

Elsevier US Job Code:IPNM Chapter:Prelims-P373859 19-12-2006 11:50a.m. Page:i Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

Introduction to Precise
Numerical Methods

Elsevier US Job Code:IPNM Chapter:Prelims-P373859 19-12-2006 11:50a.m. Page:ii Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

This page intentionally left blank

Elsevier US Job Code:IPNM Chapter:Prelims-P373859 19-12-2006 11:50a.m. Page:iii Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

Introduction to
Precise Numerical

Methods

Oliver Aberth
Mathematics Department
Texas A & M University

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Academic Press is an imprint of Elsevier

Acquisitions Editor Tom Singer
Project Manager Jay Donahue
Marketing Manager L Leah Ackerson
Cover Design Eric DeCicco
Composition Integra Software Services Pvt. Ltd., India
Cover Printer Phoenix Color
Interior Printer Sheridan Books

Academic Press is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
525 B Street, Suite 1900, San Diego, California 92101-4495, USA
84 Theobald’s Road, London WC1X 8RR, UK

This book is printed on acid-free paper.

Copyright © 2007, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy, recording, or any information
storage and retrieval system, without permission in writing from the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone (+44) 1865 843830, fax (+44) 1865 853333,
email: permissions@elsevier.com. You may also complete your request on-line
via the Elsevier homepage (http://elsevier.com), by selecting “Support & Contact”
then “Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Aberth, Oliver.

Introduction to precise numerical methods/Oliver Aberth.
p. cm.

ISBN 0-12-373859-8

1. Computer science—Mathematics. 2. Numerical analysis—Data processing. I. Title.
QA76.9.M35A24 2007
518.0285—dc22

2007000712

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN 13: 978-0-12-373859-2
ISBN 10: 0-12-373859-8

For information on all Academic Press publications
visit our website at www.books.elsevier.com

Printed in the United States of America
07 08 09 10 9 8 7 6 5 4 3 2 1

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

http:permissions@elsevier.com
(http://elsevier.com)

Elsevier US Job Code:IPNM Chapter:Prelims-P373859 19-12-2006 11:50a.m. Page:v Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

Contents

Preface xi

Acknowledgments xiii

1 Introduction 1

1.1	 Open-source software 1

1.2	 Calling up a program 2

1.3	 Log files and print files 3

1.4	 More on log files 4

1.5	 The tilde notation for printed answers 5

2 Computer Arithmetics 9

2.1	 Floating-point arithmetic 9

2.2	 Variable precision floating-point arithmetic 10

2.3	 Interval arithmetic 11

2.4	 Range arithmetic 13

2.5	 Practical range arithmetic 15

2.6	 Interval arithmetic notation 15

2.7	 Computing standard functions in range arithmetic 17

2.8	 Rational arithmetic 18

Software Exercises A 20

Notes and References 23

3 Classification of Numerical

Computation Problems 25

3.1	 A knotty problem 25

3.2	 The impossibility of untying the knot 27

v

Elsevier US Job Code:IPNM Chapter:Prelims-P373859 19-12-2006 11:50a.m. Page:vi Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

vi Contents

3.3	 Repercussions from nonsolvable problem 3.1 27

3.4	 Some solvable and nonsolvable decimal

place problems 29

3.5	 The solvable problems handled by calc 32

3.6	 Another nonsolvable problem 32

3.7	 The trouble with discontinuous functions 33

Notes and References 35

4 Real-Valued Functions 37

4.1	 Elementary functions 37

Software Exercises B 39

5 Computing Derivatives 41

5.1	 Power series of elementary functions 41

5.2	 An example of series evaluation 48

5.3	 Power series for elementary functions of several variables 49

5.4	 A more general method of generating power series 52

5.5	 The demo program deriv 54

Software Exercises C 54

Notes and References 54

6 Computing Integrals 57

6.1	 Computing a definite integral 57

6.2	 Formal interval arithmetic 59

6.3	 The demo program integ for

computing ordinary definite integrals 61

6.4	 Taylor’s remainder formula generalized 63

6.5	 The demo program mulint for higher

dimensional integrals 64

6.6	 The demo program impint for computing

improper integrals 66

Software Exercises D 67

Notes and References 68

7 Finding Where a Function f(x) is Zero 69

7.1	 Obtaining a solvable problem 69

7.2	 Using interval arithmetic for the problem 72

7.3	 Newton’s method 73

7.4	 Order of convergence 75

Software Exercises E 77

Elsevier US Job Code:IPNM Chapter:Prelims-P373859 19-12-2006 11:50a.m. Page:vii Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

vii Contents

8 Finding Roots of Polynomials 79

8.1	 Polynomials 79

8.2	 A bound for the roots of a polynomial 85

8.3	 The Bairstow method for finding roots of

a real polynomial 86

8.4	 Bounding the error of a rational

polynomial’s root approximations 90

8.5	 Finding accurate roots for a rational or a real polynomial 92

8.6	 The demo program roots 95

Software Exercises F 95

Notes and References 96

9 Solving n Linear Equations in n Unknowns 97

9.1	 Notation 97

9.2	 Computation problems 98

9.3	 A method for solving linear equations 100

9.4	 Computing determinants 102

9.5	 Finding the inverse of a square matrix 104

9.6	 The demo programs equat, r_equat, and

c_equat 105

Software Exercises G 106

Notes and References 107

10 Eigenvalue and Eigenvector Problems 109

10.1	 Finding a solution to Ax = 0 when det A = 0 110

10.2	 Eigenvalues and eigenvectors 113

10.3	 Companion matrices and Vandermonde matrices 118

10.4	 Finding eigenvalues and eigenvectors by

Danilevsky’s method 122

10.5	 Error bounds for Danilevsky’s method 127

10.6	 Rational matrices 134

10.7	 The demo programs eigen, c_eigen, and r_eigen 135

Software Exercises H 136

11 Problems of Linear Programming 137

11.1	 Linear algebra using rational arithmetic 137

11.2	 A more efficient method for solving

rational linear equations 140

11.3	 Introduction to linear programming 141

11.4	 Making the simplex process foolproof 145

11.5	 Solving n linear interval equations in n unknowns 148

Elsevier US Job Code:IPNM Chapter:Prelims-P373859 19-12-2006 11:50a.m. Page:viii Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

viii Contents

11.6	 Solving linear interval equations via linear programming 152

11.7	 The program linpro for linear programming problems 155

11.8	 The program i_equat for interval linear equations 156

Software Exercises I 156

Notes and References 157

12 Finding Where Several Functions are Zero 159

12.1	 The general problem for real elementary functions 159

12.2	 Finding a suitable solvable problem 160

12.3	 Extending the f(x) solution method to the

general problem 163

12.4	 The crossing parity 165

12.5	 The crossing number and the topological degree 166

12.6	 Properties of the crossing number 170

12.7	 Computation of the crossing number 171

12.8	 Newton’s method for the general problem 175

12.9	 Searching a more general region for zeros 176

Software Exercises J 178

Notes and References 180

13 Optimization Problems 181

13.1	 Finding a function’s extreme values 181

13.2	 Finding where a function’s gradient is zero 184

13.3	 The demo program extrema 188

Software Exercises K 188

Notes and References 189

14 Ordinary Differential Equations 191

14.1	 Introduction 191

14.2	 Two standard problems of ordinary differential

equations 193

14.3	 Difficulties with the initial value problem 196

14.4	 Linear differential equations 197

14.5	 Solving the initial value problem by power series 198

14.6	 Degree 1 interval arithmetic 201

14.7	 An improved global error 205

14.8	 Solvable two-point boundary-value problems 208

14.9	 Solving the boundary-value problem by power series 210

14.10 The linear boundary-value problem	 213

Software Exercises L 214

Notes and References 216

Elsevier US Job Code:IPNM Chapter:Prelims-P373859 19-12-2006 11:50a.m. Page:ix Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

ix Contents

15 Partial Differential Equations 217

15.1	 Partial differential equation terminology 217

15.2	 ODE and PDE initial value problems 219

15.3	 A power series method for the ODE problem 220

15.4	 The first PDE solution method 223

15.5	 A simple PDE problem as an example 227

15.6	 A defect of the first PDE method 228

15.7	 The revised PDE method with comparison computation 229

15.8	 Higher dimensional spaces 230

15.9	 Satisfying boundary conditions 231

Software Exercises M 232

Notes and References 233

16 Numerical Methods with Complex Functions 235

16.1	 Elementary complex functions 235

16.2	 The demo program c_deriv 237

16.3	 Computing line integrals in the complex plane 237

16.4	 Computing the roots of a complex polynomial 238

16.5	 Finding a zero of an elementary complex function f �z� 239

16.6	 The general zero problem for elementary

complex functions 242

Software Exercises N 245

Notes and References 247

The Precise Numerical Methods Program PNM 248

Index 249

Elsevier US Job Code:IPNM Chapter:Prelims-P373859 19-12-2006 11:50a.m. Page:x Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

This page intentionally left blank

Elsevier US Job Code:IPNM Chapter:Prelims-P373859 19-12-2006 11:50a.m. Page:xi Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

Preface

Now that powerful PCs and Macs are everywhere available, when solving a
numerical problem, we should no longer be content with an indefinite answer,
that is, an answer where the error bound is either unknown or a vague guess. This
book’s software allows you to obtain your numerical answers to a prescribed
number of correct decimal places. For instance, one can compute a definite
integral

�
a

b
f�x�dx to a wide choice of correct decimal places.

The problems treated in this book are standard problems of elementary numeri
cal analysis, including a variety of problems from the field of ordinary differential
equations and one standard problem from the field of partial differential equa
tions. Most programs allow you to choose the number of correct decimal places
for a problem’s solution, with the understanding that more correct decimals
require more computer time.

Besides the availability of powerful computers, two other advances permit
the easy generation of accurate numerical answers. One is the development of
efficient methods for accurately bounding computation errors, stemming from
Ramon Moore’s invention of interval arithmetic in 1962. The other is the
development of methods for analyzing computation tasks, stemming from Alan
Turing’s groundbreaking work in the 1930s.

The CD that comes with this book contains a set of demonstration programs
that will run on any PC using the Microsoft Windows XP operating system.
Page 248 explains how to load the demonstration programs onto your PC’s hard
disk. After you follow those directions and read the short first chapter, you are
ready to use any program. A beginning numerical analysis student can use this
software to solve numerical problems that arise in the student’s other science or
engineering courses.

The text gives the mathematics behind the various numerical techniques and
also describes in general terms the procedures followed by the various compu
tation programs. The software is open-source; that is, the source code for each

xi

Elsevier US Job Code:IPNM Chapter:Prelims-P373859 19-12-2006 11:50a.m. Page:xii Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

xii Preface

computation program is available for inspection. Thus a student is able, when
conversant with programming languages, to adapt these programs to other uses.

Chapters 1 through 15 can be read by a student who has completed the calculus
sequence and an elementary linear algebra course. The final chapter, Chapter 16,
requires some acquaintance with complex analysis.

Elsevier US Job Code:IPNM Chapter:Prelims-P373859 19-12-2006 11:50a.m. Page:xiii Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

Acknowledgments

In the writing of this book and the creation of the accompanying software, I have
had help from many sources. Two people have made fundamental contributions.
Mark J. Schaefer, formerly of Tübingen University, helped write some of the
computation programs. His brilliant programming skills were much needed, and
it was his idea to identify quantities correct to the last decimal place with
a terminal tilde. Ramon Moore of Ohio State University, who made precise
numerical computation possible, has been supportive through many decades and
helped test the various computation programs.

Rudolf Lohner of Karlsruhe University showed me how to improve my treat
ment of ordinary differential equations, by using his ingenious computation
methods. R. Baker Kearfott of the University of Southwestern Louisiana helped
me understand the crossing number concept.

I am indebted to Brian Hassard of SUNY at Buffalo, for his inspiring early
attempts, with his students, at precise computation of specific partial differen
tial equation problems. His experiments encouraged me to develope the pde
program, described in Chapter 15.

I also wish to express my thanks to Grady Wright of the University of Utah,
who carefully read the early manuscript, corrected some errors, and made many
valuable suggestions for improvement.

Three reviewers of the early text, Gus Jacobs of Brown University, Arnd
Scheel of the University of Minnesota, and Sylvia Veronese of the University
of Utah, improved the book in many ways. I greatly appreciate their time and
thoughtful comments.

Oliver Aberth

xiii

Elsevier US Job Code:IPNM Chapter:Prelims-P373859 19-12-2006 11:50a.m. Page:xiv Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

This page intentionally left blank

Elsevier US Job Code:IPNM Chapter:Ch01-P373859 19-12-2006 11:46a.m. Page:1 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

Introduction 1

The programs that come with this book not only obtain numerical approxima
tions, but also bound the errors, and in this way are able to display answers correct
to the last decimal digit. This first chapter provides the information needed to
use the software easily and to understand any numerical results obtained. The
next section gives some background for the software, the three sections after that
describe how to use the software, and the last section illustrates how numerical
approximations are displayed and how these displays should be interpreted.

1.1 Open-source software

Because precision in numerical computation is still a novelty, we thought it
important to provide the code for every computation program. To keep the source
code relatively simple, all computation programs are MS-DOS programs instead
of Windows programs. The successive Windows operating systems all allow a
user to run an MS-DOS program via a command subsystem.
Our Windows program PNM lets you avoid extensive keyboard typing, as

was necessary in the MS-DOS era. We need to review the fundamentals of how
to call up a program using the command subsystem of Windows.
In general, a command line, entered at the computer keyboard, specifies two

files and has the form

name1 name2

Here name1 specifies a hard disk file, name1.exe, containing the computer
execution instructions. (Each hard disk filename has a three letter file extension
that is separated from the main part of its name by a period.) A following

1

Elsevier US Job Code:IPNM Chapter:Ch01-P373859 19-12-2006 11:46a.m. Page:2 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

2 1 Introduction

name2 may not be present in the command line, but if present, it specifies
some additional hard disk file containing information needed by the executing
program. With our command lines, the name2 file extension is always log,
so when name2 is present in a command line, the file name2.log holds the
needed data.

1.2 Calling up a program

As a simple example problem, which will be solved in detail in this section,
suppose we require the solution of the two linear equations

x1 +x2 = 1

x1 −x2 = 2

You can become familiar with controlling the software by imitating the following
steps on your PC.
We need to call up an appropriate program to solve this problem, and we

suppose that either we do not know the name of the program or have forgotten it.
In this situation, call up the general program problem. That is, click on PNM
in your Windows “Programs” display, and after the PNM form appears, click
on the Command menu, then click on the Exe part subsection, and finally,
choose the problem program from the list of programs that appears.
The PNM form caption now will be “Command: problem”. Next click on the

Command menu again, and this time click on the Go subsection. The PNM form
will disappear, and the next step is to get to the Windows command subsystem
(review page 248), type just the single letter g (for “go”) and hit the ENTER key.
The program problem will display various options and, according to your

responses, eventually displays the name of an appropriate computation program.
To solve our simple example, we first enter the integer 6, followed by the
integer 1. The program problem, in response to these entries, displays the
program name “equat”.
Now, knowing the program name, the next step is to call it up. We need to

exit the Windows command subsystem, and this can always be done by entering
the letter e (for “exit”) and hitting the ENTER key.
Once more, click on PNM in your Windows “Programs” display, and after the

PNM form appears, click on the Command menu, then click on the Exe part
subsection, and choose equat from the list of programs. The displayed caption
changes to “Command: equat”. Next click on the Command menu again, and
click on the Go subsection. Again the PNM form disappears, and once more we
need to get to the Windows command subsystem, type the letter g and hit the
ENTER key.
We now see a message identifying equat as a program for solving n linear

equations in n unknowns. This program requires a user to view simultaneous

Elsevier US Job Code:IPNM Chapter:Ch01-P373859 19-12-2006 11:46a.m. Page:3 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

� �� � � �

3 1.3 Log files and print files

equations in the matrix–vector form AX = B, so let us recast our simple problem
into that form:

1 1 x1 = 1
1−1 x2 2

Specify the number of equations by entering 2, and then enter the four coef
ficient matrix values of 1, 1, 1, and −1, followed by the two vector entries
of 1 and 2. Then select the number of decimal places, say 10, by entering the
integer 10. The solution is now displayed to 10 decimal places.

1.3 Log files and print files

Most, but not all, of the computation programs create both a log file and a print
file. If a hypothetical program abc creates a log file, then the file abc.log will
be found alongside the hard disk file holding the abc execution code (which
would be abc.exe) as soon as the program abc obtains from you all the data
needed to completely specify your computation problem, and before the program
abc starts a solution run, The abc.log file lists each keyboard line you entered,
with a description of what the entered line controls. A log file makes it easy
to modify the problem for another abc run, because you need only change the
abc.log file appropriately (using the PNM form to do this), and then give
the command abc abc instead of the command abc. Whenever there are two
names in a command line that are separated by one or more spaces, the second
name designates a log file that defines the problem. Thus with the command
line abc abc, the program abc (held in the file abc.exe) does not request
keyboard entries. Instead it uses the file abc.log to specify the problem.
If the program abc creates a print file, the file abc.prt, containing a

summary of the problem with a list of the answers obtained, will be found
alongside the file abc.exe, after the program abc completes a solution run
on a problem. The file abc.prt can be sent to your PC’s printer to obtain a
record of the problem’s solution. The PNM form will also do this task.
We now return to the simple example of the preceding section, which we pre

sume has just been solved by using the program equat. To see the equat.prt
file, obtain the PNM form, click on the Prt menu, and then click on the Open
subsection. The PNM form now holds the contents of the equat.prt file,
although a part is obscured. Click on the right side of the PNM form and extend
it so that the complete contents of the print file are in view. When the Print
subsection of the Prt menu is selected, your printer copies whatever is visible
in the PNM form, so before printing, it is important to adjust the PNM form
size in both dimensions appropriately.

Elsevier US Job Code:IPNM Chapter:Ch01-P373859 19-12-2006 11:46a.m. Page:4 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

4 1 Introduction

To see the equat.log file, first click on the Log menu, then click on the
Open subsection, and finally click on the single line labeled equat. The PNM
form now holds the contents of the equat.log file.
Let us suppose that immediately after we obtain the solution of our initial

example problem, we find we need to solve the related problem

x1 +x2 = 3

x1 −x2 = 4

Here the equation right side values have been changed from their previous values
to 3 and 4. Edit the log file to specify this new problem by changing the two
vector values from 1 and 2 to their new values of 3 and 4, and then click on the
Save subsection of the Log menu.
Our new problem can be solved now by clicking on the Log part of the

Command menu, then clicking on the single line labeled equat. The PNM
caption changes to “Command: equat equat”. Next click on the Go subsection
of the Command menu, and, as usual, go to the Windows command subsection,
type a g and hit the ENTER key. The solution to our new problem is now
displayed.

1.4 More on log files

This section need be read only if you repeatedly use a particular program to
solve a collection of related problems. We continue to use abc as the name of
a hypothetical program creating a log file. The reader can think of abc as being
a computation program (like equat) used earlier to solve some problem.
If the abc.log file already exists and you give the one word command abc,

then after you specify the computation problem, the abc.log file is cleared
and refilled with the new problem’s keyboard lines. An existing abc.log file
can be saved by being renamed. This way the file is not cleared by an abc
command, and the renamed file can still be used as a problem specifier.
To rename the abc log file, the PNM form caption must be either “Command

abc” or “Command abc abc”. If this is not the case, click on the Command menu,
then on the Exe part subsection, and choose abc from the list of programs.
Now with the needed PNM form caption, click on the Log menu, then on the
Open subsection and choose the abc log file from the list of log files. The
PNM form now displays the log file. Next click on the Log menu a second
time, and then on the Save As subsection. There is now a request for an addend
to abc to generate a new log file name. Thus if you specify the addend as 1,
the abc.log file is renamed abc1.log. Later, when you want to rerun the
previous abc problem, give the command abc abc1.

Elsevier US Job Code:IPNM Chapter:Ch01-P373859 19-12-2006 11:46a.m. Page:5 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

1.5 The tilde notation for printed answers 5

Any alphabetic or numeric characters can be appended to abc to make up
a new log file name. Thus abc123 or abcxyz are both acceptable new log
file names.

1.5 The tilde notation for printed answers

The number of decimal places to which an answer is computed is set by you, the
program caller, and the decimals usually can be specified as either fixed-point or
scientific floating-point. Let us suppose that three fixed-point decimal places are
requested. It is possible with this decimal place choice that a computed answer
is displayed this way:

111�234˜

The tilde (˜) indicates that the displayed result has a positive error bound.
Nevertheless, the displayed result is correct to the last decimal place shown.
Section 3.4 has a discussion of the meaning of the phrase “correct to the last
decimal place”, but this can be understood here to mean that the magnitude of
the error is no larger than one-half of a unit in the last decimal place, or 5 units
in the decimal place that would follow the last digit displayed. Thus, for the
sample answer just shown, 0�0005 is the error bound on the answer. The tilde
may be mentally converted to ± 1

2 and so this particular answer also may be
interpreted as

111�234± 1 2
Here the displayed 12 is of course to be associated with the terminal digit 4 of
the answer.
Occasionally, when k fixed-point decimal digits are requested, an answer may

appear showing k+1 decimal digits after the decimal point. Whenever an extra
decimal place appears, the extra decimal digit is always a 5. Thus, continuing
with our supposition that three fixed-point decimal digits are requested, it is
possible that an answer might appear this way

111�2345˜

Section 3.4 explains why it is necessary sometimes to give an answer to one
more decimal place than requested.
More rarely, when k fixed-point decimal digits are requested, an answer may

appear to k decimal places, but without the tilde. The lack of a tilde indicates
that the displayed answer has a zero error bound, and accordingly the answer is
exact. For instance, continuing with our three fixed-point decimal supposition,
an answer might appear this way:

111�234

Elsevier US Job Code:IPNM Chapter:Ch01-P373859 19-12-2006 11:46a.m. Page:6 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

6 1 Introduction

In this case the answer is exactly the rational number 111�234. As an example, if
we call up the calc program to obtain a three fixed-point decimal approximation
to cos�0�, the exact answer obtained appears as shown below:

1�000

Suppose now that you decide that scientific floating-point decimals are more
convenient for representing answers. A k decimal scientific floating-point number
is a number in the form

(sign) d0�d1d2� � � dk ·10e (1.1)

with the requirement that the exponent e be an integer, and that the leading
decimal digit d0 not be zero. For instance, −√3�4444 · 1012 is a four decimal
scientific floating-point value, but −3�4444 · 10 2 or 0�4444 · 1012 are not. The
leading term ‘(sign) d0�d1d2� � � dk’ is the mantissa and the trailing factor ‘10e’
is the exponent part of the number. With scientific floating-point notation, it is
permissible to indicate that a number is zero by simply displaying a zero, that
is, displaying 0 without any exponent part.
When a computation program is directed to obtain answers to k floating-point

decimal places, the exponent part of an answer is shown using “E notation.”
Thus if the exponent part is 10−3, this is displayed as E−3. With mantissas, the
tilde notation is used. Thus the display 2�1234∼ E5 indicates that the mantissa
is correct to the last digit, and that the error of the mantissa is no larger than
one-half a unit in the last displayed decimal place. If a tilde does not appear in a
floating-point mantissa, the mantissa has a zero error bound and is exact. As an
example, if we direct the calc program to print out a four decimal floating-point
approximation to cos�0�, the exact answer appears this way:

1�0000 E0

A four decimal floating-point approximation to sin�0� appears as

0

and illustrates the point that exact zeros appear as a single digit 0 without an
exponent part. A four decimal floating-point approximation to tan��/4� appears
this way:

1�0000˜ E0

Note that the tilde appears even though the tangent of �/4 is exactly 1. When
ever a tilde appears with a displayed answer known to be exact, it means
merely that the accompanying error bound computation yielded a positive result.

Elsevier US Job Code:IPNM Chapter:Ch01-P373859 19-12-2006 11:46a.m. Page:7 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

7 1.5 The tilde notation for printed answers

As explained in Section 3.4, computed error bounds serve to ensure the correct
ness of displayed answer digits. A computed error bound is a bound guaranteed
not to be too small, but it is not necessarily exact.
With floating-point display, as explained in Section 3.4, sometimes no mantissa

digits can be obtained. A computed approximation with a computed error bound
defines an interval on the real number line, and if this interval contains the zero
point, then a mantissa correct to the last decimal place is not forthcoming. If the
interval obtained is actually a point, that is, the approximation is zero and the error
bound is zero, then the display of 0 in place of a mantissa and an exponent part
is correct. But for intervals that are not points, the failure to obtain a mantissa is
indicated by the display of 0�∼ for the mantissa, with an accompanying negative
exponent of magnitude equal to or greater than the number of floating-point
decimal places requested. Thus if we request four floating-point decimal places,
the display shown below might occur:

0�˜ E−4

The leading 0 signals the failure to obtain a mantissa (because a floating-point
mantissa should start with a nonzero decimal digit), and the tilde after the
decimal point signals that the displayed 0 is not necessarily exact. The interval
containing the zero point in which the answer lies is obtained by interpreting the
tilde in the usual way to mean plus or minus one-half a unit in the last decimal
place displayed, or 5 units in the decimal place just beyond the last displayed
one. For the answer just shown, the interval indicated is �0± 0�5� · 10−4. The
larger the number of requested floating-point digits, the smaller the displayed
intervals containing the zero point must be, because the magnitude of the negative
exponent must match or exceed the number of requested decimal places.

Elsevier US Job Code:IPNM Chapter:Ch01-P373859 19-12-2006 11:46a.m. Page:8 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

This page intentionally left blank

Elsevier US Job Code:IPNM Chapter:Ch02-P373859 19-12-2006 11:46a.m. Page:9 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

Computer Arithmetics 2

Suppose our computation problem is a simple one: to compute various math
ematical constants to a prescribed number of correct decimal digits. Typical √
constants might be e 2 or tan 31�. Two demonstration programs (called demo
programs from now on) do precisely this task. The demo program calc com
putes real constants and the program r_calc computes rational constants. This
chapter gives background information needed to understand how these programs
operate.

In this chapter we describe a computer arithmetic called range arithmetic,
which automatically generates answers with an error bound. With this
arithmetic, it is easy to compute constants correct to a prescribed number of dec
imal places. Because range arithmetic is a variety of interval arithmetic, interval
arithmetic must be described first. But before we do that, let us first describe the
usual computer arithmetic, provided by all the common programming languages.

2.1 Floating-point arithmetic

In this system, as commonly used today, each floating-point number is assigned
a fixed block of computer memory of several allowed sizes, and the programmer
chooses the size. Usually a programming language allows at least two floating-
point sizes. The number stored in memory has the form

(sign) �d1d2� � � dk ·Be

The leading digit d1 is unequal to zero, e is the exponent, and B is the base
used for the exponent part. Here various number systems can be used in this
representation: binary, octal, decimal, or hexadecimal. Accordingly, the base B

9

Elsevier US Job Code:IPNM Chapter:Ch02-P373859 19-12-2006 11:46a.m. Page:10 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

10 2 Computer Arithmetics

could be 2, 8, 10, or 16. The range arithmetic system uses the decimal system,
so we will concentrate on decimal floating-point representations, which have
the form

(sign) �d1d2� � � dk ·10e (2.1)

This representation is similar to what was called scientific floating-point in
Chapter 1, except that the decimal point precedes rather than follows the first
digit of the mantissa. This convention makes multiplication and division a little
easier to execute on the computer. The mantissa now is (sign) �d1d2� � � dk.
A certain amount of the assigned memory space is for the exponent e. Let us
suppose that enough bits are allocated so that an exponent can vary between plus
or minus 9,999, because from computational experience this is about as much
variation as is ever needed. The mantissa digits take up most of the memory
space, with the number of digits, k, depending on the floating-point size we
choose. For example, we may have three choices available, giving us 6, 14, or
25 mantissa digits. When two numbers of a particular size are added, subtracted,
or multiplied, the mantissa needed for an exact computed result may be longer
than the particular size allows. Digits then must be discarded to make the result
fit into the memory space reserved for the mantissa.

Floating-point arithmetic is obtained either by programming the computer to
do it (a software floating-point), or having it done by a silicon chip (a hardware
floating-point). A drawback of this conventional system is that the size must
be chosen before a program is run. This precludes having the program choose
the size, perhaps after doing a sample computation. Let us pass then to a more
flexible system.

2.2 Variable precision floating-point arithmetic

With this arithmetic the format of a number, shown here,

(sign) �d1d2� � � dn ·10e (2.2)

is identical to that given previously, except that n, the number of mantissa digits,
now is variable instead of being fixed at the few choices previously allowed.
Such a system will have an upper bound, N , on the number of mantissa digits
possible, with N typically being several thousand. Thus any number of the form
just shown is allowed if n is in the range 1 ≤ n ≤ N . Because n is not fixed, the
amount of memory needed for a number is not known in advance of forming the
number. The storage of a number in memory now requires a variable number of
bytes to hold the mantissa. The integer n, stored in a designated initial part of
a number’s memory block, indicates how many of the following memory bytes
hold mantissa digits.

Elsevier US Job Code:IPNM Chapter:Ch02-P373859 19-12-2006 11:46a.m. Page:11 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

11 2.3 Interval arithmetic

This system is now able to correctly represent even a very long input
decimal constant. We simply convert the number to the form (2.2) with n just
large enough to represent all digits. Thus program constants, such as 2.75 or
2222211111, obtain the forms +�275 ·101 or +�2222211111 ·1010, respectively.
When performing divisions with such numbers, we must decide how many
mantissa digits to form. And when doing additions, subtractions, or multipli
cations, generating an exact result may require an inconveniently large num
ber of mantissa digits. A control parameter is needed, bounding the length of
all mantissas formed by arithmetic operations. This control parameter, always
a positive integer, can be given the name PRECISION. Thus PRECISION
can be set to any value between a default minimum and the system upper
bound N .

Before any computation, we set PRECISION to some value that seems
appropriate, and if the computation reveals that more mantissa digits are
needed, then we increase PRECISION and repeat the computation. Note that
PRECISION does not determine the mantissa length for any decimal constants
used by a program. Such constants always are converted to floating-point form
with a mantissa just long enough to represent them exactly.

This system is clearly an improvement over the previous floating-point system,
but there still is a major drawback. We usually cannot tell from our computed
numbers how accurate our results are, especially after a long and complicated
computation, so we do not know when to increase PRECISION. We need some
way of determining how big our computational error is.

2.3 Interval arithmetic

In 1962 Ramon Moore proposed a way for the computer to keep track of errors.
Instead of using a single computer representation for a number, two would be
used, one to represent the number, and another to represent the maximum error
of the number. First note that a number’s “error” is defined as the absolute value
of the number’s deviation from the true value, so a number’s error is always
positive or zero. Each number now has a representation m ± �, where m is a
computer floating-point representation of the number, and � is the computer
representation for the error. Program constants that are exactly represented by
a computer number have � set to zero. As the computer does each arithmetic
operation of addition, subtraction, multiplication, and division, besides forming
the result m, it forms the result’s error bound �. The mathematical relations used
for the four arithmetic operations are the following:

m1 ± �1 +m2 ± �2 = �m1 +m2�± ��1 + �2� (2.3)

m1 ± �1 −m2 ± �2 = �m1 −m2�± ��1 + �2� (2.4)

Elsevier US Job Code:IPNM Chapter:Ch02-P373859 19-12-2006 11:46a.m. Page:12 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

=
∣ ∣

∣ ∣
∣ ∣

∣ ∣
∣ ∣

12 2 Computer Arithmetics

m1 ± �1 ×m2 ± �2 = �m1m2�± ��1�m2�+ �m1��2 + �1�2� (2.5)

m1 ± �1 ÷m2 ± �2 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪

(
m1

m2

)

±

⎛

⎜
⎜
⎝

�1 +
∣
∣
∣
∣
m1

m2

∣
∣
∣
∣ �2

�m2�− �2

⎞

⎟
⎟
⎠ if �m2� > �2 (2.6)

⎩
Division error if �m2� ≤ �2

The first two relations for addition and subtraction are easy to understand,
because the result error bound is just the sum of the two operand error bounds.
To verify the multiplication relation, multiply the two operands together to obtain
four terms; one is the result value, and the other three are error terms. The result
error bound is the sum of the magnitudes of these three error terms.

A division operation with intervals cannot succeed unless the divisor interval
does not contain the zero point. Thus division is not possible if �m2� ≤ �2. When
division is possible, the result error bound does not depend on the signs of m1 or
m2, and to find this bound, we can restrict our attention to �m1�±�1 ÷�m2�±�2.
Here we see that the maximum error occurs either when the smallest possible
numerator is divided by the largest possible denominator or when the largest
possible numerator is divided by the smallest possible denominator. In the first
case the error is

�m1� �m1�− �1 �m1���m2�+ �2�− ��m1�− �1��m2� − = �m2� �m2�+ �2 �m2���m2�+ �2�

�1�m2�+ �m1��2 = �m2���m2�+ �2�

�1 +
∣m1

∣
�2 m2

�m2�+ �2

In the other case the error is

�m1�+ �1 �m1� ��m1�+ �1��m2�− �m1���m2�− �2� − = �m2�− �2 �m2� �m2���m2�− �2�

�1�m2�+ �m1��2 = �m2���m2�− �2�

�1 + ∣
∣m1

∣
∣
�2 m2= �m2�− �2

Elsevier US Job Code:IPNM Chapter:Ch02-P373859 19-12-2006 11:46a.m. Page:13 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

2.4 Range arithmetic 13

If �2 is positive, this second value for the error is greater, and is the error shown
in (2.6).

With interval arithmetic we let the computer form an error bound as it forms
each numerical value. We are repaid for this extra computation by always having
rigorous error bounds for all our computed answers.

2.4 Range arithmetic

When interval arithmetic is combined with the variable precision system
described in Section 2.2, we obtain the means of knowing when too few digits
have been used in our computation. To the floating-point representation we add
a single decimal digit r for the error, and obtain the representation

(sign) �d1d2� � � dn ± r ·10e (2.7)

The digit r is the range digit, used to define the maximum error of the number,
with the decimal significance of r identical to that of the last mantissa digit dn.
By adding r to dn, or subtracting r from dn, we form the endpoints of the
mantissa interval. From the range digit we obtain the mantissa’s error bound, by
taking account of the range digit’s mantissa position and ignoring the exponent
part. When the mantissa error is multiplied by the exponent part, 10e, we obtain
the number’s error bound. Below, these two error values are given for some
typical numbers.

Ranged number Mantissa error bound Number error bound

+�8888 ±9 ·101 �0009 = 9 ·10−4 9 ·10−3

−�7244666 ±2 ·10−2 �0000002 = 2 ·10−7 2 ·10−9

+�2355555555 ±3 ·104 �0000000003 = 3 ·10−10 3 ·10−6

When decimal constants are converted to this range arithmetic form, as before,
the number of mantissa digits that appear is the minimum needed to fully
represent the constant; and the range digit is 0 because the constant is without
error. Thus the constant 2�5 would obtain the ranged form +�25±0 ·101. Ranged
numbers like this one, with a zero range digit, are called exact.

When exact numbers now are added, subtracted, or multiplied, the result also
is exact if the PRECISION bound is not overstepped. But if PRECISION is
exceeded, then the mantissa gets truncated to the PRECISION length, and the
number gets a range digit of 1, indicating a maximum error of one unit in the
last mantissa digit. As before, the accuracy of the four rational operations is
changed simply by changing PRECISION.

When an arithmetic operation is performed with one or both operands having
a nonzero range digit, the result also gets a nonzero range digit, computed using

Elsevier US Job Code:IPNM Chapter:Ch02-P373859 19-12-2006 11:46a.m. Page:14 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

14 2 Computer Arithmetics

the interval relations of the preceding section. Generally the result mantissa error
bound is computed first, then rounded up to a one-digit value to form the range
digit. This fixes n, the number of mantissa digits. Then the result mantissa is
formed to this length, and if this means some mantissa digits are discarded, then
the result range digit is incremented by one.

As a computation proceeds, with the numbers now having nonzero range
digits, the successive mantissas generally obtain increasing error bounds, and,
accordingly, their length tends to decrease. In one respect this is helpful, in
that suspect mantissa digits get discarded automatically. Shorter mantissas mean
faster arithmetic operations, so usually the later part of a computation runs
quicker than the earlier part. If the final results have too few mantissa digits to
yield the required number of correct decimal places, then the whole computation
is repeated at a higher PRECISION. The cases where this occurs are likely to be
cases where ordinary floating-point computation would yield inaccurate results.
The amount to increase PRECISION may be determined by examining each
answer that was insufficiently accurate, to see by how many digits it failed to
meet its target form. If the greatest deficit in correct decimal places equals D,
then PRECISION can be increased by D, plus some small safety margin perhaps,
and a repetition of the computation at this higher precision will likely succeed.

To illustrate the general idea of range arithmetic, in Table 2.1 we show a
sample range arithmetic computation to obtain the constant �5/4�32 to 5 correct
fixed-point decimal places. The first computation is done with PRECISION set
at 6, and the second with PRECISION set at 10. Each computation consists of
five multiplications that are squarings of powers of 5/4.

Of course not all computations are as simple as the one shown in
Table 2.1, which is a straightforward evaluation from an initial constant to an
answer. Usually the numerical solution of a mathematical problem is more
complicated, and initial gross approximations to desired results are progressively
refined. When we treat such cases we will need some method of determining
the error of the final approximants.

TABLE 2.1 Range arithmetic computation of � 4
5 �32 by 5 squarings

Step Step result PRECISION = 6 PRECISION = 10

0

1

2

3

4

5

5
4

� 5
4 �

2

� 5
4 �

4

� 5
4 �

8

� 5
4 �

16

� 5
4 �

32

+�125 ±0 ·101

+�15625 ±0 ·101

+�244140 ±1 ·101

+�596043 ±5 ·101

+�355267 ±6 ·102

+�126214 ±5 ·104

+�125 ±0 ·101

+�15625 ±0 ·101

+�244140625 ±0 ·101

+�5960464477 ±1 ·101

+�3552713678 ±2 ·102

+�1262177447 ±2 ·104

To 5 correct fixed-point decimal places, � 5
4 �

32 = 1262�17745∼

Elsevier US Job Code:IPNM Chapter:Ch02-P373859 19-12-2006 11:46a.m. Page:15 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

15 2.6 Interval arithmetic notation

2.5 Practical range arithmetic

In the description of range arithmetic just given, we allowed the mantissa of
a ranged number to change in length by a single decimal digit, and used a
single decimal digit for the range. We presented this type of range arithmetic
because it is easy to describe and easy to understand. When programming range
arithmetic, however, one must take into account the number of mantissa digits
that can be stored in integer elements, a basic type comprising a specific
number of memory bytes, and a type that is available in almost all programming
languages. Let us designate the number of decimal digits that can be stored
in the type integer, as its decimal width. The decimal width depends on
how many memory bytes of storage are alloted to the type integer. Let us
suppose, for instance, that the decimal width is four. Because the mantissa digits
are composed of integer units, the number of mantissa digits is always a
multiple of the decimal width, and the number of digits in the range is also the
decimal width.

To revise the range arithmetic system to accommodate an arbitrary decimal
width of W digits, change each mantissa digit di and range digit r in the
representation

�sign� �d1d2� � � dn ± r ·10e

from a single digit to a block of W decimal digits, and denote these by using
capital letters in place of small letters. The exponent base, which was 10, is
changed to B = 10W , that is, 1 followed by W zeros. A ranged number now has
the representation

��sign� �D1D2� � � Dn ±R� ·BE

For example, with a decimal width of four, the constant 17�52 has the represen
tation

�+��0017��5200�± �0000�� ·100001

Thus a programmed range arithmetic system is essentially identical to the range
arithmetic system described, except that base 10 with its 10 digits, 0 through 9,
is replaced by a base with more digits, which, for a decimal width of 4, is a base
with 104 = 10	000 different digits.

2.6 Interval arithmetic notation

There are two ways to designate intervals: with the notation m±� that we have
been using, and with the endpoint notation �a	 b�. One notation is easily converted
into the other; m± � is also �m− �	m+ ��, and �a	 b� is also a+

2
b ± b−

2
a . Most

often we use the m ± � notation, and we need names for the two parts. The

Elsevier US Job Code:IPNM Chapter:Ch02-P373859 19-12-2006 11:46a.m. Page:16 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

� �
� �

�
�

�

�
�

�

�
�

�

16 2 Computer Arithmetics

number m is the midpoint of the interval, and because the width of the interval
is 2�, the number � is the halfwidth of the interval.

For any mathematical constant, such as a, it is convenient to use an underline,
as in a, to denote the constant’s range arithmetic interval approximation obtained
at the current PRECISION.

Now consider two real numbers a and b, with range arithmetic intervals
a and b. If the a interval intersects the b interval we indicate this by writing
a=b. For instance, 2�22 ±2 =2�24 ±3. Here we count intervals as intersecting
even if they just touch, so that 2�22 ± 1 =2�24 ± 1. The new symbol = for
interval intersection is needed, and using = for this case would be misleading,
because when a intersects b, any of the relations a < b, a = b, or a > b may
hold for the numbers a and b, We write a > b if the a interval is to the right of
the b interval, and we write a < b if the a interval is to the left of the b interval.
Thus 3�33 ±1 > 3�30 ±1 and 3�33 ±1 < 3�36 ±1. We always have exactly one
of three possibilities: a < b, a=b, or a > b. From a < b, it follows that a < b,
and from a > b, it follows that a > b, but as already mentioned, from a=b any
of the relations a < b, a = b, or a > b could be true.

Note that intervals may also be compared with exact numbers, because an
exact number may be viewed as defining an interval of length zero. Thus, for
any interval a, we always have one of the three possibilities: a > 0, a < 0, or
a=0. We say an interval is “positive”, “negative”, or “overlaps 0”, depending
on which of the three listed relations holds.

An interval relationship is obtained at some specific computation precision.
So if a=b holds at a certain precision, then when precision is increased we may
still find a=b, but we could find a > b or we could find a < b. We write a � b=
to indicate that the two intervals a and b do not intersect. Then it is always
true that a=b or a � b, because two intervals either intersect or they do not =
intersect. It may be useful here to list the conclusions that can be reached when
various interval relations hold:

Interval relation Implied mathematical relation
a < ba < b

a > b
a �= b
a

� =b

a > b
a � b=

None certain

Conversely, if we know that a certain mathematical order relation holds between
two numbers, this information limits the interval relations we could find:

Mathematical relation Possible interval relation
a < b a < b or a=b
a > b a > b or a=b
a = b a=b

Elsevier US Job Code:IPNM Chapter:Ch02-P373859 19-12-2006 11:46a.m. Page:17 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

2.7 Computing standard functions in range arithmetic 17

In this textbook, because range arithmetic is the computer arithemetic used,
the phrase “if a < b, then” should be interpreted as meaning “if at the current
precision a < b, then”. Similarly, the phrase “if a �= b, then” should be interpreted
as “if at the current precision a � b, then”. =

2.7 Computing standard functions in range arithmetic

After the four arithmetic operations +	−	× and ÷ have been coded for range
arithmetic, one can compose simple programs to use this arithmetic. But often
we also need standard functions like ln x, sin x, or cos x. For instance, we may
need to find cos 3�12222 ±1, where the cosine argument is in radians.

In range arithmetic, standard functions can be formed in much the same
way they are formed with ordinary floating-point arithmetic, that is, by using
power series expansions in combination with various useful identities that apply
to the particular function. Thus to form cos x, we can use the three identities
cos�−x� = cos x, cos x = cos�x−2
n�, and cos x = − cos�x−
� to replace the
argument x by a value x′ between 0 and
/2. Then we halve x′ as many times
as necessary to confine its new value x′′ within a narrower interval, say �0	 0�1�.
We record the number of halvings, intending to perform the scaling operation
2y2 −1 on y = cos x′′ as many times as we halved, in accordance with the identity
cos�2x� = 2 cos2�x�−1.

To compute cos x′′, we use the Maclaurin series expansion

2 4 6 2nu u u u
cos u = 1 − + − +· · ·+ �−1�n +· · ·

2! 4! 6! 2n!
How many terms of the series should we use to form cos x′′? In the process
of summing the series, we would be adding consecutive terms to a summation
variable S. The terms rapidly decrease in magnitude, and when finally we come
to a term T whose magnitude �T � is less than the S halfwidth, then clearly this
is a good point to break off the summation.

The S halfwidth bounds the computation error in forming the partial sum for
cos x′′, but does not include the series truncation error that we make by ending
the summation. Because the series is an alternating series, with successive terms
decreasing in magnitude, the truncation error is bounded by the magnitude of
the first series term not summed. We need to increase the halfwidth of S by an
amount sufficient to account for the truncation error �T �.

This evaluation example shows that it is useful to introduce another operation
to range arithmetic, the operation

S ±©T

The result of S ±©T is the first operand S, but with an increased halfwidth, the
increase being equal to the largest possible �T � value in the T interval.

Elsevier US Job Code:IPNM Chapter:Ch02-P373859 19-12-2006 11:46a.m. Page:18 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

18 2 Computer Arithmetics

The operation ±© has another application besides its use in standard function
computations. Before giving this application, first note that when a mathematical
constant is computed in range arithmetic, we get an interval with a halfwidth
that can be examined and tested. If we wish to print the constant to a certain
number of decimal places, the size of this halfwidth determines whether we can
get the specified number of correct places from the interval. If we can not, the
higher precision needed can be determined, and the computation then is repeated
at this precision.

Now suppose we want to solve some mathematical problem numerically.
Here we may have one procedure for computing an approximation A to the
answer, and another procedure for computing an upper bound E on the error
of our approximation. Both computations yield range arithmetic numbers with
halfwidths bounding their computational error. The operation A±©E then gives
a correctly ranged approximation to the answer that can be tested to determine
whether the required number of correct decimal places can be obtained from it.
If not, we increase precision, recompute both A and E, and try again.

2.8 Rational arithmetic

A useful byproduct of range arithmetic is that rational arithmetic becomes easy
to obtain. For rational arithmetic we use a pair of exact numbers to represent
each rational, namely a numerator integer p and a denominator integer q to
represent the rational in the form p/q. The denominator integer q cannot be
zero, but there is no restriction on the numerator p. The rational operations of
addition, subtraction, multiplication, and division are executed according to the
following rules:

p1 p2 p1q2 +q1p2+ =
q1 q2 q1q2

p1 p2 p1q2 −q1p2− =
q1 q2 q1q2

p1

q1

× p2

q2

= p1p2

q1q2

(2.8)

p1

q1

÷ p2

q2

=
⎧
⎨

⎩

p1q2

q1p2

Division error

if p2 �= 0

if p2 = 0

Before executing any of the four operations shown above, PRECISION is
temporarily set to its highest value, N . The resulting p and q integers then
are computed in range arithmetic, following the rules given above. Because no
division operation is ever needed, the two integers obtained are always exact.

Elsevier US Job Code:IPNM Chapter:Ch02-P373859 19-12-2006 11:46a.m. Page:19 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

19 2.8 Rational arithmetic

If the range of one of these integers is ever nonzero, then N , the implemen
tation bound on the number of mantissa digits, is not large enough for the
computation.

It is convenient to restrict denominator integers q to positive values only.
It is then easier to decide whether we are dealing with a positive or negative
rational, because we need examine only the sign of p, rather than the signs
of both p and q. With this restriction, the equations for arithmetic operations
given earlier must be reexamined. The equations for addition, subtraction, or
multiplication need no changes, because each of these operations yields a result
with a positive denominator when both operands have positive denominators.
This is not the case for division, however, and the revised operation is

p1 p2÷
q1 q2

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p1q2 if p2 > 0
q1p2

−p1q2

q1�p2�
if p2 < 0

Division error if p2 = 0

It is convenient also to always eliminate common divisors from the pair of
integers p, q, and obtain each rational in what is called reduced form. This
way, we can conclude that a rational p1/q1 equals another rational p2/q2, after
we check that p1 equals p2 and that q1 equals q2. If common divisors are not
eliminated, we reach the same conclusion only after we find that p1q2 equals p2q1,
and this requires two multiplications. Elimination of common divisors also keeps
the integers p and q smaller, making arithmetic operations faster, and making
it less likely that we exceed N , the bound on mantissa length. Accordingly, as
each rational p/q is obtained by an initial construction or through an arithmetic
operation, the greatest common divisor D of �p� and q is found, and if D is
greater than one, then the pair p and q is replaced by the pair p′ and q′, with
p′ = p/D and q′ = q/D.

The method we use for finding D is the Euclidean algorithm, which finds
the greatest common divisor of any two positive integers n1 and n2 by repeated
divisions. The procedure is as follows. We divide the larger integer by the smaller
to obtain an integer quotient and an integer remainder. Assume now that n1 ≥ n2

(the integers are switched if this inequality is not true). Let d1 be the quotient
and n3 the remainder when n1 is divided by n2, so that

n1 = d1n2 +n3

with 0 ≤ n3 < n2. From the last equation, it is clear that any common divisor of
n1 and n2 is also a divisor of n3, so the greatest common divisor of n1 and n2 is
a common divisor of n2 and n3. On the other hand, any common divisor of n2

and n3 is also a divisor of n1, so the greatest common divisor of n2 and n3 is a

Elsevier US Job Code:IPNM Chapter:Ch02-P373859 19-12-2006 11:46a.m. Page:20 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

20 2 Computer Arithmetics

common divisor of n1 and n2. The two statements together imply that these two
greatest common divisors are identical, so the problem of finding the greatest
common divisor can be shifted from the pair n1 and n2 to the pair n2 and n3, and
the entire process can be repeated on the new pair. We see that n3, the smaller
number of the new pair, is less than n2, the smaller number of the original pair.
Thus if this procedure is repeated enough times, it must lead eventually to a
pair of integers with one member being zero. When this happens the desired
greatest common divisor equals the nonzero member of this final pair. Thus for
the integer pair 144 and 78, we arrive at their greatest common divisor in the
following four steps:

Pair Division relation
144, 78 144 = 1 ·78 +66

78, 66 78 = 1 ·66 +12
66, 12 66 = 5 ·12 +6
12, 6 12 = 2 ·6 +0

6, 0 The greatest common divisor is 6

Software Exercises A

Software exercises here and in later chapters are designed to clarify how to use
the demo programs to best advantage. All the exercises in this section concern the
demo program calc. Our goal with calc is to evaluate to 10 correct decimal √
places the two constants mentioned at the beginning of this chapter, e 2 and
tan 31�. Along the way to doing that, some of the common properties of demo
programs are explained. The last exercise gives some guidance in viewing the
source code of a demo program, with the calc program used as an example.

1. Call up the program calc on your PC. Here you need to choose the PNM
program from your list of Windows programs, and after the PNM form appears,
click on the Exe part subsection of the Command menu. After the list of
demo program names appears, click on the calc line. The form caption now is
“PNM Command: calc”. Next click on the Go subsection of the Command menu.
The PNM form disappears. You next need to get to the Windows command
subsection (see page 248), type the letter g (for “go”) and hit the ENTER key
to obtain the calc demo program.

The calc program requests that you specify the number of decimal places
desired, but instead just type the letter q and hit the ENTER key to exit the
program. Every demo program can be exited while it is waiting for an entry with
the single letter q, for “quit”.

Elsevier US Job Code:IPNM Chapter:Ch02-P373859 19-12-2006 11:46a.m. Page:21 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

21 Software Exercises A

2. While still in the Windows command subsystem, call up the calc program
again by typing a g and hitting the ENTER key. When a demo program
selection is made using the PNM form and selecting the Go subsection of the
Command menu, that demo program is called whenever you enter the Windows
command subsystem, type a g and hit the ENTER key. Now exit the program
by typing a control-c, that is, hold the CNTRL key down and hit the c key.
Every demo program can be exited with a control-c at any time, whether or not
the program is waiting for a keyboard entry. This type of exit is needed when
a demo program is making some computation, and you decide not to wait for
the result.

3. Once more call up the calc program by typing a g and hitting the ENTER
key. This time enter the integer 10 to choose 10 fixed-point decimal places for
calc’s computed constants. Demo programs generally allow a user to choose
n fixed-point decimal places by entering an unsigned integer n, and to choose
n floating-point decimal places by entering the negative integer −n. If you
enter an integer outside the range of allowed integer values, you get a message
telling you what the bound is. The calc program bound is 150 decimal places.
After you enter the 10, you see next a display of the symbols that can be used
to define a real number constant. The five arithmetic operations handled by
calc are +, -, * (multiplication), / (division), and ˆ for exponentiation.
The order in which arithmetic operation are executed can be controlled by
adding parentheses. When a series of arithmetic operations appear without
parentheses to delimit them, they are interpreted as described in the SYMBOLS
RECOGNIZED display. For instance (you can test any example mentioned in an
exercise by entering it), 1+2*3 is computed as if it were 1+(2*3), because
the rank of * is higher than the rank of +. Similarly, 2ˆ2*2 is computed as if
it were (2ˆ2)*2, because the rank of ˆ is higher than the rank of *. When
two or more operations of the same rank appear without parentheses, evaluation
is left to right, except for the case of operations of “hi” rank, where evaluation
is then right to left. Thus 4*3/2 is computed as if it was (4*3)/2, but -2ˆ2
is computed as if it was -(2ˆ2).

4. Decimal constants supplied to calc may use a sign prefix, and may have a
single decimal point, but should not have any commas. Thus the entry 2,100
will yield a “syntax” error report. The helpful ‘e’ notation may be used here.
Thus 2.1e3 is interpreted as 2100, and 2e-3 as 0.002. One may view
the ‘e’ following a decimal constant as denoting * 10ˆ, so 2.1e3 may be
viewed as 2.1*10ˆ3. If desired, the letter ‘e’ can be space separated from
the constant’s decimal part or exponent part, so 2.1e3 may also be entered
as 2.1 e3 or 2.1 e 3. Exit the calc program and call it up again, but this
time enter -10 in response to the request for decimal places. Now when you
evaluate a constant such as 2ˆ100, you obtain the constant with ‘e’ notation,
but the ‘e’ is now capitalized.

Elsevier US Job Code:IPNM Chapter:Ch02-P373859 19-12-2006 11:46a.m. Page:22 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

22 2 Computer Arithmetics

5. Exit calc and call it up again and specify 10 fixed-point decimal places for
the remainder of these exercises. We can now evaluate the first target constant, √
e . √

2 The function exp() is the exponential function, so the keystroke entry
needed for e 2 is exp(sqrt(2)). Each function computed by calc, such
as exp() or sqrt(), requires a set of parentheses to delimit the function’s
argument.

6. The function ln() and the function log() are identical, both being the
“natural logarithm” function ln. Thus ln(exp(1)) is 1. To obtain other loga
rithms, use the identity

ln x
logb x =

ln b

Thus to obtain log10 97 use the entry ln(97)/ln(10).

7. We are ready now to evaluate the other constant mentioned at the beginning
of this chapter, tan 31�. The three trigonometric functions sin(), cos(), and
tan() all use radian angle measure, so degrees must be specified in terms
of radians; 180 degrees equals
 radians, so one degree is
/180 radians.
Accordingly the keystroke entry to use for tan 31� is tan(31*pi/180).
One or more spaces may separate the tokens that make up an entry,
so tan(31 * pi / 180) is acceptable, but t an(31*pi/180) yields
an error message, because the letters of a function must be together.

8. The three functions asin(), acos(), and atan() are the three standard
inverse trigonometric functions sin−1, cos−1, and tan−1. The angle supplied
by each of these functions is a radian angle, so if degrees are desired, the
conversion factor 180/
 is needed. Thus to obtain tan−1 1 in degrees, the entry
atan(1)*180/pi is needed.

9. The source code of all demo programs is written in the C++ programming
language. A demo program abc has its central controlling program in a file with
the name abc.cc. To see this file for calc, return to the PNM form, choose
the Source menu and click on the cc files subsection. After the list of files
appears, click on the calc.cc line to see the calc.cc source code. One can
often get a general idea of how a demo program does its task by viewing its
source code, even if you have never used C++.

The first line of a demo source code file lists the files that are linked together
to produce the demo execution program, the list always beginning with the demo
program name. Thus the first line of calc.cc is

// link � calc real

Elsevier US Job Code:IPNM Chapter:Ch02-P373859 19-12-2006 11:46a.m. Page:23 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

23 Notes and References

This indicates that calc is linked with one other file of name real. The
source file real.cc supplies the range arithmetic capabilities needed by calc.
Any secondary file of the link list (such as real) in general has a source file
(real.cc) and a descriptive header file (real.h). All such files can be viewed
by using the Source menu.

Notes and References

A. The earliest description of interval arithmetic appeared in the Ph.D. thesis [11]
of Ramon Moore. The interval arithmetic concept made precise numerical
analysis possible.

B. Five general texts on interval arithmetic [5,8,12,13,14] are listed below.
C. The articles by Demmel and Krückeberg [6] and Krückeberg and Leisen [10]

describe pioneering experiments in combining variable precision with interval
arithmetic. Krückenberg [9] has given a general description of the advantages
of this type of computation.

D. Range arithmetic can be programmed as a binary system [1] or as a decimal
system [2,3,4].

E. Another software package for variable precision interval arithmetic has been
constructed by J. Ely [7].

[1] Aberth, O., A precise numerical analysis program, Comm. ACM 17 (1974), 509–513.
[2] Aberth, O., Precise scientific computation with a microprocessor, IEEE Trans. Com

put. C-33 (1984), 685–690.
[3] Aberth, O., The conversion of a high order programming language from floating-

point arithmetic to range arithmetic, in Computer Aided Proofs in Analysis, pp 1–6,
IMA Volumes in Mathematics and its Applications, Vol. 28, edited by K. R. Meyer
and D. S. Schmidt, Springer-Verlag, New York, 1990.

[4] Aberth, O. and Schaefer, M. J., Precise computation using range arithmetic, ACM
Trans. Math. Software 18 (1992), 481–491.

[5] Alefeld, G. and Herzberger, J., Introduction to Interval Computation, Translated by
Jon Rokne, Academic Press, New York, 1983.

[6] Demmel, J. W. and Krückeberg, F., An interval algorithm for solving systems of
linear equations to prespecified accuracy, Computing 34 (1985), 117–129.

[7] Ely, J. S., The VPI software package for variable precision interval arithmetic,
Interval Comput. 2 (1993), 135–153.

[8] Hansen, E.,	 Global Optimization using Interval Analysis, Marcel Dekker, Inc.,
New York, 1992.

[9] Krückeberg, F., Arbitrary accuracy with variable precision arithmetic, in Interval
Mathematics 1985, edited by Karl Nickel, Lecture Notes in Computer Science 212,
Springer-Verlag, Berlin, 1986.

[10] Krückeberg, F. and Leisen, R., Solving initial value problems of ordinary differential
equations to arbitrary accuracy with variable precision arithmetic, in Proceedings of
the 11th IMACS World Congress on System Simulation and Scientific Computation,
Vol. 1, Oslo, Norwegen, 1985.

Elsevier US Job Code:IPNM Chapter:Ch02-P373859 19-12-2006 11:46a.m. Page:24 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

24 2 Computer Arithmetics

[11] Moore,	 R. E., Interval Arithmetic and Automatic Error Analysis in Digital
Computing, Ph.D. Dissertation, Stanford University, 1962.

[12] Moore, R. E., Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1966.
[13] Moore, R. E.,	 Methods and Applications of Interval Analysis, SIAM Studies in

Applied Mathematics, SIAM, Philadelphia, 1979.
[14] Neumaier,	 A., Interval Methods of Systems of Equations, Encyclopedia of

Mathematics and its Applications, Cambridge University Press, Cambridge, 1990.

Elsevier US Job Code:IPNM Chapter:Ch03-P373859 19-12-2006 11:47a.m. Page:25 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

Classification of
Numerical Computation 3

Problems

To achieve precision in numerical computation, a numerical analyst must be
aware of the potential difficulty lurking in certain simple computation tasks. We
begin by examining an especially simple computation task, deciding whether or
not a real number is zero.

3.1 A knotty problem

Imagine we are computing a certain quantity a and must determine whether
a equals zero. If a equals zero we take branch zero, otherwise we take branch
nonzero. The number a may be the value of a solution to a complicated
differential equation problem at some particular point, or a number obtained
through some other intricate computation.

There is no difficulty in carrying out this task in ordinary floating-point arith
metic, because we take branch zero if the a floating-point approximation comes
out as zero, otherwise we take branch nonzero. However, the a floating-point
approximation has an unknown error, so we may end up taking the wrong branch.

Now consider doing the test in range arithmetic, and here we imagine that we
obtain various numbers of correct fixed-point decimal places for a, displayed in
the usual manner. We list some sample cycles below. Keep in mind that if a is
actually zero, we cannot expect to obtain an exact range arithmetic zero when
we compute a, because this occurs only for the simplest computations.

The problem with the last case is that we never are certain when to take
branch zero. Indeed, what should we do when we obtain a sequence of better
and better approximations to zero, defining smaller and smaller intervals? We
cannot continue to form better and better approximations indefinitely, because
a may equal zero, and then we would be in an endless loop. And if we adjust

25

Elsevier US Job Code:IPNM Chapter:Ch03-P373859 19-12-2006 11:47a.m. Page:26 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

� �� �� �

26 3 Classification of Numerical Computation Problems

our program so that we take branch zero when the a interval containing the
zero point becomes “sufficiently” small, we really are taking branch zero not
just for a = 0, but for a equal to any of the real numbers lying in the sufficiently
small interval. Anyone examining our program could demonstrate to us our error
by arranging things so that a was not equal to zero, but merely close enough so
that it passed our criterion for taking branch zero.

a Outcome

0�144∼ take branch nonzero

0�00000∼ recompute to higher precision
0�0000000003∼ take branch nonzero

0�00000∼ recompute to higher precision
0�000000000∼ recompute to higher precision
0�00000000000000∼ recompute to higher precision

Thus deciding for a real number whether it is zero has a potential difficulty.
The difficulty is not a peculiarity of range arithmetic, but merely becomes more
evident with this mode of computation. The difficulty for the problem of deciding
whether an arbitrary real number is zero cannot be overcome by using a more
complicated computation arithmetic or a more complicated analysic technique.
In this chapter we draw attention to problems that have an intrinsic difficulty,
the “nonsolvable” problems. The mathematical problems free of such difficulties
are “solvable” problems.

In the next section we give a brief introduction to the mathematical basis for
this terminology. Our first classified problem is

Nonsolvable Problem 3.1 For any real number a, decide whether a
equals 0.

Often a nonsolvable problem can be changed in some convenient manner to
become solvable. For instance, in the example just used, perhaps taking branch
zero for a nonzero a leads to no difficulty as long as �a� is “very small”. In
this case, we should switch from trying to decide whether a is exactly zero, to
deciding whether it is close to zero, as described in the following

Solvable Problem 3.2 For any real number a and positive integer k,
decide that a is unequal to 0, or decide that �a� < 10−k .

A decision procedure is easy to carry out in range arithmetic. Once more we
use underlining, as in a, to indicate the range arithmetic interval obtained for

Elsevier US Job Code:IPNM Chapter:Ch03-P373859 19-12-2006 11:47a.m. Page:27 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

= � �

3.3 Repercussions from nonsolvable problem 3.1 27

a mathematical constant. We evaluate a at some chosen precision and compare
a with 0. If we find a � 0, then a = 0. If we find a=0 and determine that the
a width <10−k, then �a� <10−k. This is because a contains the zero point, so
every real number in a is <10−k. If a = �

0 but the a width is ≥10−k, we increase
precision appropriately to obtain a decision on the next trial.

Notice that with this first solvable problem, the two outcomes are not mutually
exclusive. It is possible that at one precision we decide that �a� < 10−k, and at a
higher precision we decide that a � 0.=

3.2 The impossibility of untying the knot

In the 1930s, revolutionary methods were introduced into mathematics that
have changed our understanding of the subject. Turing, in a brilliant paper [5]
wherein he defined the machines now known as Turing machines, proved that a
long-standing logical problem, with the German name “Entcheidungsproblem”,
was not solvable by any mechanical method. Turing’s stunning conclusion was
obtained by assuming that the result in question could be achieved, and then
showing that this presumption leads to a contradiction.

The difficulty of Nonsolvable Problem 3.1 occurs because in numerical com
putation any real number we deal with is a “computable number”, that is, a real
number for which a constructive algorithm is known that can deliver rational
approximations to the number that are as accurate as we please. Although we can
obtain arbitrarily accurate approximations to a computable number, nevertheless
these approximations do not allow us to decide in all cases whether the number
is zero. And there can never be a constructive way of determining whether com
putable numbers are zero, perhaps by some method of examining the internal
sturcture of the approximation algorithm, because if such a method existed, then
with a Turing-style argument, one can show how to define a computable number
that thwarts the decision method.

In a sense, when a problem is shown to be nonsolvable, this is a liberat
ing result. We no longer need to wonder how to tackle the resistant difficult
cases of the problem, because we see that any method we use can be only
partially successful. It is more reasonable to consider how to avoid the problem
altogether.

3.3 Repercussions from nonsolvable problem 3.1

Given a nonsolvable problem, suppose we have a second problem for which a
constructive solution imples a method of solving the first problem. This sec
ond problem then must be nonsolvable too. For instance, as a consequence of
Nonsolvable Problem 3.1, we have also

Elsevier US Job Code:IPNM Chapter:Ch03-P373859 19-12-2006 11:47a.m. Page:28 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

28 3 Classification of Numerical Computation Problems

Nonsolvable Problem 3.3 For any two real numbers a and b, decide
whether a = b.

Because we can take b as zero, a method for solving this problem is also a
method for solving Problem 3.1. The nonsolvable problem just obtained then
implies the following

Nonsolvable Problem 3.4 For any two real numbers a and b, decide
whether a > b.

If it were possible to always determine whether a > b, then from our yes or no
results from testing a > b and b > a, we would know whether a = b, contradicting
Nonsolvable Problem 3.3.

For real numbers a and b, exactly one of the three possibilities can hold:
a < b, a = b, or a > b. We know now that deciding which of the three holds is
a nonsolvable problem, and because this problem arises often, we list it below,
with a revised, solvable version.

Nonsolvable Problem 3.5 For any two real numbers a and b, select the
single correct relation from these three: a < b� a = b, or a > b.

Solvable Problem 3.6 For any two real numbers a and b, and any positive
integer k, select a correct relation from these three: a < b� �a − b� < 10−k ,
or a > b.

Problem 3.6 is solvable because we can compute a and b to higher and higher
precision until both intervals in width are < 1

2 ·10−k. If a=� b, then �a−b� < 10−k

because the sum of the widths of a and b is <10−k. And if the two intervals do
not overlay, we easily determine whether a < b or a > b. Here we do not try
to decide whether �a−b� < 10−k, for that would be nonsolvable too, forcing us
to decide, in some cases, whether �a− b� was exactly 10−k. The three choices
listed in Problem 3.6 are not mutually exclusive. It is quite possible that at a
certain precision we decide that a is within 10−k of b, but at a higher precision
we decide that one of the other possibilities occurs.

Another way the difficulty of Problem 3.5 can be overcome, for inequality
tests at least, is to have two distinct numbers to test against, as in the following

Solvable Problem 3.7 For any real number a and any two unequal real
numbers b1 and b2, choose either b1 or b2 as a number unequal to a.

Because we know that b1 and b2 are distinct, by computation to sufficiently
high precision the intervals b1 and b2 will not intersect, and a certain rational
width � will separate them. If we now compute a to a precision high enough

Elsevier US Job Code:IPNM Chapter:Ch03-P373859 19-12-2006 11:47a.m. Page:29 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

� � �

3.4 Some solvable and nonsolvable decimal place problems 29

that the a width < �, then a can intersect at most one of the b1 and b2 intervals,
and so at least one of the b1 and b2 numbers is found to be unequal to a.

A third way the difficulty of Nonsolvable Problem 3.5 can be overcome is by
putting some restriction on the type of numbers that are compared. Certainly if
the two numbers are rational, that is, they are expressed in the form p/q with
the integers p and q known, there is no difficulty deciding any order relation.
However, it does not suffice merely to know that the two numbers a and b are
rational, if we can only obtain range arithmetic approximations to them.

3.4	 Some solvable and nonsolvable decimal
place problems

Previously, we identified the difficulty in deciding whether one number was
equal to, less than, or greater than a second number. When ranged approximations
to the two numbers yield overlapping intervals, and this keeps happening as we
increase the precision, we are in a quandary as to which relation holds. This
difficulty shows up sometimes when we attempt to obtain a correct k-place
fixed-point approximation to a number. For instance, suppose we are trying to
get a correct five-place approximation to a certain number a and we obtain the
following sequence of ranged approximations to a:

�1111150 ±2
�1111150000 ±1
�111115000000000 ±3

We are unable to decide whether our correct five-place result should be �11111∼

or �11112∼ , because the various a approximations all contain within their
intervals the point �111115 which is midway between �11111 and �11112. If
a < �111115, the only correct five-place fixed-point approximation is �11111∼;
if a > �111115, the only correct one is �11112∼; and if a = �111115, either
�11111∼ or �11112∼ can be used. Thus choosing which five-place approximation
is correct hinges on deciding the correct order relation between a and the rational
number �111115. None of the a approximations shown above allows us to make
this determination. Thus we encounter Nonsolvable Problem 3.5, and because it
is clear the difficulty is independent of the number of decimal places desired,
we have

Nonsolvable Problem 3.8 For any real number a and positive integer k,
obtain a correct k decimal place fixed-point approximation to a.

A way out of the impasse is easy to find. Whenever it becomes difficult to
decide between two neighboring k-place approximations, give one extra, correct

Elsevier US Job Code:IPNM Chapter:Ch03-P373859 19-12-2006 11:47a.m. Page:30 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

30 3 Classification of Numerical Computation Problems

decimal-place. This should not be difficult, because if the decimally expressed
rational d0�d1d2 � � � dk5 is inside a succession of a intervals, then d0�d1d2 � � � dk5
is a correct k+1-place approximation as soon as the error of the a approxima
tion becomes small enough. For instance, with our example above, a six-place
approximation, namely �111115∼, can be obtained from the very first ranged
value, where the difficulty first appeared. The error of this initial a approxi
mation, 2 units in the seventh decimal position, is below the allowance for six
correct places, namely �0000005. In general, we have

Solvable Problem 3.9 For any real number a and positive integer k,
obtain a correct k decimal place or a correct k + 1 decimal place fixed-point
approximation to a.

With our demo programs, when results are to be displayed to a certain number
of correct decimal places in fixed-point format, an extra decimal place may
occasionally be noticed for some answers. The extra place is always a 5, supplied
automatically if the difficulty we have been describing shows up.

An interesting question is what error bound must we achieve to approximate a
quantity Q to either k or k+1 correct decimal places in the manner allowed by
Solvable Problem 3.9? We consider the case where k equals three. Suppose that
we have obtained an approximation m± � to Q. Here � is a bound on all errors
made in computing m. We can form a three-place decimal approximation from
the rational number m, but then we make an additional rounding error �R, which
can be as large as 0�5 ·10−3. Thus the three possible m values, �111422� �1115, or
�11065, all yield the same three-place approximation �111∼, with rounding errors,
respectively, of �422 · 10−3� �5 · 10−3, and �35 · 10−3. We want our three-place
value to be correct, so �+�R ≤ �5 ·10−3, or � ≤ �5 ·10−3 −�R. When the rounding
error �R gets close to �5 ·10−3, forcing � to be small, we try instead to form a four-
place approximation from m. Now we have � ≤ �5 · 10−4 − �R. If m is between
�111475 and �111525, our four-place representation is �1115∼, with a rounding
error no larger than �25 · 10−4, so that our inequality is � ≤ �25 · 10−4. And if
m is between �1110 and �111475, or between �111525 and �112, the three-place
representations �111∼ or �112∼ have rounding errors no larger than �475 · 10−3,
again giving the inequality � ≤ �25 ·10−4. Thus for m varying between �111 and
�112, the largest rounding errors, occurring when m = �111475 or m = �111525,
force � to be no larger than �25 ·10−4. In general, to be certain that we can form
a correct k or k+1 decimal place fixed-point approximation to a quantity Q, we
must keep the Q error bound to at most

�k = �25 ·10−�k+1	 (3.1)

We consider next the problem of forming correct k-place scientific floating-
point approximations. It is clear that the difficulty of forming exactly k decimal
places can occur here too.

Elsevier US Job Code:IPNM Chapter:Ch03-P373859 19-12-2006 11:47a.m. Page:31 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

� � �

31 3.4 Some solvable and nonsolvable decimal place problems

Nonsolvable Problem 3.10 For any real number a and positive integer
k, obtain a correct k decimal place scientific floating-point approximation to a.

Here there is even an additional difficulty that is sometimes encountered. Suppose
we are attempting to find a correct four-place floating-point approximation to a
number a, and the series of range arithmetic approximations we obtain, at ever
increasing precision, is as follows:

�1 ±2 ·10−5

�0 ±3 ·10−12

�1 ±4 ·10−17

The problem here is that we can not find even one correct decimal place if the
zero point is in the a interval. If a is actually zero, we should display 0 instead
of floating-point digits. Thus with scientific floating-point, when attempting
to obtain a certain number of correct places, we may be bumping into the
nonsolvable problem of determining whether the number equals zero. One way
of revising the problem to make it solvable is the following:

Solvable Problem 3.11 For any real number a and positive integer k,
obtain a correct k decimal place or a correct k + 1 decimal place, scientific
floating-point approximation to a, or else indicate that �c� ≤ 10−k .

Now we allow an escape from the decimal place problem when we are uncertain
whether a is zero. The magnitude bound 10−k suggested here is arbitrary, and
can be replaced by some other convenient bound, for instance, 10−2k or 10−k2

.
By making the escape bound depend on k, we get smaller magnitude indications
as more decimal places are requested.

The escape magnitude bound used by our demo programs is one-half the
amount suggested in Problem 3.11. Suppose results are to be printed to five
correct places in floating-point format. The escape is indicated by replacing the
normal display, such as 3�22222∼ E12, with the display 0�∼ E − n, where the
integer n is always at least equal to k, the number of correct decimal places
requested. For instance, in five-place floating-point format, 0�∼ E−5 or 0�∼ E−9
might be displayed. A floating-point display normally starts with a nonzero
integer, so displaying a leading zero makes the escape unmistakable. Because

nthe error of 0�∼ is at most one-half of a unit in the 0 position, this makes 1
2 ·10−

the magnitude bound of 0�∼ E −n.
In the remainder of this text, whenever we use the phrase “to k decimal

places” in the statement of a solvable problem, we mean “to k or k +1
correct decimal places in either fixed-point format or scientific floating-point
format, with a size escape allowed for floating-point”.

The difficulties in obtaining precisely k decimal places for a number a do
not occur if a is a rational number p/q and the integers p and q are known.

Elsevier US Job Code:IPNM Chapter:Ch03-P373859 19-12-2006 11:47a.m. Page:32 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

32 3 Classification of Numerical Computation Problems

Here, when we form a k decimal-place approximation to a, our only error is the
rounding error, which always can be kept to no more than 1

2 ·10−k .

Solvable Problem 3.12 For any rational number p/q and positive
integer k, obtain a correct k-place fixed-point approximation, and, if p � 0, a =
correct k-place scientific floating-point approximation.

3.5 The solvable problems handled by calc

In the science of numerical analysis, it is advantageous to treat only solvable
problems because such problems have no intrinsic difficuties. Different treat
ments of a particular solvable problem may be compared with respect to how
completely they solve the problem.

Consider the demo program calc of Software Exercises A. This program may
be considered as solving either Problem 3.9, determining k correct fixed-point
decimal places for an arbitrary real number, or solving Problem 3.11, determin
ing k correct floating-point decimal places for an arbitrary real number. Both
problems are solvable because they allow escapes from computation difficulties.

How far does calc go towards the complete solution of the two problems
cited? First we note that the two problems set no bounds on k, the number of
correct decimal places, whereas calc does. This is not a major flaw because any
solution program must require some bound of this type, because of limitations
of computer memory and computer speed. A more serious flaw is that the real
numbers calc treats are merely those constants that the program allows a user
to enter. To handle either problem in full generality, a solution program must
allow a user to define any real number, by specifying, in an appropriate language,
the algorithm by which the real number is to be calculated. So calc is very
far indeed from a complete solution, even ignoring its decimal place restriction.
Better programs than calc would allow a greater variety of standard functions
perhaps, but the point being made here is that any solution program for a solvable
problem never can solve all cases of the problem, so it is always possible to
compare various solution efforts with each other and rate them in various ways.

3.6 Another nonsolvable problem

Nonsolvable Problem 3.1 is a basic nonsolvable problem in that many other
computation problems can be shown to be nonsolvable as a consequence. One
other basic nonsolvable problem, which arises in later chapters, is

Nonsolvable Problem 3.13 For any real number a, either decide that
a ≥ 0, or decide that a ≤ 0, with either conclusion being allowed when a = 0.

Elsevier US Job Code:IPNM Chapter:Ch03-P373859 19-12-2006 11:47a.m. Page:33 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

33 3.7 The trouble with discontinuous functions

Here imagine that for various real numbers a, on the basis of our test of a we take
either the program branch non-negative or the branch non-positive.
Once more consider various cases:

a Outcome

0�144∼ take branch non-negative

0�00000∼

−0�00000

0�00000∼

0�0000000
0�0000000

00003∼

00∼

0000000∼
���

recompute to higher precision
take branch non-positive

recompute to higher precision
recompute to higher precision
recompute to higher precision

���

Again, the last case is the troublesome case. Whatever we choose to do for a
number a of this variety, we could be wrong. There is no constructive way of
making a correct decision that works for all computable real numbers a.

3.7 The trouble with discontinuous functions

Suppose we have a certain real function f�x	 defined over an interval I . What
should we require of f�x	 so it is “realizable”? Clearly, from an x argument lying
in the domain I , we should be able to obtain an f�x	 value. That is, if we can
obtain arbitrarily accurate ranged approximations to x, than we should be able
to obtain arbitrarily accurate ranged approximations to f�x	. Generally we need
a computer routine whereby a ranged x approximation is used to compute a
ranged f�x	 approximation. And further, the accuracy of the f�x	 approxima
tion must improve in some fashion as the accuracy of the x approximation
improves.

Now consider a function with a discontinuity at some argument. As a sim
ple example we use the well-known sign function, usually designated by the
abbreviation sgn. Its definition is

⎧
⎪+1 if x > 0

sgn x =
⎨

0 if x = 0
⎪⎩−1 if x < 0

This function has a discontinuity at x = 0. Ideally a routine realizing this function
would return one of three exact values, +1, 0, or −1, depending on whether

Elsevier US Job Code:IPNM Chapter:Ch03-P373859 19-12-2006 11:47a.m. Page:34 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

�
�

= ��

34 3 Classification of Numerical Computation Problems

it finds x > 0� x = 0, or x < 0, respectively. But deciding which of the three
x relations holds is Nonsolvable Problem 3.5. We can decide only whether
x > 0� x =0, or x < 0 at some finite precision. If x > 0 or x < 0, the value
of sgn x is determined, but if x=0, and the x interval contains positive and
negative rationals, the interval value for sgn x so far determined is 0 ± 1. Of
course we can compute the x argument at increasingly higher precisions, but if x
is zero, generally every x interval contains positive and negative rationals. Only
in the special case where we happened to obtain an exact zero for x, would we
be able to supply an exact zero as the value for sgn x. So for many cases where
the argument x is zero, a better value for sgn x than 0 ±1 never is determined.
The function sgn is not realizable. We see that the sgn x function we can
implement is

⎧
⎪+1 if x > 0

sgn x =
⎨

sometimes 0, but often undefined if x = 0
⎪⎩−1 if x < 0

Let us call a mathematical idea a “nonrealizable concept” if it is not possible
to constructively implement the idea. Thus “the sgn function defined for all
numbers x” is a nonrealizable concept. It is clear that if sgn x were realizable
we would have a finite means for deciding whether any number was zero or
not, contradicting Nonsolvable Problem 3.1. Just as with a nonsolvable problem,
where we try to determine a solvable version of it, with a nonrealizable concept
it is illuminating to try to revise the idea to make it realizable. There is no
difficulty realizing a sgn function defined for all numbers except zero, the point of
discontinuity. For an arbitrary argument x, our program forms x approximations
to increasingly higher precision endlessly, until at last it obtains x � 0, and then =
the program can return a sgn value of +1 or −1 depending on whether x > 0 or
x < 0. Note that if a zero argument is mistakenly supplied, our program enters
an endless loop. If we wish, we could make the program check whether the x
approximation is an exact zero and return the proper sgn value of 0 in that case.
Still, this adjustment would not eliminate all the endless loops for possible zero
arguments, and the sgn function still would not be defined at x = 0.

The same difficulty is obtained with any function f�x	 with a discontinuity
at some point x0 within the function’s domain. The discontinuity requires us to
treat arguments x in such a way that we do one thing if x = x0 and another thing
if x � x0. We can decide only whether x=x0 or x = x0, and this is insufficient.

In general, a mathematical function f�x	 with discontinuities is not realiz
able. What is realizable is a function equal to f�x	 at all points where f�x	 is
continuous, and undefined at the points where f�x	 is discontinuous.

Throughout this text, any function mentioned in a theorem, in a solvable
problem, or in a nonsolvable problem, is to be presumed continuous in its
domain.

Elsevier US Job Code:IPNM Chapter:Ch03-P373859 19-12-2006 11:47a.m. Page:35 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

35 Notes and References

Notes and References

A. Turing’s fundamental paper [5] is discussed in Davis’s book [3].
B. A complete proof that Problem 3.1 is nonsolvable is given in the book [1];

two other books that analyze similar problems are [2] and [4].

[1] Aberth, O., Computable Analysis, McGraw-Hill, New York, 1980.
[2] Aberth, O., Computable Calculus, Academic Press, San Diego, 2001.
[3] Davis, M., Computability and Unsolvability, McGraw-Hill, New York, 1958.
[4] Kushner, B. A.,	 Lectures on Constructive Mathematical Analysis, Translations of

Mathematical Monographs, Vol. 60, American Mathematical Society, 1980.
[5] Turing, A. M., On computable numbers, with an application to the Entscheidungs

problem, Proc. London Math. Soc., Ser. 2 42 (1937), 230–265.

Elsevier US Job Code:IPNM Chapter:Ch03-P373859 19-12-2006 11:47a.m. Page:36 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

This page intentionally left blank

Elsevier US Job Code:IPNM Chapter:Ch04-P373859 19-12-2006 11:47a.m. Page:37 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

Real-Valued Functions 4

This chapter describes certain commonly encountered functions. The demo
program fun evaluates these functions, and the demo program eval shows
how these functions are encoded.

4.1 Elementary functions

In a calculus course the great majority of functions used in the examples and
xproblems can be expressed in terms of standard functions, such as e , also

denoted exp�x�, its inverse ln x, or various trigonometric functions such as sin x.
Such functions are what we call elementary functions, for which it is easy to
calculate derivatives and to obtain Taylor series expansions.

Definition 4.1 A function of a finite number of real variables x1� x2� � � � � xn
is an elementary function if it can be expressed in terms of its variables and real
constants c1� c2� � � � � cm by a finite number of the binary operations of addition,
subtraction, multiplication, division, or exponentiation, and the unary operations
of function evaluation with sin� cos� tan� sin−1� cos−1� tan−1� exp, or ln.

A prefix minus sign, as in −x, is viewed as a special case of a subtraction
operation with an implied zero operand, that is, −x = 0 −x. The exponentiation
operation with operands A and B produces AB .

In later chapters sometimes we define an elementary function with one of its
constants being used as a parameter. In those cases the parameter is designated
by a subscript, as in fc�x�, where the letter c here denotes the constant parameter.

The hyperbolic functions cosh�x�� sinh�x�, or tanh�x� are all elementary
functions, because they can be expressed in terms of exp�x�. For instance,
cosh�x� = �exp�x�+ exp�−x��/2. Similarly, the function abs�x� = �x� is an

37

Elsevier US Job Code:IPNM Chapter:Ch04-P373859 19-12-2006 11:47a.m. Page:38 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

38 4 Real-Valued Functions

elementary function, because it can be expressed in terms of exponentiation as √
�x2�1/2 = x2. The two argument function max�x� y�, which equals the maxi
mum of the two real numbers x and y, may be viewed as an elementary function,
because it can be expressed as a+

2
b + �a−

2
b� , which is a+

2
b + abs�a

2
−b� . Similarly,

min�x� y�, which equals the minimum of the two real numbers x and y, is an
elementary function, because it can be expressed as a+

2
b − �a−

2
b� .

To simplify the task of specifying an elementary function, the demo programs
allow a user the option of choosing abs��� max� � ��min� � �, or hyperbolic func
tions when defining an elementary function by keyboard entry. For instance,
the keyboard line tanh(x)̂ 2 designates the elementary function tanh2 x. (Not
tanh x2, because the argument part (x) of tanh is inseparable from tanh.)

Consider a typical elementary function

e−x cos 3�2y+0�56x4

f�x� = (4.1)
1 + tan2 3�15z

that is specified with the keyboard line

(exp(-x)*cos(3.2*y)+0.56*x ̂ 4)/(1+tan(3.15*z) ̂2) (4.2)

To evaluate the function on a computer, we need a list of operations to be done,
called the function’s evaluation list. Normally, the compiler for a programming
language does the job of converting a string expression into an evaluation list;
but if we want our range arithmetic programs to be able to compute elemen
tary functions entered from the computer keyboard, then code to generate an
evaluation list is needed. The source file entry.cc shows the code that does
this task for demo programs, where function constants are usually just simple
decimal quantities. For a general elementary function, it is possible that certain
constants require long computer subroutines for their specification.

In the particular case of the function (4.1) just displayed, the evaluation list
is given in Table 4.1. The list presumes an array of registers is available to
hold ranged numbers. The array is initially empty, and then filled as needed,
one register at a time, with a counter indicating the last register “active” or
in use. Initially the counter is set to 0, indicating no active registers. Every
evaluation operation is one of three types, a binary arithmetic or exponentiation
operation, a unary sign change or function evaluation operation, or an operation
which fills the next available register. If the operation is binary, the last two
active registers supply the two operands, the operation result is placed in the
lower numbered of these two registers, and the counter is decreased by 1. If
the operation is unary, the last active register supplies the operand, the result
is returned to this register, and the counter is left unchanged. There are two
evaluation operations that increment the counter and add an element to the newly
active register. The “variable to array end” enters a designated function variable,
and the “constant to array end” enters a constant.

Elsevier US Job Code:IPNM Chapter:Ch04-P373859 19-12-2006 11:47a.m. Page:39 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

Software Exercises B 39

TABLE 4.1 Evaluation List for the Function f�x� of Eq. (4.1) or (4.2)

Term No. Operation Active array

1 Variable x to array end x

2 Unary − −x

3 exp�� e−x

4 Constant 3.2 to array end e−x� 3�2

5 Variable y to array end e−x� 3�2� y

6 × e−x� 3�2y

7 cos�� e−x� cos�3�2y�

8 × e−x cos�3�2y�

9 Constant 0.56 to array end e−x cos�3�2y�� 0�56

10 Variable x to array end e−x cos�3�2y�� 0�56� x
11 Constant 4 to array end e−x cos�3�2y�� 0�56� x, 4
12 exponentiation e−x cos�3�2y�� 0�56� x4

13 × e−x cos�3�2y�� 0�56x4

14 + e−x cos�3�2y�+0�56x4

15 Constant 1 to array end Numerator, 1
16 Constant 3�15 to array end Numerator, 1, 3.15
17 Variable z to array end Numerator, 1, 3.15, z
18 × Numerator, 1, 3.15z
19 tan�� Numerator, 1, tan�3�15z�
20 Constant 2 to array end Numerator, 1, tan�3�15z�, 2
21 exponentiation Numerator, 1, tan2�3�15z�
22 + Numerator, Denominator
23 ÷ f�x�

Software Exercises B

The exercises with the demo program fun show how to use log files, and
the exercises with the demo program eval show how demo programs encode
simple elementary functions.

1. Call up the demo program fun. After obtaining the PNM form, click on the
Command menu section Exe part, and choose fun from the list of program
names displayed. Note that after this choice is made, the Log part section
of the Command menu is inactive, indicating that no fun.log file is present.
The fun program does create a log file after you completely specify a function
evaluation problem, but like all demo programs creating log files, a log file is
not present on the first call. Next click on the Command section Go, get to the
Windows command subsystem and energize the fun program in the usual way
by typing the letter g and hitting the ENTER key. Specify the sine function

Elsevier US Job Code:IPNM Chapter:Ch04-P373859 19-12-2006 11:47a.m. Page:40 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

40 4 Real-Valued Functions

by typing sin(x), take the initial x value to be 0, and make the x increment
10 degrees (type 10*pi/180). Choose 9 increments so that the final sine
evaluation occurs at 90�. Finally choose 10 fixed-point decimal places for both
the x and the f�x� displays.

2. The sin x display obtained in the preceding exercise is unsatisfactory, because
the x value is a radian value, and a degree value is preferable. Now that we have
a fun.log file, it is easy to change details in the display. Obtain the PNM
form once more. Note that this time the Log part section of the Command
menu is active, indicating the presence of a log file. Click on the Log part
section of the Command menu, and choose the single log file displayed. Note
the change in the form caption. Next, click on the Open section of the Log
menu, and again choose the single log file displayed. The log file contents will
fill the PNM form. Changes to the log file now can be made. Change the f�x�
function from sin(x) to sin(x*pi/180), which switches x from radians
to degrees. Next change the x increment from the radian value 10*pi/180 to
the degree value 10. Also, 10 decimal places for degrees seems excessive, so
change the x decimal places from 10 to 2. Next click on the Save section of the
Log menu, and finally click on the Go section of the Command menu to exit
the PNM form. After you energize the fun program in the usual way, a better
sin x display is obtained.

3. The fun program not only creates a log file, but also makes its display
available for later inspection by saving the display in the print file fun.prt.
To view the sin x display, obtain the PNM form, click on the Open section of
the Prt menu, and the contents of the fun.prt file appears in the PNM form.
If you have a printer available on your PC, you can print the sin x display by
clicking on the Print section of the Prt menu. However, note that what is
printed is whatever is showing in the PNM form, so before printing a print file,
the PNM form should be examined to be sure that all parts of the print file are
on display. If not, the PNM form should be enlarged to accomplish this.

4. The program eval, which does not create a log file or a print file, can be
used to see an elementary function’s evaluation list. Call up this demo program
in the usual way, choose reals, and then type 1.2 * 3.4 as an evaluation
example. The evaluation list shows that two constants get entered into the
evaluation array. Constants needed for the evaluation process are obtained as
exact ranged numbers by referring the appropriate generating subroutine to the
position in the typed string of symbols where the constant begins. The constant
ends in the typed string whenever either the string ends or some symbol not used
for constant specification is encountered.

5. Try other functions of your choice to see the corresponding evaluation list.
The evaluation list given in Table 4.1 will be displayed if you type line (4.2).

Elsevier US Job Code:IPNM Chapter:Ch05-P373859 19-12-2006 11:47a.m. Page:41 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

Computing Derivatives 5

The demo program deriv computes ordinary derivatives and partial derivatives
of elementary functions. This program finds derivatives by forming power series.
In this chapter, methods for generating power series are presented, and afterwards
the program deriv is described.

5.1 Power series of elementary functions

Consider an elementary function f�x� with the power series (or Taylor series)
shown in the next line:

f�x�= a0 +a1�x−x0�+a2�x−x0�
2 +· · ·+ak�x−x0�

k +· · · (5.1)

The real number x0 is the series expansion point. Obtaining the f�x� power
series enables us to find the derivatives of f�x� at the series expansion point, via
the Taylor series formula for the coefficients:

f �k��x0� ak = (5.2)
k!

We can use the evaluation list of f�x� to generate the series by reinterpreting
all the evaluation operations. Instead of using an array of registers holding
real numbers and obtaining just f�x�’s value, we use an array of power series
representations, and obtain f�x�’s power series.

Suppose we want to form the f�x� power series up to the term in �x−x0�
q.

At any step in the evaluation process, each active array element defines for some
function g�x� the corresponding power series terms

g0 +g1�x−x0�+g2�x−x0�
2 +· · ·+gq�x−x0�

q

41

Elsevier US Job Code:IPNM Chapter:Ch05-P373859 19-12-2006 11:47a.m. Page:42 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

∑ ∑

� ∑

� � � ∑ ∑ ∑

∑

42 5 Computing Derivatives

Accordingly, instead of a number as previously described, an active array register
holds a set of q+ 1 power series coefficients g0� g1� g2� � � � � gq. Because g0 =
g�x0�, we can view our previous use of the evaluation list to obtain an f�x� value
as equivalent to generating single term power series.

Assume now that the evaluation array is an array of vectors, where each vector
has q+1 components and holds the coefficients of some function’s power series
at a specified series expansion point x0. We need to make new interpretations
for the two operations of the f�x� evaluation list that increase the array size,
which are the “constant to array end” and “variable to array end” operations.
A constant c has the series representation

c = c+0�x−x0�+0�x−x0�
2 +· · ·

so the first operation mentioned puts the vector �c�0�0� � � � �0� at the array end.
For the variable x we have the series representation

x = x0 +1�x−x0�+0�x−x0�
2 +0�x−x0�

3 +· · ·
so the second operation puts the vector �x0�1�0�0� � � � �0� at the array end.

The five binary operations of an evaluation list need appropriate
reinterpretations as series operations. Let gk and hk denote the coefficients
of the two operand functions g�x� and h�x�. For addition, subtraction, and
multiplication, the series operations are the following:

�g+h�k = gk +hk (5.3)

�g−h�k = gk −hk (5.4)

k k

�g ·h�k = gihk−i or (5.5)higk−i

i=0 i=0

For division we have
∑�

0 gk�x−x0�
k

k=�g/h�k�x−x0�
k = ∑�

k=0 hk�x−x0�
k

0i=

Setting x equal to x0 implies �g/h�0 = g0/h0. The division equation can be
rewritten as

gk�x−x0�
k = �g/h�k�x−x0�

k · hk�x−x0�
k

k=0 k=0 k=0

Employing the multiplication relation (5.5), we get
⎧
⎨�g/h�0h0 if k= 0k

gk = �g/h�ihk−i = −1k∑
⎩

i=0
�g/h�ihk−i + �g/h�kh0 if k > 0

i=0

Elsevier US Job Code:IPNM Chapter:Ch05-P373859 19-12-2006 11:47a.m. Page:43 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

()

()

� � � � ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

� � � � ∑ ∑ ∑ ∑

43 5.1 Power series of elementary functions

This leads to a recursive relation for the coefficients �g/h�k as follows:

⎧
⎪⎨g0/h0 if k = 0

∑

0i=

(5.6)�g/h�k = 1 k−1 − if k > 0�g/h�ihk−igk⎪⎩
h0

To carry out the division operation, of course we must have h0 � 0.=
For the binary operation of exponentiation, gh , there are two procedures,

depending on whether the operand function h is a constant. If h is not a constant,
then we have

�gh�k = e ln g ·h (5.7)
k

and our exponentiation operation is converted to one multiplication and two
function evaluations. The unary function evaluation operations are given later in
this section.

If h is a constant a, then, as with the division operation, upon setting x to x0,
it becomes clear that �ga�0 = �g0�

a. To obtain a general relation for �ga�k, we
use the equation

d
g�x�a = ag�x�a−1 g ��x� (5.8)

dx

After multiplication by g�x�, the equation becomes

g�x�
d
g�x�a = ag�x�ag ��x�

dx

Converting to power series, we obtain

gk�x−x0�
k · k�ga�k�x−x0�

k−1 = a �ga�k�x−x0�
k · �x−x0�

k−1kgk
k=0 k=1 k=0 k=1

After we multiply on the right by �x−x0�, we get

� � � �
gk�x−x0�

k · k�ga�k�x−x0�
k = a �ga�k�x−x0�

k · �x−x0�
kkgk

k=0 k=1 k=0 k=1

which can be rewritten as shown below, with all summation indices starting at 0,
because the series term added is 0.

gk�x−x0�
k · k�ga�k�x−x0�

k = a �ga�k�x−x0�
k · kgk�x−x0�

k

k=0 k=0 k=0 k=0

Elsevier US Job Code:IPNM Chapter:Ch05-P373859 19-12-2006 11:47a.m. Page:44 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

∑ ∑

∑

∑
()

�
�

�

︸ ︷︷ ︸

� � � ∑ ∑ ∑

∑

44 5 Computing Derivatives

This leads via the multiplication relation (5.5) to the following equation for the
coefficient of �x−x0�

k:

k k

gi�k− i��ga�k−i = a igi�g
a�k−i

i=0 i=0

or

k

g0 k�g
a�k + gi�k− i��ga�k−i = 0 +

k ∑
�ga�k−iaigi

i=1 i=1

which can be rewritten as

k ∑

i=1

We obtain from this the recurrence relation

�ai+ i−k�gig0 k�g
a�k = �ga�k−i

⎧
⎨�g0�

a if k= 0
1 �a+1�i −1 �ga�k−i gi if k > 0

(5.9)�ga�k = k

i=1
⎩

kg0

When g0 = 0, because of the division by g0, we cannot form the terms �ga�k
for k> 0. But when g0 = 0 and a is a positive integer, the power series expansion
ga exists; and even if a is not an integer, but is positive, the Taylor series formula
(5.2) indicates that the series terms are defined for k < a. When g0 = 0, for these
two cases, an alternate method of obtaining the series terms is needed. If a is
a small positive integer, we can use the relation

ga = g ·g · · · · ·g (5.10)

a factors

and obtain the series by repeated multiplication. For the other case, a method of
specifying the terms can be derived from equation (5.8). This equation can be
written in power series form as

k�ga�k�x−x0�
k−1 = a�ga−1�k�x−x0�

k · kgk�x−x0�
k−1

k=1 k=0 k=1

Multiplying this equation by �x− x0� and equating �x− x0�
k coefficients, we

obtain

k

k�ga�k = a �ga−1�k−iigi
i=1

Elsevier US Job Code:IPNM Chapter:Ch05-P373859 19-12-2006 11:47a.m. Page:45 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

�

� ∑

� � � ∑ ∑ ∑

∑

∑

45 5.1 Power series of elementary functions

which leads to the following recursive formula for obtaining the terms of ga from
those of ga−1:

⎧
⎨g0

a−1g0 if k = 0
∑

1i=

�ga�k = (5.11)a k

�ga−1�k−iigi if k > 0⎩
k

With this formula we can construct the terms �ga�0� �ga�1� � � � � �g
a� from

� n

the terms �ga−1�0� �g
a−1�1� � � � � �g

a−1�n−1. Suppose now that g0 = 0 and that the
largest integer less than the positive number a is q. We can start with just
the single term �ga−q�0 = �g0�

a−q of the function ga−q, and then generate in
succession the terms for the functions ga−q+1� ga−q+2� � � � � each time finding one
more term than we had previously, until we arrive at the full list of defined terms
for ga, namely �ga�0� �ga�1� � � � � �g

a�q. All of these terms = 0, but nevertheless
they can be computed this way to define intervals, whereas they cannot be
computed via (5.9) because of the division operation.

Next we reinterpret the evaluation operation for each standard function, the
natural exponential function first. We have

eg�x� = �eg�k�x−x0�
k

k=0

Taking derivatives, we get

d
�eg�x��= eg�x�g ��x�

dx

If we multiply this equation on the right by �x−x0� and express it in terms of
power series, we get

k�eg�k�x−x0�
k = �eg�k�x−x0�

k · kgk�x−x0�
k

k=1 k=0 k=1

Employing the series multiplication relation (5.5) again, we see that for k > 0
we have

k

k�eg�k = igi�e
g�k−i

i=1

and we obtain the following recursive relation for the coefficients �eg�k:

⎧
⎨ eg0 if k= 0

i=1

�eg�k = 1 k (5.12)
igi�e

g�k−i if k > 0⎩
k

Elsevier US Job Code:IPNM Chapter:Ch05-P373859 19-12-2006 11:47a.m. Page:46 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

� ∑

∑
)

(
∑

)

(
∑

)

∑

46 5 Computing Derivatives

For the natural logarithm we have

d g��x�
ln g�x�=

dx g�x�

After multiplying by �x−x0� and then converting to power series, we get
∑�

1 kgk�x−x0�
k

k�ln g�k�x−x0�
k = ∑k

�
k

=
=0 gk�x−x0�

k
1k=

Equating the coefficients of �x−x0�
k on the two sides of the equals sign, we get,

after using the division relation (5.6) for the right-hand side,

1
k�ln g�k =

(

kgk −
k−1

i�ln g�igk−i g0 i=1

Note here that the summation is void or empty for k = 1, because the stopping
index is less than the starting index. The void summation becomes clearer if
we rewrite our equation as

1
k�ln g�k = − i�ln g�igk−ikgk g0 0<i<k

After accounting separately for �ln g�0, we get
⎧
⎨ ln g0 if k = 0

0<i<k

�ln g�k = 1 1 (5.13)− i�ln g�igk−i if k > 0gk⎩
kg0

From the relations

d
sin g�x�= cos g�x� ·g ��x�

dx

d
cos g�x�=− sin g�x� ·g ��x�

dx

we obtain in similar fashion the relations
⎧
⎨ sin g0 if k= 0

k1�sin g�k =
i=1

(5.14)
if k= 0

igi�cos g�k−i if k > 0⎩
k

⎧
⎨ cos g0

∑ 1

k 1

�cos g�k = k

⎩− igi�sin g�k−i if k > 0
i=

Elsevier US Job Code:IPNM Chapter:Ch05-P373859 19-12-2006 11:47a.m. Page:47 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

[
∑

]

√

�
√

[
∑ √]

�

47 5.1 Power series of elementary functions

These equations make it clear that it is necessary to generate both sets of
coefficients, �sin g�k and �cos g�k, even when only one set is required.

The hyperbolic functions have similar power series relations

⎧
⎨ sinh g0 if k = 0

k1�sinh g�k =
(5.15)

cosh g0 if k = 0

∑

1i=

∑

1i=

igi�cosh g�k−i if k > 0⎩
k

⎧
⎨

�cosh g�k = k1
igi�sinh g�k−i if k > 0⎩

k

Next we consider the inverse trigonometric functions. We have

d g��x�
tan−1 g�x�=

dx 1 + �g�x��2

The coefficients of the denominator function 1+g2 must be formed; this is easily
accomplished as 1 +g ·g. Using the division relation (5.6), we get

⎧
⎨ tan−1 g0 if k = 0

0<i<k

�tan−1 g�k = 1 1 (5.16)
i�tan−1 g�i�1 +g2�k−i− if k > 0gk⎩

�1 +g2�0 k

In similar fashion, from

d
sin−1 g�x� = g��x�

1 − �g�x��2dx

we obtain

sin−1 g0 if k= 0⎧
⎨

�sin−1 1 1g�k =
i�sin−1 2�k−i

0<i<k

(5.17)

The cos−1 function can be evaluated by using the relation cos−1 x= 2 − sin−1 x.

− 1 −g if k > 0g�i�gk⎩
2�0

k1 −g

Elsevier US Job Code:IPNM Chapter:Ch05-P373859 19-12-2006 11:47a.m. Page:48 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

�

�

�

48 5 Computing Derivatives

For the abs� max, and min functions we have
⎧
⎪⎪⎪⎨
k = 0 � �g0� ⎧

⎪⎨gk if g0 > 0
�abs g�k =

k > 0 � −gk if g0 < 0
Not defined if g0 = 0

⎪⎪⎪⎩ ⎪⎩

⎧
⎪⎪⎪⎨
k = 0 � max�g0� h0� ⎧

⎪⎨gk if g0 > h0 (5.18)�max g�h�k =
k > 0 � hk if g0 < h0

Not defined if g0 = h0

⎪⎪⎪⎩ ⎪⎩

⎧
⎪⎪⎪⎨
k = 0 � min�g0� h0� ⎧

⎪⎨gk if g0 < h0�min g�h�k =
k > 0 � hk if g0 > h0

Not defined if g0 = h0

⎪⎪⎪⎩ ⎪⎩

This completes the description of the process for computing power series of
an elementary function f�x�.

5.2 An example of series evaluation

As an example of the general procedure for using power series to obtain
derivatives, suppose we want just the first and second derivatives of the simple
function f�x� = x2 + 5 at the point x = 3. The evaluation list for f�x� consists
of the following five operations:

⎡
variable x to array end

constant 2 to array end

exponentiation

constant 5 to array end

+

⎤

⎢
⎢

⎥
⎥

⎢
⎣

⎥
⎦

We need only generate our power series up to the term �x− 3�2, so our series
coefficent vectors have just three components.

Here the series expansion point is at x = 3, so the “variable x to array end”
operation constructs the vector �3�1�0�. Because the exponent 2 is a small
positive integer, the exponentiation operation of x2 can be done by multiplying
the x series by itself, giving the result �9�6�1�. The final + operation yields the
vector �14�6�1�, so the series obtained for f�x� is

14 +6�x−3�+1�x−3�2

Elsevier US Job Code:IPNM Chapter:Ch05-P373859 19-12-2006 11:47a.m. Page:49 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

� ∑ ∑

5.3 Power series for elementary functions of several variables 49

From the series coefficients we find f�3� = 14� f ��3� = 1! · 6 = 6, and
f ���3�= 2! ·1 = 2.

5.3	 Power series for elementary functions of several
variables

The equations developed in Section 5.1 allow the generation of a power series for
an elementary function f�x�, enabling the f�x� derivatives at the series expansion
point to be obtained. Here we obtain similar equations for an elementary function
of several variables f�x1� � � � � xn�. These relations enable one to find any f partial
derivative with respect to its variables. Suppose all f partial derivatives exist in
some region R defined by the n interval relations ai < xi < bi� i = 1� � � � � n.
If a series expansion point �x10

� � � � � xn0
� is chosen in R, then f can be expressed

as a power series of the form

nfk1 � � � � �k
�x1 −x10

�k1 � � � �xn −x �k (5.19)
n n0

d=0 k1+···+kn =d

The power series term

nfk1� � � � �kn
�x1 −x10

�k1 � � � �xn −xn0
�k

with coefficient fk1� � � � �k
is said to be of degree d, where d = k1 + · · · + kn.

n

To obtain the appropriate series relations, let �x1� � � � � xn� be a point in R close
to the series expansion point, and define the function g�t� by the equation

g�t�= f
(
x10

+ t�x1 −x10
�� � � � � xn0

+ t�xn −xn0
�
)

Let the variable t have the domain �0�1�, so that g�0� = f�x10
� � � � � xn0

�,
and g�1�= f�x1� � � � � xn�. Expanding g�t� in a power series about the point t= 0,
we have

g�t�= g�0�+ g��0�
t+ g���0�

t2 +· · ·+ g�d��0�
td +· · · (5.20)

1! 2! d!
n �fBecause dg/dt at the point t = 0 equals

∑
i=1�xi − xi0

�
�xi

with all partial
derivatives taken at the point �xi0

� � � � � xn0
�, the coefficient g�d��0�/d! equals

1
[

�x1 −x10
�
� +· · ·+ �x −x �

�
]d

f�x10
� � � � � x �

d! �x1
n n0 �xn

n0

Elsevier US Job Code:IPNM Chapter:Ch05-P373859 19-12-2006 11:47a.m. Page:50 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

�

�	 �

50 5 Computing Derivatives

After the multinomial is expanded, this is

n
∑ 1

[
�d

f�x10
� � � � � x �

]

�x1 −x �k1 � � � �x −x �k
k1!� � � kn! �x1

k1 � � � �xn
kn n0 10 n n0

k1+···+kn =d

(5.21)
Thus the coefficient fk1� � � � �k

of equation (5.19) equals
n

1 �d

k1!� � � kn!
·
�x1

k1 � � � �xn
kn
f�x10

� � � � � x
0
�n

In equation (5.20), when we set t equal to 1, we obtain

nf�x1� � � � � xn�=	∑ ∑
fk1� � � � �kn

�x1 −x10
�k1 � � � �xn−xn0

�k (5.22)
d=0 k1 + � � �+kn =d

In obtaining the relations for generating the terms of an elementary function
f�x� in Section 5.1, often a derivative with respect to x was taken, followed
by the multiplication of the resulting equation by �x− x0�. The two steps can
be performed together by using the operator �x− x0�

d . For a function of the
dx

variables x1� � � � � xn, the corresponding operator is

�x1 −x10
� + � � � + �xn−xn �	 (5.23)
�x1

0 �xn

Using this operator, we can derive equations for the power series terms of
functions with an arbitrary number of variables. The steps are similar to those
previously taken. Some additional notation is helpful here. We use the capital
letter K to represent the index k1� � � � � kn, so the coefficient gk1� � � � �kn

of the
series term

ngk1 � � � � �kn
�x1 −x10

�k1 � � � �xn−xn0
�k

becomes gK . The capital letter O is reserved for the index 0� � � � �0. Define �K�
to be the integer k1 +· · ·+kn, the degree of the term gK . For two indices I and J ,
define I− J to be the index Q with q1 = i1 − j1� � � � � qn = in− jn. The notation
I = J has the obvious interpretation, and I ≤ J signifies

i1 ≤ j1� � � � � in ≤ jn	 (5.24)

The notation I < J also signifies (5.24), but with the requirement that inequality
occurs at least once. Thus if �I� = �J�, which implies that gI and gJ have

Elsevier US Job Code:IPNM Chapter:Ch05-P373859 19-12-2006 11:47a.m. Page:51 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

51 5.3 Power series for elementary functions of several variables

the same degree, then neither I < J nor I > J is possible. The following equations
can be derived by repeating the steps of Section 5.1:

�g+h�K = gK +hK

�g−h�K = gK −hK

�g ·h�K = ∑
gIhK−I or

∑
gK−IhI

O=I≤K O=I≤K

⎧

⎪
⎨gO/hO if K = O

�g/h�K =
⎪ 1

(
∑

)

⎩ gK − �g/h�IhK−I if K> O

hO O=I<K

⎧
⎨egO if K = O

�eg�K =
⎩

1 ∑
�I�gI�e

g�K−I if K> O

�K� O<I≤K

⎧
⎨ln gO if K = O

�ln g�K =
⎩

1
(

gK − 1 ∑
�I� �ln g�I gK−I

)

if K> O

gO �K� O<I<K

⎧

�sin g�K =
⎨sin

1
gO
∑

if K = O
⎩ �I�gI�cos g�K−I if K> O
�K� O<I≤K

⎧

�cos g�K =
⎨cos

1
gO

∑
if K = O

⎩− �I�gI�sin g�K−I if K> O
�K� O<I≤K

⎧
⎨sinh gO if K = O

�sinh g�K =
⎩

1 ∑
�I�gI�cosh g�K−I if K> O

�K� O<I≤K

⎧
⎨cosh gO if K = O

�cosh g�K =
⎩

1 ∑
�I�gI�sinh g�K−I if K> O

�K� O<I≤K

⎧
⎪�gO�

a if K = O ⎨ ()
�ga�K =

⎪ 1 ∑ �a+1��I�
⎩ −1 �ga�K−I gI if K> O
gO O<I≤K �K�

⎧
⎨ga−1 = O gO if K O

�ga�K =
⎩

a ∑
�ga−1�K−I �I�gI if K> O

�K� O<I≤K

Elsevier US Job Code:IPNM Chapter:Ch05-P373859 19-12-2006 11:47a.m. Page:52 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

[
∑

]

�
√

[
∑ √]

�

�

�

∑

52 5 Computing Derivatives

�tan−1 g�K =

⎧
⎪⎨ tan−1 gO if K = O

1 1
�I��tan−1 g�I�1 +g2�K−I if K> OgK −⎪

⎧
⎨

⎩
�1 +g2�O �K� O<I<K

sin−1 gO if K = O

�sin−1 g�K = 1 1
1 −g2�K−I if K> O�I��sin−1− g�I�gK⎩

⎧
⎪⎪⎪⎨

2�O �K�1 −g O<I<K

K = O � �gO� ⎧
⎪⎨gK if gO > 0

�abs g�K = −gK if gO < 0K> O �⎪⎪⎪⎩ Not defined if gO = 0⎪⎩

⎧
⎪⎪⎪⎨
K = O � max�gO�hO� ⎧

⎪⎨gK if gO > hO�max g�h�K =
hK if gOK > O � < hO⎪⎪⎪⎩ ⎪⎩Not defined if gO = hO

⎧
⎪⎪⎪⎨
K = O � min�gO�hO� ⎧

⎪⎨gK if gO < hO�min g�h�K =
hK if gOK > O � > hO⎪⎪⎪⎩ ⎪⎩Not defined if gO = hO

These formulas allow the generation of the power series for a function of any
number of variables.

5.4 A more general method of generating power series

To generate the power series of an elementary function f�x� of just one
variable, the evaluation array can be an array of vectors. Here an active vector’s
components give the coefficients of some intermediate function’s power series,
with the coefficient of the �x−x0�

i series term held in vector component i+1.
To generate the power series of a function f�xi� � � � � xn� of several variables,
a more flexible series representation system is needed. The evaluation array
now must be an array of lists, each list defining some intermediate function’s
series coefficients. For instance, suppose the function f whose power series we
want has three variables x� y, and z. Then an intermediate function g�x� y� z� is
represented by a list giving the successive terms of the power series

gi1�i2�i3
�x−x0�

i1 �y−y0�
i2 �z− z0�

i3

Elsevier US Job Code:IPNM Chapter:Ch05-P373859 19-12-2006 11:47a.m. Page:53 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

53 5.4 A more general method of generating power series

A list element holds a coefficient gi1�i2�i3 , the three integers i1� i2, and i3 that
identify the coefficient, and one other integer i0 equal to the degree i1 + i2 + i3

of the series term. Thus each list element has the ranged value of a coefficient
and an identifying four-integer index vector �i0� i1� i2� i3�. If R is the value of the
coefficient, then the list element will be denoted �i0� i1� i2� i3��R�. For instance,
suppose the f�x� y� z� series expansion point is �x0� y0� z0� = �3�4�5�. Before
attempting to generate the series for f�x� y� z�, the series for each variable is
prepared in advance. For our example, these series are

x series � �0�0�0�0��3�+ �1�1�0�0��1�

y series � �0�0�0�0��4�+ �1�0�1�0��1�

z series � �0�0�0�0��5�+ �1�0�0�1��1�

Here we use a + sign to separate the elements on a series list. Suppose now
that f�x� y� z� is the simple function xy+ z+ 10. The evaluation list for this
function is

⎡ ⎤
variable x to array end

⎢ variable y to array end ⎥
⎢ ⎥
⎢ × ⎥
⎢ ⎥
⎢ variable z to array end ⎥
⎢ ⎥
⎢ + ⎥
⎣ ⎦constant 10 to array end

+
The series obtained after completing the multiplication operation is

�0�0�0�0��12�+ �1�0�1�0��3�+ �1�1�0�0��4�+ �2�1�1�0��1�

and the final series generated after completing the second addition operation is

�0�0�0�0��27�+ �1�0�0�1��1�+ �1�0�1�0��3�+ �1�1�0�0��4�+ �2�1�1�0��1�

indicating that at the point �3�4�5� we have

�f �f �f �2f
f = 27� = 1� = 3� = 4 and = 1

�z �y �x �x�y

Here it is convenient to order the series terms by the index four-tuple, with
index I preceding index J if, comparing index components in order and ignoring
equal components, the first smaller component belongs to index I . This way,
the constant term of a series is always first because its index is �0�0�0�0�, and
a degree d term always precedes a degree d+1 term.

Elsevier US Job Code:IPNM Chapter:Ch05-P373859 19-12-2006 11:47a.m. Page:54 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

54 5 Computing Derivatives

5.5 The demo program deriv

This program computes f�x� y� z� series in the manner described in the preceding
section, and is then able to obtain f derivatives at the series evaluation point
�x0� y0� z0� from the series coefficients fi�j�k, using the formula

1 �i+j+k

fi�j�k =
i! j!k! · �xi�yj�zk f�x0� y0� z0�

If the derivatives found are not accurate enough to satisfy the accuracy
requirement, then as is standard with range arithmetic, the computation is
repeated at an appropriate higher precision.

Software Exercises C

These exercises show some features of the deriv demo program.

1. Call up the program deriv to find the first eight derivatives of the function
sin x at the argument point x= 0, specifying, for example, 10 fixed-point decimal
places.

2. Because deriv creates a log file, it is easy to change the point at which
derivatives are found. Edit the deriv.log file, changing the argument point
from 0 to �/2, save the file, and then call up deriv deriv.

3. Change the PNM command back to deriv, and then call up deriv to
compute all cos�x+y+ z� derivatives of order three or less, at the origin. After
the display of derivatives appears at your console, return to the PNM form and
look at the deriv.prt file to see them again.

4. Call up deriv to obtain the first five derivatives of x3�2 at the point x = 1.
Next edit the log file to change the evaluation point from 1 to 0. Save the log
file, and then call up deriv deriv. Notice that only derivatives to the fourth
order are obtained, because the function’s series coefficients can be found only
up to the term f4�x−0�4.

Notes and References

A. R. Moore	 was an early advocate of power series methods for finding
derivatives and integrals. We have used the notation of his book [1]. For a
more complete discussion of derivatives and power series, see the book
by Rall [2].

Elsevier US Job Code:IPNM Chapter:Ch05-P373859 19-12-2006 11:47a.m. Page:55 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

55 Notes and References

B. Various functions that are not elementary are often encountered in applied
mathematics. Examples are the gamma and beta functions, the Bessel
functions, and the hypergeometric functions. There is no basic difficulty in
extending the elementary function class to include additional function types,
as long as the new function types can be generated using specific power
series formulas (as is the case for the standard functions).

[1] Moore, R. E., Methods and Applications of Interval Analysis, SIAM Studies in Applied
Mathematics, SIAM, Philadelphia, 1979, 24–29.

[2] Rall, L. B., Automatic Differentiation: Techniques and Applications, Lecture Notes
in Computer Science 120, Springer-Verlag, Berlin, 1981.

Elsevier US Job Code:IPNM Chapter:Ch05-P373859 19-12-2006 11:47a.m. Page:56 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

This page intentionally left blank

Elsevier US Job Code:IPNM Chapter:Ch06-P373859 19-12-2006 11:47a.m. Page:57 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

∑

Computing Integrals 6

Three demo programs compute integrals accurately. The program integ com
putes ordinary definite integrals, the program mulint computes higher dimen
sional integrals, and the program impint computes improper integrals.

6.1 Computing a definite integral

Suppose f�x� is an elementary function defined in �a� b�, and f�x� is infinitely
differentiable in this interval except, possibly, at a finite number of points. We
describe a method of accurately computing the integral

∫
a

b
f�x�dx using f�x�

power series expansions. Methods for forming power series were described in
the preceding chapter.

Assume, temporarily, that f�x� is infinitely differentiable in �a� b�. We can
form a power series for f�x�, taking the �a� b� interval midpoint x0 = �a+b�/2
as the series expansion point, with the degree n of the last series term reason
ably large, for example 12 or higher. This finite series, often called a Taylor
polynomial, is

f0 +f1�x−x0�+f2�x−x0�
2 +· · ·+fn�x−x0�

n

which may be written more explicitly as

f�x0�+f ��x0��x−x0�+ f
���x0� �x−x0�

2 +· · ·+ f
�n��x0� �x−x0�

n

2! n!
and more compactly as

n f �i��x0� �x−x0�
i

i!i=0

57

Elsevier US Job Code:IPNM Chapter:Ch06-P373859 19-12-2006 11:47a.m. Page:58 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

∫

58 6 Computing Integrals

We can then integrate the Taylor polynomial to obtain an approximation to
a
f�x�dx.

b

Thus it is easy this way to approximate our integral. The more difficult task is
to somehow bound the error made in replacing f�x� by the Taylor polynomial.
Here we can use Taylor’s formula for the remainder, given in the next theorem,
and proven in most calculus texts:

Theorem 6.1 Suppose the function f�x� is defined and continuous in �a� b�
and has n+1 derivatives there. Then for any point x0 in �a� b� and any point x
in �a� b� unequal to x0, there exists a point z between x and x0 such that

∑ f �n+1��z�
f�x� =

n f �i��x0� �x−x0�
i + �x−x0�

n+1 (6.1)
i! �n+1�!i=0

The degree n+1 term is called the remainder.

Let us apply this result to our integration problem. Eq. (6.1) can be rewritten as

∑ f �n+1��z�−f �n+1��x0� f�x� =
n+1 f �i��x0� �x−x0�

i + �x−x0�
n+1

i! �n+1�!i=0

Here we have added a degree n+ 1 term to the Taylor polynomial and then
subtracted it out. The degree of the Taylor polynomial is now n+ 1, but it is
more convenient to have n for this degree, so we rewrite the equation replacing
n+1 by n:

n f �i��x0� f �n��z�−f �n��x0�
f�x� =∑
�x−x0�

i + �x−x0�
n

i! n!i=0

We finally have a bound for the error of the Taylor polynomial:

∣ n ∣ ∣ ∣
∣ ∑ f �i��x0� ∣ ∣f �n��z�−f �n��x0� ∣
∣f�x�− �x−x0�

i∣ = ∣ �x−x0�
n∣

i! n!i=0

The point z depends on x and is in general an unknown point. Instead of trying
to find z, we can find the maximum distance of f �n��x� from f �n��x0� as x varies
in the interval �a� b�. If W is this nonnegative value, then the error of the Taylor

W npolynomial for any x in �a� b� is ≤
n! �x− x0� . Thus our error bound is 0 if

x = x0, and rises to its maximum value when x equals an endpoint of the �a� b�
interval.

This error bound also can be expressed compactly in interval form, using the
simpler power series notation:

f�x�= f0 +f1�x−x0�+f2�x−x0�
2 +· · ·+fn−1�x−x0�

n−1 + �fn ±wn��x−x0�
n

(6.2)

Elsevier US Job Code:IPNM Chapter:Ch06-P373859 19-12-2006 11:47a.m. Page:59 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

59 6.2 Formal interval arithmetic

The interval fn ± wn has the midpoint fn = f �n��x0�/n! and the halfwidth
wn =W/n!. The term �fn ± wn��x − x0�

n should be understood to mean
fn�x−x0�

n ±wn�x−x0�n, that is, multiplication by �x−x0�
n is treated differently

for the two parts of fn ±wn.
If h is taken equal to the halfwidth �b− a�/2 of the interval �a� b�, then

the integral of the polynomial (6.2) over the interval �x0 −h�x0 +h� gives an
approximation to

∫
a

b
f�x�dx, and the approximation’s error bound is obtained by

integrating wn�x−x0�n. Here it is convenient to take n, the polynomial’s degree,
as an even integer 2q, because then �x−x0�2q = �x−x0�

2q. We then obtain

∫ ∫ 2q ∫x0 +h

f�x�dx =
x0+h ∑

fi�x−x0�
i dx±

x0 +h

w2q�x−x0�
2q dx

x0 −h x0−h i=0 x0 −h

h3 h5 h2q+1 h2q+1

=2
[

f0h+f2 +f4 +· · ·+f2q

]

±2w2q (6.3)
3 5 2q+1 2q+1

The program integ obtains definite integrals to a prescribed number of
correct decimal places, and it does this by dividing the integration interval �a� b�
into subintervals small enough that their error terms become acceptably small.
This requires a method of determining the bound w2q for each subinterval, and
we consider this problem next.

6.2 Formal interval arithmetic

In Chapter 2, we introduced Moore’s interval arithmetic as a means of monitoring
the computation error of range arithmetic. We can use interval arithmetic again in
a different fashion to obtain a bound w2q to be assigned to f2q. The nonnegative
number w2q is a bound on the distance of the f2q value at an arbitrary point in
�a� b� from the specific f2q value determined at the interval midpoint x0.

The general idea here is to do the computation for the f�x� power series as
described in Chapter 5, except that an interval m±w represents each series
coefficient in the computation, and that interval arithmetic is used everywhere.
It is true that range arithmetic itself is a form of interval arithmetic, but a ranged
number has only a gross representation of halfwidth, as a means of determining
an appropriate precision of computation. In this application we want a more
accurate representation of interval halfwidths. So one ranged number is used
for each interval midpoint m, and one ranged number is used for each interval
halfwidth w. After the computation is complete, as usual we can check our
ranged results to determine whether we have obtained enough correct decimal
places, and if not, the whole computation is repeated at a higher precision. The
series representation for x now is

x = �x0 ±w0�+ �1 ±0��x−x0�

Elsevier US Job Code:IPNM Chapter:Ch06-P373859 19-12-2006 11:47a.m. Page:60 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

�

60 6 Computing Integrals

with x0 = �a+ b�/2 and w0 = �b− a�/2. Note that each of the two coefficients
correctly bounds the distance of the coefficient computed at an arbitrary point in
�a� b� from the coefficient value computed at x0. The series representation for a
constant a is

a= �a±0�

There are only two operations on a function’s evaluation list that can increase
the number of intermediate series, and these are the “variable to array end”
and “constant to array end” operations. Both operations introduce a series with
correct coefficient bounds, and so if all other operations use interval arithmetic
in computing coefficients, then the final coefficients have bounds which are
guaranteed not to be too small.

We repeat below the rules of interval arithmetic. The division operation has
a slightly different form than previously, in that the = relation is used, because
now the two quantities defining an interval are both ranged numbers, not rational
numbers as previously.

m1 ±w1 + m2 ±w2 = �m1 +m2�± �w1 +w2� (6.4)

m1 ±w1 − m2 ±w2 = �m1 −m2�± �w1 +w2� (6.5)

m1 ±w1 × m2 ±w2 = �m1m2�± �w1�m2�+ �m1�w2 +w1w2� (6.6)
⎧() ()
⎪ m1

w1 +�m1 �w2 ⎨ m2± if �m2�> w2 m1 ±w1 ÷ m2 ±w2 = m2 �m2�−w2 (6.7)
⎪⎩ �

Division error if �m2� = w2 or �m2�< w2

When the steps of the f�x� evaluation list are done using the interval arithmetic
relations just listed, we will call the computation “formal interval arithmetic”, range
arithmetic being the “informal” variety. Instead of obtaining for f�x� the series

f0 +f1�x−x0�+f2�x−x0�
2 +· · ·+fn�x−x0�

n

we now obtain for f�x� the representation

�f0 ±w0�+ �f1 ±w1��x−x0�+· · ·+ �fn ±wn��x−x0�
n

With n taken as the even integer 2q, only the halfwidth w2q is used. But to obtain
it we must compute halfwidths for all coefficients of all the intermediate series.

Most unary series operations are function evaluations, and these now need to be
done in formal interval arithmetic style. Generally for each standard function it is
not difficult to obtain an appropriate interval arithmetic relation. As an example,
consider the natural logarithm function. Because ln x is an increasing function
with a decreasing derivative, we have

ln�m±w� = ln m± (ln m− ln�m−w�
)

Elsevier US Job Code:IPNM Chapter:Ch06-P373859 19-12-2006 11:47a.m. Page:61 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

6.3 The demo program integ for computing ordinary definite integrals 61

Two logarithm evaluations are required here, and each evaluation is likely to
require many arithmetic operations. To speed up logarithm evaluation, one might
prefer to use the less accurate relation

w
ln�m±w� = ln m±

m−w

obtained by applying the Mean Value Theorem:

ln m− ln�m−w�= �ln� z�w = 1 ·w ≤ w

z	 m−w

Thus with the standard functions, there are often several choices for the interval
arithmetic evaluation equations. We list below some of the relations used by our
demo programs for the standard functions.

e m±w = e m ± e m�ew −1� (6.8)

ln�m±w�=
{

ln m± w

m−w
if m> w

� (6.9)
ln error if m< w or m = w

sin�m±w�= sin m±min�� cos m�+w�1� ·w (6.10)

cos�m±w�= cos m±min�� sin m�+w�1� ·w (6.11)

sinh�m±w�= sinh m± cosh m · �ew −1�	 (6.12)

cosh�m±w�= cosh m± cosh m · �ew −1�	 (6.13)

tan−1�m±w�= tan−1 m± w	
(6.14)

1 + �max��m�−w�0��2

6.3	 The demo program integ for computing ordinary
definite integrals

In finding an approximation with an error bound to
∫
a

b
f�x�dx, it is convenient

to arrange the computation by means of a “task queue”. A task queue often is
a convenient way of handling computations where the exact sequence of steps
needed is not known in advance. A task queue finds many applications in precise
computation programs. In general a task queue is a list of the tasks that need to be
performed to reach the objective. Depending on the problem, the queue initially
holds a single task, or a short list of tasks, which would attain the objective;
but generally it is not known whether these tasks can be performed successfully.
Cyclically, the task at the head of the queue is attempted, then discarded from
the queue if the task is completed successfully. This process continues until the
task queue is empty, because the objective has been attained. If the task at the

Elsevier US Job Code:IPNM Chapter:Ch06-P373859 19-12-2006 11:47a.m. Page:62 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

�.

62 6 Computing Integrals

head of the queue cannot be done, the task is split into an appropriate set of
simpler subtasks that accomplish the same end, and these subtasks replace the
task at the head of the queue.

When dealing with definite integrals, it is convenient to always have �0�1� as
the integration interval. If we make the substitution x = a+ �b−a�u, the definite
integral

∫
a

b
f�x�dx can be rewritten as

∫
0
1
F�u�du, where F�u� equals �b− a� f

�a+ �b−a�u�. If our integral is required to k correct fixed-place decimal places,
the maximum error bound � allowable can be computed in advance [see Eq.
(3.1)]. We must obtain an integral approximation with an error bound no larger
than �. The task queue will hold a list of u subintervals, and the integral of F�u�
must be found for each. Initially the queue holds the single u interval 0�5 ±0�5.
In general, if u0 ±h is the interval at the head of the queue, the queue cycle
consists of calculating an integral approximation over u0 ±h, and checking that
the error bound 2w2q

h
2

2

q

q

+
+

1

1
does not exceed its � allotment, which is

length �u0 −h�u0 +h�
� · = 2h�

length �0�1�

If this requirement is met, the integral approximation is added to a sum S, the error
bound is added to another sum E, both sums initially zero, and the queue interval
is discarded. Otherwise, the queue interval is bisected and the two subintervals
replace it on the task queue. The error bound of an integral approximation has
the multiplier h2q+1, so when an interval is bisected, and h is halved, this error
bound multiplier decreases by the factor 22q

1
+1 , whereas the � allotment decreases

only by the factor 1/2. So eventually, when h gets small enough, the error
bound test is passed. When finally the task queue is empty, S holds the required
approximation to

∫
0
1
F�u�du and E holds the error bound, which does not exceed

Whenever the integral error bound for a queue interval is more than its
allotment, it is advisable to test whether the precision of computation is adequate
and to increase it if not. Such a test is needed at some point in any range
arithmetic program.

It may happen that the F�u� series cannot be computed for a queue interval,
because the interval is too large. Such a series generation error may occur, for
instance, on a division operation g�u�/h�u�, when the leading term of h�u� is an
interval containing the zero point. Or a series error may occur when generating
ln g�u� if the leading term of g�u� contains the zero point in its interval. These
cases are treated just as if the � allotment were exceeded.

The procedure, as so far described, suffices when the function F�u� is analytic
at every point of �0�1�. (A function is analytic at a point u0 if it has derivatives
of arbitrary order there.) But it is possible that F�u� is defined, but is not analytic
at a few points inside �0�1� or at an endpoint. For instance the integral might
be
∫

0
1 √

1 −u3 du with the nonanalytic point u = 1, or
∫

0
1
�u− 21 �1/3 du with the

nonanalytic point u= 1/2. It will not be possible to obtain any series coefficients

Elsevier US Job Code:IPNM Chapter:Ch06-P373859 19-12-2006 11:47a.m. Page:63 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

∏

()

∑ ∑

6.4 Taylor’s remainder formula generalized 63

beyond the constant coefficient when the integration interval u0 ± h contains
such a point. The F�u� series then has just the leading series term f0 ±w0.

However, equation (6.3) is valid even when q is zero, and we obtain for the
integral the value 2f0h and the error bound 2w0h. The halfwidth w0 decreases as
h decreases, so the error 2w0h eventually becomes less than the error allotment
2�h when h becomes small enough. Normally an interval u0 ±h containing a
nonanalytic point is extremely small before it passes this test.

6.4 Taylor’s remainder formula generalized

In the next section the demo program mulint for computing multiple integrals
is described. That program must deal with integrand functions having several
variables, so it will be advantageous here to generalize the Taylor remainder
formula for such functions.

For functions f�x� of one variable, we have seen that if we choose the series
expansion point x0 as the midpoint of �a� b�, take the x series to be

(

±x0

b−a
)

+ �1 ±0��x−x0� 2

and use formal interval arithmetic to obtain for f�x� the series

�f0 ± w0�+ �f1 ± w1��x−x0�+· · ·+ �fm−1 ± wm−1��x−x0�
m−1

+ �fm ± wm��x−x0�
m

of maximum degree m, then Taylor’s remainder formula implies that we are
justified to use the relation

f�x�= f0 +f1�x−x0�+· · ·+fm−1�x−x0�
m−1 + �fm ±wm��x−x0�

m (6.15)

We need corresponding relations for a function f�x1� � � � � xn� of n variables,
analytic in a region R that can be expressed as a product of intervals:

n

R= �ai� bi�
i=1

Here each variable xi is restricted to the interval �ai� bi�. The series expansion
point for the f series is taken as �x10

� � � � � xn0
�, where xi0

is the midpoint of
�ai� bi�. The series for a variable xi is then

bi −ai±xi = xi0
+ �1 ±0��xi −xi0

�
2

We obtain for f the series
m

n�fk1� � � � �kn
±wk1� � � � �kn

��x1 −x10
�k1 � � � �xn −xn0

�k

d=0 k1+···+kn =d

Elsevier US Job Code:IPNM Chapter:Ch06-P373859 19-12-2006 11:47a.m. Page:64 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

64 6 Computing Integrals

Suppose �x1� � � � � xn� is some point in R. We see that the expression correspond
ing to (6.15) is

m−1
nf�xi� � � � � xn� = ∑ ∑

fk1� � � � �kn
�x1 −x10

�k1 � � � �xn −xn0
�k

d=0 k1+···+kn =d

n+	 ∑
�fk1� � � � �kn

±wk1� � � � �kn
��x1 −x10

�k1 � � � �xn −xn0
�k

k1+···+kn =m

All the terms of degree m for f , each having an interval coefficient, arise from
the single term of degree m for the function g�t� defined in Section 5.3. Now
there are many series coefficients that retain their interval form, instead of only
one, as was previously the case for f�x�.

6.5	 The demo program mulint for higher
dimensional integrals

The program mulint, like the program integ, uses a task queue to compute its
integrals, but differs from integ in its requirements for the integrand function.
With integ, the integrand f�x� can have a finite number of points where it
is not analytic, but just defined and continuous. The program mulint requires
its integrand function to be analytic throughout the integration domain. To see
the reason for this change, consider a typical problem for mulint, the iterated
integral

∫ b ∫ g2�x� f�x� y�dxdy. Here the region of integration defined by the limit
a g1�x�

functions g1�x� and g2�x� over their domain �a� b� defines a bounded region R.
The integration is converted to integration over the unit �u� v� square by

making the substitutions

y = g1�x�+ �g2�x�−g1�x��v
(6.16)

x = a+ �b−a�u

Here	 u and v both vary in �0�1�. The integral then has the form ∫ 1 ∫ 1
F�u� v�dudv where0 0

F�u� v�= �b−a��g2�x�−g1�x��f�x� y�

with x and y now being functions of u and v. The task queue holds a list of �u� v�
subrectangles �u0 ±h1�× �v0 ±h2� over which integration needs to be done.

Now we can see the reason for requiring f�x� y� to be analytic in its domain.
If f�x� y� is not analytic, then in general there would be one or more curves
in the �u� v� square where f�x� y� would be defined but not analytic, and this
would mean that a single term series for the integrand function would be needed

Elsevier US Job Code:IPNM Chapter:Ch06-P373859 19-12-2006 11:47a.m. Page:65 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

∑ ∑

∑ ∑

65 6.5	 The demo program mulint for higher dimensional integrals

over a collection of tiny rectangles covering the curves, making the integration
problem computerbound for a PC. The program mulint requires that the limit
functions g1�x� and g2�x� be analytic for the same reason, that is, to keep the
integration problem from becoming computerbound.

Assume now that f�x� y�, g1�x�, and g2�x� are analytic in their domains. As
mulint begins the integration problems, the task queue holds just the square
��5 ± �5�× ��5 ± �5�. To describe the general task queue cycle, let us take the
integration rectangle at the head of the task queue to be �u0 ±h1�× �v0 ±h2�.
The variables u and v are set to

u= �u0 ±h1�+ �1 ±0��u−u0�

and

v = �v0 ±h2�+ �1 ±0��v−v0�

For the function F�u� v� we obtain the degree 2q series

2q

�Fi�j ±wi�j��u−u0�
i�v−v0�

j

d=0 i+j=d

from which the integral approximation

q h2s+1h2t+1F2s�2t 1 2

�2s+1��2t+1� r=0 s+t=r

is obtained, as is the error bound

∑	 hi+1h
j+1

wi�j 1 2

�i+1��j+1�i+j=2q

If � is the error bound that must be achieved by our final integral approximation
in order to obtain k correct decimal places from it, we need to check that our
subrectangle error bound is not greater than the allotment 4h1h2�.

When the error allotment is exceeded, the integration subrectangle is divided
into two equal subrectangles, obtained by halving either the u dimension or the
v dimension. The division method is chosen by recomputing the error bound
with first h1 replaced by h1/2, and then h2 replaced by h2/2, and letting the
smaller value determine the division method. If there is a series generation error,
then the larger side of the subrectangle is bisected.

The integration method, described for two dimensional integrals, can be easily
generalized to apply to integrals of higher dimension.

Elsevier US Job Code:IPNM Chapter:Ch06-P373859 19-12-2006 11:47a.m. Page:66 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

66 6 Computing Integrals

6.6	 The demo program impint for computing
improper integrals

The program impint computes various one-dimensional improper integrals.
The improper integral can be of the form

∫
a

b
f�x�dx, where the function f�x� is

not defined throughout �a� b�, but only in either �a� b�, �a� b�, or �a� b�. Another
common improper integral is

∫
a

�
f�x�dx. Here f�x� may be defined in �a��� or ∫ bonly in �a���. A similar improper integral is −� f�x�dx, with f�x� ∫ �

defined in
�−�� b� or only in �−�� b�. Finally there is the improper integral −� f�x�dx.

Consider first the integral
∫
a

b
f�x�dx, where f�x� is defined only in �a� b�.

cos√ xFor example, the integral could be
∫

0
�

x
dx. The program impint integrates

the function f�x� from a point �, slightly to the right of a, to the endpoint
b, using the integration method described in Section 6.3. To account for the
unintegrated stretch �a���, the program impint requires the user to specify an
error-limiting positive function g�x�, defined in some small interval �a� b1�, such
that � ∫

a

x
f�t�dt� ≤ g�x� for x in �a� b1�, with the limit lim g�x�= 0 being valid.

x→a+
This ensures that by moving � close enough to a, the error made in omitting the
stretch �a��� can be made arbitrarily small.

Usually it is not difficult to find a suitable function g�x�. For the example
problem, we have

∣∫ x ∣ ∫ x ∫ x ∣ cos t ∣ � cos t� dt √
∣ √ dt∣ ≤ √ dt ≤ √ = 2 x

0 t 0 t 0 t
√

so g�x� can be taken to be 2 x, and its domain can be taken to be �0�1�.
Let � be an error bound that, if achieved for an integral approximation, permits

the display of the integral’s value to the requested number of decimal places.
The program impint computes g��n�, where �n = a+ 2−n�b1 − a�, for the
cases n = 0�1�2� � � � , until finally it obtains a g value less than �/2. If this
occurs for the argument �N , then �N becomes �, and impint computes the
definite integral

∫
�

b
f�x�dx to the error bound �/2 by the same method used by

the program integ. ∫ bThe program impint computes the improper integral −� f�x�dx in much
the same way. The user is required to specify a positive function g�x� defined
in some infinite interval �−�� b1�, such that for any x in this domain the
inequality � ∫ x f�x�dx� ≤ g�x� holds, with the limit lim g�x�= 0 being valid. −�	 x→−�
By repeated trials, the program impint finds a point � within �−�� b1� such
that g��� < �/2, and then computes

∫
�

b
f�x�dx to the error bound �/2.

As an example, for the improper integral
∫ 2 −x2

dx, the function g�x� can be −� e
taken as 1

2 e
−x2

with domain �−��−1�, because for any x in this domain we have

−t2 −t2 −t2 −x2
∫ x

e dt <
∫ x

−te dt = 1
e

∣
∣
∣
x = 1

e = g�x�
−� −� 2 −� 2

Elsevier US Job Code:IPNM Chapter:Ch06-P373859 19-12-2006 11:47a.m. Page:67 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

∫ �

67 Software Exercises D

An integral
∫
a

b
f�x�dx with f�x� defined only in �a� b� is handled similarly.

For this integral a positive function h�x� is required, defined in some interval
�a1� b�, such that for any x in this domain the inequality � ∫

x

b
f�t�dt� < h�x�

holds, with the limit lim h�x�= 0 being valid. The program impint computes
x→a+

the f�x� integral from a to a point �, slightly to the left of b, and uses the h�x�
function to account for the error made in omitting the small stretch ��� b�. An
integral

∫
a

�
f�x�dx also requires a function h�x�, defined appropriately.

An integral
∫
a

b
f�x�dx with f�x� defined only in �a� b� can be integrated

accurately if both a function g�x� and a function h�x� are supplied, to account for
unintegrated stretches near a and near b. The integral −� f�x�dx also requires
that two error bounding functions be supplied.

Software Exercises D

These exercises use the three integration programs integ, mulint, and
impint.

√
1. Call up integ and calculate to 20 decimal places

∫
−
1
1 1 −x2 dx. An inte

gral is computed by summing integral approximations over small subintervals,
starting at the left interval endpoint and working toward the right endpoint. Note
that progress over the interval �−1�+1� is slow near the endpoints of the inter
val, where the derivative of the integrand gets large. At x =−1 and x = 1, the
integrand derivative is not defined, and a degree 0 evaluation of the integrand is
needed over small subintervals containing these points.

2. Vito Lampret [4] lists the following five integrals as examples of definite
integrals that cannot be integrated analytically, because antiderivatives functions
for the integrands are not known.

I1 =
∫ 1 √

1 +x4 dx
0

∫ �/2
√

3
I2 = 8 1 − cos2 x dx

0 4

I3 = 1 ∫ �
cos�sin x�dx

� 0
∫ 1 arctan x

I4 = dx
0 x
∫ 1

2
I5 = ex dx

0

Call up integ and evaluate any of the four integrals I1� I2� I3, or I5 to 10
decimal places. The remaining integral I4 is improper, and is treated in exercise 5.

Elsevier US Job Code:IPNM Chapter:Ch06-P373859 19-12-2006 11:47a.m. Page:68 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

68 6 Computing Integrals

3. Call up mulint and evaluate to 5 decimal places the integral ∫ 2 ∫ x
∫1

1
dx ∫1 x√

2exy dy. Try also to compute to 5 decimal places the integral
dx

x 1 −y2 dy. This integral computation is rejected by mulint because0 0
of difficulty obtaining a series expansion of the integrand near the �x� y� point
�1�1�. Note that the integrand is not analytic at the point �1�1�.

4. Call up impint and calculate to 5 decimal places the improper integral
2 sin x

∫ �
dx. The function g�x� needed here can be taken as x, because � sin x �< 10	 x x

for x in �0� �
2 �. Record the computed value, and then redo the calculation with

g�x� taken incorrectly as x/1000. Notice that the answer changes slightly from
its previous correct value. Accurate values for improper integrals are of course
not possible if the error limiting functions g�x� and h�x� are incorrect.

5. Call up impint to evaluate to 10 decimal places the integral I4 of exercise 2.
Because d/dx arctan x= 1

2 < 1 = d x for x in �0�1�, the function arctan x does1+x dx
not increase as fast as the function x increases in the interval �0�1�. Therefore
arctan x < 1 for x in �0�1�, so

∫ x arctan x dx < x for x in �0�1�. Accordingly, the
x	 0 x

needed impint function g�x� can be taken as x.

Notes and References

A. The book by Davis and Rabinowitz [3] gives a comprehensive survey of
other integration techniques.

B. The papers by Corliss and Krenz [1] and Corliss and Rall [2] discuss alternate
approaches to the accurate computation of definite integrals.

[1] Corliss, G. and Krenz, G., Indefinite integration with validation, ACM Trans. Math.
Software 15 (1989), 375–393.

[2] Corliss, G. and Rall, L. B., Adaptive, self-validating numerical quadrature, SIAM
J. Sci. Stat. Comput. 8 (1987), 831–847.

[3] Davis, P. J. and Rabinowitz, P.,	 Methods of Numerical Integration, 2nd Edn,
Academic Press, New York, 1984.

[4] Lampret, V., An invitation to Hermite’s Integration and Summation: A comparison
between Hermite’s and Simpson’s Rules, SIAM Rev. 46 (2004), 311–328.

Elsevier US Job Code:IPNM Chapter:Ch07-P373859 19-12-2006 11:48a.m. Page:69 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

� �

Finding Where a

Function f(x) is Zero
 7

This chapter treats the problem of finding the points where a given elementary
function is zero. The demo program zeros solves problems of this kind.

7.1 Obtaining a solvable problem

For a polynomial P�x�, any real or complex argument x0 such that P�x0� = 0
is called a root of the polynomial. For a general real-valued function f�x�, it
is customary to use other terminology. An argument x0 such that f�x0� = 0 is
called a zero of the function. Let us assume that some real elementary function
f�x� is defined in an interval �a� b�, and that all zeros inside this interval are to
be found. A zero x0 of f�x� at which the derivative f ′�x0� is nonzero is called a
simple zero. If f ′�x0� = 0, the zero is multiple. A third possibllity is that f ′�x0�
is not defined.

In general we would want a solution program to report that there are no zeros
in �a� b� when this is the case, and if there are zeros, to list them to a prescribed
number of correct decimal places, and to indicate which zeros are simple. We
expect a program to accomplish this by examination of f�x�, and sometimes the
derivative f ′�x�, at various arguments in �a� b�. The data that must be specified
appears to be just the elementary function f�x�, the two numbers a and b defining
the search interval, and the number k of correct decimal places wanted.

However, suppose for the search interval �a� b� the supplied function is

f �x� = x− cc

where the parameter c is some arbitrary constant. A difficulty here is that if
we find fc�a�=0 or fc�b�=0, we are uncertain whether this means a zero

69

Elsevier US Job Code:IPNM Chapter:Ch07-P373859 19-12-2006 11:48a.m. Page:70 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

70 7 Finding Where a Function f(x) is Zero

lies in �a� b�. Perhaps the zero lies just outside the interval �a� b�. Our solution
program must report a zero if c ≥ a and c ≤ b, and no zero otherwise; but
determining whether these inequalities are true is a nonsolvable problem. We
eliminate this difficulty by requiring, as part of the problem specification, that
the function values f�a� and f�b� both test unequal to zero.

Another difficulty is illustrated by the function

fd�x� = �x−1�2 +�d�

where d is an arbitrary real constant. Assume the interval of interest is �0� 2�.
Here we see that if d � = 0, the = 0, no zero must be reported; whereas if d
zero 1 must be displayed to k decimal places. This amounts to attempting the
nonsolvable problem of deciding whether or not the real number d is zero. To
obtain a solvable problem we must allow some sort of “escape" from complete
accuracy in identifying zeros or reporting the absense of zeros.

Note that at both endpoints of the interval �0� 2�, the function fd�x� is positive.
Even if we had a function f�x� that showed opposite signs at the interval
endpoints, it would sometimes be difficult to find just one zero accurately.

Consider the case of the function

f �x� = max�min�e� x+1�� x−1�e

The parameter e can be any real number. For any setting of the parameter e, the
function f �x� is defined for all x. This function has an interval of width 2 in e

which it equals e, and is linear with slope 1 everywhere else. The function fe�x�
is diagramed for two e choices in Figs 7.1a and 7.1b. Suppose the search interval
is �−2� 2�. For any e, we have fe�−2� negative and fe�2� positive. If e > 0, there
is a single zero at x = −1. If e < 0, there is a single zero at x = 1. And if e = 0,
all x points between −1 and 1 are zeros. The difficulty with this function is that
when e is close to zero, it becomes hard to decide whether there is a single zero
at −1 or at +1, or an infinite number of zeros between −1 and +1.

We show next that, if for elementary functions f�x� defined on �a� b� with f�a�
and f�b� of opposite signs, we could always determine just one zero to k decimal
places, then we contradict Nonsolvable Problem 3.13. Given any real number e,
we form the function f �x� and determine a zero to just 1 decimal place. If the e � �
obtained zero approximation =1, then e ≤ 0, and if the approximation = − 1,
then e ≥ 0. And if the obtained approximation satisfies neither relation, then
clearly e is zero, so we may choose either e ≥ 0 or e ≤ 0. This contradiction of
Problem 3.13 implies the interesting next result:

Nonsolvable Problem 7.1 For any elementary function f�x� defined on
�a� b�, with f�a� and f�b� both nonzero and having opposite signs, find to k
decimal places one zero of f�x� in �a� b�.

Elsevier US Job Code:IPNM Chapter:Ch07-P373859 19-12-2006 11:48a.m. Page:71 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

= �

71 7.1 Obtaining a solvable problem

Fig. 7.1a The function fe�x� for e = 2
1 .

Fig. 7.1b The function fe�x� for e = 0.

The problem of finding zeros of elementary functions becomes difficult if
functions having an infinite number of zeros in the search interval �a� b� are
permitted. We will require that, at most, a finite number of zeros are present
in the search region, and this eliminates the possibility of f�x� being zero on a
subinterval of �a� b�. Now that we have explored the difficulties in treating our
problem, we can propose

Solvable Problem 7.2 For any elementary function f�x� defined in an
interval �a� b� and having at most a finite number of zeros there, and for any
positive integer k, determine that �f�a�� < 10−k or �f�b�� < 10−k and halt. Or, if
f�a� � 0 and f�b� = 0, bound all the zeros of f�x� in �a� b� by:

(1) giving, to k decimal places, points identified as simple zeros, or
(2) giving, to k decimal places, points identified as containing within their tilde

interval a subinterval where �f�x�� < 10−k. The subinterval is identified as
“containing at least one zero” if the f signs differ at the subinterval endpoints.

Elsevier US Job Code:IPNM Chapter:Ch07-P373859 19-12-2006 11:48a.m. Page:72 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

72 7 Finding Where a Function f(x) is Zero

The “tilde interval” of a displayed decimal value, such as 1�234∼, is 1�234± 12 ,
that is, it is the interval obtained by appending ± 1

2 to the displayed value. A case
(2) answer not specified as containing at least one zero, is of course just a possible
zero, and may turn out not to be a zero after all. With this problem, the results
obtained depend on the size of k. It is possible that when k is increased, the
number of case (2) points decreases, and the number of simple zeros increases.

The function fe�x� can still be designated as an elementary function for this
problem as long as the parameter constant e is not zero. (If fe�x�, with e taken to
be 0, is specified to the program zeros as the f�x� function, the program enters
a loop, and must be stopped with a control-c input, because the requirement that
only a finite number of zeros be present is violated.)

7.2 Using interval arithmetic for the problem

The search for f�x� zeros in �a� b� is done by evaluating f�x� using formal
interval arithmetic, as described in Chapter 6 for the problem of finding definite
integrals.

A task queue is needed, with the queue listing the intervals to be tested.
Initially the queue has a single entry specifying the entire search interval �a� b�.
We want to bound zeros in small subintervals of halfwidth less than some control
parameter W , which is set initially to a small value, such as 0�1. The task
queue cycle is as follows. The preliminary x series is set to reflect the leading
queue interval, and then the f�x� evaluation list is executed to obtain an interval
m0 ±w0 for f�x�.

If the computed f�x� interval is positive or negative, there are no zeros in
the designated interval, and the queue interval is discarded. If the f�x� interval
overlaps 0, there may be one or more zeros in the designated interval, but we
cannot be certain of this, because interval arithmetic does not necessarily yield
the true interval. It only gives an interval guaranteed not to be too small. If the
queue interval halfwidth < W , the queue interval is transferred to a list L, which
initially is empty. Otherwise the queue interval is bisected and two bisection
interval entries replace the previous entry on the queue. Eventually the queue
becomes empty, and then we can examine the list L of small �a� b� subintervals,
for which the computed f�x� interval overlapped zero. Of course if L is empty,
there are no zeros in �a� b�, and we are done.

Of all the subintervals formed in the process of subdividing �a� b�, those
containing zeros must appear on the list L. But a subinterval adjoining to one
of these may also end up on L, because of f�x� interval overestimation. It is
also possible that a zero happens to lie on a boundary point of a subinterval, and
then the two subintervals sharing this boundary point both are on L. To simplify
matters, we divide the L subintervals into sets of adjoining subintervals, create
for each set a container interval �c�d� equal to the union of the subintervals of

Elsevier US Job Code:IPNM Chapter:Ch07-P373859 19-12-2006 11:48a.m. Page:73 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

7.3 Newton’s method 73

its members. Container intervals are held in a second list L1, and each container
interval has attached to it a list of its set members.

A list L1 container interval �c�d� has the property that f�c� is nonzero.
If c equals a, the left endpoint of the starting search interval �a� b�, this is cer
tainly true. If c is not a, then c, besides being a left endpoint of some subinterval
that ended up on the list L, is also a right endpoint of a different subinterval that
was discarded. A subinterval is discarded only if its computed f�x� interval is
positive or negative, so f�c� is nonzero. Similarly, f�d� is nonzero.

Depending on the function f�x�, for a container interval �c�d� it may be
possible to compute an interval m1 ± w1 for f ′�x� over �c�d�. A favorable
circumstance would be finding that the f ′�x� interval was either positive or
negative. In this case, because the function f�x� is either strictly increasing
or strictly decreasing over �c�d�, there can be at most one simple zero in the
container interval. Usually this zero can be found rapidly by Newton’s method,
discussed in the next two sections.

For some of the L1 container intervals, it may not be possible to compute an
f ′�x� interval, or if it is computed, it may fail to test positive or negative. For each
such case, we move the list of member subintervals associated with the container
interval back onto the task queue, and discard the container interval. We do the
same for container intervals for which the Newton method attempt fails. The
target halfwidth W is reduced by multiplying it by some factor, such as 0�1,
and then the previously described queue procedure of f�x� interval computation
and queue interval bisection is repeated, leading to a set of smaller subintervals
possibly containing zeros, another list of container intervals on L1, a repetition of
f ′�x� computation, and if we are not done, additional cycles of this computation.

In favorable cases of this problem, all the zeros end up being identified as
simple zeros and being computed to the required number of places by Newton’s
method. Otherwise, the cyclic processing of each container interval �c�d� con
tinues until the interval becomes so small that it lies within the tilde-interval of
a k decimal display of its midpoint, and, simultaneously, a computed interval
for f�x� over �c�d� indicates that �f�x�� < 10−k for x in �c�d�. In this case the
midpoint of this small interval is displayed to k decimal places along with an
upper bound on �f�x��. The presence of at least one zero in �c�d� can be reported
whenever f�c� and f�d� are of opposite signs.

7.3 Newton’s method

Suppose f�x� is a function having a derivative, and that x0 is a zero approx
imation for f�x�, perhaps grossly inaccurate. Newton’s method is an iteration
system for progressively improving a zero approximation for any function with
a derivative, with the method delivering a sequence of zero approximations:
x1� x2� � � � � xk� � � � . The iteration equation is derived from this simple idea:
if we have an approximation xk to a zero of f�x�, then on the graph of f�x�

Elsevier US Job Code:IPNM Chapter:Ch07-P373859 19-12-2006 11:48a.m. Page:74 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

74 7 Finding Where a Function f(x) is Zero

Fig. 7.2 Newton’s Method.

(see Fig. 7.2), we can draw a tangent line at the point x = xk, and follow this
tangent line to where it crosses the x axis. This way we obtain another zero
approximation xk+1, that is hopefully better than xk. The Taylor series for f�x�,
with the series expansion point at xk, is

f�x� = f�xk�+f ′�xk��x−xk�+· · · (7.1)

The equation of the tangent line at x = xk is obtained by discarding all terms of
the Taylor series beyond the ones shown, to get the straight line equation

y = f�xk�+f ′�xk��x−xk�

If in this equation we set y equal to zero and solve for x, calling the solution
xk+1, then we obtain the Newton’s method equation

f�xk� xk+1 = xk − (7.2)
f ′�xk�

The zero-finding procedure described in the preceding section bounds at most
one simple zero in a container interval �c�d� if the f ′�x� interval computed for
�c�d� is positive or negative. Using the Newton’s method iteration equation, and
with the starting approximation x0 taken as the midpoint of �c�d�, the sequence
of iterates generally locates the zero rapidly. However, as Fig. 7.3 shows, it is
possible that the iterates cycle without approaching the zero. If this should occur,
we can treat the container interval as if its f ′�x� interval was not of one sign,
that is, we discard �c�d� and process its associated subintervals further. Perhaps
a smaller container interval will lead to success with Newton’s method. In the
more common case where the iterates approach the zero, we need a criterion

Elsevier US Job Code:IPNM Chapter:Ch07-P373859 19-12-2006 11:48a.m. Page:75 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

�

75 7.4 Order of convergence

Fig. 7.3 Cycling with Newton’s method.

for halting the iteration cycle. After an iterate xk+1 is computed from xk, the
two iterates are compared. If xk+1 � xk, then the range of xk+1 is set to zero in =
preparation for the next cycle, that is, xk+1 is replaced by the exact midpoint of
xk+1. Eventually we find xk+1 =xk, and then the exact midpoint of xk becomes
the final approximation to the zero in �c�d�, and we designate this final value xz.
The case of cycling iterates is detected by finding that �xk+1 −xk� does not
decrease as k increases.

Next we need to determine the error of xz, which is the distance from xz

to the zero. For the xz container interval �c�d�, an interval f ′�x0� ± w1 was
computed for the f derivative. Suppose we compute the interval m±w equal
to �f�xz�± 0�/ �f ′�x0�±w1�. Then, as we show, the error of xz is bounded by
e = �m�+w, so xz© e may be taken as a correctly ranged zero approximation. ±
This result follows from the Mean Value Theorem. At the true zero z, we have
f�z� = 0, so f�xz� = f�xz�−f�z� = f ′�cx��xz −z�, where the point cx is between
xz and z. The error �xz −z� equals �f�xz��/�f ′�cx��, and because f ′�cx� lies in the
interval f ′�x0� ± w1, the error is bounded by e. If xz ±© e does not give us the
desired number of correct decimal places, we need to increase the precision of
computation, restart the Newton’s method iteration process, and repeat the error
test with a better x .z

7.4 Order of convergence

In the later cycles of Newton’s method, when xk gets close to a zero z, it is often
noticed that the convergence accelerates, with the number of correct decimal

Elsevier US Job Code:IPNM Chapter:Ch07-P373859 19-12-2006 11:48a.m. Page:76 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

76 7 Finding Where a Function f(x) is Zero

places of the iterates approximately doubling at each step. We can show this by
using the Taylor series remainder formula, adding an additional remainder term
to the terms shown in equation (7.1):

f�x� = f�xk�+f ′�xk��x−xk�+ 1
f ′′�c ��x−xk�

2

2 x

Here cx is some point between x and xk. If we set x equal to the zero z, then we
have

0 = f�xk�+f ′�xk��z−xk�+ 1
f ′′�cz��z−xk�

2

2

When we divide this equation by f ′�xk� and set xk −f�xk�/f ′�xk� equal to xk+1,
we obtain

f ′′�c �
0 = z−xk+1 + z �z−xk�

2

2f ′�xk�

which can be rewritten as

f ′′�c �
z−xk+1 = − z �z−xk�

2 (7.3)
2f ′�xk�

Because the term in z−xk is squared, if f ′�z� =� 0 and xk is close enough to z,
then xk+1 is even closer to z, so the iterates after xk converge to z.

The quantity �z − xk� is the error of the approximation xk. Taking absolute
values of both sides of equation (7.3), we obtain

�xk+1 error� = Lk�xk error�2

where Lk = �f ′′�cz�/2f ′�xk��. The coefficient Lk approaches a limiting value L
because

�f ′′�c �� �f ′′�z��
lim Lk = lim z = = L
k→
 xk→z 2�f ′�xk�� 2�f ′�z��

Thus in the last stages of Newton’s method, the following equation is accurate:

�xk+1 error� = L�xk error�2

This equation implies that the number of correct decimal places approximately
doubles at each step, and may be more than this or less, depending on the
magnitude of L.

When a series of approximates xk approaches the true value z, such that the
error satisfies the relation

error xk+1lim = L > 0
k→
 �error xk�

s

Elsevier US Job Code:IPNM Chapter:Ch07-P373859 19-12-2006 11:48a.m. Page:77 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

77 Software Exercises E

the convergence is said to be of order s. Thus the convergence of the iterates xk

of Newton’s method is generally of order two, or xk converges quadratically.
If the exponent s equals one, then xk is said to converge linearly. For linear
convergence, the positive constant L in the limit must be less than 1, and the
nearer L is to 1, the slower the convergence.

Linear convergence is encountered with Newton’s method if the derivative at
z is zero. Suppose we have f ′�z� = f ′′�z� = · · · = f �n−1��z� = 0, and f �n��z� �= 0.
If we expand f�x� in a Taylor series about the zero point z, and use the Taylor
series remainder formula, at x = xk we have the equation

f�xk� = f�z�+f ′�z��xk − z�+ 1
f ′′�z��xk − z�2 +· · ·+ 1

f �n��c1��xk − z�n

2! n!
1 = f �n��c1��xk − z�n

n!
Here c1 is some point between xk and z. Similarly, for f ′�xk� we have the
equation

f ′�xk� = 1
f �n��c2��xk − z�n−1

�n−1�!
where c2 is some point between xk and z. We have then

f�xk� f �n��c1� xk+1 − z = xk − − z = �xk − z�− �xk − z�
f ′�xk� nf �n��c2�

If xk is close enough to z, then f �n��c1�/nf �n��c2� is near to
n
1 , and convergence

is certain because �xk+1 − z� < �xk − z�. Then xk approaches z in the limit, and
we have

lim
xk+1 error = lim �

�
�
1 − f �n��c1� �

�
�= �

�
�
1 − f �n��z� �

�
�= n−1

k→
 xk error xk→z � nf �n��c2�
� � nf �n��z� � n

The convergence is linear, and is slower for larger n.

Software Exercises E

These exercises demonstrate some properties of the demo program zeros.

1. Call up the program zeros. The program requests the number n of functions
for which zeros are to found. In Chapter 12, solution methods are described
for finding where several functions are simultaneously zero. For now, however, √
take n equal to 1. Enter the function 3 x by using the keyboard line xˆ(1/3),

Elsevier US Job Code:IPNM Chapter:Ch07-P373859 19-12-2006 11:48a.m. Page:78 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

78 7 Finding Where a Function f(x) is Zero

take the search interval to be �−5� 5�, and choose 5 decimal-place precision. The
derivative of this function is undefined at x = 0, and the zero at x = 0 is found
not by Newton’s method, but by the slower process described in the text. Note
that the program makes a positive report of a zero.

2. Now that a log file is available, edit the log file to change the function’s
exponent from 1/3 to 2/3, save the log file, and then call up zeros zeros.
This time a positive report of a zero is not made, because the function does not
change signs at the endpoints of the container interval.

3. Call up zeros and find to 10 decimal places the zeros of x2 + 10−100 in
�−1� 1�. Here there is no zero, but the program locates a zero possibility. Edit
the log file to increase the number of decimal places requested to 50, and then
call up zeros zeros. This time the higher precision computation leads to no
zero being found.

4. Call up zeros and find to 5 decimal places the zeros of 1
x
· sin

x
1 in �0�1� 1�.

Here there are several zeros, and the order in which they are found is determined
by chance. Edit the log file to move the left endpoint of the search interval closer
to the origin, to 0�01. When you call up zeros zeros, many more zeros are
reported. To see all the zeros, use the PNM form to view the print file.

Elsevier US Job Code:IPNM Chapter:Ch08-P373859 19-12-2006 11:48a.m. Page:79 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

Finding Roots of
Polynomials 8

The demo program roots finds the roots of polynomials with real coefficients.
The next five sections give needed background information for the problem of
locating roots, and the last section describes the roots program.

8.1 Polynomials

Let n be any nonnegative integer. A polynomial of degree n in the variable z
has the form

nP�z�= cnz + cn−1z
n−1 +· · ·+ c1z+ c0 (8.1)

where the leading coefficient cn is required to be nonzero. (It is convenient in
this section to allow a polynomial’s degree to be 0, and accordingly any nonzero
constant is viewed as defining a polynomial of degree 0.) A polynomial is a
real polynomial, a rational polynomial, or a complex polynomial depending on
whether all coefficients ci are, respectively, real, rational, or complex numbers.
If n is positive, the polynomial also has the representation

P�z�= cn�z− z1��z− z2�� � � �z− zn� (8.2)

where the n factors z−zi are unique, apart from order. Each complex number zi is
a root of the polynomial. Going from the representation (8.1) to the representation
(8.2) is not a simple problem, but at least it is one that is solvable.

Solvable Problem 8.1 For any real or complex polynomial of positive
degree n, find the n roots to k decimal places.

79

Elsevier US Job Code:IPNM Chapter:Ch08-P373859 19-12-2006 11:48a.m. Page:80 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

� �

80 8 Finding Roots of Polynomials

We find a complex number to k decimal places if we find both its real part
and its imaginary part to k places. An efficient method of locating the roots of
a real polynomial is described later, in Section 8.3. We defer to Chapter 16 the
description of a practical method for locating the roots of a complex polynomial.

Some of the roots of a polynomial may be identical. In equation (8.2), if we
group together the linear factors of identical roots and reassign indices so that
the distinct roots are z1� z2� � � � � zq, we obtain the representation

qP�z� = c �z− z1�
n1 �z− z2�

n2 � � � �z− zq�
n (8.3)n

Here the integers n1� n2� � � � � nq sum to n. The exponent ni is the multiplicity
of the root zi. If ni = 1� zi is a simple root, otherwise zi is a multiple root with
multiplicity ni. It is not a solvable problem to find the multiplicity of the roots
of a real or complex polynomial of degree more than 1, as is easily seen by
considering the polynomial

P�z� = z 2 − �a1 +a2�z+a1a2 = �z−a1��z−a2�

where a1 and a2 are any real numbers. If we can always determine the multiplicity
of this polynomial’s roots, then we have a method of determining whether any
two numbers a1 and a2 are equal, contradicting Nonsolvable Problem 3.3.

Nonsolvable Problem 8.2 For any real or complex polynomial of degree
n > 1, determine the multiplicity of the roots.

Suppose for a real or complex polynomial P�z� we obtain correctly ranged
approximations to all its roots, using the various methods described in the text.
We can arrange the roots in sets, with two roots z1 = x1 + iy1 and z2 = x2 + iy2

belonging to the same set if we find x1 = x2 and y1 = y2. A root that is in a
set all by itself is certainly a simple root, but suppose we find m roots collected
in one set. We then have a root of apparent multiplicity m. If we were to
compute polynomial root approximations to more correct decimal places, the
roots may arrange themselves differently, so that a root of apparent multiplicity
m becomes a root of smaller apparent multiplicity, or even a simple root. Thus
an apparent multiplicity may be larger than the true multiplicity, and only an
apparent multiplicity of 1 is certain to be the correct multiplicity.

For rational polynomials this difficulty in determining multiplicity disappears.

Solvable Problem 8.3 For any rational polynomial, find its distinct roots
to k decimal places, and determine their multiplicity.

In this section, we show that a rational polynomial P�z� of positive degree can
be decomposed into a set of polynomials N1�z�� N2�z�� � � � � Nr�z�, containing

Elsevier US Job Code:IPNM Chapter:Ch08-P373859 19-12-2006 11:48a.m. Page:81 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

81 8.1 Polynomials

the distinct roots of P�z�, such that the P�z� roots of multiplicity m are simple
roots of N �z�. The integer r equals the highest multiplicity of any root of m

P�z�. If there are no multiple roots, then r = 1 and N1�z� = P�z�. The task of
finding the roots of P�z� is made easier by this decomposition, and the correct
multiplicity of the computed roots is obtained as a by-product.

A polynomial with a leading coefficient of 1 is called a monic polynomial.
Any polynomial can be converted to monic form by dividing it by its leading
coefficient c . If this is done for the polynomial (8.1), the polynomial becomes n

nP1�z� = z +an−1z
n−1 +· · ·+a1z+a0

where the coefficient ai equals ci/cn. The representation for this polynomial in
terms of its distinct roots is now

qP1�z�= �z− z1�
n1 �z− z2�

n2 � � � �z− zq�
n (8.4)

If zi is a root of multiplicity ni for P1�z�, then zi will be a root of multiplicity
ni −1 for the derivative of P1�z�. This is easy to show. We have

P1�z�= �z− zi�
niS�z�

where S�z� is some polynomial of lower degree not having zi as a root, that is,
S�zi�=� 0. Taking the derivative, we have

P1
� �z�= ni�z− zi�

ni−1S�z�+ �z− zi�
niS��z�= �z− zi�

ni−1�niS�z�+ �z− zi�S
��z��

= �z− zi�
ni−1T�z�

where the polynomial T�z� equals niS�z�+ �z− zi�S
��z�. We see that for P1

� �z�
the multiplicity of zi is at least ni −1, and it cannot be higher because T�zi� =
niS�zi� � 0. Thus if the multiplicity structure of P1�z� is as shown in equation =
(8.4), then P1�z� and P1

� �z� have the common divisor polynomial

qP2�z� = �z− z1�
n1−1�z− z2�

n2 −1� � � �z− zq�
n −1 (8.5)

Any two polynomials have a unique monic common divisor polynomial of
highest degree, called their greatest common divisor, as is clear by considering
the linear factor forms (8.3) of the two polynomials. For P1�z� and P1

� �z�, there
cannot be a higher degree divisor polynomial than P2�z�, so P2�z� is their greatest
common divisor. When P1�z� has rational coefficients, the greatest common
divisor of P1�z� and P1

� �z� can be found, as we now show.

Here we use a version of the Euclidean algorithm presented in Section 2.8 as a
means of finding the greatest common divisor of two positive integers. The poly
nomial P1�z� is divided by P1

� �z�, using the usual polynomial division procedure.

Elsevier US Job Code:IPNM Chapter:Ch08-P373859 19-12-2006 11:48a.m. Page:82 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

���
���

���

82 8 Finding Roots of Polynomials

We obtain the quotient polynomial Q1�z� and the remainder polynomial R1�z�,
as shown in the next equation:

P1�z�=Q1�z�P1
� �z�+R1�z�

Any common divisor polynomial of P1�z� and P1
� �z� is also a common divisor

of R1�z�. Similarly, any common divisor polynomial of P1
� �z� and R1�z� is also

a common divisor of P1�z�. So the pair P1�z� and P1
� �z� has the same greatest

common divisor as the pair P1
� �z� and R1�z�. The division process is repeated

for the new pair, obtaining

P1
� �z� =Q2�z�R1�z�+R2�z�

and this process is continued until a zero remainder is obtained:

R1�z�=Q3�z�R2�z�+R3�z�
R2�z�=Q4�z�R3�z�+R4�z�

Rs−2�z� =Qs�z�Rs−1�z�+Rs�z�

Rs−1�z� =Qs+1�z�Rs�z�

The polynomial Rs�z�, after it is converted to monic form, will equal P2�z� of
equation (8.5). This is because Rs�z� is the greatest common divisor of the last
pair, and proceeding backward step by step, also the greatest common divisor of
the initial pair P1�z� and P1

� �z�.

The procedure used on P1�z� to obtain P2�z� can now be applied to P2�z�
if this monic polynomial is not equal to 1, and then we get the polynomial
P3�z�. Thus the Euclidean procedure, if repeatedly applied, produces a series of
monic polynomials P1�z�� P2�z�� P3�z�� � � � �Pr�z�, 1, that always ends with a
polynomial Pr+1�z� equal to 1.

When P1�z� of line (8.4) is divided by the polynomial P2�z� of line (8.5), we
obtain the polynomial

M1�z� = �z− z1��z− z2�� � � �z− zq�

with all the distinct roots of P1�z� as simple roots. In general, if for the sequence
P1�z�� P2�z�� � � � � Pr�z�� Pr+1�z�= 1, we define

Pi�z� Mi�z� = for i= 1�2� � � � � r
Pi+1�z�

we get the set of polynomials M1�z�� M2�z�� � � � � Mr�z�, all with only simple
roots, such that all roots of P1�z� which are of multiplicity m or higher are

Elsevier US Job Code:IPNM Chapter:Ch08-P373859 19-12-2006 11:48a.m. Page:83 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

83 8.1 Polynomials

roots of Mm�z�. If Mi�z� and Mi+1�z� are two successive polynomials in the
set, the degree of Mi+1�z� is less than or equal to the degree of Mi�z�. The last
polynomial in this series, Mr�z�, has only the roots of P1�z� with the highest
multiplicity.

From these polynomials it is convenient to obtain by division another set of
r polynomials N1�z�� N2�z�� � � � � Nr�z�, again with simple roots only, defined
by the equation

⎧
⎨ Mi�z� if i < r

Ni�z�= Mi+1�z� ⎩
M �z� if i = rr

The polynomials Ni�z� have degrees that sum to q, the number of distinct roots
of P1�z�, and each distinct root of P1�z� is a root of just one of these polynomials.
If the root is of multiplicity m, then it is a root of Nm�z�. Thus when the roots
of the polynomials Ni�z� are found by the method described later, they can be
displayed with their exact multiplicities.

As an example, suppose P1�z�= z7 −3z5 +3z3 −z. Then P1
� �z�= 7z6 −15z4 +

9z2 −1. The Euclidean algorithm yields

1 6 12 6
z 7 −3z 5 +3z 3 − z = z�7z 6 −15z 4 +9z 2 −1�− z 5 + z 3 − z

7 7 7 7

7z 6 −15z 4 +9z 2 −1 =− 49
z

(

− 6
z 5 + 12

z 3 − 6
z

)

− z 4 +2z 2 −1
6 7 7 7

− 6
z 5 + 12

z 3 − 6
z = 6

z

(

− z 4 +2z 2 −1
)

7 7 7 7

Making the last polynomial of the series monic by dividing by its leading
coefficient, we get P2�z�= z4 −2z2 +1. Repeating the Euclidean algorithm with
P2�z�, we obtain

1
z 4 −2z 2 +1 = z�4z 3 −4z�− z 2 +1

4

4z 3 −4z=−4z�−z 2 +1�

so P3�z� = z2 −1. One more application of the Euclidean algorithm leads to

1
z 2 −1 = z�2z�−1

2

2z=−2z�−1�

so P4�z� is 1.

Elsevier US Job Code:IPNM Chapter:Ch08-P373859 19-12-2006 11:48a.m. Page:84 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

84 8 Finding Roots of Polynomials

The Mi�z� polynomials are

M1�z� = P1�z� = z 3 − z
P2�z�

M2�z� = P2�z� = z 2 −1
P3�z�

M3�z� = P3�z� = z 2 −1
1

and the Ni�z� polynomials are

M1�z� N1�z�= = z
M2�z�

M2�z� N2�z�= = 1
M3�z�

N3�z�=M3�z� = z 2 −1

We see that the roots of P1�z� are 0 with multiplicity 1, along with 1 and −1,
both with multiplicity 3.

These results can also be understood by setting

P1�z� = �z− z1�
3�z− z2�

3�z− z3�

with z1 = 1, z2 = −1, and z3 = 0. We see that by repeated application of the
Euclidean algorithm, we would obtain the sequence

P2�z� = �z− z1�
2�z− z2�

2

P3�z� = �z− z1��z− z2�

P4�z� = 1

leading to the sequence

M1�z�= �z− z1��z− z2��z− z3�

M2�z�= �z− z1��z− z2�

M3�z�= �z− z1��z− z2�

and then finally to the sequence

N1�z�= �z− z3�

N2�z�= 1

N3�z�= �z− z1��z− z2�

Elsevier US Job Code:IPNM Chapter:Ch08-P373859 19-12-2006 11:48a.m. Page:85 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

8.2 A bound for the roots of a polynomial 85

8.2 A bound for the roots of a polynomial

When searching for the roots of a monic polynomial

nP1�z� = z +an−1z
n−1 +· · ·+a1z+a0 (8.6)

it is helpful to compute a bounding radius R, such that in the complex plane,
the circle �z� ≤ R contains all the roots. The next two theorems give two ways
of computing a bounding radius.

Theorem 8.1 A bounding radius for the roots of the polynomial P1�z� is

R1 = max��an−1�+1� �an−2�+1� � � � � �a1�+1� �a0��
As an example, let us form the polynomial

P1�z� = �z−1��z−2��z−3��z−4� = z 4 −10z 3 +35z 2 −50z+24

We obtain R1 = max�11�36�51�24�= 51.

To prove the theorem, we show that if a complex number z is such that
�z�> R1, then

�an−1z
n−1 +· · ·+a1z+a0�< �zn� (8.7)

This implies that z cannnot be a root of P1�z�, because roots satisfy the equation

n an−1z
n−1 +· · ·+a1z+a0 =−z

which leads to

�an−1z
n−1 +· · ·+a1z+a0� = �zn�

Proceeding with the proof, we assume now that �z�> R1, and obtain

�an−1z
n−1 +· · ·+a1z+a0� ≤ �an−1��z�n−1 +· · ·+ �a1��z�+ �a0�

≤ �R1 −1��z�n−1 +· · ·+ �R1 −1��z�+R1

= �R1 −1���z�n−1 +· · ·+ �z�+1�+1
n�z� −1 = �R1 −1� +1 �z�−1
n�z� −1

< ��z�−1� +1 = �z�n �z�−1

The next result gives a way of forming a bounding radius that often is more
accurate than R1.

Elsevier US Job Code:IPNM Chapter:Ch08-P373859 19-12-2006 11:48a.m. Page:86 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

()

86 8 Finding Roots of Polynomials

Theorem 8.2 If the monic polynomial P1�z� of line (8.6) has at least one
nonzero coefficient ai, the polynomial

nP��z� = z −�an−1�zn−1 −· · ·− �a1�z−�a0�

has exactly one positive root �, which may be taken as a bounding radius for
P1�z�.

For our example polynomial, z4 − 10z3 + 35z2 − 50z+ 24, the polynomial
P��z� equals z4 − 10z3 − 35z2 − 50z− 24, and its positive root is 13�00∼. So
we get a smaller bounding radius than previously, though we need to find the
positive root to obtain it. To eliminate the need of finding the positive root, we
can just approximate the positive root of P��z� by choosing some convenient
small positive integer r, and then forming P��r�, P��r

2�, P��r
3�� � � � , stopping

as soon as we have obtained P��r
k� > 0. The last rk value formed exceeds the

positive root �, so we can use this as our bounding radius. With our example,
if we choose r = 2, we find P��2

3� < 0 and P��2
4� > 0, so we get a bounding

radius of 16 this way.

To prove the theorem, set z equal to the real number x, and write the polyno
mial P��x� as

�an−1� �a1� �a0� P��x�= xn 1 − −· · ·− −	 (8.8)
x xn−1 xn

The factor xn has no positive roots. The other factor, with a positive derivative
for x > 0, approaches −� as x approaches zero from the right and approaches
1 as x approaches �, and thus has exactly one positive root �. If z is a complex
number with �z�> �, then P���z�� is positive. This implies

n�z� − �an−1��z�n−1 −· · ·− �a1��z�− �a0�> 0
n�z� > �an−1��z�n−1 +· · ·+ �a1��z�+ �a0� ≥ �an−1z

n−1 +· · ·+a1z+a0�

Again we have inequality (8.7), so z cannot be a root of P1�z�.

8.3	 The Bairstow method for finding roots of a real
polynomial

There are many methods for finding approximations to the roots of a polynomial,
and the Bairstow method is an efficient method for real polynomials.

Elsevier US Job Code:IPNM Chapter:Ch08-P373859 19-12-2006 11:48a.m. Page:87 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

87 8.3 The Bairstow method for finding roots of a real polynomial

A real polynomial P(z) of even degree can be written as a product of real
quadratic (degree 2) polynomials. This follows from the polynomial’s factoriza
tion (8.2), because the polynomial’s complex roots come in conjugate pairs, and
a conjugate pair of roots, x1 + iy1 and x1 − iy1, yields the real quadratic factor

�z−x1 − iy1��z−x1 + iy1�= ��z−x1�− iy1���z−x1�+ iy1� = �z−x1�
2 − �iy1�

2

= z 2 −2x1z+x1
2 +y1

2

The roots that are not conjugate pairs then are real roots, and these can be
grouped by pairs r1 and r2, with each pair again yielding a real quadratic factor:

�z− r1��z− r2� = z 2 − �r1 + r2�z+ r1r2

A real polynomial of odd degree can be written as a product of real quadratic
polynomials and one real linear (degree 1) polynomial.

The Bairstow method for real polynomials finds quadratic real factors, and
in this way finds roots, a pair at a time. Suppose B�z� = z2 + b1z+ b0 is an
approximation to some quadratic factor of the real polynomial P�z� of degree n.
When we divide P�z� by B�z�, we obtain the quotient Q�z� and a linear remainder
c1z+ c0:

P�z� = B�z�Q�z�+ c1z+ c0 (8.9)

The coefficients c1 and c0 are functions of b1 and b0, and we want to choose
the variables b1 and b0 so both c1�b1� b0� and c0�b1� b0� are zero. We obtain
an iteration equation by using a generalization of Newton’s method. Suppose
the values of b0 and b1 at the kth iteration are b0

�k� and b1
�k�, respectively. Then

the leading terms of Taylor expansions for c1 and c0 in terms of their variables
b1 and b0 are:

�c1 �k� �c1 �k�
c1�b1� b0� = c1 + �b1 −b1 �+ �b0 −b0 �+· · ·

�b1 �b0

�c0 �k� �c0 �k�
c0�b1� b0� = c0 + �b1 −b1 �+ �b0 −b0 �+· · ·

�b1 �b0

If we drop all Taylor series terms besides the ones shown, and set each series
equal to zero, the result, in matrix form, is

⎡ ⎤
�c1 �c1 [] [] ⎢ ⎥

[
�k�
]

0 c1 ⎢ �b1 �b0 ⎥ b1 −b1

0 =
c0

+ ⎣ �c0 �c0
⎦

b0 −b
�k�
0

�b1 �b0

Elsevier US Job Code:IPNM Chapter:Ch08-P373859 19-12-2006 11:48a.m. Page:88 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

88 8 Finding Roots of Polynomials

From this we easily obtain the iteration equation

⎡ ⎤−1�c1 �c1[
b1
�k+1�

] [
b1
�k�
]

⎢ �b1 �b0
⎥ [

c1

]

= −⎢ ⎥
b0
�k+1�

b0
�k� ⎣ �c0 �c0

⎦ c0

�b1 �b0

To get expressions for the partial derivatives, we differentiate equation (8.9)
with respect to b1 first, and then with respect to b0, obtaining the equations

�Q�z� �c1 �c00 = zQ�z�+B�z� + z+ (8.10)
�b1 �b1 �b1

�Q�z� �c1 �c00 =Q�z�+B�z� + z+ (8.11)
�b0 �b0 �b0

It is helpful at this point to consider polynomial equations of the general form

0 = B�z�S�z�+�z+�

where S�z� is some real polynomial, and � and � are real numbers. The highest
order coefficient of S�z�, which we may take to be the coefficient of zk, must be
zero. Otherwise, after multiplication by B�z�, a nonzero term in zk+2 appears on
the right side of the equation. Continuing the reasoning, all the coefficients of
S�z� are zero, and, consequently, so are � and �. To make use of this observation,
we divide Q�z� by B�z� to obtain, as shown in the following equation, the
quotient Q1�z� and the remainder d1z+d0:

Q�z�= B�z�Q1�z�+d1z+d0

Ater we substitute this result in equation (8.11), we obtain the equation
[] () ()

�Q�z� �c1 �c00 = B�z� Q1�z�+ + d1 + z+ d0 +
�b0 �b0 �b0

By our previous reasoning, this implies

�c1 =−d1�b0

�c0 =−d0�b0

After we make a similar substitution in equation (8.10), and replace the term
d1z

2 by

d1�B�z�−b1z−b0�= d1B�z�−d1b1z−d1b0

Elsevier US Job Code:IPNM Chapter:Ch08-P373859 19-12-2006 11:48a.m. Page:89 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

89 8.3 The Bairstow method for finding roots of a real polynomial

we get
[] () ()

�Q�z� �c1 �c00 = B�z� zQ1�z�+ +d1 + d0 −d1b1 + z+ −d1b0 +
�b1 �b1 �b1

This implies

�c1 = d1b1 −d0�b1

�c0 = d1b0�b1

We have then the matrix equation

⎡ ⎤�c1 �c1

⎢�b1 �b0 ⎥
[
d1b1 −d0 −d1

]

⎢ ⎥= ⎣ ⎦�c0 �c0 d1b0 −d0

�b1 �b0

with a determinant D = d1
2b0 − �d1b1 −d0�d0. As may be verified by multipli

cation, the inverse matrix is

−1⎡

⎢
⎢
⎣

�c1

�b1

�c0

�c1

�b0

�c0

⎤

⎥
⎥
⎦ = 1

D

[−d0

−d1b0

d1

d1b1 −d0

]

�b1 �b0

The Bairstow method consists of choosing some initial quadratic
z2 +b1

�0�
z+b0

�0� and then performing the following cycle. The problem polyno
mial P�z� is divided by B�k��z�= z2 +b1

�k�
z+b0

�k� to obtain the quotient polyno
mial Q�z� and the remainder c1z+c0. Then Q�z� is divided by B�k��z� to obtain
a quotient and a remainder d1z+d0. The quadratic coefficients b1

�k+1� , b0
�k+1� are

formed from b1
�k� , b0

�k� by adding the amounts

c1d0 − c0d1 c1d1b0 − c0�d1b1 −d0� �b1 = �b0 =
D D

If we find b1
�k+1� � b1

�k� or find b0
�k+1� � b0

�k�, then, in preparation for the next cycle, = =
the ranges of b1

�k+1� and b0
�k+1� are set to zero. Otherwise, the iteration ends and our

final quadratic approximation z2 +b1z+b0 uses the values of the kth iterates, with
again ranges set to 0. From this quadratic polynomial we obtain two roots of P�z� by
using the quadratic formula �−b1 ±

√
b1

2 −4b0�/2. The quotient Q�z� becomes the
new problem polynomial, and another cycle of quadratic approximations begins,

Elsevier US Job Code:IPNM Chapter:Ch08-P373859 19-12-2006 11:48a.m. Page:90 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

∑

∑

∣
∣
∣
∑ ∣

∣ ∑

90 8 Finding Roots of Polynomials

unless of course the degree of our problem polynomial has become two or one. In
this case the remaining roots are found easily.

The Bairstow iteration must be monitored for steady progress toward a
quadratic factor of P�z�. The value of �c1� + �c0� can be used as an indicator.
If this indicator does not decrease with an iteration, the procedure can always
be restarted by choosing new values for b1

�0� and b0
�0� . Because the Bairstow

method is a variety of Newton’s method, and we know Newton’s method con
verges linearly toward a multiple zero, we can expect Bairstow’s method to
converge slowly toward a multiple quadratic factor. Thus we see the advantage
of using the Euclidean procedure to obtain problem polynomials Ni�z� having
no multiple roots.

8.4	 Bounding the error of a rational polynomial’s root
approximations

After a rational polynomial has been dissected into polynomials N1�z�� � � � �Nr�z�
and the roots of each of these polynomials found by Bairstow’s method, each
root being an exact complex number, the next problem is to determine an
error bound for each root. In this section let P�z� denote any of the Ni�z�
polynomials, and let n be its degree. We have then distinct root approximations
w1�w2� � � � �wn to the simple roots of P�z�. These approximations are the actual
roots of a certain polynomial Q�z� of degree n, which has the factorization

Q�z�= �z−w1��z−w2�� � � �z−wn�

P�z�
The quotient has the partial fraction expansion

Q�z�

P�z� n hi = 1 + (8.12)
z−wiQ�z� i=1

with complex coefficients hi. If we set z equal to any root zP of P�z�, we get
the equation

n hi−1 =
zP −wii=1

Taking absolute values, we obtain the relations

∣ ≤
n n �hi�

�zP −wi�
hi

−wii=1 zP
1 =

1i=

Elsevier US Job Code:IPNM Chapter:Ch08-P373859 19-12-2006 11:48a.m. Page:91 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

8.4 Bounding the error of a rational polynomial’s root approximations 91

�hi� Suppose the sum term is largest for i = i0. Then we have �zP −wi�
�hi0

�
1 ≤ n �zP −wi0

�
�zP −wi0

� ≤ n�hi0
�

Now suppose for each root approximation wi we compute the quantity

�i = n�hi� (8.13)

Then it is certain that every root of P�z� lies in one of the disks

�z−wi� ≤ �i i = 1�2� � � � � n (8.14)

If these disks do not intersect each other, then each disk contains exactly one
root of P�z�. Moreover, if m of these disks overlap, then the composite figure
contains exactly m roots of P�z�. To see this, consider the polynomial

P��z�= �P�z�+ �1 −��Q�z�

where the real parameter � varies in the interval �0�1�. The polynomial P��z�
equals Q�z� when � = 0, and equals P�z� when �= 1. We have

nP��z� P�z� ∑ �hi = � + �1 −�� = 1 +
Q�z� Q�z� i=1 z−wi

and according to our previous analysis, each root of P��z� lies in one of the
disks

�z−wi� ≤ ��i i = 1�2� � � � � n

The radius of each disk varies directly with �, being zero when �= 0, and equal
to the radius of the P�z� disk when �= 1. When � is 0, the point disk at wi has
a root of Q�z�. As � varies in �0�1�, the various roots of P��z� are continuous
functions of �. Because the number of roots in all the disks is always n, the
number of roots of P��z� in the disk with center wi remains one, as long as
this disk does not intersect any of the other disks. Otherwise, there would be
a discontinuous jump of at least one root of P��z�. Similarly, when � is of a
size that m of the P��z� disks overlap, the total number of roots of P��z� in the
overlapping disks must equal m.

The radius �i obtained for the approximation wi is used to assign appropriate
ranges to wi, changing wi = xi + iyj to ˆ ± �+ i�yi��iwi = �xi��i ± �. The next step

Elsevier US Job Code:IPNM Chapter:Ch08-P373859 19-12-2006 11:48a.m. Page:92 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

∏

� � � �

92 8 Finding Roots of Polynomials

is to compare the approximations ŵi with each other to make certain that no two
ŵi overlap. If some of them overlap, then the radii �i of the overlapping disks are
summed, and twice the sum becomes the new radius assigned to approximations
wi of the overlapping set.

The quantity hi needed for the disk radius of wi is easily calculated. If we
multiply equation (8.12) by �z−wi� we obtain the equation

∑

�j i=

P�z� hj�z−wi� = �z−wi�+hi +�z−wj� =

When z is set equal to wi, we obtain

P�wi�

∏

�j i

z−wj

= hi

j � i=

8.5	 Finding accurate roots for a rational or a real
polynomial

The preceding sections have described three tasks, that when done for a rational
polynomial P�z�. yield accurate root approximations. First P�z� is dissected into
polynomials Ni�z� having simple roots. Then the Bairstow method is used to
obtain root approximations for the polynomials Ni�z�. Finally error bounds are
assigned to these roots using the partial fraction method of the preceding section.

When P�z� is a rational polynomial, the polynomials Ni�z� make it easier to
compute the error of the root approximations. After the root approximations of
a polynomial Ni�z� are assembled, we can compute their error bounds as simple
roots of Ni�z�, rather than as possibly multiple roots of the original problem
polynomial P�z�. If the Ni�z� roots are not found to the desired number of correct
decimal places, we need only increase the precision of computation and repeat
the root finding and error bounding procedure on Ni�z� alone.

For a real polynomial P�z�, the Euclidean procedure can be used to obtain
polynomials Ni�z�, but here there is ambiguity whether the computed polyno
mials Ni�z� are correct. Consider the range arithmetic division of the Euclidean
procedure, where a polynomial Rj�z� is divided by a polynomial Rj+1�z� of
degree k. The remainder polynomial has the general form

dk−1z
k−1 +dk−2z

k−2 +· · ·+d1z+d0

�wi −wj�

Suppose we find that a certain number of leading coefficients overlap
zero, that is, 0 = dk−1 = dk−2 = · · · = ds. We take this result to mean that

Elsevier US Job Code:IPNM Chapter:Ch08-P373859 19-12-2006 11:48a.m. Page:93 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

∑ ∑

∑ ∑

∣
∣
∣
∑ ∑ ∣

∣ ∑ ∑

93 8.5 Finding accurate roots for a rational or a real polynomial

0 = dk−1 = dk−2 = · · · = ds, and if ds is d0, the Euclidean procedure has termi
nated; otherwise the next polynomial Rj+2�z� is of degree s− 1. But perhaps
one or more of the coefficients presumed to be zero are actually not zero. In
that case the precision of computation should have been increased, and the
Euclidean procedure redone. Thus with range arithmetic, at any given precision
of computation, the Euclidean procedure yields polynomials Ni�z�, but we are
uncertain whether they are correct. When the root approximations for all poly
nomials Ni�z� are assembled, and we are ready to bound their error, we must
use the original polynomial P�z� in the error bounding process. If it turns out
that not enough correct decimal places have been determined, we must increase
the precision of computation appropriately and repeat all steps of our procedure,
and that includes a new determination of the polynomials Ni�z�.

The determination of error bounds for the root approximations is now more
complex. Suppose for the monic real polynomial P�z� of degree n, we have found
distinct root approximations w1�w2� � � � �wq with respective apparent multiplic
ities n1� n2� � � � � nq summing to n. These approximations are the actual roots of
a certain polynomial Q�z� of degree n which has the factorization

qQ�z�= �z−w1�
n1 �z−w2�

n2 � � � �z−wq�
n

P�z�
The function has the partial fraction expansion

Q�z�

q ni hijP�z� = 1 + (8.15)
�z−wi�

jQ�z� i=1 j=1

with complex coefficients hij . If we set z equal to any root zP of P�z�, we get
the equation

q ni hij−1 =
�zP −wi�

j
i=1 j=1

Taking absolute values, we obtain the relations

∣ ≤ �hij�
�zP −wi�j

ni niq qhij1 = −wi�
j�zP1 j=1 1 j=1i= i=

�hij� Suppose the double sum term is largest for i = i0 and j = j0. Then �zP −wi�j
we have

�hi0�j0
�

1 ≤ n �zP −wi0
�j0

�zP −wi0
�j0 ≤ n�hi0�j0

�
1 �zP −wi0

� ≤ �n�hi0�j0
�� j0

Elsevier US Job Code:IPNM Chapter:Ch08-P373859 19-12-2006 11:48a.m. Page:94 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

94 8 Finding Roots of Polynomials

Now suppose for each root approximation wi we compute the quantity

1

�i = max ni 1�n�hij�� j (8.16)j=

Then it is certain that every root of P�z� lies in one of the disks

�z−wi� ≤ �i i = 1�2� � � � � q (8.17)

The same reasoning that was used with an intermediate polynomial P��z� in
the preceding section allows us to conclude that if these disks do not intersect
each other, then the disk associated with the approximation wi of apparent
multiplicity ni contains exactly ni roots of P�z�. Moreover, if several of these
disks overlap, and the sum of the associated multiplicities of these disks is m,
then the composite figure contains exactly m roots of P�z�.

The general plan for computing error bounds is as follows. Suppose we have
a set of exact P�z� root approximations wi, computed by either the Bairstow
method or some other method. These root approximations have apparent multi
plicities assigned by the Ni�z� decomposition of P�z�. After the various quantities
hij are computed, by a method described later in this section, the radius �i is
obtained for each approximation wi = xi + iyj , and this radius is used to assign
appropriate ranges to wi, changing it to ˆ ± �+ i�yi��iwi = �xi��i ± �. The next step
is to compare the approximations ŵi with each other to make certain that no
two overlap, that is, to make certain that ŵi �= ŵj for i �= j. If some of them
overlap, the original approximations wi need to be combined corresponding
to the overlap, choosing arbitrarily one approximation wi to represent the set
of overlapping approximations, and increasing apparent multiplicities appropri
ately. Then the error bound computation is repeated. When finally there is no
overlap, an approximation ŵi of apparent multiplicity m is a correctly ranged
approximation to m roots of P�z�, though these m roots need not all be equal.

Suppose we are trying to compute root approximations to a certain number of
correct fixed-point decimal places, and we have a root approximation wi of appar
ent multiplicity m. For �i to be no greater than 10−k, according to equation (8.16)
we must have �nhi�m� no larger than 10−km. We see then that to achieve k correct
decimal places, we need to carry around km decimal places in our computations
for these approximations. Multiple roots require higher precision computation
than simple roots, and the precision needed is proportional to the multiplicity.

We consider next the method of computing the needed quantities hi�j . This
essentially is a Taylor series computation. If we multiply equation (8.15) by
�z−wi�

ni , we obtain

∏
P�z�

�+· · ·+hi�1�z−wi�
ni−1 +· · ·= hi�ni

+hi�ni−1�z−wi�z−wj�
nj

j � i
=

On the right side of the equals sign we have collected all the terms that contain
powers of �z−wi� with an exponent less than ni. The other terms on the right

Elsevier US Job Code:IPNM Chapter:Ch08-P373859 19-12-2006 11:48a.m. Page:95 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

∏

Software Exercises F 95

side can themselves be expanded in a Taylor series about the expansion point wi,
but the factor �z−wi�

ni that they have prevents any terms in �z−wi�
k appearing

with an exponent k less than ni. Thus the terms in �z−wi� shown are the correct
leading Taylor series terms for the function on the left. Therefore if the function
on the left is obtained as a power series, with the series expansion point being
wi, we obtain the needed values hij as the first ni series coefficients. We need
the two expansions

P�z�= b0 +b1�z−wi�+b2�z−wi�
2 +· · ·+ �z−wi�

ni−1 +· · ·
�z−wj�

nj = c0 + c1�z−wi�+ c2�z−wi�
2 +· · ·+ �z−wi�

ni−1 +· · ·
j � i=

and then we can form the needed terms by doing a series division, using relation
(5.6) of Chapter 5.

8.6 The demo program roots

The roots program obtains from the user the degree and coefficients of the
problem polynomial P�z�, and also the number of correct decimal places to be
obtained. The program’s first task is to determine whether the specified problem
polynomial is a rational polynomial. For each entered coefficient, a ranged
number is obtained at the current precision when the coefficient is specified by
a keyboard entry. The coefficient can be converted to a rational in either of two
ways. First, if the obtained number is exact, that is, has a zero range, then the
exact value is transformed into a rational number in the two-integer form p/q.
Second, if the number’s range is positive, then the coefficient’s evaluation list
is examined to determine whether standard function evaluations occur. If there
are none, the number must be rational, and so the evaluation list can be used to
generate a rational number in the form p/q.

If roots is able to obtain rational values for all coefficients, then roots
uses the system for obtaining accurate root values described in the first four
sections of this chapter. If for any coefficent, roots fails to obtain a rational
value, then roots uses the more difficult procedure described in the preceding
section.

Software Exercises F

These exercises are for the demo program roots.

1. Call up the program roots and verify that the polynomial x4 − 10x3 −
35x2 −50x−24 of Section 8.2 has the single positive root 13�00∼ .

Elsevier US Job Code:IPNM Chapter:Ch08-P373859 19-12-2006 11:48a.m. Page:96 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

96 8 Finding Roots of Polynomials

2. This exercise and the next two exercises show how multiple roots are spec
ified, which depends on whether the program roots is successful in obtaining
a rational polynomial. Call up roots, specify the polynomial z2 +2z+1, and
obtain the roots to 5 decimal places. The polynomial z2 +2z+1 = �z+1�2, so
a single root of multiplicity 2 is displayed.

3. Modify the roots log file, changing the 2 coefficient to 2 tan��/4� by enter
ing 2*tan(pi/4), and then call up roots roots. Although 2 tan��/4�= 2,
note that this time a disclaimer is made about the multiplicity of the displayed
root, because a rational polynomial was not obtained.

4. Modify the roots log file, changing the 2 coefficient to 2 cos�0� and then
call up roots roots. Note that this time no multiplicity disclaimer appears.
The disclaimer is absent because the ranged value obtained for the 2 coefficient
has a zero range, and so the number’s evaluation list is not consulted. Some stan
dard function values are obtained as exact numbers. For instance, the keyboard
entries sin(0), cos(0), and exp(0) all generate exact values.

Notes and References

A. The use of the Euclidean algorithm to determine the multiplicity structure of
a polynomial is discussed in Uspensky’s textbook [4] and in the paper by
Dunaway [2].

B. Theorem 8.1 and 8.2 were discovered by Cauchy. Wilf’s book [5] discusses
these and other polynomial root bounds.

C. Our presentation of Bairstow’s method follows that of Hamming [3].
D. The error bound for polynomials in Section 8.5 was given by Braess and

Hadeler [1].

[1] Braess, D. and Hadeler, K. P., Simultaneous inclusion of the zeros of a polynomial,
Numer. Math. 21 (1973), 161–165.

[2] Dunaway, D. K., Calculation of zeros of a real polynomial through factorization using
Euclid’s algorithm, SIAM J. Numer. Anal. 11 (1974), 1087–1104.

[3] Hamming, R. W.,	 Numerical Methods for Scientists and Engineers, 2nd Edn,
McGraw-Hill, New York, 1973.

[4] Uspensky, J. V., Theory of equations, McGraw-Hill, New York, 1948.
[5] Wilf, H. S., Mathematics for the physical sciences, John Wiley & Sons, New York,

1962.

Elsevier US Job Code:IPNM Chapter:Ch09-P373859 19-12-2006 11:48a.m. Page:97 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

Solving n Linear
Equations in n

Unknowns
9

Three demo programs solve linear equations for the case where the number of
unknowns matches the number of equations. The program equat is for equa
tions with real coefficients the program r_equat is for equations with rational
coefficients and the program c_equat is for equations with complex coeffi
cients. The next section introduces matrix notation, and the succeeding section
uses the ideas of Chapter 3 to define appropriate computation objectives. The
succeeding sections present methods for solving linear equations and obtaining
matrix determinants, and finally, in the last section, the three demo programs are
described.

9.1 Notation

For a matrix A of m rows and n columns, or, more briefly, of size m×n, it is
customary to indicate the A elements (or A components) by using a small letter
matching the matrix capital letter, and attaching row and column indices, with
the row index always preceding the column index. Thus A has elements aij .
The matrix A is real if all elements are real numbers, is rational if all elements
are rational numbers, and is complex if all elements are complex numbers. The
matrix is square when m = n, and in that case the matrix A has a determinant,
indicated by the symbol det A. A square matrix may also be called n-square to
indicate the number n of rows and columns.

An upper triangular matrix is an n-square matrix of the form
⎡

a11 a12 a13 · · · a1n
⎤

⎢
⎢
⎢
⎢
⎣

a22 a23

a33

· · ·
· · ·
� � �

a2n

a3n

���

⎥
⎥
⎥
⎥
⎦

ann

97

Elsevier US Job Code:IPNM Chapter:Ch09-P373859 19-12-2006 11:48a.m. Page:98 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

���
���

���
���

98 9 Solving n Linear Equations in n Unknowns

An entirely blank region of a displayed matrix, as shown here, is always made up
entirely of zero elements. Thus an upper triangular matrix can be characterized
as a square matrix whose elements below the diagonal are all zero. The diagonal
elements of any matrix, square or not, are those elements with matching row and
column indices. The determinant of an upper triangular matrix equals the product
of its diagonal elements. Similarly, a lower triangular matrix is an n-square
matrix with zero elements above its diagonal, and its determinant also is equal
to the product of its diagonal elements.

We use the symbol I to denote an n-square identity matrix, its size inferred
from context, and the symbol O to denote an m × n matrix with all elements
zero, its size also inferred from context. If there is only one column to a matrix,
it is customary to omit the unchanging column index for its elements, and to call
the matrix a vector. We use lower case boldface letters to denote vectors. So if
c is a vector, it has the form

⎡ ⎤
c1

⎢ ⎥c2 ⎢ ⎥
⎢ ⎥
⎣

��� ⎦
cn

The vector c may also be called an n-vector to indicate the number of its
components. The length of √∑

1 �ci�2 if c is complex.
c, denoted by len c, is

√∑
i
n
=1 ci

2 if c is real, and is
n
i=

The transpose of a matrix A of size m×n, denoted by the symbol AT , is a
matrix D of size n×m with dij equal to aji. If the matrix product AB is defined,
then the rule �AB�T = BT AT holds.

9.2 Computation problems

A frequently encountered problem is that of solving the system of linear equations

a11x1 +a12x2 +· · ·+a1nxn = b1

a21x1 +a22x2 +· · ·+a2nxn = b2

an1x1 +an2x2 +· · ·+annxn = bn

for the values of x1� x2� � � � � xn. This is equivalent to solving the matrix equation
⎡ ⎤⎡ ⎤ ⎡ ⎤

a11 a12 · · · a1n x1 b1
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ a21 a22 · · · a2n ⎥⎢ x2 ⎥ ⎢ b2 ⎥
⎢ ⎥⎢ ⎥= ⎢ ⎥
⎣

���
���

���
���
���

��� ⎦⎣
��� ⎦ ⎣

��� ⎦
an1 an2 · · · ann xn bn

Elsevier US Job Code:IPNM Chapter:Ch09-P373859 19-12-2006 11:48a.m. Page:99 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

9.2 Computation problems 99

Assigning appropriate letters to the three arrays, the problem is then to solve

Ax = b

for the vector x. The matrix A is often called the coefficient matrix. In a linear
algebra course, it is shown that this problem has a unique solution vector x if
and only if det A is nonzero. If det A = 0, there are two possibilities: either an
infinite number of solutions, or no solutions at all. This applies whether the
arrays A, b are real or complex.

Suppose the computation goal for the real case is

Nonsolvable Problem 9.1 Given a set of n linear equations in
n unknowns, represented by the matrix equation Ax = b, where A is a real
n-square coefficient matrix, x is the vector of unknowns, and b the real vector
of constants, find to k decimal places the x components, or else indicate that
det A = 0.

The difficulty here is the necessity of determining whether or not det A = 0,
an instance of Nonsolvable Problem 3.1. A similar difficulty would occur for
the complex case. To get a solvable problem, we give up trying to determine
whether the A determinant is exactly zero. Rather than list two problems, one
for the real case and one for the complex case, we list them together this way:

Solvable Problem 9.2 Given a set of n linear equations in n unknowns,
represented by the matrix equation Ax = b, where A is a real (complex) n-square
coefficient matrix, x is the vector of unknowns, and b the real (complex) vector
of constants, find to k decimal places the x components, or else indicate that
�det A� < 10−k .

The bound 10−k is merely a convenient one and could be replaced by others, for
instance, 10−nk or 10−k2

.

If A and b are both rational, the difficulty in determining whether det A = 0
disappears. If det A � 0, we obtain x as a vector of rational numbers, which can =
always be displayed to any desired number of correct decimal places.

Solvable Problem 9.3 Given a set of n linear equations in n unknowns,
represented by the matrix equation Ax = b, where A is a rational n-square
coefficient matrix, x is the n-vector of unknowns, and b the rational n-vector
of constants, find as rational numbers the unknowns x1� � � � � xn, or else indicate
that det A = 0.

Suppose for a square matrix A we wish to obtain the square inverse matrix
A−1, satisfying the equation AA−1 = I . The inverse matrix A−1 exists if det A � 0,=
because if xi is the ith column of A−1 and bi is the ith column of I , then xi can

Elsevier US Job Code:IPNM Chapter:Ch09-P373859 19-12-2006 11:48a.m. Page:100 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

� � �
���

���
���

���
���

100 9 Solving n Linear Equations in n Unknowns

be determined by solving the system of linear equations Axi = bi. In a linear
algebra course, it is shown that if the equation AA−1 = I holds, then the equation
A−1A = I holds also.

An appropriate computation objective for matrix inverses is

Solvable Problem 9.4 Given the n-square real (complex) matrix A, find to
k decimal places the elements of the matrix A−1, or else indicate that �det A� < 10−k .

When A is rational, a stronger result is possible, as specified in

Solvable Problem 9.5 Given the n-square rational matrix A, find the
rational elements of the matrix A−1, or else indicate that det A = 0.

9.3 A method for solving linear equations

A system of n linear equations in n unknowns can be solved by the elimina
tion method, whereby the equations are manipulated until they have the matrix
representation A′x = b′, where A′ is upper triangular. If we are successful in
obtaining this representation for the equations, then they have the form

a11
′ x1 +a12

′ x2 +· · ·+ain
′

−1xn−1 +a1
′
nxn = b1

′

a ′ 22x2 +· · ·+a ′ 2n−1xn−1 +a ′ 2nxn = b2
′

a ′ n−1n−1xn−1 +a ′ n−1nxn = bn
′
−1

a ′ x = b′
nn n n

and are easily solved by back substitution, namely

1
x = �b′ �n ′ n ann

xn−1 = ′
1

�bn
′
−1 −an

′
−1�nxn� an−1�n−1

x2 = 1
′ �b2

′ −a ′ 23x3 −· · ·−a ′ 2nxn� a22

x1 = 1
′ �b1

′ −a ′ 12x2 −· · ·−a1
′
nxn� a11

Elsevier US Job Code:IPNM Chapter:Ch09-P373859 19-12-2006 11:48a.m. Page:101 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

�

101 9.3 A method for solving linear equations

All these equations can be combined as

b′ ′ xi = 1
′
(

i − ∑ n

aikxk

)
i = n�n−1� � � � � 2� 1

aii k=i+1

with the understanding that the sum is void for xn, because here the starting
index n+1 is greater than the ending index n. The possibly void summation is
clearer when expressed this way:

b′ ′ xi = 1
′
(

i − ∑
aikxk

)
i = n�n−1� � � � � 2� 1 (9.1)

aii i<k≤n

The manipulation of the equations is done most conveniently by repeatedly
changing the stored representations of A and b until the desired upper triangular
form of A is obtained. The operations performed on these matrices are of just
two types:

Exchange Row�i� j�: Exchange rows i and j.
Add Row Multiple�i� j�M�: Add M times row i to a different row j.

Either matrix operation always is performed simultaneously on A and on b.
When either operation is executed, the set of linear equations represented by
Ax = b is changed by an allowable algebraic manipulation into a different set
of equations. The two sets of equations are equivalent, because it is possible to
undo either row operation by another operation of the same type.

The upper triangular form of A is obtained by bringing the columns of A to
the proper form, one by one, starting at column 1 and working toward the right.
For the sake of simplicity, we use aij

′ to denote an element of A during this
process, and we do not try to differentiate between the successive values that the
element may take. The procedure varies slightly depending on whether A and b
are rational. The procedure for the real or complex case is given first, with the
minor changes for the rational case supplied later.

When working on column j, the procedure is the following. The elements
a′ � a′ � � � � � a′ are tested to locate the one with the “best” absolute value. jj j+1 j nj

The best absolute value is the largest absolute value, but because we can only
decide for two ranged numbers c and d whether �c� > �d�� �c�= �d�, or �c� < �d�,
we proceed cautiously. Let r be the row index of the column element that is
currently largest in absolute value, and let L be the current largest absolute value.
For column j the first element we test is ajj

′ , so initially r = j and L = �ajj
′ �. The

elements with row index k > j are tested in sequence, and if �akj
′ � > L, then L is

replaced by �akj
′ � and r is replaced by k. After the test of the column is complete,

if we find L > 0 with r �= j, then the operation Exchange Row�j� r� is performed
to convert element arj

′ into ajj
′ . Then using the other row operation, appropriate

multiples of row j are subtracted from rows below to clear the A elements in
column j below ajj

′ . Doing the clearing with the A element in column j having

Elsevier US Job Code:IPNM Chapter:Ch09-P373859 19-12-2006 11:48a.m. Page:102 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

�

102 9 Solving n Linear Equations in n Unknowns

the largest absolute value, rather than using any nonzero element in row j or
below, has the advantage that smaller multiples of row j are subtracted from
rows below, and this tends to make the A elements to the right of column j have
smaller interval widths.

If we are successful in bringing A to upper triangular form, then we obtain
the values of the variables xi by using equation (9.1) We determine whether k
correct decimal places have been obtained, and if not, we increase precision an
appropriate amount and the entire computation is repeated.

Let us be more specific about the phrase “increase precision an appropriate
amount,” which appears in the preceding paragraph and at other places in this
chapter. The number of correct decimal places, in either fixed-point or scientific
floating-point notation, that can be obtained from a ranged number can be
determined from the number’s midpoint and interval halfwidth. By examining
all the computed answers of a problem, it is possible to determine whether
the target number of correct decimal places has been achieved, and, if not,
what the maximum deficit in correct places is. When the computation is redone
because answers are not accurate enough, precision is increased by at least the
maximum deficit, and perhaps a few extra places, just to be more certain that
the next cycle of computation will succeed.

It may happen when working with a certain column j of A that we encounter
no element whose absolute value tests positive. In this case we find L = 0,
so we abandon the attempt to solve the equations, and compute det A instead.
A method for computing matrix determinants is described in the next section.

The procedure for the rational case differs, because here computation is with
exact numerators and denominators, so there is no advantage in locating the
element in column j with the largest absolute value. Only a nonzero element
is needed in a′

jj , so if a′
jj �= 0, the clearing operation can begin immediately.

Otherwise a row exchange is needed to bring a nonzero element into the a′
jj

position. Whenever a nonzero element in column j is not found, there is no need
to compute the determinant, because it must be zero.

9.4 Computing determinants

The procedure for computing the determinant of a square matrix A is similar
to the procedure already described for solving the matrix equation Ax = b,
except that now there is no vector b. The matrix A is gradually brought to upper
triangular form, column by column, starting with column 1 and working to the
right, using the two matrix row operations given earlier. The procedure varies
significantly, depending on whether the matrix A is rational. We consider the
nonrational case first.

An operation Add Row Multiple�i� j�M� on A does not change the determi
nant of the varying matrix A. An operation Exchange Row�i� j� changes just

Elsevier US Job Code:IPNM Chapter:Ch09-P373859 19-12-2006 11:48a.m. Page:103 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

�

′ ′

′ ′

′ ′

103 9.4 Computing determinants

the sign of this determinant. To keep track of the sign changes, a test integer s,
initially 1, is replaced by its negative each time an Exchange Row�i� j� operation
is performed.

We again use a′
ij to denote the changing elements of the A matrix during the

determinant computation procedure. After the matrix A is successfully brought to
upper triangular form, det A =∏

i
n
=1 ajj

′ , with the sign changed if the test integer
s = −1.

It may happen when working with a certain column j of A, that all the
quantities �a′ �, �a′ �,…, �a′ � test = 0, indicating that the det A interval conjj j+1j nj

tains the zero point. To obtain a narrow interval for det A, a third operation
is allowed:

Exchange Col�i� j�� Exchange columns i and j.

This operation changes just the sign of det A, and does not affect the width of
the computed det A interval. Our procedure now is to continue trying to bring
A to upper triangular form, using, if necessary, this additional operation. Now
when dealing with any column j of A, if in row j or below we can find no
elements of positive absolute value, we search the columns of A further to the
right for elements in row j or below with positive absolute value. If one is found
in column k say, then we perform the operation Exchange Col�j� k� to bring
this element into column j, and, if necessary, do a row exchange operation to
make this element a′ . Next, we clear all elements below a′ by using Add Row jj jj

Multiple�i� j�M� operations.
The procedure now will terminate when for some column q, no element of

positive absolute value in row q or below is found in this column or in the other
A columns further to the right. The final A matrix has the form

⎡ ⎤
a11

′ a12
′ · · · a1

′
q · · · a1

′
n

⎢ a′ · · · a′ · · · a′ ⎥
⎢ 22 2q 2n ⎥
⎢ ⎥
⎢ � � �

���
���
���
���

��� ⎥
A′ = ⎢ ⎥ (9.2) ⎢ ′ ′ ⎥a · · · a⎢ qq qn ⎥

⎢ ⎥
⎣ ���

���
���
���

��� ⎦

a · · · anq nn

where the �n−q +1�-square submatrix

⎡ ⎤
a · · · aqq qn

⎢ ⎥
⎣

���
���
���
���

��� ⎦
a · · · anq nn

has all elements =� 0. The determinant of the matrix A′ is identical to the determi
nant of the starting matrix A, except that its sign may be wrong. The determinant

Elsevier US Job Code:IPNM Chapter:Ch09-P373859 19-12-2006 11:48a.m. Page:104 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

104 9 Solving n Linear Equations in n Unknowns

of A′ equals
∏

i
q
=
−

1
1
aii times the determinant of the submatrix. We can bound the

magnitude of det A′ if we can bound the magnitude of the determinant of the
submatrix.

In magnitude the determinant of the submatrix is not greater than the product
of a magnitude bound for determinant terms times the number of terms in the
determinant, which is �n − q + 1�!. The element aij

′ has the magnitude bound
��midpoint aij

′ � + halfwidth aij
′ �, so by taking the maximum of these for each

submatrix column and multiplying these maxima together, we obtain a bound for
determinant terms. After multiplying this by �n−q+1�!, we obtain a magnitude
bound M for the determinant of the submatrix. We obtain for det A the interval
value

det A = 0 ±�a11
′ � � � a′

q−1�q−1�M

When the matrix A is rational, a rational value for det A can be more easily
determined, for two reasons. First, in the column j process, we do not search
for the element of largest absolute value, but just for any nonzero element. And
if no such element is found, the determinant is zero, and further computation is
not needed.

9.5 Finding the inverse of a square matrix

As stated earlier, because AA−1 = I , column i of A−1, denoted by the vector xi,
can be found by taking the constant vector bi equal to the ith column of I , and
then solving the linear equations represented by the matrix equation Axi = bi.
However, it is more efficient to use the method described next.

We start with the matrix equation AA−1 = I , where the matrices A and I are
known, and A−1 is unknown, and apply simultaneously to the matrices A and I
a series of the operations Exchange Row�i� j� and Add Row Multiple�i� j�M�,
attempting with these row operations to bring A into upper triangular form.
An operation Exchange Row�i� j� on an n-square matrix C is equivalent to
premultiplying C by a matrix equal to the identity matrix I , except that rows i
and j have been exchanged. Similarly an operation Add Row Multiple�i� j�M�
on C is equivalent to premultiplying C by a matrix equal to the identity matrix I ,
except that M times row i has been added to row j. Thus we can justify
performing either operation simultaneously on A and on I as simply the premul
tiplication of the equation AA−1 = I by another matrix to produce the equation
A′A−1 = I ′ .

Following the same procedure that was described previously of gradually
changing A, except that here we operate on A and I instead of A and b, we
may succeed in bringing A to upper triangular form. If we are unable to bring
A to upper triangular form, then we abandon the goal of determining A−1 and

Elsevier US Job Code:IPNM Chapter:Ch09-P373859 19-12-2006 11:48a.m. Page:105 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

9.6 The demo programs equat, r_equat, and c_equat 105

compute det A instead. If we succeed in bringing A to upper triangular form,
then we begin to use a new row operation on both A′ and I ′:

Multiply Row�i�M�: Multiply row i by the nonzero constant M .

Again we can justify applying this operation to A′ and I ′ as equivalent to the
premultiplication of the equation A′A−1 = I ′ by a matrix equal to the identity
matrix, except that row i has been multiplied by the constant M .

Working from column n of A backward toward column 1, in column j we
apply the operation Multiply Row�j� 1/a′ � to both A′ and I ′ to make a′ equal 1. jj jj

The next part of the column j procedure is to apply a series of operations Add
Row Multiple�i� j�M� to both A′ and I ′ to clear the elements of A′ above the 1
element.

After all columns of A′ have been processed, the matrix A′ has been converted
to the identity matrix I , and the matrix equation, which initially was AA−1 = I ,
has been converted to IA−1 = I ′. The elements of I ′ now equal the elements of
A−1. If this process leads to results that are insufficiently accurate, the entire
calculation is repeated at an appropriate higher precision.

9.6 The demo programs equat, r_equat, and c_equat

All three programs have similar beginnings. The number of equations is requested
from the user, and the integer obtained determines the size of the matrix
A and vector b arrays, which then get filled according to the user’s keyboard
entries.

The program equat, for real linear equations, continues as follows. After
the number of correct decimal places of the solution vector has been specified
by the user, equat initially follows the procedure of Section 9.3 for solving
Ax = b. In that procedure, it sometimes happens that A cannot be converted
to upper triangular form. In that case, before switching to the alternate task of
computing a bound on det A, the program equat attempts to construct, from
the starting real coefficient matrix A, a same-sized rational matrix identical to A.
The process of finding an equal rational value for an A element is similar to
the process described in Section 8.6 for finding an equal rational coefficient for
a real polynomial coefficient. If a rational coefficient matrix is obtained, then
equat computes its determinant. A zero rational determinate indicates that A is
singular, and no further computation is needed. A nonzero rational determinant
is helpful, because the alternate objective of Solvable Problem 9.2, bounding
the A determinant, now can be skipped. Instead equat increases precision by a
fixed amount and tries the solution process again. Only when a rational matrix is
not obtained, does equat pursue the alternate objective of computing a bound
on det A.

The program r_equat for rational linear equations, is somewhat simpler.
The objective of the program is to obtain a solution vector of rational numbers,

Elsevier US Job Code:IPNM Chapter:Ch09-P373859 19-12-2006 11:48a.m. Page:106 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

[]

[] []

106 9 Solving n Linear Equations in n Unknowns

and unlike the program equat. the program r_equat does not need a com
putation loop. The solution procedure for a rational coefficient matrix A and
a rational constant vector b always yields a rational solution vector or indicates
that det A = 0.

The program c_equat follows the solution procedure of Section 9.3, except
for one difference. In the column j procedure, finding the absolute value of
a complex A matrix element requires computing a square root, which is time-
consuming. Instead c_equat computes for an element a + ib the quantity
a2 +b2, that is, the absolute value squared, and uses the largest of these values
to locate the best element to bring to the ajj

′ position.

Software Exercises G

These exercises show properties of the programs r_equat first and then
equat. To keep the keyboard entry process short, all exercises are for two
equations in two unknowns.

1 −1
1. Call up r_equat and specify the coefficient matrix A = and the 1 1

3 1
vector b = . Note that the solution vector x = is displayed in rational −1 −2
p/q format.

2. This time call up equat and specify the same coefficient matrix and constant
vector. The equat program now requests you to specify the number of correct
decimal places, and let us choose 10. Note that the answers are displayed in
exact form without tildes, indicating that the solution vector’s components were
obtained with zero ranges.

3. Now that a log file for equat is available, edit it by changing a11 from
1 to sin��/2�, which equals 1. Save the log file and call up equat equat.
The solution vector this time appears with tildes, indicating that all its compo
nents have nonzero ranges. The changed entry affected both vector components,
leading to nonexact computed values.

4. Edit the log file again, changing a12 from −1 to 1, so that the A matrix
is singular. Save the log file and call up equat equat. Note that this time
the alternate objective of Problem 9.2 is pursued, with equat indicating
that the A determinant is less than 10−10 (because 10 decimal places were
requested). Besides this indication, equat also shows the computed value of
the determinant.

5. Edit the log file one last time, changing a11 back to 1. Save the log file and
call up equat equat. Now all of A′s elements are convertible to rationals, and
this time equat indicates that the A matrix is singular.

Elsevier US Job Code:IPNM Chapter:Ch09-P373859 19-12-2006 11:48a.m. Page:107 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

107 Notes and References

Notes and References

A. Two general references on linear algebra are the books by Gantmacher
[2] and by Hohn [4]. Two references emphasizing computation methods of
linear algebra are the books by Golub and Van Loan [3] and by Faddeev
and Fadeeva [1].

[1] Faddeev, D. K. and Faddeeva, V. V., Computational Methods of Linear Algebra;
W. H. Freeman, San Francisco, 1963.

[2] Gantmacher, F. R.,	 Theory of Matrices, Vols 1 and 2, Chelsea Publishing Co.,
New York, 1960.

[3] Golub, G. H. and Van Loan, C. E., Matrix Computations, 2nd Edn, Johns Hopkins
University Press, Baltimore, 1989.

[4] Hohn, F. Elementary Matrix Algebra, 3rd Edn, Macmillan, New York, 1973.

Elsevier US Job Code:IPNM Chapter:Ch09-P373859 19-12-2006 11:48a.m. Page:108 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

This page intentionally left blank

Elsevier US Job Code:IPNM Chapter:Ch10-P373859 19-12-2006 11:48a.m. Page:109 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

= �

Eigenvalue and
Eigenvector Problems 10

Three demo programs find eigenvalues and eigenvectors for an n-square
matrix A. The program eigen is for matrices with real elements, the program
r_eigen is for matrices with rational elements, and the program c_eigen is
for matrices with complex elements. As a preparation for explaining how these
programs work, the next section treats a linear equation problem differing some
what from the problems treated in the preceding chapter. The following section
then gives the basic terminology for eigenvalue and eigenvector problems. Fol
lowing that, practical methods for obtaining eigenvalues and eigenvectors are
presented, and finally, in the last section of this chapter, the three demo programs
are described.

In this chapter, a concept of linear algebra is needed. The real or complex
n-vectors v1, v2� � � � �vk are linearly independent if no vector of the set can be
expressed as a linear combination of the others. An m×n real or complex matrix
A is said to have rank r if, thinking of its columns as m-vectors, the maximum
number of linearly independent columns that can be found is r. We also require
this linear algebra result, which is valid for both real and complex matrices:

Theorem 10.1 Let B be any matrix of size m× n. If C is an m-square
matrix with det C � 0, and D is an n-square matrix with det D= 0, then B, CB,
and BD all have the same rank.

109

Elsevier US Job Code:IPNM Chapter:Ch10-P373859 19-12-2006 11:48a.m. Page:110 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

�

110 10 Eigenvalue and Eigenvector Problems

10.1 Finding a solution to Ax = 0 when det A = 0

Suppose a system of n real or complex linear equations in n unknowns is
encountered where the vector b of constants is a zero vector:

a11x1 +a12x2+· · ·+ a1nxn = 0
a21x1 +a22x2+· · ·+ a2nxn = 0
���

���
���

���
(10.1)

an1x1+an2x2 +· · · +annxn = 0

Such equations are often called homogeneous equations. Suppose further that the
determinant of the coefficient matrix A is known to equal zero, and a nontrivial
solution is required. That is, we seek an n-vector x, not equal to 0, that satisfies
the matrix equation Ax = 0. In the next section we see that this problem arises
in finding eigenvectors.

If x is a solution vector, then so is cx for any choice of the constant c. Thus if
we can find a nonzero solution vector x, then we can also find one of length 1,
namely len

1
X x. Accordingly we take the problem now to be that of locating a

solution vector of length 1.
The procedure described in the preceding chapter for solving the matrix equa

tion Ax = b can be adapted to solve this problem too. We start with the matrix
equation Ax = 0, and apply the operations Exchange Row�i� j� and Add Row
Multiple�i� j�M� to bring A to upper triangular form. This time we can ignore
the b vector, because b = 0, and these operations never change b. The A matrix
zero determinant value also is unchanged by these operations.

The determinant of an upper triangular matrix equals the product of the diag
onal elements, and because this determant is 0, eventually a column j of A is
encountered where all elements in row j or below test =0. When this happens,
our procedure is similar to the procedure described in the preceding chapter
for computing determinants. We allow the operation Exchange Col�i� j� in our
A manipulations and search the columns to the right of column j for any element
in row j or below that is nonzero. Such an element can be brought to the diagonal
position, and we can then continue trying to bring A to upper triangular form, as
far as is possible. But now, because we are attempting to solve Ax = 0, and not
computing a determinant, we must interpret the effect of the column operation.
Applying the operation Exchange Col�i� j� on A is equivalent to postmultiplying
A by a certain matrix Q, equal to the identity matrix I , except that columns i
and j have been exchanged. The matrix Q is its own inverse, that is, QQ = I .
We have Ax = AQQx = AQx�, where x� = Qx, so if we perform an operation
Exchange Col�i� j� on A, we also need to replace x by x� = Qx, that is, by a
vector of unknowns with components xi and xj exchanged.

A simple way of recording these vector changes is to enlarge the A matrix,
adding an extra row above the other rows, that row’s elements initially being
the integers 1�2� � � � � n. Then when we exchange two A columns, the extra

Elsevier US Job Code:IPNM Chapter:Ch10-P373859 19-12-2006 11:48a.m. Page:111 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

�

� �

� �

� � �
���

���
���

���
���

111 10.1 Finding a solution to Ax = 0 when det A = 0

row’s elements get exchanged also, and indicate the x component corresponding
to an x� component. However, instead of an enlarged A, our description will
suppose the following equivalent method is used. At the beginning of operations,
a “horizontal” array H with component i equal to the integer i is constructed:

H = �1 2 3 � � � n� initially

H = �H1 H2 H3 � � � Hn� in general

Then when we do an Exchange Col�i� j� operation on A, we also do the operation
on H to switch the integers Hi and Hj . After all operations are complete, the
indicator H shows how to form x� from x, that is, xi

� is component Hi of x.
The final matrix A� that we obtain is identical to the matrix A� shown in

Eq. (9.2), having a certain submatrix of elements =0, and this submatrix is
shown again here:

⎡ ⎤
a · · · aqq qn

⎢ ⎥
⎣

���
���
���
���

��� ⎦ (10.2)

a · · · anq nn

We can solve our problem if this submatrix is 1-square. In that case, the lone
submatrix element ann

� must equal 0. This is because det A is known to be 0,
so det A�, being equal to det A or −det A, must be 0 too. Because A� is upper-
triangular, det A� equals the product of its diagonal elements, and these elements,
with the exception of ann

� , are nonzero. The system of equations now has the form

a11
� x1

� +a12
� x2

� + · · ·+ain
�
−1xn

�
−1 +a1

�
nxn

� = 0

a � 2
� + · · ·+a2

�
n−1xn

�
−1 +a � x � = 022x 2n n

a � n−1�n−1xn
�
−1 +a � n−1�nxn

� = 0

To obtain a solution, we set xn
� equal to 1, and then solve for the other components

of x� by back substitution:

x � = 1 n

xn
�
−1 =− �

1 (
an
�
−1�n

)

an−1�n−1

xn
�
−2 =− �

1 (
an
�
−2�n−1xn

�
−1 +an

�
−2�n

)

an−2�n−2

x1
� = − 1 (

a � 2
� + · · ·+a � � �)

� 12x 1�n−1xn−1 +a1�na11

Elsevier US Job Code:IPNM Chapter:Ch10-P373859 19-12-2006 11:48a.m. Page:112 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

112 10 Eigenvalue and Eigenvector Problems

We obtain a vector of length 1 by multiplying all components of x� by 1/len x� ,
and we unscramble the effect of the column exchanges by consulting the H indi
cator, taking xi

� as xHi
, rearranging the vector’s components accordingly.

If the A� submatrix of elements =� 0 is not 1-square, then there is a diffi
culty. This time we cannot be certain that all submatrix elements are actually 0.
A recomputation of A� at a higher precision might result in a smaller submatrix,
but then again, it might not. Let us suppose for a moment that all submatrix
elements are 0. We can obtain n− q+ 1 linearly independent solution vec
tors x1� � � � �xn−q+1, by setting the array of variables �xq

� � xq
�
+1� � � � � xn

� � equal
successively to

�1�0� � � � �0�� �0�1� � � � �0�� � � � � �0�0� � � � �1�

each time solving for the rest of the variables xi
� by back substitution, adjusting

values afterward to achieve a length of 1, and then reassigning variable values
xi
� to their proper position in the x vector by consulting the indicator H . This is

in accordance with a theorem of linear algebra:

Theorem 10.2 If the n-square real (complex) matrix A has rank r, less than
n, then there exist n− r linearly independent solution vectors x1� � � � �xn−r to
the matrix equation Ax = 0, and a vector x is a solution vector if and only if it
can be written in the form

x = c1x1 + c2x2 +· · ·+ cn−rxn−r

where c1� c2� � � � � cn−r are real (complex) constants.

Note that if the submatrix (10.2) has all zero elements, this implies that the rank
of A� is equal to q − 1, the number of nonzero A� diagonal elements. By
Theorem 10.1, none of the row or column operations used on the changing
matrix A� can alter its rank, because these operations can be interpreted to be
either premultiplication or postmultiplication of A� by another matrix with a
nonzero determinant. So the rank of A� after an operation is also the rank of A�

before the operation.
When there are two or more rows to the submatrix, it is risky to assume that

all submatrix elements are zero. We cannot be confident in the solution vectors
xi unless the ambiguity of the submatrix elements is resolved. For the special
case where A is a diagonal matrix, no computation is required, and solving
our problem becomes purely a matter of determining which diagonal elements
are 0. It is clear then that with this problem we cannot avoid encountering the
nonsolvable problem of deciding whether two numbers are equal.

Nonsolvable Problem 10.1 Given an n-square real (complex) matrix A,
with n > 1 and det A = 0, find to k decimal places the elements of a real
(complex) n-vector x of length 1, such that Ax = 0.

Elsevier US Job Code:IPNM Chapter:Ch10-P373859 19-12-2006 11:48a.m. Page:113 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

113 10.2 Eigenvalues and eigenvectors

If we know in advance what the rank of A is, then the difficulty in interpreting
A� disappears. If the matrix A� we obtain is such that the row index q− 1 of
the last nonzero diagonal element equals the known rank r, then all submatrix
elements must be zero, and we find n− r solution vectors of length 1 by the
method described. And if q−1 is less than r, then A� must be recomputed at a
higher precision.

Solvable Problem 10.2 Given an n-square real (complex) matrix A of
known rank r < n, find to k decimal places the elements of n− r linearly
independent real (complex) n-vectors x1, x2� � � � �xn−r , all of length 1, such that
Axi = 0 for all i.

If we know nothing about the n-square matrix A except that the rank r is less
than n, that is, det A = 0, then we obtain a solvable problem only by reducing
our requirements:

Solvable Problem 10.3 Given an n-square real (complex) matrix A with
n > 1 and det A= 0, find to k decimal places the elements of a real (complex)
n-vector x of length 1 such that Ax = 0, or else find to k decimal places the
elements of two or more real (complex) n-vectors x1, x2� � � � �xs, all of length 1,
such that len�Axi� < 10−k for all i.

The positive bound 10−k is arbitrary and may be changed to some other positive
bound that varies with k, such as 10−nk . The procedure to be followed here
depends on the form of A�. If the A� submatrix turns out to be 1-square, then,
as described previously, we obtain a vector x of length 1 satisfying the equation
Ax = 0. If there is more than one row to the submatrix, then we assume that all
submatrix elements are zero to get the vectors x1, x2� � � � �xn−r . These vectors
must be tested with the original matrix A to determine whether len�Axi� < 10−k

for all i. If this result is not obtained, and also if the elements of x or xi are not
found to k decimal places, then we must recompute A� at an appropriate higher
precision.

10.2 Eigenvalues and eigenvectors

Let A be a square matrix with real or complex elements. In many contexts the
problem arises of finding a nonzero vector x, such that the matrix equation

Ax = �x

holds for some number �. The values possible for � are called eigenvalues, and
the vector x is called an eigenvector. We can rewrite the matrix equation as

�A−�I�x = 0

Elsevier US Job Code:IPNM Chapter:Ch10-P373859 19-12-2006 11:48a.m. Page:114 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

114 10 Eigenvalue and Eigenvector Problems

and in this form it is clear that there can be a nonzero vector x only if
det�A−�I�= 0. The matrix A−�I has the form

⎡ ⎤
a11 −� a12 · · · a1n

⎢ ⎥· · · ⎢ a21 a22 −� a2n ⎥
⎢ ⎥
⎣

���
���

� � �
��� ⎦

an1 an2 · · · ann −�

and det�A−�I� is a polynomial in �:

det�A−�I� = �a11 −���a22 −�� � � � �ann −��+other determinant terms

det�A−�I� = �−1�n��n + cn−1�
n−1 +· · ·+ c1�+ c0� (10.3)

The polynomial �n+cn−1�
n−1 +· · ·+c1�+c0 is called the characteristic polyno

mial of A. There are n eigenvalues, �1��2� � � � � �n, corresponding to the n roots
of the characteristic polynomial.

It is easy to accurately compute the coefficients of the characteristic poly
nomial, and in the next section practical methods of doing this are presented.
Solvable Problem 8.1 now implies

Solvable Problem 10.4 Find to k decimal places the n eigenvalues of a
real (complex) n-square matrix A.

Consider next the problem of determining for each eigenvalue �i an associated
eigenvector xi. Solving the matrix equation

�A−�iI�xi = 0

for xi is equivalent to solving a system of linear homogeneous equations for the
components of xi, a problem considered in the preceding section.

It is helpful here to introduce the concept of similarity. One n-square matrix B
is similar to another n-square matrix A if there is an n-square matrix P with an
inverse P−1 such that

B = P−1AP (10.4)

The matrix P is said to transform A into B. From equation (10.4) it follows that

PBP−1 = A

Thus P−1 transforms B into A, so the relation of similarity is symmetric. Similar
matrices have the same characteristic polynomial, because

Elsevier US Job Code:IPNM Chapter:Ch10-P373859 19-12-2006 11:48a.m. Page:115 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

115 10.2 Eigenvalues and eigenvectors

det�B−�I� = det�P−1AP−�I�= det�P−1�A−�I�P�

= det P−1 det�A−�I�det P = det P−1 det P det�A−�I�

= det�P−1P�det�A−�I�= det I det�A−�I�

= det�A−�I�

Thus similar matrices A and B have identical eigenvalues. Moreover, if xi is a �i

eigenvector of B, then yi = Pxi is a �i eigenvector of A, because from Bxi = �ixi

it follows that

BP−1Pxi = �ixi

PBP−1Pxi = P��ixi�= �iPxi

A�Pxi�= �i�Pxi�

Ayi = �iyi

Thus if we can find a matrix similar to A for which it is easy to find eigenvectors,
then we also obtain eigenvectors for A by using the transformation matrix P.

Among the matrices similar to A, there exists a certain upper triangular
matrix J , called the Jordan normal form of A, or more simply, the Jordan form
of A, and defined in the theorem that follows. Let Jr��� be the r-square matrix

⎡	 ⎤
� 1

⎢ � 1 ⎥
⎢	 ⎥

J ��� = ⎢ � � �
� � � ⎥	 (10.5)r ⎢	 ⎥

⎣	 ⎦�	 1
� r× r

The matrix Jr��� is called a Jordan block. Its diagonal elements equal �, and its
elements just above the diagonal equal 1.

Theorem 10.3 For any n-square real (complex) matrix A, there exists
an n-square complex matrix P, having an inverse P−1, such that P−1AP = J ,
where J , the Jordan form of A, is an n-square matrix composed of Jordan blocks
in the configuration

⎡	 ⎤
Jm1

��1�
⎢ J ��2� ⎥
⎢ m2	 ⎥

J = ⎢	 ⎥ (10.6)
⎣ � � � ⎦

J �� �mt	 t

Elsevier US Job Code:IPNM Chapter:Ch10-P373859 19-12-2006 11:48a.m. Page:116 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

[]

�

[] []

[] []

116 10 Eigenvalue and Eigenvector Problems

The Jordan form of A is unique up to rearrangement of the Jordan blocks.
These blocks are all in diagonal position, that is, their diagonal elements are also
diagonal elements of J .

The block eigenvalues �1��2� � � � � �t are eigenvalues of J , and consequently
of A too, but these block eigenvalues are not necessarily all distinct. If �j is
a multiplicity m eigenvalue of A, then �j must appear m times as a diago
nal element of J , and may be the diagonal element of more than one Jordan
block. For example, if A is a 7-square matrix with eigenvalues �1, �2, and �3,
with multiplicities 2, 2, and 3, respectively, then it is possible for J to take
the form

⎡ ⎤
�1 1

⎢ �1 ⎥
⎢ ⎥
⎢ �2 ⎥
⎢ ⎥
⎢ �2 ⎥
⎢ ⎥
⎢ �3 1 ⎥
⎣ ⎦�3 1

�3

with diagonal Jordan blocks J2��1�, J1��2�, J1��2�, and J3��3�.
It is sometimes difficult to compute the Jordan form. For instance, suppose

we have

a b
A= 0 a

and b=0. The Jordan form is either

a 0 a 1
0 a

or 0 a

1 0
depending on whether b is equal to zero. (If b � 0, the matrix

[

0 b−1

]

= ,

1 0 a 1
with inverse , transforms A into , which becomes A’s Jordan 0 b 0 a
form.) We see that again we encounter the nonsolvable problem of determining
whether a number is zero.

Nonsolvable Problem 10.5 For a real (complex) n-square matrix A,
with n > 1, determine to k decimal places the elements of the Jordan form of A.

We consider the case of a rational matrix A later in this chapter, in Section 10.6.
It is not the diagonal elements of J that are difficult to determine, because

these are eigenvalues and can be found to any number of correct decimal places.
It is the 1’s and 0’s above the diagonal that are troublesome. The Jordan form,

Elsevier US Job Code:IPNM Chapter:Ch10-P373859 19-12-2006 11:48a.m. Page:117 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

10.2 Eigenvalues and eigenvectors 117

though sometimes difficult to compute, is helpful in understanding eigenvalue
and eigenvector problems.

It is simple to determine the eigenvectors of a Jordan form J . The eigenvector
equation for a Jordan block Jr��� is �Jr���−�I�x = 0, where the vector x has
r components, and the matrix Jr���−�I is

⎡ ⎤0 1
⎢ 0 1 ⎥
⎢ ⎥

⎢ � � �

� � � ⎥ (10.7)
⎢ ⎥
⎣ ⎦0 1

0 r× r

By working from the next to last linear equation backward, the solution x to
�J ���−�I�x = 0 is easily seen to be any multiple of r

⎡ ⎤
1

⎢ 0 ⎥
�r� ⎢ ⎥x = ⎢ ⎥

⎣
��� ⎦
0

It is also helpful to note that for �� � �, the equation �Jr���−��I�x = 0 has only =
the trivial solution, because the upper triangular matrix �Jr���−��I� has nonzero
diagonal elements, so its determinant is nonzero.

For each Jordan block Jr��� appearing in J we obtain an eigenvector x by
adding zero components to x�r� in the obvious way to create an n-vector with a
single 1 component. If there are t Jordan blocks in the J matrix, we obtain in
this way t linearly independent eigenvectors x1� � � � �xt, one vector associated
with each block. If �o is a particular eigenvalue of J , it is easy to see that the
equation �J −�oI�x = 0 implies that any eigenvector associated with �o must
be a linear combination of those eigenvectors associated with the individual �0

blocks. This is because the Jordan blocks that are not �0 blocks all have nonzero
diagonal elements, forcing corresponding components of x to be 0.

When we compute eigenvalues to a certain number of correct decimal places,
we can assign apparent multiplicities to them. An apparent multiplicity of 1
is always the correct multiplicity and the eigenvalue is simple. Suppose �o is
a simple eigenvalue of A. Then �o is also a simple eigenvalue of J , and this
implies that the matrix J −�oI has rank n−1. The rank of the matrix A−�oI
also is n−1, for we have

A−� I = PJP−1 −� I = P�J −� I�P−1
o o o

and then Theorem 10.1 implies that the ranks of A−�oI and J−�oI are the same.
Solvable Problem 10.2 now implies

Elsevier US Job Code:IPNM Chapter:Ch10-P373859 19-12-2006 11:48a.m. Page:118 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

� � � � � � �

118 10 Eigenvalue and Eigenvector Problems

Solvable Problem 10.6 For a simple eigenvalue �o of a real (complex)
n-square matrix A, find to k decimal places the elements of an associated
eigenvector x of length 1.

Suppose now that �o is an apparent multiple eigenvalue of A. Here we are
uncertain whether our computed multiplicity is correct. Examining the Jordan
form, we see that if there are q Jordan blocks associated with �o, then the rank
of J−�oI is n−q, and there are q linearly independent eigenvectors associated
with � . The ranks of A−� I and J −� I are the same, and if we were certain o o o

what this rank was, according to Solvable Problem 10.2, we could determine
the correct number of linearly independent A eigenvectors for �o. But we can
not be certain of a computed rank unless it turns out to equal n− 1. Solvable
Problem 10.3 is helpful in this situation.

Solvable Problem 10.7 For an apparent multiple eigenvalue �o of a
real (complex) n-square matrix A, find to k decimal places the elements of a
single associated eigenvector x of length 1, or else find to k decimal places the
elements of two or more vectors x1� � � � �xq, each of length 1 and satisfying the
inequality len�Axi−�oxi� < 10−k for all i.

The vectors x1� � � � �xq may be called “apparent eigenvectors” if it is under
stood that higher precision computatation may show that some of these vectors
are not eigenvectors.

We now turn to practical methods for handling the solvable problems of this
section.

10.3 Companion matrices and Vandermonde matrices

The method for finding eigenvalues and eigenvectors that is presented in the next
section makes use of the two matrix types treated here. The first type answers the
following question: How can one construct a square matrix that has a specific
characteristic polynomial? Suppose the polynomial is

n+ c nP���= � n−1�
−1 +· · ·+ c1�+ c0

One solution to this puzzle is the n-square companion matrix C having the form:

⎡ ⎤0 0 � � � 0 −c0

⎢1 0 � � � 0 −c ⎥1 ⎢ ⎥
C = ⎢0 1 � � � 0 −c2 ⎥⎢ ⎥

⎣ �� �� �� �� �� �� �� ⎦

0 0 � � � 1 −cn−1

Elsevier US Job Code:IPNM Chapter:Ch10-P373859 19-12-2006 11:48a.m. Page:119 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

[]

119 10.3 Companion matrices and Vandermonde matrices

A companion matrix has all elements zero except for the elements just below
the diagonal, which equal 1, and the elements in the last column, which equal
the coefficients of the polynomial times −1.

To show that

det�C−�I�= �−1�n��n + cn−1�
n−1 +· · ·+ c1�+ c0� (10.8)

compute the determinant of

⎡	 ⎤−� 0 � � � 0 −c0

⎢ 1 −� � � � 0 −c1 ⎥
⎢	 ⎥

C−�I = ⎢ 0 1 � � � 0 −c2 ⎥
⎢	 ⎥
⎣	 ���

���
���
���
���

���
��� ⎦

0 0 � � � 1 −�− cn−1

by a cofactor expansion along the last column. Recall that the cofacter of a
matrix element in row i and column j is �−1�i+j times the determinant of the
submatrix obtained by crossing out the ith row and jth column of the matrix.

The cofactor of the element −c0 is �−1�n+1 times the determinant of an upper
triangular matrix with all diagonal elements equal to 1, so −c0 times its cofactor
is �−1�nc0. The cofactor of the element −�− cn−1 is �−1�n+n = +1 times
the determinant of an �n− 1�-square lower triangular matrix with all diagonal
elements equal to −�, so −�−cn−1 times its cofactor is �−1�n��n + cn−1�

n−1�.
This verifies that the coefficients shown in equation (10.8) are correct for the
leading two terms of the polynomial and the constant term. The cofactor of any
other element in the last column, such as −cj , is �−1�n+j+1 times the determinant
of a matrix with the structure

B1 O
O B2

The j-square matrix B1 is lower triangular with diagonal elements equal to −�,
and the �n−1 − j�-square matrix B2 is upper triangular with diagonal elements
equal to 1. This leads to a contribution to det�C−�I� of �−cj��−1�n+j+1�−��j =
cj�−1�n+2j+2�j = �−1�ncj�

j , in agreement with equation (10.8).
If C’s characteristic polynomial has n distinct roots �1��2� � � � � �n, then by

Theorem 10.3 the matrix C can be transformed into a diagonal matrix with these
roots along the diagonal. To find the transforming matrix, consider the matrix

⎡	 ⎤
1 �1 �1

2 · · · �1
n−1

⎢ �2 �n−1 ⎥

⎢1 �2 2 · · · 2 ⎥

V = ⎢ ⎥ (10.9)
⎣
���

���
���

���
���
���

��� ⎦
1	 � �2 · · · �n−1

n n n

Elsevier US Job Code:IPNM Chapter:Ch10-P373859 19-12-2006 11:48a.m. Page:120 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

120 10 Eigenvalue and Eigenvector Problems

A matrix of this form is called a Vandermonde matrix. If we carry through the
matrix multiplication VC, and use in the last column of the product the identity

−c0 − c1�i −· · ·− cn−1�
n
i
−1 = �n

i

which holds for i= 1�2� � � � � n, we find
⎡ ⎤
�1 �1

2 · · · �1
n

⎢ �2 ⎥
⎢�2 2 · · · �2

n
⎥

VC = ⎢ ���
���

���
���
���

���
⎥

⎣ ⎦

� �2 · · · �n
n n n

⎡ ⎤⎡ ⎤
�1 1 �1 · · · �1

n−1

⎢ �2
⎥⎢1 �2 · · · �n

2
−1 ⎥

= ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎣ � � � ⎦⎣

���
���

���
���
���

��� ⎦
� 1 � · · · �n−1
n n n

Thus if the diagonal matrix is assigned the letter D, then we have VC =DV , and
if V has an inverse V−1, then VCV−1 =D, so V−1 is the transforming matrix.

We show by an indirect argument that if all the roots �i are distinct, then
det V �= 0, so V has an inverse. For an n-square matrix A, if there are no nonzero
n-vectors x satisfying the matrix equation Ax = 0, this implies det A �= 0. Suppose
then that the n-vector

⎡ ⎤
d1

⎢ ⎥d2
d = ⎢ ⎥

⎢ ⎥
⎣

��� ⎦
dn

satisfies the matrix equation Vd = 0. We have then

d1 +d2�i +d3�
2
i +· · ·+dn�

n
i
−1 = 0� for i = 1�2� � � � �n

Thus the degree n−1 polynomial D���, given by

D���= d1 +d2�+d3�
2 +· · ·+dn�

n−1

has n distinct roots, which is impossible.
Suppose there are multiple roots in the factorization of the characteristic

polynomial:

P���= ��−�1�
m1 ��−�2�

m2 � � � ��−�t�
mt

Now the Vandermonde matrix takes a more general form. A block of mi rows
of V are assigned to �i with the structure

Elsevier US Job Code:IPNM Chapter:Ch10-P373859 19-12-2006 11:48a.m. Page:121 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

() () ()

10.3 Companion matrices and Vandermonde matrices 121

⎡ () ⎤

⎢
0 0 0 0 � � � 1 � � �

m
n−
−

1
1 �i

n−mi

⎥i⎢ ⎥
⎢ � � � � � � � � � � � � ⎥
⎢ �� �� �� �� �� �� �� �� �� �� �� �� ⎥
⎢ () () () ⎥
⎢ ⎥
⎢0 0 1

3
� � � �

mi−1
�
mi−3

� � �
n−1

�n−3 ⎥
⎢ 2 i 2 i 2 i ⎥
⎢ () () () () ⎥
⎢ ⎥
⎢ 2 3

�2 mi−1 mi−2 n−1 n−2 ⎥
⎣0 1 �i � � � �i � � � � ⎦1 1 i 1 1 i

mi−1 n−11 �i �2
i �3

i � � � �i � � � �i

If we let Vi denote this mi × n matrix, then we find that the matrix equation
ViC = Jmi

��i�Vi holds, where Jmi
��i� is an mi-square Jordan block. To see this,

first carry through the matrix multiplication ViC to get:

⎡ () () ⎤
mi n n−mi+1

⎢ 0 0 0 0 � � �
mi−1 �i � � �

mi−1 �i ⎥
⎢ ⎥
⎢ � � � � � � � � � � � � ⎥
⎢ �� �� �� �� �� �� �� �� �� �� �� �� ⎥
⎢ () () () () ⎥
⎢ 3 4 m mi−2 n ⎥
⎢ 0 1 �i �2

i � � � i �i � � � �n
i
−2 ⎥

⎢ 2 2 2 2 ⎥
⎢ ⎥
⎢ () () () () () ⎥
⎢ 2 3 4 mi i−1 n n ⎥1 � �2 �3 � � � �

m
� � � � −1

⎣ 1 i 1 i 1 i 1 i 1 i ⎦

�i �2
i �3

i �4
i � � � �

m
i

i � � � �n
i

To obtain the last column of this matrix, we need one additional equation. We
know that �i satisfies the polynomial equation

n n−�c0 + c1�+ c2�
2 +· · ·+ cn−1�

−1�= �

Because �i has multiplicity mi, it also satifies the equations that can be obtained
from this one by taking derivatives with respect to �, of any order between 1 and
mi−1. If we take the j-th derivative and then divide by j!, we obtain our needed
equation

−
[

cj + cj+1

(
j+1

)

�+· · ·+ cn−1

(
n−1

)

�n−1−j

]

=
(

n
)

�n−j

j j j

A matrix identical to ViC is obtained if we premultiply Vi by the Jordan block
Jmi

��i�. Here we need to make use of the binomial identity

s s−1 s−1
j

=
j−1 +

j

which is valid when the integer s is larger than the positive integer j.

Elsevier US Job Code:IPNM Chapter:Ch10-P373859 19-12-2006 11:48a.m. Page:122 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

� � � � �

122 10 Eigenvalue and Eigenvector Problems

Thus if the characteristic equation of a companion matrix has eigenvalues
�1��2� � � � � �t with respective multiplicities m1�m2� � � � �mt, and we form a Van
dermonde matrix V having an appropriate sized block for each distinct eigen
value, we have the matrix equation VC = JV , where J is the Jordan form for
C. The argument used before to show det V � 0 can be repeated for the more =
general Vandermonde matrix to show that it too has a nonzero determinant. Thus
V has an inverse V−1, so we have VCV−1 = J , and C is transformed to Jordan
form by V−1. The Jordan form of a companion matrix is restricted, because an
eigenvalue �i can have only one associated Jordan block.

10.4	 Finding eigenvalues and eigenvectors
by Danilevsky’s method

Given an n-square problem matrix A, the method of Danilevsky can be used
to find an n-square matrix Q that transforms A into a companion matrix C,
that is, Q−1AQ = C. If we are successful in finding Q and C, then the last
column of C has the coefficients of the common characteristic polynomial of C
and A. Knowing the characteristic polynomial, A’s eigenvalues can be obtained
as the polynomial’s distinct roots, with each eigenvalue assigned an apparent
multiplicity. This allows us to construct the matrices V and V−1 and to transform
C into Jordan form J . Because Q−1AQ=C and VCV−1 = J , if we set P equal to
QV−1, then P−1AP = J . The eigenvector of J associated with an eigenvalue �i

is a vector xi with all zero components except for a single 1 component aligned
with the starting row of the Jordan block associated with �i. The corresponding
eigenvector yi of A is Pxi, as was shown in Section 10.2. Thus the eigenvectors
of A are certain column vectors of P.

The matrices Q and C are computed in stages. That is, a series of transforma
tions are made, gradually bringing A to companion form, one column at a time.
We use Ai to designate the form of A after it has been transformed so that the
columns to the left of column i are in companion form. In general we have

⎡ � � ⎤0 a1i � � � a1n

⎢1 a� � � � a� ⎥2i 2n ⎢	 ⎥
⎢ 1 a� � � � a� ⎥3i 3n ⎢	 ⎥
⎢	 � � � �� �� �� �� �� ⎥
⎢ � � � � � ⎥

Ai = ⎢ � � ⎥
⎢ 1 a � � � a ⎥ii in ⎢ � � ⎥
⎢ ai+1�i � � � ai+1�n⎥⎢	 ⎥
⎣ �� �� �� �� �� ⎦

ani
� � � � ann

�

Elsevier US Job Code:IPNM Chapter:Ch10-P373859 19-12-2006 11:48a.m. Page:123 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

10.4 Finding eigenvalues and eigenvectors by Danilevsky’s method 123

The elements of Ai get changed as Ai is transformed into Ai+1. To keep
notation simple, the primed element notation aij

� is used for all matrices Ai. At
the beginning of operations, A1 = A and Q = I , and no columns are in correct
form. The process ends when An has been obtained, because An is in companion
matrix form.

We want to transform Ai so that in column i we have the needed structure of all
zeros except for a single 1 below the diagonal position, and at the same time keep
unchanged the preceding columns that already have the correct structure. We
require an n-square matrix Qi such that Q−

i
1AiQi = Ai+1. Each time we perform

any transformation, the current Q matrix is postmultiplied by the transforming
matrix and becomes the new Q matrix.

A key element of Ai is ai
�
+1�i, the “pivot element”, which becomes 1 as

Ai gets transformed into Ai+1. The pivot element must be nonzero, and if it
not, it needs to be exchanged for a column element below it that is nonzero.
So the first step is to check the elements a� a� � � � � � a� , stopping as i+1�i, i+2�i n�i

soon as a nonzero element is located. If this first nonzero element is not
ai
�
+1�i, but is aj�i

� , we perform the operation Exchange Row�i+ 1� j� on A to
bring this element into the pivot position without disturbing the companion
matrix columns already obtained. This operation is equivalent to premultiply
ing Ai by a matrix I � identical to I except that rows i+ 1 and j have been
exchanged. The matrix I � is its own inverse, so to complete the transformation, the
needed postmultiplication by I � is done by performing the operation Exchange
Col�i+ 1� j�, which leaves the new pivot element in column i undisturbed.
The column exchange is also performed on the current Q matrix to change it
to QI � .

Now with ai
�
+1�i =� 0, the needed matrix Qi that transforms Ai into Ai+1 is

equal to the identity matrix I except that column i+1 is replaced by column i
of Ai:

col i+1 ⎡ ⎤
1 a1

�
i ⎢ ⎥

⎢ 1 a� ⎥
⎢ 2i ⎥
⎢

� � �
���

⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ 1 a� ⎥

Qi = ⎢ ii ⎥
⎢ � ⎥
⎢ ai+1�i ⎥
⎢ ⎥
⎢ ⎥
⎢ ai

�
+2�i 1 ⎥

⎢ ⎥
⎢ ���

� � � ⎥
⎣ ⎦

a� 1ni

Elsevier US Job Code:IPNM Chapter:Ch10-P373859 19-12-2006 11:48a.m. Page:124 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

�
�

�

�

�

[]

124 10 Eigenvalue and Eigenvector Problems

The inverse of this matrix is

col i+1 ⎡ ⎤

⎢1 − a1i ⎥
⎢ a ⎥i+1�i ⎢ � ⎥
⎢ a2i ⎥
⎢ 1 − ⎥
⎢ ⎥ai+1�i ⎢ ⎥
⎢ � � �

���
⎥

⎢ ⎥
⎢ ⎥
⎢ � ⎥
⎢ aii ⎥1 − ⎢ � ⎥

Q−1 = ⎢ ai+1�i ⎥
i ⎢ ⎥1 ⎢ ⎥

⎢ � ⎥
⎢ ai+1�i ⎥
⎢ � ⎥
⎢ ai+2�i ⎥
⎢ − 1 ⎥
⎢ a ⎥i+1�i ⎢ ⎥
⎢ ���

� � �
⎥

⎢ ⎥
⎢ ⎥
⎣ � ⎦− ani 1

ai+1�i

as may be seen readily by doing the matrix multiplication QiQ
−
i

1 to obtain I .
Because the first i columns of Qi are identical to corresponding columns of I ,
the first i columns of the product AiQi are the same as those of Ai. One can
then verify that the premultiplication of AiQi iby Q−1 does not alter columns 1
through i−1 of AiQi, but does change column i to the companion matrix form,
that is, to a column having a 1 in the pivot position, and 0s elsewhere in the
column.

It may happen that we find no element � 0 among the elements ai
�
+1�i,=

a� � � � � � a� In this case we give up trying to transform Ai to companion i+2�i in.
matrix form, and try instead to transform it to the form

C1 O
(10.10)

O C2

Here there are two companion matrices of various sizes, both in diagonal position.
This more general goal is sometimes needed with Danilevsky’s method, because
the Jordan form of a companion matrix is restricted, in that an eigenvalue of
multiplicity greater than 1 can have only a single Jordan block. If the Jordan
form of A has several Jordan blocks associated with a multiple eigenvalue, the
more general goal becomes necessary.

When the column i impasse is encountered, the structure of the matrix Ai may
be interpreted as

Ai =
[
C1 B

]

(10.11)
O D

Elsevier US Job Code:IPNM Chapter:Ch10-P373859 19-12-2006 11:48a.m. Page:125 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

�

�

10.4 Finding eigenvalues and eigenvectors by Danilevsky’s method 125

The i-square submatrix C1 occupying the first i rows and columns of Ai is
in companion form, and the submatrix below it is a zero submatrix, or more
exactly, a submatrix with all elements either 0 (the first i−1 columns) or = 0
(column i). By a series of transformations, we convert all rows except row 1
of the submatrix B to rows of zeros, preserving the submatrix C1 and the zero
submatrix below it. Suppose we have brought Ai to a form where all rows of
its changing submatrix B below row q are zero. We can clear row q of B by a
process similar to the one described earlier for clearing a column of Ai, but here
we use the 1s of the submatrix C1 to do the clearing.

Let S be a matrix identical to I except that row q−1 is as shown: q

⎡ ⎤
1

⎢ ⎥
⎢ � � � ⎥
⎢ ⎥
⎢ 1 0 � � � 0 a� � � � a� ⎥
⎢ q�i+1 q�n ⎥
⎢ 1 ⎥
⎢ ⎥
⎢ ⎥

Sq = ⎢ � � � ⎥ row q−1
⎢ ⎥
⎢ 1 ⎥
⎢ ⎥
⎢ 1 ⎥
⎢ ⎥
⎢ ⎥
⎣ � � � ⎦

1

The elements aq�i
�

+1� � � � � a
� are the current A elements in row q, which also q�n i

are elements of the current submatrix B. The inverse matrix S−1 is identical to q

Sq except that all primed elements are replaced by their negatives. When Ai is
transformed by Sq

−1, so that SqAiSq
−1 replaces the previous version of Ai, row q

of the submatrix B gets cleared. (Postmultiplication of Ai by Sq
−1 affects only

the current B and D submatrices, and clears row q of B. Here the presence of
a 1 in row q and column q− 1 of C1 is essential. Then the premultiplication
of AiSq

−1 by Sq affects only row q− 1, so the new zero elements in row q are
unchanged.)

Transformations in succession by Si� Si−1� � � � � S2 bring Ai to a form where
rows 2 through i of the B submatrix are all zeros. If the elements of the B subma
trix in row 1 all test = 0, then the transformation to the general form (10.10) is
complete, and the entire Danilevsky process can be applied to the submatrix D,
which becomes our new problem matrix. However, when carrying out a trans
formation on this submatrix, we must be careful to extend the reach of any
transformation on it beyond the D region to the regions above and to the left.
Some elements there are approximate zeros rather than exact zeros, and we want
their ranges to correctly reflect their computational error at all times.

Of course it may happen that there is an element � 0 in row 1 of the final B=
submatrix. Suppose the first such element � 0 we find is b1t= . This element is

Elsevier US Job Code:IPNM Chapter:Ch10-P373859 19-12-2006 11:48a.m. Page:126 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

� � �
� � �

126 10 Eigenvalue and Eigenvector Problems

brought to a new position by transforming Ai by a matrix Ut of the form shown
below. The submatrix in the upper left of Ut is t-square.

⎡ ⎤0 1 0 � � � 0
⎢ 0 0 1 � � � 0 ⎥
⎢ ⎥
⎢ � � � � ⎥
⎢ �� �� ��

� � � �� ⎥
⎢ ⎥
⎢ 0 0 0 � � � 1 ⎥

U = ⎢ ⎥t ⎢ 1 0 0 � � � 0 ⎥
⎢ ⎥
⎢ 1 ⎥
⎢ ⎥
⎣ � � � ⎦

1

Postmultiplication of our problem matrix by Ut brings column t to the
column 1 position, and moves columns 1 through t− 1 back one column. The
inverse of Ut is its own transpose. Premultiplication now by Ut

−1 will perform
a similar manipulation of rows 1 through t. After this transformation of Ai is
complete, its upper left submatrix in the first i+1 rows and i columns has the
form

⎡ ⎤0 0 � � � 0
⎢ b1t 0 � � � 0 ⎥
⎢ ⎥
⎢ 0 1 � � � 0 ⎥
⎢ ⎥
⎣ � � � � � � ⎦

0 0 � � � 1

�i+1�×i

The transformation by Ut has possibly caused nonzero elements to appear in the
first column below row i+ 1. In any case the form of Ai is now such that if
we restart the Danilevsky method at column 1, we cannot again encounter the
impasse of not finding a suitable pivot element until we are at least one column
further than before. All the 0 elements of ai

� cause the successive transformation
matrices Q1, Q2, � � � , Qi to have a diagonal submatrix in the first i+1 rows and
first i+1 columns, so although the 1 elements in the submatrix just shown may
get changed to a different nonzero value, the general form of this submatrix does
not change.

Thus the Danilevsky procedure eventually succeeds in transforming the prob
lem matrix to the general form

⎡
C1

⎤

C =
⎢
⎢
⎢
⎣

C2

� � �

Cs

⎥
⎥
⎥
⎦

(10.12)

where all submatrices Ci are companion matrices. Frequently s = 1 and just one
companion matrix is obtained. The elements of C that do not belong to any of

Elsevier US Job Code:IPNM Chapter:Ch10-P373859 19-12-2006 11:48a.m. Page:127 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

�

127 10.5 Error bounds for Danilevsky’s method

the various companion submatrices either are 0 or test = 0. Because some of
these elements may not be exact zeros, if we find correctly ranged eigenvalue
approximations to the various companion submatrices, using their easily obtained
characteristic polynomials, we cannot presume these eigenvalues are correctly
ranged for C. Nevertheless for each companion matrix Ci, eigenvalue approxi
mations can be found with computed apparent multiplicities, using the methods
of Chapter 8, and so a Vandermonde matrix Vi for Ci can be constructed. We
form the matrix

⎡
V1

⎤

V =
⎢
⎢
⎢
⎣

V2

� � �

Vs

⎥
⎥
⎥
⎦

to correspond to the structure of C shown in (10.12). Using this matrix and its
inverse V−1, we can transform C to “approximate” Jordan form J �. Thus in all
cases we can construct a matrix P such that P−1AP = J � .

10.5 Error bounds for Danilevsky’s method

The Jordan form J � achieved by Danilevsky’s method is approximate, in
the sense that off-diagonal J � elements may not be exact 0s or exact 1s. There
fore the eigenvalues of J � and the various columns of the transforming matrix
P that are taken as eigenvectors must be assigned error bounds, to be added
to the automatic computational error bounds. We consider here two types of
approximate Jordan forms J �, one type that is diagonal with no off-diagonal 1s,
and the more general Jordan form that has off-diagonal 1s.

For diagonal Jordan forms, we use a result due to Gershgorin that bounds
eigenvalue error.

Theorem 10.4 Let B be any n-square matrix with real or complex elements.
In the complex plane define the n disks

�z−bii� ≤ ri i = 1�2� � � � � n (10.13)

where
n

ri =
∑ �bij�
j=1
j � i=

These n disks may overlap. In general, they form s disjoint, connected sets,
where s = n only if the disks do not overlap. Every eigenvalue of B lies in one
of these connected sets, and each connected set consisting of t disks contains
t eigenvalues.

Elsevier US Job Code:IPNM Chapter:Ch10-P373859 19-12-2006 11:48a.m. Page:128 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

128 10 Eigenvalue and Eigenvector Problems

To prove the theorem, let � be any eigenvalue of B, and let x be an associated
eigenvector, adjusted via multiplication by a constant so that the component xi0

of largest magnitude equals 1. All other components of x then have magnitude
≤1. The matrix equation �x = Bx may be converted to the following element
equations:

n

��−bii�xi =
∑

bijxj i = 1�2� � � � � n (10.14)
j=1
j � i=

Taking absolute values, we have

n n n

��−bii��xi� = �∑
bijxj� ≤

∑ �bij��xj� ≤
∑ �bij� ·1 = ri i = 1�2� � � � � n

j=1 j=1 j=1
j � i j � i j � i= = =

Because xi0
= 1, for equation i0 we have

��−bi0�i0
� ≤ ri0

Thus � lies in one of the disks, and hence in one of the s connected sets.
To prove the other part of the theorem, about the number of eigenvalues in a

connected set of disks, consider the matrix

B�u�= �1 −u�J +uB

where J is a diagonal matrix with the same diagonal elements as B. As the real
parameter u varies from 0 to 1, the matrix B�u� varies from J to B. When u= 0,
the disks are points and all parts of the theorem are correct. As u varies toward 1,
the disk radii grow, and the sets of connected disks vary in the number of
component disks. The eigenvalues move continuously in the complex plane and
therefore cannot jump from one set of connected disks to another. Consequently,
for any value of u, the number of disks in a connected set and the number of
associated eigenvalues always match, and this includes the case u= 1.

We consider next how to bound the error of a supposed eigenvector. For a
diagonal matrix, the eigenvector associated with any eigenvalue may be taken as
a vector with a single component equal to 1, all other components being 0. If we
claim this vector as an eigenvector approximation for B, which is not necessarily
diagonal, then the zero eigenvector components must be assigned some error.
The matrix B may be represented as a sum of two parts, a diagonal matrix J and
a discrepancy matrix E:

⎡ ⎤ ⎡ ⎤
b11 0 b12 � � � b1n

⎢ ⎥ ⎢ ⎥
⎢ b22 ⎥ ⎢ b21 0 � � � b2n ⎥

B = J +E = ⎢ ⎥+⎢ ⎥
⎣ � � � ⎦ ⎣

���
���

� � �
��� ⎦

bnn bn1 bn2 � � � 0

Elsevier US Job Code:IPNM Chapter:Ch10-P373859 19-12-2006 11:48a.m. Page:129 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

∑ ∑

∑

129 10.5 Error bounds for Danilevsky’s method

The radius rq equals the sum of the absolute values of the E matrix elements
that are in row q, and bounds the error of the J diagonal element bqq if the disk
corresponding to this element is disjoint from the other disks. Let us assume
this to be the case. Then we may set �q = bqq � rq± to obtain a correctly ranged
eigenvalue. Let xq be the B eigenvector associated with �q with its qth component
set equal to 1. The other components of xq cannot have a magnitude larger
than 1. Otherwise, if xi is the component of xq that is largest in magnitude, we

o

can divide all the vector’s components by xi to make the io component 1, repeat
o

the steps of the proof of the preceding theorem and obtain ��q − bi �i � ≤ ri ,
o o o

so �q lies in the bi �i disk, contradicting our assumption that the bqq disk was
o o

disjoint.
Now we can bound the magnitude of any component xi of xq different from xq.

Using equation (10.14) for i �= q, after taking absolute values, we have

n n

��q −bii��xi� ≤ �bij��xk� ≤ �bij� ·1 = ri
j=1 j=1
j �=i j �=i

Hence

�xi� ≤ ri
��q −bii�

= �i

and we may take xi as 0 ±� �i to obtain correctly ranged values for all the
components of our eigenvector xq. The eigenvector for the problem matrix A
now can be computed in the usual way as Pxq.

Suppose now that the bqq disk is not disjoint from the other disks, but is part
of a disjoint composite formed by t disks. In this case we take �q as bqq�R±
where R = 2 ri, the sum being over all indices i such that the bii disk is part
of the composite. Now �q is taken as an eigenvalue of apparent multiplicity t. In
accordance with Solvable Problem 10.3, t apparent eigenvectors can be defined,
using vectors xi with all zero components except for a single 1 component in
positions appropriate to the set of overlapping disks. An apparent eigenvector
xi is not necessarily an eigenvector, and the only claim made for xi is that
len�Bxi −�qxi� is within a prescribed bound. Thus xi does not have to have an
additional error bound assigned, and we obtain the apparent eigenvectors for the
problem matrix A in the usual way as columns of P.

Now we consider the second, more general, Jordan form, where off-diagonal
1s occur. Again we represent the matrix B as a sum of two matrices, a Jordan
form matrix J and a discrepancy matrix E. An ij element of J outside the
Jordan block domains is 0, and a corresponding element of E is bij . The plan
for elements of J and E that are in a Jordan block domain, can be illustrated by

Elsevier US Job Code:IPNM Chapter:Ch10-P373859 19-12-2006 11:48a.m. Page:130 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

130 10 Eigenvalue and Eigenvector Problems

showing just the elements of the first Jordan block. We presume this first block
is m-square and show first the J elements and then the E elements.

⎡	 ⎤
b11 1

⎢ 1 ⎥
⎢ b11 ⎥
⎢ ⎥
⎢ � � �

� � � ⎥
⎢ ⎥ (10.15) ⎢	 ⎥
⎢ � � �	

� � � ⎥
⎢	 ⎥
⎣	 ⎦b11 1

b11

⎡	 ⎤
0 b12 −1 b13 � � � b1�m−1 b1m

⎢ b21 b22 −b11 b23 −1 � � � b2�m−1 b2m
⎥

⎢	 ⎥
⎢	 ⎥
⎢ ���

���
���

���
���
���

���
��� ⎥

⎢	 ⎥
⎢	 ⎥
⎢ ���

���
���

���
���
���

���
��� ⎥

⎢	 ⎥
⎣	 ⎦bm−1�1 bm−1�2 bm−1�3 � � � bm−1�m−1 −b11 bm−1�m −1

bm1 bm2 bm3 � � � bm�m−1 bmm −b11

As before let ri equal the sum of the absolute values of the matrix E elements
in row i. This time, to keep our error bounds simple in form, we use only the
quantity r defined as the maximum rj value over all the rows of B. Suppose x
is an eigenvector of B with the component of largest magnitude being one of
the components x1, � � � , xm associated with our first block. Because our block
is the first block, we designate the x eigenvalue to be �1. Suppose also that
our eigenvector is multiplied by a constant to make the component of largest
magnitude equal 1. The element equations are

n

��1 −b11�x1 = x2 +	∑
e1jxj

j=1

n

��1 −b11�x2 = x3 +	∑
e2jxj

j=1

���	
��� (10.16)

n

��1 −b11�xm−1 = xm +	∑
em−1�jxj

j=1

n

��1 −b11�xm =	∑
emjxj

j=1

Elsevier US Job Code:IPNM Chapter:Ch10-P373859 19-12-2006 11:48a.m. Page:131 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

∑ ∑

���
���

131 10.5 Error bounds for Danilevsky’s method

Here the quantities eij are the elements of the discrepancy matrix E. After we
take absolute values, the first equation becomes

n n

��1 −b11��x1� ≤ �x2�+ �e1j��xj� ≤ �x2�+ �e1j� ·1 ≤ �x2�+ r
j=1 j=1

and, in general, we have

��1 −b11��xj� ≤ �xj+1�+ r j = 1�2� � � � �m−1
(10.17)��1 −b11��xm� ≤ r j =m

Suppose the x component that equals 1 is x1. Multiply the first inequality of
(10.17) by ��1 −b11�m−1, the second by ��1 −b11�m−2, and so on down to the last
inequality, which is multiplied by 1. We obtain the inequalities

��1 −b11�m�x1� ≤ ��1 −b11�m−1�x2�+ ��1 −b11�m−1 r

��1 −b11�m−1�x2� ≤ ��1 −b11�m−2�x3�+ ��1 −b11�m−2 r

��1 −b11�2�xm−1� ≤ ��1 −b11��xm�+ ��1 −b11�r
��1 −b11��xm� ≤ r

If we add all these inequalities and cancel any identical terms on both sides of
the inequality, we obtain the relation

��1 −b11�m ≤ r��1 −b11�m−1 +· · ·+ r��1 −b11�+ r

or

m��1 −b11� − r��1 −b11�m−1 −· · ·− r��1 −b11�− r ≤ 0 (10.18)

The polynomial

m z − rzm−1 −· · ·− rz− r

is positive if z is real and exceeds the solitary positive root R of the polynomial
(see Theorem 8.2). If we take z= 1, the polynomial equals 1 −mr . We assume
now and in the remainder of this section, that r is sufficiently small so that
r <

m
1 , making 1 −mr positive. (If this should not be the case, we increase

precision and repeat the Danilevsky procedure.) So the inequality (10.18) implies
��1 −b11� ≤ R. The positive root R of our polynomial is <1, and so we have

mR= �rRm−1 + rRm−2 +· · ·+ rR+ r�
1

m m< �r1m−1 + r1m−2 +· · ·+ r1 + r�
1 = �mr�

1

Elsevier US Job Code:IPNM Chapter:Ch10-P373859 19-12-2006 11:48a.m. Page:132 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

132 10 Eigenvalue and Eigenvector Problems

We obtain the easily calculated bound
1
m��1 −b11�< �mr�	 (10.19)

If we suppose that the largest modulus component of our eigenvector is not x1

but some other component xj associated with the first Jordan block, we obtain
even sharper bounds on ��1 −b11�. Instead of the inequality (10.18), we obtain
by a similar method the inequality

��1 −b11�m−j+1 − r��1 −b11�m−j − · · · − r��1 −b11�− r ≤ 0

which leads to
1 1 1

m−j+1 m��1 −b11�< ���m− j+1�r� m−j+1 � < �mr� < �mr�

Thus the inequality (10.19) always can be used, and it defines a disk in the
complex plane, namely �z− b11� ≤ �mr�1/m. Similarly, any other Jordan block
of B has a bounding disk assigned. Suppose a certain number of these disks
overlap, forming a connected set, and let t equal the sum of the row sizes of the
Jordan blocks corresponding to these disks. In the same way as was shown in
the proof of the Gershgorin theorem, this set must contain t eigenvalues of B,
counting multiplicities.

The procedure to be followed when the matrix B approximates a general
Jordan normal form is similar to the procedure for the diagonal case. For the first
Jordan block a correctly ranged eigenvalue is �1 � �mr�1/m, and similarly = b11 ±
for the other blocks. If a disk for a Jordan block is discrete, we try to obtain
eigenvector components, and if the disk is part of a composite figure, we supply
apparent eigenvectors.

We consider now the problem of determining eigenvector components for a
Jordan block when the bounding disk is discrete. Again we assume the eigenvec
tor has been multiplied by a constant so that its component of largest magnitude
equals 1. To illustrate the procedure, we assume the eigenvector is associated
with the eigenvalue �1, the first block eigenvalue. By similar reasoning as in the
proof of the Gershgorin Theorem, the eigenvector’s 1 component must be associ
ated with the first block, that is, it must be one of the components x1� x2� � � � � xm.
If the bound obtained by (10.19) is <1/2, then it cannot be the case that the 1
component of our eigenvector is not x1, but some other component xj associated
with the first Jordan block. If that were the case, we would have the following
contradiction. The element equation (10.16) for row j−1 can be rewritten as

n

xj = ��−b11�xj−1 −	∑
ej−1�ixi

i=1

After taking absolute values, setting �xj� equal to 1, and using the inequality
�xi� ≤ 1 for all other components, we obtain the relation

1 ≤ ��−b11�+ r

Elsevier US Job Code:IPNM Chapter:Ch10-P373859 19-12-2006 11:48a.m. Page:133 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

���
���

� �

���
���

133 10.5 Error bounds for Danilevsky’s method

which is impossible because both ��−b11� and r are less than 1/2.
Thus if r is small enough, the only eigenvectors possible for the matrix B are

eigenvectors whose component of largest modulus, xq, made equal to 1, is such
that q equals the starting row index of a Jordan block. As in the diagonal B case
we need to obtain correctly ranged values for the other components of such a
vector. Continuing with the case of the �1 eigenvector, the first m−1 equations
of the set (10.16) can be rewritten as

n

xj = ��1 −b11�xj−1 −	∑
ej−1�ixi j = 2�3� � � � �m

i=1

Taking absolute values leads to the inequalities

�xj� ≤ ��1 −b11�+ r j = 2�3� � � � �m

for the components other than x1 that are associated with the first block, that
is, they have indices matching the row indices of the first block. All these

1
components may be taken as 0 ± = m + r�.� q, where q ��mr�

We consider next the components associated with some other block, that
starts in row s. These components we will denote by x1

� � x2
� � � � � � x� � , the block m

being m�-square. Taking absolute values of the equations that apply to these m�

components, we obtain the relations

��1 −bss��x1
� � ≤ �x2

� �+ r

��1 −bss��x2
� � ≤ �x3

� �+ r

��1 −bss��xm�−1� ≤ �xm� �+ r

��1 −b ��x � � � ≤ rss m

Working backward through these inequalities, we obtain the following bounds
for xi

�:

�x � � � ≤ r
m ��1 −bss�

� r r �xm�−1� ≤ + ��1 −bss� ��1 −bss�2

�x1
� � ≤ r + r +· · ·+ r

�m��1 −bss� ��1 −bss�2 ��1 −bss�

Elsevier US Job Code:IPNM Chapter:Ch10-P373859 19-12-2006 11:48a.m. Page:134 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

134 10 Eigenvalue and Eigenvector Problems

Each component xi
� � qi�, with qi

� chosenthen may be assigned the value 0 ±
according to the inequalities shown. With correctly ranged components for the
B eigenvector x, we can form the A eigenvector y by means of the equation
y = Px, and convert it to a vector of length 1 in the usual way. As always we
need to redo the entire computation at an appropriate higher precision if the
required number of correct decimal places for the eigenvector components is not
obtained.

10.6 Rational matrices

Finding eigenvalues and eigenvectors for a rational matrix A generally requires
that one leave the field of rational numbers. Nevertheless, when A is rational,
this problem can be treated without difficulty.

Solvable Problem 10.8 For a rational n-square matrix A, determine
all eigenvalues to k decimal places, and determine the multiplicity of each
eigenvalue. For each eigenvalue �0, find to k decimal places the elements of a
complete set of linearly independent eigenvectors x1� � � � �xq, each of length 1.

More details about the computation procedure for a rational matrix are given in
the next section.

The problem of finding the Jordan form J of A also poses no difficulty.

Solvable Problem 10.9 Given an n-square rational matrix A, determine
to k decimal places the elements of the Jordan form J of A, and to k decimal
places the elements of a complex matrix P, such that P−1AP = J .

With a rational matrix A, the Danilevsky procedure of Section 10.4 can be
used to find a rational matrix Q that transforms A to companion form C,
where the rational matrix C is composed of a number of companion subma
trices, C1�C2� � � � �Cs, all in diagonal position. The Danilevsky procedure con
verts to rational computation without difficulty and yields a rational companion
matrix C with exact elements. From the rational characteristic polynomial of
one of the companion submatrices Ci, one can form eigenvalue approxima

�i� �i� �i� �i�tions �1 ��2 � � � � � �
�i�
qi

, with respective correct multiplicities m1 , m2 , � � � �m�i�
qi

.
Using these eigenvalues, one can construct the appropriate Vandermonde
matrix V , and then obtain the matrix P = QV−1, which transforms A to the
Jordan form J . Thus the Jordan form obtained is the correct Jordan form, and
should its elements not be obtained to the required number of decimal places,
one need only increase precision appropriately, and repeat the transformation of
the exact companion matrix C to Jordan form.

Elsevier US Job Code:IPNM Chapter:Ch10-P373859 19-12-2006 11:48a.m. Page:135 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

135 10.7 The demo programs eigen, c_eigen, and r_eigen

10.7	 The demo programs eigen, c_eigen,
and r_eigen

For a square matrix A with real elements, the program eigen finds eigenvalues,
eigenvectors, and, possibly, apparent eigenvectors. After the elements of the
matrix A have been entered by the user, and the number of correct decimal
places specified, the program eigen enters a loop wherein all computations are
performed.

Within the loop, first the Danilevsky procedure is used to transform A into
companion matrix form C. The roots of the real polynomials defined by the
companion submatrices are obtained, and used to construct a Vandermonde
matrix V , allowing the companion matrix C to be transfomed by V−1 into
approximate Jordan normal form J � . The polynomial roots are obtained with
their ranges set to zero, because the methods described in Section 10.5 are used
to obtain from J � correctly ranged eigenvalues. Using exact root approximations
to construct V allows V−1 to have elements with smaller ranges.

If eigenvectors are required, for each ranged eigenvalue of J � either a correctly
ranged eigenvector is obtained, or a set of apparent eigenvectors is obtained.
Apparent eigenvectors for J � have a single component equal to 1 and all others
are 0. From a correctly ranged J � eigenvector x, a correctly ranged A eigenvector
y is obtained using the relation y = Px, where P is the matrix that transforms
A into J �. Apparent eigenvectors for A are formed simply by using appropriate
columns of P. Eigenvectors and apparent eigenvectors are converted into vectors
of length 1 by multiplying them by the reciprocal of their length. Finally,
eigenvalues and eigenvector components are tested to determine whether enough
correct decimal places have been obtained. If so, the loop is exited and the
results displayed. Otherwise, precision is increased appropriately and another
cycle through the computation loop ensues.

The program c_eigen is similar to eigen except for minor changes to
accomodate a complex problem matrix A instead of a real one.

The program r_eigen for a rational problem matrix A has a computation
loop that differs from the eigen loop. The companion matrix C is obtained sith
rational arithmetic, and the computation loop starts after C is obtained.

The Jordan blocks corresponding to a C submatrix are correctly sized, because
correct multiplicities for the roots of a rational polynomial are obtained. After
ranges are assigned to the leading diagonal elements of the Jordan blocks to
define eigenvalues, eigenvalues associated with different C submatrices are
compared with each other. If there is no overlap, then one correctly ranged
eigenvector per Jordan block is obtained by the method described for eigen.

If there are k eigenvalues associated with different C submatrices that overlap,
and if these eigenvalues truly are equal, then k linearly independent eigenvectors
can be obtained. The eigenvalue multiplicity of this common eigenvalue is the
sum of the individual multiplicities. An overlap can be verified by multiplying
the polynomials of all the C submatrices together to obtain the A characteristic

Elsevier US Job Code:IPNM Chapter:Ch10-P373859 19-12-2006 11:48a.m. Page:136 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

136 10 Eigenvalue and Eigenvector Problems

polynomial, and determining the true multiplicity of its roots. If this multiplicity
determination shows that the overlap is in error, precision is increased and the
loop computations are repeated. Otherwise, the normal testing of eigenvectors
ensues.

Software Exercises H

These exercises concern the two demo programs eigen and r_eigen.

1. Call eigen and find to 10 decimal places the eigenvalues and eigenvectors
of the following matrix.

⎡ ⎤
2 4 4

⎣ 0 3 1 ⎦
0 1 3

View the eigen print file to see the results in detail. Note the “Apparent
multiplicity” label for eigenvalues. For one of the eigenvalues, two apparent
eigenvectors are obtained instead of two eigenvectors. However, the problem
matrix is a rational matrix, and for such a matrix, computing apparent eigenvec
tors is not necessary.

2. Call r_eigen, enter the problem matrix of the preceding exercise one
more time, and view the r_eigen print file. Note that the multiplicity is not
labeled as apparent, and three eigenvectors are obtained. Thus if all elements of
a problem matrix are known to be rational, it is advantageous to use the program
r_eigen instead of eigen.

Elsevier US Job Code:IPNM Chapter:Ch11-P373859 19-12-2006 11:48a.m. Page:137 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

Problems of Linear

Programming
 11

Two demo programs use linear programming principles. Both programs employ
rational arithmetic exclusively. The program linpro solves common prob
lems of linear programming, and the program i_equat solves linear interval
equations, which are sometimes encountered in engineering disciplines.

The opening two sections of this chapter are preparatory and treat the general
problem of solving linear equations when all coefficients and constants are
rational. Then in the following two sections, the fundamentals of linear program
ming are presented. After that, the problem of solving linear interval equations
is discussed, and it is shown how these equations can be accurately solved by
linear programming methods. The last two sections of this chapter describe the
programs linpro and i_equat.

11.1 Linear algebra using rational arithmetic

Consider the most general rational linear equation problem. We have a set of m
linear equations in n unknowns with rational coefficients and constants:

a11x1 +a12x2 +· · ·+a1nxn = b1

a21x1 +a22x2 +· · ·+a2nxn = b2

���
���

���
���

(11.1)

am1x1 +am2x2 +· · ·+amnxn = bm

There may be no solution, one solution, or many solutions, and if there are
many solutions, these must be specified in some way. The equivalent matrix
equation is

Ax = b

137

Elsevier US Job Code:IPNM Chapter:Ch11-P373859 19-12-2006 11:48a.m. Page:138 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

′
′

′

138 11 Problems of Linear Programming

with A the rational coefficient matrix of size m × n, with x an n-vector of
unknowns, and with b the rational m-vector of right-side constants.

A solution procedure is possible using the various row and column operations
introduced in Chapter 9. First we apply the operations Exchange Row�i� j� and
Add Row Multiple�i� j�M� to A, attempting to make zero all the elements of
A below the diagonal. Each operation is applied to both A and b, so that the
new set of equations, defined by the changed A and b arrays, is equivalent to
the old set. As in Chapter 9, the changing elements of A and components of b
are denoted by the symbols a′

ij and bj
′ , respectively, and the changed arrays are

denoted by A′ and b′. When working on column j of A′, if we find ajj
′ = 0,

then we search column j for an element below a′ that is unequal to zero. If we jj

find a′ � 0, then we perform the operation Exchange Row�j� k� to bring this =kj

element into the a′ position. After we have obtained a nonzero diagonal element jj

a′ , we clear the elements in column j below a′ , with element a′ being cleared jj jj kj

by the operation Add Row Multiple�j� k�− a

a
kj �.
jj

If in column j the element ajj
′ and the elements below it are zero, then we search

the columns to the right of column j, one by one, attempting to find an element in row
j or below that is nonzero. If we find apq

′ �= 0, we perform the operation Exchange
Col�q� j� to bring this element to the apj

′ position, and then we can proceed as before
to bring column j to the proper form. The Exchange Col�q� j� operation of course
cannot be performed on b′. To keep the equations represented by our A′ and b′

arrays equivalent to the initial equations, as explained in Section 10.1, we perform
the Exchange Col�q� j� operation on an indicator array H , initially holding the
integers 1 through n in natural order. The indicator H identifies x′, the changing
vector of unknowns. The components of x′ are x1

′ � � � � � x′ , with x′ identical to xHi
. n i

After as many columns of A as possible have been brought to the desired form, the
appearance of all the arrays is as follows:

⎡
a′ a′ · · · a′ · · · a′ ⎤⎡ ′ ⎤ ⎡

b′ ⎤
11 12 1r 1n x′ ′ ′ 1 1

⎢ a22 · · · a2r · · · a2n ⎥⎢ ⎥ ⎢ b′ ⎥⎢ ⎥⎢ ′ ⎥ ⎢ 2 ⎥⎢ ⎥ x2 ⎢
� � �

���
��� ⎥⎢ ⎥ ⎢ ���

⎥
⎢ ⎥ ⎢ ⎥⎢ ′ ′ ⎥ ��� ⎢ a · · · a ⎥⎢ ⎥ ⎢

b′ ⎥
⎢ rr rn ⎥⎢ ′ ⎥= ⎢ r ⎥ (11.2)
⎢ 0 ⎥⎢ xr

⎥ ⎢ b′ ⎥
⎢ ⎥ ⎢ r+1 ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ���

⎥⎣
��� ⎦ ⎣ ��� ⎦⎣ ⎦

xn b′
0 m

If any constant b′ in the list of constants br
′
+1� � � � � b′ is unequal to zero, then q m

there are no solutions to the equations, because we have found an equivalent set
of equations with one equation being 0 = bq

′ .
If all the constants br

′
+1� � � � � b′ are zero, we can obtain a representation of m

the solutions to the equations. The zero elements of A′ below row r are no
longer needed, and these are discarded. Similarly, all 0 components of b′ beyond

Elsevier US Job Code:IPNM Chapter:Ch11-P373859 19-12-2006 11:48a.m. Page:139 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

139 11.1 Linear algebra using rational arithmetic

component r are discarded. The number of A′ rows is now r and the number of
b′ components is now r, but the vector x′ retains all its n components. Working
from column r back toward column 1, we gradually form an identity submatrix
in the first r columns of A′. When working with column j, we apply the operation
Multiply Row�j� 1/a′ � to both A′ and b′ to make a′ equal 1. Then we subtract jj jj

appropriate multiples of row j from rows above to clear column j above the unit
diagonal element. After these column operations are completed, the arrays have
the form

�I C ′� x′ = b′

where the identity submatrix I is r-square and the submatrix C ′ is of size
r × �n − r�. It is convenient to split the n-vector x′ into two subvectors, an
r-vector xB

′ and an �n− r�-vector xN
′ .

�I C ′�
[

x
x

′ B
′]

= b′ (11.3)
N

The vector xB
′ is defined in terms of x components by the first r components of

the indicator H , and the vector xN
′ is defined by the remaining n− r components

of H . Eq. (11.3) can also be expressed this way:

xB
′ +C ′xN

′ = b′

The solution is given by the matrix representation

x′ =
[

x
x

′ B
′]

=
[

b′ −
x
C
′

′xN
′]

(11.4)
N N

where the components of the �n − r�-vector xN
′ can be set to any values we

please.
The subscripts ‘B’ and ‘N ’ stand for “basic” and “nonbasic”, which is

terminology from linear programming. If we set xN
′ to 0, we obtain, after undoing

the scrambling of x′ components, the solution vector b0. Similarly, by setting xN
′

to various vectors with all components 0 except for a single component equal
to 1, we obtain n − r linearly independent solution vectors, which, after similar
unscramblingofcomponents, canbe representedas b0 +x1� b0 +x2� � � � � b0 +xn−r .
Therefore any solution to the original set of equations has the form b0 plus multiples
of the vectors xi.

Solvable Problem 11.1 Given a set of m linear equations in n unknowns,
represented by the matrix equation Ax = b, where A is a rational m×n coefficient
matrix, x is the n-vector of unknowns, and b is a rational m-vector of constants,
decide whether the equations have a solution. If they have a solution, determine

Elsevier US Job Code:IPNM Chapter:Ch11-P373859 19-12-2006 11:48a.m. Page:140 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

140 11 Problems of Linear Programming

the rank r of the coefficient matrix, and find a vector b0 and n − r linearly
independent rational vectors x1� � � � � xn−r , such that any real vector x represents
a solution to the equations only if it can be written in the form

x = b0 + c1x1 + c2x2 +· · ·+ cn−rxn−r

with real constants ci.

11.2	 A more efficient method for solving rational
linear equations

The described method of solving rational linear equations uses row and column
exchanges to bring the coefficient matrix A to the form �I C ′�. Exchanging the
elements of two matrix rows or two matrix columns is time consuming, especially
if the matrix is large. These exchange operations can be eliminated when the rows
of the matrix A, viewed as vectors, are known to be linearly independent. In this
case the solution procedure described in the preceding section cannot generate a
contradictory equation of the form 0 = bq

′ . The equations are consistent and can
be solved, because a zero A′ row, as shown in Eq. (11.2), implies that the rows
of A are linearly dependent.

To eliminate row and column exchanges of the m×n coefficient matrix A, with
only the two operations Multiply Row�i�M� and Add Row Multiple�i� j�M�
now allowed on A and on the vector b of right-hand constants, we need two
indicator arrays, B and N . Both arrays have integer components.

The array B (“basic variable indicator”) has m components that are used
to locate the columns of the changing matrix A′ that have been converted to
columns of I , that is, columns having a single 1 element with all other elements
being 0. Specifically, Bi = k if column k of A′ is identical to the ith column of
an m-square identity matrix I . The array B will also define the basic variables,
because if Bi = k, then xk is the ith basic variable. Now there is no longer a need
for the indicator H defining x′. The array N (“nonbasic variable indicator”), with
n−m components, gives the positions of the other A′ columns, and defines the
nonbasic variables.

To solve Ax = b when the rank of the m×n coefficient matrix A is known
to equal m, we can proceed as follows. We examine the rows of A, starting
with the first row and proceeding in order to the last row. In each row we test
the elements in sequential order, stopping at the first nonzero element. When
examining row i, if we find a′ �= 0, we convert the element to 1 by using ik

the operation Multiply Row�i� 1/a′ � on A′ and b′ . Next we use appropriate ik

Add Row Multiple�i� j�M� operations on A′ and b′ to clear the other elements
of column k. Now with a column matching the ith identity matrix column, we
set Bi = k. The I columns already found by processing the rows before row i
are unaffected by the row i procedure. After all rows have been processed, the

Elsevier US Job Code:IPNM Chapter:Ch11-P373859 19-12-2006 11:48a.m. Page:141 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

141 11.3 Introduction to linear programming

array B is fully determined, and the components of N are set to indicate the
remaining columns of the coefficient matrix.

After the processing of rows is complete, equation i now has the form

xBi
+a ′ i�N1

xN1
+a ′ i�N2

xN2
+· · ·+a ′ i�N xN = bi

′ (11.5)
n−m n−m

Any nonbasic variable xNi
usually can be exchanged for a basic variable, and

because linear programming solution methods require such an operation, we
study how to accomplish this. The exchange can be done as long as column Ni

of A′, associated with the nonbasic variable, has a nonzero element. Suppose a
nonzero element appears in row k. We multiply row k of A′ and component k
of b′ by the reciprical of this nonzero element to change the element to 1. Then
we use appropriate Add Row Multiple�i� j�M� operations on A′ and b′ to clear
the rest of column Ni. These operations will have perturbed column Bk of A′ but
no other column indicated by the B array. After we exchange the integers Bk

and Ni, all is restored to the required form.

11.3 Introduction to linear programming

Linear programming (or linear optimization) is a mathematical theory for
finding the maximum or minimum of a linear expression in certain variables
x1� x2� � � � � xn, when the variables are restricted by a set of linear inequalities.
Such problems arise in many areas, with prime examples being the management
of inventory or the management of production.

Suppose the linear expression f to be optimized, called the objective
function, is

f = f1x1 +f2x2 +· · ·+fnxn +f0 (11.6)

and the linear inequalities that must be satisfied are

a11x1 +a12x2 +· · ·+a1nxn ≤ b1

a21x1 +a22x2 +· · ·+a2nxn ≤ b2

���
���

(11.7)

am1x1 +am2x2 +· · ·+amnxn ≤ bm

Some new notation is helpful here. For two n-vectors v and w, we write the
relation v ≤ w when vi ≤ wi holds for all i. Then the linear inequalities may be
written as Ax ≤ b. In linear programming problems the variables xi are restricted
to nonnegative values, so additional inequalities that are always implied are:

x1 ≥ 0� x2 ≥ 0� � � � � xn ≥ 0 (11.8)

Elsevier US Job Code:IPNM Chapter:Ch11-P373859 19-12-2006 11:48a.m. Page:142 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

142 11 Problems of Linear Programming

In analogy with the quadrant concept of the cartesian plane, the points satisfying
(11.8) are said to lie in the first orthant of the n-space. If in the inequalities
(11.8) we prefix some of the variables with a minus sign, we define another
orthant of the n-space, which has a total of 2n orthants.

We will assume that all the initial constants aij , bi, and fi of a linear program
ming problem are rational constants, because the solution method presented, the
simplex method, at various steps requires deciding whether certain quantities are
positive, negative, or zero, and there is no difficulty making such decisions if
we use rational arithmetic.

The first step in the solution procedure is to rewrite each inequality of the set
(11.7) as an equation, introducing one extra variable to represent the difference
between the two sides of the inequality:

a11x1 +a12x2 +· · ·+a1nxn +xn+1 = b1

a21x1 +a22x2 +· · ·+a2nxn + xn+2 = b2

���
� � �

���
(11.9)

am1x1 +am2x2 +· · ·+amnxn + xn+m = bm

The introduced variables xn+1� xn+2� � � � � xn+m are called slack variables, and
like the original variables, they must be nonnegative, so we still have xi ≥ 0 for
all i. All these relations may be represented concisely as

�A I� x = b and x ≥ 0 (11.10)

where x is an �n+m�-vector and b is an m-vector.
The general solution to the matrix equation of line (11.10) can be found by the

method described in the preceding section, but there is an easier route. Because
of the presence of the m-square identity submatrix within the enlarged coefficient
matrix �A I�, we need only set B to indicate the columns of this submatrix,
and set N to indicate the other columns, and we are done. From now on we call
this particular solution the “simple solution”. Each possible way of writing the
solution using different specifications of the basic and nonbasic variables deter
mines the same set of solution points within the �n+m�-dimensional space S.
Because the nonbasic indicator N has �n+m�−m = n components, the set of
solution points defines an n-dimensional subspace of S. Any point x0 satisfying
both relations of line (11.10), called a feasible point, lies in the intersection of
the subspace with the first orthant of S.

The set of feasible points FP, if it is not empty or infinite in extent, may
be thought of as a kind of generalized n-dimensional polyhedron lying in S.
The set FP is convex, because, as we show next, if x1 and x2 are vectors
defining two feasible points, all points on the line segment joining the two
points are also feasible. The line segment is defined by x = �1 − t�x1 + tx2,

Elsevier US Job Code:IPNM Chapter:Ch11-P373859 19-12-2006 11:48a.m. Page:143 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

143 11.3 Introduction to linear programming

0 ≤ t ≤ 1. As t varies from 0 to 1, the point x moves from x1 to x2. We have
�A I� x1 = b and �A I� x2 = b, along with x1 ≥ 0 and x2 ≥ 0. Then we have
also �A I� �1 − t�x1 = �1 − t�b and �A I� tx2 = tb, along with �1 − t�x1 ≥ 0
and tx2 ≥ 0. Adding, we obtain �A I� x = b along with x ≥ 0, so all points on
the line segment are feasible.

The gradient vector of the objective function f , pointing in the direction of
maximum increase for f , is a constant vector. If in FP we move in a straight
line making an acute angle with the gradient, the objective function increases,
whereas if we move perpendicular to the gradient, it does not change. If we wish
to find the objective function maximum in FP, by moving along a sequence
of straight line segments, each segment should make an acute angle with the
gradient, or at worst be perpendicular to it. The maximum will usually be found
at a “corner point”, that is, a vertex of FP. Occasionally there is no maximum
because we can move as far as we please in FP along some line making an
acute angle with the gradient. Here the set FP is infinite in extent and allows
unrestricted motion along this line. Accordingly, except for the case where there
is no finite maximum, the corner points of FP are the only points we need to
test to find the maximum of the objective function. It is possible that an entire
boundary line segment or higher dimensional face of FP consists of maximum
points because the gradient is perpendicular to it, but in this case we also can
find a corner point where the maximum is attained. The situation is similar when
searching for the minimum of the objective function.

As shown in the preceding section, the m equations in n+m unknowns given
by (11.9) have the simple solution, and there are other solutions obtainable by
exchanging nonbasic and basic variables. The nonbasic components of x may
be set to any value, and the basic components of x can then be determined. The
components xB1

� xB2
� � � � � xB of x are called basic variables, and the compo-

m

nents xN1
� xN2

� � � � � xN are nonbasic variables. According to Eq. (11.5), for any
n

solution representation, when the nonbasic components are set to 0, for all i we
have xBi

= b′, where b′ is the current ith component of b′. We will call the xi i

point determined this way the null point of the solution representation. If all
components bi

′ are nonnegative, then the null point is a corner point of the set
of feasible points FP. This point satisfies all the constraints of (11.10), and is
a corner point because if x is to continue to define a feasible point, the nonba
sic components, being zero, can change in only one direction, that is, become
positive.

The simplex method of solving a linear programming problem starts with
any solution representation whose null point is a corner point of FP, and then
attempts to find another solution representation with its null point again a corner
point, but with the objective function f showing an improved value at the new
corner point. This process of f improvement continues until finally a corner
point is found at which f is optimum.

If the components of the starting b vector of (11.10) are all nonnegative, the
null point of the simple solution representation is a corner point. When this

Elsevier US Job Code:IPNM Chapter:Ch11-P373859 19-12-2006 11:48a.m. Page:144 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

144 11 Problems of Linear Programming

fortunate situation does not occur, the problem of locating a starting corner point
is more difficult, and we deal with it later.

We assume now our linear programming problem requires us to maximize
the objective function f . (One can find an f minimum by using the maximizing
procedure on −f .) When we are ready to improve the objective function, it
must be expressed entirely in terms of the nonbasic variables. Note that if our
starting corner point was obtained by the simple solution representation, this is
automatically the case. To make the process of eliminating basic variables from
f easy, it is convenient before starting the procedure to rewrite f of line (11.6) as

f +f1
′ x1 +f2

′ x2 +· · ·+fn
′ xn = f0 �fi

′ = −fi�

and to carry the coefficients fi
′ as an extra last row of the starting �A I� array.

The coefficient f0 then becomes an extra last component of the b vector. The
enlarged �A I� array and the enlarged b vector thus have this form:

⎡ ⎤ ⎡ ⎤
a11 a12 � � � ain 1 0 � � � 0 b1

⎢ a21 a22 � � � a2n 0 1 � � � 0 ⎥ ⎢b2 ⎥⎢ ⎥ ⎢ ⎥
D′ = ⎢ �� �� �� �� �� �� �� �� �� �� �� �� ⎥ b′ = ⎢ �� ⎥⎢ � � � � � � � � � � � � ⎥ ⎢ � ⎥

⎣ ⎦ ⎣ ⎦am1 am2 � � � am�n 0 0 � � � 1 bn

f1
′ f2

′ � � � fn
′ 0 0 � � � 0 f0

Suppose now the null point of the simple solution is a feasible point. With the
f coefficients in the last row of the enlarged �A I� array, whenever a nonbasic
and a basic component of x are exchanged by the process of converting a column
to an identity matrix column by clearing elements, the objective function element
in the last row is cleared too. So the coefficients f ′ associated with nonbasic j

variables may be any value, but all coefficients fj
′ associated with basic variables

are zero. The value of the objective function at the null point equals the current
value of f0 in the b′ vector.

We begin now the description of the simplex cycle at a general
solution representation having the matrix form D′x = b′ . The coeffi
cients of the objective function that correspond to nonbasic variables,
that is, the coefficients f ′ � f ′ � � � � � fN

′ , are examined one by one inN1 N2 n

the order shown, and the examination stops at the first negative coef
ficient. Suppose fN

′ is negative. The nonbasic variable xN will be
q q

increased from its zero value to make f larger. As xN increases, the
q

basic variables also change. A basic variable xBi
satisfies the following

equation:

x +d′ x +d′ x +· · ·+d′ x = b′
Bi i�N1 N1 i�N2 N2 i�Nn Nn i

The basic variable xBi
increases, decreases, or does not change, depending on

whether d′ is negative, positive, or zero, respectively. If d′ is positive i�N i�Nq q

and xBi
decreases, it must not decrease below zero; otherwise, the null point

Elsevier US Job Code:IPNM Chapter:Ch11-P373859 19-12-2006 11:48a.m. Page:145 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

11.4 Making the simplex process foolproof 145

of the new solution representation will be nonfeasible. The basic variable xBi

becomes zero when xN i i�N Thus the nonbasic variable canequals b′/d′ . xNq q q

be allowed to increase only to the minimum bi
′

i�N/d′ value determined for
q

those positive coefficients d′ in column N . If there happens to be no positive i�Nq q

coefficients in this column, then xN can be allowed to increase indefinitely,
q

and the linear programming problem is revealed as a problem without a finite
maximum. Suppose a minimum of the b′/d′ values occurs for i equal to r .i i�Nq

The nonbasic variable xN is increased to this value and becomes basic, and the
q

basic variable xB is decreased to zero and becomes nonbasic. We make these
changes in our D

r′ and b′ arrays in the following way. The operation Multiply
Row�r�

d′
1 � on D′ and b′ changes the d′ element to 1, and afterwards a series r�N

r�Nq
q

of Add Row Multiple operations on D′ and b′ clears column Nq of D′ (and
also clears fN

′
q
). Finally the exchange of roles of xBr

and xNq
is accomplished by

exchanging the Br and the Nq integers. We are now ready for the next simplex
cycle.

When we can not find any negative fi
′ coefficients associated with nonbasic

variables for a solution representation, we have located a corner point where f is
maximum, and the simplex process terminates. The maximum of f is the current
f0 value, the last component of the enlarged b′ vector, and the point at which
this maximum occurs is the null point for this final solution representation. The
point is determined when the current nonbasic variables are set to 0, making
the current basic variables equal the corresponding b′ components. If all the fi

′

components associated with nonbasic variables are positive, no other feasible
point shares this maximum f value, and the located corner point is identified as
a unique maximum point.

11.4 Making the simplex process foolproof

In the simplex cycle, if br
′ is positive when the roles of xBr

and xN are exchanged,
q

the new f0 coefficient will be larger than the preceding one, because the coeffi
cient fN

′ is negative, and a positive multiple of br
′ is added to f0 when fN

′
q q

is cleared. Because f0 is larger than any previous f0 value, the corner point
determined by the new solution representation is different from any previous
corner point. If br

′ is zero, the objective function’s f0 value is unchanged. In
this case, it is possible the new corner point is identical to a previous one, and
there is a danger that we are in a simplex cycle loop. A number of ways have
been proposed to eliminate the possibility of loops, and our demo programs use
the method proposed by Dantzig, Orden, and Wolfe [3]. With this method we
measure improvement of the objective function in a more general way, using
vector comparison involving additional f coefficients instead of just f0 in the
enlarged b′ vector. At the start of the simplex process, when the first corner
point has been located, the D′ columns associated with the m basic variables

Elsevier US Job Code:IPNM Chapter:Ch11-P373859 19-12-2006 11:48a.m. Page:146 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

146 11 Problems of Linear Programming

are recorded. Let �1�� �2�� � � � � �m� be these columns. (�k� equals the initial
Bk integer.) The vector f ′ to be used in comparisons has m + 1 components,
which are:

f0
′� f ′ � � � � � f ′

�1� �m�

Here f ′ denotes the coefficient associated with column �i�. A similar vector d′
�i� i

is defined for any row i of the D′ array by taking its components to be:

b′�d′ � � � � � d′
i i��1� i��m�

Now let u and v be two such vectors, and let 0 be such a vector with all
components zero. We count u � v if, comparing the components in order and
ignoring components that are equal, the first larger component belongs to u.
If u � v, we will say that the vector u is “lexicographically” greater than the
vector v. Thus �2� 2� 1� � � � � 3� � �2� 1� 3� � � � � 5�. Many rules for inequalities
with real numbers have analogous rules for this vector relation. From u � v, it
follows that u − v � 0. It also follows that au � av, where a is any positive
number, and that u +w � v +w where w is any vector. Thus if u � 0 and a > 0,
then if w is any vector, it follows that w +au � w. A final needed relation is
that if u1 � v1 and u2 � v2, it follows that u1 +u2 � v1 +v2.

In a simplex cycle, previously when fN
′ was negative, we chose a row r such

q

that b′ /d′ was the minimum of the quantities b′/d′ having d′ positive.r r�N i i�N i�Nq q q

However, there could be a tie for mimimum, and we revise our selection system
to make the choice unique. Now we choose row r if the vector

d′
1 dr

′ is the
r�Nq

lexicographic minimum of all vectors
d′

1 d′ having d′ positive.i i�N
i�Nq

q

At the beginning of the first simplex cycle, the last m components of the
vectors d′

i are associated with the initial basic variables, and accordingly are all
0 except for a single 1 component. Therefore subvectors composed of the last
m components of the vectors di

′ are linearly independent, implying that a com
parison tie among the beginning vectors

d′
1 di

′ is impossible. Also, we have the
i�Nq

relation di
′ � 0 for all i. We show next that if these two conditions exist at the start

of a simplex cycle, they exist at the end of the cycle, and so always hold. During
a simplex cycle, the last m components of the new di

′ vectors get generated from
the corresponding components of the preceding di

′ vectors, by a number of Mul
tiply Row and Add Row Multiple operations. These operations do not affect
the linear independence of the last m components, and so the new di

′ vectors
have the same property. Note also that when column Nq is cleared by adding
multiples of row r to other rows, if d′ is negative, a positive multiple of row ri�Nq

is added to row i. Because dr
′ � 0, for the new vector di

′ we will have d′
i � 0 if this

relation was true for the old vector d′. If d′ is positive, the multiple d′ /d′
i i�N i�N r�Nq q q

of row r is subtracted from row i, but because
d′

1 di
′ �

d′
1 dr

′ , implying
i�Nq r�Nq

Elsevier US Job Code:IPNM Chapter:Ch11-P373859 19-12-2006 11:48a.m. Page:147 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

11.4 Making the simplex process foolproof 147

d′
d′

i �
d′

i�Nq dr
′ , we again obtain di

′ � 0 for the new vector di
′. The multiplication of

r�Nq

row r by the positive constant 1/d′ maintains the relation d′ � 0. Thus d′ � 0r�N r iq

for all i at the conclusion of the simplex cycle.
Because dr

′ � 0, when a positive multiple of d′
r is added to f ′, the new f ′

vector is lexicographically greater than the old one. This implies that the new
solution representation is different from any preceding solution representation,
and simplex cycle loops now are impossible.

Now we address the problem of locating an initial corner point when the
simple solution representation does not determine one. Assume that we have any
solution representation, possibly the simple one, and that some of the components
b′ are negative, so our representation’s null point is not feasible. The basic i

variable xBi
is negative or nonnegative, according to whether the current bi

′

component is negative or nonnegative, respectively. We collect the indices of
all negative basic variables in a list L. So i is on the list L if xBi

is negative.
The general idea is to adapt the simplex procedure to the problem of finding the
largest value of the linear function f equal to the sum of basic variables on the
list L. The list L varies as we proceed, with i being dropped from L as soon
as xBi

becomes nonnegative. When the list is empty, our solution representation
determines a feasible null point.

The varying linear function f , defined as the sum of all basic variables with
indices currently on the list L, has, corresponding to a nonbasic variable xNj

, a
coefficient fN

′
j

that equals
∑

i∈L i�Nj
. We want to increase f , so we test these d′

coefficients to find a negative one, say fN
′ . As before, we wish to make the

q

nonbasic variable xN positive to increase our temporary objective function. Here
q

the increase is limited to the minimum of the quantities b′/d′ for i not on Li i�Nq

with d′ positive, because we do not want any nonnegative basic variables to i�Nq

become negative. However, there may be no indices i satisfying the conditions
given. In this case we increase xN to the maximum of the group of positive

q

quantities b′/d′ having i on L and having d′ negative, because then every i i�N i�Nq q

corresponding negative basic variable in this group will become nonnegative,
and nonnegative basic variables stay nonnegative. Once the bound on xN is

q

determined, the process of altering the D′ and b′ arrays and exchanging the
variable xN with a basic variable is the same as before. After we have a new

q

solution representation, the entire process is repeated, and it continues until the
list L is empty and a feasible null point has been determined. If it ever happens
that none of the fN

′
j

coefficients are negative, the linear programming problem
is revealed as one that has no feasible points.

The lexicographical vector comparison system for avoiding simplex cycle
loops can be used when finding a starting feasible solution. Here, however, every
time the objective function gets changed, the D′ columns �1�� � � � � �m� need to
be changed to the current Bi values, to ensure that d′

i � 0 for all nonnegative
basic variables.

Elsevier US Job Code:IPNM Chapter:Ch11-P373859 19-12-2006 11:48a.m. Page:148 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

148 11 Problems of Linear Programming

11.5 Solving n linear interval equations in n unknowns

Suppose we have n linear equations in n unknowns, as shown on the following
lines,

a11x1 +a12x2 +· · ·+a1nxn = b1

a21x1 +a22x2 +· · ·+a2nxn = b2

���
���

���
���

(11.11)

an1x1 +an2x2 +· · ·+annxn = bn

and that the elements aij and bi are not known exactly, but are specified as
intervals. This situation arises sometimes when these numbers are experimentally
determined and are known only to a few correct decimal places. For instance,
we may have the equations

2�34∼ x1 +1�73∼ x2 −2�70∼ x3 = 4�19∼

−1�62∼ x1 +6�77∼ x2 +3�45∼ x3 = 1�28∼ (11.12)

4�16∼ x1 +2�81∼ x2 +3�93∼ x3 = 6�16∼

where all constants above are known only to 2 correct decimal places. Thus
a11 lies in the interval 2�34 ± �005, or using the endpoint format, the interval
�2�335� 2�345�. A solution to these equations is required with each constant
replaced by an appropriate interval. The determined value for each variable xi is
now an interval also. The problem is

Solvable Problem 11.2 Given a system of n linear interval equations in
n unknowns, represented by the matrix equation Ax = b with A and b having
interval elements with rational endpoints, either give optimum rational upper
and lower bounds for the unknowns xi, or show that the matrix A is singular.

The interval matrix A is shown to be singular when a rational n-square matrix R
with a zero determinant can be defined by choosing a rational value for each rij

element within the interval bounds of aij .
Often instead of rational bounds for xi, what we want are optimum upper and

lower xi bounds to k correct decimal places. These of course are easily obtained
from the rational bounds. One method of obtaining bounds for the x components
is to use the method for solving n linear equations in n unknowns described
in Chapter 9, but with formal interval arithmetic replacing the range arithmetic.
However, the interval bounds obtained this way, although certain not to be too
small, are often much too wide. Also the method may sometimes fail to obtain the
required upper triangular A′ matrix, even though the beginning interval matrix
A is not singular.

Elsevier US Job Code:IPNM Chapter:Ch11-P373859 19-12-2006 11:48a.m. Page:149 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

{

�

{

�

̂ ̂

̂

̂
̂ ̂

̂

̂ ̂

̂

149 11.5 Solving n linear interval equations in n unknowns

The methods of linear programming can be used to obtain accurate bounds.
First, we show some needed notation. The interval elements of A and b can be
expressed in either the endpoint notation or the midpoint-halfwidth notation. If

�m�for an interval element aij we use the notation aij for the element’s midpoint
and a�w�

ij for its halfwidth, and similar notation for the interval element bi, then
for all i, j

�m� �w� �m� �w�±a ±bbaij ij i ibi =aij = �m� �w� �m� �w� �m� �w� �m� �w�−a −b�a �a +a �b � b +bij ij ij ij i i i i

�m� �w�We use for the matrix of midpoints and for the matrix of halfwidths, A A
�m� �w�b band similarly and for the midpoint and halfwidth vectors. Also, if isC

a real, rational, or complex matrix, then 	 	 denotes the matrix of corresponding C
dsize with elements equal to 	 	. Similarly, if is a real, rational, or complex cij

d-vector, then 	 	 denotes the -vector with components 	 	 The following dn n .i

basic result, due to Oettli and Prager [8], allows the problem to be transformed

̂

into a problem of linear programming.

Theorem 11.1 Let the real n-square matrix A and the real n-vector b be

defined by intervals. A necessary and sufficient condition for a real -vector xn

̂

to specify a solution point to the matrix equation Ax = b is

	A�m�x −b�m�	 ≤ A�w�	x	+b�w� (11.13)

or, equivalently,

−A�w�	x	−b�w� ≤ A�m�x −b�m� ≤ A�w�	x	+b�w� (11.14)

We show the necessity of the condition first. If the n-vector x specifies a
A and an n-vector b such that Ax = b,

A and b satisfying the relations

b ≤ b�m� +b�w�

b −b�m� ≤ b�w�

	A−A�m�	 ≤ A�w� 	b −b�m�	 ≤ b�w�

solution point, there is an n-square matrix
with

A�m� −A�w� ≤ A ≤ A�m� +A�w�

which can be rewritten as

b�m� −b�w� ≤and

A−A�m� ≤ A�w�

which is equivalent to

−A�w� ≤ −b�w� ≤and

and

Elsevier US Job Code:IPNM Chapter:Ch11-P373859 19-12-2006 11:48a.m. Page:150 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

̂ ̂

̂ ̂

̂̂ ̂ ̂
̂

∑

(
∑

)

∑

150 11 Problems of Linear Programming

We have

	A�m�x −b�m�	 = 	A�m�x −b�m� − �Ax −
≤ 	A�m� −A		x	+ 	b�m� −

A�x − �b�m� −b�	 = 	�A�m� −̂ b 	�̂
b	 ≤ A�w�	x	+b�w�

To show the sufficiency of the condition, suppose the matrix relation (11.13)
holds for a certain . We must show that there is an acceptable matrix -vector xn

�m� �	�equal to with+A A ÂA and an acceptable vector b such that Ax = b. Take
A�	� to be determined, and take b equal to b�m� + b�	�, with b�	� likewise to be
determined. The matrix A�	� and the vector b�	� must satisfy

	A�	�	 ≤ A�w� and 	b�	�	 ≤ b�w� (11.15)

The matrix equation Ax = b implieŝ

�	� �	� �m� �m�b b− = − −A �A �x x

̂

�m� �	� �m� �	�b b+ +�A A �x =

= −y

Here we have taken the vector y equal to the determinable vector A�m�x −b�m� .
The ith component of y then satisfies the equation

n
�	� �	�

aij xj −bi = −yi (11.16)
j=1

The elements of A�	� and b�	� which appear for component i do not appear for
any other component, so we are free to set them as we please to satisfy the

�	� �w� �	� �w�−yi equation. We take aij = ti ·aij sgn xj and take bi = −ti ·bi , where the
parameter ti, one component of the parameter vector t, is to be determined.
We must choose each component ti so that the inequality 	ti	 ≤ 1 holds, because
the relations (11.15) must be satisfied. Equation (11.16) now has the form

n
�w� �w�

aij 	xj	+b = −yiti i
j=1

If ti is set to 1, the left side of this equation is a number
i, that is,

n
�w� �w�

aij 	xj	+bi =
i

j=1

where
i is nonnegative. Because y = A�m�x −b�m�, the inequality (11.14) implies
−
i ≤ yi ≤
i, so 	yi	 ≤
i. Thus if
i = 0, then yi = 0 too, and ti is set equal

Elsevier US Job Code:IPNM Chapter:Ch11-P373859 19-12-2006 11:48a.m. Page:151 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

151 11.5 Solving n linear interval equations in n unknowns

to 0. If
i is nonzero, ti is taken equal to −yi/
i and the needed condition 	ti	 ≤ 1
holds. Thus an appropriate matrix Â and vector b̂ must exist such that relation
(11.13) holds, and the theorem is proved.

We can use this result to obtain a method of treating the preceding solvable
problem. Given a specific problem Ax = b, one can always obtain one solution
point by solving the set of equations defined by the matrix equation A�m�x = b�m� .
Suppose that when we do this, we obtain a point x that lies in a particular
orthant Q. To find the relations that apply in Q, let DQ be an n-square diagonal
matrix with its ith diagonal element chosen to be +1 or −1 depending on
whether xi is positive or negative, respectively, in the orthant. Then we have
both equations DQx = 	x	 and x = DQ	x	. The relations (11.14) now may be
written as

−A�w�	x	−b�w� ≤ A�m�DQ	x	−b�m� ≤ A�w�	x	+b�w�

or, equivalently, as

�A�m�DQ −A�w��	x	 ≤ b�m� +b�w�

(11.17)
�−A�m�DQ −A�w��	x	 ≤ −b�m� +b�w�

To find the largest value of a component 	xi	 of 	x	 for all solution vectors
x in the orthant Q, we can solve the linear programming problem with the 2n
linear constraints represented by the two vector inequalities just given, and the
nonnegativity constraints

	xk	 ≥ 0� k = 1� 2� � � � � n

for the maximum of the objective function f equal to 	xi	. The smallest value
for 	xi	 is obtained by solving the identical linear programming problem, except
that we find the minimum of the objective function.

Suppose, for instance, that the problem to be solved is

�5� 6�x1 + �4� 5�x2 = �2� 3�
(11.18)

�3� 4�x1 + �0� 1�x2 = �1� 2�

Here the various matrices and vectors of the theorem are:
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤11 9 1 1 5 1
⎢ ⎥ ⎢ ⎥

A�m� ⎢ 2 2 ⎥
� A�w� ⎢ 2 2 ⎥

� b�m�
⎢ 2 ⎥

� b�w�
⎢ 2 ⎥= ⎢ ⎥ = ⎢ ⎥ = ⎢ ⎥ = ⎢ ⎥

⎣	 7 1 ⎦ ⎣ 1 1 ⎦
⎣ 3 ⎦ ⎣ 1 ⎦

2 2 2 2 2 2

The solution to A�m�x = b�m� yields a point in the first orthant, or rather first
quadrant, the dimension of x being 2. To find the maximum and minimum of

Elsevier US Job Code:IPNM Chapter:Ch11-P373859 19-12-2006 11:48a.m. Page:152 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

152 11 Problems of Linear Programming

the variables x1 and x2 in the first quadrant, we set DQ to I . The two vector
relations (11.17), when written out for each component, are:

5	x1	+4	x2	 ≤ 3

3	x1	+0	x2	 ≤ 2

−6	x1	−5	x2	 ≤ −2

−4	x1	−1	x2	 ≤ −1

We can use the program linpro to find the maximum and minimum of 	x1	
and 	x2	 in quadrant 1. Here we use this program four times, always entering the
inequalities just displayed but replacing 	x1	 by x1 and 	x2	 by x2, finding the
maximum and the minimum of the objective function x1, and doing the same for
the objective function x2. The interval obtained this way for x1 is � 1 � 3 �, and 11 5
the interval obtained for x2 is �0� 7 �.11

Because the minimum of x2 is 0, the boundary of quandrant 1 was reached,
so we must repeat the entire process for the adjoining quadrant 4, that is, the
quadrant obtained by changing the second diagonal element of DQ from +1 to
−1. In this quadrant the vector inequalities (11.17), when written out, are:

5	x1	+5	x2	 ≤ 3

3	x1	+1	x2	 ≤ 2

−6	x1	−4	x2	 ≤ −2

−4	x1	−0	x2	 ≤ −1

As before we can use the program linpro to find the extremes for the variables
in quadrant 4, but this time when we enter the displayed inequalities, 	x1	 is
replaced by x1 and 	x2	 is replaced by −x2, with the objective function being
varied just as before. The interval obtained for x1 is � 1

3 � 1� and the interval
obtained for x2 is �0� 1�, which, taking into account the effect of DQ, is actually
the x2 interval �−1� 0�. Combining results from the two quadrants, the interval
for x1 is � 1 � 1�, and the interval for x2 is �−1� 7 �.11	 11

11.6	 Solving linear interval equations
via linear programming

The method used to solve the simple interval problem of the preceding section
can be made more efficient and applicable to an arbitrary problem of this type.
It is necessary to assume that solution points to a set of linear interval equations
lie in just one orthant to make the problem conform to the requirements of linear

Elsevier US Job Code:IPNM Chapter:Ch11-P373859 19-12-2006 11:48a.m. Page:153 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

[]

̂

[]

̂

153 11.6 Solving linear interval equations via linear programming

programming. The points x that satisfy such equations frequently do lie in just
one orthant, but, as shown by the preceding example, it is also possible that
solution points stretch over several orthants. In each orthant the set of solution
points is convex, because a solution point is also a feasible point for a set of
inequalities, and as shown in Section 11.3, the feasible points form a convex set.
When there are solution points in more than one orthant, these convex orthant
parts join together to form a solution set that may not be convex.

To simplify our notation, we now replace 	xi	 everywhere by . We assign xî

one additional slack variable to each individual component inequality of the set
(11.17) to convert it into an equation. So the number of variables increases from
n to 3n, and the constraint equations then have this matrix representation:

x = A�m�DQ −A�w� b�m� +b�w�I O
(11.19)−A�m�DQ −A�w� −b�m� +b�w�O I

Here x is a 3n-vector with components xi.
It is necessary to maintain a current upper and a current lower bound for each

of the n variables of x. These bounds are updated as various orthants of the
n-space are investigated.

A task queue listing the orthants to be investigated is also needed, with each
entry having the diagonal elements of the matrix DQ defining the orthant. Initially
the queue has a single entry for the starting orthant, with the list entry identifying
the orthant as the starting one. This starting orthant is found by solving the
equation A�m�x = b�m� for x, and using the vector to determine the orthant Q

̂

and the corresponding matrix If a component of this initial solution D x.Q j

vector is zero, the corresponding jth diagonal element of DQ is arbitrarily taken
as +1.

Because (11.19) has 2n equations, the number of basic variables is 2n, and
the number of nonbasic variables is n. The first step with a task queue entry is
to generate the corresponding coefficient matrix of size 2n×3n. For the starting
orthant, an initial feasible solution representation is found by the computation
described in Section 11.4. For any other orthant, a list of the 2n basic variables
that permit a feasible solution appears on the queue entry, and this information
is used to generate the initial solution representation. It will become clear shortly
how this information has been obtained.

For a nonstarting orthant Q, it is easy to generate the starting feasible solu
tion representation, using the provided list of basic variables, which identifies
the coefficient matrix columns that must be converted into identity submatrix
columns. After these preliminary operations are done, a feasible solution repre
sentation is available for the simplex process, and the indicators B and N are set
accordingly.

We now employ notation used before in Section 11.3 to describe the simplex
procedure. The changing coefficient matrix is D′, with elements d′ , but now D′

i�j

does not have an added row to hold objective function coefficients. The changing

Elsevier US Job Code:IPNM Chapter:Ch11-P373859 19-12-2006 11:48a.m. Page:154 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

̂
̂ ̂

̂ ̂ ̂ ̂

̂

̂

̂
̂

̂

̂

154 11 Problems of Linear Programming

right-hand vector b′, with components bi
′, also does not have an added component

for the objective function.
The objective functions f � i = 1� 2� � � � � n are maximized in sequence, =

and then these same objective functions are minimized in sequence. Each objec-
tive function problem begins operations with the final solution representation
and associated corner point obtained by the preceding problem. This is not true,
of course, for the maximization of the first objective function, which begins with
the specified solution representation, or in the case of the starting orthant, the

̂

′. The row elements of and component ofj D jx xi Bj

xi

xi

xi is a basic variable.

̂

computed solution representation.

′b imply then the equation

We consider the maximization problems first. The objective function f =
is defined by a D′ row and a b′ component whenever
Suppose is basic variable

+d′ +d′ + · · ·+d′ = b′
j�N1

xN1 j�N2
xN2 j�N xN jxBj

Just as with an objective function, we look in row j of D′ for an element
d′ that is negative. If none is found, we are done and the maximum equals bj

′ .j�Nk

If a negative coefficient d′ is found, we search column N of D′ for positive j�Nq q

elements d′ , using lexicographic comparison to determine which basic variable s�Nq

nn

because d′
j�Nwill be replaced. (The basic variable replaced cannot be isxBj

̂negative.) Here the unboundedness of the objective function xi

positive elements are found in column Nq of D′. This indicates that the interval
matrix A is singular, and computation ceases.

q

is detected if no

If is a nonbasic variable, such as , the first step is to convert it to a basic xî xNk

variable. Here we proceed as if column Nk

to change for an objective function, making the variable basic by the process
just described. Now with the variable basic, the procedure is the same as that
just described.

had been determined as the column

of negative ones. And if xî

The procedure for finding the minimum of a variable
xBj

, except that we look for positive coefficients d′

identified as zero. Whenever a zero minimum value is obtained for a variable

is similar if xi is
instead

xî

is nonbasic, we are done, because the minimum is
the basic variable j�Nk

xi,
, identical to the current orthant Q except for the

opposite xi sign, must be investigated. The task queue list L is searched to see
this signals that the orthant QN

if QN is already on the list. If it is, the minimum problem for in the QN entryxî

entry is added to the end of
minimum problem set to be skipped. In this case the

is set to be skipped. If it is not on the list, then a QN

the task queue with the xî

starting basic variables for QN

xi because it is nonbasic. (We may assume
are assigned Q’s basic variables which show a

zero value for is nonbasic because xî

it is made nonbasic should it happen not to be so.) Note that DQ

only in the ith diagonal element, so the coefficient matrix for orthant QN and the
coefficient matrix for Q differ only in column i. Suppose the set of equations
(11.19) for Q were supplied and the current basic variables were designated.

and DQN
differ

Elsevier US Job Code:IPNM Chapter:Ch11-P373859 19-12-2006 11:48a.m. Page:155 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

155 11.7 The program linpro for linear programming problems

By going through the procedure described earlier for obtaining a starting feasible
solution, we would obtain the current solution representation without column i
being invoked in the process of generating the identity submatrix I of D′, and we
would obtain a feasible null point. If these same basic variables are specified for
the equations corresponding to QN , a solution representation is obtained which
has the same null point, and so this solution is feasible also.

After the maxima and minima of all variables x̂i have been determined for
the current orthant Q, these are converted to xi values by attaching the signs
of orthant Q, and these values now update the current upper and current lower
bounds for the components of x. After the last orthant has been investigated, the
final values of the current upper and current lower bounds give the desired x
interval bounds.

11.7	 The program linpro for linear programming
problems

The program linpro for solving linear programming problems follows the
procedures described in Sections 11.3 and 11.4, but has some features that need
explanation. The program allows the entry of either linear inequalities or linear
equations. And an entered inequality can take either the form

ai1x1 +ai2x2 +· · ·+ainxn ≤ bi

or the form

ai1x1 +ai2x2 +· · ·+ainxn ≥ bi

Our treatment of linear programming problems presumes that any relation
imposed is always an inequality of the first displayed form. How are the other
cases handled?

After inequality and equation constants have been entered by a user, the
program linpro uses a rational matrix with enough rows present so that two
rows are assigned to each equation, one row is assigned to each inequality,
and one row is assigned to the objective function. An inequality of the second
displayed form is converted to an inequality of the first displayed form by
multiplying its coefficients and right side constant by −1, and the inequality is
stored this way in the rational matrix.

An equation is changed into two separate inequalities of the two displayed
forms, and these two inequalities are stored in two adjoining rows of the matrix,
with a second form inequality being converted to the first form. Slack variables
are taken into account by setting appropriate matrix elements to 1.

Elsevier US Job Code:IPNM Chapter:Ch11-P373859 19-12-2006 11:48a.m. Page:156 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

156 11 Problems of Linear Programming

11.8 The program i_equat for interval linear equations

The program i_equat follows the procedure described in Section 11.6, and
obtains rational bounds for each x component. These bounds determine a “box”
in the n-space, with sides perpendicular to the coordinate axes, within which all
solution points to the interval equations must lie. In general, not all points within
the box are solution points, but the size of the box cannot be reduced. If only a
single orthant is visited, the true solution space is convex, but this may not be
the case when several orthants are visited.

Software Exercises I

These exercises are mainly with the programs linpro and i_ equat. The
program r_ equat is used to verify a text statement.

1. A simple linear programming problem is the following. A small factory
produces two items from a raw material. Each item a requires 5 hours of
manpower to assemble, takes up 4 units of raw material, and yields a profit of
3 units. Each item b requires 2 hours of manpower, takes up 2 units of raw
material, and yields a profit of 2 units. If during a week, 120 manpower hours
and 100 units of raw materials are available, how many of each item should be
produced to maximize profit.

Let x1 denote the number of a items produced in a week, and x2 the number
of b items. The constraint equations are

5x1 +2x2 ≤ 120

4x1 +2x2 ≤ 100

and the objective function is

f = 3x1 +2x2

Call up linpro and solve this linear programming problem, obtaining the result
in both rational form and 5 correct decimal places form. The result shows that
it is best to concentrate on item b, and produce no items of a.

2. Suppose for some reason it is essential that every week all the manpower
hours be used productively, and all raw materials be consumed. In this case the
constraint inequalities become constraint equations. Edit the linpro log file
appropriately to fit this situation, and call up linpro linpro. Now more units
of item a are produced than item b.

Elsevier US Job Code:IPNM Chapter:Ch11-P373859 19-12-2006 11:48a.m. Page:157 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

157 Notes and References

3. In the discussion of the interval equation example (11.18), it is stated that
the solution to A�m�x = b�m� is a point in the first quadrant. Verify this assertion
by calling up r_equat and entering the example’s A�m� and b�m�. The rational
solution vector obtained has components x1 = 11/26 and x2 = 1/26.

4. Call up i_equat and verify that equations (11.18) have the solution
obtained in the text.

5. The program i_equat displays the orthant being investigated, but normally
the solution is obtained so quickly that this temporary display goes unnoticed.
If the linear interval equations supplied to i_ equat have x = 0 as a solution
point, then every orthant of the n-space is investigated. To see the orthants
displayed as i_equat carries out a search through all orthants, specify 10
equations, take A�m� equal to an identity matrix and b�m� equal to the zero vector,
and take all elements of A�w� and b�w� equal to 0�01.

Notes and References

A. Two texts on linear programming are the books by Brickman [2] and by
Ignizio and Cavalier [5].

B. The linear programming method for solving linear interval equations [1] that
is described in Section 11.6 is a generalization of a method proposed by
Oettli [7] for the case where the x solution points lie in a single orthant.
Other methods for handling this single orthant case are given in Neumaier’s
book [6]. A general method for treating linear interval equations, with no
restrictions placed on the x solution, was found by Rohn [9] and is described
in Neumaier’s book.

C. An example of linear interval equations with	 a nonconvex solution set
contained in several orthants was given by Hansen [4].

[1] Aberth, O., The solution of linear interval equations by a linear programming method,
Linear Algebra Appl. 259 (1997), 271–279.

[2] Brickman, L., Mathematical Introduction to Linear Programming and Game Theory,
Springer-Verlag (Series: Undergraduate Texts in Mathematics), New York, 1989.

[3] Dantzig, G. B., Orden, A., and Wolfe, P., The generalized simplex method for
minimizing a linear form under linear inequality restraints, Pacific J. Math. 5 (1955),
183–195.

[4] Hansen, E., On the solution of linear algebraic equations with interval coefficients,
Linear Algebra Appl. 2 (1969), 153–165.

[5] Ignizio, J. P. and Cavalier, T. M., Linear Programming, Prentice Hall (International
Series in Industrial and Systems Engineering), Englewood Cliffs, NJ, 1994.

[6] Neumaier, A.,	 Interval Methods of Systems of Equations, Encyclopedia of Mathe
matics and its Applications, Cambridge University Press, Cambridge, 1990.

Elsevier US Job Code:IPNM Chapter:Ch11-P373859 19-12-2006 11:48a.m. Page:158 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

158 11 Problems of Linear Programming

[7] Oettli, W, On the solution set of a linear system with inaccurate coefficients, SIAM
J. Numer. Anal. 2 (1965), 115–118.

[8] Oettli, W. and Prager, W., Compatibility of approximate solution of linear equations
with given error bounds for coefficients and right-hand sides, SIAM J. Numer. Anal.
2 (1965), 291–299.

[9] Rohn, J., Systems of linear interval equations,	 Linear Algebra Appl. 126 (1989),
39–78.

Elsevier US Job Code:IPNM Chapter:Ch12-P373859 19-12-2006 11:48a.m. Page:159 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

� �� �� �

Finding Where Several
Functions are Zero 12

In Chapter 7 we considered the problem of finding where a function f�x� is zero.
This chapter treats the more general problem of finding the points where each
of several specified functions is zero. The demo program zeros, which solves
the simpler problem, also solves the more general problem.

12.1 The general problem for real elementary functions

Suppose we must find where n real elementary functions of n variables are
simultaneously zero. The equations that must be satisfied are

f1�x1� x2� � � � � xn� = 0

f2�x1� x2� � � � � xn� = 0
(12.1)

fn�x1� x2� � � � � xn� = 0

We use the simpler problem’s terminology and call an argument point
�c1� c2� � � � � cn� at which all these equations hold a zero of the functions. In
problems of this kind there often is some specific region of the argument space
in which zeros are sought. Initially we assume the region of interest is defined
by restricting each variable to a finite interval:

ai ≤ xi ≤ bi for i = 1� 2� � � � � n

Later in this chapter we consider other ways to specify the region of interest.

159

Elsevier US Job Code:IPNM Chapter:Ch12-P373859 19-12-2006 11:48a.m. Page:160 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

� � �

� � �

160 12 Finding Where Several Functions are Zero

12.2 Finding a suitable solvable problem

For the general problem we employ vector notation. We use x to denote a vector
with components x1� x2� � � � � xn. Such a vector is determined “to k decimal
places” by giving every component to k decimal places. We have now a vector-
valued function f�x� with components

fi�x� = fi�x1� x2� � � � � xn� i = 1� 2� � � � � n

The function f�x� is called elementary if all component functions are elementary.
The search region is defined by the relations a ≤ x ≤ b, where the constant vector
a has components equal to the left endpoints of the n intervals defining the
region, and the constant vector b has components equal to the right endpoints.
Here the vector relation x ≤ y denotes the n component relations xi ≤ yi. When
n = 3, the search region is a box in the argument space. In general, for any n, we
will use the convenient term “box” for this search region defined by two vector
constants. Our problem now is that of finding in a specified box B the arguments
x where f�x� = 0, with 0 of course denoting a vector with all components zero.

The method described in Chapter 7 for the case n = 1 can be generalized to
apply when n > 1. However, there are parts of the f�x� procedure that need
reinterpretation. If the f ′�x� interval is of one sign in a subinterval �c�d�, this
indicates that there can be at most one zero in �c�d�. To obtain a similar inference
for f�x� over a subbox B�S�, we must compute a Jacobian interval over B�S� .
The Jacobian of f at a point x is the determinant of an n-square matrix J

(
f�x�

)

defined by the equation

⎡ ⎤
	f1�x� 	f1�x� 	f1�x�

⎢ 	x1 	x2 	xn
⎥

⎢ ⎥
⎢ ⎥
⎢ 	f2�x� 	f2�x� 	f2�x� ⎥() ⎢ � � � ⎥

J f�x� = ⎢ 	x1 	x2 	x ⎥n ⎢ ⎥
⎢ ���

���
���
���
���

��� ⎥
⎢ ⎥
⎣ ⎦	f �x� 	f �x� 	f �x�n n n

	x1 	x2 	xn

Thus the Jacobian is det J
(
f�x�

)
. When n = 1 and f�x� becomes f�x�, the Jacobian

is the derivative df�x�/dx. A commonly used symbol for the Jacobian is
	�f1� f2� � � � � fn�/	�x1� x2� � � � � xn�, which we employ later, in Chapter 16. If
f�x� is such that we can compute intervals over B�S� for all the elements of
J
(
f�x�

)
, then we also can compute an interval for the Jacobian. If we find that

this interval is positive or negative, then there can be at most one zero in B�S� .
This becomes clear after we prove the following well-known generalization of
the Mean Value Theorem.

Elsevier US Job Code:IPNM Chapter:Ch12-P373859 19-12-2006 11:48a.m. Page:161 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

� � �

� � �

161 12.2 Finding a suitable solvable problem

Theorem 12.1 Let the box B be defined by a ≤ x ≤ b where a and b are
two constant vectors. If f�x� is defined in B and has all first partial derivatives
there, then if y and z are any two points in B, there are points c1� c2� � � � � cn

along the line segment joining y and z such that

n

fi�z�−fi�y� =∑ 	fi�ci� �zj −yj� for i = 1� 2� � � � � n
j=1 	xj

If we set x = �1 − t�y + tz, where the parameter t varies from 0 to 1, then x
varies along the line segment from y to z. For each i, let Fi�t� = fi��1− t�y + tz�.
Making use of the Mean Value Theorem, for each i there is a point ti in �0� 1�
such that

n

Fi�1�−Fi�0� = fi�z�−fi�y� = dFi�ti� �1 −0� =∑ 	fi��1 − ti�y + tiz� 	xi

dt j=1 	xj 	t

∑ 	fi��1 − ti=
n

	xj

�y + tiz�
�zj −yj�

j=1

The point ci is �1 − ti�y + tiz and the theorem is proved.

Corollary. If the computed Jacobian interval over a box B is positive
or negative, then f�x� is one-to-one over B, and as a consequence, there can be
at most one zero in B.

If y and z were two distinct arguments in B with f�y� = f�z�, it would follow
from the theorem that there were points c1� c2� � � � � cn inside B such that

⎡ ⎤
	f1�c1� 	f1�c1� 	f1�c1�

⎢ 	x1 	x2 	x ⎥⎡ ⎤ ⎡ ⎤⎢ n ⎥ z1 −y1 0 ⎢ ⎥
⎢ 	f2�c2� 	f2�c2� � � �

	f2�c2� ⎥⎢ ⎥ ⎢0⎥z2 −y2 ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ 	x1 	x2 	xn ⎥⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣

��� ⎦ ⎣
���⎦⎢ ���

���
���
���
���

��� ⎥
⎢ ⎥ zn −yn 0 ⎣ 	f �c � 	f �c � 	f �c � ⎦n n n n n n

	x1 	x2 cxn

The determinant of the displayed matrix must be zero, because the product of the
matrix with the nonzero vector z −y is 0. The elements of each matrix row are
evaluated at different points, unlike a Jacobian matrix, where all elements are
evaluated at the same point. Nevertheless, each element of this matrix is within

Elsevier US Job Code:IPNM Chapter:Ch12-P373859 19-12-2006 11:48a.m. Page:162 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

162 12 Finding Where Several Functions are Zero

the interval used for the element in the Jacobian evaluation over the box B.
If a positive or negative Jacobian interval is obtained, it is not possible for the
determinant of this matrix to be zero. So f�y� = f�z� is impossible, and the f�x�
mapping over B is one-to-one.

The zero-finding procedure for dimension n = 1 has another part that requires
reinterpretation for dimension n > 1. For a container subinterval �c�d�, there is
at least one f�x� zero in �c�d� if the signs of f�c� and f�d� are different. For a
container subbox B�S�, is there an analogous test?

If f�x� � 0 on the boundary of B�S�, there are two ways known to generalize =
the simple sign test used when n = 1. One way is to compute a nonnegative
integer called the crossing parity, which can have only two values, 0 or 1, with a
1 value indicating the presence of at least one zero. This integer test is described
in Section 12.4.

A second way of generalizing the simple sign test is to compute an integer
called the crossing number, which can be positive, negative, or zero. A nonzero
crossing number indicates the presence of at least one zero. This integer is related
to the crossing parity, and may be considered an improvement over that test. This
second integer test is described in Section 12.5. The computation for the crossing
number is only slightly more complicated than the computation for the crossing
parity, and, accordingly, the program zeros uses the crossing number test.

Now we can generalize the f�x� solvable problem to the case of f�x� over a
box B. First we present some needed terminology for the general case. A zero
x0 is simple if the Jacobian at x0 is nonzero. The tilde-box of a point x is the
box determined by the tilde-intervals of the components xi. And the halfwidth
of a box B is the largest halfwidth of its component intervals.

Solvable Problem 12.1 For any elementary function f�x� defined on a
box B and having at most a finite number of zeros there, and for any positive
integers k1 and k2, locate to k1 decimal places a point x0 on the boundary of B
at which every component of f�x0� is less in magnitude than 10−k1 , and halt. Or,
if f�x� � 0 on the boundary of B, bound all the zeros of f in B by:=

(1) giving, to k2 decimal places, points identified as simple zeros, or
(2) giving, to k2 decimal places, points identified as containing within their tilde-

box, a subbox where maxi �fi�x�� < 10−k2 ; the subbox is certain to contain
at least one zero if the f�x� crossing number over the subbox is nonzero.

This is the first time a solvable problem allows two different values for decimal
places, k1 and k2. The integer k1 is for unexpected outcomes and the integer k2

is for expected outcomes. We do not distinquish between the two integers in our
description of practical solution methods. We always use k for the number of
decimal places wanted.

Elsevier US Job Code:IPNM Chapter:Ch12-P373859 19-12-2006 11:48a.m. Page:163 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

12.3 Extending the f(x) solution method to the general problem 163

12.3	 Extending the f(x) solution method
to the general problem

We describe now the general computation scheme for solving this problem.
In the computation it is helpful to use a reference box B�u�, with all dimension
intervals being �0� 1�, the ith interval with variable ui being mapped linearly into
the corresponding interval �ai� bi� of xi, according to the rule

xi = �1 −ui�ai +uibi

Any required subdivision of B is done by making the appropriate subdivision of
the reference box B�u�, with each interval endpoint of a B�u� subbox maintained
as an exact number, with a range of zero. The interval endpoints for the
corresponding B subbox are obtained by using the linear relations given.
Controlling the subdivision of B this way has two advantages. If the precision of
computation is increased, the endpoints of the intervals defining a subbox B are
obtained to higher precision too. And it is always possible to determine when two
subboxes of B are adjoining, by comparing the exact interval endpoints of their
B�u� reference subboxes. In our description of the zero-finding procedure, each
subbox of B is to be understood as defined by a corresponding subbox of B�u� .

The first step of the general procedure is to test f�x� to make certain it is
defined over B. We need here a task queue holding boxes to be checked. Initially
the queue holds just the starting box B. The task queue cycle with the first queue
box B�Q� is the following. We set all series primitives xj to their box interval
values, and then generate intervals for all component functions fi. If there are no
series errors, the subbox is discarded. If there is an error in the evaluation of a
component, we construct all possible subboxes that can be formed by bisecting
all B�Q� dimension intervals, and these 2n subboxes replace B�Q� on the queue.
Eventually, either the queue becomes empty, in which case f�x� passes its test,
or else the leading queue box becomes small enough to fit inside the tilde-box
of its centerpoint, if this centerpoint were displayed to k decimal places. The
box centerpoint can now be displayed to k decimal places to indicate a point in
the proposed search box B where some component of f cannot be computed.

Next we test f over the boundary of B to make certain that the components of
f�x� are nonzero there. Again a task queue is needed, but for this examination
we must allow the queue to hold domains that define a side of a box or a part
of a side. A queue domain now has n fields s1� s2� � � � � sn, and each field si is
flagged either as a “point” holding a single number ci, or as an “interval” holding
a number pair ci, di, with ci < di. We distinguish the two cases by writing si = ci

Elsevier US Job Code:IPNM Chapter:Ch12-P373859 19-12-2006 11:48a.m. Page:164 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

{

164 12 Finding Where Several Functions are Zero

or si = �ci� di�. The queue initially has 2n domains defining the boundary of B.
For example, the side of B that has xj fixed at aj is obtained as a queue domain
by setting

aj for i = j
si =

�ai� bi� for i �= j

The task queue cycle with the leading queue domain is as follows. We use
the si fields to set the xi primitives to their interval or point values, and then
obtain intervals for all components fi. If any fi interval is positive or negative,
the domain is discarded. On the other hand, if for each component fi we obtain
an interval overlapping 0, then we construct all possible subdomains that can
be formed by bisecting interval fields and copying the point field, and these
2n−1 subdomains replace the leading queue domain. Eventually, either the queue
becomes empty, in which case the test is passed, or the leading queue domain
fails within the tilde-box of its centerpoint if it were displayed to k decimal
places, and simultaneously, the relations �fi�x�� < 10−k hold for all i. When this
second case occurs, the centerpoint is displayed to k decimal places as a point
on the boundary of B where maxi �fi�x�� < 10−k .

Once these two tests are passed, the next phase is to get a list of small
B subboxes where a zero is likely. The target halfwidth W is set to its initial
value, such as 0�1. Our first goal will be to find B subboxes where a zero is
likely, with the subbox halfwidth < W . Again we need a task queue holding
subboxes, and initially the queue holds just the box B. The task queue cycle is
as follows. We set the primitives xj to the component intervals of the first queue
box B�Q�, and then attempt to generate intervals for the functions fi. If we obtain
a series evaluation error, then B�Q� is divided into two subboxes by bisecting its
largest component interval, and these two subboxes replace B�Q� on the queue.
If we obtain intervals for all functions fi, and one of these intervals is positive
or negative, then B�Q� is discarded. If all fi intervals overlap 0, the halfwidth
of B�Q� is compared with W , and if it is smaller, then B�Q� is moved to another
initially empty list L, for later processing. Otherwise B�Q� is divided into two
subboxes by bisecting its largest component interval, and these two subboxes
replace B�Q� on the queue. Eventually the queue becomes empty. If the list L is
also empty we are done, since there are no zeros in B.

The next part of the procedure is to arrange the L subboxes into sets of
adjoining boxes. (Two boxes of dimension n adjoin if the intersection of their
boundaries is a box of dimension n − 1.) Any subbox belonging to one of
these sets is connected to any other subbox of the set either directly or via
other adjoining subboxes of the set. For each set we make up a container
box B�C� just large enough in each dimension, to contain all of the subboxes
of a set. For any member subbox of a container box B�C�, it is certain that

Elsevier US Job Code:IPNM Chapter:Ch12-P373859 19-12-2006 11:48a.m. Page:165 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

165 12.4 The crossing parity

f is not 0 on any boundary it shares with the container box, because any such
point x is either a boundary point of B, implying f�x� � 0, or is also a boundary =
point of some adjoining subbox that got discarded in the testing process, again
implying f�x� �= 0.

Next an interval for the Jacobian is computed for each container box B�C� .
If the Jacobian interval is positive or negative, according to the Theorem 12.1
Corollary, there is at most one simple zero inside B�C�, and the zero, if present,
usually can be found easily to k decimal places by the generalized Newton’s
method, discussed in Section 12.8.

For any container box B�C� with a Jacobian interval that overlaps 0, or with
a Jacobian interval computation attempt that fails for some reason, the box is
checked to determine whether it satisfies the requirements of outcome (2) of
Problem 12.1. If it does, then after the crossing number is computed for the
box, and the box centerpoint is displayed, the container box and its associated
subboxes are discarded.

Any container boxes failing these tests are also discarded, after first moving
their member subboxes back to the task queue. The parameter W is reduced by
some factor, such as 0�1, and another cycle of subbox processing ensues.

12.4 The crossing parity

Let B be a box with f�x� � 0 on the the boundary of the box. We use the notation =
	B to denote the boundary of B. For dimension n > 1, the f image of 	B is
an �n−1�-dimensional “surface”. The general idea of the crossing parity test is
that if this surface encloses the origin, then a straight line ray from the origin
should pierce the surface at an odd number of points and then be free of it. And
if the surface does not enclose the origin, then a ray from the origin either does
not pierce the surface or pierces it at an even number of points. The ray used
must not be tangent to the surface at any point, for then the touched tangential
point is not a piercing point. So a suitable ray for this test is what we term a
“nontangential” ray.

The crossing parity is defined as the number of times, modulus 2, that a
nontangential ray from the origin pierces the f image of 	B. In modulus 2 addition
of integers, indicated by the abbreviation “mod 2”, multiples of 2 are discarded
from the sum, so the result is always the 0 or 1 remainder that is left. Accordingly,
the crossing parity has only two possible values, 0 or 1, and if it is 1, this
indicates that B contains at least one f�x� zero. If we imagine the ray from
the origin being varied slightly, the parity value does not change unless the ray
leaves some part of f�	B�, and as it does, an entering piercing point combines
with an exiting piercing point at a tangential point, so again the parity does not
change. Thus the crossing parity does not depend on which nontangential ray
from the origin we use.

Elsevier US Job Code:IPNM Chapter:Ch12-P373859 19-12-2006 11:48a.m. Page:166 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

166 12 Finding Where Several Functions are Zero

For dimension n = 1, the box B defines a single interval �a1� b1�, and the
boundary 	B is a nonconnected set, made up of two distinct points. This is unlike
the situation with higher dimensions, where 	B is a connected set. Nevertheless,
a crossing parity is defined for n = 1, where a ray from the origin is either the
positive x1 axis or the negative x1 axis. If f1�a1� and f1�b1� are both positive or
both negative, the crossing parity is easily seen to be 0, using either of the two
rays to make the crossing parity test. The crossing parity is 1 only if f1�a1� and
f1�b1� have opposite signs. Thus for n = 1, the crossing parity is equivalent to
the test of the f1�a1� and f1�b1� signs.

For dimension n = 2, it is possible for the f image of 	B to loop around the
origin any number of times. For instance, suppose that the two intervals defining
the box B are both �−1�+1� and that f is defined by the equations

f1�x1� x2� = x1
2 −x2

2

(12.2)
f2�x1� x2� = 2x1x2

Here we have used the real and imaginary parts of the complex function

z 2 = �x1 + ix2�
2 = �x1

2 −x2
2�+ i�2x1x2�

to specify f1 and f2. If we imagine the square domain B situated in the complex
plane, with the x1 axis the real axis, and the x2 axis the imaginary axis, then the
f image of any domain point P is P2, using complex arithmetic. The f image of
	B loops twice around the origin.

Similarly, using the same B intervals, one can create an f function such that
the f image of 	B loops around the origin k times, where k is any positive
integer. Take as f1 and f2 the real and imaginary parts of the complex function
zk = �x1 + ix2�

k .
These examples illustrate a shortcoming of the crossing parity test. Here

we obtain a crossing parity of 1 only if k, the number of loops, is odd, even
though for every k the corresponding example function has a zero in B. The test
described next does not have this shortcoming.

12.5 The crossing number and the topological degree

The general idea of the crossing number is as follows. For dimension n > 1, the
set 	B has an “inside” and an “outside”. If f has a nonzero Jacobian, the f image
of 	B is also a set with an inside and outside. If we can distinguish somehow
between the two sides of f�	B�, then we can determine whether a nontangential
ray from the origin is entering or leaving f�	B�, instead of merely determining
the ray is piercing f�	B�.

Suppose that at each point of f�	B� we are able to define a normal vector that
points in a consistent direction. That is, the normal vector either points outward

Elsevier US Job Code:IPNM Chapter:Ch12-P373859 19-12-2006 11:48a.m. Page:167 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

167 12.5 The crossing number and the topological degree

everywhere or it points inward everywhere. With such a normal vector, the
crossing parity test is improved, because now, instead of counting the number
(mod 2) of f�	B� points pierced by a nontangential ray, we assign to each
piercing point a count of +1 if the ray is in the general direction of the normal,
and assign a count of −1 if the ray is in the general direction of a vector opposite
to the normal. The sum of the ray’s assigned counts at all the f�	B� piercing
points can be positive, negative, or 0, and this sum is the ray’s crossing number.
A nonzero crossing number indicates the presence of at least one zero within B.

For elementary functions, we describe a method of defining a normal vector
for dimension n = 3, and then generalize the method. In dimension n = 3, the
cross product of the vector a = aii+a2 j+a3k with the vector b = b1i+b2 j+b2k
is the vector a ×b defined by the equation

⎡ ⎤
i j k

a ×b = det ⎣a1 a2 a3
⎦

b1 b2 b3

This vector is perpendicular to both a and b, because the dot product of it with
either vector yields a determinant with two identical rows:

⎡ ⎤
a1 a2 a3

�a ×b� ·a = det ⎣a1 a2 a3
⎦ = 0

b1 b2 b3
⎡ ⎤

b1 b2 b3

�a ×b� ·b = det ⎣a1 a2 a3
⎦ = 0

b1 b2 b3

In dimension n = 3, a box B is defined by three intervals, and 	B consists of the
6 sides of the box. At any point of a side of 	B, one of the three xi variables is
constant, but the other two variables can vary to generate the particular side of 	B
containing the point. Thus, for each side of 	B, of the three vector partial deriva
tives 	f/	x1, 	f/	x2, 	f/	x3, two are defined, and both vectors are tangent to the
f image of the 	B side. We take the normal vector at an image point to be the cross
product of the two defined vector partial derivatives times a numerical factor that
can equal only +1 or −1. The numerical factor is chosen to obtain an outward-
pointing normal vector for the simple case where f is the identity function.

Elsevier US Job Code:IPNM Chapter:Ch12-P373859 19-12-2006 11:48a.m. Page:168 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

� � �

� � �

168 12 Finding Where Several Functions are Zero

To generalize the method to apply to any dimension n > 1, let e1� e2� � � � � en

be unit basis vectors associated with the n dimensional coordinate system
x1� x2� � � � � xn. That is, x =∑

i xiei. At any f image point, the normal vector n is
assigned according to the equation

⎡ ⎤e1 e2 � � � en

⎢ 	f1 	f2 	f ⎥
⎢ � � � n ⎥
⎢ 	u1 	u1 	u1 ⎥

	f1 	f2 	f n ⎢ n ⎥ ∑
n = �±1� ·det

⎢
⎢

	u2 	u2

� � �
	u2

⎥
⎥= yiei (12.3) ⎢ ⎥

⎢ ���
���

���
���
���

���
⎥ i=1 ⎢ ⎥

⎢ ⎥
⎣ ⎦	f1 	f2 	f

� � � n

	un−1 	un−1 	un−1

Here u1� u2� � � � � un−1 are the n− 1 variables that are “free” on the side of 	B
that generates the f image point. Take ui to be the ith free variable from the list
of variables x1� x2� � � � � xn. Each vector 	f/	ui, whose components form one of
the rows of the determinant, is tangent to some line in the f image of the side.
The vector n, being perpendicular to all these vectors, is then perpendicular
to the image of the side. The factor ±1 is set to either +1 or −1 so that an
outward pointing normal vector is obtained when f is the identity function.

Suppose n is evaluated at the image of some point P on a side of 	B. The free
variables are given by the list u1� u2� � � � � un−1, which, if replaced by their xi values,
would become the list x1� x2� � � � � xn, except for one missing, fixed, xi variable.
Let u be this single fixed variable on this particular side of 	B. For one of the n

intervals defining the box B, un is either the interval’s right or left endpoint. The
	f ∑ 	fivector
	un

= i 	un
ei can be evaluated at P if we have access to B rather than

just 	B. This vector, if nonzero and imagined situated at f�P�, points outward
from f�	B�, but not necessarily perpendicularly, if un is at the right endpoint of
its interval. This vector points inward, but not necessarily perpendicularly, if un is
at the left endpoint of its interval.

The dot product of n with this vector satisfies the relation

⎡ ⎤	f1 	f2 	fn

⎢ 	u 	u 	u ⎥
n n n ⎢ ⎥

⎢ 	f1 	f2 	f ⎥
⎢ � � � n ⎥
⎢ 	u1 	u1 	u1 ⎥	f ⎢
⎢ 	f1 	f2 	fn ⎥

⎥
n · = �±1� ·det ⎢ � � � ⎥	un ⎢ 	u2 	u2 	u2 ⎥⎢ ⎥

⎢ ���
���

���
���
���

���
⎥

⎢ ⎥
⎣ ⎦	f1 	f2 	fn

	un−1 	un−1 	un−1

Elsevier US Job Code:IPNM Chapter:Ch12-P373859 19-12-2006 11:48a.m. Page:169 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

169 12.5 The crossing number and the topological degree

If un is identical to xk, then by k−1 successive row exchanges of the first row with
the rows below, this determinant would become the Jacobian for f at the point P.
That is, we have

n · 	f = �±1� · �−1�k−1 det J
(
f �P�

)
(12.4)

	un

This equation allows us to determine the ±1 factor for n. When f is the
identity function, the normal vector n points outward from f�	B�. We know
the direction that 	f/	un points, so the dot product n ·

	u
	f is positive when un is at

n

its right endpoint, and is negative when un is at its left endpoint. Also, the Jacobian
is now the determinant of the identity matrix, and is 1. So at any point P on 	B,
the ±1 factor is �−1�k−1 for a right endpoint and is �−1�k for a left endpoint,
where k is the index of the fixed variable on the side of 	B containing P.

Now that the ±1 factor is determined, equation (12.4) becomes

	f
{

J�f�P�� if un is at its right endpoint
n · =

	un −J�f�P�� if un is at its left endpoint

Suppose now that f is a function such that everywhere in B its Jacobian is of
one sign. The last equation implies that if the Jacobian is positive (as it is for
the identity function), the f normal vector n points outward. and if the Jacobian
is negative, the f normal vector n points inward.

For dimension n = 1, the box B consists of a single interval �a1� b1�, and
to complete the specification of normal vectors, we take n to be e1 at the b1 image
point, and take n to be −e1 at the a1 image point. This defines a consistent
crossing number for the two possible rays, and the crossing number can equal
only +1, −1, or 0. A crossing number of +1 or −1 is equivalent to having
opposite signs for f1�a1� and f1�b1�.

For an elementary function f defined over a box B, having a nonzero Jacobian
everywhere except for a “few” points, does every nontangential ray from the
origin yield a crossing number value? Of course there is no difficulty when
the dimension n is 1, but for higher dimensions, there are three ways that
nontangential rays can fail to give a crossing number. An elementary function
may fail to have the required partial derivatives at some points of 	B, and at the
f image of such points, the normal vector fails to be defined. Also, if any vector
	f/	ui is a zero vector, again the normal vector is not defined. Finally, for any
point P lying on the intersection of two sides of 	B, the P image point gets
differing normal vectors according to the side of 	B used to define the normal,
and so a ray through P’s image point must be considered as having an undefined
crosssing number. So a nontangential ray from the origin must be considered
“exceptional” if one of these three conditions is encountered. From now on we
call a nontangential, nonexceptional ray a “satisfactory” ray.

Elsevier US Job Code:IPNM Chapter:Ch12-P373859 19-12-2006 11:48a.m. Page:170 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

170 12 Finding Where Several Functions are Zero

To summarize, for an elementary function having a nonzero Jacobian
everywhere except for a few points, all rays are satisfactory if the dimension
n is 1. For n = 2 there can be a finite number of nonsatisfactory rays, and for
n = 3, there can be curvilinear lines such that rays from the origin intersecting
these lines are not satisfactory. For n > 3 the number of nonsatisfactory rays can
be even larger, but always the number of such rays is always infinitesimal in
comparison with the number of satisfactory rays. A ray that is not satisfactory
has neighboring rays that are.

The mathematician Kronecker devised a way of obtaining the crossing number
by integration over 	B. His integration formula makes the various exceptional
or nontangential rays insignificant for an elementary function. The integer that
Kronecker’s integration formula delivers has been given the name “topological
degree”. Thus the topological degree may be taken to mean the crossing number
obtained for a satisfactory ray from the origin.

12.6 Properties of the crossing number

Suppose the elementary function f is defined over a box B. We can divide the
box B into two subboxes by choosing one of the intervals defining B, dividing
it into two subintervals, and then reassigning the subintervals and the remaining
B intervals in the obvious two ways. The two subboxes created this way have a
side in common, and we assume that no f�x� zero lies on this side. Let the two
subboxes created this way from B be labeled B1 and B2. The crossing number
for B equals the crossing number for B1 plus the crossing number for B2. This
is because f�	B� consists of f�	B1� and f�	B2� together, except for the presence
of the image of the dividing side in f�	B1� and in f�	B2�. Consider computing
the crossing numbers for B1, B2, and B, by following a satisfactory ray from
the origin. The crossing number count for B equals the crossing number count
for B1 plus the crossing number count for B2, except for the counts obtained
for B1 and B2 where the ray intersects the image of the common dividing side.
But at any such intersection point, the normal vector for B1 is opposite to the
normal vector for B2, so this intersection point can be ignored when the counts
for B1 and B2 are added.

If the box B is divided into several subboxes, with no dividing side intersecting
a zero, the crossing number of B is the sum of the crossing numbers for all the
subboxes.

When it is known that all the zeros of B are simple, a relation useful for
crossing number computation can be obtained. We divide B several times so
that each B zero is isolated within a subbox. The Jacobian at each zero is
nonzero, and we may assume the subbox enclosing the zero is small enough that
a Jacobian interval computed for the subbox is nonzero. In this case, according
to the Theorem 12.1 Corrollary, the f image of the subbox is one-to-one, so the
crossing number for such a subbox is +1 if the Jacobian is positive, and −1

Elsevier US Job Code:IPNM Chapter:Ch12-P373859 19-12-2006 11:48a.m. Page:171 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

12.7 Computation of the crossing number 171

if the Jacobian is negative. The crossing number for any subbox not containing
a zero is 0.

Thus, when all B zeros are simple, the crossing number for B is p−n, where
p is the number of zeros with positive Jacobians, and n is the number of zeros
with negative Jacobians. Even for dimension n = 1, this result holds, but here
p−n can be only +1, −1, or 0.

12.7 Computation of the crossing number

The crossing number of an elementary function f over a box B can be calculated
using interval arithmetic. The method may be viewed as an attempt to find the
crossing number by choosing a ray H from the origin and finding all the points
where this ray crosses f�	B�. If there are N+ crossing points where the ray is in
the general direction of the normal vector n, and N− crossing points where the
ray is in the general direction of −n, then N+ −N− is the crossing number. The
interval arithmetic character of the computation allows us to assume that H is a
satisfactory ray, because even if H were tangential or exceptional, there would
be a satisfactory ray within an arbitrarily small arc rotation of H .

To carry out the ray test procedure, we use a task queue holding domains
comprising the boundary of B, with each queue domain defined by fields
si, i = 1� � � � � n, previously mentioned in Section 12.3 as fields needed to test
	B to make certain f�x� � 0 there. Recall that a field is flagged as a “point” =
holding a single number a, or as an “interval” holding a number pair a and b,
with a < b, and we distinguish the two cases by writing si = a or si = �a� b�.
Initially the queue is loaded with 2n domains designating the different sides of
the box B.

A queue domain has one additional field, “orientation”, which equals the ±1
factor appearing in the expression (12.3) for the normal vector n. Recall that this
factor equals �−1�k or �−1�k−1, depending on whether the side’s fixed variable
xk is set to its lefthand interval endpoint or its righthand interval endpoint,
respectively.

Initially we take the ray H to be pointing in the direction of e1, that is, the
basis vector pointing in the positive direction of the x1 coordinate. We search
for regions of 	B where the ray H would meet f�	B�, the image of 	B. We do
this with the following task queue cycle. Taking the first queue domain, we set
the primitives xi equal to the corresponding si point or interval values. That is,
one variable is set to a fixed value, and the others are set to intervals. Then
using formal interval arithmetic, we generate interval values for the component
functions f2� f3� � � � � fn. If any of these intervals do not contain 0, the ray H
cannot intersect the image of this part of 	B, and the queue domain is discarded.
If all these function intervals contain 0, then we form an interval for f1. If the
f1 interval is negative, again the ray H cannot meet the image of this part of 	B,
and the queue domain is discarded. If the f1 interval is positive, it is likely that

Elsevier US Job Code:IPNM Chapter:Ch12-P373859 19-12-2006 11:48a.m. Page:172 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

� � �

� � �

172 12 Finding Where Several Functions are Zero

the ray H meets the image of this part of 	B, and the queue domain is moved to
another initially empty list L, for later attention. In the remaining case, where the
f1 interval contains 0, it is uncertain whether the ray H meets the image of this
part of the boundary of B, and we proceed as follows. From the queue domain
we construct all possible queue domains that can be formed by replacing interval
si fields by either their right half or their left half subintervals, copying point
fields si, and copying the orientation value. These 2n−1 queue domains replace
the first queue domain.

Because the point 0 does not lie in the image of 	B, eventually the task
queue becomes empty, although it may be necessary to increase the precision
of computation to obtain this. (Every time a queue domain is subdivided, this
is an appropriate time to check the precision of computation.) When the task
queue is empty, the list L is examined. In general L contains domains which
together define a subset B�1� of 	B. The subset B�1� will in general have a
number of connected parts. On the boundary of each connected part the func
tions f2� f3� � � � � fn can never be simultaneously zero. This is because each
point on the boundary of the connected part is also a point on the bound
ary of some queue domain that was discarded. This discarded queue domain
had one of its functions f2� � � � � fn positive or negative, or had f1 nega
tive, but f1 negative did not occur, because f1 was positive on the adjoining
connected part.

Consider any domain on L with orientation
 defining a subdomain S of
B�1�. The ray H may meet the f image of S at one or more points where f�x�
is a positive multiple of e1, and for each of these points there will be a point
P of S where the functions f2, f3� � � � � fn are simultaneously zero. According
to equation (12.3) the normal vector has a positive or negative e1 component
depending on whether

⎡ ⎤	f2 	f3 	fn

⎢ 	u1 	u1 	u1 ⎥⎢ ⎥
⎢ 	f2 	f3 	fn ⎥
⎢ � � � ⎥

 det ⎢ 	u2 	u2 	u2 ⎥⎢ ⎥
⎢ �� �� �� �� �� �� ⎥
⎢ � � � � � � ⎥
⎣ ⎦	f2 	f3 	fn

	un−1 	un−1 	un−1

is positive or negative. Note that the determinant may be interpreted as the
Jacobian for the functions f2, f3� � � � � fn at the point where all these func
tions are zero. By the relation obtained in the last paragraph of the preceding
section, the contribution made by all such points to the sum N+ − N− is

times the crossing number of the mapping defined by f2� f3� � � � � fn on the
�n − 1�-dimensional region S. We need to sum these contributions for each
domain on the list L to obtain N+ − N−. Thus we have replaced our original
task of calculating a crossing number for a function with n components, by the

Elsevier US Job Code:IPNM Chapter:Ch12-P373859 19-12-2006 11:48a.m. Page:173 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

173 12.7 Computation of the crossing number

task of calculating a set of signed crossing numbers for a function with n− 1
components.

To do this second task, we proceed much as we did before, this time loading
our task queue with boundary domains for each element on the list L. For
each domain of L with orientation
 , we form 2n−1 boundary domains for
the task queue by copying all fields si except for one interval field which is
converted to a point field set to an endpoint of the interval. If the interval
field converted was the jth interval field, counting from s1 toward sn, then the
orientation assigned to this new domain is
 times �−1�j or times �−1�j−1,
depending on whether the left or the right endpoint is assigned. If two L domains
have a common side, then this side gets specified twice on the queue. Such
pairs are discarded, since the orientation values assigned to them are always
opposite, and so their net contribution is zero. It is also possible for one L
domain’s side to be contained within another L domain’s side. In this case
the task queue is corrected to specify only the unrepeated part of the larger
side. After such duplications are removed, what is left on the queue defines the
boundary of B�1�. The formation of the second task queue is similar to that of
the initial task queue, except for the need to remove duplications. If duplications
were not removed, the correct crossing number still would be obtained, because
of the opposing signs on duplicated sides, but the computation would take
longer.

The second task queue computation is similar to the first, except that the
number of fi functions evaluated is reduced by one. This time we take the ray H
to be pointing in the positive direction of the second coordinate x2. Eventually
the task queue is empty, and there is another list L specifying a subdomain
B�2� of 	B�1� that requires further examination.

Each time the process is carried out, the dimension of the point sets examined
and the number of functions treated is reduced by one. After the next-to-last
cycle, the list L defines a set B�n−1� that contains a number of line segments,
each with an orientation
 assigned. The sum of contributions
 times crossing
number for all these segments must be found to obtain N+ −N−. Now we are
down to just one component fn�x�, so the crossing number is easy to obtain.
For each line segment S with orientation
 on the list L, we construct two point
domain elements for the task queue, where the orientation value assigned is

 · �−1� for the point domain having the left endpoint of the single remaining S
interval field, and
 · �+1� for the right endpoint. The ray H now points in the
positive direction of xn, and the final queue cycle is to move to the list L only
those point domains x for which fn�x� is positive. The others are discarded.
After this final task queue is empty, the sum of the orientations of the point
domains on L yields N+ − N−, and we finally obtain the crossing number of
f�x� over B.

An example may clarify the general process. Consider the mapping f from R3

into R3 defined by

f1 = x1
2 +x2

2 −x3� f2 = x2
2 +x3

2 −x1� f3 = x3
2 +x1

2 −x2

Elsevier US Job Code:IPNM Chapter:Ch12-P373859 19-12-2006 11:48a.m. Page:174 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

[] []

174 12 Finding Where Several Functions are Zero

These functions have a zero at �0� 0� 0� and at
(

1
2 �

1
2 �

1
2

)
. The Jacobian at

�0� 0� 0� is

⎡ ⎤
0 0 −1

det ⎣−1 0 0⎦ = −1
0 −1 0

and the Jacobian at
(

1 � 1 � 1
)

is2 2 2

⎡ ⎤
1 1 −1

det ⎣−1 1 1⎦ = 4

1 −1 1

Thus the crossing number equals −1 if B is a small box containing just the
zero �0� 0� 0�, it equals +1 if B is a small box containing just the zero

(
2
1 � 2

1 � 2
1
)
,

and equals zero if B is a box large enough to contain both zeros. We will
compute the crossing number for a box B containing just the origin, namely the
box B with the interval

[− 1
4 � 4

1
]

for each variable xi.
There are initially six domains defining sides of B on the first task queue, and

only the domain given below is moved to the list L when it is tested.

1 1 1 1 1
s1 = − � � s2 = − � � s3 = − �
 = −1 (12.5)

4 4 4 4 4

For this domain, the interval for both f2 [and] f3 is
[− 16

3 � 8
3
]

and contains
0 as required, and the interval for f1 is 1

4 �
3
8 and is positive as required.

The other five queue domains are discarded either because their f2 interval
does not contain 0, their f3 interval does not contain 0, or their f1 interval is
negative.

The region B�1� is defined by the single domain (12.5), and so the queue on
the second iteration has four domains defining its sides. Of these only the one
given below is transferred to L when it is tested.

1
[

1 1
]

1
s1 = − � s2 = − � � s3 = − �
 = 1 (12.6)

4 4 4 4

For this domain, the interval for [] f3 is
[− 8

1 � 8
3
]

and contains 0 as required,
5 3and the interval for f2 is 16 � 8 and is positive as required. The other three

Elsevier US Job Code:IPNM Chapter:Ch12-P373859 19-12-2006 11:48a.m. Page:175 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

∑

���
���

���

175 12.8 Newton’s method for the general problem

domains either have an f3 interval that does not contain 0 or have a negative f2

interval.
The region B�2� is defined by the single domain (12.6), and so the queue on

the last iteration has two domains defining its sides, which now are points. Only
the domain below yields a positive sign for f3.

1 1 1
s1 = − � s2 = − � s3 = − �
 = −1

4 4 4

Accordingly the crossing number equals −1, the orientation value of this single
domain.

12.8 Newton’s method for the general problem

Suppose for f�x� that the n component functions fi�x� = fi�x1� x2� � � � � xn� and
all partial derivatives 	f

	x
i�

j

x� are defined in a certain region of x space, and suppose

that x�k� = �x1
�k�

� x2
�k�

� � � � � x�k�
n � is a zero approximation for f�x�. At the series

expansion point x�k�, the Taylor series of the component functions are

n 	f1�x�k��
f1�x� = f1�x�k��+∑

�xj −x
�k�

�+· · ·
j=1 	xj

j

f2�x� = f2�x�k��+ n 	f2�x�k��
�xj −x

�k�
�+· · ·

j=1 	xj
j

n �x�k��
fn�x� = fn�x�k��+∑ 	fn �xj −xj

�k�
�+· · ·

j=1 	xj

A linear approximation to each function fi can be obtained from just the
series terms shown. Recall that the Jacobian matrix J

(
f
(
x�k�

))
is the matrix

with i� j element equal to 	fi�x�k�� . The linear approximations may be written in
	xj

matrix-vector form as

y = f �x�k��+ J
(
f�x�k��

)
�x −x�k��

If we set y to 0, solve for x to obtain a better zero approximation, and call our
solution x�k+1�, we obtain the equation

x�k+1� = x�k�−[J(f�x�k��
)]−1

f�x�k�� (12.7)

The general zero finding method sometimes creates a container box B�C� with
the f�x� Jacobian positive or negative over the box. Using the iteration equation

Elsevier US Job Code:IPNM Chapter:Ch12-P373859 19-12-2006 11:48a.m. Page:176 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

∑
�

̂

̂

̂

176 12 Finding Where Several Functions are Zero

(12.7), and with the starting approximation x�0� taken as the box centerpoint,
the sequence of iterates generally rapidly locates the zero. After an iterate x�k+1�

is computed, if xi
�k+1� � xi

�k� = , then, in preparation for the next cycle, x�k+1� is
replaced by its midpoint, that is, the vector whose ith component is x�k+1� with

�k+1� � �k�
i

its range set to 0. Eventually we find xi = xi for all i, and then the midpoint
of x�k� defines the final zero approximation, which we denote x�z� .

An error bound for x�z� can be obtained by generalizing the error bounding
method used in Section 7.3. If z is the zero inside B�C�, then f�z� = 0, and using
the Mean Value Theorem once more, we have for i = 1� � � � � n,

n 	fi�cij� �z�
fi�x�z�� = fi�x�z��−fi�z� = − zj�x

J is the n-square

j	xjj=1

where the points cij lie on the line segment joining x�z� and z. If
	fi�cij� matrix with elements , then we have

	xj

f�x�z�� = ̂J �x�z� − z�

which implies

J−1 f �x

If a matrix J�C� of interval elements is formed, using the intervals computed in
testing the container box, each element of this matrix contains the corresponding

�z� − z = �z��x

element of
of x�z� − z

J . So if an interval inverse matrix �J �C��−1 is formed, each component
will be contained within the corresponding interval element of

the vector

y = �J �C��−1f�x�z�� (12.8)

Thus the error of xi
�z� is bounded by ei = �midpoint yi�+halfwidth yi. So xi

�z� ±© ei
is a correctly ranged zero approximation component. If our error bounding
process fails to yield a zero approximation with sufficient correct decimal places,
then it is necessary to increase the precision of computation, restart the Newton’s
method iteration, and repeat this test with a better x�z� approximation.

12.9 Searching a more general region for zeros

Suppose f has two components, and we are interested in finding all the zeros of
f that lie inside the unit circle x1

2 +x2
2 ≤ 1. Solvable Problem 12.1 requires the

Elsevier US Job Code:IPNM Chapter:Ch12-P373859 19-12-2006 11:48a.m. Page:177 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

177 12.9 Searching a more general region for zeros

search domain to be a rectangle. We could enclose the unit circle in a square and
search within the square, but there is a difficulty that could arise. It is possible
that a component function fi is defined inside the unit circle but not in the square.

It is worthwhile to consider now whether Solvable Problem 12.1 can be
changed to allow more general search domains than just boxes. An iterated
integral for n dimensional volume of the form

∫ b ∫ h1 �x1� ∫ hn−1 �x1�x2 � � � � �xn−1�

dx1dx2� � � dxn (12.9)
a g1�x1 � � � � gn−1�x1 �x2� � � � �xn−1 �

has an integration domain that can serve also as a zero search domain. For
instance, for our example problem of finding zeros within the unit circle, we
could use the dimension 2 domain of

√ ∫ 1 ∫ 1−x1
2

√ dx1 dx2 −1 − 1−x1
2

To solve Problem 12.1 over boxes, we employed a mapping from a reference
unit box B�u� into the problem box B. For the circle example we can map from
the unit square into the circle with a function x�u� defined by

x1 = −1 · �1 −u1�+1 ·u1

2 2x2 = −
√

1 −x1 · �1 −u2�+
√

1 −x1 ·u2

Here u1 and u2 vary in �0� 1�. This mapping allows us to convert a function
f�x� defined in the circle into a function f�x�u�� defined in the unit square. The
mapping from the boundary of the unit square into the boundary of the circle is
not one-to-one, since the entire left and right edges of the unit square map onto
points, but the mapping from the interior of the unit square into the interior of
the circle is one-to-one. Using the composite f , we can search the interior of B�u�

for zeros, mapping each zero in B�u� into a zero in the circle.

Definition 12.1 An elementary region is a region of n-space that can be
defined as the integration domain of the integral (12.9), where all functions
hi and gi are elementary functions.

An elementary region of dimension 1 is a closed interval �a� b�. An elementary
region R of dimension 2 is defined by two elementary functions h1�x1� and
g1�x1� over an interval �a� b�, and its interior consist of those points �x� y� for
which the inequalities a < x < b and g1�x� < y < h1�x� hold.

The method described for solving Problem 12.1 also serves for solving the
more general problem given next.

Elsevier US Job Code:IPNM Chapter:Ch12-P373859 19-12-2006 11:48a.m. Page:178 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

178 12 Finding Where Several Functions are Zero

Solvable Problem 12.2 For any elementary function f�x� defined on an
elementary region R and having at most a finite number of zeros there, and
for any positive integers k1 and k2, locate to k1 decimal places a point on the
boundary of R where all components of f�x� are less in magnitude than 10−k1

and halt. Or, if f�x� � 0 on the boundary of R, bound all the zeros of f in R by:=
(1) giving, to k2 decimal places, points identified as simple zeros, or
(2) giving, to	 k2 decimal places, points identified as containing within their

tilde-box a region where maxi �fi�x�� < 10−k; the region is certain to contain
at least one zero if the f�x� crossing number computed over a box defining
the region is nonzero.

With an elementary region R, we map from a unit box B�u� into R, using a
mapping x = x�u� derived from the functions defining R. Using the notation
of the integral (12.9), we have x1 = �1 − u1�a + u1b, and for i > 1 we have
xi = �1 − ui�gi−1 + uihi−1. The mapping from the boundary of B�u� into the
boundary of R may not be one-to-one, but the mapping from the interior of
B�u� to the interior of R is one-to-one, so we can search for zeros of f in the
interior of R by searching for zeros of f

(
x�u�

)
in the interior of B�u� .

The zero-finding process that we used previously will also work for the more
general region R. The B�u� box is subdivided just as before, but the determination
of a degree 0 or degree 1 series expansion for f now is done in two steps,
reflecting f’s composite nature. For any u subbox B�S� of B�u�, we obtain an
x subbox B�x� by finding interval values for the various xi expressions given
in the preceding paragraph. Then after xi primitives are set accordingly, we
obtain the fi expansions.

As before, we test f to make certain it is nonzero over the boundary of B�u� .
The search for zeros is done with a task queue listing subboxes of B�u� in which
a zero is possible.

Software Exercises J

These exercises, like Software Exercises E, are with the demo program zeros.

1. Call up zeros and find to 10 decimal places the zero of the Section 12.4
example used to illustrate a difficiency of the crossing parity:

f1�x1� x2� = x1
2 −x2

2

f2�x1� x2� = 2x1x2

Use search intervals �−10� 10� for both x1 and x2.
Note that the phrase “at least one zero” is used for the single zero possibility

found. If the crossing parity had been used by the demo program instead of the

Elsevier US Job Code:IPNM Chapter:Ch12-P373859 19-12-2006 11:48a.m. Page:179 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

179 Software Exercises J

crossing number, the “at least one zero” phrase would not appear because a zero
crossing parity would be obtained.

2. Call up zeros and find to 10 decimal places the zero of

f1�x1� x2� = x1

f2�x1� x2� = �x2�
Again use search intervals �−10� 10� for both x1 and x2.

A zero possibility is indicated near x1 = x2 = 0, but the phrase “at least one
zero” does not appear. This function’s Jacobian is not defined along the line
x2 = 0, is positive for x2 > 0, and is negative for x2 < 0. The crossing number
test is reliable for an elementary function if the function’s Jacobian has one
sign throughout the containment box, except, possibly, at a “few” points. This
example shows that the crossing number test, though more reliable than the
crossing parity test, still can fail to indicate the presence of an existing zero.

3. Call up zeros and find to 10 decimal places the zeros of

f1�x1� x2� = x1
2 −x2

f2�x1� x2� = x2
2 −x1

Use the search interval �−10� 10� for both x1 and x2. Obtain in this way the two
simple zeros x1 = x2 = 0 and x1 = x2 = 1. Note that one zero is displayed as an
exact number, that is, without the usual tilde symbol. Whenever this occurs, it
indicates that the equation (12.8) vector f�x�z�� is 0.

4. Edit the log file to change both search intervals from �−10� 10� to �0� 10�, and
then call up zeros zeros. Note the program’s rejection of the problem because
the functions no longer test nonzero on the boundary of the search region.

5. Call up zeros and reenter the preceding problem but use a circle centered at
the origin, with a radius of 2, as the search region. Note that the two simple zeros √
are again obtained. If you edit the log file to change the radius to 2, and then call
up zeros zeros, the problem is rejected because the boundary check fails.

6. Call up zeros and find to 10 decimal places the zeros of the three
component function used as an example in Section 11.7:

f1 = x1
2 +x2

2 −x3� f2 = x2
2 +x3

2 −x1� f3 = x3
2 +x1

2 −x2

Take the search interval for x1, x2, and x3 to be �−10� 10�.

7. Call up zeros and find to 1 decimal place the single zero of the two
functions

f1 = x1
2 +x2

2 −2� f2 = x1 +x2 −2

Elsevier US Job Code:IPNM Chapter:Ch12-P373859 19-12-2006 11:48a.m. Page:180 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

180 12 Finding Where Several Functions are Zero

Take the search interval for x1 and x2 to be �−10� 10�. The straight line x1 +x2 = 2
is tangent to the circle x1

2 + x2
2 = 2 at the point �1� 1�, and the f Jacobian is

zero there, so this zero is found by the slow method of reducing the size of the
container region. Whenever the zeros program fails to display any results after
a reasonable waiting period, it becomes advisable to interrupt the program with
a control-c, edit the log file to reduce the number of decimal places to 1 or 2,
and then repeat the search by calling up zeros zeros.

Notes and References

A. The Kronecker integral for topological degree is given in the	 text by
Alexandroff and Hopf [2, pp. 465–467].

B. The method given in Section 12.7 for computing crossing number was initially
presented as a method for computing the topological degree using interval
arithmetic [1]. The method is a version of a method proposed earlier by
Kearfott [3].

[1] Aberth, O., Computation of topological degree using interval arithmetic, and appli
cations, Math. of Comp. 62 (1994), 171–178.

[2] Alexandroff P. and Hopf, H., Topologie, Chelsea, New York, 1935.
[3] Kearfott, R. B., A summary of recent experiments to compute the topological degree,

Proceedings of an International Conference on Applied Nonlinear Analysis, University
of Texas at Arlington, April 20–22, 1978 (V. Laskshmikantham, ed.), Academic
Press, New York, 1979, pp. 627–633.

Elsevier US Job Code:IPNM Chapter:Ch13-P373859 19-12-2006 11:49a.m. Page:181 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

Optimization Problems 13

Two programs locate the extreme values of a real function within a specified
bounded domain. The program maxmin finds the absolute maximum or mini
mum, and the program extrema locates the relative maximum or minimum.

13.1 Finding a function’s extreme values

A common problem is finding the maximum or minimum of an elementary
function f�x1� x2� � � � � xn� in a specified bounded region of n-space. Box search
regions, defined in Section 12.2, are convenient bounded regions, and we take
our computation problem to be locating the maximum or the minimum of an
elementary function f in a specified box B. Finding the maximum M of f is
equivalent to finding the minimum m of −f , because if the inequality

m ≤ −f�x1� x2� � � � � xn�

is true for all arguments in B, with equality for at least one argument point, then
after we multiply by −1, the inequality

−m ≥ f�x1� x2� � � � � xn�

is true for all arguments in B, with equality for at least one argument point.
So the f maximum M is −m. Accordingly, we can limit our problem now to
locating the minimum value of f�x1� x2� � � � � xn� in a specified box B.

Usually one is interested not only in the value of the minimum, but also in
the argument or arguments where the minimum is attained. However, locating
to k decimal places even a single argument point where the minimum occurs

181

Elsevier US Job Code:IPNM Chapter:Ch13-P373859 19-12-2006 11:49a.m. Page:182 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

182 13 Optimization Problems

is a nonsolvable problem, as may be seen by considering the case of functions
f �x�= cx, having the arbitrary constant parameter c and with the interval �−1�1�c

as the search region. If the parameter c is zero, the minimum of fc�x� occurs at
any argument in �−1�1�. If c is positive, the minimum occurs at x = −1. And
if c is negative, the minimum occurs at x = 1. A program that could find to
k decimal places one point at which any function fc�x� is minimum would let
us infer that c ≥ 0 if the k decimal value supplied were negative or zero, and
would let us infer that c ≤ 0 if the value supplied were positive. However, this
contradicts Nonsolvable Problem 3.13.

Thus we must retreat from attempting to determine where the minimum
occurs. It is convenient here to use vector notation for f arguments, so now
f�x1� x2� � � � � xn� is denoted by f�x�. An x box is defined by a set of intervals,
one interval for each xi variable. An alternate problem, with an escape, is

Solvable Problem 13.1 For an elementary function f�x� defined in a
box B of n-space, and for any positive integer k, give to k decimal places the
minimum value of f in B, and give to k decimal places all f arguments in B
where f has a matching k decimal value, or else define to k decimal places an
x subbox in which the minimum occurs.

When f arguments are supplied, no claim is made that the minimum occurs at
any of these arguments. If k is increased, a more accurate minimum value is
obtained, and possibly a shorter list of arguments. The escape is for difficult
cases, like the example function fc with c close to zero. Here the escape subbox
would be identical to the search box, that is, the x1 interval �−1�1�.

In the computation, it is helpful once more to use a reference box B�u�, where
all component intervals of u are �0�1� and the ith interval with variable ui

is mapped linearly into the corresponding interval �ai� bi� of xi, according to
the rule

xi = �1 −ui�ai +uibi

This device was described previously in Section 12.3 for the problem of finding
zeros. When we say that a subbox B�S� is divided into two, what occurs is that
the reference box for B�S� gets divided.

The first step in finding the minimum is to divide B into a list of subboxes
such that f can be computed without error over each of the subboxes. This
is a task queue computation, with the queue initially holding just the box B.
The queue cycle consists of attempting to compute an interval for f , via formal
interval arithmetic, over the leading queue subbox. If there is a series error, the
leading box is divided into two by bisecting its largest component interval, and
the two subboxes replace it on the queue. If an f interval is obtained, the leading
box is added to an initially empty list L. Eventually the task queue is empty,
and the list L has our required B disection.

Elsevier US Job Code:IPNM Chapter:Ch13-P373859 19-12-2006 11:49a.m. Page:183 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

�

©

183 13.1 Finding a function’s extreme values

Combining ideas from computation procedures suggested by Moore [5] [6],
Skelboe [10], and Ichida-Fujii [4], we obtain the k-decimal bound on the mini
mum of f efficiently as follows. For each subbox B�S� on L, if B�S� has no
boundary points of B, a degree 1 series evaluation of f is attempted. If this is
obtained, then we have intervals for all the partial derivatives of f over B�S�. If
any of these partial derivative intervals do not contain 0, then it is certain that
the minimum of f does not occur in B�S�, and the subbox is discarded. When a
degree 1 evaluation is not obtained, a degree 0 evaluation of f can be obtained,
because this is just the formal interval arithmetic computation of f over B�S� .
For any box B�S� containing boundary points of B, just a degree 0 evaluation
is obtained. Thus for every subbox undergoing a degree 0 evaluation, and for
all the nondiscarded subboxes with degree 1 evaluations, we obtain an interval
mS ±wS for f over B�S�. The f minimum over B�S� may be as large as mS , the
f value at the centerpoint of B�S�, and may be as small as mS −wS . Thus the f
minimum over B�S� is somewhere in the interval �mS −wS�mS�.

The surviving subboxes on the list L are now arranged in the following order.
Subbox BS precedes subbox BS′ on the list if mS −wS < mS′ −wS′ , or, in the
case where mS −wS = mS′ −wS′ , if wS > wS′ . An initial interval bound �M1�M2�
for the minimum of f may be taken as �mS0

−wS0
�mS0

� where BS0
is the first

subbox on the list L.
The following process is repeatedly performed to reduce the width of the

interval �M1�M2�. The first subbox on L is removed and divided into two
subboxes by bisecting its largest component interval. Each of these two subboxes
goes through the f evaluation procedure described, and if not discarded, is placed
in its appropiate position on the L list. The new value of M1 is mS0

−wS0
where

BS0
is the new leading element on L. The other value M2 is not changed unless

mS0
<M2. in this case M2 is set equal to mS0

and then a pass is made through
the list L to discard any subbox BS for which mS −wS > M2.

The minimum of f equals the ranged number 1
2 �M1 +M2� ± 1

2 �M2 −M1�.
The process of bisecting the first element of L continues until an f minimum
accurate to k decimal places is obtained.

The next step is to use the surviving members of the final L list to find where
in B the minimum occurs. The L subboxes are arranged into connected sets of
subboxes, and for each set a containing box B�C� is constructed, just large enough
to hold the members of the set. If each box B�C� is small enough to fit within the
tilde-box of its centerpoint to k decimal places, then we satisfy the requirements
of Problem 13.1 by displaying all the centerpoints to k decimal places.

If some of the B�C� boxes fail this criterion, the list L is processed anew,
obtaining f ’s minimum value to more decimal places, in an attempt to get
container boxes small enough that centerpoints can be displayed. If there is
no progress toward this goal, the escape exit is used. That is, we construct a
containing box just large enough to hold all the subboxes of the final list L, and
display to k decimal places the endpoints of its defining intervals.

Elsevier US Job Code:IPNM Chapter:Ch13-P373859 19-12-2006 11:49a.m. Page:184 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

� � �

� � �

184 13 Optimization Problems

13.2 Finding where a function’s gradient is zero

Often it is useful to determine whether a function f has one or more local extrema
inside a certain region R. To find these points, one tries to locate the points of R
where the f gradient is 0. The gradient of f is the vector whose ith component
is the partial derivative of f with respect to variable xi. (For dimension n = 1,
the gradient’s single component is the derivative of f with respect to x1.) If the
f gradient is defined and is nonzero, it points in the direction where f increases
at the greatest rate.

Assume now that the function f is such that the f derivative (n = 1) or
the several f partial derivatives (n > 1) are defined inside a specified bounded
region, which we take to be an n-dimensional box B, and that our problem is to
lacate all points in B at which the f gradient vector is 0. For conciseness, our
procedure description presumes n > 1.

We have n partial derivative functions �f � �f � � � � � �f defining the gradient of
�x1 �x2 xn

f , and we want the points in B where these functions are simultaneously 0. This
problem is similar to Solvable Problem 12.1, which is the problem of finding
the points where n functions of n variables are simultaneously zero when the
search domain is an n-dimensional box B. As with that zero-finding problem,
to have a solvable problem we must require the f gradient to be nonzero on the
B boundary. Also, as with that zero-finding problem, to avoid computerbound
varieties of the problem, we require the f gradient to be zero only at a finite
number of points in B.

For the zero-finding problem we used x to denote the n component argument
point x1� x2� � � � � xn, and this notation is useful for the gradient problem too.
We are searching for points x where the functions �f�x� � �f�x� � � � � � �f�

x

x� are
�x1 �x2 n

simultaneously zero. For the zero-finding problem, it was important to compute
the Jacobian of the functions f1�x�� f2�x�� � � � � fn�x�, and for our problem

� �f�x� �f�x�we must compute the Jacobian of �f�x� � � � � �
x

, which has the form
�x1 �x2 n

⎡ ⎤
�2f�x� �2f�x� �2f�x�

⎢ ⎥
⎢ �x1

2 �x1�x2 �x1�xn ⎥
⎢ ⎥
⎢ �2f�x� �2f�x� �2f�x� ⎥
⎢ � � � ⎥
⎢ ⎥det ⎢ �x2�x1 �x2

2 �x2�xn ⎥
⎢ ���

���
���
���
���

���
⎥

⎢ ⎥
⎢ ⎥
⎣ �2f�x� �2f�x� �2f�x� ⎦

�xn�x1 �xn�x2 �xn
2

This determinant is called the Hessian of f , and the corresponding matrix is the
Hessian matrix.

Elsevier US Job Code:IPNM Chapter:Ch13-P373859 19-12-2006 11:49a.m. Page:185 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

∑ ∑

185 13.2 Finding where a function’s gradient is zero

We call a point x where the gradient is zero a simple zero gradient point if
the Hessian of f at x is nonzero. A solvable version of our problem, analogous
to Problem 12.1, is

Solvable Problem 13.2 For an elementary function f�x� defined and
having a gradient on a box B, with the gradient being 0 at most a finite number
of points in B, for any positive integers k1 and k2, locate to k1 decimal places
a point on the boundary of B where every component of the gradient is less in
magnitude than 10−k1 and halt. Or, if the gradient is not 0 on the boundary of B,
bound all the zero gradient points in B by:

(1) giving,	 to k2 decimal places, points identified as simple zero gradient
points, or

(2) giving,	 to k2 decimal places, points identified as containing within
their tilde-box a subbox where maxi � �f�x� � < 10−k2 � the subbox is cer

�xi
tain to contain at least one zero gradient point if the crossing number for
�f�x� �f�x� �f�x�� � � � � � over the subbox is nonzero.
�x1 �x2 �xn

At a simple zero gradient point, it is possible to determine from the point’s
Hessian matrix whether the point is a local maximum, a local minimum, or
a saddle point for f . To see this, take any such zero gradient point x0 and
translate x coordinates to make this point the origin. A translation does not alter
any derivative at the point, so the point’s Hessian matrix is unchanged, and its
gradient is still 0. A Taylor series for f , with the series expansion point 0, has
the form

1 n �2f�0� 2
n �2f�0�

0

= f�0�+
2! i=0 �xi

2 xif�x� + +· · ·xixj�xi�xji�j=
i<j

All series terms up to degree 2 are shown. If we let H denote the Hessian matrix,
the series expansion may be expressed in matrix-vector notation as

1
f�x� = f�0�+ xTHx +· · ·

2

Here the symbol xT denotes the row vector transpose of the column vector x.
(Transpose notation was introduced in Section 9.1.)

The Hessian matrix H is symmetric, and making use of a basic result of linear
algebra, there exists an orthogonal matrix P with inverse PT that transforms H
to a real diagonal matrix D:

D = PTHP

Elsevier US Job Code:IPNM Chapter:Ch13-P373859 19-12-2006 11:49a.m. Page:186 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

186 13 Optimization Problems

This implies H = PDPT , and the equation for f�x� can be written

1
f�x� = f�0�+ xTPDPTx +· · ·

2
1 = f�0�+ �PTx�TD�PTx�+· · ·
2

The diagonal elements of D are H eigenvalues, and if they are all positive,
then f�x� equals f�0� plus a sum of squares with positive coefficients, which
indicates that f has a local minimum at the zero gradient point. Similarly, if all
the diagonal elements of D are negative, then f has a local maximum at the
point. If the diagonal elements are a mixture of positive and negative quantities,
then f has a saddlepoint there. No diagonal element of D can be 0, because this
would imply det D = 0. But at a simple zero gradient point, the Hessian, det H ,
is nonzero and equals det D because

det H	= det�PDPT� = det P det D det PT = det D · �det P det PT�

= det D · �det PPT� = det D det I = det D

The procedure for finding zero gradient points within a box B is very much
like the procedure given in Section 12.3 for the problem of finding zeros of
a set of functions fi within a box B. In that procedure, we sometimes compute
a Jacobian interval over a container subbox of B. So if we copy that procedure,
then we sometimes compute a Hessian interval over a container subbox. To get
a Jacobian interval over a container subbox B�C�, we obtain a degree 1 series
expansion for each component function fi over B�C�. The coefficient of the fi
series term in �x− xj� yields the interval value for the element �fi/�xj of the
Jacobian. To compute a Hessian interval, we need to obtain a degree 2 series
expansion of f . Line (5.21) indicates that twice the coefficient of the series
term in �x− xi�

2 yields the value for the element �2f/�xi
2 of the Hessian, and

the coefficient of the series term in �x− xi��x− xj� yields the value for both
elements �2f/�xi�xj and �2f/�xj�xi of the Hessian.

The computation for a Jacobian interval, using a Jacobian matrix J having
interval elements, is done in the way described in Section 9.4 for computing
a determinant. Using allowable matrix row operations, we attempt to bring the
Jacobian matrix to upper triangular form J ′. If we are successful, the product of
the J ′ diagonal elements gives us the Jacobian interval.

When computing a Hessian interval, it is best to do the determinant compu
tation differently, to determine the type of the simple zero gradient point within
B�C�, that is, whether the point is a local maximum, a local minimum, or a saddle
point.

Elsevier US Job Code:IPNM Chapter:Ch13-P373859 19-12-2006 11:49a.m. Page:187 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

187 13.2 Finding where a function’s gradient is zero

Let H be the beginning Hessian matrix with interval elements. The first step
is to test whether the interval element h11 does not contain the zero point, and if
so, to clear column 1 below it. To clear any column 1 element hk1, we subtract
row 1 multiplied by the interval quantity hk1/h11. The clearing of column 1 is
equivalent to a premultiplication of H by a matrix Q1 identical to the identity
matrix I except for the elements in column 1 below the diagonal. The column 1
element in row k is −hk1/h11 instead of being 0.

If the process of testing diagonal elements and using them as column clearers
is successful with all columns, we have brought the Hessian matrix to upper
triangular form. We show next that the signs of the diagonal elements match
the signs of the Hessian’s eigenvalues, so the diagonal elements can be tested to
determine the type of a simple zero gradient point in the subbox.

When column 1 is cleared, the changed Hessian matrix is Q1H , and all its
column 1 elements, except the diagonal element, are 0. The first diagonal element
of Q1H is identical to the first diagonal element of H . If we were to postmultiply
Q1H by QT

1 , the transpose of Q1, the only change made to Q1H would be to
convert the row 1 elements to the right of the diagonal element to 0. The resulting
matrix Q1HQT

1 is symmetric, because H is symmetric.
The process of using diagonal elements one by one to clear the elements

of H below the diagonal, is equivalent to premultipling H by a succession of
matrices Q1�Q2� � � � �Qn−1. If we set Q equal to Qn−1 � � �Q2Q1, then the final
upper triangular matrix is QH . By the reasoning of the previous paragraph,
the matrix QHQT is a diagonal matrix, with diagonal elements identical to the
diagonal elements of the final matrix QH . The diagonal elements of QHQT are
not necessarily eigenvalues of H , because Q is not necessarily an orthogonal
matrix. However, by Sylvester’s law of inertia [3, p. 445], the diagonal elements
of QHQT have the same signs as do the eigenvalues of H . If all the diagonal
elements are positive, a simple zero gradient point is a local minimum. If all the
diagonal elements are negative, a simple zero gradient point is a local maximum.
If any two diagonal elements have opposite signs, then a simple zero gradient
point must be a saddle point.

A difficulty may occur in the process of computing the Hessian determinant.
It may happen that a diagonal element in a certain column overlaps 0, but there
is an element lower down in the column that does not contain 0. Whenever
this occurs, this implies that any simple zero gradient point in the subbox is
a saddle point. (The determinant computation can be completed by imitating
the process of computing Jacobian determinats. That is, the diagonal element
is replaced by a more suitable element by a row exchange, and then elements
below are cleared as usual.) Suppose this difficulty occurs for column n−1. The
determinant of the current matrix equals the product of the first n− 2 diagonal
elements times the 2 by 2 subdeterminant in diagonal position in columns n−1
and n. This subdeterminant is negative, so the two H eigenvalues associated
with this subdeterminant have opposite signs. This implies a simple zero gradient
point is a saddle point.

Elsevier US Job Code:IPNM Chapter:Ch13-P373859 19-12-2006 11:49a.m. Page:188 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

188 13 Optimization Problems

If the difficulty occurs earlier than for column n− 1, imagine performing
symmetry preserving row exchange and column exchange operations on the
matrix, bringing the suitable element to just below the diagonal position, with
another same valued element brought to the right of the diagonal position.
Then imagine clearing the elements below the first element and to the right of
the second element by appropriate symmetry preserving operations. Again the
resulting symmetric matrix has a negative subdeterminant in diagonal position.
implying that a simple zero gradient point is a saddle point.

13.3 The demo program extrema

The progam extrema locates zero gradient points by following a procedure
much like the zero-finding procedure for Problem 12.1, described in Section 12.3.

The first step is to test f�x� to make certain that all partial derivatives are
defined over B, and this is done via a task queue similar to that described for
the zero-finding problem.

Next f is tested over the boundary of B to make certain that the f gradient is
nonzero there. After these preliminary tests are made, the general zero-finding
procedure of Section 12.3 is used, with the n functions f1�x�� � � � � fn�x� now
being �f�x� � �f�x� � � � � � �f�x� .

�x1 �x2 �xn
At the point in the zero-finding procedure where a Jacobian is computed for a

subbox B�C�, the Hessian computation is made instead, in the manner described
in the preceding section, to detect the type of any zero gradient points found
in B�C� .

Software Exercises K

These exercises are with the demo programs maxmin and extrema.

1. This exercise and the next demonstrate how maxmin displays its results.
Call up maxmin and obtain to 5 decimal places both the minimum and the
maximum of the function x+ y in the square determined by the inequalities
1 ≤ x ≤ 10, 1 ≤ y ≤ 10. Here a single point is displayed for either extreme value.

2. Edit the log file to change the function from x+ y to x, and then call up
maxmin maxmin. This time, because the minimum and maximum computation
leads to large connected �x� y� sets, the program displays only intervals for each
variable.

3. Call up extrema and find to 10 decimal places the local minima and local
maxima of the function cos�x�+ cos�2x�+ cos�3x� in the interval �−10�10�.

Elsevier US Job Code:IPNM Chapter:Ch13-P373859 19-12-2006 11:49a.m. Page:189 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

189 Notes and References

There are 19 local extrema in �−10�10�. In cases where many extrema are found,
the print file is needed to see them all.

4.	 The book by Ratschek and Rokne [7] suggests the function

4x 2 −2�1x 4 +x 6/3 +xy−4y 2 +4y 4

to test mimimization programs. Call up maxmin to find to 5 decimal
places all zero gradient points of this function in the square defined by −10 ≤
x1 ≤ 10� −10 ≤ x2 ≤ 10.

Notes and References

A. Three general references that deal with optimization problems are the books
by Fletcher [1], Hansen [2], and Ratschek and Rokne [7].

B. Schaefer [8] [9] has treated optimization problems with range arithmetic.

[1] Fletcher, R.,	 Practical Methods of Optimization, 2nd Edn, John Wiley & Sons,
New York, Chichester, England, 1987.

[2] Hansen, E.,	 Global Optimization Using Interval Analysis, Marcel Dekker, Inc.,
New York, 1992.

[3] Hohn, F., Elementary Matrix Algebra, 3rd Edn, Macmillan, New York, 1973.
[4] Ichida, K. and Fujii, Y., An interval arithmetic method for global optimization,

Computing 23 (1979), 85–97.
[5] Moore, R. E., Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1966.
[6] Moore, R. E., On computing the range of values of a rational function of n variables

over a bounded region, Computing 16 (1976), 1–15.
[7] Ratschek, H. and Rokne, J.,	 New Computer Methods for Global Optimization,

Chichester, England, John Wiley & Sons, New York, 1988.
[8] Schaefer, M. J., Precise optimization using range arithmetic, J. Comp. Appl. Math.

53 (1994), 341–351.
[9] Schaefer, M. J., Verification of constrained minima, J. Comp. Appl. Math. 67 (1996),

195–205.
[10] Skelboe, S., Computation of rational interval functions, BIT 14 (1974), 87–95.

Elsevier US Job Code:IPNM Chapter:Ch13-P373859 19-12-2006 11:49a.m. Page:190 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

This page intentionally left blank

Elsevier US Job Code:IPNM Chapter:Ch14-P373859 19-12-2006 11:49a.m. Page:191 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

Ordinary Differential

Equations
 14

Two demo programs solve problems of ordinary differential equations. The
program difsys is for initial value problems and the program difbnd is
for boundary-value problems. These problem types are defined in the next two
sections.

14.1 Introduction

A function y�x� satisfies an ordinary differential equation of the first order if it
satisfies an equation of the form

y ′ = f�x� y�

More generally, a function y�x� satisfies an ordinary differential equation of
order n if the n-th derivative of y�x� is connected with lower order derivatives
by the relation

y�n� = f�x� y� y′� � � � � y�n−1�� (14.1)

Thus the equation

y ′′ = �y′ +xy�2 (14.2)

is an ordinary differential equation of order 2. The differential equation (14.1)
is linear if it can be expressed in the form

y�n� +gn−1�x� y
�n−1� + · · · +g1�x�y

′ +g0�x�y = h�x�

Equation (14.2) is not a linear differential equation, but the next equation is:

y ′′′ = xy ′′ −x 2 y ′ +3y− sin�x�

191

Elsevier US Job Code:IPNM Chapter:Ch14-P373859 19-12-2006 11:49a.m. Page:192 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

� �� �� �

� �� �� �

′

′

� �� �� �

′

192 14 Ordinary Differential Equations

More generally, s functions y1�x�� y2�x�� � � � � ys�x�, satisfy s interrelated dif
ferential equations of respective orders n1� n2� � � � � ns, if the following relations
hold:

y1
�n1� = f1�x� y1� � � � � y1

�n1−1�
� y2� � � � � y2

�n2−1�
� � � � � ys� � � � � ys

�ns−1��

sy2
�n2� = f2�x� y1� � � � � y1

�n1−1�
� y2� � � � � y2

�n2 −1�
� � � � � ys� � � � � ys

�n −1��
(14.3)

s sys
�n � = fs�x� y1� � � � � y1

�n1 −1�
� y2� � � � � y2

�n2 −1�
� � � � � ys� � � � � ys

�n −1��

The ith differential equation is linear if it can be expressed in the form

nj−1s
�ni� �k�+ �

k=0

�

1j=
gi�j�k�x� y = hi�x�yi j

For example, the functions y1 and y2 may satisfy the interrelated equations

y1
′′ = y1

2 +y1
′ y2

y2
′′ = 2y1 +3y2

The second equation is linear, but not the first.
The set of interrelated differential equations (14.3) involving the functions

y1�x�� y2�x�� � � � � ys�x� is equivalent to a set of interrelated first order differen
tial equations involving another set of functions u1�x�� u2�x�� � � � � um�x�:

u1
′ = f1�x�u1� u2� � � � � um�

u2
′ = f2�x�u1� u2� � � � � um�

(14.4)

u ′ = f �x�u1� u2� � � � � u � m m m

Thus for the single equation (14.1), we may set ui�x� equal to the �i− 1�th
derivative of y�x�, for i = 1�2� � � � � n, to obtain the equations

u1 = u2

u2 = u3

un−1 = un

un
′ = f�x�u1� u2� � � � � un�

Elsevier US Job Code:IPNM Chapter:Ch14-P373859 19-12-2006 11:49a.m. Page:193 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

193 14.2 Two standard problems of ordinary differential equations

Similarly, the set of equations (14.3) can be rewritten in terms of m variables
ui, where m = �i

s
=1 ni, and with ni of the new variables associated with yi�x�.

From now on, we use the system of equations (14.4) with m unspecified to
designate the set of differential equations under study. If u�x� denotes the vector
with components u1�x��u2�x�� � � � � um�x�� the system (14.4) may be written
concisely in vector form as

u′ = f�x�u�

Here f is an m-component vector function of x and u.

14.2	 Two standard problems of ordinary
differential equations

In general, with any instance of the system u′ = f�x�u�, one finds that over a
particular x interval �a� b� there are many functions u�x� satisfying the equation.
To obtain a unique solution, additional conditions are required.

The initial value problem for the system u′ = f�x�u� is the determination of
a solution u�x� in �a� b� such that u equals a specified value v at a particular
argument x1 in �a� b�. Most often x1 is at the left endpoint a of �a� b�, and if
this is the case, the initial value problem is to find a function u defined in �a� b�
such that

u′ = f�x�u�
(14.5)

u�a� = v

The two-point boundary-value problem for the system u′ = f�x�u� is the deter
mination of a solution u�x� in �a� b� such that u�a� and u�b� satisfy the relation

gi ��u�a��u�b�� = 0 for i = 1�2� � � � �m

where each function gi has the 2m variables u1�a�� � � � � um�a��u1�b�� � � � � um�b�.
These relations are called the boundary conditions, and can be written in the
vector form shown next if we understand that vectors always have m components,
the same number of components as the system.

g �u�a��u�b�� = 0	 (14.6)

The vector boundary condition (14.6) is linear if it can be expressed in the form

Au�a�+Bu�b� = c

Elsevier US Job Code:IPNM Chapter:Ch14-P373859 19-12-2006 11:49a.m. Page:194 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

�

�

�

� �

194 14 Ordinary Differential Equations

where A and B are m-square real matrices, and c is an m-vector. For instance,
if A = I , B = −I , and c = 0, we have the periodic boundary condition

u�a� = u�b�

Linear boundary conditions are often encountered, and a frequent case is the
separated variety:

Au�a�

Bu�b�

B	is of size mb

-vector. A particularly simple set of separated

= ca

= cb

A is of size m

linear boundary conditions is given by this set of equations:

u �a� = c for i = 1� � � � � k and u �b� = c for i = k +1� � � � �m

�
is an is an m mb

n nn n i ii i

Here m conditions are obtained by fixing in some fashion m of the 2m com
ponents of u�a� and u�b�. Note that if all m components of u�a� are fixed, or
all m components of u�b� are fixed, then the two-point boundary-value problem
becomes the initial value problem. Thus the two-point boundary-value problem
includes the initial value problem as a special case.

Often a differential equation problem that appears to be different from either
of the two basic types can be changed in some way to fit one of the patterns.
For example, the motion of a weightless rigid pendulum of length 1, with its
attached end at the origin and its free end with a unit mass at the point �x� y� of
the vertical cartesian plane, is determined by the following equations, obtained
by calculus of variations methods [2, p. 5]:

d2x d2y	 2= Kx� = Ky−g� x 2 +y = 1 (14.7)
dt2 dt2

The constant g equals the gravitational acceleration. Here a force along the
pendulum has x and y components Kx and Ky, where K is an unknown time
dependent parameter. Suppose the values of x and y are desired when an initial
velocity v0 is imparted to the free end of the pendulum at its rest position. The
parameter K can be eliminated by multiplying the first differential equation by
y, the second by x, and subtracting, to obtain

d2x d2y
y −x = gx
dt2 dt2

The third equation of (14.7) can be differentiated twice with respect to t to obtain

Here ×m and ×m, with ma +mb = m. Then ca a

-vector and cba

dx
�2

− dy
�2

d2x d2

= −y
x +y
dt2 dt2 dt dt

Elsevier US Job Code:IPNM Chapter:Ch14-P373859 19-12-2006 11:49a.m. Page:195 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

′

′

�

′

195 14.2 Two standard problems of ordinary differential equations

When these two equations are solved for d2x/dt2 and d2y/dt2, we obtain these
equations and initial conditions:

d2x
��

dx
�2 �

dy
�2
�

= gxy−x +
dt2 dt dt

d2y = −gx 2 −y

��
dx
�2

+
�
dy
�2
�

(14.8)
dt2 dt dt

dx�0� dy�0�
x�0� = 0� = v0� y�0� = −1� = 0

dt dt

If we identify x, dx/dt, y, dy/dt, and t with the variables u1, u2, u3, u4, and x,
we obtain the initial value problem

u1 = u2

u ′ 2 = g u1u3 −u1�u
2
2 +u 24�

u3 = u4

u4
′ = −g u1

2 −u3�u
2
2 +u4

2�

u1�0� = 0� u2�0� = v0� u3�0� = −1� u4�0� = 0

As another example, consider the eigenvalue problem of a vibrating string:

y ′′ +�y = 0

The eigenvalues � are sought such that there is a solution function y�x� in �0���
satisfying the boundary conditions

y�0� = y��� = 0 and y ′�0� = 1

The condition y′�0� = 1 is present to “normalize” the solution function. (The √
solution to this problem is y = √1 sin� �x�, for � = 12�22�32� � � � .) Here if we
identify u1, u2, and u3 with y, y′, and �, we have a two-point boundary-value
problem with the differential equations

u1 = u2

u2
′ = −u3u1

u ′ 3 = 0

and the separated boundary conditions

Elsevier US Job Code:IPNM Chapter:Ch14-P373859 19-12-2006 11:49a.m. Page:196 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

196 14 Ordinary Differential Equations

u1�0� = 0

u2�0� = 1

u1��� = 0

14.3 Difficulties with the initial value problem

There are certain difficulties that may be encountered in treating the initial value
problem numerically. Take the case where m, the number of functions, is 1, and
the problem is to find in �a� b� a solution to

u1
′ = f1�x�u1�

satisfying the initial condition

u1�a� = v1

Sometimes a solution in �a� b� is not possible, because the solution function
u1�x� tends to infinity at some point within the designated interval. For instance,
suppose in the x interval �0�2� we wanted a solution to the problem

′ 2 u1 = u1
(14.9)

u1
′ �0� = 1

The nonlinear differential equation is separable and the solution is easily found
to be

1
u1�x� =

1 −x

Because lim = �, an accurate numerical solution cannot reach the midpoint of
x→1−

the �0�2� interval. Thus we must be prepared to occasionally encounter solutions
that grow without bound as x approaches some point c within �a� b�. For such
cases an attempt to numerically approximate the solution accurately throughout
�a� b� would be futile.

A difficulty of a different variety is illustrated by the problem of finding in
�0�1� a solution to the problem

1′ 3u1 = u1 (14.10)
u1�0� = 0

The differential equation, again nonlinear, is separable, and it is not difficult to
verify that there are an infinite number of solutions to this problem. First note

Elsevier US Job Code:IPNM Chapter:Ch14-P373859 19-12-2006 11:49a.m. Page:197 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

�

197 14.4 Linear differential equations

2that u1 = 0 and u1 = � 3
2 x�

3
are two distinct solutions to the problem. These two

solutions can be used to construct an infinite family of solutions. We use the
parameter t to designate the following different members of the family:

0 for 0 ≤ x ≤ t
3u1�x� t� = � �

2 2�x− t� for t < x ≤ 13

The parameter t may assume any value in �0�1�. When t= 1� u1 is the 0 solution;
3

when t = 0� u1 is
�

3
2 x
�

2 ; and when t is between 0 and 1, u1 combines features
of the two solutions. Note that when t is in �0�1�, the two parts of the solution
join without introducing a discontinuity in u1 or its derivative.

Multiple solutions to the initial value problem (14.5) can be eliminated by
imposing restrictions on f�x�u�. Note that the function u 11

/3 of (14.10) does not
have a derivative with respect to u1 anywhere along the line u1 = 0.

Suppose for the initial value problem (14.10) we designate a containment box
B�a�b��M of m+1 dimensions, defined by the relations

a ≤ x ≤ b and �vi −M ≤ ui ≤ vi +M� for i = 1� � � � �m

The theory of ordinary differential equations shows that if f�x�u� has a bounded
partial derivative with repect to all its u variables within this box, then multiple
solutions to the initial value problem are not possible if u�x� stays within the
box. The two difficulties of this section are taken into account with

Solvable Problem 14.1 Given the initial value problem u′ = f�x�u�,
u�a� = v, where f�x�u� is an elementary function differentiable with respect to
its u variables over a containment box B�a�b��M , for any argument c in �a� b�,
find u�c� to k decimal places, or else indicate that the solution u�x� exits the
containment box before x reaches c.

14.4 Linear differential equations

Suppose for an initial value problem, all the individual differential equation
components of u′ = f�x�u� are linear, that is, each equation can be written in
the form

m

u ′ i +
�

gij�x�uj = hi�x�
j=1

The vector function f�x�u� is then called linear. All the components of a linear
f�x�u� have partial derivatives with respect to each component of u. If all func
tions gi�j and hi are elementary and defined in the interval �a� b� of the initial

Elsevier US Job Code:IPNM Chapter:Ch14-P373859 19-12-2006 11:49a.m. Page:198 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

�

�

� ′ �

198 14 Ordinary Differential Equations

value problem, then all the solution components are bounded, and we do not
have to deal with the possibility of a solution component tending to infinity
as x approaches some point c inside �a� b�. For we can find a positive con
stant p bounding the magnitude of all these elementary functions in �a� b�. We
have then

m

�u ′ � ≤ �gij�x���uj� + �hi�x��i
j=1

m

≤ p�uj� + p
j=1

A component of the solution u�x� can grow in �a� b� no faster than the corre
sponding component of the solution to the following initial value problem:

= puii +p� �a� = �vi� i = 1�2� � � � �m u ui�

The solution �u�x� to this second problem grows exponentially but is bounded
in �a� b�. Accordingly, we can dispense with a containment box for u�x�, and
we have

Solvable Problem 14.2 Given the initial value problem u′ = f�x�u�,
u�a� = v, where f�x�u� is a linear elementary function defined for x in �a� b�,
find u�c� to k decimal places, where c is any x value in �a� b�.

14.5 Solving the initial value problem by power series

In Chapter 6 we computed definite integrals of elementary functions using power
series. Power series methods are useful also for solving differential equations.
However, to apply such methods, the function f�x�u� must be differentiable
to arbitrary order with respect to all of its variables. Although this condition
commonly holds, this is a stronger condition on f�x�u� than what either of the
two preceding solvable problems require.

Assume now that this stronger condition holds. If u is the solution to the initial
value problem, then for each component ui, we have the differential equation
u′
i = fi�x�u1� � � � � um�. This equation can be differentiated any number of times

with respect to x, because all partial derivatives of all functions fi exist, so ui

is infinitely differentiable at any x point in �a� b�. So the u components can be
approximated by Taylor polynomials over small subintervals of �a� b�.

The power series method to be described has some similarity to the power
series method for computing definite integrals, described in Chapter 6, but is
more complicated than that method. We will suppose that we have advanced
our u�x� approximation from x = a up to x = xk, and have obtained the interval

Elsevier US Job Code:IPNM Chapter:Ch14-P373859 19-12-2006 11:49a.m. Page:199 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

�

�

�
�

�

�

�

�
� �

�
�

�

199 14.5 Solving the initial value problem by power series

m�k� ±w�k� for u�xk�. Here we are using vector notation to represent the m com
ponents of u�xk�. The halfwidth vector w�k�, called the global error vector,
defines a halfwidth bound for the solution u at xk, that is, u�xk� is somewhere
within the interval m�k� ±w�k�. (At the start of the approximation process, x1 = a
and m�1� ±w�1� = v ±0, so the global error vector then is 0.)

At the series expansion point �xk�m�k�� we try to obtain a power series for
the solution u�x� that bounds the solution in the interval �xk� xk +h�. The step
width h is adjusted so that various requirements to be described are satisfied.
Generally the step width of the preceding interval �xk−1� xk� is the first h value
tried, but occasionally this initial h value is doubled to test whether conditions
have changed to allow a larger step width. If any of the required conditions
are not met, h is halved, and the attempt repeated. In the starting x interval
�a�a+h�, the first trial h is large, for example 0�5.

The bounding series for u in powers of x−xk is computed up to the terms in
�x−xk�

n, where n is reasonably large, such as 12 or higher. The computation
for the terms of u are made by a recursive procedure. Initially series variables
are set to

x = �xk ±h�+ �1 ±0��x−xk�

w�u = �m�k� ±

The halfwidth vector has components larger than or identical to corresponding w
�components of the global error vector w�k�. The first step is to choose the vector w

so that for any x in �xk +h� it is certain that u�x� is contained within the
w.

For the chosen step width h, whether a halfwidth vector w is satisfactory is
determined by the outcome of a degree 0 series evaluation for f :

� xk
vector bounding interval m�k� ±

� <w w0 �

w0�

The containment condition is satisfied if a halfwidth bound vector for u in
�xk� xk +h�, calculated using the global error vector w�k� and the largest possible

w is desired with components as small as possible. A simple method
of determining a suitable w is to set w initially to w�k�, evaluate f , and if the vector
inequality (14.11) fails for component j, then component j of w is increased to

w0�, times a factor slightly above 1, for

f = �f0 ±

rates of increase for u components, obtained from f , is within the vector w:

(14.11)w�k� +h��f0�+

A value for

match component j of w�k� +h��f0�+
example 1.1. The test (14.11) then is repeated after f is recalculated. After a
fixed number of these attempts to adjust w fail, the step width h is halved, and
the whole process restarted.

Elsevier US Job Code:IPNM Chapter:Ch14-P373859 19-12-2006 11:49a.m. Page:200 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

�

� �

�

�

�

�

�

200 14 Ordinary Differential Equations

After a suitable
= f , a term �fk ±wk��x−xk�

k determined for the f series
w is determined, the next step is to determine all the terms of

the u series. Because u′

becomes the term �
k+

1
1 fk ± k+

1
1 wk��x−xk�

k+1 for u. So the degree 0 term for
f allows u to be changed to

�k� ±w�+ �f0 ±w0��x−xk

The computation for the f series now is carried further to obtain the degree
1 term of f , which is used to fix the degree 2 term of u. This cyclic procedure,
of computing the degree k term of f and using it to fix the degree k+1 term of

�

the series, continues until all the required terms of are obtained. u u
If the global error vector w�k� for u�xk� were 0 (as it is for the first step), then

by the series remainder formula (6.2), we would have

h2 hn−1 hn

u = �m

�k� +hf0 + f1 +· · ·+ f �fn−1 ± (14.12)u�xk +h� = wn−1�

is the local error vector over the interval �xk� xk +h�. For

n−2 +m
2 n−1 n

The vector hn wn−1

each component of u, the local errors accumulate and add to the global error as
the solution is constructed from a toward b. The rate of growth of global error

hn−1
wn−1, and if any component

n

due to the local error is defined by the vector
exceeds a preset bound (which would depend on the number of correct decimal
places wanted), then h is halved, and the whole process restarted.

The global error w�k+1� equals the local error over �xk� xk +h� plus another
halfwidth vector, the global error carryover, which equals w�k� plus other terms.
The series terms of (14.12) that do not have a halfwidth part are calculated at the
point defined by x = xk and u = m�k�, but the solution u�xk� can be anywhere
in the interval m�k� ±w�k�. To take this into account, all u series terms of degree
less than n are assigned a halfwidth to reflect the effect of the global error w�k� ,
and this requires a new computation of these terms. For this second calculation,
the variables are set initially to

x = �xk ±0�+ �1 ±0��x−xk�

u = �m�k� ±w�k��

and the cyclic process described previously is repeated, but this time it ends
when the u term of degree n− 1 is obtained. The degree 1 term given for x is
needed to make the computation yield the same midpoints as before, but with
changed halfwidths. We distinquish these changed halfwidths by using w in

n

place of w, and after the newly calculated terms are inserted in (14.12), we

h2 hn

u�xk +h� = �m�k� ±w�k��+h�f0 ±w0�+ �f1 ±w1�+· · ·+ �fn−1 ±wn−1�

(14.13)

obtain

2 n

Elsevier US Job Code:IPNM Chapter:Ch14-P373859 19-12-2006 11:49a.m. Page:201 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

14.6 Degree 1 interval arithmetic 201

At x = x + h we have u�xk + h� = m�k+1� ± w�k+1� . Equation (14.13) now
shows that

h2 hn

m�k+1� = m�k� +hf0 + f1 +· · ·+ fn−1 (14.14)
2 n

h2 hn−1 hn
�k+1� �k� +hw0 += w (14.15)

1+�k � �k� �k� �k� �k� �k�+ + + +· · ·+ +hw w w w w w w= �

w�n−1

The global error carryover is

h2 hn−1

w�k� +hw0 + w1 +· · ·+ wn−2 (14.16)
2 n−1

We can calculate u�x� for any x in �xk� xk +h� by using (14.14) and (14.15),
with h replaced by the value of x−xk.

As an example, let us apply the proposed system to the test case:

u′ = −u
(14.17)

u�0� = v

The number of components m can be any positive integer, and the solution
is u = e−xv. Suppose we have carried the numerical solution up to the point
x = xk, obtaining u�xk� = m�k� ± w�k� . Because f = −u, the u series term
in �x− xk�

j has the coefficient �−1�j
j
1
! �m

�k� ± w�k��. Therefore we obtain for
u�xk +h�= m�k+1� ±w�k+1� the values

h2 h3 hn

m�k+1� = m�k� −hm�k� + m�k� − m�k� +· · ·+ �−1�n m�k�

2! 3! n!
h2 h3 hn−1 hn

w w1 +· · ·+ wn−2 +
2 n−1 n

2! 3! �n−1�! n!
(By the rules of interval arithmetic, c�m ±w� = cm ±�c�w.) We see that m�k+1�

is nearly e−hm�k�, a satisfactory result, but the global error carryover is nearly
ehw�k�. It will not be possible to compute u�x� to k decimal places for a large
interval �a� b�, with the global error growing exponentially this way. It is clear
that an improvement in the computation of w�k+1� is needed.

14.6 Degree 1 interval arithmetic

In this section we introduce a variety of interval arithmetic that is helpful in
obtaining accurate differential equation solutions.

When performing any of the four operations +�−�×�÷ on intervals, an overly
large result interval may be obtained if the operands are related in some way.

Elsevier US Job Code:IPNM Chapter:Ch14-P373859 19-12-2006 11:49a.m. Page:202 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

202 14 Ordinary Differential Equations

Each of the four interval arithmetic relations (2.3)–(2.6) given in Chapter 2 is
obtained under the assumption that the two operands are independent, so that if
one operand takes a certain value within its interval, this has no influence on the
other operand. If this assumption is not valid, a narrower result interval may be
possible.

Two simple examples of this are the computations of x− x and xy− x for
intervals x and y. For instance, if x = 2 ± 1 and y = 3 ± 1, then according to
the interval equation for subtraction, we have x− x = 0 ± 2, when the answer
should be 0 ±0. Similarly, according to the interval equations for multiplication
and subtraction, we have

xy−x = �2 ±1�× �3 ±1�− �2 ±1� = �2 ·3 ± �1 ·3 +2 ·1 +1 ·1��− �2 ±1�

= �6 ±6�− �2 ±1� = 4 ±7

As x varies in the interval �1�3� and y varies in the interval �2�4�, the function
xy− x varies in �1�9�. (These bounds for xy− x are readily found with the
program maxmin.) So using the xy−x midpoint value of 4, the best possible
interval result is 4 ±5.

Suppose a certain interval computation depends on N initial quantities hav
ing interval values. Imagine the ith such interval quantity, mi ±wi, defining
a variable vi in an interval �mi −wi�mi +wi�. Suppose the computation can
be represented as a certain elementary function f of the variables v1� � � � � vN .
When we do a formal interval computation for f , we obtain an interval result
which may be considered a degree 0 series expansion of f in terms of the
variables vi. If we compute f as a degree 1 series expansion of the variables
vi, then we obtain interval bounds for all of f ’s degree 1 terms. This type of
computation occurred in Chapter 6, where we needed to bound a high degree
term of an integrand function f�x� expressed as a power series. To obtain these
interval bounds, we use formal interval arithmetic, and each series variable vi
is set to

vi = �mi ±wi�+ �1 ±0��vi −mi�

The computation f proceeds by generating a degree 1 series representation for
each successive quantity occurring in the calculation. In general an intermediate
result q will have the form

q = �+�
�k�vk −mk�

k

Here the interval � defines q’s degree 0 term, and an interval coefficient �k is
present to define a degree 1 term for each variable vk on which q depends. The
degree 0 term gives q’s value as computed by ordinary interval arithmetic. The
degree 1 terms give interval bounds for q’s partial derivatives with respect to the

Elsevier US Job Code:IPNM Chapter:Ch14-P373859 19-12-2006 11:49a.m. Page:203 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

�+�

�
�

�

203 14.6 Degree 1 interval arithmetic

various variables vi. The quantity q may be viewed as a function q�v1� � � � � vN �
of the N variables v1� � � � � vN . The domain of this function is the N -space box
B defined by the N intervals mi ±wi, and the function q has the Taylor series
expansion

�q�m1� � � � �mN� �vk −mkq�m1� � � � �mN �+· · ·
�vkk

with the series expansion point �m1� � � � �mN� in B, so that q�m1� � � � �mN� is
the midpoint of q’s interval �, and �q�m1� � � � �mN�/�vk is the midpoint of the
interval �k. We now make use of equation (6.2). For any point �v1� � � � � vN �
within B, we have the interval relation

q�v1� � � � � vN � = midpoint �+ �k�vk −mk

k

The maximum absolute value of �vk −mk� in B is wk, so we obtain a second
halfwidth for q’s interval, namely

halfwidth q = ��k�wk (14.18)
k

Here ��k� equals �midpoint �k� + halfwidth �k. Thus we always have two
halfwidths for q, one by ordinary interval arithmetic (which we will call the
degree 0 halfwidth), and one by using equation (14.18) (which we will call the
degree 1 halfwidth). With formal interval arithmetic, the degree 1 halfwidth for
q is not automatically computed as is the degree 0 halfwidth, but whenever it is
computed, it can replace q’s degree 0 halfwidth if it is smaller.

Repeating the computations given earlier for x− x and xy− x in degree 1
format, if x is v1 and y is v2, we have

x−x = ��2 ±1�+ �1 ±0� · �v1 −2��− ��2 ±1�+ �1 ±0� · �v1 −2��

= ��0 ±2�+ �0 ±0� · �v1 −2��

and

xy−x = ��2 ±1�+ �1 ±0� · �v1 −2�� · ��3 ±1�+ �1 ±0� · �v2 −3��

− ��2 ±1�+ �1 ±0� · �v1 −2��

= ��6 ±6�+ �3 ±1� · �v1 −2�+ �2 ±1� · �v2 −3��

− ��2 ±1�+ �1 ±0� · �v1 −2��

= ��4 ±7�+ �2 ±1� · �v1 −2�+ �2 ±1� · �v2 −3��

Elsevier US Job Code:IPNM Chapter:Ch14-P373859 19-12-2006 11:49a.m. Page:204 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

204 14 Ordinary Differential Equations

For x−x we obtain a degree 1 halfwidth of 0 ·1 = 0, and for xy−x a degree 1
halfwidth of 3 · 1 + 3 · 1 = 6. These halfwidths are an improvement over the
degree 0 halfwidths of 2 and 7, respectively. We see that now we obtain the cor
rect halfwidth for x−x, and an improved but not optimum halfwidth for xy−x.

In general, degree 1 interval arithmetic requires more computation than the
ordinary variety, but the halfwidths it obtains often are significantly better for
cases where the computation requires many additions and subtractions of inter
mediate results.

The degree 1 halfwidth can also be larger than the degree 0 halfwidth. For
instance, using the x and y intervals that have appeared in these examples, for
x ·y we obtain

x ·y = ��2 ±1�+ �1 ±0� · �v1 −2�� · ��3 ±1�+ �1 ±0� · �v2 −3��

= ��6 ±6�+ �3 ±1� · �v1 −2�+ �2 ±1� · �v2 −3��

For x · y we obtain a degree 1 halfwidth of 4 ·1 +3 ·1 = 7, which is larger than
the degree 0 halfwidth of 6. The situation is similar for the division x/y.

One can imagine obtaining a “degree 2 halfwidth” also. Here we have the same
representation for all starting constants as before, but any quantity q computed
in terms of these constants is calculated up to degree 2. Thus q has the form

q = �+�
�k�vi −mk�+

�
�kl�vk −mk��vl −ml�

k k�l

Here �kl, like �k, is an interval. Again making use of equation (6.2), and using
similar reasoning as before, q’s degree 2 halfwidth is

halfwidth q = � �midpoint �k�wk +
� ��kl�wkwl

k k�l

For the example xy−x we obtain now

xy−x = ��2 ±1�+ �1 ±0� · �v1 −2�� · ��3 ±1�+ �1 ±0� · �v2 −3��

− ��2 ±1�+ �1 ±0� · �v1 −2��

= ��4 ±7�+ �2 ±1� · �v1 −2�+ �2 ±1� · �v2 −3�

+ �1 ±0��v1 −2��v2 −3��

The degree 2 halfwidth is ��2 ·1�+ �2 ·1��+ �1 ·1 ·1� = 5, which is the optimum
value.

If there are N initial constants, the number of terms an end result must carry to
obtain a degree 2 halfwidth is proportional to N 2, whereas the number of terms
for a degree 1 halfwidth is proportional only to N . This increased computational
cost makes it difficult to find applications where it is worthwhile computing
degree 2 halfwidths instead of degree 1 halfwidths.

Elsevier US Job Code:IPNM Chapter:Ch14-P373859 19-12-2006 11:49a.m. Page:205 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

� �

205 14.7 An improved global error

14.7 An improved global error

By using the type of interval arithmetic introduced in the preceding section,
the global error carryover computation can be greatly improved. The degree
1 halfwidth computation (14.18) depends only on the u intervals. To obtain an
improved halfwidth, we set u components to

�k� �k� �k�
ui = mi ±wi + �1 ±0��ui −mi � i = 1� � � � �m

This can be expressed compactly in matrix-vector notation as

u = m�k� ±w�k� + �I ±O��u −m�k�� (14.19)

All f computations are now made to degree 1 with respect to u, so this changes
the coefficient of the f series term in �x−xk�

j from fj ±wj to

fj ±wj + �Aj ±Bj��u −m�k��

where Aj and Bj are matrices. Instead of the expression (14.13) for u�xk +h�,
we now obtain an expression which is degree 1 with respect to u, with a degree
0 part identical to the right side of (14.13), and with a degree 1 part equal to

h2 hn−1

�I ±O�+h�A0 ±B0�+ �A1 ±B1�+· · ·+ �An−2 ±Bn−2� �u −m�k��
2 n−1

= �A±B��u −m�k�� (14.20)

where the matrices A and B are determined by the equations

h2 hn−1

A = I +hA0 + A1 +· · ·+ An−22 n−1

h2 hn−1

B = hB0 + B1 +· · ·+ B
2 n−1 n−2

We replace the global error carryover (14.16), which is degree 0 with respect to
u, with the degree 1 halfwidth vector

��A�+B�w�k�

There is no change in the midpoint value (14.14) for m�k+1�, and also no change
in the local error contribution to w�k+1� .

For the test problem (14.17), because f = −u, we find the coefficient of the
u series term in �x−xk�

j equals

1
�−1�j ��m�k� ±w�k��+ �I ±O��u −m�k���

j!

Elsevier US Job Code:IPNM Chapter:Ch14-P373859 19-12-2006 11:49a.m. Page:206 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

� � � �� � � � � �

� � � �� �

� �

206 14 Ordinary Differential Equations

so that we obtain

h2 hn−1

A = I −hI + I − · · ·+ �−1�n−1 I
2! �n−1�!

B = O

The global error carryover is now very nearly e−hw�k�, and there no longer is
difficulty obtaining accurate values of the solution over wide intervals �a� b�.

A second instructive test problem is the differential equation y′′ +y = 0, with
initial conditions y�0� = v1, y′�0� = v2, or, equivalently, setting u1 = y and
u2 = y′ ,

u′
1 = 0 1 u1 �

u1�0� = v1 (14.21)
u′

2 −1 0 u2 u2�0� v2

The solution is

u1 = cos x sin x v1

u2 − sin x cos x v2

Again taking u�xk� to be m�k� ±w�k�, and using degree 1 interval arithmetic, this
time we find the coefficient of the u series term in �x−xk�

j is

1
�

0 1
�j

��m�k� ±w�k��+ �I ±O��u −m�k���
j! −1 0

0 1
If we set the matrix S equal to , for this problem we find −1 0

h2 h3 hn

m�k+1� =
�

I +hS+ S2 + S3 +· · ·+ Sn

�

m�k�

2! 3! n!

Note that S2 =
�−1 0

�

, and S4 = I . We find that very nearly 0 −1

�
cos h sin h

� �
m

�k�
1 cos h+m

�k�
2 sin h

�
�k+1� �k�m = m = − sin h cos h −m

�k�
1 sin h+m

�k�
2 cos h

The matrix B of (14.20) is O, and the matrix A is given by

h2 h3 hn−1

A = I +hS+ S2 + S3 + · · ·+ Sn−1

2! 3! �n−1�!

Elsevier US Job Code:IPNM Chapter:Ch14-P373859 19-12-2006 11:49a.m. Page:207 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

� �

207 14.7 An improved global error

The global error carryover, the u degree 1 halfwidth vector �A�w�k�, is very
nearly

w1
�k� cos h+w2

�k� sin h
w1

�k� sin h+w2
�k� cos h

This is not a good result. For instance, if w1
�k� = w2

�k� the global error carryover
vector has components that approximate �sin h+ cos h�w1

�k�, which is close to
�h+1�w1

�k�. After executing q of these h steps, the global error components are
close to �h+1�qw1

�k�. The global error will grow exponentially for this problem,
preventing determination of the solution u over a large interval �a� b�. Another
improvement in the treatment of global error carryover is needed.

The major part of the global error carryover is generally the vector �A�w�k�. The
term Aw�k� is converted to the form �A�w�k� to get positive halfwidths to combine
with the Bw�k� halfwidths. The global error vector w�k� defines intervals for the
u solution components. Let us think of this vector as if it were varying, with
its ith component always never greater than wi

�k� and never less than −wi
�k� .

Then the vector defines a variation box in m space, with sides perpendicular to
the coordinates. As w�k� varies within its allotted box, the vector Aw�k� varies
within an m-dimensional parallelepiped. The halfwidth vector �A�w�k�, with ith
component

�
k �aik�wk

�k�, defines the smallest box containing this parallelepiped.
If w�k� were to vary within a subregion of its box, then Aw�k� would vary within
the corresponding subregion image.

An improvement in global error carryover is possible by avoiding the conver
sion of Aw�k� to �A�w�k�. Suppose instead of maintaining the global error as a
vector w�k�, we maintain it in the form C�k�w�k�, using both a matrix C�k� and
a vector w�k�. We take C�1� = I at the starting point x1 = a. The global error
carryover is now

�A±B�C�k�w�k� = AC�k�w�k� ±BC�k�w�k�

= AC�k�w�k� +wB

where wB = B�C�k��w�k�. For the global error C�k+1�w�k+1�, we take C�k+1� equal
to AC�k� and w�k+1� equal to w�k� plus a correction vector w+ large enough to
account for wB plus the local error h

n

wn−1. If we set w′ wB
hn �n−1, we can � = + w

n n
continue the global error carryover computation, obtaining

AC�k�w�k� +w′ = C�k+1�w�k� +w′ = C�k+1��w�k� + �C�k+1��−1w′�

so the correction vector w+ may be taken as � �C�k+1��−1�w′ .
With the test problem (14.21), we find that the vector w�k� now grows linearly

instead of exponentially, with the addition of only a small halfwidth vector
at each h step to compensate for the local error. The matrix C�k� changes at each
h step by being premultiplied by a matrix that is very nearly

Elsevier US Job Code:IPNM Chapter:Ch14-P373859 19-12-2006 11:49a.m. Page:208 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

� �

� � � �� � � � � �

� � � �

208 14 Ordinary Differential Equations

cos h sin h
− sin h cos h

and the elements of the successive C�k� matrices vary in the interval �−1�1�.
This revision of the error bounding system allows the second test problem to be
solved to k decimal places surprisingly large distances from the initial x value a.

The system so far described works well with both test problems, but there is
one final difficulty that is occasionally encountered. It is possible the differential
equation system is such that the increment vector w+ needed to adjust w�k+1� ,
although initially small, eventually becomes sizeable, even though the local error
and the error due to the matrix B are small. An example where this happens is
the initial value problem

u1
′ − 1

2 2
1

u1 u1�0� 2
u2

′ =
2
1 − 1

2
u2

�
u2�0�

= 0

which has the solution

u1�x� = 1 + e−x

u2�x� 1 − e−x

What occurs here is that the matrices C�k� approach singularity, so the elements
of their inverses become ever larger, and eventually the correction vector w+

contains huge components.
The two demonstration programs that solve differential equations, difsys

and difbnd, monitor the magnitude of the elements of the C�k� inverse matrix.
When the largest component magnitude passes a certain bound, C�k� is reset to I ,
and w�k� reset to �C�k��w�k� .

14.8 Solvable two-point boundary-value problems

To obtain a solution to the two-point boundary-value problem

u′ = f�x�u�
� � (14.22)

g u�a��u�b� = 0

we must find a vector v such that the solution u�x� to the initial value problem

u′ = f�x�u�
(14.23)

u�a� = v

satisfies the boundary condition g �u�a��u�b�� = 0. Generally a region R of
m-space is prescribed in which to search for suitable vectors v. If any of the

Elsevier US Job Code:IPNM Chapter:Ch14-P373859 19-12-2006 11:49a.m. Page:209 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

209 14.8 Solvable two-point boundary-value problems

boundary conditions are of the form uj�a� = c, where c is some constant, this
simplifies the search, because the j component of v is fixed at c, and the
dimension of the search region is reduced by one. We use the notation u�x�v�
to denote the solution to the initial value problem corresponding to v, so that
the boundary condition can be written as g �v�u�b�v�� = 0, or, more simply, as
p�v� = 0, where p�v� is g �v�u�b�v��. The two-point boundary-value problem
is essentially a problem of finding zeros of the function p. For each zero we
find, the solution to the boundary problem is obtained by numerically solving
the initial value problem (14.23) with v set equal to the zero.

We will assume that the search region for v is a box B in v-space, possibly of
dimension less than m, if some v components are fixed by boundary conditions.
We must be certain that for v in B, u�x�v� is defined. This is a strong condition,
requiring the solution of the initial value problem (14.23) to be defined and
bounded throughout �a� b� for any v in B.

We will phrase the solvable problem so that the goal is to approximate the
p zeros that lie in the search box B. If we obtain a zero accurately enough, we can
obtain the corresponding solution of the boundary problem to the required number
of decimal places. We model the problem after Solvable Problem 12.1 as follows:

Solvable Problem 14.3 Given the two-point boundary-value problem
u′ = f�x�u�� g �u�a��u�b��= 0, where f and g are elementary, with the function
p�v� = g �v�u�b�v�� defined for v in a box B, nonzero on the boundary of B,
and having at most a finite number of zeros in B, given a containment box
B�a�b��M within which f has partial derivatives with respect to all the u variables,
which is large enough to contain the solution to the initial value problem u′ =
f�x�u��u�a� = v, for any v in B, bound the zeros of p�v� in B by

(1) giving to k decimal places points identified as simple zeros, or
(2) giving to k decimal places points identified as containing within their tilde-

box a region where maxi �pi�v�� < 10−k .

Solvable Problem 12.1 requires a search of the boundary of the box B to find
points where the problem function is close to zero. And the crossing number
helps to resolve whether a type (2) point actually is a zero. Although in principle
these possibilities are open to us, the difficulty in obtaining a value for p�v�
precludes these luxuries in a practical program, so they have not been included
in the statement of the preceding problem.

A type (1) “simple zero” point, is a v value in B where the p�v� Jacobian is
nonzero, and definitely gives a solution to the boundary-value problem; whereas
a type (2) point gives only a solution possibility. Such a point obtained for a
certain k could be missing for a larger k.

The procedure of Chapter 12 for finding the zeros of a function f can be
adapted to Solvable Problem 14.3. This procedure, described in Section 12.3, has
two parts. The search region B is repeatedly subdivided into smaller and smaller

Elsevier US Job Code:IPNM Chapter:Ch14-P373859 19-12-2006 11:49a.m. Page:210 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

210 14 Ordinary Differential Equations

subboxes, and intervals are found for the components of f over these subboxes.
A subbox is discarded whenever a component interval does not contain 0.
Periodically, for the sets of subboxes remaining, container boxes are constructed,
each bounding off a group of mutually adjacent subboxes, and these container
boxes are the means of locating the simple zeros. We need to find a way to carry
out the two parts of this procedure on the function p.

Assume we can use the power series method of Sections 14.5 and 14.7 on the
initial value problem (14.23). With this method, an interval for u at an x point
in �a� b� is converted to an interval for u at another x point further along. So
if we have intervals for the components of v, we can obtain intervals for the
components of u�b�v�. These u�b�v� intervals may be overly wide, but their
widths decrease toward zero as the widths of the v intervals decrease toward
zero. And intervals for u�b�v� lead to intervals via interval arithmetic for the
components of p�v�. Thus there is no fundamental difficulty carrying through
the first part of the Chapter 12 procedure.

The Chapter 12 container box subroutine determines a simple zero point is
present by first computing a Jacobian interval over the container box. So for
our problem, determining that a container box contains a single simple zero of
p requires computing intervals for the partial derivatives of p�v� with respect to
the components of v. This requires computing intervals for the partial derivatives
of u�b�v� with respect to the components of v. When we differentiate the
differential equations for u�x�v� with respect to these components, we obtain
the equations

�u′
i�x�v� �fi�x�u� = i� j = 1� � � � �m
�vj �vj

which also may be written as
�
�ui�x�v�

�′ � �fi�x�u� �uk�x�v� = i� j = 1� � � � �m (14.24)
�vj k

�uk �vj

We now have ordinary differential equations for the partial derivatives
�ui�x�v�/�vj . If the function f�x�u� has all the required partial derivatives, then,
in principle at least, we can obtain intervals for �ui�b�v�/�vj over a v box just as
we can obtain intervals for ui�b�v� over a v box. We consider practical methods
of getting such intervals next.

14.9 Solving the boundary-value problem by power series

Problem 14.3 needs to be revised so that power series methods are possible.
The function f is required to be infinitely differentiable with respect to all of
its variables, and a containment box B�a�b��M is not necessary if an appropriate
escape is provided.

Elsevier US Job Code:IPNM Chapter:Ch14-P373859 19-12-2006 11:49a.m. Page:211 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

211 14.9 Solving the boundary-value problem by power series

Solvable Problem 14.4 Giventhe two-pointboundary-valueproblemu′ =
f�x�u�, g

�
u�a��u�b�

� = 0, where f and g are elementary, where f has all partial
derivatives with respect to all its variables when x is in �a� b�, with the function
p�v� = g

�
v�u�b�v�

�
having at most a finite number of zeros for v in a given box B,

with p�v� nonzero on the boundary of B, bound all the p zeros in B by

(1) giving to k decimal places points identified as simple zeros, or
(2) giving to	 k decimal places points identified as containing within their

tilde-box a region where maxi �pi�v�� < 10−k ,
or find to k decimal places a point v0 in B where for some x in �a� b� a
component of u�x�v0� is larger in magnitude than a specified positive
bound M .

In preceding sections of this chapter that were devoted to the initial value
problem, we used a series evaluation method to obtain interval bounds for u�x�
for any x in �a� b�. With this method, when we have the representation m�k�±w�k�

for u at xk, we then obtain a similar representation for u at a point xk+1 to the
right of xk. Now, instead of starting at x = a with the u representation v ± 0,
as we did for the initial value problem, we start with the u�a� representation
v�S� ±w�S� specified by the first v subbox B�S� on the queue. After the differential
equation solution process reaches b, if xk′ = b, then the interval m�k′� ± w�k′� is
obtained for u�b�, which becomes the interval representation of u�b�v� over
B�S�. An interval arithmetic computation for g

�
v�u�b�v�

�
gives us an interval

for p�v� over B�S�. We have now determined how to dot the first part of the
Chapter 12 procedure for locating zeros.

To do the second part of the procedure, interval bounds must be obtained for
the elements of the p�v� Jacobian matrix over a v container box B�C�. For this
part we need to do an interval degree 1 series computation for g

�
v�u�b�v�

�
. If

the midpoint-halfwidth representation for the box B�C� is v�C� ±w�C�, we set the
degree 1 series representation for u at x = a over this box to

u = �v�C� ±w�C��+ �I ±O��v −v�C��

We need a representation for u�b�v� of the form

u�b�v� = �m�k′� ±w�k′��+ �A�k′� ±B�k′���v −v�C��

Here we are supposing that somehow the v partial derivatives of u�b�v� have been
bounded in the intervals defined by matrices A�k′� and B�k′�. With its variables
v and u�b�v� set this way, a degree 1 series expansion of the elementary function g
will give us the p partial derivative intervals we need. In the expression just given
for u at a, we presumed that none of the v components had been fixed as con
stants by the boundary conditions. If component j of v is fixed at the value c, then
its degree 0 term becomes c±0, and its degree 1 terms all have coefficients 0 ±0.

Elsevier US Job Code:IPNM Chapter:Ch14-P373859 19-12-2006 11:49a.m. Page:212 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

212 14 Ordinary Differential Equations

We can obtain the required partial derivative intervals for u�b�v� over a box
B�C� by extending the procedure for obtaining intervals for u�b�v� over B�S� .
Here we not only bound in intervals the solution to the differential equation
u′ = f�x�u� at selected points xk in �a� b�, but we must also bound in intervals
the solution to the differential equations (14.24). Suppose then that at a point xk
in �a� b� we have obtained the interval vector m�k� ± w�k� for u�xk�v� over the
box B�C�, and also have obtained the interval array A�k� ±B�k� for the Jacobian
elements of u�xk�v� over the same box. The representation for u as a series in v is

u = �m�k� ±w�k��+ �A�k� ±B�k���v −v�C�� (14.25)

In Section 14.5 there were two parts to the procedure for obtaining a series
for u in �xk� xk +h�. In the first part, a containment box for u is obtained, with
h determined in the process and the local error found. In the second part, the
global error for u at xk+1 is found. Since we are solving differential equations
just as before, our procedure has the same two parts. At the point xk, we have u
given by (14.25). (Initially, when k = 1 and x1 = a, then A�1� = I and B�1� = O.)
In the first part of the procedure, variables are set to

x = �xk ±h�+ �1 ±0��x−xk�

w�+ �A�k� ±�u = �m�k� ±� B��v −v�C��

The halfwidth vector � B have components that are larger w and halfwidth matrix �
than or identical to corresponding components of w�k� and B�k�. For the chosen
step width h, we determine whether the � B estimates are acceptable by the w and �
outcome of a series computation for f that is degree 0 in x:

f = �f0 ±� B0��v −v�C��w0�+ �A0 ±�
(In this series computation, u is viewed not only as a function of x, but also as
a function of the v components, which are variables independent of x. If an x
degree k computation of f is made, the expression is always obtained to v degree
1. This gives us the needed x degree k values for

�
�ui/�vj

�′
.) Now we make the

containment test

w w0� <� B+h��A0�+� B�k� +h��f0�+� w B0� <�

If any component of � B fails this test, it is replaced by the corresponding w or �
component on the other side of the inequality, times a factor slightly above 1, such
as 1.1, and the test is repeated after f is recalculated. After a fixed number of
these tests fail, h is halved, and the whole process is restarted.

After � B are found, the next step is to obtain all the higher degree xw and �
terms of the u series. Note that if the x degree k term of f is determined to be

��fk ±wk�+ �Ak ±Bk��v −v�C����x−xk�
k

Elsevier US Job Code:IPNM Chapter:Ch14-P373859 19-12-2006 11:49a.m. Page:213 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

14.10 The linear boundary-value problem 213

then the x degree k+1 term of u is
�� � � � �

1 1 1 1
fk ± wk + Ak ± Bk �v −v�C�� �x−xk�

k+1

k+1 k+1 k+1 k+1

All the other parts of the power series computation described in Section 14.5 have
their counterparts in this computation. The difference is that now we compute
additional series terms in v when we make our u power series computations.

The method for improving halfwidth computations described in Section 14.6
needs to be used here also to keep halfwidth values from becoming unnecessarily
large. There are more intervals now to be viewed as variables than previously,
these being all the intervals in (14.25).

14.10 The linear boundary-value problem

The boundary-value problem becomes easier to treat if the differential equations
are linear and the boundary conditions are linear. In this case the two-point
boundary-value problem itself is called linear. The function f�x�u� has the
vector-matrix representation

f�x�u� = G�x�u +h�x�

where G�x� is an m-square matrix whose elements are functions of x, and h�x�
is an m-vector whose components also are functions of x. If all these functions of
x are elementary and defined in �a� b�, then according to Solvable Problem 14.4,
the components of u�b�v� can be determined for any v.

Because the differential equations are linear, it is possible to obtain the fol
lowing representation for u�b�v�:

u�b�v� = Qv + r (14.26)

Here Q is a real m-square matrix and r is a real m-vector. Column j of Q equals
the solution at x = b of the initial value problem

u′ = G�x�u� u�a� = ej (14.27)

where ej equals column j of the m-square identity matrix I . The vector r equals
the solution at x = b of the initial value problem

u′ = h�x�� u�a� = 0 (14.28)

If for each j we multiply by vj the solution to (14.27) and sum, and then add
the solution to (14.28), we obtain the solution to the initial value problem

u′ = G�x�u +h�x�� u�a� = v

Elsevier US Job Code:IPNM Chapter:Ch14-P373859 19-12-2006 11:49a.m. Page:214 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

214 14 Ordinary Differential Equations

If we use equation (14.26) in the linear boundary condition equation

Au�a�+Bu�b� = c

we obtain the matrix equation

Av +BQv = c −Br (14.29)

Thus if the matrix A+BQ is nonsingular, there is only one vector v which gives
a solution to the boundary-value problem, the vector �A+BQ�−1�c −Bp�. Note
that the matrix A+BQ equals the Jacobian matrix of p�v� = Av +Bu�b�v�−c.
For the linear boundary-value problem, a possible solvable problem is

Solvable Problem 14.5 Given the linear two-point boundary-value
problem

u′ = G�x�u +h�x�� Au�a�+Bu�b� = c

where the elements of the matrix G�x� and the components of the vector h�x�
are elementary functions of x defined in �a� b�, find to k decimal places the lone
simple zero of p�v� = Av +Bu�b�v�− c, or indicate that the magnitude of the
p Jacobian is less than 10−k .

This problem can be solved numerically by finding m+ 1 separate solutions
to various initial value problems, namely the solutions whose values at x = b are
needed to form Q and r. But generally it is more efficient to get these values by
using the procedure described in the preceding section for obtaining the G�v�
partial derivatives, because then we need only one sweep through �a� b� with the
differential equation solution procedure.

Software Exercises L

These exercises are with the demo programs difsys and difbnd.

1. Call up difsys and solve the simple initial value problem u′ = u� u�0�= 1
to 10 fixed-point decimal places for x in the interval �0�10�. Set the x increment
between printouts to 0�1. The problem’s solution is the exponential function
u= ex. Check the print file to see that 10 decimal place accuracy is not obtained
toward the end of the �0�10� interval. Edit the log file to change the 10 fixed-point
decimal places to 10 floating-point decimal places, and then call up difsys
difsys. This time 10 decimal place accuracy is obtained throughout �0�10�.

Elsevier US Job Code:IPNM Chapter:Ch14-P373859 19-12-2006 11:49a.m. Page:215 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

215 Software Exercises L

2. In this exercise and the next, we see the response of difsys to the two
difficult example problems of Section 14.3. Call up difsys and attempt to
solve to 10 fixed-point decimal places the problem u′ = u2� u�0� = 1 in the x
interval �0�2�. Set the x increment between printouts to 0�01. difsys gives
values until x = 0�99, then indicates that the integration step width has become
too small, and terminates. The program difsys does not require a user to
specify a containment box, as is required by Problem 14.1, so the method of
indicating trouble differs from that in Problem 14.1.

3. Call up difsys and solve to 10 fixed-point decimal places the problem u′ =
u1/3� u�0� = 0 in the x interval �0�1�. Set the x increment between printouts to
0�1. The problem is rejected by difsys because u does satisfy differentiability
conditions at x = 0. Edit the log file to change u�0� from 0 to 0.01, and then
call up difsys difsys. This time a solution is obtained.

4. Call up difsys and solve an initial value problem for u′′ = −u in the
interval �0�20�� to 10 fixed-point decimal places. Take the initial conditions to
be u�0� = 0 and u′�0� = 1, and set the x increment between printouts to �/10.
The problem’s solution is u = sin x. Afterwards, edit the log file to change from
10 fixed-point decimal places to 10 floating-point decimal places and then call
up difsys difsys to see the changed output.

5. Call up difbnd and solve the string eigenvalue problem given at the end
of Section 14.2. The differential equations and boundary conditions are

u′
1 = u2 u1�0� = 0

u′
2 = −u3u1 u2�0� = 1

u′
3 = 0 u1��� = 0

Take the �a� b� interval to be �0���. After you specify the initial conditions,
difbnd requests an interval for u3, so specify the interval �0�10�. Set the
display interval to �0���, the x increment between printouts to �/10, and choose
10 decimal-place accuracy. The program finds three distinct solutions.

6. Call up difbnd and attempt to solve to 5 decimal places in the interval
�0��� the linear two-point boundary-value problem u′′ +u= 0� u�0�= u���= 0.
Take �/10 as the printout increment. The function u�x�= c sin x with c arbitrary
satisfies the problem, so there are an infinite number of solutions. With this
problem, the program difbnd takes the escape of Solvable Problem 14.5, and
indicates that the Jacobian of the boundary condition matrix is too small. Edit
the log file to change b to �/2, which changes the boundary conditions to
u�0�= u��/2�= 0, and call up difbnd difbnd. This time difbnd finds the
unique solution.

7. Call up difbnd and solve to 5 decimal places in the interval �0�1�
the two-point nonlinear boundary-value problem u′′ = −eu� u�0� = u�1� = 0.
Use a search interval for u′ of �0�12� and set the printout increment to 0�1. The

Elsevier US Job Code:IPNM Chapter:Ch14-P373859 19-12-2006 11:49a.m. Page:216 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

216 14 Ordinary Differential Equations

program difbnd locates 2 separate solutions, one with u′�0� near 0.5 and one
with u′�0� near 11.

Notes and References

A. Degree 1 interval arithmetic was first proposed by Eldon Hansen [6] [7] [8].
B. The global error improvement method of Section 14.7, maintaining the vec

tor w�k� in the form C�k�w�k�, was first proposed by Rudolf Lohner in his
Ph.D. dissertation [9].

C. Three general references for the problems of this chapter are the book by
Ascher, Mattheij, and Russell [1], the book by Coddington and Levinson [3],
and the two volumes by Hairer et al. [4] [5].

[1] Ascher, U. M., Mattheij, R. M., and Russell, R. D., Numerical Solution of Boundary
Value Problems of Ordinary Differential Equations, Prentice Hall, Englewood Cliffs,
NJ, 1988.

[2] Brenan, K. E., Campbell, S. L., and Petzold, L. R., Numerical Solution of Initial-Value
Problems of Differential-Algebraic Equations, Elsevier, New York, 1989.

[3] Coddington, E. A. and Levinson, N.,	 Theory of Ordinary Differential Equations,
Reprint Edn published by Robert E. Krieger Publ. Co., Malabar, FL, 1987.

[4] Hairer,	 E., Nørsett, S. P., and Wanner, G., Solving Ordinary Differential
Equations I, Nonstiff Problems, Springer series in computational mathematics 8,
Springer-Verlag, Berlin, 1987.

[5] Hairer,	 E. and Wanner, G., Solving Ordinary Differential Equations II, Stiff
and Differential-Algebraic Problems, Springer series in computational mathematics
14, Springer-Verlag, Berlin, 1991.

[6] Hansen, E., On the solution of linear algebraic equations with interval coefficients
Linear Algebra Appl. 2 (1969), 153–165.

[7] Hansen, E.,	 A generalized interval arithmetic, in Interval Mathematics, K. Nickel
editor, Springer-Verlag, New York, 1975, pp. 7–18.

[8] Hansen, E., Computing zeros of functions using generalized interval arithmetic, Inter
val Computations 3 (1993), 3–28.

[9] Lohner, R., Einschliesung der Lösung gewöhnlicher Anfanfs- und Randwertaufgaben
und Anwendungen, Doctorate of Science dissertation, Faculty of Mathematics of
Karlruhe University, 1988.

Elsevier US Job Code:IPNM Chapter:Ch15-P373859 19-12-2006 11:49a.m. Page:217 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

Partial Differential
Equations 15

The demo program pde solves what is known as the initial value problem for
a system of partial differential equations. In this chapter the term “function
analytic at an argument point P” means the function at P has a derivative of any
specified order with respect to its variables.

15.1 Partial differential equation terminology

With ordinary differential equations (ODEs), it is customary to use x as the lone
independent variable. With partial differential equations (PDEs), where there are
two or more independent variables, it has become customary to use t as the last
independent variable. In many PDE problems, t designates time, but in general,
it is best to think of t as simply the final independent variable.

To prepare for PDE problems, we reconsider the initial value ODE problem,
using t in place of x. We suppose that in some t interval �t0� t1� a system of
differential equations is to be solved. A typical equation for one of the functions
u�t� has the form

dru du dr−1u ∗ = F�t� u� � � � � � � �
dtr dt dtr−1 � � �

and the corresponding initial conditions are

dju�t0�

dtj
= aj� j = 0� 1� � � � � r −1

Here u and its derivatives are the “central variables” of the function F , which is
∗presumed to be elementary and analytic in its domain. The F starred dots (

� � �
)

217

Elsevier US Job Code:IPNM Chapter:Ch15-P373859 19-12-2006 11:49a.m. Page:218 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

218 15 Partial Differential Equations

are there to allow the appearance of central variables from the other ODEs of the
system. When we convert the list of equations in the usual way to a collection
of m first order differential equations in the new variables v1� v2� � � � � v , the m

equations and initial conditions take the form

dvi

dt
= fi�t� v1� v2� � � � � vm�

vi�t0� = �i (15.1)

i = 1� 2� � � � �m

(If ri is the order of the ith original equation, then m = �i ri.)
The initial value problem for a PDE system defined over a rectangle in two

dimensional �x� t� space is similar. The rectangle R is the product of the x interval
�x0� x1� and the t interval �t0� t1�, and all initial values are given either along the
t = t0 boundary line of R or along the t = t1 boundary line. For definiteness, we
presume the boundary line t = t0 is specified. A typical equation for one of the
functions u�x� t� has the following form:

	ru
�

	u 	q+r−1u ∗ �= F x� t� u� � � � � � �
	tr 	x 	xq	tr−1 � � �

Here the rth order t derivative of u equals a function F that is allowed to depend
on u and the mixed derivatives of u, of order at most q in x and of order at
most r − 1 in t, these being the “central variables” of F . Again the F starred

∗dots (
� � �

) are there to allow the appearance of central variables from the other
PDEs of the system. The initial conditions along R’s t = t0 boundary line are

	ju
�x� t0� = Gj�x� j = 0� 1� � � � � r −1

	tj

Assume that the functions F and Gj are elementary and analytic in their domains,
and that each solution function u is uniquely defined and bounded in R. In
analogous fashion as with the ODE system, one can convert the PDE system
into m PDEs that are first order in t, defining m functions v1� v2� � � � � vm. These
PDEs with their initial conditions have the form:

	vi = fi

�

x� t� v1� � � � �
	p1 v1 � v2� � � � �

	p2 v2 � � � � � v � � � � �
	pmvm

�

	t 	xp1 	xp2
m 	xpm

vi�x� t0� = gi�x� (15.2)

i = 1� 2� � � � �m

Each integer pj defines the highest x derivative needed for the function vj .

Elsevier US Job Code:IPNM Chapter:Ch15-P373859 19-12-2006 11:49a.m. Page:219 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

219 15.2 ODE and PDE initial value problems

Sometimes one or more of the functions vi has a known value along the R
boundary line x = x0, the R boundary line x = x1, or along both lines. It has
become customary to make use of this information in the numerical treatment
of PDE initial value problems, and the problem then is called “the initial value–
boundary value PDE problem”.

15.2 ODE and PDE initial value problems

For the ODE problem (15.1), we assume the functions fi are such that unique
solutions vi are defined in �t0� t1�. Similarly, for the PDE problem (15.2), we
assume the functions fi and gi are such that unique solutions vi are defined in R.
For either problem, suppose our numerical task is to compute to k decimal places
at any designated point in the t or �x� t� domains the functions vi and all vi

derivatives that occur in the differential equations governing the problem. The
solvable problems of Chapter 14 indicate that the ODE problem is solvable. For
the PDE problem, we have

Nonsolvable Problem 15.1 Given the initial value problem (15.2), with
the elementary functions fi analytic in R, the elementary functions gi analytic in
�t0� t1�, and with the solution functions vi defined in R, at any designated point
�x� t� in R compute to k decimal places the functions vi and all partial derivatives
occurring in the PDEs.

Although the PDE problem in general is nonsolvable, there are some cases
where the problem becomes solvable. For instance, suppose the equations (15.2)
have the form

	vi = fi�x� t� v1� v2� � � � � v �
	t m

vi�x� t0� = gi�x� (15.3)

i = 1� 2� � � � �m

Since the PDEs have no x partial derivatives, they can be treated as ODEs, and
in that case we have seen that the problem is solvable.

To show that the objective of Nonsolvable Problem 15.1 is in general not
possible, we need to consider any other PDE system not of the type shown in
(15.3). We will use the following simple example problem:

	v 	v =
	t 	x

Here �x0� x1�× �t0� t1� is taken as �−
�
�× �0� 10�. The initial condition along
the line t = 0 is

v�x� 0� = g�x�

Elsevier US Job Code:IPNM Chapter:Ch15-P373859 19-12-2006 11:49a.m. Page:220 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

� � �

220 15 Partial Differential Equations

The solution is v�x� t� = g�x+ t�. Suppose now that g�x� has the following form
with the parameter a:

a sin x if a �= 0
aga�x� = (15.4)

0 if a = 0

If a � 0, we have v�x� t� = a sin��x + t�/a� and 	v/	x = cos��x + t�/a�; but if =
a = 0, we have v�x� t� = 0. The difficulty here is that if the parameter a makes an
arbitrarily small change from zero to a nonzero value, it leads to large changes
in 	v/	x throughout the rectangle R. For instance, if a � 0, 	v�x� t�/	x = 1 at =
all points in R where x+ t = 0; but if a = 0, then 	v�x� t�/	x = 0 throughout R.
Thus an accurate value for 	v�x� t�/	x is not possible in general. If there were
some method to compute 	v�x� t�/	x accurately for ga, this would contradict
Nonsolvable Problem 3.1.

The PDE problem becomes solvable if we give up trying to compute the true
solution and its partial derivatives accurately, and try only to find functions�vi that
satisfy thePDEsand initial conditions toaprescribederrorbound.Withourexample
problem, we obtain a value for 	�v�x� t�/	x, but because no claim is made that �v
is close to the true solution, the troublesome initial value function ga poses no
difficulty.

We make this change explicit with

Solvable Problem 15.2 Given the initial value problem (15.2), with the
elementary functions fi analytic in R, the elementary functions gi analytic in
�t0� t1�, and with the solution functions vi defined in R, generate functions �vi

defined in R such that �vi satisfies all PDE equations and initial conditions to k
decimal places.

The remainder of this chapter is about methods of generating �vi. The preceding
chapter described power series methods for ordinary differential equations, and
we extend those methods to apply to our problem.

15.3 A power series method for the ODE problem

The PDE method is easier to describe if first we explain how the method is
used with the ODE initial value problem (15.1) to bound the error of the ODEs.
Suppose an error bound � is prescribed for the ODEs, and assume an initial t
interval �t0� t0 +h� is chosen. The t series, valid in the interval t0 ±h, now is

t = �t0 ±h�+ �1 ±0��t − t0�

A preliminary goal is to find Taylor series expressions for all functions vi. With
these series available in interval arithmetic form, we can calculate fi series, and

Elsevier US Job Code:IPNM Chapter:Ch15-P373859 19-12-2006 11:49a.m. Page:221 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

221 15.3 A power series method for the ODE problem

this allows us to bound the errors of the ODEs. The series eventually obtained
for the functions vi are the following:

K

vi�t� = ��vi�k ±wi�k��t − t0�
k i = 1� 2� � � � �m (15.5)

k=0

With these series and the t series one can compute the fi series

K

fi�t� = � ±w ′ ��t − t0�
k i = 1� 2� � � � �m (15.6)�fi�k i�k

k=0

All the series of lines (15.5) and (15.6) are constructed together, one term at a time.
Imagine now that the highest degree is k, a variable that starts at 0 and rises up to K.
For each k setting, terms of degree k are computed for all series. Note that each
function fi, besides possibly being a function of t, with a known interval halfwidth,
may also be a function of some of the variables v1� � � � � vm� with unknown inter
val halfwidths. We describe next the procedure for assigning halfwidths to the vi

variables, to obtain valid interval series terms for all functions fi.
When k = 0, the series of line (15.5) have the form

vi�t� = �vi�0 ±wi�0� i = 1� � � � �m (15.7)

Here vi�0 can be set equal to �i, using the initial condition part of line (15.1), and
only the interval halfwidths wi�0 need to be determined. The computation for these
halfwidths when k = 0 is the most time-consuming part of the series construction
process. First suppose these halfwidths are set to arbitrary nonnegative values,
and afterwards the functions fi, when computed, yield the intervals

fi�0 ±wi�
′

0 i = 1� 2� � � � �m (15.8)

For any function y�t� and nonnegative number M , if we find �
�

dy �
�≤ M for t in some

dt

interval �a� b�, this implies �y�t�−y�a�� ≤ M�b−a�. So if we find that

�
�
�fi�0

�
� +wi�

′
0� ·h < wi�0 i = 1� 2� � � � �m (15.9)

it is certain that the halfwidths wi�0 have not been set too small. A cyclic process
is used to obtain sufficiently wide halfwidths that are not overly large. Initially
all halfwidths wi�0 are set to zero. Then the intervals of line (15.8) are computed
and the tests of line (15.9) are made. If for any i we find M = ���fi�0

�
�+ wi�

′
0�

is so large that we do not have Mh < wi�0, then wi�0 is reset to Mh times a
factor slightly larger than 1, such as 1�1. Whenever any wi�0 is increased, the
entire computation is repeated using the larger halfwidths. Usually the test of

Elsevier US Job Code:IPNM Chapter:Ch15-P373859 19-12-2006 11:49a.m. Page:222 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

′

222 15 Partial Differential Equations

line (15.9) succeeds after a few cycles, but in cases where this does not occur,
the t interval width h is halved, and the whole process begins anew.

When all interval widths wi�0 have been chosen succesfully, with the degree
zero terms of the fi expansions (15.6) now also known in interval form, all
higher degree series terms are obtained relatively easily. For instance, suppose
all degree k terms are known. Then the degree k+1 terms of the vi series can be

1 ′found by setting �vi�k+1 ±wi�k+1� equal to
k+1 �fi�k ±wi�k� (because the derivative

of vi is fi). After these terms are obtained, the degree k+1 terms of the functions
fi also can be calculated. If there should be a problem calculating an fi term,
perhaps caused by using a divisor interval containing the zero point, the interval
width h is halved, and the entire process begins anew.

When the degree parameter k reaches its terminal value K, a test for ODE accu�Kracy is made. For any t in �t0� t0 +h�, the error of the fi series k=0 fi�k�t− t0�
k

is bounded by w′ �t − t0�K . The ODE error bound � is achieved if for all i wei�K

find wi�KhK < �. If all inequalities hold, and similar inequalities hold for the vi

series, the collection of series is saved for later evaluation, and the whole process
starts again in a new t subinterval �t� t +h�, with t = t0 +h, using the new �Kinitial values �

i = k=0 vi�kh
k� i = 1� � � � �m. If any of these inequalities fail, h

is halved and the entire process is repeated. The procedure continues until the t
subintervals cover �t0� t1�.

The described ODE method produces in each t subinterval polynomial approx
imations to vi and dvi/dt� i = 1� � � � �m, which we now designate as �vi and
d�vi/dt. A pair of �vi polynomials for two adjoining subintervals have the same
values at the point separating the subintervals, but this is not generally true for
the pair of d�vi/dt polynomials.

Fig. 15.1 shows a typical function �vi�t� over a t interval containing the first
three adjoining subintervals in which approximations are obtained. The dotted
line represents the solution vi to the ODE initial value problem, and the central
solid line represents the successive polynomial approximations

�K
k=0 vi�k�t − t0�

k

used by �vi. Surrounding the central line are the two boundary lines pro
vided by the interval arithmetic computation. The upper line is defined by �K

k=
−

0
1 vi�k�t − t0�

k + �vi�K + wi�K��t − t0�
K , and the lower line is defined by �K

k=
−

0
1 vi�k�t−t0�

k +�vi�K −wi�K��t−t0�
K . (The separation between the two bound

ary lines is exaggerated to make the diagram clearer.) At any t point, such as t′ ,
the �vi interval arithmetic approximation has a midpoint P on the �vi midline
graph corresponding to t′, with a halfwidth given by the vertical distance from
P to either of the �vi boundary lines. The �vi approximation thus is always within
the two boundary lines, and we can consider the graph of �vi to be the graph
obtained after all the space between the two boundary lines is shaded in. The
discontinuity of the derivative of this graph’s center line does not imply that the
function �vi has a discontinuous derivative at t0 +h, because �vi’s value is known
only in interval form at t0 +h. Within the bounds of �vi’s graph, the graph of a
function having a continuous derivative could be drawn. In Fig. 15.1, a graph of
this hypothetical function is shown in the first t subinterval as the dashed line.

Elsevier US Job Code:IPNM Chapter:Ch15-P373859 19-12-2006 11:49a.m. Page:223 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

′′

223 15.4 The first PDE solution method

Fig. 15.1 A schematic graph of vi and vi�

satisfies its ODE to within the � bound. Note, however, that the The function vi

subinterval. In Fig. 15.1, the vi

�
true solution vi is certain to lie within the boundary lines only in the first tvi�

graph is shown outside these lines in the second
t subinterval.

15.4 The first PDE solution method

Suppose in the rectangle R = �x0� x1�× �t0� t1� an error bound � is prescribed for
the PDEs, and the same error bound is prescribed for the difference between the
computed PDE solutions and the specified initial values on R’s boundary line at
t = t0.

With the ODE problem, initial values are real numbers, but now initial values
are functions gi that are approximated by polynomials. An approximation poly
nomial is obtained by Taylor series expansion, with again all terms computed in
interval arithmetic. If xm is the x interval midpoint �x0 + x1�/2, and wm is the
x interval halfwidth �x1 −x0�/2, then the variable x has the two-term series

x = �xm ±wm�+ �1 ±0��x−xm� (15.10)

Using the x series, each function gi is expanded into a Taylor series of degree J :

gi�t� = �gi�0 ±wi�
′′

0�+ �gi�1 ±wi�
′′

1��x−xm�+· · ·
+ �gi�J ±wi�J ��x−xm�J � i = 1� � � � �m

Elsevier US Job Code:IPNM Chapter:Ch15-P373859 19-12-2006 11:49a.m. Page:224 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

224 15 Partial Differential Equations

Here J is the initial choice for the expansion degree, which should be a reasonably
large value, such as 12. The accuracy test that must be passed is

w ′′ �w �J < � i = 1� 2� � � � �m (15.11)i�J m

Whenever the test fails for some function gi, then J is increased by an amount
�J , such as 6, and the Taylor series is computed to the higher degree, the
process continuing until either the accuracy test holds or the J upper bound of
the implementation is reached.

It is possible that a gi approximating polynomial is not obtained for either
of two reasons. It could be that the function gi�t�, although analytic in �x0� x1�,
cannot be developed into a Taylor series using the x series of line (15.10). This
occurs, for example, if �x0� x1� = �−2� 2�, and an initial value function gi is
1/�1 +x2�. This function is undefined in the complex plane at the points i and
−i, and in elementary complex function theory, it is shown that such a function
cannot have a Taylor expansion at the series expansion point 0, the midpoint
of �−2� 2�, that is valid at any point in the complex plane further from 0 than
i or −i. So finding a Taylor series that is valid in the wide interval �−2� 2� is
impossible. In a case like this, one can divide the interval �x0� x1� into a few
smaller intervals and solve the PDE problem in each of the resulting smaller
R rectangles. With functions for which there is no difficulty generating Taylor
series when using the x series of line (15.10), it is possible that the accuracy test
eventually increases J beyond the implementation upper bound. For instance,
with our implementation, this occurs if �x0� x1� = �0�
� and a gi function is
sin�100x�. For such a case, we can use the previous remedy of subdividing R.

When the accuracy test is passed for all initial value functions, the degree
bound J is set equal to the largest value needed for any gi, and an approximating
polynomial to this now fixed degree is used in place of every function gi. �J �KThe PDE method is used to obtain series of the general form j=0 k=0 ajk

�x − xm�j�t − t0�
k for all vi functions and their t partial derivatives in the R

subrectangle �x0� x1�× �t0� t0 +h�. Before giving the description of the first PDE
method, we need to obtain the remainder for such a series.

Suppose now that f�x� t� is an analytic function defined in the subrectangle.
According to the remainder equation (6.1), if we hold x fixed, f�x� t� may be
expanded in a t Taylor series with the series expansion point t = t0 as follows:

K−1

f�x� t� = � 1 	kf�x� t0� �t − t0�
k + 1 	Kf�x��t �

�t − t0�
K

k! 	tk K! 	tK
k=0

The point�t depends on x, and is somewhere in �t0� t0 +h�. Next, make substitu
tions in the coefficients of this series, using the following x Taylor expansions
with xm as the series expansion point:

J−1	kf�x� t0� � 	j+kf�x � t0� 	J+kf��xk� t0� = m �x−x �j + �x−x �J

	tk
j=0 j! 	xj	tk m J ! 	xJ	tk m

Elsevier US Job Code:IPNM Chapter:Ch15-P373859 19-12-2006 11:49a.m. Page:225 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

� �

�

� �

�

�

�

� � �

�

� �

� � ′

225 15.4 The first PDE solution method

k = 0� 1� � � � �K −1

J−1 	j+Kf�x ��t � 	J+Kf�	Kf�x��t �

	tK

xk

xK��t �

J ! 	xJ	tK
�j + �Jm �x−x �x−x= m mj! 	xj	tK

j=0

The points and the point are somewhere in �x0� x1�. We obtain in this way xK

a Taylor series expression with J +K +1 remainder terms:
�

−1 −1J K 1 	j+kf�xm� t0� �x−xm�j�t − t0�
kf�x� t� =

j!k! 	xj	tk

	J+kf�xk�
J k	x 	t

j=0 k=0

K−1 1 � t0� �x−xm�J �t − t0�
k+

J !k!
k=0

J−1 1 	j+Kf�x ��t �
�x−x �j�t − t0�

Km

	xj	tK m+
j!K!

	J+Kf�xK

	xJ	tK

j=0

1 ��t �
�x−xm�J �t − t0�

K (15.12)+
J !K!

If we generate an interval version of the preceding equation with the typical
coefficient being fjk ±wjk, then the interval arithmetic equation that corresponds
to line (6.2) is

J−1 K−1 K−1

f�x� t� = fjk�x−xm�j�t − t0�
k + �fJk ±wJk��x−xm�J �t − t0�

k

j=0 k=0 k=0

J−1

+ �fjK ±wjK��x−xm�j�t − t0�
K + �fJK ±wJK��x−xm�J �t − t0�

K

j=0

(15.13)

The PDE method for finding solution series terms in the first t subinterval can
now be described. The series representation eventually obtained for the functions
vi is

J K

vi�x� t� = �vi�j�k ±wi�j�k��x−xm�j�t − t0�
k i = 1� � � � �m (15.14)

j=0 k=0

Any vi partial derivative with respect to x that appears in Eq. (15.2) is easily
obtained in series form by differentiating the vi series an appropriate number of
times. With all the vi series and their x derivatives, and the t and x series, one
can compute the fi series:

J K

fi�x� t� = �fi�j�k ±wi�j�k��x−xm�j�t − t0�
k i = 1� � � � �m (15.15)

j=0 k=0

Elsevier US Job Code:IPNM Chapter:Ch15-P373859 19-12-2006 11:49a.m. Page:226 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

� ′ � ′ ′

�

�

� ′

� � ′

226 15 Partial Differential Equations

When the complete series for the functions fi are obtained, an accuracy test for
the PDEs is possible, which is a test of the fi errors. According to Eq. (15.13),
we have the error bound � if

K−1 J−1

wi�J�k�wm�Jhk + w �jhK +w �JhK < � i = 1� � � � �m �w �wi�j�K i�J�Km m

k=0 j=0

(15.16)

The general procedure is similar to the procedure described for ODEs. Again
imagine the parameter k of lines (15.14) and (15.15) is a variable that starts at 0
and rises to K. For each k setting, corresponding series terms are computed for
all functions vi and fi. Again the most time-consuming part of the computation
occurs when k = 0, because interval halfwidths for the functions vi must be
estimated. When k = 0, we have

J

vi�x� t0� = 0�vi�j�0 ±wi�j�0��x−xm�j i = 1� � � � �m (15.17)
j=0

Here the polynomials obtained from the initial conditions have been expanded
into series using the x variable setting shown in Eq. (15.10). The halfwidths

0obtained, wi�j�0, are valid for the �x0� x1� interval on the initial value line t = t0

at the bottom of R, but not for the t strip, which is �x0� x1� × �t0� t0 + h�. We
require instead

J

vi�x� t� = �vi�j�0 ±wi�j�0��x−xm�j i = 1� � � � �m (15.18)
j=0

where wi�j�0 is for this first t strip. A cyclic procedure is used to assign values
to wi�j�0 that are not overly large. Initially, the halfwidths wi�j�0 are set equal to

0wi�j�0. The functions fi are evaluated for k = 0 to obtain the series

J

fi�x� t� = �fi�j�0 ±wi�j�0��x−xm�j i = 1� � � � �m (15.19)
j=0

The following test is made:

i = 1� � � � �m � +w

If any of these inequalities fail for an ij combination, then the corresponding
halfwidth wi�j�0 is reset according to the plan described previously for ODEs.
Whenever any wi�j�0 is increased, the entire halfwidth computation is repeated
with the larger halfwidths. More cycles are allowed for this computation than

0
i�j�0 + ��fi�j�0 i�j�0� (15.20) ·h < wi�j�0�w

j = 0� 1� � � � � J

Elsevier US Job Code:IPNM Chapter:Ch15-P373859 19-12-2006 11:49a.m. Page:227 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

15.5 A simple PDE problem as an example 227

were allowed for ODEs, and in cases where the test never succeeds, the t
subinterval width h is halved and the whole process begins anew. After all
halfwidths wi�j�0 have been chosen successfully, the other series terms for vi

and fi corresponding to higher k settings are obtained in a more straightforward
fashion. The computation for these other terms of vi and fi is similar to the
procedure described for ODEs.

When the parameter k reaches its terminal value K, the accuracy test (15.16)
is made on all fi series, and a similar test is made on all vi series. If these
tests are passed, the collection of series is saved for later evaluation, and the
whole process starts anew in the next strip �x0� x1�× �t� t +h�, with the initial
value polynomial for vi now taken to be equal to

�J
j=0

�K
0 vi�j�k�x − xm�jhk .k=

The procedure continues until the t strips cover R.

15.5 A simple PDE problem as an example

Suppose the rectangle R is given by

x t
R = ×

�0�
� �0� 10�

and the single PDE to be solved is 	v1/	t = 	v1/	x, with the initial condition
v1�x� 0� = sin�x�. This problem has the true solution v1�x� t� = sin�x+ t�. Sup
pose the error bound � is chosen to be 2 ·10−6, so that the computed v1 solution
will satisfy the PDE and the initial condition to 5 decimal places.

The first task is to obtain a polynomial that approximates the function sin�x�
over the interval �0�
� to within �. We need a Taylor series for sin x with the
series expansion point xm =

2 , the midpoint of �0�
�. Taking the x series as
�

2 ±

2 �+ �1 ± 0��x −

2 �, and the degree of the expansion equal to 12, the sin
series obtained, with interval coefficients, passes the accuracy test (15.11). The
interval halfwidths of the sin expansion may now be discarded, and the degree
12 polynomial that replaces sin x and becomes v1�x� 0� is

P�x� = 1 − 2
1
! �x−

2 �
2 + 4

1
! �x−

2 �
4 −· · ·+ 12

1
! �x−

2 �
12 (15.21)

The computation for the f1 and v1 series on the strip �0�
�× �0� h� is next. We
will do this computation as if it were an ordinary real number computation, and
consider later the benefits of doing it in interval arithmetic. Because f1 = 	v1/	x,
the f1 terms when k = 0 are obtained by differentiation of P�x� and are

−�x−
 �+ 1 �x−
 �3 −· · ·+ 1 �x−
 �11
2 3! 2 11! 2

These f1 terms get integrated with respect to t to become the following v1 terms
for k = 1:

−�x−
 ��t −0�+ 1 �x−
 �3�t −0�−· · ·+ 1 �x−
 �11�t −0�2 3! 2 11! 2

Elsevier US Job Code:IPNM Chapter:Ch15-P373859 19-12-2006 11:49a.m. Page:228 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

228 15 Partial Differential Equations

These v1 terms yield the following f1 terms for k = 1:

−�t −0�+ 1 �x−
 �2�t −0�−· · ·+ 1 �x−
 �10�t −0�2! 2 10! 2

This pattern of computation continues until k reaches the end value K, which
we take to be 12; the single k = 12 term for v1, which is 12

1
! �t − 0�12, yields

no corresponding f1 term. (The reduction in number of terms as k advances
is an accident of the example, and does not occur if the PDE is changed to
	v1 = 	v1 +v1.)
	t 	x

This real number computation delivers an x� t polynomial for v1 that approx
imates the v1 solution near the line t = 0, but we do not know how far from
this line the approximation may be used. By doing the computation in interval
arithmetic in the manner descibed in the preceding section, we obtain two key
benefits. First, the strip width h is determined. Second, the interval halfwidths
associated with the v1 coefficients “shade in” the v1 graph (as in the Fig. 15.1
diagram), so that the expected shift in f1 at the start of the next strip is not a
concern.

The computation for v1 and f1 on the second strip (and on all later strips)
is easier because a sin x evaluation is not needed to obtain the beginning x
polynomial. We ignore the interval halfwidths of the first strip’s computed
v1�x� t� function and use the degree 12 polynomial v1�x�h� as the beginning x
polynomial for the second strip.

15.6 A defect of the first PDE method

The method described in Section 15.4 has a serious shortcoming for many simple
PDE problems. For instance, for the example problem of the preceding section,
the computed solution is close to the true solution sin�x+ t� for t near the initial
value line t = 0. But it becomes larger than 9 for higher t values, even though
the PDE is approximated to within 5 decimal places, and the initial condition is
satisfied to the same accuracy. Recall that the initial condition function sin�x� is
replaced by the polynomial P�x� of Eq. (15.21), the degree 12 Taylor polynomial
obtained by expanding sin�x� in a Taylor series using the series expansion point
x =
/2. We can understand the divergence of the computed solution from
the true solution by examining the graph of P�x� shown in Fig. 15.2b, and
comparing it with the graph of sin�x�, shown in Fig. 15.2a. Notice that P�x� is
quite close to sin�x� in the interval �0�
�, but then eventually rises to infinity
on either side of
/2, as any even-degree Taylor polynomial must do. When the
initial condition function for the example PDE is P�x� instead of sin�x�, the true
solution becomes P�x+ t� instead of sin�x+ t�. To obtain a computed solution
close to sin�x + t� on the rectangle R, the Taylor polynomial P�x� must be of
such high degree that it is close to sin�x� not just on the interval �0�
�, but on
the wider interval �0�
 +10� required by R.

Elsevier US Job Code:IPNM Chapter:Ch15-P373859 19-12-2006 11:49a.m. Page:229 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

229 15.7 The revised PDE method with comparison computation

Fig. 15.2a

Fig. 15.2b

For any PDE initial value problem over a rectangle R, we see that the initial
value polynomials vi�x� t0� need to be accurate approximations to the initial
value functions gi over an interval wider than the interval �x0� x1�, with the size
of the interval depending on the PDEs and the dimensions of the rectangle R.

15.7 The revised PDE method with comparison computation

A more accurate solution method is obtained by making a series of trial runs
to determine how large to make the degree J in the series expansions of lines
(15.14) and (15.15).

Let the initial value polynomial for vi on any t subinterval be �J
j=0 vi�j�x−xm�j . Recall that xm is the midpoint of �x0� x1� and the x series is

x = �x ±w �+ �1 ±0��x−x �m m m

Elsevier US Job Code:IPNM Chapter:Ch15-P373859 19-12-2006 11:49a.m. Page:230 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

′ ′

 ′

′′

�

� �

� �

230 15 Partial Differential Equations

The previously described procedure generates another vi polynomial to be used in
the next t subinterval �t� t + h�. Let this initial value polynomial be designated �J

j=0 v

i�j�x−xm�j . On a trial run, the computation for the starred polynomial is done

twice, once at the chosen degree J and once at the higher degree J ′ = J +�J . The
two J ′ degree polynomials for vi are

�J
j=

′
0 vi�j�x−xm�j and

�J
j=

′
0 vi�j�x−xm�j . The

two computed starred polynomials differ in value at any point �x� t� by no more
than �i =

�
j
J
=
′

0

�
�v −v �

�
�w �j . In this expression take v = 0 for j > J .i�j i�j m i�j

On the first trial run, as previously described, J is chosen high enough to
make the polynomial error < � on the line t = t0. A trial run continues from one
t subinterval to the next if we obtain �i < � for all i. Whenever this result is
not obtained, the trial run ends, J is reset to the higher value J ′, and a new trial
ensues, starting once more at t = t0. Eventually J is high enough for the trial
run to go to completion. When this occurs the successful run is repeated one last
time, without doing duplicate computation, to store the vi and fi expansions of
lines (15.14) and (15.15) for later evaluation at points of interest in R.

The series of trial runs is not needed if all initial functions gi are polynomials
of degree less than or equal to the starting degree J . In this case, the quantities
wi�J of the line (15.11) test are zero. This occurrence signals that increasing
J to J +�J does not change the beginning vi polynomials.

15.8 Higher dimensional spaces

Although we have posed the PDE problems and examples in �x� t� space, the
method is applicable to �x� y� t� or �x� y� z� t� space. The relation (15.13) and test
of line (15.16) for �x� t� space can be generalized without difficulty to apply to
the higher dimensional cases.

The computation time for a t subinterval is roughly proportional to the number
of terms in the beginning polynomial for vi. In �x� t� space, the vi polynomial is

J

vi�j�x−xm�j

j=0

and has J +1 terms. In �x� y� t� space, the corresponding polynomial is

J

vi�j1 �j2
�x−xm�j1 �y −ym�j2

j=0 j1+j2 =j

1
and has �J +1��J +2� terms. And in �x� y� z� t� space the polynomial is

2!
J

vi�j1�j2�j3
�x−xm�j1 �y −ym�j2 �z− z �j3

m

j=0 j1 +j2+j3 =j

Elsevier US Job Code:IPNM Chapter:Ch15-P373859 19-12-2006 11:49a.m. Page:231 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

231 15.9 Satisfying boundary conditions

and has 3
1
! �J +1��J +2��J +3� terms. For example, with J presumed to be 12,

the various execution times for a t subinterval in �x� t�, �x� y� t�, and �x� y� z� t�
spaces may be expected to be roughly proportional to the numbers 13, 91, and
455, respectively.

Because the test of line (15.16) involves more terms as the space dimension
increases, the t subintervals become correspondingly smaller, further increasing
the execution time for higher dimensional problems.

15.9 Satisfying boundary conditions

With the described method, boundary condtions cannot be directly imposed.
If there are boundary conditions for a PDE problem, these must be obtained
by restricting the initial value functions gi appropriately, so that the boundary
conditions come about as a consequence of the PDEs.

Suppose, for instance, that the boundary condition v1�t� x0� = b�t� is required
for the function v1, and that b�t� is an elementary analytic function of t. At the
point t = t0 we have the Taylor expansion

b�t� = b0 +b1�t − t0�+b2�t − t0�
2 +b3�t − t0�

3 +· · ·

The v1 initial value function g1, besides being restricted by the equation
g1�x0� = b0, has additional requirements. In the first t subinterval, the v1 differ
ential equation of line (15.2) will be satisfied to high accuracy, and this implies
that at the point �x0� t0� we have

mv	v1

�
	p1 v1 	p2 v2 	p

m

�

b1 = = f1 x0� t0� v1� � � � � � v2� � � � � � � � � � v � � � � �
m	t 	xp1 	xp2

m 	xp

Thus the differential equation connects the Taylor coefficient b1 with the initial
value functions. Because of our assumption of analyticity for all functions, we
can take higher t derivatives and obtain relations connecting the other Taylor
coefficients of b�t� with the initial value functions.

	v 2 	2 vAs an example, consider the parabolic heat equation
	t

= c
	x2 for a heat

conducting bar of length L lying on the x interval �0�L�, where v�x� t� is the
temperature, and c2 is a positive constant. If the left endpoint of the bar is
maintained at the temperature T , this leads to the boundary condition v�0� t� = T .
The differential equation implies that

	jv�0� 0� 2j 	2jv�0� 0�
0 = = c j = 1� 2� � � �

	tj 	x2j

The initial value function g�x� = v�x� 0�, besides satisfying the relation g�0� = T ,
must have all even order derivatives equal to zero at x = 0.

Elsevier US Job Code:IPNM Chapter:Ch15-P373859 19-12-2006 11:49a.m. Page:232 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

232 15 Partial Differential Equations

If the left endpoint of the bar is perfectly insulated, this leads to the boundary
condition 	v�0� t�/	x = 0. The differential equation implies that

	j+1v�0� 0� 2j 	2j+1v�0� 0�
0 = = c j = 1� 2� � � �

	tj	x 	x2j+1

This time every odd order derivative of g�x� must be zero at x = 0.

Software Exercises M

These exercises are with the demo program pde. Because of the long computa
tion needed to solve a typical initial value problem, the program pde chooses the
accuracy goal, which is unlike the other demo programs. It chooses 5 decimal-
place accuracy for a 1- or 2-dimensional problem, 3 decimal-place accuracy for a
3-dimensional problem, and 1 decimal-place accuracy for a 4-dimensional prob
lem. The program pde creates a log file, but does not create a print file. After
the program approximates the solution to a PDE or ODE initial value problem, it
enters a loop in which it repeatedly requests values for the independent variables,
and then displays the computed PDE or ODE solution at the designated point,
as well as all the derivatives that occur in the differential equations. To exit the
loop, type the single letter q (for “quit”) and hit the ENTER key.

1. Call up pde and solve the example problem of Section 15.6 by taking �x0� x1�
as �0�
� and �t0� t1� as �0� 10�, entering the differential equation 	u/	t = 	u/	x,
choosing the t = t0 line for initial conditions, and choosing sin�x� as the u initial
value function. The true solution is u = sin�x+ t�.

2. Edit the log file to change the t interval from �0� 10� to �0� 100� and then
call up pde pde. The pde program now repeatedly increases the degree of
its series computations because the comparison computations indicate this is
needed. Whenever it becomes clear that the size of the t interval is too large,
one should stop the pde computation by entering a control-c, and then edit the
log file to reduce the t interval.

3. Call up pde and solve the equation 	u = 	2u + 	2u + 	
	z

2u
2 , specifying �0� 10�

	t 	x2 	y2

as the interval for each independent variable, in this case x� y� z, and t; supply an
x� y� z polynomial of moderate degree, such as x3 +y2 +xyz, as the initial condi
tion function u�x� y� z� at t = t0. For polynomial initial conditions of degree <12,
the pde program is able to obtain the polynomial solution in x� y� z and t quickly.
For the example initial condition, the true solution is x3 +y2 +xyz+ �6x+2�t.

4. Call up pde and solve the ODE initial value problem d2u/dt2 = −u over
the t interval �0� 20
�, with the initial conditions u�0� = 0 and du�0�/dt = 1.

Elsevier US Job Code:IPNM Chapter:Ch15-P373859 19-12-2006 11:49a.m. Page:233 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

233 Notes and References

The true solution to this problem is u = sin�t�. The pde program can solve ODE
initial value problems, but unlike the program difsys, the program pde does
not attempt to approximate the true solution. Nevertheless, its solutions are often
surprisingly accurate.

Notes and References

A. Brian Hassard of SUNY at Buffalo and his students [1] [2] made early precise
computations of specific PDE problems.

[1] B. Hassard and S. Zhixin, Precise solution of Laplace’s equation, Math. Comp. 64
(1995), 515–536.

[2] X. Hongliand,	 Precise Solution of Wave Equation, Ph.D. Dissertation, SUNY at
Buffalo, June, 1998.

Elsevier US Job Code:IPNM Chapter:Ch15-P373859 19-12-2006 11:49a.m. Page:234 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

This page intentionally left blank

Elsevier US Job Code:IPNM Chapter:Ch16-P373859 19-12-2006 11:49a.m. Page:235 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

Numerical Methods
with Complex Functions 16

This chapter requires some acquaintance with complex analysis, to the extent of
understanding the differentiation and integration of complex functions.

A number of demo programs have their computation systems explained in
this chapter. They are c_ calc for evaluating complex constants, c_fun for
evaluating complex functions, c_ deriv for computing a complex function’s
derivatives, c_ integ for computing the line integral of a complex function
within the complex plane, c_ roots for finding a complex polynomial’s roots,
and c_ zeros for finding the zeros of a complex function or the zeros of
several complex functions.

16.1 Elementary complex functions

Like elementary real functions, the elementary complex functions are frequently
encountered functions for which it is easy to form power series and to compute
derivatives.

Definition 16.1 A function of a finite number of complex variables
z1� z2� � � � � zn is an elementary complex function if it can be expressed in terms
of its variables and complex constants c1� c2� � � � � cm by a finite number of the
binary operations of addition, subtraction, multiplication, division, or exponen
tiation, and the unary operations of function evaluation with sin, cos, tan, sin−1,
cos−1, tan−1, exp, or log.

For some elementary real functions, there is no elementary complex analogue.
For instance, the max or min elementary real functions do not have complex
versions. And the function �z�, though relatively easy to compute, is not an
elementary complex function, even though �x� is an elementary real function.

235

Elsevier US Job Code:IPNM Chapter:Ch16-P373859 19-12-2006 11:49a.m. Page:236 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

236 16 Numerical Methods with Complex Functions

Some issues concerning function evaluation need to be addressed. The inverse
zof the exponential function e = ex�cos y+ i sin y� is log z, and it is well known

that it is not possible to define log z in the complex plane without introducing
a “cut line” on which the function is discontinuous. This cut line is usually
taken as the negative real axis, and the definition of log z is then ln �z�+ i��z�,
where ln denotes the natural logarithm (to base e), and ��z� gives the principal
argument of z, that is, an angle in radians between � and −�. As z approaches a
point x0 on the negative real axis from above, log z approaches ln �x0�+ i�, and
as z approaches this point from below, log z approaches ln �x0�− i�, so log z is
discontinuous on the cut line. In accordance with the view of how discontinuous
functions should be treated numerically, as explained in Section 3.7, we take
log z to be undefined on the negative real axis, and of course also at the origin
because ln �z� is not defined there.

The computation of za, where the exponent a may be any real or complex num
aber, is done in the following way. If a= 0, then z = 1. If a is a positive integer,

then za is formed by repeated multiplication and is defined over the entire com
plex plane. If a is a negative integer, then za is computed as �1/z�−a and is defined
everywhere except at the origin. Now suppose a is some real or complex number
other than a real integer. In this case we take za to be defined by the relation

a a log z z = e

This implies that za is undefined along the negative real axis and origin because
the log function is not defined there.

With our range arithmetic routines for za, whenever a and z are real, with the
imaginary parts of a and z being exact zeros, the complex operation za defers to
the real operation xa. If a is a rational number p/q that is in reduced form with
the integer q positive, the usual interpretation of xa is

() √p √ p
x q = q x = q xp

The real range arithmetic operations for xa employ this interpretation, and so the
complex operation za also obtains this interpretation when both z and a are real.

The inverse functions sin−1 z, cos−1 z, and tan−1 z are computed in the complex
plane according to the equations

1
sin−1 z=−i log�iz+ �1 − z 2� 2 �

cos−1 z= � − sin−1 z
2

tan−1 z= i log
i+ z

2 i− z

These equations imply that sin−1 z and cos−1 z are undefined when 1 − z2 is
negative real, which occurs when z is real and greater in absolute value than 1.

Elsevier US Job Code:IPNM Chapter:Ch16-P373859 19-12-2006 11:49a.m. Page:237 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

16.3 Computing line integrals in the complex plane 237

These are the only points where these two functions are undefined, because in
the equation for sin−1 z, the log argument is never a negative real number or
zero. On the other hand, for tan−1 z, the log argument is negative real for z= iy
with �y�> 1, and the log argument is either not defined or zero when y equals 1
or −1. So tan−1 z is not defined on the imaginary axis except for the open interval
between −1 and +1.

These notes help explain the complex values that the program c_calc gen
erates in response to a user’s entry of a complex constant. A complex number
c = x+ iy in range arithmetic has two parts that are real ranged numbers. These
of course are the real x component and the real y component. Computation
of complex constants is done via an evaluation list in the same way that the
computation of real constants is done.

The program c_fun evaluates complex functions in much the same way
real functions are evaluated, described in Chapter 4, except that complex range
arithmetic replaces the real range arithmetic.

16.2 The demo program c_deriv

The series relations developed in Chapter 5 for computing values and deriva
tives of real functions can be extended to complex functions. However, some
changes in notation are needed. For instance, the opening equation (5.1) now is
replaced by

f�z�= a0 +a1�z− z0�+a2�z− z0�
2 +· · ·+ak�z− z0�

k +· · · (16.1)

Most of the series relations presented in Chapter 5 apply to elementary complex
functions, but with obvious notation changes.

The c_deriv program for elementary complex functions is similar to the
deriv program, and uses complex power series in place of real power series.
Like the deriv program, c_deriv checks the coefficients of the generated
series to determine whether enough correct decimal places are obtained. If not,
precision is increased and the series is recomputed. This process continues until
the test for decimal place accuracy is passed.

16.3 Computing line integrals in the complex plane

The program c_integ computes the complex plane integral
∫
C
f�z�dz, where

f�z� is an elementary complex function, and the curve C in the complex plane
is either a straight line segment or a closed circle. The method of computation
is similar to the method previously described for the program integ.

Consider first the case where the curve C is the straight line segment that
begins at the complex point a and ends at the complex point b. Here the path of

Elsevier US Job Code:IPNM Chapter:Ch16-P373859 19-12-2006 11:49a.m. Page:238 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

238 16 Numerical Methods with Complex Functions

integration is defined by the equation z= a+ �b−a� ·u, where the real variable
u starts at 0 and ends at 1. We have then

∫ ∫ 1

f�z�dz = �b−a� f�a+ �b−a�u�du
C 0

The integral over the u interval �0�1� has a real part and an imaginary part, and
the errors of the two parts are each monitored in the way the integ program
monitors error. If the error of one of these parts is larger than the error allotment
for a u subinterval of that size, then the u subinterval is divided into two equal-
length parts, and the integration reattempted for these smaller subintervals.

If the curve C is a circle with centerpoint m and radius r, the path of integration
is defined by the equation z=m+ r ·e2�iu, where again the real variable u starts
at 0 and ends at 1. In this case we have

∫ ∫ 1
2�iu� e2�iu duf�z�dz= 2�ir f�m+ re

C 0

This integral over the �0�1� u interval can be obtained accurately using the
method described for the previous integral.

16.4 Computing the roots of a complex polynomial

We explain here the procedure by which the program c_roots finds accurate
approximations to the roots of a complex polynomial P�z�. The dissection of P�z�
into subpolynomials Ni�z� is done similarly to what was described for the demo
program roots, except of course that complex range arithemetic is used in place
of real range arithmetic. This dissection makes finding multiple roots easier.

The roots of each polynomial Ni�z� are found one by one, because the complex
roots of a complex polynomial do not come in conjugate pairs; so the Bairstow
method cannot be used. A complex version of Newton’s method is used instead.
The Taylor series expansion for an analytic function f�z� at a series expansion
point wk has the leading terms

f�z�= f�wk�+f ��wk��z−wk�+· · ·
If we follow the usual reasoning of Newton’s method and approximate f�z� by
using just the first two terms of its series expansion, then setting f�z� equal
to zero, solving for z, and calling our solution wk+1, we obtain the complex
Newton’s method iteration equation

f�wk� wk+1 = wk − (16.2)
f ��wk�

This iteration equation can be used to find roots of Ni�z� if the progress of the
iteration is closely monitored. A convenient point w0 is chosen within a computed

Elsevier US Job Code:IPNM Chapter:Ch16-P373859 19-12-2006 11:49a.m. Page:239 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

� � �
�

�

239 16.5 Finding a zero of an elementary complex function f (z)

root bounding circle �z� ≤ R. (The circular bounds derived in Section 8.2 for
real polynomials also are valid for complex polynomials.). As each iterate wk is
found, some indicator of progress toward a root is also needed. This could be
the quantity �Ni�wk��, which should decrease with each iteration.

For the complex number wk = xk + iyk, define midpoint wk as midpoint
xk + i�midpoint yk�, and define wk = wk+1 as xk = xk+1 and yk = yk+1. After
each iteration cycle, we check whether wk+1 = wk, and if this relation does not
hold, then wk+1 is replaced by midpoint wk+1 in preparation for the next itera
tion cycle. After we finally obtain wk+1 = wk, then midpoint wk can serve as
the final root approximation wz. If the degree of the problem polynomial Ni�z�
is greater than 1, the factor z−wz is divided into the problem polynomial to
get one of lower degree, and the process is repeated with the new polynomial
in order to obtain another root approximation. The procedure continues until
approximations to all the roots have been assembled. Error bounds for these
roots are computed in the way described in Section 8.5.

16.5 Finding a zero of an elementary complex function f (z)

Suppose the elementary complex function f�z� is defined in some rectangle R
in the complex plane, and we want to find all the zeros of f�z� in R. Here R is
specified by inequalities applying to the real and imaginary parts of z = x+ iy,
that is, by inequalities a ≤ x ≤ b and c ≤ y ≤ d. An f�z� zero z0 is simple if
f ��z0� � � 0 and = 0. The zero is a multiple zero with multiplicity m, if f �m��z0�=

0 = f�z0�= f ��z0� = f ���z0�= · · · = f �m−1��z0�

The beginning solvable problem of Chapter 7, finding the zeros for an elemen
tary real function f�x� in a search interval �a� b�, requires that f�x� test nonzero
on the boundary of �a� b�. Similarly, to obtain a solvable problem here, we must
require that f�z� test nonzero on the boundary of R.

In Section 7.1, for the problem of finding zeros of f�x� in �a� b�, two com
putation difficulties were described, illustrated by specific functions fd�x� and
f �x�. For our problem, a function analogous to fd�x� ise

fd�z� = �z−1�2 +�d�
where d is any real number. Suppose R is some rectangle enclosing the point
1 +0i. If d is 0, there is a zero of multiplicity 2 at z= 1. If d is unequal to 0, but
near 0, instead of having no zero, as would be the case for fd�x�, there are the
two zeros 1 ± i

√
��d�� within R. Thus we do not need to report “possible zeros”

for the f�z� problem. However, note the difficulty here in deciding whether
we have found a multiple zero. If d = 0, the number 1 is a multiple zero, but if
d � 0 there are 2 simple zeros. If we could decide the multiplicity of a zero =
correctly for every d, we could determine whether any real number is zero,

Elsevier US Job Code:IPNM Chapter:Ch16-P373859 19-12-2006 11:49a.m. Page:240 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

240 16 Numerical Methods with Complex Functions

contradicting Nonsolvable Problem 3.1. Thus the multiplicity of any zero not
designated “simple”, must be reported as the zero’s “apparent multiplicity”.

The other difficulty mentioned in Section 7.1 is the possibility that f�x� might
be zero on a subinterval inside �a� b�, and thus have an infinite number of zeros.
This difficulty cannot occur for an elementary complex function f�z� that is
defined throughout R and is nonzero on the R boundary. This is because an
elementary complex function defined at all points in R is analytic in the interior
of R, and if such a function is 0 on a line segment in R, it is 0 everywhere in R,
and would not pass the R boundary test.

These considerations make the solvable problem for f�z� simpler than the
corresponding problem for f�x�. First we need some terminology for the ele
mentary complex function problem: A search rectangle R is a rectangle in the
complex plane defined by four constants a, b, c, d, with z= x+ iy restricted by
inequalities a ≤ x ≤ b and c ≤ y ≤ d. A zero is determined to k decimal places
by giving both its real and imaginary parts to k decimal places.

Solvable Problem 16.1 For any elementary complex function f�z�
defined in a search rectangle R, and any positive integer k, find a point z0 on
the boundary of R where �f�z0��< 10−k and halt. Or if f�z� � 0 on the boundary =
of R, bound all the zeros of f in R by

(1) giving, to k decimal places, points identified as simple zeros,
(2) giving, to	 k decimal places, points identified as zeros of apparent multi

plicity m, with the integer m ≥ 2.

If a real number r is displayed to k correct decimal places, the number r
may lie anywhere in the corresponding tilde-interval. Similarly, in the complex
plane a complex number z = x+ iy displayed to k decimal places may lie
anywhere in a tilde-rectangle centered at the displayed value, with sides parallel
to the real and imaginary axes. If a zero of apparent multiplicity m is displayed
to k decimal places, there are exactly m zeros within the tilde-rectangle, if we
add the multiplicities of the various individual zeros. For instance, if m= 3, then
within the tilde-rectangle there could be one zero of multiplicity 3, there could be
three simple zeros, or there could be a simple zero and a zero of multiplicity 2.
If the number of correct decimal places is increased, it is possible but not certain
that the zero of apparent multiplicity 3 gets changed into 3 simple zeros, or
changed into a simple zero and a zero of apparent multiplicity 2.

We have

f�z�= f�x+ iy� = u�x� y�+ iv�x� y�

so our problem may be considered equivalent to the problem of finding the zeros
of the two real functions u�x� y� and v�x� y� in the real �x� y� space rectangle R.
Accordingly, the concept of crossing number, defined for real elementary
functions, can be used for our problem. For an analytic function f�z� we have

Elsevier US Job Code:IPNM Chapter:Ch16-P373859 19-12-2006 11:49a.m. Page:241 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

∫

241 16.5 Finding a zero of an elementary complex function f (z)

f ��z�= �u+i �v , and the Cauchy-Riemann equations �u = �v and �u =− �v hold.
�x �x �x �y �y �x

So the Jacobian for u and v at a point �x� y� is

det

⎡

⎢
⎢
⎣
�x �y
�v �v

⎤

⎥
⎥
⎦ = det

⎡

⎢
⎢
⎣
�x

−
�x

�v �u

⎤

⎥
⎥
⎦ =

(
�u

�x

)2

+
(
�v

�x

)2

= �f ��z��2

�u �u �u �v

�x �y �x �x

Thus the Jacobian is always positive or zero. This implies, when computing
the crossing number, that the normal n defined by equation 12.3 always points
outward from the boundary image, so a computed crossing number must be
positive or zero. At any simple zero of u and v where the Jacobian is nonzero,
the Jacobian is actually positive. So if f�z� has exactly k simple zeros inside the
problem rectangle R, the corresponding f�z� crossing number is k. If in R the
function f�z� has exactly one multiple zero of multiplicity m, the corresponding
crossing number is m, using a simple continuity argument where m simple zeros
combine to form the multiple zero.

If the analytic function f�z� is defined inside and on the rectangle R, and
f�z� is nonzero on R, then the number of zeros inside R can be determined by
using the argument principle, namely that the number of zeros in R, counting
multiplicities, equals the integral

1 f ��z�
dz

2�i R f�z�

where the integration around R is done counterclockwise. The integral displayed
is equivalent to the corresponding Kronecker’s integration formula, mentioned
in Section 12.5. Thus the argument principle is equivalent to the statement that
the number of zeros equals the crossing number for the real functions u�x� y�
and v�x� y� over the real rectangle R.

Because we always know the number of zeros of f�z� inside a search rectangle
by computing the corresponding crossing number, this simplifies the task of
determining those zeros. The search procedure can be done with a task queue
holding problem rectangles to be investigated; the task queue initially holds just
the beginning rectangle R. If RQ is the first rectangle on the queue, let n�RQ� be
the number of zeros inside RQ, obtained by computing the crossing number. If
n�RQ� = 0, we discard RQ. If n�RQ� = 1, the zero must be simple, and we try
to find the zero by the complex version of Newton’s method, described in the
preceding section, using the centerpoint of our rectangle as the initial iteration
point. If there is some difficulty with the iteration, then we bisect RQ in its longer
dimension, find which subrectangle contains the zero by computing the crossing
number for either subrectangle, discard the unneeded subrectangle, and resume
the Newton’s method attempt with a smaller rectangle. Eventually we will be
able to determine the simple zero to the required number of decimal places.

Elsevier US Job Code:IPNM Chapter:Ch16-P373859 19-12-2006 11:49a.m. Page:242 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

242 16 Numerical Methods with Complex Functions

If n�RQ� > 1, we bisect RQ by a division of its larger side, or a division
of either side if the two sides test equal in length, obtaining two problem
rectangles RQ1

and RQ2
. Because of the additive property of crossing numbers,

we have n�RQ�= n�RQ1
�+n�RQ2

�. So a computation of n�RQ1
� also determines

n�RQ2
�. However, if there is a multiple zero z0 inside RQ with multiplicity m

equal to n�RQ�, we obtain a series of subrectangles enclosing z0, and for these
subrectangles the crossing number never changes, and never becomes 1, which
is the criterion for using Newton’s method. The subrectangles surrounding z0

diminish in size until one is obtained that falls within the tilde-rectangle of its
centerpoint if it were displayed to the requisite k decimal places. The centerpoint
then is displayed, but only as a zero of apparent multiplicity m, because, as far
as we know, there could be several separate zeros inside the tilde-rectangle, with
multiplicities summing to m.

We have glossed over a potential difficulty in the procedure, in that when
we bisect RQ, it may happen that a zero lies on the common side of the two
subrectangles. In this case we can not compute the crossing number for f�z� over
a subrectangle, and so can not determine the zero count for either subrectangle.
Some means of avoiding this trouble must be provided. Before we accept a
bisection of RQ, we do an interval arithmetic computation of f�z� over the line
segment dividing RQ. If the real part interval or the imaginary part interval for
f�z� does not contain the zero point, the bisection is accepted. Otherwise, we
divide the segment into two subsegments and try the interval computation again
for each subsegment. This is another task queue computation, where we continue
subdividing until the subsegment at the head of the queue has a halfwidth below
a preset bound �, at which point the process is halted. Of course if the task queue
becomes empty before this happens, the bisection is accepted. In the case of bisec
tion failure, a new division line parallel to but somewhat removed from the previ
ous bisection line is chosen, and the segment check is repeated. Because there are
only n�RQ� zeros in RQ, a suitable division line is certain to be found eventually.

16.6	 The general zero problem for elementary
complex functions

The problem we consider here is is finding where n elementary complex functions
of n variables are simultaneously zero. The equations that must be solved are

f1�z1� z2� � � � � zn� = 0

f2�z1� z2� � � � � zn� = 0

���
���	 (16.3)

fn�z1� z2� � � � � zn� = 0

Elsevier US Job Code:IPNM Chapter:Ch16-P373859 19-12-2006 11:49a.m. Page:243 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

16.6 The general zero problem for elementary complex functions 243

The region of interest is defined by restricting each variable zi to a rectangle of
its complex domain, or, equivalently, restricting the real part and the imaginary
part of each variable zi = xi+ iyi to a finite interval, as shown below:

ai ≤ xi ≤ bi and ci ≤ yi ≤ di� i= 1�2� � � � � n (16.4)

It is convenient to use vector notation once more, with z denoting a vector with
components z1� z2� � � � � zn, and f�z� denoting the function with the components
shown in (16.3). The function f is counted elementary if all its components are
elementary. For lack of any better term, we still call the domain (16.4) a box.
The appropriate generalization of Problem 16.1 is

Solvable Problem 16.2 For any elementary analytic function f�z�
defined on a box B, and any positive integer k, find a point z0 on the boundary
of B where every component of f�z0� is less in magnitude than 10−k and halt.
Or if f�z� � 0 on the boundary of B, bound all the zeros of f in B by=

(1) giving, to k decimal places, points identified as simple zeros, or
(2) giving, to	 k decimal places, points identified as zeros of apparent multi

plicity m, with the integer m≥ 2.

A “zero of apparent multiplicity m” is a zero such that m is the crossing number
over a small domain enclosing the zero.

A procedure for solving this problem is obtained by generalizing the procedure
described for solving the previous problem, where there was just one function
f�z�. In that procedure, crossing number computations using the two component
functions u�x� y� and v�x� y� are the means of isolating the zeros. We only
need to show that the crossing number computed for f�z�, considered as 2n
component elementary real functions of 2n real variables bounded in intervals,
cannot be negative. With the help if the next theorem, this result follows by
similar reasoning as was given in Section 16.5.

Theorem 16.1 For an analytic function f�z�, the real Jacobian
��u1� v1� � � � � un� vn�/��x1� y1� � � � � xn� yn� equals the square of the absolute value
of the complex Jacobian ��f1� � � � � fn�/��z1� � � � � zn�.

After the Cauchy-Riemann equations are used to replace all partial derivatives
with respect to the variables yk, the real Jacobian

Elsevier US Job Code:IPNM Chapter:Ch16-P373859 19-12-2006 11:49a.m. Page:244 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

� � � � � �

� � � � � � � �

� � � � � �

� � � � � � � �

� � � � � �

[]

[]

[] []

244 16 Numerical Methods with Complex Functions

⎡	 ⎤�u1 �u1 �u1 �u1

⎢ �x1 �y1 �xn �yn ⎥⎢	 ⎥
⎢ �v1 �v1 �v1 �v1 ⎥⎢

�x1 �y1

� � � � � �
�x �y

⎥
⎢	 ⎥
⎢	 n n ⎥
⎢	 ⎥det ⎢ �� �� �� �� �� ��� �

� �� ��� �� ⎥
⎢	 ⎥
⎢ �u �u �u �u ⎥
⎢

�x1

n

�y1

n � � � � � �
�xn

n

�yn

n ⎥
⎢	 ⎥
⎢ ⎥
⎣ �v �v �v �v ⎦

n n n n

�x1 �y1 �xn �yn

takes the form
⎡	 ⎤�u1 �v1 �u1 �v1− � � � � � � −
⎢ �x1 �x1 �xn �xn ⎥⎢	 ⎥
⎢ �v1 �u1 �v1 �u1 ⎥⎢ � � � � � � ⎥
⎢	 ⎥
⎢ �x1 �x1 �xn �xn ⎥
⎢ � � � � � � � � ⎥det ⎢ � � � � � ��� � �

��� � ⎥ (16.5)
⎢	 ⎥
⎢ �u �v �u �v ⎥

n n n n ⎢ − � � � � � � − ⎥
⎢	 ⎥�x1 �x1 �xn �xn⎢ ⎥
⎣ �v �u �v �u ⎦

n n n n

�x1 �x1 �xn �xn

The Jacobian matrix of line (16.5) is composed of submatrices having the general
a −b

form . Consider the complex matrix
b a

1 1
A= −i i

with inverse

A−1	 1

[]
1 i = 2 1 −i

For any real constants a and b we have

A−1

[
a −b

]

A= 1

[
1 i

][
a −b

][
1 1

]

b a 2 1 −i b a −i i

1

[
a+ ib −b+ ia

][
1 1

]

= 2 a− ib −b− ia −i i

a+ ib 0 a+ ib 0 =	 =0 a− ib 0 a+ ib

Elsevier US Job Code:IPNM Chapter:Ch16-P373859 19-12-2006 11:49a.m. Page:245 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

� � � � � � � �

� � � � � � � �

245 Software Exercises N

Here we are using the notation that a bar over a complex number indicates the
complex conjugate of the number. If we premultiply the matrix of line (16.5)
with a 2n-square matrix composed of n submatrices A−1 in diagonal position, and
postmultiply with a 2n-square matrix composed of n submatrices A in diagonal
position, the determinant of the result equals the initial determinant value, but
now has the form

⎡ ⎤
�f1 �f10 � � � � � � 0 ⎢ �z1 �z ⎥

⎢ n ⎥
⎢ �f1 �f1 ⎥⎢ 0 � � � � � � 0 ⎥
⎢ ⎥
⎢ �z1 �zn ⎥
⎢ �� �� �� �� ���

�� �� ���
���

�� ⎥det ⎢ � � � � � � � ⎥ (16.6)
⎢ ⎥
⎢ �f �fn ⎥
⎢ n 0 � � � � � � 0 ⎥
⎢ �z1 �z ⎥
⎢ n ⎥
⎣ �f ⎦�f

0 n � � � � � � 0 n

�z1 �zn

By performing n− 1 column exchanges on this determinant to move the even
numbered columns to the right side, followed by the same number of row
exchanges to move the even numbered rows to the bottom, we can make the
determinant take the form

⎡ ⎤
�f1 �f1� � � 0 � � � 0 ⎢ �z1 �z ⎥

n ⎢ ⎥
⎢ � � � � � � � � ⎥
⎢ � � � � � ��� � ��� � � ⎥
⎢ ⎥
⎢ �f �f ⎥
⎢ n � � � n 0 � � � 0 ⎥
⎢ �z1 �zn ⎥

det ⎢ ⎥
⎢ �f1 �f1 ⎥⎢ 0 � � � 0 � � � ⎥
⎢ ⎥
⎢ �z1 �zn ⎥
⎢ � � � � � � � � ⎥
⎢ � � � � � ��� � ��� � � ⎥
⎢ ⎥
⎣ �f �f ⎦

0 � � � 0 n � � � n

�z1 �zn

Thus the real Jacobian equals the product of the complex Jacobian times its own
conjugate, or the square of the absolute value of the complex Jacobian, and so
the real Jacobian is never negative.

Software Exercises N

These exercises are with the demo programs c_ calc, c_fun, c_ deriv,
c_ integ, c_roots and c_ zeros. All these programs, with the exception
of c_calc, create both a log file and a print file.

Elsevier US Job Code:IPNM Chapter:Ch16-P373859 19-12-2006 11:49a.m. Page:246 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

246 16 Numerical Methods with Complex Functions

1. Call up c_calc and evaluate to 10 decimal places log�c�, with c taken at
various points in the complex plane. Note that an error is indicated whenever c
lies on the negative real axis.

2. Call up c_fun and evaluate ez , starting at z = 0 and using a z increment
of �i. Choose 10 increments, 5 fixed-point decimal places for the z display, and
10 fixed-point decimal places for the f�z� display. To see the change in display
with floating-point decimal places, edit the log file to change the sign of both
decimal specifications, and then call up c_fun c_fun.

3. Call up c_deriv and find to 5 fixed-point decimal places the partial
derivatives of sin�z+w� of order 2 or less at the �z�w� point �0�0�. You can edit
the log file to choose another �z�w� point, and then call c_deriv c_deriv
to obtain the new display.

4. Call up c_integ and find to 10 decimal places the integral of ez along a
straight line from a= 0 to b = 2�i. The function ez has a period of 2�i, and the
integral obtained is 0.

5. Call up c_integ and find to 10 decimal places the integral of 1/z along a
circle of radius 2 centered at the point i. This integral equals 2�i.

6. Call up c_roots, and as a test, find to 10 fixed-point decimal places the
roots of

�z− i��z−2i��z−3i��z−4i� = z 4 −10iz3 −35z 2 +50iz+24

7. Call up c_zeros and find to 10 decimal places the zeros of �sin z�2 in
the search rectangle with opposite vertices −4 − i and 3 +2i. The zeros are not
located by Newton’s method but by the slow method of repeated bisection of an
enclosing rectangle. If you edit the log file to change the function to sin z, the
same zeros, now simple, are found quickly by Newton’s method.

8. Call up c_zeros and find to 10 decimal places the zeros of

f1�z1� z2� = z 21 − z2

f2�z1� z2� = z2
2 − z1

Use the search rectangle with the opposite endpoints −10 − 10i and 10 + 10i
for both z1 and z2. This problem is similar to the one given in Exercise 3 at
the end of Chapter 12, except that in Exercise 3, there the variables range over
real intervals instead of over complex rectangles as they do here. Note the four
solutions here instead of the two obtained in Chapter 12.

Elsevier US Job Code:IPNM Chapter:Ch16-P373859 19-12-2006 11:49a.m. Page:247 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

247 Notes and References

Notes and References

A. The demo program c_zeros computes the crossing number to determine
the number of zeros in a complex plane search rectangle. The papers by
Collins and Krandick [1] and by Schaefer [2] discuss using the argument
principle for this purpose.

[1] Collins, G. E. and Krandick, W.,	 An efficient algorithm for infallible polynomial
complex root isolation, Proceedings of ISSAC, 1992.

[2] Schaefer, M. J., Precise zero of analytic functions using interval arithmetic, Interval
Comput. 4 (1993), 22–39.

Elsevier US Job Code:IPNM Chapter:Ch16-P373859 19-12-2006 11:49a.m. Page:248 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

The Precise Numerical Methods Program PNM

The program PNM is for any PC using the Microsoft Windows XP operating
system. PNM gives you access to a variety of demo programs that solve numer
ical problems precisely, and PNM also supplies the source code for these demo
programs. The amount of hard disk space needed is small, just 10 megabytes.

Loading PNM and the demo programs onto your hard disk

First load the CD into the CD reader of your PC. Next click on the Start taskbar
and then on Control Panel. Finally click on Add/Remove Programs, and you
will be guided through the installation process.

After the installation process is complete, the program PNM should be dis
played as an accessible program when you click on Programs. Click on PNM
and a form is displayed with the caption “Precise Numerical Methods”. Click
on the Load menu, and then click on the command

Load exe and source files from CD

You will obtain a “Loading is Complete” message when all demo programs are
loaded along with their source code. Chapter 1 has further details on how to run
a demo program.

How to remove PNM and the demo programs from your hard disk

Should you ever wish to remove PNM and the demo programs from your PC’s
hard disk, reverse the loading process just described. With the PNM form in
view, remove the demo programs by clicking on the Load menu, and then
clicking on the command

Delete all PNM files

After you obtain the “Deletion is Complete” message, and click on it, the PNM
form disappears. Next click on the Start taskbar and then on Control Panel.
Finally click on Add/Remove Programs, which will allow you to remove the
PNM program.

How to obtain the Windows command subsystem

First click on Run, and then type cmd and hit the Enter key.

248

Elsevier US Job Code:IPNM Chapter:Index-P373859 20-12-2006 3:23p.m. Page:249 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

Absolute value, 11
Add Row Multiple, 101, 102–104

Bairstow method, 86–90
Basic variables, 143
Boundary conditions, 193–4

linear, 193–4, 213–14

partial differential equations,

231–2

periodic, 194

separated, 194

Bounding radius R, 85–6

Calling up program, 2–3
Companion matrices, 118–22
Complex functions, elementary

see Elementary complex functions
Complex numbers, 97
Computable number, 27
Convergence, 75–7
Correct to the last decimal place, 5
Crossing number, 162, 166–70

computation, 171–5
properties, 170–1

Crossing parity, 162, 165–6

Danilevsky method, 122–7
error bounds, 127–34

Decimal place problems, 29–32
Decimal width, 15

Index

Degree 1 interval, 201–204
Derivatives, 41

demo program, 54
elementary functions, 41–8
general method of generating power

series, 52–3
power series for elementary functions of

several variables, 49–52
series evaluation, 48–9

Determinant, 97, 102–104

Diagonal elements, 187–8

Discontinuous functions, 33–4

Eigenvalue/eigenvector, 109, 113–18
companion/Vandermonde matrices,

118–22
Danilevsky method, 122–7
demo programs eigen, c_eigen, r_eigen,

135–6
error bounds for Danilevsky method,

127–34
finding solution to Ax = 0 when det

A = 0, 110–13
nonsolvable problems, 112–13, 116–17
rational matrices, 134
solvable problems, 113, 114–15,

118, 134
theorems, 112, 115–16, 127–34

Elementary complex functions, 235
computing line integrals in complex

plane, 237–8

249

Elsevier US Job Code:IPNM Chapter:Index-P373859 20-12-2006 3:23p.m. Page:250 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

250 Index

Elementary complex functions (Continued)
computing roots of complex

polynomial, 238–9

definition, 235–7

demo program c_deriv, 237

finding zero of f (z), 239–42

general zero problem, 242–5

Elementary function, 37–9, 41–8
finding maximum/minimum, 181–3
finding solvable problem, 160–2, 178,

182–3
Elementary region, 177
Exchange Row, 101–104
Exponent part, 6
Extreme values, 181–3

Feasible point, 142–3
Floating point, 6–7, 9–10

scientific, 6, 10
variable precision, 10–11

f(x):
extending solution method to general

problem, 163–5

interval arithmetic, 72–3

Newton’s method, 73–5

obtaining solvable problem, 69–72

order of convergence, 75–7

General problem, 163–5
Newton’s method, 175–6

General zero problem, 242–5
Global error carryover, 200

improved, 205–208

Halfwidth, 16
Hessian matrix, 185–7

Initial value problem, 193
difficulties, 196–7
solving by power series, 198–201

Integrals, 57–68
definite, 57–9
higher dimensional, 64–5
impint program, 66–7
improper, 66–7
integ program, 61–3
mulint program, 64–5

Interval, 11–13
formal, 59–61
f (x) zero, 72–3
notation, 15–17

Jacobian interval, 160, 161, 162, 165, 186,
243–5

Line integrals, computing in complex plane,
237–8

Linear boundary-value problem, 193–4,
213–14

Linear differential equations, 197–8
Linear equations, 97, 137–40

computation problems, 98–100

computing determinants, 102–104

equat, r_quat, c_equat programs,

105–106

finding inverse of square

matrix, 104–105

i_equat program, 156

method for solving, 100–102

notation, 97–8

solvable problem, 139–40

Linear interval equations, 152–5
Linear programming, 137

introduction to, 141–5
linpro program, 155
n linear interval equations in n unknown,

148–52

notation, 141–2

objective function, 141

simplex method, 142–7

solving linear equations, 152–5

Linearly independent, 109
Log files, 3–5

Mantissa, 6
Mean Value Theorem, 160–1
Midpoint, 16
Moore, Ramon, 11
Multiple, 69

n linear interval equations in n unknown:
solvable problem, 148–9
theorem, 149–52

Newton’s method, 73–5, 175–6
Nonbasic variables, 143
Nonsolvable problem, 26, 32–3,

70–1, 80

decimal place, 29–32

eigenvalue/eigenvector, 116–17

linear equations, 98

partial differential equations, 219–20

repercussions, 27–8

Elsevier US Job Code:IPNM Chapter:Index-P373859 20-12-2006 3:23p.m. Page:251 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

Index 251

Notation, 15–17
linear equations, 97–8

Null point, 143–4

Open-source software, 1–2
Optimization problems:

demo program extrema, 188
finding extreme values, 181–3
finding where function’s gradient is

zero, 184–8
Ordinary differential equation of

order n, 191–3
Ordinary differential equation of the first

order, 191–3
Ordinary differential equations

(ODEs), 217
difficulties with initial value

problem, 196–7

initial value problems, 219–20

power series method, 220–3

two standard problems, 193–6

Partial differential equations (PDEs):
defect of first method, 228–9
first solution method, 223–7
higher dimensional spaces, 230–1
initial value problems, 219–20
revised method with comparison

computation, 229–30

satisfying boundary

conditions, 231–2
simple problem as example, 227–8
terminology, 217–19

Polynomials, 79–84
Bairstow method, 86–90
bound for the roots of, 85–6
bounding error of rational root

approximations, 90–2
computing roots of complex

polynomial, 238–9
finding accurate roots for rational or

real, 92–5
roots program, 95

Power series:
definite integrals, 198
elementary functions of several

variables, 49–52
general method of generating, 52–3
initial value problem, 198–201
ordinary differential

equations, 220–3

two-point boundary-value
problem, 210–13

Print file, 3–4

Queue domain, 171–5

Range, 13–14
computing standard functions,

17–18
practical, 15

Rational arithmetic, 137–40
Rational linear equations, 140–1
Rational numbers, 97
Rational operations, 18–20
Rational root approximation, 90–2
Ray test, 171–3
Real elementary functions, 159
Real numbers, 97
Real-valued functions, 37–40
Region of interest, 159
Remainder formula, 63–4
Root, 69
Roots of complex polynomial, 238–9

Saddle point, 187–8
Series evaluation, 48–9
Simple zero, 69
Simple zero gradient point, 185,

187–8
Simplex method, 142–5

making process foolproof, 145–7
Software exercises:

c_calc, 245–6
c_deriv, 245–6
c_fun, 245–6
c_integ, 245–6
c_roots, 245–6
c_zeros, 245–6
calc program, 20–3
demo program, 95–6
deriv program, 54
difsys, difbnd programs, 214–16
eigen, c_eigen, r_eigen programs, 134
equat, r_quat, c_equat programs, 106
fun program, 39–40
integ, mulint, impint programs, 67–8
linpro, I_equat programs, 156–7
maxmin, extrema programs, 188–9
pde program, 232–3
zeros program, 77–8, 178–80

Elsevier US Job Code:IPNM Chapter:Index-P373859 20-12-2006 3:23p.m. Page:252 Trimsize:152mm×228mm

Fonts: Times & Futura Margins:Top:48pt Gutter:54pt Font Size:10/11.5pt Text Width:27pc Depth:44 Lines

252 Index

Solvable problem, 26–7, 28–9
decimal place, 29, 30–2
eigenvalue/eigenvector, 113, 114–15, 118
elementary complex function, 240–2, 243
function’s extreme values, 182–3, 185–8
handled by calc, 32
linear equations, 98–100
linear programming, 139–40, 148–9
linear two-point boundary-value, 214
obtaining, 69–72
ordinary differential equations, 197, 198
partial differential equations, 220
polynomials, 79–84
several functions are zero, 162, 178
two-point boundary-value, 209–10,

211–13
Square matrix, 97, 104–105
Standard functions, 17–18

Tilde-box, 162
Tilde notation, 5–7

Topological degree, 166–70
Turing, Alan, 27
Two-point boundary-value

problem, 193

power series, 210–13

solvable, 208–10

Upper triangular matrix, 97

Vandermonde matrices, 118–22

Zero, 25–6
elementary complex function f (z),

239–42
f (x), 69–77
finding several functions, 159–78
function gradient, 184–8
searching for more general

region, 176–8

