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Introduction

Researchers in computational sciences are faced with the problem of solving a va-
riety of equations. A large number of problems are solved by finding the solutions
of certain equations. For example, dynamic systems are mathematically modeled by
difference or differential equations, and their solutions represent usually the states
of the systems. For the sake of simplicity, assume that a time-invariant system is
driven by the equation x’ = f (x), where x is the state, then the equilibrium states
are determined by solving the equations f (x) = 0. Similar equations are used in the
case of discrete systems. The unknowns of engineering equations can be functions
(difference, differential, integral equations), vectors (systems of linear or nonlinear
algebraic equations), or real or complex numbers (single algebraic equations with
single unknowns). Except special cases, the most commonly used solutions methods
are iterative; when starting from one or several initial approximations, a sequence is
constructed, which converges to a solution of the equation. Iteration methods are ap-
plied also for solving optimization problems. In such cases, the iteration sequences
converge to an optimal solution of the problem in hand. Because all of these methods
have the same recursive structure, they can be introduced and discussed in a general
framework.

To complicate the matter further, many of these equations are nonlinear. How-
ever, all may be formulated in terms of operators mapping a linear space into an-
other, the solutions being sought as points in the corresponding space. Consequently,
computational methods that work in this general setting for the solution of equations
apply to a large number of problems and lead directly to the development of suit-
able computer programs to obtain accurate approximate solutions to equations in the
appropriate space.

This monograph is written with optimization considerations including the weak-
ening of existing hypotheses for solving equations. It can also be used as a reference
book for an advanced numerical-functional analysis course. The goal is to introduce
these powerful concepts and techniques at the earliest possible stage. The reader is
assumed to have had courses in numerical functional analysis and linear algebra.

We have divided the material into 11 chapters. Each chapter contains several new
theoretical results and important applications in engineering, in dynamic economic



Xii Introduction

systems, in input-output systems, in the solution of nonlinear and linear differen-
tial equations, and optimization problems. The applications appear in the form of
Examples or Applications or Exercises or they are implied as our results improve
(weaken) (extend the applicability of) earlier ones that have already been applied in
concrete problems. Sections have been written as independent of each other as pos-
sible. Hence the interested reader can go directly to a certain section and understand
the material without having to go back and forth in the whole textbook to find related
material.
There are four basic problems connected with iterative methods.

Problem 1: Show that the iterates are well defined. For example, if the algorithm
requires the evaluation of F' at each x,,, it has to be guaranteed that the iterates remain
in the domain of F. It is, in general, impossible to find the exact set of all initial
data for which a given process is well defined, and we restrict ourselves to giving
conditions that guarantee that an iteration sequence is well defined for certain specific
initial guesses.

Problem 2: Concerns the convergence of the sequences generated by a process and
the question of whether their limit points are, in fact, solutions of the equation. There
are several types of such convergence results. The first, which we call a local conver-
gence theorem, begins with the assumption that a particular solution x* exists, and
then asserts that there is a neighborhood U of x* such that for all initial vectors in U
the iterates generated by the process are well defined and converge to x*. The second
type of convergence theorem, which we call semilocal, does not require knowledge
of the existence of a solution, but states that, starting from initial vectors for which
certain—usually stringent—conditions are satisfied, convergence to some (generally
nearby) solutions x* is guaranteed. Moreover, theorems of this type usually include
computable (at least in principle) estimates for the error x,, — x*, a possibility not
afforded by the local convergence theorems. Finally, the third and most elegant type
of convergence result, the global theorem, asserts that starting anywhere in a linear
space, or at least in a large part of it, convergence to a solution is ensured.

Problem 3: Concerns the economy of the entire operations and, in particular, the
question of how fast a given sequence will converge. Here, there are two approaches,
which correspond with the local and semilocal convergence theorems. As mentioned
above, the analysis that leads to the semilocal type of theorem frequently produces
error estimates, and these, in turn, may sometimes be reinterpreted as estimates of
the rate of convergence of the sequence. Unfortunately, however, these are usually
overly pessimistic. The second approach deals with the behavior of the sequence {x,,}
when 7 is large, and hence when x,, is near the solutions x*. This behavior may then
be determined, to a first approximation, by the properties of the iteration function
near x* and leads to so-called asymptotic rates of convergence.

Problem 4: Concerns with how to best choose a method, algorithm, or software pro-
gram to solve a specific type of problem and its descriptions of when a given algo-
rithm or method succeeds or fails.
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We have included a variety of new results dealing with Problems 1-4.

This monograph is an outgrowth of research work undertaken by us and comple-
ments/updates earlier works of ours focusing on in-depth treatment of convergence
theory for iterative methods [7]-[43]. Such a comprehensive study of optimal itera-
tive procedures appears to be needed and should benefit not only those working in the
field but also those interested in, or in need of, information about specific results or
techniques. We have endeavored to make the main text as self-contained as possible,
to prove all results in full detail, and to include a number of exercises throughout the
monograph. In order to make the study useful as a reference source, we have comple-
mented each section with a set of “Remarks” in which literature citations are given,
other related results are discussed, and various possible extensions of the results of
the text are indicated. For completion, the monograph ends with a comprehensive list
of references. Because we believe our readers come from diverse backgrounds and
have varied interests, we provide “recommended reading” throughout the textbook.
Often a long textbook summarizes knowledge in a field. This monograph, however,
may be viewed as a report on work in progress. We provide a foundation for a scien-
tific field that is rapidly changing. Therefore we list numerous conjectures and open
problems as well as alternative models that need to be explored.

The monograph is organized as follows:

Chapter 1: The essentials on the solution of equations are provided.

Newton-type methods and their implications/applications are covered in the rest
of the chapters.

The Newton-Kantorovich Theorem 2.2.4 for solving nonlinear equations is one
of the most important tools in nonlinear analysis and in classic numerical analysis.
This theorem has been successfully used for obtaining optimal bounds for many iter-
ative procedures. The original paper or Kantorovich [124] contains optimal a priori
bounds for the Newton-Kantorovich (NK) method (2.1.3), albeit not in explicit form.
Explicit forms of those a priori bounds were obtained independently by Ostrowski
[155], Gragg and Tapia [102].

The paper of Gragg and Tapia [102] also contains sharp a posteriori bounds for
the NK method. By using different techniques and/or different a posteriori informa-
tion, these bounds were refined by others [6], [53], [58], [599], [64], [74], [76]-[78],
[128], [135], [139]-[142], [154], [162], [167], [184], [191], [209]-[212], [214]-
[216], [218]-[220], and us [11]-[43]. Various extensions of the NK theorem also
have been used to obtain error bounds for Newton-like (or Newton-type) methods:
Inexact Newton method, the secant method, Halley’s method, etc. A survey of such
methods can be found in [26], [43].

The NK theorem has also been used in concrete applications for proving exis-
tence and uniqueness of solutions for nonlinear equations arising in various fields.
The spectrum of applications of this theorem is immense. An Internet search seek-
ing “Newton-Kantorovich Theorem” leads to hundreds if not thousands of works
related/based on this theorem.

The list given below is therefore incomplete. However, we have included di-
verse problems such as the NK method on a cone, Robinson [178] (Section 2.6);
the weak NK method, Tapia [188] (Section 2.4); bounds on manifolds, Argyros [39],
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Paardekooper [156] (Section 2.10); radius of convergence and one-parameter imbed-
ding Meyer [139] (Section 2.11); NK method on Riemannian manifolds, Ferreira
and Svaiter [94] (Section 2.12); shadowing orbits in dynamical systems, Hadeller
[108] (Section 2.13); computation of continuation curves, Deuflhard, Pesh, Rentrop
[77], Rheinboldt [176] (Section 2.14); Moore’s theorem [143] from interval anal-
ysis, Rall [171], Neumaier and Shen [146], Zuhe and Wolfe [220] (Section 3.1);
Miranda’s theorem [142] for enclosing solutions of equations, Mayer [136] (Sec-
tion 3.2); point-based approximation (PBA) used successfully by Robinson [179],
[180] in Mathematical Programming (Section 3.3); curve tracing, Allgower [2], Chu
[62], Rheinboldt [176] (Section 3.4); finite element analysis for boundary value prob-
lems, Tsuchiya [194], Pousin [168], Feinstauer-Zernicek [93] (Section 3.5); PSB
updates in Hilbert spaces using quasi-NK method, Laumen [134] (Section 3.6); shad-
owing Lemma and chaotic behavior for nonlinear equations, Palmer [156], Stoffer
[186] (Section 3.7); mesh independence principle for optimal design problems, Lau-
men [133], Allgower, Bohmer, Potra, Rheinboldt [2] (Section 3.8); conditioning of
semidefinite programs, Nayakkankuppam [144], Alizadeh [1], Haeberly [109] (Sec-
tion 3.9); analytic complexity/enlarging the set of initial guesses for the NK method,
Kung [131], Traub [192] (Chapter 6, Sections 6.1, 6.2, 6.3); interior point meth-
ods, Potra [165] (Section 11.1); LP methods, Rheinboldt [177], Wang-Zhao [206],
Renegar-Shub [174], Smale [184] (Section 11.2).

The foundation of the NK theorem is famous for its simplicity and clarity of NK
hypothesis (2.2.17) (or (2.2.37) in affine invariant form).

This hypothesis is the crucial sufficient condition for the convergence of New-
ton’s method. However, convergence of Newton’s method can be obtained even if
the NK hypothesis is violated (see, e.g., Example 2.2.14). Therefore weakening this
condition is of extreme importance because the applicability of this powerful method
will be extended. Recently we showed [39] by considering more precise majorizing
sequences that the NK hypothesis can always be replaced by the weaker (2.2.52) (if
Lo # £) (see also Theorem 2.2.11) which doubles (at most if £y = 0) the applicabil-
ity of this theorem. Note that the verification of condition (2.2.56) requires the same
information and computational cost as (2.2.37) because in practice the computation
of Lipschitz constant £ requires the evaluation of center-Lipschitz constant £ too.

Moreover the following advantages hold (see Theorem 2.2.11 and the Remarks
that follow): semilocal case: finer error estimates on the distances involved and an
at least as precise information on the location of the solution; local case: finer error
bounds and larger trust regions (radius of convergence).

The following advantages carry over if our approach is extended to related
methods/hypotheses: Below we provide a list: secant method, Argyros [12], [43],
Dennis [74], Potra [162], Hernandez [116], [117] (Section 2.3); “Terra Incognita”
and Holder continuity, Argyros [32], [35], Lysenko [135], Ciancarruso, De Pascale
[64] (Section 2.4); NK method under regular smoothness conditions, Galperin [98],
Galperin and Waksman [99] (Section 2.5); enlarging the radius of convergence for
the NK method using hypotheses on the m (m > 1 an integer) Fréchet-differentiable
operators, Argyros [27], [43], Ypma [216] (Section 2.8); Gauss-Newton method,
Ben-Israel [46], Haussler [110] (Section 2.15); Broyden’s method [52], Dennis [75]
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(Section 4.1); Stirling’s method [185], Rall [170] (Section 4.2); Steffenssen-Aitken
method, Catinas [54], Pavaloiu [158], [159]; method of tangent hyperbolas, Kanno
[123], Yamamoto [211] (Section 4.5); modified secant method with applications in
function optimization, Amat, Busquier, Gutierrez [4], Bi, Ren, Wu [47], Ren [172]
(Section 4.6); the King-Werner method, Ren [172]; Newton methods (including two-
point), Argyros [34], [35], [43] Dennis [74], [75], Chen, Yamamoto, [58], [59], [60],
(in Chapters 5 and 8); variational inequalities in Chapter 7, K-theory and conver-
gence on generalized Banach spaces with a convergence structure, Caponetti, De
Pascale, Zabrejko [53], Meyer [139]-[141] in Chapter 9, and extensions to set-to-set
mappings in Chapter 10.

Earlier results by us or others are included in sections mentioned above directly
or indirectly as special cases of our results. Note that revisiting all results to date
that have used the NK hypothesis (2.2.37) and replacing (2.2.37) with our weaker
hypothesis (2.2.56) is worth it for the reasons/benefits mentioned above. However,
this will be an enormous or even impossible task. That is why in this monograph
we decided to include only the above chapters and leave the rest for the motivated
reader. Note that some results are also listed as exercises to reduce the size of the
book.

Finally we state that although the refinement of majorizing sequences technique
inaugurated by us in [39] is very recent, several authors have already succesfully used
it: Amat, Busquier, Gutierrez [4] (see Section 4.8), Bi, Ren, Wu [47] (see Section
4.6), and Ren [172] (see Section 4.7).
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Operators and Equations

The basic background for solving equations is introduced here.

1.1 Operators on linear spaces

Some mathematical operations have certain properties in common. These properties
are given in the following definition.

Definition 1.1.1. An operator T that maps a linear space X into a linear space Y
over the same scalar field S is said to be additive if

Tx+y)=Tx)+T(), forallx,y € X,
and homogeneous if
T(sx) =sT(x), forallx € X,s € S.
An operator that is additive and homogeneous is called a linear operator.
Many examples of linear operators exist.

Example 1.1.2. Define an operator 7 from a linear space X into itself by 7'(x) = sx,
s € S. Then T is a linear operator.

Example 1.1.3. The operator D = % mapping X = C'[0,1]into Y = C[0, 1]
given by

pm="_yvm.0<r<1
X = — = R = = N
dt Y

is linear.

If X and Y are linear spaces over the same scalar field S, then the set L(X, Y)
containing all linear operators from X into Y is a linear space over S if addition is
defined by

I.K. Argyros, Convergence and Applications of Newton-type Iterations,
DOI: 10.1007/978-0-387-72743-1_1, (© Springer Science+Business Media, LLC 2008



2 1 Operators and Equations

(Ty + Th)(x) =T (x) + Tr(x), forall x € X,

and scalar multiplication by
(sT)(x) = s(T (x)), forallx € X, s € S.

We may also consider linear operators B mapping X into L(X, Y). Foranx € X
we have
B(x)=T,

a linear operator from X into Y. Hence, we have
B(x1,x2) = (B(x1))(x2) =y €Y.

B is called a bilinear operator from X into Y. The linear operators B from X into
L(X,Y) formalinear space L(X, L(X, Y)). This process can be repeated to generate
Jj-linear operators (j > 1 an integer).

Definition 1.1.4. A linear operator mapping a linear space X into its scalar S is
called a linear functional in X.

Definition 1.1.5. An operator Q mapping a linear space X into a linear space Y is
said to be nonlinear if it is not a linear operator from X into Y.

Some metric concepts of importance are now introduced.

Definition 1.1.6. An operator F from a Banach space X into a Banach space Y is
continuous at x = x* if

Jim [ = x =0 = tim [F (o)~ F ()], =0
Theorem 1.1.7. If a linear operator T from a Banach space X into a Banach space
Y is continuous at x* = 0, then it is continuous at every point x of space X.

Proof. We have T (0) = 0, and from lim ;. [|x, ]| = 0 we get lim,, . || T (x,)| =
0. If sequence {x,} (n > 0) converges to x* in X, by setting y, = x,, — x* we obtain
lim,—  [|yn || = 0. By hypothesis this implies that

lim ||T (e[l = lim |7 (x, —x*)| = lim ||T (x,) = T (x*)] = 0.
n—00 n—0o n—o00o

Definition 1.1.8. An operator F from a Banach space X into a Banach space Y is
Lipschitz continuous on the set A in X if there exists a constant ¢ < 00 such that

IFx)=FWl<cllx—=yl.,  forallx,y e A.

The greatest lower bound (infimum) of numbers c satisfying the above inequality for
x #£ y is called the bound of F on A. An operator that is bounded on a ball (open)
U(z,r) = {x € X | llx —zll <r} is continuous at z. It turns out that for linear
operators, the converse is also true.
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Theorem 1.1.9. A continuous linear operator T from a Banach space X into a Ba-
nach space Y is bounded on X.

Proof. By the continuity of T there exists ¢ > 0 such that |7 (z)|| < L, if ||z]| < e.
ForO#ze X
IT @I <1zl (1.1.1)

because ||cz|| < ¢ for |c| < ||i—”,and IT (c2)|l = lc|-IIT (z)|l < 1.Lettingz =x—y

and ¢ = ¢~ !in (1.1.1), we conclude that operator T is bounded on X.

The bound on X of a linear operator T denoted by ||T'||x or simply ||T'|| is called
the norm of 7. As in Theorem 1.1.9 we get

ITI = HSlnll_)l 1Tl (1.1.2)

Hence, for any bounded linear operator T

TN < IIT1 - [lx]|l forall x € X. (1.1.3)

From now on, L(X, Y) denotes the set of all bounded linear operators from a Ba-
nach space X into another Banach space Y. It also follows immediately that L(X, Y)
is a linear space if equipped with the rules of addition and scalar multiplication in-
troduced in Definition 1.1.1.

The proof of the following result is left as an exercise (see also [119], [125]).

Theorem 1.1.10. The set L(X, Y) is a Banach space for the norm (1.1.2).

In a Banach space X, solving a linear equation can be stated as follows: given a
bounded linear operator 7 mapping X into itself and some y € X, find an x € X
such that

T(x)=y. (1.1.4)

The point x (if it exists) is called a solution of Equation (1.1.4).

Definition 1.1.11. If T is a bounded linear operator in X and a bounded linear op-
erator T exists such that
nT =TT =1, (1.1.5)

where I is the identity operator in X (i.e., I (x) = x for all x € X), then T is called
the inverse of T and we write T1 = T That is,

T-'r=17"'=1. (1.1.6)
If T~V exists, then Equation (1.1.4) has the unique solution
x=T7"'(y. (1.1.7)

The proof of the following result is left as an exercise (see also [130]).



4 1 Operators and Equations

Theorem 1.1.12. (Banach Lemma on Invertible Operators) [125]. If T is a bounded
linear operator in X, T~" exists if and only if there is a bounded linear operator P
in X such that P~ exists and

Il — PT| < 1. (1.1.8)
If T~ exists, then
o0
T = Z (I—-PTH)'P (Neumann Series) (1.1.9)
n=0
and
1 Pl
HT ‘5———————. (1.1.10)
1—||I—PT|

Based on Theorem 1.1.12, we can immediately introduce a computational theory
for Equation (1.1.4) composed by three factors:

(A) Existence and Uniqueness. Under the hypotheses of Theorem 1.1.12, Equa-
tion (1.1.4) has a unique solution x*.
(B) Approximation. The iteration

Xpp1 = P(y)+ U = PT)(x,) (n=0) (1.1.ID)

gives a sequence {x,} (n > 0) of successive approximations, which converges to x*
for any initial guess xp € X.

(C) Error Bounds. Clearly the speed of convergence of iteration {x,} (n > 0) to
x* is governed by the estimate:

1 - PT|"
ln — x*| < 1 ” |

———— PO+ I = PT|"|lxoll. (1.1.12)
— i1 = PT]|

Let T be a bounded linear operator in X. One way to obtain an approximate
inverse is to make use of an operator sufficiently close to 7.

Theorem 1.1.13. If T is a bounded linear operator in X, T~ exists if and only if
there is a bounded linear operator Py in X such that P, ! exists, and

IPy — Tl < Hlﬁ‘lﬂfl. (1.1.13)
If T exists, then
o0
T =3 (1-p'r) (1.1.14)
n=0
and
-1
[P I

< . (1.1.15)
1-”1—PﬁTH 1—HPﬁHwﬁ—Tn



1.1 Operators on linear spaces 5

Proof. Let P = Pl_1 in Theorem 1.1.12 and note that by (1.1.13)
H’ - PFITH = HP(' (Py — T)H < HP;IH P =T <1. (1.1.16)

That is, (1.1.8) is satisfied. The bounds (1.1.15) follow from (1.1.10) and (1.1.16).
That proves the sufficiency. The necessity is proved by setting P; = T, if T~ exists.

The following result is equivalent to Theorem 1.1.12.

Theorem 1.1.14. A bounded linear operator T in a Banach space X has an inverse
T~ if and only if linear operators P, P~ exist such that the series

o]

Z(I—PT)"P (1.1.17)

n=0

converges. In this case we have
o
T = Z (I — PT)" P.
n=0

Proof. 1f series (1.1.17) converges, then it converges to T~ (see Theorem 1.1.12).
The existence of P, P~! and the convergence of series (1.1.17) is again established
as in Theorem 1.1.12, by taking P = T—-!, when it exists.

Definition 1.1.15. A linear operator N in a Banach space X is said to be nilpotent if
N™ =0, (1.1.18)
for some positive integer m.

Theorem 1.1.16. A bounded linear operator T in a Banach space X has an inverse
T~ and only if there exist linear operators P, P~" such that I — PT is nilpotent.

Proof. If P, P lexistsand I — PT is nilpotent, then series

o0 m—1
Z(I—PT)”P:Z(I—PT)”P
n=0 n=0

converges to 71! by Theorem 1.1.14. Moreover, if T-! exists, then P = T 1,
Pl =Texists,and I — PT =1 — T~ 'T =0is nilpotent.

The computational techniques to be considered later make use of the derivative
in the sense of Fréchet [125], [204].

Definition 1.1.17. Let F be an operator mapping a Banach space X into a Banach
space Y. If there exists a bounded linear operator L from X into Y such that
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I F (xo+ Ax) — F (xo) — L (Ax)||
| Ax]|—0 | Ax]|

0, (1.1.19)

then F is said to be Fréchet-differentiable at xo, and the bounded linear operator
F'(xo) =L (1.1.20)

is called the first Fréchet derivative of F at x¢o. The limit in (1.1.19) is supposed to
hold independently of the way that Ax approaches 0. Moreover, the Fréchet differ-
ential

SF (x0, Ax) = F' (x0) Ax (1.1.21)

is an arbitrary close approximation to the difference F (xo + Ax) — F (xq) relative
to || Ax||, for || Ax|| small.

If F| and F;, are differentiable at xq, then
(F1 + F2)'(x0) = F(x0) + F5(x0). (1.1.22)

Moreover, if F is an operator from a Banach space X into a Banach space Z, and
F is an operator from Z into a Banach space Y, their composition Fj o F is defined
by

(F1 0 F2)(x) = Fi1(F2(x)), forall x € X. (1.1.23)

It follows from Definition 1.1.17 that F; o F> is differentiable at xq if F, is differen-
tiable at xg and F is differentiable at F;(xg) of Z, with (chain rule):

(F1 0 F2) (x0) = F{(F2(x0)) F5(x0). (1.1.24)
In order to differentiate an operator F' we write:
F(xo + Ax) — F(xg9) = L(xo, Ax)Ax + n(xg, Ax), (1.1.25)

where L(xo, Ax) is a bounded linear operator for given xp, Ax with

lim L(xo, Ax) =L, (1.1.26)
[[Ax]|—0
and A
[ (xo, AON _ (1.1.27)
[ax|—0  [|Ax]]

Estimates (1.1.26) and (1.1.27) give

lim L(xg, Ax) = F'(xp). (1.1.28)
| Ax||—0

If L(xg, Ax) is a continuous function of Ax in some ball U (0, R) (R > 0), then

L(x0,0) = F'(x). (1.1.29)

Higher-order derivatives can be defined by induction:
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Definition 1.1.18. If F is (im — 1)-times Fréchet-differentiable (m > 2 an integer),
and an m-linear operator A from X into Y exists such that

”F(m—l) (xo + Ax) — F™=D (xg) — A (Ax)” _

lim 0, (1.1.30)
lAx]|—0 lAx]
then A is called the m-Fréchet derivative of F at xo, and
A =F™ (x) (1.1.31)

Higher partial derivatives in product spaces can be defined as follows: Define
Xij = L(Xj, X;), (1.1.32)

where X, X, ... are Banach spaces and L(X, X;) is the space of bounded linear
operators from X ; into X;. The elements of X;; are denoted by L;;, etc. Similarly,

Xijm = L(Xi, Xij) = L(X;, L(X;, X;)) (1.1.33)
denotes the space of bounded bilinear operators from X into X;;. Finally, we write
Xiji jyoim = L (X jto Xiji ) (1.1.34)

which denotes the space of bounded linear operators from X j,, into X;j, j,...j,._,- The
elements A = A;j, j,...j,, of Xij, j,...j,, are a generalization of m-linear operators [10],
[125].

Consider an operator F; from space

n

x=1]x,, (1.1.35)
p=l1
into X;, and that F; has partial derivatives of orders 1,2,...,m — 1 in some ball
U (xg, R), where R > 0 and
0) (0 0
xp = (xj.l),xj.z), x§)> € X. (1.1.36)

For simplicity and without loss of generality we renumber the original spaces so
that
=1jp=2..., j.=n. (1.1.37)

Hence, we write
xo =010, X0, (1.1.38)

’ n
A partial derivative of order (m — 1) of F; at x¢ is an operator
9"~V F; (x)

Aigigo-- = 1.1.39
14192 q9m—1 aqu 8xq2 L. axqm71 ( )

(in X;4,¢;--g,_; ) Where
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1<q1,92,...,qm—1 < n. (1.1.40)

Let P(X4,,) denote the operator from X, into X;4,g,...q,_, Obtained from (1.1.39)
by letting

0 .
xj=xp i # 4. (1.1.41)
for some gm, 1 < gm < n. Moreover, if
] 3m_1F' P
P'(x\) = : i) i) (1142
0xg,, 0Xxg,0xg, -+ 0xg, | 0Xg -+ 0xg,

exists, it will be called the partial Fréchet derivative of order m of F; with respect to

Xqis e o Xgp at xg.
Furthermore, if F; is Fréchet-differentiable m times at xq, then
0™ F; (x 0™ F; (x

¢qu...xqm =¢xﬂ X, (1.1.43)

0xg, -+ - 0xg, 0xg,0xg, - - - 0Xg,,
for any permutation s1, 2, . . ., S, of integers g1, q2, . . . , ¢ and any choice of points
Xgys o osXg,, from Xg,, ..., X, respectively. Hence, if F = (Fy,..., F;) is an
operator from X = X| X Xp X -+ x X, intoY =Y; x Y x --- x ¥}, then

" F;
F™ (xg) = (—‘ ) (1.1.44)
oxj ---0xj, R

i=1,2,...,t j1, 2, ---s jm = 1,2,...,n,is called the m-Fréchet derivative of F

0 0 0
at xg = (x{ ),xé ), ...,x,(l )).

We now state results concerning the mean value theorem, Taylor’s theorem, and
Riemannian integration. The proofs are left out as exercises [125], [186].
The mean value theoremfor differentiable real functions f:

fb) = fla) = f'(e)b—a), (1.1.45)

where ¢ € (a, b), does not hold in a Banach space setting. However, if F is a differ-
entiable operator between two Banach spaces X and Y, then

[F(x) = FO)lIl < sup [F' G- llx—yll, (1.1.46)
xeL(x,y)
where
Lx,y)={z:z=X+0—-Mx, 0<r<1}. (1.1.47)
Set
zZM) =+ —=-2x, 0<i<l, (1.1.48)
and
F\) =F(zA) = F(Ay + (1 —)x). (1.1.49)
Divide the interval 0 < A < 1 into n subintervals of lengths AA;,i = 1,2,...,n,

choose points A; inside corresponding subintervals and as in the real Riemann inte-
gral consider sums
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n
ZF(A,»)AM = ZF(,\i)A,\i, (1.1.50)

o i=1

where o is the partition of the interval, and set
|o|:rrg%xAki. (1.1.51)

1
Definition 1.1.19. If

S= 1l F (Ai) AX; 1.1.52
mi’o; (A1) A% (1.152)

exists, then it is called the Riemann integral from F (\) from 0 and 1, denoted by

1 )
S=/ F(x)dx:/)F(x)dx. (1.1.53)
0

X

Note that a bounded operator P ()) on [0, 1] such that the set of points of dis-
continuity is of measure zero is said to be integrable on [0, 1].

We now state the famous Taylor theorem [103].

Theorem 1.1.20. If F is m-times Fréchet-differentiable in U (xo, R), R > 0, and
F (x) is integrable from x to any y € U(xg, R), then

m—1
F(y)=F@) + Y HFP @) —x)" + Rulx, y), (1.1.54)
n=l1
- ly — x|™
”F ) — Z LFDW@Gy-0"| < sup |[F™ (%) ||—', (1.1.55)
n=0 )EEL(X,y) m.:
where
1 -
Rn(x,y) = f F (ay +(1=2)x) (y —x)" “(;*_)D,Id,\. (1.1.56)
o .

1.2 Divided differences of operators

This section introduces the fundamentals of the theory of divided differences of a
nonlinear operator. Several results are also provided using differences as well as
Fréchet derivatives satisfying Lipschitz or monotone-type conditions.

Let X be a linear space. We introduce the following definition:

Definition 1.2.1. A partially ordered topological linear space (POTL-space) is a lo-
cally convex topological linear space X which has a closed proper convex cone.
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A proper convex cone is a subset K such that K + K C K, «K C K for
a > 0,and K N (—K) = {0}. Thus the order relation <, defined by x < y if
and only if y — x € K, gives a partial ordering that is compatible with the linear
structure of the space. The cone K that defines the ordering is called the positive
cone as K = {x € X | x > 0}. The fact that K is closed implies also that intervals,
[a,b] ={z € X | a < z < b}, are closed sets.

Example 1.2.2. Some simple examples of POTL-spaces are:
(1) X = E", n-dimensional Euclidean space, with
K={(x1.x2,...xy) €E" | x; =0, i =1,2,...,n};

2) X = E"with K = {(x1,x2, ..., xp) € E" | x; >0, i =1,2,...,n—1,x, = 0};

(3) X = C" [0, 1], continuous functions, maximum norm topology, pointwise order-
ing;

(4) X = C" [0, 1], n-times continuously differentiable functions with

, and pointwise ordering;

171 =Y " max| £ %) )

k=0

5)C=L7[0,1], 0 < p < oo usual topology,
K={feL?[0,1] | f() <0ae.}.

Remark 1.2.3. Using the above examples, it is easy to see that the closedness of the
positive cone is not, in general, a strong enough connection between the ordering
and the topology. Consider, for example, the following properties of sequences of
real numbers:

(1) xy <xp <--- <x* and sup {x,} x* implies lim x, = x™;
n—oo
(2) lim x, = 0 implies that there exists a sequence {y,} with y; > y, > ... > 0,
n— o0

inf{y,} =0and —y, < x, < yu;
3)0<x, <yy,and lim y, = 0imply lim x, = 0.
n— 00 n— o0

Unfortunately, these statements are not true for all POTL-spaces:

(@ InX =C[0,1]letx, (t) = —t". Then x; < xp < --- <0, and sup {x,} = 0,
but ||x,|| = 1 for all n, so lim x, does not exist. Hence (1) does not hold.
n—>0oo

(b) In X = L'[0, 1] let x, (t) = n for ﬁ <t < % and zero elsewhere. Then

lim ||x,|| = O but clearly property (2) does not hold.
n— o0
(©) InX = C'[0, 1]letx, (t) = &, y, (t) = 1. Then 0Sx, < y,, and lim y, =0,
n— oo

but || x, || = max
Zero.

tn
"

+max |"~!| = 1 4+ 1 > 1; hence x, does not converge to
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We will now devote a brief discussion of certain types of POTL-spaces in which
some of the above statements are true.

Definition 1.2.4. A POTL-space is called regular if every order-bounded increasing
sequence has a limit.

Remark 1.2.5. Examples of regular POTL-spaces are E” and L?, 0 < p < oo,
whereas C [0, 1], C" [0, 1] and L*° [0, 1] are not regular, as was shown in (a) of the
above remark. If {x, } n > 0 is a monotone increasing sequence and lim,,_, oo x,, = x*
exists, then for any ko, n > ko implies x,, > xi,. Hence x* = lim,— o0 X, > Xy, i.€.,
x* is an upper bound on {x,} n = 0. Moreover, if y is any other upper bound, then
xp <y, and hence x* = lim,_,c0 X, < y, i.e., x* = sup {x,}. This shows that in
any POTL-space, the closedness of the positive cone guarantees that, if a monotone
increasing sequence has a limit, then it is also a supremum. In a regular space, the
converse of this is true; i.e., if a monotone increasing sequence has a supremum, then
it also has a limit. It is important to note that the definition of regularity involves both
an order concept (monotone boundedness) and a topological concept (limit).

Definition 1.2.6. A POTL-space is called normal if, given a local base U for the
topology, there exists a positive number 1 so that if0 < x € V e U then [0, x] € Y.

Remark 1.2.7. If the topology of a POTL-space is given by a norm then this space
is called a partially ordered normed space (PON)-space. If a PON-space is complete
with respect to its topology then it is called a partially ordered Banach space (POB)-
space. According to Definition 1.2.6. A PON-space is normal if and only if there
exists a positive number « such that

lx|| <allyll forall x,ye X with 0<x <y.

Let us note that any regular POB-space is normal. The converse is not true. For
example, the space C [0, 1], ordered by the cone of nonnegative functions, is normal
but is not regular. All finite-dimensional POTL-spaces are both normal and regular.

Remark 1.2.8. Let us now define some special types of operators acting between two
POTL-spaces. First we introduce some notation if X and Y are two linear spaces
then we denote by (X, Y) the set of all operators from X into Y and by L (X, 7Y)
the set of all linear operators from X into Y. If X and Y are topological linear
spaces, then we denote by LB (X, Y) the set of all continuous linear operators from
X into Y. For simplicity, the spaces L (X, X) and LB (X, X) will be denoted by
L (X)and LB (X).Now let X and Y be two POTL-spaces and consider an operator
G € (X,Y). G is called isotone (resp. antitone) if x > y implies G (x) < G (y)
(resp. G (x) < G (y)). G is called nonnegative if x > 0 implies G (x) > 0. For lin-
ear operators, the nonnegativity is clearly equivalent with the isotony. Also, a linear
operator is inverse nonnegative if and only if it is invertible and its inverse is non-
negative. If G is a nonnegative operator, then we write G > 0. If G and H are two
operators from X into Y such that H — G is nonnegative, then we write G < H.If Z
is a linear space, then we denote by I = I the identity operator in Z (i.e., I (x) = x
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for all x € Z). If Z is a POTL-space, then we have obviously I > 0. Suppose
that X and Y are two POTL-spaces and consider the operators T € L (X, Y) and
Se LY, X)If ST < I, (resp. ST > I,), then S is called a left subinverse (resp.
superinverse) of 7 and T is called a right subinverse (resp. superinverse) of S. We
say that S is a subinverse of T if S is a left as well as a right subinverse of 7.

We finally end this section by noting that for the theory of partially ordered linear
spaces, the reader may consult M. A. Krasnosel’skii [128], [129], Vandergraft [199],
or Argyros and Szidarovszky [43].

The concept of a divided difference of a nonlinear operator generalizes the usual
notion of a divided difference of a scalar function in the same way in which the
Fréchet derivative generalizes the notion of a derivative of a function.

Definition 1.2.9. Let F be a nonlinear operator defined on a subset D of a linear
space X with values in a linear space Y, i.e., F € (D, Y) and let x, y be two points
of D. A linear operator from X into Y, denoted [x, y] , which satisfies the condition

[x, y](x =y) = F(x) = F(y) (1.2.1)
is called a divided difference of F at the points x and y.

Remark 1.2.10. If X and Y are topological linear spaces, then we shall always as-
sume the continuity of the linear operator [x, y]. (Generally, [x, y] € L(X,Y) if
X, Y are POTL-spaces then [x, y] € LB (X, Y)).

Obviously, condition (1.2.1) does not uniquely determine the divided difference,
with the exception of the case when X is one-dimensional. An operator [-, -]: D x
D — L(X,7) satisfying (1.2.1) is called a divided difference of F on D. If we fix
the first variable, we get an operator

PW}DeL@Jy (1.2.2)

Let x!, x? be two points of D. A divided difference of the operator (1.2.2) at the
points x !, x2 will be called a divided difference of the second order of F at the points
x0, x!, x% and will be denoted by [x°, x!, x*]. We have by definition

[xo,xl,xz] (xl — x2) = [xo,x]] — [xo,xz]. (1.2.3)

Obviously, [xo, xth x2] eL(X,L(X,Y)).
Let us now state a well-known result due to Kantorovich concerning the location
of fixed points, which will be used extensively later [125].

Theorem 1.2.11. Let X be a regular POTL-space and let x,y be two points of X
such that x < y. If H:[x,y] — X is a continuous isotone operator having the
property that x < H (x) and y > H (y), then there exists a point 7 € [x, y] such
that H (z) = z.
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We now assume that X and Y are Banach spaces. Accordingly we shall have
[x,y] e LB(X,Y), [x,y,z] € LB(X,LB(X,Y)). As we will see in later chap-
ters, most convergence theorems in a Banach space require that the divided differ-
ences of F satisfy Lipschitz conditions of the form:

Ix, yI =[x, 2]l < colly — zll (1.2.4)
Iy, x] =1z, x]ll <c1lly —zll (1.2.5)
lx, y,z] —[u,y, 2]l <callx —y|| forall x,y,z,u € D. (1.2.6)

It is a simple exercise to show that if [-, -] is a divided difference of F' satisfying
(1.2.4) or (1.2.5), then F is Fréchet-differentiable on D and we have

F'(x) =[x,x] forall x € D. (1.2.7)

Moreover, if (1.2.4) and (1.2.5) are both satisfied, then the Fréchet derivative F’ is
Lipschitz continuous on D with Lipschitz constant I = ¢ + ¢j.

We shall also give an example of divided differences of the first and of the second
order in the finite-dimensional case. We shall consider the space |R? equipped with
the Chebysheff norm, which is given by

x| =max{|x;|] e R: 1 < <gq} for x = (xl,xz, ...,xq) e R, (1.2.8)

It follows that the norm of a linear operator L € LB (R?) represented by the
matrix with entries /;; is given by

IL| =max{ ] 5i5q}. (1.2.9)

We cannot give a formula for the norm of a bilinear operator. However, if B is a
bilinear operator with entries b; j, then we have the estimate

1Bl §max{ ¢ b 11 §i§q}. (1.2.10)

Let U be an open ball of |[R? and let F be an operator defined on U with values
in RY. We denote by fi, ..., f; the components of F. For each x € U we have

F)=(f @), f;m)". (1.2.11)
Moreover, we introduce the notation
oy = @ RN (1))
Djfi(x)= T Dy fi (x) = Ty (1.2.12)

Let x, y be two points of U and let us denote by [x, y] the matrix with entries

1
[X, y]z] = ﬁ (.fl (-xla ceey -xjs y,/+11 ceey yl]) - .fl (xls "'1xj—11 ij eeey yl])) .
J
! (1.2.13)
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The linear operator [x, y] € LB (R?) defined in this way obviously satisfies
condition (1.2.1). If the partial derivatives D f; satisfy some Lipschitz conditions of
the form

|Djfl- (xl, Xk I, xq) —Djf; (xl, ey Xk, ...,xq)’ < Pi'k ] (1.2.14)

then condition (1.2.4) and (1.2.5) will be satisfied with

1 q i q i .
Cozmax{zzjzl (pjj+Zk:j+1 pjk)ll <i<gq (1.2.15)

and
1

_ q i Jj—1 i .
el _max{izj_l <pjj+zk_1 pjk> I <i §q}. (1.2.16)

We shall prove (1.2.4) only as (1.2.5) can be proved similarly.
Let x, y, z be three points of U. We shall have in turn

q
[.X, )’]U - [xa Z] = Z {[X, (YI, coes Vi Th41s oevs Zq)]ij
k=1
e O oot 2 20)] ) Y (1213) (1217

If k < j then we have

[x, (yl, vos Vi» Tt Ly oes Z’I)]ij - [x, (yl, voos V1 Zhes oves Z‘I)]ij
1
= — : {f, (xl, s Xjy 241 ...,Zq) — fi (X1, e Xj21, 2, ...,Zq)}
Xj—2j
1

{fi (¥1s s X, Zjgts s 2g) — i (K14 X102 o 2g) } = 0.
Xj =z

For k = j we have

‘[x, (V1o eoes Yjs it ooms zq)]l.j — [x, (V1 oo Vim0 2 s Zq)ij]‘

1

= {ﬁ (xlv "'7-xj1 Z]+1s ceey Zq) - ﬁ (-xlv "'7-xj—17 ylv Z]—‘rl) ceey Z({)}
Xj = ;i
1
- {ﬁ (-xls “eey -xjy Z]+19 ceey Zq) - ﬁ (-xls "'1xj—11 Z]3 ceey Zq)}'
Xj—=Yj
1

= /0 {Djf,' (xl, s Xjy Y +t(Xj — yj) s Zj+1, ---,Zq)

—D;f; (xl, e Xjazj 1 (x5 —Zj),Zj+1, ...,Zq)}dl

1
. 1 :
< [yj =zl Pﬁ'j/O tdi = 5 [xj = zj| Pl
(by (1.2.14)).
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Finally for k > j we have using (1.2.13) and (1.2.17) again

)[x, (yl, cees Vi Tht1y oeey Z‘i)]ij - [x, (yl, coes Yh—15Zks +os Zq)]l-j
1

Xj= Y

{fl- (xl, ooy Xjy Vjdds eees Yhs Tkt ls oves Zq)

- fl (Xl, cees Xj—1s Vo ooes Vhks Tht1s ooes Zq)
—fi (xla ceos Xy Vils ooes Yh=15 2k - Zq)

+ fi (xl, ey X1 Vs eees Yhe1s s ooes zq)}

1
/o {fi (x1s e X1,y 1 (X = ¥j) 2 Vjbls cos Yo T 1s oo Zg)

— fi (X1s e X1 Y 1 (X = ¥7) s Yjtts cens Yoo 10 2k oo 29) } I

< lyx — z«l P?k-
By adding all the above, we get
1 . .
|Lx, y1;; — [x. 2);5] < 5 i = 2| Pl + 2k Iy — 2l Py

1 , ‘
ly —zl {5 3:1 (P.l,'j + ZZ=j+1plj'k)} .

Consequently, condition (1.2.4) is satisfied with ¢y given by (1.2.15). If each f;
has continuous second-order partial derivatives that are bounded on U, we have

Pl =sup{|Djrfi 0] Ix e U}.

IA

In this case p?k = p;;j so that ¢cg = cy.
Moreover, consider again three points x, y, z of U. Similarly with (1.2.17), the
second divided difference of F at x, y, z is the bilinear operators defined by

2l Ol

— [ G Vet 26 20)] - 12.18)

[x,y, Z]ijk =

It is easy to see as before that [x, y, z];;x = 0 fork < j. Fork = j we have

Lo,y 2l =[x vis 25], fi (K1s e Xic, 6 2410 00 2g) (1.2.19)

where the right-hand side of (1.2.19) represents the divided difference of f; (x Ly eens
Xj_1.1,2Zj4+1, ..., Zg) as a function of 7, at the points x;, yj, z;. Using Genocchi’s
integral representation of divided differences of scalar functions [154], we get
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1 1
[-x7 y»Z]ijj Z/(; /(; tDjjﬁ(.Xl,...,Xj_l,_Xj
1 (v = x)) 15 (2) — ¥j) s 2js1s o 2g) dsdi. (1.2.20)

Hence, for k > j we obtain

[x,y, 2lijx = ] {Fi (1 oo X Yt coes ks Zh1s s Zq)

Ok — 20) (xj — yj

— fi (X1 oot XL XL s V=10 Ty s Zg)
—fi (xl’ ceos Xjm1s Vo woes Vs Tht1s woes zq)

+ fi (xl, ey X1y Yo eees V=15 Zhs oves zq)}

1
Xj= i

1
/ {Dicfi (X1, cos Xj2 Y jtts oo Vi1 2 1 (Vk — 2h) + T4 15 o0s Zg)
0

— Difi (X1 oo Xjm1s Yo ooes Yee10 2k 1 (U = 20) + Tt 15 oo Zq) } dE

1 1
:/ f ijfi (xl,...,xj_l,yj
0 Jo

5 (X = Vi) s Vit e Vo1 2 1 (Ve = 28) s Tt 1y s Zg) dsdt. (1.2.21)
We now want to show that if
|ijfi (vl, e U+ 1, ., vq) — ijf,‘ (U], ooy Ut ...vq)| < q;{{n ]
forall v = (vl, vq) eU, 1<i,j,k,m<gq, (1.2.22)

then the divided difference of F of the second order defined by (1.2.18) satisfies
condition (1.2.6) with the constant

q

¢y = max —qn+ Zq +— Z a + Z Zq . (1.223)

l<i<q ©
j=I k Jj+1 k=j+1m=1

Let u, x, y, z be four points of U. Then using (1.2.18), we can easily have

q
[x, v, 2)ije — [w, y, 2l = Z {[(xl, s Xy U1 ey Ug) 5 Vs z]l.jk

m=1

(61 s ottt s tg) v 2l ] (1:224)

If m = j, the terms in (1.2.24) vanish so that using (1.2.21) and (1.2.22), we deduce
that for k > j
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|lx, . 2dijx — [y, 2)iji

i—1
= 121/(;1/01{ijfi(xl,...,xm,um+1,...,uj1,yj+s(xj—yj),
-
Yidls coos Veels 2k + 1 (Vk = Zk) s k1 oos Zg)
— Dy fi (X1, ooy Xty U s j1, ¥ + 5 (x5 — ¥j)
Yty coos Vem1Zk + 1 (V& = 2K) + Tkt 1s -or Zq) | dsdt
+/01 /01 {Dij fi (1, s xjm1s v +5 (2 = y5) s
Yjdls coos Vee1s Tk + 1 (Vk = 2k) s Tkt 1s 01 Zg)
— Dij fi (x1, oo xjor, yj + 5 (uj — yj),

Vitls oo Yhe1s 2k + 1 %k = 2k) » 2kl oo ) } dsdlt

1
<5l —ujlay) +Z|xm—um|q

Similarly for k = j, we obtain in turn

|Lx. v, 2lij; — . v, 2ij5

D fi (%1, xjr, xj 4+ 1 (v — xj) + 15 (27 = V) 2 2j1s s 2q)

D,'/fi (X1, e Xj—1,Uj +l(yj — u.,') +ts (Zj — yj) Zj+1, --.,Zq)}dsdt
—I—Z/ / ”f, X1y eoes Xy Uit 1s ooy Uj— 1,
Y 'H( y,) tis (ZJ - )’)J Zj+1, -..,zq)
- D//fl ()Cl, cees Xm—15 Ums -+ uj—1,

xj+t(vj—xj) 15 (2 =) 2j1s o 2g) fdsdt

IA

N =

u,|q + = Z|xm um|q

Finally using the estimate (1.2.10) of the norm of a bilinear operator, we deduce
that condition (1.2.6) holds with ¢, given by (1.2.23).

We make an introduction to the problem of approximating a locally unique so-
lution x* of the nonlinear operator equation F (x) = 0, in a POTL-space X. In
particular, consider an operator F: D € X — Y where X is a POTL-space with
values in a POTL-space Y. Let xq, yo, y—1 be three points of D such that
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X0 <yo < y-1, [x0.y-1].
and denote
Dy = {(x,y)GXZIXOSXSySyo},
Dy = {0y € X? v < u = o}
D3 = D U D». (1.2.25)

Assume there exist operators Ag: D3 — LB (X,Y), A:D; — L(X,Y) such
that:

(a)
F(y)—F(x) <Ay (w,2)(y —x)
forall (x,y), (y,w) € D1, (w,z) € D3; (1.2.26)

(b) the linear operator Ag (#, v) has a continuous nonsingular nonnegative left subin-
verse;

(©)
FO)—Fx)>AK,y)(y—x) forall (x,y)e€ Dy; (1.2.27)

(d) the linear operator A (x, y) has a nonnegative left superinverse for each (x, y) €
D,

F(O)—F(x)<Ay(,2)(y—x) forall x,y e Dy, (y,2) € D3. (1.2.28)

Moreover, let us define approximations

F (yn) + Ao Ons Yu—1) On+1 —yn) =0 (1.2.29)
F (xp) + Ao (Yn» Yn—1) (¥ng1 — Xn) =0 (1.2.30)
Ynt+1 = Yn — BuF (yp)n >0 (1.2.31)
Xn1 =X — ByF (x,) n >0, (1.2.32)

where B,, and B,l are nonnegative subinverses of Ag (v, yp—1) n > 0.

Under very natural conditions, hypotheses of the form (1.2.26) or (1.2.27) or
(1.2.28) have been used extensively to show that the approximations (1.2.26) and
(1.2.30) or (1.2.31) and (1.2.32) generate two sequences {x,} n > 1, {y,} n > 1 such
that

X0SXI S S X Sl SVl Sy S SV <)o (1.2.33)
lim x, =x*=y*= lim y, and F (x*)=0. (1.2.34)
n— o0 n— oo
For a complete survey on these results, we refer to the works of Potra [164] and
Argyros and Szidarovszky [42]-[44].

Here we will use similar conditions (i.e., like (1.2.26), (1.2.27), (1.2.28)) for two-

point approximations of the form (1.2.29) and (1.2.30) or (1.2.31) and (1.2.32).
Consequently, a discussion must follow on the possible choices of the linear op-

erators Ag and A.
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Remark 1.2.12. Let us now consider an operator F: D C X — Y, where X, Y are
both POTL-spaces. The operator F is called order-convex on an interval [xg, yg] €
D if

FOx4+ {0 —=-My)<AFXx)+0—=x)F () (1.2.35)
for all comparable x,y € [xg, yo] and A € [0, 1]. If F has a linear G-derivative
F’ (x) at each point [xg, yo], then (1.2.35) holds if and only if

Fr)(y=x)<F-F@ <F (y»y—x for xo<x<=<y=yo (1.2.36)

(See, e.g., Ortega and Rheinboldt [154] or Exercise 1.4.65 for the properties of the
Gateaux derivative.)

Hence, for order-convex G-differentiable operators, conditions (1.2.27) and
(1.2.28) are satisfied with Ag (y,v) = A (y,v) = F’(u). In the unidimensional
case, (1.2.36) is equivalent with the isotony of the operator x — F’ (x) but in general
the latter property is stronger. Assuming the isotony of the operator x — F’ (x), it
follows that

F(y)—F(x)<F'(w)(y—x) for xo<x <y =<w <y

Hence, in this case condition (1.2.26) is satisfied for Ag (w, z) = F’ (w).
The above observations show one to choose A and Ag for single- or two-step
Newton methods. We note that the iterative algorithm (1.2.29)—(1.2.30) with

Ao (u,v) = F' (1)

is the algorithm proposed by Fourier in 1818 in the unidimensional case and extended
by Baluev in 1952 in the general case. The idea of using an algorithm of the form
(1.2.31)—(1.2.32) goes back to Slugin [183]. In Ortega and Rheinboldt [154], it is
shown that with B, properly chosen, (1.2.31) reduces to a general Newton-SOR
algorithm. In particular, suppose (in the finite-dimensional case) that F’ (y,) is an
M -matrix and let F’ (y) = D, — L,, — U, be the partition of F’ (y,) into diagonal,
strictly lower- and strictly upper-triangular parts, respectively, for all » > 0. Consider
an integer m, > 1, a real parameter w, € (0, 1] and denote

Py = wn_l (Dy — wpLy) , On = wn_l (A —wy) Dy +w, Uy, (1.2.37)
H,=P7'Q,, and  B,= (1 FHy 4+ H,:"n—l) Pl (1238)
It can easily be seen that B, n > 0 is a nonnegative subinverse of F’ (y,) (see also

[164]).If f:[a, b] — | R is areal function of areal variable, then f is (order) convex
if and only if

fO-FO _fW@—-fQ

xX—=y - u—v

forall x,y,u,v from [a,b] suchthatx <wuandy <wv.
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This fact motivates the notion of convexity with respect to a divided difference con-
sidered by J.W. Schmidt and H. Leonhardt [181]. Let F: D € X — Y be a nonlinear
operator between the POTL-spaces X and Y. Assume that the nonlinear operator F
has a divided difference [-, -] on D. F is called convex with respect to the divided
difference [-, -] on D if

[x,y] <[u,v] forall x,y,u,ve D with x <u and y <. (1.2.39)

In the above quoted study, Schmidt and Leonhardt studied (1.2.29)—(1.2.30) with
Ap (4, v) = [u, v] in case the nonlinear operator F is convex with respect to [-, -].
Their result was extended by N. Schneider [43] who assumed the milder condition

[u,v](u —v) > F (u) — F (v) for all comparable u, v € D. (1.2.40)

An operator [-,-]: D x D — L (X,Y) satisfying (1.2.40) is called a generalized
divided difference of F on D. If both (1.2.39) and (1.2.40) are satisfied, then we say
that F' is convex with respect to the generalized divided difference of [-, -]. It is easily
seen that if (1.2.39) and (1.2.40) are satisfied on D = [xo, y_l], then conditions
(1.2.26) and (1.2.27) are satisfied with A = Ag = [-, -]. Indeed for xg < x <y <
w <z < y_1 we have

[, ]y —x) < FQ)—F (&) <[y, x](y —x) <[w,z](y —x).

The monotonicity results can also be used to study general secant-SOR methods,
in case the generalized difference [yn, yn_l] is an M-matrix and if B, n > 0 is
computed according to (1.2.37) and (1.2.38) where [yn, ya—1] = Dy — Ly — Uy
n > 0 is the partition of [y,,, yn_l] into its diagonal, strictly lower- and strictly
upper-triangular parts.

We remark that an operator that is convex with respect to a generalized divided
difference is also order-convex. To see that, considerx, y € D, x <y, A € [0, 1] and
set z = Ax + (I —A) y. Observing that y — x = (1 — N lz=—x) =271 »y—2)
and applying (1.2.40), we have in turn:

1= F@Q-F@)<0-2)""zxlz—-x)
=z, x](y—x) <[z, y](y —x)
=2yl -2 < (F(») - F ().

By the first and last term we deduce that F (z) < AF (x) + (1 — A) F (). Thus,
Schneider’s result can be applied only to order-convex operators, and its importance
resides in the fact that the use of a generalized divided difference instead of the
G-derivative may be more advantageous from a numerical point of view. We note,
however, that conditions (1.2.26) and (1.2.27) do not necessarily imply convexity.
For example, if f is a real function of a real variable such that

L fO=FO) FO—fO)
infT —F————~2 =m >0, sup @ —— =
x,y€[x0,y0] X—Yy x,y€[x0,y0] x=Yy

M < o0
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then (1.2.26) and (1.2.27) are satisfied for Ag (u,v) = M and A (u,v) = m. It is
not difficult to find examples of nonconvex operators in the finite- (or even in the
infinite-) dimensional case satisfying a condition of the form

AY—x)<F()—Fx)=<Ao(y,x), xo=x=y= o,

where Ag and A are fixed linear operators. If Ag has a continuous nonsingular non-
negative left subinverse and A has a nonnegative right superinverse, then conver-
gence of the algorithm (1.2.29)—(1.2.30) can be discussed. This algorithm becomes
extremely simple in this case. The monotone convergence of such an iterative proce-
dure seems to have been first investigated by S. Slugin [183].

In the end of this section, we shall consider a class of nonconvex operators that
satisfy condition (1.2.26) but do not necessarily satisfy condition (1.2.27). Conse-
quently from convergence theorems involving (1.2.29) and (1.2.30), it will follow
that Jacobi-Newton and the Jacobi-secant methods have monotonous convergence
for operators belonging to this class (see also the elegant papers by F. Potra [163],
[164]).

Let F = ( Sis ey fq)TO be an operator acting in the finite-dimensional space R?,
endowed with the natural (componentwise) partial ordering. Let us denote by e; the
ith coordinate vector of R?. We say that F is off-diagonally antitone if the functions

gijiR—>R, gj(t)=fi(x+te;), i#j, i,j=1 .9

are antitone. Suppose that at each point x belonging to an interval U = [xo, y_ 1] the
partial derivatives 0; F; (x), i = 1,2, ..., g, exist and are positive. For any two points
x,y € U, we consider the quotients
i —fily—el y—x)e;) . T
i f 1 _
[x, y]; = e} (y=x) e =0 #0
9; Fj (x) if e/ (y—x)=0.

(1.2.41)

Let us denote A [x, y] the diagonal matrix having as elements the number [x, y];,
i = 1,2,...,q. For the diagonal matrix A [x, y] formed by the partial derivatives
0i fi (x),i = 1,2, ..., g, we shall also use the notation DF' (x) .

Suppose now that F is off-diagonally antitone and that the operator DF: U —
LB (R?) is isotone (i.e., all functions 9; F;: R — R are isotone). In this case for all
xo<x<y<w<gz<y_andalli € {1, 2, ..., g}, there exist A, u € [0, 1] such
that

FD === fi(y—el 0=ve)=afi(y—ref 6 =),
ef (V=X) S0fi (e] (v =x) S0 fi (wyel (v —x)
=ofi(z—uel G—w)el 6= =wzle] (v =x).

It follows that condition (1.2.26) is satisfied for Ag (w, z) = DF (w) as well as for
Ao (w, z) = [Aw, z]. With the choice Ag (w, z) = A [w, z], the iterative procedure
(1.2.29) is a Jacobi-secant method whereas with the choice Ag (w, z) = DF (w) it
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reduces to the Jacobi-Newton method. For some applications of the latter method,
see W. Torning [190].

We now connect divided differences and Fréchet derivatives.

Let F be a nonlinear operator defined on an open subset D of a Banach space X
with values in a Banach space Y.

Let x, y be two points in D and suppose that the segment

S={x+1t(y—x)|tel0,1]} € D.
Let y’ be a continuous linear functional, set 7 = y — x and define
¢ () = (F(x+1h),y).

If F is Fréchet-differentiable at each point of the segment S, then ¢ is differentiable
on [0, 1] and
o) = (F (x+1h),y).

Let us now suppose that

a= sup |[F'(x+1(y—x)| < oo
1€[0,1]

then we have

[(F ) = F@), )| =lle@ —e Ol
sup [ @O < ey | lly—xI.
t€[0,1]

IA

But, we also have

IF (y) — F ()| = ”s1ﬁp1 [(F () — Fx),y)
Y=

we deduce that

IF (y)— F ()| < s[%pu [F' x4+t —x)]-lly—xll (1.2.42)
t€[0,

s0, we proved:

Theorem 1.2.13. Let D be a convex subset of a Banach space X and F: D C X —
Y. If F is Fréchet-differentiable on D and if there exists a constant ¢ such that

||F/ (x)|| <M forall xe D= ||[F(x)—F)I| <clx—yll forall x e D.
(1.2.43)

The estimate (1.2.42) is the analogue of the famous mean value formula from
real analysis. If the operator F’ is Riemann integrable on the segment S, we can give
the following integral representation of the mean value formula
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1
F(x)—F(y):/ F'(x+t(y—x)dt(x—y). (1.2.44)
0

Let now D be a convex open subset of X and let us suppose that we have as-
sociated to each pair (x, y) of distinct points from D a divided difference [x, y]
of F at these points. In applications, one often has to require that the operator
(x,y) — [x, y] satisfies a Lipschitz condition. We suppose that there exists a non-
negative ¢ > 0 such that

Ilx, y1 =[x yilll = e (lx = xill + 1y = y1lD (1.2.45)

for all x, y, x1, y1 € D withx # y and x1 = y;.

We say in this case that F has a Lipschitz continuous difference on D. This
condition allows us to extend by continuity the operator (x, y) — [x, y] to the whole
Cartesian product D x D. It follows that F is Fréchet-differentiable on D and that
[x, x] = F' (x). It also follows that

|F' )= F (| <cillx =yl with ¢ =2¢ (1.2.46)

and
[lx, y1 = F' @ <cllx =zl +1lly —zl) (1.2.47)

for all x, y € D. Conversely, if we assume that F is Fréchet-differentiable on D and
that its Fréchet derivative satisfies (1.2.46), then it follows that F has a Lipschitz
continuous divided difference on D. We can certainly take

1
[x, ¥] =/ F (x+1(y—x))dt. (1.2.48)
0

We now want to give the definition of the second Fréchet derivative of F. We
must first introduce the definition of bounded multilinear operators (which will also
be used later).

Definition 1.2.14. Let X and Y be two Banach spaces. An operator A: X" — y
(n € N) will be called n-linear operator from X to Y if the following conditions are
satisfied:

(a) The operator (xi, ..., x,) — A (x1,...,X,) is linear in each variable x; k =
1,2, ..., n.
(b) There exists a constant ¢ such that
1A Cer, x2, ey xp) [ < el ll-o lxnll - (1.2.49)
The norm of a bounded n-linear operator can be defined by the formula

[Al = sup {IlA Cxr, ooy x) Il | [l ll = 1} (1.2.50)

Set LBV (X,Y)=LB(X,Y) and define recursively



24 1 Operators and Equations
LB®D (X, y)= LB (X, LB® (x, Y)) k>0 (1.2.51)

In this way we obtain a sequence of Banach spaces LB™ (X, Y) (n > 0). Every
A € LB™ (X, Y) can be viewed as a bounded n-linear operator if one takes

A (X1, ooy Xp) = (oo (A (x1) (22) (x3)) ..) (xp) - (1.2.52)
In the right-hand side of (1.2.52) we have
A(x1) € LBV (X,Y), (A(x1)(x2) € LB" D (X,Y), et

Conversely, any bounded n-linear operator A from X to Y can be interpreted
as an element of B™ (X, Y). Moreover, the norm of A as a bounded n-linear
operator coincides with the norm as an element of the space LB™ (X, Y). Thus
we may identify this space with the space of all bounded n-linear operators from
X to Y. In the sequel, we will identify A (x, x, ..., x) = Ax", and

A(x1) (x2) ... (xp) = A (X1, X2, vy Xp) = AX[X2...Xp.

Let us now consider a nonlinear operator F: D € X — Y where D is open.
Suppose that F is Fréchet-differentiable on D. Then we may consider the oper-
ator F': D — LB (X, Y) that associates to each point x the Fréchet derivative
of F at x. If the operator F' is Fréchet-differentiable at a point xo € D, then we
say that F is twice Fréchet-differentiable at x(. The Fréchet derivative of F' at
xo will be denoted by F" (xo) and will be called the second Fréchet derivative
of F at xq. Note that F" (xo) € LB® (X, Y). Similarly, we can define Fréchet
derivatives of higher order. Finally by analogy with (1.2.48)

[x0, ..., xk] = / / STy F (o + 11 (x1 — x0) + 12 (x2 — x1)
ity o, ty (X — Xk—1)) dtidty ... dty. (1.2.53)

It is easy to see that the multilinear operators defined above verify
[xo, s Xk—1, Xk» Xk+1] Xk — Xp+1) = [xo, s Xk—1,» xk+1] . (1.2.54)

We note that throughout this sequel, a 2-linear operator will also be called bilin-
ear.

Finally, we will also need the definition of a n-linear symmetric operator. Given
a n-linear operator A: X" — Y and a permutation i = (i1, i2, ..., i) of the integers
1,2, ..., n, the notation A (i) (or A, (i) if we want to emphasize the n-linearity of A)
can be used for the n-linear operator A (i) = A, (i) such that

A@) (X1, X2, .0, xp) = Ay (D) (X1, X2, .0y Xp) = Ay (x,-] y Xigy ooy Xi,,) ApXi Xiy... Xi,
(1.2.55)
for all x1, x2, ..., x, € X. Thus, there are n! n-linear operators A (i) = A, (i) asso-
ciated with a given n-linear operator A = A,,.
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Definition 1.2.15. A n-linear operator A = A,: X" — Y is said to be symmetric if
A=A, =A,) (1.2.56)

for all i belonging in R, which denotes the set of all permutations of the integers
1, 2, ..., n. The symmetric n-linear operator

1
A=A, = A (i) (1.2.57)

T ! Laicr,
is called the mean of A = A,,.
Notation 1.2.16. The notation
A XP = Ayxx..x (p-times) (1.2.58)

p <n, A= A,;: X" = Y, for the result of applying A, to x € X p times will be
used. If p < n, then (1.2.58) will represent a (n — p)-linear operator. For p = n,
note that

Arx® = Arx® = Ay (i) xF (1.2.59)

foralli € R, x € X. It follows from (1.2.59) that whenever we are dealing with an
equation involving n-linear operators A,, we may assume that they are symmetric
without loss of generality, as each A, may be replaced by A, without changing the
value of the expression at hand.

1.3 Fixed points of operators

The ideas of a contraction operator and its fixed points are fundamental to many
questions in applied mathematics. We outline the essential ideas.

Definition 1.3.1. Let F be an operator mapping a set X into itself. A point x € X is
called a fixed point of F if
x = F(x). (1.3.1)

Equation (1.3.1) leads naturally to the construction of the method of successive
approximations or substitutions or the Picard iteration

Xnp1 = F (xp) m=>0) xp € X. (1.3.2)

If sequence {x,} (n > 0) converges to some point x* € X for some initial guess
X0 € X, and F is a continuous operator in a Banach space X, we can have

X* = 1lim xpp 1 = lim F (x,) = F ( lim xn> = F (x*).
n—0o0 n—oo n—oo

That is, x* is a fixed point of operator F. Hence, we showed:
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Theorem 1.3.2. If F is a continuous operator in a Banach space X, and the sequence
{xn} (n > 0) generated by (1.3.2) converges to some point x* € X for some initial
guess xo € X, then x* is a fixed point of operator F.

We need information on the uniqueness of x* and the distances |x, — x*|,
|Xn+1 — Xxn |l (mn > 0). That is why we introduce the concept:

Definition 1.3.3. Let (X, || ||) be a metric space and F a mapping of X into itself.
The operator F is said to be a contraction or a contraction mapping if there exists a
real number ¢, 0 < ¢ < 1, such that

IF @)= FWIl<clx=yl, foralx,yeX. (1.3.3)

It follows immediately from (1.3.3) that every contraction mapping F' is uni-
formly continuous. Indeed, F is Lipschitz continuous with a Lipschitz constant c.
The point c is called the contraction constant for F.

We now arrive at the Banach contraction mapping principle.

Theorem 1.3.4. Let (X, ||||) be a Banach space and F: X — X be a contraction
mapping. Then F has a unique fixed point.

Proof. Uniqueness: Suppose there are two fixed points x, y of F. Because F is a
contraction mapping,

lx =yl =I1F(x) = FWI <cllx =yl < llx =yl

which is impossible. That shows uniqueness of the fixed point of F.
Existence: Using (1.3.2) we obtain

lx2 — x1ll < cllx1 — xoll

2
lxz — x2ll < x llx2 — x1ll < ¢ |lx1 — xol| (1.3.4)

X041 — xnll < " llx1 — xoll
and, so

xn4m = Xnll < Wxntm — Xntm—1ll + -+ + X1 — Xull

IA

(C"’Jrl +otot 1) " llx1 = xoll

n

[lx1 — xoll -
1—c¢

Hence, sequence {x,}(n > 0) is Cauchy in a Banach space X and such it converges
to some x*. The rest of the theorem follows from Theorem 1.3.2.
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Remark 1.3.5. 1t follows from (1.3.1), (1.3.3) and x™ = F(x*) that

[vn = x| = [F Gut) = F (5| < ¢ rns =" = " o =57 (w2 D).
(1.3.5)
Inequality (1.3.5) describes the convergence rate. This is convenient only when an
a priori estimate for xo — x* is available. Such an estimate can be derived from the
inequality

[x0 = x*|| < llxo = F (xo) | + | F (x0) — F (x™)| < llxo = F (xo) | +¢ [|xo — x*

)

which leads to

1
o =" = 7= lIxo = F o)1l (1.3.6)
By (1.3.5) and (1.3.6), we obtain
Cn
Jon — x*| < - Ixo — F (xo)I (n=1). (1.3.7)

Estimates (1.3.5) and (1.3.7) can be used to determine the number of steps needed
to solve Equation (1.3.1). For example if the error tolerance is ¢ > 0, that is, we use
llx, —x™|| < &, then this will certainly hold if
1 1—
ne 49 (1.3.8)
Inc  [lxo — F (xo) |l

Example 1.3.6. Let F:R — R, g > 1, F(x) = gx + 1. Operator F is not a contrac-
tion, but it has a unique fixed point x = (1 — ¢)~ L.

Example 1.3.7. Let F: X — X, x = (0, 1/%], F(x) = x3. We have
F )= F )l = &> = 33| = (I + Ixl -yl + 5P) v = vl = =y

That is, F' is a contraction with ¢ = %, with no fixed points in X. This is not violating
Theorem 1.3.4 because X is not a Banach space.

Example 1.3.8. Let F:|a,b] — |[a,b], F differentiable at every x € (a,b) and
|F’ (x)| < ¢ < 1. By the mean value theorem, if x, y € [a, b] there exists a point z
between x and y such that

F)—F(y)=F()@—y),
from which it follows that F is a contraction with constant c.

Example 1.3.9. Let F:[a,b] — R. Assume there exist constants pi, p> such that
pip2 <0and0 < p; < F' (x) < p2_1 and assume that F(a) < 0 < F(b). How
can we find the zero of F'(x) guaranteed to exist by the intermediate value theorem?
Define a function P by

P(x)=x— prF(x).
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Using the hypotheses, we obtain P(a) =a — poF(a) > a, P(b) =b — F(b) < b,
P'(x) =1— paF'(x) >0,and P'(x) <1 — p1p> < 1. Hence P maps [a, b] into
itself and |p’ (x)| < 1 for all x € [a, b]. By Example 1.3.8, P(x) is a contraction
mapping. Hence, P has a fixed point that is clearly a zero of F.

Example 1.3.10. (Fredholm integral equation). Let K (x, y) be a continuous function
on [a, b] x [a, b], fo (x) be continuous on [a, b] and consider the equation

b
£ = o)+ [ K ) £ 0y,
Define the operator P: C [a, b] — C [a, b] by p(f) = g given by

b
g(X)=fo(X)+>»/ K (x.y) f () dy.

Note that a fixed point of P is a solution of the integral equation. We get from p(f) =
g:

1P (g1) — P (g2)]

sup | p (g1 (x)) = P (g2 (x)) |

x€la,b]

= |A| sup

x€la,b]

b
/ (@1 () —q2 () dy‘ (by)

=[Aé®B—a) sup [g1(¥) —q2 ()l

x€la,b]

<A —a)lqr —qll.

b
f k(x,y)(q1 (y) —q2 (y))dy‘

=IAl8

Hence, P is a contraction mapping if there exists a ¢ < 1 such that
M8 (b —a) <c.
We need the definition:

Definition 1.3.11. Let {x,} be a sequence in a normed space X. Then a nonnegative
sequence {v,} for which

lxn+1 — X0l < Vpgp1 — vy, V¥ >0, (1.3.9)
holds is a majorizing sequence for {x,}.

Note that any majorizing sequence is necessarily nondecreasing.
The following will be a frequently used result on majorization.

Lemma 1.3.12. Let {v,,} be a majorizing sequence for {x,} in X where X is a Banach
space. Assume 1im,,_, oo v, = V™ < 00 exists. Then x™ = lim,,_, o Xx;, exists and

||x* — Xp || <v*—v,, Yn>0. (1.3.10)
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Proof. The estimate

n+m—1 n+m—1
Bnm =2l < D0 i = x5 = Y0 (Vi1 = vj) = Vagm — va (1.3.11)
Jj=n j=n

shows that {x,} is a Cauchy sequence in the Banach space X and as such it converges
to some x* and the error estimates (1.3.10) follow from (1.3.11) as m — oo.

1.4 Exercises

1.4.1. Show that the operators introduced in Examples 1.1.2 and 1.1.3 are indeed
linear.
1.4.2. Show that the Laplace transform
P 9 0
=—+—+—
2 2 2
dxy  dxy;  0x3
is a linear operator mapping the space of real functions x = x(x1, x2, x3) with
continuous second derivatives on some subset D of R? into the space of contin-

uous real functions on D.
1.4.3. Define T:C"[0,1] x C'[0,1] — C [0, 1] by

d*x

d
T(x,y) = aﬁ + ﬂd—);, for any real constants «, S and 0 < ¢ < 1.

Show that T is a linear operator.
1.4.4. In an inner product (-, -) space X show that for any fixed z in X

T(x)=(x,z2)

is a linear functional.

1.4.5. Show that an additive operator 7" from a real Banach space X into a real
Banach space Y is homogeneous if it is continuous.

1.4.6. Show that matrix A = {a;;},i, j = 1,2,..., n has an inverse if

n
1 .
laiil > 3 laijl > 0, i=1,2,....n.
j=1

1.4.7. Show that the linear integral equation of second Fredholm kind in C [0, 1]

1
x(s) — k/ K(s,t)x(t)dt = y(s), 0<x1<I,
0

where K (s, t) is continuous on 0 < s,¢ < 1, has a unique solution x(s) for

y(s) € C[0, 1]if
-1
1
A < |:maX/ |K(s,t)|dt:| .
[0.11 Jo
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1.4.8. Prove Theorem 1.1.10.
1.4.9. Prove Theorem 1.1.12.
1.4.10. Show that the operators defined below are all linear.

(a) Identity operator. The identity operator /x: X — X given by Ix(x) = x, for

all x € X.

(b) Zero operator. The zero operator O: X — Y given by O(x) = 0, for all
x e X.

(¢) Integration. T:C [a,b] — C [a, b] given by T(x(t)) = folx(s)ds, t €
[a, b].

(d) Differentiation. Let X be the vector space of all polynomials on [a, b]. Define
T on X by T(x(2)) = x'(¢).
(e) Vector algebra. The cross product with one factor kept fixed. Define 77: R? —
R°. Similarly, the dot product with one fixed factor. Define 75:R? — R.
(f) Matrices. A real matrix A = {ag;;} with m rows and n columns. Define
T:R" — R™ given by y = Ax.
1.4.11. Let T be a linear operator. Show:
(a) the R(T) (range of T') is a vector space;
(b) if dim(T) = n < oo, then dim R(T') < n;
(c) the null/space N(T) is a vector space.
1.4.12. Let X, Y be vector spaces, both real or both complex. Let 7: D(T) — Y
(domain of T') be a linear operator with D(7') € X and R(7T") € Y. Then, show:

(a) the inverse T~': R(T) — D(T) exists if and only if
Tx)=0=>x=0;

(b) if T exists, it is a linear operator;
(c) if dim D(T) = n < oo and T~ ! exists, then dim R(7') = dim D(T).

1.4.13. Let T: X — Y, P:Y — Z be bijective linear operators, where X, Y, Z
are vector spaces. Then, show: the inverse (ST)~!: Z — X of the product ST
exists, and

STy '=1""1s71.

1.4.14. If the product (composite) of two linear operators exists, show that it is linear.

1.4.15. Let X be the vector space of all complex 2 x 2 matrices and define 7: X —
X by T(x) = cx, where ¢ € X is fixed and cx denotes the usual product of
matrices. Show that 7 is linear. Under what conditions does 7! exist?

1.4.16. Let T: X — Y be a linear operator and dim X = dimY = n < oco. Show
that R(T) = Y if and only if 7~! exists.

1.4.17. Define the integral operator 7: C [0, 1] — C[0, 1] by y = T(x), where
y(t) = fol k(x, s)x(s)ds and k is continuous on [0, 1] x [0, 1]. Show that T is
linear and bounded.

1.4.18. Show that the operator 7" defined in 1.4.10(f) is bounded.

1.4.19. If a normed space X is finite-dimensional, then show that every linear func-
tional on X is bounded.
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1.4.20. Let T: D(T) — Y be a linear operator, where D(T) C X and X, Y are
normed spaces. Show:

(a) T is continuous if and only if it is bounded;

(b) if T is continuous at a single point, it is continuous.
1.4.21. Let T be a bounded linear operator. Show:

(a) x, = x (where x,, x € D(T)) = T(x,) — T(x);

(b) the null space N (T) is closed.

1.4.22. If T # 01is a bounded linear operator, show that for any x € D(T') such that
Ixll < 1, we have [T (x)|| < [Tl

1.4.23. Show that the operator T:£%° — £°° defined by y = (y;) = T (x), yi = %,
x = (x;), is linear and bounded.

1.4.24. Let T:C [0, 1] — C [0, 1] be defined by

t
y(t) :/ x(s)ds.
0

Find R(T) and T~ R(T) — C [0, 1]. Is 7! linear and bounded?
1.4.25. Show that the functionals defined on C [a, b] by
b
JSilx) = / x()yo()dt  (yo € Cla, b])
a
f2(x) = cix(a) + c2x(D)  (c1, cp fixed)

are linear and bounded.
1.4.26. Find the norm of the linear functional f defined on C [—1, 1] by

0 1
f(x) =/ x(t)dt—/ x(t)dt.
—1 0

1.4.27. Show that

filx) = maxx(t) Hx) = mlnx(t) J =a,b]

define functionals on C [a, b]. Are they linear? Bounded?
1.4.28. Show that a function can be additive but not homogeneous. For example, let
z = x + iy denote a complex number, and let 7: C — C be given by

T(z)=7=x—iy.

1.4.29. Show that a function can be homogeneous but not additive. For example,
consider the operator 7: R?> — R given by

X
T (0 = L
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1.4.30. Let F be an operator in C [0, 1] defined by

K
s+t

1
F(x,y) = x(s)f x(dt, 0<ir<l1.
0

Show that for xg, z € C [0, 1]

s
s+t

1 1
F'(x0)z = x0(s) / 2 2(ydr + 2(s) / xo(t)dt.
0o S+t 0

1.4.31. Find the Fréchet derivative of the operator F' in Rgo given by
2
X" 4+T7x +2xy—3
FE) = ( . ) .
y

1.4.32. Find the first and second Fréchet derivatives of the Uryson operator

1
Ux) = / k(s,t,x(t))dt
0
in C [0, 1] at xo = x0(s).
1.4.33. Find the Fréchet derivative of the Riccati differential operator

dz

2
T +pM®)z=+qt)z + (1),

R(2) =

from C’ [0, s] into C [0, s] at zo = zo(¢) in C' [0, s],for p, g, r being given dif-
ferentiable functions on [0, s].
1.4.34. Find the first two Fréchet derivatives of the operator

FO) = (73 R
Y xsiny ’

1.4.35. Consider the partial differential operator
F(x) = Ax — x?

from C2(1) into C (1), the space of all continuous functions on the square 0 <
o, B < 1. Show that

F'(x0)z = Az(a, B) — 2xo(a, B)z(a, B),

where A is the usual Laplace operator.
1.4.36. Let F(L) = L3, in L(x). Show:

F'(Lo) = Lo[1Lo+ L[ 1+ [1Lo.
1.4.37. Let F(L) = L™, in L(x). Show:
F'(Lo) = —Ly'[1L;",

provided that L ! exists.
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1.4.38. Show estimates (1.1.45) and (1.1.46).
1.4.39. Show Taylor’s Theorem 1.1.20.
1.4.40. Integrate the operator

F(L)=L"" in L(X)

from Lo = 1to Ly = A, where || — Al < 1.

1.4.41. Show that the spaces defined in Examples 1.2.2 are POTL.

1.4.42. Show that any regular POB-space is normal but the converse is not necessar-
ily true.

1.4.43. Prove Theorem 1.2.11.

1.4.44. Show thatif (1.2.4) or (1.2.5) are satisfied then F’ (x) = [x, x]forall x € D.
Moreover show that if both (1.2.4) and (1.2.5) are satisfied, then F’ is Lipschitz
continuous with I = ¢g + ¢j.

1.4.45. Find sufficient conditions so that estimates (1.2.33) and (1.2.34) are both
satisfied.

1.4.46. Show that B, (n > 0) in (1.2.38) is a nonnegative subinverse of F’ (y,)
(n>0).

1.4.47. Let xo, X1, ..., X, be distinct real numbers, and let f be a given real-valued
function. Show that:

[XO, X1, ...,xn] = Z M

= & (x))
and
(X0 X1+ oovs X ] (X — X0) = [X1, oes Xp] — [X0s ons X1 ]
where
gn (x) = (x —x0) ... (x —x) .
1.4.48. Let xq, x1, ..., X, be distinct real numbers, and let f be n times continuously
differentiable function on the interval 7 {xg, x1, ..., x,,} . Then show that
[X0, X1, o0y Xn] = / - / P (toxo + -+ + taxy) dty -+ - diy
Tn
in which

n
Th = {(tl, o) 1112 0ty 2 0, )t < 1}
n
to=1-— Zi:l 4.
1.4.49. If f is areal polynomial of degree m, then show:

polynomial of degree m —n — 1, n <m — 1
[x0, X1, ..o, Xp, X] = am n=m-—1
0 n>m-—1

where f (x) = a,,x"+ lower-degree terms.
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1.4.50. The tensor product of two matrices M, N € L (R") is defined as the
n? x n? matrix M x N = (mijN li,j=1, n) where M = (mij). Con-
sider two F-differentiable operators H, K: L (R") — L (R") and set F (X) =
H (X) K (X) for all X € L (R"). Show that F' (X) = [H (X) x I1K' (X) +
[ x K(X)"]H' (X) forall X € L (R").

1.451. Let F:R*> — R? be defined by fi (x) = xj, fo(x) = x3. Setx = 0
and y = (1, )7 . Show that there is no z € [x, y] such that F (y) — F (x) =

F'(2) (y —x).
1.4.52. Let F: D C R" — R and assume that F is continuously differentiable on
a convex set Do C D. For and x, y € Dy, show that

IFO)—F@) —F @) -0 <lly=xlwdly—=xI,
where w is the modulus of continuity of " on [x, y]. That is
w () =sup{||F' (x) = F' ()| | x,y € Do, lx =yl <t}.

1.4.53. Let F: D C R" — R™. Show that F" is continuous at z € D if and only if

all second partial derivatives of the components fi, ..., f;, of F are continuous
at z.

1.4.54. Let F: D C R" — R™. Show that F" (z) is symmetric if and only if each
Hessian matrix Hy (z) , ..., Hy (z) is symmetric.

1.4.55. Let M € L (R") be symmetric, and define f:R” — R by f (x) = x” Mx.
Show, directly from the definition that f is convex if and only if M is positive
semidefinite.

1.4.56. Show that f: D C R" — R is convex on the set D if and only if, for any
x,y € D, the function g:[0, 1] — R, g(t) = g (tx 4+ (1 —t) y), is convex on
[0, 17.

1.4.57. Show that if g;:R" — Risconvex and ¢; > 0,i = 1,2, ...,m, then g =

m
> cig; is convex.
t=1

1.4.58. Suppose that g: D C R" — R is continuous on a convex set Do C D and
satisfies

1 1 1 - 5
Eg(x)+§g(y)—g<§(x+y)) >ylx =yl

for all x, y € Dy. Show that g is convex on Dg if y = 0.

1.4.59. Let M € L (R"). Show that M is a nonnegative matrix if and only if it is an
isotone operator.

1.4.60. Let M € L (R") be diagonal, nonsingular, and nonnegative. Show that
x|l = ID (x)]| is a monotonic norm on R”.

1.4.61. Let M € L (R"). Show that M is invertible and M~ > 0 if and only if there
exist nonsingular, nonnegative matrices M1, M, € L (R") such that M{M M» =
1.

1.4.62. Let [, -]: D x D be an operator satisfying conditions (1.2.1) and (1.2.44).
The following two assertions are equivalent:
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(a) Equality (1.2.48) holds for all x, y € D.
(b) For all points u, v € D such that 2v — u € D we have

[u,v] =2 [u,2v — u] — [v,2v — u].

1.4.63. If § F is a consistent approximation F’ on D, show that each of the following
four expressions
ct=h(lx—ull+Iy—ull+ llu—vl)lx—yl,
ca=h(lx—vl+Ily—vll + llu—vlD)lx =y,
c3=h(lx=yl+Ily—ul+ly—=vilx—=yl,

and

ca=h(lx—yl+llx —ull+lx —vl) llx — yll
is an estimate for

IF (x) = F(y) = 8F (u,v) (x — y)I.

1.4.64. Show that the integral representation of [xo, ..., x¢] is indeed a divided dif-
ference of kth order of F. Let us assume that all divided differences have such
an integral representation. In this case for xo = x; = .-+ = x; = x, we shall
have

Low
[x,x,....,x]=—-f" (x).
Tk

k+1 times

Suppose now that the nth Fréchet derivative of F is Lipschitz continuous on D,
i.e., there exists a constant ¢, 4 such that

| F® @ = F® @) = ot u— vl
for all u, v € D. In this case, set

Ry, (y) = ([XOa ces Xn—1, Y] - [XOa ces Xn—1, xn]) (Y —Xn—1), -0y (y — x0)

and show that

C

+1
1R (DI = (n"— Iy = xll - Iy = Xn—1ll -+ - lly — xoll

11!
and
HF(x—i—h)— <F(x)+F/(x)h+%F”(x)h2+...+%F(”) (x)h”)H

< Lyt
n+1)!
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1.4.65. We recall the definitions:
(a) An operator F: D C R" — R™ is Gateaux- (or G-) differentiable at an interior

point x of D if there exists a linear operator L € L (R", R™) such that, for any
h eR"

1
lim - ||F (x +th) — F (x) —tL (h)| = 0.
t—0t

L is denoted by F’ (x) and called the G-derivative of F at x.

(b) An operator F: D C R* — R™ is hemicontinuous at x € D if, for any 4 € R”
and ¢ > 0, thereis a § = & (&, h) so that whenever |f| < § and x + th € D, then
|F(x+th)—F )| < e.

(c) If F: D C R* — R™ and if for some interior point x of D, and & € R", the limit

lim 1 [F(x+th)— Fx)]=Ax,h)
t—01t
exists, then F is said to have a Gateaux differential at x in the direction /.
(d) If the G-differential exists at x for all 4 and if, in addition
1
}}1_% 7 If(x+H)—F(x)—Ax, bl =0,
then F has a Fréchet differential at x.
Show:
(i)  The linear operator L is unique;
(i) If F: D c R" — R™ is G-differentiable at x € D, then F is hemicontin-
uous at x.
(iii) G-differential and “uniform in 2" implies F-differential;
(iv) F-differential and “linear in 2 implies F-derivative;
(v)  G-differential and “linear in & implies G-derivative;
(vi) G-derivative and “uniform in 4 implies F-derivative;
Here “uniform in /" indicated the validity of (d).
Linear in 7 means that A (x, &) exists for all z# € R" and

A(x,h) =M (x)h, where M (x) € L (R",R").

Define F:R? — R by F (x) = sgn (x2) min (|x1], |x2]).
Show that, for any h € RZ, A (0, h) = F (h), but F does not have a
G-derivative at 0.

(vii) Define F:R?> — Rby F (0) =0ifx = 0and

F(x)=x2(x12+x§)%/|:<xl2+x%>2+x§i|, if x #£0.

Show that F has a G-derivative at 0, but not an F'-derivative. Show, more-
over, that the G-derivative is hemicontinuous at 0.

(viii) If the g-differential A (x, &) exists for all x in an open neighborhood of an
interior point xo of D and for all 4 € R”, then F has an F-derivative at xq
provided that for each fixed 4, A (x, &) is continuous in x at x.
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(e) Assume that F: D C R" — R has a G-derivative at each point of an open
set Do C D. If the operator F': Dy C R" — L (R", R™) has a G-derivative at
x € Dy, then (F ! )/ (x) is denoted by F” (x) and called the second G-derivative
of F atx.
Show:

(1) If F:R" — R™ has a G-derivative at each point of an open neighborhood
of x, then F’ is continuous at x if and only if all partial derivatives 9; F; are
continuous at x.

(ii) F” is continuous at xo € D if and only if all second partial derivatives of
the components fi, ..., f, of F are continuous at xo. F” (xo) is symmetric
if and only if each Hessian matrix Hj (xo), ..., Hy (xo) is symmetric.

1.4.66. Consider the problem of approximating a solution y € C’ [0, y] of the non-
linear ordinary differential equation

dy
2= K, y@®), 0<t=<t, y©O) = yo.

The above equation may be turned into a fixed point problem of the form

t
y(t)=yo+/ K(s,y(s)ds, 0=t <t.
0

Assume K (x, y) is continuous on [0, #p] x [0, #p] and satisfies the Lipschitz con-
dition

max |K (s, q1(5) — K (s, q2(5))| < Mllq1 — g2l
s 10
for all g1, g2 € C [0, 10] .

Note that the integral equation above defines an operator P from C [0, #y] into
itself. As in Example 1.3.10 find a sufficient condition for P to be a contraction
mapping.
1.4.67. Let F be a contraction mapping on the ball U (xo, r) in a Banach space X,
and let
1F(x0) —xoll = (1 —o)r.

Show F has a unique fixed point in U (xo, r).
1.4.68. Under the assumptions of Theorem 1.3.4, show that the sequence generalized
by (1.3.2) minimizes the functional

f@x) = llx = FQ)

for any xo belonging to a closed set A such that F(A) C A.

1.4.69. Let the equation F(x) = x have a unique solution in a closed subset A of a
Banach space X. Assume that there exists an operator Fj that Fj(A) € A and F
commutes with F on A. Show the equation x = Fj(x) has at least one solution
in A.
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1.4.70. Assume that operator F' maps a closed set A into a compact subset of itself
and satisfies

[Fx) = FOD)I < llx =yl (x#y), forallx,yeA.

Show F has a unique fixed point in A. Apply these results to the mapping
F(x)=x— )‘72 of the interval [0, 1] into itself.
1.4.71. Show that operator F defined by

F(x)=x+ )lc
maps the half line [1, co) into itself and satisfies
IF(x) — FDI < llx =yl

but has no fixed point in this set.
1.4.72. Consider condition

[Fx) = FWIl = llx =yl (x,y€A).

Let A be either an interval [a, b] or a disk x2+ y2 < r2. Find conditions in both
cases under which F has a fixed point.

1.4.73. Consider the set cp of null sequences x = {x1, x2, ...} (x, — 0) equipped
with the norm ||x|| = max,, |x,|. Define the operator F by

Fx) = {%(1 +lx), 3x1, 2o, (1 _ ﬁ) Xn, .- } .
Show that F: U (0, 1) — U(0, 1) satisfies

1F ) = FWI < llx = yll,

but has no fixed points.
1.4.74. Repeat Exercise 1.4.73 for the operator F defined in ¢y by

Fx)={ .oy -h

where y, = "n;lx,, + % sin(n) (n > 1).
1.4.75. Repeat Exercise 1.4.73 for the operator F defined in C [0, 1] by

Fx(t) = (1 — )x(t) + £ sin (;) .

1.4.76. Let F be a nonlinear operator on a Banach space X which satisfies (1.3.3)
on U (0, r). Let F(0) = 0. Define the resolvent R(x) of F by

Fx)f =xFRX)f + f.

Show:
(a) R(x) is defined on the ball || || < (1 — |x|c)r if |x] < ¢ L;
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®) el f — gl < IR0 f = Rl < =1 f — ¢lls

© IR f = RO fI < 7 i hs

1.4.77. Let A be an operator mapping a closed set A of a Banach space X into
itself. Assume that there exists a positive integer m such that A™ is a contraction
operator. Prove that sequence (1.3.2) converges to a unique fixed point of F in
A.

1.4.78. Let F be an operator mapping a compact set A C X into itself with || F'(x) —
FOI < lx —y|l (x # y,all x, y € A). Show that sequence (1.3.2) converges
to a fixed point of (1.3.1).

1.4.79. Let F be a continuous function on [0, 1] with 0 < f(x) < 1 for all x €
[0, 1]. Define the sequence

Xng1 = Xn + 7 (F(X0) = xn).

Show that for any xo € [0, 1] sequence {x,} (n > 0) converges to a fixed point
of F.

1.4.80. Show:
(a) A system x = Ax + b of n linear equations in n unknowns xp, x2, ..., X,
(the components of x) with A = {aj}, j.k = 1,2,...,n, b given, has a

unique solution x* if

n
Ylapl <1, j=12....n
k=1

(b) The solution x* can be obtained as the limit of the iteration (x@, x|
@, . .}, where x© ig arbitrary and

x"D = Ax™ 4 b (m > 0).

(c) The following error bounds hold:

c "
™ =27l < T "D = x ) < @ =Dy,
—C —C

where
n
c=max Y laj| and |x —z|| = max|x; —z|, j=1.2,....n.
k=1 /
1.4.81. (Gershgorin’s theorem: If A is an eigenvalue of a square matrix A = {a i},
then for some j, where 1 < j < n,

n
lajj = A < lajl.)
k=1
k]
Show that x = Ax + b can be written Bx = b, where B = | — A, and
Y ieilajxl < 1 together with the theorem imply that O is not an eigenvalue
of B and A has spectral radius less than 1.
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1.4.82. Let (X, d), (X, d1), (X, d2) be metric spaces with d(x, z) = max; |x; —z;],
j=12,...,n,

n n 1/2
dl(X,Z)=Z|xj_Zj| and dZ(X»Z)Z[Z(xj—Zj)Z] ;
Jj=1 j=1

respectively. Show that instead of ZZ:I lajkl < 1,j =1,2,...,n, we obtain
the conditions

n n n
Z|ajk| <1, k=1,2,...,n and ZZa?k < 1.

j=1 j=1 k=1
1.4.83. Let us consider the ordinary differential equation of the first order (ODE)
x'=f(t,x), x(t0) = xo,
where 7 and xq are given real numbers. Assume:
|f(t, x)| = co
on R ={(t,x) | |t — o] <a,|x —xol <b},
|f(t,x)— f(t,v)] <cilx —v], for all (¢, x), (t,v) € R.

Then show: the (ODE) has a unique solution on [ty — ¢3, fg + ¢2], where

¢ < min {a, %, cl_.} .

1.4.84. Show that f defined by f(x, y) = | sin y| 4 x satisfies a Lipschitz condition
with respect to the second variable (on the whole xy-plane).

1.4.85. Does f defined by f(t, x) = lx|'/2 satisfy a Lipschitz condition?

1.4.86. Apply Picard’s iteration x,11(f) = ftf) f(s,x,(s))ds used for the (ODE)
x' = f(t,x), x(tg) = x0+0, x’ = 14+x2, x(0) = 0. Verify that for x3, the terms
involving ¢, 12, ..., 1> are the same as those of the exact solution.

1.4.87. Show that x’ = 3x%/3, x(0) = 0 has infinitely many solutions x.

1.4.88. Assume that the hypotheses of the contraction mapping principle hold, then
show that x* is accessible from any point U (x0, r0).

1.4.89. Define the sequence {x,} (n > 0) by xo = x0, Xp4+1 = F(x;) + &, (n > 0).
Assume:

lenll <A (n>=0) (0<Ai<1);

F is a c-contraction operator on U (xg, ). Then show sequence {x,} (n > 0)

converges to the unique fixed point x* of F in U (xo, r) provided that

£
r=ro+-—.
l—c
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The Newton-Kantorovich (NK) Method

We study the problem of approximating locally unique solution of an equation in
a Banach space. The Newton-Kantorovich method is undoubtedly the most popular
method for solving such equations.

2.1 Linearization of equations

Let F be a Fréchet-differentiable operator mapping a convex subset D of a Banach
space X into a Banach space Y. Consider the equation

F (x) =0. (2.1.1)

We will assume D is an open set, unless otherwise stated.

The principal method for constructing successive approximations x, to a solu-
tion x™* (if it exists) of Equations (2.1.1) is based on successive linearization of the
equation.

The interpretation of (2.1.1) is that we model F at the current iterate x,, with a
linear function:

Ly (x) =F (xp) + F' (x,) (x — x,) . (2.1.2)

L, is called the local linear model. If F’ (x,,)~! € L (Y, X) the space of bounded
linear operators from Y into X, then approximation x,j, which is the root of
Ly (xn—i-l) =0,is given by

X1 =X — F' () "' F () (n20). (2.1.3)

The iterative procedure generated by (2.1.3) is the famous Newton-Kantorovich
(NK) method [125]. The geometric interpretation of this method is well-known, if
F is a real function. In such a case, x,1 is the point where the tangential line y —
F (xp) = F'(x;)(x — x,) of function F at the point (x, F(x,)) intersects the x-axis.

The basic defect of method (2.1.3) is that each step involves the solution of a
linear equation with a different linear operator F’(x,). For this reason, one often

I.K. Argyros, Convergence and Applications of Newton-type Iterations,
DOI: 10.1007/978-0-387-72743-1_2, (© Springer Science+Business Media, LLC 2008
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constructs successive approximations that employ linear equations other than (2.1.2),
though similar to them.
The most frequently used substitute for (2.1.2) is the equation

F (xp) + F' (x0) (x — xp) , (2.1.4)

where xq is the initial approximation. The successive approximations are then de-
fined by the recurrence relation

X1 = Xn — F' (x0) 7' F (xy) (n>0). (2.1.5)

We will call this method the modified Newton-Kantorovich method (MNK).
We are concerned about the following aspects:

(a) finding effectively verifiable conditions for its applicability;

(b) computing convergence rates and a priori error estimates;

(c) choosing an initial approximation x¢ for which the method converges; and
(d) the degree of “stability” of the method.

2.2 Semilocal convergence of the NK method
Define the operator P by

P(x)=x—F (x)"' F(x) (2.2.1)
Then the NK method (2.1.3) may be regarded as the usual iterative method

Xnp1 =P (xy) (n=0), (222)

for approximating solution x* of the equation

x =P (x) 2.2.3)
Suppose that
lim x, = x*. 2.2.4)
n— o0

We would like to know under what conditions on F and F’ the point x* is a solution
of Equation (2.1.1).

Proposition 2.2.1. If F' is continuous at x = x*, then we have
F (x*)=0. (2.2.5)
Proof. The approximations x,, satisfy the equation
F' (xn) (g1 = xn) = —F () . (2.2.6)

Because the continuity of F at x* follows from the continuity of F’, taking the limit
as n — o0 in (2.2.6) we obtain (2.2.5).
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Proposition 2.2.2. If
|F o <b 2.2.7)
in some closed ball that contains {x,}, then x* is a solution of F (x) = 0.

Proof. By (2.2.7) we get

lim F (x,) = F (x*), (2.2.8)
n—oo
and as
IF )l < bllxpr1 — xnll, (2.2.9)

(2.2.5) is obtained by taking the limit as n — oo in (2.2.4).

Proposition 2.2.3. If
|F" )| <k (2:2.10)

in some closed ball U (xg,r) = {x € X | |lx —xoll <r}, 0 < r < oo, which con-
tains {x,}, then x* is a solution of equation F (x) = 0.

Proof. By (2.2.10)
|[F'(x) = F' (xo)| < K llx —xoll < Kr (2.2.11)

forallx € U (x0, r). Moreover we can write

|F'' | < |F xo)|| + | F' ) = F' (x0)] . (2.2.12)
so the conditions of Proposition 2.2.2 hold with
b=|F (xo)| + Kr (2.2.13)

Let us assume that the operator F' is Fréchet-differentiable on D, where xq is an
initial approximation for the NK method (2.1.3) and that the operator F’(x) satisfies
a Lipschitz condition

|F'x)— F ()| < llx = yll, forallx,y e D. (2.2.14)

Throughout the sequel, we shall assume that the operator I'g = F’ (xo)_1 exists.
We shall now state and prove the famous Newton-Kantorovich theorem for ap-
proximating solutions of equation (2.1.1) [125]:

Theorem 2.2.4. Assume that

Ty < by, (2.2.15)
IToF (xo)ll <mo=n (2.2.16)
ho = bolng < % (2.2.17)
ro = %no, (2.2.18)
and )
U (xo,r) € D

then the NK method (2.1.3) converges to a solution x* of equation (2.1.1) in the ball
U (xo,7) .
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There are several proofs of this theorem; we present one due to Kantorovich
[125].

Proof. Define a number sequence

bpt1 = lfr;l,,’ M+l = ﬁnn» hnt1 = bpy1€nn+1, (22.19)
1—4/1-2h,
Tnyl = Tﬂnn+l- (2.2.20)

We claim that under the assumptions (2.2.15), (2.2.18) the successive approxi-
mations (2.1.3) exists; moreover

I < by TG F )l < 0y o < % (2.2.21)

and
U (xp, 1) CU Xp—1,Tn—1) . (2.2.22)
The proof is by induction. Assume that (2.2.21) and (2.2.22) hold for n = m. Because
xme1 — Xmll = IT ) F(xp)l < 0, it follows from the definition of r,, that

Xm+1 € U (x, ) ; afortiori, x,, 1.1 € D. The derivative F’ (x,,+1) therefore exists.
By (2.2.14)

[T Cen) (F' o) = F' o)) | < bl ms1 = X | < o < 33
the operator I'(x;,+1) = F "(xm41)" ! therefore exists, and has the representation
/ / —1
C(xpmy1) = {I + I'(xm) [F (Xm+1) — F (xm)]} [ (xm)
o0 . .
=" (=D {T ) [F' @ng1) = F' o) ]} T Gom) (22.23)
i=0
Hence
00 .
ITCons DI < Y T o) [F/ o) = F' o) ][ b < 12— = buy1. (22.24)
i=0

Now consider the second inequality of (2.2.21) (for n = m + 1). It follows from the
identity

Fxmy1) = F(xpg1) — F(xm) — F/(xm) (Xm1 — Xm) (2.2.25)

that
IF Gt DIl < 5 Ixmat — xmll* < S0, (2.2.26)

and, by (2.2.24),

bt h
||F(xm+l)F(xm+l)” = z(in,h';) = 2(1,’";!"1) Nm = NMm+1-

The third inequality of (2.2.21) is easily proved; by definition,
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by I 7 1
hnt1 = bt 1€0m+1 = mfmﬂm = 20=h,)? = 3. (2.2.27)

To prove the inclusion (2.2.22) it suffices to note that if ||x — xz41|| < rr41 then
lx = xell < llx = Xl + X1 — Xkl < rer + ks (2.2.28)

as the right-hand side is identically equal to r¢ (the simple computation is left to the
reader).

Thus the successive approximations (2.1.3) are well defined.

The third inequality of (2.2.21) implies that 7,41 < %nm; therefore r, — 0
as n — oo. Thus the successive approximations converge to some point x* €
U (x0, ro). To complete the proof, it suffices to leave m — oo in (2.2.26).

Remark 2.2.5. (a) It is clear from the proof that, under the assumptions of Theorem
2.2.4,
Hxn - x*“ <r, (n=1,2,..).

(b) Under the assumptions of Theorem 2.2.4, one can easily prove that

< 5 (2ho)* ' no.

Jen =7

(c) In Exercise 2.16.9 we have provided a list of error bounds and the relationship
between them.

It is natural to call a solution x* of equation (2.1.1) a simple zero of the operator
F if the operator I" (x*) exists and is continuous.

Theorem 2.2.6. If, under the assumptions of Theorem 2.2.4, hy < %, then the zero
x* of F to which the successive approximations (2.1.3) converge is simple.

Proof. It suffices to note that ro < (¢bg)~! for hg < % and that ||x — xo|| < (£bg)~!
implies || IToF (x)—1 H < 1. Thus both operators I'o F’ (x) and F’ (x) are invertible.

Note that when /o = % the successive approximations may converge to a “mul-
tiple” zero. An example is the scalar equation x> = 0 for any xo % 0.

We now examine the convergence of the MNK method (2.1.5).
The method (2.1.5) coincides with the usual iterative method

Xpy1 =Ax, (n=0,1,2,..) (2.2.29)
for approximate solution of the equation
x = Ax (2.2.30)

where
Ax =x —T'gFx. (2.2.31)

Theorem 2.2.7. Under the hypotheses of Theorem 2.2.4 with (2.2.15) holding as
strict inequality the successive approximations (2.1.5) converge to a solution x* €
U (xo, ro) of equation (2.1.1).
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Proof. First note that equation (2.1.1) indeed has a solution in the ball U (xq, ro)—
this follows from Theorem 2.2.4. Below we shall prove that the operator (2.2.31)
satisfies the assumptions of the contractive mapping principle Theorem 1.3.4 in the
ball U (xg, ro). This will imply that the solution x* in the ball U (xq, ro) is unique,
and that the approximations (2.1.5) converge.

Obviously, forany x, y € U(xp,7) (r < R),

Ax —Ay=x—y —To(Fx — Fy)
1
= FO/O [F/ (xo) — F' (y +1t(x — y))] (x —y)dt. (2.2.32)

This identity, together with (2.2.14) implies the estimate
|Ax — Ay|| < boLr |lx — y|l . (2.2.33)

Consequently, A is a contraction operator in the ball U (xg, o). To complete the
proof, it remains to show that

AU (x9, r0) < U (x0, ro)-
Let xo € D. Then, by (2.2.32)

[Ax — xoll < [|[Ax — Axoll + [|Axo — xoll

1
< 1“0/0 [F' (x0) = F' (x0 + 1 (x — x0))] (x — x0) dt|| + no.

Therefore, when ||x — xgl| < ro,

2
Lr0

[Ax — xoll < -+ no = 9.

Note that, by (2.2.33), the operator A satisfies a Lipschitz condition with constant
g =1 — /T —=2hg (see also (1.3.3)).

The above analysis of the modified Newton-Kantorovich method relates the sim-
plest case. More subtle arguments (see, e.g., Kantorovich and Akilov [67]) show that
Theorem 2.2.7 remains valid if the sign < in (2.2.17) is replaced by < .

If D = U (x0, R), consider the operator A defined by (2.2.31). Assume that the
conditions of Theorem 2.2.6 hold, and set

a(r)y= sup |[[Ax —xoll. (2.2.34)

lx—xoll<r

The function «(r) is obviously continuous and nondecreasing. It was shown in the
proof of Theorem 2.2.6 that

boL [lx — xoll

Ax — <
[Ax — xoll < 7

+no (lx —xoll < R). (2.2.35)

Hence it follows:
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Lemma 2.2.8. The function «(r) satisfies the inequality

r2

a(r) < +no (ro<r =<R).

Theorem 2.2.9. If, under the assumptions of Theorem 2.2.4,

1 — V1= 2ho 1+ V1= 2ho
— N0 = R < ———— 1o

0= ho ho

b

as the quadratic trinomial %boer — r + no is negative in the interval

1+ 1 —=2hg
rOV h—ono *

Remark 2.2.10. If one repeats the proofs of Theorem 2.2.4 and 2.2.7 using
F’ ()co)_1 F (x) instead of the operator F (x) , condition

[F o™ (F @ - Fo)| < el =yl (2:236)

for all x, y € U (xg, R) instead of (2.2.14), condition

1
h= 3t (2.2.37)

instead of (2.2.17), and finally

= #r/, U (xo, s*) cD (2.2.38)
instead of (2.2.38) then the results hold in an affine invariant setting. The advantages
of such an approach have elegantly been explained in [78] and also in [43]. From
now on we shall be referring to (2.2.37) as the famous for its simplicity and clarity
Newton-Kantorovich hypothesis.

Note that we are using for simplicity the same symbol ¢ to denote the Lipschitz
constant in both conditions (2.2.14) and (2.2.36).

It also turns out from the proof of Theorem 2.2.4 that the scalar sequence {s,}
(n > 0) given by

£ (Sns1 = $n)’
=0, 51 =1, = 0 2.2.39
50 S1=1, Sn+2 = Sn+1 + 20— s ( )

is a majorizing sequence for {x,} such that
0<so<s1<..<s,<..<s* (2.2.40)

and
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[43], [67], [96].
Moreover the following error estimates hold for all n > 0:

lxn+1 = Xnll < Spv1 — Su (2.2.41)

and
|xn — x*|| <5 = s (2.2.42)

In the rest of the book motivated by optimization considerations using the same
information (F, xo, £, n) we attempt to weaken crucial condition (2.2.37) and also
provide a finer majorizing sequence than {s,}. We also investigate in applications
how is this effecting results by others based on (2.2.37).

To achieve all the above we introduce the center-Lipschitz condition

| F' o)™ (F/ 00 = Flxo) | = 2o x = ol (22.43)

for all x € D, where D is an open convex subset of X.
We also define scalar sequence {¢,} by

10=0, t1 =1, th42 =thy1 + M (n=0). (2.2.44)
2(1 =4totnyr)
In [24] we showed:
Theorem 2.2.11. Let F: D C X — Y be a Fréchet-differentiable operator and for

xo € D, assume
F'(xo)~' € L(Y. X); (2.2.45)

conditions (2.2.36), (2.2.43), and

U(xg,t*) € D (2.2.46)
hold, where
t* = lim t,. (2.2.47)
n—0o0o

Moreover, assume that the following conditions hold:

hs = (8o +)n <4, foré € [0, 1] (2.2.48)
or )
28on £oé
hs <3, <1, <, 5 €l0,2 2.2.49
S8 e Sl o < ford €10.2) (2.2.49)
or |
hs <48, Lon <1 — 58, for$ € [60,2), (2.2.50)
where

2
14 14 4
—%4‘,/(%) +8%

2

80 = by #0) (2.2.51)
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Then sequence {x,} generated by the NK method (2.1.3) is well defined, remains
in U (xo, t*) for all n > 0 and converges to a solution x* € U (xo, t*) of equation
F(x)=0.

Moreover the following error estimates hold for all n > 0:

2
Ll xpg1 — Xl

lxn42 — xXpg1ll < 7 ] < thg2 — gl (2.2.52)

1 — £o lIxp41 — xoll

and
|n = x*|| <= t* = 1, (2.2.53)

where t,, t* are given by (2.2.44) and (2.2.47) respectively.
Furthermore, if there exists t** > t* such that

U (x0, ™) € D (2.2.54)

and
Lo (1 + 1) < 2, (2.2.55)

the solution x* is unique in U (xq, t**) .

Note that optimum condition is given by (2.2.50) for § = §p. However, we will
be mostly using condition (2.2.48) for § = 1, which is the simplest, in the rest of this
book.

We now compare our results with the ones obtained in Theorem 2.2.4 for the NK
method (2.1.3).

Remark 2.2.12. Let us set § = 1 in condition (2.2.48). That is, consider
hy =W+ < 1. (2.2.56)

Although (2.2.56) is not the weakest condition among (2.2.48)—(2.2.50) we will only
compare this one with condition (2.2.37), since it seems to be the simplest.

(a) Note that
by < ¢ (2.2.57)

holds in general and % can be arbitrarily large as the following example indicates:
Example 2.2.13. Let X =Y = D = R, x9 = 0 and define function F on D by
F(x) =co+ c1x + ¢y sine®” (2.2.58)

where ¢;, i = 0, 1, 2, 3 are given parameters. Then it can easily be seen that for c3
large and c; sufficiently small, % can be arbitrarily large.

(b) We have
1
h < 3 =h; <1 (2.2.59)
but not vice versa unless if £ = £¢. Indeed, for £ = £, the NK theorem 2.2.4 is a

special case of our Theorem 2.2.11. Otherwise our Theorem 2.2.11 can double the
applicability of the NK theorem 2.2.4 as £y € [0, £]:
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Example 22.14. Let X = ¥ =R, D =[a,2 —al.a € [0,}), xo = 1, and define
function F on D by
F(x)=x>—a. (2.2.60)

Using (2.2.16), (2.2.36), and (2.2.43), we obtain
1

'7=§(1—a),E=2(2—a)>ﬁo=3—a. (2.2.61)

The Newton-Kantorovich hypothesis (2.2.37) cannot hold since
h 2(1 )2 —a) ! foralla e 01 (2.2.62)
= — — — > — T =] o Lo
3 a a X orall a '3

That is, there is no guarantee that NK method (2.1.3) converges to a solution of

equation F (x) = 0.
However our condition (2.2.56), which becomes

1
h1=§(1—a)[3—a+2(2—a)]51, (2.2.63)
holds for all a € [ =453, 1),
In fact we can do better if we use (2.2.50) for
— /1
4505 < 53—3 = .464816242...,

as we get n = .183166..., £p = 2.5495, £ = 3.099, and §p = 1.0656867.
Choose 6 = §p. Then we get that the interval [5 _g/ﬁ, %) can be extended to

[ 450339002, 1 ).

(c) Using simple induction (see [24]) we showed:

th < sn (2.2.64)
tnbl — tn = Sp+1 — Sn (2.2.65)
t* <s* = lim s, (2.2.66)
n—oo
and
" —t, <s*—s,. (2.2.67)

Note also that strict inequality holds in (2.2.64) and (2.2.65) if £y < £.

That is, in this case our error estimates are finer and the information on the loca-
tion of the solution at least as precise.

Note that all the above advantages are obtained using the same information and
with the same computational cost since in practice the evaluation of ¢ requires the
evaluation of £.

We now compare our results with the ones obtained in Theorem 2.2.7 for the
MNK method (2.1.5).
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Remark 2.2.15. (a) Conditions (2.2.36), (2.2.37), and (2.2.38) can be replaced by

1
h° = oy < > (2.2.68)
1—~/1T—=2i0
5§ = — (2.2.69)

and (2.2.43), respectively.

Indeed the proof of Theorem 2.2.7 can simply be rewritten with the above
changes as condition (2.2.36) is never used full strength. This observation is im-
portant in computational mathematics for the following reasons: condition (2.2.68)
is weaker than (2.2.37) if £y < €. That increases the applicability of Theorem 2.2.7
(see also Example 2.2.13); the error estimates are finer since the ratio ¢ becomes
smaller for £y < ¢; it is easier to compute ¢ than computing £ (see also the three
examples that follow). Finally by comparing (2.2.38) with (2.2.69) for £y < ¢ we
obtain

55 < 8. (2.2.70)

That is, we also obtain a more precise information on the location of the solution s*.

Example 2.2.16. Returning back to Example 2.2.14 we see that Theorem 2.2.7 can-
not be applied as condition (2.2.37) is violated. However, our condition (2.2.68)

which becomes |
h° = 5(1 —a)3—a) < (2.2.71)

holds for a € [%, %) .

N =

Our motivation for introducing condition (2.2.39) instead of (2.2.36) can also be
seen in the following example:

Example 2.2.17. Let X =Y =R, D = [0, 00), x9 = 1 and define function F' on D
by
1+4

T tax+e, (2.2.72)

1

Fx)= >
I

where c1, ¢, are real parameters and i > 2 an integer. Then F' (x) = x% + ¢y is
not Lipschitz on D. However, center-Lipschitz condition (2.2.43) holds for ¢y =
(4™ (1 #-1).

Indeed, we have

HF/ o)™ [F'(x) = F' (xo)]H P

(e x = xol

i—l i—1

xo' A xd
<o |x — xol . (2.2.73)




52 2 The Newton-Kantorovich (NK) Method

Example 2.2.18. We consider the integral equation

b 1
u(s) = f(s)+)\/ G(s,t)u()Fndt, neN. (2.2.74)

a

Here, f is a given continuous function satisfying f (s) > 0, s € [a, b], A is areal
number, and the kernel G is continuous and positive in [a, b] x [a, b] .

For example, when G (s, ) is the Green kernel, the corresponding integral equa-
tion is equivalent to the boundary value problem

u”:)»ul"’%,
u(a) = f, u® = f®).

These type of problems have been considered in [71].
Equations of the form (2.2.74) generalize equations of the form

b
u(s) = / G (s,t)u )" dt (2.2.75)

studied in [45].
Instead of (2.2.74), we can try to solve the equation F (#) = O where

F:QCCla,b] > Cla,b]l, Q={ueCla,bl:u(s)>0,s €la,bl},

and b
FWM”:”“)_f“)—K/ G (s, 0)u () dr.

The norm we consider is the max-norm.
The derivative F' is given by

1 b
F ' (u)v(s) =v(s) —A(l + —)/ G(s,t)u(t)% v(t)dt, veQ.
n a
First of all, we notice that F’ does not satisfy a Lipschitz-type condition in .

Let us consider, for instance, [a, b] = [0, 1], G (s,t) = 1 and y (t) = 0. Then
F' (y)v(s) =v(s) and

1 1 1
|F x) = F" (3| = Il <1+;>/0 x (1) dt.

If F’ were a Lipschitz function, then
|F'(x) = F | <Lillx =yl

or, equivalently, the inequality

1
[ x ()" dt < Ly max x(s), (2.2.76)
0 x€[0,1]
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would hold for all x € Q and for a constant L,. But this is not true. Consider, for
example, the functions

t
xj(t)zj, j=>1, te][0,1].

If these are substituted into (2.2.76)
1 L, 1
This inequality is not true when j — oo.
Therefore, condition (2.2.36) fails in this case. However, condition (2.2.43)

holds. To show this, let xo (f) = f (t) and @ = mingeq,p) f (s), @ > 0. Then,
forv € Q,

[[F" ) = F" (o) ] v
= |A| <1 + l) max
n ) sela,b]
1
< |l (1 + —)
n

.[b . G (s, 0)|x (@) — f ()l
a selablx ("D ()OI OV f ()P

b 1 1
/ G (s, 1) (x ()" — f(t)ﬁ) v (1) dt

a

dt vl .

Hence,

Rl (L L
|F )= # o) | = e max [ G st e =0l

= K |lx = xoll ,

1(1+1) b
where K = W—U/"N and N = MmaXse[a,b] fa G (s,t)dt.

Set g = | F’ (xo) ™" K || . Then condition (2.2.68) holds for sufficiently small .

Remark 2.2.19. (a) We showed above that although the convergence of NK method
(2.1.5) is quadratic (for h < %) there are cases when MNK method is preferred over
the NK method.

(b) Although t* € [n,2n] say if condition (2.2.56) holds, we do not have an
explicit form for it like, e.g., (2.2.38).

In practice though we can handle this problem in several ways. It follows from
(2.2.56) that condition (2.2.68) also holds. Therefore we know that the solution x*
is unique in U (xo, s§). That is, there exists a finite 7o > 1 such that if n > ng the
sequence {x, } will enter the ball U (xo, sy ) and enjoy quadratic convergence accord-
ing to Theorem 2.2.11. Note that if t* < sa‘ then we can take no = 1. Moreover, if
(2.2.37) also holds, then r* € [n, s*], with s* < 27.
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2.3 New sufficient conditions for the secant method

It turns out that the ideas introduced in Section 2.2 for Newton’s method can be
extended to the method of chord or the secant method.
In this section, we are concerned with the problem of approximating a locally
unique solution x* of equation
F(x) =0, (2.3.1)

where F' is a nonlinear operator defined on a convex subset D of a Banach space X
with values in a Banach space Y.
We consider the secant method in the form

Xnt1 = Xn — 8F (Xn—1, %2) ' F(xn) (n>0), (2.3.2)

where 6 F(x,y) € L(X,Y) (x,y € D) is a consistent approximation of the Fréchet
derivative of F, Dennis [74], Potra [162], Argyros [12], [43], Hernandez [116],
[117], and others have provided sufficient convergence conditions for the secant
method based on “Lipschitz-type” conditions on § F (see also Section 1.2). Here us-
ing “Lipschitz-type” and center-“Lipschitz-type” conditions, we provide a semilocal
convergence analysis for (2.3.2). It turns out that our error bounds are more precise
and our convergence conditions hold in cases where the corresponding hypotheses
mentioned in earlier references mentioned above are violated.
We need the following result on majorizing sequences.

Lemma 2.3.1. Assume there exist nonnegative parameters £, Ly, 0, ¢, and a € [0, 1],

—1+Jv1+4
5 [O’M}’ a0

2a (2.3.3)
[0, 1), a=0
such that:
(€ +3lo)(c+n) =4, (2.3.4)
n <dc, (2.3.5)
Ly < al. (2.3.6)
Then,
(a) iteration {t,} (n > —1) given by
t1=0, tn=c, HH=c+n,
Ltnt1 — th—1)
Iny2 = tyy1 + thy1 — >0 2.3.7
n+2 n+1 1=t [ln+1 o+ t”] (tnt1 n) (n>0) ( )
is nondecreasing, bounded above by
*% U
" =——+4c (2.3.8)

1-6
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and converges to some t* such that
0 <rt* <t (2.3.9)
Moreover, the following estimates hold for alln > 0
0 < tyy2 — tag1 < 8(tugp1 — 1) < 8" 1. (2.3.10)
(b) Iteration {s,} (n > 0) given by

§—1—80=¢, s0 — 81 =17,
E(Snfl _SnJrl)
1—€o[(so+s5-1) = (sn + sn41)]

Sptl — Sp42 = (S —Spy1) (m=>0) (2.3.11)

for s_1, so, s1 > 0 is nonincreasing, bounded below by

Hk n
— [ 23.12
S 50 1 s ( )

and converges to some s* such that
0 <s™ <s* (2.3.13)
Moreover, the following estimates hold for alln > 0
0 < Snt1 — 42 < 8(su — sur) < 8", (23.14)

Proof. (a) The result clearly holds if § = 0 or £ = 0 or ¢ = 0. Let us assume § # 0,
£ # 0 and ¢ # 0. We must show for all k > 0:

C(tks1 —tr—1) +8Lo [(eg1 — 10) + 1] <8, 1—Lo [(tk41 — 10) + 1] > 0. (2.3.15)
Inequalities (2.3.15) hold for k£ = O by the initial conditions. But then (2.3.7) gives
0<th—1 <8t —1).

Let us assume (2.3.10) and (2.3.15) hold for all k < n+ 1. By the induction hypothe-
ses we can have in turn:

E(teg2 — 1) + 880 [ (kg2 — 10) + tiy1 ]

_ck+2 _ck+1
< (w2 = ) + (s = 10] + b0 [ 52557 + 525 |+ 8toc
< 0@ 485y 4+ 2 2 — s5H — 5542y 1 segc. (2.3.16)

We must show that § is the upper bound in (2.3.16). Instead by (2.3.5) we can show
e85 (14 8)n + 282 — 82 — 55y + 80c < (€ + 8€o)(c + 1)

or
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80 [ 2 — 1]y < efe 40— 65+ om]
or k+1
asgLEi=3an) ) [g Fp -8+ 5);7]
or
as’(1+8)(1 - <1 =8 + 81 — 85
or

as’> +8—1<0,
which is true by the choice of §. Moreover, by (2.3.5) and (2.3.10)

800 [(trs2 — t0) + teg1 | < 282 — 8572 — 6Ky + seoc
< (L +8Lp)(c+n) <8, (2.3.17)

which shows the second inequality in (2.3.15). We must also show:
e <t™ (k>-1). (2.3.18)

Fork = —1,0,1,2wehaver_; =0 <™, 10 =n < t™, 1) = n+c¢ < t** by
(23.8),and tp = c+n+6n = c+ (1 4+ 8)n < t* by the choice of §. Assume
(2.3.18) holds for all k < n + 1. It follows from (2.3.10)

e <ty + 01 — 1) <t + 6t — tr—1) + 6(fp1 — 1)

<. =n+8 —to)+ o+ k1 — )
1_8k+2

<c+n+dn+-+8 Ty =c+ 5y

n k%
<15 tc=t".

That is {t,} (n > —1) is bounded above by #**. It also follows from (2.3.7) and
(2.3.15) that it is also nondecreasing and as such it converges to some ¢* satisfying
(2.3.9).

(b) As in part (a) but we show {s,} (n > —1) is nonincreasing and bounded
below by s**. Note that the inequality corresponding with (2.3.16) is

Csk — sig2) < 8[1 = B(so +5—1) + Blsks1 + se42) ]

or

e[s o — s + 85 o = 51)]

k+1 k+2
<3 [1 —Lo(so +s—1) + Lo (So - 1_15_; (s0 — Sl)) +¢ (So - 1_15_(; (s0 — S1)>]

or
2—8k+1 _5k+2

8% (1 + 8)n + 8¢, [T’? + c]

must be bounded above by § which was shown in part (a).
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Remark 2.3.2. 1t follows from (2.3.16) and (2.3.17) that the conclusions of Lemma
2.3.1 hold if (2.3.3), (2.3.5), (2.3.6) are replaced by the weaker conditions:

for all n > 0 there exists § € [0, 1) such that:

8" (1 +8)n + 282 — 82 — 5"y + 8o < 8,

and
o2 — 82 — 5"y + 8oc < 1.

The above conditions hold in many cases for all n > 0. One such stronger case is

2

(1 +8)n + 388+ 8toc < 6,

and
Blon 4 §00c < 1.

We shall study the iterative procedure (2.3.2) for triplets (F, x_1, xo) belonging
to the class C (¢, £g, n, ¢) defined as follows:

Definition 2.3.3. Let ¢, £, n, ¢ be nonnegative parameters satisfying the hypotheses
of Lemma 2.3.1 or Remark 2.3.2 (including (2.3.4)).

We say that a triplet (F, x_1, xo) belongs to the class C (L, £y, 1, ¢) if:

(c1) F is a nonlinear operator defined on a convex subset D of a Banach space
X with values in a Banach space Y ;

(¢2) x_1 and xq are two points belonging to the interior D° of D and satisfying
the inequality

llxo —x—1ll < ¢ (2.3.19)

(c3) F is Fréchet-differentiable on D° and there exists an operator §F: D° x
DY - L(X,Y) such that:

the linear operator A = SF(x_1, xo) is invertible, its inverse A=Y is bounded
and:

A F (xo)ll < n; (2.3.20)
HA[SF(x, y) — F' @] Il < €(llx — zll + Iy — 2D, (2.321)
IA[8F(x, y) — F'Go)] Il < LoCllx — xoll + lly — xoll) (2.3.22)

forallx,y,z € D.
_ (c4) the set Do = {x € D; F is continuous at x} contains the closed ball
U (xg, s*) where s* is given in Lemma 2.3.1.

We present the following semilocal convergence theorem for secant method
(2.3.2).

Theorem 2.3.4. If (F, x_1, x0) € C(¢, Lo, n, ) then sequence {x,} (n > —1) gen-
erated by secant method (2.3.2) is well defined, remains in U (xo, s*) for alln > 0
and converges to a solution x* € U (xg, s*) of equation F(x) = 0.
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Moreover the following estimates hold for alln > 0

lxn+2 = Xn41ll < Snt1 — Snt2, (2.3.23)
X0 — x| < ap (2.3.24)
and
X0 — x*[ = Bn (2.3.25)
where,
14 £oc 1 —£pc
-1 = ; = Lo # 0, 2.3.26
5-1 2 50 20 Jor £y # ( )

sequence {s,} (n > 0) given by (2.3.11), o, B, are respectively the nonnegative
solutions of equations

Cot* — 2L0(s0 — llxn — X0t — (110 — Xn—1 ]| + [1Xn—1 — Xn—2lDlIxn — X1l = O,
(2.3.27)

and

% 4 [0lx0 = xa—1ll + 1 = €o(lxn — Xoll + lxa—1 — xoll + )] £
+ [€ollxn = xoll + lIxn—1 = x0ll +¢) = 1] X1 = Xull = 0. (2.3.28)

Proof. We first show operator L = § F (u, v) is invertible for all u, v € DY with
llu — xoll + llv — x0ll < 2s0. (2.3.29)
It follows from (2.3.22) and (2.3.29)

I — AL = AL — Al < |AT (L — F'xo) || + 1A (F(x0) — A) ||
< €o(lu — xoll + lv — xoll + llxo — x_11) < 1. (2.3.30)

According to the Banach Lemma on invertible operators and (2.3.30), L is invertible
and
IL™ AL < [1 = Lo(llu = xoll + [lv = xol + )1 7" (2331

Condition (2.3.21) implies the Lipschitz condition for F’
IATY(F'(u) — F' ()|l <2€llu —vll, u,ve D (2.3.32)
By the identity,
Fx)—F@y) = /(;l F'(y +1(x — y)dt(x —y) (2.3.33)
we get
1A [F(x) = F() — F')x — ]Il < lllx —ull + [ly — ul)llx =yl (2.3.34)

and
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1AG " [F(x) — F(y) = 8F (u, v)(x — W1 || < £(lx = vl +[ly —vll+llu—v[)]x—y|
(2.3.35)
forall x, y, u, v € DY. By a continuity argument (2.3.33)—(2.3.35) remain valid if x
and/or y belong to D,.
We first show (2.3.23). If (2.3.23) hold for all n < k and if {x,} (n > 0) is well
defined forn =0, 1,2, ..., k then

lxo — xpll <50 —Sp <s0—8%, n<k. (2.3.36)

Hence (2.3.29) holds for u = x; and v = x; (i, j < k). Thatis (2.3.2) is well defined
forn = k+ 1. Forn = —1 and n = 0, (2.3.23) reduces to ||[x_1 — xo|| < ¢ and
lxo — x1]| < n. Suppose (2.3.23) holds forn = —1,0,1,...,k (k > 0). Using
(2.3.31), (2.3.35) and

F(xk41) = F(xpp1) — F(xp) — SF (-1, Xk) (X1 — Xk) (2.3.37)

we obtain in turn

k2 — Xax1 | = I8 F (s X)) ™ F G |l
I8 F (xicy k1) P AINATF (i) |l

Lk 1 =k N+ llxk —xg—11D)
T—Lo[ llxk+1—xoll+Ilxx —xo0 [ +c]
C(Sk—Sk41+Sk—1—5k)
= 1—Lo[s0—Sk41+S0—sk+s—_1—50

IA

IA

Xk 41 — xk|]

](Sk — Sk41) = Sk+1 — Sk+2. (2.3.38)

The induction for (2.3.23) is now complete. It follows from (2.3.23) and Lemma
2.3.1 that sequence {x,} (n > —1) is Cauchy in a Banach space X and as such it
converges to some x* € U (xg, s*) (as U (xg, s*) is a closed set) so that

xn — x*|| < 50 — ™. (2.3.39)

By letting k — o0 in (2.3.38), we obtain F(x*) = 0.
Set x = x, and y = x™ in (2.3.33), M = fol F'(x* + t(x;, — x*))dt. Using
(2.3.23) and (2.3.39) we get in turn
llxn — xoll + lx™ — xoll + llxo — x—11l < 2llxn — x0ll + llxn — x*|| +¢
< 2(llxn — xoll + [lxn — x™[1)

<2(s0—Sp+ 8, —8) +c<250+c= o (2.3.40)
0

By (2.3.40) and the Banach Lemma on invertible operators we get
_ -1
1M~ AL < [1 = Lo@lxn = xoll + [lxn — x| + )] . (2341
It follows from (2.3.2) and (2.3.41)

Iy — x*|l < IM AN - AT F ()|

IA

Z[”/‘77! —Xp—1ll+lx,—1 _Xn—ZH] _
TGy~ el 1% — Xn=11l, (2.342)

IA
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which shows (2.3.24).
Using the approximation

X1 — X5 = x* — xy + [ASF (xy—1, x)] !
“A[F(x™) = F(xp) = 8F (xp—1, X)) (x™ — x,)]  (2.3.43)
and estimates (2.3.30), (2.3.35) we get

Ll —xn I+ =xn—111] * *
— =< — - 2.3.44
”xl’l-'rl xn” — I_ZO[HXn_XOH"F”xn—I+X0||+C] ”xn X ” + ”xn X ”s ( 3 )

which shows (2.3.25).
In the next result we examine the uniqueness of the solution x*.

’I_‘heorem 23.5.If (F, x—1,x0) € C({, £y, n, ¢) equation (2.3.1) has a solution x* €
U (x0, s™). This solution is unique in the set Uy = {x € D, | ||x — xoll < so+y}if
y > 0orintheset Uy = {x € D | |lx — xoll <so}ify =0.

Proof. Case 1: y > 0. Let x* € U(xg, s*) and y* € U] be solutions of equation
F(x)=0.SetP = fol F'(y +t(x — y))dt. Using (2.3.22) we get
11— A7'P| = A7 (A = P)|| < €o(lly* — xoll + IIx* — xoll + llxo — x—11)
<Lo(so+y+so—y+c)=1.

Hence, P is invertible and from (2.3.33) we get x* = y*.
Case 2: y = 0. Consider the modified secant method

Sntl =n — ATVF(y)  (n > 0). (2.3.45)

By Theorem 2.3.4 sequence {y,} (n > 0) converges to x* and

lxn — Xnt1ll < Sn — Snt1 (2.3.46)
where,
5o = \ﬁ Suit =50 — €52 (n=0), fore>0. (2.3.47)
Using induction on n > 0 we get
n
5, > ;/771 (n > 0). (2.3.48)

Let y* be a solution of F(x) = 0. Set P, = fol F'(y* + t(x, — y*))dt. It follows
from (2.3.22), (2.3.33), (2.3.45), and (2.3.48)
a1 = ¥l = 1A A = P) 0o = ¥
< L(ly* = xoll + llxn — xoll + llxo — x—1Dllxn — ¥*|
n
<A =es)llxn =y <--- < H(l —&5)llxr = y*Il. - (2.3.49)
i=1
By (2.3.49), we get lim []'_, (1 — £5;) = 0. Hence, we deduce x* = y*.
n—o0
That completes the proof of the theorem.
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Remark 2.3.6. The parameter s* can be computed as the limit of sequence {s,} (n >
—1) using (2.3.11). Simply set

s* = lim s,. (2.3.50)

n— oo

Remark 2.3.7. A similar convergence analysis can be provided if sequence {s,} is
replaced by {#,}. Indeed under the hypotheses of Theorem 2.3.4 we have for all
n>0

lXn+2 — Xnt1ll < thg2 — tni (2.3.51)

and
[x* = xnll <t — 1. (2.3.52)

In order for us to compare with earlier results we first need the definition:
Definition 2.3.8. Let ¢, n, ¢ be three nonnegative numbers satisfying the inequality
Le+2y/€n < 1. (2.3.53)

We say that a triplet (F,x_1,x0) € C1({,n,c) (£ > 0 if conditions (c1)—(c4) hold
(excluding (2.3.22)). Define iteration {p,} (n > —1) by

2.2
_ I4tle _ 11—t _ _ Pa—p
P—1= "> PO= "3 Pntl =Pn— 355 (2.3.54)

p=3:/(1—Lc)2 —4ey. (2.3.55)

The proof of the following semilocal convergence theorem can be found in [164].

where,

Theorem 2.3.9. If (F, x_1,x0) € Ci({,n,c) sequence {x,} (n > —1) generated
by secant method (2.3.2) is well defined, remains in U(xo, p) for all n > 0 and
converges to a unique solution x* € U (xg, p) of equation F(x) = 0.

Moreover the following error bounds hold for all n > 0:

xXn+1 — Xl < Pn — Pnt1 (2.3.56)

and
X0 = x*|| < pu — p- (2.3.57)

Using induction on n we can easily show the following favorable comparison of
error bounds between Theorems 2.3.4 and 2.3.9.

Proposition 2.3.10. Under the hypotheses of Theorems 2.3.4 and 2.3.9 the following
estimates hold for alln > 0

DPn = Sn (2.3.58)
Sp = Sn+1 = Pn — Pn+1 (2.3.59)

and
sp—8* < pu—p. (2.3.60)
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Remark 2.3.11. We cannot compare conditions (2.3.4) and (2.3.53) in general be-
cause of £o. However in the special case £ = £y # 0, we can set a = 1 to obtain

§ = ¥3=1_ Condition (2.3.4) can be written

P
tettn < = = 381966011,

It can then easily be seen that if
0 < te <2/B—1=.236067977,

condition (2.3.4) holds but (2.3.53) is violated. That is, even in the special case of
£ = £p, our Theorem 2.3.4 can be applied in cases not covered by Theorem 2.3.9.

2.4 Concerning the “terra incognita” between convergence
regions of two Newton methods

There is an unknown area, between the convergence regions (‘“terra incognita”) of
the NK method, and the corresponding MNK method, when F’ is an A-Holder con-
tinuous operator, A € [0, 1). Note that according to Kantorovich theorems 2.2.4 and
2.2.7, these regions coincide when A = 1. However, we already showed (see (2.2.70))
that this is not the case unless if £y = £. Here, we show how to investigate this region
and improve on earlier attempts in this direction for A € [0, 1) [32], [35], [64].

To make the study as self-contained as possible, we briefly reintroduce some
results (until Remark 2.4.3) that can originally be found in [32], [64].

Let xo € D be such that F'(xg)~' € L(Y, X). Assume F’ satisfies a center-
Holder condition

I F'(x0) "' (F'(x) — F'(xo)) |l < Lollx — xoll*, (2.4.1)
and a Holder condition
IF (x0) "' (F'(x) — F')Il < €llx — yII* (24.2)

forall x,y € U(xg, R) C D.

The results in [64] were given in non-affine invariant form. Here we reproduce
them in affine invariant form. The advantages of such an approach have been well
explained in [43], [78].

Define:
ho = Lon*, (2.4.3)
h =ty (2.4.4)
and function
Y(r) = 15 —r 4, (2.4.5)

where 7 is given by (2.2.16).
The first semilocal convergence result for methods NK and MNK under Holder
conditions were given in [135]:
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Theorem 2.4.1. Assume:

A
A
h=(w5) (2.4.6)
and
r* <R, 2.4.7)

where r* is the smallest positive zero of function . Then sequence {x,} (n > 0)
generated by MNK method is well defined, remains in U (xg, r*) for all n > 0 and
converges to a unique solution x* of equation (2.1.1) in U (xg, r*). If r* is the unique
zero of ¥ on [0, R] and ¥ (R) < O, then x* is unique in U (xg, R).
Moreover, if
h < hy, (2.4.8)

where h, is the unique solution in (0, 1) of equation
t » I+A
(ﬁ) — (-1 (2.4.9)
method NK converges as well.

Theorem 2.4.1 holds [135] if condition (2.4.6) is replaced by the weaker

A
h <21 (ﬁ) . (2.4.10)

Later in [64], (2.4.10) was replaced by an even weaker condition

1 A »
h < FIR] (m) ) 24.11)
where,
g(A) = max f (1), (2.4.12)
t>0
144 142
F6) = e (2.4.13)
with
g(h) <2'7* forall & € (0, 1). (2.4.14)

Recently in [64], (2.4.11) was replaced by

A
1 A
h< s (m) , (2.4.15)
where,
a(A) = min {b >1: max f(t) < b} , (2.4.16)
0<t=<t(b)
t(h) = — b (2.4.17)

A+ [+ =2 ] -
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The idea is to optimize b in the equation

Yu(r) =0, (2.4.18)
where,
Yp(r) = 25! —r 4 (2.4.19)
assuming
2
1 A
h<l (m) , (2.4.20)

Note that condition (2.4.20) guarantees that equation (2.4.18) is solvable (see Propo-
sition 1.1 in [64]).
With the above notation it was shown in [64] (Theorem 2.2, p. 719):

Theorem 2.4.2. Assume (2.4.15) holds and that r* < R, where r* is the smallest
solution of the scalar equation

Ya(r) = 45— 4y =0, (2.4.21)

Then sequence {x,} (n > 0) generated by NK method is well defined, remains in
U (xg, r*) for alln > 0, and converges to a unique solution x* of equation F(x) = 0
inU(xg, r*).

Moreover if sequence ry, is defined by

ro=0, rp=ro1 — FHe (1= 1) (2.4.22)
then the following estimates hold for alln > 1:
lxn = Xp—1ll < rn —rn—1 (2.4.23)

and
X, —x* || <r* —ry. (2.4.24)

Remark 2.4.3. It was also shown in [64] (see Theorem 2.3) that
all) < f(2) < g() forall A € (0,1), (2.4.25)
which shows that (2.4.15) is a real improvement over (2.4.10) and (2.4.11).

We can summarize as follows:
A A
r—1 A 1 A
m <27 ()" < s ()
A A
<o (1%) < (ﬁ) = Rexi. (2.4.26)

Below we present our contributions/improvements in the exploration of “terra
incognita.”

First of all, we have observed that the Vertgeim result given in Theorem 2.4.1
holds under weaker conditions. Indeed:



2.4 The “terra incognita” between convergence regions 65

Theorem 2.4.4. Assume: N
ho = () 2.4.27)

replaces condition (2.4.6) in Theorem 2.4.1. Then under the rest of the hypotheses of
Theorem 2.4.1, the conclusions for method (2.1.5) and equation (2.1.1) hold.

Proof. We note that (2.4.1) can be used instead of (2.4.2) in the proof of Theorem 1
given in [135].

Remark 2.4.5. Condition (2.4.27) is weaker than (2.4.6) because

A A
A A
h< (m) = ho < (m) (2.4.28)

but not vice versa unless if £ = £. Therefore our Theorem 2.4.4 improves the con-
vergence region for MNK method under weaker conditions and cheaper computa-
tional cost.

It turns out that we can improve on the error bounds given in Theorem 2.4.2
under the same hypotheses and computational cost. Indeed:

Theorem 2.4.6. Assume hypotheses of Theorem 2.4.1 and condition (2.4.1) hold.

Then sequence {x,} (n > 0) generated by NK method is well defined, remains in
U (xo, r*) for all n > 0, and converges to a unique solution x* of equation F(x) =0
in U(xg, r*). Moreover, if scalar sequence s, is defined by

s0= 0, sy = syt — shetlr (n 2 1), (2:4.29)

n—1""

then the following estimates hold for alln > 1
%0 = Xn—1ll < $n — S (2.4.30)

and
X, —x*|| <r* — sp. (2.4.31)

Furthermore, if £y < £, then we have:

Sp<rp, (m>2)), (2.4.32)
Sp—Sp—1 <ty —TIp—1 (n=>2), (2.4.33)

and
s —s, <r*—r, (n>0). (2.4.34)

Proof. We simply arrive at the more precise estimate

IF' )~ F(xo) || < [1 = €ollx — xoll’\]q (2.4.35)

instead of
IF' ()" F'(xo) | < (1 — €llx — xo0ll") (2.4.36)
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used in the proof of Theorem 1.4.2 in [64, pp. 720], for all x € U(xo, R). Moreover
note that if £y < £, {s,,} is a more precise majorizing sequence of {x,} than sequence
{r,} otherwise r,, = s, (n > 0)). With the above changes, the proof of Theorem 2.4.2
can be utilized so we can reach until (2.4.31).

Using (2.4.22), (2.4.29), and simple induction on n, we immediately obtain
(2.4.32) and (2.4.33), whereas (2.4.34) is obtained from (2.4.33) by using standard
majorization techniques.

At this point we wonder if:

(a) condition (2.4.15) can be weakened, by using more precise majorizing se-
quences along the lines of the proof of Theorem 2.4.4;

(b) even more precise majorizing sequences than {s, } can be found.

We need the following result on majorizing sequences for the NK method.

Lemma 2.4.7. Assume there exist parameters £ > 0, £y > 0, n > 0, A € [0, 1], and
q € [0, 1) with n and A not zero at the same time such that:

(a)
[K + <16—[3>A] N <8, for §=(1+nq re[0,1), (2.4.37)

or

(b)
(+38)n <3, for A=1, o<t and 5€[0,1]. (2.4.38)

Then, iteration {t,} (n > 0) given by

t0=07 [1:]’]’

J4 1+2
1 =1 ——(t —t 2.4.39
n+2 n+1 + (1+A)[1—(Zot3"+|:| ( n+1 n) ( )

is nondecreasing, bounded above by
(a) = %, or (b) = 2273, 5el0,1] (2.4.40)
and converges to some t* such that
0<t*<r™. (2.4.41)
Moreover, the following estimates hold for all n > 0:

(a) 0< Iny2 —Ipy1 = Q(tn—&-l - tn) = qn+1771 (2442)

or 41
= <\
3 3
(b) 0 <tny2 —tnt1 < 51 — 1n) < (5) n,

respectively.
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Proof. (a) The result clearly holds if g or £ or n or £9 = 0. Let us assume ¢, ¢, 1,
Lo # 0. We must show:

Ut =) +8C0t] | <8, tpr—tx =0, 1—Loti > 0 forall k > 0. (2.4.43)
Estimate (2.4.42) can then follow immediately from (2.4.39) and (2.4.43). Using
induction on the integer k, we have for k = 0, £n* 4+ 8€on* = (£ + 8£0)n* < & (by
(2.4.37)) and 1 — ¢on? > 0. But then (2.4.43) gives

0<th—n =<q—1).

Assume (2.4.43) holds for all kK < n + 1. We can have in turn

Utk — tep)™ + 883 tksn

A
< i g" T+ 86 [n +q(ti —10) +¢>(t1 —10) + -+ ¢ty — to)]
_ k+27A
< gnxq(kﬂ)x_'_agonx[lliq ]
_ (k+1)A 3ty _kH2\A | A 800 A
= [ta® 0t 4 s (1 = g2 ot < [+ 22 | (2.4.44)

which is smaller or equal to § by (2.4.37). Hence, the first estimate in (2.4.43) holds
for all k > 0. We must also show:

f <t (k>0). (2.4.45)
For k =0, 1, 2 we have
to=n<t" n=n=<t™ and H<n+qn=~1+qn=t"
Assume (2.4.45) holds for all k < n + 1. We also can get

42 <t F gt — 1) < te +q(tx — ti—1) + g (te1 — 1)
<---<ti+qt1—t0)+ -+ qtx —tie1) + gty — 1)

1—gk+2
<ndandn+e = 5L < (2446

Moreover the second inequality in (2.4.43) holds since

A
oty = to(15) <1 by @437,
Furthermore the third inequality in (2.4.43) holds by (2.4.39), (2.4.44), and (2.4.46).
Hence (2.4.43) holds for all k > 0. Iteration {#,} is nondecreasing and bounded above
by ** and as such it converges to some ¢* satisfying (2.4.41).

(b) See [39] and the proof of part (a).

We can show the main semilocal convergence theorem for the NK method:
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Theorem 2.4.8. Let F: D C X — Y be a Fréchet-differentiable operator. Assume:
there exist a point xo € D and parameters n > 0, Lo > 0, £ > 0, A € [0, 1],
qg €[0,1), 5 €0, 1], R > 0 such that: conditions (2.4.1), (2.4.2), and hypotheses of
Lemma 2.4.7 hold, and

U (x0,t*) € U(xg, R). (2.4.47)

Then, {xn} (n > 0) generated by NK method is well defined, remains in U(xg, t*) for
all n > 0 and converges to a unique solution x* € U (xg, t*) of equation F (x) = 0.
Moreover the following estimates hold for all n > 0:

ng2 — xnp || < w0l (2.4.48)
n n = (A+M)[1=Lollxps1—x0l*] — " n

and
lxn —x*|| <" —t4, (2.4.49)

where iteration {t,} (n > 0) and point t* are given in Lemma 2.4.7.
Furthermore, if there exists R > t* such that

Ro <R (2.4.50)

and

1
50/ [0r* + (1 — e)R]A do <1, (2.4.51)
0
the solution x* is unique in U (xq, Ro).

Proof. We shall prove:
lxks1 — Xkl < tkg1 — s (2.4.52)

and . .
U1, 1" —trp1) S UG, 15 = 1) (2.4.53)

hold for all n > 0._
For every z € U(xy, t* — t1)

lz = xoll < llz—xill + llx1 —xoll <t =t + 11 =17 — 1o
implies z € U (xg, t* — fo). Because also
lxt = xoll = IIF'(x0) ™' Flxo) <n =1
(2.4.52) and (2.4.53) hold for n = 0. Given they hold forn =0, 1, ..., k, then

k+1 k+1
Ixern = xoll < Y lx —xicll €D (i —tic) =gy —to=trg1 (24.54)

i=1 i=1
and

Ik + 0 Cek1 — xi) — xoll <tk +0(t1 — 1) <™, 0 €[0,1].  (2.4.55)
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Using NK we obtain the approximation
F(xt1) = F (1) = F () — F' () (o1 — 1)
= /0] [F'G + 0 (k1 — X)) — F' ()] (rgr — x)d6,  (2.4.56)
and by (2.4.2)
IF' (x0) ™' F oDl <
< /Ol IF' o)™ [F/ (o + 0 Geigr — x10)) — F/ ) | 10 |kt — x|
< 155 I — xell' (2.4.57)
By (2.4.1), the estimate
IF(xo)~" [F' (k1) — F'(xo)] || < Lollxkst — xoll* < Eotﬁrl <1

and the Banach Lemma on invertible operators F’ (x4 1)~" exists and

| F'(x0) F' (xpe1) "M < l—fol\m;l—xol\k < 1—e1 (2.4.58)

— .
0%t

Therefore, by NK, (2.4.39), (2.4.57), and (2.4.58) we obtain in turn

ka2 — X1l = 1 F (1) ™ F i) |l
IF' (1) ™ F o)l - 1 F (x0) ™" F (e 1) I

lxgr —xe ||
A+ [ 1=Lollxg1—x0l1*]

PR
bt =) ™ kg — les 1. (2.4.59)
(1+A)[1—5011§+1}

IA

IA

IA

Thus for every z € U (xg42, t* — fr42), we have

lz = xkg1ll < 2 = xiq2ll + Xk — Xpg2ll < 07— tig2 + tig2 — tig2 = 17 — t541.

That is -
7€ U(xpe1,t" — tre1). (2.4.60)

Estimates (2.4.59) and (2.4.60) imply that (2.4.52) and (2.4.53) hold forn = k + 1.
By induction the proof of (2.4.52) and (2.4.53) is completed.

Lemma 2.4.7 implies that {#,} (n > 0) is a Cauchy sequence. From (2.4.52) and
(2.4.53) {x,} (n = 0) becomes a Cauchy sequence, too, and as such it converges to
some x* € U (xg, t*) so that (2.4.49) holds.

The combination of (2.4.59) and (2.4.60) yields F(x*) = 0. Finally to show
uniqueness let y* be a solution of equation F(x) = 0 in U(xg, R). It follows from
(2.4.1), the estimate
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=

1
Fl(xp)™! fo [/ + 0" — y*) — F'(x0)] d6

1
< eof Iy + 60" — y*) — xoll*d6
0

A

1
A
Eo/ [011x* = xoll + (1 =) ly* = xoll]" d6
0

A

1
eO/ [0 + (1 —6)Ro]" do <1 (by (2.4.51)) (2.4.61)
0

and the Banach Lemma on invertible operators that linear operator

1
L= / F'(y* +60(x* —y*)do (2.4.62)
0
is invertible.
Using the identity
0=F(") — F(x*) = L(x* — y%) (2.4.63)
we deduce x* = y*. To show uniqueness in U (xg, *) as in (2.4.61), we get:

IF' (x0) ™" (L — F'(xo)) | < 1% (%)™ < 1 (by Lemma 2.4.7)

which implies again x* = y*.

Remark 2.4.9. In the result that follows we show that our error bounds on the dis-
tances involved are finer and the location of the solution x* at least as precise.

Proposition 2.4.10. Under hypotheses of Theorems 2.4.6 and 2.4.8 with £y < € the
following estimates hold:

ro=th=s0=0, ri=f=s=n,

fosl < Smil < a1 (1> 1), (2.4.64)
bl =ty < Syl —Sp <tpy1—1n (m=>1), (2.4.65)
=t <s*—s, <r*—r, (n>0), (2.4.66)
and
< s* <t (2.4.67)

Proof. We use induction on the integer k to show the left-hand sides of (2.4.64) and
(2.4.65) first. By (2.4.29) and (2.4.39), we obtain

— o Yl
(I+0[1=ton*] — A+1)[1=ton*]

h—1 =852 — 51,

and
Hh < 8.
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Assume:
byl < Sky1,  tepl — e < spp1— sk (kK <n). (2.4.68)

Using (2.4.29), and (2.4.39), we get

Lt — 1) (st —sp)'
<
A+ [1—torf ] A+2)[1 -t

lk42 — lk+1 = ] = Sk+2 — Sk+1

(by the proof of Theorem 2.2 in [64], end of page 720 and first half of page 721) and

Ik42 < Sk+2-

Let m > 0, we can obtain

tevm — e < (ktm — tetm—1) + Gktm—1 — tetm—2) + -+ -+ (1 — )
< (Sktm — Sktm—1) + Skam—1 — Sktm—2) + -+ + (k1 — k)
= Sk4+m — Sk- (2.4.69)

By letting m — o0 in (2.4.69) we obtain (2.4.66). For n = 1 in (2.4.66) we get
(2.4.67).

That completes the proof of Proposition 2.4.10, as the right-hand side estimates
in (2.4.65)—(2.4.67) were shown in Theorem 2.4.6.

In the next remark, we also show that our sufficient convergence conditions are
weaker in general than the earlier ones (i.e., the Lipschitz case):

Remark 2.4.11. Case . = 1. (see Section 2.2 of Chapter 2)

Case L = 0. It was examined here but not in [64], [78], [135].
Case A € (0, 1). We can compare condition (2.4.37) with (2.4.15) (or (2.4.11) or
(2.4.10) or (2.4.6)). For example set

1
= . 2.4.70
=5+ (24.70)
Then for
lo=14d, del0,1], 24.71)
and
L\
A d)=d — ), 2.4.72
c(r,d) + (1 n A) ( )
condition (2.4.37) becomes:
L\
1

(a) Choose d = %, then using Mathematica we compare the magnitude of a(}) with

c (A, %) to obtain the following favorable for our approach table:



72 2 The Newton-Kantorovich (NK) Method

Comparison table
Aol a2 34 5] 6] 7] 8]0
a()) [1.842(1.695]1.562(1.445(1.341{1.252{1.174]1.108{1.050

¢ (%, 4)[1:287|1.200|1.444/1.106|1.080|1.055|1.037|1.023(1.010

See also the corresponding table in [64, pp. 722].
b Ifd =1 (.e., £ = £p), say for A = .1 we found

c(.1,1) =1.787 < a(.1) = 1.842.

14

(c) Because 7, can be arbitrarily large (see Example 2.2.13) for

A A
d=1-——) =p, 2.4.74
(1+x> p ( )

condition (2.4.73) reduces to (2.4.6), whereas for
0<d<p (2.4.75)

(2.4.73) improves (2.4.6), which is the weakest of all conditions given before (see
[64]).

Other favorable comparisons can also be made when ¢ is not necessarily given
by (2.4.70). However we leave the details to the motivated reader.

We state the following local convergence result for the NK method.

Theorem 2.4.12. Let F: D € X — Y be a Fréchet-differentiable operator. Assume:
(a) there exist a simple zero x* € D of equation F(x) = 0, parameters £y > 0,
£ >0, u € [0, 1] not all zero at the same time such that:

IF'(x*)~! [F')— FD)]I < llx =yl (2.4.76)
IF' ) [F/ (o) = F'eM)] Il < Tollx — x*)1 (24.77)
forallx,y € U(xg, R) € D (R > 0);
(b) Define:
141 :|1/l/~
== O
g = [z 0+ i " (2.478)
R and €+0y<1 for p=0
and
g <R. (2.4.79)

Then, sequence {x,} (n > 0) generated by NK is well defined, remains in U (x*, q)
for all n > 0 and converges to x*, provided that xy € U(x*, q). Moreover the
following estimates hold for all n > 0:

€llxy — x*||'

(1+m)[1=Collxy —x*[1#]

e = (2.4.80)
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Proof. Inequality (2.4.80) follows from the approximation

*
Xn+1 — X =

=Xy — x* — F'(x,) "' F(x)
- [F’(x,,)*‘F/(x*)] x

1
X {F/(x*)_l f [F/(x* + 1 —x™) — F'(x)] (xp — x*)dt} . (24381
0

and estimates

IF' o) F ) < [1 = Collx, — x*||“]_l (see (2.4.58)) (2.4.82)
1
F/(X*)il / [F/(X* +1(xy —X*)) - F/(xn)] (xp — x*)dt =<
0
< %uxn —xFE, (see (2.4.57)) (2.4.83)

The rest follows using induction on the integer n, (2.4.81)—(2.4.83), and along the
lines of the proof of Theorem 2.4.8.

The corresponding local result for the MNK method is:

Remark 2.4.13. Using only condition (2.4.76) and the approximation

1
Va1 —x* = F'(y0)~! /0 [F' 41 = x™) = F'(30)] n — x)d1, (2.4.84)

as in the proof of Theorem 2.4.12 we obtain the convergence radius

L+p V%
_ — R | T#£0, u#£0
do = |:(21+u - 1)5} 70 7 (2.4.85)
R, n =0,

and the corresponding estimates

1
yns1 — 2N < 5/ [l = yoll + #llyn — x* 1] dtllyn — x*|
0

G llyn —x*I  (n = 0). (2.4.86)

Remark 2.4.14. As noted in [43] and [216], the local results obtained here can be
used for projection methods such as Arnoldi’s, the Generalized Minimum Residual
method (GMRES), the generalized conjugate residual method (GCR), for combined
Newton/finite-difference projection methods, and in connection with the mesh inde-
pendence principle in order to develop the cheapest mesh refinement strategies.
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Remark 2.4.15. The local results obtained here can also be used to solve equations
of the form F(x) = 0, where F’ satisfies the autonomous differential equation [71]:

F'(x) = T(F(x)), (2.4.87)

where T:Y — X is a known continuous operator. Because F'(x*) = T(F(x*)) =
T (0), we can apply the results obtained here without actually knowing the solution
x* of the equation F(x) = 0.

We complete this section with a numerical example to show that through Theo-
rem 2.4.6 we can obtain a wider choice of initial guesses xg than before.

Example 2.4.16. Let X =Y =R, D = U(0, 1) and define function F on D by
F(x)=¢"— 1. (2.4.88)

Then it can easily be seen that we can set 7' (x) = x + 1 in [35]. Because F'(x* =1,
we get | F'(x) — F/(y)|| < el|lx—y|l. Hence we set £ = e, u = 1. Moreover, because
x* = 0, we obtain in turn

2 n
Flx)— Fl@*) =e¢" —l=x+ =+ b — .
2! n!
X xnfl .

and for x € U(0, 1),
IF'(x) = F'(x)Il < (e = Dllx — ™.
That is, £g = e — 1. Using (2.4.85) we obtain
r* = .254028662 .
Rheinboldt’s radius [175] is given by

p:

SIS

Note that B B
p<r* (as Ly < £).

In particular, in this case we obtain

p = 245252961 .

Note also that our error estimates are finer as £ < £. That is our convergence radius
r* is larger than the corresponding one p due to Rheinboldt [175]. This observation
is very important in computational mathematics (see Remark 2.4.15). Note also that
local results were not given in [64].

The case € [0, 1) was not covered in [64]. The “terra incognita” can be ex-
amined along the lines of the semilocal case studied above. However, we leave the
details to the motivated reader.
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2.5 Enlarging the convergence domain of the NK method under
regular smoothness conditions

Sufficient convergence conditions such as the famous Newton-Kantorovich hypoth-
esis (see Chapter 2, Sections 2.2 and 2.4) have been given under the hypotheses for
allx,ye D

|F' )= F 0| <Llx=yl* xelo,1], (2.5.1)

or the w-smoothness
|F' )= F | <wlx =yl (25.2)

for some increasing conditions function w: [0, c0) — [0, co) with w (0) = 0 [6],
[35], [43], [58], [98], [99], [146].
Under (2.5.1) the error bound

|F ()= F@) = F @) (v -0 < &5 llx = y)"+ (2.5.3)
+

crucial in any convergence analysis of method NK has been improved only if A €
(0, 1) under an even more flexible condition than (2.5.2) called w-regular smoothness
(to be precised later).

Here motivated by the elegant works in [98], [99] but using more precise ma-
jorizing sequences and under the same computational cost, we provide a semilocal
convergence analysis for NK method under w-regular smoothness conditions on F’
with the following advantages:

(a) finer estimates on the distances

%01 = Xall . [xn —x*| (2 =0):

(b) an at least as precise information on the location of the solution;
and

(c) a larger convergence domain.

Expressions r — cr’, A € (0, 1] are typical representations of the class C of
nondecreasing functions w: (0, co] — (0, oo] that are concave and vanishing at zero.
By w1 we denote the function whose closed epigraph cl{(s,#), s > 0, and r >
w~! (s)} is symmetrical to closure of the subgraph of w with respect to the axis
t =5 [98], [99]. Consider T € L (X, Y) and denote A (T) the inf ||T (x)||. Given an
wo € C and xo € D, we say that T is wo-regularly continuous on D with respect
to x = xo € D or, equivalently, that wq is a regular continuity modulus of 7" on D
relative to xo, if there exists 1 = h (xo) € [0, h (T)] such that for all x € D:

wy ! (hr (x0, %) + 1T (x) = T (xo) D) — wy ' (hr (x0, %)) < llx —xoll,  (2.5.4)
where
hor (xo, x) = T (x)|| — hy.

Given w € C, we say T is w-regularly continuous on D if there exists & €
[0, 2 (T)] such that for all x, y € D
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w e ) HIT ) =T D) —w™ (hr (e, ) < lly —xll,  (2.5.5)

where
hr (y,x) =min{[|T ), IT W} — A.

The operator F is wo-regularly smooth on D with respect to a given point xg €
D, if its Fréchet derivative F’ is wo-regularly continuous with respect to xo. Operator
F is w-regularly smooth on D, if its Fréchet derivative F’ is w-regularly continuous
there [98], [99].

Note that in general

wo (r) <w (r) forall r € [0, 00) (2.5.6)

holds.
Given w € C, set Qg (t) = fot w (0) dO and define function Q by

_Jtw @) — Qo)+ Qo(u—1t) fort € [0,u],u >0
Q0= { uw (u) —2Q0 () + Qo (¢) fort > u,u > 0. 2.5.7)
Denote by the superscript™ the nonnegative part of a real number
a™ = max{a, 0}. (2.5.8)

Given xg € D, if the operator Fy = F’ ()co)’1 F is wp-regularly smooth with re-
spect to xo and w-regularly smooth on D, define the sequence u, = (fn, oy, En, En)
by

Tn = llxa = xoll . @ =w™" (| Fg )| — k). an = wy " (| Fg Gn)|| — Bo) -

(or @ = wg" (| F5 o] = 1)) (2.5.9)

Bu= Ry Rt iz 0).

As in Theorem 4.3 in [98, pp. 831] but using wy (i.e., (2.5.4)) instead of w (i.e.,
(2.5.5)) for the computation of the upper bounds of the inverses Fé (x,) " we show:

_ _ = = +
Iy <ty +En, Opgp1 > (ap _En)+ , Optl = (Oln _En) , (2.5.10)

= 0(@,.5,)
Eppl < — (Em;nj)m ) (2.5.11)

where function Q is given by (2.5.7).
Consider the sequence u, = (tn, oy, 0(2, en) given by
_ _ + 0 _ (.0
Int1 =ty + &n, apg1 = (0 — &))", %1 = (anJrl - Sn) s (2.5.12)

0
(ora, | =apt1 n>0)
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0 (an, &)

1 —wo (a2+1 + tﬂ+1) +wo (O‘2+1)

Engl = (2.5.13)

for
to=0, ao=w'(1—h), e = wy"' (1 —hg) and g9 > o [98], [99]. (2.5.14)

The sequence {u, } is well defined and converges if for all n > 0

wo (@) + taer) +wo (ol ) < 1, (2.5.15)

or, equivalently
ta < wy' (1) (2.5.16)

(as sequence u, will then be increasing and bounded above by the number w ! (1)).
Denote by s, the sequence given by (2.5.12), (2.5.13) when wy = w. If strict
inequality holds in (2.5.6) we get by induction on n > 0

th < Sp 2.5.17)
Ihtl —th < Sp41 — Sn (2.5.18)

and
= lim < lim s, =s* (2.5.19)

n—o0 n—oo

We can now show the following semilocal convergence result for Newton’s
method under regular smoothness:

Theorem 2.5.1. Assume:
Operator Fy is wo-regularly smooth with respect to xo € D, and w-regularly smooth
on D;
condition (2.5.16) holds;
and for t* = lim 1,
n—oQ
U (xo,1*) € D. (2.5.20)
Then sequence {x,} (n > 0) generated by NK is well defined, remains in U (xq, t™)

for all n > 0, and converges to a solution x* € U (xo, t*) of equation F (x) = 0.
Moreover the following bounds hold for all n > 0:

—1
IRy | < vt =[1-wo (@ +n) +wo ()] . @521
(or [1 — wo (et + 1) + wo (@)1 ™)
||xn+1 — x|l < Ent1 = Entl, (2.5.22)
and
|0 = x*| < t* =t (2.5.23)

Furthermore if &g is such that
* <af, (2.5.24)
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then the solution x* is unique in U (xo, Py ; (0)), where function P ; is the inverse
of the restriction of Py to [wa ! D, oo] and function Py was defined in [98, pp.
830].

Proof. We state that the derivation of (2.5.21) requires only (2.5.4) and not the
stronger (2.5.5) used in [98, pp. 831] (see also (2.5.6)). The rest follows exactly
in the proof of Theorem 4.3 in [98, pp. 831].

That completes the proof of the theorem.

Remark 2.5.2. (a) If equality holds in (2.5.6) then our Theorem 2.5.1 reduces to The-
orem 4.3 in [98]. However if strict inequality holds in (2.5.6) then our error bounds
on the distances ||x,+1 — x, || (see (2.5.18) and (2.5.22)) are finer (smaller) than the
corresponding ones in [98], [99]. Moreover condition (2.5.16) is weaker than the
corresponding one in [98] (see 4.4 there) given by

sp<w H1)(n>0). (2.5.25)

Furthermore the information on the location of the solution x* is at least as precise,
as our majorizing sequence is finer (smaller) (see (2.5.19)).
All the above advantages hold even if we choose

@, = a, and we set a, = a° (n > 0). (2.5.26)

Note also that the above results are obtained under the same computational cost
since computing function w requires the computation of wy.

Definition 2.5.3. Given a continuous operator f: R™ — U C D, the set
U(p) ={uo € U[f" (o) = p} (2.5.27)
is called the attraction basin of p [81].

This set is not empty if and only of p is a fixed point f as it can be seen from the
equality
upy1 = f (un). (2.5.28)

It follows that the convergence domain

U. = {up € U |sequence {u,} converges}

=lJvwm=Uvw (2.5.29)
peU aeUy
where
Ur=A{plf(p)=p}. (2.5.30)

Hence, the convergence domain of f can be constructed as the union of the at-
traction basins of its fixed points.
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Example 2.5.4. Tteration (2.5.12), (2.5.13) can be rewritten as
Q( (05() - t)+ ) 8)

1 — wo (o) + £4) + wo ()

ty=t+e, ep = (2.5.31)

(see also [99, p. 789]).
Its fixed points constitute the segment [0, wy ! (1)) of the r-axis. When Fj is

Lipschitz smooth at xo with wg (f) = Lot (Lo > 0) and Lipschitz smooth on D with
w(t) = Lt (L > 0), (2.5.31) reduces to:

=1+ SLe? (2.5.32)
= g, & = ——, 5.
* + 1 — Lot+
and in the special case Ly = L
5Lg?
Sy =1 + &, &y = ——. (2533)
1— LS+
It was shown in [99, p. 789] (i.e., using (2.5.33)) that
U = UL=Lo = {(r, 0<e<.5 (L—1 — t)] . (2.5.34)
Denote by U4 the convergence domain if
Lo=L (2.5.35)
or
Lo<L. (2.5.36)
Then we can show that our convergence domain U4 contains Uy,:
Proposition 2.5.5. Under hypotheses of Theorem 4.3 in [98] (i.e., (2.5.25))
Ug C Uy (2.5.37)

where C denotes strict inequality if (2.5.36) holds.

Proof. Condition (2.5.16) follows from (2.5.25). Hence the conclusions of Theorem
2.5.1 also hold. The rest follows from (2.5.32), (2.5.33), (2.5.35) and the definitions
of sets Ug and Uy.

Remark 2.5.6. Tt was shown in Section 2.2 of this chapter that for § € [0, 2) the set
Us (Lg, L) = (2.5.38)

={(t,e)’KszL(t+e)+8Los§6, Lo(t+%) 51,30%5254

contains pairs (z, €) such that method (2.5.32) converges.
Clearly we have:
Us (Lo, L) C Uy. (2.5.39)

Moreover, we have
Ug CUs (Lo, L), (2.5.40)

as
Uy (Lo, L) € Us (Lo, L). (2.5.41)
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Furthermore if = 0 we get from (2.5.34), and (2.5.38) (for say § = 1)
K=2Ln<1, (2.5.42)

and
Ki=ULo+L)n <1, (2.5.43)

respectively.

Remark 2.5.7. 1t follows from the above that we also managed to enlarge the conver-
gence domain Ug found in [99], and under the same computational cost.

Note also that condition (2.5.37) holds obviously for all possible choices of func-
tions wo and w satisfying (2.5.6) (not only the ones given in Example 2.5.4). Claims
(a)—(c) made in the introduction have now been justified.

Finally note that our technique used here only for NK method has been also
illustrative and can be used easily on other methods appearing in [99] or elsewhere
[43].

2.6 Convergence of NK method and operators with values in a
cone

In this section, we are concerned with the solution of problems of the form
Find x* such that F (x*) € C, (2.6.1)

where C is a nonempty closed convex cone in a Banach space Y, and F is a reflexive
and continuously Fréchet-differentiable operator from a subset Dg of a Banach space
Xinto Y.

We used an extension of Newton’s method to solve (2.6.1). The usual Newton’s
method corresponds with the special case when C is the degenerate cone {0} C Y.
We provide a semilocal convergence analysis for Newton’s method that generalizes
the Newton-Kantorovich theorem. It turns out that our sufficient convergence con-
ditions are weaker than the ones given by Robinson in [178], and under the same
computational cost.

Let p € Dy be fixed. Define set-valued operator G (p) from X into Y and its
inverse by

Gpx=F (px—C, xeX, (2.6.2)
Gl'(py={zeF(pzey+C}, yev, (2.6.3)

where F’ (x) denotes the Fréchet-decreative of F evaluated at x. It is well-known
that operator G (p) as well as its inverse are convex [178]. Assume there exists an
initial guess xg € Dy such that

G (x0) [-F (x0)] # 2. (2.6.4)
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Introduce algorithm so that given x,,, we choose x,41 to be any solution of

minin&ize {lx = xull | F(xp) + F' (x) (x — x) € C}. (2.6.5)

The similarity with the usual NK method is now clear. We expect that problem
(2.6.2) will be easier to solve than problem (2.6.1) [178].

We need the following lemma on majorizing sequences. The proof can essentially
be found in Lemma 2.4.7 (see also Section 2.3):

Lemma 2.6.1. Assume there exist parameters b > 0, £ > 0, £y > 0, with £y < ¢,
n >0, and

hs =b Lo+ n <8, 8el0,1] (2.6.6)
or )
2b¢ 008
hs <6, O, 2%y 5e00,2) (2.6.7)
28 2-3
or
ton <1—18, §€[8,2) (2.6.8)
where
—bo + ,/b§ + 8bo ¢
8o = 5 , by= . for £y # 0. (2.6.9)
0

Then, iteration {t,} (n > 0) given by

bt (tn+1 - tn)z
to=0, t; =n, t =1 _ >0 2.6.10
0 1 =1, th2 = tng1 + 21— blotys1) (n=0) ( )

1 2n

is nondecreasing, bounded by = 5—5, and converges to some t* such that

0<t*<r*. (2.6.11)

Moreover, the following error bounds hold for all n > 0:
S S n+1
0<th42—tyy1 < 5 (the1 —ty) < (§> n. (2.6.12)

We can show the following generalization of the Newton-Kantorovich theorem:

Theorem 2.6.2. Let Dy, X, Y, C, F, and G be as above.
Assume: there exists a point xg € Dy and nonnegative numbers b, Lo, €, n, § such
that (2.6.6) or (2.6.7) or (2.6.8) hold;

HG*1 (xo)” <b, (2.6.13)
|F" (x) = F" (x0)| < €ollx — xoll, (2.6.14)
|F x)—F | < €lx—yll, (2.6.15)

U (x0, 1*) € Dy, (2.6.16)
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and
lx1 — xoll <n, (2.6.17)

where x| is any point obtained from (2.6.5) (given xq satisfying (2.6.4) and t* is
given in Lemma 2.6.1).
Then, algorithm (2.6.4)—(2.6.5) generates at least one Newton-iteration {x,}
(n > 0), which is well defined, remains in U (xg, t*) for all n > 0 and converges
to some x* € U (xq, t*) such that F (x*) € C. Moreover the following estimates
hold for alln > 0
lxne1 — xull < thgr — ta (2.6.18)

and
|0 = x*|| < t* = 1. (2.6.19)
Proof. We first show sequence {x,} (n > 0) exists, x,, € U (x0, t*) and

it = xill < eyt — (02 0). (2.6.20)

Point x1 exists as G (xp) is an onto operator, which solves (2.6.5) for n = 0, and
(2.6.20) holds for k = 0 (by (2.6.17)). Moreover we get

X1 € U(x(), t*) .

If (2.6.5) is feasible it must be solvable. Indeed, because F’ (x;) is continuous
and C is closed and convex the feasible set of (2.6.5) is also closed and convex.
The existence of a feasible point ¢ implies that any solution of (2.6.5) lie in the
intersection of the feasible set of (2.6.5) and U (|xg, 1 llg — xr|) . Moreover this
intersection is a closed, convex and bounded set. Furthermore because X is reflexive
and function ||x — xi|| is weakly lower semicontinuous a solution of (2.6.5) exists
[178]. Finally, because (2.6.5) is a convex minimization problem, any solution will
be a global solution.

Now assume x1, X3, ..., X,4+1 exists satisfying (2.6.20).

Then, we get

lxk+1 — x0ll < Nxker — xicll + lxn — xp—1l + -+ - + llx1 — xol (2.6.21)
S (g1 — 1) + (e — i) + -+ (1 —to) =ty <t

Hence, x¢41 € U (xo, 1%).
By (2.6.14) we have:

|67 o |F7 ) = F/ o) | = b I = xol
< bloty4+1 < 1. (2.6.22)
Therefore the convexity of G (xg+1) carries to

F'(es)x = C = {F (x0) + [F (1) = F' o)} x = C. (26.23)
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and by the Banach Lemma

|G~ (o)
) IF” Geks1) = F7 (xo)|

HG—I (xk“)H P re=xe (2.6.24)

b
=< .
1 —bLo |lxg+1 — xoll

It follows that (2.6.5) is feasible, and hence solvable for n = k = 1, so that xz4
exists. We need to solve for x:

F (xi41) + F' (1) (x — xp41) € F (i) + F' (xg) (k1 — xx) + C. (2.6.25)

But xi1 solves (2.6.5) with n = k, so the right-hand side of (2.6.25) is contained
in C. Hence any x satisfying (2.6.25) also satisfies (2.6.5) forn = k + 1. We can
rewrite (2.6.25) as

x = Xpt1 € G () [—F (k1) + F () + F/ () (g1 — x0)] . (2.6.26)
Using (2.6.15) we get
[=F Gag1) + F () + F' () (a1 — x0) | < %5 lxeer — xel®. (2.6.27)

Because the right-hand side of (2.6.26) contains an element of least norms, there
exists some ¢ satisfying (2.6.26) and consequently (2.6.25) so that

lg = xerill = |67 Gaen) | [=F Gen) + F/ ) G = 300
| 2 i 2
5L || Xgp+1 — X 50l (try1 — 1
<2 llXk+1 — x|l <2 (Tk+1 — 1) (2.6.28)
1 = blo lIxk4+1 — xoll 1 — bloti41
That is g is also feasible for (b) with n = k, we have
lxkt2 — Xkt1ll < lg — Xe1ll <t — tet1 (2.6.29)

and xx4o € U (xo, t*) which completes the induction. Hence sequence {x,} is
Cauchy in X and as such it converges to some x* € U (xo, t*). Then for any k

[F (k1) = F (x*)] = [F Gage1) = F () — F' (xg) (xge1 —x)] € C = F (x¥).
(2.6.30)
The left-hand side of (2.6.30) approaches zero by the continuity assumptions,
and as C — F (x*) is closed we get F (x*) € C.
Finally (2.6.19) follows from (2.6.18) by standard majorization techniques.

Remark 2.6.3. Our Theorem 2.6.2 reduces to Theorem 2 in [178, pp. 343] if £y = ¢.

The advantages of this approach have already been explained in Section 2.2 of
Chapter 2.
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2.7 Convergence theorems involving center-Lipschitz conditions

In this section, we are concerned with the problem of approximating a locally unique
solution x* of equation (2.1.1).
Most authors have used a Lipschitz-type hypotheses of the form

|F a0 [Fr@ - F ]| sem @7.1)

for all x, y, € U(xo, r) C ﬁ(xo, R) € D for some R > 0 and a continuous non-
negative function « in connection with the NK method. The computation of function
a is very difficult or impossible in general (see Example 2.2.18). That is why we
use instead hypotheses (2.7.4) in which the corresponding function wy is easier to
compute.

Based on this idea, we produce local and semilocal convergence theorems for
the NK. Our results can be weaker than the corresponding ones using (2.7.1). In the
local case, we show that a larger convergence radius can be obtained.

We provide the following semilocal convergence results involving center-
Lipschitz conditions:

Theorem 2.7.1. Let F: D C X — Y be a Fréchet-differentiable operator. Assume:
there exist a point xo € D, n > 0, R > 0, and nonnegative continuous functions
wo, w such that:

F ' (x0)"' e L(X,Y), (2.7.2)

[F o F oo = (2.7.3)

[F oy [F 0o = F )] | = wo (e = ol 274)
|7 @™ F o) < wdlx =%l 21.5)

forall x € D (xo,7) € U (x0,7);

equation
1
w(r){[/ wo(tr)dt—i-wo(r)}rJrn} =r (2.7.6)
0

has solutions on (0, R]. Denote by ry the smallest positive solution of equation
(2.7.6):
q = 2w (ro) w (ro) < 1; 2.7.7)

and -
U (x9, R) C D. (2.7.8)

Then, sequence {x,} (n = 0) generated by NK method is well defined and remains in
U (xo, ro) for all n > 0 and converges to a unique solution x* of equation F (x) =0
in U (xo, ro). Moreover the following estimates hold for all n > 0:

Xn+2 = Xnt1ll < g lXn1 — 2l (2.7.9)
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and "
[xn —x*| < ——4q". (2.7.10)
l—gq
Moreover if there exists r1 € (ro, R] such that

1
w (ro) |:/ wo [(1 —t)ro+tri]dt + wo (ro)j| <1 (2.7.11)
0

the solution x* is in U (xq, r1).

Proof._By 2.7.1),(2.7.3), (2.7£) and the definition of rq || x; — xo|| < n < ro. Hence
x1 € U (x0, o). Assume x; € U (xg, r9), k =0, 1, ..., n. Using (2.7.1) we obtain the
approximation

Xkl — X0 =
=x; — F' (x) "' F () — x0

1
=—[F @™ F o] F o)™ { | TP o+t =500 = F o]
- (xg — x0) dt + (F/ (x0) — F’ (xk)) (xk — x0) + F (x0) } 2.7.12)
By (2.7.3)—(2.7.6) and (2.7.12) we get in turn
s = xoll = | F/ @0 F (o)
A 0™ [F o+ Gk = 0 = F )] | o = ol
+ |7 07 [F o) - F o
o = xoll + | F 60) ! F ()| |
1
< w (Il — xoll) H/O wo (t |k — xol) dt
+wo (llxk — xolD] llxx — xoll + n}
1
<w(r) H:/ wo (tr) dt + wo (r)]r+n} =r. (2.7.13)
0
That is xx4+1 € U (xg, ro). Moreover by (2.7.1) we obtain the approximation
F' (x0) ' F (xk1) = F (x0) ™' [F () — F (i) — F/ (xi) (o1 — x0)]
1
= F' (x0)™'! {/0 [F' (xx + 1 (i1 —x0) — F' (x0)] dt

+F o) [F o) = F o]} e —v0. 27.14)
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By (2.7.4) and (2.7.14) we get in turn
H F'(x))"' F (xk+1)H (2.7.15)
=

1-1
F' (xp)™! /0 [F' (xx + 1 (i1 —x0) — F (x0) ]| dt

+| P o™ [F o) = F @] |} et —

1
< / wo [(1 = ) Ik — xoll ¢ llxest — xoll] de
0

+wo (Ilxx — x0lD} lxx41 — x|l

1
< /0 wo [(1 — 1) rg + troldt + wo (ro)} X1 — xxll

= 2w (ro) XK1 — xxll -
Hence by (2.7.1), (2.7.5) and (2.7.15) we obtain
sz = xestl = | [F i)™ F 00| [F G0 Fenan]| @710

[P ™ F o) - | F a0 F |

w (ro) 2w (ro) lIxk+1 — Xkl

IA

IA

k1
= q llxg41 — xell < ¢" oy,

which shows (2.7.9) for all n > 0.
Letm > 1, then we get using (2.7.9),

Xntm — Xn+1 = Xpam — Xntm—1) + Knam—1 — Xntm—2) (2.7.17)
+ o 2 — Xnt1) s

and

-1
||xn+m - xn+l|| =q ”xn-i-m—l - xn+m—2” <.---= qm ”xn+1 —xpll  (2.7.18)

that

Pt =3l = (g 440" 2 +"") I = (2.7.19)
1 — qul
Sq————4q"n
—q
It follows from (2.7.19) and (2.7.7) that sequence {x,i (n > 0) is Cauchy in a Ba-
nach space X and as such it converges to some x* € U (xo, rp). By letting k — o0,
m — o0 in (2.7.16) and (2.7.19) we get (2.7.10) and (2.7.19) we get (2.7.10) and
F (x*) = 0 respectively.
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To show uniqueness in U (xo, ro) let xT be a solution in U (xq, ro). Using the
approximation

Xngl — X| = (2.7.20)
=xp — F ()" F () — x}

= F (x0) ' [F (x*) = F (xa) = F' (x) (x] = x)]

1
= [F’ o)V F (xo)] F (x0)~! {/{; [F/ (xn 41 (x] —x1)) — F' (x0)] dt

+ [F/ (x0) — F' (xn)] } (xik _xn)

as in (2.7.13) we get
1
st =25 < w (low — xol) [/0 wo [ (1= 1) llxn = x0 @721)

+1 || x} = xo]|] + wo (Ilxa —xoll)} [l = 7|
<q |xn — x7]. (2.7.22)

By (2.7.7) and (2.7.22) lim x, = x{. But we already showed lim x, = x*. Hence,
we conclude e e
x*=xj.
Finally to show uniqueness in U (xg, r1), let xi‘ be a solution of F (x) = 0 in
U (x0,r1). Asin (2.7.21) we get

1
||xn+1 - xi"” < w (ro) |:f0 wo [(1 — 1) rg + tri]dt + wo (ro) i| Hxn - xf”
< [ — 27 - (2.7.23)

By (2.7.23) we get

: k
lim x, = x;.
n— oo

Hence, again we deduce:

x*=xj.
Remark 2.7.2. In order for us to compare our results with earlier ones, consider the
Lipschitz condition (2.2.36) and the Newton-Kantorovich hypothesis (2.2.37). De-
fine

wo (r) = Lor™, (2.7.24)
w(r) = € (2.7.25)

for some L > 0, g > 0, £; > 0 and all » € [0, R]. Assuming conditions (2.7.4),
(2.7.5) and (2.7.7) hold with the above choices then (2.7.6) and (2.7.7) reduce to
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A+2) ) 54 T
=y - — =0, 2.7.26
P or 7 +7n ( )
and

2007 < 1. (2.7.27)

Set & = 1 then (2.7.26) and (2.7.27) are satisfied if
ho = 6£ot3n < 1 (2.7.28)

with ¢ being the small solution of equation (2.7.26). By comparing (2.2.37) and
(2.7.28) we see that (2.7.28) is weaker if (2.7.28) holds, and

4
302 < o (# 0). (2.7.29)
0
This can happen in practice as % can be arbitrarily large and hence larger than 35%

(see Section 2.2).

This comparison can become even more favorable if A > 1. Such a case is pro-
vided in Example 2.7.4.

Assume there exist a zero x* of F, R > 0, and nonnegative continuous functions
vg, v such that

-1

F'(x)" eL,X), (2.7.30)
|5 o = F ()] = v (= 27]). 2.731)
[P P ()| = v (=) (2.732)
forallx € U (x*,r) € U (x*, R); equation
1
v(r) |:/ vo [(1 —1)r]ldr + vg (r):| =1 (2.7.33)
0
has solutions in [0, R]. Denote by r* the smallest;
U (x*,R) € D. (2.7.34)

Then the following local convergence result holds for NK method.

Theorem 2.7.3. Under the above stated hypotheses sequence {x,} (n > 0) gener-
ated by NK method is well defined, remains in U(x*, r*) for all n > 0, and con-
verges to x™ provided that xo € U (x*, r™).

Moreover the following estimates hold for alln > 0

, (2.7.35)

e =" = an [on =27 < @ flen = 5]

where
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1
ap =W (Hx,, — x*”) |:/0 wo ((1 —1) ”xn — x*H)dt + wo (Hxn - x*“)j| (2.7.36)

and

1
a=w(r U wo ((1 = 1) r*) dt + wo (r*):| . (2.7.37)
0

Proof. 1t follows as in Theorem 2.7.1 by using (2.7.30)—(2.7.34), induction on n and
the approximation

Xpa] —xT = (2.7.38)
= [F/ () ' F (x*)] {/01 [F/ (xn 41 (x* = x,))
— F' (x*)]dt + [F' (x*) = F" (x)] } (x* = xn).

We complete this section with a numerical example to show that we can obtain a
larger convergence radius than in earlier results.

Example 2.7.4. Let X =Y =R, D = U (0, 1), and define function F on D by
_ 1 1
F(x) = ze X — 3. (2.7.39)

Choose v (r) = £or**, v (r) = b. Then it can easily be seen from (2.7.30)-(2.7.32),
(2.7.39) that £y = e, u = 4, and

b = 1581976707 = H F (=1)"' F'(0) H .

Equation (2.7.33) becomes

1
[/ e[(1 —0)r*dr + er4] b=1 (2.7.40)
0
or 1
5 73
= | = .663484905. (2.7.41)
6¢eb
We saw earlier in Example 2.4.16 that Rheinboldt radius [175] is given by
ri = .245252961. (2.7.42)

Hence, we conclude:
ri <r*. (2.7.43)

Example 2.7.5. We refer the reader to Example 2.2.18.
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2.8 The radius of convergence for the NK method

Let F:D € X — Y be an m-times continuously Fréchet-differentiable operator
(m > 2 an integer) defined on an open convex subset D of a Banach space X with
values in a Banach space Y. Suppose there exists x* € D that is a solution of the
equation

F(x)=0. (2.8.1)

The most popular method for approximating such a point x* is Newton’s method
X1 =G (xn) (m=0), (xo€ D), (2.8.2)

where
Gx)=x—F (x)'F(x) (xeD). (2.8.3)

In the elegant paper by Ypma [216], affine invariant results have been given con-
cerning the radius of convergence of Newton’s method. Ypma used Lipschitz con-
ditions on the first Fréchet derivative as the basis for his analysis. In this study, we
use Lipschitz-like conditions on the mth Fréchet derivative F m(x) e L (X'l”, Y2)
(x € D) (m > 2) an integer. This way we manage to enlarge the radius of conver-
gence for Newton’s method (2.8.2). Finally we provide numerical examples to show
that our results guarantee convergence, where earlier ones do not [216]. This is im-
portant in numerical computations [43], [216].
We give an affine invariant form of the Banach lemma on invertible operators.

Lemma 2.8.1. Let m > 2 be an integer, o; > 2m (2 <i <m), n > 0, X, Y Banach
spaces, D a convex subset of X and F: D — Y an m-times Fréchet-differentiable
operator. Assume there exist 7 € D so that F' (z)™" exists, and some convex neigh-

borhood N (z) C D
|F@ ' FO@ sai=20m (2.8.4)
and
H F ()~ [F(”” (x) — F™ (z)] H <& forall x€N(),e0>0. (2.85)

Ifx € N(z2)NU (z, 8), where § is the positive zero of the equation f' (t) = 0, where

2

Foy=Smtm, Y2 iy (2.8.6)
m! 2!
then F' ()c)*1 exists and for ||x —z|| <t <§
[P ol <o 28.7)

and
[Fro el s-ro (2.8.8)
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Proof. Itis convenient to define ¢, by, b;,i = 2, ..., m by

£ =X — 20,
by = z + Os,
bi=z+6; (bi—1 —2), 0 €[0,1].

We can have in turn
F// (x)

=F"(@)+[F' () - F' (2]
1
—F Q)+ / F" 2 461 (x — 2] (x — 2) db)
0
1
=F"(2) +/ [F”’ (z+6 (x—2)—F" (Z)] (x —2)do;
0
1
—i—/ F" (2) (x —z)d6,
0
1 1 1
=F"(2) +/ F"” (2) (x — ) d6; +[ / FY{z 46,
0 0 0
Jz+601 (x—2)—zl} [z + 61 (x —2) 2] (x — 2) dOd6y

1 1 1
—F Q)+ / F” (2) db) + / / F@ (b) (b1 — 20) edbrdt
0 0 0

1 1 1
=F" (z)—l—/ F" (2) ed6; +---+/ / F (byy—2) (b3 — 2)
0 0 0
coi(by —2)dby—n - - -db,
1 1 1
=F”(z)+/ F”'(z)ad«91+-~-+f / F™ () (b3 — 2)
0 0 0
s (b —2)edby o - - - doh
1 1
+ / .. / [F(m) (bypy—2) — F(m) (Z)] (bp—3 —2)
0 0

(b1 — 2) edBhp_s - - d0. (2.8.9)

Using the triangle inequality, (2.8.4), (2.8.5), (2.8.6) in (2.8.9) after composing by
F’(z)~!, we obtain (2.8.7).
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We also get

—F' )7 '[F (2) = F (x)]
=F @' [FO-F@-F @Q&x-2+F (2)x-2)]

1 1
=/ F' ()" {F"[z+616] — F" ()} dbre + F' (z)_I/ F" (2) ed)
0 0

1ol 1
/ / F'(2) F" (b2) (by — 2) ed62d6) + F' (z)"" / F" (2) ed
0o Jo 0

1 1
// F (byy_1) (b2 — 2)
0 0

s (b] - Z) Sdem_lé‘dem_z s d@zd@]
1 1
- / / FO D (by—2) (by—3 = 2) -+~ (b1 — 2) edOp—2 - - - d62d0)
0 0
1
+...+/ F'(2)7' F" (2) ed6)
0
1 1
[ [ F e [F G = F @] na =2
s (b1 - Z) Edem_z < -d91
1 1
+/ / F' @™ F™ (@) (b2 = 2) - (b1 — 2) edOp—1 - - dO)
0 0
1 1
[ [ F @ @) g =2y = ) edt2 o
0 0

1
L +/ F ()~ F" (2) ed6y. (2.8.10)
0

Because f/ (t) < 0 on [0, §], using (2.8.4), (2.8.5), (2.8.6) in (2.8.10) we obtain for
x —zll <t

H—F/ @' [F (@) - F (x)]H <14 fx—zl) <1+ f @) <1 @811

It follows from the Banach Lemma on invertible operators (2.8.11) F’ (x)~! exists,
and

[FoFo|z[i-|Fot[Fo-F (x>]H]7l <—f .

which shows (2.8.8).
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We need the following affine invariant form of the mean value theorem for m-
Fréchet-differentiable operators.

Lemma 2.8.2. Let m > 2 be an integer, a; > 0 (2 <i <m), X, Y Banach spaces,
D a convex subset of X and F; D — Y an m-times Fréchet-differentiable operator.
Assume there exist z € D so that F' (z)™" exists, and some convex neighborhood
N (2) of z such that N (z) € D,

[P FO@) sa i=2..m
and

H F' ()7 ! [F(’") (x) — F™ (Z)]H <egy forall x € N(z), & > 0.

Then for all x € N (z)

[P F@-Fme-| 28.12)
Uy + € m Amp—1 m—1 o%) 2
< T bl b e =2l e S 2l

Proof. We can write in turn:

F(z)—Fx) —F (x)(z—2x)

1
- / [F’ (x+6,(z—x)—F (x)] (z —x)do
0
1 1
= [ roa— - @lode -2+ [ 6F @) -2
0 0
1 1
= [ ] [ ot - 2 - P @)1 (- 2 dostrdty (5~ 27
0o Jo

1 1 1
+ / / F” (2) 01 (x — 2) d6261d6) (x — 22+ / 61F" (2) (x — 2 d6y
0 0 0

1 1 1
=/ / / [F("” (Z 4 On—10m—2---01 (x —2)) — F™ (z)] Om_2
0 0 0

QAN (x — )" Ay 1dO—s - - dB3dBrd6,
1 1 1
_|_..._|_/ / F”’(Z)Glz(x—z)3d92d91+/ 91F”(Z)(X—Z)2d91.
0 JO 0
(2.8.13)

Composing both sides by F’ (z)~!, using the triangle inequality, (2.8.5) and (2.8.6)
we obtain (2.8.12).
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Based on the above lemmas, we derive affine invariant convergence results for
theclass T = T ({oj},2<i <m,a) (e >0,0; >0,2 <i <m) of operators F
defined by T = {F|F:D < X — Y; D open and convex set, F' m-times con-
tinuously Fréchet-differentiable on D; there exists x* € D such that F (x*) = 0;
F’ (x)~! exists; U (x*, @) € D; x* is the only solution of equation F (x) = 0 in
U (x*, a);and forall x € U (x*, a),

H F(x)7! [F(’") (x*) — Fm (x)] H s < 0, £0 > 0, (2.8.14)

and _
[F () O (%)

Let F € T and x € U (x*, b) where b < min {«, §}. By Lemma 2.8.1, F’ (x)~!
exists. Define

11 (F, x) = sup { H F ()~ [F(’") () — F(’">]H |y e U (x", b)} . (28.16)

g =ai (F.x) = [ F' )7 FO (x*)

<ap, i=2,..m. (2.8.15)

2<i<m, xeU(x*b). (2817

It follows from (2.8.14)—(2.8.17) that

M(F,x*)fe():e(x*), qi (F,x*)fai, 2s <i <m, (2.8.18)
FeT{qi},2<i<m, u(F,x*),a), and by Lemma 2.8.1
w(F, x*) L
w(F,x) < e C=T (). (28.19)

=g llx —x*| —--- = [l — x*|I™

(m—1)!

We also have the estimates

H F o PO ()] < H F ()7 F' (x*)

[F ()7 PO (x7)

F (x)il F’ (x*)

=qi ’ (2.8.20)

qi —_

< — =q; (x).
L= floe = x| = o = Zogl e — o=t

The following lemma on fixed points is important.

Lemma 2.8.3. Let F, x be as above. Then, the Newton operator G defined in (2.8.3)

satisfies:
w(F,x)+q qm—1 -1
|6 @ —x"| = = e ="+ =gy I = 71"
_|_...+621—2|”x—x*”2 (2.821)
and
U +€0 * Um—1 s m—1 o) 112
16 @) — "] < o e = x4 g e = 1 4 4 S e — Xl
X)—X
B =0 [l = x*|| = o — ) | — !

(2.8.22)
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Proof. Using (2.8.3), we can write
G (x) —x* =

=x—F () "F@) —x*=F @) ' [F(x)(x —x*) — F (0)]

=F )7 [F(x*) = F(x)— F (x) (x* = x)]

=[F @™ F ()P )P ) - Fo - Foo (- 2)]) es23)

Asin Lemma 2.8.1 by taking norms in (2.8.23) and using (2.8.14), (2.8.15) we obtain
(2.8.21). Moreover using Lemma 2.8.2 and (2.8.12) we get (2.8.22).

Remark 2.8.4. Consider Newton method (2.8.2)—(2.8.3) for some xo € U (x*, b).
Define sequence {c,} (n > 0) by

en =[x —x*| m=0) (2.8.24)

and function g on [0, §) by

O‘m+50 m An—1 ,m—1 o) 2
+ syt +oo 457t
g()= T =Dl — (2.8.25)
1 —aot — - = 1),2‘
Using (2.8.24) and (2.8.25), estimate (2.8.22) becomes
1l Zg(cn) (n=0). (2.8.26)

It is simple algebra to show that g () < ¢ iff + < §p, where § is the positive zero of
the equation
h(t) =0, (2.8.27)

where

(am + €0) (m + 1) m—1 Mmom—1 tm—2 4.4 30621‘ —1. (2.8.28)

h(t) = m m—11 21

Note that for m = 2, using (2.8.28) we obtain

2

= 2.8.29
3 (a2 + €0) ( )

Hence, we proved the following local convergence result for the NK method
(2.8.2)-(2.8.3).

Theorem 2.8.5. NK method {x,} (n > 0) generated by (2.8.2)—(2.8.3) converges to
the solution x* of equation F (x) = 0, for all F € T, iff the initial guess x¢ satisfies

|0 — x*| < min {e, 80} . (2.8.30)

We also have the following consequence of Theorem 2.8.5.
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Theorem 2.8.6. NK method {x,} (n > 0) generated by (2.8.2)—(2.8.3) converges to
the solution x* of equation F (x) =0, forall F € T, if F’ ()co)_l exists at the initial
guess xq, and

|0 — x*| < min {e, 0}, (2.8.31)

where 8¢ is the positive zero of the equation resulting from (2.8.28) by replacing
Um+1 by 1 (F, xo) (defined by (2.8.10)) and «j, 2 < i < m by q; (F, xo) (defined by
(2.8.17)).

Proof. By Lemma 2.8.1, because F’ (x())_1 exists and |lxo — x*|| < 8¢, we get

F,x*) <mgy= - ' 2832
M( ) = 1—(12(F,x0)|\xo—X*H—'“—%H)C—)Coll"“1 ( :

Moreover, we have

qi (F,x*) =
_ ‘ F (x*)_l FO (x*) < H F (x*)_l F' (x0) H H F' (xo)~! FO (x*)
<ql = g Fx0) ) (2.8.33)
O 1 ga(Fox) xg— = ELEZONE0 =t

Denote by §0 the positive zero of the equation resulting from (2.8.28) by replacing
g0 by u (F, x*) (defined by (2.8.16)) and «;, 2 < i < m by ¢; (F, x*). Furthermore

denote by 50 the positive zero of the equation resulting from (2.8.28) by replacing
go by mg and i, 2 < i < m by gq.
Using the above definitions we get

qm (F, x0) + p (F, xo) ”xO _x*”m q2 (F, xo) ”XO . x*”m—l

§ >§ >
0=0= MY

m!
F7
bt BOID ) 2 G oo -] @2839)

The result now follows from (2.8.34) and Theorem 2.8.5.

Remark 2.8.7. Let us assume equality in (2.8.26) and consider the iteration ¢, =
g (¢) (n = 0). Denote the numerator of function g by g; and the denominator by g>.
By Ostrowski’s theorem for convex functions [155] iteration {c,} (n > 0) converges

to0if ¢g € [0, E), g’ (co) < 1. Define the real function hg by

ho (1) = g2 (1> — g} (1) g2 (1) + g5 (1) g1 (1), (2.8.35)

where g (x*) = u (F, x*) and @; = ¢; (F,x*),2 < i < m replace a1 and ¢; in
the definition of g respectively. Note that / is a polynomial of degree 2 (m — 1) and
can be written in the form

m> —m+2 5

g (x*) 2m=D 4 (other lower order terms) + 1. (2.8.36)

ho ()= =1
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Because hg is continuous, and
ho (0) =1> 0, (2.8.37)
we deduce that there exists 7y > 0 such that 4 (t) > O for all € [0, #p) .

Set _
Co = min {t(), 5} . (2.8.38)

It is simple algebra to show that g’ (co) < 1 iff kg (co) > 0. Hence, NK method
converges to x* for all F € T if the initial guess xq satisfies

|x0 — x*| < min {e, T} . (2.8.39)

Condition (2.8.39) is weaker than (2.8.31).

Although Theorem 2.8.5 gives an optimal domain of convergence for Newton’s
method, the rate of convergence may be slow for x( near the boundaries of that do-
main. However, it is known that if the conditions of the Newton-Kantorovich theorem
are satisfied at xo then convergence is rapid. The proof of this theorem can be found
in [27].

Theorem 2.8.8. Let m > 2 be an integer, X, Y be Banach spaces, D an open convex
subset of X, F: D — Y, and an m-times Fréchet-differentiable operator. Let xq €
D be such that F’ ()co)_1 exists, and suppose the positive numbers §*, d (F, xo),
a; (F, x0), 2 <i < m satisfy

H F' (x0)~" F (x0) H <d(F,xp), (2.8.40)
[F @ PO o s (oo, i =2,0m, 2.841)

and
|F o [F @) = FO (o) | | <e0. c0=c0(F,x0) (2.8.42)

forall x € U (xg,8*) C D.
Denote by s the positive zero of the scalar equation

p () =0, (2.8.43)
where
o) = oy (F, x0) + 80tm am—1 (F, x0) =1
m! (m—1)!
F:
T wtz i+ d(F,x). (2844)
If

p(s) =0, (2.8.45)
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and
8% >ry, (2.8.46)

where ry is the smallest nonnegative zero of equation
p)=0

guaranteed to exist by (2.8.45), then NK method (2.8.2)—(2.8.3) starting from x gen-
erates a sequence that converges quadratically to an isolated solution x* of equation
F(x)=0.

Remark 2.8.9. Using this theorem we obtain two further sufficiency conditions for
the convergence of NK method.

It is convenient for us to set g = wu (F, x¢), and «; (F, x9) = ¢q; (¢; evaluated at
x0) 2 < i < m. Condition can be written as

d (F, x0) < s, (2.8.47)
where
so=s = [Hod o4 Bomgn] > 0 (2.8.48)
by the definition of s. Define functions /1, h; by
hy (1) = Lorfop™ p dnal =l a7 4t — s, (2.8.49)
and
hy (1) = Laboyteoym | Gut OO pm=t o D02 4y g (2.850)
Because /1 (0) = hy (0) = —sg < 0, we deduce that there exist minimum #; > 0,
t» > 0 such that
hi1(t) <0 forall re]0,1] (2.8.51)
and
hy (t) <0 forall re]0,1n]. (2.8.52)

Theorem 2.8.10. Let F € T, and xo € U (x*, a). Then condition (2.8.45) holds, if
either

(a) F' (xo)~" exists and ||xo — x*| < min {o, 11 };

(b) F’ (x9)~ " exists and ||xo — x*| < min {«, 1},

where t| and t> are defined in (2.8.51), and (2.8.52), respectively.

Proof. Choose §* > 0 such that U (xg, §*) C U (x*, @). By (2.8.3), and (2.8.21), we
get (for g0 (G, x9) = u (F, x9), and o; (F, x0) = g, (q; evaluated at xo) g <i < m):

|F/ o™ F o) = 16 (o) = xoll = [F (o) = x| + " = xo

IA

% ”xO - X*“m + (31'”:11)! ||x0 - X*”mil

4o+ LB o — x| + |0 — x*] - (2.8.53)
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Using (2.8.53) to replace d (F, x¢) in (2.8.44), and setting || xo — x*|| <z, we deduce
that (2.8.45) holds if /21 (r) < 0, which is true by the choice of #;, and (a). Moreover,
by replacing u (G, xo) and g;, 2 < i < m using (2.8.19), and (2.8.20), respectively,
condition (2.8.45) holds if &, () < 0, which is true by the choice of ,, and (b).

In order for us to cover the case m = 1, we start from the identity

Xpal —xF =
= x — F' () ™' F ()
F' (<) [F (x%) = F (6) — F/ () (¢* = x)]

— —F/ (xn)—l F/ (x*)_
— _F/ (xn)—lF/ (x*)_

F(x%)" /O TF (ot (5 — ) — F o] (5 — )

= :F’ () L F (x*)_ F’ (x*)_I/Ol[F’ (xn +1 (x* = xp)) = F' (x*)] (x* — xp) dt

+[F @ F ) F )T () = F )] (8 = )

to show as in Lemma 2.8.3.

Theorem 2.8.11. Let F: D — Y be a Fréchet-differentiable operator. Assume there
exists a simple zero x™ of F (x) = 0, and for &1 > 0 there exists £ > 0 such that

[P ) P @ = P ()] <o

forall x € U (x*, £).
Then, NK method {x,} (n > 0) generated by (2.8.2)—(2.8.3) is well defined, re-
mains in U (x*, 1), and converges to x* with

Joner = "] = 2%

-] =0

provided that
31 < 1

and
xoe U (x*,ll).

Example 2.8.12. Returning back to Example 2.4.16, form = 3, ap = a3 = 1 and
o =¢€ — 1.
We get using (2.8.28)

85 = .43649019. (2.8.54)

To compare our results with earlier ones, note that in Theorem 3.7 [216, p. 111] the
condition is
||x0 - x*” < min {a, %} = po, (2.8.55)

where o, p are such that U (x*, o) C D, and
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H F ()™ (F (x) - F' (y))H <plx—yll forall x.yeU (x* o). (2.8.56)
Letting 0 = o = 1, we get using (2.8.56) p = e, and condition (2.8.55) becomes
[xo — x*|| < p = .245253. (2.8.57)

Remark 2.8.13. Form = 2, (2.8.28) gives (2.8.29). In general a» < p. Hence, there
exists &g > 0 such that oy + &9 < p, which shows that

00 > 0. (2.8.58)
(See Example 2.8.15 for such a case.)

Remark 2.8.14. Our analysis can be simplified if instead of (2.8.22) we consider the
following estimate: because x € U (x*, o), there exist 1, y2 such that

2 [ fxo — "+ B ] =, (2.8.59)
and )
s |xo —x*|" 4+ < (2.8.60)

Hence estimate (2.8.22) can be written

2

|G (x) —x*| < T =D [ — x|, (2.8.61)
and for y* = max {yy, y»}
* 2

The convergence condition of Theorem 3.7 [216, p. 111] and (2.8.61), (2.8.62), be-
comes respectively

|xo —x*| < minfa, y},y = (2.8.63)

2
V1+2y2°
and

[0 = x*]| < min{o. 2. (2.8.64)

In particular, estimate (2.8.64) is similar to (2.8.55), and if y < p, then (2.8.63)
allows a wider range for the initial guess xq than (2.8.55).

Furthermore, assuming (2.8.4), (2.8.5), and (2.8.55) hold, our analysis can be
based on the following variations of (2.8.22):

qm+EqQ

6] <=2

o= | 5 ||
T=pTle—1 ’

(2.8.65)

and

|G () —x*| < T - |x—x*|>.  (2.8.66)

am+é€ —
T=anlx =t == o e —x 7 |
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Example 2.8.15. Let us consider the system of equations

F(x,y)=0,
where
F:R?> > R?,
and
Fx,y)=xy—1,xy+x—2y).
Then, we get
/ _ y X
F(x,y)—[yﬂx_z]
and .
_ 2—x x
Flx,y) ' = :
(. ) x +2y [)“l-l—y}

provided that (x, y) does not belong on the straight line x + 2y = 0. The second
derivative is a bilinear operator on R? given by the following matrix

01
10
F'(x,y)=| — —
01
10

We consider the max-norm in R2. Moreover in L (Rz, R2) we use for
apy a
A= | @ an
azy ax

|All = max {|ai1| + laizl, laz1| + |ax|}.

the norm

As in [7], we define the norm of a bilinear operator B on R? by

2
Zbijkzk

k=1

2
IBIl = sup max )

lzl=1

s

j=1
where Ll p12
b%l b%Z
1 %
z=1(z1,22) and B = T
el
2 2
Using (2.8.4), (2.8.5), (2.8.29), (2.8.55), (2.8.56), for m = 2 and (x*, y*) = (1, 1),
we get p = %, po = .5, ap = 1. We can set &g = .001 to obtain 82 = .666444519.
Because pg < 8(2), a remark similar to the one at the end of Example 2.8.12 can now
follow.
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2.9 On a weak NK method

R. Tapia in [188] showed that the weak Newton method (to be precised later) con-
verges in cases NK cannot under the famous Newton-Kantorovich hypothesis (see
(2.9.9)). Using the technique we recently developed in Section 2.2, we show that
(2.9.9) can always be replaced by the weaker (2.9.6), which is obtained under the
same computational cost. This way we can cover cases [39] that cannot be handled
by the work in [188].

We need the following definitions and Lemma whose proof can be found in [188,
p. 540]:
Definition 2.9.1. Let Do C D be a closed subset of X, D and open subset of Dy.
For x € Dy, M (x) is a left inverse for F' (x) relative to Dy if:

(a) M (x) € LYy, X), where Yy is a closed linear subspace of Y containing
F(D1);

(b) M (x) F (D) € Do;
and

(c) M (x)F' (x)=1
where I is the identity operator from Dy into Dy.
Lemma 2.9.2. Hypotheses (a) and (b) imply that for all y € Dy;

(d) F' (y) (Do) < Yy,
and
(e) M (x) F' (y) (Do) < Dy.
Definition 2.9.3. If xo € D, then

Xnpl = Xp — M (xp) F (x) (n = 0) (29.1)

is called the weak Newton method.

The following result is a version of Theorem 2 in [39] (see also Section 2.3):

Theorem 2.9.4. If there exist M € L (Y, X) and constants n, 8, €, £y, t* such that:

M~! exists;

IMF (xo)ll < n; (29.2)
|1 —MF" (xo)|| <6 < 1; (2.9.3)
|M (F" (x) = F' (x0)) || < £ollx — xoll; (294
| M (F' ) = F' ) = llx =yl (2.9.5)

forall x,y € D,
ho= i <4, 7=t (2.9.6)

and

U (x0,1*) € U (x0,2n) € D. (2.9.7)

Then, sequence {x,} (n > 0) generated by NK is well defined, remains in U (xq, t™)
for all n > 0, and converges to a unique solution x* of equation F (x) = 0 in
U (xo, t*).
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Proof. Simply use M F, Dy instead of F, X respectively in the proof of Theorem 2
in [39] (see also Section 2.2).

Lemma 2.9.5. [188] Newton sequences in Theorem 2.9.4 exists if and only if M is
invertible.
If M is not invertible, we can have the following Corollary of Theorem 2.9.4.

Corollary 2.9.6. If there exists M € L (S, X), such that MF (U (xo,21n)) < Dy,
where S is a closed linear subspace of Y containing F (U (xq, 2n)), and (2.9.2)—
(2.9.7) hold, then

(a) sequence {x,} (n > 0) generated by the weak Newton method (2.9.1) is well
defined, remains in U (xg,t*) for all n > 0, and converges to some point x* €
U (xo0, ™).

(b) If M is one-to-one, then F (x*) = 0; or if t* < 2n, and F has a solution in
U (xo, t*), then again F (x*) = 0.

Proof. Tt follows from Lemma 2.9.5 that for any x € Dy, F'(x): Dy — S, and
MF’ (x): Dy — Dy so that [MF’ (x)]f1 MF:D; — Dg whenever it exists. The
rest follows as in the proof of Theorem 2 in [39] with F, X replaced by M F, Dy
respectively.

Remark 2.9.7. If
Lo =2¢, (2.9.8)

then Theorem 2.9.4 and Corollary 2.9.6 reduce to Theorem 3.1 and Corollary 3.1
respectively in [188] (if F is twice Fréchet-differentiable on D). However £, < ¢,
holds in general (see Section 2.2). It follows that the Newton-Kantorovich hypothesis

_ U 1
= 057 <3 (2.9.9)

used in the results in [188] mentioned above always implies (2.9.6) but not vice versa
unless if (2.9.8) holds.

2.10 Bounds on manifolds

We recently showed the following weaker version of the Newton-Kantorovich theo-
rem [39] (see Section 2.2):

Theorem 2.10.1. Let F: D = U (0,r) € X — Y be a Fréchet-differentiable opera-
tor. Assume:

F (0 'eLy, X), (2.10.1)
and there exist positive constants a, £, Lo, 1 such that:
IF' @~ <a, (2.10.2)
IF" @~ FO I <m0 <n (2.10.3)
IF" () = F' () I < €llx =yl (2.10.4)

IF" (x) = F'(0) || < £o x| (2.10.5)
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forallx,y € D,

ho=La 'n<l1 L="%¢ (2.10.6)
M= lim t, <r, (2.10.7)
=00
where, ,
to=0, 11 =1, fhsr=lnil — % (2.10.8)

Then equation F (x) = 0 has a solution x* € D that is the unique zero of F in
U (0, 2n).

Remark 2.10.2. The above result was also shown in affine invariant form and for
any initial guess including 0. However, we want the result in the above form for
simplicity, and in order to compare it with earlier ones [156].

Let us assume for X, Y being Hilbert spaces:
A=F'(0) € L(X,Y)issurjective, AT € L (¥, X) is aright inverse of A, and

|AT] <a™?, (2.10.9)

|AYF O] =7 < (2.10.10)

Conditions (2.10.3)—(2.10.6) hold (for F’ (0)~! replaced by A™).
It is convenient for us to introduce:

S={xeD|F(x)=0}, (2.10.11)
So={xeD|F(x)=F )}, (2.10.12)
Ny = Ker (A), (2.10.13)

and
N the orthogonal complement of Nj.

In Theorem 2.10.3 we provide an analysis in the normal space N at O of Sy,
which leads to an upper bound of d (0, §).

Newton-Kantorovich-type condition (2.10.6) effects S to be locally in a convex
cone. Theorem 2.10.8 gives the distance of 0 to that cone as a lower bound of d (0, S).

This technique leads to a manageable way of determining for example sharp error
bounds for an approximate solution of an undetermined system.

Finally we show that our approach provides better bounds than the ones given
before in [156] (and the references there), and under the same computational cost.

The following results can be shown by simply using (2.10.4), (2.10.5) instead of
(2.10.4) in the proofs of Theorem 2.10.3, Lemmas 2.10.4-2.10.7, Theorem 2.10.8,
and Corollary 2.10.9, respectively.

Theorem 2.10.3. Operator F: D € X — Y has a zero x* in U (0, M) N Ny; x* is
the unique zero of F /N> in U (0, 2n) N N».
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Lemma 2.10.4. The following bounds hold:

r* < |x*|| = b, (2.10.14)
b<M <2, (2.10.15)

and
Lob < 24on < a, (2.10.16)

where,

. <_1 /1 +2h1> , (2.10.17)

and
hy = Lonoa™ . (2.10.18)

It is convenient for us to introduce the notion:

V={xeX|lxll <b}, P(x)=F (x)/N1, (2.10.19)
Q(x)=F (x)/N2, x€V, (2.10.20)

and
o= (2.10.21)

Lemma 2.10.5. The following hold
Q (x) is regular forallx € V

and
Qo (x)_1 Px)|| <a, forallx e V. (2.10.22)

Let us define:
W={x=xi+x2e X |alxt]|+|xl <b, x; e Nj, i =1,2,} (2.10.23)
and

Kw={0-0w +x2]10¢€[0,1], x2 € N2, [lx2 — w2l < allw] 0}
(2.10.24)
where,
w=w;+wyeX, weN;, i=1,2.

Lemma 2.10.6. If w = w1 + w2 € WNV, then K (w) CVNW.

Lemma 2.10.7. Operator F has no zerosin W NV,
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Theorem 2.10.8. Let us define real function g by
_1
() =1 (% - t) (ﬂ +(& - t)2) 2 forte (0, ;—0) . (2.10.25)
Then, the following bounds hold:

g(M), ifiV3<ho<},
VT=2hg + (1 —2ho) < hy < ho
g™, if0<ho< %
A1 < min [ho, VT =2k + 1 (1 - 2h0)] ,
(2.10.26)

d©,S)>m=

where M and r* are given by (2.10.7) and (2.10.14), respectively.

Corollary 2.10.9. If no = n then the following bounds hold:

3 1
gM), if 37 < h0ﬁ< 2 (2.10.27)

m:d(O,S)z{
g(r*), ifh()<T~

Remark 2.10.10. (a) Theorem 2.10.1 reduces to the corresponding one in [156] if

Ly = L. (2.10.28)
However, in general,
o < ¢ (2.10.29)
holds. Let
h=ty<}i (2.10.30)

Then note by (2.10.6) and (2.10.30)
h<%=>h<3 (2.10.31)

but not necessarily vice versa unless if (2.10.28) holds.

(b) Our results reduce to the corresponding ones in [156] again if (2.10.28) holds.
However, if strict inequality holds in (2.10.29), then our interval of bounds [m, M]
is always more precise than the corresponding one in [156] and are found under the
same computational cost.

2.11 The radius of convergence and one-parameter operator
embedding

In this section, we are concerned with the problem of approximating a locally unique
solution of the nonlinear equation

F(x) =0, 2.11.1)
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where F is a Fréchet-differentiable operator defined on closed convex subset of the
mth Euclidean space X™ into X™.

NK method when applied to (2.11.1) converges if the initial guess is “close”
enough to the root of F. If no approximate roots are known, this and other iterative
methods may be of little use. Here we are concerned with enlarging the region of
convergence for Newton’s method. Our technique applies to other iterative methods.
That is, the use of Newton’s method is only illustrative. The results obtained here
extend immediately to hold when F' is defined on a Banach spaces with values in a
Banach space.

We assume operator F is differentiably embedded into a one-parameter family of
operators { H (¢, -)} such that H (g, x9) = 0, and H (1, x) = F (x) for some xo € D
and two values fy and #; of the parameter.

We consider the commonly used embedding (homotopy)

H(t,x)=F )+ —1)F (x0) (2.11.2)

The solution of F (x) = 0 is then found by continuing the solution curve x (¢) of
H (t, x) = 0 from fg until #;.

Homotopies have been employed to prove existence results for linear and non-
linear equations (see [139] and the references there).

In particular, the results obtained in [139] can be weakened, and the region of
convergence for NK method can be enlarged if we simply replace the Lipschitz con-
stant by the average between the Lipschitz constant and the center-Lipschitz con-
stant. Moreover our results can be used in cases not covered in [139].

Motivated by advantages of the weaker version of the Newton-Kantorovich the-
orem that we provided in Section 2.2, we hope that the homotopy approach will be
successful under the same hypotheses. In particular, we can show:

Theorem 2.11.1. Let F: D C X™ — X' be Fréchet-differentiable. Assume there
exist xg € D, £y > 0, £ > 0 and n > 0 such that:

F'(xo) ' eL(xX™ Xx™), (2.11.3)
IF" (x0) ™" [F' (x) = F' (x)] Il < £o llx — xoll, 2.11.4)
IF' (x)) ' [F' (x) = F' D] I < €llx =yl (2.11.5)
IF' (xo)™" F (xo) || < . (2.11.6)
ho = Lon < L fori < ¢, (2.11.7)
or
ho < % for €y = ¢, (2.11.8)
where
Lo = %ft, (2.11.9)
and

U (x0,2n) C D. (2.11.10)
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Then the solution
x=—F (x)"'F(x0), x(0) =xp (2.11.11)
exists, belongs in U (xq, ro) for all t € [0, 1], and F (x (1)) = 0.
Proof. Using (2.11.4), (2.11.6) for x € U € (xq, ro), we obtain in turn
IF" ()~ F (xo) || <IF' (xo) ' [F' (x0) — F' ()] F' (x)™' F (x0) ||
+ 1 F' (xo) ™" F (x0) |l
<tollx —xoll |1 F' ()™ F (xo) || +
or
IF" ()™ F (o) | < t=grk=ar (2.11.12)

(as o ||x — xoll < 4£02n < 1 by (2.11.7)).
Define function 4 by

ht,r) =12 (2.11.13)

Then it is simple calculus to see that
(@) =h(tr) (2.11.14)

has a unique solution » < ro, r (0) = 0 for ¢ € [0, 1]. Moreover by (2.11.7) we get
h(t,r) < oo fort e [0, 1]. Hence by Lemma 1.2 in [139], equation (2.11.2) has a
solution x (¢) and F (x (1)) = 0.

Remark 2.11.2. (a) If F is twice Fréchet-differentiable, and
Ly =1¢, (2.11.15)
then Theorem 2.11.1 reduces to Corollary 2.1 in [139, p. 743]. However
Lo <¢ (2.11.16)
holds in general. Meyer in [139] used the famous Newton-Kantorovich hypothesis
h=tn<3% (2.11.17)
to show Corollary 2.1 in [139]. Note that
h<%=>h<3. (2.11.18)
(b) The conclusion of the theorem holds if r* = 27 is replaced by
ro = nlinéot" < 2n, (2.11.19)

where,

2
f0=0, f =11, tnya = tns1 + ‘(’L*’)) (n>0) (see Section 2.2), [39].

2t (2.11.20)

o<l (1 — V1= 2h) — (2.11.21)

in case (2.11.17) holds [39]. Note that r* was used in Corollary 2.1 [139].

Note also that
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NK method corresponds with integrating
X (W) =—F (x) ' F(x), x(0)=xp, 1e[0,00), (2.11.22)
with Euler’s method of step size 1, or equivalently,
X' (1) =—F (x)""F(x0), x(©0)=x0, t€[0,1], (2.11.23)
with Euler’s method and variable step size

i1 =e* (1 - e*l) . k=0 (2.11.24)

Hence the initial step is 71 = .63, which is too large. This is a large step for
approximating x (1 — e~!) unless if F (x) is sufficiently controlled.
As in Meyer [139] we suggest an alternative: Integrate (2.11.23) with step size

h = % Choose the approximate solution
x (Np) = xn (2.11.25)

as the initial guess for NK method.
This way we have the result:

Theorem 2.11.3. Let F: X — X™ be Fréchet-differentiable and satisfying
|F )~ <allx|| +bforall x € X™. (2.11.26)
Let xg € X™ be arbitrary and define ball U (xo, 7 + 8) for § > 0 by

[ [xoll + 2] exp (@ I F (xo)lD) = (llxoll + 2) . ifa #0,
r= (2.11.27)
bIIF (xo)ll ifa =0.

Assume (2.11.23) is integrated from 0 to 1 with a numerical method of order h?,
denoted by
Xkr1 = G (xg, h) (2.11.28)

and satisfying
lx (1) —xnll < ch?, (2.11.29)

where ¢ does not depend on h.
Moreover assume there exist constants d, £, € such that:

IF' ()~ <d, (2.11.30)
|F" (x) = F" (x0)| < €ollx — xoll (2.11.31)

and
|F' )= F | <elx—yl (2.11.32)

forall x,y e U (xo,7+9).
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Then iteration

Xk1 =G (g, h) k=1,..,N—1 (2.11.33)
Xipl=Xn—F ) " F(xx) k=N, ..., (2.11.34)

converges to the unique solution of equation F (x) = 0 in U (xo,7 + §) provided
that

1
_ 1 V2-1\7
h=4< (dLOC)' , (2.11.35)
and
chP < S. (2.11.36)

Proof. Simply replace £ (Meyer denotes ¢ by L in [139]) by L¢ in the proof of
Theorem 4.1 in [139, p. 750].

Remark 2.11.4. If £ = £ and F is twice Fréchet-differentiable then Theorem 2.11.3
reduces to Theorem 4.1 in [139]. However if strict inequality holds in (2.11.16),
because the corresponding estimate (2.11.35) in [139] is given by

hy =4 < (ﬁ‘l)% (2.11.37)

we get
hy < h. (2.11.38)

Hence our technique allows a under step size 4, and under the same computa-
tional cost, as the computations of ¢ require in practice the computation of £.

2.12 NK method and Riemannian manifolds

In this section, we are concerned with the problem of approximating a locally unique
solution x™* of equation
F (x) =0, (2.12.1)

where F is C! and defined on an open convex subset S of R” (m a natural number)
with values in R™.

Newton-like methods are the most efficient iterative procedures for solving
(2.12.1) when F is sufficiently many times continuously differentiable. In particu-
lar, Newton’s method is given by

yo=—F ()" F(xy) (x0€S) (2.12.2)

X+l =Xp+ypn (1=0). (2.12.3)

We can extend this method to approximate a singularity of a vectorial field G
defined on a Riemannian manifold M:
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G(iz)=0, zeM. (2.12.4)
Operator F’ (x,) is replaced by the covariant derivative of G at z,,:

VG,,:T,, (M) — T, (M) (2.12.5)
y—> V,G

(we use VG,y = V,,G). Therefore approximation (2.12.2) becomes:
yn=-VG.'G (z). (2.12.6)

and y, € T, (M) (if (2.12.6) is well defined for all n > 0).

In R™, x,41 is obtained from x, using the secant line which passes through
X, with direction y,, and at n distance ||y, ||. In a Riemannian manifold, geodesics
replace straight lines. Hence Newton’s method in a Riemannian manifold becomes:

Zng1 =expy, (yn) (n=0), (2.12.7)

where y, is given by (2.12.6) for all n > 0.

Ferreira and Svaiter in [94] extended the Newton-Kantorovich theorem to Rie-
mannian manifolds. This elegant semilocal convergence theorem for Newton’s
method is based on the Newton-Kantorovich hypothesis (see (2.12.19)). Recently
[39] they developed a new technique that on the one hand weakens (2.12.19) un-
der the same computational cost, and on the other hand applies to cases not covered
by the Newton-Kantorovich theorem (i.e., (2.12.19) is violated whereas (2.12.12)
holds); fine error bounds on the distances involved are obtained and an at least as
precise information on the location of the solution (if center-Lipschitz constant L is
smaller than Lipschitz constant L).

Here we extend our result from Banach spaces to Riemannian manifolds to gain
the advantages stated above (in this new setting).

We refer the reader to [94] for fundamental properties and notations of Rieman-
nian manifolds. Instead of working with Frobenius norm of rank-two tensors, we use
“operator norm” of linear transformations on each tangent space.

We need the definitions:

Definition 2.12.1. Let S;: T.M — T, M be a linear operator. Define

I1S:1lop = sup{lISzyll, y € M, |lyll =1} (2.12.8)

Definition 2.12.2. Let D be an open and convex subset of M, and let G be a C'
vector field defined on D. We say: covariant derivative VG is Lipschitz if there exist
a constant L for any geodesic y, and a,b € R with y ([a, b]) C D such that

H P0EVGymP (1)l — VG

b
< L/ ly" @] dt, (2.12.9)

where P (y) is the parallel transport along y [94].
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We use the notation VG € Lip; (D), and for the corresponding center-Lipschitz
condition for zg € D fixed VG, € Lip;, (D).
Note that in general
Lo<L (2.12.10)

holds. Moreover LL can be arbitrarily large (see Section 2.2).
We can now show the following extension of the Newton-Kantorovich theorem
on Riemannian manifolds using method (2.12.7):

Theorem 2.12.3. Let D be an open and convex subset of a complete Riemannian
manifold M. Let G be a continuous vector field defined on D that is C' on D with
VG € Lip, (D), and for zo € D fixed VG, € Lip; (D).
Assume:
VG, is invertible;

there exist constants co and ¢y such that

HVG;OI < co, ’VGZ_OIG(ZO)H <¢ 2.12.11)
ho = coc1 C < %, ¢ = Lotk (2.12.12)
and

U(z0.1*) S D (2.12.13)

where,
* = lim t,, (2.12.14)

n—oo
L n —in 2
=0, f1 =1, iz = 1 + 522 2 0). (2.12.15)
Then

(a) sequence {t,} (n > 0) is monotonically increasing and converges to t* with
< 2n; (2.12.16)

(b) sequence {z,} (n > 0) generated by Newton’s method (2.12.7) is well defined, re-
mains in U (29, t*) for alln > 0, and converges to z*, which is the unique singularity
of G in U (29, t*). Moreover if strict inequality holds in (2.12.10), z* is the unique
singularity of G in U (z¢, 2n). Furthermore the following error bounds hold:

d (Zn+152n) < thg1 — s (2.12.17)

and
d(zn, ") <t —t, (n=0). (2.12.18)

Proof. Simply use L instead of L where the use of the center-Lipschitz (and not
L) suffices in the proof of Theorem 3.1 in [94] (e.g., in the computation of an upper
bound on HVGz_,,l ).
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Remark 2.12.4. If equality holds in (2.12.10) then Theorem 2.12.3 reduces to The-
orem 3.1 in [94]. Denote the corresponding Newton-Kantorovich-type hypothesis
there by:

h = cocy < 3. (2.12.19)

By (2.12.10), (2.12.12), and (2.12.18) we see

h<3=>

=
(=)

=

(2.12.20)

[STE
8=

but not vice versa unless if equality holds in (2.12.10).

The rest of the claims made at the introduction can now follow along the same
lines of our work in Section 2.2 [39].

2.13 Computation of shadowing orbits

In this section, we are concerned with the problem of approximating shadowing or-
bits for dynamical systems. It is well-known in the theory of dynamical systems that
actual computations of complicated orbits rarely produce good approximations to
the trajectory. However under certain conditions, the computed section of an orbit
lies in the shadow of a true orbit. Hence using product spaces and a recent result of
ours (Section 2.2) [39], we show that the sufficient conditions for the convergence of
Newton’s method to a true orbit can be weakened under the same computational cost
as in the elegant work by Hadeller in [108]. Moreover the information on the location
of the solutions is more precise and the corresponding error bounds are finer.

Let f be a Fréchet-differentiable operator defined on an open convex subset D
of a Banach space X with values in X.

The operator f defines a local dynamical system as follows:

Xu+1 = f (xx) (x0 € D) (2.13.1)

as long as x; € D.

A sequence {xm}lN:0 in D with x;,41 = f(xp), i =0,..., N — 1is called an
orbit. Any sequence {xm}lN:O, Xm € D,m = 0, ..., N is called a pseudo-orbit of
length N.

We can now pass to product spaces. Let y = XV*! equipped with maximum
norm. The norm x = (xg, ..., xy) € Y is given by

Ixl = max [xmll.
0<m<N

Set S = DN*! Let F: S — Y be an operator associated with f:

Xo S (xo) — xi
Fx)y=F| : | = :

XN f (;CN)



114 2 The Newton-Kantorovich (NK) Method
Assume there exist constants [g, /, Lo, L such that:

£ @) — f' o) < lollu — xoll
| @) — £ @ <1lu—vl
|F" () — F' (x0)| < Lo llu—xoll
[F')—F | <Lju—vl
forallu,v e D,u,vesS.

From now on we assume: [p = Lpand/ = L.
For y € X define an operator

Fy:§—>Y
by
f(x0) —x1
Fy(x) = :
fGn)—y

It follows that Fy’ x) = F' (x).
As in [108], define the quantities

N

a(x) = oﬂi’?vz | f i) f! (’C/)”_1 ’
T =

N—1
b(x)= max Zf/(xi).-.f’(xj')(f(x/‘)—xj+1) ,
j=l

0<i<N-—

and

by (x)=bX) + | f ) (f xn) — )|

forx € Y.
That is a (x) is the operator norm of F’ (x)~! and by (x) is the norm of the
Newton convection F’ (x) ™! Fy (x).

Remark 2.13.1. The interpretation to the measures studied in [61], [108] is given by:
(a) The dilation measures a (x) and by (x) are the norm of F’ (x)~! and the norm
of the Newton-correction F’ (x)_l Fy (x), respectively;
(b) the solution of equation
Fy(x)=0

yields a section (xo, ..., xy) of length N + 1 of a true orbit that meets the prescribed
point y at the N'th iteration step [108].

Using a weak variant of the Newton-Kantorovich theorem, we recently showed
in [39] (see Section 2.2) we obtain the following existence and uniqueness result for
a true orbit:
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Theorem 2.13.2. Let x € Y, y € X a(x), by (X) be as above and {xi}f\’: o be a
pseudo-orbit.
Assume:
ho=L, a(®byx <4i, L=ttt (2.13.2)

and
ﬁ(xozx, r*:2by(x):{zeY| Ix — z|| Sr*})gS.

Then there is a unique true orbit X* = (xS‘, ...,x}t,) inside U (x, r*) satisfying
[ ) =y
We also have a more neutral form of Theorem 2.13.2:

Theorem 2.13.3. Let {xi}lN:O be a pseudo-orbit of length N + 1. Assume:

hy=La(x)b(x) < (2.13.3)

1
2
and -

U (X, r{ =2b (x)) cs,
where a (X), b (X), r*, L are as defined above. Then there is a unique true orbit

X = (x5, ... xy) € U (x, rY)

satisfying f (x;i,) = f(xn).
Remark 2.13.4. 1If
Lo=1L, (2.13.4)

then Theorems 2.13.2 and 2.13.3 reduce to Theorems 1 and 2 in [108], respectively.
However in general
Lo <L. (2.13.5)

The conditions corresponding with (2.13.2) and (2.13.3), respectively, in Theo-
rem 1 and 2 in [108] are given by

h=La(x)by (x) < 1 (2.13.6)
and
h'=Lax) bx < 3. (2.13.7)
It follows from (2.13.2), (2.13.3), (2.13.5), (2.13.6), and (2.13.7) that:
h<i=ho<3 (2.13.8)
W<l=nj<i (2.13.9)

but not vice versa unless if (2.13.4) holds. Hence we managed to weaken the suffi-
cient convergence conditions given in [108], and under the same computational cost,
as the evaluation of L requires in precise the evaluation of L.

Moreover the information on the location of the true orbit is more precise and the
corresponding error bounds are finer [39] (see also Section 2.2).
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2.14 Computation of continuation curves

In this study, we are concerned with approximating a locally unique solution x* of
the nonlinear equation
F(x) =0, (2.14.1)

where F is a continuously Fréchet-differentiable operator defined on an open convex
subset D of R™ (a positive integer) in to R™.

In recent years, a number of approaches have been proposed for the numeri-
cal computation of continuation curves, and with techniques for overcoming turning
points [175], [205]. It turns out that all numerical continuation methods are of the
predictor-corrector type. That is, information on the already computed portion of the
curve is used to calculate an extrapolation approximating an additional curve portion.
At the end, a point on the so constructed curve is chosen as the initial guess for the
corrector method to converge to some point of the continuation curve.

Consider the system of n equations

F)=F (%), x e R(F),x0 € R(F), (2.14.2)

together with the (popular) choice [77], [176]
ul x =z, (2.14.3)
where u is derived from fixing the value of one of the variables. For example, set

u = ¢', where ¢’ is the ith unit-basis vector of R"1!.
System (2.14.2)—(2.14.3) can now be rewritten as

G(x)=0, (2.14.4)

where .
cm=|"Nr F @) (2.14.5)

() =

with z a not known yet constant.
Clearly, for T (x) = u:

fon Frex)l [ Fe P T
det G’ (x) = det|: ) ] - [(T (x))T] [1 +T () (e T(x)) ]

_ T i F' (x)
- [T )7 e ]det[(T (x))Ti| . (2.14.6)

Therefore i should be chosen so that |T )T e | is as large as possible.

Here we address the length of the step-size. In particular, we show that under the
same hypotheses and computational cost as before, we can enlarge the step size of
the iteration process [39] (see Section 2.2). This observation is important in compu-
tational mathematics.



2.14 Computation of continuation curves 117

As in the elegant paper by Rheinboldt [176], we use NK method as the corrector
method.

We need the following local convergence result of ours concerning the radius of
convergence for NK method [39]:

Lemma 2.14.1. Let G: D € R™ — R™ be a Fréchet-differentiable operator. As-
sume: there exists a solution x* of equation G (x) = 0 such that G’ ()c"‘)_l is irre-
vertible;

|6 () [6' @ -6 ]| < tlx -yl (2.14.7)
[/ ()7 [6" @) = 6 ()] = o ]x -] (2.14.8)

forallx, y € D;
" U (x* ra) S D, (2.14.9)
e ra =g (2.14.10)

Then NK method applied to G is well defined, remains in U (x*, ra) , and converges
to x* provided that xo € U (x™*, ry).
Moreover the following error bounds hold for all n > 0:

2
|1 = x| < g=gere=gy e — | (2.14.11)

Remark 2.14.2. In general
o <t (2.14.12)

holds.
The corresponding radius rg given by Rheinboldt [175]:

(2.14.13)

L

rrp =

is smaller than r4 if strict inequality holds in (2.14.12). Consequently, the step-size
used with Newton’s method as corrector can be increased (as it depends on r4).

Indeed as in [176], the Lipschitz conditions (2.14.7) and (2.14.8) hold in compact
subset C of R"t1. We can have:

HG’ (x)_IH < (1 n mfw) 146 ), (2.14.14)

(see (4.9)1in [176])),
where,
b(x)=|F (x) (F (x)") 7" (2.14.15)

If x* € R (F) is n solution of equation (2.14.5), let

T (x*)el| 8 (x*, €) = dist (", 5C) . (2.14.16)
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For 6 € (0, 1) U (x*, r4 (x*)) with

o * 207 (x*) *
ra (x ) = min {8 (x , C) I vy } > rR (x ) , (2.14.17)

where £, £ depend on C (not D) but we used the same symbol, and rg (x*) is defined
asrq (with €9 = £in (2.14.17)) (clearly Ux*, r4 (x*) € R (F)). By Lemma 2.14.1,
NK iteration for (2.14.5) converges to x*.

Continuing as in [176], let

x:I - R— R(F),

x'(s)|, =1forallx € I, x (so) = W soel  (2.14.18)

be the unique C! operator—parameterized in terms of the path length—that solves
equation (2.14.2). We use the Euler-line

YE)=x(s0)+T (x)(s0) (s —s9) se (2.14.19)

as predictor with Newton’s method as corrector. Let x¥ € R (F) be n known approx-
imation to x (sx), s¢ € I; then one step of the process is:
Compute T (x¥);
Determine i such that ‘(ei)T (xk)) = _max ‘(ej)T (T (x*))‘ ;
n+
Choose the step-size hiy1 > 0;
Compute the predicted point y = x* + gy (T (x¥));
Apply Newton’s method to (2.14.5) with z = (ei)T (y) with y as starting point;
If “satisfactory convergence,” then xkt1 = last iterate:

AN o e

else replace hy+1 by ghyi (2.14.20)

for some ¢ € (0, 1) and go to step 4.
7. Sk+1 = Sk + ka'H — xk ”2

(A) Assume: We want to compute x: /g — R (F) of (2.14.18) for Iy = [5.5] C
I, s < 5. There exists 6 > 0 such that

C =[x e R dist (x,.x (To)) = 8} S R(F). (2.14.21)
We can have:
ra(x)>r% =min|3, an
! ( @) lo+0)/1+()
> =min (5, —22— )50 (2.14.22)
32+10)y/ 1+(b)

forall s € 1o, 0 € (0, 1),
where
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E:sup{b(x(s)),s 670} < 00,

) T i (2.14.23)
79 = inf max ‘T(x) ef|,xeC’ > 0.
j=1,...n+1
(B) Moreover assume: _
approximation xK of x (sx) , sx € I satisfies:
ANT in(s, 0
(e’) (xk —x (sk)) —0, ka —x (sk)”2 < M (2.14.24)
(C) Furthermore assume:
nx = min {5 P 5701} -0, (2.14.25)

where ¢ is the Lipschitz constant of 7" on C. For any point x (sx + o) on
(2.14.18) with 0 € I = [sk, Sk + ni] there exists y = Xk + go)T (xk) on
the Euler line with the same ith component, i.e., point y with

(ei)T (x(sk+0)—xK)

g(o) = BY) (2.14.26)
By Rheinboldt [176] we have:
lg (0)] < 38, (2.14.27)
Fyg)T (xk> e Cforallo € Ty (2.14.28)
and
y = x* 4 e T (xk) € U (x (s +01) , 70) (2.14.29)
with
Wl =g (a,j‘) > g (akR) (2.14.30)
o Y2 o 172
A : 07 R . or
0 <o =min (nk, [M—fm)] ) > 0, = min <nk» [(1(;)—+Rro)] ) .
(2.14.31)
Hence the convergence of NK method for (2.14.5) from y to x (sk + U,f) is
ensured.
Define
A 1 w7
. T 0
o, =min | 5706, ﬁ, |:€1(142r0)j|
1 Tor& 12 R
. 0
> min | 5700, ;701, |:€1(142r0)j| =o,. (2.14.32)
Then we get
o =ol for0 < 5 <5 — o, (2.14.33)

and for s € [E — 5%, E] we reach 5 in one step, whereas interval 1y is traversed
in finitely many steps.
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Hence we showed as in Theorem 4.2 in [176]:

Theorem 2.14.3. Under hypotheses (A)—(C) there exists s; € 1o, a step hg+1 > 0
along the euler line such that Newton’s method of step 5 is well defined and converges
to some x (sk + a,f) , a,é“ > 0. Starting from so = s, we can choose h,? k=0,1,..
such that s, = o + kaf, k=0,1,.. M4, Sm+1 = S with a constant Jf > 0 for
which

MAol <5 -0 < (MA + 1) oA, (2.14.34)

Remark 2.14.4. Under hypotheses of Theorem 2.14.3 and Theorem 4.2 in [176], be-
cause of (2.14.17), (2.14.22), (2.14.31), and (2.14.32) (if strict inequality holds in
(2.14.12) for C instead of D), we conclude:

hR < np (2.14.35)
o <ot (2.14.36)
ot <ot (2.14.37)
and
M4 < MR, (2.14.38)

Estimates (2.14.35)—(2.14.38) justify the claims made in the introduction about
the improvements on the step-size. Note also that strict inequalities will hold in
(2.14.35)—(2.14.38) if the “minimum” is expressed in terms of r(? in the definition of
the above quantities (see (2.14.22)).

Some comments on a posteriori, asymptotic estimates are given next:

Remark 2.14.5. Rheinboldt also showed [176, p. 233] that if the solution (2.14.18)
of equation (2.14.2) is three times continuously Fréchet-differentiable on the open
interval I, then o should be chosen by

R_g PR 2.14.39
i /nwk—mwnz A8

where w*, y; are given (4.27) and (4.29) in [176, p. 233], @ € (0, 1) and pp is
a “safe” radius of convergence of NK method at x (sk + O’R). Because again our
corresponding radius of convergence py4 is such that

PR < PA (2.14.40)
we deduce (if strict inequality holds in (2.14.12)):
ok < o4, (2.14.41)

where o4 is given by (2.14.39) for pg replaced by pa.
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2.15 Gauss-Newton method

In this section, we are concerned with the problem of approximating a point x* min-
imizing the objective operator

Q) =% IIF@I3=3F" (x)F (x) (2.15.1)

where F is a Fréchet-differentiable regression operator defined on an open subset D
of R/ with values in R™ (j < m).

It is well-known that for x* to be a local minimum, it is necessary to be a zero of
the gradient VQ of Q, too.

That is why Ben-Israel [46] suggested the so called Gauss-Newton method:

Xnp1 =X — IV () F (x) (n=0), (2.15.2)

where, J (x) = F’(x), the Fréchet derivative of F. Here M denotes the pseudo
inverse of a matrix M satisfying:

(MTM)" = MM, (MM = MM*Y, MYMM*T = MY, MM*M = M.
(2.15.3)
Moreover, if rank-(m, j) matrix M is of full rank, then its pseudo inverse be-
comes

M* = (MTM)_I M7 (2.15.4)

A semilocal convergence analysis for method (2.15.2) has already been given in
the elegant paper in [110]. However, we noticed that under weaker hypotheses, we
can provide a similar analysis with the following advantages over the ones in [110],
and under the same computational cost:

(a) our results apply whenever the ones in [110] do but not vice versa;

(b) error bounds ||x,+1 — x, I, X, — x*|| (n > 0) are finer;

(c) the information on the location of the solution x* is more precise.

The results obtained here can be naturally extended to hold in arbitrary Banach
spaces using outer or generalized inverses [59] (see also Chapter 8).

We need the following result on majorizing sequences for method (2.15.2).

Lemma 2.15.1. Leta > 0, b > 0, ¢ > 0, Ly > 0, L > 0 be given parameters.
Assume there exists d € [0, 1) with ¢ < d such that for all k > 0

[%bL (1 —d)d* +dbLg (1 - d"“)] a+(c—d)(1—d)<0, (2.155)

and

bloa (1 _ dk> <1 (2.15.6)

Then, iteration {s,} (n > 0) given by

IbL(s 1—Sn)+c
50 = 0,51 =@ 5p42 = st + 25 g —s @S
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is nondecreasing, bounded above by s** = 1%, and converges to some s* such that
0 <s* < g™, (2.15.8)
Moreover, the following estimates hold for all n > 0:
0 < sut2 = Sur1 < d (sn41 — 50) <d""la. (2.15.9)

Proof. We shall show using induction that for all £ > 0

IBL (sk41 — sx) + dbLosgs1 + ¢ < d, (2.15.10)
Sk+1 — Sk > 0, (2.15.11)

and
1 — bLosgs1 > O. (2.15.12)

Using (2.15.5)—(2.15.7), estimates (2.15.10)—(2.15.12) hold. But then (2.15.7) gives
0<s2—s1=d(s1—50)-

Let us assume (2.15.9)—(2.15.12) hold for all k < n + 1.
We can have in turn

IBL (sk42 — skt1) + dbLosg4 + ¢ < (2.15.13)
< %dek-H +dbLg [S] +d (s1 —s0) + d? (s1 —s80)+ -+ dkt! (s1 — So)] +c
k42

< $bLd* + dbLo a4+ c <d (by (2.15.5)).

Moreover we show:
s < % (2.15.14)

Fork=0,1,2,5=0<s",s1=a <s™ sp) <a+da=((+d)a < s™.
It follows from (2.15.9) that forall k <n + 1

Sk2 < Skt +d (kg1 —sx) < - <s1+d (51— 50) + -+ d (Spr1 — Sk)
(2.15.15)

< [1+d+d2+--~+dk+l]a:—1_1”£’;1+2a < %,

Furthermore, we get

bLosks1 < bLo'54 a < 1. (2.15.16)

Finally (2.15.9), (2.15.11) hold by (2.15.7), (2.15.13)—(2.15.16).

The induction is now complete.

Hence, sequence {s,} (n > 0) is nondecreasing and bounded above by s**, and
as such it converges to some s* satisfying (2.15.8).

That completes the proof of the Lemma.
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We can show the following main semilocal convergence result for method
(2.15.2).

Theorem 2.15.2. Let F: Dy € D € R/ — R™ be a Fréchet-differentiable operator,
where Dy is a convex set. Assume:

there exists xo € Do with rank (J (xo)) =r <m, r > 1 and rank (J (x)) < r for all
x € Dy;

|77 (x0) F (x0)|| < a. (2.15.17)
I/ (x) = J (xo)ll < Lo llx —xoll, (2.15.18)
I/ x)—=J DI <Llx—yl, (2.15.19)

|77 (xo)|| < b, (2.15.20)

17 M q @) <c@ llx -yl (2.15.21)

with q (x) = (I —Jx)JT (x)) F (x),and q (x) <c < 1, forall x,y € Dy;
conditions (2.15.5) and (2.15.6) hold;
and

U (xo, s*) € Dy, (2.15.22)

where s* is defined in Lemma 2.15.1.
Then,

(a) sequence {x,} (n > 0) generated by method (2.15.2) is well defined, remains in
U (x0, s*) for all n > 0, and converges to a solution x* € U (xg, %) of equation
JT(x)F(x)=0;

(b) rank (J (x)) = r forall x € U (xq, s*);

(c) rank (J (xo)) = r if strict inequality holds in (2.15.5) or equality and ¢ > 0.

Moreover the following estimates hold for alln > 0

1xn41 — Xl < Sp1 — S, (2.15.23)
and
|xn — x*|| <5 = s (2.15.24)
Furthermore, if
rank (J (x0)) =m, and F (x*) =0, (2.15.25)

then x* is the unique solution of equation F (x) = 0 in U (x¢, s**), and the unique
zero of equation J* (x) F (x) = 0in U (xg, s*).

Proof. We shall show {s,} (n > 0) is a majorizing sequence for {x,} so that estimate
(2.15.23) holds, and iterates s, € U (xg, s*) (n > 0).
It follows from the Banach Lemma, and the estimate

I/ (x) = J (xo)|l < Lo llx —xoll < Los™ <1 (by (2.15.6))

for all x € U (xq, s*) that (b) and (c¢) above hold, with
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177 )| < 1=prf=sy forall x € U (xo,5%) . (2.15.26)
Consequently, operator
Px)=x—J"(x)F (x) (2.15.27)

is well defined on U (xg, s*). If x, P (x) € U (xg, s*) using (2.15.2), (2.15.17)—
(2.15.21) we can obtain in turn:

[P (P(x)—PI=

+JP (P (I =T x)JT())F (x)

1
JT(P (x))f (Jx+t(P(x)—x)—J@)}(P(x)—x)dt (2.15.28)
0

< e (6L IP () = xll +¢) 1P () — 1l

Estimate (2.15.23) holds for n = 0 by the initial conditions. Assuming by induc-
tion: |lx; — xi—1ll <s; —si—1 (1 =1, 2, ..., k) it follows

[lx; —xoll < sx —sgfori =1,2, ..., k. (2.15.29)

Hence, we get {x,} C (xg, ™).

It follows from (2.15.7) and (2.15.29) that (2.15.23) holds for all n > 0.

Thatis {x, } (n > 0) is a Cauchy sequence in R and as such it converges to some
x* € U (xg, s*) (because U (xg, s*) is a closed set).

Using the continuity of J (x), F (x), and the estimate

[7HF o] = 77 (%) (1 = T () I () F () |
+ |7 )]V o T ) F G|
<c o =x*| + |75 VI @olllxees —xll - (2.15.30)
we conclude J 1 (x*) F (x*) = 0.

The uniqueness part follows exactly as in Theorem 2.4 in [110] (see also [39] or
Section 2.2, or Theorem 12.5.5 in [154]).

Remark 2.15.3. Conditions (2.15.5), (2.15.6) are always present in the study of
Newton-type methods. We wanted to leave conditions (2.15.5) and (2.15.6) as un-
cluttered as possible. We may replace (2.15.5) and (2.15.6) by the stronger

[%bL(l —d)+dbL0]a+ c—dy(1—d) <0 (2.15.31)
and
bloa 1, (2.15.32)

respectively. Clearly conditions (2.15.5) and (2.15.6) are weaker than the Newton-
Kantorovich-type hypothesis
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= @l 1 (2.15.33)

used in Theorem 2.4 in [110, p. 120].
Indeed first of all
Lo <L (2.15.34)

holds in general. If equality holds in (2.15.35), then iteration {s,} reduces to {#,}
(n > 0) in [110] (simply set Ly = L in (2.15.7)), and Theorem 2.15.2 reduces to
Theorem 2.4 in [110]. However, if strict inequality holds in (2.15.34), then our es-
timates on the distances ||x,+1 — x,| , [|x, — x*|| are more precise than the ones in
[110]. Indeed we immediately get

Sp+1 — Sn <Int1 —In n=>1), (2.15.35)
s =5, <tF -1, (n>0) (2.15.36)

and
st <t (2.15.37)

Forc =0andd = %, conditions (2.15.5) and (2.15.6) hold provided that
hy =abL; < % (2.15.38)

where,
Ly = fofh (2.15.39)

Corresponding condition (e) in Theorem 2.4 in [110] becomes the famous Newton-
Kantorovich hypothesis
hy = abL < 1. (2.15.40)

Note that (2.15.39) is weaker than (2.15.41) if strict inequality holds in (2.15.35).
Hence, we have
hy<3=h <% (2.15.41)

but not necessarily vice versa unless if Ly = L.

Remark 2.15.4. Along the lines of our comments above, the corresponding results in
[110, pp. 122—124] can now be improved (see also Section 2.2).

2.16 Exercises

2.16.1. Show that f defined by f(x, y) = | siny|+ x satisfies a Lipschitz condition
with respect to the second variable (on the whole xy-plane).

2.16.2. Does f defined by f(t, x) = lx|1/2 satisfy a Lipschitz condition?

2.16.3.

(a) Let F: D € X — X be an analytic operator. Assume:

e there exists & € [0, 1) such that

[F'()l <e (x € D); (2.16.1)
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(b)
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1
k=T

% F® (%) is finite;

Yy = sup
k>1
xeD

e there exists xo € D such that
lxo — Fxo)|l < i < 342228y 2 q;
° U(xo, r1) € D, where, ri, rp with 0 < r; < r; are the two zeros of function
f, given by
) =y@—ay? = +ny —or+n.

Show: method of successive substitutions is well defined, remains in U (x0,711)
for all n > 0 and converges to a fixed point x* € U (xg, r1) of operator F.
Moreover, x* is the unique fixed point of F in U (x0, r2). Furthermore, the fol-
lowing estimates hold for all n > 0:

X042 = Xnt1ll < BllXnt1 — xall

and

n
e, — x*Il < L5,

where
— Y
B = =5 + .

The above result is based on the assumption that the sequence

n=|hFOw | wen. w1

is bounded above by y. This kind of assumption does not always hold. Let us
then not assume sequence {yx} (k > 1) is bounded and define “function” f; by

fr)y=n—-01 —a)r+2ylf—lrk_
k=2

Let F:D € X — X be an analytic operator. Assume (2.16.1) holds and for
xo € D function f; has a minimum positive zero r3 such that

U(xg,r3) € D.

Show: method of successive substitutions is well defined, r_emains in U(xq, r3)
for all n > 0 and converges to a unique fixed point x* € U (xo, r3) of operator
F. Moreover the following estimates hold for all n > 0

lxn42 — Xnp1ll < Billxps1 — xall

and
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ﬁ)l
lxn — x*Il < 1= 7.
where,
o0
=Y v ' +ea
k=2
2.16.4.

(a) Itis convenient to define:
1
y =sup [ FOGH[
k>1

with y = oo, if the supremum does not exist. Let F: D € X — X be an analytic
operator and x* € D be a fixed point of F. Moreover, assume that there exists o
such that

[ F' (x| < e, (2.16.2)
and )
U™, r*) C D,
where,
- o0, ify =0
TTL R ity #0
Then, if

show: the method of successive substitutions remains in U (x*, *) for all n > 0
and converges to x* for any xo € U (x*, r*). Moreover, the following estimates
hold for all n > O:

llxn+1 — x*” < Bullxn — x*” < Bllxn — x|,

where,

Bo=1, PBupi=oa+ 1Z;r§jgn (n > 0).

The above result was based on the assumption that the sequence

ye = |LFOH|FT (ke >2)

is bounded by y. In the case where the assumption of boundedness does not
necessarily hold, we have the following local alternative.
(b) Let F: D € X — X be an analytic operator and x* € D be a fixed point of F'.

o0
Moreover, assume: max » ()/kr)k_1 exists and is attained at some rg > 0. Set
r>0 =

o0
p= Z(J/kro)k_lz

k=2



128 2 The Newton-Kantorovich (NK) Method

there exist &, § with « € [0, 1), § € («, 1) such that (2.16.2) holds,
pta—38=<0

and B
U(x*, rg) € D.
Show: the method of successive substitutions {x,} (n > 0) remains in U(x*, ro)

for all n > 0 and converges to x* for any xg € U (x*, ro). Moveover the follow-
ing error bounds hold for all n > 0:

o0
Pen = X < el = x* 1+ ) v e — 214 < 8l — x*.
k=2
2.16.5. Let x* be a solution of Equation (2.1.1). If the linear operator F’ (x*) has
a bounded inverse, and limj,_y+|o | F’ (x) — F' (x*)| = 0, then show NK
method converges to x* if x¢ is sufficiently close to x* and

|xn —x*|| <de” (n <0y,

where ¢ is any positive number; d is a constant depending on x¢ and €.

2.16.6. The above result cannot be strengthened, in the sense that for every sequence
of positive numbers ¢, such that: lim,_, o C"“ = 0, there is an equation for
which NK converges less rapidly than ¢,,. Deﬁne

o = Cnj2s if n is even
n /C(n_l)/QC(,H_])/z, if n is odd.

2 — 0, and limy, oo —2

= 0, (k=>1).
2.16.7. Assume operator F’ (x) satisfies a Holder condition

|F' ) = F' )| < alx—yl”,

Show: s, — 0,

with 0 < b < 1 and U (xg, R). Define hg = boanlo’ < ¢p, where ¢ is a root of

b
(1) =a-0'"" ©=c=

and let R > ]TQO = rg, where dy = m Show that NK method con-
verges to a solution x* of Equation F (x) = 0in U (xo, ro).
2.16.8. Let K, By, no be as in Theorem 2.2.4. If hy = bonoK < %, and

Then show: modified Newton’s method (2.1.5) converges to a solution x* €
U (xo, ro) of Equation (2.1.1). Moreover, if

then show: Equation (2.1.1) has a unique solution x* in U (xo, r). Furthermore
show: X,11 = X, — F’ (x())’1 F (x;) (n > 0) converges to a solution x* of
Equation (2.1.1) for any initial guess xo € U (xg, ).
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2.16.9. Under the hypotheses of Theorem 2.2.4, let us introduce U=0U0 (x1,70 — 1),

sequence {1} (1= 0). 1o = 0. o1 = tn = F¢5. £ () = 3K 1 41,

A=r*—rg 0= :_2’ Vintl = thr1 — by dy = | xp1 — Xull, An = X — x0ll,
Uy=U,U,=U (xp,70—1ty) mn > 1), Kg= Lo =K,

I F'(x) = (F' ()= F' () |

= >
Ky = sup T (nz1,
x,yeUy
s
F/ —1 F/ _F/ 5
L, = sup I7 o) ||(x_(;f”) ODI (n>1),
x,yelU
XFEY
_ 2d, >
A = Tivong 20,
=2 > — 2
=g W20, K = e
_ 2d, >
kn = aser 0z0),
2
N
so=1, s, = 2=l M1 (n=>0).

211/ T=2h+s, 1 (1—v/1=2h)
With the notation introduced above show (Yamamoto [206]):

”x*_xn” <Kin=0)<xt,(n>0)

2
< dn (n>0)
1+v1-2K(1—-KAy ta,
2d
< . (n > 0)
1+v1-2K 1 —Kt,) ' d,
2d
= - (n > 0)
1+./—1 —2K B,d,
——2— 2h < 1)
/ 1-6
_ 1+ 1_7 1 ozn n
— 2 2h=1) (n>0)
1+ 1—2—d,l
= ndn (n>0)
th+l
3 2d, ~ 0)
T 1+ J1-2h,
KBudy
= 1+W (nz0)
= d (n>0)
(vrn)2 "
2n
— dg . @Qh<1)

Ch=1Dm=1)

n—1
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2
- Kdn_1
J1=2h+ \/1 —2h + (Kd,_1)?
< Knn—ldn—l
VT2 +/1 = 2 + (Knu1)?

=2 %4, n>1)

(n=1)

(n=1)

=074y (= 1)
— 1
=0 —dyt (1= 1)

n

<ro—tpn (n=0)
_ 21y n>
1+ /1= 2h,
n—1 sinh ¢

T o < )

2=y (2h < 1)
A92n

217y 2h =1)(n > 0)

0)

2”
S 2h
(2 Y s
2K \1++/1—2h

- IK( 2h )2" =0
—K | —— n
- n 1+ +1—=2h -

1 _
< S @ = 0),

||x* _xn” <k (n=0)

L,d?

1+/1 = (Ludy—1)?

- Lnfld;%—l (
1 - Ln—ldn—l + V1 - 2Ln—ldn—l
2
< L”_ldn—l
11— Ln—ldn—l

=

(n=1)

(n=1),

e — = 2
_ 2d,
T 1+V1-2Lo(1 = LoAy)ta,
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20 F (x0) " F (x) |

L= LoAn + /(1 = LoAD? = 2Loll F' (v0) ™ F (5 |
L()dr%_1

IA

IA

1= LoAy + /(1 — LoA? = (Lods—1)?

|x* = x| = &, (n > 0) > &, (n > 0)

2d,
> (n>0)
1+vV1+2K(1—KAy ta,
2d,
> n>0)
1+vV1+2K (1 —Kty) ' d,
2d,
= n > O
1+ 1+ 2K B,d, (rz0)
B 2d, -
g 144 ey =0
(ro—ta)* "
2d, - 0)
= n
. thJrl -
L1 +4- s,
B 2d, =0
T rpr——
J1=2h+(Kn,1)?
_ 2d, > 0)
B
1-2h+(Kdy1)*
2d,
_ _ (a:«/1—2h/K,nz 1)
‘/a2+d371
2d,
g =0
dn+/ a2 +d?
_ 2d, > 0)
—_— n
T 14+ J/1+2h, B
2d,
= >
1+ 14+ 42 e
(1462")*
— 1,
||x* _xn+1|| S Kn+l < Kn — dy < VO—n-H ns
Vin+1
o — In+1

||)C* — Xn+1 “ S Ant1 S Ay —dy
Vin+l
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dn

IA

1 2
iKﬂdn—l
1 2
EL"dnfl
IK(a—-kayd2,
JK (1= KAy — Kdyo) M a2,
K-kt tal
1 2
1K B,d?_,
o — In+1 o
(”0 - tn)z ol
Vingl
(th)z -l
2
dn—l

2. Ja® +nl_,
2
dn—]
2./a? + dﬁ_l

1,
v n—Hdn_l
Vin
_ Nn dy
NMn—1
1

2cosh2n=1lg
%dn—l

INIANIAIA

IA

IA

n—1

IA

A

1 1
3Mn—1 = 73V,
and

dy < Mn
= Vin+1
=(ro—tys1) 0%

= (ro — tas1) > ¢
sinh @

Y on <1
smhang” =1
2"y Qh=1)
NS
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Applications of the Weaker Version of the NK
Theorem

There is a very extensive literature on popular results that have used the NK Theorem
2.2.4 on specific real-life problems. Here we provide an incomplete list of the most
popular of them and replace the NK Theorem by its weaker version introduced in
Section 2.2. The advantages of this approach have already been explained in detail
in Section 2.2.

3.1 Comparison of Kantorovich and Moore theorems

In this section, we are concerned with the problem of approximating a locally unique
solution x* of equation
F(x)=0 (3.1.1)

where F: D € R¥ — R¥ is continuously differentiable on an open convex set D,
and k is a positive integer.

Rall in [171] compared the theorems of Kantorovich and Moore. This compari-
son showed that the Kantorovich theorem has only a slight advantage over the Moore
theorem with regard to sensitivity and precision, whereas the latter requires less com-
putational cost. Later Neumaier and Shen [146] showed that when the derivative in
the Krawczyk operator is replaced with a suitable slope, then the corresponding ex-
istence theorem is at least as effective as the Kantorovich theorem with respect to
sensitivity and precision. At the same time, Zuhe and Wolfe [148] showed that the
hypotheses in the affine invariant form of the Moore theorem are always implied by
the Kantorovich theorem but not necessarily vice versa.

Here we show that this implication is not true in general for a weaker version of
the Kantorovich theorem shown in Section 2.2.

We will need the following semilocal convergence theorem for NK method due
to Deuflhard and Heindl [78]:

Theorem 3.1.1. Let F be a Fréchet-differentiable operator defined on an open con-
vex subset D of a Banach space X with values in a Banach space Y. Suppose that
xo € D is such that:

I.K. Argyros, Convergence and Applications of Newton-type Iterations,
DOI: 10.1007/978-0-387-72743-1_3, (© Springer Science+Business Media, LLC 2008
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F'(xo)~' € L(Y, X), (3.1.2)
I F' (x0) " F(xo)ll <, (3.1.3)
IF' (x0) ™' [F'(x) = FD)] Il < €lx =yl forall x,yeD, (3.14)
h=26n <1, (3.1.5)
and

U(xo,r1) € D (3.1.6)

where,
rl _1=vi-h Vgl_h (€ #0). (3.1.7)

Then sequence {x,} generated by Newton’s method
X1 =X — F'(x) 'F(xy) (x0 € D) (n>0) (3.1.8)

is well defined, remains in U (xq, r1) ]ior all n > 0, and converges to a solution x* of
equation F(x) = 0 that is unique in U (xo, r1) U (D N U(xop, r2)), where,

1+J1—h
VIR (3.1.9)
14
Moreover the following error bounds hold for all n > 0:
lxn+1 — Xull < Sut1 — su (3.1.10)
and
X0 — x™|| <71 — sn, (3.1.11)
where
Y _ 2
so=0, s1=1n, Sp42=Sp4+1+ M (n>0). (3.1.12)

21— € —sut1)

Remark 3.1.2. In the case of Moore’s theorem [143] suppose that hypotheses of The-
orem 3.1.1 are valid with X = ¥ = R¥, xg = z = mid()_cy), where x,, € I(D) is
given by

Y

x, =Uxlz.yl=lz—ye.z+vyel. e=(,....DT €R", y >0, (3.1.13)

and define the Krawczyk operator

Kx)=w—y{F(@"'F [z, gy] I} [=e, €], (3.1.14)
where
w=z—F(2)7'F(2), (3.1.15)
and 1
Flax,]|= / Flz+1(x, - 2)dt (3.1.16)
0

in which integration is defined as in [143].
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The following result relates a weaker version of Theorem 3.1.1 with Moore’s
theorem.

Theorem 3.1.3. Assume for xo = z = mid()_cy): hypotheses (3.1.2) and (3.1.3) of
Theorem 3.1.1 hold;

IF'(xo) "' [F'(x) — F'(x0)] Il < Lollx — xoll  forall x € D; (3.1.17)
h=20on < 1; (3.1.18)
and )
U(xp,r3) € D, (3.1.19)
where,
1—V1—h
r3 = T (o # 0). (3.1.20)
Then
K(x,)cx, (3.1.21)

where x,, K are given by (3.1.13) and (3.1.14)—(3.1.16), respectively.

Proof. Ifu € K(x,,),thenu = w +v

v=y {[F’(z)‘lz[z,gy] - 1} [—e, ] (3.1.22)

(by (3.1.15) and (3.1.16)).
We have in turn

lz —ullo < llz — Wlloo + Voo
<0+ VIF@QME [z x, | - F@ll
<0+ ey (3.1.23)
Hence (3.1.21) holds if
n+toy? <y, (3.1.24)

which is true by (3.1.18)—(3.1.20).
That completes the proof of the Theorem.

Remark 3.1.4. (a) Note that Moore’s theorem [143] guarantees the existence of a
solution x* of equation (3.1.1) if (3.1.21) holds.
(b) Theorem 3.1.3 reduces to Theorem 2 in [146] if £y = £. However in general

o <t (3.1.25)

holds. Note also that B
h<l=h<l1 (3.1.26)

but not vice versa unless if £ = £. Hence our Theorem 3.1.3 weakens Theorem 2 in
[146] and can be used in cases not covered by the latter.
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An example was given in [171] and [146] to show that the hypotheses of the affine
invariant form of the Moore theorem may be satisfied even when those of Theorem
3.1.1 are not.

Example 3.1.5. Letk = 1,a € [0, %) X €x, = [a,2 — a] and define function
F:x, — Rby
F(x)=x>—a. (3.1.27)

Choose z = mid(gy) then (3.1.5) becomes

4 1
h = 3(1 —a)2—a)>1 foralla e |:O, 5) (3.1.28)

That is, there is no guarantee that NK method generated by (3.1.8) converges to a
solution of F(x) = 0, as the Newton-Kantorovich hypothesis (3.1.5) is violated.
However using (3.1.13)—(3.1.16) and (3.1.27) we get

1
K@) =3 [a3 — 64+ 10a + 2, —a® + 3a® — 8a + 6] (3.1.29)

and if

2

then (3.1.21) holds. That is Moore’s theorem guarantees convergence of NK method
(3.1.8) to a solution x* of equation F(x) = 0 provided that (3.1.30) holds.

ac [.44, 1) (3.1.30)

However we can do better. Indeed, because o =3 —a

h= %(1—(1)(3—61) <1 (3.1.31)
if
4—J10 1
ae [T 5), (3.1.32)

which improves (3.1.30).

Remark 3.1.6. If (3.1.5) holds as a strict inequality NK method (3.1.8) converges
quadratically to x*. However (3.1.18) guarantees only the linear convergence to x*
of the modified MNK method.

Va1 = yn = F'00) "F() (3o =x0), (7 >0). (3.1.33)

In practice, the quadratic convergence of NK method is desirable. So we wonder
if it is possible to find a condition weaker than (3.1.5) (but probably stronger than
(3.1.18)) so that the quadratic convergence of Newton’s method is guaranteed.
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3.2 Comparison of Kantorovich and Miranda theorems

In this section, we are concerned with the problem of approximating a locally unique
solution x* of an equation
F(x) =0, 3.2.1)

where F is defined on an open convex subset S of R” (n a positive integer) with
values in R".
NK method

X1 =Xm — F'(en) " Fxm)  (x0 € S) (m > 0) (3.2.2)

has been used to generate a sequence approximating x*.

Here we first weaken the generalization of Miranda’s theorem (Theorem 4.3 in
[136]). Then we show that operators satisfying the weakened Newton-Kantorovich
conditions satisfy those of the weakened Miranda’s theorem.

In order for us to compare our results with earlier ones, we need to list the fol-
lowing theorems guaranteeing the existence of solution x™ of equation (3.2.1) (see
Chapter 2).

Theorem 3.2.1. Let F: S — R" be a Fréchet-differentiable operator. Assume:
there exists xo € S such that F'(xg)~! € L(Y, X), and set

G(x) = F (x0) 'F(x) (x€S); (3.2.3)

there exists an n > 0 such that

Gl < n; (3.2.4)
there exists an £ > 0 such that
IG"(x) =G’ W < Lllx —yll forallx,y € S; (3.2.5)
h=2n<l, (3.2.6)
and )
U(xo, ") C S, (3.2.7)
where,
1-JV1—-nh
rt = — (3.2.8)

Then there exists a unique solution x* € U (xo, r*) of equation F(x) = 0.

Remark 3.2.2. Theorem 3.2.1 is the portion of the famous Newton-Kantorovich the-
orem (see Chapter 2). The following theorem is due to Miranda [142], which is a
generalization of the intermediate value theorem:
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Theorem 3.2.3. Let b > 0, xo € R", and define

0 ={xeR"||lx —xollc < b}, (3.2.9)
Qf =1{x € Q:xx =xox + b}, (3.2.10)

and
Oy ={x€e Qxx =x0x—d} fork=1,...,n. (3.2.11)

Let F = (Fy) (1 < k < n): Q — R" be a continuous operator satisfying for all
k=1,2,...,n,

Fr(x)Fi(y) <0 forallx € Q) andy € Q5. (3.2.12)

Then there exists x* € Q such that F(x*) = 0.
The following result connected Theorems 3.2.1 and 3.2.3.

Theorem 3.2.4. Suppose F: S — R" satisfies all hypotheses of Theorem 3.2.1 in the
maximum norm, then G satisfies the conditions of Theorem 3.2.4 on U (xq, r™).

In the elegant study [136], a generalization of Theorem 3.2.4 was given (Theorem
4.3). We first weaken this generalization.

Let R” be equipped with a norm denoted by || - || and R"*” with a norm || - ||
such that |M - x| < ||M] - |lx|| for all M € R**" and x € R". Choose constants
cp, ¢1 > 0 such that for all x € R”

collxlloo = llxll < c1llxlloos (3.2.13)

since all norms on finite-dimensional spaces are equivalent.

Set
(&)
c=—
C1l

<1. (3.2.14)

Definition 3.2.5. Let S C R” be an open convex set, and let G: S — R" be a differ-
entiable operator on S. Let xo € S, and assume:

G'(x0) =1 (the identity matrix) (3.2.15)
there exists n > 0 such that
1Gx)ll < n; (3.2.16)
there exists an £y > 0 such that
|G (x) — G’ (x0)|| < Lollx — xoll forall x €S. (3.2.17)
Define:
ho = 24on. (3.2.18)

We say that G satisfies the weak center-Kantorovich conditions in xq if

ho < 1. (3.2.19)
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We also say that G satisfies the strong center-Kantorovich conditions in xq if

[ ]

ho < % (3.2.20)

Moreover define

=" - 3.2.21
T 7 ( )
2_h
Lo
and
R =[r1,r2] for &y # 0. (3.2.23)
Furthermore if £y = 0, define
r=2 (3.2.24)
c
and
R =1[r;,0). (3.2.25)

Remark 3.2.6. The weak and strong center-Kantorovich conditions are equivalent
only for the maximum norm.

As in [136], we need to define certain concepts. Let r > 0, xo € R", and define

Ur)={zeR"||z] <r}, (3.2.26)
Uxo,r)={x=x0+z€R"|z€U@)}, (3.2.27)
Uf(n =1{z eR" | |zl = r.zx = lzlloo}: (3.2.28)

U () ={zeR"|lzll =r, z = —lzllc} (3.2.29)
Ul (xo.r) ={x=x0+zeR" |z € U ()}, (3.2.30)

U (xo,r)={x=x0+z€R"|zeU, (r)} forallk=1,2,...,n. (3.2.31)
We show the main result:

Theorem 3.2.7. Let G: S — R" be a differentiable operator defined on an open
convex subset of R". Assume G satisfies the strong center-Kantorovich conditions.
Then, for any r € R with U (xo, r) C S the following hold:

(a) U=U@w)=Uxg,r) isaMiranda domain, (3.2.32)
and
Up = Ui(r) = {U{ (x0. 7). U] (x0.7)..... U (x0.7), Uy (x0.r)}  (3.2.33)

is a Miranda partition [136] of the boundary dU. It is a canonical Miranda partition
[136] for r > 0 and a trivial Miranda domain and partition for r = 0;
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(b) Gi(x) >0 forall x € U,:'(xo, r), k=1,...,n (3.2.34)

and
Gi(x) <0 forall x € U, (xo0,7), k=1,...,m; (3.2.35)

(c) G satisfies the Miranda conditions on (U, Uy);
(d) if G(xo) = 0and £y > O, then G satisfies the Miranda conditions on (U, Uy)

foranyr € [0, %—g] such that U (xg, r) C S.

Proof. The first point of the theorem follows exactly as in Theorem 4.3 in [136].
For the rest, we follow the proof of Theorem 4.3 in [136] (which is essentially the
reasoning of Theorem 3.2.4) but with some differences stretching the use of center-
Lipschitz condition (3.2.17) instead of the stronger Lipschitz condition (3.2.5), which
is not really needed in the proof. However, it was used in both proofs mentioned

above.
Using the intermediate value theorem for integration we first obtain the identity

G(xp +rz) — G(xp)
1
= / G'(xo +rtz)rzdt
0
1 1
= / [G'(x0 + rtz) — G'(x0) | rzdt +/ G (xp)rzdt
0 0
1 1
= / [G'(x0 + rtz) — G'(xo)] rzdt + rz/ dt (G'(xo) =1). (3.2.36)
0 0
Let e denote the kth unit vector. Then we can have:
1
Gr(xo + rz) = Gr(xo) + / ei [G'(xo +rtz) — G'(x0) | rzdt +rzi, (3.2.37)
0

and by (3.2.17)

1 1
/ el [G'(xo + rtz) — G'(x0)] rzdt f ef [/ (o + rt2) — G o) rz |
0 0

IA

1
1
< / C—II(G/(xo+VtZ)—G/(xo))VZII dt
0 €1

1
1

/ C—IIG’(XO +rtz) — G'(xo)|| Izl dt
0 C1

<
1 1

<1 / tolirezl Izl dr
c1 Jo
Y] 2 1 ¢ 2

— / rdr = 2 (3.2.38)
c1 Jo 2¢y

Let z € U;" (1). Using (3.2.38), and
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1 U
|Gk(xo)| = =G0l = —, (3.2.39)
Cl Cl
1
7> — forueUt(), (3.2.40)
2
1
7% < —— foru e U (1), (3.2.41)
1)
we get from (3.2.37)
Lor? n Lor? r
Grxo+rz) > —-1Gx))| — —+rzp>———-——+—>0 (3.2.42)
2cy Ccl 2c ()

for r € R (by (3.2.20) and (3.2.23)). Similarly,

2

Lor n Eor2 r
Gr(xo +rz) < |G(x0)| + 2er +rzg < — +

—— <0 (3.2.43)
2cy (o)

forr € R. If G(xo) = 0, let n = 0, which implies 4y = 0.

Remark 3.2.8. If £ = £y, then our Theorem 3.2.7 becomes Theorem 4.3 in [136].
Moreover if || - || is the maximum norm, then Theorem 3.2.7 becomes Theorem 3.2.4.
However in general

Lo < L. (3.2.44)

Hence the strong Kantorovich condition is such that

o2
hy =2y < = (3.2.45)
hy = f = ho < ; (3.2.46)
Similarly, the Kantorovich condition (3.2.6) is such that
h<1= hy=20n<1, (3.2.47)

but not vice versa unless if £y = £. If strict inequality holds in (3.2.44) and conditions
(3.2.45) or (3.2.6) are not satisfied, then the conclusions of Theorem 4.3 in [136]
respectively do not necessarily hold. However if (3.2.9) holds, the conclusions of our
Theorem 3.2.7 hold.

Remark 3.2.9. Condition (3.2.6) guarantees the quadratic convergence of NK method
to x*. However this is not the case for condition (3.2.19). To rectify this and still use
a condition weaker than (3.2.6) (or (3.2.45)), define

p(8) = ps = (L +8to)n, 8€l0,2). (3.2.48)

‘We showed in Section 2.2 that if
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ps <8, (3.2.49)
28om
<1, 3.2.50
25— ( )
and 5
o8
0% <y (3.2.51)
2-5

replace (3.2.6) then NK method converges to x* € U (xo, r3) with r3 < r*. Moreover
finer error bounds on the distances between iterates or between iterates and x* are
obtained. If we restrict § € [0, 1], then (3.2.50) and (3.2.51) hold if only (3.2.49) is
satisfied. Choose § = 1 for simplicity in (3.2.49). Then again

h<l=p <], (3.2.52)
h<S o <C (3.2.53)
1 = ) P1 = ) 2.

but not vice versa unless if £ = £o. Hence if (3.2.19) is replaced by

[38)

c

ns= (3.2.54)

then all conclusions of Theorem 3.2.7 hold.

3.3 The secant method and nonsmooth equations

In this section, we are concerned with the problem of approximating a locally unique
solution x* of equation (2.1.1). Here we take D to be a closed convex subset of X.

The most popular iterative procedures for approximations x* are the so-called
Newton-like methods. The essence of these methods is to replace F' by an approxi-
mate operator (linearization) that can be solved more easily.

When operator F is nonsmooth, the linearization is no longer available. In [180],
a replacement was introduced through the notion of a point-based approximation
(to be precised later). The properties of this approximation are similar to those of
linearization and were successfully used for the NK method. However, we noticed
(see the numerical example at the end of the section) that such an approximation may
not exist. Therefore in order to solve a wider range of problems, we introduce a more
flexible and precise point-based approximation that is more suitable for Newton-like
methods and in particular for secant-type iterative procedures.

A local as well as a semilocal convergence analysis for the secant method is
provided, and our approach is justified through numerical examples.

We need a definition of a point-based approximation (PBA) for operator F that
is suitable for the secant method.

Definition 3.3.1. Let F be an operator from a closed subset D of a metric space
(X, d) into a normed linear space Y. Operator F has a (PBA) on D at the point
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xo0 € D if there exists an operator A: D x D x D — Y and scalars £y, £ such that
u, v, w, x, yand z in D,

|F(w) — A, v, w)|| <Ldu, w)dw, w), (3.3.1)

I [A(x, y,2) — A(xo, X0, 2)] — [A(x, y, w) — A(x0, x0, w)] || (3.3.2)
< Lo ld(x, x0) +d(y, x0)]1d(z, w),

and

” [A(X, Y, Z) - A(M7 v, Z)] - [A(.X, Y, w) - A(uv v, 'LU)] ”
< Lld(x,u) +du,v)]d(z, w), (3.3.3)

where xq is a given point in D.
We then say A is a (PBA) for F.

This definition is suitable for the application of the secant method. Indeed let X
be also a normed linear space, D a convex set and F having a divided difference of
order one on D x D denoted by [x, y; F] and satisfying the standard condition (see
Section 1.2):

I, v; F1 = [w, x; F1|| < £(llu — wll + [lv — x[D (3.34)
for all u, v, w and x in D. If we set
A(u,v,w) = F(v) 4+ [u,v; F]1(w — v) (3.3.5)
then (3.3.1) becomes
IF(w) = F) = [u, v; F](w = v)[| < £]lu —wl[lv—wl, (3.3.6)

whereas (3.3.2) and (3.3.3) are equivalent to property (3.3.4) of linear operator
[, -; F]. Note that a (PBA) does not imply differentiability.
It follows by (3.3.1) that one way of finding a solution x* of equation (2.1.1) is
to solve for w the equation
Ax,y,w)=0 3.3.7)

provided that x and y are given.
We now need a definition also used in [179], [180], which amounts to the recip-
rocal of a Lipschitz constant for the inverse operator.

Definition 3.3.2. Let X, D, Y and F be as in Definition 3.3.1, and let F: D — Y.
Then

F - F
8(F,D)=inf{M, u#v, u,veD}. (3.3.8)
d(u,v)
Clearly, if 5(F, D) # 0, then F is 1 — 1 on D. We also define
F(u)—F
so(F. Dy = inf | LW = FOl = e bl
d(u, xo)

Setd = §(F, D) and d| = 8o(F, D).
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We state and prove the following generalization of the classic Banach Lemma on
invertible operators:

Lemma 3.3.3. Let X, D and Y be as in Definition 3.3.1. Assume further X is a
Banach space. Let F and G be operators from D into Y with G being Lipschitzian
with modulus £ and center-Lipschitzian with modulus £¢. Let xo € D with F(xg) =
yo. Assume that:

U(yo, @) € F(D); (3.3.9)
0<t<d; (3.3.10)
U (xo, dy ') C D, (3.3.11)

and
bo = (1 — Lod; e — |G (xo) |l = 0. (3.3.12)

Then the following hold:

U(y0.60) S (F + G)(U(xo. dy 'a)) (3.3.13)

and
8(F+G,D)>d—1t>0. (3.3.14)

Proof. Define operator T'y(x) = F~'(y — G(x)), for each fixed y € U(yo, 6p), and
x € Ul(xop, dfla). We can get:
[y = G@x) = yoll = lly = yoll + 1G(x) = G(xo) || + [1G (x0) |
<00+ Lod; ' + |G (x0) || = e

Therefore Ty(x) is a singleton set as di > d > 0. That is, Ty is an opera-
tor on U (xo, d; a) This operator maps U (xo, d; oc) into itself. Indeed for x €

U(xo,d1 a).
d(Ty(x), x0) = d(F~'(y = G(x)), F~' (yo)) < d; '
Moreover let u, v be in U (x0, dl_ loz), then

d(Ty), Ty()) < d(F~'(y = Gw)), F'(y — G(v)))
<d;'edu, v). (3.3.15)

It follows by the contraction mapping principle (see Section 1.3) and (3.3.11) that op-
erator T'y is a strong contraction, and as such it has a fixed point x(y) in U (xo, d| To)
with (F + G)(x(y)) = y. Such a point x(y) in D is unique in D because

nf{ | [Fu) — F)]+[Gu) — G]|
d(u, v)
1Gw) — G
d(u, v)

S(F+G,D) = ,u;év,u,veD}

28(F,D)—sup{ ,u;év,u,veD}zd—£>0.

That is F + G is one-to-one on D.
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Remark 3.3.4. In general
Lo <¥, and d <d, (3.3.16)

hold and ZL, 031_1 can be arbitrarily large (see Section 2.2). If equality holds in both
inequalities in (3.3.16) then our Lemma 3.3.3 reduces to the corresponding Lemma
3.1in [179, p. 298]. Otherwise our Lemma 3.3.3 improves (enlarges) the range for
0 given in [179, p. 298], and under the same computational cost because in practice
the computation of £ (or d) requires that of £ (or d1). This observation is important
in computational mathematics.

The following lemma is used to show uniqueness of the solution in the semilocal
case and convergence of secant method in the local case.

Lemma 3.3.5. Let X and Y be normed linear spaces, and let D be a closed subset
of X. Let F: D — Y, and let A be a (PBA) for operator F on D at the point xo € D.
Denote by d the quantity §(A(xo, xo, ), D). If U (xg, p) € D, then

S(F,U(xp, p)) >d— 20+ 0)p. 3.3.17)
In particular, if d — 2Ly + £)p > O, then F is one-to-one on U (xq, p).
Proof. Let w, z be points in U (xq, p). We can write

F(w) - F(Z) = [F(w) - A(.X, Y, w)] + [A(x’ Y, w) - A(X, Y, Z)]
By (3.3.1) we can have
[F(w) —ACx, y, w)|| < £llx —wl |y — wl

and
1F(z) — Alx, y, Dl < Lllx =zl lly — zll.

Moreover we can find
”A('x’ y7 M) - A(-x7 ya v)” Z ”A(.X(), X0, M) - A(-an X0, U)”
— II[AGx, y, u) — A(xo, x0, w)] — [A(x, y, v) — A(xo, X0, V)] ||
and therefore
8(A(-x7 Yy, ')7 D)
Z S(A(an X0, ')a D)

_ Sup{ ” [A(-x9 Y, l/t) - A(.X(), X0, l/t)] - [A(-xv Y, U) - A(.X(), X0, U)] ”
llu — vl ’

u# v, u,veD}

>d —Lo(llx —xoll + lly — xoll) = d —2¢op.
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Furthermore, we can now have
[F(w) = F@)| = (d —2bp)|lw—zll = €lllx —wl [y —wl + lx =zl Iy — zll]

l
> (d = 2top)|w = 2ll = 7 llw —z|

and for w # z,
F - F
[F(w) = FQ@)| > d— Qo+ 0)p.
lw —z]
That completes the proof of our Lemma.

Remark 3.3.6. In order for us to compare our result with the corresponding Lemma
2.41n [180, p. 294], first note that if:

(a) equality holds in both inequalities in (3.3.16), u = v and x = y in (3.3.1)—
(3.3.3), then our result reduces to Lemma 2.4 by setting % =l ={.

(b) Strict inequality holds in any of the inequalities in (3.3.16), » = v and x =
y then our Lemma 3.3.5 improves (enlarges) the range for p, and under the same
computational cost. The implications of that are twofold (see Theorems 3.3.8 and
3.3.10 that follow): in the semilocal case the uniqueness ball is more precise, and in
the local case the radius of convergence is enlarged.

We will need our result on majorizing sequences for the secant method. The proof
using conditions (C1)—(C3) can be found in Section 2.3, whereas for well-known
condition (Cy) see, e.g., [162]. Detailed comparisons between conditions (C1)—(Cy)
were given in Section 2.3. In particular if strict inequality holds in (3.3.16) (first
inequality) the error bounds under (C;)—(C3) are more precise and the limit of ma-
jorizing sequence more accurate than under condition (Cy).

Lemma 3.3.7. Assume forn > 0, ¢ > 0, dy > 0:
(Cy) for all n > 0 there exists 6 € [0, 1) such that:

8o

. #2—WH—$HUU+MW§8%,

8" (1 +8)n +

and
A

1-4§

(2 =8" — "y 4+ 8eoc < dy,

or
(C2) there exists § € [0, 1) such that:

28€0n
L1 +8)n+ T—s + 8loc < édy,
and 050
1}g+5mc<m%
or

(C3) there exists a € [0, 1] and
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-1+ V144
0. + + 4a 440
S e 2a

[0, 1), a=20

such that
(L +800)(c+n) <dys, n <6c and £y < al,

;
(Cy) dy 'le +2\/dy en < 1 for by = ¢.
Then,

(a) iteration {t,} (n > —1) given by

o

t1=0, to=c, t=c+n,
dy  e(tas1 — ta—1)
1—dy " o [tas1 — 10+ ta]

42 =ty41 + (tn+1 — tn), (3.3.19)

is nondecreasing, bounded above by r

and converges to some t* such that
0<t*<r
Moreover, the following estimates hold for all n > 0:
0 < ty42 — tag1 < 8(tu1 — 1) < 8"y
(b) Iteration {s,} (n > —1) given by

S_1—8 =¢, So—S51 =1,
dy ' (sn—1 — sn41)
1 —dy "o [(s0 +5-1) = (50 + 5051)]

Sp+1 = Sp+2 + (Sn — Sn+1), (3.3.20)

provided that s_1 > 0, so > 0, s1 > 0 is nonincreasing, bounded below by s given
by

1-68"
and converges to some s* such that
0<s*<s.

Moreover, the following estimates hold for all n > 0:

1
0 < Spg1 —Sn < 8(sp — Sug1) < 8"y,
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We denote by (C), Conditions (Cy) or (C2) or (C3) or (Cy).
We can state and prove the main semilocal convergence result for the secant
method involving a (PBA).

Theorem 3.3.8. Let X and Y be Banach spaces, D a closed convex subset of X,
x_1, and xo € D with || x_1 — xo|| < ¢, and F a continuous operator from D into Y.
Suppose operator F has a (PBA) on D at the point xo. Moreover assume:

S(A(xfl’ X0, ')’ D) = dO > Oa

Condition (C) holds;
foreach y € U(xg, do(t* — t1) the equation A(x_1, xo, x) = y has a solution x;
the solution S(x_1, x9) of A(x_1, x0, S(x_1, x0)) = 0 satisfies

1S(x—1,x0) — xoll <m;

and
U(xo,t*) € D.

Then the secant iteration defining x,+1 by
A(Xp—1, Xn, Xpt1) =0 (3.3.21)

remains in U (xg, t*), and converges to a solution x* € U (xg, t*) of equation F (x) =
0.
Moreover the following estimates hold for all n > 0:

lxn+1 = Xnll < thg1 — 1y (3.3.22)

and
Xy —x*|| <t — tn, (3.3.23)
where sequence {t,} is defined by (3.3.19) and t* = lim t,.
n—0o0
Proof. We use Lemma 3.3.3 with quantities F, G, xo and yo replaced by A(w, x, -),
A(xg, x1,) — A(v, x, ), x1 = S(x_1, x0), and 0 respectively. Hypothesis (3.3.9) of
the Lemma follows from the fact that A(x_1, xo, x) = y has a unique solution x;.
For hypothesis (3.3.10) we have using (3.3.2)
S(A(.X(), X1, ')7 D) 2 8(A(-x—17 X0, ')» D) - e()(”xo — X1 ” + ”.X] - .X()”)
>dy — Lot; >0 by (C)). (3.3.24)

To show (3.3.11), we must have U(xy,t* — t;) C D. Instead by hypothesis
U (xg, t*) C D, it suffices to show:

U(xi,t* —11) C Ulxo, t¥)

which is true because
lxi —xoll + 1% —1; <™.
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We also have by (3.3.1)
IACe—1, x0, x1) — A(x1, x1, x| < €@t — 1-1) (11 — 19). (3.3.25)

It follows by (3.3.12) and (3.3.25) that 8y > 0 if
60 = [1 = tody " (e + )| don = £t = 1)1 = 10) 2 0, (33.26)

which is true by (3.3.19) and because dy < d; = 9(A(x_1, X0, ), D).
It follows from Lemma 3.3.3 that for each y € U (0, r — ||x; — x¢l|), the equation
A(xo, x1, z) = y has a unique solution because 6 (A (xg, x1, -), D) > 0. We also have

A(xo, x1, x2) = A(x_1, x0, x1) = 0.
By Definition 3.3.2, the induction hypothesis, (3.3.1) and (3.3.19) we get in turn:

lxz — x11l < 8(A(xo, x1, ), D) A(x_1, x0, x1) — F(x1)]|
Llx—1 — xoll lxo — x1|
~ do — Lo(llxo — x—1ll + llx1 — xolD)
- dg‘z(n — 1)t — o)

=1t —1. (3.3.27)
11— d(;le()tl
Hence we showed:
Xn+1 = xnll < tug1 — ta, (3.3.28)
and
U(xn-i-l,t* —Ityy1) C U()Cn»t>k —Iy) (3.3.29)

hold for n = 0, 1. Moreover for every v € U (x, t* — t1)
lv—xoll < lv—xi + [lx1 = xoll <% — 11 +11 — 10,
implies v € U(xg, t* — ty). Given they hold forn =0, 1, ..., j, then

j+1 J+1
brjen = xoll < Dl —xicall <Y (6 — tis1) =111 — to.

i=1 i=1

The induction for (3.3.28) and (3.3.29) can easily be completed by simply replacing
X_1, X0, X1, BY Xp—1, Xn, Xp+1, respectively. Indeed, corresponding with (3.3.26), we
have:

00 = [1 = todi” = 10+ 1) | doCta2 = 1) = Lltwss = b)) (trss = 1) =0,
(3.3.30)
which is true by (3.3.19).
Scalar sequence {#,} is Cauchy. From (3.3.28) and (3.3.29) it follows {x,} is
Cauchy, too, in a Banach space X, and as such it converges to some x™ € U (xo, t*).
Moreover we have by (3.3.1) and (3.3.28)
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| F DI = 1 F (1) — A1, X, Xpp )|l
< Llxn — xp—1ll lIxn — xn41ll

<Lty —th—1)(th+1 — ;) — 0 asn — oo.

By the continuity of F we deduce F (x*) = 0. Finally estimate (3.3.23) follows from
(3.3.22) by using standard majorization techniques.
That completes the proof of the Theorem.

Remark 3.3.9. The uniqueness of the solution x* was not considered in Theorem
3.3.8. Indeed, we do not know if under the conditions stated above the solution x* is
unique, say in U (xg, t*). However using Lemma 3.3.5 we can obtain a uniqueness
result, so that if p satisfies
do
< =, . 9
200+ ¢

then operator F is one-to-one in a neighborhood of x*, as x* € U (xg, t*). That is,
x* is an isolated zero of F in this case.

*

*<p (3.3.31)

The corresponding local convergence result for the secant method is given by:

Theorem 3.3.10. Assume:
x* € D is an isolated zero if F on D;
operator F has a (PBA) on D at the point x* of modulus (L, Lg).
Moreover assume that the following hold:

S(A('x*ﬂ'X*a ')a D) Z d* > 0;
d*
0<r*< —m
2Lo + 3L
foreach 'y € U(0, d*r*) the equation A(x_1, xo, x) = y has a solution x satisfying

lx —x*|| < r*;

and
U™, r*) C D.

Then secant method {x,} generated by (3.3.21) is well defined, remains in U (x*, r*)
for all n > 0, and converges to x* provided x_1, xo € Uo(x*, ).
Moreover the following estimates hold for all n > 0:

@) L(lxn—1 = xall + llx0 — x*])
— (@) Lo(llxn—1 — x*|| + [lxn — x*))

41 — ) < 1 20 — x*|I.

Proof. The proof is omitted as it is similar to Theorem 3.3.8. Note that local results
were not given in [180].

We now show how to choose operator A in cases not covered in [180].
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Example 3.3.11. Let X =Y = (R?, || - ||oo). Consider the system

3x2y+y2—1+|x—1/=0

x*+xyd 14|y =0. (3.3.32)

Set for v = (v1, v2), |[Vlleo = l[(V1, V2) oo = max{|vi], [v2]}, F(v) = P(v) + Q(v),
P = (P, P»), O = (Q1, 02). Define
Pi(v) = 3v%v2 + v% -1, Py(v) = v? + vlvg -1,

Q1(v) = v = 1], Q2(v) = |v2|.

We shall take divided differences of order one [x, y; P], [x, y; O] € M2x2(R) to be
for w = (wq, wy):

Pi(wy, wa) — Pi(vy, wa)

[vawap]i,] = 5
w) — V]
P; (v, wp) — P;(vy, v
v, w, Plis = i (v1, wa) — P (v, v2)
w2 — V2

provided that wy # vy and wy # vy. If w; = vy or wy = vy replace [x, y; P] by P’.
Similarly we define

_ Qi(wi, wp) — Qi(v, wy)

[v,w; Qi1 =
w1 — V]

[0, w: Qi = Qi(vi, w2) — Q;(v1, v2)
wy — V)

for wy # vy and wy # vy. If wy; = vy or wy = vy replace [x, y; Q] by the zero 2 x 2
matrix in M, (R).
We consider three interesting choices for operator A:

A, v,w)=Pw)+ QW) + P (v)(w — v), (3.3.33)
A(u,v,w) = PWw) + QW) + ([u, v; P] + [u, v; Q) (w — v) (3.3.34)

and
A, v,w) = P(v) + Q) + (P’ (v) + [u, v; O (w — v). (3.3.35)

Using method (3.3.33) for xo = (1, 0), and both methods (3.3.34) and (3.3.35)
for x_1 = (5,5), xo = (1, 0) we obtain the following three tables respectively.

We did not verify the hypotheses of Theorem 3.3.8 for the above starting points.
However, it is clear that the hypotheses of Theorem 3.3.8 are satisfied for all three
methods for starting points closer to the solution

x* = (.894655373334687, .327826521746293),

chosen from the lists of the tables displayed in Tables 3.3.1-3.3.3.
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Table 3.3.1. Newton’s method (3.3.33)

1 2
D 2 bty =% 1

1 0

1 0.333333333333333 3.333E-1
0.906550218340611 0.354002911208151 9.344E-2
0.885328400663412 0.338027276361322 2.122E-2
0.891329556832800 0.326613976593566 1.141E-2
0.895238815463844 0.326406852843625 3.909E-3
0.895154671372635 0.327730334045043 1.323E-3
0.894673743471137 0.327979154372032 4.809E—4
0.894598908977448 0.327865059348755 1.140E—4
0.894643228355865 0.327815039208286 5.002E-5
0.894659993615645 0.327819889264891 1.676E-5
0.894657640195329 0.327826728208560 6.838E-6
0.894655219565091 0.327827351826856 2.420E-6
0.894655074977661 0.327826643198819 7.086E—7

0NN R WD = OS

—_ = \O
W N = O

m-
o

0.894655373334687 0.327826521746298 5.149E-19

Table 3.3.2. Secant method (3.3.34)

T 2
n xr(l ) xr(z ) X —xp—1l

-15 5
01 0 5.000E+00
1 0.989800874210782 0.012627489072365 1.262E-02
2 0.921814765493287 0.307939916152262 2.953E-01
3 0.900073765669214 0.325927010697792 2.174E-02
4 0.894939851625105 0.327725437396226 5.133E-03
5 0.894658420586013 0.327825363500783 2.814E-04
6 0.894655375077418 0.327826521051833 3.045E-04
7 0.894655373334698 0.327826521746293 1.742E-09
8 0.894655373334687 0.327826521746298 1.076E-14
9 0.894655373334687 0.327826521746298 5.421E-20

Table 3.3.3. Newton’s method (3.3.35)

1 2
nxy” o ey =% 1
—15 5
01 0 5

1 0.909090909090909 0.363636363636364 3.636E-01
2 0.894886945874111 0.329098638203090 3.453E-02
3 0.894655531991499 0.327827544745569 1.271E-03
4 0.894655373334793 0.327826521746906 1.022E-06
5 0.894655373334687 0.327826521746298 6.089E—-13
6 0.894655373334687 0.327826521746298 2.710E-20
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Note that the results in [18] cannot apply here because operator A no matter how
it is chosen cannot satisfy the Lipschitz conditions (a) or (b) in Definition 2.1 in [180,
p- 293] needed for the application of Theorem 3.2 in the same paper.

Other possible applications of operators equations with a (PBA) are already noted
in [43], [180, p. 293] and the references there.

Hence method (3.3.1) (i.e., method (3.3.35) in this case) converges faster than
(3.3.33) suggested in Chen and Yamamoto [58], Zabrejko and Nguen [146] in this
case, and the method of chord (3.3.34) (see also Section 5.3).

Application 3.3.12. In the case of the NK method, the proof of Robinson’s theorem
32 in [180] was based on the crucial Newton-Kantorovich-type hypothesis

1
hg =dy'Lrg < 5 (3.3.36)

which is the sufficient condition for the monotone convergence of majorizing se-
quence {v,} (n > 0) given by

dy 'L (g1 — vp)?
2(1—dy ' Loas )

where L is the Lipschitzian constant appearing in the definition of a (PBA) approxi-
mation for F on D, i.e.,

, v0=0, vi =rp,

Up42 = Up41 +

IF @) — A, o) < %Ld (. v)%.

Moreover, by assuming operator A (u, -) — A (xo, ) is Lipschitzian on D with modu-
lus Lod (u, x0), we can show by simply repeating the proof of Theorem 3.2 in [180]
or our Theorem 4.3.1 (or Theorem 2.2.11) that hypothesis (3.3.36) can be replaced
by

ha=dy'Lry < % p-L J;LO,
and {v,} by the finer majorizing sequence {w,} given by

dy 'L (wyg1 — wy)?

. » wo =0, wy =ro.
2(1—d5 " Lowns)

Wp42 = Wyl +

Note that if Lo = L, our hypotheses reduce to the ones in Robinson’s Theorem
3.2 [180]. Otherwise, i.e., if Lo < L, then our results are weaker. The rest of the
advantages of our approach have already been explained in Section 2.2.

3.4 Improvements on curve tracing of the homotopy method

The local convergence of the NK method for the tracing of an implicitly defined
smooth curve is analyzed. The domain of attraction is shown to be larger than be-
fore [62]. Moreover, finer error bounds on the distances involved are obtained and
quadratic instead of geometrical order is established.
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Finally, a numerical example is provided to justify our theoretical results.
Local convergence for the curve tracing of the homotopy method
We are concerned with the following problem: Suppose that a smooth curve I' C
R+ is implicitly defined by
F(x,t)=0 (3.4.1)

where F:R" x R — R" is a C? function. We intend to numerically trace curve I’
from the point (xg, fp) to the point (x*, t*). We assume the n x (n + 1) Jacobian
matrix D F (x, t) has full rank at every point in I.

A survey of such tehniques can be found in [2], [176] and the references there.

We will use the following algorithmic form:

(a) Let y; = (x;, ;) € R™*! be an approximation for I". Use the predictor

z20=yi +hiti (3.4.2)

for the next approximating point, where h; is an appropriate step length and t; is the
tangent vector of I at y;;

(b) Starting from z, take a sequence of Newton iterations by requiring zx to lie
on the hyperplane normal to a certain vector (usually the tangent vector t;).

(c) Set y;+1 = z where z is the point of convergence for the sequence {zj}.

We need some preliminaries:

A point (x, f) in R**! will be denoted by y. Let o be the arc length, along the
curve I', then an initial value problem is implicitly defined by

DF (y)-y=0; y(0) = yo, (3.4.3)

where - = %. It is known that vector field y is locally Lipschitzian [176].
We assume DF (y) is full rank along the solution curve, then equation

DF (y)y' = —F (y) (3.4.4)

can be reduced to
y'==DF*(y)F(y) (3.4.5)

where DF* (y) = DFT (y)[DF (y) DFT (y)]_1 is the Moore-Penrose general-
ized inverse of DF (y) . By the result

Rang (DF+) = Rang <DFT) = Kernel (DF)* (3.4.6)

and equation
F(y(m)=e "F(y(0) (3.4.7)
we conclude a solution y (7) of (3.4.5) is such that the magnitude of F (y) is reduced
and also remains perpendicular to the 1-dimensional kernel space of F (y).
Consider the Euler step of (3.4.5). This corresponds with the Newton method in
the form
Vit =Yk — DFY () F (i) - (3.4.8)

In the next section, we analyze the local convergence of method (3.4.8).
We state a result whose proof can be found in [62, p. 327]:
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Theorem 3.4.1. Let F: D € R"*! — R” be a C? function such that

IDF (x) = DF (y)Il < €llx —yll, forallx,y € D. (3.4.9)
Suppose that F (x*) and DF (x*) is full rank. Let § € (0, 3%5) and define

2
M=min{ ———, di *0D)y . 4.1
min 3 HDF* (x*)|| 7 ist(x™, )} (3.4.10)

Ifr € (0, M = rg) is such that for every x € U(x*, r) we have

SeM?
IF )l < 5 (3.4.11)

then for any xo € U(x*,r) C D, method (3.4.8) is well defined and converges
geometrically to a pointin T N U (x*, M) .

Remark 3.4.2. Under the hypotheses of Theorem 3.4.1, method (3.4.8) converges
only geometrically and condition (3.4.1) should hold. To do so we first introduce the
center-Lipschitz condition

|DF (x) — DF (x*)| < o ||x — x*

, forallx € D. (3.4.12)

We note that in general
Lo <t (3.4.13)

holds and [L can be arbitrarily large. In practice the computation of ¢ requires that
0
of 30.
Then we can show the following improvement over Theorem 3.4.1.

Theorem 3.4.3. Suppose hypotheses of Theorem 3.4.1 and (3.4.12) hold but M is
defined as

2

My = min
Qe+ 0) [DFF (%)

, dist (x*, 9D) (3.4.14)

|

then the conclusions of Theorem 3.4.1 hold with M replacing M.
Proof. Foranyx € U (x*, Myp) , we get using Lemma 3.1 in [62, p. 326] and (3.4.12)
|DF @) = DF (") [ |PFT (x7) | < €0 |« =" | [ DFT (") |

2
<=-<1 (3.4.15)
3
The rest of the proof follows exactly as in Theorem 1 in [62, p. 326] (with M( re-
placing M).
That completes the proof of the theorem.
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Remark 3.4.4. If equality holds in (3.4.13), then Theorem 3.4.3 reduces to Theorem
3.4.1. Otherwise
M < My (3.4.16)

holds and the bounds on the distances || y,+1 — yull » [ya+1 — x*|| (n > 0) are finer
in Theorem 3.4.3. This improvement allows a wider choice of initial guesses xo. Such
an observation is important in computational mathematics. By comparing (3.4.10)
and (3.4.14), we see that M( can be (at most) three times larger than M (if £y = £).

In order to show that it is possible to achieve quadratic convergence and drop
strong condition (3.4.11) we use a modification of our Theorem 2 in [40] (where we
have replaced F’ (x)~! by DF (x)™) and use Lemma 3.1 in [62] instead of Banach
Lemma on invertible operators in the proof of Theorem 2 in [40] to obtain the proof
of Theorem 3.4.5 that follows:

Theorem 3.4.5. Assume conditions of Theorem 3.4.3 hold excluding (3.4.11). If

Uy (x*,r1) € D, (3.4.17)

where |
. — 3.4.18
" W [DF et (34.18)

then for all xo € Uy (x*, r2), where

24y —Vy2+2y

Y
ry = , fory =2.0= "=l (3.4.19)
Q2+ 7)o [DF ) fory 2
the following hold:
Newton-Kantorovich hypothesis
h=2|DF (xo)*| |DF o)t F (xo)| < 1 (3.4.20)

holds as strict inequality, and consequently the Newton-Kantorovich theorem guar-
antees method (3.4.8) is well-defined and converges quadratically to a point in
rnuvx*r).

Remark 3.4.6. Even if equality holds in (3.4.13) we can set y = 2 and r, can be
written as

2-42
r = __2-v2 _ (3.4.21)
2y | DF (x*)F |
which is larger than rq as
2-42
3 < 2f. (3.4.22)

If strict inequality holds in (3.4.13), then r; is enlarged even further (see also Exam-
ple 3.4.7 as follows).

Convergence radius r» can be extended even further by using Theorem 3 in [40]
based on an even weaker hypothesis than (3.4.20) found by us in Section 2.2:

ho = (£ + L) |[DF (x0)™ | |DF (xo)* F (x0)| < 1. (3.4.23)

However we do not pursue this here, leaving it for the motivated reader.
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Instead we provide an example where strict inequality holds in (3.4.13).
Example 3.4.7. Let D = U (0, 1) and define function F on the real line by
F(x)=¢" —1. (3.4.24)

For simplicity we take xo = x™*. We obtain

l=e,
lo=e—1,
jory] .

y = 3.163953415,
§ = .381966011,

M = 245252961,

My = .324947231,

ro =M = .093678295,
ro = My = .124118798,
r1 = .581976707,

ry = .126433594.

Therefore we conclude
M < My <n

and
ro <rog <rp,

which demonstrate the superiority of our results over the ones in [62].

3.5 Nonlinear finite element analysis

We provide a discretization result to find finite element solutions of elliptic bound-
ary value problems. Our analysis is based on the weaker version of the Newton-
Kantorovich theorem established in Section 2.2 (see Theorem 2.2.11). The advan-
tages of this approach over Newton-Kantorovich theorem 2.2.4 have already been
explained in Section 2.2.

Finally we provide examples of elliptic boundary value problems where our re-
sults apply.

We state the version of our main Theorem 2.2.11 needed in this study.

Theorem 3.5.1. Let F: D € A — B be a nonlinear Fréchet-differentiable operator.
Assume:

there exists a point xo € D such that the Fréchet derivative F' (xo) € L (A, B)
is an isomorphism and F (x¢) # 0;
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there exists positive constants £y and £ such that the following center-Lipschitz
and Lipschitz conditions are satisfied:

|F o [F' o0 = F o] | = ol = xol (35.1)
[F o™ [Fr oo = F' ]| = ele =y (3:52)

forall x,y € D,

Setting n = |F’ (x0) " F (x0) H and hy = (Lo + £) n, we further assume
hy < 1; (3.5.3)
U(x),t*—n) S D, (3.5.4)

where, x1 = xg — F’ ()co)_1 F (x0) , and t* a well defined point in [n, 2n].

Then equation F (x) = 0 has a solution x* € U (x1, t* — 1) and this solution is
unique in U (xo, t*) N D, if to = L and hy < 1, and U (xo, t*) N D, if Lo = £ and
hy = 1. If €y # £ the solution x™ is unique in U (xo, R) provided that % "+ R) Ly <
1and U (x9, R) € D.

Moreover, we have the estimate

[x* = xo| <t*. (3.5.5)

We will simply use ||-|| if the norm of the element involved is well understood.
Otherwise we will use ||| x for the norm on a particular set X.

We assume the following:

(A1) there exist Banach spaces Z € X and U C Y such that the inclusions
are continuous, and the restriction of F' to Z, denoted again by F, is a Fréchet-
differentiable operator from Z to U.

(A3) For any v € Z the derivative F’ (v) € L (Z.U) can be extended to F' (v) €
L (X,Y) and it is:

—Locally Lipschitz continuous on Z, i.e., for any bounded convex set T € Z
there exists a positive constant ¢; depending on 7' such that

|F'(v) = F ()| <ecillv—wl, forallv.weT. (3.5.6)

—center locally Lipschitz continuous at a given ug € Z, i.e., for any bounded
convex set T € Z with up € T there exists a positive constant ¢y depending on u
and T such that

|F' (v) = F' (uo)| < collv—uoll, forallveT. (3.5.7)

(A3) There are Banach spaces V € Z and W C U such that the inclusions are
continuous. We suppose that there exists a subset S € V for which the following
holds: “if F/ (u) € L (V, W) is an isomorphism between V and W at u € S, then
F’ (u) € L (X, Y) is an isomporhism between X and ¥ as well.”
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To define discretized solutions of F (1) = 0, we introduce the finite-dimensional
subspaces S; € Z and S; € U parameterized by d, 0 < d < 1 with the following
properties:

(A4) There exists » > 0 and a positive constant ¢, independent of d such that

2
IVallz < T [Vallx , forall vg € Sq. (3.5.8)

(As) There exists projection I[1y: X — Sy for each S; such that, if ug € Sis a
solution of F (u) = 0, then

L}irrbd_r luop — Mauollx =0 (3.5.9)

and
lim d™" |lug — Hgugllz = 0. (3.5.10)
d—0

We can show the following result concerning the existence of locally unique
solutions of discretized equations.

Theorem 3.5.2. Assume that conditions (A )—(As) hold. Suppose F' (uy) € L (V, W)
is an isomorphism, and uy € S. Moreover, assume F’' (ug) can be decomposed into
F' (ug) = Q + R, where Q € L(X,Y) and R € L(X,Y) is compact. The dis-
cretized nonlinear operator Fg: Z — U is defined by

Fgu) = —Pg) Q(u)+ PFyq(u) (3.5.11)
where I is the identity of Y, and Pg: Y — Sy is a projection such that

lim lv — Pyvlly =0, forallv ey, (3.5.12)
d—0

and
(I —Pyg)Q(wg) =0, forallvg € Sy. (3.5.13)

Then, for sufficiently small d > 0, there exists ug € Sg such that Fg (ug) = 0,
and ug is locally unique.
Moreover the following estimate holds

lug — Mg o)l < €1 luo — Mg (uo)ll (3.5.14)
where €1 is a positive constant independent of h.

Proof. The proof is similar to the corresponding one in [136, Th. 2.1, p. 126]. How-
ever, there are some crucial differences where weaker (3.5.7) is used (needed) instead
of stronger condition (3.5.6).

Step 1. We claim that there exists a positive constant c3, independent of d, such
that, for sufficiently small 2 > 0,

|Fy (Mg o) va|y = c3llvallx. forallvg € Sg. (3.5.15)
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From (A3) and ug € S, F'(up) € L(X,Y) is an isomorphism. Set By =
| £ o)™ -

We can have in turn

Fj (g (o)) va = F' (uo) va + Py (F' (g (u)) — F' (v0)) va (3.5.16)
— (I =Py (—Q + F' (u0)) vq.

Because —Q + F/ (ug) € L (X, Y) is compact we get by (3.5.12) that

‘}i_r)r}) (1 = Py (=0 + F' (up))| = 0. (3.5.17)

By (3.5.12) there exists a positive constant ¢4 such that

sup || Pyl < ca. (3.5.18)
d>0
That is, using (3.5.7) we get
| Pa (F" (T (o)) — F' (u0))|| < cocs 1M (uo) — uoll - (3.5.19)
Hence, by (3.5.10) we can have
| Fi (M o)) va| = (75 = 8 @) vall, (3.5.20)

1

where limg_,0 8 (d) = 0, and (3.5.15) holds with ¢; = 23—
Step 2. We shall show:

lim d~" | £} (Mg (o)) ™" Fa (T (uo))H —0. (3.5.21)
Note that
| Fg (T1g (o))l < ca | Fa (T1g (uo)) — Fyq (uo)ll
1
<c / 1Golldt T (o) — uol
0
< cqcs5 [Ty (o) — uoll (3.5.22)
where
G, = F' (1 — 1) ug + Ty (uo)) (3.5.23)
and we used

IG:ll < |Gi — F (o) | + | F' (uo) |
< cot ITg (uo) — uoll + || F" (uo)|| < cs (3.5.24)

where cs is independent of d.
The claim is proved.
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Step 3. We use our modification of the Newton-Kantorovich theorem with the
following choices:

A=S; CZ, withnormd™" ||wg| yx ,

B =S; CU withnormd ™" ||wg|ly ,

xo = g (uo) ,

F =F,.

Notice that || S|4, 8) = IIS|l(x.y) for any linear operator S € L (Sq4, Sq) -

By Step 1, we know Fa/, (ITg (uo)) € L (Sq, Sq) is an isomorphism.

It follows from (3.5.6) and (A4) that for any wy, vy € S4,

| F (wa) — Fj (a)|| < cieallwa — vallz
< cieacad™ lwg — vallx (3.5.25)

Similarly, we get using (3.5.7) and (A4) that
| Fj (wa) — Fj (Tg (o)) || < crezcad™ lwg — xollx -
Hence assumptions are satisfied with

€ =cieacy ey and €y = coeacy ' es. (3.5.26)

From Step 2, we may take sufficiently small d > 0 such that (¢g+€)n < 1,
where
n=d"’

Fi (Mg (o)™ Fa (Mg o)) |-

That is, assumption 21 < 1 is satisfied.
Hence for sufficiently small d > 0 there exists a locally unique u; € S; such
that F; (ug) = 0 and

lug — g (uo)llx < 2d"n < 2¢3" 1 Fa (Ty uo))lly

-1
< 2c¢5 cqes llug — Ty (uo)ll x -

It follows (3.5.14) holds with £; = 2c3_164cs.
That completes the proof of the Theorem.

Remark 3.5.3. In general
co <c (ie,ly<Y¥) (3.5.27)

holds and % can be arbitrarily large, where £ and £ are given by (3.5.26).

If £ = £y our Theorem 3.5.2 reduces to the corresponding Theorem 2.1 in [194,
p- 126].

Otherwise our condition #; < 1 is weaker than the corresponding one in [194]
using the Newton-Kantorovich hypothesis 7 = 2¢n < 1.

Note also that our parameter d will be smaller than the corresponding one in
[194], which in turn implies fewer computations and smaller dimension subspaces
S, are used to approximate u,. This observation is very important in computational
mathematics.



162 3 The Weaker Version of the NK Theorem

The above observations suggest that all results obtained in [194] can be improved
if rewritten with weaker 1 < 1 instead of stronger i < 1.

However, we do not attempt this here (leaving this task to the motivated reader).
Instead we provide examples of nonlinear problems already reported in [194] where
finite element methods apply along the lines of our theorem above.

Example 3.5.4. Find u € Hy (J), J = (b, ¢) € R such that

(F (u),v) = f [go (x, u, u') v+ g (x, u, u') v] dx
J
=0, forallve Hy(J) (3.5.28)
where go and g; are sufficiently smooth functions from J x R x Rto R.

Example 3.5.5. For the N-dimensional case (N = 2,3) let D C RY be a bounded
domain with a Lipschitz boundary. Then consider the problem:
findu € H(}(D) such that

(F (n),v)y = / [qo (x,u, Vu) - Vv +¢q (x,u, Vu) - vldx
D
=0, forallve Hy(D), (3.5.29)

where go € D x R x R¥ to R are sufficiently smooth functions.

Example 3.5.6. Because equations (3.5.28) and (3.5.29) are defined in divergence
form, their finite element solutions are defined in a natural way. Finite element meth-
ods applied to nonlinear elliptic boundary value problems have also been considered
by other authors [93], [168].

3.6 Convergence of the structured PSB update in Hilbert space

A finer semilocal convergence analysis for the structured PSB update in Hilbert space
is provided here based on Theorem 2.2.11 instead of the NK Theorem 2.2.4 used in
[134]. Our results extend the applicability of the update algorithm. The advantages
of our approach have already been explained in Section 2.2.

The motivation and the definition of the quantities introduced in the algorithm
as well as applications to optimal shape design can be found in the elegant paper by
Laumen [134] (see also the references therein). Laumen used Theorem 3.2 given by
Dennis in [74, p. 438] to provide his Newton-Kantorovich-type Theorem 2.2 upon
which the semilocal convergence of the algorithm was based. In particular, he justi-
fied the choice of the PSB Update (Powell symmetric Broyden update),

B =B+[(¢g—Bw)@w+w® (g — Bw)]/ (v, w)

—[{¢g — Bw,w)]w®w/ (w, w)z.
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We are concerned with the problem of approximating a locally unique solution
u* of the minimization problem

min F () (3.6.1)

using the algorithm [134]:
Structured Quasi-Newton method in Hilbert Space H.
Stepl.Givenue HLE€ L(H), B=Cu)+E € L(H).
Step 2. Compute w as the solution of

(Bw,v) =(—F'(u),v), YveH.

Step 3. Setuy =u + w.

Step 4. Choose ¢* approximately.

Step 5. Set g = C (uy) + g*.

Step 6. Update the quasi-Newton operator

E. =B (E,q#, w),
and set

By =C (uy)+ Eq.

We state and prove the main semilocal convergence result for the structured PSB
Update.

Theorem 3.6.1. Let H be a Hilbert space, and let F' (-):U € H — L (H) be
Fréchet-differentiable. Suppose there exist uy € U and parameters § € [0,2),
.0, Co, LY., Lr, Le, such that
By =[C (uo) + Eol ™" € L(H),
55! (Bo— F" wo))| < v,
|85 F wo)| < p,
| F" ) = F" (o) | < LY llu —uoll, Yu €U, (3.62)
|F" @) — F" )| < Lpr llu—wll, Yu,weU,
IC ) —C)l <Lcllu—-wl|, Yu,weU,
4" - D@wpw| = colwl?, vuweuv,

n
|By = F" (un) | < | Bo— F" wo)| + @Co+ Le +Lpn) Y Juj —ujm
j=1
hs = <3LF~ +4Co+2Lc + L?w) pP=8—[12y+ (ro+y)dl
(3.6.3)
2y +(po+y)s <39, (3.6.4)

)



164 3 The Weaker Version of the NK Theorem

2p
U , cU.
(“0 2—6>—

Then, the quasi-Newton method with structured PSB Update is well defined and con-

and

verges to u* € U (uo, 227"8) , where u* is the unique solution of F' (u) = 0 in
U (ug, t*), where

2
= lim 1, < —2—,
n—00 2—-95
t0=0,t = p,

In42 = tyy1 + [Lpr (tnr1 — tn) +2y +2Q2Co + L + Lpr) tn] (tng1 — 1)

n

and

2p 5\" !
[ [ [O
ap=1-— )/0+]/+ﬁ 1—(5) (2CO+ c+Lpr+ F”) .

Moreover, the solution u™ is unique in Uo (uo, tf‘) , provided that
U° (uo, 1f) € U,

and 0
L "
TF (t* +1f) < L.

Furthermore, the following estimates hold for all n > 0:

luny1r — unll < thg1 — tu,

and
|tnsr — ™| < t* =ty

Proof. Tt follows immediately from Lemma 5.1.1 and Theorem 5.1.2 in Section 5.1
by simply replacing b, — A, ¢;, — ay, hg’, Ko, K1, K, d, g, given in Section 5.1 (see

also [41)) by y, a, hy = CLrr2QL0TY 10 HCo4 Lot Lpr, y, 1 —a defined

above respectively.

Remark 3.6.2. Lemma 5.1.1 and Theorem 5.1.2 in Section 5.1 (see also [41]) were
shown under even weaker hypotheses. However in order for us to compare with
Theorem 2.2 [134, p. 404] given below it is preferred to provide only the above
stated results.

Although the results in [134] were not given in affine invariant form, we modify
and present them here in such a way that they will be comparable with the corre-
sponding ones in our Theorem 3.6.1 above, so that an equitable comparison can be
made.
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Theorem 3.6.3. [134, p. 404]. Assume conditions of Theorem 3.6.1 but replace
(3.6.2), (3.6.3), t*, 1 by (3.6.5), (3.6.6) r*, r{

L (4Co+2Lc+3Lp)p _ 1
(1-3y)? 2
3y <1 (3.6.6)
. (1=VT=2h)(1-3y)
4Co +2Lc + 3L pr

(3.6.5)

and
(1 — V1= 2h1) (1—y)
* fr—
= Lpr ’
where
plo CLer 1
(1-y)? "2
respectively.

Then the conclusions of Theorem 3.6.1 hold in this setting.

Note that condition (3.6.2) is not used in Theorem 3.6.3. This allows a greater
flexibility. On one hand, Theorem 3.6.3 can be reduced to Theorem 3.6.1 if L?W =
Lpn.

However, in general

LY, <Lp

holds and % can be arbitrarily large. Moreover, it can easily be seen (simply com-

pare (3.6.5)Fwith (3.6.3)) that condition (3.6.5) = (3.6.3), provided that (3.6.4)
holds together with
3 € [0,2),

and
4(yo+2y) + (1 -3y)? <4,

where
Ay +(1-3y)?

T2+

and p is sufficiently small.

Note also that in an even more general setting (see Theorem 2, Remark 1 in [41]
and Theorem 3.2 in [74]), it was shown in [41] that #* < r* and upper bounds on the
distances ||lu,, — u,_1||, ||u, — u*| are finer.

Finally note that all the above advantages are obtained under the same computa-
tional cost because in practice the computation of L p» requires that of L%,,.

Hence their usefulness in optimizing the convergence of the structured PSB Up-
date has been established.
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3.7 On the shadowing lemma for operators with chaotic behavior

It is well-known that complicated behavior of dynamical systems can easily be de-
tected via numerical experiments. However, it is very difficult to prove mathemati-
cally in general that a given system behaves chaotically.

Several authors have worked on various aspects of this problem, see, e.g., [157],
[186], and the references therein. In particular, the shadowing lemma [157, p. 1684]
proved via the celebrated Newton-Kantorovich Theorem 2.2.4 was used in [157] to
present a computer-assisted method that allows us to prove that a discrete dynamical
system admits the shift operator as a subsystem. Motivated by this work and using a
weaker version of the Newton-Kantorovich Theorem 2.2.4 reported by us in Theo-
rem 2.2.11 (see Theorem 3.7.1 that follows), we show that it is possible to weaken
the shadowing Lemma on on which the work in [157] is based. In particular, we
show that under weaker hypotheses and the same computational cost, a larger upper
bound on the crucial norm of operator L~ (see (3.7.7)) is found and the information
on location of the shadowing orbit is more precise. Other advantages have already
been reported in Section 2.2. Clearly this approach widens the applicability of the
shadowing lemma.

We need the definitions: Let D € R* be an open subset of RF (k a natural num-
ber), and let f: D — D be an injective operator. Then the pair (D, f) is a discrete
dynamical system. Denote by S = /> (Z, R¥) the space of R¥ valued bounded se-
quences x = {x,} with norm ||x|| = sup,,cz, [x,|>. Here we use the Euclidean norm
in R* and denote it by |-|, ommitting the index 2. A 8o-pseudo-orbit is a sequence
y = {yn} € D with |y,41 — f ()| < 80 (n € Z). A r-shadowing orbit x = {x,}
of a §p-pseudo-orbit y is an orbit of (D, f) with |y, — x,| <2 (n € Z).

We need the following version for Theorem 2.2.11.

Theorem 3.7.1. Let F: D C X — Y be a Fréchet-differentiable operator. Assume
there exist xo € D and positive constant 1, B, Lo and L such that F' ()co)_1 €
LY, X),

[F o] <8 (G.7.0)
|F o™ F o <, (312)
|F'(x)—F' (»| <Llx—yl, forallx,y € D, (3.7.3)
|F' (x) = F' (xo)| < Lo llx — xoll, forallx € D, (3.7.4)
ha=B(Lo+L)n<1 (3.7.5)
and
U (x0,5%) € D,

where s* = lim,,_, o0 Sy,

L (sp+1— sn)
= 07 =n, = _— > O .
50 S1=1,Sp42 = Snt+1 + 30 = Losiin) (n=0)
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Then sequence {y,} (n > 0) generated by NK method

Ynrt = Yn — F' () ' F (yn)  (n>0)

is well defined, remains in U (xq, s*) for alln > 0 and converges to a unique solution
y* € U (xq, $%), so that estimates

Va1 — Yull < Spg1 — Sn

and
“yn - y*” <5t =5, <2n—sy

hold for all n > 0.
Moreover y* is the unique solution of equation F (y) = 0 in U (xg, R) provided
that
Lo(s*+R) <2

and
U (x0, R) € D.

The advantages of Theorem 3.7.1 over the Newton-Kantorovich Theorem 2.2.4
have been explained in detail in Section 2.2.

From now on we set X = ¥ = RF.

Sufficient conditions for a §p-pseudo-orbit y to admit a unique r-shadowing orbit
are given in the following main result.

Theorem 3.7.2. (Weak version of the shadowing lemma) Let D C R¥ be open, f €
CLUP (D, D) be injective, y = {y,} € D% be a given sequence, {A,} be a bounded
sequence of k x k matrices and let &y, 8,80, £ be positive constants. Assume that for
the operator

L: S — S with {Lz}, = zp+1 — Azy (3.7.6)
is invertible and |

‘ﬁ””ga:EIvﬁiﬁﬁi. (317

Then the numbers t*, R given by

t* = lim ¢, (3.7.8)
n—oo
and
2 k
R=——1t (3.7.9)
Lo
satisfy 0 < t* < R, where sequence {t,} is given by
0 (thy1 — tn)?
o= 0,11 = 7 s = g1 + L") (3.7.10)

2(1 = Lotny1)

and
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3o
n= 1—8 (3.7.11)
="l
Letr € [t*, R] . Moreover, assume that
JuGwneco (3.7.12)
neZl
and for everyn € Z
|yn+1 = f (yn)] < S0, (3.7.13)
|An — Df (ya)l <9, (3.7.14)
|F' (u) — F'(0)| < €0 ul (3.7.15)
and
|F' ) — F' ()| < £]u—v|, (3.7.16)

forallu,v e U (y,,r).
Then there is a unique t*-shadowing orbit x* = {x,} of y. Moreover, there is no
orbit x other than x* such that

[x =yl <r (3.7.17)
Proof. We shall solve the difference equation
Xnt1 = f (xn) (n=0) (3.7.18)

provided that x,, is close to y,. Setting

Xn = Yn+ Zn (3.7.19)
and
&n (zn) = [ (@n+ Yn) — Anzn — Ynt1 (3.7.20)
we can have
Zn1 = AnZn + &n (2n) - (3.7.21)

Define Dy = {z = {z,} : llz|l < 2} and nonlinear operator G: Dy — S, by

(G (2)n = 8n (zn) - (3.7.22)

Operator G can naturally be extended to a neighborhood of Dg. Equation (3.7.21)
can be rewritten as
Fx)=Lx—G((x)=0, (3.7.23)

where F is an operator from Dy into S.

We will show the existence and uniqueness of a solution x* = {x,} (n > 0) of
equation (3.7.23) with ||x*|| < r using Theorem 3.7.1. Clearly we need to express
n, Lo, L and B in terms of ”L_l , 80,06, o and £.
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G |F O FO| <n.

Using (3.7.13), (3.7.14) and (3.7.20), we get | F (0)|| < 8 and |G’ (0) < &, as
[G'(0) (w)], = (F (yn) — Ap) wa.

By (3.7.7) and the Banach lemma on invertible operators we get F’ (0)_l exists
and

—1
_ 1
HF 0) H (”L 1 3) . (3.7.24)
That is,  can be given by (3.7.11).

(i) [F O~ <8
By (3.7.24) we can set
| -1
B = (—_ — 6) . (3.7.25)
=1
(iii) | F' () — F' ()| < L |lu—v]|
We can have using (3.7.16)
[(F" ) = F' ) )| = [(F" Gin + un) = F' (3 + vn)) wa
< Llu, — vy| |lwy . (3.7.26)
Hence we can set L = £.
() [|F' ) = F' O < Lo llull .
By (3.7.17) we get
[(F' () = F' () )| = |(F" (n + ) = F' (yn + 0)) wy |
< Lo lup|lwyl. (3.7.27)
That is, we can take Ly = £g.
Crucial condition (3.7.5) is satisfied by (3.7.7) and with the above choices of
n, B, L and L.
Therefore the claims of Theorem 3.7.2 follow immediately from the conclusions

of Theorem 3.7.1.
That completes the proof of the theorem.

Remark 3.7.3. In general
o <t (3.7.28)

holds and £ 7- can be arbitrarily large. If 9 = ¢, Theorem 3.7.2 reduces to Theorem
1 in [157, p 1684]. Otherwise our Theorem 3.7.2 improves Theorem 1 in [157].
Indeed, the upper bound in [157, p. 1684] is given by

1
L’1H <b=— 3.7.29
H =T 5+ V208 (3.7.29)

By comparing (3.7.7) with (3.7.29) we deduce
b<a

(if €y < ©).
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3.8 The mesh independence principle and optimal shape design
problems

Shape optimization is described by finding the geometry of a structure that is optimal
in the sense of a given minimization cost function with respect to certain constraints.
A Newton’s mesh independence principle was very efficiently used to solve optimal
design problems in [133]. Here motivated by optimization considerations, we show
that under the same computational cost, an even finer mesh independence principle
can be given.

We are concerned with the problem

min F (u) (3.8.1)
uelU

where F (u) = J (u, S (u), z (u)) + % lu —ur|? ¢ € R, functions ur, S, z, and J
are defined on a function space (Banach or Hilbert) U with values in another function
space V. Many optimal shape design problems can be formulated as in (3.8.1) [133].
In the excellent paper by W. Laumen [133], the mesh independence principle (see
also [2]) was transferred to the minimization problem by the necessary first-order
condition

F'(u)=0 inU. (3.8.2)

The most popular method for solving (3.8.2) is given for n € N by Newton’s
method

F" (up—1) () (v) = =F (up—1) (v)
Up =Up—1 + W,

where F, F’, and F" also depend on functions defined on the infinite-dimensional
Hilbert space V. The discretization of this method is obtained by replacing the
infinite-dimensional space V and U with the finite-dimensional subspaces V¥, UM
and the discretized NK method

£ () (o) () =15 s (o).

ul = u% s w.
Here we show that under the same hypotheses and computational cost, a finer mesh
independence principle can be given.

Let ug be chosen in the closed ball

Ui =U (us, r4)

in order to guarantee convergence to the solution u,. The assumptions concerning
the cost function Fy, which are assumed to hold on a possible smaller ball U, =
U (us, ) with 7, < r, are stated below.
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Assumption C1. There exist positive constants Lo, L and § such that forall u, v €
Ux
|F" () — F" ()| < Lo llu — usl
| F" @) = F" )| < Lilu—vl

] <.

Assumption C2. There exist uniformly bounded Lipschitz constants LX,), i =
1, 2, such that

|Fr ) = Fr )| < L lu = vll, forallu,v e Uy, N €N,
|Fr ) = Fp )| < L lu—vll, forallu,v e Uy, N €N.

Without loss of generality, we assume L(i) <L,i=1,2,forall N.

(1) (1)

Assumption C3. There exist a sequence z~ with z,,” — 0as N — 00, such that

| Fr ) = F )| <2\, forallu e U,, N €N,
|Fry )y = F" )| <2, forallu e Uy, N €N.

Assumption C4. There exists a sequence zg) with zg) — 0as N — oo such

that for all N € N there exists a 1" € UN x U, such that

~N

v —u, 2

=

Assumption C5. Fy; and F}; correspond with the derivatives of Fi.
The cost function F is assumed to be twice continuously Fréchet-differentiable.
Therefore, its first derivative is also Lipschitz continuous:

|F' () — F ()] < Llu—v|, forallu,ve U,.

Without loss of generality we assume L<L.

Remark 3.8.1. In general
Lo <L (3.8.3)

holds and £ 7, can be arbitrarily large. If Lo = L, our Assumptions C1-C5 coincide
with the ones in [133, p. 1074].

Otherwise our assumptions are finer and under the same computational cost as in
practice the evaluation of L requires the evaluation of Lg. This modification of the
assumptions in [133] will result in larger convergence balls U, and 0*, which in turn
implies a wider choice of initial guesses for Newton’s method and finer bounds on
the distances involved. This observation is important in computational mathematics.
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We now justify the claims made in the previous remark, as follows:
ol o = m (@) | < o[ o - £ (@) + [ (@) - i (#)]]
<$ [Lozﬁ) + zﬁ)]
<8z <1

hold for a constant Z if M and N are sufficiently large. It also follows by the Banach
Lemma on invertible operators that F” (™ )_l exists and

—1 .
F’ (ﬁM> <0 __s
—1-4z
We showed in Section 2.4 that if
2 1
P < —m— < —, (3.8.4)
QLo+ L)s $8Lo
then the estimates
8| F" (ui) = F" ()| < 8Lo llui — usll < 8Lory < 1
hold, which again also imply the existence of F” (u;) with
) A
H F" ()~ H <2 3 (3.8.5)
1 —68Lors
Hence by redefining § by §if necessary, we assume that
” F" (u;)~! H <5, foralli e N (3.8.6)
-1
‘ FY (uM> <5, foralla™ e UM, N €N, (3.8.7)
for M and N satisfying
s[Lozy +20 ] s ez <1, (3.8.8)

The next result is a refinement of Theorem 2.1 in [133, p. 1075], which also presents
sufficient conditions for the existence of a solution of the problem

urenll]I}” Fy (uM) 3.8.9)

and shows the convergence of Newton’s method for M, N — oo.

Theorem 3.8.2. Assume C1-C5 hold and parameters M, N satisfy

1 . 1
Zun =268 [max{l, Lo} + %] (Z§VI> + zjf)) < min {r*, S_L} . (3.8.10)

Then the discretized Newton’s method has a local solution u*M e U, satisfying

M

U, —Us|| <ZMN- (3.8.11)
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Proof. We apply the Newton-Kantorovich Theorem 2.2.4 to Newton’s method start-
ing at u}! = ™ to obtain the existence of a solution u?/ of the infinite-dimensional
minimization problem. Using C2-C4, (3.8.7), and (3.8.10), we obtain in turn

2h = 2L H Fl (ﬁM)fl Fy, (@) ”
=2 ()| i ()]
(5 5) - ) [ 0 - o

)

1
< 28%L <max {1, Lo} + 2—5) (Zg\}) + zﬁ))

<8Lzyy <1 (3.8.12)

)

< 26%L (2 + Lo | — u.

which imply the required assumption 27 < 1 (for the quadratic convergence).
We also need to show U (@™, r (h)) C U (u, 7). By C4 is suffices to show

1
ry = (1= VT=20) < A~ 2 (3.8.13)
SL
But by (3.8.10) and the definition of r (h), we get
— (H (2)
r (h) = 25 max {1, Lo) (zN +72 )

1
<28 (max{l, Lo} + %> (z}& + zﬁ@) -9

<Fo—2, (3.8.14)

which shows estimate (3.8.13).
Hence, there exists a solution u}! € U (@™, r (h)) such that

<y —22 +22 =zun. (3.8.15)

M ~M ~M
i o

M
U, — Uy

=<

That completes the proof of the Theorem.

Remark 3.8.3. If equalities hold in (3.8.7), then our Theorem 3.8.2 reduces to The-
orem 2.1 in [133]. Otherwise it is an improvement (and under the same computa-
tional cost) as Z, M, N, zyy are smaller and 5 (i.e., 8), ry, I are larger than the
corresponding ones in [133, p. 1075] and our condition (3.8.12) is weaker than the
corresponding (2.5) in [133] (i.e., set Lo = L in (3.8.12)).

That is, the claim made in Remark 3.8.1 is justified, and our Theorem extends
the applicability of the mesh independence principle.
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Remark 3.8.4. In practice, we want min {r*, ﬁ} to be as large as possible. It then

immediately follows from (3.8.4), (3.8.12), and (3.8.14) that the conclusions of The-
orem 3.8.2 hold if zp/y given in (3.8.10) is replaced by

zMN:L—O max{],Lo}—i—ﬁ (ZN —I—ZM>§mm r*,m . (3.8.16)

Another way is to rely on our Theorem 2.2.11 using the weaker (than (3.8.12))
Newton-Kantorovich-type hypothesis

—1
Fl) (W) Fj, (uM>

or as in (3.8.16) for (3.8.17) to hold we must have

ho < Lo (14— )8 LLob+ o | (28 +27)
0< o( +Lo> [max{ 0}+28] iy 2y

ho=(Lo+L)$é ‘ <1 (3.8.17)

<8Loz%y <1,

provided that

L 1
Z(I)\/IN = <1 + L_0> ) |:max{1, Lo} + §i| (Zg\i) + zﬁ))
1
0

The other hypothesis for the application of our Theorem 2.2.11: U (ﬁM ,r! (h)) C
U (u* f*), where

r' (h) = 28 max {1, Lo} (zS) + Zﬁ)) :
Hence we arrived at:

Theorem 3.8.5. Under the hypotheses of Theorem 3.8.2 with 7y N replaced by Z?V, N
(given in (3.8.15)) the conclusions of this theorem hold.

So far we showed that a solution
WM e U (ﬁM,r(h)) (or (ﬁM,rl (h))) C U (s )

of the discretized minimization problem exists.

Next, in the main results of this section we show two different ways of improv-
ing the corresponding Theorem 2.2 in [133, p. 1076], where it was shown that the
discretized Newton’s method converges to the solution u? for any ug’l e U (uyg, r1)
for sufficiently small ry.

In order to further motivate the reader let us provide a simple numerical example.
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Example 3.8.6. Let U = R, U, = U (0, 1) and define the real function F on U, by
Fx)=¢" —1. (3.8.19)

Then we obtain using (3.8.19) that L = e, Lo = e — 1 and 6 = 1. We let z%) =0,
1531) = % Set

r* =ryand N = 0.

The convergence radius given in [133, p. 1075] is

2
rE=pE = = 24525246,
35L
whereas by (3.8.4) ours is given by
R 2
=7, = ————— = .324947231. (3.8.20)
(RLo+L)$é

That is, (3.8.3) holds as a strict inequality and

L _ ~L * oA
ry =1, <1t =Ty

The condition (2.4) used in [133, p. 1075] corresponding to ours (3.8.10) is given
by
L Lo o e
Zyn = 26 max{l,Lo}—f-% (ZN +ZM)§m1n r*,ﬁ . (3.8.21)

We can tabulate the following results containing the minimum M for which con-
ditions (3.8.8), (3.8.10), (3.8.16), and (3.8.15) are satisfied.

Mzpn 382D[rL (3.8.18)[zarn (3.8.10)[ 231 v (3-8.16) 27 (3.8.15)[r(3.8.20)

27].238391246 |.24525296 |.164317172 |.259945939 | 212131555 |.324947231
22 319024562
19 23350335
18 318197333

Table 3.8.1. Comparison table.

The above table indicates the superiority of our results over the ones in [133, p.
1075].

We can now present a finer version than Theorem 2.2 in [133] of the mesh inde-
pendence principle.

Theorem 3.8.7. Suppose:
Assumptions CI1-C5 are satisfied and there exist discretization parameters M
and N such that
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(A 1
< minf> _— U 3.8.22
Z1‘“"—6““{4 (2L0+3L)8+1} (3.8.22)

Then the discretized Newton’s method converges to u for all starting points
ug’l € U (uy, r1) , where

3 . 1 Ty
rp=-mn{——m—, —¢. (3.8.23)
4 QLo+ L)s 2
Moreover, if
M(I)W —up|| <,
where
2 (% + llup — u*ll) IMN
= (3.8.24)
b2 + \/bz —6LS (% + llug — u*||> IMN
and

1
b=1+ s2un — 2L gl — .

the following estimates hold for c; e R, i =1,2,3,4, n € N:

bty =l | < e [t — ul ° (3.8.25)
u,’f’ — Up|| = C2ZMN
H Fy (”2/[) — F' (up)| < c3zmn
and
urly - M*M < lup — usll + cazmn.

Proof. We first show the convergence of the discretized Newton’s method for all ug”
in a suitable ball around u... Because the assumptions of Theorem 3.8.2 are satisfied,
the existence of a solution u € U, is guaranteed. We shall show that the discretized
Newton method converges to u if ul! € U (u, r2), where
. 1 Fi
rp=mny————, — .
QLo+ L)é 2
The estimates

‘u*M—u* +Hu3’1—uf1 <2 ui’l—u* +Hu3’1—u*
<2zyn +12 S F
imply
U(ui’l ué’l—u*M ) c U,
Hence, Assumptions C1-C5 hold in U (u, |ud! — u||).
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We can also have
|7 o i () = 7w

<o () o

M
*

=

+ | Py @) = F" @]

55[L u

— Uy | + ZMN]

<@BL+1)zun
SL+ 3
< — <
= (20+3L)5+1
where we used

1
7P < S5emn (by (3.8.10)).

It follows by (3.8.26) and the Banach Lemma on invertible operators that
8

Fy (ui”)_l exists and
—1
M
\ P () S
1— <6L n i) N

By the theorem on quadratic convergence of Newton’s method and since all assump-
tions hold, the convergence to u fk‘” has been established.

Using a refined formulation of this theorem given by us in Section 2.4, the con-
vergence is guaranteed for all u}! € U (u}, r3), where

2
QLo+ L) HF;\; (ugl)”H'

1, (3.8.26)

=<

r3

Therefore we should show
U r) € U (ull 1)
or equivalently

M M
HMO — Uy

u*—u*M

< Ju

+|

<r»+2ZunN
1
<
T QLo+ L)s
1+QLyp+L)§
QLo+ L)$
2 (1 — Lézyn — %ZMN)
<
- QLo+ L)S
2

Lo+ L) | Fy ()|

+ ZuMN

=r3.
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Hence, the discretized Newton’s method converges to u*M for all ug’l € U (uy, r)

such that (3.8.25) holds for ¢; = §L.
Next a proof by induction is used to show

forall ull € U (uy, 1), r1 = %rz, where 7 is given by

ul —u,|| < v < cozm (3.8.27)

Up

2%+ luo = wall) 2w

T =

b2 + \/b2 —6LS (% + llug — u*||> ZMN

1
(5 + o — wll) 2
<

= b2

=:.C2ZMN

withb =1+ %ZMN — 26L ||u3’1 — Uy ” The constant t is well defined, as the in-
equalities

(SL(S + u Uy Z < an /)

imply b = § = 615 (% + lluo — ) 2.

While the assertion (3.8.27) is fulfilled by assumption for n = 0, the induction
step is based on the simple decomposition

- (u{”)_l {FR () (= i) = Fiy () + Fy )
+ (Fy () = Fy @) F" @™ F )
+ Fy ) F" (i)~ F' (ui) = F' ()
+ F (up) — Fy (up) } . (3.8.28)

Assumptions C1-C4, equation (3.8.27), and the definition of z;x imply

5 H Fll (uf"l> —F" ()

<5 ”F,/\} (uf”) —F" ()

+ 8 ||Fy (i) — F" (up)||
<$é (Lr + zﬁ\}))

1
<déLt + EZMN

SLzyn + 2 |lug — usll Lzmn lz
= 1= 28L |luo — us]l 2 MN
1 1

<3 -4
= QLo+3L)s+1
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resulting in the inequality H FY (uM )_1 H < m We obtain
[F () (= i) = Fy () + Fy i) < %L |l = u * < %er’
and the convergence assertion |[u; — u|| < |lug — u.| yields
[(Fi () = Py @) F" @)™ F @ = Ll = i i = i

< 2L7 flup — uxll .
The assumptions of the Theorem lead to
| F3 ) P )™ F ) = F i)
< | =F¥ @) iy = wi) + F" ) (in = ui) |
| Fy i) = F” i) i1 = i

E

IA

A

z02 lug — us

1
FMN lleg — u|l

A

and || F' (u;) — Fyy (ui)” < zf,l) < %ZMN- Using the decomposition (3.8.28), the

last inequalities complete the induction proof by

“ﬁl - Mi+1H =<
5
1= (Lo7 + dzun)

=T.

=

1 1 Z
{—Lr2 + 2L llug — usl| T + (5 + llug - u*n) %}

The last equality is based on the fact that 7 is equal to the smallest solution of the
quadratic equation 3L8T% — 2bT + 2z (% + llug — u*||> =0.
Finally, inequality (3.8.27) is shown by

= i) -

SLHu,IlV—u,,

+ | Fy (un) — F' (un)||

5 (o) -

+ zZmMN
< (Ley+ D) zun =: c32uN

and inequality (3.8.24) results from

) 0] o

u, —up

M
" U, — Us

S ‘

+]
< C2ZMN + ZMN

<(c2+1)zmn =: cazun
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Remark 3.8.8. The upper bounds on zy,y and r; were defined in [133] by

L ! (3.8.29)
—miny —, ——— .8.
6 4’ 6LS + 1
and 3 L
. Ty

respectively. By comparing (3.8.22) and (3.8.23) with (3.8.29) and (3.8.30), respec-
tively, we conclude that our choices of zpn and rq (or rp or r3) are finer than the
ones in [133]. However, we leave the details to the motivated reader.

3.9 The conditioning of semidefinite programs

In this section, we are motivated by the elegant work in [144] concerning the con-
ditioning of semidefinite programs (SDP). In particular, we show how to refine their
results by using a weaker version of the Newton-Kantorovich Theorem 2.2.4 given
by usin 2.2.11.

Let S” be the space of real, symmetric n x n matrices. As in [144], we consider
the semidefinite program in the form

minC e X suchthat Ay e X =by, k=1,2,...,m, X >0, 3.9.1)

where C, A, and X belong to S”, by are scalars, e denotes inner product, and by
X > 0 we mean that X lies in the closed, convex cone of positive semidefinite
matrices. The dual of (3.9.1) is

m
max b’y suchthat Y yAc+Z=C: Z=0, (3.9.2)
k=1

where Z € §" is a positive semidefinite dual slack variable.

The following assumptions are used thorought the section:

Assumption 1. The matrices Ay are linearly independent.

Assumption 2. There exists a primal feasible X and a dual feasible (y, Z) with
X and Z strictly positive definite (slater condition).

Assumption 3. The primal (3.9.1) and the dual (3.9.2) programs have solutions
Xo and (yo, Zo) satisfying strict complementarity, primal nondegeneracy and dual
nondegeneracy.

n(n+1)

We will mapping n x n symmetric matrices onto vectors of length ==—, so let

n(n+1) .
vec: S” — R 27 be an isometry, then

AeB = (vecA)T (vec B) forall A, B € S".

The primal and dual equality constraints become
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Avec X = b; ATy +vecZ =vecC,

where A € R™(+D/2 is 4 matrix whose k + h row is (vec Ax)T, and b =
(b1, ..., bu]" € R™.
The optimality conditions become:

AvecX =b; X >0 (3.9.3)
ATy +vecZ =vecC; Z=>0, 3.94)
XZ =0. 3.9.5)

Solving (3.9.3)—(3.9.5) reduces to finding a root of the function

AvecX — b
F(X,y,Z)=| ATy +vec(Z - C) (3.9.6)
i vec(XZ + ZX)

suchthat X >0, Y > 0.
. . . n(n+1) 3
Let 7 be the identity matrix, and let mat: R >~ s §" be the inverse of vec.
We use ® to denote the symmetrized Kronecker product given by

1
(Ai® B))v = 3 vec (A (matv) By + By (matv)) Ay, (3.9.7)

n(n+1)
where A, B € ", ve R 2 .

Because F is a map from R +1) to itself, the Jacobian of F is given by

A 0 0
J(X,y,2) = 0 AT 1®1 |. (3.9.8)
Z®l 0 X®1

We will now define a certain type of norm already used in [144]. However we
note that all our results here can be reintrochuced with different norr¥s.
For any two vectors x = [x',...,x"]" and y = [y',..., y™]", the pair (x, y)

is used to denote the vector [x!, ..., x", y!, ... y"].
We use the Euclidean norm ||-|| for vectors, and the induced 2-norm for matrices.
The Frobenius norm of a matrix is denoted by ||-|| . We have

lAllF = llvec Al =~ Ae A (3.9.9)

for any real and symmetric matrix A. Then foru = (X, y,Z) € S" xR" x §" =D
we use the norm

lull = ll(vee X, y, vee Z)1l = [IXIF + Iy12 + 1213 ] (3.9.10)

‘We denote by
U@, r)y={ur€D:|lu—u <rl}
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and by U (u, r) the corresponding ball.

By Lip,, (U (u, r)), we mean the class of all functions that are Lipschitz contin-
uous in U (u, r), y being the Lipschitz constant using the 2-norm. We also use the
compact notation [A, b, C] to denote the SQP’s in (3.9.1) and (3.9.2).

Consider a perturbation of the problem parameters Ag, b and C in (3.9.1) as
follows:

A=A+AA b=b+Ab, C=C+AC, (3.9.11)

where AC is symmetric, and AA is a matrix whose kth row is (vec AAk)T , with
AAj symmetric.
Therefore (3.9.6) and (3.9.8) become for the perturbed system respectively

AvecX — b
Fuy=FX,y,Z2)=| ATy 4+ vec(Z — C) (3.9.12)
Ivec (XZ + ZX)
and _
A 0 0
J(X,y,Z2) = 0 AT 1e1 |. (3.9.13)

Z®Il 0 X®I

We shall denote the solution of the original Problerq by ug = (Xo, yo, Zo) and
the solution of the perturbed problem by g = (X 0, Y0, Zo).
We state a version of our main Theorem 2.2.11 suitable for our purposes here:

Theorem 3.9.1. Let ro > 0, ug € R?, G:R? — RP?, and that G is continuously
differentiable in U (ug, ro). Assume for a vector norm and the induced norm that the
Jacobian G’ (u) € Lip,, (U (uo, r0)) for u # uo and G' () € Lip,, (U (uo, r0)) if
u = ug, with G’ (uo) nonsingular. Set

p= |6 w!| w26 @t Gwol. ho=pin 7= E220 G914)
r = [l_l)rglo ty, 1 =21, (3.9.15)
where scalar sequences {tx} (k > 0) is given by
fo= 0,11 =1, fisn = fi11 + ;(ﬁ“il—ﬁ (3.9.16)
If
@ ho <3, (3.9.17)
and
(b) r1 < rolorry <ryp), (3.9.18)
then

(i) G has a unique zero ug in U (uo,r), ri <rp, and
(ii) Newton’s method with unit steps, starting at ug converges to the unique zero

io.
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Remark 3.9.2. If yp = y, our Theorem 3.9.1 coincides with Theorem 1 in [144, p.
529]. Set h = Byn. However
Yo=Y, (3.9.19)

holds in general and % can be arbitrarily large.

Then | |
h<-=hy<-—, (3.9.20)
2 2
but not vice versa unless if y = yp. Moreover finer bounds on the Newton distances
are obtained and at least as precise information on the location of the solution, as

1—+1-2h

rH<———=r.

By

We assume from now on that condition (3.9.17) holds.
Motivated by these advantages, we improve the rest of the results in [144] as
follows:

Corollary 3.9.3. Under the hypotheses of Theorem 3.9.1 further assume hy < %
then G’ (ug) is nonsingular, where i1 is the zero of G guaranteed to exist by Theorem
3.9.1.

Proof. We have in turn

|G’ (i10) — G' (uo)|| < yo llito — uoll < 2y0m

1 1
<(w+yn<- (3.9.21)

B 6w

It follows by the Banach Lemma on invertible operators and (3.9.21) that G’ (i1g) ™!
exists and
o o = =
1 —=2Byon

We need two lemmas for the semilocal convergence analysis of Newton’s method:
Lemma 3.94. [1, Th. 1]. Let [A, b, C] define an SDP satisfying the Assumptions.
Then, the Jacobian at the solution, J (uo) is nonsingular. Conversely, if an SDP

has a solution uo such that J (ug) is nonsingular, then strict complementarity and
nondegeneracy hold at ug [109].

Lemma 3.9.5. [ 144, Th. 1]. Let [A, b, C] define an SDP, not necessarily satisfying
the Assumptions. Then the Jacobian J (u) satisfies

IV 2) = J ol <y lluz —uill, (3.9.22)

for some fixed uy = (X1, y1, Z1) € S x R"™ x 8" and for any uy = (X2, y2, Z2) €
S"x R" x §"and y = 1.
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From now on, we assume ug = (Xo, yo, Zo) is a solution for an SDP [A, b, C]
satisfying the assumptions, and
Assumption 4. There exists yg such that

IV (1) = J o)l = yollur — uoll , (3.9.23)

forall u; = (X1, y1, Z1) € $" x R™ x §".
It follows by (3.9.22) and (3.9.23) that

o <1

holds in general and L can be arbitrarily large.
It is convenient to define the following quantities that will be used for the semilo-
cal convergence that follows:

’

Bo = HJ (o) ™!
B =Ml

columns of J (uo)_l , and

where M consists of the first m 4+ —”(”2"’ D

80=min<min {16:16 >0], min {wf):wf) >0}>.
1<i<n 1<i<n
We can state the main result:

Theorem 3.9.6. Let uq be the primal-dual solution of the SDP[ A, b, C]. Suppose the
Assumptions 1-4 hold, and let

[A,b,C]=[A+ AA b+ Ab,C+ AC].

Set
s0 = IAA] | (vee Xo, yo)l + I1(Ab, vec AC) |,
Bo
p=—
1= Bo IAAI
n = BoBigo
1= Bo IAA
If
1
184l <a=—[1 = Bov/Breo (T + )] (3.9.24)
Bo
and either |
<6 = —— (3.9.25)
B3B1 (1 + w0)
and

ry < 8o, (3.9.26)
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or

ey < & =

LR, { 1 o (1 —BollAAID } ’ (3.9.27)

m ,

PoBi Bo (1 + o) 2
then

(i) the SDP defined by [A, b, C_'] has a unique solution ug in U (uo, r1) provided
that (3.9.24)—(3.9.26) hold or in U (ug, r2) if (3.9.24) and (3.9.27) hold.

(ii) the solution to [A, b, C_'] is unique.

(iii) Newton’s method with unit steps applied to F and starting from ug converges
quadratically to uy.

Proof. (1) In order to use Theorem 3.9.1, we first note that J (uo)_1 existsand y = 1.
Then we can have

) AA 0 0
AT =JF o) —Jwo)=| 0 AAO ],
0 00
and
HJ (o)~ AJH < BoIIAA|l < 1, by (3.9.24). (3.9.28)

It follows by (3.9.28) and the Banach Lemma on invertible operators that J (u()
is nonsingular with

|7 wo '] =8
We can write

(A+ AA)vec Xy — (b + Ab)

Fuo) = | (A+ AA)T yg+ vec Zg — vec (C + AC)
1 vec (X0Zo + ZoXo)

(AA) vec Xo — Ab

=1 (AA)T yp — vec (AC)

0

and

|7 @)™ F o) | = 1 (1aAT I (vee Xo, yo)ll + 11(AD, vee (ACYI)
= Bigo.
Therefore, we have
|7 o F o < |7 @ | |F ol
<.

Hence, we get
1+
2

=

N =
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by the choices of ¢p and ||AA]|.

By Theorem 3.9.1, we conclude that F has a unique zero i in U (xq, r1) if
(3.9.24)—(3.9.26) hold or in U (xq, r2) if (3.9.24) and (3.9.27) hold.

To show that this root is a solution of the SDP, we shall show X > 0 and Zo > 0.
First note that if either (3.9.24), (3.9.25), (3.9.26) or (3.9.24) and (3.9.27) hold, then

_ _ 1/2
(%o = Xol[3 + 150 = yoll + | Z0 = Zo[3) "~ = lito = ol < 5o.

Let 1o (wp) be the vector of eigenvalues of Xy (of Zp), arranged in nonincreasing
(nondecreasing) order. For 1 < j <n

A6>O =>)_Lé>0
and
Aé:O == wé>0
= w) >0= 1) =0.

That is, Xo > 0. Similarly we show Zo > 0. The proof of part (i) is now completed.
The proof of (ii) follows from Corollary 3.9.3 and (iii) follows from (b) of The-
orem 3.9.1. and the existence of J (iip) .
That completes the proof of the Theorem.

Remark 3.9.7. If yp = 1, our Theorem 3.9.6 reduces to Theorem 2 in [144].

Otherwise it is finer as a, &; (or &) are more flexible than a; = 21?’ &3 =
. o—1 8 - . ) 3
mln{2a2ﬂ0ﬁ1 T } forsome | < o <2 givenin [144] and as r1 < r3.

The rest of the results given in [144] can be improved along the same lines.
However, we leave the details to the motivated reader.

3.10 Exercises

3.10.1. Consider an equation
F(z)=0 (3.10.1)

where F is a nonlinear operator between the Banach spaces E, E. Under certain
conditions, Newton’s method

nsl =2 — F (z) ' F(za), n=0,1,..., (3.10.2)

produces a sequence that converges quadratically to a solution z* of (3.10.1).
Because the formal procedure (3.10.2) can rarely be executed in infinite-
dimensional spaces, (3.10.1) is replaced in practice by a family of discretized
equations

én () =0 (3.10.3)
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—indexed by some real numbers 7 > O—where now ¢, is a nonlinear oper-
ator between finite-dimensional spaces Ej, Eh. Let the discretization on E be
defined by the bounded linear operators Aj,: E — Ej. Then, under appropriate
assumptions, the equations (3.10.3) have solutions

o= Mpt + (hP)

which are the limit of the Newton sequence applied to (3.10.3) and started at
Apzo; that is,

&= 0Mnz0. Gp =40 — @ en@l). n=0,1,...  (3.104)

In many applications, it turns out that the solution z* of (3.10.1) as well as the
Newton iterates {z,} have “better smoothness” properties than the elements of
E. This is a motivation for considering a subset W* C E such that

FeWr zeW - eW*, 1 —2, € Whn=0,1,.... (3.10.5)

The discretization methods are described by a family of triplets.
{dm, Ap, Ah}, h>0 (3.10.6)

where .
¢n:Dy C Ep — Ep, h>0

are nonlinear operators and
A E — Ej, A;ﬁE—) Eh, h >0,
are bounded linear (discretization) operators such that
Ap (W* N B*) C Dy, h > 0. (3.10.7)

The discretization (3.10.6) is called Lipschitz uniform if there exist scalars p >
0, L > 0 such that B
B (Ap. 2%, p) C Dy, h >0, (3.10.8)

and
I, () = ) <Llln—¢€ll. h>0, n& U (A" p). (3.10.9)

Moreover, the discretization family (3.10.6) is called: bounded if there is a con-
stant g > 0 such that

IApull < qllull, ueW*, h=>0, (3.10.10)
stable if there is a constant o > 0 such that

an,g (Ahu)_IH <o, ue W NB* h>0, (3.10.11)
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consistent of order p if there are two constants ¢y > 0, ¢; > 0 such that
|A0F @ = o1 (ar2)| = con. ce W NBY h>0, (3.10.12)

HA;, (F/ (u)v — ¢, (Apu) Ahv)H <cith?, ue W NB* veW*

h > 0. (3.10.13)
Let F: D C E — E be a nonlinear operator such that F’ is y Lipschitz con-
tinuous on U (z*, r*) € D with z* such that F (z*) = 0, |[F' 5~ '| = B
and r* = L, and consider a Lipschitz uniform discretization (3.10.6) that is
bounded, stable, and consistent of order p. Then
Show:
(a) (3.10.3) has a locally unique solution
oF = A" + (hP) (3.10.14)
for all 4 > 0 satisfying
1 1/p
0<h<hy= [— min (,0, (aL)—l)} (3.10.15)
20 ¢y

(b) there exist constants i1 € (0, hol, r1 € (O, r*] such that the discrete process
(3.10.4) converges to £;’, and that

= Apza+ (hP), n=0,1,..., (3.10.16)
on () = AF (z) + (BP), n=0,1,..., (3.10.17)
=i =AM (2 — )+ (hP), n=0,1,..., (3.10.18)

for all & € (0, k1], and all starting points zg € B (z*, r1).

3.10.2. Suppose that the hypotheses of Exercise 3.10.1 hold and that there is a con-
stant § > 0 for such

liminf | Apul] = 28 |lull for each u & W*. (3.10.19)
>

Then show that for some 7 € (0, r1] and for any fixed ¢ > O and z9o € U (z*,7)
there exists a constant 4 = h (e, zo) € (0, h1] such that

‘min{n >0,

|z — 2| <&} —min{n >0, ¢} — ¢fll < e}‘ <1 (3.10.20)

for all i € (0, h].
3.10.3. Suppose that the hypothesis of Exercise 3.10.1 is satisfied and that

lim [|Apull = [|ul
h—0
holds uniformly for u € W*. Then show there exists a constant 7| € (0, 1] and,

for any fixed & > 0, some /i1; = h (¢) € (0, k] such that (3.10.20) holds for all
h € (0, h;] and all starting points z € U (z*, 7).
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3.10.4. Consider the operator F': D C C%[0,1] — C[0, 1] x R?,

FO)={y"=f(x.y.):0=x=Ly©O—ay -4},
where D and f are assumed to be such that (3.10.1) has a unique solution z* €
D, and
feC(U"p).
U(z* p) =
={(x1,x0,x3) eRH0 < xy < 1, [x2 —x* (x1)| <,

x3— 2% ()| < o).

Under these assumptions it follows that z* € € [0, 1]. Indeed, from z*/ =
f (x, 2%, z*) we deduce that z*"” exists and

Z*/// — f(l,0,0) (x7 Z*, Z*/) + f(O,l,O) ()C, Z*, Z*/) + f(0,0,l) (x’ Z*, Z*/) Z>s<//

which, in turn, gives the existence of 7*@V) etc. Here f (1.0.9) " etc., denotes the
partial derivatives of f.
As usual, we equip ck [0, 1], k > 0, with the norm

|l = {(max|ui 0).0<x< 1),1’ =0,...,k}.
The Fréchet derivative of F is

F'(y)u=
- {u” — OO Gy Y)Y u— FOOD (xy, ¥, 0<x < 1Lu(0),u (1)}

and hence, for given z,, € D, Newton’s method specifies z,+1 as the solution of
the linear equation

Zl/q/+1 =f ()C, Zn, Z;l) - f(o’l’O) ()C, n, Z;,) (zn — Zn+l)

_ p00D (%, zns 2) (2 — 2t (3.10.21)

subject to the boundary conditions z,+1 (0) = «, z,+1 (1) = B.

From (3.10.21) it follows easily thatif zo € C3 [0, 1]thenz,,; € C*[0,1], n =
0,1,2,.... We shall assume also that zg € ct [0, 1]. Moreover, (3.10.21) and
the fact that z, converges to z* in the norm of C2[0, 1] imply that there exists a
constant K > 0 such that

e Wi ={zeC10,11: sup e (0] < K, i =0.1,2,3,4],
X

n =0, 1,....Bychoosing, if necessary, a larger K, it is not restrictive to assume
that z* € Wg, z, — z* € Wi and z,, — 2,41 € Wg,n = 0,1, ..., which is
(3.10.5).

The discretization method {¢,, An, Ay} is specified as follows
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h=1/n, n=1,2,...,
Gp=1{xi=ih, i=0,1,....n}, Gn=Gp\0,1},
Epn={n:Gp,—R}, ni=nw;), i=0,1,...,n,

Eh:{(n,a,b);n:éhﬁR, a,beR},
Ay =Yy, An(y.a,b)= (ylg;,,a,b),
o () = | [ B — f (o, it )]
i =12 =10 —a), (- B) |

We use the following norms

Iyl =max {[y? 0,0 =1i=012},  yeco1l,
vl = max {lu (x)|,a,b;0<x <1},  v=(u,a,b)eCl0,1]xR?
i1 —Ni— i1 —20i +ni—

il = { ol mal, I, |2ttt | sty |

i:l,...,n—l}, nek.
It is easily seen that for y € Wk, we have

kn?, |2 _2hy2’ DXLyl < Lke?,

= ¥

Yi+1 — Yi—1 1
Y 6

2h

where y; = y(x;), ¥/ = ¥ (xi), y/ = y"(x;),i = 1,2,...,n — 1. It is not
difficult to prove that, with the above norms, (3.10.10) holds with ¢ = 1 and
(3.10.12), (3.10.13) are satisfied with p = 2. It is also easily seen that

Al < el < IAwull + K (5 G+ 1) b

for u € Wg and hence that limy,_.q || Dpu|| = |lul| .
Thus the conclusions of Exercises 3.10.1 and 3.10.2.

3.10.5. (a) Let F be a Fréchet-differentiable operator defined on a convex subset
D of a Banach space X with values in a Banach space Y. Assume that the
equations F(x) = 0 has a simple zero x* € D in the sense that F’'(x*) has
an inverse F/(x*)~! € L(Y, X). Moreover assume

IF' )7 [F'(x) = F'c)] I < llx —x*|| forall x e D. (3.10.22)
Then, show: sequence {x,} (n > 0) generated by Newton’s method is well
defined, remains in U (x*, r*) for all n > 0, and converges to x* with

3¢

2
| < k2 * = >0
Xn+1 = X7 < 2[1—51I|xn—x*ll]”x" X 5, (n = 0)
(3.10.23)

provided that xg € U (x*, r*) and U = U (x*, r*) C D.
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(b) Let F be as in (a).

Assume:

(1) there exists xo € D such that F/(xp)~' € L(Y, X):
@) IF'(x0)"" [F'(x) — F'x)] | < €ollx — xoll forall x € D;  (3.10.24)

) IIF (x) ' F(xo)l <1 some 7= 0, (3.10.25)
5+ 2v6)ton < 1., (3.10.26)

4) U(xg, r2) € D, where, r1, rp are the real zeros (r1 < ry) of equations
() =3r* — (1 + Lon)r + 1 =0. (3.10.27)

Then, show: sequence {x,} (n > 0) generated by Newton’s method is well
defined, remains in U (xg, 1), and converges to a unique solution x* of equa-
tion F(x) = 0 in U (xo, r1). Moreover, the following estimates hold for all
n > 0. The solution x* is unique in U (xg, 7).

n2 = et | < 22 g1 — x| (3.10.28)
and ;
ln1 = X1 < 1=z llxn — x7, (3.10.29)
where,
c= ﬁf% (3.10.30)

(c) Let F: D C X — Y be anonlinear operator satisfying the hypotheses of (a),

3.10.6.

and consider a Lipschitz uniform discretization that is bounded, stable, and
consistent of order p. Then equation 7 (v) = 0 has a locally unique solution

yi = Lp(x*) + (hP)

for all & > 0 satisfying

0<h<hy= [Lmin{g, 5*2*/6]]1/[7.

coo Lo

Moreover, there exist constants i1 € (0, hg] and r3 € (0, r*] such that the
discrete process converges to y; for all & € (0, h1] and all starting points
x0 € U(x*, ryp).

(a) Let F be a Fréchet-differentiable operator defined on a convex subset
D of a Banach space X with values in a Banach space Y. Assume that the
equation F(x) = 0 has a simple zero x* € D in the sense that F’(x*) has an
inverse F/(x*)~! € L(Y, X). Then

(1) for all &1 > 0 there exists £1 > 0 such that

IF' 5™ F @) = F')] Il < e

forall x,y € U(x*, £;) C D.
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2)Ife € [O, l) and xo € U(x*, £1) then show: sequence {x,} (n > 0)

generated by Newton’s method is well defined, remains in U (x*, £) for
all n > 0, and converges to x* with

1 = I < 12w —x*1 (0 = 0).

(b) Let F be as in (a). Assume:
(1) there exist n > 0, xo € D such that F'(xg)~' € L(Y, X),

I F'(x0) " F(xo)ll < 3
Then, for all &g > O there exists £o > 0 such that
IF'(xo) "' [F'(x) = F' )] Il < o

forall x, y € U(xg, £o) € D;
) n(l—ep)
T2 <
and

80<%.

Then, show: sequence {x,} (n > 0) generated by Newton’s method is well
defined, remains in_U (x0, £9), and converges to a unique solution x* of equa-
tion F(x) = 0in U (xo, £9). Moreover, the following estimates hold for all

n>0
lxn+2 — xXpp1ll < 1i(3€0 lXn+1 — Xull
and
1
x4t — 2" < 1=l — 271,

where

_ _%0

— l—go"

(c) Let F: D € X — Y be a nonlinear operator satisfying a Fréchet uniform
discretization {7}, Ly, Ly}, h > 0O that is bounded, stable, and consistent of
order p. Then show: equation 7 (v) = 0 has a locally unique solution

yi = Lp(x*) + (hP)

for all 4 > 0O satisfying

0<h§h0=[M]l/”.

(I—to)ocy

Moreover, there exist constants 21 € (0, hg] and r; € (O, r*] such that the
discrete process

Yo =Lax0), Yoy =yr— TG T (n=0)
converges to y; for all & € (0, h1] and all starting points xo € U (x*, ry),

— mi 1
where r* _mlnp{z, 1].
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Special Methods

Efficient and special iterative methods other than NKs are studied under weaker con-
ditions than before.

4.1 Broyden’s method

In this section, we are concerned with the problem of approximating a locally unique
solution x™* of the nonlinear equation

F(x)=0, @.1.1)

where F is a Fréchet-differentiable operator defined on an open subset D of a Banach
space X with values in a Banach space Y.
C.G. Broyden suggested the method

Xpt1 =Xy — HyF (xy) (n>0) (x0 € D) 4.1.2)

to generate a sequence approximating x*, [52], [75]. Here H, € L (Y, X) (n > 0).
Operators H,, are required to satisfy the equation

Hy1 (Yn) = Hp1 (F (0pg1) = F (X)) = Xnq1 — X (4.1.3)
or equivalently

Xn+1
/ (Hys1 F' (x) — I)dx =0, (4.1.4)

where F’ (x) denotes the Fréchet derivative of operator F.

It seems that H,, | is a reasonable approximation to the inverse of F’ (x) (Jaco-
bian) in the neighborhood between x, and x,4+1 in the direction of x,,+1 — x;.

In the case of X = Y = R/ for example, and for single rank methods, we choose
H, 1 from the class of j x j matrices satisfying (4.1.3) that are given by

Hyi1 = Hy — (Hy (yn) + HoF (x)) dl /dl (y,) (4.1.5)

I.K. Argyros, Convergence and Applications of Newton-type Iterations,
DOI: 10.1007/978-0-387-72743-1_4, © Springer Science+Business Media, LLC 2008
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where d, € R/, chosen so that dnT (yn) # 0.
If A(x,) = A, = H; !, then

At = Ap— O+ F () dy An/d) F (x,)  (n=0). (4.1.6)

J.E. Dennis in [75] provided a local and a semilocal convergence analysis for
method (4.1.2) using a Newton-Kantorovich-type approach (see also Section 2.2).

Here we show by using more precise majorizing sequences first in the semilocal
case that under the same hypotheses and computational cost, we can find weaker
sufficient convergence conditions for method, finer error bounds on the distances
involved, and provide a more precise information on the location of the solution.
Moreover in the local case, we provide a larger radius of convergence.

We need the following result on majorizing sequences in order to study the
semilocal convergence of method (4.1.1)

Lemma 4.1.1. Assume there exist nonnegative numbers K, M, L, u,n and § €
[0, 2) such that for alln > 0

f= @)+ 2ER -+ 2 [1- @) e 20 <0 @)

|

and

(TS}

(L+m)i)nn< 1—2u. 4.1.8)

-
Then, iteration {t,} (n > 0), given by

K (thy1—tn)+2(u+Mt,
to =0, 1y =, tyyo =ty + yEHEIE N gy @19)

e 2n

is nondecreasing, bounded above by = 5-s, and converges to some t* such that

0 <t* <™. (4.1.10)

Moreover, the following estimates hold for all n > 0:

)Yl+1

0<tup2—tas1 < § (tay1 — 1) < (5 (4.1.11)

Proof. The result clearly holds if n = O or K = 0 or § = 0. Let us assume K #*
0,n #0and § # 0.
We shall show using induction on i > 0:

K (tig1 —t;) +2(u+Mt;) +26u +8 (L + M)ty <6 (4.1.12)
1—2u—(L+M)tiy1 >0 (4.1.13)

and
tiy1 —t > 0. 4.1.14)

Estimate (4.1.11) can then follow immediately from (4.1.9) and (4.1.12)—(4.1.14).
Fori =0, (4.1.9), (4.1.12)—(4.1.14) hold by (4.1.7) and (4.1.8).
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We also get:
0<th—n <3t —1). (4.1.15)

Let us assume (4.1.11)—(4.1.14) hold for all i < n + 1. We can have in turn:

K (tiya —tig1) +2(Mtip1 + ) + 28+ 8 (L + M) ti42 <

< Kﬂ (%)i+1
+2{M[t1 -+ @) -+ +(3) @ —to)] +u}
+o@+m[n+in -+ + (3T @]+

—hitl <5 (by 4.1.7). 4.1.16)

Moreover, we shall show:
<t™ (i>0). (4.1.17)

Inequality (4.1.17) holds for i = 0, 1, 2 by the initial conditions. Assume (4.1.17)
holds for all i < n. It then follows from (4.1.11)

i+1
i St G —0) < <n+in+-+(3) 7

IE

I

>§ ] < 2 = (4.1.18)
2

Furthermore,

5 i+2
(L+M)tipr < (L+ M) = 1(3)3 n<1-=2u, (by(4.1.8)), (4.1.19)
which shows (4.1.13) for all i > 0.
Then induction for (4.1.12)—(4.1.14) is now complete.
Hence, sequence {t,} (n > 0) is: bounded above by #**; nondecreasing and as
such it converges some t* satisfying (4.1.10).
That completes the proof of the Lemma.

Remark 4.1.2. We wanted to leave the conditions (4.1.7) and (4.1.8) as uncluttered as
possible. However if verification of (4.1.7) and (4.1.8) is difficult, we can use instead
respectively the pairs:

55:[K+M+2 8] 28 <8, (4.1.20)
and
ALEM) <y oy, 4.121)
or (4.1.21),
hs = [K+(L+M)5+;‘TM8]77+25M55, (4.1.22)

and
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2
Y ¢ (4.1.23)
Note that (4.1.20) and (4.1.21) follow immediately from (4.1.7), and (4.1.8), respec-
tively, whereas for h§ to be bounded above by § it suffices to have:

s+ (1-@)") 1] =k [1-()"]. (4.1.24)
d
o aM [y syt o oam 4.1.25
25 (2) =2-5" (4.1.25)
Inequality (4.1.24) can be rewritten
(Lﬂztffg)az [l B (%)E—H] <K [1 B (%)8+1j|7 (4.126)

which holds for all i > 0 by (4.1.23).
Moreover, (4.1.25) also holds for all i > 0.

We can show the following semilocal convergence result for method (4.1.2):

Theorem 4.1.3. Let F: D C X — Y be a Fréchet-differentiable operator. Assume:
there exists an approximation A (x) € L (X, Y) of operator F' (x), an open convex
subset Do of D, xo € Dy, nonnegative parametersn, K, L, M, jt and § € [0, 2) such
that:

1A (x0)™" F (x0) II < 7, (4.1.27)
1A (o)™ [F' () = F' 0]l < K llx = yll, (4.1.28)
1A (o) ™' [F' (x) = F' (xo)] Il < L llx = xoll, (4.1.29)

forall x,y € Dy,

1A (o)™ (A (vug1) = F (ny ) Il <

<A (xp)~" (A (x0) — F' (x)) Il + MY llxig1 — xill (4.1.30)
i=0
A (x0) ™ (A (x0) — F' (x0)) Il < 5 (4.1.31)
conditions (4.1.7), (4.1.8) hold,
and
U (x0,1*) € Do, (4.1.32)

where t* is defined in Lemma 4.1.1.

Then, sequence {x,} (n > 0) generated by Broyden’s method (4.1.2) is well de-
fined, remains in U (xo, t*) for alln > 0, and converges to a solution x* € U (xg, t*)
of equation F (x) = 0.

Moreover, the following estimates hold for all n > 0:

lxn+1 — xull < tug1 — tn, (4.1.33)
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and
|xn = x*|| < t* = 1. (4.1.34)

Furthermore, the solution x* is unique in U (xo, t*) if M # 0 or i # 0. Finally, if
there exists t > t* such that

U (xo, 1f) € Do, (4.1.35)

and
L +1) <1, (4.1.36)

then the solution x* is unique in U (xo, tf)

Proof. Using induction on the whole integer k, we shall show

lxe+1 — xell < teg1 — 4, (4.1.37)
and
_ k
Xkt € U (x0, 1), 2 lxigr — xill < 1%, (4.1.38)
i=0
forall k > 0.

Estimates (4.1.37) and (4.1.38) hold for £ = 0. Assume they hold for all k < n.
Then, we have:

lxk+1 — xoll < lxks1 — xill + llxk — xp—1ll + - - - + llx1 — xoll (4.1.39)
< (g1 — ) + (G — tr1) + - - + (11 — 1)
=tk — 10 =ty <17,

and

k
D iy —xill < (4.1.40)
i=0
By (4.1.8), (4.1.28)—(4.1.31), we obtain in turn:

IA (xo) "' [A (reg1) — A (x0)] Il <
< 1A o) (A rs) = F/ (s ) I+ [ (F o) = F/ (x0) |
+ 1A (x0) " A (x0) — F' (x0) |
k
<u+ MY lxip1 —xill + L lxes1 — xol
i=0
<pu+(L+Mtry <. (4.1.41)

It follows from (4.1.41) and the Banach Lemma on invertible operators that
A (Xp+ 1)~ exists and

A )™ A o) | < [1 = i = (L + M) 1] (4.1.42)
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Moreover, using (4.1.2), (4.1.28), (4.1.30), and (4.1.31), we obtain:
A o) F (xiq1) = (4.1.43)

= A (x0) "' [F (k1) — F (xx) — A (x%) (K1 — X0 |

1
= A(xo)"! I/O [F' (o1 460 (i — xx11)) — F' ()] (epr — xi) d6

+ [F' (%) — A () ] (k1 — x0) } .

and

A (x0) ™' F (ogr) Il <

k—1
1 2
< 3K llxerr — xll® + (u + MY lxign — xi ||> g1 — xl
i=0

< AK (k1 — 107 + (1 + M) (tes1 — 1) - (4.1.44)

Furthermore, by (4.1.2), (4.1.9), (4.1.42), and (4.1.44), we have:

52 = sl = [[A e ™ Ao ][40 Fon]| @149)

|4 G ™ Ao |4 o™ F o)

5K (=) Gt M) (e =) _
=/ =L = B2 =t 1

IA

=

which completes the induction for (4.1.37).
The induction is now completed, as

k1
D i = xill <t < roand [xeg2 — xoll < g2 < 0. (4.1.46)
i=0

It follows from (4.1.37) and (4.1.38) that sequence {x,} (n > 0) is Cauchy in a
Banach space X, and as such it converges to same x* € U (xq, t*) (as U (xq, t*) is a
closed set). By letting k — oo in (4.1.45), we obtain F (x*) = 0.

Estimate (4.1.34) follows from (4.1.33). Indeed we have:

lxsi — xill < Nxki = Xkpimt |+ Nxki—1 — Xgi—2ll + - -+ kg1 — x|l
< (ki — tegi=1) + (tkgim1 — thpi—2) + -+ (1 — 1)
= teri — k. (4.1.47)

By letting i — oo in (4.1.41), we obtain (4.1.34).
To show uniqueness in U (xg, t*), let y* be a solution of equation F (x) = 0. By
(4.1.29) and (4.1.8) we can have:
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1
Ao /0 [F (" +6 (x* — %)) — F' (x0)] O

1
<L [ +0 (0 —y7) — ]l do
0
1
§L/ [0 ]|x* = xo0 + (1 = 0) | y* — xo|] 46 (4.1.48)
0
<Lt* <. (4.1.49)

It follows from (4.1.49), and the Banach Lemma on invertible operators, that
linear operator

L= /01 F' (y* 46 (x* — y*)) a0 (4.1.50)
is invertible. Using the identity
0=F(x*)—F(")=L(x*—y (4.1.51)
we deduce
* =y (4.1.52)

Similarly if y* € u (xo, t;“), we obtain again that linear operator L is invertible, as
by (4.1.48)

4@ L= Fao)| <4 +1) =1, (4.1.53)

Hence, again we get (4.1.52).
That completes the proof of the theorem.

Remark 4.1.4. Dennis in [75, Theorem 3, p. 562] has provided a similar semilocal
convergence result. He is not using condition (4.1.29), which is what is really needed,
but the stronger (4.1.28) to find upper bounds on the norms ||A (xn)_1
(n > 0) (see Chapter 2). However in general, L < K holds.

Finally note that the derivation of condition (4.1.30) and its significance has been
explained in [75, see Theorem 1] (for M = %).
Finally we can show the following local result for method (4.1.2)

Theorem 4.1.5. Let F: D C X — Y be a Fréchet-differentiable operator. Assume:
there exist an approximation A (x) € L (X, Y) of operator F' (x), an open convex
subset Do of D, a solution x* of equation (4.1.1) such that A (x*) € L (Y, X) and
nonnegative parameters o, i = 0,1, ..., 4 such that the following conditions hold
forall x,, x € Dy

HA(x*)_l(F’(x)— x* H < o ||x—x

. (4.1.54)

(4.1.55)

[4 () (A —a ()|
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and
|46 (A = F ()| = o+ s |, (4.1.56)
equation
<%oto+otq+ot4>r+ot1 Fa3—1=0 (4.1.57)
has a minimal nonnegative zero r* satisfying
arr +ay < 1, (4.1.58)
and
U (x*, r*) C Dy. (4.1.59)

Then, sequence {x,} (n > 0) generated by Broyden’s method (4.1.2) is well de-
fined, remains in U (x*,r*) for all n > 0 and converges to x* provided that
x0 € U (x*,r*).

Moreover the following estimates hold for all n > 0

(%ao+a4)llxn—X*|l+a3
[n 1 — x| < T— (i +azllx,—x 1)

[xn —x*| . (4.1.60)

Proof. By hypothesis xo € U (x*,r*). Let x € U (x*, r*). Then by (4.1.55) and
(4.1.58) we get:

HA (x*)_l (A x)—A (x*))H <o +oa ||x —x*” <oy +ar*<1. (4.1.61)

It follows from (4.1.61) and the Banach Lemma on invertible operators that A (x)~!
exists so that:

HA @) A (x") (4.1.62)

1 < 1
I—(atonllx—x*|) = 1—(a+oor*)”

Assume x; € U (x*, r*) for all k < n. Then using (4.1.2), (4.1.54)—(4.1.59), we
obtain in turn

[+~ xiaa] =

= |x* —x + A @) F () — AQ) ' F(x)
1

{ LA I )] = P )
0

46 @) = A} e =

<A@~ A (xY)

+

= <a1+az\|x*—xkn)[ oo ™ — x| + a3 + o [ —ka]

1—
Fo0tog |Jrr—a3
SO oy

which shows (4.1.60), and x; 1 € U (x*, r*).
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Moreover, by (4.1.62) we have:
Hx* — Xkl || < ||x* — Xp || < ||x* —x0|| . (4.1.63)
Hence we deduce from (4.1.63) that lim x, = x™.
n—oQ

That completes the proof of the theorem.

Remark 4.1.6. Dennis in [75, Theorem 5, p. 564] provided a local result for Broy-
den’s method (4.1.2) in the special case when X = Y = R/. In particular, he stated
that if

| F ) = F' (x")] < as x =«
H F’ (x*)_IH < (4.1.65)

|, (4.1.64)

then there exist real positive numbers ¢ and &g such that if A (xp) is a real j x j
matrix, |A (xo) — F' (x*)|| < & and |lxo —x*|| = rp < &, Broyden’s method
(4.1.2) converges to x* from this starting point.

The proof was given for

€0 < gacs (4.1.66)
and
e < ;%g (4.1.67)

We now apply this result on a certain numerical example in order to compare it with
our Theorem 4.1.5.

Example 4.1.7. Let D =X =Y =R, Dy = U (0, 1), A(x) = F’ (x), and define
function F on Dy by
F(x)=e¢" —1. (4.1.68)

Using (4.1.64)—(4.1.68) we see
as =e—1, andag = 1. (4.1.69)

Consequently, the maximum possible convergence radius rp given by Dennis is

rp = 35 = 038798447, (4.1.70)
By (4.1.54)—(4.1.57) we get
ap=e—l,ar=e—1, a3 =0, ag =¢e — 1, 4.1.71)
and
r* = ﬁ = .0232790683. (4.1.72)

Hence by (4.1.70) and (4.1.72), we deduce
rp <r*.

That is we provide a six times larger convergence radius than Dennis’ no matter how
X0 1s chosen in Dy.
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4.2 Stirling’s method

In this section, we approximate a locally unique fixed point x* of the nonlinear equa-
tion
F(x) = x, “4.2.1)

were F is a nonlinear operator defined on a closed convex subset D of a Banach
space E with values on itself.
We propose Stirling’s method

Xt =X = [I = F'(P )] o = F () (02 0). 4.22)

Here P:D € E — E is a continuous operator and F’ (x) denotes the Fréchet
derivative of operator F. Special cases of (4.2.2), namely NK method (P (x,) = x,
(n > 0)), the modified form of Newton’s method (P (x,) = xo (n > 0)), and the
ordinary Stirling’s method (P (x,) = F (x,) (n > 0)), have been studied extensively
[43], [185]. Stirling’s method can be viewed as a combination of the method of suc-
cessive substitutions and Newton’s method. In terms of the computational effort,
Stirling’s and Newton’s methods require the same computational cost.

In this section, we provide sufficient conditions for the convergence of method
(4.2.2) to x*. Moreover, we find a ball centered at a certain point xo € D including
same center convergence balls found in earlier works (see [43], [185], and the ref-
erences there). Consequently, we find a ring containing infinitely many new starting
points from which x* can be accessed via method (4.2.2).

To achieve this goal, we define the operator G: D — E by
Gx)=x—[I—-F (P (x))]‘l (x — F (x)). 4.2.3)

We then use the degree of logarithmic convexity of G, which is defined to be the
Fréchet derivative G’ of G.

Finally, we complete our study with an example where our results compare fa-
vorably with earlier ones.

Leta € [0,1), b > 0, and x9p € D be given. Define the real function g
on [0, +00),

g =b(+a)r = [ =a)? = blxo— F Gcoll]r + (1 =a) o = F xo)l.
(4.2.4)
Set:
c=0b|xo—F (xo)ll . (4.2.5)

It can easily be seen, that if

2
c < (\/a2 +1—-a)?- a> =d, (4.2.6)

then equation g (r) = 0 has two nonnegative zeros denoted by r; and rp, with r; <
.
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Define also: 5
ry = Ul Hbo P G0l (4.2.7)
Finally, set:
I1=1[r,r). (4.2.8)

We now state and prove the main semilocal convergence theorem for method
(4.2.2).

Theorem 4.2.1. Let F, P be continuous operators defined on a closed convex subset
D of a Banach space E with values on itself. For a € [0, 1), b > 0 and xo € D fixed,
assume:

(a) F is twice continuously Fréchet-differentiable on D, and

|F' ) = F D] < bllx =yl (4.2.9)
|F' ()| <a<1, (4.2.10)
forallx,y € Dy
(b) U (xo,7) € D foranyr € I, where I is given by (4.2.8).

(c) ¢ < d, where c,d are given by (4.2.5), and (4.2.6), respectively;
(d) P is continuously Fréchet-differentiable on D,

[P 0] <a. 4.2.11)
P (x) e U (xo,71), (4.2.12)
and
lx =Pl <llx = F), (4.2.13)
forall x € U (xp, ).
Then, the following hold:
(i)
6" @] = s e = F@l<h) <1, 4.2.14)
where
h(r)=[0+a)r+lxo— F (xo)ll] ﬁ, (4.2.15)
forallr € I.

(ii) Iteration {x,} (n > 0), generated by (4.2.2) is well defined, remains in U (xor)
(r € I) for all n > 0 and converges to a fixed point x* of G in U (xg, r1) which
is unique in U (xg, ra), where rq € [r1, rs) and rs = min {ra, r3}.

Moreover, the following error estimates hold for all n > 0:
[xp —x*| <h"(r)r. rel, (4.2.16)

and

IA

2 [ln = P o)l + || P ) — 5% n —

BAH2) |, — 2|2 (4.2.17)

Jener =27

A
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Proof. (i) By differentiating (4.2.3), we obtain in turn for x € D (4.2.18)
G (x) = (4.2.18)
=1 ([ -F (x))]‘l)/ (= F () = [1=F (P )] (r = F ()
=1+[I—F'(P (X))]_1 F" (P (x)) P (x)[I = F'(P (X))]_] (x = F(x))
—[I=F @] (1= F )
=[1-F(P ()6))]_1 — F' (P (x))

+F" (P ) P' ) (1= F/ (P o)™ (v = F (1) = 1+ F ()]

— -

=[1-F P&y’
+F' (P ()P (x) (I —F (P () (x = F (x))] .

"(x) = F' (P (x))

Using (4.2.9)—(4.2.13), and the Banach lemma on invertible operators we obtain from
(4.2.18)
|G| < U_La)z llx — F ()l (4.2.19)

In particular for x € U (xg, ), (4.2.19), the choice of r € I, and the estimate

lx — F )|l = I(x — x0) + (xo — F (x0)) + (F (x0) — F (X))l
<r+lxo— F (xo)| + ar,

we obtain (4.2.14).
(i1) It follows from (4.2.4) that

[Xo—=G (xo)ll
=T

r , rel. (4.2.20)
Hence, we can get

lxi —xol = =hG)Nr=r, rel
which shows x| € U (xg, x) and (4.2.16) for n = 1. Assume that

x; € U (xo.r), and [xx — xol < (1 . (r)) r<rrel 4.221)

fork=1,2,..,n.
Using (4.2.2) and part (i), we obtain in turn

X041 — Xl = IG (6n) — G a—Dl < sup [ G" ]| s — xp—1ll

ye[x,._l,x,,]

(4.2.22)

<h () llxp — xp-1ll,

Ixn1 = xall < B () lxn — xp—1ll < -+ S A" (1) lIx1 — xoll = (L =R (r)) K" (r) 7,
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and

lxn+1 = xoll < lxn+1 — xull + llxn — xoll
SUA=hE)h"(r)r+(1=h"@)r
= <l—h"+1 (r))r <r rel.

That is, we showed (4.2.16) for all k € N. Moreover by (4.2.22), we have for n, m €
N
[Xntm = Xnll < (1= h" (r)) A" (r) 1. (4.2.23)

Estimate (4.2.23) shows that {x,} (n > 0) is a Cauchy sequence in a Banach space
E, and as such it converges to some x* € U (xg, r). Because of the continuity of F,
F’, P, and (4.2.22), we obtain P (x*) = x*, G (x*) = x*, F (x*) = x*.

To show uniqueness, let y* be a fixed point of G in U (xg, r4). Then using
(4.2.14), we get

[ =y =16 ") =G ()]

= [6" Ol =7

sup
YE[x*,y*]
<h@)|x* =y

’

which shows x* = y*.
Furthermore by letting m — oo in (4.2.23), we obtain (4.2.16). Finally by
(4.2.2), we obtain for alln > 0

Xpp1 — X" =
=x, —x*—[I—F (P (xn))]‘1 (xp — F (x2)) (4.2.24)
=[1=F P )] [(I = F (p ) (30 — x*) = (tn — F ()]
= [1-F (P )] ' [F @) = F (x*) = F/ (P (x) (32 — x¥)].
But we can also have by (4.2.11) and (4.2.13) that for all n > 0

lxn = P (xp)ll = |20 —x* 4+ P (x*) = P ()| = A+ a) ||xy — x|, (4.2.25)

and
[P () —x*|| = || P xn) — P (x*)| <a|x,—x*. (4.2.26)

Estimate (4.2.17) now follows from (4.2.24)—(4.2.26) and the approximation
F (xp) — F (x*) = F' (P (x)) (xp — x*) =

1
=/ [F' (txp + (1 =) x*) =F" (tP (xp) + (1 = 1) P (x,))] (xp — x*) dt.
0
(4.2.27)
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We now state the following theorem for comparison (see [169] and the references
there for a proof).

Theorem 4.2.2. Let F be a Fréchet-differentiable on D C E. Assume:
(a;) Condition (a) holds;

(b1)
P(x)=F(x)(x €D); (4.2.28)
(c1) ¢ < do, where
do = 352, (4.2.29)
(d;) U (x0,r0) S D, where
ro = jriegys forb #0. (4.2.30)

Then, Stirling’s iteration {x,} (n > 0) converges to the unique fixed point x* of
F in U (xo, ro) at the rate given by (4.2.17).

Remark 4.2.3. Favorable comparisons of Stirling’s over NK method have been made
in [169] and the references there.

Proposition 4.2.4. Under the hypotheses of Theorem 4.2.1 and 4.2.2, assume:

c< 0l g, 4.2.31)
Then the following hold:
ry <ro <rs, (4.2.32)
and
U (x0,r0) € U (x0,73) . (4.2.33)

Proof. Estimates (4.2.32) and (4.2.33) follow immediately by the definition of ry, g,
r3 and (4.2.31).

Remark 4.2.5. Let dy = min {dy, d, dy}, under the hypotheses of Theorem 4.2.1 and
4.2.2. Then the conclusion of the proposition hold. This observation justifies the
claim made at the introduction.

We complete this study with an example.
Example 4.2.6. Let E=R, D =[-Z, 2], P (x) = F (x) and

F(x) = %sinx.

For xo = 1396263 = 8°, we obtain d = 3=¥2 — 428932,dy = 4 = 5,d; = % =
0357143, a = b = % llxo — F (x0)|| = .0700397, ¢ = 0350199, rp = .2801592
and r3 = .2866401. With the above values, the hypotheses of Theorems 4.2.1, 4.2.2,
and the Proposition 4.2.4 are satisfied. Hence we get



4.3 Steffensen’s method 207

0=x* €U (xg, ro) = [—.1405329, .4197855]
C (—.1470138, .4262664) = U° (xo, r3) .

That is there are infinitely many new starting points U° (xo, r3)—U (xo, ro) for which
iteration (4.2.2) converges to x* but Theorem 4.2.2 does not guarantee that, whereas
Theorem 4.2.1 does.

4.3 Steffensen’s method

Let E, A be Banach spaces and denote by U (xo, R) the closed ball with center
xo € E and of radius R > 0. We will use the same symbol for the norm || || in both
spaces. Let P be a projection operator (P = P?) that projects E on its subspace
E, and set Q = I — P. Suppose that the nonlinear operators F (x, A) and G (x, A)
with values in E are defined for x € D, where D is some open convex subset of
E containing U (xg, R), and . € U (Ao, S) for some A9 € A, S > 0. For each
fixed A € U (rg, S), the operator P F (@, A) will be assumed to be Fréchet derivative
of the operator P F (w, A) with respect to the argument @ = x. Moreover for each
fixed A € U (Ao, S), the operator PG (w, A) will be assumed to be continuous for all
w e D.

In this study, we are concerned with the problem of approximating a solution
x* 1= x* () of the equation

F(x,2)+G (x,2) =0. 43.1)

We introduce the inexact Steffensen-Aitken-type method

a1 (M) = “4.3.2)
=y (W) — Aty ), )7 EF (i (W), A) + G (xq (W), ) — 2 (6 (A), 1),
(n>0)

where by xo we mean xq (A). That is, xo depends on the A used in (4.3.2). A (x, A) €
L (E x A, E) and is given by

A (1), 2) =P [g" (1), 2), 8% (60 ()25 F] (433)
+ P87 (0 0. 1) 8" 0 (). 1G] (1= 0)

where [x (A),y (XA); F] (or [x (A), y (1) ; G]) denotes divided difference of order
one on F (or G) at the points x (1), y (A) € D, satisfying

), yQM); FI0R) —x ) =F(QyQ),A) —F&x@®),2) 4.3.4)
forall x (A) # y (A), A € U (ho, S) and

[xA),x(W); Fl=F (x(A),1), AeU(S) (4.3.5)
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if F (x (1), A) is Fréchet-differentiable at x () for all A € U (Ag, S). The opera-
tor z: D x U (hg, S) — E is chosen so that iteration {x, (1)} (n > 0) generated
by (4.3.2) converges to x*. The operators gl, g2, g3, g4: D x U (ry,S) — E are
continuous.

The importance of studying inexact Steffensen-Aitken methods comes from the
fact that many commonly used variants can be considered procedures of this type.
Indeed, approximation (4.3.2) characterizes any iterative process in which correc-
tions are taken as approximate solutions of Steffensen-Aitken equations. Moreover,
we note that if for example an equation on the real line is solved F (x, (1), 1) +
G (x, (A),A) > 0and A (x, (1), A) overestimates the derivative

X — A G V), D)7 (i (), 2) + G (60 (1), 1)

is always “larger” than the corresponding Steffensen-Aitken iterate. In such cases, a
positive z (x, (1), A) (n > 0) correction term is appropriate.

It can easily be shown by induction on n that under the above hypotheses
F (xy (M), 1) + G (x5 (1), 1) belong to the domain of A (x, (1), 1)"! forall n > 0.

Therefore, if the inverses exist (as it will be shown later in the theorem), then
the iterates {x, (A)} can be computed for all n > 0. The iterates generated when
P = I (identity operator on E) cannot easily be computed in infinite-dimensional
spaces as the inverses may be too difficult or impossible to find. It is easy to see,
however, that the solution of equation (4.3.2) reduces to solving certain operator
equations in the space E P. If, moreover, E P is a finite-dimensional space of dimen-
sion N, we obtain a system of linear algebraic equations of at most order N. Special
choices of the operators introduced above reduce our iteration (4.3.2) to earlier con-
sidered methods. Indeed we can have: for g!' (x (1), 1) = g2 (x (A), 1) = x (M),
g (x(),r) =g*(x (1), 1) =0, z = 0 we obtain Newton methods, for P = I, no
gl () =g? (1) =x(x €D), g (x) =xu_1 (0= 1D, g" (0n) = xy (12 0) we
obtain Citinas method [54]; for P = I,no A, G (x) =0(x € D)ym, z, =0 (n > 0),
) =g*(x) =0, g%x) = g' (F(x)) (x € D), we obtain methods considered
by Paviloiu in [158], [159]. Our choices of the operators because they include all
previous methods allow us to consider a wider class of problems.

We provide sufficient conditions for the convergence of iteration (4.3.2) to a lo-
cally unique solution x* (1) of equation (4.3.1) as well as several error bounds on the
distances [[xp41 (A) — x, (M) and [lx, () — x* W) (n = 0).

We can now state and prove the following semilocal convergence result:

Theorem 4.3.1. Let F, G, P, Q be as in the introduction. Assume:

(a) there exist xo (A) € D, Ag € A such that C := C (A) = A (xo (A), Lo) is invert-
ible. Set B = C~!;
(b) there exist nonnegative numbers a;, R, S, i = 1,2, ..., 15 such that:

IBP ([x,y; F1—=[v,w; FDIl < a1 (|lx = vl + [y —wl), (4.3.6)
”x ¢ /\)H <a HA )N F M)+ G h) —z () H (43.7)
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Hx — g, H < a3 HA ) TTFEENEGE ) -z |, 438

[ . —g' )| =@l = yI ase o, (439)

[ cn-gom|zasix-y aemn0, (43.10)

1B(OF (x,2) — QF (y, M)l <asllx—yl, (4.3.11)

1B (A (xpt1, 2)) (2 (K41, A) — A (X, A) (2 (X, M) < (4.3.12)
<ajlxpr1 —xull (n=0),

BP ([x,y; Gl - [g3 (x, 1), g (x,k);G])H < (4.3.13)
(et o).

‘x & H <ao A V)TN F@ D) +G o) -z 0|, @3.14)

x =gt )| = a0

‘A o, )"HF (6, 0) 4+ G (6, 1) — 2 (6, A) H (4.3.15)

g )= M| <anlx—yl anel01)), (4.3.16)
¢ 0 =gt )| =anlx =yl azelon, (4317)
IB(QG (x. %) — 0G (v W)l < a3 lx — v, (4.3.18)

B ([8" 0.2, 82 0.5 F] = [ 0. 200 82 o 20): F )| =

<as|r— 2ol (4.3.19)
and

1B ([¢ o %) 8" (0. 05 G] = [ (0. 300 8* (0. 20): G )| =
< as A = oll, (4.3.20)
forallv,w,x,y € U (xg, R), A€ U (X, S);
(c) the sequence {z (x, (X)), A)} (n > 0) is null for all . € U (1, S);

. . ; -
(d) for each fixed ). € U (Ao, S) there exists a minimum nonnegative number r* .= r;
satisfying

T (r*) <r* and r* <R (4.3.21)
withr :=r (),
bir + by
T. = —_—, 4.3.22
P = g (4322)
where
n:=n) > llxoA) —x1 M, (4.3.23)

by =a1(1+as+as)+ag (1 +ai +ap),
by = ag + a3 + ay,
b3 = ay (a2 + a3) + ag (a9 + ay) ,
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b(r):=b(r,s) =1—(ay (a4 +as) +ag (a1 +an))r — (ais +ais) S; (4.3.24)

(e) r*, R, S also satisfy:
b (r*) —b3r* >0, (4.3.25)

. lg" (xo ). 1) —x0 )| [g* (o), 1) —x0 (V|
r° > max , ,

1 —ay 1 —as
3 _ 4 _
[ o) ) =0 ] Jlg* o R) . 2 =0 (] } 4326
1 —aj I—an
ci=c(A)=d(r, R) <1, 4.3.27)
where by (e1 +e2) + b
1(e1 +e2 4
= 4.3.2
e ) = e —bs (er +e2) (4329
and
by = ag + ay3. (4.3.29)
Then
(i) For each fixed A € U (1o, S) the scalar sequence {t, (L)} (n > 0) generated by
() =0, t1(A)=n, (4.3.30)
by (ty (A) — ty—1 (M b
i1 ) =t G+ DA EDER 1) — 1,y )
n=>1, (4.3.31)
ap =, M) =1—>b3y, (n>0), (4.3.32)

Bn =B (A) =1—(a14+ais5)S
—lay (a4 + as) +ag (a1 +a)lt, (W) (n=0), (4.3.33)

and

Vo= n () = (ta () = a1 O By (1= 1), (4.3.34)

is monotonically increasing, bounded above by r* and lim, o t, (X)) = r*;

(ii) the inexact Steffensen-Aitken method generated by (4.3.2) is well defined, re-
mains in U (xg (A), r*) for all n > 0, and converges to a solution x* (1) €
U (xo (1), r*) of equation (4.3.1). Moreover if 7 = 0 then x* (A) is unique in
U (xo (A), R). Furthermore, the following estimates are true:

by llxn (W) = xn—1 W)l + b2

[Xn41 Q) —2xp M) =<

= X (A) = xn—1 (M)l

(n=1), (4.3.35)
[Xn+1 Q) = xp I < tapr (W) — 1, (1) (1 > 0), (4.3.36)
| ) =x* W) =r* =t W) (n=0), (4.3.37)
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where

o=, (M) =1=-0b3y, (n>0), (4.3.38)

Bni=B, (W) =1—(ais +ais) Ir — Aol
— [a1 (a4 + as) + ag (a1 + a)]llx, A) —xo W (n > 0), (4.3.39)

and

V= Vn ) = I ) —xmt DI B, (1= 1), (4.3.40)

Proof. (i) By (4.3.21) and (4.3.30) we deduce 0 < r9(A) < t; (&) < r*. Let us
assume 0 < 1,1 (M) <t (\) <r*fork = 1,2, ..., n. Then it follows from (4.3.30)
and (4.3.31) that 0 < # (A) < tx41 (1). Hence, the sequence {t, (A)} (n > 0) is
monotonically increasing. Moreover by (4.3.31) and the induction hypotheses, we
get in turn

bt ) <100+ 02—l o)
k1 (M) < 1 50 —bar k—1
S P
blr*+b2

< i ML
=R b
=T, () < r* (by (43.21)).

That is the sequence {t, (1)} (n > 0) is also bounded above by r*. Because for each
fixed A € U (19, S) r* is the minimum nonnegative number satisfying (4.3.21), it
follows that lim,,_, o £, (A) = r*.

(ii) By hypotheses (4.3.30), (4.3.23), and (4.3.22) it follows that

x1 (M) €U (xo),r").

Moreover from (4.3.26), we deduce g! (xo (L), 1), g% (xo (A1), L), g° (xo (1), 1),
gro),A) € U@o(),r*). Let us assume xgr1(X), g (xx (1), 1),
g W), A, 8 (e (W), A), g (W), 4) € U (xo(h), r*) fork =0,1,2, ..., n,
and that (4.3.36) is true for k = 1,2, ...,n (as it is true for k = 0 by (4.3.23) and
(4.3.30)). Then from (4.3.9) and (4.3.26) we get

4! o 69, = x0 00 <
= 8" e =gt oG )| + 8! (o G2 —x0 ()
< arllxe ) = x0 Wl + ] o (1), 2) = x0 G s < 7™,
That is, g' (x, X)), 1) € U (xo(r),r*). Similarly, we obtain g2 (x, (A), 1),

g (xa (W), A), g (x, (M), 1) € U(xo(r),r). Using (43.6), (4.3.9), (4.3.10),
(4.3.13), (4.3.16), (4.3.17), (4.3.19), and (4.3.20), we obtain
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HBP ([gl (56 0, 1), g7 (i (1), 25 F
+[88 a2 g (1), 6]
& o) 30 8 o 1) 200 F]
[ G0t 2008t 0 0020 G]) H

=<

BP <[g1 (k (R),A), 8% (ke (M), A) 5 F]
—~ [gl (x0 (), 20), &% (x0 (M) , A) ; F]) H
+ HBP ([g3 (ke (), 2, g o (M), 13 G]
—~ [g3 (x0 (1), h0) , ¥ (xo (V) , 20); G]) H

=<

BP <[g1 (6 (). 7). 82 (k0 2): F |
¢ 0G0 g2 o x)]) H

+ HBP ([gl (¥0 (). 2. g% (0 (1) . 4): F |
— &' o120 8% o ()20 F]) ”

+ HBP ([g3 (56 0, 2) 8" @ (1), )5 G|
& .2 8 (xo (A),M])H

+ HBP ([g3 (¥0 (). 7). 8" (10 (1) 2): G

£ o), 20, 8 o ) 20 G]) H

< ay (a4 + as) |xp (A) — xo M) | + ag |A — Aol
+ag (ar1 + ap) llxx (&) —xo M| +ais 1A — Aol
< [a1 (a4 + as) + ag (a11 + a12)]r* + (a14 + ais) S < 1 by (4.3.25)
It follows from the Banach lemma on invertible operators that A (x; (1), A) is invert-

ible and B
”A G 0 0! 3—1” < Bis < 8 (4.3.41)

where
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Vi = (@Bx) | and & = (@B (k> 0).
Using (4.3.2) we obtain the approximation
Xpa1 (0) — xp () =
- (A G (), 07! B_l) B {[PF Gk (), A) — PF (xp_1 (1), %)
= Plg! i), 8% (i ()5 F | G () = ket G|
+[OF (W), 1) = OF (xx—1 (W), ]+ [A (e (W), 4) (2 (e (1) 4 2))
— A (xg—1 (A, A) (z (xp—1 (1), )»))] + [PG kM), L) — PG (x (M), 1)
= P[g? i) 8" e (), 25 6 () = et 6]
+[0G (xk (1), 1) — QG (xk—1 (1), 1] } k=>1). (4.3.42)
By (4.3.6) we obtain
|BPF (6.2 = PF ey ), 2)
—Pe" (k0. 1), 8 ()1 )] () = xe-)|
< ”BP ([tk-1 G . xc () : F))
8" et 6923 82 Gt 3,205 F | o ) = 31 G
< ar (|1 ) = 8" Gt G0
+ ka ) — g% (1 (1), 2) H) et O]l 4.3.43)

Moreover from (4.3.7), (4.3.8), (4.3.9), and (4.3.10), we obtain the estimates

1 0 = 8" et 0 0| =l 69 = 3 I+ [ ) = 8 G ), 20
< et @ H =g i 0|
=< ek () = xk—1 M| + a2 lxe41 (A) — xe Wl

+ag llxp (A) — x—1 M, (4.3.44)

) = 8 (eemr 0,0
= o 00 = &2 e o | + |8 (e 0.2 = g2 (et 600

< a3 [lxi1 (A) — xx W+ as e Q) = xe—1 D] - (4.3.45)
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Hence from (4.3.43), (4.3.44), and (4.3.45), we get
|BPCF (G2 = F (et G0, 2)

~[g! G n). g 0 & F (e 69 = et )|

< ay (1 +ag+as) lxp W) — xe—1 W)
+ay (a2 + a3) [xes1 ) — x6 Q) e B) — xk—1 WD (4.3.46)
As in (4.3.46) but using (4.3.13), (4.3.14), (4.3.15), (4.3.16), and (4.3.17), we obtain

|BPG (i), ) = G (ximr (1), 2)

[ G2 8t e ) 1) G ) = w1 )|

< ag (1+ar +an) I () —xe1 W
+ ag (a9 + a10) llxk1 (A) — xx )| llxx () — xk—1 V). (4.3.47)

Furthermore from (4.3.11), (4.3.12), and (4.3.18), we get respectively

1B(QF (xx (1), 4) = QF (xg—1 (1), M) < ap llxx (A) —xx—1 (W], (4.3.48)
1B (A (xk) (W), 2) (z (xx (M), 1)) — A (xx—1 (A), A) (2 (k-1 (1), M)l
= a7 llxe ) — xe—1 V| (4.3.49)

and

1B (QG (xk (), 2) = QG (xk—1 (1), M) = a13 [lxk (A) — xx—1 (W[ (4.3.50)

Finally from (4.3.31), (4.3.41), (4.3.42), (4.3.46)—(4.3.50), we deduce that estimates
(4.3.35) and (4.3.36) are true. By (4.3.36) and part (i) it follows that for each fixed
A € U (ro, S) iteration {x,, (A)} (n > 0) is Cauchy in a Banach space E and as such it
converges to some x* (A) € U (xg (1), r*). Using hypothesis (c) and letting n — oo
in (4.3.2), we get F (x* (1), A) + G (x* (L), 1) = 0. That is, x* (1) is a solution
of equation (4.3.1). Estimate (4.3.37) follows immediately from (4.3.36) by using
standard majorization techniques.

To show uniqueness when z = 0, let us assume y* (1) € U (xo (1), R) is a
solution of equation (4.3.1). Then from (4.3.2) we get

X1 ) = Y5 ) = x0 (W) = y* ) = Aty ), V) [(F Gea (1), 1)
—F(y" M), 2)+ (G (W), 1) =G (" (M), 4)]. 43.51)
Analyzing the right-hand side of (4.3.51) as in (4.3.42) with y* () “replacing” x; (1)
and x, (1) “replacing” xx_1 (1), we get
|nrt = y* W) e fxa )=y W] <+ <" xo ) — y*| < "R
(4.3.52)
By letting n — oo in (4.3.52) and using (4.3.27) we get lim;,, o0 X,+1 (X)) = y* (1)

for each fixed & € U (Ao, ). By the uniqueness of the limit of the sequence {x, (1)}
(n > 0) we deduce x* (A) = y* (A).
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Remark 4.3.2. (1) Condition (4.3.6) implies that F (x (1), A) is differentiable on
D, whereas condition (4.3.13) does not necessarily imply the differentiability of
G((x(),r)onD.

(2) Inequalities (4.3.21), (4.3.23), (4.3.25), (4.3.26), and (4.3.27) will determine
r*, R,and S.

B)Ifay+as < 1l,a3+as < 1,a9+aj; < 1landajg+ap < 1forr* #£0,
condition (4.3.26) is satisfied. Indeed from (4.3.7) we have

6! o Ga. 3 = x0 G| = @ i ) = x0 I < @ar”,
and from (4.3.26) we must have
¢! oG —xo G| = = anr

It suffices to show arr* < (1 —aq) or ap + a4 < 1 (r* #0), which is true by
hypothesis. Similarly, we can argue for the rest.

4.4 Computing zeros of operator satisfying autonomous
differential equations

In this section, we are concerned with the problem of approximating a locally unique
solution x™* of equation
F(x)=0, 4.4.1)

where F' is a Fréchet-differentiable operator defined on an open convex subset D of
a Banach space X with values in a Banach space Y.
We use the Newton-like method:

Xnp1 = X0 — F' ) ' F (xy) (n>0) (4.4.2)

to generate a sequence approximating x*.
Here F' (x) € L (X, Y) denotes the Fréchet derivative.
We are interested in the case when:

Yn =hnxp+ (A =2An)zn  (n=0) (4.4.3)
where,
M €[0,1], (n>0) (4.4.4)
n = x* (4.4.5)
or
in=xn (nz0), (4.4.6)

or other suitable choice [170].
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We provide a local and a semilocal convergence analysis for method (4.4.2)
which compare favorably with earlier results [170], and under the same computa-
tional cost.

Convergence for method (4.4.2) for z,, given by (4.4.5) and A, =0 (n > 0)

We can show the following local result:

Theorem 4.4.1. Let F: D C X — Y be a Fréchet-differentiable operator. Assume:
there exists a solution x* of equation

F (x) = 0 such that F' (x*)_l e L, X)

and
H F(x)~! H < b 4.47)
|F'(x) = F' (x*)| < Lo||x —x*|| forall xeD, (44.8)
and
U (x*,r9) € D, withrg = 2 (4.4.9)
- bLg

Then sequence {x,} (n > 0) generated by Newton-like method (4.4.2) is well
defined remains in U (x*, ro) for all n > 0, and converges to x* provided that xy €
U (x*, rp).

Moreover the following estimates hold for all n > 0:

| —x*| <63 " xo—x*| m=1), (4.4.10)

where
6o = $bLo |xo — x*| . (4.4.11)

Proof. By (4.4.2) and F (x*) = 0 we get for all n > 0:
. 1
Xpp1 — X* = —F' (x*)” / (F’ (x* +1 (xp — x%))
0

= F' () (= x) ] dr (44.12)

from which it follows
st — x*|| < 3bLo [, — x*|? (4.4.13)

from which (4.4.10) follows.
By (4.4.9) and (4.4.11), 6y € [0, 1). Hence it follows from (4.4.10) that x, €
U (x*,rg) (n>0)and
lim x, = x* (4.4.14)

n—0o0
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Method (4.4.2) has the advantages of the quadratic convergence of NK method
and the simplicity of the modified Newton’s method, as the operator F’ " is
computed only once.

Moreover in order for us to compare Theorem 4.4.1 with earlier results, consider
the condition

|F'x)—F (| <Llx—yl forall xeD (4.4.15)

used in [170] instead of (4.4.8). The corresponding radius of convergence is given by

2
= —. 4.4.16
TR=3T ( )
Because
Lo<L 4.4.17)
holds in general, we obtain
rr = ro- (4.4.18)

Furthermore in case strict inequality holds in (4.4.17), so it does in (4.4.18) (see
Chapter 2). Below we give an example of a case where strict inequality holds in
(4.4.17) and (4.4.18).

Example 4.4.2. Let X =Y = R, D = U (0, 1) and define F on D by
F(x)=¢e" —1. 4.4.19)

Note that (4.4.19) satisfies (4.4.14) for T (x) = x + 1. Using (4.4.7), (4.4.8), (4.4.9),
(4.4.15), and (4.4.16), we obtain

b=1, Lop=e—1, L=c¢, (4.4.20)
ro = 1.163953414, 4.4.21)

and
rr = .735758882. (4.4.22)

In order to keep the iterates inside D we can restrict ro and choose

ro=1. (4.4.23)
In any case (4.4.17) and (4.4.18) holds as a strict inequalities.
We can show the following global result:

Theorem 4.4.3. Let F: X — Y be Fréchet-differentiable operator, and G a continu-
ous operator from Y into Y. Assume:

condition (4.4.14) holds;
G (0)~' e L (Y, X) so that (4.4.7) holds;
F(x) <c forallx € X; (4.4.24)
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G 0) -G @)l <aollzll, forall z€Y, (4.4.25)

and
ho = apgbc < 1. (4.4.26)

Then, sequence {x,} (n > 0) generated by method (4.4.2) is well defined and con-
verges to a unique solution x* of equation F (x) = 0.
Moreover the following estimates hold for all n > 0:

n

h
e —x*) < 5 _Oho Ixi = xol (2 =0). (4.4.27)

Proof. 1t follows from the contraction mapping principle by using (4.4.25), (4.4.26)
instead of
IG(w)—G @) <alv—z| forall v,zeY (4.4.28)

and
h=abc < 1. (4.4.29)

Remark 4.4.4. If F’ is L Lipschitz continuous in a ball centered at x*, then the
convergence of method (4.4.2) will be quadratic as soon as

bLg |xo — x*|| <2 (4.4.30)
holds with x¢ replaced by an iterate x,, sufficiently close to x*.

Remark 4.4.5. 1f (4.4.25) is replaced by the stronger (4.4.28), Theorem 4.4.3 reduces
to Theorem 2 in [170]. Otherwise our Theorem is weaker than Theorem 2 in [170]
as

ap < a (4.4.31)

holds in general.
We note that if (4.4.25) holds and
I1F (x) = F (xo) |l = yollx — xoll (4.4.32)
then

IF I < I1F(x) = F (xo)ll + [IF (xo)l
= vollx —xoll + 1 F (xo) |l - (4.4.33)

Let r = ||x — xgo||, and define
P (r) = aob (I F (xo)ll + yor) . (4.4.34)

If P(0) = aopb || F (x0)|| < 1, then as in Theorem 3 in [170, p. 114] inequality
(4.4.26) and the contraction mapping principle we obtain the following semilocal
result:
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Theorem 4.4.6. If
g =(1—aob |IF (0))? ~ 4baoyo |G O F o) 0, 4439)

then a solution x* of equation
Fx)=0

exists in U (xq, r1) , and is unique in U (xq, r2), where

_ l=apbllF(x0)ll—/q
r o= % (4.4.36)
and
ry = Fa%\(l)io(xo)ll. (4.4.37)

Remark 4.4.7. Theorem 4.4.6 reduces to Theorem 3 in [170, p. 114] if (4.4.25) and
(4.4.32) are replaced by the stronger (4.4.28) and

IF @)= FWI=yllx—yl (4.4.38)

respectively. Otherwise our Theorem is weaker than Theorem 3 in [170].

4.5 The method of tangent hyperbolas

In this section, we are concerned with the problem of approximating a locally unique
solution x* of equation
F(x) =0, (4.5.1)

where F' is a twice-Fréchet-differentiable operator on an open convex subset D of a
Banach space X with values in a Banach space Y.
The method of tangent hyperbolas (Halley)

-1
X1 =Xy — {1 - %FHF”(xn)rnF(xn)} T F ().
T, =F(x,)"! (n > 0) (4.5.2)

is one of the best known cubically convergent iterative procedures for solving non-
linear equations like (4.5.1).

Here we provide a semilocal convergence analysis based on Lipschitz and center-
Lipschitz conditions on the first and second Fréchet derivatives of F. This way, ex-
isting convergence conditions are finer and the information on the location of the
solution more precise than before.

We need the following results on majorizing sequences.

Theorem 4.5.1. Let n, ¢;,i = 0, 1, ..., 3 be nonnegative parameters. Define scalar
sequence {t,} (n > 0) by

2
=0 = 2_20,7 =100, 42 = Intl = bup1Cnr1 M, (4.5.3)
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where,

_ Lo+Loty
cp = (1 —21ty) 1, dy =Ly + loty, ap = %(10_;1?’:)2 Nns

b, = (- an)_lv Nn+1 = %dncnnn(tn+l - tn)2 + %63(%—&-1 - tn)3v

and parameter o by

— | L bot2tomo , 1 2
o= [2 =2t + 3€3] No-

Assume:
lon < 1,
201m0 < 1,
%%no <1,
and

o < min {1, (1 = 2¢yn0) [ 1 = § L2m, o[

Then, sequence {t,} (n > 0) is nondecreasing, bounded above by
= 2no,

and converges to t* such that
0<t"<r*.

Moreover, the following estimates hold for all n > 0:

+1
1 1)"
0<tyy2—tht1 < §(tn+l — 1) < <§) 1no.

Proof. Using induction on k we show:

1 Lot 4L 1 2
[Q%ﬂ,f’nk(tkﬂ — 1) + 303(te1 — 1) ]Ck+lbk+l <1,

fky1 — e >0,
1 Lot+Colkti
5 =Kt <1,
2 U—tyter? et
and
I —£itg41 > 0.

4.5.4)
4.5.5)

(4.5.6)

4.5.7)
(4.5.8)

(4.5.9)

(4.5.10)

(4.5.11)

(4.5.12)

(4.5.13)

(4.5.14)
(4.5.15)
(4.5.16)

(4.5.17)

For k = 0 (4.5.14)~(4.5.17) hold by (4.5.3) and (4.5.7)~(4.5.9). By (4.5.3) we then

get
1
n—t <5 —1) <50 — ).

(4.5.18)

Let us assume (4.5.14)—(4.5.17)) hold for all k < n + 1. We can easily obtain from

(4.5.3) that

k+1

- j) L\ o

el < — =7 M0 =2 1—(§> no <t
2

(4.5.19)
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and the left-hand side of (4.5.14) is bounded above by one (see (4.5.9) and (4.5.10)).
That completes the induction for (4.5.14). Using (4.5.3) we get

| k+2 o
a2 =2(1=(3) [mo=r, (4.5.20)

which shows (4.5.17) and (4.5.16) (by (4.5.14) and as n; < %770, i > 1). Finally
s — it 2 0 4521

follows from (4.5.3), (4.5.14), (4.5.16), and (4.5.17).

The induction for (4.5.14)—(4.5.17) is now complete. Hence, sequence {z,} (n >
0) is bounded above by t**, nondecreasing and as such it converges to some #* satis-
fying (4.5.12).

Similarly, we show the following result on majorizing sequences.

Theorem 4.5.2. Let n, £y, £>, €3 be nonnegative parameters. Define scalar sequence
{va} (n > 0) by

2n

1 111
v =0, v=1ny= T gy U T U = By 1 Cpg1 Mg (4.5.22)
where,
1) -1 1 2 B

ci=[1-u(0+2u)] = Jaleini () = -a

(4.5.23)
1 1

77r11+1 = Zd,%c},n; (Vns1 — vn)* + 653(1);14—1 — )%, (4.5.24)

and parameter o' by

) 1
ol = | L fot2bu S+ 20| vl (4.5.25)
2 1-— 25001 — ZZQUI 3

Assume:
2o + Lov))vy < 1, (4.5.26)
1 Lo + 20
S fotshu (4.5.27)
4120 — 2L v7
and

1 . 5 1 Lo + 24501
a <minql, (I —2¢gv; —26v)) |1 — = 75 V1 . (4.5.28)
2 (1 —=2gvy — 2E2v1)2
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Then, sequence {v,} (n > 0) is nondecreasing, bounded above by
v =2y, (4.5.29)

and converges to v* such that
0<v* <v*™. (4.5.30)

Moreover the following estimates hold for alln > 0
1 1 n+1
0= vz = vt = 3 =) = (3) o 4531)

We can show the main semilocal convergence theorem for method (4.5.2).

Theorem 4.5.3. Let F: D € X — Y be a twice Fréchet-differentiable operator.
Assume: there exist a point xo € D and nonnegative parameters n, Lo, £1, €2, £3
such that

F'(xo)™' e L(Y, X), (4.5.32)
IF' (x0) ™" F(x0) || <, (4.5.33)
IF'(x0) ™" F" (x0) || < Lo (4.5.34)
IF' (xp) ™" [F'(x) = F'(xo)] | < €1llx — xoll, (4.5.35)
IF' (x) ™! [F"(x) = F"(x)] Il < €2llx — xo| (4.5.36)

and
IF' (xo) ™" [F"(x) = F"W] || < &3llx = yll forall x,y € D. (4.5.37)
Moreover hypotheses of Theorem 4.5.1 hold, and
Ul(xg,t*) C D. (4.5.38)

Then sequence {xn} (n = 0) generated by method of tangent hyperbolas (4.5.2) is
well defined, remains in U (xq, t*) for all n > 0 and converges to a solution x* €

(x0, t*) of equation F(x) = 0. Moreover the following estimates hold for all n >
0:
lxn+1 = Xl < tng1 — 1y (4.5.39)

and
lxn —x*|| <t — 1. (4.5.40)

Furthermore, if there exists R > t* such that
U(xo, R) € D, 4.5.41)

and
L (t"+ R) <2, (4.5.42)

the solution x* is unique in U (xqg, R).
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Proof. Let us prove that

llxk1 — xell < teg1 — s (4.5.43)
and . .
U(xpy1, 1" —tiy1) S U, t* — 1) forall k> 0. (4.5.44)
For every z € U(xy, t* —t1),
lz —xoll < llz = x1ll + llxg —xoll <™ —t1 + 11 =1" — 10, (4.5.45)

implies z € U (xg, t* — ). Note also that

-1
X1 —xoll = H[l - %F/(xo)’]F”(xo)F’(xo)*‘F(xo)] F(x0) "' F (x0)

| F(x0) ™ F (x0) |

- U
T 1= [P a0 TP a0 [F o) Feo)|

- %fon

=Tp =< no-

Because also
I = xoll = | F'ero) ™ Feo)| <n = (4.5.46)
(4.5.43) and (4.5.44) hold for k = 0. Given they hold forn =0, 1, ..., k, then

k+1 k+1

leieet = xoll < 3l = xiotll < D (0 = tic1) = trst —f0 = i1, (45.47)
i=1 i=1

and
Xk + 0 (oxp1 — xx) —xoll <t +0(tkp1 — 1) < 1™ 0 €0, 1]. (4.5.48)
It follows from (4.5.35),
| /o)™ [F i) = Fo)] | = &l = ol
< liger <200 < 1 (by (45.8)), (4.5.49)

and the Banach Lemma on invertible operators that the inverse F’(x;,1)~! exists,
and

[P Faol < 1= tillvn —xoll] < 0 tugn™. @5.50)
Moreover, we have the estimates
| | = | Floo ™! [0 = F/eo)l | + | 7o) P o)
< Lallxe = voll + to = di < d, (4551)
[P0 Feo | < (4.5.52)
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|[F/e0 Foo)| [Fao™ o | [Freo™ Fao ] [Feo™ Fao]|

_ (Lallxk — xoll + €o) 7y

TR 2 < 2ap <2, (4.5.53)

the inverse of [1 _ %F/(xk)’lF”(xk)F/(xk)’lF(xk)] exists, and

<hr=U-a) ' < —a)!
(4.5.54)

1/ 1 / 1 -1
H 1= 5 F o™ P oo™ P |

Furthermore using the expression from (4.5.2) for xj4+1 — xx, we have

F(x) + F' () (g — x0) + 5 F () o — x)°
= TF' ) F ()T F ) F o) T F (i) (e — x0)?, (4.5.55)

so that

| F'eo) ™ P

1
F’(xo)—l{ZF”(me’(xkrlF”(wa’(xk)—lF(xk)<xk+1 — x)?

1
+ f (1 = O)F" (e + 0 (ki1 — X)) (xi 1 — xi)>
0

1 7 2
- EF () (X1 — X))

< 2 |Feo e et Feo| |Fao ! Fao| e e

+ f (1= 0) | F'Gco)™ [F G + 0 —30)
0
= F'o] | lvees = xel?do
1-
= 7 kT [t — el + —IIXk+1 =l =Ty < mern. (4.5.56)

Using (4.5.2), (4.5.32)~(4.5.37), we get

vz = xitl < | [1 = 3F Goern) ™ F (o) F' (o)™

@) F e ™ F o) F oo Faan] H
N F T F o) |Freo o)

< bk 1Ck 1M1 < Dkt 1Ck+1Mk+1 = lit2 — it 1 (4.5.57)
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Xhich together with (4.5.43) show (4.5.39) for all » > 0. Thus for every z €
U (X2, ™ — tr42), we have

lz = xkv1ll < Nz = xka2ll + IxXk+2 — Xpp1 |l
<t =2+ g — ter =1 — fig g (4.5.58)
That is,
z € U(Xg41, - tet1)- (4.5.59)

Estimates (4.5.57) and (4.5.59) imply that (4.5.43) and (4.5.44) hold forn = k + 1.
By induction the proof of (4.5.43) and (4.5.44) is completed.

Theorem 4.5.1 implies {#,} (n > 0) is a Cauchy sequence. From (4.5.43) and
(4.5.44) {x,} (n = 0) becomes a Cauchy sequence, too, and as such it converges to
some x* € U (xg, t*) (as U (xo, t*) is a closed set) such that

xx —x*|| <% — 1. (4.5.60)

The combination of (4.5.43) and (4.5.60) yields F (x*) = 0. Finally to show unique-
ness let y* be a solution of equation F(x) = 0 in U (xg, R). It follows from (4.5.35),
the estimate

1
F'(xo) ™' /0 [F'* +60(* — y) — F'(x0)] df

1
- 51/0 1" + 6™ — 3*) — xo]|| d6
1
< 61/0 [011x* — xoll + (1 — 0)[ly* — xoll] d6

< %l(t* +R) < 1, (by (4.5.42)), (4.5.61)

and the Banach Lemma on invertible operators that linear operator

1
L= f F'(y* +6(x* — y*)do (4.5.62)
0
is invertible.
Using the identity
0=F(x*)— F(y*) = L(x* —y"), (4.5.63)
we deduce
x* — y*

Similarly, we show the result:
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Theorem 4.54. Let F: D € X — Y be a twice Fréchet-differentiable operator.
Assume there exist a point xo € D and nonnegative parameters n, Lo, £2, {3 such
that

F'(xo)~" e L(Y, X),

| F'o ™ Floo)| = .

| o™ Frao)| < b,

| o™ [F/() = F'o)] | < €2l = xall,
and

| Fao™ [F'e0 = F'0)]| < Gl =yl forall x,y € D.
Moreover, hypotheses of Theorem 4.5.2 hold, and

U(xg, v¥) C D. (4.5.64)

Then the sequence {x,} (n > 0) generated by method of tangent hyperbolas (4.5.2)
is well defined, remains in U(xo, v¥) for all n > 0 and converges to a solution
x* € Ul(xo, v*) of equation F(x) = 0. Moreover the following estimates hold for all
n>0:

X1 = Xnll < Vpt1 — vn, (4.5.65)

and
xp — x| < v* — vy. (4.5.66)

Furthermore, if there exists Ry > v* such that
U(xg, R1)) C D, 4.5.67)

and

2

the solution x* is unique in U (xg, Ry).

1
Yy=3 [ﬁo + %(Rl + v*)] (R +v*) €[0,1], (4.5.68)

Proof. The computation of the inverses F’ ()Y, xx € Ulxo, v*) is carried out
using the identity

I — F'(x0) " F'(xx)
= —F'(x0) " [F'(xx) — F'(x) — F" (x0) (xk — x0) + F” (x0) (x — x0)]
1
_ /0 CF o) [P xo + 0Cr — x0)] — F"(x0)) d6 (e — x0)

— F'(x0) ' F" (x0) (xg — x0). (4.5.69)
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By (4.5.34), (4.5.36), and (4.5.9) we get

1
I — F'(xo) ' F'(xp)l < /0 £:0d0||xi — xol|* + €ollxx — xoll
< Lor0f + tove < $02(2n0)* + Lo(2no) <1 (4.5.70)

(by (4.5.26)). Hence
1P/ 0™ Foo)ll = 2 = [1= (3eallxe = xoll? + Collxe = xoll) | =< e
(4.5.71)
The rest of the proof until the uniqueness part is identical to Theorem 4.5.3.
Let y* be a solution of equation F(x) = 0 in U(xg, R}). For z € U(xg, Ry) we
have

1
F'(x0)™"! fo F' (x0 + 61 (z — x0))(z — x0)d6)

|0 [Fl@) - Fa]| =

1
F'(x)™! fo [F"(x0 4 61(z — x0)) — F"(x0)] 6

< Iz = xol
+ |Fe0 ™ Fro)| - Iz = xol
: 2 2] 2
<6 | =l + olz = xoll = Sl = xoll +lolle ol @4572)
Set
1
L=/ F'(y* + 0% — y*))do. (4.5.73)
0

Then we have for z = y* + 6 (x* — y*), 6 € [0, 1]:
lz—xoll < A=0)[ly* —xoll+0llx* —x0ll < 1=0)R1+6v* < (1-0)R1+6R; = Ry.

Hence, we get
/ —1 ’ ! £ 2
|Feo™ [L=Feol| = [ | F 1z =50l + ollz = xoll | a8
0
£ yé
< g R+ 4+ 2 (Ri+0°)
=y €0, 1]. 4.5.74)

By the Banach Lemma on invertible operators and (4.5.74) L is invertible.
Using the identity

F(x™) = F(y") = L(x" —y"), (4.5.75)

we get
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Remark 4.5.5. It can easily be seen by using induction on 7 that if
Lo+ omo < L1, (4.5.76)

then hypotheses of Theorem 4.5.1 imply those of Theorem 4.5.2 and under the rest
of the hypotheses

Uptl — Uy <Ipp1 — 8 (m>1), 4.5.77)
v <ty (m=>1), 4.5.78)

and
vt <t (4.5.79)

Moreover, if equality holds in (4.5.76), then (4.5.77)—-(4.5.79) also hold as equalities.
Furthermore if

Lo+ lono > L1, (4.5.80)

then
Int1 —In < Vpp1 — vy (0 >1), (4.5.81)
h<v, (m=1), (4.5.82)

and
r* <ot (4.5.83)

Remark 4.5.6. In order for us to compare our results with earlier ones in [123], [211]
define sequences {3, }, {Mp}, {Nn}, {Bn} by

do=mn, Mo=4~Ly, No=1{3, (4.5.84)
1 71
Op = (1 - EMnsn) s Bu=0uby,  hy=MyB,, (4.5.85)
N, 1
En = an, Gu(h) = h+ Senh?, (4.5.86)
Sy2l = ( &non + ) / (I = @n(hy)), (4.5.87)
hy)s2h?
2= D)3y (4.5.88)
1 —¢p(hy)’
M, (h
(Sn—H = thn(sns Mn+1 = %, (4589)
n n
N,
Npp1 = ———, 4.5.90
R T (4.5.90)

function f by
1 1
f@) = 663# + Eﬁotz —t+4n 4.5.91)
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and sequence {w,} (n > 0) by

—1
wo =0, wipr = wa—| 1= £/ ) f(wa)/2f wa)? | Fwa)/F (wn). (45.92)

Assume:

oMy < 2, (4.5.93)
¢o(ho) < 1, (4.5.94)
<1, (4.5.95)
U(xo,r) S D, r= % (4.5.96)
1 —sqhg
or equation
f()=0 (4.5.97)

has one negative and two positive roots w*, w** such that w* < w** and U (xo, w*)
C D or equivalently

0 +403 — 0o,/ 63 + 243
n =
3¢3(€0 + /€5 + 2¢3)

630, (zon <Llif 6= 0), (4.5.98)

and -
U (xo, w*) C D. (4.5.99)

Then, the method of tangent parabolas {x,} (n > 0) generated by (4.5.2) is
well defined, remains in U(xo, w™) for all n > 0 and converges to a solution x* €
U (xp, w*) of equation F(x) = 0. Moreover, the following estimates hold for all
n>0:

1 — Xp |l < Wot1 — Wy, (4.5.100)

and
xp — x| < w* — w,. (4.5.101)

Furthermore, if: w* < w** the solution is unique in U (x¢, w**) otherwise the solu-
tion is unique in U (xo, w*).
In general we have:
£y < {3. (4.5.102)

If strict inequality holds in (4.5.102) using induction on n we can easily show under
the hypotheses of Theorem 4.5.4 and (4.5.84)—(4.5.92), (4.5.98), (4.5.99) we get

Un+l — Up < Wp41 — Wy (n>1), (4.5.103)
vy, <w,, @m@=>1) (4.5.104)

and
v < w*. (4.5.105)

That is our Theorem 4.5.4 provides more precise error bunds and a better information
on the location of the solution x*. In the case of £, = £3, Theorem 4.5.4 reduces to
earlier ones mentioned in this remark.

We complete this study with one simple example:
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Example 4.5.7. Let Lo = €» = 0,1 = 1 and £3 = 1. Then, (4.5.99) is violated since

2
n=1-> “/7_ (4.5.106)
Hence the results in [208] cannot be used. However all hypotheses of Theorems

4.5.2,4.5.4 are satisfied, as (4.5.26)—(4.5.28) hold.

Our idea of using a combination of Lipschitz and center-Lipschitz in the study
of iterative processes instead of only Lipschitz conditions, although very recent, has
already picked up by several authors [4], [47], [172]. Here in the remaining sections
of this chapter we report the results in [47], [172], [4] without proofs.

4.6 A modified secant method and function optimization

In this section, we are concerned with the problem of approximating a locally unique
solution x* of nonlinear equation

F'(x) =0, 4.6.1)

where F is a twice differentiable function defined on a convex subset (open or closed)
D of the real R or complex space C.
This study is important especially in the optimization of functions.
Indeed the well-known K-T condition states that if F is differentiable, then the
optimal solution of
min F (x)

is a solution of equation (4.6.1) [154].
Recently [47] the modified secant method

_ Xy, Xp—
gl = 2 R [ 31 , (n=0), (x2,x_1,x0 € D) (4.62)
2 2 [on, Xn—1, Xn—2]

was proposed to approximate x* as an alternative to the NK method

F’ (xn)
F" (xn)’

(n>0), (xo € D), (4.6.3)

Xn+1 = Xn —

or the secant method

_ Xn — Xn—1
F' (xn) — F' (xu—1)

Xp+l = Xy , m>0), (x_1,x0 € D), 4.6.4)
where [x, v], [x, y, z] denote divide differences of order one and two respectively
for function F (see Section 1.2).

Methods (4.6.3) and (4.6.4) are being avoided in general because of the evalua-
tions required on the first and second derivatives of F.

We can state the following local convergence result for the method (4.6.2):
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Theorem 4.6.1. Let x* be a solution of equation (4.6.1) such that F" (x*) # 0.
Moreover, assume:
(a) there exist nondecreasing functions v, w such that

F" () (F7 @) = F" )| s vl =y, Vx,y e D, (4.6.5)

and

P/ () (F7 0 = F7 ()| v (e = 2*]) Vxe D, (4.6.6)

(b) equation

1 1 pl
[ d-nv(d —t)r)dt+/ / A=Dv(A=s)(A—=0)r)dsdt +w () =1
0 o Jo
has a minimum positive rq such that
w(rg) < 1.

(c)U(x*,r1) €D,
where ry is the solution of equation

1
/ w(t)dt =r.
0

Then sequence {x,} generated by method (4.6.2) starting from any initial points
X_2,x_1,x0 € U (x*, ro) is well defined, remains in U (x*, ry) for all n > 0 and
converges to the unique solution x* of equation (4.6.1) in U (x*, r1) and ro < ry.

Set

e, = |x,1 —x*, n>=2.
Moreover, the following error estimates hold for all n > 0:
an
E’

e < ¢,

entl =

where
1 pl
an:/ / I—-tvs(d—=—1t)e,_1+ (1 —=s)(1—1)e,—2)dsdt
0o Jo
1 pl
+en_1/ / 1—-—0v({(1—=s)1—1t)e,—p)dsdt,
o Jo
1 1
bn=1—2/f(1—t)w(ten+s(1—t)en_1+(1—s)(1—t)e,,_2)dsdt
0o JO

€l
¢ = max {eo, —]
A
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k_a+Va2+4b
=

0 = max {ep, e_1,e_2},
A=D1 -n6)ydi
‘" 1 —w (ro)

and

y_ Dy (=Dv (=9 (1 =00 dsds
- 1w (ro) ‘

We complete this section with an example dealing with the Holder continuous
case.

Example 4.6.2. Let us consider the scalar function

4 1
Fx)= Bx% - Exz, forall x € D = [.81,6.25].

Then we get x* = % F” (x*) = % #£0,

)F” () (F" ) = F” (y))) =2[xz—y2

=

1 1
X2 —y2

1
2>2

1

1 1] 1 1Nz
fz(xz_yz x2+y2)
=2)x —y|2,
forall x, y € D, and
1 1
1 ox\—L "% 1 321 32
F @) (P o - P ()| =2kt = 5] =5 4.6.7)
But as
aler Z 3 <ty
Y

3\ 4
§(x5—§) , forallx € D.
Therefore, (4.6.7) can be written as

)FU (X*)_l (F" (x) = F”(y))‘ <|x —x*|%, forall x € D.
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That is, according to (4.6.5) and (4.6.6), we can set v (t) = ZI% and w (t) = t%.
Then we obtain

9
ro= - =.183673...
4

and

However, using only condition (4.6.5) we obtain
ro = .09 < rgp.

That is, new condition (4.6.6) helps us enlarge the radius of convergence of method
(4.6.4).
4.7 Local convergence of a King-Werner-type method

In this section, we are concerned with the problem of approximating a locally unique
solution x* of equation (2.1.1), using the King-Werner method [127], [207], [43]

—1
Xpp1 = xq — F' <x" ;FZ") F (xn) 4.7.1)

Xn + Zn
2

-1
Znt1 = X1 — F ( ) F (xp41), (n=0), (x0,20 € D).

Although the number of function evaluations increases by one when compared with
the NK method (2.1.3), the convergence order is raised from 2 to 1 + V2 [127]. The
convergence of this method has been examined under several conditions in [127],
[207], [43].

Here a local convergence analysis is provided that compares favorably with the
ones mentioned above.

We state the following local convergence theorem for method (4.7.1):

Theorem 4.7.1. [172] Assume:
(a) there exists a solution x* of equation (2.1.1) such that F' (x*) € L (Y, X).
(b) There exist nondecreasing functions v and w such that

[F7 () (F ) - F )| svlr =y, veyen, @72

and

[P ()T 0 = F )| < v (-]

), VxeD, (4.7.3)

(¢) equation

1
q(r)/ W[ +1q (M) r1di +w (r) = 1
0
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has a minimum zero ro and
w(rg) <1,

fef(i- )

1—w(r) ’

where

q(r)=

(d) U (x*,rg) C D.

Then sequence {x,} generated by King-Werner-type method (4.7.1) is well de-
fined, remains in U (x*,rg) for all n > 0, and converges to x* provided that
x0, 20 € U (x*, rp).

Moreover, the following error estimates hold for all n > 0:

it =] < 2 |

e
”Zn+l X ” = by ||xn+1

- —t

! 1
an= [ (|3 b =214 5 b =)
0

bnzl_w<llxn—x*II42rllzn—x |I>’

1
on= [0 (5l =l g Jow =5t s =] )

We complete this section with an example:

Example 4.7.2. Let X =Y = R, D = (—1, 1) and define function F on D by
F (x) = sinx.
It is easy to see, x* = 0, F' (x*) =1,

H F' ()™ (F" () = F (y))H <sinl[x —y|.

and
HF” () (F ) = F (x H —=1—cosx
N A it
T2 4 (2n)!
2x? 4x4 2x2n=1

— _ - 1= 1 %
H2H|: 4! 6! =D 2n)! + :|“x X “
1

< —

—2

forall x,y € D.
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Therefore we can set v (r) = (sin 1) r and w (r) = %r.
If we only use (4.7.2) we obtain ryp = .590173..., whereas if we use both (4.7.2)
and (4.7.3) we get
ro = .739126... > ry.

Note that r is the value obtained if we were to use the results in the references
mentioned in the introduction of this section. That is, we managed to enlarge the
radius of convergence for the King-Werner-type method (4.7.1) (if w (r) < v (r)).

4.8 Secant-type methods

In this section (see also relevant Section 5.4) we study the local convergence of the
secant-type method [4]:

Xn+1 = Xp — [xnv Xn + oty (Xp—1 — xn)]_l F(xp), (n=0), (4.8.1)

where «,, € [0, 1]. The advantages of this method have been explained in [4]. In
practice, the ¢, are computed such that

tole < [l (xp—1 — xp)|l < tol,,

where tol. is related with the computer precision and tol,, is a free parameter for the
user. The new iterative method is, in general, a good alternative to the NK method,
as [xn, Xn + oy (Xp—1 — xn)] is always a good approximation to F’ (x,). Moreover,
even for semismooth operators, it is superlinearly convergent with Q-factor at least
near to 2 and its efficiency index is at least near to V2. So, it is more efficient than
the classic secant method with efficiency index \/ii in this cases.

Assume there exists a simple zero x* of equation (2.1.1) and nondecreasing func-
tions f, g such that:

|77 et =0 ep = 7 ey (4.82)
and
HF/ ()~ (b, v1 - [yx*])” < f (| - x*]

Theorem 4.8.1. Let F: D € X — Y be a nonlinear Fréchet-differentiable operator
satisfying conditions (4.8.2) and (4.8.3) and let x* be a simple zero of F. In addition,
let us assume that

(a) equation

)., forallx,y,zeD. (4.83)

fr)+2@r)=1, (4.8.4)

has a minimum positive zero R.

(b) U (x*,R) C D.

Then, the generalized secant’s method {x,} (4.8.1) is well defined, remains in
U (x*, R) foralln > 0 and converges to x* provided that xo € U (x*, R). Moreover,
the following error estimates hold for all n > 0:
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A %
[Ep— f (|30 = x*])

*
ey [Py oy e R il

— X

’

where
Xn = Xp +otp (X1 — X)) .

We now analyze two particular cases.
Case 1 (Lipschitz case). Let us assume that

| ) v FI =z FD| < ol = 2

H F' (x*)_l (Lx, y; F1— [y, x™; F])H < |x—x*

’

where [} < [.
In this case, equation (4.8.4) becomes

lor +2l1r =1,

that has a unique solution R = 1/ (ly + 2[) .
Notice that this radius of convergence is greater than the one Ry obtained by
taking /1 = lp, which was the case considered previously (for instance, [9]). In fact,
1 1
= — < .
3ly Iy + 2L

Ro
Case 2 (Holder case). Let us assume that
[P @) s Pl =y s | sl -2l
[P )7 ey P = [ D) < sl =]

with0 < p < 1.
In this case, equation (4.8.4) becomes

bLr? + 213rp =1,
and the radius of convergence is R = (Ip + 213)_1/ P,

Remark 4.8.2. A modified theorem can be asserted assuming that
(a) There exist functions f, g: [0, co) — [0, co) nondecreasing such that

| () 7 (s Fl = Ly FD)| = 7 (= )

HF’ (x*)fl ([x* x* F] =[x, y; F])H < g (max (||x* — x|

’

=)

forall x,y € D.
(b) Equation
g+ f)=1

has a minimum positive zero R.
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In the following example, we compare our results with the previous ones.

Example 4.8.3. Let D = (—1, 1) and F (x) = ¢* — 1. In this case, we have x* = 0
and F’ (x*) = 1. On the other hand, because F is differentiable, we can compute the
divided differences by [u, v; F] = fol F'(u+t@w—u)dt.

Thus,

1
[u,v;F]—[x,y;F]H: Hfo Flu+t@—u)—F (x+1(y—x))drt

1
s/jﬂw+rw—wrwx+uy—mmm
0
< 2emax (Ju — x|l v — I,

that is, the classic Lipschitz constant is ky = 2e.
Similarly, it easy to check that our Lipschitz constants are [p = e/2 and [} = e.
Finally, the convergence conditions (4.8.2) and (4.8.3) considered in our theorem
can be modified in order to include non-Fréchet operators.
Let us consider x™* € U (x*, ¢). Assume the weaker conditions:

@
[ s P17 ey Fl = 1,z FD| < e = 20,

w7 (v FL = [ )| < g (e = 7]

), forall x, y,z € D.

(b) Equation
f)+gr+e)+g@r)=1

has a minimum positive R.
Example 4.8.4. We consider the nondifferentiable system

X2 —y=0
y¥? 4+ x=0.

The associated nonlinear operator F: R> — R? is given by

F (xl,x2)>

F> (x1, x2)

F (x1,x2) = (

where F| (x1, x2) = x13/2 —xp and F> (x1, x2) = x;/z + x1.

We use the infinity norm ||x|| = ||x|loo = max (|x1], |x2]), and the associated
matrix norms.

We consider the following divided differences of F, [u, v; F] foru,v € R2, and
i=1,2.
Fi (w1, v2) — F; (v1, v2)

up—v

[u,v; Flj1 =
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For example, we have

32 32
uy -y

-1
. — uip —vp
[w, v H] = 32 32
1 Uy — Y
uy — v2

Considering X** = (x™*, y**) = (1, 1) we obtain
w yax, o1—1_ ( 1/2 1/2
[X » X ’F] B (—1/2 172 )"
Moreover, it is easy to check that
IX.Y; F1—1[Y,Z; Flll < |Y — Z||'/?
1/2

s

jix, vs 1=y x* Fl| < [y = X7
and the hypothesis is fulfilled.
Example 4.8.5. We start with a semismooth example. Let us consider
x(x+1),x<0
f )=
—2x(x—1), x>0.

In Table 4.8.1, we can see the advantage of using our modifications. We consider the
modified secant method (4.8.1) with &, = tol, / |xp—1 — X, || and tol, = 10~*. In
order to obtain a good approximation, secant method needs more than 21 function
evaluations and 20 inversions. On the other hand, modified secant method (4.8.1)
needs only 16 function evaluations and 8 inversions to arrive at the exact solution.

Iteration Secant Modified Secant
2 133 x 1071 1.04 x 1071
4 539 x 1073 1.96 x 1074
6 1.54 x 1074 4.08 x 10715
8 424 %1070 0

10 1.18 x 1077

12 3.27 x 1072

14 9.07 x 10711

16 2.52 x 10712

18 7.01 x 10714

20 1.95 x 10713

Table 4.8.1. Comparison table, case 1.

We study the sytems of nonlinear equations considered in Example 3.3.11. We
consider the same choice for the parameters «;, than in the previous example and we
obtain similar results than in the 1-D case, as we show in Table 4.8.2.
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Iteration Secant Modified Secant
1 3.15x 1071 4.19 x 1072
2 271 x 1072 2.51 x 1073
3 541 x 1073 1.11 x 1075
4 2.84 x 1074 2.53 x 1079
5 3.05x 1076 1.11 x 10716

Table 4.8.2. Comparison table, case 2.

4.9 Exercises

4.9.1.
(a) Suppose that F’, F” are uniformly bounded by nonnegative constants « < 1, K
respectively, on a convex subset D of X and the ball

0 (xp. ro = AL Glly ¢ py

Moreover, if

hg = % 11-1;2: ||X0Iféx0)” <1,
holds, then Stirling’s method
Xn+1 = Xp — (I - F/(F(xn)))(xn —F(x;)) (n>=0) 4.9.1)

converges to the unique fixed point x* of F in U (xo, ro). Moreover, the following
estimates hold for all n > 0:

g — x*|| < b}~ egEoll (4.9.2)

l—a

(b) Let F: D € X — Y be analytic. Assume:

IF'(x)]| <a <1, forallx e D,
xo # F(x0), xo€D,
v (1+2a) [l xo—F (xo)

(1-a)? <1
ro < 1,
U(xo,r1) € D,
and 1
0+#y =sup||LF® )| < oo,
k>1
xeD
where,

_ 1|1 _ 3/r(d420)|xo—F(xo)ll
I

Show: sequence {x,} (n > 0) generated by Stirling’s method (4.9.1) is well
defined, remains in U (xg, rg) for all n > 0 and converges to a unique fixed
point x* of operator F at the rate given by (4.9.2) with



240 4 Special Methods

_ 2
(I—yro)® ~

(c) Let X = D = R and define function F on D by

—1x, x <
Fx)={34(x?—7x—33), 3<x<4
%(x—7), x > 4.

Using Stirling’s method for xo = 3, we obtain the fixed point x* = 0 of F
in one iteration, as x; = 3 — (1 + %)_1(3 +1)=0.
Show: Newton’s method fails to converge.

4.9.2. It is convenient for us to define certain parameters, sequences, and functions.
Let {z,} (n > 0) be a Fibonacci sequence given by

to=t=1, tip1=th+t,-1 (@=1).

Let also ¢, £, n be nonnegative parameters and define:
e the real function f by

o =15 xelo,
e sequences {s,} (n = —1), {an} (n = —1), {A,} (n = —1) by
so1= gy so=LeHn, sp=fu-Dan-1an—2 (n = 1),

n—1

a1 =a- =0, an72=ch, ci=to+1+-+tjyr,

Jj=0
A = [xXn. xp—1: F,
for x, € X, and
e parameters b, d, ro by
= _tn_ - __s0 — %0 __n_
b= max{(l—m)z&o’ <1—so>2}’ d=1=g5. =13

Let F: D € X — Y be a nonlinear operator. Assume there exist x_j, xop € D

and nonnegative parameters c, £,  such that:
Aal exists,
llxo — x—1ll <,
1Ay F (xo) || < n,
lAg (e, ys F1—[zows F1)| < e(llx = zll + Iy — wll).
Vx,y,z€ D,x £y, w # z,
50 < §%¥§,

In < (1 — so)zso =,
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and B
U(xo,r0) € D.

Show: sequence {x,} (n > —1) generated by the secant method
-1
Xngl =X — [Xn. Xn-13 F] F(xy) (n>0) (x_1,x0 € D)

is well deﬁne_d, remains in U (xo, ro) for all n > 0 and converges to a unique so-
lution x* € U (xq, ro) of equation F(x) = 0. Moreover the following estimates
hold for all n > 1:

lxn — x*|l < 1E5762|1x1 — xo,
and
—1 _
”L() F(xpq) | < b1sp.

Furthermore, let

* 1
ro=g—rp—1.

Then r* > ry and the solution x* is unique in U (xq, r*).
4.9.3. Consider the Stirling method

-1
In+1 = 2Zn — [I — F'(F (Zn))] [zn — F (zn)]
for approximating a fixed point x* of the equation x = F (x) in a Banach space
X.
Show:
G) If H F’ (x) “ <a<g L then the sequence {x,} (n > 0) converges to the unique
fixed point x* of equatlon x = F (x) for any xo € X. Moreover, show that:

o ] = ()" Bt oz 0).

IA

(ii) If F’ is Lipschitz continuous with constant K and || F' (x) H o < 1, then

NK method converges to x* for any xo x X such that

K lxo—F (xo) |

(=)’ <1

hy =4

and
|20 — x*|| < (hy)* ~1 e 0l >

(iii) If F’ is Lipschitz continuous with constant K and || F’ (x) || a < 1, then

{zn} (n > 0) converges to x* for any zg € X such that

IA

hy = % 11-1;2;! HXOTiSzZO)H (n>0).

4.9.4. Let H be a real Hilbert space and consider the nonlinear operator equation
P (x) = 0 where P:U (xg,r) € H — H. Let P be differentiable in U (xq, r)
and set F (x) = ||P (x)||*>. Then P (x) = 0 reduces to F (x) = 0. Define the
iteration

Py
Bt =0 = 0 ) 120)

where Q (x) = P’ (x) P (x), and the linear operator P’ (x) is the adjoint of
P’ (x). Show that if:
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(a) there exist two positive constants B and K such that
B’K < 4;

(b) HP/ (x)y” > B~ |yl forally € H, x € u(xq,r)

©) | Q' )| =K forallx € U (xo,7);
_ _ _2no
(@ llxy = xoll < noand r = 320
The equation P (x) = O has a solution x* € U (xp,r) and the sequence

{xn} (n > 0) converges to x* with

[ en = "] = mov

where

a:%B\/E.

4.9.5. Consider the equation
x =T (x)

in a Banach space X, where T:D C X — X and D is convex. Let 77 (x)
be another nonlinear continuous operator acting from X into X, and let P be
a projection operator in X. Then the operator PT} (x) will be assumed to be
Fréchet-differentiable on D. consider the iteration

Xpp1 =T (xp) + PT]/ (xn) (Xpg1 —x2) (n=0).

Assume:

@ |[1-PT{ 0] (o= T Gop)| =,

by T(x)=T= [1 — PT| ()c)]_1 exists forall x € D and ||| < b,

(¢) PT{(x), QT1(x)(Q =1 — P)and T (x)—T satisfy a Lipschitz condition
on D with respective constants M, g and f,

(d) U (xo, Hn) € D, where

oo J h
H=1+) []4 n=b+2,
j=li=1

Jl=b+%.]]"'-]17], 122’ J0=77,

() h=BMn<2(1-=>b), b= B_(q + f) < 1. Then show that the equation
x = T (x) has a solution x* € U (x9, Hn) and the sequence {x,} (n > 0)
converges to x* with

n
Hx,, —x*” C Hnl_[Ji.
i=1
4.9.6. Let H be a real separable Hilbert space. An operator F' on H is said to be

weakly closed if
(a) x, converges weakly to x, and
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(b) F (x,) converges weakly to y imply that
Fx)=y.

Let F be a weakly closed operator defined on U (xo, r) with values in H. Sup-
pose that F maps U (xg, r) into a bounded set in H provided the following
conditions is satisfied:

(F(x),x) < (x,x) forallx € S

where S = {x € H | ||x|| =r}.
Then show that there exists x* € U (xg, r) such that

F (x*) =x*.

4.9.7. Let X be a Banach space, LB (X) the Banach space of continuous linear
operators on X equipped with the uniform norm, and B; the unit ball. Recall that
a nonlinear operator K on X is compact if it maps every bounded set into a set
with compact closure. We shall say a family H of operators on X is collectively
compact if and only if every bounded set B C X, |Jpcy H (B) has compact
closure.
Show:
(1) If
(a) H is a collectively compact family of operators on X,
(b) K isin the pointwise closure of H,
then K is compact
(i) If
(a) H is acollectively compact family on X,
(b) H is equidifferentiable on D C X.
Then for every x € D, the family { P’ (x) | P € H} is collectively compact.
4.9.8. Consider the equations
x—Kx)=0

and
x— K, (x)=0,

where K is a compact operator from a domain D of a Banach space X into X,
{K,} (n > 1) are collectively compact operators.

Moreover assume:

(a) The family {K,} (n > 1) is pointwise convergent to K on D, i.e.,

K,(x)—> K((x) asn— (x) asn — oo, x € D.

(b) The family {K,,} (n > 1), has continuous first and bounded second deriva-
tives on U (xo, r).

(¢) The linear operator I — K’ (x*) is regular.

Then show there exists a constant *,0 < r* < r such that for all sufficiently

large n, equation x — K, (x) = 0 has a unique solution x, € U (x*, r*) and

limx, = x* asn — oo.
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4.9.9. Let X be a regular partially ordered Banach space. Denote the order by < and
consider the iteration
F (xn)

c1

Xngl = X — c1 >0

for approximating a solution x* of equation F (x) = 0 in X. Assume that there
exist positive numbers c¢j and ¢ such that

Q@=y)SF@—-F(@) <c(x—y) foral x <y
and

| F (x0)| < % for some fixed r > 0.

Then show that:
(i) The sequence {x,} (n > 0) converges to a solution x* of the equation
F(x)=0.
(ii) The following estimates are true:

|2 — x*|| < é IF (o)l ¢,

and
*
|n = x*|| < ce3 llxn — xu-1ll,
where ¢3 = C‘C_]"z and c is such that ||x|| < c¢||y| whenever 0 < x < y.
(iii) The sequence {x,} (n > 0) belongs to

the set {xeX|x <xpllx —x0ll £r} if 0 < F (xg),
or the set {xeX|xo<x,l|lx—x0ll £r} if F (xg) <O.

4.9.10. Let F: D € X — Y and let D be an open set. Assume:
(a) the divided difference [x, y] of F satisfies

[x,y](y—x)=F(y)— F(x) forallx,y € D
I, y1 =y, ulll < I llx = yI1P + B llx = yI7 + L lly — ull?

forall x, y,u € D where I} > 0, I > 0 are constants which do not depend
on x, y and u, while p € (0, 17;

(b) x* € D is a simple solution of equation F (x) = 0;

(c) there exists ¢ > 0, b > 0 such that H [x, y]_1|
U (x*, ¢);

(d) there exists a convex set Dy C D such that x* € Dy, and there exists
e1 > 0, with 0 < &1 < e such that F' (-) € Hp, (c, p) for every x, y € Dy
and U (x*, 1) C Dy.

Let » > 0 be such that:

< b for every x,y €

0 <r < min {81 (q (p))fi}

where
q(p)= L[Z”(h + L) (14 p)+c].
p+1
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Then

(i) if xo, x1 € U (x*, r), the secant iterates are well defined, remain in U (x*, r)
for all n > 0, and converge to the unique solution x* of equation F (x) = 0
in U (x*, r). Moreover, the following estimation:

e RN e L e R e

holds for sufficiently large n, where

bc

=b(l 1) 2% and y», = .
Y1 (I1 + I2) 2F and y, T+

(i) If the above condition hold with the difference that xo and x; are chosen
such that

"~ o] < ado:

v = xi| < min {adg', [x* = x|}

1
where 0 < dy < 1,a = (g (b)) 7, and 1, is the positive root of the equation:
?—t—p=0,

then show that for every n € N, x,, € U(x*, a) and

[usr = x| <adf @z 0.

4.9.11. Let F: D € X — Y and let D be an open set. Assume:
(a) xo € X is fixed, and consider the nonnegative real numbers: B, v, w, p €
©O,1),a,8,qg > 1, I1, I and I3, where

w=Ba (IB” + LA + LBPa” | F (xo)"977)
and :
v=wrtT [ F (xo)l -
Denote r = max {B, 8} and suppose U (x0, r*) € D, where

% rv

r =

w# (] — vl’+q—1) ’
(b) Condition (a) of the previous exercise holds with the last I, replaced by /3;
(c) forevery x,y € U (xo, r*), [x, y]~' exists, and H [x, ylI~! || <B;
(d) forevery x € U (x0, ), IF (g )| < a||F (x)]|? where g: X — Y is an
operator having at least one fixed point that coincides with the solution x*
of equation F (x) = 0;
(e) forevery x € U (xo, ), lx — g ()l < BIF ()
(f) the number v is such that: 0 < v < 1.
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Then show that the Steffensen-type method

Xl = Xp — [xn, & (xn)]_l F(x;,) n>0

is well defined, remains in U (x0, r*) for all n > 0, and converges to a solution
x* of equation F (x) = 0 with

| = x| < —222 T (02 0).

w Pta—1 (]—v/’+‘1_1) -

4.9.12. (a) Let F, G be real or complex iteration functions of order p > 1 and
q > 1 at x*, respectively. Suppose that F is continuously differentiable and G is
continuous at x*. Then show: iteration function

Q) =F(x) - %F/(X) [x = G (x)]

is order at least p + 1.
(b) Suppose F is continuously differentiable at x*. If F’ (x*) # p, then show:
iteration function

H(x) =x — 27E0_

p%mx)
is of order at least p + 1.
4.9.13. (a) Consider conditions of the form
1Ay (Lx, y; F1= [z, w; FDIl < w(llx =z, lly — wl), (49.3)
1Ag " (Lx, y; F1 = Ao) | < woCllx — x—1l, lly — xoll) (4.9.4)

for all x, y, z, w € D provided that Agl e L(Y, X), where w, wq: [0, +00) x
[0, 400) — [0, +-00) are continuous nondecreasing functions in two variables.
Let F: D € X — Y be an operator. Assume:

there exists a divided difference of order one such that [x, y; F] C L(X,Y) for
all x, y € D satisfying (4.9.3), (4.9.4); there exist points x_1, xo € D such that

Ay = [xfl,xo; F]_1 € L(Y, X) and set
1Ay F(xo)ll < n;

equation
= [—Col@j('l()’) + co(t) + 1] 0
has at least one positive zero. Denote by t* the smallest such zero;

wo(t* + 1o, 1*) < 1
c(t™) < 1;

and B
U(xo,t*) € D.
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Show: sequence {x,} (n > 0) generated by the secant method is well defined,
remains in U (xo, t*) for all n > 0, and converges to a unique solution x* of
equation F(x) = 0in U (xo, ¥).

Moreover, the following estimates hold

lx2 — x1ll < collxr — xoll

lxn+1 — xull < cllxy — xp—1ll (2> 3)
and ,
=
X = x*|| < = llx3 —x2ll (= 2),
where,

co =co(t™), c1=c1(t™), c=c(™).

(b) Assume: x* is a simple zero of operator F such that:
Al =F " e L, X);
IAZ (L, yi F1 =[x, x*5 FDIL < o(ly — x*ID,
1AL (Lx, y: F1= F'G)I < vollle =271 ly = x*11)

for all x, y € D for some continuous nondecreasing functions v: R+ — Ry and
vo: R4 X Ry — R4 ; equation

vo(q, qo) + v(qo) =1

where,
go=llx-1—x*, x_1€D

has at least one positive solution. Denote by ¢* the minimum positive one;
and B
Ux*,q" € D.

Under the above stated hypotheses, show sequence {x,} (n > 0) generated by the
secant method is well defined, remains in U (x*, g*) forall n > 0, and converges
to x* provided that xg € U (x*, g) for some x_; € D.
Moreover, the following estimates hold for all n > 0:

(1% 41 — x| < VullXn — x|

where
' Yo = V(1 =x* 1)
" = T~ -1 =27 °

4.9.14. (a) Let xg, x_1 € D with xo # x_1. It is convenient to define the parameters
o, n by

a = ||.x0 _-x—1||9

ILy " F(xo)|l < n,
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and functions a, b, L, by

— _w(r)
a(r) - 1—w(a,r)’

_ 2w(a+rr)
b(l") - l—w(a+rr)’

L, = [xn—lv Xns F] (n > 0).

We can state the following semilocal convergence results for the secant method.
Let F be a nonlinear operator defined on an open convex subset D of a Banach
space X with values in a Banach space Y. Assume:

(1) there exist distinct points xo, x— such that L le LY, X);

(2) condition

—1
I [x=1.x0: F]™ (Ix, y; F1—[x=1,x0; FPIl < w(llx — x—1 I, [y — xolD,

holds for all x, y € D;
(3) there exists a mininum positive zero denoted by r* such that:

r> [%b((r’))—f-a(r)—}- 1]’7 forall r € (0,r*];
4
wo +r*r") <1,
b(r*) <1
and
U(xg, r*) C D.

Show: sequence {x,} n > —1 generated by secant method is well defined, re-
mains in U (xg, r*) for all n > —1, and converges to a solution x* of equation
F(x) = 0, which is unique in U (xq, r™*).
(b) Let us consider the two boundary value problem:
y// + yH-p =0,
y(0)=yd) =0,
also considered in [43]. As in [43] we divide the interval [0, 1] into m subin-

tervals and let h = % We denote the points of subdivision by ¢; = ih, and
y(t;) = y;i. We replace y” by the standard approximations

V') Z [yt +h) —2y(0) +y(t — )]/ h?
Y'(t) = ig1 =2y +vien/ R, i=1,2,..,m— 1.

System (4.9.5) becomes

pelo,1]. 4.9.5)

1
2y1 = W2y =y =0,

+p

1
—Yict +2yi —h*y; T =i =0

1 .
~Ym—2 + 2yt — h2y, h =0, i=2,3,...,m—2.
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Define operator F: R”~! — R"~! by

F(y) = H(y) — h*g(y),

where
1 1 1
Y=Ly g = oy
and
2 -1 0 -0
1 2 -1 - 0
H-| 0 -1 2.0
0 o 0 --- 2

We apply our Theorem to approximate a solution y* of equation

F(y)=0. (4.9.6)
Let x € R”™~! and choose the norm ||x| = l<IiIE}r)z§—l |xi]. The corresponding
matrix M € R~ x R" 1 s
m—1
IM] = max ,; Imijl.

A standard divided difference at the points x, y € R”~! is defined by the matrix
whose entries are

[x, y; Fl;j
1
= [Fi(xl,...,x;yj+1,...,yk) = Fi(xy, ..., xj—1, ) ,...,yk)],
Xi = Vi
k=m—1.
We can set

1
[x,y; F] =/ F'[x +t(y —x)]dt.
0

Let x,v € R" ! with |xi| > 0, Jvi] > 0,71 = 1,2,...,m — 1. Using the
max-norm we obtain

|F'0o) = F')
= [diag {n21 + pof -0} ]

= max 1‘hz(l—}—p) (vip—xip)‘ 5(1+p)h21 max vip—xip

1<i<m-— <i<m-—1

IA

(14 p)h? [v; — x;|? = (1 + p)h?|v — x]|P.
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Hence, we get

Ilx, y; F1—1[v, w; F]|

1
5/ [F'(x+t(y—x)— F'(v+t(w—v)| dt
0
1
sw/"a+pwa—nu—vnﬁw—wwpm
0
1
sh%rwn/[a—nwx—wp+ﬂw—wW]m
0

=h(lx —vlI” + Iy — w|?).
Define the function w by

—1
w(ry, r2) = | [y=1.y0: F]~ IR*(] +13),

where y_1, yo will be the starting points for the secant method

—1
Yot1 =Yn = [Vn-1. ¥ F]7 F(yu) (n>0)

applied to equation F(y) = 0 to approximate a solution y*. Choose p = % and
m = 10, then we obtain 9 equations. Because a solution of (4.9.6) vanishes at
the end points and is positive in the interior, a reasonable initial approximation
seems to be 135 sin nz. This choice gives the following vector

[ 41.7172942406179 ]
79.35100905948387
109.2172942406179
128.3926296998458

z_1 = | 135.0000000000000
128.3926296998458
109.2172942406179
79.35100905948387

| 41.7172942406179

Choose yg by setting zo(#;) = z—1(t;) — 1075,i =1,2,...,9. Using secant
method, we obtain after 3 iterations

[ 33.64838334335734 ]
65.34766285832966
91.77113354118937
109.4133887062593

70 = | 115.6232519796117
109.4133887062593
91.77113354118937
65.34766285832964

| 33.64838334335733 |
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and N _
33.57498274928053

65.204528678501265
91.56893412724006
109.1710943553677
z3 = | 115.3666988182897
109.1710943553677
91.56893412724006
65.20452867501265
| 33.57498274928053 |

Set y_1 = z2 and yp = z3. Show:
We obtain

o = .256553, n =.00365901.

Moreover, show:
-1
I [y=1. y0; F] " || < 26.5446,

r* = .0047, w( + r*, r*) = .153875247 < 1 and b(r*) = .363717635. All
hypotheses are satisfied. Hence, equation has a unique solution y* € U (yo, r*).
Note that in [43] they found r* = .0043494.

4.9.15. Let F: S € X — Y be a three times Fréchet-differentiable operator defined
on an open convex domain S of Banach space X with values in a Banach space Y.
Assume F’(xo) ! exists for some xg € S, | F/(x0)~'|| < B, | F'(x0) "' F(xo)| <
n, IF")ll < M, [F”(0)ll < N, [F"(x) = F"()Il < Llx — y|l for all
x,y €S,and U (xo, rn) C S, where

A=Mpn, B=Npn*, C=Lpr,

24 A
ap=1=co, bo=—, do= 5 (1+A),
3 2
ay b
a = , = —a,+1Cn+1,
n+1 1— Aa, (Cn+dn) n+1 3 n+1Cn+1
2
w7 [4+<1+§bn) }A3a3+18ABan+l7c )
= 187 L 16
b (1+3b0)

3 3
dpt1 = an+1 (1 + Ebn+1> ir1 (n=0),
and

n
r ZHILH(}OZ(C,' +d;).
i=0

it 4 e [0.3] B = [0z P =170)] and ¢ e [0, 242], where
P(A) =27(A—1)(2A — 1) (A> + A+2) (A% +2A +4). Then show [87]:
Chebysheff-Halley method given by
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Yn = Xp — F’ (xn)_l F (xp)
/ -1 / 2 1
H, = F' (x,) F'lx, + 5 O —x0) | — F' (x5)

3 3
Xn+1 = Yn — ZHn |:I - iHn] O — Xn)

is well defined, remains in U (xg,rn) and converges to a solution x* €
U (xg, rn) of equation F (x) = 0. Moreover, the solution x* is unique in

U (xo, Miﬁ — rn). Furthermore, the following error estimates hold for all n > 0

o0

3 i
”xn—x*”SZ(C,+d)n§a|:1+—(l+A):| 1/%2 a3

i=n i=1
where y = %.

4.9.16. Considerlthe scalar equation [89]
f(x)=0.
Using the degree of logarithmic convexity of f

Lf (x) = Lo,

the convex acceleration of Newton’s method is given by

St = F (50) = x5, — 25 [1 4 5 n = 0)

for some xg € R. Letk > 1754877, the interval [a, b] satisfying a+2(k L fo

k l)f(b)

band xg € [a, b] with f (x0) > 0,and xo > a+ 2=t {((‘;j) IfILf (x)| < Land

Lf (x) € [;, 2 (k — 1)2 — E) in [a, b], then show: Newton’s method converges

to a solution x* of equation f (x) = 0 and x, > x™, xo,+1 < x* foralln > 0.
4.9.17. Consider the midpoint method [91]:

Yo =0 =TnF (x), Tnw=F (x»)7",
Zn = Xp + % O — xn),
Xntl =X — Do F (), Tw=F (z)”" (n>0),

for approximating a solution x* of equation F (x) = 0. Let F:Q € X — Y
be a twice Fréchet-differentiable operator defined on an open convex subset of a
Banach space X with values in a Banach space Y. Assume:

(1) T'p € L (Y, X) for some xg € 2 and ||[Io]| < B;

) IToF (xo) Il = m:

3) H Fro| =M xeQ);

@ [F" ) = F" M| = Kllx =yl (x.yeQ).
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Denote ag = MBn, by = K,BnZ. Define sequence a,+1 = a, f (an)2 g (an, by),

_ 2
bust = buf (@n)* g (@n ), [ (1) = 750 and g (n,)) = G5 + . If

0<ag< %, bo < h (ag), where

96 (1 — x) (1 — 2x)
72— x)?
2

1
R = - A= -
il A S (ao)

h(x) = , U (xo, Rn) C Q,

then show: midpoint method {x,}: (n > 0) is well defined, remains in U (xo, Rn),
and converges at least R-cubically to a solution x* of equation F (x) = 0. The
solution x* is unique in U (xq, Miﬂ — Rn) N Q and

it =] = 5=y 15
Xn+l — X _2—a0y 1—A

n.
4.9.18. Consider the multipoint method [115]:

Yn =20 —DpF (xy), Tp=F (x))7",

Zn =Xn +0 u — Xn) ,

Hy = 50, [F' (xn) — F'(zp)]. 0 € (0, 1],
Xng1 = Yo+ 5Hy (n —Xn) (n = 0),

for approximating a solution x* of equation F (x) = 0. Let F be a twice-Fréchet-
differentiable operator defined on some open convex subset €2 of a Banach space
X with values in a Banach space Y. Assume:

() Toe L(Y,X), forsomexge X and |[[o] < pB;

) IToF (xo) |l = n3

Q) |F' =M, (xe):;

@ |F" @)= F" M| <Klx=ylI7, (x,y) €2 K >0,pel0,1].

Denote ag = MBn, bo = KBn'+P and define sequence

apy1 =danf (an)2 go (an, by) ,

but1 = b f (@)™ go (an, b)) 7,

2
f ) =7—-—"7 and
x )_x3+4x2 [2+(p+2)9p]y
gote =T 2+ (12

Suppose ap € (O, %) and by < h (ag, 0) , where

(P+1(p+2)
A2+ (p+2)67]

hy (x,0) = (1-20) (8- 4x? = 27).
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Then, if U (xo, Rn) € €, where R = (1+ ¥) l—lyA’ A = f(aop)”" show:
iteration {x,} (n > 0) is well defined, remains in U (xg, Rn) for all n > 0, and
converges with R-order at least 2+ p to a solution x* of equation F (x) = 0. The

solution x* is unique in U (xo, Miﬂ — Rn) N Q. Moreover, the following estimates
hold foralln > 0

+p)-1 C+p)t—1 A"
|lxn — x| < [1 + %OV( H” )} V( e )mn,

where y = L.
4.9.19. Consider the multipoint iteration [118]:

Yo = %0 —CuF (x), Tpw=F (x))7",
in = Xn — %FnF(xn) )
Hy =Ty [F' (za) = F' (xn)].

1

Xn+1 Zyn_%l:l'i'%Hn] Hy (yp —xn) (n>0),
for approximation equation F' (x) = 0. Let F: 2 € X — Y be a three times
Fréchet-differentiable operator defined on some convex subset €2 of a Banach
space X with values in a Banach space Y. Assume F' (xo)~! € L (Y, X)
(xo € Q). [ITol < @, [ToF o)l < B, [F" )| = M, [F" )| < N,
and |[F” (x) — F" (y)| < kllx —y| for all x,y € Q. Denote § = Map,
w = Nap? and § = Kaf>. Define sequences

2 2—6

—co=1, bp=20, dy= —"—,
w=c °T37 T 2a -0

a, b 29
T 4 7 = zta c ’
1 Qandn n+1 3 n+1Cn+1

8 (2 — 3by)* a? ;17 way 4
Cugl = Pt —5+—" 9lapd
T T bt | @ 3by? 1087 T 32 —3by |

an+1 =

and

Moreover, assume: U (xg, RB) C €2, where

n
_ 1 . 1
ke fin 3 0<(0).
1=
5 2720 — 1) (6 — 86% + 160 — 8)
<
- 17 (1 — 6)?
320 —1) (0% —80%+ 160 —8) 178
w < —_ .
- 40 (1 — 6)? 366

’
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Then show: iteration {x,} (n > 0) is well defined, remains in U (xo, RB) for all
n > 0, and converges to a solution x* of equation F (x) = 0. Furthermore, the

solution x* is unique in U (xo, — Rﬂ) and foralln > 0

Q-0 1 o
bon ="l = 2 di < by gy ym 27T

i>n j>n

where y = Z—

4.9.20. C0n51der0the multipoint iteration [90]:

Yo =0 = F ()™ F ()
Gn = [F O+ p O = x) = F )] 0 —0) - p € (0,11,
Xt =Y =25 F )" Gu (02 0)

for approximating a solution x* of equation F (x) = 0. Let F:Q2 € X — Y be
a continuously Fréchet-differentiable operator in an open convex domain €2 that
is a subset of a Banach space X with values in a Banach space Y. Let xg € Q
such that Ty = F’(xo)™' € L (Y, X): [Toll < B. llyo—xoll < n.p = 3.
and |F' (x) — F' (y)| < K llx — yll forall x,y € Q. For by = Kpn, define
by = bu—1f (ba—1)* g (bu—1), where

2(1 —x) x(x2—8x+8)
= d =
S0 =Gy ™ e =— o
If bo < r = .2922..., where r is the smallest positive root of the polynomial

q(x) = 2x% —17x3 +48x2 —40x +8, and U (xo, KLﬁ) C , then show: iteration
{xn} (n > 0) is well defined, remains in U (xo, == ), and converges to a solution
KB g

x* of equation F(x) = 0, which is unique in U (x, KLﬁ)'
4.9.21. Consider the biparametric family of multipoint iterations [92]:

Yn =Xy —UnF (xn), 2n =%y +pQOn—x2), pel0,1],
H, = %Fn [F/ (zn) — F' (xn)] >
Xl = Yn — 3 Hy (I + o Hy) 0w — Xxn), (1> 0)

where T', = F/ (x,)"! (n > 0)and o = —28 € R. Assume 'y = F’ (xg) ! €
L (Y, X) exists at some xop € Qo C X, F:Qp € X — Y twice Fréchet-
differentiable, X, Y Banach spaces, ||[To|l < B, IToF (xo)|| < n, || F” (x)|| <M,
x € Qand |[F"(x)—F"(y)| < Klx—yl| forall x,y € Q. Denote
ay = MBn, by = kBn?. Define sequences

i1 = anf (@) g (an, b)), but1 = by f (an)® g (@n, bn)*,

where
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-1
f(x) =2[2—2x—x2—|a|x3] ,

and
loe|?

el s le| 4 14+4Ja] 5 [M+af , 1—p 2+3p
8(X’y)—8)€+4x+ g x+2x+4xy+ o

for some real parameters « and p. Assume:

3(8 — 16ag — 4aj + Taj + 2ag)
3ag + 2

aoE(O,%), byp < P =

bl

|| <min{6,r}, p € (0,1]and p < h (Ja|), where r is a positive root of

1 2 3 4
W = s [(24 — 48a0 — 124 + 2143 + 6a — 2o (3ao +2))
+ 6a§ (2a8 + 3a§ — 6ag — 2) X+ 3a(5) 2ag — l)xz] ,
_ [1+ %1+ |alao)] ap )
U (xo, Rn) € Qo, R= sy =—, A= f(ao)" .
I1—-—yA ap

Then show: iteration {x,} (n > 0) is well defined, remains in U (xq, Rn) for
all n > 0, and converges to a unique solution x* of equation F (x) = 0 in
U (xg, Miﬁ — Rn) N Qp. The following estimates hold for all n > 0:

An

o —x* = [1+ 3 a0 (14 lely o) | v T —5s
n = 5V 0 Y o)V 1_y3nA77~

4.9.22. Let f be a real function, x* a simple root of f and G a function satisfying
G (0) = 1, G' (0) =  and |G” (0)| < +00. Then show [100]: iteration

S ()

a1 = = G (L () F5 (12 0)
where £ £ ()
X X
Lf ()= L0 @
S 1 (x)?

is of third order for an appropriate choice of x¢. This result is due to Gander.
Note that function G can be chosen

Gx)=1+ % (Chebyshev method);
Gx)=1+ Ty a (Halley method);

— X
Gx)y=1+ _ (Super-Halley method).

2(1—x)
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4.9.23. Consider the super-Halley method for all n > 0 in the form:
F (x) + F' (xn) (Yn — xn) =0,
3F () +3F () [0+ 3 0 = 20) | O = 20) +4F 0 a1 = ) = 0.

for approximating a solution x* of equation F (x) = 0. Let F:Q2 € X — Y be
a three times Fréchet-differentiable operator defined on an open convex subset
Q of a Banach space X with values in a Banach space Y. Assume:

(1) To = F' (x0)~! € L (¥, X) for some xo €  with |[To| < B:

) IToF (xo)|l < m;

Q) [F" @ =M (x € );

@ |F" )= F" | <Llx =yl (x,y €Q), (L=0).

Denote by ag = MBn, co = LBn>, and define sequences

Any1 =an f (an)zg (an, cn) ,
Chyl =Cnf (an)4g (an, Cn)3 s
where

(I-x

f(x):x2—4x+2

1 x> 17
and g(xay)=§ m-ﬁ*ﬁy .

Suppose: ap € (0, %) co < h (ap), where

27(2x—1)(x—1)(x—3+\/§) (x—3—f5)
17 (1 — x)?

)

h(x)=

_ ao 1
U(xp,Rn) €, R=|1 ;
(x0, Ry} S [ +2(1—a0)i|1—A
a_nd A=f (ao)_l. Then show: iteration {x,,} (n > 0) is well defined, remains in
U (xg, Rn) for all n > 0, and converges to a solution x* of equation F (x) = 0.
The solution x* is unique in U (x, Miﬂ — Rn) N Q and

4
apy 3 41
==l

n

1—y¥A

n (n=0),
where y = Z—(‘)
4.9.24. Consider the multipoint iteration method [93]:
Yn =0 — F' (x0) ™" F (xa)
G = F )™ [F (30 + 3 0w =) = F ()]

Xn+1 = Yn — %Gn [1 - %Gn] (n —xn) (n=0),
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for approximating a solution x* of equation F (x) = 0. Let F:Q2 € X — Y be
a three times Fréchet-differentiable operator defined on an open convex subset
Q of a Banach space X with values in a Banach space Y. Assume:

(1) To = F' (x0)~' € L (Y, X) exists for some xo € 2 and || Ty|| < B:
(2) IToF (xo) Il < m;

G) [F" @) <M e:

@) |F" @) <N ((xe);

S) |[F" )= F" | =Lllx =yl (x.y €Q), (L=0).

Denote by ag = MBn, bg = NBn? and co = LAn>. Define the sequence
a1 =ay f (an)* g (@, bus a)
byy1 =b, f (‘111)3 g (an, by, Cn)2 ,
Cnt1 =Cn f (an)4 g (an, by, Cn)3 )

where
2

2x —x2 —x3’

f )= 5=

and
gx,y,2) = ﬁ [27)c3 <x2 +2x + 5) + 18xy + 17z] .

If ay € (O, %), 17¢co + 18agby < p (ap), where
px)=27(1—-x){ —2x) (x2+x+2) (x2+2x~|—4>,

a 1
Y = —, A= f(aO) 5
ao

- ao 1
U (xo, R CQ,R:[I 2 ]

(x0, Rn) © -I—2(+ao)1_yA
then show: iteration {x,} (n > 0) is well defined, remains in U (x0, Rn) for all
n > 0, and converges to a solution x* of equation F (x) = 0, which is unique in
U (xo, Miﬂ — Rn) N Q. Moreover, the following error bounds hold for all n > 0:

n_ n_ n_ A"
Hxn _x*” =< [1 + a?())/é‘~f1 (1 +LIOJ/4~T1)] )/43 ] mn.

4.9.25. Consider the Halley method [68]

Xng1 =% — [[ = Lp )] F/ ()™ F (x) (n > 0)

where
L) =F )" F'()F () ' F(x),

for approximating a solution x* of equation F (x) = 0. Let F:Q2 € X — be
a twice Fréchet-differentiable operator defined on an open convex subset of a
Banach space X with values in a Banach space Y. Assume:

(1) F' (xo)~' € L (¥, X) exists for some xq € Q;

@ IF" (x0)™ F (x0) || < B:
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3) IF" (x0) ™' F" (x0) | < v3
@ NF (xo) ' [F' @)= F" W]l < Mlx =yl (x,y € Q).

If
2 [2‘/;/2 oM+ y]
2 9
3[VyT+am +y ]

(r1 < rp) where ry, rp are the positive roots of h (t) = 8 —t + %tz + %t3,
then show: iteration {x,} (n > 0) is well defined, remains in U (xq, r1) for all
n > 0, and converges to a unique solution x* of equation F (x) = 0 in U (xo, r1).
Moreover, the following error bounds hold for all n > 0:

. 3
5% = X1 < (1 = tas) (M) ,

B < U (x0,71) C €,

ry—1Iy
(260 20
— = nh—r)<n—-t, < —= (n—r1),
A — (h26)? T = (u6)?

2
- 3
p="1 = [oTr Ay )
) (ro —r1)” +ror 2

—ry is the negative root of &, and t,+1 = H (t,), where

h(t)/h' (1) _h@®/n” )

H@#)=t— , L =
O)=t—— TLh o) n (1) e

4.9.26. Consider the iteration [91]
Xpp1 =X — I +T (xp)] U F (x) (n>0),

where ', = F/ (x,) ' and T (x,) = %F,IAF,,F (xp) (n > 0), for approximat-
ing a solution x* of equation F (x) = 0. Here A: X x X — Y is a bilinear
operator with |A|| = «, and F: Q2 € X — Y is a Fréchet-differentiable oper-
ator defined on an open convex subset €2 of a Banach space X with values in a
Banach space Y. Assume:

(1) F' (xo)~! =T € L (¥, X) exists for some xo € Q with | To| < B;

@) IToF (xo)ll = m;

G)|F )= F' | <klx=yll(x,y € Q).

Let a, b be real numbers satisfying a € [O, %) ,b € (0,0), where
2[2a2—3a —l+«/1+8a—4a2]

o = .

a(l—2a)

Setagy=1,co =1, by = % anddy =1+ %’. Define sequence
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a, an+1 b 2
S - = +— a2
an+1 1 — aayd, Cn+1 ) |:a a1+ bn)2i| n

buy1 = Ean—&-lcn—&-l’ dn—H = +bn+l)cn+l

and r,y = Z',Zl'é dy n>0).Ifa = «Bn € [0, %), U(xo,rn) € Q,r =
limy, ooy, @ € [0, %), then show: iteration {x,} (n > 0) is well defined,

remains in U (xo, rn), and converges to a solution x* of equation F (x) = 0,
which is unique in U (xo, % — rn). Moreover, the following error bounds hold
foralln >0

lxn+1 — xull < dun
and

o0
Hx* —xn+1” <(@r—-r)n= Z dn.
k=n+1

4.9.27. Consider the Halley method [106] in the form:

Yo =% —DnF (x0),  Tu=F (xn) ",
Xp+1 = Yn + %LF (xn) H, (yn - xn) (n> 0) s
Lr () =0 F" ) TuF (x),  Hy=[—Lr(x)]™"  (n>0),

for approximating a solution x* of equation F (x) = 0. Let F:Q2 C X — Y be
a twice Fréchet-differentiable operator defined on an open convex subset €2 of a
Banach space X with values in a Banach space Y. Assume:
(1) To € L (Y, X) exists for some xo € 2 with |[Ig]| < B;
awwwWSMuem;
G)|F" @)= F" | < Nlx =yl (x,y € Q);
@ IToF (xo)ll = n;
(5) the polynomial p (1) = %tz — %t + %, where M2 + % < k? has two positive

roots r1 and rp with (r; < rp).
Let sequences {s,}, {t,}, (n > 0) be defined by

p (tn) 1 Lp (tn)

— , I S L >0).
o () n+1 sn+21_Lp(tn) (sn n) (n>0)

Sp =1In

If, U (x0, r1) € 2, then show: iteration {x,} (n > 0) is well defined, remains in
U (xg, r1) for all n > 0, and converges to a solution x* of equation F (x) = 0.
Moreover, if r; < rp, the solution x* is unique in U (xg, r2). Furthermore, the
following error bounds hold for all (n > 0)

— e
HX*—XnHSFI_tn:%, 92:—;
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Newton-like Methods

General classes of iterative methods are examined under weaker conditions than be-
fore.

5.1 Newton-like methods of “bounded deterioration”

We use Newton-like (NL) method
Xnpl =Xn—A) ' F(xy) (n=0) 5.1.1)

to generate a sequence approximating x*.

A survey of results concerning the convergence of method (5.1.1) can be found
in [34], [35], [74] and the references there. Here A (x) € L (X, Y). We consider
A (x,) (see (5.1.15)) (n > 0) as expressing a sequence of Jacobian approximations to
F' (x;) (n > 0), which is of “bounded deterioration” [75]. That is, although A (x,)
is not necessarily converging to F’ (x*) as x, — x*, the divergence is proportional
to the distance between method (5.1.1) and its starting point.

We provide a convergence analysis based on this concept (i.e., (5.1.15)). In par-
ticular using the majorant method, and more precise majorizing sequences than
before [75], we show under the same hypotheses and computational cost: in the
semilocal case, finer error bounds on the distances || x,;,+1 — x|, X, — x*|| (n > 0)
and more precise information on the location of the solution x*; whereas in the local
case, again finer error bounds and a larger convergence radius are obtained.

Other favorable comparisons with special Newton-like methods are also given as
well as some numerical results.

To first examine the semilocal case, we need the following lemma on majorizing
sequences:

Lemma 5.1.1. Assume there exist nonnegative parameters K, Ki, n, A, a;, > 0
(n>0),b, >0,c, >a,and$ € [0, 2) such that for alln > 0:

0<hi =1L {[K (3)" + 2K (1 - (g)"“)] n+2 by — A)} <5 (512

an

I.K. Argyros, Convergence and Applications of Newton-type Iterations,
DOI: 10.1007/978-0-387-72743-1_5, (© Springer Science+Business Media, LLC 2008
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Then, iteration {t,} (n > 0) given by

10 =0,11 =1, 2 = ty1 + ﬁ [K (a1 — tn) +2(by — A+ Kity) ] (tug1 — 1)
(5.1.3)

is nondecreasing, bounded above by t** = 227776’ and converges to some t* such that

0<t*<r*. (5.1.4)

Moreover, the following estimates hold for all n > 0:

0 < tusr —tap1 <3 (a1 —t) < (3)" "' (5.1.5)
Proof. We shall show using induction on k > 0:
a—ln [K (ti41 — 1) + Qb — A+ Ki1p)] <8 (5.1.6)
and
tr+1 — tx > 0. 5.1.7

Estimate (5.1.5) can then follow immediately from (5.1.3), (5.1.6), and (5.1.7). For
k=0, (5.1.6) and (5.1.7) hold by (5.1.2) and (5.1.3), respectively. We also get

0<th—-1n <3t —1). (5.1.8)

Let us assume (5.1.5)—(5.1.7) hold for all k < n + 1.
We can have in turn:

aklﬂ [K (k2 — kv 1) + 2 (b1 — A+ K1) (5.1.9)

k+1
<L {K(%) 77+2(bk+1—A)+2K1[I1+%(I1—l0)

= iy
+(@) @+t () -]} = <5 oy 612).

We shall show:
e <t™ (k=>0). (5.1.10)

Clearly (5.1.10) holds for k = 0, 1, 2 by the initial conditions. Assume (5.1.10) holds
forall k < n.
It follows from (5.1.3) and (5.1.5)

k+1
b2 <t + 5 —) < <n+in++(5) n

_ 17(%>k+2

2

(5.1.11)

n< k=t

ok
2—-46 :

Hence, sequence {f,} (n > 0) is bounded above by #**, nondecreasing, and as
such it converges to some ¢* satisfying (5.1.4).

We can show the following semilocal result for method NL.



5.1 Newton-like methods of “bounded deterioration” 263

Theorem 5.1.2. Let F: D € X — Y be a Fréchet-differentiable operator. Assume:
there exists an approximation A (x) € L (X, Y) of operator F' (x) an open convex
subset Dy of D, xo € Dg so that AlelL (Y, X), nonnegative parameters n, d, Ko,
K, Ky, b,, A and § € [0, 2) such that:

HA(;IF (xo)H <n, Ao=A (o), (5.1.12)
HAgl [F'(x) — F’ (x())]H < Ko llx — xoll, (5.1.13)
|45 [F @) = F ]| = K Il =31, (5.114)

forall x,y € Dy,

HA(;‘ [A ) — F' (xn)]H <by— A+ K x5 —xjo

|, (5.1.15)

[45" (4 o) = F )| = e (5.1.16)
condition (5.1.2) holds for
an=1=[d+b, -2+ 32 (1-()"")]. Ke=20ko+KD: (117
n=d+b,—A+53 (1)) <1 @wz0:; (5.1.18)
and

U (x0,1*) € Do, (5.1.19)
where t* is defined in Lemma 5.1.1.

Then sequence {x,} (n > 0) generated by NL method is Kell defined, remains
in U (xo, t*) for all n > 0, and converges to a solution x* € U (xg, t*) of equation
F (x) =0.

Moreover, the following estimates hold for all n > 0:

”anr] — x|l < h+1 — In (5.1.20)

and
|n = x*|| < t* = 1, (5.1.21)

where sequence {t,} is given by (5.1.3) for
ey =1— (d+b,,-A+%t,,) (n>0). (5.1.22)

Furthermore the solution x* is unique in U (xq, t*) if

0<by+d—A. (5.1.23)
Finally if there exists t{ > t* such that

U (xo, ) < Dy, (5.1.24)
and

B+ <1, (5.1.25)

then, the solution x* is unique in U (xo, ti")
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Proof. We shall show:

lxg+1 — Xkl < tkyr — (5.1.26)
X1 € U (xo, 1%) (5.1.27)
and
k
> lxipr — xill < ¢* (5.1.28)
i=0

for all k > 0. Estimates (5.1.26)—(5.1.28) hold for k = 0 by the initial conditions.
Assume they hold for all K < n. Then, we have:

lxk+1 — xoll < lxker — xill + lxk — xe—1ll + - -+ llx1 — xoll
< (g1 — 1) + (e — te—1) + -+ (11 —10) =ty <17, (5.1.29)

and
k

> X — xill < 1% (5.1.30)
i=0

By (5.1.13), (5.1.15)—(5.1.18), and the induction hypotheses, we obtain in turn:
45" A G = A o | =
< 45" (A ) = F )|
+ A5 (F ey = F )| + |4 (4 o) = F' (o))
n+1
<bi1— A+ K1Y |xj = xj-1| + Ko llxee1 — xoll +d
j=1
<biy1 — A+ (Ko+ K1) tig1 +d < g1 < 1. (5.1.31)

It follows from (5.1.31), and the Banach Lemma on invertible operators that
A (Xg4 1)~ exists so that:

HA (k1) AOH < C,;l] < akjil. (5.1.32)
Using NL, (5.1.3), (5.1.14), (5.1.15), and the approximation

AG'F (1) =
= Ay [F (g = F () — A (o) (oieq1 — x0)]
1
= Ag' {/o [F' (kg1 + 6 (i — xx1)) — F' (x10)] (g1 — x) d6
x [F' (xx) — A (xp) ] (g1 — xk)} , (5.1.33)

we get
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[ 45" F G| =

k
< 3K [lxet — x>+ [ bk — A+ K, Z | = xj=1 | | Mxxs1 — xll
j=1
< 3K (tkr1 — 107 + (be — A + K1) (k1 — 1) (5.1.34)

Moreover by NL, (5.1.32), and (5.1.34) we obtain
iz = el = | [4 G ™ Ao [45"F ]|

|4 o™ o] - | 45" F G|

< %K(tk-#l —tk)2+(bk—A+K1tk)(tk+1 —tk)
= Chrl

IA

= tr42 — ter1,  (5.1.35)

which completes the induction for (5.1.26).
Furthermore we have:

k+1
D lxin = xill < g1 <, (5.1.36)
i=0
and
[ Xk+2 — x0ll < frgn <17, (5.1.37)

which complete the induction for (5.1.27) and (5.1.28).

It follows from (5.1.26) and (5.1.27) that sequence {x,} (n > 0) is Cauchy in a
Banach space X and as such it converges to some x* € U (x, t*) (as U (xo, t*) is a
closed set). By letting K — oo in (5.1.39) we obtain F (x*) = 0. Estimate (5.1.21)
follows from (5.1.20) by using standard majorization techniques.

To show uniqueness in U (xq, 1), let y* be a solution of equation F (x) = 0. By
(5.1.13), (5.1.18), and (5.1.23) we have

1
Ayl /0 [F' (" +0 (x* = y*)) = F' (x0)] do

1
SKO/O 1" +6 (x* = v*) — xo do
1
< Ko/o [0 |+ = xo| + (1 —6) [|y* — xo ] 40 (5.1.38)

<Lt <1. (5.1.39)

It follows again from (5.1.35) and the Banach Lemma on invertible operators that
linear operator

1
L= / F' (v +6 (x* — y*)) d6 (5.1.40)
0

is invertible. Using the identity
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0=F (x*)—F(y")=L(x*—y%), (5.1.41)

we deduce
x* =y (5.1.42)

Similarly if y* € U (xo, 1), we obtain again that operator L is invertible as by
(5.1.25) and (5.1.39)

|45 [L - F oo < % (r*+1) < 1. (5.1.43)

Hence, again we get (5.1.43).
Remark 5.1.3. (a) If

Ko =K, (5.1.44)
K| =0K, (5.1.45)

and
§=1 (5.1.46)

where 0 > 1, (and A) are given in [74, p. 441], then Theorem 5.1.2 reduces to
essentially Theorems 2.4-2.5 and 3.2 in [74].
However in general
Ky <K (5.1.47)

holds. Hence if strict inequality holds in (5.1.47), we obtain immediately under the
hypotheses of Theorem 5.1.2 and the ones in [74]

”anrl — x|l < Int1 —In < Sp+1 — Sn (n>0), (5.1.48)
|on = x*|| < % =ty < s* —sp, (5.1.49)
th <s, (n>=1), (5.1.50)
and
" <s* (5.1.51)

where s,,, s* used in [74], and are given by

4
Snti = Sn + A ’), 50 =0, (5.1.52)

Cn

f () =soKt* — At + bon, (5.1.53)

and s™ is the smallest zero of equation
f (@) =0. (5.1.54)

That is, we obtain finer estimates on the distances involved and a more precise
information on the location of the solution under the same hypotheses and com-
putational cost. Note that in practice the computation of Lipschitz constant K also
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involves the computation of Ky. Moreover, note that our hypotheses hold whenever
the corresponding ones in [74] hold but not necessarily vice versa (unless if (5.1.40)—
(5.1.42) hold).

(b) In the special case of Newton’s method, i.e., when

AX)=F (x) (xel) (5.1.55)

we have
Ki=0, o=1, b,=A (n=>0)andd =0.

In order for us to compare Theorem 5.1.2 with the corresponding ones in [74], as-
sume § is given by (5.1.46). Then it can easily be seen that the conditions of Lemma
5.1.1 and Theorem 5.1.2 are satisfied if

=(K+Kon<=1, (5.1.56)

whereas the conditions in [74] reduce to the famous Newton-Kantorovich hypothesis.

The advantages of this approach have been explained in Section 2.2.

The rest of the results mentioned there can also be improved along the same lines.
To avoid repetitions, we leave these details to the motivated reader and we study the
local convergence of NL method instead (not considered in [74]).

In what follows, we study the local convergence for NL method.

Theorem 5.1.4. Let F: D C X — Y be a Fréchet-differentiable operator. Assume:
there exist an approximation A (x) € L (X, Y) of operator F' (x), an open convex
subset Dy of D, a solution x* of equation F (x) = 0 such that A o« el Xx),
and nonnegative parameters, by, A, b, Li, i = 0,1,...,6 such that the following
conditions hold for all x,,, x,y € Do (n > 0):

|46 [F @ - P = Lo (5.157)
[46) [ 00— F ] < Lot =1 (5.1.58)
|46 [a@ = A ]| = L2 x =] + Ls, (5.1.59)
HAQ "[A @) — F ()] m—A+u;w% (5.1.60)
and

|46 F () = A]| = 2s x =27 + L (5.161)
b, — A <b; (5.1.62)

equation
@L1+Lgr+it%%5n+b+L3—1=o (5.1.63)
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has a minimal nonnegative zero r* satisfying

Lyr+ L3 <1 (5.1.64)

and
a(r) <1; (5.1.65)
U (x*,r*) € Dy. (5.1.66)

Then, sequence {x,} (n > 0) generated by NL method is well defined, remains in
U (x*, r*) foralln > 0, and converges to x* provided that xo € U (x*, r*).
Moreover, the following estimates hold for all n > 0:

lxn42 — Xpgrll

_ [ Lol =0 Guns1 =)+ G =) |40+ Lo Ls = | [ llins = |
- 1=(L3+La|[xps1—x*]])

(5.1.67)

and

n
[3ealbsnst 1 (BT 3 gl [l

=1
|xn41 = x*] < 17(L3+L2]|\x,17x*||) . (5.1.68)

Proof. By hypothesis xg € U (x*,r*). Let x € U (x*, r*). Using (5.1.59) and
(5.1.65), we get

(A6 A= Aa()]| s L+ Lo = s L+ L™ < 1. (5.1.69)

It follows from (5.1.69), and the Banach Lemma on invertible operators that A (x)_1
exists with

[a 7 a()| == (La+ L2 | = )] (5.1.70)

Moreover in (5.1.46) using (5.1.57)—(5.1.62) induction on n (5.1.69) for x = x,+1,
and the approximations

Xn+2 — Xn+1
=A@ a()]a )
1
[T G 6 G50 = i) = F ()] G50 = 1) 0

+ [A Cons) A (x*)] A F (¢%) = AGn)] Gon = Xag1) . (5.1.71)

and
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Xngp1 —x*
=[a@)a()]a )
x /0 P (50 40 (5 = x52)) — F )] (5 — ) 6
+ [A (x,)"L A (x*)] A) T F () — AG) (= x) . (5.172)

we obtain (5.1.67) and (5.1.68), respectively.
Furthermore by (5.1.63)—(5.1.66) we obtain

||x* — Xpt1 || < ||x* — X H < x* — xq, (5.1.73)

E:Wu—%lﬂ<n+a()n+f0ﬂn+~-+d“W”M
- (r*)

= T 1 = Tem

(5.1.74)
Hence, we deduce x,, € U (x*, r*) (n > 0), and lim;,_, oo = x™*.

Remark 5.1.5. In order for us to compare Theorem 5.1.4 with results already in the
literature we consider again Newton’s method. We can choose:

Lo=Lr=1Ls, by=A, Ly=Ls=0 (5.1.75)

Then hypotheses of Theorem 5.1.2 are satisfied if

rf =i (5.1.76)
Rheinboldt in [175] in this case using only (5.1.58) obtained
rp = % (see also Section 2.4). (5.1.77)

5.2 Weak conditions for the convergence of a certain class of
iterative methods

In this section, we are concerned with the problem of approximating a locally unique
solution x™* of the nonlinear equation

F(x)+G(x) =0, (5.2.1)

where F, G are operator defined on an open subset O a Banach space X with val-
ues in a Banach space Y. Operator F' is Fréchet-differentiable on U (z, R), and the
differentiability of G is not assumed.

Recently in [35], we used the Newton-like method

x0 € U (2, R), Xnt1 =%y — A (xn) " [F (x0) + G (x,)] (n > 0) (5.2.2)
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to generate a sequence approximating x*. Here, A (v) € L (X, Y) (v € X).
Throughout this study, we assume there exists zZ € X, R > 0,a >0,b >0,
n>0with A(z)~' € L(¥,X), and forany x,y e U (z,r) S U (z, R) € Q

[4@™ 1A @ = A1 = wo (lx = xol) +a, (5:23)
4@ [Fa+ro-—m-aw)]|

swl—zl+rlx =yl —wi (v =zl +br€[0,1)  (524)

[4@716 @ -6 w2 )k =1, (5.25)

4@ F@+6 @ <, (5.2.6)

where, wo (r), wi (2), w2 (), w (r), w (r +1t) — wy (r) (¢ > 0) are nondecreasing,
nonnegative functions on [0, R] with w (0) = wg (0) = w; (0) = w2 (0) = 0, and
parameters a, b satisfy

a+b< 1. 5.2.7)

Using (5.2.3)—(5.2.7) instead of the less flexible conditions considered in [58],
we showed in [35] that the following can be obtained under the same computational
cost

(a) weaker sufficient convergence conditions for method (5.2.2);
(b) finer estimates on the distances

lxn+1 — xnll s ”xn - X*” (n>0);

(c) more precise information on the location of the solution.

Here we continue the work in [35] to show how to improve even further on (a)—

(c).

We study the semilocal convergence analysis for method (5.2.2) (see also Chapter

2).
It is convenient to define scalar iteration {¢,} n > 0 for some ro € [0, 7], c >0
to=ro, f =ro+c, (5.2.8)
B {f(} w[tn+0(z,,+17t,,)]d07w1(t,,)+b}(tn+17tn)+f,;”+l wa (0)dO
Int2 = Int1 1—a—wo (tn11)
(n>0).

Iteration {z,} plays a crucial role in the study of the convergence of method
(5.2.2). It turns out that under certain conditions, {#,} is a majorizing sequence for
{xn}, [35], [58]. Here we try to weaken the earlier conditions and further improve
estimates on the error bounds and location of the solution x*.

Clearly if

th<wy' (1—a) (n>0) (5.2.9)
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then it follows from (5.2.8) that sequence {#,} is nondecreasing and bounded above
by wO_1 (1 — a), and as such it converges to some t* € [O, wo_1 (1— a)].

We can provide stronger but more manageable conditions that imply (5.2.9).

We need the following general result on majorizing sequences for method (5.2.2).

Lemma 5.2.1. Assume there exist constant d > 0, sequences a, € [0, 1), b, > 0,
¢y >0, and d, > 0 such that for

an=a+wo(dy), bya=(1—a) ",
1
cnz{ﬁzum+ﬂuw4—mﬂd@—wﬂm%+b+wﬂmH4bm (5.2.10)
do=dy=ro, di=d =ro+c,
dp=ro+c+c(ti—t)+c2(ta—t) 4+ cnei (i1 — tn—2) (0 >2),
(5.2.11)
the following conditions hold for all n > 0:
wo (dn) < wo (dp) <wo(d) <1—a. (5.2.12)

Then sequence {t,} generated by iteration (5.2.8) is well defined, nondecreasing
bounded above by w ' —a), and converges to some t*.
Moreover, the following estimates hold:

th<d, (n=>0) (5.2.13)

and
Int1 —th =Cp (g —th—1) (n>1). (5.2.14)

Proof. 1t suffices to show hypotheses of the Lemma imply condition (5.2.9). Indeed
using (5.2.8), (5.2.10)—(5.2.12) we can have in turn for all n > 2 (as (5.2.9) holds for
n = 0, 1 by the initial conditions):

Ing2 Sttt Cpgt (nl — ty) =ty + ¢ (tn — th—1) + Cugt (Gnp1 — tn)

<-4 ro+ctcr (tt —to) -+ ongt g1 — 1) =dpyo < dpso,
(5.2.15)

which shows (5.2.13) for all n > 0. Moreover by (5.2.12), we obtain
wo () < wo (dy) <1 —aforalln >0, (5.2.16)
which shows (5.2.9). Moreover, (5.2.14) follows from (5.2.8) and (5.2.11).

For simplicity next, we provide some choices of functions and parameters defined
above in the special case of NK method. That is we choose

AX)=F (x), Gx)=0 (xeU(z, R)), z=xpand ry =0. (5.2.17)
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Remark 5.2.2. Assume the Lipschitz choices:
wo (r)y=4~4or, wr)=w;(r)=4Lr(re[0,R]), anda =b =0, (5.2.18)

where
0<¢ey<t (5.2.19)

holds in general. Special choices of sequences appearing in Lemma 5.2.1 are given
below.

(a) The Newton-Kantorovich case. Assume £o = £, and h = 24c < 1.
Define d,,,d (n > 0) by

1_ n__
dn=C+2L1h2 1C+"'+2n%]h2 lC,

and

d=1==" @ +0).

Then it follows from the proof of the Newton-Kantorovich’s theorem (see Chap-

ter 2 Section 2.2) that
a, <1,

and condition (5.2.9) hold.
(b) Assume that any of conditions conditions (2.2.48)—(2.2.50) hold. Then by Theo-
rem 3 in [35] conditions (5.2.9) hold for

dn=[1+%+---+(%)"_l]c (n=1)

and

_ 2
d_2—6

Moreover other alternatives which imply condition (5.2.9) are given in Remarks
5.2.3,5.2.5, and Lemma 5.2.4 that follow:

Remark 5.2.3. Assume there exist parameters o) € [0,1 —a), b € [0, 1], a (de-
pending on b and «) such that

wo(ro+c¢) <oy <1—a, (5.2.20)
o] < o, (5.2.21)
q () <b for bel0,1), (5.2.22)
or
q(a) <1 for b=1, (5.2.23)
where

g (@) = fo] w[u)al(a-i-f)c)]d@—zlu_lglfil(a))+b+w2(w61(a)) . (5.2.24)

Then, function
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d(b)=ro+(1+b+b2+~~b”+~-~>c, (5225

is well defined on interval 1), = [y, a2] (b # 1).
Moreover, assume there exists a™ € Ij, such that

wo (d (a*)) <o’ (5.2.26)

Then using induction on n > 0, we can show condition (5.2.5). Indeed (5.2.9) holds
for n = 0, 1 by the initial conditions. By (5.2.8), we have

n—1n<q(a*) @ —1),

then,
wo (2) < wo [11 +q (¢*) (11 = 10)] < wo (d (&) = e* < 1.
If
wo (ty) <a* <1—a,thenty,p ) — 1, < g (a*) (th — ta_1)
then

wo (ta+1) < wo [ty +q (&%) (tn — ta—1)]
< wp [ro + (l +a* + (oc”‘)2 +- (ot*)"_l) , c]
< wo(d(a*)) <a*<1-—a,
which completes the induction.
Hence, we showed:
Lemma 5.2.4. Under the stated hypotheses:

(a) condition (5.2.9) holds;
(b) sequence {t,} is nondecreasing and converges to some t* such that

wo (ty) < wo (') <1 —a; (5.2.27)
(c) the following estimates hold for all n > 0:
0< 42 —Ihy1 = ¢ (O[*) (tn—i-l —Iy) < b (tn—H —1Iy) < bn+10, (5228)

and
0<rt*—1, <2< (5.2.29)

Remark 5.2.5. (a) For b = 1, condition (5.2.23) together with (5.2.8) implies
O0<tyt1 —th<thy—th1 (m=>1) (5.2.30)

Hence, we deduce again * = lim,,_, o t,, exists.
Moreover if we replace (5.2.9) by

wo (%) < 1—a (5.2.31)

conclusions (a) and (b) of Lemma 5.2.4 hold, whereas for estimates of the form
(5.2.28) we use (5.2.30).
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(b) It can easily be seen from (5.2.22)—(5.2.25) that conditions (5.2.22) and (5.2.23)
can be replaced by

q1 () <b for bel0,1), (5.2.32)
or
q1 () <1 for b=1 (5.2.33)
respectively, where
g1 @) =g (ﬁ) . (5.2.34)

We provide the main semilocal convergence theorem for method (5.2.2), which
improves our earlier result (see Theorem 3, [35]).

Theorem 5.2.6. Assume:
hypotheses (5.2.3)—(5.2.8) and (5.2.9) hold for

ro € [0,r], ¢=ri—ro, r €[0,R], (5.2.35)
wo' A —a)y+ro<r, Uzr) <O, (5.2.36)
and
xo € D (r*) (5.2.37)
where
t* = lim t,, (5.2.38)
n—oo

{t,} is given by (5.2.8) above, and r1, D (t*) are defined by (12), (14) in [35], respec-
tively (see also (5.3.74)—(5.3.75)).

_Then, iteration {x,} (n = 0) generated by method (5.2.2) is well defined, remains
inU (z,t*) foralln > 0, and converges to a solution x* of equation F (x)+G (x) =
0.

Moreover, the following error bounds hold for all n > 0:

||xn+l —xll < Int1 —In (5.2.39)

and
|xn = x*|| < t* = 1. (5.2.40)

Furthermore the solution x* is unique in U (z, t*) if
1
/ [w((1+20) %) —wy (1%)]dt +wo (3%) +wo (1*) +a+b <1, (5.241)
0
and in U (z, Ry) for Ry € (1%, r] if

1
/ [w (" + 1" + Ro)) — wi (t%)]dt + wa (26 + Ro) + wo (t*) +a+b < 1.
0 (5.2.42)
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Proof. Simply repeat the corresponding proof of Theorem 3 in [35] but use (5.2.9)
above instead of conditions (54)—(57) in [35] (see also the similar proof of Theorem
5.3.3 that follows).

Remark 5.2.7. Our condition (5.2.9) is weaker than all earlier ones [58], [74], [125],
[147] in general. Moreover, our error bounds are finer than the corresponding ones
in Theorem 3 [35, p. 664], which in turn were shown in the same paper to be finer
than the ones given by Chen and Yamamoto in [58]. Furthermore the information on

the location of the solution x* is more precise than the corresponding ones in [35] or
[58].

Remark 5.2.8. Assume the Newton-Mysovskii-type conditions [43]:

[A@) T [Fr a1 —x) - aw]|
s@(x—zl+ely =5 =T (e =z +b (5243)

and
4@ 6@ -6 =) k-1,

for all . .
x,y,weU(z,r)CU( R)C D, te]l0,1], (5.2.44)

where parameter b, functions W, W, and W are as b, w, w;, and wa, respectively.
Replace conditions (5.2.3)—(5.2.5), by (5.2.43), (5.2.44), condition (5.2.7) by b < 1,
and set b, = 1 for all n > 0, (@ = 0). Then clearly all results obtained here hold in
this setting. All the above justify the claims (a)—(c) made at the introduction.

Example 5.2.9. Let X = Y = R, xp = —.6, D = [—1,2] and define F on D
by F (x) = 1x3 4 .897462. Set w’ = tor, w(r) = €r,a = b = 0. Then we
obtain ¢ = .049295, £y = 3.8 and £ = 11.1. The NK hypothesis is violated as

h = 2¢c = 1.0 — 54 > 1. However it can be easily seen that conditions of Remark
5.2.3 hold in this case.

5.3 Unifying convergence analysis for two-point Newton methods

In this section, we are concerned with the problem of approximating a locally unique
solution x™* of the nonlinear equation

Fx)+G((x)=0, (5.3.1)

where F, G are operators define on a closed ball U (w, R) centered at point w and of
radius R > 0, which is a subset of a Banach space X with values in a Banach space
Y. F is Fréchet-differentiable on U (w, R), and the differentiability of operator G is
not assumed.

We use the two-point Newton method
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Y-1.50 €U W, R), Yut1 = Yn — A uet, ) " [F ) + G ()] (1> 0)
(5.3.2)
to generate a sequence converging to x*. Here A (x,y) € L (X,Y). We provide
a local as well as a semilocal convergence analysis for method (5.3.2) under very
general Lipschitz-type hypotheses (see (5.3.3), (5.3.4)).

Our new idea is to use center-Lipschitz conditions instead of Lipschitz conditions
for the upper bounds on the inverses of the linear operators involved. It turns out that
this way we obtain more precise majorizing sequences. Moreover, despite the fact
that our conditions are more general than related ones already in the literature, we
can provide weaker sufficient convergence conditions and finer error bounds on the
distances involved.

We first study the semilocal case. In order for us to show that these observations
hold in a more general setting, we first need to introduce the following:

Let R > 0 be given. Assume there exist v, w € X such that A (v, w)_1 €
L (Y, X), and for any x, v,z € U (w,r) € U (w, R), t € [0, 1], the following hold:

(4@ | shodx vl ly=wh+a,  (533)

and

[4@w  {[Fo+ic-m-awn]c-n+6@-G6m]| 634
<[y —wll+zllz=yl) —hally —wl) +h3lz —xl) + Dl llz =yl ,

where, hg (r, s), h1 (r +7)—ha (r) (¥ > 0), ha (r), h3 (r) are monotonically increas-
ing functions for all r.s on [0, R] with A (0, 0) = & (0) = hy (0) = h3 (0) =0, and
the constants a, b satisfy a > 0, b > 0. Define parameters c_1, ¢, c1 by

[y-1=vl<c-1. lly-1=yoll ¢, llv—wl =ecr. (5.3.5)

Remark 5.3.1. Conditions similar to (5.3.3)—(5.3.4) but less flexible were considered
by Chen and Yamamoto in [58] in the special case when A (x, y) = A (x) for all
X,y € U (w,R) (A(x) € L(X,Y)) (see also Theorem 5.3.9). However, we also
want the choice of operator A to be more flexible and be related to the difference
G (z) — G(y) forall y,z € U (w, R). It has already been shown in special cases
[43], [54] for method (5.3.2) is improved (see also Application 5.3.17). Note also
that if we choose:

Ax,y)=F' (x),G(x)=0,w=do, ho (r,r) = yor, (5.3.6)

hi (r) =ha (r) = yir, h3 (r) =0,
forall x,y € U(w, R),r € [0, R], and a = b = 0 then conditions (5.3.3), (5.3.4)
reduce to the ones for NM (see Chapter 2). Other choices of operators, functions,

and constants appearing in (5.3.3) and (5.3.4) can be found in the applications that
follow.

With the above choices, we show the following result on majorizing sequences
for method (5.3.2).
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Lemma 5.3.2. Assume:
there exist parametersn > 0,a >0,b >0,c_;1 >0,¢c>0,§ € [0,2), ro € [0, 7],
r € [0, R] such that:

1
2[/ hl(ro+977)d9—hz(r0)+b+h3(6+n)} +[a+ho(c+c1.n+r0)]
0

<4, (5.3.7)
21 +ro+c= (5.3.8)
T35 ro+c<r, 3
(3 n+l1 5\"
(2>§ n+c+c- 1,%774‘70 +a<l, (5.3.9)
1-3 - (7)
and

3
2

5 é)1-%—]
2/0 [ fzé n+0(3)"" n+ro]d9—2h2|: ](2) n+ro]
)

. (%)n-%—l (% n+2
cons[(8) (149) }Wm[ & ere, n+ro}
2 2
<s (5.3.10)
foralln > 0.
Then, iteration {t,} (n > —1) given by
t_1=ry, to=c+ro, H=c+ro+n, (5.3.11)

1
1 —a—ho(ty —t_1+c_1,tag1 — to +710)

In42 = Iny1 +
1

< f 1 (1 — 0+ 70 + 6 (tns1 — 1)) — ha (tn — fo + ro) + b d6
0

+ h3 (tn+l - tn—l) (tn+1 - tn)

is monotonically increasing, bounded above by
=2 g+, (5.3.12)
and converges to some t* such that
0<t*<t"<r (5.3.13)

Moreover, the following estimates hold for all n > 0:

0<tys2—tar1 < 3 (ar1 — 1) < ()" 1. (5.3.14)
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Proof. We must show:

1
2{/ [h1 (e — 10+ ro+ 6 (tp1 — 1) — ha (& — 10 + 1) + b] d6
0

+ h3 (k1 — t—1) ¢ + 8 [a+ho (tx — -1 4 c—1, i1 — 1o + 10) ]

<4, (5.3.15)
0<tyy1 —t, (5.3.16)
and
ho(tk —t—1+c—1,tkx1 —to+ro) +a < 1 (5.3.17)
forall kK > 0.

Estimate (5.3.14) can then follow from (5.3.15)—(5.3.17) and (5.3.11).
Using induction on the integer k > 0, we get for k = 0

1
2|:/ h1(ro+97])—hz(ro)+b+h3(c+77):|
0

+8[a+ho(c+e_1,n+r] <8,
Oftl _t07
ho(c+c—1,n+rp) +a<1,

which hold by (5.3.7) and the definition of #;.
By (5.3.11) we get
0<t—t <3t —1).

Assume (5.3.15)—(5.3.17) hold for all ¥ < n + 1. Using (5.3.15)—(5.3.17) we
obtain in turn

1
2 {/ [h1 (k1 — 10+ 70 + 6 (k42 — tkg1)) — ho (g1 — to + ro) + b d6
0

+ h3 (k42 — tk)} +68[a+ho (trr1 — -1+ 1. fkya — o +70) |

< 2{/01}11 [(% +6 (%)k“) ,7+roi| — Iy [lf_ékﬂnjtro}

k+1 k+2
+ 46 [a + ho (l_(g) +c+c—q, 1_(%> + Vo>:|

]

1—

(SIS
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by (5.3.7) and (5.3.10). Hence we showed (5.3.15) holds for k = n + 2. Moreover,
we must show:

e <t** (5.3.18)
i1=rog<t™, tn=ro+c<r*, n=c+ro+n<t*
n<ctrotn+in=3n+r+c<r*

Assume (5.3.18) holds for all k < n + 1. It follows from (5.3.11), (5.3.15)—(5.3.17):
feaz < ft + 5 (ke — 1) <t + 5 (e — tim) + 3 (e — 1)
2 k+1
<---<c +ro+n+§n+(§) n+-+(3)
(3" -
=" n+rot+c=<s 8+ro+c—t (5.3.19)
2

Hence sequence {t,} (n > —1) is bounded above by #**. Inequality (5.3.17) holds for
k =n+2by (5.3.8) and (5.3.9). Moreover (5.3.16) holds for k = n + 2 by (5.3.19)
and as (5.3.15) and (5.3.17) also hold for k = n + 2. Furthermore, sequence {z,}
(n > 0) is monotonically increasing by (5.3.16) and as such it converges to some ¢*
satisfying (5.3.13).

We provide the main result on the semilocal convergence of method (5.3.2) using
majorizing sequence (5.3.11).

Theorem 5.3.3. Assume:
hypotheses of Lemma 5.3.2 hold, and there exist

y_1e€Uw,r), yoe U(w,ry), r €[0,R], (5.3.20)

such that
HA O-1,50 "' [F (o) + G (yo)]H <. (5.3.21)

The_n, sequence {y,} (n > —1) generated by method (5.3.2) is well defined, remains
in U (w,t*) for all n > —1, and converges to a solution x* of equation F (x) +
G (x) = 0. Moreover, the following estimates hold for alln > —1:

Ynt1 = Yull < thg1 — tn (5.3.22)

and
lvn — x*| < t* =t (5.3.23)

Furthermore the solution x* is unique in U (w, t¥) if
1
/ hy ((1420) t%) dt —hy (1) +h3 (26%) +ho (£ + 1, ") +a+b < 1, (5.3.24)
0
and in U (w, Ry) for Ry € (t*, r] if

1
f hy (t* + (1" + Ro)t) dt —hy () +h3 (Ro + t¥) +ho (t* + 1, %) +a+b < 1.

0
(5.3.25)
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Proof. We first show estimate (5.3.22), and y, € U (w,t*) for all n > —1. For
n = —1,0, (5.3.22) follows from (5.3.5), (5.3.11), and (5.3.21). Suppose (5.3.22)
holds for alln = 0, 1, ..., k + 1; this implies in particular (using (5.3.5), (5.3.20))

lyier — wll < vkt — yell + lve — ye—1ll + -+ Iyt — yoll + lyo — wl|
< (g1 — ) + k= te—1) + -+ (11 —10) + 1o
=t —to+ro <ty <t*.

That is, yr41 € U (w, t¥).
We show (5.3.22) holds forn = k 4+ 2. By (5.3.3) and (5.3.11), we obtain for all
x,y e U (w,t)
[4@w™ Ay =A@ wi| <hodx vl Iy - wlh) +a. (53.26)
In particular for x = yx and y = yi41, we get using (5.3.3), (5.3.5),

|4 w) ™ [A Gr ) = A @, w)]|
< ho (lyx = vll, Iye+1 — wl) +a
< ho (I3 = y=1ll + ly=1 = vl Iyt = xoll + llyo = wi) +a

<ho(tx —t-1+c_1,tkiq1 —to +10) +a

1_(§)k 1_<5)k+1
<hy| —Fn+c+c 1, —4—n+ro|+a<1,(by(53.9). (53.27)

8
1-3 1-§

It follows from (5.3.27) and the Banach Lemma on invertible operator that
A (&, yk+1) " exists, and

|4 Gk e ™ A w)
<[l—a—ho(—t_1+c1, 541 — o +r0)] (5.3.28)
<by=[l—a—ho(R—t_i+c_1, 0641 —t0+r)] .
Using (5.3.2), (5.3.4), (5.3.11), (5.3.28) we obtain in turn
I yk+2 — ykt1ll = HA Ok Yi+ ) [F i) + G (yk+1)]H
= HA Ok ke 1) ™ [F k1) + G (1)
— A G130 Ok = 30 = F 00 = G 00 ] |
= |40k e A w | |[A @ w ™ F e - Foo

— A k=1, Y0) Ok+1 — Yk) + G 1) — G (yx) ] H
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_ {/01 (21 vk =wli || yeg 1 =yic | =h2 Qe —w D +bde+h3 (| v — ye—1 ||)] Y11= ||
- l—a—h()(tk—t_1 FC_ 1,41 —l()+r())

- {fol [ (te—to+ro+t (tip1 =) ) —ha (tk—to-+ro)+b]dt+h3 (st —z,(,l)}(szrl —1)

- l—a—h()(tk—tfl-l—cfl,tk+|—l()+r()) (5329)
= k42 — lk+1,
which shows (5.3.22) for all n > 0.
Note also that
lye+2 — wll < lyk+2 = Vel + k1 — wll
< k42 — k1 F 41 —to + 1o
=fqy2 —lo+ 1o < tipp < 17 (5.3.30)

That is, yx4o € U (z, %) .
It follows from (5.3.22) that {y,} (n > —1) is a Cauchy sequence in a Banach
space X, and as such it convergence to some x* € U (w, t*). We can have as above

ez = vitll = bo | A, w) ™ [FOien) + G )] | = B llyiees = el
(5.3.31)
where, o
b = bob;
and .
by =/ hi(1 +2t)Rdt — ha(R) + h3(2R) + b. (5.3.32)
0

By letting k — o0 in (5.3.29), using (5.3.28), and the continuity of the operators F,
G we obtain
bo ”A(v w)" [F(e*) + G (x H —0, (5.3.33)

from which we obtain F(x*) + G (x*) = 0 (as by > 0). Estimate (5.3.23) follows
from (5.3.22) by using standard majorization techniques.
__ To show uniqueness in U (w, t*), let y* be a solution of equation (5.3.1) in
U (w, t*). Then as in (5.3.29) we obtain the identity:
Y= Vi1
=y =+ FOO + GO0 = AGk-1, 30~ (FGH + G (v%))
~[AGk-1 907 A w) | A, w) ™!

X [F(y*) = F() = AQk—1, YO O* = y) + G (y*) = Gw)] (5.3.34)
Using (5.3.34) we obtain in turn
[fol By (Iye=wll+ || y* =yi || ) dr=ha (lyk=wiD4h3 (|| y* =yi—1 ||)+b]||y*—)’k||
1—a—ho(|[yk—1=v||.llya—wl)

[0 i [(L20)% | di—ho (1%)+h3 (21%)+b | 4
T—a—ho(+cp.t%) ||y

< [v* = - (5.3.35)

||y* — Yk+1 || =

— |
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That is, x* = y*, as limy .00 yn = y*.
If y* € U (w, Ryp) then as in (5.3.35) we get

1 p—
I5* =y | = DRIEEESEEER 2 [y — |

< [y =y (5.3.36)

Hence again we get x* = y*.

Remark 5.3.4. Conditions (5.3.9), (5.3.10) can be replaced by the stronger but easier
to check
ho[%+c+c_1,%+ro]+a<1, (5.3.37)

and
1
2/ hy [%—F@%—Fro]d@—%z[%—i—r@]
0
+ 2h3 [(1 +%)n]+5h0|:22Tn5+C+C_1, zzTna—i-ro]
<34 (5.3.38)

respectively. Conditions (5.3.7)—(5.3.10) can be weakened even further along the
lines of Section 4.2.

Application 5.3.5. Let us consider some special cases of operator A, functions h;ji =
0, 1, 2, 3, parameters a, b and points v, w.

Define
A(x,y)=F' (y)+[x,y; GI, (5.3.39)
vV=y_1, W =), (5.3.40)
and set
ro =0, (5.3.41)

where F', [-, -; G) denote the Fréchet derivatiove of F and the divided difference of
order one for operator G. Hence, we consider method (5.3.2) in the form

Va1 = n = (F 0) + [nt, 903 G]) T (F o)+ G () (0> 0) (53.42)

The method was studied in [43], [54]. It is shown to be of order 1+2*[5 ~ 1.618...
(same as the order of chord), but higher than the order of
1 =2 — F @) (F @) +G(z) (n=0), (53.43)
and
Wna1 = Wy — A (W)~ (F (wy) + G (wy) (n=0). (5.3.44)

Assume:
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4G9 [F' 0 = F 00| < v lly = ol (5.3.45)
[4 01307 [F o = Fr ]| = v lx =, (5:3.46)
|4 G107 (0 v5 61 = [y-130: G| = 7 Gl =yl + Dy = yolD
(5.3.47)
and
|4 01307 (1,35 61 = 12,3 GD|| < vsllz =y (5.3.48)

fﬁr some nonnegative parameters y;, i = 2,3,4,5 and all x,y € U(yo, r) C
U (yo, R).

Then we can define

a=b=0, hy=ha, hi(q) =y3(q),h3(q) =ys5q, and
ho (g1, q2) = vaq1 + (v2 + v4) q2. (5.3.49)
If the hypotheses of Theorem 5.3.3 hold for the above choices, the conclusions fol-
low.

Note that conditions (5.3.45)—(5.3.48) are weaker than the corresponding ones in
[54, pp. 48-49]. Indeed, conditions

[F' o= F ol =wlx=yl. [acn™] =wm lyz6l=n
and
Ilx, y; G1 = [z, wi Gl < yo ([lx =zl + [y — wl)

for all x,y,z,w € U (yo,r) are used there instead of (5.3.45)—(5.3.48), where
[x, v, z; G] denotes a second-order divided difference of G at (x, y, z), and y;,
i =6,7,8,9 are nonnegative parameters.

Application 5.3.6. Returning back to Remark 5.3.1 and (5.3.6), iteration (5.3.2) re-
duces to the famous NK method (see Chapter 2).

In order to compare with earlier results, we consider the case when x = y and
v = w (single-step methods). We can then prove along the same lines to Lemma
5.3.2 and Theorem 5.3.3, respectively, the following results by assuming:
there exists w € X such that A (w)™' € L (¥, X), for any x,y € U(w,r) C
U (w, R),t €0, 1]:

|4 @)™ 1A 0 = A = g0x = wl) +a (5.3.50)
and
|4 @) F G+ =) = A0 =0+ G0 - G W)
= L1 (b = wll + 11y = xI) = g2 (Ix = wl) + g3 () + B1lly = xI|, (5:35D)

where go, g1, g2, g3, «, B are as hy, (one variable) h, ho, h3, a, and b, respectively.
Then we can show the following result on majorizing sequences.



284 5 Newton-like Methods

Lemma 5.3.7. Assume:
there existn >0, >0, 8 > 0,8 € [0,2), r9 € [0, r], r € [0, R] such that:

1
715=2|:/0 g1 (r0+0n)d9—gz(r0)+g3(”0+77)+/3i|

+ 8 [a + go (ro + )]

<5, (5.3.52)
24y <r (5.3.53)
o[ 25 (1= Q)" ) +ro]+a <1, (5.3.54)

1
+as0[ 25 (1= (8)") +n0
<9 (5.3.55)
foralln > 0.
Then, iteration {s,} (n > 0) given by
S0 = 710,
si=ro+mn,

Jodg1 (s +0 (sn1—51)) —82 () +BYdO (1 —50) + o' 83(6)d6
i oy (5.3.56)

Sp+2 = Sp+1 +
is monotonically increasing, bounded above by
s = 2+ g, (5.3.57)
and converges to some s* such that
0<s*<s™. (5.3.58)

Moreover, the following estimates hold for alln > 0

+1
0<spy2—Spy1 < % (Sn+1 —8n) < (%)n (5.3.59)
Theorem 5.3.8. Assume: B
hypotheses of Lemma 5.3.7 hold there exists yo € U (w, ro) such that
[460~' 1F 00 + G 0ol =0 (5.3.60)

Then, sequence {w,} (n > 0) generated by method (5.3.44) is well-defined, remains
inU (w, s*) foralln > 0, and converges to a solution x* of equation F (x)+G (x) =
0. Moreover; the following error bounds hold for alln > 0
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||wn+l —wy| < Sn+1 — Sn (5.3.61)

and
Jwn — x*|| < s* = sn. (5.3.62)

Furthermore the solution x* is unique in U (w, s*) if
1
/ [g1 (5% +205%) — g2 (s%)]dO + 83 (s) + g0 (") +a+ B < 1. (5.3.63)
0
orinU (w, Ry) if s* < Ry <r, and

1
/O [g1 (s* +6(s™ + Ro)) — g2 (s%) ] dO+g3 (s¥) + g0 (s%) +a+B < 1. (53.64)

We state the relevant results due - to Chen and_ Yamamoto [58, p. 40]. We assume:
A (w)~ ! exists, and for any x, y, € U (w,r) € U (w, R):

0< 4@ Fw+6wn| =7 (5.3.65)
4@ Aw - aw)| =z Uk -w +a, (5.3.66)

|4 [Fratr -0 - Aw]|
ST —wh)+ly = x = Fo (hx = wi) + Bt € 10,11, (53.67)

4@ ™60 -6 =g )1k -1, (53.68)

where g, g1, @, f are as go, g1, «, fB, respectively, but g, is also differentiable with
§6 (r) > 0, is also differentiable with g, (r) > 0,7 € [0, R]andw + 8 < 1.
As in [58] set:

o) =T—r+ fo 2 (0 dr, Y () = /0 o5 () dr, (53.69)
X =¢pr)+v @)+ @+ pB)r (5.3.70)

denote the minimal value of x () on [0, R] by x*, and the minimal point by r*. If
x (R) < 0, denote the unique zero of x by r; € (0, r*]. Define scalar sequence {r,}
(n > 0) by

ro €10, Rl rus1 =1 + 573 (02 0), (53.71)
where
u(r)=x(r)—x*, (5.3.72)
and
gry=1—-%¢g,(r) —a. (5.3.73)

With the above notation they showed:
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Theorem 5.3.9. Suppose x (R) < 0. Then equation (5.3.1) has a solution x* €
U (w, rg), which is unique in

7 [T @R ifx (R)=00ry (R) =0, and rj <R.
V= { Uw,R) ifx(R)y=0andrj < R'O (5.3.74)
Let
*=U U -1 u(r)
D* = U, epo.r%) {y eU(w,r) ‘ HA(y) [F () +G(y)]H < m}. (5.3.75)

Then, for any yo € D, sequence {y,} (n = 0) generated by method (5.3.44) is well
defined, remains in U (w, r*) , and satisfies

lYn+1 = yull < a1 — 1, (5.3.76)

and
lyn = x*|| <r* =1y (5.3.77)

provided that rq is chosen as in (5.3.71) so that ro € Ryo, where for y € D*

Re={refo.r) | A0 Fm+600] <G 1y —2l <7} 5378)

Remark 5.3.10.
(a) Hypothesis on g, is stronger than the corresponding one on go.
(b) Iteration (5.3.71) converges to r* (even if ro = 0) not ;.

(c) Choices of y_1, yg other than the ones in Theorems 5.3.3, 5.3.8 can be given by
(5.3.75) and (5.3.76)

Remark 5.3.11. The conclusions of Theorem 5.3.9 hold if the more general condi-
tions replace (5.3.66)—(5.3.68), and

go(r) =g (), rel0,R], (5.3.79)

is satisfied. Moreover if strict inequality holds in (5.3.79) we obtain more precise
error bounds. Indeed, define the sequence {7, } (n > Ol, using (5.3.51), g» instead of
(5.3.67), gy, respectively (with g = g1, =@, B = B), by

ro=ro, r1 =71, (5.3.80)

u(p)—u(Fr_1)+(1—g2(Fp_1)—a) (Fa—Tp_1)
l g(;n) : : (n = 1)

Fn—l—l - Fn =

It can easily be seen using induction on n (see also the proof of Proposition 5.3.13
that follows) that

Tnel —Tn <Tpel — T (5.3.81)

Tn < Ty (5.3.82)

=T, <r*—r,, 7 = lim 7,, (5.3.83)
n—o0

and 7* < r*.
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Furthermore condition (5.3.51) allows us more flexibility in choosing functions
and constants.

Remark 5.3.12. Our error bounds (5.3.61), (5.3.62) are finer than the corresponding
ones (5.3.76) and (5.3.77), respectively, in many interesting cases. Let us choose:

a=a, B=B, ) =g (), g r)=g@r)=g (r),and (53.84)
g3(r)=g3(r) forallr €[0, R].

Then we can show:

Proposition 5.3.13. Under the hypotheses of Theorem 5.3.8 and 5.3.9, further as-

sume:
s1 <1 (5.3.85)
Then, the following hold:
sp<rp (m>1), (5.3.86)
Sntl = Sn <Tut1 —1p (1= 0), (5.3.87)
st —sp <1t =1, (n20), (5.3.88)
and
s <r* (5.3.89)

Proof. 1t suffices to show (5.3.86) and (5.3.87), as then (5.3.88) and (5.3.89) respec-
tively can easily follow. Inequality (5.3.86) holds for n = 1 by (5.3.85). By (5.3.56)
and (5.3.71) we get in turn

fol {g1(50+0(51—50))d0—g2(s0)+ar} (51 *So)+f;0' 83(0)do

2751 = 1—B—go(s1)
_ JoAZ) ro+0.(r1—r0))d6—F, (ro)+& ) (ry —ro)+f,.ro' 83(0)do
1-B—2o(r1)
_ u(r)—u(ro)+gtro)(ri—ro) _ u@y) _ . _
= 1—B—§0("1) =30 T r ri. (5.3.90)
Assume:
Sk+1 < Tk+1 (5.3.91)
and
Sk+1 — Sk < Tk+1 — Tk (5.3.92)

hold for all k < n.
Using (5.3.56), (5.3.62), and (5.3.92), we obtain

Sk+2 — Sk+1
Sl (0 (s —s1) ) dO—ga ()} sk —si) + /X! g3(0)d6
B 1—B—280(sk+1)
- Jo {81 (0 (ris1 —11) ) dO—8 (r) +@} (riesr —r) + [F ! 830)d0
1-B=2o (res1)

—u(rpg)—uri)+gri) (1 =) ulrepr) _
o g(rie1) = 2en) K2 T kAL
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In order for us to include a case where operator G is nontrivial, we consider the
following example:

Example 5.3.14. Let X = Y = C [0, 1] the space of continuous on [0, 1] equipped
with the sup-norm, and R > 0. Consider the integral equation on U (xo, %) given by

1
x (1) = f k(t,s, x(s))ds, (5.3.93)
0

where the kgnel k(t,s,x (s)) with (z,5) € [0,_1] x [0, 1] is a nondifferentiable
operator on U (xo, %). Define operators F, G on U (xo, §) by

F (x) (t) = Ix (t) (I the identity operator) (5.3.94)
1

Gx)(@) = —/ k(t,s,x(s))ds. (5.3.95)
0

Choose xp = 0, and assume there exists a constant 6y € [0, 1), a real function
01 (t, s) such that

k@, s,x)—k@ s, ) <61 s)lx—yl (5.3.96)

and X
sup f 01 (t,s)ds <6y (5.3.97)

1€[0,11J0

forallz,s € [0, 11, x, y € U (xo, §).

Moreover choose in Theorem 5.3.8: 79 = 0, yo = y—1, A (x, ) = I (x), go (r) =
r,a=B=0,g1(r)=g2(r)=0,and g3 (r) =6p forall x,y € U(xo, %),r,s €
[0, 1]. It can easily be seen that the conditions of Theorem 5.3.8 hold if

= <k (5.3.98)

We now study the local convergence of method (5.3.2).
In order to cover the local case, le_t us assume . x* is a zero equation (5.3.1),
A (x*, x*) ! exists and for anyx,ye U (x*,r) CUx*, R),t €[0,1]:

/|

HA (x*, x*)71 [A (x,y)— A (x*, x*)] H < o (||x —x*

y —x*|)+a, (5.3.99
and
[ ) T H(F (@ o (=) = A 0) (=) + G (1) = G ()]
= [ (ly == a+0) =R (|y =" + 73 (|« =x"[) +5)] [ » (—5);*1|

’

00)

where, EO, hi, ho, Eg, a, b are as ho, h1, ha, h3, a, b, respectively. In order for us to
compare our results with earlier ones, we only consider the case ro = 0, x_; = v,
xo = w in (5.3.2) and call the corresponding sequence {x,} instead of {y,}. Then
exactly as in (5.3.34) but using (5.3.99), (5.3.100), instead of (5.3.3), (5.3.4), we can
show the following local result for method (5.3.2).
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Theorem 5.3.15. Assume:
there exists a solution of equation

fo)=0, (5.3.101)

in [0, r] where

1
f(k):/ [hi (L+0D0) —haW)]dt +ho (e, ) +a+b—1.  (53.102)
0

Denote by Ly the smallest of the solutions in [0, r]. Then, sequence {x,} (n > —1)
generated by method (5.3.2) is well defined, remains in U (x*, Ao) foralln > 0, and
converges to x* provided that x_1, xo € U (x*, 2).

Moreover the following estimates hold for all n > 0:

[x* = xns1]| < P (5.3.103)
where,
mhMHM%ﬁH)MWermHMMmlxm}

" 1=b—ho(Ixn—x*) -t
(5.3.104)

Application 5.3.16. Let us again consider Newton’s method, i.e., F' (x) = A (x, y),
G (x) =0, and assume:

[P ) P @ = P )] | = (5.3.105)
and '
[F () F o = F ]| = sl =yl (5.3.106)
forallx,y € U (x*,r) € U (x*, R). Then we can set:
a=b=0,
hy (r) = ha (r) = Aar,
and
ho (r,r) = Mr forallr € [0, R]. (5.3.107)
Using (5.3.105), (5.3.106) we get:
o= —2 (5.3.108)
O Dt >

Then, see Section 2.4.

Application 5.3.17. Notice that in Example 3.3.11 we provided a numerical result
where our approach here compare favorably to the one given by Zabrejko [146],
Chen and Yamamoto [58].
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5.4 On a two-point method of convergent order two

In this section, we are concerned with the problem of approximating a solution x* of
the nonlinear equation
F(x) =0, (5.4.1)

where F is a Fréchet-differentiable operator defined on an open subset D of a Banach
space X with values in a Banach space Y.
We introduce the two-point method

Xn+l1 = Xp — A;lF(xn), 54.2)
Ap = [(1 + An)xn — )\nxn—l»xn—l] , (x—1,x0 € D) (n > 0)

to generate a sequence approximating x*. Here the numbers A, are chosen (if pos-
sible) so that iterates (1 + A,)x, — A,x,—1 (n > 0) stay in D, whereas [x, y; F] or
simply [x, y] belongs in L(X, Y) so that:

[x,y](x —y) = F(x) — F(y) forallx,y e D. 54.3)

Linear operator [x, y] is called a divided difference of order one on D. Clearly, iter-
ation (5.4.2) has a geometrical interpretation similar to the secant method (see also
(5.4.78)).

We provide a local as well as a semilocal convergence analysis for method (5.4.2)
based on majorizing sequences and the corresponding majorant principle. It turns out
that method (5.4.2) is essentially of quadratic order, and uses two previous iterates
at every step as the secant method, which is only of order 1.618.... Moreover it is
faster than the corresponding three-point method given by Potra in the elegant paper
[163], which is only of order 1.839 ... (see also (5.4.79)). Some numerical examples
are also provided to show:

(a) how to choose linear operator A;

(b) that our iteration compares favorably with other methods using divided differ-
ences of order one and two previous iterates at every step.

Finally, the monotone convergence of method (5.4.2) is examined on partially
ordered topological spaces or POTL-spaces (see Chapter 1).
We can show the following local convergence result for method (5.4.2):

Theorem 5.4.1. Let F be a nonlinear operator defined on a convex subset D of a
Banach space X with values in a Banach space Y. Assume:

equation F(x) = 0 has a solution x* € D at which the Fréchet derivative exists and
F'(x*)~ ' e L(Y, X);

operator F' is Fréchet-differentiable on Dy C D with divided differences of order
one on D denoted by [x, y] and satisfying (5.4.3) for x, y € Dy;

there exist nondecreasing functions a, b, c: [0, +00) — [0, 4+00) and function
*: X% — R such that for all x, y € Dy:



5.4 On a two-point method of convergent order two 291

[T+ A(x,y)]y —Ax,y)x € Dy, (5.4.4)
[P [F/o = Flan] | < adle = 2, (5:45)
[P e v1 = [ D = by = 2, (5:46)

[P @y 1 = 10+ 20 )y = 2w xD| < ellly = xlDi - (5.47)
equation
ar)+b(r)+2c2r)—1=0 (5.4.8)

has a minimum positive zero r*,
and
U™, r*)} € Do. (5.4.9)

Then, sequence {x,} (n > —1) generated by method (5.4.2) is well defined, remains
inU(x*, r*) for all n > 0, and converges to x* provided that:

x_1,x0 € U™, r"). (5.4.10)
Moreover, the following estimates hold for alln > 0:

b(|lxn — x*1) + c(llxn — X1
1= [aCllx = x*[) 4 c(llxn = xa-11)

Ixng1 — x* < ] lxn — x*[. (5.4.11)

Proof. We shall first show:
F'(x) =[x,x] forallx e U™, r*). (5.4.12)
By the Fréchet-differentiability of F, there exists d > 0 such that
|F'«*| <d. (5.4.13)
Using (5.4.6) for x € U (x*, r*), we obtain in turn
[F(x + Ax) — F(x) — [x, x] (Ax) ||
- H F/(*YF ()~ ([x + Ax, x] — [x. x]) Ax H
<d [H F'(x*)~! (Ix + Ax, x] = [x*, x]) Ax H
+ H F'(x*)™! ([x* x] =[x, x]) Ax ”
<d[b(r* + |Ax|) + b(r)] | Ax]|. (5.4.14)

If b(r*) # 0, by letting Ax — 0 we obtain (5.4.12). However if b(r*) = 0, then
by (5.4.6) there is an operator L in L(X, Y) such that [x, y] = L for all x, y € Dy.
Hence, from (5.4.3) we can set F'(x) = L for all x € Dy.

Let us denote by L the linear operator
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L=[(14A(x,y)y—Alx,y)x,x]. (5.4.15)
Assume x,,_1, x, € U(x*, r*). We shall show L is invertible on U (x*, r*), and for
A = 2@t xn)s Ly = [(L4+ 2y = MpXn1, Xn—1]  (5.4.16)

1L, F o) < 1= adlln —x*1) — el — xa1ID] ™
<[1—at™ —c@] . (5.4.17)

Using (5.4.2), (5.4.4), (5.4.5), (5.4.7)—(5.4.10) and (5.4.12), we get in turn:

[P [Fen) = L]

S G (S B R
+ ([xna Xn] — [(1 + An)Xn — AnXn—1, xn—l]) ]

< a(llxp, = x*[) + c(llxn = xp—11) < a@™) + c(lxp — x| + 1x* = xp—11)
<a@r*) +c@r’) <1, (5.4.18)

by the choice of r*.
It follows from the Banach Lemma on invertible operators and (5.4.18) that L, 1
exists, so that estimate (5.4.17) holds. Moreover by (5.4.6) and (5.4.7), we get:

” F'(x*)~! ([0, x*] = Ln)
= | P [(Fons %] = s 2a]) + Q] = )]

< |F e (o 4] = Lo al) + Qs xal = L) |

< b(llxn — x*ID) + c(llxn — xa—11)
< b))+ cllxn — x*| + 2™ = xp—1 ) < bG™) + c(2r™). (5.4.19)

Furthermore, estimate (5.4.11) follows from (5.4.2), (5.4.17), (5.4.19), and the ap-
proximation

e =0 = | L5 ([ 3] = L) (i = )

| 7™ (Lo 6] = L)

< 'L;lF’(x*) I, — x*[. (5.4.20)

Estimate (5.4.20) and the choice of 7* imply
[Xnt1 — x| < llxg —x*[| <r*  (n > 0). (5.4.21)
Hence, we deduce: limx,, = x* and x,, € U(x*, r*) (n > 0).

We can show the following result on majorizing sequences for method (5.4.2).
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Lemma 5.4.2. Assume there exist nondecreasing, nonnegative functions o;, i =
1, ..., 5, nonnegative parameters B, y, n and é € [0, 1) such that:

B = as(n) + as(y) + 8 [a1(n) + @2(0) + a3(n) + Bl < 8, and forallk > 0
(5.4.22)

h§ = g (8%n) + as(8*~ ‘n)+8[a1( S >+a2<1 5n>+a3(5kn)+ﬁ}
(5.4.23)

<3,
Pk =a (1—1 ok )+a2 (1 A n) Fas@ )+ B < 1. (5.4.24)

Then sequence {t,} (n > —1) given by

t1=0, o=y, th=y+n,
_ a4(tn+1 —ty)Fas(th—ty—1) _
In+2 = Il ¥ T30 gt — 1)+ (n— 1)+ 1) ] (Unt1 = 1n) (5:4.25)

is nondecreasing, bounded above by

=y + (5.4.26)

and converges to some t* such that
0<r*<r™. (5.4.27)
Moreover, the following estimates hold for all n > 0:
0 < t42 = fngt < 8ty — 1) < 8"y, (5.4.28)
Proof. We shall show for all k > 0

a4t — 1) + as(tx — te—1) + 8[ o (t1 — 10) + o2 (1 — to)

+ a3ty — 1) + B] <6, (5.4.29)
a1 (tee1 — 1) + ot — 1) +az(terr — 1) +B < 1, (5.4.30)

and
0< te1 — Ig. (5.4.31)

Estimate (5.4.28) can then follow from (5.4.25) and (5.4.29)—(5.4.31). Inequalities
(5.4.29)—(5.4.31)) hold for k = 0 by (5.4.22), (5.4.23), and (5.4.25). Let us assume
(5.4.29)—(5.4.31) hold for all k < n + 1. We can have in turn:

a4(ti2 — 1) + sty — 1) + 8[en (kg2 — f0)+
+ aa(tk1 — 10) + a3(fr2 — tkg1) + B <
< as (@) +as@*n)

+5[a1( 50) + e (525 >+a3(8"“n)+ﬁ}

=t <8, (by (5.4.23) (5.4.32)
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and

ai(tkyo — to) + oot 1 — o) + 013(tk+2 —tyD)+B <

Sa1<l_1k )+a2( )+a3(5"“n)+ﬂ P <1, (5.4.33)

which together with (5.4.25) imply estimates (5.4.29)—(5.4.31) hold for all k£ > 0.
Moreover we shall show

e <t™ (k>-1). (5.4.34)
For k = —1, 0, 1, 2 we have:
i =0<1™ 1=y <t n=y+n <t n=y4n+on < y+oh <
(5.4.35)
It follows from (5.4.25), (5.4.29)—(5.4.31) that for all k > 0

2 St + 8tk — ) <--- <1 +5(t1 - to) +~~+3(tk+1 — 1)

Hence, sequence {,} (n > —1) is nondecreasing, bounded above by ** and as such
it converges to some t* satisfying (5.4.27).

Remark 5.4.3. Conditions (5.4.22), (5.4.23), and (5.4.24) can be replaced by (5.4.37),
and (5.4.38), respectively, so that they can be independent of k, say, e.g.,

hs = as(n) +as(n) +an (125 ) + o2 (1) + st + B <8, (5437)
P5=0l1( >+062< )+063(77)+ﬂ<1 (5.4.38)

Conditions of the form (5.4.22)—(5.4.24) or (5.4.37) and (5.4.38) are standard in the
study of Newton-type methods. In the special case:

a;i(ry==6;r, i =1,2,3,4, as(r) = 95r2 forsome; >0, i=1,...,5
(5.4.39)
it can easily be seen from (5.4.25) that there exist ng > 0, & > 0 such that

0 < tys2 —tag1 < O(tys1 —1a)*  (n > no). (5.4.40)

Hence the order of convergence for sequence {t,} (n > —1) is essentially quadratic
(under the hypotheses of Lemma 5.4.2). Let x, y,z € Dy, and define the divided
difference of order two of operator F at the points x, y, and z denoted by [x, y, z]
by:

[x,y, 21 (y —2) =[x, y] = [x, z]. (5.4.41)

We can show the following result for the semilocal convergence of method
(54.2).
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Theorem 5.4.4. Let F be a nonlinear operator defined on a subset D of a Banach
space X with values in a Banach space Y. Assume:

Operator F has divided differences of order one and two on Do C D;

there exist points x_1, Xo in Do such that Ag = [(1 + Xo)Xxo — AoX_1, x_l] is invert-
ible;

conditions (5.4.4), (5.4.22)—(5.4.24) hold;

Define constants B, y, and n by

lxo —x—1ll < ¥ (5.4.42)

1AG " ([(1 + Ao)xo — Aox—1, X—1, X0 Ao — [x0, X—1, X)) (x0 — x_D | < B (5.4.43)

and

|4y F o)l < s (5.4.44)
there exist nondecreasing, nonnegative functions «;, i = 1,2, ..., 6 such that for all
x,y € Dy:

1Ag ! (Lxo. xo] = [y, xoD Il < a1 (lly — xol) (5.4.45)
1A ([y. xo] = [y, xDIl < ea(llx — xol). (5.4.46)
1AG [y, x1 = [(1 4 ACx, y)y = ACe, )x, xD]| < as(lly = x]), (5.4.47)
1AG [y, x1 =[x, x DIl < eu(lly = xID). (5.4.48)
1AG [y x, y1 = [(1 4 A(x, y))y = A(x, y)x, x, y] G, )y — 0

=as(ly —xI, (5.4.49)
145" (Ao — [x. xDI| < a6 ([[(1 + Ao)xo — hox—1 — x| + [lx_1 — x[).  (5.4.50)
/01% [2y +2(1 +20)¢*] dr < 1, (5.4.51)

and -
U (xo, %) S D, (5.4.52)

where t* was defined in Lemma 5.4.2.

Then sequence {x,} (n > —1) generated by method (5.4.2) is well defined, re-
mains in U (xq, t¥) for all n > 0, and converges to a unique solution x* of equation
F(x) =0in U(xg, t*).

Moreover, the following estimates hold for all n > 0:

lxn+1 — Xnll < tht1 — 1y (5.4.53)

and
X, —x*| <t* =1, (5.4.54)

where sequence {t,} is given by (5.4.25).
Furthermore if there exists R > t* such that:

U(xo, R) € Dy (5.4.55)
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and 1
/0 a2y +2R +2t(t* + R))dt < 1, (5.4.56)
then the solution x* is unique in U (xg, R).
Proof. We shall show using induction on k > 0:
xp € Ulxo, 1), (5.4.57)
and

k41 — Xkl < trp1 — ke (5.4.58)
Estimates (5.4.57), (5.4.58) hold for k = —1, 0 by the initial conditions and because
1 < t*, tp < t*. Assume (5.4.57) and (5.4.58) hold for all n < k + 1. Using
(5.4.42), (5.4.45)—(5.4.47) we get
145" (Ao — Ags )l

= 1|14y (L1 + 20)x0 — Aox—1, x—1] — [x0, X_1] + [x0, X_1]
— [x0, x0] + [x0, x0] — [Xk+1, x0] + [Xk+1, x0] — [Xkt1, Xi]
+ [t ] = [+ Ak DX 1 — A1 X1, xe Dl
= 1Ay (([(1 + o)xo — Aox—1, X_1, X0 ko — [0, X1, Xo]) (X0 — X_1)
+ ([x0, x0] = [xk+1, x0D) + ([xk415 0] — [Xkt1, XD
+ (k15 xk] = [+ Agr 1) Xk+1 — A1 X+, X D)l
< B+ ar(llxg+1 — xolD) + aa(llxx — xolD) + az(llxk+1 — Xkl
< B+ ai(tgy1 — to) + o2ty — to) +o3(teg1 — ) < 1. (5.4.59)

It follows by the Banach lemma on invertible operators and (5.4.59) that A, +11 exists,
and

AL Aoll < [1 = (B + a1 (et — to) + (i — to) + a3(trs1 — 1)
(5.4.60)
By (5.4.48) and (5.4.49), we can also have:
Ay (Drert, 1] — AR

= [|Ay " (Bt 3] — e, xic] + [x, xe]
=[xk, Xk—1] + [k, x—1] = [(1 + )Xk — Agxe—1, xXk—1]) |l

= 1Ay ((Exrr1, %] — Dk, D) + (e, Xe—1. x]
— [+ Ap)xk — ApXp—1, Xk—1, Xk ] M) (X — Xk—1) |l

< ag(llxg+1 — xk D + as(lxxe — xk—11)

< ag(tpy1 — t) +as(t — ti—1). (5.4.61)
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By (5.4.2), (5.4.60), and (5.4.61), we obtain in turn

lxk+2 — X1l
= IIA;:JllF(karl)II = IIAk_Jll(F(karl) — F(xp) — Ar (g1 — xi) |l

< IA7} Aol 1A (L1, %] — A et — xl

ot (g1 — ) Foes (e —tr—1) _
1= B+a (ti 1 —10)+aa (tr—10)+03 (11— 1k) | (st = 1)

= k42 — Tt 1, (5.4.62)

A

IA

which shows (5.4.58) for all n > 0. We can also get

k+1 k+1
lxk2 — xoll < Z lxjp1 —x;ll < Z(fjH —tj)) =tk —to < t*.  (5.4.63)
=0 =0

That is x, € U(xg, ro) for all n > 0. It follows from (5.4.58) that sequence {x,}
(n > —1) is Cauchy in a Banach space X, and as such it converges to some x* €
U (x0, *). By letting k — o0 in (5.4.62), we obtain F(x*) = 0.

To show uniqueness in Ul(xg, t*) let y* be a solution of equation (5.4.1) in
U(xg, t%). By (5.4.42), (5.4.50), and (5.4.51) we have for

1
M = / [y +1G™ =5, y* + 1 — yH]dt, (5.4.64)
0

1Ay (Ao — M)

1
< / w6 ([I1(1 + Ao)xo — Aot_i — ¥* — 1(x* — y9)|
0

+llxor =y =t =y drt

1
< / g [llxo — x—1ll + llxo — y*II + £ (llxo — ¥*II + llxo — x™[)
0

+ llxo = x—ill + llxo — y*Il + £ (lxo — x*|| + llxo — y*ID1dr  (5.4.65)

1
< f a6 [2y +2(1 4+ 20)1*] dt < 1. (5.4.66)
0

It follows from the Banach Lemma on invertible operators and (5.4.65) that M -1
exists.
We deduce from (5.4.64) and the identity

F(x*) — F(y*) = Mx* —y") (5.4.67)

that
x* = y* (5.4.68)
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Finally to show uniqueness in U (xg, R), let us assume y* € U (xg, R) is a solu-
tion of equation (5.4.1). As in (5.4.65) we obtain again

1
||A51(A0 - M) < / a6 [2y +2R +2t(t* + R)] dr <1, (5.4.69)
0
which shows (5.4.68).
Remark 5.4.5. (a) In the special case
a(ry=ar, b(r)y="br, c(ry=cr* fora>0,b>0,¢>0 (5.4.70)
then, equation (5.4.8) in Theorem 5.4.1 gives

r*

4
= — — 5.4.71)
a+b++(@+b)?+32¢
and as in Remark 5.4.3 we see that the convergence of sequence {x,} (n > —1) is
essentially quadratic. Note that in Section 1.2 we showed how to choose constants a,
b,c.
(b) Conditions (5.4.5) and (5.4.6) can be combined in the stronger

IF" )7 x, y1 = [z whl < ar(llx — 2l + Iy — wl) (5.4.72)

for all x, y, z, w € Do and some nondecreasing, nonnegative function a;. However
note that
a(r)y <a12r), r=|x—x*|, (5.4.73)

and

b(ro) < ai(ro), ro=Ily —x"|. (5.4.74)
(c) In order for us to compare method (5.4.2) with others [163], [196] using divided
differences consider the conditions

IF 7Ny, x, y1 = [+ A, )y — A0, )X, X, YA, ) (5 — X) ||
<c(ly—xIp (5.4.75)

or even

IF' ) (s x, y] = [0, 2, 140, ) — 0 < eallly — x1), (5.4.76)

where c1, ¢, are nondecreasing, nonnegative functions (or simply nonnegative con-
stants). We can write, e.g., in (5.4.18)

[, X0 ] = [+ X)Xy — Apxp—1, Xn—1]
= ([xn, xp] = [xn, Xp—11) + ([xp, Xp—1] = [+ X)X — ApXp—1, Xn—1])
= ([xn, Xpn—1, Xn] = [(L + Xp)Xp — ApXp—1, Xn—1, Xn ] Ap) (X — Xp—1) (5.4.77)
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and consequently replace c(||y — x||) in (5.4.7) etc. by c1(]|ly — x||) or c2(J|]y — x|)).
(d) The secant method

Xnp1 =X — [n1. 2] F(t)  (xo1,x0 € D) (5.4.78)

also uses two previous iterates. However, it is only of order 1.618 .. ..
(e) Potra’s three-point method [163]

Xnr1 = Xp — (X0, Xp—1]+ [Xn—2, Xp] = [xn—2, xn—l])_lF(xn) (x—2,x-1,x0 € D)
(5.4.79)
uses (5.4.72) and (5.4.76) (for ¢, being a constant) to obtain a convergence radius for
method (5.4.79), which however is smaller than ours (see (5.4.71) above and (5.4.22)
in [163, p. 87]). Moreover method (5.4.79) is only of order 1.839....
(f) The radius of convergence for NK method given by Rheinboldt [175] using
(5.4.72) for a; being a constant is given by rg = 3171 However, we showed in Sec-
tion 2.4 that 2 <, L can be arbitrarily large. Hence rg can be smaller than r*.
(g) Condition (5.4.4) automatically holds if D = X, or it can be dropped if divided
differences are defined on the entire space X instead of just D. In practice, we choose
numbers A(x, y) so that (5.4.4) is satisfied. Note also that (5.4.4) is required to hold
only for the iterates x, and not all points in D (see Example 5.4.7).

The choice A(x, y) = 1 forall x, y € D seems to be very realistic and promising.
However, other cases may also be convenient (see also Example 5.4.7). For example
if M(x, y) = —.5forall x, y € D then it can easily be shown using induction on the
integer n that all iterates remain in the balls U (x*, r*) (in the local case) or U (xq, t*)
(in the semilocal case) provided that the initial guesses x_1, xo are inside those balls.
That is, in this case delicate condition (5.4.4) is automatically satisfied.

There is another stronger but more practical way to satisty (5.4.4).

First: In the local case: Assume

AF = max_(I1+2(x, )|+, y))
x,yeDé

exists, and is finite, and
Uy = U (x*, R*) € Do with R* = (|1 +1*| + [*]) r*. (5.4.80)

Then it follows from the proof of Theorem 5.4.1 that the condition (5.4.80) can
replace (5.4.4) and (5.4.9) in Theorem 5.4.1. Indeed, for x,,_1, x, € U(x™*, r*) we
get

||(1 + An) Xn — AnXn—1 _x*”
<L+ Al |0 = 2% + [l |x0—1 — x|
= |1+)¥n|r*+|)\n|r* S)L*V*IR*.

That is, (1 + A,) x;, — Apxy—1 € Uy (n > 0). In case A(x, y) = 1, then R* = 3r*.
Second: In the semilocal case: Replace (5.4.4) and (5.4.52) in Theorem 5.4.4 by
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Uy = U (x9, Rg) € Dy with Ry = A*t*.
Indeed, for x,,_1, x,, € U(xp, t*) (n > 0) we get
(14 2n) Xp — AnXn—1 — Xoll

<L+ Apl llxe = xoll + (X0 lxn—1 — X0l
<UL+l 1" 4+ [Aal 1% < Ro.

Note again that if A(x, y) = 1, then Ry = 3¢*.

Remark 5.4.6. According to (5.4.40) the order of convergence of iteration {x,} (n >
—1) is essentially quadratic.

Comments similar to Remark 5.4.5 for the semilocal case can now follow. How-
ever, we leave the details to the motivated reader and conclude this section with some
numerical examples.

A simple numerical example follows to show:

(a) how to choose divided difference in method (5.4.2);
(b) method (5.4.2) is faster than the secant method (5.4.78).
(c) method (5.4.2) can be at least as fast as NK method (5.4.80).

Note that the analytical representation of F’(x,) may be complicated, which makes
the use of method (5.4.2) very attractive.

Example 5.4.7. Let X =Y = R, and define function F on Dy = D = (.4, 1.5) by
F(x) = x> —6x +5. (5.4.81)

Moreover define divided difference of order one appearing in method (5.4.2) for
A(x,y)=1forall x,y € D by

FQy—x)— F(x)

2y —x,x] = (5.4.82)
2(y —x)
In this case method (5.4.2) becomes
2
x; =5
=1 5.4.83
Xn+1 2(x, —3) ( )

and coincides with NK method (5.4.80) applied to F. Furthermore secant method

(5.4.78) becomes:
Xn=1%n — 5 (5.4.84)
X = 4.
et Xn1+x,—6

Choose x_1 = .6 and xg = .7. Then we obtain:

We conclude this section with an example involving a nonlinear integral equa-
tion:
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|n[Method (5.4.2)|Secant method (5.4.84)|
1].980434783  |.96875

2/.999905228  |.997835498
31999999998 |.99998323

41 =x* 999999991

51— 1

Example 5.4.8. Let H(x,t,x(t)) be a continuous function of its arguments that is
sufficiently many times differentiable with respect to x. It can easily be seen that if
operator F in (5.4.1) is given by

1
F(x(s)) = x(s) — f H(s,t,x(t))dt, (5.4.85)
0

then divided difference of order one appearing in (5.4.2) can be defined as

_ H (s,t,(1+A)xn () —AnXn—1 () —H (s,1,x,-1 (1))
hn(s, 1) = T+ o) Con (1) 1) ’

An = A (1) = A(xp—1(2), X, (2)) (5.4.86)

provided that if for t = t,, we get x,,(f) = x,_1(¢), then the above function equals
H(s, ty, Xy (ty)). Note that this way 5, (s, ¢) is continuous for all # € [0, 1] provided
that 1 + 4, # 0 (n > 0) and, e.g., sequence |1 + X, | is bounded below by a positive
number.

The monotone convergence of method (5.4.2) is examined in the next result.

Theorem 5.4.9. Let F be a nonlinear operator defined on an open subset of a regular
POTL-space X with values in a POTL-space Y. Let xq, yo, y—1 be points of D C X
such that:

x0 <yo < y-1, Do ={x0,y-1) €D, F(xo) <0< F(yp). (5.4.87)

Moreover assume: there exist, a function \: D? — R, a divided difference [-, -]: D —
L(X,Y) such that for all (x,y) € D% withx < y:

(1 4+ A(x,y))y —A(x,y)x € Do, (5.4.88)

and
F(y) = F(x) <[x, 1+ A(x, )y — Alx, y)x] (y — x). (5.4.89)

Furthermore, assume that for any (x, y) € D% withx <y, and (x, (1 4+ X(x, y))y —
Ax, y)x) € D(2) the linear operator [x, (1 + A(x, y))y — A(x, y)x] has a continuous
nonsingular, nonnegative left subinverse.

Then there exist two sequences {x,} (n > 1), {y,} (n > 1), and two points x*, y* of
X such that for alln > 0:
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F(yn) + [ynfl’ (T4 2An)yn — )\nynfl] On+1 = Yn) =0, An = A(Yn—1, Yn)»

(5.4.90)

F(xy) + [yn—lv I+ X)) yn — )\nyn—l] (Xp41 —x,) =0, (5.4.91)

F(xp) <0< F(yn), (5.4.92)

X0 X1 = S X S Xl SVl Sy =00 = V1 =)0, (5.4.93)

lim x, =x*,  lim y, = y*. (5.4.94)
n—00 n—00

Finally, if linear operators A, = [yn_l, (T 4+ Xp)yn — An y,,_l] are inverse nonneg-
ative, then any solution of the equation F(x) = 0 from the interval Dy belongs to
the interval (x*, y*) (i.e., xo < v < ygand F(v) = 0 imply x* < v < y*).

Proof. Let A be a continuous nonsingular, nonnegative left subinverse of Ag. Define
the operator Q: (0, yo — x9) — X by

Q(x) = x — A [F(x0) + Ap(x)].
It is easy to see that Q is isotone and continuous. We also have:
Q(0) = —AoF (x0) = 0,

Q(y0 — x0) = Yo — X0 — Ao(F(y0)) + Ao(F (yo) — F (x0) — Ao(yo — X0))
< Yo — %0 — Ao(F (30)) < Yo — Xo.

According to Kantorovich’s theorem concerning fixed points on POTL-spaces (see
Section 1.2), operator Q has a fixed point w € (0, yo — x¢). Set x; = xo + w. Then
we get

F(x0) + Ao(x1 —x0) =0, xo <x1 < yo. (5.4.95)

By (5.4.89) and (5.4.95) we deduce:
F(x1) = F(x1) — F(x0) + Ao(xo — x1) = 0.
Consider the operator H: (0, yop — x1) — X given by
H(x) = x + Ao(F (y0) — Ap(x)).
Operator H is clearly continuous, isotone, and we have:

H(0) = AoF (yo) > 0,
H(yo — x1) = yo — X1 + AgF (x1) + Ao [F (yo) — F(x1) — Ao(yo — x1)]
< yo—x1 + AgF(x1) < yo — x1.

By Kantorovich’s theorem on fixed points, there exists a point z € (0, yo — x1) such
that H(z) = z. Set y; = yp — z to obtain

F(yo) + Ao(y1 —y0) =0, x1 <y =< Yo. (5.4.96)
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Using (5.4.89), (5.4.96), we get:

F(y1) = F(y1) — F(yo) — Ao()1 — yo) = 0.

Proceeding by induction, we can show that there exist two sequences {x,} (n > 1),
{yn} (n = 1) satisfying (5.4.90)—(5.4.93) in a regular space X, and as such they
converge to points x*, y* € X, respectively. We obviously have x* < y*. If xo <
u < yp and F(u) = 0, then we can write

Ao(y1 —u) = Ao(yo) — F(yo) — Ao(u) = Ao(yo — u) — (F(yo) — F(u)) >0,
and
Ap(x1 —u) = Ap(xo) — F(x0) — Ao(u) = Ao(xo — u) — (F(xo) — F(u)) < 0.

If the operator Ay is inverse nonnegative, then it follows that x; < u < y;. Pro-
ceeding by induction, we deduce that x, < u < y, holds for all n > 0. Hence we
conclude

x* <u <y

In what follows, we give some natural conditions under which the points x* and
y* are solutions of equation F(x) = 0.

Proposition 5.4.10. Under the hypotheses of Theorem 5.4.9, assume that F is con-
tinuous at x* and y* if one of the following conditions is satisfied:

(a) x* — y*;

(b) X is normal, and there exists an operator T: X — Y (T (0) = 0) that has an
isotone inverse continuous at the origin and such that A, < T for sufficiently large
n:

(c) Y is normal and there exists an operator Q: X — Y (Q(0) = 0) continuous
at the origin and such that A,, < Q for sufficiently large n;

(d) operators A, (n > 0) are equicontinuous.

Then we deduce

F(&*) =F@u") =0. 5.4.97)

Proof. (a) Using the continuity of F and (5.4.92), we get
F(x™) <0< F(y").

Hence, we conclude
F(x*) =0.

(b) Using (5.4.90)—(5.4.93), we get

0> F(xp) = Ap(xp — xp11) = T (xp — Xp41),s
0=<F(yn) =A,n — Ynt+1) =T (Yn — Ynt1)-

Therefore, it follows:
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0> T_IF(xn) > Xy — Xpy1, 0= T_IF()’n) = Yn — Yn+l1-
By the normality of X, and

lim (x, — x,41) = hm (yn — Yut1) =0,
n—00

we get lim;,_, T 'F(xy) = lim 77! (F(yn)) = 0. Using the continuity of F we
n— 00

obtain (5.4.97).
(c) As before for sufficiently large n

0> F(xp) = O(xp — xp41), 0= F(yn) < Q(n — Yns1)-

By the normality of ¥ and the continuity of ' and Q, we obtain (5.4.97).
(d) It follows from the equicontinuity of operator A, that lim Apv, = 0 when-

ever 11m v, = 0. Therefore, we get 11m An(xXp—xp41) = hm A 2(In—yn+1) =0.
By (5 4 90) (5.4.91), and the contlnulty of F at x* and y*, we obtaln (5.4.97).

Remark 5.4.11. Hypotheses of Theorem 5.4.9 can be weakened along the lines of
Remarks 5.4.3, 5.4.5, 5.4.6 above and the works in [163, pp. 102—-105], [43], [199] on
the monotone convergence of Newton-like methods. However, we leave the details
to the motivated reader.

5.5 Exercises

5.5.1. Introduce the method
-1
Xn4+1 = Xp — [Z)Cn — Xn—1, xn—l] F(xp) (x—1,x0€ D) (n>0)

for approximating x*.
Let F be a nonlinear operator defined on an open set D of a Banach space X
with values in a Banach space Y. Assume:

operator F has divided differences of order one and two on D;
there exist points x_1, xo in D such that 2xg — x_; € D and
Ag = [2x0 — x_1, x_] is invertible on D;

Set A, = [2xn — Xn—1, xn—l] (n > 0).

There exist constants «, 8 such that:

Ay (Lx, ¥ — [u, v < a(llx —ull + Iy — v,
1Ay [y, x, y1 = [2y — x, x, DI < Bllx — yll, forall x, y,u,v e D,

andforallx,y e D = 2y —x € D.
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Define constants y, § by

lxo —x_1]| <,
Ay F(xo)ll <6,
28y* < 1

Moreover define 0, r, h by

6 = {(«+ By)* +3801 — pyH}'"?,

1-By?

"= e ByEe

and

h(t) = —B3 — (@ + By)t* + (1 — By,

1 atpy+20 2.
8 <h(r)= 5 W’” ;

Uy = U(xp,r0) € D,
where rg € (0, r] is the unique solution of equation
h(t) = (1 —2By*)s

on interval (0, r].

Then show: sequence {x,} (n > —1) is well defined, remains in U (xq, ro) for all
n > —1, and converges to a solution x* of equation F(x) = 0.

Moreover, the following estimates hold for all n > —1

lxp41 — xnll < tn — thg1,
and
xn — x*|| < tu,
where,
ty=ro+y, to=ro,
yo =+ 3Bro+ By, vi=3Bry —2pro— By’ + 1,

and forn > 0
Yotn—(ty 7tn71)2ﬂ72ﬁtr%
V14+2Y0tn—(tln—ta—1)> =317

Ing1 = .

Furthermore if D is a convex set and
2(y + 2rg) < 1,

x* is the unique solution of equation in U (xo, ro).

5.5.2. Let F be a nonlinear operator defined on an open convex subset D of a Banach
space X with values in a Banach space Y and let A(x) € L(X,Y) (x € D).
Assume:
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there exists xo € D such that A(xg)~! € L(Y, X);
there exist nondecreasing, nonnegative functions a, b such that:

|AGo) ™ [AG) — AT || < a(llx = xoll).

[AGo) ™ [F(y) — F(x) — A)(y — 01| < b(IIlx — yll)llx = ylI,
forall x,y € D;

e there exist n > 0, ro > 7 such that

I A(x0) ™" F(x0)ll < n,

a(r) <1,
and
d(r)y <1, forallr € (0,rp],
where
cr)y=(—a@r)™",
and

d(r) = c(r)b(r);
e 1o is the minimum positive root of equation (r) = 0 on (0, o], where

n

T

° U(xo, ro) € D.
Show: sequence {x,} (n > 0) generated by Newton-like method
Xpp1 = X0 — ACe) ' F () (n = 0)

is well defined, remains in U (xg, rg) for all n > 0, and converges to a solution
x* € U(xg, ro) of equation F(x) = 0.

5.5.3. (a) Let F be a Fréchet-differentiable operator defined on some closed convex
subset D of a Banach space X with values in a Banach space Y; let A(x) €
L(X,Y) (x € D). Assume: there exists xo € D such that A(xg) € L(X,Y),
A(xo)~!' € L(Y, X), and

HA(xo)_l [F/(y) - A(x)]” <&, forallx,y e Uxo, 8).

Then, show:
(1) for all &1 > O there exists §; > 0 such that

H [A(x)_l — A(xo)_l] A(xo)H <&, forallx € Ulxp, 81).

Set § = min{§p, 81} and ¢ = max{eg, 1}.
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(2) for ¢ > 0 there exist § > 0 as defined above such that
|46 [Fo) - aw)]| <&
and
[[4@" = 400" Ao | <,

for all x, y € U(xop, 9).
(b) Let operators F, A, point xo € D, and parameters ¢, § be as in (1). Assume
there exist n > 0, ¢ > 0 such that

[ 460 FGo)| <,

(I+e)e<c<l,
n
1—c¢

S 89
and B
U(xo,0) € D.

Show: sequence {x,} (n > 0) generated by Newton-like method is well
d_eﬁned, remains in U (xg, 8) for all n > 0, and converges to a solution x* €
U (xg, §) of equation F(x) = 0. Moreover, if linear operator

1
L= / F'(x +1t(y — x))dt
0

is invertible for all x, y € D, then x* is the unique solution of equation
F(x) = 0 in U(xo, 8). Furthermore, the following estimates hold for all
n>0

[xn41 = xnll < "llx1 — xoll <"

and
n

C
R _x*” =
1—c

©LetX=Y=R,DDU®,.3),x =0,

x2
F(x):?+x—.04.

lx1 — xoll-

Set A(x) = F'(x) (x € D), 83 =84 = 63 = 64 = .3.
Then we obtain

C3=9,<1,

Ui
1—c3

The conclusions of (b) hold and

— 28 <8 =205

x* =.039230485 € U (xo, 3).
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(d) Let x* € D be a simple zero of equation F'(x) = 0. Assume:
”A(x*)_l [F'(y) — A(x)]H <&, forall x € UK™, 810),

< e1p, forall x e U(x™, 812).

H [A(x)—l _ A(x*)_l] A(x™)

Set
813 = min{d11, 612}, cg = (1 +e12)eq1.

Further, assume:

0<cg <1
xp € U(x*, 813),
and B
U(x*,813) € D.
Show: sequence, {x,} (n > 0) generated by Newton-like method is well
defined, remains in U (x*, 813) for all n > 0 and converges to x* with
[ Xn1 — x*| < cgllx, — x|, foralln > 0.
5.5.4. Consider the equation F (x) + G (x) = 0 and the iteration
Xop1 =X — A (6) " (F () + G (x)) (n=0).

Assume:
@ [AG)T AE) —AG))| < vn () + ba,

[ 4G ™ (F @t =) - Aw)|
Swa(rttlly —xl)—vn(r) +cn

and
[4@) " G0 =-GoD| = et Ix =yl

for all x,,x,y € U (xo,r) € U (x0, R), t € [0, 1], where w, (r + 1) —
v, (r) t > 0 and e, (r) (n > 0) are nondecreasing, nonnegative functions
with w, (0) = v,(0) = ¢,(0) = 0 (n > 0), v, (r) are differentiable,
v;L (r) > 0 (n>=0) for all »r € [0, R], and the constants b,, ¢, satisfy
b, >0,c, >0and b, +c, < 1forall n > 0. Introduce for all n,i > 0,
an = I1A ()™ (F () + G @) I, @ni (1) = ai = + i [o wa (1) d,
20 (r) = 1 =0, () = by, Y (1) = cui fg e (D1, cui = 20 ()71,
hn,i (r) = Dn.i (r) + I;//n,i ), ra = llxp —xo0ll, an = ||xn+] — x,|l, the
equations

r=ay +con </ (wo (rp +1) +ep (ry +1))dt + (by +cp — D r
0
(5.5.1)
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r=ay+cpn </ (Wy (ry +1) + e, (1 +t))dt+(bn_cn_l)r)
0

(5.5.2)

an =7+ con (/’ (wo (ty +1) + ey (rn +1))dt + (by — ¢y — D)1
0 (5.5.3)

an =71+ Cyn <fr (Wp (r +1) +ep (rn+1))dt + (bp —cp — Dr
0 (5.5.4)

and the scalar iterations

hon (s,?ﬁ +rn)

LIO’HZO<SI((),)1+V,,) (k > 0)

_ 0 _ 0 _ .0
S0.n = Spn = 0, Sk+1,n = Skon

i (kntrn) g sy

N =
k+1,n k.n + Cn,nin,n (Sk,n"l‘rn)

(b) The function hg o (r) has a unique zero sg in the interval [0, R] and A, (R)
=0
(c) The following estimates are true:

Dy (r+ry) < hO,n(r+r71)
Crt.;zzn,n(r+rn) — €0,nin (r+rn)

for all » € [0, R — r,;] and for each fixed n > 0.

Then show:
(i) The scalar iterations {s,? 41 n} and {sk+1,,,} for k > 0 are monotonically

increasing and converge to s, and s;* for each fixed n > 0, which
are the unique solutions of equations (5.5.1) and (5.5.2) in [0, R — s,],
respectively, with s}* < s* (n > 0).

(i) The iteration {x,} is well defined, remains in U (xg, s*) for all n > 0,
and converges to a solution x™* of the equation F (x)+ G (x) = 0, which
is unique in U (x0, R).

(iii) The following error estimates are true:

0 0
lxn41 — xall < Sn+1,n4+1 — Snn = Spat,n+1 ~ Sn,no
0

* *ok * * 0
”x —Xn ” =Sy — S =S, — Sn,n =S — Sn,0

] A ]

and
L <I7 (n>0)

where I;¥ and I;"* are the solutions of the equations (5.5.3) and (5.5.4),
respectively, for all n > 0.

The above approach shows how to improve upon the results given in
[58] by Yamamoto and Chen.
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(iv) Define the sequence {s,{} (n > 0) by

hyn (s,% + r,,)
Cn,n

Then under the hypotheses (5.5.1)—(5.5.3) above show that:

s(])=0, s,ll+1+ (n>0).

1 1 0 0
lxn41 — xall < Syl — Sp = Sn+ln+l — Snn = Su+1.n+1 ~ Snon
and

0

1 ok *
=8, —Sun =S8, — Sun

|x* = xa| <t =s, < ESS—S,?,Q (n=0),

where

* = lim s,.
n—oo

5.5.5. Consider the Newton-like method. Let A:D — L (X,Y),xo € D, M_| €
LX,Y),XCY,L_1eL(X,X).Forn>0choose N,, € L (X, X) and define
M, = My 1Ny + A (xp) Lp—1, Ly = Ly—1 + Ly—1 Ny, Xpt1 = Xy + L V),
v, being a solution of M, (y,) = — [F (x,,) + z,] for a suitable z,, € y.
Assume:
(a) F is Fréchet-differentiable on D.
(b) There exist nonnegative numbers o, ¢ and nondecreasing functions w,

wo: RT — RT with w (0) = wg (0) = 0 such that

| F (x0)ll < cao, [[Ro (Yol < «,
A (x) = A (xp)ll < wo (llx — xoll)

and
[Frix+t(y—x)—A@| <wlx—xoll +2llx = yl)

forall x,y € U (xo, R) and ¢ € [0, 1].
(c) Let M_; and L_; be such that M_ is invertible,

[ Mo =8 12-il = v and 1Mo = Ao Lol <.

(d) There exist nonnegative sequence {a,}, {a,}, {b,} and {c,} such that for all

n>0
”Nn” Sana
1+ Nall < dn,
|m=t] - ims = g < b, <1
and

lznll < cn I1F Cen)ll -
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(e) The scalar sequence {t,} (n > 0) given by

Int1 = tpy1 + ept1dpt1 (1 + cut1)

|:In + Zhiw ) G — tic1) +w (1) (g1 — tn):|

i=1

(n > 0), 10 =0, 11 = « is bounded above by a t(’)“ with 0 < ta‘ < R, where

e =yao, e =1l 1@n(n > 1), dy = £ (1> 0)
Iy = énén—1...c000 (n > 0) &y = ppdyp (1 + cn) + cn,
Pn = qu—1an (n > 1), po = day,

qn = pn +wo (tyy1) en (n>1)

and
n
hi=]]em G=n).
m=i
(f) The following estimate is true ¢, < e < 1 (n > 0).
Then show:
(i) The scalar sequence {f,} (n > 0) is nondecreasing and converges to a
t* with 0 < t* <tjasn — oo.
(i) The Newton-like method is well defined, remains in U (xq, *), and con-
verges to a solution x* of equation F (x) = 0.
(iii) The following estimates are true:

||xn+l — x|l < Iyl —In
and
[xp —x*| <t* =1, (n=0).

5.5.6. (a) Let F:D € X — Y be a Fréchet-differentiable operator and A(x) €
L(X,Y) (x € D). Assume there exists a point xo € D, n > 0 and nonnegative
continuous functions a, b, ¢ such that

A(x0)™' € L(Y. X),
[ A(xo) ™" F(xo) || <,
1A (x0) " [F'(x) = F'(xp)] | < a(llx — xol)).
e [F'(x0) = A@)] Il < b(llx — xoll).
1A (x0) ™' [A(x) — AGxo)] 1| < e(llx — xol)
forall x € D;

equation

1
/ al(l =Drlrdt +1b(r)+c(r)—1]r+n=0
0
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has nonnegative solutions. Denote by r( the smallest.
Point r( satisfies
a(ro) + b(ro) + c(ro) < 1,

and B
U(xo,r0) =€ D.

Then show sequence {x,} (n > 0) generated by Newton-like method is well
defined, remains in U (xq, ro) for all n > 0, and converges to a unique solution
x* € Ul(xg, ro) of equation F(x) = 0. Moreover, the following estimates hold
foralln >0

lxn2 — Xns1ll < gllxnsr — xall

and
b, — ¥l < g™
where,
__ a(rg)+b(ro)
4= "1l

Furthermore, x* is unique in U (xg, R) for R > t* and

U(xo,R) S D

1
/ al(1 —tro+tR])dt + b(0) < 1.
0

(b) Let F:D € X C Y be a Fréchet-differentiable operator and A(x) €
L(X,Y). Assume: there exist a simple zero x* of F and nonnegative contin-
uous functions «, B, y such that

A" e Ly, X),

TAGH ™ [F'(x) = F'(eH] | < alllx — x*),
IAGH ™ [F'&*) — A@] Il < Blx — x*]),
TAGH ™ [A®) — AGH] I < y(lx — x*])

forall x € D;
equation

1
[ ata=onar+por 4y =1
0
has nonnegative solutions. Denote by r* the smallest; and
U(x*,r*) C D.

Show: Under the above stated hypotheses: sequence {x,} (n > 0) generated by
the Newton-like method is well defined, remains in U (x™*, r*) for all n > 0, and
converges to x*, provided xo € U (x*, r*).



5.5 Exercises 313
Moreover the following estimates hold for all n > 0:
[xn+1 = x*[| < 8nllxn — x* 1,
where

5 — Jo @l A=0)lxa=x* I]dt+B(lxa—x*)
T L=y (llen =)

5.5.7. (a) Assume:
there exist parameters K > 0, M > 0, L > 0,¢ >0, u > 0,n > 0, A1, Ap,
A3 € [0, 1], 8 € [0, 2) such that:

hy = Kn™ 4 (14 41) [M (ﬁ)h +u] + [Z+L (ﬁ)“}s <3,

and

A3
e+L(g) =1,

where,
)
9= 15,

Then, show: iteration {#,} (n > 0) given by

e
K (1= (20 [ M1 0
(1+x1)[147uﬁl]

t0=0, 1 =1, thy2 =tyy1+ (1 — 1) (n=0)

is nondecreasing, bounded above by

and converges to some 7* such that
0<rt*<r™.
Moreover, the following estimates hold for all n > 0
0 < tut2 — a1 < g1 — 1) < ¢" 1.

(b) Let A; = Ap = A3 = 1. Assume:
there exist parameters K > 0, M > 0,L >0,¢£>0,u>0,n> 0,6 € [0, 1]
such that:

h5=<K+L8+§TM5)n+8£+2u§8,

e+ 3 <,

L <K,

and
{4+2u < 1,
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then, show: iteration {#,} (n > 0) is nondecreasing, bounded above
21
2—96
and converges to some ¢* such that
0 <t* <™.
Moreover, the following estimates hold for all n > 0
S S n+1
0< n42 —Ihy1 = _(tn—H ) <|= n.
2 2

(c)Let F: D € X — Y be a Fréchet-differentiable operator. Assume:

(1) there exist an approximation A(x) € L(X,Y) of F'(x), an open convex
subset Dg of D, xg € Dy, parametersn >0, K >0, M >0,L >0, u >0,
£>0,Ar1 €[0,1], 22 € [0, 1], A3 € [0, 1] such that:

A(xo) ™' e L(Y, X),
1A Go) ™" F(xo)ll < m,
IAGxo) ™ [F'(x) = FFOD)] Il < Kllx = yII*,
IAGo) ™ [F'(0) = A@] Il < Mlx = xolI* + 1,
and
1A(x0) ™ [AG) — Ao)T || < Lllx — xoI** + ¢ forall x, y € Dy;

(2) hypotheses of (a) or (b) hold;

3) ]
U(xg, t*) € Dy.

Then, show sequence {x,} (n > 0) generated by Newton-like method is well
d_eﬁned, remains in U (xg, t*) for all n > 0, and converges to a solution x* €
U (xg, t*) of equation F(x) = 0.
Moreover, the following estimates hold for all n > 0:
lxn+1 — xull < w1 — tn
and
xn —x*| <t —ty.
Furthermore the solution x* is unique in U (xq, t*) if
1
1 —C =L@ | 142
orin U (xg, Rg) if Ry > t*, U (xg, Rg) € Dy, and
1
1 ==L [ 142

() + M) +u] <1

(R4 5 1 M@y + u} <1
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(d) Let F: D € X — Y be a Fréchet-differentiable operator. Assume:

(a) there exist an approximation A(x) € L(X,Y) of F’(x), a simple solution
x* € D of equation F(x) = 0, a bounded inverse A(x*) and parameters K,
L M, I’ >0, A4, As, Ag € [0, 1] such that:

JA@x*)™! [F/(x) - F/(y)] | <Klx— ylI™,
IAGH ™ [F'() = AW] 1| < Milx =< + i,

and _ _
IAGH ™ [AG) = ACH] I < Lilx —x*|* + €
forall x, y € D;
(b) equation i
1-5 P4 L M i 4+0—1=0
has a minimal positive zero ro, which also satisfies:

Lrje+i<1

and
U(x*, rg) € D.

Then, show: sequence {x,} (n > 0) generated by Newton-like method is well
defined, remains in U (x*, rg) for all n > 0, and converges to x* provided that
xo € U(x*, rg). Moreover, the following estimates hold for all n > 0:

lxn41 — x* I <

1
1=L g —x*|*6 € [HM

A

Iotw = 27124 W = IS 2] = 7]

5.5.8. Let F be anonlinear operator defined on an open convex subset D of a Banach
space X with values in a Banach space Y and let A(x) € L(X,Y) (x € D).
Assume:

(a) there exists xo € D such that A(xg)~' € L(Y, X);
(b) there exist nondecreasing, nonnegative functions a, b such that:

I AG0) ™ [A@) = AGo)] || < a(llx = xoll),
| AGo) ™ F () = F() = AWy = 0] | < b(llx = yDllx =yl

forall x,y € D;
(c) there exist n > 0, ro > n such that

IA(x0) ™ F(xo)ll <,
a(r) <1,

and
d(r) <1 forall r € (0,r¢],
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where
c(ry=(1—a@r)™",

and
d(r) = (r)b(r);

(d) ro is the minimum positive root of equation /() = 0 on (0, ro] where,
h(r) = _I—Z(r) —r.

(e) U(xo,r9) € D.
Then show: sequence {x,} (n > 0) generated by Newton-like method is well
defined, remains in U (xo, ro) for all » > 0, and converges to a solution x* e
U (xo, ro) of equation F(x) = 0.
5.5.9. (a) Let F:U(z, R) € X — Y be a Fréchet-differentiable operator for some
z€X,R>0,and A(x) € L(X,7Y). A§sume: B
A(z)"' e L(Y, X)and forany x, y € U(z,r) € U(z, R)
1A~ TAG) = AG)] | < wollx — xoll) + a,
A [F (x4 1(y —x) — A@] Il < w(llx —zll + t]lx — yl)
—wi(llx —z[) + b, 1 €[0, 1],
1A Gx) = G < wa(r)llx — vl
0<A@ ' [FR) +G@1I <n,
where w(r+t)—wi(r) (¢t > 0), wi(r) and wy(r) are nondecreasing, nonnegative

functions with w(0) = we(0) = w((0) = wy(0) = 0, wy is differentiable,
wy(r) > 0,r € [0, R],

wo(r) <wi(r) re[0,R] (5.5.5)

and parameters a, b satisfy

Define functions ¢1, ¢2, ¢ by
-
pi(r)y=n—r +/ w(r)dt,
0

,
@a(r) = /o wa(1)dt,
@(r) = @i1(r) + 2(r) + (a + D)r,
iteration {r,} (n > 0) by
ro €10, RT,  rug1 =ry + (20 (n > 0),

where ¢ is the minimal value of ¢ on [0, R];
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(b)
@(R) <0.

Then show iteration {x,} (n > 0) generated by Newton-like method is well
defined, remains in U (z, r*) for any

xo € D(r*) = U {x cUGE M| 1A F&x) +Gx)| < () —¢o }

— l—a—wo(r)
rel0,r*)

and converges to a solution x* € U (z, r(’)k), which is unique in

i7— U(z, R) ifo(R) <Oorg(R)=0andrj =R
- |U@G@ R) ifg(R)=0andri <R.
where r* is the minimal point, r(’)‘ is the unique zero on (0, r*], and

r* = lim r,.
n—oo

Moreover, sequence {r,} (n > 0) is monotonically increasing and converges to
r*. Furthermore, the following estimates hold for all n > 0

lxn+1 = xXnll < Fug1 — 7,

X, —x* | <7 —ry,

provided that ro € Ry, where for x € D(r*)

Rx:{l" € [0, ) 1A T IF () + Gl || < TARZ4 |x — 2| Sr},

a—wo

and
0 (z34) < D).
In the next result, we show how to improve on the error bounds.
(¢) Under the hypotheses of (a), show the conclusions hold with {r,} and D(*)
replaced by {t,} (n > 0), D(t*) given by
fo=ro, 0L =r1,

t,
Jo" 1[w(tn—l'H(tn_tn—l))_wl(tn—l)]dt(tn_fn—l)+b(tn_tn—l)+_/,le wy (1)dt
I—a—wq(t)

Int1 =Ip +
(n=1),

= lim t,.
n—oo

Moreover iteration {t,} is monotonically increasing and converges to ¢*.
Furthermore, the following hold for all n > 1:
el — I =Tl — T, (5.5.6)
th <1, (5.5.7)
t—t, <r*—ry,, (5.5.8)
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and

< r*

If strict inequality holds in (5.5.5), so it does in (5.5.6)—(5.5.8).

If
wo () =wi(r) rel0,R]

our resolving reduces to Theorem 1 in [58]. If (5.5.5) holds, then our error
bounds are at least as fine as the ones given by Chen and Yamamoto [58] (under
the same hypotheses and a more general condition). Moreover according to our
error bounds once finer.

5.5.10. (a) Let F: D C X — Y be differentiable. Assume:

There exist functions fi:[0, 1] x [0, oo)2 — [0, 00), f2, f3:[0, 00) — [0, 00),
nondecreasing on [0, oo)2 , [0, 00), [0, o0) such that

AT [F ot - - F @] =
= i@l =yl I = ol ly = xol)
Ao [F' @) = Aw]| = £ 0 = xol),

Ao ™ A = A = £ (1 = xol),

hold for allr € [0, 1] and x, y € D;
For ||A (x0) " F (x0) || < 1§, equation

bob
n+bon + 1£h|(;7)

=r

has nonnegative solutions, and denote by ry the smallest one. In addition, rg
satisfies:

U (xo,r0) € D,
and )
/ f1.(t, biboro, ro, ro) dt + f2 (ro) + f3 (ro) < 1,
0
where
b — o f1(6.0,0,mdi+ f>(0)
0= = f3(1) ’
b — o 1t bon.n,n+bomdi+ f2(n)
= = /3(n+bon) ’
and

Jo fi@bibon.r,r)di+ f(r)

1=f3(r) ’
Then, show iteration {x,} (n > 0) generated by Newton-like method is well
defined, remains in U (xo, ro) for all n > 0, and converges to a solution x* €
U (x0, ro) of equation. Moreover, the following estimates hold

b=b(r)=
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llx2 — x11l < bon
lx3 — x21l < b1 llx2 — x11l.
[xns1 = x*|| < b2 llxn — X1l (0 = 3)
and

bob1 b3y

2 (n = 3),

e — ] =
= x| < 125, (12 0)

where by, = b (rp) .
Furthermore, if r( satisfies

1
/0 S1(t,2r0, ro, o) dt + f2 (ro) + f3 (ro) < 1,

x* is the unique solution of equation F(x) = 0 in U (xo, ro) -
Finally, if there exists a minimum nonnegative number R satisfying equation

1
/o f1t, r+ro, ro,r)ydt + f>(ro) + f3 (ro) = 1,

such that U (xg, R) € D, then the solution x* is unique in U (xg, R).

(b) There exist a simple zero x* of F and continuous functions f4:[0, 1] x
[0,00) — [0,00), fs5, f6:][0,00) — [0, c0), nondecreasing on [0, c0) such
that

HA ()c*)f1 [F'(x+1(x* —x))— F (x)]H < fa(r,
[a6) ™ P @ - aw]| = s (1 - ]

)

x*—x|

),

and

[4 () A = a ()] = fo (1 =]

hold for allr € [0, 1] and x € D;
Equation

)

1
/ Jat,rydt + fs(r) + fe (r) =1
0
has a minimum positive zero r*.
U (x*,r*) € D.

Then, show iteration {x,} (n > 0) generated by Newton-like sequence is well
defined, remains in U (x*, r*) for all n > 0, and converges to x* provided that
xo € U (x*, r*). Moreover, the following estimates hold for all n > 0
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Jo fa(ellxn—x* D dr+£5 (|l xa—x*]|) *
T—Jo(lin—x) [en = x|

<vy Hxn —x*

e

)

where

_ o faC o= o fs (o= )
v =75 (xo—x1) <1

(©)Let X =Y =R, D =(—1,1),x™ = 0 and define function F on D by

xPt

1
F(x)=x+p+1, p > 1.

For the case A = F’ show

2 2
VR=$<I" =—2+p,

where rg stands for Rheinboldt’s radius (see Section 5.1) where rg is the con-
vergence radius given by Rheinboldt’s [175].

(d) Let X =Y = C[0, 1], the space of continuous functions defined on [0, 1]
equipped with the max-norm. Let D = {¢ € C [0, 1]; ||¢]| < 1} and F defined
on D by

1
F@ W) =@ -5 /0 i (1) di

with a solution ¢* (x) = 0 for all x € [0, 1].
In this case, for each ¢ € D, F’ (¢) is a linear operator defined on D by the
following expression:

1
F (@) ] () = v (x) — 15/ xté (2 v (t)dt. v € D.
0

In this case and by considering again A = F’,
=2 *— L
"R=35 <7 =15

5.5.11. Consider inexact Newton methods for solving equation F (x) = 0, F: D C
RY — R¥ of the general form

Xpyl = Xp +5p (n>0),
where s, € RY satisfies the equation
F' (xp)$n = —F (xa) + 10 (n>0)

for some sequence {r,} € RN.Let F € F; (o) = {F:U (x*,0) — RY with
U (x*,0) C D, where F (x*) = 0, F is Fréchet-differentiable on U (x*, o) and
F’ (x)~" exists for all x € U (x*, o), F' is continous on U (x*, o), and there
exists u; > O such that forall y,z € U (x*, 0)

|7 (%) [F o) = F' @] < mally — 2™
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Suppose the inexact Newton method {x,} (n > 0) satisfy:

Isn + F C) " F o) [ [F )"
|F e Foa) | [F )™ F |

<v, (n=0)

for some {v,} CR (n > 0).If x; € U (x*, 0), then show:
(@) [lxn1 = X[ < wy llxg — x|,

(v || xa =2
(=) [1—pallxn—x*[|*]

Wy =V, + (n>0);

(b)ifv, <v <1 (n > 0), then there exists w € (0, 1) given by

(1+v)py || xo—x* ||)‘

W=V o]

such that ||x;,+1 — x| < w |lx, — x*| and lim,,— o x;, = x™;
(c) if {x,} (n > 0) converges to x* and lim,_, o, v, = 0, then {x,} converges
Q-superlinearly;

—1
(d) if {x,} (n > 0) converges to x* and lim,,_, v,(llﬂ) < 1, then {x,} con-
verges with R-order at least 1 4 A.

5.5.12 Consider the two-point method [86]:
Yo =Xn — F (i)' F (),

Hy = 3 F (o) [F G+ p O —x)) = F' )], p e (011,

Xnpl = Y0 — sH I+ H 7 —x) (02 0),

for approximating a solution x* of equation F (x) = 0. Let F:Q2 C X — Y be
a twice-Fréchet-differentiable operator defined on an open convex subset €2 of a
Banach space X with values in a Banach space Y. Assume:

(1) Tog = F' (xo)~! € L (¥, X) exists for some xo €  with || Tg| < B;

) IToF (xo) |l = m3

G) |F' )] =M (x € )

@ |F" @)= F" | <K llx =yl x,y €.

Denote by ag = MBn, by = K Bn>. Define sequences

ant1 =an f (an)2 gp (an, by) ,
buy1 =bu f (an)3 8p (an, bn)2 s

30342y (1—0)[(1—=6p)x+(2+3p)
24(1—x)?

where f(x) = —=1=9_ and gp(x,y) = I 1If ay €

x2—4x+42
(o, %), bo < h, (ho), where

3(2x—1)(x—2) (x—3+f5) (x—3—ﬁ)
hp (x) = 20—)[(1—6p)x+2+3p] J

U (xo, %) cQ
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then show: iteration {x,} (n > 0) is well defined, remains in U (xo, %) for all
n > 0, and converges to a solution x* of equation F (x) = 0, which is unique in
U (xg, a%)' Moreover, the following estimates hold for all n > 0:

= 31 n

||x —Xn H = [1 + 020()1/ :0) ]VTHW’

where y = Z—(‘) and A = f (ag)™".

5.5.13. Consider the two-step method:

5.5.

Y = X0 — F' (x2) 7V F (xn)
Xnpl = Yn — F () F () (0> 0);

for approximating a solution x* of equation F (x) =0.Let F:Q C X C Y bea
Fréchet-differentiable operator defined on an open convex subset 2 of a Banach
space X with values in a Banach space Y. Assume:

(1) To=f' (Xo)~! € L (¥, X) for some xg € &, |[Toll < B;

@) IToF (xo)ll = m;

Q) [F @)= F | <Klx =yl (x.ye).

Denote ay = kfBn and define the sequence any1 = f (an)? gay)a, (n>0),
where f (x) = 52— and g (x) = x> (x +4) /8. 1f ag € (0, 2), T (xo, R1)

CQ,R= 11+VA’ y = % and A = f (ap)”", then show: iteration {x,} (n > 0)

ap

22x

is well defined, remains in U (xq, Rn) foralln > 0 and converges to a solution
x* of equation F (x) = 0, which is unique in U (xo, %5 — Rn) N Q. Moreover,
the following estimates hold for all n > 0

31

o= < [1+ %y T ]y T gm0 2 0).

14. Let X be a Banach space, and let Y be a closed subspace. Assume F is a
completely continuous operator defined on D € X, D an open set, and assume
the values F (x) € Y for all x € D. Let X,, be a sequence of finite-dimensional
subspace of X such that

inf ||y —x|| —>0asn — ocoforally €Y.
xeX,

Let F;, be a sequence of projections associated with X,;:
FirX—>X, (n>1).
Assume that when restricted to Y, the projections are uniformly bounded:

sup [[F | Y|l < a < oo.
n

Then projection method for solving



5.5 Exercises 323
x = F(x)
becomes
Xp = FpF (xp)

Suppose that x* € D if a fixed point of nonzero index for F. Then show for
all sufficiently large n the equation x, = Fj (x,) has at least one solution x, €
X, N D such that

lim ||x,, — x*” =0.
n—0o0

Let F: U (xg9,r) € X — X be differentiable and continuous on ﬁ(xo, r) such
that 7 — P’ (x) is compact. Suppose L € L (X) is such that

[LF (xo) <a
|1 —LF (xo)| <b <1,
IL[F' )= F ]| <cllx =yl forallx € U (xo, r)

_ _ac 1
h = (1—b)? =2

ro = 725 f (h) <r, where f (h) = I_W; f©O) =1.

Then show: -
(a) equation F (x) = 0 has a solution x* in U (xg, o) ; x* is unique in U (xg, r)
if, for ri = 1% fi (h), where fi (h) = H1=2h

)

r<ri forh<%
r<rp forh:%

(b) Furthermore NK method is well defined, remains in U (xq, r) for all n > 0,
and converges to x*.

5.5.15. Let Fibonacci sequence {a,} be defined by aa,, + ba,— + ca,—» = 0 where
ap = 0 and a; = 1. If the characteristic polynomial p (x) = ax? + bx + ¢ has
zeros r1 and rp with |r{| > |r;|, then show:

@a, #0 (n>0);
(b) lim =L —p;
n—oo 9n
(c) Newton (“"“) = Qo+l

An azn

and

Am+41  dp+1 — 9m4n+1
(d) Secant( am ’ dap )_ Amin
where,

F(xnfl)
= == - >
X, = Newton (x,—1) = Xp—1 F(xn1) (n>1)

and

F(xp—1) (xp—1—%,-2)
F(xnfl)*F(xn,z)Q . n>1)

Xy = secant (Xp—1, Xp—2) = Xp—| —



6

Analytic Computational Complexity: We Are
Concerned with the Choice of Initial Approximations

6.1 The general problem

Approximate solution of equation involves a complex problem: choice of an ini-
tial approximation xg sufficiently close to the true solution. The method of random
choice is often successful. Another frequently used method is to replace

F(x)=0 (6.1.1)

by a “similar” equation and to regard the exact solution of the latter as the initial ap-
proximation xg. Of course, there are no general “prescriptions” for admissible initial
approximations. Nevertheless, one can describe various devices suitable for exten-
sive classes of equations.

As usual, let F map X into Y. To simplify the exposition, we shall assume that
F is defined throughout X. Assume that G (x.1) (x € X; 0 < A < 1) is an operator
with values in Y such that

Gx;H)=Fx (xeX), (6.1.2)

and the equation
G(x;0)=0 (6.1.3)

has an obvious solution x°. For example, the operator G (x; A) might be defined by
G (x;A) = Fx — (1 — 1) Fx°. (6.1.4)

Consider the equation
G (x;A)=0. (6.1.5)

Suppose that equation (6.1.5) has a continuous solution x = x (1), defined for 0 <
A < 1 and satisfying the condition

x (0) = x°. (6.1.6)

Were the solution x (A) known,

I.K. Argyros, Convergence and Applications of Newton-type Iterations,
DOI: 10.1007/978-0-387-72743-1_6, (© Springer Science+Business Media, LLC 2008
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x*=x(1) (6.1.7)

would be a solution of equation (6.1.1). One can thus find a point x¢ close to x* by
approximating x ().

Our problem is thus to approximate the implicit function defined by (6.1.5) and
the initial conditions (6.1.6). Global propositions are relevant, here theorems on im-
plicit functions defined on the entire interval [0, 1]. The theory of implicit functions
of this type is at present insufficiently developed.

The idea of extending solutions with respect to a parameter is due to S.N. Bern-
stein [192]; it has found extensive application in various theoretical and applied prob-
lems.

Assume that the operator G (x; 1) is differentiable with respect to both x and A,
in the sense that there exist linear operators G, (x; 1) mapping X and Y and elements
G’ (x; 1) € Y such that

|G (x+h; A+ AN — G (x;1) — G, (x; M) h — G, (x; 1) AL

lim =0.
Inl+ A% —0 Al + 1AL
The implicit function x (1) is then a solution of the differential equation
G, (x; ) B + G (x;0) =0, (6.1.8)

satisfying the initial condition (6.1.6). Conditions for existence of a solution of this
Cauchy problem defined on [0, 1] are precisely conditions for existence of the im-
plicit function. Assuming the existence of a continuous operator

T ) =[G @], (6.1.9)
we can rewrite equation (6.1.8) as

&= T (x; 1) G (x51). (6.1.10)

One must bear in mind that Peano’s Theorem is false for ordinary differential
equations in Banach spaces. Therefore, even in the local existence theorem for equa-
tion (6.1.10) with condition (6.1.6), one must assume that the right-hand side of the
equation satisfies certain smoothness conditions. However, there are no sufficient
smoothness conditions for the existence of a global extension of the solution to the
entire interval 0 < A < 1. We shall only mention a trivial fact: if the equation

= f(x; 1) 6.1.11)
in a Banach space satisfies the local existence theorem for some initial condition, and
If Ml Sa+blxl (0SA<TxeX), (6.1.12)

then every solution of equation (6.1.11) can be extended to the entire interval 0 <
A < 1. Thus, if
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Hl"(x;k) G, (x;A)H <a+bx|, (6.1.13)

then equation (6.1.5) defines an implicit function which satisfies (6.1.6) and is de-
fined for 0 < A < a. Consequently, condition (6.1.13) guarantees that equation
(6.1.1) is solvable and its solution can be constructed by integrating the differential
equation (6.1.10).

To approximate a solution x (A) of equation (6.1.10), one can use, for example,
Euler’s method. To this end, divide the interval [0, 1] into m subintervals by points

AM=0<h < <Apy=Ll (6.1.14)

The approximate values x (A;) of the implicit function x (1) are then determined by
the equalities x (Ao) = x° and

X hig1) = x ) = T [x (4) 3 i1 G5 [x () 5 Al (gt — Ai) - (6.1.15)

The element x (A,,) is in general close to the solution x* of equation (6.1.1) and one
may therefore expect it to fulfill the demands imposed on initial approximations for
iterative solution of equation (6.1.1). We emphasize that (6.1.15) does not describe
an iterative process; it only yields a finite sequence of operations, whose result is an
element that may be a suitable initial approximation for iterative solution of equation
(6.1.1).

Other constructions may be used to approximate the implicit function x (). Par-
tition the interval [0, 1] by the points (6.1.14). The point x (A1) is a solution of the
equation G (x, A1) = 0. Now x (A9) = x” is a suitable initial approximation to
x (A1). Approximate x (A1) by performing a fixed number of steps of some iterative
process. The result is an element x; that should be fairly close to x (11). This element
x1 is obtained from x° by a certain operator

X1 = W[xO;G(x;Al)].

Now regard x; as an initial approximation to the solution x (1) of the equation
G (x; A2), and proceed as before. The result is an element x>:

x2 = Wlxi; G (x,22)].
Continuing in this way, we obtain a finite set of points
Xig1 =Wlxi; G(x,A)] (=0,1,....,m—1), (6.1.16)

the last of which x,,, may be regarded as an initial approximation for iterative solu-
tion of equation (6.1.1)
If the operator W represents one iteration of the method, formula (6.1.16) is

xip1 =% =[G (i diyD)] T G (iship) (=1 ..m—1). (6117
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6.2 Obtaining good starting points for Newton’s method

In this section, we are concerned with the problem of approximating a locally unique
solution x* of equation
F(x)=0, (6.2.1)

where F is a Fréchet-differentiable operator defined on an open convex subset D of
a Banach space X with values in a Banach space Y.

The most popular method for generating a sequence approximation x* is un-
doubtedly Newton’s method:

Xnpt =xn — F () " F(xa) (n>0) (xo€ D). (6.2.2)

In particular, the famous Newton-Kantorovich theorem guarantees the quadratic
convergence of method (6.2.2) if the initial guess x is “close enough” to the solution
x* (see Chapter 2).

However, we recently showed that the Newton-Kantorovich hypothesis (6.2.13)
can always be replaced by the weaker (6.2.7) (under the same computational cost)
[35] (see also Section 2.2). In particular, using the algorithm proposed by H.T. Kung
[131] (see also [192]), we show that the number of steps required to compute a good
starting point x¢ (to be precised later) can be significantly reduced.

This observation is very important in computational mathematics.

In Section 2.2 we showed the following semilocal convergence theorem for New-
ton’s method (6.2.2), which essentially states the following:

If
F' (xp)~" exists, (F/ (xo)‘IH < Bo, 6.2.3)
| F o™ F )| < g0, (6.24)
|F" (x) = F (x0)|| < Ko llx — xoll, (6.2.5)
|F' )= F ;| < K llx—yll, (6.2.6)
forall x,y € U (xo, r)
ho = BoL&o < % 6.2.7)
where,
L = XdK, (6.2.8)
280 <, (6.2.9)
and
U (x0,7) € D, (6.2.10)

theg sequence {x,} (n > 0) generated by NK method (6.2.2) is well defined, remains
in U (xo, ro) for all n > 0, and converges quadratically to a unique solution x* €
U (xp, r) of equation F (x) = 0. Moreover we have

|0 — x*| < 2&. (6.2.11)
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Remark 6.2.1. In general
Ko<= K (6.2.12)

holds. If equality holds in (6.2.12), then the result stated above reduces to the fa-
mous Newton-Kantorovich theorem and (6.2.7) to the Newton-Kantorovich hypoth-
esis (6.2.13). If strict inequality holds in (6.2.12), then (6.2.7) is weaker than the
Newton-Kantorovich hypothesis

ho = PoK & < 3. (6.2.13)

Moreover, the error bounds on the distances |[x,+1 — x|, lx, — x*| (n > 0) are
finer and the information on the location of the solution more precise.

Note also that the computational cost of obtaining (Ko, K) is the same as the one
for K as in practice evaluating K requires finding Kj.

Hence all results using (6.2.13) instead of (6.2.7) can now be challenged to obtain
more information. That is exactly what we are doing here. In particular, motivated
by the elegant work of H.T. Kung [131] on good starting points for NK method, we
show how to improve on these results if we use our theorem stated above instead of
the Newton-Kantorovich theorem.

Definition 6.2.2. We say xq is a good starting point for approximating x* by NK
method or a good starting point for short if conditions (6.2.3)—(6.2.10) hold.

Note that the existence of a good starting point implies the existence of a solution
x* of equation F (x) = 0in U (xq, 2&)) .

We provide the following theorem / Algorithm that improves the corresponding
ones given in [131, Thm. 4.1] to obtain good starting points.

Theorem 6.2.3. Let F: D C X — Y be a Fréchet-differentiable operator. If F’ satis-
fies center-Lipschitz, Lipschitz conditions (6.2.5), (6.2.6), respectively, on U (xo, 2r)

IF (xo)l < no
H F' ()~ H < Bforallx € U (xo,2r), (6.2.14)
U (x0,2r) € D, (6.2.15)
and
Bno < 5, (6.2.16)

then there exists a solution x* of equation F (x) = 0in U (xq, 2r).

Proof. Simply use L instead of K in the proof of Theorem 4.1 in [131, p. 11] includ-
ing the algorithm there, which is essentially repeated here with some modifications:

Algorithm A: The goal of this algorithm is to produce starting point for approx-
imating x*.

1. Set hg «<— B%Lng and i <— 0. Choose any number ¢ in (0, %) .
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2. Ifhy < %, x; is a good starting point for approximating x* and algorithn A termi-
nates.
3. Seta; «— (4—8) /hy,and

Fi(x) <= [F (x) = F ()] + A F (%) . (6.2.17)

4. (It is shown in the proof that x; is a good starting point for approximating a zero,
denoted by x;1, of F;, Apply NK method to F;, starting from x;, to find x; 1.
5. (Assume that the exact x; 1 is found.) Set ;41 <— || F (x;+1)|| and

hiv1 <— B*Knjis1.
6. Seti «<— i + 1, and return back to step 2.

In the following, we prove algorithm works. First we note that A; € (0, 1) and by
(6.2.17)
Ni+1 = (1 = 1) ni. (6.2.18)

We shall prove by induction that
llxi —xi—1ll < 2BAi—1mi-1, (6.2.19)

and
lx; — xoll <. (6.2.20)

They trivially hold for i = 0.
Suppose that (6.2.19) and (6.2.20) hold and h; > % By (6.2.17)

B2L fi G)ll < B2Laimi = hihi = 4 =5, (6.2.21)
and by (6.2.18)

2B\ fi el <2BAini <2Bn; <2Bno <.

Further, by (6.2.20), we have U (x;,r) € U (xo, 2r). Hence x; is a good starting
point for approximating the zero x;4 of f;. From (6.2.15), we know

lxit1 — xill < 2BAin;. (6.2.22)

Hence (6.2.19) holds with i replaced by i + 1. By (6.2.22), (6.2.18), and (6.2.16), we
have

lxit1 — xoll < llxie1r — xill + [l — xi—1ll + -+ llx1 — xoll (6.2.23)
<2BAimi +Ai—1mi—1+ -+ + Xono)
<2B8((1 = Ai—1)ni—1 +Ai—1ni—1 + -+ dono)
=2B (i1 + Ai—2mi—2 + -+ + Aono)
< v

<2Bno <r,
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i.e., (6.2.20) holds with i replaced by i + 1.

We now assume that (6.2.19) and (6.2.20) hold and /| < % By (6.2.16) and
(6.2.18), 2B || f (x|l = 2Bn; < 2Bno < r. Further by (6.2.20), s, (x;) < 52, (x0).
Hence x; is a good starting point for approximating .

It remains to show that the loop starting from step 2 is finite. Suppose that g > %
Because A; € (0, 1) for all i, we have

R SR B |
== == > = = A;j_1, foralli.
B=Ln;  B*LA—Xxi-1)ni—1 B=Lni

Hence by (6.2.18)

i

Nni+1=U =) n <A —2Ao)ni
<...

< (1= 210) 1.

This implies that h; < % when ﬂzL (1- Ao)i no < %, i.e., when

; 1
=) < —. 6.2.24
( 0) < g ( )
Because 1 -1 < 1,(6.2.24) is satisfied for large i. Therefore when i is large enough,
hi < % and hence Algorithm A terminates.

Remark 6.2.4. As already noted in [131] Theorem 6.2.3 is trivial for the scalar case
(f: R — R), as the mean value theorem can be used. Some of the assumptions of
Theorem 6.2.3 can be weakened. Avila for example in [196, Theorem 4.3] instead
of (6.2.16) used a more complicated condition involving 8, K, and no. However, the
idea algorithm is basically different from Algorithm A. Note also that if Kg = K,
then our Theorem 6.2.3 reduces to Theorem 4.1 in [131]. We now modify Algorithm
A to make it work in Banach spaces without necessarily assuming that the exact zero
of x;41 of F; can be found using NK method (6.2.2).

Theorem 6.2.5. Under the hypotheses of Theorem 6.2.3, a good starting point for
approximating solution x* of equation F (x) = 0 can be obtained in N (8, K¢, K)
Newton steps, § is any number in (O, %),

0, ifho = B>Lno < 5 — 8

N (3, Ko, K) = {I (8, Ko, K) - J (8, Ko, K) , otherwise,

where, I (8, Kg, K) is the smallest integer i such that:

L_s7 1
2
[1— e } < [5—5} / ho, (6.2.25)

and J (8, Ko, K) is the smallest integer j such that:
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277 (1= 2821 (a + Bno) < r — 2870, (6.2.26)
% (=281 (a+ B <a, (6.2.27)

where,
4 = min (f — B, 2;L> (6.2.28)

Proof. Simply use L instead of K in the proof of Theorem 4.2 in [131, p. 16], and
the following algorithm:
Algorithm B.

1. Set hg <— ,Bano, X0 <— xp and i <— 0. Choose any number § in (0, %)

2. Ifh; < % — &8, x; is a good starting point for approximating x* and Algorithm B
terminates.
3. Sethy «— (3 -8) /.

Fi (x) <— [F (x) — 0 F (x0) /no]l + A;in;i F (x0) /no,

and
Nig1 <— (I —A)n;. (6.2.29)

4. Apply NK method to F;, starting from X;, to find an approxiation x; 4 to a zero
Xi4+1 of F; such that
%41 — xip1ll <7 —2Bno, (6.2.30)

and

5. Sethjy1 <— ,32Lni+l-
6. Seti <— i + 1 and return to step 2.

F(M+OH<Imn< ﬁm+h2ﬁL> (6.2.31)

Note that the h;, A;, n;, fi, x; in Algorithm A are the same h;, A;, n;, fi, x; in
Algorithm B. Note also that by (6.2.30) and (6.2.23) we have

1% — xoll < lIx; — xill + llxi — xoll (6.2.32)
< (r—2Bno) +2Bno=r, Vi

It is clear that if hg < % - %, Xo is a good starting point for approximating «.

Now suppose hg > % - % Because X¢p = xp, in the proof of Theorem 6.2.3, we
have shown that X is a good starting point for approximating x; a zero of fy. Let z;

denote the jth NK iterate starting from X for approximating x1. Because

BL |l fo o)l = B2Laimo = 4 — 6,

it is known (see, e.g., Section 2.2) that
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2 =n = 55 4 =207 [ o] ' £ o)

and

[ 1™ 70 2] = 97 0 =27 17 o] ™ 7 o]

Hence we may let X be z; for j large enough, say, j = j (8), then
X1 = x1ll < r —2Bno,
and

@] fo@n)| < min (— — B, ZEL)

i.e., (6.2.30) and (6.2.31) hold for i = 0.
Suppose that (6.2.30) and (6.2.31) hold. Then

[ Gn] ™ f G| = (6233)
< |0 @] A G|+ L Ee0] T [ G - £ i)
<rn1n<r ,317,+1,2ﬂL>+,37]i+1,
and
L @] ™ fit G| = (62349

< H[f’ i)™ [f Gis1) = mie1 £ (0) /0] H
< H[[f/ @] his1mizn £ (xo) /7’/0] H
< H[f’ (7i+1)]_1 fi (E,-Jrl)H + Aig1Bnit1.

Suppose that h; 1 < % — 8. We want to prove that X;41 is a good starting point for
approximating «. By (6.2.33)

LI Gen] ™ f Ginn)| <

cpL 5,1 4 18
< ——8==—=.
2L T T2 T2 2 2
Leta = H [ &)™ f(xiH)H Ifx € U (%i11, 2a), then
lx — xoll < llx —Xip1ll + [IXi+1 — xoll (6.2.35)

<2a+r

<2(__:3’71+1+:3771+1) =2r,
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ie., x € U (xp,2r). Hence X;41 is a good starting point for approximating or. We
now assume that s; 1 > % — &, and want to prove that x; 4 is a good starting point
for approximating x;4,, a zero of fi1.

We have by (6.2.34) and (6.2.31),

BL H [l (fi+1)]_l Jit1 (E’H)H

< =+ 2B Lnim

B +1 5—1
202 )

[S2 SR 7]

|

Let b = H (£l 0] fisn (a—c,»H)H. If x € U (Fis1,2b), as in (6.2.35) we can
prove that x € U (xg, 2r). Hence X;4; is a good starting point for approximating
Xi4+2. By the same argument as used for obtaining Xy and by (6.2.34), one can prove
that if X; 5 is set to be the J (§)th Newton iterate starting from X; 1, then

IXiq2 — xip1ll <7 —2Bno,

and
’ _ —1 _ . r 1)
H (i @is2)]” fir1 Eig2) H < min < 3~ Bnit2, 2/57> ,
i.e., (6.2.30) and (6.2.31) hold with i replaced by i + 1. This shows that we need to
perform at most J (§) Newton steps at step 4 of Algorithm B to obtain each X; 1.
Therefore, for any § € (0, %) , to obtain a good starting point we need to perform at
most N (8) = I (8) - J (§) Newton steps.

Remark 6.2.6. As noted in [131] § should not be chosen to minimize the complexity
of Algorithm B. Instead, § should be chosen to minimize the complexity of algo-
rithm:

1. Search Phase: Perform Algorithm B.
2. Iteration Phase: Perform NK method starting from the point obtained by Algo-
rithm B.

An upper bound on the complexity of the iteration phase is the time needed to
carry out T (8, Ko, K, ¢) is the smallest integer K such that

KT (1 =28 " (a+ o) < . (6.2.36)

Note also that if Ko = K our Theorem 6.2.5 reduces to Theorem 4.2 in [131, p. 15].
Hence we showed the following result:

Theorem 6.2.7. Under the hypotheses of Theorem 6.2.5, the time needed to find a
solution x* of equation F (x) = 0 inside a ball of radius ¢ is bounded above by the
time needed to carry out R (8, Ko, K, €) Newton steps, where
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R (¢, Ko, K) = min [N (8, Ko, K, &) + T (3, Ko, K, ¢)], (6.2.37)
O<8<%
where N (8, Ko, K, ¢) and T (8, Ko, K, €) are given by (6.2.17) and (6.2.36), re-
spectively.

Remark 6.2.8. If Ko = K Theorem 6.2.7 reduces to Theorem 4.3 in [131, p. 20].
In order for us to compare our results with the corresponding ones in [131], we
computed the values of R (¢, Ko, K) for F satisfying the conditions of Theorem 4.3
in [131] and Theorem 6.2.7 above with

Bno < .4r, (6.2.38)

and
1 < ho=B>Lno < 10, (6.2.39)

and for & equal to 1077, 1 < i < 10.

The following table gives the results for ¢ = 10~%. Note that by / we mean
I (60, K, K), Iyx we mean I (8o, Ko, K) with Ko = «K, o € [0, 1]. Similarly for
J,N,and T.
Comparison Table 5.2.9
d I J N T R Ilgg Nok Rok 15k Nsk Rsk lok Nok Rok
16532 6 511 3 6 11 2 4 9 1 2 8
103 8324630 7 21 27 5 15 21 2 6 12
118163 48 6 54 14 42 48 10 30 36 5 15 21
129253 75 6 81 23 69 75 16 48 54 9 27 33
1373531056 111 33 99 105 30 90 96 13 39 45
144 47 3 141 5 146 44 132 137 31 93 98 17 51 56
149593 177 5 182 55 165 170 40 120 125 22 66 71
15472 3216 5 221 67 201 206 41 123 128 28 84 89
1598532555260 80 240 245 58 174 179 33 99 104
10.163 99 3295 5302 93 279 284 68 204 209 39 117 122

Remark 6.2.9. 1t follows from the table that our results significantly improve the cor-
responding ones in [131] and under the same computational cost. Suppose for ex-
ample that g = 9, § = .159. Kung found that the search phase can be done in 255
NK steps and the iteration phase in 5 NK steps. That is, a root can be located inside
a ball of radius 1075 using 260 NK steps. However for Ky = .9K, Ko = .5K,
and Ko = 0, the corresponding NK steps are 245, 179, and 104, respectively, which
constitute a significant improvement.

At the end of his paper, Kung asked whether the number of NK steps used by
this procedure is close to the minimum. It is now clear from our approach that the
answer is no (in general).

Finally, Kung proposed the open question: Suppose that the conditions of the
Newton-Kantorovich theorem hold: Is NK method optimal or close to optimal, in
terms of the numbers of function and derivative equations required to approximate
the solution x™ of equation F (x) = 0 to within a given tolerance &?

Clearly according to our approach the answer is no.

N N o N N
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6.3 Exercises

6.3.1

6.3.2

6.3.3

6.3.4

Let g be an algorithm for finding a solution x* of equation F (x) = 0, and x
the approximation to x* computed by g. Define the error for approximating x
by

d(g, F) = Hx —x*H )

Consider the problem of approximating x* when F satisfies some conditions.
Algorithms based on these conditions cannot differentiate between operators
in the class C of all operators satisfying these conditions. We use the class C
instead of specific operators from C. Define

di = inf supd (g, F)
g€A FeC

where A is the class of all algorithms using i units of time. The time ¢ needed
to approximate x* to with in error tolerance ¢ > 0 is the smallest i such that
d; < ¢, and an algorithm is said to be optimal if

supd (g, F) =d;.
FeC

If for any algorithm using i units of time, there exist functions Fi, F> in C
such that:

the minimum distance between any solution of F, and any solution of F> is
greater or equal to 2¢ then, show:

di > ¢.

With the notation introduced in Exercise 6.3.1, assume:
(1) F:[a, b] — R is continuous;
(2) F(a) <0, F(b) >0,
Then, show:
b—a
i = F
With the notation introduced in Exercise 6.3.1, assume:
(1) F:la,b] - R, F' (x) > a > 0forall x € [a, b];
2)F (a) <0, F(b) > 0.
Then, show:
b—a
= S
With the notation introduced in Exercise 6.3.1, assume:
(1) F:[a,b] — R, F/' (x) < bforall x € [a, b];
(2) F(a) <0, F(b) > 0.
Then, show:
b—a
i = F
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6.3.5 With the notation introduced in Exercise 6.3.1, assume:
(1) F:la,b] = R, b> F' (x) >« > Oforall x € [a, b];
(2)F(a) <0, F(b) > 0.

Then, show:

%2@—@[ 7

6.3.6 Assume:
(1) hypotheses of Exercise 6.3.5 hold;
@) [|F" )| <y forall y € [a, b].
Then show that the problem of finding a solution x* of equation F (x) = 0
can be solved superlinearly.



7

Variational Inequalities

7.1 Variational inequalities and partially relaxed monotone
mapping

There are numerous iterative methods available in the literature on the approxima-
tion-solvability of the general class of nonlinear inequality (NVI) problems, for in-
stance the auxiliary problem principle. Marcotte and Wu [136] applied an iterative
procedure similar to that of the auxiliary problem principle to the solvability of a
class of variational inequalities involving cocoercive mappings in R”, and Verma
extended and generalized this iterative process of Marcotte and Wu [136] and ap-
plied to the solvability of a certain class of variational inequalities involving partially
relaxed monotone mappings a weaker class than the cocoercive and strongly mono-
tone mappings and computation-oriented. In this section, we intend to discuss the
approximation-solvability of a class of nonlinear variational inequalities involving
multivalued partially relaxed monotone mappings. The estimate for the approximate
solutions seems to be of interest in the sense that these are not only helpful to the con-
vergence analysis, but it could be equally important to some numerical computations
in R" as well.

Let H be a real Hilbert space with inner product (-, -) and norm ||-||. Let P (H)
denote the power set of H. Let 7: K — P (H) be a multivalued mapping and K a
closed convex subset of H. We consider a class of nonlinear variational inequality
(NVI) problems: find an element x* € K and u* € T (x*) such that

(u*,x —x*) = Oforallx € K. (7.1.1)
For an arbitrary element x° € K, we consider an iterative algorithm generated
as:
(u®+x! =% x —x') >0, forallx € K andu® € T (x).
(7.1.2)

<uk 4 xkFl Kk —xk+1> >0, forallx € K, andforu* € T (xK).

The iterative procedure (7.1.2) can be characterized as a projection equation

I.K. Argyros, Convergence and Applications of Newton-type Iterations,
DOI: 10.1007/978-0-387-72743-1_7, © Springer Science+Business Media, LLC 2008
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= Py [ = ] fork = 0, (7.13)

where Py is the projection of H onto K.
A mapping T: H — H is said to be a-cocoercive if for all x, y € H, we have

lx = yI? = @* |IT (x) = T WII* + (T (x) = T () — (x — >,

where « > 0 is a constant.
A mapping T: H — H is called a-cocoercive if there exists a constant o > 0
such that

(T() =T ), x—y) =alT x)—T I forallx,ye H.

We note that if 7' is «-cocoercive and expanding, then 7 is «-strongly monotone.
Also, if T is a-strongly and S-Lipschitz continuous, then 7 is (a / ﬁz)—cocoercive for
B > 0. Clearly every a-cocoercive mapping 7T is (1/«)-Lipschitz continuous. Most
importantly, both notions of the cocoercivity are equivalent.

A mapping T: H — P (H) is called r-strongly monotone if for all x, y € H, we
have

(u—v,x—y) zr||x—y||2 forueT (x) andveT(y),

where r > 0 is a constant.
This implies that the mapping 7 is r-d-expansive, that is,

AT (x),T(y)=>rlx—y| forallx,y e H,

where § (A, B) = sup{|la —b|| :a € A.b € B}forany A, B € P (H). Whenr =1,
T is called a 9-expanding mapping. The class satisfies the following implications:

r-strongly monotone

!

r-d-expansive

U

d-expansive
A mapping T: H — P (H) is said to be 8-9-Lipschitz continuous if
0T (x), T(y)=pllx—yll forallx,y € H,

where 0 (A, B) = sup{|la—b| :a€ A,b e B} forany A,B € P(H)and 8 >0
is a constant.

A multivalued mapping 7: H — P (H) is said to be «a-d-cocoercive if for all
X,y € H, we have

(w—v,x—y)>al[d(T (x),T (y)]* forallx,y € H,

where d (A, B) = sup{lla —b||:ae€ A,b € B} forany A,B € P(H)anda > 0
is a constant.
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A mapping T: H — P (H) is called B-9-Lipschitz continuous if there exists a
constant 8 > 0 such that

(T (x), T (y) =Blx—yll forallx,y € H,

where 0 (A, B) =sup{|la —b||:a € A,b € B}forany A, B € P(H).
A mapping T: H — P (H) is said to be a-partially relaxed monotone if for all
Xx,y,z € H we have

w—v,z—y)>—allz—x|?> forue T (x) andv e T (y).

The partially relaxed monotone mappings are weaker than the cocoercive and strongly
monotone mappings and, on the top of that, computation-oriented.

Lemma 7.1.1. For all v, w € H, we have
IlI? + (v, w) = = (1/4) [w]*.

Lemma 7.1.2. Let v, w € H. Then we have
w,w) = 1/ [Iv +wl? = ol = Jwl?].

Lemma 7.1.3. Let K be a nonempty subset of a real Hilbert space H, and T: K —
P (H) a multivalued mapping. Then the NVI problem has a solution (x*, u*) if and
only if x* is a fixed point of the mapping F: K — P (K) defined by

F(x)= U {Pg [x — pul} forall x € K,
ueT (x)

where p > 0 is a constant.

Theorem 7.1.4. Let H be a real (finite) Hilbert space and T: K — P (H) an
a-partially relaxed monotone and B-0-Lipschitz continuous mapping from a non-
empty closed convex subset K of H into the power set P (H) of mH. Suppose that
(x*, u™) is a solution of the NVI problem (7.1.1). Then the sequences {xk} and {uk}
generated by the iterative algorithm (7.1.2) satisfy the estimate

2 2 2

b

k

e e -

—[1 —2pa] ka — ka‘

and converges to x* and u*, respectively, a solution of the NVI problem (7.1.1), for
0<p<1/20.

Proof. To show that the sequences {x*} and {u*} generated by the iterative al-
gorithm (7.1.2) converge, respectively, to x* and u*, a solution of the NVI prob-
lem (7.1.1), we procedeed as follows: because x¥*! satisfies the iterative algorithm
(7.1.2), we have for a constant p > 0 that

<,0uk okl —xk+1> > 0forall x € K and foru¥ € T <xk). (7.1.4)
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On the other hand, for constant p > 0, we have
(ou*, x —x*) > 0. (7.1.5)
Replacing x by x* in (7.1.4) and x by x**1in (7.1.5), and adding, we obtain
0< <p (uk _ u*> Xt xk+1> + <xk+1 xRyt xk+1>
=—p (uk e x*> + <xk+l e xk+l>'
Because T is a-partially relaxed monotone, it implies that

2
0 < pa ka+1 —xk H + <xk+l —xk = xk+l>. (7.1.6)

1

Taking v = x**! — x¥ and w = x* — x**! in Lemma 7.1.2, and applying to (7.1.6),

we have

2
0 < (pa) ka+1 _ka

L1 “ o kaZ N ka+1 Lk H2 N ‘x* ke \ﬂ
3 )
It follows that
2 2 2
ka+l —x*| < ka —x*| =1 —=2pa] ka+1 —xk H . (7.1.7)
Therefore, we have
2 2 2
ka_x* _ka+1_x* > [1 = 2pa] ka+1_ka _

.. . 2] . . .
This implies that {”xk —x* || } is a strictly decreasing sequence for 1 — 2pa > 0
and the difference of two successive terms tends to zero. As a result, we have

Let x’ be a cluster point of the sequence {xk } Then there exists a subsequence {xki }
such that {xki} converges to x’. Finally, the continuity of the projection mapping
(7.1.3) and Lemma 7.1.3 imply that x is a fixed point of (7.1.3). Because ukt
T (x*),u’ € T (x*'), and T is B-3-Lipschitz continuous, it implies that

< <T (xk') , T (x/)) <8 ”xki —x

that means, %' — u’. Thus, the entire sequences {x*} and {u*} must converge,
respectively, to x” and u’. Hence, (x’ , u’) is a solution of the NVI problem (7.1.1).

Ta— — 0,

ki
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An application to Theorem 7.1.4, based on an iterative procedure introduced and
studied by Marcotte and Wu, to a variational inequality in R” is as follows: find an
element x* € X and u® € F (x*) such that

(u*) T (x — x*) >0 forall x € X, (7.1.8)

where F:R" — P (R") is a multivalued a-partially relaxed monotone mapping,
X a closed convex subset of R"m, and u” denotes the transpose of u. The itera-
tive scheme is characterized as a variational inequality as follows: for an arbitrarily
chosen initial element x° € X,

T
[uk +D (ka — xk)] (x — xk+1) > ( forall x € X and for u* € F (xk) ,
(7.1.9)

where D denotes a fixed positive-definite matrix. When the matrix D is symmetric,
the above variational inequality iteration is equivalent to the projection formula

= pp [xk - D_luk] , (7.1.10)

where Pp denotes the projection on the set X with the Euclidean matrix norm ||-|| p

. . . . . 1/2
induced by a symmetric, positive-definite matrix D, |x|p = (x” Dx) /2 and llx]]
denotes the Euclidean norm.

Theorem 7.1.5. Let F:R* — P (R") be an a-partially relaxed monotone and
b-0-Lipschitz continuous mapping. Suppose that (x*, u*) is a solution of the vari-
ational inequality (7.1.8), the sequences {xk} and {uk} are generated by (7.1.9) and
D is a positive-definite and symmetric matrix. Then the sequences {xk} and {uk}
satisfy the estimate

2
k_x*

kaJrl — x*

j) —[1 = 2pa/imin (D))] ka - Hj)

and converge to x* and u*, respectively, a solution of the NVI problem (7.1.1), for
0 < p < Aimin(D) /2,

where A min (D) denotes the smallest eigenvalue of D.

Proof. The proof is similar to that of Theorem 7.1.4.

In this section, we provide examples of a-partially relaxed monotone mappings;
b-9-Lipschitz continuous mappings; and an application of Theorem 7.1.5.

Theorem 7.1.6. Let P: R" — R” be given by
P(x)=cl (x)+v,

where ¢ > 0, x, v € R" with v fixed, and I is the n X n identity matrix.
Then the following conclusions hold

(a) P is an a-partially relaxed monotone mapping for ¢ = «.

(b) P is a b-Lipschitz continuous mapping if and only if b = c.

(c) If P is an a-partially relaxed monotone mapping then ¢ < 4a.
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Proof. (a) Forall x, y, z € R", we have

Iy =zl + Iy = xI* + llx = zlI> = 0
from which it follows in turn that

y—zy—a+—xy—x)+x—-2z,x—-2)=0,

or
_<xs)’)_(va>+(yv)7>+<Z,Z>—(Z,X>+(x,x> Zos
or
al(x =y, z—=y)+{z—x,z—x)] >0
or
(@x —ay,z—y) +cllz—x|> >0 (@asa = ¢),
or

(P =P O).z= ) +|alz—xI] = 0.

which shows that P is an a-partially relaxed monotone mapping.
(b) The result follows immediately from

Px)—Py)=cl(x—y).

(c)Forx # y,x #20,sety = px and y = gx for some p,q > 0. It follows
from the hypothesis that

c(l—=p)(g—p)x,x)+alg—1*(x,x)>0

or
ep?—c(l+q)p+alg—1)>+cq=>0.

Because ¢ > 0, the above inequality will always hold as long as the discriminant of
the corresponding quadratic equation in p is negative. The discriminant becomes

clc—4a)(g—1)2 <0,

which holds for ¢ < 4a. It can be easily seen from the above proof that the above
result holds in an arbitrary space with a real symmetric inner product.

With the above choice of P and for n = 1, v = 0, we obtain the following
application of Theorem 7.1.5.

Example 7.1.7. It can easily be seen that the inequality (7.1.9) for D = d > 0
becomes

T
[otxk +d (xk‘H - xk)] (x — xk+l) >(Qforallx e R", P (xk) = axk,
which leads to
potxk +d (xk‘"l — xk) =0,

or
= [(d - pa) Jd] x*.
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The above iteration converges for [(d — pa) /d| < 1 or p < 2d/«, which is
implied by the hypothesis of Theorem 7.1.5 that gives p < d /2« in this case. Hence,
sequences {xk} and { uk } converge to (x*, u*) = (0, 0), a solution of the NVI prob-
lem (7.1.1) in this case.

7.2 Monotonicity and solvability of nonlinear variational
inequalities

Just recently, Argyros [43] and Verma [201]-[204] applied inexact Newton-like iter-
ative procedures to the approximation-solvability of a class of nonlinear equations in
a Banach space setting.

The generalized partial relaxed monotonicity is more general than the other no-
tions of strong monotonicity and cocoercivity.

This section deals with a discussion of the approximation-solvability of the NVIP,
based on a general version of the existing auxiliary problem principle (APP) intro-
duced by Cohen [65] and later generalized by Verma [202]. This general version of
auxiliary problem principle (GAPP) is stated as follows:

GAPP: For a given iterate x*, determine an x¥*! such that (for k = 0)

o (1) 0 () () o [ (7))

> <—ok) . forallx € K, (7.2.1)

where K/’ = K N {x Clxll £ ¢, alarge constant}, h:R" — R is continuously
Fréchet-differentiable, p > 0, a parameter and the sequence {Uk} satisfies

o0
ok >0, Zak < o0. (7.2.2)
k=1

If K is bounded, then K = K'.

Next, we recall some auxiliary results crucial to the approximation-solvability of
the NVIP.

Let, i: Y — R be a continuously Fréchet-differentiable mapping. It follows that
h' (x) € L (Y,R) the space of bounded linear operators from Y into R. From now
on, we denote the real number /2’ (x) (y) by <h/ x), y) forx,y eY.

Lemma 7.2.1. Let X and Y be two Banach spaces and K be a nonempty convex
subset of X. Suppose that the following assumptions hold:

(i) There exist an x* € K and numbers a = 0, b > 0, r > 0 such that for all
x € Ko, t €[0,1]

(W (e 4t () = (%) (e 2%)) 2 1 [ (7).

where h: K — Ris a continuously Fréchet-differentiable mapping, and n: K x K —
Y, satisfies:
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[ G, )| = 75 and ln (x, x7) | 26 |l — x|
(ii) The set Sy defined by
Sy = {(h, n:h (x* +1 (x — x*)) (x — x*) > <h/ (x* +1n (x, x*)) ] (x, x*))}

is nonempty.
(iii) The set -
Ko=U (x*, r) .

Then, for all k € Ko and (h, n) € So, the following estimate holds

b2
B0~ ()~ () o ) 2 S =

Proof. Letx € Ko and (h, n) € So. Then we obtain
h(x) —h(x*) = (0 (x*). 9 (x. x*)) =
= [ ) a6 )
= [0 G o) )~ ) )
= [0 G ) ]
o [ il Pa

ab? 2
- ="

v

This completes the proof.

Lemma 7.2.2. Let X and Y be two Banach spaces and K be a nonempty convex
subset of X. Suppose that the following assumptions hold:

(i) There exist an x* € K and numbers a = 0, b = 1, r > 0 such that for all
x € Ko, t €[0,1]

(' (e 1 (e x%)) = B () o (o x%)) 2 g (o 27)

where h: K — R is a continuously Fréchet-differentiable mapping, and n: K x K —
Y, satisfies:
I (o) | < s and (%) 2 | = 2°]

(ii) The set Sy defined by
o= {0 (6" 1 (v = x°)) (x =) 2 (1 (6" 11 (5.2%)) . ")

is nonempty.
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(iii) The set
Ky = ﬁ(x*, r) )

Then, for all x € Ko and (h, n) € So, the following estimate holds
h(x) —h(x*) = (h' (x*), 0 (x, x*)) = (@/2) |x - x*“z.
For Y = R in Lemma 7.2.2, we arrive at

Lemma 7.2.3. Let X be a Banach space and K be a nonempty convex subset of X.
Suppose that the following assumptions hold:

(i) There exist an x* € K and numbers o 2 0,b = 1,r > 0 such that for all
x € Ko, t €0, 1]

(' (e 1 (e x%)) = () o (e x%)) 2 ten I x27)

where h: K — R is a continuously Fréchet-differentiable mapping, and n: K x K —
R, satisfies:
[n Ge.x®) | = 75 and n (e, %) | 2 b [l =]

(ii) The set Sy defined by
So = {(h, n:h (x* +1 (x — x*)) (x — x*) > (h/ (x* +17 (x, x*)) 1 (x, x*))}

is nonempty.
(iii) The set .
Ko=U (x*, r) .

Then, for all x € Ky and (h, n) € Sy, the following estimate holds
h(x)—nh (x*) - <h/ (x*) N (x, x*)) 2 (a/2) ||x - x*”z.

The, following is a more specialized version of Lemma 7.2.3, more suitable for
problems on hand.

Lemma 7.2.4. Let K be a nonempty convex subset of R". Suppose that the following
assumptions hold:

(i) There exist an x* € K and numbers o 2 0,b = 1,r > 0 such that for all
x € Ko, t €[0,1]

(' (4 (e x%)) = B () o (e x%)) Z g o 27)

where h: K — R is a continuously Fréchet-differentiable mapping, and n: K x K —
R, satisfies:
[n (o) [ = v and o (6, x7)| 2 2 =27

(ii) The set Sy defined by

So.= [y (" o (r =) (5 — %) 2 (0 (" 4 m (5. %)) . (. °))
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is nonempty.
(iii) The set -
Ko=U (x*, r) .

Then, for all x € Ko and (h, n) € So, the following estimate holds
h(x) —h(x*) = (h' (x*), 0 (x, x*)) = (@/2) |x - x*“z.

Lemma 7.2.5. Let X and Y be two Banach space and K be a nonempty invex subset
of X. Suppose that the following assumptions hold:

(i) There exist an x* € K and numbers 3 =2 0, p > 0, ¢ > 0 such that for all
x € Kyq,t €]0,1]

(h' (x* +1m (x,x*)) = ' (x*), n (x, x*)> > td ||r] (2, x™) 2

where h: K — R is a continuously Fréchet-differentiable mapping, and n: K x K —
Y, satisfies:

’

[n () = plx=x=a
(ii) The set S| defined by
St={th,m: h" (" +1(x —x%)) (x = x7) (0" (" + 10 (x, x7)) . 0 (x, x7) )}
is nonempty.

(iii) The set -
Ki=U(x,q) CK.

Then, for all x € K1 and (h, n) € Si, the following estimate holds

)= h (7)1 () o (5,5°)) £ 25 =7
Proof. Letx € K and (h, ) € S. Then we obtain
0 = () = 8 (7)o (55°)
= [T ) )] 67 )
[0 G e )= ) o)
[0 G oo =0 )] )
<o [ ihnG)Par

2
R

A

[IA

which completes the proof.
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We are just about ready to present, based on the GAPP, the approximation-
solvability of the NVIP.

Theorem 7.2.6. Let T: K — R" be n-y-u-partially relaxed monotone from a non-
empty closed invex subset K of R" into R". Let f: K — R be proper, invex, and
lower semicontinuous on K and h: K — R be a continuously Fréchet-differentiable
on K. Suppose that there exist an x' € K and nonnegative numbers o, 9, c* € K
(k > 1) such that for all t € [0, 1], and x € Ko N K1, we have

<h/ (x/ +1n (x, x/)) —n (x') N (x, x’)) 2 ta ||x — x/| 2 , (7.2.3)
(' (x"+tn(x,x") =R (x'),n(x,x")) S 10 Hx — x” 2 (7.2.4)

and -
Zak < o0, (7.2.5)

k=1

where n: K x K — R is A-Lipschitz continuous with the following assumptions:

() n(x,y)+n(y,x)=0

(ii) For each fixed y € K, map x — n(y, x) is sequentially continuous from the
weak topology to the weak topology in the second variable.

(iii) n is expanding.

(iv) The set S defined by

S={h.n:h (" +t(x—x))(x=x) = (0 (" +1tn(x.x")) . n(x, x))}
is nonempty.
If in addition, x* € K is any fixed solution of the NVIP and
0<p<(2/2y),
then the sequence {x*} converges strongly to x*.

Proof. To show the sequences {xk} converges to x*, a solution of the NVIP, we need
to compute the estimates. Let us define a function A* by

A*(x)=h(x")—h@) — (k' (x),n(x* x)).
Then, by Lemma 7.2.4, we have

A (x)=h(x*)=h@) = (0 (x),n(x*x)) = (@/2) ”x* - x”2 forx € K,
(7.2.6)
where x* is any fixed solution of the NVIP. It follows that

A* (xk+1) =h (x*) —h (xk‘H) — <h’ (xk+1) N (x*, xk+1)>. (7.2.7)

Now we can write
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AF (xk) —A* (xk+1) - (7.2.8)
=i () = () = (0 (54) o (3141 4%))
() = (5) n (3 41)
= /) [ ot o () () (5 2))
2 [t o () (e 0)
0 (f (xk+l) — (x*)) _ gk

for x = x*in (7.2.1).
If we replace x by x**! above and combine with (7.2.8), we obtain

A¥ <xk) — A* (xk+l> Z
e ol () )
—,0<T( ), n(kH,x*)) ok
= [a/2] kaH — xk Hz +p <T <xk) —T(x*).,n (xk“, x*>> — ok,

Because T is n-y-u-partially relaxed monotone, it implies that

A* <xk> — A (xk'H) >

2 2 2
z[a/z]kaH_xk _pnyk+1_ka —i—p,uka—x* _ ok
k+1 k 2 k+1 k 2 k 2 k
2[0{/2]”)6+ —Xx —pny+ —x H —i—,o,uHx —x*| —o
2 2
= (1/2) o = 2071 |41 = k| ppu 5+ — 2] - o
2
> (1/2) [a — 2py] ‘ kT gk H . (7.2.9)
> (-ok> fora — 2py > 0. (7.2.10)
That is,
A (xk> —A* (xk+l> > (—ak>. (7.2.11)
It follows that
A* (xk“) _A* (xk) < gk, (7.2.12)

If we sum fromk =1, 2, ..., N, we arrive at

[ () - a ()] £ ot

k=1 k=1

=
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As a result of this, we can get

A (xN'H) — A (x1> < iok. (7.2.13)

It follows using (7.2.7) from (7.2.13) that

(/2] HXNJH e

2 o0
< A* (x‘) +3 ok (7.2.14)
k=1

Under the hypotheses of the theorem, it follows from (7.2.14) that the sequence {xk}
is bounded and

lim ka —x*| =0.

k— 00

Thus, sequence {xk} converges to x*, a solution of the NVIP.
When 5 (x, y) = x — y in Theorem 7.2.6, we arrive at:

Theorem 7.2.7. Let T: K — R" be y-u-partially relaxed monotone from a non-
empty closed invex subset K of R" into R". Let f: K — R be proper, invex, and
lower semicontinuous on K and h: K — R be continously Fréchet-differentiable on
K. Suppose that there existan x’ € Ko N K| andt € [0, 1), (h,n) € S, we have

(h’(x’—l—t(x—x’))—h’(x’),x—x')ﬁta ”x—x”z,

(h’(x’—i—t(x—x’))—h’(x’),x—)/)éta Hx—x’|

2
’

and

o

S ok <o

k=1
If in addition, x* € K is any fixed solution of the NVIP and

0<p<(af2y).
then the sequence {xk } converges strongly to x*.
Remark 7.2.8. The set S is nonempty in many interesting cases, for example, take
n(x,x)=x—x,hR— Rand:Rx R — R.

Remark 7.2.9. In order for us to have some insight into the structure of K, let us
assume (z, z)l/ 2= lIz]| and consider the Cauchy-Schwarz inequality

[, )= Al ly
in the first estimate hypotheses in Lemma 7.2.1. Moreover, assume:

|7 (x) = ()] < €*lx — yll forall mx,y € K and some ¢ > 0.
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We then have in turn that
rar | (e, )| S (0 (6 o () = B (6 2%) s (7))
< VIR Ge* 4t G, x9) = 1 G, 29 i e, x|
</t Iy e x9) i e, 30
< (evr) [n (. 0%

or
Via |n (v, 2%) | = efor [ (x,x7) [ £0.

But
pafia v x| < Via [ (e, 2%)| £,

which shows that definitely K should be a subset of U (x*, r*) , where

r* = £/ba for b, a # 0.

7.3 Generalized variational inequalities

Let M, (-, -) denote the dual, inner product and norm of a Hilbert space H, respec-
tively. Let C be a closed convex subset of H. For G, F: H — H continuous opera-
tors, we study the problem of approximating x € H such that

(G(x), F(y) = F(x)) >0 forall F(x), F(y) € C. (7.3.1)

This is the so-called general nonlinear variational inequality problem. Special cases
of this problem have already been studied: in [149], when F(x) = x € C;if C* =
{x €e H, (x,y) > 0,y € C}is a polar cone of the convex cone C in H; in [149],
when C = H; and in [151] under stronger conditions than ours.

It is well-known that if C is a convex subset of H, then x € H is a solution of
(7.3.1) if and only if x satisfies

F(x) = Pc[F(x) = pG(x)], (7.3.2)

where p > 0 is a constant and P is a projection of H into H. Hence (7.3.1) can be
seen as a fixed point problem of the form

Xx=00). (7.3.3)

where
OQx)=x—Fx)+ Pc[F(x) — pG(x)]. (7.3.4)

That is, (7.3.4) suggests the following iterative procedure: given xo € H, find x;,41
using the approximation

Xnt1 = Xp — F(xn) + Pc [F(xp) — pG(xn)]  (n=0). (7.3.5)
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We assume:

|Fo —FO)| <er|x* =", c=0, 0 >1, yeH (136
|G =G| < |x* =y, @2=0,20=1, yeH (137

(G =G x* —y)zes|[x —y|*. 320 yeH (7.3.8)
(FG*) = FO).x* =y z ea|x* = y|°. ca20. yeH, (7.3.9)
where, x* is a solution of (7.3.1).
Define the parameter 6 by
0= 2\/1 g™ Zoey + \/1 + 023D —2pcs, (7.3.10)
where for given xg € H,
%0 — x*| < co. (7.3.11)

We can now show the following convergence result for general iterative proce-
dure (7.3.5).

Theorem 7.3.1. Assume:

(i) Operators F, G satisfy (7.3.6)—(7.3.9);
(ii) x*, xp41 (n > 0) solve (7.3.1), (7.3.5), respectively; and
(iii) 0 € [0, 1), where 0 is given by (7.3.10) for sufficiently small co and p.

Then, general iterative procedure {x,} (n > 0) generated by (7.3.5) is well de-
fined for all n > 0 and converges (strongly in H) to x*.

Proof. 1t follows from (7.3.4) and (7.3.5) by using (7.3.6)—(7.3.11)

1 = "] =
= ||Jxn — x* = (F(xp) — F(x™))
+ Pc [F(xy) — pG (xa)] — Pc [F(x*) — pG(x)]|
< |xn — x* = (F(xp) — F(x)|,
+ | Pc [F (xn) = pG(xn)] — Pc [F(x*) — pF (x")]|
<2 = x* = (Fan) = FOGO)| + |xn = x* = 0 (Gxn) = GO)||

< 2\/1 + c% lx, — x| 231=D —2¢y ||xn - x*”

+ \/1 + 023 ooy — x* P27 = 2pe3 [0, — x|
<0 [|xn —x*|| < 0" ey, (7.3.12)

Hence, by (iii) and (7.3.12), we get lim;,— 5o x,, = x™.
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Remark 7.3.2. As mentioned in the introduction, special choices of F, G can reduce
Theorem 7.3.1 to earlier ones. For example, let A| = A = 1 and assume the stronger
hypotheses (7.3.6)'—(7.3.9)" where x* is replaced by any x € H. In the special case
Theorem 7.3.1 becomes replaced by Theorem 3.1 in [151]. Moreover if F = I, the
identity operator, then (7.3.4) becomes the classical problem studied in [149], [150].
Furthermore, in these special cases, (iii) from Theorem 7.3.1 can be dropped and be

replaced by
2 _ 2 2
5 —c5(d—d
‘p -3 < ‘/%, c3 > e2y/d(d = 2),
2
d<1, d=2/1-2c;4+c},
and
2¢3
0<p<—,
)
respectively.

Remark 7.3.3. Condition (iii) can be dropped in other cases not covered by Remark
7.3.2. For example:
Assume:

(D1 —=2c4=>0,1—=2pc3>0,A1 > 1,4 > 1;
(2) choose di > 0, d> > 0 such that:

2/dy +dr =d3 < 1,
di>1—2c4, dr>1-2pc3
2.2 2(x—1)

1+ c%cg()"fl) —2c4 <dy, 1+ p-cic —2pc3 < dy;
where,
1 1
2c4+dp —1\770 2 dy —1\702"
dy = C4+—21 . and ds= % )
1 )

Then, 6 = d3 € [0, 1).

Remark 7.3.4. Parameters cy, c2, ¢3, c4 appearing in (7.3.6)—(7.3.9) are smaller (in
general) than the corresponding ones in [150]. Hence, the ratio of convergence is
smaller also. That is under our weaker hypotheses, sequence {x,} (n > 0) converges
faster to x* than in [150].

7.4 Semilocal convergence

In this section, we are concerned with the problem of approximating a locally unique
solution x™* of the variational inequality
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F(x)+d¢p(x) >0, (7.4.1)

where F is a Gateaux-differentiable operator defined on a closed convex subset D of
a Hilbert space H with values in H; ¢: H — (—00, 00] is a lower semicontinuous
convex function. Problems of the form (7.4.1) have important applications in many
branches of applied science (physical, engineering, etc.).

We use the generalized chord method

F'(x0)Xn+1 + 89 (xn41) 3 F'(x0)(xn) — F(xn)  (x0 € D) (7.42)
and the generalized NK method
F'(x0) (1) + 39 (xnt1) 3 F'(x0) (xn) — F(xn)  (x0 € D) (7.4.3)

to approximate x*.
We assume that ¢ is proper in the sense that

D(p) ={p € H:9p(x) < 00} # .
For any x € H, we denote by d¢(x) the subgradient of ¢ at x, given by
dp(x) ={y € Hip(x) —¢(2) < (y,x —z) forall y € D(p)}.

Semilocal convergence theorems for solving (7.4.1) using (7.4.2) or (7.4.3) are given
here using hypotheses on the second Gateaux derivative of F. We also show that our
results compare favorably with relevant earlier ones [149]-[151].

Lemma 7.4.1. Leta > 0, b > 0, n > 0 and ¢ > 0 be constants. Define the polyno-
mial p by

b
p(r) = —r + % —r2—r + (7.4.4)
The polynomial p has two posmve zerosry, ry (r) < r2) if and only if
plg) =0, (7.4.5)

where q is the positive zero of p'.

Proof. Denote by g the negative zero of p’. Clearly, p has a maximum at r = ¢
and a minimum at r = ¢. Hence a necessary and sufficient condition for p to have
positive zeros is given by (7.4.5).

Lemma 7.4.2. Leta > 0, b > 0, r > 0 be constants and 7 € H be fixed. Assume:
|F"x) = F'@| < alx -zl (7.4.6)

and
|F"2)| <b (74.7)

forall x € U(z, r). Then the following estimate holds for all x, y € U(z, r):
1
a
[F(x) = F(y) = F'()(x = p)Il < 5/0 [(1 =Dy =zl + tllx — zll1* lx — ylidt

b
5y =zl + llx = zlilllx =yl (7.4.8)
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We can show the following semilocal convergence theorem using twice Gateaux-
differentiable operators and the generalized method of chord:

Theorem 7.4.3. Let F be a twice Gdteaux-differentiable operator defined on an open
convex subset D of a Hilbert space H with values in H. Assume:

(a) there exists xg € H satisfying

dp(xo) 30, (7.4.9)

where ¢ is a convex function;
(b) there exist constants 1, ¢ such that

IF o)l < n, (7.4.10)

cllyl® < (F'(x0)(y), y) forall ye D; (7.4.11)

(c) operator F satisfies (7.4.6) and (7.4.7) for z = xo;
(d) condition (7.4.5) holds for a > 0; and
(e) U(xg, r2) € D, where ry is given in Lemma 7.4.1.

Then, sequence {x,} (n > 0) generated by the generalized method of chord
(7.4.2) is well defined, remains in U (xq, r1), and converges to a solution x* of (7.4.1),
which is unique in U (xq, 17).

Proof. The coercivity condition (7.4.11) and the Lions—Stampacchia Theorem imply
that for any x € U (xo, r2) the operator g given by the variational inequality

F'(x0)g(x) + dp(g(x)) 3 F'(xo)x — F(x) (7.4.12)
is well defined. By (7.4.9), (7.4.12), and the monotonicity of d, we have in turn
(F(x) = F'(x0)(x — g(x)), g(x) — x0) <0,
or
(F'(x0)(g(x) — x0), g(x) — x0) < (F'(x0)(x — x0) — F(x), g(x) — x0).,

and using (7.4.4)—(7.4.11), we get

lg(x) — xoll < = | F(x0) — F'(x0)(x — x0) ||
1
=~ [ FGo) + F(x) = Fxo) = F'(xo)(x = 30)|
1 1
= - IFGoll + - | F(x) = F(x0) = F'(x0) (x — x0) |
n 1 _ 3 ﬂ . 2
< . + e lx — xoll” + % lx — xoll
n a 3 b ,
B L TR 7.4.1
Sote Tt =T (7.4.13)



7.4 Semilocal convergence 357

for r € [r1, r2]. That is, g maps U (xo, r) (r1 <r < rp) into itself. Moreover (7.4.2)
and the monotonicity of d¢ imply that for any x, y € U(xp, r) we can have in turn

(F'(x0)(g(x) — g(») + F(x) — F(y) — F'(x0)(x — y), g(x) — g(y)) <0,
(F'(x0)(g(x) —g(»)), g(x) —g(») < (F'(x0)(x —y) — F(x)+ F(y), g(x) —g(»),
and by (7.4.5)—(7.4.11), we get

1
—|Fx) = F(y) = F'(xo)(x — y)|

lg(x) — gl < -
1la r!
2
< —{—/ [(1 = D)Ly — xoll + 1llx — xoll P di
c |2 0
b
+ 2 0y = xoll + I = xolT{ I = 1
< [ %4 b]rhx -y (7414
- =r rllx —yl. 4.
=713 y

It follows from Lemma 7.4.1 and (7.4.14) that g is a contraction on U (xq, r) (r; <
r < r2). The rest of the theorem follows from the Banach fixed point theorem and
the observation that (7.4.2) is given by x,+1 = g(x,) (n > 0).

The convergence in Theorem 7.4.3 is only linear. It can become quadratic if we
use the set of conditions given in the following result:

Theorem 7.4.4. Let F be a twice Gdteaux-differentiable operator defined on an open
convex subset D of a Hilbert space H with values in H. Assume:

(a) there exists xo € H satisfying
de(xo) 20,

where @ is a convex function;
(b) there exist constants 1, ¢ such that

I1F(xo)ll < m,
c||y||2 <(F'(x)(y),y) forall ye H, x € D; (7.4.15)
(c) operator F satisfies (7.4.6) and (7.4.7) for z = xo;
(d)
d=a 2 <1, (7.4.16)
where,
ol =L (£ +0) (7.4.17)
and
o .
a) d* <ro (7.4.18)
(=0

for some positive parameter ry.
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Then, sequence {x,} (n > 0) generated by the generalized Newton’s method
(7.4.3) is well defined, remains in U (xo, ro) for all n > 0 and converges to a unique
solution x* of (7.4.1) in U (xg, ro). Moreover the following estimates hold for all
n>0

o
by — x*| <o _d”. (7.4.19)
i=n
Proof. As in Theorem 7.4.3 the solution x4 of (7.4.3) exist for all n > 0. Using
(7.4.3) for n = 1 as in Theorem 7.4.3 we obtain in turn
(F(x0) — F'(x0)(xo — x1), x1 — x0) <0,

or
(F"(x0)(x1 — x0), X1 — x0) < (F(x0), X1 — X0),

and by (7.4.9) and (7.4.15), we get

1
llxi = xoll = —I1F(xo)ll =

[N

(7.4.20)

Moreover by (7.4.3) and the monotonicity of d¢, we get

<F/(xn)(xn+l = Xn), Xn+1 — xn)
= <F(xn) — F(xp—1) — F'(xp—1) (xp — Xn—1), Xn+1 _xn)9

and by (7.4.6), (7.4.7), (7.4.15), we obtain

IA

1
lxnr1 — xall ;”F(xn) — F(xp—1) — F/(xnfl)(xn — Xp—1)|l

IA

1[a b 2
; g”xn — Xp—1ll + E I, — xn—1ll

-1 2 2"
<a xp —xp—1ll” < ad”,

which leads to (7.4.19).

7.5 Results on generalized equations

In this section we are concerned with the problem of approximating a locally unique
solution x* of the problem
f(x)+gx)30, (7.5.1)

where f is a twice Gateaux-differentiable operator defined on a Hilbert space H with
values in H, and g is a multivalued (possible) operator from H into H.
We use the famous generalized Newton’s method

Xpp1 = (') + )7 (/) 6) = f(x0)) (0= 0) (7.5.2)
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to approximate x*.

In the special case, when g = 0, we obtain the classic NK method. Method
(7.5.2) can be used where the classic method cannot by assuming several regularity
assumptions for g.

Local and semilocal convergence theorems were given in [43], [149]-[151]. Es-
pecially in [151], Lipschitz hypotheses were used on the first Giteaux derivative
f'(x) of f(x).Here we use Lipschitz hypotheses on the second Giteaux derivative
f"(x) of f(x). This way our convergence conditions differ from earlier ones unless
if the Lipschitz constant is zero. We complete this study with a numerical example
to show that our results apply where corresponding earlier results [151] do not.

By a multivalued operator g from H into H being monotone, we mean

y1 € g(x1), y2 € g(x2) = (y1 — y2,x1 —x2) > 0.

Moreover, g is maximal if whenever gg is another multivalued monotone operator
from H into H such that y € g(x) = y € go(x), then g = go.

We can show the following local convergence theorem for the generalized NK
method.

Theorem 7.5.1. Let g be a maximal monotone multivalued operator from a Hilbert
space H into itself and [ be a Gateaux-differentiable operator from H into H. As-
sume: there exist parameters a > 0, b > 0, ¢ > 0 and a solution x* of (7.5.1) such
that:

IF"(x) — F" W)l < allx — yl, (7.5.3)
|F"(x™)| < b, (7.5.4)

and
(f'M@),x) > clx|I* forallx,y e H. (7.5.5)

Then, generalized NK method {x,} (n > 0) generated by (7.5.2) is well defined,
remains in U (x*, ) for all n > 0, and converges to x* provided that xo € U (x*, a),
and

ey — x*|| < @d® (0 > 0), (7.5.6)

where, o is the positive zero of the equation

a 5, b

— —r—1=0, 7.5.7

3cr + 2cr ( )
and

d=axo—x*|. (7.5.8)

Proof. 1t follows from the choice of o that d € (0,1). We note that all in-
verses (f/(xp) + g)~' (n > 0) exist, as g is a maximal monotone operator and
(f'(xp)(x), x)/|Ix|| = oo as ||x|| — oo. Hence, generalized Newton’s method {x;, }
(n > 0) generated by (7.5.2) is well defined for all n > 0. By (7.5.5), (7.5.2), the
monotonicity of g and f/(x,,)(x*) + g(x*) = f/(x,)(x*) — f(x*), we obtain in turn
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el — x| <
< (f' ) 1) = f ) (%), xpq1 — x¥)
< (') (X0 — X*), X1 — x5) 4+ (F () = f(x), Xpg1 — x¥)
< (fO) = fln) — f )" = xp), Xpg1 — x¥). (7.5.9)

We showed (see, e.g., [43]) that under (7.5.3) and (7.5.4)

(fx™) = fxn) = ) (™ = x0))

a b
< |:€”xn — x| + 5} 2ty = x* 1% - [1Xp1 — x*]l. (7.5.10)

Using (7.5.8)—(7.5.10), we get
st =2 < @ o = x*|? < @d® (= 0).
The result follows by induction on the integer n > 0.
We show the semilocal convergence theorem for the generalized NK method.

Theorem 7.5.2. Let g be a maximal, and continuous single-valued operator from a
Hilbert space H into itself and f be a Gateaux-differentiable operator from H into
H.

(a) there exist constants a > 0, b > 0, n > 0 such that (7.5.3) (with y = xg), (7.5.4)

and
Il.f (x0) + g(xo) |l = (7.5.11)
hold;
(b) there exist ro > 0 such that
1 1
dyp = 32 561’"0 +bln<l1 (7.5.12)
and .
IN a2t <. (75.13)
c
i=0

Then, generalized NK method {x,} (n > 0) generated by (7.5.2) is well defined,
remains in U (xg, ro) for all n > 0 and converges to a solution x* of (7.5.1), so that

0 .
ey —x* <> dy ™1 (= 0). (7.5.14)
i=n
Proof. As in Theorem 7.5.1, iterates {x,} (n > 0) are well defined for all n > 0.
Using (7.5.2), (7.5.5), and (7.5.11), we get

cllxr — xoll* < (f'(x0) (x1 — x0) + g(x1) — g(x0), X1 — o)
= —(f(x0) + g(x0), x1 — x0)
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or
1 n
lx1 — xoll < ZIIf(Xo) +egxo)l < ~ <no.

We will show -
llx; — xi—1]l < ;dé - (7.5.15)

and
llxi — xoll < ro. (7.5.16)

By (7.5.2) and (7.5.11), (7.5.15)—(7.5.16) hold for i = 0. Assume (7.5.15) and
(7.5.16) hold for all integer i < n. Using (7.5.2), (7.5.5), (7.5.10), (7.5.11), and
(7.5.12) we get

cllxnt = xall? < (F/ (o) gt — Xn) + g (n1) — (), Xn1 — Xn)
= —(f () + g(xn), Xng1 — Xn)
< 1FGen) + gl X1 — Xl
=1 f(xn) — fxn=1) = f (xn=1) tn — Xp— DIl [ Xn41 — Xn l

lra
= 5[5 =il 4+ 0] I =5t Pl = xall - (7:5.17)

2
or,
n 2 _ N oy
[Xn+1 — xnll < =dollxn — xp—11" < _dO
C C
and
n )7 n
2]
lxn4+1 — xoll < lxiv1 —xill == ) d < rp.
- 0
i=0 i=0

The induction is now complete.
For any integers n, m, we have

n+m—1
n 2]
X — x| < E Xiel — x|l < = E d < r9. 7.5.18
[ %n-+m nll < llxi+1 ill < - 0 0 ( )

i=m i=n

It follows from (7.5.18) that sequence {x,} (n > 0) is Cauchy in a Hilbert space H
and as such it converges to some x* € U (xo, ro) (as U (xo, ro) is a closed set). By
letting m — oo in (7.5.18), we obtain (7.5.14). Finally, because f + g is continuous
and (7.5.17) holds, we deduce f(x*) + g(x*) = 0.

The proof of the following local convergence theorem is omitted as it is identical
to the one given in Theorem 7.5.1.

Theorem 7.5.3. Let g be a maximal monotone multivalues operator from a Hilbert
space H into itself, and f be a Gdteaux-differentiable operator from H into H.
Assume:

(a) there exist constants a > 0, b > 0, ¢ > 0 such that (7.5.3)—(7.5.5) hold;
(b) (7.5.1) has a solution x*.
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Then, generalized Newton’s sequence {x,} (n > 0) generated by (7.5.2) is well
defined, remains in U (x*, r1) for all n > 0, and converges to x*, so that

l[xn —x*|| < rld£l7
where,

3

and r is the positive zero of equation

1 r
=\ -ar1+b)— <1,
c

b
L2242 1=
3¢ c
Remark 7.5.4. (a) Theorems 7.5.1-7.5.3 become Theorems 1-3 in [203] respectively
ifa = 0.
(b) Theorems 7.5.1-7.5.3 weaken Theorems 1-3 in [149] (there g is taken to be the
subgradient of a convex function).
(c)Ifa = 0,and g = 01in Theorem 7.5.2, then we obtain Mysovskii’s theorem [125].
(d) The radius rg in Theorem 7.5.2 can be determined from the solution of inequali-
ties (7.5.12) and

n 1
c1l—dy

< rp.

7.6 Semilocal convergence for quasivariational inequalities

Here, we use the contraction mapping principle to approximate a locally unique so-
lution of a strongly nonlinear variational inequality on a Hilbert space under weak
assumptions. Earlier results can be obtained as special cases of our locally conver-
gent theorem.

Let C, (;, ), |l || denote a convex subset, inner product and norm of a Hilbert
space H, respectively. Let ¢: H — (—00, 00] be a lower semicontinuous function,
such that D(¢) = {y € H | ¢(y) < 0o} is nonempty. Denote by d¢(y) the set

dp()={xe H|p(y) —¢i) <{(x,v—2z) foral ze€ D(p)} (7.6.1)

the subgradient of ¢ at y.
Let A, T, g and f be operators from H into itself. We are concerned with the
problem of finding x € H such that:

gx) — f(x) € D(p) (7.6.2)

and
A(x) = T(x) + 0p(g(x)) — f(x) 20, (7.6.3)

where,
0, yeC

0o, otherwise (7.6.4)

p(y) = {
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In this case, (7.6.3) reduces to finding x € H such that

gx) € C(x) (7.6.5)
and
(A(x) = T(x),g(x) —y) <0 forally € C(x), (7.6.6)
where,
Cx)=CH+ f(x). (7.6.7)

Inequality (7.6.6) is called a general strongly nonlinear quasivariational inequality.

If f = 0and g(x) = x, we obtain the general quasifunctional inequality studied
in [178]. Moreover if f = 0 and T = 0, we get the general variational inequality
considered in [149], [151].

The inverse P, = (I + udp)~! exists as a single-valued function satisfying: for
|Pu(x)— P < llx—yllu > 0,forall x, y € H, and is monotone: fi € dp(xy),
fr € dy(x2) = (fi — f2, x1 — x2) > 0. It is known that x* is a solution of (7.6.5) if
and only if

X =T = Ag () AL () + AP [(T) = f(XT) — pAGT) + uT (x)] (7.6.8)

for L > 0, u > 0.
That is, solving (7.6.3) reduces to finding fixed points of the operator

Pus(x) =x —2g(x) + AP, [g(x) — f(x) — nA(x) + nT(x)]. (7.6.9)
We assume: there exist a convex subset Hy € H, xo € Hp and nonnegative
constants a;, b;,i = 1,2, ..., 6 such that:
[AC) — AW < aillx =yl (7.6.10)
(A(x) — A(y), x —y) > azllx — y|I%, (7.6.11)
lg(x) — gl < azllx —yll, (7.6.12)
(8(x) — g, x —y) > aallx — yII*, (7.6.13)
I17(x) =TI < asllx —yl, (7.6.14)
1f ) = fODI = asllx = yll, (7.6.15)
IACx0) = AW < billxo — ylI (7.6.16)
(A(x0) — A(y). x0 — y) = ballxo — yII%, (7.6.17)
llg(x0) — g(¥), xo — yll < b3llxo — yl, (7.6.18)
(g(x0) — g(¥). x0 — ¥) = ballxo — yII*, (7.6.19)
17 (x0) = Tl < bsllxo — yll (7.6.20)
and
Il f (xo) = fFO)II < bslixo — vl (7.6.21)

for all x, y € Hp.
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Define the parameters ¢, d by

c=cu= 2Aa6+2\/1 — 2au, + k2a§+\/1 —2Apay + Mzkzaf—i—)\uas, (7.6.22)
d = || Py ;.(x0) — xoll, (7.6.23)

scalar function 4 on [0, +00) by
h(r) =cor +d, (7.6.24)
where, co is defined as above but g; are replaced by b;,i = 1,2, ..., 6, and, ball H;

by
Hy = U(xo, ro), (7.6.25)
where,
ro> - ifeg # 1. (7.6.26)
We can now show the local fixed point result for (7.6.3).

Theorem 7.6.1. Assume:

(i) co €10, 1), c €[0,1),d € (0, 1), H < Ho;
(ii) conditions (7.6.10)—(7.6.21) hold for all x, y € H.

Then (7.6.3) has a unique solution x* in Hy. Moreover, x* can be obtained as the
limit of the sequence
Xng1 = Pua(xn) (n>0). (7.6.27)

Proof. The result will follow from Banach’s contraction mapping principle if we
show:

(1) Operator P, ; is a c-contraction on Hj;

(2) P, maps Hj into itself.

To show (7.6.1), let us choose x,y € Hj. Using (7.6.9)—(7.6.16) and (7.6.22),
we obtain in turn:

[ Pus(x) = Pup|| < llx =y = 2g(x) + 2¢O + Al £ (x) — FW
+Allgx) —g(y) — f(x) + f(¥) — nAX) + nAQY) + uT (x) —uT W)

=2flx —y = 2g(x) +AgWII+ 241 f (x) — fFDII
+llx =y = urAQX) + pA AW + p2 1T (x) = T )|

< |:2Aa6 + 2\/1 — 2ag, + A2aj + \/1 — 2hpar + 222%at + )»ua5:| llx — vyl
=clx—=yl,

which shows that P, ; is a c-contraction on Hj as by hypothesis (i), ¢ € [0, 1).
Moreover, to show P, ; maps H; into itself, let y € Hj. Using (7.6.9), (7.6.12)-
(7.6.21), (7.6.23), (7.6.24), and (7.6.26), we obtain

| Pps(y) — xoll < 1Pua(y) — Pus(xo)ll + 1Py, s(x0) — xoll
<colly —xoll +d < coro +d = h(ro) < ro,

by the choice of rg, co and d.
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That completes the proof of the theorem.

Remark 7.6.2. The conditions on ¢, ¢ and d can be dropped. Let us consider one

such case: leta; = b;,i = 1,2, ..., 6, define parameters:
_ a1 |4 _ dj-ag
M= a0
a 03 a3—a6

Assume: a; > a5 > 0, a3 > ag > 0, and o < 1. Then it is simple algebra to show
that ¢, ,, given by (7.6.22) is minimized at (19, j1) and the minimum value is given
by «. The point rg is then given by (7.6.26) for ¢y = «.

Note that if Hy = H; = H, then x* is the unique fixed point of P, ; in H.
However, our theorem is more useful than relevant earlier ones [149]-[151], [195]
as conditions (7.6.10)—(7.6.21) rarely hold on the whole Hilbert space H.

7.7 Generalized equations in Hilbert space

In this study, we are concerned with the problem of approximating a locally unique
solution x™* of the generalized equation

F(x)+gx) >0, (7.7.1)

where F is a Fréchet-differentiable operator defined on a closed convex subset D
of a Hilbert space H with values in H, and Dg is a nonempty subset of H x H.
Throughout this study we consider the expressions [x, y] € g, g(x) > y, —y+g(x) >
0, and y € g(x) to be equivalent.

We use the generalized chord method

F'(x0)Xn+1 + g(Xn11) 3 F'(x0)xn — F(xy) (1= 0), (x0 € D) (7.7.2)
or, the generalized NK method
F'(xn)Xn+1 + 8(ns1) 3 F/'(x)(xn) — F(xy) (n=0), (xo € D) (7.7.3)

to approximate x*.
Earlier results have used Lipschitz-type hypotheses on the first Fréchet derivative
of F [195]. Here we use hypotheses on the second Fréchet derivative of F. It has
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already been shown that for regular equations on a Banach space, our new approach
can solve problems not possible before and can also improve on the error bounds of
the distances involved. Our convergence theorems for methods (7.7.2) and (7.7.3) to
a solution x* of (7.7.1) reduce to the ones in [195] if the Lipschitz constant of the
second Fréchet derivatives is zero.

We will need the following Lemmas:

Lemma 7.7.1. Leta > 0, b > 0, n > 0 and ¢ > 0 be constants. Define the polyno-
mial p by

as, b, n
p(r)y=—r’4+ —r-—r+—. (7.7.4)
6¢ 2c c
The polynomial p has two positive zeros r1, r2 (r1 < rp) if and only if
r(q) =0, (7.7.5)

where q is the positive zero of p'.

Proof. Denote by qo the negative zero of p’. Clearly, p has a maximum at r = ¢
and a minimum at r = g. Hence, a necessary and sufficient condition for p to have
positive zeros is given by (7.7.5).

Lemma 7.7.2. Leta > 0, b > 0, r > 0 be constants and z € H be fixed. Assume:
| F”(x) — F" ()|l <allx —z| (7.7.6)

and
IF" ()l <b (7.7.7)

forall x € U(z, r). Then the following estimate holds for all x,y € U(z,r):
1
a
IF(x) = F(y) = F'(@)(x = < 5[0 [(1 =Dy =zl + thx — z1* |x — yldt

b
+t3 Uy =zl +llx =zl lx = yll. (7.7.8)

The following result gives sufficient conditions for generalized equation (7.7.1)
to have a unique solution. The proof can be found in [195, p. 256].

Lemma 7.7.3. Let g be a multivalued maximal monotone operator from H to H, in
the sense that g is a nonempty subset of H x H and there exists o« > 0 such that:

[vi, wil € g and [v2, wo] € g = (w2 — wi, v2 — v1) > aflvy — v2f|?, (7.7.9)

and is not contained in any larger monotone subset of H x H; L be a bounded linear
operator from H into H. Assume there exists ¢ > —u, and

(L(x), x) > c||)c||2 forall x € H. (7.7.10)
Then, for any y € H, there exists z € H satisfying the generalized equation

L(z)+g(z) 2. (7.7.11)
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We can show the following local result for method (7.7.3) to solve equation
(7.7.1).

Theorem 7.7.4. Let F be a twice Fréchet-differentiable operator defined on an open
convex subset D of a Hilbert space H with values in H; g be a multivalued maximal
monotone operator on H. Assume:

(a) generalized equation (7.7.1) has a solution x* € D;
(b) there exist parameters a > 0, b > 0 such that

IF"(x) = F"(x")|| < allx — x*|, (7.7.12)

and
[F"(x*)|| <b (7.7.13)

forall x € D;
(c) there exists ¢ > —a such that

(F'(2)(x), x) > c||)c||2 forallx € H, z€ D (7.7.14)
(d) U(x™, ro) € D, where rq is the positive zero of equation

a 2 b
ro+ r
6(c+ o) 2(c+ a)

p(r) = —1=0. (7.7.15)

Then, generalized NK sequence {x,} (n > 0) generated by (7.7.3) is well defined,
remains in U (x*, ro) for alln > 0, and converges to x* provided that xo € U (x*, rp).
Moreover the following error bounds hold for alln > 0

llx, — x*|| < Bd*", (7.7.16)

where,

B 1

C 2(c+a)
Proof. The existence of solutions to (7.7.3) follows from Lemma 7.7.3 and (7.7.14).
Using (7.7.1), (7.7.9), and (7.7.3), we get

g1 I:%lq + b] and d = p~'q. (1.7.17)

Al xp1 — ¥ < (F(*) = F(xn) — F'(60) (g1 — Xn), Xnp1 — X¥)
or

cllxngr — X% + (F' (o) Gonpt — X%), Xpgp — %)
= (F(X*) — F(xp) — F/(xn)(x* — Xp)s Xng1 — x*)s

and by (7.7.8), (7.7.12)—(7.7.14), we have by induction on n > 0

1 a b n
21 — x*|| < P [gnxn — x| + 5} I, — x*||* < gd*",

and lim,, 00 X, = x* (asd € [0, 1)).
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We can show the following semilocal result for method (7.7.3) to solve equation

(7.7.1).

Theorem 7.7.5. Let F, g, D, (c) be as in Theorem 7.7.4. Moreover assume: there
exist parameters a > 0, b > 0, xo € D such that

I F"(x) = F"(x0)|l < allx —xoll, (7.7.18)
I F" (xo)|l < b (7.7.19)
d=p""|x1 —xoll <1, (7.7.20)
R [ Sk = xoll +]. (7.7.21)
2(c+a) L3
and

U(xo,r*) € D, (7.7.22)

oo
=gy dP (7.7.23)

i=0

Then, generalized NK iterates {x,} (n > 0) generated by (7.7.3) are well d(iined, re-
main in U (xo, r*) for alln > 0 and converge to a solution x* of (7.7.1) in U (xg, r™)
so that:

o0
lx, —x* <BY_ d* (n=0). (7.7.24)
i=n
Proof. The existence of solutions x,41 to (7.7.3) follows from (7.7.14) and Lemma
7.7.3. Using (7.7.3) and (7.7.9), we get

a”xn-H — Xn ”2 + (F/(xn)(xn-H — Xn), Xn+1 — Xn)
< (F(xp) — F(xp—1) — F'(tp—1)(Xp — Xp—1), Xn — Xn41),
and by (7.7.14), (7.7.8), we obtain by induction on n > 0
1 a b n
a1 =l = —— [gnxn — x4+ 5} Ixn — xn—11I* < Bd>".

Hence, we get

1n+1 = %ol < a1 = xull + lben = Xutll + -+ [lx1 = xol
n
<) g —xill <0
i=0

which shows x,,+1 € U(xg, r*) (n > 0). Let m > 0 then

n+m—1 n+m—1
21
Xn+m — xnll < E lxit1 —xill =B E d-. (7.7.25)
i=n i=n

That is, sequence {x,} (n > 0) is Cauchy in H and as such it converges to x* €
U (xo, r™) (as U(xg, r*) is a closed set). By letting m — oo in (7.7.25), we obtain
(7.7.24). Finally it follows from (7.7.3) and (7.7.9) that x* is a solution of (7.7.1).
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We show how to approximate solutions of equation (7.7.1) using method (7.7.2).

Theorem 7.7.6. Let F, g, D, (7.7.18), and (7.7.19) be as in Theorem 7.7.5. More-
over, assume:

(a) there exists yo € H such that

8(x0) > yo, (7.7.26)
and
| F(x0) + yoll < bo for some by > 0; (7.7.27)
(b) there exists co > —a such that
(F'(x0)(x), x) > c0||x||2 forall x € H; (7.7.28)
(c)
r(q) <0, (7.7.29)
where, q is the positive zero of p’ and
r) I SR S N (7.7.30)
r) = r rc—r .
p 6(co + @) 2(co + @) co+ o

Denote by ro and Ry (ro < Ro) the positive zeros of p guaranteed to exist by
iemma 7.7.1;
(d) U(xo, r0) € D.

Then, the generalized chord iterates {x,} (n > 0) are well deﬁned, remain in
U (xg, ro) for all n > 0, and converge to a solution x* of (7.7.1) in U (xg, ro), which
is unique in U (xg, Ro) N D. Moreover, the following error bounds hold for all n > 0

X0 —x*[| < ¥"ro, (7.7.31)
where,
! ( Lro+ b) (1.7.32)
= —T7 ro. .
v co+a \2 0 0

Proof. By Lemma 7.7.3, operator w(x) is uniquely determined by
F'(xo)w(x) + g(w(x)) 3 F'(x0)(x) — F(x)
for all x € U (xo, ro). Using (7.7.9), we can write
allw(x) = xol* < (yo+ F(x) — F'(x0)(x — w(x)), x0 — w(x)),
or

allw@x) — xoll* 4+ (F'(x0)(w(x) — x0), w(x) — xo)
< (F'(x0)(x — x0) — F(x) — yo, w(x) — xo),

and by (7.7.18), (7.7.19), (7.7.26)—(7.7.30), we get
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(co+ o) |lwx) — xoll < llyo + F(x) — F'(x0)(x — x0) |l
= |lyo + F(x0) + F(x) — F(x0) + F'(x0)(x — x0)l
< [[F(x0) + yoll + IIF (x) — F (x0) + F'(x0)(x — x0) ||

3. b 2
<bo+ glx —xoll” + 3llx — xoll*,

or
lw(x) — xoll < ! —5” - ||3 =lx = ||2
w(x X bo + X — X + X — X
ol = ) 0 0 5 0
‘ a b
b —r3 —12 =Try. 7.33
= 0 + 5’0"‘ 7’0 0 (7.7.33)

Hence, w maps U (x0, ro) into itself. Let x, y € U (x9, ro). Then by (7.7.9), and the
definition of w, we get in turn

aw@x) —wI* < (F'(xo)(wx) —wy) + Fx) — F(y)
— F'(xp)(x — y), w(y) — w(x)),

or

alw(x) = wI + (F'(x0) w(x) — w(y)), wx) — w(y))
< (F'(x))(x = y) = F(x) + F(y), w(x) — w(y)),

and by (7.7.8), (7.7.29), we obtain

[wx) —wy)| <

< IF(x) — F(y) = F'(x0)(x — y)l|
co+ o
: "/1[(1 Nl I +1] &
- — — X X — X
_C()+Ot 2 0 Y 0 0
b
+ 3 Uix = ol + 11y = xoll] { Ir = ¥
[ 273+ bro] e = 31 = lx — 1
—r ro|llx =yl =ylx =yl
S otal2 0 0 y 14 y

where y is given by (7.7.32). It follows that w is a contraction on U (xq, o), as by
the definition of rg, y € [0, 1). Moreover, we can write x,+1 = w(x,) (n > 0). The
Banach contraction mapping principle guarantees the existence of a unique element
x* of U(xo, ro) satisfying x* = w(x*) or equivalently (7.7.1). Moreover, we can
write

Xy — x*| = lwxn-1) —w&I < ¥"llxo — x*|| < y"ro,

which shows (7.7.31) for all n > 0. Finally to show uniqueness, let y* be a solution
of (7.7.1). As in (7.7.33), we get
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(co + o) lly* = xoll < bo+ &l1y* —xoll® + 5lly* — xoll?,

which gives [|y* — xoll > Ro or [[y* — xoll < ro. If y* € U(xo, Ro) then y* €
U (xo, ro), which implies y* = x*.

If iteration (7.7.2) is replaced by the generalized Newton method (7.7.3), then
following the proofs of Theorems 7.7.4-7.7.6 and Theorem 2.11 in [195] we can
show:

Theorem 7.7.7. Let all hypotheses of Theorem 7.7.6 hold. Then, generalized NK
method {x,} (n > 0), generated by (7.7.3) is well defined, remains in U (x0, o) for
all n > 0 and converges to a unique solution of (7.7.1) in U (xo, Ro) N D. Moreover
the following estimates hold for all n > 0:

o0
ey —x* I <BY_ d* (n=0),

i=n
where B, d are given by (7.7.21), (7.7.20), respectively.

Remark 7.7.8. Our results reduce to the ones in [195] if a = 0 in (7.7.12) and
(7.7.18). The advantages of using second instead of second Fréchet derivative have
been shown in for regular equations and for generalized equations. In particular, our
error bounds can be finer and our convergence conditions hold whereas the corre-
sponding ones in [195] do not.

7.8 Exercises

7.8.1. Consider the problem of approximating a locally unique solution of the vari-
ational inequality
F(x)+d¢p(x) 30, (7.8.1)

where F is a Gateaux-differentiable operator defined on a Hilbert space H with
values in H; ¢: H — (—00, o0] is a lower semicontinuous convex function.
We approximate solutions x* of (7.8.1) using the generalized NK method in the
form

F'(xp) (Xn41) + 39 (Xn11) 3 F' () (x0) — F () (7.8.2)

to generate a sequence {x,} (n > 0) converging to x*.
Define: the set

D(p) = {x € H:¢(x) < oo} and assume D(¢p) # ¢;
the subgradient
dp(x) ={z € H:p(x) = ¢(y) = (z,x = y),y € D(p)};

and the set
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D(0¢) = {x € D(¢):d¢(x) # 0}.

Function d¢ is multivalued and for any A > 0, (1 + 19¢) ! exists (as a single-
valued function) and satisfies

11+ 239) ' (x) — (T +239) ') < llx — ¥l (x,y € H).

Moreover d¢ is monotone:

f1 € 0p(x1), f2 € dp(x2) = (f1 — f2,x1 —x2) = 0.

Furthermore, we want D(go) = D(é(p), so that D(d¢) is sufficient for our pur-
poses.

We present the following local result for variational inequalities and twice
Gateaux-differentiable operators:

(a) Let F: H — H be a twice Gateaux-differentiable function. Assume:
(1) variational inequality (7.8.1) has a solution x*;
(2) there exist parameters a > 0, b > 0, ¢ > 0 such that

IF" () = F"DI < allx = yll,
IF" (x| < b,

and
cly =zl < (Fx)(y—2).y—2)

forall x,y,z € H;
(3) x0 € D(p) and x9 € U (x™*, r), where

—1
r=4c[b+,/b2+%} :

Then show: generalized NK method (7.8.2) is well defined, remains in
U (x*, r), and converges to x* with

ln =¥l < p-d*, (=0
where,
p~t =1 [al = xol + 5] and @ =p7Nx" — xoll.
(b) We will approximate x* using the generalized NK method in the form
F" o) (en1) + 89 (xnt1) 3 f" o) () — V f (x). (7.8.3)
We present the following semilocal convergence result for variational in-

equalities involving twice Gateaux-differentiable operators. Let f: H — R
be twice Gateaux-differentiable. Assume:
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(1) for xg € D(¢) there exist parameters & > 0, § > 0, ¢ > 0 such that
((f" ) = £ o). ). 2) < ellx — xoll 1y 121z,

1" xo)ll < B

and
cly —zlIP < (£ —2).y—2)

forallx, y,z € H;
(2) the first two terms of (7.8.3), xo and x1, are such that for

n = [lx1 — xol|

c[ﬂ+2\/ﬁ]7l, B% —dac#0
n=

c2)", p? —dac =0.

Then show: generalized NK method (7.8.3) is well defined, remains in
U (xg, ro) for all n > 0, where cq is the small zero of function 4§,

8(r) = omr2 — (¢ — Bn)r + cn,

and converges to a unique solution x* of inclusion v f (x) + d¢ (x) 3 0. In
particular x* € U (xq, r9). Moreover, the following error bounds hold for all

n>0
len = x*|| < yd*,
where,
yfl — Otr()c-ﬁ-ﬂ and d = 77‘}/71~
7.8.2. Let M, (-, ), || - || denote the dual, inner product and norm of a Hilbert space

H, respectively. Let C be a closed convex set in H. Consider an operator a: H x
H — [0, 400). If a is continuous bilinear and satisfies

a(x,y) > colyll>, yeH, (7.8.4)

and
alx,y) <cilxl-lyll, x,y€H, (7.8.5)

for some constants co > 0, ¢; > 0 then a is called a coercive operator.
Given z € M, there exists a unique solution x € C such that:

a(x,x —y)>{(z,x—y), yeC. (7.8.6)

Inequality (7.8.6) is called variational. It is well-known that x* can be obtained
by the iterative procedure

Xnt1 = Pc(xn — pF(G(xn) — 2)), (7.8.7)
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where Pc is a projection of H into C, p > 0 is a constant, F is a canonical
isomorphism from M onto H, defined by

(z,y) =(F(2),y), y€H, zeM, (7.8.8)

and
a(x,y)=(Gx),y), yeH. (7.8.9)

Given a point-to-set operator C from H into M we define the quasivariational
inequality problem to be: find x € C(x) such that:

ax,y—x) >(z,y—x) yeCkx). (7.8.10)
Here, we consider C(x) to be of the form
Cx)=fx)+C, (7.8.11)
where f is a point-to-point operator satisfying
If &) = FDI < eallx® = y* (7.8.12)

for some constants ¢; > 0, A > 1, all y € H and x™* a solution of (7.8.10). We
will extend (7.8.7) to compute the approximate solution to (7.8.10).

(a) Show: For fixed z € H, x € C satisfies
(x—z,y—x)>0 yeC (7.8.13)

& x = Pc(2), (7.8.14)

where Pc is the projection of H into C.
(b) Pc given by (7.8.14) is nonexpansive, that is

[Pc(x) — PcVI < llx —yll, x,ye€H. (7.8.15)
(c) For C given by (7.8.11), x € C(x) satisfies (7.8.10) <
x=fx)+ Pc(x — pF(G(x) — 2)). (7.8.16)
Result (c) suggests the iterative procedure
X1 = [ (n) + Pc(xn — pF(Gp) = 2) = f(xn)) (7.8.17)

for approximating solutions of (7.8.10).
Let us define the expression

0 =6(A, p) =2c||x0 — xll)‘_1 +41+ ,020% —2cop .

It is simple algebra to show that 8 € [0, 1) in the following cases:

co+./ci—4c?c (I—=c2)
(D r=1c <4 00> 2e/a—0),0<p< 0
1
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S\ A
(2)/\>1,60501,|IXO—xII<[2172(14— (@) )} .

co++/c2+qc? \2
0<p <=2 g =(1-2ealw0—xIP") =13

1

1/3a—1 coty/c2+qc?
G r>La>enlo-x=(s) =e0<p<

2¢) C%

Denote by Hy, H; the sets
Hy={yeH||ly—x"|<c3} and Hi={y e H||y—x"|| <c4}.

(d) Let operator f satisfy (7.8.12) and C be a nonempty closed convex subset of
H.If a(x, y) is a coercive, continuous bilinear operator on H, x* and x,4|
are solutions of (7.8.10) and (7.8.17), respectively, then x,4] converges to
x* strongly in H if (7.8.1) or (7.8.2) or (7.8.3) above hold.

It follows from (d) that a solution x* of (7.8.10) can be approximated by the

iterative procedure

(1) x* € C(x™) is given,

(2) xpt1 = fxn) + PC(xn —pF(G(xp) —2) — f(xn))7
where p, xo are as in (7.8.1) or (7.8.2) or (7.8.3).

If » = 1 our result (d) reduces to Theorem 3.2 in [150] (provided that (7.8.12)

is replaced by || f(x) — f(M)| < c;||x — y| for all x, y € H). Note also that

as cé > ¢, in general our error bounds on the distances ||x, — x*| (n > 0) are
smaller. Moreover, if C(x) is independent of x, then f = 0 and ¢; = 0, in which

case (c¢) and (d) reduce to the ones in [149].

7.83. Let xo € D and R > 0 be such that D = U (xp, R). Suppose that f is
m-times Fréchet-differentiable on D, and its mth derivative f (m) is in a certain
sense uniformly continuous:

17 @) = ™ (o)l < w(llx = xol),  forallx € D, (7.8.18)
for some monotonically increasing positive function w satisfying
lim w(r) =0, (7.8.19)
—00
or, even more generally, that
1F™ )= ™ o)l < wr, x—xoll), forall x € D, r € (0, R), (7.8.20)
for some monotonically increasing in both variables positive function w satisfy-
ing
liII(l) w(r,t) =0, rel0,R]. (7.8.21)
t—

Let us define function 6 on [0, R] by
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AUm a2 o
O@r) = +—r" 4+ =r
") c+uo |:77 m! 2!
Um—2 U1
+/ / w(vy,—1)(r —vy)dvy --~dvm_1i| —r (7.8.22)
0 0
for some constants o, ¢, n, «;, i = 2, ..., m; the equation,

0(r) =0; (7.8.23)
and the scalar iteration {r,} (n > 0) by

0(ra)
0

r0=0, Fnp1="rn (7.8.24)

Let g be a maximal monotone operator satisfying L(z) + g(z) > y, and suppose:
(7.8.18) holds, there exist o; (i = 2, ..., m) such that

IFOxo)| < e, (7.8.25)

and equation (7.8.23) has a unique r* € [0, R] and 6(R) < 0.
Then show: the generalized NK method {x,,} (n > 0) generated by

F1 X1+ g(nt1) 3 f/ () () = f(xn) (2 0), (x0 € D)

is well defined, remains in V (xq, r*) for all n > 0, and converges to a solution
x* of
Sx)+gx) > x.
Moreover, the following error bounds hold for all n > 0:
lxn+1 = Xnll < Fug1 — 1, (7.8.26)
and

X, — x| <r* =1y, r*= lim ry,. (7.8.27)
n—o0

7.84. Let xo € D and R > 0 be such that D = U (xg, R). Suppose that f is
Fréchet-differentiable on D, and its derivative f” is in a certain sense uniformly
continuous as an operator from D into L(H, H); the space of linear operators
from H into H. In particular we assume:

') = f'WIl < wlllx =y, x,y €D, (7.8.28)
for some monotonically increasing positive function w satisfying
tlin;o w(r) =0,
or, even more generally, that

If' )= fDWIl <wr, lx—yll), x,yeD,reR), (7.8.29)
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for some monotonically increasing in both variables positive function w satisty-
ing

limw(r,t) =0, r €]0,R].

t—0

Conditions of this type have been studied in the special cases w(t) = dt*,
w(r, t) = d(r)t*, » € [0, 1] for regular equations; and for w(r) = dt for gener-
alized equations of the form f(x) + g(x) > x. The advantages of using (7.8.28)
or (7.8.29) have been explained in great detail in the excellent paper [6]. It is
useful to pass from the function w to

w(r) =sup{w(t) + w(s): t+s =r}

The function may be calculated explicitly in some cases. For example, if w(r) =
dr* (0 < » < 1), then w(r) = 2'"*dr*. More generally, if w is a con-
cave function on [0, R], then w(r) = 2w (%), and w is increasing, convex, and
w(r) > w(r), r €0, R].

Let us define the functions 6, 8 on [0, R] by

1 r
Q(r)=—|:n+f w(t)dt:|—r, for some o > 0,7 >0,c >0
c+uo 0

o(r) = Cia [n+/0 w(t)dz} —r

and the equations

0@r) =0,
0(r) = 0.
Let g be a maximal monotone operator satisfying

there exists ¢ > —« such that (f’(z)(x), x) > c||x||2, forallx € H,z € D,

and suppose: (7.8.28) holds and equation O(r) = O has a unique solution r* €
[0, R].
Then, show: the generalized NK method {x,} (n > 0) generated by

') xn1 + 8Gng1) 3 f/(xn)(xn) — f(xn)  (n>0), (xg € D)

is well defined, remains in U (xg, r*) for all n > 0, and converges to a solution
x*of f(x)+ g(x) > x. Moreover, the following estimates hold for all n > 0:

||xn+l —Xpll Sty — 1
xn — x*|| < 7% =1y,

where, B
0(rn)
6’ (rn)’

ro=0, rpp1 =1, —

and

lim r, =r*.
n—0oo



8

Convergence Involving Operators with Outer or
Generalized Inverses

Local and semilocal convergence of iterative methods using outer or generalized
inverses under weaker conditions than before are examined hence.

8.1 Convergence with no Lipschitz conditions

In this study, we are concerned with the problem of approximating a solution x* of
the equation
F'(x0)" F(x) = 0, 8.1.1)

where F is an m-times Fréchet-differentiable operator (2 > 2 an integer) defined on
an open convex subset of a Banach space X with values in a Banach space Y, and
xo € D. Operator F’ (x)* (x € D) denotes an outer inverse of F'(x) (x € D). Many
authors have provided local and semilocal results for the convergence of NK method
to x* using hypotheses on the Fréchet derivative (see earlier Chapters 2-6).
Here we provide local convergence theorems for NK method using outer or gen-
eralized inverses given by
Xpg1 =Xy — F'(6)*F(x,) (n=0) (x0 € D). (8.1.2)

Our Newton-Kantorovich-type convergence hypothesis is different from the corre-
sponding famous condition used in the above-mentioned works (see Remark 8.1.10
(b)). Hence, our results have theoretical and practical value. In fact, we show using a
simple numerical example that our convergence ball contains earlier ones. This way,
we have a wider choice of initial guesses than before. Our results can be used to
solve undetermined systems, nonlinear least squares problems, and ill-posed nonlin-
ear operator equations [59], [60].

In this section, we restate some of the definitions and lemmas given in the elegant
paper [59].

Let A € L(X,Y). A linear operator B: Y — X is called an inner inverse of A if
ABA = A. A linear operator B is an outer inverse of A if BAB = B. If B is both
an inner and an outer inverse of A, then B is called a generalized inverse of A. There

I.K. Argyros, Convergence and Applications of Newton-type Iterations,
DOI: 10.1007/978-0-387-72743-1_8, (© Springer Science+Business Media, LLC 2008
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exists a unique generalized inverse B = AJ{D’Q satisfying ABA = A, BAB = B,
BA =1— P,and AB = Q, where P is a given projector on X onto N (A) (the null
set of A) and Q is a given projector of ¥ onto R(A) (the range of A). In particular, if
X and Y are Hilbert spaces, and P, Q are orthogonal projectors, then AJ}’ 0 is called
the Moore-Penrose inverse of A.

We will need five lemmas of Banach type and perturbation bounds for outer
inverses and for generalized inverses in Banach spaces. The Lemmas 8.1.1-8.1.5
stated here correspond with Lemmas 2.2-2.6 in [59] respectively.

Lemma 8.1.1. Let A € L(X,Y) and A* € L(Y, X) be an outer inverse of A. Let
B € L(X,Y) be such that || A*(B— A)|| < 1. Then B* = (I + A*(B— A)) 'A% isa
bounded outer inverse of B with N(B*) = N(A%) and R(B*) = R(A*). Moreover,
the following perturbation bounds hold:

1A*(B — A)A*| - IA*(B = Al 1A%
— |A*(B = A)|| = 1—[|A*(B - A)

| B* — A% < 1

and
IB*A| < (1 — 1A*B — A)n~".

Lemma 8.1.2. Let A, B € L(X,Y) and A*, B* € L(Y, X) be outer inverses of A
and B, respectively. Then B¥(I — AA*) = 0 if and only if N(A*) € N(B%).

Lemma 8.1.3. Let A € L(X, Y) and suppose X and Y admit the topological decom-
positions X = N(A)@® M, Y = R(A) @ S. Let Af (= A;,LS) denote the generalized
inverse of A relative to these decompositions. Let B € L(X, Y) satisfy

IATB — A)| < 1
and
(I + (B — A)AY "B maps N(A) into R(A).
Then BT = B! exists and is equal to

R(Ah, N (4D
B = Al +7AN ' = (1 + ATT) ' A,

where T = B — A. Moreover, R(B") = R(A"), N(B") = N(A" and |B'A| <
(1= [A%B - A)h~"

Lemma 8.1.4. Ler A € L(X,Y) and A be the generalized inverse of Lemma 8.1.3.
Let B € L(X,Y) satisfy the conditions ||AT(B — A)|| < 1 and R(B) € R(A). Then
the conclusion of Lemma 8.1.3 holds and R(B) = R(A).

Lemma 8.1.5. Let A € L(X, Y) and A'be a bounded generalized inverse of A. Let
B € L(X,Y) satisfy the condition |A(B — A)|| < 1. Define B* = (I + A{(B —
A))’IAT. Then B¥ is a generalized inverse of B if and only if dim N (B) = dim N (A)
and codim R(B) = codim R(A).
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Let A € L(X,Y) be fixed. Then, we will denote the set on nonzero outer inverses
of A by
A(A)={BeL(Y,X): BAB=B,B #0}.
n [18], [27] we showed the following semilocal convergence theorem for NK
method (8.1.2) using outer inverses for m-Fréchet-differentiable operators (m > 2
an integer).

Theorem 8.1.6. Let F: D C X — Y be an m-times Fréchet-differentiable operator
(m > 2 an integer). Assume:

(a) there exist an open convex subset Dy of D, xo € Dy, a bounded outer inverse
F'(x0)* of F'(xq), and constants «;, n > 0 such that for all x,y € Dy the
following conditions hold:

IF (xo)*(F™ (x) — F™ ()| < q. ¢ >0, ¥x € U(xo, 8), 8 > 0,

(8.1.3)
IF’ (xo)* F (xo) || < n, (8.1.4)
IF' (x0)*FO(xo)ll < 0y i =2,3,...,m; (8.1.5)

the positive zero s of p’(s) = 0 is such that:

p(s) <0, (8.1.6)
where
FO =n—t+ 224y 0D (8.1.7)

2! m!
Then polynomial p has only two positive zeros denoted by t*, t** (t* < t**).
(b)
U(xo,8) € Doy, &= max{dy, ", r**}. (8.1.8)

(c) 8o € [t*, t**] or &y > t**,
Then
(i) NK method {x,} (n > 0) generated by (8.1.2) with
-1
Flo)* =1+ F 0o (F' () = Foon | o (0= 0)
is well defined, remains in U (xq, t*), and converges to a solution x* € U (x0, ™)

of equation F'(xo)* F(x) = 0;
(ii) the following estimates hold for alln > 0

lxn+1 — Xull < tu1 — tn, (8.1.9)
and
lxn — x*|| <t —ty, (8.1.10)
where {t,} (n > 0) is a monotonically increasing sequence generated by
f(tn)

to=0, thy1 =1t (8.1.11)

St
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(iii) equation F'(x0)* has a unique solution in Un {R(F’(xo)#) + xo}, where

U (xo.t" YN Dy if 8o € [t*, 1]

v= { U (xo, )N Dy if 8 > 1**, (8.1.12)

and
R(F'(x0)*) + x0 := {x +x0: x € R(F'(x0)")}.

We provide a local convergence theorem for NK method {x,} (n > 0) generated
by (8.1.2) for m-Fréchet-differentiable operators.

Theorem 8.1.7. Let F: D C X — Y be an m-times Fréchet-differentiable operator
(m > 2 an integer). Assume:

(a) F(i)(x), i =2,3,...,m satisfies
IF™ () = F™ ()]l < g0,
IFO @) = FO)| < b'llx =yl forallx,y e D; 8.1.13)
(b) there exists x* € D such that F(x*) = 0 and
IFOH <bi, i=2,3,...,m; (8.1.14)
(c) let ro be the positive zero of equation g'(t) = 0, where

by + QOtm
|

b
+...+2—2't2i|—t+bo, forany by, p > 0, (8.1.15)

g(t)=p[

and such that U (x*, ro) C D;
(d) there exists an F'(x*)* € A(F'(x*)) such that
IF' ¥ < p, (8.1.16)

and for any x € U (x*, ry), for given g9 > 1, ry is the positive zero of equation
g1(t) =0, where

g1(t) = peo [Ml‘m—l—'H—szt]—i—(l — &0), (8.1.17)
(m—1)!

the set A(F'(x)) contains an element of minimal mean.

Then, there exists U (x*,r) C D withr € (0, ry) such that for any xo € U (x*, r),
NK method {x,} (n > 0) generated by (8.1.2) for

F'(x0)* € argmin{||B|: B € A(F'(x0))}

with F'(x,)* = [I + F'(xo)*(F'(x,,) — F/(x()))]_1 F'(x0)*, converges to y €
U (x0, ro) N{R(F'(x0)*) + xo} such that F'(x0)* F (y) = 0. Here, we denote

R(F'(x0)") + x0 = {x +x0: x € R(F'(x0)")}.
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Proof. (1) We first define parameter ¢ by

e € (0, minfeq, &2}],

where,
1
b= |22 mtd (8.1.18)
peo |1 20 m!
1 o) oy +
= — |ro—r) = 2o —r)P == 2Ly |, (8.1.19)
PEo 21 m!

anda;,i =2,3,...,m+ 1 are given by

am = peo [bm + (o +qo)r1], q = peolam + qo)

and .
o = peob; +b'ry), i =2,3,...,m— 1.

We will use Theorem 8.1.6. Operator F is continuous at x*. Hence, there exists
Ux*,r) € D,r € (0,ry), such that

IF(x)| <e forallx € U(x*, ). (8.1.20)
Using the identity,
F'(x) = F'(x*) = F'(x®)(x —x*) + F"'(x*)(x — x) =

1 1
= / [F"(x* +616) — F"(x*)] edb, +/ F"(x*)ed6;
0 0

1ol 1
/ / F"(B2)(B1 — x™)ed6rd6) +/ F'(x*)ed6,
0 Jo 0

R /01. . ./01 F™ By 1) bz — x*) - (B1 — x*)edOp_1 - - - dO;

n /01. . ./01 FO DB 2) (B3 — x) - - (B1 — x)edb—2 - - - d6>d6;
+---+/01 F"(x*)ed6;

- /0 . /0 | [F Bu1) = F )] Bz = x7) -+ (B1 = x")edbr -+ db)

" /01. . .fol F ) By — x7) - (B — x*)edy_1 -~ dBy

+ fo . /O D) By x) (Br 52

1
~~d(91+~-~+/ F"(x*)edb, (8.1.21)
0
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where we used ¢ = x — x*, By = x* +01e, Bi = x* +6;(Bi—1 — x™), 6; € [0, 1],
i=1,2,3,...,m— 1, conditions (8.1.13), (8.1.14), (8.1.15), and (8.1.16), we get

by +
||F/(x*)#(F/(x) — F’(x*))” <p [Hrgl 4.+ b2r0i| <1,
by the choice of ry.
It follows from Lemma 8.1.1 that
-1

Floot = [1 + F Y (x) — F’(x*))] F'(e¥, (8.1.22)

is an outer inverse F’ (x), and
I ¥ )
IF @)F || < T — < peo, (8.1.23)
1—p [—(,g;_l‘f)o!rl +--- +b2r1]

by the choice of r| and &g. That is, for any xo € U (x*, r), the outer inverse
F'(x0)" € argmin{||B|| : B € A(F'(x))} and ||F'(xo)*|| < peo.
We can then obtain for all x, y € D

IF (x0)* (F™ (x) — F™ (y)l < peoll F™ (x) — F™ (»)|l < peogo = q,

IF' (o) F™ (x0) | < peoll F™ (xo)ll < peo [bm + bms171] = etm
(by (8.1.13) and (8.1.14)),

and

IF' (x0)*F O (x0)l < peobi +b'r) =a;, i=2,3,...,m—1,

o oy +
1< IF o) Fo)l < peo < 5 = Sos2 = = Ly,
. m:

(8.1.24)

by the choice of ¢ and e. Hence, there exists a minimum positive zero t* < ry of
polynomial f given by (8.1.7). It also follows from (8.1.15), (8.1.17), and the choice
of &3 that f(rg —r1) < 0. That is,

r 4t* <ro. (8.1.25)
Hence, for any x € U (xq, *) we have
[x* = x|l < llxo — x| + llxo — x|l <ri +1* <ro. (8.1.26)

It follows from (8.1.26) that U (xo, t*) € U (x*, r9) € D. The hypotheses of Theo-
rem 8.1.6 hold at xy. Consequently, NK method {x,} (n > 0) stays in U (xq, t*) for
all n > 0 and converges to a solution y of equation F' "(xo)*F(x) = 0.

In the next theorem, we examine the order of convergence of NK method {x,}
(n > 0).
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Theorem 8.1.8. Under the hypotheses of Theorem 8.1.7, if F'(x0)* F(y) = 0, then

+ — o
Iy = Xy < ——mieln "2t 3
n —
L—az [l =yl == G2y [, —y ||

Iy —xpll?, foralln >0, (8.1.27)

and, if y € U(xq, 1), where ry is the positive zero of equation g(t) = 0,
g(r) = CotdntDym=1 4 4 30, (8.1.28)
then, sequence {x,} (n > 0) converges to y quadratically.

Proof. We first note that r, < ro. By Lemma 8.1.1 we get R(F'(x0)") = R(F'(x,)")
(n > 0). We have

Xng1 — X = F'(x)*F(x) € R(F'(x)") (> 0),
from which it follows
Xng1 € ROF'(en)®) + X = R(F (eue D)) + x0 = R(F'(x0)™) + x0,

and y € R(F'(x,)") + x,41 (n > 0). That is, we conclude that

y € R(F'(x0)") + x0 = R(F'(xn)*) + x0,
and
F' () F' (i) (y = xng1) = F' @) F/ () (v = x0) = F' ()" F' () (tag1 = x0)

=Y = Xn+l-

We also have by Lemma 8.1.2 F/(x,)* = F'(x,,)* F' (x0) F' (x0)*. By F'(x0)* F (y)=
0 and N (F'(x0)*) = N(F'(x,)"), we get F'(x,)* F(y) = 0. Using the estimate

1y = xngill =

= IF' ) F ) (v = x|

= IF o) F' o) [ = 30+ F/ ) (F o) = FOD ]
< |F' ) F'(xo) |

1
: H Floxo)*] fo [F" [ + 1 (v = x)] = F')] (1 = 0)di (y = x,)?

Iy — xall> (n>0),

+ 3FEO0 - )’

+ _ o
Otr:ln! 4 [lxxn —ylI™ 2+"'+T2!

f— o 1
L0 [l =y | == =2t [l =y |

which shows (8.1.27) for all n > 0. By the choice of r, and (8.1.27) there exists
a € [0, 1) such that ||y — xp41| < a|ly — x|l (n > 0), which together with (8.1.27)
show that x,, — y quadratically as n — oo.
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We provide a result corresponding with Theorem 8.1.7 but involving generalized
instead of outer inverses.

Theorem 8.1.9. Let F satisfy the hypotheses of Theorems 8.1.7 and 8.1.8 except (d)
which is replaced by

(d) the generalized inverse F'(x*) exists, IF ) < D,
dim N (F'(x)) = dim N (F'(x*)) (8.1.29)

and
codim R(F’(x)) = codim R(F’(x*)) (8.1.30)

forall x € U(x*, ry).
Then, the conclusions of Theorems 8.1.7 and 8.1.8 hold with

F'(xo) € {B; B e A(F'(xo)), | Bl < H F’(xo)*H]. (8.1.31)

Proof. In Theorem 8.1.7 we showed that the outer inverse F'(x)* e argmin{|| B|| :
B € A(F'(x))} forall x € Ux*,r), r € (0,r1) and ||F'(x)*|| < peg. We must
show that under (d)’ the outer inverse

Flof e [B :B e A(F'(x)), IB| < H F'(X)TH}

satisfies || F/(x)*|| < peo. As in (8.1.21), we get

bm + qo0 m—1

H F'() (F/(x) — F/(x%)) H <p [mro T +b2ro} <1

Moreover, by Lemma 8.1.5
Fl(x) = [1 + F' () (F (x) — F/(x*))]_1 F/(x*) (8.1.32)

is the generalized inverse of F’(x). Furthermore, by Lemma 8.1.1 as in (8.1.23)
| F'(x)!| < peo. That is, the outer inverse

F'ao* e [B: B e AF o, 181 = |F'oo] |

satisfies || F'(x0)*|| < peo, provided that xg € U (x*, r).
The rest follows exactly as in Theorems 8.1.7 and 8.1.8.

Remark 8.1.10. (a) We note that Theorem 8.1.6 was proved in [43] with the weaker
condition

| /G0 (F™ 00 = F™60)) | = s llx = xol

replacing (8.1.3).
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(b) Our conditions (8.1.3)—(8.1.7) differ from the corresponding ones in [52] (see,
for example, Theorem 3.1) unless if ; = 0,7 = 2,3, ..., m, g = 0, in which
case our condition (8.1.6) becomes the Newton-Kantorovich hypothesis (3.3) in
[60, p. 450]:

Kn<1, (8.1.33)
where K is such that
| o) (Foo = Fo)| = Kl = 51 (8.1.34)
forall x, y € D. Similarly (if¢; = 0,i = 2,3, ..., m), our ro equals the radius
of convergence in Theorem 3.2 [60, p. 450].
(¢) In Theorem 3.2 [60], the condition
|F'(x) = F'(y)| <collx —yll forall x,y e D (8.1.35)

was used instead of (8.1.34). The ball used there is U (x*, r*), (corresponding

with U (x*, rg)) where

1
= — (8.1.36)
cop

Finally, for convergence xo € U (x*, r{), where

Wl

r. (8.1.37)

*__
ry =

Below we consider such a case. For simplicity we have taken F'(x)* = F’(x)~!
(x e D) and m = 2.

Remark 8.1.11. Methods/routines of how to construct the required outer generalized
inverses of the derivative can be found at a great variety in Exercise 8.2.3 at the end
of this chapter.

Example 8.1.12. Let us consider the system of equations
F(x,y) =0,
where F:R? — R2,
F(x,y)=@xy—1,xy+x—2y).
Then, we get

/ _ y X
F(x,y)—|:y+1x_2:|,

and

_ 2—x x

/ 1 _ 1

F(X,)’) _X+2y [y_i_l_y}s

provided that (x, y) does not belong on the straight line x + 2y = 0. The second
derivative is a bilinear operator on R? given by the following matrix
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0 1
1 0

Flx,y)=| - —
0 1
1

We consider the max-norm in R2. Moreover in L(RZ, R?) we use for
ap a
A= 11 412
az) a2

[|All = max{laii| + |ai2|, laz1| + |azz|}.

the norm,

As in [6], we define the norm of a bilinear operator B on R? by

2 |2
k
IBIl = sup max Y |3 b/ 2],
lzll=1 t  j=I|k=1
where,
bll b12
1 1
b21 b%Z
1
z=1(z1,22) and B=| — —
bll b12
2 2
b21 b22
2 2

For m = 2 and (x*, y*) = (1, 1), we get ¢y = %, r{ = .5, az = 1. We can set

g = .001 to obtain r, = .666444519. Note that r, > ry.

8.2 Exercises

8.2.1 (a) Assume there exist nonnegative parameters K, M, L, ¢, u, n, 6 € [0, 1]

such that:
L<K, 8.2.1)
C+2u <1, (8.2.2)
and
h55<K+L6+§TM5>n+8£+2u§8. (8.2.3)

Show: iteration {t,} (n > 0) given by

K (tys1 —tn)+2(Mt,+10)
=0, =1, tiya =ty + SR G ) (1> 0)

is nondecreasing, bounded above by #**, and converges to some ¢* such that

0<r*< 2L

ok
2—6 .

t
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Moreover, the following estimates hold for all n > 0

5 syn+1
2 = tng1 < 5(tag1 — 1) < (5)

(b) Let F: D € X — Y be a Fréchet-differentiable operator. Assume:
there exist an approximation A(x) € L(X, Y) of F'(x), an open convex subset
Dy of D, xo € Dy, a bounded outer inverse A* of A(xp), and parameters n > 0,
K>0,M=>0,L>0,u=>0,¢> 0such that (8.2.1)—(8.2.3) hold
IA*F (o)l < m,

IA*[F'(x) = F'D)] I < Kllx =yl

1A% [F'(x) = A@] Il < Mllx — xoll + 1,
and

IA* [A(x) — AGxo)] Il < Lllx — xoll + ¢

forall x, y € Dy, and B
U (xo,1*) € Do

Show: sequence {x,} (n > 0) generated by Newton-like method with

A = [1+ A% A@w) - Ao)] A"

is well defined, remains in U (xq, s*) for all » > 0, and converges to a unique
solution x* of equation A* F(x) = 0, U (xo, t*) N Dy
Moreover, the following estimates hold for all n > 0

lxXnr1 — xull < thg1 — 1y,

and
X, — x*|| <t — t,.

(c) Assume:
—there exist an approximation A(x) € L(X,Y) of F/(x), a simple solution
x* € D of equation F (x) = 0, a bounded outer inverse A*f of A(x*), and

nonnegative parameters K, L, M, [i, £, such that:

IAT[F'(x) — F')] Il < Kllx — yll,
IAF[F'(x) — A)] || < Mllx — x*|| + i,
and ) )
IAY[A) — A Il < Lilx — x*|| + €

forall x,y € D;
—equation
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has a minimal nonnegative zero r* satisfying
Lr+1¢<1,
and
U™, r*) C D.

Show: sequence {x,} (n > 0) generated by Newton-like method is well defined,
remains in U (x*, r*) for all n > 0, and converges to x* provided that xo €
U (x*, r*). Moreover, the following error bounds hold for all n > 0:

%7 = X1 ]l <
1
< = =
I = Ljx* = xull = £

(§+m)r+i

K * v * - *
Ellx —Xpll + MIx™ — xull + @) | 127 — x|

< -_— X* - )C .
Il
8.2.2 (a) Let F: D € X — Y be an m-times Fréchet-differentiable operator (m > 2
integer).
Assume:

(a1) there exist an open convex subset Dy of D, xog € Dy, a bounded outer
inverse F’ (xo)* of F’ (xo), and constants n > 0, 0; > 0,i =2, ....m + 1
such that for all x, y € Dy the following conditions hold:

IF' (x0)*(F™ (x) = F™ (xo))|| <&, &> 0, (8.2.4)
for all x € U (xg, §p) and some &9 > 0.

IF" (x0)* F (xo) | < m,

IF" (xo)* FO (x0) || < e

the positive zeros s of p’ is such that

p(s) <0,
where,
art? Ay + €
p(t):r)—t+2—+‘~‘+ U
2! m!

Show: polynomial p has only two positive zeros denoted by ¢*, r** (r* < **).
(a2) )

U(xg,8) € Dy, &= max{8y, 1", **}.
(a3) o € [1*,1**] or §g > 1**.
Moreover show: sequence {x,,} (n > 0) generated by NK method with F’(x,,)* =
[1+ F'(xo)*(F'(xn) — F’(xo))r1 F'(x0)* (n = 0) is well defined, remains in
U (xo, *), and converges to a solution x* € U (xq, t*) of equation F’(xo)* F (x)
=0;
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—the following estimates hold for all n > 0

lxn41 — xull < thg1 —tn

and
xn —x*|| <t — 1y,

where {,} (n > 0) is a monotonically increasing sequence converging to t* and
generated by
)
p(t)
(b) Let F: D € X — Y be an m-times Fréchet-differentiable operator (m > 2 an
integer). Assume:
(by) condition (8.2.4) holds;
(by) there exists an open convex subset Dy of D, xo € Dy, and constants
a, B,n > 0 such that for any x € Dy, there exists an outer inverse F’ (x)#
of F'(x) satisfying N (F'(x)*) = N(F’(x0)*) and

th =0, Iny1 =1th —

| o Feo| <.

1
F'(y)* / F'x +t(y — ) (1 —n)dt(y —x)*| <
0

- [am—i—e

_ o2
Ty = x| 2+-~~+—] Ily — xII,
m! 2!

forall x, y € Dy,

|:Olm'|"8nm—2+_“+a_2i|n<1’
m! 2!
and
U(xo,r) € Dy with r=min{ il ,50},
1—rg
where,

Ay +€ [0%)
rO=|:m' " 2+...+—'i|n_
m! 2!

Show: sequence {x,} (n > 0) generated by NK method is well defined, remains
in U(xo, r) for all n > 0, and converges to a solution x* of F'(xo)*F(x) = 0
with the iterates satisfying N (F'(x,)*) = N(F'(x0)*) (n > 0). Moreover, the
following estimates hold for all n > 0

lxp41 — xnll < rgllxr — xoll,
n

,
0
[x* = x| < lx1 — xoll,
1—rg
and
1 1
lxn — xoll < lx1 — xoll < n<r.

I “1—r



392 8 Operators with Outer or Generalized Inverses

8.2.3 Let X and Y be Banach spaces, and let L be a bounded linear operator on
X into Y. A linear operator M:Y — X is said to be an inner inverse of L if
LMA = L. Alinear operator M:Y — X is an outer inverse of Lit MLM = M.
Let L be an m x n matrix, with m > n. Any outer inverse M of L will be an
n X m matrix. Show:

(a) If rank (L) = n, then L can be written as

r=a1]

where [ is the n x n identity matrix, and A is an m x m invertible matrix.The
n X m matrix
M=[IB]A!
is an outer inverse of L for any n X (m — n) matrix B.
(b) If rank (L) = r < n, then L can be written as

10
L_A|:00:|C’

where A is an m x m invertible matrix, I is the » x r identity matrix, and
C is an n x n invertible matrix. If E is an outer (inner) inverse of the matrix

10 .
[0 O]’ then the n x m matrix
M=C'EA™!

is an outer (inner) inverse of L. 70
(c) E is both an inner and an outer inverse of |: 0 Oi| if and only if E can be

written in the form
I M 1
E=|:CCMi|=|:C:|[IM].

(d) For any (n — r) x r matrix T, the matrix £ = |:; 8] is an outer inverse of
10
00|
8.2.4. Let F: D € X — Y be a Fréchet-differentiable operator between two Banach
spaces X and Y, A(x) € L(X,Y) (x € D) be an approximation to F’ (x).
Assume that there exist an open convex subset Dy of D, xg € Dy, a bounded
outer inverse A¥ of A (= A (x0)), and constants n, k > 0, M, L, i, > 0 such
that for all x, y € Dg the following conditions hold:

IA*F (xo) Il < n,  IIA* (F' (x) = F' W) Il < kllx — vl
IA* (F/ (x) = A @) | < M ||x — xoll + p,
IA*(Ax) = A) | < Llx —xoll +1, b:=pn+1<1L.

Assume h = on < %(1 — b)z, o = max (k, M + L), and U=U (xp,1*) C
Do. t* = 1—b—~/(1—b)>*—2h
’ - o

. Then show
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(i) sequence {x,} (n > 0) generated by x,+1 = x, — A x)* F (xn) (n>0)
with A (x,)* = [I + A* (A (x,) — A)]_1 A* remains in U and converges to
a solution x* € U of equation A*F (x) = 0.
(i) equation A*F (x) = 0 has a unique solution in U N {R (A*) + xo}, where
~ {(xo,t*)ﬂDo if h=1(1-b)?
U Go. )N Dy if h < 4 (1—b)?,

R(A*) + x := {x +xp:x € R(A#)},

and

= 1—b++/(1=b)>—2h
- o

@ii) lxp+1 = Xnll < tap1 — to, IX* = x4l < % — 1y, Where to = 0, t,41 =
o+ L () =32 — (1 —b)t+n,and g (1) = 1 — Lt — L.

8.2.5. Let F: D € X — Y be a Fréchet-differentiable operator between two Banach
spaces X and Y and let A (x) € L (X, Y) be an approximation of F’ (x). Assume
that there exist an open convex subset Dgy of D, a point xog € Dy, and constants
n, k > 0 such that for any x € Dy, there exists an outer inverse A (x)* of A (x)
satisfying N (A (x)#) = N(A*), where A = A (x¢) and A" is a bounded outer
inverse of A, and for this outer inverse the following conditions hold:

IA*F (xo) || <,
IA* (F' (x +1(y —x)) = F () | <kt [lx =yl

for all x,y € Do and ¢t € [0,11, h = Ykn < 1 and U(xo,r) S Do
with r = ﬁ Then show sequence {x,} (n > 0) generated by x,+; =
Xn — A (x)* F (xy) (n > 0) with A (x,)* satisfying N (A (x,)*) = N (A*) re-
mains in U (xo, r) and converges to a solution x* of equation A*F (x) = 0.

8.2.6. Show that NK method with outer inverses x,+; = x, — F’ (x,,)# (n>0)
converges quadratically to a solution x* € U N {R(F'(x0)*) +x0} of equa-
tion F' (xo)* F (x) = 0 under the conditions of Exercise 8.2.4 with A (x) =
F'(x) (x € Dy).

8.2.7. Let F: D C X — Y be Fréchet-differentiable and assume that F’ (x) satisfies
a Lipschitz condition

IF' )= F Wl <Llx—yll, x,y€D.

Assume x* € D exists with F (x*) = 0. Let @ > 0 such that U (x*, %) C D.
Suppose there is an

F'(x*)*eQ(F' (x*)) = {BeL(¥,X): BF (x*) B=B, B #0)

such that | F/ (x*)* || < a and forany x € U (x*, ﬁ), the set  (F’ (x)) con-

tains an element of minimum norm. Then show there exists aball U (x*,r) C D
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with cr < ﬁ such that for any xo € U (x*, r) the sequence {x,} (n > 0)

Xn1 = Xpn — F' (x)" F (x,) (n = 0) with
F' (x0)" € argmin {|| B |B € Q (F' (x0)) }
and with F' (x,)* = (I + F' (x0)* (F' (xp) — F’ (x0))) "' F’ (x0)* converges

quadratically to x* € U (xo, ﬁ) N {R(F’ (x0)*) + xo}, which is a solution

of equation F’ (x0)* F (x) = 0. Here, R(F' (x0)*) +x0 = {x +x0 : x €
R(F' (x0)")}.
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Convergence on Generalized Banach Spaces:
Improving Error Bounds and Weakening of
Convergence Conditions

The local and semilocal convergence of iterative methods in generalized spaces with
a convergence structure as well as in K-normed spaces under weak conditions is
examined in this chapter.

9.1 K-normed spaces

In this section, we are concerned with the problem of approximating a solution x* of
equation
F(x)+ G(x) =0, (9.1.1)

where F, G are operators between two Banach spaces X, Y defined on a closed ball
centered at some point xop € X and of radius R > 0. Operator F is differentiable,
whereas the differentiability of G is not assumed.

We propose the Newton-Kantorovich method

Xng1 = X0 — F'(x) T (F(xa) + G(x)) (1 = 0) .1.2)

to generate a sequence approximating x*.

This study is motivated by the elegant work in [53], where X is a real Banach
space ordered by a closed convex cone K . We note that passing from scalar majorants
to vector majorants enlarges the range of applications, as the latter uses the spectral
radius, which is usually smaller than its norm used by the former.

Here using finer vector majorants than before (see [53]), we show under the same
hypotheses:

(a) sufficient convergence conditions can be obtained that are always weaker than
before.

(b) finer estimates on the distances involved and an at least as precise information
on the location of the solution x* are provided.

I.K. Argyros, Convergence and Applications of Newton-type Iterations,
DOI: 10.1007/978-0-387-72743-1_9, (© Springer Science+Business Media, LLC 2008
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Several applications are provided. In particular, we show as a special case that
the famous Newton-Kantorovich hypothesis is weakened. Finally, we study the local
convergence of method (9.1.2).

In order to make the study as self-contained as possible, we need to introduce
some concepts involving K -normed spaces.

Let X be a real Banach space ordered by a closed convex cone K. We say
that cone K is regular if every increasing sequence y; < y» < -+ < yp < -
that is bounded above converges in norm. If y,? < Vu < ynl and limy,— oo y,? =
lim,, - 0o ynl = y*, the regularity of K implies lim,, o0 ¥, = ¥™.

Let o, B € X, the conic segment (o, 8) = {y | « < y < B}. An operator Q in
X is called positive if Q(y) € K for all y € K. Denote by L(X, X) the space of
all bounded linear operators in X, and Lgym (X 2 x ) the space of bilinear, symmetric,
bounded operators from X to X. By the standard linear isometry between L (X2, X),
and L(X, L(X, X)), we consider the former embedded into the latter.

Let D be a linearly connected subset of K, and ¢ be a continuous operator from
D into L(X, X) or L(X, L(X, X)). We say that the line integral of ¢ is independent
of the path if for every polygonal line L in D, the line integral depends only on the
initial and final point of L. We define

r 1
/ p(t)dt = f @[ (1 —s)rg + sr](r — ro)ds. 9.1.3)
ro 0

We need the definition of K-normed space:

Definition 9.1.1. Let X be a real linear space. Then X is said to be K-normed if
operator |-[: X — Y satisfies:

Ix[ 20 (x € X);
Ix[ =0 x =0;
Irx[ =1r|Ix] (€ X,r e R);

and
Ix+y[ <Ix[ + Iy[ (x,y € X).

Let xo € X andr € K. Then we denote
Uxo.r)={xeX|lx—xo[ <r}. 9.1.4)

Using K -norm, we can define convergence on X. A sequence {y,} (n > 0) in X is
said to be

(1) convergent to a limity € X if
Iim Jy, —y[ =0 inX
n—od

and we write
(X)— lim y, =y;
n—0oo
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(2) a Cauchy sequence if
lim Jym — ya[ =0.

m,n— 00

The space X is complete if every Cauchy sequence is convergent.

We use the following conditions:

F is differentiable on the K-ball U(xq, R), and for every r € § = (0, R) there
exist positive operators wo(r), W(r) € Lgym(X 2 X) such that forall z € X

J(F'(x) = F'(xo) ()] =< wo(r)(Jx — xol . 1z]) 9.1.5)
for all x € U(xo, r),
J(F'() = FF)) @] =wr)(x — yl. 1z (9.1.6)

forall x,y € U(xo, r), where operators wo, w: S — Lsym(X 2 X ) are increasing.
Moreover, the line integral of w (similarly for wy) is independent of the path, and the
same is true for the operator w: § — L(X, X) given by

w(r) = f ' w(t)dt. 9.1.7)
0

Note that in general
wo(r) <w(r) forall reS. (9.1.8)

The Newton-Leibniz formula holds for F on U (xq, R):

t
F(x) = F(y) = / F(2)dz, 9.1.9)

X

for all segments [x, y] € U (xo, R); for every r € S there exists a positive operator
wi(r) € L(X, X) such that

1Gx) -G <wi(r)(Jx —y[) forall x,ye U(xo, r), (9.1.10)

where wi: § — L(X, X) is increasing and the line integral of w; is independent of
the path;
Operator F’(x) is invertible and satisfies:

|F'xo))[ <blyl forall yeY (9.1.11)

for some positive operator b € L(X, X).
Let
n=|F'eo ™ (Fo) + G| ©.1.12)

and define operator f:S — X by letting

r r

f(")=n+b/ w(t)dt—i—bf wi(t)dt. (9.1.13)
0 0



398 9 Convergence on Generalized Banach Spaces

By the monotonicity of operators w, wi, we see that f is order convex, i.e., for
allr,7 € Swithr <7,

A =s)yr+sr)<A—=s)f(r)+sf(r) forallsel0,]1]. 9.1.14)
We will use the following results whose proofs can be found in [53]:
Lemma 9.1.2. (a) If Lipschitz condition (9.1.6) holds, then
JF'x+y) = FFan @] < wr +1yD — wr)dzD (9.1.15)
forallr,r +1y[ € S, x € U(xq, 1), z € X;
(b) If Lipschitz condition (9.1.10) holds, then
r+1yl _
1Gx+y) —Gx)[ < / wi(t)dt forall r,r+1yl€ S, x € U(xo, ).
r (9.1.16)
Denote by Fix(f) the set of all fixed points of the operator f.

Lemma 9.1.3. Assume:
Fix(f) # @. 9.1.17)

Then there is a minimal element r* in Fix(f) that can be found by applying the
method of successive approximations

r= f(r) (9.1.18)
with O as the starting point.
The set
B(f,r*) = [r €S lim f'(r) = r*} (9.1.19)
n—oo
is the attracting zone of r*.
Remark 9.1.4. [53] Letr € S. If
f@r)<r, (9.1.20)
and
0, r) NFix(f) = {r*} (9.1.21)
then,
(0,r) € B(f,r™). (9.1.22)

Note that the successive approximations
Endr = 8(8n) (80 = r) (I’l € N) (9123)

converges to a fixed point ¢* of f, satisfying 0 < s* < r. Hence, we conclude
s* = r*, which implies r € B(f, r*).
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In particular, Remark 9.1.4 implies
0, (1 —s)r* +sr)y C B(f,r") (9.1.24)

for every r € Fix(f) with (0, r) NFix(f) = {r*, r}, and for all A € [0, 1).
In the scalar case X = R, we have

B(f.r*)=[0,r*"]U{reS:r* <r, f(@) <q. (" <q <) (9.1.25)
We will also use the notation

E) = |J Uo.n. (9.1.26)
reB(f,r*)

Returning back to method (9.1.2), we consider the sequences of approximations
Fag1 = ra — (bwo(ra) = D7 (f(ra) =ra) (o =0, n>0) 9.1.27)
and
Fap1 =Fn — wF,) — D' (fF) —Fa) Fo=0, n>0) (9.1.28)
for the majorant equation (9.1.18).
Lemma 9.1.5. If operators
I —bwo(r) re [0, r*) (9.1.29)

are invertible with positive inverses, then sequence {r,} (n > 0) given by (9.1.27) is
well defined for all n > 0, monotonically increasing, and convergent to r*.

Proof. We first show that if a; < ap, a # r*, then
(I —bwo(ar))™'0 < (I — bwo(az))™'0 forall 6 € K. (9.1.30)
We have
0 + bwo(a2)b + - - - + (bwo(a))"0
= (I — bwo(a2))~'0 — (bwo(a2))" (I — bwo(a2))™'0 < 65, (9.1.31)

where,
62 = (I — bwp(az))™'6. (9.1.32)

Using the monotonicity of w we get

60 + bwo(ay)b + - - - + (bwo(ar))"6
<0+ bwo(a)d +-- -+ (bwo(a1))"0 < 62, (9.1.33)



400 9 Convergence on Generalized Banach Spaces

which implies increasing sequence {(bwq(ai))"6} (n > 0) is bounded in a regular
cone K, and as such it converges to some

61 = (I — bwo(a))~'6 (9.1.34)
with
01 < 6.
We also need to show that the operator
g(r) =r — (bwo(r) = ™' (f(r) = 1) (9.135)

is increasing on (0, r*) — {r*}. Let b; < by with by, by € [0, r*], then using (9.1.8)
and (9.1.35), we obtain in turn
g(b2) — g(b1)
= by — by — (bwo(b2) — )~ (f (b2) — b2) + (bwo(b1) — )™ (f (b1) — b1)
= by — by — (bwo(by) — D)™ [(f(b2) — b2) — (f(b1) — b1)]
+ [wor) = D7 = (o) = D7 (£ - b2)
= (I = bwo(b1)) "' [f(b2) — f(b1) — bwo(by) (b2 — by)] (9.1.36)
+ (I — bwo(b2) ™" (bwo(ba) — bwo(b)(I — bwo(br) ™' (f(b2) — b2) > 0,

as all terms in the right hand of equality (9.1.36) are in the cone.
Moreover, g leaves (0, r*) — {r*} invariant, since

0=¢g0) <g(r) <gr™) =r". (9.1.37)

Hence sequence
fnp1 =8y) (ro=0, n>0) (9.1.38)

is well defined for all n > 0, lies in the set (0, r*) — {r*}, and is increasing. Therefore
the limit of this sequence exists. Let us call it {'. The point r{ is a fixed point of f
in (0, r*). But r* is the unique fixed point of f in (0, r*). Hence, we deduce

ri =r". (9.1.39)

Remark 9.1.6. If equality holds in (9.1.8) then sequence {7} becomes {r,} (n > 0)
and Lemma 9.1.5 reduces to Lemma 5 in [53, p. 555]. Moreover as it can easily be
seen using induction on n

Tpal — T STyl — Ty, (9.1.40)

and
rm <Ty 9.1.41)

for all n > 0. Furthermore, if strict inequality holds in (9.1.8), so it does in (9.1.40)
and (9.1.41). If {r,} (n > 0) is a majorizing sequence for method (9.1.2), then

(9.1.40) shows that the error bounds on the distances |x,4+1 — x| are improved.
It turns out that this is indeed the case.
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We can show the semilocal convergence theorem for method (9.1.2).

Theorem 9.1.7. Assume:

hypotheses (9.1.6), (9.1.7), (9.1.9), (9.1.10), (9.1.11), (9.1.17) hold, and operators
(9.1.29) are invertible with positive inverses.

Then sequence {x,} (n > 0) generated by Newton-Kantorovich method (9.1.2) is well
defined, remains in the K -ball U (xq, r*) for all n > 0, and converges to a solution x*
of equation F(x) + G(x) = 0in E(r*), where E(r*) is given by (9.1.26). Moreover,
the following error bounds hold for all n > 0:

Jxns1 = xn[ < rugr — 1, (9.1.42)

and
]x* — x,,[ <r*—r,, (9.1.43)

where sequence {r,} is given by (9.1.27).

Proof. We first show (9.1.42) using induction on n > 0 (by (9.1.12)). For n = 0;

et = xol = | /o)™ (F(x0) + Gxo))| = n =11 = ro. 9.1.44)

Assume:
Jox = w1 <= (9.1.45)

fork=1,2,...,n.
Using (9.1.45) we get

n

b —xol <Y e —xua [ D (% — 1) =1 (9.1.46)
k=1

k=1
Define operators Q,: X — X by
Q= —F'(x0) ™" [F'(x) — F'(x0)]. 9.1.47)
By (9.1.5) and (9.1.11) we get

10,1 = |F'0) ™ (F'(xa) = F' o))
= b](F' () = F/xo) @)

< bug(r) (<D, 9.1.48)
and
|l @[ = Guotyazp G = 1. (9.1.49)
Hence, we have: i, N
> Joi@] = D wotr) (zD. (9.1.50)

i=0 j=0
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oo .
That is, series ) Q! (z) is convergent in X. Hence operator I — Q,, is invertible, and
i=0

| = e~ @] = = bt~ (2D, ©.151)

Operator F’(x,) is invertible for all n > 0, as F'(x,) = F'(x0)({ — Q,), and for all
x € Y we have:

|Fan @] =] - on ' Fen o

= (1 =buwo(r)) ™ ([F 0 0]
< (I = bwo(r,) " (b 1x]). (9.1.52)

Using (9.1.3) we obtain the approximation

]xn-i-l - Xn[

= |F'0) ™ (P ) + G o)) = /o)™ (F G 1) Gt = 301)
+F (o) + G(x;1—1))[. 9.1.53)
It now follows from (9.1.5)—(9.1.11), (9.1.13), (9.1.27), and (9.1.53)
]xn+1 - xn[ =
< |F ™ (F ) = Faen) = F o) 6o — 20|

+ |F ) G ) = G )
< (1 — bug(r) ! H /0 P = 305+ 2)
— F'(xp—1)) (20 — xn_l)dx“
+ (I = bwo(ra) ™" (b]G () — Glxn-1)])
< (I = bwo(r,) ! {b /0 W = Dt + ) — W) — r,,l)dx}
+ (I = bwo(ra) ! (b / ! wl(t)dt>
= (I = buo(ra)) ! {b / " w0t = bw (1) — 1)

+b/ ' wl(z)dt} (9.1.54)
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= (I = bwo(r) ™' (f(rn) — f(ru1) = bw (1) (rn — ra—1))
= (I = bwo(r) " (f(rn) = ) = (F(ru=1) — a1)
— (w(ra—1) = D(rn — ra—1))
= (I — bwo(ra) " (f(ra) — 1) — (f (ruz1) — Fuc1)
— (w(ra—1) — D(ra — ra—1))
< (I = bwo(ra) " ((f(rn) = 1n) = (f (ru—1) = Fu—1)
— (bwo(rn—1) — D(ry — ra—1)) (9.1.55)
= (I = bwo(r)) ™' (f(rn) — ) = Fug1 — T (9.1.56)

By Lemma 9.1.5, sequence {r,} (n > 0) converges to r*. Hence {x,} is a convergent

sequence, and its limit is a solution of equation (9.1.1). Therefore, x,, converges to

x*

Finally, (9.1.43) follows from (9.1.42) by using standard majorization tech-
niques. The uniqueness part is omitted as it follows exactly as in Theorem 2 in [53].
That completes the proof of the theorem.

Remark 9.1.8. Tt follows immediately from (9.1.54) and (9.1.55) that sequence

fy = 1o,
n=mn,

In
tne1 —th = — wa(tn))_l {b/ w(t)dt — bw(ty—1)(ty — th—1)
In—1
In
—l—b[ wl(t)dt} n>=1) (9.1.57)
In—1

is also a finer majorizing sequence of {x,} (n > 0) and converges to some #* in
(0, r*). Moreover, the following estimates hold for all n > 0

Jxt —xo[ < 1 — 10 =r1 —ro, (9.1.58)
Jxns1 = xn[ £ tas1 = tn < rug1 — ra, (9.1.59)
Jx* —xa[ < =ty <7 =1y, (9.1.60)
In = rn, 9.1.61)
and
t<rt (9.1.62)

That is, {#,} is a finer majorizing sequence than {r, } and the information on the loca-
tion of the solution x* is more precise. Therefore, we wonder if studying the conver-
gence of {t,} without assuming (9.1.17) can lead to weaker sufficient convergence
conditions for method (9.1.2). In Theorem 9.1.10, we answer this question.
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But first we need the following lemma on majorizing sequences for method
9.1.2).

Lemma 9.1.9. [f:
there exist parameters n > 0, § € [0, 2) such that: Operators

I — bwyo [2(21 — sy (1 _ (%)”“) n] 9.1.63)

be positive, invertible, and with positive inverses for all n > 0;

1
2(I — bwo(n)) ™! |:bw1(n) + b/ w(sn)ds — bw(O):| <41, (9.1.64)
0
and
1
Zb/ wl2@r =07 (1= ()" ) n+s (3)" 0] as
0
—2ow|2@r = o0 (1= (%)) n
(1=CH"")]
+dbwg [221 =60 (1= ()" )]
<4I, foralln>0. (9.1.65)

+2bw, [2(21 — 0!

Then iteration {t,} (n > 0) given by (9.1.57) is nondecreasing, bounded above by
=221 =80y, (9.1.66)
and converges to some t* such that:
0<r*<r™. (9.1.67)
Moreover; the following error bounds hold for all n > 0:
0 < ts2 — tas1 < L tupr — 1) < (3)" . 9.1.68)

Proof. We must show:

1
2(I — bwo(tg41)) " [b/(; w(ty + 51 — t))ds — bw(t) + bwl(fk+l):| <4,

(9.1.69)

and operators
0 < tiy1 — Iy, (9.1.70)
I — bwo(tky1), 9.1.71)

positive, invertible, and with positive inverses.
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Estimate (9.1.69) can then follow immediately from (9.1.70)—(9.1.72). Using in-
duction on the integer k, we get for k = 0

1
2(1 — bwo(t)) ™! [b/ w [to + s(t1 —to)]ds — bw(r1) + wl(ll):| <4l,
0
bwo(ty) < I, 9.1.72)
by the initial conditions. But (9.1.57) then gives
0<n—10 <% —1). (9.1.73)

Assume (9.1.70)—(9.1.72) hold for all k < n + 1. Using (9.1.63)—(9.1.66), we obtain
in turn:

1

Zb/o W [tk1 — (kg2 — i) ] ds — 2bw (tx41) + 2bwy (k1) + Sbwo (fk41)

1
< Zb/ w [2(21 —sn”! (1 - (%)"“) n+s (2 n] ds

0

—2bw 221 —sn7 (1 - (%)) 0]

+ 2bw [2(21 s~ (1 — (3L n)]

o n

+ Sbwy [2(21 — 51y (1 — (% )Hl) ]

<461 (9.1.74)
Moreover, we show:
te < t**. (9.1.75)
‘We have:
to=n <t t=n<t™ n<n+in=2HPy <

Assume (9.1.75) holds for all k < n + 1. It follows from (9.1.57), (9.1.70)—(9.1.72):

51 sI sI
w2 < tppt + 5 (kpr — 0) <tk + 5 (e — f—1) + 5 (k1 — 1)

2 k+1
< =n+¥n+ )+ + (%)
=221 —81)"! [1 . (%’)"“] N <2021 —8D)"\n=r"* (9.1.76)

Hence, sequence {#,} (n > 0) converges to some #* satisfying (9.1.68).
That completes the proof of Lemma 9.1.9.

We can show the main semilocal convergence theorem for method (9.1.2).

Theorem 9.1.10. Assume:
hypotheses (9.1.5)—(9.1.7), (9.1.9)—(9.1.11), (9.1.63)—(9.1.66) hold, and
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" < R, 9.1.77)

where t** is given by (9.1.67).

Then sequence {x,} (n > 0) generated by Newton-Kantorovich method (9.1.2) is well
defined, remains in the K-ball U (xq, t*) for all n > 0, and converges to a solution
x* of equation F(x) + G(x) = 0, which is unique in E(t*). Moreover, the following
error bounds hold for all n > 0:

]xn+l - xn[ Syl —In (9.1.78)

and
]x* — xn[ <t*—t,, 9.1.79)

where sequence {t,} (n > 0) and t* are given by (9.1.57) and (9.1.68), respectively.

Proof. The proof is identical to Theorem 9.1.7 with sequence #, replacing r, until
the derivation of (9.1.54). But then the right-hand side of (9.1.54) with these changes
becomes f,+1 —t,. By Lemma 9.1.9, {#,,} converges to #*. Hence {x,} is a convergent
sequence, its limit converges to a solution of equation F'(x) + G(x) = 0. There-
fore {x,} converges to x*. Estimate (9.1.79) follows from (9.1.78) by using standard
majorization techniques. The uniqueness part is omitted as it follows exactly as in
Theorem 2 in [53].
That completes the proof of Theorem 9.1.10.

Remark 9.1.11. Conditions (9.1.63), (9.1.66) can be replaced by the stronger but eas-
ier to check

I — b [2(21 - 81)‘117] (9.1.80)

and

1

be w [2(21 — s '+ () n] s — 2bw [2(21 - 81)‘177]
0
+ 2bwy [2(21 - 51)—1;7] + Sbwyo [2(21 _ 51)—1;7]

< 81, (9.1.81)
respectively.
Application 9.1.12. Assume operator | [ is given by a norm || - || and set G(x) = 0

forall x € U(xg, R). Choose forall ¥ € S, b = 1 for simplicity,

w(r) = 4Lr, (9.1.82)

wo(r) = Lor (9.1.83)
and

wi(r) = 0. (9.1.84)

With these choices, our conditions reduce to the ones in Section 2.3 that have
already been compared favorably with the Newton-Kantorovich theorem.
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Remark 9.1.13. The results obtained here hold under even weaker conditions. In-
deed, because (9.1.6) is not “directly” used in the proofs above, it can be replaced by
the weaker condition (9.1.15) throughout this study.

The local convergence for method (9.1.2) was not examined in [53]. Let x* be
a simple solution of equation (9.1.1), and assume F (x*)~! e L(Y, X). Moreover,
assume with x* replacing xg that hypotheses (9.1.5), (9.1.6), (9.1.7), (9.1.9), (9.1.10),
(9.1.11) hold. Then exactly as in (9.1.54) but using the local conditions, and the
approximation

Xpi] — x5 = (9.1.85)
= [Flon™ e Fen™
x {/l [F/(xn 4+t (x* = x)) — F'(xn) ] (F = xp)dt + (G(x™) — G(xn))}
’ (9.1.86)
we can show the following local result for method (9.1.87).
Theorem 9.1.14. Assume there exists a minimal solution r* € S of equation
pr) =0, (9.1.87)

where,

1
pr) = b/ [w((1 +5)r) —w)]ds + bwo(r) + bw;i(r) — 1. (9.1.88)
0

Then, sequence {x,} (n > 0) generated by Newton-Kantorovich method (9.1.2) is
well defined, remains in U (x*, r*) for all n > 0, and converges to x* provided that
x0 € U™, r*).

Moreover the following estimates hold for all n > 0

] = X1 [ < engrs (9.1.89)
where,
b [ ((48) ]y =x*D—=w(ra—x* [ ds ]t —x* [+, ] w(s)ds
Entl = = = hwg T =D ¢ (9.1.90)
(n>0).

Application 9.1.15. Returning back to the choices of Application 9.1.12 and using

(9.1.87) we get

" 1
r* = . (9.1.91)
200+ ¢

See also Section 2.4.
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9.2 Generalized Banach spaces

In this section, we are concerned with the problem of approximating a locally unique
solution x* of equation
Gx) =0, 9.2.1)

where G is a Fréchet-differentiable operator defined on an open subset D of a Banach
space X with values in a Banach space Y. The results will be stated for an operator

F = LyG, 9.2.2)

where, Ly € L(Y, X) is an approximate inverse of G’ (xg) (xo € D).

Using the concept of a generalized norm that is an operator from a linear space
into a partially ordered Banach space, sufficient semilocal convergence conditions
for NK method were given in [17], [22], [43], [139]-[141]. This way, convergence
results and error estimates are improved compared with the real norm theory. Several
examples for the benefits of this approach can be found in [141].

Here we use Lipschitz as well as center-Lipschitz conditions on F. It turns out
that this way under the same information, we obtain finer error bounds under in gen-
eral weaker sufficient convergence conditions in the semilocal convergence case. In
the local case not covered in [139]-[141], we also show that our radius of conver-
gence is larger than before.

We complete our study with an example where our results compare favorably
with earlier ones using the same information.

We first need some definitions on ordered spaces:

Definition 9.2.1. By a generalized Banach space we mean a triplet (X, E, /- /) such
that:

(i) X is a linear space over R(C);

(ii) E=(E, K, //-/)) is a partially ordered Banach space in the sense:
(ii)1 (E,//-//) is areal Banach space,

(ii)>» E is partially ordered by a closed convex cone K,

(ii)3 the norm // - /] is monotone on K;

(iii) operator | - /: X — K is such that

/x/ =0<x =0,
[sx/ =/s//x/,
[x+y/ < /x/+/y/;

(iv) X is a Banach space with the induced norm
[-1li=]1-1] e /]e].

The operator / - / is called a generalized norm. All topological terms are understood
with respect to this norm.
If X, Y are partially ordered, L4 (X", Y) is the subset of monotone operators W
such that
O<u; <vi=>Wuy,...,uy) <W(i,...,v,).
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Definition 9.2.2. The set of bounds for an operator L € L(X, X)on (X, E, /- /) is
given by:

B(L)y={WeL(E,E)|/L(x)/ <W/x/ forx € X}.
Forxo € D C X, J: D — D, we use the notation
X1 = J (1) = " (x0), (9.2.3)
and in the case of convergence
J®(xp) = lim (J"(xp)) = lim {x,}. 9.2.4)
n—>00 n—>00
The Newton iterates are determined through a fixed point approach:

Xn+1 = Xn + Yn, F/(xn)(yn) + F(xy) =0, (9.2.5)
S yn=Jun) =T — F'(x2))(n) — F(xp). (9.2.6)

In case of convergence, we can write NK method in the form:
Xn1 = Xn + J7°(0)  (n > 0). 9.2.7)

Proposition 9.2.3. Let (E, K, // - //) be a partially ordered Banach space, § € K,
MeL.(E,E), N ¢ L+(E2, E) be given operators.
Assume there exist:

(a) ¢ € K such that
R(c) = M(c)+Nc2+8 <c and (M+2N(c))i(c) — 0 as i — o00. (9.2.8)

Then 89 = R°°(0) is well defined, solves 89 = R(8y), and is the smaller solution
of inequality R(81) < 4.

(b) 62 € K, A € (0,1) such that R(63) < A8>. Then there exists ¢ < &, satisfying
(9.2.8).

Proposition 9.2.4. Let (X, K,// - //),/ - /) be a generalized Banach space and
W € B(L) be a bound for L € L(X, X). If for y € X, there exists n € K such that

W) + 1yl <n and W'(n) — 0 as i — oo, 9.2.9)

then
7=J%0), J&x)=Lx)+y (9.2.10)

is well defined, and satisfies:
z=L@)+y, and [z/<W/z/+/y/ <n. 9.2.11)

We can show the following semilocal result for NK method (9.2.7) on generalized
Banach spaces:
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Theorem 9.2.5. Let (X, (E, K, //-//,/-/), Y be generalized Banach spaces, D an
open subset of X, G: D — Y a Fréchet-differentiable operator, and point xo € D be

given. Assume there exist:
(a) operators M € B(I — F'(xq)), No, N € L+(E2, E) such that:
No <N,

/F'(w)(@) = F'(0)(2)/ < 2N(/w — v/, /z/),
/F' (W) (@) — F'(x0)(2)/ < 2No(/w — x0/, /2/)

forallv,w € D, z € X;
(b) a solutionr € K of

Ro(q) = M(q) + Ng* + /F(x0)/ < ¢

satisfying ‘
(M+2N@)'(r) =0 as i— oo,

and
Uxo,r)y={xe X /x—x9/ <r}<D.

(9.2.12)
(9.2.13)
(9.2.14)

(9.2.15)

(9.2.16)

9.2.17)

Then sequence {x,} (n > 0) generated by NK method (9.2.7) is well defined,
remains in U(xg, r) for alln > 0, and converges to a unique zero x* of F in U (xq, r).

Moreover, a priori estimates are given by the sequence {r,} (n > 0):

ro=r, rpm=P>X0) (n=>0)

where,
Pu(q) = M(q) + 2No(r — ra—1)(q) + Nr2_,
N=Ny if n=1, N=N if n>1,
and
lim r, =0.
n—0o0

Furthermore, a posteriori estimates are given by sequence {c,} (n > 0):

cl’l = R;)[O(O)’
where

Ru(q) = M(q) + 2No(bn)(q) + Ng* + Na>_ |,

n-1 = [Xn — Xn—1/

and
by = [xp — x0/.

(9.2.18)

(9.2.19)
(9.2.20)

(9.2.21)

(9.2.22)

(9.2.23)
(9.2.24)

(9.2.25)
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Proof. We use induction on the integer n to show the claim:
(Ix) (xx, ) € (X, k) are well defined and

Tk +ak—1 < rg—1. (9.2.26)

The claim holds for £ = 1. Indeed by (9.2.8), (9.2.15), and (9.2.16), there exists g1
such that:

g1 <r, M(g)+/F(xo)/=q and M'(q)) < M'(r) - Oasi — oo. (9.2.27)
It follows from (9.2.9) that x; is well defined
ao = 4q1.
Using (9.2.8) and the estimate

Pi(r —q1) = M(r — q1) + 2No(r — ro)(r — q1) + Nord
<M(@r —q1) + 2N —ro)(r —q1) + Nrj
=Ro(r)—q1 =r —q1, (9.2.28)

we deduce ¢ is well defined and
ri+ao <r—q1+q1=ro. (9.2.29)
That is, (9.2.26) holds for k = 1. Assume (I¢) holds for all k < n. We can have

M(ry) + 2No(r — ri)(ry) + N (re—1 — r)?
< M(ry) +2N(r — 1) (r) + N (re—1 — r1)* = Pe(ri) — Nrf < re. (9.2.30)

It follows by (9.2.8) there exists gx < ¢ such that
Gk = M(qr) + 2N (r = ) (gr) + N(re—1 — ri)*, (9:231)

and
(M+2N@r —r)gr — 0 as i — oo. (9.2.32)

By the induction hypothesis

k—1 k—1
be=/xx—x0/ <Y aj <Y (rj—rjp))=r—r <r (9.2.33)
=0 j=0

which implies x; € U (xq, r). We must find a bound for operator I — F’(x;). Using
(9.2.14) we get from

I —F'(xk) = (I = F'(x0)) + (F'(x0) — F'(xp))

that



412 9 Convergence on Generalized Banach Spaces
/1= F'(x)/ < /1= F'(x0)/ + /F'(x0) = F'(xx)/
< M +2No(/xr — x0/) < M +2No(r —rg). (9.2.34)
Moreover by (9.2.5) and (9.2.13), we get

JF(xi)) = [|F(xi) — F' (xg—1) — F'(xg—1) (xk — xk—1)/

1
= //0 [F' 1 410 — xe—1) — F 1) ] (x —Xk—l)dt/

< Na}_| < N(ri—1 —r)>. (9.2.35)
By (9.2.34) and (9.2.35), we get
M(qi) +2N(r — ri)(gi) + /F(x)/ = qr. (9.2.36)
That is, x4 is well defined, and
ag = gk = Tk. (9.2.37)
To show the existence of 7,41, we note
Pry1(re — qi) = Pi(ri) — q = rie — g, (9.2.38)
which implies the existence of rx1, and
Tkt +ax <1 — qx + gk = % (9.2.39)

The induction for (Ix) is now complete.
We can obtain the estimates

m m
[Xm+1 — Xk/ < Zaj < Z(}’j —rjyl) =Tk —Fm1 < Ik, (9.2.40)
=k =k
and

Tkl = Pep1 (1) < Peg1 (rg)) < (M 2N (r)re < (M + 2N (r)rg
<. oo < (M 42N > 00 (9.2.41)

as k — oo. Hence {x,} is a Cauchy sequence and as such it converges to some
x* € X. By letting m — oo in (9.2.40), we deduce x* € U (xg, rr), whereas by
letting k — o0 in (9.2.35), we get F(x*) = 0. The proof of the uniqueness of x* in
U (xg, r) is omitted as identical to [140, Theorem 4.1]. We note

Ri(ri) < Pr(ry) < r. (9.2.42)

Hence a posteriori estimates (9.2.22) are well defined by (9.2.8). That is, ¢x < r in
general. The hypotheses of the theorem hold if xq is replaced by x; and M becomes
M + 2Ny(by). Using (9.2.35), we get ¢ is a solution of (9.2.15). By (9.2.40), hy-
potheses of the theorem hold. It follows from (9.2.7) that x* € U (xg, cx) proving
(9.2.22).
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Remark 9.2.6. Our Theorem 9.2.5 reduces to Theorem 2.1 in [141, p. 251] if Ny =
N. However in general (9.2.12) holds. It follows from the proof of the theorem that
if strict inequality holds in (9_.2.12) then the error bounds r,, a,, b, are finer than the

corresponding ones 7, a,, b, in [141] under the same information. That is, for all
n>1:

o < Tn, (9.2.43)
a, < dy, (9.2.44)
b, < by, (9.2.45)
and
r<r*. (9.2.46)

Remark 9.2.7. Tt turns out that (9.2.15) and (9.2.16) can be weakened. Indeed, as-
sume:
(b) there exist 7 € K satisfying

Qu(q) = M(q) + Nog® + /F (x0)/ < q: (9:2.47)
r:r > 7 such that (9.2.15), and (9.2.16) hold with Ny replacing N;  (9.2.48)
rpitp <r (n > 1) solving (9.2.49)
M (ry) +2No(r = 1) (ra) + N (rt = ra)* < 1. (9.2:50)

It follows from the proof of Theorem 9.2.5 that if (b), Q replace (b), R then the
conclusions also hold. Moreover if (9.2.12) is a strict inequality, then error bounds
(9.2.43)—(9.2.46) hold.

To show a local result for NK method, assume x* is a zero of F. Then, we can
easily see from (9.2.5) that we must solve the equation

¢
Xn+l1 — X

= [1 - F/(xn)] (Xng1 —x%)
1
+ |:—/ [F'(x* +1(xp —x*) — F'(xn)] (xn — x*)dt:| (9.2.51)
0

for each n > 0.
Using identity (9.2.51), we can show the following local result for NK method
(9.2.7):

Theorem 9.2.8. Let (X, (E, K, //-//, /- /), Y be generalized Banach spaces, D an
open subset of X, and G: D: D — Y a Fréchet-differentiable operator. Assume there
exist:

(a) a zero x* € D of operator F;
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(b) operators A € B(I — F'(x*)), Hy, H € L (E?, E) such that:

Hy < H,

/F'(w)(2) = F'(v)(2)/ < 2H(/w — v/, /z)),
/F'(w)(2) = F'(x")(2)/ < 2Ho(/w —x*/, /z/)

forallv,w € D, z € X;
(c) a solution y € K of

To(q) = A(q) + 2Hog* + Hq? < g
satisfying
(A+4Ho(y) +2H(y) (y) > 0 as i — oo,

and
U™, y) C D;

(d) xo € D such that:
0</xg—x")=y.

(9.2.52)

(9.2.53)
(9.2.54)

(9.2.55)

(9.2.56)

(9.2.57)

(9.2.58)

Then sequence {x,} (n > 0) generated by NK method (9.2.7) is well defined,
remains in U(x*, y) for all n > 0, and converges to x*. Moreover, the following

estimates holdn > 1

Bn—1 = /xn-1 _x*/ = Vn—1—"Vn

where,

(9.2.59)

Y =v. va =120, Tu(g) = Alg) +2Ho(y — ya—1)(@) + Hy |, (9.2.60)

and
lim y, =0.

n—o0

Proof. As in Theorem 9.2.5, using induction on the integer n we show
(II,;) x, € X and y,, € K are well defined and satisfy (9.2.39).
By (9.2.8), (9.2.55), and (9.2.56), there exists ¢« such that

a1 <y, Aler) +2Ho(y) (@) + Hy? = i,
(A+2Ho(y)) (1) — 0.
It follows from (9.2.9) x; is well defined, and
Bo < aj.

Using (9.2.60) we get in turn

9.2.61)

(9.2.62)

(9.2.63)
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Ti(y —an) = A(y — o) + 2Ho(y — vo)(y — an) + Hyg
= A(y —a1) + Hy?
= A(y) + Hy? — A(@)
= A(y) + Hy* + 2Ho(y) () — A1) — 2Ho(y)(¥)

< To(y) — A(a1) — 2Ho(y ) (1) (9.2.64)
=Toy) — Hy? —ay (9.2.65)
<To(y) —a1 <y —ay. (9.2.66)

By (9.2.8), y1 is well defined, and
Yit+PBo=y—ar+oa=yp. (9.2.67)

Hence we showed (II1) holds. Suppose (II}), ... (Ilx) hold for all k¥ < n. We must
show the existence of x4 and find a bound o for by.
We can have

A(y) + 2Ho(y — vo) () + Hi—1 — v)? < Te(v) = wi. (9.2.68)

That is by (9.2.8), there exists «y such that

Ok = Vk» (9.2.69)
ax = Alax) + 2Ho(y — i) (o) + H (k-1 — vi)*, (9.2.70)

and _
[A+2Hy(y — y)T (ax) — O. 9.2.71)

It follows from (9.2.67) that x; € U(x*, y). We must find a bound for I — F’(x).
Using (9.2.6), and (9.2.52), we get

[T=F' () = /(I=F () +(F' (x") = F'(x))/ < A4+2Ho(/xx—x"/). (9.2.72)
By (9.2.51), (9.2.68), and (9.2.70), we deduce
A(ag) + 2Ho(y — yi) (o)
+ /— /01 [F/(x* + 10 — x*) — F'(x)] G — x*)dt/ <. (9273)
Hence by (9.2.9), x4 is well defined, and

Br < ax < Vk. (9.2.74)

Moreover, we can have in turn
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Civ1(ve —ax) =
= Alyk — ) + 2Ho(y — v (v — ) + Hyj
= Tk(v) — (A) + 2Ho(y — ) () + Hy))
+ A() — Alew) +2Ho(y — vi) (e — o) + Hy?
= T (yk) — o + 2Ho(y — yo) () + H(vi—1 + y)* — 2Ho(y — vi—1) (%)
— Hy? | +2Ho(y — v)(k — ) + Hyj
=Tk (vk) — ok + 2Ho(y — vi) (Vi) — 2Ho(y — vie—1) (k)
+ Hyi—1 —v0° = Hyl + Hyf
= Tk(n) — ek + 2Ho(i—1 — v (i) + H(yio1 — vi)* — Hyl + Hy}
< Te(ri) — o+ 2H (vk—1 — v ) + H iy — v)* — HyE | + Hy}
< Te(y) — ax = vk — . (9.2.75)
That is by (9.2.8) and (9.2.73), yk+1 is well defined and:

Vir1 + B < vk — ag + o = vk, (9.2.76)

which completes the induction, and shows (9.2.59).
Asin (9.2.41), we show
lim y, =0. 9.2.77)
n—oo

Finally by letting n — 0o, we deduce

lim x, = x*. (9.2.78)
n—00
Remark 9.2.9. Local results were not given in earlier studies [139]-[141]. However,
from Theorem 9.2.8 for Hy = H, such results can immediately be obtained. There-
fore we can only compare Theorem 9.2.8 with earlier ones in the case of a real-
normed space (i.e., E = R). Assume for simplicity that

F'(x*) =1, (9.2.79)
and there exist £, £ such that
//F'(x) = F'(x*)// < Lo/ /x —x*// (9.2.80)
[/F'(x) = F'(y)/] <t//x=y// (9.2.81)
forall x, y € D. Choose:
A=0, fy=2Hy and £=2H. (9.2.82)

Then the convergence radius y solving (9.2.55) is given by

2

=—, 9.2.83
200 + £ ( )

v
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and the corresponding error bounds by

Y *_ . 2
But1 < slfiriliry (n 2 0). (9.2.84)

Rheinboldt [177] using only (9.2.81) showed:

y =3, (9.2.85)
and _ e ,
Buit < it (n = 0). (9.2.86)
In general we have:
by < ¢L. (9.2.87)
Hence we get
Y= (9.2.88)
and _
Bn+1 = 13n+1 (n > 0). (9.2.89)

Moreover, if strict inequality holds in (9.2.85), so it does in (9.2.86) and (9.2.87).
Hence the convergence radius is enlarged and the error bounds are finer using the
same information as before.

Condition (9.2.56) needed for the computation of the inverses can be dropped in this
case as by the Banach Lemma on invertible operators F’(x,) ™! exist and

JIF G ) <[V =t/ /xa —x*//] (1= 0) (9.2.90)

(see also Section 2.2).

9.3 Inexact Newton-like methods on Banach spaces with a
convergence structure

In this section, we are concerned with approximating a solution x* of the nonlinear
operator equation
F(x)+ 0x) =0, 9.3.1)

where F is a Fréchet-differentiable operator defined on a convex subset D of a Ba-
nach space X with values in X, and Q is a nondifferentiable nonlinear operator with
the same domain and values in X.

We introduce the inexact Newton-like method

Xnpl =X + A [=(F(xp) + Q)1 — 20, x0=0 (n>=0) (93.2)

to approximate a solution x* of equation (9.3.1). Here A(x,)* (n > 0) denotes a
linear operator that is an approximation for F’ (xp)~" (n = 0). For A(xp) = F'(x,)
(n > 0), we obtain the inexact Newton’s method. The residual points z,, € D (n >
0), depend on x,, F(x,;) + Q(x,) (n > 0) and are such that lim,_, o, 7, = 0. Some
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special choices of points z,, (n > 0) are given in the Remark 9.3.10 (see (c), (d), and
(f)) after Proposition 9.3.9 and in [43].

The importance of studying inexact Newton-like methods comes from the fact
that many commonly used variants of Newton’s method can be considered proce-
dures of this type. Indeed, approximation (9.3.2) characterizes any iterative process
in which the corrections are taken as approximate solutions of the Newton equa-
tions. Moreover, we note that if for example an equation on the real line is solved
F(x,) + O(x,) > 0((m > 0) and A(x,)™ (n > 0) overestimates the derivative,
Xn + A()* [—(F (x,) + O(x,))] (n = 0) is always larger than the corresponding
Newton-iterate. In such cases, a positive correction term is appropriate.

The notion of a Banach space with a convergence structure was used in the el-
egant paper [141] (see also [140]) to solve equation (9.3.1), when A(x) = F'(x),
Q(x) =0forall x € D and z,, = 0 for all » > 0. However, there are many interest-
ing real-life applications already in the literature, where equation (9.3.1) contains a
nondifferentiable term. See for example the applications at the end of this study. The
case when A(x) = F/(x), Q(x) = 0 for all x € D has already been considered but
on a Banach space without generalized structure [43], [140], [141].

By imposing very general Lipschitz-like conditions on the operators involved, on
the one hand, we cover a wider range of problems, and on the other hand, by choos-
ing our operators appropriately we can find sharper error bounds on the distances
involved than before.

As in [141], we provide semilocal results of Kantorovich-type and global results
based on monotonicity considerations from the same general theorem. Moreover, we
show that our results can be reduced to the one obtained in [141], when A(x) =
F'(x), Q(x) =0 (x € D) and z, = 0 (n > 0), and furthermore to the ones obtained
in [140] by further relaxing the requirements on X.

Finally, our results apply to solve a nonlinear integral equation involving a non-
differentiable term that cannot be solved with existing methods.

We will need the definitions:

Definition 9.3.1. The triple (X, V, E) is a Banach space with a convergence struc-
ture if

(C1) (X, |- is a real Banach space;

(C2) (V,C,| - llv) is a real Banach space that is partially ordered by the closed
convex cone C; the norm || - ||y is assumed to be monotone on C;

(C3) E isaclosed convex cone in X x V satisfying {0} x C C E C X x C;

(C4) the operator | - |: Dy — C is well defined:

|x| =inf{g € C | (x,q) € E}

for
xeDy={xeX|3IgeC:(x,q) € E};

and
(Cs) forallx € Do |lx|| < |l1x|lv.
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The set
U@ ={xeX|(x,a) € E}

defines a sort of generalized neighborhood of zero.
Let us give some motivational examples for X =: R” with the maximum-norm:

(@ V=R, E:={x,e) e R" xR | [|x]|ec <e}.
(b) V:=R" E:={(x,e) e R" xR" | |x| < e}

e (componentwise absolute value).

©V=R"E ={x,e)eR" xR" |0 <x <e}

Case (a) involves classic convergence analysis in a Banach space, (b) allows com-
ponentwise analysis and error estimates, and (c) is used for monotone convergence
analysis.

The convergence analysis will be based on monotonicity considerations in the
space X x V. Let (x,, e;) be an increasing sequence in E N, then

(Xns en) < (Xntk, entk) = 0< (Xn4k — Xns €nk — €n).
If e, — e, we obtain: 0 < (x,4x — X5, € — €,) and hence by (Cs)
Xn+x — xnll < lle —enlly — 0, as n — oo.

Hence {x,} (n > 0) is a Cauchy sequence. When deriving error estimates, we shall
as well use sequences e, = wog — w, with a decreasing sequence {w,} (n > 0) in
CN to obtain the estimate

0 < Xk — X, Wy — Wygh) < (K — Xn, Wy).

If x, — x*, as n — oo, this implies the estimate |x* — x,| < w, (n > 0). Moreover,
if (x,e) € E, then x € Dy and by (C4) we deduce |x| < e.

Definition 9.3.2. An operator L € C'(Vy — V) defined on an open subset Vi of an
ordered Banach space V is order convex on [a, b] C V| if

c,dela,b], c<d=L'(d)—L'(c)e Ly (V),
where for m > 0
Ly(V"={LeL(V")|0<x;=0<L(x;,x2,...,%n)}
and L(V'™) denotes the space of m-linear, symmetric, bounded operators on V.
Definition 9.3.3. The set of bounds for an operator H € L(X™) is defined to be

B(H)={L € Ly(V") | (xi,qi) € E = (H(x1,...,Xm), L(q1,....qm)) € E}.



420 9 Convergence on Generalized Banach Spaces
Definition 9.3.4. Let H € L(X) and y € X be given, then

H*(y) =z z=T%(0) = lim 7"(0),

T)=(—-H)+y&z=)y (I—-H'y,
i=0

if this limit exists.
We will also need the Lemmas [43], [141]:
Lemma 9.3.5. Let L € L+ (V) and a, q € C be given such that:
L(g)+a<qg and L"(q) > 0 as n — oo.

Then the operator
(I = L)*:[0,a] — [0, a]

is well defined and continuous.

The following is a generalization of Banach’s lemma [43], [141] (see also Chap-
ter 1).

Lemma 9.3.6. Let H € L(X), L € B(H), y € Dy and q € C be such that
L(g)+ 1yl <q and L"(q) — 0 as n — oo.
Then the point x = (I — H)*(y) is well defined, x € S and
x| < (I = L)"lyl <gq.
Moreover, the sequence
bpy1 = Lp) + 1y, bo=0

is well defined,
and
bpy1 <gq, lim b, =b= (I —L)"|y| <q.
n—0oo

Lemma 9.3.7. Let H;: [0, 1] — L(X™) and H:[0, 1] — L (V™) be continuous
operators, then for all t € [0, 1]:

1 1
H(t) € B(H (1)) = / Hy(t)dt € B (/ H, (t)dt)
0 0

which will be used for the remainder of Taylor’s formula [141] (see also Chapter 1).
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We can now provide a convergence analysis for the Newton-like method (9.3.2).

Let a € C, operators Ky, Ko, M, My, Kz3(w) € C(Vi — C), Vi C V,w €
[0, @], and points x,, € D (n > 0). It is convenient to define the sequences ¢, dy,, a,,
by (n > 0) by

Cntl = |Xpt1 — Xp| (n>0), (9.3.3)
dpy1 = (K1 + K2 + M + M)(dy) + K3(|xnD)cn, do =0 (n 2 0),  (9.34)
an = (K1 + K2+ M + M) (0), 9.3.5)
by = (K1 + K2+ M + M)"(0), (9.3.6)

and the point b by
b= (K1 + K+ M+ M;)®(0). 9.3.7)

We can now state and prove the main result of this section:

Theorem 9.3.8. Let X be a Banach space with convergence structure (X, V, E) with
V= (,C,| - |lv), an operator F € CI(D — X) (D € X), an operator Q €
C(D — X), anoperator A(x) € L(x) (x € D), apointa € C, operators K1, K (w),
K3(w), M1 € Ly (V) (w € [0, al]), an operator My = My(v, w) € C(V1 xV; — V)
(V1 € V), operators M, K, € C(Vi — C), continuous operator K; such that for
each v, w € Vi, K;(v, w): [0, 1] = L4+ (V), and a null sequence {z,} € D (n > 0)
such that the following conditions are satisfied:

(Cs) Ula) € D, [0,a] € Vi, K3(0) € B — A(0)), (=(F(0) + Q(0) + A(0)(z0),
(K1 + K +M+ M)(0)) € E;

(C7) the operator K is increasing in both variables and
K1+ K (x| +tlyD) — K(Ix]) = K/ (Ix| + 1]y, [x]) € B(A(x) = F'(x + 1))

forallt € [0,1], x,y € U(a) with |x| + |y| < a;

(Cs) 0 =<(Q(x)—0(x+y), Mo(lx|, |y])) € E and Mo(v, w) < M(v+w)—M(v)
forallv,w € [0,al, x,y € U(a) with |x| + |y| < a;

(Co) 0= (A(xn)(zn) — Alxn-1)(zn-1), Mi(cp-1)) € E (n > 1);

(Cro0) K3(|x]) — K3(0) € B(A(0) — A(x)) and K3(|x|) < K1 + K2 (x € U(a));

(C11) R(a) := (K1 + Ko+ M + M)(0) < a;

(Ci2) (Ki+ Ky + M+ M)"a— 0asn — oo.

(C13) fol Kw+t(v—w)(v—w)dt < Kr() — Kx(w) for all v, w € [0, a] with
w < v,

(Cra) Ma(w) > 0and 0 < Ma(w) + wz) — Ma(wy) < Ma(w3 + wa) — Ma(w3) for
all w, wi, wo, w3, wg € [0, a] with wi < w3 and wy < wy, where My is M
or K»; and

(Ci15)0 < K(w) < K(v), K(w) < Kz(w), K3(w) < K(w), and 0 < K3(w) <
K3(v) forall v, w € [0, a] withw < v.
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Then

(i) the sequences (xp,dy), (xn, by) € (X X V)N are: well defined, remain in EN,
monotone and satisfy

b, <d, <b, b, <a, and lim b, = lim d, =b.
n—00 n— 00

(ii) Iteration {x,} (n > 0) generated by (9.3.2) is: well defined, remains in U (b) and
converges to a solution x* € U (b) of equation F(x) + Q(x) = 0, where b is the
unique fixed point of R on [0, a]. Moreover if z,, = 0 (n > 0), x* is unique in
U(a).

(iii) Furthermore, the following error bounds are true:

|Xn4+1 — Xn| < dnt1 — dh,
|xn —x*| < b —d,
and
|Xn —x*| < an —by if 20 =0 (n>0),
where d,,, a, and b,, are given by (9.3.4), (9.3.5), and (9.3.6), respectively.

Proof. We first note that b replacing a also satisfies the conditions of the theorem.
Using condition (Cg) and (Cjp), we obtain

[ —AQO)[(D) + |- (F(O)+ Q(0) + A(0)(z0)| <
< K3(0)(b) + (K1 + K2 + M + M1)(0)
< (K1 + K2)(b—0) + (K1 + K2 + M + Mp)(0)
< (K1 +Ky+ M+ My)(b—0)+ (Ky + Ky + M+ My)(0)
= (K1 + K+ M+ M)(b)
= R(b) < b (by (9.3.12)).

Hence, by Lemma 9.3.6, x; is well defined and (x1, b) € E. We also get

x2 = (I = A0)(x2) + (=(F(0) + Q(0) + A(0)(z0)))

|x2] < K3(0)|x1| 4+ (K1 + Ko + M 4+ M1)(0)
< (K1 + K2)|x1| + (K1 + K2+ M + M1)(0) = di,

and by the order convexity of L

di = (K1 + K2)|x1| + (K1 + K2 + M + M1)(0)
< (K1 + K2)|x1| + (K1 + K2 + M + M1)(0)
< (K1 + K2)(b —0) + (K1 + K2 + M + M1)(0)
< (K1 + Ky + M+ My)(b—0)+ (Ky + Ky + M+ My)(0)
= R(b) =b.
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That is, we get |x] — xo| < d; —dp or 0 < (x0, do) < (x1,d1).
We assume that

0 < (xp—1,dr—1) < (xg,dy), and dy <b for k=1,2,...,n.

We need to find a bound for I — A(x,) (n > 0). We will show that K3(|x,|) €
B(I — A(xy,)). This fact follows from (Cg), (C10), and the estimate

I —A(xp)| < [T —A0)|[+]A0) — Alxp)| < K3(0)+ K3(|x]) — K3(0) = K3(|xz]).
Using (9.3.2), we obtain the approximation

— [F(xn) + O(xp) + Axp)(z0)] = (9.3.8)
= —F(xy) — O(xp) — A(xp)(2n) + Alxn—1)(xXn — Xp—1)
+ F(xp—1) + Q(xp—1) + A(xp—1)(zn—1)-.

By (C7)—(Co), (C13)—(C15), Lemma 9.3.7, and the induction hypotheses, we obtain
in turn

|— F(xn) + F(xp—1) + Alxn—1)n — Xp—D| + 1Q(xpn—1) — O (xn)]
+ 1A xn) (zn) — Alxp—1)(zpn—1)] <

1
5/ Ko (et + 1150 — Xt s ntDen1dt + Mo(lxt. [xal) + Mica_t
0

1
5/0 [K(|xn_1|+rcn_1)—K(|xn_1|)+K1]cn_1dr+M(|xn_1|+cn_1)

— M(|xp—1]) + Mycy—1

1
= / [K(dnfl +t(dp — dp—1))(dn — dp—1) dt — K(|xp—11)cn—1 + Ki¢p—1
0

+ M(dn—l + dn - dn—l) - M(dn—l) + Ml (dn) - Ml(dn—l)
< Ky(dy) — Ka(dp—1) — K(|xp—11)cp—1 + Kicp—1 + M(dy) — M (dy—1)
+ Mi(dy) — My(dy—1) <
< (K1 + K2 + M + My)(dy) — dy.
We can now obtain that
K3(lxp)(b —dp) + | = (F(xp) + Qxn) + AGxp) (zn))| +dy <

<(Ki+ Ko+ M+M)b—d)+ (K +Kr+M+M)d,) (93.9)
= R(b) = b.

That is, x,,+1 is also well defined by Lemma 9.3.6 and ¢,, < b — d,,. Hence, d,, 11
is well defined too and as in (9.3.9), we obtain that:

dus1 < R(D) < b.
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The monotonicity (x,, dy) < (X441, dy+1) can be derived from
cn +dp = K3(IxpDen + 1 = (F(xn) + Q(xn) + A(xXn) (2n))| + dn
=< Kz(lxpDen + (M + My + Ky + K2)dp < dpyi-
The induction has now been completed. We need to show that
b, <d, forall n>1.

For n = 1 and from the definitions of b, d,

b1 = (K1 + K>+ M + M) (0) < d.

Assume that
b <d, for k=1,2,...,n.

Then, we obtain in turn

b1 = (Ky + Ky + M + M) (0)
= (K1 + Ko+ M+ M)(K| + Kz + M+ M) (0)
<(Ki+Ky+ M+ My)(d,) <d, <dyy1.

Because d,, < b, we have b, < d,, < b. By (9.3.5), and (9.3.6) it follows that
Ofan_bnf(Kl+K2+M+Ml)n(a) (n>1).

By condition (C;3) and the above, we deduce that the sequence {b,} (n > 0) is
Cauchy in a Banach space C, and as such it converges to some b = (K| + K>+ M +
M)*®(0). From (K| + Ko+ M + M)(b) = (K1 + Ky + M + M) (lim,— oo (K| +
Ky + M + M1)"(0)) = lim, . oo(K1 + K2 + M + M1)"+(0) = b, we obtain

(K1 + K+ M+ My)(b)=b <a,
which makes b smaller than any solution of the inequality
(K1 + K2+ M + My)(p) < p.

It also follows that the sequence {x,} (n > 0) is Cauchy in X, and as such it
converges to some x* € U(b). By letting n — oo in (9.3.8) and using the hy-
potheses that lim, oz, = 0, we deduce that x* is a solution of the equation
F(x)+ Q(x) =0.

To show uniqueness, let us assume that there exists another solution y* of the
equation F(x) + Q(x) = 01in U(a). Then, exactly as in [43], [140], by considering
the modified Newton-process

Xpp1 = X — (F(xp) + O(xp)),

we can show that this sequence converges, under the hypotheses of the theorem.
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Moreover, as above, we can easily show (see also [43], [141]) that
|y* —Xxp| <a, —b, forz, =0(n=>0),

from which follows that x, — y* asn — oo. Finally, the estimates (iii) are obtained
by using standard majorization techniques.
That completes the proof of the theorem.

We will now introduce results on a posteriori estimates. It is convenient to define
the operator

Ry(q) = — K3(|xn|))*sn(CI) +cn

where

Sn(q) = (K1 + Ko+ M + M) (|xp| + q)
— (K1 + Ko+ M+ M) (Ixp]) — K3(Ix,1)(q)

and the interval
I =10,a — |x,|].

It can easily be seen that the operators S, are monotone on /,. Moreover, the opera-
tors R,:[0,a — d,] — [0, a — d,] are well defined and monotone. This fact follows
from Lemma 9.3.5 and the scheme

dp +cn < dny1 = R(@) —dpy1 <a—dy —cp
= Sp(a —dp) + K3(Ixu)(@ —dy —cp) <a—dy —cy (n20).
Then, exactly as in [141], we can show:
Proposition 9.3.9. The following implications are true:
(i) ifq € I, satisfy R,(q) < q, then
cn = Ru(q) =p =g,

and
Ryt1(p—cp) <p—cp forall n>0;

(ii) under the hypotheses of Theorem 9.3.8, let q, € I,, be a solution of R, (q) < q,

then
|X* — Xl <am (m>n)
where
dp = (qn and am+1 = Ru(am) — cm;
and

(iii) under the hypotheses of Theorem 9.3.8, any solution q € I, of R,(q) < q is
such that
Ix* —xa| < R°(0) = q.
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Remark 9.3.10. (a) The results obtained in Theorem 9.3.8 and the Proposition reduce
immediately to the corresponding ones in [141, Theorem 5 and Lemmas 10-12],
when A(x) = F/(x) 1, Qx) =0(x € D), z,=0mn>0),r=1,K, =0,
K> = L, where L is order convex on [0, a], K = L’ and K3(0) = L’(0). On
the one hand, using our conditions, we cover a wider range of problems, and
on the other hand, it is because it may be possible to choose K;, K, K1 so that
Ki(p+tq, p) < Ki+K(p+tq,p) < L'(p+tq)—L'(p)forall p,q € Ky, 1 €
[0, 1]. Then it can easily be seen that our estimates on the distances |x,, 41 — X |
and |[x* — x,| (n > 0) will be sharper. One such choice for K; could be

Ki(p+1q.p)= sup  |AG) — F'(x +1y)]
forall x,y € U(a), p,q € [0, a].

(b) As in [43], [141], we can show that if conditions (Cg)—(Cp), (C13)—(C5) are
satisfied and there exists r € (0, 1) such that (K1 + Ko + M + My)(a) < ta,
then there exists a; € [0, ta] satisfying conditions (C¢)—(Cj5). The solution x* €
U (ay) is unique in U (a) (when z, = 0 (n > 0)).

(c) From the approximation

A(xn)(zn) — A(xp—1)(zZp-1) =
= (A(xn)(zn) — z0) + (A —1)(@Zn—1) — Zn—1) + 1 (2n — Zu—1),

we observe that (Cg) will be true if M1 = 2K3(b) + I and points z, (n > 0) are
such that |z, | + |zn—1] + 120 — Zn—1] S cu—1 (0 = 1).

(d) Another choice for M, z, canbe M| = |e|l,z, = zp—1+&n (X —Xn—1) (n > 1)
with |e,| < || (n > 0), where e, e, (n > 0) are numbers or operators in L4 (V)
and provided that F'(x) = I(x € D). It can then easily be seen that (Cg) is
satisfied. The sequence {z,,} (n > 0) must still be chosen to be null. At the end of
this paper, in part V, we have given examples for this case. Several other choices
are also possible.

(e) Condition (C7) can be replaced by the set of conditions

Ka + Ks(Ix| +tly)) — Ks(lx]) € B(F'(x) — F'(x +1y))

and
Ks(|x|) — Ke(|y]) € B(A(x) — F'(x))

forallz € [0, 1], x, y € U(a) with |x| + |y| < a.
(f) Define the residuals r, = —A(x,,)(z,) (n > 0) and set §, = x,41 — x, (n > 0).
Then from the approximation

rn=[(I = A(xp)) — I1(zn)

we obtain
[rn] < (K3(|xn]) + 1)1zn]
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which shows that r, — 0if z;, — oo as n — oo. Consequently, the results
obtained in Theorem 9.3.8 and Proposition 9.3.9 remain true for the system

Xpt1 — Xp =8, AXp)8y = —(F(xp) + Q(xp)) + 1, (n>0).

(g) It can easily be seen from the proof of Theorem 9.3.8 that the results obtained in
this Theorem remain valid if (Cyg) is replaced by the condition
(Co) (A(xn)(zn) — ALxn—1)(zn—1), Ma(dy —d;_))) € E
with d) = d, or d¥ = b, (n > 0), for some M, € L, (V). This is equivalent to
the condition (A(x,)(z,), M2(d))) € EN (> 1)isan increasing sequence.

We now examine the monotone case.
Let J € L(X — X) be a given operator. Define the operators P, T(D — X) by

Px)=JT(x+u), Tx)=Gx)+ G(x), P(x) = F(x)+ Q(x),
Fx)=JG(x+u) and Q) =JGi(x 4+ u),

where G, G are as F, Q, respectively. We deduce immediately that under the hy-
potheses of Theorem 9.3.8, the zero x* of P is a zero of JT also, if u = 0.

We will now provide a monotonicity result to find a zero x* of JT. The space X
is assumed to be partially ordered and satisfies the conditions for V given in (Cy)—
(Cs). Moreover,weset X =V, D = C? so that | - | turns out to be 1.

Theorem 9.3.11. Let V be a partially ordered Banach space satisfying conditions
(C1)—(Cs), Y be a Banach space, G, Gyas F,Q,D CV,J e L(V—> V), K;, M,
M,; K, K1, K2, K3 as in Theorem 9.3.8 and u, v € V such that

(Cie) [u,v] € D;
(C17) sequence {z,} (n > 0), and iteration

Yo =, Yn+1 = Yn + [JAQGT (=IT () =20 (1 =0)  (9.3.10)

are such that

yn FTAQGIT (—IT (yn)) —v < z2p < [JAQ)T* (—=IT (),
Zn € [u, v] (n > 0).

(C13) conditions (Ce)—(C1s) are satisfied for a = v — u. Then iteration (9.3.10) is
well defined for all n > 0, monotone and converges to a zero x* of JT in
[u, v]. Moreover x* is unique in [u, v] if z, = 0 (n > 0).

Proof. Tt then follows immediately from Theorem 9.3.8 by setting a = v — u.

We will complete this study with two applications that show how to choose the
terms introduced in Theorem 9.3.8, in practical cases. From now on, we choose t =
1, Ax) = FF(x)™' (x € D), Ky = 0, K = L’ (order convex), K» = L and
K3(0) = L’(0). It can then easily be seen from the proof of Theorem 9.3.8 that
conditions (Cy2) and (C;3) can be replaced by (L + M + M1)(a) < a and (L' (a) +
M + M;)"(a) — 0asn — oo respectively (see also Remark 9.3.10 (a)).
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Application 9.3.12. We discuss the case of a real Banach space with norm || ||. As-
sume that F'(0) = I, there exists a monotone operator

f:[0,a] = R

such that
IF"()I < flxl) forall x € U(a)

and a continuous nondecreasing function g on [0, r], r < a such that
1Q(x) = QW = g()llx =yl (9.3.11)

forallx,y e U (%)
We showed in [43], (see also [147]) that (9.3.11) implies that

1Qx +D — Q) <h(r + L) —h(r), xeUa), |ll<a-r (93.12)
where,

h(r) = /r g(t)dr.
0

Conversely, it is not hard to see that we may assume, without loss of generality,
that the function h and all functions h(r + t) — h(r) are monotone in r. Hence, we
may assume that h(r) is convex and hence differentiable from the right. Then, as in
[43], we show that (9.3.12) implies (9.3.11) and g(r) = h'(r +0). Hence, we can set

q s
L(@) = IFO) + 0O + /0 ds /O £y di ©93.13)
and .
M(q)=/ g(r)dr. (9.3.14)
0

In Remark 9.3.10 (c) and (d), we have already provided some choices for My, z,.
Here, however, for simplicity let us choose z, = 0 (n > 0) and My = 0.
Then condition (C11) will be true if

S f@a* — (1= g@)a+[|F0)+ Q)] <0. (9.3.15)

Ifwe set Q = 0and g = 0, (9.3.15) is true if | F(0)| f(a) < % which is a well-
known condition due to Kantorovich. If Q # 0, condition (9.3.15) is the same condi-
tion with the one found in [147] for the Zincenko iteration.

In the application that follows, we show that our results can apply to solve non-
linear integral equations involving a nondifferentiable term, whereas the results ob-
tained in [140] (or [141]) cannot apply.

Application 9.3.13. Let X = V = C [0, 1], and consider the integral equation

1
x(t):/ k(t,s,x(s))ds onX, (9.3.16)
0
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where the kernel k(t, s, x(s)) with (¢, s) € [0, 1] x [0, 1] is a nondifferentiable op-
erator on X. Consider (9.3.16) in the form (9.3.1) where F, Q: X — X are given
by

1
Fx)(@) =1x(t) and Q(x)(t) = —/ k(t,s, x(s))ds.
0

The operator | | is defined by considering the sup-norm. We assume that V is
equipped with natural partial ordering, and there exists a, a € [0, +00), and a real
function a(t, s) such that

lk(, s, x) =k, s, I <alt,s)]x =yl
forallt,s €[0,1], x,y e U (%) and
1
o > sup / a(t,s)ds.
1€[0,11J0

Define the real functions h, f, g on [0,a] by h(r) = ar, f(r) =0and g(r) = « for
allr € [0, al. By choosing L, M, My as in (9.3.13), and (9.3.14), and Remark 9.3.10
(c), respectively, we can easily see that the conditions (C1)—(Cio), (C13)—(C1s) of
Theorem 9.3.8 are satisfied. In particular, condition (C13) becomes

(I—a—leha—1Q0O)=0 (9.3.17)
which is true in the following cases: if 0 < a < 1 — |¢|, choose a > B = ”_Qa( I‘s\’

ifa =1—|e|land Q(0) = 0, choosea > 0; ifa > 1 — || and Q(0) = 0O, choose
a = 0. Ifin (9.3.17) strict inequality is valid, then there exists a solution a™ of equa-
tion (9.3.17) satisfying condition (C13). Note that if we choose a € (0,1 — |¢g|),
a € (B,+o0) and ¢ € (—1, 1), condition (9.3.17) is valid as a strict inequality. Fi-
nally, we remark that the results obtained in [140], [141] cannot apply here to solve
equation (9.3.16), because Q is nondifferentiable on X and the z,,’s are not neces-
sarily zero. This example is useful, especially when the z,,’s are not necessarily all
zero. Otherwise, results on (9.3.2) with general convergence structure have already
been found (see, e.g., [43], [140], [141] and the references there).

In the remaining of this section we show how to control the residuals in the
Netwon-like method (9.3.2).
We generate a sequence {x,} (n > 0) using the perturbed Newton-like method
scheme given by
Xnp1 =Xn + 8, (n=0) (9.3.18)

where the correction §,, satisfies
An)én=—F (xn) + O xp)+rn (n>0) (9.3.19)

Here we derive sufficient conditions for controlling the residuals 7, in such a way
that the convergence of the sequence {x,} n > 0 to a solution of equation F (x) =0
is ensured.
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We also refer the reader to [43], [140], [141] and the references there for relevant
work, which however is valid on a Banach space X without a convergence structure.
The advantages of working on a Banach space with a convergence structure have
been explained in some detail [43], [140], [141].

We will need the following basic result:

Lemma 9.3.14. Let V be a regular partially ordered topological space, an operator
L e C! Vi = V) with [0,a] € Vi C V for some a € V, an operator M €
C (Vi — V), operator R < I, B> 1, T, K € Ly (V), apointc € V withc > 0
and a point p € [0, a].

Assume:

(a) The equation

g@=BT[L(p+q)—L(p)—L (p)g+M(p+q)
—-M(pP)+K(p+q)—K(p)|—-U—-r)g+c=0 (9.320)
has solutions in the interval [0, a] and denote by q* the least of them.

(b) Let G € L4 (V) be given and Ry € Ly (V), ¢4+, p+ € V be such that the
following conditions are satisfied:

Ry <min{(G—2I)BTL (p)+ BTGL (px)+G(R—-D+ 1,1} =«
(9.3.21)
0<cy
< BTG (L(py)+ M (p1)+ K (p1) +GBT (L(p)+ M (p) + K (p))
—2BT (L(p)+M (p)+ K (p)+ (Ry +G =1 —BTGL (py))c =P

(9.3.22)
and
0<p+=<p+ec, (9.3.23)
where a and B are functions of the operators and points involved.
(c) The following estimate is true
M(p) <M (p+q) (9.3.24)
forall p,q € [0,a].
Then the equation
8+ (q) =
= BGT[L (p++49) = L(p1) = L' (p1) g+ M (pr+q) — M (py)
+K(pe+ @) =K (p) | = = Rg+er=0 (9325

has nonnegative solutions and the least of them, denoted by q , lies in the interval
[c+, q* — c].
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Proof. Using the hypotheses g (¢*) = 0 and R < I, we deduce from (9.3.20) that
¢ < g*. We will show that
g+(¢*—c) =0. (9.3.26)

From equation (9.3.25), and using (9.3.22), we obtain in turn
gr(g*—c) <
= [BGTL(p+c+a" =) = L) = L' (p) (¢" —©)
+M(p+c+q*—c)—M(p+)—|—K(p+c+q*—c)—K(p+)]
— (I =Ry (¢*—c)+er
=2(q%)
—BT[L(p+4") = L) = L' () g"+ M (p+4") = M (p)
+K(p+a") - K (P
+ BTG[L (P+a")—Lp) =L (p)(¢" —c)+ M (p+4q*) — M (py)
+K(p+q*)—K(p+)]
+UI-R)q"—c—U—-Ry)(¢g"—c)+cy
=[BTL' (p)— BTGL (py)+ U —R)—( — Rp)]q*
+G-D{U =R —c=BT[LP)+MP)+K P +L (1)a"]}
+ BT[L (p)+ M () + K (p) = GL (p1) = GM (p-) |
+BTGL (pt)c+ (I —Ry)c+cy —c
- [(21 — G)BTL'(p) — BTGL' (p4)+ Ry + G (I — R) — I]q*

+2BT (I (p)+M (p)+ K (p)) — BTG (L(p+)+ M (p+) + K (p4))
—GBT (L(p)+M (p)+K (p)+ (BTGL (p1) —G+1—Ry)c+cy
SO’

because (9.3.21) and (9.3.22) are satisfied.
Moreover from (9.3.25) for g = ¢4, we obtain

g+ (c+) = 0. (9.3.27)

By inequalities (9.3.26), (9.3.27), the fact that g is continuous and isotone on
[c+, q* — c], and as V is a regular partially ordered topological space, from the
proposition, we deduce that there exists a point ¢ with

g+(q3)=0 (9.3.28)

and
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cr <qi <q*—c. (9.3.29)
We can assume that g7 denotes the least of the solutions of equation (9.3.25).
That completes the proof of the lemma.
The following result is a consequence of the above lemma.
Theorem 9.3.15. Let {c,} € V, {T,,}, {R,}, {Gn} € Ly (V) (n > 0) be sequences
and V as in the above lemma. Assume:

(a) There exists a sequence {p,} € [0,a] € V| C V for some a € V with pg =0,
and

pni1 = Y. cjforn=0. (9.3.30)
j=0,1,..., n

(b) Ry < I and the function

80 (q) =BT0[L (Po+4q) =L (po) = L' (po)g +M(po+q) (9331
— M (po)+ K (po+9) ~ K (p) | = (I = Ry g +co =0

has root on [0, a), where B, L, M, K are as in the above lemma. Denote by qa‘
the least of them.
(c) The following conditions are satisfied for alln > 0

Ryl < opga, (9.3.32)
0 < cns1 < Busis (9.3.33)

and
0 < put1 < pn+cn. (9.3.34)

(d) The linear operators T,, are boundedly invertible for all n > 0, and set G, =
Tus1 T, ' (n > 0).
(e) Condition (9.3.24) is satisfied.

Then, the equation
8 (@) =BG T[L(pa+ @)~ L(p) = L' (p) g+ M (pa+9)  9339)
— M (pn) + K (pn +q) —K(Pn)] —UI—-R)g+c =0
has solution in [0, a] for every n > 0 and denoting by q;; the least of them, we have
Y ciqr n=0). (9.3.36)
j=n,..,00

Proof. Let us assume that for some nonnegative integer n, I — R, > 0, g, (¢) has
roots on [0, a] and denote by g, the least of them. We use introduction on n. We
also observe that this is true by hypothesis (b) for n = 0. Using (9.3.30), (9.3.32),
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(9.3.33), (9.3.34), the lemma, and setting ¢ = ¢, c+ = ¢cy+1, R = Ry, Ry = Ry41,
G = G, we deduce that q:H exists, and

Cntl < iy < 4p — Cn- (9.3.37)

The induction is now complete and (9.3.36) follows immediately from (9.3.37).
That completes the proof of the theorem. From now on we assume that X is a
Banach space with a convergence structure in the sense of [141].

The following result is an immediate consequence of Theorem 9.3.15.

Theorem 9.3.16. Assume:
(a) the hypotheses of Theorem 9.3.15 are satisfied;

(b) there exists a sequence {x,} (n > 0) in a Banach space X with a convergence
structure such that |x,+1 — x| < cp.

Then,

(i) the sequence {x,} (n > 0) converges to some point x*;

(ii) moreover the following error estimates hold
|x* — x| < g, (9.3.38)

and
x* = xn+1| <gqy—cp, foralln=>0. (9.3.39)

We can introduce the main result:

Theorem 9.3.17. Let X be a Banach space with convergence structure (X, V, E)
with V.= (V,C, |-ll,), an operator F € C' (D — X) with D C X, an operator
Q e C(D — X),anoperator A (x) € C (X — D), an operator L € C! Vi—=V)
with Vi C V, an operator M € C (Vi — V), an operator K € Ly (V), and a point
a € C such that the following conditions are satisfied:

(a) the inclusions U (a) C D, and [0, a] C V; are true;

(b) L is order-convex on [0, a], and satisfies
K+L'x|+ |yl =L (Ix)) € B(A(x) — F (x +y)) (9.3.40)

forall x,y € U (a) with |x| + |y| < a;
(c) M satisfies the condition

M (x| +1yD =M (x) e B(Q(x) —Q(x+y), M©O)=0 (9341

forall x,y € U (a) with |x| + |y| < a;

(d) for the sequences {c,}, {T,}, {Rn}, {G,}, {pn} (n = 0) the hypotheses (9.3.30),
(b), (9.3.32), (9.3.34) and (d) of Theorem 9.3.15 are satisfied;
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(e) the following conditions are also satisfied

Bnl <cn ST |=(F ) + Q@) <yn < By (n=1), (9.3.42)
| —rnl < T, Rucn, (9.3.43)

where,

Yn =Ty [L (Pn +¢n) = L (pp) = L' (pn) cn + M (pn +cn) = M (pn)
+ K (pu+ ) = K () |+ Rocw (02 1), (9.3.44)
Then,
(i) the sequence {x,} (n > 0) generated by
Xptl = Xpn + 8,  withxg=0

remains in U (xo, t ) and converges to a solution x* of equation F (x) = 0;

(ii) moreover, the error estimates (9.3.38) and (9.3.39) are true where q,' is the least
root in [0, o] of the function g, (q) defined in (9.3.35), with p, = |x, — xol|
(n>0).

Proof. Let us assume that x,,, x,+1 € U (xo, q(’)k ), where the existence of qa‘ is guar-
anteed from hypotheses (d). We note that |§y| < cg. Using the approximation

— (F (xp41) + O (xp+1))
= (F (xn) = F (xp41) + A (X)) (X1 — Xn))
+(Q (xn) — O (Xn+1)) — 7, (9.3.45)

(9.3.40), (9.3.41), (9.3.43) and setting p, = |x, — xo|, we obtain in turn
|— (F (xn+1) + Q (xn4-1))|

<|F (xn) — F (xp11) + A (x) (51 — X0) |
+10 (xn) — O (Xn+1)| + | =1

1
= / [L/ (P + 1 X041 — Xa) = L' (pn) + K] |Xp+1 — xn| dt
0
+ M (pn + |xp41 — xnl) — M (pn) + |—ral

<L (Pn +cp)— L (pn) - (pn) cn+ Kcep
+ M (pn +cn) = M (pa) + T, Rucy.

Hence, by (9.3.42) we get
bl Tt |=(F (nr 1) + Q Gne | Syn < Bn (n > 1),

which shows (9.3.33).
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It can easily be seen that by using induction on n, the hypotheses of Theorem
9.3.15 are satisfied. Hence, by (9.3.40) and (9.3.43) the iteration {x,} (n > 0) re-
mains in U (xo, qa‘) and converges to x* so that (9.3.38), and (9.3.39) satisfied.
Moreover, from the estimate

|—= (F () + Q ()| < [A () = F' ()| e + |F' ()| cn + | =1l ,

(9.3.40), (9.3.43), the continuity of F, F’, A, T;,, R,, and ¢, — 0 asn — oo, we
deduce that

F (x*) +0 (x*) =0.
That completes the proof of the theorem.

We complete this section with an application.

Application 9.3.18. Returning back to Application 9.3.12, define the functions fi,
f2, f30n0,a] by

q
fir@) =Lg) —q. f2(9) = fi(q@) +h(qg) andf3(Q)=/o f () dt.
Choose B =Ty =1, Ro = K =0and py = 0. Then by (9.3.31) we get

go(q) = f2(q).

Example 9.3.19. It can easily be seen that with the above choices of L and M, con-
ditions (9.3.40) and (9.3.41) are satisfied.

Suppose that the function go has a unique zero qg in [0,a] and go (a) < O.
It is then known [43], [141] that there exists a solution x* in U (gg), this solution
is unique in U (a), and the iteration {x,} (n > 0) given by (9.3.18) is well defined,
remains in U (¢;) foralln > 0, and converges to x*. By applying the Banach Lemma
on invertible operators, we can show that A (x,) is invertible and ||A (xn)’1 I <
—f D™ =T, (2 = 0).

Assume that instead of conditions (9.3.32) and (9.3.33), the weaker condition
(9.3.26) is satisfied. Using the approximation

rn = [(F' () = F' (x0)) + F' (x0)] 84 + F (xa) + O (xn) ,

we obtain
Il < (s Ulxnl) + Den + T,y (> 1)

The above estimate provides us with a possible (but not the only) choice for the R;,’s.
Indeed, (9.3.43) will be true if the R,,’s (n > 0) can be chosen so that

s Uxal) + Den + T,y < T, ' Rycw (0> 1)

Using the above choice and Theorem 9.3.17, it finally also follows that estimates
(9.3.38) and (9.3.39) are satisfied for all n > 0.
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9.4 Exercises

9.4.1. Let L, M, M; be operators such that L € clwvy - V), M € Ly (V),
M e C (Vi — V), and x, be points in D. It is convenient for us to define the
sequences ¢, dy, an, by, (n > 0) by

dpy1 = (L + M + My) (dy) + L' (|xn]) cn, do =0,
Cn = |Xnt1 — Xal,
a, = (L+ M + M;)" (a) forsome a € C,
by, =(L+ M+ Mp)"(0),

and the point b by
b= (L+M+M)™ ).

Prove the result:

Let X be a Banach space with convergence structure (X, V, E) with V =
(V,C, |Il,), an operator F € C!' (D — X) with D C X, an operator Q €
C (D — X), an operator L € C' (V] — V) with V; € V, an operator M €
C (Vi — V), an operator M1 € L, (V), apoint a € C, and a null sequence
{zn} € D such that the following conditions are satisfied:

(Cg) the inclusions U (a) € D and [0, a] C V1 are true;

(Cy) L isorder-convex on [0, a], and satisfies

L' (IxI+Iyh — L' (Ix]) € B(F' (x) = F' (x +))

forall x, y € U (a) with |x| + |y| < a;
(Cg) M satisfies the conditions

0<(Q@—-0x+y), M(x|+1IyD)—M(lx|) € E
forall x, y € U (a) with |x| + |y| < a, and
M (wy) — M (w2) < M (w3) — M (wq) and M (w) > 0

for all w, wy, wo, w3, wg € [0, a] with w; < w3, wy < wy, wr < wy,
w4 < W3;
(Co) My, xp, z, satisty the inequality

0= (F/ (x) (zn) = F' (x0—1) (Zn—1) » M1 (dy — dn—l)) €E

foralln > 1;
(Ci0) L' (0) € B(I — F'(0)), and
(= (FO) + QO+ f/(0)(z0)), L(©0)+ M (©0)+ M (0) € E;
C1) L+ M+ My)(a) <awithO <L+ M+ My;and
(Ci2) (M+ M +L ()"a—0asn— ooc.
Then,
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(i) The sequence (x,,d,) € (X x V)N is well defined, remains in EV, is
monotone, and satisfies for all n > 0

dy <b

where b is the smallest fixed point of L + M + M in [0, a].
(ii) Moreover, the iteration {x,} (n > 0) generated by

Xn41 = Xp + F’ (xn)* [—(F )+ O (n))] =20, 20=0

converges to a solution x* € U (b) of the equation F (x) + Q (x) = 0,
which is unique in U (a).
(iii) Furthermore, the following estimates are true for all n > 0:

|xXn41 — Xn| < dpy1 — dy,

|xn —x*| < b —dy,
and

|xp —x*| < ay — by, forM; =0, andz, =0 (n > 0).

9.4.2. We will now introduce results on a posteriori estimates for the iteration intro-

duced in Exercise 9.4.1. It is convenient to define the operator
R () = (I = L' (1xaD)" 54 () + e
where,
Sn (@) = (L + M + M) (Ixn] + @) = (L + M + M) (Jxu]) = L (1xa]) (),

and the interval
I, =10,a — |x,|].
Show:

(a) operators S,, are monotone on I,,;
(b) operators R;:[0,a —d,] — [0,a — d,] are well defined, and monotone.
Hint: Verify the scheme:

dn+cn§dn+1 :>R(a)_dn+l <a—dy—cy
= Sp(a—dy)+ L (Ixn) (@ —dy —cy) <a—dy —cp (n20);

(c) if g € I, satisfy R, (q) < g, then
< R.(@)=p=gq,

and
Ryt1(p—cy) <p—cp forall n>0;
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(d) under the hypotheses of Exercise 9.4.1, let g,, € I, be a solution of R, (¢) <

q, then
|x* _xm| <an (m=n),
where
an = qn and @y 11 = Ry (@) — Cm;
and
(e) under the hypotheses of Exercise 9.4.1, any solution g € I,, of R, (¢) < g is
such that

|x*—xn|s < RX(0) <gq.

9.4.3. Let A € L (X — X) be a given operator. Define the operators P, T (D — X)
by

P (x) = AT (x +u),
Tx)=Gx)+R(x), Px)=Fx)+ Q0 (x),

and
Fx)=AG(x+u), Qx)=AR(x +u),

where A € L (X — X) G, R are as F, Q, respectively. We deduce immediately

that under the hypotheses of Exercise 9.4.1, the zero x* of P is also a zero of

AT, ifu =0.

We will now provide a monotonicity result to find a zero x* of AT. The space

X is assumed to be partially ordered and satisfies the conditions for V given in

(C1)~(Cs). Moreover, we set X = V, D = C? so that |-| turns out to be I.

Prove the result:

Let V be a partially ordered Banach space satisfying conditions (C;)—(Cs), ¥

be a Banach space, G € CI(D —Y),Re C(D—Y)withD CV, A e

LX—>V),MeC(D—V),M €Ly (V)andu,v € V such that:

(Ci3) [u,v] € D;

(C) I —AG' )+ M+ My e Ly(V);

(Cys) forall wy, wy € [u,v]:w; < wp = AG' (w1) > AG' (w2);

(Ci6) AT (u) + AG' (u) (z9) < 0, AT (v) + AG’ (v) (z0) = 0 and AT (v) —
Mi(v—u)=0;

(C17) condition (Cg) is satisfied, and M (v —u) < —Q (v — u);

(C1g) condition (Cy) is satisfied ;

(C19) the following initial condition is satisfied

—(Q0) + AG" () (20)) < (M + M) (0);
and
(C20) (I —AG' () +m+M)" (v—u)— Oasn — oo.
Then the NK sequence
Yo =, Yutr1 = yu + (AG' (3))" [-AT (3)] — 20 (n = 0)

is well defined for all » > 0, monotone, and converges to a unique zero x* of
AT in [u, v].
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9.4.4. Let X be a Banach space with convergence structure (X, V, E) with V =
(V,C, |I-Il,), an operator F € C! (X — X) with Xz C X, an operator L €
c! (Ve — V) with V € V, and a point of C such that
(@) U(a) € XF,[0,a] € Vi;
(b) L is order convex on [0, a] and satisfies for x, y € U (a) with |x| + |y| < a;

L' (x| +1yh = L' (Ix]) € B(F'(x) = F' (x +y));

(¢) L'(0) € B(I — F'(0)), (—F (0), L (0)) € E;
(d) L(a) <a;
(e) L' (a)" — 0asn — oo.
Then show NK sequence xg := 0, xp+1 = x5 + F' (x3)* (—F (x)) is well
defined, and converges to the unique zero z of F in U (a).

9.4.5. Under the hypotheses of Exercise 9.4.4 consider the case of a Banach space
with a real norm ||-||. Let F’ (0) = I and define a monotone operator

k:[0,a] - RVx € U(a): | F" ()| <k (lxID)

and

t s
L(t):||F(0)||+/ ds/ dok (0) .
0 0

Show (d) above is equivalent to || F (0)||+.5k (a) a> < a. Under what conditions
is this inequality true.
If conditions (a)—(c) of Exercise 9.4.4 are satisfied, and

Jre (0,1):L(a) <ta,

then show there exists a’ € [0, ra] satisfying (a)~(e). The zero z € U (d) is
unique in U (a).

9.4.6. Let L € Ly (V) and a, e € C be given such that: Leta < e and L"e — 0 as
n — oo. Then show: operator

(I —L) :[0,a] — [0,a],

is well defined and continuous.
9.47. LetAe L(X),L € B(A),y € D, and e € C such that

Le+ |yl <eand L"e — 0 asn — oo.

Then show x := (I — A)* y is well defined, x € D, and |x| < (I — L)* |y| <e.
9.4.8. Let V be a partially ordered Banach space, Y a Banach space, G €

C'(Vg — Y),Ae L(X — Y)andu,v € V such that

(@) [u,v] € Vg;

(b) I — AG' (u) € Ly (V);

(¢) Ywi, wa € [u, v]:wy < wy = AG’ (w) > AG' (w2);

(d) AG (u) <0and AG’ (v) > 0;

) (I — AG' (v))" (v —u) - Oasn — oo.



440 9 Convergence on Generalized Banach Spaces
Then show: the NK sequence
uo = u, tp1 = s [AG" un)]" [~AG (un)] (n = 0)

is well defined, monotone, and converges to the unique zero z of AG in [u, v].
9.4.9. Consider the two boundary value problem

—x" () =4sin(x )+ f(s), x(0)=x(1)=0

as a possible application of Exercises 9.4.1-9.4.8 in the space X = C [0, 1] and
V = X with natural partial ordering; the operator /-/ is defined by taking absolute
values. Let G € L4 (C [0, 1]) be given by

1 5 .
Gx (s) = m {/(‘) sin (2¢) sin (2 — 2s) x (t) dt
—i—/s sin (2 — 2t) sin (2s) x (1) dt}
0

satisfying Gx = y <= —y” — 4y = x, y (0) = y (1) = 0. Define the operator
F:C[0,1] - C[0,1], F(x):=x—G (4sin(x) —4x + f).

Let
L:C[0,1]— C[0,1], L(e) =4G (e —sin(e)) + |Gf].

Forx, y,w € C[0, 1]

x|, x|+ 1y| < .57 =
[F' @) = F' (x + »]w| < [L (xl+ [y = L' (1xD)] fw]

Further we have L (0) = |Gf| and L' (0) = 0. We have to determine a €
C4 [0, 1] with |a| < .57 and s € (0, 1) such that L (@) = 4G (a — sin(a)) +
|Gf| < sa. We seek a constant function as a solution. For ¢g (s) = 1, we com-

pute
1
pillGeolloo = .25 -1).
cos (e)

Show that a = tep will be a suitable solution if

4p (t —sin (1) + 1Gfllow < 1.

9.4.10. (a) Assume: given a Banach space X with a convergence structure (X, V, E)
with V = (V, C, ||-|ly), an operator F € c! (Xo € X — X), operators M, Ly,
L e L'(VyCV — V),andapoint p € C such that the following conditions
hold:
U (p) € Xo, [0, p] € Vo;

M, Lo, L are order convex on [0, p], and such that for x,y,z € U (p) with
X[ < p, Iyl +xI<p
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Lo (Ix]) — Li (0) € B(F'(0) — F' (x)),
L'(lyl+1x) =L (lyD € B(F'(y) — F' (y +x)),
M(p)<p
Lo(po) < M(po) forall po € [0, p],
Lo(po) < M'(po) forall pg € [0, p],
Ly € B(I — F'(0)), (—F(0),Lo(0)) € E,
M (p)* (p) — 0asn — oo,
M’ (dy) (b —dy) + L (dy) <M (b) foralln >0,

where
do =0,dp11 = L(dy) + L6 (IxnD) (en) s cn = [xXn41 — X0l (1 = 0)
and
b=M*(0).

Show: sequence {x,} (n > 0) generated by NK method is well defined, remains
in EN , is monotone, and converges to a unique zero x* in U (b), where b is the
smallest fixed point of M in [0, p]. Moreover, the following bounds hold for all
n>0
dy <D,
|x* — xp| < b —dy,
|x* — x,| < M" (p) — M" (0),
cn+dy < dn—&-l’
and
Cn = |xn+l — Xnl.

(b)Ifr € [0, p — |xp]|] satisfies R, () < r then show: the following holds for all
n=>0:
cn S Ry(r)y=p=r, 9.4.1)

and
Rur1y(p—cn) < p —
(c) Assume hypotheses of (a) hold and letr,, € [0, p — |x,|] be a solution (9.4.1).
Then show the following a posteriori estimates hold for all n > 0
|X* - xm| < dqm>
where
dn =Tns Gm+1 = Rn(gm) — cm (m > n).

(d) Under hypotheses of (a), show any solution r € [0, p — |x,|] of R,(r) < r
yields the a posteriori estimate
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|x* —x,| SR®©0) <r (n>0).
Let X be partially ordered and set
X=V, D=C*and |-|=1.

(e) Let X be partially ordered, Y a Banach space, G € C! XoZX—>Y),
AeL(Y - X)andx,y € X such that:

1. [x,y] € Xo.

2. I —AG (x) e Ly (X),

3. z1 <z2 = AG' (z1) < AG' (zp) forall zy, 22 € [x, ¥],

4. AG (x) <0, AG (y) =0,

5. (I—AG' ()" (y—x)—> 0 as n — oo.

Show: sequence {y,} (n > 0) generated by

Yo =X, Yut1 = Yn +AG (y)* [-AG (yn)]

is well defined for all n > 0, monotone, and converges to a unique zero y* of
AG in [x, y].

9.4.11. Let there be given a Banach space X with convergence structure (X, V, E)
where V.= (V, C, ||-|ly), and operator F € C” (Xo — X) with Xg C X, and
operator M € C' (Vo — V) with Vy C V, and a point p € C satisfying:

U (p) € Xo. [0, p] < Vo;
M is order-convex on [0, p] and for all x, y € U(p) with x|+ |y| < p
M (|x+y) =M (x) € B([F"(x) = F" (x + 0] )

M'(0) € B(I — F'(0)), (—=F(0), M (0)) € E;
M (p) < p;

and
M (p)"p—0as n— oo.

Then, show sequence (x;,, t;) € (X x V)N, where {x,} is generated by Newton’s
method and {7,} (n > 0) is given by

t0=0, thy1 =M () + M’ (IxnD) (@) s an = 1xp41 — Xp|

is well defined for all n > 0, belongs in E N, and is monotone.
Moreover, the following hold for all n > 0

th = b,

where,
b=M>0),

is the smallest fixed point of M in [0, p].
Show corresponding results as in Exercises 9.4.10 (b)—(c).
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9.4.12. Assume hypotheses of Exercise 9.4.10 hold for M = L.
Show: (a) conclusions (a)—(e) hold (under the revised hypothesis) and the last
hypothesis in (a) can be dropped;
(b) error bounds |x* — x,| (n > 0) obtained in this setting are finer and the
information on the location of the solution more precise than the corresponding
ones in Exercise 9.4.4 provided that Lo (po) < L (po) or Ly, (po) < L (po) for
all p € [0, p].
As in Exercise 9.4.5, assume there exists a monotone operator ko: [0, p] — R
such that

|F'e) = F'©O)|| < ko (lxIl) lIxIl, forall x € U(p),

and define operator L by

t s
Lo() = | F (O] + /O ds fo d6ko(6).

Sequence {d,} givenby dy = 0, d,,+1 = L(d,) + L6 (|xn]) cn converges to some
p* € [0, p] provided that

k
(ko(p) + %) IFO) = 1.

Conclude that the above semilocal convergence condition is weaker than (d) in
Exercise 9.4.4 or equivalently (for p = a)

2k(p) IF O < 1.

Finally, conclude that in the setting of Exercise 9.4.12 and under the same
computational cost, we always obtain and under weaker conditions: finer error
bounds on the distances |x, — x*| (n > 0) and a better information on the loca-
tion of the solution x* than in Exercise 9.4.5 (i.e., [140], see also [43], [141]).
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Point-to-Set-Mappings

This chapter gives an outline of general iterative procedures and their convergence
under general hypotheses.

10.1 Algorithmic models

Let X denote an abstract set, and introduce the following notation:
X'=X, X’=XxX,..X"=X"""xX, k>2.

Assume that k is a positive integer, and for all m > k — 1, the point-to-set map-
ping F,, are defined on X!, furthermore for all (xV, ..., x*1) e xm*! and
x € Fy (x(l), x(””‘l), x € X. For the sake of brevity, we will use the notation
F,: X™+1 — 2X where 2% denotes the set of all subsets of X.

Definition 10.1.1. Select xg, x1, ..., xk—1 € X arbitrarily, and construct the se-
quence

where arbitrary point from the set Fy, (xg, X1, ..., Xm) can be accepted as the succes-

sor of x,,. Recursion (10.1.1) is called the general algorithmic model.

Remark 10.1.2. Because the domain of F, is X"t and F,, (x0, X1, oo0s X)) € X,
the recursion is well defined for all m > k — 1. Points xo, ..., xx—1 are called initial
approximations, and the maps F,, are called iteration mappings.

Definition 10.1.3. The algorithmic model (10.1.1) is called a k-step process if for all
m > k — 1, F,, does not depend explicitly on xq, X1, ..., Xm—1, that is, if algorithm
(10.1.1) has the special form

Xm+1 € Fiy (Xm—k—41s ooy Xm—1, Xm) - (10.1.2)

I.K. Argyros, Convergence and Applications of Newton-type Iterations,
DOI: 10.1007/978-0-387-72743-1_10, © Springer Science+Business Media, LLC 2008
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It is easy to show that any k-step process is equivalent to a certain single-step
process defined on X k Form > 0, introduce vectors

Starting from the initial approximation
Yo = (X0, X1, o0y Xk—1)
consider the single-step algorithmic model:

(e9] (2)

Yot = VN
Vo1 =0

: (10.1.3)
yr(:-;ll) =

k
v = Fa (y,ﬁf), yﬁf)) :

This iteration algorithm is a single-step process, and obviously it is equivalent to the
algorithmic model (10.1.2), as for all m > 0,

= X YN = X1 e V) = Xkl
This equivalence is the main reason why only single-step iteration methods are dis-
cussed in most publications.

Definition 10.1.4. A k-step process is called stationary, if mappings Fm do not de-
pend on m. Otherwise the process is called nonstationary.

Iteration models in the most general form (10.1.1) have a great importance in
certain optimization methods. For example, in using cutting plane algorithms, very
early cuts can still remain in the latter stages of the process by assuming that they
are not dominated by later cuts. Hence the optimization problem of each step may
depend on the solutions of very early problems. Multistep processes are also used
in many other fields of applied mathematics. As an example, we mention that the
secant method for solving nonlinear equations is a special two-step method. Non-
stationary methods have a great practical importance in analyzing the global asymp-
totical stability of dynamic economic systems, when the state transition relation is
time-dependent.

In this chapter, the most general algorithmic model (10.1.1) will be first consid-
ered, and then, special cases will be derived from our general convergence theorem.
In order to establish any kind of convergence, X should have some topology.

Assume now that X is a Hausdorff topological space that satisfies the first axiom
of countability [189]. Let S C X be the set of desirable points, which are considered
as the solutions to the problems being solved by the algorithm. For example, in the
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case of an optimization problem, X can be selected as the feasible set and P as the
set of the optimal solutions. If a linear or nonlinear fixed point problem is solved,
then X is the domain of the mapping and P is the set of all fixed points. In analyzing
the global asymptotic stability of a discrete dynamic system, set X is the state space
and P is the set of equilibrium points.

Definition 10.1.5. An algorithmic model is said to be convergent, if the accumulation
points of any iteration sequence {x,} constructed by the algorithm are in P.

Note that the convergence of an algorithm model does not imply that the iteration
sequence is convergent.

We now impose convergence criteria for algorithmic models.

Assume that for m > 0 there exist functions gz: X — R! with the following
properties:

(A1) For large m, functions {gi} are uniformly locally bounded below on X \ P.
That is, there is a nonnegative integer N such that for all x € X \ P there is a
neighborhood U of x and @ b € R! (which may depend on x) such that for all
m> Nyandx' e U,

g (x') = b (10.1.4)
(Ay) If m > Ny, x' € F, (y(l), e y(m),x) (x, yDexi=1,.., m), then
Si+1 (X) < gr () (10.1.5)

(A3) Foreachy € X \ P if {y;} € \ € X is any sequence such that y; — y
and {m;} is any strictly increasing sequence of nonnegative integers such that
gk (hi) — g*, then for all iteration sequences {x;} such that x,,, = y; (i > 0)
there exists an integer N, such thatmy, > N1 — 1 and

Ghy, 41 () < g forall y € Fyy, (xo, X1, o mez). (10.1.6)

Theorem 10.1.6. If conditions (A1), (A2) and (A3) hold, then the algorithmic model
(10.1.1) is convergent.

Proof. Let x* be an accumulation point of the iteration sequence {x,, } constructed by
the algorithmic model (10.1.1), and assume that x* € X \ P. Let {m;} denote the in-
dex set such that {Xm,- } is a subsequence of {x,,} converging to x*. Assumption (A1)
implies that for large m, {gx (x,,)} is decreasing, and from assumption (Aj), we con-
clude {gk, (xm;)} is convergent. Therefore the entire sequence {g (x,;)} converges
toag* e R!. From (10.1.5) we know that for m > Ny,

gk (xm) = g™ (10.1.7)

Use subsequence {xm ; } as sequence {y;} in condition (A3) to see that there exists an
N> such that m N, > N; — 1 and with the notation M = mN; + 1,

gm (xp) < g7,

which contradicts relation (10.1.7) and completes the proof.
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Remark 10.1.7. Note first that in the special case when (10.1.1) is single-step non-
stationary process and g does not depend on m, this theorem generalized Theorem
4.3 of Tishyadhigama et al. [189]. If the process is stationary, then this result further
specializes to Theorem 3.5 of the same paper.

Remark 10.1.8. The conditions of the theorem do not imply that sequence {x,,} has
an accumulation point, as the next example shows.

Example 10.1.9. Select X = R!, P = {0}, and consider the single-step process with
F,, (x) = F (x) = x — 1, and choose g (x) = x forall x € X.

Because functions g; are continuous and F,,, (x) < x for all x, condition (A1)
obviously holds, and because functions F), are strictly decreasing and continuous,
assumptions (Aj) and (A3) also hold. However, for arbitrary xo € X, the iteration
sequence is strictly decreasing and divergent. (Infinite limit is not considered here as
limit point from X.)

Remark 10.1.10. Even in cases when the iteration sequence has an accumulation
point, the sequence does not need to converge as the following example shows.

Example 10.1.11. Select X = R, P = {0, 1}, and consider the single-step iteration
algorithm with function

I ifx=0
Fnx)=F(x)= 0 ifx=1
x—1ifx ¢ P.

Choose
0 ifxeP

x otherwise.

gk(X)Eg(x)={

On X \ P, function g is continuous, hence assumption (A1) is satisfied. If x ¢ P,
then F (x) < x, which implies that g (F (x)) < g (x). If x € P, then F (x) € P.
Therefore in this case g (F (x)) = g (x). Hence condition (A7) also holds. Assump-
tion (A3) follows from the definition of functions g; and from the fact that F (x) < x
on X \ P.If xg is selected as a nonnegative integer, then the iteration sequence has
two accumulation points: 0 and 1. If xq is selected otherwise, then no accumulation
point exists.

Note that Definition 10.1.5 is considered as the definition of global convergence
on X, because the initial approximations xg, x1, ..., Xy—1 are arbitrary elements of X.
Local convergence of algorithmic models can be defined in the following way:

Definition 10.1.12. An algorithmic model is said to be locally convergent, if there is
a subset X1 of X such that the accumulation points of any iteration sequence {x,,}
constructed by the algorithm starting with initial approximations xg, X1, ..., Xk—1
from X1 are in P.

Theorem 10.1.6 can be modified as a local convergence theorem by substituting
X and P by X and X1 N P, respectively.
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10.2 A general convergence theorem

Consider again the algorithmic model
Xmt1 € Fin (X0, X1, .00y X)  (m =k — 1), (10.2.1)

where form > k — 1, F,,: X! — 2% Here we assume again that X is a Hausdorf
topological space that satisfies the first axiom of countability, and k is a given positive
integer, furthermore in relation (10.2.1), any point from the set F, (xo, X1, ..., X;m)
can be accepted as the successor of x,,. Assume furthermore that the set P of desir-
able points has only one element p*.

Assume that:

(B1) There is a compact set C C X such that for all m, x,,, € C;
(B») conditions (Aj), (A3), and (A3) of Theorem 10.1.6 are satisfied.

The main result of this section is given as

Theorem 10.2.1. Under assumptions (By) and (B3), x,, — p* as m — o0 with
arbitrary points xg, X1, ..., Xp—1 € X.

Proof. Because C is compact, sequence {x,,} has a convergent subsequence. From
Theorem 10.1.6 we also know that all the limit points of this iteration sequence
belong to P, which has only one point p*. Hence the iteration sequence has only one
limit point p*, which implies that it converges to p*.

Remark 10.2.2. The theorem in this formulation can be interpreted as a global con-
vergence result. However, if the conditions of the theorem hold only in a neighbor-
hood X of p* such that F, (x, x@, ., x"*D) c X, forall m > k — 1 and
x®D e x, (i=1,2,...,m+ 1), then local convergence results are obtained.

The speed of convergence of algorithm (10.2.1) can be estimated as follows.
Assume that:

(B3) X is a metric space with distance d: X x X — R;
(B4) There exist nonnegative constants a,,;(m > k — 1,0 < i< m) such that if
m>k—1andx € Fy (x@,xM®, . x(™), then

m
d(x.p*) <Y amid (x(i), p*) .
i=0
From (10.2.1) we have

m
Em+1 = § ami€i,
=0

where ¢; = d (x;, p*) forall i > 0.
Starting from initial value §; = &; (i =0, 1, ..., k — 1), consider the nonstation-
ary difference equation
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Sm1 = Zam, ;. (10.2.2)

Obviously, for all m > 0, €,, < §,,. In order to obtain a direct expression for §,,, and
therefore the same for the error bound of x,, (m > k — 1), introduce the following
additional notation:

dm = (50» 81, FE) 8m)T y

. T
Ay = .. , and a, = (@m0, m1, -, Amm) -
1

am0 * -+ dmm

Then from (10.2.2)
dm+l = Amdm,

and hence, finite induction shows that for all m > 1,
dn = Ap—1Ap—2...A_1di—1.

Note that the components of dy_; are the error of the initial approximations xo, X1,
., Xk—1. From (10.2.2) we have

Smt1 = anT1dm = (anCAmflAm,Q...Akfl) dy—1 = b,ﬁqu

with
b,{l = a;AmflAmfz...Akfl
being a one-dimensional row vector. Introducing finally the notation
by = (bimos bt oy b 1) »
the definition of the numbers §,, and relation (10.2.2) imply the following result:

Theorem 10.2.3. Under assumptions (B3)-(Bs),

d (Xm+1, p¥) me,d (xi, p*), (m=k—1). (10.2.3)

Corollary 10.24. If for alli = 0,1,....,k — 1, by, — 0 as m — oo, then the
iteration sequence {x,,} generated by algorithm (10.2.1) converges to p*. Hence, in
this case conditions (B1) and (B, ) are not needed to establish convergence.

The conditions of Theorem 10.1.6 are usually difficult to be verified in practical
cases. Therefore in the next section, we will relax these conditions in order to derive
sufficient convergence conditions that can be easily verified.
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10.3 Convergence of k-step methods
In this section, k-step iteration processes of the form

Xm+1 € Fn (Xm—k+15 Xim—k+25 s Xm) (10.3.1)

are discussed, where k > 1 is a given integer, and for all m, F,: X I 2X Assume
again that the set P of desirable points has only one element p*.

Definition 10.3.1. A function V: X* — R]_i is called the Liapunov function of pro-
cess (10.3.1), if for arbitrary

e x (i = 1,2,k x® 2 p*)

and
yeF, (x(]), x(z), ...,x(k)> m=>=k—1),

\%4 (x(z), s x(k), y) <V (x(l), x(z), e x(k)) . (10.3.2)

Definition 10.3.2. The Liapunov function V is called closed, if it is defined on
)
i

i — 00 (xl-(j) € Xfori > 0and j = 1,2,...,k such that x®7 #+ p*) and
vi € Fy, (x.(l), e xi(k)) (i > 0) such that y; — y* as i — oo, then

—k = . . i
X', where X is the closure of X, furthermore if m; — 00, x - x" g

1

V(@ @) < v (6O, (10.3.3)

Assume now that the following conditions hold:

(Cy) Forallm >k — 1,
F (x(l), ...,x(kfl), p*) = {p*}

with arbitrary xO L x&D e x,
(Cy) Process (10.3.1) has a continuous, closed Liapunov function;
(C3) X is a compact.

Theorem 10.3.3. Under assumptions (Cy), (Cz) and (C3), x,, — p* as m — oo.

Proof. Note first that this process is equivalent to the single-step method (10.1.3),
where set X is replaced by X = X, and the new set of desirable points is now
P = P*. Select function g as the Liapunov function V.

We can now easily verify that the conditions of Theorem 10.2.1 are satisfied,
which implies the convergence of the iteration sequence {x,, }.

Assumption (Aj) follows from (C3) and the continuity of V. Condition (C;) and
the monotonicity of V imply assumption (A»). And finally, assumption (A3) is the
consequence of condition (C) and relation (10.3.3).
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Remark 10.3.4. Assumption (C3) can be weakened as follows:

(C/3) For all x € X \ P, there is a compact neighborhood U C X of x.

In this case, we have to assume that p* € X, and condition (Cy) is required only
if p* € X.

Remark 10.3.5. Assumption p* € X is needed in order to obtain p* as the limit
of sequences from X. Assumption (C;) guarantees that if at any iteration step the
solution p* is obtained, then the process remains at the solution. We may also show
that the existence of the Liapunov function is not a too strong assumption. Assume
that X is a metric space, and consider the special iteration process x,,+1 = F (x;,)
and assume that starting from arbitrary initial point, {x,,} converges to the solution
p* of equation x = F (x). Let V: X — R! be constructed as follows. With selecting
Xxo = x, consider sequence x,,+1 = F (x;,), (m > 0), and define

if x = p*
maXd(-xWh p*)v m 2 0

V(x):{

where d is the distance. Obviously, V (F (x)) < V (x) for all x € X. The continuity-
type assumptions in (C,) are also natural, because without certain continuity as-
sumptions no convergence can be established. Assumption (C3) says that the entire
sequence {x,,} is contained in a compact set. This condition is necessarily satisfied
for example, if X is in a finite-dimensional Euclidean space, and is bounded or if for
every K > 0 there exists a Q > 0 such that t(D .| 1% e X and ||t(j) || > O (for at
least one index j) imply that

1% (t(l), t(k)> > K.

In the case of one-step processes (that is, if k = 1), this last condition can be refor-
mulated as V (x) — oo as ||x|| = oo, x € X.

Assume next that the iteration process is stationary, that is, mappings F;, do not
depend on m. Replace condition (C,) by the following pair of conditions:
(C)) The process has a continuous Liapunov function;
(C})) Mapping F is closed on X, that is, if xl.(])

and y; > F (xl.(k), ...,xi(k)> such that y; — y*, then y* € F (x(l)*, ...,x(k)*) .

—>xWDasi > 00 (j=1,2,....k)

Theorem 10.3.6. If process (10.2.1) is stationary and conditions (Cy), (C,), (C5)
and (C3) hold, then x,, — p* as m — oo.

Remark 10.3.7. This result in the special case of k = 1 can be considered as the
discrete-time counterpart of the famous stability theorem of Uzwa [198].

Remark 10.3.8. Assume that for all m > k — 1, mapping F,, is closed, and the itera-
tion sequence converges to p*. Then forallm > k—1, p* € F,, (p*, ..., p™). Hence,
p* is a common fixed point of mappings Fy,.
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The speed of convergence of process (10.3.1) is next examined. Two results will
be introduced. The first one is based on Theorem 10.2.1, and the second one is based
on special properties of the Liapunov function.

Note first that in the case of a k-step process assumption (By4) is modified as

(C4) There exist nonnegative constants a,,; (im >k — 1,m —k +1 < i< m), such
thatforallm > kand x € F), (x(k), x(k)) , (x(k), x(k)) € X are arbitrary),

k
) =< Zam,m—k—l-id (x(i), P*) .
i=1
Then Theorem 10.2.3 remains valid with the specification that a,,; = 0 for all
i<m-—k.

In the case of a stationary process, constants a m—k+1 do not depend on m. If
we introduce the notation @; = am m—k+1, then (10.2.2) reduces to

St = Za B (103.4)
i=1

Observe that sequence {5, } is the solution of this kth order linear difference equation.
Note first that the characteristic polynomial of this equation is as follows:

ey =i g —apk - @ -

Assume that the roots of ¢ are A1, A2, ..., Ag with multiplicities m, mo, ..., mg, then
the general solution of Equation (10.3.4) is given as

R m,—1

Smt+1 = Z Z 8rsim )‘«

r=1 s=0
where the coefficients g, are obtained by solving the initial-value equations

R m,—1

Z Z grsiA =d (xio1, p*) (=1,2,.., k).

r=1 s=0
Hence, we proved the following:
Theorem 10.3.9. Under assumption (Cy),

R m,—1

d(xmet, p) <YY" grmA (m=k—1). (10.3.5)

r=1 s=0

Corollary 10.3.10. If forall r,r = 1,2, ..., R, |A;| < 1, then x,, — p* as m — oo.
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Hence, in this case the conditions of Theorem 10.3.6 are not needed to establish
convergence.

In the rest of the section the speed of convergence of process (10.3.1) is estimated
based on some properties of the Liapunov function.

Assume now that

(Cs) There exist constants a;, b; (i = 1,2, ..., k, ar > 0) such that

Sed (0.5 2 () = S (4.

forallx® e X (i =1,2,...., k).

The following result holds.
Theorem 10.3.11. Assume that process (10.3.1) has a Liapunov function V, which
satisfies condition (Cs). Then form > k — 1,

k

d (xmi1, p*) < a;' Y (b —ais))d (¥meiris p¥) (a0 =0).  (103.6)
i=1

Proof. 1f x,, = p*, then x,,,1-1 = p*, and therefore (10.3.6) obviously holds, as the
left-hand side equals zero. If x,;, # p™*, then condition (Cs) implies that

D aid (Xmktitts P*) <V Em2kr oo Xt 1)

k

<V Xth—1s ooes Xm) < Zb,-d (Xm—k+i» P¥) -
i=l

The assertion is a simple consequence of this inequality.

Corollary 10.3.12. Introduce next the notationa; = (b; — aj—y) Jax (i = 1,2, ..., k),
and let sequence {8,,} denote now the solution of difference equation (10.3.4) with
initial conditions §; = d (x;—1, p*) (i = 1,2, ..., k) .Then obviously, d (x;, p*) <

Sm for all m > k — 1, and with the above coefficients a;, Theorem 10.3.9 remains
true.

10.4 Convergence of single-step methods

In this section, single-step processes generated by point-to-step mappings are first
examined. For the sake of simplicity we assume that X is a subset of a Banach space
B and contains the origin. The iteration process now has the form

X1 € By (X)) (m > 0), (10.4.1)
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where Fj,: X — 2% It is also assumed that O is in X and p* = O. We may have
this last assumption without losing generality, as any solution p* can be transformed
into zero by introducing the transformed mappings

g ={y—p*/yeF(x+p9)}.

It is also assumed that for all m, F,, (O) = {O}.
We start our analysis with the following useful result.

Theorem 10.4.1. Assume that X is compact, and there is a real valued continuous
SJunction a: X \ {0} — [0, 1) such that

Iyl < o (x) [lx]| (10.4.2)

forallm > 0,x #0,andy € F, (x).
Then the iteration sequence (10.4.1) converges to O as m — Q.

Proof. we now verify that all conditions of Theorem 10.3.3 are satisfied with the
Liapunov function V (x) = ||x|| and p* = O. Note that (C1) and (C3) obviously
hold, and condition (C») is implied by the facts that a and the norm are continuous,
and o (x) < 1 forx # 0.

Remark 10.4.2. 1f (10.4.2) is replaced by the weaker assumption that

Iyl < fixll

forallm > 0,x # 0,and y € F;, (x), then the result may not hold, as the following
example shows.

Example 10.4.3. Select B = R, X = [0, 2], and for m > 0,
Fp (x) = [(m +1)2 - 1] m+1)2x.
If the initial points is chosen as xo = 2, then finite induction shows that
xm=1+G*k+1D""'>1#£0asm— oco.
Furthermore for all m > 0 and x # 0,
| Fn (X)] < |x].
Corollary 10.4.4. Recursion (10.4.1) and inequality (10.4.2) imply that for m > 0,
lXmt1ll < o (xm) 12X Il 5
and therefore finite induction shows that

X1l < o (xm) & (Xm—1) - - - ¢ (x0) [0l - (10.4.3)
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As a special case assume that o (x) < g < a for all 0 # x € X. Then for all
m >0,
11l < g™ ol (10.4.4)

which shows the linear convergence of the process in this special case.

Relation (10.4.4) serves as the error formula of the algorithm. In addition, it
has the following consequence: Assume that (10.4.2) holds for all O # x € X,
furthermore o (x,,,) & (x;—1) - - - & (x0) — O as m — o0. Then x,, — O form —
oo. Hence in this case we may drop the assumptions that o (x) € [0, 1) (O # x € X)
and X is compact.

An alternative approach to Theorem 10.4.1 is based on the assumption that there
exists a function /: (0, oc0) — R such that

Iyl <A @) llxll (10.4.5)

forallm >0,r >0, ||x|| <r,x € Xandy € F, (x).
In this case it is easy to verify that for all m,

Xl < gm.

where ¢, is the solution of the nonlinear difference equation

Gm+1 = h (qm) gm, g0 = lxoll .

Hence, the convergence analysis of iteration algorithms defined in a Banach space
is reduced to the examination of the solution of a special scalar nonlinear difference
equation.

We will use the following special result to derive further practical convergence
conditions.

Lemma 10.4.5. Assume that X is convex, and function h: X — X satisfies the fol-

lowing condition:
[y —h(x)]| <@ |x—x| (10.4.6)

Sor all x,x" € X, where & is a point on the linear segment between x and x',
furthermore a: X — R! is a real-valued function such that for all fixed x and
x" € X, a (x"+1 (x — x’)) as the function of the parameter t is Riemann integrable
on [0, 1]. Then for all x and x' € X,

1
|7 Gy —h (x") | 5[0 a(x" +1(x—x))de |x—x'|. (10.4.7)

Proof. Letx,x’ € X and define; =i/N (i =0, 1,2, ..., N), where N is a positive
integer. Then from (10.4.6),

I —h ()] = Y0 I (s = 2) = s (x - 2)]

1

I
—_

’

-

a(x' + 7 (x—x)) H (ti —ti—1) (x —x')

i=1
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where 7; € [ti,l, t,-], which implies that

N

[h Gy =n ()] =130 (7 (r =) G — 1) ¢ e =]

i=1

Observe that the first factor is a Riemann-sum of the integral [} o (x' 41 (x — x)) dt
which converges to the integral. Let N — oo in the above inequality to obtain the
result.

Remark 10.4.6. If function « is continuous, then « (x’ +1t (x —x/ )) 1S continuous in
t, therefore it is Riemann integrable.

Assume next that maps F,, are point-to-point and process (10.4.1) satisfies the
following conditions:

D) Fp (0) = 0 form > 0;
(Dy) forallm > 0,

[ ) = F ()| < @ G) |2 = '] (10.4.8)

for all x, x’ € X, where o: X — R! is a continuous function, and &, 1s a point
on the linear segment connecting x and x’.

D3) a(x) €[0,1)forall O # x € X;

(D4) X is compact and convex.

Theorem 10.4.7. Under the above conditions, x,, — O as m — 0.

Proof. Let O # x € X, then relation (10.4.7) implies that for all m,

1
[ Fm Ol S/O o (tx)dt || x|, (10.4.9)

where we have selected x’ = O. Break the integral into two parts to obtain

5 1
1 Fm (NI < {/ a (1x) dt +/ Oe(tX)df} llxll -
0 B

Because « is continuous, « (O) < 1, and because the interval [§, 1] is compact,
o (tx) < Bs (x) < 1forall 8§ <t < 1, where Bs: X \ {0} — R! is the real-valued
function defined as

Bs (x) = Jmax {or (1x)} .

<i<

Therefore,
[ Fm Ol < {8+ (1 = 8) Bs (O} lxIl = ys (x) 1x]l,

where y5: X \ {0} — R! is a continuous function such that for all x # O, ys (x) €
[0, 1).
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Hence the conditions of Theorem 10.4.1 are satisfied with @ = s, which implies
the assertion.

Remark 10.4.8. Replace (10.4.8) by the following weaker condition: Assume that for
allm >0and x,x" € X,

| Fn () = Fou (') | < ctm &) | x = '

) (10.4.10)

where for m > 0, a,,,: X — R! is a continuous function, &y 1s a point on the linear
segment connecting x and x’, and a,, (x) € [0, 1) forallm > 0and O # x € X.

Then the assertion of the theorem may not hold, as it is illustrated in the case of
Example 10.4.3.

Corollary 10.4.9. Recursion (10.4.1) and inequality (10.4.9) imply that for m > 0,

IXmatll = 1 Fm ) | < @ o) Xl

where

1
o(x) = / o (tx)dt.
0
Hence, by replacing o (x) by o (x), Corollary of Theorem 10.4.1 remains valid.

In the previous results no differentiability of functions F, was assumed. In the
special case of Fréchet-differentiable functions F;,, the above theorem can be re-
duced to very practical convergence conditions. These results are presented in the
next section.

10.5 Convergence of single-step methods with differentiable
iteration functions

Assume now that B is a Banach space, X C B, and functions Fy,;: X — X are
continuously differentiable on X. It is also assumed that X is compact and convex,
O € X, furthermore O is a common fixed point of functions F,,. In this special case,
the following result holds.

Theorem 10.5.1. Let F,, (x) denote the Fréchet derivative of Fy, at x. Assume that
forallm > 0,
1F, o] < B, (10.5.1)

where B: X — RL is a continuous function such that for x # O, B (x) € [0, 1).
Then x,, — O as m — Q.

Proof. Select
Xo={x\x € Xand [x|l < lxoll},
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then X is compact. Select furthermore « = f. We can easily verify that all condi-
tions of Theorem 10.4.7 are satisfied with X replacing X, which implies the asser-
tion. Assumptions (D) and (D3) are obviously satisfied. Assumption (D;) follows
from the mean value theorem of derivatives and that the linear segment between x
and x’ is compact and function « is continuous. In order to verify assumption (D),
we have to show that x,, € X¢ for all m > 0. From the beginning of the proof of
Theorem 10.3.6 we conclude that for O # x € X, ||F,, (x)|| < ||x||. Then finite
induction implies that for all m > 0, ||x,,|| < |lxol. Hence x,, € X¢ for all m > 0,
which completes the proof.

Remark 10.5.2. If (10.5.1) is replaced by the weaker assumption that for all m > 0
andx € O,
|£0 o] <1,

the result may not hold, as the case of Example 10.4.3 illustrates. However, if F,
does not depend on m, that is, when F;,, = F, the condition

|F" (x)] < 11 forall x # O

implies that x,, — O as k — oo. To see this assertion, select 8 (x) = H F’ (x)H.
Note that this special result was first introduced by Wu and Brown [208].

Corollary 10.5.3. Note that the corollary of Theorem 10.4.7 remains valid with
a(x) = (x).

Remark 10.5.4. Assume that no assumption is made on the derivatives at the fixed
point O.

Consider next the special case, when B = R". Obviously the above results are
still valid. However this further specialization enables us to derive even stronger
conditions for the convergence of the iteration process

Xm+1 = Fm (xm) B
where F,,: B — B.

Theorem 10.5.5. Let U be an open neighborhood of O. Assume that for all m, Fy, is
differentiable, and there exists a continuous function a: RN — R such that o (x) €
[0, 1) for x #£ O, furthermore

(E1) | Fp ()| < a ) ||x|| forallm and O # x € U;
(Ex) If x ¢ U and || F,;, (X)|| = « (x) ||x|| with some m, then H F) (x)x || <o) x|

Under these assumptions, x,, — O as m — Q.

Proof. We will prove that for all m > 0 and x ¢ O, relation (10.4.2) holds, which
implies the assertion.
Assume that for some m, (10.4.2) does not hold in the entire set RY \ {0}, then
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r* =inf{|x] \ O and (10.4.2) does not hold for m}

exists and is positive. If for all vectors satisfying ||x|| = r*, | F;y (0)|| > « (x) ||lx]],
then the continuity of functions F,, and « implies that * can be reduced, which
contradicts the definition of r*. Therefore there is at least one x* such that

[x*| =r* and ||Fy (x*)] = o x) | x*] - (10.5.2)

Because F, is differentiable, we know that for any ¢ > 0, and sufficiently large
A e (0,1),

|| Fou (1 =0 x*) = Fyy (x*) = AF,, (x¥) x*” < er ||x*

9

which together with (E») implies that
[ Fn (= 2)x%) = B ()| < A [ F () 27| + 2 ]
=1 [B (") +e] [«

)

where
B () = () 2] < @ (x).
From this and equality (10.5.1) we conclude that
[En (=2 27) [ > [[Fon () [ =2 [B () + ] [ <]
= (@ () =28 (x) = 2e) [ <]
z e ()@=
=1 =) x*| o (x¥),

when ¢ is selected small enough. Because « is continuous, this inequality contradicts
again the definition of r*, which completes the proof.

Corollary 10.5.6. Note that the corollary of Theorem 10.4.1 can be applied again
for estimating the convergence speed under the assumption of the theorem.

Corollary 10.5.7. Consider the special case, when F,, = F. The assertion of the
theorem remains valid, if conditions (E1) and (E3) are substituted by the following
assumptions:

There existsan e > 0and a 0 < q < 1 such that

(E}) Forall x # O and || x| < &,
IF @I <qglxl;
(E)) If |x|| = & and | F (x)|| = x|, then

|F" () x| < lIx]l .
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Proof. Define
= max { [ F @) x| 1617 /I @)l = Il me < x]) < on + e}

form=1,2, ...
Obviously r,, < 1. Introduce constants

Ry = max{q; ri;r; ...;rm},

and the piecewise linear function p (¢) with vertices (0, ¢), (¢, R1), (2¢, R2), (3¢,
R3), .... Then all conditions of the theorem are satisfied with U = {x \ |[x]| < &}
anda (x) = p (x| .

Remark 10.5.8. Then mean value theorem of derivatives implies that if | F' (0)] <
1, then there exist ¢ > 0 and 0 < g < 1 that satisfy condition (E}). Assume fur-
thermore that if x # O and ||F (x)|| = ||x||, then ||F’ (x)x| < llx||. In this case
condition (E/z) is also satisfied. Hence the iteration sequence {x,,} converges to O.
This special result was first introduced by Fujimoto [96], [97].

Assume again that X € B, where B is Banach space, furthermore for all m > 0,
F,, is Fréchet-differentiable at O, and || F,/n (0) || < 1. As the following example
shows, these conditions do not imply even the local convergence of the algorithm.

Example 10.5.9. Select X = R, and for m > 0 let

_ (m+1)(m+4)x
F (x) = (m+2)(m+3) °

It is easy to verify that for all m > 0,

/ _ (m+1)(m+4)
0=F 0 = Gty < I

If xo # 0 is any initial approximation, then finite induction shows that

m+3 1
= ——x0—> =xo #0asm — oo.
3(m+1) 3

Xm

However if the process is stationary, then the following result holds:

Theorem 10.5.10. Assume that F,, = F (m > 0), O is in the interior of X, and F
is Fréchet-differentiable at O, furthermore || F'(0) || < 1. Then there is a neighbor-
hood U of O such that xo € U implies that x,, — O as m — 00.

Proof. Because F is differentiable at O, we can write F (x) = L (x) + R (x), where
L is a bounded linear mapping of X into itself and lim || R (x)|| ||x 7' =0asx >
0. By assumption ||L|| < 1. Select a number b > 0 such that |L|| < b < 1. There
exists a d > 0 such that

IR (Il < (1 =b) x|l if [lx]| < d.
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Let U = {x € X/ |lx|| < d}. We shall now prove that U has the required properties.
Using the triangle inequality, we can easily show that

IF I <elxll, ifxel,

where ¢ = ||[L|| + 1 — b. Because 0 < e < 1, it follows that U is F-invariant.
Consequently, if xo € U, the entire sequence of iterates x,, is also contained in U,
and using finite induction we get

Xl < e™ llx| .
Because ¢™ — O, x,,, — O as m — o0.

Remark 10.5.11. Assumption || F’(0) || < 1 can be weakened by assuming only that
F' ()N || < 1 with some

the spectral radius of F’ (O) is less than one. In this case, |
N > 1, and then apply the theorem for the function

FN(x)=(FoFo---0F)(x).
Remark 10.5.12. Note that no differentiability is assumed for x # O.

Remark 10.5.13. When X = RY, our results can be reduced to the ones obtained by
Ostrowskii [155] and Ortega-Rheinboldt [154].

In the previous results, the special Liapunov function V (x) = |/x| was used,
where ||-]| is some vector norm. Select now the Liapunov function V (x) = || Py|l,
where P is an n x n constant nonsingular matrix. For the sake of simplicity, we
assume that F,, = F for all m > 0. Then in Theorem 10.4.1 and 10.5.10 conditions
(10.4.2) and (10.5.1) can be substituted by the modified relations

IPF I < [IPx]

and
|PF' (x)u| < [IPull (forallu # O).
If one selects the Euclidean norm ||x|| = x7 x, then these conditions are equivalent
to the relations
Flx)yPTPF(x) <xTPTPx (10.5.3)
and
ul F' )T PTPF (x)u < u” PT Pu. (10.5.4)

Note that (10.5.3) holds for all u # O if and only if matrix F’ (x)T PTPF’ (x) —
PT P is negative definite. This condition has been derived in Fujimoto [97] and it is
a generalization of Theorem 1.3.2.3 of Okuguchi [153]. The case of other Liapunov
functions can be discussed in an analogous manner, the details are omitted.

In the rest of the section, we are concerned with the problem of approximating a
locally unique common solution x* of the sequence of nonlinear operator equations
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F,(x)=0 (n>0), (10.5.5)

where each F;, (n > 0) is defined on the same convex subset D of a Banach space X
with values in a Banach space Y.

Let xo, yo € D be fixed, and define the two-step Newton-like method for all
n > 0 by

Yn =Xy — Ay (xn)_l Fy (xn) (10.5.6)
Xn+1 = Yn — Yn- (10.5.7)

Here, A, (x,) denotes a linear operator that is a “conscious” approximation to the
Fréchet derivative F,, (x,) of F evaluated at x = x,, for all n > 0. The points y,, € X
for all n > 0 are to be determined in such a way that the iteration {x,} (n > 0)
converges to a common solution x* of Equations (10.5.5).

We will assume that 0 is in D and x* = 0.

Here we provide convergence results for the iteration (10.5.6)—(10.5.7) as well
as an error analysis in a Banach space setting. The monotone convergence of this
iteration is also examined in a partially ordered topological space setting.

Finally, some application of our results are provided to the solution of nonlinear
integral equations of Uryson-type.

Let R > 0 be fixed. We assume that the following conditions are satisfied

|40 ©7" (A ) = 4, O] = o) (10.5.8)

and
HA,, O (FL (x + 1) — Ay (x) H <C@r+ k) (10.5.9)

forallx € U (0,r) and ||h|| < R —r.

Here Cy is a nondecreasing function, and C is a nondecreasing function of two
variables on [0, R] and [0, R] x [0, R], respectively.

Let xg, yo € D, and R > 0 be fixed. We introduce the constants

llxoll <t and £o > |lyoll, (10.5.10)

and the iterations for all n > 0

1 2]|x
Sp = C (lxall, q) dq, (10.5.11)
"= Colxall) Sy "
1 2ty
Sy = ————— C(ty,q)d (10.5.12)
! 1 - C() (tn) /t,l 4
tny1 = Sp + Ly, (10.5.13)

for some given sequence {¢,} (n > 0).
We can now prove the following result:
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Theorem 10.5.14. Let F,;: D € X — Y (n > 0) be Fréchet-differentiable nonlinear
operators.
Assume:

(a) The point x* = 0 is a common solution of the operators F, for alln > 0;
(b) the conditions (10.5.8) and (10.5.9) are satisfied on U (0, R) and U (0, R) C D;

(c) the following estimates are true:

lzall < £y < Buty n =0 for some B, > 0, (10.5.14)
Co (t9) < 1, 00 (10.5.15)
0<Butdn=l. [[Bat8)=0 (10.5.16)
n=0
where,
C (ty, 2ty)
Sy = —————,
1 - CO (tn)
I
/ C(0,9)dg <1, (10.5.17)
0
and
o < R. (10.5.18)
Then,

(i) The sequence {t,} (n > 0) generated by (10.5.12)—(10.5.13) is monotonically de-
creasing to 0, and

n
tn <[] Bu+80)10 n=0. (10.5.19)
n=0
(ii) The iterates {x,} (n > 0) generated by (10.5.6)—(10.5.7) are well defined, belong
to U (0, ty) for all n > 0 and converge to 0 which is a unique common solution
of the operators F,, (n > 0) in U (0, ty). Moreover, we have

lxpll <t, (n>0). (10.5.20)

Proof. (i) Inequality (10.5.19) is true for n = 0 as equality. Let us assume that
(10.5.19) is true form = 0, 1, 2, ..., n. Then by (10.5.12), we get

l 2tm
=— C(tm,q)d
Sm 1= Co (i) /tm (tm, q) dq

< ———C (ty, 2ty) Qtyy — ty) < Sty < t,. 10.5.21
_1_C0(tm) (m m)( m m)_ mtrm —= 'm ( )

From relations (10.5.13), (10.5.14), (10.5.16), and (10.5.21), we get

m+1
Il = Sm + L < St + Bt = B =+ Bm) tw 1_[ (6; + Bi) 1o- (10.5.22)
i=0

Hence, relation (10.5.22) shows that the sequence {t,} (n > 0) is monotonically de-
creasing to 0.
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(i) By induction on n, we will show (10.5.20). For n = 0, relation (10.5.20)
becomes ||xg|| < t9, which is true by (10.5.10). Suppose the relation (10.5.20) holds
fori < n. Because

Am (Xm) = Ay (xp) — Ay (0) + Ay, (0)
= A ) [1+ A O (A (o) = A O]

from relations (10.5.8) and (10.5.20), we obtain
4 @7 (A ) = A O))| = Co (liml) = Co (t) = Co(t0) < 1

(by (10.5.15)).
It now follows from the Banach Lemma on invertible operators that A,, (x,,)
(m > 0) is invertible, and
1 1 1
< <
Co(lxml) = 1= Co(tm) — 1 — Co(to)

[4n G ™ 40 @) = — 20).

(10.5.23)
From relations (10.5.6) and (10.5.13), we now obtain the approximation

(m =

1
Ym = (Am (xm)_l Am (0)> |:Am (0)_1 / (F;; (txm) — Am (xm)) xmdtj| s
0

and using (10.5.9), (10.5.23), and (10.5.20), we get in turn

il = A o™ 40 @) ‘

1
|:Am (0)71 / (Fy/n (txm) — Am (xm)) xmdt:|
0

1 /1
S ————— | Cxumll, lxmll + (T =2) [|xml) llxml dt
1= Co (lxml) Jo m e
=Sm <sm (m=>0). (10.5.24)
Using relations (10.5.14), (10.5.19), (10.5.22), and (10.5.24), we obtain
”xm—i-l I < ”ym” + ”ym” <Sm+lm = tm+1 = I,

which together with part (i) show (ii) except the uniqueness part.
To show uniqueness, let us assume that there exists a second common solution
y* of the operators F;,, (n > 0) in U (0, fp). Then we get the estimate

/01 a7 [F, () - A 0] < /01 C(0.0+1y"])ds

1 o
5/ C(O,tto)dtf/ C(0,q9)dg <1
0 0

by (10.5.17).
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It now follows from the above estimate that the linear operator fol F) (ty*)dt is
invertible, and from the approximations

1
Fu (¥*) = Fin (0) =/O F{(ty*)dty*  (m = 0)

it follows that y* = 0.
That completes proof of the Theorem.

Remark 10.5.15. If we set A,, (x) = F, (x) for all x € D, then the iterations
(10.5.6)—-(10.5.7) become

Yu = Xn — F! (x) 71 Fy (x) (10.5.25)
Xn4l =Yn—Yn (n=0). (10.5.26)

Let us also set C (0, 1) = Cy (¢) for all r € [0, +00). Then under the hypotheses
of the theorem, the conclusions will also hold by for the NK iteration {x,} (n > 0)
generated by (10.5.25)—(10.5.26) for all n > 0.

Finally note that the sufficient convergence conditions as well as the error bounds
can be further improved if center-Lipschitz conditions are also introduced along the
lines of Section 2.2.

Example 10.5.16. We assume that A, (x) = F, (x) foralln > Oand x € U (0, R).
Let us assume that the following condition is satisfied

|

for all v,w € U (0, R), n > 0, and for some nondecreasing function ¢ on [0, R].
Then as in [35] we can show that by setting

Fr 7 (Fr @) = Fy)| =g o)y —wl (10.5.27)

r+llhll r
C@r,r+1hl) = / w@)dt, w()= / q (1) dt (10.5.28)
r 0
and
Co(t)=C(0,1) tel0,R] (10.5.29)
conditions (10.5.8) and (10.5.9) are satisfied.

Let assume that X = Y = C = C [0, 1] the space of continuous functions on
[0, 1] equipped with the usual supremum norm. We consider Uryson-type nonlinear
integral equations of the form

1
F (x) (t):x(t)—/ K (t,s,x (s)) ds. (10.5.30)
0

‘We make use of the following standard result whose proof can be found for example
in [6], [43].
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Theorem 10.5.17. The Lipschitz condition (10.5.27) for the Fréchet derivative F' of
the operator (10.5.30) holds if and only if the second derivative K!' (t, s, u) exists
for all t and almost all s and u, and

uu

1
sup / sup |K (t,s, u)|ds < 00 (10.5.31)
0

s€[0,1] lul<r

Moreover, the left-hand side in relation (10.5.31) is then the minimal Lipschitz
constant q(r) o= |F O | in (10.5.27).
Moreover the constant « is given by

a=14+ sup / |r(t,5)|ds, (10.5.32)
tel0,1]

where r (t, s) is the resolvant kernel of the equation

1 1
h(t) — / K, (t,s,0)h(s)ds = —/ K (t,s,0)ds. (10.5.33)
0 0

Proof. Let us consider a simple example. Suppose that K (¢, s,u) = c1 (t) c2 (s)
3 (1) with two continuous functions ¢; and ¢, and c3 € C2. We set

d =/01cz (s) ds, dngolcl (s) 2 (s) ds. (10.5.34)
Then relation (10.5.33) becomes
h(t) = [0463 ©) — dic3 (0)] o (@), (10.5.35)
where X
cngo ¢ (s) h (s) ds. (10.5.36)

substituting relation (10.5.35) into (10.5.36), one may calculate cﬁl and hence find the
resolvent kernel r (¢, s) in case dzc’3 (0) < 1, to get

_ a®e)d,0)

rt.s) = —"ga (10.5.37)
Using relation (10.5.31), (10.5.32), we obtain
q (1) = (10.5.38)
lull<r
1= 122 el (10.5.39)
and
B =1+ 122 el (10.5.40)
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Let us now consider the sequence of equations
F,(x) () =0 (10.5.41)
where

1
F,(x))(t) =x (@) — / K, (t,s,x(s))ds, (10.5.42)
0

and we choose forall n > 0
n n+l12 n +12 n _n+2 (1.2, 1
W) =im5 o0 =51%s W=7 (3” + 10)”

Then using relations (10.5.28), (10.5.29), (10.5.34), (10.5.37)—(10.5.40), we obtain
foralln >0

di =55 43 = 1oy O =0<1,

2
) =0, a=1, g, () =155 (33) r = 5r =a .
w() = ggrts €O+ ki) = g [0+ 18D =]
and
Co(t) =C(0,1) forall tel0,R].

We select z,, = 0 and B, = O for all n > 0 for simplicity. Then (10.5.15), (10.5.16),
and (10.5.18) will be satisfied if the following conditions are satisfied, respectively

to < V100, 1ty < 13100, and 7o < ~/400.

By setting x¢ (1) = 2 =t for all + and R = 1y, with the above choices all conditions
(10.5.14)—(10.5.16), (10.5.17), and (10.5.18) are satisfied. Hence the conclusions of
Theorem 10.5.17 for equations (10.5.41) follow.

10.6 Monotone convergence

Let X be a linear space. We examine the monotone convergence of POTL-space (see
Section 1.2).

Theorem 10.6.1. Let F,: D C X — Y (n > 0) where X is a regular POTL-space
and Y is a POTL-space. Let X, xo, X—1 be three points of D such that

X0 <x0 <x—1, (Xo,x-1) C D, Fy(xo) =0 = Fo(xo), (10.6.1)
and denote
Sl={(x,y)eX2 | fofxfygxo}, (10.6.2)
Sy = {(u,x_l) eX? |Xo<us< xo} : (10.6.3)
S3 =851 USs. (10.6.4)

Assume:
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(a) The operators A, (-,-): S3 — LX (X, Y) are such that

Fo(y) = Fu(x) = Ay (w,2) (y — y) (10.6.5)

foralln >0 (x,y), (y,w) € 51, (w, y) € S3.

(b) The linear operators A, (u, v), (n > 0) have a continuous nonsingular nonneg-
ative subinverse.

(c) The following conditions hold:

Fy (x) < Fp1 (x) forall x € (xo, yo) (n = 1), F,—1(x) =0,  (10.6.6)
Fu(y) = Foe1 (x) forallx € (xo, yo) (n = 1), F,—1(y) 20.  (10.6.7)

(d) There exist sequences {y,}, {vn}, {in } {yn} (n > 0) satisfying

Fy (a) = An (32) <0, A = Ay (T, %) (10.6.8)
Fy (yn) — Ay (n) 20, (10.6.9)
Yn = Yn = Yn — Yns (10.6.10)
yn =0 (10.6.11)

and
Y, <0 forall n>0. (10.6.12)
Then there exist sequence {X,}, {x,} (n > 0) and points x*, x*, such that for all

n >0,
Fy (xp) + Ay (yn — xu) =0, (10.6.13)
Yn+Xnt1 —yn =0, (10.6.14)
Fn ()_Cn) + An (yn - fn) = O, (106]5)
Yp+Xnt1 =y, =0, (10.6.16)
Fo(xp) < Fue1 (X)) <0< Fyey () < Fu (), (10.6.17)
XO0<SYVo<X1 = - =Y, <Xnt1 S Xpgp1 S yp < -0 < x1 =< Yo = X0,

(10.6.18)

and
lim X, =x" <x* = lim x,. (10.6.19)

n— o0 n—o00
Moreover, if the operators A, are inverse nonnegative, then any solution u of the
equations F, (x) = 0 (n > 0) in (X9, x0) in (X0, x0) belongs to <)_c*, x*). Further-
more, if X* = x*, then we get x* = u = x*.

Proof. Let Lo be a continuous nonsingular nonnegative left subinverse of Ag, and
consider the mapping P: (0, xo — X9) — X defined by

P (x) = x — Lo (Fo (xo) + Ao (x))

where Ag (x) denotes the image of x with respect to the mapping Ag = Ao (X, x0).
It is easy to see that P is isotone and continuous. We also have
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P (0) = —Lo (Fp (x0)) >0, (by (10.6.1)),
P (xo — X0) = x0 — X0 + Lo (F (x0) Fo (x0) — Ao (x0 — X0))
< xp — X0 + Lo (Fo (x0) — Ag (xo — X0)) < xp — Xo.

According to Kantorovich’s Lemma (see Section 1.2), the operator P has a fixed
point w € (0, xo — xo). Taking y, = X¢ + w, we have

Fy (%) + Ao (o — %o) = 0, To < T =< Xo- (10.6.20)

Using (10.6.20) and the above approximation, we get Fo (¥) = Fo (¥) — Fo (X0) —
Ao (yo — 70) < 0. Hence, we obtain by (10.6.6), F (yo) < F (yo) < 0. From the
approximation (10.6.16) and estimates (10.6.8), (10.6.12) we have that

X1 —Yo=—-20=0= X1 =Y, (10.6.21)
Fo (X1) < Fo (x1) — Fo (39) — Ao (X1 — ¥o) <0, (10.6.22)

and by (10.6.6)
Fi (x1) < Fy(x1) <0. (10.6.23)

Consider now the operator G:(O, X0 — §0> — Ej defined by G (x) = x +
Lo (Fop (x0) — Ao (x)) . G is clearly continuous, isotone, and

G (0) = Lo (Fp (x0)) = 0, (by (10.6.1))
G (x0 — o) = x0 — Yo + Lo (Fo (o)) + Lo (Fo (x0) — Fo (¥o) — Ao (x0 — Yo))

< x0 — Yo + Lo (Fo (x0) — Fo (¥9) — Ao (x0 — ¥))
<x0—Yp, (by(10.6.5)).

Applying the Kantorovich Lemma again, we deduce the existence of a point v €
<O, X0 — i()) such that G (v) = v. Taking yp = x¢ — v,

Fo (x0) + Ao (Yo —x0) =0, ¥o = yo =< xo. (10.6.24)

Using (10.6.5) and (10.6.24), we get
Fo (yo) = Fo (yo) — Fo (x0) — Ao (Yo — x0) = 0.
Hence, by (10.6.7), we obtain
Fi (yo) = Fo (o) = 0.
Using (10.6.11), and the approximation
x1—yo=—y0 <0=x1 <y, (10.6.25)

and by (10.6.9), we obtain

Fo (x1) = Fo (x1) — Fo (yo) — Ao (x1 — yo) > 0.
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Hence, we get by (10.6.7)
Fi(x1) > Fo(x1) > 0. (10.6.26)

By induction, it easy to show that there exist sequence {X,}, {x,} (n > 0) sat-
isfying (10.6.13)—(10.6.18) in a regular space E; and as such there exist X*, x* €
(X0, x0) satisfying (10.6.19).

If xo < u < xpand F, (1) =0 (n > 0), then we can obtain in turn

Ap (yo —u) = Ag (xo — u) — (Fo (x0) — Fo (u)) > 0,
and
Ao (¥ — u) = Ao (Fo — u) — (Fo (x0) — Fo (u)) < 0.

Because the operator A is inverse nonnegative, we get yo < u < yp. Proceeding
by induction, we deduce that y, < u < y,, from which it follows that y,, <X, <
Yual S U < Yuy1 < Xy < yu foralln > 0. That is, we have X, < u < x, for all
n > 0. Hence, we get X* < u < x*. Furthermore, if X* = x*, then we get

which completes the proof of the Theorem.

Remark 10.6.2. The linear operators A, (n > 0) are usually chosen as divided dif-
ferences of order one related with the operators F,, for each n > 0. For example,
we can set Ay, = [x, X] (n > 0), or Ay =[xy, Xp41] (n = 0), etc., where each
[-, -] depends on the operators F; (n > 0). The hypotheses (10.6.8)—(10.6.12) will
then be conditions on divided differences for each n > 0. It then turns out that for
appropriate choices of the A,’s (n > 0), relations (10.6.8)—(10.6.12) turn out to be
standard natural conditions on divided differences.

10.7 Exercises

10.7.1. Maximize F = 240x1 + 104x; 4+ 60x3 + 10x4 subject to

20x1 + 9xp + 6x3 + x4 < 20
10x1 +4x3 + 2x3 + x4 < 10

x>0, i=1,..,4.
10.7.2. Minimize F = 3x; + 2x3 subject to

8x; —x2 > 8
2x1 —xp > 6
X1+ 3x>6
X1 +6x >8

x1 >0, xp>0.
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10.7.3. Find an interval [a, b] containing a root x* of the equation x = % cos x such
that for every xo € [a, b], the iteration x,4; = % cos x,, will converge to x*.
Solve the equation by using NK or the secant method.

10.7.4. Solve the following nonlinear equations by the method of your choice:

(@) Inx =x—4
(b) xe¥ =7
() ¢flnx =7.
10.7.5. Find (I — A)_1 (if it exists) for the matrix

A 0.12 0.04
—10.010.03 /)"
Perform three steps.
10.7.6. Repeat Exercise 10.7.5 for the matrix
—-13
=(33).

X=x—y—1x0)=0
y=x+y y(0) =1

10.7.7. Solve problem

Perform three steps.
10.7.8. Solve the boundary-value problem

Xx=tx—x—1, xO)=x()=1

by the discretization method. Select 2 = 0.1.
10.7.9. Solve

1
x(t):/ U=y (s)ds — 7.
0
10.7.10. Solve .
x (1) :/ (t+s)x(s)ds — 4.
0

10.7.11. Consider a continuous map P:R” — R such that P € C! and P (0) = 0.
Set Sy ={x | 1P I < llxl), S2={x| [P )l = llx]). Assume that
(a) S is invariant under P, P (S1) C S} and
(b) Forall a € S,, there exists a positive integer i (a) such that P{® (a) € Sj.
Show that for all x € R”, P (x) — 0 as m — oo.

10.7.12. Assume that there exists a function 4: (0, co) — Rsuch that |y| < & (r) |x|
forallm >0,r >0, |x] <r,x € X and y € F,,, (x). Show that

|xm| S th

where
dm+1 = h (Qm)CIma qo = |X0| .

Provide a convergence analysis of iteration (10.4.1) based on the above estimate.
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10.7.13. To find a zero for G (x) = 0 by iteration, where G is a real function defined
on [a, b] rewrite the equation as,

x=x4+c-Gx)=F (x)

for some constant ¢ # 0. If x* is a root of G (x) and if G’ (x*) # 0, how should
¢ be chosen in order that the sequence x,,+1 = F (x,) converge to x*?
10.7.14. Solve the initial value problem

%(t) = 14cos(x (1)), x(0)=0.

10.7.15. The predator-prey population models describe the iteration of a prey popu-
lation X and a predator population Y. Assume that their interaction is modeled
by the system of ordinary differential equations

¢ = 1.2 1
X=Xx—zx 0xy + 1

y=—iy+ixy+3.
(Assume x (0) = y (0) = 0.) Solve the system.

10.7.16. Assume that F,;, = F (m > O), O is in the interior of X, and F is Fréchet-
differentiable at O, furthermore the special radius of F’ (0) is less than 1. Then
show that there is a neighborhood U of O such that xo € U implies that x,,, — O
asm — oQ.

10.7.17. Let F:R" — R” be a function such that F (0) =0, F € CY, and consider
the difference equation x (¢ + 1) = F (x (¢)). If, for some norm, || F (x)| <
[lx|| for any x # O, then show that the origin is globally asymptotically stable
equilibrium for the equation.

10.7.18. Assume that there exists a strictly increasing function g: R — R such that
g (0) =0,and anorm such that g (|| F (x)]) < g (|x|) forall x # 0. Then show
that O is a globally asymptotically stable equilibrium for equation x (t + 1) =
F (x (1)), where F (O) = 0.

10.7.19. Consider the following equation in R?:

x1(t+ 1) =8sin (x; (1) + Z) + .2x2 (1)
X2 (t+1) =8x1 (1) + .1x2 (7).

10.7.20. Solve the Fredholm-type integral equation

1.
x(t):/ LX) ey,
0

10
10.7.21. Solve the Volterra-type integral equation

[Ttx(s)
x(t)—/o 0 ds + 1.

10.7.22. Solve equation



11

The Newton-Kantorovich Theorem and Mathematical
Programming

The Newton-Kantorovich Theorem 2.2.4 with a few notable exceptions [173], [174],
[165], has not been sufficiently utilized in the mathematical programming commu-
nity. The purpose of this chapter is to provide a bridge between the two research
communities by showing that the Newton-Kantorovich theorem can be used in an-
alyzing LP and interior point methods and can be used for obtaining optimal error
bounds along the way.

In Sections 11.1 and 11.2 we show how to improve on the elegant works of
Renegar, Shub in [174] and Potra in [165]. To avoid repetitions, we simply refer the
reader to the above excellent works for the development of these methods. We simply
start from the point where the hypotheses made can be replaced by ours, which are
weaker. The benefits of this approach have also been explained in the Introduction
and in Section 2.2.

We also note that the work in [174] is motivated by a Theorem of Smale in com-
bination with the Newton-Kantorovich theorem, whereas the work in [165] differs
from the above as it applies the latter theorem directly.

11.1 Case 1: Interior point methods

It has already been shown in [165] that the Newton-Kantorovich theorem can be used
to construct and analyze optimal-complexity path following algorithms for linear
complementary problems. Potra has chosen to apply this theorem to linear comple-
mentary problems because such problems provide a convenient framework for ana-
lyzing primal-dual interior point methods. Theoretical and experimental work con-
ducted over the past decade has shown that primal-dual path following algorithms are
among the best solution methods for linear programming (LP), quadratic program-
ming (QP), and linear complementary problems (LCP). Primal-dual path following
algorithms are the basis of the best general-purpose practical methods, and they have
important theoretical properties [207].

I.K. Argyros, Convergence and Applications of Newton-type Iterations,
DOI: 10.1007/978-0-387-72743-1_11, © Springer Science+Business Media, LLC 2008
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Potra using Newton-Kantorovich Theorem 2.2.4 in particular showed how to
construct path following algorithms for LCP that have O (ﬁ L) iteration complex-
ity.

Given a point x that approximates a point x (7) on the central path of the LCP
with complementary gap t, the algorithms compute a parameter 6 € (0, 1) so that
x satisfies the Newton-Kantorovich hypothesis (2.2.17) for the equation defining
x ((I —0) 7). It is proven that 6 is bounded below by a multiple of n~1/2. Because
(2.2.17) is satisfied, the sequence generated by NK method (2.1.3) or by the MNK
method (2.1.5) with starting x, will converge to x ((1 — 0) 7). He showed that the
number of steps required to obtain an acceptable approximation of x ((1 — ) 7) is
bounded above by a number independent of n. Therefore, a point with complemen-
tarity gap less than ¢ can be obtained in at most O (ﬁ log (%")) steps (for both
methods), where &g is the complementary gap of the starting point. For linear com-
plementary problems with rational input data of bit length L, this implies that an
exact solution can be obtained in at most O (ﬁ L) iterations plus a rounding proce-
dure involving O (n3) arithmetic operations [207].

The differences between Potra’s work and the earlier works by Renegar [173]
and Renegar and Shub [174] have been stated in the introduction of this chapter and
further analyzed in [165].

We also refer the reader to the excellent monograph of Nesterov and Nemirovskii
[145] for an analysis of the construction of interior point methods for a larger class
of problems than that considered in [165].

Below one can find our contribution.

Let || - || be a given norm on R, i a natural integer, and x( be a point of D such
that the closed ball of radius r centered at xq,

Uxg,r) = {x € R: ||x — xo|| <r} (11.1.1)
isincludedin D C R, i.e., -
U(xo,r) € D. (11.1.2)

We assume that the Jacobian F’(xo) of F: D C X — X is nonsingular and that the
Lipschitz condition (2.2.36) is satisfied.
The Newton-Kantorovich Theorem 2.2.4 states that if the quantity

1
k=tn <. (11.1.3)

then there exists x* € U (xo, r) with F(x*) = 0. Moreover the sequences produced
by NK method (2.1.3) and by the modified NK method

Ynrl = ¥n — F'00) "Fym), yo=x0 (n=>0) (11.1.4)

are well defined and converge to x*.
Define

K =tn< (11.1.5)

1
>
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where,

- Lo+t
{= .
2

where £ is the constant appearing in the center-Lipschitz conditions (2.2.43).
Note that

(11.1.6)

k<l:>k0<l (11.1.7)
-2 -2
but not vice versa unless if £y = £.
Similarly by simply replacing ¢ with £ (as (2.2.43) instead of (2.2.36) is actually

needed in the proof) and condition (11.1.3) by the weaker

1
k' =eon < 3 (11.1.8)

in the proof of Theorem 1 in [165] we show that NK method (2.1.3) also converges
to x* and the improved bounds

2801}
lyn —x*Il < _/\gs (n=1) (11.1.9)
where
V1= 2T 1— 1 —2kT -
fo=—"""—, A= A and (11.1.10)
wo

fg=1—+/1—2k!, (11.1.11)

hold. In case £g = ¢ (11.1.8) reduces to (11.1.3) used in [165]. Otherwise our error
bounds are finer. Note also that
=k'<

k< (11.1.12)

N | —
N | =

but not vice versa unless if £y = £.

We can now describe the linear complementarity problem as follows: Given two
matrices Q, R € R™" (n > 2) and a vector b € R", the horizontal linear comple-
mentarity problem (HLCP) consists of approximating a pair of vectors (w, s) such
that

ws =0
Q(w)+ R(s)=b (11.1.13)
w,s > 0.
The monotone linear complementarity problem (LCP) is obtained by taking R = —1

and Q positive semidefinite.

Moreover, the linear programming problem (LP) and the quadratic programming
problem (QP) can be formulated as HLCPs. That is, HLCP is a suitable way for
studying interior point methods.
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We assume HLCP (11.1.13) is monotone in the sense that:
Q(u) + R(v) = 0 implies u'v > 0, for all u, v € R". (11.1.14)

Condition (11.1.14) holds if the HLCP is a reformulation of a QP. If the HLCP is
a reformulation of a LP, then the following stronger condition holds:

Q) + R(v) = 0 implies u’v = 0, forall u, v € R". (11.1.15)

Then we say in this case that the HLCP is skew-symmetric.
If the HLCP has an interior point, i.e., there is (w, s) € R’jr L X R’i . satisfying
Q(w) 4+ R(s) = b, then for any parameter t > 0 the nonlinear system

ws = Te
Q(w)+ R(s)=0> (11.1.16)
w,s >0

has a unique positive solution x(7) = [w(r)’, s(r)’]t .

The set of all such solutions defines the central path C of the HLCP. It can be
proved that (w(7), s(t)) converges to a solution of the HLCP as t — 0. Such an
approach for solving the HLCP is called the path following algorithm.

At a basic step of a path following algorithm, an approximation (w, s) of (w(t),
s(t)) has already been computed for some t > 0. The algorithm determines
the smaller value of the central path parameter 7 = (1 — ) 7, where the value
6 € (0,1) is computed in some unspecified way. The approximation (w’, s*) of
(w(ty), s(zy)) is computed. The procedure is then repeated with (w*,s™, t™) in
place of (w, s.7).

In order for us to relate the path following algorithm and the Newton-Kantorovich
theorem, we introduce the notations

|w _|lw ()
= [8] e [10)

xt = [l;):], x(ty) = |:w(r+) etc.

s (74) |

Then for any 6 > 0 we define the nonlinear operator

ws —oe
Fy(x) = [Q(w) L RG) b (11.1.17)

Then system (11.1.16) defining x (7) becomes
Fs(x) =0, (11.1.18)

whereas the system defining x(7.) is given by

F—p):(x) = 0. (11.1.19)
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We assume that the initial guess x belongs in the interior of the feasible set of the
HLCP
FO— {x = ', s") R, : Q(w) + R(s) :b}. (11.1.20)

In order to verify the Newton-Kantorovich hypothesis for equation (11.1.18), we
introduce the quantity

n=n 1) =|Fm R, (11.121)
the measure of proximity
k=k(x,t)=nt, £ =4L(x) (11.1.22)
K=k, 1) =nt, £ =0(x)
k' =k (e, 1) = nto, Lo = Lo(x)
and the normalized primal-dual gap
w's
nw=pukx)=—. (11.1.23)
n

If for a given interior point x and a given parameter t we have k%(x, ) < .5 for the
Newton-Kantorovich method or k! (x, 7) < .5 for the modified Newton-Kantorovich
method, then corresponding sequences starting from x will converge to the point
x () on the central path. We can now describe our algorithm, which is a weaker
version of the one given in [208]:

Algorithm 11.1.1. (using Newton-Kantorovich method).
Given 0 < k? < kg <.5,e>0,and xp € F° satisfying k9 (xo, n(xg)) < kY;
Set k® < 0 and 19 < 1 (x0) ;
repeat (outer iteration)
Set (x,T) < (Xk, Tk) , X < Xk
Determine the largest 0 € (0, 1) such that K, (1-0)1) < kY,
Sett < (1 —0)t;
repeat (inner iteration)

Setx < x — F'(x)"'F; (x) (11.1.24)

until kO (x, ) < kY;
Set (Xk+1, Tht1) < (X, T);
Setk <k + 1;

until (u)k)t sk <e.

For the modified the Newton-Kantorovich algorithm ko, k(z), k9 should be re-
placed by k/, k3, k', and (11.1.24) by

Setx < x — F'(x) "' Fr (%)
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respectively.

In order to obtain Algorithm 1 in [208], we need to replace ko, kg, k9 by k1, k2,
k, respectively.

The above suggest that all results on interior methods obtained in [208] using
(11.1.3) can now be rewritten using only the weaker (11.1.5) (or (11.1.8)).

We only state those results for which we will provide applications.

Let us introduce the notation

1+67 4+ /207 + r{, if HLCP is monotone,
v = (11.1.25)

l
14 Gia ++/2qia + qiza, if HLCP is skew-symmetric
where ,/rf = 9;‘, \/f = kf’, a=0,1,

té ¢
eiazti |:1+ l—lt“i|’ q"“:lf’ i=1,2. (11.1.26)

1

Then by simply replacing k, k1, k> by k°, k(l), kg , respectively, in the corresponding
results in [208], we obtain the following improvements:

Theorem 11.1.2. The parameter 6 determined at each outer iteration of Algorithm
11.1.1 satisfies

0> =1

g||><
S Q

where

V2 (kg _ k?) if I{LC[.’ is skew-symmetric or.if
— o simplified Newton-Kantorovich
V2 + prti/ Y steps are performed,

x4 = (11.1.27)
V2 (k§ — k)

(\/E—l—pk‘l’)\/w;f,

otherwise

where

V2, if HLCP is monotone,
p= (11.1.28)
1, if HLCP is skew-symmetric.

Clearly, the lower bound on A* on 0 is an improvement over the corresponding one
in [208, Corollary 4].

In the next result, a bound on the number of steps of the inner iteration that
depends only on k? and kg is provided.

Theorem 11.1.3. If Newton-Kantorovich method is used in Algorithm 11.1.1 then
each inner iteration terminates in at most N° (k(l), kg) steps, where
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lo
N° (k?, k(z)) = integer part | log, £2 (XNO)
log, [(1 —J1 =2k — k§> /kg}
(11.1.29)
and

Pk3 [ 0 / 0 ’ 0

<_E> t —|1—/1—2k kj
Xyo = = (11.1.30)

21— 29| Syl 41— i —2kg} (1+4)

If the modified the Newton-Kantorovich method is used in Algorithm 11.1.1 then each
iteration terminates in at most S° (k1, ko) steps, where

log, (xg1)

log2<1— 1-,/1-2/@)

s! (k{,k;) — integer part +1 (11131

and

2
zé—(]—,/l—Zké—ké)}k?
Xgl = B .
2V2 1—2@(1—,/1—2@—@) ( 1/f21+1—,/1—2k;)(1+k{)

Clearly, if k} = k) = ki, k) = kY = ko, k' = k° = k, Theorem 11.1.2
reduces to the corresponding Theorem 2 in [208]. Otherwise the following improve-
ment holds:

NO (k?, kg) < N k). NO < N,
s! (k{,k;) < Sk k), and S' < §.
ki ky ki k2 o . .
Because —, —, —, — can be arbitrarily large for a given triplet 7, £ and £,
KK kK
IS S )

the choices
K =ki = .12, kY =k} = .24 when k; = .21 and kp = .42

and
k) =k} = .24, kY =k} = .48 when kj = 245 and k = .49

are possible. Then using formulas (11.1.28), (11.1.29), and (11.1.31) for our results
and (9)—(11) in [208], we obtain the following tables:
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(a) If the HLCP is monotone and only Newton directions are performed, then:

Potra Argyros
x(.21,.42) > .17 x0(12,24) > 11
x(.245,.49) > .199 x0(.24, 48) > .196
Potra Argyros
N(21,.42)=2 NO(12, 24) =1
N(.245,.49) = 4 NO(24, .48) =3

(b) If the HLCP is monotone and Modified Newton directions are performed:

Potra Argyros
x(21,.42) > .149 %112, 24) > .098
x (245, .49) > .164 x1(24, 48) > .162

Potra Argyros
S(21,.42)=5 sT(12, 24) =1
5(.245, .49) = 18 s1(24, 48) =12

All the above improvements are obtained under weaker hypotheses and the same
computational cost (in the case of Newton’s method) or less computational cost (in
the case of the modified Newton method) as in practice the computation of £ requires
that of £¢ and in general the computation of £ is less expensive than that of €.

11.2 Case 2: LP methods

We are motivated by paper [174], where a unified complexity analysis for Newton
LP methods was given. Here we show that it is possible under weaker hypotheses to
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provide a finer semilocal convergence analysis, which in turn can reduce the com-
putational time for interior algorithms appearing in linear programming and convex
quadratic programming.

Finally, an example is provided to show that our results apply where the ones in
[174] cannot.

Let us assume that F: D € X — Y is an analytic operator and F "(x)~1 exists at
x = xg € D. Define

n = n(xo) = [|F'(x0) ™ F(xo)| 1r.2.1

and 1
=

1
aF o™ FOw

y =vy(xo) = iug (11.2.2)

Note that n(xp) is the step length at xo when NK method is applied to approximate

x*

Smale in [184] showed that if D = X, and

yn <= =.125, (11.2.3)

0| —

then Newton-Kantorovich method (2.1.3) converges to x*, so that

1 n
Xn41 — Xnll < 2(§> X1 —xoll  (n = 0). (11.2.4)

Rheinboldt in [177] using the Newton-Kantorovich theorem showed convergence
assuming
D C X and yn < .11909565. (11.2.5)

We need the following semilocal convergence result for Newton-Kantorovich method
(2.1.3) and twice Fréchet-differentiable operators:

Theorem 11.2.1. Let F: D € X — Y be a twice Fréchet-differentiable operator.
Assume there exist a point xo € D and parameters n > 0, £o > 0, £ > 0, § € [0, 1]
such that:

F'(xo)~ ' e L(Y, X), (11.2.6)
I F’ (x0) ™" [F'(x) = F'(x))] | < €ollx — xoll, (11.2.7)
IF'(xo) ' F" ()|l < ¢ (11.2.8)
forall x € D, .
U(xo,1*) € D, (11.2.9)
and
hs = (£ + 8Lo)n < 6, (11.2.10)
where,
t* = lim t,, (11.2.11)
n—00

with
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E(tn+] - tn)z
=0, t=n thyr =1t —_— > 0). 11.2.12
0 1 =1, 42 = tay1 + 30— Loty 1) (n=0) ( )
Then
(a) sequence {x,} (n = 0) generated by NK method (2.1.3) is well defined, re-
mains in U (xo, t*) for all n > 0, and converges to a unique solution x* of equation
F(x) = 0in U(xg, t*). Moreover, the following estimates hold for all n > 0:

Clxpt1 — X2

— < <ty —thit, 11.2.13
lXp42 — Xpp1ll < 30 = Lol — xol) = 2 Tl ( )
lxn — x| < 1" —t, <5 — 1, < an, (11.2.14)
where,
80 1 88° 2
t** — 1 N _— s [‘** = N = —, 11215
0 [+2+1_322}7 a =0T ( )
and '
50 = 1 (11.2.16)
1 —4on
Furthermore the solution x* is unique in U (xg, R), R = % — t* provided that
U(xg, R) € D, and ¢y # 0. (11.2.17)
(b) If
Hy = (£ +20p0)n < 2, (11.2.18)
then ’
0<a=——1_ (11.2.19)
2(1 — £oam)
and
Is1 = Xall < aollxn — xa1lI> < a® 'y foralln >0, (11.2.20)

lxy —x*| <t* -1, < azn_IZn <a® "oy <a® by, foralln >0 (11.2.21)

where,
= — ' helsdra s (11.2.22)
T 20—t T ’ -
_ " 2 _ 2
b=1+4— and b=-"2 (11.2.23)
1—ad? a?

Proof. Part (a) follows immediately as a special case of Theorem 5.3.3. For part (b)
note that (11.2.18) implies (11.2.19), whereas (11.2.20) is a consequence of Propo-
sition 3 in [184, p. 193]. Finally (11.2.21) follows from (11.2.20).
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Corollary 11.2.2. If
14
2a=—1 < (11.2.24)
1 —2oan
then under the rest of the hypotheses of Theorem 11.2.1
I
Xn1 — Xull =2 (§> n (n=0). (11.2.25)

That is xq is an approximate zero of F and sequence {x,} (n > 0) converges to x* at
least R-quadratically with R» factor % [1], [184].

Let y > 0 and A > 0. It is convenient for us to define parameters

Bo=vn, Bi=vir, B=vyan (11.2.26)
and functions f, f1, g, h by
(1 - [ 2 }( B )
(87 ’ ’ )= +8(2_ ) + N
1@, Bo. Br. B D011 —prli-F B || Po — 5
(11.2.27)

-1’ 21— )% —1](1 - B)?
e o ) = 5T (ﬁ+1ﬁlﬁl)+ﬂ1—[( > —1](1 - B)

(1—=p2—1 (I=p*2-p)

(11.2.28)

21 - p)* [ 1 ]( Bi )

’ ’ ’ = + 2_ + s
R vy o] e RGN | G v

(11.2.29)

(1—-p* |: 2 ]( Bi >

h ) 5 i = + 2— + — s
(o, fo B, B) 20— por— 10 -peli—P a=pB) || Po =4

(11.2.30)

respectively, provided that 8 # 1, 81 # | and B # 2%6
We can state and prove the main semilocal convergence theorem for method
(6.1.3) involving analytic operators:

Theorem 11.2.3. Let F: D € X — Y be an analytic operator. Assume there exist
points xo, Xo € D and parametersn >0, y >0, A > 0, § € [0, 1] such that

lxo —Xoll < A < an, (11.2.31)

ayn < 1, (11.2.32)
20y <2 -2, (11.2.33)
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[, Bo, 1. B) <6, (11.2.34)
fi(a, Bo, p1) <0, (11.2.35)
U(xg,an) € D (11.2.36)

and condition (11.2.6) hold. Then sequence {x,} (n > 0) starting at X is well de-
fined, remains in U (xo, an) for all n = 0 and converges to a unique zero x* of F in
U (xo, an), so that estimates (11.2.13) and (11.2.14) hold for n, £, £y replaced by

(1 —p)? [ A }
_ , 11.2.37
(A Trpy e S L ey e
_ 2y (1 — B1)?
7= , 11.2.38
20— g2 — 1] (1 - p)? ( )
and 2
%o = (1—-p)°"2—-py (11.2.39)

[200 =02 = 1] (1 = B>’
respectively. Moreover the solution x* is unique in U (xo, R), R = % — t* provided
0

that .
U(xo, R) € D, and y # 0. (11.2.40)

Furthermore if
g(a, po, B1, B) <2, (11.2.41)

then estimates (11.2.20)—(11.2.21) hold (with n, £, £y replaced by 7, € and £y respec-
tively). Finally if
h(a, Bo, B1, B) < 1, (11.2.42)

then Xo (and xq) is an approximate zero of F and sequence {x,} (n > 0) con-
verges to x* at least R-quadratically with R, factor %, so that estimates (11.2.24)
and (11.2.25) hold.

Proof. We shall show that under the stated conditions, the hypotheses of Theorem
11.2.1 hold with X, 77, £ and £ replacing xo, 1, £o and £, respectively. We first obtain
a bound on |xg — x*||. For all x € U(xg, an), we obtain in turn

IF o)™ Pl = | Fieo)™ 3 = FE o) (x = xo)'

i=0

o0
< ¥ Y (426 + DIylx —xollf
i=0
< 2y - 2y _ 2y .
I—ylx—=xolD? =~ A —yan?® (1A -p8)3
According to Theorem 11.2.1, there exists a unique zero x* of F in U (xg, t*). There-
fore NK sequence starting at X converges to the same zero x*. We can have

(11.2.43)
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0 1 ) }
IF' o)™ [F'Go) — F'Go) ]l = | F'e) ™ ) = F P (xo) (Fo — xo)'

i=1

> 1
(i + D ylxo —xolll' <
; (1 —ylXo — xlD)?
1
1 <1 (by(11.2.33)). (11.2.44)

< — 1 < —
T A =ya)? (1= B)?
It follows by the identity

0 . i
=Y [A’I(B _ A)] A
i=0
and (11.2.44) that for any x € X,

(1-p1)?

| F'(xo)~ xll_z(1 5~ 1 I F(x0) " x| (11.2.45)

Hence, we can have

1 — 2
IF'(%o) ™' F@o)l < M%IIF'(XO)_IF(YO)II
=B | ci L piyym i
=30 1| lgﬁF()(xo)(xo—xo)
= ﬂ(n + [IX0 — xoll i[yllfo _x()”]j)
20 -p)2 -1

Jj=0

(1—p1? A _
= 20— BE 1 <”+1—yx)="'

Moreover, for x € U (X0, a7) we have x € U (xo, %), as
0

(11.2.46)

1
lx —=Xoll < llx = xoll + llxo = Xoll =@+ 2 < 7 (by (11.2.35)),  (11.2.47)
0

and €g is g_iven by (11.2.39) where we have used X for x in (11.2.44) and (11.2.45)
(to obtain £(). Therefore, we get

1— 2
||F/<fo)*1F”(x>||sz(( PU” o)y P )

1-B)%—1

(1—p1? 2y

=7, 11.2.48
= 20— B =1 =yB) (11.248)
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Theorem 11.2.1 and Corollary 11.2.2 can now apply with X, 77, £o and ¢ as hypothe-
ses (11.2.10), (11.2.18), and (11.2.24) become (11.2.34), (11.2.41), and (11.2.42),
respectively.

Remark 11.2.4. In general
o< ¢ (11.2.49)

holds and £ 7; can be arbitrarily large. Note that the famous Newton-Kantorovich hy-
pothesis (2. 2. 17) is a special case of corresponding condition (11.2.10). Simply set
fop = £ and § = 1 in (11.2.10) to obtain (2.2.17). Our conditions (11.2.10) and
(11.2.24) for o« = 3 become

£+ 26 < 2 (11.2.50)
3 on 3’ L
and
3
<€ + 560) n<l, (11.2.51)
respectively, which are weaker than condition
4
iy < 5 (11.2.52)

given in [184, p. 12] (for sufficiently small £(). Note that all the above benefits are ob-
tained under the same computational cost as in practice the computation of £ requires
that of £p. Consequently, the same benefits obtained in Section 2.2 carry over when
we compare our Theorem 11.2.3 (based on Theorem 11.2.1 (or Corollary 11.2.2))
with Theorem 2 in [184, p. 12].

Let us provide an example where conditions of Theorem 11.2.3 hold but corre-
sponding crucial condition:

1 1
<A< — 11.2.53
T=2"= %0, ( )
in Theorem 2 in [184, p. 12] fails.
Example 11.2.5. Let
3
A=-n O&=— 11.2.54
X 3 ( )
and
1 I
Bo=yn 7 ( )

Then using (11.2.15) and (11.2.26) we get

3 _
a:z and g = B; = .0681.
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Conditions (11.2.34), (11.2.35), (11.2.41), and (11.2.42) are satisfied, as

2
f 3. Bo. 1. p) = 651987692 < 6 = .

fi(e, Bo, B1) = —.10652731 < 0,
g(@, o, B1, B) = 1.50775228 < 2,

and

h(a, Bo. B1, B) = .943087149 < 1.

That is the conditions of our Theorem 11.2.3 hold but condition (11.2.53) required
for the application of Theorem 2 in [184] does not hold. Hence the conclusions of
our Theorem 11.2.3 hold but not the ones in Theorem 2 in [184] in this case.

These facts influence (widens) choices. Indeed by simply repeating the proofs
given in Sections 2—6 in [184], with the above changes we can show:

Application 11.2.6. “Optimal” sequences {t} (i > 0) given by

D — <1 - 4lﬂ> 1@ (LP Barrier Method, QP Barrier Method),

(U+D — <1 — 40%) tD (Primal-dual LP Algorithm,

Primal-dual QP Algorithm)
can be replaced by wider

7+ 7@

1

=(1- ——
(- 5em)
. 1 .
—(i+1) —(i)

t =|1l- ==t

('-=m)

respectively.

The rest of the results in [184] can also be improved if rewritten using our Theo-
rem 11.2.3 above. However, we leave the details to the motivated reader.

and

The observations/improvements made here are important in computational ma-
thematics and scientific computing.

11.3 Exercises

11.3.1. (a) [177] Use the Newton-Kantorovich theorem to show that if: F: D C
X — Y is analytic on X, xo € D with F' (xo)™' € L (Y, X),



490 11 The NK Theorem and Mathematical Programming

o
yn < — = .11909565,
V2

where « is the positive root of the cubic equation (\/_ - 1) (1—r) —

V2r = 0, and U(ug, ro) € D, where ryp = %, then x( is an approximate
zero of F.
(b) If D= X and yn < a1 = .15229240, where «] is the positive zero of cubic
equation (1 — r)> — 4r = 0, then show xq is an approximate zero of F.
(¢) If D = X and yn = 3 — 2+/2 = .171573 show the quadratic convergence
of NK method (2.1.3) but with ratio not necessarily smaller or equal to .5.
11.3.2. [184] Let F: D € X — Y be a twice continuously Fréchet-differentiable
operator. Assume there exist xo € D, n > 0, £ > 0 such that F’ (xo)_l €
LY, X), |F o)™ " F@xo)| <n, |F' (xo)"" F” (x)| < ¢, forallx € D,

< — dU | xo, — CcD
n an , =N .
Y =9 0 )

Then show that the Newton-Kantorovich method is well defined, remains in
U (xo, %n) for all n > 0, converges to a unique zero x* of F in DNU (xo, %),
and satisfies

N
=+ <2(3) n @z,

11.3.3. [174] Let F: D € X — Y be analytic. Assume there exist xo € D, 6 > 0
such that

F'(xo) ' eL(V,X),
1 1
n<-§<—and
2 40y
U (xo,48) C D.

If |x —xol| < 8, then the Newton-Kantorovich method starting at x is well
defined and converges to a unique zero x* of F in U (xo, %n) so that

7 (1\*
-+ <3(5) 0

11.3.4. Consider the LP barrier method [174]. Let Int = {x|A (x) > b}, Aisareal
matrix with @; denoting the ith row of A, and let h: Int x Ry — R, denote
the map & (x,t) = CTx —1t > In(a;x — b;) . For fixed ¢, the map x — h (x, 1)
is strictly convex having a unique minimum. The sequence of minima as t — 0
converges to the optimal solution of the LP. The algorithm simply computes a
Newton-Kantorovich sequence {x,} (n > 0), where

2 -1
Xn4+1 = Xp — Vxh (Xns thg1)™ Veh (X, tyy1)

and 1, — 0.
Show:
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1
— W) t,, and each x,
will be a “good” approximation to the minimum of the map x — & (x, t,,).
Hint: Let y be the minimum of x — A (x, ), assume ||y — y| < % and
show

(a) For suitable x(, we can always choose #,,+1 = (1

1

20°
where ||x| = ”A (7 'a (x)H2 and for #/ > 0, y’ and ||-||" are defined in
the obvious way. Then use Exercise 11.3.3.

(b) An O (y/mL) iteration bound.

(c) The choice of sequence {#,} above can be improved if 41 is replaced by any
a € {20, 21, ..., 40} .
Hint: Use Theorem 11.2.1. Note that this is an improvement over the choice
in (a).

(d) An O (ﬂL) iteration bound using choices of sequence {t,} given in (c).

(e) How to improve along the same lines as above the QP barrier method, the
primal LP algorithm, the primal dual LP algorithm, and the primal-dual QP
algorithm as introduced in [174].

15" =¥ =



References

10.

11.

13.

14.

15.

. Alizadeh, F., Haeberly, J.-P.A., Overton, M.L., Primal-dual interior point algorithms for

semidefinite programming: stability, convergence and numerical results, STAM J. Optim.
8 (1988), 743-768.

Allgower, E.L., A survey of homotopy methods for smooth mappings, Lecture Notes in
Math., vol. 878, Springer-Verlag, 1980, 1-29.

Allgower, E.L., Bohmer, K., Potra, F.A., Rheinboldt, W.C., A mesh-independence prin-
ciple for operator equations and their discretizations, STAM J. Numer. Anal. 23 (1986),
no. 1, 160-169.

Amat, S., Busquier, S., Gutiérrez, J.M., On the local convergence of secant-type meth-
ods, Intern. J. Comput. Math. 81 (2004), 1153-1161.

Anselone, PM., Moore, R.H., An extension of the Newton-Kantorovich method for solv-
ing nonlinear equations with applications to elasticity, J. Math. Anal. Appl. 13 (1996),
476-501.

Appell, J., DePascale, E., Lysenko, J.V., Zabrejko, PP., New results on Newton-
Kantorovich approximations with applications to nonlinear integral equations, Numer.
Funct. Anal. Optimiz. 18 (1997), no. 1 & 2, 1-17.

Argyros, LK., Quadratic equations and applications to Chandrasekhar’s and related
equations, Bull. Austral. Math. Soc. 32 (1985), 275-297.

Argyros, 1.K., On the cardinality of solutions of multilinear differential equations and
applications, Intern. J. Math. Math. Sci. 9 (1986), no. 4, 757-766.

Argyros, LK., On the approximation of some nonlinear equations, Aequationes Mathe-
maticae 32 (1987), 87-95.

Argyros, L.K., On polynomial equations in Banach space, perturbation techniques and
applications, Intern. J. Math. Math. Sci. 10 (1987), no. 1, 69-78.

Argyros, LK., Newton-like methods under mild differentiability conditions with error
analysis, Bull. Austral. Math. Soc. 37 (1987), 131-147.

Argyros, LK., Improved error bounds for the modified secant method, Intern. J. Com-
puter Math. 43 (1992), no. 1 & 2, 99-109.

Argyros, 1.K., Some generalized projection methods for solving operator equations, J.
Comp. Appl. Math. 39 (1992), no. 1, 1-6.

Argyros, LK., On the convergence of generalized Newton-methods and implicit func-
tions, J. Comp. Appl. Math. 43 (1992), 335-342.

Argyros, 1.K., On the convergence of inexact Newton-like methods, Publ. Math. Debre-
cen 42 (1992), no. 1 & 2, 1-7.



494

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

References

Argyros, LK., On the convergence of a Chebysheft-Halley-type method under Newton-
Kantorovich hypothesis, Appl. Math. Lett. 5 (1993), no. 5, 71-74.

Argyros, LK., Newton-like methods in partially ordered linear spaces, J. Approx. Th.
Applic. 9 (1993), no. 1, 1-10.

Argyros, L.K., On the solution of undetermined systems of nonlinear equations in Eu-
clidean spaces, Pure Math. Appl. 4 (1993), no. 3, 199-209.

Argyros, I.LK., A convergence theorem for Newton-like methods under generalized
Chen—Yamamato-type assumptions, Appl. Math. Comp. 61 (1994), no. 1, 25-37.
Argyros, LK., On the discretization of Newton-like methods, Int. J. Computer. Math. 52
(1994), 161-170.

Argyros, LK., A unified approach for constructing fast two-step Newton-like methods,
Mh. Math. 119 (1995), 1-22.

Argyros, LK., Results on controlling the residuals of perturbed Newton-like methods on
Banach spaces with a convergence structure, Southwest J. Pure Appl. Math. 1 (1995),
32-38.

Argyros, I.K., On the method of tangent hyperbolas, J. Appr. Th. Appl. 12 (1996), no. 1,
78-96.

Argyros, L.LK., On an extension of the mesh-independence principle for operator equa-
tions in Banach space, Appl. Math. Lett. 9 (1996), no. 3, 1-7.

Argyros, LK., A generalization of Edelstein’s theorem on fixed points and applications,
Southwest J. Pure Appl. Math. 2 (1996), 60-64.

Argyros, LK., Advances in the efficiency of computational methods and applications,
World Scientific Publ. Co., River Edge, NJ, USA, 2000.

Argyros, I.LK., On the convergence of a Newton-like method based on m-Fréchet-
differentiable operators and applications in radiative transfer, J. Comput. Anal. Applic.
4 (2002), no. 2, 141-154.

Argyros, L.K., On the convergence of Newton-like methods for analytic operators and
applications, J. Appl. Math. Computing 10 (2002), no. 1-2, 41-50.

Argyros, LK., A unifying semilocal convergence theorem for Newton-like methods
based on center Lipschitz conditions, Comput. Appl. Math. 21 (2002), no. 3, 789-796.
Argyros, I.LK., A semilocal convergence analysis for the method of tangent hyperbolas,
Journal of Concrete and Applicable Analysis 1 (2002), no. 2, 135-144.

Argyros, I.LK., New and generalized convergence conditions for the Newton-Kantorovich
method, J. Appl. Anal. 9 (2003), no. 2.

Argyros, LK., On the convergence and application of Newton’s method under weak
Hélder continuity assumptions, Int. J. Computer Math. 80 (2003), no. 5, 767-780.
Argyros, LK., On a theorem of L. V. Kantorovich concerning Newton’s method, J. Comp.
Appl. Math. 155 (2003), 223-230.

Argyros, LK., An improved error analysis for Newton-like methods under generalized
conditions, J. Comput. Appl. Math. 157 (2003), no. 1, 169-185.

Argyros, I.LK., An improved convergence analysis and applications for Newton-like
methods in Banach space, Numer. Funct. Anal. Optimiz. 24 (2003), no. 7 and 8, 653—
672.

Argyros, LK., On the convergence and application of generalized Newton methods, Non-
linear Studies 10 (2003), no. 4, 307-322.

Argyros, LK., On the comparison of a weak variant of the Newton-Kantorovich and
Miranda theorems, J. Comp. Appl. Math. 166 (2004), no. 2, 585-589.

Argyros, LK., A convergence analysis and applications for the Newton-Kantorovich
method in K-normed spaces, Rendiconti del Circolo Mathematico di Palermo LIII
(2004), 251-271.



39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

References 495

Argyros, LK. On the Newton-Kantorovich hypothesis for solving nonlinear equations,
J. Comput. Appl. Math. (2004).

Argyros, LK., A note on a new way for enlarging the convergence radius for Newton’s
method, Math. Sci. Res. J. 8 (2004), no. 5, 147-153.

Argyros, LK., Toward a unified convergence theory for Newton-like methods of
“bounded deterioration”, Adv. Nonlinear Var. Inequal. 8 (2005), no. 2, 109-120.
Argyros, LK. and Szidarovszky, F., Convergence of general iteration schemes, J. Math.
Anal. Applic. 168 (1992), 42-62.

Argyros, LK., Szidarovszky, F., The Theory and Application of Iteration Methods,
C.R.C. Press, Boca Raton, Florida, 1993.

Argyros, LK., Szidarovszky, F., On the convergence of modified contractions, J. Comput.
Appl. Math., 55 (1994), no. 2, 97-108.

Atkinson, K.E., A Survey of Numerical Methods for the Solution of Fredholm Integral
Equations of the Second Kind, SIAM, Philadelphia, 1976.

Ben-Israel, A., A Newton-Raphson method for the solution of systems of operators, J.
Math. Anal. Appl. 15 (1966), 243-252.

Bi, W., Ren, H., Wu, Q., Local convergence analysis of a modified secant method for
finding zeros of derivatives under Argyros-type condition, to appear in the J. Comput.
Appl. Math.

Brent, R.P., Algorithms for Minimization Without Derivatives, Prentice Hall, Englewood
Cliffs, New Jersey, 1973.

Browder, FE., Petryshyn, W.V., The solution by iteration of linear functional equations
in Banach spaces, Bull. Amer. Math. Soc. 72 (1996), 566-570.

Brown, P.N., A local convergence theory for combined inexact-Newton/finite-difference
projection methods, SIAM J. Numer. Anal. 24 (1987), 407-434.

Brown, P.N., Saad, Y., Convergence theory of nonlinear Newton-Krylov algorithms,
SIAM J. Optimiz. 4 (1994), no. 2, 297-230.

Broyden, C.G., A class of methods for solving nonlinear simultaneous equations, Math.
Comput. 19 (1965), 577-593.

Caponetti, D., De Pascale, E., Zabreuiko, P.P., On the Newton-Kantorovich method in
K -normed spaces, Rend. Circ. Mat. Palermo, Ser. 11, 49 (2000), no. 3, 545-560.
Citinas, E., On some iterative methods for solving nonlinear equations, Revue d’ Analyse
Numérique et de Theorie de I’ Approximation 23 (1994), no. 1, 47-53.

Citinas, E., Inexact perturbed Newton methods and applications to a class of Krylov
solvers, J. Optim. Theory Appl. 108 (2001), no. 3, 543-570.

Catinas, E., Affine invariant conditions for the inexact perturbed Newton method, Revue
d’ Analyse Numérique et de Théorie de I’ Approximation 31 (2002), no. 1, 17-20.
Citinas, E., Pavaloiu, L., On a third order iterative method for solving polynomial opera-
tor equations, Revue d’ Analyse Numérique et de Théorie de I’ Approximation 31 (2002),
no. 1, 21-28.

Chen, X., Yamamoto, T., Convergence domains of certain iterative methods for solving
nonlinear equations, Numer. Funct. Anal. Optimiz. 10 (1989), no. 1 & 2, 37-48.

Chen, X., Nashed, M.Z., Convergence of Newton-like methods for singular operator
equations using outer inverses, Numer. Math. 66 (1993), 235-257.

Chen, X., Nashed, Z., Qi, L., Convergence of Newton’s method for singular smooth and
nonsmooth equations using adaptive outer inverses, SIAM J. Optim. 7 (1997), no. 2,
445-462.

Chow, S.N., Palmer, K.J., On the numerical computation of orbits of dynamical systems:
The one-dimensional case, J. Dynamics Diff. Eq. 3 (1991), 361-379.



496

62.

63.

64.

65.

66.

67.

68.
69.

70.

72.

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

References

Chu, M.T., On a numerical treatment for curve tracing of the homotopy method, Numer.
Math. 42 (1983), 323-329.

Cianciaruso, F., De Pascale, E., Zabrejko, P.P., Some remarks on the Newton-
Kantorovich approximations, Atti. Sem. Mat. Fis. Univ. Modena 48 (2000), 207-215.
Ciancaruso, F., DePascale, E., Newton-Kantorovich approximations when the derivative
is Holderian: Old and new results, Numer. Funct. Anal. Optimiz. 24 (2003), no. 7 and 8,
713-723.

Cohen, G., Auxiliary problem principle extended to variational inequalities, J. Optim.
Theory Appl. 59 (1988), no. 2, 325-333.

Collatz, L., Functional Analysis and Numerisch Mathematik, Springer-Verlag, New
York, 1964.

Danes, J., Fixed point theorems, Nemyckii and Uryson operators, and continuity of non-
linear mappings, Comment. Math. Univ. Carolinae 11 (1970), 481-500.

Danfu, H., Xinghua, W., The error estimates of Halley’s method (submitted).

Darbo, G., Punti uniti in trasformationa codominio non compatto, Rend. Sem. Mat. Univ.
Padova 24 (1955), 84-92.

Daubechies, 1., Ten Lectures in Wavelets, Conf. Board Math. Sci. (CBMS), vol. 61,
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.

. Davis, H.T., Introduction to Nonlinear Differential and Integral Equations, Dover Publi-

cations, Inc., New York, 1962.

Decker, D.W., Keller, H.B., Kelley, C.T., Convergence rates of Newton’s method at sin-
gular points, SIAM J. Numer. Anal. 20 (1983), no. 2, 296-314.

Dembo, R.S., Eisenstat, S.C., Steihaug, T., Inexact Newton methods, SIAM J. Numer.
Anal. 19 (1982), no. 2, 400-408.

Dennis, J.E., Toward a unified convergence theory for Newton-like methods, In: Nonlin-
ear Functional Anal. and Appl. (L.B. Rall, ed.), Academic Press, New York, 1971.
Dennis, J.E., On the convergence of Broyden’s method for nonlinear systems of equa-
tions, Math. Comput. 25 (1971), no. 115, 559-567.

De Pascale, E., Zabrejko, P.P., New convergence criteria for the Newton-Kantorovich
method and some applications to nonlinear integral equations, Rend. Sem. Mat. Univ.
Padova 100 (1998), 211-230.

Deuflhard, P., Pesh, H.J., Rentrop, P.A., Modified continuation method for the numeri-
cal solution of nonlinear two boundary value problems by shooting techniques, Numer.
Math. 26 (1978), 327-343.

Deuflhard, P., Heindl, G., Affine invariant convergence theorems for Newton’s method,
and extensions to related methods, SIAM J. Numer. Anal. 16 (1979), no. 1, 1-10.
Deuflhard, P, Potra, F.A., Asymptotic mesh independence of Newton-Galerkin methods
and a refined Mysovskii theorem, SIAM J. Numer. Anal., 29 (1992), no. 5, 1395-1412.
Diallo, O.W., On the theory of linear integro-differential equations of Barbashin type in
lebesgue spaces (Russian), VINITI, 1013, 88, Minsk (1988).

Diaconu, A., On the approximation of solutions of equations in Banach spaces using
approximant sequences, In: Analysis, Functional Analysis, Functional Equations, Ap-
proximation and Convexity, Carpatica, Cluj-Napoca, 1999, 62-72.

Dunford, N., Schwartz, J.T., Linear operators, Part I, Int. Publ., Leyden, 1963.
Edelstein, M., On fixed and periodic points under contractive mappings., J. London
Math. Soc. 37 (1962), 74-79.

Eisenstat, S.C., Walker, H.F., Globally convergent of inexact Newton methods, SIAM J.
Optim. 4 (1994), no. 2, 393-422.

Eisenstat, S.C., Walker, H.F., Choosing the forcing terms in an inexact Newton method,
SIAM J. Sci. Comput. 17 (1996), no. 1, 16-32.



86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.
101.

102.

103.

104.

105.

106.

107.

108.

References 497

Ezquerro, J.A., Herndndez, M.A., Avoiding the computation of the second Fréchet-
derivative in the convex acceleration of Newton’s method., J. Comput. Appl. Math. 96
(1998), 1-12.

Ezquerro, J.A., Hernandez, M.A., An efficient study of convergence for a fourth order
two-point iteration in Banach space (submitted).

Ezquerro, J.A., Herndndez, M.A., On a convex acceleration of Newton’s method, J. Op-
tim. Theory Appl. 100 (1999), no. 2, 311-326.

Ezquerro, J.A., Herndndez, M.A., On the application of a fourth order two-point method
to Chandrasekhar’s integral equation, Aequationes Math. 62 (2001), no. 1-2, 39-47.
Ezquerro, J.A., Herndndez, M.A., Salanova, M.A., A discretization scheme for some
conservative problems, Proceedings of the 8th International Congress on Computational
and Applied Mathematics, ICCAM-98 (Leuven), J. Comput. Appl. Math. 115 (2000),
no. 1-2, 181-192.

Ezquerro, J.A., Hernandez, M.A., Salanova, M.A., Recurrence relations for the midpoint
method, Tamkang J. Math. 31 (2000), no. 1, 33-41.

Ezquerro, J.A., Gutiérrez, .M., Hernandez, M.A., Salanova, M.A., A biparametric fam-
ily of inverse free multipoint iterations, Comput. Appl. Math. 19 (2000), no. 1, 109-124.
Feinstauer, M., Zernicek, A., Finite element solution of nonlinear elliptic problems, Nu-
mer. Math. 50 (1987), 471-475.

Ferreira, O.P. and Svaiter, B.F., Kantorovich’s theorem on Newton’s method in Rieman-
nian manifolds, J. Complexity 18 (2002), no. 1, 304-329.

Foerster, H., Frommer, A., Mayer, G., Inexact Newton methods on a vector supercom-
puter, J. Comp. Appl. Math. 58 (1995), 237-253.

Fujimoto, T., Global asymptotic stability of nonlinear difference equations I, Econ. Let-
ters 22 (1987), 247-250.

Fujimoto, T., Global asymptotic stability of nonlinear difference equations II, Econ. Let-
ters 23 (1987), 275-277.

Galperin, A., Kantorovich’s Majorization and functional equations, Numer. Funct. Anal.
Optimiz. 24 (2003), no. 7 and 8, 783-811.

Galperin, A., Waksman, Z., Regular smoothness and Newton’s method, Numer Funct.
Anal. Optimiz. 15 (1994), no. 7 & 8, 813-858.

Gander, W., On Halley’s iteration method, Amer. Math. Monthly 92 (1985), 131-134.
Glowinski, R., Lions, J.L., Trémolieres, R., Numerical Analysis of Variational Inequali-
ties, North-Holland, Amsterdam, 1982.

Gragg, W.B., Tapia, R.A., Optimal error bounds for the Newton-Kantorovich theorem,
SIAM J. Numer. Anal. 11 (1974), 10-13.

Graves, L.M., Riemann integration and Taylor’s theorem in general analysis, Trans.
Amer. Math. Soc. 29 (1927), no. 1, 163-177.

Gutierez, J.M., A new semilocal convergence theorem for Newton’s method, J. Comput.
Appl. Math. 79 (1997), 131-145.

Gutiérrez, J.M., Herndndez, M.A., A family of Chebyshev-Halley type methods in Ba-
nach spaces, Bull. Austral. Math. Soc. 55 (1997), 113-130.

Gutiérrez, J.M., Herndndez, M.A., Salanova, M.A., Resolution of quadratic equations in
Banach spaces, Numer. Funct. Anal. Optim. 17 (1996), no. 1 & 2, 113-121.

Hackl, J., Wacker, Hj., Zulehner, W., An efficient step size control for continuation meth-
ods, BIT 20 (1980), no. 4, 475-485.

Hadeller, K.P., Shadowing orbits and Kantorovich’s theorem, Numer. Math. 73 (1996),
65-73.



498

109.

110.

111.
112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.
128.

129.

130.
131.

References

Haeberly, J.-PA., Remarks on nondegeneracy in mixed semidefinite-
quadratic  programming, unpublished memorandum, available from URL:
http://corcy.fordham.edu/haeberly/papers/sqldegen.ps.gz .

Hiubler, WM., A Kantorovich-type convergence analysis for the Gauss-Newton
method, Numer. Math. 48 (1986), 119-125.

Hernandez, M.A., A note on Halley’s method, Num. Math. 59 (1991), no. 3, 273-276.
Hernandez, M.A., Newton’s Raphson’s method and convexity, Zb. Rad. Prirod.-Mat.
Fax. Ser. Mat. 22 1 (1992), 159-166.

Hernandez, M.A., Salanova, M.A., A family of Chebyshev-Halley type methods, Int. J.
Comp. Math. 47 (1993), 59-63.

Herndndez, M.A., Relaxing convergence conditions for Newton’s method, J. Math. Anal.
Appl. 249 (2000), no. 2, 463-475.

Hernandez, M.A., Chebyshev’s approximation algorithms and applications, Comput.
Math. Appl. 41 (2001), no. 3—4, 433-445.

Hernandez, M.A., Rubio, M.J., Ezquerro, J.A., Secant-like methods for solving nonlin-
ear integral equations of the Hammerstein type, J. Comput. Appl. Math. 115 (2000),
245-254.

Hernandez, M. A., Rubio, M.J., Semilocal convergence of the secant method under mild
convergence conditions of differentiability, Comput. Math. Appl. 44 (2002), no. 34,
277-285.

Hernandez, M. A., Salanova, M. A., Sufficient conditions for semilocal convergence of a
fourth order multipoint iterative method for solving equations in Banach spaces, South-
west J. Pure Appl. Math. (1999), 29-40.

Hille, E. and Philips, R.S., Functional Analysis and Semigroups, Amer. Math. Soc. Coll.
Publ., New York, 1957.

Higle, J.L., Sen, S., On the convergence of algorithms with applications to stochastic
and nondifferentiable optimization, SIE Working Paper #89-027, University of Arizona,
1989.

Huang, Z.D., A note on the Kantorovich theorem for Newton iteration, J. Comput. Appl.
Math. 47 (1993), no. 2, 211-217.

Jarrat, P., Some efficient fourth order multipoint methods for solving equations, BIT 9
(1969), 119-124.

Kanno, S., Convergence theorems for the method of tangent hyperbolas, Math. Japon.
37 (1992), no. 4, 711-722.

Kantorovich, L.V., The method of successive approximation for functional equations,
Acta Math. 71 (1939), 63-97.

Kantorovich, L.V., Akilov, G.P., Functional Analysis in Normed Spaces, Pergamon
Press, New York, 1964.

Kelley, C.T., Solving nonlinear equations with Newton’s method, SIAM series: Funda-
mentals of Algorithmic, Philadelphia, 2003.

King, R.E., Tangent method for nonlinear equations, Numer. Math. 18 (1973), 298-304.
Krasnosel’skii, M.A., Approximate solution of operator equations, Walter Noordhoff
Publ., Groningen, 1972.

Krasnosel’skii, M.A., Vainikko, G.M., Zabreiko, P.P., Rutiskii, Ya.B., Stetsenko, V.Ya.,
Approximate Solution of Operator Equations, Wolters-Noordhoff Publishing, Gronin-
gen, 1972.

Krein, S.G., Linear equations in Banach spaces, Birkhéduser, Boston, 1982.

Kung, H.T., The complexity of obtaining starting points for solving operator equations
by Newton’s method, Technical report, no. 044-422, Carnegie-Mellon Univ., Pittsburgh,
PA, October 1975, Article in Traub, J.F., Analytic Computational Complexity.



132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.
152.

153.

154.

References 499

Lancaster, P., Error analysis for the Newton-Raphson method, Numer. Math. 9 (1968),
55-68.

Laumen, M., Newton’s mesh independence principle for a class of optimal design prob-
lems, SIAM J. Control. Optim. 37 (1999), no. 4, 1070-1088.

Laumen, M., A Kantorovich theorem for the structured PSB update in Hilbert spaces, J.
Optim. Theory Appl. 105 (2000), no. 2, 391-415.

Lysenko, J.V., Conditions for the convergence of the Newton-Kantorovich method for
nonlinear equations with Holder linearizations, Dokl. Akad. Nauk USSR 38 (1994), 20—
24 (Russian).

Marcotte, P., Wu, J.H., On the convergence of projection methods, J. Optim. Theory
Appl. 85 (1995), no. 2, 347-362.

Mayer, J., A generalized theorem of Miranda and the theorem of Newton-Kantorovich,
Numer. Funct. Anal. Optim. 23 (2002), no. 3-4, 333-357.

McCormick, S.F., A revised mesh refinement strategy for Newton’s method applied to
two-point boundary value problems, Lecture Notes in Mathemaics, vol. 674, Springer-
Verlag, Berlin, 1978, 15-23.

Meyer, G.H., On solving nonlinear equations with a one parameter operator imbedding,
SIAM J. Numer. Anal. 5 (1968), no. 4, 739-752.

Meyer, P.W., Das modifizierte Newton-Verfahren in verallgemeinerten Banach-Raumen,
Numer. Math. 43 (1984), no. 1, 91-104.

Meyer, P.W., Newton’s method in generalized Banach spaces, Numer. Funct. Anal. Op-
tim. 9 (1987), no. 3 & 4, 244-259.

Miranda, C., Un osservatione su un teorema di Brower, Boll. Unione Ital. Serr. 11 (1940),
no. 3, 5-7.

Moore, R.E., Methods and Applications of Interval Analysis, SIAM, Philadelphia, PA,
1979.

Nayakkankuppam, M.V., Overton, M.L., Conditioning of semidefinite programs, Math.
Progr. 85 (1999), 525-540.

Nesterov, Y., Nemirosky, A., Interior Point Polynomial Methods in Convex Program-
ming, SIAM, Philadelphia, PA, 1999.

Neumaier, A., Shen, Z., The Krawczyk operator and Kantorovich’s theorem, J. Math.
Anal. Appl. 149 (1990), no. 2, 437—443.

Nguen, D.F., Zabrejko, P.P., The majorant method in the theory of the Newton-
Kantorovich approximations and the Ptak error estimates, Numer. Funct. Anal. Optimiz.
9 (1987), no. 5 & 6, 671-686.

Noble, B., The Numerical Solution of Nonlinear Integral Equations and Related Topics,
University Press, Madison, W1, 1964.

Noor, K.I., Noor, M.A., Iterative methods for a class of variational inequalities, In: Nu-
merical Analysis of Singular Perturbation Problems (Hemker and Miller, eds.), Aca-
demic Press, New York, 1985, 441-448.

Noor, M.A., An iterative scheme for a class of quasivariational inequalities, J. Math.
Anal. and Appl. 110 (1985), no. 2, 463-468.

Noor, M.A., Generalized variational inequalities, Appl. Math. Lett. 1 (1988), 119-122.

Ojnarov, R., Otel’baev, M., A criterion for a Uryson operator to be a contraction, Dokl.
Akad. Nauk. SSSR, 255 (1980), 1316-1318 (Russian).

Okuguchi, K., Expectations and Stability in Oligopoly Models, Springer-Verlag, New
York, 1976.

Ortega, J.M., Rheinboldt, W.C., Iterative Solution of Nonlinear Equations in Several
Variables, Academic Press, New York, 1970.



500

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

References

Ostrowski, A.M., Solution of Equations in Euclidean and Banach Spaces, Academic
Press, New York, 1973.

Paardekooper, M.H.C., An upper and a lower bound for the distance of a manifold to a
nearby point, J. Math. Anal. Applic. 150 (1990), 237-245.

Palmer, K.J., Stuffer, D., Rigorous verification of chaotic behavior of maps using vali-
dated shadowing, Nonlinearity 12 (1999), 1683-1698.

Pavaloiu, I, Sur la méthode de Steffensen pour la résolution des équations
opérationnelles non linéaires, Rev. Roumaine Math. Pures Appl. 13 (1968), no. 6, 857—
861.

Paviloiu, 1., Sur une généralisation de la méthode de Steffensen, Rev. Anal. Numér.
Théor. Approx. 21 (1992), no. 1, 59-65.

Paviloiu, I., A converging theorem concerning the chord method, Rev. Anal. Numér.
Théor. Approx. 22 (1993), no. 1, 83-85.

Piaviloiu, 1., Bilateral approximations for the solutions of scalar equations., Rev. Anal.
Numér. Théor. Approx. 23 (1994), no. 1, 95-100.

Potra, F.A., On the convergence of a class of Newton-like methods, In: Iterative Solution
of Nonlinear Systems of Equations, Lecture Notes in Math., vol. 953, Springer-Verlag,
New York, 1982.

Potra, F.A. On an iterative algorithm of order 1.839... for solving nonlinear operator
equations, Numer. Funct. Anal. Optim. 7 (1984-1985), no. 1, 75-106.

Potra, F.A., Newton-like methods with monotone convergence for solving nonlinear op-
erator equations, Nonlinear Anal., Theory Methods Appl. 11 (1987), no. 6, 697-717.
Potra, F.A., The Kantorovich method and interior point methods, Math. Progr. Ser. A
102 (2005), 47-50.

Potra, Florian-A., Ptak, V., Sharp error bounds for Newton’s method, Numer. Math. 34
(1980), no. 1, 63-72.

Potra, FA., Ptak, V., Nondiscrete induction and iterative processes, Pitman, London,
1984.

Pousin, J., Rappaz, J., Consistency stability a priori and a posteriori errors for Petrov-
Galerkin’s method applied to nonlinear problems, Numer. Math. 69 (1994), 213-231.
Rall, L.B., Convergence of Stirling’s method in Banach spaces, Aequationes Math. 12
(1973), 12-20.

Rall, L.B., A quadratically convergent iteration method for computing zeros of operators
satisfying autonomous differential equations, Math. Comput. 30 (1976), no. 133, 112—
114.

Rall, L.B., A comparison of the existence theorems of Kantorovich and Moore, SIAM
J. Numer. Anal. 17 (1980), no. 1, 148-161.

Ren, H., On the local convergence of deformed Newton’s method under Argyros-type
condition, to appear in J. Math. Anal. Appl.

Renegar, J., A polynomial-type algorithm based on Newton’s method for linear pro-
gramming, Math. Progr., Ser. A., 40 (1988), no. 1, 59-93.

Renegar, J., Shub, M., Modified complexity analysis for Newton LP methods, Math.
Progr., Ser. A., 53 (1992), no. 1, 1-16.

Rheinboldt, W.C., An adaptive continuation process for solving systems of nonlinear
equations, Publish Academy of Sciences, Banach Ctr. Publ. 3 (1977), 129-142.
Rheinboldt, W.C., Solution fields of nonlinear equations and continuation methods,
SIAM J. Numer. Anal. 17 (1980), no. 2, 221-237.

Rheinboldt, W.C., On a theorem of S. Smale about Newton’s method for analytic map-
pings, Appl. Math. Lett. 1 (1988), 69-72.



178.

179.

180.

181.

182.

183.

184.

185.

186.

187.
188.

189.

190.

191.

192.

193.
194.

195.

196.

197.

198.
199.

200.
201.

202.

References 501

Robinson, S.M., Generalized equations. In: Mathematical Programming: The State of
the Art (A. Bachem, M. Grotschel and B. Korte, eds.), Springer, Berlin, 1982, 346-367.
Robinson, S.M., An implicit function theorem for a class of nonsmooth functions, Math.
Oper. Res. 16 (1991), no. 2, 292-309.

Robinson, S.M., Newton’s method for a class of nonsmooth functions, Set-Valued Anal-
ysis 2 (1994), 291-305.

Schmidt, J.W., Leonhardt, H., Eingrenzung von 16sungen mit hilfe der Regula-Falsi,
Computing 6 (1970), 318-329.

Schmidt. W.E., Adaptive step size selection for use with the continuation method, Intern.
J. Numer. Math. Engrg. 12 (1978), 677-694.

Slugin, S.N., Monotonic processes of bilateral approximation in a partially ordered con-
vergence group, Soviet. Math. 3 (1962), 1547-1551.

Smale, S., Newton’s method estimates from data at one point. In: The Merging of Dis-
ciplines in Pure, Applied, and Computational Mathematics, Springer-Verlag, New York,
1986, 185-196.

Stirling, J., Methodus differentialis: sive tractatus de summatione et interpolatione
serierum infinitarum, W. Boyer, London, 1730.

Stoffer, D., Kirchgraber, U., Verification of chaotic behavior in the planar restricted three
body problem, Appl. Numer. Math. 39 (2001), no. 3-4, 415-433.

Szidarovszky, F., Bahill, T., Linear Systems Theory, CRC Press, Boca Raton, FL, 1992.
Tapia, R.A., The weak Newton method and boundary value problems, SIAM J. Numer.
Anal. 6 (1969), no. 4, 539-550.

Tishyadhigama, S., Polak, E., Klessig, R., A comparative study of several convergence
conditions for algorithms modeled by point-to-set maps, Math. Programming Stud. 10
(1979), 172-190.

Tornig, W., Monoton konvergente Iterationsverfahren ziir Losung michtlinearer
differenzen-randwertprobleme, Beitrige ziir Numer. Math. 4 (1975), 245-257.

Traub, J.F., Iterative methods for the solution of equations, Prentice-Hall Series in Au-
tomatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.

Traub, J.E., Analytic Computational Complexity, Academic Press, New York—London,
1975.

Tricomi, F.G., Integral Equations, Interscience Publ., London, 1957.

Tsuchiya, T., An application of the Kantorovich theorem to nonlinear finite element
analysis, Numer. Math. 84 (1999), 121-141.

Uko, L.U., Generalized equations and the generalized Newton method., Mathematical
Programming 73 (1996), 251-268.

Ulm, S., Iteration methods with divided differences of the second order, Dokl. Akad.
Nauk SSSR, 158 (1964), 55-58 (Russian).

Urabe, M., Convergence of numerical iteration in solution of equations, J. Sci. Hi-
roshima Univ., Ser. A, 19 (1976), 479-489.

Uzawa, H., The stability of dynamic processes, Econometrica 29 (1961), 617-631.
Vandergraft, J.S., Newton’s method for convex operators in partially ordered spaces,
SIAM J. Numer. Anal. 4 (1967), 406-432.

Varga, R.S., Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.
Verma, R.U., Nonlinear variational and constrained hemivariational inequalities involv-
ing relaxed operators., Z. Angew. Math. Mech. 77 (1997), no. 5, 387-391.

Verma, R.U., Approximation-solvability of nonlinear variational inequalities involving
partially relaxed monotone (PRM) mappings, Adv. Nonlinear Var. Inequal. 2 (1999), no.
2, 137-148.



502

203.

204.

205.

206.

207.

208.

209.

210.

211.

212.

213.

214.

215.

216.

217.

218.

219.

220.

References

Verma, R.U., A class of projection-contraction methods applied to monotone variational
inequalities., Appl. Math. Lett. 13 (2000), no. 8, 55-62.

Verma, R.U., Generalized multivalued implicit variational inequalities involving the
Verma class of mappings, Math. Sci. Res. Hot-Line 5 (2001), no. 2, 57-64.

Walker, H.J., A summary of the developments on imbedding methods, continuation
methods, In: (H.J. Wacker, ed.) Academic Press, New York, 1978, 1-36.

Wang, D., Zhao, F., The theory of Smale’s point estimation and its applications, J. Com-
put. Appl. Math. 60 (1995), 253-269.

Werner, W., Uber ein verfahren der ordnung 1 4 /2 zur Nullstellenbestimmung, Numer,
Math. 32 (1970), 333-342.

Wu, J.W, Brown, D.P., Global asymptotic stability in discrete systems, J. Math. Anal.
Appl. 140 (1989), no. 1, 224-227.

Yamamoto, T., A method for finding sharp error bounds for Newton’s method under the
Kantorovich assumptions, Numer. Math. 44, (1986), 203-220.

Yamamoto, T., A convergence theorem for Newton-like methods in Banach spaces, Nu-
mer. Math. 51 (1987), 545-557.

Yamamoto, T., On the method of tangent hyperbolas in Banach spaces, J. Comput. Appl.
Math. 21 (1988), 75-86.

Yamamoto, T., Chen, Z., Convergence domains of certain iterative methods for solving
nonlinear equations, Numer. Funct. Anal. Optim. 10 (1989), 34—48.

Ypma, T.J., Numerical solution of systems of nonlinear algebraic equations, Ph.D. the-
sis, Oxford, 1982.

Ypma, T.J., Affine invariant convergence results for Newton’s methods, BIT 22 (1982),
108-118.

Ypma, T.J., The effect of rounding error on Newton-like methods, IMA J. Numer. Anal.,
3 (1983), 109-118.

Ypma, T.J., Convergence of Newton-like iterative methods, Numer. Math. 45 (1984),
241-251.

Zabrejko, P.P., K-metric and K-normed linear spaces, a survey, Collect. Math. 48 (1997),
no. 4-6, 825-859.

Zabrejko, P.P., Nguen, D.F., The majorant method in the theory of Newton-Kantorovich
approximations and the Ptdk error estimates, Numer. Funct. Anal. Optim. 9 (1987), no.
5-6, 671-684.

Zincenko, A.L, A class of approximate methods for solving operator equations with
nondifferentiable operators, Dopovidi Akad. Nauk Ukrain. RSR (1963), 156-161.
Zuhe, S., Wolfe, M.A., A note on the comparison of the Kantorovich and Moore theo-
rems, Nonlinear Anal. 15 (1990), no. 3, 329-332.



Glossary of Symbols

Rn

Cn
XxY,XxX=X?
el ..., e"
x=(x1, ., x0T

)CT

{xn}nzo

-1l

-1l

[ -]

I

(x,y)

U (xo0, R)

U (xo, R)
U(R)="U (O, R)

U,U

M = {mi;}
M—l

M+

det M or |M|
Mk

rank M

1

L

real n-dimensional space

complex n-dimensional space
Cartesian product space of X and Y
the coordinate vectors of R”

column vector with component x;
the transpose of x

sequence of points from X

norm on X

L, norm

absolute value symbol

norm symbol of a generalized Banach space X
set{ze X|z=tx+ (1 —1)y, t €[0, 1]}
open ball {z € X| ||xo — z|| < R}
closed ball {z € X|||xo — z|l| < R}
ball centered at the zero

element in X and of radius R

open, closed balls, respectively

no particular reference to X, xg, or R
matrix 1 <i,j <n

inverse of M

generalized inverse of M
determinant of M

the kth power of M

rank of M

identity matrix (operator)

linear operator
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L~ 1
null L
rad L

inverse
null set of L
radical set of L

F:D C X — Y an operator with domain D included in X,

F'(x), F" (x)

gl
<

N

<N =M

S C
D
oo

Q (X, 2)
Q% (X)

x%

(&)

A#

dim A
codim A

I

and values in Y

first, second Fréchet derivatives of F evaluated at x
Kronecker delta

summation symbol

product of factors symbol

integration symbol

element inclusion

strict and nonstrict set inclusion

for all

implies

union, intersection

difference between sets A and B

mean of a bilinear operator B

set of all quadratic operators from X to Z
set of all bounded quadratic operators Q in X
such that Q has finite rank

set of all bounded quadratic functionals
direct sum

outer inverse of A

dimension of A

codimension of A

K-norm
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Additive operator, 1

Algorithmic model, 445

Analytic operator, 127

Antitone operator, 11

Arnoldi’s method, 73

Autonomous differential equation, 74, 215

Banach lemma, 4

Banach space, 3

Banach space with a convergence structure,
417

Bijective linear operator, 30

Bilinear operator, 2

Biparametric family of multipoint iterations,
255

Bounded linear operator, 2

Bounds on manifolds, 103

Broyden’s method, 193

Central path, 476

Chaotic behavior, 166
Chebyshev method, 256
Chebyshev-Halley method, 256
Complementarity gap, 476
Computational complexity, 325
Continuation methods, 116
Contraction mapping, 26
Convergence on a cone, 80
Convergence radius, 73
Convergence structure, 417
Convexity, 19

Dilation measure, 114
Discretization, 187

Divided differences, 295

Embedding, 106
Euler’s method, 154

Finite element analysis, 157
Fixed point, 25

Fréchet derivative, 5
Fredholm operator, 29
Functional, 2

Gateaux derivative, 36
Gauss-Newton method, 121
Generalized conjugate residual, 73
Generalized inverse, 379
Generalized minimum residual, 73
Gershgorin’s theorem, 39

Green kernel, 52

Halley method, 258

Hilbert space, 104

Hélder condition, 62

Homogeneous operator, 1

Horizontal linear complementarity problem
(HLCP), 477

Inner inverse, 379
Interior point method, 475
Inverse operator, 3

Jj-linear operators, 2
Jacobi-Newton method, 21
Jacobi-Secant method, 21

K -normed spaces, 395
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Kantorovich fixed point theorem, 12
King-Werner method, 233
Krawczyk operator, 134

Laplace operator, 29

Linear complementarity problem (LCP), 477
Linear operator, 1

Linear space, 1

LP method, 482

Mathematica, 71

Mesh independence, 170
Midpoint method, 253
Miranda theorem, 137
Moore theorem, 135

Neumann series, 4
Newton-Kantorovich theorem, 43
Newton method (inexact), 320
Newton method (weak), 102
Newton’s method, 41

Newton’s method modified, 42
Newton-like method, 261
Newton-like (two-point), 275
Nilpotent operator, 5

Partially ordered topological space, 9
Point-to-set-mapping, 445

Primal-dual path following algorithms, 475
PSB update, 162

Pseudo-orbit, 113

Quasivariational inequality, 362

Radius of convergence, 89
Regular smoothness, 75
Regular space, 11

Riccati operator, 32
Riemannian integration, 110

Secant method, 54
Secant-type methods, 111
Semidefinite program, 180
Semilocal convergence, 42
Shadowing lemma, 166
Shadowing orbits, 113
Steffensen’s method, 207
Stirling’s method, 202
Super-Halley method, 256
Symmetric operator, 24

Tangent-hyperbola, 219
Taylor’s theorem, 9
Tensor product, 34
Terra incognita, 62

Undetermined system, 104
Uryson operator, 32

Variational inequality, 339
Weierstrass theorem, 28

Yamamoto, 129



	front-matter
	Contents
	Introduction

	fulltext01
	Operators and Equations
	Operators on linear spaces
	Divided differences of operators
	Fixed points of operators
	Exercises


	fulltext02
	The Newton-Kantorovich (NK) Method
	Linearization of equations
	Semilocal convergence of the NK method
	New sufficient conditions for the secant method
	Concerning the ``terra incognita'' between convergence regions of two Newton methods
	Enlarging the convergence domain of the NK method under regular smoothness conditions
	Convergence of NK method and operators with values in a cone
	Convergence theorems involving center-Lipschitz conditions
	The radius of convergence for the NK method
	On a weak NK method
	Bounds on manifolds
	The radius of convergence and one-parameter operator embedding
	NK method and Riemannian manifolds
	Computation of shadowing orbits
	Computation of continuation curves
	Gauss-Newton method
	Exercises


	fulltext03
	Applications of the Weaker Version of the NK Theorem
	Comparison of Kantorovich and Moore theorems
	Comparison of Kantorovich and Miranda theorems
	The secant method and nonsmooth equations
	Improvements on curve tracing of the homotopy method
	Nonlinear finite element analysis
	Convergence of the structured PSB update in Hilbert space
	On the shadowing lemma for operators with chaotic behavior
	The mesh independence principle and optimal shape designproblems
	The conditioning of semidefinite programs
	Exercises


	fulltext04
	Special Methods
	Broyden's method
	Stirling's method
	Steffensen's method
	Computing zeros of operator satisfying autonomous differential equations
	The method of tangent hyperbolas
	A modified secant method and function optimization
	Local convergence of a King-Werner-type method
	Secant-type methods
	Exercises


	fulltext05
	Newton-like Methods
	Newton-like methods of ``bounded deterioration''
	Weak conditions for the convergence of a certain class of iterative methods
	Unifying convergence analysis for two-point Newton methods
	On a two-point method of convergent order two
	Exercises


	fulltext06
	Analytic Computational Complexity: We Are Concerned with the Choice of Initial Approximations
	The general problem
	Obtaining good starting points for Newton's method
	Exercises


	fulltext07
	Variational Inequalities
	Variational inequalities and partially relaxed monotone mapping
	Monotonicity and solvability of nonlinear variational inequalities
	Generalized variational inequalities
	Semilocal convergence
	Results on generalized equations
	Semilocal convergence for quasivariational inequalities
	Generalized equations in Hilbert space
	Exercises


	fulltext08
	Convergence Involving Operators with Outer or Generalized Inverses
	Convergence with no Lipschitz conditions
	Exercises


	fulltext09
	Convergence on Generalized Banach Spaces: Improving Error Bounds and Weakening of Convergence Conditions
	K-normed spaces
	Generalized Banach spaces
	Inexact Newton-like methods on Banach spaces with a convergence structure
	Exercises


	fulltext10
	Point-to-Set-Mappings
	Algorithmic models
	A general convergence theorem
	Convergence of k-step methods
	Convergence of single-step methods
	Convergence of single-step methods with differentiable iteration functions
	Monotone convergence
	Exercises


	fulltext11
	The Newton-Kantorovich Theorem and Mathematical Programming
	Case 1: Interior point methods
	Case 2: LP methods
	Exercises


	fulltext12
	References
	Glossary of Symbols
	Index



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




