xn − [

xn, xn−1; F
]−1

F(xn) (n ≥ 0) (x−1, x0 ∈ D)

is well defined, remains in U (x0, r0) for all n ≥ 0 and converges to a unique so-
lution x∗ ∈ Ū (x0, r0) of equation F(x) = 0. Moreover the following estimates
hold for all n ≥ 1:

‖xn − x∗‖ ≤ dn

1−d ban−2‖x1 − x0‖,
and

‖L−1
0 F(xn+1)‖ ≤ bcn−1 s0.

Furthermore, let
r∗ = 1

�
− r0 − η.

Then r∗ > r0 and the solution x∗ is unique in U (x0, r∗).
4.9.3. Consider the Stirling method

zn+1 = zn − [

I − F ′ (F (zn))
]−1

[zn − F (zn)]

for approximating a fixed point x∗ of the equation x = F (x) in a Banach space
X .
Show:
(i) If

∥
∥F ′ (x)

∥
∥ ≤ α < 1

3 , then the sequence {xn} (n ≥ 0) converges to the unique
fixed point x∗ of equation x = F (x) for any x0 ∈ X . Moreover, show that:

∥
∥x∗ − xn

∥
∥ ≤

(
2α

1−α

)n ‖x0−F(z0)‖
1−α

(n ≥ 0) .

(ii) If F ′ is Lipschitz continuous with constant K and
∥
∥F ′ (x)

∥
∥ ≤ α < 1, then

NK method converges to x∗ for any x0 × X such that

hN = 1
2 K ‖x0−F(x0)‖

(1−α)2 < 1

and
∥
∥xn − x∗∥∥ ≤ (hN )2n−1 ‖x0−F(x0)‖

1−α
(n ≥ 0) .

(iii) If F ′ is Lipschitz continuous with constant K and
∥
∥F ′ (x)

∥
∥ ≤ α < 1, then

{zn} (n ≥ 0) converges to x∗ for any z0 ∈ X such that

hs = K
2

1+2α
1−α

‖x0−F(z0)‖
1−α

(n ≥ 0) .

4.9.4. Let H be a real Hilbert space and consider the nonlinear operator equation
P (x) = 0 where P .. U (x0, r) ⊆ H → H . Let P be differentiable in U (x0, r)

and set F (x) = ‖P (x)‖2. Then P (x) = 0 reduces to F (x) = 0. Define the
iteration

xn+1 = xn − ‖P(xn)‖2

2‖Q(xn)‖2 Q (xn) (n ≥ 0)

where Q (x) = P ′ (x) P (x), and the linear operator P ′ (x) is the adjoint of
P ′ (x). Show that if:
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(a) there exist two positive constants B and K such that

B2 K < 4;
(b)

∥
∥P ′ (x) y

∥
∥ ≥ B−1 ‖y‖ for all y ∈ H , x ∈ u (x0, r)

(c)
∥
∥Q′ (x)

∥
∥ ≤ K for all x ∈ U (x0, r);

(d) ‖x1 − x0‖ < η0 and r = 2η0

2−B
√

K
.

The equation P (x) = 0 has a solution x∗ ∈ U (x0, r) and the sequence
{xn} (n ≥ 0) converges to x∗ with

∥
∥xn − x∗∥∥ ≤ η0

αn

1−α

where
α = 1

2 B
√

K .

4.9.5. Consider the equation
x = T (x)

in a Banach space X , where T .. D ⊂ X → X and D is convex. Let T1 (x)

be another nonlinear continuous operator acting from X into X , and let P be
a projection operator in X . Then the operator PT1 (x) will be assumed to be
Fréchet-differentiable on D. consider the iteration

xn+1 = T (xn) + PT ′
1 (xn) (xn+1 − xn) (n ≥ 0) .

Assume:
(a)

∥
∥
∥

[

I − PT ′
1 (x0)

]−1
(x0 − T (x0))

∥
∥
∥ ≤ η,

(b) � (x) = � = [

I − PT ′
1 (x)

]−1 exists for all x ∈ D and ‖�‖ ≤ b,

(c) PT ′
1 (x) , QT1 (x) (Q = I − P) and T (x)−T1 satisfy a Lipschitz condition

on D with respective constants M, q and f ,
(d) Ū (x0, Hη) ⊆ D, where

H = 1 +
∞
∑

j=1

j
∏

i=1

Ji , J1 = b + h

2
,

Ji = b + h
2 J1 · · · Ji−1, i ≥ 2, J0 = η,

(e) h = B Mη < 2 (1 − b) , b = B (q + f ) < 1. Then show that the equation
x = T (x) has a solution x∗ ∈ Ū (x0, Hη) and the sequence {xn} (n ≥ 0)

converges to x∗ with

∥
∥xn − x∗∥∥ ⊆ Hη

n
∏

i=1

Ji .

4.9.6. Let H be a real separable Hilbert space. An operator F on H is said to be
weakly closed if
(a) xn converges weakly to x , and
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(b) F (xn) converges weakly to y imply that

F (x) = y.

Let F be a weakly closed operator defined on Ū (x0, r) with values in H . Sup-
pose that F maps U (x0, r) into a bounded set in H provided the following
conditions is satisfied:

(F (x) , x) ≤ (x, x) for all x ∈ S

where S = {x ∈ H | ‖x‖ = r}.
Then show that there exists x∗ ∈ U (x0, r) such that

F
(

x∗) = x∗.

4.9.7. Let X be a Banach space, L B (X) the Banach space of continuous linear
operators on X equipped with the uniform norm, and B1 the unit ball. Recall that
a nonlinear operator K on X is compact if it maps every bounded set into a set
with compact closure. We shall say a family H of operators on X is collectively
compact if and only if every bounded set B ⊂ X ,

⋃

P∈H H (B) has compact
closure.
Show:
(i) If
(a) H is a collectively compact family of operators on X ,
(b) K is in the pointwise closure of H ,
then K is compact
(ii) If
(a) H is a collectively compact family on X ,
(b) H is equidifferentiable on D ⊂ X .
Then for every x ∈ D, the family

{

P ′ (x) | P ∈ H
}

is collectively compact.
4.9.8. Consider the equations

x − K (x) = 0

and
x − Kn (x) = 0,

where K is a compact operator from a domain D of a Banach space X into X ,
{Kn} (n ≥ 1) are collectively compact operators.
Moreover assume:
(a) The family {Kn} (n ≥ 1) is pointwise convergent to K on D, i.e.,

Kn (x) → K (x) as n → (x) as n → ∞, x ∈ D.

(b) The family {Kn} (n ≥ 1), has continuous first and bounded second deriva-
tives on Ū (x0, r).

(c) The linear operator I − K ′ (x∗) is regular.
Then show there exists a constant r∗, 0 < r∗ ≤ r such that for all sufficiently
large n, equation x − Kn (x) = 0 has a unique solution xn ∈ Ū (x∗, r∗) and
lim xn = x∗ as n → ∞.
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4.9.9. Let X be a regular partially ordered Banach space. Denote the order by ≤ and
consider the iteration

xn+1 = xn − F (xn)

c1
c1 > 0

for approximating a solution x∗ of equation F (x) = 0 in X . Assume that there
exist positive numbers c1 and c2 such that

c2 (x − y) ≤ F (x) − F (y) ≤ c1 (x − y) for all x ≤ y

and
‖F (x0)‖ ≤ c2r

2
for some fixed r > 0.

Then show that:
(i) The sequence {xn} (n ≥ 0) converges to a solution x∗ of the equation

F (x) = 0.
(ii) The following estimates are true:

∥
∥xn − x∗∥∥ ≤ c

c2
‖F (x0)‖ cn

3 ,

and
∥
∥xn − x∗∥∥ ≤ cc3 ‖xn − xn−1‖ ,

where c3 = c1−c2
c1

and c is such that ‖x‖ ≤ c ‖y‖ whenever 0 ≤ x ≤ y.

(iii) The sequence {xn} (n ≥ 0) belongs to

the set {x ∈ X | x < x0, ‖x − x0‖ ≤ r} if 0 < F (x0) ,

or the set {x ∈ X | x0 < x, ‖x − x0‖ ≤ r} if F (x0) < 0.

4.9.10. Let F .. D ⊆ X → Y and let D be an open set. Assume:
(a) the divided difference [x, y] of F satisfies

[x, y] (y − x) = F (y) − F (x) for all x, y ∈ D

‖[x, y] − [y, u]‖ ≤ I1 ‖x − y‖p + I2 ‖x − y‖p + I2 ‖y − u‖p

for all x, y, u ∈ D where I1 ≥ 0, I2 ≥ 0 are constants which do not depend
on x, y and u, while p ∈ (0, 1];

(b) x∗ ∈ D is a simple solution of equation F (x) = 0;
(c) there exists ε > 0, b > 0 such that

∥
∥[x, y]−1

∥
∥ ≤ b for every x, y ∈

U (x∗, ε);
(d) there exists a convex set D0 ⊂ D such that x∗ ∈ D0, and there exists

ε1 > 0, with 0 < ε1 < ε such that F ′ (·) ∈ HD0 (c, p) for every x, y ∈ D0
and U (x∗, ε1) ⊂ D0.

Let r > 0 be such that:

0 < r < min
{

ε1 (q (p))
− 1

p

}

where

q (p) = b

p + 1

[

2p (I1 + I2) (1 + p) + c
]

.
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Then
(i) if x0, x1 ∈ Ū (x∗, r), the secant iterates are well defined, remain in Ū (x∗, r)

for all n ≥ 0, and converge to the unique solution x∗ of equation F (x) = 0
in Ū (x∗, r). Moreover, the following estimation:

∥
∥xn+1 − x∗∥∥ ≤ γ1

∥
∥xn−1 − x∗∥∥p ∥∥xn − x∗∥∥+ γ2

∥
∥xn − x∗∥∥1+p

holds for sufficiently large n, where

γ1 = b (I1 + I2) 2p and γ2 = bc

1 + p
.

(ii) If the above condition hold with the difference that x0 and x1 are chosen
such that

∥
∥x∗ − x0

∥
∥ ≤ ad0;

∥
∥x∗ − x1

∥
∥ ≤ min

{

adt1
0 ,

∥
∥x∗ − x0

∥
∥

}

,

where 0 < d0 < 1, a = (q (b))
− 1

p , and t1 is the positive root of the equation:

t2 − t − p = 0,

then show that for every n ∈ N , xn ∈ U (x∗, a) and

∥
∥xn+1 − x∗∥∥ ≤ ad

tn+1
1

0 (n ≥ 0) .

4.9.11. Let F .. D ⊆ X → Y and let D be an open set. Assume:
(a) x0 ∈ X is fixed, and consider the nonnegative real numbers: B, v, w, p ∈

(0, 1], α, β, q ≥ 1, I1, I2 and I3, where

w = Bα
(

I1 B p + I2β
p + I3 B pα p ‖F (x0)‖p(q−1)

)

and
v = w

1
p+q−1 ‖F (x0)‖ .

Denote r = max {B, β} and suppose Ū (x0, r∗) ⊆ D, where

r∗ = rv

w
1

p+q−1
(

1 − v p+q−1
)
;

(b) Condition (a) of the previous exercise holds with the last I2 replaced by I3;
(c) for every x, y ∈ Ū (x0, r∗) , [x, y]−1 exists, and

∥
∥[x, y]−1

∥
∥ ≤ B;

(d) for every x ∈ Ū (x0, r∗) , ‖F (g (x))‖ ≤ α ‖F (x)‖q where g.. X → Y is an
operator having at least one fixed point that coincides with the solution x∗
of equation F (x) = 0;

(e) for every x ∈ Ū (x0, r∗), ‖x − g (x)‖ ≤ β ‖F (x)‖;
(f) the number v is such that: 0 < v < 1.
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Then show that the Steffensen-type method

xn+1 = xn − [xn, g (xn)]−1 F (xn) n ≥ 0

is well defined, remains in Ū (x0, r∗) for all n ≥ 0, and converges to a solution
x∗ of equation F (x) = 0 with

∥
∥x∗ − xn

∥
∥ ≤ rw(p+q)n

w
1

p+q−1 (1−v p+q−1)
(n ≥ 0) .

4.9.12. (a) Let F, G be real or complex iteration functions of order p ≥ 1 and
q > 1 at x∗, respectively. Suppose that F is continuously differentiable and G is
continuous at x∗. Then show: iteration function

Q (x) = F (x) − 1
p F ′ (x) [x − G (x)]

is order at least p + 1.
(b) Suppose F is continuously differentiable at x∗. If F ′ (x∗) �= p, then show:
iteration function

H (x) = x − x−F(x)

1− 1
p F ′(x)

is of order at least p + 1.

4.9.13. (a) Consider conditions of the form

‖A−1
0 ([x, y; F] − [z, w; F])‖ ≤ w(‖x − z‖, ‖y − w‖), (4.9.3)

‖A−1
0 ([x, y; F] − A0)‖ ≤ w0(‖x − x−1‖, ‖y − x0‖) (4.9.4)

for all x, y, z, w ∈ D provided that A−1
0 ∈ L(Y, X), where w,w0.. [0,+∞) ×

[0,+∞) → [0,+∞) are continuous nondecreasing functions in two variables.
Let F .. D ⊆ X → Y be an operator. Assume:
there exists a divided difference of order one such that [x, y; F] ⊆ L(X, Y ) for
all x, y ∈ D satisfying (4.9.3), (4.9.4); there exist points x−1, x0 ∈ D such that
A0 = [

x−1, x0; F
]−1 ∈ L(Y, X) and set

‖A−1
0 F(x0)‖ ≤ η;

equation

t =
[

c0(t)c1(t)
1−c(t) + c0(t) + 1

]

η

has at least one positive zero. Denote by t∗ the smallest such zero;

w0(t
∗ + η0, t∗) < 1;

c(t∗) < 1;

and
Ū (x0, t∗) ⊆ D.



4.9 Exercises 247

Show: sequence {xn} (n ≥ 0) generated by the secant method is well defined,
remains in Ū (x0, t∗) for all n ≥ 0, and converges to a unique solution x∗ of
equation F(x) = 0 in Ū (x0, t∗).
Moreover, the following estimates hold

‖x2 − x1‖ ≤ c0‖x1 − x0‖
‖xn+1 − xn‖ ≤ c‖xn − xn−1‖ (n ≥ 3)

and
‖xn − x∗‖ ≤ cn−2

1−c ‖x3 − x2‖ (n ≥ 2),

where,
c0 = c0(t

∗), c1 = c1(t
∗), c = c(t∗).

(b) Assume: x∗ is a simple zero of operator F such that:

A−1
∗ = F ′(x∗)−1 ∈ L(Y, X);

‖A−1
∗ ([x, y; F] − [

x, x∗; F
]

)‖ ≤ v(‖y − x∗‖),
‖A−1

∗ ([x, y; F] − F ′(x∗))‖ ≤ v0(‖x − x∗‖, ‖y − x∗‖)

for all x, y ∈ D for some continuous nondecreasing functions v.. R+ → R+ and
v0.. R+ × R+ → R+; equation

v0(q, q0) + v(q0) = 1

where,
q0 = ‖x−1 − x∗‖, x−1 ∈ D

has at least one positive solution. Denote by q∗ the minimum positive one;
and

Ū (x∗, q∗) ⊆ D.

Under the above stated hypotheses, show sequence {xn} (n ≥ 0) generated by the
secant method is well defined, remains in Ū (x∗, q∗) for all n ≥ 0, and converges
to x∗ provided that x0 ∈ U (x∗, q) for some x−1 ∈ D.
Moreover, the following estimates hold for all n ≥ 0:

‖xn+1 − x∗‖ ≤ γn‖xn − x∗‖

where,
γn = v(‖xn−1−x∗‖)

1−v0(‖xn−x∗‖,‖xn−1−x∗‖) .

4.9.14. (a) Let x0, x−1 ∈ D with x0 �= x−1. It is convenient to define the parameters
α, n by

α = ‖x0 − x−1‖,
‖L−1

0 F(x0)‖ ≤ n,
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and functions a, b, Ln by

a(r) = w(α,r)
1−w(α,r)

,

b(r) = 2w(α+r,r)
1−w(α+r,r)

,

Ln = [

xn−1, xn; F
]

(n ≥ 0).

We can state the following semilocal convergence results for the secant method.
Let F be a nonlinear operator defined on an open convex subset D of a Banach
space X with values in a Banach space Y . Assume:
(1) there exist distinct points x0, x−1 such that L−1

0 ∈ L(Y, X);
(2) condition

‖ [x−1, x0; F
]−1

([x, y; F] − [

x−1, x0; F
]

)‖ ≤ w(‖x − x−1‖, ‖y − x0‖),
holds for all x, y ∈ D;

(3) there exists a mininum positive zero denoted by r∗ such that:

r ≥
[

a(r)b(r)
1−b(r)

+ a(r) + 1
]

η for all r ∈ (

0, r∗] ;
(4)

w(α + r∗, r∗) < 1,

b(r∗) < 1

and
U (x0, r∗) ⊆ D.

Show: sequence {xn} n ≥ −1 generated by secant method is well defined, re-
mains in Ū (x0, r∗) for all n ≥ −1, and converges to a solution x∗ of equation
F(x) = 0, which is unique in U (x0, r∗).
(b) Let us consider the two boundary value problem:

y′′ + y1+p = 0,

y (0) = y (1) = 0,
p ∈ [0, 1] . (4.9.5)

also considered in [43]. As in [43] we divide the interval [0, 1] into m subin-
tervals and let h = 1

m . We denote the points of subdivision by ti = ih, and
y(ti ) = yi . We replace y′′ by the standard approximations

y′′(t) ∼= [y(t + h) − 2y(t) + y(t − h)] /h2

y′′(ti ) ∼= (yi+1 − 2yi + yi−1)/h2, i = 1, 2, . . . , m − 1.

System (4.9.5) becomes

2y1 − h2 y1+p
1 − y2 = 0,

−yi−1 + 2yi − h2 y1+p
i − yi+1 = 0

−ym−2 + 2ym−1 − h2 y1+p
m−1 = 0, i = 2, 3, . . . , m − 2.
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Define operator F .. Rm−1 → R
m−1 by

F(y) = H(y) − h2g(y),

where

y = (y1, y2, . . . , ym−1)
t , g(y) = (y1+p

1 , y1+p
2 , . . . , y1+p

m−1)
t ,

and

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−2 −1 0 · · · 0
−1 2 −1 · · · 0

0 −1 2 · · · 0
...

...
...

...

0 0 0 · · · 2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

We apply our Theorem to approximate a solution y∗ of equation

F(y) = 0. (4.9.6)

Let x ∈ R
m−1, and choose the norm ‖x‖ = max

1≤i≤m−1
|xi |. The corresponding

matrix M ∈ R
m−1 × R

m−1 is

‖M‖ = max
1≤i≤m−1

m−1
∑

j=1

|mi j |.

A standard divided difference at the points x, y ∈ R
m−1 is defined by the matrix

whose entries are

[x, y; F]i j

= 1

xi − yi

[

Fi (x1, . . . , x; y j+1, . . . , yk) − Fi (x1, . . . , x j−1, y; , . . . , yk)
]

,

k = m − 1.

We can set

[x, y; F] =
∫ 1

0
F ′ [x + t (y − x)] dt.

Let x, v ∈ R
m−1 with |xi | > 0, |vi | > 0, i = 1, 2, . . . , m − 1. Using the

max-norm we obtain
∥
∥F ′(x) − F ′(v)

∥
∥

=
∥
∥
∥diag

{

h2(1 + p)(v
p
i − x p

i )
}∥
∥
∥

= max
1≤i≤m−1

∣
∣
∣h2(1 + p)

(

v
p
i − x p

i

)
∣
∣
∣ ≤ (1 + p)h2 max

1≤i≤m−1

∣
∣v

p
i − x p

i

∣
∣

≤ (1 + p)h2 |vi − xi |p = (1 + p)h2‖v − x‖p.
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Hence, we get

‖[x, y; F] − [v,w; F]‖

≤
∫ 1

0

∥
∥F ′(x + t (y − x)) − F ′(v + t (w − v))

∥
∥ dt

≤ h2
∫ 1

0
(1 + p) ‖(1 − t)(x − v) + t (y − w)‖p dt

≤ h2(1 + p)

∫ 1

0

[

(1 − t)p‖x − v‖p + t p‖y − w‖p] dt

= h2(‖x − v‖p + ‖y − w‖p).

Define the function w by

w(r1, r2) = ‖ [y−1, y0; F
]−1 ‖h2(r p

1 + r p
2 ),

where y−1, y0 will be the starting points for the secant method

yn+1 = yn − [

yn−1, yn; F
]−1

F(yn) (n ≥ 0)

applied to equation F(y) = 0 to approximate a solution y∗. Choose p = 1
2 and

m = 10, then we obtain 9 equations. Because a solution of (4.9.6) vanishes at
the end points and is positive in the interior, a reasonable initial approximation
seems to be 135 sin nt . This choice gives the following vector

z−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

41.7172942406179
79.35100905948387

109.2172942406179
128.3926296998458
135.0000000000000
128.3926296998458
109.2172942406179
79.35100905948387
41.7172942406179

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Choose y0 by setting z0(ti ) = z−1(ti ) − 10−5, i = 1, 2, . . . , 9. Using secant
method, we obtain after 3 iterations

z2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

33.64838334335734
65.34766285832966
91.77113354118937

109.4133887062593
115.6232519796117
109.4133887062593
91.77113354118937
65.34766285832964
33.64838334335733

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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and

z3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

33.57498274928053
65.204528678501265
91.56893412724006
109.1710943553677
115.3666988182897
109.1710943553677
91.56893412724006
65.20452867501265
33.57498274928053

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Set y−1 = z2 and y0 = z3. Show:
We obtain

α = .256553, η = .00365901.

Moreover, show:
‖ [y−1, y0; F

]−1 ‖ ≤ 26.5446,

r∗ = .0047, w(α + r∗, r∗) = .153875247 < 1 and b(r∗) = .363717635. All
hypotheses are satisfied. Hence, equation has a unique solution y∗ ∈ U (y0, r∗).
Note that in [43] they found r∗ = .0043494.

4.9.15. Let F .. S ⊆ X → Y be a three times Fréchet-differentiable operator defined
on an open convex domain S of Banach space X with values in a Banach space Y .
Assume F ′(x0)

−1 exists for some x0 ∈ S, ‖F ′(x0)
−1‖ ≤ β, ‖F ′(x0)

−1 F(x0)‖ ≤
η, ‖F ′′(x)‖ ≤ M , ‖F ′′′(x)‖ ≤ N , ‖F ′′′(x) − F ′′′(y)‖ ≤ L‖x − y‖ for all
x, y ∈ S, and Ū (x0, rη) ⊆ S, where

A = Mβη, B = Nβη2, C = Lβη3,

a0 = 1 = c0, b0 = 2A

3
, d0 = A

2
(1 + A) ,

an+1 = an

1 − Aan (cn + dn)
, bn+1 = 2A

3
an+1cn+1,

cn+1 = 32

2187

27

[

4 +
(

1 + 3
2 bn

)2
]

A3a2
n + 18ABan + 17c

b4
n

(

1 + 3
2 bn

)4
an+1d4

n ,

dn+1 = 3

4
bn+1

(

1 + 3

2
bn+1

)

cn+1 (n ≥ 0) ,

and

r = lim
n→∞

n
∑

i=0

(ci + di ) .

If A ∈
[

0, 1
2

]

, B =
[

0, 1
18A (P (A) − 17c)

]

and c ∈
[

0,
P(A)

17

]

, where

P (A) = 27 (A − 1) (2A − 1)
(

A2 + A + 2
) (

A2 + 2A + 4
)

. Then show [87]:
Chebysheff-Halley method given by
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yn = xn − F ′ (xn)−1 F (xn)

Hn = F ′ (xn)−1
[

F ′
(

xn + 2

3
(yn − xn)

)

− F ′ (xn)

]

xn+1 = yn − 3

4
Hn

[

I − 3

2
Hn

]

(yn − xn)

is well defined, remains in U (x0, rη) and converges to a solution x∗ ∈
Ū (x0, rη) of equation F (x) = 0. Moreover, the solution x∗ is unique in

U
(

x0,
2

Mβ
− rη

)

. Furthermore, the following error estimates hold for all n ≥ 0

∥
∥xn − x∗∥∥ ≤

∞
∑

i=n

(ci + di ) η ≤ 3

2A

[

1 + A

2
(1 + A)

]
b1

γ 1/3

∞
∑

i=1

γ 4i−1/3,

where γ = b2
b1

.

4.9.16. Consider the scalar equation [89]

f (x) = 0.

Using the degree of logarithmic convexity of f

L f (x) = f (x) f ′′(x)

f ′(x)2 ,

the convex acceleration of Newton’s method is given by

xn+1 = F (xn) = xn − f (xn)
f ′(xn)

[

1 + L f (xn)
2(1−L f (xn))

]

(n ≥ 0)

for some x0 ∈ R. Let k ≥ 1754877, the interval [a, b] satisfying a+ 2k−1
2(k−1)

f (b)
f ′(b)

≤
b and x0 ∈ [a, b] with f (x0) > 0, and x0 ≥ a+ 2k−1

2(k−1)
f (b)
f ′(b)

. If |L f (x)| ≤ 1
k and

L f ′ (x) ∈
[

1
k , 2 (k − 1)2 − 1

k

)

in [a, b], then show: Newton’s method converges

to a solution x∗ of equation f (x) = 0 and x2n ≥ x∗, x2n+1 ≤ x∗ for all n ≥ 0.
4.9.17. Consider the midpoint method [91]:

yn = xn = �n F (xn) , �n = F ′ (xn)−1 ,

zn = xn + 1
2 (yn − xn) ,

xn+1 = xn − �̄n F (xn) , �̄n = F ′ (zn)−1 (n ≥ 0) ,

for approximating a solution x∗ of equation F (x) = 0. Let F .. � ⊆ X → Y
be a twice Fréchet-differentiable operator defined on an open convex subset of a
Banach space X with values in a Banach space Y . Assume:

(1) �0 ∈ L (Y, X) for some x0 ∈ � and ‖�0‖ ≤ β;
(2) ‖�0 F (x0)‖ ≤ η;
(3)

∥
∥F ′′ (x)

∥
∥ ≤ M (x ∈ �) ;

(4)
∥
∥F ′′ (x) − F ′′ (y)

∥
∥ ≤ K ‖x − y‖ (x, y ∈ �) .
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Denote a0 = Mβη, b0 = Kβη2. Define sequence an+1 = an f (an)2 g (an, bn),

bn+1 = bn f (an)3 g (an, bn)2, f (x) = 2−x
2−3x , and g (x, y) = x2

(2−x)2 + 7y
24 . If

0 < a0 < 1
2 , b0 < h (a0), where

h (x) = 96 (1 − x) (1 − 2x)

7 (2 − x)2
, Ū (x0, Rη) ⊆ �,

R = 2

2 − a0

1

1 − �
, � = f (a0)

−1 ,

then show: midpoint method {xn}.. (n ≥ 0) is well defined, remains in Ū (x0, Rη),
and converges at least R-cubically to a solution x∗ of equation F (x) = 0. The
solution x∗ is unique in U (x0,

2
Mβ

− Rη) ∩ � and

∥
∥xn+1 − x∗∥∥ ≤ 2

2 − a0
γ

3n−1
2

�n

1 − �
η.

4.9.18. Consider the multipoint method [115]:

yn = xn − �n F (xn) , �n = F ′ (xn)−1 ,

zn = xn + θ (yn − xn) ,

Hn = 1
θ
�n

[

F ′ (xn) − F ′ (zn)
]

, θ ∈ (0, 1] ,

xn+1 = yn + 1
2 Hn (yn − xn) (n ≥ 0) ,

for approximating a solution x∗ of equation F (x) = 0. Let F be a twice-Fréchet-
differentiable operator defined on some open convex subset � of a Banach space
X with values in a Banach space Y . Assume:
(1) �0 ∈ L (Y, X), for some x0 ∈ X and ‖�0‖ ≤ β;
(2) ‖�0 F (x0)‖ ≤ η;
(3)

∥
∥F ′′ (x)

∥
∥ ≤ M, (x ∈ �) ;

(4)
∥
∥F ′′ (x) − F ′′ (y)

∥
∥ ≤ K ‖x − y‖p, (x, y) ∈ �, K ≥ 0, p ∈ [0, 1].

Denote a0 = Mβη, b0 = Kβη1+p and define sequence

an+1 = an f (an)2 gθ (an, bn) ,

bn+1 = bn f (an)2+p gθ (an, bn)1+p ,

f (x) = 2

2 − 2x − x2
and

gθ (x, y) = x3 + 4x2

8
+
[

2 + (p + 2) θ p
]

y

2 (p + 1) (p + 2)
.

Suppose a0 ∈
(

0, 1
2

)

and b0 < h p (a0, θ) , where

h p (x, θ) = (p + 1) (p + 2)

4 [2 + (p + 2) θ p]
(1 − 2x)

(

8 − 4x2 − x3
)

.
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Then, if Ū (x0, Rη) ⊆ �, where R = (

1 + a0
2

) 1
1−γ�

, � = f (a0)
−1 show:

iteration {xn} (n ≥ 0) is well defined, remains in Ū (x0, Rη) for all n ≥ 0, and
converges with R-order at least 2+ p to a solution x∗ of equation F (x) = 0. The
solution x∗ is unique in U (x0,

2
Mβ

− Rη)∩�. Moreover, the following estimates
hold for all n ≥ 0

∥
∥xn − x∗∥∥ ≤

[

1 + a0

2
γ

(
(2+p)n−1

1+p

)]

γ

(
(2+p)n−1

1+p

)

�n

1 − γ (2+p)n
�

η,

where γ = a1
a0

.

4.9.19. Consider the multipoint iteration [118]:

yn = xn − �n F (xn) , �n = F ′ (xn)−1 ,

zn = xn − 2
3�n F (xn) ,

Hn = �n
[

F ′ (zn) − F ′ (xn)
]

,

xn+1 = yn − 3
4

[

I + 3
2 Hn

]−1
Hn (yn − xn) (n ≥ 0) ,

for approximation equation F (x) = 0. Let F .. � ⊆ X → Y be a three times
Fréchet-differentiable operator defined on some convex subset � of a Banach
space X with values in a Banach space Y . Assume F ′ (x0)

−1 ∈ L (Y, X)

(x0 ∈ �), ‖�0‖ ≤ α, ‖�0 F (x0)‖ ≤ β,
∥
∥F ′′ (x)

∥
∥ ≤ M ,

∥
∥F ′′′ (x)

∥
∥ ≤ N ,

and
∥
∥F ′′′ (x) − F ′′′ (y)

∥
∥ ≤ k ‖x − y‖ for all x, y ∈ �. Denote θ = Mαβ,

w = Nαβ2 and δ = Kαβ3. Define sequences

a0 = c0 = 1, b0 = 2

3
θ , d0 = 2 − θ

2 (1 − θ)
,

an+1 = an

1 − θandn
, bn+1 = 2

3
θan+1cn+1,

cn+1 = 8 (2 − 3bn)4

(4 − 3bn)4

[

a2
n

(2 − 3bn)2
θ3 + 17

108
δ + wan

3 (2 − 3bn)
θ

]

an+1d4
n

and

dn+1 = 4 − 3bn+1

4 − 6bn+1
cn+1 (n ≥ 0) .

Moreover, assume: Ū (x0, Rβ) ⊆ �, where

R = lim
n→∞

n
∑

i=0

di , θ ∈
(

0, 1
2

)

,

0 ≤ δ <
27 (2θ − 1)

(

θ3 − 8θ2 + 16θ − 8
)

17 (1 − θ)2
,

0 ≤ ω <
3 (2θ − 1)

(

θ3 − 8θ2 + 16θ − 8
)

4θ (1 − θ)2
− 17δ

36θ
.
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Then show: iteration {xn} (n ≥ 0) is well defined, remains in U (x0, Rβ) for all
n ≥ 0, and converges to a solution x∗ of equation F (x) = 0. Furthermore, the

solution x∗ is unique in U
(

x0,
2

αM − Rβ
)

and for all n ≥ 0

∥
∥xn − x∗∥∥ ≤

∑

i≥n

diβ ≤ β
(2 − θ)

2 (1 − θ)

1

γ 1/3

∑

j≥n

γ 4i+1/3,

where γ = b1
b0

.

4.9.20. Consider the multipoint iteration [90]:

yn = xn − F ′ (xn)−1 F (xn)

Gn = [

F ′ (xn + p (yn − xn)) − F ′ (xn)
]

(yn − xn) , p ∈ (0, 1] ,

xn+1 = yn = 1
2p F ′ (yn)−1 Gn (n ≥ 0)

for approximating a solution x∗ of equation F (x) = 0. Let F .. � ⊆ X → Y be
a continuously Fréchet-differentiable operator in an open convex domain � that
is a subset of a Banach space X with values in a Banach space Y . Let x0 ∈ �

such that �0 = F ′ (x0)
−1 ∈ L (Y, X); ‖�0‖ ≤ β, ‖y0 − x0‖ ≤ η, p = 2

3 ,
and

∥
∥F ′ (x) − F ′ (y)

∥
∥ ≤ K ‖x − y‖ for all x, y ∈ �. For b0 = Kβη, define

bn = bn−1 f (bn−1)
2 g (bn−1), where

f (x) = 2 (1 − x)

x2 − 4x + 2
and g (x) = x

(

x2 − 8x + 8
)

8 (1 − x)2
.

If b0 < r = .2922..., where r is the smallest positive root of the polynomial
q (x) = 2x4 −17x3 +48x2 −40x +8, and Ū (x0,

1
Kβ

) ⊆ �, then show: iteration

{xn} (n ≥ 0) is well defined, remains in Ū (x0,
1

Kβ
), and converges to a solution

x∗ of equation F(x) = 0, which is unique in U (x0,
1

Kβ
).

4.9.21. Consider the biparametric family of multipoint iterations [92]:

yn = xn − �n F (xn) , zn = xn + p (yn − xn) , p ∈ [0, 1] ,

Hn = 1
p �n

[

F ′ (zn) − F ′ (xn)
]

,

xn+1 = yn − 1
2 Hn (I + αHn) (yn − xn) , (n ≥ 0)

where �n = F ′ (xn)−1 (n ≥ 0) and α = −2β ∈ R. Assume �0 = F ′ (x0)
−1 ∈

L (Y, X) exists at some x0 ∈ �0 ⊆ X , F .. �0 ⊆ X → Y twice Fréchet-
differentiable, X , Y Banach spaces, ‖�0‖ ≤ β, ‖�0 F (x0)‖ ≤ η,

∥
∥F ′′ (x)

∥
∥ ≤ M ,

x ∈ �0 and
∥
∥F ′′ (x) − F ′′ (y)

∥
∥ ≤ K ‖x − y‖ for all x, y ∈ �0. Denote

a0 = Mβη, b0 = kβη2. Define sequences

an+1 = an f (an)2 g (an, bn) , bn+1 = bn f (an)3 g (an, bn)2 ,

where
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f (x) = 2
[

2 − 2x − x2 − |α| x3
]−1

,

and

g (x, y) = |α|2
8

x5 + |α|
4

x4 + 1 + 4 |α|
8

x3 + |1 + α|
2

x2 + 1 − p

4
xy + 2 + 3p

12
y

for some real parameters α and p. Assume:

a0 ∈
(

0, 1
2

)

, b0 < P = 3
(

8 − 16a0 − 4a2
0 + 7a3

0 + 2a4
0

)

3a0 + 2
,

|α| < min {6, r}, p ∈ (0, 1] and p < h (|α|), where r is a positive root of

h (x) = 1

6b0 (1 − a0)

[(

24 − 48a0 − 12a2
0 + 21a3

0 + 6a4
0 − 2b0 (3a0 + 2)

)

+ 6a2
0

(

2a3
0 + 3a2

0 − 6a0 − 2
)

x + 3a5
0 (2a0 − 1) x2

]

,

Ū (x0, Rη) ⊆ �0, R =
[

1 + a0
2 (1 + |α| a0)

]

1 − γ�
, γ = a1

a0
, � = f (a0)

−1 .

Then show: iteration {xn} (n ≥ 0) is well defined, remains in Ū (x0, Rη) for
all n ≥ 0, and converges to a unique solution x∗ of equation F (x) = 0 in
U (x0,

2
Mβ

− Rη) ∩ �0. The following estimates hold for all n ≥ 0:

∥
∥xn − x∗∥∥ ≤

[

1 + 1
2γ

3n−1
2 a0

(

1 + |α| γ 3n−1
2 a0

)]

γ
3n−1

2
�n

1 − γ 3n
�

η.

4.9.22. Let f be a real function, x∗ a simple root of f and G a function satisfying
G (0) = 1, G ′ (0) = 1

2 and
∣
∣G ′′ (0)

∣
∣ < +∞. Then show [100]: iteration

xn+1 = xn − G (L f (xn))
f (xn)

f ′ (xn)
, (n ≥ 0)

where

L f (x) = f (x) f ′′ (x)

f ′ (x)2

is of third order for an appropriate choice of x0. This result is due to Gander.
Note that function G can be chosen

G (x) = 1 + x

2
(Chebyshev method);

G (x) = 1 + x

2 − x
(Halley method);

G (x) = 1 + x

2 (1 − x)
(Super-Halley method).
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4.9.23. Consider the super-Halley method for all n ≥ 0 in the form:

F (xn) + F ′ (xn) (yn − xn) = 0,

3F (xn) + 3F ′ (xn)
[

xn + 2
3 (yn − xn)

]

(yn − xn) + 4F ′ (yn) (xn+1 − yn) = 0,

for approximating a solution x∗ of equation F (x) = 0. Let F .. � ⊆ X → Y be
a three times Fréchet-differentiable operator defined on an open convex subset
� of a Banach space X with values in a Banach space Y . Assume:
(1) �0 = F ′ (x0)

−1 ∈ L (Y, X) for some x0 ∈ � with ‖�0‖ ≤ β;
(2) ‖�0 F (x0)‖ ≤ η;
(3)

∥
∥F ′′ (x)

∥
∥ ≤ M (x ∈ �) ;

(4)
∥
∥F ′′′ (x) − F ′′′ (y)

∥
∥ ≤ L ‖x − y‖ (x, y ∈ �) , (L ≥ 0) .

Denote by a0 = Mβη, c0 = Lβη3, and define sequences

an+1 = an f (an)2 g (an, cn) ,

cn+1 = cn f (an)4 g (an, cn)3 ,

where

f (x) = (1 − x)

x2 − 4x + 2
and g (x, y) = 1

8

[

x3

(1 − x)2
+ 17

27 y

]

.

Suppose: a0 ∈
(

o, 1
2

)

, c0 < h (a0), where

h (x) =
27 (2x − 1) (x − 1)

(

x − 3 + √
5
) (

x − 3 − √
5
)

17 (1 − x)2
,

Ū (x0, Rη) ⊆ �, R =
[

1 + a0

2 (1 − a0)

]
1

1 − �
,

and � = f (a0)
−1. Then show: iteration {xn} (n ≥ 0) is well defined, remains in

Ū (x0, Rη) for all n ≥ 0, and converges to a solution x∗ of equation F (x) = 0.
The solution x∗ is unique in U (x0,

2
Mβ

− Rη) ∩ � and

∥
∥xn − x∗∥∥ ≤

[

1 + a0γ
4n−1

3

2 (1 − a0)

]

γ
4n−1

3
�n

1 − γ 4n
�

η (n ≥ 0) ,

where γ = a1
a0

.
4.9.24. Consider the multipoint iteration method [93]:

yn = xn − F ′ (xn)−1 F (xn)

Gn = F ′ (xn)−1
[

F ′
(

xn + 2
3 (yn − xn)

)

− F ′ (xn)
]

,

xn+1 = yn − 3
4 Gn

[

I − 3
2 Gn

]

(yn − xn) (n ≥ 0) ,
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for approximating a solution x∗ of equation F (x) = 0. Let F .. � ⊆ X → Y be
a three times Fréchet-differentiable operator defined on an open convex subset
� of a Banach space X with values in a Banach space Y . Assume:
(1) �0 = F ′ (x0)

−1 ∈ L (Y, X) exists for some x0 ∈ � and ‖�0‖ ≤ β;
(2) ‖�0 F (x0)‖ ≤ η;
(3)

∥
∥F ′′ (x)

∥
∥ ≤ M (x ∈ �) ;

(4)
∥
∥F ′′′ (x)

∥
∥ ≤ N (x ∈ �) ;

(5)
∥
∥F ′′′ (x) − F ′′′ (y)

∥
∥ ≤ L ‖x − y‖ (x, y ∈ �) , (L ≥ 0) .

Denote by a0 = Mβη, b0 = Nβη2 and c0 = Lβη3. Define the sequence

an+1 =an f (an)2 g (an, bn, cn) ,

bn+1 =bn f (an)3 g (an, bn, cn)2 ,

cn+1 =cn f (an)4 g (an, bn, cn)3 ,

where

f (x) = 2

2 − 2x − x2 − x3
,

and
g (x, y, z) = 1

216

[

27x3
(

x2 + 2x + 5
)

+ 18xy + 17z
]

.

If a0 ∈
(

0, 1
2

)

, 17c0 + 18a0b0 < p (a0), where

p (x) = 27 (1 − x) (1 − 2x)
(

x2 + x + 2
) (

x2 + 2x + 4
)

,

Ū (x0, Rη) ⊆ �, R =
[

1 + a0

2
(1 + a0)

] 1

1 − γ�
, γ = a1

a0
, � = f (a0)

−1 ,

then show: iteration {xn} (n ≥ 0) is well defined, remains in Ū (x0, Rη) for all
n ≥ 0, and converges to a solution x∗ of equation F (x) = 0, which is unique in
U (x0,

2
Mβ

− Rη) ∩ �. Moreover, the following error bounds hold for all n ≥ 0:

∥
∥xn − x∗∥∥ ≤

[

1 + a0

2
γ

4n−1
3

(

1 + a0γ
4n−1

3

)]

γ
4n−1

3
�n

1 − γ 4n
�

η.

4.9.25. Consider the Halley method [68]

xn+1 = xn − [I − L F (xn)]−1 F ′ (xn)−1 F (xn) (n ≥ 0)

where
L F (x) = F ′ (x)−1 F ′′ (x) F ′ (x)−1 F (x) ,

for approximating a solution x∗ of equation F (x) = 0. Let F .. � ⊆ X → be
a twice Fréchet-differentiable operator defined on an open convex subset of a
Banach space X with values in a Banach space Y . Assume:
(1) F ′ (x0)

−1 ∈ L (Y, X) exists for some x0 ∈ �;
(2) ‖F ′ (x0)

−1 F (x0) ‖ ≤ β;
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(3) ‖F ′ (x0)
−1 F ′′ (x0) ‖ ≤ γ ;

(4) ‖F ′ (x0)
−1 [F ′′ (x) − F ′′ (y)

] ‖ ≤ M ‖x − y‖ (x, y ∈ �) .

If

β ≤
2
[

2
√

γ 2 + 2M + γ
]

3
[√

γ 2 + 2M + γ
]2

, Ū (x0, r1) ⊆ �,

(r1 ≤ r2) where r1, r2 are the positive roots of h (t) = β − t + γ
2 t2 + M

6 t3,
then show: iteration {xn} (n ≥ 0) is well defined, remains in Ū (x0, r1) for all
n ≥ 0, and converges to a unique solution x∗ of equation F (x) = 0 in Ū (x0, r1).
Moreover, the following error bounds hold for all n ≥ 0:

∥
∥x∗ − xn+1

∥
∥ ≤ (r1 − tn+1)

(‖x∗ − xn‖
r1 − tn

)3

,

(λ2θ)3n

λ2 − (λ2θ)3n (r2 − r1) ≤ r1 − tn ≤ λ1θ

λ1 − (λ1θ)3n (r2 − r1) ,

θ = r1

r2
, λ1 =

√

(r0 − r2)
2 + r0r2

(r0 − r1)
2 + r0r1

≤ 1, λ2 =
√

3

2
,

−r0 is the negative root of h, and tn+1 = H (tn), where

H (t) = t − h (t) /h′ (t)
1 − 1

2 Lh (t)
, Lh (t) = h (t) /h′′ (t)

h′ (t)2
.

4.9.26. Consider the iteration [91]

xn+1 = xn − [I + T (xn)] �n F (xn) (n ≥ 0) ,

where �n = F ′ (xn)−1 and T (xn) = 1
2�n A�n F (xn) (n ≥ 0), for approximat-

ing a solution x∗ of equation F (x) = 0. Here A.. X × X → Y is a bilinear
operator with ‖A‖ = α, and F .. � ⊆ X → Y is a Fréchet-differentiable oper-
ator defined on an open convex subset � of a Banach space X with values in a
Banach space Y . Assume:

(1) F ′ (x0)
−1 = �0 ∈ L (Y, X) exists for some x0 ∈ � with ‖�0‖ ≤ β;

(2) ‖�0 F (x0)‖ ≤ η;
(3)

∥
∥F ′ (x) − F ′ (y)

∥
∥ ≤ k ‖x − y‖ (x, y ∈ �) .

Let a, b be real numbers satisfying a ∈
[

0, 1
2

)

, b ∈ (0, σ ), where

σ =
2
[

2a2 − 3a − 1 + √
1 + 8a − 4a2

]

a (1 − 2a)
.

Set a0 = 1, c0 = 1, b0 = b
2 and d0 = 1 + b

2 . Define sequence
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an+1 = an

1 − aandn
, cn+1 = an+1

2

[

a + b

(1 + bn)2

]

d2
n ,

bn+1 = b

2
an+1cn+1, dn+1 = (1 + bn+1) cn+1

and rn+1 = ∑n+1
k=0 dk (n ≥ 0). If a = κβη ∈

[

0, 1
2

)

, Ū (x0, rη) ⊆ �, r =
limn→∞ rn , α ∈

[

0, σ
βη

)

, then show: iteration {xn} (n ≥ 0) is well defined,

remains in Ū (x0, rη), and converges to a solution x∗ of equation F (x) = 0,
which is unique in U (x0,

2
κβ

− rη). Moreover, the following error bounds hold
for all n ≥ 0

‖xn+1 − xn‖ ≤ dnη

and
∥
∥x∗ − xn+1

∥
∥ ≤ (r − rn) η =

∞
∑

k=n+1

dkη.

4.9.27. Consider the Halley method [106] in the form:

yn = xn − �n F (xn) , �n = F ′ (xn)−1 ,

xn+1 = yn + 1
2 L F (xn) Hn (yn − xn) (n ≥ 0) ,

L F (xn) = �n F ′′ (xn) �n F (xn) , Hn = [I − L F (xn)]−1 (n ≥ 0) ,

for approximating a solution x∗ of equation F (x) = 0. Let F .. � ⊆ X → Y be
a twice Fréchet-differentiable operator defined on an open convex subset � of a
Banach space X with values in a Banach space Y . Assume:

(1) �0 ∈ L (Y, X) exists for some x0 ∈ � with ‖�0‖ ≤ β;
(2)

∥
∥F ′′ (x)

∥
∥ ≤ M (x ∈ �);

(3)
∥
∥F ′′ (x) − F ′′ (y)

∥
∥ ≤ N ‖x − y‖ (x, y ∈ �) ;

(4) ‖�0 F (x0)‖ ≤ η;
(5) the polynomial p (t) = k

2 t2 − 1
β

t + η
β

, where M2 + N
2β

≤ k2 has two positive
roots r1 and r2 with (r1 ≤ r2).

Let sequences {sn}, {tn}, (n ≥ 0) be defined by

sn = tn − p (tn)

p′ (tn)
, tn+1 = sn + 1

2

L p (tn)

1 − L p (tn)
(sn − tn) (n ≥ 0) .

If, Ū (x0, r1) ⊆ �, then show: iteration {xn} (n ≥ 0) is well defined, remains in
U (x0, r1) for all n ≥ 0, and converges to a solution x∗ of equation F (x) = 0.
Moreover, if r1 < r2, the solution x∗ is unique in Ū (x0, r2). Furthermore, the
following error bounds hold for all (n ≥ 0)

∥
∥x∗ − xn

∥
∥ ≤ r1 − tn = (r2 − r1) θ4n

1 − θ4n , θ = r1

r2
.



5

Newton-like Methods

General classes of iterative methods are examined under weaker conditions than be-
fore.

5.1 Newton-like methods of “bounded deterioration”

We use Newton-like (NL) method

xn+1 = xn − A (xn)−1 F (xn) (n ≥ 0) (5.1.1)

to generate a sequence approximating x∗.
A survey of results concerning the convergence of method (5.1.1) can be found

in [34], [35], [74] and the references there. Here A (x) ∈ L (X, Y ) . We consider
A (xn) (see (5.1.15)) (n ≥ 0) as expressing a sequence of Jacobian approximations to
F ′ (xn) (n ≥ 0), which is of “bounded deterioration” [75]. That is, although A (xn)

is not necessarily converging to F ′ (x∗) as xn → x∗, the divergence is proportional
to the distance between method (5.1.1) and its starting point.

We provide a convergence analysis based on this concept (i.e., (5.1.15)). In par-
ticular using the majorant method, and more precise majorizing sequences than
before [75], we show under the same hypotheses and computational cost: in the
semilocal case, finer error bounds on the distances ‖xn+1 − xn‖ , ‖xn − x∗‖ (n ≥ 0)

and more precise information on the location of the solution x∗; whereas in the local
case, again finer error bounds and a larger convergence radius are obtained.

Other favorable comparisons with special Newton-like methods are also given as
well as some numerical results.

To first examine the semilocal case, we need the following lemma on majorizing
sequences:

Lemma 5.1.1. Assume there exist nonnegative parameters K , K1, η, �, an > 0
(n ≥ 0), bn ≥ 0, cn ≥ an and δ ∈ [0, 2) such that for all n ≥ 0:

0 ≤ hn
δ = 1

an

{[

K
(

δ
2

)n + 2K1
2−δ

(

1 − (
δ
2

)n+1
)]

n + 2 (bn − �)
}

≤ δ. (5.1.2)

I.K. Argyros, Convergence and Applications of Newton-type Iterations,
DOI: 10.1007/978-0-387-72743-1 5, c© Springer Science+Business Media, LLC 2008
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Then, iteration {tn} (n ≥ 0) given by

t0 = 0, t1 = η, tn+2 = tn+1 + 1
2cn

[

K (tn+1 − tn) + 2 (bn − � + K1tn)
]

(tn+1 − tn)
(5.1.3)

is nondecreasing, bounded above by t∗∗ = 2η
2−δ

, and converges to some t∗ such that

0 ≤ t∗ ≤ t∗∗. (5.1.4)

Moreover, the following estimates hold for all n ≥ 0:

0 ≤ tn+2 − tn+1 ≤ δ
2 (tn+1 − tn) ≤ (

δ
2

)n+1
η. (5.1.5)

Proof. We shall show using induction on k ≥ 0:

1
an

[

K (tk+1 − tk) + (2bk − � + K1tk)
] ≤ δ (5.1.6)

and
tk+1 − tk ≥ 0. (5.1.7)

Estimate (5.1.5) can then follow immediately from (5.1.3), (5.1.6), and (5.1.7). For
k = 0, (5.1.6) and (5.1.7) hold by (5.1.2) and (5.1.3), respectively. We also get

0 ≤ t2 − t1 ≤ δ
2 (t1 − t0) . (5.1.8)

Let us assume (5.1.5)–(5.1.7) hold for all k ≤ n + 1.
We can have in turn:

1
ak+1

[

K (tk+2 − tk+1) + 2 (bk+1 − � + K1tk+1)
]

(5.1.9)

≤ 1
ak+1

{

K
(

δ
2

)k+1
η + 2 (bk+1 − �) + 2K1

[

t1 + δ
2 (t1 − t0)

+ (
δ
2

)2
(t1 − t0) + · · · + (

δ
2

)k
(t1 − t0)

]}

= hk+1
s ≤ δ (by (5.1.2)).

We shall show:
tk ≤ t∗∗ (k ≥ 0) . (5.1.10)

Clearly (5.1.10) holds for k = 0, 1, 2 by the initial conditions. Assume (5.1.10) holds
for all k ≤ n.

It follows from (5.1.3) and (5.1.5)

tk+2 ≤ tk+1 + δ
2 (tk+1 − tk) ≤ · · · ≤ η + δ

2η + · · · + (
δ
2

)k+1
η (5.1.11)

= 1−
(

δ
2

)k+2

1− δ
2

η ≤ 2η
2−δ

= t∗∗.

Hence, sequence {tn} (n ≥ 0) is bounded above by t∗∗, nondecreasing, and as
such it converges to some t∗ satisfying (5.1.4).

We can show the following semilocal result for method NL.
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Theorem 5.1.2. Let F.. D ⊆ X → Y be a Fréchet-differentiable operator. Assume:
there exists an approximation A (x) ∈ L (X, Y ) of operator F ′ (x) an open convex
subset D0 of D, x0 ∈ D0 so that A−1 ∈ L (Y, X), nonnegative parameters η, d, K0,
K , K1, bn, � and δ ∈ [0, 2) such that:

∥
∥
∥A−1

0 F (x0)

∥
∥
∥ ≤ η, A0 = A (x0) , (5.1.12)

∥
∥
∥A−1

0

[

F ′ (x) − F ′ (x0)
]
∥
∥
∥ ≤ K0 ‖x − x0‖ , (5.1.13)

∥
∥
∥A−1

0

[

F ′ (x) − F ′ (y)
]
∥
∥
∥ ≤ K ‖x − y‖ , (5.1.14)

for all x, y ∈ D0,
∥
∥
∥A−1

0

[

A (xn) − F ′ (xn)
]
∥
∥
∥ ≤ bn − � + K1

∑n
j=1

∥
∥x j − x j−1

∥
∥ , (5.1.15)

∥
∥
∥A−1

0

(

A (x0) − F ′ (x0)
)
∥
∥
∥ ≤ d; (5.1.16)

condition (5.1.2) holds for

an = 1 −
[

d + bn − � + K2η
2−δ

(

1 − (
δ
2

)n+1
)]

, K2 = 2 (K0 + K1) ; (5.1.17)

qn = d + bn − � + K2η
2−δ

(

1 − (
δ
2

)n+1
)

< 1 (n ≥ 0) ; (5.1.18)

and
U
(

x0, t∗
) ⊆ D0, (5.1.19)

where t∗ is defined in Lemma 5.1.1.
Then sequence {xn} (n ≥ 0) generated by NL method is well defined, remains

in U (x0, t∗) for all n ≥ 0, and converges to a solution x∗ ∈ U (x0, t∗) of equation
F (x) = 0.

Moreover, the following estimates hold for all n ≥ 0:

‖xn+1 − xn‖ ≤ tn+1 − tn (5.1.20)

and
∥
∥xn − x∗∥∥ ≤ t∗ − tn, (5.1.21)

where sequence {tn} is given by (5.1.3) for

cn = 1 −
(

d + bn − � + K2
2 tn

)

(n ≥ 0) . (5.1.22)

Furthermore the solution x∗ is unique in U (x0, t∗) if

0 < bn + d − �. (5.1.23)

Finally if there exists t∗1 > t∗ such that

U
(

x0, t∗1
) ⊆ D0, (5.1.24)

and
K0
2

(

t∗ + t∗1
) ≤ 1, (5.1.25)

then, the solution x∗ is unique in U
(

x0, t∗1
)

.
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Proof. We shall show:
‖xk+1 − xk‖ ≤ tk+1 − tk (5.1.26)

xk+1 ∈ U
(

x0, t∗
)

(5.1.27)

and
k∑

i=0
‖xi+1 − xi‖ ≤ t∗ (5.1.28)

for all k ≥ 0. Estimates (5.1.26)–(5.1.28) hold for k = 0 by the initial conditions.
Assume they hold for all k ≤ n. Then, we have:

‖xk+1 − x0‖ ≤ ‖xk+1 − xk‖ + ‖xk − xk−1‖ + · · · + ‖x1 − x0‖
≤ (tk+1 − tk) + (tk − tk−1) + · · · + (t1 − t0) = tk+1 ≤ t∗, (5.1.29)

and
k∑

i=0
‖xi+1 − xi‖ ≤ t∗. (5.1.30)

By (5.1.13), (5.1.15)–(5.1.18), and the induction hypotheses, we obtain in turn:
∥
∥
∥A−1

0 (A (xk+1) − A (x0))

∥
∥
∥ ≤

≤
∥
∥
∥A−1

0

(

A (xk+1) − F ′ (xk+1)
)
∥
∥
∥

+
∥
∥
∥A−1

0

(

F ′ (xk+1) − F ′ (x0)
)
∥
∥
∥+

∥
∥
∥A−1

0

(

A (x0) − F ′ (x0)
)
∥
∥
∥

≤ bk+1 − � + K1

n+1∑

j=1

∥
∥x j − x j−1

∥
∥+ K0 ‖xk+1 − x0‖ + d

≤ bk+1 − � + (K0 + K1) tk+1 + d ≤ qk+1 < 1. (5.1.31)

It follows from (5.1.31), and the Banach Lemma on invertible operators that
A (xk+1)

−1 exists so that:
∥
∥
∥A (xk+1)

−1 A0

∥
∥
∥ ≤ c−1

k+1 ≤ a−1
k+1. (5.1.32)

Using NL, (5.1.3), (5.1.14), (5.1.15), and the approximation

A−1
0 F (xk+1) =

= A−1
0

[

F (xk+1) − F (xk) − A (xk) (xk+1 − xk)
]

= A−1
0

{
∫ 1

0

[

F ′ (xk+1 + θ (xk − xk+1)) − F ′ (xk)
]

(xk+1 − xk) dθ

× [

F ′ (xk) − A (xk)
]

(xk+1 − xk)

}

, (5.1.33)

we get
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∥
∥
∥A−1

0 F (xk+1)

∥
∥
∥ ≤

≤ 1
2 K ‖xk+1 − xk‖2 +

⎛

⎝bk − � + K1

k
∑

j=1

∥
∥x j − x j−1

∥
∥

⎞

⎠ ‖xk+1 − xk‖

≤ 1
2 K (tk+1 − tk)

2 + (bk − � + K1tk) (tk+1 − tk) . (5.1.34)

Moreover by NL, (5.1.32), and (5.1.34) we obtain

‖xk+2 − xk+1‖ =
∥
∥
∥

[

A (xk+1)
−1 A0

] [

A−1
0 F (xk+1)

]∥
∥
∥

≤
∥
∥
∥A (xk+1)

−1 A0

∥
∥
∥ ·

∥
∥
∥A−1

0 F (xk+1)

∥
∥
∥

≤
1
2 K(tk+1−tk)

2+(bk−�+K1tk )(tk+1−tk)
ck+1

= tk+2 − tk+1, (5.1.35)

which completes the induction for (5.1.26).
Furthermore we have:

k+1
∑

i=0

‖xi+1 − xi‖ ≤ tk+1 ≤ t∗, (5.1.36)

and
‖xk+2 − x0‖ ≤ tk+2 ≤ t∗, (5.1.37)

which complete the induction for (5.1.27) and (5.1.28).
It follows from (5.1.26) and (5.1.27) that sequence {xn} (n ≥ 0) is Cauchy in a

Banach space X and as such it converges to some x∗ ∈ U (x0, t∗) (as U (x0, t∗) is a
closed set). By letting K → ∞ in (5.1.39) we obtain F (x∗) = 0. Estimate (5.1.21)
follows from (5.1.20) by using standard majorization techniques.

To show uniqueness in U (x0, t∗), let y∗ be a solution of equation F (x) = 0. By
(5.1.13), (5.1.18), and (5.1.23) we have

∥
∥
∥
∥
∥

A−1
0

∫ 1

0

[

F ′ (y∗ + θ
(

x∗ − y∗))− F ′ (x0)
]

dθ

∥
∥
∥
∥
∥

≤ K0

∫ 1

0

∥
∥y∗ + θ

(

x∗ − y∗)− x0
∥
∥ dθ

≤ K0

∫ 1

0

[

θ
∥
∥x∗ − x0

∥
∥+ (1 − θ)

∥
∥y∗ − x0

∥
∥
]

dθ (5.1.38)

≤ Lt∗ < 1. (5.1.39)

It follows again from (5.1.35) and the Banach Lemma on invertible operators that
linear operator

L =
∫ 1

0
F ′ (y∗ + θ

(

x∗ − y∗)) dθ (5.1.40)

is invertible. Using the identity
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0 = F
(

x∗)− F
(

y∗) = L
(

x∗ − y∗) , (5.1.41)

we deduce
x∗ = y∗. (5.1.42)

Similarly if y∗ ∈ U
(

x0, t∗1
)

, we obtain again that operator L is invertible as by
(5.1.25) and (5.1.39)

∥
∥
∥A−1

0

[

L − F ′ (x0)
]
∥
∥
∥ <

K0

2

(

t∗ + t∗1
) ≤ 1. (5.1.43)

Hence, again we get (5.1.43).

Remark 5.1.3. (a) If

K0 = K , (5.1.44)

K1 = σ K , (5.1.45)

and
δ = 1 (5.1.46)

where σ ≥ 1, (and �) are given in [74, p. 441], then Theorem 5.1.2 reduces to
essentially Theorems 2.4–2.5 and 3.2 in [74].

However in general
K0 ≤ K (5.1.47)

holds. Hence if strict inequality holds in (5.1.47), we obtain immediately under the
hypotheses of Theorem 5.1.2 and the ones in [74]

‖xn+1 − xn‖ ≤ tn+1 − tn < sn+1 − sn (n ≥ 0) , (5.1.48)
∥
∥xn − x∗∥∥ ≤ t∗ − tn ≤ s∗ − sn, (5.1.49)

tn < sn (n ≥ 1) , (5.1.50)

and

t∗ ≤ s∗ (5.1.51)

where sn, s∗ used in [74], and are given by

sn+i = sn + f (tn)

cn
, s0 = 0, (5.1.52)

f (t) = 1
2σ K t2 − �t + b0η, (5.1.53)

and s∗ is the smallest zero of equation

f (t) = 0. (5.1.54)

That is, we obtain finer estimates on the distances involved and a more precise
information on the location of the solution under the same hypotheses and com-
putational cost. Note that in practice the computation of Lipschitz constant K also
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involves the computation of K0. Moreover, note that our hypotheses hold whenever
the corresponding ones in [74] hold but not necessarily vice versa (unless if (5.1.40)–
(5.1.42) hold).

(b) In the special case of Newton’s method, i.e., when

A (x) = F ′ (x) (x ∈ 1) (5.1.55)

we have
K1 = 0, σ = 1, bn = � (n ≥ 0) and d = 0.

In order for us to compare Theorem 5.1.2 with the corresponding ones in [74], as-
sume δ is given by (5.1.46). Then it can easily be seen that the conditions of Lemma
5.1.1 and Theorem 5.1.2 are satisfied if

h1 = (K + K0) η ≤ 1, (5.1.56)

whereas the conditions in [74] reduce to the famous Newton-Kantorovich hypothesis.

The advantages of this approach have been explained in Section 2.2.
The rest of the results mentioned there can also be improved along the same lines.

To avoid repetitions, we leave these details to the motivated reader and we study the
local convergence of NL method instead (not considered in [74]).

In what follows, we study the local convergence for NL method.

Theorem 5.1.4. Let F.. D ⊆ X → Y be a Fréchet-differentiable operator. Assume:
there exist an approximation A (x) ∈ L (X, Y ) of operator F ′ (x), an open convex
subset D0 of D, a solution x∗ of equation F (x) = 0 such that A (x∗)−1 ∈ L (Y, X),
and nonnegative parameters, bn, �, b, Li , i = 0, 1, ..., 6 such that the following
conditions hold for all xn, x, y ∈ D0 (n ≥ 0):

∥
∥
∥A

(

x∗)−1 [
F ′ (x) − F ′x∗]

∥
∥
∥ ≤ L0

∥
∥x − x∗∥∥ , (5.1.57)

∥
∥
∥A

(

x∗)−1 [
F ′ (x) − F ′ (y)

]
∥
∥
∥ ≤ L1 ‖x − y‖ , (5.1.58)

∥
∥
∥A

(

x∗)−1 [
A (x) − A

(

x∗)]
∥
∥
∥ ≤ L2

∥
∥x − x∗∥∥+ L3, (5.1.59)

∥
∥
∥A

(

x∗)−1 [
A (xn) − F ′ (xn)

]
∥
∥
∥ ≤ bn − � + L4

n∑

j=1

∥
∥x j − x j−1

∥
∥ , (5.1.60)

and
∥
∥
∥A

(

x∗)−1 [
F ′ (x∗)− A (x)

]
∥
∥
∥ ≤ L5

∥
∥x − x∗∥∥+ L6; (5.1.61)

bn − � ≤ b; (5.1.62)

equation
(

1
2 L1 + L2

)

r + L4

1 − α (r)
η + b + L3 − 1 = 0 (5.1.63)
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has a minimal nonnegative zero r∗ satisfying

L2r + L3 < 1 (5.1.64)

and

α (r) < 1; (5.1.65)

U
(

x∗, r∗) ⊆ D0. (5.1.66)

Then, sequence {xn} (n ≥ 0) generated by NL method is well defined, remains in
U (x∗, r∗) for all n ≥ 0, and converges to x∗ provided that x0 ∈ U (x∗, r∗).

Moreover, the following estimates hold for all n ≥ 0:

‖xn+2 − xn+1‖

≤
[∫ 1

0 L0‖(1−θ)(xn+1−x∗)+θ(xn−x∗)‖dθ+L6+L5‖xn−x∗‖
]

‖xn+1−xn‖
1−(L3+L2‖xn+1−x∗‖) (5.1.67)

and

∥
∥xn+1 − x∗∥∥ ≤

[

1
2 L1‖xn−x∗‖+

(

bn−�+L4

n∑

j=1
‖x j −x j−1‖

)]

‖xn−x∗‖
1−(L3+L2‖xn−x∗‖) . (5.1.68)

Proof. By hypothesis x0 ∈ U (x∗, r∗). Let x ∈ U (x∗, r∗). Using (5.1.59) and
(5.1.65), we get
∥
∥
∥A

(

x∗)−1 [
A (x) − A

(

x∗)]
∥
∥
∥ ≤ L3 + L2

∥
∥x − x∗∥∥ ≤ L3 + L2r∗ < 1. (5.1.69)

It follows from (5.1.69), and the Banach Lemma on invertible operators that A (x)−1

exists with ∥
∥
∥A (x)−1 A

(

x∗)
∥
∥
∥ ≤ [

1 − (

L3 + L2
∥
∥x − x∗∥∥)]−1

. (5.1.70)

Moreover in (5.1.46) using (5.1.57)–(5.1.62) induction on n (5.1.69) for x = xn+1,
and the approximations

xn+2 − xn+1

=
[

A (xn+1)
−1 A

(

x∗)
]

A
(

x∗)−1

×
∫ 1

0

[

F ′ (xn+1 + θ (xn − xn+1)) − F ′ (x∗)] (xn − xn+1) dθ

+
[

A (xn+1)
−1 A

(

x∗)
]

A
(

x∗)−1 [
F ′ (x∗)− A (xn)

]

(xn − xn+1) , (5.1.71)

and
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xn+1 − x∗

=
[

A (xn)−1 A
(

x∗)
]

A
(

x∗)−1

×
∫ 1

0

[

F ′ (xn + θ
(

x∗ − xn
))− F ′ (xn)

] (

x∗ − xn
)

dθ

+
[

A (xn)−1 A
(

x∗)
]

A
(

x∗)−1 (
F ′ (xn) − A (xn)

) (

x∗ − xn
)

, (5.1.72)

we obtain (5.1.67) and (5.1.68), respectively.
Furthermore by (5.1.63)–(5.1.66) we obtain

∥
∥x∗ − xn+1

∥
∥ <

∥
∥x∗ − xn

∥
∥ < x∗ − x0, (5.1.73)

n
∑

j=1

∥
∥x j − x j−1

∥
∥ ≤ η + α

(

r∗) η + α2 (r∗) η + · · · + αn−1 (r∗) η

≤ 1−αn(r∗)
1−α(r)

η ≤ η
1−α(r)

(5.1.74)

Hence, we deduce xn ∈ U (x∗, r∗) (n ≥ 0), and limn→∞ = x∗.

Remark 5.1.5. In order for us to compare Theorem 5.1.4 with results already in the
literature we consider again Newton’s method. We can choose:

L0 = L2 = L5, bn = �, L4 = L6 = 0 (5.1.75)

Then hypotheses of Theorem 5.1.2 are satisfied if

r∗ = 2
2L0+L1

. (5.1.76)

Rheinboldt in [175] in this case using only (5.1.58) obtained

rR = 2
3L1

(see also Section 2.4). (5.1.77)

5.2 Weak conditions for the convergence of a certain class of
iterative methods

In this section, we are concerned with the problem of approximating a locally unique
solution x∗ of the nonlinear equation

F (x) + G (x) = 0, (5.2.1)

where F, G are operator defined on an open subset Q a Banach space X with val-
ues in a Banach space Y . Operator F is Fréchet-differentiable on U (z, R), and the
differentiability of G is not assumed.

Recently in [35], we used the Newton-like method

x0 ∈ U (z, R) , xn+1 = xn − A (xn)−1 [F (xn) + G (xn)] (n ≥ 0) (5.2.2)
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to generate a sequence approximating x∗. Here, A (v) ∈ L (X, Y ) (v ∈ X).
Throughout this study, we assume there exists z ∈ X , R > 0, a ≥ 0, b ≥ 0,

η ≥ 0 with A (z)−1 ∈ L (Y, X), and for any x, y ∈ U (z, r) ⊆ U (z, R) ⊆ Q
∥
∥
∥A (z)−1 [A (x) − A (x0)]

∥
∥
∥ ≤ w0 (‖x − x0‖) + a, (5.2.3)

∥
∥
∥A (z)−1 [F ′ (x + t (y − x)) − A (x)

]
∥
∥
∥

≤ w (‖x − z‖ + t ‖x − y‖) − w1 (‖x − z‖ + b, t ∈ [0, 1]) (5.2.4)
∥
∥
∥A (z)−1 [G (x) − G (y)]

∥
∥
∥ ≤ w2 (r) ‖x − y‖ , (5.2.5)

∥
∥
∥A (z)−1 [F (z) + G (z)]

∥
∥
∥ ≤ η, (5.2.6)

where, w0 (r), w1 (z), w2 (r), w (r), w (r + t) − w1 (r) (t ≥ 0) are nondecreasing,
nonnegative functions on [0, R] with w (0) = w0 (0) = w1 (0) = w2 (0) = 0, and
parameters a, b satisfy

a + b < 1. (5.2.7)

Using (5.2.3)–(5.2.7) instead of the less flexible conditions considered in [58],
we showed in [35] that the following can be obtained under the same computational
cost

(a) weaker sufficient convergence conditions for method (5.2.2);
(b) finer estimates on the distances

‖xn+1 − xn‖ ,
∥
∥xn − x∗∥∥ (n ≥ 0) ;

(c) more precise information on the location of the solution.

Here we continue the work in [35] to show how to improve even further on (a)–
(c).

We study the semilocal convergence analysis for method (5.2.2) (see also Chapter
2).

It is convenient to define scalar iteration {tn} n ≥ 0 for some r0 ∈ [0, r ] , c ≥ 0

t0 = r0, t1 = r0 + c, (5.2.8)

tn+2 = tn+1 +
{∫ 1

0 w[tn+θ(tn+1−tn)]dθ−w1(tn)+b
}

(tn+1−tn)+
∫ tn+1

tn w2(θ)dθ

1−a−w0(tn+1)

(n ≥ 0) .

Iteration {tn} plays a crucial role in the study of the convergence of method
(5.2.2). It turns out that under certain conditions, {tn} is a majorizing sequence for
{xn}, [35], [58]. Here we try to weaken the earlier conditions and further improve
estimates on the error bounds and location of the solution x∗.

Clearly if
tn < w−1

0 (1 − a) (n ≥ 0) (5.2.9)
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then it follows from (5.2.8) that sequence {tn} is nondecreasing and bounded above

by w−1
0 (1 − a), and as such it converges to some t∗ ∈

[

0, w−1
0 (1 − a)

]

.

We can provide stronger but more manageable conditions that imply (5.2.9).
We need the following general result on majorizing sequences for method (5.2.2).

Lemma 5.2.1. Assume there exist constant d ≥ 0, sequences an ∈ [0, 1), bn ≥ 0,
cn ≥ 0, and dn ≥ 0 such that for

an = a + w0
(

d̄n
)

, bn = (1 − an)−1 ,

cn =
{
∫ 1

0
w
[

tn + θ (tn+1 − tn)
]

dθ − w1 (tn) + b + w2 (tn+1)

}

bn, (5.2.10)

d0 = d0 = r0, d1 = d1 = r0 + c,

dn = r0 + c + c1 (t1 − t0) + c2 (t2 − t1) + · · · + cn−1 (tn−1 − tn−2) (n ≥ 2) ,

(5.2.11)

the following conditions hold for all n ≥ 0:

w0
(

dn
) ≤ w0 (dn) ≤ w0 (d) < 1 − a. (5.2.12)

Then sequence {tn} generated by iteration (5.2.8) is well defined, nondecreasing
bounded above by w−1

0 (1 − a), and converges to some t∗.
Moreover, the following estimates hold:

tn ≤ dn (n ≥ 0) (5.2.13)

and
tn+1 − tn = cn (tn − tn−1) (n ≥ 1) . (5.2.14)

Proof. It suffices to show hypotheses of the Lemma imply condition (5.2.9). Indeed
using (5.2.8), (5.2.10)–(5.2.12) we can have in turn for all n ≥ 2 (as (5.2.9) holds for
n = 0, 1 by the initial conditions):

tn+2 ≤ tn+1 + cn+1 (tn+1 − tn) = tn + cn (tn − tn−1) + cn+1 (tn+1 − tn)

≤ · · · + r0 + c + c1 (t1 − t0) + · · · + cn+1 (tn+1 − tn) = dn+2 ≤ dn+2,

(5.2.15)

which shows (5.2.13) for all n ≥ 0. Moreover by (5.2.12), we obtain

w0 (tn) ≤ w0 (dn) < 1 − a for all n ≥ 0, (5.2.16)

which shows (5.2.9). Moreover, (5.2.14) follows from (5.2.8) and (5.2.11).

For simplicity next, we provide some choices of functions and parameters defined
above in the special case of NK method. That is we choose

A (x) = F ′ (x) , G (x) = 0 (x ∈ U (z, R)) , z = x0 and r0 = 0. (5.2.17)
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Remark 5.2.2. Assume the Lipschitz choices:

w0 (r) = �0r, w (r) = w1 (r) = �r (r ∈ [0, R]) , and a = b = 0, (5.2.18)

where
0 ≤ �0 ≤ � (5.2.19)

holds in general. Special choices of sequences appearing in Lemma 5.2.1 are given
below.

(a) The Newton-Kantorovich case. Assume �0 = �, and h = 2�c ≤ 1.

Define dn, d (n ≥ 0) by

dn = c + 1
21 h21−1c + · · · + 1

2n−1 h2n−1c,

and
d = 1−√

1−h
�

(� �= 0) .

Then it follows from the proof of the Newton-Kantorovich’s theorem (see Chap-
ter 2 Section 2.2) that

an < 1,

and condition (5.2.9) hold.
(b) Assume that any of conditions conditions (2.2.48)–(2.2.50) hold. Then by Theo-

rem 3 in [35] conditions (5.2.9) hold for

dn =
[

1 + δ
2 + · · · + (

δ
2

)n−1
]

c (n ≥ 1)

and
d = 2c

2−δ

Moreover other alternatives which imply condition (5.2.9) are given in Remarks
5.2.3, 5.2.5, and Lemma 5.2.4 that follow:

Remark 5.2.3. Assume there exist parameters α1 ∈ [0, 1 − a), b ∈ [0, 1], α2 (de-
pending on b and α1) such that

w0 (r0 + c) ≤ α1 < 1 − a, (5.2.20)

α1 ≤ α2, (5.2.21)

q (α2) ≤ b for b ∈ [0, 1) , (5.2.22)

or
q (α2) < 1 for b = 1, (5.2.23)

where

q (α) =
∫ 1

0 w
[

w−1
0 (α+θc)

]

dθ−w1

(

w−1
0 (α)

)

+b+w2

(

w−1
0 (α)

)

1−a−α
. (5.2.24)

Then, function
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d (b) = r0 +
(

1 + b + b2 + · · · bn + · · ·
)

c, (5.2.25)

is well defined on interval Ib = [α1, α2] (b �= 1) .

Moreover, assume there exists α∗ ∈ Ib such that

w0
(

d
(

α∗)) ≤ α∗. (5.2.26)

Then using induction on n ≥ 0, we can show condition (5.2.5). Indeed (5.2.9) holds
for n = 0, 1 by the initial conditions. By (5.2.8), we have

t2 − t1 ≤ q
(

α∗) (t1 − t0) ,

then,
w0 (t2) ≤ w0

[

t1 + q
(

α∗) (t1 − t0)
] ≤ w0

(

d
(

α∗)) ≤ α∗ < 1.

If
w0 (tn) ≤ α∗ < 1 − a, then tn+1 − tn ≤ q

(

α∗) (tn − tn−1)

then

w0 (tn+1) ≤ w0
[

tn + q
(

α∗) (tn − tn−1)
]

≤ w0

[

r0 +
(

1 + α∗ + (

α∗)2 + · · · + (

α∗)n−1
)

, c
]

≤ w0
(

d
(

α∗)) ≤ α∗ < 1 − a,

which completes the induction.

Hence, we showed:

Lemma 5.2.4. Under the stated hypotheses:

(a) condition (5.2.9) holds;
(b) sequence {tn} is nondecreasing and converges to some t∗ such that

w0 (tn) ≤ w0
(

t∗
) ≤ 1 − a; (5.2.27)

(c) the following estimates hold for all n ≥ 0:

0 ≤ tn+2 − tn+1 ≤ q
(

α∗) (tn+1 − tn) ≤ b (tn+1 − tn) ≤ bn+1c, (5.2.28)

and
0 ≤ t∗ − tn ≤ bnc

1−b . (5.2.29)

Remark 5.2.5. (a) For b = 1, condition (5.2.23) together with (5.2.8) implies

0 ≤ tn+1 − tn < tn − tn−1 (n ≥ 1) (5.2.30)

Hence, we deduce again t∗ = limn→∞ tn exists.
Moreover if we replace (5.2.9) by

w0
(

t∗
)

< 1 − a (5.2.31)

conclusions (a) and (b) of Lemma 5.2.4 hold, whereas for estimates of the form
(5.2.28) we use (5.2.30).
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(b) It can easily be seen from (5.2.22)–(5.2.25) that conditions (5.2.22) and (5.2.23)
can be replaced by

q1 (α2) ≤ b for b ∈ [0, 1) , (5.2.32)

or
q1 (α2) < 1 for b = 1 (5.2.33)

respectively, where

q1 (α) = q
(

c
1−b

)

. (5.2.34)

We provide the main semilocal convergence theorem for method (5.2.2), which
improves our earlier result (see Theorem 3, [35]).

Theorem 5.2.6. Assume:
hypotheses (5.2.3)–(5.2.8) and (5.2.9) hold for

r0 ∈ [0, r ] , c = r1 − r0, r ∈ [0, R] , (5.2.35)

w−1
0 (1 − a) + r0 ≤ r, U (z, r) ⊆ Q, (5.2.36)

and
x0 ∈ D

(

t∗
)

(5.2.37)

where
t∗ = lim

n→∞ tn, (5.2.38)

{tn} is given by (5.2.8) above, and r1, D (t∗) are defined by (12), (14) in [35], respec-
tively (see also (5.3.74)–(5.3.75)).

Then, iteration {xn} (n ≥ 0) generated by method (5.2.2) is well defined, remains
in U (z, t∗) for all n ≥ 0, and converges to a solution x∗ of equation F (x)+G (x) =
0.

Moreover, the following error bounds hold for all n ≥ 0:

‖xn+1 − xn‖ ≤ tn+1 − tn (5.2.39)

and
∥
∥xn − x∗∥∥ ≤ t∗ − tn . (5.2.40)

Furthermore the solution x∗ is unique in U (z, t∗) if

∫ 1

0

[

w
(

(1 + 2t) t∗
)− w1

(

t∗
)]

dt + w2
(

3t∗
)+ w0

(

t∗
)+ a + b < 1, (5.2.41)

and in U (z, R0) for R0 ∈ (t∗, r
]

if

∫ 1

0

[

w
(

t∗ + t (t∗ + R0)
)− w1

(

t∗
)]

dt + w2
(

2t∗ + R0
)+ w0

(

t∗
)+ a + b < 1.

(5.2.42)
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Proof. Simply repeat the corresponding proof of Theorem 3 in [35] but use (5.2.9)
above instead of conditions (54)–(57) in [35] (see also the similar proof of Theorem
5.3.3 that follows).

Remark 5.2.7. Our condition (5.2.9) is weaker than all earlier ones [58], [74], [125],
[147] in general. Moreover, our error bounds are finer than the corresponding ones
in Theorem 3 [35, p. 664], which in turn were shown in the same paper to be finer
than the ones given by Chen and Yamamoto in [58]. Furthermore the information on
the location of the solution x∗ is more precise than the corresponding ones in [35] or
[58].

Remark 5.2.8. Assume the Newton-Mysovskii-type conditions [43]:

∥
∥
∥A (w)−1 [F ′ (x + t (y − x)) − A (x)

]
∥
∥
∥

≤ w (‖x − z‖ + t ‖y − x‖) − w1 (‖x − z‖) + b (5.2.43)

and ∥
∥
∥A (w)−1 [G (x) − G (y)]

∥
∥
∥ ≤ w2 (r) ‖x − y‖ ,

for all
x, y, w ∈ U (z, r) ⊆ U (z, R) ⊆ D, t ∈ [0, 1] , (5.2.44)

where parameter b, functions w, w1, and w2 are as b, w, w1, and w2, respectively.
Replace conditions (5.2.3)–(5.2.5), by (5.2.43), (5.2.44), condition (5.2.7) by b < 1,
and set bn = 1 for all n ≥ 0, (a = 0). Then clearly all results obtained here hold in
this setting. All the above justify the claims (a)–(c) made at the introduction.

Example 5.2.9. Let X = Y = R, x0 = −.6, D = [−1, 2] and define F on D
by F (x) = 1

3 x3 + .897462. Set w
(r)
0 = �0r , w (r) = �r , a = b = 0. Then we

obtain c = .049295, �0 = 3.8̄ and � = 11.1̄. The NK hypothesis is violated as
h = 2�c = 1.0 − 54̄ > 1. However it can be easily seen that conditions of Remark
5.2.3 hold in this case.

5.3 Unifying convergence analysis for two-point Newton methods

In this section, we are concerned with the problem of approximating a locally unique
solution x∗ of the nonlinear equation

F (x) + G (x) = 0, (5.3.1)

where F, G are operators define on a closed ball U (w, R) centered at point w and of
radius R > 0, which is a subset of a Banach space X with values in a Banach space
Y . F is Fréchet-differentiable on U (w, R), and the differentiability of operator G is
not assumed.

We use the two-point Newton method
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y−1, y0 ∈ U (w, R) , yn+1 = yn − A (yn−1, yn)−1 [F (yn) + G (yn)] (n ≥ 0)

(5.3.2)
to generate a sequence converging to x∗. Here A (x, y) ∈ L (X, Y ). We provide
a local as well as a semilocal convergence analysis for method (5.3.2) under very
general Lipschitz-type hypotheses (see (5.3.3), (5.3.4)).

Our new idea is to use center-Lipschitz conditions instead of Lipschitz conditions
for the upper bounds on the inverses of the linear operators involved. It turns out that
this way we obtain more precise majorizing sequences. Moreover, despite the fact
that our conditions are more general than related ones already in the literature, we
can provide weaker sufficient convergence conditions and finer error bounds on the
distances involved.

We first study the semilocal case. In order for us to show that these observations
hold in a more general setting, we first need to introduce the following:

Let R > 0 be given. Assume there exist v,w ∈ X such that A (v,w)−1 ∈
L (Y, X), and for any x, y, z ∈ U (w, r) ⊆ U (w, R), t ∈ [0, 1], the following hold:

∥
∥
∥A (v,w)−1 [A (x, y)]

∥
∥
∥ ≤ h0 (‖x − v‖ , ‖y − w‖) + a, (5.3.3)

and
∥
∥
∥A (v,w)−1 {[F ′ (y + t (z − y)) − A (x, y)

]

(z − y) + G (z) − G (y)
}
∥
∥
∥ (5.3.4)

≤ [h1 (‖y − w‖ + t ‖z − y‖) − h2 (‖y − w‖) + h3 (‖z − x‖) + b] ‖z − y‖ ,

where, h0 (r, s), h1 (r + r)−h2 (r) (r ≥ 0), h2 (r), h3 (r) are monotonically increas-
ing functions for all r.s on [0, R] with h0 (0, 0) = h1 (0) = h2 (0) = h3 (0) = 0, and
the constants a, b satisfy a ≥ 0, b ≥ 0. Define parameters c−1, c, c1 by

‖y−1 − v‖ ≤ c−1, ‖y−1 − y0‖ ≤ c, ‖v − w‖ ≤ c1. (5.3.5)

Remark 5.3.1. Conditions similar to (5.3.3)–(5.3.4) but less flexible were considered
by Chen and Yamamoto in [58] in the special case when A (x, y) = A (x) for all
x, y ∈ U (w, R) (A (x) ∈ L (X, Y )) (see also Theorem 5.3.9). However, we also
want the choice of operator A to be more flexible and be related to the difference
G (z) − G (y) for all y, z ∈ U (w, R). It has already been shown in special cases
[43], [54] for method (5.3.2) is improved (see also Application 5.3.17). Note also
that if we choose:

A (x, y) = F ′ (x) , G (x) = 0, w = d0, h0 (r, r) = γ0r , (5.3.6)

h1 (r) = h2 (r) = γ1r, h3 (r) = 0,

for all x, y ∈ U (w, R), r ∈ [0, R], and a = b = 0 then conditions (5.3.3), (5.3.4)
reduce to the ones for NM (see Chapter 2). Other choices of operators, functions,
and constants appearing in (5.3.3) and (5.3.4) can be found in the applications that
follow.

With the above choices, we show the following result on majorizing sequences
for method (5.3.2).
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Lemma 5.3.2. Assume:
there exist parameters η ≥ 0, a ≥ 0, b ≥ 0, c−1 ≥ 0, c ≥ 0, δ ∈ [0, 2), r0 ∈ [0, r ] ,

r ∈ [0, R] such that:

2

[
∫ 1

0
h1 (r0 + θη) dθ − h2 (r0) + b + h3 (c + η)

]

+ [

a + h0 (c + c−1, η + r0)
]

≤ δ, (5.3.7)

2η

2 − δ
+ r0 + c ≤ r, (5.3.8)

h0

[

1−
(

δ
2

)n+1

1− δ
2

η + c + c−1,
1−

(
δ
2

)n+2

1−
(

δ
2

) η + r0

]

+ a < 1, (5.3.9)

and

2
∫ 1

0
h1

[

1−
(

δ
2

)n+1

1− δ
2

η + θ
(

δ
2

)n+1
η + r0

]

dθ − 2h2

[

1−
(

δ
2

)n+1

1− δ
2

η + r0

]

+ 2h3

[(
δ
2

)n (
1 + δ

2

)

η
]

+ δh0

[

1−
(

δ
2

)n+1

1− δ
2

η + c + c−1,
1−

(
δ
2

)n+2

1− δ
2

η + r0

]

≤ δ (5.3.10)

for all n ≥ 0.
Then, iteration {tn} (n ≥ −1) given by

t−1 = r0, t0 = c + r0, t1 = c + r0 + η, (5.3.11)

tn+2 = tn+1 + 1

1 − a − h0 (tn − t−1 + c−1, tn+1 − t0 + r0)

×
{
∫ 1

0

[

h1 (tn − t0 + r0 + θ (tn+1 − tn)) − h2 (tn − t0 + r0) + b
]

dθ

+ h3 (tn+1 − tn−1)

}

(tn+1 − tn)

is monotonically increasing, bounded above by

t∗∗ = 2η
2−δ

+ r0 + c, (5.3.12)

and converges to some t∗ such that

0 ≤ t∗ ≤ t∗∗ ≤ r. (5.3.13)

Moreover, the following estimates hold for all n ≥ 0:

0 ≤ tn+2 − tn+1 ≤ δ
2 (tn+1 − tn) ≤ (

δ
2

)n+1
η. (5.3.14)
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Proof. We must show:

2

{
∫ 1

0

[

h1 (tk − t0 + r0 + θ (tk+1 − tk)) − h2 (tk − t0 + r0) + b
]

dθ

+ h3 (tk+1 − tk−1)

}

+ δ
[

a + h0 (tk − t−1 + c−1, tk+1 − t0 + r0)
]

≤ δ, (5.3.15)

0 ≤ tk+1 − tk, (5.3.16)

and

h0 (tk − t−1 + c−1, tk+1 − t0 + r0) + a < 1 (5.3.17)

for all k ≥ 0.
Estimate (5.3.14) can then follow from (5.3.15)–(5.3.17) and (5.3.11).
Using induction on the integer k ≥ 0, we get for k = 0

2

[
∫ 1

0
h1 (r0 + θη) − h2 (r0) + b + h3 (c + η)

]

+ δ
[

a + h0 (c + c−1, η + r0)
] ≤ δ,

0 ≤ t1 − t0,

h0 (c + c−1, η + r0) + a < 1,

which hold by (5.3.7) and the definition of t1.
By (5.3.11) we get

0 ≤ t2 − t1 ≤ δ
2 (t1 − t0) .

Assume (5.3.15)–(5.3.17) hold for all k ≤ n + 1. Using (5.3.15)–(5.3.17) we
obtain in turn

2

{
∫ 1

0

[

h1 (tk+1 − t0 + r0 + θ (tk+2 − tk+1)) − h2 (tk+1 − t0 + r0) + b
]

dθ

+ h3 (tk+2 − tk)

}

+ δ
[

a + h0 (tk+1 − t−1 + c−1, tk+2 − t0 + r0)
]

≤ 2

{
∫ 1

0
h1

[(

1−
(

δ
2

)k+1

1− δ
2

+ θ
(

δ
2

)k+1

)

η + r0

]

− h2

[

1−
(

δ
2

)k+1

1− δ
2

η + r0

]

+ b + h3

[(
δ
2

)k+1
η + (

δ
2

)k
η
]
}

+ δ

[

a + h0

(

1−
(

δ
2

)k+1

1− δ
2

η + c + c−1,
1−

(
δ
2

)k+2

1− δ
2

η + r0

)]

≤ δ
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by (5.3.7) and (5.3.10). Hence we showed (5.3.15) holds for k = n + 2. Moreover,
we must show:

tk ≤ t∗∗ (5.3.18)

t−1 = r0 ≤ t∗∗, t0 = r0 + c ≤ t∗∗, t1 = c + r0 + η ≤ t∗∗,

t2 ≤ c + r0 + η + δ
2η = 2+δ

2 η + r0 + c ≤ t∗∗.

Assume (5.3.18) holds for all k ≤ n + 1. It follows from (5.3.11), (5.3.15)–(5.3.17):

tk+2 ≤ tk+1 + δ
2 (tk+1 − tk) ≤ tk + δ

2 (tk − tk−1) + δ
2 (tk+1 − tk)

≤ · · · ≤ c + r0 + η + δ
2η + (

δ
2

)2
η + · · · + (

δ
2

)k+1
η

= 1−
(

δ
2

)k+2

1− δ
2

η + r0 + c ≤ 2η
2−δ

+ r0 + c = t∗∗. (5.3.19)

Hence sequence {tn} (n ≥ −1) is bounded above by t∗∗. Inequality (5.3.17) holds for
k = n + 2 by (5.3.8) and (5.3.9). Moreover (5.3.16) holds for k = n + 2 by (5.3.19)
and as (5.3.15) and (5.3.17) also hold for k = n + 2. Furthermore, sequence {tn}
(n ≥ 0) is monotonically increasing by (5.3.16) and as such it converges to some t∗
satisfying (5.3.13).

We provide the main result on the semilocal convergence of method (5.3.2) using
majorizing sequence (5.3.11).

Theorem 5.3.3. Assume:
hypotheses of Lemma 5.3.2 hold, and there exist

y−1 ∈ U (w, r) , y0 ∈ U (w, r0) , r ∈ [0, R] , (5.3.20)

such that ∥
∥
∥A (y−1, y0)

−1 [F (y0) + G (y0)]
∥
∥
∥ ≤ η. (5.3.21)

Then, sequence {yn} (n ≥ −1) generated by method (5.3.2) is well defined, remains
in U (w, t∗) for all n ≥ −1, and converges to a solution x∗ of equation F (x) +
G (x) = 0. Moreover, the following estimates hold for all n ≥ −1:

‖yn+1 − yn‖ ≤ tn+1 − tn (5.3.22)

and
∥
∥yn − x∗∥∥ ≤ t∗ − tn . (5.3.23)

Furthermore the solution x∗ is unique in U (w, t∗) if
∫ 1

0
h1
(

(1 + 2t) t∗
)

dt −h2
(

t∗
)+h3

(

2t∗
)+h0

(

t∗ + c1, t∗
)+a+b < 1, (5.3.24)

and in U (w, R0) for R0 ∈ (t∗, r
]

if
∫ 1

0
h1
(

t∗ + (t∗ + R0)t
)

dt −h2
(

t∗
)+h3

(

R0 + t∗
)+h0

(

t∗ + c1, t∗
)+a +b < 1.

(5.3.25)
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Proof. We first show estimate (5.3.22), and yn ∈ U (w, t∗) for all n ≥ −1. For
n = −1, 0, (5.3.22) follows from (5.3.5), (5.3.11), and (5.3.21). Suppose (5.3.22)
holds for all n = 0, 1, ..., k + 1; this implies in particular (using (5.3.5), (5.3.20))

‖yk+1 − w‖ ≤ ‖yk+1 − yk‖ + ‖yk − yk−1‖ + · · · + ‖y1 − y0‖ + ‖y0 − w‖
≤ (tk+1 − tk) + (tk − tk−1) + · · · + (t1 − t0) + r0

= tk+1 − t0 + r0 ≤ tk+1 ≤ t∗.

That is, yk+1 ∈ U (w, t∗).
We show (5.3.22) holds for n = k + 2. By (5.3.3) and (5.3.11), we obtain for all

x, y ∈ U (w, t∗)
∥
∥
∥A (v,w)−1 [A (x, y) − A (v,w)]

∥
∥
∥ ≤ h0 (‖x − v‖ , ‖y − w‖) + a. (5.3.26)

In particular for x = yk and y = yk+1, we get using (5.3.3), (5.3.5),
∥
∥
∥A (v,w)−1 [A (yk, yk+1) − A (v,w)

]
∥
∥
∥

≤ h0 (‖yk − v‖ , ‖yk+1 − w‖) + a

≤ h0 (‖yk − y−1‖ + ‖y−1 − v‖ , ‖yk+1 − x0‖ + ‖y0 − w‖) + a

≤ h0 (tk − t−1 + c−1, tk+1 − t0 + r0) + a

≤ h0

[

1−
(

δ
2

)k

1− δ
2

η + c + c−1,
1−

(
δ
2

)k+1

1− δ
2

η + r0

]

+ a < 1, (by (5.3.9)). (5.3.27)

It follows from (5.3.27) and the Banach Lemma on invertible operator that
A (yk, yk+1)

−1 exists, and
∥
∥
∥A (yk, yk+1)

−1 A (v,w)

∥
∥
∥

≤ [

1 − a − h0 (tk − t−1 + c−1, tk+1 − t0 + r0)
]−1 (5.3.28)

≤ b̄0 = [

1 − a − h0(R − t−1 + c−1, tk+1 − t0 + r0)
]−1

.

Using (5.3.2), (5.3.4), (5.3.11), (5.3.28) we obtain in turn

‖yk+2 − yk+1‖ =
∥
∥
∥A (yk, yk+1)

−1 [F (yk+1) + G (yk+1)
]
∥
∥
∥

=
∥
∥
∥A (yk, yk+1)

−1 [F (yk+1) + G (yk+1)

− A (yk−1, yk) (yk+1 − yk) − F (yk) − G (yk)
]
∥
∥
∥

≤
∥
∥
∥A (yk, yk+1)

−1 A (v,w)

∥
∥
∥

∥
∥
∥

[

A (v,w)−1 F (yk+1) − F (yk)

− A (yk−1, yk) (yk+1 − yk) + G (yk+1) − G (yk)
]∥
∥
∥
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≤
{∫ 1

0 [h1(‖yk−w‖+t‖yk+1−yk‖)−h2(‖yk−w‖)+b]dt+h3(‖yk+1−yk−1‖)
}

‖yk+1−yk‖
1−a−h0(tk−t−1+c−1,tk+1−t0+r0)

≤
{∫ 1

0 [h1(tk−t0+r0+t(tk+1−tk))−h2(tk−t0+r0)+b]dt+h3(tk+1−tk−1)
}

(tk+1−tk)

1−a−h0(tk−t−1+c−1,tk+1−t0+r0)
(5.3.29)

= tk+2 − tk+1,

which shows (5.3.22) for all n ≥ 0.
Note also that

‖yk+2 − w‖ ≤ ‖yk+2 − yk+1‖ + ‖yk+1 − w‖
≤ tk+2 − tk+1 + tk+1 − t0 + r0

= tk+2 − t0 + r0 ≤ tk+2 ≤ t∗. (5.3.30)

That is, yk+2 ∈ U (z, t∗) .

It follows from (5.3.22) that {yn} (n ≥ −1) is a Cauchy sequence in a Banach
space X , and as such it convergence to some x∗ ∈ U (w, t∗). We can have as above

‖yk+2 − yk+1‖ ≤ b̄0

∥
∥
∥A(v,w)−1 [F(yk+1) + G (yk+1)

]
∥
∥
∥ ≤ b̄ ‖yk+1 − yk‖

(5.3.31)
where,

b̄ = b̄0b̄1

and

b̄1 =
∫ 1

0
h1(1 + 2t)Rdt − h2(R) + h3(2R) + b. (5.3.32)

By letting k → ∞ in (5.3.29), using (5.3.28), and the continuity of the operators F ,
G we obtain

b̄0

∥
∥
∥A(v,w)−1 [F(x∗) + G

(

x∗)]
∥
∥
∥ = 0, (5.3.33)

from which we obtain F(x∗) + G (x∗) = 0 (as b̄0 > 0). Estimate (5.3.23) follows
from (5.3.22) by using standard majorization techniques.

To show uniqueness in U (w, t∗), let y∗ be a solution of equation (5.3.1) in
U (w, t∗). Then as in (5.3.29) we obtain the identity:

y∗ − yk+1

= y∗ − yk +−1 (F(yk) + G(yk)) − A(yk−1, yk)
−1 (F(y∗) + G

(

y∗))

= −
[

A(yk−1, yk)
−1 A(v,w)

]

A(v,w)−1

× [

F(y∗) − F(yk) − A(yk−1, yk)(y∗ − yk) + G
(

y∗)− G(yk)
]

(5.3.34)

Using (5.3.34) we obtain in turn

∥
∥y∗ − yk+1

∥
∥ ≤

[∫ 1
0 h1(‖yk−w‖+t‖y∗−yk‖)dt−h2(‖yk−w‖)+h3(‖y∗−yk−1‖)+b

]

‖y∗−yk‖
1−a−h0(‖yk−1−v‖,‖yn−w‖)

≤
∫ 1

0 h1[(1+2t)t∗]dt−h2(t∗)+h3(2t∗)+b
1−a−h0(t∗+c1,t∗)

∥
∥y∗ − yk

∥
∥

<
∥
∥y∗ − yk

∥
∥ . (5.3.35)
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That is, x∗ = y∗, as limn→∞ yn = y∗.
If y∗ ∈ U (w, R0) then as in (5.3.35) we get

∥
∥y∗ − yk+1

∥
∥ ≤

∫ 1
0 h1[t∗+(t∗+R0)t]dt−h2(t∗)+h3(R0+t∗)+b

1−a−h0(t∗+c1,t∗)
∥
∥y∗ − yk

∥
∥

<
∥
∥y∗ − yk

∥
∥ . (5.3.36)

Hence again we get x∗ = y∗.

Remark 5.3.4. Conditions (5.3.9), (5.3.10) can be replaced by the stronger but easier
to check

h0

[
2η

2−δ
+ c + c−1,

2η
2−δ

+ r0

]

+ a < 1, (5.3.37)

and

2
∫ 1

0
h1

[
2η

2−δ
+ θ δ

2 + r0

]

dθ − 2h2

[
2η

2−δ
+ r0

]

+ 2h3
[(

1 + δ
2

)

η
]+ δh0

[
2η

2−δ
+ c + c−1,

2η
2−δ

+ r0

]

≤ δ (5.3.38)

respectively. Conditions (5.3.7)–(5.3.10) can be weakened even further along the
lines of Section 4.2.

Application 5.3.5. Let us consider some special cases of operator A, functions hi i =
0, 1, 2, 3, parameters a, b and points v,w.

Define

A (x, y) = F ′ (y) + [x, y; G] , (5.3.39)

v = y−1, w = y0, (5.3.40)

and set
r0 = 0, (5.3.41)

where F ′, [·, ·; G] denote the Fréchet derivatiove of F and the divided difference of
order one for operator G. Hence, we consider method (5.3.2) in the form

yn+1 = yn − (

F ′ (yn) + [

yn−1, yn; G
])−1

(F (yn) + G (yn)) (n ≥ 0) (5.3.42)

The method was studied in [43], [54]. It is shown to be of order 1+√
5

2 ≈ 1.618...

(same as the order of chord), but higher than the order of

zn+1 = zn − F ′ (zn)
−1 (F (zn) + G (zn)) (n ≥ 0) , (5.3.43)

and
wn+1 = wn − A (wn)

−1 (F (wn) + G (wn)) (n ≥ 0) . (5.3.44)

Assume:
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∥
∥
∥A (y−1, y0)

−1 [F ′ (y) − F ′ (y0)
]
∥
∥
∥ ≤ γ2 ‖y − y0‖ , (5.3.45)

∥
∥
∥A (y−1, y0)

−1 [F ′ (x) − F ′ (y)
]
∥
∥
∥ ≤ γ3 ‖x − y‖ , (5.3.46)

∥
∥
∥A (y−1, y0)

−1 ([x, y; G] − [

y−1, y0; G
])
∥
∥
∥ ≤ γ4 (‖x − y−1‖ + ‖y − y0‖) ,

(5.3.47)

and
∥
∥
∥A (y−1, y0)

−1 ([x, y; G] − [z, x; G])
∥
∥
∥ ≤ γ5 ‖z − y‖ (5.3.48)

for some nonnegative parameters γi , i = 2, 3, 4, 5 and all x, y ∈ U (y0, r) ⊆
U (y0, R) .

Then we can define

a = b = 0, h1 = h2, h1 (q) = γ3 (q) , h3 (q) = γ5q, and

h0 (q1, q2) = γ4q1 + (γ2 + γ4) q2. (5.3.49)

If the hypotheses of Theorem 5.3.3 hold for the above choices, the conclusions fol-
low.

Note that conditions (5.3.45)–(5.3.48) are weaker than the corresponding ones in
[54, pp. 48–49]. Indeed, conditions
∥
∥F ′ (x) − F ′ (y)

∥
∥ ≤ γ6 ‖x − y‖ ,

∥
∥
∥A (x, y)−1

∥
∥
∥ ≤ γ7, ‖[x, y, z; G]‖ ≤ γ8,

and
‖[x, y; G] − [z, w; G]‖ ≤ γ9 (‖x − z‖ + ‖y − w‖)

for all x, y, z, w ∈ U (y0, r) are used there instead of (5.3.45)–(5.3.48), where
[x, y, z; G] denotes a second-order divided difference of G at (x, y, z), and γi ,
i = 6, 7, 8, 9 are nonnegative parameters.

Application 5.3.6. Returning back to Remark 5.3.1 and (5.3.6), iteration (5.3.2) re-
duces to the famous NK method (see Chapter 2).

In order to compare with earlier results, we consider the case when x = y and
v = w (single-step methods). We can then prove along the same lines to Lemma
5.3.2 and Theorem 5.3.3, respectively, the following results by assuming:
there exists w ∈ X such that A (w)−1 ∈ L (Y, X), for any x, y ∈ U (w, r) ⊆
U (w, R), t ∈ [0, 1]:

∥
∥
∥A (w)−1 [A (x) − A (w)]

∥
∥
∥ ≤ g0 (‖x − w‖) + α (5.3.50)

and
∥
∥
∥A (w)−1 {[F (x + t (y − x)) − A (x)] (y − x) + G (y) − G (x)}

∥
∥
∥

≤ [g1 (‖x − w‖ + t ‖y − x‖) − g2 (‖x − w‖) + g3 (r) + β] ‖y − x‖ , (5.3.51)

where g0, g1, g2, g3, α, β are as h0, (one variable) h1, h2, h3, a, and b, respectively.
Then we can show the following result on majorizing sequences.
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Lemma 5.3.7. Assume:
there exist η ≥ 0, α ≥ 0, β ≥ 0, δ ∈ [0, 2), r0 ∈ [0, r ], r ∈ [0, R] such that:

hδ = 2

[
∫ 1

0
g1 (r0 + θη) dθ − g2 (r0) + g3 (r0 + η) + β

]

+ δ [α + g0 (r0 + η)]

≤ δ, (5.3.52)

2η
2−δ

+ r0 ≤ r, (5.3.53)

g0

[
2η

2−δ

(

1 − (
δ
2

)n+1
)

+ r0

]

+ α < 1, (5.3.54)

2
∫ 1

0
g1

[
2η

2−δ

(

1 − (
δ
2

)n+1
)

+ r0 + θ
(

δ
2

)n+1
η
]

dθ

− 2g2

[
2η

2−δ

(

1 − (
δ
2

)n+1
)

+ r0

]

+ 2g3

[
2η

2−δ

(

1 − (
δ
2

)n+1
)

+ r0

]

+ δg0

[
2η

2−δ

(

1 − (
δ
2

)n+1
)

+ r0

]

≤ δ (5.3.55)

for all n ≥ 0.
Then, iteration {sn} (n ≥ 0) given by

s0 = r0,

s1 = r0 + η,

sn+2 = sn+1 +
∫ 1

0 {g1(sn+θ(sn+1−sn))−g2(sn)+β}dθ(sn+1−sn)+
∫ sn+1

sn g3(θ)dθ

1−α−g0(sn+1)
(5.3.56)

is monotonically increasing, bounded above by

s∗∗ = 2η
2−δ

+ r0, (5.3.57)

and converges to some s∗ such that

0 ≤ s∗ ≤ s∗∗. (5.3.58)

Moreover, the following estimates hold for all n ≥ 0

0 ≤ sn+2 − sn+1 ≤ δ
2 (sn+1 − sn) ≤ (

δ
2

)n+1
η. (5.3.59)

Theorem 5.3.8. Assume:
hypotheses of Lemma 5.3.7 hold there exists y0 ∈ U (w, r0) such that

∥
∥
∥A (y0)

−1 [F (y0) + G (y0)]
∥
∥
∥ ≤ η. (5.3.60)

Then, sequence {wn} (n ≥ 0) generated by method (5.3.44) is well-defined, remains
in U (w, s∗) for all n ≥ 0, and converges to a solution x∗ of equation F (x)+G (x) =
0. Moreover, the following error bounds hold for all n ≥ 0
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‖wn+1 − wn‖ ≤ sn+1 − sn (5.3.61)

and
∥
∥wn − x∗∥∥ ≤ s∗ − sn . (5.3.62)

Furthermore the solution x∗ is unique in U (w, s∗) if

∫ 1

0

[

g1
(

s∗ + 2θs∗)− g2
(

s∗)] dθ + g3
(

s∗)+ g0
(

s∗)+ α + β < 1, (5.3.63)

or in U (w, R0) if s∗ < R0 ≤ r , and

∫ 1

0

[

g1
(

s∗ + θ(s∗ + R0)
)− g2

(

s∗)] dθ +g3
(

s∗)+g0
(

s∗)+α+β < 1. (5.3.64)

We state the relevant results due to Chen and Yamamoto [58, p. 40]. We assume:
A (w)−1 exists, and for any x, y,∈ U (w, r) ⊆ U (w, R):

0 <

∥
∥
∥A (w)−1 (F (w) + G (w))

∥
∥
∥ ≤ η, (5.3.65)

∥
∥
∥A (w)−1 (A (x) − A (w))

∥
∥
∥ ≤ g0 (‖x − w‖) + α, (5.3.66)

∥
∥
∥A (w)−1 [F ′ (x + t (y − x)) − A (x)

]
∥
∥
∥

≤ g1 (‖x − w‖) + t ‖y − x‖ − g0 (‖x − w‖) + β, t ∈ [0, 1] , (5.3.67)
∥
∥
∥A (w)−1 [G (x) − G (y)]

∥
∥
∥ ≤ g3 (r) ‖x − y‖ , (5.3.68)

where g0, g1, α, β are as g0, g1, α, β, respectively, but g0 is also differentiable with
g′

0 (r) > 0, is also differentiable with g0 (r) > 0, r ∈ [0, R] and α + β < 1.
As in [58] set:

ϕ (r) = η − r +
∫ r

0
g1 (t) dt , ψ (r) =

∫ r

0
g3 (t) dt, (5.3.69)

χ (r) = φ (r) + ψ (r) + (

α + β
)

r. (5.3.70)

denote the minimal value of χ (r) on [0, R] by χ∗, and the minimal point by r∗. If
χ (R) ≤ 0, denote the unique zero of χ by r∗

0 ∈ (0, r∗]. Define scalar sequence {rn}
(n ≥ 0) by

r0 ∈ [0, R] , rn+1 = rn + u(rn)
g(rn)

(n ≥ 0) , (5.3.71)

where
u (r) = χ (r) − x∗, (5.3.72)

and
g (r) = 1 − g0 (r) − α. (5.3.73)

With the above notation they showed:



286 5 Newton-like Methods

Theorem 5.3.9. Suppose χ (R) ≤ 0. Then equation (5.3.1) has a solution x∗ ∈
U
(

w, r∗
0

)

, which is unique in

U =
{

U (w, R) if χ (R) = 0 or ψ (R) = 0, and r∗
0 < R.

U (w, R) if χ (R) = 0 and r∗
0 < R.

(5.3.74)

Let

D∗ = Ur∈[0,r∗)

{

y ∈ U (w, r)

∣
∣
∣

∥
∥
∥A (y)−1 [F (y) + G (y)]

∥
∥
∥ ≤ u (r)

g (r)

}

. (5.3.75)

Then, for any y0 ∈ D, sequence {yn} (n ≥ 0) generated by method (5.3.44) is well
defined, remains in U (w, r∗) , and satisfies

‖yn+1 − yn‖ ≤ rn+1 − rn, (5.3.76)

and
∥
∥yn − x∗∥∥ < r∗ − rn (5.3.77)

provided that r0 is chosen as in (5.3.71) so that r0 ∈ Ry0, where for y ∈ D∗

Ry =
{

r ∈ [

0, r∗)
∣
∣
∣

∥
∥
∥A (y)−1 (F (y) + G (y))

∥
∥
∥ ≤ u(r)

y(r)
, ‖y − z‖ ≤ r

}

. (5.3.78)

Remark 5.3.10.
(a) Hypothesis on g0 is stronger than the corresponding one on g0.
(b) Iteration (5.3.71) converges to r∗ (even if r0 = 0) not r∗

0 .
(c) Choices of y−1, y0 other than the ones in Theorems 5.3.3, 5.3.8 can be given by

(5.3.75) and (5.3.76)

Remark 5.3.11. The conclusions of Theorem 5.3.9 hold if the more general condi-
tions replace (5.3.66)–(5.3.68), and

g0 (r) ≤ g2 (r) , r ∈ [0, R] , (5.3.79)

is satisfied. Moreover if strict inequality holds in (5.3.79) we obtain more precise
error bounds. Indeed, define the sequence {rn} (n ≥ 0), using (5.3.51), g2 instead of
(5.3.67), g0, respectively (with g1 = g1, α = α, β = β), by

r0 = r0, r1 = r1, (5.3.80)

rn+1 − rn = u(rn)−u(rn−1)+(1−g2(rn−1)−α)(rn−rn−1)
g(rn)

(n ≥ 1)

It can easily be seen using induction on n (see also the proof of Proposition 5.3.13
that follows) that

rn+1 − rn < rn+1 − rn (5.3.81)

rn < rn (5.3.82)

r∗ − rn ≤ r∗ − rn, r∗ = lim
n→∞ rn, (5.3.83)

and r∗ ≤ r∗.
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Furthermore condition (5.3.51) allows us more flexibility in choosing functions
and constants.

Remark 5.3.12. Our error bounds (5.3.61), (5.3.62) are finer than the corresponding
ones (5.3.76) and (5.3.77), respectively, in many interesting cases. Let us choose:

α = α, β = β, g0 (r) = g0 (r) , g1 (r) = g2 (r) = g1 (r) , and (5.3.84)

g3 (r) = g3 (r) for all r ∈ [0, R] .

Then we can show:

Proposition 5.3.13. Under the hypotheses of Theorem 5.3.8 and 5.3.9, further as-
sume:

s1 < r1 (5.3.85)

Then, the following hold:

sn < rn (n ≥ 1) , (5.3.86)

sn+1 − sn < rn+1 − rn (n ≥ 0) , (5.3.87)

s∗ − sn ≤ r∗ − rn (n ≥ 0) , (5.3.88)

and
s∗ ≤ r∗. (5.3.89)

Proof. It suffices to show (5.3.86) and (5.3.87), as then (5.3.88) and (5.3.89) respec-
tively can easily follow. Inequality (5.3.86) holds for n = 1 by (5.3.85). By (5.3.56)
and (5.3.71) we get in turn

s2 − s1 =
∫ 1

0 {g1(s0+θ(s1−s0))dθ−g2(s0)+α}(s1−s0)+
∫ s1

s0
g3(θ)dθ

1−β−g0(s1)

<

∫ 1
0 {g1(r0+θ(r1−r0))dθ−g2(r0)+α}(r1−r0)+

∫ r1
r0

g3(θ)dθ

1−β−g0(r1)

= u(r1)−u(r0)+g(r0)(r1−r0)

1−β−g0(r1)
= u(r1)

g(r1)
= r2 − r1. (5.3.90)

Assume:
sk+1 < rk+1, (5.3.91)

and
sk+1 − sk < rk+1 − rk (5.3.92)

hold for all k ≤ n.
Using (5.3.56), (5.3.62), and (5.3.92), we obtain

sk+2 − sk+1

=
∫ 1

0 {g1(sk+θ(sk+1−sk))dθ−g2(sk )+α}(sk+1−sk)+
∫ sk+1

sk g3(θ)dθ

1−β−g0(sk+1)

<

∫ 1
0 {g1(rk+θ(rk+1−rk))dθ−g2(rk )+α}(rk+1−rk)+

∫ rk+1
rk g3(θ)dθ

1−β−g0(rk+1)

= u(rk+1)−u(rk )+g(rk )(rk+1−rk)
g(rk+1)

= u(rk+1)
g(rk+1)

= rk+2 − rk+1.
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In order for us to include a case where operator G is nontrivial, we consider the
following example:

Example 5.3.14. Let X = Y = C [0, 1] the space of continuous on [0, 1] equipped
with the sup-norm, and R > 0. Consider the integral equation on U

(

x0,
r
2

)

given by

x (t) =
∫ 1

0
k (t, s, x (s)) ds, (5.3.93)

where the kernel k (t, s, x (s)) with (t, s) ∈ [0, 1] × [0, 1] is a nondifferentiable
operator on U

(

x0,
r
2

)

. Define operators F, G on U
(

x0,
r
2

)

by

F (x) (t) = I x (t) (I the identity operator) (5.3.94)

G (x) (t) = −
∫ 1

0
k (t, s, x (s)) ds. (5.3.95)

Choose x0 = 0, and assume there exists a constant θ0 ∈ [0, 1), a real function
θ1 (t, s) such that

‖k (t, s, x) − k (t, s, y)‖ ≤ θ1 (t, s) ‖x − y‖ (5.3.96)

and

sup
t∈[0,1]

∫ 1

0
θ1 (t, s) ds ≤ θ0 (5.3.97)

for all t, s ∈ [0, 1], x, y ∈ U
(

x0,
r
2

)

.

Moreover choose in Theorem 5.3.8: r0 = 0, y0 = y−1, A (x, y) = I (x), g0 (r) =
r , α = β = 0, g1 (r) = g2 (r) = 0, and g3 (r) = θ0 for all x, y ∈ U

(

x0,
r
2

)

, r, s ∈
[0, 1]. It can easily be seen that the conditions of Theorem 5.3.8 hold if

t∗ = η
1−θ0

≤ r
2 . (5.3.98)

We now study the local convergence of method (5.3.2).
In order to cover the local case, let us assume x∗ is a zero equation (5.3.1),

A (x∗, x∗)−1 exists and for any x, y ∈ U (x∗, r) ⊆ U (x∗, R) , t ∈ [0, 1]:
∥
∥
∥A

(

x∗, x∗)−1 [
A (x, y) − A

(

x∗, x∗)]
∥
∥
∥ ≤ h0

(∥
∥x − x∗∥∥ ,

∥
∥y − x∗∥∥)+a, (5.3.99)

and
∥
∥
∥A

(

x∗, x∗)−1 [(
F ′ (x∗ + t

(

y − x∗))− A (x, y)
) (

y − x∗)+ G (y) − G
(

x∗)]
∥
∥
∥

≤ [

h1
(∥
∥y − x∗∥∥ (1 + t)

)− h2
(∥
∥y − x∗∥∥+ h3

(∥
∥x − x∗∥∥)+ b

)] ∥
∥y − x∗∥∥ ,

(5.3.100)

where, h0, h1, h2, h3, a, b are as h0, h1, h2, h3, a, b, respectively. In order for us to
compare our results with earlier ones, we only consider the case r0 = 0, x−1 = v,

x0 = w in (5.3.2) and call the corresponding sequence {xn} instead of {yn}. Then
exactly as in (5.3.34) but using (5.3.99), (5.3.100), instead of (5.3.3), (5.3.4), we can
show the following local result for method (5.3.2).
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Theorem 5.3.15. Assume:
there exists a solution of equation

f (λ) = 0, (5.3.101)

in [0, r ] where

f (λ) =
∫ 1

0

[

h1 ((1 + t) λ) − h2 (λ)
]

dt + h0 (λ, λ) + a + b − 1. (5.3.102)

Denote by λ0 the smallest of the solutions in [0, r ]. Then, sequence {xn} (n ≥ −1)

generated by method (5.3.2) is well defined, remains in U (x∗, λ0) for all n ≥ 0, and
converges to x∗ provided that x−1, x0 ∈ U (x∗, λ).
Moreover the following estimates hold for all n ≥ 0:

∥
∥x∗ − xn+1

∥
∥ ≤ pn, (5.3.103)

where,

pn =
{∫ 1

0

[

h1((1+t)‖xn−x∗‖)−h2(‖xn−x∗‖)]dt+a+h3(‖xn−1−x∗‖)
}

1−b−h0(‖xn−x∗‖)
∥
∥xn − x∗∥∥ .

(5.3.104)

Application 5.3.16. Let us again consider Newton’s method, i.e., F ′ (x) = A (x, y) ,

G (x) = 0, and assume:
∥
∥
∥F ′ (x∗)−1 [

F ′ (x) − F ′ (x∗)]
∥
∥
∥ ≤ λ1

∥
∥x − x∗∥∥ , (5.3.105)

and ∥
∥
∥F ′ (x∗)−1 [

F ′ (x) − F ′ (y)
]
∥
∥
∥ ≤ λ2 ‖x − y‖ (5.3.106)

for all x, y ∈ U (x∗, r) ⊆ U (x∗, R). Then we can set:

a = b = 0,

h1 (r) = h2 (r) = λ2r,

and

h0 (r, r) = λ1r for all r ∈ [0, R] . (5.3.107)

Using (5.3.105), (5.3.106) we get:

λ0 = 2

2λ1 + λ2
. (5.3.108)

Then, see Section 2.4.

Application 5.3.17. Notice that in Example 3.3.11 we provided a numerical result
where our approach here compare favorably to the one given by Zabrejko [146],
Chen and Yamamoto [58].
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5.4 On a two-point method of convergent order two

In this section, we are concerned with the problem of approximating a solution x∗ of
the nonlinear equation

F(x) = 0, (5.4.1)

where F is a Fréchet-differentiable operator defined on an open subset D of a Banach
space X with values in a Banach space Y .

We introduce the two-point method

xn+1 = xn − A−1
n F(xn), (5.4.2)

An = [

(1 + λn)xn − λn xn−1, xn−1
]

, (x−1, x0 ∈ D) (n ≥ 0)

to generate a sequence approximating x∗. Here the numbers λn are chosen (if pos-
sible) so that iterates (1 + λn)xn − λn xn−1 (n ≥ 0) stay in D, whereas [x, y; F] or
simply [x, y] belongs in L(X, Y ) so that:

[x, y] (x − y) = F(x) − F(y) for all x, y ∈ D. (5.4.3)

Linear operator [x, y] is called a divided difference of order one on D. Clearly, iter-
ation (5.4.2) has a geometrical interpretation similar to the secant method (see also
(5.4.78)).

We provide a local as well as a semilocal convergence analysis for method (5.4.2)
based on majorizing sequences and the corresponding majorant principle. It turns out
that method (5.4.2) is essentially of quadratic order, and uses two previous iterates
at every step as the secant method, which is only of order 1.618 . . . . Moreover it is
faster than the corresponding three-point method given by Potra in the elegant paper
[163], which is only of order 1.839 . . . (see also (5.4.79)). Some numerical examples
are also provided to show:

(a) how to choose linear operator A;

(b) that our iteration compares favorably with other methods using divided differ-
ences of order one and two previous iterates at every step.

Finally, the monotone convergence of method (5.4.2) is examined on partially
ordered topological spaces or POTL-spaces (see Chapter 1).

We can show the following local convergence result for method (5.4.2):

Theorem 5.4.1. Let F be a nonlinear operator defined on a convex subset D of a
Banach space X with values in a Banach space Y . Assume:
equation F(x) = 0 has a solution x∗ ∈ D at which the Fréchet derivative exists and
F ′(x∗)−1 ∈ L(Y, X);
operator F is Fréchet-differentiable on D0 ⊆ D with divided differences of order
one on D denoted by [x, y] and satisfying (5.4.3) for x, y ∈ D0;
there exist nondecreasing functions a, b, c.. [0,+∞) → [0,+∞) and function
λ.. X2 → R such that for all x, y ∈ D0:
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[1 + λ(x, y)] y − λ(x, y)x ∈ D0, (5.4.4)
∥
∥
∥F ′(x∗)−1 [F ′(x) − F ′(x∗)

]
∥
∥
∥ ≤ a(‖x − x∗‖), (5.4.5)

∥
∥
∥F ′(x∗)−1([x, y] − [

x, x∗])
∥
∥
∥ ≤ b(‖y − x∗‖), (5.4.6)

∥
∥
∥F ′(x∗)−1 ([y, y] − [(1 + λ(x, y))y − λ(x, y)x, x])

∥
∥
∥ ≤ c(‖y − x‖); (5.4.7)

equation
a(r) + b(r) + 2c(2r) − 1 = 0 (5.4.8)

has a minimum positive zero r∗,
and

U (x∗, r∗)} ⊆ D0. (5.4.9)

Then, sequence {xn} (n ≥ −1) generated by method (5.4.2) is well defined, remains
in U (x∗, r∗) for all n ≥ 0, and converges to x∗ provided that:

x−1, x0 ∈ U (x∗, r∗). (5.4.10)

Moreover, the following estimates hold for all n ≥ 0:

‖xn+1 − x∗‖ ≤ b(‖xn − x∗‖) + c(‖xn − xn−1‖)
1 − [

a(‖xn − x∗‖) + c(‖xn − xn−1‖)
]‖xn − x∗‖. (5.4.11)

Proof. We shall first show:

F ′(x) = [x, x] for all x ∈ U (x∗, r∗). (5.4.12)

By the Fréchet-differentiability of F , there exists d > 0 such that
∥
∥F ′(x∗)

∥
∥ ≤ d. (5.4.13)

Using (5.4.6) for x ∈ U (x∗, r∗), we obtain in turn

‖F(x + �x) − F(x) − [x, x] (�x)‖

=
∥
∥
∥F ′(x∗)F ′(x∗)−1 ([x + �x, x] − [x, x])�x

∥
∥
∥

≤ d
[∥
∥
∥F ′(x∗)−1 ([x + �x, x] − [

x∗, x
])

�x
∥
∥
∥

+
∥
∥
∥F ′(x∗)−1 ([x∗, x

]− [x, x]
)

�x
∥
∥
∥

≤ d
[

b(r∗ + ‖�x‖) + b(r∗)
] ‖�x‖. (5.4.14)

If b(r∗) �= 0, by letting �x → 0 we obtain (5.4.12). However if b(r∗) = 0, then
by (5.4.6) there is an operator L in L(X, Y ) such that [x, y] = L for all x, y ∈ D0.
Hence, from (5.4.3) we can set F ′(x) = L for all x ∈ D0.

Let us denote by L the linear operator
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L = [(1 + λ(x, y))y − λ(x, y)x, x] . (5.4.15)

Assume xn−1, xn ∈ U (x∗, r∗). We shall show L is invertible on U (x∗, r∗), and for

λn = λ(xn−1, xn), Ln = [

(1 + λn)xn − λn xn−1, xn−1
]

(5.4.16)

‖L−1
n F ′(x∗)‖ ≤ [

1 − a(‖xn − x∗‖) − c(‖xn − xn−1‖)
]−1

≤ [

1 − a(r∗) − c(2r∗)
]−1

. (5.4.17)

Using (5.4.2), (5.4.4), (5.4.5), (5.4.7)–(5.4.10) and (5.4.12), we get in turn:
∥
∥
∥F ′(x∗)−1 [F ′(x∗) − Ln

]
∥
∥
∥

=
∥
∥
∥F ′(x∗)−1 [([x∗, x∗]− [xn, xn]

)

+ (

[xn, xn] − [

(1 + λn)xn − λn xn−1, xn−1
]) ]

∥
∥
∥

≤ a(‖xn − x∗‖) + c(‖xn − xn−1‖) ≤ a(r∗) + c(‖xn − x∗‖ + ‖x∗ − xn−1‖)
≤ a(r∗) + c(2r∗) < 1, (5.4.18)

by the choice of r∗.
It follows from the Banach Lemma on invertible operators and (5.4.18) that L−1

n
exists, so that estimate (5.4.17) holds. Moreover by (5.4.6) and (5.4.7), we get:

∥
∥
∥F ′(x∗)−1 ([xn, x∗]− Ln

)
∥
∥
∥

=
∥
∥
∥F ′(x∗)−1 [([xn, x∗]− [xn, xn]

)+ ([xn, xn] − Ln)
]
∥
∥
∥

≤
∥
∥
∥F ′(x∗)−1

[([

xn, x∗]− [xn, xn]
)+ ([xn, xn] − Ln)

]∥
∥
∥

≤ b(‖xn − x∗‖) + c(‖xn − xn−1‖)
≤ b(r∗) + c(‖xn − x∗‖ + ‖x∗ − xn−1‖) ≤ b(r∗) + c(2r∗). (5.4.19)

Furthermore, estimate (5.4.11) follows from (5.4.2), (5.4.17), (5.4.19), and the ap-
proximation

‖xn+1 − x∗‖ =
∥
∥
∥−L−1

n

([

xn, x∗]− Ln
)

(xn − x∗)
∥
∥
∥

≤
∥
∥
∥L−1

n F ′(x∗)
∥
∥
∥

∥
∥
∥F ′(x∗)−1 ([xn, x∗]− Ln

)
∥
∥
∥ ‖xn − x∗‖. (5.4.20)

Estimate (5.4.20) and the choice of r∗ imply

‖xn+1 − x∗‖ < ‖xn − x∗‖ < r∗ (n ≥ 0). (5.4.21)

Hence, we deduce: lim xn = x∗ and xn ∈ U (x∗, r∗) (n ≥ 0).

We can show the following result on majorizing sequences for method (5.4.2).
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Lemma 5.4.2. Assume there exist nondecreasing, nonnegative functions αi , i =
1, . . . , 5, nonnegative parameters β, γ , η and δ ∈ [0, 1) such that:

h0
δ = α4(η) + α5(γ ) + δ [α1(η) + α2(0) + α3(η) + β] ≤ δ, and for all k ≥ 0

(5.4.22)

hk
δ = α4(δ

kη) + α5(δ
k−1η) + δ

[

α1

(

1−δk+1

1−δ
η

)

+ α2

(

1−δk

1−δ
η

)

+ α3(δ
kη) + β

]

(5.4.23)

≤ δ,

pk
δ = α1

(
1−δk+1

1−δ
η
)

+ α2

(
1−δk

1−δ
η
)

+ α3(δ
kη) + β < 1. (5.4.24)

Then sequence {tn} (n ≥ −1) given by

t−1 = 0, t0 = γ, t1 = γ + η,

tn+2 = tn+1 + α4(tn+1−tn)+α5(tn−tn−1)

1−[β+α1(tn+1−t0)+α2(tn−t0)+α3(tn+1−tn)] (tn+1 − tn) (5.4.25)

is nondecreasing, bounded above by

t∗∗ = γ + η
1−δ

(5.4.26)

and converges to some t∗ such that

0 ≤ t∗ ≤ t∗∗. (5.4.27)

Moreover, the following estimates hold for all n ≥ 0:

0 ≤ tn+2 − tn+1 ≤ δ(tn+1 − tn) ≤ δn+1η. (5.4.28)

Proof. We shall show for all k ≥ 0

α4(tk+1 − tk) + α5(tk − tk−1) + δ
[

α1(tk+1 − t0) + α2(tk − t0)

+ α3(tk+1 − tk) + β
] ≤ δ, (5.4.29)

α1(tk+1 − t0) + α2(tk − t0) + α3(tk+1 − tk) + β < 1, (5.4.30)

and
0 ≤ tk+1 − tk . (5.4.31)

Estimate (5.4.28) can then follow from (5.4.25) and (5.4.29)–(5.4.31). Inequalities
(5.4.29)–(5.4.31)) hold for k = 0 by (5.4.22), (5.4.23), and (5.4.25). Let us assume
(5.4.29)–(5.4.31) hold for all k ≤ n + 1. We can have in turn:

α4(tk+2 − tk+1) + α5(tk+1 − tk) + δ
[

α1(tk+2 − t0)+
+ α2(tk+1 − t0) + α3(tk+2 − tk+1) + β

] ≤
≤ α4(δ

k+1η) + α5(δ
kη)

+ δ

[

α1

(
1−δk+2

1−δ
η
)

+ α2

(
1−δk+1

1−δ
η
)

+ α3(δ
k+1η) + β

]

= hk+1
δ ≤ δ, (by (5.4.23)) (5.4.32)
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and

α1(tk+2 − t0) + α2(tk+1 − t0) + α3(tk+2 − tk+1) + β ≤
≤ α1

(
1−δk+2

1−δ
η
)

+ α2

(
1−δk+1

1−δ
η
)

+ α3(δ
k+1η) + β = pk+1

δ < 1, (5.4.33)

which together with (5.4.25) imply estimates (5.4.29)–(5.4.31) hold for all k ≥ 0.
Moreover we shall show

tk ≤ t∗∗ (k ≥ −1). (5.4.34)

For k = −1, 0, 1, 2 we have:

t−1 = 0 ≤ t∗∗, t0 = γ ≤ t∗∗, t1 = γ +η ≤ t∗∗, t2 = γ +η+δη ≤ γ + η
1−δ

≤ t∗∗.
(5.4.35)

It follows from (5.4.25), (5.4.29)–(5.4.31) that for all k ≥ 0

tk+2 ≤ tk+1 + δ(tk+1 − tk) ≤ · · · ≤ t1 + δ(t1 − t0) + · · · + δ(tk+1 − tk)

≤ γ + η + δη + · · · + δk+1η = γ + 1−δk+2

1−δ
η ≤ γ + η

1−δ
= t∗∗. (5.4.36)

Hence, sequence {tn} (n ≥ −1) is nondecreasing, bounded above by t∗∗ and as such
it converges to some t∗ satisfying (5.4.27).

Remark 5.4.3. Conditions (5.4.22), (5.4.23), and (5.4.24) can be replaced by (5.4.37),
and (5.4.38), respectively, so that they can be independent of k, say, e.g.,

hδ = α4(η) + α5(η) + α1

(
η

1−δ

)

+ α2

(
η

1−δ

)

+ α3(η) + β ≤ δ, (5.4.37)

pδ = α1

(
η

1−δ

)

+ α2

(
η

1−δ

)

+ α3(η) + β < 1. (5.4.38)

Conditions of the form (5.4.22)–(5.4.24) or (5.4.37) and (5.4.38) are standard in the
study of Newton-type methods. In the special case:

αi (r) = θi r, i = 1, 2, 3, 4, α5(r) = θ5r2 for some θi ≥ 0, i = 1, . . . , 5
(5.4.39)

it can easily be seen from (5.4.25) that there exist n0 ≥ 0, θ ≥ 0 such that

0 ≤ tn+2 − tn+1 ≤ θ(tn+1 − tn)
2 (n ≥ n0). (5.4.40)

Hence the order of convergence for sequence {tn} (n ≥ −1) is essentially quadratic
(under the hypotheses of Lemma 5.4.2). Let x, y, z ∈ D0, and define the divided
difference of order two of operator F at the points x , y, and z denoted by [x, y, z]
by:

[x, y, z] (y − z) = [x, y] − [x, z] . (5.4.41)

We can show the following result for the semilocal convergence of method
(5.4.2).
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Theorem 5.4.4. Let F be a nonlinear operator defined on a subset D of a Banach
space X with values in a Banach space Y . Assume:
Operator F has divided differences of order one and two on D0 ⊆ D;
there exist points x−1, x0 in D0 such that A0 = [

(1 + λ0)x0 − λ0x−1, x−1
]

is invert-
ible;
conditions (5.4.4), (5.4.22)–(5.4.24) hold;
Define constants β, γ , and η by

‖x0 − x−1‖ ≤ γ (5.4.42)

‖A−1
0 ([(1 + λ0)x0 − λ0x−1, x−1, x0] λ0 − [x0, x−1, x0])(x0 − x−1)‖ ≤ β (5.4.43)

and
‖A−1

0 F(x0)‖ ≤ η; (5.4.44)

there exist nondecreasing, nonnegative functions αi , i = 1, 2, . . . , 6 such that for all
x, y ∈ D0:

‖A−1
0 ([x0, x0] − [y, x0])‖ ≤ α1(‖y − x0‖), (5.4.45)

‖A−1
0 ([y, x0] − [y, x])‖ ≤ α2(‖x − x0‖), (5.4.46)

‖A−1
0 ([y, x] − [(1 + λ(x, y))y − λ(x, y)x, x])‖ ≤ α3(‖y − x‖), (5.4.47)

‖A−1
0 ([y, x] − [x, x])‖ ≤ α4(‖y − x‖), (5.4.48)

‖A−1
0 ([y, x, y] − [(1 + λ(x, y))y − λ(x, y)x, x, y] λ(x, y))(y − x)‖

≤ α5(‖y − x‖), (5.4.49)

‖A−1
0 (A0 − [x, x])‖ ≤ α6(‖(1 + λ0)x0 − λ0x−1 − x‖ + ‖x−1 − x‖), (5.4.50)

∫ 1

0
α6
[

2γ + 2(1 + 2t)t∗
]

dt < 1, (5.4.51)

and
U (x0, t∗) ⊆ D0, (5.4.52)

where t∗ was defined in Lemma 5.4.2.
Then sequence {xn} (n ≥ −1) generated by method (5.4.2) is well defined, re-

mains in U (x0, t∗) for all n ≥ 0, and converges to a unique solution x∗ of equation
F(x) = 0 in U (x0, t∗).

Moreover, the following estimates hold for all n ≥ 0:

‖xn+1 − xn‖ ≤ tn+1 − tn (5.4.53)

and
‖xn − x∗‖ ≤ t∗ − tn, (5.4.54)

where sequence {tn} is given by (5.4.25).
Furthermore if there exists R > t∗ such that:

U (x0, R) ⊆ D0 (5.4.55)
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and
∫ 1

0
α6(2γ + 2R + 2t (t∗ + R)) dt ≤ 1, (5.4.56)

then the solution x∗ is unique in U (x0, R).

Proof. We shall show using induction on k ≥ 0:

xk ∈ U (x0, t∗), (5.4.57)

and
‖xk+1 − xk‖ ≤ tk+1 − tk . (5.4.58)

Estimates (5.4.57), (5.4.58) hold for k = −1, 0 by the initial conditions and because
t−1 ≤ t∗, t0 ≤ t∗. Assume (5.4.57) and (5.4.58) hold for all n ≤ k + 1. Using
(5.4.42), (5.4.45)–(5.4.47) we get

‖A−1
0 (A0 − Ak+1)‖
= ‖A−1

0 ([(1 + λ0)x0 − λ0x−1, x−1] − [x0, x−1] + [x0, x−1]

− [x0, x0] + [x0, x0] − [xk+1, x0] + [xk+1, x0] − [xk+1, xk]

+ [xk+1, xk] − [(1 + λk+1)xk+1 − λk+1xk+1, xk])‖
= ‖A−1

0 (([(1 + λ0)x0 − λ0x−1, x−1, x0] λ0 − [x0, x−1, x0])(x0 − x−1)

+ ([x0, x0] − [xk+1, x0]) + ([xk+1, x0] − [xk+1, xk])

+ ([xk+1, xk] − [(1 + λk+1)xk+1 − λk+1xk+1, xk]))‖
≤ β + α1(‖xk+1 − x0‖) + α2(‖xk − x0‖) + α3(‖xk+1 − xk‖)
≤ β + α1(tk+1 − t0) + α2(tk − t0) + α3(tk+1 − tk) < 1. (5.4.59)

It follows by the Banach lemma on invertible operators and (5.4.59) that A−1
k+1 exists,

and

‖A−1
k+1 A0‖ ≤ [1 − (β + α1(tk+1 − t0) + α2(tk − t0) + α3(tk+1 − tk))]

−1 .

(5.4.60)
By (5.4.48) and (5.4.49), we can also have:

‖A−1
0 ([xk+1, xk] − Ak)‖
= ‖A−1

0 ([xk+1, xk] − [xk, xk] + [xk, xk]

− [xk, xk−1] + [xk, xk−1] − [(1 + λk)xk − λk xk−1, xk−1])‖
= ‖A−1

0 (([xk+1, xk] − [xk, xk]) + ([xk, xk−1, xk]

− [(1 + λk)xk − λk xk−1, xk−1, xk] λk)(xk − xk−1))‖
≤ α4(‖xk+1 − xk‖) + α5(‖xk − xk−1‖)
≤ α4(tk+1 − tk) + α5(tk − tk−1). (5.4.61)
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By (5.4.2), (5.4.60), and (5.4.61), we obtain in turn

‖xk+2 − xk+1‖
= ‖A−1

k+1 F(xk+1)‖ = ‖A−1
k+1(F(xk+1) − F(xk) − Ak(xk+1 − xk))‖

≤ ‖A−1
k+1 A0‖ ‖A−1

0 ([xk+1, xk] − Ak)‖ ‖xk+1 − xk‖
≤ α4(tk+1−tk )+α5(tk−tk−1)

1−[β+α1(tk+1−t0)+α2(tk−t0)+α3(tk+1−tk )] (tk+1 − tk)

= tk+2 − tk+1, (5.4.62)

which shows (5.4.58) for all n ≥ 0. We can also get

‖xk+2 − x0‖ ≤
k+1
∑

j=0

‖x j+1 − x j‖ ≤
k+1
∑

j=0

(t j+1 − t j ) = tk+2 − t0 ≤ t∗. (5.4.63)

That is xn ∈ U (x0, r0) for all n ≥ 0. It follows from (5.4.58) that sequence {xn}
(n ≥ −1) is Cauchy in a Banach space X, and as such it converges to some x∗ ∈
U (x0, t∗). By letting k → ∞ in (5.4.62), we obtain F(x∗) = 0.

To show uniqueness in U (x0, t∗) let y∗ be a solution of equation (5.4.1) in
U (x0, t∗). By (5.4.42), (5.4.50), and (5.4.51) we have for

M =
∫ 1

0

[

y∗ + t (x∗ − y∗), y∗ + t (x∗ − y∗)
]

dt, (5.4.64)

‖A−1
0 (A0 − M)‖

≤
∫ 1

0
α6([‖(1 + λ0)x0 − λ0x−1 − y∗ − t (x∗ − y∗)‖

+ ‖x−1 − y∗ − t (x∗ − y∗)‖]) dt

≤
∫ 1

0
α6 [‖x0 − x−1‖ + ‖x0 − y∗‖ + t (‖x0 − y∗‖ + ‖x0 − x∗‖)

+ ‖x0 − x−1‖ + ‖x0 − y∗‖ + t (‖x0 − x∗‖ + ‖x0 − y∗‖)] dt (5.4.65)

≤
∫ 1

0
α6
[

2γ + 2(1 + 2t)t∗
]

dt < 1. (5.4.66)

It follows from the Banach Lemma on invertible operators and (5.4.65) that M−1

exists.
We deduce from (5.4.64) and the identity

F(x∗) − F(y∗) = M(x∗ − y∗) (5.4.67)

that
x∗ = y∗. (5.4.68)
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Finally to show uniqueness in U (x0, R), let us assume y∗ ∈ U (x0, R) is a solu-
tion of equation (5.4.1). As in (5.4.65) we obtain again

‖A−1
0 (A0 − M)‖ <

∫ 1

0
α6
[

2γ + 2R + 2t (t∗ + R)
]

dt ≤ 1, (5.4.69)

which shows (5.4.68).

Remark 5.4.5. (a) In the special case

a(r) = ar, b(r) = br, c(r) = cr2 for a ≥ 0, b ≥ 0, c ≥ 0 (5.4.70)

then, equation (5.4.8) in Theorem 5.4.1 gives

r∗ = 4

a + b +
√

(a + b)2 + 32c
(5.4.71)

and as in Remark 5.4.3 we see that the convergence of sequence {xn} (n ≥ −1) is
essentially quadratic. Note that in Section 1.2 we showed how to choose constants a,
b, c.

(b) Conditions (5.4.5) and (5.4.6) can be combined in the stronger

‖F ′(x∗)−1([x, y] − [z, w])‖ ≤ a1(‖x − z‖ + ‖y − w‖) (5.4.72)

for all x, y, z, w ∈ D0 and some nondecreasing, nonnegative function a1. However
note that

a(r) ≤ a1(2r), r = ‖x − x∗‖, (5.4.73)

and
b(r0) ≤ a1(r0), r0 = ‖y − x∗‖. (5.4.74)

(c) In order for us to compare method (5.4.2) with others [163], [196] using divided
differences consider the conditions

‖F ′(x∗)−1([y, x, y] − [(1 + λ(x, y))y − λ(x, y)x, x, y] λ(x, y))(y − x)‖
≤ c1(‖y − x‖) (5.4.75)

or even

‖F ′(x∗)−1([u, x, y] − [v, x, y] λ(x, y))(y − x)‖ ≤ c2(‖y − x‖), (5.4.76)

where c1, c2 are nondecreasing, nonnegative functions (or simply nonnegative con-
stants). We can write, e.g., in (5.4.18)

[xn, xn] − [(1 + λn)xn − λn xn−1, xn−1]

= ([xn, xn] − [xn, xn−1]) + ([xn, xn−1] − [(1 + λn)xn − λn xn−1, xn−1])

= ([xn, xn−1, xn] − [(1 + λn)xn − λn xn−1, xn−1, xn] λn)(xn − xn−1) (5.4.77)
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and consequently replace c(‖y − x‖) in (5.4.7) etc. by c1(‖y − x‖) or c2(‖y − x‖).
(d) The secant method

xn+1 − xn − [

xn−1, xn
]−1

F(xn) (x−1, x0 ∈ D) (5.4.78)

also uses two previous iterates. However, it is only of order 1.618 . . . .
(e) Potra’s three-point method [163]

xn+1 = xn − ([xn, xn−1]+ [xn−2, xn]− [xn−2, xn−1])−1 F(xn) (x−2, x−1, x0 ∈ D)

(5.4.79)
uses (5.4.72) and (5.4.76) (for c2 being a constant) to obtain a convergence radius for
method (5.4.79), which however is smaller than ours (see (5.4.71) above and (5.4.22)
in [163, p. 87]). Moreover method (5.4.79) is only of order 1.839 . . . .
(f) The radius of convergence for NK method given by Rheinboldt [175] using
(5.4.72) for a1 being a constant is given by rR = 1

3a1
. However, we showed in Sec-

tion 2.4 that a1
a

a1
b

, a1
c can be arbitrarily large. Hence rR can be smaller than r∗.

(g) Condition (5.4.4) automatically holds if D = X , or it can be dropped if divided
differences are defined on the entire space X instead of just D. In practice, we choose
numbers λ(x, y) so that (5.4.4) is satisfied. Note also that (5.4.4) is required to hold
only for the iterates xn and not all points in D (see Example 5.4.7).

The choice λ(x, y) = 1 for all x, y ∈ D seems to be very realistic and promising.
However, other cases may also be convenient (see also Example 5.4.7). For example
if λ(x, y) = −.5 for all x, y ∈ D then it can easily be shown using induction on the
integer n that all iterates remain in the balls U (x∗, r∗) (in the local case) or U (x0, t∗)
(in the semilocal case) provided that the initial guesses x−1, x0 are inside those balls.
That is, in this case delicate condition (5.4.4) is automatically satisfied.

There is another stronger but more practical way to satisfy (5.4.4).
First: In the local case: Assume

λ∗ = max
x,y∈D2

0

(|1 + λ (x, y)| + |λ (x, y)|)

exists, and is finite, and

U1 = U
(

x∗, R∗) ⊆ D0 with R∗ = (∣
∣1 + λ∗∣∣+ ∣

∣λ∗∣∣) r∗. (5.4.80)

Then it follows from the proof of Theorem 5.4.1 that the condition (5.4.80) can
replace (5.4.4) and (5.4.9) in Theorem 5.4.1. Indeed, for xn−1, xn ∈ U (x∗, r∗) we
get

∥
∥(1 + λn) xn − λn xn−1 − x∗∥∥

≤ |1 + λn|
∥
∥xn − x∗∥∥+ |λn|

∥
∥xn−1 − x∗∥∥

≤ |1 + λn| r∗ + |λn| r∗ ≤ λ∗r∗ = R∗.

That is, (1 + λn) xn − λn xn−1 ∈ U1 (n ≥ 0). In case λ(x, y) = 1, then R∗ = 3r∗.
Second: In the semilocal case: Replace (5.4.4) and (5.4.52) in Theorem 5.4.4 by
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U2 = U (x0, R0) ⊆ D0 with R0 = λ∗t∗.

Indeed, for xn−1, xn ∈ U (x0, t∗) (n ≥ 0) we get

‖(1 + λn) xn − λn xn−1 − x0‖
≤ |1 + λn| ‖xn − x0‖ + |λn| ‖xn−1 − x0‖
≤ |1 + λn| t∗ + |λn| t∗ ≤ R0.

Note again that if λ(x, y) = 1, then R0 = 3t∗.

Remark 5.4.6. According to (5.4.40) the order of convergence of iteration {xn} (n ≥
−1) is essentially quadratic.

Comments similar to Remark 5.4.5 for the semilocal case can now follow. How-
ever, we leave the details to the motivated reader and conclude this section with some
numerical examples.

A simple numerical example follows to show:

(a) how to choose divided difference in method (5.4.2);
(b) method (5.4.2) is faster than the secant method (5.4.78).
(c) method (5.4.2) can be at least as fast as NK method (5.4.80).

Note that the analytical representation of F ′(xn) may be complicated, which makes
the use of method (5.4.2) very attractive.

Example 5.4.7. Let X = Y = R, and define function F on D0 = D = (.4, 1.5) by

F(x) = x2 − 6x + 5. (5.4.81)

Moreover define divided difference of order one appearing in method (5.4.2) for
λ(x, y) = 1 for all x, y ∈ D by

[2y − x, x] = F(2y − x) − F(x)

2(y − x)
. (5.4.82)

In this case method (5.4.2) becomes

xn+1 = x2
n − 5

2(xn − 3)
, (5.4.83)

and coincides with NK method (5.4.80) applied to F . Furthermore secant method
(5.4.78) becomes:

xn+1 = xn−1xn − 5

xn−1 + xn − 6
. (5.4.84)

Choose x−1 = .6 and x0 = .7. Then we obtain:

We conclude this section with an example involving a nonlinear integral equa-
tion:
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n Method (5.4.2) Secant method (5.4.84)
1 .980434783 .96875
2 .999905228 .997835498
3 .999999998 .99998323
4 1 = x∗ .999999991
5 — 1

Example 5.4.8. Let H(x, t, x(t)) be a continuous function of its arguments that is
sufficiently many times differentiable with respect to x . It can easily be seen that if
operator F in (5.4.1) is given by

F(x(s)) = x(s) −
∫ 1

0
H(s, t, x(t))dt, (5.4.85)

then divided difference of order one appearing in (5.4.2) can be defined as

hn(s, t) = H(s,t,(1+λn)xn(t)−λn xn−1(t))−H(s,t,xn−1(t))
(1+λn)(xn(t)−xn−1(t))

,

λn = λn(t) = λ(xn−1(t), xn(t)) (5.4.86)

provided that if for t = tm we get xn(t) = xn−1(t), then the above function equals
H ′

x (s, tm, xn(tm)). Note that this way hn(s, t) is continuous for all t ∈ [0, 1] provided
that 1 + λn �= 0 (n ≥ 0) and, e.g., sequence |1 + λn| is bounded below by a positive
number.

The monotone convergence of method (5.4.2) is examined in the next result.

Theorem 5.4.9. Let F be a nonlinear operator defined on an open subset of a regular
POTL-space X with values in a POTL-space Y . Let x0, y0, y−1 be points of D ⊆ X
such that:

x0 ≤ y0 ≤ y−1, D0 = 〈x0, y−1〉 ⊆ D, F(x0) ≤ 0 ≤ F(y0). (5.4.87)

Moreover assume: there exist, a function λ.. D2 → R, a divided difference [·, ·] .. D →
L(X, Y ) such that for all (x, y) ∈ D2

0 with x ≤ y:

(1 + λ(x, y))y − λ(x, y)x ∈ D0, (5.4.88)

and
F(y) − F(x) ≤ [x, (1 + λ(x, y))y − λ(x, y)x] (y − x). (5.4.89)

Furthermore, assume that for any (x, y) ∈ D2
0 with x ≤ y, and (x, (1 + λ(x, y))y −

λ(x, y)x) ∈ D2
0 the linear operator [x, (1 + λ(x, y))y − λ(x, y)x] has a continuous

nonsingular, nonnegative left subinverse.
Then there exist two sequences {xn} (n ≥ 1), {yn} (n ≥ 1), and two points x∗, y∗ of
X such that for all n ≥ 0:
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F(yn) + [

yn−1, (1 + λn)yn − λn yn−1
]

(yn+1 − yn) = 0, λn = λ(yn−1, yn),

(5.4.90)

F(xn) + [

yn−1, (1 + λn)yn − λn yn−1
]

(xn+1 − xn) = 0, (5.4.91)

F(xn) ≤ 0 ≤ F(yn), (5.4.92)

x0 ≤ x1 ≤ · · · ≤ xn ≤ xn+1 ≤ yn+1 ≤ yn ≤ · · · ≤ y1 ≤ y0, (5.4.93)

lim
n→∞ xn = x∗, lim

n→∞ yn = y∗. (5.4.94)

Finally, if linear operators An = [

yn−1, (1 + λn)yn − λn yn−1
]

are inverse nonneg-
ative, then any solution of the equation F(x) = 0 from the interval D0 belongs to
the interval 〈x∗, y∗〉 (i.e., x0 ≤ v ≤ y0 and F(v) = 0 imply x∗ ≤ v ≤ y∗).

Proof. Let A0 be a continuous nonsingular, nonnegative left subinverse of A0. Define
the operator Q.. 〈0, y0 − x0〉 → X by

Q(x) = x − A0 [F(x0) + A0(x)] .

It is easy to see that Q is isotone and continuous. We also have:

Q(0) = −A0 F(x0) ≥ 0,

Q(y0 − x0) = y0 − x0 − A0(F(y0)) + A0(F(y0) − F(x0) − A0(y0 − x0))

≤ y0 − x0 − A0(F(y0)) ≤ y0 − x0.

According to Kantorovich’s theorem concerning fixed points on POTL-spaces (see
Section 1.2), operator Q has a fixed point w ∈ 〈0, y0 − x0〉. Set x1 = x0 + w. Then
we get

F(x0) + A0(x1 − x0) = 0, x0 ≤ x1 ≤ y0. (5.4.95)

By (5.4.89) and (5.4.95) we deduce:

F(x1) = F(x1) − F(x0) + A0(x0 − x1) ≤ 0.

Consider the operator H .. 〈0, y0 − x1〉 → X given by

H(x) = x + A0(F(y0) − A0(x)).

Operator H is clearly continuous, isotone, and we have:

H(0) = A0 F(y0) ≥ 0,

H(y0 − x1) = y0 − x1 + A0 F(x1) + A0 [F(y0) − F(x1) − A0(y0 − x1)]

≤ y0 − x1 + A0 F(x1) ≤ y0 − x1.

By Kantorovich’s theorem on fixed points, there exists a point z ∈ 〈0, y0 − x1〉 such
that H(z) = z. Set y1 = y0 − z to obtain

F(y0) + A0(y1 − y0) = 0, x1 ≤ y1 ≤ y0. (5.4.96)
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Using (5.4.89), (5.4.96), we get:

F(y1) = F(y1) − F(y0) − A0(y1 − y0) ≥ 0.

Proceeding by induction, we can show that there exist two sequences {xn} (n ≥ 1),
{yn} (n ≥ 1) satisfying (5.4.90)–(5.4.93) in a regular space X , and as such they
converge to points x∗, y∗ ∈ X , respectively. We obviously have x∗ ≤ y∗. If x0 ≤
u ≤ y0 and F(u) = 0, then we can write

A0(y1 − u) = A0(y0) − F(y0) − A0(u) = A0(y0 − u) − (F(y0) − F(u)) ≥ 0,

and

A0(x1 − u) = A0(x0) − F(x0) − A0(u) = A0(x0 − u) − (F(x0) − F(u)) ≤ 0.

If the operator A0 is inverse nonnegative, then it follows that x1 ≤ u ≤ y1. Pro-
ceeding by induction, we deduce that xn ≤ u ≤ yn holds for all n ≥ 0. Hence we
conclude

x∗ ≤ u ≤ y∗.

In what follows, we give some natural conditions under which the points x∗ and
y∗ are solutions of equation F(x) = 0.

Proposition 5.4.10. Under the hypotheses of Theorem 5.4.9, assume that F is con-
tinuous at x∗ and y∗ if one of the following conditions is satisfied:

(a) x∗ = y∗;
(b) X is normal, and there exists an operator T .. X → Y (T (0) = 0) that has an

isotone inverse continuous at the origin and such that An ≤ T for sufficiently large
n;

(c) Y is normal and there exists an operator Q.. X → Y (Q(0) = 0) continuous
at the origin and such that An ≤ Q for sufficiently large n;

(d) operators An (n ≥ 0) are equicontinuous.
Then we deduce

F(x∗) = F(y∗) = 0. (5.4.97)

Proof. (a) Using the continuity of F and (5.4.92), we get

F(x∗) ≤ 0 ≤ F(y∗).

Hence, we conclude
F(x∗) = 0.

(b) Using (5.4.90)–(5.4.93), we get

0 ≥ F(xn) = An(xn − xn+1) ≥ T (xn − xn+1),

0 ≤ F(yn) = An(yn − yn+1) ≤ T (yn − yn+1).

Therefore, it follows:
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0 ≥ T −1 F(xn) ≥ xn − xn+1, 0 ≤ T −1 F(yn) ≤ yn − yn+1.

By the normality of X , and

lim
n→∞(xn − xn+1) = lim

n→∞(yn − yn+1) = 0,

we get limn→∞ T −1 F(xn)) = lim
n→∞ T −1(F(yn)) = 0. Using the continuity of F we

obtain (5.4.97).
(c) As before for sufficiently large n

0 ≥ F(xn) ≥ Q(xn − xn+1), 0 ≤ F(yn) ≤ Q(yn − yn+1).

By the normality of Y and the continuity of F and Q, we obtain (5.4.97).
(d) It follows from the equicontinuity of operator An that lim

n→∞ Anvn = 0 when-

ever lim
n→∞ vn = 0. Therefore, we get lim

n→∞ An(xn−xn+1) = lim
n→∞ An(yn−yn+1) = 0.

By (5.4.90), (5.4.91), and the continuity of F at x∗ and y∗, we obtain (5.4.97).

Remark 5.4.11. Hypotheses of Theorem 5.4.9 can be weakened along the lines of
Remarks 5.4.3, 5.4.5, 5.4.6 above and the works in [163, pp. 102–105], [43], [199] on
the monotone convergence of Newton-like methods. However, we leave the details
to the motivated reader.

5.5 Exercises

5.5.1. Introduce the method

xn+1 = xn − [

2xn − xn−1, xn−1
]−1

F(xn) (x−1, x0 ∈ D) (n ≥ 0)

for approximating x∗.

Let F be a nonlinear operator defined on an open set D of a Banach space X
with values in a Banach space Y . Assume:

operator F has divided differences of order one and two on D;
there exist points x−1, x0 in D such that 2x0 − x−1 ∈ D and
A0 = [

2x0 − x−1, x−1
]

is invertible on D;
Set An = [

2xn − xn−1, xn−1
]

(n ≥ 0).
There exist constants α, β such that:

‖A−1
0 ([x, y] − [u, v])‖ ≤ α(‖x − u‖ + ‖y − v‖),

‖A−1
0 ([y, x, y] − [2y − x, x, y])‖ ≤ β‖x − y‖, for all x, y, u, v ∈ D,

and for all x, y ∈ D =⇒ 2y − x ∈ D.
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Define constants γ, δ by

‖x0 − x−1‖ ≤ γ,

‖A−1
0 F(x0)‖ ≤ δ,

2βγ 2 ≤ 1;
Moreover define θ, r, h by

θ = {

(α + βγ )2 + 3β(1 − βγ 2)
}1/2

,

r = 1−βγ 2

α+βγ+θ
,

and

h(t) = −βt3 − (α + βγ )t2 + (1 − βγ 2)t,

δ ≤ h(r) = 1

3
α+βγ+2θ

1−2βγ 2 r2;
U0 = U (x0, r0) ⊆ D,

where r0 ∈ (0, r ] is the unique solution of equation

h(t) = (1 − 2βγ 2)δ

on interval (0, r ].
Then show: sequence {xn} (n ≥ −1) is well defined, remains in U (x0, r0) for all
n ≥ −1, and converges to a solution x∗ of equation F(x) = 0.
Moreover, the following estimates hold for all n ≥ −1

‖xn+1 − xn‖ ≤ tn − tn+1,

and
‖xn − x∗‖ ≤ tn,

where,
t−1 = r0 + γ, t0 = r0,

γ0 = α + 3βr0 + βγ, γ1 = 3βr2
0 − 2γ0r0 − βγ 2 + 1,

and for n ≥ 0

tn+1 = γ0tn−(tn−tn−1)
2β−2βt2

n
γ1+2γ0tn−(tn−tn−1)

2−3βt2
n

· tn .

Furthermore if D is a convex set and

2α(γ + 2r0) < 1,

x∗ is the unique solution of equation in U (x0, r0).
5.5.2. Let F be a nonlinear operator defined on an open convex subset D of a Banach

space X with values in a Banach space Y and let A(x) ∈ L(X, Y ) (x ∈ D).
Assume:
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• there exists x0 ∈ D such that A(x0)
−1 ∈ L(Y, X);

• there exist nondecreasing, nonnegative functions a, b such that:
∥
∥A(x0)

−1 [A(x) − A(x0)]
∥
∥ ≤ a

(‖x − x0‖
)

,
∥
∥A(x0)

−1 [F(y) − F(x) − A(x)(y − x)]
∥
∥ ≤ b

(‖x − y‖)‖x − y‖,
for all x, y ∈ D;

• there exist η ≥ 0, r0 > η such that

‖A(x0)
−1 F(x0)‖ ≤ η,

a(r) < 1,

and
d(r) < 1, for all r ∈ (0, r0] ,

where
c(r) = (1 − a(r))−1,

and
d(r) = c(r)b(r);

• r0 is the minimum positive root of equation h(r) = 0 on (0, r0], where

h(r) = η

1 − d(r)
− r;

• Ū (x0, r0) ⊆ D.

Show: sequence {xn} (n ≥ 0) generated by Newton-like method

xn+1 = xn − A(xn)−1 F(xn) (n ≥ 0)

is well defined, remains in U (x0, r0) for all n ≥ 0, and converges to a solution
x∗ ∈ Ū (x0, r0) of equation F(x) = 0.

5.5.3. (a) Let F be a Fréchet-differentiable operator defined on some closed convex
subset D of a Banach space X with values in a Banach space Y ; let A(x) ∈
L(X, Y ) (x ∈ D). Assume: there exists x0 ∈ D such that A(x0) ∈ L(X, Y ),
A(x0)

−1 ∈ L(Y, X), and
∥
∥
∥A(x0)

−1 [F ′(y) − A(x)
]
∥
∥
∥ < ε0, for all x, y ∈ U (x0, δ0).

Then, show:
(1) for all ε1 > 0 there exists δ1 > 0 such that

∥
∥
∥

[

A(x)−1 − A(x0)
−1
]

A(x0)

∥
∥
∥ < ε1, for all x ∈ U (x0, δ1).

Set δ = min{δ0, δ1} and ε = max{ε0, ε1}.
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(2) for ε > 0 there exist δ > 0 as defined above such that
∥
∥
∥A(x0)

−1 [F ′(y) − A(x)
]
∥
∥
∥ < ε

and ∥
∥
∥

[

A(x)−1 − A(x0)
−1
]

A(x0)

∥
∥
∥ < ε,

for all x, y ∈ U (x0, δ).
(b) Let operators F, A, point x0 ∈ D, and parameters ε, δ be as in (1). Assume

there exist η ≥ 0, c ≥ 0 such that
∥
∥
∥A(x0)

−1 F(x0)

∥
∥
∥ ≤ η,

(1 + ε)ε ≤ c < 1,

η

1 − c
≤ δ,

and
Ū (x0, δ) ⊆ D.

Show: sequence {xn} (n ≥ 0) generated by Newton-like method is well
defined, remains in U (x0, δ) for all n ≥ 0, and converges to a solution x∗ ∈
Ū (x0, δ) of equation F(x) = 0. Moreover, if linear operator

L =
∫ 1

0
F ′(x + t (y − x)

)

dt

is invertible for all x, y ∈ D, then x∗ is the unique solution of equation
F(x) = 0 in Ū (x0, δ). Furthermore, the following estimates hold for all
n ≥ 0

‖xn+1 − xn‖ ≤ cn‖x1 − x0‖ ≤ cnη

and

‖xn − x∗‖ ≤ cn

1 − c
‖x1 − x0‖.

(c) Let X = Y = R, D ⊇ U (0, .3), x0 = 0,

F(x) = x2

2
+ x − .04.

Set A(x) = F ′(x) (x ∈ D), δ3 = δ4 = ε3 = ε4 = .3.
Then we obtain

c3 = 6
7 < 1,

η

1 − c3
= .28 < δ = δ3.

The conclusions of (b) hold and

x∗ = .039230485 ∈ U (x0, δ).
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(d) Let x∗ ∈ D be a simple zero of equation F(x) = 0. Assume:
∥
∥
∥A(x∗)−1 [F ′(y) − A(x)

]
∥
∥
∥ < ε11, for all x ∈ U (x∗, δ11),

∥
∥
∥

[

A(x)−1 − A(x∗)−1
]

A(x∗)
∥
∥
∥ < ε12, for all x ∈ U (x∗, δ12).

Set
δ13 = min{δ11, δ12}, c8 = (1 + ε12)ε11.

Further, assume:

0 < c8 < 1

x0 ∈ Ū (x∗, δ13),

and
Ū (x∗, δ13) ⊆ D.

Show: sequence, {xn} (n ≥ 0) generated by Newton-like method is well
defined, remains in U (x∗, δ13) for all n ≥ 0 and converges to x∗ with

‖xn+1 − x∗‖ ≤ c8‖xn − x∗‖, for all n ≥ 0.

5.5.4. Consider the equation F (x) + G (x) = 0 and the iteration

xn+1 = xn − A (xn)−1 (F (xn) + G (xn)) (n ≥ 0) .

Assume:
(a)

∥
∥A (xn)−1 (A (x) − A (xn))

∥
∥ ≤ vn (r) + bn,

∥
∥
∥A (xn)−1 (F ′ (x + t (y − x)) − A (x)

)
∥
∥
∥

≤ wn (r + t ‖y − x‖) − vn (r) + cn

and ∥
∥
∥A (xn)−1 (G (x) − G (y))

∥
∥
∥ ≤ en (r) ‖x − y‖

for all xn, x, y ∈ Ū (x0, r) ⊆ U (x0, R) , t ∈ [0, 1], where wn (r + t) −
vn (r) t ≥ 0 and en (r) (n ≥ 0) are nondecreasing, nonnegative functions
with wn (0) = vn (0) = en (0) = 0 (n ≥ 0), vn (r) are differentiable,
v′

n (r) > 0 (n ≥ 0) for all r ∈ [0, R], and the constants bn, cn satisfy
bn ≥ 0, cn ≥ 0 and bn + cn < 1 for all n ≥ 0. Introduce for all n, i ≥ 0,
an = ‖A (xn)−1 (F (xn) + G (xn)) ‖, ϕn,i (r) = ai − r + cn,i

∫ r
0 wn (t) dt,

zn (r) = 1 − vn (r) − bn, ψn (r) = cn,i
∫ r

0 en (t) dt , cn,i = zn (ri )
−1,

hn,i (r) = ϕn,i (r) + ψn,i (r), rn = ‖xn − x0‖, an = ‖xn+1 − xn‖, the
equations

r = an + c0,n

(∫ r

0
(w0 (rn + t) + en (rn + t)) dt + (bn + cn − 1) r

)

(5.5.1)
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r = an + cn,n

(∫ r

0
(wn (rn + t) + en (rn + t)) dt + (bn − cn − 1) r

)

(5.5.2)

an = r + c0,n

(∫ r

0
(w0 (tn + t) + en (rn + t)) dt + (bn − cn − 1) r

)

(5.5.3)

an = r + cn,n

(∫ r

0
(wn (r + t) + en (rn + t)) dt + (bn − cn − 1) r

)

(5.5.4)
and the scalar iterations

s0,n = s0
n,n = 0, s0

k+1,n = s0
k,n + h0,n

(

s0
k,n+rn

)

c0,n z0

(

s0
k,n+rn

) (k ≥ 0)

sk+1,n = sk,n + hn,n(sk,n+rn)
cn,n zn,n(sk,n+rn)

(k ≥ n) ;
(b) The function h0,0 (r) has a unique zero s∗

0 in the interval [0, R] and h0,0 (R)

≤ 0;
(c) The following estimates are true:

hn,n(r+rn)

cn,n zn,n(r+rn)
≤ h0,n(r+rn)

c0,n zn(r+rn)

for all r ∈ [0, R − rn] and for each fixed n ≥ 0.

Then show:
(i) The scalar iterations

{

s0
k+1,n

}

and
{

sk+1,n
}

for k ≥ 0 are monotonically

increasing and converge to s∗
n and s∗∗

n for each fixed n ≥ 0, which
are the unique solutions of equations (5.5.1) and (5.5.2) in [0, R − sn],
respectively, with s∗∗

n ≤ s∗
n (n ≥ 0).

(ii) The iteration {xn} is well defined, remains in Ū (x0, s∗) for all n ≥ 0,
and converges to a solution x∗ of the equation F (x)+G (x) = 0, which
is unique in Ū (x0, R).

(iii) The following error estimates are true:

‖xn+1 − xn‖ ≤ sn+1,n+1 − sn,n ≤ s0
n+1,n+1 − s0

n,n,
∥
∥x∗ − xn

∥
∥ ≤ s∗∗

n − sn,n ≤ s∗
n − s0

n,n ≤ s∗
0 − s0

n,0
∥
∥x∗ − xn

∥
∥ ≥ I ∗

n ,
∥
∥x∗ − xn

∥
∥ ≥ I ∗∗

n

and
I ∗∗
n ≤ I ∗

n (n ≥ 0)

where I ∗
n and I ∗∗

n are the solutions of the equations (5.5.3) and (5.5.4),
respectively, for all n ≥ 0.
The above approach shows how to improve upon the results given in
[58] by Yamamoto and Chen.
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(iv) Define the sequence
{

s1
n

}

(n ≥ 0) by

s1
0 = 0, s1

n+1 + hn,n
(

s1
n + rn

)

cn,n
(n ≥ 0) .

Then under the hypotheses (5.5.1)–(5.5.3) above show that:

‖xn+1 − xn‖ ≤ s1
n+1 − s1

n ≤ sn+1,n+1 − sn,n ≤ s0
n+1,n+1 − s0

n,n

and
∥
∥x∗ − xn

∥
∥ ≤ t∗ − s1

n ≤ s∗∗
n − sn,n ≤ s∗

n − s0
n,n ≤ s∗

0 − s0
n,0 (n ≥ 0) ,

where
t∗ = lim

n→∞ s1
n .

5.5.5. Consider the Newton-like method. Let A.. D → L (X, Y ), x0 ∈ D, M−1 ∈
L (X, Y ), X ⊂ Y , L−1 ∈ L (X, X). For n ≥ 0 choose Nn ∈ L (X, X) and define
Mn = Mn−1 Nn + A (xn) Ln−1, Ln = Ln−1 + Ln−1 Nn , xn+1 = xn + Ln (yn),
yn being a solution of Mn (yn) = − [F (xn) + zn] for a suitable zn ∈ y.
Assume:
(a) F is Fréchet-differentiable on D.
(b) There exist nonnegative numbers α, α0 and nondecreasing functions w,

w0.. R+ → R
+ with w (0) = w0 (0) = 0 such that

‖F (x0)‖ ≤ α0, ‖R0 (y0)‖ ≤ α,

‖A (x) − A (x0)‖ ≤ w0 (‖x − x0‖)
and

∥
∥F ′ (x + t (y − x)) − A (x)

∥
∥ ≤ w (‖x − x0‖ + t ‖x − y‖)

for all x, y ∈ Ū (x0, R) and t ∈ [0, 1].
(c) Let M−1 and L−1 be such that M−1 is invertible,

∥
∥
∥M−1

−1

∥
∥
∥ ≤ β, ‖L−1‖ ≤ γ and ‖M−1 − A (x0) L−1‖ ≤ δ.

(d) There exist nonnegative sequence {an} , {ān} , {bn} and {cn} such that for all
n ≥ 0

‖Nn‖ ≤ an,

‖I + Nn‖ ≤ ān,
∥
∥
∥M−1

−1

∥
∥
∥ · ‖M−1 − Mn‖ ≤ bn < 1

and

‖zn‖ ≤ cn ‖F (xn)‖ .
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(e) The scalar sequence {tn} (n ≥ 0) given by

tn+1 = tn+1 + en+1dn+1 (1 + cn+1)
[

In +
n
∑

i=1

hiw (ti ) (ti − ti−1) + w (tn+1) (tn+1 − tn)

]

(n ≥ 0), t0 = 0, t1 = α is bounded above by a t∗0 with 0 < t∗0 ≤ R, where

e0 = γ ā0, en = In−1ān (n ≥ 1) , dn = β
1−dn

(n ≥ 0)

In = εnεn−1 . . . ε0α0 (n ≥ 0) εn = pndn (1 + cn) + cn,

pn = qn−1an (n ≥ 1) , p0 = δa0,

qn = pn + w0 (tn+1) en (n ≥ 1)

and

hi =
n
∏

m=i

εm (i ≤ n) .

(f) The following estimate is true εn ≤ ε < 1 (n ≥ 0).
Then show:
(i) The scalar sequence {tn} (n ≥ 0) is nondecreasing and converges to a

t∗ with 0 < t∗ ≤ t∗0 as n → ∞.
(ii) The Newton-like method is well defined, remains in Ū (x0, t∗), and con-

verges to a solution x∗ of equation F (x) = 0.
(iii) The following estimates are true:

‖xn+1 − xn‖ ≤ tn+1 − tn

and
∥
∥xn − x∗∥∥ ≤ t∗ − tn (n ≥ 0) .

5.5.6. (a) Let F .. D ⊆ X → Y be a Fréchet-differentiable operator and A(x) ∈
L(X, Y ) (x ∈ D). Assume there exists a point x0 ∈ D, η ≥ 0 and nonnegative
continuous functions a, b, c such that

A(x0)
−1 ∈ L(Y, X),

‖A(x0)
−1 F(x0)‖ ≤ η,

‖A(x0)
−1 [F ′(x) − F ′(x0)

] ‖ ≤ a(‖x − x0‖),
‖A(x0)

−1 [F ′(x0) − A(x)
] ‖ ≤ b(‖x − x0‖),

‖A(x0)
−1 [A(x) − A(x0)] ‖ ≤ c(‖x − x0‖)

for all x ∈ D;
equation

∫ 1

0
a [(1 − t)r ] r dt + [b(r) + c(r) − 1] r + η = 0
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has nonnegative solutions. Denote by r0 the smallest.
Point r0 satisfies

a(r0) + b(r0) + c(r0) < 1,

and
Ū (x0, r0) =⊆ D.

Then show sequence {xn} (n ≥ 0) generated by Newton-like method is well
defined, remains in Ū (x0, r0) for all n ≥ 0, and converges to a unique solution
x∗ ∈ Ū (x0, r0) of equation F(x) = 0. Moreover, the following estimates hold
for all n ≥ 0

‖xn+2 − xn+1‖ ≤ q‖xn+1 − xn‖
and

‖xn − x∗‖ ≤ η
1−q qn+1

where,
q = a(r0)+b(r0)

1−c(r0)
.

Furthermore, x∗ is unique in U (x0, R) for R > t∗ and

U (x0, R) ⊆ D

if
∫ 1

0
a [(1 − t)r0 + t R] dt + b(0) ≤ 1.

(b) Let F .. D ⊆ X ⊆ Y be a Fréchet-differentiable operator and A(x) ∈
L(X, Y ). Assume: there exist a simple zero x∗ of F and nonnegative contin-
uous functions α, β, γ such that

A(x∗)−1 ∈ L(Y, X),

‖A(x∗)−1 [F ′(x) − F ′(x∗)
] ‖ ≤ α(‖x − x∗‖),

‖A(x∗)−1 [F ′(x∗) − A(x)
] ‖ ≤ β(‖x − x∗‖),

‖A(x∗)−1 [A(x) − A(x∗)
] ‖ ≤ γ (‖x − x∗‖)

for all x ∈ D;
equation

∫ 1

0
α [(1 − t)r ] dt + β(r) + γ (r) = 1

has nonnegative solutions. Denote by r∗ the smallest; and

Ū (x∗, r∗) ⊆ D.

Show: Under the above stated hypotheses: sequence {xn} (n ≥ 0) generated by
the Newton-like method is well defined, remains in Ū (x∗, r∗) for all n ≥ 0, and
converges to x∗, provided x0 ∈ U (x∗, r∗).
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Moreover the following estimates hold for all n ≥ 0:

‖xn+1 − x∗‖ ≤ δn‖xn − x∗‖,
where

δn =
∫ 1

0 α[(1−t)‖xn−x∗‖]dt+β(‖xn−x∗‖)
1−γ (‖xn−x∗‖) .

5.5.7. (a) Assume:
there exist parameters K ≥ 0, M ≥ 0, L ≥ 0, � ≥ 0, μ ≥ 0, η ≥ 0, λ1, λ2,
λ3 ∈ [0, 1], δ ∈ [0, 2) such that:

hq = Kηλ1 + (1 + λ1)

[

M
(

η
1−q

)λ2 + μ

]

+
[

� + L
(

η
1−q

)λ3
]

δ ≤ δ,

and

� + L
(

η
1−q

)λ3 ≤ 1,

where,
q = δ

1+λ1
.

Then, show: iteration {tn} (n ≥ 0) given by

t0 = 0, t1 = η, tn+2 = tn+1 + K (tn+1−tn)λ1+(1+λ1)
[

Mt
λ2
n +μ

]

(1+λ1)
[

1−�−Lt
λ3
n+1

] · (tn+1 − tn) (n ≥ 0)

is nondecreasing, bounded above by

t∗∗ = η

1 − q
,

and converges to some t∗ such that

0 ≤ t∗ ≤ t∗∗.

Moreover, the following estimates hold for all n ≥ 0

0 ≤ tn+2 − tn+1 ≤ q(tn+1 − tn) ≤ qn+1η.

(b) Let λ1 = λ2 = λ3 = 1. Assume:
there exist parameters K ≥ 0, M ≥ 0, L ≥ 0, � ≥ 0, μ ≥ 0, η ≥ 0, δ ∈ [0, 1]
such that:

hδ =
(

K + Lδ + 4M
2−δ

)

η + δ� + 2μ ≤ δ,

� + 2Lη
2−δ

≤ 1,

L ≤ K ,

and
� + 2μ < 1,
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then, show: iteration {tn} (n ≥ 0) is nondecreasing, bounded above

t∗∗ = 2η

2 − δ

and converges to some t∗ such that

0 ≤ t∗ ≤ t∗∗.

Moreover, the following estimates hold for all n ≥ 0

0 ≤ tn+2 − tn+1 ≤ δ

2
(tn+1 − tn) ≤

(
δ

2

)n+1

η.

(c) Let F .. D ⊆ X → Y be a Fréchet-differentiable operator. Assume:
(1) there exist an approximation A(x) ∈ L(X, Y ) of F ′(x), an open convex

subset D0 of D, x0 ∈ D0, parameters η ≥ 0, K ≥ 0, M ≥ 0, L ≥ 0, μ ≥ 0,
� ≥ 0, λ1 ∈ [0, 1], λ2 ∈ [0, 1], λ3 ∈ [0, 1] such that:

A(x0)
−1 ∈ L(Y, X),

‖A(x0)
−1 F(x0)‖ ≤ η,

‖A(x0)
−1 [F ′(x) − F ′(y)

] ‖ ≤ K‖x − y‖λ1 ,

‖A(x0)
−1 [F ′(x) − A(x)

] ‖ ≤ M‖x − x0‖λ2 + μ,

and

‖A(x0)
−1 [A(x) − A(x0)] ‖ ≤ L‖x − x0‖λ3 + � for all x, y ∈ D0;

(2) hypotheses of (a) or (b) hold;
(3)

Ū (x0, t∗) ⊆ D0.

Then, show sequence {xn} (n ≥ 0) generated by Newton-like method is well
defined, remains in Ū (x0, t∗) for all n ≥ 0, and converges to a solution x∗ ∈
Ū (x0, t∗) of equation F(x) = 0.
Moreover, the following estimates hold for all n ≥ 0:

‖xn+1 − xn‖ ≤ tn+1 − tn

and
‖xn − x∗‖ ≤ t∗ − tn .

Furthermore the solution x∗ is unique in Ū (x0, t∗) if

1

1 − � − L(t∗)λ3

[
K

1 + λ1
(t∗)1+λ1 + M(t∗)λ2 + μ

]

< 1,

or in U (x0, R0) if R0 > t∗, U (x0, R0) ⊆ D0, and

1

1 − � − L(t∗)λ3

[
K

1 + λ1
(R + t∗)1+λ1 + M(t∗)λ2 + μ

]

≤ 1.
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(d) Let F .. D ⊆ X → Y be a Fréchet-differentiable operator. Assume:
(a) there exist an approximation A(x) ∈ L(X, Y ) of F ′(x), a simple solution

x∗ ∈ D of equation F(x) = 0, a bounded inverse A(x∗) and parameters K̄ ,
L̄ , M̄ , μ̄, �̄ ≥ 0, λ4, λ5, λ6 ∈ [0, 1] such that:

‖A(x∗)−1 [F ′(x) − F ′(y)
] ‖ ≤ K‖x − y‖λ4 ,

‖A(x∗)−1 [F ′(x) − A(x)
] ‖ ≤ M̄‖x − x∗‖λ5 + μ̄,

and
‖A(x∗)−1 [A(x) − A(x∗)

] ‖ ≤ L̄‖x − x∗‖λ6 + �̄

for all x, y ∈ D;
(b) equation

K̄
1+λ4

rλ4 + L̄rλ6 + M̄rλ5 + μ̄ + �̄ − 1 = 0

has a minimal positive zero r0, which also satisfies:

L̄rλ6
0 + �̄ < 1

and
U (x∗, r0) ⊆ D.

Then, show: sequence {xn} (n ≥ 0) generated by Newton-like method is well
defined, remains in U (x∗, r0) for all n ≥ 0, and converges to x∗ provided that
x0 ∈ U (x∗, r0). Moreover, the following estimates hold for all n ≥ 0:

‖xn+1 − x∗‖ ≤
≤ 1

1−L̄‖xn−x∗‖λ6−�̄

[
K̄

1+λ4
‖xn − x∗‖λ4 + M̄‖xn − x∗‖λ5 + μ̄

]

‖xn − x∗‖.

5.5.8. Let F be a nonlinear operator defined on an open convex subset D of a Banach
space X with values in a Banach space Y and let A(x) ∈ L(X, Y ) (x ∈ D).
Assume:
(a) there exists x0 ∈ D such that A(x0)

−1 ∈ L(Y, X);
(b) there exist nondecreasing, nonnegative functions a, b such that:

‖A(x0)
−1 [A(x) − A(x0)] ‖ ≤ a(‖x − x0‖),

‖A(x0)
−1 [F(y) − F(x) − A(x)(y − x)] ‖ ≤ b(‖x − y‖)‖x − y‖

for all x, y ∈ D;
(c) there exist η ≥ 0, r0 > η such that

‖A(x0)
−1 F(x0)‖ ≤ η,

a(r) < 1,

and
d(r) < 1 for all r ∈ (0, r0] ,
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where
c(r) = (1 − a(r))−1,

and
d(r) = c2(r)b(r);

(d) r0 is the minimum positive root of equation h(r) = 0 on (0, r0] where,

h(r) = η
1−d(r)

− r.

(e) Ū (x0, r0) ⊆ D.
Then show: sequence {xn} (n ≥ 0) generated by Newton-like method is well
defined, remains in U (x0, r0) for all n ≥ 0, and converges to a solution x∗ ∈
Ū (x0, r0) of equation F(x) = 0.

5.5.9. (a) Let F .. U (z, R) ⊆ X → Y be a Fréchet-differentiable operator for some
z ∈ X , R > 0, and A(x) ∈ L(X, Y ). Assume:
A(z)−1 ∈ L(Y, X) and for any x, y ∈ Ū (z, r) ⊆ Ū (z, R)

‖A(z)−1 [A(x) − A(x0)] ‖ ≤ w0(‖x − x0‖) + a,

‖A(z)−1 [F ′(x + t (y − x)) − A(x)
] ‖ ≤ w(‖x − z‖ + t‖x − y‖)

− w1(‖x − z‖) + b, t ∈ [0, 1] ,

‖A(z)−1 [G(x) − G(y)] ‖ ≤ w2(r)‖x − y‖,
0 < ‖A(z)−1 [F(z) + G(z)] ‖ ≤ η,

where w(r+t)−w1(r) (t ≥ 0), w1(r) and w2(r) are nondecreasing, nonnegative
functions with w(0) = w0(0) = w1(0) = w2(0) = 0, w0 is differentiable,
w′

0(r) > 0, r ∈ [0, R],

w0(r) ≤ w1(r) r ∈ [0, R] (5.5.5)

and parameters a, b satisfy

a ≥ 0, b ≥ 0, a + b < 1.

Define functions ϕ1, ϕ2, ϕ by

ϕ1(r) = η − r +
∫ r

0
w(t)dt,

ϕ2(r) =
∫ r

0
w2(t)dt,

ϕ(r) = ϕ1(r) + ϕ2(r) + (a + b)r,

iteration {rn} (n ≥ 0) by

r0 ∈ [0, R] , rn+1 = rn + ϕ(rn)−ϕ0
1−a−w0(rn)

(n ≥ 0),

where ϕ0 is the minimal value of ϕ on [0, R];
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(b)
ϕ(R) ≤ 0.

Then show iteration {xn} (n ≥ 0) generated by Newton-like method is well
defined, remains in Ū (z, r∗) for any

x0 ∈ D(r∗) =
⋃

r∈[0,r∗)

{

x ∈ U (z, r) | ‖A(x)−1(F(x) + G(x))‖ ≤ ϕ(r)−ϕ0
1−a−w0(r)

}

,

and converges to a solution x∗ ∈ Ū (z, r∗
0 ), which is unique in

Ũ =
{

Ū (z, R) if ϕ (R) < 0 or ϕ (R) = 0 and r∗
0 = R,

U (z, R) if ϕ (R) = 0 and r∗
0 < R.

where r∗ is the minimal point, r∗
0 is the unique zero on (0, r∗], and

r∗ = lim
n→∞ rn .

Moreover, sequence {rn} (n ≥ 0) is monotonically increasing and converges to
r∗. Furthermore, the following estimates hold for all n ≥ 0

‖xn+1 − xn‖ ≤ rn+1 − rn,

‖xn − x∗‖ ≤ r∗ − rn,

provided that r0 ∈ Rx0 , where for x ∈ D(r∗)

Rx =
{

r ∈ [

0, r∗) .. ‖A(x)−1 [F(x) + G(x)] ‖ ≤ ϕ(r)−ϕ0
1−a−w0(r)

, ‖x − z‖ ≤ r
}

,

and
Ū
(

z, |ϕ0|
2−a

)

⊆ D(r∗).

In the next result, we show how to improve on the error bounds.

(c) Under the hypotheses of (a), show the conclusions hold with {rn} and D(r∗)
replaced by {tn} (n ≥ 0), D(t∗) given by

t0 = r0, t1 = r1,

tn+1 = tn +
∫ tn−1

0 [w(tn−1+t (tn−tn−1))−w1(tn−1)]dt (tn−tn−1)+b(tn−tn−1)+
∫ tn

tn−1
w2(t)dt

1−a−w0(tn)

(n ≥ 1),

t∗ = lim
n→∞ tn .

Moreover iteration {tn} is monotonically increasing and converges to t∗.
Furthermore, the following hold for all n ≥ 1:

tn+1 − tn ≤ rn+1 − rn, (5.5.6)

tn ≤ rn, (5.5.7)

t∗ − tn ≤ r∗ − rn, (5.5.8)
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and
t∗ ≤ r∗.

If strict inequality holds in (5.5.5), so it does in (5.5.6)–(5.5.8).

If
w0 (r) = w1 (r) r ∈ [0, R]

our resolving reduces to Theorem 1 in [58]. If (5.5.5) holds, then our error
bounds are at least as fine as the ones given by Chen and Yamamoto [58] (under
the same hypotheses and a more general condition). Moreover according to our
error bounds once finer.

5.5.10. (a) Let F .. D ⊆ X → Y be differentiable. Assume:
There exist functions f1.. [0, 1] × [0,∞)2 → [0,∞) , f2, f3.. [0,∞) → [0,∞),
nondecreasing on [0,∞)2 , [0,∞) , [0,∞) such that

∥
∥
∥A (x0)

−1 [F ′ (x + t (y − x)) − F ′ (x)
]
∥
∥
∥ ≤

≤ f1 (t, ‖x − y‖ , ‖x − x0‖ , ‖y − x0‖) ,
∥
∥
∥A (x0)

−1 [F ′ (x) − A (x)
]
∥
∥
∥ ≤ f2 (‖x − x0‖) ,

∥
∥
∥A (x0)

−1 [A (x) − A (x0)]
∥
∥
∥ ≤ f3 (‖x − x0‖) ,

hold for all t ∈ [0, 1] and x, y ∈ D;
For

∥
∥A (x0)

−1 F (x0)
∥
∥ ≤ η, equation

η + b0η + b0b1η
1−b(r)

= r

has nonnegative solutions, and denote by r0 the smallest one. In addition, r0
satisfies:

Ū (x0, r0) ⊆ D,

and
∫ 1

0
f1 (t, b1b0r0, r0, r0) dt + f2 (r0) + f3 (r0) < 1,

where

b0 =
∫ 1

0 f1(t,η,0,η)dt+ f2(0)

1− f3(η)
,

b1 =
∫ 1

0 f1(t,b0η,η,η+b0η)dt+ f2(η)

1− f3(η+b0η)
,

and

b = b (r) =
∫ 1

0 f1(t,b1b0η,r,r)dt+ f2(r)

1− f3(r)
,

Then, show iteration {xn} (n ≥ 0) generated by Newton-like method is well
defined, remains in Ū (x0, r0) for all n ≥ 0, and converges to a solution x∗ ∈
Ū (x0, r0) of equation. Moreover, the following estimates hold
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‖x2 − x1‖ ≤ b0η

‖x3 − x2‖ ≤ b1 ‖x2 − x1‖ .
∥
∥xn+1 − x∗∥∥ ≤ b2 ‖xn − xn−1‖ , (n ≥ 3)

and

∥
∥x∗ − xn

∥
∥ ≤ b0b1bn−2

2 η

1−b2
, (n ≥ 3) ,

∥
∥x∗ − xn

∥
∥ ≤ bn

2
1−b2

, (n ≥ 0)

where b2 = b (r0) .

Furthermore, if r0 satisfies

∫ 1

0
f1 (t, 2r0, r0, r0) dt + f2 (r0) + f3 (r0) < 1,

x∗ is the unique solution of equation F(x) = 0 in U (x0, r0) .

Finally, if there exists a minimum nonnegative number R satisfying equation

∫ 1

0
f1 (t, r + r0, r0, r) dt + f2 (r0) + f3 (r0) = 1,

such that U (x0, R) ⊆ D, then the solution x∗ is unique in U (x0, R).
(b) There exist a simple zero x∗ of F and continuous functions f4.. [0, 1] ×
[0,∞) → [0,∞), f5, f6.. [0,∞) → [0,∞), nondecreasing on [0,∞) such
that

∥
∥
∥A

(

x∗)−1 [
F ′ (x + t

(

x∗ − x
))− F ′ (x)

]
∥
∥
∥ ≤ f4

(

t,
∥
∥x∗ − x

∥
∥
)

,
∥
∥
∥A

(

x∗)−1 [
F ′ (x) − A (x)

]
∥
∥
∥ ≤ f5

(∥
∥x∗ − x

∥
∥
)

,

and ∥
∥
∥A

(

x∗)−1 [
A (x) − A

(

x∗)]
∥
∥
∥ ≤ f6

(∥
∥x∗ − x

∥
∥
)

,

hold for all t ∈ [0, 1] and x ∈ D;
Equation

∫ 1

0
f4 (t, r) dt + f5 (r) + f6 (r) = 1

has a minimum positive zero r∗.

Ū
(

x∗, r∗) ⊆ D.

Then, show iteration {xn} (n ≥ 0) generated by Newton-like sequence is well
defined, remains in U (x∗, r∗) for all n ≥ 0, and converges to x∗ provided that
x0 ∈ U (x∗, r∗). Moreover, the following estimates hold for all n ≥ 0
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∥
∥xn+1 − x∗∥∥ ≤

∫ 1
0 f4(t,‖xn−x∗‖)dt+ f5(‖xn−x∗‖)

1− f6(‖xn−x∗‖)
∥
∥xn − x∗∥∥

≤ γ
∥
∥xn − x∗∥∥ ,

where

γ =
∫ 1

0 f4(t,‖x0−x∗‖)dt+ f5(‖x0−x∗‖)
1− f6(‖x0−x∗‖) < 1.

(c) Let X = Y = R, D = (−1, 1) , x∗ = 0 and define function F on D by

F (x) = x + x p+1

p+1 , p > 1.

For the case A = F ′ show

rR = 2
3p < r∗ = 2

2+p ,

where rR stands for Rheinboldt’s radius (see Section 5.1) where rR is the con-
vergence radius given by Rheinboldt’s [175].
(d) Let X = Y = C [0, 1], the space of continuous functions defined on [0, 1]
equipped with the max-norm. Let D = {φ ∈ C [0, 1] ; ‖φ‖ ≤ 1} and F defined
on D by

F (φ) (x) = φ (x) − 5
∫ 1

0
xtφ (t)3 dt

with a solution φ∗ (x) = 0 for all x ∈ [0, 1].
In this case, for each φ ∈ D, F ′ (φ) is a linear operator defined on D by the
following expression:

F ′ (φ) [ν] (x) = ν (x) − 15
∫ 1

0
xtφ (t)2 ν (t) dt, ν ∈ D.

In this case and by considering again A = F ′,

rR = 2
45 < r∗ = 1

15 .

5.5.11. Consider inexact Newton methods for solving equation F (x) = 0, F .. D ⊆
R

N → R
N of the general form

xn+1 = xn + sn (n ≥ 0) ,

where sn ∈ R
N satisfies the equation

F ′ (xn) sn = −F (xn) + rn (n ≥ 0)

for some sequence {rn} ⊆ R
N . Let F ∈ Fλ (σ ) ≡ {F .. U (x∗, σ ) → R

N with
U (x∗, σ ) ⊆ D, where F (x∗) = 0, F is Fréchet-differentiable on U (x∗, σ ) and
F ′ (x)−1 exists for all x ∈ U (x∗, σ ), F ′ is continous on U (x∗, σ ), and there
exists μλ ≥ 0 such that for all y, z ∈ U (x∗, σ )

∥
∥F ′ (x∗)−1 [

F ′ (y) − F ′ (z)
] ∥
∥ ≤ μλ ‖y − z‖λ}.
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Suppose the inexact Newton method {xn} (n ≥ 0) satisfy:
∥
∥sn + F ′ (xn)−1 F (xn)

∥
∥

∥
∥F ′ (xn)−1 F (xn)

∥
∥

≡
∥
∥F ′ (xn)−1 rn

∥
∥

∥
∥F ′ (xn)−1 F (xn)

∥
∥

≤ vn (n ≥ 0)

for some {vn} ⊆ R (n ≥ 0). If xi ∈ U (x∗, σ ), then show:
(a) ‖xn+1 − x∗‖ ≤ wn ‖xn − x∗‖ ,

wn ≡ vn + (1+vn)μλ‖xn−x∗‖λ

(1−λ)
[

1−μλ‖xn−x∗‖λ
] (n ≥ 0) ;

(b) if vn ≤ v < 1 (n ≥ 0), then there exists w ∈ (0, 1) given by

w ≡ v + (1+v)μλ‖x0−x∗‖λ

(1+λ)
[

1−μλ‖x0−x∗‖λ
]

such that ‖xn+1 − x∗‖ ≤ w ‖xn − x∗‖ and limn→∞ xn = x∗;
(c) if {xn} (n ≥ 0) converges to x∗ and limn→∞ vn = 0, then {xn} converges
Q-superlinearly;

(d) if {xn} (n ≥ 0) converges to x∗ and limn→∞ v
(1+λ)−1

n < 1, then {xn} con-
verges with R-order at least 1 + λ.

5.5.12 Consider the two-point method [86]:

yn = xn − F ′ (xn)−1 F (xn) ,

Hn = 1
p F ′ (xn)−1 [F ′ (xn + p (yn − xn)) − F ′ (xn)

]

, p ∈ (0, 1] ,

xn+1 = yn − 1
2 Hn [I + Hn]−1 (yn − xn) (n ≥ 0) ,

for approximating a solution x∗ of equation F (x) = 0. Let F .. � ⊆ X → Y be
a twice-Fréchet-differentiable operator defined on an open convex subset � of a
Banach space X with values in a Banach space Y . Assume:
(1) �0 = F ′ (x0)

−1 ∈ L (Y, X) exists for some x0 ∈ � with ‖�0‖ ≤ β;
(2) ‖�0 F (x0)‖ ≤ η;
(3)

∥
∥F ′′ (x)

∥
∥ ≤ M (x ∈ �);

(4)
∥
∥F ′′ (x) − F ′′ (y)

∥
∥ ≤ K ‖x − y‖ , x, y ∈ �.

Denote by a0 = Mβη, b0 = Kβη2. Define sequences

an+1 =an f (an)2 gp (an, bn) ,

bn+1 =bn f (an)3 gp (an, bn)2 ,

where f (x) = 2(1−x)

x2−4x+2
and gp (x, y) = 3x3+2y(1−x)[(1−6p)x+(2+3p)]

24(1−x)2 . If a0 ∈
(

0, 1
2

)

, b0 < h p (h0), where

h p (x) = 3(2x−1)(x−2)
(

x−3+√
5
)(

x−3−√
5
)

2(1−x)[(1−6p)x+2+3p] , Ū (x0,
η
a0

) ⊆ �
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then show: iteration {xn} (n ≥ 0) is well defined, remains in Ū (x0,
η
a0

) for all
n ≥ 0, and converges to a solution x∗ of equation F (x) = 0, which is unique in
U (x0,

η
a0

). Moreover, the following estimates hold for all n ≥ 0:

∥
∥x∗ − xn

∥
∥ ≤

[

1 + a0γ
3n−1

2

2(1−a0)

]

γ
3n−1

2 �n

1−�
η,

where γ = a1
a0

and � = f (a0)
−1.

5.5.13. Consider the two-step method:

yn = xn − F ′ (xn)−1 F (xn)

xn+1 = yn − F ′ (xn)−1 F (yn) (n ≥ 0) ;

for approximating a solution x∗ of equation F (x) = 0. Let F .. � ⊆ X ⊆ Y be a
Fréchet-differentiable operator defined on an open convex subset � of a Banach
space X with values in a Banach space Y . Assume:
(1) �0 = f ′ (X0)

−1 ∈ L (Y, X) for some x0 ∈ �, ‖�0‖ ≤ β;
(2) ‖�0 F (x0)‖ ≤ η;
(3)

∥
∥F ′ (x) − F ′ (y)

∥
∥ ≤ K ‖x − y‖ (x, y ∈ �) .

Denote a0 = kβη and define the sequence an+1 = f (an)2 g (an) an (n ≥ 0),

where f (x) = 2
2−2x−x2 and g (x) = x2 (x + 4) /8. If a0 ∈

(

0, 1
2

)

, Ū (x0, Rη)

⊆ �, R = 1+ a0
2

1−γ�
, γ = a1

a0
and � = f (a0)

−1, then show: iteration {xn} (n ≥ 0)

is well defined, remains in Ū (x0, Rη) for all n ≥ 0 and converges to a solution
x∗ of equation F (x) = 0, which is unique in U (x0,

2
Kβ

− Rη) ∩ �. Moreover,
the following estimates hold for all n ≥ 0

∥
∥xn − x∗∥∥ ≤

[

1 + a0
2 γ

3n−1
2

]

γ
3n−1

2 �n

1−γ 3n
�

η (n ≥ 0) .

5.5.14. Let X be a Banach space, and let Y be a closed subspace. Assume F is a
completely continuous operator defined on D ⊆ X , D an open set, and assume
the values F (x) ∈ Y for all x ∈ D. Let Xn be a sequence of finite-dimensional
subspace of X such that

inf
x∈Xn

‖y − x‖ → 0 as n → ∞ for all y ∈ Y.

Let Fn be a sequence of projections associated with Xn :

Fn .. X → Xn (n ≥ 1) .

Assume that when restricted to Y , the projections are uniformly bounded:

sup
n

‖Fn | Y‖ ≤ a < ∞.

Then projection method for solving
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x = F (x)

becomes
xn = Fn F (xn)

Suppose that x∗ ∈ D if a fixed point of nonzero index for F . Then show for
all sufficiently large n the equation xn = Fn (xn) has at least one solution xn ∈
Xn ∩ D such that

lim
n→∞

∥
∥xn − x∗∥∥ = 0.

Let F .. U (x0, r) ⊆ X → X be differentiable and continuous on U (x0, r) such
that I − P ′ (x) is compact. Suppose L ∈ L (X) is such that

‖L F (x0)‖ ≤ a
∥
∥I − L F ′ (x0)

∥
∥ ≤ b < 1,

∥
∥L

[

F ′ (x) − F ′ (y)
]∥
∥ ≤ c ‖x − y‖ for all x ∈ U (x0, r)

h = ac
(1−b)2 ≤ 1

2

r0 = a
1−b f (h) ≤ r, where f (h) = 1−√

1−2h
h ; f (0) = 1.

Then show:
(a) equation F (x) = 0 has a solution x∗ in U (x0, r0) ; x∗ is unique in U (x0, r)

if, for r1 = a
1−b f1 (h), where f1 (h) = 1+√

1−2h
h

r < r1 for h < 1
2 ;

r ≤ r1 for h = 1
2 .

(b) Furthermore NK method is well defined, remains in U (x0, r) for all n ≥ 0,
and converges to x∗.

5.5.15. Let Fibonacci sequence {an} be defined by aan + ban−1 + can−2 = 0 where
a0 = 0 and a1 = 1. If the characteristic polynomial p (x) = ax2 + bx + c has
zeros r1 and r2 with |r1| > |r2|, then show:
(a) an �= 0 (n > 0) ;
(b) lim

n→∞
an+1

an
= r1;

(c) Newton
(

an+1
an

)

= a2n+1
a2n

and
(d) secant

(
am+1

am
,

an+1
an

)

= am+n+1
am+n

,

where,

xn = Newton (xn−1) = xn−1 − F(xn−1)
F ′(xn−1)

(n ≥ 1)

and

xn = secant (xn−1, xn−2) = xn−1 − F(xn−1)(xn−1−xn−2)
F(xn−1)−F(xn−2)

. (n ≥ 1)



6

Analytic Computational Complexity: We Are
Concerned with the Choice of Initial Approximations

6.1 The general problem

Approximate solution of equation involves a complex problem: choice of an ini-
tial approximation x0 sufficiently close to the true solution. The method of random
choice is often successful. Another frequently used method is to replace

F (x) = 0 (6.1.1)

by a “similar” equation and to regard the exact solution of the latter as the initial ap-
proximation x0. Of course, there are no general “prescriptions” for admissible initial
approximations. Nevertheless, one can describe various devices suitable for exten-
sive classes of equations.

As usual, let F map X into Y . To simplify the exposition, we shall assume that
F is defined throughout X . Assume that G (x .λ) (x ∈ X; 0 � λ � 1) is an operator
with values in Y such that

G (x; 1) ≡ Fx (x ∈ X) , (6.1.2)

and the equation
G (x; 0) = 0 (6.1.3)

has an obvious solution x0. For example, the operator G (x; λ) might be defined by

G (x; λ) = Fx − (1 − λ) Fx0. (6.1.4)

Consider the equation
G (x; λ) = 0. (6.1.5)

Suppose that equation (6.1.5) has a continuous solution x = x (λ), defined for 0 �
λ � 1 and satisfying the condition

x (0) = x0. (6.1.6)

Were the solution x (λ) known,

I.K. Argyros, Convergence and Applications of Newton-type Iterations,
DOI: 10.1007/978-0-387-72743-1 6, c© Springer Science+Business Media, LLC 2008
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x∗ = x (1) (6.1.7)

would be a solution of equation (6.1.1). One can thus find a point x0 close to x∗ by
approximating x (λ).

Our problem is thus to approximate the implicit function defined by (6.1.5) and
the initial conditions (6.1.6). Global propositions are relevant, here theorems on im-
plicit functions defined on the entire interval [0, 1]. The theory of implicit functions
of this type is at present insufficiently developed.

The idea of extending solutions with respect to a parameter is due to S.N. Bern-
stein [192]; it has found extensive application in various theoretical and applied prob-
lems.

Assume that the operator G (x; λ) is differentiable with respect to both x and λ,
in the sense that there exist linear operators G ′

x (x; λ) mapping X and Y and elements
G ′

x (x; λ) ∈ Y such that

lim
‖h‖+|�λ|→0

∥
∥G (x + h; λ + �λ) − G (x; λ) − G ′

x (x; λ) h − G ′
x (x; λ) �λ

∥
∥

‖h‖ + |�λ| = 0.

The implicit function x (λ) is then a solution of the differential equation

G ′
x (x; λ) dx

dλ
+ G ′

x (x; λ) = 0, (6.1.8)

satisfying the initial condition (6.1.6). Conditions for existence of a solution of this
Cauchy problem defined on [0, 1] are precisely conditions for existence of the im-
plicit function. Assuming the existence of a continuous operator

� (x; λ) = [

G ′
x (x; λ)

]−1
, (6.1.9)

we can rewrite equation (6.1.8) as

dx
dλ

= −� (x; λ) G ′
x (x; λ) . (6.1.10)

One must bear in mind that Peano’s Theorem is false for ordinary differential
equations in Banach spaces. Therefore, even in the local existence theorem for equa-
tion (6.1.10) with condition (6.1.6), one must assume that the right-hand side of the
equation satisfies certain smoothness conditions. However, there are no sufficient
smoothness conditions for the existence of a global extension of the solution to the
entire interval 0 � λ � 1. We shall only mention a trivial fact: if the equation

dx
dλ

= f (x; λ) (6.1.11)

in a Banach space satisfies the local existence theorem for some initial condition, and

‖ f (x; λ)‖ � a + b ‖x‖ (

0 � λ � 1; x ∈ X
)

, (6.1.12)

then every solution of equation (6.1.11) can be extended to the entire interval 0 �
λ � 1. Thus, if
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∥
∥
∥� (x; λ) G ′

y (x; λ)

∥
∥
∥ � a + b ‖x‖ , (6.1.13)

then equation (6.1.5) defines an implicit function which satisfies (6.1.6) and is de-
fined for 0 � λ � a. Consequently, condition (6.1.13) guarantees that equation
(6.1.1) is solvable and its solution can be constructed by integrating the differential
equation (6.1.10).

To approximate a solution x (λ) of equation (6.1.10), one can use, for example,
Euler’s method. To this end, divide the interval [0, 1] into m subintervals by points

λ0 = 0 < λ1 < · · · < λm = 1. (6.1.14)

The approximate values x (λi ) of the implicit function x (λ) are then determined by
the equalities x (λ0) = x0 and

x (λi+1) = x (λi ) − � [x (λi ) ; λi ] G ′
λ [x (λi ) ; λi ] (λi+1 − λi ) . (6.1.15)

The element x (λm) is in general close to the solution x∗ of equation (6.1.1) and one
may therefore expect it to fulfill the demands imposed on initial approximations for
iterative solution of equation (6.1.1). We emphasize that (6.1.15) does not describe
an iterative process; it only yields a finite sequence of operations, whose result is an
element that may be a suitable initial approximation for iterative solution of equation
(6.1.1).

Other constructions may be used to approximate the implicit function x (λ). Par-
tition the interval [0, 1] by the points (6.1.14). The point x (λ1) is a solution of the
equation G (x, λ1) = 0. Now x (λ0) = x0 is a suitable initial approximation to
x (λ1). Approximate x (λ1) by performing a fixed number of steps of some iterative
process. The result is an element x1 that should be fairly close to x (λ1). This element
x1 is obtained from x0 by a certain operator

x1 = W
[

x0; G (x; λ1)
]

.

Now regard x1 as an initial approximation to the solution x (λ2) of the equation
G (x; λ2), and proceed as before. The result is an element x2:

x2 = W [x1; G (x, λ2)] .

Continuing in this way, we obtain a finite set of points

xi+1 = W [xi ; G (x, λi )] (i = 0, 1, ..., m − 1) , (6.1.16)

the last of which xm , may be regarded as an initial approximation for iterative solu-
tion of equation (6.1.1)

If the operator W represents one iteration of the method, formula (6.1.16) is

xi+1 = xi − [

G ′
x (xi ; λi+1)

]−1
G (xi ; λi+1) (i = 1, ..., m − 1) . (6.1.17)
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6.2 Obtaining good starting points for Newton’s method

In this section, we are concerned with the problem of approximating a locally unique
solution x∗ of equation

F (x) = 0, (6.2.1)

where F is a Fréchet-differentiable operator defined on an open convex subset D of
a Banach space X with values in a Banach space Y .

The most popular method for generating a sequence approximation x∗ is un-
doubtedly Newton’s method:

xn+1 = xn − F ′ (xn)−1 F (xn) (n ≥ 0) (x0 ∈ D) . (6.2.2)

In particular, the famous Newton-Kantorovich theorem guarantees the quadratic
convergence of method (6.2.2) if the initial guess x0 is “close enough” to the solution
x∗ (see Chapter 2).

However, we recently showed that the Newton-Kantorovich hypothesis (6.2.13)
can always be replaced by the weaker (6.2.7) (under the same computational cost)
[35] (see also Section 2.2). In particular, using the algorithm proposed by H.T. Kung
[131] (see also [192]), we show that the number of steps required to compute a good
starting point x0 (to be precised later) can be significantly reduced.

This observation is very important in computational mathematics.
In Section 2.2 we showed the following semilocal convergence theorem for New-

ton’s method (6.2.2), which essentially states the following:
If

F ′ (x0)
−1 exists,

∥
∥
∥F ′ (x0)

−1
∥
∥
∥ ≤ β0, (6.2.3)

∥
∥
∥F ′ (x0)

−1 F (x0)

∥
∥
∥ ≤ ξ0, (6.2.4)

∥
∥F ′ (x) − F (x0)

∥
∥ ≤ K0 ‖x − x0‖ , (6.2.5)

∥
∥F ′ (x) − F ′ (y)

∥
∥ ≤ K ‖x − y‖ , (6.2.6)

for all x, y ∈ U (x0, r)

h0 = β0Lξ0 < 1
2 (6.2.7)

where,

L = K0+K
2 , (6.2.8)

2ξ0 ≤ r, (6.2.9)

and
U (x0, r) ⊆ D, (6.2.10)

then sequence {xn} (n ≥ 0) generated by NK method (6.2.2) is well defined, remains
in U (x0, r0) for all n ≥ 0, and converges quadratically to a unique solution x∗ ∈
U (x0, r) of equation F (x) = 0. Moreover we have

∥
∥x0 − x∗∥∥ ≤ 2ξ0. (6.2.11)
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Remark 6.2.1. In general
K0 ≤ K (6.2.12)

holds. If equality holds in (6.2.12), then the result stated above reduces to the fa-
mous Newton-Kantorovich theorem and (6.2.7) to the Newton-Kantorovich hypoth-
esis (6.2.13). If strict inequality holds in (6.2.12), then (6.2.7) is weaker than the
Newton-Kantorovich hypothesis

h0 = β0 K ξ0 < 1
2 . (6.2.13)

Moreover, the error bounds on the distances ‖xn+1 − xn‖ , ‖xn − x∗‖ (n ≥ 0) are
finer and the information on the location of the solution more precise.

Note also that the computational cost of obtaining (K0, K ) is the same as the one
for K as in practice evaluating K requires finding K0.

Hence all results using (6.2.13) instead of (6.2.7) can now be challenged to obtain
more information. That is exactly what we are doing here. In particular, motivated
by the elegant work of H.T. Kung [131] on good starting points for NK method, we
show how to improve on these results if we use our theorem stated above instead of
the Newton-Kantorovich theorem.

Definition 6.2.2. We say x0 is a good starting point for approximating x∗ by NK
method or a good starting point for short if conditions (6.2.3)–(6.2.10) hold.

Note that the existence of a good starting point implies the existence of a solution
x∗ of equation F (x) = 0 in U (x0, 2ξ0) .

We provide the following theorem / Algorithm that improves the corresponding
ones given in [131, Thm. 4.1] to obtain good starting points.

Theorem 6.2.3. Let F.. D ⊆ X → Y be a Fréchet-differentiable operator. If F ′ satis-
fies center-Lipschitz, Lipschitz conditions (6.2.5), (6.2.6), respectively, on U (x0, 2r)

‖F (x0)‖ ≤ η0
∥
∥
∥F ′ (x)−1

∥
∥
∥ ≤ β for all x ∈ U (x0, 2r) , (6.2.14)

U (x0, 2r) ⊆ D, (6.2.15)

and
βη0 < r

2 , (6.2.16)

then there exists a solution x∗ of equation F (x) = 0 in U (x0, 2r).

Proof. Simply use L instead of K in the proof of Theorem 4.1 in [131, p. 11] includ-
ing the algorithm there, which is essentially repeated here with some modifications:

Algorithm A: The goal of this algorithm is to produce starting point for approx-
imating x∗.

1. Set h0 ←− β2Lη0 and i ←− 0. Choose any number δ in
(

0, 1
2

)

.
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2. If h1 < 1
2 , xi is a good starting point for approximating x∗ and algorithn A termi-

nates.
3. Set λi ←−

(
1
2 − δ

)

/hi , and

Fi (x) ←− [F (x) − F (xi )] + λi F (xi ) . (6.2.17)

4. (It is shown in the proof that xi is a good starting point for approximating a zero,
denoted by xi+1, of Fi , Apply NK method to Fi , starting from xi , to find xi+1.

5. (Assume that the exact xi+1 is found.) Set ηi+1 ←− ‖F (xi+1)‖ and

hi+1 ←− β2 Kηi+1.

6. Set i ←− i + 1, and return back to step 2.

In the following, we prove algorithm works. First we note that λi ∈ (0, 1) and by
(6.2.17)

ηi+1 = (1 − λi ) ηi . (6.2.18)

We shall prove by induction that

‖xi − xi−1‖ ≤ 2βλi−1ηi−1, (6.2.19)

and
‖xi − x0‖ ≤ r. (6.2.20)

They trivially hold for i = 0.
Suppose that (6.2.19) and (6.2.20) hold and hi ≥ 1

2 . By (6.2.17)

β2L ‖ fi (xi )‖ ≤ β2Lλiηi = λi hi = 1
2 − δ, (6.2.21)

and by (6.2.18)

2β ‖ fi (xi )‖ ≤ 2βλiηi < 2βηi ≤ 2βη0 < r.

Further, by (6.2.20), we have U (xi , r) ⊆ U (x0, 2r). Hence xi is a good starting
point for approximating the zero xi+1 of fi . From (6.2.15), we know

‖xi+1 − xi‖ ≤ 2βλiηi . (6.2.22)

Hence (6.2.19) holds with i replaced by i +1. By (6.2.22), (6.2.18), and (6.2.16), we
have

‖xi+1 − x0‖ ≤ ‖xi+1 − xi‖ + ‖xi − xi−1‖ + · · · + ‖x1 − x0‖ (6.2.23)

≤ 2β (λiηi + λi−1ηi−1 + · · · + λ0η0)

≤ 2β ((1 − λi−1) ηi−1 + λi−1ηi−1 + · · · + λ0η0)

= 2β (ηi−1 + λi−2ηi−2 + · · · + λ0η0)

≤ · · ·
≤ 2βη0 < r,
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i.e., (6.2.20) holds with i replaced by i + 1.
We now assume that (6.2.19) and (6.2.20) hold and h1 < 1

2 . By (6.2.16) and
(6.2.18), 2β ‖ f (xi )‖ = 2βηi < 2βη0 < r . Further by (6.2.20), sr (xi ) ⊆ s2r (x0).
Hence xi is a good starting point for approximating α.

It remains to show that the loop starting from step 2 is finite. Suppose that h0 ≥ 1
2 .

Because λi ∈ (0, 1) for all i , we have

λi =
1
2 − δ

β2Lηi
=

1
2 − δ

β2L (1 − λi−1) ηi−1
>

1
2 − δ

β2Lηi−1
= λi−1, for all i.

Hence by (6.2.18)

ηi+1 = (1 − λi ) ηi < (1 − λ0) ηi

< · · ·
< (1 − λ0)

i+1 η0.

This implies that hi < 1
2 when β2L (1 − λ0)

i η0 < 1
2 , i.e., when

(1 − λ0)
i <

1

2h0
. (6.2.24)

Because 1−λ0 < 1, (6.2.24) is satisfied for large i . Therefore when i is large enough,
hi < 1

2 and hence Algorithm A terminates.

Remark 6.2.4. As already noted in [131] Theorem 6.2.3 is trivial for the scalar case
( f .. R → R), as the mean value theorem can be used. Some of the assumptions of
Theorem 6.2.3 can be weakened. Avila for example in [196, Theorem 4.3] instead
of (6.2.16) used a more complicated condition involving β, K , and η0. However, the
idea algorithm is basically different from Algorithm A. Note also that if K0 = K ,
then our Theorem 6.2.3 reduces to Theorem 4.1 in [131]. We now modify Algorithm
A to make it work in Banach spaces without necessarily assuming that the exact zero
of xi+1 of Fi can be found using NK method (6.2.2).

Theorem 6.2.5. Under the hypotheses of Theorem 6.2.3, a good starting point for
approximating solution x∗ of equation F (x) = 0 can be obtained in N (δ, K0, K )

Newton steps, δ is any number in
(

0, 1
2

)

,

N (δ, K0, K ) =
{

0, if h0 = β2Lη0 ≤ 1
2 − δ

I (δ, K0, K ) · J (δ, K0, K ) , otherwise,

where, I (δ, K0, K ) is the smallest integer i such that:

[

1 −
1
2 − δ

h0

]i

≤
[

1

2
− δ

]

/h0, (6.2.25)

and J (δ, K0, K ) is the smallest integer j such that:
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2
1

j−1 (1 − 2δ)2 j −1 (a + βη0) ≤ r − 2βη0, (6.2.26)

1

2 j (1 − 2δ)2 j −1 (a + βη0) ≤ a, (6.2.27)

where,

a = min

(
r

2
− βη0,

δ

2βL

)

. (6.2.28)

Proof. Simply use L instead of K in the proof of Theorem 4.2 in [131, p. 16], and
the following algorithm:

Algorithm B.

1. Set h0 ←− β2Lη0, x0 ←− x0 and i ←− 0. Choose any number δ in
(

0, 1
2

)

.

2. If hi ≤ 1
2 − δ, xi is a good starting point for approximating x∗ and Algorithm B

terminates.
3. Set λi ←−

(
1
2 − δ

)

/ hi ,

Fi (x) ←− [F (x) − ηi F (x0) /η0] + λiηi F (x0) /η0,

and
ηi+1 ←− (1 − λi ) ηi . (6.2.29)

4. Apply NK method to Fi , starting from xi , to find an approxiation xi+1 to a zero
xi+1 of Fi such that

‖xi+1 − xi+1‖ ≤ r − 2βη0, (6.2.30)

and
∥
∥
∥F ′

i (xi+1)
−1 Fi (xi+1)

∥
∥
∥ ≤ min

(
r

2
− βηi+1,

δ

2βL

)

. (6.2.31)

5. Set hi+1 ←− β2Lηi+1.

6. Set i ←− i + 1 and return to step 2.

Note that the hi , λi , ηi , fi , xi in Algorithm A are the same hi , λi , ηi , fi , xi in
Algorithm B. Note also that by (6.2.30) and (6.2.23) we have

‖xi − x0‖ ≤ ‖xi − xi‖ + ‖xi − x0‖ (6.2.32)

≤ (r − 2βη0) + 2βη0 = r, ∀i.

It is clear that if h0 < 1
2 − δ

2 , x0 is a good starting point for approximating α.
Now suppose h0 > 1

2 − δ
2 . Because x0 = x0, in the proof of Theorem 6.2.3, we

have shown that x0 is a good starting point for approximating x1 a zero of f0. Let z j

denote the j th NK iterate starting from x0 for approximating x1. Because

β2L ‖ f0 (x0)‖ = β2Lλ1η0 = 1
2 − δ,

it is known (see, e.g., Section 2.2) that
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∥
∥z j − x1

∥
∥ ≤ 1

2 j−1 (1 − 2δ)2 j −1
∥
∥
∥

[

f ′ (x0)
]−1

f (x0)

∥
∥
∥

and
∥
∥
∥

[

f ′
0

(

z j
)]−1

f0
(

z j
)
∥
∥
∥ ≤ 1

2 j (1 − 2δ)2 j −1
∥
∥
∥

[

f ′ (x0)
]−1

f (x0)

∥
∥
∥ .

Hence we may let x1 be z j for j large enough, say, j = j (δ), then

‖x1 − x1‖ ≤ r − 2βη0,

and
∥
∥
∥

[

f ′
0 (x1)

]−1
f0 (x1)

∥
∥
∥ ≤ min

(
r

2
− βη1,

δ

2βL

)

,

i.e., (6.2.30) and (6.2.31) hold for i = 0.

Suppose that (6.2.30) and (6.2.31) hold. Then
∥
∥
∥

[

f ′ (xi+1)
]−1

f (xi+1)

∥
∥
∥ ≤ (6.2.33)

≤
∥
∥
∥

[

f ′
i (xi+1)

]−1
fi (xi+1)

∥
∥
∥+

∥
∥
∥

[

f ′
i (xi+1)

]−1 [
f ′
i (xi+1) − fi (xi+1)

]
∥
∥
∥ .

≤ min

(
r

2
− βηi+1,

δ

2βL

)

+ βηi+1,

and
∥
∥
∥

[

f ′
i+1 (xi+1)

]−1
fi+1 (xi+1)

∥
∥
∥ ≤ (6.2.34)

≤
∥
∥
∥

[

f ′ (xi+1)
]−1 [

f (xi+1) − ηi+1 f (x0) /η0
]
∥
∥
∥

≤
∥
∥
∥

[[

f ′ (xi+1)
]−1

λi+1ηi+1 f (x0) /η0

]∥
∥
∥

≤
∥
∥
∥

[

f ′ (xi+1)
]−1

fi (xi+1)

∥
∥
∥+ λi+1βηi+1.

Suppose that hi+1 < 1
2 − δ. We want to prove that xi+1 is a good starting point for

approximating α. By (6.2.33)

βL
∥
∥
∥

[

f ′ (xi+1)
]−1

f (xi+1)

∥
∥
∥ ≤

≤ βL · δ

2βL
+ hi+1 <

δ

2
+ 1

2
− δ = 1

2
− δ

2
.

Let a =
∥
∥
∥

[

f ′ (xi+1)
]−1

f (xi+1)

∥
∥
∥ . If x ∈ U (xi+1, 2a), then

‖x − x0‖ ≤ ‖x − xi+1‖ + ‖xi+1 − x0‖ (6.2.35)

≤ 2a + r

≤ 2
( r

2
− βηi+1 + βηi+1

)

+ r = 2r,
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i.e., x ∈ U (x0, 2r). Hence xi+1 is a good starting point for approximating α. We
now assume that hi+1 > 1

2 − δ, and want to prove that xi+1 is a good starting point
for approximating xi+2, a zero of fi+1.

We have by (6.2.34) and (6.2.31),

βL
∥
∥
∥

[

f ′
i+1 (xi+1)

]−1
fi+1 (xi+1)

∥
∥
∥

≤ δ

2
+ λi+1β

2Lηi+1

= δ

2
+ 1

2
− δ = 1

2
− δ

2
.

Let b =
∥
∥
∥

[

f ′
i+1 (xi+1)

]−1
fi+1 (xi+1)

∥
∥
∥. If x ∈ U (xi+1, 2b), as in (6.2.35) we can

prove that x ∈ U (x0, 2r). Hence xi+1 is a good starting point for approximating
xi+2. By the same argument as used for obtaining x0 and by (6.2.34), one can prove
that if xi+2 is set to be the J (δ)th Newton iterate starting from xi+1, then

‖xi+2 − xi+1‖ ≤ r − 2βη0,

and
∥
∥
∥

[

f ′
i+1 (xi+2)

]−1
fi+1 (xi+2)

∥
∥
∥ ≤ min

(
r

2
− βηi+2,

δ

2βL

)

,

i.e., (6.2.30) and (6.2.31) hold with i replaced by i + 1. This shows that we need to
perform at most J (δ) Newton steps at step 4 of Algorithm B to obtain each xi+1.

Therefore, for any δ ∈
(

0, 1
2

)

, to obtain a good starting point we need to perform at

most N (δ) = I (δ) · J (δ) Newton steps.

Remark 6.2.6. As noted in [131] δ should not be chosen to minimize the complexity
of Algorithm B. Instead, δ should be chosen to minimize the complexity of algo-
rithm:

1. Search Phase: Perform Algorithm B.
2. Iteration Phase: Perform NK method starting from the point obtained by Algo-

rithm B.

An upper bound on the complexity of the iteration phase is the time needed to
carry out T (δ, K0, K , ε) is the smallest integer K such that

1

2K−1 (1 − 2δ)2K −1 (a + βη0) ≤ ε. (6.2.36)

Note also that if K0 = K our Theorem 6.2.5 reduces to Theorem 4.2 in [131, p. 15].
Hence we showed the following result:

Theorem 6.2.7. Under the hypotheses of Theorem 6.2.5, the time needed to find a
solution x∗ of equation F (x) = 0 inside a ball of radius ε is bounded above by the
time needed to carry out R (δ, K0, K , ε) Newton steps, where
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R (ε, K0, K ) = min
0<δ< 1

2

[N (δ, K0, K , ε) + T (δ, K0, K , ε)] , (6.2.37)

where N (δ, K0, K , ε) and T (δ, K0, K , ε) are given by (6.2.17) and (6.2.36), re-
spectively.

Remark 6.2.8. If K0 = K Theorem 6.2.7 reduces to Theorem 4.3 in [131, p. 20].
In order for us to compare our results with the corresponding ones in [131], we
computed the values of R (ε, K0, K ) for F satisfying the conditions of Theorem 4.3
in [131] and Theorem 6.2.7 above with

βη0 ≤ .4r, (6.2.38)

and
1 ≤ h0 = β2Lη0 ≤ 10, (6.2.39)

and for ε equal to 10−i r , 1 ≤ i ≤ 10.

The following table gives the results for ε = 10−6r . Note that by I we mean
I (δ0, K , K ), IαK we mean I (δ0, K0, K ) with K0 = αK , α ∈ [0, 1]. Similarly for
J , N , and T .

Comparison Table 5.2.9
h0 δ0 I J N T R I.9K N.9K R.9K I.5K N.5K R.5K I0K N0K R0K

1 .165 3 2 6 5 11 3 6 11 2 4 9 1 2 8
2 .103 8 3 24 6 30 7 21 27 5 15 21 2 6 12
3 .118 16 3 48 6 54 14 42 48 10 30 36 5 15 21
4 .129 25 3 75 6 81 23 69 75 16 48 54 9 27 33
5 .137 35 3 105 6 111 33 99 105 30 90 96 13 39 45
6 .144 47 3 141 5 146 44 132 137 31 93 98 17 51 56
7 .149 59 3 177 5 182 55 165 170 40 120 125 22 66 71
8 .154 72 3 216 5 221 67 201 206 41 123 128 28 84 89
9 .159 85 3 255 5 260 80 240 245 58 174 179 33 99 104

10 .163 99 3 295 5 302 93 279 284 68 204 209 39 117 122

Remark 6.2.9. It follows from the table that our results significantly improve the cor-
responding ones in [131] and under the same computational cost. Suppose for ex-
ample that h0 = 9, δ = .159. Kung found that the search phase can be done in 255
NK steps and the iteration phase in 5 NK steps. That is, a root can be located inside
a ball of radius 10−6r using 260 NK steps. However for K0 = .9K , K0 = .5K ,
and K0 = 0, the corresponding NK steps are 245, 179, and 104, respectively, which
constitute a significant improvement.

At the end of his paper, Kung asked whether the number of NK steps used by
this procedure is close to the minimum. It is now clear from our approach that the
answer is no (in general).

Finally, Kung proposed the open question: Suppose that the conditions of the
Newton-Kantorovich theorem hold: Is NK method optimal or close to optimal, in
terms of the numbers of function and derivative equations required to approximate
the solution x∗ of equation F (x) = 0 to within a given tolerance ε?

Clearly according to our approach the answer is no.
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6.3 Exercises

6.3.1 Let g be an algorithm for finding a solution x∗ of equation F (x) = 0, and x
the approximation to x∗ computed by g. Define the error for approximating x
by

d (g, F) = ∥
∥x − x∗∥∥ .

Consider the problem of approximating x∗ when F satisfies some conditions.
Algorithms based on these conditions cannot differentiate between operators
in the class C of all operators satisfying these conditions. We use the class C
instead of specific operators from C . Define

di = inf
g∈A

sup
F∈C

d (g, F)

where A is the class of all algorithms using i units of time. The time t needed
to approximate x∗ to with in error tolerance ε > 0 is the smallest i such that
di ≤ ε, and an algorithm is said to be optimal if

sup
F∈C

d (g, F) = dt .

If for any algorithm using i units of time, there exist functions F1, F2 in C
such that:
the minimum distance between any solution of F , and any solution of F2 is
greater or equal to 2ε then, show:

di ≥ ε.

6.3.2 With the notation introduced in Exercise 6.3.1, assume:
(1) F .. [a, b] → R is continuous;
(2) F (a) < 0, F (b) > 0,

Then, show:

di = b − a

2i+1
.

6.3.3 With the notation introduced in Exercise 6.3.1, assume:
(1) F .. [a, b] → R, F ′ (x) ≥ α > 0 for all x ∈ [a, b];
(2) F (a) < 0, F (b) > 0.
Then, show:

di = b − a

2i+1
.

6.3.4 With the notation introduced in Exercise 6.3.1, assume:
(1) F .. [a, b] → R, F ′ (x) ≤ b for all x ∈ [a, b];
(2) F (a) < 0, F (b) > 0.
Then, show:

di = b − a

2i+1
.
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6.3.5 With the notation introduced in Exercise 6.3.1, assume:
(1) F .. [a, b] → R, b ≥ F ′ (x) ≥ α > 0 for all x ∈ [a, b];
(2) F (a) < 0, F (b) > 0.
Then, show:

di ≥ (b − a)

[(

1 − α
b

)2

2

]i+1

.

6.3.6 Assume:
(1) hypotheses of Exercise 6.3.5 hold;
(2)

∥
∥F ′′ (x)

∥
∥ ≤ γ for all γ ∈ [a, b] .

Then show that the problem of finding a solution x∗ of equation F (x) = 0
can be solved superlinearly.



7

Variational Inequalities

7.1 Variational inequalities and partially relaxed monotone
mapping

There are numerous iterative methods available in the literature on the approxima-
tion-solvability of the general class of nonlinear inequality (NVI) problems, for in-
stance the auxiliary problem principle. Marcotte and Wu [136] applied an iterative
procedure similar to that of the auxiliary problem principle to the solvability of a
class of variational inequalities involving cocoercive mappings in Rn , and Verma
extended and generalized this iterative process of Marcotte and Wu [136] and ap-
plied to the solvability of a certain class of variational inequalities involving partially
relaxed monotone mappings a weaker class than the cocoercive and strongly mono-
tone mappings and computation-oriented. In this section, we intend to discuss the
approximation-solvability of a class of nonlinear variational inequalities involving
multivalued partially relaxed monotone mappings. The estimate for the approximate
solutions seems to be of interest in the sense that these are not only helpful to the con-
vergence analysis, but it could be equally important to some numerical computations
in Rn as well.

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖. Let P (H)

denote the power set of H . Let T .. K → P (H) be a multivalued mapping and K a
closed convex subset of H . We consider a class of nonlinear variational inequality
(NVI) problems: find an element x∗ ∈ K and u∗ ∈ T (x∗) such that

〈

u∗, x − x∗〉 ≥ 0 for all x ∈ K . (7.1.1)

For an arbitrary element x0 ∈ K , we consider an iterative algorithm generated
as:

〈

u0 + x1 − x0, x − x1
〉 ≥ 0, for all x ∈ K and u0 ∈ T

(

x0
)

.
...
〈

uk + xk+1 − xk, x − xk+1
〉 ≥ 0, for all x ∈ K , and for uk ∈ T

(

xk
)

.

(7.1.2)

The iterative procedure (7.1.2) can be characterized as a projection equation

I.K. Argyros, Convergence and Applications of Newton-type Iterations,
DOI: 10.1007/978-0-387-72743-1 7, c© Springer Science+Business Media, LLC 2008
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xk+1 = PK

[

xk − uk
]

for k ≥ 0, (7.1.3)

where PK is the projection of H onto K .
A mapping T .. H → H is said to be α-cocoercive if for all x, y ∈ H , we have

‖x − y‖2 ≥ α2 ‖T (x) − T (y)‖2 + ‖α (T (x) − T (y)) − (x − y)‖2 ,

where α > 0 is a constant.
A mapping T .. H → H is called α-cocoercive if there exists a constant α > 0

such that

〈T (x) − T (y) , x − y〉 ≥ α ‖T (x) − T (y)‖2 for all x, y ∈ H.

We note that if T is α-cocoercive and expanding, then T is α-strongly monotone.
Also, if T is α-strongly and β-Lipschitz continuous, then T is

(

α/β2
)

-cocoercive for
β > 0. Clearly every α-cocoercive mapping T is (1/α)-Lipschitz continuous. Most
importantly, both notions of the cocoercivity are equivalent.

A mapping T .. H → P (H) is called r -strongly monotone if for all x, y ∈ H , we
have

〈u − v, x − y〉 ≥ r ‖x − y‖2 for u ∈ T (x) and v ∈ T (y) ,

where r > 0 is a constant.
This implies that the mapping T is r -∂-expansive, that is,

∂ (T (x) , T (y)) ≥ r ‖x − y‖ for all x, y ∈ H ,

where δ (A, B) = sup {‖a − b‖ .. a ∈ A.b ∈ B} for any A, B ∈ P (H). When r = 1,
T is called a ∂-expanding mapping. The class satisfies the following implications:

r -strongly monotone
↓

r -∂-expansive
↓

∂-expansive

A mapping T .. H → P (H) is said to be β-∂-Lipschitz continuous if

∂ (T (x) , T (y)) ≤ β ‖x − y‖ for all x, y ∈ H ,

where ∂ (A, B) = sup {‖a − b‖ .. a ∈ A, b ∈ B} for any A, B ∈ P (H) and β ≥ 0
is a constant.

A multivalued mapping T .. H → P (H) is said to be α-∂-cocoercive if for all
x, y ∈ H , we have

〈u − v, x − y〉 ≥ α [∂ (T (x) , T (y))]2 for all x, y ∈ H,

where ∂ (A, B) = sup {‖a − b‖ .. a ∈ A, b ∈ B} for any A, B ∈ P (H) and α > 0
is a constant.
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A mapping T .. H → P (H) is called β-∂-Lipschitz continuous if there exists a
constant β ≥ 0 such that

∂ (T (x) , T (y)) ≤ β ‖x − y‖ for all x, y ∈ H,

where ∂ (A, B) = sup {‖a − b‖ .. a ∈ A, b ∈ B} for any A, B ∈ P (H) .

A mapping T .. H → P (H) is said to be α-partially relaxed monotone if for all
x, y, z ∈ H we have

〈u − v, z − y〉 ≥ −α ‖z − x‖2 for u ∈ T (x) and v ∈ T (y) .

The partially relaxed monotone mappings are weaker than the cocoercive and strongly
monotone mappings and, on the top of that, computation-oriented.

Lemma 7.1.1. For all v,w ∈ H, we have

‖v‖2 + 〈v,w〉 ≥ − (1/4) ‖w‖2 .

Lemma 7.1.2. Let v,w ∈ H. Then we have

〈v,w〉 = (1/2)
[

‖v + w‖2 − ‖v‖2 − ‖w‖2
]

.

Lemma 7.1.3. Let K be a nonempty subset of a real Hilbert space H, and T .. K →
P (H) a multivalued mapping. Then the NVI problem has a solution (x∗, u∗) if and
only if x∗ is a fixed point of the mapping F.. K → P (K ) defined by

F (x) =
⋃

u∈T (x)

{PK [x − ρu]} for all x ∈ K ,

where ρ > 0 is a constant.

Theorem 7.1.4. Let H be a real (finite) Hilbert space and T .. K → P (H) an
α-partially relaxed monotone and β-∂-Lipschitz continuous mapping from a non-
empty closed convex subset K of H into the power set P (H) of m H. Suppose that
(x∗, u∗) is a solution of the NVI problem (7.1.1). Then the sequences

{

xk
}

and
{

uk
}

generated by the iterative algorithm (7.1.2) satisfy the estimate

∥
∥
∥xk+1 − x∗

∥
∥
∥

2 ≤
∥
∥
∥xk − x∗

∥
∥
∥

2 − [1 − 2ρα]
∥
∥
∥xk − xk+1

∥
∥
∥

2
,

and converges to x∗ and u∗, respectively, a solution of the NVI problem (7.1.1), for
0 < ρ < 1/2α.

Proof. To show that the sequences
{

xk
}

and
{

uk
}

generated by the iterative al-
gorithm (7.1.2) converge, respectively, to x∗ and u∗, a solution of the NVI prob-
lem (7.1.1), we procedeed as follows: because xk+1 satisfies the iterative algorithm
(7.1.2), we have for a constant ρ > 0 that

〈

ρuk + xk+1 − xk, x − xk+1
〉

≥ 0 for all x ∈ K and for uk ∈ T
(

xk
)

. (7.1.4)
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On the other hand, for constant ρ > 0, we have
〈

ρu∗, x − x∗〉 ≥ 0. (7.1.5)

Replacing x by x∗ in (7.1.4) and x by xk+1 in (7.1.5), and adding, we obtain

0 ≤
〈

ρ
(

uk − u∗
)

, x∗ − xk+1
〉

+
〈

xk+1 − xk, x∗ − xk+1
〉

= −ρ
〈

uk − u∗, xk+1 − x∗
〉

+
〈

xk+1 − xk, x∗ − xk+1
〉

.

Because T is α-partially relaxed monotone, it implies that

0 ≤ ρα

∥
∥
∥xk+1 − xk

∥
∥
∥

2 +
〈

xk+1 − xk, x∗ − xk+1
〉

. (7.1.6)

Taking v = xk+1 − xk and w = x∗ − xk+1 in Lemma 7.1.2, and applying to (7.1.6),
we have

0 ≤ (ρα)

∥
∥
∥xk+1 − xk

∥
∥
∥

2

+ 1

2

[∥
∥
∥x∗ − xk

∥
∥
∥

2 −
∥
∥
∥xk+1 − xk

∥
∥
∥

2 −
∥
∥
∥x∗ − xk+1

∥
∥
∥

2
]

.

It follows that
∥
∥
∥xk+1 − x∗

∥
∥
∥

2 ≤
∥
∥
∥xk − x∗

∥
∥
∥

2 − [1 − 2ρα]
∥
∥
∥xk+1 − xk

∥
∥
∥

2
. (7.1.7)

Therefore, we have

∥
∥
∥xk − x∗

∥
∥
∥

2 −
∥
∥
∥xk+1 − x∗

∥
∥
∥

2 ≥ [1 − 2ρα]
∥
∥
∥xk+1 − xk

∥
∥
∥

2
.

This implies that
{∥
∥xk − x∗∥∥2

}

is a strictly decreasing sequence for 1 − 2ρα > 0

and the difference of two successive terms tends to zero. As a result, we have

lim
k→∞

∥
∥
∥xk+1 − xk

∥
∥
∥ = 0.

Let x ′ be a cluster point of the sequence
{

xk
}

. Then there exists a subsequence
{

xki
}

such that
{

xki
}

converges to x ′. Finally, the continuity of the projection mapping
(7.1.3) and Lemma 7.1.3 imply that x ′ is a fixed point of (7.1.3). Because uki ∈
T
(

xki
)

, u′ ∈ T
(

xki
)

, and T is β-∂-Lipschitz continuous, it implies that

∥
∥
∥uki − u′

∥
∥
∥ ≤ ∂

(

T
(

xki
)

, T
(

x ′)
)

≤ β

∥
∥
∥xki − x ′

∥
∥
∥ → 0,

that means, uki → u′. Thus, the entire sequences
{

xk
}

and
{

uk
}

must converge,
respectively, to x ′ and u′. Hence,

(

x ′, u′) is a solution of the NVI problem (7.1.1).
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An application to Theorem 7.1.4, based on an iterative procedure introduced and
studied by Marcotte and Wu, to a variational inequality in Rn is as follows: find an
element x∗ ∈ X and u∗ ∈ F (x∗) such that

(

u∗) T
(

x − x∗) ≥ 0 for all x ∈ X, (7.1.8)

where F .. Rn → P (Rn) is a multivalued α-partially relaxed monotone mapping,
X a closed convex subset of Rnm, and uT denotes the transpose of u. The itera-
tive scheme is characterized as a variational inequality as follows: for an arbitrarily
chosen initial element x0 ∈ X,

[

uk + D
(

xk+1 − xk
)]T (

x − xk+1
)

≥ 0 for all x ∈ X and for uk ∈ F
(

xk
)

,

(7.1.9)
where D denotes a fixed positive-definite matrix. When the matrix D is symmetric,
the above variational inequality iteration is equivalent to the projection formula

xk+1 = PD

[

xk − D−1uk
]

, (7.1.10)

where PD denotes the projection on the set X with the Euclidean matrix norm ‖·‖D

induced by a symmetric, positive-definite matrix D, ‖x‖D = (

xT Dx
)1/2

and ‖x‖
denotes the Euclidean norm.

Theorem 7.1.5. Let F.. Rn → P (Rn) be an α-partially relaxed monotone and
b-∂-Lipschitz continuous mapping. Suppose that (x∗, u∗) is a solution of the vari-
ational inequality (7.1.8), the sequences

{

xk
}

and
{

uk
}

are generated by (7.1.9) and
D is a positive-definite and symmetric matrix. Then the sequences

{

xk
}

and
{

uk
}

satisfy the estimate
∥
∥
∥xk+1 − x∗

∥
∥
∥

2

D
≤
∥
∥
∥xk − x∗

∥
∥
∥

2

D
− [1 − (2ρα/λ min (D))]

∥
∥
∥xk − xk+1

∥
∥
∥

2

D
,

and converge to x∗ and u∗, respectively, a solution of the NVI problem (7.1.1), for

0 < ρ < λ min (D) /2α,

where λ min (D) denotes the smallest eigenvalue of D.

Proof. The proof is similar to that of Theorem 7.1.4.

In this section, we provide examples of α-partially relaxed monotone mappings;
b-∂-Lipschitz continuous mappings; and an application of Theorem 7.1.5.

Theorem 7.1.6. Let P.. Rn → Rn be given by

P (x) = cI (x) + v,

where c > 0, x, v ∈ Rn with v fixed, and I is the n × n identity matrix.
Then the following conclusions hold
(a) P is an α-partially relaxed monotone mapping for c = α.

(b) P is a b-Lipschitz continuous mapping if and only if b = c.
(c) If P is an α-partially relaxed monotone mapping then c < 4α.
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Proof. (a) For all x, y, z ∈ Rn, we have

‖y − z‖2 + ‖y − x‖2 + ‖x − z‖2 ≥ 0

from which it follows in turn that

〈y − z, y − z〉 + 〈y − x, y − x〉 + 〈x − z, x − z〉 ≥ 0,

or
−〈x, y〉 − 〈y, z〉 + 〈y, y〉 + 〈z, z〉 − 〈z, x〉 + 〈x, x〉 ≥ 0,

or
α [〈x − y, z − y〉 + 〈z − x, z − x〉] ≥ 0

or
〈αx − αy, z − y〉 + c ‖z − x‖2 ≥ 0 (as α = c),

or
〈P (x) − P (y) , z − y〉 +

[

α ‖z − x‖2
]

≥ 0,

which shows that P is an α-partially relaxed monotone mapping.
(b) The result follows immediately from

P (x) − P (y) = cI (x − y) .

(c) For x �= y, x �= 0, set y = px and y = qx for some p, q > 0. It follows
from the hypothesis that

c (1 − p) (q − p) 〈x, x〉 + α (q − 1)2 〈x, x〉 ≥ 0

or
cp2 − c (1 + q) p + α (q − 1)2 + cq ≥ 0.

Because c > 0, the above inequality will always hold as long as the discriminant of
the corresponding quadratic equation in p is negative. The discriminant becomes

c (c − 4α) (q − 1)2 < 0,

which holds for c < 4α. It can be easily seen from the above proof that the above
result holds in an arbitrary space with a real symmetric inner product.

With the above choice of P and for n = 1, v = 0, we obtain the following
application of Theorem 7.1.5.

Example 7.1.7. It can easily be seen that the inequality (7.1.9) for D = d > 0
becomes

[

αxk + d
(

xk+1 − xk
)]T (

x − xk+1
)

≥ 0 for all x ∈ Rn , P
(

xk
)

= αxk,

which leads to
ραxk + d

(

xk+1 − xk
)

= 0,

or
xk+1 = [(d − ρα) /d] xk .
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The above iteration converges for |(d − ρα) /d| < 1 or ρ < 2d/α, which is
implied by the hypothesis of Theorem 7.1.5 that gives ρ < d/2α in this case. Hence,
sequences

{

xk
}

and
{

uk
}

converge to (x∗, u∗) = (0, 0), a solution of the NVI prob-
lem (7.1.1) in this case.

7.2 Monotonicity and solvability of nonlinear variational
inequalities

Just recently, Argyros [43] and Verma [201]–[204] applied inexact Newton-like iter-
ative procedures to the approximation-solvability of a class of nonlinear equations in
a Banach space setting.

The generalized partial relaxed monotonicity is more general than the other no-
tions of strong monotonicity and cocoercivity.

This section deals with a discussion of the approximation-solvability of the NVIP,
based on a general version of the existing auxiliary problem principle (APP) intro-
duced by Cohen [65] and later generalized by Verma [202]. This general version of
auxiliary problem principle (GAPP) is stated as follows:
GAPP: For a given iterate xk , determine an xk+1 such that (for k � 0)

〈

ρT
(

xk
)

+ h′
(

xk+1
)

− h′
(

xk
)

, η
(

x, xk+1
)〉

+ ρ
[

f (x) − f
(

xk+1
)]

�

�
(

−σ k
)

, for all x ∈ K , (7.2.1)

where K ′ = K ∩ {

x .. ‖x‖ � c, a large constant
}

, h.. Rn → R is continuously
Fréchet-differentiable, ρ > 0, a parameter and the sequence

{

σ k
}

satisfies

σ k � 0,

∞
∑

k=1

σ k < ∞. (7.2.2)

If K is bounded, then K = K ′.
Next, we recall some auxiliary results crucial to the approximation-solvability of

the NVIP.
Let, h.. Y → R be a continuously Fréchet-differentiable mapping. It follows that

h′ (x) ∈ L (Y, R) the space of bounded linear operators from Y into R. From now
on, we denote the real number h′ (x) (y) by

〈

h′ (x) , y
〉

for x, y ∈ Y.

Lemma 7.2.1. Let X and Y be two Banach spaces and K be a nonempty convex
subset of X. Suppose that the following assumptions hold:

(i) There exist an x∗ ∈ K and numbers α � 0, b > 0, r > 0 such that for all
x ∈ K0, t ∈ [0, 1]

〈

h′ (x∗ + tη
(

x, x∗))− h′ (x∗) , η
(

x, x∗)〉 � tα
∥
∥η
(

x, x∗)∥∥2
,

where h.. K → R is a continuously Fréchet-differentiable mapping, and η.. K × K →
Y , satisfies:
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∥
∥η
(

x, x∗)∥∥ � r; and
∥
∥η
(

x, x∗)∥∥ � b
∥
∥x − x∗∥∥ .

(ii) The set S0 defined by

S0 = {

(h, η) .. h′ (x∗ + t
(

x − x∗)) (x − x∗) �
〈

h′ (x∗ + tη
(

x, x∗)) , η
(

x, x∗)〉}

is nonempty.
(iii) The set

K0 = U
(

x∗, r
)

.

Then, for all k ∈ K0 and (h, η) ∈ S0, the following estimate holds

h (x) − h
(

x∗)− 〈

h′ (x∗) , η
(

x, x∗)〉 � αb2

2

∥
∥x − x∗∥∥2

.

Proof. Let x ∈ K0 and (h, η) ∈ S0. Then we obtain

h (x) − h
(

x∗)− 〈

h′ (x∗) , η
(

x, x∗)〉 =

=
∫ 1

0

[

h′ (x∗ + t
(

x − x∗)) (x − x∗) dt
] 〈

h′ (x∗) , η
(

x, x∗)〉

�
∫ 1

0

〈[

h′ (x∗ + tη
(

x, x∗)) , η
(

x, x∗)]〉 dt − 〈

h′ (x∗) , η
(

x, x∗)〉

�
∫ 1

0

〈[

h′ (x∗ + tη
(

x, x∗))− h′ (x∗)] , η
(

x, x∗)〉 dt

� α

∫ 1

0
t
∥
∥η
(

x, x∗)∥∥2
dt

� αb2

2

∥
∥x − x∗∥∥2

.

This completes the proof.

Lemma 7.2.2. Let X and Y be two Banach spaces and K be a nonempty convex
subset of X. Suppose that the following assumptions hold:

(i) There exist an x∗ ∈ K and numbers α � 0, b = 1, r > 0 such that for all
x ∈ K0, t ∈ [0, 1]

〈

h′ (x∗ + tη
(

x, x∗))− h′ (x∗) , η
(

x, x∗)〉 � tα
∥
∥η
(

x, x∗)∥∥2
,

where h.. K → R is a continuously Fréchet-differentiable mapping, and η.. K × K →
Y , satisfies:

∥
∥η
(

x, x∗)∥∥ � r; and
∥
∥η
(

x, x∗)∥∥ � b
∥
∥x − x∗∥∥ .

(ii) The set S0 defined by

S0 = {

(h, η) .. h′ (x∗ + t
(

x − x∗)) (x − x∗) �
〈

h′ (x∗ + tη
(

x, x∗)) , η
(

x, x∗)〉}

is nonempty.
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(iii) The set
K0 = U

(

x∗, r
)

.

Then, for all x ∈ K0 and (h, η) ∈ S0, the following estimate holds

h (x) − h
(

x∗)− 〈

h′ (x∗) , η
(

x, x∗)〉 � (α/2)
∥
∥x − x∗∥∥2

.

For Y = R in Lemma 7.2.2, we arrive at

Lemma 7.2.3. Let X be a Banach space and K be a nonempty convex subset of X.
Suppose that the following assumptions hold:

(i) There exist an x∗ ∈ K and numbers α � 0, b = 1, r > 0 such that for all
x ∈ K0, t ∈ [0, 1]

〈

h′ (x∗ + tη
(

x, x∗))− h′ (x∗) , η
(

x, x∗)〉 � tα
∥
∥η
(

x, x∗)∥∥2
,

where h.. K → R is a continuously Fréchet-differentiable mapping, and η.. K × K →
R, satisfies:

∥
∥η
(

x, x∗)∥∥ � r; and
∥
∥η
(

x, x∗)∥∥ � b
∥
∥x − x∗∥∥ .

(ii) The set S0 defined by

S0 = {

(h, η) .. h′ (x∗ + t
(

x − x∗)) (x − x∗) �
〈

h′ (x∗ + tη
(

x, x∗)) , η
(

x, x∗)〉}

is nonempty.
(iii) The set

K0 = U
(

x∗, r
)

.

Then, for all x ∈ K0 and (h, η) ∈ S0, the following estimate holds

h (x) − h
(

x∗)− 〈

h′ (x∗) , η
(

x, x∗)〉 � (α/2)
∥
∥x − x∗∥∥2

.

The, following is a more specialized version of Lemma 7.2.3, more suitable for
problems on hand.

Lemma 7.2.4. Let K be a nonempty convex subset of Rn. Suppose that the following
assumptions hold:

(i) There exist an x∗ ∈ K and numbers α � 0, b = 1, r > 0 such that for all
x ∈ K0, t ∈ [0, 1]

〈

h′ (x∗ + tη
(

x, x∗))− h′ (x∗) , η
(

x, x∗)〉 � tα
∥
∥η
(

x, x∗)∥∥2
,

where h.. K → R is a continuously Fréchet-differentiable mapping, and η.. K × K →
R, satisfies:

∥
∥η
(

x, x∗)∥∥ � r; and
∥
∥η
(

x, x∗)∥∥ �
∥
∥x − x∗∥∥ .

(ii) The set S0 defined by

S0 = {

(h, η) .. h′ (x∗ + t
(

x − x∗)) (x − x∗) �
〈

h′ (x∗ + tη
(

x, x∗)) , η
(

x, x∗)〉}
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is nonempty.
(iii) The set

K0 = U
(

x∗, r
)

.

Then, for all x ∈ K0 and (h, η) ∈ S0, the following estimate holds

h (x) − h
(

x∗)− 〈

h′ (x∗) , η
(

x, x∗)〉 � (α/2)
∥
∥x − x∗∥∥2

.

Lemma 7.2.5. Let X and Y be two Banach space and K be a nonempty invex subset
of X. Suppose that the following assumptions hold:
(i) There exist an x∗ ∈ K and numbers ∂ � 0, p > 0, q > 0 such that for all
x ∈ K1, t ∈ [0, 1]

〈

h′ (x∗ + tη
(

x, x∗))− h′ (x∗) , η
(

x, x∗)〉 � t∂
∥
∥η
(

x, x∗)∥∥2
,

where h.. K → R is a continuously Fréchet-differentiable mapping, and η.. K × K →
Y , satisfies:

∥
∥η
(

x, x∗)∥∥ � p
∥
∥x − x∗∥∥ � q.

(ii) The set S1 defined by

S1 = {

(h, η) .. h′ (x∗ + t
(

x − x∗)) (x − x∗) �
〈

h′ (x∗ + tη
(

x, x∗)) , η
(

x, x∗)〉}

is nonempty.
(iii) The set

K1 = U (x, q) ⊂ K .

Then, for all x ∈ K1 and (h, η) ∈ S1, the following estimate holds

h (x) − h
(

x∗)− 〈

h′ (x∗) , η
(

x, x∗)〉 � ∂p2

2

∥
∥x − x∗∥∥2

.

Proof. Let x ∈ K and (h, η) ∈ S. Then we obtain

h (x) − h
(

x∗)− 〈

h′ (x∗) , η
(

x, x∗)〉

=
∫ 1

0

[

h′ (x∗ + t
(

x − x∗)) (x − x∗) dt
]− 〈

h′ (x∗) , η
(

x, x∗)〉

�
∫ 1

0

〈[

h′ (x∗ + tη
(

x, x∗)) , η
(

x, x∗)]〉 dt − 〈

h′ (x∗) , η
(

x, x∗)〉

�
∫ 1

0

〈[

h′ (x∗ + tη
(

x, x∗))− h′ (x∗)] , η
(

x, x∗)〉 dt

� ∂

∫ 1

0
t
∥
∥η
(

x, x∗)∥∥2
dt

� ∂p2

2

∥
∥x − x∗∥∥2

,

which completes the proof.
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We are just about ready to present, based on the GAPP, the approximation-
solvability of the NVIP.

Theorem 7.2.6. Let T .. K → Rn be η-γ -μ-partially relaxed monotone from a non-
empty closed invex subset K of Rn into Rn. Let f .. K → R be proper, invex, and
lower semicontinuous on K and h.. K → R be a continuously Fréchet-differentiable
on K . Suppose that there exist an x ′ ∈ K and nonnegative numbers α, ∂ , σ k ∈ K
(

k � 1
)

such that for all t ∈ [0, 1], and x ∈ K0 ∩ K1, we have

〈

h′ (x ′ + tη
(

x, x ′))− h′ (x ′) , η
(

x, x ′)〉 � tα
∥
∥x − x ′∥∥2

, (7.2.3)
〈

h′ (x ′ + tη
(

x, x ′))− h′ (x ′) , η
(

x, x ′)〉 � t∂
∥
∥x − x ′∥∥2

, (7.2.4)

and ∞
∑

k=1

σ k < ∞, (7.2.5)

where η.. K × K → Rn is λ-Lipschitz continuous with the following assumptions:

(i) η (x, y) + η (y, x) = 0
(ii) For each fixed y ∈ K , map x → η (y, x) is sequentially continuous from the

weak topology to the weak topology in the second variable.
(iii) η is expanding.
(iv) The set S defined by

S = {

(h, η) .. h′ (x ′ + t
(

x − x ′)) (x − x ′) �
〈

h′ (x ′ + tη
(

x, x ′)) , η
(

x, x ′)〉}

is nonempty.

If in addition, x∗ ∈ K is any fixed solution of the NVIP and

0 < ρ < (α/2γ ) ,

then the sequence
{

xk
}

converges strongly to x∗.

Proof. To show the sequences
{

xk
}

converges to x∗, a solution of the NVIP, we need
to compute the estimates. Let us define a function �∗ by

�∗ (x) ..= h
(

x∗)− h (x) − 〈

h′ (x) , η
(

x∗, x
)〉

.

Then, by Lemma 7.2.4, we have

�∗ (x) ..= h
(

x∗)− h (x) − 〈

h′ (x) , η
(

x∗, x
)〉

� (α/2)
∥
∥x∗ − x

∥
∥2 for x ∈ K ,

(7.2.6)
where x∗ is any fixed solution of the NVIP. It follows that

�∗
(

xk+1
)

= h
(

x∗)− h
(

xk+1
)

−
〈

h′
(

xk+1
)

, η
(

x∗, xk+1
)〉

. (7.2.7)

Now we can write
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�∗
(

xk
)

− �∗
(

xk+1
)

= (7.2.8)

= h
(

xk+1
)

− h
(

xk
)

−
〈

h′
(

xk
)

, η
(

xk+1, xk
)〉

+
〈

h′
(

xk+1
)

− h′
(

xk
)

, η
(

x∗, xk+1
)〉

� (α/2)

∥
∥
∥xk+1 − xk

∥
∥
∥

2 +
〈

h′
(

xk+1
)

− h′
(

xk
)

, η
(

x∗, xk+1
)〉

� (α/2)

∥
∥
∥xk+1 − xk

∥
∥
∥

2 + ρ
〈

t
(

x K
)

, η
(

xk+1, x∗
)〉

+ ρ
(

f
(

xk+1
)

− f
(

x∗)
)

− σ k

for x = x∗ in (7.2.1).
If we replace x by xk+1 above and combine with (7.2.8), we obtain

�∗
(

xk
)

− �∗
(

xk+1
)

�

� [α/2]
∥
∥
∥xk+1 − xk

∥
∥
∥

2 + ρ
〈

T
(

xk
)

, η
(

xk+1, x∗
)〉

− ρ
〈

T
(

x∗) , η
(

xk+1, x∗
)〉

− σ k

= [α/2]
∥
∥
∥xk+1 − xk

∥
∥
∥

2 + ρ
〈

T
(

xk
)

− T
(

x∗) , η
(

xk+1, x∗
)〉

− σ k .

Because T is η-γ -μ-partially relaxed monotone, it implies that

�∗
(

xk
)

− �∗
(

xk+1
)

�

� [α/2]
∥
∥
∥xk+1 − xk

∥
∥
∥

2 − ργ

∥
∥
∥xk+1 − xk

∥
∥
∥

2 + ρμ

∥
∥
∥xk − x∗

∥
∥
∥

2 − σ k

� [α/2]
∥
∥
∥xk+1 − xk

∥
∥
∥

2 − ργ

∥
∥
∥xk+1 − xk

∥
∥
∥

2 + ρμ

∥
∥
∥xk − x∗

∥
∥
∥

2 − σ k

= (1/2) [α − 2ργ ]
∥
∥
∥xk+1 − xk

∥
∥
∥

2 + ρμ

∥
∥
∥xk − x∗

∥
∥
∥

2 − σ k

� (1/2) [α − 2ργ ]
∥
∥
∥xk+1 − xk

∥
∥
∥

2 − σ k (7.2.9)

�
(

−σ k
)

for α − 2ργ > 0. (7.2.10)

That is,
�∗

(

xk
)

− �∗
(

xk+1
)

�
(

−σ k
)

. (7.2.11)

It follows that
�∗

(

xk+1
)

− �∗
(

xk
)

� σ k . (7.2.12)

If we sum from k = 1, 2, ..., N , we arrive at

N
∑

k=1

[

�∗
(

xk+1
)

− �∗
(

xk
)]

�
∞
∑

k=1

σ k .
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As a result of this, we can get

�∗
(

x N+1
)

− �∗
(

x1
)

�
∞
∑

k=1

σ k . (7.2.13)

It follows using (7.2.7) from (7.2.13) that

[α/2]
∥
∥
∥x N+1 − x∗

∥
∥
∥

2
� �∗

(

x1
)

+
∞
∑

k=1

σ k . (7.2.14)

Under the hypotheses of the theorem, it follows from (7.2.14) that the sequence
{

xk
}

is bounded and
lim

k→∞

∥
∥
∥xk − x∗

∥
∥
∥ = 0.

Thus, sequence
{

xk
}

converges to x∗, a solution of the NVIP.

When η (x, y) = x − y in Theorem 7.2.6, we arrive at:

Theorem 7.2.7. Let T .. K → Rn be γ -μ-partially relaxed monotone from a non-
empty closed invex subset K of Rn into Rn. Let f .. K → R be proper, invex, and
lower semicontinuous on K and h.. K → R be continously Fréchet-differentiable on
K . Suppose that there exist an x ′ ∈ K0 ∩ K1 and t ∈ [0, 1], (h, η) ∈ S, we have

〈

h′ (x ′ + t
(

x − x ′))− h′ (x ′) , x − x ′〉 � tα
∥
∥x − x ′∥∥2

,
〈

h′ (x ′ + t
(

x − x ′))− h′ (x ′) , x − x ′〉 � t∂
∥
∥x − x ′∥∥2

,

and ∞
∑

k=1

σ k < ∞.

If in addition, x∗ ∈ K is any fixed solution of the NVIP and

0 < ρ < (α/2γ ) ,

then the sequence
{

xk
}

converges strongly to x∗.

Remark 7.2.8. The set S is nonempty in many interesting cases, for example, take

η
(

x, x ′) = x − x ′, h.. R → R and η.. R × R → R.

Remark 7.2.9. In order for us to have some insight into the structure of K , let us
assume 〈z, z〉1/2 = ‖z‖ and consider the Cauchy-Schwarz inequality

|〈x, y〉| � ‖x‖ ‖y‖
in the first estimate hypotheses in Lemma 7.2.1. Moreover, assume:

∥
∥h′ (x) − h′ (y)

∥
∥ � �2 ‖x − y‖ for all mx,y ∈ K and some � � 0.
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We then have in turn that

tα
∥
∥
∥η
(

x, x∗)2
∥
∥
∥ �

〈

h′ (x∗ + tη
(

x, x∗))− h′ (x, x∗) , η
(

x, x∗)〉

�
√

‖h′ (x∗ + tη (x, x∗)) − h′ (x, x∗)‖ ‖η (x, x∗)‖
�
√

�2t ‖η (x, x∗)‖ ‖η (x, x∗)‖
�
(

�
√

t
) ∥
∥η
(

x, x∗)∥∥

or √
tα
∥
∥η
(

x, x∗)∥∥ � � for
∥
∥η
(

x, x∗)∥∥ �= 0.

But
b
√

tα
∥
∥x − x∗∥∥ �

√
tα
∥
∥η
(

x, x∗)∥∥ � �,

which shows that definitely K should be a subset of U (x∗, r∗) , where

r∗ = �/bα for b, α �= 0.

7.3 Generalized variational inequalities

Let M , 〈·, ·〉 denote the dual, inner product and norm of a Hilbert space H , respec-
tively. Let C be a closed convex subset of H . For G, F .. H → H continuous opera-
tors, we study the problem of approximating x ∈ H such that

〈G(x), F(y) − F(x)〉 ≥ 0 for all F(x), F(y) ∈ C. (7.3.1)

This is the so-called general nonlinear variational inequality problem. Special cases
of this problem have already been studied: in [149], when F(x) = x ∈ C ; if C∗ =
{x ∈ H , 〈x, y〉 ≥ 0, y ∈ C} is a polar cone of the convex cone C in H ; in [149],
when C = H ; and in [151] under stronger conditions than ours.

It is well-known that if C is a convex subset of H , then x ∈ H is a solution of
(7.3.1) if and only if x satisfies

F(x) = PC [F(x) − ρG(x)] , (7.3.2)

where ρ > 0 is a constant and PC is a projection of H into H . Hence (7.3.1) can be
seen as a fixed point problem of the form

x = Q(x), (7.3.3)

where
Q(x) = x − F(x) + PC [F(x) − ρG(x)] . (7.3.4)

That is, (7.3.4) suggests the following iterative procedure: given x0 ∈ H , find xn+1
using the approximation

xn+1 = xn − F(xn) + PC [F(xn) − ρG(xn)] (n ≥ 0). (7.3.5)
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We assume:
∥
∥F(x∗) − F(y)

∥
∥ ≤ c1

∥
∥x∗ − y

∥
∥λ1 , c1 ≥ 0, λ1 ≥ 1, y ∈ H (7.3.6)

∥
∥G(x∗) − G(y)

∥
∥ ≤ c2

∥
∥x∗ − y

∥
∥λ2 , c2 ≥ 0, λ2 ≥ 1, y ∈ H (7.3.7)

〈

G(x∗) − G(y), x∗ − y
〉 ≥ c3

∥
∥x∗ − y

∥
∥2

, c3 ≥ 0, y ∈ H (7.3.8)
〈

F(x∗) − F(y), x∗ − y
〉 ≥ c4

∥
∥x∗ − y

∥
∥

2
, c4 ≥ 0, y ∈ H, (7.3.9)

where, x∗ is a solution of (7.3.1).
Define the parameter θ by

θ = 2
√

1 + c2
1c2(λ1−1)

0 − 2c4 +
√

1 + ρ2c2
2c2(λ2−1)

0 − 2ρc3 , (7.3.10)

where for given x0 ∈ H ,
∥
∥x0 − x∗∥∥ ≤ c0. (7.3.11)

We can now show the following convergence result for general iterative proce-
dure (7.3.5).

Theorem 7.3.1. Assume:

(i) Operators F, G satisfy (7.3.6)–(7.3.9);
(ii) x∗, xn+1 (n ≥ 0) solve (7.3.1), (7.3.5), respectively; and
(iii) θ ∈ [0, 1), where θ is given by (7.3.10) for sufficiently small c0 and ρ.

Then, general iterative procedure {xn} (n ≥ 0) generated by (7.3.5) is well de-
fined for all n ≥ 0 and converges (strongly in H) to x∗.

Proof. It follows from (7.3.4) and (7.3.5) by using (7.3.6)–(7.3.11)
∥
∥xn+1 − x∗∥∥ =

= ∥
∥xn − x∗ − (

F(xn) − F(x∗)
)

+ PC [F(xn) − ρG(xn)] − PC
[

F(x∗) − ρG(x∗)
]∥
∥

≤ ∥
∥xn − x∗ − (

F(xn) − F(x∗)
)∥
∥

+ ∥
∥PC [F(xn) − ρG(xn)] − PC

[

F(x∗) − ρF(x∗)
]∥
∥

≤ 2
∥
∥xn − x∗ − (

F(xn) − F(x∗)
)∥
∥+ ∥

∥xn − x∗ − ρ
(

G(xn) − G(x∗)
)∥
∥

≤ 2
√

1 + c2
1 ‖xn − x∗‖2(λ1−1) − 2c4

∥
∥xn − x∗∥∥

+
√

1 + ρ2c2
2 ‖xn − x∗‖2(λ2−1) − 2ρc3

∥
∥xn − x∗∥∥

≤ θ
∥
∥xn − x∗∥∥ ≤ θn+1c0. (7.3.12)

Hence, by (iii) and (7.3.12), we get limn→∞ xn = x∗.



354 7 Variational Inequalities

Remark 7.3.2. As mentioned in the introduction, special choices of F , G can reduce
Theorem 7.3.1 to earlier ones. For example, let λ1 = λ2 = 1 and assume the stronger
hypotheses (7.3.6)′–(7.3.9)′ where x∗ is replaced by any x ∈ H . In the special case
Theorem 7.3.1 becomes replaced by Theorem 3.1 in [151]. Moreover if F = I , the
identity operator, then (7.3.4) becomes the classical problem studied in [149], [150].
Furthermore, in these special cases, (iii) from Theorem 7.3.1 can be dropped and be
replaced by

∣
∣
∣
∣
ρ − c3

c2
2

∣
∣
∣
∣
<

√

c2
3 − c2

2(d − d2)

c2
2

, c3 > c2

√

d(d − 2),

d < 1, d = 2
√

1 − 2c4 + c2
1,

and

0 < ρ <
2c3

c2
2

,

respectively.

Remark 7.3.3. Condition (iii) can be dropped in other cases not covered by Remark
7.3.2. For example:
Assume:

(1) 1 − 2c4 ≥ 0, 1 − 2ρc3 ≥ 0, λ1 > 1, λ2 > 1;
(2) choose d1 ≥ 0, d2 ≥ 0 such that:

2
√

d1 +
√

d2 ≡ d3 < 1,

d1 ≥ 1 − 2c4, d2 ≥ 1 − 2ρc3

1 + c2
1c2(λ1−1)

0 − 2c4 ≤ d1, 1 + ρ2c2
2c2(λ2−1)

0 − 2ρc3 ≤ d2;
where,

d4 =
(

2c4 + d1 − 1

c2
1

) 1
2(λ1−1)

, and d5 =
(

2ρc3 + d2 − 1

c2
2

) 1
2(λ2−1)

.

Then, θ = d3 ∈ [0, 1).

Remark 7.3.4. Parameters c1, c2, c3, c4 appearing in (7.3.6)–(7.3.9) are smaller (in
general) than the corresponding ones in [150]. Hence, the ratio of convergence is
smaller also. That is under our weaker hypotheses, sequence {xn} (n ≥ 0) converges
faster to x∗ than in [150].

7.4 Semilocal convergence

In this section, we are concerned with the problem of approximating a locally unique
solution x∗ of the variational inequality
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F(x) + ∂ϕ(x) ' 0, (7.4.1)

where F is a Gâteaux-differentiable operator defined on a closed convex subset D of
a Hilbert space H with values in H ; ϕ.. H → (−∞,∞] is a lower semicontinuous
convex function. Problems of the form (7.4.1) have important applications in many
branches of applied science (physical, engineering, etc.).

We use the generalized chord method

F ′(x0)xn+1 + ∂ϕ(xn+1) ' F ′(x0)(xn) − F(xn) (x0 ∈ D) (7.4.2)

and the generalized NK method

F ′(xn)(xn+1) + ∂ϕ(xn+1) ' F ′(xn)(xn) − F(xn) (x0 ∈ D) (7.4.3)

to approximate x∗.
We assume that ϕ is proper in the sense that

D(ϕ) = {ϕ ∈ H .. ϕ(x) < ∞} �= ∅.

For any x ∈ H , we denote by ∂ϕ(x) the subgradient of ϕ at x , given by

∂ϕ(x) = {y ∈ H .. ϕ(x) − ϕ(z) ≤ 〈y, x − z〉 for all y ∈ D(ϕ)}.
Semilocal convergence theorems for solving (7.4.1) using (7.4.2) or (7.4.3) are given
here using hypotheses on the second Gâteaux derivative of F . We also show that our
results compare favorably with relevant earlier ones [149]–[151].

Lemma 7.4.1. Let a > 0, b ≥ 0, η ≥ 0 and c > 0 be constants. Define the polyno-
mial p by

p(r) = a

6c
r3 + b

2c
r2 − r + η

c
. (7.4.4)

The polynomial p has two positive zeros r1, r2 (r1 ≤ r2) if and only if

p(q) ≤ 0, (7.4.5)

where q is the positive zero of p′.

Proof. Denote by q0 the negative zero of p′. Clearly, p has a maximum at r = q0
and a minimum at r = q. Hence a necessary and sufficient condition for p to have
positive zeros is given by (7.4.5).

Lemma 7.4.2. Let a ≥ 0, b ≥ 0, r > 0 be constants and z ∈ H be fixed. Assume:
∥
∥F ′′(x) − F ′′(z)

∥
∥ ≤ a‖x − z‖ (7.4.6)

and
∥
∥F ′′(z)

∥
∥ ≤ b (7.4.7)

for all x ∈ Ū (z, r). Then the following estimate holds for all x, y ∈ U (z, r):

‖F(x) − F(y) − F ′(z)(x − y)‖ ≤ a

2

∫ 1

0
[(1 − t)‖y − z‖ + t‖x − z‖]2 ‖x − y‖dt

+ b

2
[‖y − z‖ + ‖x − z‖] ‖x − y‖. (7.4.8)
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We can show the following semilocal convergence theorem using twice Gâteaux-
differentiable operators and the generalized method of chord:

Theorem 7.4.3. Let F be a twice Gâteaux-differentiable operator defined on an open
convex subset D of a Hilbert space H with values in H. Assume:

(a) there exists x0 ∈ H satisfying

∂ϕ(x0) ' 0, (7.4.9)

where ϕ is a convex function;
(b) there exist constants η, c such that

‖F(x0)‖ ≤ η, (7.4.10)

c‖y‖2 ≤ 〈F ′(x0)(y), y〉 for all y ∈ D; (7.4.11)

(c) operator F satisfies (7.4.6) and (7.4.7) for z = x0;
(d) condition (7.4.5) holds for a > 0; and
(e) U (x0, r2) ⊆ D, where r2 is given in Lemma 7.4.1.

Then, sequence {xn} (n ≥ 0) generated by the generalized method of chord
(7.4.2) is well defined, remains in U (x0, r1), and converges to a solution x∗ of (7.4.1),
which is unique in U (x0, r2).

Proof. The coercivity condition (7.4.11) and the Lions–Stampacchia Theorem imply
that for any x ∈ U (x0, r2) the operator g given by the variational inequality

F ′(x0)g(x) + ∂ϕ(g(x)) ' F ′(x0)x − F(x) (7.4.12)

is well defined. By (7.4.9), (7.4.12), and the monotonicity of ∂ϕ, we have in turn
〈

F(x) − F ′(x0)(x − g(x)), g(x) − x0
〉 ≤ 0,

or
〈

F ′(x0)(g(x) − x0), g(x) − x0
〉 ≤ 〈

F ′(x0)(x − x0) − F(x), g(x) − x0
〉

,

and using (7.4.4)–(7.4.11), we get

‖g(x) − x0‖ ≤ 1

c

∥
∥F(x0) − F ′(x0)(x − x0)

∥
∥

= 1

c

∥
∥F(x0) + F(x) − F(x0) − F ′(x0)(x − x0)

∥
∥

≤ 1

c
‖F(x0)‖ + 1

c

∥
∥F(x) − F(x0) − F ′(x0)(x − x0)

∥
∥

≤ η

c
+ 1

6c
‖x − x0‖3 + b

2c
‖x − x0‖2

≤ η

6
+ a

6c
r3 + b

2c
r2 ≤ r (7.4.13)
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for r ∈ [r1, r2]. That is, g maps U (x0, r) (r1 ≤ r ≤ r2) into itself. Moreover (7.4.2)
and the monotonicity of ∂ϕ imply that for any x, y ∈ U (x0, r) we can have in turn

〈F ′(x0)(g(x) − g(y)) + F(x) − F(y) − F ′(x0)(x − y), g(x) − g(y)〉 ≤ 0,

〈F ′(x0)(g(x)−g(y)), g(x)−g(y)〉 ≤ 〈F ′(x0)(x − y)− F(x)+ F(y), g(x)−g(y)〉,
and by (7.4.5)–(7.4.11), we get

‖g(x) − g(y)‖ ≤ 1

c

∥
∥F(x) − F(y) − F ′(x0)(x − y)

∥
∥

≤ 1

c

{

a

2

∫ 1

0
[(1 − t)‖y − x0‖ + t‖x − x0‖]2 dt

+ b

2
[‖y − x0‖ + ‖x − x0‖]

}

‖x − y‖

≤ 1

c

[ a

2
r + b

]

r‖x − y‖. (7.4.14)

It follows from Lemma 7.4.1 and (7.4.14) that g is a contraction on U (x0, r) (r1 ≤
r ≤ r2). The rest of the theorem follows from the Banach fixed point theorem and
the observation that (7.4.2) is given by xn+1 = g(xn) (n ≥ 0).

The convergence in Theorem 7.4.3 is only linear. It can become quadratic if we
use the set of conditions given in the following result:

Theorem 7.4.4. Let F be a twice Gâteaux-differentiable operator defined on an open
convex subset D of a Hilbert space H with values in H. Assume:

(a) there exists x0 ∈ H satisfying

∂ϕ(x0) ' 0,

where ϕ is a convex function;
(b) there exist constants η, c such that

‖F(x0)‖ ≤ η,

c‖y‖2 ≤ 〈F ′(x)(y), y〉 for all y ∈ H, x ∈ D; (7.4.15)

(c) operator F satisfies (7.4.6) and (7.4.7) for z = x0;
(d)

d = α−1 η
c < 1, (7.4.16)

where,
α−1 = 1

2c

( aη
3c + b

)

(7.4.17)

and

α

∞
∑

i=0

d2i
< r0 (7.4.18)

for some positive parameter r0.
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Then, sequence {xn} (n ≥ 0) generated by the generalized Newton’s method
(7.4.3) is well defined, remains in U (x0, r0) for all n ≥ 0 and converges to a unique
solution x∗ of (7.4.1) in U (x0, r0). Moreover the following estimates hold for all
n ≥ 0

‖xn − x∗‖ ≤ α

∞
∑

i=n

d2i
. (7.4.19)

Proof. As in Theorem 7.4.3 the solution xn+1 of (7.4.3) exist for all n ≥ 0. Using
(7.4.3) for n = 1 as in Theorem 7.4.3 we obtain in turn

〈F(x0) − F ′(x0)(x0 − x1), x1 − x0〉 ≤ 0,

or
〈F ′(x0)(x1 − x0), x1 − x0〉 ≤ 〈F(x0), x1 − x0〉,

and by (7.4.9) and (7.4.15), we get

‖x1 − x0‖ ≤ 1

c
‖F(x0)‖ ≤ η

c
. (7.4.20)

Moreover by (7.4.3) and the monotonicity of ∂ϕ, we get
〈

F ′(xn)(xn+1 − xn), xn+1 − xn
〉

≤ 〈

F(xn) − F(xn−1) − F ′(xn−1)(xn − xn−1), xn+1 − xn
〉

,

and by (7.4.6), (7.4.7), (7.4.15), we obtain

‖xn+1 − xn‖ ≤ 1

c
‖F(xn) − F(xn−1) − F ′(xn−1)(xn − xn−1)‖

≤ 1

c

[
a

6
‖xn − xn−1‖ + b

2

]

‖xn − xn−1‖2

≤ α−1‖xn − xn−1‖2 ≤ αd2n
,

which leads to (7.4.19).

7.5 Results on generalized equations

In this section we are concerned with the problem of approximating a locally unique
solution x∗ of the problem

f (x) + g(x) ' 0, (7.5.1)

where f is a twice Gâteaux-differentiable operator defined on a Hilbert space H with
values in H , and g is a multivalued (possible) operator from H into H .

We use the famous generalized Newton’s method

xn+1 = ( f ′(xn) + g)−1( f ′(xn)(xn) − f (xn)) (n ≥ 0) (7.5.2)
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to approximate x∗.
In the special case, when g = 0, we obtain the classic NK method. Method

(7.5.2) can be used where the classic method cannot by assuming several regularity
assumptions for g.

Local and semilocal convergence theorems were given in [43], [149]–[151]. Es-
pecially in [151], Lipschitz hypotheses were used on the first Gâteaux derivative
f ′(x) of f (x). Here we use Lipschitz hypotheses on the second Gâteaux derivative
f ′′(x) of f (x). This way our convergence conditions differ from earlier ones unless
if the Lipschitz constant is zero. We complete this study with a numerical example
to show that our results apply where corresponding earlier results [151] do not.

By a multivalued operator g from H into H being monotone, we mean

y1 ∈ g(x1), y2 ∈ g(x2) ⇒ 〈y1 − y2, x1 − x2〉 ≥ 0.

Moreover, g is maximal if whenever g0 is another multivalued monotone operator
from H into H such that y ∈ g(x) ⇒ y ∈ g0(x), then g = g0.

We can show the following local convergence theorem for the generalized NK
method.

Theorem 7.5.1. Let g be a maximal monotone multivalued operator from a Hilbert
space H into itself and f be a Gâteaux-differentiable operator from H into H. As-
sume: there exist parameters a > 0, b > 0, c > 0 and a solution x∗ of (7.5.1) such
that:

‖F ′′(x) − F ′′(y)‖ ≤ a‖x − y‖, (7.5.3)

‖F ′′(x∗)‖ ≤ b, (7.5.4)

and
〈 f ′(y)(x), x〉 ≥ c‖x‖2 for all x, y ∈ H. (7.5.5)

Then, generalized NK method {xn} (n ≥ 0) generated by (7.5.2) is well defined,
remains in U (x∗, α) for all n ≥ 0, and converges to x∗ provided that x0 ∈ U (x∗, α),
and

‖xn − x∗‖ ≤ αd2n
(n ≥ 0), (7.5.6)

where, α is the positive zero of the equation

a

3c
r2 + b

2c
r − 1 = 0, (7.5.7)

and
d = α−1‖x0 − x∗‖. (7.5.8)

Proof. It follows from the choice of α that d ∈ (0, 1). We note that all in-
verses ( f ′(xn) + g)−1 (n ≥ 0) exist, as g is a maximal monotone operator and
〈 f ′(xn)(x), x〉/‖x‖ → ∞ as ‖x‖ → ∞. Hence, generalized Newton’s method {xn}
(n ≥ 0) generated by (7.5.2) is well defined for all n ≥ 0. By (7.5.5), (7.5.2), the
monotonicity of g and f ′(xn)(x∗)+ g(x∗) ⇒ f ′(xn)(x∗)− f (x∗), we obtain in turn
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c‖xn+1 − x∗‖2 ≤
≤ 〈 f ′(xn)(xn+1) − f ′(xn)(x∗), xn+1 − x∗〉
≤ 〈 f ′(xn)(xn − x∗), xn+1 − x∗〉 + 〈 f (x∗) − f (xn), xn+1 − x∗〉
≤ 〈 f (x∗) − f (xn) − f ′(xn)(x∗ − xn), xn+1 − x∗〉. (7.5.9)

We showed (see, e.g., [43]) that under (7.5.3) and (7.5.4)

〈 f (x∗) − f (xn) − f ′(xn)(x∗ − xn)〉

≤
[

a

6
‖xn − x∗‖ + b

2

]

‖xn − x∗‖2 · ‖xn+1 − x∗‖. (7.5.10)

Using (7.5.8)–(7.5.10), we get

‖xn+1 − x∗‖ ≤ α−1‖xn − x∗‖2 ≤ αd2n
(n ≥ 0).

The result follows by induction on the integer n ≥ 0.

We show the semilocal convergence theorem for the generalized NK method.

Theorem 7.5.2. Let g be a maximal, and continuous single-valued operator from a
Hilbert space H into itself and f be a Gâteaux-differentiable operator from H into
H.

(a) there exist constants a > 0, b > 0, η ≥ 0 such that (7.5.3) (with y = x0), (7.5.4)
and

‖ f (x0) + g(x0)‖ ≤ η (7.5.11)

hold;
(b) there exist r0 > 0 such that

d0 = 1

2c2

[
1

3
ar0 + b

]

η < 1 (7.5.12)

and
η

c

∞
∑

i=0

d2i −1
0 < r0. (7.5.13)

Then, generalized NK method {xn} (n ≥ 0) generated by (7.5.2) is well defined,
remains in U (x0, r0) for all n ≥ 0 and converges to a solution x∗ of (7.5.1), so that

‖xn − x∗‖ ≤
∞
∑

i=n

d2i −1
0 (n ≥ 0). (7.5.14)

Proof. As in Theorem 7.5.1, iterates {xn} (n ≥ 0) are well defined for all n ≥ 0.
Using (7.5.2), (7.5.5), and (7.5.11), we get

c‖x1 − x0‖2 ≤ 〈 f ′(x0)(x1 − x0) + g(x1) − g(x0), x1 − x0〉
= −〈 f (x0) + g(x0), x1 − x0〉
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or

‖x1 − x0‖ ≤ 1

4
‖ f (x0) + g(x0)‖ ≤ η

c
< r0.

We will show
‖xi − xi−1‖ ≤ η

c
d2i−1−1

0 (7.5.15)

and
‖xi − x0‖ ≤ r0. (7.5.16)

By (7.5.2) and (7.5.11), (7.5.15)–(7.5.16) hold for i = 0. Assume (7.5.15) and
(7.5.16) hold for all integer i ≤ n. Using (7.5.2), (7.5.5), (7.5.10), (7.5.11), and
(7.5.12) we get

c‖xn+1 − xn‖2 ≤ 〈 f ′(xn)(xn+1 − xn) + g(xn+1) − g(xn), xn+1 − xn〉
= −〈 f (xn) + g(xn), xn+1 − xn〉
≤ ‖ f (xn) + g(xn)‖ ‖xn+1 − xn‖
= ‖ f (xn) − f (xn−1) − f ′(xn−1)(xn − xn−1)‖ ‖xn+1 − xn‖
≤ 1

2

[ a

3
‖xn − xn−1‖ + b

]

‖xn − xn−1‖2‖xn+1 − xn‖ (7.5.17)

or,
‖xn+1 − xn‖ ≤ η

c
d0‖xn − xn−1‖2 ≤ η

c
d2n−1

0

and

‖xn+1 − x0‖ ≤
n
∑

i=0

‖xi+1 − xi‖ ≤ η

c

n
∑

i=0

d2n−1
0 < r0.

The induction is now complete.
For any integers n, m, we have

‖xn+m − xn‖ ≤
∑

i=m

‖xi+1 − xi‖ ≤ η

c

n+m−1
∑

i=n

d2i −1
0 < r0. (7.5.18)

It follows from (7.5.18) that sequence {xn} (n ≥ 0) is Cauchy in a Hilbert space H
and as such it converges to some x∗ ∈ U (x0, r0) (as U (x0, r0) is a closed set). By
letting m → ∞ in (7.5.18), we obtain (7.5.14). Finally, because f + g is continuous
and (7.5.17) holds, we deduce f (x∗) + g(x∗) = 0.

The proof of the following local convergence theorem is omitted as it is identical
to the one given in Theorem 7.5.1.

Theorem 7.5.3. Let g be a maximal monotone multivalues operator from a Hilbert
space H into itself, and f be a Gâteaux-differentiable operator from H into H.
Assume:

(a) there exist constants a > 0, b > 0, c > 0 such that (7.5.3)–(7.5.5) hold;
(b) (7.5.1) has a solution x∗.
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Then, generalized Newton’s sequence {xn} (n ≥ 0) generated by (7.5.2) is well
defined, remains in U (x∗, r1) for all n ≥ 0, and converges to x∗, so that

‖xn − x∗‖ ≤ r1dn
2 ,

where,

d2 =
(

1

3
ar1 + b

)
r1

c
< 1,

and r1 is the positive zero of equation

a

3c
r2 + br

c
− 1 = 0.

Remark 7.5.4. (a) Theorems 7.5.1–7.5.3 become Theorems 1–3 in [203] respectively
if a = 0.
(b) Theorems 7.5.1–7.5.3 weaken Theorems 1–3 in [149] (there g is taken to be the
subgradient of a convex function).
(c) If a = 0, and g = 0 in Theorem 7.5.2, then we obtain Mysovskii’s theorem [125].
(d) The radius r0 in Theorem 7.5.2 can be determined from the solution of inequali-
ties (7.5.12) and

η

c

1

1 − d0
< r0.

7.6 Semilocal convergence for quasivariational inequalities

Here, we use the contraction mapping principle to approximate a locally unique so-
lution of a strongly nonlinear variational inequality on a Hilbert space under weak
assumptions. Earlier results can be obtained as special cases of our locally conver-
gent theorem.

Let C , 〈 ; , 〉, ‖ ‖ denote a convex subset, inner product and norm of a Hilbert
space H , respectively. Let ϕ.. H → (−∞,∞] be a lower semicontinuous function,
such that D(ϕ) = {y ∈ H | ϕ(y) < ∞} is nonempty. Denote by ∂ϕ(y) the set

∂ϕ(y) = {x ∈ H | ϕ(y) − ϕ(z) ≤ 〈x, v − z〉 for all z ∈ D(ϕ)} (7.6.1)

the subgradient of ϕ at y.
Let A, T , g and f be operators from H into itself. We are concerned with the

problem of finding x ∈ H such that:

g(x) − f (x) ∈ D(ϕ) (7.6.2)

and
A(x) − T (x) + ∂ϕ(g(x)) − f (x) ' 0, (7.6.3)

where,

ϕ(y) =
{

0, y ∈ C
∞, otherwise

(7.6.4)
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In this case, (7.6.3) reduces to finding x ∈ H such that

g(x) ∈ C(x) (7.6.5)

and
〈A(x) − T (x), g(x) − y〉 ≤ 0 for all y ∈ C(x), (7.6.6)

where,
C(x) = C + f (x). (7.6.7)

Inequality (7.6.6) is called a general strongly nonlinear quasivariational inequality.
If f = 0 and g(x) = x, we obtain the general quasifunctional inequality studied

in [178]. Moreover if f = 0 and T = 0, we get the general variational inequality
considered in [149], [151].

The inverse Pμ = (I + μ∂ϕ)−1 exists as a single-valued function satisfying: for
‖Pμ(x)− Pμ(y)‖ ≤ ‖x − y‖ μ > 0, for all x, y ∈ H , and is monotone: f1 ∈ ∂ϕ(x1),
f2 ∈ ∂y(x2) ⇒ 〈 f1 − f2, x1 − x2〉 ≥ 0. It is known that x∗ is a solution of (7.6.5) if
and only if

x∗ = x∗ − λg(x∗) + λ f (x∗) + λPμ

[

g(x∗) − f (x∗) − μA(x∗) + μT (x∗)
]

(7.6.8)

for λ > 0, μ > 0.
That is, solving (7.6.3) reduces to finding fixed points of the operator

Pμ,λ(x) = x − λg(x) + λPμ [g(x) − f (x) − μA(x) + μT (x)] . (7.6.9)

We assume: there exist a convex subset H0 ⊆ H , x0 ∈ H0 and nonnegative
constants ai , bi , i = 1, 2, . . . , 6 such that:

‖A(x) − A(y)‖ ≤ a1‖x − y‖ (7.6.10)

〈A(x) − A(y), x − y〉 ≥ a2‖x − y‖2, (7.6.11)

‖g(x) − g(x)‖ ≤ a3‖x − y‖, (7.6.12)

〈g(x) − g(y), x − y〉 ≥ a4‖x − y‖2, (7.6.13)

‖T (x) − T (y)‖ ≤ a5‖x − y‖, (7.6.14)

‖ f (x) − f (y)‖ ≤ a6‖x − y‖, (7.6.15)

‖A(x0) − A(y)‖ ≤ b1‖x0 − y‖, (7.6.16)

〈A(x0) − A(y), x0 − y〉 ≥ b2‖x0 − y‖2, (7.6.17)

‖g(x0) − g(y), x0 − y‖ ≤ b3‖x0 − y‖, (7.6.18)

〈g(x0) − g(y), x0 − y〉 ≥ b4‖x0 − y‖2, (7.6.19)

‖T (x0) − T (y)‖ ≤ b5‖x0 − y‖, (7.6.20)

and
‖ f (x0) − f (y)‖ ≤ b6‖x0 − y‖ (7.6.21)

for all x, y ∈ H0.
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Define the parameters c, d by

c = cλ,μ = 2λa6+2
√

1 − 2a4λ + λ2a2
3+

√

1 − 2λμa2 + μ2λ2a2
1+λμa5, (7.6.22)

d = ‖Pμ,λ(x0) − x0‖, (7.6.23)

scalar function h on [0,+∞) by

h(r) = c0r + d, (7.6.24)

where, c0 is defined as above but ai are replaced by bi , i = 1, 2, . . . , 6, and, ball H1
by

H1 = U (x0, r0), (7.6.25)

where,
r0 ≥ d

1−c0
if c0 �= 1. (7.6.26)

We can now show the local fixed point result for (7.6.3).

Theorem 7.6.1. Assume:

(i) c0 ∈ [0, 1), c ∈ [0, 1), d ∈ (0, 1), H1 ⊆ H0;
(ii) conditions (7.6.10)–(7.6.21) hold for all x, y ∈ H1.

Then (7.6.3) has a unique solution x∗ in H1. Moreover, x∗ can be obtained as the
limit of the sequence

xn+1 = Pμ,λ(xn) (n ≥ 0). (7.6.27)

Proof. The result will follow from Banach’s contraction mapping principle if we
show:

(1) Operator Pμ,λ is a c-contraction on H1;
(2) Pμ,λ maps H1 into itself.
To show (7.6.1), let us choose x, y ∈ H1. Using (7.6.9)–(7.6.16) and (7.6.22),

we obtain in turn:
∥
∥Pμ,λ(x) − Pμ,λ(y)

∥
∥ ≤ ‖x − y − λg(x) + λg(y)‖ + λ ‖ f (x) − f (y)‖

+ λ‖g(x) − g(y) − f (x) + f (y) − μA(x) + μA(y) + μT (x) − μT (y)‖
≤ 2‖x − y − λg(x) + λg(y)‖ + 2λ‖ f (x) − f (y)‖

+ ‖x − y − μλA(x) + μλA(y)‖ + μλ ‖T (x) − T (y)‖

≤
[

2λa6 + 2
√

1 − 2a4λ + λ2a2
3 +

√

1 − 2λμa2 + μ2λ2a2
1 + λμa5

]

‖x − y‖

= c ‖x − y‖ ,

which shows that Pμ,λ is a c-contraction on H1 as by hypothesis (i), c ∈ [0, 1).
Moreover, to show Pμ,λ maps H1 into itself, let y ∈ H1. Using (7.6.9), (7.6.12)–
(7.6.21), (7.6.23), (7.6.24), and (7.6.26), we obtain

‖Pμ,λ(y) − x0‖ ≤ ‖Pμ,λ(y) − Pμ,λ(x0)‖ + ‖Pμ,λ(x0) − x0‖
≤ c0‖y − x0‖ + d ≤ c0r0 + d = h(r0) ≤ r0,

by the choice of r0, c0 and d.
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That completes the proof of the theorem.

Remark 7.6.2. The conditions on c0, c and d can be dropped. Let us consider one
such case: let ai = bi , i = 1, 2, . . . , 6, define parameters:

λ0 = a4
a2

3
− 1

a3

√

a2
4

a2
3

− a2
4−a2

6
a2

3−a2
6

,

μ0 = 1
λ0

[

a2
a2

1
− 1

a1

√

a2
a2

1
− a2

2−a2
5

a2
1−a2

5

]

,

α = 2a6

[

a4
a2

3
− 1

a3

√

a2
4

a2
3

− a2
4−a2

6
a2

3−a2
6

]

+ a5

[

a2
a2

1
− 1

a1

√

a2
a2

1
− a2

2−a2
5

a2
1−a2

5

]

+
√

a2
1−a2

2
a2

1−a2
5

+ 2

√

a2
3−a2

4
a2

3−a2
6

.

Assume: a1 > a5 > 0, a3 > a6 > 0, and α < 1. Then it is simple algebra to show
that cλ,μ given by (7.6.22) is minimized at (λ0, μ0) and the minimum value is given
by α. The point r0 is then given by (7.6.26) for c0 = α.

Note that if H0 = H1 = H , then x∗ is the unique fixed point of Pμ,λ in H .
However, our theorem is more useful than relevant earlier ones [149]–[151], [195]
as conditions (7.6.10)–(7.6.21) rarely hold on the whole Hilbert space H .

7.7 Generalized equations in Hilbert space

In this study, we are concerned with the problem of approximating a locally unique
solution x∗ of the generalized equation

F(x) + g(x) ' 0, (7.7.1)

where F is a Fréchet-differentiable operator defined on a closed convex subset D
of a Hilbert space H with values in H , and Dg is a nonempty subset of H × H .
Throughout this study we consider the expressions [x, y] ∈ g, g(x) ' y, −y+g(x) '
0, and y ∈ g(x) to be equivalent.

We use the generalized chord method

F ′(x0)xn+1 + g(xn+1) ' F ′(x0)xn − F(xn) (n ≥ 0), (x0 ∈ D) (7.7.2)

or, the generalized NK method

F ′(xn)xn+1 + g(xn+1) ' F ′(xn)(xn) − F(xn) (n ≥ 0), (x0 ∈ D) (7.7.3)

to approximate x∗.
Earlier results have used Lipschitz-type hypotheses on the first Fréchet derivative

of F [195]. Here we use hypotheses on the second Fréchet derivative of F . It has
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already been shown that for regular equations on a Banach space, our new approach
can solve problems not possible before and can also improve on the error bounds of
the distances involved. Our convergence theorems for methods (7.7.2) and (7.7.3) to
a solution x∗ of (7.7.1) reduce to the ones in [195] if the Lipschitz constant of the
second Fréchet derivatives is zero.

We will need the following Lemmas:

Lemma 7.7.1. Let a > 0, b ≥ 0, η ≥ 0 and c > 0 be constants. Define the polyno-
mial p by

p(r) = a

6c
r3 + b

2c
r2 − r + η

c
. (7.7.4)

The polynomial p has two positive zeros r1, r2 (r1 ≤ r2) if and only if

p(q) ≤ 0, (7.7.5)

where q is the positive zero of p′.

Proof. Denote by q0 the negative zero of p′. Clearly, p has a maximum at r = q0
and a minimum at r = q. Hence, a necessary and sufficient condition for p to have
positive zeros is given by (7.7.5).

Lemma 7.7.2. Let a ≥ 0, b ≥ 0, r > 0 be constants and z ∈ H be fixed. Assume:

‖F ′′(x) − F ′′(z)‖ ≤ a‖x − z‖ (7.7.6)

and
‖F ′′(z)‖ ≤ b (7.7.7)

for all x ∈ U (z, r). Then the following estimate holds for all x, y ∈ U (z, r):

‖F(x) − F(y) − F ′(z)(x − y)‖ ≤ a

2

∫ 1

0
[(1 − t)‖y − z‖ + t‖x − z‖]2 ‖x − y‖dt

+ b

2
[‖y − z‖ + ‖x − z‖] ‖x − y‖. (7.7.8)

The following result gives sufficient conditions for generalized equation (7.7.1)
to have a unique solution. The proof can be found in [195, p. 256].

Lemma 7.7.3. Let g be a multivalued maximal monotone operator from H to H, in
the sense that g is a nonempty subset of H × H and there exists α ≥ 0 such that:

[v1, w1] ∈ g and [v2, w2] ∈ g ⇒ 〈w2 − w1, v2 − v1〉 ≥ α‖v1 − v2‖2, (7.7.9)

and is not contained in any larger monotone subset of H × H; L be a bounded linear
operator from H into H. Assume there exists c > −α, and

〈L(x), x〉 ≥ c‖x‖2 for all x ∈ H. (7.7.10)

Then, for any y ∈ H, there exists z ∈ H satisfying the generalized equation

L(z) + g(z) ' y. (7.7.11)
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We can show the following local result for method (7.7.3) to solve equation
(7.7.1).

Theorem 7.7.4. Let F be a twice Fréchet-differentiable operator defined on an open
convex subset D of a Hilbert space H with values in H; g be a multivalued maximal
monotone operator on H. Assume:

(a) generalized equation (7.7.1) has a solution x∗ ∈ D;
(b) there exist parameters a ≥ 0, b ≥ 0 such that

‖F ′′(x) − F ′′(x∗)‖ ≤ a‖x − x∗‖, (7.7.12)

and
‖F ′′(x∗)‖ ≤ b (7.7.13)

for all x ∈ D;
(c) there exists c > −α such that

〈F ′(z)(x), x〉 ≥ c‖x‖2 for all x ∈ H, z ∈ D (7.7.14)

(d) U (x∗, r0) ⊆ D, where r0 is the positive zero of equation

p(r) = a

6(c + α)
r2 + b

2(c + α)
r − 1 = 0. (7.7.15)

Then, generalized NK sequence {xn} (n ≥ 0) generated by (7.7.3) is well defined,
remains in U (x∗, r0) for all n ≥ 0, and converges to x∗ provided that x0 ∈ U (x∗, r0).
Moreover the following error bounds hold for all n ≥ 0

‖xn − x∗‖ ≤ βd2n
, (7.7.16)

where,

β−1 = 1

2(c + α)

[ a

3
q + b

]

and d = β−1q. (7.7.17)

Proof. The existence of solutions to (7.7.3) follows from Lemma 7.7.3 and (7.7.14).
Using (7.7.1), (7.7.9), and (7.7.3), we get

α‖xn+1 − x∗‖2 ≤ 〈F(x∗) − F(xn) − F ′(xn)(xn+1 − xn), xn+1 − x∗〉
or

c‖xn+1 − x∗‖2 + 〈F ′(xn)(xn+1 − x∗), xn+1 − x∗〉
≤ 〈F(x∗) − F(xn) − F ′(xn)(x∗ − xn), xn+1 − x∗〉,

and by (7.7.8), (7.7.12)–(7.7.14), we have by induction on n ≥ 0

‖xn+1 − x∗‖ ≤ 1

c + α

[
a

6
‖xn − x∗‖ + b

2

]

‖xn − x∗‖2 ≤ βd2n
,

and limn→∞ xn = x∗ (as d ∈ [0, 1)).
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We can show the following semilocal result for method (7.7.3) to solve equation
(7.7.1).

Theorem 7.7.5. Let F, g, D, (c) be as in Theorem 7.7.4. Moreover assume: there
exist parameters a ≥ 0, b ≥ 0, x0 ∈ D such that

‖F ′′(x) − F ′′(x0)‖ ≤ a‖x − x0‖, (7.7.18)

‖F ′′(x0)‖ ≤ b (7.7.19)

d = β−1‖x1 − x0‖ < 1, (7.7.20)

β−1 = 1

2(c + α)

[ a

3
‖x1 − x0‖ + b

]

, (7.7.21)

and

U (x0, r∗) ⊆ D, (7.7.22)

r∗ = β−1
∞
∑

i=0

d2i
. (7.7.23)

Then, generalized NK iterates {xn} (n ≥ 0) generated by (7.7.3) are well defined, re-
main in U (x0, r∗) for all n ≥ 0 and converge to a solution x∗ of (7.7.1) in U (x0, r∗)
so that:

‖xn − x∗‖ ≤ β

∞
∑

i=n

d2i
(n ≥ 0). (7.7.24)

Proof. The existence of solutions xn+1 to (7.7.3) follows from (7.7.14) and Lemma
7.7.3. Using (7.7.3) and (7.7.9), we get

α‖xn+1 − xn‖2 + 〈F ′(xn)(xn+1 − xn), xn+1 − xn〉
≤ 〈F(xn) − F(xn−1) − F ′(xn−1)(xn − xn−1), xn − xn+1〉,

and by (7.7.14), (7.7.8), we obtain by induction on n ≥ 0

‖xn+1 − xn‖ ≤ 1

c + α

[
a

6
‖xn − xn−1‖ + b

2

]

‖xn − xn−1‖2 ≤ βd2n
.

Hence, we get

‖xn+1 − x0‖ ≤ ‖xn+1 − xn‖ + ‖xn − xn−1‖ + · · · + ‖x1 − x0‖

≤
n
∑

i=0

‖xi+1 − xi‖ ≤ r∗,

which shows xn+1 ∈ U (x0, r∗) (n ≥ 0). Let m ≥ 0 then

‖xn+m − xn‖ ≤
n+m−1
∑

i=n

‖xi+1 − xi‖ ≤ β

n+m−1
∑

i=n

d2i
. (7.7.25)

That is, sequence {xn} (n ≥ 0) is Cauchy in H and as such it converges to x∗ ∈
U (x0, r∗) (as U (x0, r∗) is a closed set). By letting m → ∞ in (7.7.25), we obtain
(7.7.24). Finally it follows from (7.7.3) and (7.7.9) that x∗ is a solution of (7.7.1).
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We show how to approximate solutions of equation (7.7.1) using method (7.7.2).

Theorem 7.7.6. Let F, g, D, (7.7.18), and (7.7.19) be as in Theorem 7.7.5. More-
over, assume:

(a) there exists y0 ∈ H such that
g(x0) ' y0, (7.7.26)

and
‖F(x0) + y0‖ ≤ b0 for some b0 > 0; (7.7.27)

(b) there exists c0 > −α such that

〈F ′(x0)(x), x〉 ≥ c0‖x‖2 for all x ∈ H ; (7.7.28)

(c)
p(q) ≤ 0, (7.7.29)

where, q is the positive zero of p′ and

p(r) = a

6(c0 + α)
r3 + b

2(c0 + α)
r2 − r + b0

c0 + α
(7.7.30)

Denote by r0 and R0 (r0 ≤ R0) the positive zeros of p guaranteed to exist by
Lemma 7.7.1;

(d) U (x0, r0) ⊆ D.

Then, the generalized chord iterates {xn} (n ≥ 0) are well defined, remain in
U (x0, r0) for all n ≥ 0, and converge to a solution x∗ of (7.7.1) in U (x0, r0), which
is unique in U (x0, R0) ∩ D. Moreover, the following error bounds hold for all n ≥ 0

‖xn − x∗‖ ≤ γ nr0, (7.7.31)

where,

γ = 1

c0 + α

( a

2
r0 + b

)

r0. (7.7.32)

Proof. By Lemma 7.7.3, operator w(x) is uniquely determined by

F ′(x0)w(x) + g(w(x)) ' F ′(x0)(x) − F(x)

for all x ∈ U (x0, r0). Using (7.7.9), we can write

α‖w(x) − x0‖2 ≤ 〈y0 + F(x) − F ′(x0)(x − w(x)), x0 − w(x)〉,
or

α‖w(x) − x0‖2 + 〈F ′(x0)(w(x) − x0), w(x) − x0〉
≤ 〈F ′(x0)(x − x0) − F(x) − y0, w(x) − x0〉,

and by (7.7.18), (7.7.19), (7.7.26)–(7.7.30), we get
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(c0 + α)‖w(x) − x0‖ ≤ ‖y0 + F(x) − F ′(x0)(x − x0)‖
= ‖y0 + F(x0) + F(x) − F(x0) + F ′(x0)(x − x0)‖
≤ ‖F(x0) + y0‖ + ‖F(x) − F(x0) + F ′(x0)(x − x0)‖
≤ b0 + a

6 ‖x − x0‖3 + b
2‖x − x0‖2,

or

‖w(x) − x0‖ ≤ 1

c0 + α

[

b0 + a

6
‖x − x0‖3 + b

2
‖x − x0‖2

]

≤ 1

c0 + α

[

b0 + a

6
r3

0 + b

2
r2

0

]

= r0. (7.7.33)

Hence, w maps U (x0, r0) into itself. Let x, y ∈ U (x0, r0). Then by (7.7.9), and the
definition of w, we get in turn

α‖w(x) − w(y)‖2 ≤ 〈F ′(x0)(w(x) − w(y)) + F(x) − F(y)

− F ′(x0)(x − y), w(y) − w(x)〉,
or

α‖w(x) − w(y)‖2 + 〈F ′(x0)(w(x) − w(y)), w(x) − w(y)〉
≤ 〈F ′(x0)(x − y) − F(x) + F(y), w(x) − w(y)〉,

and by (7.7.8), (7.7.29), we obtain

‖w(x) − w(y)‖ ≤
≤ 1

c0 + α
‖F(x) − F(y) − F ′(x0)(x − y)‖

≤ 1

c0 + α

{

a

2

∫ 1

0
[(1 − t)‖y − x0‖ + t‖x − x0‖]2

+ b

2
[‖x − x0‖ + ‖y − x0‖]

}

‖x − y‖

≤ 1

c0 + α

[ a

2
r2

0 + br0

]

‖x − y‖ = γ ‖x − y‖,

where γ is given by (7.7.32). It follows that w is a contraction on U (x0, r0), as by
the definition of r0, γ ∈ [0, 1). Moreover, we can write xn+1 = w(xn) (n ≥ 0). The
Banach contraction mapping principle guarantees the existence of a unique element
x∗ of U (x0, r0) satisfying x∗ = w(x∗) or equivalently (7.7.1). Moreover, we can
write

‖xn − x∗‖ = ‖w(xn−1) − w(x∗)‖ ≤ γ n‖x0 − x∗‖ ≤ γ nr0,

which shows (7.7.31) for all n ≥ 0. Finally to show uniqueness, let y∗ be a solution
of (7.7.1). As in (7.7.33), we get
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(c0 + α)‖y∗ − x0‖ ≤ b0 + a
6 ‖y∗ − x0‖3 + b

2‖y∗ − x0‖2,

which gives ‖y∗ − x0‖ ≥ R0 or ‖y∗ − x0‖ ≤ r0. If y∗ ∈ U (x0, R0) then y∗ ∈
U (x0, r0), which implies y∗ = x∗.

If iteration (7.7.2) is replaced by the generalized Newton method (7.7.3), then
following the proofs of Theorems 7.7.4–7.7.6 and Theorem 2.11 in [195] we can
show:

Theorem 7.7.7. Let all hypotheses of Theorem 7.7.6 hold. Then, generalized NK
method {xn} (n ≥ 0), generated by (7.7.3) is well defined, remains in U (x0, r0) for
all n ≥ 0 and converges to a unique solution of (7.7.1) in U (x0, R0) ∩ D. Moreover
the following estimates hold for all n ≥ 0:

‖xn − x∗‖ ≤ β

∞
∑

i=n

d2i
(n ≥ 0),

where β, d are given by (7.7.21), (7.7.20), respectively.

Remark 7.7.8. Our results reduce to the ones in [195] if a = 0 in (7.7.12) and
(7.7.18). The advantages of using second instead of second Fréchet derivative have
been shown in for regular equations and for generalized equations. In particular, our
error bounds can be finer and our convergence conditions hold whereas the corre-
sponding ones in [195] do not.

7.8 Exercises

7.8.1. Consider the problem of approximating a locally unique solution of the vari-
ational inequality

F(x) + ∂ϕ(x) ' 0, (7.8.1)

where F is a Gâteaux-differentiable operator defined on a Hilbert space H with
values in H ; ϕ.. H → (−∞,∞] is a lower semicontinuous convex function.
We approximate solutions x∗ of (7.8.1) using the generalized NK method in the
form

F ′(xn)(xn+1) + ∂ϕ(xn+1) ' F ′(xn)(xn) − F(xn) (7.8.2)

to generate a sequence {xn} (n ≥ 0) converging to x∗.
Define: the set

D(ϕ) = {x ∈ H .. ϕ(x) < ∞} and assume D(ϕ) �= φ;
the subgradient

∂ϕ(x) = {z ∈ H .. ϕ(x) − ϕ(y) ≤ 〈z, x − y〉, y ∈ D(ϕ)};
and the set
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D(∂ϕ) = {x ∈ D(ϕ).. ∂ϕ(x) �= 0}.
Function ∂ϕ is multivalued and for any λ > 0, (1 + λ∂ϕ)−1 exists (as a single-
valued function) and satisfies

‖(1 + λ∂ϕ)−1(x) − (I + λ∂ϕ)−1(y)‖ ≤ ‖x − y‖ (x, y ∈ H).

Moreover ∂ϕ is monotone:

f1 ∈ ∂ϕ(x1), f2 ∈ ∂ϕ(x2) ⇒ 〈 f1 − f2, x1 − x2〉 ≥ 0.

Furthermore, we want ¯D(ϕ) = ¯D(∂ϕ), so that D(∂ϕ) is sufficient for our pur-
poses.
We present the following local result for variational inequalities and twice
Gâteaux-differentiable operators:

(a) Let F .. H → H be a twice Gâteaux-differentiable function. Assume:
(1) variational inequality (7.8.1) has a solution x∗;
(2) there exist parameters a ≥ 0, b > 0, c > 0 such that

‖F ′′(x) − F ′′(y)‖ ≤ a‖x − y‖,
‖F ′′(x∗)‖ ≤ b,

and
c‖y − z‖2 ≤ 〈

F ′(x)(y − z), y − z
〉

for all x, y, z ∈ H ;
(3) x0 ∈ D(ϕ) and x0 ∈ U (x∗, r), where

r = 4c

[

b +
√

b2 + 16ac
3

]−1

.

Then show: generalized NK method (7.8.2) is well defined, remains in
U (x∗, r), and converges to x∗ with

‖xn − x∗‖ ≤ p · d2n
, (n ≥ 0)

where,

p−1 = 1
c

[
1
3 a‖x∗ − x0‖ + b

2

]

and d = p−1‖x∗ − x0‖.

(b) We will approximate x∗ using the generalized NK method in the form

f ′′(xn)(xn+1) + ∂ϕ(xn+1) ' f ′′(xn)(xn) − ∇ f (xn). (7.8.3)

We present the following semilocal convergence result for variational in-
equalities involving twice Gâteaux-differentiable operators. Let f .. H → R
be twice Gâteaux-differentiable. Assume:
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(1) for x0 ∈ D(ϕ) there exist parameters α ≥ 0, β > 0, c > 0 such that

〈

( f ′′′(x) − f ′′′(x0))(y, y), z
〉 ≤ α‖x − x0‖ ‖y‖2‖z‖,

‖ f ′′′(x0)‖ ≤ β

and
c‖y − z‖2 ≤ 〈

f ′′(x)(y − z), y − z
〉

for all x, y, z ∈ H ;
(2) the first two terms of (7.8.3), x0 and x1, are such that for

η ≥ ‖x1 − x0‖

η ≤
⎧

⎨

⎩

c
[

β + 2
√

αc
]−1

, β2 − 4αc �= 0

c(2β)−1, β2 − 4αc = 0.

Then show: generalized NK method (7.8.3) is well defined, remains in
U (x0, r0) for all η ≥ 0, where c0 is the small zero of function δ,

δ(r) = αηr2 − (c − βη)r + cη,

and converges to a unique solution x∗ of inclusion � f (x) + ∂ϕ (x) ' 0. In
particular x∗ ∈ Ū (x0, r0). Moreover, the following error bounds hold for all
n ≥ 0

‖xn − x∗‖ ≤ γ d2n
,

where,
γ −1 = αr0+β

c and d = ηγ −1.

7.8.2. Let M , 〈·, ·〉, ‖ · ‖ denote the dual, inner product and norm of a Hilbert space
H , respectively. Let C be a closed convex set in H . Consider an operator a.. H ×
H → [0,+∞). If a is continuous bilinear and satisfies

a(x, y) ≥ c0‖y‖2, y ∈ H, (7.8.4)

and
a(x, y) ≤ c1‖x‖ · ‖y‖, x, y ∈ H, (7.8.5)

for some constants c0 > 0, c1 > 0 then a is called a coercive operator.
Given z ∈ M , there exists a unique solution x ∈ C such that:

a(x, x − y) ≥ 〈z, x − y〉, y ∈ C. (7.8.6)

Inequality (7.8.6) is called variational. It is well-known that x∗ can be obtained
by the iterative procedure

xn+1 = PC (xn − ρF(G(xn) − z)), (7.8.7)
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where PC is a projection of H into C , ρ > 0 is a constant, F is a canonical
isomorphism from M onto H , defined by

〈z, y〉 = 〈F(z), y〉, y ∈ H, z ∈ M, (7.8.8)

and
a(x, y) = 〈G(x), y〉, y ∈ H. (7.8.9)

Given a point-to-set operator C from H into M we define the quasivariational
inequality problem to be: find x ∈ C(x) such that:

a(x, y − x) ≥ 〈z, y − x〉 y ∈ C(x). (7.8.10)

Here, we consider C(x) to be of the form

C(x) = f (x) + C, (7.8.11)

where f is a point-to-point operator satisfying

‖ f (x∗) − f (y)‖ ≤ c2‖x∗ − y‖λ (7.8.12)

for some constants c2 ≥ 0, λ ≥ 1, all y ∈ H and x∗ a solution of (7.8.10). We
will extend (7.8.7) to compute the approximate solution to (7.8.10).
(a) Show: For fixed z ∈ H , x ∈ C satisfies

〈x − z, y − x〉 ≥ 0 y ∈ C (7.8.13)

⇔ x = PC (z), (7.8.14)

where PC is the projection of H into C .
(b) PC given by (7.8.14) is nonexpansive, that is

‖PC (x) − PC (y)‖ ≤ ‖x − y‖, x, y ∈ H. (7.8.15)

(c) For C given by (7.8.11), x ∈ C(x) satisfies (7.8.10) ⇔
x = f (x) + PC (x − ρF(G(x) − z)). (7.8.16)

Result (c) suggests the iterative procedure

xn+1 = f (xn) + PC
(

xn − ρF(Gn) − z) − f (xn)
)

(7.8.17)

for approximating solutions of (7.8.10).
Let us define the expression

θ = θ(λ, ρ) = 2c2‖x0 − x‖λ−1 +
√

1 + ρ2c2
1 − 2c0ρ .

It is simple algebra to show that θ ∈ [0, 1) in the following cases:

(1) λ = 1, c2 ≤ 1
2 , c0 ≥ 2c1

√
c2(1 − c2), 0 < ρ <

c0+
√

c2
0−4c2

1c2(1−c2)

c2
1

;
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(2) λ > 1, c0 ≤ c1, ‖x0 − x‖ <

[

1
2c2

(

1 +
√

1 − ( c0
c1

)2
)]1/λ−1

= c3,

0 < ρ <
c0+

√

c2
0+qc2

1

c2
1

, q =
(

1 − 2c2‖x0 − x‖λ−1
)2 − 1;

(3) λ > 1, c0 > c1, ‖x0 − x‖ ≤
(

1
2c2

)1/λ−1 = c4, 0 < ρ <
c0+

√

c2
0+qc2

1

c2
1

.

Denote by H0, H1 the sets

H0 = {y ∈ H | ‖y − x∗‖ ≤ c3} and H1 = {y ∈ H | ‖y − x∗‖ ≤ c4}.

(d) Let operator f satisfy (7.8.12) and C be a nonempty closed convex subset of
H . If a(x, y) is a coercive, continuous bilinear operator on H , x∗ and xn+1
are solutions of (7.8.10) and (7.8.17), respectively, then xn+1 converges to
x∗ strongly in H if (7.8.1) or (7.8.2) or (7.8.3) above hold.

It follows from (d) that a solution x∗ of (7.8.10) can be approximated by the
iterative procedure

(1) x∗ ∈ C(x∗) is given,
(2) xn+1 = f (xn) + PC

(

xn − ρF(G(xn) − z) − f (xn)
)

,
where ρ, x0 are as in (7.8.1) or (7.8.2) or (7.8.3).

If λ = 1 our result (d) reduces to Theorem 3.2 in [150] (provided that (7.8.12)
is replaced by ‖ f (x) − f (y)‖ ≤ c1

2‖x − y‖ for all x, y ∈ H ). Note also that
as c1

2 ≥ c2, in general our error bounds on the distances ‖xn − x∗‖ (n ≥ 0) are
smaller. Moreover, if C(x) is independent of x , then f = 0 and c2 = 0, in which
case (c) and (d) reduce to the ones in [149].

7.8.3. Let x0 ∈ D and R > 0 be such that D ≡ U (x0, R). Suppose that f is
m-times Fréchet-differentiable on D, and its mth derivative f (m) is in a certain
sense uniformly continuous:

‖ f (m)(x) − f (m)(x0)‖ ≤ w(‖x − x0‖), for all x ∈ D, (7.8.18)

for some monotonically increasing positive function w satisfying

lim
t→∞ w(r) = 0, (7.8.19)

or, even more generally, that

‖ f (m)(x)− f (m)(x0)‖ ≤ w(r, ‖x−x0‖), for all x ∈ D̄, r ∈ (0, R), (7.8.20)

for some monotonically increasing in both variables positive function w satisfy-
ing

lim
t→0

w(r, t) = 0, r ∈ [0, R] . (7.8.21)

Let us define function θ on [0, R] by
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θ(r) = 1

c + α

[

η + αm

m!
rm + · · · + α2

2!
r2

+
∫ vm−2

0
· · ·

∫ v1

0
w(vm−1)(r − v1)dv1 · · · dvm−1

]

− r (7.8.22)

for some constants α, c, η, αi , i = 2, . . . , m; the equation,

θ(r) = 0; (7.8.23)

and the scalar iteration {rn} (n ≥ 0) by

r0 = 0, rn+1 = rn − θ(rn)

θ ′(rn)
. (7.8.24)

Let g be a maximal monotone operator satisfying L(z)+ g(z) ' y, and suppose:
(7.8.18) holds, there exist αi (i = 2, . . . , m) such that

‖F (i)(x0)‖ ≤ αi , (7.8.25)

and equation (7.8.23) has a unique r∗ ∈ [0, R] and θ(R) ≤ 0.
Then show: the generalized NK method {xn} (n ≥ 0) generated by

f ′(xn)xn+1 + g(xn+1) ' f ′(xn)(xn) − f (xn) (n ≥ 0), (x0 ∈ D)

is well defined, remains in V (x0, r∗) for all n ≥ 0, and converges to a solution
x∗ of

f (x) + g(x) ' x .

Moreover, the following error bounds hold for all n ≥ 0:

‖xn+1 − xn‖ ≤ rn+1 − rn, (7.8.26)

and
‖xn − x∗‖ ≤ r∗ − rn, r∗ = lim

n→∞ rn . (7.8.27)

7.8.4. Let x0 ∈ D and R > 0 be such that D ≡ U (x0, R). Suppose that f is
Fréchet-differentiable on D, and its derivative f ′ is in a certain sense uniformly
continuous as an operator from D into L(H, H); the space of linear operators
from H into H . In particular we assume:

‖ f ′(x) − f ′(y)‖ ≤ w(‖x − y‖), x, y ∈ D, (7.8.28)

for some monotonically increasing positive function w satisfying

lim
t→∞ w(r) = 0,

or, even more generally, that

‖ f ′(x) − f ′(y)‖ ≤ w(r, ‖x − y‖), x, y ∈ D̄, r ∈ (0, R), (7.8.29)
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for some monotonically increasing in both variables positive function w satisfy-
ing

lim
t→0

w(r, t) = 0, r ∈ [0, R] .

Conditions of this type have been studied in the special cases w(t) = dtλ,
w(r, t) = d(r)tλ, λ ∈ [0, 1] for regular equations; and for w(t) = dt for gener-
alized equations of the form f (x) + g(x) ' x . The advantages of using (7.8.28)
or (7.8.29) have been explained in great detail in the excellent paper [6]. It is
useful to pass from the function w to

w̄(r) = sup{w(t) + w(s) .. t + s = r}.
The function may be calculated explicitly in some cases. For example, if w(r) =
drλ (0 < λ ≤ 1), then w̄(r) = 21−λdrλ. More generally, if w is a con-
cave function on [0, R], then w̄(r) = 2w

( r
2

)

, and w̄ is increasing, convex, and
w̄(r) ≥ w(r), r ∈ [0, R].
Let us define the functions θ, θ̄ on [0, R] by

θ(r) = 1

c + α

[

η +
∫ r

0
w(t)dt

]

− r, for some α > 0, η > 0, c > 0

θ̄ (r) = 1

c + α

[

η +
∫ r

0
w̄(t)dt

]

− r

and the equations

θ(r) = 0,

θ̄ (r) = 0.

Let g be a maximal monotone operator satisfying

there exists c > −α such that
〈

f ′(z)(x), x
〉 ≥ c‖x‖2, for all x ∈ H, z ∈ D,

and suppose: (7.8.28) holds and equation θ̄ (r) = 0 has a unique solution r∗ ∈
[0, R].
Then, show: the generalized NK method {xn} (n ≥ 0) generated by

f ′(xn)xn+1 + g(xn+1) ' f ′(xn)(xn) − f (xn) (n ≥ 0), (x0 ∈ D)

is well defined, remains in U (x0, r∗) for all n ≥ 0, and converges to a solution
x∗ of f (x) + g(x) ' x . Moreover, the following estimates hold for all n ≥ 0:

‖xn+1 − xn‖ ≤ rn+1 − rn

‖xn − x∗‖ ≤ r∗ − rn,

where,

r0 = 0, rn+1 = rn − θ̄ (rn)

θ ′(rn)
,

and
lim

n→∞ rn = r∗.



8

Convergence Involving Operators with Outer or
Generalized Inverses

Local and semilocal convergence of iterative methods using outer or generalized
inverses under weaker conditions than before are examined hence.

8.1 Convergence with no Lipschitz conditions

In this study, we are concerned with the problem of approximating a solution x∗ of
the equation

F ′(x0)
# F(x) = 0, (8.1.1)

where F is an m-times Fréchet-differentiable operator (m ≥ 2 an integer) defined on
an open convex subset of a Banach space X with values in a Banach space Y , and
x0 ∈ D. Operator F ′(x)# (x ∈ D) denotes an outer inverse of F ′(x) (x ∈ D). Many
authors have provided local and semilocal results for the convergence of NK method
to x∗ using hypotheses on the Fréchet derivative (see earlier Chapters 2–6).

Here we provide local convergence theorems for NK method using outer or gen-
eralized inverses given by

xn+1 = xn − F ′(xn)# F(xn) (n ≥ 0) (x0 ∈ D). (8.1.2)

Our Newton-Kantorovich-type convergence hypothesis is different from the corre-
sponding famous condition used in the above-mentioned works (see Remark 8.1.10
(b)). Hence, our results have theoretical and practical value. In fact, we show using a
simple numerical example that our convergence ball contains earlier ones. This way,
we have a wider choice of initial guesses than before. Our results can be used to
solve undetermined systems, nonlinear least squares problems, and ill-posed nonlin-
ear operator equations [59], [60].

In this section, we restate some of the definitions and lemmas given in the elegant
paper [59].

Let A ∈ L(X, Y ). A linear operator B.. Y → X is called an inner inverse of A if
AB A = A. A linear operator B is an outer inverse of A if B AB = B. If B is both
an inner and an outer inverse of A, then B is called a generalized inverse of A. There

I.K. Argyros, Convergence and Applications of Newton-type Iterations,
DOI: 10.1007/978-0-387-72743-1 8, c© Springer Science+Business Media, LLC 2008
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exists a unique generalized inverse B = A |−
P,Q satisfying AB A = A, B AB = B,

B A = I − P , and AB = Q, where P is a given projector on X onto N (A) (the null
set of A) and Q is a given projector of Y onto R(A) (the range of A). In particular, if
X and Y are Hilbert spaces, and P, Q are orthogonal projectors, then A |−

P,Q is called
the Moore-Penrose inverse of A.

We will need five lemmas of Banach type and perturbation bounds for outer
inverses and for generalized inverses in Banach spaces. The Lemmas 8.1.1–8.1.5
stated here correspond with Lemmas 2.2–2.6 in [59] respectively.

Lemma 8.1.1. Let A ∈ L(X, Y ) and A# ∈ L(Y, X) be an outer inverse of A. Let
B ∈ L(X, Y ) be such that ‖A#(B − A)‖ < 1. Then B# = (I + A#(B − A))−1 A# is a
bounded outer inverse of B with N (B#) = N (A#) and R(B#) = R(A#). Moreover,
the following perturbation bounds hold:

‖B# − A#‖ ≤ ‖A#(B − A)A#‖
1 − ‖A#(B − A)‖ ≤ ‖A#(B − A)‖ ‖A#‖

1 − ‖A#(B − A)‖
and

‖B# A‖ ≤ (1 − ‖A#(B − A)‖)−1.

Lemma 8.1.2. Let A, B ∈ L(X, Y ) and A#, B# ∈ L(Y, X) be outer inverses of A
and B, respectively. Then B#(I − AA#) = 0 if and only if N (A#) ⊆ N (B#).

Lemma 8.1.3. Let A ∈ L(X, Y ) and suppose X and Y admit the topological decom-
positions X = N (A) ⊕ M, Y = R(A) ⊕ S. Let A |−(= A |−

M,S) denote the generalized
inverse of A relative to these decompositions. Let B ∈ L(X, Y ) satisfy

‖A |−
(B − A)‖ ≤ 1

and
(I + (B − A)A |−

)−1 B maps N (A) into R(A).

Then B |−= B |−
R(A|−),N (A|−) exists and is equal to

B |−= A |−
(I + T A |−

)−1 = (I + A |−T )−1 A |−
,

where T = B − A. Moreover, R(B |−) = R(A |−), N (B |−) = N (A |−) and ‖B |−A‖ ≤
(1 − ‖A |−(B − A)‖)−1.

Lemma 8.1.4. Let A ∈ L(X, Y ) and A |−be the generalized inverse of Lemma 8.1.3.
Let B ∈ L(X, Y ) satisfy the conditions ‖A |−(B − A)‖ < 1 and R(B) ⊆ R(A). Then
the conclusion of Lemma 8.1.3 holds and R(B) = R(A).

Lemma 8.1.5. Let A ∈ L(X, Y ) and A |−be a bounded generalized inverse of A. Let
B ∈ L(X, Y ) satisfy the condition ‖A |−(B − A)‖ < 1. Define B# = (I + A |−(B −
A))−1 A |−. Then B# is a generalized inverse of B if and only if dim N (B) = dim N (A)

and codim R(B) = codim R(A).
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Let A ∈ L(X, Y ) be fixed. Then, we will denote the set on nonzero outer inverses
of A by

�(A) = {B ∈ L(Y, X) .. B AB = B, B �= 0}.
In [18], [27] we showed the following semilocal convergence theorem for NK

method (8.1.2) using outer inverses for m-Fréchet-differentiable operators (m ≥ 2
an integer).

Theorem 8.1.6. Let F.. D ⊆ X → Y be an m-times Fréchet-differentiable operator
(m ≥ 2 an integer). Assume:

(a) there exist an open convex subset D0 of D, x0 ∈ D0, a bounded outer inverse
F ′(x0)

# of F ′(x0), and constants αi , η ≥ 0 such that for all x, y ∈ D0 the
following conditions hold:

‖F ′(x0)
#(F (m)(x) − F (m)(y))‖ ≤ q, q > 0, ∀x ∈ U (x0, δ0), δ0 > 0,

(8.1.3)

‖F ′(x0)
# F(x0)‖ ≤ η, (8.1.4)

‖F ′(x0)
# F (i)(x0)‖ ≤ αi , i = 2, 3, . . . , m; (8.1.5)

the positive zero s of p′(s) = 0 is such that:

p(s) ≤ 0, (8.1.6)

where

f (t) = η − t + α2

2!
t2 + · · · + αm + q

m!
tm . (8.1.7)

Then polynomial p has only two positive zeros denoted by t∗, t∗∗ (t∗ ≤ t∗∗).
(b)

Ū (x0, δ) ⊆ D0, δ = max{δ0, t∗, t∗∗}. (8.1.8)

(c) δ0 ∈ [

t∗, t∗∗] or δ0 > t∗∗.

Then

(i) NK method {xn} (n ≥ 0) generated by (8.1.2) with

F ′(xn)# =
[

I + F ′(x0)
#(F ′(xn) − F ′(x0))

]−1
F ′(x0)

# (n ≥ 0)

is well defined, remains in U (x0, t∗), and converges to a solution x∗ ∈ Ū (x0, t∗)
of equation F ′(x0)

# F(x) = 0;
(ii) the following estimates hold for all n ≥ 0

‖xn+1 − xn‖ ≤ tn+1 − tn, (8.1.9)

and
‖xn − x∗‖ ≤ t∗ − tn, (8.1.10)

where {tn} (n ≥ 0) is a monotonically increasing sequence generated by

t0 = 0, tn+1 = tn − f (tn)

f ′(tn)
; (8.1.11)
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(iii) equation F ′(x0)
# has a unique solution in Ũ ∩ {R(F ′(x0)

#) + x0}, where

Ũ =
{

Ū (x0, t∗) ∩ D0 if δ0 ∈ [

t∗, t∗∗]

U (x0, t∗∗) ∩ D0 if δ0 > t∗∗, (8.1.12)

and
R(F ′(x0)

#) + x0 ..= {x + x0 .. x ∈ R(F ′(x0)
#)}.

We provide a local convergence theorem for NK method {xn} (n ≥ 0) generated
by (8.1.2) for m-Fréchet-differentiable operators.

Theorem 8.1.7. Let F.. D ⊆ X → Y be an m-times Fréchet-differentiable operator
(m ≥ 2 an integer). Assume:

(a) F (i)(x), i = 2, 3, . . . , m satisfies

‖F (m)(x) − F (m)(y)‖ ≤ q0,

‖F (i)(x) − F (i)(y)‖ ≤ bi‖x − y‖, for all x, y ∈ D; (8.1.13)

(b) there exists x∗ ∈ D such that F(x∗) = 0 and

‖F (i)(x∗)‖ ≤ bi , i = 2, 3, . . . , m; (8.1.14)

(c) let r0 be the positive zero of equation g′(t) = 0, where

g(t) = p

[
bm + q0

m!
tm + · · · + b2

2!
t2
]

− t + b0, for any b0, p > 0, (8.1.15)

and such that U (x∗, r0) ⊆ D;
(d) there exists an F ′(x∗)# ∈ �(F ′(x∗)) such that

‖F ′(x∗)#‖ ≤ p, (8.1.16)

and for any x ∈ U (x∗, r1), for given ε0 > 1, r1 is the positive zero of equation
g1(t) = 0, where

g1(t) = pε0

[
bm + q0

(m − 1)!
tm + · · · + b2t

]

+ (1 − ε0), (8.1.17)

the set �(F ′(x)) contains an element of minimal mean.

Then, there exists U (x∗, r) ⊆ D with r ∈ (0, r1) such that for any x0 ∈ U (x∗, r),
NK method {xn} (n ≥ 0) generated by (8.1.2) for

F ′(x0)
# ∈ argmin{‖B‖.. B ∈ �(F ′(x0))}

with F ′(xn)# = [

I + F ′(x0)
#(F ′(xn) − F ′(x0))

]−1
F ′(x0)

#, converges to y ∈
U (x0, r0) ∩{R(F ′(x0)

#) + x0} such that F ′(x0)
# F(y) = 0. Here, we denote

R(F ′(x0)
#) + x0 = {x + x0 .. x ∈ R(F ′(x0)

#)}.
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Proof. (i) We first define parameter ε by

ε ∈ (0, min{ε1, ε2}] ,

where,

ε1 = 1

pε0

[

s − α2

2!
s2 − · · · − αm + q

m!
sm
]

, (8.1.18)

ε2 = 1

pε0

[

(r0 − r1) − α2

2!
(r0 − r1)

2 − · · · − αm + q

m!
(r0 − r1)

m
]

, (8.1.19)

and αi , i = 2, 3, . . . , m + 1 are given by

αm = pε0 [bm + (αm + q0)r1] , q = pε0(αm + q0)

and
αi = pε0(bi + bir1), i = 2, 3, . . . , m − 1.

We will use Theorem 8.1.6. Operator F is continuous at x∗. Hence, there exists
U (x∗, r) ⊆ D, r ∈ (0, r1), such that

‖F(x)‖ ≤ ε for all x ∈ U (x∗, r1). (8.1.20)

Using the identity,

F ′(x) − F ′(x∗) − F ′′(x∗)(x − x∗) + F ′′(x∗)(x − x∗) =

=
∫ 1

0

[

F ′′(x∗ + θ1ε) − F ′′(x∗)
]

εdθ1 +
∫ 1

0
F ′′(x∗)εdθ1

=
∫ 1

0

∫ 1

0
F ′′(β2)(β1 − x∗)εdθ2dθ1 +

∫ 1

0
F ′′(x∗)εdθ1

= · · · =
∫ 1

0
· · ·
∫ 1

0
F (m)(βm−1)(bm−2 − x∗) · · · (β1 − x∗)εdθm−1 · · · dθ1

+
∫ 1

0
· · ·
∫ 1

0
F (m−1)(βm−2)(βm−3 − x∗) · · · (β1 − x∗)εdθm−2 · · · dθ2dθ1

+ · · · +
∫ 1

0
F ′′(x∗)εdθ1

=
∫ 1

0
· · ·
∫ 1

0

[

F (m)(βm−1) − F (m)(x∗)
]

(βm−2 − x∗) · · · (β1 − x∗)εdθm−1 · · · dθ1

+
∫ 1

0
· · ·
∫ 1

0
F (m)(x∗)(βm−2 − x∗) · · · (β1 − x∗)εdθm−1 · · · dθ1

+
∫ 1

0
· · ·
∫ 1

0
F (m−1)(x∗)(βm−3 − x∗) · · · (β1 − x∗)εdθm−2

· · · dθ1 + · · · +
∫ 1

0
F ′′(x∗)εdθ1, (8.1.21)
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where we used ε = x − x∗, β1 = x∗ + θ1ε, βi = x∗ + θi (βi−1 − x∗), θi ∈ [0, 1],
i = 1, 2, 3, . . . , m − 1, conditions (8.1.13), (8.1.14), (8.1.15), and (8.1.16), we get

‖F ′(x∗)#(F ′(x) − F ′(x∗))‖ ≤ p

[
bm + q0

(m − 1)!
rm

0 + · · · + b2r0

]

< 1,

by the choice of r0.
It follows from Lemma 8.1.1 that

F ′(x)# =
[

I + F ′(x∗)#(F ′(x) − F ′(x∗))
]−1

F ′(x∗)#, (8.1.22)

is an outer inverse F ′ (x), and

‖F ′ (x)# ‖ ≤ ‖F ′ (x∗)# ‖
1 − p

[
bm+q0
(m−1)!r

m−1
1 + · · · + b2r1

] ≤ pε0, (8.1.23)

by the choice of r1 and ε0. That is, for any x0 ∈ U (x∗, r), the outer inverse

F ′(x0)
# ∈ argmin{‖B‖ .. B ∈ �(F ′(x0))} and ‖F ′(x0)

#‖ ≤ pε0.

We can then obtain for all x, y ∈ D

‖F ′(x0)
#(F (m)(x) − F (m)(y))‖ ≤ pε0‖F (m)(x) − F (m)(y)‖ ≤ pε0q0 = q,

‖F ′(x0)
# F (m)(x0)‖ ≤ pε0‖F (m)(x0)‖ ≤ pε0

[

bm + bm+1r1
] = αm

(by (8.1.13) and (8.1.14)),

and

‖F ′(x0)
# F (i)(x0)‖ ≤ pε0(bi + bir1) = αi , i = 2, 3, . . . , m − 1,

η ≤ ‖F ′(x0)
# F(x0)‖ ≤ pε0 ≤ s − α2

2!
s2 − · · · − αm + q

m!
sm, (8.1.24)

by the choice of ε and ε1. Hence, there exists a minimum positive zero t∗ < r1 of
polynomial f given by (8.1.7). It also follows from (8.1.15), (8.1.17), and the choice
of ε2 that f (r0 − r1) ≤ 0. That is,

r1 + t∗ ≤ r0. (8.1.25)

Hence, for any x ∈ U (x0, t∗) we have

‖x∗ − x‖ ≤ ‖x0 − x∗‖ + ‖x0 − x‖ ≤ r1 + t∗ ≤ r0. (8.1.26)

It follows from (8.1.26) that U (x0, t∗) ⊆ U (x∗, r0) ⊆ D. The hypotheses of Theo-
rem 8.1.6 hold at x0. Consequently, NK method {xn} (n ≥ 0) stays in U (x0, t∗) for
all n ≥ 0 and converges to a solution y of equation F ′(x0)

# F(x) = 0.

In the next theorem, we examine the order of convergence of NK method {xn}
(n ≥ 0).
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Theorem 8.1.8. Under the hypotheses of Theorem 8.1.7, if F ′(x0)
# F(y) = 0, then

‖y − xn+1‖ ≤
αm+q

m! ‖xn−y‖m−2+···+ α2
2!

1−α2‖xn−y‖−···− αm+q
(m−1)! ‖xn−y‖m ‖y − xn‖2, for all n ≥ 0, (8.1.27)

and, if y ∈ U (x0, r2), where r2 is the positive zero of equation g2(t) = 0,

g2(t) = (αm+q)(m+1)
m! tm−1 + · · · + 3α2

2! t − 1, (8.1.28)

then, sequence {xn} (n ≥ 0) converges to y quadratically.

Proof. We first note that r2 < r0. By Lemma 8.1.1 we get R(F ′(x0)
#) = R(F ′(xn)#)

(n ≥ 0). We have

xn+1 − xn = F ′(xn)# F(xn) ∈ R(F ′(xn)#) (n ≥ 0),

from which it follows

xn+1 ∈ R(F ′(xn)#) + xn = R(F ′(xn−1)
#) + xn = R(F ′(x0)

#) + x0,

and y ∈ R(F ′(xn)#) + xn+1 (n ≥ 0). That is, we conclude that

y ∈ R(F ′(x0)
#) + x0 = R(F ′(xn)#) + x0,

and

F ′(xn)# F ′(xn)(y − xn+1) = F ′(xn)# F ′(xn)(y − x0) − F ′(xn)# F ′(xn)(xn+1 − x0)

= y − xn+1.

We also have by Lemma 8.1.2 F ′(xn)# = F ′(xn)# F ′(x0)F ′(x0)
#. By F ′(x0)

# F(y)=
0 and N (F ′(x0)

#) = N (F ′(xn)#), we get F ′(xn)# F(y) = 0. Using the estimate

‖y − xn+1‖ =
= ‖F ′(xn)# F ′(xn)(y − xn+1)‖
= ‖F ′(xn)# F ′(xn)

[

y − xn + F ′(xn)#(F(xn) − F(y))
]

‖
≤ ‖F ′(xn)# F ′(x0)‖

·
∥
∥
∥
∥

F ′(x0)
#
{ ∫ 1

0

[

F ′′ [xn + t (y − xn)] − F ′′(x∗)
]

(1 − t)dt (y − xn)2

+ 1
2 F ′′(x∗)(y − xn)2

}
∥
∥
∥
∥

≤
αm+q

m! ‖xn−y‖m−2+···+ α2
2!

1−α2‖xn−y‖−···− αm+1
m! ‖xn−y‖m

‖y − xn‖2 (n ≥ 0),

which shows (8.1.27) for all n ≥ 0. By the choice of r2 and (8.1.27) there exists
α ∈ [0, 1) such that ‖y − xn+1‖ ≤ α‖y − xn‖ (n ≥ 0), which together with (8.1.27)
show that xn → y quadratically as n → ∞.
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We provide a result corresponding with Theorem 8.1.7 but involving generalized
instead of outer inverses.

Theorem 8.1.9. Let F satisfy the hypotheses of Theorems 8.1.7 and 8.1.8 except (d)
which is replaced by

(d)′ the generalized inverse F ′(x∗) exists, ‖F ′(x∗)|−‖ ≤ p,

dim N (F ′(x)) = dim N (F ′(x∗)) (8.1.29)

and
codim R(F ′(x)) = codim R(F ′(x∗)) (8.1.30)

for all x ∈ U (x∗, r1).

Then, the conclusions of Theorems 8.1.7 and 8.1.8 hold with

F ′(x0)
# ∈

{

B .. B ∈ �(F ′(x0)), ‖B‖ ≤
∥
∥
∥F ′(x0)

|−
∥
∥
∥

}

. (8.1.31)

Proof. In Theorem 8.1.7 we showed that the outer inverse F ′(x)# ∈ argmin{‖B‖ ..

B ∈ �(F ′(x))} for all x ∈ U (x∗, r), r ∈ (0, r1) and ‖F ′(x)#‖ ≤ pε0. We must
show that under (d)′ the outer inverse

F ′(x)# ∈
{

B .. B ∈ �(F ′(x)), ‖B‖ ≤
∥
∥
∥F ′(x)

|−
∥
∥
∥

}

satisfies ‖F ′(x)#‖ ≤ pε0. As in (8.1.21), we get

∥
∥
∥F ′(x∗)|−(F ′(x) − F ′(x∗)

)
∥
∥
∥ ≤ p

[
bm + q0

(m − 1)!
rm−1

0 + · · · + b2r0

]

< 1.

Moreover, by Lemma 8.1.5

F ′(x)
|−=

[

I + F ′(x∗)|−
(F ′(x) − F ′(x∗))

]−1
F ′(x∗)|− (8.1.32)

is the generalized inverse of F ′(x). Furthermore, by Lemma 8.1.1 as in (8.1.23)
‖F ′(x)|−‖ ≤ pε0. That is, the outer inverse

F ′(x0)
# ∈

{

B .. B ∈ �(F ′(x0)), ‖B‖ ≤
∥
∥
∥F ′(x0)

|−
∥
∥
∥

}

satisfies ‖F ′(x0)
#‖ ≤ pε0, provided that x0 ∈ U (x∗, r).

The rest follows exactly as in Theorems 8.1.7 and 8.1.8.

Remark 8.1.10. (a) We note that Theorem 8.1.6 was proved in [43] with the weaker
condition

∥
∥
∥F ′(x0)

#
(

F (m)(x) − F (m)(x0)
)∥
∥
∥ ≤ ᾱm+1‖x − x0‖

replacing (8.1.3).
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(b) Our conditions (8.1.3)–(8.1.7) differ from the corresponding ones in [52] (see,
for example, Theorem 3.1) unless if αi = 0, i = 2, 3, . . . , m, q = 0, in which
case our condition (8.1.6) becomes the Newton-Kantorovich hypothesis (3.3) in
[60, p. 450]:

Kη ≤ 1
2 , (8.1.33)

where K is such that
∥
∥
∥F ′(x0)

# (F ′(x) − F ′(y)
)
∥
∥
∥ ≤ K‖x − y‖ (8.1.34)

for all x, y ∈ D. Similarly (if αi = 0, i = 2, 3, . . . , m), our r0 equals the radius
of convergence in Theorem 3.2 [60, p. 450].

(c) In Theorem 3.2 [60], the condition
∥
∥F ′(x) − F ′(y)

∥
∥ ≤ c0‖x − y‖ for all x, y ∈ D (8.1.35)

was used instead of (8.1.34). The ball used there is U (x∗, r∗), (corresponding
with U (x∗, r0)) where

r∗ = 1

c0 p
. (8.1.36)

Finally, for convergence x0 ∈ U (x∗, r∗
1 ), where

r∗
1 = 2

3r∗. (8.1.37)

Below we consider such a case. For simplicity we have taken F ′(x)# = F ′(x)−1

(x ∈ D) and m = 2.

Remark 8.1.11. Methods/routines of how to construct the required outer generalized
inverses of the derivative can be found at a great variety in Exercise 8.2.3 at the end
of this chapter.

Example 8.1.12. Let us consider the system of equations

F(x, y) = 0,

where F .. R2 → R
2,

F(x, y) = (xy − 1, xy + x − 2y).

Then, we get

F ′(x, y) =
[

y x
y + 1 x − 2

]

,

and

F ′(x, y)−1 = 1
x+2y

[

2 − x x
y + 1 −y

]

,

provided that (x, y) does not belong on the straight line x + 2y = 0. The second
derivative is a bilinear operator on R

2 given by the following matrix
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F ′′(x, y) =

⎡

⎢
⎢
⎢
⎢
⎣

0 1
1 0
− −
0 1
1 0

⎤

⎥
⎥
⎥
⎥
⎦

.

We consider the max-norm in R
2. Moreover in L(R2, R

2) we use for

A =
[

a11 a12
a21 a22

]

the norm,
‖A‖ = max{|a11| + |a12|, |a21| + |a22|}.

As in [6], we define the norm of a bilinear operator B on R
2 by

‖B‖ = sup
‖z‖=1

max
i

2∑

j=1

∣
∣
∣
∣
∣

2∑

k=1
b jk

i zk

∣
∣
∣
∣
∣
,

where,

z = (z1, z2) and B =

⎡

⎢
⎢
⎢
⎢
⎣

b11
1 b12

1
b21

1 b22
1− −

b11
2 b12

2
b21

2 b22
2

⎤

⎥
⎥
⎥
⎥
⎦

.

For m = 2 and (x∗, y∗) = (1, 1), we get c0 = 4
3 , r∗

1 = .5, α2 = 1. We can set
q = .001 to obtain r2 = .666444519. Note that r2 > r∗

1 .

8.2 Exercises

8.2.1 (a) Assume there exist nonnegative parameters K , M , L , �, μ, η, δ ∈ [0, 1]
such that:

L ≤ K , (8.2.1)

� + 2μ < 1, (8.2.2)

and
hδ ≡

(

K + Lδ + 4M
2−δ

)

η + δ� + 2μ ≤ δ. (8.2.3)

Show: iteration {tn} (n ≥ 0) given by

t0 = 0, t1 = η, tn+2 = tn+1 + K (tn+1−tn)+2(Mtn+μ)

2(1−�−Ltn+1)
(tn+1 − tn) (n ≥ 0)

is nondecreasing, bounded above by t∗∗, and converges to some t∗ such that

0 ≤ t∗ ≤ 2η
2−δ

≡ t∗∗.
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Moreover, the following estimates hold for all n ≥ 0

tn+2 − tn+1 ≤ δ
2 (tn+1 − tn) ≤ (

δ
2

)n+1
η.

(b) Let F .. D ⊆ X → Y be a Fréchet-differentiable operator. Assume:
there exist an approximation A(x) ∈ L(X, Y ) of F ′(x), an open convex subset
D0 of D, x0 ∈ D0, a bounded outer inverse A# of A(x0), and parameters η > 0,
K > 0, M ≥ 0, L ≥ 0, μ ≥ 0, � ≥ 0 such that (8.2.1)–(8.2.3) hold

‖A# F(x0)‖ ≤ η,

‖A# [F ′(x) − F ′(y)
] ‖ ≤ K‖x − y‖,

‖A# [F ′(x) − A(x)
] ‖ ≤ M‖x − x0‖ + μ,

and
‖A# [A(x) − A(x0)] ‖ ≤ L‖x − x0‖ + �

for all x, y ∈ D0, and
Ū (x0, t∗) ⊆ D0

Show: sequence {xn} (n ≥ 0) generated by Newton-like method with

A (xn)# =
[

I + A#(A(xn) − A(x0))
]−1

A#

is well defined, remains in U (x0, s∗) for all n ≥ 0, and converges to a unique
solution x∗ of equation A# F(x) = 0, Ū (x0, t∗) ∩ D0
Moreover, the following estimates hold for all n ≥ 0

‖xn+1 − xn‖ ≤ tn+1 − tn,

and
‖xn − x∗‖ ≤ t∗ − tn .

(c) Assume:
—there exist an approximation A(x) ∈ L(X, Y ) of F ′(x), a simple solution
x∗ ∈ D of equation F (x) = 0, a bounded outer inverse A#

1 of A(x∗), and
nonnegative parameters K̄ , L̄ , M̄ , μ̄, �̄, such that:

‖A#
1

[

F ′(x) − F ′(y)
] ‖ ≤ K̄‖x − y‖,

‖A#
1

[

F ′(x) − A(x)
] ‖ ≤ M̄‖x − x∗‖ + μ̄,

and
‖A#

1

[

A(x) − A(x∗)
] ‖ ≤ L̄‖x − x∗‖ + �̄

for all x, y ∈ D;
—equation

(
K̄
2 + M̄ + L̄

)

r + μ̄ + �̄ − 1 = 0
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has a minimal nonnegative zero r∗ satisfying

L̄r + �̄ < 1,

and
U (x∗, r∗) ⊆ D.

Show: sequence {xn} (n ≥ 0) generated by Newton-like method is well defined,
remains in U (x∗, r∗) for all n ≥ 0, and converges to x∗ provided that x0 ∈
U (x∗, r∗). Moreover, the following error bounds hold for all n ≥ 0:

‖x∗ − xn+1‖ ≤

≤ 1

1 − L̄‖x∗ − xn‖ − �̄

[
K̄

2
‖x∗ − xn‖ + (M̄‖x∗ − xn‖ + μ̄)

]

‖x∗ − xn‖

<

(
K̄
2 + M̄

)

r∗ + μ̄

1 − L̄r∗ − �̄
‖x∗ − xn‖.

8.2.2 (a) Let F .. D ⊆ X → Y be an m-times Fréchet-differentiable operator (m ≥ 2
integer).
Assume:
(a1) there exist an open convex subset D0 of D, x0 ∈ D0, a bounded outer

inverse F ′ (x0)
# of F ′ (x0), and constants η > 0, αi ≥ 0, i = 2, ..., m + 1

such that for all x, y ∈ D0 the following conditions hold:

‖F ′(x0)
#(F (m) (x) − F (m) (x0))‖ ≤ ε, ε > 0, (8.2.4)

for all x ∈ U (x0, δ0) and some δ0 > 0.

‖F ′ (x0)
# F (x0) ‖ ≤ η,

‖F ′ (x0)
# F (i) (x0) ‖ ≤ αi

the positive zeros s of p′ is such that

p(s) ≤ 0,

where,

p(t) = η − t + α2t2

2!
+ · · · + αm + ε

m!
tm .

Show: polynomial p has only two positive zeros denoted by t∗, t∗∗ (t∗ ≤ t∗∗).
(a2)

Ū (x0, δ) ⊆ D0, δ = max{δ0, t∗, t∗∗}.
(a3) δ0 ∈ [

t∗, t∗∗] or δ0 > t∗∗.

Moreover show: sequence {xn} (n ≥ 0) generated by NK method with F ′(xn)# =
[

I + F ′(x0)
#(F ′(xn) − F ′(x0))

]−1
F ′(x0)

# (n ≥ 0) is well defined, remains in
U (x0, t∗), and converges to a solution x∗ ∈ Ū (x0, t∗) of equation F ′(x0)

# F(x)

= 0;
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—the following estimates hold for all n ≥ 0

‖xn+1 − xn‖ ≤ tn+1 − tn

and
‖xn − x∗‖ ≤ t∗ − tn,

where {tn} (n ≥ 0) is a monotonically increasing sequence converging to t∗ and
generated by

t0 = 0, tn+1 = tn − p(tn)

p′(tn)
.

(b) Let F .. D ⊆ X → Y be an m-times Fréchet-differentiable operator (m ≥ 2 an
integer). Assume:
(b1) condition (8.2.4) holds;
(b2) there exists an open convex subset D0 of D, x0 ∈ D0, and constants

α, β, η ≥ 0 such that for any x ∈ D0, there exists an outer inverse F ′(x)#

of F ′(x) satisfying N (F ′(x)#) = N (F ′(x0)
#) and

∥
∥
∥F ′(x0)

# F(x0)

∥
∥
∥ ≤ η,

∥
∥
∥
∥
∥

F ′(y)#
∫ 1

0
F ′′ [x + t (y − x)] (1 − t)dt (y − x)2

∥
∥
∥
∥
∥

≤

≤
[
αm + ε

m!
‖y − x‖m−2 + · · · + α2

2!

]

‖y − x‖2,

for all x, y ∈ D0,
[
αm + ε

m!
ηm−2 + · · · + α2

2!

]

η < 1,

and

Ū (x0, r) ⊆ D0 with r = min

{
η

1 − r0
, δ0

}

,

where,

r0 =
[
αm + ε

m!
ηm−2 + · · · + α2

2!

]

η.

Show: sequence {xn} (n ≥ 0) generated by NK method is well defined, remains
in Ū (x0, r) for all n ≥ 0, and converges to a solution x∗ of F ′(x0)

# F(x) = 0
with the iterates satisfying N (F ′(xn)#) = N (F ′(x0)

#) (n ≥ 0). Moreover, the
following estimates hold for all n ≥ 0

‖xn+1 − xn‖ ≤ rn
0 ‖x1 − x0‖,

‖x∗ − xn‖ ≤ rn
0

1 − r0
‖x1 − x0‖,

and

‖xn − x0‖ ≤ 1 − rn
0

1 − r0
‖x1 − x0‖ ≤ 1 − rn

0

1 − r0
η ≤ r.
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8.2.3 Let X and Y be Banach spaces, and let L be a bounded linear operator on
X into Y . A linear operator M .. Y → X is said to be an inner inverse of L if
L M A = L . A linear operator M .. Y → X is an outer inverse of L if M L M = M .
Let L be an m × n matrix, with m > n. Any outer inverse M of L will be an
n × m matrix. Show:
(a) If rank (L) = n, then L can be written as

L = A

[

I
0

]

,

where I is the n ×n identity matrix, and A is an m ×m invertible matrix.The
n × m matrix

M = [

I B
]

A−1

is an outer inverse of L for any n × (m − n) matrix B.
(b) If rank (L) = r < n, then L can be written as

L = A

[

I 0
0 0

]

C,

where A is an m × m invertible matrix, I is the r × r identity matrix, and
C is an n × n invertible matrix. If E is an outer (inner) inverse of the matrix
[

I 0
0 0

]

, then the n × m matrix

M = C−1 E A−1

is an outer (inner) inverse of L .
(c) E is both an inner and an outer inverse of

[

I 0
0 0

]

if and only if E can be
written in the form

E =
[

I M
C C M

]

=
[

I
C

]
[

I M
]

.

(d) For any (n − r) × r matrix T , the matrix E =
[

I 0
T 0

]

is an outer inverse of
[

I 0
0 0

]

.

8.2.4. Let F .. D ⊆ X → Y be a Fréchet-differentiable operator between two Banach
spaces X and Y , A (x) ∈ L (X, Y ) (x ∈ D) be an approximation to F ′ (x).
Assume that there exist an open convex subset D0 of D, x0 ∈ D0, a bounded
outer inverse A# of A (= A (x0)), and constants η, k > 0, M, L , μ, l ≥ 0 such
that for all x, y ∈ D0 the following conditions hold:

‖A# F (x0) ‖ ≤ η, ‖A# (F ′ (x) − F ′ (y)
) ‖ ≤ k ‖x − y‖ ,

‖A# (F ′ (x) − A (x)
) ‖ ≤ M ‖x − x0‖ + μ,

‖A# (A (x) − A) ‖ ≤ L ‖x − x0‖ + l, b ..= μ + l < 1.

Assume h = ση ≤ 1
2 (1 − b)2, σ ..= max (k, M + L), and Ū = Ū (x0, t∗) ⊆

D0, t∗ = 1−b−
√

(1−b)2−2h
σ

. Then show
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(i) sequence {xn} (n ≥ 0) generated by xn+1 = xn − A (xn)# F (xn) (n ≥ 0)

with A (xn)# = [

I + A# (A (xn) − A)
]−1

A# remains in U and converges to
a solution x∗ ∈ Ū of equation A# F (x) = 0.

(ii) equation A# F (x) = 0 has a unique solution in Ū ∩ {

R
(

A#
)+ x0

}

, where

Ũ =
{

(x0, t∗) ∩ D0 if h = 1
2 (1 − b)2

U (x0, t∗∗) ∩ D0 if h < 1
2 (1 − b)2 ,

R(A#) + x0 ..=
{

x + x0 .. x ∈ R(A#)
}

,

and

t∗ = 1−b+
√

(1−b)2−2h
σ

(iii) ‖xn+1 − xn‖ ≤ tn+1 − tn , ‖x∗ − xn‖ ≤ t∗ − tn , where t0 = 0, tn+1 =
tn + f (tn)

g(tn)
, f (t) = σ

2 t2 − (1 − b) t + η, and g (t) = 1 − Lt − �.

8.2.5. Let F .. D ⊆ X → Y be a Fréchet-differentiable operator between two Banach
spaces X and Y and let A (x) ∈ L (X, Y ) be an approximation of F ′ (x). Assume
that there exist an open convex subset D0 of D, a point x0 ∈ D0, and constants
η, k > 0 such that for any x ∈ D0, there exists an outer inverse A (x)# of A (x)

satisfying N (A (x)#) = N (A#), where A = A (x0) and A# is a bounded outer
inverse of A, and for this outer inverse the following conditions hold:

‖A# F (x0) ‖ ≤ η,

‖A (y)# (F ′ (x + t (y − x)) − F ′ (x)
) ‖ ≤ kt ‖x − y‖

for all x, y ∈ D0 and t ∈ [0, 1], h = 1
2 kη < 1 and Ū (x0, r) ⊆ D0

with r = η
1−h . Then show sequence {xn} (n ≥ 0) generated by xn+1 =

xn − A (xn)# F (xn) (n ≥ 0) with A (xn)# satisfying N (A (xn)#) = N
(

A#
)

re-
mains in Ū (x0, r) and converges to a solution x∗ of equation A# F (x) = 0.

8.2.6. Show that NK method with outer inverses xn+1 = xn − F ′ (xn)# (n ≥ 0)

converges quadratically to a solution x∗ ∈ Ũ ∩ {

R(F ′(x0)
#) + x0

}

of equa-
tion F ′ (x0)

# F (x) = 0 under the conditions of Exercise 8.2.4 with A (x) =
F ′ (x) (x ∈ D0) .

8.2.7. Let F .. D ⊆ X → Y be Fréchet-differentiable and assume that F ′ (x) satisfies
a Lipschitz condition

‖F ′ (x) − F ′ (y) ‖ ≤ L ‖x − y‖ , x, y ∈ D.

Assume x∗ ∈ D exists with F (x∗) = 0. Let a > 0 such that U
(

x∗, 1
a

)

⊆ D.

Suppose there is an

F ′ (x∗)# ∈ �
(

F ′ (x∗)) = {

B ∈ L (Y, X) .. B F ′ (x∗) B = B, B �= 0
}

such that ‖F ′ (x∗)# ‖ ≤ a and for any x ∈ U
(

x∗, 1
3La

)

, the set �
(

F ′ (x)
)

con-

tains an element of minimum norm. Then show there exists a ball U (x∗, r) ⊆ D
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with cr < 1
3aL such that for any x0 ∈ U (x∗, r) the sequence {xn} (n ≥ 0)

xn+1 = xn − F ′ (xn)# F (xn) (n ≥ 0) with

F ′ (x0)
# ∈ argmin

{‖B‖ ∣∣B ∈ �
(

F ′ (x0)
)}

and with F ′ (xn)# = (I + F ′ (x0)
# (F ′ (xn) − F ′ (x0)

)

)−1 F ′ (x0)
# converges

quadratically to x̄∗ ∈ U
(

x0,
1

La

)

∩ {R(F ′ (x0)
#) + x0}, which is a solution

of equation F ′ (x0)
# F (x) = 0. Here, R(F ′ (x0)

#) + x0 = {x + x0 .. x ∈
R(F ′ (x0)

#)}.
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Convergence on Generalized Banach Spaces:
Improving Error Bounds and Weakening of
Convergence Conditions

The local and semilocal convergence of iterative methods in generalized spaces with
a convergence structure as well as in K -normed spaces under weak conditions is
examined in this chapter.

9.1 K -normed spaces

In this section, we are concerned with the problem of approximating a solution x∗ of
equation

F(x) + G(x) = 0, (9.1.1)

where F , G are operators between two Banach spaces X , Y defined on a closed ball
centered at some point x0 ∈ X and of radius R > 0. Operator F is differentiable,
whereas the differentiability of G is not assumed.

We propose the Newton-Kantorovich method

xn+1 = xn − F ′(xn)−1(F(xn) + G(xn)) (n ≥ 0) (9.1.2)

to generate a sequence approximating x∗.
This study is motivated by the elegant work in [53], where X is a real Banach

space ordered by a closed convex cone K . We note that passing from scalar majorants
to vector majorants enlarges the range of applications, as the latter uses the spectral
radius, which is usually smaller than its norm used by the former.

Here using finer vector majorants than before (see [53]), we show under the same
hypotheses:

(a) sufficient convergence conditions can be obtained that are always weaker than
before.

(b) finer estimates on the distances involved and an at least as precise information
on the location of the solution x∗ are provided.

I.K. Argyros, Convergence and Applications of Newton-type Iterations,
DOI: 10.1007/978-0-387-72743-1 9, c© Springer Science+Business Media, LLC 2008
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Several applications are provided. In particular, we show as a special case that
the famous Newton-Kantorovich hypothesis is weakened. Finally, we study the local
convergence of method (9.1.2).

In order to make the study as self-contained as possible, we need to introduce
some concepts involving K -normed spaces.

Let X be a real Banach space ordered by a closed convex cone K . We say
that cone K is regular if every increasing sequence γ1 ≤ γ2 ≤ · · · ≤ γn ≤ · · ·
that is bounded above converges in norm. If γ 0

n ≤ γn ≤ γ 1
n and limn→∞ γ 0

n =
limn→∞ γ 1

n = γ ∗, the regularity of K implies limn→∞ γn = γ ∗.
Let α, β ∈ X , the conic segment 〈α, β〉 = {γ | α ≤ γ ≤ β}. An operator Q in

X is called positive if Q(γ ) ∈ K for all γ ∈ K . Denote by L(X, X) the space of
all bounded linear operators in X , and Lsym(X2, X) the space of bilinear, symmetric,
bounded operators from X2 to X . By the standard linear isometry between L(X2, X),
and L(X, L(X, X)), we consider the former embedded into the latter.

Let D be a linearly connected subset of K , and ϕ be a continuous operator from
D into L(X, X) or L(X, L(X, X)). We say that the line integral of ϕ is independent
of the path if for every polygonal line L in D, the line integral depends only on the
initial and final point of L . We define

∫ r

r0

ϕ(t)dt =
∫ 1

0
ϕ [(1 − s)r0 + sr ] (r − r0)ds. (9.1.3)

We need the definition of K -normed space:

Definition 9.1.1. Let X be a real linear space. Then X is said to be K -normed if
operator ]·[ .. X → Y satisfies:

]x[ ≥ 0 (x ∈ X);
]x[ = 0 ⇔ x = 0;
]r x[ = |r | ]x[ (x ∈ X, r ∈ R);

and
]x + y[ ≤ ]x[ + ]y[ (x, y ∈ X).

Let x0 ∈ X and r ∈ K . Then we denote

U (x0, r) = {x ∈ X | ]x − x0[ ≤ r} . (9.1.4)

Using K -norm, we can define convergence on X. A sequence {yn} (n ≥ 0) in X is
said to be

(1) convergent to a limit y ∈ X if

lim
n→∞ ]yn − y[ = 0 in X

and we write
(X) − lim

n→∞ yn = y;
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(2) a Cauchy sequence if
lim

m,n→∞ ]ym − yn[ = 0.

The space X is complete if every Cauchy sequence is convergent.

We use the following conditions:

F is differentiable on the K -ball U (x0, R), and for every r ∈ S = 〈0, R〉 there
exist positive operators w0(r), w(r) ∈ Lsym(X2, X) such that for all z ∈ X

]

(F ′(x) − F ′(x0))(z)
[ ≤ w0(r)(]x − x0[ , ]z[) (9.1.5)

for all x ∈ U (x0, r),
]

(F ′(x) − F ′(y))(z)
[ ≤ w(r)(]x − y[ , ]z[) (9.1.6)

for all x, y ∈ U (x0, r), where operators w0, w.. S → Lsym(X2, X) are increasing.
Moreover, the line integral of w (similarly for w0) is independent of the path, and the
same is true for the operator w.. S → L(X, X) given by

w(r) =
∫ r

0
w(t)dt. (9.1.7)

Note that in general
w0(r) ≤ w(r) for all r ∈ S. (9.1.8)

The Newton-Leibniz formula holds for F on U (x0, R):

F(x) − F(y) =
∫ t

x
F ′(z)dz, (9.1.9)

for all segments [x, y] ∈ U (x0, R); for every r ∈ S there exists a positive operator
w1(r) ∈ L(X, X) such that

]G (x) − G (y)[ ≤ w1(r) (]x − y[) for all x, y ∈ U (x0, r), (9.1.10)

where w1.. S → L(X, X) is increasing and the line integral of w1 is independent of
the path;

Operator F ′(x0) is invertible and satisfies:
]

F ′(x0)(y)
[ ≤ b ]y[ for all y ∈ Y (9.1.11)

for some positive operator b ∈ L(X, X).
Let

η =
]

F ′(x0)
−1(F(x0) + G(x0))

[

, (9.1.12)

and define operator f .. S → X by letting

f (r) = η + b
∫ r

0
w(t)dt + b

∫ r

0
w1(t)dt. (9.1.13)
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By the monotonicity of operators w, w1, we see that f is order convex, i.e., for
all r, r ∈ S with r ≤ r ,

f ((1 − s)r + sr) ≤ (1 − s) f (r) + s f (r) for all s ∈ [0, 1] . (9.1.14)

We will use the following results whose proofs can be found in [53]:

Lemma 9.1.2. (a) If Lipschitz condition (9.1.6) holds, then

]

(F ′(x + y) − F ′(x))(z)
[ ≤ (w(r + ]y[) − w(r))(]z[) (9.1.15)

for all r, r + ]y[ ∈ S, x ∈ U (x0, r), z ∈ X;
(b) If Lipschitz condition (9.1.10) holds, then

]G(x + y) − G(x)[ ≤
∫ r+]y[

r
w1(t)dt for all r, r + ]y[ ∈ S, x ∈ U (x0, r).

(9.1.16)

Denote by Fix( f ) the set of all fixed points of the operator f .

Lemma 9.1.3. Assume:
Fix( f ) �= ∅. (9.1.17)

Then there is a minimal element r∗ in Fix( f ) that can be found by applying the
method of successive approximations

r = f (r) (9.1.18)

with 0 as the starting point.
The set

B( f, r∗) =
{

r ∈ S.. lim
n→∞ f n(r) = r∗

}

(9.1.19)

is the attracting zone of r∗.

Remark 9.1.4. [53] Let r ∈ S. If
f (r) ≤ r, (9.1.20)

and
〈0, r〉 ∩ Fix( f ) = {r∗} (9.1.21)

then,
〈0, r〉 ⊆ B( f, r∗). (9.1.22)

Note that the successive approximations

εn+r = δ(εn) (ε0 = r) (n ∈ N ) (9.1.23)

converges to a fixed point ε∗ of f , satisfying 0 ≤ s∗ ≤ r . Hence, we conclude
s∗ = r∗, which implies r ∈ B( f, r∗).
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In particular, Remark 9.1.4 implies

〈0, (1 − s)r∗ + sr〉 ⊆ B( f, r∗) (9.1.24)

for every r ∈ Fix( f ) with 〈0, r〉 ∩ Fix( f ) = {r∗, r}, and for all λ ∈ [0, 1).
In the scalar case X = R, we have

B( f, r∗) = [

0, r∗] ∪ {r ∈ S.. r∗ < r, f (q) < q, (r∗ < q ≤ r)}. (9.1.25)

We will also use the notation

E(r∗) =
⋃

r∈B( f,r∗)
U (x0, r). (9.1.26)

Returning back to method (9.1.2), we consider the sequences of approximations

rn+1 = rn − (bw0(rn) − I )−1( f (rn) − rn) (r0 = 0, n ≥ 0) (9.1.27)

and

rn+1 = rn − (bw(rn) − I )−1( f (rn) − rn) (r0 = 0, n ≥ 0) (9.1.28)

for the majorant equation (9.1.18).

Lemma 9.1.5. If operators

I − bw0(r) r ∈ [

0, r∗) (9.1.29)

are invertible with positive inverses, then sequence {rn} (n ≥ 0) given by (9.1.27) is
well defined for all n ≥ 0, monotonically increasing, and convergent to r∗.

Proof. We first show that if a1 ≤ a2, a2 �= r∗, then

(I − bw0(a1))
−1θ ≤ (I − bw0(a2))

−1θ for all θ ∈ K . (9.1.30)

We have

θ + bw0(a2)θ + · · · + (bw0(a2))
nθ

= (I − bw0(a2))
−1θ − (bw0(a2))

n+1(I − bw0(a2))
−1θ ≤ θ2, (9.1.31)

where,
θ2 = (I − bw0(a2))

−1θ. (9.1.32)

Using the monotonicity of w we get

θ + bw0(a1)θ + · · · + (bw0(a1))
nθ

≤ θ + bw0(a1)θ + · · · + (bw0(a1))
nθ ≤ θ2, (9.1.33)
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which implies increasing sequence {(bw0(a1))
nθ} (n ≥ 0) is bounded in a regular

cone K , and as such it converges to some

θ1 = (I − bw0(a1))
−1θ (9.1.34)

with
θ1 ≤ θ2.

We also need to show that the operator

g(r) = r − (bw0(r) − I )−1( f (r) − r) (9.1.35)

is increasing on 〈0, r∗〉 − {r∗}. Let b1 ≤ b2 with b1, b2 ∈ [

0, r∗], then using (9.1.8)
and (9.1.35), we obtain in turn

g(b2) − g(b1)

= b2 − b1 − (bw0(b2) − I )−1( f (b2) − b2) + (bw0(b1) − I )−1( f (b1) − b1)

= b2 − b1 − (bw0(b1) − I )−1 [( f (b2) − b2) − ( f (b1) − b1)]

+
[

(bw0(b1) − I )−1 − (bw0(b2) − I )−1
]

( f (b2) − b2)

= (I − bw0(b1))
−1 [ f (b2) − f (b1) − bw0(b1)(b2 − b1)] (9.1.36)

+ (I − bw0(b2))
−1(bw0(b2) − bw0(b1))(I − bw0(b1))

−1( f (b2) − b2) ≥ 0,

as all terms in the right hand of equality (9.1.36) are in the cone.
Moreover, g leaves 〈0, r∗〉 − {r∗} invariant, since

0 = g(0) ≤ g(r) ≤ g(r∗) = r∗. (9.1.37)

Hence sequence
rn+1 = g(rn) (r0 = 0, n ≥ 0) (9.1.38)

is well defined for all n ≥ 0, lies in the set 〈0, r∗〉−{r∗}, and is increasing. Therefore
the limit of this sequence exists. Let us call it r∗

1 . The point r∗
1 is a fixed point of f

in 〈0, r∗〉. But r∗ is the unique fixed point of f in 〈0, r∗〉. Hence, we deduce

r∗
1 = r∗. (9.1.39)

Remark 9.1.6. If equality holds in (9.1.8) then sequence {rn} becomes {rn} (n ≥ 0)

and Lemma 9.1.5 reduces to Lemma 5 in [53, p. 555]. Moreover as it can easily be
seen using induction on n

rn+1 − rn ≤ rn+1 − rn, (9.1.40)

and
rn ≤ rn (9.1.41)

for all n ≥ 0. Furthermore, if strict inequality holds in (9.1.8), so it does in (9.1.40)
and (9.1.41). If {rn} (n ≥ 0) is a majorizing sequence for method (9.1.2), then
(9.1.40) shows that the error bounds on the distances ‖xn+1 − xn‖ are improved.
It turns out that this is indeed the case.
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We can show the semilocal convergence theorem for method (9.1.2).

Theorem 9.1.7. Assume:
hypotheses (9.1.6), (9.1.7), (9.1.9), (9.1.10), (9.1.11), (9.1.17) hold, and operators
(9.1.29) are invertible with positive inverses.
Then sequence {xn} (n ≥ 0) generated by Newton-Kantorovich method (9.1.2) is well
defined, remains in the K -ball U (x0, r∗) for all n ≥ 0, and converges to a solution x∗
of equation F(x) + G(x) = 0 in E(r∗), where E(r∗) is given by (9.1.26). Moreover,
the following error bounds hold for all n ≥ 0:

]

xn+1 − xn
[ ≤ rn+1 − rn, (9.1.42)

and
]

x∗ − xn
[ ≤ r∗ − rn, (9.1.43)

where sequence {rn} is given by (9.1.27).

Proof. We first show (9.1.42) using induction on n ≥ 0 (by (9.1.12)). For n = 0;

]x1 − x0[ =
]

F ′(x0)
−1(F(x0) + G(x0))

[

= η = r1 − r0. (9.1.44)

Assume:
]

xk − xk−1
[ ≤ rk − rk−1 (9.1.45)

for k = 1, 2, . . . , n.
Using (9.1.45) we get

]xn − x0[ ≤
n
∑

k=1

]

xk − xk−1
[ ≤

n
∑

k=1

(rk − rk−1) = rn . (9.1.46)

Define operators Qn .. X → X by

Qn = −F ′(x0)
−1 [F ′(xn) − F ′(x0)

]

. (9.1.47)

By (9.1.5) and (9.1.11) we get

]Qn(z)[ =
]

F ′(x0)
−1(F ′(xn) − F ′(x0))(z)

[

≤ b
]

(F ′(xn) − F ′(x0))(z)
[

≤ bw0(rn)(]z[), (9.1.48)

and ]

Qi
n(z)

[

≤ (bw0(rn))
i (]z[) (i ≥ 1). (9.1.49)

Hence, we have:
∞
∑

i=0

]

Qi
n(z)

[

≤
∞
∑

j=0

(bw0(rn))
i (]z[). (9.1.50)
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That is, series
∞∑

i=0
Qi

n(z) is convergent in X . Hence operator I − Qn is invertible, and

]

(I − Qn)
−1(z)

[

≤ (I − bw0(rn))−1(]z[). (9.1.51)

Operator F ′(xn) is invertible for all n ≥ 0, as F ′(xn) = F ′(x0)(I − Qn), and for all
x ∈ Y we have:

]

F ′(xn)−1(x)
[

=
]

(I − Qn)
−1 F ′(x0)

−1(x)
[

≤ (I − bw0(rn))
−1
(]

F ′(x0)
−1(x)

[)

≤ (I − bw0(rn))
−1 (b ]x[) . (9.1.52)

Using (9.1.3) we obtain the approximation
]

xn+1 − xn
[

=
]

F ′(xn)−1(F(xn) + G(xn)) − F ′(xn)−1(F ′(xn−1)(xn − xn−1)

+ F(xn−1) + G(xn−1))
[

. (9.1.53)

It now follows from (9.1.5)–(9.1.11), (9.1.13), (9.1.27), and (9.1.53)
]

xn+1 − xn
[ ≤

≤
]

F ′(xn)−1(F(xn) − F(xn−1) − F ′(xn−1)(xn − xn−1)
[

+
]

F ′(xn)−1(G(xn) − G(xn−1))

≤ (I − bw0(rn))
−1

{

b

]
∫ 1

0
(F ′((1 − λ)xn−1 + λxn)

− F ′(xn−1))(xn − xn−1)dλ

[}

+ (I − bw0(rn))
−1 (b

]

G(xn) − G(xn−1)
[)

≤ (I − bw0(rn))
−1

{

b
∫ 1

0
(w((1 − λ)rn−1 + λrn) − w(rn−1))(rn − rn−1)dλ

}

+ (I − bw0(rn))
−1
(

b
∫ rn

rn−1

w1(t)dt

)

= (I − bw0(rn))
−1
{

b
∫ rn

rn−1

w(t)dt − bw(rn−1)(rn − rn−1)

+ b
∫ rn

rn−1

w1(t)dt

}

(9.1.54)
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= (I − bw0(rn))−1( f (rn) − f (rn−1) − bw(rn−1)(rn − rn−1))

= (I − bw0(rn))−1(( f (rn) − rn) − ( f (rn−1) − rn−1)

− (bw(rn−1) − I )(rn − rn−1))

= (I − bw0(rn))−1(( f (rn) − rn) − ( f (rn−1) − rn−1)

− (bw(rn−1) − I )(rn − rn−1))

≤ (I − bw0(rn))
−1(( f (rn) − rn) − ( f (rn−1) − rn−1)

− (bw0(rn−1) − I )(rn − rn−1)) (9.1.55)

= (I − bw0(rn))−1( f (rn) − rn) = rn+1 − rn . (9.1.56)

By Lemma 9.1.5, sequence {rn} (n ≥ 0) converges to r∗. Hence {xn} is a convergent
sequence, and its limit is a solution of equation (9.1.1). Therefore, xn converges to
x∗.

Finally, (9.1.43) follows from (9.1.42) by using standard majorization tech-
niques. The uniqueness part is omitted as it follows exactly as in Theorem 2 in [53].

That completes the proof of the theorem.

Remark 9.1.8. It follows immediately from (9.1.54) and (9.1.55) that sequence

t0 = t0,

t1 = η,

tn+1 − tn = (I − bw0(tn))
−1
{

b
∫ tn

tn−1

w(t)dt − bw(tn−1)(tn − tn−1)

+ b
∫ tn

tn−1

w1(t)dt

}

(n ≥ 1) (9.1.57)

is also a finer majorizing sequence of {xn} (n ≥ 0) and converges to some t∗ in
〈0, r∗〉. Moreover, the following estimates hold for all n ≥ 0

]x1 − x0[ ≤ t1 − t0 = r1 − r0, (9.1.58)
]

xn+1 − xn
[ ≤ tn+1 − tn ≤ rn+1 − rn, (9.1.59)

]

x∗ − xn
[ ≤ t∗ − tn ≤ r∗ − rn, (9.1.60)

tn ≤ rn, (9.1.61)

and

t∗ ≤ r∗. (9.1.62)

That is, {tn} is a finer majorizing sequence than {rn} and the information on the loca-
tion of the solution x∗ is more precise. Therefore, we wonder if studying the conver-
gence of {tn} without assuming (9.1.17) can lead to weaker sufficient convergence
conditions for method (9.1.2). In Theorem 9.1.10, we answer this question.
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But first we need the following lemma on majorizing sequences for method
(9.1.2).

Lemma 9.1.9. If:
there exist parameters η ≥ 0, δ ∈ [0, 2) such that: Operators

I − bw0

[

2(2I − δ I )−1
(

I − (
δ I
2

)n+1
)

η
]

(9.1.63)

be positive, invertible, and with positive inverses for all n ≥ 0;

2(I − bw0(η))−1

[

bw1(η) + b
∫ 1

0
w(sη)ds − bw(0)

]

≤ δ I, (9.1.64)

and

2b
∫ 1

0
w
[

2(2I − δ I )−1
(

I − (
δ I
2

)n+1
)

η + s
(

δ I
2

)n+1
η
]

ds

− 2bw
[

2(2I − δ I )−1
(

I − (
δ I
2

)n+1
)

η
]

+ 2bw1

[

2(2I − δ I )−1
(

I − (
δ I
2

)n+1
)

η
]

+ δbw0

[

2(2I − δ I )−1
(

I − (
δ I
2

)n+1
)

η
]

≤ δ I, for all n ≥ 0. (9.1.65)

Then iteration {tn} (n ≥ 0) given by (9.1.57) is nondecreasing, bounded above by

t∗∗ = 2(2I − δ I )−1η, (9.1.66)

and converges to some t∗ such that:

0 ≤ t∗ ≤ t∗∗. (9.1.67)

Moreover, the following error bounds hold for all n ≥ 0:

0 ≤ tn+2 − tn+1 ≤ δ I
2 (tn+1 − tn) ≤ (

δ I
2

)n+1
η. (9.1.68)

Proof. We must show:

2(I − bw0(tk+1))
−1

[

b
∫ 1

0
w(tk + s(tk+1 − tk))ds − bw(tk) + bw1(tk+1)

]

≤ δ I,

(9.1.69)
and operators

0 ≤ tk+1 − tk, (9.1.70)

I − bw0(tk+1), (9.1.71)

positive, invertible, and with positive inverses.
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Estimate (9.1.69) can then follow immediately from (9.1.70)–(9.1.72). Using in-
duction on the integer k, we get for k = 0

2(I − bw0(t1))
−1
[

b
∫ 1

0
w [t0 + s(t1 − t0)] ds − bw(t1) + w1(t1)

]

≤ δ I,

bw0(t1) < I, (9.1.72)

by the initial conditions. But (9.1.57) then gives

0 ≤ t2 − t1 ≤ δ I
2 (t1 − t0). (9.1.73)

Assume (9.1.70)–(9.1.72) hold for all k ≤ n + 1. Using (9.1.63)–(9.1.66), we obtain
in turn:

2b
∫ 1

0
w
[

tk+1 − s(tk+2 − tk+1)
]

ds − 2bw(tk+1) + 2bw1(tk+1) + δbw0(tk+1)

≤ 2b
∫ 1

0
w
[

2(2I − δ I )−1
(

I − (
δ I
2

)k+1
)

η + s
(

δ I
2

)k+1
η
]

ds

− 2bw
[

2(2I − δ I )−1
(

I − (
δ I
2

)k+1
)

η
]

+ 2bw1

[

2(2I − δ I )−1
(

I − (
δ I
2

)k+1
η
)]

+ δbw0

[

2(2I − δ I )−1
(

I − (
δ I
2

)k+1
)

η
]

≤ δ I. (9.1.74)

Moreover, we show:
tk ≤ t∗∗. (9.1.75)

We have:

t0 = η ≤ t∗∗, t1 = η ≤ t∗∗, t2 ≤ η + δ I
2 η = 2I+δ I

2 η ≤ t∗∗.

Assume (9.1.75) holds for all k ≤ n + 1. It follows from (9.1.57), (9.1.70)–(9.1.72):

tk+2 ≤ tk+1 + δ I
2 (tk+1 − tk) ≤ tk + δ I

2 (tk − tk−1) + δ I
2 (tk+1 − tk)

≤ · · · ≤ η + δ I
2 η + (

δ I
2

)2
η + · · · + (

δ I
2

)k+1
η

= 2(2I − δ I )−1
[

I − (
δ I
2

)k+2
]

η ≤ 2(2I − δ I )−1η = t∗∗. (9.1.76)

Hence, sequence {tn} (n ≥ 0) converges to some t∗ satisfying (9.1.68).
That completes the proof of Lemma 9.1.9.

We can show the main semilocal convergence theorem for method (9.1.2).

Theorem 9.1.10. Assume:
hypotheses (9.1.5)–(9.1.7), (9.1.9)–(9.1.11), (9.1.63)–(9.1.66) hold, and
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t∗∗ ≤ R, (9.1.77)

where t∗∗ is given by (9.1.67).
Then sequence {xn} (n ≥ 0) generated by Newton-Kantorovich method (9.1.2) is well
defined, remains in the K -ball U (x0, t∗) for all n ≥ 0, and converges to a solution
x∗ of equation F(x) + G(x) = 0, which is unique in E(t∗). Moreover, the following
error bounds hold for all n ≥ 0:

]

xn+1 − xn
[ ≤ tn+1 − tn (9.1.78)

and
]

x∗ − xn
[ ≤ t∗ − tn, (9.1.79)

where sequence {tn} (n ≥ 0) and t∗ are given by (9.1.57) and (9.1.68), respectively.

Proof. The proof is identical to Theorem 9.1.7 with sequence tn replacing rn until
the derivation of (9.1.54). But then the right-hand side of (9.1.54) with these changes
becomes tn+1 − tn . By Lemma 9.1.9, {tn} converges to t∗. Hence {xn} is a convergent
sequence, its limit converges to a solution of equation F(x) + G(x) = 0. There-
fore {xn} converges to x∗. Estimate (9.1.79) follows from (9.1.78) by using standard
majorization techniques. The uniqueness part is omitted as it follows exactly as in
Theorem 2 in [53].

That completes the proof of Theorem 9.1.10.

Remark 9.1.11. Conditions (9.1.63), (9.1.66) can be replaced by the stronger but eas-
ier to check

I − bw0

[

2(2I − δ I )−1η
]

(9.1.80)

and

2b
∫ 1

0
w
[

2(2I − δ I )−1η + s
(

δ I
2

)

η
]

s − 2bw
[

2(2I − δ I )−1η
]

+ 2bw1

[

2(2I − δ I )−1η
]

+ δbw0

[

2(2I − δ I )−1η
]

≤ δ I, (9.1.81)

respectively.

Application 9.1.12. Assume operator ] [ is given by a norm ‖ · ‖ and set G(x) = 0
for all x ∈ U (x0, R). Choose for all r ∈ S, b = 1 for simplicity,

w(r) = �r, (9.1.82)

w0(r) = �0r (9.1.83)

and
w1(r) = 0. (9.1.84)

With these choices, our conditions reduce to the ones in Section 2.3 that have
already been compared favorably with the Newton-Kantorovich theorem.
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Remark 9.1.13. The results obtained here hold under even weaker conditions. In-
deed, because (9.1.6) is not “directly” used in the proofs above, it can be replaced by
the weaker condition (9.1.15) throughout this study.

The local convergence for method (9.1.2) was not examined in [53]. Let x∗ be
a simple solution of equation (9.1.1), and assume F(x∗)−1 ∈ L(Y, X). Moreover,
assume with x∗ replacing x0 that hypotheses (9.1.5), (9.1.6), (9.1.7), (9.1.9), (9.1.10),
(9.1.11) hold. Then exactly as in (9.1.54) but using the local conditions, and the
approximation

xn+1 − x∗ = (9.1.85)

=
[

F ′(xn)−1 F ′(x∗)
]

F ′(x∗)−1

×
{∫ 1

0

[

F ′(xn + t (x∗ − xn)) − F ′(xn)
]

(x∗ − xn)dt + (G(x∗) − G(xn))

}

(9.1.86)

we can show the following local result for method (9.1.87).

Theorem 9.1.14. Assume there exists a minimal solution r∗ ∈ S of equation

p(r) = 0, (9.1.87)

where,

p(r) = b
∫ 1

0
[w((1 + s)r) − w(r)] ds + bw0(r) + bw1(r) − 1. (9.1.88)

Then, sequence {xn} (n ≥ 0) generated by Newton-Kantorovich method (9.1.2) is
well defined, remains in U (x∗, r∗) for all n ≥ 0, and converges to x∗ provided that
x0 ∈ U (x∗, r∗).
Moreover the following estimates hold for all n ≥ 0

]

x∗ − xn+1
[ ≤ εn+1, (9.1.89)

where,

εn+1 = b
∫ 1

0 (w((1+s)]xn−x∗[)−w(]xn−x∗[))ds]xn−x∗[+
∫ ]xn−x∗[

0 w1(s)ds
1−bw0(]xn−x∗[) (9.1.90)

(n ≥ 0).

Application 9.1.15. Returning back to the choices of Application 9.1.12 and using
(9.1.87) we get

r∗ = 1

2�0 + �
. (9.1.91)

See also Section 2.4.
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9.2 Generalized Banach spaces

In this section, we are concerned with the problem of approximating a locally unique
solution x∗ of equation

G(x) = 0, (9.2.1)

where G is a Fréchet-differentiable operator defined on an open subset D of a Banach
space X with values in a Banach space Y . The results will be stated for an operator

F = L0G, (9.2.2)

where, L0 ∈ L(Y, X) is an approximate inverse of G ′(x0) (x0 ∈ D).
Using the concept of a generalized norm that is an operator from a linear space

into a partially ordered Banach space, sufficient semilocal convergence conditions
for NK method were given in [17], [22], [43], [139]–[141]. This way, convergence
results and error estimates are improved compared with the real norm theory. Several
examples for the benefits of this approach can be found in [141].

Here we use Lipschitz as well as center-Lipschitz conditions on F . It turns out
that this way under the same information, we obtain finer error bounds under in gen-
eral weaker sufficient convergence conditions in the semilocal convergence case. In
the local case not covered in [139]–[141], we also show that our radius of conver-
gence is larger than before.

We complete our study with an example where our results compare favorably
with earlier ones using the same information.

We first need some definitions on ordered spaces:

Definition 9.2.1. By a generalized Banach space we mean a triplet (X, E, / ·/) such
that:

(i) X is a linear space over R(C);
(ii) E = (E, K , // · //) is a partially ordered Banach space in the sense:
(ii)1 (E, // · //) is a real Banach space,
(ii)2 E is partially ordered by a closed convex cone K ,
(ii)3 the norm // · // is monotone on K ;
(iii) operator / · /.. X → K is such that

/x/ = 0 ⇔ x = 0,

/sx/ = /s/ /x/,

/x + y/ ≤ /x/ + /y/;
(iv) X is a Banach space with the induced norm

// · //i ..= // · // • / • /.

The operator / · / is called a generalized norm. All topological terms are understood
with respect to this norm.

If X , Y are partially ordered, L+(Xn, Y ) is the subset of monotone operators W
such that

0 ≤ ui ≤ vi ⇒ W (u1, . . . , un) ≤ W (v1, . . . , vn).
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Definition 9.2.2. The set of bounds for an operator L ∈ L(X, X) on (X, E, / · /) is
given by:

B(L) = {W ∈ L+(E, E) | /L(x)/ ≤ W/x/ for x ∈ X}.
For x0 ∈ D ⊆ X, J .. D → D, we use the notation

xn+1 = J (xn) = J n+1(x0), (9.2.3)

and in the case of convergence

J∞(x0) = lim
n→∞(J n(x0)) = lim

n→∞{xn}. (9.2.4)

The Newton iterates are determined through a fixed point approach:

xn+1 = xn + yn, F ′(xn)(yn) + F(xn) = 0, (9.2.5)

⇔ yn = Jn(yn) = (I − F ′(xn))(yn) − F(xn). (9.2.6)

In case of convergence, we can write NK method in the form:

xn+1 = xn + J∞
n (0) (n ≥ 0). (9.2.7)

Proposition 9.2.3. Let (E, K , // · //) be a partially ordered Banach space, δ ∈ K ,
M ∈ L+(E, E), N ∈ L+(E2, E) be given operators.
Assume there exist:

(a) c ∈ K such that

R(c) = M(c)+ Nc2 +δ ≤ c and (M +2N (c))i (c) → 0 as i → ∞. (9.2.8)

Then δ0 = R∞(0) is well defined, solves δ0 = R(δ0), and is the smaller solution
of inequality R(δ1) ≤ δ1.

(b) δ2 ∈ K , λ ∈ (0, 1) such that R(δ2) ≤ λδ2. Then there exists c ≤ δ2 satisfying
(9.2.8).

Proposition 9.2.4. Let (X, K , // · //), / · /) be a generalized Banach space and
W ∈ B(L) be a bound for L ∈ L(X, X). If for y ∈ X, there exists η ∈ K such that

W (η) + |y| ≤ η and W i (η) → 0 as i → ∞, (9.2.9)

then
z = J∞(0), J (x) = L(x) + y (9.2.10)

is well defined, and satisfies:

z = L(z) + y, and /z/ ≤ W/z/ + /y/ ≤ η. (9.2.11)

We can show the following semilocal result for NK method (9.2.7) on generalized
Banach spaces:
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Theorem 9.2.5. Let (X, (E, K , // · //, / · /), Y be generalized Banach spaces, D an
open subset of X, G.. D → Y a Fréchet-differentiable operator, and point x0 ∈ D be
given. Assume there exist:

(a) operators M ∈ B(I − F ′(x0)), N0, N ∈ L+(E2, E) such that:

N0 ≤ N , (9.2.12)

/F ′(w)(z) − F ′(v)(z)/ ≤ 2N (/w − v/, /z/), (9.2.13)

/F ′(w)(z) − F ′(x0)(z)/ ≤ 2N0(/w − x0/, /z/) (9.2.14)

for all v,w ∈ D, z ∈ X;
(b) a solution r ∈ K of

R0(q) = M(q) + Nq2 + /F(x0)/ ≤ q (9.2.15)

satisfying
(M + 2N (r))i (r) → 0 as i → ∞, (9.2.16)

and
U (x0, r) = {x ∈ X /x − x0/ ≤ r} ⊆ D. (9.2.17)

Then sequence {xn} (n ≥ 0) generated by NK method (9.2.7) is well defined,
remains in U (x0, r) for all n ≥ 0, and converges to a unique zero x∗ of F in U (x0, r).
Moreover, a priori estimates are given by the sequence {rn} (n ≥ 0):

r0 = r, rn = P∞
n (0) (n ≥ 0) (9.2.18)

where,

Pn(q) = M(q) + 2N0(r − rn−1)(q) + Nr2
n−1 (9.2.19)

N = N0 if n = 1, N = N if n > 1, (9.2.20)

and
lim

n→∞ rn = 0. (9.2.21)

Furthermore, a posteriori estimates are given by sequence {cn} (n ≥ 0):

cn = R∞
n (0), (9.2.22)

where

Rn(q) = M(q) + 2N0(bn)(q) + Nq2 + Na2
n−1, (9.2.23)

an−1 = /xn − xn−1/ (9.2.24)

and
bn = /xn − x0/. (9.2.25)
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Proof. We use induction on the integer n to show the claim:
(Ik) (xk, rk) ∈ (X, k) are well defined and

rk + ak−1 ≤ rk−1. (9.2.26)

The claim holds for k = 1. Indeed by (9.2.8), (9.2.15), and (9.2.16), there exists q1
such that:

q1 ≤ r, M(q1)+/F(x0)/ = q1 and Mi (q1) ≤ Mi (r) → 0 as i → ∞. (9.2.27)

It follows from (9.2.9) that x1 is well defined

a0 ≤ q1.

Using (9.2.8) and the estimate

P1(r − q1) = M(r − q1) + 2N0(r − r0)(r − q1) + N0r2
0

≤ M(r − q1) + 2N (r − r0)(r − q1) + Nr2
0

= R0(r) − q1 ≤ r − q1, (9.2.28)

we deduce c1 is well defined and

r1 + a0 ≤ r − q1 + q1 = r0. (9.2.29)

That is, (9.2.26) holds for k = 1. Assume (Ik) holds for all k ≤ n. We can have

M(rk) + 2N0(r − rk)(rk) + N (rk−1 − rk)
2

≤ M(rk) + 2N (r − rk)(rk) + N (rk−1 − rk)
2 = Pk(rk) − Nr2

k ≤ rk . (9.2.30)

It follows by (9.2.8) there exists qk ≤ ck such that

qk = M(qk) + 2N (r − rk)(qk) + N (rk−1 − rk)
2, (9.2.31)

and
(M + 2N (r − rk))

i qk → 0 as i → ∞. (9.2.32)

By the induction hypothesis

bk = /xk − x0/ ≤
k−1
∑

j=0

a j ≤
k−1
∑

j=0

(r j − r j+1) = r − rk ≤ r, (9.2.33)

which implies xk ∈ U (x0, r). We must find a bound for operator I − F ′(xk). Using
(9.2.14) we get from

I − F ′(xk) = (I − F ′(x0)) + (F ′(x0) − F ′(xk))

that
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/I − F ′(xk)/ ≤ /1 − F ′(x0)/ + /F ′(x0) − F ′(xk)/

≤ M + 2N0(/xk − x0/) ≤ M + 2N0(r − rk). (9.2.34)

Moreover by (9.2.5) and (9.2.13), we get

/F(xk)/ = /F(xk) − F ′(xk−1) − F ′(xk−1)(xk − xk−1)/

=
/

∫ 1

0

[

F ′(xk−1 + t (xk − xk−1)) − F ′(xk−1)
]

(xk − xk−1)dt

/

≤ Na2
k−1 ≤ N (rk−1 − rk)

2. (9.2.35)

By (9.2.34) and (9.2.35), we get

M(qk) + 2N (r − rk)(qk) + /F(xk)/ ≤ qk . (9.2.36)

That is, xk+1 is well defined, and

ak ≤ qk ≤ rk . (9.2.37)

To show the existence of rk+1, we note

Pk+1(rk − qk) = Pk(rk) − qk = rk − qk, (9.2.38)

which implies the existence of rk+1, and

rk+1 + ak ≤ rk − qk + qk = rk . (9.2.39)

The induction for (Ik) is now complete.
We can obtain the estimates

/xm+1 − xk/ ≤
m
∑

j=k

a j ≤
m
∑

j=k

(r j − r j+1) = rk − rm+1 ≤ rk, (9.2.40)

and

rk+1 = Pk+1(rk+1) ≤ Pk+1(rk) ≤ (M + 2N (r))rk ≤ (M + 2N (r))rk

≤ · · · ≤ (M + 2N (r))k+1(r) → ∞ (9.2.41)

as k → ∞. Hence {xn} is a Cauchy sequence and as such it converges to some
x∗ ∈ X . By letting m → ∞ in (9.2.40), we deduce x∗ ∈ U (xk, rk), whereas by
letting k → ∞ in (9.2.35), we get F(x∗) = 0. The proof of the uniqueness of x∗ in
U (x0, r) is omitted as identical to [140, Theorem 4.1]. We note

Rk(rk) ≤ Pk(rk) ≤ rk . (9.2.42)

Hence a posteriori estimates (9.2.22) are well defined by (9.2.8). That is, ck ≤ rk in
general. The hypotheses of the theorem hold if x0 is replaced by xk and M becomes
M + 2N0(bk). Using (9.2.35), we get ck is a solution of (9.2.15). By (9.2.40), hy-
potheses of the theorem hold. It follows from (9.2.7) that x∗ ∈ U (xk, ck) proving
(9.2.22).
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Remark 9.2.6. Our Theorem 9.2.5 reduces to Theorem 2.1 in [141, p. 251] if N0 =
N . However in general (9.2.12) holds. It follows from the proof of the theorem that
if strict inequality holds in (9.2.12) then the error bounds rn , an , bn are finer than the
corresponding ones rn , an , bn in [141] under the same information. That is, for all
n ≥ 1:

rn < rn, (9.2.43)

an < an, (9.2.44)

bn < bn, (9.2.45)

and
r ≤ r∗. (9.2.46)

Remark 9.2.7. It turns out that (9.2.15) and (9.2.16) can be weakened. Indeed, as-
sume:
(b′) there exist r ∈ K satisfying

Q0(q) = M(q) + N0q2 + /F(x0)/ ≤ q; (9.2.47)

r .. r ≥ r such that (9.2.15), and (9.2.16) hold with N0 replacing N ; (9.2.48)

rn .. rn ≤ r (n ≥ 1) solving (9.2.49)

M(rn) + 2N0(r − rn)(rn) + N (rn−1 − rn)2 ≤ rn . (9.2.50)

It follows from the proof of Theorem 9.2.5 that if (b′), Q replace (b), R then the
conclusions also hold. Moreover if (9.2.12) is a strict inequality, then error bounds
(9.2.43)–(9.2.46) hold.

To show a local result for NK method, assume x∗ is a zero of F . Then, we can
easily see from (9.2.5) that we must solve the equation

xn+1 − x∗

= [

I − F ′(xn)
]

(xn+1 − x∗)

+
[

−
∫ 1

0

[

F ′(x∗ + t (xn − x∗)) − F ′(xn)
]

(xn − x∗)dt

]

(9.2.51)

for each n ≥ 0.
Using identity (9.2.51), we can show the following local result for NK method

(9.2.7):

Theorem 9.2.8. Let (X, (E, K , // · //, / · /), Y be generalized Banach spaces, D an
open subset of X, and G.. D.. D → Y a Fréchet-differentiable operator. Assume there
exist:

(a) a zero x∗ ∈ D of operator F;
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(b) operators A ∈ B(I − F ′(x∗)), H0, H ∈ L+(E2, E) such that:

H0 ≤ H, (9.2.52)

/F ′(w)(z) − F ′(v)(z)/ ≤ 2H(/w − v/, /z/), (9.2.53)

/F ′(w)(z) − F ′(x∗)(z)/ ≤ 2H0(/w − x∗/, /z/) (9.2.54)

for all v,w ∈ D, z ∈ X;
(c) a solution γ ∈ K of

T0(q) = A(q) + 2H0q2 + Hq2 ≤ q (9.2.55)

satisfying

(A + 4H0(γ ) + 2H(γ ))i (γ ) → 0 as i → ∞, (9.2.56)

and
U (x∗, γ ) ⊆ D; (9.2.57)

(d) x0 ∈ D such that:
0 < /x0 − x∗/ = γ. (9.2.58)

Then sequence {xn} (n ≥ 0) generated by NK method (9.2.7) is well defined,
remains in U (x∗, γ ) for all n ≥ 0, and converges to x∗. Moreover, the following
estimates hold n ≥ 1

βn−1 = /xn−1 − x∗/ ≤ γn−1 − γn (9.2.59)

where,

γ0 = γ, γn = �∞
n (0), �n(q) = A(q) + 2H0(γ − γn−1)(q) + Hγ 2

n−1, (9.2.60)

and
lim

n→∞ γn = 0. (9.2.61)

Proof. As in Theorem 9.2.5, using induction on the integer n we show
(IIn) xn ∈ X and γn ∈ K are well defined and satisfy (9.2.39).

By (9.2.8), (9.2.55), and (9.2.56), there exists α1 such that

α1 ≤ γ, A(α1) + 2H0(γ )(α1) + Hγ 2 = α1,

(A + 2H0(γ ))i (α1) → 0. (9.2.62)

It follows from (9.2.9) x1 is well defined, and

β0 ≤ α1. (9.2.63)

Using (9.2.60) we get in turn
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�1(γ − α1) = A(γ − α1) + 2H0(γ − γ0)(γ − α1) + Hγ 2
0

= A(γ − α1) + Hγ 2

= A(γ ) + Hγ 2 − A(α1)

= A(γ ) + Hγ 2 + 2H0(γ )(γ ) − A(α1) − 2H0(γ )(γ )

≤ T0(γ ) − A(α1) − 2H0(γ )(α1) (9.2.64)

= T0(γ ) − Hγ 2 − α1 (9.2.65)

≤ T0(γ ) − α1 ≤ γ − α1. (9.2.66)

By (9.2.8), γ1 is well defined, and

γ1 + β0 ≤ γ − α1 + α1 = γ0. (9.2.67)

Hence we showed (II1) holds. Suppose (II1), . . . (IIk) hold for all k ≤ n. We must
show the existence of xk+1 and find a bound αk for bk .

We can have

A(γk) + 2H0(γ − γk)(γk) + H(γk−1 − γk)
2 ≤ �k(γk) = γk . (9.2.68)

That is by (9.2.8), there exists αk such that

αk ≤ γk, (9.2.69)

αk = A(αk) + 2H0(γ − γk)(αk) + H(γk−1 − γk)
2, (9.2.70)

and
[A + 2H0(γ − γk)]

i (αk) → 0. (9.2.71)

It follows from (9.2.67) that xk ∈ U (x∗, γ ). We must find a bound for I − F ′(xk).
Using (9.2.6), and (9.2.52), we get

/I −F ′(xk)/ = /(1−F ′(xk))+(F ′(x∗)−F ′(xk))/ ≤ A+2H0(/xk −x∗/). (9.2.72)

By (9.2.51), (9.2.68), and (9.2.70), we deduce

A(αk) + 2H0(γ − γk)(αk)

+
/

−
∫ 1

0

[

F ′(x∗ + t (xk − x∗)) − F ′(xk)
]

(xk − x∗)dt

/

≤ αk . (9.2.73)

Hence by (9.2.9), xk+1 is well defined, and

βk ≤ αk ≤ γk . (9.2.74)

Moreover, we can have in turn
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�k+1(γk − αk) =
= A(γk − αk) + 2H0(γ − γk)(γk − αk) + Hγ 2

k

= �k(γk) − (A(γk) + 2H0(γ − γk−1)(γk) + Hγ 2
k−1)

+ A(γk) − A(αk) + 2H0(γ − γk)(γk − αk) + Hγ 2
k

= �k(γk) − αk + 2H0(γ − γk)(αk) + H(γk−1 + γk)
2 − 2H0(γ − γk−1)(γk)

− Hγ 2
k−1 + 2H0(γ − γk)(γk − αk) + Hγ 2

k

= �k(γk) − αk + 2H0(γ − γk)(γk) − 2H0(γ − γk−1)(γk)

+ H(γk−1 − γk)
2 − Hγ 2

k−1 + Hγ 2
k

= �k(γk) − αk + 2H0(γk−1 − γk)(γk) + H(γk−1 − γk)
2 − Hγ 2

k−1 + Hγ 2
k

≤ �k(γk) − αk + 2H(γk−1 − γk)(γk) + H(γk−1 − γk)
2 − Hγ 2

k−1 + Hγ 2
k

≤ �k(γk) − αk = γk − αk . (9.2.75)

That is by (9.2.8) and (9.2.73), γk+1 is well defined and:

γk+1 + βk ≤ γk − αk + αk = γk, (9.2.76)

which completes the induction, and shows (9.2.59).
As in (9.2.41), we show

lim
n→∞ γn = 0. (9.2.77)

Finally by letting n → ∞, we deduce

lim
n→∞ xn = x∗. (9.2.78)

Remark 9.2.9. Local results were not given in earlier studies [139]–[141]. However,
from Theorem 9.2.8 for H0 = H , such results can immediately be obtained. There-
fore we can only compare Theorem 9.2.8 with earlier ones in the case of a real-
normed space (i.e., E = R). Assume for simplicity that

F ′(x∗) = I, (9.2.79)

and there exist �, �0 such that

//F ′(x) − F ′(x∗)// ≤ �0//x − x∗// (9.2.80)

//F ′(x) − F ′(y)// ≤ �//x − y// (9.2.81)

for all x, y ∈ D. Choose:

A = 0, �0 = 2H0 and � = 2H. (9.2.82)

Then the convergence radius γ solving (9.2.55) is given by

γ = 2

2�0 + �
, (9.2.83)
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and the corresponding error bounds by

βn+1 ≤ �//x∗−xn//2

2[1−�0//xn−x∗//] (n ≥ 0). (9.2.84)

Rheinboldt [177] using only (9.2.81) showed:

γ = 2
3�

, (9.2.85)

and
βn+1 ≤ �//x∗−xn//2

2[1−�//xn−x∗//] (n ≥ 0). (9.2.86)

In general we have:
�0 ≤ �. (9.2.87)

Hence we get
γ ≤ γ, (9.2.88)

and
βn+1 ≤ βn+1 (n ≥ 0). (9.2.89)

Moreover, if strict inequality holds in (9.2.85), so it does in (9.2.86) and (9.2.87).
Hence the convergence radius is enlarged and the error bounds are finer using the
same information as before.
Condition (9.2.56) needed for the computation of the inverses can be dropped in this
case as by the Banach Lemma on invertible operators F ′(xn)−1 exist and

//F ′(xn)−1// ≤ [

1 − �0//xn − x∗//
]−1

(n ≥ 0) (9.2.90)

(see also Section 2.2).

9.3 Inexact Newton-like methods on Banach spaces with a
convergence structure

In this section, we are concerned with approximating a solution x∗ of the nonlinear
operator equation

F(x) + Q(x) = 0, (9.3.1)

where F is a Fréchet-differentiable operator defined on a convex subset D of a Ba-
nach space X with values in X , and Q is a nondifferentiable nonlinear operator with
the same domain and values in X .

We introduce the inexact Newton-like method

xn+1 = xn + A(xn)∗ [−(F(xn) + Q(xn))] − zn, x0 = 0 (n ≥ 0) (9.3.2)

to approximate a solution x∗ of equation (9.3.1). Here A(xn)∗ (n ≥ 0) denotes a
linear operator that is an approximation for F ′(xn)−1 (n ≥ 0). For A(xn) = F ′(xn)

(n ≥ 0), we obtain the inexact Newton’s method. The residual points zn ∈ D (n ≥
0), depend on xn , F(xn) + Q(xn) (n ≥ 0) and are such that limn→∞ zn = 0. Some
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special choices of points zn (n ≥ 0) are given in the Remark 9.3.10 (see (c), (d), and
(f)) after Proposition 9.3.9 and in [43].

The importance of studying inexact Newton-like methods comes from the fact
that many commonly used variants of Newton’s method can be considered proce-
dures of this type. Indeed, approximation (9.3.2) characterizes any iterative process
in which the corrections are taken as approximate solutions of the Newton equa-
tions. Moreover, we note that if for example an equation on the real line is solved
F(xn) + Q(xn) ≥ 0 (n ≥ 0) and A(xn)∗ (n ≥ 0) overestimates the derivative,
xn + A(xn)∗ [−(F(xn) + Q(xn))] (n ≥ 0) is always larger than the corresponding
Newton-iterate. In such cases, a positive correction term is appropriate.

The notion of a Banach space with a convergence structure was used in the el-
egant paper [141] (see also [140]) to solve equation (9.3.1), when A(x) = F ′(x),
Q(x) = 0 for all x ∈ D and zn = 0 for all n ≥ 0. However, there are many interest-
ing real-life applications already in the literature, where equation (9.3.1) contains a
nondifferentiable term. See for example the applications at the end of this study. The
case when A(x) = F ′(x), Q(x) = 0 for all x ∈ D has already been considered but
on a Banach space without generalized structure [43], [140], [141].

By imposing very general Lipschitz-like conditions on the operators involved, on
the one hand, we cover a wider range of problems, and on the other hand, by choos-
ing our operators appropriately we can find sharper error bounds on the distances
involved than before.

As in [141], we provide semilocal results of Kantorovich-type and global results
based on monotonicity considerations from the same general theorem. Moreover, we
show that our results can be reduced to the one obtained in [141], when A(x) =
F ′(x), Q(x) = 0 (x ∈ D) and zn = 0 (n ≥ 0), and furthermore to the ones obtained
in [140] by further relaxing the requirements on X .

Finally, our results apply to solve a nonlinear integral equation involving a non-
differentiable term that cannot be solved with existing methods.

We will need the definitions:

Definition 9.3.1. The triple (X, V, E) is a Banach space with a convergence struc-
ture if

(C1) (X, ‖ · ‖) is a real Banach space;
(C2) (V, C, ‖ · ‖V ) is a real Banach space that is partially ordered by the closed

convex cone C; the norm ‖ · ‖V is assumed to be monotone on C;
(C3) E is a closed convex cone in X × V satisfying {0} × C ⊆ E ⊆ X × C;
(C4) the operator | · |.. D0 → C is well defined:

|x | = inf {q ∈ C | (x, q) ∈ E}

for
x ∈ D0 = {x ∈ X | ∃q ∈ C .. (x, q) ∈ E} ;

and
(C5) for all x ∈ D0 ‖x‖ ≤ ‖ |x | ‖V .
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The set
U (a) = {x ∈ X | (x, a) ∈ E}

defines a sort of generalized neighborhood of zero.
Let us give some motivational examples for X =.. R

m with the maximum-norm:

(a) V ..= R, E ..= {(x, e) ∈ R
m × R | ‖x‖∞ ≤ e}.

(b) V ..= R
m , E ..= {(x, e) ∈ R

m × R
m | |x | ≤ e}

• (componentwise absolute value).
(c) V ..= R

m , E ..= {(x, e) ∈ R
m × R

m | 0 ≤ x ≤ e}.
Case (a) involves classic convergence analysis in a Banach space, (b) allows com-
ponentwise analysis and error estimates, and (c) is used for monotone convergence
analysis.

The convergence analysis will be based on monotonicity considerations in the
space X × V . Let (xn, en) be an increasing sequence in EN, then

(xn, en) ≤ (xn+k, en+k) ⇒ 0 ≤ (xn+k − xn, en+k − en).

If en → e, we obtain: 0 ≤ (xn+k − xn, e − en) and hence by (C5)

‖xn+k − xn‖ ≤ ‖e − en‖V → 0, as n → ∞.

Hence {xn} (n ≥ 0) is a Cauchy sequence. When deriving error estimates, we shall
as well use sequences en = w0 − wn with a decreasing sequence {wn} (n ≥ 0) in
CN to obtain the estimate

0 ≤ (xn+k − xn, wn − wn+k) ≤ (xn+k − xn, wn).

If xn → x∗, as n → ∞, this implies the estimate |x∗ − xn| ≤ wn (n ≥ 0). Moreover,
if (x, e) ∈ E , then x ∈ D0 and by (C4) we deduce |x | ≤ e.

Definition 9.3.2. An operator L ∈ C1(V1 → V ) defined on an open subset V1 of an
ordered Banach space V is order convex on [a, b] ⊆ V1 if

c, d ∈ [a, b] , c ≤ d ⇒ L ′(d) − L ′(c) ∈ L+(V ),

where for m ≥ 0

L+(V m) = {L ∈ L(V m) | 0 ≤ xi ⇒ 0 ≤ L(x1, x2, . . . , xm)}

and L(V m) denotes the space of m-linear, symmetric, bounded operators on V .

Definition 9.3.3. The set of bounds for an operator H ∈ L(Xm) is defined to be

B(H) = {L ∈ L+(V m) | (xi , qi ) ∈ E ⇒ (H(x1, . . . , xm), L(q1, . . . , qm)) ∈ E}.
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Definition 9.3.4. Let H ∈ L(X) and y ∈ X be given, then

H∗(y) = z ⇔ z = T ∞(0) = lim
n→∞ T n(0),

T (x) = (I − H)(x) + y ⇔ z =
∞
∑

i=0

(I − H)i y,

if this limit exists.

We will also need the Lemmas [43], [141]:

Lemma 9.3.5. Let L ∈ L+(V ) and a, q ∈ C be given such that:

L(q) + a ≤ q and Ln(q) → 0 as n → ∞.

Then the operator
(I − L)∗.. [0, a] → [0, a]

is well defined and continuous.

The following is a generalization of Banach’s lemma [43], [141] (see also Chap-
ter 1).

Lemma 9.3.6. Let H ∈ L(X), L ∈ B(H), y ∈ D0 and q ∈ C be such that

L(q) + |y| ≤ q and Ln(q) → 0 as n → ∞.

Then the point x = (I − H)∗(y) is well defined, x ∈ S and

|x | ≤ (I − L)∗|y| ≤ q.

Moreover, the sequence

bn+1 = L(bn) + |y|, b0 = 0

is well defined,
and

bn+1 ≤ q, lim
n→∞ bn = b = (I − L)∗|y| ≤ q.

Lemma 9.3.7. Let H1.. [0, 1] → L(Xm) and H2.. [0, 1] → L+(V m) be continuous
operators, then for all t ∈ [0, 1]:

H2(t) ∈ B(H1(t)) ⇒
∫ 1

0
H2(t)dt ∈ B

(
∫ 1

0
H1(t)dt

)

which will be used for the remainder of Taylor’s formula [141] (see also Chapter 1).
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We can now provide a convergence analysis for the Newton-like method (9.3.2).
Let a ∈ C , operators K1, K2, M , M1, K3(w) ∈ C(V1 → C), V1 ⊆ V , w ∈

[0, a], and points xn ∈ D (n ≥ 0). It is convenient to define the sequences cn , dn , an ,
bn (n ≥ 0) by

cn+1 = |xn+1 − xn| (n ≥ 0), (9.3.3)

dn+1 = (K1 + K2 + M + M1)(dn) + K3(|xn|)cn, d0 = 0 (n ≥ 0), (9.3.4)

an = (K1 + K2 + M + M1)
n(0), (9.3.5)

bn = (K1 + K2 + M + M1)
n(0), (9.3.6)

and the point b by
b = (K1 + K2 + M + M1)

∞(0). (9.3.7)

We can now state and prove the main result of this section:

Theorem 9.3.8. Let X be a Banach space with convergence structure (X, V, E) with
V = (V, C, ‖ · ‖V ), an operator F ∈ C1(D → X) (D ⊆ X), an operator Q ∈
C(D → X), an operator A(x) ∈ L(x) (x ∈ D), a point a ∈ C, operators K1, K (w),
K3(w), M1 ∈ L+(V ) (w ∈ [0, a]), an operator M0 = M0(v,w) ∈ C(V1×V1 → V )

(V1 ⊆ V ), operators M, K2 ∈ C(V1 → C), continuous operator Kt such that for
each v,w ∈ V1, Kt (v,w).. [0, 1] → L+(V ), and a null sequence {zn} ∈ D (n ≥ 0)

such that the following conditions are satisfied:

(C6) U (a) ⊆ D, [0, a] ⊆ V1, K3(0) ∈ B(I − A(0)), (−(F(0) + Q(0) + A(0)(z0),
(K1 + K2 + M + M1)(0)) ∈ E;

(C7) the operator K is increasing in both variables and

K1 + K (|x | + t |y|) − K (|x |) ≥ Kt (|x | + t |y|, |x |) ∈ B(A(x) − F ′(x + t y))

for all t ∈ [0, 1], x, y ∈ U (a) with |x | + |y| ≤ a;

(C8) 0 ≤ (Q(x)− Q(x + y), M0(|x |, |y|)) ∈ E and M0(v,w) ≤ M(v+w)− M(v)

for all v,w ∈ [0, a], x, y ∈ U (a) with |x | + |y| ≤ a;

(C9) 0 ≤ (A(xn)(zn) − A(xn−1)(zn−1), M1(cn−1)) ∈ E (n ≥ 1);

(C10) K3(|x |) − K3(0) ∈ B(A(0) − A(x)) and K3(|x |) ≤ K1 + K2 (x ∈ U (a));

(C11) R(a) ..= (K1 + K2 + M + M1)(0) ≤ a;

(C12) (K1 + K2 + M + M1)
na → 0 as n → ∞.

(C13)
∫ 1

0 K (w + t (v − w))(v − w)dt ≤ K2(v) − K2(w) for all v,w ∈ [0, a] with
w ≤ v;

(C14) M2(w) ≥ 0 and 0 ≤ M2(w1 + w2) − M2(w1) ≤ M2(w3 + w4) − M2(w3) for
all w, w1, w2, w3, w4 ∈ [0, a] with w1 ≤ w3 and w2 ≤ w4, where M2 is M
or K2; and

(C15) 0 ≤ K (w) ≤ K (v), K (w) ≤ K2(w), K3(w) ≤ K (w), and 0 ≤ K3(w) ≤
K3(v) for all v,w ∈ [0, a] with w ≤ v.
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Then

(i) the sequences (xn, dn), (xn, bn) ∈ (X × V )N are: well defined, remain in EN,
monotone and satisfy

bn ≤ dn ≤ b, bn ≤ an and lim
n→∞ bn = lim

n→∞ dn = b.

(ii) Iteration {xn} (n ≥ 0) generated by (9.3.2) is: well defined, remains in U (b) and
converges to a solution x∗ ∈ U (b) of equation F(x)+ Q(x) = 0, where b is the
unique fixed point of R on [0, a]. Moreover if zn = 0 (n ≥ 0), x∗ is unique in
U (a).

(iii) Furthermore, the following error bounds are true:

|xn+1 − xn| ≤ dn+1 − dn,

|xn − x∗| ≤ b − dn

and
|xn − x∗| ≤ an − bn if zn = 0 (n ≥ 0),

where dn, an and bn are given by (9.3.4), (9.3.5), and (9.3.6), respectively.

Proof. We first note that b replacing a also satisfies the conditions of the theorem.
Using condition (C6) and (C10), we obtain

|I − A(0)|(b) + | − (F(0) + Q(0) + A(0)(z0))| ≤
≤ K3(0)(b) + (K1 + K2 + M + M1)(0)

≤ (K1 + K2)(b − 0) + (K1 + K2 + M + M1)(0)

≤ (K1 + K2 + M + M1)(b − 0) + (K1 + K2 + M + M1)(0)

= (K1 + K2 + M + M1)(b)

= R(b) ≤ b (by (9.3.12)).

Hence, by Lemma 9.3.6, x1 is well defined and (x1, b) ∈ E . We also get

x2 = (I − A(0))(x2) + (−(F(0) + Q(0) + A(0)(z0)))

⇒
|x2| ≤ K3(0)|x1| + (K1 + K2 + M + M1)(0)

≤ (K1 + K2)|x1| + (K1 + K2 + M + M1)(0) = d1,

and by the order convexity of L

d1 = (K1 + K2)|x1| + (K1 + K2 + M + M1)(0)

≤ (K1 + K2)|x1| + (K1 + K2 + M + M1)(0)

≤ (K1 + K2)(b − 0) + (K1 + K2 + M + M1)(0)

≤ (K1 + K2 + M + M1)(b − 0) + (K1 + K2 + M + M1)(0)

= R(b) = b.
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That is, we get |x1 − x0| ≤ d1 − d0 or 0 ≤ (x0, d0) ≤ (x1, d1).
We assume that

0 ≤ (xk−1, dk−1) ≤ (xk, dk), and dk ≤ b for k = 1, 2, . . . , n.

We need to find a bound for I − A(xn) (n ≥ 0). We will show that K3(|xn|) ∈
B(I − A(xn)). This fact follows from (C6), (C10), and the estimate

|I − A(xn)| ≤ |I − A(0)|+|A(0)− A(xn)| ≤ K3(0)+ K3(|xn|)− K3(0) = K3(|xn|).
Using (9.3.2), we obtain the approximation

− [F(xn) + Q(xn) + A(xn)(zn)] = (9.3.8)

= −F(xn) − Q(xn) − A(xn)(zn) + A(xn−1)(xn − xn−1)

+ F(xn−1) + Q(xn−1) + A(xn−1)(zn−1).

By (C7)–(C9), (C13)–(C15), Lemma 9.3.7, and the induction hypotheses, we obtain
in turn

|− F(xn) + F(xn−1) + A(xn−1)(xn − xn−1)| + |Q(xn−1) − Q(xn)|
+ |A(xn)(zn) − A(xn−1)(zn−1)| ≤

≤
∫ 1

0
Kt (|xn−1| + t |xn − xn−1|, |xn−1|)cn−1dt + M0(|xn−1, |xn|) + M1cn−1

≤
∫ 1

0

[

K (|xn−1| + tcn−1) − K (|xn−1|) + K1

]

cn−1dt + M(|xn−1| + cn−1)

− M(|xn−1|) + M1cn−1

≤
∫ 1

0

[

K (dn−1 + t (dn − dn−1))(dn − dn−1) dt − K (|xn−1|)cn−1 + K1cn−1

+ M(dn−1 + dn − dn−1) − M(dn−1) + M1(dn) − M1(dn−1)

≤ K2(dn) − K2(dn−1) − K (|xn−1|)cn−1 + K1cn−1 + M(dn) − M(dn−1)

+ M1(dn) − M1(dn−1) ≤
≤ (K1 + K2 + M + M1)(dn) − dn .

We can now obtain that

K3(|xn|)(b − dn) + | − (F(xn) + Q(xn) + A(xn)(zn))| + dn ≤
≤ (K1 + K2 + M + M1)(b − dn) + (K1 + K2 + M + M1)(dn) (9.3.9)

= R(b) = b.

That is, xn+1 is also well defined by Lemma 9.3.6 and cn ≤ b − dn . Hence, dn+1
is well defined too and as in (9.3.9), we obtain that:

dn+1 ≤ R(b) ≤ b.
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The monotonicity (xn, dn) ≤ (xn+1, dn+1) can be derived from

cn + dn ≤ K3(|xn|)cn + | − (F(xn) + Q(xn) + A(xn)(zn))| + dn

≤ K3(|xn|)cn + (M + M1 + K1 + K2)dn ≤ dn+1.

The induction has now been completed. We need to show that

bn ≤ dn for all n ≥ 1.

For n = 1 and from the definitions of bn, dn

b1 = (K1 + K2 + M + M1)
1(0) ≤ d1.

Assume that
bk ≤ dk for k = 1, 2, . . . , n.

Then, we obtain in turn

bn+1 = (K1 + K2 + M + M1)
n+1(0)

= (K1 + K2 + M + M1)(K1 + K2 + M + M1)
n(0)

≤ (K1 + K2 + M + M1)(dn) ≤ dn ≤ dn+1.

Because dn ≤ b, we have bn ≤ dn ≤ b. By (9.3.5), and (9.3.6) it follows that

0 ≤ an − bn ≤ (K1 + K2 + M + M1)
n(a) (n ≥ 1).

By condition (C13) and the above, we deduce that the sequence {bn} (n ≥ 0) is
Cauchy in a Banach space C , and as such it converges to some b = (K1 + K2 + M +
M1)

∞(0). From (K1 + K2 + M + M1)(b) = (K1 + K2 + M + M1)(limn→∞(K1 +
K2 + M + M1)

n(0)) = limn→∞(K1 + K2 + M + M1)
n+1(0) = b, we obtain

(K1 + K2 + M + M1)(b) = b ≤ a,

which makes b smaller than any solution of the inequality

(K1 + K2 + M + M1)(p) ≤ p.

It also follows that the sequence {xn} (n ≥ 0) is Cauchy in X , and as such it
converges to some x∗ ∈ U (b). By letting n → ∞ in (9.3.8) and using the hy-
potheses that limn→∞ zn = 0, we deduce that x∗ is a solution of the equation
F(x) + Q(x) = 0.

To show uniqueness, let us assume that there exists another solution y∗ of the
equation F(x) + Q(x) = 0 in U (a). Then, exactly as in [43], [140], by considering
the modified Newton-process

xn+1 = xn − (F(xn) + Q(xn)),

we can show that this sequence converges, under the hypotheses of the theorem.



9.3 Banach spaces with a convergence structure 425

Moreover, as above, we can easily show (see also [43], [141]) that

|y∗ − xn| ≤ an − bn for zn = 0 (n ≥ 0),

from which follows that xn → y∗ as n → ∞. Finally, the estimates (iii) are obtained
by using standard majorization techniques.

That completes the proof of the theorem.

We will now introduce results on a posteriori estimates. It is convenient to define
the operator

Rn(q) = (I − K3(|xn|))∗Sn(q) + cn

where

Sn(q) = (K1 + K2 + M + M1)(|xn| + q)

− (K1 + K2 + M + M1)(|xn|) − K3(|xn|)(q)

and the interval
In = [0, a − |xn|] .

It can easily be seen that the operators Sn are monotone on In . Moreover, the opera-
tors Rn .. [0, a − dn] → [0, a − dn] are well defined and monotone. This fact follows
from Lemma 9.3.5 and the scheme

dn + cn ≤ dn+1 ⇒ R(a) − dn+1 ≤ a − dn − cn

⇒ Sn(a − dn) + K3(|xn|)(a − dn − cn) ≤ a − dn − cn (n ≥ 0).

Then, exactly as in [141], we can show:

Proposition 9.3.9. The following implications are true:

(i) if q ∈ In satisfy Rn(q) ≤ q, then

cn ≤ Rn(q) = p ≤ q,

and
Rn+1(p − cn) ≤ p − cn for all n ≥ 0;

(ii) under the hypotheses of Theorem 9.3.8, let qn ∈ In be a solution of Rn(q) ≤ q,
then

|x∗ − xm | ≤ am (m ≥ n)

where
an = qn and am+1 = Rm(am) − cm;

and

(iii) under the hypotheses of Theorem 9.3.8, any solution q ∈ In of Rn(q) ≤ q is
such that

|x∗ − xn| ≤ R∞
n (0) ≤ q.
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Remark 9.3.10. (a) The results obtained in Theorem 9.3.8 and the Proposition reduce
immediately to the corresponding ones in [141, Theorem 5 and Lemmas 10–12],
when A(x) = F ′(x)−1, Q(x) = 0 (x ∈ D), zn = 0 (n ≥ 0), t = 1, K1 = 0,
K2 = L , where L is order convex on [0, a], K = L ′ and K3(0) = L ′(0). On
the one hand, using our conditions, we cover a wider range of problems, and
on the other hand, it is because it may be possible to choose Kt , K , K1 so that
Kt (p+ tq, p) ≤ K1 + K (p+ tq, p) ≤ L ′(p+ tq)− L ′(p) for all p, q ∈ K1, t ∈
[0, 1]. Then it can easily be seen that our estimates on the distances |xn+1 − xn|
and |x∗ − xn| (n ≥ 0) will be sharper. One such choice for Kt could be

Kt (p + tq, p) = sup
|x |+|y|≤a, t∈[0,1]

|x |≤p, |y|≤q

|A(x) − F ′(x + t y)|

for all x, y ∈ U (a), p, q ∈ [0, a].
(b) As in [43], [141], we can show that if conditions (C6)–(C10), (C13)–(C15) are

satisfied and there exists t ∈ (0, 1) such that (K1 + K2 + M + M1)(a) ≤ ta,
then there exists a1 ∈ [0, ta] satisfying conditions (C6)–(C15). The solution x∗ ∈
U (a1) is unique in U (a) (when zn = 0 (n ≥ 0)).

(c) From the approximation

A(xn)(zn) − A(xn−1)(zn−1) =
= (A(xn)(zn) − zn) + (A(xn−1)(zn−1) − zn−1) + I (zn − zn−1),

we observe that (C9) will be true if M1 = 2K3(b) + I and points zn (n ≥ 0) are
such that |zn| + |zn−1| + |zn − zn−1| ≤ cn−1 (n ≥ 1).

(d) Another choice for M1, zn can be M1 = |ε|I , zn = zn−1 +εn(xn −xn−1) (n ≥ 1)

with |εn| ≤ |ε| (n ≥ 0), where e, en (n ≥ 0) are numbers or operators in L+(V )

and provided that F ′(x) = I (x ∈ D). It can then easily be seen that (C9) is
satisfied. The sequence {zn} (n ≥ 0) must still be chosen to be null. At the end of
this paper, in part V, we have given examples for this case. Several other choices
are also possible.

(e) Condition (C7) can be replaced by the set of conditions

K4 + K5(|x | + t |y|) − K5(|x |) ∈ B(F ′(x) − F ′(x + t y))

and
K6(|x |) − K6(|y|) ∈ B(A(x) − F ′(x))

for all t ∈ [0, 1], x, y ∈ U (a) with |x | + |y| ≤ a.
(f) Define the residuals rn = −A(xn)(zn) (n ≥ 0) and set δn = xn+1 − xn (n ≥ 0).

Then from the approximation

rn = [(I − A(xn)) − I ] (zn)

we obtain
|rn| ≤ (K3(|xn|) + I )|zn|
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which shows that rn → 0 if zn → ∞ as n → ∞. Consequently, the results
obtained in Theorem 9.3.8 and Proposition 9.3.9 remain true for the system

xn+1 − xn = δn, A(xn)δn = −(F(xn) + Q(xn)) + rn (n ≥ 0).

(g) It can easily be seen from the proof of Theorem 9.3.8 that the results obtained in
this Theorem remain valid if (C9) is replaced by the condition
(C9)′ (A(xn)(zn) − A(xn−1)(zn−1), M2(d∗

n − d∗
n−1)) ∈ E

with d∗
n = dn or d∗

n = bn (n ≥ 0), for some M2 ∈ L+(V ). This is equivalent to
the condition (A(xn)(zn), M2(d∗

n )) ∈ EN (n ≥ 1) is an increasing sequence.

We now examine the monotone case.
Let J ∈ L(X → X) be a given operator. Define the operators P, T (D → X) by

P(x) = J T (x + u), T (x) = G(x) + G1(x), P(x) = F(x) + Q(x),

F(x) = J G(x + u) and Q(x) = J G1(x + u),

where G, G1 are as F , Q, respectively. We deduce immediately that under the hy-
potheses of Theorem 9.3.8, the zero x∗ of P is a zero of J T also, if u = 0.

We will now provide a monotonicity result to find a zero x∗ of J T . The space X
is assumed to be partially ordered and satisfies the conditions for V given in (C1)–
(C5). Moreover, we set X = V , D = C2 so that | · | turns out to be I .

Theorem 9.3.11. Let V be a partially ordered Banach space satisfying conditions
(C1)–(C5), Y be a Banach space, G, G1 as F, Q, D ⊆ V , J ∈ L(V → V ), Kt , M,
M1; K , K1, K2, K3 as in Theorem 9.3.8 and u, v ∈ V such that

(C16) [u, v] ⊆ D;
(C17) sequence {zn} (n ≥ 0), and iteration

y0 = u, yn+1 = yn + [J A(yn)]∗ (−J T (yn)) − zn (n ≥ 0) (9.3.10)

are such that

yn + [J A(yn)]∗ (−J T (yn)) − v ≤ zn ≤ [J A(yn)]∗ (−J T (yn)),

zn ∈ [u, v] (n ≥ 0).

(C18) conditions (C6)–(C15) are satisfied for a = v − u. Then iteration (9.3.10) is
well defined for all n ≥ 0, monotone and converges to a zero x∗ of J T in
[u, v]. Moreover x∗ is unique in [u, v] if zn = 0 (n ≥ 0).

Proof. It then follows immediately from Theorem 9.3.8 by setting a = v − u.

We will complete this study with two applications that show how to choose the
terms introduced in Theorem 9.3.8, in practical cases. From now on, we choose t =
1, A(x) = F ′(x)−1 (x ∈ D), K1 = 0, K = L ′ (order convex), K2 = L and
K3(0) = L ′(0). It can then easily be seen from the proof of Theorem 9.3.8 that
conditions (C12) and (C13) can be replaced by (L + M + M1)(a) ≤ a and (L ′(a) +
M + M1)

n(a) → 0 as n → ∞ respectively (see also Remark 9.3.10 (a)).
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Application 9.3.12. We discuss the case of a real Banach space with norm ‖ ‖. As-
sume that F ′(0) = I, there exists a monotone operator

f .. [0, a] → R

such that
‖F ′′(x)‖ ≤ f (‖x‖) for all x ∈ U (a)

and a continuous nondecreasing function g on [0, r ], r ≤ a such that

‖Q(x) − Q(y)‖ ≤ g(r)‖x − y‖ (9.3.11)

for all x, y ∈ U
( r

2

)

.
We showed in [43], (see also [147]) that (9.3.11) implies that

‖Q(x + l) − Q(x)‖ ≤ h(r + ‖l‖) − h(r), x ∈ U (a), ‖l‖ ≤ a − r, (9.3.12)

where,

h(r) =
∫ r

0
g(t) dt.

Conversely, it is not hard to see that we may assume, without loss of generality,
that the function h and all functions h(r + t) − h(r) are monotone in r . Hence, we
may assume that h(r) is convex and hence differentiable from the right. Then, as in
[43], we show that (9.3.12) implies (9.3.11) and g(r) = h′(r +0). Hence, we can set

L(q) = ‖F(0) + Q(0)‖ +
∫ q

0
ds
∫ s

0
f (t) dt (9.3.13)

and

M(q) =
∫ q

0
g(t) dt. (9.3.14)

In Remark 9.3.10 (c) and (d), we have already provided some choices for M1, zn.
Here, however, for simplicity let us choose zn = 0 (n ≥ 0) and M1 = 0.

Then condition (C11) will be true if

1
2 f (a)a2 − (1 − g(a))a + ‖F(0) + Q(0)‖ ≤ 0. (9.3.15)

If we set Q = 0 and g = 0, (9.3.15) is true if ‖F(0)‖ f (a) ≤ 1
2 , which is a well-

known condition due to Kantorovich. If Q �= 0, condition (9.3.15) is the same condi-
tion with the one found in [147] for the Zincenko iteration.

In the application that follows, we show that our results can apply to solve non-
linear integral equations involving a nondifferentiable term, whereas the results ob-
tained in [140] (or [141]) cannot apply.

Application 9.3.13. Let X = V = C [0, 1], and consider the integral equation

x(t) =
∫ 1

0
k(t, s, x(s)) ds on X, (9.3.16)
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where the kernel k(t, s, x(s)) with (t, s) ∈ [0, 1] × [0, 1] is a nondifferentiable op-
erator on X. Consider (9.3.16) in the form (9.3.1) where F, Q.. X → X are given
by

F(x)(t) = I x(t) and Q(x)(t) = −
∫ 1

0
k(t, s, x(s)) ds.

The operator | | is defined by considering the sup-norm. We assume that V is
equipped with natural partial ordering, and there exists α, a ∈ [0,+∞), and a real
function α(t, s) such that

‖k(t, s, x) − k(t, s, y)‖ ≤ α(t, s)‖x − y‖
for all t, s ∈ [0, 1], x, y ∈ U

( a
2

)

, and

α ≥ sup
t∈[0,1]

∫ 1

0
α(t, s) ds.

Define the real functions h, f, g on [0, a] by h(r) = αr , f (r) = 0 and g(r) = α for
all r ∈ [0, a]. By choosing L, M, M1 as in (9.3.13), and (9.3.14), and Remark 9.3.10
(c), respectively, we can easily see that the conditions (C1)–(C10), (C13)–(C15) of
Theorem 9.3.8 are satisfied. In particular, condition (C12) becomes

(1 − α − |ε|)a − ‖Q(0)‖ ≥ 0 (9.3.17)

which is true in the following cases: if 0 ≤ α < 1 − |ε|, choose a ≥ β = ‖Q(0)‖
1−α−|ε| ;

if α = 1 − |ε| and Q(0) = 0, choose a ≥ 0; if α > 1 − |ε| and Q(0) = 0, choose
a = 0. If in (9.3.17) strict inequality is valid, then there exists a solution a∗ of equa-
tion (9.3.17) satisfying condition (C13). Note that if we choose α ∈ (0, 1 − |ε|),
a ∈ (β,+∞) and ε ∈ (−1, 1), condition (9.3.17) is valid as a strict inequality. Fi-
nally, we remark that the results obtained in [140], [141] cannot apply here to solve
equation (9.3.16), because Q is nondifferentiable on X and the zn’s are not neces-
sarily zero. This example is useful, especially when the zn’s are not necessarily all
zero. Otherwise, results on (9.3.2) with general convergence structure have already
been found (see, e.g., [43], [140], [141] and the references there).

In the remaining of this section we show how to control the residuals in the
Netwon-like method (9.3.2).

We generate a sequence {xn} (n ≥ 0) using the perturbed Newton-like method
scheme given by

xn+1 = xn + δn (n ≥ 0) (9.3.18)

where the correction δn satisfies

A (xn) δn = − (F (xn) + Q (xn)) + rn (n ≥ 0) (9.3.19)

Here we derive sufficient conditions for controlling the residuals rn in such a way
that the convergence of the sequence {xn} n ≥ 0 to a solution of equation F (x) = 0
is ensured.
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We also refer the reader to [43], [140], [141] and the references there for relevant
work, which however is valid on a Banach space X without a convergence structure.
The advantages of working on a Banach space with a convergence structure have
been explained in some detail [43], [140], [141].

We will need the following basic result:

Lemma 9.3.14. Let V be a regular partially ordered topological space, an operator
L ∈ C1 (V1 → V ) with [0, a] ⊆ V1 ⊆ V for some a ∈ V , an operator M ∈
C (V1 → V ), operator R < I , B > I , T , K ∈ L+ (V ), a point c ∈ V with c > 0
and a point p ∈ [0, a].

Assume:

(a) The equation

g (q) = BT
[

L (p + q) − L (p) − L ′ (p) q + M (p + q)

− M (p) + K (p + q) − K (p)
]− (I − r) q + c = 0 (9.3.20)

has solutions in the interval [0, a] and denote by q∗ the least of them.
(b) Let G ∈ L+ (V ) be given and R+ ∈ L+ (V ), c+, p+ ∈ V be such that the

following conditions are satisfied:

R+ < min
{

(G − 2I ) BT L ′ (p) + BT GL ′ (p+) + G (R − I ) + I, I
} = α

(9.3.21)

0 < c+
≤ BT G (L (p+) + M (p+) + K (p+)) + G BT (L (p) + M (p) + K (p))

− 2BT (L (p) + M (p) + K (p)) + (

R+ + G − I − BT GL ′ (p+)
)

c = β

(9.3.22)

and
0 ≤ p+ ≤ p + c, (9.3.23)

where α and β are functions of the operators and points involved.
(c) The following estimate is true

M (p) ≤ M (p + q) (9.3.24)

for all p, q ∈ [0, a] .

Then the equation

g+ (q) =
= BGT

[

L (p+ + q) − L (p+) − L ′ (p+) q + M (p+ + q) − M (p+)

+ K (p+ + q) − K (p+)
]

− (I − R+) q + c+ = 0 (9.3.25)

has nonnegative solutions and the least of them, denoted by q∗+ , lies in the interval
[

c+, q∗ − c
]

.
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Proof. Using the hypotheses g (q∗) = 0 and R < I , we deduce from (9.3.20) that
c ≤ q∗. We will show that

g+
(

q∗ − c
) ≤ 0. (9.3.26)

From equation (9.3.25), and using (9.3.22), we obtain in turn

g+
(

q∗ − c
) ≤

≤
[

BGT L
(

p + c + q∗ − c
)− L (p+) − L ′ (p+)

(

q∗ − c
)

+ M
(

p + c + q∗ − c
)− M (p+) + K

(

p + c + q∗ − c
)− K (p+)

]

− (I − R+)
(

q∗ − c
)+ c+

= g
(

q∗)

− BT
[

L
(

p + q∗)− L (p) − L ′ (p) q∗ + M
(

p + q∗)− M (p)

+ K
(

p + q∗)− K (p)
]

+ BT G
[

L
(

p + q∗)− L (p+) − L ′ (p+)
(

q∗ − c
)+ M

(

p + q∗)− M (p+)

+ K
(

p + q∗)− K (p+)
]

+ (I − R) q∗ − c − (I − R+)
(

q∗ − c
)+ c+

= [

BT L ′ (p) − BT GL ′ (p+) + (I − R) − (I − R+)
]

q∗

+ (G − I )
{

(I − R) q∗ − c − BT
[

L (p) + M (p) + K (p) + L ′ (p) q∗]
}

+ BT
[

L (p) + M (p) + K (p) − GL (p+) − G M (p+)
]

+ BT GL ′ (p+) c + (I − R+) c + c+ − c

=
[

(2I − G) BT L ′ (p) − BT GL ′ (p+) + R+ + G (I − R) − I
]

q∗

+ 2BT (l (p) + M (p) + K (p)) − BT G (L (p+) + M (p+) + K (p+))

− G BT (L (p) + M (p) + K (p)) + (

BT GL ′ (p+) − G + I − R+
)

c + c+
≤ 0,

because (9.3.21) and (9.3.22) are satisfied.
Moreover from (9.3.25) for q = c+, we obtain

g+ (c+) ≥ 0. (9.3.27)

By inequalities (9.3.26), (9.3.27), the fact that g is continuous and isotone on
[

c+, q∗ − c
]

, and as V is a regular partially ordered topological space, from the
proposition, we deduce that there exists a point q∗+ with

g+
(

q∗
+
) = 0 (9.3.28)

and
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c+ ≤ q∗
+ ≤ q∗ − c. (9.3.29)

We can assume that q∗+ denotes the least of the solutions of equation (9.3.25).
That completes the proof of the lemma.

The following result is a consequence of the above lemma.

Theorem 9.3.15. Let {cn} ∈ V , {Tn}, {Rn}, {Gn} ∈ L+ (V ) (n ≥ 0) be sequences
and V as in the above lemma. Assume:

(a) There exists a sequence {pn} ∈ [0, a] ⊆ V1 ⊆ V for some a ∈ V with p0 = 0,

and
pn+1 ≤

∑

j=0,1,...,n

c j for n ≥ 0. (9.3.30)

(b) R0 < I and the function

g0 (q) =BT0

[

L (p0 + q) − L (p0) − L ′ (p0) q + M (p0 + q) (9.3.31)

− M (p0) + K (p0 + q) − K (p0)
]

− (I − R) q + c0 = 0

has root on [0, a], where B, L, M, K are as in the above lemma. Denote by q∗
0

the least of them.
(c) The following conditions are satisfied for all n ≥ 0

Rn+1 < αn+1, (9.3.32)

0 < cn+1 ≤ βn+1, (9.3.33)

and
0 ≤ pn+1 ≤ pn + cn . (9.3.34)

(d) The linear operators Tn are boundedly invertible for all n ≥ 0, and set Gn =
Tn+1T −1

n (n ≥ 0).
(e) Condition (9.3.24) is satisfied.

Then, the equation

gn (q) = BGnTn

[

L (pn + q) − L (pn) − L ′ (pn) q + M (pn + q) (9.3.35)

− M (pn) + K (pn + q) − K (pn)
]

− (I − Rn) q + cn = 0

has solution in [0, a] for every n ≥ 0 and denoting by q∗
n the least of them, we have

∑

j=n,..,∞
c j ≤ q∗

n (n ≥ 0) . (9.3.36)

Proof. Let us assume that for some nonnegative integer n, I − Rn > 0, gn (q) has
roots on [0, a] and denote by q∗

n the least of them. We use introduction on n. We
also observe that this is true by hypothesis (b) for n = 0. Using (9.3.30), (9.3.32),
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(9.3.33), (9.3.34), the lemma, and setting c = cn , c+ = cn+1, R = Rn , R+ = Rn+1,
G = Gn we deduce that q∗

n+1 exists, and

cn+1 ≤ q∗
n+1 ≤ q∗

n − cn . (9.3.37)

The induction is now complete and (9.3.36) follows immediately from (9.3.37).
That completes the proof of the theorem. From now on we assume that X is a

Banach space with a convergence structure in the sense of [141].

The following result is an immediate consequence of Theorem 9.3.15.

Theorem 9.3.16. Assume:

(a) the hypotheses of Theorem 9.3.15 are satisfied;

(b) there exists a sequence {xn} (n ≥ 0) in a Banach space X with a convergence
structure such that |xn+1 − xn| ≤ cn.

Then,

(i) the sequence {xn} (n ≥ 0) converges to some point x∗;
(ii) moreover the following error estimates hold

∣
∣x∗ − xn

∣
∣ ≤ q∗

n , (9.3.38)

and
∣
∣x∗ − xn+1

∣
∣ ≤ q∗

n − cn, for all n ≥ 0. (9.3.39)

We can introduce the main result:

Theorem 9.3.17. Let X be a Banach space with convergence structure (X, V, E)

with V = (V, C, ‖·‖v), an operator F ∈ C1 (D → X) with D ⊆ X, an operator
Q ∈ C (D → X), an operator A (x) ∈ C (X → D), an operator L ∈ C1 (V1 → V )

with V1 ⊆ V , an operator M ∈ C (V1 → V ), an operator K ∈ L+ (V ), and a point
a ∈ C such that the following conditions are satisfied:

(a) the inclusions U (a) ⊆ D, and [0, a] ⊆ V1 are true;

(b) L is order-convex on [0, a] , and satisfies

K + L ′ |x | + |y| − L ′ (|x |) ∈ B
(

A (x) − F ′ (x + y)
)

(9.3.40)

for all x, y ∈ U (a) with |x | + |y| ≤ a;

(c) M satisfies the condition

M (|x | + |y|) − M (|x |) ∈ B (Q (x) − Q (x + y)) , M (0) = 0 (9.3.41)

for all x, y ∈ U (a) with |x | + |y| ≤ a;

(d) for the sequences {cn}, {Tn}, {Rn}, {Gn}, {pn} (n ≥ 0) the hypotheses (9.3.30),
(b), (9.3.32), (9.3.34) and (d) of Theorem 9.3.15 are satisfied;
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(e) the following conditions are also satisfied

|δn| ≤ cn ≤ Tn |− (F (xn) + Q (xn))| ≤ γn ≤ βn (n ≥ 1) , (9.3.42)

| − rn| ≤ T −1
n Rncn, (9.3.43)

where,

γn = Tn

[

L (pn + cn) − L (pn) − L ′ (pn) cn + M (pn + cn) − M (pn)

+ K (pn + cn) − K (pn)
]

+ Rncn (n ≥ 1) . (9.3.44)

Then,

(i) the sequence {xn} (n ≥ 0) generated by

xn+1 = xn + δn, with x0 = 0

remains in Ū
(

x0, t∗0
)

and converges to a solution x∗ of equation F (x) = 0;

(ii) moreover, the error estimates (9.3.38) and (9.3.39) are true where q∗
n is the least

root in [0, α] of the function gn (q) defined in (9.3.35), with pn = ‖xn − x0‖
(n ≥ 0).

Proof. Let us assume that xn , xn+1 ∈ U
(

x0, q∗
0

)

, where the existence of q∗
0 is guar-

anteed from hypotheses (d). We note that |δ0| ≤ c0. Using the approximation

− (F (xn+1) + Q (xn+1))

= (F (xn) − F (xn+1) + A (xn) (xn+1 − xn))

+ (Q (xn) − Q (xn+1)) − rn, (9.3.45)

(9.3.40), (9.3.41), (9.3.43) and setting pn = |xn − x0|, we obtain in turn

|− (F (xn+1) + Q (xn+1))|
≤ |F (xn) − F (xn+1) + A (xn) (xn+1 − xn)|

+ |Q (xn) − Q (xn+1)| + |−rn|

≤
∫ 1

0

[

L ′ (pn + t |xn+1 − xn|) − L ′ (pn) + K
] |xn+1 − xn| dt

+ M (pn + |xn+1 − xn|) − M (pn) + |−rn|
≤ L (pn + cn) − L (pn) − L ′ (pn) cn + K cn

+ M (pn + cn) − M (pn) + T 1
n Rncn .

Hence, by (9.3.42) we get

cn+1 ≤ Tn+1 |− (F (xn+1) + Q (xn+1))| ≤ γn ≤ βn (n ≥ 1) ,

which shows (9.3.33).
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It can easily be seen that by using induction on n, the hypotheses of Theorem
9.3.15 are satisfied. Hence, by (9.3.40) and (9.3.43) the iteration {xn} (n ≥ 0) re-
mains in U

(

x0, q∗
0

)

and converges to x∗ so that (9.3.38), and (9.3.39) satisfied.
Moreover, from the estimate

|− (F (xn) + Q (xn))| ≤ ∣
∣A (xn) − F ′ (xn)

∣
∣ cn + ∣

∣F ′ (xn)
∣
∣ cn + |−rn| ,

(9.3.40), (9.3.43), the continuity of F , F ′, A, Tn , Rn, and cn → 0 as n → ∞, we
deduce that

F
(

x∗)+ Q
(

x∗) = 0.

That completes the proof of the theorem.

We complete this section with an application.

Application 9.3.18. Returning back to Application 9.3.12, define the functions f1,
f2, f3 on [0, a] by

f1 (q) = L (q) − q, f2 (q) = f1 (q) + h (q) and f3 (q) =
∫ q

0
f (t) dt.

Choose B = T0 = 1, R0 = K = 0 and p0 = 0. Then by (9.3.31) we get

g0 (q) = f2 (q) .

Example 9.3.19. It can easily be seen that with the above choices of L and M , con-
ditions (9.3.40) and (9.3.41) are satisfied.

Suppose that the function g0 has a unique zero q∗
0 in [0, a] and g0 (a) ≤ 0.

It is then known [43], [141] that there exists a solution x∗ in U
(

q∗
0

)

, this solution
is unique in U (a), and the iteration {xn} (n ≥ 0) given by (9.3.18) is well defined,
remains in U

(

q∗
0

)

for all n ≥ 0, and converges to x∗. By applying the Banach Lemma
on invertible operators, we can show that A (xn) is invertible and ‖A (xn)−1 ‖ ≤
− f ′

1 (‖xn‖)−1 = Tn (n ≥ 0).
Assume that instead of conditions (9.3.32) and (9.3.33), the weaker condition

(9.3.26) is satisfied. Using the approximation

rn = [(

F ′ (xn) − F ′ (x0)
)+ F ′ (x0)

]

δn + F (xn) + Q (xn) ,

we obtain
‖rn‖ ≤ ( f3 (‖xn‖) + 1) cn + T −1

n γn (n ≥ 1) .

The above estimate provides us with a possible (but not the only) choice for the Rn’s.
Indeed, (9.3.43) will be true if the Rn’s (n ≥ 0) can be chosen so that

( f3 (‖xn‖) + 1) cn + T −1
n γn ≤ T −1

n Rncn (n ≥ 1) .

Using the above choice and Theorem 9.3.17, it finally also follows that estimates
(9.3.38) and (9.3.39) are satisfied for all n ≥ 0.
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9.4 Exercises

9.4.1. Let L , M , M1 be operators such that L ∈ C1 (V1 → V ), M1 ∈ L+ (V ),
M ∈ C (V1 → V ), and xn be points in D. It is convenient for us to define the
sequences cn , dn , an , bn (n ≥ 0) by

dn+1 = (L + M + M1) (dn) + L ′ (|xn|) cn , d0 = 0,

cn = |xn+1 − xn| ,
an = (L + M + M1)

n (a) for some a ∈ C,

bn = (L + M + M1)
n (0) ,

and the point b by
b = (L + M + M1)

∞ (0) .

Prove the result:
Let X be a Banach space with convergence structure (X, V, E) with V =
(V, C, ‖·‖v), an operator F ∈ C1 (D → X) with D ⊆ X , an operator Q ∈
C (D → X), an operator L ∈ C1 (V1 → V ) with V1 ⊆ V , an operator M ∈
C (V1 → V ), an operator M1 ∈ L+ (V ), a point a ∈ C , and a null sequence
{zn} ∈ D such that the following conditions are satisfied:

(C6) the inclusions U (a) ⊆ D and [0, a] ⊆ V 1 are true;
(C7) L is order-convex on [0, a] , and satisfies

L ′ (|x | + |y|) − L ′ (|x |) ∈ B
(

F ′ (x) − F ′ (x + y)
)

for all x, y ∈ U (a) with |x | + |y| ≤ a;
(C8) M satisfies the conditions

0 ≤ (Q (x) − Q (x + y)) , M (|x | + |y|) − M (|x |) ∈ E

for all x, y ∈ U (a) with |x | + |y| ≤ a, and

M (w1) − M (w2) ≤ M (w3) − M (w4) and M (w) ≥ 0

for all w, w1, w2, w3, w4 ∈ [0, a] with w1 ≤ w3, w2 ≤ w4, w2 ≤ w1,
w4 ≤ w3;

(C9) M1, xn , zn satisfy the inequality

0 ≤ (

F ′ (xn) (zn) − F ′ (xn−1) (zn−1) , M1 (dn − dn−1)
) ∈ E

for all n ≥ 1;
(C10) L ′ (0) ∈ B

(

I − F ′ (0)
)

, and
(− (

F (0) + Q (0) + f ′ (0) (z0)
)

, L (0) + M (0) + M1 (0)
) ∈ E ;

(C11) (L + M + M1) (a) ≤ a with 0 ≤ L + M + M1; and
(C12)

(

M + M1 + L ′ (a)
)n

a → 0 as n → ∞.

Then,
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(i) The sequence (xn, dn) ∈ (X × V )N is well defined, remains in E N , is
monotone, and satisfies for all n ≥ 0

dn ≤ b

where b is the smallest fixed point of L + M + M1 in [0, a].
(ii) Moreover, the iteration {xn} (n ≥ 0) generated by

xn+1 = xn + F ′ (xn)∗ [− (F (xn) + Q (xn))] − zn, z0 = 0

converges to a solution x∗ ∈ U (b) of the equation F (x) + Q (x) = 0,
which is unique in U (a).

(iii) Furthermore, the following estimates are true for all n ≥ 0:

bn ≤ dn ≤ b,

bn ≤ an,

|xn+1 − xn| ≤ dn+1 − dn,
∣
∣xn − x∗∣∣ ≤ b − dn,

and
∣
∣xn − x∗∣∣ ≤ an − bn, for M1 = 0, and zn = 0 (n ≥ 0) .

9.4.2. We will now introduce results on a posteriori estimates for the iteration intro-
duced in Exercise 9.4.1. It is convenient to define the operator

Rn (q) = (

I − L ′ (|xn|))∗ Sn (q) + cn

where,

Sn (q) = (L + M + M1) (|xn| + q) − (L + M + M1) (|xn|) − L ′ (|xn|) (q) ,

and the interval
In = [0, a − |xn|] .

Show:
(a) operators Sn are monotone on In ;
(b) operators Rn .. [0, a − dn] → [0, a − dn] are well defined, and monotone.

Hint: Verify the scheme:

dn + cn ≤ dn+1 =⇒ R (a) − dn+1 ≤ a − dn − cn

=⇒ Sn (a − dn) + L ′ (|xn|) (a − dn − cn) ≤ a − dn − cn (n ≥ 0) ;
(c) if q ∈ In satisfy Rn (q) ≤ q, then

cn ≤ Rn (q) = p ≤ q,

and
Rn+1 (p − cn) ≤ p − cn for all n ≥ 0;



438 9 Convergence on Generalized Banach Spaces

(d) under the hypotheses of Exercise 9.4.1, let qn ∈ In be a solution of Rn (q) ≤
q, then

∣
∣x∗ − xm

∣
∣ ≤ am (m ≥ n) ,

where
an = qn and am+1 = Rm (am) − cm;

and
(e) under the hypotheses of Exercise 9.4.1, any solution q ∈ In of Rn (q) ≤ q is

such that
∣
∣x∗ − xn

∣
∣ s < R∞

n (0) ≤ q.

9.4.3. Let A ∈ L (X → X) be a given operator. Define the operators P, T (D → X)

by

P (x) = AT (x + u) ,

T (x) = G (x) + R (x) , P (x) = F (x) + Q (x) ,

and
F (x) = AG (x + u) , Q (x) = AR (x + u) ,

where A ∈ L (X → X) G, R are as F , Q, respectively. We deduce immediately
that under the hypotheses of Exercise 9.4.1, the zero x∗ of P is also a zero of
AT , if u = 0.
We will now provide a monotonicity result to find a zero x∗ of AT . The space
X is assumed to be partially ordered and satisfies the conditions for V given in
(C1)–(C5). Moreover, we set X = V , D = C2 so that |·| turns out to be I .
Prove the result:
Let V be a partially ordered Banach space satisfying conditions (C1)–(C5), Y
be a Banach space, G ∈ C1 (D → Y ), R ∈ C (D → Y ) with D ⊆ V , A ∈
L (X → V ), M ∈ C (D → V ), M1 ∈ L+ (V ) and u, v ∈ V such that:
(C13) [u, v] ⊆ D;
(C14) I − AG ′ (u) + M + M1 ∈ L+ (V ) ;
(C15) for all w1, w2 ∈ [u, v] .. w1 ≤ w2 =⇒ AG ′ (w1) ≥ AG ′ (w2) ;
(C16) AT (u) + AG ′ (u) (z0) ≤ 0, AT (v) + AG ′ (v) (z0) ≥ 0 and AT (v) −

M1 (v − u) ≥ 0;
(C17) condition (C8) is satisfied, and M (v − u) ≤ −Q (v − u);
(C18) condition (C9) is satisfied ;
(C19) the following initial condition is satisfied

− (

Q (0) + AG ′ (u) (z0)
) ≤ (M + M1) (0) ;

and
(C20)

(

I − AG ′ (v) + m + M1
)n

(v − u) → 0 as n → ∞.
Then the NK sequence

y0 = u, yn+1 = yn + (

AG ′ (yn)
)∗

[−AT (yn)] − zn (n ≥ 0)

is well defined for all n ≥ 0, monotone, and converges to a unique zero x∗ of
AT in [u, v].
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9.4.4. Let X be a Banach space with convergence structure (X, V, E) with V =
(V, C, ‖·‖v), an operator F ∈ C1 (X F → X) with X F ⊆ X , an operator L ∈
C1 (VL → V ) with VL ⊆ V , and a point of C such that
(a) U (a) ⊆ X F , [0, a] ⊆ VL ;
(b) L is order convex on [0, a] and satisfies for x, y ∈ U (a) with |x | + |y| ≤ a;

L ′ (|x | + |y|) − L ′ (|x |) ∈ B
(

F ′ (x) − F ′ (x + y)
) ;

(c) L ′ (0) ∈ B
(

I − F ′ (0)
)

, (−F (0) , L (0)) ∈ E;
(d) L (a) ≤ a;
(e) L ′ (a)n → 0 as n → ∞.
Then show NK sequence x0 ..= 0, xn+1 = xn + F ′ (xn)∗ (−F (xn)) is well
defined, and converges to the unique zero z of F in U (a).

9.4.5. Under the hypotheses of Exercise 9.4.4 consider the case of a Banach space
with a real norm ‖·‖. Let F ′ (0) = I and define a monotone operator

k.. [0, a] → R ∀x ∈ U (a) ..
∥
∥F ′′ (x)

∥
∥ ≤ k (‖x‖)

and
L (t) = ‖F (0)‖ +

∫ t

0
ds
∫ s

0
dθk (θ) .

Show (d) above is equivalent to ‖F (0)‖+.5k (a) a2 ≤ a. Under what conditions
is this inequality true.
If conditions (a)–(c) of Exercise 9.4.4 are satisfied, and

∃ t ∈ (0, 1) .. L (a) ≤ ta,

then show there exists a′ ∈ [0, ta] satisfying (a)–(e). The zero z ∈ U
(

a′) is
unique in U (a).

9.4.6. Let L ∈ L+ (V ) and a, e ∈ C be given such that: Let a ≤ e and Lne → 0 as
n → ∞. Then show: operator

(I − L)∗ .. [0, a] → [0, a] ,

is well defined and continuous.
9.4.7. Let A ∈ L (X), L ∈ B (A), y ∈ D, and e ∈ C such that

Le + |y| ≤ e and Lne → 0 as n → ∞.

Then show x ..= (I − A)∗ y is well defined, x ∈ D, and |x | ≤ (I − L)∗ |y| ≤ e.
9.4.8. Let V be a partially ordered Banach space, Y a Banach space, G ∈

C1 (VG → Y ), A ∈ L (X → Y ) and u, v ∈ V such that
(a) [u, v] ⊆ VG ;
(b) I − AG ′ (u) ∈ L+ (V );
(c) ∀w1, w2 ∈ [u, v] .. w1 ≤ w2 =⇒ AG ′ (w1) ≥ AG ′ (w2);
(d) AG (u) ≤ 0 and AG ′ (v) ≥ 0;
(e)

(

I − AG ′ (v)
)n

(v − u) → 0 as n → ∞.
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Then show: the NK sequence

u0 = u, un+1 ..= u+
[

AG ′ (un)
]∗

[−AG (un)] (n ≥ 0)

is well defined, monotone, and converges to the unique zero z of AG in [u, v].
9.4.9. Consider the two boundary value problem

−x ′′ (s) = 4 sin (x (s)) + f (s) , x (0) = x (1) = 0

as a possible application of Exercises 9.4.1–9.4.8 in the space X = C [0, 1] and
V = X with natural partial ordering; the operator /·/ is defined by taking absolute
values. Let G ∈ L+ (C [0, 1]) be given by

Gx (s) = 1

2 sin (2)

{∫ s

0
sin (2t) sin (2 − 2s) x (t) dt

+
∫ s

0
sin (2 − 2t) sin (2s) x (t) dt

}

satisfying Gx = y ⇐⇒ −y′′ − 4y = x , y (0) = y (1) = 0. Define the operator

F .. C [0, 1] → C [0, 1] , F (x) ..= x − G (4 sin (x) − 4x + f ) .

Let
L .. C [0, 1] → C [0, 1] , L (e) = 4G (e − sin (e)) + |G f | .

For x, y, w ∈ C [0, 1]

|x | , |x | + |y| ≤ .5π ⇒
∣
∣
[

F ′ (x) − F ′ (x + y)
]

w
∣
∣ ≤ [

L ′ (|x | + |y|) − L ′L ′ (|x |)] |w| .
Further we have L (0) = |G f | and L ′ (0) = 0. We have to determine a ∈
C+ [0, 1] with |a| ≤ .5π and s ∈ (0, 1) such that L (a) = 4G (a − sin (a)) +
|G f | ≤ sa. We seek a constant function as a solution. For e0 (s) = 1, we com-
pute

p.. ‖Ge0‖∞ = .25

(
1

cos (e)
− 1

)

.

Show that a = te0 will be a suitable solution if

4p (t − sin (t)) + ‖G f ‖∞ < t .

9.4.10. (a) Assume: given a Banach space X with a convergence structure (X, V, E)

with V = (V, C, ‖·‖V ), an operator F ∈ C1 (X0 ⊆ X → X), operators M , L0,
L ∈ L1 (V0 ⊆ V → V ), and a point p ∈ C such that the following conditions
hold:

U (p) ⊆ X0, [0, p] ⊆ V0;
M , L0, L are order convex on [0, p], and such that for x, y, z ∈ U (p) with
|x | ≤ p, |y| + |x | ≤ p
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L ′
0 (|x |) − L ′

0 (0) ∈ B
(

F ′ (0) − F ′ (x)
)

,

L ′ (|y| + |x |) − L ′ (|y|) ∈ B
(

F ′ (y) − F ′ (y + x)
)

,

M (p) ≤ p

L0(p0) ≤ M(p0) for all p0 ∈ [0, p] ,

L ′
0(p0) ≤ M ′(p0) for all p0 ∈ [0, p] ,

L ′
0 ∈ B(I − F ′ (0)), (−F(0), L0(0)) ∈ E,

M ′ (p)n (p) → 0 as n → ∞,

M ′ (dn) (b − dn) + L (dn) ≤ M (b) for all n ≥ 0,

where

d0 = 0, dn+1 = L (dn) + L ′
0 (|xn|) (cn) , cn = |xn+1 − xn| (n ≥ 0)

and
b = M∞ (0) .

Show: sequence {xn} (n ≥ 0) generated by NK method is well defined, remains
in EN, is monotone, and converges to a unique zero x∗ in U (b), where b is the
smallest fixed point of M in [0, p]. Moreover, the following bounds hold for all
n ≥ 0

dn ≤ b,
∣
∣x∗ − xn

∣
∣ ≤ b − dn,

∣
∣x∗ − xn

∣
∣ ≤ Mn (p) − Mn (0) ,

cn + dn ≤ dn+1,

and
cn = |xn+1 − xn| .

(b) If r ∈ [0, p − |xn|] satisfies Rn(r) ≤ r then show: the following holds for all
n ≥ 0:

cn ≤ Rn(r) = p ≤ r, (9.4.1)

and
R{n+1}(p − cn) ≤ p − cn

(c) Assume hypotheses of (a) hold and let rn ∈ [0, p − |xn|] be a solution (9.4.1).
Then show the following a posteriori estimates hold for all n ≥ 0

∣
∣x∗ − xm

∣
∣ < qm,

where
qn = rn, qm+1 = Rm(qm) − cm (m ≥ n).

(d) Under hypotheses of (a), show any solution r ∈ [0, p − |xn|] of Rn(r) ≤ r
yields the a posteriori estimate
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∣
∣x∗ − xn

∣
∣ ≤ R∞

n (0) ≤ r (n ≥ 0) .

Let X be partially ordered and set

X = V, D = C2 and |·| = I.

(e) Let X be partially ordered, Y a Banach space, G ∈ C1 (X0 ⊆ X → Y ) ,

A ∈ L (Y → X) and x, y ∈ X such that:
1. [x, y] ∈ X0.
2. I − AG ′ (x) ∈ L+ (X),
3. z1 ≤ z2 =⇒ AG ′ (z1) ≤ AG ′ (z2) for all z1, z2 ∈ [x, y],
4. AG (x) ≤ 0, AG (y) ≥ 0,
5.

(

I − AG ′ (y)
)n

(y − x) → 0 as n → ∞.
Show: sequence {yn} (n ≥ 0) generated by

y0 = x, yn+1 = yn + AG ′ (yn)∗ [−AG (yn)]

is well defined for all n ≥ 0, monotone, and converges to a unique zero y∗ of
AG in [x, y].

9.4.11. Let there be given a Banach space X with convergence structure (X, V, E)

where V = (V, C, ‖·‖V ), and operator F ∈ C ′′ (X0 → X) with X0 ⊆ X , and
operator M ∈ C ′ (V0 → V ) with V0 ⊆ V , and a point p ∈ C satisfying:

U (p) ⊆ X0, [0, p] ⊆ V0;
M is order-convex on [0, p] and for all x, y ∈ U (p) with |x | + |y| ≤ p

M ′ (|x + y|) − M ′ (x) ∈ B
([

F ′′ (x) − F ′′ (x + y)
]

(y)
)

M ′ (0) ∈ B
(

I − F ′(0)
)

, (−F(0), M (0)) ∈ E;
M (p) ≤ p;

and
M ′ (p)n p → 0 as n → ∞.

Then, show sequence (xn, tn) ∈ (X × V )N, where {xn} is generated by Newton’s
method and {tn} (n ≥ 0) is given by

t0 = 0, tn+1 = M (tn) + M ′ (|xn|) (an) , an = |xn+1 − xn|
is well defined for all n ≥ 0, belongs in EN, and is monotone.
Moreover, the following hold for all n ≥ 0

tn ≥ b,

where,
b = M∞ (0) ,

is the smallest fixed point of M in [0, p] .

Show corresponding results as in Exercises 9.4.10 (b)–(c).
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9.4.12. Assume hypotheses of Exercise 9.4.10 hold for M = L .

Show: (a) conclusions (a)–(e) hold (under the revised hypothesis) and the last
hypothesis in (a) can be dropped;
(b) error bounds |x∗ − xn| (n ≥ 0) obtained in this setting are finer and the
information on the location of the solution more precise than the corresponding
ones in Exercise 9.4.4 provided that L0 (p0) < L (p0) or L ′

0 (p0) < L ′ (p0) for
all p ∈ [0, p] .

As in Exercise 9.4.5, assume there exists a monotone operator k0.. [0, p] → R
such that

∥
∥F ′(x) − F ′(0)

∥
∥ ≤ k0 (‖x‖) ‖x‖ , for all x ∈ U (p),

and define operator L0 by

L0(t) = ‖F (0)‖ +
∫ t

0
ds
∫ s

0
dθk0(θ).

Sequence {dn} given by d0 = 0, dn+1 = L(dn)+ L ′
0 (|xn|) cn converges to some

p∗ ∈ [0, p] provided that
(

k0(p) + k (p)

2

)

‖F(0)‖ ≤ 1.

Conclude that the above semilocal convergence condition is weaker than (d) in
Exercise 9.4.4 or equivalently (for p = a)

2k(p) ‖F(0)‖ ≤ 1.

Finally, conclude that in the setting of Exercise 9.4.12 and under the same
computational cost, we always obtain and under weaker conditions: finer error
bounds on the distances |xn − x∗| (n ≥ 0) and a better information on the loca-
tion of the solution x∗ than in Exercise 9.4.5 (i.e., [140], see also [43], [141]).
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Point-to-Set-Mappings

This chapter gives an outline of general iterative procedures and their convergence
under general hypotheses.

10.1 Algorithmic models

Let X denote an abstract set, and introduce the following notation:

X1 = X, X2 = X × X, ..., Xm = Xm−1 × X, k ≥ 2.

Assume that k is a positive integer, and for all m ≥ k − 1, the point-to-set map-
ping Fm are defined on Xm+1, furthermore for all

(

x (1), ..., x (m+1
) ∈ Xm+1 and

x ∈ Fm
(

x (1), ..., x (m+1
)

, x ∈ X . For the sake of brevity, we will use the notation
Fm .. Xm+1 → 2X , where 2X denotes the set of all subsets of X .

Definition 10.1.1. Select x0, x1, ..., xk−1 ∈ X arbitrarily, and construct the se-
quence

xm+1 ∈ Fm (x0, x1, ..., xm) (m ≥ k − 1) , (10.1.1)

where arbitrary point from the set Fm (x0, x1, ..., xm) can be accepted as the succes-
sor of xm . Recursion (10.1.1) is called the general algorithmic model.

Remark 10.1.2. Because the domain of Fm is Xm+1 and Fm (x0, x1, ..., xm) ⊆ X ,
the recursion is well defined for all m ≥ k − 1. Points x0, ..., xk−1 are called initial
approximations, and the maps Fm are called iteration mappings.

Definition 10.1.3. The algorithmic model (10.1.1) is called a k-step process if for all
m ≥ k − 1, Fm does not depend explicitly on x0, x1, ..., xm−1, that is, if algorithm
(10.1.1) has the special form

xm+1 ∈ Fm (xm−k+1, ..., xm−1, xm) . (10.1.2)

I.K. Argyros, Convergence and Applications of Newton-type Iterations,
DOI: 10.1007/978-0-387-72743-1 10, c© Springer Science+Business Media, LLC 2008
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It is easy to show that any k-step process is equivalent to a certain single-step
process defined on Xk . For m ≥ 0, introduce vectors

ym =
(

y(1)
m , y(2)

m , ..., y(k)
m

)

.

Starting from the initial approximation

y0 = (x0, x1, ..., xk−1) ,

consider the single-step algorithmic model:

y(1)
m+1 = y(2)

m

y(2)
m+1 = y(3)

m

... (10.1.3)

y(k−1)
m+1 = y(k)

m

y(k)
m+1 = Fm

(

y(k)
m , ..., y(k)

m

)

.

This iteration algorithm is a single-step process, and obviously it is equivalent to the
algorithmic model (10.1.2), as for all m ≥ 0,

y(1)
m = xm, y(2)

m = xm+1, ..., y(k)
m = xm+k−1.

This equivalence is the main reason why only single-step iteration methods are dis-
cussed in most publications.

Definition 10.1.4. A k-step process is called stationary, if mappings Fm do not de-
pend on m. Otherwise the process is called nonstationary.

Iteration models in the most general form (10.1.1) have a great importance in
certain optimization methods. For example, in using cutting plane algorithms, very
early cuts can still remain in the latter stages of the process by assuming that they
are not dominated by later cuts. Hence the optimization problem of each step may
depend on the solutions of very early problems. Multistep processes are also used
in many other fields of applied mathematics. As an example, we mention that the
secant method for solving nonlinear equations is a special two-step method. Non-
stationary methods have a great practical importance in analyzing the global asymp-
totical stability of dynamic economic systems, when the state transition relation is
time-dependent.

In this chapter, the most general algorithmic model (10.1.1) will be first consid-
ered, and then, special cases will be derived from our general convergence theorem.
In order to establish any kind of convergence, X should have some topology.

Assume now that X is a Hausdorff topological space that satisfies the first axiom
of countability [189]. Let S ⊂ X be the set of desirable points, which are considered
as the solutions to the problems being solved by the algorithm. For example, in the
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case of an optimization problem, X can be selected as the feasible set and P as the
set of the optimal solutions. If a linear or nonlinear fixed point problem is solved,
then X is the domain of the mapping and P is the set of all fixed points. In analyzing
the global asymptotic stability of a discrete dynamic system, set X is the state space
and P is the set of equilibrium points.

Definition 10.1.5. An algorithmic model is said to be convergent, if the accumulation
points of any iteration sequence {xn} constructed by the algorithm are in P.

Note that the convergence of an algorithm model does not imply that the iteration
sequence is convergent.

We now impose convergence criteria for algorithmic models.
Assume that for m ≥ 0 there exist functions gk .. X → R1 with the following

properties:

(A1) For large m, functions {gk} are uniformly locally bounded below on X \ P .
That is, there is a nonnegative integer N1 such that for all x ∈ X \ P there is a
neighborhood U of x and a b ∈ R1 (which may depend on x) such that for all
m ≥ N1 and x ′ ∈ U ,

gk
(

x ′) ≥ b; (10.1.4)

(A2) If m ≥ N1, x ′ ∈ Fm
(

y(1), ..., y(m), x
) (

x, y(i) ∈ X i = 1, ..., m
)

, then

gk+1
(

x ′) ≤ gk (x) ; (10.1.5)

(A3) For each y ∈ X \ P if {yi } ⊂ \ ⊆ X is any sequence such that yi → y
and {mi } is any strictly increasing sequence of nonnegative integers such that
gk (hi ) → g∗, then for all iteration sequences {xi } such that xmi = yi (i ≥ 0)

there exists an integer N2 such that m N2 ≥ N1 − 1 and

gkN2+1 (y) < g∗ for all y ∈ Fm N2

(

x0, x1, ..., xm N2

)

. (10.1.6)

Theorem 10.1.6. If conditions (A1), (A2) and (A3) hold, then the algorithmic model
(10.1.1) is convergent.

Proof. Let x∗ be an accumulation point of the iteration sequence {xm} constructed by
the algorithmic model (10.1.1), and assume that x∗ ∈ X \ P . Let {mi } denote the in-
dex set such that

{

xmi

}

is a subsequence of {xm} converging to x∗. Assumption (A1)
implies that for large m, {gk (xm)} is decreasing, and from assumption (A2), we con-
clude

{

gki

(

xmi

)}

is convergent. Therefore the entire sequence {gk (xm)} converges
to a g∗ ∈ R1. From (10.1.5) we know that for m ≥ N1,

gk (xm) ≥ g∗. (10.1.7)

Use subsequence
{

xmi

}

as sequence {yi } in condition (A3) to see that there exists an
N2 such that m N2 ≥ N1 − 1 and with the notation M = m N2 + 1,

gM (xM ) < g∗,

which contradicts relation (10.1.7) and completes the proof.
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Remark 10.1.7. Note first that in the special case when (10.1.1) is single-step non-
stationary process and gk does not depend on m, this theorem generalized Theorem
4.3 of Tishyadhigama et al. [189]. If the process is stationary, then this result further
specializes to Theorem 3.5 of the same paper.

Remark 10.1.8. The conditions of the theorem do not imply that sequence {xm} has
an accumulation point, as the next example shows.

Example 10.1.9. Select X = R1 , P = {0}, and consider the single-step process with
Fm (x) ≡ F (x) = x − 1, and choose gk (x) = x for all x ∈ X .

Because functions gk are continuous and Fm (x) < x for all x , condition (A1)
obviously holds, and because functions Fm are strictly decreasing and continuous,
assumptions (A2) and (A3) also hold. However, for arbitrary x0 ∈ X , the iteration
sequence is strictly decreasing and divergent. (Infinite limit is not considered here as
limit point from X .)

Remark 10.1.10. Even in cases when the iteration sequence has an accumulation
point, the sequence does not need to converge as the following example shows.

Example 10.1.11. Select X = R1, P = {0, 1}, and consider the single-step iteration
algorithm with function

Fm (x) ≡ F (x) =
⎧

⎨

⎩

1 if x = 0
0 if x = 1

x − 1 if x /∈ P.

Choose

gk (x) ≡ g (x) =
{

0 if x ∈ P
x otherwise.

On X \ P , function g is continuous, hence assumption (A1) is satisfied. If x /∈ P ,
then F (x) < x , which implies that g (F (x)) < g (x). If x ∈ P , then F (x) ∈ P .
Therefore in this case g (F (x)) = g (x). Hence condition (A2) also holds. Assump-
tion (A3) follows from the definition of functions gk and from the fact that F (x) < x
on X \ P . If x0 is selected as a nonnegative integer, then the iteration sequence has
two accumulation points: 0 and 1. If x0 is selected otherwise, then no accumulation
point exists.

Note that Definition 10.1.5 is considered as the definition of global convergence
on X , because the initial approximations x0, x1, ..., xk−1 are arbitrary elements of X .
Local convergence of algorithmic models can be defined in the following way:

Definition 10.1.12. An algorithmic model is said to be locally convergent, if there is
a subset X1 of X such that the accumulation points of any iteration sequence {xm}
constructed by the algorithm starting with initial approximations x0, x1, ..., xk−1
from X1 are in P.

Theorem 10.1.6 can be modified as a local convergence theorem by substituting
X and P by X1 and X1 ∩ P , respectively.
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10.2 A general convergence theorem

Consider again the algorithmic model

xm+1 ∈ Fm (x0, x1, ..., xm) (m ≥ k − 1) , (10.2.1)

where for m ≥ k − 1, Fm .. Xm+1 → 2X . Here we assume again that X is a Hausdorf
topological space that satisfies the first axiom of countability, and k is a given positive
integer, furthermore in relation (10.2.1), any point from the set Fm (x0, x1, ..., xm)

can be accepted as the successor of xm . Assume furthermore that the set P of desir-
able points has only one element p∗.

Assume that:

(B1) There is a compact set C ⊆ X such that for all m, xm ∈ C ;
(B2) conditions (A1), (A2), and (A3) of Theorem 10.1.6 are satisfied.

The main result of this section is given as

Theorem 10.2.1. Under assumptions (B2) and (B2), xm → p∗ as m → ∞ with
arbitrary points x0, x1, ..., xk−1 ∈ X.

Proof. Because C is compact, sequence {xm} has a convergent subsequence. From
Theorem 10.1.6 we also know that all the limit points of this iteration sequence
belong to P , which has only one point p∗. Hence the iteration sequence has only one
limit point p∗, which implies that it converges to p∗.

Remark 10.2.2. The theorem in this formulation can be interpreted as a global con-
vergence result. However, if the conditions of the theorem hold only in a neighbor-
hood X1 of p∗ such that Fm

(

x (1), x (2), ..., x (m+1)
) ⊆ X1 for all m ≥ k − 1 and

x (i) ∈ X1 (i = 1, 2, ..., m + 1), then local convergence results are obtained.

The speed of convergence of algorithm (10.2.1) can be estimated as follows.
Assume that:

(B3) X is a metric space with distance d.. X × X → R1;
(B4) There exist nonnegative constants ami (m ≥ k − 1, 0 ≤ i≤ m) such that if

m ≥ k − 1 and x ∈ Fm
(

x (0), x (1), ..., x (m)
)

, then

d
(

x, p∗) ≤
m
∑

i=0

ami d
(

x (i), p∗
)

.

From (10.2.1) we have

εm+1 ≤
m
∑

i=0

amiεi ,

where εi = d (xi , p∗) for all i ≥ 0.

Starting from initial value δi = εi (i = 0, 1, ..., k − 1), consider the nonstation-
ary difference equation
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δm+1 =
m
∑

i=0

amiδi . (10.2.2)

Obviously, for all m ≥ 0, εm ≤ δm . In order to obtain a direct expression for δm , and
therefore the same for the error bound of xm (m ≥ k − 1), introduce the following
additional notation:

dm = (δ0, δ1, ..., δm)T ,

Am =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
1

. . .

1
am0 · · · amm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, and aT
m = (am0, am1, ..., amm) .

Then from (10.2.2)
dm+1 = Amdm,

and hence, finite induction shows that for all m ≥ 1,

dm = Am−1 Am−2...Ak−1dk−1.

Note that the components of dk−1 are the error of the initial approximations x0, x1,
. . . , xk−1. From (10.2.2) we have

δm+1 = aT
mdm =

(

aT
m Am−1 Am−2...Ak−1

)

dk−1 = bT
mdk−1

with
bT

m = aT
m Am−1 Am−2...Ak−1

being a one-dimensional row vector. Introducing finally the notation

bT
m = (

bm0, bm1, ..., bm,k−1
)

,

the definition of the numbers δm and relation (10.2.2) imply the following result:

Theorem 10.2.3. Under assumptions (B3)-(B4),

d
(

xm+1, p∗) ≤
k−1
∑

i=0

bmi d
(

xi , p∗) , (m ≥ k − 1) . (10.2.3)

Corollary 10.2.4. If for all i = 0, 1, ..., k − 1, bmi → 0 as m → ∞, then the
iteration sequence {xm} generated by algorithm (10.2.1) converges to p∗. Hence, in
this case conditions (B1) and (B2) are not needed to establish convergence.

The conditions of Theorem 10.1.6 are usually difficult to be verified in practical
cases. Therefore in the next section, we will relax these conditions in order to derive
sufficient convergence conditions that can be easily verified.
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10.3 Convergence of k-step methods

In this section, k-step iteration processes of the form

xm+1 ∈ Fm (xm−k+1, xm−k+2, ..., xm) (10.3.1)

are discussed, where k ≥ 1 is a given integer, and for all m, Fm .. X1 → 2X . Assume
again that the set P of desirable points has only one element p∗.

Definition 10.3.1. A function V .. Xk → Rk+ is called the Liapunov function of pro-
cess (10.3.1), if for arbitrary

x (i) ∈ X
(

i = 1, 2, ..., k, x (k) �= p∗
)

and
y ∈ Fm

(

x (1), x (2), ..., x (k)
)

(m ≥ k − 1) ,

V
(

x (2), ..., x (k), y
)

< V
(

x (1), x (2), ..., x (k)
)

. (10.3.2)

Definition 10.3.2. The Liapunov function V is called closed, if it is defined on

X
k
, where X is the closure of X, furthermore if mi → ∞, x ( j)

i → x ( j)∗ as

i → ∞ (x ( j)
i ∈ X for i ≥ 0 and j = 1, 2, ..., k such that x (k)∗ �= p∗) and

yi ∈ Fmi

(

x (1)
i , ..., x (k)

i

)

(i ≥ 0) such that yi → y∗ as i → ∞, then

V
(

x (2)∗ , ..., x (k)∗ , y
)

< V
(

x (1)∗ , ..., x (k)∗
)

. (10.3.3)

Assume now that the following conditions hold:

(C1) For all m ≥ k − 1,

Fm

(

x (1), ..., x (k−1), p∗
)

= {

p∗}

with arbitrary x (1), ..., x (k−1) ∈ X ;
(C2) Process (10.3.1) has a continuous, closed Liapunov function;
(C3) X is a compact.

Theorem 10.3.3. Under assumptions (C1), (C2) and (C3), xm → p∗ as m → ∞.

Proof. Note first that this process is equivalent to the single-step method (10.1.3),
where set X is replaced by X̂ = Xk , and the new set of desirable points is now
P̂ = Pk . Select function g as the Liapunov function V .

We can now easily verify that the conditions of Theorem 10.2.1 are satisfied,
which implies the convergence of the iteration sequence {xm}.

Assumption (A1) follows from (C3) and the continuity of V . Condition (C1) and
the monotonicity of V imply assumption (A2). And finally, assumption (A3) is the
consequence of condition (C2) and relation (10.3.3).
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Remark 10.3.4. Assumption (C3) can be weakened as follows:

(C′
3) For all x ∈ X \ P , there is a compact neighborhood U ⊆ X of x .

In this case, we have to assume that p∗ ∈ X , and condition (C1) is required only
if p∗ ∈ X .

Remark 10.3.5. Assumption p∗ ∈ X is needed in order to obtain p∗ as the limit
of sequences from X . Assumption (C1) guarantees that if at any iteration step the
solution p∗ is obtained, then the process remains at the solution. We may also show
that the existence of the Liapunov function is not a too strong assumption. Assume
that X is a metric space, and consider the special iteration process xm+1 = F (xm)

and assume that starting from arbitrary initial point, {xm} converges to the solution
p∗ of equation x = F (x). Let V .. X → R1 be constructed as follows. With selecting
x0 = x , consider sequence xm+1 = F (xm), (m ≥ 0), and define

V (x) =
{

if x = p∗
max d (xm, p∗) , m ≥ 0

where d is the distance. Obviously, V (F (x)) ≤ V (x) for all x ∈ X . The continuity-
type assumptions in (C2) are also natural, because without certain continuity as-
sumptions no convergence can be established. Assumption (C3) says that the entire
sequence {xm} is contained in a compact set. This condition is necessarily satisfied
for example, if X is in a finite-dimensional Euclidean space, and is bounded or if for
every K > 0 there exists a Q > 0 such that t (1), ..., t (k) ∈ X and

∥
∥t ( j)

∥
∥ > Q (for at

least one index j) imply that

V
(

t (1), ..., t (k)
)

> K .

In the case of one-step processes (that is, if k = 1), this last condition can be refor-
mulated as V (x) → ∞ as ‖x‖ → ∞, x ∈ X.

Assume next that the iteration process is stationary, that is, mappings Fm do not
depend on m. Replace condition (C2) by the following pair of conditions:

(C′
2) The process has a continuous Liapunov function;

(C′′
2) Mapping F is closed on X , that is, if x ( j)

i → x ( j)∗ as i → ∞ ( j = 1, 2, ..., k)

and yi → F
(

x (k)
i , ..., x (k)

i

)

such that yi → y∗, then y∗ ∈ F
(

x (1)∗ , ..., x (k)∗
)

.

Theorem 10.3.6. If process (10.2.1) is stationary and conditions (C1), (C′
2), (C′′

2)
and (C3) hold, then xm → p∗ as m → ∞.

Remark 10.3.7. This result in the special case of k = 1 can be considered as the
discrete-time counterpart of the famous stability theorem of Uzwa [198].

Remark 10.3.8. Assume that for all m ≥ k − 1, mapping Fm is closed, and the itera-
tion sequence converges to p∗. Then for all m ≥ k −1, p∗ ∈ Fm (p∗, ..., p∗). Hence,
p∗ is a common fixed point of mappings Fm .
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The speed of convergence of process (10.3.1) is next examined. Two results will
be introduced. The first one is based on Theorem 10.2.1, and the second one is based
on special properties of the Liapunov function.

Note first that in the case of a k-step process assumption (B4) is modified as

(C4) There exist nonnegative constants ami (m ≥ k − 1, m − k + 1 ≤ i≤ m), such
that for all m ≥ k and x ∈ Fm

(

x (k), ..., x (k)
)

,
(

x (k), ..., x (k)
) ∈ X are arbitrary),

d
(

x, p∗) ≤
k
∑

i=1

am,m−k+i d
(

x (i), p∗
)

.

Then Theorem 10.2.3 remains valid with the specification that ami = 0 for all
i ≤ m − k.

In the case of a stationary process, constants am,m−k+1 do not depend on m. If
we introduce the notation ai = am,m−k+1, then (10.2.2) reduces to

δm+1 =
k
∑

i=1

aiδm+k−i . (10.3.4)

Observe that sequence {δm} is the solution of this kth order linear difference equation.
Note first that the characteristic polynomial of this equation is as follows:

ϕ (λ) = λk − a1λk−1 − a2λ
k−2 − · · · − ak−1λ − ak .

Assume that the roots of ϕ are λ1, λ2, ..., λR with multiplicities m1, m2, ..., m R , then
the general solution of Equation (10.3.4) is given as

δm+1 =
R
∑

r=1

mr −1
∑

s=0

grsmsλm
r ,

where the coefficients gr p are obtained by solving the initial-value equations

R
∑

r=1

mr −1
∑

s=0

grsi sλi
r = d

(

xi−1, p∗) (i = 1, 2, ..., k) .

Hence, we proved the following:

Theorem 10.3.9. Under assumption (C4),

d
(

xm+1, p∗) ≤
R
∑

r=1

mr −1
∑

s=0

grsmsλm
r (m ≥ k − 1) . (10.3.5)

Corollary 10.3.10. If for all r, r = 1, 2, ..., R, |λr | < 1, then xm → p∗ as m → ∞.
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Hence, in this case the conditions of Theorem 10.3.6 are not needed to establish
convergence.

In the rest of the section the speed of convergence of process (10.3.1) is estimated
based on some properties of the Liapunov function.

Assume now that

(C5) There exist constants ai , bi (i = 1, 2, ..., k, ak > 0) such that

k
∑

i=1

ai , d
(

x (i), p∗
)

≤ V
(

x (k)
)

≤
k
∑

i=1

bi d
(

x (i), p∗
)

for all x (i) ∈ X (i = 1, 2, ..., k) .

The following result holds.

Theorem 10.3.11. Assume that process (10.3.1) has a Liapunov function V , which
satisfies condition (C5). Then for m ≥ k − 1,

d
(

xm+1, p∗) ≤ a−1
k

k
∑

i=1

(bi − ai−1) d
(

xm−k+i , p∗) (a0 = 0) . (10.3.6)

Proof. If xm = p∗, then xm+1 = p∗, and therefore (10.3.6) obviously holds, as the
left-hand side equals zero. If xm �= p∗, then condition (C5) implies that

k
∑

i=1

ai d
(

xm−k+i+1, p∗) ≤ V (xm+2−k, ..., xm+1)

≤ V (xm+k−1, ..., xm) ≤
k
∑

i=1

bi d
(

xm−k+i , p∗) .

The assertion is a simple consequence of this inequality.

Corollary 10.3.12. Introduce next the notation ai = (bi − ai−k) /ak (i = 1, 2, ..., k),
and let sequence {δm} denote now the solution of difference equation (10.3.4) with
initial conditions δi = d (xi−1, p∗) (i = 1, 2, ..., k) .Then obviously, d (xm, p∗) ≤
δm for all m ≥ k − 1, and with the above coefficients ai , Theorem 10.3.9 remains
true.

10.4 Convergence of single-step methods

In this section, single-step processes generated by point-to-step mappings are first
examined. For the sake of simplicity we assume that X is a subset of a Banach space
B and contains the origin. The iteration process now has the form

xm+1 ∈ Fm (xm) (m ≥ 0) , (10.4.1)
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where Fm .. X → 2X . It is also assumed that O is in X and p∗ = O . We may have
this last assumption without losing generality, as any solution p∗ can be transformed
into zero by introducing the transformed mappings

gk (x) = {

y − p∗ / y ∈ Fm
(

x + p∗)} .

It is also assumed that for all m, Fm (O) = {O}.
We start our analysis with the following useful result.

Theorem 10.4.1. Assume that X is compact, and there is a real valued continuous
function α.. X \ {O} → [0, 1) such that

‖y‖ ≤ α (x) ‖x‖ (10.4.2)

for all m ≥ 0, x �= 0, and y ∈ Fm (x) .

Then the iteration sequence (10.4.1) converges to O as m → ∞.

Proof. we now verify that all conditions of Theorem 10.3.3 are satisfied with the
Liapunov function V (x) = ‖x‖ and p∗ = O . Note that (C1) and (C3) obviously
hold, and condition (C2) is implied by the facts that a and the norm are continuous,
and α (x) < 1 for x �= 0.

Remark 10.4.2. If (10.4.2) is replaced by the weaker assumption that

‖y‖ < ‖x‖

for all m ≥ 0, x �= 0, and y ∈ Fm (x), then the result may not hold, as the following
example shows.

Example 10.4.3. Select B = R1, X = [0, 2] , and for m ≥ 0,

Fm (x) =
[

(m + 1)2 − 1
]

(m + 1)−2 x .

If the initial points is chosen as x0 = 2, then finite induction shows that

xm = 1 + (k + 1)−1 → 1 �= 0 as m → ∞.

Furthermore for all m ≥ 0 and x �= 0,

|Fm (x)| < |x | .

Corollary 10.4.4. Recursion (10.4.1) and inequality (10.4.2) imply that for m ≥ 0,

‖xm+1‖ ≤ α (xm) ‖xm‖ ,

and therefore finite induction shows that

‖xm+1‖ ≤ α (xm) α (xm−1) · · ·α (x0) ‖x0‖ . (10.4.3)
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As a special case assume that α (x) ≤ q < a for all o �= x ∈ X . Then for all
m ≥ 0,

‖xm+1‖ ≤ qm+1 ‖x0‖ , (10.4.4)

which shows the linear convergence of the process in this special case.
Relation (10.4.4) serves as the error formula of the algorithm. In addition, it

has the following consequence: Assume that (10.4.2) holds for all O �= x ∈ X ,
furthermore α (xm) α (xm−1) · · ·α (x0) → O as m → ∞. Then xm → O for m →
∞. Hence in this case we may drop the assumptions that α (x) ∈ [0, 1) (O �= x ∈ X)

and X is compact.
An alternative approach to Theorem 10.4.1 is based on the assumption that there

exists a function h.. (0,∞) → R such that

‖y‖ ≤ h (r) ‖x‖ (10.4.5)

for all m ≥ 0, r > 0, ‖x‖ ≤ r , x ∈ X and y ∈ Fm (x) .

In this case it is easy to verify that for all m,

‖xm‖ ≤ qm,

where qm is the solution of the nonlinear difference equation

qm+1 = h (qm) qm, q0 = ‖x0‖ .

Hence, the convergence analysis of iteration algorithms defined in a Banach space
is reduced to the examination of the solution of a special scalar nonlinear difference
equation.

We will use the following special result to derive further practical convergence
conditions.

Lemma 10.4.5. Assume that X is convex, and function h.. X → X satisfies the fol-
lowing condition:

∥
∥h (x) − h

(

x ′)∥∥ ≤ α (ξ)
∥
∥x − x ′∥∥ (10.4.6)

for all x, x ′ ∈ X, where ξ is a point on the linear segment between x and x ′,
furthermore α.. X → R1 is a real-valued function such that for all fixed x and
x ′ ∈ X, α

(

x ′ + t
(

x − x ′)) as the function of the parameter t is Riemann integrable
on [0, 1]. Then for all x and x ′ ∈ X,

∥
∥h (x) − h

(

x ′)∥∥ ≤
∫ 1

0
α
(

x ′ + t
(

x − x ′)) dt
∥
∥x − x ′∥∥ . (10.4.7)

Proof. Let x, x ′ ∈ X and define ti = i/N (i = 0, 1, 2, ..., N ), where N is a positive
integer. Then from (10.4.6),

∥
∥h (x) − h

(

x ′)∥∥ ≤
N
∑

i=1

∥
∥h

(

x ′ + ti
(

x − x ′))− h
(

x ′ + ti−1
(

x − x ′))∥∥

≤
N
∑

i=1

α
(

x ′ + τi
(

x − x ′)) ∥∥(ti − ti−1)
(

x − x ′)∥∥ ,
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where τi ∈ [

ti−1, ti
]

, which implies that

∥
∥h (x) − h

(

x ′)∥∥ ≤
{

N
∑

i=1

α
(

x ′ + τi
(

x − x ′)) (ti − ti−1)

}

∥
∥x − x ′∥∥ .

Observe that the first factor is a Riemann-sum of the integral
∫ 1

0 α
(

x ′ + t
(

x − x ′)) dt
which converges to the integral. Let N → ∞ in the above inequality to obtain the
result.

Remark 10.4.6. If function α is continuous, then α
(

x ′ + t
(

x − x ′)) is continuous in
t , therefore it is Riemann integrable.

Assume next that maps Fm are point-to-point and process (10.4.1) satisfies the
following conditions:

(D1) Fm (O) = O for m ≥ 0;
(D2) for all m ≥ 0,

∥
∥Fm (x) − Fm

(

x ′)∥∥ ≤ α (ξm)
∥
∥x − x ′∥∥ (10.4.8)

for all x, x ′ ∈ X , where α.. X → R1 is a continuous function, and ξm is a point
on the linear segment connecting x and x ′.

(D3) α (x) ∈ [0, 1) for all O �= x ∈ X ;
(D4) X is compact and convex.

Theorem 10.4.7. Under the above conditions, xm → O as m → ∞.

Proof. Let O �= x ∈ X , then relation (10.4.7) implies that for all m,

‖Fm (x)‖ ≤
∫ 1

0
α (t x) dt ‖x‖ , (10.4.9)

where we have selected x ′ = O . Break the integral into two parts to obtain

‖Fm (x)‖ ≤
{
∫ δ

0
α (t x) dt +

∫ 1

δ

α (t x) dt

}

‖x‖ .

Because α is continuous, α (O) ≤ 1, and because the interval [δ, 1] is compact,
α (t x) ≤ βδ (x) < 1 for all δ ≤ t ≤ 1, where βδ .. X \ {O} → R1 is the real-valued
function defined as

βδ (x) = max
δ≤t≤1

{α (t x)} .

Therefore,
‖Fm (x)‖ ≤ {δ + (1 − δ) βδ (x)} ‖x‖ = γδ (x) ‖x‖ ,

where γδ .. X \ {O} → R1 is a continuous function such that for all x �= O , γδ (x) ∈
[0, 1) .
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Hence the conditions of Theorem 10.4.1 are satisfied with α = γδ , which implies
the assertion.

Remark 10.4.8. Replace (10.4.8) by the following weaker condition: Assume that for
all m ≥ 0 and x, x ′ ∈ X ,

∥
∥Fm (x) − Fm

(

x ′)∥∥ ≤ αm (ξm)
∥
∥x − x ′∥∥ , (10.4.10)

where for m ≥ 0, αm .. X → R1 is a continuous function, ξm is a point on the linear
segment connecting x and x ′, and αm (x) ∈ [0, 1) for all m ≥ 0 and O �= x ∈ X.

Then the assertion of the theorem may not hold, as it is illustrated in the case of
Example 10.4.3.

Corollary 10.4.9. Recursion (10.4.1) and inequality (10.4.9) imply that for m ≥ 0,

‖xm+1‖ = ‖Fm (xm)‖ ≤ α (xm) ‖xm‖ ,

where

α (x) =
∫ 1

0
α (t x) dt.

Hence, by replacing α (x) by α (x), Corollary of Theorem 10.4.1 remains valid.

In the previous results no differentiability of functions Fm was assumed. In the
special case of Fréchet-differentiable functions Fm , the above theorem can be re-
duced to very practical convergence conditions. These results are presented in the
next section.

10.5 Convergence of single-step methods with differentiable
iteration functions

Assume now that B is a Banach space, X ⊆ B, and functions Fm .. X → X are
continuously differentiable on X . It is also assumed that X is compact and convex,
O ∈ X , furthermore O is a common fixed point of functions Fm . In this special case,
the following result holds.

Theorem 10.5.1. Let F ′
m (x) denote the Fréchet derivative of Fm at x. Assume that

for all m ≥ 0,
∥
∥F ′

m (x)
∥
∥ ≤ β (x) , (10.5.1)

where β.. X → R1+ is a continuous function such that for x �= O, β (x) ∈ [0, 1).
Then xm → O as m → ∞.

Proof. Select
X0 = {x \ x ∈ X and ‖x‖ ≤ ‖x0‖} ,



10.5 Differentiable iteration functions 459

then X0 is compact. Select furthermore α = β. We can easily verify that all condi-
tions of Theorem 10.4.7 are satisfied with X0 replacing X , which implies the asser-
tion. Assumptions (D1) and (D3) are obviously satisfied. Assumption (D2) follows
from the mean value theorem of derivatives and that the linear segment between x
and x ′ is compact and function α is continuous. In order to verify assumption (D4),
we have to show that xm ∈ X0 for all m ≥ 0. From the beginning of the proof of
Theorem 10.3.6 we conclude that for O �= x ∈ X , ‖Fm (x)‖ < ‖x‖. Then finite
induction implies that for all m ≥ 0, ‖xm‖ ≤ ‖x0‖. Hence xm ∈ X0 for all m ≥ 0,
which completes the proof.

Remark 10.5.2. If (10.5.1) is replaced by the weaker assumption that for all m ≥ 0
and x ∈ O ,

∥
∥F ′

m (x)
∥
∥ < 1,

the result may not hold, as the case of Example 10.4.3 illustrates. However, if Fm

does not depend on m, that is, when Fm = F , the condition
∥
∥F ′ (x)

∥
∥ < 11 for all x �= O

implies that xm → O as k → ∞. To see this assertion, select β (x) = ∥
∥F ′ (x)

∥
∥.

Note that this special result was first introduced by Wu and Brown [208].

Corollary 10.5.3. Note that the corollary of Theorem 10.4.7 remains valid with
α (x) = β (x).

Remark 10.5.4. Assume that no assumption is made on the derivatives at the fixed
point O .

Consider next the special case, when B = RN . Obviously the above results are
still valid. However this further specialization enables us to derive even stronger
conditions for the convergence of the iteration process

xm+1 = Fm (xm) ,

where Fm .. B → B.

Theorem 10.5.5. Let U be an open neighborhood of O. Assume that for all m, Fm is
differentiable, and there exists a continuous function α.. RN → R1 such that α (x) ∈
[0, 1) for x �= O, furthermore

(E1) ‖Fm (x)‖ ≤ α (x) ‖x‖ for all m and O �= x ∈ U;
(E2) If x /∈ U and ‖Fm (x)‖ = α (x) ‖x‖ with some m, then

∥
∥F ′

m (x) x
∥
∥ ≤ α (x) ‖x‖.

Under these assumptions, xm → O as m → ∞.

Proof. We will prove that for all m ≥ 0 and x /∈ O , relation (10.4.2) holds, which
implies the assertion.

Assume that for some m, (10.4.2) does not hold in the entire set RN \ {O}, then
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r∗ = inf {‖x‖ \ O and (10.4.2) does not hold for m}

exists and is positive. If for all vectors satisfying ‖x‖ = r∗, ‖Fm (x)‖ > α (x) ‖x‖,
then the continuity of functions Fm and α implies that r∗ can be reduced, which
contradicts the definition of r∗. Therefore there is at least one x∗ such that

∥
∥x∗∥∥ = r∗ and

∥
∥Fm

(

x∗)∥∥ = α (x)
∥
∥x∗∥∥ . (10.5.2)

Because Fm is differentiable, we know that for any ε > 0, and sufficiently large
λ ∈ (0, 1),

∥
∥Fm

(

(1 − λ) x∗)− Fm
(

x∗)− λF ′
m

(

x∗) x∗∥∥ < ελ
∥
∥x∗∥∥ ,

which together with (E2) implies that
∥
∥Fm

(

(1 − λ) x∗)− Fm
(

x∗)∥∥ < λ
[∥
∥F ′

m

(

x∗) x∗∥∥+ ε
∥
∥x∗∥∥]

= λ
[

β
(

x∗)+ ε
] ∥
∥x∗∥∥ ,

where
β
(

x∗) = ∥
∥F ′

m

(

x∗) x∗∥∥ ∥∥x∗∥∥−1
< α

(

x∗) .

From this and equality (10.5.1) we conclude that
∥
∥Fm

(

(1 − λ) x∗)∥∥ >
∥
∥Fm

(

x∗)∥∥− λ
[

β
(

x∗)+ ε
] ∥
∥x∗∥∥

= (

α
(

x∗)− λβ
(

x∗)− λε
) ∥
∥x∗∥∥

≥ ∥
∥x∗∥∥α

(

x∗) (1 − λ)

= ∥
∥(1 − λ) x∗∥∥α

(

x∗) ,

when ε is selected small enough. Because α is continuous, this inequality contradicts
again the definition of r∗, which completes the proof.

Corollary 10.5.6. Note that the corollary of Theorem 10.4.1 can be applied again
for estimating the convergence speed under the assumption of the theorem.

Corollary 10.5.7. Consider the special case, when Fm = F. The assertion of the
theorem remains valid, if conditions (E1) and (E2) are substituted by the following
assumptions:

There exists an ε > 0 and a 0 ≤ q < 1 such that

(E′
1) For all x �= O and ‖x‖ < ε,

‖F (x)‖ ≤ q ‖x‖ ;

(E′
2) If ‖x‖ ≥ ε and ‖F (x)‖ = ‖x‖ , then

∥
∥F ′ (x) x

∥
∥ < ‖x‖ .
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Proof. Define

rm = max
{∥
∥F ′ (x) x

∥
∥ ‖x‖−1 / ‖F (x)‖ = ‖x‖ , mε ≤ ‖x‖ ≤ (m + 1) ε

}

for m = 1, 2, ....
Obviously rm < 1. Introduce constants

Rm = max {q; r1; r2; ...; rm} ,

and the piecewise linear function p (t) with vertices (0, q), (ε, R1), (2ε, R2), (3ε,
R3), .... Then all conditions of the theorem are satisfied with U = {x \ ‖x‖ < ε}
and α (x) = p (‖x‖) .

Remark 10.5.8. Then mean value theorem of derivatives implies that if
∥
∥F ′ (O)

∥
∥ <

1, then there exist ε > 0 and 0 ≤ q < 1 that satisfy condition (E′
1). Assume fur-

thermore that if x �= O and ‖F (x)‖ = ‖x‖, then
∥
∥F ′ (x) x

∥
∥ < ‖x‖. In this case

condition (E′
2) is also satisfied. Hence the iteration sequence {xm} converges to O .

This special result was first introduced by Fujimoto [96], [97].

Assume again that X ⊆ B, where B is Banach space, furthermore for all m ≥ 0,
Fm is Fréchet-differentiable at O , and

∥
∥F ′

m (O)
∥
∥ ≤ 1. As the following example

shows, these conditions do not imply even the local convergence of the algorithm.

Example 10.5.9. Select X = R1, and for m ≥ 0 let

Fm (x) = (m+1)(m+4)x
(m+2)(m+3)

.

It is easy to verify that for all m ≥ 0,

0 ≤ F ′
m (0) = (m+1)(m+4)

(m+2)(m+3)
< 1.

If x0 �= 0 is any initial approximation, then finite induction shows that

xm = m + 3

3 (m + 1)
x0 → 1

3
x0 �= 0 as m → ∞.

However if the process is stationary, then the following result holds:

Theorem 10.5.10. Assume that Fm = F (m ≥ 0), O is in the interior of X, and F
is Fréchet-differentiable at O, furthermore

∥
∥F ′ (O)

∥
∥ < 1. Then there is a neighbor-

hood U of O such that x0 ∈ U implies that xm → O as m → ∞.

Proof. Because F is differentiable at O , we can write F (x) = L (x)+ R (x), where
L is a bounded linear mapping of X into itself and lim ‖R (x)‖ ‖x‖−1 = O as x →
O . By assumption ‖L‖ < 1. Select a number b > 0 such that ‖L‖ < b < 1. There
exists a d > 0 such that

‖R (x)‖ < (1 − b) ‖x‖ if ‖x‖ < d.
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Let U = {x ∈ X/ ‖x‖ < d}. We shall now prove that U has the required properties.
Using the triangle inequality, we can easily show that

‖F (x)‖ < e ‖x‖ , if x ∈ U ,

where e = ‖L‖ + 1 − b. Because 0 < e < 1, it follows that U is F-invariant.
Consequently, if x0 ∈ U , the entire sequence of iterates xm is also contained in U ,
and using finite induction we get

‖xm‖ ≤ em ‖x‖ .

Because em → O , xm → O as m → ∞.

Remark 10.5.11. Assumption
∥
∥F ′ (O)

∥
∥ < 1 can be weakened by assuming only that

the spectral radius of F ′ (O) is less than one. In this case,
∥
∥F ′ (O)N

∥
∥ < 1 with some

N > 1, and then apply the theorem for the function

F N (x) = (F ◦ F ◦ · · · ◦ F) (x) .

Remark 10.5.12. Note that no differentiability is assumed for x �= O .

Remark 10.5.13. When X = RN , our results can be reduced to the ones obtained by
Ostrowskii [155] and Ortega-Rheinboldt [154].

In the previous results, the special Liapunov function V (x) = ‖x‖ was used,
where ‖·‖ is some vector norm. Select now the Liapunov function V (x) = ‖Px‖,
where P is an n × n constant nonsingular matrix. For the sake of simplicity, we
assume that Fm = F for all m ≥ 0. Then in Theorem 10.4.1 and 10.5.10 conditions
(10.4.2) and (10.5.1) can be substituted by the modified relations

‖P F (x)‖ < ‖Px‖

and
∥
∥P F ′ (x) u

∥
∥ < ‖Pu‖ (for all u �= O).

If one selects the Euclidean norm ‖x‖ = xT x , then these conditions are equivalent
to the relations

FT (x) PT P F (x) < xT PT Px (10.5.3)

and
uT F ′ (x)T PT P F ′ (x) u < uT PT Pu. (10.5.4)

Note that (10.5.3) holds for all u �= O if and only if matrix F ′ (x)T PT P F ′ (x) −
PT P is negative definite. This condition has been derived in Fujimoto [97] and it is
a generalization of Theorem 1.3.2.3 of Okuguchi [153]. The case of other Liapunov
functions can be discussed in an analogous manner, the details are omitted.

In the rest of the section, we are concerned with the problem of approximating a
locally unique common solution x∗ of the sequence of nonlinear operator equations
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Fn (x) = 0 (n ≥ 0) , (10.5.5)

where each Fn (n ≥ 0) is defined on the same convex subset D of a Banach space X
with values in a Banach space Y .

Let x0, y0 ∈ D be fixed, and define the two-step Newton-like method for all
n ≥ 0 by

yn = xn − An (xn)−1 Fn (xn) (10.5.6)

xn+1 = yn − yn . (10.5.7)

Here, An (xn) denotes a linear operator that is a “conscious” approximation to the
Fréchet derivative F ′

n (xn) of F evaluated at x = xn for all n ≥ 0. The points yn ∈ X
for all n ≥ 0 are to be determined in such a way that the iteration {xn} (n ≥ 0)

converges to a common solution x∗ of Equations (10.5.5).
We will assume that 0 is in D and x∗ = 0.
Here we provide convergence results for the iteration (10.5.6)–(10.5.7) as well

as an error analysis in a Banach space setting. The monotone convergence of this
iteration is also examined in a partially ordered topological space setting.

Finally, some application of our results are provided to the solution of nonlinear
integral equations of Uryson-type.

Let R > 0 be fixed. We assume that the following conditions are satisfied
∥
∥
∥An (0)−1 (An (x) − An (0))

∥
∥
∥ ≤ C0 (‖h‖) (10.5.8)

and ∥
∥
∥An (0)−1 (F ′

n (x + h) − An (x)
)
∥
∥
∥ ≤ C (r, r + ‖h‖) (10.5.9)

for all x ∈ U (0, r) and ‖h‖ ≤ R − r.
Here C0 is a nondecreasing function, and C is a nondecreasing function of two

variables on [0, R] and [0, R] × [0, R], respectively.
Let x0, y0 ∈ D, and R > 0 be fixed. We introduce the constants

‖x0‖ ≤ t0 and �0 ≥ ‖y0‖ , (10.5.10)

and the iterations for all n ≥ 0

sn = 1

1 − C0 (‖xn‖)
∫ 2‖xn‖

‖xn‖
C (‖xn‖ , q) dq, (10.5.11)

sn = 1

1 − C0 (tn)

∫ 2tn

tn
C (tn, q) dq (10.5.12)

tn+1 = sn + �n, (10.5.13)

for some given sequence {�n} (n ≥ 0).
We can now prove the following result:
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Theorem 10.5.14. Let Fn.. D ⊆ X → Y (n ≥ 0) be Fréchet-differentiable nonlinear
operators.
Assume:

(a) The point x∗ = 0 is a common solution of the operators Fn for all n ≥ 0;
(b) the conditions (10.5.8) and (10.5.9) are satisfied on U (0, R) and U (0, R) ⊆ D;
(c) the following estimates are true:

‖zn‖ ≤ �n ≤ βntn n ≥ 0 for some βn ≥ 0, (10.5.14)

C0 (t0) < 1, (10.5.15)

0 ≤ βn + δn ≤ 1,

∞
∏

n=0

(βn + δn) = 0 (10.5.16)

where,

δn = C (tn, 2tn)

1 − C0 (tn)
,

∫ t0

0
C (0, q) dq < 1, (10.5.17)

and
t0 ≤ R. (10.5.18)

Then,
(i) The sequence {tn} (n ≥ 0) generated by (10.5.12)–(10.5.13) is monotonically de-

creasing to 0, and
tn ≤

n
∏

n=0

(βn + δn) t0 n ≥ 0. (10.5.19)

(ii) The iterates {xn} (n ≥ 0) generated by (10.5.6)–(10.5.7) are well defined, belong
to U (0, t0) for all n ≥ 0 and converge to 0 which is a unique common solution
of the operators Fn (n ≥ 0) in U (0, t0). Moreover, we have

‖xn‖ ≤ tn (n ≥ 0) . (10.5.20)

Proof. (i) Inequality (10.5.19) is true for n = 0 as equality. Let us assume that
(10.5.19) is true for m = 0, 1, 2, ..., n. Then by (10.5.12), we get

sm = 1

1 − C0 (tm)

∫ 2tm

tm
C (tm, q) dq

≤ 1

1 − C0 (tm)
C (tm, 2tm) (2tm − tm) ≤ δmtm ≤ tm . (10.5.21)

From relations (10.5.13), (10.5.14), (10.5.16), and (10.5.21), we get

tm+1 = sm + �m ≤ δmtm + βmtm = (δm + βm) tm

m+1
∏

i=0

(δi + βi ) t0. (10.5.22)

Hence, relation (10.5.22) shows that the sequence {tn} (n ≥ 0) is monotonically de-
creasing to 0.
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(ii) By induction on n, we will show (10.5.20). For n = 0, relation (10.5.20)
becomes ‖x0‖ ≤ t0, which is true by (10.5.10). Suppose the relation (10.5.20) holds
for i < n. Because

Am (xm) = Am (xm) − Am (0) + Am (0)

= Am (0)
[

I + Am (0)−1 (Am (xm) − Am (0))
]

,

from relations (10.5.8) and (10.5.20), we obtain
∥
∥
∥Am (0)−1 (Am (xm) − Am (0))

∥
∥
∥ ≤ C0 (‖xm‖) ≤ C0 (tm) ≤ C0 (t0) < 1

(by (10.5.15)).
It now follows from the Banach Lemma on invertible operators that Am (xm)

(m ≥ 0) is invertible, and

∥
∥
∥Am (xm)−1 Am (0)

∥
∥
∥ ≤ 1

1 − C0 (‖xm‖) ≤ 1

1 − C0 (tm)
≤ 1

1 − C0 (t0)
(m ≥ 0) .

(10.5.23)
From relations (10.5.6) and (10.5.13), we now obtain the approximation

ym =
(

Am (xm)−1 Am (0)
)
[

Am (0)−1
∫ 1

0

(

F ′
m (t xm) − Am (xm)

)

xmdt

]

,

and using (10.5.9), (10.5.23), and (10.5.20), we get in turn

‖ym‖ ≤
∥
∥
∥Am (xm)−1 Am (0)

∥
∥
∥ ·

∥
∥
∥
∥
∥

[

Am (0)−1
∫ 1

0

(

F ′
m (t xm) − Am (xm)

)

xmdt

]∥
∥
∥
∥
∥

≤ 1

1 − C0 (‖xm‖)
∫ 1

0
C (‖xm‖ , ‖xm‖ + (1 − t) ‖xm‖) ‖xm‖ dt

= sm ≤ sm (m ≥ 0) . (10.5.24)

Using relations (10.5.14), (10.5.19), (10.5.22), and (10.5.24), we obtain

‖xm+1‖ ≤ ‖ym‖ + ‖ym‖ ≤ sm + �m = tm+1 ≤ t0,

which together with part (i) show (ii) except the uniqueness part.
To show uniqueness, let us assume that there exists a second common solution

y∗ of the operators Fn (n ≥ 0) in U (0, t0). Then we get the estimate

∫ 1

0

∥
∥
∥A (0)−1 [F ′

m

(

t y∗)− A (0)
]
∥
∥
∥ ≤

∫ 1

0
C
(

0, 0 + t
∥
∥y∗∥∥) dt

≤
∫ 1

0
C (0, t t0) dt ≤

∫ t0

0
C (0, q) dq < 1

by (10.5.17).
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It now follows from the above estimate that the linear operator
∫ 1

0 F ′
m (t y∗) dt is

invertible, and from the approximations

Fm
(

y∗)− Fm (0) =
∫ 1

0
F ′

k

(

t y∗) dty∗ (m ≥ 0)

it follows that y∗ = 0.
That completes proof of the Theorem.

Remark 10.5.15. If we set Am (x) = F ′
m (x) for all x ∈ D, then the iterations

(10.5.6)–(10.5.7) become

yn = xn − F ′
n (xn)−1 Fn (xn) (10.5.25)

xn+1 = yn − yn (n ≥ 0) . (10.5.26)

Let us also set C (0, t) = C0 (t) for all t ∈ [0,+∞). Then under the hypotheses
of the theorem, the conclusions will also hold by for the NK iteration {xn} (n ≥ 0)

generated by (10.5.25)–(10.5.26) for all n ≥ 0.

Finally note that the sufficient convergence conditions as well as the error bounds
can be further improved if center-Lipschitz conditions are also introduced along the
lines of Section 2.2.

Example 10.5.16. We assume that An (x) = F ′
n (x) for all n ≥ 0 and x ∈ U (0, R).

Let us assume that the following condition is satisfied
∥
∥
∥F ′

n (0)−1 (F ′
n (v) − F ′

n (w)
)
∥
∥
∥ ≤ q (r) ‖v − w‖ (10.5.27)

for all v,w ∈ U (0, R) , n ≥ 0, and for some nondecreasing function q on [0, R].
Then as in [35] we can show that by setting

C (r, r + ‖h‖) =
∫ r+‖h‖

r
w (t) dt, w (t) =

∫ r

0
q (t) dt (10.5.28)

and
C0 (t) = C (0, t) t ∈ [0, R] (10.5.29)

conditions (10.5.8) and (10.5.9) are satisfied.

Let assume that X = Y = C = C [0, 1] the space of continuous functions on
[0, 1] equipped with the usual supremum norm. We consider Uryson-type nonlinear
integral equations of the form

F (x) (t) = x (t) −
∫ 1

0
K (t, s, x (s)) ds. (10.5.30)

We make use of the following standard result whose proof can be found for example
in [6], [43].
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Theorem 10.5.17. The Lipschitz condition (10.5.27) for the Fréchet derivative F ′ of
the operator (10.5.30) holds if and only if the second derivative K ′′

uu (t, s, u) exists
for all t and almost all s and u, and

sup
s∈[0,1]

∫ 1

0
sup
|u|≤r

∣
∣K ′′

uu (t, s, u)
∣
∣ ds < ∞ (10.5.31)

Moreover, the left-hand side in relation (10.5.31) is then the minimal Lipschitz
constant q(r)

α
, α = ∥

∥F ′ (0)−1
∥
∥ in (10.5.27).

Moreover, the constant α is given by

α = 1 + sup
t∈[0,1]

∫ 1

0
|r (t, s)| ds, (10.5.32)

where r (t, s) is the resolvant kernel of the equation

h (t) −
∫ 1

0
K ′

u (t, s, 0) h (s) ds = −
∫ 1

0
K (t, s, 0) ds. (10.5.33)

Proof. Let us consider a simple example. Suppose that K (t, s, u) = c1 (t) c2 (s)
c3 (u) with two continuous functions c1 and c2, and c3 ∈ C2. We set

d1 =
∫ 1

0
c2 (s) ds, d2 =

∫ 1

0
c1 (s) c2 (s) ds. (10.5.34)

Then relation (10.5.33) becomes

h (t) =
[

c1
4c1

3 (0) − d1c3 (0)
]

c1 (t) , (10.5.35)

where

c′
4 =

∫ 1

0
c2 (s) h (s) ds. (10.5.36)

substituting relation (10.5.35) into (10.5.36), one may calculate c′
4 and hence find the

resolvent kernel r (t, s) in case d2c′
3 (0) < 1, to get

r (t, s) = c1(t)c2(t)c′
3(0)

1−d2c′
3

. (10.5.37)

Using relation (10.5.31), (10.5.32), we obtain

q (t) = ‖c1‖ d1 sup
‖u‖≤r

∣
∣c′′

3 (u)
∣
∣ , (10.5.38)

η = d1c3(0)

1−d2c′
3(0)

‖c1‖ (10.5.39)

and
β = 1 + d1c3(0)

1−d2c′
3(0)

‖c1‖ . (10.5.40)
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Let us now consider the sequence of equations

Fn (x) (t) = 0 (10.5.41)

where

Fn (x) (t) = x (t) −
∫ 1

0
Kn (t, s, x (s)) ds, (10.5.42)

and we choose for all n ≥ 0

cn
1 (t) = n+1

n+2
2
3 t, cn

2 (t) = n+1
n+2

2
10 s, cn

3 (u) = n+2
n+1

(
1
3 u2 + 1

10

)

u.

Then using relations (10.5.28), (10.5.29), (10.5.34), (10.5.37)–(10.5.40), we obtain
for all n ≥ 0

dn
1 = 1

10
n+1
n+2 , dn

2 = 2
100

n+1
n+2 , dn

2 c′n
3 (0) = 0 < 1,

rn (t, s) = 0, α = 1, qn (t) = 6
100

(
n+1
n+2

)2
r ≤ 6

100r = q (r) ,

w (r) = 3
100r2, C (r, r + ‖h‖) = 1

100

[

(r + ‖h‖)3 − r3
]

,

and
C0 (t) = C (0, t) for all t ∈ [0, R] .

We select zn = 0 and βn = 0 for all n ≥ 0 for simplicity. Then (10.5.15), (10.5.16),
and (10.5.18) will be satisfied if the following conditions are satisfied, respectively

t0 <
3
√

100, t0 < 1
2

3
√

100, and t0 <
4
√

400.

By setting x0 (t) = 2 = t0 for all t and R = t0, with the above choices all conditions
(10.5.14)–(10.5.16), (10.5.17), and (10.5.18) are satisfied. Hence the conclusions of
Theorem 10.5.17 for equations (10.5.41) follow.

10.6 Monotone convergence

Let X be a linear space. We examine the monotone convergence of POTL-space (see
Section 1.2).

Theorem 10.6.1. Let Fn.. D ⊂ X → Y (n ≥ 0) where X is a regular POTL-space
and Y is a POTL-space. Let x0, x0, x−1 be three points of D such that

x0 ≤ x0 ≤ x−1, 〈x0, x−1〉 ⊂ D, F0 (x0) ≤ 0 ≤ F0 (x0) , (10.6.1)

and denote

S1 =
{

(x, y) ∈ X2
∣
∣ x0 ≤ x ≤ y ≤ x0

}

, (10.6.2)

S2 =
{

(u, x−1) ∈ X2
∣
∣ x0 ≤ u ≤ x0

}

, (10.6.3)

S3 = S1 ∪ S2. (10.6.4)

Assume:
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(a) The operators An (·, ·) .. S3 → L X (X, Y ) are such that

Fn (y) − Fn (x) ≤ An (w, z) (y − y) (10.6.5)

for all n ≥ 0 (x, y), (y, w) ∈ S1, (w, y) ∈ S3.
(b) The linear operators An (u, v), (n ≥ 0) have a continuous nonsingular nonneg-

ative subinverse.
(c) The following conditions hold:

Fn (x) ≤ Fn−1 (x) for all x ∈ 〈x0, y0〉 (n ≥ 1) , Fn−1 (x) ≤ 0, (10.6.6)

Fn (y) ≥ Fn−1 (x) for all x ∈ 〈x0, y0〉 (n ≥ 1) , Fn−1 (y) ≥ 0. (10.6.7)

(d) There exist sequences {yn}, {yn}, {yn
}

,
{

yn
}

(n ≥ 0) satisfying

Fn
(

yn
)− An

(

yn
) ≤ 0, An = An (xn, xn) (10.6.8)

Fn (yn) − An (yn) ≥ 0, (10.6.9)

yn − yn ≥ yn − yn, (10.6.10)

yn ≥ 0 (10.6.11)

and
yn ≤ 0 for all n ≥ 0. (10.6.12)

Then there exist sequence {xn}, {xn} (n ≥ 0) and points x∗, x∗, such that for all
n ≥ 0,

Fn (xn) + An (yn − xn) = 0, (10.6.13)

yn + xn+1 − yn = 0, (10.6.14)

Fn (xn) + An
(

yn − xn
) = 0, (10.6.15)

yn + xn+1 − yn = 0, (10.6.16)

Fn (xn) ≤ Fn−1 (xn) ≤ 0 ≤ Fn−1 (xn) ≤ Fn (xn) , (10.6.17)

x0 ≤ y0 ≤ x1 ≤ · · · ≤ yn ≤ xn+1 ≤ xn+1 ≤ yn ≤ · · · ≤ x1 ≤ y0 ≤ x0,

(10.6.18)

and
lim

n→∞ xn = x∗ ≤ x∗ = lim
n→∞ xn . (10.6.19)

Moreover, if the operators An are inverse nonnegative, then any solution u of the
equations Fn (x) = 0 (n ≥ 0) in (x0, x0) in 〈x0, x0〉 belongs to

〈

x∗, x∗〉. Further-
more, if x∗ = x∗, then we get x∗ = u = x∗.

Proof. Let L0 be a continuous nonsingular nonnegative left subinverse of A0, and
consider the mapping P .. 〈0, x0 − x0〉 → X defined by

P (x) = x − L0 (F0 (x0) + A0 (x))

where A0 (x) denotes the image of x with respect to the mapping A0 = A0 (x0, x0).
It is easy to see that P is isotone and continuous. We also have
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P (0) = −L0 (F0 (x0)) ≥ 0, (by (10.6.1)),

P (x0 − x0) = x0 − x0 + L0 (F (x0) F0 (x0) − A0 (x0 − x0))

≤ x0 − x0 + L0 (F0 (x0) − A0 (x0 − x0)) ≤ x0 − x0.

According to Kantorovich’s Lemma (see Section 1.2), the operator P has a fixed
point w ∈ 〈0, x0 − x0〉. Taking y0 = x0 + w, we have

F0 (x0) + A0
(

y0 − x0
) = 0, x0 ≤ y0 ≤ x0. (10.6.20)

Using (10.6.20) and the above approximation, we get F0
(

y0
) = F0

(

y0
)− F0 (x0)−

A0
(

y0 − x0
) ≤ 0. Hence, we obtain by (10.6.6), F1

(

y0
) ≤ F0

(

y0
) ≤ 0. From the

approximation (10.6.16) and estimates (10.6.8), (10.6.12) we have that

x1 − y0 = −z0 ≥ 0 =⇒ x1 ≤ y0, (10.6.21)

F0 (x1) ≤ F0 (x1) − F0
(

y0
)− A0

(

x1 − y0
) ≤ 0, (10.6.22)

and by (10.6.6)
F1 (x1) ≤ F0 (x1) ≤ 0. (10.6.23)

Consider now the operator G..
〈

0, x0 − y0
〉 → E1 defined by G (x) = x +

L0 (F0 (x0) − A0 (x)) . G is clearly continuous, isotone, and

G (0) = L0 (F0 (x0)) ≥ 0, (by (10.6.1))

G
(

x0 − y0
) = x0 − y0 + L0

(

F0
(

y0
))+ L0

(

F0 (x0) − F0
(

y0
)− A0

(

x0 − y0
))

≤ x0 − y0 + L0
(

F0 (x0) − F0
(

y0
)− A0

(

x0 − y0
))

≤ x0 − y0, (by (10.6.5)).

Applying the Kantorovich Lemma again, we deduce the existence of a point v ∈
〈

0, x0 − y0
〉

such that G (v) = v. Taking y0 = x0 − v,

F0 (x0) + A0 (y0 − x0) = 0, y0 ≤ y0 ≤ x0. (10.6.24)

Using (10.6.5) and (10.6.24), we get

F0 (y0) = F0 (y0) − F0 (x0) − A0 (y0 − x0) ≥ 0.

Hence, by (10.6.7), we obtain

F1 (y0) ≥ F0 (y0) ≥ 0.

Using (10.6.11), and the approximation

x1 − y0 = −y0 ≤ 0 =⇒ x1 ≤ y0, (10.6.25)

and by (10.6.9), we obtain

F0 (x1) ≥ F0 (x1) − F0 (y0) − A0 (x1 − y0) ≥ 0.
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Hence, we get by (10.6.7)

F1 (x1) ≥ F0 (x1) ≥ 0. (10.6.26)

By induction, it easy to show that there exist sequence {xn}, {xn} (n ≥ 0) sat-
isfying (10.6.13)–(10.6.18) in a regular space E1 and as such there exist x∗, x∗ ∈
〈x0, x0〉 satisfying (10.6.19).

If x0 ≤ u ≤ x0 and Fn (u) = 0 (n ≥ 0), then we can obtain in turn

A0 (y0 − u) = A0 (x0 − u) − (F0 (x0) − F0 (u)) ≥ 0,

and
A0
(

y0 − u
) = A0 (x0 − u) − (F0 (x0) − F0 (u)) ≤ 0.

Because the operator A0 is inverse nonnegative, we get y0 ≤ u ≤ y0. Proceeding
by induction, we deduce that yn ≤ u ≤ yn , from which it follows that yn ≤ xn ≤
yn+1 ≤ u ≤ yn+1 ≤ xn ≤ yn for all n ≥ 0. That is, we have xn ≤ u ≤ xn for all
n ≥ 0. Hence, we get x∗ ≤ u ≤ x∗. Furthermore, if x∗ = x∗, then we get

x∗ = u = x∗,

which completes the proof of the Theorem.

Remark 10.6.2. The linear operators An (n ≥ 0) are usually chosen as divided dif-
ferences of order one related with the operators Fn for each n ≥ 0. For example,
we can set An = [xn, xn] (n ≥ 0), or An = [

xn, xn+1
]

(n ≥ 0), etc., where each
[·, ·] depends on the operators Fn (n ≥ 0). The hypotheses (10.6.8)–(10.6.12) will
then be conditions on divided differences for each n ≥ 0. It then turns out that for
appropriate choices of the An’s (n ≥ 0), relations (10.6.8)–(10.6.12) turn out to be
standard natural conditions on divided differences.

10.7 Exercises

10.7.1. Maximize F = 240x1 + 104x2 + 60x3 + 10x4 subject to

20x1 + 9x2 + 6x3 + x4 ≤ 20

10x1 + 4x2 + 2x3 + x4 ≤ 10

xi ≥ 0, i = 1, ..., 4.

10.7.2. Minimize F = 3x1 + 2x2 subject to

8x1 − x2 ≥ 8

2x1 − x2 ≥ 6

x1 + 3x2 ≥ 6

x1 + 6x2 ≥ 8

x1 ≥ 0, x2 ≥ 0.
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10.7.3. Find an interval [a, b] containing a root x∗ of the equation x = 1
2 cos x such

that for every x0 ∈ [a, b], the iteration xn+1 = 1
2 cos xn will converge to x∗.

Solve the equation by using NK or the secant method.
10.7.4. Solve the following nonlinear equations by the method of your choice:

(a) ln x = x − 4
(b) xex = 7
(c) ex ln x = 7.

10.7.5. Find (I − A)−1 (if it exists) for the matrix

A =
(

0.12 0.04
0.01 0.03

)

.

Perform three steps.
10.7.6. Repeat Exercise 10.7.5 for the matrix

A =
(−1 3

2 4

)

.

10.7.7. Solve problem
ẋ = x − y − 1 x (0) = 0
ẏ = x + y y (0) = 1.

Perform three steps.
10.7.8. Solve the boundary-value problem

ẍ = t x − ẋ − 1, x (0) = x (1) = 1

by the discretization method. Select h = 0.1.

10.7.9. Solve

x (t) =
∫ 1

0

(t−s)2

10 x (s) ds − 7.

10.7.10. Solve

x (t) =
∫ t

0
(t + s) x (s) ds − 4.

10.7.11. Consider a continuous map P .. Rn → Rn such that P ∈ C1 and P (0) = 0.
Set S1 = {x | ‖P (x)‖ < ‖x‖) , S2 = {x | ‖P (x)‖ ≥ ‖x‖). Assume that
(a) S1 is invariant under P , P (S1) ⊆ S1 and
(b) For all a ∈ S2, there exists a positive integer i (a) such that Pi(a) (a) ∈ S1.
Show that for all x ∈ Rn , Pm (x) → 0 as m → ∞.

10.7.12. Assume that there exists a function h.. (0,∞) → R such that |y| ≤ h (r) |x |
for all m ≥ 0, r > 0, |x | ≤ r, x ∈ X and y ∈ Fm (x). Show that

|xm | ≤ qm,

where
qm+1 = h (qm) qm, q0 = |x0| .

Provide a convergence analysis of iteration (10.4.1) based on the above estimate.
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10.7.13. To find a zero for G (x) = 0 by iteration, where G is a real function defined
on [a, b] rewrite the equation as,

x = x + c · G (x) ≡ F (x)

for some constant c �= 0. If x∗ is a root of G (x) and if G ′ (x∗) �= 0, how should
c be chosen in order that the sequence xm+1 = F (xm) converge to x∗?

10.7.14. Solve the initial value problem

ẋ (t) = 1 + cos (x (t)) , x (0) = 0.

10.7.15. The predator-prey population models describe the iteration of a prey popu-
lation X and a predator population Y . Assume that their interaction is modeled
by the system of ordinary differential equations

ẋ = x − 1
4 x2 − 1

10 xy + 1

ẏ = − 1
4 y + 1

7 xy + 2
3 .

(Assume x (0) = y (0) = 0.) Solve the system.
10.7.16. Assume that Fm = F (m ≥ O), O is in the interior of X , and F is Fréchet-

differentiable at O , furthermore the special radius of F ′ (0) is less than 1. Then
show that there is a neighborhood U of O such that x0 ∈ U implies that xm → O
as m → ∞.

10.7.17. Let F .. Rn → Rn be a function such that F (0) = 0, F ∈ C0, and consider
the difference equation x (t + 1) = F (x (t)). If, for some norm, ‖F (x)‖ ≤
‖x‖ for any x �= O , then show that the origin is globally asymptotically stable
equilibrium for the equation.

10.7.18. Assume that there exists a strictly increasing function g.. R → R such that
g (O) = 0, and a norm such that g (‖F (x)‖) < g (‖x‖) for all x �= 0. Then show
that O is a globally asymptotically stable equilibrium for equation x (t + 1) =
F (x (t)), where F (O) = 0.

10.7.19. Consider the following equation in R2:

x1 (t + 1) = 8 sin
(

x1 (t) + π
�

)+ .2x2 (t)

x2 (t + 1) = 8x1 (t) + .1x2 (t) .

10.7.20. Solve the Fredholm-type integral equation

x (t) =
∫ 1

0

t · x (s)

10
dx + 1.

10.7.21. Solve the Volterra-type integral equation

x (t) =
∫ t

0

t · x (s)

10
ds + 1.

10.7.22. Solve equation

x = sin x

2
+ 1.
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The Newton-Kantorovich Theorem and Mathematical
Programming

The Newton-Kantorovich Theorem 2.2.4 with a few notable exceptions [173], [174],
[165], has not been sufficiently utilized in the mathematical programming commu-
nity. The purpose of this chapter is to provide a bridge between the two research
communities by showing that the Newton-Kantorovich theorem can be used in an-
alyzing LP and interior point methods and can be used for obtaining optimal error
bounds along the way.

In Sections 11.1 and 11.2 we show how to improve on the elegant works of
Renegar, Shub in [174] and Potra in [165]. To avoid repetitions, we simply refer the
reader to the above excellent works for the development of these methods. We simply
start from the point where the hypotheses made can be replaced by ours, which are
weaker. The benefits of this approach have also been explained in the Introduction
and in Section 2.2.

We also note that the work in [174] is motivated by a Theorem of Smale in com-
bination with the Newton-Kantorovich theorem, whereas the work in [165] differs
from the above as it applies the latter theorem directly.

11.1 Case 1: Interior point methods

It has already been shown in [165] that the Newton-Kantorovich theorem can be used
to construct and analyze optimal-complexity path following algorithms for linear
complementary problems. Potra has chosen to apply this theorem to linear comple-
mentary problems because such problems provide a convenient framework for ana-
lyzing primal-dual interior point methods. Theoretical and experimental work con-
ducted over the past decade has shown that primal-dual path following algorithms are
among the best solution methods for linear programming (LP), quadratic program-
ming (QP), and linear complementary problems (LCP). Primal-dual path following
algorithms are the basis of the best general-purpose practical methods, and they have
important theoretical properties [207].

I.K. Argyros, Convergence and Applications of Newton-type Iterations,
DOI: 10.1007/978-0-387-72743-1 11, c© Springer Science+Business Media, LLC 2008
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Potra using Newton-Kantorovich Theorem 2.2.4 in particular showed how to
construct path following algorithms for LCP that have O

(√
nL
)

iteration complex-
ity.

Given a point x that approximates a point x (τ ) on the central path of the LCP
with complementary gap τ, the algorithms compute a parameter θ ∈ (0, 1) so that
x satisfies the Newton-Kantorovich hypothesis (2.2.17) for the equation defining
x ((1 − θ) τ ). It is proven that θ is bounded below by a multiple of n−1/2. Because
(2.2.17) is satisfied, the sequence generated by NK method (2.1.3) or by the MNK
method (2.1.5) with starting x , will converge to x ((1 − θ) τ ). He showed that the
number of steps required to obtain an acceptable approximation of x ((1 − θ) τ ) is
bounded above by a number independent of n. Therefore, a point with complemen-
tarity gap less than ε can be obtained in at most O

(√
n log

(
ε0
ε

))

steps (for both
methods), where ε0 is the complementary gap of the starting point. For linear com-
plementary problems with rational input data of bit length L , this implies that an
exact solution can be obtained in at most O

(√
nL
)

iterations plus a rounding proce-
dure involving O

(

n3
)

arithmetic operations [207].
The differences between Potra’s work and the earlier works by Renegar [173]

and Renegar and Shub [174] have been stated in the introduction of this chapter and
further analyzed in [165].

We also refer the reader to the excellent monograph of Nesterov and Nemirovskii
[145] for an analysis of the construction of interior point methods for a larger class
of problems than that considered in [165].

Below one can find our contribution.
Let ‖ · ‖ be a given norm on Ri , i a natural integer, and x0 be a point of D such

that the closed ball of radius r centered at x0,

U (x0, r) = {x ∈ Ri .. ‖x − x0‖ ≤ r} (11.1.1)

is included in D ⊆ Ri , i.e.,
U (x0, r) ⊆ D. (11.1.2)

We assume that the Jacobian F ′(x0) of F .. D ⊆ X → X is nonsingular and that the
Lipschitz condition (2.2.36) is satisfied.

The Newton-Kantorovich Theorem 2.2.4 states that if the quantity

k = �η ≤ 1

2
, (11.1.3)

then there exists x∗ ∈ U (x0, r) with F(x∗) = 0. Moreover the sequences produced
by NK method (2.1.3) and by the modified NK method

yn+1 = yn − F ′(y0)
−1 F(yn), y0 = x0 (n ≥ 0) (11.1.4)

are well defined and converge to x∗.
Define

k0 = �̄η ≤ 1

2
, (11.1.5)
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where,

�̄ = �0 + �

2
. (11.1.6)

where �0 is the constant appearing in the center-Lipschitz conditions (2.2.43).
Note that

k ≤ 1

2
⇒ k0 ≤ 1

2
(11.1.7)

but not vice versa unless if �0 = �.
Similarly by simply replacing � with �0 (as (2.2.43) instead of (2.2.36) is actually

needed in the proof) and condition (11.1.3) by the weaker

k1 = �0η ≤ 1

2
(11.1.8)

in the proof of Theorem 1 in [165] we show that NK method (2.1.3) also converges
to x∗ and the improved bounds

‖yn − x∗‖ ≤ 2β0λ
2
0

1 − λ2
0

ξn−1
0 (n ≥ 1) (11.1.9)

where

β0 =
√

1 − 2k1

ω0
, λ0 = 1 − √

1 − 2k1 − h1

k1
and (11.1.10)

ξ0 = 1 −
√

1 − 2k1, (11.1.11)

hold. In case �0 = � (11.1.8) reduces to (11.1.3) used in [165]. Otherwise our error
bounds are finer. Note also that

k ≤ 1

2
⇒ k1 ≤ 1

2
(11.1.12)

but not vice versa unless if �0 = �.
We can now describe the linear complementarity problem as follows: Given two

matrices Q, R ∈ Rn×n (n ≥ 2) and a vector b ∈ Rn, the horizontal linear comple-
mentarity problem (HLCP) consists of approximating a pair of vectors (w, s) such
that

ws = 0

Q(w) + R(s) = b (11.1.13)

w, s ≥ 0.

The monotone linear complementarity problem (LCP) is obtained by taking R = −I
and Q positive semidefinite.

Moreover, the linear programming problem (LP) and the quadratic programming
problem (QP) can be formulated as HLCPs. That is, HLCP is a suitable way for
studying interior point methods.
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We assume HLCP (11.1.13) is monotone in the sense that:

Q(u) + R(v) = 0 implies utv ≥ 0, for all u, v ∈ Rn . (11.1.14)

Condition (11.1.14) holds if the HLCP is a reformulation of a QP. If the HLCP is
a reformulation of a LP, then the following stronger condition holds:

Q(u) + R(v) = 0 implies utv = 0, for all u, v ∈ Rn . (11.1.15)

Then we say in this case that the HLCP is skew-symmetric.
If the HLCP has an interior point, i.e., there is (w, s) ∈ Rn++ × Rn++ satisfying

Q(w) + R(s) = b, then for any parameter τ > 0 the nonlinear system

ws = τe

Q(w) + R(s) = b (11.1.16)

w, s ≥ 0

has a unique positive solution x(τ ) = [

w(τ)t , s(τ )t
]t

.

The set of all such solutions defines the central path C of the HLCP. It can be
proved that (w(τ), s(τ )) converges to a solution of the HLCP as τ → 0. Such an
approach for solving the HLCP is called the path following algorithm.

At a basic step of a path following algorithm, an approximation (w, s) of (w(τ),
s(τ )) has already been computed for some τ > 0. The algorithm determines
the smaller value of the central path parameter τ+ = (1 − θ) τ, where the value
θ ∈ (0, 1) is computed in some unspecified way. The approximation (wt , st ) of
(w(τ+), s(τ+)) is computed. The procedure is then repeated with (w+, s+, τ+) in
place of (w, s.τ ) .

In order for us to relate the path following algorithm and the Newton-Kantorovich
theorem, we introduce the notations

x =
[

w

s

]

, x (τ ) =
[

w (τ)

s (τ )

]

,

x+ =
[

w+
s+

]

, x (τ+) =
[

w (τ+)

s (τ+)

]

, etc.

Then for any θ > 0 we define the nonlinear operator

Fσ (x) =
[

ws − σe
Q(w) + R(s) − b

]

. (11.1.17)

Then system (11.1.16) defining x(τ ) becomes

Fσ (x) = 0, (11.1.18)

whereas the system defining x(τ+) is given by

F(1−θ)τ (x) = 0. (11.1.19)
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We assume that the initial guess x belongs in the interior of the feasible set of the
HLCP

F0 =
{

x = (wt , st )t ∈ R2n
++ .. Q(w) + R(s) = b

}

. (11.1.20)

In order to verify the Newton-Kantorovich hypothesis for equation (11.1.18), we
introduce the quantity

η = η(x, τ ) =
∥
∥
∥F ′(x)−1 Fτ (x)

∥
∥
∥ , (11.1.21)

the measure of proximity

k = k(x, τ ) = η�, � = �(x) (11.1.22)

k0 = k0(x, τ ) = η�̄, �̄ = �̄(x)

k1 = k1(x, τ ) = η�0, �0 = �0(x)

and the normalized primal-dual gap

μ = μ(x) = wt s

η
. (11.1.23)

If for a given interior point x and a given parameter τ we have k0(x, τ ) ≤ .5 for the
Newton-Kantorovich method or k1(x, τ ) ≤ .5 for the modified Newton-Kantorovich
method, then corresponding sequences starting from x will converge to the point
x (τ ) on the central path. We can now describe our algorithm, which is a weaker
version of the one given in [208]:

Algorithm 11.1.1. (using Newton-Kantorovich method).
Given 0 < k0

1 < k0
2 < .5, ε > 0, and x0 ∈ F0 satisfying k0(x0, μ (x0)) ≤ k0

1;
Set k0 ← 0 and τ0 ← μ (x0) ;
repeat (outer iteration)

Set (x, τ ) ← (xk, τk) , x̄ ← xk;
Determine the largest θ ∈ (0, 1) such that k0(x, (1 − θ)τ ) ≤ k0

2;
Set τ ← (1 − θ)τ ;
repeat (inner iteration)

Set x ← x − F ′(x)−1 Fτ (x) (11.1.24)

until k0(x, μ) ≤ k0
1;

Set (xk+1, τk+1) ← (x, τ ) ;
Set k ← k + 1;

until
(

wk
)t

sk ≤ ε.

For the modified the Newton-Kantorovich algorithm k0
1, k0

2, k0 should be re-
placed by k1

1, k1
2, k1, and (11.1.24) by

Set x ← x − F ′(x̄)−1 Fτ (x)
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respectively.
In order to obtain Algorithm 1 in [208], we need to replace k0

1, k0
2, k0 by k1, k2,

k, respectively.
The above suggest that all results on interior methods obtained in [208] using

(11.1.3) can now be rewritten using only the weaker (11.1.5) (or (11.1.8)).
We only state those results for which we will provide applications.
Let us introduce the notation

�a
i =

⎧

⎨

⎩

1 + θa
i +√

2θa
i + ra

i , if HLCP is monotone,

1 + qia +
√

2qia + q2
ia, if HLCP is skew-symmetric

(11.1.25)

where
√

ra
i = θa

i ,
√

ta
i = ka

i , a = 0, 1,

θa
i = ti

[

1 + ta
i

1 − ta
i

]

, qia = ta
i

2
, i = 1, 2. (11.1.26)

Then by simply replacing k, k1, k2 by k0, k0
1, k0

2, respectively, in the corresponding
results in [208], we obtain the following improvements:

Theorem 11.1.2. The parameter θ determined at each outer iteration of Algorithm
11.1.1 satisfies

θ ≥ χa

√
n

= λa

where

χa =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2
(

ka
2 − ka

1

)

√

2 + p2ti
√

ψa
1

,

if HLCP is skew-symmetric or if
no simplified Newton-Kantorovich

steps are performed,

√
2
(

ka
2 − ka

1

)

(√
2 + pka

1

)√

ψa
1

, otherwise

(11.1.27)

where

p =
⎧

⎨

⎩

√
2, if HLCP is monotone,

1, if HLCP is skew-symmetric.
(11.1.28)

Clearly, the lower bound on λa on θ is an improvement over the corresponding one
in [208, Corollary 4].

In the next result, a bound on the number of steps of the inner iteration that
depends only on k0

1 and k0
2 is provided.

Theorem 11.1.3. If Newton-Kantorovich method is used in Algorithm 11.1.1 then
each inner iteration terminates in at most N 0

(

k0
1, k0

2

)

steps, where



11.1 Case 1: Interior point methods 481

N 0
(

k0
1, k0

2

)

= integer part

⎡

⎢
⎢
⎣

log2

⎛

⎜
⎜
⎝

log2
(

xN 0

)

log2

[(

1 −
√

1 − 2k0
2 − k0

2

)

/k0
2

]

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

(11.1.29)
and

xN 0 =

(

1 − pk0
2√
2

)[

t0
2 −

(

1 −
√

1 − 2k0
2

)2
]

k0
1

2
√

2t0
2

√

1 − 2k0
2

[√

ψ0
2 + 1 −

√

1 − 2k0
2

]
(

1 + k0
1

)
. (11.1.30)

If the modified the Newton-Kantorovich method is used in Algorithm 11.1.1 then each
iteration terminates in at most S0 (k1, k2) steps, where

S1
(

k1
1, k1

2

)

= integer part

⎡

⎢
⎢
⎢
⎢
⎣

log2
(

xS1

)

log2

(

1 −
√

1 −
√

1 − 2k1
2

)

⎤

⎥
⎥
⎥
⎥
⎦

+ 1 (11.1.31)

and

xS1 =

(

1 − pk1
2√
2

)[

t1
2 −

(

1 −
√

1 − 2k1
2 − k1

2

)2
]

k0
1

2
√

2
√

1 − 2k1
2

(

1 −
√

1 − 2k1
2 − k1

2

)2 (√

ψ1
2 + 1 −

√

1 − 2k1
2

)
(

1 + k1
1

)

.

Clearly, if k1
1 = k0

1 = k1, k1
2 = k0

2 = k2, k1 = k0 = k, Theorem 11.1.2
reduces to the corresponding Theorem 2 in [208]. Otherwise the following improve-
ment holds:

N 0
(

k0
1, k0

2

)

< N (k1, k2) , N 0 < N ,

S1
(

k1
1, k1

2

)

< S (k1, k2) , and S1 < S.

Because
k1

k0
1

,
k2

k0
2

,
k1

k1
1

,
k2

k1
2

can be arbitrarily large for a given triplet η, � and �0,

the choices

k0
1 = k1

1 = .12, k0
2 = k1

2 = .24 when k1 = .21 and k2 = .42

and
k0

1 = k1
1 = .24, k0

2 = k1
2 = .48 when k1 = .245 and k2 = .49

are possible. Then using formulas (11.1.28), (11.1.29), and (11.1.31) for our results
and (9)–(11) in [208], we obtain the following tables:
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(a) If the HLCP is monotone and only Newton directions are performed, then:

Potra Argyros
χ(.21, .42) > .17 χ0(.12, .24) > .1

χ(.245, .49) > .199 χ0(.24, .48) > .196

Potra Argyros
N (.21, .42) = 2 N 0(.12, .24) = 1

N (.245, .49) = 4 N 0(.24, .48) = 3

(b) If the HLCP is monotone and Modified Newton directions are performed:

Potra Argyros
χ(.21, .42) > .149 χ1(.12, .24) > .098

χ(.245, .49) > .164 χ1(.24, .48) > .162

Potra Argyros
S(.21, .42) = 5 S1(.12, .24) = 1

S(.245, .49) = 18 S1(.24, .48) = 12

All the above improvements are obtained under weaker hypotheses and the same
computational cost (in the case of Newton’s method) or less computational cost (in
the case of the modified Newton method) as in practice the computation of � requires
that of �0 and in general the computation of �0 is less expensive than that of �.

11.2 Case 2: LP methods

We are motivated by paper [174], where a unified complexity analysis for Newton
LP methods was given. Here we show that it is possible under weaker hypotheses to
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provide a finer semilocal convergence analysis, which in turn can reduce the com-
putational time for interior algorithms appearing in linear programming and convex
quadratic programming.

Finally, an example is provided to show that our results apply where the ones in
[174] cannot.

Let us assume that F .. D ⊆ X → Y is an analytic operator and F ′(x)−1 exists at
x = x0 ∈ D. Define

η = η(x0) = ‖F ′(x0)
−1 F(x0)‖ (11.2.1)

and

γ = γ (x0) = sup
k≥2

∥
∥
∥
∥

1

k!
F ′(x0)

−1 F (k)(x)

∥
∥
∥
∥

1
k−1

. (11.2.2)

Note that η(x0) is the step length at x0 when NK method is applied to approximate
x∗.

Smale in [184] showed that if D = X , and

γ η ≤ 1

8
= .125, (11.2.3)

then Newton-Kantorovich method (2.1.3) converges to x∗, so that

‖xn+1 − xn‖ ≤ 2

(
1

2

)n

‖x1 − x0‖ (n ≥ 0). (11.2.4)

Rheinboldt in [177] using the Newton-Kantorovich theorem showed convergence
assuming

D ⊆ X and γ η ≤ .11909565. (11.2.5)

We need the following semilocal convergence result for Newton-Kantorovich method
(2.1.3) and twice Fréchet-differentiable operators:

Theorem 11.2.1. Let F.. D ⊆ X → Y be a twice Fréchet-differentiable operator.
Assume there exist a point x0 ∈ D and parameters η ≥ 0, �0 ≥ 0, � ≥ 0, δ ∈ [0, 1]
such that:

F ′(x0)
−1 ∈ L(Y, X), (11.2.6)

‖F ′(x0)
−1 [F ′(x) − F ′(x0)

] ‖ ≤ �0‖x − x0‖, (11.2.7)

‖F ′(x0)
−1 F ′′(x)‖ ≤ � (11.2.8)

for all x ∈ D,
U (x0, t∗) ⊆ D, (11.2.9)

and
hδ = (� + δ�0)η ≤ δ, (11.2.10)

where,
t∗ = lim

n→∞ tn, (11.2.11)

with
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t0 = 0, t1 = η, tn+2 = tn+1 + �(tn+1 − tn)2

2(1 − �0tn+1)
(n ≥ 0). (11.2.12)

Then
(a) sequence {xn} (n ≥ 0) generated by NK method (2.1.3) is well defined, re-

mains in U (x0, t∗) for all n ≥ 0, and converges to a unique solution x∗ of equation
F(x) = 0 in U (x0, t∗). Moreover, the following estimates hold for all n ≥ 0:

‖xn+2 − xn+1‖ ≤ �‖xn+1 − xn‖2

2(1 − �0‖xn+1 − x0‖) ≤ tn+2 − tn+1, (11.2.13)

‖xn − x∗‖ ≤ t∗ − tn ≤ t∗∗
0 − tn ≤ αη, (11.2.14)

where,

t∗∗
0 =

[

1 + δ0

2
+ 1

1 − δ
2

δ

2

δ0

2

]

η, t∗∗ = αη, α = 2

2 − δ
, (11.2.15)

and

δ0 = �η

1 − �0η
. (11.2.16)

Furthermore the solution x∗ is unique in U (x0, R), R = 2
�0

− t∗ provided that

U (x0, R) ⊆ D, and �0 �= 0. (11.2.17)

(b) If
Hα = (� + 2�0α)η < 2, (11.2.18)

then

0 ≤ a = �η

2(1 − �0αη)
< 1 (11.2.19)

and

‖xn+1 − xn‖ ≤ a0‖xn − xn−1‖2 ≤ a2n−1η for all n ≥ 0, (11.2.20)

‖xn − x∗‖ ≤ t∗ − tn ≤ a2n−1b̄η ≤ a2n−1bη ≤ a2n−1bη, for all n ≥ 0 (11.2.21)

where,

a0 = �

2(1 − �0αη)
, b̄ = 1 + a2n + a2n+1 + · · · , (11.2.22)

b = 1 + a2n

1 − a2
and b = 2 − a2

a2
. (11.2.23)

Proof. Part (a) follows immediately as a special case of Theorem 5.3.3. For part (b)
note that (11.2.18) implies (11.2.19), whereas (11.2.20) is a consequence of Propo-
sition 3 in [184, p. 193]. Finally (11.2.21) follows from (11.2.20).
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Corollary 11.2.2. If

2a = �η

1 − �0αη
≤ 1 (11.2.24)

then under the rest of the hypotheses of Theorem 11.2.1

‖xn+1 − xn‖ ≤ 2

(
1

2

)2n

η (n ≥ 0). (11.2.25)

That is x0 is an approximate zero of F and sequence {xn} (n ≥ 0) converges to x∗ at
least R-quadratically with R2 factor 1

2 [1], [184].

Let γ ≥ 0 and λ ≥ 0. It is convenient for us to define parameters

β0 = γ η, β1 = γ λ, β = γαη (11.2.26)

and functions f , f1, g, h by

f (δ, β0, β1, β) = (1 − β1)
4

[

2(1 − β1)2 − 1
]2

(1 − β)2

[
2

1 − β
+ δ(2 −β)

](

β0 + β1

1 − β1

)

,

(11.2.27)

f1(α, β0, β1) = α(1 − β1)
2

2(1 − β1)2 − 1

(

β0 + β1

1 − β1

)

+β1 −
[

2(1 − β1)
2 − 1

]

(1 − β)2

(1 − β1)2(2 − β)
,

(11.2.28)

g(α, β0, β1, β) = 2(1 − β1)
4

[

2(1 − β1)2 − 1
]2

(1 − β)2

[
1

1 − β
+α(2−β)

](

β0 + β1

1 − β1

)

,

(11.2.29)

h(α, β0, β1, β) = (1 − β1)
4

[

2(1 − β1)2 − 1
]2

(1 − β)2

[
2

1 − β
+α(2−β)

](

β0 + β1

1 − β1

)

,

(11.2.30)

respectively, provided that β �= 1, β1 �= 1 and β1 �= 2−√
2

2 .
We can state and prove the main semilocal convergence theorem for method

(6.1.3) involving analytic operators:

Theorem 11.2.3. Let F.. D ⊆ X → Y be an analytic operator. Assume there exist
points x0, x0 ∈ D and parameters η ≥ 0, γ ≥ 0, λ ≥ 0, δ ∈ [0, 1] such that

‖x0 − x0‖ ≤ λ ≤ αη, (11.2.31)

αγ η < 1, (11.2.32)

2λγ < 2 −
√

2, (11.2.33)
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f (δ, β0, β1, β) ≤ δ, (11.2.34)

f1(α, β0, β1) ≤ 0, (11.2.35)

U (x0, αη) ⊆ D (11.2.36)

and condition (11.2.6) hold. Then sequence {xn} (n ≥ 0) starting at x0 is well de-
fined, remains in U (x0, αη) for all n ≥ 0 and converges to a unique zero x∗ of F in
U (x0, αη), so that estimates (11.2.13) and (11.2.14) hold for η, �, �0 replaced by

η = (1 − β1)
2

2(1 − β1)2 − 1

[

η + λ

1 − β1

]

, (11.2.37)

� = 2γ (1 − β1)
2

[

2(1 − β1)2 − 1
]

(1 − β)3
, (11.2.38)

and

�0 = (1 − β1)
2(2 − β)γ

[

2(1 − β1)2 − 1
]

(1 − β)2
, (11.2.39)

respectively. Moreover the solution x∗ is unique in U (x0, R), R = 2
�0

− t∗ provided

that
U (x0, R) ⊆ D, and γ �= 0. (11.2.40)

Furthermore if
g(α, β0, β1, β) < 2, (11.2.41)

then estimates (11.2.20)–(11.2.21) hold (with η, �, �0 replaced by η, � and �0 respec-
tively). Finally if

h(α, β0, β1, β) ≤ 1, (11.2.42)

then x0 (and x0) is an approximate zero of F and sequence {xn} (n ≥ 0) con-
verges to x∗ at least R-quadratically with R2 factor 1

2 , so that estimates (11.2.24)
and (11.2.25) hold.

Proof. We shall show that under the stated conditions, the hypotheses of Theorem
11.2.1 hold with x0, η, �0 and � replacing x0, η, �0 and �, respectively. We first obtain
a bound on ‖x0 − x∗‖. For all x ∈ U (x0, αη), we obtain in turn

‖F ′(x0)
−1 F ′′(x)‖ =

∥
∥
∥
∥
∥

F ′(x0)
−1

∞
∑

i=0

1

i!
F (2+i)(x0)(x − x0)

i

∥
∥
∥
∥
∥

≤ γ

∞
∑

i=0

(i + 2)(i + 1) [γ ‖x − x0‖]i

≤ 2γ

(1 − γ ‖x − x0‖)3
≤ 2γ

(1 − γαη)3
= 2γ

(1 − β)3
. (11.2.43)

According to Theorem 11.2.1, there exists a unique zero x∗ of F in U (x0, t∗). There-
fore NK sequence starting at x0 converges to the same zero x∗. We can have
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‖F ′(x0)
−1 [F ′(x0) − F ′(x0)

] ‖ =
∥
∥
∥
∥
∥

F ′(x0)
−1

∞
∑

i=1

1

i!
F (i+1)(x0)(x0 − x0)

i

∥
∥
∥
∥
∥

≤
∞
∑

i=1

(i + 1) [γ ‖x0 − x0‖]i ≤ 1

(1 − γ ‖x0 − x0‖)2
− 1

≤ 1

(1 − γ λ)2
− 1 ≤ 1

(1 − β1)2
− 1 < 1 (by (11.2.33)). (11.2.44)

It follows by the identity

B−1 =
∞
∑

i=0

(−1)i
[

A−1(B − A)
]i

A−1

and (11.2.44) that for any x ∈ X ,

‖F ′(x0)
−1x‖ ≤ (1 − β1)

2

2(1 − β1)2 − 1
‖F ′(x0)

−1x‖. (11.2.45)

Hence, we can have

‖F ′(x0)
−1 F(x0)‖ ≤ (1 − β1)

2

2(1 − β1)2 − 1
‖F ′(x0)

−1 F(x0)‖

≤ (1 − β1)
2

2(1 − β1)2 − 1

∥
∥
∥
∥
∥

F ′(x0)
−1

∞
∑

i=0

1

i!
F (i)(x0)(x0 − x0)

i

∥
∥
∥
∥
∥

≤ (1 − β1)
2

2(1 − β1)2 − 1

(

η + ‖x0 − x0‖
∞
∑

j=0

[γ ‖x0 − x0‖] j
)

≤ (1 − β1)
2

2(1 − β1)2 − 1

(

η + λ

1 − γ λ

)

≡ η.

(11.2.46)
Moreover, for x ∈ U (x0, αη) we have x ∈ U

(

x0,
1
�0

)

, as

‖x − x0‖ ≤ ‖x − x0‖ + ‖x0 − x0‖ ≤ αη + λ ≤ 1

�0
(by (11.2.35)), (11.2.47)

and �0 is given by (11.2.39) where we have used x0 for x in (11.2.44) and (11.2.45)
(to obtain �0). Therefore, we get

‖F ′(x0)
−1 F ′′(x)‖ ≤ (1 − β1)

2

2(1 − β1)2 − 1
‖F ′(x0)

−1 F ′′(x)‖

≤ (1 − β1)
2

2(1 − β1)2 − 1

2γ

(1 − γβ1)3
≡ �. (11.2.48)
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Theorem 11.2.1 and Corollary 11.2.2 can now apply with x0, η, �0 and � as hypothe-
ses (11.2.10), (11.2.18), and (11.2.24) become (11.2.34), (11.2.41), and (11.2.42),
respectively.

Remark 11.2.4. In general
�0 ≤ � (11.2.49)

holds and �
�0

can be arbitrarily large. Note that the famous Newton-Kantorovich hy-
pothesis (2.2.17) is a special case of corresponding condition (11.2.10). Simply set
�0 = � and δ = 1 in (11.2.10) to obtain (2.2.17). Our conditions (11.2.10) and
(11.2.24) for α = 3

2 become

(

� + 2

3
�0

)

η ≤ 2

3
, (11.2.50)

and
(

� + 3

2
�0

)

η ≤ 1, (11.2.51)

respectively, which are weaker than condition

�η ≤ 4

9
(11.2.52)

given in [184, p. 12] (for sufficiently small �0). Note that all the above benefits are ob-
tained under the same computational cost as in practice the computation of � requires
that of �0. Consequently, the same benefits obtained in Section 2.2 carry over when
we compare our Theorem 11.2.3 (based on Theorem 11.2.1 (or Corollary 11.2.2))
with Theorem 2 in [184, p. 12].

Let us provide an example where conditions of Theorem 11.2.3 hold but corre-
sponding crucial condition:

η ≤ 1

2
λ ≤ 1

40γ
(11.2.53)

in Theorem 2 in [184, p. 12] fails.

Example 11.2.5. Let

λ = 3

2
η, δ = 2

3
(11.2.54)

and

β0 = γ η = 1

22
= .045. (11.2.55)

Then using (11.2.15) and (11.2.26) we get

α = 3

2
and β = β1 = .0681.



11.3 Exercises 489

Conditions (11.2.34), (11.2.35), (11.2.41), and (11.2.42) are satisfied, as

f (δ, β0, β1, β) = .651987692 < δ = 2

3
,

f1(α, β0, β1) = −.10652731 ≤ 0,

g(α, β0, β1, β) = 1.50775228 < 2,

and

h(α, β0, β1, β) = .943087149 < 1.

That is the conditions of our Theorem 11.2.3 hold but condition (11.2.53) required
for the application of Theorem 2 in [184] does not hold. Hence the conclusions of
our Theorem 11.2.3 hold but not the ones in Theorem 2 in [184] in this case.

These facts influence (widens) choices. Indeed by simply repeating the proofs
given in Sections 2–6 in [184], with the above changes we can show:

Application 11.2.6. “Optimal” sequences {t (i)} (i ≥ 0) given by

t (i+1) =
(

1 − 1

41
√

m

)

t (i) (LP Barrier Method, QP Barrier Method),

t (i+1) =
(

1 − 1

40
√

m

)

t (i) (Primal-dual LP Algorithm,

Primal-dual QP Algorithm)

can be replaced by wider

t (i+1) =
(

1 − 1

23
√

m

)

t (i)

and

t (i+1) =
(

1 − 1

22
√

m

)

t (i)

respectively.
The rest of the results in [184] can also be improved if rewritten using our Theo-

rem 11.2.3 above. However, we leave the details to the motivated reader.

The observations/improvements made here are important in computational ma-
thematics and scientific computing.

11.3 Exercises

11.3.1. (a) [177] Use the Newton-Kantorovich theorem to show that if: F .. D ⊆
X → Y is analytic on X, x0 ∈ D with F ′ (x0)

−1 ∈ L (Y, X) ,
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γ η ≤ α√
2

= .11909565,

where α is the positive root of the cubic equation
(√

2 − 1
)

(1 − r)3 −√
2r = 0, and U (u0, r0) ⊆ D, where r0 = α

γ
, then x0 is an approximate

zero of F.

(b) If D = X and γ η ≤ α1 = .15229240, where α1 is the positive zero of cubic
equation (1 − r)3 − 4r = 0, then show x0 is an approximate zero of F.

(c) If D = X and γ η = 3 − 2
√

2 = .171573 show the quadratic convergence
of NK method (2.1.3) but with ratio not necessarily smaller or equal to .5.

11.3.2. [184] Let F .. D ⊆ X → Y be a twice continuously Fréchet-differentiable
operator. Assume there exist x0 ∈ D, η > 0, � > 0 such that F ′ (x0)

−1 ∈
L (Y, X) ,

∥
∥F ′ (x0)

−1 F (x0)
∥
∥ ≤ η,

∥
∥F ′ (x0)

−1 F ′′ (x)
∥
∥ ≤ �, for all x ∈ D,

γ η ≤ 4

9
and U

(

x0,
3

2
η

)

⊆ D.

Then show that the Newton-Kantorovich method is well defined, remains in
U
(

x0,
3
2η
)

for all n ≥ 0, converges to a unique zero x∗ of F in D ∩ U
(

x0,
1
�

)

,

and satisfies
∥
∥xn − x∗∥∥ ≤ 2

(
1

2

)2n

η, (n ≥ 1) .

11.3.3. [174] Let F .. D ⊆ X → Y be analytic. Assume there exist x0 ∈ D, δ ≥ 0
such that

F ′ (x0)
−1 ∈ L (Y, X) ,

η ≤ 1

2
δ ≤ 1

40γ
and

Ū (x0, 4δ) ⊆ D.

If ‖x̄ − x0‖ ≤ δ, then the Newton-Kantorovich method starting at x̄ is well

defined and converges to a unique zero x∗ of F in Ū
(

x0,
3
2η
)

so that

∥
∥xn − x∗∥∥ ≤ 7

2

(
1

2

)2n

δ.

11.3.4. Consider the LP barrier method [174]. Let I nt = {x |A (x) > b} , A is a real
matrix with ai denoting the i th row of A, and let h.. I nt × R+ → R+ denote
the map h (x, t) = CT x − t

∑
ln (ai x − bi ) . For fixed t, the map x → h (x, t)

is strictly convex having a unique minimum. The sequence of minima as t → 0
converges to the optimal solution of the LP. The algorithm simply computes a
Newton-Kantorovich sequence {xn} (n ≥ 0) , where

xn+1 = xn − ∇2
x h (xn, tn+1)

−1 ∇x h (xn, tn+1)

and tn → 0.
Show:
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(a) For suitable x0, we can always choose tn+1 =
(

1 − 1
41

√
m

)

tn , and each xn

will be a “good” approximation to the minimum of the map x → h (x, tn).
Hint: Let y be the minimum of x → h (x, t), assume ‖ȳ − y‖ ≤ 1

20 and
show

∥
∥ȳ′ − y′∥∥′ ≤ 1

20
,

where ‖x‖ = ∥
∥�(y)−1 A (x)

∥
∥

2 and for t ′ > 0, y′ and ‖·‖′ are defined in
the obvious way. Then use Exercise 11.3.3.

(b) An O
(√

mL
)

iteration bound.
(c) The choice of sequence {tn} above can be improved if 41 is replaced by any

a ∈ {20, 21, ..., 40} .

Hint: Use Theorem 11.2.1. Note that this is an improvement over the choice
in (a).

(d) An O
(√

mL
)

iteration bound using choices of sequence {tn} given in (c).
(e) How to improve along the same lines as above the QP barrier method, the

primal LP algorithm, the primal dual LP algorithm, and the primal-dual QP
algorithm as introduced in [174].
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Glossary of Symbols

Rn real n-dimensional space
Cn complex n-dimensional space
X × Y, X × X = X2 Cartesian product space of X and Y
e1, . . . , en the coordinate vectors of R

n

x = (x1, . . . , xn)T column vector with component xi

xT the transpose of x
{xn}n≥0 sequence of points from X
‖·‖ norm on X
‖·‖p L p norm
| · | absolute value symbol
/·/ norm symbol of a generalized Banach space X
〈x, y〉 set {z ∈ X |z = t x + (1 − t) y, t ∈ [0, 1]}
U (x0, R) open ball {z ∈ X | ‖x0 − z‖ < R}
Ū (x0, R) closed ball {z ∈ X | ‖x0 − z‖ ≤ R}
U (R) = U (0, R) ball centered at the zero

element in X and of radius R
U, Ū open, closed balls, respectively

no particular reference to X , x0, or R
M = {

mi j
}

matrix 1 ≤ i , j ≤ n
M−1 inverse of M
M+ generalized inverse of M
det M or |M | determinant of M
Mk the kth power of M
rank M rank of M
I identity matrix (operator)
L linear operator



504 Glossary of Symbols

L−1 inverse
null L null set of L
rad L radical set of L
F .. D ⊆ X → Y an operator with domain D included in X ,

and values in Y
F ′ (x), F ′′ (x) first, second Fréchet derivatives of F evaluated at x
δi j Kronecker delta
∑

summation symbol
∏

product of factors symbol
∫

integration symbol
∈ element inclusion
⊂,⊆ strict and nonstrict set inclusion
∀ for all
⇒ implies
∪,∩ union, intersection
A − B difference between sets A and B
B̄ mean of a bilinear operator B
Q (X, Z) set of all quadratic operators from X to Z
Q∗

F (X) set of all bounded quadratic operators Q in X
such that Q has finite rank

X2∗
set of all bounded quadratic functionals

⊕ direct sum
A# outer inverse of A
dim A dimension of A
codim A codimension of A
]·[ K-norm



Index

Additive operator, 1
Algorithmic model, 445
Analytic operator, 127
Antitone operator, 11
Arnoldi’s method, 73
Autonomous differential equation, 74, 215

Banach lemma, 4
Banach space, 3
Banach space with a convergence structure,

417
Bijective linear operator, 30
Bilinear operator, 2
Biparametric family of multipoint iterations,

255
Bounded linear operator, 2
Bounds on manifolds, 103
Broyden’s method, 193

Central path, 476
Chaotic behavior, 166
Chebyshev method, 256
Chebyshev-Halley method, 256
Complementarity gap, 476
Computational complexity, 325
Continuation methods, 116
Contraction mapping, 26
Convergence on a cone, 80
Convergence radius, 73
Convergence structure, 417
Convexity, 19

Dilation measure, 114
Discretization, 187

Divided differences, 295

Embedding, 106
Euler’s method, 154

Finite element analysis, 157
Fixed point, 25
Fréchet derivative, 5
Fredholm operator, 29
Functional, 2

Gâteaux derivative, 36
Gauss-Newton method, 121
Generalized conjugate residual, 73
Generalized inverse, 379
Generalized minimum residual, 73
Gershgorin’s theorem, 39
Green kernel, 52

Halley method, 258
Hilbert space, 104
Hölder condition, 62
Homogeneous operator, 1
Horizontal linear complementarity problem

(HLCP), 477

Inner inverse, 379
Interior point method, 475
Inverse operator, 3

j-linear operators, 2
Jacobi-Newton method, 21
Jacobi-Secant method, 21

K -normed spaces, 395
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Kantorovich fixed point theorem, 12
King-Werner method, 233
Krawczyk operator, 134

Laplace operator, 29
Linear complementarity problem (LCP), 477
Linear operator, 1
Linear space, 1
LP method, 482

Mathematica, 71
Mesh independence, 170
Midpoint method, 253
Miranda theorem, 137
Moore theorem, 135

Neumann series, 4
Newton-Kantorovich theorem, 43
Newton method (inexact), 320
Newton method (weak), 102
Newton’s method, 41
Newton’s method modified, 42
Newton-like method, 261
Newton-like (two-point), 275
Nilpotent operator, 5

Partially ordered topological space, 9
Point-to-set-mapping, 445
Primal-dual path following algorithms, 475
PSB update, 162
Pseudo-orbit, 113

Quasivariational inequality, 362

Radius of convergence, 89
Regular smoothness, 75
Regular space, 11
Riccati operator, 32
Riemannian integration, 110

Secant method, 54
Secant-type methods, 111
Semidefinite program, 180
Semilocal convergence, 42
Shadowing lemma, 166
Shadowing orbits, 113
Steffensen’s method, 207
Stirling’s method, 202
Super-Halley method, 256
Symmetric operator, 24

Tangent-hyperbola, 219
Taylor’s theorem, 9
Tensor product, 34
Terra incognita, 62

Undetermined system, 104
Uryson operator, 32

Variational inequality, 339

Weierstrass theorem, 28

Yamamoto, 129
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