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Preface

This is the joint proceedings of the two conferences:

1. Infinite Analysis 11—Frontier of Integrability—
University of Tokyo, Japan in July 25th to 29th, 2011,
2. Symmetries, Integrable Systems and Representations
Université Claude Bernard Lyon 1, France in December 13th to 16th, 2011.

As both of the conferences had been organized in the occasion of 60th anniver-
sary of Prof. Michio Jimbo, the topics covered in this proceedings are very large.
Indeed, it includes combinatorics, differential equations, integrable systems, proba-
bility, representation theory, solvable lattice models, special functions etc. We hope
this volume might be interesting and useful both for young researchers and experi-
enced specialists in these domains.

We shall mention about the financial supports we had; the conference at Tokyo
was supported in part by Global COE programme “The research and training center
for new development in mathematics” (Graduate School of Mathematical Science,
University of Tokyo), and the conference at Lyon was supported by Institut Uni-
versitaire de France, GDR 3395 ‘Théorie de Lie algébrique et géométrique’, GDRE
571 ‘Representation theory’, Université Lyon 1 and Université Paris 6.
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A Presentation of the Deformed Wy, Algebra

N. Arbesfeld and O. Schiffmann

Abstract We provide a generators and relation description of the deformed W yoo-
algebra introduced in previous joint work of E. Vasserot and the second author. This
gives a presentation of the (spherical) cohomological Hall algebra of the one-loop
quiver, or alternatively of the spherical degenerate double affine Hecke algebra of
GL(00).

1 Introduction

In the course of their work on the cohomology of the moduli space of U(r)-
instantons on P? in relation to W-algebras and the AGT conjecture (see [6])
E. Vasserot and the second author introduced a certain one-parameter deformation
SHE of the enveloping algebra of the Lie algebra Wi, of algebraic differential
operators on C*. The algebra SH*—which is defined in terms of Cherednik’s dou-
ble affine Hecke algebras—acts on the above mentioned cohomology spaces (with a
central character depending on the rank # of the instanton space). For the same value
of the central character, SH® is also strongly related to the affine W algebra of type
gl,, and has the same representation theory (of admissible modules) as the latter.
The same algebra SH® arises again as the (spherical) cohomological Hall algebra
of the quiver with one vertex and one loop, and as a degeneration of the (spherical)
elliptic Hall algebra (see [6, Sects. 4, 8]. It also independently appears in the work
of Maulik and Okounkov on the AGT conjecture, see [5].

The definition of SH given in [6] is in terms of a stable limit of spherical degen-
erate double affine Hecke algebras, and does not yield a presentation by generators
and relations. In this note, we provide such a presentation, which bears some resem-
blance with Drinfeld’s new realization of quantum affine algebras and Yangians.
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2 N. Arbesfeld and O. Schiffmann

Namely, we show that SH® is generated by families of elements in degrees —1,0, 1,
modulo some simple quadratic and cubic relations (see Theorems 1, 2).

The definition of SHE is recalled in Sect. 2. In the short Sect. 3 we briefly recall
the links between SH® and Cherednik algebras, resp. W-algebras. The presentation
of SH¢ is given in Sect. 4, and proved in Sect. 5. Although we have tried to make
this note as self-contained as possible, there are multiple references to statements
in [6] and the reader is advised to consult that paper (especially Sects. 1 and 8) for
details.

2 Definition of SH¢

2.1 Symmetric Functions and Sekiguchi Operators

Let « be a formal parameter, and let us set F = C(x). Let us denote by A the ring
of symmetric polynomials in infinitely many variables with coefficients in F, i.e.

Afp = F[X1, X2,...19% = F[p1, pa, .. 1.

For A a partition, we denote by J; the integral form of the Jack polynomial associ-
ated to A and to the parameter @ = 1/k. The integral form J, is characterized by the
following relation:

J) € @ Fmy + |A|!mqn)
AM<p<r

where m,, denotes the monomial symmetric function associated to a partition f.

It is well-known that {J,} forms a basis of Ar (see e.g. [7], or [6, Sects. 1.3,
1.6]). The polynomials J, arise as the joint spectrum of a family of commuting
differential operators {Dg_},/ > 1 called Sekiguchi operators. We will not need the
expression of Dy as a differential operator, but only their eigenvalues on the basis
of Jack polynomials (which, of course, fully characterizes them):

Do)=Y e (1)

SEA

where s runs through the set of boxes in the partition A, and where c(s) = x(s) —
ky(s) is the content of s. Here x(s), y(s) denote the x and y-coordinates of the box
s, when X is drawn according to the continental convention. For example, for the
box s in the partition (5, 42,2, 1) depicted below
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we have x(s) =3 and y(s) = 1 hence c(s) =3 — k.
We denote by D; o € End(AF) the operator of multiplication by the power-sum
function p;.

2.2 The Algebras SHY and SH>

Let SH' be the unital subalgebra of End(A ) generated by {Dy;, D;o |l > 1}. For
[ >1 we set D1; =[Do,+1, D1,0]. This relation is still valid when [ = 0, and we
furthermore have

(Do, Digl=Digqi-1, 121,k=0. ()

We denote by SH™ the unital subalgebra of SH generated by {Dy; | [ > 0},
and by SHY the unital subalgebra of SHY generated by the Sekiguchi operators
{Do, |l > 1}.Itis known (and easy to check from (1)) that the Dy ; are algebraically
independent, i.e. SH? = F[Do.1, Doz, .. .].

Observe that by (2), the operators ad(Dg ;) preserve the subalgebra SH”. This
allows us to view SH™ as a semi-direct product of SH® and SH™ . In fact, the mul-
tiplication map induces an isomorphism

SH> ® SH ~ SHt (3)

(see [6, Proposition 1.18]).

2.3 Grading and Filtration

The algebra SH' carries an N-grading, defined by setting Do ;, D1 x in degrees zero
and one respectively. This grading, which corresponds to the degrees as operators
on polynomials will be called the rank grading. It also carries an N-filtration com-
patible with the rank grading, induced from the filtration by the order of differential
operators. It may alternatively be characterized as follows, see [6, Proposition 1.2]:
SH™[< d] is the space of elements u € SH™ satisfying

ad(zy) o---ocad(zay1)(u) =0

for all z,...,z441 € F[D1.0, D20, ...]. We have SH”[< 0] = F[D; o, D20, - -].
The following is proved in [6, Lemma 1.21]. Set D, s = [Do.4+1, Dro] for
r>1,d>0.

Proposition 1 (i) The associated graded algebra gr SH is equal to the free com-
mutative polynomial algebra in the generators D, g4 € gr SH' [r,d], for r > 0,d >
0, (r,d) # (0, 0).

(i) The associated graded algebra gr SH™ is equal to the free commutative poly-
nomial algebra in the generators Dy 4 € gr SH[r, dl,forr>1,d >0.
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We will need the following slight variant of the above result, which can easily be
deduced from [6, Proposition 1.38]. For r > 1, set D;’d = ad(Do,z)d(Dr,o). Then

D, er’™'D,s®SH”[r,<d - 1]. (4)

In particular, gr SH™ is also freely generated by the elements D, , € gr SH™[r, d].

2.4 The Algebra SH¢

Let SH= be the opposite algebra of SH”. We denote the generator of SH” cor-
responding to Dy ; by D_1;. The algebra SHE is generated by SH>, SH’, SH<
together with a family of central elements ¢ = (cg, c1, ...) indexed by N, modulo a
certain set of relations involving the commutators [D_1 x, D1 ;] (see [6, Sect. 1. 8]).
In order to write down these relations, we need a few notations. Set § = 1 — « and

Go(s) = —log(s), Gi(s)=(s""=1)/1, 1>1,

a)= Y s(Gi(l—gs5)=Gi(1+gs), [>1,
g=1,—§,—«

di1(s) =5'Gi(1 +&9).

We may now define SH® as the algebra generated by SH”,SH<,SH and
Flco, c1, - ..] modulo the following relations:

[Do,i, D1kl = D1kti-1, [D_1k, Dojl=D_1 ki1, )

[D-1k, Digl = Exy1, 1, k=0, (6)
where the elements Ej, are determined through the formulas

1+&Y Es't= exp(Z(—1)’“cz¢z(s))exp<2 D0,1+1§0I(S)>- (7)

=0 =20 =0

Set SH¢ = SH° ® F[cy, c1, . ..]. One can show that the multiplication map pro-
vides an isomorphism of F-vector spaces

SH” @ SH*¢ @ SH< ~ SHE.

Putting the generators D+ x in degree =1 and the generators Dy /, ¢; in degree zero
induces an Z-grading on SH®. One can show that the order filtration on SH>, SH™
can be extended to a filtration on the whole SHE, but we won’t need this last fact.
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3 Link to W-Algebras, Cherednik Algebras and Shuffle Algebras

3.1 Relation the Cherednik Algebras

Let w be a new formal parameter and let SH* be the specialization of SH at
co0=0,c¢; = —k'w'. Let H,, be Cherednik’s degenerate (or trigonometric) double
affine Hecke algebra with parameter « (see [2]). Let SH,, C H,, be its spherical sub-
algebra. The following result shows that SH” may be thought of as the stable limit
of SH,, as n goes to infinity (see [6, Sect. 1.7]):

Theorem For any n there exists a surjective algebra homomorphism &, : SH® —
SH,, such that @, (w) = n. Moreover (), Ker @, = {0}.

3.2 Realization as a Shuffle Algebra

Consider the rational function

h(z)
gx) = ~ h(z) =(@+1-k)(z—D(z+«).

Following [3], we may associate to g(z) an N-graded associative F-algebra Ag(,),
the symmetric shuffle algebra of g(z) as follows. As a vector space,

Ag) = EB Agonl,  Aglnl=Flz1,.... 21"

n>0

with multiplication given by
P(z1,...,z,)*x Q(21,...,2s)

= > a~( I1 g(zl-—z,~)-P(zl,...,z»Q(er,...,zm))

o€Shys 1<i<r
r+1<j<r+s

where Sh, s C G, 4 is the set of (r, s) shuffles inside the symmetric group &, . Let
Se(z) C Ag(z) denote the subalgebra generated by Ag(;)[1] = F[z1]. The restriction
of the grading on A, yields a grading Sy(;) = €D, >0 Se(z)[1]. The following is
proved in [6, Cor. 6.4]:

Theorem The assignment Sg(;)[1] > zll = D1, 1 > 0 induces an isomorphism of
F-algebras

Se(z) —> SH”.
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Remark The normalization used here differs slightly from [6]. Namely, the isomor-
phism in [6, Cor. 6.4] is between SH” and the shuffle algebra associated to the
rational function %(z +x 4+ y)(z —x)(z — y), where x and y are formal parame-
ters satisfying k = —y/x. In the present note, we have applied the transformation
z +— z/x, yielding the above isomorphism.

3.3 Relation to W-Algebras

Let W14« be the universal central extension of the Lie algebra of all differential
operators on C* (see e.g. [4]). This is a Z-graded and N-filtered Lie algebra. The
following result shows that SH may be thought of as a deformation of the universal
enveloping algebra U (Wi4o0) of Wi (see [6, Appendix F]):

Theorem The specialization of SH® at k = 1 and ¢; =0 for i > 1 is isomorphic to
UWitoo).

More interesting is the fact that, for certain good choices of the parameters
0,1, ..., a suitable completion of SHE is isomorphic to the current algebra of
the (affine) W-algebra W (gl,) (see e.g. [1, Sect. 3.11]). We will not need this result,
so we are a bit vague here and refer to [6, Sect. 8] for the full details. Fix an inte-
gerr > 1,k e Candlet (1, ..., &) be new formal parameters. Let (W (gl,))’ be
the formal current algebra of W (gl,.) at level k, defined over the field F(eq, ..., &)
(see [6, Sect. 8.4] for details). Let SH® be the specialization of SH® to x =k + r,
ci = s’i + -+ ai for i > 0. The following is proved in [6, Cor. 8.24], to which we
refer for details.

Theorem There is an embedding SH") — (W (gl,)) with a dense image, which
induces an equivalence between the category of admissible SH" -modules and the
category of admissible S\(Wy (gl,.)) -modules.

4 Presentation of SH and SH®

4.1 Generators and Relations for SH*

Consider the F-algebra S: . generated by elements {DO,I |1>1}and {[)l,k | k >0}
subject to the following set of relations:

[Dos, Dox1=0, VI, k>1, 8)

[Dos, D1kl =Dy jpk—1, VI=>1,k>0, &)
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(3[D1,2, D1,1]— [D1,3, D101+ [D1,1, D1,0]) + K ( — 1)(530 +[Dy,1, D1,0]) =0,
(10)

[D1,0.[D1,0, D1,11] = 0. (11)

Let ﬁlo =F [50,1, 130,2, ...] denote the subalgebra of §ﬁ+ generated by DOJ,
[ >1, and let SH™ be the subalgebra generated by 51, k> k = 0. The algebras SH+,

ﬁio, SH™ are all N-graded, where DO,I and Dl,k are placed in degrees zero and
one respectively. According to the terminology used for SH™, we call this grading
the rank grading.

Theorem 1 The assignment 50,1 — Do, ﬁl,k = Dy forl > 1,k >0 induces an
isomorphism of graded F-algebras

¢:SH™ > SH™.
Obviously, the e map ¢ restricts to isomorphisms SH’ ~ SH°, SH™ ~ SH>. Note

however that SH™ is not generated by the elements D 1.k with the sole relations (10),
(11). Theorem 1 is proved in Sect. 5.

4.2 Generators and Relations for SH®

For the reader’s convenience, we nge down the presentation of SHE, an immec}iate
corollary of Theorem 1 above. Let SH° be the algebra generated by elements { Dy |
[ 21}, {D+1x | k >0} and {¢; | i > 0} subject to the following set of relations:

[Do;, Dox1=0, VI, k>1, (12)

[Do, D1 k1= Dy jsk—1, [D_1k, Dosl=D_114k—1, VI=1,k>0, (13)

(3(D12, D1,11— D13, D1,o1+[D1,1, D1 o)+« (k — 1)(5%,0-!—[131,1, Dil) =0,

(14)

(3[D—-1,2. D111 —[D-1 3, D_i0l+[D_1,1, D_y )
+ickc = 1)(=D7 g+ [D-1,1, D-10]) =0, (15)
[[)1,0, [Dl,o,ﬁl,ll] =0, [[)—1,0, [D_1, [)—1,1]] =0, (16)
[D_i 4. Dij]= Exg. 1k>0, (17)

where the El are defined by the formula (7).
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Theorem 2 The assignment Do,l — Dy, Dil,k = Dy for 1l > 1,k >0 and
¢; — ¢; fori >0 induces an isomorphism of F-algebras

#:SH® — SHE.

Coupled with the Theorems in Sect. 3.3, this provides a potential’ generators and
relations’ approach to the study of the category of admissible modules over the W-
algebras Wi (gl,.).

5 Proof of Theorem 1

5.1 First Reductions

Let us first observe that ¢ is a well-defined algebra map, i.e. that relations (8)—(11)
hold in SH. For (8), (9) this follows from the definition of SHT and [6, (1.38)].
Equation (10) may be checked directly, e.g. from the Pieri rules (see [6, (1.26)]), or
from the shuffle realization of SH™ (see Sect. 5.2 below). As for Eq. (11), we have
by [6, (1.35)], [[D1,1, D1,0], D1,0] = [D2,0, D1,0] = 0. The map ¢ is surjective by
construction; in the rest of the proof, we show that it is injective as well.

Using relation (9) it is easy to see that any monomial in the generators 50,1, l~)1, k
may be expressed as a linear combination of similar monomials, in which all l~)0,l

appear on the right of all Dl,k. Hence the multiplication map SH ® S’\IjlO —~SH"

is surjective. Since ¢ clearly restricts to an isomorphism SH” ~ SH we only have
to show, by (3), that ¢ restricts to an isomorphism SH™ ~ SH™. Our strategy will
be to construct a suitable filtration on SH™ mimicking the order filtration of SH>
and to pass to the associated graded algebras.

5.2 Verification in Ranks One and Two

We begin by proving directly, using the shuffle realization of SH”, that ¢ is an
isomorphism in ranks one and two. This is obvious in rank one since ¢ is a graded
map and the only relation in rank one is (9).

Suppose > ;i Dj ;D1 =0 is a relation in rank two. The shuffle realization
then implies " ;2 * % =0 so that

h(z1 —z2) (Zaizlf’zlz’) =h(zp — m)(Zaizl{zg").

Therefore Z(xizlf"zlz" = h(za — z1) P(z1, z2) where P(z1,z2) is some symmetric

L g ki I - . . . .
polynomial in z1, z2. Hence ) a;z|'z, is a linear combination of polynomials of
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the form h(zy — Zl)(le2 + zlzzk) so that Y «; Dy x, D1, is a linear combination of
expressions of the form

3[D1,1+2, D1 g+1]1 —3[D1i+1, D1 k421
— [D1,143, D1kl + [D1,4, D1k+3]1 + [D1,141, D1,k] — [D1,1, D1,x+1]
+k(c = 1)(D1,x D1,y + D1y D1k + [Dr+1, D1 k] — [Dig. Digs11). (18)
If 1 denotes the image of (10) under the action of F[ad Do,z, ad 50,3, ...] then using
(9) we see that each such expression lies in ¢ (/) so that ¢ is indeed an isomorphism
in rank two.

We remark that the relations (18) may be written in a more standard way using
the generating functions D(z) = Z, Dl,lz’l as follows:

k(z—w)D()D(w) =—k(w —2)D(w)D(z) (19)

where k(u) = (v — 1 + k)(u + 1)(u — ) = —h(—u). In particular, the defining
relation (10) may be replaced by the above (19), of which it is a special case.

5.3 The Order Filtration on §ﬁ>

We now turn to the definition of the analog, on §fl>, of the order filtration on SH”.
We will proceed by induction on the rank r. Forr =1,d > 0, we set

= @Fbl,k.

k<d

Assuming that SH™ [r/, < d'] has been defined for all ¥’ < r we let SH™ [r, < d] be
the subspace spanned by all products

§{>[r’,<d’]o§fl>[r/’,<d’/], r’—i—r”:r, d+d' =d
and by the spaces
ad(Dy)(SH [r —1,<d —1+1]), [=0,...,d+1.

From the above definition, it is clear tﬂl}gt §fl> is a Z-filtered algebra. Note that
it is not obvious at the moment that SH™ [r, < = {0} for d < 0. Because the
associated graded grSH” is commutative, it follows by induction on the r rank r
that ¢ : SH — SH> is a morphism of filtered algebras We denote by gr SH™ the
associated graded of SH™ and we let ¢:gr SH™ — grSH be the induced map. The
map ¢ is graded with respect to both rank and order. Moreover ¢ is an isomorphism
in ranks 1 and 2 (indeed, that the filtration as defined above coincides with the order
filtration in rank 2 can be seen directly from [6, (1.84)]). The rest of the proof of
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Theorem 1 consists in checking that ¢ is an isomorphism. Once more, we will argue
by induction. So in the remainder of the proof, we fix an integer r > 3 and assume
that ¢ is an isomorphism in ranks r' < r.

5.4 Commutativity of the Associated Graded

By our assumption above, the algebra gr SH™ is commutative in ranks less than
r, that is ab = ba whenever rank(a) + rank(b) < r. Our first task is to extend this
property to the rank r.

Lemma 1 The algebra gr SH™ is commutative in rank r.

Proof We have to show that for a € SH [r, < dy],b € SH [ry, < d>] and r| +
rp =r we have

[a,b)eSH [r,<d| +d> — 1]. (20)

We argue by induction on ry. If r{ = 1 then (20) holds by definition of the filtration.
Now let 71 > 1 and let us further assume that (20) is valid for all r{, r} with r{ +r} =
r and r{ < ri. We will now prove (20) for r{, r5, thereby completing the induction
step. According to the definition of the filtration, there are two cases to consider:

Case 1 We have a = ajay with a; € SH [s/, < d'],a» € SH [s”, < d"] such
thats'+s" =r;,d' +d" = d1 Then [a, b] = ai[az, b] + [a1, blaz. By our 1nduct10n
hypothesis on r, [a2, b] € SH™ [s" +72,<d’"+d>,— 1] hence ai[az, b] € SH™ [r, <
dy + dy — 1]. The term [ay, bla; is dealt w1t’li in a similar fashion.

Case 2 We have a = [Dy 1, a'] witha’ € SH [r; — 1, <dj —[+1]. Then [a, b] =
[[DU a] b] [DU [, b]] — [a, [DU b]]. By our induction hypothes1s on r,
[a, b]GSH [r1+r2—1 d1+d2—l]hence[D11 [a, b]]GSH [r,<di+dr—
1]. Slmllarly, [D1 ,ble SH™ [r» +1,<d>+1—1]. The inclusion [a’, [ﬁl,l, bl e
SH™ [r, < dj + dy — 1] now follows from the induction hypothesis on r;.

We are done. O

5.5 The Degree Zero Component

We now focus on the filtered piece of order < 0 of SH™. We inductively define
elements D o for [ > 2 by

- 1 - .
D= m[Dl,l,DZ—l,o]-

From [6, (1.35)] we have q‘)(bl,o) =Dy . Sincg we assume are assuming that ¢ is
an isomorphism in ranks less than r, we have [D; o, Dy o] =0 whenever [ + U'<r.
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Lemma 2 We have [D; o, Dy gl =0forl+1'=r.

Proof If r = 3 this reduces to the cubic relation (11). For r = 4 we have to consider

—

[D3,0. D10l = =[[D1.1, D2,0l, D1,0]

—_ N

~ ~ ~ 1.~ ~ ~
= =[D1,1,[D20. D1,0]] — E[Dz,o, [D1,1, D1,0]]

[\

1~ -
= —E[Dz,o, D3] =0.
Now let us fix [, !’ with [ + 1’ =r. We have
.. | .
(D10, Dr o] = m[[Dl,l, Dy-1,01, Dy o]

1= ~ - 1 - L
— m[D1,11 [Di—1,0, Dy ol] — m[DI_LO, [D1.1, Dy ol]

/

=—7C 1[131—1,0, Dyy10)- (21)

If » = 2k is even then by repeated use of (21) we get
[D1,0, Drr,o] = c[Di, D] =0

for some constant c¢. Next, suppose that r =2k + 1 is odd, with k > 2. Applying
ad(D1.1) to [Di+1,0, Dk—1,0] = 0 yields the relation

(k 4+ 1)[Dy42.0, Dk—1.01 + (k — D[Dg+1.0, Di.o] = 0. (22)

Similarly, applying ad([)z’l) to [[)k,O, l~)k_1,0] = 0 and using the relation [Dy 1,
Dy 0l =klDjyk0 in SH™ (see [6, (1.91), (8.47)]) we obtain the relation

k[Dy+2,0, D—1,01 + (k = D[ Dy 0, Dit1,01=0. (23)
Equations (22)~ and (~23) imply that [l~)k+2,o, Dk—l,o] = [ﬁk+1,0, ﬁkyo] = 0. The gen-
eral case of [Dj 0, Dy o] =0 is now deduced, as in the case r = 2k, from repeated

use of (21). O

Note that Lemma 2 above implies that SH™ [r, < —1]1={0}.

5.6 Completion of the Induction Step

Recall that gr SH™ is a free polynomial algebra in generators in the generators D, ,
for s > 1,d > 0. In order to prove that E is an isomorphism in rank r, it suffices, in
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virtue of Lemma 1, to show that the factor space
Ura= gr§fl> [r,d] / { Z grSAI:I> [r', d’] .grﬁl> [r”, d"]}
r'+r"=r
d'+d"=d
is one dimensional for any d > 0. Let us set, forany s > 1,d >0

D} ;= ad(Do2)"(Dy0) € SH [s, <d|.

We will denote by the same symbol Di 4 the corresponding element of gr SH™ [s,d].
Note that D’ 0= Dy o We claim that in fact U, g = F D' .a- Observe that ¢(D;.d) =
4 forany s, d, hence D .a € Us,a forany s <r,d > 0. Moreover, by our geyneral
1nduct10n hypothesis on r we have U 4 = F D;, forany s <r and d > 0.
We will prove that U, g = F [); 4 by induction on d. For d = 0, this comes from
Lemma 2. So fix d > 0 and let us assume that U, ; = F[);J for all / < d. By defini-

tion of the filtration on SH™, U, 4 is linearly spanned by the classes of the elements
[DLO’ b;—l,d+l]’ [51,1» D;—l,d]’ T [51,d+1: [);—1,0]'
By our induction hypothesis on d, the elements
[51,07 E;—l,d]’ [[)1,1, E;—l,d—l]’ [51,01, E;—I,O]

all belong to FD; i1 P SH™ [r, <d —2]. Applying ad(ﬁo,z), we see that

[5150’ D;—l,d—i-l] + [51,1, D;—l,d]’ e [Dl,d’ E;—1,1] + [Dl»dﬂ’ D;—I,O] 24)

all belong to F D;’ 49 §fl>[r, < d — 1]. Next, applying ad(Do,d+2) to the equality
[D1,0, Dr—1,0] = 0 yields

[D1.0, Dr—1.4+11+ [D1.a+1, Dr—101=0
which implies, by (4), that

[ﬁl,o, D;_],d_i,_]] +r[D1,g+1, Dr—1,0]

e[D1o, SH [r —1,<d]]<SH [r,<d —1]. (25)

The collection of inclusions (24), (25) may be considered as a system of linear equa-
tions in U, 4 modulo FD' rd in the variables [D1 0, Dr 1’d“] [Dl,d+1s Dr—l,O]
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whose associated matrix

0 0 1
1 0O O
M=]0 1
o o1 0
00 -~ 1 —r

is invertible. We deduce that [51,0, E;q dgids oo [Dl,d—&-l’ ﬁ;fl o] all belong to
the space F D;’ 4P SH™ [r, > d — 1] as wanted. This closes the induction step on d.

We have therefore proved that U, 4 = F 5; 4 forall d > 0, and hence that ¢ and ¢ is
an isomorphism in rank r. This closes the induction step on r. Theorem 1 is proved.
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Generating Series of the Poincaré Polynomials
of Quasihomogeneous Hilbert Schemes

A. Buryak and B.L. Feigin

Abstract In this paper we prove that the generating series of the Poincaré polyno-
mials of quasihomogeneous Hilbert schemes of points in the plane has a beautiful
decomposition into an infinite product. We also compute the generating series of
the numbers of quasihomogeneous components in a moduli space of sheaves on
the projective plane. The answer is given in terms of characters of the affine Lie
algebra Qm

1 Introduction

The Hilbert scheme (C?)["! of n points in the plane C? parametrizes ideals I C
Clx, y] of colength n: dimc C[x, y]/I = n. There is an open dense subset of
((Cz)[”], that parametrizes the ideals, associated with configurations of n distinct
points. The Hilbert scheme of n points in the plane is a nonsingular, irreducible,
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quasiprojective algebraic variety of dimension 2n with a rich and much studied ge-
ometry, see [9, 22] for an introduction.

The cohomology groups of (C2)[" were computed in [6] and we refer the reader
to the papers [5, 1517, 24] for the description of the ring structure in the cohomol-
ogy H*((CH),

There is a (C*)?-action on (C?)[" that plays a central role in this subject.
The algebraic torus ((C*)2 acts on C2 by scaling the coordinates, (¢1, %) - (x,y) =
(t1x, t2y). This action lifts to the (C*)2-action on the Hilbert scheme (C2)"1.

Let Tp p = {(t%,t#) € (C*)?|t € C*}, where o, 8 > 1 and gcd(a, B) = 1, be a
one dimensional subtorus of (C*)2. The variety ((C?)"1)7«# parametrizes quasi-
homogeneous ideals of colength n in the ring C[x, y]. Irreducible components of
((C?)[")yTep wwere described in [7]. Poincaré polynomials of irreducible components
in the case o = 1 were computed in [3]. For « = 8 =1 it was done in [12].

For a manifold X let H,(X) denote the homology group of X with rational co-
efficients. Let P,(X) =) ;. dimH; (X)qlf. The main result of this paper is the
following theorem (it was co_njectured in [3]):

Theorem 1

n\Ta 8\ .0 1 1
ZP‘I((((Cz)[ ])T ﬁ)t = 1_[ 1—1¢i 1_[ 1 _qt(a+}3)i' ()

n>0 i>1 i>1

(a+p)fi

There is a standard method for constructing a cell decomposition of the Hilbert
scheme ((C2)[n1)Tep using the Bialynicki-Birula theorem. In this way the Poincaré
polynomial of this Hilbert scheme can be written as a generating function for a cer-
tain statistic on Young diagrams of size n. However, it happens that this combina-
torial approach doesn’t help in a proof of Theorem 1. In fact, we get very nontrivial
combinatorial identities as a corollary of this theorem, see Sect. 1.1.

We can describe the main geometric idea in the proof of Theorem 1 in the fol-
lowing way. The irreducible components of ((CHIMNYTep can be realized as fixed
point sets of a C*-action on cyclic quiver varieties. Theorem 4 tells us that the Betti
numbers of the fixed point set are equal to the shifted Betti numbers of the quiver
variety. Then known results about cohomology of quiver varieties can be used for a
proof of Theorem 1.

In principle, Theorem 4 has an independent interest. However, there is another
application of this theorem. In [4] we studied the generating series of the numbers
of quasihomogeneous components in a moduli space of sheaves on the projective
plane. Combinatorially we managed to compute it only in the simplest case. Now
using Theorem 4 we can give an answer in a general case, this is Theorem 5. We
show that it proves our conjecture from [4].
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Fig. 1 Arms and legs in a ]
Young diagram

ly (s) = number of &

ay (s) = number of ©

» |33 (3

1.1 Combinatorial Identities

Here we formulate two combinatorial identities that follow from Theorem 1. We
denote by ) the set of all Young diagrams. For a Young diagram Y let

n)={G. perlj=1j
a®) =|{G. j)Herli=1}.

For a point s = (i, j) € Zzzo let
ly(s)=rj(¥Y)—i—1,
ay(s) =ci(¥Y)—j—1,

see Fig. 1. Note that Iy (s) and ay (s) are negative, if s ¢ Y.
The number of boxes in a Young diagram Y is denoted by |Y|.

Theorem 2 Let « and 8 be two arbitrary positive coprime integers. Then we have

1 1
HseYlal(s)=pa()+D} Y] _
Zq = 1_[ l_tinl_qt(aﬂ.?)i'
Yey i>1 i>1

(a+p)i

In the case « = B = 1 another identity can be derived from Theorem 1. The
g-binomial coefficients are defined by

[M} _ [T, — 4"

Nl TIL a—ghH TN a—qh

By P we denote the set of all partitions. For a partition A = (A1, A2, ..., A), A1 >
A== let A =300 A

Theorem 3

S
Aitl . e (1 —t2’_1)(l —qt2’)

rePis1 Ait2
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Here for a partition A = (A1, A2, ..., Ar), A1 = A3 > --- > A,, we adopt the con-
vention A, = 0.

1.2 Cyclic Quiver Varieties

Quiver varieties were introduced by H. Nakajima in [20]. Here we review the con-
struction in the particular case of cyclic quiver varieties. We follow the approach
from [21].

Let m > 2. We fix vector spaces Vy, V1,..., V;y—1 and Wy, Wy, ..., Wy,—1 and
we denote by

v=(dimVp,...,dimV,,_1), w = (dim Wy, ..., dimW,,_;) € Z';O
the dimension vectors. We adopt the convention V,, = Vj. Let

m—1 m—1
M(v, w) =(EB Hom(V¢, Vkm) ® (EB Hom(V¢, Vk_1)>

k=0 k=0

m—1 m—1
fa) (@ Hom (W, Vk)> ©® (@ Hom(Vy, Wk))

k=0 k=0
The group G, = [[{'=y GL(Vi) acts on M (v, w) by
g (Bi,Ba.i, j) > (¢Big™ " gBag " gi. jg ')
The map p: M(v, w) — @k”‘;o‘ Hom(Vy, V) is defined as follows
w(B1, Bz, i, j) =By, B2] +ij.

Let

-1 s .o -1 if a collection of subspaces Sy C Vi
2 (0) = {(B» i, ]) en (O) is B-invariant and contains Im(i), then S; = Vj

The action of G, on ;L_l (0)* is free. The quiver variety (v, w) is defined as the
quotient
M, w) =u~ " (0)°/ Gy,

see Fig. 2.
The variety M (v, w) is irreducible (see e.g. [21]).
We define the (C*)2 x (C*)™-action on (v, w) as follows:

(t1, . ex) - (B, Ba, ik, ji) = (1 B1, 2 Ba. € 'k, titaey ).
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Wo

Vo
B1 B1

Win—1 ¢ By B J 441
>, ’ e
J

Bo Bs
B By
Vim—2 --=--------- Va
i J
Z N
W—2 Wa

Fig. 2 Cyclic quiver variety Mt (v, w)

1.3 C*-Action on t(v, w)

In this section we formulate Theorem 4 that is a key step in the proofs of Theorems 1

and 5.

Let o and B be any two positive coprime integers, such that « + = m. Define
the integers Ao, Aq, ..., Apm—1 € [—(m — 1), 0] by the formula Ay = —ak modm. We

define the one-dimensional subtorus i,, g C (C*)? x (C*)™ by

Top =% 8,020, 1) e (C)? x (C¥)" |1 e C*).

For a manifold X we denote by HZM (X) the homology group of possibly infinite
singular chains with locally finite support (the Borel-Moore homology) with rational

coefficients. Let P2M (X) = 3", dim HPM (X)q 1.

Theorem 4 The fixed point set (v, w)Ta-ﬂ is compact and

PEM (M (v, w)) = g} mAw.w) P (Mo, w)%).
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1.4 Quasihomogeneous Components in the Moduli Space of
Sheaves

Here we formulate our result that relates the numbers of quasihomogeneous com-
ponents in a moduli space of sheaves with characters of the affine Lie algebra si,,,.
The moduli space M(r, n) is defined as follows (see e.g. [22]):

(1) [B1,B2]+ij=0
(2) (stability) There is no subspace
§ C C" such that B, (S) C S (@ =1,2) GL,(C),

M(r’n) = {(B17B2117])
and Im(i) C S

where Bp, By € End(C"),i € Hom(C", C") and j € Hom(C", C") with the action
of GL, (C) given by

g (Bi,Boi, j)=(gBig" " gBg " gi. jg ).

for g € GL,(C).

The variety M (r, n) has another description as the moduli space of framed tor-
sion free sheaves on the projective plane, but for our purposes the given definition
is better. We refer the reader to [22] for details. The variety M(1, n) is isomorphic
to (C?)"] (see e.g. [22]).

Define the (C*)? x (C*)"-action on M(r, n) by

(t1,t,e) - [(B], By, 1, ])] = [(llBl, By, ie_l, tltzej)].
Consider two positive coprime integers « and 8 and a vector
w=(w,w,...,0,) €L

such that 0 < w; < a + B. Let Toj"’ ) be the one-dimensional subtorus of (C*)2 x
(C*)" defined by

@ = {1 P 1 12 1) € (CF) x (C) e e €t

(0]
In [4] we studied the numbers of the irreducible components of M (r, n)T“vf‘ and
found an answer in the case « = f = 1. Now we can solve the general case.

We define the vector p = (00, 1, - - -, Pat+p—1) € Z‘;(;ﬂ by pi = t#{jlw; =i} and

the vector p € Z(:gﬂ by Wi = p—igmoda+p-

Let Ey, Fy, Hy, k=1,2,...,a + B, be the stan/c\lard generators of ;70[4,_/3. Let V
be the irreducible highest weight representation of sly 1 g with the highest weight .
Let x € V be the highest weight vector. We denote by V), the vector subspace of V
generated by vectors Fj Fj, ... F x. The character x, (¢) is defined by

Xu(q) =) _(dimV,)g”.
p=0

We denote by ¢(X) the number of connected components of a manifold X.
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Theorem 5

3 o (M m)E8)g" = xu(g).

n>0

In [14] the authors found a combinatorial formula for characters of ?lm in terms
of Young diagrams with certain restrictions. In [8] the same combinatorics is used
to give a formula for certain characters of the quantum continuous gl/,. Compar-
ing these two combinatorial formulas it is easy to see that Conjecture 1.2 from [4]
follows from Theorem 5.

Remark 1 There is a small mistake in Conjecture 1.2 from [4]. The vector a’ =
(ay, ay, ..., atlx+/3—l) should be defined by a; = a_qimoda+p- The rest is correct.

1.5 Organization of the Paper

We prove Theorem 4 in Sect. 2. Then using this result we prove Theorem 1
in Sect. 3. In Sect. 4 we derive the combinatorial identities as a corollary of Theo-
rem 1. Finally, using Theorem 4 we prove Theorem 5 in Sect. 5.

2 Proof of Theorem 4

In this section we prove Theorem 4. The Grothendieck ring of quasiprojective vari-
eties is a useful technical tool and we remind its definition and necessary properties
in Sect. 2.1.

2.1 Grothendieck Ring of Quasiprojective Varieties

The Grothendieck ring Ko(vc) of complex quasiprojective varieties is the abelian
group generated by the classes [ X] of all complex quasiprojective varieties X mod-
ulo the relations:

1. if varieties X and Y are isomorphic, then [X] =[Y];
2. if Y is a Zariski closed subvariety of X, then [X]=[Y]+ [X\Y].

The multiplication in Ko(vc) is defined by the Cartesian product of varieties: [X] -
[X2] =[X1 x X3]. The class [A(lc] € Ko(vc) of the complex affine line is denoted
by L.

We need the following property of the ring Ko(vc). There is a natural homomor-
phism of rings 6 : Z[z] — Ko(v¢), defined by 6(z) = L. This homomorphism is an
inclusion (see e.g. [18]).
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2.2 Proof of Theorem 4

Letr = Z;”:_Ol 6;. For an arbitrary v € Z" let I') 5 C T 5 be the subgroup of roots
of 1 of degree m. Let

0=00,....,0, 1,..., ALy eees Aty ees Am—1) €Z".
——— —™—— —
wo times wp times Wy, —1 times

Lemma 1 1. We have the following decomposition into irreducible components

MmTes = 1] M, w). o)
veZl,

> v=n

2.The T? ﬂ-actwn on the left-hand side of (2) corresponds to the Ta g-action on
the right- hand side of (2).

Proof Let I, be the group of roots of unity of degree m. By definition, a point
[(B1, B2, i, j)] € M(r, n) is fixed under the action of 1"0/3 if and only if there exists
a homomorphism A: I}, — GL,(C) satisfying the following conditions:
¢“Bi = 1) Bir(Q),
P By = 0(6) ' Bai(©), 3)
i odiag(¢?, %, ..., ) =),
diag(¢”, ¢%,..., %) 0 j = jA(0),

where { =e ﬂmr Suppose that [(B1, B», i, j)] is a fixed point. Then we have the
weight decomposition of C" with respect to A(¢), i.e. C" = Pycz/mz V{» Where
Vi={veC'r() v= c*v}. We also have the weight decomposition of C”, i.e.
C = @kel/mz W, where W, ={v e C’|diag(¢?, ..., ¢%) - v = ¢*v}. From con-
ditions (3) it follows that the only components of By, By, i and j that might survive
are:

Bi:V,—>V,_,.
By: V= V|,
it WV,
jivi— W

Let us denote V', . by Vi and W', .=~ by Wi. Then the operators

By, By,i, j act as follows: B1a: Vi = Vix1,i: Wy — Vi, j: Vi = Wi, The first
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part of the lemma is proved. The second part of the lemma easily follows from the
proof of the first part and from the definition of the T, g-action. U

0 ~
In [4] it is proved that the variety M (r, n) Tap is compact. Therefore, M (v, w)Tes
is compact.

re o
We denote by M(r, n)v"’ﬂ the irreducible component of M(r, n) «.f correspond-
TB
ing to M(v, w). Let M(r,n),*" = (/\/l(r n)v“ﬁ) aﬁ We denote by I, the set of

irreducible components of M (r, n)va 7 and let M(r, n)v = ]_[,elv M(r,n),% e ‘g be
the decomposition into the irreducible components. We define the sets Cy ; by

re T?
Cyi= {z e M(r,n),"" lim fz e M(r, n)v‘fllﬁ }

0
t—>0,teTaVﬂ

I-ﬂ
Lemma 2 (1) The sets C, ; form a decomposition of M(r, n),*" into locally closed

subvarieties.

T()
(2) The subvariety Cy ; is a locally trivial bundle over M(r, n)vfllfﬁ with an affine
space as a fiber.

Proof The lemma follows from the results of [1, 2]. The only thlng that we need to

check is that the limit hmt —0,re7? tz exists for any z € M(r, n)v

Consider the variety Mo(r, n) from [23]. It is defined as the affine algebro-
geometric quotient

Mo(r,n) = {(B1, Bz, i, HI[B1, B2l +ij =0}//GL, (C).

It can be viewed as the set of closed orbits in {(By, B2, i, j)|[B1, B2] + ij = 0}.
There is a morphism 7 : M(r,n) — Mo(r,n). It maps a point [(By, B2, i, j)] €
M(r,n) to the unique closed orbit that is contained in the closure of the orbit of
(B1, B, i, j) in {(B1, B2, i, ))|[B1, B2] + ij = 0}. The (C*)? x (C*)"-action on
Mo(r, n) is defined in the same way as on M(r, n). The variety Mg(r, n) is affine
and the morphism 7 is projective and equivariant (see e.g. [23]).

By [19], the coordinate ring of M (r, n) is generated by the following two types
of functions:

(a) tr(Byy Bay_, -+ Baq;: C* = C"), where a; =1 or 2.
(b) x(jBayBay_, - Bayi), where a; =1 or 2, and x is a linear form on End(C").

From the inequalities —m < 6; < 0 it follows that both types of functions
have positive weights with respect to the T? ﬁ-actlon Therefore, for any point

z € My(r,n) we have lim,_ ret?, tz=0. The morphism 7 is projective, so the

limit hmt—>0’t€T(f.,3 tz exists for any z € M(r, ”)v ’/3. The lemma is proved. O
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Denote by d:i the dimension of the fiber of the locally trivial bundle C,; —

70
M(r, n) v‘fi”s .
Lemma 3 The dimension dI i doesn’t depend on k € I, and is equal to
+ L
dv’k = 3 dimMN(v, w).

Proof The set of fixed points of the (C*)? x (C*)"-action on M(r, n) is finite and
is parametrized by the set of r-tuples D = (D1, Da, ..., D,) of Young diagrams D;
such that Y ;_, |D;| =n (see e.g. [23]).

Let p € M(r,n)(c*)zx((c*)r be the fixed point corresponding to an r-tuple D.

Let R((C*)? x (C*)") = Z[tlil, tzil, efl, eécl, ey eril] be the representation ring

of (C*)? x (C*)". Then the weight decomposition of the tangent space T, M(r, n)
of the variety M(r, n) at the point p is given by (see e.g. [23])

,
_ =Ip;($) ap,(s)+1 Ip; (s)+1 —ap;(s)
T,Mm) =Y eje; 1(2% T AR A ) @)

i,j=1 seD; seD;
For a computation of d;r « We choose an arbitrary (C*)? x (C*)"-fixed point p in

Tﬂ
M(r, n)v‘f,‘f . Let D be the corresponding r-tuple of Young diagrams. We have

dIk=Zﬁ{seDi

ij
+Ztt{s €D,
ij

0;—0;i—alp . (s)+B(ap. (s)+1)=0modm
=Zﬁ{seD,- ! " o }
iJ

0;—06; —Otle (S)-‘rﬂ(aDl. (s)+1)>0
+ Zﬂ {S (S] Dl‘
i,J

=Zji{s € D;l0; —6; — O{l[)j () +Blap,(s)+1) = Omodm}
ij

+Zﬁ{s e D
ij

It is easy to see that the last sum is equal to zero, thus

0;—0; —cchj (x)—HS(aDi (s)+1)=0modm
0;—0; —Otle (s)+B(ap; (s)+1)>0

0; —9i+‘1(lD,- (S)‘H)—ﬂaD,- (s)=0modm
0;—0; —Hx(lD[, (s)+1)—/f5a1)j (5)>0

0;—b; —ale (s)+B(ap; (s)+1)=0modm
0;—0; —(xle (S)“‘/S(al)i $)+1D<m

0<0;—06; 7otlpj (s)+/3(aD,. (s)+D)<m

0j—0i—alp ()+B(ap; (s)+1)=0modm }

df =Y t{seDilo; — 0, —alp,(s) + B(ap,(s) + 1) = 0modm}.
inj
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On the other hand

F()
dim M(r, n),*"
=Y #{s € Dil6; — 6 —alp;(s) + B(ap,(s) + 1) = Omodm}
ij
+Y #ls e Djl0; — 0 +a(lp,(s) + 1) — Bap;(s) = Omodm}
ij

:2211{5 € D;|0; — 6; — alp,(s) + B(ap,(s) + 1) =0modm}.
ij
I-ﬂ
Hence df, = 5 dim M(r, n),"” = 5 dimM (v, w). O
From Lemmas 2 and 3 it follows that
r)g 1 dim M (v, w) Ty
[M(r,n), "] =12 M) ]

Using the (C*)? x (C*)"-action it is easy to get a cell decomposition of the vari-

re ¢
eties M(r, n)y,*" and M(r, n)val‘f . Therefore

[M(r n)r‘f”s] = PBM(M(r n)r‘f‘ﬁ)|
’ v — q ’ v l]:IL’

[M( Tlfﬂ _ T‘fﬁ
T, n)v,k ] - Pf] (M(r’ n)v,k )’q:IL’

The theorem is proved.

3 Proof of Theorem 1

In this section we prove Theorem 1. First of all, in Sect. 3.1 we remind the reader a
notion of a power structure over the Grothendieck ring Ko(vc). This technique al-
lows us to simplify some combinatorial computations. Then in Sect. 3.2 we review
standard combinatorial constructions related to Young diagrams. In Sect. 3.3 we
review a connection between Hilbert schemes and quiver varieties and do an impor-
tant step in the proof of Theorem 1. Instead of considering the T, g-fixed point set
in the Hilbert scheme (C2)™), we first look at the fixed point set of a finite subgroup
of Ty, g. Finally, in Sect. 3.4 we combine everything and prove the theorem.
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3.1 Power Structure over Ko(vc)

In [10] there was defined a notion of a power structure over a ring and there was
described a natural power structure over the Grothendieck ring Ko(vc). This means
that for a series A(t) = 1+ ayt +art?+---el+r- Ko(ve)[[t]] and for an element
m € Ko(vc) one defines a series (A(1))" € 1 + 1t - Ko(ve)[[#]] so that all the usual
properties of the exponential function hold. We also need the following property of
this power structure. For any i > 1 and j > 0 we have (see e.g. [10])

(1-L/) =11/ (5)

3.2 Cores and Quotients

In this section we review the well known construction of an m-core and an m-
quotient of a Young diagram.

The set Core,, is defined as the set of Young diagrams Y such that for any box
s € Y we have ly (s) + ay (s) + 1 2 Omod m. For a Young diagram Y let

wi(Y) =t{(p.q) €Y|p+q =imodm}.
We remind the reader that we consider a Young diagram as a subset of Z2>0. Let

m—1
Z Ak = 0}.
k=0

o= {x = (A0s Ay eves A1) €Z™

Define the map ¥ : Core,, — IT" ! by
Corey 3 Y > (Ao, Ay ooy Am—1), Ai = wip1(Y) — wi(Y).

The map ¥ is a bijection (see e.g. [13], Chap. 2.7).
There is also a bijection (see e.g. [13], Chap. 2.7)

@:Y — Coreyy x V", @)= (2X)o, P(N)1,...., 2V )m).

We don’t give a construction of this map, we will only list all necessary proper-
ties. The diagram @ (Y)q is called the m-core of the diagram Y and the m-tuple
(@(Y)1,2(X)2,...,D(Y)y) is called the m-quotient. The bijection @ has the fol-
lowing properties (see e.g. [13], Chap. 2.7):

Y| =|DX)o|+m Y |0¥);

i=1

; (6)



Quasihomogeneous Hilbert Schemes 27

wi (V) = w;(

@)

i=1
jj{seYlly(s)—i—ay(s)—i—lEOmodm}:Z|<15(Y)i|. (8)
i=1

3.3 Hilbert Schemes and Quiver Varieties

For an ideal I C C[x, y] of codimension n let V(I) = C[x, y]/I and By, B; €
GL(V (1)) be the operators of the multiplications by x and y correspondingly. Let
i: C— V(I) be the linear map that sends 1 € C to the unit in C[x, y]. Define the
map f: (CHIM 5 M(1,n) by I +— [(B1, B2,1i,0)]. This map is an isomorphism
(see e.g. [22]).

For integers 1 and v let I, ;, be the finite subgroup of (C*)? defined by I}, w=
{7V, ¢7M) € (C*)?]¢ = exp(ZL)). Tt is clear that the isomorphism f transforms
the T, g-action on (C%H[] to the T£ ﬁ-action on M(1, n) and the I, g-action to the
F£ ﬂ—action. Thus, by Lemma 1, we have

(@)™ = 1] Mw.eo.

veZ?,
Y vi=n
T, 9)
(@)™ = 1] mM.en)™.
veZl,
> vi=n
where by eg we denote the vector (1,0, ...,0) € ZZ’O. Until the end of this section

we consider a quiver variety 2(v, eg) as a subset of M(1, ) v;) = ((Cz)[Z vl
The last factor C* of the product (C*)? x C* acts trivially on M(1, 1), so now
we start to consider only the (C*)?-action on M(1, n).

3.4 Proof of Theorem 1

For a vector v € ZZ ) let |v] = ;’:01 v;. By (9) and Theorem 4, we have

ZP (Cz n] a,s)t Z q—%dimm(v,eg)PqBM(gﬁ(v’60))t|v|.

m
n>0 veZZO
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If the variety 1(v, eg) is nonempty, then (see e.g. [23])

m—1

dim9MN(v, ep) = 2vg — Z(Uz‘ — Vi)
i=0

Here we follow the convention v,, = vg. For A € IT"~! let

1 m—1
W) =3 )
k=0

m—2

n() =mvo(W) + Y _(m—1— k).
k=0

Using these notations and formula (10) we get

Z q_% dimm(v,eo)quM(Dﬁ(v, 60))f|v|

m
veZZo

_ Z ) Z PqBM(i)ﬁ(v,eo))(q_%t)m(vo_v()(k)).

rerm=1 veZl,
Vit 1=V =A

Lemma 4 For any A € IT"~! we have

l”()”)
PEM (931(v, e))t!"! = — . —
v;ﬂ q ( ( 0)) nizl(l _ q’tm’)m*I(I _ql+1tm1)
vi+l_Uz;0:Ai

(10)

Before a proof of this lemma we introduce a new notation and prove two useful

lemmas.

In the proof of Lemma 2 we used the morphism 7 : M(r, n) — Mo(r,n). We
have Mo(1, n) = S*(C?) (see e.g. [22]). Slightly changing notations we denote now
by 7 the morphism M(1, n) — S$"(C?). It can be described explicitly as follows.
Let [(By, B2,1i, j)] € M(1,n). We can make B; and B, simultaneously into upper
triangular matrices with numbers A; and w; on the diagonals. The morphism 7 is

given by w(B1, Bz, i, j) ={(A1, 1), ..., (An, un)} (see e.g. [22]).

It is useful to note that the subgroups Iy, g and I 1 of ((C*)2 coincide, therefore

M1, n)lep = M(1,n)11.

For any I'{,_1-invariant subset Z C C? and any vector A € [T" ! let

Hz, ()= Y [M@ e)na"(s"z)]e.
veZZ,
Vip1—Vi=A;
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We denote by C, the x-axis in the plane C2.

Lemma 5 For any A € IT"~! consider the unique diagram Y; € Core,, such that
W (Y,) = A. Then we have
A

Hizl (1 _ Litmi)m :

He, ,.(t) = (11)

Proof The set of fixed points of the (C*)2-action on M(1, n) is parametrized by the
set of Young diagrams Y such that |Y| = n. Let p be the fixed point corresponding
to a Young diagram Y, then, by (4), we have

Tp(M(l, n)) _ Z(t;ly(s)tgy(s)Jrl + l‘iY(S)Ht;uY(S))- (12)

seY

We choose y > 1 and for each point p € (v, eo)((c*)2 we define the attracting set
C, as follows

Cp=1z2€M(v, ep)

lim 17— }
i—ouer,, P
Clearly, if z € C, then lim,qo,tenﬂ tz=0,and if z € (Cz\(Cx, then 7z goes to
infinity. By [1, 2], the sets C), form a cell decomposition of 9 (v, ep) N z~LshC,).
Using (12) we obtain

[mt(v’ 6‘0) N 7_[—1 (S|U|(Cx)] — Z L:I{seY\ly(s)+ay(s)+lemodm}. (13)
Yey
w; (Y)=v;
The formula (11) follows from (13) and properties (6), (7) and (8). O

Lemma 6 For any Y € Core,, we have |Y| =n(¥ (Y)).

Proof Consider the quiver variety 2t (w(Y), ep). From the properties of the bijec-
tion @ it follows that if Y’ is a Young diagram such that |Y’| = |Y| and w(Y) =
w(Y’), then Y’ = Y. Thus, the (C*)2-fixed point set in M(w(Y), eg) consists of
only one point. Using the Bialynicki-Birula theorem we can construct a cell decom-
position of M(w(Y), ep) and it is easy to see that the unique cell has dimension O.
Therefore, M(w(Y), ep) is just a point. By (10), wo(Y) = vo(¥(Y)) and clearly
Y| =n@(Y)). O

Proof of Lemma 4 For A = 0 this lemma was proved in [11].
Since [ (v, e9)] = P2M (M(v, €9))|4=L, it is sufficient to prove that

(k
Z [im(v,eo)]tlvlz . tn : . —
Hizl(l _ Lttmz)m—l(l _ ]Ll-‘rltml)

m
veZl,
Vip 1=V =A
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The 17, _j-action on (CZ\(CX is free. Therefore, if the intersection of (v, epy)
with 7 =1 (SPH(C2\Cy)) is nonempty, then vg = v| =--- = v,,_1. We get

Heo 5 (1) = He, 5. (D) Heay ¢, (D). (14)
We denote by O the origin of C2. Let

Ho(t)=Y [M1,n)nx~'(5"(0))]"

n>0
From [11] (see Theorem 1) it follows that

C\Cy)/ T, -
HCZ\CX,O(I):HO(tm)[( \ )/ 1, 1].

It is easy to check that [((CA\Cy)/ n_il= L2 — IL. Therefore we have

2
1 L= by 5 1 —Ligm
H(CZ\Cwa(t) = <1_[ a- Li—ltmi)> 1_[ — Litlgmi® (15)
i>1

If we combine formulas (11), (14) and (15) and also Lemma 6, we get the proof
of the lemma. O

Using Lemma 4 we get

Z tn(A) Z PBM(EDT(U 60))( 1 )m(vo vo(R))

rerm-1 veZl,
Vi1~V =A
(2
= l_[ miym—1¢1 _ ,¢mi Z 4 :
<z>1 (=) (I =qr™) arerm-1

By Lemma 6, Y, c 1 "™ =Yy, 177]. We have (see e.g. [11])

(1_tmi)m

YeCore,, i>1

This completes the proof of the theorem.

4 Proofs of Theorems 2 and 3

Here we prove two combinatorial identities from Sect. 1.1.



Quasihomogeneous Hilbert Schemes 31

4.1 Proof of Theorem 2

Consider the (C*)2-action on ((C2)"hTes. Let p e (C?)"! be the fixed point
corresponding to a Young diagram Y. By (4), the weight decomposition of
T, (((CHM)Tes) is given by

T,(((€)™)™")
— Z ly(s)+1 ay(s) + Z tl—ly(s)tzay(s)-kl. (16)

seY seY
a(ly (s)+1)=Bay (s) aly (s)=p(ay (s)+1)

Let y be a big positive integer y. By [1, 2], the variety ((C?)[*1)7«¢ has a cellu-
lar decomposition with the cells C, = {z € (C?)lnhTap | lim;—oer,, 1z = p}. By
(16), we have dim Cp, = {s € Y|aly (s) = B(ay (s) + 1)}. Thus, we have

ZP (C2 ["] aﬁ Zqﬁ{seYlaly(S) ﬂ(ay(S)-l-l)} 1Y
n>0 Yey

Now Theorem 2 follows from Theorem 1.

4.2 Proof of Theorem 3

In [12] it is proved that the set of irreducible components of the variety ((C%)InhyTi,
is parametrized by partitions A such that w + |A| = n. The Poincaré poly-
nomial of the irreducible component corresponding to a partition A is equal to

(see [12])
1—[ [/\i —Ait2 + 1}
. .

i>1 Aitl — Ait2

Combining this fact with Theorem 1 we get the proof of Theorem 3.

S Proof of Theorem 5
Let o + 8 = m. Similar to Lemma 1 we have the decomposition

M s = 1] Mm@, w. (17)
veZgo
|lv|=n
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and the T“’ﬂ-acnon on the left-hand side of (17) corresponds to the Ta ,g-action on
the right-hand side. Using Theorem 4 we get

Zho M(r,n) aﬂ Z dim H1 - M)(Sﬁ(v,u))q v

m
n>0 veZl,

In [20] it is proved that the space €D, ez, HE (M(v, p)) is an irreducible

L dlmim(v )
highest weight representation of sl with the highest weight p. This completes the
proof of Theorem 5.
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PBW-filtration over Z and Compatible Bases
for V7(L) in Type A, and C,,

Evgeny Feigin, Ghislain Fourier, and Peter Littelmann

Abstract We study the PBW-filtration on the highest weight representations V (1)
of the Lie algebras of type 2, and C,. This filtration is induced by the standard
degree filtration on U(n™). In previous papers, the authors studied the filtration and
the associated graded algebras and modules over the complex numbers. The aim of
this paper is to present a proof of the results which holds over the integers and hence
makes the whole construction available over any field.

1 Introduction

Let g be a finite dimensional simple complex Lie algebra, we fix a maximal torus
b and a Borel subalgebra b = h @ n*. Denote by R the set of roots and let P be
the integral weight lattice. Corresponding to the choice of b, let R™ be the set of
positive roots and let P be the monoid of dominant weights.

For A € P let V(1) be the finite dimensional irreducible representation of high-
est weight A and let v, be a highest weight vector. Denote by M (X) the Verma
module corresponding to the same highest weight. For a Lie algebra a denote by
U(a) its enveloping algebra. Fix a highest weight vector m; € M()). The linear
map

Un™)—> M®), n— nm,
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is an isomorphism of complex vector spaces. The degree filtration on U(n™):
U(tf)0 =Cl, U(n*)s =span{l,x;...x;: x;en”, [ <s} fors>1,
induces via the isomorphism above a natural b-stable filtration on M (A):
M@)s=U(n") m, fors>0.

Set Un™)_1 = M(A)_1 =0, then the associated g-character

char, M(}) := Zchar(M(A)S /M(N)s—1)q*

>0
has a very simple form:

1
[per+(1 —qe=F)’

This is obvious by the fact that the associated graded module M (1)* = @,-o M (A)s/
M (A)s—1 is a free module over the associated graded algebra S(n™) = gradU(n™).
In contrast, the situation becomes rather complicated if one replaces M (1)

by its finite dimensional quotient V(A). Again this module has an induced b-
stable filtration V(A); = U(n™)sv;, called the Poincaré-Brikhoff-Witt-filtration,
or, for short, just the PBW-filtration. The associated graded module V(1)¢ =
Do VA)s/V(A)s—1 is a U(b)-module as well as a S(n~)-module. A general
closed formula for the g-character

char, M () = e

char, V(1) := Y _ char(V (1), /V (A)s-1)q*

s>0

is not known, partial combinatorial answers can be found in [4, 5], more geometric
interpretations can be found in [3, 6]. Another natural (and, at least in the general
case, open) question is about the structure of V (1)¢ as a cyclic S(n™)-module, gen-
erated by the image of the highest weight vector.

The aim of this paper is to present a proof of the results in [4, 5] which holds
over the integers and hence makes the whole construction available over any field.
More precisely, for g of type A, or type C,, we want

e to describe V;(X) as a cyclic Sz(n™)-module, i.e. describe the ideal Iz(A) —
Sz (n™) such that V7 (1) = Sz(n™)/Iz(});

e to find a basis of V/ (1), in particular, show that V7 (1) is torsion free;

e to get a (characteristic free) combinatorial graded character formula for VZ“ Q).

As a last remark we would like to point out that one should not confuse the PBW-
filtration (discussed in this paper) neither with the Brylinski-Kostant filtration [2]
(BK-filtration for short) on the weight spaces induced by a principal sl-triple
(e, h, f), nor with the right Brylinski-Kostant filtration discussed in [7]. As an ex-
ample, consider the case g of type By and A = w; + 2w;. In Table 1 we list for
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Table 1 Examples for the Poincaré polynomial of the associated graded weight spaces in V (1),
A =w; + 2wy, g of type By, enumeration as in [1]

Weight A —oap — 30 A—2a1 — 207 A —2a; —3an A —2a; —4an
PBW q3 +q2 q3 +2q2 2q3+q2 q4+q3+q2
BK q4+q3 q4+q3+q2 q5+q4+q3 q6+q5+q4
Right BK q*+q* a*+4q +q +at+q ¢ +4¢ +q*

some weights the Poincaré polynomial of the associated graded weight space. For
the left and right Brylinski-Kostant filtration, the polynomials have been taken from
[7], for the PBW-filtration the polynomials have been calculated using Theorem 3
(B2 =C2).

2 The Setup over the Complex Numbers: Definitions and
Notation

Let g be a complex finite-dimensional simple Lie algebra. We fix a Cartan subal-
gebra b and a Borel subalgebra b = h @ n™. Let R be the set of positive roots
corresponding to the choice of b and let «;, w;, i = 1,...,n be the simple roots
and the fundamental weights. The height h#(8) of a positive root is the sum of the
coefficients of the expression of 8 as a sum of simple roots.

Let G be the simple, simply connected algebraic group such that Lie G = g. Fix
a maximal torus T C G and a Borel subgroup B D T such that Lie B=h & n™ and
Lie T = h. Denote by N~ the unipotent radical of the opposite Borel subgroup.

Let g=n" @ h dn~ be the Cartan decomposition. Consider the increasing de-
gree filtration on the universal enveloping algebra of U(n™):

U(n_)szspan{l,xl_”xl; xiEn_,lfs}, (1)

forexample, Un")p =C-1,Un™); =C-1+n", and so on. The associated graded
algebra is the symmetric algebra S(n™) over n™.

For a dominant integral weight A let ¥ : G — GL(V (1)) and ¢ : g — End(V (1))
be the corresponding irreducible representations. Fix a highest weight vector v;.
Since V(1) = U(n™)v;, the filtration in (1) induces an increasing filtration V (i)
on V(L):

V(s =U(n") .

Definition 1 We call this filtration the PBW-filtration of V (A) and we denote the
associated graded space by V4()).

Let ny = th(ﬁ)Zs n_z Sn be the Lie subalgebra formed by the root sub-
spaces corresponding to roots of height at least s. In fact, n; C n™ is an ideal, and
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the associated graded algebra n™¢ = @szl ng/ng . is an abelian Lie algebra. We
make n™“ into a B- as well as a b-module by identifying the vector space n™¢ with
the quotient space g/b, which is a B- respectively b-module via the induced adjoint
action ad : B — GL(g/b).

Definition 2 Denote by g“ the Lie algebra g = b @ n™%, where n™¢ is an abelian
ideal in g and b acts on n™¢ via the induced adjoint action described above.

For a positive root 8 let U_g C G be the closed root subgroup corresponding
to the root —B. Denote by G, the additive group of the field (viewed as a one-
dimensional unipotent algebraic group) and let x_g : G, g — U_g be a fixed iso-
morphism of the root subgroup with the additive group G,. We add the root as an
index to indicate that this copy G, g of the additive group is related to U_g.

The group N~ admits a filtration by a sequence of normal subgroups: let
Ny = [1j(py=s U-p- then N is a normal subgroup of N~. Denote by N™¢ the
product N ™4 =[]-; Ny /Ny |, then N is a commutative unipotent group. We
can identify N ¢ naturally with the product [ BeR+ Ga,pg, viewed as a product of
commuting additive groups. Here G, g gets identified with the image of U_g in
Nh;(ﬁ)/N,;(ﬂ)+ . The Lie algebra of N™% is n™¢.

The action ad of B on n™¢ can be lifted to an action Ad on N ~¢ using the expo-
nential map. To make this action more explicit, recall that for two linearly indepen-
dent roots «, B we know by Chevalley’s commutator formula: there exist complex
numbers ¢; j o, such that

xa(xp()xg (x5 () = [ ] xietjp(cijapt’s?)
i,j>0

for all s, ¢t € C. The product is taken over all pairs i, j € Z-¢ such that ia + jB is
a root and in order of increasing height of the occurring roots. We have for m =
]_[ﬂeR+ x_g(ug) € N"%and x4 (1) € B, ug,t € C:

Ad(xo (1)) (m) = 1_[ x_ﬁ<uﬁ+ Z c,-,,-,a,_yt"ufy). )
BERT i,j>0,yeRt
—p=ia—jy

Definition 3 Denote by G¢ the semi-direct product G* >~ B x N ¢, where N ¢
is an abelian normal subgroup in G* and B acts on N ¢ via the action described
above.

The subspaces V(A); = U(n") v, are stable with respect to the B- and the b-
action, so we get an induced action of B as well as of b on V¥(1). Since the appli-
cation by an element f € n™ induces linear maps

i Vs = Vs
U U
V)s—1 = V(s
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we get an induced endomorphism *(f) : V¢(L) — V?(A) with the property that
VAOYS) = (fIPAS) : VEQR) — V) is the zero map for f, f/ en™.
Hence we get an induced representation of the abelian Lie algebra n™¢ and of its
enveloping algebra S(n™%), the symmetric algebra over n—"“. Note that V(1) is a
cyclic S(n™“)-module:
Vi) =S50

The action of n™¢ on V¥(A) is compatible with the B-action on V(i) and on n™¢:
suppose b € B, f en™ and v € V(4),, then

b(f.v) = (bfb™")(bv) = (ad(b)(f))bv +m.bv  for some m € b,
and hence bf.v = (El(b)(f))bv in V(A)s+1/V (A)s. It follows:

Proposition 1 V4()) is a g*-module, it is a cyclic S(n™%)-module and a B-module.
The B-action on S(n™%) is compatible with the B-action on V4(A) = S(m™%).v;,

The action of U_g on V() is given by:
el
W (x-p0) @)=Y 1"y E)@) forveV@)andreC
1.
i>0

and we get an induced action of U_g on V¢(1) by

g (x_,g(t))(v) = Zt‘ﬂp“ (%)(v) forve V4) andt € C.

i=0

The action of the various U_g on V(1) commute and hence we get a representation
w4 N—% — GL(V*(L)). This action is compatible with the B-action on V*(})
and hence:

Proposition 2 V¢(1) is a representation space for G*.

In analogy to the classical construction we define:

Definition 4 The closure of the orbit G4.[v,] € P(V4(})) is called the degenerate
flag variety J%.

3 The Kostant Lattice

Let Gz be a split and simple, simply connected algebraic Z-group (see [8]), set
G4 = (Gg)4 for any ring A. We assume without loss of generality (Gz)c = G.
We fix a split maximal torus 77 C Gz such that T = (Tz)c and a Borel subgroup
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Bz D Tz such that B = (Bz)c. Let gz, bz, "Z etc. be the Lie algebras, then we have
g=9gz®RC,b=0bz ® Cetc.
Fix a Chevalley basis

{fﬁ,éﬁiﬂ€R+;h1,...,hn}CQZ,

where fg € n,, (respectively eg € nZ) is an element of the root space g_g 7 (respec-
tively gg,z), and h; € bhz.
Letng =3 1 py=s "_ p.z be the Lie subalgebra formed by the root spaces cor-

responding to roots of height at least s. The Lie subalgebra n;, .| Cny,  is an
ideal, and the associated graded algebra n;," = @, n, /n; 41 is an abelian Lie
algebra. We make ni‘a into a By- as well as a bz-module by identifying the vector

space n,, *@ with the quotient module gz /bz, which is a Bz- respectively bz-module
via the adjoint action.

Definition 5 Denote by g7, the Lie algebra g7, = bz ® ni’“, where n, ** is an abelian
ideal in g7, and bz acts on n,, *® via the induced adjoint action described above.

We write e<m) f ém) for the divided powers ¢ f and , in the enveloping algebra
U(g). We denote by ( ) the following element in U(g):

<h,‘>_hi(hi—l)-~-(hi—m+l)

m m!

Let now Uz(g) be the Kostant lattice in U(g), i.e. the subalgebra generated by the
(") and the divided powers eg”), fém). We identify Uz (g) with Dist(Gz,), the alge-
bra of distributions or the hyperalgebra of Gz. We fix an enumeration of the positive

roots {B1, ..., Bn}. Given an N-tuple m = (m1, ..., my) of non-negative integers,
we set
(m) _ p(m1)  ,(my) (m) _ (m1) (mn)
= fﬁl fﬁN ’ e =¢ep “Cpy
and given an n-tuple £ = (¢4, ..., £,), set

p@ _ (MY (T
A )

f (m)h(e)e(k), where m, k are N-tuples, £ is an n-tuple of natural numbers,

The ordered monomials

form a Z-basis of Uz(g) as a free Z-module. The subalgebras Uz(n~) and Uz(n™)
admit the ordered monomials

{f(m) |my,....,my GZZ()}
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respectively
{e(m) |my,...,my€ Zzo}

as bases.
Let Uz(n™); be the Z-span of the monomials of degree at most s:
Uz(n_) < (m1) f;m/) |my+---+mp<s, yl,...,y/gER—'—)Z, €))

N
where the degree of f( m )SZW) is the sum m; + - - - + my. Since changing the
ordering is commutative up to terms of smaller degree, the Uz (n™); define a filtra-
tion of the algebra Uz(n™). By abuse of notation denote by Sz (n™¢) the associated
graded algebra. Note that n,, @ C Szm™9). In fact, Sz(n™%) is a divided power
analogue of the symmetric algebra over ni’“. This algebra can be described as the

quotient of a polynomial algebra in infinitely many generators (the “symbols” f(m)

Z[f(m) | m € Z>o, B € RT] modulo the ideal J generated by the following identities:

5 <f(m)f(k) <m+k>f<m+k>

k,mzl,ﬁeR+>. €]

So we have:
Sz(n ) = Z[§" | m € Z=o. p € RT]/3.

The isomorphism above sends the basis given by classes of the monomials in
the symbols f(ml) fg;’,’v) to the basis of Sz(n™%) given by the monomials
f(ml) fé?N)

Let U'i(f) + nt) C Uz(g) be the span of the monomials h©Oe® gsuch that

Yl + Z],'vzl k;j > 0. The natural map which sends a monomial to its class in
the quotient:

Uz(n7) = Uz(@)/Uz(n ) UL (h +ut), ™ — fm),

is an isomorphism of free Z-modules. Recall that Uz(g) is naturally a Bz-module
and a Uz(b)-module via the adjoint action, and UZ(n_)UE(f) +n™) is a proper
submodule. Via the identification above, we get an induced structure on Uz(n™)
as a Bz-module and a Uz(b)-module. The filtration of Uz(n™) by the Uz(n™); is
stable under this Bz- and Uz (b)-action and hence:

Lemma 1 The By-module structure and the Ug(b)-module structure on Uz(n™)
induce a Bz-module structure and a Uz(b)-module structure on Sz(n~4).

For a dominant integral weight A = mw1 + -+ + m,w, fix a highest weight
vector vy, and let Vz(A) = Uz (g)v, C V(X) be the corresponding lattice in the com-
plex representation space. Since Vz(A) = Uz(n™)v,, the filtration (3) induces an
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increasing filtration Vz(A); on Vz(}1):
Vz(L)s =Uz(n7) ;. &)

We denote the associated graded space by V7 (). Since Bz Vz(L)s C Vz(A)s, V7 (M)

becomes naturally a Bz-module. The application by an element fém) e Uz(n™)
provides linear maps for all s:

£ Va)s > VaWgm
U U
Vz(M)s—1 = Vz(M)s+m—1,

and we get an induced endomorphism ¥r¢( fﬁ(m)) : V(W) — V7 (&) such that
w“(fgm))lp“(f)fz)) =y (f;fe))wa(fém)), and hence we get an induced represen-

tation of the abelian Lie algebra ni’“ and of the algebra Sz(n™%). Note that Vg Q)
is a cyclic Sz(n™%)-module:

V(W) = Sz(n™)vs.

The action of Sz(n™“) on V(1) is compatible with the Bz-action on Sz(n™%) and
on V¥%(}), so summarizing we have:

Proposition 3 V7 (1) is a g7-module, it is a cyclic Sz(n™“)-module and a Bz-
module. The Bz-action on Sz(n"%) is compatible with the Bz-action on Vg A =
Sz(m™%).v;.

For a positive root B let U_g 7 C Gz be the closed root subgroup corresponding
to the root —f. We denote by x_g : G, 7.5 — U_g 7 a fixed isomorphism of the
root subgroup with the additive group G, z. We add the root as an index to indicate
that this copy G4,z g of the additive group is supposed to be identified with U_g 7.

As in the case before over the complex numbers, the group N, admits a
filtration by a sequence of normal subgroups: set Ny - = [, (5)>; U-p.z, the
product NZ_"Z = Hszl Ny /Ny 1> is a commutative group. We can identify
Ny naturally with the product []sc g+ Ga.z 4, viewed as a product of commut-
ing additive groups. Again, G, 7 g gets identiﬁed with the image of U_g 7z in

Nz gy Nzn(gy+1- The Lie algebra of N, *“ is n,*

The action of U_g,z on Vz(1) is given by

W (u_p®) @)=Y 1y (f5")w) forveVz()andreZ

i>0

and we get an induced action of U_g 7 on V7 (1) by

W (u_p(0) @)=Y 'y (f5") ) forve VEQ) andt € Z.

i>0
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The action of the various U_g 7z on V7 (A) commute and hence we get a representa-
tion ¥4 : Ni’” — GL(Vj (1)) Since we started with a Chevalley basis, by [9], §6,
or [10], §3.6, the coefficients in (2) are integral, so we get an action of Bz on N, “

Denote by G, the semi-direct product Bz x N, *“. The actions of Bz and N, “ on
V7 () are compatible and hence we get

Proposition 4 V7 (1) is a G -module.
As a consequence, given a field k, we have the group G} = (G?)x, the representa-

tion space V! = (V) and the degenerate flag variety F¢ , := G{.[vi] C P(V(})).
Here are some natural questions:

(i) is the graded character of V(1) independent of the characteristic?
(i) is V7 (%) torsion free?

An explicit monomial basis for V(g (A) has been constructed for G = SL,, in [4] and
for G = Sp,,, in [5]. Another natural question:

(iii) is this basis of V4()1) compatible with the lattice construction in this section?
Or, to put it differently: is V;/(1) a free Z-module with basis {f ®y, |s e
S(A)}? (For the notation see the next sections.)

The aim of the next sections is to give an affirmative answer to these questions for
G =SL, and G = Sp,,,.

4 Roots and Relations in Type A and C

Let R be the set of positive roots of sl,, 1. Let o, w; i =1, ..., n be the simple
roots and the fundamental weights. All positive roots of sl,; are of the form «, +
Qpi1+---+ay forsome 1 < p < g < n. In the following we denote such a root by
ap.q, for example o; = q; ;.

Let now R™ be the set of positive roots of sp,,. Let a;, w; i =1,...,n be the
simple roots and the fundamental weights. All positive roots of sp,, can be divided
into two groups:

o j =0 +ip1 + -+ o, 1<i<j=<n,

(6)

o=+t + ot tapmr oo+, 1<i<j<n

ij
(note that o; , = «; 7). We will use the following short versions

o =0, o =0 7.

We recall the usual order on the alphabet J ={1,...,n,n —1,..., 1}

l<2<---<n—l<n<n—1<---<1. @)
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Let g=n" @ h @ n~ be the Cartan decomposition. By Lemma 1, the Uz(n™)-
module structure on Uz(n~) induces a Uz(n™)-module structure on Sz(n™%). We
want to make this action more explicit for g of type A and C.

If o = B or if the root vectors commute, then

(adel) (£4™) =0. 8)

If o, y, B =« + y are positive roots spanning a subsystem of type A, then

(k) p(m—k) :
+ , ifk<m,
(ael) gy = I = ©
0, otherwise.
If o, y, @ 4+ y, @ + 2y span a subrootsystem of type By = C», then
(k) (m k) :
Tf far, » ifk<m,
ad ) (£ v 10
(adeg”) (fa't ) 0, otherwise, (10)
and
(k) p(m—k) .
:t b f k < 9,
(el ) () = {7 oty TR = an
Y 0, otherwise,
and
:|:2k (k) p(m— k)7 ifk < ,
(ade) (7i) = {7 Jo et B = (12)
0, otherwise,
and
(k) ,(m—k)
fa+y faﬁZy
(@) p(b) ,(c) :
(ade)(,k))(fofﬁ)zy) = +Za_;b>_’;1€kmrabcfa fa—&-yfai,_gya itk <m, 13)
0, otherwise,

where the coefficients r, j . are integers.

5 The Spanning Property for SL,;
We first recall the definition of a Dyck path in the SL,-case:

Definition 6 A Dyck path (or simply a path) is a sequence

= (B(0), (1), ..., B(K)), k=0

of positive roots satisfying the following conditions:
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(1) the first and last elements are simple roots. More precisely, 8(0) = «; and
Bk) =aj forsome 1 <i < j<n;

(ii) the elements in between obey the following recursion rule: If 8(s) =« ; then
the next element in the sequence is of the form either B(s + 1) = ) 441 or

Bs+1) =0Up+l,q-
Example 1 Here is an example for a Dyck path for slg:
= (0,00 + 3,00 + 3 + g, @3 + 4, 4, 04 + a5, As).

For a multi-exponent s = {sg}g>0, 5g € Z>0, let f ) be the element

f(s) l_[ f(vﬁ) —a).

BeRT

Definition 7 For an integral dominant sl 1-weight A = Z?:l m;w; let S(A) be

the set of all multi-exponents s = (sg)gecp+ € Zgg such that for all Dyck paths
= (B(0), ..., B(k))

sp) gy + -+ sgr) <m; +mijr1+---+mj, (14)

where 8(0) = «; and B(k) = «;.

The space Vi‘ (1) is endowed with the structure of a cyclic Sz(n~-%)-module,
hence V(1) = Sz(n™4)/Iz(}) for some ideal Iz(A) € Sz(n™%). Our aim is to
prove that the elements f® v, s € S(1), span V7).

Let A =mjw; + --- + muw,. The strategy is as follows: f((A “)H) =0in
V7 ()) for all positive roots a, so foro =a; +---+a;j, i < j, we have the relation

(mi+--~4mj+1)
fa,Jr o € Iz(A).

(m)

In addition we have the operators e, ~ acting on VZ“ (1). We note that I7(A) is stable

with respect to the induced action of the e(m)
m) (mj+-+m;+1) . .
the operators e to fo, 1. o , we obtain new relations. We prove that these

on Sz(n™%) (Lemma 1). By applying

relations are enough to rewrite any vector f® v, as an integral linear combination
of f®v, withse S).
To simplify the notation we use the following abbreviations: we write just f; ;

, Sy +-ta)
for fo;+..+a;» i < j,and we write f( 7 for fa+++;/ .

By the degree degs of a multi-exponent we mean the degree of the corresponding
monomial f© = [li<icj<n /i (3”) in Sz(n™?), i.e. degs =) _s; ;.

We are going to define an order on the monomials in Sz (n™%). To begin with,
we define a total order on the f; j, 1 <i < j <n. We say that (i, j) > (k, ) if i > k



46 E. Feigin et al.
orifi =k and j > [. Correspondingly we say that f; ; > fi;if (i, j) > (k,1), so

Jon > facin > facin=1> fucon>--> 23> f22> fin > > f1,1.

We use a sort of associated homogeneous lexicographic ordering on the set of multi-
exponents, i.e. for two multi-exponents s and t we write s > t:

(i) if degs > degt,
(ii) if degs = degt and there exist 1 < iy < jo < n such that s;,j, > #;,, and for
i>ipand (i =igand j > jo) we haves; j =1t; ;.

We use the “same” total order on the set of monomials, i.e. f® > f® if and only
ifs>t.

Proposition 5 Letp = (p(0), ..., p(k)) be a Dyck path with p(0) = «; and p(k) =
;. Let s be a multi-exponent supported on p, i.e. s, =0 for o ¢ p. Assume further
that

k

Zsp(l) >mi+ -+ mj.
=0

Then there exist some constants ct € Z labeled by multi-exponents t such that

fO+> afV ez (15)

t<s

(t does not have to be supported on p).

Remark 1 We refer to (15) as a straightening law because it implies

fO==>"cf® inSz(n)/Iz() = VL.

t<s

Proof We start with the case p(0) = oy and p(k) = «, (so, k = 2n — 2). This
assumption is just for convenience. In the general case p starts with p(0) = «;,

it 1 .
(nittmy ) I7()) instead of

p(k) = o; and one would start with the relation fl j

the relation fl(";1+"'+m”+l) € I7()) below.

So from now on we assume without loss of generality that p(0) = «j and p(k) =
ay,. In the following we use the differential operators 8(§[k) defined by

f(k_)af,g(m_k), if f—ae AT and k <m,

. (16)
0, otherwise.

ao(tk)fém) _

The operators aé/‘) satisfy the property
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In the following we use very often the following consequence: if a monomial

fé:'”) . fﬂ(lm’ ) e I7(), then for any sequence of positive roots «j, ..., &g and any
sequence of integers ki, ..., ks € Z~ we have:

ok gl fgm0 e € Iz ().

Since fl(’mnlJr"'er”H)v;h =01in VJ () and sp) + -+ + Spky > m1 + -+ +my, by

assumption, it follows that

FLrotO) ¢ o).

1,n

Write 9" for 84"}, and for i, j =1,....n set

j n
Sej = Sij.  Sie= ) Sij.
i=1 =i

‘We first consider the vector

ar(:';l,nfl)a(so,n72) . 82(-1;,1)f](sp(0)+--.+sp(1<)) c IZ()\,) (17)

n—1,n N
By means of formula (16) we get:

a(S.,l) (sp(0)+"'+sp(k))_f(sp(0)+"'+sp(k)7s0,l) (Se,1)
2n 1,n —Jln 1,1

and

(50,2) 0 (Sa,1) 2 (SpO)FF5pk) _ (p@)t+5phk)—Se1 —562) ,(5e1) £(5e2)
aSn a2n 1,n _fl,n fl,l f1,2 .

Summarizing, the vector (17) is equal to

(Se,1) (Se,2) (Se,n)
w1 i S €1z,

To prove the proposition, we apply more differential operators to the monomial
(sn.l) (30,2) (So,n)

w1 ST . Consider the following element in I7(A) C Sz(n™%):
(52,6) 0(53,) (Sn,e) ,(Se.1) £(Se2) (Se.n)
A=31,1 81,2 ~~-81,n—1 L1 Jiz o Jin o (18)
Claim
A=Y "cifV wherecs=1. (19)
t<s

Now A € Iz7(A) by construction, so the claim proves the proposition.

Proof of the claim In order to prove the claim we need to introduce some more
notation. For j =1,...,n — 1 set

(S'Jrl,o) (s'+2,o) (Sn,n) (So,l) (5'0,2) (So,n)
Aj=0 0 A AT T A (20)
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so A; = A. To start an inductive procedure, we begin with A,_1:
An | = 8(% o) f(so l)f(so 2) f(v. n).

a(x) (y)

Now 5,6 = sp,n and 1 =0 for j #n, so

Se ) ( ., ) e.n"sn,n n,n
Ay = ;y 602) || flonsma) clonn), @1

We proceed with the proof using decreasing induction. Since the induction proce-
dure is quite involved and the initial step does not reflect the problems occurring in
the procedure, we discuss for convenience the case A, _; separately.

Consider A,,_», we have:

(Xo,n _Sn,n) (Sn,n)
1,n .

Anfz — affn 1 o)f(vo I)f(s‘o 2) .

Now o) L") =0 for j #n— Ln, o) _,fiw =0, and 9P (xy) =
Ejf:oa(k D(x)a D (y), so

Sn—1,e

(S.]) (50,2) (Son 1—Sn—1,01+¢) (Yon Sn,n— ) (sn—1,6—10) @) (Sn,n)
” -2 = Z f fln 1 f fn—l,n—l fn—l,n n,n. -

We need to control which divided powers f, (e_) can occur. Recall that s has support

inp.If e,y ¢ p,thens,_; ,—1 =0and s,_1,6 =5y—1,n, SO (" 1”)1stheh1ghest

divided power occurring in the sum. Next suppose «,—1 € p. ThlS implies ot , ¢ p
unless j =n — 1 or n. Since s has support in p, this implies

Sen =S1nt  +Su—1n+Sun=5Su—1n+Snn,

and hence again the highest divided power of f,, 1, which can occur is f,™ (s " b "),
and the coefficient is 1. So we can write
Sn—1,n
(3- l) (50 n 1—Sn—1, o+l) (Yo n—Sn,n—L) (Snfl.o_e) ) (Xn,n)
Apz = Z il fin R A
(22)
For the inductive procedure we make the following assumption:
A is a sum with integral coefficients of monomials of the form
(30 l) (So ) (se j+1— (Yo n—%) (t'+1,_'+l) j+1 +2) (tnfl,n) (tn,n)
1 ! fiih - Jin fidi f]ll ir2 e Ll ™ (23)
X Y

having the following properties:

(i) With respect to the homogeneous lexicographic ordering, all the multi-
exponents of the summands, except one, are strictly smaller than s.
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(i1) More precisely, there exists a pair (ko, £o) such that kg > j + 1, sgpe0 > kot
and sg¢ = txe for all k > kg and all pairs (kg, £) such that £ > €.

(iii) The only exception is the summand such that ¢ ,,, = s¢ ,, for all € > j 41 and
all m, and in this case the coefficient is equal to 1.

The calculations above show that this assumption holds for A,_1 and A,,_».

We start now with the induction procedure and we consider A;_| = al(sfl'ﬁ:)lA i

k ; . _
Note that 81(’])._1f1(’r2') =0for{ < j,and for £ > j we have 3{,1)]')—1f1(,qe) = fj(,lz)fl(,%é P
for p < g, and the result is O for p > q.

Furthermore, prj)_l k(q/é) =0for k> j 4 1, so applying al({’j)_l to a summand of

the form (23) does not change the Y -part in (23). Summarizing, applying 81(‘3.':)1 to
a summand of the form (23) gives a sum of monomials of the form

f(S.,l) (5-.j—l)f(3o,j—*) (Se.n—%) f([j,j)“.f(fj,n)

L o J1,j=-1 YL o n JsJ jn
X' Z
E1,j+1) g1, j+2) (tn.n)
Sirrjw Jjrrjaa - Jnn” (24)
Y

We have to show that these summands satisfy again the conditions (i)—(iii) above
(but now for the index (j — 1)). If we start in (23) with a summand which is not
the maximal summand, but such that (i) and (ii) hold for the index j, then the same
holds obviously also for the index (j — 1) for all summands in (24) because the
Y -part remains unchanged.

So it remains to investigate the summands of the form (24) obtained by applying
1) to the only summand in (23) satisfying (iii).

To formalize the arguments used in the calculation for A,,_> we need the follow-
ing notation. Let 1 <ky <kp <--- <k, <n be numbers defined by

0

ki =max{j: o; ; €p}.
For convenience we set kg = 1.

Example 2 Forp = (1,1, 01,2, .., %1 n—1, %10, 02,0, 03, X4 ps - . ., O ) WE have
ki=nforalli=1,...,n.

Since s is supported on p we have

ki
Sie = Z Sies Se 0 = Z Si g (25)

l=k;_ i ki) <€<k;

Suppose now that we have a summand of the form in (24) obtained by applying
31(‘;!'-_'1) to the only summand in (23) satisfying (iii). Since the Y-part remains un-

changed, this implies already #, » = Sp,n, ..., tj+1,j+1 =58j+1,j+1. Assume that we



50 E. Feigin et al.

have already shown ¢;, = sjn, ..., ¢,+1 = 8j¢y+1, then we have to show that
ljg = Sjto-
‘We consider five cases:

(i) €o > k;. In this case the root ; ¢, is not in the support of p and hence s; ¢, =
0. Since £o > kj > kj_1 > --- > ky, for the same reason we have s; ¢y =0

for i < j. Recall that the divided power of fl(*e) in Aj_y in (20) is equal to
Se,t0- NOW ¢,y = ;. ; 8i¢, by the discussion above, and hence f1 o) has

already been transformed completely by the operators 81 Si> ], and hence
N tjty=0=5j¢, )
(i) kj—1 < Lo <kj. Since £y > kj_1 > --- > ki, for the same reason as above we
have s; ¢, =0 for i < j, 50 5e,¢, = Z[>/ Si.¢o- The same arguments as above

show that for the operator 8( *) | only the power f1 Sito) is left to be trans-

formed into a divided power ofl fi.ey> SO necessarily 7, go <860 .
ese l
(iii) kj—1 =4£o=k;. In this case s; o = 5; ¢, and thus the operator 3 1 = 8 ’ 0

can transform a divided power f (*) in A; only into a power f i Eo w1th q at
most s ¢, . '
(iv) kj_1 =Ly < kj. In this case Sje = Sj05 + Sjeo+1 + -+ + Sjk;- Applying
8(5’ ')1 to the only summand in (23) satisfying (iii), the assumptlon tin =
Sins--stjeg+1 = Sje,+1 implies that one has to apply 81]. jl to f(*) and
(s, -7) ..
0, ;ijl : o fiy¥ (*) _ etc. to get the demanded divided powers of the root vec-

tors. So for fl(’? only the operator 8 o "1 is left for transformations into a

divided power of fij.ey» and hence ¢ ¢, < < Sj.o-
(v) €o < kj_1. In this case s ¢, = 0 because the root is not in the support. Since
tje =sj for £ > £y and s ¢ = 0 for £ < £( (same reason as above) we obtain

(Sj,.) _ (Z£>lo Sj-e)
751 =91 5 :
But by assumption we know that 8 o e)l is needed to transform the power f1 5.0

into f( )0

O—SJ,ZO

for all £ > £, so no d1v1ded power of 91 ;1 is left and thus ¢; ¢, =

It follows that all summands except one satisfy the conditions (i), (ii) above. The
only exception is the term where the divided powers of the operator 8;‘3‘:)1 are dis-
tributed as follows:

(5.1) (So,j—1) (4 (5j.7) (Se ) (Y',_'+1) (So,j+1—
fljll (1}11 1)(1;41 fljfrl )

(s ',n) (Se,n—%) (s i+1, '+1) (Sn,n)
"(al,j'—l 1,n )‘fj-‘:l,]{i—l creJnn

By construction, this term has coefficient 1 and satisfies the condition (iii), which
finishes the proof of the proposition. g
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Theorem 1 The elements f(s) vy with s € S(L) (see Definition T) span the module
VE(A).
VA

Proof The elements f®, s arbitrary multi-exponent, span Sz (n %), so the elements
f® vy, s arbitrary multi-exponent, span Sz (n=4)/Iz(A) ~ V7 (X). We use now the
Eq. (15) in Proposition 5 as a straightening algorithm to express f® vy, s arbitrary,
as a linear combination of elements f® v, such that t € S(A).

Let A =)/ ,mjw; and suppose s ¢ S(1), then there exists a Dyck path p =
(p(0), ..., p(k)) with p(0) =«;, p(k) =, such that

k

Zsp([) >mi+---+mj.
=0

We define a new multi-exponent s’ by setting

§ = Sq, ifaep,
o 0, otherwise.

For the new multi-exponent s’ we still have

k

D Spay > mitmj.
=0

We can now apply Proposition 5 to s’ and conclude

f(S/) — Z Ct’f(t/) in SZ(II_’G)/IZ()\.)v

s>t

where ¢y € Z. We get f(s) back as f(s) = f(s/) Hﬂgﬁp fﬂ(xﬁ). For a multi-exponent t’
occurring in the sum with ¢y 7 0 let the multi-exponent t and ¢; € Z be such that
cv f ®) Hﬁ@ fﬁ(sﬂ )= cf ® (recall (4)). Since we have a monomial order it follows:

FO=fOT] £ =3 ef® insz(n™)/1z(0). (26)

Bép s>t

Equation (26) provides an algorithm to express f® in Sz(n™¢)/Iz(}) as a sum of
elements of the desired form: if some of the t are not elements of S()), then we can
repeat the procedure and express the f® in S7(n™%)/Iz(%) as a sum of f® with
r < t. For the chosen ordering any strictly decreasing sequence of multi-exponents
(all of the same total degree) is finite, so after a finite number of steps one obtains
an expression of the form f©® = Yef ) in Sz (n™%)/Iz (%) such that r € S(1) for
all r. O
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6 The Main Theorem for SL,,

Theorem 2 The elements {f ® |'s € S(M)} form a basis for the module V()
and the ideal I7()) is generated by the subspace

(Uz(ot) fu " 1 <i < j<n—1).

As an immediate consequence we see:

Corollary 1

(i) V7 (A) is a free Z-module.

(ii) For every s € S(A) fix a total order on the set of positive roots and denote by
abuse of notation by f® € Uz (n™) also the corresponding product of divided
powers. The {f(s) vy | s € S(A)} form a basis for the module Vz()) and for all
s < 5" we have V7 (\); is a direct summand of Vz(\)y as a Z-module. (See (5)
for the filtration.)

(iii) With the notation as above: let k be a field and denote by Vi,(LA) = Vz (L) Q7 k,
Uk(g) =Uz(9) @7k, Upr(n™) =Uz(n") ®z k etc. the objects obtained by base
change. The { f® vy, | s € S(L)} form a basis for the module Vi (}).

Proof We know that the elements f® vy, s € S(1), span V7 (%), see Theorem 1.
By [6], the number £S()) is equal to dim V (1), which implies the linear indepen-
dence. By lifting the elements to Vz(A), we get a basis of Vz(X) which is (by con-
struction) compatible with the PBW-filtration: set

SO, = {se S(x) ‘ > sp §r},

BERT

then the elements f®v;, s € S(1),, span Vz(A),.
Let I C Sz(n™“) be the ideal generated by

it+etmj+1 . .
(Uz(w¥)o ful 7 1 <i < j<n—1),
by construction we know I C Iz(X). But we also know that the relations in /
are sufficient to rewrite every element in V7 (1) in terms of the basis elements

f®vy, s € S(A), which implies that the canonical surjective map Sz(n~)/I —
Sz(n7)/Iz(A) =~ Vz(}) is injective. O

7 Symplectic Dyck Paths

We recall the notion of the symplectic Dyck paths:
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Definition 8 A symplectic Dyck path (or simply a path) is a sequence
p=(BO).AM),....AK), k=0

of positive roots satisfying the following conditions:

(i) the first root is simple, 8(0) = «; for some 1 <i <n;
(ii) the last root is either simple or the highest root of a symplectic subalgebra,
more precisely B(k) =a; or B(k) = o7 for some i < j <m;
(iii) the elements in between obey the following recursion rule: If 8(s) = «p, 4 with
p,q € J (see (7)) then the next element in the sequence is of the form either
B(s + 1) =ap 441 0r B(s + 1) =apy1,4, where x + 1 denotes the smallest
element in J which is bigger than x.

Denote by D the set of all Dyck paths. For a dominant weight A = "'_, m;w;
let P(1) C R'fo be the polytope

If B(0) =, B(k) =, then

spo) +---+spuy <mi +---+mj,

if B(0) = a;, B(k) = o5, then ’
SgO) + -+ spry =<mi+ -+ my

P() = (a)a>0 | VP eD: 27

and let S()) be the set of integral points in P (L).
For a multi-exponent s = {sg}g>0, 5§ € Z>0, let f ®) be the element

FO=T] #57 e s2(07).

BERT

8 The Spanning Property for the Symplectic Lie Algebra

Our aim is to prove that the set f®v;, s € S(A), forms a basis of V7 (X). As a first
step we will prove that these elements span V7 (1).

Lemma 2 Let A =Y i, mjw; be the sp,,-weight and let Vz (L) C V() be the
corresponding lattice in the highest weight module with highest weight vector v;,.
Then

ottty —0, 1zi<jsn—1, (28)
flmitetmatly, — 0, 1<i<n. (29)
Proof The lemma follows immediately from the sl-theory. O

In the following we use the operators 30((k) defined by 8&1() (f ﬂ(m)) =0ifa=por
if the root vectors commute, and if «, y, B = o 4 y are positive roots spanning a
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subsystem of type A, then

o fﬂ(’"_k), ifk <m,

9k (m)y _ 30
¢ (fﬂ ) 0, otherwise. 30)
Ifa,y,a+ y,a + 2y span a subrootsystem of type By = Cp, then
(k) p(m—k) .
3(k)(f(m)) Iy fm , ifk<m, 1)
0, otherwise,
and
k k .
a(k) (f(m) )_ f( )fogn_izy), if k <m, 32)
ey 0, otherwise,
and
k k .
a(k)(f(m)) 2k )f(m ) ifk<m, a3
0, otherwise,
and
(k) (m—k)
Jaty favay
k) (pm) @ (b) (o) :
3( )(fa’izy)_ +Za-ﬁc->’—’§l—ck_ Cabcfa f f+2y’ ifk <m, (34)
0, otherwise,

with the coefficients ¢, p  chosen such that B(k)( f (TZ}/) ==+(ad e(k)( f (’4”-)2 y)). Note

that all the operators are such that B(k) +(ad e(k)) (see (8)—(13)).

In the following we often just write f; ; and fl instead of fy, ; and fa . We
use the same abbreviation for the differential operators and the mu1t1 exponents S0
we write 0; ; and 9; 7 instead of dy, y and 9y, -, similarly we replace S | and Sa 5
by s;,j and s;, Recall that o; 7 = o, (see (6)

Lemma 3 The only non-trivial vectors of the form g fo, a, B > 0 are as follows:
fora=a;j,1<i<j<n

Oisfi,j = fs+1,j, 1<s<], Os,j fi,j = fis—1, 1<s=], (35)

andforo=o.-,1<i<j<n

ij?
hishi7=fopj P=5<J disfi7=1V s J=5
Os5fi7=TFis-1. J<s,

dp17fi5=fis, P=s<], 3 smfij=VJiss J=s,

aj,s—lf,‘j: fisz, J<s.
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Let us illustrate this lemma by the following picture in type Cs.

e} o o o o [ ] ()
L] e L] ° L]
o o o

Here all circles correspond to the positive roots of the root system of type Cs in
the following way: in the upper row we have from left to right 11, ..., @15, ¢ I
c 0T, in the second row we have from left to right @z 2, ..., a2 5, Ay g0 7,
and the last line corresponds to the root a5 5. Now let us take the root o 13 (which
corresponds to the fat circle). Then all roots that can be obtained by applying the
operators dg are depicted as filled small circles.

Theorem 3

(i) The vectors f® vy, s e S(L) span Vi ().
(ii) Let Iz(A) = Sz(n™)(UzmMR), i.e. Iz()) is the ideal generated by the ele-
ments obtained from R by the Uz(n)-action, where

iteetmj+1 . . e .
9%=span{.og;r"_lﬁr +m’+),1§t§J§n—l, flmit +m”+1),1§z§n}.

There exists an order “>pnon” on the ring Sz(m™%) such that for any s ¢ S(L)
there exists a homogeneous expression (a straightening law) of the form

fO=>" af®enm. (38)

S>mont

Remark 2 1In the following we refer to (38) as a straightening law for Sz(n™%) with
respect to the ideal I7()). Such a straightening law implies that in the quotient ring
Sz(m™%)/Iz(A) we can express f ) as a linear combination of monomials which
are smaller in the order, but of the same total degree since the expression in (38) is
homogeneous.

First we show that (ii) implies (i):
Proof [(ii) = (i)] The elements in R obviously annihilate v € V7 (1), and so do

the elements of Uz (n™)9R, and hence so do the elements of the ideal I generated by
Uz(n™)MR. As a consequence we get a surjective map S(n~)/I — Vi‘ Q).
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Assume s ¢ S(1). We know by (ii) that f® =3 c(f® in Sz(m™9)/I.
If any of the t with nonzero coefficient c¢ is not an element in S(A), then we can
again apply a straightening law and replace f® by a linear combination of smaller
monomials. Since there are only a finite number of monomials of the same total
degree, by repeating the procedure if necessary, after a finite number of steps we
obtain an expression of £ in Sz (n™%)/I as a linear combination of elements f®,
t e S(1). It follows that { f® |t € S(A)} isa spanning set for Sz (n™%) /1, and hence,
by the surjection above, we get a spanning set { f Oy, | te S} for V7). O

To prove the second part we need to define the total order. We start by defining a
total order on the variables:

fu<ho<-<finmi<fin<fi;m<-<hs<hi
e e <
< fam2an—2 < fa—2n—1 < fa—2n < [y 0771 < fuion
< Ja—tn—1 < Ja—tn < fy_1 771

< fans 39

so, given an element fy y, the elements in the rows below and the elements on the
right side in the same row are larger than f; .

Remark 3 If we omit in (39) above the elements fi,]’ i=1,....n,i<j<n-—1,
then we have the order in the case g = sl,,.

We use the same notation for the induced homogeneous lexicographic ordering

on the monomials. Note that this monomial order > is not the order >,on We define
now. Let

J J
Se,j = ZS,‘M,', S.j = Zsij’
i=l1 i=1
n n—1
Sie = ZS,',J' + Zsij'
Jj=i Jj=i

Define a map d from the set of multi-exponents s to Z’éo:
d(S) = (Sn,e) Sn—1,05-++»51,0)-
So, d(s)i = sn—i+1,e- We say d(s) > d(t) if there exists an i such that
ds)1=d®)1,...,d(s)i =d(1);,d(s)i+1 > d®)i11.

Definition 9 For two monomials f® and f® we say f©® >yon f@® if
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(a) the total degree of £ is bigger than the total degree of f¥;
(b) both have the same total degree but d(s) < d(t);
(c) both have the same total degree, d(s) = d(t), but f©® > f©.

In other words: if both have the same total degree, this definition means that £
is greater than @ if d(s) is smaller than d(t), or d(s) = d(t) but f® > f® with
respect to the homogeneous lexicographic ordering on Sz(n™).

Remark 4 1t is easy to check that “>o,” defines a “monomial ordering” in the
following sense: if f©® >pon f® and f™ =£ 1, then

f(s+m) >mon f(t+m) >mon f(t)-

By abuse of notation we use the same symbol also for the multi-exponents: we
write 8 >mon t if and only if f©® >0, f©.

Proof of Theorem 3(ii) Let s be a multi-exponent violating some of the Dyck path
conditions from the definition of S(A). As in the proof of Theorem 1, it suffices to
consider the case where s ¢ S(A) and s is supported on a Dyck path p and s violates
the Dyck path condition for S(A) for this path p.

Suppose first that the Dyck path p is such that p(0) = «;, p(k) = «; for some
1 <i < j < n.Inthis case the Dyck path involves only roots which belong to the Lie
subalgebra sl C sp,,, and we get a straightening law by the results in Sect. 5. By
(19) and Lemma 3, the application of the d-operators produces only summands such
that d(s) = d(t) for any t occurring in the sum with a nonzero coefficient. Hence we
can replace “>" by “>pon” in (15), which finishes the proof of the theorem in this
case.

Now assume p(0) = «;; and p(k) = o) for some j > i. We include the case
Jj = n by writing o, , = o 7. We proceed by induction on n. For n = 1 we have
sp, = sly, so we can refer to Sect. 5. Now assume that we have proved the existence
of a straightening law for all symplectic algebras of rank strictly smaller than n. If
i > 1, then the Dyck path is also a Dyck path for the symplectic subalgebra L =~
$Po,_o(i—1) generated by ey, foy o Poyyr | <k <n. Let nz, n; etc. be defined by
the intersection of n™, n~ etc. with L and set A, = Zzzi mywg. Itis now easy to see
that the straightening law for f® viewed as an element in Sz, (nZ’a) with respect to
I7.1,(Ar) defines also a straightening law for f ©) viewed as an element in Sz(n™%)
with respect to I7(A).

So from now on we fix p(0) =« and p(k) =, ; for some i € {1,...,n}. Fora
multi-exponent s supported on p, set

k

E:ZSp(l) >my+ -+ my.
=0
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Obviously we have f ey (1). Now we consider two operators

(Se7t5ie) (5e) (Sesn—1) o(Sen—1+Se7) (Se.its5, 757)
Ap=2,7, LT O o 0

83 82

(So.i—l) (S. 2) o (Se,1)
' 81,2 8 81 2

81

and

. a(52,6) 0(s3,6) (Si—1,0)
Az.—8]’] 81,2 ...3],1.72,

and we will show that

MM D =9+ Y af® (40)

S>mont

with integral coefficients c¢. Since Ay A f %) ¢ I7()), the proof of (40) finishes

the proof of the theorem. A first step in the proof of (40) is the following Lemma 4
below.

Recall the alphabet J = {1, . n—1,...,1}. Let g1,...,q; € J be a se-
quence of increasing elements deﬁned by

gr =max{l € J : ax; €p}.

For example, g; = i. All roots of p are of the form

QL1 e s Ol gy s 02 grs e e s O s v vy Oigi g5 evns Qg Il
/ (Se, i) Sigi_{)
Lemma 4 Set f(S) — 1(’5101) (So, 2) fl q"h TSigi_q f‘l’;l?fl . "fif;l.l)’ then
AT =10+ 3 ar®. @1)

s">mont

If fO,t+£5¢, is a monomial occurring in this sum, then either there exists an in-
dex j such that d(t); > 0 for some j € {1,2,...,n —i}, or d(t); =0 forall j €

{1,2,...,n—i}andd(t),,_jH>s,-,.,ord(t)—d(s)andf"'“f(’um Ll

i+1 i
(sii) p(Siiv1) (S”)
L S

i,i

Corollary 2 If '+ fs is a monomial occurring in (41) then either Ay ft =0, or
As fis a sum of monomials f* such that f$ >=non f¥.

Proof of the lemma One easily sees by induction that

(Z) (5-1) (50,2) (Sll 1) p(X— Se,1 —Se, 2" Se,i— 1)
B(f ) fll f],2 fll 1 f
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Note that the roots used in the operator are o 3, ..., ;, and they are applied to
f1.1 of weight oy 7. In terms of (10)-(13), we apply E)Siy to f at2y> SO rule (11)
applies.

Since a1, j —a1¢, 1 < j <i,i <€=<n,and o j — o 7 1<j<i,i<{<n,
and a1,; — a1, 1 < j <1, are never positive roots, one has

(54,7+5i0) (Se,1) ,(5e,2) (Se,i—1)
92 838 ( L1 Ji2 e Ji- ) =0,
£
x) (¥ =501 =50 2—"=50,i~1)

so it remains to consider f 8 8382( f ).

To better visualize the followmg procedure, one should think of the variables f; ;
as being arranged in a triangle like in the picture after Lemma 3, or in the following
example (type Cq):

Ll fial Al fal 3L 5] Al

22| f23) f24 fo3| fon (42)
f33| /34| /33
)

With respect to the ordering “>", the largest element is located in the bottom row
and the smallest element is written in the top row on the left side. We enumerate the
rows and columns like the indices of the variables, so the top row is the 1-st row, the
bottom row the n-th row, the columns are enumerated from the left to the right, so
we have the 1-st column on the left side and the most right one is the 1-st column.
We refer to row k, column j as the (k; j) entry. Similarly, we refer to row k, column
j as the (k; j) entry.

The operator 01,4, 1 <g <n—1,killsall f ; for1 < j <gq, d1,4(f1,j) = fg+1, j
for j =g +1,....,q +1 (tule (9) applies), d14(f, ;) = f; 57 for j =1,.
(rule (9) applies), and 91 4 kills all f; ¢ for k > 2. Because of the set of indices of

Y- ., 02 Sei—
the operators occurring in 8, the operator applied to f, e

increases the zero entries in positions (1; i) through (1; 2). As a consequence, the
application of 8, produces the sum of monomials

(V.H‘V.vi_) (S-.n—2+s.yn,) (Se,n—1-FSe, ,,) k
f(X)fle H"'flﬁ lf l +ZC A

where the monomials £ occurring in the sum are such that the corresponding tri-
angle (see (42)) has at least one non-zero entry in one of the positions between the
(i + 1)-th and the n-th row (counted from top to bottom). This implies d(k); > 0

for some j =1,...,n —i. The operators §3 and 8(5" i) do not change this prop-

erty because (in the language of the scheme (42) above) the operators 9 ij used to
compose §3 either kill a monomial or, in the language of the scheme (42), they sub-
tract from an (k, f) entry and add to a (k, j — 1) entry. The operator 9y ;—; subtracts
from the entries in the top row and, since the entries in the positions (1,7 — 1) up
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to (1, é) are zero, adds to the entries in the i-th row. The only exception is 91 ;1

applied to f; 1, the result is f) ;. It follows that the monomials f &) occurring in

7HSie
3]( bl' o )83 £® have already the desired properties because we have just seen that

d(k/)J >0forsome j=1,...,n—1i.
So to finish the proof of the lemma, in the following it suffices to consider

xo8e7tSie) (Se,i+Sq 757) (So,n—2F5 777 (Sen—1+5e.n) B
Froi 83f1’i+—1 .“fln f f11
(S-.Z+Si~') (So,i) (Sc,i+1) (Yon) .n— l) (So.m) (So.zT)
=Y AT A fia fln rohm AT @3

Note that the operators in 83 are of the form 9., j =i 4+ 1,...,n, and they are

i
appliedto f} 7, £ =i+1,...,n,s0 8j(kj)f(p) Ofor £ # j and for j =f we seto =

o5 Y =011, 8] j Ba, f1 J= Ja+y, sorule (10) applies and the coefficient in
(43) is 1.

It remains to consider the operator 8 s 1 ). There are three possibilities: apply-
ing 91 ;—1 to the monomial above increases the degree with respect to the variables
fi.x, or the operator is applied to a variable killed by the operator, or the opera-
tor is applied to a factor f| i, in which case the result is f; ; (note that in this
case rule (11) applies). So the right hand side of (43) can be written as a linear
combination )_ ¢k f &) of monomials such that d (k) ; j=0for j=1,...,n—iand
d(K)n—i+1 = Sie-

It remains to consider the case where d(K),—;+1 = s;... This is only possible
if 91,1 1s applied 8, j-times to ff”{, in which case d(k) has only two non-zero
entries: d(k); = X — s;o and d(K)p—i+1 = si.e, S0 d(k) = d(s'). If k # &, then

(tll) ([li ) (tll) (ll) (l,i ) (SII)
necessarily f; " fi iy i < UL 8 .
Proof of the corollary The operators used to compose A, do not change anymore
the entries of d(t) for the first » — i + 1 indices.

Suppose first t is such that there exists an index j such that d(t); > 0 for some
Je{l,2,....,n—i}ord(t);; > si.. By the description of the operators occurring

in A;, every monomla] f ® occurring with a nonzero coefficient in A, f® has this
property too and hence f©® =00 f®.

Next assume d(t) = d(s') and f("'"')fl(i"ﬁ') : ..f fl(f”)fl(:::l) , fz(:”)
Recall that t; ;= = --- =t; 7 = 0. It follows that the operators occurring in Ap

always only subtract from one of the entries in the top row and add to the entry
in the same column and a corresponding row (of index strictly smaller than i). It

follows that all monomials f® occurring in A,(f®) have the property: d(k) =

. t. - . L. -
d(S) Since fl(iu)fl(zl_:jl—l) f‘l(;”) < f-l(j”)fl(fl_‘i-{—l) f‘l(;”), it follows that f(s) .

£® and hence f© >pon f®. O

Continuation of the proof of Theorem 3(ii) We have seen that, in order to prove
Theorem 3(ii), it suffices to prove (40). Recall the definition of the multi-index (s)
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in Lemma 4:

(Se \qi—1 " Si.q; 1) (si q; 1) (Y,' [)

) _ (m) ($0.2) gi gi s;
fo= f12 f“hl frgi e

i,i

(44)

To prove the theorem it remains to prove (using Lemma 4 and Corollary 2) for
f ) that Ay f &) is a linear combination of £® with coefficient 1 and monomials
strictly smaller than £®. The following lemma proves this claim and hence finishes
the proof of the theorem. O

Lemma 5 The operator Ay := 8“2 ')81(s%') 81(2 12') applied to the monomial

f ) (see (44) for the multi-index (s')) is a linear combination of ® and smaller
monomials:

Af O = O+ 3 . (45)

S>mont

Proof First note that all monomials f® occurring in A, f &) have the same total

degree. Recall that s == s’l = 0. It follows that the operators occurring in

Ay always only subtract from one of the entries in the top row and add to the entry
in the same column and a corresponding row (of index strictly smaller than i and
strictly greater than 1). It follows that all monomials f® occurring in A»(f CO))
have the same multidegree d(s), in fact, we will see below that /S is a summand
and hence d(k) = d(s).

So in the following we can replace the ordering >pon by > since, in this special
case, the latter implies the first.

The elements f; ; and fl 7 2 <i < j <n, are in the kernel of the operators 91
for all 1 <k <n, and so are the variables f1 ;, j <k in the first k columns.

The operator 91, 1 <k <n, “moves” the variables fi j, k+1 < j <n from the
first row to the variable fi1 ; in the same column, in this case rule (9) applies.

The operator 91 ¢, 1 <k <n “moves” the variables f; - g k+ 1< j <n from the
first row to the variable f; , 7 in the same column. Note that here rule (9) applies,
except for j =k + 1, in this case set rule (10) applies.

For j <k, the operator makes the variables switch the column, it moves the
variable f jto the variable f fiz] in the j-th row and (k + 1)-th column. In this
situation rule (9) applies, except if j = 1. But note that j = 1 can be excluded in
our case because j = 1 implies i = 1 for the path, and this implies that A, is the
identity operator, so there is no operator 9 x in this case.

We proceed by induction on i. If i = 1, 2, then A, is the identity operator, f©® =
f &) and hence the lemma is trivially true. Now assume i > 3 and the lemma holds
for all numbers less than i. We note that the monomial

(s1,1) (Sl,q) (5241) (5241) (32q) (32q)
f 'fllIll ( 1flqll' 2flqzz)

(si Lgj_ 2) (si Lg; 2) (SI Lg;_ 1)

—Lgj_ (Si—1,¢;_y) (Si,g;_y) (s:7)
..... (“ ; flq,-,z lz S flq,-,llq l)(fi,qull o f )

ii
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is equal to f* (only the rules (9) and (10) apply) and appears as a summand in

As £©). Our aim is to show that all other monomials in A, f© are less than £,
All monomials share the common factor ( fi(;ifﬁ”) ... ]‘i(;i‘;)), the maximal vari-

able smaller than the ones occurring in the divisor is the variable f;_ 1,qi—, - Note

that if j <i — 1 then for any g € J the variable 0, ; f1,4 lies in the (j + 1)-th row,

note that j 4+ 1 < i. The operator 01 ;7 is applied s;_1 o-times, the unique maximal

L. . i—le /.
monomial in the sum expression of BI(S;. _12’ ) £ is

(Se,1) 1(5e,2) (Se,;_p =Si—1.g;_3) 1 (Si-1.4;_) (Si—1.4;_1) (Sig;_y) (5;7)
1,1 f1v2 g (fi—lyqi—z "'fi—l,qi—l )(fi»(b'—l fzz_ )’

because applying the operator dy ;> to any of the variables fi ; such that j #
qi—2,..-,4qi—1, gives a monomial smaller in the order >, and the exponents s; 1 ;,

j=qi_2,...,qi_1, are the maximal powers such that 81(??_2 can be applied to fl(_yj)
because either g;_» < j < gi_1, and then y =5, j = s;_1,j, or j = g;i_1, then
Si—1,4;_; 18 the power with which the variable occurs in f ©), or J = qi—2, then
only the power s;_1 4,_, of the operator is left.

Repeating the arguments for the operators 91 ;3 etc. finishes the proof of the

lemma. O

9 The Tensor Product Property
In the following section let g = SL, or Sp,,.

Proposition 6 For two dominant weights A and w the Sz(n™“)-module V; (1 +
W) is embedded into the tensor product Vg A) ®7 Vg () as the highest weight
component, i.e. there exists a unique injective homomorphism of Sz(nw™%)-modules:

Vi 4+ w) = Vi) ® Vi () suchthat vy, — v ® vy. (46)

Proof Using the defining relations for V(A + w), it is easy to see that we have a
canonical map V7 (A + ) — V7 (1) ® V7 (u) sending vy4, to vy ® vy,. We know
that V7 (A) C V¢(A) and V7 (u) C V¢(u) are lattices in the corresponding complex
vector spaces, and, by [4] and [5], we know that S(n™%) (v ®v,) C VAA) @ V(1)
is isomorphic to V¢(X + w), the isomorphism being given by

VO + 1) dmaupyy > mu, @u, € V) @ V() form e S(n™9).

It follows that the induced map V(A + ) — V7 (1) ® V7 () between the lattices
is injective and hence an isomorphism onto the image. g
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On the Subgeneric Restricted Blocks of Affine
Category O at the Critical Level

Peter Fiebig

Abstract We determine the endomorphism algebra of a projective generator in a
subgeneric restricted block of the critical level category O over an affine Kac—
Moody algebra.

1 Introduction

This article complements the results of the articles [1] and [2]. There we studied the
structure of restricted critical level representations for affine Kac—-Moody algebras.
The two main results we obtained are the following. The first is a multiplicity for-
mula for restricted Verma modules with a subgeneric critical highest weight, and the
second is a linkage principle together with a block decomposition for the restricted
category O. In this article we use these results in order to describe the categorical
structure of the subgeneric restricted blocks of O.

We would like to be able to describe the structure of all restricted blocks and to
establish more general multiplicity and character formulas. Generically, a restricted
critical level block contains a unique simple object which is, moreover, projective.
This implies that such a block is equivalent to the category of C-vector spaces.
The next simplest situation is already much more involved. Each subgeneric block
contains infinitely many simples. Every subgeneric restricted Verma module has a
two-step Jordan—Holder filtration, and the restricted version of BGGH-reciprocity
(see [2]) tells us that a restricted subgeneric indecomposable projective object is a
non-split extension of two Verma modules. In this note we describe the endomor-
phism algebra of a projective generator in such a subgeneric block.

2 Affine Kac—-Moody Algebras

In this section we collect the main structural results on affine Kac—-Moody algebras.
Let g be a simple complex Lie algebra and let g be the corresponding affine Kac—
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Moody algebra. As a vector space, § = g ®c C[t,t7']@® CK & CD, and the Lie
bracket on g is determined by the rules

[x@™ y@" ]| =[x, y] @ t"" + mbp, _n(x, YK,
[K.3§]= {0},
[D,x ®t”] =nx®1*t",

where x and y are elements of g, m and n are integers, d,,p, is the Kronecker symbol,
and (-, -): g x g — C denotes the Killing form on g.

Let h C g be a Cartan subalgebra and b C g a Borel subalgebra containing b.
Then

@tC[t] @b CK ®CD

denote the corresponding affine Cartan and Borel subalgebras of g, respectively.

2.1 Affine Roots

We denote by V* the dual of a vector space V. Let R C h* be the set of roots of
g with respect to h. We consider h* as a subspace in h* by letting each A € h* act
trivially on CK @ CD. We define § € h* by

8(h & CK) = {0},
8(D)=1.
The set R CE* of roots of g with respect tolh\is
ﬁ:{a—i—né le e R,neZ}JU{né|neZ,n#0}.
The subsets
R®:={a+ns|acR,neZl,
R™.={(ns|neZ,n+#0}

are called the sets of real roots and of imaginary roots, resp.
We denote by RT C R the positive (finite) roots, i.e. the set of roots of b with
respect to f. Then the set of positive affine roots, i.e. the set of roots of b with respect

to b, is
Rt:={a+ns|aecR n>1JURTU{nS |n> 1}

The partial order “<” on /h\* is defined as follows. We have A < p if u — A is a
sum of positive affine roots.
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2.2 The Invariant Bilinear Form

There is an extension of the Killing form (-, -) on g to a symmetric bilinear form on
g. It is determined by the following:

(x@1", y®@1™) =8p_m(x,y),

(K,9®c C[t,t7']®CK) = {0},

(D,g®c C[t,t™']®CD) = {0},
(K,D)=1

for x, y € g and m, n € Z. This form is again non-degenerate and invariant, i.e. it
satisfies ([x, y]l,z) = (x, [y, z]) for all x,y,z € ﬁ.AMoreover, it induces a non-
degenerate bilinear form on the Cartan subalgebra ) and hence yields an isomor-
phism H; H*. We get an induced symmetric non-degenerate bilinear form on the
dual bh*, which we again denote by the symbol (-, -).

Remark I The definitions immediately imply that the isomorphism H — /I)\* from
above maps K to §, i.e. for any A € h* we have

MEK) = (8, 1).

In particular, (§, ) =0 forany y € R.

2.3 The Weyl Group

For each real affine root & + né we have (o + né, a + nd) = (a, @) # 0, hence we
can define the reflection

—~

So,n - h* —b*

RGP GIL S
(a, )
This is a reflection as it stabilizes the hyperplane (-, @ 4+ né) = 0 and maps « + né
to —o — né.

We denote by Wc GL(E*) the affine Weyl group, i.e. the subgroup generated
by the reflections sq,», for « € R and n € Z. The subgroup W C w generated by
the reflections s 0 with & € R leaves the subset h* C h* stable and can be identified
with the Weyl group of g.

Let p € h* be an element that takes the value 1 on any simple affine coroot. This
element is defined only up to addition of a multiple of §. Nevertheless, nothing in
what follows will depend on the value of p on D in an essential way.
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The dot-action W x /h\* — H*, (w, A) = w.A, of the affine Weyl group on E" is
obtained by shifting the linear action in such a way that —p becomes a fixed point,
i.e. it is given by

wA:=wh+p)—p

for w € W and A € h* Note that since (5, o + nd) =0 we have sy ,(8) = 6 for all
o + né € R™. Hence w(8) =6 for all w € W (so the dot-action is independent of
the choice of p).

3 The Affine Category O

We denote by O the full subcategory of the category of representations of g that
contains an object M if and only if it has the following properties:

e M is semisimple under the action of b
e M is locally finite under the action of b.

The first condition means that M = @Aeg. M,, where M, ={m e M | h.m =

A(h)m for all h e/:h\}, and the second that each m € M is contained in a finite-
dimensional sub-b-module of M.

For any A € h* we denote by A(L) the Verma module withAhighest weight A,
and by L(A) its unique irreducible quotient. The L(4) for A € h* are a system of
representatives of the simple objects in the category O.

Remark 2 Most often the Verma modules are denoted by M (A) instead of A(L).
However, the notation A()) appears in categorical contexts in order to signify stan-
dard modules. The dual standard modules are then denoted by V(X). This view-
point, in particular, was taken in the article [2].

For an object M of O and a simple object L in O we denote by [M : L] € N the
corresponding Jordan—Holder multiplicity, whenever this makes sense (see [3]). In
general, we write [M : L] # 0 if L is isomorphic to a subquotient (i.e. a quotient of
a subobject) of M.

3.1 Projective Objects in O

In order to describe the categorical structure of O we want to describe the endomor-
phism algebra of a projective generator. Now O does not contain enough projec-
tives. Fortunately, it is filtered by “truncated subcategories” that do contain enough
projectives, which for us is good enough.

In order to define the truncated subcategories, we need the following topology
on h*
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Definition 1 A subset 7 of H* is called open if it is downwardly closed with re-
spect to the partial order “<”, i.e. if it satisfies the following condition: If A € J
and 1 < A, then u € J. An open subset J of /h\* is called bounded (rather, locally
bounded from above), if for any A € J, the set {v € J | v > A} is finite.

Now we can define the truncated subcategories.

Definition 2 Let 7 C H* be open. Then 07 is the full subcategory of O that con-
tains all objects M with the property that M, # {0} implies A € J.

Forany 1 € H* the set {u € H* | w <A} is open. We use the notation O=" instead
of OHeh*In=2} Note that L () is contained in O7 if and only if A € 7. The inclu-
sion functor O — O has a left adjoint that we denote by M — M J 1t is defined
as follows: Let Z :E* \ J be the closed complement of 7 and let M7 C M be the
submodule generated by all weight spaces M, with A € Z. Then set

M7 = M/M.
This definition clearly is functorial. We will need the following notion.
Definition 3 Let M € O. We say that M admits a Verma flag if there is a finite
filtration
O=MoCM C---CM,=M
with M; /M;_1 = A(u;) for some w1, ..., Uy eﬁ*.

In case M admits a Verma flag, the Verma multiplicity (M : A(u;)) = #{i €
{1,...,n}| u; = n} is independent of the chosen filtration. The following is proven
in [8] (see also [4]).

Theorem 1 Let J C h* be open and bounded and let . € J .

1. There exists a projective cover PJ(A) — L(\) in 07 and the object Pj(k)
admits a Verma flag.
2. BGGH-reciprocity

T _ 1AL, ired,
(P (A)-A(u))—{o’ g

holds for the Jordan-Holder and Verma multiplicities.
If J' C J is an open subset, then PIT =PI ().
4. Forany M € O such that [M : L())] is finite we have

et

dime Homg (P (1), M) =[M : L(V)].
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3.2 The Block Decomposition of Category o

We quickly summarize the basic facts about the block decomposition of category
O. Recall that the simple isomorphism classes are parametrized by h* by means of
their highest weight. The block decomposition in particular yields a partition of the
simple isomorphism classes. In terms of their parameters, this partition is given as
follows.

Definition 4 Let “~” be the equivalence relation on h* that is generated by the
following. We have A ~ p if there exists a positive affine root y € RtandneZ
such that 2(A 4+ p,y) =n(y,y)and u =1 — ny.

For an Equivalence class A C /h\* with respect to “~” we let 1) A be the full subcat-
egory of O that contains all objects M with the property that [M : L(A)] # 0 implies
A € A. The linkage principle (see [5]) together with BGGH-reciprocity mentioned
above now yields the following.

Theorem 2 The functor

l_[ 6/\ e 6,
Aea*/N

is an equivalence of categories.

3.3 The Level

As the central line CK of § is contained in /h\ it acts on each object M of o by
semisimple endomorphisms. For each k € C, we denote by M the eigenspace of
the action of K with eigenvalue k. We define h ; C b* as the affine hyperplane that
contains all A with A(K) =k, so M = @Aeb* M,,. The eigenspace decomposition

M = @ke(c M is a decomposition into sub-g- R -modules of M. When M = My for
some k we call k the level of M, and we let O be the full subcategory of O that
contains all objects of level k.

If & ~ p, then A and p differ by a sum of affine roots. As y (K) =0 for any
y € R, for each equivalence class A there is a k = k4 with A C by, i.e. each block
9} 4 determines a level.

There is a specific level that we denote by “crit” and that is distinguished in more
than one respect. It is crit = — p(K) (this is another instance of the above mentioned
independence of the choice of p). In the usual normalizatiqr\l, this is —h", where
h" denotes the dual Coxeter number of g. The elements in b} are called critical

weights, and, analogously, we call an equivalence class A critical if A C /f)\grit.
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3.4 The Structure of Equivalence Classes

For any two affine roots & and 8 we have 2(8, «) € Z(«, ). Since equivalent
weights differ by a sum of affine roots, this implies,

{a € Il?\l 20+ p, @) eZ(a,a)} = {a € §| 2(+ p, ) eZ(a,oz)}
whenever A ~ u. If A is a ~-equivalence class, we can hence define
R(A):={a e R|2(A + p, @) € Z(a, @) for some (all) A € A}.

Lemma 1 Let A be a ~-equivalence class. Then the following are equivalent:

1. § € R(A),
2. 786 C R(A),
3. Aliscritical,i.e. A C

o~

*
crit”

Proof Note that (§,5) =0.Let A € A. Wehave § € ﬁ(A) if and only if (A + p, §) =
0. This is the case if and only if (A + p,nd) =0 for all n € Z, i.e. if and only if
75 C I?(A). Finally, (A + p, §) = (A + p)(K) by Remark 1, and this equals O if and
only if L(K) = —p(K), i.e. if and only if A is critical. O

Lemma 2 Suppose that A is critical and a € R. Then the following are equivalent.

l. x+né e E(A)forsomen e,
2. a+née R) foralln € Z.

Proof Note that (o + né,« + né) = (o, ), as (8, y) = 0 for any affine root y by
Remark 1. As X is critical, (A + p, §) = 0. Hence, both statements are equivalent to
200+ p,a) € Z(a, o). O
For any ~-equivalence class A we define
W(A) = (san | @ +n8 € R(A)).
Lemma 3
1. Suppose that A is not critical. Then

A=W(A).A

forany ) € A.
2. Suppose that A is critical. Then

A=W(A)\+Z8

forany A € A.
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Proof Let A, EE*, y € R* and n € Z be as in Definition 4. Then A — nw=ny
and 2(A + p, y) =n(y, y). Note that if y is real, then A =5, .. If y is imaginary,
then y = md for some m # 0 and (y,y) =0 and (A + P> 8) = 0 which implies
A+ né ~ A for all n € Z. This, together with the fact that R(A) R(/,L) implies the
statements. d

4 Extensions of Neighbouring Verma Modules

In this section we collect some results about extensions of A(A) and A(u) in @,
where A and p are “neighbouring”. By this we mean the following.

Definition 5 The elements A, u € H* are called neighbouring if the following con-
ditions are satisfied:

1. Thereis « € RT™ N R™ and n € N with 2(A, ) = n(e, @) and 0 = A + ne. In
particular, A ~ p and A < .
2. There is no v € h* that is ~-equivalent to both A and u with A <v < u.

Our first result is the following:

Lemma 4 Suppose that A and |t are neighbouring and A < . Then [A(n) :
L)]=1.
Proof Let

AWy =MoDM{ DMy D ---

be the Jantzen filtration (for this and the sum formula below, see [5]). Then
A(u)/ M1 = L(u). The Jantzen sum formula says

ZchM = Z chA(u — na),

i>0 aeRT neN,
2(utp,a)=n(a,a)

where the roots should be counted with their multiplicities (i.e. the imaginary roots
should be counted rk g-times). Now on the right hand side, A(X) occurs exactly
once, and otherwise only A(v) appear with v # A. Hence [M] : L(A)] = 1, so
[A(pw): L) =1. O

Lemma S Suppose that A and p are neighbouring and A < . Then

dlmCExt (A, A(w) = 1.

Proof Tt is enough to calculate Ext! in the subcategory O=F of O. By Lemma 4 and
BGGH-reciprocity we have (P(A)=F: A(n)) = (P(M)=F : A(L)) = 1 and all other
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multiplicities are 0. Hence there is a short exact sequence
0— A(W) = P(W)=HF - PA)=H > AL) =0

which is already a projective resolution of A(A) in O=h, Applying Homz<,. (-, A(w))
to 0 — A(u) — P(A)=F — 0 yields

0 — Homg-,, (P(M)=", A(w)) = Homp, (A(w), A(w)) — 0.

Both Hom-spaces are one-dimensional (the first again by Lemma 4), and each non-
zero homomorphism P (1)=# — A(u) factors through an inclusion A(L) — A(w),
hence has A(u) C P(1)=" in its kernel. So the middle homomorphism in the above
sequence vanishes, so the dimension of ExtlAw (AA), A(w)) is 1. U

We denote by Z(A, u) € O the (unique up to isomorphism) non-split extension
of A(u) and A(X) for neighbouring A and .

Lemma 6 Suppose that A and p are neighbouring and that A < jv. Then P=H()) =
Z(x, p).

Proof By BGGH-reciprocity, P=H(}) has a two-step Verma flag with subquotients
isomorphic to A(u) and A(X). This filtration is non-split, as A(w) is not a quotient
of P=H()), since L() is not. Hence the claim. Il

Note that for any A, u € H* we have dim¢c Homz(A(L), AL +né)) < [AA +
nd) : L(})]. We now study the particular situation in which this is an equality.

Lemma 7 Suppose that A and | are neighbouring and A < . Let n > 0 and sup-
pose that

dimc Homga (A, Ak +n8)) =[AQ. +nd) : L(1)].

Then every homomorphism Z (A, 1) — A(A +nd) factors through a homomorphism
A(A) = A(A+nd).

Proof Let J be open and bounded and suppose it contains all relevant weights A,
w and A + né. By the previous lemma, we have a surjection PJ(A) — Z(\, ). So
the chain of surjections

PI () = Z(h, 1) = AV
induces a chain of injections
Hom@(A(A), AA+ n(S)) — Hom@(Z(k, w), A+ n8))

< Homg(P7 (1), AG. +nd)).
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Now the dimension of the space on the right is [A(A + nd) : L(X)], as PJ(A) is a

projective cover of L() in O7 , so our assumptions imply that the above injections
are bijections. This proves the lemma. g

4.1 The Tilting Equivalence

Let M be the full subcategory of O that contains all objects that admit a Verma flag.

Theorem 3 ([9, Corollary 2.3]) There is an equivalence t : M — MPCPP that maps
short exact sequences to short exact sequences and satisfies

t(AM)) = A(=2p —1).

(Note that this statement does depend on the choice of p.)
Note that ¢ stabilizes Ocit, as (—2p — A)(K) = 2 crit — crit = crit for all A €

o~
*
crit”

~

Lemma 8 Suppose that A and . are neighbouring and that A < . ThentZ (X, )
Z(=2p =, =20 — A).

Proof Applying the tilting equivalence to the short exact sequence
0—> A(w)—> Z(O, u) > AL) —>0
yields a non-split short exact sequence
0— A(—2p—A)—=>tZ(A, i) > A(—2p — ) — 0.
Lemma 5 now immediately implies the statement. g

Applying the tilting equivalence to the statement of Lemma 7 and using the pre-
vious lemma we obtain:

Lemma 9 Suppose that A, v are neighbouring and ). < (. Suppose that
dimg Homg (A(=2p — 1), A(=2p—pu+n8)) = [A(~2p—p+n8) : L(~2p—pw)]-

Then every homomorphism A(u—nd) — Z(,, p) factors through a homomorphism
Al —nd) — A(w).

5 Restricted Critical Level Representations

We will now define the subcategory Ot of 6crit that contains all restricted repre-
sentations, and we will review structural results on this subcategory that resemble
the ones we discussed in Sect. 3 (references for the following are [1] and [2]).
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5.1 The Feigin—Frenkel Center

Let us denote by

z=@z,=C[p.i=1,....1kg,s € Z]

nez

the polynomial ring (of infinite rank) constructed from the center of the critical level
vertex algebra (see [1, Sect. 5]). We consider it as a Z-graded algebra with p§i) being
homogeneous of degree s.

The algebra Z acts on objects in 6crit in the following way. The simple highest
weight module L(8) is invertible, i.e. it is one-dimensional and L(§) ®c L(—9) is
isomorphic to the trivial g-module L(0). Hence, the functor

T:@—>@
M+ M Qc L(6)

is an equivalence with inverse M +— M ®c L(—§). As the level of a tensor product
equals the sum of the levels of its factors, and as L(§) is of level zero, the functor T
preserves the subcategories Ok for any k € C. We will henceforth restrict it to (’)Cm

Note that g ®c C[r,77!] ® CK acts trivially on L(8), while, as §(D) = 1, the
grading element D acts as the identity.

Lemma 10 ([1]) Let z € Z,. For any M € 6crit7 z defines a homomorphism
M T"M — M.

5.2 Restricted Representations

We define restricted representations by the following vanishing condition on the
action of Z:

Definition 6 An object M € @crit is called restricted if for any n £ 0 and any z € Z,
we have that z¥ is zero.

We denote by Ot the full subcategorl of 6crit that contains all restricted ob-
Jects. There is a functor ()5 Ogrit = Ogrit that is left adjoint to the inclusion
Oerit C Ocm It is defined as

M™ .= M/M/,

where M’ is the submodule of M that is generated by the images of all homomor-
phisms z with z € Z, and n #0.
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For any A € E*, the restricted Verma module with highest weight A /f)\* is defined
as

AQ) = AN,
The next definition is the obvious restricted version of the earlier notion of a Verma

flag.

Definition 7 Let M € 6Cﬁt. We say that M admits a restricted Verma flag if there
is a finite filtration

O=MycM,C---CM, =M

with M;/M;_; = A(w;) for some w1, ..., iy € by,

__Incase M admits a restricted Verma flag, the restricted Verma multiplicity (M :
A(ui)) =#{i € {1,...,n}| u; = pn} is again independent of the chosen filtration.

5.3 Restricted Projective Objects

For any open bounded subset J of h*.. set 5Jt := Oerit N O, . The following is

; crit _cri crit”
an analogue of Theorem 1 in the restricted setting.

o~

Theorem 4 ([2], see also [4, Theorems 4.3 and 5.4]) Let J C zm be an open
bounded subset and let A € T .

1. There exists a projective cover ?‘7 A) = L) of L(V) in 5;7m and the object

?‘7 (A) admits a restricted Verma flag.
2. For the multiplicities we have

=T oy JTAW L, ifued,
P m.A(m)_{Q e,

3. For any open subset J' C J we have Fj()\)j/ = FJ (A).
4. Forany M € 5git such that [M : L()\)] is finite we have

dimg Homg_ (P (1), M) = [M : L()].
In [2] we showed that one obtains FJ (1) from P (1) by applying the restriction
functor, 1.e.
P70y = PTGy

forany A € J.
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5.4 The Restricted Block Decomposition

The block decomposition O = [] Ach*/- O, of Theorem 2 clearly induces a block

decomposition of Ogic. It turns out that a component Ogit N @) A 1s, in general, no
longer indecomposable. Note that the following definition is a version of Defini-
tion 4, that only utilizes real affine roots instead of all affine roots.

Definition 8 Let “~” be the equivalence relation on H* that is generated by the
following. We have A~ if there exists a positive real toot y € R®* N R* andn € Z
such that 2(A + p,y) =n(y,y) and u = A — ny.

tL)

Clearly, “~ " is a finer equivalence relation than “~”" and it coincides with “~
on the affine hyperplanes H,: for all k # crit.

For a ~-equivalence class I" C Hzn-t we let O be the full subcategory of Oerit
that contains all objects M with the property that [M : L(X)] # O implies A € I".
Then we have the following analogue of Theorem 2.

Theorem 5 ([2]) The functor

1_[ Or = Ouits
Feh:‘(ril/i

Mry— @ Mr

Feb;rit/i
is an equivalence of categories.

For the restricted equivalence relation, we get the following analogue of
Lemma 3, (1), which is proven using the analogous arguments.

Lemma 11 Let I" be a critical ~-equivalence class. Then
r'=W().x

forany eI

6 The Structure of Subgeneric Critical Restricted Blocks

In this section we describe the structure of O in the case that I is a subgeneric
~-equivalence class.
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6.1 Subgeneric Critical Equivalence Classes

Let o € R™ be a finite positive root, and let W C W be the subgroup generated by
the reflections s, , with n € Z. Then W* is the affine Weyl group of type A, and it
is generated by sy 0 and 5o, 1.
Definition 9 Let y € ’l)\:rit and let I C ’b\;ﬂt be its ~-equivalence class. We say that
y is a-subgeneric if the following holds:

1. e ﬁ(y) (hence, as y is critical, @ +né € ﬁ(y) for all n € Z by Lemma 2),
2. yisa-regular,ie. sq.0.y #V,

3. F:W"‘.y.
Letv eA:m. Then (v + p, §) =0, hence
2 9
san.v=v—w(o¢+n8).
' (o, @)

We call v a-dominant, if (v 4+ p,a) € Z>¢. If v is a-dominant, then 54 9.v < v
and sy, —1 > v (as —a + & is a positive affine root). We call v «-antidominant, if
(v+ p,a) € Z<p. If v is a-antidominant, then s 0.v > v and s, —1 < v. Moreover,
v is ¢-dominant if and only if s, 0.V is «-antidominant, which is the case if and only
if $4.n.v 18 @-antidominant for all n € Z.

So suppose that y is a-subgeneric. As W is generated by 5.0 and sy, —1, we
conclude from the above that the equivalence class I" of y is a totally ordered set
with respect to “<”. For any v € I" we define

atv:i=min{sy .V | Sgn.v > v}

Sg,—1.v, if vis ¢-dominant,
" | Sw0-v.  if v is w-antidominant.

Then o 1 (-): I — I is a bijection and we denote by « " (-): I" — I’ its n-fold
composition for n € Z, and we set o " (-) ;== 17" (-). Then

F:{...,a¢2v,a¢v,v,aTl),aT2v,...}.

6.2 Multiplicities in the Subgeneric Case

The main result of [1] is the following multiplicity formula for -subgeneric y: for
any 1 € b’ we have

_ L ifue{y.aly),
[A(y)-L(M)]—{o, ifud{y,alyl
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Suppose that 7 is an open and bounded subset of H&n that contains y and o 1 y .

From BGGH-reciprocity we then obtain that / ?j(y) has a two-step Verma flag with
subquotients A(x 1 y) and A(y). Clearly, A(x 1 y) has to occur as a submodule,
so we obtain a short exact sequence

0— A Ty) > ?J(y) — Z(y) — 0.

Hence, in the subgeneric situations, thE Fj(y) stabilize (with respect to the par-
tially ordered set of open subsets 7 in b7 ), so there is a well-defined object
— T _j

P(y) = Lljgl P (y)

for any a-subgeneric y. From BGGH-reciprocity and the multiplicity statement
above we obtain that

B L, ifuef{aty,alyl
[P(w).L(»)]=1{2 ifu=y,
0, ifugl{aly,y,aryl,

hence

, ifuefaty,alyl,
, ifu=y,
s ifudfaly,v,atyh

dimc Homg( P(y), P(n)) =

SN =

6.3 The Partial Restriction Functor

We will need “partially restricted” objects. Let
ZT .= (C[p§”,i =1,...,kg,s > 0].
We set Z,7 := Zt N Z,. Then Z7 is a positively graded subalgebra of Z.

Definition 10 An object M € 6crit is called positively restricted if for any n > 0
and any z € Z,5 we have that z is zero.

Note that, for example, each non-restricted Verma module A(y) is positively
restricted. We denote by 6;t the full subcategory of 5crit that contains all positively
restricted objects. Again we have an obvious left adjoint to the inclusion functor
Octit C Oyrit. We let ZT M be the submodule of M generated by the images of all
homomorphisms M with z € Z,j‘ and n > 0, and we set

MT:=M/ZTM.
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This yields the functor from 6crit to (’D\C‘;t that is left adjoint to the inclusion functor.
Analogously, we define

Z~ ::C[Pﬁi),i =1,...,7kg,s <O].

By replacing Z% by Z~ in the definitions above, we obtain the analogous no-

tion of negatively restricted objects, the corresponding category O~ and a functor

~

M +— M~ that is left adjoint to the inclusion O
subalgebras Z~ and Z* we have

crit

C @Crit. As Z is generated by its

crit

M= ()= ()"

for all M in 6crit.
We now collect some results on the partial restriction functor that we need later
on.

o~

Proposition 1 Let y € b, be a-subgeneric and let J C ngit be open and bounded
such that y,a 1y € J. Then P (y)t is a non-split extension of A(y) and A 4

y), hence isomorphic to Z(y,a 1 y).

Proof Let P := P7 (y). Then PS<®1V = p<@1¥(y). Then y and « 1 y are neigh-
bouring, hence

(P17 A()) = (PSS 1 At ) =1
and all other multiplicities are zero, so we have a short exact sequence
0> Al y) = PSS 5 A(y) > 0.

This is a non-split short exact sequence, as A(a 1 y) is not a quotient of P17
So PSYY = Z(y, a1 y).

Note that the kernel of the homomorphism P — PS%17 is generated by all
weight spaces P, with 4 £ o 1 A. Now P is generated by its y-weight space, so
Z7T P is generated by its weight spaces (Z1 P),yns forn>0.Asy +né £a 1y
for all n > 0, we obtain an induced map P+ — PS*1Y . We claim that this map is
an isomorphism, which, by the above, implies the statement of the proposition.

Clearly this map is surjective. If it is not injective, then there exists a u with
uw£aryand Plf # 0. Let us in this case choose a maximal such . Then we
have (P™), = ((P*)7), # 0, which contradicts the fact that P™ is an extension
of A(y) and A(a 1 y), so all its weights are <« 1 y. O

For simplicity we will denote P (y)* by P(y)* in the following.
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6.4 Homomorphisms Between Projectives

We will now construct a basis of the homomorphism space Homg(ﬁ()»), ?(/L)) for
A and p in a a-subgeneric equivalence class. We have already seen that this space is
one-dimensional if u € {o | A, @ 1 A}, two-dimensional in case A = u, and it is the
trivial space otherwise.

To start with, let us fix, for any «-subgeneric v, an inclusion

Jvi AWw) = A(x T v).

We denote by 7], : A(v) = A(a 1 v) the homomorphism j,~ (which coincides with

J3%, as Verma modules are already positively restricted). Note that v £ o 1 v — né

for any n > 0, hence j, is non-zero. Let 7 C h* be open and bounded and suppose
that y and « 1 y are contained in 7. We also fix a surjection

Ty Pj(v) — A(v)
and an inclusion
igty: Al@tv) = P,
In particular, we have a short exact sequence
0— A(x 1) lu—“) P(W)™T n—”+> AWw) — 0.

As the action of Z~ on Verma modules is free (see [7] and [6, Theorem 9.5.3]), this
induces, after applying the functor (-)~, a short exact sequence

0 A 1 v) “% ) 5 Bw) — 0.
Now we can find, by projectivity, a homomorphism
ay: P (y) > PT(aty)
such that the diagram

a

P7 (y) PT@1y)

Ty Taty
Jy
Aly) ———— A@ty)
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commutes. Applying the functor (-)* yields a commuting diagram

at

POY — ~ Patpt

+ +
Jy

Aly) ————— Ala1y).
The following is the crucial technical result of this paper.

o at
Lemma 12 The composition A(x 1 y) il P(y)* - P(a 1) 7T is non-zero.
Proof Suppose the composition were zero. Then we could factor the map a; over
a homomorphism A(y) — P(a 1 y)*. By Proposition 1, P(a 1 )T = Z(a 1
2

V.27 y).

Note that for any «-subgeneric v, the weights v and « 1 v are neighbouring.
Moreover, with v also —2p — v is @-subgeneric. In [1] it is shown that for subgeneric
v we have

dimg Homa (A —né), A(v)) =[A(v) : L(v — nd)]

for all n € Z. Finally, & 1% v = v + n8 for some n > 0. The above statements now
allow us to apply Lemma 9 and we conclude that the map a)‘f would factor over

a homomorphism A(y) = A(x 1% y) — P(a 1 y)*. But this contradicts its con-
struction. O

Now apply the restriction functor (-)™ to a,. We obtain a homomorphism
@,: P(y) > P(a 1 y) such that the diagram

a

Po) — Pty

Ty \L \L Taty

Ty .
Aly) ——— A@ty)

commutes. From Lemma 12 (and some weight considerations) we conclude:

Lemma 13 The composition

A@ty) PG 2 Pty

is non-zero.
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In particular, @, is non-zero, hence a generator of Homg(ﬁ(y), P« ).
Let by, : P(y) — P(a | y) be the following composition:

by : P(y) L A(y) 5> Pla L y).

This composition is clearly non-zero, hence b,, is a basis of Homg(F(y), Pl

¥))-
Finally, let n,, : P(y) — P(y) be the composition

i, P(y) s Ay) s Dt y) % Py).

Again, this is non-zero and obviously not invertible (we even have ﬁ]z/ =0), so
{n.id} is a basis of Endx(P(y)).

We have now exhibited a basis for any non-zero space Homg(F(y), P(1)). The
following theorem describes all possible (non-trivial) compositions, hence gives
a full description of the subgeneric endomorphism algebra EndE(@ye r P(y)),
where I is the ~-equivalence class of y.

o~

Theorem 6 Lery € be a-subgeneric. Then we have the following relations:

*
crit

1. byry 0 a, and ay |y o by, are non-zero scalar multiples of n,, .
2. agryoay, =0and by )y ob, =0.

3. ngyyoay, =0andnygy ob, =0.

4. n,on, =0.

Proof Note that (2) is obvious, as the homomorphism spaces in question vanish.
Then (3) and (4) follow immediately from (1) and (2). So we are left to prove (1).
Note that both compositions are clearly not automorphisms of P(y), so we only
have to prove that they are non-zero. From the construction it immediately follows
that by, o ay, # 0. That ay4, o b, is non-zero follows from Lemma 13. O

Hence we see that the endomorphism algebra of @, P(y) is given by the
following infinite quiver

yel’

Galy ay Gaty
— — T —
* - - . e
by baﬁ/ basz

with relations ay |y © b, = byty 0 a, and ag4, 0 a, =0 and by, o byyy, = 0 for all
yel.
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Slavnov Determinants, Yang—Mills Structure
Constants, and Discrete KP

Omar Foda and Michael Wheeler

Abstract Using Slavnov’s scalar product of a Bethe eigenstate and a generic state
in closed XXZ spin-% chains, with possibly twisted boundary conditions, we obtain
determinant expressions for tree-level structure constants in 1-loop conformally-
invariant sectors in various planar (super) Yang-Mills theories. When certain ra-
pidity variables are allowed to be free rather than satisfy Bethe equations, these
determinants become discrete KP t-functions.

1 Overview

Classical integrable models, in the sense of integrable hierarchies of nonlinear par-
tial differential equations that admit soliton solutions, and quantum integrable mod-
els, in the sense of Yang-Baxter integrability, are topics that Prof M. Jimbo continues
to make profound contributions to since more than three decades.

They are also topics that, since the late 1980’s, have made increasingly frequent
contacts with, and have lead to definite advances in modern quantum field theory.
Amongst the most important of these contacts are discoveries of integrable struc-
tures on both sides of Maldacena’s conjectured AdS/CFT correspondence [1]. From
2002 onward, classical integrability was discovered in free superstrings' on the AdS
side of AdS/CFT [2, 3], and quantum integrability in the planar limit> of A" = 4 su-
persymmetric Yang-Mills on the CFT side [4-6]. Further, examples of integrability
that are restricted 1-loop level were discovered in planar Yang-Mills theories with

I'Superstrings with tree-level interactions only, and no spacetime loops.

2The limit in which the number of colours N. — oo, the gauge coupling gyy — 0, while the
’t Hooft coupling A = g%,MNC remains finite.
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fewer supersymmetries and in QCD [7, 8]. In the sequel, we use YM for Yang-Mills
theories in general, and SYM s for NV -extended supersymmetric Yang-Mills.

1.1 Scope of This Work

In this work, we restrict our attention to quantum field theories that are (1) planar,
so that the methods of integrability have a chance to work, (2) weakly-coupled, so
that perturbation theory makes sense and we can focus our attention to 1-loop level,
and (3) conformally-invariant at 1-loop level, so they allow an exact mapping to
Heisenberg spin-chains, that is spin-chains with nearest neighbour interactions that
can be solved using the algebraic Bethe Ansatz. In the sequel, we consider only
Heisenberg spin—% chains.

Even within the above restrictions, our subject is still very broad and we can only
review the basics needed to obtain our results. For an introduction to the vast subject
of integrability in AdS/CFT, we refer to [9] and references therein.>

1.2 Conformal Invariance and 2-Point Functions

Any 1-loop conformally-invariant quantum field theory contains (up to 1-loop order)
a basis of local scalar primary conformal composite operators* {O} such that the 2-
point functions can be written as

— Ni
<Oi(X)Oj(}’))=5ijm ()

where O; is the Wick conjugate of O;, A; is the conformal dimension of O; and N;
is a normalization factor. Later, we choose N; to be (the square root of) the Gaudin
norm of the corresponding spin-chain state.

The primary goal of studies of integrability on the CFT side of AdS/CFT in
the past ten years has arguably been the calculation of the spectrum of conformal

3Further highlights of integrability in modern quantum field theory and in string theory include
(1) Classical integrable hierarchies in matrix models of non-critical strings, from the late 1980’s
[10], (2) Finite gap solutions in Seiberg-Witten theory of low-energy SYM; in the mid 1990’s [11—
14], (3) Integrability in QCD scattering amplitudes in the mid 1990’s [8, 15-17], (4) Free fermion
methods in works of Nekrasov, Okounkov, Nakatsu, Takasaki and others on Seiberg-Witten theory,
in the 2000’s [18, 19], (5) Integrable spin chains in works of Nekrasov, Shatashvili and others on
SYM;, in the 2000’s [20], (6) Integrable structures, particularly the Yangian, that appear in recent
studies of SYMy scattering amplitudes [21, 22]. There are many more.

“In this work, we restrict our attention to this class of local composite operators. In particular, we
do not consider descendants or operators with non-zero spin, for which the 2-point and 3-point
functions are different.
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dimensions {Ap} of local composite operators {(O}, and matching them with corre-
sponding results from the strong coupling AdS side of AdS/CFT. This goal has by
and large been achieved [9], and the next logical step is to study 3-point functions
and their structure constants [23-29].

1.3 3-Point Functions and Structure Constants

The 3-point function of three basis local operators such as those that appear in (1) is
restricted (up to 1-loop order) by conformal symmetry to be of the form

(0i (x)O; (x ) Ok (x1))
Cijt )
|xij| A H A=Ak |x | AT AT Al | AT A=A,

=N NG M)

where x;; = x; — x;, and C;j; are structure constants. The structure constants C;
are the subject of this work. In [26-28], Escobedo, Gromov, Sever and Vieira
(EGSV) obtained sum expressions for the structure constants of non-extremal
single-trace operators in the scalar sector of SYMy. In [29], the sum expressions
of EGSV were evaluated, and determinant expressions for the same structure con-
stants were obtained.’

1.4 Aims of This Work

We extend the results of [29] to a number of YM theories that are conformally
invariant at least up to 1-loop level. We also show that the determinants that we
obtain are discrete KP t-functions.

More precisely, (1) We recall, and make explicit, a generalization of the restricted
Slavnov scalar product used in [29] to twisted, closed and homogeneous XXZ spin-
% chains. That is, we allow for an anisotropy parameter A # 1, as well as a twist
parameter 6 # 0 in the boundary conditions. The result is still a determinant. We
use this result to obtain determinant expressions for the YM theories listed in Sub-
sect. 1.5.° (2) Allowing certain rapidity variables in the determinant expressions
to be free, rather than satisfy Bethe equations, we show that these rapidities can
be regarded as Miwa variables. In terms of these Miwa variables, the determinants
satisfy Hirota-Miwa equations and become discrete KP t-functions. The structure
constants are recovered by requiring that the free variables are rapidities that label a
gauge-invariant composite operator and satisfy Bethe equations.

5Three operators O;, of length L;, i € {1, 2, 3}, are non-extremal if /;; = L; + Lj — Ly > 0.

5The SYMj expression of [29] is a special case of the general expression obtained here.
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1.5 Type-A and Type-B YM Theories

We consider six planar, weakly-coupled YM theories. 1. SYMy [30, 31], 2. SYMM R
which is an order-M Abelian orbifold of SYMy that is ' = 2 supersymmetric [32,
33], and 3. SYM’S , which is a Leigh-Strassler marginal real-8 deformation of SYM4
that is A" = 1 supersymmetric [33, 35-38]. 4. The complex scalar sector of pure
SYM; [7, 39], 5. The gluino sector of pure SYM; [7], and 6. The gauge sector of
QCD [7, 8].

These six theories are naturally divisible into two types. Type-A contains theories
1, 2 and 3, which are conformally-invariant to all orders in perturbation theory.
Type-B contains theories 4, 5 and 6, which are conformally-invariant to 1-loop level
only.”

Conformal invariance at 1-loop level, which is the case in all theories that we
consider, is necessary and sufficient for our purposes because the mapping to spin-%
chains with nearest neighbour interactions breaks down at higher loops. Our results
are valid only up to 1-loop level.

1.6 Non-extremal Operators

In [26-29], structure constants of three operators O; of length L;, i € {1,2,3}
were considered, and the condition that the operators are non-extremal, that is
lij=L; + L; — Ly > 0, for all distinct i, j and k, was emphasized. The reason
is that, in these works, one wished to compute the structure constants of three non-
BPS operators. Using the analysis presented in this work, one can show that this
requires the condition /;; > 0. One can of course consider the special case where
one of these parameters /;; = 0, but then at least one of the three operators has to be
BPS.

In type-A theories, which include SYMy, we can compute non-trivial structure
constants of three non-BPS operators, so we do that, and the condition /;; > 0 is
satisfied. The case where one of these parameters vanishes, for example /o3 = Lo +
L3 — L1 =0, is allowed, but then either O, or O3 has to be BPS. In type-B theories,
we find that one of the three operators, which we choose to be (O3, has to be BPS,
hence the condition /;; > 0 is no longer significant and we consider operators such
that [)3 =L, + L3z — L1 =0.

TThere are definitely more gauge theories that are conformally-invariant at 1-loop or more, with

SU(2) sectors that map to states in spin-% chains. Here we consider only samples of theories with
different supersymmetries and operator content.
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1.7 SU(2) Sectors that Map to Spin-% Chains

We will not list the full set of fundamental fields in the gauge theories that we
consider, but only those fundamental fields that form SU(2) doublets that map to
states in spin—% chains. All fields are in the adjoint of SU(N,.) and can be represented
in terms of N, x N, matrices.

1. SYMy contains six real scalars that form three complex scalars {X, Y, Z}, and
their charge conjugates {X, Y, Z}. Any pair of non-charge-conjugate scalars, e.g.
{Z,X},0or{Z, X }, forms a doublet that maps to a state in a closed periodic XXX
spin—% chain8 [4, 31].

2. SYMQ/’ has the same fundamental charged scalar fields {X, Y, Z} and their charge
conjugates, as SYMy, so the same scalars form SU(2) doublets. Due to the orb-
ifolding of the SU(2) sectors by the action of the discrete group I, these dou-
blets map to states in a closed twisted XXX spin-% chain. The twist parameter is
a (real) phase 6 = 2Z [33].

3. SYMf has the same fundamental charged scalar fields {X, Y, Z} and their charge
conjugates, as SYMy, so the same scalars form SU(2) doublets. Due to the real-
B deformation, these doublets map to states in a closed twisted XXX spin—%
chain. The twist parameter is a (real) phase 6 = B, where g is the deformation
parameter. [33, 34].

4. SYM; has a gluino field A and its conjugate A that form a doublet that maps to a
state in a closed untwisted XXZ spin-% chain with A =3 [7, 39].

5. SYM; has a complex scalar ¢ and its conjugate ¢ that form a doublet that maps
to a state in a closed untwisted XXZ spin—% chain with A = % [7].

6. Pure QCD has light-cone derivatives {34 A, 34 A}, where A and A are the trans-
verse components of the gauge field A,,, that form a doublet that maps to a state
in a closed untwisted XXZ spin—% chain with A = —% [7].

1.8 Remark

Theories 1, 2 and 3, that are conformally invariant to all orders, contain three
charged scalars and their conjugates. These combine into various SU(2) doublets.
Theories 4, 5 and 6, on the other hand, contain only one doublet. This fact affects
the type of structure constants that we can compute in determinant form in Sects. 5
and 6.°

8XXX spin—% chains are XXZ spin—% chains with an anisotropy parameter A = 1.

9The fact that the structure constants in these two types of theories should be handled differently
was pointed out to us by C. Ahn and R. Nepomechie.
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1.9 Outline of Contents

In Sect. 2, we recall basic background information related to integrability in weakly
coupled YM. In Sect. 3, we review standard facts on closed XXZ spin-% chains with
twisted boundary conditions. In particular, following [42], we introduce restricted
versions S[L, N1, N»] of Slavnov’s scalar product, that can be evaluated in determi-
nant form.'”

In Sect. 4, we review standard facts on the trigonometric six-vertex model, which
is regarded as another way to view XXZ spin—% chains in terms of diagrams that
are convenient for our purposes. Following [43], we introduce the [L, Ny, N»]-
configurations that are central to our result. The determinant S[L, N1, N3], obtained
in Sect. 3, turns out to be the partition function of these [L, N1, N>]-configurations.

In Sect. 5, we recall the EGSV formulation of the structure constants of three
non-extremal composite operators in the scalar sector of SYMy. Since all Type-A
theories, which include SYM4 and two other theories that are closely related to it,
share the same set of fundamental charged scalar fields, namely {X, Y, Z} and their
charge conjugates {X, Y, Z}, our discussion applies to all of them in one go. Since
the composite operators that we are interested in map to states in (generally twisted)
XXX spin—% chains, we express these structure functions in terms of rational six-
vertex model configurations, and obtain determinant expressions for them.

In Sect. 6, we extend the above discussion to Type-B theories, which contain
theories with only one SU(2) doublet that we can work with. Since the composite
operators that we are interested in map to states in periodic XXZ spin—% chains, we
express these structure functions in terms of trigonometric six-vertex model config-
urations. We find that our method applies only when one of the operators is BPS-like
(a single-trace of a power of one type of fundamental fields). We obtain determinant
expressions for these objects, and find that the result is identical to that in type-A,
apart from the fact that one of the operators in BPS-like.

In Sect. 7, we show that the determinant expressions are solutions of Hirota-
Miwa equations, and thereby t-functions of the discrete KP hierarchy. In Sect. 8,
we summarize our results.

2 Background

Let us recall basic facts on integrability on the CFT side of AdS/CFT.

2.1 Integrability in AdS/CFT

In its strongest sense, the anti-de Sitter/conformal field theory (AdS/CFT) corre-
spondence is the postulate that all physics, including gravity, in an anti-de Sitter

1010 [29], S[L, N1, N2] was denoted by S[L, {N}].
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space can be reproduced in terms of a conformal field theory that lives on the bound-
ary of that space [40]. The first and most thoroughly studied example of the corre-
spondence is Maldacena’s original proposal that type-IIB superstring theory in an
AdS® x §° geometry is equivalent to planar SYMy on the 4-dimensional boundary
of AdS° [1].

Since its proposal in 1997, the AdS/CFT correspondence has passed every single
check that it was subject to, and there was a large number of these. However, because
the correspondence typically identifies one theory in a regime that is easy to study
(for example, a weakly-coupled planar quantum field theory) to another theory in
a regime that is hard to study (for example, a quantum free superstring theory in a
strongly curved geometry), it has so far not been possible to prove it [9].

2.2 The Dilatation Operator

The generators of the conformal group in 4-dimensions, SO(4, 2), contain a dilata-
tion operator D [41]. Every gauge-invariant operator O in a YM theory, that is
1-loop conformally-invariant, is an eigenstate of D to that order in perturbation the-
ory. The corresponding eigenvalue A, which is the conformal dimension of O, is
the analogue of mass in massive, non-conformal theories.

2.3 SYMy and Spin Chains. 1-Loop Results

An SU(2) doublet of fundamental fields {u, d}, which could be any of those dis-
cussed in Subsect. 1.7 above, is analogous to the {1, |} states of a spin variable
on a single site in a spin-% chain. Furthermore, the local gauge-invariant operators
formed by taking single traces of a product of an arbitrary combination of # and d
fields, such as Tr[uududduu - - - uu], is analogous to a state in a closed spin—% chain.

In [4], Minahan and Zarembo made the above intuitive analogies exact corre-
spondences by showing that the action of the 1-loop dilatation operator on single-
trace operators in the SU(2) scalar subsector of SYMy is identical to the action of
the nearest-neighbour Hamiltonian on the states in a closed periodic XXX spin-%
chain.!! In this mapping, valid up to 1-loop level'? single-trace operators with well-
defined conformal dimensions map to eigenstates of the XXX Hamiltonian. The
corresponding eigenvalues are the conformal dimensions Ap.

""Minahan and Zarembo obtained their remarkable result in the context of the complete scalar
sector of SYMy. The relevant spin chain in that case is SO(6) symmetric. Here we focus our
attention on the restriction of their result to the SU(2) scalar subsector.

12We are interested in local single-trace composite operators that consist of many fundamental
fields. These fields are interacting. In a weakly-interacting quantum field theory, one can consis-
tently choose to ignore all interactions beyond a chosen order in perturbation theory. In the planar
theory under consideration, perturbation theory can be arranged according to the number of loops
in Feynman diagrams computed. In a 1-loop approximation, one keeps only 1-loop diagrams.
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The above brief outline is all we need for the purposes of this work. For an in-
depth overview, we refer the reader to [9].

3 The XXZ Spin-} Chain

In this section, we recall basic facts related to the XXZ spin—% chain that are needed
in later sections. The presentation closely follows that in [29, 43], but adapted to
closed XXZ spin chains with twisted boundary conditions.

3.1 1-Dimensional Lattice Segments and Spin Variables

Consider a length-L 1-dimensional lattice, and label the sites with i € {1,2,..., L}.
Assign site i a 2-dimensional vector space /; with the basis

)i = (5) V)i = (?) )

which we refer to as ‘up’ and ‘down’ states, and a spin variable s; which can be
equal to either of these states. The space of states H is the tensor product H =
h1®---® hy.Every state in H is an assignment {sy, s, ..., sz} of L definite-value
(either up or down) spin variables to the sites of the spin chain. In computing scalar
products, as we do shortly, we think of states in # as initial states.

3.2 Initial Spin-Up and Spin-Down Reference States

‘H contains two distinguished states,

L

S, -9,

i=1 i=1

where L” indicates L spin states that are all up, and L" indicates L spin states that
are all down. These are the initial spin-up and spin-down reference states, respec-
tively.



Slavnov Determinants, Yang—Mills, and KP 93

3.3 Final Spin-Up and Spin-Down Reference States, and a
Variation

Consider a length-L spin chain, and assign each site i a 2-dimensional vector space
h with the basis

iAl=(1 0),

1

. vi=(0 1), 5)

We construct a final space of states as the tensor product H* =h] ® --- @ h}. H*
contains two distinguished states

L

L= 0. (L[=Q0 1), (©)

i=1

where all spins are up, and all spins are down. These are the final spin-up and spin-
down reference states. respectively. Finally, we consider the variation

ML= @0 ), @ (o,

1<i<N3 (N3+1)<i<L

where the first N3 spins from the left are down, and all remaining spins are up.

3.4 Pauli Matrices

We define the Pauli matrices

0 1 0 —i 1 0
X __ Y _ g
i), (), el ), e
with i = +/—1, and the spin raising/lowering matrices
1 ) 0 1 _ 1 .y 0 0
of = E(cr,’,‘l +iop) = (O O)m, o, = E(a,j; —iop) = <1 0>m )

where in all cases the subscript m is used to indicate that the matrices act in the
vector space hyy,.

3.5 The Hamiltonian H

The Hamiltonian of the finite length XXZ spin—% chain is given by the equivalent
expressions

L
1
H= B Z(Un);aéﬂ +U'%U;i+1 + A("nzﬂriﬂ - 1))

m=1
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L
_ _ A
= Z (U;a)n+l + O, O":+] + E(Glflarfl+1 - 1)> (10)
m=1

where A is the anisotropy parameter of the model, and where we assume the
‘twisted’ periodicity conditions

+  _ +ie_+ .z
Op, =€ o, 07,1 =0 (11

3.6 The R-Matrix

From an initial reference state, we can generate all other states in H using operators
that flip the spin variables, one spin at a time. Defining these operators requires
defining a sequence of objects. (1) The R-matrix, (2) The L-matrix, and finally,
(3) The monodromy or M -matrix.

The R-matrix is an element of End(h, ® hp), where h,, hj, are two 2-dimensional
auxiliary vector spaces. The variables u,, u;, are the corresponding rapidity vari-
ables. The R-matrix intertwines these spaces, and it has the (4 x 4) structure

1 0 0 0
R |0 blug,up] clug,up] 0
abWas uD) =10 clug up] blug.up] 0
0 0 0 1

(12)

ab

where we have defined the functions

[1g —upl [n]

b b = tl 3 =,
e e P

[u] = sinh(u)
(13)

The R-matrix satisfies unitarity, crossing symmetry and the crucial Yang-Baxter
equation that is required for integrability, given by

Rap (g, up)Rac (g, ue) Rpe (up, ue) = Rpe(up, ue) Rae (g, ue) Rap (g, up) (14)

which holds in End(h, ® hp @ h.) for all u,, up, u..

As we will see in Sect. 4, the elements of the R-matrix (12) are the weights of the
vertices of the trigonometric six-vertex model. This is the origin of the connection
of the two models. One can graphically represent the elements of (12) to obtain the
six vertices of the trigonometric six-vertex model in Fig. 2.

3.7 The L-Matrix

The L-matrix of the XXZ spin chain is a local operator that depends on a single
rapidity u,, and acts in the auxiliary space h,. Its entries are operators acting at the
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m-th lattice site, and identically everywhere else. It has the form

Lam (itg) = ([ua + %Gri [nlo,, ) (15)

[nlo,t (g — 301

Using the definition of the R-matrix and the L-matrix, (12) and (15) respectively,
the local intertwining equation is given by

Rup(a, up)Lam(a) Lobm (up) = Lpm (up) Lam (Ua) Rap (Ua, up) (16)
The proof of (16) is immediate, if one uses the matrix representations of o5, a,,J{ O
to write
[ug + %] 0 0 0
_ 0 (g — 3] [n] 0
Lam(ua)=1""¢ - -1 0
0 0 0 [ug + %] am
= [ug +n/21Ram (o, n/2) (17)

This means that the L-matrix is equal to the R-matrix Ry, (Uq, 2 ) With 2, =n/2,
up to an overall multiplicative factor. Cancelling these common factors from (16), it
becomes

Rap (g, up) Ram WUa, 1/2) Rpm (up, n/2)
= Rpm (p, 1/2) Ram (a, n/2) Rap (g, up) (18)

which is simply a corollary of the Yang-Baxter equation (14).

3.8 The Monodromy Matrix M

The monodromy or M-matrix is a global operator that acts on all sites in the spin
chain. It is constructed as an ordered direct product of the L-matrices that act on
single sites,

My(ug) = Lat(ug) ... Lap(uq)$24(0) (19)
where £2,(6) is a twist matrix given by
e’ 0
£2,(0) = ( 0 el‘g) (20)
a
The monodromy matrix is essential in the algebraic Bethe Ansatz approach to the

diagonalization of the Hamiltonian H. It is convenient to define an inhomogeneous
version, as an ordered direct product of R-matrices Rgy, (Ua, Zm),

Ma(uas {Z}L) = Ra1(Uq,21) ... Rar (Ua, 21.)524(6) (21)
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The variables {z1, ..., zp} are parameters corresponding with the sites of the spin
chain and the homogeneous monodromy matrix, given by (19), is recovered by set-
ting z,, = n/2 for all 1 <m < L. The inclusion of the variables {zy, ..., z} simpli-
fies many later calculations, even though it is the homogeneous limit which actually
interests us. We write the inhomogeneous monodromy matrix in (2 x 2) block form,
by defining

(22)

9 A(u ~9B(u,
Mg (ua, {2)L) = (chﬁzu; :—“9 D((’;:a)))

where the matrix entries are operators that actin H =h| ® --- ® hy. To simplify
the notation, we have omitted the dependence of the elements of the M-matrix on
the quantum rapidities {z1, ..., zr}. This dependence is implied from now on.

The operator entries of the monodromy matrix satisfy a set of commutation rela-
tions, which are determined by the equation

Rap(a, up) Mo (ua, {2} ) My (up. {2} 1)
= Mp(up, {z}1) Ma(as {2} L) Rab (ua, up) (23)
which is a direct consequence of the Yang-Baxter equation (14) and the property
[Rab(ua, up), 24(0)$25(6)] =0 (24)

of the twist matrix. Typical examples of these commutation relations, which are
particularly important in the algebraic Bethe Ansatz, are

B(u)B(v) = B(v)Bu) (25)
[u—v+n]B)A@) =[nBWAw) + [u —v]AW)B(u) (26)
(nBw)DW) + [u —v]Dw)BW) =[u — v+ n]Bw)Du) 27

In Sect. 4, we identify the operator entries of the monodromy matrix (22) with rows
of vertices from the six-vertex model, see Fig. 3.

3.9 The Transfer Matrix T

The transfer matrix 7 (uq, {z}1) is defined as the trace of the inhomogeneous mon-
odromy matrix

T (ua, {z)1) = Tra Mo (ua, {(2}1) = " Aua) + e D(uy) (28)

The Hamiltonian (10) is recovered via the quantum trace identity

(29)

Zl:"':ZL:%

d
H= [U]E log T (1) ., where T(u) =T (u, {z}.)|

)
-2
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where the anisotropy parameter in (10) is defined as A = cosh(n). In this equation
all quantum parameters have been set equal, so for the purpose of reconstructing
the Hamiltonian H we see that the homogeneous monodromy matrix is sufficient.
However, in all subsequent calculations we preserve the variables {z1, ...,z } and
seek eigenvectors of 7 (u, {z}1). By (29), they are clearly also eigenvectors of H.

3.10 Generic States, Eigenstates and Bethe Equations

The initial and final spin-up reference states |L") and (L"| are eigenstates of the
diagonal elements of the monodromy matrix. They satisfy the equations

Au, {z})|LN) = a@)|L"), D(u,{z}.)|L")=dw)|L") (30)

(LN A(u, {z}) = a@w)(L"], (L"|D(u, {z}1) = dw)(L"| (31)
where we have defined the eigenvalues
_ _ [u — zi]
a(w) =1, d(u)_ni[u—a i (32)

=

This makes |L") and (L"| eigenstates of the transfer matrix T (u, {z}). The rest of
the eigenstates {O} of T (u, {z}1), that is, states that satisfy

T(u, {z}1)10)p = (¢ Aw) + e D(w))|0) g = Eo(u)|O)p (33)

where Ep(u) is the corresponding eigenvalue, are generated using the Bethe
Ansatz. This is the statement that all eigenstates of 7' (u, {z};) are created in two
steps. 1. One acts on the initial reference state with the B-element of the monodromy
matrix

|0)p = Blugy) -~ B(ug,)|L") (34)

where N < L, since acting on |L”) with more B-operators than the number of sites
in the spin chain annihilates it. This generates a ‘generic Bethe state’. 2. We require
that the auxiliary space rapidity variables {ug,, ..., ug,} satisfy Bethe equations,
hence the use of the subscript 8.3 We call the resulting state a ‘Bethe eigenstate’.
That is, |O)g is an eigenstate of T (u, {z}) if and only if

a(uﬁ")—li[[uﬁ’ atnl_ _2’01_[ g, — gy — ] 35)

dlug) ) Tug =z ; Lup, —up, = nl’

13We use 8 in two different ways. 1. To indicate the deformation parameter in SYMf theories, and
2. To indicate that a certain state is a Bethe eigenstate of the spin-chain Hamiltonian. There should
be no confusion with 1, in which g is a parameter but never a subscript, while in 2 it is always a
subscript.
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for all 1 <i < N. This fact can be proved using the commutation relations (26) and
(27), as well as (30) and (31). As remarked earlier, by virtue of (29), eigenstates of
the transfer matrix 7' (u, {z},) are also eigenstates of the spin-chain Hamiltonian H.
The latter is the spin-chain version of the 1-loop dilatation operator in SYMy4. We
construct eigenstates of 7 (u, {z}1) in H* using the C-element of the M -matrix

p(O|=(L"|C(up,)...Cupy) (36)

where N < L to obtain a non vanishing result, and requiring that the auxiliary space
rapidity variables satisfy the Bethe equations.

3.11 Scalar Products that Are Determinants

Following [42, 43] we define the scalar product S[L, N1, N>2], 0 < N> < N, that
involves (N1 + N;) operators, Ni B-operators with auxiliary rapidities that sat-
isfy Bethe equations, and N, C-operators with auxiliary rapidities that are free.'*
For N, = 0, we obtain, up to a non-dynamical factor, the domain wall partition
function. For N> = N1, we obtain Slavnov’s scalar product [45]. As we will see
in Sect. 4, S[L, N1, N2] is the partition function (weighted sum over all internal
configurations) of a lattice in an [L, Ny, N>]-configuration, see Fig. 9.

Let {M,B}Nl = {uﬁl s ey MﬂNl }, {U}N2 = {vl, ey sz}, {Z}L = {Zl, ey ZL} be
three sets of variables the first of which satisfies Bethe equations, 0 < N < Ny and
1 < N7 < L. We define the scalar products

SIL, N1, Nal({ug}ny, {v}n,. {2)L)
N> Ny

=(Ny. (L = N)M[[Cw) [[Baug)|L") (37)

i=1 j=1
with N3 = N1 — N3, and where we have defined the normalized B- and C-operators

B

B _C()
T dw)’

T dw)

B(u) C) (38)
which are introduced only as a matter of convention. It is clear that for Ny = 0, we
obtain a domain wall partition function, while for N; = N1, we obtain Slavnov’s
scalar product. In all cases, we assume that the auxiliary rapidities {ug}y, obey the
Bethe equations (35), and use the subscript 8 to emphasize that, while the auxiliary
rapidities {v}y, are either free or also satisfy their own set of Bethe equations. When
the latter is the case, this fact is not used. The quantum rapidities {z}; are taken to
be equal to the same constant value in the homogeneous limit.

14T, simplify the notation, we use N1, N and N3 = N| — N», instead of the corresponding notation
used in [42, 43]. These variables match the corresponding ones in Sect. 5.
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3.12 A Determinant Expression for the Slavnov Scalar Product
S[L, N1, N3]

Following [42, 43], we consider the (N] x Np) matrix

S({uptn, . (vin,. {z)L)

Sizy) - fileny)  g1lony) oo g1(v)
= : : : : (39)
@) - Gy gni(uwy) o gy (V)

whose entries are the functions

[n] ACT
(z7) = 40
fitz;) <[u,s,-—Zj+n][uﬂi—Zj]),£[1[vk—Zj] 40
] ) I AL
iw)=——"— = — v+
s ([u,a,-—vj] ((,Dl T ) LA

Ny
—e 20 Tiug, —vj — n]) (41)
ki

and where N3 = N1 — N». Since the auxiliary rapidities {ug}y, satisfy Bethe equa-
tions (35), following [42, 43] it is possible to show that

S[L, Ny, N3]
ﬂfi‘l Hfil[u,s,- —zj +nldetS{ugin,, (vin,, {z}L)

Hl§i<j§N1 [ug; — ”ﬁ[]H1§i<j§N2[vi - vj]H1§i<j§N3 [zi —zj]

(42)

3.13 The Slavnov Scalar Product S[L, N1, N1]

Consider the special case N = N» = N, which corresponds to Slavnov’s scalar
product itself. In this case we obtain the (N x N) matrix

gilon) -+ gi1(vy)
S({ugin. {vin. {z}r) = : (43)
gn(y) -+ gn(v1)
whose entries are the functions

L N
oy = (1) ((H UREEES TR m)

[ug, —vj] iy vi—zd kot
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N
— 20 H[“ﬁk —vj — n]) 44)
ki

The Slavnov scalar product S[L, N, N] is then given by

detS({ug}n, {vin, {z}1)

S[L,N,N]=
H15i<j51v[“/3i —ug;] n15i<j51v[vi — ;]

(45)

3.14 Restrictions

There is a simple relation between the scalar products S[L, N1, N1] and S[L, Ny,
N»], which was used in [43] to provide a recursive proof of Slavnov’s scalar product

formula [45]. It is easy to show that by restricting the free variables vy, ..., Un,+1
in (45) to the values z1, ..., Zy,, one obtains the recursion relation
Np L
( [T TTwwi—zisiz, v, N1]> ’ ony =21
i=Ny+1 j=1 .
U(Ny+1)=2N;
N3 L
=[ 11tz —z; +nISIL. Ny. Na] (46)

i=1j=1

As we show in Sect. 4, the scalar products S[L, N1, N1] and S[L, N1, N2] are in di-
rect correspondence with the partition function of an [L, N1, N1]- and [L, N1, N>]-
configuration, respectively. Accordingly, we expect that the recursion relation (46)
has a natural interpretation at the level of six-vertex model lattice configurations,
and indeed this turns out to be the case.

3.15 The Homogeneous Limit of S[L, N1, N3]

For the result in this paper, we need the homogeneous limit of S[L, Ny, N»], which
we denote by Sh‘”"[L, N1, N3]. Taking the limit z; — z,i € {1, ..., L}, the result is

TV (g, — z 4+ m1V3 det S™" ({ughny, (V)ns» 2)

shomiL Ny, No] = 47)
H1§i<j§N1 lup;, — uﬂi]nlgi<j§N2[vi — ]
P ({ugny, (v}, 2)
V@) o o™ V) ghmy,) o g (uy)
= : : : : (48)

O. N;l .
o0 o oy V@) gty e gl
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where qﬁi(j) = %8Z(j)fi (z), and

Ny
N ) <[vj—2+n]>L s
¢ (”’)‘[uﬁi—vJ-l( o= ) Hen e
,Nl
— e 20T tug, —v; — n]) (49)
ki

3.16 The Gaudin Norm

Let us consider the original, unrestricted Slavnov scalar product in the homogeneous
limit z; — z, S[L, N1, N1l1({ug}n, . {vin,, 2), and set {v}n, = {ug}y, to obtain the
Gaudin norm N ({u gJn;) which is the square of the norm of the Bethe eigenstate
with auxiliary rapidities {ug}y,. It inherits a determinant expression that can be
computed starting from that of the Slavnov scalar product that we begin with and
taking the limit {v}y, — {ug}n,. Following [42], one obtains

NI - — .
N (tugh) = (e tn)) ™ (H %) det®’({ughy)  (50)
it

where

PR LNl — .
qb;,({u,g}Nl):_au,.ln(([”’ ”’”) = “’+'”) (51)

[u; —z] il [ur —u; — 1l
ki

We need the Gaudin norm to normalize the Bethe eigenstates that form the 3-point
functions whose structure constants we are interested in.

4 The Trigonometric Six-Vertex Model

This section follows almost verbatim the exposition in [29], up to straightforward
adjustments to account for the fact that here we are interested in the trigonometric,
rather than the rational six-vertex model. We recall the 2-dimensional trigonometric
six-vertex model in the absence of external fields. From now on, ‘six-vertex model’
refers to that. It is equivalent to the XXZ spin-% chain that appears in [26-28], but
affords a diagrammatic representation that suits our purposes. We introduce quite a
few terms to make this correspondence clear and the presentation precise, but the
reader with basic familiarity with exactly solvable lattice models can skip all these.
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Fig. 1 A square lattice with 2] 2L,
oriented lines and rapidity

variables. Lattice lines are % 6 6 & ¢
assigned the orientations
indicated by the white arrows

uy >
—
-

-
uLh

4.1 Lattice Lines, Orientations, and Rapidity Variables

Consider a square lattice with Lj horizontal lines and L, vertical lines that intersect
at Ly x L, points. There is no restriction, at this stage, on Lj or L,. We order the
horizontal lines from top to bottom and assign the i-th line an orientation from left
to right and a rapidity variable u;. We order the vertical lines from left to right and
assign the j-th line an orientation from top to bottom and a rapidity variable z ;. See
Fig. 1. The orientations that we assign to the lattice lines are matters of convention
and are only meant to make the vertices of the six-vertex model, that we introduce
shortly, unambiguous. We orient the vertical lines from top to bottom to agree with
the direction of the ‘spin set evolution’ that we introduce shortly.

4.2 Line Segments, Arrows, and Vertices

Each lattice line is split into segments by all other lines that are perpendicular to it.
‘Bulk segments’ are attached to two intersection points, and ‘boundary segments’
are attached to one intersection point only. Assign each segment an arrow that can
point in either direction, and define the vertex v;; as the union of 1. The intersection
point of the i-th horizontal line and the j-th vertical line, 2. The four line segments
attached to this intersection point, and 3. The arrows on these segments (regardless
of their orientations). Assign v;; a weight that depends on the specific orientations
of its arrows, and the rapidities #; and z; that flow through it.

4.3 Six Vertices that Conserve ‘Arrow Flow’

Since every arrow can point in either direction, there are 2* = 16 possible types
of vertices. In this note, we are interested in a model such that only those vertices
that conserves ‘arrow flow’ (that is, the number of arrows that point toward the
intersection point is equal to the number of arrows that point away from it) have
non-zero weights. There are six such vertices. They are shown in Fig. 2. We assign
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Fig. 2 The Zj
non-vanishing-weight
vertices of the six-vertex

Zj Zj
model. Pairs of vertices in the
same column share the weight
that is shown below that = = =
column. The white arrows u; u; Uu;

indicate the line orientations

needed to specify the vertices
without ambiguity
—_ -
U U

a[u;, Zj] b[uia zj] C[‘U,‘, zj]

Uy

these vertices non-vanishing weights. We assign the rest of the 16 possible vertices
zero weights [51].

In the trigonometric six-vertex model, and in the absence of external fields, the
six vertices with non-zero weights form three equal-weight pairs of vertices, as in
Fig. 2. Two vertices that form a pair are related by reversing all arrows, thus the
vertex weights are invariant under reversing all arrows. In the notation of Fig. 2, the
weights of the trigonometric six-vertex model, in the absence of external fields, are

[u; —z;] (7]
0 i»2j]l=—"—= (52
=z IS g 7

alu;, z;1=1, blui,zj1=
where we use the definition [x] = sinh(x) to simplify notation.'> The assignment
of weights in (52) satisfies unitarity, crossing symmetry, and most importantly the
Yang-Baxter equations [51]. It is not unique since one can multiply all weights by
the same factor without changing the final physical results.

4.4 Correspondence with the XXZ R-Matrix

The connection with the R-matrix of the XXZ spin—% chain is straightforward. One
can think of the R-matrix (12) as assigning a weight to the transition from a pair
of initial spin states (for example, the definite spin states on the right and upper
segments that meet at a certain vertex) to a pair of final spin states (the definite spin
states on the left and lower segments that meet at the same vertex as the initial ones).
In the case of the trigonometric XXZ spin—% chain, this is a transition between four
possible initial spin states and four final spin states, and accordingly the R-matrix is
(4 x 4). The six non-zero entries of (12) correspond with the vertices in Fig. 2.

5The weights of the six-vertex model (52) and the entries of the XXZ R-matrix (12) are identical.
This is the origin of the connection between the two models. We have chosen to write down these
functions twice for clarity and to emphasize this fact.
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4.5 Remarks

1. The spin chains that are relevant to integrability in YM theories are typically
homogeneous since all quantum rapidities are set equal to the same constant value
z. In our conventions, z = %«/—_1 . 2. The trigonometric six-vertex model that cor-
responds to the homogeneous XXZ spin—% chain used in [26-28] has, in our con-
ventions, all vertical rapidity variables equal to %«/—_1 . In this note, we start with
inhomogeneous vertical rapidities, then take the homogeneous limit at the end. 3. In
a 2-dimensional vertex model with no external fields, the horizontal lines are on
equal footing with the vertical lines. To make contact with spin chains, we treat
these two sets of lines differently. 4. In all figures in this note, a line segment with
an arrow on it obviously indicates a definite arrow assignment. A line segment with
no arrow on it implies a sum over both arrow assignments.

4.6 Weighted Configurations and Partition Functions

By assigning every vertex v;; a weight w;;, a vertex model lattice configuration
with a definite assignment of arrows is assigned a weight equal to the product of the
weights of its vertices. The partition function of a lattice configuration is the sum of
the weights of all possible configurations that the vertices can take and that respect
the boundary conditions. Since the vertex weights are invariant under reversal of all
arrows, the partition function is also invariant under reversal of all arrows.

4.7 Rows of Segments, Spin Systems, Spin System States and Net
Spin

A ‘row of segments’ is a set of vertical line segments that start and/or end on the
same horizontal line(s). An Lj x L, six-vertex lattice configuration has (L, + 1)
rows of segments. On every length-Lj row of segments, one can assign a definite
spin configuration, whereby each segment carries a spin variable (an arrow) that
can point either up or down. A ‘spin system’ on a specific row of segments is a set
of all possible definite spin configurations that one can assign to that row. A ‘spin
system state’ is one such definite configuration. Two neighbouring spin systems (or
spin system states) are separated by a horizontal lattice line. The spin systems that
live on the top and the bottom rows of segments are initial and final spin systems,
respectively. Consider a specific spin system state. Assign each up-spin the value
+1 and each down-spin the value —1. The sum of these values is the net spin of this
spin system state. In this paper, we only consider six-vertex model configurations
such that all elements in a spin system have the same net spin.
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4.8 Initial and Final Spin-Up and Spin-Down Reference States,
and a Variation

An initial (final) spin-up reference state |L") ({(L"]) is a spin system state on a top
(bottom) row of segments with L arrows that are all up. An initial (final) spin-down
reference state | L") ({LV]) is a spin system state on a top (bottom) row of segments
with L arrows that are all down. The state (N3v , (L — N3)"| is a spin system state on
a bottom row of segments with L arrows such that the first N3 arrows from the left
are down, while the remaining (L — N3) arrows are up. We do not need the initial
version of this state.

4.9 Correspondence with XXZ Spin Chain States

The connection to the XXZ spin—% chain of Sect. 3 is clear. Every state of the pe-
riodic spin chain is analogous to a spin system state in the six-vertex model. Pe-
riodicity is not manifest in the latter representation for the same reason that it is
not manifest once we choose a labeling system. The initial and final spin-up/down
reference states are the six-vertex analogues of those discussed in Sect. 3.

4.10 Remarks

1. There is of course no ‘time variable’ in the six-vertex model, but one can think of a
spin system as a dynamical system that evolves in discrete steps as one scans a lattice
configuration from top to bottom. Starting from an initial spin set and scanning the
configuration from top to bottom, the intermediate spin sets are consecutive states
in the history of a dynamical system, ending with the final spin set. This evolution
is caused by the action of the horizontal line elements. 2. In this paper, all elements
in a spin system, that live on a certain row of segments, have the same net spin. The
reason is that vertically adjacent spin systems are separated by horizontal lines of a
fixed type that change the net spin by the same amount (£1) or keep it unchanged.
Since we consider only lattice configurations with given horizontal lines (and do not
sum over different types), the net spin of all elements in a spin system changes by
the same amount.

4.11 Four Types of Horizontal Lines

Each horizontal line has two boundary segments. Each boundary segment has as an
arrow that can point into the configuration or away from it. Accordingly, we can
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Fig. 3 There are four types 21 2L 2 2L
of horizontal lines in a ¢ ¢ 6 Vb ¢ ¢ V) <7 ﬁ ¢
six-vertex model lattice
configuration ¥ > > > -

A-line B-line

u
- » - - -
C-line D-line

distinguish four types of horizontal lines, as in Fig. 3. We refer to them as A-, B-,
C- and D-lines.

An important property of a horizontal line is how the net spin changes as one
moves across it from top to bottom. Given that all vertices conserve ‘arrow flow’,
one can easily show that, scanning a configuration from top to bottom, B-lines
change the net spin by —1, C-lines change it by +1, while A- and D-lines preserve
the net spin. This can be easily understood by working out a few simple examples.

4.12 Correspondence with Monodromy Matrix Entries

The A-, B-, C- and D-lines in Fig. 3 are the six-vertex model representation of the
corresponding elements of the M -matrix in Sect. 3. This graphical representation is
used frequently throughout the rest of the paper.

4.13 Four Types of Configurations

1. A B-configuration is a lattice configuration with L vertical lines and N horizontal
lines, N < L, such that (A) The initial spin system is an initial reference state |L"),
and (B) All horizontal lines are B-lines. An example is on the left hand side of
Fig. 4.

2. A C-configuration is a lattice configuration with L vertical lines and N hori-
zontal lines, N < L, such that (A) All horizontal lines are C-lines, and (B) The final
spin system is a final reference state (L"|. An example is on the right hand side of
Fig. 4.

3. A BC-configuration is a lattice configuration with L vertical lines and 2N
horizontal lines, 0 < N; < L, such that (A) The initial spin system is an initial
reference state |L"), (B) The first N; horizontal lines from top to bottom are B-
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Fig. 4 On the left, a 2 £99 2 2L
B-configuration, generated by 47 % 6 6 %
the action of N B-lines on an

initial length-L reference

state, N < L. A weighted U] >
sum over all possible
configurations of segments
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C-configuration
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lines, (C) The following N; horizontal lines are C-lines, (D) The final spin system
is a final reference state (L"|. See Fig. 5.16

4. An[L, N1, Na]-configuration, 0 < N, < Nj,isidentical to a BC-configuration
except that it has Nj B-lines, and Ny C-lines. When N3 = N1 — N, =0, we ev-
idently recover a BC-configuration. The case N, = 0 is discussed below. For in-
termediate values of N, we obtain restricted BC-configurations whose partition
functions turn out to be essentially the structure constants.

4.14 Correspondence with Generic Bethe States

An initial (final) generic Bethe state is represented in six-vertex model terms as a B-
configuration (C-configuration), as illustrated on the left (right) hand side of Fig. 4.
Note that the outcome of the action of the N B-lines (C-lines) on the initial (final)
length-L spin-up reference state is an initial (final) spin system that can assume all
possible spin states of net spin (L — N). Each of these definite spin states is weighted
by the weight of the corresponding lattice configuration.

4.15 Correspondence with S[L, N1, N1] Scalar Products
and S[L, N1, N3] Restricted Scalar Products

In the language of the six-vertex model, the scalar product S[L, N1, Ni] corre-
sponds with a BC-configuration with N1 B-lines and N1 C-lines, as illustrated in
Fig. 5. The restricted scalar product S[L, N1, N»] corresponds with an [L, N1, N>]-
configuration, as illustrated in Fig. 9. Compared with the definition of S[L, Ny, N>]
in (37), the partition function of an [L, N1, N2]-configuration differs only up to an
overall normalization. To translate between the two, one should divide the latter by
d(u) for every B-line with rapidity # and by d(v) for every C-line with rapidity v.

16For visual clarity, we have allowed for a gap between the B-lines and the C-lines in Fig. 5. There
is also a gap between the N3-th and (N3 + 1)-th vertical lines, where N3 = 3 in the example shown,
that indicates separate portions of the lattice that will be relevant shortly. The reader should ignore
this at this stage.
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Fig. 5 A six-vertex model 21 ZN3  ZN3+1 2L
BC-configuration. L =12,

and Ny =5, or equivalently 6 6 é 6 6 e’ &
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4.16 [L, N1, N2]-Configurations as Restrictions
of BC-Configurations

Consider a BC-configuration with no restrictions. To be specific, let us consider the
configuration in Fig. 5, where N1 =5 and L = 12. Both sets of rapidities {u} and
{v} are labeled from top to bottom, as usual.

Consider the vertex at the bottom-left corner of Fig. 5. From Fig. 2, it is easy
to see that this can be either a b- or a c-vertex. Since the {v} variables are free,
set vs = 71, thereby setting the weight of all configurations with a b-vertex at this
corner to zero, and forcing the vertex at this corner to be a c-vertex.

Referring to Fig. 2 again, one can see that not only is the corner vertex forced
to be a c-vertex, but the orientations of all arrows on the horizontal lattice line with
rapidity vs, as well as all arrows on the vertical line with rapidity z; but below the
horizontal line with rapidity uy, are also frozen to fixed values as in Fig. 6.

The above exercise in ‘freezing’ vertices and arrows can be repeated and to pro-
duce a non-trivial example, we do it two more times. Setting v4 = 75 forces the
vertex at the intersection of the lines carrying the rapidities v4 and z; to be a c-
vertex and freezes all arrows to the right as well as all arrows above that vertex and
along C-lines, as in Fig. 7.

Setting v3 = z3, we end up with the lattice configuration in Fig. 8, from which
we can see that (1) All arrows on the lower N3 horizontal lines, where N3 = 3 in the
specific example shown, are frozen, and (2) All lines on the N3 left most vertical
lines in the lower half of the diagram, where they intersect with C-lines. Removing
the lower N3 C-lines we obtain the configuration in Fig. 9. This configuration has
a subset (rectangular shape on lower left corner) that is also completely frozen. All
vertices in this part are a-vertices, hence from (52), their contribution to the partition
function of this configuration is trivial.
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Fig. 6 Setting vy, to z; in Nz ZN3+1 2L
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An [L, Ny, Na]-configuration, as in Fig. 9, interpolates between an initial refer-
ence state |L") and a final (N3, (L — N3)”| state, using N1 B-lines followed by
N, C-lines.

Setting vy, —;+1 = z; fori =1, ..., N1, we freeze all arrows that are on C-lines
or on segments that end on C-lines. Discarding these we obtain the lattice configu-
ration in Fig. 10.

Removing all frozen vertices (as well as the extra space between two sets of
vertical lines, that is no longer necessary), one obtains the domain wall configura-
tion in Fig. 11, which is characterized as follows. All arrows on the left and right
boundaries point inwards, and all arrows on the upper and lower boundaries point
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Fig. 8 The effect of forcing 21 ZN;3 2ZN3+1 2L
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outwards. The internal arrows remain free, and the configurations that are consis-
tent with the boundary conditions are summed over. Reversing the orientation of all
arrows on all boundaries is a dual a domain wall configuration.
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Fig. 11 The left hand side is 2] ZN 2] ZN
an (N x N) domain wall % ¢ % % e 6 e
configuration, where N =5.
The right hand side is the A A A A
corresponding dual U] —> <1 1 | I
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4.17 Remarks on Domain Wall Configurations

1. One can generate a domain wall configuration directly starting from a length-N
initial reference state followed by N B-lines, 2. One can generate a dual domain wall
configuration directly starting from a length- N dual initial reference state followed
by N C-lines, 3. A BC-configuration with length-L initial and final reference states,
L B-lines and L C-lines, factorizes into a product of a domain wall configuration
and a dual domain wall configuration, 4. The restriction of BC-configurations to
[L, N1, Na]-configurations, where N> < Nj, produces a recursion relation that was
used in [43] to provide a recursive proof of Slavnov’s determinant expression for the
scalar product of a Bethe eigenstate and a generic state in the corresponding spin
chain, 5. The partition function of a domain wall configuration has a determinant
expression found by Izergin, that can be derived in six-vertex model terms (without
reference to spin chains or the BA) [50].

4.18 Izergin’s Domain Wall Partition Function

Let {u}y = {u1,...,un}and {z}y = {z1, ..., zn} be two sets of rapidity variables'”
and define Zy ({u}n, {z}n) to be the partition function of the domain wall lattice
configuration on the left hand side of Fig. 11, after dividing by d(u) for every B-
line with rapidity u. Izergin’s determinant expression for the domain wall partition
function is

Zy({uln. {z}n)

N o — .
_ [lij=lei —zj 4 det< (] > 53)
H1§i<j§1v[ui —ujllzj — zil [ui —zj +nllu; —z;] 1<i,j<N

Dual domain wall configurations have the same partition functions due to invari-
ance under reversing all arrows. For the result of this note, we need the homoge-
neous limit of the above expression. Taking the limit z; — z, {i = 1,..., L}, we

17The following result does not require that any set of rapidities satisfy Bethe equations.
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Fig. 12 A schematic
representation of a 3-point
function. State O is on top.
O, and O3 are below, to the
right and to the left. Type-A
3-point functions are
(initially) in this ‘wide-pants’
form
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where ¢ (u;, z) = I 0, ([ui T Z]> (54)

5 Structure Constants in Type-A Theories

In this section, we recall the discussion of SYMy tree-level structure constants of
[26-29] but now in the context of the Type-A theories in Subsect. 1.5, and construct
determinant expressions for structure constants of three non-extremal SU(2) single-
trace operators.

Since theory 1 is SYMy, theory 2 is an Abelian orbifolding of SYMy4, and the-
ory 3 is a real-f-deformation of it, all three theories share the same fundamental
charged scalar field content, that is {X, Y, Z} and their charge conjugates {)_( Y. Z 1,
and all are conformally invariant up to all loops [33]. This makes our discussion a
straightforward paraphrasing of that in [26-29].

5.1 Tree-Level Structure Constants

We consider tree-level 3-point functions of SU(2) single-trace operators that
(1) have well-defined conformal dimensions at 1-loop level, and (2) can be mapped
to Bethe eigenstates in closed spin-% chains.

These 3-point functions can be represented schematically as in Fig. 12. Identify
the pairs of corner points {l1, r1}, {l2, 2}, {I3, r3}, as well as the triple {m, mo, m3}
to obtain a pants diagram. The structure constants have a perturbative expansion in
the ’t Hooft coupling constant A,

Ciji =i +AcijL+ -+ (55)

We restrict our attention to the leading coefficient cl(;),z In the limit A — 0, many
single-trace operators have the same conformal dimension. This degeneracy is lifted
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at 1-loop level and certain linear combinations of single-trace operators have definite
1-loop conformal dimension. This is why although we compute tree-level structure
constants, we insist on 1-loop conformal invariance: We identify operators with well
defined conformal dimensions.

As explained in Sect. 2, these linear combinations correspond to eigenstates of
a closed spin-% chain. Their conformal dimensions are the corresponding Bethe
eigenvalues. These closed spin chain states correspond to the circles at the bound-
aries of the pants diagram that can be constructed from Fig. 12 as discussed above.

5.2 Remark

In computing 3-point functions, the three composite operators may or may not be-
long to the same SU(2) doublet. In particular, in [26-28], EGSV use operators from
the doublets {Z, X}, {Z X },and {Z, X }. In [29], this procedure allowed us to con-
struct determinant expressions for structure constants of non-extremal 3-point func-
tions. This applies to all Type-A theories. Type-B structure constants are constructed
differently. In particular, the non-extremal case I3 = 0 is considered.

5.3 Constructing 3-Point Functions

To construct three-point functions at the gauge theory operator level, the fundamen-
tal fields in the operators O;, i = {1, 2, 3} are contracted by free propagators. Each
propagator connects two fields, hence L + Ly + L3 is an even number. The number
of propagators between O; and O; is

1
lij=§(Li+Lj —Ly) (56)

where (i, j, k) take distinct values in (1, 2, 3). We restrict our attention, in this sec-
tion, to the non-extremal case, that is, all /;;’s are strictly positive. The free propa-
gators reproduce the factor 1/]x; — x |44/ =4 in (2), where A; = AEO), the tree-
level conformal dimension. See Fig. 12 for a schematic representation of a three
point function of the type discussed in this note. The horizontal line segment be-
tween [; and r; represents the operator O;. The lines that start at O and end at
either O, or O3 represent one type of propagator.

5.4 From Single-Trace Operators to Spin-Chain States

One represents the single-trace operator O; of well-defined 1-loop conformal di-
mension A; by a closed spin-chain Bethe eigenstate |O;)g. Its eigenvalue E; is
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Table 1 Identification of operator content of O;, i € {1, 2, 3} with initial and final spin-chain states

Operator () ©) (1 o o 1
(o) z D¢ Z X
0, z X z X
O3 z X Z X

equal to A;. The number of fundamental fields L; in the trace is the length of the
spin chain.

The single-trace operator O; is a composite operator built from weighted sums
over traces of products of two fundamental fields {u, d}. These fundamental fields
are mapped to definite spin states. To perform suitable mappings that lead to non-
vanishing results, we need to decide on which state(s) are in-state(s) from the view-
point of the lattice representation, and which are out-state(s).

5.5 Type-A. Fundamental Field Content of the States

All three Type-A theories have the same fundamental field content, namely that of
SYMy, and thereby, more than one doublet. We focus on the doublets formed from
the fields Z, X and their conjugates. Following [26-28], we identify the fundamental
field content of O;, i € {1, 2, 3} with spin-chain spin states as shown in Table 1,
where Z and X are the conjugates of Z and X. That is, if Z appears on one side of
a propagator and Z appears on the other side, then that propagator is not identically
vanishing, and Z and Z can be Wick contracted. Similarly for X and X.
In our conventions

(ZZ)=(Z|Z) =1, (ZZ)=(Z|Z)=0 (57)

and similarly for X and X. In (57), (f f) with no vertical bar between the two
operators is a propagator, while ( f| f) with a vertical bar between the two operators
is a scalar product of an initial state | f) and a final state ( f]|.

From Table 1, one can read the fundamental-scalar operator content of each
single-trace operator O;, i € {1,2, 3}, when it is an initial state and when it is a
final state. For example, the fundamental field content of the initial state |O) is
{Z, X}, and that of the corresponding final state (O] is {Z, X}. The content of an
initial state and the corresponding final state are related by the ‘flipping’ operation
of [26-28] described below.

5.6 Structure Constants in Terms of Spin-Chains

Having mapped the single-trace operators O;, i € {1, 2, 3} to spin-chain eigenstates,
EGSV construct the structure constants in three steps.
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5.6.1 Step 1. Split the Lattice Configurations that Correspond to Closed
Spin-Chain Eigenstates into Two Parts

Consider the open 1-dimensional lattice configuration that corresponds to the i-th
closed spin-chain eigenstate, i € {1, 2, 3}. This is schematically represented by a line
in Fig. 12 that starts at /; and ends at r;. Split that, at point ¢; into left and right sub-
lattice configurations of lengths L; ; = %(L,- +Lj—Ly)and L;, = %(L,- +Lg—Lj)
respectively. Note that the lengths of the sub-lattices is fully determined by L1, L;
and L3 which are fixed.

Following [44], we express the single lattice configuration of the original closed
spin chain state as a weighted sum of tensor products of states that live in two smaller
Hilbert spaces. The latter correspond to closed spin chains of lengths L;; and L; ,
respectively. That is, |O0;) =Y H,,|O0;); ® |O;),. The factors H; , were computed
in [44] and were needed in [26-28], where one of the scalar products is generic and
had to be expressed as an explicit sum. They are not needed in this work as we use
Bethe equations to evaluate this very sum as a determinant.

5.6.2 Step 2. From Initial to Final States

Map |0;); ® |0;)r — |0;)1 ® r{O;l, using the operator F that acts as follows.
F(lfif2e- frafu)) = frfia- Rl (58)
In particular,
(ZZ---Z|ZZ---Z)=(ZZ---Z|ZZ---Z) =1,
and (ZZ---Z|ZZ---Z)=0 (59)
More generally
(firfir -+ il \ 3 i+ Sin) ~ Sinji Sinjo -+~ Sip ju (60)

The “flipping’ operation in (58) is the origin of the differences in assignments of fun-
damental fields to initial and final operator states in Table 1. For example, |O;) has
fundamental field content {Z, X}, but (O] has fundamental field content {Z, X}.
This agrees with the fact that in computing (O; |O;), free propagators can only con-
nect conjugate fundamental fields.

5.6.3 Step 3. Compute Scalar Products
Wick contract pairs of initial states |O;), and final states |O;+1);, where i € {1, 2, 3}

and i + 3 =i. The spin-chain equivalent of that is to compute the scalar products
+{Oi10;i41)1, which in six-vertex model terms are BC-configurations. The most
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general scalar product that we can consider is the generic scalar product between
two generic Bethe states

N N
Seeneric({u}, (v}) = (O] [[Cwj) [ ] B )10) (61)
j=1 j=1

A computationally tractable evaluation of Sgeperic({u}, {v}) using the commuta-
tion relations of BA operators is known [46]. Simpler expressions are obtained when
the auxiliary rapidities of one (or both) states satisfies Bethe equations. The result in
this case is a determinant. When only one set satisfies Bethe equations, one obtains
a Slavnov scalar product. This was discussed in Sect. 3.

5.7 Type-A. An Unevaluated Expression

The above three steps lead to the following preliminary, unevaluated expression

el =Ni23 D 1(O3101)1:(01]02)1, (02| O3), (62)

where the normalization factor A}»3, that turns out to be a non-trivial object that
depends on the norms of the Bethe eigenstates, is

_ LiLyLs
Niz =/ NN, (63)

In (63), L; is the number of sites in the closed spin chain that represents state O;.
N; is the Gaudin norm of state O; as in (50). The sum in (62) is to be understood
as follows. 1. It is a sum over all possible ways to split the sites of each closed spin
chain (represented as a segment in a 1-dimensional lattice) into a left part and a right
part. We will see shortly that only one term in this sum survives. 2. It is a sum over
all possible ways of partitioning the X or X content of a spin chain state between
the two parts that spin chain was split into. We will see shortly that only one sum
survives.

5.8 Type-A. Simplifying the Unevaluated Expression

Wick contracting single-trace operators, we can only contract a fundamental field
with its conjugate. Given the assignments in Table 1, one can see that (1) All Z
fields in O3 must contract with Z fields in (J,. The reason is that there are Z fields
only in O,, and none in Oy. (2) All X fields in O3 contract with X fields in ©;. The
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reason is that there are X fields only in Oy, and_none in O,. If the total number of
scalar fields in O; is L;, and the number of {X, X}-type scalar fields is N;, then

l13 = N3, l)3=L3 — N3, lip=L1— N3 (64)

and we have the constraint
Ni=Ny+ N3 (65)

From (64) and (65), we have the following 4 simplifications. 1. There is only one
way to split each lattice configuration that represents a spin chain into a left part and
a right part, 2. The scalar product ,(O,|O3); involves the fundamental field Z (and
only Z) in the initial state |O3); as well as in the final state ,(O,|. Using Table 1,
we find that these states translate to an initial and a final spin-up reference state,
respectively. This is represented in Fig. 12 by the fact that no connecting lines (that
stand for propagators of {X, X} states) connect O, and 3. The scalar product of
the two reference states is , (02|03); = 1, 3. The scalar product ,(O3]|O1); involves
the fundamental fields X (and only X) in the initial state |O1); as well as in the final
state (O3|. Using Table 1, we find that these states translate to an initial spin-up
and a final spin-down reference state, respectively. This is represented in Fig. 12
by the high density of connecting lines (that stand for propagators of {X, X} states)
between O and Q3. This scalar product is straightforward to evaluate in terms of
the domain wall partition function, 4. In the remaining scalar product ,(O1|O3);,
both the initial state |(D,); and the final state ,(©;| involve {X, Z}. These fields
translate to up and down spin states and the scalar product is generic. Using the BA
commutation relations, it can be evaluated as a weighted sum [44].

5.9 Type-A. Evaluating the Expression

The idea of [29] is to identify the expression in (62), up to simple factors, with the
partition function of an [L1, N1, Na]-configuration. Since this partition function is
arestricted scalar product S[L1, N1, N>], it can be evaluated as a determinant. This
is achieved in two steps.

5.9.1 Step 1. Re-writing One of the Scalar Products

We use the facts that (1) ,(O2|O3); = 1, and (2) ,(O2|O1); = 1{O1]O2),, which is
true for all scalar products, to re-write (62) in the form

Q=N Y {05011 1(02100),

aU&:{uﬂ}Nl

= N23(- (O3] ® 1(O1])|O1) (66)
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Fig. 13 A schematic

l 1 Cy ™

representation of a 3-point
function after removal of a
contraction between the left m my
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pants’ form from the outset Ts

where the right hand side of (66) is a scalar product of the full initials tate |O;) (so
we no longer have a sum over partitions of the rapidities {ug}y, since we no longer
split the state 1) and two states that are pieces of original states that were split.
Deleting the scalar product corresponding to contracting the left part of state O,
with the right part of state O3, since that contraction leads to a factor of unity, the
object that we are evaluating can be schematically drawn as in Fig. 13.

This right hand side is identical to an [L1, N1, N>]-configuration, apart from the
fact that it includes an (N3 x N3)-domain wall configuration, that corresponds to
the spin-down reference state contribution of ,(N3Y|, that is not included in an
[L1, N1, Na]-configuration.

5.9.2 Step 2. The Domain Wall Partition Functions

Accounting for the domain wall partition function, and working in the homogeneous
limit where all quantum rapidities are set to z = %«/ —1, we obtain our result for the
structure constants, which up to a factor, is in determinant form.

0
Ci2)3 =N Zflv(;m <{w}1v3,

)

1
% Shom[LI’ N1, N2 ({Mﬁ}Nl’ {U}N2’ 5\/__1) ©67)

where the normalization N7,3 is defined in (63), the (N3 x N3) domain wall par-
tition function Zf’\gm({w};vy %\/—_1) is given in (54). The term Sh”’”[Ll , N1, N>]
({ug}n,. {v}ny, 3+/—1) is an (N1 x Ni) determinant expression of the partition
function of an [L{, N1, Na]-configuration, given in (47). The auxiliary rapidities
{u}, {v} and {w} are those of the eigenstates O1, O, and O3 in [26-28], respec-
tively. Notice that {v} and {w} are actually {v}g and {w}g, that is, they satisfy Bethe
equations, but this fact is not used. In six-vertex model terms, the object that we are
evaluating is drawn in Fig. 14.
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Fig. 14 The six-vertex lattice configuration that corresponds, up to a normalization factor N3,

to the structure constant 6(12)3

5.10 Type-A Specializations

Equation (67) is quite general. To obtain an expression specific to a certain Type-
A theory, we need to use the values of the spin-chain parameters appropriate to
that theory, as were given in Subsect. 1.7. All Type-A theories map to XXX spin-

% chains, hence the anisotropy parameter A = 1, but with different values for the

twist parameter 6. Theory 1 is SYMy and 8 = 0. Theory 2 is SYMQ’[ is an Abelian

orbifold version of SYMy and 6 = zﬁ” Theory 3 is a real-g-deformed version of
SYMy and 6 = B.

6 Structure Constants in Type-B Theories

In this section, we consider structure constants in Type-B theories. Our approach is
parallel to that used in Type-A. The difference is that each Type-B theory has only
one doublet, and therefore requires a slightly modified treatment. '

In type-A theories, the left part of O, gets trivially contracted with the right part
of O3, and the pants diagram is reduced to the ‘narrow pants diagram’ in Fig. 13.
As we will see, the starting point in the case of Type-B theories is a ‘narrow pants’
diagram.

18The conclusion that, in order to obtain a determinant formula, one of the single-trace operators
should be BPS-like, was obtained in discussions with C. Ahn and R. Nepomechie.
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Table 2 Identification of )

0
Type-B operator content of Operator (o) (1) a1 o © D
Oy, i € (1,2, 3} with initial - -
and final spin-chain states O ¢ e ¢ ¢
@ ¢ ¢ ¢ ¢
O3 ¢ ¢ ¢ ¢

This implies that in Type-B theories O3 must be chosen to be a BPS-like state,
with one type of fundamental field in the composite operator Q3. On the other hand,
since the missing contraction (that between the left part of O and the right part of
03) was trivial for Type-A theories, the final result remains the same.

6.1 Type-B. Fundamental field content of the states

As in Type-A, we consider single-trace operators in an SU(2) sector of a 1-loop
conformally-invariant gauge theory, that is Tr(fi f2.f3---), where f; € {u,d} is a
fundamental field that belongs to an SU(2) doublet.

The new feature in Type-B theories is that we have only one doublet to work
with. The doublets relevant to Type-B theories were given in Subsect. 1.7. Theory 4
is pure gauge SYM),, and the doublet consists of the gluino and its conjugate {A, A}.
Theory 5 is pure gauge SYM1, and the doublet consists of the complex scalar and its
conjugate {¢, ¢}. Theory 6 is pure QCD and the doublet consists of the light cone
derivative of the gauge field component A and its conjugate A, that is, {9, A, 3, A}.
In the following, we deal with all three theories in one go, using the notation {¢, ¢}
for a generic single doublet.

Since we have only one doublet to construct composite operators from, we iden-
tify the fundamental field content of O;, i € {1, 2, 3} with spin-chain spin states as
shown in Table 2.

Once again, in our conventions

€5y =I5y =1, {€6)=(£15) =0 (68)

From Table 2, one can read the fundamental-scalar operator content of each
single-trace operator O;, i € {1,2, 3}, when it is an initial state and when it is a
final state.

6.2 Similarities Between Type-A and Type-B Theories

Steps 1, 2 and 3 from the EGSV construction of the structure constants apply
unchanged to Type-B theories. In other words, (1) The splitting of each lattice,
(2) The flipping procedure, and (3) The contraction of left and right halves to form
scalar products, are replicated in the case of Type-B theories. Therefore we see that
Eq. (62) continues to hold, and we assume that as our starting point.
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6.3 Differences Between Type-A and Type-B Theories

1. In the case of Type-A theories, O3 contains Z fields that can only contract with
Z fields in ©,. This is because there are no fields that they can contract with in Oj.
This trivializes the ;(O2|O3), scalar product.

This is not the case in Type-B theories, where we have only a single doublet that
must be used to populate all three states O, O, and O3. Because of that, one can
see that if there is a contraction between O, and O3, it is in general non-trivial.
This is sufficient to prevent us from duplicating our Type-A arguments in the case
of Type-B theories. In fact, there is yet another difference.

2. In the case of Type-A theories, O3 contains X fields that can contract only
with X fields in ;. The reason is that there are no X fields in ;. This trivializes
the scalar product that involves the left part of O; and the right part of O3, leading
to a domain wall partition function.

Once again, in the case of Type-B theories, the above trivial contraction is no
longer the case, and contractions between O and O3 are in general non-trivial.

6.4 One of the Operators Must Be BPS-Like

Because of the above reasons, we cannot map the most general SU(2) structure
constants of Type-B operators onto a restricted Slavnov scalar product. However,
both problems are overcome if we take Oz to be BPS-like, that is, a single-trace
operator of the form Tr[¢ ¢ ---¢]. This means that we demand that N3 = L3, or
equivalently, that 3 = L3 — N3 = 0. In other words, the fields in O3 are all of
the same type ¢ (magnons) and they contract with a subset of the fields in Oy,
while there are no contractions between O3 and ;. From this, we conclude that the
starting point of the Type-B structure constants that we can compute in determinant
form is the ‘narrow pants’ diagram in Fig. 13.

But we know that the partition function of the lattice configuration corresponding
to Fig. 13 is given by a restricted Slavnov scalar product. Therefore for Type-B
structure constants for which O3 is BPS-like, that is L3 = N3, we obtain

1
i =Nzl (w5 v7T)

1
x Shom(Ly, Ny, Nz]({u,s}Nl,{v}Nz, 5\/—_1) (69)

This is the same result as the Type-A case, but with the caveat that we are restricting
our attention to the situation L3 = N3. As a result the Gaudin norm A3, which
occurs in the normalization factor A23, is equal to the partition function of a BC-
configuration with length- N3 initial and final reference states, and N3 B-lines and
C-lines. As we commented in Subsect. 4.17, such a configuration factorizes into a
product of domain wall partition functions. Hence we are able to cancel the factor
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Z}](,(’m({w} N3 %«/ —1) in (69) at the expense of the factor /N3 in the denominator,

3
and obtain the final expression

©o _ |Lil2L3
C123= NN
N2

1
ShomILy, Ny, N2]<{M,3}N1, V)N, —J—_l) (70)

2

6.5 Type-B Specializations

As in the previous section, (69) is quite general. To obtain an expression specific
to a certain Type-B theory, we need to use the values of the spin-chain parameters
appropriate to that theory, as were given in Subsect. 1.7. All Type-B theories map
to periodic XXZ spin—% chains, hence the twist parameter § = 0, but with different
values of the anisotropy parameter A. Theory 4 is pure SYM; and A =3 [7, 39].
Theory 5 is pure SYM; and A = % [7]. Theory 6 is pure gauge QCD and A = —%
[7].

7 Discrete KP 7-Functions

In this section we closely follow [47], where it was shown that Slavnov’s scalar
product is a r-function of the discrete KP hierarchy. The only differences in this
work are (1) A more compact expression for the t-function itself, see (99), (2) The
inclusion of the twist parameter 6 in the 7-function, and (3) A discussion of restrict-
ing the Miwa variables to the values of the quantum inhomogeneities.

7.1 Notation Related to Sets of Variables

We use {x} for the set of finitely many variables {x1,x2,...,xy}, and {X;,} for
{x} with the element x,, omitted. In the case of sets with a repeated variable x;,

we use the superscript (m;) to indicate the multiplicity of x;, as in xi(m" ). For
example, {x?),xz,xgz),m,...} is the same as {xp, xq, x1, X2, X3, X3, X4, ...} and
.., xl(mi), ...} is equivalent to saying that f depends on m; distinct variables all
&)

of which have the same value x;. For simplicity, we use x; to indicate x; .
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7.2 The Complete Symmetric Function h;{x}

Let {x} denote a set of N variables {x1, x2, ..., xy}. The complete symmetric func-
tion h;{x} is the coefficient of k' in the power series expansion

1 > .
=Zh,~{x}k’ (71)
i LmXk

For example, ho{x} =1, h1(x1, x2, x3) = x1 +x2+ X3, ha(x1, x2) =x12+x1x2 —i—x%,
and h;{x} =0 fori <O0.

7.3 Useful Identities for h;{x}

From (71), it is straightforward to show that
hi{x} = hi{Xn} + xmhi—1{x} (72)

Then from (72) one obtains

(xXm — xp)hi—1{x} zhl{fn} _hi{?m} (73)
(Xm — xp)hi{x} = xph; {fn} — Xxph; {fm} (74)

7.4 Discrete Derivatives

The discrete derivative A,,h;{x} of h;{x} with respect to any one variable x,, € {x}
is defined using (72) as
hi{x} — hi{Zn}
Amhifx) = —=———""= = hi_1{x} (75)
Xm
Note that the effect of applying A, to h;{x} is a complete symmetric function
hi—1{x} of degree i — 1 in the same set of variables {x}.

7.5 The Discrete KP Hierarchy

Discrete KP is an infinite hierarchy of integrable partial difference equations in an
infinite set of continuous Miwa variables {x}, where time evolution is obtained
by changing the multiplicities {m} of these variables. In this work, we are inter-
ested in the situation where the total number of continuous Miwa variables is fi-
nite, which corresponds to setting to zero all continuous Miwa variables apart from
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{x1, ..., xn}. In this case, the discrete KP hierarchy can be written in bilinear form
as the n x n determinant equations

Loxr o X7 X P reaix)
I oxy o 77 X ralxdtoafx)
det o =0 (76)
Loy oo 27 X P ()t (x)
where 3 <n < N, and
t+i{x}=t{x1(m‘),...,xl.(m"H),...,x](\',"N)}
1 1 (77)
r_,‘{x}zr{ximl-’_),...,xl.(n“),...,x](\,m’v-'_)}

In other words, if t{x} has m; copies of the variable x;, then 74;{x} has m; + 1
copies of x; and the multiplicities of all other variables remain the same, while
7_;{x} has one more copy of each variable except x;. Equivalently, one can use the
simpler notation

tifxl=t{mi,....(mi +1),....my} (78)
ifx)=t{mi+ 1D, ... .mi, ..., (my + D)}
The simplest discrete KP bilinear difference equation, in the notation of (78), is
xi(xj —xp)t{m; + 1, mj, mpyr{im;, m; + 1, my + 1}

+xj(xe —xp)t{mi,m; + 1, mgdr{m; +1,m;, my + 1}
+oxi(x; — xj)t{mi,mj, mg+ ye{m; +1,mj+1,m} =0 (79)
where {x;, x;, x;} € {x} and {m;, m j, m;} € {m} are any two (corresponding) triples

in the sets of continuous and discrete (integral valued) Miwa variables. Equa-
tion (79) is the discrete analogue of the KP equation in continuous time variables.

7.6 Casoratian Matrices and Determinants

A Casoratian matrix §2 of the type that appears in this paper is such that its matrix
elements w;; satisfy

w;, j+1{x} = Apw;j{x} (80)

where the discrete derivative A,, is taken with respect to any one variable x,, € {x}
(it is redundant to specify which variable, since w;;{x} is symmetric in {x}). From
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the definition of the discrete derivative A,,, it is clear that the entries of Casoratian
matrices satisfy

wij{xt, ., x2 0 xw)

=a),-j{x1,...,xN}+xma)i,j+1{x1,...,xn(f),...,xN} (81)

which, in turn, gives rise to the identity

2)

(x,—xs)a)ij{xl,...,xr(z),...,xs( ..xN}

X, xPav) (82

=xrwij{x1,..., ..,xN}—xsa)ij{xl,...,

If §2 is a Casoratian matrix, then det {2 is a Casoratian determinant. Casoratian
determinants are discrete analogues of Wronskian determinants.

7.7 Notation for Column Vectors with Elements ®;

We need the column vector

w2
o) = wzj{xfml),....,xf\’,"m} )
CUN,/{X{ml),‘...,x](\’,nN)}
and write
wl./{xfm'),...,xglk‘H),... x’iTk”H)""’x/(va)}
wNj{Ximl),...,x,irlnklﬂ),....,x,i:””ﬂ),...,xl(\;"’v)}

for the corresponding column vector where the multiplicities of the variables
Xkys - .. X, are increased by 1.

7.8 Notation for Determinants with Elements w;

We also need the determinant

T=det(@; w2 -+ wy)=|l®1 w2 - | (85)
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and the notation

T[k]"""kn] — [klv---skn] [kl ----- kn] . E]\;l aaaaa kn] (86)

@ ®;

for the determinant with shifted multiplicities.

7.9 Identities Satisfied by Casoratian Determinants

Two identities, which are needed in the sequel, are

_ 1
X? 21_[1] — |(t)] W) o ON_] wEV]—n—i-Z 87)
l_[ (xr — xs)f[l """ n]
1<r<s<n
. [n] [n—1] [1]
= |“’1 cee @ON—n O, On i - On g (88)

These identities may be proved by using the (81) and (82) to perform column op-
erations in the determinant expressions for [ and z{!"1. To keep the exposition
concise we do not present these proofs, but full details can be found in [47].

7.10 Casoratians Are Discrete KP t-Functions

Following [48], consider the 2N x 2N determinant

1 2
get (@1 @v1 wEY]_M 01 -+ On—n+1 w[N"]_n+2~--w5\;_,,+2
O o Ovor oyl @1 ey Ol
=0 (89)

which is identically zero. For notational clarity, we have used subscripts to label the
position of columns of zeros. Performing a Laplace expansion of the left hand side
of (89)in N x N minors along the top N x 2N block, we obtain

n

k—1 (k]
> O Mer - onaoyl, |
k=1

[n] [k+1] [k—1] [1] _
X |"’1 CON 1@y, o @O OOy, 5 =00 (90)

By virtue of (87) and (88), (90) becomes

n
Z(_)k—lxlr(z—z T[k] 1_[ (xr _xs)_r[l,.“k.“,n] — 0 (91)
k=1

1<r<s<n

r,s#k
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Using the Vandermonde determinant identity

1 x; - x?—z
det| (1 x - 7= [] @—x) (92)
. . . 1<r<s<n
: . r,s#k
1 x, X2

with (1 x; --- x;’*z) denoting the omission of the k-th row of the matrix, we rec-
ognize (91) as the cofactor expansion of the determinant in (76) along its last col-
umn. Hence we conclude that Casoratian determinants satisfy the bilinear difference

equations of discrete KP.

7.11 Change of Variables

To interpret the Slavnov determinant (45) as a T-function of discrete KP in the sense
described above, it is necessary to adopt a change of variables as follows

{efzu,-’ ezulgi , 6221” 6277} — {xi’ yi’ Zi, q} (93)

In other words, our new variables (of which {x, ..., xy} end up being the contin-
uous Miwa variables of discrete KP) are expressed as exponentials of the original
variables. Furthermore, we consider a new normalization of the scalar product, given
by
S[L,N,N]
N L

N L
— N He(L—l)(uﬁ,-—ui) 1_[62Nzi 1_[ H[Uj — zllug, — zIS[L, N, N1

i=1 i=1 j=lk=1
%94)

Applying this normalization to (45), performing trivial rearrangements within the
determinant and making the change of variables as prescribed by (93), we obtain

(q = DN TTL Tz i — 2))
H1§i<j§1v(xi —x)(yi —yj)

x det e gV T (=2 Ty (1 = %200
L —x;yi

S[L,N,N]=

L
a7 [Tz (1 = axy0 [Tiey (1 = x; %>) 5)
I —x;yi 1<i,j<N
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Our goal is to show that S[L, N, N] has the form of a Casoratian determinant, where
the discrete derivative is taken with respect to the variables {x1, ..., xy}.

7.12 Removing the Pole in the Slavnov Scalar Product

For all 1 <i < N, define the function y; as

N L
- T (1- 2\ (1= &
et <1_qy]~> ( - ]‘)

i R
—qfl—[(l—ﬂ)]_[(l—'—") (96)
ki Vi = qYi
These functions provide a convenient way of expressing the Bethe equations (35)
under the change of variables (93 ), namely

yi=0, foralll <i<N. (97)

Recalling that these equations are assumed to apply to the variables {yi,..., yn},
we see that the pole at x; = 1/y; in the determinant of (95) can be removed. We omit
the details here as they are mechanical, and state only the result of this calculation,
which reads

S[L, N, N]

@ - DVTYL, H?:l(Yi =) BRI k
[icicjenGi =xpDi = y)) | 2 bl 1<i,j<N o

k=0

where [ yf‘ ¥i]+ denotes all terms in the Laurent expansion of yl(‘ y; which have non-
negative degree in y;.

7.13 The Slavnov Scalar Product is a Discrete KP t-Function

Using identities (72) and (73) to perform elementary column operations in the de-
terminant of (98), it is possible to remove the Vandermonde ]_[151- <j< N&i —xj)
from the denominator of this equation. This procedure is directly analogous to the
proof of the Jacobi-Trudi identity for Schur functions [49]. The result obtained is

S[L, N, N]
(@—DNTTL T i — 2)) LN=2
= ol X Divlieat (99)
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Up to an overall multiplicative factor which does not depend on the variables {x},
the normalized scalar product S[L, N, N] is a determinant of the form det £2, where
the matrix §2 has entries w;; which satisfy

L+N-2

Wi =Anwij, o= Y [yin] hix) (100)
k=0

Hence S[L, N, N] has the form of a Casoratian determinant, making it a discrete
KP 7-function in the variables {x} = {x1, ..., xn}.

7.14 Restrictions of S[L, N1, N1]

Similarly to (94), we define a new normalization of the restricted scalar product
S[L, N1, N»] as follows

Ni N> L
S[L, Ny, Na] = Vi He(L_l)“ﬂi He*(“l)”f He(N1+N2)Z"

i=1 i=1 i=1
Ny L N1 L
< [T]]wi =z [ 1] [tes; — lSIL, N1, Na] - (101)
j=1k=1 j=1k=1

Normalizing both sides of (46) using (94) and (101), and working in terms of the
variables introduced by (93), we obtain the result

SIL, N1, N1l xy,=1/z
X(N2+I>':1/ZN3

N3 L
=(z1...2v) T[] [(@"? = a7"?2/zi)SIL. N1 N2 (102)
i=1j=1

Hence the function S[L, N1, N3] is (up to an overall multiplicative factor) a restric-
tion of S[L, Ny, N], obtained by setting the variables xu,, ..., xn,+1 to the values
1/z1,...,1/zn;. Since S[L, Ny, Ni] is a discrete KP t-function in the variables
{x1,...,xn,}, itis clear that S[L, Ny, N>] is also a t-function in the unrestricted set
of variables {x1, ..., xn,}.

8 Summary and Comments

Following [29], we obtained determinant expressions for two types of structure
constants. 1. Structure constants of non-extremal 3-point functions of single-trace
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non-BPS operators in the scalar sector of SYM4 and two close variations on it (an
Abelian orbifolding of SYMy and a real-8-deformation of it. The operators involved
map to states in closed XXX spin-% chains, that are periodic in the case of SYMy,
and twisted in the other two cases. 2. Structure constants of extremal 3-point func-
tions of two non-BPS and one BPS single-trace operators in (not necessarily scalar,
but spin-zero) sectors of pure gauge SYM>, SYM; and QCD. The operators in-
volved map to states in closed periodic XXZ spin—% chains, with different values
of the anisotropy parameter, as identified in [7, 39]. One of the operators must be
BPS-like.

Our expressions are basically special cases of Slavnov’s determinant for the
scalar product of a Bethe eigenstate and a generic state in a (generally twisted)
closed XXZ spin chain. Finally, following [47], we showed that all these deter-
minants are discrete KP t-functions, in the sense that they obey the Hirota-Miwa
equations.

The study of 3-point functions is a continuing activity. In [52], a systematic study,
using perturbation theory, of 3-point functions in planar SYMy at 1-loop level, in-
volving scalar field operators up to length 5 is reported on. In [53, 54], quantum
corrections to 3-point functions of the very same type studied in this work planar
SYMy are studied using integrability. At 1-loop level, new algebraic structures are
found that govern all 2-loop corrections to the mixing of the operators as well as
automatically incorporate all 1-loop corrections to the tree-level computations.

In [55], operator product expansions of local single-trace operators composed of
self-dual components of the field strength tensor in planar QCD are considered. Us-
ing methods that extend those used in this work to spin-1 chains, a determinant ex-
pression for certain tree-level structure constants that appear in the operator product
expansion is obtained. More recently, in [56, 57], the classical limit of the determi-
nant form of the structure constants that appear in this work, was obtained.

Acknowledgements O.F. thanks C. Ahn, N. Gromov, G. Korchemsky, 1. Kostov, R. Nepome-
chie, D. Serban, P. Vieira and K. Zarembo for discussions on the topic of this work and the Inst.
H. Poincare for hospitality where it started. Both authors thank the Australian Research Council
for financial support, and the anonymous referee for remarks that helped us improve the text.
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Monodromy of Partial KZ Functors for Rational
Cherednik Algebras

Iain G. Gordon and Maurizio Martino

Abstract We study the monodromy of the Bezrukavnikov-Etingof induction and
restriction functors for rational Cherednik algebras of type G (¢, 1, n). We show that
these produce an sl-categorification on the category O’s for these algebras, and that,
through the K Z-functor, it is compatible with a corresponding categorification on
cyclotomic Hecke algebra representations.

1 Introduction

Shan has proved that the categories O.(W,,) for rational Cherednik algebras of type
W, =W(G(,1,n)) =6, X (ue)" with n varying, together with decompositions of
the parabolic induction and restriction functors of Bezrukavnikov-Etingof, provide
a categorification of an integrable s, Fock space representation J(m), [18]. The
parameters m € Z¢ and e € N U {oo} arise from the choice of parameters ¢ for the
rational Cherednik algebra. This categorification gives rise to a crystal structure on
the set of irreducible rational Cherednik algebra representations that belong to cat-
egory O,; it is isomorphic to the crystal introduced by Jimbo-Misra-Miwa-Okado,
[11].

Works of many authors, including Kleshchev, Brundan, Lascoux-Leclerc-
Thibon, Ariki, Grojnowski-Vazirani, Grojnowski and Chuang-Rouquier, show that
the categories H,(W,)-mod for Hecke algebras of type W, with n varying, to-
gether with decompositions of the parabolic induction and restriction functors, pro-
vide a categorification of an irreducible integrable s [o-representation L(A), [6]. The
weight A arises from the choice of parameters g for the Hecke algebra. This gives
rise to a crystal structure on the set of irreducible Hecke algebra representations.
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The Fock space is substantially more interesting than the representation L(A).
It is not irreducible, and in fact has an infinite number of non-zero isotypic compo-
nents. This reducibility reveals itself through distinct canonical bases one can define
on F(m), each of which produces a corresponding crystal. Nonetheless for each
n € N there is an exact functor KZ, : O.(W,,) — H,(W,)-mod, [10], intertwining
the parabolic induction and restriction functors for Cherednik algebras and Hecke
algebras and which produces a compatibility between the corresponding crystals:
the component of the Cherednik crystal containing the irreducible representation of
Wo = {1} is isomorphic to the Hecke crystal.

In this paper we give another construction of a decomposition of the parabolic
induction and restriction functors for the rational Cherednik algebra of type an ar-
bitrary complex reflection group. Our construction uses the monodromy of these
functors. Together with an appropriate transitivity result for restriction, we explain
how these give rise to an 5~[e-categ0riﬁcati0n and crystal structure on F(m) via O,.
The structure of the proof of these last claims is as in [18]. We also show via a ho-
motopy calculation that the decomposition we obtain is naturally isomorphic to the
decomposition introduced in [18].

The only small novelty in our approach is that we do not make use of the double
centralizer property of the KZ-functor. It is a fundamental and fruitful technique
of [18] to use this property to extend results systematically from Hecke algebras
to Cherednik algebras, obtaining in this way definitive results. Optimistically, how-
ever, we hope that using the monodromy of the induction and restriction functors
alone may be helpful towards generalizations, for instance to Cherednik algebras of
varieties with a finite group action, where less is known about the corresponding
KZ-functor and where one may imagine branching rules for affine type B and D
appear, amongst other things.

Our results were proved in the second half of 2008, and announced by the first
author at the conference “Algebraic Lie Structures with Origins in Physics” at the
Isaac Newton Institute in March 2009. It is important to record that although we
mentioned then that we knew biadjointness of parabolic restriction and induction,
our proof for that turned out to be incomplete. This is one of the most useful results
in [18]; it is also proved by Losev without use of the KZ-functor, [13]. We use this
result here, although it is not needed to obtain the crystal structure. Furthermore
we want to say that the presentation of [18] has helped to simplify several of our
arguments significantly.

The outline of the paper is as follows. We recall the restriction and induction
functors in Sect. 2, in both the algebraic and holomorphic settings. In Sect. 3 we
study the monodromy actions on restrictions of modules. Finally in Sect. 4 we spe-
cialize to the W, case to define i-restriction and i-restriction, and to explain the
categorification that then arises. We also check that this does indeed match up with
Shan’s original results.
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2 Definitions and Notation

2.1 Rational Cherednik Algebras

Let b be a finite dimensional vector space over C and W < GL(h) be a finite sub-
group generated by complex reflections. Let S be the set of complex reflections in
W and A be the corresponding set of reflecting hyperplanes. For each s € S, let
H; = ker(es) denote the reflecting hyperplane of s, and define ) € b to be an el-
ement such that h = Hy @ Ca,’ is the s-stable decomposition of §, normalized by
(as, 00y =2.

Let ¢ : S — C be constant on W-conjugacy classes. The rational Cherednik al-
gebra attached to W with parameter c is the quotient H.(W, h) of T(h ® h*) x W,
the smash product of CW and the tensor algebra of h @ h*, by the relations

[X,.x/]:(), [y7y/]:()v [y»x]:<xs)’)_ch<asa)’)(xaa;/>5,
seS

forall x,x’ € b*, y,y' €h,[8, (1.15)].
There is a faithful representation of H.(W, §) on C[h] where h* and W act nat-
urally, and each y € b acts via the Dunkl operator

2c; as(y)
D,:=0
) yt % 1 —dety=(s) oy
N

(s—1)

where 0y, is the partial derivative in the direction of y, [8, §4]. Let {x;} be a basis of
h* and let {y;} be the dual basis. Then

_ dim(bh) 2cg
eu_Zx,ymL ) Zl—deth*(s)s
i seS

is an analogue of the Euler element in H.(W, ). We have
[eu, x] = x, [eu, y] = -y, [eu, w] =0,

forallx eh*,yehandw e W.

2.2 Centralizer Algebras and the Isomorphism of
Bezrukavnikov-Etingof

Let b € h and W, C W the stabilizer of b, and let ¢, denote the restriction of the
function ¢ to S N Wp,. We write C[h]"» for the completion of C[h] at b in §, and
C[h]"! for the completion of C[h] at the W-orbit of b in . For any C[h]-module
M let M™ = C[h]" ®cy) M and M"b1 = C[H]"¥) Qcp) M.
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The completion H.(W,h)"?] can be identified with the subalgebra of
Endc(C[h]"®1) generated by C[h]*#!, the Dunkl operators D, for y € b, and the
group W. Let P = Funy, (W, H.,(Wp, h)"¢) and Z(W, W}, H., (W}, h)">) be the
ring of endomorphisms of the right H, (Wj, h)"*-module P.

Theorem 1 ([3] Theorem 3.2) For any b € by there is an isomorphism of algebras
Op : H.(W, §)" ¥ —> Z(W, Wy, He, (Wp, b)"?)
defined as follows: for f e P,x eh*, yebh,u,we W,

(@) f)(w) = f(wu),
(Op(0)f)(w) = wix) f (w),

2cy as(wy) (

@MW =wOf+ 3 =

seS\Wp,

flsw) = f(w)).

s

Thus we can identify H.(W,b)"l-modules with Z(W, Wy, H., (Wp, h)">)-
modules. A choice of decomposition of algebras C[h]") = P pewp CLb]"7 pro-
duces a non-canonical isomorphism of algebras

@ : Z(W, Wy, He,(Wp, §)"*) — Matyw w,|(He, (Wp, H)"?).

Let x; € C[h]"®) be the idempotent corresponding to 1 under the inclusion
C[p]" — C[bh]"®1. Then we can identify H., (Wp, h)"> with x, H.(W, ) blxp. If
we denote by O.(W, h)"1] the category of H.(W, h)"®I-modules that are finitely
generated over C[h]"], and similarly for O, (W}, h)"», then there are quasi-inverse
equivalences

‘] : Ofb(Wh7 b)/\b - OC(W7 b)/\lij M = HC(Wv h)A[bJ-xb ®H(‘b(Wbab)/\b M’

and

R : OC(Wv b)/\[b] g ch(Wb9 h)/\bv N = be'

2.3 Category O and Parabolic Restriction and Induction

The standard reference for material on category O is [10]. Category O.(W,h)
is the full subcategory of the category of H.(W,h)-modules consisting of ob-
jects that are finitely generated as C[h]-modules and h-locally nilpotent. A module
M € O is b-locally nilpotent if and only if it is eu-locally finite, [3]. The cate-
gory O.(W, ) is a highest weight category. Its standard modules are parametrized
by Irr(W), the irreducible complex representations of W: for any A € Irr(W) set
AA) = H.(W, h) ®cp*1scw A where b C C[h*] acts by zero on L. We denote the
irreducible head of A(X) by L(}).
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Parabolic restriction and induction functors were defined in [3, §2.3]. Let b € b
with stabilizer W, and set b, = b/h">. There is an adjoint pair of exact functors
()1, E?) defined by

()11 Oc(W, h) = Oc(W, 5)"01, M > M"P1,

and
EV: O (W, b)) — O.(W,h), N> N"

where N C N denotes the locally nilpotent part of N under the action of b. Con-
sider also

E:OC(Wba b)/\b_)OC(Wbﬂh)’ N’_)Neua

where N®* C N denotes the locally finite part of N under the action of eu.
There is an equivalence of categories

¢ O0c,(Wp, §) > Oc, Wi, bp), Mi>{veM:yv=0 forally e h™}
with quasi-inverse
£ 00 (Wi, bp) = Oc, (Wp, ), N> N®C[h"],

where C[h"?] is the polynomial representation of the ring of polynomial differential
operators Dol (h?).

The parabolic restriction and induction functors are then defined as follows, [3,
§3.5]:

Resp : O (W, h) = O, (Wp, bp), M > oEoR(M'),
Indy : O, (Wp, bp) = Oc(W, ), N> E"oJ(t7'(N)™).

By [3, Theorem 3.10] Ind,, is right adjoint to Resy,.

2.4 Basechange

Let S denote the formal power series ring C[[c; — ¢;]lses, Where the ¢ denote
indeterminates such that ¢; = ¢y if s and s” are conjugate in W. We denote by m
the maximal ideal of S and let K be the quotient field of S. The rational Cherednik
algebras over these base rings, defined at the formal parameters c;, are denoted by
Hg(W,bh) and Hg (W, b) respectively.

The definition of category O makes sense over K, and is denoted Og (W, b).
This is a semisimple category whose simple objects are given by the standard mod-
ules Ag (L) for A € Irr(W). We can also construct standard modules over S, Ag()),
and we define Of(W, h) to be the full subcategory of finitely generated Hs(W, b)-
modules that are free as S[h]-modules. This is motivated by [10, Proposition 2.21]
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which states that the objects of OCA (W, b), the full subcategory of O.(W, b) consist-
ing of modules with filtrations by standard modules, are precisely those for which
the action of C[f] is free.

All of the preceding constructions are well-defined over S and K. Thus we can
define restriction functors Res;, s and Resy, k.

Lemma 1 The following diagram commutes:

OA(W, b)

O5(W,b)

Ok (W, )
Res, i Resp s J/ Resp, k (D

08 (Wp. bp) <—— OF(Wp.bp) — Og(Wp, bp).

where the arrows to the left denote — ®@g S/m and arrows to the right denote
- ®s K.

PrOOf Let ZS = Z(Wv va HS(Wbs h)Ab) and ZK = Z(Ws Wbs HK(va b)/\b)'
There is a commutative diagram of homomorphisms:

He (W, h)"Pl <—— Hg(W, h)"lPl —— Hg (W, h)"1?]

l@ l@S lo

Z Zs Zg

where the horizontal arrows denote the homomorphisms corresponding to the natu-
ral maps § — S/mand § — K.

Let M € Of(W, h). We claim that the idempotent x; lifts uniquely from Z
to Zg. Indeed, the isomorphism @ is derived from a choice of decomposition
Clp]' = ]_[pew_b C[p]*?. Let n C C[bh] denote the ideal of functions vanish-
ing on W - b. Then by the unique lifting property for complete rings we can lift
(xp)n uniquely to S[hH]/(m)" along the homomorphism S[h]/(n)" — C[h]/(n)",
where (xp), denotes the image of x;, in C[h]"?1/(n)". Therefore, x; lifts uniquely
to S[h]'l. The claim now follows. As a consequence of this lifting, we have
Rs(M"P) @ S/m = R(M"H ®g S/m).

We show that the left hand square of (1) commutes by establishing that

(Es o Rs(M"1)) ®s S/m = E o R(M"11).

The module N = Rg(M") is a finitely generated S[H]"*)-module. Let m be the
ideal of positive degree formal power series, and let = denote the completion with
respect to m. By the proof of [3, Theorem 2.3], which is valid over S, we have

P

Eg(N) = N.Inparticular, there exists asetny, ..., n; € N consisting of generalized
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eu-eigenvectors that generate N as an S[h]**I-module. Let us denote by 7; the
image of n; in N ®g S/m. By [3, Theorem 2.3] again, Eg(N) = S[h]n; + --- +
S[hln; and so Es(N) ®s S/m = C[h]n| + - - - + C[h]n;. On the other hand, by the
previous paragraph, N ®s S/m = C[h]"#1n + --- 4+ C[h] ¥y, and so E(N Qg
S/m) =Clbln +--- +C[hln; = Es(N) ®s C.

It remains to show that the right-hand square of (1) commutes. It is clear that

(Rs(M"#1)) @5 K = Rg (M"11).

By the arguments above, N = Rg(M"1¥1) is generated by a finite set of generalized
eu-eigenvectors. Therefore {n € N ®s K : n is locally finite for eu} is the image of
the set of eu-finite vectors in N by the functor — ®g K. 0

2.5 Holomorphic Version

Let X be a complex manifold and define KCx to be the sheaf of holomorphic func-
tions on X. For x € X, we denote by Ky  the germs of holomorphic functions
around x. We also denote by K x,x the algebra of formal series in local coordinates
around x. There is an injective algebra homomorphism Ky , — 9 X,x» sending a
germ to its Maclaurin series around x. Given a sheaf M of Kx-modules, we denote
its stalk at x by M, and define M"* to be ICX x ®Ky, M.

We now consider §) with the complex topology. Let U C h be a connected W-
stable open subset containing b. Define H.(W)|y to be the sheaf of algebras on
U/W whose sections at a W-invariant open subset V C U are the subalgebra of
Endc(Ky(V)) generated by W, Ky (V) and the Dunkl operators D, for y € b. For
a W-stable open subset V C U, let H.(W, V)= H.(W)|y (V).

Let W C W be a subgroup, not necessarily parabolic. Let U C h be an W’-stable
open subset such that

w-UNU=0, forweW\W.

Thus W - U =| |,,cw/w w - U. Let ¢’ denote the restriction of ¢ to SN W’. For
each y € f define Dunkl operators

=0y + Z — 2¢s s(y)(s_l)' )

e dety+(s) o

As above, we can define a sheaf of algebras on U/ W’, which we denote H. (W')|y.
The endomorphisms of the sheaf Funy/ (W, H.(W)|y) form a sheaf of algebras
ZW, W', Ho(W)|y).

Theorem 2 ([3]) Let W and U be as above. Then there is an isomorphism of
sheaves of algebras

Oy : He((W)lw.u —> Z(W, W', He(W')|v),
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which is given as follows. Let f be a section of Funy (W, H.(W)|w.u), then

(Ou @) f)(w) = f(wu),
(Ou @) f)w) = ($"Iv) f (w),

2c¢y as(wy) (

(Oum)@) =wef @+ 3 e =

seS,s¢W’

flsw) — f(w)),

where u, w € W, ¢ is a section of Kyw.y and y € .

Let O.(W, W - U) be the category of H.(W)|w.y-modules that are coherent as
Kw.y-modules. Letting 1y play the analogous role to the element x;, defined in 2.2,
there are quasi-inverse equivalences

Jy:0¢(W.U)— O (W, W-U), M HWwuly®g,wH, M.

and
Ry:0.(W, W -U)— Oy (W', U), N I1yN. 3)

Let M be a sheaf on V C h, where V is an open set containing the orbit W - b.
Then we can define M"1 =P ¢y, M"7.

Lemma 2 Let M € O.(W, b) and set M =Ky Qciy) M. Let U C h and W € W
be as above, and assume that b € U has stabilizer W), contained in W’. Then there
are natural isomorphisms of H., (W, h)"b-modules:

R(M"1) = R((M]w.0)"") = R((Ry (Mlw.0))"""*).

Proof The first isomorphism is clear since M"¥! = (M|w.y) ). For the second
isomorphism we can find a connected Wj-stable open subset V of U containing
b such that w- VNV =@ for we W \ W, Let N = Ry(M|w.y). We have
RWN"w's) = R((N|wr.v)"W"+). There is a decomposition

Niwv=E @ N,

weW'/ Wy

such that Ry (NM|w-.v) is the projection onto N|y, and we have a commutative
diagram

Xp

Aqpy ANw,
Duew w, N ——— Dyeww, N

| !

Dueww, Nlw.v 4>1 Duew,w, Nlw.v

Vv
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where the vertical arrows denote the canonical morphisms into completions. Thus
R(WNw.v)'w+) = (RyN|w.v))"*. We have 1yly =1y on W - V, so that
Ry (Nwr.v) = Ry (M|w.v). Hence, using for the second isomorphism below the
same commutative diagram logic, we deduce

R((Mlw.p)"1) Z R((M]w.v)" 1
(Ry (M]w.v))"™

(Ry Nw.y))™
R(,/\/’AW/»b),

12

12

12

as required. 0

We define
Resp iy : Oc(W, ) = Oc, (Wp, bp), M +> ¢ o EoR((Ru(Mlw.w))"'?).

It then follows from Lemma 2 that
Corollary 1 The functors Resy, y and Resy, are naturally isomorphic.

Now note that the module Ry (M |w.y) has an action of W', since U is W'-stable.
Assume that W’ normalizes W,,. For each w € W', there is a well-defined automor-
phism of H., (W, b) given by a waw ™! foralla € H, (Wp, bp). Similarly, we
obtain an isomorphism xp H. (W, )" blx, = xyp H.(W, h) P1x,,;, via conjugation.
There is a commutative diagram of algebra homomorphisms

w(<)w*l
xpHe(W, 5) 0lxy, —— xyp Ho (W, H) P xyp

| |

He, (Wp,bp) ——— He,(Wp, bp)

w()w’1
where the vertical arrow denote inclusion maps.

Lemma 3 Let w € W and let N € O (W, h)"¥1. Then, as an H.,(Wp, hp)-module,
Xup N is isomorphic to the twist of xp N by the automorphism w(~)w_1. In particu-
lar, if w centralizes H.,(Wp, ), then these modules are isomorphic.
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3 Monodromy Actions

3.1 Fundamental Groups

Let us fix throughout a W-invariant hermitian form (—, —) on b, and let || - || be
the associated hermitian product. Let b € b, W, C W the stabilizer of b, and W' =
Nw (Wp) be the normalizer of Wj, in W. Let f)W” the fixed point set and b, the
orthogonal complement to h"? in fj. Note that the decomposition h = h"> @ b, is
W'-stable. If we wish to consider b as an element of hW” we will write it as b’, so
that b= (b',0) € b @ by,.

Proposition 1 ([14]) There is a subgroup N € W’ such that NN W, =1 and W' =
Wy, x N.

This proposition allows us to define C C N to be the pointwise stabilizer of bj.
In particular C centralizes Wp,.

Let S, =S N W, and Ap C A denote the corresponding reflecting hyperplanes.
We define &’ and A’ similarly, using W’. Let

b = {x e b: Wy = Wp).
Let Bc = m (b2 /C,b') and By = 71 (" /N, b’), where we abuse notation by

letting " denote the image of b" € h"? in the relevant orbit space. Since h'"» /C —
h¥» /N is a normal covering, we have an exact sequence

1 Bc By N/C 1. €]

Note that in the special case that b is generic, we have W, =1, N = W and By
is the braid group attached to (W, b).

Let € > 0 be a real number. Let X denote the open ball of radius € around 0 in b.
For any v € h"» we let B, (¢) denote the open ball in h"» with centre v and radius
€. Take the annulus

Y = U Bv (G),
vehos ull=(1b']|
andletY, =Y N her. Set U = X x Y.,. This open subset is W’-stable, and we choose
€ small enough so that w- U NU = ¢ for all w € W\ W’. In particular, U intersects

only the reflecting hyperplanes in .A”. Since ¥, is homotopic to H> and X is simply
connected we have

7 (U/N,b) =1 (h)* /N, b') = By.
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3.2 Holomorphic Differential Operators

Given a complex manifold V, let Dy denote the sheaf of holomorphic differential
operators on V.

Lemma 4 Keep the above notation. Let p1 : U — X and pr : U — Y, be the
projections. The sheaf H., (W', b)|y contains subsheaves pleCr(Wb, bp)|x and

pZ_I(Dy, X N). Furthermore pl_lHC/(Wb, hy)|x and pz_l(Dy,_) commute.

Proof Let V. C U be an W'-stable open subset. By our assumptions on Y, and X,
the functions a% for s € S\ W}, are well-defined on all of U. So H. (W', V) contains
the operators

2c, as(y)
D, =D, — E: d =1
y Y _ N ’
it 1 —dety«(s) o

defined in (2) for all y € . The subalgebra generated by Kx (p1(V)), W, and D/y
for y € b, generate a copy of H., (W, p1(V)). Similarly, the algebra generated by
Ky, (p2(V)), N and the D’y =09, forye hWo yield a copy of Dy, (p2(V)) x N.Itis
straightforward to check that the final assertion holds. U

3.3 Monodromy

Let & € Irr(W), and let M = A(X) be the corresponding standard module. In the
notation of (3), we set N' = Ry (M |w.y). By Lemma 4, the action of dy, y € HWe,
on N (U) defines an N-equivariant connection on Y, with parameters in Ky (X), see
[19, §13] for information on linear differential equations with parameters.

Proposition 2 ([3], Proposition 3.20) The local system on Y, attached to N'(U) is
given by the connection form

2cy do
2. T detprs) o & D
seS\W, b $

This is a connection with parameters in Kx (X) on the trivial bundle on Y, taking
values in @velrr(W;,) Homy, (v, Al w,).

We denote this connection by V*, and for a pair (c, p) € CIS/WI x X we denote
its specialization to this point as V} P

Let m = dim E. By [16], there exist functions ¢y, ..., ¢;;, holomorphic on
CIS/WI % X x Y/, where Y’ C Y, is an open ball containing »’, such that special-
ising to a point (c, p) € CIS/WI % x yields the horizontal sections of Vép inY’.
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Since the connection is N-equivariant, we can associate to each g € By a mon-
odromy matrix acting on the span of the ¢;. We call this g” and its specialization

A
8c,p-

Corollary 2 The stalk at b’ of the local system N V" on Y, can be evaluated by
taking horizontal sections of V* in either Niy or N . In particular, we can identify
the completion ()f/\/v,k at 0 € by, with ¢ (Res,, (M),

Proof By the proposition, the connection on V(’i » has regular singularities at o’
for all (c, p). The equality of horizontal sections in the convergent or formal setting
is then well-known, see [15] for example. The second claim follows from Corol-
lary 1. g

Lemma 5 The elements w € W, f € I/C\X’() and D; for y € by act on (NV,A)AO.

Let P denote any of these operators. These P commute with g* via (")~ ' Pgh =
B(g)(P) where B is defined in (4).

Proof By Lemma 4, any w € Wy, f € I/C\X’() and D;, y € bp, act on the completion

of N} at 0 € by, and commute with the action of (y IDY,)b = (Dy,),,;- So the
operators certainly act.

Recall that g* is calculated as follows. We represent g by a path p from b’ to nb’
for some n € N. Then we let A, denote the analytic continuation operator along

D, 1a linear isomorphism A, :./\/bv,A — N’z.f. Then g* :./\/'bv,'\ — ./\/'bv,k is given by
n A,
P

V)\

Let vy € NV,,“” and P denote one of the operators w, f or D’y as above. Unique-
ness of analytic continuation implies that A ,(Pvy) = P(Apvy) and so if Zp de-
notes the reverse path to A, we have
=A, (Pn YA pp))

(Z "Ap) ()

P
=B (P)vy,

(%) Pg" (uy)

as required. 0

Using the short exact sequence (4) we define we define an action of By on
H. (Wp, bp) via the quotient By /Bc.

Theorem 3 Let M € O (W, Yy). Then there is an action of H.,(Wp, hp) X By on
Resy (M). The By-action is functorial.
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Proof Let us first suppose that M = A()) for some A € Irr(W). By Lemma 5 and
Corollary 2, there is an action of H, (W}, )"0 x By on ¢ (Res,(M))"0. Since (-)"0
and ¢ are equivalences of categories, we thus obtain an action of H., (W), hp) X By
on Resy,(M).

We use the argument from [10, §5.3] to extend this to any M € O.(W, ). By 3.3
and Lemma 1, we can extend our constructions to the base rings S and K introduced
in 2.4: there is an action of Hg(Wp, bp) X SBy on Resp s(As(A)), and similarly for
Resp, k (Ak (A)). These actions are compatible with the natural maps C « S — K.
Let M € Of(W, h). Since M ®gs K embeds into a direct sum of standard mod-
ules, we establish the result for M by using Lemma 1. By [10, Corollary 2.7]
and basechange, the result holds for projective modules in O.(W, §). By construc-
tion, for any morphism between projective modules P — Q, the resulting map
Resp (P) — Resp(Q) is a map of By-modules. But for any M € O.(W, h) there

is an exact sequence P; —f> Py — M — 0, where Py, P; € O.(W, b) are projective.
We deduce that H., (Wp, b)) x By acts on Res, (M) = Resy, (Py)/Im Resy, (f). The
functoriality also follows, completing the proof. U

We rephrase the statement of the theorem as the existence of an exact functor
Nw (W,
Reswb : OC(W’ b) —> (OCb(Wb’ hb) |X| LOC(b]Wb)) W( b)’

where the superscript Ny (W) denotes the Ny (Wj)-equivariant structure. This
equivariance is obtained by extending the N-action to Nw (W) = W}, x N by using
the inner W}, action on H,, (Wp, b,). The functor Res,, is the composition of Res%

with the functor that forgets the local system on h"> and the equivariant structure.

3.4 Decomposition of Induction and Restriction

This extra structure allows us to decompose both Res; and Ind,. Consider again
equivariant local systems on her as representations of By and restrict them to Bc.
Let P € O(W, b) be a projective generator, and let A = C[Bc]/Anng.(Res,(P)),
a finite dimensional algebra which is the image of C[B¢] in Endp,_(w,p)(P). Since
Res, is exact and P is a generator, the C[Bc]-action on Resy, (M) factors through
A for all M € O.(W,h). Let I denote a labelling set for the blocks of A and for
any i € I let e; € Z(A) be the corresponding primitive central idempotent of A. By
Theorem 3 we may consider e; € End(Resp) and then we have

Respy (M) = @ Resﬁ,, where Resi7 :=e¢; o Resy,. (@)
iel

As (Resp, Indp) is an adjoint pair, we may apply [6, §4.1.5] to see that there
exists corresponding adjoint pairs (Res),, Ind)) for each i € I and such that Ind, =

Dics Indi;-
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3.5 Transitivity

Let us take two parabolic subgroups W; < W,. These produce decompositions f =
hWiah =h"2@hrand hr = h;vl @ b1, where b and b, are the non-trivial isotypic
components of §j with respect to the actions of W; and W respectively. Note that
h1 € by and h™1 D 2. By taking Wi -invariants we find b1 = h"2 @ hgvl .Itis not
true that one of f)rWI and I)TW2 X f)z‘f ! is contained in the other, but nevertheless we
may pick b1, by € b such that b € b1 and by € h"> and b = (b}, b)) € h™2 x h)".

Let Ny (W1, Wa) = Ny (W) N Ny (Wa), which acts on §¥1, §2 and b)) . There
is a homomorphism

twywy 2701 (012 5 0/ Ny (Wi, Wa), (65, b)) — 71 (0% / Nw (Wi, W), b'l).6
To construct this, note first that there is a free action of Ny (W, W»)/W; on bc(>tlz
hV2 x bz‘i] "and h1. Therefore it is enough to produce an Ny (W;, W,)-equivariant
homomorphism from homotopy classes of paths in h"2 x h!v ! to homotopy classes
of paths in hrwl. Given a path y = (y1, y2) : [0, 1] — bf’VZ X bz‘fl , we may adjust y»
sufficiently inside hz‘i] ', depending on how close y| passes to the reflecting hyper-
planes in b that do not contain h"2, to ensure that the image of y belongs to hrwl.
Inclusion then provides the homomorphism.

Theorem 4 There is a natural isomorphism of functors from O(W, b) to (O(W1, b1)
X Loc(hy'") B Loc(h2))Mw (W1 W),

* Nw (Wr) W ~ Woas Nw (W3) w
YWy Wy © ‘LNW(Wl,Wz) oResW] = ResWl X ido iNW(Wl,Wz) oRest,

where |, denotes the restriction of equivariant structure to a subgroup.

Proof 1t is unpleasant to deal directly with the path manipulation appearing in the
construction of tw, w,. To avoid this we work instead with an intermediate version
of Theorems 1 and 2 and the restriction functors. For b € j with stabilizer W}, this
version takes place within a formal neighbourhood of W - h# in b. The space b is
an affine open algebraic subset of h"# given by the non-vanishing of the polynomial
7 :=[]ses\w, %- Set T =[],y w7, a polynomial whose non-vanishing defines
w. h,Wb = {x € b | W, is conjugate to W;,}. We denote by H.(W, h)A[hrW"I the sub-
algebra of C-linear endomorphisms of C[h] o' ?] = (C[h]A[hW” 1z Y generated by
C[b] lberJ, D, for y € h and w € W. There is then an isomorphism of algebras

@b . HC(W, b)/\[hrWh] e Z(Wa va ch(Wbs h)Ah'Wb)s

which is defined exactly as in Theorem 1. There is furthermore an isomorphism
He, (Wp, b) be'? Dpol(f),wh)@)Hc,, (Wp, bp)"0. The restriction functors are then de-

fined as usual, splitting the centralizer with an element we label by IWb, then taking
locally-finite vectors with respect to eu € H., (W, b).
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Now we move onto the proof. Corresponding to the natural algebra homomor-
phisms

ciol " = c[p"] @ Clin]l
— C[h"] @ C[[hy ]][es" s € Wa\ W1] ® CIlb11]

— e[ o Cl[by" x b]l[e " s e W\ Wi] =CloT vy

we see that successive restriction to smaller formal neighbourhoods produces

W M W ooas 2 W W
IWZ(M b °1) > IWZ(M tr ])|Wzv(hK'Xb1)'The space 1W1(M b '1) has a natural

D(f)rwl)-structure which extends to a D(hrW2) ® D(hz‘i]l)AO-structure on

Wa 1 W AW

Ly (g (M 21|y )-

Wit Wa 2050 xby)
The natural inclusion

((1‘%2 (M [mvvz}))ellz)|W2-(hzv,‘i1 xb1) - ((1“%2 (M [hKWZ]))|W2~(f)zVKI ><hl))eu2

is an isomorphism since the {o;}s;cw, have positive eup-weights. For y € f)rW 1 Chy
we have that

2c as(y) _
dy=Dy— s S (s = 1) € Hoy (W, b)) [0 15 € Wa \ Wi ]
I —dety«(s) o
sEW\W)

so that there is an action of D(hyvz) ® D(E)ZY') on

AW
[h 2,1

(10, (1 ")) o)

eup

Completing at 0 € h;v ! produces another action of D(h"?) ® D(h;‘,’ Y% on
W
1y, (M ))|W2‘(h;‘il by’
A similar argument to [18, Lemma 2.2], using the version of the comparison
theorem over the formal neighbourhood of a subvariety due to Kashiwara-Schapira,
[12, Corollary 6.2], allows us to deduce that the monodromy representations of the

two above local systems on hl_WZ X I)XV | agree.
We then have a functorial morphism

AW Wa
lw] (M tor 1])9“1 = lw?(l‘/‘}‘jz(n/[[hr ])|Wz-(hxl><’]1))eul

W,
= 13? ((1w2 (]WA”]r 2])|W2‘(bzv,‘il xf)l))euz)eul

= 1%? ((1%2 (MA[hfWZ])euz) | Wz‘(hzvzl ><f)1))elll

o I () oy
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This realizes the functor L’;Vl W, Since the initial term is Reswl (M) and the final

term is Res%f (Resw2 (M)), this completes the proof. O

4 Consequences for G (¢, 1, n)

4.1 The Groups G(£,1, n)

Fix ¢ eN,andlet W, = W(G(¥,1,n)) = ufj x &, for any n € N, a complex reflec-
tion group with a Coxeter style presentation

<t,s1,...,sn_1 |si2=t1Z =1, s1ts1t =tsitsy, sit =ts;ifi > 1,
SiSi18i = Si+18iSi41,8i8j =88 if |[i — j| > 1>.

The reflection representation b, = b of W, is the vector space C" = span{yy, ...,
yn}. With respect to the standard basis the s; generate a copy of the symmet-
ric group acting by place permutation, and ¢ acts by diag(n,1,...,1), where
n =exp(2m+/—1/£). We write t; = (1,...,1,n,1,..., 1) where n appears at the
i™ coordinate.

When n > 1 there are £ conjugacy classes of reflections, the set of conjugates of
the s; and the set of conjugates of t" for 1 <r < ¢ — 1; when n = 1 there are no
s; and so only £ — 1 classes. The parameters we choose for the rational Cherednik
algebra are

L

1 )
¢s; =—k and c,r=—§<1+Zk(mj+1—mj)n_”) forl<r<t¢-—1
j=1

where k € C,m= (my,...,my) € Z' and we set mg 1 =m;.

We identify the irreducible representations Irr(W,,) of W, with the set P, (n) of
£-multipartitions of n, [17, 6.1.1]. Set Py = | J,;~( Pe(n). We write 1 = ALoah
for the multipartition and the corresponding representation and we will often iden-
tify A with an £¢-tuple of Young diagrams. If a box p € A is in position (i, j) of the
Young diagram of A" we set B(p) =, and define the residue as res(p) = j — i and
the m-shifted residue res™ (p) =res(p) + mg(p).

4.2 Induction and Restriction

Setb,=b=(0,...,0,n). Then Wp =W,,_1, Nw(W,,_1) = W,_1 x N where N =
(tq) = pg. Clearly by = {(a1, a2, ..., a,-1,0) : a; € C} and hrW"*I ={@,...,0,a,):
0 # a, € C}. We have

Res‘%:_I :0.(Wp,) — (OC(Wn—l) X Loc(f)rwnfl))NW(W”*‘),
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Let A € Irr(W). Recall from Proposition 2 that the local system on hVr-1 = C>
attached to Resw)h1 (A(A)) arises from the N-equivariant connection

2cy dog
2 1 — detp+(s) a PR
SES\W)l 1 b s

on Homw, (v, Alw, ,) where we run over all v € Irr(W,,_1).

There are two typesof s e S\ W,,_1: (in)t/t, " for1 <i<n—-1,0<r <{-1,
with g = —n"y; + yp; 1, for 1 <r <€ — 1 with oy = y,. Thus the above con-
nection can be written explicitly as the following w¢-equivariant connection on
Dreinw, ) Homw, , (v, 2w, ;) over C*

n—1+£—1 -1 4 —ri
d 1+ k(mjp —mpn™" g
SO RE (i 1) = = 1_”_, -,
i=1r=0 < r=1 n <

To calculate the monodromy of this connection we will apply the following result
which essentially appears in [4, Theorem 4.12]

Lemma 6 Let ) be a trivial vector bundle over C*, equipped with a p¢-equivariant

structure, and take a [L¢-equivariant connection on 'V of the form w = Zf;(l) o€y dZZ ,

where €, = %le_:lo exp(—2n\/—1r)jt,{ € Clu¢]. Let X be the monodromy oper-
ator corresponding to the generator of w1 (C*,-), an anticlockwise loop about the

origin. Then the part of the X corresponding to the term a,€,dz/z is given by mul-
tiplication by exp(2mw~/—1(oty —1)/£).

The space M = Homy,_, (v, A | w,_,) is either zero or one-dimensional, with the
non-zero spaces occurring precisely when p is a box of A such that v = 1 \ {p}.
Assume we are in this case. Then 7, acts on M by multiplication by 7 ~1_ The
element » /— Zr 0(1 n)t't,”" is the nth Jucys-Murphy element of C[W,,]: it acts
on M by multlpllcatlon by £ - res(p). Therefore on M the coefficient of the connec-
tion is multiplication by k€(n — 1) — kfres(p) + kl(m1 —mpg(p)) + ,B(p) — 1. Thus
by Lemma 6 the monodromy X 4, of the local system arising from ResW A@))
satisfies the relation

H(EA(A) _ q(res“‘(p)+l—n)—m1) =0,
P

where p runs over all removable boxes of A and g = exp(—2mw+/—1k).

Proposition 3 Let M € O.(W,) and let Xy denote the monodromy operator on
Res, (M) arising from the local system over hW” I attached to ResW (M). The

eigenvalues of Xy lie in {q' | i € 7).
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Proof By the calculation above we know that X 4(;) has eigenvalues in this set for
all A € Irr(W,)). Since Resp (L (1)) is a quotient of Res,(A(A)), the same is true for
any X' ) and so for any Xy, as required. g

We can now decompose Res;, as in (5). Let i be an integer. We define the func-
tor Res' (n) := m; o Resp, where m; is projection on to the q“rl’"””l generalized
eigenspace of the monodromy operator X'. We have a decomposition

Res, = 69 Resi(n)

i€Z/~

where i ~ j if and only ¢’ =¢/. '
Let Ind' (n) denote the right adjoint of Res’ (n).

4.3 s l.-Categorification

We proceed to the theorem that has been proved by Shan in [18, Theorem 5.1] using
the KZ-functor and its double centralizer property. We will show in Proposition 4
our approach is identical to [18]. Nonetheless, we outline the result and its proof
here as it avoids using the double centralizer.

Recall the choice of parameters from 4.1: k € C and m = (my, ..., my) € Z°t.
Let ¢/ € NU {oo} be the multiplicative order of ¢ = exp(—2mw+/—1k) € C* and set
e=¢'if ¢’ # 1 and set e = 00 if ¢’ = 1. Let 7 (m) denote the Fock space with mul-
ticharge m, an integrable sl,-representation, see for instance [11]. As a vector space
we have F(m) =@, .p , CA; for i € Z/eZ the corresponding Chevalley generators

act as
ei(h) = > w,o o fi)= > I
[A/pl=1,res™(1/p)=i I/ A|=1,res™ (u/M)=i
finally d(A) = —1poA where 7¢ is the number of boxes in A with m-shifted residue

divisible by e. The weight spaces of F(m) are F(m), for T = (19,...,Te—1) €
Z>0 X Z/eZ where F (m) is spanned by the multipartitions having exactly t; boxes
with m-shifted residue equal to i for each i e Z/eZ. Such elements have weight
Zl_] Amj — Zlez/ez tia; where A; is the i fundamental weight of sl,.

Let Oc(N) =D, Oc(Wy, hy). Set E= P, - Resp,, F =D, Indp, : Oc(N)
— O;(N). Define X € End(E) as the direct sum over n > 0 of the operators
Yem (brwﬂ /e, ). By Theorem 4 we may identify E> with the direct sum of the

restrictions Res;n :OWy, by) = O(Wp_2, bu_2) where b, = (0, ...,0,n—1,n) €

W; .
.. Then b, = {(an—1,an) € Cc?: ap—1,a, #0anda,_| # n/a, for0 < j <
¢—1}and N(Wj ) = Wj; W, where W) = (s,—1,t,—1,1;). Let T € End(Res; )

W~
be the operator arising from the generator of monodromy in 7y (h, "/ Wj, ) at-
tached to the reflecting hyperplane a,_; = a, in hWEn, [4, Appendix 1]. We may
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decompose O.(N) = P, O.(N); where t = (10, ..., Te—1) and O.(N), is the full
subcategory of O, (W, h7|) generated by all the L (1) where A has exactly z; boxes
with m-shifted residue equal to i for each i € Z/eZ. By [7, Theorem 4.1] O.(N),
is a sum of blocks of O, (N).

Theorem S Let ¢ be the parameters for the rational Cherednik algebra given in 4.1
and keep the notation above.

1. The adjoint pair (E,F), X € End(E), T € End(E?) and the block decomposition
O:(N) =P, .p Oc(N); gives an f:[e-categoriﬁcation of F(m) by O.(N).

2. The simple objects in O.(N) give an 5| lo-crystal basis for the Grothendieck group
[O.(N)] which is isomorphic to the crystal of the Fock space F (m).

Proof (1) By construction the eigenoperators of E under the action of X are the
sums of Res’ (n) over all n. The standard modules {{A(L)] : A € P} give a basis of
Q® K(O,(N)). Identity Q ® K(O.(N)) with F(m) by sending [A(X)] to A. We
have seen in 4.2 that Res’ ([A(A)]) = > ul=1resm /)= LA ()] for any A € Py Tt
then follows by adjunction and the elementary fact that Res’ ([A(A)]) has a standard
filtration, see [18, Proposition 1.9], that Ind' ([V(M)]) = Zlu/k\:l,resm(u//\)zi V()]
where V(—) denotes a costandard module in O, (N). Since [A(X)] = [V (A)] for any
A € Py, [10, Proposition 3.3], it follows that we have a weak g[e-categoriﬁcation of
F(m).

For the full s, -categorification we also need that F is a left adjoint of E: this is a
theorem of Shan, [18, Proposition 2.9], and Losev, [13]. Finally, the compatibilities
and equalities required of 7 and X all follow from Theorem 4 and standard mon-

w; w;
odromy calculations in b, ™ and b, ” with the connections of Proposition 2, where
b,=(,...,0,n—1,n)and b, =(0,...,n —2,n— 1, n).
(2) This follows formally, as explained in [18, Theorem 6.3]. Il

4.4 Monodromy and the KZ Functor

We now compare Res’ (n) with E;(n), the functor of i-restriction from [18, Defi-
nition 4.2]. We choose the basepoint xg = (1,2,...,n) € ’),{1} =: b, and recall that
the KZ-functor KZ,, : O.(W,,, ) — H,4(W,)-mod is obtained from the local sys-

tem over h,/ W, attached to Resm’. We have 71 (h,/ W,, x9) = B,, the braid group
attached to W,,, which following [4] may be presented as

(t,01,...,0n—1 | O1TO1T =TO1TO1,TO; =0;T ifi > 1

0i0i+10; = 0j4+10;0j+],0i0j = 0;0; if|i — j| > 1),
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and H,(W,) is the quotient of C[B,] by the relations
4
(o; — l)(a,- —}—q_l) =0 forl<i<n-—1, and l_[(l' —qm"_’”l) =0. (7)
i=1

There is an algebra isomorphism y : Z(O.(Wy, b)) S5z (Hy(Wy)) such that
M = y(2)KZ, (M) for all z € Z(O.(W,,h)). Let Jy, ..., J,—1 denote the Jucys-
Murphy elements in H,(W,,), defined by

Jo=¢q"'t, Ji=q"" o

...01T7T01...0;7,

for 1 <i <n — 1. (See [9, Definition 5.2.3], but note that our normalization of the
Hecke algebra H,(W,,) differs from [loc.cit] so we have a slightly different defini-
tion.) Set C,(z) = ]_[;':_01 (z —Ji), a polynomial in the variable z whose coefficients
liein Z(H,(Wy)). Let Dy (2) = y‘l(C,, (2)). For a(z) € C(z) let Oy q(;) be the ex-
act endo-functor of O.(W,,) that maps an object M to the generalized eigenspace of
D, (z) in M with the eigenvalue a(z). The functor

Ei(n): Oc(W,) = Oc(Wy,_1)

is given by E; (n) = D, ;)ecz) Cn—1.a(2)/(z—qi) © R€SH © On a(z), Where b is chosen
asin4.2.

The following result shows that the categorification here of /(m) arising from
the monodromy of the restriction and induction functors is the same as that of [18].

Proposition 4 For any i and any n there is a natural isomorphism Res' (n) = E; (n).

Proof We will prove that KZ,,_; o Res! (n) X KZ,_1 o E;(n), so the result follows
from [18, Lemma 2.4]. Let M € (’)CA(W,,, h). We first consider KZ,,_1 o E; (n)(M).
By [18, Theorem 2.1], this is the restriction of KZ, (M) to H,(W,_1) followed by
the projection onto a block corresponding to the eigenvalue a(z). The blocks of
such a restriction are determined by the generalized eigenspaces of J,,_1 in Hy (W)
acting on the restriction: on removing a box p from a multipartition, J,_1 acts by
g,

On the other hand KZ,,_1 o Res’ (n)(M) equals the monodromy of the local sys-
tem attached to Res{wll’}"l oRes! (n)(M). By Theorem 4 this in turn equals the gener-
alized eigenspace of the image of X'j; in B, acting on KZ, (M). We saw in 4.2 that
on removing a box p, X acts by ¢g"" (P)*1=n=m1 By ] emma 7 below, the element
XY is mapped to 0y,—1...01T0]...0p—] = ql’””"lJ,,_l under the homomorphism
B, — H4(Wy, b). Thus we have the required equality for objects with A-filtrations.

The general case follows since projective objects have A-filtrations and O (W,,,
h,) has finite global dimension. U

It remains only to explain the following lemma used above.
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Lemma 7 Recall the notation tw, w, of (6). Let  : (¥) —> B, be the canonical
composition

(b2 /(). b) —> (02 /(tn) X 95,/ Wa1, x0)

1L W,_y
—

m1(H,/N(Wa-1), x0)
— mi(h,/ W, xo).

Then (X)) =0,-1...01T01...0y—1.

Proof If we calculate by lifting paths to h,, then a representative of (X) is
given by the path 7’)?0 where for any 1 <i <n we set y;O(s) =(,...,i —
1,exp(2n\/—_1s)i,i +1,...,n)fors€[0,1]. Forany 1 <i <n —1,set I}; j+1] =
{(a1,a2) : i <laipl, |az| <i + 1}. One can then prove by an unenlightening (for
us) calculation in the space {1} x -+ x {i — 1} x Ij; ;+1] % {i +2} x {n} C b, that
oiyl oi =yit!. Since T =y this confirms the lemma. O

4.5 The KZ-Component of the Crystal

We end with a remark on the Cherednik crystal of irreducible representations in
O.(N). Let

B, = {1 €Irr(W,) : KZ,(L(W)) # 0}

and set
B=][B..
n

We claim that B U {0} is stable under the crystal operators &; and f; for i € Z/eZ.
Indeed fiéib = b which ensures that KZ(¢;b) = KZ(socRes! (¢;b)) # 0, so that
Res'KZ(&; (b)) = KZ(Res' (¢;b)) # 0 and so KZ(&; (b)) # 0. The argument for f,-b
is similar.

By [5, Corollary 5.8] the set B equals the subset of Uglov multipartitions, that is
the subset of multipartitions that label the canonical basis of L(A,; +---+ Ay,) C
F(m) constructed by Uglov. It follows from the argument in [2, Theorem 6.1] that
this crystal equals the crystal defined from Uglov’s canonical basis of the Fock space
provided that we know that the decomposition matrix of the Hecke algebra is given
by the evaluation of Uglov’s canonical basis at 1. This is the well-known result of
Ariki, [1]. Thus we have an explicit identification of the so-called KZ-component of
the crystal with the combinatorial crystal on Uglov multipartitions.
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Category of Finite Dimensional Modules
over an Orthosymplectic Lie Superalgebra:
Small Rank Examples

Caroline Gruson and Vera Serganova

Abstract The aim is to give a concrete picture of simple and projective finite di-
mensional modules over osp(5, 4), together with a summary of our papers (Gruson,
C., Serganova, V. in Proc. Lond. Math. Soc. 101(3):852-892, 2010 and in Mosc.
Math. J., to appear).

1 Introduction

Let g be a complex orthosymplectic Lie superalgebra and let G be the corresponding
algebraic supergroup SOSP(m,2n). Consider the category JF of finite dimensional
G-modules such that the parity of a weight space coincides with the parity of the
corresponding weight. In previous work ([6, 7]), we proved results concerning the
character of simple objects in F and projective indecomposable modules. In partic-
ular, we showed that a Bernstein-Gel’ fand-Gel’fand reciprocity law holds in F.
The aim of this presentation is to describe the algorithms introduced in [6] and
[7] in low rank examples. We start with a summary of those two papers in the case
osp(2m + 1,2n). We then give a complete description of the algorithms for the
maximally atypical weights of 0sp(5, 4). Using these algorithms, we are able to give
multiplicities of simple modules occurring in a projective indecomposable module:
up to now, such explicit computations were available only for weights of atypicality
degree less or equal to 1 (here we get atypicality degree 2). In the last section,
we consider the case osp(7, 6), where such a complete description is rather more
complicated and we draw the picture for “generic weights” (such a picture is also
obtained for osp(2n + 1, 2n)). We completely describe the “exceptional moves” for
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osp(7, 6), this is the smallest case where these moves can start from infiniteley many
weights.

We encode dominant weights by weight diagrams, following the idea of Brundan
and Stroppel for the gl(m, n) case ([2]). The category F splits into blocks, which are
indexed by the core of these weight diagram. We only consider maximally atypical
weights since we know that, with the help of translation functors all the other cases
can be reduced to that one, see Theorem 2 in [6]. We restrict ourselves to algebras
of type osp(2m + 1, 2n) in order to limit the notations. . .

2 Context

Let us first recall a few facts about Lie superalgebras.

It is well-known that the representation theory of simple Lie superalgebras is
not a straightforward adaptation of the theory in the non graded case. In 1977, Kac
in [8], classified the simple Lie superalgebras, and emphasized on the fact that the
finite dimensional modules are not semi-simple. When the Lie superalgebra is basic
classical, the simple modules have a highest weight, which is a dominant weight
for the reductive Lie algebra which forms the even part. He asked the question of
computing the characters for simple modules and introduced the Kac modules for
the case of gl(m, n): there is a parabolic subalgebra p with a purely odd complement
space. A Kac module is obtained by inflating a simple module from the Levi part
gl(m) x gl(n) of p to p, then by inducing from p to gl(m, n): the induced module
is still finite dimensional and there is a neat character formula for them. Moreover,
Kac modules play the role of standard modules in the BGG reciprocity law in the
category of finite dimensional modules, as is first mentioned in [12]. This category,
for gl(m, n), is now quite well understood ([1-5, 10]).

It is tempting to do the same with orthosymplectic superalgebras, but they have
no such parabolic subalgebras, hence in this case, Kac modules no longer exist.
However, one can give a geometric interpretation Borel-Weil-Bott like for Kac mod-
ules for gl(m, n), as the space of sections of a line bundle over the super flag va-
riety. Hence, one can make the corresponding construction in the osp case ([9]):
now the cohomology is no longer concentrated in degree 0, and as is first men-
tioned in [11], we introduce the Euler characteristic which is a virtual module in
the Grothendieck group IC(F) of the category defined as the alternating sum of the
cohomology groups: we will be more precise later.

Those virtual modules stand for the standard objects for F, meaning that they
have computable composition series in terms of the simple modules ([6]), and the
indecomposable projective modules can be uniquely expressed as linear combina-
tions (with not necessarily positive integral coefficients) of Euler characteristics.
Moreover, a BGG reciprocity law holds ([7]). It is to be noted that there are less stan-
dard objects than projective or simple modules, since they are labelled by weights
belonging to a smaller set.

We also want to emphasize that for osp(2m + 1, 2n), the multiplicity of a simple
module in any Euler characteristic is at most 1 (but not for osp(2m, 2n) in general).
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Now let us be a little more precise. Let g = osp(2m + 1, 2n), we denote by
g = go @ g1 the decomposition into even and odd parts. We choose a Cartan sub-
algebra h C go together with a basis (¢q, ..., &, 31, ...8,) of b*, denote by W the
associated Weyl group. The roots split into the roots of gg with respect to h, Ao,
and the odd roots A are the weights of g;. The Killing form on g restricts to a non-
degenerate bilinear form on f up to a scalar, it is given by (&;, &) = &;; = —(8;,6;),
and (&;,8;) = 0. We choose the Borel subalgebra b of g (and in doing so we get a
choice of positive roots), such that:

o If g=o0sp(2m + 1,2n) and m > n, the simple roots are

E1 = €2y Em—ntl — 01,01 — Em—ni2, -+, Em — Op, Op,

1m 1 n m-—n
) 3RS SURD BRI R I
i=1 1

j+1 i=

o If g=o0sp(2m + 1,2n) and m < n, the simple roots are

81 =02,y 8n—m —€1,€1 = Sn—m+1s---sEm — 8, 8p,

1 m 1 n n—m
p:—528i+525j+ ' (n—m—j)s;,
i=1 Jj+1 j=1

here p = po — p1 is the graded version of half sum of positive roots, where p; =

1

2 z:ozeA:r a.

Recall (see [6] Corollary 3) that A is the highest weight of a simple finite dimen-
sional g-module (or A is integral dominant) if and only if

Atp=aier+---+amey +c181 + -+ cuby,

where a;, c; € % + 7, and either

a>ay>--->au = <, Cl>C)p>">Cp > =,
2 2
or there exists £ € {0, ..., min(m, n)} such that
1
ay>az > - >dm—(—1 >am—Z:"':am:_§»
1
C1>C2> > o) 2t = = = o

There is a partial ordering on the set of dominant weights, namely A < piff u —A =
Y wen+ Mo Withng € Z.
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Moreover, recall that a weight X is atypical if there exist isotropic odd root(s) «
such that (A + p, o) = 0. The degree of atypicality is defined in Definition 2 in [6],
we will explain in the next section how to compute it with the weight diagrams.

Let G be the algebraic supergroup SOSP(2m + 1, 2n) and Q be a parabolic sub-
group containing B, the Borel subgroup of G with Lie algebra b. There is a structure
of algebraic supervariety on the flag manifold G/Q. Let A be a dominant weight,
one can associate to A a vector bundle £5,o(A) over G/Q and a structure of g-
module on the cohomology groups H'(G/Q, L())). The Euler characteristic is the
following virtual module:

Eo0) = Y.  (=D'[H(G/Q,LM))] € K(F).

0<i<dim(G/Q)

In most cases, the Euler characteristic mentioned above is £(A) = Eg/p (1), but
for certain weights, namely when X has a tail (see [6] after Lemma 15 and next
section), it turns out that £5,p(1) vanishes and then one finds a proper parabolic
subgroup Q) associated to A, such that £(1) = Eg, g, (1) is non-zero.

3 Summary of [6] and [7] in the osp(2m + 1, 2n) Case
A dominant weight A such that
Atp=aier+ -+ amem +c1é1 4+ by

is encoded in the weight diagram denoted f; constructed as follows:
A weight diagram is a assignation of zero, one or several symbols <, >, or X to

positions t = 2r2—+1, r € Z=o, maybe endowed with a sign (4) or (—):

(1) put one symbol > at position ¢ for every i such that |a;| =t;

(2) put one symbol < at position ¢ for every i such that ¢; =t¢;

(3) forevery t, replace a pair of symbols > and <, by a single x, as many times as
possible;

@ ifr = % and the smallest value of @; for which |a;| = % is positive (resp. nega-
tive), put a (+) (resp. (—)) in front of the diagram.

Remark 1

(1) There is a one-to-one correspondence between dominant weights and weight
diagrams.

(2) Due to the dominance conditions, there is at most one symbol at a position
t# 1.

(3) The atypicality degree of A is by definition the maximal number of mutually
orthogonal isotropic roots which are orthogonal to A 4 p, such roots are neces-
sarily odd, and it turns out to be the total number of X in f;.
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(4) The position t = % can contain at most one of the symbols > or <, and up to
the maximal possible atypicality degree symbols x.

Definition 1

(1) The position ¢t = % is called the tail position.

(2) The length of the tail of a diagram (and the corresponding weight) is equal to
the number of x at the tail position if the diagram does not have sign or the sign
is (—); the number of x at the tail position minus 1 if the diagrams has sign
(+). The diagram is tailless if the length of the tail is O.

(3) The core of A is the weight diagram (for a smaller rank Lie superalgebra of the
same type) obtained when removing all the x of f;. The core determines the
block of F containing the modules Lj, £(A) and P,. The core symbols are all
the symbols < and >.

Theorem 1 ([6])

(1) Two simple modules L) and L, belong to the same block of F if and only if
weight diagrams of . and 1 have the same core, and therefore the same number
of X.

(2) Two blocks By and B> of F are equivalent if and only if: let L, € By, L, € Ba,
fo and f,, have the same number of x.

Example 1 (1) If L = (%, % _Tl|% % %), then f; is (—) X o < X > ---. The sym-
bol o stands for an empty position, all positions to the right of > are empty. The
atypicality degree is 2, and the length of the tail is 1.

@I 2= (3,3, 5. 513+ 3. 3. 3) then fiis

(=) Xo< X >---
X

the atypicality degree is 3 and the length of the tail is 2.

Recall that the franslation functors are functors in F sending a block to another
one (or possibly the same one). A translation functor is a composition of tensoring
with the standard representation of osp(2m + 1, 2n) and projecting on the appropri-
ate block. See for details [6] Sect. 5.

Important Remark Both papers describe algorithms giving, in the first one, the
composition series of £g/p(A) or g/, (1) if A has a tail, in terms of simple mod-
ules, and in the second one an expression of a projective indecomposable as a linear
combination of Euler characteristics for tailless weights, g, (1t).
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3.1 Summary of [6] for osp(2n + 1, 2n)

This paper is focused on the character formula for simple modules. We restrict our
attention to the maximally atypical block of osp(2n + 1, 2n) since the translation
functors lead us to understand all the other blocks, once this family of blocks is
understood, see Theorem 2 and Corollary 5 in [6].

The Dynkin diagram of osp(2n 4+ 1, 2n) is the following:

& ® & &® ®
g1 — 41 1—& dn—1— &y &p — Oy n

The principle of the method is as follows: the Euler characteristics have a char-
acter which is easy to compute, so the idea is to write the composition series of the
Euler characteristics in terms of simple modules. Note that the highest weights of
these simple modules are lower than the dominant weight of the Euler characteris-
tic: thus one gets a triangular matrix with 1 on the diagonal. Inverting this matrix
expresses a simple module in terms of Euler characteristics, and we deduce its char-
acter by applying the character formula for the Euler characteristics.

Let Q be a parabolic subgroup of G containing B and u be an integral dominant
weight which induces a one-dimensional representation of Q. Recall that

dimGo/ Qo -
Erowy= Y (=D'[H(G/Q.0(-w)"].

i=1

If 11 has a tail, then Eg,p (1) = 0. If the length of the tail of 1 is k + 1, we define
qu as the parabolic subalgebra containing b such that the semi-simple part of its
Levi subalgebra has the following Dynkin diagram:

by ® d ® ]

En—k — On—k Sn—k — En—k+1 Sn—1—&n &n — &n On

which is the Dynkin diagram of Lie superalgebra of the same type as osp(2n +
1,2n). Note that for a tailless u, q, =b.

As an element in the Grothendieck group of JF, the Euler characteristic &g, o L (W)
has a decomposition

£6/0, (W) =Y alu. MILy].

Furthermore, a(u, 1) = 1 and a(u, A) # 0 implies A < p. The main result of [6] is a
combinatorial algorithm for calculating a(u, ). Below we describe this algorithm.
Since in our case A and p are maximally atypical, their weight diagrams don’t
have any core symbols.
We say f, is obtained from fj by an elementary move if one or two x of fj are
moved to some empty positions to the right according the following rules.
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(1) Exceptional moves: can be made when A has two x at the tail position, which
are both moved simultaneously: see Definition 6, Sect. 11 of [6] for a pre-
cise definition, see the list of exceptional moves in the following sections for
0sp(5,4) and osp(7, 6).

(2) Legal moves (resp. legal tail moves): take a x of f; at position s, s # 1/2 (resp.
s = 1/2), move it to the right to an empty position ¢ > s of f; and obtain a new
diagram f),. The x starts with 1 life (resp. 2 times the number of x at the tail
position of f,), it looses 1 life going over an empty position, it gains one life
over a x and should never have a negative number of lives. The number of lives
that this moving x has at position 7 is called the degree (or the weight) of the
corresponding legal move.

We say that f), is obtained from f be a decreasing sequence of elementary moves
r=pl s ul > s uk=pif f,i 1s obtained from fi-1 by moving a x to po-
sition #; by a legal (or legal tail) move or two X to positions s; < #; by an exceptional
move and we have #; > t, > --- > t;. The degree [(y) of a decreasing sequence y
of elementary moves is the sum of the degrees of the elementary moves included in
the sequence.

Theorem 3 in [6] states that

a.ny= Yy (D',

yeS(h,u)

where the summation is taken over the set S(X, u) of all decreasing sequences of
elementary moves from X to u.

Remark 2 1t is proven in [6] that a(u, A) = £1 or O for all dominant integral X, w.

3.2 Summary of [7] for osp(2m + 1, 2n)

This second paper contains several results. First of all, it explains in a more general
context that a Bernstein-Gel’ fand-Gel’ fand reciprocity law holds in the category F,
in other words the multiplicity of a simple module L, in the Euler characteristic
Eg/p(w) is the same as the multiplicity of £g,p(u) in the projective indecompos-
able module Py, this equality holding in the Grothendieck ring of F: it is to be noted
that, in this paper, the only flag variety involved is G/B.

It also contains a categorification of the Lie algebra with Dynkin diagram

O N\ N\

in orthosymplectic terms which allows us to interpret most of the translation func-
tors as linear operators satisfying Serre relations.

The result we are interested in for this survey is the fact that one can express
any projective indecomposable module as a linear combination with integral coeffi-
cients of Euler characteristics of tailless weights. Caution, these coefficients might
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be negative. We explain an algorithm on the weight diagrams which gives this com-
bination.

Start with a tailless dominant weight A, and consider its weight diagram. Con-
struct the cap diagram as follows:

consider the rightmost x of f; and join it to the next free position on the right.
This position is no longer free. Repeat for the next x on the left, and so on until
there is no x left. Leave all the symbols corresponding to the core where they are.

Example 2 For the following weight diagram,
o X > < X o o

the caps are the following:

( — |

o X > <

Denote by P(A) the set P(A) := {« dominant, f,, is obtained from f by moving
0 or any number of x along the caps}.

Now assume that A has a tail: we construct a tailless weight A the following way:

Ignore the sign before the diagram if it exists. In the beginning, forget about
the tail position of f; and draw the corresponding cap diagram. Then circle the X,
getting ®, at the tail position, and move them according to the following rules:

e if A has no core symbol at % move all the ® but one at the tail position to the free
positions number 2, 4, 6, etc.

e if X has a core symbol at %, then move all the ® at the tail position to the free
positions number 1, 3, 5, etc.

Now draw the cap diagram of this new weight A.
We are now ready to state the result:
Theorem 2
(1) If A is tailless, then one has
Po= Y &)
REP M)
(2) If f has a core symbol or a (—) sign,
Po= ) (=D *MEgp(w),
ueP )

where c(X, ) is the number of ® in A plus the number of ® in f; moved along
a cap in order to get f, from f3.
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(3) If the sign before f) is (+), use the preceding formula and change the sign of
all the £, (1) such that f, has a symbol at the tail position.

The proof of this result involves a massive use of translation functors.

4 Computing Characters for a Simple Maximally Atypical
Module over osp(5,4)

From now on, for any dominant A we will abuse notation and set £(1) for £g/ g, (1)
if A has a tail and Eg,p(A) if A is tailless.
In this case, a dominant weight has the form:

A+ p = (a1, az|cy, c2)

with a >a22—% or aj :azz—% and ¢; > ¢ > % orcy=c¢y= %.Itismaxi-
mally atypical iff |a;| = ¢1 and |az| = ¢2. The weight diagram of a maximally atyp-
ical weight contains two X, one at |a;| and the other at |a|, together with a sign.
If there are two X at the tail position or one x and a (—) sign, then the weight has
a tail and the parabolic subgroup Q; of the previous section is obtained by adding
the opposite of the roots €1 — 81, 87 — &2 unless the weight is trivial in which case
0, = G. Another difficulty occurs when one gets close to the wall a; = a + 1.

In [6] Sect. 11, we described a series of moves which can be made with the x
of the weight diagram: if there is a (authorised) move from the weight diagram f;
to the weight diagram f;, of weight (or degree) i, it means that the simple module
L, is in the cohomology group of degree i corresponding to the Euler characteristic
E(w), so that it occurs with the sign (— 1) in the composition series. Nevertheless, it
doesn’t mean that L, appears in £(u) because one also has to consider paths, which
are sequences of moves, and it can lead to cancellations.

There are several kinds of moves: regular ones, which take a x at a non-tail posi-
tion and move it to the right according to specific rules, fail moves, which deal with
one x at the tail position, and exceptional moves which move simultaneously two
x at the tail position (see Proposition 6 in [6]), in this case there is no exceptional
moves.

One can check by hand all the possibilities which occur.

In Fig. 1, we have represented a maximally atypical weight A + p = (a1, az||a1],
|az]) by the point (ai, az) in the plane and we join two points if there exists a legal
move taking the weight diagram of the first weight to the weight diagram of the
second one. We have equipped all the arrows with their weights.

Now, we want to compute the multiplicity of the simple module L, in the Euler
characteristic £G,¢,, (1). We have to consider:

(1) Arrow going from A to p with weight i (there is at most one), we will say we
have a path of length one P and weight wt(P) :=i.
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Fig. 1 osp(5,4)

(2) regular paths of length two from A to w: a regular path P; is a sequence of two
arrows, one, f of weight i1, from A to a certain A; and one, f, with weight i,
from A; to w, such that the first one fj is going East or North-East in the picture
(meaning that this arrow can increase the horizontal coordinate and possibly
the vertical one) and the second one f> goes straight North (so the horizon-
tal coordinate cannot be increased). The weight of the corresponding path is
wt(P;) =11 +1is.

Proposition 1 Let A and p be two dominant weights such that » < . Then the
multiplicities are as follows:

D) [EW): Lyl=1ifr=u,
2) If A < u, look at all the paths of length one and two from A to |1, denote this set

P, ), [E(n): L] = Zpem,u)(—l)w’”’).

One can check on the picture that the module of the multiplicity of Lj in the Euler
characteristic £g/, (i) is at most one. This is a general phenomenon for algebras
osp(2n + 1,2m).
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omoy / .0x00x00x.)
(.x000x0x0. .x000x00x% .
0
moy 0 .0x0x000x.)
(.x00x00x0. @ (.x00x000x

Fig. 2 osp(7, 6), generic case

Remark 3

(1) If p is far from the walls, meaning that a; > a» + 3 > 5/2, then the partial
picture explaining which L, s appear in the Euler characteristic is just a square
of size 1 x 1.

If one looks at the same picture for maximally atypical weights of osp(2n +

1, 2n), if the weight diagram of u has two empty positions between each couple
of x and p is far enough from the tail, the weights A occurring in the Euler
characteristic are the vertices of the hypercube with “greater vertex” w. See
Fig. 2 for the case 0sp(7, 6).

(2) Aslong as u is far enough from the origin, a; > 9/2, the pattern along the walls
is always the same.

We put all this information in a big (infinite) triangular unipotent matrix M la-
belled by all dominant maximally atypical weights, the line labelled by the weight
A encoding in which Euler characteristics L, occurs, and with which multiplicity.
This matrix gives us the composition series of all the Euler characteristics, and since
we know the character of the Euler characteristics, if we invert M and hence obtain
a simple module as a linear combination of Euler characteristics, we are able to
compute the character of the simple module. Well, able might be abusing language,
since no one wants to explicitely compute all this. . .

Let us show the matrix (Table 1) for small weights, with the conventions of the
Fig. 1 for the weights.

For instance, let us explain how we get the column corresponding to (%, %): look
at the picture, and the arrows coming to this weight: one gets (%, —%) with weight
—1, then (%, —%) with weight 2, but it cancels with the path (%, —%) — (%, —%) —
(%, %) which is of weight 1, and then the path (—%, —%) — (%, —%) — (%, %)
which has weight 5 cancels with the arrow coming from the exceptional move
(-1, -5 — 3. 1. Finally, (3, 1) itself appears with multiplicity 1, hence the
column.



166 C. Gruson and V. Serganova

Tl [Tl [Tl [Tl [Tl (=1 [=1en [=ien [=iev [enlen [enlen [enlen [nien [nie
| | | | |

I [nIA [=Ia [aid [nid (e (o [sia (o
DSl Rl Sl L R EL REAN RS N

Table 1 Partial decomposition matrix
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5 Projective Indecomposable Modules for osp(5, 4), Maximally
Atypical Case

In [7], we showed that one can express any projective indecomposable module in the
Grothendieck group /IC(F) as a linear combination with integral coefficients (possi-
bly negative) of Euler characteristic for tailless weights, hence the underlying alge-
braic supermanifold is the flag variety G/B. We also showed that there is a (weak
version of) Bernstein-Gel’fand-Gel’fand reciprocity law (see [7], Theorem 1):

Proposition 2 Let A and v be two dominant weights such that | is tailless, one
has:

[Ew) : L] =[Pr:EW]

Remark 4 Note that Euler characteristics for tailless weights do not form a basis in
the Grothendieck group. Since our category has infinite cohomological dimension,
classes of projective modules generate a proper subgroup in the Grothendieck group
(see [7]). However, Euler characteristics are linearly independent, hence the presen-
tation of the class of a projective module as a combination of Euler characteristics
is unique.

Hence, actually we have already computed all the coefficients of this linear com-
bination while computing the characters of simple modules, or, more appropriately,
the multiplicity of the simple modules occurring in a given Euler characteristic for
tailless weights. Note that the (partial) matrix of the previous section contains the
information for Euler characteristics for weights with a tail (the lines corresponding
to weights with first coordinate equal to zero), and these ones are not relevant in the
computation we do now.

Thanks to the algorithm described in [7] that allows to compute the coefficients
of the linear combination of Euler characteristics involved in a given projective mod-
ule, we obtain the decomposition numbers of the previous section by an independent
method.

Let us take the opportunity of this paper to describe the decomposition of pro-
jective indecomposable modules of maximally atypicality degree in terms of simple
modules.

Let A be a dominant weight, we write A + p = (a1, az||a1], |az|). For simplicity
we encode A by (ay, ay), as in the previous section. Assume that a; — ap > 4 and
ar >3, we say that A is generic, then the Euler characteristics involved are these of
(ay,az), (a1 + 1,a2), (a1,a2 + 1) and (a1 + 1, az + 1) so that the simple modules
involved are (see Table 2).

Let us study now the generic weights which are near the oblique wall.

Case ay =ar + 3, ar > %: The Euler characteristics involved are the same as
in the generic case, but £(aj, az + 1) has L, 2.4, as an additional composition
factor. Hence Table 3.

Case a; = ap + 2: The Euler characteristics involved are the same as in
the generic case, but £(aj,az) has an additional composition factor which is
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Table 2 Highest weights of
simple modules occurring in
Py, A = (a1, ay) generic

Table 3 Highest weights of
simple modules occurring in
P A= (a1,a),a1 —ay =3,
a2 =5

Table 4 Highest weights of
simple modules occurring in
P, A=(a1,a2), a1 —ay =2,
ap =5

C. Gruson and V. Serganova

Coordinates of simple factor

Multiplicity

(ag+1,a0+1)
(a1 +1,a2)
(ag+1,a0—-1)
(ar,a2 +1)
(a1, a2)
(ar,a — 1)
(ag—1,a0+1)
(a1 —1,a2)

(@ —1,a2—1)

[\

[ R O N N

Coordinates of simple factor

Multiplicity

(ar+1,a0+1)
(a1 +1,a2)
(ag+1,a0—-1)
(ar,ax+1)
(a1,a2)
(a1,a0—1)
(a1 —2,a2)
(a1 —1l,a2+1)
(a1 —1,a2)

(@ —1l,aa—1)

N = = RN =N =

—

Coordinates of simple factor

Multiplicity

(ag+1,a0+1)
(ar,ax+1)
(a1 +1,a2)
(a1, a2)

(a1 —1,a2)
(ar+1,a0-1)
(ar,a0—1)
(a1 —1la—1)
(a1 =2,a0—-1)

R R N O SR
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Table S Highest weights of
simple modules occurring in
P, A=(a1,a2), a1 —ax =1,
ay >3 (a1+2,a2+2)

(a1 +2,a0+1)
(ar +1l,aa+1)
(a1 +2,a)

(a1 +1,a2)
(a1, a2)
(ar+1l,aa—1)
(ar,a2 — 1)

(a1 —1l,a2—-1)

Coordinates of simple factor Multiplicity

—_ N = RN = =N =

Table 6 Highest weights of
simple modules occurring in
Py, x=(a1,3/2),a1 > 11/2

Coordinates of simple factor Multiplicity

(a1+1,5/2)
(a1,5/2)

(a1 —1,5/2)
(a1+1,3/2)
(a1,3/2)

(a1 —1,3/2)
(a1 +1,1/2)
(a1,1/2)

(a1 —1,1/2)
(a1 +1,-1/2)
(a1,—1/2)

(a1 —1,-1/2)

[ PN S R O O S O

Lg—2,0y-1)» (a1 + 1,a2 + 1) has L, —1,4,) as an additional composition fac-
tor and £(ay, ap + 1) is smaller than expected since it lacks L4, —1,4,41). Hence
Table 4.

Case a; = ap + 1: The Euler characteristics involved are these corresponding to
(ar,az), (a1 + 1,a2), (a1 +2,a2 + 1), (a1 + 2, a3 + 2). We get Table 5.

Next we study generic weights near the tail a; > %

Case ap = %

The Euler characteristics involved are the usual ones and we have several addi-
tional composition factors in them, see Table 6.

Case ap = %

The Euler characteristics involved are the usual ones and we have several addi-
tional composition factors in them. See Table 7.

Case a; > 2 ,a) = —%.

See Table 8.
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Table 7 Highest weights of
simple modules occurring in

1 9
Py, k= (a1, 3),a1=3

Table 8 Highest weights of
simple modules occurring in

1 9
P, A= (a1, —3),a1> 5

Table 9 Highest weights of
simple modules occurring in
Py, 4(9/2,3/2)

C. Gruson and V. Serganova

Coordinates of simple factor

Multiplicity

(a1 +1,3/2)
(a1,3/2)
(a1 —1,3/2)
(a1 +1,1/2)
(a1, 1/2)
(a1 —1,1/2)

N A= N =

Coordinates of simple factor

Multiplicity

(a1 +1,3/2)
(a1,3/2)

(a1 —1,3/2)
(a1 +1,-1/2)
(a1, =1/2)

(a1 —1,-1/2)

ROR N = N~

Coordinates of simple factor

Multiplicity

(11/2,5/2)
9/2,5/2)
(7/2,5/2)
(11/2,3/2)
9/2,3/2)
(7/2,3/2)
(5/2,3/2)
(11/2,1/2)
©/2,1/2)
(7/2,1/2)
(11/2,-1/2)
9/2,-1/2)
(7/2,-1/2)

N S S N ST N N R O

The remaining weights are represented by the couples (—%, —%), (%, —%),
GobeG-b.d-h.G b3 b A b b G hmad D,

We intend to use the partial matrix A we wrote in the previous section, sup-
pressing the lines corresponding to Euler characteristics for weights with tail, and
compute " A.A. Caution, the relevant information in this matrix concerns only the
weights which are labelled by (ap,a2) with a; < 9/2 and ay < 5/2, since we
need additional information to get the other weights. We first do by hand the case
(a1,a2) =(9/2,3/2), see Table 9.
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Table 10 Partial Cartan matrix

et bl -yl -pl6. -1 g.-4]6 .16 9ld. b6 ]G 3

(—1/2,—1/2)|| 4 2 2 1
1/2,-1/2) 4 2 2 1
(3/2,-1/2) 2 4 2 1 1 1 2
(5/2,-1/2) 2 4 2 2 1
(7/2,-1/2) 2 1 2 4 1 1 2
9/2,-1/2) 2 1

(3/2,1/2) 2 1 4 2 1 1 2
(5/2,1/2) 2 4 2 2 1
(7/2,1/2) 2 1 1 2 4 1 2
9/2,1/2) 2 1
(5/2,3/2) 1 2 1 1 2 1 4 2
(7/2,3/2) 1 1 2 1 2 2 1 2 2 4
(9/2,3/2) 1 1 1 2
(7/2,5/2) 1 1 1 2
9/2,5/2) 2 1
9/2,7/2) 1

Table 10 is the result of the multiplication of matrices mentioned above, it should
be read this way: the line labelled by (b1, b2) is the decomposition of the corre-
sponding indecomposable projective module in terms of the simple modules la-
belled by the columns.

6 Generic Picture for osp(7, 6), Exceptional Moves for
osp(7, 6) (and Remarks on Higher Rank Cases)

As is explained in [6], in order to get rid of the signs of the weight diagrams, it is
better to look at the dominant weights of osp(7, 8) belonging to the same block as
the trivial module. This means adding a < at the tail position, move all x not at the
tail one position to the right and for the x at the tail, if the sign is (—) don’t change
anything, whether if the sign is (4) move exactly one x from the tail one position
to the right.

The weight diagram of a dominant maximally atypical weight has exactly three
x plus a < at the tail.
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6.1 Generic Maximally Atypical Weights

One can draw a picture similar to Fig. 1, but it is 3-dimensional and quite intricate
near the origin. . . Nevertheless, for a “generic” maximally atypical weight (meaning
there are at least 2 empty positions between two x and it is far from the tail), the
picture is easy to make, see Fig. 2. In this picture, the legal way is to go East then
North then North-East.

Remark 5 For maximally atypical weights of osp(2n + 1, 2n) which are generic,
i.e. such that the first x in the weight diagram is far from the tail position and there
are at least two empty positions between two x, the picture looks the same and the
legal way is to move along the basis vectors corresponding first to the rightmost X,
then the following rightmost x and so on.

6.2 Exceptional Moves

In osp(7, 6), there are infinitely many weights leading to exceptional moves, be-
cause there are more than two x, see the case (5) where the rightmost x can be at
any place further right. Here is a list of these moves, we indicate the parity of the
weight of the corresponding move if it is not 0.

6]
<
<
X X X
X
fu=l — fi={or
<
X
X 0 0 X X
2
<
fu=x — fi=<XoxX
X X
3)
< x x x (1)
< or
fu=x — fi=1<XXo X
X 0 X or
<o XX X
“
< < X X X
fu=x — fr,=4qo0r

X 00 X < X 0 X X
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&)

<
fu=x —> fH,= < X X o X etc.
X o000 X

Remark 6 This last move can be reproduced for any diagram f,, with the same
pattern at the tail and the last x at any position further on the right, with the obvious
change on the diagram f; .

If one looks closely at the definition of admissible paths, such a move can be
combined with any move concerning the X not involved in the exceptional move,
so that these exceptional things are really annoying. .. and one has to be extremely
careful in the computations. Is there still anyone wondering why we didn’t draw the
complete figure?
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Monoidal Categorifications of Cluster Algebras
of Type A and D

David Hernandez and Bernard Leclerc

Abstract In this note, we introduce monoidal subcategories of the tensor cate-
gory of finite-dimensional representations of a simply-laced quantum affine algebra,
parametrized by arbitrary Dynkin quivers. For linearly oriented quivers of types A
and D, we show that these categories provide monoidal categorifications of clus-
ter algebras of the same type. The proof is purely representation-theoretical, in the
spirit of Hernandez and Leclerc (Duke Math. J. 154, 265-341, 2010).

1 Introduction

The theory of cluster algebras has received a lot of attention in the recent years
because of its numerous connections with many fields, in particular Lie theory and
quiver representations.

One important problem is to categorify cluster algebras. In recent years, many ex-
amples of additive categorifications of cluster algebras have been constructed. The
concept of a monoidal categorification of a cluster algebra, which is quite different,
was introduced in [15, Definition 2.1]. If a cluster algebra has a monoidal categorifi-
cation, we get informations on its structure (positivity, linear independence of cluster
monomials). Conversely, if a monoidal category is a monoidal categorification of a
cluster algebra of finite type, we can calculate the factorization of any simple object
as a tensor product of finitely many prime objects, as well as the composition factors
of a tensor product of simple objects.
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In [15] we have introduced a certain monoidal subcategory C; of the category C
of finite-dimensional representations of a simply-laced quantum affine algebra, and
we have conjectured that C; is a monoidal categorification of a cluster algebra of
the same type. This conjecture was proved in [15] for types A and Dy, and in [20]
for all A, D, E types. The proof in [15] relies on representation theory, and on the
well-developed combinatorics of cluster algebras of finite type. Nakajima’s proof is
different and uses additional geometric tools: a tensor category of perverse sheaves
on quiver varieties, and the Caldero-Chapoton formula for cluster variables.

The categories C; of [15] are associated with bipartite Dynkin quivers. In this
note, we introduce monoidal subcategories C¢ of C associated with arbitrary Dynkin
quivers. For types A and D, we show that the categories C¢ corresponding to linearly
oriented quivers provide new monoidal categorifications of cluster algebras of the
same type. The proof is similar to [15]. However, the main calculations are much
simpler because, for these choices of &, the irreducibility criterion for products of
prime representations is more accessible than for the categories C;. This is why we
can also treat in this note the cases D, (n > 5).

In his PhD thesis, Fan Qin [21] has recently generalized the geometric approach
of Nakajima (partly in collaboration with Kimura), and obtained monoidal categori-
fications of cluster algebras associated with an arbitrary acyclic quiver (not neces-
sarily bipartite) using perverse sheaves on quiver varieties.

2 Cluster Algebras and Their Monoidal Categorifications

We refer to [4, 17] for excellent surveys on cluster algebras.

2.1 Cluster Algebras

Let 0 <n < r be some fixed integers. If B= (bij) is an r x (r — n)-matrix w1th
integer entries, then the principal part B of B is the square matrix obtained from B
by deleting the last n rows. Given some k € [1, r —n] define anew r x (r —n)-matrix

1 (B) = (b],) by

o by ifi=korj=k,

i bi by +biklb . (1)
i = b;; —}—“"‘Lz’klk" otherwise,

where i € [1,7] and j € [1,7 — n]. One calls uk(g) the mutation of the matrix B in
direction k. If B is an integer matrix whose principal part is skew-symmetric, then it
is easy to check that wi(B) is also an integer matrix with skew-symmetric principal
part. We will assume from now on that B has skew-symmetric principal part. In this
case, one can equivalently encode B by a quiver I" with vertex set {1,...,r} and
with b;; arrows from j to i if b;; > 0 and —b;; arrows from i to j if b;; < 0.
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Now Fomin and Zelevinsky define a cluster algebra A(B) as follows. Let F =
Q(x1, ..., x,) be the field of rational functions in » commuting indeterminates x =
(x1,...,x,). One calls (x, B) the initial seed of A(B).For 1 <k <r — n define

bik —bik
[py=0% " + b, <0
X=— o : )

The pair (g (x), ,uk(lN?)), where 114 (x) is obtained from x by replacing x; by x, is
the mutation of the seed (x, E) in direction k. One can iterate this procedure and
obtain new seeds by mutating (ux(X), ,uk(E)~) in any direction / € [1,r —n]. Let S
denote the set of all seeds obtained from (X, B) by any finite sequence of mutations.
Each seed of S consists of an r-tuple of elements of F called a cluster, and of a
matrix. The elements of a cluster are its cluster variables. One does not mutate the
last n elements of a cluster; they are called frozen variables and belong to every
cluster. We then define the cluster algebra A(B) as the subring of F generated by
all the cluster variables of the seeds of S. A cluster monomial is a monomial in the
cluster variables of a single cluster. Two cluster variables are said to be compatible
if they occur in the same cluster.

The first important result of the theory is that every cluster variable z of A(B)isa
Laurent polynomial in x with coefficients in Z. It is conjectured that the coefficients
are positive.

The second main result is the classification of cluster algebras of finite type, i.e.
with finitely many different cluster variables. Fomin and Zelevinsky proved that this
happens if and only if there exists a seed (z, C) such that the quiver attached to the
principal part of Cisa Dynkin quiver (that is, an arbitrary orientation of a Dynkin
diagram of type A, D, E).

In [5], Fomin and Zelevinsky have shown that the cluster variables of a cluster
algebra A have a nice expression in terms of certain polynomials called the F-
polynomials. In type A and D, explicit formulas for F-polynomials are known.

2.2 Monoidal Categorifications

The concept of a monoidal categorification of a cluster algebra was introduced in
[15, Definition 2.1]. We say that a simple object S of a monoidal category is real if
S ® S is simple.

Definition 1 Let .4 be a cluster algebra and let M be an abelian monoidal category.
We say that M is a monoidal categorification of A if there is an isomorphism be-
tween A and the Grothendieck ring of M such that the cluster monomials of .4 are
the classes of all the real simple objects of M.

A non trivial simple object S of M is prime if there exists no non trivial factor-
ization S = S1 ® S>. By [10, Sect. 8.2], the cluster variables of .4 are the classes of
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all the real prime simple objects of M. So Definition 1 coincides with the definition
in [15].

As an application, we get information on the cluster algebra, as shown by the
following result.

Proposition 1 ([15]) If a cluster algebra A has a monoidal categorification, then

(i) every cluster variable of A has a Laurent expansion with positive coefficients
with respect to any cluster;
(ii) the cluster monomials of A are linearly independent.

Assertion (ii) can also be proved by using additive categorification, see the re-
cent [1].

Conversely, if M is a monoidal categorification of a finite type cluster algebra,
we can calculate the factorization of any simple object of M as a tensor product of
finitely many prime objects, as well as the composition factors of a tensor product
of simple objects of M. Moreover, every simple object in M is real.

3 Categories of Finite-Dimensional Representations of U, (Lg)

For recent surveys on the representation theory of quantum loop algebras, we invite
the reader to consult [2] or [18].

3.1 Simple Lie Algebra

Let g be a simple Lie algebra of type A, D, E. We denote by I the set of vertices
of its Dynkin diagram, and we put n = |I|. The Cartan matrix of g is the [ x I
matrix C = (C;;j); jer. We denote by «; (i € I) and @; (i € I) the simple roots and
fundamental weights of g, respectively.

Let &: I — Z be a height function, that is |§; — &;| =1 if C;; = —1. It induces
an orientation Q of the Dynkin diagram of g such that we have an arrow i — j if
Cij=—1and §; =§; — 1. Define

T:={G,p)el xZ|p—&e2Z}.

3.2 Quantum Loop Algebra

Let Lg be the loop algebra attached to g, and let U, (Lg) be the associated quantum
enveloping algebra. We assume that the deformation parameter g € C* is not a root
of unity.
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The simple finite-dimensional irreducible U, (Lg)-modules (of type 1) are usu-
ally labeled by Drinfeld polynomials. Here we shall use an alternative labeling
by dominant monomials (see [8]). Moreover, as in [15], we shall restrict our at-
tention to a certain tensor subcategory Cz of the category of finite-dimensional
U, (Lg)-modules. The simple modules in Cz are labeled by the dominant mono-

mialsin Y = Z[Yl.jfpl | (i, p) € Z] that is monomials m = H(Lp)eTY:;p (m) such that
u; p(m) >0 for every (i, p) € I.

We shall denote by L(m) the simple module labeled by the dominant mono-
mial m.

By [8], every object M in Cz has a g-character x,(M) € ). These g-characters
generate a commutative ring X isomorphic to the Grothendieck ring of Cz,.

By [7, 8], we have x,(L(m)) € mZ[Ai_’Il)H](i’p)efwhere for (i, p) € T we denote

-1
Aipr1=YipYipio l_[ Yj,p+l e.
jelCij=—1

In particular, an element in K is characterized by the multiplicity of its dominant
monomials. When m is the only dominant monomial occurring in x € ), x is said
to be minuscule. We say that M is minuscule if x, (M) is minuscule. This implies
that M is simple.

3.3 The Monoidal Category C;

Define
Te={G,&)liellu{i&+2liel}lcT,

and let V: be the subring of ) generated by the variables Y; , ((i, p) € TS)-

Definition 2 C is the full subcategory of Cz whose objects have all their composi-
tion factors of the form L(m) where m is a dominant monomial in ).

When Q is a sink-source orientation, we recover the subcategories C; introduced
in [15]. Since I is a “convex slice” of I, we get as in [16, Lemma 5.8]:

Lemma 1 C; is closed under tensor products, hence is a monoidal subcategory

of Cz.

We denote by K¢ the subring of X spanned by the g-characters x, (L (m)) of the
simple objects L(m) in C¢. Then K¢ is isomorphic to the Grothendieck ring R of
Ce. Note that this ring is a polynomial ring over Z with generators the classes of the
2n fundamental modules

L(Yig), L(Yig42) (1<i=<n).
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The g-character of a simple object L (m) of C¢ contains in general many monomials
m’ which do not belong to V. By discarding these monomials we obtain a trun-
cated q-character [15]. We shall denote by )'Zq(L(m)) the truncated g-character of
L(m). One checks that for a simple object L(m) of Cg, all the dominant monomi-
als occurring in x,(L(m)) belong to the truncated g-character Zq (L(m)) (the proof
is similar to that of [15] for the category C, as for the proof of Lemma 1 above).
Therefore the truncation map x,(L(m)) — X, (L(m)) extends to an injective alge-
bra homomorphism from K¢ to V.

It is sometimes convenient to renormalize the (truncated) g-character of L (m) by
dividing it by m, so that its leading term becomes 1. The element of ) thus obtained
is called a renormalized (truncated) q-character.

Define a partial ordering < on )) by x < x’ if x’ — x is an N-linear combination
of monomials. In particular, we have )'Zq (M) = xq(M) for M in C¢.

3.4 Restriction and Decomposition

Let J C I and g; C g be the corresponding Lie subalgebra. Let T J= n (J X Z).
For m a monomial, let m; =[] ,c7, Yi'f;” ™ 1t m s is dominant, one says that
m is J-dominant. In this case, let L;(m) be the sum (with multiplicities) of the
monomials m’ occurring in mm]lxq (L(my)) such that m(m’)~! is a product of
Ai_,;la+1’ @i,p) e TJ. The image of L;(m) in Z[Yi,p](i,p)efp obtained by sending
the Y; p to 1if (i, p) ¢ Tj, is the g-character of the simple U, (Lgy) labeled by m
[13, Lemma 5.9]. In particular we have the following:

Lemma 2 Let m and m’ be two dominant monomials such that L(m) @ L(m’) is
simple. Then Ly(m)Lj(m") = L j(mm').

For m a dominant monomial one has a decomposition [11, Proposition 3.1]

Lm)=>_"nr;(m')L;(m) 3)

where the sum runs over J-dominant monomials m’. The A;(m’) € N are unique.
This corresponds to the decomposition of L(m) in the Grothendieck ring of
Uy(Lgy)-modules. This decomposition gives an inductive process to construct
monomials occurring in x,(L(m)). Let us start with mo = m. Then the mono-
mials my of Lj(mg) occur in x,(L(m)). If my is Ji-dominant (J; C /) and if
L j, (m1) occurs in the decomposition (3), then the monomials m; of L j, (m1) occur
in x,(L(m)), and we continue. See [13, Remark 3.16] for details.
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3.5 Proof of Monoidal Categorifications

In this note, we follow the proof of [15] to establish that for certain choices of & the
category Cg is a monoidal categorification of a cluster algebra .A. Let us recall the
main steps (see [15] for details):

(1) We define a family P of prime simple modules in C¢ and we label the cluster
variables of an acyclic initial seed X' of .4 with a subset of P.

(2) We prove that the renormalized truncated g-characters of the representations of
‘P coincide with the F-polynomials with respect to X of all the cluster variables
of A.

(3) We prove an irreducibility criterion for tensor products of two representations
in P.

(4) By using the following general result, we factorize every simple module in Cg
as a tensor product of representations in P.

Theorem 1 ([14]) Let Sy, ..., Sy be simple objects in C. Then S| @ S ® --- ® Sy
is simple if and only S; ® S; is simple forany 1 <i < j < N.

In the next sections, we follow these steps for a good choice of £ in types A
and D. We conjecture that for arbitrary choices of £ and for every type A, D, E, C¢
is the monoidal categorification of a cluster algebra of the same type. For type A,
this can be proved in the same way as explained in Remark 1(b). For other types,
this can be probably established by using the methods in [20].

4 Type A

4.1 A Cluster Algebra of Type A

Let A be a cluster algebra of type A, in the Fomin-Zelevinsky classification. As is
well-known, the combinatorics of .4 is conveniently recorded in a regular polygon P
with n + 3 vertices labeled from O to n + 2, see [3, Sect. 12.2]. Here, each cluster
variable x4p (0 <a < b <n + 2) is labeled by the segment joining vertex a to
vertex b. The cluster variables x,;, for which the segment [a, b] is a side of the
polygon are frozen. Moreover we specialize

X0l = Xn41,n42 = X0,n42 = 1.
The exchange relations (Ptolemy relations) are of the form
XacXbd = XabXcd + XadXpe (a <b<c<d). 4

The clusters of A correspond to the triangulations of P. The variables xo; (2 <i <
n + 1) together with the n frozen variables x; ;41 (1 <i <n) form a cluster, whose
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associated quiver is

X02 = X03 —> X04 —> - 7> X0,n+1

FNUVNINON Y

X12 X23 X34 te Xn, n+1

Note that the principal part of this quiver (i.e. the subquiver with vertices the non-
frozen variables) is a quiver of type A, with linear orientation. We denote by X' this
particular seed of A.

4.2 Cluster Structure on Cg

Let g be of type A,. We will write Y , = Y,41,, = 1 for p € Z. We choose the
height function

§@):=i (@(el),
corresponding to a quiver Q of type A, with linear orientation. We define the fol-
lowing family of irreducible representations in Ce:
P:={LG,j):=L(Y;iYjj42)|0<i<j<n+1}.

The simple modules L(Z, j) are evaluation representations whose ¢g-characters are
known (see references in [2]). In particular they are prime. We have 5(}1 (L0, j)) =
Y; j42 and if i 0 we have

Xq (LG, ) =YiiY} j2(1+ A;.IH +(Arip1Ais1iv2) 4

+ (Aiiv1Aigiv2- "Ajfl,j)_l)‘

Dividing both sides by Y;;Y; j42> and setting t; := Al.,ilﬂ, we see that this for-
mula for the renormalized truncated g-characters coincides with the formula for
F-polynomials computed in [23, Example 1.14]. It is easy to deduce from this that

we have the following relations in R¢ (also obtained in [19]):
[LG, O][LG.D]=[LGD][LG.O]+][LG, j—D][LK+1,D]
if0<i<j<k<l<n+l1. )
Therefore, comparing with (4), we see that the assignment
xap > [L@,b—1)] O<a<b=n+2)

extends to an isomorphism from the cluster algebra A to the Grothendieck ring R.
This isomorphism maps the seed X' to

L©O,1) - L0,2) - ---— L(0,n)

NN
Ld,1) L2,2 - L(nn)
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where the L(i, i) (1 <i <n) correspond to frozen variables.

We say that (i, k) and (j,l) are crossing if and only if i < j <k <1 or
Jj <i <l < k. Otherwise, we say that (i, k) and (j,[) are noncrossing. The next
proposition is similar to the classical irreducibility criterion for prime representa-
tions of U, (Lsl3), except that here, spectral parameters are replaced by nodes of the
Dynkin diagram.

Proposition 2 The module L(i, j) ® L(k,1) is simple if and only if (i, j) and (k,[)
are noncrossing.

Proof The “only if” part follows from (5). We prove the “if” part. Let M =
YiiVj j42Yi kY1 142. We have X, (L(M)) < x = X4(L(i, j) ® L(k,1)). We prove
the other inequality. By symmetry, we are reduced to the following two cases:

(@ if j<kor(k=0andi,j<Il)or(l <k<i, j=I),then x contains a unique
dominant monomial, namely M, so L(i, j) ® L(k,[) is simple.

(b) if 1 <k <i <j </, then x contains exactly two dominant monomials, namely
M and

M’ =M (A ki1 Arsr g2 Aj i)

So it suffices to prove that M’ occurs in X (L(M)). First, by Sect. 3.4, the monomial
M" = M(Ak k1 Aksr a2 Aim1i) !

occurs in X (L(M)). Hence L;(M") occurs in the decomposition (3) for J =
{i,...,n}. But L(Y; _;Y; _;j_2) ® L(Y; _;) is minuscule and simple. Hence, by [12,
Corollary 4.11], the tensor product L(Y;;Y; j12) ® L(Y;;) is simple, isomorphic
to LYY j12). S0 YY) jia(Aiiyr -+ Ajjr1)~" oceursin X (L(YZ Y j12)) and
M’ occursin Lj(M"). O

Therefore, as explained in Sect. 3.5, we get the following:
Theorem 2 C: is a monoidal categorification of the cluster algebra A of type A,.

Remark 1 (a) It follows from Theorem 2 that when &; =i, every simple module in
Ce can be factorized as a tensor product of evaluation representations.

(b) For an arbitrary £, a theorem similar to Theorem 2 can be proved in an analog
but slightly more complicated way. A subset J =[i, j]CI (1 <i <j<n)hasa
natural orientation induced by &. Let J (resp. J—) be the set of sources (resp. sinks)
of J. The prime objects in C¢ are the simple modules

L(J) :=L<l_[ Yig, ]_[ Yk,gk+2>, L(i):=L(Yig).

kelJ_ kely

L'(i) := L(Y; +2).
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Note that L(J) is not an evaluation representation if J has several sources or several
sinks.

(c) Different choices of £ yield different subcategories Cg. These subcategories
seem to be quite similar, but they are not equivalent in general. For example, in
type A3, consider the categories C¢ with & =i and Cy with ¢1 =1, ¢ =2, ¢3 =
1. Both categories are monoidal categorifications of a cluster algebra of type A3
with 3 coefficients. The category Cy was studied in [15]. In particular, we the have
following relation in the Grothendieck ring of Cy:

[L(Y11Y24Y3D][L(Y22)] = [LOD][LY3.0)][L(Y22Y2.4)]
+[L(Y11Y139)][L(Y31Y33)].

But by (5), in the Grothendieck ring of Cg, a simple constituent of the tensor product
of two simple prime representations can be factorized as a tensor product of at most
2 non trivial representations. Hence, C¢ and Cy are not equivalent.

5 Type D

5.1 A Cluster Algebra of Type D

Let A be a cluster algebra of type D, in the Fomin-Zelevinsky classification. The
clusters of A are now encoded by the centrally symmetric triangulations of a regular
polygon P with 2n vertices, labeled by a =0, 1,...,2n — 1 [3, Sect. 12.4] (note
that a more modern way to record the combinatorics of a cluster algebra of type
D,, would be by means of a once-punctured n-gon and tagged arcs [6]). A segment
[a, b] joining two vertices is called a diagonal if it meets the interior of P, and a
side otherwise. Let ® be the 180° rotation of P, and for a vertex a, write a = @ (a).
Each non frozen cluster variable is labeled by a ® -orbit on the set of diagonals of P.
More precisely, to each non trivial @-orbit ([a, b], [a, E]) (with b #£ @) we attach a
single cluster variable

Xab = Xgp-

But we associate with every ®-fixed diagonal [a, a] (or diameter) two different
cluster variables

Xaa 7 X35

We may think of [a, a] and [;,/ a] as two different ®-orbits, supported on the same
segment but with two different colors. Given two ®-orbits, one of which at least
being non trivial, we say that they are noncrossing if they do not meet in the interior
of P. We also declare that two ®-fixed diagonals are noncrossing if and only if they
have the same support or the same color. A centrally symmetric triangulation of
P is then a maximal subset of pairwise noncrossing @-orbits of diagonals. Such a
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triangulation always consists of n different @-orbits. For instance, for n = 4, the
following are two distinct triangulations

e

{(10,31, 11,31), (12,31, [2.3]), [3.3]. [3.31},
{(11,31, [1,3]), (12,31, [2,3]), [3,3].2,2]}.

To the ®-orbits of the sides [a, b] of P we can also attach some frozen variables
Xab = Xz5. We specialize

X01 anT],Oz 1.

Our initial seed for the cluster algebra A will correspond to the triangulation

{@(la.n—1))[1<a<n-2}U{ln—1,n—1],[n—1,n—1]}.

More precisely, it is described by the following quiver

BT e e S I e
A
X12 o Xn=3,n=2 X,y o7 Jn
where f, and f,_; are two additional frozen variables, which can not be encoded
by sides of P. The principal part of the quiver (obtained by removing the frozen
vertices x; ;41 (1 <i <n —2), fu—1, fu, and the arrows incident to them) is a
Dynkin quiver Q of type Dy, hence A is indeed a cluster algebra of type D, in the
Fomin-Zelevinsky classification.
One can easily check that, because of this particular choice of frozen variables,
A belongs to the class of cluster algebras studied in [9]. More precisely, let us label
the vertices of Q by {1,...,n} so that x; .— lies at vertex i fori <n — 1, and

X = lies at vertex n. Then A is the same as the algebra attached in [9] to Q and
n—1,n—

the Weyl group element

2 2
w=c"=($S—151—2---51)".

It follows from [9, Theorem 16.1(i)] that A is a polynomial ring in 2n generators.
These generators are the initial cluster variables

zi=x,— (1<i<n-1), Zn =X

n—l,n—l’

together with the new cluster variables z;f (1 <i <n) produced by the sequence of
mutations

Mn O hpn—10Up—20" -0 U20UT. (6)
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Recall from [3] that, our initial cluster being fixed, the cluster variables of .4 also
have a natural labelling by almost positive roots. The correspondence is as follows.
First, the ®-orbits of the initial triangulation are labeled by negative simple roots:

@([i,n—l])l—)—ai (1<i<n-2), [n—1,n—1]—> —op_1,

[n—1,n—1]+— —a,.

Any other ®@-orbit x is mapped to the positive root ) . c;er;, where the diagonals
representing x cross the diagonals representing —c; at ¢; pairs of centrally symmet-
ric points (counting an intersection of two diameters of different colors and support
as one such pair).

In [22, 23], a different labelling for the cluster variables is used. First the choice
of an acyclic initial seed is encoded by the choice of a Coxeter element c. For our
choice of initial seed, this Coxeter element is

C=SpSn—15p—-2 """ 51.
Next the cluster variables are labeled by weights of the form
Moy (i el,0<m< h(i,c)),

where h(i, c) is the smallest integer such that " = wow;. The correspon-
dence between the two labellings is as follows. To the fundamental weight w;
corresponds —a;, and to the weight ¢ @; (m > 1) corresponds the positive root
B=c"""w; — "w;.

Example I We illustrate all these definitions i
octogon, with vertices labeled by 0, 1, 2, 3, 0,
lation is

n
1,2, 3. Our choice of initial triangu-

the case n = 4. Here P is a regular
2,

{(11,31, [1.31), (12,31, 12.3]). 3,31, ﬁ},

which corresponds to the Coxeter element ¢ = s4535251. The sixteen @-orbits of
diagonals (represented by one of their elements), and the corresponding indexings
by almost positive roots, and by weights, are given in the table below:

[1,3]|—ai| @i [0, 3] o) o Ao

[2,3]|—a2| [1,1] o + o3 Aoy

3.3]|—a3| @3 [1,1] o + oy w3

[3,3]|—aa| @a [0,0]] aj+ax+as |os
3 -

0,21 a1 |’y [0,0]] a1+a+as |Poy
2 _

[LE] oy |cTm 2,1]] arx+az+as |com

[2,/\3] a3 | cm3 [2,0]| a1 + a2 + a3 +ay | comy

[2,2]| a4 |cos [1,0]|a; + 20 + a3 + ag|coy




Monoidal Categorifications of Cluster Algebras of Type A and D 187

5.2 Cluster Structure on Cg

Let g be of type D,. We will write Yy , = Y;41,p =1 for p € Z. We choose the
height function §; =n — 1 —i if i <n and &, = 0. This induces a partial order < on
{1,...,n} defined by

i<j &= § <§;.

Note that n — 1 and n are not comparable for <. Moreover, for convenience, we
extend this to {0, ...,n + 1} by declaring that 0 is a maximal element and n 4+ 1 a
minimal element for <.

We define the following family P of representations in Ce:

LG, j)=LYigYjz42) (m+1=i=xj=x0),
LG, )T =LYnoYn10Yig42Yig42) (n—2=j<i=<0).

Since A and R¢ are both polynomial rings over Z with 2n generators, the assign-
ment

e [Lo+1,0)]=[LWigs2)], 2 [LG0O]=[Ltig)] (A <i<n),

extends to a ring isomorphism ¢: A — ‘Re. Thus R is endowed with the structure
of a cluster algebra. Moreover, using the 7-system equations for calculating the
products

[LYie)]|[L(Yigi2)] =2iz),

and comparing them with the exchange relations involved in the sequence of muta-
tions (6), we can easily check that the frozen variables of .4 are mapped by ¢ to the
classes [L(i,i)] = [L(Y; g Yig+2)]. More precisely,

L(fn—1)=[L(n—1,n— 1)], L(fn)z[L(n’n)]’
t(xi 1) = [L(i, l)] (1<i<n-=2).

Therefore : maps the initial seed of A to

Ln+1,n—1)«<Ln—1,n—-1)
t N
Ln+1,)>Ln+1,2)—>---—>Lin+1,n—2)«L(n—2,n-2)

t v 0 v \ /!
L, 1) L(2,2) . Ln+1,n) <« L, n
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Let us compute the truncated g-characters of the representations in P. As in
Sect. 4.2, the modules L (i, j) are prime minimal affinizations. We have

Xg(Ln4+1, 1)) =Yg 12,
Xg(LG D) =YigYjiea(l+ AL 4+ AigAj 1))

X (L. ) =YaoYjg42(1+ A x;) O<j<n-2),

where x;j =1+ A, 2 st (Au—2- Aj_H,gj)_l. In general the L(i, j)* are
not minimal afﬁnlzatlons However, we have:

Lemma 3 Forn —2 < j <i <0, the representation L(i, j)T is prime and
Xq (LG, J)) Yn0Yn—1,0Yi5+2Y8+2
x (1 + (A_ 11 HAL 1)X/ +An 1 1A;,11XiX/')'
Proof As
X (LG, DY) 2 Xy (L(n, ) ® L(n — 1,1))

and
Xq(LG DY) 2 X (L @ Lin =1, ),
there are A, B < x; and C < x; x; such that
Ra(LG. D)) = YooYuoroYigaaYjgea(l+ AL A+ A B+ A 1AL (C).
From Proposition 2 with J = {1, ...,n — 1}, we have
YuoLy(Yn—1,0Yjn—j+1)LsYin—i+1) =LyYn0Yn—1,0Yin—i+1Yjn—j+1)-

Hence, by Sect. 3.4, we have A = x;. The proof that B = x; is analog. Similarly,
from Proposition 2 with J ={1,...,n — 2}, we have

LyYp21Yin—ivDLjYn21Yjn—j+1) = LJ(Ynz_z’lyi,n—i+lYj,n—j-‘rl)-
So
1~
C=(Y o1 Yin-i+1¥jn—j+1) Xg(L(Yea 1 Yin-i+1¥jn—j+1)) = XiX)-

This explicit formula shows that X, (L(i, j )™) can not be factorized and so L(i, j)T
is prime. g
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Let P':=P\{L(i,i)| 1 <i <n}. We introduce the following bijection between
the non frozen cluster variables of A and the representations in P’.

Xij —>L(j—1,i) 0<i<j—-2<n-3),
X > L(j, i) O<j<i<n-—2),
Xit > Lin—1,i) (0<i<n-2),

x> = L(n,i) 0<i<n-2),

XYoo P L+ 1) (1<i<n-=2),

X — > Ln+1,n-1),

n—1,n—1

X i~ L(n+1,n).

n—1,

One can check that under this correspondence, the renormalized truncated g-
characters for the representations in P’ coincide with the F-polynomials of the
cluster variables of A calculated in [22, 23]. One then deduces that this bijection
is the restriction of the ring automorphism ¢ to the set of non frozen cluster vari-
ables.

Example 2 We continue Example 1. The table below gives the list of cluster vari-
ables of A together with the corresponding representations of P’ and their truncated

_ 41
g-characters. Here 1; = A, ¢ .

xo2 |L(1,0) |Yi2(1+11)

x03 |L(2,0) Y21 (1 4+12+12t1)

x13 |1L(2,1) |Y14Y2,1(1 +12)

x5 |LO, D |Y1,4Y30Ya0(1 + 13 + 1302 + ta + tata + 1314 + 2131412 + 131413
+i3tataty + 1314t311)

%55 [L(0,2)T Y2 3Y3 0Ya 0 (1 + 13 + ta + 1314 + 131412 + 13141211

X 7| L1 2)T|Y14Y23Y3 0Ya0(1 + 13 + 4 + 1304 + 131412)

X5 |L(3,0) |Y3,0(1 + 13+ 1312 + 131211)

X7 |LG, 1) |Y14Y30(1 413+ 1312)

X535 |L(3,2) |Y23Y30(1 +13)

x=|L(4,0)|Ya.0(1 4+ t4 + tata + tataty)
x5 L4, DY 4Ya 0(1 4 14 + 1412)
x| L4, 2)|Ya3Ya0(l +t5)

x5|LG, D|Yi4

x3|L(5,2)|Y23

xz|L(5,3)|Y32

xy3|L(5,4)|YVsn
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We now describe which tensor products of representations of P are simple.

Proposition 3 We have the following:

(a) Suppose {i,k} # {n — 1,n}. Then L(i, j) ® L(k,l) is not simple if and only if
i<k=<xj=<lork<i=xl<j.

(b) Suppose {i,k} ={n —1,n}. Then L(i, j) @ L(k,!) is simple if and only if j =1
ori=jork=l.

(c) Suppose j <i andl < k. Then L(i, j)" ® L(k,)T is simple if and only if j <
l<k=<iorl<j<i=<k.

(d) Suppose i = n —2 and | < k. Then L(i, j) ® L(k,1)" is simple if and only if
i=jori<j=xl<korl<k<i<jorl<i<j=k.

(e) Suppose i <n —2 and | <k. Then L(i, j) ® L(k,)T is simple if and only if
i=jor(i#n+1)andl<j=<k)or(i=n+1andk < j).

Proof In each case, the proof of non simplicity follows from the identification of
truncated g-characters with F-polynomials in the last section. So we treat only the
proof of the simplicity.

(a) The irreducibility is proved as in type A, except for the tensor product

Ln+1,n)®L(n+1,n—1)

which is minuscule and so is simple.
®Ifn—2=<xj=lori=jork=I[,Ln,j)®L{xn—1,j)isminuscule and so
is simple.

(c) By symmetry, we can assume j < [. Suppose that j <[ < k < i and
let us prove that L(i, j)" ® L(k,1)" is simple. Let M be its highest weight
monomial. It suffices to prove that any dominant monomial m occurring in
X (LG, NHX(LKk,DT) occurs in Xq(L(M)). If A;ﬁll’l or A;ll is not a factor of
mM ™!, this is proved as for type A. If A;El’l is a factor of mM ™!, first from
Sect. 3.4 M A;El!l occurs and Lj(M A;_Zl’l) occurs in the decomposition (3) for
J=A{1,...,n—2,n}. But from type A

Ly(MA2 ) =Y, 5Ly (YnoYn21Yim-it1Yjn—js1)
X Ly(Yn,0Yn—2,1Ykn—k+1Y1,n—1+1)

and we can conclude by Sect. 3.4. This is analog if A;zl is a factor. So we can assume

that A, 11 and A 1 1.1 are factors with power 1. Then m is one of the following
monomials

MAY AL AL - AT, with multiplicity 5,

MA AL AL S AL, with multiplicity 2,
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1 4—1 —1 —1 . T
MA, 1A, 1A a0 App—y  With multiplicity 1,

MATAT]

n,1°'n—1,1

2 -2 -1 -1 . ST
An—2,2 . "Aj,n—jAj+1,n—j—1 "'Al,n—l with multiplicity 1.

Then we conclude as above. For example for the last monomial of the list,

f =l 4—1 —1
M = MAn,lAn72,2 o Aj,n—j

occurs in Ly, ,—2, .. jy(M) from type A. Hence M'A ,_; occurs in

.....

L{n—],n—Z ,,,,, ]}(1‘414;,11)7

but M’ does not. So Lin—1n-2,..., j}(M’) occurs in the decomposition (3). Since M
,,,,, 13(M"), we get the result.
(d) and (e): The proof is analog. O

Proposition 3 implies that the tensor products of representations of P corre-
sponding to compatible cluster variables are simple. Indeed, two cluster variables
are compatible if and only if the corresponding diagonals in P do not cross (with the
convention that diameters of the same color do not cross each other) [3, Sect. 12.4].
This coincides with the conditions of Proposition 3.

Example 3 We continue Example 1. The following table lists the compatible pairs
of non frozen variables of 4, and indicates in which case of Proposition 3 the cor-
responding pairs of simple modules fall.

(x02, x03)| (@) ||(x02, Xgp) (@) ||(x02, x5)|(@)|| (X02, Xp3)|(a)
(x02, x35)| (@) ||(x02, X53) |(@) ||(x02, X33)|(@) || (x02, X33)|(a)
(x03, Xgp)|(@)||(x03, x55)|(@) ||(x03, x13)|(@)||(x03, X33)|(a)
(x03, x33) (@) || (xqg. X13)|(@) || (X5, X17)|(@)|| (Xog X3) (@)
(Xog» X33)| (@) || (x5 *13) (@) || (x5, X7 (@) || (X550 X55)| (@)
(g5 *53) (@) ||(x13, x| (@) || (x13, x5)[(@)||(x13, X3) (@)
(x13, x33) (@) ||(x13, x33)|(@) || (17, x13)|(@)|| (X171 X53) (@)
(1, X33) (@) ||(x 0 x3) (@) || (x5, x53) (@) || (x5, x35) | (@)
(xl} Xy3)|(a) (x1§» x2~§) (@) (x1§» ng) (@) (XB» x3§) (@)
(x13, x3)|(@)||(x33. X53) (@) || (X535, X,3) (@) || (Xp3, X33)|(a)
(xp3, x35)|(@)||(x33, x33) (@) || (x5, Xg5) [(D) || (xy7, X 5)| (D)
(X553, X35)| (D) || (x5, Xp) | (©) || (Xqg, X,7)|(€) || (x13, X45) | (d)
(x02, X55) |(d) || (X3, Xo7)|(€)][(Xp3, Xop)| (@) ||(X;T, X,7)|(€)
(17, X55)| (@) || (X171, X15) | (€) {|(xqg, Xap)| (€) || (g, *15)|(€)
(X35, X1 | (@)]|(x55, x55) | (@) || (x5, x57) [ (€) || (x5, X55) | (€)
(7 X1p) | (@] (g0 %0p) | (@) || (x s X1p) [ (@) || (37, X,7) | (€)
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Now, as explained in Sect. 3.5, we may conclude that:

Theorem 3 C: is a monoidal categorification of the cluster algebra A of type D,,.

Acknowledgements The first author would like to thank A. Zelevinsky for explaining the results
in [22, 23]. The authors are grateful to the referee for useful comments.
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A Classification of Roots of Symmetric
Kac-Moody Root Systems and Its Application

Kazuki Hiroe and Toshio Oshima

Abstract We study Weyl group orbits in symmetric Kac-Moody root systems and
show a finiteness of orbits of roots with a fixed index. We apply this result to the
study of the Euler transform of linear ordinary differential equations on the Riemann
sphere whose singular points are regular singular or unramified irregular singular
points. The Euler transform induces a transformation on spectral types of the differ-
ential equations and it keeps their indices of rigidity. Then as a generalization of the
result by Oshima (in Fractional calculus of Weyl algebra and Fuchsian differential
equations, MSJ Memoirs 28, 2012), we show a finiteness of Euler transform orbits
of spectral types with a fixed index of rigidity.

1 Introduction

Recall the definition of symmetric Kac-Moody root systems [3] (precise definition
of terminology appearing below can be found in the latter section, see Sect. 2.1).
For a finite index set /, define a lattice Q := @, ; Ze; with a basis {«; | i € I} and
consider a symmetric bilinear form on Q which satisfies

(o, o) =2,

(o, o) =(aj, ;) €Z<o (i, jelandi#j).

The Weyl group W acting on Q is generated by simple reflections, o;(8) :=
B — (B,a;)a; for e Qandiel.
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Then a certain subset of Q, called the set of roots, is defined by

A :=UWai UWFU—-WF.

iel

Here F :={a € QT \ {0} | suppa is connected and (o, ;) < O for alli € I} with
O := @;c; Z>ow;. In particular we call Ay :=|J;.; Wa; the set of real roots
and Ay := WF U —WF the set of imaginary roots. If « € A is in Q7 it is called
a positive root. Moreover we call elements in F basic positive imaginary roots or
shortly basic roots. Then we call the triple (I, {, ), A) or shortly (Z, (, )) the
symmetric Kac-Moody root system.

A symmetric Kac-Moody root system (({, )1, I1) is a subsystem of a symmetric
Kac-Moody root system ({, )2, I») if there is an injective map ¢ of I; to I such
that (o, o)1 = (g (i), &g (j))2 for i, j € Iy and in this case the root of ({, )1, 11)
is naturally identified with a root of ({, )2, I2). Thus we can define the universal
symmetric Kac-Moody root system by the inductive limit of symmetric Kac-Moody
root systems under the injective maps defining subsystems.

One of our main aim is to classify the orbits of roots under the action of the Weyl
group in the universal symmetric Kac-Moody root system. Since the real roots form
a single orbit of the Weyl group, it is sufficient to classify the orbits contained in
the set of positive imaginary roots, i.e., elements in A;’n = Aim N Q" = WF. Thus
what we need to do is to classify elements in F, i.e., basic roots.

For an element « in a root lattice, the index of « is defined by idx o := (&, ).
The classification of basic roots with index 0 is known as follows. Dynkin diagrams
of supports of them are classified by the following 5 cases.

o0b 000  oo0-0-0bod

Moreover for each diagram, there exists a unique indivisible root and any basic
roots are scalar multiples of one of these indivisible roots. Here « =), ; m;«; is
indivisible if the greatest common divisor of coefficients m; is 1.

Hence in this case, the classification of Weyl group orbits of imaginary roots
is obtained by the classification of indivisible basic roots which correspond to the
above finite cases.

One of the main results in this paper is to show a finiteness of basic roots with a
general index. For this purpose we introduce the shape of an element in a root lattice.
Fix a root lattice Q = @), ; Zo; and @ = ) _;.; m;a; € Q. For the Dynkin diagram
of the support of «, we attach each coefficient m; of « to the vertex corresponding to
«;, then we obtain the diagram with the coefficients, which we call the shape of «.
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We say iy,...,ix € {i € I | m; # 0} is a constant connected sequence of « if
m;, =---=m,;, and the Dynkin diagram of {e;;,..., ;. } is
O—0OO0O——C.

Theorem 1 (see Corollary 1) If a basic root a = ) ;.;mjq; contains a con-
stant connected sequence iy, ..., i of I satisfying k > 2 and (a,a;,) = 0 for
v=2,...,k — 1, then the shape obtained from that of « by shrinking or extend-
ing the length of the sequence corresponds to a basic root with the same index.

m m
Expressing such a sequence by OO, we have shapes of roots which may contain

such expressions. We call these shapes reduced shapes.

Then the basic roots with a fixed nonzero index are classified by a finite number
of reduced shapes. The indivisible basic roots with index 0 are also classified by a
finite number of reduced shapes.

Moreover proceeding further from the classification of basic roots with index 0
seen above, we give the complete list of shapes of basic roots with index —2 in
Sect. 2.4.

Another aim of this paper is to give a classification of orbits of linear ordinary
differential equations under the action of the Euler transform as an application of
our classification of basic roots.

Consider a Fuchsian system of ordinary differential equations on the Riemann
sphere of the form %Y(x) =y", x‘f—"C[_Y(x) where A; (i =0,...,p) aren x n
matrices with coefficients in C and Y (x) is a C"-valued function. For this system,
W. Crawley-Boevey [2] constructs a representation of a quiver, more precisely, a
deformed preprojective algebra, with a star-shaped quiver. His result shows that for
an irreducible Fuchsian system, the dimension vector of the corresponding repre-
sentation of the quiver is a positive root in the Kac-Moody root system of its quiver.
Then the index of rigidity of the Fuchsian system equals the index of the root and
reflection functors on representations of the quiver are obtained by algebraic trans-
formations on Fuchsian systems, the Euler transform and the addition. Thus to study
orbits of irreducible Fuchsian systems under the actions of the Euler transform and
the additions, we can apply the classification of Weyl group orbits of the roots.

In [10, 11] the corresponding results for Fuchsian single differential equations
together with the analysis of their global solutions, namely, integral representations
of the solutions and the connection problem etc., are studied.

In [7], we consider a generalization of the result of Crawley-Boevey to ordi-
nary differential equations whose singular points are regular singular or unramified
irregular singular points. As in the case of the Fuchsian equations, there exists a
Kac-Moody root system attached to a differential equation such that its spectral
type corresponds to an element in the root lattice (see Theorem 6, Theorem 7 and
Definition 11). Here a spectral type is a tuple of integers representing multiplici-
ties of characteristic exponents of local formal solutions of a differential equation
where we ignore integer differences of characteristic exponents (see Sect. 3.1.2 for
the precise definition).
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Thus for spectral types it shall be defined an analogy of basic roots, called basic
pairs (see Definition 9). Then we shall consider a classification of basic pairs in
Sect. 3.3 as an application of that of basic roots.

Combining this result with Theorem 1, we show the following theorem which
generalizes the result of the second author [9, 11] in the Fuchsian case.

Theorem 2 (see Theorem 4) Fix an integer r > 0 and consider linear differential
equations with index of rigidity —r on the Riemann sphere whose singular points
are regular singular or unramified irregular singular points.

Then we have the finiteness of orbits of spectral types of the differential equations
under the actions of the Euler transform and the addition. Namely, if r > 0, there
exist only a finite number of orbits and if r = 0, there exist a finite number of orbits
of indivisible spectral types.

Finally in Sect. 3.3.2 and Sect. 3.3.3, we classify basic pairs with indices of
rigidity O and —2. This gives classifications of Euler transform orbits of differential
equations with these indices of rigidity. When all singular points are regular singular
points, these classifications are given by V. Kostov [6] and the second author [9, 11],
respectively.

2 A Classification of Basic Roots

2.1 Symmetric Kac-Moody Root Systems

Let Q := @;; Za; be a Z-lattice with the basis {o; | i € I} where I is a finite set
of indices. The set of positive elements in Q is written by 0" := 0 N Dic; Z=owi.
Fix a symmetric Z-bilinear form (, ) on Q satisfying

(i) =2 (G €l
(Ol,’,()[j):(O{j,Oli)EZS() (i,jelandi;éj).

We call this lattice Q with the bilinear form ( , ) the symmetric Kac-Moody root
lattice.
For an element o € Q, we define an even integer

dxo = {a, a),

which we call the index of «. For each «; (i € I'), we can define a Z-endomorphism
of O by
oi(B)=B—(B,ai)a; (BeQ),

which is called the simple reflection with respect to ;. The transformation group W
on Q generated by all these o; (i € I) is called the Weyl group.
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For this lattice Q, we associate a diagram which consists of edges and vertices as
follows. Regard the elements in [T := {«; | i € I} as vertices. Connect two vertices

a;, oj € IT by n edges if (o, o;) = —n with a positive integer n. We express this
by
Q fnedges@or o—=2—0 .
(673 Oéj Qi aj

We call the diagram constructed as above the Dynkin diagram of Q.

Leta = Zie] mia; € Q with m; € Z. The support of « is suppa := {«; | m; #
0}. We say the support of « is connected if for any two distinct elements o;, o €
suppa, there exists a sequence «; = «;, j,, ..., q;, = c; of elements of suppa
such that {(a;,, @, ) 70 for k =1,...,r — 1. We define that « is indivisible if the
greatest common divisor of {m; | i € I} equals 1.

Recall the root system of Q. Each element ¢; (i € I) of the basis of Q is called
the simple root. The real roots are the elements of

Are 1= U Wa;,

iel

i.e., a real root belongs to the Weyl group orbit of a simple root «;. Define the
fundamental subset of Q,

F = {a € 0\ {0} | suppa is connected and (o, o;) <O forall i € I}.
Then the imaginary roots are the elements of
Aim=WFU-WF.

Here WF ={wa |we W,ax € F} and —WF ={—a |« € WF}. The root is the
element of A := A U Ajp. The root in AT := AN QT and that in F are called
positive and basic, respectively.

In general the symmetric Kac-Moody root system determined by the pair (, ) and
I shall be denoted by ({, ), ). A symmetric Kac-Moody root system ({, )1, I1)
is a subsystem of a symmetric Kac-Moody root system ({, )3, [3) if there is a map
¢ of Iy to I3 such that {o;, @)1 = (o), ®g(j))3 for i, j € I and in this case the
root of ({, )1, I1) is naturally identified with a root of ({, )3, I3).

We define a root o of ({, )1, I1) and a root &’ of ({, )o, I») are in a same
Weyl group orbit in a universal symmetric Kac-Moody root system if there exists a
symmetric Kac-Moody root system ({ , )3, I3) suchthat ({(, )1, I1) and ({, )2, I2)
are subsystems of ({, )3, I3) and moreover « and o’ are in the same orbit under
the action of the Weyl group of ({, )3, I3). Namely, the universal symmetric Kac-
Moody root system is defined by the inductive limit of symmetric Kac-Moody root
systems under the injective maps defining subsystems.

Our purpose is to classify the Weyl group orbits in the universal symmetric Kac-
Moody root system. Since the real roots form a single Weyl group orbit, it is suffi-
cient to classify the orbits contained in the set of positive imaginary roots.
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For an element o = Zi <7 mia; € Q, we consider the diagram of supp e, that is,
we restrict the Dynkin diagram of IT to suppa. Then we attach each coefficient m;
of o to the vertex corresponding to ¢; and obtain the diagram of the support of «
with the coefficients. We call this diagram with coefficients the shape of «.

For example, if o =m0, +moa;, +m3a;; € Q with the diagram of the support
myp m2 Mg

O—0O—C0, the diagram with coefficients is O—O—O

Qi gy g QG Oy Qg

Note that each Weyl group orbit contained in the set of positive imaginary roots
has a unique representative in F' and therefore the orbits containing positive imagi-
nary roots are classified by the shapes of the basic roots in the orbits.

2.2 Basic Roots with a Fixed Index

First we examine some properties of the shapes of basic roots.
Fix an indivisible basic root

oz:Zm,-ot,- (m; € Z>0) (1)

iel
in this section and define subsets of

[={iel|m; >0},

Iy=ti el (e, a;) =0}, )
L=1\I.
Lemma 1 Let {i,...,it} C J for a subset J of I such that i, #i, for 1 <v <
Vv <k and (0, 0,,,) #0 forv=1,....k — 1. Then we call that iy, ...,i is a
connected sequence of length k in J. Moreover if m;, =m;y =---=mj, we call
i1, ..., IS a constant connected sequence.

(1) Suppose i1, i2 is a connected sequence in I with is € Iy. Then
mj, <2m;, 3)
and if m;; =2m,,,
(aiy, aip) =—1 “)
and (a;,,0,) =0 forv e I\ {i1,i2}.

1 1
Furthermore if iy € Iy, then (4) is valid or the shape of a is O=O .
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(i1) Fix i € Iy and put Jiy, = {i € Iy | {o;, otjy) < O0}. Then #J;, < 4 and the equal-
1

1 1
ity holds if and only if the shape of « is ! Af#Ji, =3, then m; < my, for

. . 1 1
IS Ji() or {mi | 1€ Ji()} = {mi07 zmi(y jmio}'

(iii) Let i1, ..., i be a connected sequence in I with k > 3. Suppose i, € Iy for
v=2,...,k—1and m; > m;,. Then

mi; —mj > (k— 1) (m;; —mg,).
Ifmijy —m;, = (k —1)(m;; —m;,), then

—1 (i=iy_10riys; and 1 <v <k),
(@i, ;) = . s .
0 (Gel\{iy_1, iy, iyy1} and 1 <v <k).

Ifmj, —m;,_, =(k—2)(m;; —m;,) and m;; —m;, > (k—1)(m; —m,,), then there
exists j € I such that

(dip_y ;) <0 and jel 5

or

mi = mi,, ik 7é ja mj,_, = 2mik = 2’/n/

and (aik,paj) = <aik7|aaik> =-1.

Suppose m;; =mj, =---=mj,. Then {j €I | (a;,,aj) <0} ={iy_1,iv41} forv=
2, ...,k —1. Moreover suppose {(a;,, ;) = 0. Fix r € Z~¢, put m = m;, and intro-
duce new simple roots o, , ..., o, and put I' = (I_U{jl, v Ik DA\{i1, .- o5 ik} Then
the element o' = Ziel, mio; with mj, =m (1 <v <r) is also a basic root such
thatr =1 or ji,..., jr is a constant connected sequence satisfying (o, aj,) = 0 for
v=2,...,r — l and idxa =idxa'. Here (aj, ) = (@), ;) + 8r1{aj, o) for
jel\{i,..., i} etc.

m m m m

m m m m
a: O—0O-O0—0O - o O—0O - 0O0—0O r=1,2,..)

Qiy Oy Oy Qi Qg Ay Oy O,

(iv) Suppose that i1, i3 is a connected sequence in [ withiy € Iy and £ := mi, —
mj, > 0. Then there exists a connected sequence i1, iz, ..., i in I such that

(@i, i) =0 (i el\{iy_1.iv.ivi1}, v=2,....k—1)
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and one of the following is valid.

@L€>0,klb=m;,mi,=m; —(v—1DLO=<v<k),

L= . (7N
and (o, 0;) =0 (G € I\ {ig—1, ix}):
ke (k=1¢ (k—=2)¢ 20 !l
O O O o——=0
Ay Qrjy Qg Ay (e77%
(b) £ =0, m;; =---=my,_, =m;, and there exist j, € Iy for v=1,2
such that 2mj, =m;,, (aj,,0;) =0 (@ € I\ {ix, ju]. (8)
(o, ai) = —1, (i, o) =0 G €T\ {ix—1, ix, j1, j2}):
mil mil mil
O O O
Oéil 041‘2 OéiS
© kbl <mj,miy,=m;j; —(v—1Lforv=1,...,k ©
and there exists j € Iy with (a;,,a;) <O0:
m;, — (k‘ — 2)[
miy mihf Y4 mg, — 20 mg, — k — 1)£
O O O
Ay Ay Qg iy Qi _aj

@) k=2, 1=0, my =mi,, (i, x,) =2, (@, o) =0 el\{i, i)

mil mil
O:O
Qi Qiy (10)

Proof (i) Since (o;,, j,) < —1 and (@,, o;,) € Z<q for v € I_\ {i1,i} and

2my i (o) + Y mylay, aiy) = (@) =0,
vel\{ij,iz}

we have mj, < 2m;, and the condition m; = 2m;, implies («;,,®;,) = —1 and
(ay, ay) =0 forv eI\ {iy,i2}.
Suppose i1 € Ip and (o, o;,) < —1. Then we have m;, < m;,. In the same way

we have m;, < m;, and hence m;; =m;, and (o;,, @;,) = —2 and the shape of « is
1 1
=0

(ii) We may assume #J;, > 2. Since the claim (i) shows («;,, o) = —1 and m;, <

2m,, for v € J;, and the condition iy € Iy implies 2m;, — Zve];o m, > 0, we have
#J;, <4.If#J;, =4, 2m, = m;, for v € J;, and the shape of « is given in the claim.
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Suppose #J;, = 3. Put J;, = {i1, iz, i3} withm;; > m;, > m;,. Thenm;; <2m;, —
1 1 1
Mmiy —Mjz = Zm,-O — My — 3Mjy =My, Ifmil =My, Miy =Mz = 7M.
(iii) We may assume k = 3. Since m;; > m;, and

0=<(¥,Oli2) =2mi2 +mi1<05[1,0li2>+m[3<05i3,(¥i2>+ Z mv(av’alj)’

vel\lii, iz, i3}

we have (a;,, a;,) = —1 and 2m;, > m;, + m;,, which means m;;, —m;; > 2(m;; —
m,). Moreover the condition m;, —m;, = 2(m;, —m;,) implies (c;,, @j;) = —1 and
(ay, iy) =0 for v e I\ {i1, iz, i3}.

Suppose 2m;, > m;, +m;, and i3 € Iy. Then the claim (i) shows (o;,, o;;) = —1
and there exists j € I\ {i1, i»} satisfying {aiy, @) <0.Suppose j € Ip. Then 2m; >
mi,, Zm[3 = mi, and Mj, —Mj; —mj > 2m,-2 —mj —Mj; —mj; = 0 and therefore
ij = Zmi3 =m;i = mj, and

~1 =i s, ).
0  (wel\{i, i i3, j}),
(oj,00) =0 (vel\fiz jh,

(i, 00) =0 (v e Ilin, i3}).

(aiz ’ al)) =

Thus we have (iii) since the last claim in (iii) is clear.
(iv) The claims easily follow from (iii). O

Now we give one of our main results in this paper.
Theorem 3 Fix integers N € Z>o and M € Z~. Let a be the basic root satisfying

the following conditions:

l. idxa =—N.
2. N #0 or « is indivisible.
3. « has no constant connected sequence in Iy whose length is larger than M.

Then there are only finite shapes which can be the shape of «.

Proof Since the basic roots with index 0 are well-known as are given in the next
section, we may assume N > (0. We shall use the notation in the previous lemma.

Since
NZ_Zmi(asai)ZZmiv (11)

iely ielp

we have

m; <N forieljand#l{ <N. (12)
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Leti € I1 and j € Iy and suppose («;, «;) < 0. Then

N == myloay) = —mj(er, i) = mimj|(e, )| —2m}

vely

and therefore

mj<m;'N+2m; <3N and |2, ;)| <3N. (13)
Since N = =3, c; mule, o) = =3 i1 D, cq, mimy (e, o) ZZvellm , we
have
SO e o) < N+2Y m? < N +2N2 <3N (14)
iclyvel vel

and therefore #3Ip < 3N by denoting 31y := {i € I | Zvell (o, ay) #0}.
Fix i1 € d1p. Suppose J;, :={j € Ip | {&j, a;;) < 0} # . Note that #J;, < 3. Fix
ip € J;, and put

J(,i) = {i € Iy | 3 connected sequence i1, iz, ...,y =i in Iy

with i, ¢ 91p (1 <v <k)}.

Then the Dynkin diagram of J (i1, i) equals that in (7) or (8) or (9) or

”81 mih+ ¢ mildr 20 m;, + (k—1)¢
Qg A, Qg Qg _y Qi o O (15)
teZso, aj€ly, J(y,i2) ={i1,...,ik}, i2,...,0k—1 €lo\ 0l
or
mkl akl
mkz Ozk2
Mi,_, () Ok,
mi, mi, M, 4 mi, Mj, 1 My, mjy
Qi Qg Qi QG QG Qj, Oy (16)

m,‘v Zmip — (p—v)ﬁ,‘, m/v =m,~p —(q—v)Ej, mkv =mip — (q —v)ﬁk,
Ci, bj, by € Lo, B2y osipy 2oy jg—1,K2s oo kp—1 € 1o\ 00,
lin, iukitNolo#0, p>2, g=2, r>2.



Classification of Roots of Symmetric Kac-Moody Root Systems 205

If the Dynkin diagram is not of the form (16), we have
#J(i1,i2) <3N +M and m; <3N (i € J(j1, j) (17)

by the estimate (13).

Hence we assume the Dynkin diagram is of the form (16). We may assume ¢; <
£; < £, without loss of generality. Since i), € Iy, we have 2m,.2p =m;, (mip —¢)+
mi, (m;, —£;)+mj, (m,-p — £;) and therefore

ﬂi—i-fj—i-gk:m,’p.

Hence 3¢, > mi, and r < 3.
If ky € 91y, r =2 and my, <3N and we have

mj, < 6N, #J(i1,i2) <12N and m; <6N forie J(i1,i2) (18)

because p < 6N and g < 6N.

Suppose k1 € Ip\ d1p. Thenr =2 or r =3.

Ifr=34i=¢{;=4= %mip and we may assume i € dlp and we have the
same claim (18).

Suppose r =2. Then & = 3m;, and Im;, > €; > Im; . If ji € Io\ 1o, 4¢; =
4¢; = mij, or 3;=06¢ = mi, and therefore p <5 and

#J(i1,i2) <9 and m; <ISN (i € J (i1, ). (19)
If j1 € dlp, g <3 and m, < 9N and therefore
#J(i1,i0) SON+2+1=9N+3 and m; <IN (i €J(i1.i2)). (20)
Since #{(i1, i2) | i1 € 01y, i2 € Ip, (i), aiy) <0} <3-#9Ip < 9N2, we have
#1 <9N?. (12N + M) + #dlo 4+ #I; < 108N> +9MN? +3N? + N,
mi <I5N (iel) and [{oj, ;)| <3N (@, jel).

These estimates imply the theorem. g
The proof of Theorem 3 assures the following finiteness of the shapes.

Corollary 1 Ifa basic roota =) _;.; m;i; contains a constant connected sequence
i1,...,ig of I suchthatk >2 and (o, a;)) =0 forv=2,...,k — 1, then the shape

obtained from that of a by shrinking or extending the length of the sequence corre-
m m
sponds to a basic root with the same index. Expressing such a sequence by OO,

we have shapes of roots which may contain such expressions. We call these shapes
reduced shapes. Then the basic roots with a fixed nonzero index are classified by a
finite number of reduced shapes. Also the indivisible basic roots with index 0 are
classified by a finite number of reduced shapes.
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ap,1 G2

(&%)

Remark 1 The Dynkin diagram of the form .. is called star-

shaped. The basic roots whose shapes have star-shaped Dynkin diagrams are studied
and the finiteness of such basic roots with a fixed index is proved in [9]. The number
of such shapes with index 0, —2, —4, —6, ...equals 4, 13, 36, 67, ..., respectively,
and the list of them is given in [11].

2.3 Basic Roots with Index 0

Theorem 3 assures that in the universal symmetric Kac-Moody root system there
are only a finite number of Weyl group orbits with a fixed index. The basic roots
with index 0 are well-known and we list their shapes as follows.

m
m m E
m m 2m
m m
<T?L ;} é}) C{? m 2m 3m 2m m
m m
2m 3m
m 2m 3m dm 3m 2m m m 2m 3m 4m 5Sm 6m 4m 2m

These are diagrams obtained by attaching coefficients to the Dynkin diagrams called
Euclidean diagrams, which are denoted by A,gl) (n>1), D,Sl) (n>4), Eél), Eél)
and Eél), respectively. Here m are positive integers and A,(Il) and D,(,l) have n + 1

vertices. Moreover Agl) and Dfll) mean Q== and , respectively. Hence

Afl]) for n > 1 shall be written by ) or O==.

2.4 Basic Roots with Index —2

In this section, we shall give a classification of the basic roots whose indices are —2.
Suppose that o = ), .; m;a; € Q is basic and idxa = —2. Retain the notation in
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Sect. 2.2 and put N; = — (o, ;) > 0. Then (¢, ) = — Zie[ miN;jand Iy ={i €I |
Ni > 0, m; > 0}.

Lemma 2 Let ¢ € Q be as above. Put

Ed(q;) := — Z (j, i), Q1

Jjel\ti)
which equals the number of edges spread out from «;. Then we have the following.

(i) The cardinality #1, is 1 or 2.
(i) If Iy = {i}, there are two cases.
Case 1: m; =2, N; =1 and Ed (¢;) <5.
Case2: m; =1, N; =2 and Ed («;) < 4.
(i) If Iy = {i,i’}, then m; =my = N; = Ny = 1, Ed (o;) < 3 and Ed (a;) < 3.

Proof Since2=73 ", ,m;N; = Zje,l mjN;, we have #I; = 1 or 2. Then (m;, N;)
=(1,2)or (2, 1)if I} ={i}and m; =m;» = N; = Ny = 1if I} = {i, i’}. The remain-
ing assertions follow from N; = Zje,-\{i}mj (oj, o) —2m; > Ed (o) —2m;. O

From this lemma and Lemma 1, the basic roots with index —2 are classified by
the following cases.

Case I: I) ={i},m; =2 and Ed (o;) <5

Since

Z mv|<ai»av>‘ =35,

vel\{i}

one of the following Case 1.1, Case 1.2 or Case 1.3 is valid.

Case 1.1: There exists oy such that my = 1 and («;, ag) < 0.

It follows from Lemma 1(i) that (&, ax) =0 for j € I\ {i, k}and (o;, ax) = —1.
Then the element o’ = o — a € Q7 satisfies («’, o;) =0 fori € I'\ {k} and suppa’
is connected. Hence the diagram of {¢; | i € I\ {k}} is one of the Euclidean diagrams
A,(ll), D,(ll), Eél), Egl), Eél) given in the previous section and we have the list of the
shapes with indicating «; by dotted circles.
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1 1
Note that the first shape represents ()2 2 -+, etc.,
2 2
2

and the part OO in the diagram above can be © as a special
1

case. Hence is a special case of the second shape.

Case 1.2: There exist ax and oy such that (my,my) = (2,3) and (o;, o) =
(Ol,‘, Olk/) =—1.

Then cutting the shape of the basic root between ¢y and «; and adding three
vertices, we have one or two Euclidean diagrams with coefficients corresponding to
some basic roots of index 0:

1
2 2 3 2 1 1 2 3
— KF—0O0—0
ap  Q; Qg Qg ;O

Here each ) represents a new vertex. It follows from the shapes given in the previ-
ous section that the corresponding diagrams are D,(Zl) and E ,El) (k=6,7, 8) and we
have the following list of shapes:

1
1 2 1 2
1 2 2 3 2 1 1 2 2 3 4 3 2 1
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1 3
1 12 2 3 4 5 6 4 2

2 2 2
Replacing OO by © in the above shapes, we may regard three shapes in Case
1.1 as special cases in Case 1.2. B
Case 1.3: There uniquely exists o with k € I such that («;, o) < 0. Put

{jell{aaj)<0}={il1,....1I}

with suitable r. Note that m; =2, my =5, k € Ip, ¢, € Ip and (o, , ax) = —1 for
v=1,...,r. Since Zjel-mj(ak,aj)zo,wehave

mll+"'+mlr=2mk_mi=2><5_2=8

and Lemma 1(iv) shows m;, > 4 andm;, #5forv=1,...,r. Hence {m;,...,my }
={4,4} or {8}.
Suppose {m;,, ..., m;, } = {8}. Then the shape of « is
or
2 5 8 11 3p+5 " .
O—CO—0—=0 P i—@ O (=1 j=h)
o Qp Qg Qj, Qj,

and there exist positive integers p’ and p” such that p'l' = p”l” =3p + 5. The
condition j, € Ip shows
/ 4

1
Pt ap+5?
P

"o

p

2Bp+5=0@p+2)+@Bp+5)

3p+2 '—1 71
o 3pt2 p=l p

3p+5 p/ p//
_ 3 n 1 +1
_3p+5 p/ a

’

1

Since {1 — pl - pi | p', p" € Zo} N (0, 1) C [§, 1), it follows that 3p + 5 =

>
8,11, 14,17 and 1 — 3})% = %, %, %, %. Then we can conclude p = 1 and

{p’, p""} = {2, 8}, which corresponds to % = % + é
Hence « is one of the following.
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Case 2: 1) ={i},m; =1 and Ed («;) < 4.
Since

> mlfei )| =4,
vel\{i}
one of Case 2.1, ..., Case 2.4 is valid.
Case 2.1: The condition (&), ;) # 0 implies m,, < 1.
Then it follows from Lemma 1 that the shape of « is the following:

1 1 1
@ERgERg)

Hence the diagrams is obtained by connecting Euclidean diagrams Afll) (n>1)and
A;l,) (n’ > 1) at the common vertex ;.
Case 2.2: There exists oy such that (ag, «;) % 0 and my = 2.

1 1 2 1 2 2 1 2
Then the shape of o is O==(O—CO=mor =0 or O—0—0
Qi O QO QO
or
Modify these diagrams with coefficients as follows.
1 1 2 1 2
a: O=O—0 — o O—O
a;  ag o o (22)
1
1 2 , 1 2
a: O=0O — o'
o; Qg Qg 23)
2 1 2 2 1 1 2
a — " Oo—® 0O
Q. O O (672 (6974 (24)
Here we do not modify the parts in the above. Then «’, o” and o’ are elements

of F with the given shapes and their indices are 0.

The element o’ € F is a basic root with the diagram D,(,l) or E;l) or Eél) and in
this case « corresponds to the first four shapes in the list below.

The element a” € F is an indivisible basic root with the diagram DY and we
have the fifth shape in the list below.

The shape of ¢’ € F is that of an indivisible basic root with the diagram DY or
Eél) or Eél) or a disjoint union of the shapes D; and D, of indivisible basic roots
with the diagrams D, € {D,(,l), Eél), E;l), Eél)} for v =1 and 2. In each case it is
easy to write the shape of o and therefore we only give some examples in the list
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below.

Case 2.3: There exists o such that (o, «;) # 0 and my = 3.

1 1 3

Then « corresponds to O—O—C== However applying Lemma 1(iv) to
AR O O

1 1
the part (O—(@ of this shape, we can conclude that such « does not exist.
Case 2.4: There exists oy such that (g, «;) % 0 and my = 4.
In the same way as in Case 1.3 we have

{jell{u.a)) <0} =(i,0,....I},
my - my, =2m —m; =17,

my, > 2, mi, #4 (1<v=r).

Hence {my,,...,m¢,} ={3,2,2} or {5,2} or {4, 3} or {7}.
Suppose {my,,...,mg } ={7}. Then o corresponds to

3p+4
o

3p+4
1 4 7 10 3psd X .
O—O—O—O P O (=1, ji=l)
, . C
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and we have

p -

/

p//_]

1
+QG@p+4H—7—,
p

2Bp+4)=3p+1+@Gp+4

NS
S 3p+dp o pn

3 3 3 3 3 . _ .
Here o should be %, 50 13 OF T¢- It is easy to see that p = 2 together with

{p’, p""} = {2, 5} is the unique solution of the above equation.
If {mg,,...,mg,} = {5,2}, the shape of « is obtained by replacing a part

1 2 3 4 5
of the shape of a basic root with index 0 by

2 4 5
. Hence « corresponds to one of the following:

Case3: I1 ={i, i'},m; =my =1, Ed (o;) <3 and Ed (a;/) < 3.
Since

D veiviy Mol el + 30, i iy vl (e, o) | = 6,
doveivyMollai an)l =3, 30 i iy mol{air, o) > 3,

one of Case 3.1, ..., Case 3.4 is valid.
Case 3.1: {ag, o) = (o, ) =0if my > 1.
It is easy to see that the shape of « is one of the following:

1
12*,1 1 1 1 1 1 1
=0 O0=0OO=0

1 1
The first four shapes may be expressed by (:::(.
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Case 3.2: There uniquely exists o such that (o, «;) # 0, (o, ;) # 0 and

mg =2.
1 1
1 1 1 2 Qi 2 %
O O—0O or )

Then « is
(67707

Hence o has one of the following shapes:

Case 3.3: There are different elements «; and oy such that (o, o) # 0 and
(ak/, ai’) # 0 and mp=mpy = 2

2 1 1 2
Then the shape of « is O—0OO0—0O and therefore the shape
A O O O

2 1 1 2

oO—0 obtained by replacing (- by O (O are one or two
oL Ot

of the shapes of basic roots of index 0. Hence the list of the shapes of « is obtained

2 1 2 2 1 1 2
by replacing O—O—0O by O—O-~O—C0 in the shapes classified in Case 2.2.
For example we have

1 1
1 2 2 1
Consequently the shapes in Case 2.2 may be regarded as special cases of those in
Case 3.3 except for the first five shapes listed there.

Case 3.4: There uniquely exists a pair o and oy such that (o, ;) # 0,
(ak’, aﬂ) # O Wlth my =my = 3
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1 3 1
Suppose k = k’. Then the shape of « is ©—CO—. Then as in Case 1.3 we have

{iell{aaj)<0}={i,i',lr,.... 1.},

my +---+my =2mg —m; —my =4,

Since my, > 2, we have {my,,...,m; } ={2,2} or {4}. If {my,,...,m; } ={2,2}, it
corresponds to the first shape in the list below .
If {my,...,my} = {4}, the shape of o is obtained by replacing a part
1

1 2 3 4 3 4
O—0O—0O—0O= of the shape of a basic root with index 0 by 1

It corresponds to the second and the third shape in the below.

1 3
Suppose k # k’. Then the shape of o contains O—Q) twice and we have

lielllak o) <0}={i,l1,.... I},

my 4+ +my, =2mg —m; =5

andmy, >2forv=1,...,r.Hence {my,,...,m; } ={3,2} or {5}. If {my,,...,my}

= {3, 2}, Lemma 1(iv) assures that the shape of « is the forth shape in the below.
Suppose {m;,, ..., my, } = {5}. The shape of « is

2p+3
ot
1 3 5 8 2p+3 3 1
O—0O—C0—=0 E—O o——0
Q;  Qp Q5 Qy, Qj,

with p > 1 and j; =1[;. Then 22p +3)=2+2+ 2p + 3)%, which means

1= ﬁ + % and we have (p, p’) = (1, 5). The shape of « is the last one in below.

Thus we see the following list:
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3 Spectral Types of Differential Equations

In this section, we consider linear differential equations on the Riemann sphere
whose singular points are regular singular or unramified irregular singular points.
For these differential equations, we define spectral types as tuples of integers rep-
resenting multiplicities of characteristic exponents of local formal solutions where
we ignore integer differences of characteristic exponents. We shall classify orbits of
spectral types under algebraic transformations on differential equations, called the
Euler transform and the addition and show the finiteness of orbits with a fixed index
of rigidity, where we note that the index does not change under the transformations.

First we explain that spectral types can be seen as elements of a certain Z-lattice
L which has a group action defined by these transformations. Moreover we shall
see that there exists a Kac-Moody root lattice Q;, and the lattice L can be seen as a
quotient lattice of Q. Then the group action on L coincides with the Weyl group
action on Q and an analogy of the root system for L shall be defined. As in the
previous section, we study the classification of basic roots of L, in particular we
show the finiteness of basic roots with a fixed index and give lists of basic roots
with index 0 and —2.

3.1 Differential Equations and Spectral Types

The detail of this section can be found in [7]. Let K be an algebraically closed field
of characteristic zero. Let W[x] = K[x][d] be the ring of differential operators with
polynomial coefficients and W (x) = K (x)[d] the ring of differential operators with
coefficients in K (x). Moreover W((x)) denotes the ring of differential operators
with coefficients in K ((x)), the quotient field of the ring of formal power series

K{[x]].

3.1.1 Local Structures

In this section we review the local structure of elements in W (x). We fix an element
inWx), P=Y"_yai (x)d" (a,(x) # 0). Here the non-negative integer 7 is called
the rank and written by rank P. For ¢ € K and a monomial (x — €)?9%, we introduce
the weight

wte((x —)99%) :==a —b.
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The weight of P € W(x) C W((x — ¢)) is defined by
wie(P) :=min{wt.((x —c)'9/) | P = a; j(x — )9/, a; j #0}.
L

For f(x) € K((x — ¢)), weight wt.(f(x)) is defined by regarding f(x) as an ele-
ment in W((x — ¢)).
For an integer k, the k-homogeneous part of P € W((x — ¢)) is

P(k) = Z ai,j(x — C)iaj

i—j=k

if P=), aij(x—c)d/ witha; j € K.
Similarly we can define wty, by

wtoo(x“ab) =b—a.

The singular points of P are poles of Z;((fc)) (i=1,...,n). We also say that oo is
a singular point of P if

po) . Xn:ai()lc)(—)ﬂa)i

i=0

has a singular point at 0. Suppose that ¢ (# o0) is a singular point of P. The wt.(P)-
homogeneous part of P equals

Z a; j(x — c)iaj

i—j=wtc(P)

and then the characteristic polynomial of P at c is defined by

Co(PYt):= D apjtt—1)(t—j+1).

i—j=wtc(P)

If degK[t] C.(P)(¢t) =rank P, we say that c is a regular singular point of P. Oth-
erwise, c is an irregular singular point of P. For the point co, we can define char-
acteristic polynomials, regular and irregular singular points as well as the above
replacing x — ¢ by %

Suppose that c is an irregular singular point of P. For simplicity of notation, we
put ¢ = 0. There exists an algebraic extension K ((xé)) of K((x)) for a positive in-

1
teger g and we denote the ring of differential operators with coefficients in K ((x4))
by W, ((x)). Then we can decompose the left-W, ((x))-module W, ((x))/ W, ((x))P
as follows.

Definition 1 (Local decomposition (see [8] for example)) For P € W(x) with an

1
irregular singular point ¢, there exists the algebraic extension K (((x — ¢)7)) of
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1
K ((x —¢)), distinct polynomials w; of (x —¢)~ ¢ with no constant terms and P; (¢) €
1
K(((x —c¢)7))[t] for 1 <i <r such that we have the following.
(i) Each P;(¥.) has a regular singular point at c.
(i) We can write P as the least left common multiple of

{Pl(ﬁc —wi), ..., (0 — wr)}-
Namely there exist R; € W, ((x — ¢)) such that

P:Rl‘Pi(ﬂc—wi) fori:l,...,r.

Here ¥, = (x — ¢)d and for Q(r) = szo gy(x)t' € K(((x — c)ql))[t] and w €
K(((x = ¢)7))). we put

QW —w) =Y qu(x) (@ —w)"

v>0

(iii) We have the decomposition

Wy ((x = 0)/ Wy ((x = ) P = @D Wy ((x — ©))/ Wy ((x = ©)) Py (9 — wi)

i=1

as W, ((x — c))-modules.

We call the decomposition in (iii) the local decomposition of P at c. Moreover
we call P; (9. — w;) € Wy ((x — ¢)) local factors and w; the exponential factors of
P9, —w;)forl <i<r.

If the local decomposition at ¢ is obtained in Wi ((x — ¢)) = W((x — ¢)), we
say that c is an unramified irregular singular point. Otherwise, c is called a ramified
irregular singular point.

We introduce the notion of spectral data. Let P € W((x)). We regard the left
W((x))-module Mp = W((x))/ W((x))P as the K ((x))-vector space of dimMp =
rank P. For a basis {uy,...,u,} of Mp as K((x))-vector space, we can repre-
sent the action of ¢ = xd by the matrix as follows. For u € Mp, there exists
A= (aij)1<i<n € M(n, K((x))) such that

I<j=n

n
z?u,- = E ajjuj.
j=1

Moreover if 0 is a regular singular point of P, there exists a basis such that we can
take A € M(n, K). We call this matrix A € M (n, K) a local matrix of P at 0. For
any other regular singular point ¢ € K and oo, we can define a local matrix in the
same way.
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Definition 2 (Spectral data) Fix my,...,ms € Z~o and A{, ..., A; € K which sat-
isfy

M= gL ().
We say P € W(x) has the spectral data
{()"19'--9)"5); (mlv'-~7ms)}

at c if P has a regular singular point at ¢ and satisfies the following.
(i) The characteristic polynomial is

N m,~—1

CPYO)=C[] ] (t—i+1)

i=1 j=0

for a constant C.
(i1) A local matrix of P is a semisimple matrix.

Here we note that condition (ii) does not depend on the choice of local matrices.

3.1.2 Spectral Types and the Euler Transform
Fix P € W (x) satisfying the assumption below.

Assumption 1 We assume that P € W (x) satisfies the following.

(i) All singular points of P, written by co = 00, c1, ..., cp € K, are regular singu-
lar or unramified irregular singular points.
(i) Denote the set of local factors of P at c; by

{Pi,l(ﬁc,' - wi,])a ceey Pi,ki(ﬁc,' - wi,k;)}-

Then there exist positive integers m; js and A; js € K fori =0,...,p, j =
L... ki, s=1,...,1;j such that ¥; j s — Ai j.y ¢ Zif s #s" and P; j(9) have
spectral data

{Gija, - v Mg )3 (mi,j,lv--wmi,j,l,-./-)},
respectively. Here w; j are the exponential factors of the corresponding local
factors.

Put

AMP) = (Kiji1s - hijit; ;) 0<i<p »
1<j<ki

m(P) = ((mij1.....miji,))o<i<p-
T 1)<k
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The index of rigidity is defined by

p li.j Ly
idx P :Z—Z Z d,'(j, ]/) (Zmi’j’s> (Zmi,j’-,s’)
i=0 1<j#j'<ki s=1 s'=1
p ki lj
+3°3 > w2 — (p— D(rank P)? (25)

i=0 j=1s=1

where d; (j, j') = —wte; (w; j —w; j») fori =0,...,pand j, j'=1,... k. Here
we notice that these d; (J, j') satisfy

di(j.j')=0 ifandonlyif ;=
di(j. j") = di(j. '), (26)
di(j1, j2) < max{d; (j1, j3), di(j2, J3)}

foralli =0,..., pand j, j/, j1, jo, j3€{l,..., k;}.

Remark 2 The index of rigidity is defined by N. Katz in [4] and can be computed
from local structures of differential equations (see Proposition 3.1 in [1] for exam-
ple). One can check that our definition of the index of rigidity coincides with the
original one.

Remark 3 Suppose P € W(x) satisfies Assumption | and put Z; := @];':1 7l 1f
p > 0 and there exists ig € {0, ..., p} such that k;; = 1 and /;,, = 1, then ¢;, isnot a
singular point of Ad (¢” "0o-')Ad ((x — c,-o)_)"'Ov'v1 ) P. Here the operator Ad (f(x)) is
defined in Definition 4. Hence in this case, we identify m(P) and Pryo p}\{io}m(P).
Here pryo  »n(io} b, Zi — @D;co.... p\iip) Zi 1s the natural projection.

Thus for m(P), we assume k; - [; i, > 1 foralli =0,..., pif p>0.

.....

Definition 3 (Spectral type) Choose arbitrary integers p € Z>o, ki € Z~o (i =
0,....p)and [; j € Z-o (i =0,...,p, j=1,...,k). Fix integers d; (j, j') € Z>o
satisfying the relation (26) and take a tuple of positive integers

p ki L
m = ((mij1.....mi ) o<i<p € DEPZL.

1<j<ki i=0 j=1

Then we call m with the integers (d; (j, j')) o<i<p aspectral type.
1<j,j' <ki
The spectral type of P € W (x) satisfying Assumption 1 is defined by m = m(P)
and d; (j, j') = —wt, (wj,j — w; jr). A spectral type is called irreducible if there
exists an irreducible operator P € W (x) with the spectral type which satisfies As-
sumption 1.
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In the remaining of this paper, we investigate orbits of spectral types under the
action of the twisted Euler transform which is defined below. The following is one
of our main theorem which tells us that the finiteness of Euler transform orbits of
spectral types with a fixed index of rigidity.

Theorem 4 Fix an integer r > 0. If r > 0, there exist only a finite number of orbits
of irreducible spectral types with index of rigidity —r under the action of twisted
Euler transforms.

Moreover there exist a finite number of orbits of indivisible irreducible spectral
types with index of rigidity 0 under the action of twisted Euler transforms.

Here we say that a spectral type m = ((m; j1,...,mi j1 ;))o<i<p With inte-
1<j<k;
gers is indivisible if the greatest common divisor of {m; ;s i =0,...,p, j=

1,...,](,', S=1,...,li’j} is 1.

This theorem follows from Theorem 7 and Theorem 8 which appear in the latter
sections.
We give a brief review of algebraic transformations on W[x] and W (x).

Definition 4 (Addition) For f(x) € K (x), define

Ad (e T®dxy Wwix) —  W(x)
X [ X

d +——d— f(x)

In particular,
Ad((x —o)*): W(x) — W)
X B X
A

X—C

for ¢, A € K is called the addition at ¢ with the parameter A.

Definition 5 (Fourier-Laplace transform) The Fourier-Laplace transform is the K -
algebra automorphism of W[x],

L:W[x] — W]x]
X +— —0 .
d +— X
Definition 6 (Primitive component) We say that P = Y a; (x)d' € W[x] is
primitive if

() gedgplai(x) [i=0,...,n} =1,
(ii) the highest term a,(x) is monic.
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For P € W(x), there exist f(x) € K(x) and the primitive element Pe Wix],
and then we can decompose P by

P=f(x)P,

uniquely.
We denote the primitive element by Prim(P) and call this the primitive compo-
nent of P.

Definition 7 (Euler transform) The Euler transform of P € W (x) with the parame-
ter A is

E(MP :=LoPrimoAd (x*) o £~ o Prim(P) € W[x].

For P € W(x) satisfying Assumption 1, we consider following special Euler
transforms.

Definition 8 (Twisted Euler transform) Let P € W(x) satisfying Assumption 1.
Define J := @ _oll,....k;}. Then for ] = (jo, ..., jp) € J, the twisted Euler

transform E( ])P is

p p
E(j)P:= HAd (ew’?fi)l_[Ad (Cx = eyt
i=0 i=1

p p
I_A(P ]) H (x—c) i )nAd(e—wi,ji)P

i=0
where

14
AP ) =Y hiji

i=0

The following theorem gives explicit changes of spectral types induced by the
twisted Euler transform.

Theorem 5 (Theorem 3.2 in [7]) Let P € W(x) satisfying Assumption 1. Choose
J=Cjo, ..., jp) € J and suppose A(P) is generic (see [1, Theorem 2.18]).
Then E(f)P e W(x) aAlso satisfies conditions in Assumption 1. If the
spectral type of P]c = E(j)P is m(Pf) = ((mij1,...,mijyi ;) o<i<p With
1<j<ki
di(j, j") o<i<p ,then we have
1<), ki
i =mij1+d() ifj=ji
Mi js =Mj js otherwise,

di(jvj/):di(jmj/)
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where

P ki lij
d(j) =YY (=wte,(wij —wi i)+ 1)) mijs
s=1

i=1 j=1

ko lo.j 14
+ ) (= Whepwo,j — wo ) = 1) Y mojs = Y _miji1.
j:] s=1 i=0

3.2 The Lattice of Spectral Types and the Root System

Theorem 5 shows that twisted Euler transforms E (f) ( f € J) induce transforma-
tions of the spectral type m(P) of P € W(x) satisfying Assumption 1. From these
transformations we shall construct a transformation group on a certain lattice where
m(P) can be seen as an element in this lattice. Moreover we shall see this lattice
with the transformation group is a quotient lattice of a Kac-Moody root lattice.

3.2.1 The Lattice of Spectral Types

Choose arbitrary integers p € Zxq, ki € Z>o (i =0,...,p) and l; j € Z>o (i =
0,....p, j=1,..., k). Fix integers d; (j, j') € Z> satisfying the relation (26).
Then we consider the following Z-lattice

p ki
L:= {((mz‘,j,l,--.,mz',j,z,-.,-)) 0=i<p PPz

I<j<ki ;9 j=1

ko l(), J

kp lpj
DD oMo == M (-

j=1s=1 j=1s=1

We denote the set of positive elements in L by

p ki
=0 DO
i=0 j=1
and define the rank of m= ((m; j 1, ..., mi,j,l,-,j))osigp € L by

1<j<k;

ki

li
rankm := X:m,-,j“Y
j=1s=1
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forany i =0, ..., p. Note that the definition of rank m is independent of the choice
ofi =0,...,p.

Then we define transformations on L as an analogy of the transformation of
spectral types given in Theorem 5. Namely, for each f = (Jo, j1,---» jp) €T =
@f’ ofl, ... ki), we define the lattice transformation on L,

a(f): L — L

m=(mj1.....ai ;) osi<p +—> (Oij1.....mi 1)) o<i<p
S lsj<k 1=j=<ki

where

i g =mi g +dmg ) i G, ) = G ),

’ﬁi,j,s = m; js otherwise
and
p ki/ li’.j’
dom; J)yi= >3 (dn (', i) + 1) Y i g
i'=1j'=1 s=1
ko lo,jr p

+ 3 (do(i' o) = 1) Y mo s — Y mir 1.

j'=1 s=1 i'=0

In addition, for io =0, ..., p, jo=1,..., ki, so=1,..., 1, j, — 1, we also de-
fine permutations on L,

o (io, jo, so): L(P) — L(P)
Mig, jo,s0 = Mg, jo,s0+1
Mig, jo.so+1 > Mig, jo,s0
mi,j.s > mjjs (i, J,s)# (o, jo,s0), (io, jo,s0+1).

Then L has the action of the group w generated by these o ( f ),o(, j,s),1.e.,

Wi=(o(),o6, j.)jeT, i=0,....p, j=1... ks=1.1;-1).

We call L with W action the lattice of spectral types and denote it by (L, W) or
shortly by L.
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3.2.2 The Lattice of Spectral Types as a Quotient Lattice

We shall explain that the lattice of spectral types (L, W) can be seen as a quotient
lattice of the Kac-Moody root lattice Q7 with the index set

I=Ju{G j,s)i=0,....,p, j=1...k,s=1,...1;—1}

and the basis {o; | r € I'}. Namely, Q1 := @, ; Za;. We define the symmetric bi-
linear form (, ) on Qy,

<O[f’af,) =2 — Z (dl(Jl’Jl/) + 1)7

O<i<p
Ji#J!

( ) -1 ifjj=jands=1,
on, O | = .
g 0  otherwise,

2 ifG, g8 =3 ),

(@i o jren) =1 =1 if @ ) =@ j)and|s —s'| =1,
0 otherwise.

Here j = (Jos -5 Jp)s j= (gs +-+»Jp) € T. Let Wp, 1= (oy | t € I) be the Weyl
group of Q. Then we have the surjection @: Qf — L by which W, actionon Q.
coincides with the W action on L.

Theorem 6 (Theorem 3.3 in [7]) Define the Z-module homomorphism

.0, — L
as follows. For

Pk bl

a=) muei+ ) DY m e € QL
fEJ i=0 j=1 s=1
the image @ (a) = ((m; j 1, ..., nai,j,li,j)) 0<i<p is given by
1<j<k;
mij1 = Z my—mgj1),
{jeTlii=j}

Mi js =M, js—1) —MG,js) for2=<s=<lIj.

Here we put m; ji; ;) = 0. Then we have the following.

(1) The map P is surjective.
(ii) @ isinjective if and only if #{i € {0, 1, ..., p} | k; > 1} < 1.
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(iii) The Weyl group action on Qy corresponds to the action of W on L. Namely,
we have

D(oj0) =0(HP@  (@eQu),
D (0(j.5)®) =0 (i, j,)P(@) (@€ Qr).

(iv) Ifa e Ker @, then (o, B) =0 forany p € QL.
(v) Letm € L. Then we have

(o)) =—dm: j) (eco m). jeJ)

(vi) Fora € @~ '(m), we have

P li.j lijr
wa=-y 3 di(j,ﬂ(zm,-,,-,s)(zm,-,,-/,s)
s=1 s'=1

i=0 1<j#j'<ki

ki

P lij
+ Z sz%” — (p — 1)(rankm)?.

i=0 j=1s=1
Form (vi) in this theorem, we define the index of rigidity of m € L by
idxm:=idxa = (o, @)

for o € @~ (m).

3.2.3 @-Root System

We shall define the @-root system of (L, W) which is an analogue of the root system

of Q L-
First consider the following subset of L,

A% = W (a3),
jeg

i.e., the union of W-orbits of qﬁ(a;), which is called the set of @-real roots. We also
consider the subset

for all i=0,...,p, j=1,....ki, j€J,

F® .= {me LT\ {0}
WmcLt

M jAZmi j 2z 2 s d(ms ) =0 }

Then the set of @-imaginary roots is

AL =WFPU-WF?.
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We call
D . @ @
AT =ALUAL

the set of @-roots.

3.2.4 Spectral Types of Differential Equations and Root Systems

We explain that for P € W (x) satisfying Assumption 1, the spectral type of P can
be seen as an element in the lattice of spectral types (L, W).
Suppose P € W (x) satisfies Assumption 1. If we put

di(j. ') =—wte;(wi j — w; j)

fori=0,...,pand j, j'=1,...,k;, then d;(j, j/) satisfy the relations (26).

Thus we can define the lattice of spectral types (L, W) and see m(P) € L. Then
the index of rigidity of P equals that of m(P) € L, namely, idx P = idxm(P). Also
rank P = rankm(P) as well.

Theorem 5 shows that the spectral types of p; =E( f )P ( f € J) are obtained by

the transformation o (f) onlL,ie.,
m(P;) =0 (j)m(P).
Hence we can associate an element in A% to P as follows.

Theorem 7 (Theorem 3.11 in [7]) Suppose L(P) is generic (see [7, Definition 3.8]).
If P is irreducible in W (x), then we have the following.

(i) m(P) € A®.
(i) If idxm(P) > 0, then idxm(P) = 2.
(iii) We have
A% ifidxm(P) =2,

m(P) e re
(7) A% ifidkm(P) <0.

m

3.3 A Classification of Basic Pairs

At the end of Sect. 3.2, we see that the spectral type of the irreducible operator
P € W (x) satisfying Assumption 1 corresponds to an element in A®+* = A® N LT,
By the definition of A?, any element in A®* can be reduced to an element in
{@(a;) | f e JIUF® by W action. This means that m(P) can be reduced to an

element in {(D(oz]c) | f € J}u F® by the Euler transform.
Thus to see Euler transform orbits of spectral types, it suffices to see elements in
FPu{@(a))|jed).
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The differential operator corresponding to an element in {@(a;) | f € J}is an

obvious operator of the first order. Hence we study F®.

Definition 9 (Basic pair) Let (L, W) be a lattice of spectral types with W-action.
Denote the corresponding Kac-Moody root lattice by Q; and the surjection by
@: Q; — L defined as in Sect. 3.2.2. We also define the subset F® C L as in
Sect. 3.2.3.

Choose anelementm = ((mj,j,1, ..., mi ji; ;) o<i<p € F® and suppose mi js 7
1<j=<ki
Oforalli=0,....,p, j=1,....kiands=1,....1 j.

Then we call (m, L, W) the basic triple. We usually omit W and call (m, L) the
basic pair.

We define the shape of a basic pair (m, L).

Definition 10 (Shape of a basic pair) Let (m, L) be a basic pair. The shape of
(m, L) is the set of shapes of elements in @&~ (m) C Or.

Example I For example, suppose p =1, ko=k =2,[; j=1(G{=0,1and j =

1,2), do(1,2) = d(1,2) = 1. Consider m = ((m; j 1))o<i<1 such that m; ; ; =1
1=j=2
for all i, j. Then (m, L) is a basic pair and its shape is

a l—a

l-a X a (a€l), 27)

where we simply denote {x, | a € Z} by x, (a € Z).

Suppose p =0, ko =4,dp(i, j)=2for1 <i < j<4andlp,=2forl <v<4.
If mg j;1 =1for 1 < j <4, the shape of (m, L) equals

1 ﬁ 1
1 1 (28)

Now we prepare the following lemma to have an element in @~ (m) N Q;f.

Lemma 3 Let (m; j)o<i<p be a tuple of p + 1 partitions of a positive integer n,
l<j<ki
namely, n, p, m; j and k; are positive integers satisfying

ml,l+'+ml,k,:n (j:O,...,p).
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Then there exist non-negative integers iy, vy for1 <v; <kand 0<i < p such

,,,,,

that
kj
Z 7711)() Vi, vy, = Mi (0<15P, 1<v; <kp),
0<j=pv;=1
J#i
w=j, O0<v<p)
I’;ljo ,,,,, jp~r7zj(r) ’’’’ ];;750$ or
m=Jj, O=<v=<p),
nmy, 1 kg, k, 70
Proof Put

g, ., =#{k €{1,2,...,n} |
mj’1+---+mj,vj_1 <k§mj,1+---+mj,,,j fOI‘jZO,...,p}.

Then the lemma is clear. Here we note that 7y, | = min{mq,1,...,mp 1} and

ﬂlko,-‘.,kp =min{mo,k0, 'H»mp,kp}~ U

Definition 11 Fix m = ((m; j.1,...,m; ji ;) o<i<p € LT. Put n = rankm and
1<j<ki

lij . . ~
mij = ;2 mijs. Applying Lemma 3 to m and putting my =iy, (=

i
(o, ..., vp)) and m jsy =D /2 . m; ., we define
p ki lij—l1
a(m) ;= Z m;a; + ZZ Z Mg, j,)%G,j,s) € ¢71(m) N Qz_
jed i=0 j=1 s=1

The following lemma gives some properties of o(m).

Lemma 4 Retain the notation in Definition 11.
Let I be the index set of the basis of Qp :

I=Ju{G, j.)i=0,....,p, j=1,.. k,s=1,...1;—1}
Put Cy = suppa(m) and define
I'={iel|laieCn}, Io:={tel|{amm),a)=0},  I:=1I\I.

Assume ko > ky > --- > ky_1 > ky =--- =k, = 1. Here N is a non-negative

integer. Put jo=(1,...,1) e J, j1 = (ko, ..., kp) € J.
(1) The element a(m) is indivisible if m is indivisible.
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(i) We have ms > 0, ms > 0 and

(a0 ) <2—2N,
Joo

14
maxiko, ....kp} <#UNT) <1+ (ki — 1),
i=0

Z ms = rankm.
jelng

(iii) The Dynkin diagram of a subset of Cy, is never equal to Df,l) with n > 4.
Preceding to the proof of Lemma 4, we remark the following.
Lemma 5 Let fv = (jv,0,---» Jv,p) €T forv=1,2,.... Then we have

L) <2-2#{i €{0, 1., p}| jui # o). (29)

=0 = (o a;)#—1. (30)

foj,

<af| ’ af2> = (afl A

Proof Definition 11 directly shows (29). Suppose —1 < (afv,a]c /) <0forl<v<

V" < 3. Then there exists [ € Zsq such that j;; = j,; fori € {0,..., p} \ {{} and
therefore (30) follows from the relation (26). O

Proof of Lemma 4 The claims (i) and (ii) follow from Definition 11, Lemma 3 and
(29).
(iii) Suppose the Dynkin diagram of a subset of Cp, is D,(,l) with n > 4:

Define ¢, = (i, @i,). For iy € I put iy = (j,0,---, Jv,p) if i, € J and put
iy = (ky, jy,sy) otherwise. The proof of Lemma 5 shows that there exists [ with
0<!<Nsuchthat j,; =jy;ifi #/landi,, iy € J.

Suppose i1 € J and i3 € J. Then (30) shows #({i3, i1, i5,i6} N J) < 1 and there
exists i, ¢ J such that i, = (k,, j,, 1) with k, #1 and j, = jik,. Then ¢, =
¢y2 = —1, which contradicts to the Dynkin diagram.

Suppose i1 ¢ J and i, € J. Then {i3, i4} N J # ). We may assume i3 € J and
then the claim (i) shows is ¢ J and ig ¢ J, The same argument as above shows
¢35 =—1or ¢3¢ = —1, which leads a contradiction.

Lastly suppose i1 = (k1, j1, 1) ¢ J and i ¢ J. We may assume i3 € J and i5 €
J . Then there exists «;; € J such that i7 # i3, i7 #i4 and ¢; 7 = —1. Since ¢ 7 =
c1,3=—1,wehave k1 #1, ji1 = j3, and c; 5 = —1, which leads a contradiction. []

We shall show some properties of «(m) when (m, L) is basic.
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Lemma 6 Retain the notation and the assumption in Lemma 4. Suppose (m, L) is
basic.

(1) Cm is connected.

(i) Put o' = 3", j mia; for a proper subset I' & I. Then

idxa’ > idx a(m).
(>iii) We have
(otiy, aiy) > 1ldxm 2 fori, ihel 3D
and the equality holds if and only if the shape of «(m) is

mo, m

O—0O m=1ifk#2) (32)

with k = 1 —idxm.

(iv) We have
1
N <2+ Zlidxm| (33)

and the equality holds if and only if the shape of a(m) is the one in (32) with
k=2N —2.

(v) Suppose (m, L) is basic. Let o;,,a,, ..., ai, be a constant connected se-
quence in Iy (k > 1). Then K <4 and 1 <N <2.

m m
If K =4, then N =1 and the shape of a(m) is .
m m

Suppose N =2 and K = 3. Then iy = fz orip= j3 by denoting
=Lk 1,...,)eT and j3:=(ko,1,1,....,1) e T.
Moreoveriy ¢ J and iz ¢ J.

Proof (i) We say that two elements « and o’ in Cp, are connected in Cp, if they
belong to a connected component of the Dynkin diagram of C,. Note that o and
a; are connected in Cpy,.

Fix a(; j5) with 1 <s </; j — 1. Then there exists f: (jo, .-, jp) such that
CHE Cm and j; = j. Then o j 5) and a; are connected in Cp,.

LetfejwithafeCm.IfNES,then( i ])7500r (Ol] o )#0 which

means o ; and aj are connected in Cy, and therefore Cy, is connected

Hence we assume N =2 and (o o5 ocj) (ozj o ) 0. Then J = Jz or J = J3

Suppose ] = ]2 Then a; ¢ Cm, Which follows from Lemma 3. Since o(m) is
basic, there exists o € Cpy satlsfylng (o, o ) <0.
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Suppose a =, with j/ € 7, j'=(, ji,..., D) or j = (jo. ki, 1,...,1). Here
1 < ji <k and 1 < jo < ko, respectively. If f’ =(1,j1,...,1), ¥ and a3 are con-

nected in Cp,. We have the same conclusion when f’ = (jo, k1, 1,...,1).

Suppose @ = j5). Thens =1.If i >2 0ori =0, j =1 and (1,1, oz]co) < 0.
Ifi =1, j =k and (@ 1,1), ot]el) < 0. Hence « and o are connected in Cp, and so
are a; and o

In the same way as above we have the same conclusion when j = f3. Thus we
have the claim.

If N =0, #J =1 and the Dynkin diagram of Cp, is star-shaped and hence con-
nected.

Lastly assume N = 1. If there exists i € {2,..., p} such that /;; > 1, then
(ot]c, ag,1,1)) = —1 for any f e I N J and therefore the Dynkin diagram of Cp, is
connected. Hence we assume /; 1 =1 foralli € {2,..., p}. If (a]co, aj) =0 for any

Fed NI\ o}, then (a(m), a;)=2m;—mq,1,1 > 0, which contradicts to the

fact that «(m) is basic. Hence there exists f e I N J satisfying (oz]co, ozj:) < 0. Then

the relation (26) assures (oejco, ozje/) <O0or (a;, ozjf,) < 0 for any f/ e(INI)\ {fo, f},
which proves that & : and «;, are connected in Cp, and moreover Cy, is connected.
(ii) The claim easily follows from the definition of the index and the connected-
ness of the Dynkin diagram of Cy.
(iii) We may assume (o;,, @j,) < —2. If m;; <m;,, we have

idxm < (a(m), m;, o, )
2
=< m,'] +mi1mi2 (ail 9ai2)

< m,z1 (14 (i, i) + my (et @iy)

= m,'zl (1 + (Otipaiz)) +m12] (ai19ai2)1
idxm 1
<ai17ai2> > 2ml2| - E
If m;; =m;,, we have

idxm < (a(m), m; o, ) + (o (m), mj, )

2 2
=< 2m[1 + 2mi1mi2 <C¥i1 s aiz) + 2mi27

( ) > idxm

oy, Qiy) > —

. 2 2mi1miz

Hence we have (o, o,) > %idxm — 2 and the equality implies m;, = m;, and
moreover m;, = 1 if idxm # 0. It follows from the claim (ii) that the equality im-

plies that the shape of «(m) is the one in (32) with k =2 — %idx m.

(iv) Since (a]co, oy ) <2 — 2N, the claim in (iii) implies that in (iv).
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VPutA=INJand B=1\A.

Let (i, j,s) € B with s > 2. Then me,js—1) > M, js) > Mi js+1 = Oand{i €I |
(oG, jsy.ai) <0} C{G, j,s—1), (@, j,s+D}. Hencei, # G, j,s) forv=1,..., K.

Note that («(, j 1y, o, j7.1)) = O for two different elements (i, j, 1) and (i’, j’, 1)
of B. Hence there exists no constant connected sequence in B.

If N =0, then #7 = 1 and it is clear that there is no constant connected sequence.

Suppose N > 3. Then ai ¢ Iy for v =0 and 1 and moreover (ajc, oz]co) < -2or

) < =2 for any f € A. Hence there exists no constant connected sequence

<af ’ a./l

in Iop.

Suppose N =2 and K =3.If j € A\ {Jo, ji, j2, j3}, then (o5,05) < =2 or

Jo
(ajc,a]cl) < —2. Hence i, = fz or ip = f3. Since {fz, f3} ¢ A, the length of the
constant connected sequence in Iy is not larger than 3 and the corresponding claim
in (iii) is valid.

Lastly suppose N = 1. Suppose K =2 and ip € B. Theni; = (ji,1,...,1) € A
and ip = (0, ji, 1) or ip = (i, 1, 1) with i > 0. If ip = (0, ji, 1), then m;; > m,,,
which implies i» = (i, 1, 1) and (a3, a;,) < O for any jeA.

Fix a constant connected sequence in /y. The number M of the elements «; in
the sequence with i € B is not larger than 2. If M > 0, the number of the elements
aj with j € A in the sequence is not larger than 2 and therefore K <4.If M >0
and K =4, then M = 2 and the shape of «(m) is the one given in (v).

Suppose M =0 and K > 4. Puti, = (j,,1,...,1) e Aforv=1,..., K. Since
(aiy, aiy) = 0 we have (o, o) = 0if (@;;, o) = 0. Hence K =4 and (o;, @) <
0 and the condition i; € Iy shows the claim (v). O

3.3.1 The Finiteness of Basic Pairs

We show the finiteness theorem which is an analogue of Theorem 3.
We say that a basic pair (m, L) is indivisible if the greatest common divisor of
{m,”j’s | i = 0,...,p,j = 1,...,ki,S = 1,...,11',]'} is 1 for m =

((mij1s .. omiji; ;) o<i<p-
1<j<ki
We also say that a basic pair (m, L) is reduced when we have /; | > 1 for all

i=0,..., psatisfying k; = 1 (cf. Remark 3).

Theorem 8 (Corollary of Theorem 3) Fix an integer v > 0. If r > 0, then there exist
only a finite number of reduced basic pairs (m, L) with idxm = —r. Moreover there
exist only a finite number of reduced indivisible basic pairs (m, L) with idxm = 0.

Proof Theorem 8 and Lemma 6 assure that there are only finite possibilities of
shapes of a(m). Hence there exists a positive integer n, such that rankm < n,.
Hence the theorem is reduced to the following lemma. g

Lemma 7 Fix integers n > 0 and r. Then there exist a finite number of reduced
basic pairs (m, L) satisfying rankm < n and idxm > —r.
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Proof Let (m L) be areduced basic pair satisfying the assumption. Since } >

u=1¢€ u
(Xuei u) <—2ifv>2ande, € Z.gforu=1,...,v, we have
p li.j by
idxm+> " Y di(j.)) (Z mi,j,s) <me5>
i=0 1<j#j'<k; s=1 s'=1

14 i i
Z(szl j,s — (rankm) ) + 2(rankm)?

j=1s=1
< —2(p +1) + 2(rankm)?

by putting m = ((m; j,1,...,mi,j1 ;))o<i<p, Which implies
S l<j<ki

20p+1) <r+2n°
di(j,j')y<2n* =2(p+ 1) +r
<wm’+r—2 (0<i<p, 1<j<j <k).

This shows the lemma. O

3.3.2 The Classification of Basic Pairs with idx 0

We shall give lists of shapes of basic pairs of index 0 and —2. First we consider
basic pairs of index O.

Theorem 9 If a basic pair (m, L) satisfies idxm = 0, then its shape is one of the
following.

m

2m 2m
m 2m 3m 2m m m 2m 3m dm 3m 2m m

3m m
m 2m 3m 4m 5m |6m 4m 2m m_2m m

SO AT S
(m)(m), mom,mm ((m))((m)),mm  ((mD)({((m))) (ae)
((m) (M) (m)(m) () ((m)((m)) (m)(m), (m)(m
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Here m are arbitrary elements in Zq. We simply write sets {x, | a € Z} and {x} by
Xxq (a € Z) and x, respectively. The sequences of integers written under the shapes
except for star-shaped ones stand for the corresponding basic pairs (m, L).

Proof Retain the notation in the proof of Lemma 6. We may assume m is indivisible.

If N =2, the shape of o(m) is (1):(1) . Then rankm = 2 and the shape of (m, L)
is the last shape in the above list with m = 1.

Then we may assume N < 1 and the shape of (m, L) corresponds to the shape of
o (m). Hence the claim in Sect. 2.3, Lemma 4 and Lemma 6 show the theorem. [

Remark 4 We shall explain the notation expressing (m, L) in Theorem 9. The num-
ber of parentheses () represents the number d; (j, j'). For instance, if (m, L) is
written by

ceem M o mi g ))((mgjramg o

then we can see the double parenthesis (()) betweenm; j1...,andm; j.... This
means d; (j, j') = 2. Let us see an example. Consider a basic pair (m, L) where p =
1, (ko, k1) = (2,3), (o1, 10,2, 11,1, 112, 11,3) = (1,2, 1, 1,2) and (do(1,2),d1(1,2),
di1(2,3),d1(1,3)=(,1,2,2).

Thenm = ((m; ;1,..., m,',jylw)) 0<i<p 1s written by

1<j<ki

(mo,1,1)(mo,2,1m0,2,2), ((m1,1,1)(m1,2,1))((m1,3,1m132)).

Remark 5 In the above list of shapes, we omit the corresponding (m, L) for
star-shaped diagrams. For these cases (m, L) are obtained as follows. Consider a

-+ and putmg 1)y =no —n;1, Mma j+1) =N, j — N j+1,

mi,0) = Y 0<k<pNk,1 —no and m g = Zfzo ni1 —no. Then the shape corresponds
P

#i
to the following 5 types of (m, L) with 0 <i < p.

Wl(o’l)m(og) ey m(l’l)m(l’Z) ey ey m(p’l)}‘ﬂ(p,Z) ey

moyno, (M©,2)m©,3).-.) ... (Mp2ymp.3)-..),

ma.omay--., M@,2m@©,3)---)-..Mg-1,2)...)MG41,2)-..) ..,
((manyma2) .. 0))((mom©3) - ... (mi—22) .. )(MGr1,2)...)...),

((n()))((n’l(o’z)n’l(og) .. ) e (m(,,,z)m(pj) .. ))
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In [12], K. Takemura obtains a part of the classification in Theorem 9 under some

conditions (see Proposition 4.3 in [12]).

3.3.3 The Classification of Basic Pairs with idx —2

We shall give a classification of basic pairs of idx — 2.

Theorem 10 Let (m, L) be a basic pair with idxm = —2. Then its shape is one of

the following.
Case I:

(a € Z)
(D(@)(D), (2)(1) (2)(2), (1)(111)

1
2 2 2 1 11 1 &
=0 Oo=0—"—0 Oo=0=0
(D)) (@A) (M))L)))  ((W))(((1))),11
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WE%WEW

W@MH e

((2))((11) 111
((2))((2)), 211 ((11))(( )) 31

ﬁmi@%ﬁ

(2)(2),22,211  (11)(11),22,31  ((11)(1)),21,111  (1)(111),22,22
(2)(11),22,22  (2)(1),111,111 (2)(2),31,1111
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Here we simply denote the sets {x, | a € Z} and {y} by x, (a € Z) and y, respec-
tively. The sequences of integers written under the shapes except for star-shaped
ones stand for the corresponding basic pairs (m, L).

Retain the notation in the previous section. To prove the theorem we may assume
k>ky>-->2ky1>ky=--=kp=1land Iy >In11>-->1p1>1
Note that Lemma 6(iv) assures N < 2.

Then the proof of the theorem deduced to the following three lemmas.

Lemma 8 Suppose N = 2. Then the shape of o(m) is one of the following.

1
111&1
=0
1 1
2 2 1 1 1 1 1 (21 1 2 |21
O=0—0 O=C=0O

Moreover the shape of (m, L) is one of the shapes in Case 1 in Theorem 10.

Proof Use the notation in Lemma 6.
First suppose ko > 3. Then there exists f: 2,L1....H)eTgn I.If 1 # 1,
(a;,otjfl) < =2. If | # ki, (ajc,ajf()) < —2. Since <afo’af1) < —2, the lists in
1 1 1
Sect. 2.4 show that the shape of «(m) equals (E) O—C—0).
s
J

If p > 3, the Dynkin diagram of {a DO A2,1,1), A3 1, 1y} equals M with

a30 ajl

U= —(a;o, O‘j.) > 2, which contradicts to the lists in Sect. 2.4.
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Next suppose ko = k; =2 and p < 2. Then #(I N J) < 3 and the support of
a(m) is a subset of the set of simple roots whose Dynkin diagram is

0,2,1)
Q(2,1,1) Qs Q(1,2,1)

@(0,1,1)

wheres,r >0,u=s+t+2>2and j=(1,2,1...,1)or j=(2,1,1,...,1). Here
the Dynkin diagram in the case f =(2,1,1...,1) is similar as above and hence we
assume f =(1,2,1...,1). Then the lists in Sect. 2.4 tell us that the shape of «(m)
is one of the following.

R T TR ¢ - ) oz 05 121) G(1,2,2)

Here s =t = 0 when m ; > 0 and the simple roots indicated in the shape are exam-
ples corresponding to the shapes.

Since @ € Qf, and @ («¢) = m, m is uniquely determined from o (m) for fixed
L. Then if we write the shapes of (m, L) from the shapes (A4), (B), (C), (D), (E)
and (F), then we have the shapes in Case 1 in Theorem 10, respectively. Here we
note that the shapes of «(m) labeled by (C) correspond to a single shape of (m, L),
which is the third one in Case 1. O

Next consider the case N = 1. We notice that @ is injective in this case. Hence
the shape of (m, L) consists only of the shape of a(m). Put 7y := {1, ..., ko} for
simplicity.
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Lemma 9 Retain the notation above. If max{dy(j, j") | j, j' € Jo} = 3, the shape
of a(m) is one of the shapes in Case 2 in Theorem 10.

Proof Lemma 6 proves max{do(j, j') | j, j' € Jo} <4 and the equality means that
the shape of «(m) is the first one in Case 2. .

Suppose max{do(j, j') | j, j' € Jo} =3. We may assume dy(1,2) = 3. Put j, =
(v, 1,...,1).

Q(1,1,1)
If p > 1, the Dynkin diagram of {oz]e, ay, aq, 1,1} equals and the

o %

lists in Sect. 2.4 show that the shape of «(m) is the last one in Case 2.

If ko = 2, the shape of a(m) is O O=--( and the lists in Sect. 2.4 show

a31 a}Z

that the shape of «(m) is the second one in Case 2.

Suppose ko > 3, Then dy(1,3) =3 or dp(2, 3) = 3 by the relation (26). Hence
the lists in Sect. 2.4 show that kg < 3 and moreover that if ky = 3, the shape of o(m)
is the third one in Case 2. g

Lemma 10 [f max{dy(j, j") | j, j' € Jo} < 2, the shape of a(m) is one of the
shapes in Case 3 in Theorem 10.

Proof Define the coset decomposition of 7y by the following relation: for distinct
J, j € Jo, j and j’ are in the same coset if and only if do(j, j/) = 1.

Put jo =JU{(j,1,1)|j=1,..., p} and define the coset decomposition jo =

3:1 J(q) so that the coset is one of the cosets of Jp or {(j,1,1)|j=1,..., p}.
We may assume #J (1) > #J(2) > --->#J(q) > 1.

Then we have ¢ <3, #J(2) <2 and if ¢ =3, then #J(2) =1 and #J(1) <
2. Moreover if #J(2) = 2, then #J (1) < 3. In fact, if this is not valid, supp «(m)
contains a set of simple roots with the Dynkin diagram

> a. o » @ —0 Q—R OO
X Py s oS

Q 1O
5D o N o o"@ " B T e

which contradicts to the classification in Sect. 2.4. Here © corresponds to a simple
root in J(i).

If g =1o0r g =2and #J(2) = 1, the Dynkin diagram of the support of «(m) is
star-shaped. Otherwise it is one of the following:

O O O O O O O

N oS e b

oo O O 0O O O



240 K. Hiroe and T. Oshima

Hence we have the lemma from the classification in Sect. 2.4. O

Remark 6 We mention about a related work by H. Kawakami, A. Nakamura and
H. Sakai in [5]. They consider systems of first order differential equations with index
of rigidity —2 whose singular points are regular singular or unramified irregular
singular points. These equations are obtained by the confluence of singular points
from Fuchsian systems of first order differential equations with index of rigidity —2
whose spectral types are basic in the sense of Definition 9. We notice that spectral
types can be defined for systems of first order differential equations (see [9] for
instance).

We regard these spectral types as elements in lattices of spectral types and write
their shapes as in Sect. 3. Then the list of shapes of these spectral types in [5] and
our list of shapes of basic pairs with index —2 coincide with each other.

This coincidence is no more valid in the case when the index of rigidity is —4. Let
P be a differential operator with the shape of the spectral type (2: ):(3)—(2)—(1) )
which represents a basic root with index —4. Then P is of order 5 and has an un-
ramified irregular singular point. The operator P is obtained by a confluence of

four regular singular points of a Fuchsian differential equation with the shape of the
2

2 53 2 1
spectral type , which does not corresponds to a basic root.

2

Note that any Fuchsian differential equation of order 5 with a basic spectral type
and index —4 has only three singular points (see [9, 11]).
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Fermions Acting on Quasi-local Operators
in the XXZ Model

Michio Jimbo, Tetsuji Miwa, and Feodor Smirnov

Abstract This is a survey about the construction of fermions which act on the space
of quasi-local operators in the XXZ model. We also include a proof of the anti-
commutativity of fermionic creation operators.

1 Introduction

In this article, we give an exposition of the ‘fermionic basis’ found in [1, 2] for the
space of operators in the XXZ spin chain. In order to explain the problem, let us
begin with some historical background.

Quite generally, in integrable models one is given a large family of commuting
operators which act on the space of states. The first issue is then to describe their
spectra. In the case of the XXZ chain, the space of states is simply a tensor product
V®N where V = C2. The generating function of the commuting operators is the
transfer matrix of the underlying six vertex model, and the standard machinary of
the Bethe ansatz enables one to study its spectra in great detail.

The second issue is to describe expectation values of local operators

O € End V®" C End V®V.

This is a problem far more involved than the first. It has been known for some
time that, for the XXZ chain in the thermodynamic limit N — oo, the expectation
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values of the standard basis elements (products of matrix units) are given by certain
multiple integrals [3—6]. Subsequently it has been recognised, on many examples,
that actually these integrals can be reduced to sums of products of one-dimensional
integrals, with complicated rational functions as coefficients [7—10]. These findings
suggested that, if one passes from the standard basis of local operators to a suitable
new basis, then the corresponding expectation values simplify drastically.

It turns out to be convenient to introduce a parameter « and consider in place of
End V@™ the space of expressions of the form

0
1
00, sO=3 > o,
j=—00

where 0]3 is a Pauli matrix at site j and O is a local operator in the usual sense. We

shall call such operators ‘quasi-local’ (see Sect. 3 below). The parameter « plays a
role of regularisation which helps removing degeneracies from the formulas.

In [1], we have defined certain fermions b, c,, b’;, c’;,, p > 1, which act on
the space of all quasi-local operators. Together with the adjoint action of the in-
tegrals of motion t”;,, these operators act on ¢S and create a basis which we
call ‘fermionic’. We have shown in [2] that for these basis elements the expecta-
tion values are given by determinants involving only two basic functions p(¢) and
w(¢, &) (see Sect. 6, Theorem 2). This clarifies the reason for the simplification of
the integrals mentioned above.

The aim of the present paper is to outline the construction of the fermions, leav-
ing the proofs to the original papers. The construction is purely algebraic. It can be
viewed as a sophisticated version of the algebraic Bethe ansatz, but there are new
features. In particular it is applied to the spaces End V®™ rather than V®"L Also, es-
sential use is made of representations of the Borel subalgebra U, b of U, sl;. Taking
this opportunity, we supply a proof of the anti-commutativity of fermionic creation
operators which has not been published in the previous papers.

The text is organised as follows. In Sect. 2 we collect preliminary materials about
the transfer matrix and Baxter’s Q-matrices, thereby introducing our notation. In
Sect. 3 we consider the action of integrals of motion on the space of quasi-local
operators. In Sect. 4 we define the fermionic annihilation and creation operators,
and in Sect. 5 explain their properties. In Sect. 6 we consider the expectation values.
The main statement is that the expectation values of operators created by fermions
from ‘the primary operator’ can be computed as a determinant. We give an explicit
formula for the function w (¢, £) in Appendix A. Appendix B is devoted to the proof
of anti-commutativity of creation operators.

Throughout the text we shall assume that ¢ is not a root of unity.

2 Transfer Matrix and Q-Matrices

In this section, we fix our notation and review the standard construction of the trans-
fer matrix of the six vertex model and Baxter’s Q-matrices.
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Let V = C2, and let vy, v_ be the standard basis. Let V; (j € Z) be copies of V,
and set Vig 11 = Vg ® --- ® Vi, for an interval [K, L] C Z. The transfer matrix is
an element of End V[x 1] defined by

Tik 116 @) =Tra (Ta 1k, 1(0) - 4°%),
7;»[K,L](g-) = ﬁa,L(C) . ’Ca,K(C).

(1)

Here the operator £ is the image of the universal R matrix of Uqglz in the two-

o~

dimensional evaluation representation 7, ¢ : Ugsl, — End V,,
Lo /€)= (Ta; @7} )R. )
It has the weight preserving property
[x®x,L4,j(¢/€)] =0 forany diagonal x € End V. (3)

We have also introduced an arbitrary parameter o, which will play a key role later
on.

Due to the Yang-Baxter relation, for each fixed « the transfer matrices (1) mutu-
ally commute,

[Tik.01(C @), Tik,0) (¢, @) ] =0 (V¢.¢').

We note also

[Six,11, Tik,L1(5, )] =0,

where

1 L

3

S[K’L]ZE ZOJ-.
j=K

In addition to the transfer matrices, there are also Baxter’s Q-matrices among the
commuting family. As we shall see below, the latter are more fundamental objects
than the former.

For the construction of Q-matrices one uses representations of the Borel sub-

algebra U, b of Uysly [12] in place of the two-dimensional ‘auxiliary space’ V.
More specifically, consider the following operators a, a*, g™ on the vector space

W= @kezC|k>f
gy =q"1k), alk)=(1-¢*)k—1),  a*lk)=lk+1).

They satisfy the so-called g-oscillator algebra relations

D -1 D*fD: *

qPag™P =¢7'a,  ¢Pa%q ga*, ¢!

aa* —ga*a=q¢ ' —g¢.
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Then the formulas

§ o«

¢
w;;(e()):q_ 1 a, w;;(el)z 713 ,

o) (¢ =wf (") =4

give a representation wxg :Uyb — End W™, where Wt = Di=0 Clk). Inter-

changing the indices 0 and 1, one defines another representation @ , ¢ on the quo-

tient space W~ = W/ W™, (We use the letter A for ‘auxiliary’. The representations

wi ¢ are the two types of fundamental representations of U, b, see [13].) Accord-

ingly we define
Q[iK,L](C’“) — ¢FOSiK.L)TYr, (ﬁ[K,L](C) _qizszA)’
Tik @) =L5 () LY (@),
where £2D4 = w3 (h1) and
Ly @/E) =(my, ®mc)R. &)

In the above, Tr is understood as analytic continuation from |¢¥%¢| < 1, e.g.,
Tryy=(q%P) = £1/(1 — ¢>).

The Q-matrices commute among themselves as well as with Tx 17(¢, o) and
SIK,L]

[QFK,L](Q"&)’ QF}(,L](K/’O[)] =0 (Vé‘v g/)v
[0k 1@ ). Tk 11(¢ )] =0, [QFk 1,(C @), Six.21] =0.

In fact, the transfer matrix and its ‘higher’ analogs are all expressible as quadratic
combinations of the Q-matrices. For instance, dropping the suffix [K, L] we have

a— —a Q+(q_1/2§’0[) Q_(q_l/zé“,ot) .
@ =) i ey 0@ |70
a—S _ _—atS Q+(q_l§aa) Q_(q_lé“,a) _
@) ot gray 0qri |TTE

These “Wronskian’ like relations follow from the analysis of the composition factors

of W:, o ® Wy & [12]. They entail in particular Baxter’s TQ relation

T@¢.0)0 @ o) =0%(¢" "¢, a) + 0¥ (g¢. ), (5)
which corresponds to the exact sequence of U, b-modules

00— W::,qflf[:Fl] — Va’; ® W;\t,{ —_— W:q{[il] — 0. (6)
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Here, for a U;b-module W, W[m] means the U, b-module structure on W where
g™ acts by g™ x g".

3 Quasi-local Operators

Our main concern in this note is not the space of states V| 1], but rather the space of
operators End Vi ;. We wish to consider them all at once by letting —K, L — oo
while keeping only local operators, i.e., only those elements O which have finite
support. Here, by support supp O of O, we mean the minimal interval [ko, lo] C Z
such that O acts as identity on V; for all j & [ko, lp]. When supp O C [k, [], we
indicate this fact by putting a suffix and writing O« ;j. We shall also say that O has
spin s € Z it S(O) =50, where S(-) = [S(=o0,00), 1.
Let us look at the action of the transfer matrix on an element O € End Vg 1,

t 118 )(O) = Tra{ To1k.11()q%% - O - Tapie.0) (@)},

It is a simple consequence of the weight-preserving property (3) that, if supp O C
[k, 1], then

3. 3 3., 3
the (€. @) (¥R TTTID Oy ) = ¥R TTRD (0 ) (O ()

Namely, apart from the ‘tail’ q"‘(”?z oy ), there is a reduction of the action of the
operator t* to the left of the support [k, [] of the operand O ;1. Although there is
no such simple reduction to the right, the following stability takes place. Consider

the Taylor expansion at £2 = 1,

th.01 ) Own) = thk,u,p(o[k,z]) (¢ - 1)p—l (¢2—1).

p=1

Then for each fixed p the coefficient tf‘k’ Ll. p((’)[k,l]) becomes independent of L if L
is chosen large enough.

These properties suggest that, instead of naively taking —K, L — oo, it is more
natural to introduce a formal element

3 3 3
anS(O) — .. _qC(O’_quta'_]qD[O'O , S(O) — S(foo’()],

and to consider expressions of the form
> @950 O s local and has spin s. (8)

The shift of o depending on the spin s is introduced for convenience. Let Wy s
be the set of all elements (8), and set

W =P Way.s.
sl
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We shall say that an element of W@ is a quasi-local operator. We call ¢?*5©® ¢
W0 the primary operator. Abusing the language we define the support of (8) to be
supp O.

From the foregoing discussions it is clear that for each p > 1 the limit

2(a—s)S(0 . . 2(a—s) S
t;k;(q (@) ()O[k,l]) = 7K11LHl)oot>[kK,L],p(q (@) [K*O]O[k,l])

has a well-defined meaning as an operator acting on YW@ . We shall use the gener-
ating series

o
-1

Q=) (-7 ©)

p=1
From the definition it is equally clear that the operators {t},},>1 mutually com-
mute. However we are not interested in their diagonalisation. Indeed, the question
does not even make sense because their action on W® turns out to be free. They
generate one half of the Heisenberg algebra, and we shall use them as a part of op-
erators which create a basis of YW@ from the primary operator g>*5(© see Sect. 5

below.

4 Introducing Fermions

In this section we shall introduce fermions which act on the space W@,

Going back to the setting of a finite interval [K, L], let us re-examine the deriva-
tion of the TQ relation (5). For definiteness we consider only WX’ ¢ and omit the
superfix 4. The exact sequence (6) tells that, with an appropriate matrix F, 4 of
base change in V, ; ® Wy ¢, the product of the two L operators (2), (4) can be
brought to a block triangular form

Lianj @) =F, 3 Laj(&)LA ;&) Fan
3
_ (LA,j(qs“)q °i/? o )
* Laja0q7 "),
where the suffix a refers to the block structure in V,. Introducing
Tia, a0k, L1C) = Lia,ay, 1) - - Lia, a1,k (£),

we consider its action on an element X € End(V|k,1]) by

3 _
Tia ALk, L1(0)g* @220 X Tl ay 1,010 7"

_ (AA,[K,L]@’O‘)(X) 0 )
Caik.01C, ) (X) Da k01 0)(X) ),
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If we take the trace of both sides on V, ; ® W4 ;, then we obtain an End Vik 1,
version of the TQ relation (5). Here we proceed differently and define a new operator
by looking at the lower left block,

Kix,21(5, @)(X) = Tra(Ca k.21, @) - £ 75 (g 251K 11 X)), (10)

For each X, the operator (10) is a rational function in ¢ apart from an overall
power ¢%. It has poles at ¢2 = 1,¢*? in the ¢2-plane. Hence one can write the
partial fraction decomposition

Kix.,21(5, @)(X) = €k, 11(¢, ) (X) + ek, £1(q¢, ) (X) +eix.11(q7 "¢, ) (X)
+fik.L1(q¢, ) (X) —fix.11(¢7 "¢, @) (X), (1
demanding that ¢? = 1 is the only pole of

Ck,11(¢, a)(X), ¢k, L1(¢, ) (X), fix,1(¢, ) (X).

(There is an ambiguity about how to share the possible polynomial part among them.
The prescription is given in [1], Sect. 2.7.) We define further

by 116 e (X) = fix.0)(q¢. o) (X) + fix 11 (q 7" ¢, @) (X)
—tx 11 fik 11(gg, ) (X). (12)

Notice that the right hand side is the combination which appears in the TQ relation
(5). Although we are not able to give a logical explanation to the formula (12), it
turns out that this operator enjoys various nice properties.

We supplement (11), (12) by giving two more definitions,

bik. 11, ) = Nk, 110 ¢(k,11(¢, —a) o ik, 17,
k.01 @) = =Nk 110 bix (&, —a) o Jix, 11,

where N = ¢~ (¢—@t5+! — 4®=5-1) is a normalisation and
L
-1 1
Tk X)) =Jixy- X - Jg 1 k= 1_[ o;
j=K

is an operator which flips the spin.
It can be shown that the operators bix 11, €[k, L], bikK,L]’ cE‘K’L] introduced above

have reduction properties similar to (7). The left reduction takes the form

3,43 3,43
X[K,L](C,Ol)(q(vdtl)(“’(Jr T O ) = ¢ kT D xp 118, @) (O, (13)

where the + sign is chosen for x = ¢, b* and — for x = b, ¢*. (The change of « in
(13) is the reason why we introduced the shift in the definition (8) of quasi-local
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operators.) In addition, b*, ¢* share with t* the same stability properties to the right.
For x = b, ¢ the situation is even simpler, since

x(k,01(¢, @) (O, =Xx.,01(&, ) (O

As it was explained for t7,, these properties allow us to consider the limit —K, L —
oo of byg,11(¢, o) and so forth. We end up with the formal series

b@)=¢""Y b, (P =1)"",  e@)=¢") (P 1), (14)
p=0 p=0
b*(g)zga—ZZb;(gz_l)p*I’ c*(;):é.—(xﬂ—ZZc;({z_])])*l, (15)
p=1 p=1

whose coefficients b, ¢, b;‘,, c; are well-defined operators on W@ We shall not
use the zeroth coefficients by, ¢y because they are not independent from b, ¢,
p=1l

5 Properties of Fermions

So far we have introduced the operators

which act on W®) in the following manner:

* .
tp : Wa—s,s — Wa—s,s’

* .

Cp, bp : Wot7s+l,sfl — Wafs,s’
* .

bps Cp : Wa—s—l,s—H > Wa—s,s-

In this section we summarize their basic properties.
Commutation Relations Among the operators in the list (16), t; are central:
[t;,xp/] =0 (p.p =1, x=t*b,c,b* c*). (17)
The rest of the operators obey the canonical anti-commutation relations
[bp,byly =[ep, cply =[cp, byl =0, (18)
0], =lepepl, =000 [bpep], =[en], =0, (19
[b;’ b;/]+ = [b;’ c;,h = [c;’ c;/]+ =0. (20)
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The proof of (18), (19) requires quite a heavy computation which occupies a large
part of [1]. We give a proof of (20) when the target space is W, ¢ in Appendix B.
Later on we shall use (19) in the form of generating series,

[b(©),b*©)], =¥ (5 /&, —a), [e(©), ()], =v (/8 ),
where ¥ (¢, «) is a Cauchy kernel defined by

C—i—l

V=30

Support Property By acting with b,, ¢, the support of an operator does not
enlarge. Namely if X € W@ satisfies supp X C [k, ], then

suppx,(X) C [k, ] (x=b,0), (2D
Xp,(X)=0 ifp>I—k+1(x=b,0). (22)
In particular, we have

bp (qZOZS(O)) — 0, ) (q20(S(0)) —=0. (23)

These properties justify calling b, ¢, annihilation operators.

In contrast, the support is enlarged by t;‘,, b’;, ¢* according to the rule

supp X, (X) C [k, 1 + p] (x* =t*,b*, c"). (24)

We call t),, by, ¢}, creation operators.

Fermionic Basis The following set is a basis of W@ [11]:
p 2a5(0
(t’lk) t;‘l '”tltbjl .. 'bj'scltl . ..czl (C] aS( ))

1 ==>i,=22, 1> >js=>=1, k1>-->k>1, peZ, r,s,t >0).
(25)

Hence W@ may be regarded as a tensor product of Fock spaces of one boson and
two kinds of fermions. (However we do not know how to construct the annihilation
partner to t},.)

As we shall explain in the next section, it is in this fermionic basis that the cal-
culation of expectation values simplify drastically.

6 Expectation Values

We now move on to the discussion of expectation values in the six vertex model.
Dealing with the infinite lattice limit one has to be specific about the range of the
parameters. From now on we assume that g =™V, 1/2 <v < 1, v € Q.
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o e
X X X g q
¢c) ¢c)
1
n
K 1 2 .. L

8;.82

3 3 /
Fig.1 Six vertex model with fields x = q(K+a)UJ’ ,0=¢g"% . Insertion of a local field Efl ! E,

corresponds to introducing defects (filled circles)

Let us consider an infinite cylinder extending to the horizontal direction. We take
finitely many rows, numbered say from 1 to n, and denote them collectively by M
(the letter M stands for ‘Matsubara’). To each row m =1, ..., n attach a parameter
T, and set

Tiko.m@)=Tem(@) - To,m(©),
Tim(@)=Ljn&/tn) - Lj1(5/T1).

Further, on each vertical edge j between the n-th and the (n + 1)-st row, i.e., the first

3 3
row in the cyclic boundary condition, we assign a ‘field’ g % i <0or g%,
J > 0 (see Fig. 1).
We introduce the expectation value of a quasi-local operator ¢>*5(® () as the limit

of the ratio

Tr 1 zaS[K,OJ+2KS[K,LJO
ZK{qzaS(o)O} —  lim [K,L],M{,ﬁl(,L],M( )q }

. 26
—K.L—oo Trig 1) m{Tik L), m(1)g@Sik0+2€SK L1} (20

It is a linear functional Z* : W(® — C so normalised that Z* {g>*S©} = 1. The nu-
merator which appears in the right hand side is the partition function corresponding
to a lattice with ‘defects’ specified by O.

It is convenient to introduce a slightly more general object than Z*. Consider the
transfer matrix corresponding to a column

T (¢, k) = Te; [ Tim (£ ).

We call it the ‘Matsubara’ transfer matrix. Fix an eigencovector (@ | of Ty (¢, k + )
(resp. eigenvector |¥) of Ty (¢, k)) with eigenvalue T (¢, k + o) (resp. T (¢, k)),

(@ITu (&, k +a) =(PIT (¢, k +a), Ty (& )W) =T )|¥).
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We assume that
(@|¥) #0, (27)

and in particular that they have the same spin. For an element ¢>*5©0 e W, o,
choose —K, L > 0 so that supp O C [K, L], and set

(@ Tk, ) {Tik, 11, m (1) g2 S L1H205 K010} @)
(@) T,k +a) K+HIT(1, k)L

Zo w{a* 00} = (28)

Then the right hand side is independent of the choice of K, L. If (| = (x + «|,
|¥) = |k) are the maximal eigenvectors, then by the Perron-Frobenius theorem the
expectation value (26) considered above reduces to (28):

Zk{q2aS(0)O} — 7K ){anS(O)O}.

(k+oal, |k

It is not difficult to see that

Zy o {5 M) ) =2p(0).
where

_ TG k+a)
p(C)—iT@’K)

A more interesting example of (28) is

Z% o (P* (O ) (** )} = 0 (2, 6).

The function w (¢, £) is determined from the data about the eigenvectors (@], |¥).
An explicit formula for w (¢, £) is given in Appendix A.

We are now in a position to state the “Ward identities’ regarding the expectation
values.

Theorem 1 For any X € W the following relations hold:

Z% o [t X)} =2p(0) Z8 o (X},

dg?
%__2,
dg?
E_z.

Zo (P (X)) =resea0(C, ) Zg 4 {e€) (X))}

Zg o {5 (O)(X)} = —respa (8. £) Zl 4 {b(E) (X))

In the left hand side, we have the action of creation operators. In the right hand
side, it becomes reduced to that of the annihilation operators. The proof given in [2]
makes use of a g-difference analog of Abelian integrals on hyperelliptic Riemann
surfaces.
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The formulas in Theorem 1, combined with the annihilation property (23), allow
one to calculate the expectation values of operators inductively. We thus arrive at
the following main result of [2], which says that the calculation of Z, , on the
fermionic base vectors in (25) can be performed by using the ordinary Wick theorem
for fermions.

Theorem 2 Notation being as above, we have

ot (E)) -t ()b*(gF) b () e (57) - e (g ) (75 ?) )

=[120(c?) x 8. det(@ (&, 87))) <y
=1

7 Concluding Remarks

In this article we have outlined the construction of fermions acting on the space
W® of quasi-local operators. In this basis the expectation values take a very simple
form (Theorem 2).

As long as the number of sites n in the Matsubara direction is kept finite, p (¢) and
(C/E)"%w(t, &) are rational functions (see Appendix A below). The main virtue of
such a formula is that, in passing to various limits, it is enough to do that for these
two functions alone. For example, for the ground state average in the XXZ spin
chain, the limit 7 — oo can be taken in a straightforward manner. Moreover, on the
infinite lattice any operator of the form t},(X) (p > 2) has vanishing expectation
value, so p(¢) does not appear in the result. This explains the fact that the original
multiple integral formula can be simplified using only one transcendental function
(the limit of w (¢, §)).

In a sense, the main formula is only an existence theorem, since the transition
matrix between the standard basis and the fermionic basis remains unknown in gen-
eral. Nevertheless, it has non-trivial implications in the continuous limit to confor-
mal field theory and the sine-Gordon theory. For these topics the reader is referred
to [15-18].
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Appendix A: Formula for (¢, &)

We quote an explicit formula for the function w (¢, ) from [2], Sect. 7. For that
purpose we need to prepare some notation.

As in the text, we fix an eigencovector (@ | of Ty (¢, k + o) and an eigenvector
W) of Ty (¢, k) satisfying (@|¥) # 0. Denote their eigenvalues and those for the
Q-matrices as follows:

(@ITu (. k+a)=(@ITC.k+a),  (P|Qy .k +a)= (PO k+a),
T OW)=TEO¥),  QnEO¥) =05 V).
Introduce g-difference operators Az, D; by
AcF()=F(q0)—F(g7'¢),
D F(¢)=F(q0)+F(g~'t) —2p(0)F ().
Hereafter we shall use the shorthand
T@Q)=T¢.x), T@)=TC K+,
QT () =0%(. %), 0% () =0"( k+w),

V() =¥, ).
Set
a@)=[101-4°¢/m),  do=]]0-/),
m=1 m=1 (29)

9(©) = (a@)d(©) ",
and define wsym (¢, §) by
T(O)T ¢)wgym(C. &) = (4aE)d() — T(OT )Y (gL /€)
— (4a(£)d&) =TT &)Y (g "¢ /%)
—2(TOTE) —TETQ)YE/E).
As a function of ¢, w (¢, §) is characterised by the following two conditions.

L. 7T (&) (@(¢,8) — wsym(£, &)) is a polynomial in ;2 of degree n,

2. It satisfies the normalisation conditions for m =0, 1, ..., n:
Y)Y -1 A— + d§2
T (0, 8) + D¢D: A, V(E/6)07 ()0 (C)w(()? =0.
I
Here Iy is a contour around Cz =0,andform=1, ..., n, I, 1s a contour encir-

cling ¢2=12,q7212.
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As it is explained in [2], Sect. 5, the integral in (ii) does not depend on a particular
choice of the ‘g-primitive’ A;Hﬁ(g /8).
To be more explicit, consider the function

rH @ e =TOA! (TQ) - TE)Y (/)
+T @A (T@) = TE)Y(/8)
—T@)A; (Tqo) — T @)y (qe/8))
—T@ A (T(g7'¢) - TE)¥ (a7 "¢ /%))
+ (alq?) — a®)d @)Y (qZ /€)
—a(@)(d(g~'¢) —d®)v (g "¢/8).

Then it has the form
/)7 (. §) = Z P (£2)E™,
m=0

where pf (¢?) is a polynomial in ¢2 of degree 2n. Using them we introduce (n +
1) x (n + 1) matrices A, B by

dc?

I

dc?

2

Aij= /F | OO0 (0)e(0)

B = fp £pi (%) 07 ()0 e
The formula for w (¢, §) reads

_ 4 B
w(,§) TOT () vi@g)- A BV (é)"‘wsym(gag),

where vi(g‘) denote column vectors with entries v ©);j=¢ at2j

For the purpose of studying various limits, it is more convenient to use an alterna-
tive expression in terms of solutions to integral equations [19]. The relevant formula
can be found in [15], (3.11) (the function w(¢, &) in the present paper is denoted
wrat (£, €) there, see [15], (2.11)). In this connection one should mention the recent
paper [20] where a Riemann-Hilbert problem has been formulated.

Appendix B: Anti-commutativity of Fermionic Creation
Operators

In this appendix we prove the following anti-commutation relations between the
creation operators.
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Theorem 3 Forall p, p’ > 1, we have

[b;, b;/]Jr =0 onWys2,-2, [C;, C;/]+ =0 onWy-22, 30)

[b}.¢r], =0 onWyp. 31)

Since the proofs are similar, we shall concentrate on the case (31).
The next Proposition says that the anti-commutation relation (31) holds in the
sense of expectation values.

Proposition 1 Assume (27). Then for any X € W, 0 we have
owi{by. ¢ ], (X0} =0 (vp.p'=1).

Proof Abbreviating Zg ,, to Z, we apply the Ward identities for the expectation
values in Theorem 1,

Z{b* () () (X))}

. dép

= tesge_ (@ ENZ{e@)e () (0} 2
1

* a5

=res,_ 0 (1, £)(—Z{c*()eENX) ) + ¥ (&1/ 0, a))s—z

1

= Z{b X ds} gy
=resg 20 (81, §)w (82, 62) {be2)e1)( )}é—%g + o1, 0).

In the second line we used the known anti-commutation relations between the cre-

ation and annihilation operators.
Similarly one calculates

Z{e*(L)b* (c)(X)}

dg} dg3
=resg 2 (82, ) (L, £NZ{cEDbE)(X)} 22 w(¢1, £2).
1 2

Using the known anti-commutativity of b(&,) and ¢(&1), we arrive at
Z{b* D" () (X))} = —Z{c" ()b* ¢ (X))},

which is equivalent to the assertion of Proposition. g
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Before proceeding, we recall a few facts from the algebraic Bethe ansatz. Nor-
malising the £ operator as
24—2
(1-¢Hg A—g)¢
(I-gn¢ (1-¢%g ’

l—q
L(¢)=

we set

Lan@/t) - Lan(&/T1) = (A({) B(;)) .

C&) D)

Let |0) = vf‘f” , (0] = (vi)@’" be the reference vector and covector respectively,
where v, v_ is the standard basis of C? and vj_, v* is the dual basis. Let further
le{0,1,...,n}and setfor j=1,...,1

! l
Fi,....e0=a@) [ [(&? —a 7€) +a > HaEp [ [ (6 - a%¢).

i=1 i=1
where a(¢), d(¢) are defined in (29).
The following formula is well known [14].

Proposition 2 Assume that (£1, ..., &) € (C*)! is a solution of the Bethe equation
Fig,....60=0 (j=1,...,D, (32)

and let (¢1, ..., &) € (C) be arbitrary. Then

1 1
o [Tcep ] BENI0)=¢7""1 (g —47")
j=1 j=1
[Tioy £igd(E))
X NP
Hl§i<j§l(§i - S])(gj - {i )

det($2; K)1<j.k<l»

Ca@oIlioi@® -¢d -2t 40 -2 - a%cD)

ik = .
7 — D@ =) € — D& — a2
We shall consider the specialisation of parameters g, T = (71, ..., T;) tO
go=e""?, T0=(1,...,1).

Lemma 1 Define x(«) by

1220 _ _ -2e—3++2) (=1, .n).
1+ x;(x)
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Then, for any subset I = {iy, ..., i} C{l,...,n}, i1 <--- <1y,

(&R &) = (3, () v X3, (1)) (33)

is a solution of (32) for (q,t) = (qo, T0). If further « is generic, then we have

EF# L E# T (£

Proof is straightforward.
Hereafter we choose and fix a generic «xg. Denote by E(()I) the solution (33) at
(«,q,T) = (k0, 90, T0)-

Lemma 2 We have

( o (5(1))> 20,

Proof This follows from the calculation
) 2n 2 g
aék ) = @a@pg(si +7),
where (32) is used. Il

By Lemma 2 and the implicit function theorem, in a neighborhood of (x, ¢, ) =
(x0, q0, To) there exists a unique branch ‘g'(l)(/c, q,T)= {512, e, élz} of solutions to

(32) such that SU)(KO, q0, To) = 5(()1). Denote by

l
kg, Tl = 0|1‘[C(s, c.q. 7y = | B&NI0)

j=1
the corresponding Bethe (co)vectors.
Lemma 3 In a neighborhood of (kg, qo, To), we have
1(/{’, q.Tlk,q, r)] #0 (K’ + /c)
forallI,J C{1,...,n}withtl =4J =1.

Proof We apply Proposition 2 at (g,7) = (qo, Tg). Setting 5(1)(/(,:]0,10) =
1., 8) and §Y (<, qo, To) = (&1, .., &) we find

1{<’, g0, Tolx, g0, o),

1 2 2 2 2

.y [Tk &5 +EDCE+E)

zzli—l(l—2—n)(1 _ Tk —K))l (5 Cpd(Ep)a(e )) J J J
,LII T Mk & 8
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which is non-zero. Hence the scalar product does not vanish in some neighborhood
of (kg, go, To) and k' # k. O

We finish the proof with the

Proposition 3 For any p, p’ > 1 and X € Wy, o we have

[b}, ¢y ], (X)=0. (34)
Proof Denote the left hand side of (34) by Y. Take («, g, T) in a neighborhood
of (xo, q0, To) and « # 0 small enough. Choose (®| = j(k + @, ¢, | and |¥) =
lk,q,T)y, where 81 =t#{J =1 and 0 <[ < n. Under the assumption above, we have
(@|¥) # 0 by Lemma 3. Hence Proposition 1 is applicable, and we obtain that

(®ITrk, 1] Tik, 0, m (D> SELY @) = 0.

Since the vectors {; (k +«, q, T|}, {|k, g, T)} are bases of the spin n/2 —[ subspace,
we find

Tr[K,L]{7TK,L],M(1)612KS[K‘“Y} =0.

If we choose n = L — K + 1 and 7 = 70, then 7[g, 11,1 (1) becomes a permutation
operator and the trace becomes simply ¢%<5I¥.L1Y . We conclude that ¥ = 0 provided
(g, @) is close enough to (gp, 0) and o # 0. But Y is rational in ¢, g%, so we must
have that Y = 0 identically. This completes the proof. O
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The Romance of the Ising Model

Barry M. McCoy

Abstract The essence of romance is mystery. In this talk, given in honor of the
60th birthday of Michio Jimbo, I will explore the meaning of this for the Ising
model beginning in 1946 with Bruria Kaufman and Willis Lamb, continuing with
the wedding by Jimbo and Miwa in 1980 of the Ising model with the Painlevé VI
equation which had been first discovered by Picard in 1889. I will conclude with the
current fascination of the magnetic susceptibility and explore some of the mysteries
still outstanding.

1 Introduction

A search of Google books reveals that the observation
The essence of romance is mystery

has been made by many authors in many different ways and in many different con-
texts ranging from the literary to the scientific. But in all contexts romance betokens
fascination and the Ising model has fascinated many people, including myself, for
many decades and in spite of many breakthroughs and moments of understanding
the mystery continues to this day. In this talk I will present some of the milestones
of this romance.

2 Kaufman and Lamb

In his talk “The Ising model in two dimensions” [1] presented at the fifth Battelle
Colloquium on Materials Science, held in Geneva and Gstaad, Switzerland, Septem-
ber 7-12, 1970, Lars Onsager wrote, following a discussion of his famous 1944
computation of the free energy [2] and a sketch of his 1945 proof of his conjectured
spectrum of the transfer matrix,

B.M. McCoy (X)
State University of New York, Stony Brook, NY, USA

K. Iohara et al. (eds.), Symmetries, Integrable Systems and Representations, 263
Springer Proceedings in Mathematics & Statistics 40, DOI 10.1007/978-1-4471-4863-0_11,
© Springer-Verlag London 2013
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Before long, however, Bruria Kaufman had developed a much better strat-
egy.

At Columbia University she first asked Willis E. Lamb to direct her work
on order-disorder problems; but he was much too heavily engaged in an ex-
perimental effort, and I was asked to assume the responsibility. Unable to talk
her out of the idea I suggested that she explore ... By the summer of 1946 she
had a beautifully compact computation of the partition function, bypassing all
tedious detail.

By itself that was only a more elegant derivation of an old result but the
approach looked powerful enough to produce a few more new ones. Very
well, how about correlations?

The history of the Ising model from that time forth has been the study of these
correlations.

But the deeper meaning of this passage from Onsager’s paper completely es-
caped me until many years later Rodney Baxter wrote to me concerning a typescript
[3] that had been given to him which is certainly a draft of Onsager and Kaufman’s
calculation of the spontaneous magnetization of the Ising model. Why in the world
would Kaufman, who was creating pioneering mathematics, ask Lamb, an experi-
mental physicist, to supervise her research? This question was brought into sharp
focus when Baxter told me that he was going to contact her about the authorship
of the typescript. She was then living in Tucson, Arizona with her husband, Willis
Lamb.

So this is the first romance concerned with the Ising model. Both Bruria and
Willis were married to other people in 1946 when Bruria asked Willis to be her
research supervisor and he turned her down. But decades later, when Kaufman’s
husband died in 1992, Lamb invited her to Tucson as a Visiting Scholar at the Uni-
versity of Arizona where he was a professor. In 1996, after his wife died, Willis and
Bruria were married.

3 Correlations and Form Factors

The great understanding of Kaufman was that the Ising partition function could be
written by use of fermionic methods as the sum of four Pfaffians [4] and that this
fermionic method is powerful enough to write all correlation functions of the Ising
model as determinants [5].

The Ising model is a system of “spins” o x at row j and column k of a square
lattice which take on the values o x = &1 and interact with their nearest neighbors
with the interaction energy

LY L"

==Y > |E'ojiojir1 +E'0jk0ojs1k)- (1)
J=—L¥k=—Lh
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The correlation functions studied by Kaufman and Onsager are defined as

. -1 —E/kpT
{o000m,n) = lim Z,, E o0.00m.ne /K8 2
v )
LV, L"—>o0 p——

where T is the temperature, kp is Boltzmann’s constant,

Zpop= Y e ClhsT 3)
o==+1

is the partition function and the sum ) __ ., is over all values of the variables o t.

The discovery of Kaufman and Onsager [5] is that the row and diagonal correla-
tions can be written as a sum of two determinants. These are further simplified by
Montroll, Potts and Ward [6] to a single determinant. The diagonal (o9 0on, ») and
the row correlations (09,000, n) can both be written as N x N Toeplitz determinants

aop a—i trr A-N+1
ajp ap v d-N+2
Dy=| . : : 4
aN-1 aN-2 - ao
where
1 2 .
ay = — doe "¢ (0) )
2 0
with
(1 — a1ei®)(1 — aze=i?)7"/2
$(6) = — 7 ©
(1 —oare™?)(1 — aze?)
For (0,008, n)
a1 =0,y = (sinh2E” / kT sinh2E" /kpT) ™" (7)
and for (00,000, N)
oy = e 2E"/kBT tanh Eh/kBT, ay = e 2ERET coth Eh/kBT ®)

and the square roots are defined to be positive at 6 = . These determinants are very
efficient for the calculation of the correlations when N is small.

However, when N is large the determinental representation (4) is not an efficient
method of calculation and a different representation must be found.

The first step in finding this new representation is the computation of the limiting
value as N — 0o

lim (00,000,n) = (00,008 ) = (1 — 1)/ 9)

lim
N—o0 N—o0
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with

t = (sinh2E"/kpT sinh2E" /kpT) 7, (10)
which is valid for 0 <t < 1. For ¢ > 1 the limit vanishes. The value of T for
which r = 1 is called the critical temperature T,. It is the evaluation of this limit
for (0p,00n, v) Which is accomplished by Kaufman and Onsager in the manuscript
recently published by Baxter [3].

The next step in the evaluation of the long distance behavior of the correlations
was made in 1966 by Wu [7] who computed the first correction f;y 2 o 9)as N —
oo for (0p,000,n) for T < T, as a two-dimensional integral and the’ leading behavior
Jon a5 N — oo of {(00.000,n) for T > T, as a one-dimensional integral. These are
the ﬁrst terms in what is now called the form factor expansion of the correlation
functions, which for general M, N is written for T < T, as

(00.00m.3) = (1 —r)l“{l +Zf(2’”} (an
n=1
and for T > T, as
o
(00.00m.n) = (1 =04y i D, (12)
n=0

where for T > T, we use the definition
t = (sinh2E"/kp T sinh2E" /kT)". (13)

The derivation of the complete expansions (11) and (12) has its own interesting
story. In 1976 Wu, McCoy, Tracy and Barouch [8] derived an expansion valid for
all N of the correlations in the form for T < T, of

o0
(Go.00mn) = =) exp Y FOY (14)
n=0
and for T > T,
(o0.00m.n) = (1 =)'/ ZG‘Z’”” epo Fi's (15)

where F (2”13, and F (2"13, are 4n dimensional integrals and G(Z”H) are 4n + 2 di-
mensional integrals. For all three functions half of the 1ntegrals may be executed
by closing a contour integral on a pole. The forms (14) and (15) of the correlation
functions are called the exponential forms.

The form factor expansions (11) and (12) are obtained from the exponential
forms (14) and (15) by expanding the exponentials. For a few low values of n this
was done in [8] in connection with the study of the magnetic susceptibility but the
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general results for the f /f,;")N were not given by Nickel [9] and [10] until 1999 and
2000.

A curious feature of the derivation given in [8] of (14) and (15) is that the method
of [7] developed for the row correlation (09,000, n) is not used; instead the method
used by Cheng and Wu [11] in the study of the leading terms of large separation
behavior of the general correlation (o9 0oy, n) is used. The original method [7] of
Wu as applied to the correlations (09,000,5) and (oo,0on,n) Was extended to all
orders in 2007 by Lyberg and McCoy [12]. The results in [12] for the diagonal form

factors fli,")N @) are for T < T,

1 2n

n(N+n) — o) =1 \ 12
<2n) JA2j
)= (n!)znznfo [ st “( >
k=1

(1 -t (3 — 1)

T 1 (i)

l<j<n 1<k<n

X 1_[ (x2j—1 — x2k—1)7 (x2j — x20)%, (16)
1<j<k<n
and for T > T,
2n+1
f( n+ )(t)
(1 DN+n(nt1) 1 204 Az » Lip
=l + D /o ,Hl B H =il = 0~ D)

n 2
x [Tl =) =117 ] H( o ix >
i 2j—1X2k

1<j<n+1 1<k<n

X H (x2j—1 — x2k—1)* l_[ (x2j — x2)% )

1<j<k<n+1 1<j<k<n

A closely related form for the row form factor fo(n13/ is also obtained in [12]. The

results (16) and (17) have the startling feature that in the diagonal case the fy " do
not manifestly reduce term by term to the corresponding functions obtained from
[8]. The reconciliation of these two forms is one of the present mysteries of the
Ising model.

These diagonal form factor integrals, which on the surface may appear to be
indigestible, have proven to have many very special properties.

(1) All the integrals in (16) and (17) reduce at t = 0 to a product of two special
cases of the celebrated Selberg integral [13]

1 1.n
/f Htf‘_l(l—ti)ﬁ_l ]—[ |t — ;1Y d1y - - dty. (18)
0 0 i=1

I<i<j<n
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(2) In [14] it was discovered by Maple calculations the f’ 15,")]\, satisfy Fuchsian
differential equation with a factorized “Russian doll” structure

Fafyn =0 with Fyy = Loy1(N) - L3(N) - L (N), (19)
Foni1 f@) =0 with Fayyq = Lopi2(N)---Ly(N) - Lo(N) — (20)

where L ;(N) are linear differential operators of order ;.
(3) It was also discovered in [14] by Maple calculations that the operators F,
have in addition a direct sum decomposition

Fop =My, 1(N)®---® M3(N) @ M (N), 21
Fonp1 =My 2(N) D --- @ M4(N) & Ma(N). (22)

(4) Furthermore, the f (n) v (t) have a factorization property first found in [14] by
computer computations and proven for n = 1,2, 3 in [15] that

n—1
N0 =" KZ(N)- f(2m><r>+z CPV(Ns1) - Fg™ - . (23)
m=0 m=0
nt1) 1 @m+1)
N (@ O]
2n+1)
tN/2 ZK TN - tN/Z
m=0
2n+1
+ Y DN FT R (24)
m=0

where Fy is the hypergeometric function

Fy =2F((1/2,N+1/2; N + 1; 1), (25)

and fIE,O)N = 1. The K (")(N ) depend only on N and we note in particular that

1
K 0= . (26)
1
K0 =0.  kPO)=2. @7)
1
5) 5
K, - K = - 2
2 2
kP =0, k0= ~15 K9(0) = 3 (29)

The C,(nj ) (N; t) are polynomials in ¢ of degree for N > 1

deg C?V(N; 1) =deg C"*D(N; 1) =n- 2N + 1), (30)
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with C ,(,? )(N ;1) ~t" as t ~ 0. which have the palindromic property

C,,(f")(N; 1) = MCN+D+m C,,(f")(N; 1/1), a3
C’(nszrl)(N; £) = ("N+DFm C,(,,Z”“)(N; 1/1). (32)

Explicit formulas for the polynomials Cf,f)(N ,t) have been obtained in [15] for
n =1, 2,3 and conjectured for n = 4. For example K(()z) = N/2and

N QN + 12 AN
CON;1) = (-1 ( >[4} MY D e, (33)
2 AN(N +1) i

where forO<n <N — 1

s (N) =5y 1y (N) =) ar(N)an_i (N), (34)
k=0
e (N) =iy, (N) =" ar(N)an—i (N + 1), (35)
k=0

andforO<n <N

o (N) = iy 1 g (N) = 20 (N + 1), (36)
and
1/2)5\?
ey (N) = (( fv')N) [14+2NHy(1/2)} (37)
where
_(1/25(1/2- N,
an(N) = == (38)
and
N—-1 1
Hy(1/2) = /; T (39)

It is certainly true (but not yet proven) that the factorizations (23) and (24) hold
for all fy ") . The computations in [15] are based on Fuchsian differential equa-

tions for the Iy ) n (t). For n = 4 the order of these equations is 20. These equations
have a direct sum decomposition into operators which are homomorphic to sym-
metric powers and products of the operator which annihilates the hypergeometric
function Fy.

It is furthermore very suggestive that this factorization property has been previ-
ously seen in the correlation functions of the XXZ model [16-22].
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The final property of the form factors to be discussed can best be illustrated by
making a “lambda extension”, first introduced in [23], of the expansions (11) and
(12) by defining

o0
C_(M,N;2)= (1~ t)l/“il + Zkz”f}m} (40)
n=1
and
o0
CH(M N; ) = (1= )4y 2 p@neD (41)
n=0

which reduce to the Ising correlations below and above 7, when A = 1. By use of a
remarkable set of relations presented by Orrick, Nickel, Guttmann and Perk [24] in
2001 for small values of M and N, these lambda extensions can be written in terms
of theta functions [25]

o0
63(u:q) =1+2 ¢" cos2nu, 42)

n=1

o0
Oru: q) =2q"* Y " q"" D cos[@n + Du] =g e O3+ 77/2:q)  (43)

n=0
and their derivatives

d /

EQ”(M;Q) =0,(u;q) (44)
where 1!/2 = k is the modulus of elliptic functions which is related to the nome ¢
by

q ze_ﬂK/(tl/z)/K(tl/z) 45)
and

T
K('?) = 52F1(1/2,1/2;1) (46)

is the complete elliptic integral of the first kind with K'('/?) = K ((1 —1)!/?).
The simplest example given in [14] is for the low temperature case with M =
N=0

03 (u;
C_0.0:0) = B here s = cosu, (47)

03(0; q)

For the special values A = cos(rm/n) we find that C_(0,0; A) and ¢ satisfy an
algebraic equation. Calling C_(0, 0; 1) = 7, it is seen in [14] that for A = cosw/3

1612 — 1618 =8¢t — D> +1(1 —1) =0, (48)
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which is a curve of genus one. For A = cos(r/4),
16t +16(t — D +2¢—1)=0 (49)

is a curve of genus three which has the simple algebraic expression

C—(0,0; cos(r/4)) =274 — )/ 1O[1 4 (1 — /2%, (50)
Further results in this direction are [14]
C_(1, 1; cos(r/4)) =274 — ) /101 + (1 — /2], (51)

C(2.2; cos(r/4) =274 (1 = 191+ (1 = )2 [5 - (1 =)'/ /4,

(52)
Further results which follow from [24] are given in [26]
62(u; q)
C4(0,0;2) = 5201 q)’ (53)
1y
== sinuez%(;uc;)%(o; 9’ o9
Ci(1,1;0)=— 6500 4) (55)

sinu63(0; )63 (0; )

where is to be noted (for N =0, 1) that C (N, N; A) is obtained from C_(N, N; 1)
by the interchange 6, <> 65.

Many further results for various low values of M, N remain (in the tradition of
Kaufman and Onsager) to be published by the authors of [14].

4 Jimbo, Miwa and Painlevé

The immediate object of the computation of the leading term in the form factor ex-
pansion by Wu [7] for the row correlation (o¢ ¢oo, ) and by Cheng and Wu [11] for
the general case (09,00, n) Was to compute the leading behavior of the correlations
functions for large separations R = (M2 4 N?)!/2. They found that for T < T, the
correlation decays to the limiting value (9) as

(00,00m,N) ~ (1 — t)‘/“{l - CR_(ZT)e—R/sm} 56)

and vanishes for T > T, as

C(T) _
(000m.n) ~ (1 = A=z KIED), (57)
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where, in addition to depending on the temperature 7', the R independent quantities
C+(T) and &4 (r) depend on the ratio M /N . Itis found in [7] and [11] as t — 1 that

A
E(T) ~ T2 (58)
-~ G (59)
and
A
)~ T i (60)

where again the amplitudes Ag 4+ and A+ depend on the ratio M /N . Neither of these
asymptotic leading terms reduces to the result valid for T = T, (i.e. t = 1) where in
[7] Wu found that the diagonal correlation has the leading behavior for large N

AT,
(00,00n,N) ~ N1/ (61)
and
A, =21/ D (62)

with ¢’(—1) the derivative of Riemann’s zeta function at —1.

The history of the result (61) is romantic in its own way. In the original 1949
paper of [5] there is a remark that the diagonal correlation vanishes “slowly”. In
1959 Fisher [27] derived the exponent 1/4 and remarked in footnote 8 that

Onsager, private communication, has derived exact expressions for the cor-
relations along the main diagonal . ..

This computation was never published and perhaps there is another typescript out
there waiting to be discovered.

Wau [7] also found the large N behavior of the row correlation (o9 0oo,n), Which
has the same dependence on N as (61) but with an amplitude

h 1/4
Arow = A7, (cosh2E" /kpT.) ™. (63)

The first purpose of the paper [8] was to connect the three different asymptotic
behaviors (56), (57) and (61) by defining an interpolating function, traditionally
called a scaling function,

Ge(y= lim (=07 o000mx) (64)

with

[(sinhZEh/kBTc>l/2M2 <sinh2E”/kBTC

12 q12
N? 1 —1)=r fixed. (65
sinh2E k5T, sinh2Eh/kBTC> } (1=1) =rfixed. (65)
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For this purpose the exponential representation of the correlation functions was de-
rived. When the scaling function was computed it was discovered that G4.(r) is
expressed in terms of a Painlevé equation of the third kind

d*>n 1(dp 2 1dn 3 1
— === —=— -n" 66
102 n<d9> +n = (66)

as

Gi(r)=—— 1" exp- | app——L "7 (67)

1Fn(r/2) 1/0" (1=n»>=@)?
20(r/DV2 4 n

with the boundary condition

2
n@) ~1— =1Ko(20) as6 — oo, (68)
T

where Ko (26) is the modified Bessel function and A = 1.

This result was first announced in [28] and [29].Two different proofs were given.
The first, in [8], is based on Myers’ work [30] on the scattering of electromagnetic
radiation from a strip and the second [23] is based on a direct manipulation of the
exponential representation in the scaling limit.

It is at this point that I first learned of the existence of Sato, Miwa and Jimbo
when in 1977 I received in the mail (how long ago it was that papers were sent by
mail) a letter by the three of them with title “Studies on holonomic quantum fields
II” [31] which generalized several of the results of [8] and made clear the relation
of the Painlevé III equation with the massive Dirac equation. This letter was fol-
lowed by many more where the only change in the title was that the Roman numeral
was different and by a series of 5 papers with the title “Holonomic quantum field
theory” [32-36]. These papers culminated in the groundbreaking paper “Studies on
holonomic quantum fields XVII” [37, 38] where it is derived that the diagonal Ising
correlation function for a general temperature on the lattice and not in the scaling
limit satisfies the sigma form of the Painlevé VI equation

d%o\?
(t (t— DW)
do 2 do do do
= N2<(t -h— —a) —4E<(I — 1)5 —0— 1/4) (IE —o). (69)
The diagonal correlation is related to o for T > T, by
o@)=t@—1)- %bg(cro,oazv,zv) —1/4, (70)

with the boundary condition at = 0 of

1/2
(00.00n.N) = IN/Z(gv—,)N +O0(eHN2), (71)
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and for T < T, by

d
o) =t@—1)- - logloooon.n) —1/4 (72)

with the boundary condition

B 4 N A2\ >
(o0.00n.8) =1 —1) {1—2N+1((N+1)!) +0(t"*?) (73)

where (a)y =a(a@a+1)---(a+ N —1) for 1 <N and (a)g = 1 is Pochammer’s
symbol. These boundary conditions are obtained from the leading terms of (16) and
(17) as t — 0. Furthermore the lambda extensions (40) and (41) satisfy the same
Painlevé VI equation (69) where the A appears as a boundary condition.

The six Painlevé equations have a long history [39, 40]. They are defined as those
second-order nonlinear equations the location of whose branch points and essential
singularities (but not poles) are independent of the boundary conditions and which
cannot be reduced to simpler functions. Painlevé obtained three of these equations
[41] and Gambier [42] obtained the remaining three including the PVI equation
which in the general case has four parameters. However, the specific case of Painlevé
VI needed for the Ising model (69) had already been obtained by Picard [43] in 1889.
Subsequent to the discovery that this PVI equation characterizes the diagonal Ising
model, this equation has appeared in many contexts [44—46] ranging from Poncelet
polygons to mirror symmetry. The sigma form of the Painlevé equations was first
obtained by Okamoto [47, 48].

5 The Susceptibility

The second purpose of the paper [8] was to begin the study of the magnetic suscep-
tibility at zero magnetic field x (T'), which is computed in terms of the correlation
functions as

kpT x(T) = Z Z (00,00m,5) — M?}, (74)

=—00oN=

where M? is the square of the spontaneous magnetization which was given in (9). In
order to evaluate the sums in (74) the exponential forms (14) and (15) which were
the basis of computing the Painlevé III equation cannot be used and instead the
exponentials must be expanded into the form factor representations (11) and (12).
Using these forms the sums over M and N are easily evaluated as geometric series
and the susceptibility is written as the infinite sum of n “particle” contributions

o
kpT x+(T) = (1 — t)/4=1/4 ZX<2J'+1>(T) for T > T, (75)
j=0
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o0
ksTx—(T) =1 =0 x@(T) forT <T.,. (76)
j=1

In [8] the terms X(")(T) for n =1, 2, 3,4 were studied. In the scaling limit the
scaled x ™ (T) for general n were given by Nappi [49] in 1978. For arbitrary tem-
perature the results in the isotropic case were obtained by Nickel [9] and [10] and
for EV # E" in [24]

; j j
X1y = <2 f” @.../” doj1 (77 L) go I oo
jt J_p 27 7 27 sinh y;, 1—

n=1 net Xin
)
with
Xp = cot? af§ —cosw, — \/(E — coswy)? — (cota)~4], (78)
sinhy, = cot? a\/(é — coswy)? — (cotar) ™4, (79)
where
cota = /51, /Sy, (80)
£=(1457) 2 (1+s)" 81)
sy =sinh2E"/kgT sy, :sinhZEh/kBT, (82)
) 2
HO) — ( I hik) (83)
1<i<k<j
with
] sl
sin 5 (w; — o, 1 sinh5(y; —
hip = cota 2( i %) _ z(Vl Vi) (84)

sinh (v — 1) coter sin}(w; + )’

and w; is defined in terms of the remaining w; from w; + ---®; =0 mod 27. We
note in particular that for EV = E"

(1)(1‘) = 7t1/4 (85)
X (1= 11742
with ¢ given by (13) and
12y _ (1 _ 1/2
(@) = A+DEE/)— (1 —0K(@'/?) (86)

3n(1—t1/2)(1 —1)

with ¢ given by (10).
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5.1 The Amplitude of the Susceptibility Divergence

The study of the susceptibility from the form factor expansions was initiated in 1973
in [28] where it was demonstrated that as T — T,.= the susceptibility diverges as

_]_S

2

—7/4

kT x(T)s ~ Co |- V2 (87)

where in the isotropic case
s =sinh2E /kpT. (88)

The constants C_ and C; are different and are given as infinite series

o o
C.=>c, cp=) ¢t (89)
n=1 n=0

where the C are n-fold integrals coming from the form factor expansion and have
been studied both numerically forn =1, ..., 5 [8, 28]. The first term in each of (89)
has been analytically evaluated in [8, 28]

1

cH =1, c?® = o (90)

and the next leading term was evaluated by Tracy [50] as

1 2
c® = — (X 12-33CL(x/3) 91)
272\ 3
where
* sinnd
Clh() = 92
2(0) Zl — 92)

is Clausen’s function and

1 (4x? 1 7
c® = W(T = E4(3)). 93)

In the tradition of Onsager and Kaufman [3] the details are only in an unpublished
typescript. A curious feature of these results is that the ratio C4./C_ is found to be
closely approximated by 127 and the second terms are approximately three orders
of magnitude less than the leading term. The study of the constants C_ and C.
has been continued by high precision numerical computations [24] and the most
recent evaluation [51] in 2011 is to an incredible 104 places. This is one of the most
precisely determined constants in all of mathematical physics.

However, the X(")(w) have singularities at other points besides sinh E/kpT =
+1 and the determination of the analytic properties of the magnetic susceptibility as
a function of temperature has become the most challenging problem in the field.
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Table 1 The Nickel

singularities of x ™ for n w
n=3,4,5,6
3 —1/2,1
4 +1/2
—1£V5 3+V5
3 -1 == 5"
6 £1,41/3

5.2 Nickel Singularities and the Natural Boundary Conjecture

The first studies of analytic properties after the initial computations of [8] were
made in 1999 [9] and 2000 [10] when Nickel demonstrated for the isotropic case
EV = E" = E that the integrals (77) x " have singularities in the complex 7' plane
on the curve

|sinh2E /kgT| =1, (94)

which is the same curve on which the four Pfaffians of Kaufman’s original evalua-
tion [4] of the Ising partition function vanish. This was extended to the general case
EV # E" in [24] where the singularities of x ™ (T) are at

cosh2E?/kgT cosh2E" /kgT
— sinhZEh/kBTcos(2yrj/n) —sinh2EV/kgT cosQuk/n) =0  (95)
with
0<j,k<[n/2], j=k=0excluded (96)

where [x] is the integer part of x and for n even j + k = n/2 is also excluded. In
terms of the variable used in [52-61] for the isotropic lattice with s given by (88)

w =2(s+s71) 7

these singularities for n = 3,4,5,6 are given in Table 1, where we note that
sinh2E /kpT is real for —1/4 <w < 1/4 and is complex with |sinh2E/kpT| =1
for 1/4 < |w|. If we call € the deviation from the singular temperatures Trfl] ,)n, deter-
mined by (95), then for T > T, the singularity in x ®/*D(T) is

21Ut e (98)
and for T < T, the singularity in x ?/(T) is
27302, (99)

It is striking that the number of singularities increases with n and becomes dense
in the limit n — oo. This feature led Nickel to the conclusion that unless cancella-
tions occur there will be a natural boundary in the susceptibility x (7') in the com-
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plex T plane at the location (95). The existence of a natural boundary in the complex
temperature plane is not contemplated in the scaling theory of critical phenomena.

5.3 Fuchsian Equations

The next step in the study of the susceptibility was begun in 2005 [52] and has
continued in the series of papers [53—61]. In these papers exact Fuchsian differential
equations for the x ™ (T) in the isotropic case EV = E'* are determined by use
of Maple by first expanding the integrals in an appropriate variable such as w or
w? and then using Maple programs which obtain ODE’s from these series. The
resulting differential equations have very special properties such as being globally
nilpotent [58] which allow for extensive analysis to be carried out. These studies
have uncovered several new and important features of the susceptibility; namely that
the x ™ (w) have a direct sum decomposition and that they have further singularities
beyond those of (95).

5.3.1 Direct Sum Decompositions

In [55] and [60] it is shown for 1 < n < 6 that X(”)(w) have the same direct sum
decomposition seen already in the diagonal form factors

n—1
Xy =Y KT X (w) + 2% (w), (100)

m=1

n—1
X(2n+l)(w) — Z Krg12n+l)x(2m+l)(w) + Q(2n+l)(IU) (101)

m=1

where the £2(" (w) satisfy Fuchsian equations of order m

LW .M =0 (102)
with
n345 6
m 682946 (103)

The K J(.") are constants which for n = 3, 4, 5, 6 coincide with the values of K\ (0)
given in (26)—(29).
The operators in (102) factorize further. For L?) and L§4) we have we have

B _ 0. O 3
LY=Ly LY L (104)
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and

“4) @ 1@ “) “) “

1;c

where the numeral in the subscript indicates the order of the operators which are
given in [54] and [55]. The operator LS has been found in [57, 59] and [61] to
have the factorization

(5) S 76 76 76
Lyg =Ls - Ly - Ly - Ly (106)

where Lgsl) has the further direct sum decomposition (A.1) of [61]
S _ s
Ly =(Zy-N)®V,® (F3- F- L}). (107)

Similarly in (56) and (57) of [60] the operator Lfé) is shown to have the decompo-
sition

(©) ©)  7©) ;6
Lyg=Le ~Ly3 Ly (108)

where L(lg) has a direct sum decomposition into the sum of four operators but the

possible reducibility of Lg) has not yet been determined due to computational com-
plexity.

5.3.2 Singularities

The location of the singularities of the operators L,(fl' ) are obtained by examining the
roots of the polynomial multiplying the highest derivative d”" /dw™ and this analysis
shows that there are further singularities beyond the singularities at w = +1/4, co
and the Nickel singularities (95).

In [53] that the differential equation for x ) (w) admits additional singularities
at

30T
wo 3ENT (109)
8
which correspond to
1 +iT 1
_lEVT L (110)
4 V2
1 +ivT
SZT"/_, Is| = /2 (111

where we note the singularity at (110) is inside the unit circle |s| = 1 and thus cannot
appear in the principle sheet of the integral for x ) which is analytic for |s| < 1.
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There are no additional singularities in X(4) (w) and the singularities of x O (w)
are shown in (34) of [57] to be at the roots of following polynomial

w33 (1 = 4w)?2 (1 +4w) (1 — w)*(1 4+ 2w)* (1 + 3w + 4w?)
x (1+w)(1=3w+w?)(1 42w — 4w?)
x (1= w = 3w? +4w?) (1 + 8w + 20w* + 15w’ + 4w*?)
x (1= 7w+ 5w? — 4uw’)
x (1 + 4w+ 8w?)(1 — 2w). (112)

The singularities located by the roots of the first line in (112) are identical with
the location of singularities of x® and the roots of the second line are the Nickel
singularities of x®. Most of the remaining singularities correspond to complex
values of s not on |s| = 1.

6 Diagonal Susceptibility

The integrals (77) for the n particle contribution to the susceptibility x ™ (T’ are
quite complex and the Maple-based studies cannot be extended much beyond their
present limits. Therefore it would be of great utility if a simpler set of integrals
could be found which would still incorporate all significant analytic features of the
x ™. Several such simplified modifications of the integrals have been studied [56]
but by far the most natural case is to restrict the two dimensional sum over the
lattice positions M, N in (74) to the lattice diagonal M = N and thus to consider
the susceptibility that will result if a magnetic field is applied only to the diagonal

o0

ksTxa®) =Y {(o00on.n)— M}, (113)

N=—o0

where the dependence on T is now for all EY and E” in terms of the single variable
t defined by (10) for T < T, and by (13) for T' > T,.

This diagonal susceptibility has been studied in [62] and [63] and has been found
to have the remarkable simplification over the bulk susceptibility that all singular-
ities of the differential equations are at s =0, co and |s| = 1. There are no other
complex singularities for |s| # 1 such as appear in x  (r). Furthermore Xf) (t) and
xf) (t) have been found to be explicitly expressed in terms of generalized hyperge-
ometric functions 1 £).
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6.1 Integral Representations

From the integral expressions for f () n(#) of (16) and (17) given in [12] and [14],
we find in [62] the expansion for T < T

o0
kpTxa—(0) =1 =" " 50 (114)
n=1
and for T > T,
o0
kpTxa+ () =(1—0"> " ¥ 2 V), (115)
n=0

where

1 2n

(2n)( 1) = " / / 1—[ dx L +t"xy--x
) o T
(n!)? nz" 0 1 1L —1"xp--x2

XH( x2j-1(1 = x2;)(1 — tx2;) )‘/2

izl x2j (I —x2j—1)(1 —tx2j-1)

< IT T (0 —tx2jm1x007?

1<j<nl1<k<n

X l_[ (x2j—1 — x2k—1)? (x2j — x20)* (116)
1<j<k<n
and for T > T,
(n+1) 12041
@n+1) "
KO = / /0 1[[1 dxy

L2 xp 1/2
x 1 — 172 g Xt ’ 1_[((1 —x2;)(1 —tx25) 'x2j)

j=1
n+1 .

X 1_[ (1 = x2j—)(1 —1x2j-1) - x2j—1) /
j=1

x 1_[ 1_[ (1 —tx2j1x00) >

1<j<n+11<k<n

X l_[ (x2j—1 — X2%—1)* l_[ (x2j — x20)*. (117)

1<j<k<n+1 1<j<k<n
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The expressions (116) and (117) are, indeed, much simpler than the corresponding
expressions for x ™ given in (77). In particular

AV = —— (118)
d 1—¢1/2

and

0= 105 (119)

which are simpler than (85) and (86) respectively. Most noticeable is that x @ (w)
in (86) has a logarithmic singularity at # = 1 (w = 1/4) while x\” () in (119) does
not.

6.2 Root of Unity Singularities

In addition to the singularity at # = 1 it is straightforward to see from the integral

expressions (116) and (117) that X(gzn)(t) has singularities at

0=1 (120)
of the form

2 ne (121)
and X[(12”+1)(t) has singularities

=1 (122)
of the form

n+D?=1/2 (123)

where € is the deviation from #y. These are the analogues for the diagonal suscepti-
bility of the Nickel singularities of the bulk susceptibility x ™ of (95).

6.3 Direct Sum Decomposition

The x g(l")(t) have the same direct sum decomposition seen already in the diagonal
form factors and x ™ (w)

n—1
2 2 2j 2
1" 0= Y K k28" o, (24)
j=1
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(2n+1)(t) _ ZK(an) (2J+1)(t) + 9(2”+1)(t) (125)
j=l1

where K;’?} are constants. However, unlike X(") (w), the operators Lfin) which anni-

hilate SZ[(Z") (#) have a further direct sum decomposition

L =L+ LG, and LG =L+ L) (126)

6.4 Results for x(3) ()

For Xf) (1) we explicitly find by combining [58] and [62] and setting x = 7'/ that

xi @) = Xfi( )+ x(3)( ) — —x“)(x) (127)
where
1
X () = = =P, (128)
1 1
X () = (1—x)22F1(1/2’_1/2; 1;x%) — _x2F1(1/2, 1/2; 1;x%)  (129)
and
(3) (14+2x)(x+2) |: Y
3(0) = TSI F(1/6,1/3;1: Q)
Jr2TQI’"(1/6’1/3:1;Q)F(7/6,4/3;2; Q)} (130)
with
27 (14 x)%x2
g (131
where we note that
— x)2 2 2
1—0= (1 —-x)"(1+2x)*2+x) 132

4(1 4+ x +x2)3

From (127) and (128) we see that in (125) we have K" = 1/3.
We see from (117) that Xf)(x) vanishes when x — 0 as x*. However, X(3) (x)
and x (x) are constant as x — 0 and X (x) vanishes hnearly in x. The three

constants in (127) are determined by matchlng with the x* behavior of X(S) and
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this requires that the three constants will solve a set of five (overdetermined) linear
equations.
As x — 1 we find that y, (3) diverges as

3 (y) = ;<l _ 5m N 4 ) ~0.016329- .
= x\3 18I2(5/6)r2(2/3)  r2(1/6)r1/3))  1—x
(133)

Furthermore X (x) has an additional singularity at x — ¢¥27//3 which, to lead-
ing order is

4/516 .
(3) 3 +57i/12 _7/2
Xising =~ 5. /1272, (134)

6.5 Results for x(4) ()

These results have been extended in [62] and [63] to x, @ (t) where is shown that

10 =5 x5,43(r>+ T 23 T ki = 5 xfﬁ(r) (135)
where
X =xPw. (136)
Xy (@) = ( )zzFl(l/z —1/2:1:0)% — 3 Fy(1/2,1/2: 1, 1)?

—lz—_ttF(l/Z,l/Z;1;t)2F1(1/2,—1/2;1;t) (137)

and
X = Az -4 F3([1/2,1/2,1/2,1/21; [1, 1, 11F%) (138)

with

21662 —¢—11

A3 =2014+0D} + = ———— %4>
3 t—1

13112 — 4t —11

- tD; +t. 139
+3 1 r + ( )

The smgular behav10r ast — 1 of X(4) (t) and X 5 is easily obtained and the

singularity of X d, 4 at t = 1 is obtained by use of the analytic continuation formula
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of Biihring [67]. The final result [63] is that as t — 1

x® @) > 1— L[64+ 1631, — 45)]
8(1—1) 3n2
7 16 1 16
1 — In? 140
Tl " T Ten? " 11 (140)
where
31 — 41, =—-2.2128121--- (141)
has been given to 100 digits.
At the root of unit singularity + = —1 the leading singular behavior is
1
) 7
—— {1+ In(1+71). 142
Xa —>26880(+)n(+) (142)

6.6 x )

The ODE satisfied by x [35) (x) has been studied in [63] modulo a large prime. It is

found that the minimal order ODE is of order 19 and that the operator L§15~)19 has the
decomposition
6 _ 70 (5)

Lijg=Lgr® Ly, (143)
where Lgf)z is the second order operator which annihilates Xf% (x) and L;S_)” has
singularities at x = 0,00, 1, — 1, x3= et/ xs = oFIMI/S  oFATI/S \yhere the
non-integer exponents at x3 are 5/2,7/2,7/2 and at x5 are 23 /2. It has been further
found that

5) (5) 5)
Livr=Lae Lan (144)
with
(5) 3) 3) (5) (5) (5) (5) (5)
Ld;ll = Ld;l ® Ld;3 ® (Wd;l : Ud;]) ® (Ld;4 : Vd;] : Ud;]) (145)

where L‘(ﬁ)m annihilates Xy;)n and the remaining operators in this decomposition are

all given in [63].

6.7 Singularities and Cancellations

By examining the integral representations for X(") (w) (77) and X;") (1) (116), (117)
it is clear that these integrals have no singularities for |sinh2E/kpT| <1 ort < 1.
The singularities at |sinh2E/kpT| < 1 of the differential equations for x ™ (w)
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will only appear in analytic continuations of the integral in the complex plane of the
variable w. The corresponding differential equations for xé")(t) are significantly
simpler because they have singularities only at t =0, oo and || = 1.

It remains to discuss the singularities in the differential equations which do lie on
|sinh2E/kpT| =1 and to give an explanation for the observation that the singular-
ities of the ODEs for x *~2™ (w) and Xylfzm)(t) are also singularities of x ™ (w)
and x Lg") (r) respectively even though the integrands are singular only at the points
given by (95) for x ™ (w) and by (120) and (122) for x" (¢).

The resolution of this is easily seen for X;") (#). By an examination of the integrals
(116) and (117) we see that there are paths of analytic continuation possible in the

complex ¢ plane where the contour of integration must be deformed past the pole at
1-— IX2jX2k41 = 0 (146)
@n1) (4

and the residue at that pole will reduce the denominators in Xf” (¢) and yx,
from

l_tn_xl...X2n (147)
and

1— " 20 g (148)

to the denominators in Xf"*z) () and Xf"*l)(t) respectively with n — n — 1 and

two less integration variables. Therefore, the singularities of Xg(ln_zm)(t) will not
appear on the principle sheet of the integral which is analytic at # = 0 but only on
analytic continuations to non-physical branches. The similar phenomenon occurs
for x ™ (w).

It remains to reconcile this non appearance of the singularities of xé"_b") () in

the physical sheet of Xyl)(t) with the direct sum decompositions (124) and (125).

This will be accomplished by showing that the term Q(g") (#) has singularities which

exactly cancel the singularities on XCE") (t). This requires the solution of a global
connection problem which has not yet been explicitly done even though from the
examination of the original integral the resulting exact cancellation must hold.

7 Conclusion

Now that we have summarized the known features of the Ising correlations, form
factors and susceptibility we can proceed to discuss what is not known. This is the
fascinating, mysterious and thus romantic part of the subject.
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7.1 Conformal and Quantum Field Theory

One of the most important features of the Ising model is that the scaling limit satis-
fies all the axioms for a massive Euclidean quantum field theory and that at 7 = T,
the long range correlations are those of a conformal field theory with central charge
¢ =1/2. This is in fact the earliest conformal field theory known and from this be-
ginning a vast new field of mathematics and physics has been developed in the last
30 years. However, the Ising model is much more than a conformal field theory be-
cause we have a vast number of results for 7' # T, which are the simplest examples
of properties of massive Euclidean quantum field theories. Part of the romance is
the exploration of how these Ising results can be used to extend massless conformal
field theories into the massive region.

7.2 Form Factors, Exponential Forms and Amplitudes

The derivation [12] of the exponential and form factor expansion for the diagonal
Ising correlation is much more general than this special case. Indeed in [12] it is
proven that every Toeplitz determinant (4) with a generating function ¢ (§) such that
In¢(£) is continuous and periodic on || = 1 has both an exponential and a form
factor expansion. Furthermore these Toeplitz determinants are also expressible as
Fredholm determinants [64] (at times in several different ways [65]). Consequently
the Ising computations have subsequently been extended to several very important
problems including the seminal work on the one dimensional impenetrable Bose gas
and on random matrices by Jimbo, Miwa, Mori and Sato [66].

To illustrate the differences between the form factor and the exponential repre-
sentation of the correlation functions, we consider the computation by Tracy [68] of
the constant A7, of (62). In the scaling limit the scaled correlations in the general
case where EV # E" depend only on the single variable r (65). Therefore we can
restrict attention to the scaled form of the diagonal correlation (o ooy, n) and con-
sider the lambda extension of the scaling form of the exponential form (14) which
we write as

o
G_(r; M) :epokzng(zn)(r), (149)
n=1
where
¢® ()= lim F @), (150)
scaling ’

which depends on the single variable r instead of the two independent variables N
and 7. Tracy finds that, as r — 0,

g () = —apInr + B, + o(1). (151)



288 B.M. McCoy

Therefore, defining the lambda dependent sums

o oo
aM) =Y A an,  BR)=Y 27" B, (152)
n=1 n=1
we find
B0
G_(r; M) ~exp{—a(W)Inr + BV} = = (153)
In the Ising case where A = 1 the functions specialize to
a(l)y=1/4, B(1)=InA (154)

where A is the constant in (61).
If, however, instead of the scaled exponential form we define the scaled limit of
the form factors f ]i,zr;\; (t) as

Fe@y = lim fIN0), (155)
scaling ’
thenasr — 0
n
F@ ) =3 a1k r +o(1). (156)
k=0

Thus, in order for (153) to agree with the r — 0 behavior of the form factor expan-
sion, we need

[l ) [ (z)

k=0 k=0 """ \n=1

o0 n
=1+ 27 gty (157)
k=0

n=1

to hold term by term for each power A2". The requires an infinite number of identi-

ties between the a,?").

As an additional remark we note that if we rewrite the integral (16) for ;,2';\3 as
a contour integral, rescale the variables x; by x; = ~'/2y; and then send yy; —
1/y2x we see that as t — 1 the integral has logarithmic divergences as in (156). The
amplitudes a, are closely related to the special case with p = 1 of the integral found

by Dotsenko and Fateev [69] in their study of four point correlations in conformal
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field theories with central charge ¢ < 1

1 ! ’ iy
In,m<oe,ﬂ;p>=m]_[fo dm;’a—ri)ﬂ]"[/o drf (1 - )’
1=

i=1

20’ 2p nym P
x E(ri — 1)) E(n — 7)) 1_,[ aooe  U®
where P indicates the principal value and
o =—pa, p=—p'B p=p" (159)

7.3 Exponentiation

Form factor expansions exist for many massive models of quantum field theory
including sine-Gordon and the non-linear sigma model [70] and similar form factor
expansions exist [71, 72] for the XXZ model on a chain of finite length

L

_ y_y
HXXZ_—Z{GJ)FU;‘H~|—ajoj+1+Ao;o;+l+HU;}. (160)

j=1
Moreover the Feynman expansion of amplitudes in quantum field theory is also what
we have called here a form factor expansion. In all of the models there are limiting
cases where series of multiple dimensional integrals expand to series in powers of
logarithms which need to be summed. However, unlike the Ising correlation func-
tions these form factor expansions do not come from either Toeplitz or Fredholm
determinants and thus the exponentiation methods of Ising correlations are not ap-
plicable.

Over the years an immense effort has been made to sum the form factor series of
logarithms. In quantum field theory this starts with the classic 1939 paper of Bloch
and Nordsiek [73] on resummation of infrared divergences in quantum electrody-
namics. A second example is the Regge theory of the 60’s and 70’s where the 2nth
order Feynman diagram in the expansion of a four point scattering amplitude is
shown to diverge as the energy s — oo with a fixed momentum transfer ¢ as

In" s

g2 a(r)" (161)

n!
This is a “leading” log approximation and is analagous to the Ising case if only the
first term in the series (152) for «,, is retained. More recently there has been a great
deal of work on quantum chromodynamics' where many non leading terms summed
by the use of an ingenious decomposition of the multidimensional integrals.

IThis literature is also vast. For example see [74-76].
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In the theory of integrable systems a great deal of effort has been devoted to
compute the long range asymptotic behavior of the correlations of the XXZ model in
the massless region —1 < A < 1 from multiple integral representations. One method
is presented in [77] which shows how to modify the Fredholm determinant form
which holds for A = 0 by suitably picking out the important pieces of the multiple
integrals. This has led to the computation of both the exponents and the amplitude
of the long range behavior of the correlations when the H # 0. The study of the
correlations from the form factors is begun in [71, 72] with more results announced
to be forth coming. A full exploration of the relation of these subjects is beyond the
scope of this article.

7.4 Short Distance Versus Scaling Terms

In the n-particle expansions of the full (76), (75) and the diagonal (114), (115)
susceptibility the X(”)(t) and the X,fln)(t) will (for n > 3) have terms which contain
powers of In¢. From this it might be inferred that the susceptibility will contain
terms of the form (1 — ¢)!/4T7 1n9(1 — r). However, from the extensive calculations
on long low and high temperature series expansions made in [24] and [51] such
terms do not appear to exist. Instead the susceptibility is conjectured to have the

form for t — 1 of

00 ' oo [V4l
ksTx(x=0-0""*3"cP0 -0/ + 3361 )70l (1 - 1).
j=0 q=0 p=0

(162)
The first term is called the “scaling function”. The second term is called the “back-
ground” or “short distance” term and is numerically obtained by summing correla-
tion functions instead of form factors. In [51] it is stated that the “scaling function”
is determined by conformal field theory while for the “short distance” term here is
“no explicit prediction”. In [24] the belief is stated that the separation into “scaling”
and “short distance” parts is “tantamount to the scaling argument that in the critical
region there is a single length scale proportional to (1 — #)~" with v = 1”. It would
be highly desirable if this distinction between “scaling” and “short distance” terms
could be made precise and if both terms could be obtained by use of the form factor
expansion alone.

7.5 Natural Boundaries and A Extensions

Perhaps the most perplexing question concerning the relation of the Ising model on
a lattice with the scaling field theory limit is the existence of the natural boundary
in the susceptibility implied by the singularities (98), (99) found by Nickel [9, 10].
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The magnetic susceptibility is the second derivative of the free energy with respect
to an external magnetic field H interacting with the spins as —H »_ .k Ojk- In the
scaling limit the Ising model in a magnetic field is also a field theory and the ana-
Iyticity properties of this field theory have been extensively studied by Fonseca and
Zamolodchikov [78] with the conclusion that there is no natural boundary. How can
this be reconciled with the computations of [9] and [10]?

The existence of the natural boundary suggested by Nickel in [9] and [10] rests
on the accumulation of the singularities (98) and (99) and the assumption that there
is no cancellation. However, for this argument to hold we need to be able to show
that the limit of ¢ approaching the location of the supposed natural boundary (95)
will commute with the infinite sum over the n particle contributions M(T) in (75)
and (76). Since the natural boundary does not exist if only a finite number of the
x "™ (T) are included this interchange need to be investigated. It is also possible that
the existence of a natural boundary could depend on the value of X in the lambda
extensions of (75) and (76)

o0
kpT x4 (T:2) = (1 =) A=A )2y @D for T > T, (163)
j=0

o0
kgTx_(T: 1) = (1— t)l/4ZA2-/X(2j)(T) forT <T.. (164)
j=1

These possibilities remain to be investigated.

7.6 Row Correlations

All of the results obtained for the diagonal correlation, which depend on the single
variable ¢, can be extended to the row correlation, which depends on the two vari-
ables o and a in a symmetric fashion (5). In particular it has been pointed out
to me by Jean-Marie Maillard and Nicholas Witte in private conversations that the
Painlevé VI results of Jimbo and Miwa [37, 38] can be extended to a two variable
Garnier system.” However, this system must possess some most interesting proper-
ties because one of the most important properties of the Ising model is the fact that,
when these two variables are rewritten as

_ sinh2E"/kgT

k=sinh2E"/kpT sinh2E" /kpT and r=-—Fot—,
sinh2E"/kpT sinh2E"/kpT and r sinh2E" [ kT

(165)
the dependence on k (the modulus of the elliptic functions) and the anisotropy ratio
r which is related to the spectral variable of the star triangle equation [79] is dra-
matically different. These results for Garnier systems have also yet to be obtained.

ZFor a modern exposition of Garnier systems see [40].
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8 Romance Versus Understanding

In a lecture given in Melbourne in January 2006 [80], I gave the following definition
of “understanding”

No one can be said to understand a paper unless he is able to generalize the
paper.

This definition is open to criticism on at least two grounds. Firstly the use of
the word “he” has a sexist implication which is neither appropriate nor intended.
Secondly, there are surely subjects which are fully understood where further gener-
alization is pointless. An illustration of this are the laws of thermodynamics which
have been fully understood by physicists for many decades (even if they are not
accepted by the overwhelming majority of voters and politicians).

However, precisely because thermodynamics is fully understood, it has lost the
mystery it had at the time of Gibbs, Boltzmann and Ehrenfest. This illustrates the
great truth that understanding is the enemy of romance because once the mysteries
are understood the romance dies.

Fortunately for romance, there are many mysteries of the Ising model which are
far from being understood. The romantic in me says that, even when these mys-
teries have been understood, the understanding of the mysteries will generate new
mysteries and the romance of the Ising model will be everlasting.
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A,(,l)-Geometric Crystal Corresponding
to Dynkin Index i =2 and Its
Ultra-Discretization

Kailash C. Misra and Toshiki Nakashima

Abstract Let g be an affine Lie algebra with index set / = {0, 1,2, ...,n} and gL
be its Langlands dual. It is conjectured in Kashiwara et al. (Trans. Am. Math. Soc.
360(7):3645-3686, 2008) that for each i € I \ {0} the affine Lie algebra g has a
positive geometric crystal whose ultra-discretization is isomorphic to the limit of
certain coherent family of perfect crystals for g'. We prove this conjecture for i =2
and g = Agl).

1 Introduction

Let A = (a;j)i,jer, I =1{0,1,...,n} be an affine Cartan matrix and (A, {;}cs,
{o)}ier) be a given Cartan datum. Let g = g(A) denote the associated affine
Lie algebra [8] and U, (g) denote the corresponding quantum affine algebra. Let
P=ZA0 QLA D - ®LA, ®ZS and PY =TZay ® Za) ® --- @ Za,) & Zd
denote the affine weight lattice and the dual affine weight lattice respectively. For
a dominant weight A € PT™ ={u € P | u(h;) > 0 forall i € I} of level I = A(c)
(c = canonical central element), Kashiwara defined the crystal base (L(%), B(}))
[13] for the integrable highest weight U, (g)-module V(1). The crystal B(}) is
the ¢ = 0 limit of the canonical basis [21] or the global crystal basis [14]. It has
many interesting combinatorial properties. To give explicit realization of the crystal
B(}), the notion of affine crystal and perfect crystal has been introduced in [10].
In particular, it is shown in [10] that the affine crystal B(A) for the level [ € Z+
integrable highest weight U, (g)-module V(1) can be realized as the semi-infinite
tensor product --- ® By ® B; ® B;, where By is a perfect crystal of level /. This
is known as the path realization. Subsequently it is noticed in [12] that one needs
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a coherent family of perfect crystals {B;};>1 in order to give a path realization of
the Verma module M (L) (or U; (9). In particular, the crystal B(oco) of U; (9
can be realized as the semi-infinite tensor product -+ ® Bso ® Bso ® Bso Where
Boo is the limit of the coherent family of perfect crystals {B;};>1 (see [12]). At
least one coherent family {B;};>1 of perfect crystals and its limit is known for
g=AV, B,V DV, A2 | AD DR DY, G (see (11,12, 17, 22, 30]).

A perfect crystal is indeed a crystal for certain finite dimensional module called
Kirillov-Reshetikhin module (KR-module for short) of the quantum affine algebra
Uqy(9) (I4, 5, 19]). The KR-modules are parametrized by two integers (i, ), where
i € I'\{0} and [ any positive integer. Let {zw;};</\ {0} be the set of level 0 fundamental
weights [15]. Hatayama et al. ([4, 5]) conjectured that any KR-module W (Iw;)
admit a crystal base B*! in the sense of Kashiwara and furthermore B"/ is perfect if
[ is a multiple of ¢, :=max(1, ﬁ) This conjecture has been proved for quantum
affine algebras U, (g) of classical types ([2, 3, 27]). When {Bi’l}lzl is a coherent
family of perfect crystals we denote its limit by Bso(w;) (or just B if there is no
confusion).

On the other hand the notion of geometric crystal is introduced in [1] as a ge-
ometric analog to Kashiwara’s crystal (or algebraic crystal) [13]. In fact, geomet-
ric crystal is defined in [1] for reductive algebraic groups and is extended to gen-
eral Kac-Moody groups in [23]. For a given Cartan datum (A, {«;}ier, {o; }ier),
the geometric crystal is defined as a quadruple V(g) = (X, {e;i}ier, {Vi}ier, {€i}icl),
where X is an algebraic variety, ¢; : C* x X —> X are rational C*-actions and
i, & » X —> C (i € I) are rational functions satisfying certain conditions (see Def-
inition 1). A geometric crystal is said to be a positive geometric crystal if it admits
a positive structure (see Definition 3). A remarkable relation between positive geo-
metric crystals and algebraic crystals is the ultra-discretization functor /D between
them (see Sect. 2.4). Applying this functor, positive rational functions are transfered
to piecewise linear functions by the simple correspondence:

X
XXYy—>x+Yy, —F—Xx—-Y, X 4+ y —> max{x, y}.

It was conjectured in [18] that for each affine Lie algebra g and each Dynkin
index i € I \ 0, there exists a positive geometric crystal V(g) = (X, {e;}ier,
{vilier, {&i}ier) whose ultra-discretization D (}) is isomorphic to the limit B
of a coherent family of perfect crystals for the Langlands dual g%. In [18], it has
been shown that this conjecture is true for i = 1 and g = Af,l), B,(l]), C,gl), D,(,l),
A8, 48 D%,
g= Df)) and i = 1 has been constructed and it is shown in [26] (resp. [7]) that the
ultra-discretization of this positive geometric crystal is isomorphic to the limit of a
coherent family of perfect crystals for gl = Df) (resp. gl = G;l)) given in [17]
(resp. [22]).

In this paper we have constructed a positive geometric crystal associated with
the Dynkin index i = 2 for the affine Lie algebra Af,l) and have proved that its

In [25] (resp. [6]) a positive geometric crystal for g = G(Zl) (resp.
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ultra-discretization is isomorphic to the limit B> of the coherent family of perfect
crystals {Bz”}lzl for the affine Lie algebra Af,l) given in [11, 28].

This paper is organized as follows. In Sect. 2, we recall necessary definitions
and facts about geometric crystals. In Sect. 3, we recall from [28] (see also [11])
the coherent family of perfect crystals {B>'};>for g = Af,l) and its limit B>, In
Sects. 4, we construct a positive affine geometric crystal V = V(Af,l)) explicitly. In
Sect. 5, we prove that the ultra-discretization X = UD(V) is isomorphic to the limit

B2 which proves the conjecture in [18, Conjecture 1.2] fori =2 and g = A,gl).

2 Geometric Crystals

In this section, we review Kac-Moody groups and geometric crystals following [1,
20, 23, 29].

2.1 Kac-Moody Algebras and Kac-Moody Groups

Fix a symmetrizable generalized Cartan matrix A = (a;;);, je; With a finite index set
I.Let (4, {aj}ier, {ociv }ier) be the associated root data, where t is a vector space over
C and {«;}ie; C t* and {Oll-v }ier C t are linearly independent satisfying o (aiv) =
aij .

The Kac-Moody Lie algebra g = g(A) associated with A is the Lie algebra over
C generated by t, the Chevalley generators ¢; and f; (i € I) with the usual defining
relations [9, 29]. There is the root space decomposition g = P, go- Denote the
set of roots by A :={a € t*|a £ 0, go # (0)}. Set Q =), Zoy, O+ =) ; Z>ow,
QY :=3);Za/ and Ay := AN Q. Anelement of A, is called a positive root. Let
P C t* be a weight lattice such that C ® P = t*, whose element is called a weight.

Define simple reflections s; € Aut(t) (i € I) by s;(h) :=h—«; (h)oziv , which gen-
erate the Weyl group W. It induces the action of W on t* by s; (1) := A — A(aiv ;.
Set A™ :={w(x;)|w € W, i € I}, whose element is called a real root.

Let g’ be the derived Lie algebra of g and let G be the Kac-Moody group associ-
ated with g’ [29]. Let U, :=exp gy (o € A™) be the one-parameter subgroup of G.
The group G is generated by U, (o € A™). Let U™ be the subgroup generated by
Uty (@€ AT =A"NQy), e, Ut = (Usqla € AT).

For any i € I, there exists a unique homomorphism; ¢; : SL>(C) — G such that

(o )=t a((o 1))=emeen
@((i ?)):exp(rfi).
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where ¢ € C* and 1 € C. Set ;' (c) := ' xi(t) :=exp(te;), yi(t) :==exp(tf;),
Gi = ¢i(SL2(C)), T; := ¢i({diag(c, c)|c € CV}) and N; := Ng,(T}). Let T
(resp. N) be the subgroup of G with the Lie algebra t (resp. generated by the N;’s),
which is called a maximal torus in G, and let BT = U*T be the Borel subgroup
of G. We have the isomorphism ¢ : WS N/T defined by ¢(s;) = N;T/T. An ele-
ment 5; := x; (= Dyi(Dxi (=1) = ¢i( 2, ') is in N (T), which is a representative
of s; e W=Ng(T)/T.

2.2 Geometric Crystals

Let X be an ind-variety, y; : X — C and ¢; : X —> C (i € I) rational functions on
X,and ¢; : C* x X —> X ((c, x) = €{ (x)) arational C*-action.

Definition 1 A quadruple (X, {e;}icr, {Vi, }iel, {€i}ic1) is a G (or g)-geometric
crystal if

1. {1} x X C dom(e;) foranyi € I.

2. yj(ef (x)) =ctiy;(x).
3. ¢;’s satisfy the following relations.

C C: C C .

eile.zze.zeil 1faij:aji:O,

€1 ,C1¢2 €3 __ €2 C1C2 C] o g —

A =eje e i ifajj=a;; =-1,

c1 €1€2 ciey c cy c1cp €12 ¢ .

il jl i12 .2=ejzei12 jl eil ifaj =—2,aj;=—1,
3 2 32 32 2 3

1,002 T2 419 eiea 02 02,0102 612 6142 612 o1 e =3 ai=—1

PC G e e e T e e e e Hdp =T =

4. ei(ef(x)) =c e (x) and & (¢§(x)) = & (x) if a;, j = aj; =0.

The condition 4 is slightly modified from the one in [6, 25, 26].
Let W be the Weyl group associated with g. For w € W define R(w) by

R(w) :={(i1,izs....i1) € I'|w = 5,51, -+ 53, ],

where [ is the length of w. Then R(w) is the set of reduced words of w. For a word
i=(1.....0)) € R(w) (we W), seta¥) :=s;---s;,,, (;;) (1 <j<I)and

ei: T xX—>X

aM @) a®@ 1) ad (1)
e ey (x).

Liy) -
(1, x) > ¢ (x) :=¢; is

Note that the condition 3 above is equivalent to the following: ¢j = ey for any w €
W,i,i' € R(w).
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2.3 Geometric Crystal on Schubert Cell

Let w € W be a Weyl group element and take a reduced expression w = s;, - - - ;..
Let X := G/B be the flag variety, which is an ind-variety and X,, C X the Schubert
cell associated with w, which has a natural geometric crystal structure ([1, 23]). For
i:=(1,...,ik),set

By = {Yi(cl,...,ck) =Y (c1)--- Yy (cr)ler, ..., ck E(CX} Cc B, 2.1

where Y; (c) := yi( %)wiv (c).If I ={iy, ..., ik}, this has a geometric crystal structure
([23]) isomorphic to X,,. The explicit forms of the action ef, the rational function
& and y; on By are given by

ef(Yi(Cl, cees Ck)) =Yi(Cy,...,Ch)),

where
c 1
lemij,im=i Qi Gy + Zj<m§k,im=i Qi Gy
L €1 " Cu—1 Cm €1 " Cu—1 Cm
C' =Cj ) (22)
J J c 1
Zl§m<./‘,im=i i i i + ijmfk,im:i i Ty
€ Cn—1 Cm < C Cm
1
si(Yiler, ..o ec0) = ) R it 2.3)
l<m<kiw=i €1 " Cm—1 Cm
Qi i Ay i
vi(Yiler, ..., c0)) =c¢; " et (2.4)
Remark As in [23], the above setting requires the condition I = {iy, ..., i}. Oth-

erwise, set J :={i1,...,ix} C I and let g; C g be the corresponding subalgebra.
Then, by arguing similarly to [23, 4.3], we can define the g;-geometric crystal struc-
ture on B; .

2.4 Positive Structure, Ultra-Discretizations and Tropicalizations

Let us recall the notions of positive structure, ultra-discretization and tropicalization.

The setting below is same as in [18]. Let T = (C*)/ be an algebraic torus over C
and X*(T) := Hom(T, C*) = Z' (resp. X+(T) := Hom(C*, T) = Z!) be the lattice
of characters (resp. co-characters) of 7. Set R := C(c) and define

v:R\{0} — Z
f(e) = deg(f(0).

where deg is the degree of poles at ¢ = oo. Here note that for fi, f> € R\ {0}, we
have

fi

v(f1/2) =v(f1) +v(f2), v(
f2

)=v(f1)—v(f2)- 2.5
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A non-zero rational function on an algebraic torus 7T is called positive if it can be
written as g/ h where g and h are positive linear combinations of characters of 7.

Definition 2 Let f: T — T’ be a rational morphism between two algebraic tori T
and T’. We say that f is positive, if n o f is positive for any character n: T’ — C.

Denote by Mor™ (T, T') the set of positive rational morphisms from T to T".

Lemma 1 ([1]) Forany f € Mor™ (T}, T») and g € Mor™ (T», T3), the composition
g o f is well-defined and belongs to Mor™ (T}, T3).

By Lemma 1, we can define a category 71 whose objects are algebraic tori over
C and arrows are positive rational morphisms.

Let f: T — T’ be a positive rational morphism of algebraic tori 7 and T’. We
define a map f: X.(T) — X«(T) by

(n, F©)=vno fob),

where n € X*(T') and & € X.(T).

Lemma 2 ([1]) For any algebraic tori Ty, T, T, and positive rational morphisms
f €eMor™ (T, T»), g € Mort (T, T3), we have go f =g o f.

Let Get denote the category of sets with the morphisms being set maps. By the
above lemma, we obtain a functor:

UD: T+ —> Get
T > Xu(T)
(f:T—>T) > (f:X:(T)— X.(T"))

Definition 3 ([1]) Let x = (X, {ei}ier, {Wt;i}icr, {&i}ier) be a geometric crystal, T’
an algebraic torus and 6 : T’ — X a birational isomorphism. The isomorphism 6 is
called positive structure on x if it satisfies

1. For any i € I the rational functions y; 00 : T" — C and ¢; 00 : T’ — C are
positive.

2. Forany i € I, the rational morphism e; g : C* x T' — T' defined by ¢; g (c, 1) :=
0! oef 00(1) is positive.

Let 6 : T — X be a positive structure on a geometric crystal x = (X, {e;}ier,
{wti}icr, {€i}ier). Applying the functor UD to positive rational morphisms e; g :
C*xT—Tandy;o00,¢g 06 :T — C (the notations are as above), we obtain

ei =UD(ejp):Z x Xs(T) = X4(T),
wtj :=UD(y; 00) : X, (T') —> Z,
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i :=UD(g 00): X«(T") — Z.

Now, for given positive structure & : T’ — X on a geometric crystal x = (X, {e; }ies,
{Wt;i}ier, {€i}icr), we associate the quadruple (X.(T"),{€;}ier, {Wti}ier, {€i}icr)
with a free pre-crystal structure (see [1, Sect. 7]) and denote it by UDg 7/(x). We
have the following theorem:

Theorem 1 ([1, 23]) For any geometric crystal x = (X, {ei}icr,{Vilic1. (€i}ic)
and positive structure 0 : T' — X, the associated pre-crystal UDg 1/(x) =
(Xa (T, {ei}ier, {Wtilier, {€i}ier) is a crystal (see [1, Sect. T])

Now, let GCT be a category whose object is a triplet (x,7T’,0) where x =
(X, {ei}, {yi}, {&i}) is a geometric crystal and 6 : T’ — X is a positive structure
on x, and morphism f : (xi, Tl/, 01) — (x2, T2’, 6,) is given by a rational map
¢: X1 — X2 (xi = (Xi,...))such that

X X5 X5 X X> X
poe, =e "0g, Vi o=y, g op=¢; ",

and fi=0;'09of : T/ — Ty,

is a positive rational morphism. Let CR be the category of crystals. Then by the
theorem above, we have

Corollary 1 The map UD =UDy 1 defined above is a functor

UD:GCt — CR,
(x. T',0) — X.(T'),
(f: (0. T{.61) = (x2. T3.62)) = (F: X (T]) = Xo(T3)).

We call the functor UD “ultra-discretization” as in [23, 24] instead of “tropical-
ization” as in [1]. And for a crystal B, if there exists a geometric crystal x and a
positive structure 6 : T — X on x such that UD(x, T, 0) = B as crystals, we call
an object (x, T’,0) in GC™ a tropicalization of B, which is not standard but we use
such a terminology as before.

3 Perfect Crystals of Type Af,l)

f,l), n > 2. In this section,

From now on we assume g to be the affine Lie algebra A
we recall the coherent family of perfect crystals of type Afll), n > 2 and its limit
given in [11, 28]. For basic notions of crystals, coherent family of perfect crystals

and its limit we refer the reader to [12] (see also [10, 11]).
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For the affine Lie algebra Aﬁ,l), let {ap, a1, ... an}, {0y, @), ...t} and {Ag, Ay,
.. A,} be the set of simple roots, simple coroots and fundamental weights, respec-
tively. The Cartan matrix A = (a;;);,jer, I =1{0, 1, ..., n} is given by:
2 ifi=,
aijj=431—1 ifi=(£1)mod(n+1),

0 otherwise

and its Dynkin diagram is as follows.
0

AN

1 2 n-1 n

The standard null root § and the canonical central element c are given by
§=ao+ai+--+a, and c=of +a] +---+a,,

where ¢ =2Ag— A1 — Ay +65, o =—Ai1+2A; —Ajp, 1 <i<n—1,0,=
—Aog— Ay—1 +24,.

For a positive integer [ we introduce A;,l)-crystals B?! and B> as

bji € Z>, ZjJrn ! bjj=1,1<j<2
Z,'zlbuzziiébzi,litin ’

2.1
B~ = {b =(bji)1<j<2,j<i<j+n—1

=S)z4 )=l

bji € 2. Y11 bji =0, l<]<2}

Now we describe the explicit crystal structures of B>/ and B%>°. Indeed, most of
them coincide with each other except for gy and ¢g. In the rest of this section, we
use the following convention: (x) = max(x, 0). For b = (b;;) we denote

zi=byi—byiy1, 2<i<n-—1 (3.6)

Now we define conditions (E,,) and (F},) for 2 <m < n as follows.

150, 2<k=m-1,

(F): Zk + Zk+1+ 0+ Zm—1 = <k<m 3.7)
Zm+Zmr1+-+ze>0, m=<k<n-—1,
Zk+ Zk+1+ -+ zm—1<0, 2<k<m-—1,

(Em): N " (3.8)
Zm +Zm+1+ -+ 2% 20, m<k<n-—1.

‘We also define

A(m) = (br2+biz+---+bym-1)+bGomy1 +bomia+---+bay), 2<m=n.
(3.9)
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Let A = min{A(m) | 2 < m < n}. Note that for 2 <m < n, A = A(m)
if the condition (F,) (or (E;)) hold. Then for b = (bj;) € B! or BZ,
ex(b), fk(b), ex(b), ok (b),k=0,1,...,n are given as follows.

ForO0<k <n, éx(b) = (b;i), where

k=0: blo=bi—1, bl =bim+1, by =by—1,
by iy =bans1+1 if (En).2<m=<n,
k=1: b/11=b11+1, b/12=b12—1,
Y<k<n—1- by =bu+1, bl gp1 =bik+1 — 1 ifbix = bo g,
- by, =ba +1, by pp1 =bok+1 — 1 ifbix <bogs1,
k=n: b/zangn—i-l, b/Z,n+1 =by 1 — 1
and b}i =bj; otherwise.
For 0 <k <n, fr(b) = (b)), where
k=0: Bl =biu+1, b, =bm—1, by =bu+1,
b/2,n+l =bynt1—1 if (Fp),2<m=<n,
k=1: by, =bi—1, b, =bpp+1,
2<k<n—1-: by =bu —1, bl g1 =b1iks1 + 1 if bk > by g,
- by, = b — 1, by iy =b2kst + 1 if bk < by,
k=n: Dy =bu—1, by, =byasr +1

and b;.l. = bj; otherwise. For b € B>l if &b or fkb does not belong to B>! then we
understand it to be 0.

1(b) =bia, @1(b) =by1 — b2,

ex(b) = b1 k+1 + (b2k+1 — b1i)+, @k (D) = bok + (b1 — b2, k+1)+,
for2<k<n-—1,

en(b) = b2 nt1 — bin, @n (D) = bop,

l—byps1 — A, be B>,

go(b) =
o®) {_bZ,n+1 — A, beBZ,oo,

l—b1—A, be B!

b) =
vo(b) {—b]] — A, be B>,
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Hence the weights wt; (b) = ¢;(b) — €;(b),0 <i <n are:

wio(b) = by pt1 — bi1,

wty(b) = b1y — bia — b,

witg(b) = (b1k — b1 k+1) + (bok —bojy1) (1 <k <n),
Wity (b) =bin +bon — bo 1.

The following results have been proved in [11, 28]:

Theorem 2 ([11, 28])

1. The Afll)-crystal B2l is a perfect crystal of level I.
2. The family of the perfect crystals {B2*l}121 forms a coherent family and the crys-
tal B% s its limit with the vector bog = 0)2xn.

4 Affine Geometric Crystal V(A,(f))

Letc =)/« be the canonical central element in the affine Lie algebra g = AL
and {A;|i € I} be the set of fundamental weights as in the previous section. Let
o denote the Dynkin diagram automorphism. In particular, o (A;) = A;p7, where
i+ 1= (i + 1) mod(n + 1). Consider the level 0 fundamental weight @ := Ay —
Ag.Let I =1\0, I, =1\n,and g; denote the subalgebra of g associated with the
index sets I;,i =0, n. Then gg as well as g, is isomorphic to A,.

Let W(w,) be the fundamental representation of U(; (g) associated with
([15]). By [15, Theorem 5.17], W (=) is a finite-dimensional irreducible integrable
U 4 (g)-module and has a global basis with a simple crystal. Thus, we can consider
the specialization ¢ = 1 and obtain the finite-dimensional Af,l)—module W(w»),

which we call a fundamental representation of A,gl) and use the same notation as
above. We shall present the explicit form of W (z,) below.

4.1 Fundamental Representation W (w3) for Af,l)

The Aﬁ,l)—module W (@) is an %n(n + 1)-dimensional module with the basis,
{G.pll<i<j<n+1],

where (i, j) denotes the tableaux:

The actions of e; and f; on these basis vectors are given as follows.
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For 1 <k <n, we have

i+1,)), i=k<j—1,
@ D=3GJj+1D, j=k,

0, otherwise,
Gi—1,)), i=k+1,
ex(i, )=9Gj—1, i<j—1=k,
0, otherwise,

(L, i#l,j=n+1,
0, otherwise,

Soi, j) =

(,n+1D, i#1,

eo(l, j) =
o(./) 0, otherwise.

Furthermore the weights of the basis vectors are given by:
wt(i, ) =N — A1 +Aj—Aj_y), 1<i<j<n+l,

where we understand that A, ;1 = Ap. Note that in W (@), we have (1,2) (resp.
(1,n+1))is a go (resp. g,) highest weight vector with weight @y = A> — Ag (resp.
o \my = A1 — Ay).

4.2 Affine Geometric Crystal V(Af,l)) in W(w3)

Now we will construct the affine geometric crystal V(Afll)) in W (@) explicitly. For
£ e (t:l)o, let £(§) be the translation as in [15, Sect. 4] and @; as in [16]. Indeed,

w; :=max(1, ﬁ)wi = o; in our case. Then we have
1Y
~\_ 2 )
1(@72) = 0" (Sp—15n—2 - 51) (SuSp—1 -+ $2) = 0wy,
2 2
t(wt(l,n+ 1)) = 0" (sp—28p—3 - $0) (Sn—15n—2 - 51) =1 0~ wo.

Associated with these Weyl group elements wi, wo € W, we define algebraic vari-
eties Vi, V, C W(@») as follows.

Vii= Vi) =Yy 1(2n—1) -+ Y1 1) Ya (k) -+ Y2 (x2)(1,2) | x; € C*},
Vo= {Va(y) :=Yu2(02n-2) - Yon) Ya1 Gu—1) - - Y1y (A, n + 1) | y; € C*}.

Using the explicit actions of f;’s on W (z») as above, we have fl.2 =0, foralli e1.
Therefore, we have

Yi(c) = (1 + ﬁ)@@) foralli e I.
C
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Thus we can get explicit forms of V| (x) € V| and Va2(y) € V5. Set

Vi(x) = Vi(xz, x3, ..., Xon—1) = Z Xij(, J),

I<i<j<n+l1
Vi) = Vayi,y2eoooym) = Y Yl ),
I<i<j<n+l

where the coefficients X;;’s and Y;;’s can be computed explicitly. These coefficients
are positive rational functions in the variables (x, ..., x2,—1) and (y1, ..., Y2n—2)
respectively and they are given as follows:

. Xi42Xn+i Xi+3Xn+i . XnXn+i P
X;i = i+l ol Xnti+1 Xn4i+2 + X2p—1" J n,
v Xig2Xn+i | Xig3Xnti XjXnti .
(x; Zit2inti 2it3tnti . Zjonwt <pn —
Xt (Kip1 + =0+ oot e Fo— ), j<n-—1,
Xn+is i 75 n,
Xin+1 = )
1, i=n,
(v Yi+2Yn+i Yit3Vn+i YjYn+i P <y —
Yij = Yt i1 + Ynti+l + Ynti+2 Tt Yntj—1 ), J=n-2,
. Yi4+2Yn+i Yi+3Yn+i . Yn—1Yn+i P—
i1+ Vntitl Ynti+2 oot yon—2 j=n-1,
Y yn"rl" 151511—2,
iin — .
1, i=n-—1,
. Y2Yn Y3Vn 4 .. YiYn << _
i (Y1 + ot T T ST ), 1=i=n-2
Y; 1= Y2¥n Y3yn . Yn—1Yn =n—1
bt Y Yn+1 + Yn42 + + Yon—2 "’ L=n ’
yl’lv i =n.
Now for a given x = (x2, x3,, ..., X2,—1) We solve the equation
Va(y) = a(x)Vi(x), (4.10)
where a(x) is a rational function in x = (x2, X3, ..., x2,—1). Though this equation

is over-determined, it can be solved uniquely by direct calculation and the explicit
form of solution is given below.

Lemma 3 We have the rational function a(x) and the unique solution of (4.10):

1 X X X -1
a(x) =—. y1=< 22t ) :

n Xn+1 Xn+2 X2n—1

—1

Xk+1 Xk42 X

yk=Xk<—+ +—+ +---+ . > , 2<k=n-1,
Xn+k Xn+k+1 X2n—1

Yn=—, Yn+l = +--- 4+

1 xn+1(x1+1 L Xn
Xn Xn Xn+1 Xn+1+1 X2n—1

), 1<l<n-2.
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Now using Lemma 3 we define the map

oV — W,

Vitxa, ..., xou—1) = V21, ..., Y2n—2).

Then we have the following result.

Proposition 1 The map o : Vi —> V; is a bi-positive birational isomorphism with
the inverse positive rational map

o1 Vo — V),

Vo(yis ..oy Yoan—2) = Vilxa, ..., x20-1).

given by:

-1
xk:&(ﬂ_k Y2 4t Yk > , 2<k=<n-—1,
Yn \Yn Yn+1 Yn+k—1

x”+l:)7n+l<£+ R ) l<k<n-2,

Yn  Yn+i1 Yn+i—-1
1 1 2 -1
Xn=—, x2n1=<y—-|- 2o .
Yn Yn Xn+1 Yon—2

Proof The fact that o is a bi-positive birational map follows from the explicit for-
mulas. The rest follows by direct calculation. g

It is known (see [18] and 2.3) that V; (resp. V») is a geometric crystal for go
(resp. gn). Indeed, we have the go-geometric crystal structure on V; by setting
Y(x) =Y (xon—1,...,%2) :=Yp_1(x20-1) - - - Y2(x2), Vi(x) = Vi(x2p—1, ..., x2) 1=
Y(x)(1,2) and

(Vi) ==ef (Y(0))(1,2),  7(Viw)=r(Yx),
g (Vi) =& (Y (),
since the vector (1, 2) is the highest weight vector with respect to go. Similarly, we
obtain the g,,-geometric crystal structure on V. Hence the actions of ¢f, y;, &; (resp.
Ef, Y., €i)on Vi(x) (resp. Va(y)) are described explicitly for i € Iy (resp. i € 1,,) by
the formula in 2.3. In particular, the actions of ej, ¥, and gy on V>(y) are given by:
E(C)(VZ()’)) =Vai, s Cns oo Yn—2)s

y2 Yn+1
Vol V: =1 oV = .
Vo(V2(»)) — g0(Va(y)) "
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In order to make V; a A,(ll)—geometric crystal we need to define the actions of e, yo
and & on Vi (x). We define the action of e; on V;(x) by

e§Vi(x) =5 oejoa(Vi(x)) 4.11)
and the actions of yp and &g on Vi (x) by
(Vi) =7(@(Vi(0)), eo(Vi(x)) :==%0(a(Vi(x))). (4.12)

Theorem 3 Together with the actions of e, yo and &y on Vi (x) given in (4.11),
(4.12), we obtain a positive affine geometric crystal V(A,gl)) =1, {eitier, {Vitier,
{eitiecr) (I ={0,1,...,n}), whose explicit form is as follows: first we have
ef (Vi(x)), vi(Vi(x)) and &;(V1(x)) fori = 1,2, ..., n from the formula (2.2), (2.3)
and (2.4).

Vi, ..., Cxpgts ooy X2n—1), =1,
e (Vix)) =3 Vilxa, ... cixi, ..., SXngis e Xmo1), 2<i=n—1,
Vixa, ..., ¢xp, ..., X2n-1), i=n

where

_ CiXngi + Xig 1 Xni—1)
CXiXp4i + Xi+1Xn+i—1

2

X .

ntl , i = 1’
X2Xp+42

2,2
XIX5S .
vi(Vito) = i , 2<i<n-—1,
Xi—1Xi+1Xn+i—1Xn+i+1 - -
2
X .

P — 1=n.
Xp—1X2n—1"
Xn42 | —
Xp41’ b= 1’
X, i Xi X, i—1X i .
r)lc+r—l i+1Xn4i 21 nti+1 , 2 <ji<n-— 27

n+i Xi X :

& (Vl (_x)) = . o i
nX2n—2 , i=n— 1’

X2n—1 Xn—1X3, 4
Xopn— .
el i=n.

Xn

Using (4.11) and (4.12), the explicit actions ofe(‘)', &o and yp on Vi (x) are given
by:

X2 X3 X
) 80(V1(x))=xn+1< + 4" >’

Vix)) =
VO( 1( )) Xn+1 Xp42 X2n—1

XnXn+1
eg(Vl (x)) =V (x/) =V (xé,xé, .. .,xén_l),
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where

X2 + 3 4o 20

/I ‘n+l  Xn42 X2n—1

X = Xg P S R S T W TR 2<k<n,
‘n+l - Yn42 n+k—1 n+k 2n—1

/_ Xn A S|

Xn =" xn+l -
X2 3 R Xi4+1 Xn
c

I _ . (sz+1 +Xn+2 + +xn+171 )+(Xn+l + +X2n—1 ) 2<]

an = Xn+l o 5 T X3 o ETH s =it <n.
‘n+l - Yn+2 2n—1

Proof Since the positivity is clear from the explicit formulas, it suffices to show that
VAP := (Vi(x), (e Yier, {yiier, (€i}icr) satisfies the relations in Definition (1).
Indeed, since V; is a gg geometric crystal we need to check the relations involving
the 0-index:

(1) yolef (Vi(x))) = c“Oyp(Vi(x)), 1 <i <n,
@) yileg(Vi(x)) =y (Vi(x)), 1 <i <n,
(3) eo(e§(Vi(x)) =ceo(Vi(x)),

4) egefdeg =ef66def,
®) ccd d d cd ¢

(6) egefi:edeg, 2<i<n-—1.

Since
2
C .
XpXp41’ b= O’
c _ 1 P
VO(el (Vl(x)))_ cxnxn«#l’ 1= 11 n,
L 2<i<n-—1,
XnXn+1
and
2
Zntl i=1
CXpXn42’ ?
2
. C . xn .
Vi (eO(V1 (x))) il R i=n,
2.2
XEX= . R
i7n+i 2 S i S n— 1’

X1 XI+1Xp i -1 Xn i1’

we have (1) and (2) hold. We also have (3) hold since V; is a g,-geometric crystal
and hence

80(68(‘/1 (x))) = Eoﬁ_lzgﬁ(vl (x)) = 50?8(‘/2()1))

_ Y, _
=z0(V2(y')) = ;—,H = )Zl;;ll =c leo(Vl (x)).
n

By direct calculations we see that on V;(x) we have

C

Goef ‘oo, forl<i<n-—1L.
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Hence for 2 <i <n — 1, we have

esed = (0 'e57) (7 els) =5 'eyels

=0 lede(c)o = edeo,

and
eéeﬁdeg = (0 1680’)(0’_150‘10’)(0’ lega)
= 5_1866“16610 =0 e‘lie(c)defa = e‘lieodel,
since V), is a g, -geometric crystal. Therefore, (4) and (6) hold.
Now fork=2,...,n —1 we set X = X} + X where

X = + 44 , Xp= "4 25 4y .
Xn+1 Xn+42 Xk+n—1 Xk+n Xk+n+1 X2n—1

Observe that for any k,/ =2,...,n — 1 we have X = X + ?k =X+ )?1. Recall
that e (V1 (x)) = Vi(x") = Vi(x}, ..., x},_ ;). Now we have

’ X2 1 1
k ¢ ( ~> B<k<n—1,c#£1). 4.13)

x,/(_‘_n_l c—1\cXp_1+ ik—l cXp + Xi

Using Eq. (4.13) we can easily see that (5) holds which completes the proof. U

5 Ultra-Discretization of V(A,(,l))

We denote the positive structure on V = V(A,(f)) as in the previous section by
0:T :=(C*)?"2 — V (x = Vi(x)). Then by Corollary 1 we obtain the ultra-
discretization X =UDV, T, 6) which is a Kashiwara’s crystal. Now we show that
the conjecture in [18] holds for g = A , I =2 by giving an explicit isomorphism
of crystals between X and B> In order to show this isomorphism, we need the
explicit crystal structure on X :=UD(x, T’,0). Note that X = 7212 ag a set. In
X, we use the same notations c, xg, X2, ..., X2, for variables as in V.

For x = (x2,x1,...,X2,—1) € X, by applying the ultra-discretization functor
UD it follows from the results in the previous section that the functions wt; =
UD(y;), &i =UD(g;) and UD(ef) fori =0, 1,...,n are given by:

—Xn — Xn+1, i =0,
—X2 + 2Xp4+1 — Xn42, i=1,
Wt (X) = 2x2 — X3 — Xp41 + 2Xn42 — Xn43s i=2,

—Xi—1 +2X; — Xj41 — Xpqi—1 + 2Xpn4i — Xptiv1, 3 =i <mn,
—Xp—1+2Xy — X2n—1, i=n.
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Xp+1 + maxo<k<n (Bi), i=0,
—Xnt1 + Xn42, i=1,
61 (x) = max (Xp4i+1 — Xnti» —Xi + Xit1
FXppi1 = 2Xnti + Xntit1), 2<i<n-2,
max(—x2;—1, —Xp—1 + Xy + X2n—2 — 2X24—1), i=n-—1,
—Xpn + X2n—1, i=n,

where By := xx — Xp4k—1 for2 <k <n.

2+ Co, oy xy1 +Cpo1, Xy — €, X1 —

Xng2 —Cc—Coy iy xop—1 —c— Cy_y), i =0,
UD(el-C)(x) = (X2, Xy Xl + Co X2y oo o5 X2n—1)s i=1,

(x2, ..., xi+¢Ciy ooy Xpti +C—Ciy ooy Xop—1), 2<i<n,

(2, ooy Xn—1,Xn +C, X1y - - s X20—1)s i=n,

where

Ci= max (B) —max(max, (c+8)), max (8))). 2=k <n,

Ci = ¢ +max(X; + Xp4i, Xi+1 + Xpi—1) — Max(c + X; + Xp4i, Xi+1 + Xnpi—1),
2<i<n.

Note that the Kashiwara operators are ¢; (x) = UDe{ (x)|.=1 and fix) = UDes (x)
|c=—1 on X. In particular, for x € X, we have

,fjl(x):(x23'-'9xn+l_17"'7x2n—1)7 (514)
fn(x) :(x27"'7xn - 17"'7x2}’l71)7
andfor2<i<n-—1,
Fn = (02, ooy Xpgi — 1oy X201), %f,Bi > Bit1, (5.15)
(x27'-'7xi_17"'7-x2n—1)’ lfﬂifﬂi—Fl'

To determine the explicit action of fy we define conditions:

@j)): Bo,....Bj—1=<Bj>Bjr1,---, b (5.16)

for each 2 < j <n where we assume 1 =0 = f,41. Note that under condition (¢;)
we have:

C=---=Cj_1=0, and Cj=---=Cy_1=1.
Hence for x € X and 2 < j <n we have

Jo) =2, ...,xj 1, xj+Lxjr+ 1, o+ L Xy, oo X20—1),s
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if condition (¢;) hold.

Theorem 4 The map

2: X o B>,
(X2, ..., xX2n-1) = b=(bji)1<j<2 j<i<j+tn—1,
defined by
bi1 = Xxp11, bii =Xpti — Xnyi—1, 2=<i<n-—1, bin = —X2n-1,
by = x2, by =x;i —xi—1, 3=<i<n, b i1 ==Xy,

is an isomorphism of crystals.

Proof First we observe that the map 2~ ': B>® — X is givenby 271 (b) =x =
(x2,...,x2,—1) Where

i
xizzbzk, 2<i<n,
k=2

i
xn+i:Zb1k, 1<i<n-—1.
k=1

Hence the map £2 is bijective. To prove that £2 is an isomorphism of crystals we
need to show that it commutes with the actions of f; and preserves the actions of
the functions wt; and ¢;. In particular we need to show that forx e X and 0 <i <n
we have:

2(fi) = fi(2w),
wi; (2(0)) = wti (x),
& (Q(x)) =¢g;i(x).

Indeed commutativity of §2 and e; follows similarly. For x € X, set 2(x) =b =
(bji) € B> First let us check wt;.

wig(2(x)) = wio(b) = ba g1 — bi1 = —Xp — X1 = Wi (x),

wi (2(x)) = wty (b) =b11 — bio — b = X1 — (g2 — Xnt1) — X2
= —x2 + 2Xp 41 — Xpp2 = Wi (%),

wip (2(x)) = wia(b) = (b12 — b13) — (b2 — b23)
= Xp42 — Xp1 — Xp+3 + X2 + X2 — X3+ X2

=2x2 — X3 — Xp+1 + 2Xn42 — Xp3 = Wi (X),



Ultra-Discretization of the A,(ll)—Geometric Crystal 315

wt; (£2(x)) = wt;(b) = (b1; — b1,it1) + (b2i — b,iy1)
= Xn4i = Xnti—1 = Xnti+l T Xngi T X —Xi—1 — Xip1 + X
= —Xi—1 +2X — Xi41 — Xnti—1 + 2Xn4i — Xnti+1 = Wt (x),
3<i<n-—1,

Wty (2(x)) = Wty (b) = b1y + (b2n — bang1)
= —Xon—1 + Xn — Xn—1 + Xp = —Xn; +2X5 — X2n—1
= wt, (x).

Next, we shall check ¢;:

e0(2() = eo(b) = —br g1 — A
=—bynt1 — 22}32"(1?12 +- o+ brk—1+ b2 g1+ -+ Do)

=Xp — min (Xp4k—1 — Xng1 + Xp — Xk)
2<k<n

=X, + max (—Xpqk—1 + X1 — Xp +Xk)
2<k=<n

= Xp+1 + max(xg — Xp4k—1) = €0(x).
e1(2(x)) = wti (b) = b12 = Xp42 — Xpq1 = £1(X),
£i(2(x)) =& () =b1iv1 + (bait1 — bii)+
=max(bi,i+1,b1,i+1+b2i+1 — bii)
= —max(Xp4i+1 — Xnti, —Xi + Xit1 +Xnti—1 — 2Xn4i + Xppit1)
=¢i(x), for2<i<n-2,
en—1(2x)) = -1 (b) =max(bin, b1y + bay — b1n—1)
= max(—x2p—1, —Xp—1 +Xp +x2n — 2 — 2x2—1) = &p—1(x),
en(2(x)) = en(b) = b2 1 — bin = —xp + X2p—1 = £,(x).
Now we shall check that £2(f;(x)) = f;(22(x)) fori =0, 1, ..., n.
N(Rw)=A0) =0 =(),),
where
by =bi—l=x,01—1, bly=bin+1=xp2—Xpq1 +1,

bl =bji, otherwise.
Hence 2(f1(x)) = 2(x2,.... %011 — L., x00-1) = f1(2(x)).

[21(2)) = fub) =b"= (1),
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where

b/2n=b2n_ l=xp —xp—1—1, b/2,n+1 =byp+1+1=—x,+1,

b’ ;=bji, otherwise.
Hence 2(f,(x)) = 2(x2,....Xp — 1,..., x20_1) = fu(2(x)). Now we check that
2(fitx) = fi(R) for2 <i <n—1.Let fi(2(x) = fi(h) =b' = (). Note

that by; = xp4i — Xp4i—1 and by ;41 = x;+1 — x;. Hence by; > by ;41 (resp. by; <

by,i41) if and only if B; > B4 (resp. :Bl < Bi+1)-
If xp4i — Xp+i—1 > Xi+1 — X;, then fl (£2(x)) = ft b)= (b;,)a where

/ /
i =bli —1=Xp4i —xpti-1— 1, Lit1 =brit1 + 1 =Xptiv1 — Xpgi + 1,

b/- =bj;, otherwise.

Hence 2(f; (x)) = 2(x2, ..., Xnpi — 1, ..., x20-1) = f;(2(x)) in this case.
If Xpti — Xni—1 < Xip1 — Xi, then f;(2(x)) = fi(b) =" = (b;), where
by, =by —1=x; —xi—1 — 1, byipy=briyi+1=xiy1—xi+1,

b/- =bj;, otherwise.

Hence .Q(fl X)) =822, ..., x; —1,...,x0— 1) = ﬁ(.Q(x)) in this case.
Finally we want to Verlfy that .Q( fo(x)) = fo(.Q(x)) For 2 <m < n, we have

fo(R2x) = fob) = (b;l) where
b/ll =bi1+1=x,41+1,

b 1 Xptm — Xnym—1 — 1, ifm#n,
=0m — 1= .
—Xop—1 — 1, ifm=n,

X+ 1, ifm=2,

b/ = b + 1 =
2m = 2 {xm—xml +1 ifm#£2,
b/2,n+1 =bypt1 —1=—xu—1, b;,» =bj;, otherwise,

if the condition (F,) in (3.7) holds. Since z; = b1; — b2 i+1 = (Xp4i — Xpti—1) —
(xj+1—x;) = Bi — Bix1 for 2 <i <n—1, we observe that for 2 <m < n, the condi-
tion (Fy,;) in (3.7) holds if and only if the condition (¢,,) in (5.16) holds. Therefore,
for 2 <m <n, we have

2(fo(x)) =22, s Xn—1, Xm + Loy Xppm—1 + L, Xy <+, X2n—1)
= fo(R)),

which completes the proof. g
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A 7Z3-Orbifold Theory of Lattice Vertex
Operator Algebra and Z3-Orbifold
Constructions

Masahiko Miyamoto

Abstract For an even positive definite lattice L and its automorphism o of order 3,
we prove that a fixed point subVOA V[ of a lattice VOA V|, is C3-cofinite. Using
this result and the results in arXiv:0909.3665, we present Z3-orbifold constructions
of holomorphic VOAs from lattice VOAs V4, where A are even unimodular positive
definite lattices. One of them has the same character with the moonshine VOA V*
and another is a new VOA corresponding to No. 32 in Schellekens’ list (Theor. Mat.
Fiz. 95(2), 348-360, 1993).

1 Introduction

This is a half part of the preprint [13] and we will publish the other half separately.

A concept of a vertex operator algebra (shortly VOA) V = (V, Y, 1, ) was in-
troduced by Borcherds [1] with a purpose to explain the moonshine phenomenon
[3] and then as a stage for studying the phenomenon, Frenkel, Lepowsky and Meur-
man [7] constructed the moonshine VOA V' by a Z,-orbifold construction from the
Leech lattice VOA V4 and an automorphism —1 on A.

When we consider such an orbifold construction from a lattice VOA V, with
a finite automorphism o, the rationality of the fixed point subVOA (V)7 (i.e. all
N-gradable (V7 )?-modules are completely reducible) and C-cofiniteness of (V7 )”
(i.e. Spanc{v_ou | v,u € (V1 )7} has a finite codimension in (V;)?) are very useful
conditions because there are several significant known theorems under these con-
ditions. For an automorphism —1 of L, these properties are already known by [19]
and [20]. Our target is an automorphism of order three.

Theorem A Let L be a positive definite even lattice and Vy, a lattice VOA asso-
ciated with L. Let o € Aut(L) of order three. We use the same notation for an
automorphism of V, lifted from o . Then a fixed point subVOA V[ is Ca-cofinite.
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We note that some special case is already studied in [17]. Generally, proving of
C»-cofiniteness looks easier than that of rationality. Moreover, we quote the follow-
ing result.

Theorem ([12]) Let V be a rational VOA of CFT-type satisfying V' =V and o a
finite automorphism of V. If V° is C-cofinite, then V° is rational and every simple
V9 -module is a submodule of twisted o/ -module of V for some j.

Keeping the above theorem in mind, we will show the following theorem.

Theorem B Let A be a positive definite even unimodular lattice with an automor-
phism o of order three. We assume that the conclusions in the above theorem hold
for V.=V, and o. If rank(A) — rank(A?) is divisible by 3, then we are able to
construct a holomorphic VOA V by a Z3-orbifold construction from a lattice VOA
Vaiaando.

At the end of paper, we will study two examples. One of them has the same
character with the moonshine VOA V*? and another is a new VOA corresponding to
No. 32 in Schellekens’ list [16].

2 Proof of Theorem A

Before we start the proofs, we present several properties of Cy-cofiniteness. There
are several different definitions of modules for vertex operator algebras. We will
consider the widest one. Namely, a V-module is just a vector space W on which all
v, (v e V,n €Z) act such that vertex operators

Y(0.2) =Y v,z 7" € End(W)[[z.27"]]

nez

satisfies a truncation property on each w € W, L(—1)-derivative property, and
Borcherds’ identity. One of main properties of C»-cofiniteness is that all V-modules
are Z 4 -gradable as we will see. Namely, there are no weak modules.

Proposition 1 Let V be a VOA. We have the following:

(1) IfV is Ca-cofinite then the number of inequivalent simple modules is finite, [8].

(ii) Set V.= B + Cy(V) for B spanned by homogeneous elements. Then any V -
module W generated from one element w has a spanning set {v,ll . ...vflkw |
vi € B,ny < --- < ng}. In particular, if V is Ca-cofinite, then finitely generated
V-modules are Cy-cofinite, [2, 11].

(iii) All modules are Z.. -gradable if and only if V is Cp-cofinite, [11] and [2].

(v) If U, W, T are Cy-cofinite V-modules, then a fusion product U X W is a well-
defined V -module and C>-cofinite and (UNX WYRT =Z=UX (WX T),[9, 12,
14].
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Let L be an even positive lattice and o an automorphism of order 3. Abusing the
notation, we use the same notation to denote an automorphism of a lattice VOA V.
lifted from o. We note that all lattice VOA are C;-cofinite [5].

One of the advantages of proving Cp-cofiniteness is that if a full subVOA is C3-
cofinite, then the larger VOA is also C»-cofinite, see Proposition 1. Here a subVOA
U of V is called full subVOA if it contains a Virasoro element of V. Hence it is
sufficient to prove C-cofiniteness of (Vg)? for any o-invariant full sublattice H
of L, where a sublattice H of L is called full if Q ®7 H = Q ®z L. This is very
useful. For example, we are able to consider H doubly even, that is, (h, h) € 4Z
for h € H. Furthermore, for VOAs V! and V2, V1 @ V2 is C»-cofinite if and only
if the both V! are Cy-cofinite by the Proposition 1(iii). Therefore, it is enough to
prove Theorem A for L =Zx + Zy with y =0 (x), —x — y = o2(x) and (x,x) =
—2(x,y)=18M > 72 and M is even.

2.1 A Lattice VOA

Recalling the definition of lattice VOA V}, from [7], we will explain the notation of
this paper. Viewing CL = Cx + Cy as a commutative Lie algebra with a symmet-
ric bilinear form (-, -), H := CL[t,1~'] @ C becomes an affine Lie algebra with a
product

[V, u®t™] = 8uymon(v, u),
for v, u € CL. Hereafter we use v(n) to denote v ® t". We then consider its universal
enveloping algebra U(H) and its subalgebras H+ = CL[¢] and H~ = CL[t™'].
Using an U (H1)-module Ce? with the actions
w(0)e = (u,y)e’, and wum)e’ =0 forn>0
for u € CL, we define an U (#)-module:
My(D)e” :=U(H) ®y 3+ Ce”.

We note M>(1)e¥ = S(H ™) as vector spaces, where S(H ™) denotes a symmetric
tensor algebra of H~. We also note that M»(1)e” is spanned by

{x(=in) - x(=i)y(—=jD) - y(=jwe iy == ix >0, j1 =+ > j >0}

and their weights are defined by ZI;:I iy + Zle Ji + %
We set the vector spaces for a lattice VOA Vi, and a subVOA M;(1) by

V=@M’ and  Ma(1) = Ma(D)e.
y€eL
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We also define vertex operators Y (e”, z) as follows:

Y(eo, z) =Idy, (.. ¥ is the Vacuum 1),

o 1 yn L\ e 1 ym ,\"
Y(e”,z) =Z;(Z — ") Z%(Z Tz”) e’z
p=0 ne’y m=0 neZy

where e” et = eV TH for e, eVt € Vi and 7V et = z{V-M et for et € V. We note
that we usually need cocycle c(y, 1) to define a product e” e# = c(y, u)e? T*. How-
ever, since we have chosen L enough small so that (y, ) € 4Z forany y, u € L, we
may assume e e/ = e¥H for any y, u € L by choosing suitable basis {¢” | y € L}.

For general elements u, we define Y (u,2) =), .5 un,z~ "1 inductively by using
normal products
e —m
(v(=ma), =D (=1 ( ; ) {vm =Dy — (D" ampin—iv@®} (2.1
i=0

for v e CL and o € M, (1)e” and u = v(—m)a, where (}) = w We
will frequently use this normal product expansion (2.1).

2.2 In the Free Bosonic Fock Space M>(1)

We will treat two VOAs M»(1) and M, (1)° at the same time. In order to avoid the
confusion, C2(W) denotes only Spang{v_ow | w € W, v € Mp(1)?} by viewing W
as an M>(1)?-module and =, denotes a congruence relation modulo C(M,(1)?).
We will also use

C1(W) :=Spanc{v_jw | w e W,v e (M(1))7, wt(v) > 0}.

Set & = V=13, Viewing CL as a C[o]-module, there are a, a’ € CL such that
o(a)=¢Ea,o(a@’)=¢&""'a’ and (a,a’) = 1. Hence M>(1) is spanned by

{a(=in)---a(=ip)a' (=j))--d' (=jl i1 = - =iy >0, j1 = - > jx > 0}.
Clearly, u = a(—iy)---a(—ip)a’(—j1) - --a’'(— ji)1 is o-invariant if and only if & —
k=0 (mod 3). We note that w = a(—1)a’ = a’(—1)a is the Virasoro element of
M>(1). Since we will use an induction often, we introduce left ideals

Pi = Spanc{a' (i) ---a" i) | in = k, @’ € L} CEnd(Vy)

of U(H) for k =0, 1. We note Pye® =0 and Pje” = 0.
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Lemma 1 For k =0,1 and m,n,l > 0 and v € M»(1), there are rs;, Asty € Q
such that

a(=Da' (=m)v — Z ks,,(a(—s)a’(—t)l)k_lv € Pyv,

5,t>0
a(=Da(—m)a(—n)v — Z)‘”’“ (a(—s)a(—t)a(—u)l)k_lv € Prv.

Proof These comes from the normal product (2.1). We prove only the second case
for k = 0. Since

(at=Dy)_jv=> (‘J.‘)(—l)f{m—i — Dyersi — D ymisja( v,

j=0
there are A;, A;; € Q and Ao = 1 such that

(a(=s)a(=na(=m)1)_ve Y ra(=s —i){a(=Da(-w)1}_, v+ Pov
i=0

=D hijal=s =Y a(=t=plaC=w1}_,,,, ;v +Pov

i=0 j=0

o0 o0
= Z,\i,ja(—s —i) Za(—t — a(—u+i+ j)v+Pov
i=0 Jj=0

o p
=a(—s)a(—t)a(—u)v + Z Z)\i,p,ia(—s —i)a(—t — p+i)a(—u+ p)v
p=1i=0

+ Pov.

Hence a(—1)a(—m)a(—n)v — (a(—1)a(—m)a(—n)1)_jv is equivalent to a Q-linear
combination of {a(—s —i)a(—t — p+i)a(—u+ p)v | p > 0} modulo Pyv. Iterating
these steps, we can reduce them to zero modulo Pyv. O

2.3 Modulo C;(M»(1)?%)

For a while, we consider the following element:
u=a(—iy)---a(—ip)a’(—j1)---a’'(—jr)1 withig, j, > 0. (2.2)
We will call u a “bloated element” if wt(u) > h + k. Set

S — a(=Dia'(=1)/1,a(—i)a(—j)a,a'(=i)a' (—j)a'
" la(=dd' (=D2%a,a(—i)d', 1

i,jeN}.
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Proposition2 Letu =a(—iy)---a(—ip)a’(—j1) - --a’(—ji)1 be a bloated element.
If lh — k| = 4, then u € Co(Ma(1)°).
Ifh —k =3, then u € Spang{a(—in)a(—iz)a | i1, iz € N} + Ca(Ma(1)%).
If h =k, then

u € Spanc{a(—wt(u) + 3)a’(—1)2a, a(—wt(u) + 1)a’} + C2(M2(1)7).
In particular, we have M»(1)° = C2(M2(1)?) + Spanc{Sz}.

Proof We will prove the last statement. The others come from the same arguments.
We note wp8 = 21 € C2(M>(1)?) for B € M»(1)° and Virasoro element w. Fur-
thermore a(—h)a(—k)a(—m)1 is congruent to a linear sum of elements of type
a(—i)a(—j)a since

k
wo(a(=r)-a(=r)1) = ria(=r)---a(=r; = 1)---a(=rp)1.
i=1

Suppose h —k >4 and u ¢ C2(M>(1)?) + Spanc{S,}. We take u such that the total
number /2 + k is minimal. At least one of iy, j; in (2.2) is not 1. Since & > 4, by using
a suitable triple term of a, we may assume i; = 1 by Lemma 1. Then by choosing
another suitable triple a-term, we may also assume i = 1 and then i3 =2. Then

2u — (a(—l)a(—l)a)_za(—u) cea(=ip)a (—ip)---ad' (—ipl

is congruent to a linear sum of elements whose the total number of terms are less
than & + k, which contradicts the choice of u. We next treat the case h — k = 3. By
applying the same arguments to a(—n)a’(—m), we can reduce to the case & = 3 and
k =01n (2.2) as we desired. If 7 = k and & > 3, then using the same argument as
above, we can reduce to u = a(—n)a’(—m)a(—1)a’(—1) and n > 2. If m > 2, then
u is congruent to a linear sum of a(—n — m + 1)a’(—=1)%a and a(—n —m — 1)a’ by
Lemma 1. Therefore we obtain M>(1)? = C2(M>(1)?) + Spanc{S»}. O

2.4 A Subring

We first note that M>(1)°/Ca(M>(1)?) is a commutative associative algebra by
—1-normal product. Let O be the subspace of M>(1)?/Ca(M>(1)°) spanned by
elements with the same number of a-terms and b-terms and O°"*" the subspace
of O spanned by elements with even weights. By abusing the notation, we may
view O as a subset of M3 (1)? modulo C>(M3(1)?). Clearly, O and O¢¢" are sub-
rings of M5 (1) /Ca(M>(1)?). We will study an algebraic structure of O°?*"* modulo
C2(M2(1)7).

Set y(n) = a(—n + 1)a’ and we sometimes omit subscript —1 denoting
—1-normal product, for example, y (n)y (m) denotes y(n)_1y(m). From 0 =
wola(—=n)a' (—m)1) = na(-n — Dd'(-m)1 + ma(=n)a'(-m — 11
mod wo(M>(1)?) € Cr(M>(1)?), we have:
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Lemma 2
a(—n)d' (—m — 1= <_n>y(n +m—+1) (mod a)oMz(l)).
m
Proposition 3

a(—r)a(—m)a' (—n)a’ =, (n_—m )y(r + Dy(m +n)

_EDTN A m A =Dt £ 1)
(r = Dm — Dl(n = D!m + 1) (r +n)

y (0,

where t =r +m +n + 1. In particular, by replacing r with m, we have

6

vt = T T 13)

{yBGym —mn—-Dy@yn+1D}
forn>3andyn) e Ci(My(1)?) forn > 6.

Proof The assertion comes from the direct calculation:

—m
< >7/(r+1)y(m+n)
n—1
=) (a(=r)a’)_,a(—m)d'(—n)1

_2Z< )( D'a(—r —i)a' (=1 +i) — (=D 7"a'(—r — 1 —i)a(i)}

x a(—m)a’(—n)1
r+m

=5 a(—r)a’ (—=Da(—m)a’(— n)1+< 41

)ma(—r —m—1a'(-n)1

— (=1 (r +Z a 1)cz/(—r —1—n)na(—m)1
= a(—r)a(—m)a' (—n)a’
(G
+ m
m+1 n—1
_(_1)n<r+n—1>n(m+r+n—1>}y(t)
n r+n

_ , ;=D A m =D m a1
=2 a=nat=ma(=ma + = = im+ Do+ T

O
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For example, we will use the following:

2y(6) =2 vy () -2y Qy®, Ty =2yBy @ =3y )y (),

16y (8) =2y 3y (5) —4y () (6), 30y®) =2y @y @ —6y(2)y(6).
(2.3)

Lemma3 O =Spanc{y(2)",y(n+1),yQ)ym)l|n,m=2,...}+Ca(M2(1)°).

Proof By Proposition 2, O is spanned by {a(—1)"a’(—1)"1,a(—n)a’(—1)?a, y (m)}
modulo C»(M>(1)?). By Proposition 3, we get a(=n)d'(=1D3a — yQymn+1) e
Qy (n + 3). We also have that a(—1)"a’(—1)"1 — y(2)" is congruence to a linear
sum of a(—2n + 3)a’(—1)%a and y (2n) modulo C>(M> (1)), which proves the
desired result. [l

Set S| = {a(—ipa(—ix)a,a' (—i1)a' (—ix)a’,a(—iz)a’, 1]iy,ir <5,i3 < 4)}.

Proposition 4 M>(1)° = C1(M»(1)?) 4 Spanc Sy. In particular, M>(1)° is C;-
cofinite.

Proof To simplify the notation, set C; = C1(M>(1))? in this proof. Suppose that
the proposition is false and let

u=a(—iy)---a(—ip)a’ (—j1)---a’'(—jx)1 € C1 + Spang Si.

We take u such that the number of terms is minimal. By Lemma 1 and 2, we may
assume u = a(—iy)a(—iz)a or u = a(—m)a’. By Lemma 2 and Proposition 3, we
obtain a(—m)a’ € Cy for m > 5. Furthermore, since C| is closed by the 0-normal
product, we have:

(1) €13 (a(—k+ Da'),(a(=Da(=1)a) =3k — a(—k)a(—1)*1 and so
2 €13 (a(-n)d),a(—D*a(—k)1
=2a(—n — )a(—k)a + ka(—n — k)a(—1)a
for k > 6 and any n, which contradicts the choice of u. O

We next express O as a C[y (2)]-module. We need the following lemma.

Lemma 4

120y (D1 =2 8y )y 5)1 +y 22y 3)1  and
60y (8)1 =3 6y (2)y (3)*1 — 13y 2)*y (1.
Proof Since 0= (a(—1)a(—1)a)_2a’'(—1)a’(=1)a’ =5 3a(—1)%a(=2)a’ (—1)%d’

+18a(—4)a(—1)a’'(—)a’ +18a(—3)a(—2)a’ (—1)a’ + 18y (7), we have a(—1)% x
a(—2)a’(—1)2 "= —6a(—4)a(—1)a'(—1)a’' — 6a(—=3)a(—2)a’(—a’ — 6y (7).
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Using Proposition 3 and the above lemma, we obtain the first congruence expres-
sion:
y(2*y(3) = (a(=1d)_ {a(=Da' (-Da(-2)a'}
+ y(2){2a(—4)a’ + a’(—3)a(—2)1}
=) a(—=1)d' (=Da(=1)d' (=a(=2)a’ + a(=3)d’ (—=Da(=2)d’
+2a(—4a(—1)a'(—1)a" + 24’ (=3)a(=1)a(=2)a" + 57 (2)y (5)
=) —6a(—4)a(—1)a'(=1)a’ — 6a(=3)a(=2)a’(=1)a’ — 6y (7)
+ a(=3)d (—=1)a(=2)a' + 2a(—4)d'(~1)%a
+2d'(=3)a(=1)a(=2)a" + 5y (2)y(5)
=) —da(—4)a(—1)a'(=1)a’ — 5a(=3)a(—2)a’ (= 1)a’ — 6y (7)
+2d'(=3)a(—=1)a(=2)a’ + 5y (2)y(5)

| (Gpns-[o+ (o)

=5{3y @)y (5) =28y (D} — 6(7)

-2 —4 -2
+2{< ) )V(Z)J/(S) - [2< ) ) +3< 4 )}VW)} +5y(2)y(5)

=, 120y(7) — 8y )y (5),

which proves the first equation.
By expanding 0 =, (a(—1)a(—1)a)_a’(—2)a’(—1)a’, we have,
—(a(=2)a(=Da(-1))a'(=2)a’' (- Dd’
=) 4a(—da(—1)d' (=2)a’ +4a(=3)a(=2)a’ (=2)a’ + 4a(—=5)a(—1)a’(—1)d’
+4a(—da(=2)a' (—Da’ +2a(=3)a(=3)a’(—1)a’ + 8y (8)

and then we obtain:

2yQy 2y @)
= —(a(=Da')_ {a(=Da(-2)a’ (-2)a’ — 16y (6)}
=, —a(—1)%d (-1)%a(=2)d' (=2) — a(=3)a(-2)d’ (=2)d’
—2a(—4)a(—1)d' (—1)a'(=2) — d'(=3)a(—1)a(=2)d’ (—2)
—2d' (—4)a(—1)a’ (= Da(=2) + 16y (2)y (6)
=3 4a(—4)a(—1)a' (=2)d’ + 4a(—3)a(—-2)a'(=2)a’ + 4a(—5)a(—1)a'(—1)a’
+ 4a(—4a(=2)a' (= )d' +2a(=3)a(=3)a’ (—1)a’ + 8y (8)
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—a(=3)d' (—Da(-2)a' (=2) — 2a(—4)a(—1)d' (—1)d' (-2)
—d'(=3)a(—a(—=2)a' (=2) — 2d' (—=4)a(—1)d’ (= Da(-2) + 16y (2)y (6)

=5 2a(—3)a(-2)a'(-2)d’ + 4a(=5)a(—1)a'(—1)a’ + 4a(—4)a(—2)a’(—1)a’
+2a(=3)a(=3)d' (—1)d’ 4+ 16y (2)y (6) + 8y (8)
= 2(180y(8) =3y (3)¥(5)) +4(y (2)y (6) —20¥(8))
+4(y 3y (5) — 64y (8)) +2(—90y (8) + ¥ 4y (4) + 16y )y (6) + 8y (8)
= —120y(8) + 12y 2)y (3)* — 24y (2)*y (4),

which proves the second equation. O
By the above lemma, the direct calculation shows:

2@y d) =2 12y (2)y(6) + 60y (8) =2 12y 2)y (3)* — 257 (2)*y (4),
15y (3)y (5) =2 60y (2)y (6) + 240y (8) =, 54y )y (3)* — 112y (2)%y (4),
120y 3)y (4) =3 120(7y (7) + 3y )y () =2 Ty (2)*y 3) + 416y 2)y (5).

Therefore, O¢¢" has a subring

0z =Qly @]y +Qy @]y By (3) + Qy )]y 4.

2.5 Elements a(—1)a(—1)a

We denote a(—1)a(—1)a and a’(—1)a’(—1)a’ by o and B, respectively.
Lemma$ y(2)_1y(2)-1y(2) =2 a—18 — 264y (2)—1y D1+ 117y 3)-1v (3).
Proof From the direct calculation, we have:
a1 = (a(=Da(=Da)_,d'(=Da'(=1)d’
= a(—l)3a’(—1)31 +18a(=3)a(—=1)d’' (- Da’ +9a(—2)a(=2)a’' (-1)d’
+18a(—5)d’.
Therefore, by Proposition 3, we obtain:
y(2)? = (a(=Da’)_ {a(=Da'(-Da(-d' +2y 4)}
= a(=1)%d' (=1)’1 4+ 2a(=3)a(=1)a' (- 1)d' + 2d'(=3)a(-=1)a'(-1)a
+2y2)y @)
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= a_ 18— 14{y@Qy@ -9y (©6)} —9{y(3)* — 16y (6)} — 18y (6)
+2y(2)y(4)
= a_18 — 264y 2Q)y (4) + 117y (3)%. O

2.6 The Action of y (4)

By (2.3), we have shown that Oa’e" is closed by the —1-normal product and
AG" =Q[r @]y @ +Q[r@]rBr(3)

is an ideal modulo C>(M>(1)?). Let Q be an ideal generated by «_1 8. We note
a-1f=27(2) +264y Qy 4 — 117y (3)".

We will see the action of y (4) on Aa)e”.

Lemma 6 Q= Of@’”’.

Proof We already know 2y (4)2 =5 12y (2)y (3)2 — 257 (2)2y (4).
Since y (3)y (5) =1 54y (2)y (3)% — 112y (2)%y (4), we have:

1800y (4)y (3)* =2 15y ) {7y 2)*y 3) + 416y )y (5)}
= 1057 (2)* ¥ 3)> + 416y ) {54y (2)y 3)* — 112y 2)*y (4}
=5 22569y (2)%y (3)* — 46592y (2)3y (4).

Therefore the action of 1800y (4) on AZ*" is expressed by

2 (22569 —46592
@ (10800 —22500) °

The eigenpolynomial of 1800y (4) is X? — 69X — 4608900 and its discriminant is

34/2048929, which is not a rational number. Therefore, the action of y (4)/y (2)% on
QvQy@d) + (@)/(3)2 is irreducible over Q. Furthermore, since

(@-1B)-17 @) =2 (v (2)°> — 264y (2)y (4) — 117y (3)*)y (4)

— 3 _ 2 _ é 2
=272y @) =264y (21 6y Q)y Q)" = Zv v )

117 )
- @y(3){7y<2> y(3) +416y(2)y (5))

27
=, 3301y (2)°y (4) — {1584 + 4—03 }y(Z)y(3)2
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39 52 11
- <){ y(3)2 ——y(z)y<4>}

13 x52x112
= (3301 + T)y@ﬂym)

15844 20 4 XX 8L 5 3y
40 25 Vi

we have Q" N AG*" # 0 and so

(Spang {18,y 1B,y a_18}), = (0§"), forn>14,

where (%), denotes the homogeneous subspace of weight 7. O

2.7 Nilpotency of a Modulo C»(V})

From now on, C(W) denotes Spanc{v_ow | w € W,v € V]} and we use = to
denote the congruence modulo C>(V[). A standard expression for an element p in
V7 is

L

2
p=> o'(a(=i1)--a(=ip)a'(=ji)--a'(=j)e’) withis, j, >0.
t=0

However, we will use a(0) and a’(0) so that we express it by

1
(a,y)s(b,y)!

/

2 .
W= a(—iy) - a(=ip)a'(—j1) - a' (= ji)a0)'d'(0)' (Z e"’W)),

i=0
where h + s —k —t =0 (mod 3) and a(0)® = a(0)---a(0) and a’(0)' =
—_———
N
a’(0)---a’(0). From now on, E? denotes Ziz:o ¢ ") and we will call & and k
—_—

t
the numbers of a-terms and a’-terms, respectively. We next show that

Lemma 7 (a(—iy)a(—i2)a)_1 and (a'(—ji1)a’ (—jr)a’)_1 are all nilpotent in
My (1) /(C2(V]) N M2 (1)) for any iy, iz, ji, ja-

Proof Except @ and 8, the square of the remainings are zero by Proposition 2.
We will prove that «_ is nilpotent. Since wt(e*) = 9M, wt(e*™>) = 27M and
wi(e?TY) = 27M for y = o' (x), we have e’ | e =e¢ | je* =0 for k < 9M
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and so
2 .
EY | _E™* Zo E Tke X =Za’(ef17ke_x)eMz(l)“ﬁCQ(Vf)
i=0

for 1 <k < 9M, where E* denotes ¢* + e” 4 e~*~. Multiplying (a_1)®¥* to
E* ;e™", the number of a-terms in (a,1)6M+9Ef4e_" is 6 more than that of a’-
terms and so all bloated elements vanished modulo C>(V;). Hence

_ 1 18M+3
(@ )MOE* e xzm(a_l)w”(x(—l)) M1 e c(vy).

Set x = ra + sa’. Since we multiply many a(—1), («—1)¥+2*% annihilates all
elements except for a(—1) and a’(—1) by Proposition 2 and so we have:

)18M+3

)M (x(=1) 1

)18M+3

=a(—D)"M* 7 (ra(~1) +sa'(—1) 1

18M+3 <18M +3

>

) 18M+3—i la( 1)36M+30 ly(z)l
i=0

i

6M+1

18M + 3 Ca . .

_ Z ( 3i+ )r18M+3—3zs3z(a_1)12M+10—zy(2)3z
i=0

18M + 3\ 1spi2-3i 3i+1 12M49—i 3i41
+§< 3 )r 53 (@) fa(—Da(~y2)*

I8M +3\ 1gp41-3i 3i42 12M+9—i 3i42
+Z< Yoo ) 3 () I2MH91 g (1) (272,

Similarly, since we obtain
6M+9EX 461( 1)6’
18M+3 18M 4
_aﬁﬁl/[+9( (_1)) + ( 1)1+(¥6M+9< >(x( 1)) +
— 066/‘14+9( (_1))18M+3 (-D1 —|—O(6M+9<(1,X>Ef5€_x

=%+ (x(=1)) M a(-1)1

6M+1

18M +3 s . .

_ Z ( 3.+ )r18M+3—31S3zal_21M+lO—la(_l)y(2)3z
l

i=0
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18M + 3 s . .
_ + r18M+2—3ls3z+1a£21M+9—l+1y(2)3z+1
- 3i+1
I8M + 3\ \8M41-3i 3i+2 12M+9—i 2. m\3it2
_1 2 l+
<3i+2 )r sy a(=1)"y(2)

=

and
6M+9E)C4a( 1) e —X

— o+ (e (= 1)) M a (=121 4 2(a, 1) (x (- 1) M e

+2(a, x)2aMH (x(—1)) M1,

= oM+ (x(=1)) "M e (1)1

=2 3i

6M+1 (18M +3
i=0

)r18M+3—3iS3ia1_21M+]0ia(_l)zy(2)3i

18M +3 o . )
+ ( + >r18M+2—3ls3l+1a1_21M+9l+1a(_1)y(2)3l+1

3i+1

g LMMs

I8M +3\ 18M41-3i 3i42  12M+9—i+1_, ;7 3i42
+ (3:+2 )r s o Ty @),

I}
o

i

we have

)18M+3

a(=1)a®M* (x(=1) 1eCy(Vy),

)18M+3

d' (=1)a®™* (x(-1) 1€ Co(Vf)Vy and

a(=Dya(=1aS+0 (x(=1)) 1+

1€ Cy(Vy).
Hereafter Vy, is a (V)?-module. Hence

MG (—1yea’ (= 1) (x(—1)) M1

is a linear sum of elements of the form

OZEA14+9+I{U_1( (X( 1))18M+3 )

where v is a o-invariant element and u € {1_1,a(—1),a(—1)a(—1)} by Lemma 1.
Therefore we obtain

oSN g (—1y¢a (~ 1) (x(— 1) M P1e V)
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for any e, k > 0. We also get a similar result for y = o (x) as for x. Therefore we
have:

)36M+6

a2MHI8 (3 (1) + py(=1) 1eCy(Vy)

for any X, u € C. By choosing suitable A and u so that Ax(—1) + uy(—1) = a(-1),
we have

a1_21M+180(_1)36M+61 — O[4i€§1M-§-241 c CZ(VE)a

which implies that o1 is nilpotent modulo C> (V). Similarly, 8 is nilpotent.
This completes the proof of Lemma 7. U

Since «, B are nilpotent and O°V¢" = O°V“"«_1 B, we have the following:

Proposition 5 dim(M;,(1)? /(M(1)° N C2(Vy))) < 0.

2.8 Cy-Cofiniteness of V{

By the previous proposition, there is an integer Ny such that vl_l e v’il y € C2(V])
forany v € Sy and y € V7 if wt(v! | --- v 1) > Np. Set N = No + 9M + 30.
Our final step is to prove

Vi =G(VP) + D (M), + D (M MEY); + P (Ma(DE™);,

n<N n<N n<N

which implies the C»-cofiniteness of V;f . For © #0, set

) Wt(dl% a(r)a’ (0)E*) — wt(E*) < 30
Ry ={d} --d}da(r)a (0)E" | (i) i <+ <ip <—1, ip,r <0and
(iii) d' € §;

Proposition 6 (M>(1)E*) = Spanc{R} + C2(V}). In particular, if v € (M2(1)
EX)? has a weight greater than wt(E") 4+ No + 30, then v € C2(V]).

Proof Suppose false and we take u ¢ Spanc{R} + C2(V) with minimal wt(u).

Since M, (1) E* is an irreducible M>(1)? -module, we may assume u = c{‘k e cl.ll EH
with ¢! € M>(1)°. We choose u with the above expression such that Zle wt(c')
is minimal. Moreover, among elements with the same Zle wt(ci), we choose u

with maximal k. Since (e—1 f)m = Y ioo(e—1—i fmti + fm—1-i€i) and wt(e_; f) =
wt(e) + wt(f), we may assume ¢’ € Sy. Also, since e f; — fies = > 0 (}) x

(ei f)s+i—i and wt(e; f) < wt(e) + wt(f) for i > 0, we may assume iy <--- <ij.
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By the minimality of wt(u), we have 0 <ij and

Xk:wt(c") - Xk:(l +i;) = (wt(u) — wt(E™)).

i=1

To simplify the notation, we will call — Zle(l + i;) a bloated weight. Since
wt(E*) and wt(u) are fixed, we have chosen u = cf.‘k e cl.l1 E* such that a bloated

weight is maximal. We note that wt(ci) < 11 for ¢! € &;. On the other hand, by
Lemma 1, u is also a linear sum of elements of the form

where ¢! € M»(1)? and F is one of
D = {a(m +n)a'(0)E*, a(m)a(n)a(0)E*, a’(m)a’ (n)a’ (0)E* | m + n < 0}.

By the minimality of wt(u), u is a linear sum of elements in D and —m — n +
wt(E*) = wt(u). We assert that a bloated weight of u is greater than or equal to
three. For elements a(m + n)a’(0)E*, we get a(m + n)a’(0)E* = (a’(m +n —
1)a); E*, which has only bloated weight two. Before we start the proof for the
remaining case, we note

(a'(m — 1)a)l(a/(n — Da), E*
= (a/(m - l)a)la(n)a/(O)E“

2 (m—1 ; N ,
:Z< ; )(—l)’(—l)ma(m—l)a (iYa(n)a'(0)E*
i=0

m—1 _
= ( >(—1)’” "na(m +n)a’ (0)E* + (=)™ a(m)a’ (0)a(n)a’ (0) E*.

Suppose a(m)a(n)a(0) E* has a bloated weight greater than three. By ignoring ele-
ments with bloated weights less than three, we have

(b, )
(a, )
=a(m)a’ (0)a(n)a’' (0)E*
a'(m— l)a)l(a’(n - l)a)lE“
(a(n —1)a")E* + (d'(m — 1)a)  (woy (=n + 1) +---) [ E*
1(a(n — l)a/)lE“ + (a)oy(—n + 1))1(a/(m - l)a)lE”
a'(m —1)a),a’ (n)a(0)E* —y(—n + Do(a'(m — l)a)lE“

a(m)an)a(0)E"

=
= (a'(m — 1)a)
= (a/(m — a)
= )
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- m—1 [ / . . -1 N
= Z ( ; )(—l)l{a (m—1—=ia(l+i)— (=D"a(m —i)d (i)}
i=0
x a’(n)a(0)E*

m—1 —n, 7 m—1 , ,
= ( 1)(—1) nd'(m + n)a©)E* — (—1)" 1 a(m)d' (0)d (n)a(0)E

—n—
= Aa(m +n)a (0)E* + wia(m)a’ (n) E*
= Ma(m +n)a (0)E* + ura’(m +n)a(Q)E* =0
for some A; and  j, which is a contradiction. Therefore, the bloated weight of u is
less than or equal to three. In particular, k < 3 and wt(u) — E* < 30. Therefore, the
elements a(m +n)a’(0)E* and y (—n + 1)o(a’(m — 1)a) E* are all in Spanc{R} +
C2(VY). In order to show a(m)a(n)a(0)E* € Spanc{R} + C2(V[), we are able
to have exactly the same congruence expressions as above modulo Spanc{R} +

C(V]).
This completes the proof of Proposition 6. U

Set K = M>(1)? + (M2(1)E*)? + (M2(1) E7*)?. Since we have already shown
that if v € K and wt(v) > N, then v € C2(V}). The remaining is to show

Vi =K+ Gy (V7).
By Proposition 6, it is enough to show that
a(—n)a' (0)E" € K + C2(Vy)
for 1 <n <30and u & {0, £x, £y, =(x + y)}. We first treat the following case:
Lemma 8 Foranyn+m =0 (mod 3), we have E"**"Y € Co(V]) + K.

Proof We note thatif n +m =0 (mod 3), then there is y € L such that E™* % =
E*©@0=Y) Set 2k = (y, y). Then since (y — o (y),y — o (y)) = 6k, we have

E"| E7V e My(1)+ ECV7Y 4 EZ0FY,

Ezka(—l)e_y e M>(1) + <a(y), a)eg(”)_y + (oz(y),a)e_"(y)“’, and

2
Ezk Zai (a(—])e—y) e My(1) + <o‘(y)’ a>EU()/)—7 + <02(]/), a)E_U(V)'H/,
i=0

Therefore, we obtain E° )7 E=00MTY € Co(VP) + Ma(1). O

For E* with u = mx 4+ ny and m +n = £1 (mod 3), we need the following
lemma.
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Lemma 9 (1) For m,n € Z with m +n =1 (mod 3), there are y € L satisfying
y —o'(y — n) = mx + ny for some i =1,2 and | € {x,y, —x — y} such that
(y,—ol(y — w)) and (y, —o*(y — 1)) are both positive.

(2) For m,n € Z with m +n =2 (mod 3), there are y € L, i =1,2, u €
{(—x, =y, +x + y} such that y — o' (y — pu) =mx +ny, (y, —c'(y — n)) > 0 and
(y,—o(y — ) > 0.

Proof We first note that for y = px + gy and —y — x — y, we have
e, —y —x—y)=p*+4q*—pg+2p—q
2 3 2
=(g—(p+1/2) +3(p+D -1
(e*). =y —x—y)=p*+q*—pg+2q—p
2 3
=(p—(@+1/2) +Z(q+1)2—1,

and so the both are positive except —2 < p,q < 1.For u =mx +ny withm+n =1
(mod 3), we may assume m, n < 0 by taking a conjugate by (o). If u =mx +ny ¢
{x,y,—x —y, —2y}, then by setting y = px + gy with g = (—m —n + 1)/3 and
p=m—2m+2)/3,weobtaino(y)—y —x —y=pand (cd(y),—y —x — y)
and (0%(y), —y — x — y) are positive. In the case 1 = —2y, we choose g = (—m —
n+1)/3 and p = (—2n + m + 2)/3, then we have 6%(y) —y —x — y = and
(c'(y), —y —x —y) and (6%(y), —y — x — y) are positive. (2) comes from (1) by
replacing x and y by —x and —y, respectively. U

We come back to the proof of Theorem A. By the above lemmas, for any u, there
are y, ¥ and k such that

Ezz_keﬂ’, cel et 1 My (1)et*
and so
E', (E7V € EF + E" + My()E*".
We also have
2
EYy i1 Y o' (a(=De™) € (a. y)E* +{a. 0 (n))E" + My(1) E**,
i=0

which implies E*, EM € M>(1)E** + C>(Vy) for any p. The remaining is to show
a(—n)a’ (0)E* € My(1)E* + C2(V7) for n < 30. Actually, we obtain

Ez2—k+1+na (=mya(=n)e™”

€2n{a,y)a(—n)e" + 2n<a, G(y))a(—n)e“/ + Ezz_kHe_y/ + My(1)e™™
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and
Ezz_kﬂ_i_zna(—n)a(—n)a(—n)e_y/
€6n(a, y)a(—n)et + 6n2<a, a(y))a(—n)e“/ + Ezz_kﬂe_y/ + Ma(1)et .
Therefore, for n < 30, we have
a(—n)et, a(—n)e" € C2(VP)Vy + Ma(l)e**  and so
a(—n)d' (0)E*, a(—n)a' (0)E* G (V) + M>(1)E**.

This completes the proof of Theorem A.

3 Z3-Orbifold Construction

The purpose in this section is to show Z3-orbifold constructions from a lattice VOA.
Let A be a positive definite even unimodular lattice of rank N with a triality au-
tomorphism o and set H = A°. We note 8| N. By the assumption, (V4)? is Ca-
cofinite and rational and so we can apply many useful known theorems like Zhu’s
theory [21], orbifold theory [6] and Verlinde formula [10, 15, 18].

Since A is unimodular, a lattice VOA V, has exactly one simple module V4
and all modules are completely reducible ([5]). As Dong, Li and Mason has shown
in [6], V4 has one o-twisted module V4 (o) and one o2-twisted module V4 (c2).
Decompose them into direct sums of simple V{-modules:

Va=Wlew' ew?’  Vio)=wew'ew,
Va(e?)=wlow e ws.

We note that V§ has exactly nine simple modules {W!]0<i <8} by the assump-
tion of Theorem B. By Zhu’s theory [21], there is a 9 x 9-matrix § = (S;;) such
that

1 wt(v) 9
(Z) Tyi (v =1/7) = s5ij Ty (3 7)
j=l1

for v € Viyyv) with L(1)v =0, where

Tw (v; ) == Try V)12 TEON/2D,

Lemma 10 Under the assumption of Theorem B, the weights of elements in
Va, V(o) and V(U2) arein7./3.

Proof Set H = {u € QH | (u,h) € Z for h € H} the dual of H. Set s =rank(H),
then from the assumption r = (N — s5)/2 is divisible by three. As it is well known,
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the character Ty, (1;7) of Vg is ?7*(’1()?, where n(t) = q1/24 ]_[flil(l —q") is the
Dedekind eta-function. Since A is unimodular, 3H’ € H and the restriction of A
into QH covers H'/H and so the weights of elements in Vg-modules are in Z/3.
Hence the powers of g in the character of simple Vg -modules are all in —s/24+7Z/3

and so are those of ¢ in Ty, (1; —1/7) by Zhu’s theory [21]. Since

_ On(t) 1
Ty (0. 1:7) = g~ N/
valo LT =g LA —an = TI,(1— &g (1 —&-1gny
_ @'
=Ty (11 0)

and Ty (1, 1; 7) is a scalar times of

n(=1/t)

n(=3/7)!
(—v/—=10)"2(7)!

(—/—17/3)! /2y (z/3)!

n(r)

Ty,(o,1; =1/7) =Ty, (1,1; —1/7)

=Ty, (1,1;-1/7)

=321y, (1,1; —1/7)

n(z/3)
_ (1—q")
=312¢722%4y, (1,1, —1/1:)q’/9%, 3.1)
we have that the powers of g in Ty (5)(1,1; t) are in —N /24 + Z/3. O

By reordering, we may assume that the weights of elements in W' areini /3 +7Z
for i > 3. In particular, all elements in

Vv=wew e wt
have integer weights. We next show that V has a VOA-structure.

Lemma 11 W' are all simple currents, that is, W' & W/ are simple modules for
any i, j. Moreover, V is closed by the fusion products.

Proof We will determine the entries of the matrix § = (S;;). Decompose § into S =
(Aij)i, j=1,2,3 with 3 x 3-matrices A;;. Since § is symmetric by [10], A;; = ’Aji.
Simplify the notation, we denote Ty (v; T) by W' (7). As they showed in [6], there

are A; € C (i =0, 1, 2) such that ((1) _01 )-transformation shifts

WO(T) + giwl(r) + 52!' WZ(T) N )\'i (W3l ('L') + W3i+l(f) + W3i+2(f)).
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Namely, the first three rows of S are

A A Ao M MM MM Ao Ao Ao
(AnApAp) =z (% 20 % E2h1 E2 EMM Ehy £l EN
M ko Ao Er o EM EM E2h E2h EMn

Since a squared S? of S is a permutation matrix which shifts W to its restricted dual
W', we get )»12 = 1. We next consider the characters ch(W) = Tw (1, 1; 7). In this
case, since ch(W’) = ch(W), we have ch(W!) = ch(W?), ch(W31?) = ch(Wot)
fori =0, 1, 2. Clearly,

{ch(WO), ch(Wl), ch(W3), ch(W4), ch(WS)}

is a linearly independent set. Since (3.1) has ¢'/3+%-parts, A1, + A3 # 0 and so
A1 = Ao. Similarly, since ch(W3*7) = ch(W0*%), we have Ay + Ay = A3 + As3.
Furthermore, since A3z = Ay + Azz — ' Apz is symmetric, Ap3 is symmetric and
A2y = Azz. Again, by [6], there are u; € C (i = 1,2) such that t — —1/t-
transformation shifts

W2 (0) + & WHT) + W (1) > i (W (1) + W (1) + EWH2 (1))
for i =1, 2. Therefore, from these information, we know the entries of S:

A0 Ao A0 Al Al Al Al Al Al
Mo koo ko EPm E EPM Eh EM Eh
Ao Ao Ao Eh EM EM EPM EPM E7M
Ll e s s B ke S Ewe
(Sij)=§ MoOEDM EM Em Bl o Eluo Epn o |
MoOEM EA En o Em Epe wo E
MoOEM ER wp Bl Epe o Em EMn
MoOEM E Eluo Epo po Eun E'u
MoOEM ERM Epe wo Eup EM o Em

with A? = w110 = 1. This implies Sj; S, = 1 and so

9
SinSirn Shk’ Shir
R

h=1 0k

Therefore, Nk # 0 if and only if k =0 and NO = 1. Namely, W/ X (W!) = Ve

for every i. If R X W' is not simple for a V"—module R, then (RKX W’) K (Wi =
RX (W! X (W')') = R is not simple by Proposmon 1, which implies W' are simple
current. d

By considering the characters, we have:

n(x)* — ch(

Tv,(o,1; 1) =Ty, (1,1 t)n(%)s

W) +&ch(W') + &%ch(W?),
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Tv,(0,1,—1/7) = A1 {ch(W?) +ch(W*) + ch(W5)},
Ty, (0,1, —1/(z + 1)) = 2™V fch(W3) + &ch(W?) + £2ch(W?) ),
Ty, (0,1, —1/((=1/7) + 1))
= PVEINA i [eh(WP) + £2¢h(WH) + Ech(WD) )
from the above a matrix S. On the other hand, since

Ty, (0,1, =1/((=1/7) + 1))

1
=T ,1,—1—
VA(“ r—l)

_ e—zn«/—_lN/24TvA (0,1,—-1/(r = 1))

= =4 V=IN/2) Leh(W3) 4 £2ch(WH) + &ch(WP) )

we have u = e=67V=IN/24 _ | gince 8|N. Then the matrix S implies A} = Ag and
W3X W3 = W0 and W3 X W° = WO. Therefore,

V=wle w3e w°

is a direct sum of simple current V-modules W3 with integer weights and W3R
W37 = W3 with i + j = k (mod 3). In order to prove that V has a VOA-structure,
we will prove a more general statement.

Proposition 7 Let V be a Cy-cofinite VOA of CFT-type and all V-modules are
completely reducible. Let W = }_, Wi be a direct sum of simple V-module W'
with integer weights and we assume W' R WJ = W* fori+ j =k (modn), W' =V
and n is odd. Then W has a VOA structure.

.. . L. i+j
Proof Let "/ be a nonzero intertwining operator of type (W,W W ,-), where WSt
coincides W*. We choose V%! so that

E((d", Y w, )V (u, y)a)) = E((d", Y (V" (w, x — y)u, y)a))

forany a € Wi, w,u € W' and d’ € (W'*?2)’. Set an intertwining operator )’ of type
(1" w) by
0 0 Y, 2)
YOw,z) 0 0 0
Y(w,z2) = ) ) ) :

0 0 YV 2(w, 7) 0
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where w € W!. We note that a vertex operator Y" of V on W is given by

Y900,z - 0
Y(v,2) = . :
0 s YOy, )

By the definition, we have that ) (w, z) satisfies Commutativity with ¥ W(v, z) for
any w € W and v € V. We also have Y(L(—1)w, z) = j—zy(w, 2).

Our next aim is to prove that ) (w, z) satisfies Commutativity with itself. We note
that Y%/ are all integer power series. Therefore, it is sufficient to show

E((d/, yl,i-}-l(w’ x)yl,i(u’ y)a)) — E((d’, yl,i"l‘l(u’ y)yl,i(w’ .X)Cl))

foranyi =0,...,n—1,d € (W*?)Y ae W, and w,u e W'
Recall a skew-symmetric intertwining operator

O,lz(yl,l)(w, Z)u — eL(*])Zyl,l(u’ _Z)w~

Since dimIvVg]z’W] =1 and all W' have integer weights, we have 0122 =1lon IVV://]Z,W]
and so there is A € {1} such that o2(Y""!) = AY!!. Therefore we have:

E((d, Y""* (w, )V (u, y)a))
= E({d" . Y* (Y (w.x — y)u, y)a))
= E((d', Y* (Lo (W) @, y — x)w, y)a))
= E({d". V> (on(V"") @, y — 0w, x)a))
= E((d" 2% (Y u, y — x)w, x)a))
= E((d', 29", Y (w, x)a)).
Irritating it n times, we obtain
E((e, Y"1 (d" x1) - YMO(d", %)V as zn) - Y0, 1))
=2 E((e, Y0, z1) - Y e, 2oV (@Y 3 ) - 0, x) )

fore’ e (WY, a,...,c,d" € W! and v € V. On the other hand, from the associa-
n

—_—
tivity and W! X ... X W! =V, there is 0 # u € C such that
E(<€/, yl’n_l(dl,)ﬂ) . _yl,()(dn’xn)yl,n—l(a’ Zl) .. .yl,()(c’ Zn—l)v»
— E((e/, yl’n_l(dl,)ﬂ) . .yl,o(dn’ xn)

) uYV (b Y e )b, - (ras2)es i) V)
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for any v € V, where we set r; = z; — z;+1 to make notation short. Since VI satis-
fies Commutativity with ¥ W we have

E([e/, YN d" x1) - YO xa) Va2 - Y0, znm1)))
:E((e/’yl,n—l(dl’xl).'_yl,O(dn’xn)
o uYV (Y Y a )b, - (ram2)es 1) V)
=E((e/, nyV ("1 Y @, r)b, - (rae2)e, i)
« yl,n—l(dl’xl)___yl,O(dn’xn)v»
=E({e, Y@, 20 Y ez Y@ xr) - VIO ),

which implies )J‘z = 1. Since n is odd, we have A = 1. Thus, ) satisfies Commuta-
tivity with itself. By using the normal products, ) and YW generate a local system
O with a Virasoro element Y% (w, z). Since V is a subVOA of @ and its modules
are completely reducible, O is a direct sum O = @ T/ of simple V-modules T/.
Clearly, the action of O on W induces intertwining operators of type (O w W). Since
V XV =V, the multiplicity of a V-module V in O is one and so we have O = W
as V-modules. Therefore, W has a VOA structure, which proves Proposition 7. [

This completes the proof of Theorem B.

3.1 The Character of the Moonshine VOA

The first example is the Leech lattice A and a fixed point free automorphism o of
A of order three. Then a trace function Ty, (0,1; t) of 0 on V4 is

. 1 12 1 12
1 <H§Z‘;l<1—5q")> (Hit‘;l(l—szqn))

Zq_1< ! )” _ 1"
[T +g"+q*) n(3o)12’

Hence, a character function of the twisted module V4 (o) is

ch(Va(0)) = ch(W?) 4+ ch(W?) + ch(W?®) = Ty, (0,1, —1/7)

— 36471443 [The (1 —¢M"
HZO=1(] _qn/3)12’

which implies that W3 (also W®) has no elements of weight 1 and ch(VA) =J(7).

By a calculation, dim W5 =3°(12 + 12+ () = 65610, where W denotes the
weight 2 subspace of W3 and so a triality automorphism of V defined by £ on W3
fori =0, 1,2 is corresponding to 3B e M if V = v,
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3.2 A New VOA No. 32 in Schellekens’ List

The second example is a Niemeier lattice N of type Eg and a triality automorphism
o which acts on the first entry Eg as fixed point free and permutes the last three
E¢, where we choose ((0, 1,1, 1), (1, 1,2,0)) as a set of glue vectors of N for E%,
see [4]. We note that since Eg contains a full sublattice A3, E¢ has a fixed point
free automorphism of order three. Since r =9, in order to determine a dimension of

the weight one space (Va)1, itis enough to see the constant term of ¢%2* %

Since the fixed point sublattice H is isomorphic to /3E*, where Eg‘ denotes the
dual of Eg, we have

1 3, 1 3
@H(T)=§ ¢o(7) +Z{3¢0(3f)—¢0(7)} ;

where ¢o(7) = 62(27)62(67) + 3(27)63(67) and 61(7) = ZmeZqW“/Dz and
63(t) = Y,ez¢"" - see [41. Applying ¢o(~1/7) = = do(t/3), we have

On(-1/1) 1
N—1/0°  9u3"

—1/4

and so
dim(Vy)1 = (6 x 12)/3 +6 46 x 12 +2 x {3%/237%/2} = 120.

Clearly, from the construction we know that (VN)I contains (V) = A%Eﬁ,:} as a
subring. Therefore, VN is a new VOA No 32 in the list of Schellekens [16].
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Words, Automata and Lie Theory for Tilings

Jun Morita

Abstract We will give a new relationship between several simple automata and
formal power series as word invariants. Such an invariant is derived from certain
combinatorics and algebraic structures. We review them, and especially we deal
with a connection to Lie theory via through tilings.

1 Introduction

For each word w, as an abstract invariant, we obtain a formal power series f, (¢) in
t with real coefficients (cf. [17, 20]). On the other hand, automata sometimes create
words. Therefore, we have the following picture.

lautomata] —> |words| —> [formal power series|

Hence, it seems to be nice that there is a characterization of certain automata using
formal power series. This paper consists of

(1) anew approach to characterize the following simple automata, A, A, A3, A4
(Figs. 1, 2, 3, 4), using formal power series and a hierarchy of numbers, as well
as

(2) areview of several recent results.

We note that f,,(¢) can be obtained as a unique solution of some quadratic equation
for each word w. Such an equation is related to the decomposition rule for tensor
products of standard modules. A rough story is as follows. Let 7 be a one dimen-
sional tiling (or a bi-infinite word), and 9t the associated monoid. Put 2l = C[)1]
as a monoid algebra with a bialgebra structure. Then, standard modules of 2 are
defined, and irreducible standard modules are parametrized by subwords of 7. An
irreducible standard module corresponding to a subword w of 7 is denoted by V.

J. Morita (&)
Institute of Mathematics, University of Tsukuba, Tsukuba, 305-8571, Japan
e-mail: morita@math.tsukuba.ac.jp

K. Iohara et al. (eds.), Symmetries, Integrable Systems and Representations, 345
Springer Proceedings in Mathematics & Statistics 40, DOI 10.1007/978-1-4471-4863-0_14,
© Springer-Verlag London 2013



346 J. Morita

Fig.1 Automaton .4;

S

Fig. 2 Automaton A

Fig. 3 Automaton A3 @1{—\
Fig. 4 Automaton A4 @\

Any standard module is completely reducible. Then, we have:

Vo @ Vi =V ® (@ VSEBIJ-.V(U))>’

SFEW

&)

which produces the equation

Fo@® = fu@®)+ D pew) fo(t).
SFEW

Here, s (w) means the multiplicity, and V®" means

Ve.---oV.
[ —

m

By our convention here, we use “lowercase” for a word, and “uppercase” for a
letter, respectively. We will discuss words in Sect. 1, and formal power series as
algebraic invariants in Sect. 2 (cf. [15, 17, 20]). We will characterize simple au-
tomata using formal power series in Sect. 3. We refer [13] and [14] for automata
(or shifts), symbolic dynamics and combinatorics on words. In Sect. 4, we review
several recent results. Our motivation is coming from the study of tilings. Using the
so-called Kellendonk product (cf. [9-11]), we will construct monoids (cf. [12]) and
monoid algebras (cf. [1, 15, 17, 20]). These algebras were introduced and developed
deeply in [9-11], where topology, C*-algebras and K -theory are used. We also dis-
cuss a certain representation theory. Especially we introduce group structures and
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Lie algebra structures (cf. [6-8, 16]), and obtain fundamental algebraic properties
(cf. [17, 20]), including Gauss decompositions and additive Gauss decompositions
(cf. [4,5, 18, 19]).

We denote by C (resp. R, Q, Z, N) the set of complex numbers (resp. real num-
bers, rational numbers, integers, natural numbers).

2 Words

Let £2 be a set of letters. For convenience, we usually assume that 2 is finite. (We
assume ££2 <2 in Theorem 1. But, in general, we need not assume this finiteness.)
A word is a finite sequence of letters in £2. That is,

w=X1X2-~-X,, (X,'E.Q)

is a word. The transpose of w means ‘w = X, X,,_1 - - - X1. The length of w is de-
noted by £(w), and in this case £(w) = n. A subword of w is a successive subse-
quence of w, namely

Xi Xk+1Xk42--- X1 (1 <k<l<n).

We say s < w if s is a subword of w, and we set S(w) = {s | s < w}. We choose and
fix a special symbol, called ¢, which should be totally different from letters in 2.
One sometimes understand that ¢ is a special symbol meaning an empty word. To
control partial similarity of w, we define a certain n x n matrix M(w) = (m;;),
whose entries are in §2 U {¢} as follows.

X; if X; =X;,

mij = .
¢ ifX;#X;.

Using the matrix M (w), we introduce the associated graph, called I" (w), with ver-
tices v;; (1 <1, j <n) and edges defined by saying that v;; and v;4 1, j4+1 are joined
if mjj #¢ and m; ;1 ;11 # ¢. Let C(w) be the set of all connected components of
I'(w). For y € C(w), we define

wy =X Xip1 Xiv2 - Xivk

if ¥ = {vij, Vit1,j+1, Vit2, j42, - - -5 Vigk, j+k} With k > 1, or if y = {v;;} with
m;j # ¢. Then, we define the multiplicity uy(w) for a subword s < w by

ns(w) =t {y € C(w) | wy, =s}.
Also we define

ne(w) =g {v;; |mijj=¢, 1 <i,j<n}
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Then, we obtain

po)+ Y ps(w) - E(s) =n.

seS(w)

3 Algebraic Invariants

Here we abstractly consider the following quadratic equation in x = g(¢):
P=xtus s+ > puew) - fio), ()
seS(w),s#w

where g(t), fy(¢) and f(z) are formal power series in ¢ with real coefficients. We
proceed in the following process.

(F1) Put fy(t) =1t first, where ¢ is a formal variable.

(F2) Suppose that the f;(¢) for s € S(w) with s # w are already defined as formal
power series in ¢ with positive constant terms.

(F3) If the equation (x) has a solution x = g(¢) as a formal power series in ¢ with a
positive constant term, then we put f,, () = g(2).

This recursive process works well (cf. [17, 20]). We compute several typical exam-
ples. If w = A, then M (w) = (A) and the equation (x) is

X =X.

This has an expected solution f4(#) = 1, which is just a constant. Next suppose

w = AB. Then,
_(A ¢
M(w)—<¢ B)

x2=x+2t.

and our equation () is

We need to solve
g =g(t) +2
satisfying g(t) = Y 70, a;t" with ag > 0. Hence, we have the following.
ag =ag
2apa1 = a1 +2
2apay + a% =ap

2apaz + 2a1ar = a3
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This implies ag = 1 since ag > 0. Then we inductively obtain a1 =2/(2ag — 1) =2,
a) = —a%/(2ao —1)=—-4,a3 = -2ajay/(2agp — 1) =16, .... That is,

fap()=gt) =142t —4> 41617 — - -,

where all coefficients are integers since 2ap — 1 = 1. Hence, we have f4p(?) € Z[[t]].
More precisely we easily see that @; is an even integer for all i > 0. Furthermore,
we examine one more example:

w=AA---A
——

n

with £(w) = n. In this case, we claim f,,(#) = n, which can be obtained by induction
on £(w). As above, we already knew that our claim is true for £(w) = 1. We suppose
that our claim is true for £(w) < n. In case of £(w) = n, we have

A - A
M) = | : :
A - A

as an n X n matrix, and our equation (%) is

g =g(t) +nn—1).

Here we note that us(w) =2 and f(¢) = £(s) for s € S(w) with s # w and
my(w) =0, and that 2(1 +2+3 +--- + (n — 1)) =n(m — 1). Thus, we obtain
Juw(®) =g() =nif

We may call f,,(¢) is an algebraic invariant, since our equation (x) is coming from
certain algebraic structures (standard modules and tensor product decompositions
etc.) behind.

4 Automata

To create words from a given set §2 of letters, there may be a rule. Such a rule is
sometimes controlled by an automaton (or a shift). Here we consider the automata
called A;, Ay, A3, A4 (as in Introduction) with 2 = {A} or 2 = {A, B}, which
are very simple and fundamental. Let W;(X) be the set of all words according to
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A; (i =1,2,3,4) and an initial letter X € £2. Namely,

Wi(A) ={A, AA, AAA, AAAA, AAAAA, AAAAAA, .. ),
Wa(A) = {A, AB, ABA, ABAB, ABABA, ABABAB, .. },
W»(B) = {B, BA, BAB, BABA, BABAB, BABABA, ..},
W3(A) = {A, AA, AB, AAA, AAB, ABA,

AAAA, AAAB, AABA, ABAA, ABAB, ...},
W5(B) = {B, BA, BAA, BAB, BAAA, BAAB, BABA, ...},
Wi(A) = {A, AA, AB, AAA, AAB, ABA, ABB, .. },
W4(B) = {B, BA, BB, BAA, BAB, BBA, BBB, ...).

For two words w, w’ in W;(X) with £(w) =n and £(w’) =n + 1, we call w’ is an
extension in W;(X) of w if w is a subword of w’ satisfying

w:X1X2~--Xn and u/:u)X,,_H =X1X2~--Xan+1,

and we call w’ a unique extension in W;(X) of w if w’ is unique as an extension
of w. For example, ABA is a unique extension in W3(A) of AB, but ABA isnota
unique extension in W4(A) of AB since AB B exists in W4(A) as another extension
of AB. A word w in W;(X) is called of infinite type if there is an infinite sequence,
{uk}]fozo with ug = w, of words in W;(X) such that uy1 is a unique extension of uy
for all £ > 0. A word w in W;(X) is called maximal if there is no unique extension
in W;(X) of w. Let V;(X) be the set of w € W;(X) satisfying (P1) and (P2):

(P1) £(w) is even,
(P2) w is maximal or of infinite type.

We call V;(X) the principal part of W;(X). Then, we put

vi=[J vix).

Xe
In fact, we have

Vi={AA,AAAA, AAAAAA AAAAAAAA,.. ]},

Vo ={AB, BA, ABAB, BABA,ABABAB, BABABA, ...},

V3 ={AA,BA,AAAA,AABA, ABAA, BAAA, BABA, ...},

V4s={AA,AB,BA,BB,AAAA, AAAB,AABA, AABB,
ABAA, ABAB,ABBA,ABBB, BAAA, BAAB,
BABA,BABB,BBAA,BBAB,BBBA,BBBB,...}.
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Theorem 1 Notation is as above.

(1) fw@) =L(w) eNifweV.

(2) fw(®) € Z[[t] if w € V. There exists w € Vo such that f,(t) ¢ N.

B) fuw(@®) € QT if w € V3. There exists w € V3 such that f,,(t) & Z[[t]].
@) fu(@®) eR[t] if w € Vy4. There exists w € Vy such that f,(t) ¢ Q[¢]].

Proof of Theorem 1 (1) is already discussed in the previous section. For (2), we
observe that f,,(t) =m x fap(t) for all w € V, with £(w) =n = 2m as well as that
the constant term ag of fy, () = Z,fio agt* is m. We will show it by induction. We
can suppose w € V,(A), and

w=ABAB --- AB

—
with £(w) = 2m. Then, we obtain
A ¢ A ¢ A ¢
¢ B ¢ B ¢ B
A ¢ A ¢ '
M(w) = ¢ B ¢ B
A ¢
o .. . ¢ B
A ¢ - -+ A ¢ A ¢
¢ B - .-« ¢ B ¢ B

as a 2m x 2m matrix. Our equation (*) implies
g7 =g +2(2m =D+ Cm—=3)+---+ 1)t
+2(m =1+ (m—2)+---+1) fap®)
=g(t) +2m*t + m(m — 1) fap(1).

Then, we observe that g(#) =m x fap(t) is a solution of this equation, that is,

(m x fap®)’ =m x fap(t) +2mt +mm — 1) fap(®),
since f4p(t) satisfies

Fap()* = fap(t) +21.

In particular, we obtain, as a unique solution under our condition, f,,(t) = m X
fap(t) € Z[[t]. For (3), we should refer [17], where the proof of (3) is given. How-
ever, it might be better to review it here for the reader. Take w = X - - - X, € W3(A).
Under this assumption, w satisfies that there is no pattern like X; X;+; = BB with



352 J. Morita

2 <i <n—1.Then, we claim that if w € W3(A) then f,,(t) € Q[[#]] and the constant
term fy,(0) of f,,(¢) is the number, called £ 4 (w), of the letter A in w. We proceed by
induction. Let D(w) = {w, | y € C(w)}\ {w}, and put w' = X1 ---X,,_1. Then, we
write f,, (1) = Y 5o, pit' and fur (1) = Y so qit' with p;, g; € R. By induction, we
can assume go = £ 4 (w’). We also note that w” =Y, --- Y, € D(w) implies Y1 = A,
which shows by induction that if w” € D(w) then f,,»(t) € Q] and f,,»(0) =
£4(w"). First suppose X, = B. If m;, = B in M (w) with 1 <i <n — 1, then the
corresponding v;,, is always attached to y’ ={...,vi_1 ,—1} € C(w’) in C(w) to get
w, B € D(w), since m; | ,—1 = A. In this case, there is no change of the number
of the letter A. Hence, pg = po+ (go — Dgo = po + (La(w") — 1)€4(w’). There-
fore, po = £4(w’) = €4 (w). Next, suppose that X,, = A. If m;,, = A € M (w) with
1 <i <n—1,then the corresponding v;, is attached to y" = {..., vi_1 ,—1} € C(w')
in C(w), or v;, is itself a connected component in C(w). In each case, such A can
give an effect “4-1” to compute the corresponding constant term. Note that the num-
ber of the letter A added in the process from C(w’) to C(w) is 2€4(w') = 2qo as
follows. We need to count the letter A at the last column and at the last row. Since
the letter A appears £4(w’) times in w’, we have

PE=po+ (g0 — Dgo +2a(w') = po+€a(w') (€a(w') +1).

Therefore, pg = £4(w’) + 1 = £4(w). In any case, that is, in either case X,, = B or
X, = A, we see pg = £4(w). Now we should solve

g =g +ppwit+ D psw) fi(0),

seD(w)
which can be written as
o0 0 o0
> (popk + prpe-1 + -+ + prpo)tt = (Z Pk’k> + <Z bktk)
k=0 k=0 k=0

By induction all the by are rational, and by our local recursive setting we can assume
that p1, ..., px—1 are also rational. Then, we have

Popk + P1Pk—1+ -+ pikpo= pi + bi.
Since po = £4(w) is a positive integer, we see that py is rational, that is,

bk — (pipr—1 + p2pk—2+ -+ pr—1p1)
204 (w) — 1

Pk

for k > 0. Hence, we can recursively obtain f,,(¢) € Q[[¢]. Now we take w € V3.
Then, we see w € W3(A) or ‘w € W3(A). Since f,,(t) = fi,,(t), we always obtain
Jfw(@) € Q] To confirm (4), we choose, for example, w = AABB € Vj. Then,

C1+V1T 8 64
faapp(t) = 3 +mt 17«/ﬁt + - € Q[r].
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One should also note, as examples, that
fap@®) =142t —4r> +16:°—--- &N

and

6 36 , 432 4

fABAA(t)—3+5l 5 T 3125 e g2 O
By Theorem 1, our algebraic invariant f,,(¢) of a word w can differentiate these
automata A1, Ay, A3, A4 according to the hierarchy of numbers appeared in coef-
ficients. We note that we are just interested in the growth along one direction if we
imagine crystals or quasicrystals. The above proof of Theorem 1 looks very ele-
mentary, which is derived from our simple combinatorics. However, it seems to be
not so easy to find such a result at the beginning. One believes that it is much more

important to observe a new fact in this kind of study.

5 Motivation and Review

For a one dimensional tiling 7, we define §£2(7) to be the set of lengths of all
intervals as tiles in 7. Here, we assume that §2(7) is finite. We choose a set 2
of letters with §£2 = #1£2(7), and fix a bijection from £2(7) to £2. Then, we shall
identify £2(7) with £2, and a one dimensional tiling with a bi-infinite sequence of
letters, using such a bijection. Hence, we shall consider 7 as

- X KX 1 XoX1X2 - (Xi € :.Q('T))

A subword of 7T is a finite successive subsequence X;X;11X;42---X; for some
integers i < j. Let S(7) be the set of subwords of 7, and put S*(7) = S(7) U
{¢}, where ¢ may be viewed as an empty word. Two tilings 7 and 7 are said
to be locally indistinguishable if there is a bijection 7 : 2(7) —> £2(7) such
that S(77) = {w(w) | w € S(T)}, where w(w) = 7(X)7(X3) - -7(X,) for w =
X1 XX, €S8(T).

Let 7 be a one dimensional tiling. Let (i, a, j) be a triplet of a € S(7) and
1<i,j<4(a), and set

M=M(T) ={z,e}U{(i,a, j) laeST),1<i,j<t@}],

where z and e are new abstract independent symbols.
We recall a matrix unit, called E;;. One can imagine that (i, a, j) is correspond-
ing to E;; = (i, E, j). Then, we remember the following rule:

Ey if j=k,
Eij-Eq=68jkEi = )
0 otherwise.
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On the other hand, in our case here, E itself is parametrized. That is, we have:

. . (p,c,q) if ...,
(laaa .]) ° (kabal) ==
z otherwise,

as described below.

For (i,a, j), (k,b,]) € M, we define a certain product, called the Kellen-
donk product, of (i,a, j) and (k, b,!l) as follows. Pile up the j-th position of a
and the k-th position of b. If one gets ¢ € S(7) by this piling, then we define
(i,a,j)-(k,b,l)=(p,c,q), where p is the position of ¢ corresponding to i and g is
the position of ¢ corresponding to / satisfying 1 < p, g < £(c). Otherwise, we define
(i,a,j)-(k,b,])=z.Wealsodefinem-e=e-m=mandm-z=_z-m =z forall
m € M. Then, M becomes a monoid. Let A = C[IMN] = P),,con Cm be the monoid
algebra of 90t over C (cf. [9-11]). Since 9t = 9 (7)) is a monoid, the monoid alge-
bra A = A(T) = C[91] becomes a bialgebra with a coalgebramap A :m > m Q@ m
and a counit map ¢ : m +> 1 for all m € 901 (cf. [1]).

Theorem 2 (cf. [20]) For a couple of one dimensional tilings T and T, the follow-
ing two conditions are equivalent.

(1) 2A(T) =A(T") or A('T) = A(T") as bialgebras.
(2) T and T’ are locally indistinguishable, or ''T and T' are locally indistinguish-
able.

Note that ©T is the reverse of 7. That is, /T is
e Xo X1 XX 1 X o
if 7 is
X X1 XoX1 X

Therefore, 7 + 2A(7) is an invariant of one dimensional tilings. Let 7 be a
one dimensional tiling, and put 2 = (7). To establish Theorem 2, it is important
to study standard modules, which induces some combinatorics. We can draw the
following global picture.

1 DIM Tilings
7

N
|Algebraic Structures
N e

Representations

4
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If we have objects which we want to study, then it may sometimes be a good idea
to construct certain algebraic structures. Using such algebraic structures, there might
be the corresponding representation theory, which produces several combinatorics.
Usually such combinatorics may be very complicated, that is, more complicated
than original objects. But, here we can obtain the above circle, which seems to be
useful.

A left -module V is called standard if the following two conditions are satis-
fied.

(S1) dim(V) <o00,z(V)=0
(S2) f{lx eM|x(V)#0} < o0
Each a € $*(7) induce an irreducible standard module called V, (cf. [17, 20]).

Theorem 3 (cf. [20]) Notation is as above.

(1) {V,|a e S*(T)} is a complete set of representatives for irreducible standard
A-modules.

(2) Every standard A-module is completely reducible.

(3) Every standard A-module is isomorphicto Vy, ®---®V,, for someay, ..., a, €
S*(T).

There might be several ways to pick up certain combinatorics from given decom-
position rules.

|Tensor Product Decompositionsl — |C0mbinatorics| — |Invariants|

Here we choose the following type of decomposition:
V ® V =V & (Other Terms),
which we understand as a quadratic equation in x = g(¢):
x2=x+ (Other Terms).

There is another way, and then we obtain a higher degree equation. But, we really
want to get concrete invariants. For that purpose, we should always solve our equa-
tion. Hence, it is better to choose quadratic equations.

For standard 2A-modules V,, V}, with a, b € S*(T), we see that V, ® V}, is also
a standard 2A-module, which is given by x(v) = A(x)(v) for all x € A and v €
Va ® V. Then, we obtain an irreducible decomposition:

V, @ Vp= @ VCGBM(r(a’b)’
ceS*(T)

where wu.(a,b) is the multiplicity of V.. We put u.(a) = wuc(a,a). Then, our
quadratic equation () is arising from this formula for a = b as follows:

wevim @ veova(@ )

ceS*(T) c#a
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To construct associated groups and Lie algebras and to study them, we sometimes
need to divide tiles into three pieces.

Lie Algebras

|1 DIM Tilings| — |Kellend0nk Products| — |Gr0ups|

For simple notation, we identify x in 2 with x = x 4+ Cz in 2/Cz. If T is a one
dimensional tiling, say

T=XiaXiXiy1--,
then we need to change each letter X; into XXX/ with totally new letters
X!, X!, X" satisfying that X/, X7, X;’,X;.,X}’, X;.” are all different if X; # X,
and that X = X’j, X! = X’j’, X" = X’/.” if X; = X;. By this rule, we obtain a new
tiling ' ' '
72:”'Xz{—lXz{l—lxz{/Lle{Xl{/Xthl{+lXl{/-i-lxt{/-;-l e

This means $2(7) = {X’, X", X" | X € £2(T)}. If we symbolically define 6 : X
X'X"X" then we can write

7

e O(Xi—DO (XD (Xig1) - -

Put SY(T) = {8(w) | w € S(T)} C S(T), where (w) = 6(X1)---0(X,) =
X\ XXX X)X e SU(T) ifw=X;-- X, € S(T).

slp Theory

SL; Theory

|1 DIM Tilings| — |Triple Substitution| —

We will see the simplest example, namely our tiling 7 is trivial:
T=---AAAAA---.
We choose 6 : A— BC D. Then, we obtain
7=---BCDBCDBCDBCDBCD--- .
Therefore, we have
S(T)=1{A,AA, AAA, ..}
and

s?(Ty={BCD,BCDBCD,BCDBCDBCD,...}.

By the definition of our product, S(7°) can not create sl in general, but S 0 (7‘) can
do. We may call the above map 6 a triple substitution.
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For a given one dimensional tiling 7, we use T to construct the associated
group & = &(T,60). Put X = {(i,a, i+ D aeS(,1<i <{(a)} and Y =
{G+1,a, l)IaESG(T) 1<i</{@}.ItE=(,a,]), thenweputé (j,a,i).
For{ e XU andr € C, weset xg (1) = 1+1&. Since &2 = 0and x¢ (1)~ ! =xg(—1),
we see xg (1) € QAT /Cz)*, where QAT /Cz)* is the multiplicative group of
units in A(7)/Cz. Let & = &(T,0) = (xs(t) | £ e XU, 1€ C) C (AT)/Cz)*.
We call & the tiling group defined by (7,6). For§ e XU9Q) and u € C* =C\ {0},
we define we (1) = x¢ (u)xég(—u_l)xg () and hg (u) = we (u)wg (—1). Let

&, =(xz(t) |E€X,1€C),
G_=(xz(t) £ €, 1€C),
By =<hg(u) |[EeXU,u G(CX>.

For each & € X, we define
Be = {xz (1), x; (1) | 1 € C) C &.
Then we have the following properties.

Theorem 4 (cf. [4, 5]) Notation is as above.
(1) &g = SLy(C).
(2) & =06.6-608, (Gauss Decomposition).
Using Gauss decompositions, we obtain:
6= | e65806:)¢7" = ] s(®:608:)87".
8eb+ ged

Here the universal enveloping algebra of a Lie algebra L is denoted by U (L).
We also use 7 to construct the Lie algebra associated with a given one dimensional
tiling 7. Let £ = £(7, 0) be the Lie subalgebra of A(T) /Cz generated by X U %),
where the corresponding Lie bracket is given by [x, y] = xy — yx in 2(7)/Cz.
Then, £ is called the tiling Lie algebra defined by (7, 0). We define

Sy =(lEeX),
=(E1£€).
=(&.n1EeX.ne)

For each & € X, we define
L =(E=CsdClt El@CECL.

Then we have the following properties.
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Theorem 5 (cf. [3-5]) Notation is as above.

(l) ,Qg 25[2((:).
2) £=2£_ £y ® £+ (Triangular Decomposition).
3) UL)=U(L)U(Lx)U(L£+) (Additive Gauss Decomposition).

As above, we have & = (&g | £ € X) and £ = (£¢ | § € X) with & >~ SL,(C)
and £¢ 2 sl (C). Using Gauss decompositions and additive Gauss decompositions,
it is interesting to study & and £ as algebraic invariants of tilings.

We may say that our triple substitution is, philosophically speaking, correspond-
ing to

a 00 b 00
0 a 00 b O
a b 00 a0 0 b
<cd>'_’c00doo
0 ¢c 00 doO
00 c 00 d

This may not exactly be fit to our original triple substitution, but may be a good
explanation philosophically. Honestly saying, our triple substitution has formally
imitated the so-called quark model, which says that every baryon (a kind of hadron
or a certain particle) consists of three quarks.

We now have three objects as invariants of one dimensional tilings, namely bial-
gebras, Lia algebras and groups. According to Theorem 2, bialgebras are advantaged
here compared with Lie algebras and groups. However, Lie algebras and groups are
much more familiar. Hence, it would be better to obtain Theorem 2 type results for
Lie algebras and groups. To show such a result or to create the corresponding rep-
resentation theory, Gauss decompositions and additive Gauss decompositions seem
to be useful. In fact, sl,-theory and SL,-theory are very important in Lie theory.
Hence, also in our case, we hope that such fundamental sub-objects could work
well. Furthermore, to study Lie algebras and groups corresponding to higher di-
mensional tilings in general, we need to create a new and wide setting including
(locally) extended affine Lie algebras probably (cf. [2, 21]). In higher dimensional
case, bialgebras might also be advantaged (cf. [20]). But, we hope that Lie algebras
and groups would be strong tools to develop further. In fact, even in case of bialge-
bras, we could NEVER expect the results like Theorems 1 and 2 before. Therefore,
we would like to expect such a new development using Lie algebras and groups.
We stand and walk on the way toward our invisible goal. Generally speaking, for a
tiling 7, we can define the associated (bi-)algebra 2((7), the associated Lie alge-
bra £(7) and the associated group & (7). Then, we would like to handle 2, £ and
& as functors from the category of tilings to the category of algebras 7 +— 2A(7),
Lie algebras T +— £(7) and groups T — &(T) respectively. Then, we could show
how aperiodic structures can be understood in algebra theory, in Lie algebra theory
and in group theory respectively. For that purpose, we need to create the category of
tilings at least. Especially we should produce suitable morphisms between tilings.
But there seems to be no good reference on this topic yet. It is very important not
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only to study each tiling itself as a local picture, but also to study the category of
tilings as a global picture. Finally we should point out that there might be another
choice to define the corresponding algebras, Lie algebras and groups. There must
be lots of ways to approach to aperiodic orders from algebraic side.

Acknowledgements The author wishes to express his hearty thanks to Professor Akira Terui for
his valuable advice.
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Toward Berenstein-Zelevinsky Data in Affine
Type A, Part III: Proof of the Connectedness

Satoshi Naito, Daisuke Sagaki, and Yoshihisa Saito

Abstract We prove the connectedness of the crystal (BZ9; wWt,g), @p, €p, f;,),
which we introduced in Contemp. Math. 565, 143—-184 (2012).

1 Introduction

This paper is a continuation of our previous works ([8] and [9]). In [8], motivated
by the works ([5] and [4]) of Kamnitzer on Mirkovi¢-Vilonen polytopes in finite
types, we introduced an affine analog of Berenstein-Zelevinsky datum (BZ datum
for short) in type A1(£)1~ Let us recall its construction briefly. For a finite interval /
in Z, we denote by BZ the set of those BZ data of type A|;| which satisfy a certain
normalization condition, called the wg-normalization condition in [9]. The family
{BZ/|I is a finite interval in Z} forms a projective system, and hence the set 52y,
of BZ data of type A is defined to be a kind of projective limit of this projective
system. Furthermore, for / > 3, we define the set BZ% of BZ data of type Al(l_)1 to be
the fixed point subset of BZ7 under a natural action of the automorphismo : Z — Z
given by o (j) = j + [ for j € Z. Note that a BZ datum of type Al(l)l is realized as
a collection of those integers, indexed by the set of infinite Maya diagrams, which

ELINNT3

satisfy the “edge inequalities”, “tropical Pliicker relations”, and some additional
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conditions (see Definitions 4 and 5 for details). The set BZ7 has a U, (f?[l)-crystal
structure, which is naturally induced by that on BZ;. In [8], we proved that there
exists a distinguished connected component BZ7(0) of BZY, which is 1somorphlc
as a crystal to the crystal basis B(co) of the negative part U (5[1) of Uy (5[1) We
anticipated that the connected component BZ, 7(0) s 1dentlcal to the whole of BZ9,
but we could not prove it in [8]. The purpose of this paper is prove the anticipated
identity, that is, to prove the connectedness of the crystal graph of BZ7.

n [9], we introduced the notion of e-BZ data of type Al(l_)l, which are defined
in the same way as BZ data with another normalization condition, called the e-
normalization condition in [9]. In this paper, we mainly treat e-BZ data instead of
BZ data for the following reasons. First, it is known that the set (BZ ) of e-BZ data

of type Al(_)1 is isomorphic as a crystal to BZ7, and hence the connectedness of the
crystal graph of BZY is equivalent to that of (BZ)?. Second, in [9], we showed
that there is a natural correspondence between e-BZ data and (certain) limits of
irreducible Lagrangians of the varieties associated to quivers of finite type A. Thus,
we can use geometrical (or quiver-theoretical) methods for the study of e-BZ data.
This is an advantage of e-BZ data.

Our main result (Theorem 5) states that the crystal (B2%)? is isomorphic to
B(0c0). Because we already know that a distinguished connected component of
(BZ%) is isomorphic to B(co), Theorem 5 tells us that this connected compo-
nent is identical to the whole of (BZ%)°. In other words, we obtain a new explicit
realization of B(co) in terms of an affine analog of a BZ datum. Our strategy for
proving Theorem 5 is as follows. In [6], Kashiwara and the third author gave those
conditions which characterize B(co) uniquely (see Theorem 6 for details). We will
establish Theorem 5 by verifying that the (BZ7,)? indeed satisfies these conditions.
In particular, we will construct a strict embedding lII* 1 (BZ29)° — (B29)7 ® B*
called the Kashiwara embedding (see condition (5) of Theorem 6). In order to con-
struct such an embedding, we define another crystal structure, which we call the
ordinary crystal structure, on (B27)? via a certain involution (denoted by ) on the
crystal (BZ7%)° . For this purpose, we take advantage of e-BZ data mentioned above.
First, we consider a given e-BZ datum in (BZ7,)? as a (certain) limit of irreducible
Lagrangians of the varieties associated to quivers of finite type A. Second, we take
the images of these irreducible Lagrangians under the (so-called) x-operation. Here
we note that for an irreducible Lagrangian, the x-operation is described explicitly
in terms of transposition of matrices (see Sect. 2.5). Finally, by taking a limit of
these images under the *-operation, we obtain the involution  on (B2%)?. This
construction plays a crucial role in our proof.

This paper is organized as follows. In Sect. 2, we give a quick review of results
in our previous works. In Sect. 3, we introduce a new crystal structure, called the
ordinary crystal structure, on BZ¢. Here, BZ¢ is the set of e-BZ data associated to
a finite interval /. Since (BZ7,)° is the set of o-fixed points of a kind of projective
limit of BZ¢’s, we can define the ordinary crystal structure on (BZ%)° induced nat-
urally by that of BZ¢’s. However, in order to overcome some technical difficulties
in following this procedure, we need a quiver-theoretical interpretation of BZ7. We
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treat these technicalities in Sect. 4. In Sect. 5, we prove our main result (Theorem 5)
by checking the conditions in Theorem 6 for the (BZ7)7.

Finally, let us mention some related works, which appeared recently. The first
one is by Muthiah [7]. In [3], Braverman, Finkelberg, and Gaitsgory introduced
analogs of Mirkovi¢-Vilonen cycles in the case of an affine Kac-Moody group, and
defined a crystal structure on the set of those cycles. After that, Muthiah studied the
crystal structure of those cycles in an explicit way, and proved that it is isomorphic
to the crystal BZ7 in affine type A. The second one is by Baumann, Kamnitzer,
and Tingley [1]. Let g be a symmetric affine Kac-Moody Lie algebra. In [1], they
introduced the notion of affine Mirkovié-Vilonen polytopes by using the theory of
preprojective algebras of the same type as g, and showed that there exists a bijection
between the set of affine Mirkovié-Vilonen polytopes and the crystal basis B(—o0)
of the positive part U(j (g) of Uy(g). It seems to us that these works are closely
related to results in this paper. However, an explicit relationship between them is
still unclear; this is our future problem.

2 Review of Known Results

2.1 Preliminaries on Root Data

Let t be a vector space over C with basis {€;};cz; we set h; :=¢; —€;41,1 € Z. We
define A;, A{ € t* :=Homc(t, C),i € Z by

RN I T i g A e )0 ifj <,
<6/’A’>Z'_{o if j >, <€1’Ai)z_{1 ifj >,
where (-, )7 : t x t* — C is the canonical pairing, and set o; := —A;_| +2A; —

Aiy1,1 € Z. Let Wy, := (o;|i € I'(C GL(t)) be the Weyl group of type A, where
o; is the automorphism of t defined by o;(t) =t — (t, «;)zh;, t € t; the group Wy,
also acts on t* by 0; (L) = A — (h;, M)z, A € t*.

Let I =[n + 1,n + m] be a finite interval in Z whose cardinality is equal to m,
and consider a finite-dimensional subspace b, := @, .; Ch; of t*. For each i € I,
set ai’ = 7 (a;) and wl.’ = (A;), where m; : t* — b} := Homc(by, C) is the
natural projection; we denote by (-, -); the canonical pairing between b; and bj.
Then we can regard ({ail}l-d, {hilier, f)}‘, hr) as the root datum of type A,,. Also,
the set {wil }ier can be regarded as the set of fundamental weights. Let W; be the
subgroup of Wz generated by o, i € I. Since o; stabilizes the subspace h; of t for
alli e I, we can regard W, as a subgroup of GL(h;); the group W, acts on b7 in a
usual way.
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2.2 BZ Data Associated to a Finite Interval

Set7:=1U {n+m+1}. Asubsetk C T is called a Maya diagram associated to 7;
we denote by M the set of all Maya diagrams associated to I, and set M} := M\
(¢, T}. We identify M with I'7 :=|_|,., Wy via the bijection [n + 1,i] <> @ /.
Under this identification, (-,-); induces a pairing between h; and /\/l,x, which is
given explicitly as follows:

1 ifiekandi+1¢Kk,
(hi,K)j =13 —1 ifigkandi+1e€k, 2.1)
0 otherwise.

Let M = (My), . M be a collection of integers indexed by M ;. For each k €
/\/l;< we call M the k-component of M, and denote it by (M)k.

Definition 1 (1) A collection M = (Mx), . M of integers indexed by M}‘ is called
a Berenstein-Zelevinsky datum (BZ datum for short) associated to [ if it satisfies
the following conditions:

(BZ-1) for all indices i # j in Tandallk € M suchthatkN{i, j} = ¢,
Myuiy + Moy < Myug, jy + Mx;
(BZ-2) for all indices i < j <k in Tandallk e M suchthat kN {i, j, k} = ¢,
Myugi k) + Myugjy = min{Myugi, jy + Mxuixy Mxugj ) + Miugy}-

Here, My = M7 = 0 by convention.

(2) A BZ datum M = (Mk)kEM;< is called a wo-BZ (resp., e-BZ) datum if it
satisfies the following normalization condition:

(BZ-0) foreveryi eI, Mjjt1 ntm+1] =0 (resp., M[,41,i1 =0).
We denote by BZ (resp., BZ}) the set of all wy-BZ (resp., e-BZ) data.
For M = (Mk)ke/\/lf € BZj, define a new collection M* = (M]’(k)keMlx of inte-
gers by
M;: 1= Mke,

where k¢ := IN\ k is the complement of k in T. Then, M* is an element of BZz¢,
and the map * : M — M* gives a bijection from BZ; to BZ{. We also denote its
inverse by .

Let K =[n’ + 1,n’ + m’] be a subinterval of I, and define

MP(K) :={ke M} |k=[n+1,n"]UK for somek € Mg}
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Then, M is naturally identified with M [ (K) via the bijection k' [n +1,n']U
k’. We denote its inverse by resf( s M (K) = My

For M = (Mk)ke./\/l;( € BZ¢, we define a new collection Mg = (Ml/n)me/vl; of
integers indexed by M by

My, =M

(resk)=1(m)-

Then, Mg is an e-BZ datum associated to K.

2.3 Crystal Structure on BZ Data Associated to a Finite Interval

First, we recall the crystal structure on BZ;. For M = (Mk)ke./\/i;( eBZyandiel,
define

wt (M) := ZM[,I_%L,']OQI,

iel
& M) :=—(Mpug1,i) + Mg 1,i—1uti+1) — Ming1,i—1] — Mint1,i4+11)s
0 (M) := &;(M) + (h;, wt (M)),.

Proposition 1 (1) Let M = (Mk)ke/\/l,x e BZ;. If §i(M) > 0, then there exits a
unique wo-BZ datum M’ = (Ml’{)keMlx such that

(i) M[/n+1,ij =Mp+1.0+1,
(i) My = My for all k € M} \ M (i), where M (i) := {k € M |i € kand
i+1¢&k}.
. . " __ "
(2) There exits a unique wo-BZ datum M" = (Mk)ke/\/(f such that

(iii) M[”-H,i] = M[n+l,i] -1,

n

(iv) M, = My for allk € ./\/11X \Mlx(i).
We set

/ s . ~
~ {M if (M) > 0, and FM:=M'.

ME=10" e (M) =0,

Proposition 2 The set BZ|, equipped with the maps wt, €;, @i, ¢;, ﬁ , Is a crystal,
which is isomorphic to (B(00); Wt, &;, @i, €;, ;).

The explicit form of the action of the lowering Kashiwara operator f; on BZj is
given by the following:
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Proposition 3 For M = (Mk)keMIx e BZ;, we have

min{ My, Mg+ ci(M)}  ifk € M3 (),

(fiM)y = { My otherwise, 22)

where c;(M) = (h;, wt(M)); + & (M) — 1.

Through the bijection * : BZ; = BZ¢, we can define the x-crystal structure on
BZ}. Namely, for M = (Mk)ke./\/llx € BZ{, we set

wt(M) :=wt (M*),  &f (M) :=¢ (M), ¢ (M) :=g;(M"),

S . T . _ g
e, ;=xo0¢ ox%x, and f:=x%o0 fiox*

It is easy to obtain the following corollaries.

Corollary 1 Letr M = (Mk)kGM;( e BZS.

(1) Ifef (M) > 0, then €M is a unique e-BZ datum such that
@) EM)fi+1n+m+11 = Mii+1n4m+1) + 1,
(i) @M = My for all k € M\ M (i)*, where M} (i)* :={ke M[l|i &
_ kandi+ 1€k}
(2) f*Mis a unique e-BZ datum such that
(i) (fSM)fit1ntme11 = Miitingmen — 1,
iv) (ffM)g = My for allk e M\ M (i)*.
(3) ForM= (Mk)ke/\/l,x € BZ9, we have
Tk _ min{Mk9 MS,'k + CZ*(M)} l.fk € M;l( (l)*s
(f’ M)k - { My otherwise, (23)

where c;(M) := (h;, wt(M)); + &/ (M) — 1.

Corollary 2 The set BZ?, equipped with the maps wt, 7, ¢, El’.k, fi*, is a crystal,

C ol e . . * % % Tk
which is isomorphic to (B(c0); wt, g, 0, e, 7).

2.4 Lusztig Data vs. BZ Data

Let AT = {(i, j)li, j € I withi < j}, and set
Br = {a=(ai;) jyeatlaij € Lzo forany (i, j) € AT},

which is just the set of all m(m + 1)/2-tuples of nonnegative integers indexed by
A;r. Here, m is the cardinality of the interval /. An element of 5 is called a Lusztig
datum associated to /.
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We define two crystal structures on B (see [10] and [9] for details). For a € By,
set

i n+m+1
wt(a) ;= — Zriai’, where r; := Z Z agl, i €1.
iel k=n+1 I=i+1

Fori € I, we set

k
A@ = Y @iyt —ae1). n+1<k<i,
s=n+1

. n+m+1
AV@ =Y (@ —ayg), i<l<ntm+l,
t=I+1

where a,, ; = 0 and a; 1 ,4+m+2 = 0 by convention, and define

gi(a) 1= max{Afj}rl @,..., A @)}, gi(a) :=¢;(@) + (h;, wt(a)),

el (a) = max{Af(i)(a), o AZS?m @}, o (@) := el (@) + (h;, wt(a)).
Also, set

ke:=minfn+1 <k <ils;(@) = AV @)},
ky:=max{n+1<k <i|si(a) =AY @),
lo:=max{i <l <n-+mle(a)= A;‘(i)(a)},

ly ::min{i <l<n +m|8;‘(a) = A;‘(i)(a)}.

For a given a € B;, we define four m(m + 1)/2-tuples of integers al”) = (“/?1))’
p=1,2,3,4 by

ag,.i +1 ifk=ke =i,
af) ={ arip1 =1 ifk=kel=i+1,
ar.; otherwise,

akf,,‘—l itk=kp,l=i,
= @ksit1+1 ifk=kpl=i+1,
ag,l otherwise,

2.
a;;:

ajj,+1— 1 ifk=il=1,+1,
al(jl) =1 ait1,+1+1 fk=i+1,1=[+1,
Akl otherwise,
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ail;+1+1 ifk=il=1Ir+1,
=1 dit1+1— 1 ifk=i+1,1=lp+1,
ak. otherwise.

“)
Ay

Now, we define Kashiwara operators on B; as follows:

aa:{o if g;(a) =0, and fa:=a®,

ad ifg(a) >0,

0 ifef(a) =0,

e e g
ela. {3(3) lfgl*(a) >0’ and ‘fl a:=a .

Proposition 4 ([10]) Each of (B, Wt, &, ¢;,, f;) and (By, wt, &, ¢, &, f*) is
a crystal, which is isomorphic to B(00).

Following [9], we call the first one the ordinary crystal structure on B;; the sec-
ond one is called the *-crystal structure on Bj.

Definition 2 ([2]) Let k = {k,41 < k42 < -+ < ky4yu} € M. For such a k, a k-
tableau is an upper-triangular matrix C = (¢p,¢)n+1<p<g<n+u> With integer entries,
satisfying the condition

cpp=kp, n+1=<p=<n+tu,
and the usual monotonicity condition for semi-standard tableaux:

Cp.g = Cp.g+1> Cp,q <Cp+lg-

For a = (a; ;) € By, define a collection M(a) = (Mk(a))keMlx of integers by

ntu kj—l
m@= Y Y

j=n+li=n+1

. C=(cpgy)is
P.q

mnl Y 4 ]

+ { p.0¢p.aT@=P)| g k-tableau

n+l1<p<q=<n-tu

The following lemma is verified easily by direct calculation.

Lemmal Letk ={k,+1 <kni2 <--- < kntu} be a Maya diagram associated to 1.
(1) If there exists s such that k; =1 foralln + 1 <1 <s, then we have

n+u  kj—1 n+u gq-—1 .
. C=(cpyg)is
My(@) = — Z Z di.k; +min Z Yepa-cpat@=n| g k-tableau |
j=s+1li=n+1 q=s+1 p=n+1
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In particular, My (a) depends only on a; j with j > s + 1.
(2) If there exists t such that kj_yyy—1 =1 forallt +1 <l <n+4+m+ 1, then we
have

t—m+u—1 kj—l n+u t

M@=— > Y aix— D D Gijim-uti

j=n+1 i=n+1 Jj=t—m+ui=n+1

t—m+u—1 n+u

+ min Z Z Acpg.cp.gt+(q—p)

p=n+l q=p+1

C=(cpgq) is}

a k-tableau

In particular, My (a) depends only on a; ; withi <t.

Theorem 1 ([2, 10]) Let ¥; denote the map a+—> M(a). For every a € By, ¥j(a) =
M(a) is an e-BZ datum. Moreover, Wy : By — BZ¢ is an isomorphism of crystals
with respect to the x-crystal structures on By and BZS.

2.5 BZ Data Arising from the Lagrangian Construction of B(0c0)

Let (/, H) be the double quiver of type A,,. Here, the finite interval I =[n+ 1,n +
m] in Z is considered as the set of vertices, and H as the set of arrows. Let out(t)
(resp., in(t)) denote the outgoing (resp., incoming) vertex of T € H. For a given
T € H, we denote by T the same edge as T with the reverse orientation. Then, the
map 7 — T defines an involution of H. An orientation §2 is a subset of H such that
2N 2 =¢and 2UQ = H. Note that (1, £2) is a Dynkin quiver of type A,,.

Let v = (vj)ies € Zio. In the following, we regard v as an element of Q4 :=
D) Z>oa! viathemap vi—> Y, vie] . Let V(v) = @,.; V(v); be an I-graded
complex vector space with dimension vector dim V (v) = v. Set

Ev).2 = D Home (V (Wour), VWinm))
T€R

X (v) := ) Home(V ()oucr) V(Winr))-
teH

We will write an element of Ev () o or X (v) as B = (B;), where B; is an element
of Homg¢ (V (V)out(z), V (V)in(r))- Define a symplectic form w on X (v) by

w(B,B') = Z e(0)tr(BzB.),

teH

where e(t) =1 for 7 € §2 and (1) = —1 for 7 € §2, and regard X (v) as the cotan-
gent bundle T*Evy () o of Ey() e via the symplectic form w.
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Also, the reductive group G (v) := ]_[iel GL(V (v);) acts on Ey ), and X (v)
by: (B;) — (gin(,)Brg;]:(T)) for g = (gi) € G(v). Since the action of G (v) on X (v)
preserves the symplectic form w, we can consider the corresponding moment map
w:XWw)— (g(v))* = g(v). Here g(v) = LieG(v), and we identify g(v) with its
dual via the Killing form. We set

AW) == pn~10).

Then, A(v) is a G(v)-invariant closed Lagrangian subvariety of X (v). We denote
by Irr A(v) the set of all irreducible components of A(v).
Let v,v',v € Oy, with v ="+ V. Consider the diagram

A(V) x A@) L= A, T) LB AWw). (2.4)

Here, A(V', D) denotes the variety of those (B, ¢/, ¢) for which B € A(v), and ¢’ =
(#)), ¢ = (¢;) give an exact sequence of /-graded complex vector spaces

’

b b; _
0— V(v’)l. —S V) LN Vi) —0
such that Im¢’ is stable by B; note that B induces B’ : V(v') — V(') and
B:V (V) — V(). The maps g1 and g3 are defined by q1(B, ¢, ¢) := (B, B) and
q2(B, ¢, ¢) :== B, respectively. Fori € I and A € Irr A(v), we set
gi(A):=¢;(B) and ¢(A):=¢'(B),

where B is a general point of A, and

. @BT
& (B) :=dim¢ Coker( @ V(Wou(r)y — V(v)i),

T;in(t)=i

e/ (B) :=dim¢ Ker(V(v),- g @ V(V)in(r)>;

T;out(t)=i

also for k, ! € Z>¢, we set
(IrrA(v))l.)k ={A elrA(v)|ei(A) =k} and
(Ir AW))} := [ A € Ir A)[ef(A) = 1}.

Suppose now that v = ca; (resp., v/ = ca;) for ¢ € Zsq. Since A(ca;) = {0}, we
have the following diagrams as special cases of (2.4):

A(WV) =AW x Alcar) <= A(V ca;) 2> AW), (2.5)

A@) = Alca) x AD) < Aca;, 7)) 25 AW). (2.6)
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Diagrams (2.5) and (2.6) induce bijections

W (I AW)), , > (I A(Y)),, and 2™ (I AW))S S (Iir A®)); -
respectively. Then, we define maps

¢, e |_| Ir A(v) — |_| Irr A(v) L {0} and

veQi veQy
B waw - || mraw
veQ4 veQy

as follows. If ¢ > 0, then

¢ (rA®)), . — (rA(Y)),  — (I AW+ ), .y,
E*'(IrrA(v))l. = (rA®)) > (A +a)

and ;A =0,¢fA" =0 for A e IrrA(v))0, A € (IrrA(v))?, respectively. Also,
we define

ﬁ: (IrrA(v))i - (IrrA( )10 - (IrrA(v—ai))i’C_H,
f:* : (IrrA(v));' (IrrA(v))0 - (IrrA(v —ozi))fH.

Let % : B — ' B be an automorphism of X (v), where B is the transpose of B €
X (v). Then, A(v) is stable under *, and it induces an automorphism of Irr A(v).

Lemma 2 ([6]) Wehave%’;":*oao*andﬁ*:*oﬁo*.

Theorem 2 ([6]) (1) For A € Iir A(v), we set wtA := —v, ¢i(A) 1= ¢&(A) +
(h;, wt A). Then, (|_|VEQ+ Irrf(v); wt, &, @i, €, fi) is a crystal, which is isomor-
phic to (B(co); Wt, &;, ¢i, €, fi). N

(2) Set 7 (A) = ] (A) + (hi, wt A) . Then, (UVGQ+ Irr A(v); wt, &, @, €%, f*)
is a crystal, which is isomorphic to (B(00); Wt, &}, ¢¥, €}, fi*)'

A Maya diagram k € M’ can be written as a disjoint union of intervals:

=[s1+Lululsa+1,Ju---Ulss+ 1,41,

wheren <s|<tij<sy<h<---<sp<ti<n+m+1;

the interval K, = [s, + 1,1,] is called the p-th component of k for 1 < p <.
Define two subsets out(k) and in(k) of I by

out(k):={t,|l <p<lynl,  in(k):={spll<p<iNL
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Also, we define two subsets I, and I of I by

ot(Ky\U{n+1,n+m} ifs;>n+2,5=n+m+1,

I = out(k) U {n + 1} ifs;>n+2,1<n+m,

7] out(k) U {n + m} ifs;<n+1l,y=n+m+1,
owt(ky\U{n+1,n+m} ifs;>n+1,1<n-+m,
nk)U{n+1,n+m} ifsi=n,y<n+m-—1,

I in(k) U{n+ 1} ifsi=n,t; >n+m,

S ) ink) U {n 4+ m) ifs;>n+1,4<n+m-—1,

mKyU{n+1,n+m} ifs;>n+1,4>n+m.

Then, there exists a unique orientation £2 (k) such that /; is identical to the set of
source vertices of the quiver (1, £2(K)), and I; is identical to the set of sink vertices
of this quiver.

For B = (B;);en € X(v), we set

®B
Mi(B) :=—dim(cC0ker( D von— P V(v)z),
keout(k) l€in(k)

where p =175, - T, is a path from k € out(k) to / € in(k) under the orientation
£2(k), and B, := By By, - Bnq is the corresponding composite of linear maps.
For A € Irr A(v) and k € M, define

My (A) := Mx(B),
where B = (B;);cp is a general point of A.

Proposition 5 ([10]) (1) For each A € Irr A(v), a collection M(A) :=
(Mk(A))keMIx of integers is an e-BZ datum.

(2) The map Wy : |_|VEQ+ Irr A(v) — BZ9, defined by A~ M(A), gives rise to
an isomorphism of crystals (|_|UEQ+ Irr A(v); wt, 8;‘, gol.*,E?, f:*) = (BZ$; wt, 8;‘,
% % Tk
(p[ k] el‘ ’ -fl )

2.6 BZ Data Associated to 7.

Definition 3 (1) For a given integer r € Z, a subset k of Z is called a Maya diagram
of charge r if it satisfies the following condition: there exist nonnegative integers p
and ¢ such that

Zgr—p ckcC Z§r+qv |ka>r—p| =D (2.7

where |KNZ.,_,| denotes the cardinality of the finite set k N Z..,_,. We denote
by M(Zr) the set of all Maya diagrams of charge r, and set My, := UrezM(zr)-
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(2) For a Maya diagram k of charge r, let kK := Z \ k be the complement of k in
7. We call k¢ the complementary Maya diagram of charge r associated to k € M (Zr ),
We denote by M (Zr )¢ the set of all complementary Maya diagrams of charge r, and
set M7, 1= UrEZMg),C'

A map ¢ : Mz — My, defined by k — K€ is a bijection; the inverse of this map
is also denoted by c.

We identify &7 :=| |,..; Wz A, (resp., I'z, :=| |, WzAS) with Mz (resp.,

) via the bijection A, <> Z<, (resp., A] <> Z~,). Under the identification 7 =
Mgz (resp., I'; = M), there is an induced action of o; € Wz on Mgz, (resp., M?).
It is easy to see that the explicit form of this action is just the transposition (i, i + 1)
of Z.For & € By (resp., y € I'7), we denote by k(§) (resp., k(y)) the corresponding
Maya diagram.

Let I be a finite interval in Z, and res; : Mz — M a map defined by res; (k) =
kN1 for k e Mz. Set Mz(I) := {k € Mz|k = Z<, Uk; for some k; € M}
Then the map res; induces a bijection from Mz (1) to M. For k € Mz(1), if
we set £2;(K) := (resl)_l(f\ res; (K)) for k € Myz(I), then £2;(kK) € Myz(I) and
the map £2; : Myz(I) — Mz(I) is a bijection. Also, if we define res§ :=res; oc:
M — My, then it induces bijections res§ : My, (I) := (Mz(I))° = M and
Q7 M5U) = M, (I) in a similar way.

Let M = (Mx)ke M, be a collection of integers indexed by Mz. For such an M,
we define My := (My)ke My (1)- By the bijection res; : Mz(I) = M7, M can be
regarded as a collection of integers indexed by M ‘. Similarly, for M = (My)ke M,
we define M; := (Mk)ke M (D) which is regarded as a collection of integers indexed

by M7

Definition 4 (1) A collection M = (My)kere Of integers is called a complemen-
tary BZ (c-BZ for short) datum associated to 7, if it satisfies the following condi-
tions:
(1-a) For each finite interval K in Z, Mg = (Mk)kEM;; is an element of BZ .
(1-b) For each k € M, there exists a finite interval I in Z such that

(1) ke M5(),

(1-ii) for every finite interval J D I, M 2510 = Mok

(2) A collection M = (My)ke M, of integers is called an e-BZ datum associated

to Z if it satisfies the following conditions:
(2-a) For each finite interval K in Z, Mg = (Mk)ke/\/l,x( is an element of BZ¢ .
(2-b) For each k € My, there exists a finite interval I in Z such that

2-i) ke Mz(),
(2-ii) for every finite interval J D I, Mg, k) = Mg, x)-

We denote by BZ7 (resp., BZ%) the set of all c-BZ (resp., e-BZ) data associated
to Z.
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For a given c-BZ datum M = (Mk)kerZ € BZy, we define a new collection
M* = (M})ke M, of integers by M := Myc. As in the case of finite intervals, M*
is an element of BZ?, and the map * : BZz — BZY, is a bijection. The inverse of
this bijection is also denoted by *. We note that s = id.

Let M = (Mg)ke Mg, € BZ7 be a c-BZ datum. For each complementary Maya
diagram k € M¢,, we denote by Int°(M; k) the set of all finite intervals / in Z
satisfying condition (1-b) in the definition above.

For M € BZ7z, we define another collection ® (M) = (& (M)x)kem, of in-
tegers as follows. Fix k € Mz and take the complement k¢ € M7, of k. Since
M € BZy, there exists a finite interval I € Int®(M; k). Then we define ® (M) :=
M (re6)~1 (res; (i) > this definition does not depend on the choice of 1.

Now, let M = (Mg)ke M, € BZ7,. Note that M* € BZ7. We set
Int®(M; K) := Intc(M*; kc). (2.8)

Lemma 3 The set Int®(M; K) is identical to the set of all finite intervals I in 7
satisfying condition (2-b) in Definition 4.

Proof Tt suffices to show that I € Int*(M; k) = Int® (M*; k¢) if and only if I satisfies
condition (2-b). By the definition of M7, (1), the condition k® € M7, (I) is equiv-
alent to the condition k € Mz7z(I). Suppose that this condition is satisfied. Recall
the following equation in Lemma 3.3.1 of [9]: £27 (k") = (£2,(k))‘ for k € Mz(I).
From this, we deduce that

M key = Migape = M, 1-

Thus, condition (1-ii) for M* and k€ is equivalent to condition (2-ii) for M and k.
This proves the lemma. 0

2.7 Action of Kashiwara Operators

First, we define the action of the raising Kashiwara operators ¢, p € Z, on BZ7.
For M = (Mi)kerms, € BZz and p € Z, set

ep(M) := —(O(M)k(a,) + O (M)k,4,) — OMk(a,, ) — O(Mka,_))-

Let I € Int“(M; k(A ,)) N Int*(M; k(opA,)¢) N Int®(M; K(Ap11)) N Int® (MG
k(Ap_1)¢). Then it is known that &, (M) = €,(M;), and hence this is a nonneg-
ative integer.

If £,(M) = 0, then we set €,M = 0. Suppose that £,(M) > 0. Then we define
epM = (Mé)keM% as follows. For k € M¢, take a finite interval [ in Z such that
k € M5 (1) and I € Int“(M; k(A ,)¢) N Int“(M; k(o Ap)¢) NInt(M; K(Ap11)€) N
Int®(M; k(A p—1)¢). Set

M]i = (gpMI)res? (k)-
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Here we note that e ,,MI is defined since M; € BZ].

Second, let us define the action of the lowering Kashiwara operators f P pEZ,
on BZy. For M = (Mk)ker € BZz and p € Z, we define f,M (M )ke./\/l”
as follows. For k € M5, take a finite interval / in Z such that k € M7 (1) and
I € Int*(M; k(A,)°) NInt*M; k(o Ap)€). Set

Ml/(/ = (prI)resg(k)'

Proposition 6 ([8]) (1) The definition above of My_(resp., M) does not depend on
the choice of 1.

(2) For eachM = (Mk)ke/\/l% eBZyand p €Z, ZpM (resp., pr) is contained
in BZ7U{0} (resp., BZ7).

For M e BZ7, set e,(M) :=¢,(M"), p € Z. We define the Kashiwara operators
¢, and f;j‘ on B2, by

~ (e, M*)* ife*(M) >0, ~ e
e‘”M:Z{OP itero =0, W4 SM= (/M)

The following corollary is easily obtained from the proposition above.

Corollary 3 For each M € BZ?, and p € Z, ?I“,M (resp., f;’,‘M) is contained in
BZ5 U {0} (resp., BZ%).

2.8 BZ Data of Type A",

Fix | € Z=3. Let ﬁ be the affine Lie algebra of type Al(l_)l, E the Cartan subal-

gebra of g, h € h i€ I =1{0,1,...,1 — 1}, the simple coroots of g, and @; €
Ij* = Hom(c(b 0),i € I the 31mple roots of @. g. We set Q+ = Z Zsoa; and
0~ := —07. Note that (h,,aj) =aj fori, j e T. Here, {-,-) : § x b* — C is the

canonical pairing, and A = (@ )i, jer is the Cartan matrix of type Al(i)l with index
set T; the entries a;j are given by
2 ifi=j,
ajj:=q—1 if[i—jl=1lorl—1,
0 otherwise.

Now, consider a bijection 7 : Z — Z given by t(j) := j + 1 for j € Z. It in-

duces an automorphism t : t* = t* such that T(Aj) = ]+1 and (A ') = J+1 for

all j € Z. It follows that T 0o 0; =041 0 7. Also, for i € T, define a family S; of
automorphism of t* by

Si :=A{0italla € Z}.
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Since [ > 3, 0,0}, = 0j,0j, forall 0,0, € S;, and for a fixed k € Mz or M7,
there exists a finite subset S; (k) C S; such that o (k) =Kk for every o; € §; \ S; (k).
Therefore, we can define an infinite product ; := Ho,-e s, 0j of operators acting on

Mgz and M%. Note that we have T 0 0; = 0;41 o T, where we regard i € 7 as an
element of Z/17Z.

Set o := t!. For M € BZ7, we define new collections o (M) and o' (M) of
integers indexed by M% by e M)k := Mg—l(k) and o " !M)g = M, (k) for each
k € M5, respectively. It is shown in [8] that o (M) and o~ (M) are both elements
of BZy.

Similarly, for M € BZ%, we can define new collections ai(M), and prove that
they are both elements of BZ7,.

Lemma 4 ([8]) (1) On BZy, we have ® oo =0 0 O.

(2) ForMe BZz and p € Z, ep(c (M)) = 8071([7)(M).

(3) The equalities 0 o€, = €5 (py o0 and o o ﬁ, = fg(p) oo hold on BZ7 U {0}
for all p € Z. Here it is understood that o (0) = 0.

Definition 5 Set
BZS = {M e BZzloM) = M} and (BZeZ)U = {M e BZ5loM) = M}

Anl)element M of B2 (resp., (BZ7%)?) is called a c-BZ (resp., e-BZ) datum of type
(
A

-1

2.9 Crystal Structure on BZ7,

Now we define a crystal structure on BZ7, following [8]. For M € BZ7 and p € T,
we set

Wt M) =) @Mk, @p, M) :=¢,(M),
pel
$p(M) :=2,(M) + (h,, wt (M),
In order to define the action of Kashiwara operators, we need the following.

Lemma 5 ([8]) Let q,q" € Z, with |q — q'| > 2. Then, we have e e, = e, ey,
Jofqy = fq fq, and 'Eq fo = fq/?,;q, as operators on BZ7 U {0}.

For M e BZ and p € T, we define e,M and ﬁ,M as follows. If €,(M) = 0,
then we set ¢, M := 0. If €,(M) > 0, then we define a new collection ¢, M = (M, )
of integers indexed by M, by

My == (e, pyM)k  for each k € M.
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Here, L(k, p) :={q € p+1Z|g ekand g +1 €k} and e; x p) 1= l_[qeL(k,p) ¢,. By
the definition, L(k, p) is a finite set such that |g — ¢’| > 2 for all ¢, ¢’ € L(k, p)
with g # ¢’. Therefore, by Lemma 5, e, ) is a well-defined operator on BZ7.

A collection ﬁ,M = (My)) of integers indexed by M, is defined by

My = (fL, M)k for each k € M,

where f1, p) = HqEL(k,p) f~q. By the same reasoning as above, we see that f7 (, p)
is a well-defined operator on BZ7.

Proposition 7 ([8]) (1) We have e,M € BZ U {0} and pr eBZzy.
(2) The set BZ$,, equipped with the maps Wt,p,, §p, €p, f,,, isa Uy (5[1) crystal.

Let O be a collection of integers indexed by M7, whose k-component is equal
to O for all k € M7, It is obvious that O € BZ7,. Let BZ7,(0) denote the connected
component of the crystal BZ%, containing O. The following is the main result of [8].

Theorem 3 ([8]) As a crystal, (BZ25(0); Wt,€), 9p, €p, ﬁ,) is isomorphic to B(00)
for U, (3.

In a manner similar to the one in [8], we can define a crystal structure on (BZ7,)°.
By the constructlon it is easy to see that * o 0 = ¢ o *. Therefore, the restrlctlon of
*:BZy - BZ? to the subset BZY gives rise to a bijection * : BZY > (BZ3)°.
We denote by O* the image of O € BZ” under the bijection *. Then, O* is a collec-
tion of integers indexed by Mgz whose k -component is equal to 0 for all k € Mz.

For M € (BZ7)° and p € Z, we define

wt(M) = wt(M¥),  E5VM):=,(M"),  @5M) :=E5M) + (71, wt (M),

and

e[| @ (V) HEEE (M) > 0, T
epM:{O” if’g‘*i(M)zO, Iy = (Fp (M),

The following corollary is an easy consequence of Theorem 3.

Corollary 4 (1) The set (BZ%)°, equipped with the maps wt, ep, @E, 1 ]/‘;f, isa
U, (5[[) -crystal.

(2) Let (B2%)°(0*) be the connected component of the crystal (BZ5)? con-
taining O* € (BZ%)°. Then, (BZ%)° (0*); wt, €7, @*“p,’:ﬁ, *) is isomorphic as a

p
crystal to B(00) for Uy (5[1).
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3 Ordinary Crystal Structure on BZ¢

3.1 The Operator 4

LetM = (Mk)ke./\/l;( be an e-BZ datum associated to a finite interval I = [n+1,n+
m]. Set wt¥(M) := >, _; M{i+1n+m+11hi. Then the following equality holds:

(wt” (M), &), = (hi, we VD),

Definition 6 For each M = (My)ker, € BZ¢, we define a new collection M =
f .
(Mk)ke/\/tf of integers by

M} = Mye — (wt¥ (M), K),.
It is easy to verify the following lemma.

Lemma 6 (1) wt (M?) = wt (M) and wt”¥ (M?) = wt¥ (M).
(2) (M%) =M.

Lemma 7 M* € BZ¢.

Proof 1Tt suffices to check conditions (BZ-0), (BZ-1), and (BZ-2). Condition (BZ-0)
is checked by an easy calculation. Let us check (BZ-1): for kN {i, j} = ¢,

ft ft ft f
My iy + Mgy = My, jy + M-

Since
1 ifk=i,
(. KUY, =1 —1 ifk=i—1,
(hr,K); otherwise,
1 ifk=j,
(hk,ku{j}>1= -1 ifk=j—1,
(hr,K); otherwise,
and
1 ifk=iorj,
(. kUL jY), =1 —1 ifk=i—1lorj—1I,

(hr,K); otherwise,

we obtain the following equalities:

(e KU {i}), + (he. kU {j}), = (he. KU (i, j}), + (hi. k) forallk e 1.
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From this, we deduce that

(Wt (M), kU {i}), + (wt" (M), kU {j}), = (wt" M), k U {i, j}), + (wt" (M), K),.
Sirjlce Mxuipe + Maugipye < M, jye + Mie, condition (BZ-1) is satisfied for
M

Now, suppose that k N {7, j,k} = ¢ with i < j < k. Then, for every [ € I, we
have

(hi. kUi, Y}, + (e kU {)), = (h kU { kY, + (e K) g
= (. kUi, j}), + (hi. k).

From this equality, we see that condition (BZ-2) is satisfied for M* by the same
argument as for condition (BZ-1). O

For M € BZ?, set &; (M) 1= —M[u41,i—1]Ufi+1)-
Lemma 8 ¢ (M) = &f (MF).

Proof By Lemma 6(2), it suffices to show that &; (M") = 7 (M). By the definitions,
we have

ef M) = —=Mii v 1 nym+1] — MiUti+2.04m+11 + Miig2,n4m+11 + Mii ngm11-

Also, we compute:

(M) — f
e (MF) = =Moo+

= —Muyri-1ui+e + (WMD), [n+1,i —=1JU{i +1}),

= —M)uli+2.n4+m+1] + ZM[1+1,n+m+1]<hls [n+1.i—1U{i+1}),
lel

= —Muti+2,n4m+1] — Miit1,n4m+1] + M2 nvm+11 + My ntm+11-

Thus, we obtain the desired equality. d

Lemma9 (1) If ;M) > 0, then

(a) (@ (MP)f = My + 1 fork e M (i)*,

(b) @(MF)f = My fork € M\ (M} () UM ()).
(2) For every M € BZ¢,

(@) (ff )= My — 1 fork e M ()",

(b) (FF(MP)y = My fork € M\ (M} (i) UM (i)*).
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Proof Since part (2) is proved in a similar way, we only give a proof of part (1).
Suppose that k € M7 (i)* or k € M} \ (M (@) U M7 (i)*). Then, kK € M \
M7 (i)*. Also, since e (M%) = &;(M) > 0, it follows that
’é:-"(Mﬁ)kC = Mif by Proposition 1
= My — (wt" (M), k),
= My + (wt" (M), K),.

Therefore, we have

(5 (MF))j, =5 (M), — (wt” (5} (M) K),
= My + (wt" (M), k), — (wt” (M), k), — (h;.K); by Lemma 6(1)
= Mx — (hi, k)
{Mk+1 ifk e M (i)*,
My if M7\ (M7 () UM @*).

This proves the lemma. O

Proposition 8 (1) Assume that ¢;( M) > 0. Then, there exists a unique e-BZ datum
MU such that

(@) My = My + 1 fork e M (i),
(b) MMy = My fork e M} \ (M[@{i)UMS@)*).

(2) There exists a unique e-BZ datum M such that

(a) M)y = My — 1 fork e M} (),
(b) My = My fork e M\ (M} (i) UM @i)*).

Proof Since part (2) is proved in a similar way, we only give a proof of part (1). The
existence of the required MI!! is already proved in Lemma 9. Let NI!! be another
e-BZ datum which satisfy conditions (a) and (b). For the uniqueness, it suffices
to show that Ml[(l] = Nl[(l] for an arbitrary subinterval k = [s + 1,¢] of T where
T=m+1ntm+1.I[s+1,1]€ M\ M (i), then the assertion is obvious
from conditions (a) and (b). Assume that [s+1,7] € ./\/llX (i). Here we note that such
an interval [s + 1, ¢] has the following form:

[s+1,i], n<s<i-—1.
If s = n, then we have (M[l])[nJr],i] = (N[l])[n+])i] = 0 by the normalization condi-

tion. Now, suppose that (M“])[S,i] = (N[l])[s,,-]. Then, by the tropical Pliicker rela-
tionfork=[s+1,i —1]ands <i <i + 1, we have
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(M) + (M[I])[s,i—l]u{i—i-l}

+ min{(Mm)[S,i—l] + (Mm)[

[s+1,i]

, (Mlll) Mlll)

s+1i+1] [s+1,i—1U{i+1} +( [s,i]}'

Also, by conditions (a) and (b), we have
(M[]])[s,i—l]u{i+l} = Msi-nuii+1 + 1,
(M[l])[erl,ifl]U{iJrl} = Msq1,i—1uti+1) + 1,
')
Therefore, we deduce that
(M[l])[s_H,i] = —Mjsi—1ui+1y — |

+ min{ M5 i1 + Mist1.i+17, Mis+1i-noi+1) + 1+ (M[”)[m]}.

_ . [1] — .
(s,i—1] = Mis,i-115 (M )[s+1,i+1] = Mist1,i+1]-

Similarly, we obtain
1
(N[ ])[s+l,i] = —Msi—nugi+y — 1
+ min{ M5, i 17+ Mis 117, Migi-nui+n + 1+ (N[”)[m]}.

Consequently, we obtain (M[l])[ﬁlyi] = (N“])[Hly,-]. This proves the proposi-
tion. O

Corollary 5 For k € M (i), we have
(ME), =min{ My + 1, Mo + & (M)}
Proof From the uniqueness of M2, it follows that MI?! = (£*(M?))%. Therefore,
(MP)), = (F(M);
(F7(MF)) e = {wt" (7 (MF)). K,
min (MF) . (VMF),, ¢ (MF) ] = (wt" (M), K], + (b, K,

I
—

=min{ My + 1, Mo + (Wt (M), o7k — k), + ¢} (M*) + 1}.

Here, we remark that (h;,k) =1 since k € M;‘ (7). Let us compute the second term
on the right-hand side of the last equality. Note that o;k —k = —(h;, k) ;o] = —a!.
Hence we deduce that

the second term = M, — <WtV(M), ail)l + (hi, wt (Mu)>1 + 8;* (Mt) —1+1
= Mo+ & (M).

This proves the corollary. g
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3.2 Ordinary Crystal Structure on BZ

We define another crystal structure on BZ¢ via the bijections B; > Ll,e 0, I A()

= BZ{. Let M = (Mk)kej\/l,x be an e-BZ datum. Then, there exists a unique

Lusztig datum a (or equivalently, a unique irreducible Lagrangian A,) such that
M = M(a). Now we define

&i(M) :=¢;(a) = &;(Aa), @i(M) := ¢;(a) = ¢i(Aa),

eiM =

{M(aa)ZM@Aa) ifej(@>0, M= M(Fa) = M(F Ay)

0 if &;(a) =

By the definitions, it is obvious that the set BZ, equipped with the maps wt, ¢;, ¢;,
¢, f,, is a Uy (sly41)-crystal, and the bijections above give rise to isomorphisms of
crystals

(Brs wt, &1, 9i, % f)) — ( |_| Irr A(v); Wt, &, ¢i, €, ﬁ)
veQ4
— (BZ; wt, 8i,gz),~,?,',ﬁ).
We call this crystal structure the ordinary crystal structure on BZ¢.
Lemma 10 For A € Irr A(v), we have
M(A*) = M(A)".

Proof We write v=1>",_,; v,-ozl.l . Let B be a general point of A. Then its transpose
"B is also a general point of A*. Therefore, we compute:

My (A*) = My ("B)

=—dim(cCoker< P vy 2 D V(v)z)

keout(k) lein(k)

= —dim¢ Ker( @ V() ®F @ V(V)k)

lein(k) keout(k)

:—dim@COker< @ V(v)1€%>H @ V(V)k)

Ieout(ke) kein(ke)

+ Y dime Vo — Y dime V(v

kein(ke) leout(k®)

= Mye(A) + Z Vg — Z V.

keout(k) lein(k)
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Here, for the third equality, we take the transpose ' ( B) = B of ' B. By the definitions
of out(k) and in(k), we have

1 if p € out(k),
(hp,k)y =1 —1 if pein(k),
0 otherwise,

and hence
(wtv(M(A)), k>l =— Z Ve + Z V.
keout(k) lein(k)

From these, it follows that
My (A) = Mye(A) — (wt” (M(A)). k), = (M(A)ﬁ)k.
This proves the lemma. g

Proposition 9 As operators on BZ9,
Gi=toe ot and fi=tof ot.

Proof Let M € BZ{. We only give a proof of the first equality, since the proof of
the second one is similar.

If &; (M) = &} (MF) = 0, then &;M = (¢} (M*))* = 0 by the definitions. So, as-
sume that &; (M) = & (M#) > 0. Let A be a unique irreducible Lagrangian such that
M = M(A). Since the bijection Z7 : A — M(A) is an isomorphism with respect to
both the ordinary and *-crystal structures, we have
(& (V) = (& (MCAY))F = (& (M(4")))* = M(@& 4% =M(@ 4)")

1 1 1

=M A) =e;M(A) =e;M,
as desired. O
The following corollary is obvious by the consideration above.
Corollary 6 (1) Let M € BZ¢, and assume that s;(M) > 0. Then, ;M is a unique

e-BZ datum such that

(@) (& M)k = My +1forke M (i),
(b) (i M)x = My fork e M\ (M} (@) UM[@E)*).

(2) For every M € BZ¢,
min{My + 1, Mo + & (M} ifk € M ().

(fiM)k =1 My — 1 ifk e M ()",
My ifk € M7\ (M7 (@) UMF@E*).
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Proposition 10 Let i, j € I, and M € BZ. Set ¢ :== &;(M) and M’ = N;M.
(1) We have

&f (M) = max{e; (M), c — (h;, wt (M’))I}.
) Ifi # j and E;f M) > 0, then

S@EM)=c.  F(@EM) =M.
(3) Iff (M) > 0, then we have

engy ) Ei(M) ifef (M) > ¢ — (h;, wt(M')),
e (/M) = {&(M) — 1 ifef (M) <c— (hj, Wt (M),
and

GMifef (M) = ¢ — (hi, weM)1,
M’ ifef (M) <c— (hj, wt(M));.

1 1

& (M) = {
Here, we set ¢’ := g; (e;M).

Proof Recall that the bijection =7 : A — M(A) is an isomorphism with respect to
both the ordinary and *-crystal structures. Therefore, all of the desired equations
follow immediately from the corresponding ones, which hold in |_|V€Q+ Irr A(v)
(see [6]). This proves the proposition.

4 Ordinary Crystal Structure on (BZ7,)?

4.1 Definition of Ordinary Kashiwara Operators on BZ?,

For M = (My)kem, € BZ7 and p € Z, we set
ep(M) 1= —My(o,4,)-
Observe that if k(o, A ,) € Mz(I), then
epM) = =M, 4,) = =MDres; ko, 4,) = ~MDx(o,w)) = p M),

First, let us define the ordinary raising Kashiwara operators on BZ7,. If £,,(M) > 0,

the we define a new collection M = (Mll(”)ke My, of integers as follows. For
a given k € Mz, take a finite interval I in Z such that k, o,k € Mz(I), and
I € Int*(M; k(A ) NInt*(M; k(o Ap)) N Int®(M; k(A p41)) NInt*(M; k(A p_1)).
Then, we set

1 ~
Ml[( ] = (epMI)rCSI(k)'
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Here, ¢, is the ordinary raising Kashiwara operator on 329 defined in the previous
section. Now, we define the action of 'é'p on BZEZ by

~ g MU if e, (M) > 0,
epM:= {0 if £, (M) = 0.

Note that the definition above does not depend on the choice of 1.
Next, let us define the ordinary lowering Kashiwara operators on BZ7,. For M =

(My)kem,, € BZ5 and p € Z, we define a new collection f:,M = (Ml[(z])ke/vlz of
integers as follows. For a given k € My, take a finite interval / in Z such that
k, o,k e Mz(1I), and I € Int*(M; k(Ap)) NInt*(M; k(o A)). Then we set

9 ~
Ml[( ] = (prI)resl(k)~

Here, f;, is the ordinary lowering Kashiwara operator on 3Z¢ defined in the previ-
ous section.
For p € Z, we set

Mz (p):={ke Mz|lpek,p+1¢k},
Mz (p)*:={ke Mzlp ¢k, p+1€k}.

The following lemma follows easily from the definitions.

Lemma 11 Let M = (My)ke M, € BZ7,.

(1) Ifep, M) > 0, then

(@) (€M)= Myx+1forke M;(p)*,

(b) (€M) = My fork € M \ (M7 (p) UM (p)*).
(2) For each M € BZ7,, we have

-~ min{Mi + 1, M,k + £, (M)} if k € M3 (p),
(fpM)k = Mk —1 ifkeMj(p)*,
My ifke My \ (M (p) UM (p)¥).

Proposition 11 (1) If ,(M) > 0, then ¢,M € Bgez.
(2) For every M € BZ%, and p € 7, we have f,M € BZ,.

In the next subsection, we give a proof of this proposition.

4.2 Proof of Proposition 11

Since part (2) is obtained in a similar way, we only give a proof of part (1). We will
only verify that condition (2-b) in Definition 4 is satisfied for ¢, M with & ,(M) > 0,
since the remaining ones are easily verified. Namely, we will prove the following:
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Claim 1 Assume that £,(M) > 0, and let k € Mz. Then, there exists a finite inter-
val I in Z such that for every J D I,

€M) o, = (€M@, - 4.1)

Take a finite interval K = [ngx + 1,ng + mg] in Z such that k,o,k €
Mz(K), and K € Int*M; k(A,)) N Int*(M; k(opA4,)) N Int*(M; k(Ap11)) N
Int*(M; K(Ap—1)). Set K" :=[ng,ng +mg + 1]. Since Mz(K') is a finite set, we
can take a finite interval I = [n; 4+ 1, n; + m ] in Z with the following properties:

IDK, and Ie€Int‘M;n) forallne Mz(K'). 4.2)

In the following, we will show that such an interval [ satisfies the condition in
Claim 1. We may assume that J = {n;} U (case (i)) or J =1 U {n; +m; + 1}
(case (ii)). We show Eq. (4.1) only in case (i); the assertion in case (ii) follows by a
similar (and easier) argument.

Before starting a proof, we give some lemmas. We set a = (ai,j)(l.,j)eA;r =

W M) € Brb= (b g peat =¥ (My) € By, A= 87 (Mp) € I A(vy),

and Ap = EJ_I(MJ) € Irr A(vy), where vy = wt(M;) and vy = wt(My). Let
B! = (B!) € Ay and B’ = (B/) € Ap, be general points.

Lemma 12 Let o (n; — ng) be the path from ny to nk defined as follows:

O'(}’ll—)l’l[(): O 9 O O .
ny ny+1 ny+2 ng —2 ng —1 ng

J .

Then, the corresponding composite map By snp)

map.

Vin, = VWi)ng is azero

Proof Since Ay, € Mz(K’), we have
MD g +1n4+m+11 = M@p(A, )
= Mo, Ane) = MD g+ tng+mp+11==0ng -
Also, by the definition, we have
MD g +1n4m+11 = M) (Ul +1,04m+1]
= —dimc Coker(V (v)),, ﬂ) Vng)-
From these, we obtain

. B’
(V))ng =dimgc Coker(V(vJ)n, — V(v])nK).

J
o(nj—>ng)

This shows that the map B is a zero map, as desired. O

—w-lut _ w-l i
Leta*:(a?jj)(i’j)eAf =Y, (M) andb*—(b,f)l)(k’l)eA; =, (M)).
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Lemma 13 We have b,*” ;=0forng +1<l<n;+my+1.

Proof First, note that

ny+my+1 ng
ft _ * ft _ *
(MJ)[n,+1,n1+m1+1] - Z bﬂ[,l and (MJ)[n,—H,nK] - Z b"l,l'
I=n;+1 I=n;+1

Next, by Lemma 10, we have

t
(M50, 1) = Mins 1051 (45) = — dime Coker(V (0))ny 3 Vi), ).

Since ("(B'))o(ng—n;) =" (B’ }) =0 by Lemma 12, we deduce that

onj—ng

(Mﬁj)[n,ﬂ,n,(] ==Wn;-

Therefore, we deduce that

ny+my+1
x Ii f —
Z bnl,l - _(MJ)[n1+l,n1+m1+l] + (M])[HI-HJIK] =0.
I=ng+1
Since b:l ; is nonnegative for all /, we obtain the desired equality. 0

Lemma 14 Foreveryn;+1<s <t <nj+mj+ 1, we have

(M), = (MD) + WDt = )51 = WD + 1)

Here, by convention, (vi)s—1 =0 for s =n; + 1 and (vi); = (vj); =0 for t =
ny+my;+1.

Proof We assume that n; + 1 <s <t < nj + mj + 1; in the remaining case, the
desired equation follows by a similar (and easier) argument.
Write n; = [s, 1] € M. Then we have

(Mg) = —dim¢ Coker(V(vI)t t(ﬂﬁ V(VI)S—I)

n;
= — dime Ker(V (v)s_1 —5 V(v1);)

— —dime Coker(V ()5 —5 V(1)) = W)s—1 + (w1
= Mpns — D)s—1+ D).

Similarly, we have

(Mu.l)nj = (MJ)Ilj —Wp)s—1+ ).
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Here we setny :=[s,7] € ./\/l; Since n§ = {n;} Un, we obtain
(M)ng = (My)ps -
Therefore, we deduce that
(M3),, = (Mp)ng — (051 + ()
= (M), + ()51 = (1) = (W)t + (0))r.
This proves the lemma. O

Corollary 7 Foreveryn;+1<i < j<ny+mj+1,we have

*

*
bij=aj .

Proof The desired equality follows easily from Lemma 14 and the chamber ansatz
maps (see [2]):

# ft ft f
b?.,j = (MJ)[i,j] + (Ml)[i+l,j—l] - (Ml)[i+,j] - (MJ)[i,j—l]’

f f :I f
ai*,j = (MI)[i,j] + (MI)[H-l,j—l] - (MI)[i-&-,j] - (MI)[i,j—l]'
O
Proposition 12 We have
f f
((E;(MI))K)[])+1,nK+mK+1] = ((E;(M]))K)[P+l,nk+mk+l]'
Proof Note that the desired equation is equivalent to the following:
i f
(’é;k’ (MI))['11+1,nK]U[p+l,n1<+mK+1] = (E; (MJ))[nl,nK]U[pJ,-l’nK_‘_mK_Fl]' (4.3)

Leta' = (@] ) jyeat = v, (@5 (M7)) and b = B Daeat = vl @),
andsetl:=[n;+ 1,nglU[p+1,nx +mg+1]landm:=[n;,nglU[p+1,ng +
mg + 1]. Then, Eq. (4.3) is equivalent to the following:

Mi(a) = Mun (V). 44)
Observe that by Lemma 13, Corollary 7, and the definition of the action of 'e‘;*,,

ai;=bi; (G,j)eA]) and by, ;=0 (g+1<I<n;+m;+1). (45)

nr,l —

Since the Maya diagrams 1 and m satisfy the condition of Lemma 1(1) with s = ng,
we have
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ng+mg+1 -1
/ ’
m@)=- > > g
j=p+1 i=n;+1

2ng+mg—p+1  t—1

C =(cgy)is

. 7 s,t

+ min Z Z acs,lacs,t+(l*5) an l-tableau ’
t=ng+1 s=ny;+1

and

ng+mg+1 1—1

Mm(b/) == Z Z bl/c,l

I=p+1 k=ng

2ng+mg—p+1 t—1 .
. D = (d, ;) is
’ 5,1
+min Z Z bds.tady,t-F(f—S) an m-tableau

t=ng-+1 s=nj

Here, by (4.5),

ng+mg+1 1— ng+mg+1 -1
/
Z Z aj= 2. D bl
=p+1 i=n;+1 I=p+1 k=n;

Now, let D = (ds,)n;<s<t<2nj+my—p+1 be an m-tableau, and define two upper-
triangular matrices

/ ” 1"
:(dy’t)n1§s§l§2nk+mkfp+l and D (d ;)n1+1<5<l<2nk+mk p+1

by

nj ifs=ny, 1"
d = . and d’,:=d,,.
8.t dp4 otherwise, 8.t 5.1

Then, D’ is an m-tableau and D” is an l-tableau. From the definitions and (4.5), we
see that

2ng+mg—p+1 1—1 2ng+mg—p+1 1—1
/ /
>
Yo D baeenz D, Dby L —s)
t=ng+1 s=nj t=ng+1 s=nj

2ng+mg—p+1 -1

= > D B arams

t=ng+1 s=ny+1

2ng+mg—p+1 1—1

= Z Z ad;’,,d”,+(z —5)"

t=ng+1 s=ny;+1
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Therefore, we obtain

2ng+mg—p+1 -1
. /
min Z Z aCS.t JCs, 1 H(t—5)

t=ng+1 s=n;+1

2ng+mg—p+1 -1
—_— 1 /
=min Yo D bidris

t=ng+1 s=nj

C=(csy) is}

an l-tableau

D = (dy,) is }

an m-tableau

and hence (4.4). O
Now let us start the proof of Eq. (4.1). By (4.2) and Proposition 9, we have
@M, 10 = @Mires; (@, 60) = @M = (25 (M7))*),.
= (2, (M7),,, = (wt" (7, (V7). KS),
= (Ez(Mg))kl + (Wt (M), ki), + (hp, ki)

Here, k; :=res; (k) and kf =T \ k;. Similarly, we have

@Me,m = (& (Mt}))kj + (Wt M) Ky, + kgD

By these, the proof of Eq. (4.1) is reduced to showing:
(@) (hq,kp)r = (hg,ky)y forallg € K';
(b) (wt" (M), k) = (wt"(My), ky) 3
© @Mk, = @5 M)k, .
p I77K1 P J)Ky
By the definitions, (a) is easily shown. Let us show (b). Since k € Mz(K’), we
have (h,;,Kk;); =0 for g ¢ K'. Therefore, we see that

(wt” (M), kl), = Z(hq, Kt (Mp)g+1,np4m+1) = Z(hq, K1) Mg, k(a,))
qel qgel

= Z (hg K1) iMg,k(a,)-
qgeK’

Similarly, we see that

<th(MJ),kJ>J = Z (hg Kj)iMa,xk4,))-
qekK’

Consequently, in view of (a), it suffices to show that Mo, k(a,)) = M@, k(4,)) for
all ¢ € K’, which follows from (4.1). Thus, we have shown (b). For (c), it suffices
to show the following proposition.



Toward Berenstein-Zelevinsky Data in Affine Type A, Part I1I 391

Proposition 13
(2 (M) = (2 (M3))

Proof We remark that (Ei,", (Mt,I)) x and (?[‘; (M%)) g are both elements of BZ%.
Hence it suffices to show the following:

@) (@MDY [t Lngmg +11 = (@MDY K [t Lng-+mg +11:
© (@M))K)m = (@5 M%) g )m for all m e M3\ ME(p)*.

Because (d) is already shown in Proposition 12, the remaining task is to show (e).
We setm! := (resf()_l(m). Since m’ € MF\ M7 (p)*, we have

((g;(MI}))K)m = (%(Mg))ml = (Mtt)m[ =M miy — <th(M1), ml)l.

We set mZ = res}l(m) € Mz(K) C Mz. Then we have m’ = res;(m%) and
(m’)¢ =res; (£2;(m?)). Therefore, we obtain

(5 (M) )y = Mz mzy = W/ M), resy (m)),.

Also, we obtain a similar equation, with / replaced by J. By the same argument as in
the proof of (b), we deduce that (wt¥ (M), res; (m%)); = (wt¥(My), res; (m?%)) ;.
Now it remains to verify that Mg mz) = Mg mz), Which follows easily from (4.1).
Thus, we have shown (e). This proves the proposition. 0

4.3 Ordinary Crystal Structure on (BZ7)°

First, we give some properties of ordinary Kashiwara operators on BZ?,. Because
all of those are obtained by the same argument as in [8], we omit the proofs of them.

Lemma 15 (1) Let M € BZ%, and p € Z. Then, eppr M. Also, if e, (M) # 0,
then fpepM M.

(2) ForM € BZ7, and p, q € Z with |p — q| > 2, we have 8,,(pr) =¢e,(M) +
1 and sq(f,,M) = sq(M) Also, if e,(M) # 0, then €,(e,M) = ¢,(M) — 1 and
&q (e,,M) =g (M)

@) For q, q' € Z with |g — q'| > 2, we have e e, = ey ey, quq = fq fq and
ey fq = fq/eq as operators on BZ%, U {0}.

(4) For M € BZ¢,, we have ep(a(M)) = 5071(3)(M)

(5) The equalities 0 0 €, =eq(py 00 and o o f, = fo(p) 00 hold on BZ, U {0}.

Next, let us define the ordinary U, (5:\[1) -crystal structure on (BZe )?. Recall that

the map wt: (BZ27)? — P ’ is already defined. Here, P is the weight lattice for 5[1
For M € (BZ7)° and pE I we define

M) i=,(M),  §p(M) :=5,(M) + (A, Wt (M)).
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For given k € Mz and p € T, we set L°(k, p) :={q € p + 1Z|{hy,Kk)z # 0}; note
that L¢(k, p) is a finite set. For M € (BZ7,)“, we define

MDD ifE, (M) > 0,

=~ - M — M@
epM._{O if?s}(M):O, and f,M=M",

where M®) = (M]?))kE My, i = 1,2, are the collections of integers defined by
MO = (e M) MP = M)y  for each k € M
k = (eLek,p) k> kK = fLe(kyp) k or eac S 7.

Proposition 14 Let M € (BZ%)° and p € 1. Then, we have e,M e (BZ27)7 U {0}
and [,M e (BZ5)°.

In order to prove the proposition above, we need the next lemma.

Lemma 16 For given M € BZ7, and k € My, there exists a finite interval I =
[n; + 1,np + my] such that for every J =[nj 4+ 1,n; +my;] with n; <njy and
njg+my>n;+mjp,

(1) (€, M2,k = €ny+m+1M)2, k) = @) € 4m,+1 M, = Mo, k)
Q2) (fuuMeo,@ = (fuj4+m+1Ma,0 = (fa; frj4m+1 Mo, = Mo, x)-

Here we remark that the equalities in part (1) hold under the assumption that
@M # (0} and @y, 4, 1M # (0).

Proof We only prove that

@nyen 4m+1 M, 0 = Mo, 1) (4.6)

under the condition that ¢, , M # {0} and €, , 1., ,+-1M # {0}; the other equalities can
be proved by a similar (and easier) argument.

For the M and k above, take finite intervals K = [ng + 1,ng + mg] and I =
[ny+1,ny+mylasin (4.2). Let J =[n; +1,n; +my] 21, withny <n; and
ny +my > ny + my. Take another finite interval L = [ny + 1,ny +my] D J such
that

Mo, 1) = ML)res; (2, %)

@nyeny+my+1M) 2,00 = Cn;€ny4m;+1ML)res; (25 ()

Eny M) = Eny (M), and Eny+my+1 M) = Eng+my+1 Mp).

Note that such an interval L always exists. Hence Eq. (4.6) is equivalent to

(@n,en +m;+1ML)res (2, k) = ML)res; (2, (K))- 4.7)
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In what follows, we use the notation of Subsect. 4.2. Namely, set b = (bx ;) (k.Deat

= lI/L_l(ML) € By, and Ay := EL_l(ML) € Irr A(vy), where v = wt(Mp). Let
BL = (BTL) € Ap be a general point.

Since L 2 I, we can show the following claim by an argument similar to the one
for Lemma 12:

Claim 2 Both of the composite maps

B(f(n,an,() VOa = Ve and

L .
Bg(n1+m]+1_>nK+mK+1) . V(Vf)n1+m1+l - V(VJ)nK+mK+1

are zero maps.
Write resy (£27 (K)) as a disjoint union of finite intervals:
resp (2;(K) =[s1+ LnlU[so+ 1, ]u---Uls + 1, 4]
Then, by the construction,
s1=ng, 1 =ny, sy =min{q € Z|q ¢k} — 1,
s; =max{q € Z|q € k}, t=ny+my+1,

and

sitl=np+1<ti=ny<n;<ng <s, 4.8)

sip<ng+mg+l<nj+mi+l<nyj+my+l=ti<nyp+mp+1. (4.9)

From these, we deduce that

out(res (£2;(K))) ={n, 12, ..., 11}, in(res;, (27 (k) = {s2,53,....5}.

Because
L _ pL L L _
Ba(tlasz) - Brr(n;(%sz) ° Bﬂ(n]%n]() © Bo(tlanl) =0,
L _ nplL L L _
Bo(11—>s1) - BU(nK+mK+1—>sl) o Bo(n1+m1+1—>nk+mK+l) o Ba(tl—>n1+m1+l) =0

by Claim 2, (4.8), and (4.9), we see that

. ©B;
ML)res; (2, 1)) = —dimg Coker( @ Vv, — @ V(VL)SU>

I<u<l 2<v<l

=—dim<cC0ker< P V(UL);MEB—B”i P V(VL).sL,)- (4.10)

2<u<l-1 2<v<l
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Let by :=€,,€,,4+m,+1b, and consider the corresponding irreducible Lagrangian
Ap, € IrrA(vi). Here we write vi =V — 0Oy, — Oy, ym +1. Let BIL = ((BIL),) €
Ap, be a general point. By the definitions of €,, and €,,4m,+1 (see Subsect. 2.5),
we may assume that

(Bf),=Bf ifout(t)#ny,ny+my+landifin(r) #ny.ny,ny+my+1.
(4.11)
Then, by Claim 2,

(BlL)zr(n,—nzK) = 0’ (B{‘)a(n1+rnj+l—>nk+mk+l) =0.

Therefore, by the same argument as for (M )res; (2, (k))» We deduce that

(@nyeny+m;+1ML)res; (2, (k)

L
=—dim<cCoker< P veh), = P V(vi)%). (4.12)

2<u<l—1 2<v=l

Sinceny <s) <tr <---<sj-1 <ti—1 <8 <nj+my—+ 1, the right-hand side of
the last equality in (4.10) is equal to that of (4.12). Thus, we have proved Eq. (4.7).
This completes the proof of the lemma. g

Proof of Proposition 14 We only prove that ¢,M € (B2%)° U {0}. If £,(M) =0,
then the assertion is obvious. So, we assume that €,(M) > 0.

First, we prove that ¢,M € BZ,. Condition (2-a) in Definition 4 can be checked
by the same argument as in [8]. Let us show that condition (2-b) is satisfied. Fix
k € My and take a finite interval I = [n; + 1, n; + m ] satisfying condition (4.2),
with M replaced by epe »M. Let I "=1[np +1,np +m ] be an interval such that
np <np,np+mp>ny+mp,and I’ € Int®(€Lek, )M, k). We will show that this
I’ satisfies condition (2-b).

Take J =[n; + 1,n; +my] D I'. By the definitions, we have

L*(82;(k), p) = L*(k, p) US(J, p; D).

Here,
(ny,ny+my+1} ifny=p,ny+my+1=p (modl),
5(J. 1) = {ns} ifny=p,ny+my+1#p (modl),
T ng +my + 1} ifn; #p,nyj+my+1=p (modl),
¢ ifny£p,np+my+ 1% p (modl).

From this, we deduce by Lemma 16 that

€M), w = Cre@,®.pMa;w = Crek pM e, « forevery J D I'.

Note that by Lemma 15, &,(M) =¢,(M) > 0 for every ¢ € p + IZ. Since I' €
Int® (€1, pyM, k), we conclude that

CrLex.myMa,x = €CLex. pM e, x)-
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This shows that condition (2-b) is satisfied.
It remains to show that ’e},M is o-invariant. However, this follows easily from
Lemma 15. This proves the proposition. O

Now we are ready to state one of the main results of this paper.
Theorem 4 ((BZ9)%; Wt,€p, @p, €p, ﬁ,) isalU, (;[1)-crystal.

Lemma 17 LetM e (B2%)? and p € 1. Then, the following hold:

(1) Wt(@,M) = wt(M) +@, if £,(M) > 0, and wt (f,M) = wt (M) — @
) 8,@,M) =2,(M) — 1if£,(M) > 0, and 2, (/M) =&,(M) + 1.

Proof We only prove the first equation of part (1), since the other ones follow by a
similar (and easier) argument.

LetM e (BZ%)?, withe,(M) > 0,and J = [n;+1,n;+my] € ﬂqeﬂnte(?,,M,
k(Ay)). Then,

wt(@M) = 0 @M,y

gel
=Y @M)a, k4,
gel

=) (@rLe, kA M2 k(a,) %
gel

Here we note that

{qtUs(J, p;1) ifp=gq,
5(J, p;D) ifp#gq.

Now we assume that J is sufficiently large. More precisely, for each g € 7, let us
take an interval I’ =1 {; as in the proof of Proposition 14, and then take J in such a
way that J D | Then, by Lemma 16, we deduce that

L¢(24(k(Ay). p) = LE (k(Ag). p) US(J, p: 1) = {

7/
qel Iq'

Mo, k4, +1 ifp=gq,

Crrasttann pMas i = { M2, k(a,)) ifp#q.
P

Therefore, we obtain

wt (e,M) =wt (M) +a,.

Proof of Theorem 4 By Lemma 17, it suffices to prove the following:
’e},ﬁM =M foreveryMe (B2%)’ and p € I.

Since this follows easily from Lemmas 15 and 16, we omit the details of its proof. [
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4.4 Uniqueness of an Element of Weight Zero

It is easy to show the following lemma.

Lemma 18 Let M = (My)kepm,, € BZ7,. Then, each component My fork € My, is
a nonpositive integer.

The next corollary is a direct consequence of this lemma.
Corollary 8 Ler M € (BZ5)°. Then, wt(M) € 0.

Proposition 15 For M € (B2%,)7, the following are equivalent.
(a) €,(M) =0 forevery p € T.
(b) M =0*

Proof Since (b) = (a) is obvious, we will prove that Mk = 0 for all k € Mz under
the assumption that €,(M) = 0 for every p € T.

We note that Mk(a,) = 0 for every g € Z by the normalization condition. Let
ke Mz \ (U g€z k(Ay)). Then there exists the smallest finite interval Iy such that
k € Mz(Ix). We prove the assertion above by induction on ¢ := |Ix| > 1.

Assume that t = 1. Then, k = o,k(Ay) = Z<4_1 U {g + 1} for some g € Z. If
we take g’ € T such that g =q’ (mod [), then we have

My k4, = &gM) =24 (M) =0.
Now, we assume that ¢ > 1, and
(i) the assertion holds for every m € Mz with || < ¢.
Step 1. Let k =Z<, U{n +t + 1} for some n € Z. We use the tropical Pliicker
relationfori =n+1,j=n+t,k=n+t+1:
Mz, utn+1y + Mz, Utn+1.n+1+1)
=min{Mz_,un+1y + Mz_,Un+t.n+1+1}> Mz, Unte+1y + M7z, Un+1.n+1}}-

By the assumption (i), we see that

Mz_,0pn+1y = Mz_,0tn+1nt141y = Mz_,0n+1y = M7z_,Un+1.n41) = 0.
Since Mz_,un+1+1y = Mk and Mz _, Un+1.n+1+1} = Mxku{n+:) are both nonpositive
integers, we obtain

My = Mxujnr) =0.

Step 2. Letk=Z<, Ulk1 < - <k}, withkj=n+s+1 (1 <s <t), and
k, =n 4+t + 1. We prove the assertion by descending induction on s. If s = ¢, then
r = 1 and the assertion is already proved in Step 1. Assume that
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(ii) the assertion holds for every m=Z<, U{m| <--- <mp}, withmy=n +s" +
1>ky,andm =n—+1t+1.

Set k' :=k\ {n + s+ 1,n +1 + 1}, and use the tropical Pliicker relation for i =
n+1l,j=n+s+1,k=n+t+1,andk:

My unas+1y + MU n 1)

= min{Myun+1) + MUpn+s+1.n+1+1) MUn+e+1) + MUgn+1.n+s+1) -
By the assumption (i), we obtain

My Uints+1) = MUpns1,n4041) = Mups1y = M ug+1,ngs+1) = 0.
Also, we have

My upn+i+13 =0
by the assumption (ii). Therefore, by Lemma 18, we conclude that
My = Mwun+s+1.n+1+13 = 0.

This proves the proposition. U

The following corollary is a key to the proof of the connectedness of the crystal

o~

raph of the U, (2[1)-0 stal (BZ%)7; wt, g%, ¢*,e*, f*), which will be given in
grap q ry Z pPpr€pJp g
the next section.

Corollary 9 O* is the unique element of (BZ%)° of weight zero.
Proof 1t suffices to show the following:
If M=#O* then wt(M)#0.

Let M # O*. By Proposition 15, there exists p € T such that (M) > 0. This im-
plies that ¢,M € (BZ%))?. Therefore, by Corollary 8, we have

wt(@M) e 0. (4.13)

Also, because (BZ%)%; Wt, €p, @p, €p, f;) isa Uy, (ﬁl)—crystal (Theorem 4), we
have

wt (e,M) =wt (M) +a,. (4.14)
Now, suppose that wt (M) = 0. Then, by (4.14), we obtain
wt(e,M) =0,

which contradicts (4.13). Thus, we conclude that wt (M) # 0. This proves the corol-
lary. g
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4.5 Some Other Properties

The results of this subsection will be used in the next section.

Lemma 19 Let p,q € Z with p #q,and M € BZ%,.
(1) Ifep,(M) > 0, then e;(epM) = e (M).
(2) If e;,(M) > 0, then &4 (e,M) = &,(M).

Proof Because part (2) can be proved by a similar (and easier) argument, we only
give a proof of part (1). By the definitions, we have

£ (€M) = _@((gPM)*)k(Aq) - @((gPM)*)k(anq)
+ @((ZPM)*)k(AqH) + @((Z,,M)*)kmq_l). (4.15)
For simplicity of notation, we write ki = k(A,), ks = k(o,4,4). ks =Kk(Ay41),

k4 =Kk(Agy—1). Take a finite interval / such that p € I and I € ﬂ2=1 Int®((e,M)*,

k).
Let us compute the second term on the right-hand side of (4.15).

@((gPM)*)k(oq Ay T ((EPM)*)Q;‘(k(U,,Aq)C) = (epM)g, (k(ogAg))-

Since p # g, the following two cases occur:

case (a): p=g £1 (& 2;(k(o,44)) € Mz(p)*),
case (b): |p—ql| =2 (& 27(k(oyAy)) € Mz \ (Mz(p) UMz(p)*)).

By Lemma 11, we have

M@, k(,4,) + 1 incase (a),

(€M) 2, k(o 40)) = { Mg, ko, 44)) in case (b).

By a similar computation, we obtain

® ((ZPM)*)k(Aq) = MQ](k(Aq))v

Mﬂl(k(Aq+|)) +1 ifp=qg+1,

(epM) g, k(Ag+1) = { Mg, ((Age1) otherwise,

Mo, kA +1 ifp=g—1,
Mo, xa,-1) otherwise.

€M) (A1) = {
Combining the above, we deduce that
g, (€M) = —Mg, k(a,) — Ma ko, 4,) + Ma,&kA,) T Ma ki, 1)
= s; M).

This proves the lemma. g
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Proposition 16 Let p,q € 1,and M € (BZ%)°. Set ¢ :==¢,(M) and M _ACM
(1) We have
’é\*p(M) = max{?i‘,(M’), c— (iz\p, wt (M’))}
(2) If p#q and’e;(M) > 0, then
%y (?;,M) =c, E;(?*M) =¢,M.
(3) If (M) > 0, then
2 (@M) = &p(M) if e,M) >c— (hp, wt(M')),
M =5, -1 i E (M’) <c— (hy, wt(M)),

and

%k 4 . ! !/
2= [ G T T == T,
M i EM) <c— (hy Wt W),
Here, we set ¢’ ::?,,(’e?M).
Proof By taking a sufficiently large finite interval I, each of the equations above
follows from the corresponding one in the case of finite intervals (Proposition 10).

As an example, let us show part (1). By the definitions and Lemma 19, it suffices
to show that

& (M) = max{e; (5M), —c — (I, wt (VD) }.

Let ki, k = 1,2, 3,4, be the Maya diagrams which we introduced in the proof of
Lemma 19. Note that there exists a finite interval / such that

(a) I e (ﬂk llntC(M* kk))ﬂ(mk llntC(( cM)*, Ky)),
(b) (M) =€ My,

(©) C—8p(M)—8p(M1)

@) (hp, Wt(M)) = (hp, Wt (M)

For such an interval I, we have

e (@M) =¢,((7;M)")
(@M)7),) by ()
@M),)")

e M;)") by (b)

M
e ™MOM,) by (o).

€p

(
(
en(
(
»(@

(G
(
(
(@

Ep

&

Similarly, we obtain 8;’; ™M) = 8; (M)). Therefore, it suffices to show that

&5 (My) =max{ey (M}), e,(My) — (hp. wt(M})),}. (4.16)
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where we set M := N;” ( ')Ml. Here, we note that Eq. (4.15) is just the equation

in part (1) of Proposition 10. Thus, we have shown part (1).
Since the other equations are shown in a similar way, we omit the details of their
proofs. U

5 Proof of the Connectedness of (BZ7)7; wt,?}",, g’i}",,’e”;, f;’f)

5.1 Strategy

The aim of this section is to prove the following theorem.

Theorem 5 (Main theorem) As a crystal, (BZ2%)7; wt, e* €y (pp, I fp) is isomor-

phic to B(oo) for U, (5[1) In particular, the crystal graph of this crystal is con-
nected.

In order to prove this theorem, we use a characterization of B(co), which was
obtained in [6]; although it is valid for an arbitrary symmetrizable Kac-Moody Lie

algebra, we restrict ourselves to the case of type Al(l)]

"Sk"**’\k

For p € I we define a crystal (B*; wt,e € 9y €

flj‘) as follows.
={bsmin e Z},

s ~ _ - ifg=p,
wt (b;(n)) = ndp, ,s;(b;‘,(n)) = { oo ifgtp

. n if g =p,
7 (Ppm) = {—OO if g # p,

0 ifg # p, if g # p.

For simplicity of notation, we set by, := b7, (0).

?k(b*(n)):{bi;(nw fa=p. Py, )):{bm ) ifg=p,
qa\"p : i q

Theorem 6 ([6]) Let (B; wt,?’;, ’(ﬁ;,’e”;, f;) be a U, (gll)-crystal, and let b}y, be
an element of B of weight zero. We assume that the following seven conditions are
satisfied.

(1) wt(B)C 0.

(2) bk, is the unique element of B of weight zero.

3) & (b )—Oforallpel

4) & (b)erorallpeIandbeB

5) For each p € 1, there exists a strict embedding lI/;," :B—>B® B;)".
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(6) lI/ (B)CB® {(f*)”b*|n >0} forall p 1.
@) For every b € B such that b # b}, there exists p € T such that lI/ b)=b®
(F)"b% with n > 0.

Then, (B; Wt,?[;, @;,?;, f;’,“) is isomorphic as a crystal to B(00).

Let us check the seven conditions above for the crystal ((BZ ) wt, €F &y, gop, I8
f;; ), with b = O*. Conditions (1)~(4) are obvious from the definitions. In the
next subsection, we construct a strict embedding lP* (BZ%)° — (B29) ® B*
for each p € T, and check conditions (6) and (7).

Remark 1 Since our aim is to prove Theorem 5, we consider the %-crystal structure
on (BZ%)?, not the ordinary crystal structure.

5.2 Proof of Theorem 5 and the Connectedness

Definition 7 Let P e 1. We define a map lI/* 1 (BZ2%)° — (BZ29)7 ® B* by
v,(M) —M’®(f )by, Here, ¢ =¢,(M) andM’ —A‘M

The following lemma is obvious from the definitions.

Lemma 20 (1) ¥, is an injective map.
(2) For every M € (BZ%)°, we have wt (lI’ M)) =wt(M).

Proof of Theorem 5 If condition (5) is satisfied for the llllj‘ above, then conditions
(6) and (7) are automatically satisfied by the definitions. Therefore, the remaining
task is to check condition (5). However, by an argument similar to the one in [6],
this follows from Proposition 16. Thus, we have established the theorem. 0

Corollary 10 (1) (BZ%)° (0%) = (BZ%)°.
(2) BZ5(0) = BZ3,

Proof (1) is a direct consequence of the main theorem. Applying the map * on both
sides of (1), we obtain (2). [l

The second equality above is what we announced in the “note added in proof”
of [8].
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Research (C), No. 20540009.
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Quiver Varieties and Tensor Products, 11

Hiraku Nakajima

Abstract We define a family of homomorphisms on a collection of convolution
algebras associated with quiver varieties, which gives a kind of coproduct on the
Yangian associated with a symmetric Kac-Moody Lie algebra. We study its property
using perverse sheaves.

1 Introduction

In the conference the author explained his joint work with Guay on a construction of
a coproduct on the Yangian Y (g) associated with an affine Kac-Moody Lie algebra
g. It is a natural generalization of the coproduct on the usual Yangian Y (g) for a fi-
nite dimensional complex simple Lie algebra g given by Drinfeld [7]. Its definition
is motivated also by a recent work of Maulik and Okounkov [12] on a geometric
construction of a tensor product structure on equivariant homology groups of holo-
morphic symplectic varieties, in particular of quiver varieties. The purpose of this
paper is to explain this geometric background.

For quiver varieties of finite type, the geometric coproduct corresponding to the
Drinfeld coproduct on Yangian Y (g) was studied in [17, 21, 22]. (And one corre-
sponding to the coproduct on g was studied also in [11].) But the results depend
on the algebraic definition of the coproduct. As it is not known how to define a co-
product on Y (g) for an arbitrary Kac-Moody Lie algebra g, the results cannot be
generalized to other types.

In this paper, we take a geometric approach and define a kind of a coproduct
on convolution algebras associated with quiver varieties together with a C*-action
preserving the holomorphic symplectic form, and study its properties using perverse
sheaves.

In fact, we have an ambiguity in the definition of the coproduct, and we have a
family of coproducts A., parametrized by c in a certain affine space. This ambiguity
of the coproduct was already noticed in [22, Remark in §5.2]. Maulik-Okounkov
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e-mail: nakajima@kurims.kyoto-u.ac.jp
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theory gives a canonical choice of ¢ for a quiver variety of an arbitrary type, and
gives the formula of A, on standard generators of Y (g). Therefore we can take the
formula as a definition of the coproduct and check its compatibility with the defining
relations of Y (g). This will be done for an affine Kac-Moody Lie algebra g as we
explained in the conference. (The formula is a consequence of results in [12], and
hence is not explained here.)

Although there is a natural choice, the author hopes that our framework, consid-
ering also other possibilities for A, is suitable for a modification to other examples
of convolution algebras when geometry does not give us such a canonical choice.
(For example, the AGT conjecture for a general group. See [20].)

Remark also that our construction is specific for Y (g), and is not clear how to
apply for a quantum loop algebra U, (Lg). We need to replace cohomology groups
by K groups to deal with the latter, but many of our arguments work only for coho-
mology groups.

Finally let us comment on a difference on the coproduct for quiver varieties of
finite type and other types. A coproduct on an algebra A usually means an algebra
homomorphism A: A — A ® A satisfying the coassociativity. In our setting the
algebra A depends on the dimension vector, or equivalently dominant weight w.
Hence A is supposed to be a homomorphism from the algebra A(w) for w to the
tensor product A(w') ® A(w?) with w=w' + w?. For a quiver of type ADE, this
is true, but not in general. See Remark 1 for the crucial point. The target of A is, in
general, larger than A(w') ® A(w?). Fortunately this difference is not essential, for
example, study of tensor product structures of representations of Yangians.

1.1 Notations

The definition and notation of quiver varieties related to a coproduct are as in [17],
except the followings:

e Linear maps i, j are denoted by a, b here.

e A quiver possibly contains edge loops. Roots are defined as in [6, §2]. They are
obtained from coordinate vectors at loop free vertices or & elements in the fun-
damental region by applying some sequences of reflections at loop free vertices.

e Varieties 3, 3 are denote by ¥, ¥ here.

We say a quiver is of finite type, if its underlying graph is of type ADE. We say it
is of affine type, if it is Jordan quiver or its underlying graph is an extended Dynkin
diagram of type ADE.

Forv=(v;),V = (v)) eZ! wesayv<vVifv; < v; foranyiel.

For a variety X, H,(X) denote its Borel-Moore homology group. It is the dual to
H}(X) the cohomology group with compact support.

We will use the homology group H, (L) of a closed variety L in a smooth variety
M in several contexts. There is often a preferred degree in the context, which is
written as ‘top’ below. For example, if L is Lagrangian, it is dim¢ M. If M has
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several components M, of various dimensions, we mean Hp(L) to be the direct
sum of Hiop(L N M), though the degree ‘top’ changes for each L N M.

Let D(X) denote the bounded derived category of complexes of constructible
C-sheaves on X. When X is smooth, Cx € D(X) denote the constant sheaf on X
shifted by dim X. If X is a disjoint union of smooth varieties X, with various di-
mensions, we understand Cx as the direct sum of Cyx,,.

The intersection cohomology (/C for short) complex associated with a smooth
locally closed subvariety Y C X and a local system p on Y is denoted by I1C (Y, p)
or IC(Y, p). If p is the trivial rank 1 local system, we simply denote it by /C(Y)
or IC(Y).

2 Quiver Varieties

In this section we fix the notation for quiver varieties. See [13, 14] for detail.

Suppose that a finite graph is given. Let I be the set of vertices and E the set of
edges. In [13, 14] the author assumed that the graph does not contain edge loops (i.e.,
no edges joining a vertex with itself), but most of results (in particular definitions,
natural morphisms, etc.) hold without this assumption.

Let H be the set of pairs consisting of an edge together with its orientation. So
we have #H = 2#E. For h € H, we denote by i(h) (resp. o(#)) the incoming (resp.
outgoing) vertex of i. For h € H we denote by & the same edge as / with the reverse
orientation. Choose and fix an orientation §2 of the graph, i.e., a subset £2 C H such
that 2 U 2 = H, 2 N Q2 = (. The pair (I, £2) is called a quiver.

Let V = (V;);cs be a finite dimensional 7-graded vector space over C. The di-
mension of V is a vector

dim V = (dim V));e; € Z,,.

If V! and V2 are I-graded vector spaces, we define vector spaces by

LV v2) < D Hom (v} v, E(V!, v?) & @ Hom(V)y, Viy)-
iel heH

For B = (B;) e E(V', V?) and C = (Cy,) € E(V?2, V3), let us define a multipli-
cation of B and C by

CBde_f<Z ChB) eL(v!,V?).

i(h)=i

Multiplications ba, Ba of a € L(V!, V2), b e L(VZ, V3), B eE(V2,V3) are de-
fined in the obvious manner. If a € L(Vl, V‘), its trace tr(a) is understood as

Zi tr(a;).
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For two I-graded vector spaces V, W with v=dim V, w = dim W, we consider
the vector space given by

M=M,w) S EWV, V)oLW, V)LV, W),

where we use the notation M when v, w are clear in the context. The above three
components for an element of M will be denoted by B = @ By, a = Pa;, b =
&P b; respectively.

The orientation £2 defines a functione: H — {£1}bye(h)=1ifh € 2, e(h) =
—1if h € £2. We consider ¢ as an element of L(V, V). Let us define a symplectic
form w on M by

a)((B, a,b), (B’, a, b/)) def. tr(aB B/) + tr(ab’ — a’b).

Let G = Gy be an algebraic group defined by
def.

G=Gy = [[oLvp.

Its Lie algebra is the direct sum @; gl(V;). The group G acts on M by

(B,a,b)r> g-(B,a,b) S (gBg™", ga, bg™")

preserving the symplectic structure.
The moment map vanishing at the origin is given by

(w(B,a,b)=eBB+abeL(V,V),

where the dual of the Lie algebra of G is identified with L(V, V) via the trace.

We would like to consider a ‘symplectic quotient’ of 1~ !(0) divided by G. How-
ever we cannot expect the set-theoretical quotient to have a good property. Therefore
we consider the quotient using the geometric invariant theory. Then the quotient
depends on an additional parameter ¢ = (;)ie; € Z' as follows: Let us define a
character of G by

xe(8) E T (detg .

iel
Let A(,u_1 (0)) be the coordinate ring of the affine variety M_l (0). Set

G,)(g1 def.

A1) S {feA )] f(g- (B.a.b)) = x;(8)" f((B.a,b))}.

The direct sum with respect to n € Z is a graded algebra, hence we can define

M, = M (v, w) = M (V. W) < Proj <@ Al (0))G'Xé’>.

n>0
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This is the quiver variety introduced in [13]. Since this space is unchanged when we
replace x by a positive power x ¥ (N > 0), this space is well-defined for ¢ € Q.
We call ¢ a stability parameter.

We use two special stability parameters in this paper. When ¢ = 0, the corre-
sponding 91, is an affine algebraic variety whose coordinate ring consists of the
G-invariant functions on u_l 0).

Another choice is ¢; = 1 for all i. In this case, we denote the corresponding vari-
ety simply by 91. The corresponding stability condition is that an /-graded subspace
V’ of V invariant under B and contained in Kerb is 0 [14, Lemma 3.8]. The sta-
bility and semistability are equivalent in this case, and the action of G on the set
w~1(0)® of stable points is free, and 9t is the quotient 1 (0)8/G. In particular 90t
is nonsingular.

3 Tensor Product Varieties

Let W2 C W be an I-graded subspace and W' = W/ W? be the quotient. We fix an
isomorphism W = W! @ W?2. We define a one parameter subgroup A: C* — Gy
by A(t) =idy1 @ tidyy2. Then C* acts on 9T, My through A.

We fix v, w and w! = dim W', w? = dim W? throughout this paper. Since we
use several quiver varieties with different dimension vectors, let us use the notation
im(vl, Wl), etc. for those, while the notation ) means the original (v, w).

3.1 Fixed Points

We consider the fixed point loci me, DJ?E)C*. The former decomposes as

mC = |_| 9)T(v1, wl) x Em(vz,wz) (1)

v=v!4v2

(see [17, Lemma 3.2]). The isomorphism is given by considering the direct sum
of [B',al,b'] e M(v', w') and [B?, a?, b*] € M(v?, w?) as a point in M. Since
quiver varieties m(VI,WI), Em(vz, w2) are connected, this is a decomposition of
o< into connected components.

Let us study the second fixed point locus Sﬁg* We have a morphism

o: |_| Smo(vl,wl)ximo(vz,wz)e?mg*

v=vl4v2

given by the direct sum as above. This cannot be an isomorphism unless v =0
as the inverse image of 0 consists of several points corresponding to various de-
composition v = v! 4+ v2. This is compensated by considering the direct limit
Mo(w) = U, Mo(v, w) if the underlying graph is of type ADE. But this trick
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does not solve the problem yet in general. For example, if the quiver is the Jor-
dan quiver, and v! = w! = v> = w? = 1, we have Mo (v', w!) = Mo (v?, w?) = C2,
while img* = S%(C?). The morphism o is the quotient map C> x C? — S%(C?) =
(C? x C?)/S. Let us study o further.

Using the stratification [14, Lemma 3.27] we decompose Mg = NMo(v, w) as

My = |_|sm{fg(v°, w) x Mo(v — V0, 0), )

vO

where smg"g (v?, w) is the open subvariety of 90t)(v®, w) consisting of closed free
orbits, and My(v — v9, 0) is the quiver variety associated with W = 0. For quiver
varieties of type ADE, the factor 91y(v — v, 0) is a single point 0. It is nontrivial
in general. For example, if the quiver is the Jordan quiver, we have Mo(v —v°, 0) =
$"(C?) where n =v — v°. Then

Lemma 1 (1) The above stratification induces a stratification

smo* = I_l i)ﬁ(rfg(lv, wl) x sm{fg(zv, w2) x Mo (v — V0, 0).
VO,IV,ZV
v=lv42y

(2) o is a surjective finite morphism.

Thus the factor with W = 0 appears twice in 1 v, wh) x Mo (v2, w?) while it
appears only once in mg*.

Proof (1) We consider E)ﬁgeg (VO, W) as an open subvariety in SDT(VO, w) and restrict
the decomposition (1). Then it is easy to check that (x, y) € My, wh) x MECv, w?)
is contained in sm{fg (v°, w) if and only if x, y are in smffg (v, wh), smffg (v, w?) re-
spectively. Thus am{fg (Y, w)(c* = m{fg(lv, wl) x zm{fg (®v, w?). Now the assertion
is clear as C* acts trivially on the factor Mio(v — v°, 0).

(2) The coordinate ring of 9y is generated by the following two types of func-
tions:

o tr(ByyBpy_, - Bny: Vo) = Vity) = Vowny))» Where hy, ..., hy is a cycle in
our graph.

X (Bithy)BhyBhy_, -+ BrGomn,)), where by, ..., hy is a path in our graph, and x
is a linear form on Hom(Wo 1y, Wigiy))-

Then the generators for smg* are the first type functions and second type functions
: _ 1 1 2 2
with x = (x1, x2) € Hom(WO(hﬂ, Wi(hN)) ® Hom(WO(hl), Wi(hN)).
If we pull back these functions by o, they become sums of the same types of
functions for Mo (v', w') and Mo (vZ, w?). From this observation, we can easily see
that o is a finite morphism. From (1) it is clearly surjective. g
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Remark 1 Let Z(v*, w*) be the fiber product D(v¥, w?) X, (ve, wa) MM (v, w?) for
a =1, 2. The fiber product mc x omC* mC" is larger than the union of the products
0
Z(v', w') x Z(v?, w?) in general. For example, consider the Jordan quiver variety
with v! = v2 = w! = w2 = 1. Then D (v*, w?) is C2. The product Zvh wh) x
Z(v?,w?) is consisting of points (p1,q1, p2,q2) with p; = q1, p2 = ¢2. On the
other hand, MC" X gpc* 9T contains also points with p; = ¢q2, p» = 4.
0
On the other hand, if the quiver is of type ADE, we do not have the factor
Mo (v — v, 0), and they are the same.

3.2 Review of [17]

In this subsection we recall results in [17, §3], with emphasis on subvarieties in the
affine quotient 91p.
We first define the following varieties which were implicitly introduced in [17,

§3]:

Ty & {x € My | lim A(1)x exists},
t—0

St {x € My | lim A()x = o}.
t—

By the proof of [17, Lemma 3.6] we have the following: x = [B, a, b] is in % (resp.
%) if and only if

® biy)Bhy Bhy_, -+ Bhyaon,) maps Woz(hl) to Wi%hN) (resp. Woz(hl) to 0 and the

whole W,y to Wi%hN)) for any path in the doubled quiver.

From this description it also follows that T, %0 are closed subvarieties in .
We have the inclusion i : Ty — 9y and the projection p: Ty — zmg defined

by taking lim,_, o A(¢)x. The latter is defined as 9 is affine.

We define T et a1 (%0), T def. At (‘%0). These definitions coincide with ones

in [17, §3]. Note that we do not have an analog of p: Ty — smgi* for €. Instead we
have a decomposition

T= |_| T(vhwh v w?) 3)
v=vl4v2
into locally closed subvarieties, and the projection
Pty TV whvE w?) = (vl wh) x (v, w?), )

which is a vector bundle. These are defined by considering the limit lim;_.q A()x.
Note that they intersect in their closures, contrary to (1), which was the decom-
position into connected components. Since pieces in (3) are mapped to different
components, p y2)’s do not give a morphism defined on ¥.
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As a vector bundle, ‘E(vl ,wl: V2, wz) is the subbundle of the normal bundle of

Mv!, wh) x M(v?, w?) in M consisting of positive weight spaces. Its rank is half
of the codimension of 9 (v!, w!) x M(v2, w?). In fact, the restriction of the tangent
space of 90t to M(v!, w') x M (v, w?) decomposes into weight +1 and 0 spaces
such that

e the weight 0 subspace gives the tangent bundle of M (v!, w!) x M(v?, w?),
e the weight 1 and —1 subspaces are dual to each other with respect to the sym-
plectic form on 1.

We define a partial order < on the set {(v!,v?) | v! + v> = v} defined by
(Vl,Vz) < W, v/z) if and only if vl <v'!. We extend it to a total order and de-
note it also by <. Let

def. 112 2
Towiy2) = U T(vi, whiv,w),
VLv2)<(vl,v2)

and let T_(y1 2y be the union obtained similarly by replacing < by <. Then
Lol v2ys Tyl y2) are closed subvarieties in T.

3.3 The Fiber Product Z<

We introduce one more variety, following [12]. Let us consider T as a subvariety in
Mo X smg*, where the projection to the second factor is given by p. Let Zgz C 9 x
9" be the inverse image of Ty under the restriction of the projective morphism
7 x 7. This variety is an analog of the variety Z = 91 x oy, 9 introduced in [14,
§7]. Note that Z is also given as a fiber product ¥ X omc* oM, where T — Emé)c*

is given by the composition of 7: € — %p and p: Ty — 93?%*. We will consider
a cycle in Zg as a correspondence in 9T x 9MC" later. Note that the projection
p1: Zg — M is proper, but py: Zg — MT" is not.

We consider the two decompositions (1, 3). For brevity, we change the notation

as
me =| [ M., T=| T
o o
We also recall
Tow=| %  Taw=[]%-
B=a B<a

These are closed subvarieties in ¥.
Then they induce a decomposition

Zg = |_| ARND
a.p
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with
def.
Zgap = Zz N (%o x mﬂ).

We have the corresponding decomposition

Z(C* = SUI(C* Xf):ng* SUI(C* = |_| Z(X,ﬁ
a.p

induced from the decomposition of the first and second factors.
We also define

def. def.
Zz <ap = Zz N (T<q x Mp), Zxcap = Zz N (Tog x Mp).

They are closed subvarieties in Zg and Zs o g is an open subvariety in Zg <4 g. On
the other hand, each Z, g is a closed subvariety in 1, x Mg.

Each piece Zz g is a vector bundle over Z g, which is pull-back of T, — M.
Therefore its rank is half of the codimension of 9%, in 971.

Proposition 1 (1) Each irreducible component of Zz o g is at most half dimen-
sional in M x DJIC*, and hence the same is true for Z<.

(2) Irreducible components of Zz of half dimension are Lagrangian subvarieties
in M x M.

Here 9tC" has several connected components of various dimensions, so the
above more precisely meant half dimensional in each component 9T x IMg.

Proof (1) It is known that 7 : 9t — 9y is semismall, if we replace the target by
the image 7 (9Mp). (This is a consequence of [13, 6.11] as explained in [19, 2.23].)
Therefore irreducible components of Z = 91 xgyn, M are at most half dimensional
in M x M. As o is a finite morphism, the same is true for ZC" . Now the assertion
for Z« o g follows as it is a vector bundle over Z, g whose rank is equal to the half
of codimension of M.

(2) This follows from the local description of 7 in [16, Theorem 3.3.2] which
respects the symplectic form from its proof, together with the fact that 7 ~1(0) is
isotropic by the proof of [13, Theorem 5.8]. O

4 Coproduct

In this section we define a kind of a coproduct on the convolution algebra H.(Z).
The target of A is, in general, larger than the tensor product H,(Z(w')) ®
H,(Z(w?)) as we mentioned in the introduction.
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4.1 Convolution Algebras

Recall the fiber product Z = 91 x o1, M. The convolution product defines an algebra
structure on Hy(Z):

def.
axb= pi3(pir(@ N p3b),  a,be Hu(2),

where p;; is the projection from 9T x 9 x 90 to the product of the i and ;-
factors, and Z is viewed as a subvariety in 9 x 91 for the cap product. (See [5,
§2.7] for more detail.)

Asr: I — (M) is a semismall morphism, the top degree component Hiop(Z)
is a subalgebra, where ‘top’ is equal to the complex dimension of 9T x 9)t. Moreover
H,(Z) is a graded algebra, where the degree p elements are in Hop—p(Z). (See [5,
§8.9].)

Take x € My. We consider the inverse image 7! (x) C 9 and denote it by
M. (When x = 0, this is denoted by £ usually.) Then the convolution gives
D Hiop—p(My) a structure of a module of H,(Z). Here ‘top’ is the difference of
complex dimensions of 9t and the stratum containing x.

Similarly we can define a graded algebra structure on

H(2) = @) Hop p(2°),

where ‘top’ means the complex dimension of 9" x MC", possibly different on
various connected components. By Sect. 3.1 it is close to

D H(2( W) © H(Z(2 W)

vi4v2=y2

but is different in general, as explained in Remark 1.

We denote by 93"@?* the inverse image 7)1 (x) in M for x € E)ﬁg*. Its ho-
mology P Hiop— p(i)ﬁ;(f*) is a graded module of H*(ZC*). Here ‘top’ is the differ-
ence of complex dimensions of 9C" (resp. 9t) and the stratum containing x.

4.2 Convolution by Z<

Take x € Dﬁg*. We consider the inverse image (p o 7<)~ (x) € T C 9t and denote
itby Ty. (When x = 0, this is denoted by 7 in Sect. 3.2.) By the convolution product
its homology H(%y) = @ Hiop—p(Tx) is a graded module of H,(Z). Here ‘top’ is
the difference of complex dimensions of 9 and the stratum containing x.

Let Ty x, T<a.x» T<a.x be the intersection of T, with Ty, T, T, respectively.
We have a short exact sequence

0— Htop—p (T<(x,x) - Htop—p (Tia,x) - Htop—p(sa,x) — 0.

(See [17, §3] and (11) below.)
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Let us restrict the projection py: Ty — M, in (4) to Ty . As 7% Poa = poT,

.. . Cy e . def. *
it identifies %y , with its inverse image of My » = N, N sm;‘f . Therefore we can

replace the last term of the short exact sequence by Hiop—p (Mg, x) thanks to the
Thom isomorphism:

0 — Hiop—p (T cgx) —~ Hiop—p F<ax) ~> Htop—p(ma,x) — 0. )

Our convention of ‘top’ is compatible for ¥, and 9, as the rank of the vector
bundle is the half of codimension of M, in M. Since T, = T when « is the
maximal element, we get

Lemma 2 Hyp ,(%x) has a filtration whose associated graded is isomorphic to
H, me”
top— p( X )

Choice of splittings Hiop— p(T<q,x) < Hiop—p(My,x) in (5) for all a gives an
isomorphism Hiop— 5 (Ty) = Hiop— p(i)ﬁg*). Our next goal is to understand the space
of all splittings in a geometric way.

For this purpose we consider the top degree homology group Hiop(Z<). They are
spanned by Lagrangian irreducible components of Zs by Proposition 1.

Let ¢ € Hop(Z5) and p € Z. The convolution product

ai—)c*adéf‘pl*(cﬂp;(a))

defines an operator
Ck: Htopfp(mg*) — Hiop—p (%x), (6)

where pi, pa are projections from 9t x MC” to the first and second factors. The
degree shift p is preserved by the argument in [5, §8.9]. (If we choose ¢ from
Hiop—(Z%), the convolution maps Hiop—p t0 Hiop—p—k.) Note also that the above
operation is well-defined as py is proper, while the operator pa,(c N p}(—)) is not
in this setting.

An arbitrary class ¢ € Hyop(Zs) does not give a splitting of (5), as it is nothing
to do with the decomposition ¥ =| | T, . Let us write down a sufficient condition to
give a splitting.

Since c is in the top degree, it is a linear combination of fundamental classes of
Lagrangian irreducible components of Z<. From Proposition 1(1), half-dimensional
irreducible components are closures of half-dimensional irreducible components of
Zz g, for some pair a, 8. Therefore we can write

c= Z CBa-
a.p

Moreover its proof there, the latter are pull-backs of half-dimensional irreducible
components of Zg ., under the projection pg x idgy,, .
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We impose the following conditions on c:
cg,« =0unless a > B, (72)

Ca.a = [(Pa x idon,) "1 (Asm,)]. (7b)

The first condition also means that ¢ is in the image of @a Hiop(Z3 <a0) =
Hyop(Zz). Note that | |, Zs <4« is a disjoint union of closed subvarieties in Zs,
and hence the push-forward homomorphism is defined.

Proposition 2 Let ¢ € Hyop(Zx) with the conditions (7a), (7b). Then cx is an iso-
morphism and gives a splitting of (5) for all c.

We will show the converse in Sect. 5.2: cx gives a splitting if and only if ¢ satis-
fies (7a), (7b).

Proof By the first condition the operator cx* restricts t0 Hyop p(Myx) —
Hiop— p(%<q,x). And by the second condition it gives the identity if we compose
Hiop—p(T<q,x) = Hiop—p(My, x). Thus c* gives a splitting of (5). O

Next we construct the inverse of ¢ also by a convolution product. We consider

g5 {x €My | lim A(r)x exists},
—00
and the similarly defined variety T~ also by replacing t — 0 by t — oco. We have
the inclusion i~ : € — 9y and the projection p~: T, — Dﬁg*. Note also that
THNT, =M.
Let us define Zz— as the fiber product T X gc* %7, and consider it as a

subvariety in 9C" x 91, We swap the first and second factors from Zz as it becomes
more natural when we consider a composite of correspondences.

Since p; is proper on Zz- N pz_l(ix), aclass ¢~ € Hyop(Zs-) defines the well-
defined convolution product ¢~ * a = p1x(c™ N p3(a)) for a € Hop—p(Ty), and
defines an operator

¢k Hiop—p(Fx) = Hiop—p(MT). (8)

By the associativity of the convolution product, the composite ¢~ * (c * @) €
End(Hiop—p (Sm;(f*)) is given by the convolution of

¢™ = pia(pla(cT) N p33(0)),

where p;; is the projection from MC" x M x MC to the product of the i™ and
j®-factors.

Proposition 3 Suppose that ¢ € Hyop(Zx) satisfies the conditions (7a), (7b). Then
there exists a class ¢~ € Hyop(Zz-) such that c Vs cis equal to [Agper].
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Proof We have decomposition €~ = |, ¥, , and the projection p; : T, — M.
The index set {«} is the same as before, as it parametrizes the connected components
of ME".

Since the order < plays the opposite role for T,

— def. — —  def. _
=T TLE LT
B>a B>«

are closed subvarieties in T~
We define Zz- , g def- Zz- NN, N ‘Zg) and Zs- ,, > as above. We then im-

pose the following conditions on ¢~ = c;’ PE

c;ﬂ =0 unless y <8,

¢;, = [(idm, x py)~ (Am,)].

These conditions imply that ¢™ * ¢ is unipotent, more precisely is upper triangular
with respect to the block decomposition Htop(Z(C*) = @y, o Hiop(Zy o), and the

Hiop(Zy,) component is [ Agy,, | for all a. Noticing that we can represent (¢ * c)_1

as a class in Htop(ZC*) by the convolution product, we define c = %)«
¢” € Hyop(Zz-) to getc‘l*c=[AZ<c*]. Il

Remark 2 If we consider the convolution product in the opposite order, we get

cxc e Hop(T X gc T7),

where T — img* (resp. ¥ — zmg)c*) is p om (resp. p~ o). In general, there are no
inclusion relations between T x gpc+ T~ and Z = 9 x o, M. Therefore the equality
0

c % c~! =[Agn] does not make sense at the first sight. However the actual thing we
need is the operator ¢~ in (8). Proposition 3 implies that the composite ¢!  (cx)
of the operator is the identity on Hiop—p (Emf*) for each x. Then we have ¢ * (¢ ~'%)
is also the identity on Hiop— (%), as both Hyp— (93?39*) and Hiop— »(T,) are vector
spaces of same dimension.

Later we will see that we do not loose any information when we consider ¢~
as such an operator. In particular, we will see that ¢! is uniquely determined by c,
i.e., we will prove the uniqueness of the left inverse in the proof of Theorem 1.

1

4.3 Coproduct by Convolution

We define a coproduct using the convolution in this subsection.
Let ¢ € Hiop(Zx) be a class satisfying the conditions (7a), (7b). We take the class
cle Hyop(Zz-) as in Proposition 3. We define a homomorphism A.: Hy(Z) —
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H.(Z%) by
Ac(0) =c 'k exc= pia (p’fz(c_l) N py3(e) N p§4(c)), (10)

where we consider the convolution product in 9tC" x 9t x M x MC" . This preserves
the grading.

Since ¢~ x ¢ =1, we have A.(1) = 1. But it is not clear at this moment that A,
is an algebra homomorphism since we do not know ¢ % ¢~! = 1, as we mentioned
in Remark 2. The proof is postponed until the next subsection.

1

4.4 Sheaf-Theoretic Analysis

In this subsection, we reformulate the result in the previous subsection using per-
verse sheaves.
By [5, §8.9] we have a natural graded algebra isomorphism

H.(Z)= EXt;)(gmo)(”!Cimv mCon),

where the multiplication on the right hand side is given by the Yoneda product and
the grading is the natural one. Here the semismallness of m guarantees that the
grading is preserved.

We have similarly

H* (Z(C*) = EXt.D(f)ﬁg*) (]T!(C*CW(C* s ﬂ!C*CmC*).

In this subsection we define a functor sending mCoy; to JT!(C* Cype+ to give a homo-
morphism H,(Z) — H,.(Z€") which coincides with A,.

For a later purpose, we slightly generalize the setting from the previous subsec-
tion. If v/ < v, we have a closed embedding Mo (v', w) C DMy = Mo (v, w), given by
adding the trivial representation with dimension v — v'.

We consider the push-forward mCox(v,w) as a complex in D(91). By the de-
composition theorem [1] it is a semisimple complex. Furthermore mCop (v w) is a
perverse sheaf, as 7 : MV, w) — 7 (M(V, w)) is semismall [3]. Let P(9Ny) de-
note the full subcategory of D (1) consisting of all perverse sheaves that are finite
direct sums of perverse sheaves L, which are isomorphic to direct summand of
mCon(v',w) With various v'.

Replacing My, MV, w) by smc*, MV, W)(C* respectively, we introduce
the full subcategory P(mg*) of D(‘Jﬁg*) as above. Here we replace m by
&, w)C = Mo(v/, w)C, which is the restriction of 7.

Leti: Tg— Mp and p: Ty — E)ﬁé)c* as in Sect. 3.2. We consider pii*: D(9Mg)
— D(ng*). This is an analog of the restriction functor in [8, §4], [9, §9.2], and was
introduced in the quiver variety setting in [22, §5]. It is an example of the hyperbolic
localization.



Quiver Varieties and Tensor Products, 1T 417

Lemma 3 (1) The functor p\i* sends P (M) to P(fmg*).
(2) Let V' < v. The complex pii*mCon(v,w) has a canonical filtration whose as-
sociated graded is canonically identified with n!C*C;m(V/’w)c* .

This was proved in [22, Lemma 5.1] for quiver varieties of finite type, but the
proof actually gives the above statements for general types.

Let us recall how the filtration is defined. Let us assume v’ = v for brevity. Con-
sider the diagram

’

i I_lptx "
M <~ T=[[T% — D, =M€

1 - |

Mo To ms”

where i’ is the inclusion, 7 is the restriction of 7 to ¥, and py is the projection of
the vector bundle (4). Note that each p, is a morphism, but the union |_| p, does
not gives a morphism T — MC".

Recall the order < on the set {«} of fixed point components, and closed subva-
rieties T<y, Ty in Sect. 3.2. Let w<y, w<, be the restrictions of 7g to Ty, Ty
respectively. Then the main point in [22, Lemma 5.1] (based on [8, §4]) was to note
that there is the canonical short exact sequence

0— n!(C*Cgﬁa —(po ”Sﬂt)!c‘fga — (pomeg)Cs_, — 0. (11)

Since ¥ <, = T for the maximal element & and we have i *mCon = 7wz1i"*Con, this
gives the desired filtration.

During the proof it was also shown that (p o m<¢)i1ICx_,, (p 0 m<o)1Cx_, are
semisimple. (It is not stated explicitly in [22], but comes from [8, 4.7].) There-
fore the short exact sequence (11) splits, and hence pii*mCon and @, ﬂ!C*Cgma =
JT!C*Cmc* is isomorphic. The choice of an isomorphism depends on the choice of
splittings of the above short exact sequences for all «.

The exact sequence (11) is the sheaf theoretic counterpart of (5). More precisely
it is more natural to consider the transpose of (5):

0— (pomea)iCs_, = (pomea)ilCs., — nC Con, — 0, (12)

obtained by applying the Verdier duality.
Recall that we study Hiop(Z5) in order to describe a splitting of (5) by convolu-
tion.

Lemma 4 We have a natural isomorphism

Hiop(Z3) = HomD(mg*) (p!i*ngm, n!C*Cgmc*).
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The proof is exactly the same as [5, Lemma 8.6.1], once we use the base change
i*mCon = ms1i™*Con.

This isomorphism is compatible with the convolution operator (6) in the fol-
lowing way: Let i, denote the inclusion {x} — Dﬁg*. Then an element ¢ in

HOmD(gmg*)(P!i *mCont, ° Coper) = HomD(zmg*)(”f*CimC*» pai',Con) defines
an Operator

HP (ii7nC Coper ) — HP (it pai'maCon) (13)
by the Yoneda product. (See [5, 8.6.13].) We have
HP (il pyi'mCon) = HP (i (p o )i Com) = HP ((p 0 73) i Com),
where i}, is the inclusion of T, in 9. The last one is nothing but Hip—p,(Zy).

Similarly HP (i ;nf*cmc*) is naturally isomorphic to Hiop— p(zm;?‘). Then we have

Lemma 5 Under the isomorphism in Lemma 4, the operator (13) given by c €
Hiop(Zx) is equal to one in (6).

The proof is the same as in [5, §8.6].
The conditions (7a), (7b) on ¢ € Hiop(Zx) is translated into a language for the
right hand side. We have the following equivalent to the condition (7a), (7b):

¢ maps (p o T<q)+Cx_, tO @ nf*Cgmﬂ, (14a)
B=a
c: (pom<e)iCx_,/(pomea)sCx_, — JTE*Cg);na is the identity. (14b)

Here the identity means the natural homomorphism given by (12).
Thus c¢ satisfying (14a), (14b) gives a splitting of (11) and hence an isomorphism
pitmCon = thc*Cgﬁc* . Therefore we have a graded algebra homomorphism

L ]

pi*
Extb(;mo) (mCon, miCon) —> EXtD(S:ng*)

(pi*mCon, pi*mCon)

Ad(c
& Ext®

Cc* C*
= D(smg*)(”! Coner» - Copex). (15)

It is compatible with (13), i.e.,

% C
HP(iinE Coper) —— HP(il psi'mCon)
a J/ l Ad(c) p+i'(a)
% Cc
HP(i,nE Coper) —— HP (i} pyi'm,Con)

is commutative.
For Z+- we have the following:
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Lemma 6 We have natural isomorphisms
Hiop(Zz-) = Hom  gce (7 Coner, py i~ mCon)
top(£x-) = HO DENS") Ty Lgper, Pyt Lo
= Hom c* (JTC*C c* pvi*ngm)
peEmSH\7T Loper, Pt mbon ).

The first isomorphism is one as in Lemma 4. We exchange the first and second
factors, as we have changed the order of factors 9C" and 90 containing Z<—. The
sheaves are replaced by their Verdier dual. The second isomorphism is induced by

py i~ 'mCon = pii*mCon,

proved by Braden [4] (see Theorem 1 and the Eq. (1) at the end of Sect. 3).
We now have

Theorem 1 The coproduct A in (10) is equal to (15). In particular, A, is an alge-
bra homomorphism.

Proof The isomorphisms in Lemmas 4, 6 are compatible with the product. There-
fore, c L ¢ = [Agpc+ ] means that the composite

-1
* c . c *
7T!(C CDJ’I‘C* —> pgl*mCDﬁ d 7'L’!(C Cmc*

is the identity. (Note that the order of ¢, ¢! is swapped as we need to consider the
transpose of homomorphisms for convolution.)

As n,(C*Cmc* and pi*mCon are semisimple, ¢, ¢~ can be considered as lin-
ear maps between isotypic components. (See Sect. 5.2 for explicit descriptions of
isotypic components.) Therefore ¢ o ¢! = id implies ¢! o ¢ = id also. This, in par-
ticular, shows the uniqueness of ¢~ ! mentioned in Remark 2. Moreover this ¢! is
the inverse of ¢ used in (15). Therefore A, coincides with (15) again thanks to the
compatibility between the convolution and Yoneda products. O

1

4.5 Coassociativity

Since A, depends on the choice of the class ¢, the coassociativity does not hold
in general. We give a sufficient condition on ¢ (in fact, various c¢’s) to have the
coassociativity in this subsection.

Let W =W! @® W? @® W3 be a decomposition of the I-graded vector space. Let
w=w! + w? + w3 be the corresponding dimension vectors. Setting W3 = W? &
W3, we have a flag W3 c W2 c W with W3/ W? = w?, w/W?? = W!. This
gives us a preferred order among factors generalizing to W2 C W in the previous
setting.

The two dimensional torus 7 = C* x C* acts on 9t = M(v, w) through the
homomorphism A: T — Gw defined by A(#2, 13) =idy1 @ tridy2 @ t3idyys.
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We have two ways of putting braces for the sum w = (w' +w?) + w> =w! +
(W? + w?) respecting the order. We have corresponding two C*’s in T given by
{(1,£3)} and {(z2, 12)}. We denote the former by C7}, 23 and the latter by C* 123
then consider fixed points varieties, tensor product varletres and fiber products for
both C*’s. We denote them by 9t!%3, T12.3, Zz123, oml.23 123 Zz1,23, etc. They

k 3k 3k k 3k ok
correspond to block matrices [* * *] and [0 * *] respectively.

0 * 0 * %
On these varieties, we have the action of the remaining C* = T/C}, ; and

T/C7 55 respectively. Then we can consider the fixed point sets (M123)C

(M'23)C" Both are nothing but the torus fixed points M7 . We denote it by t!23.

We denote the corresponding fiber product by Z; 2 3. In le 3 S(l)’B, we consider

subvarieties consisting of points lim,_, ¢ exists as before. They can be described as

the variety consisting of points x = [B, a, b] such that ;) Bny Bry_; - - Bhydohn)
* 3k 3k
preserves the flag W3 ¢ W2 c W, i.e., [0 * *] In particular, the variety is the same
00 %
1,2,3

for one defined in ‘3,'12 3 and in Tl 2 Therefore it is safe to write both by ;™. We

have the corresponding fiber product Z<1,2,3 el 123 X gq12.3 om2:3,
0

* % 0 * 00
We need two more classes of varieties corresponding to [0 * 0] and [0 * *] re-
00 % 00 *
spectively. Tensor product varieties are

(1,2),3 def. ~1,2,3 12,3 1,(2,3) def. 123 1,23
g3 gl2inmi23 ey d N

respectively. We define the fiber products Z<a23 = 7(1.2),3 Xgpl23 om23,
0
Z:II,(Z,.%) = ‘31‘03) th(r),z,s 93?1‘2'3.
A class ¢!23 ¢ Hiop(Z123) gives the coproduct

Ayt H(Z) - Hi(Z123),

and similarly ¢!-2% € Hiop(Z5123) gives A123. These correspondto A®1and 1® A
for the usual coproduct respectively.
A class ¢(1:2):3 ¢ Hiop(Z51.2.3) gives

Acas: Ho(Z123) > Ho(Z12,3),

and similarly ¢!-®3 ¢ Hiop(Z51.2.3) gives A 1.23. Thus we have two ways going
from H.(Z) to Hi(Z1,2,3):

A123
H.(Z) —— H.«(Z12,;3)

A l l A.1.2).3 (16)

H.(Z123) — Hi«(Z123)
A1,023)
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The commutativity of this diagram means the coassociativity of our coproduct.

Proposition 4 The diagram (16) is commutative if

612’3 >I<C(1,2),3 :Cl,(2,3) *C1’23

holds in Hyp(Zz1.23).

The proof is obvious.

4.6 Equivariant Homology Version

Let G =]]; GL(Wil) X GL(W?). The group G acts on 90, 9MC" and various other
varieties considered in the previous subsections.
We consider a C* x C*-action on 9t defined by

1By ifhesf2,

HB, ifheS. (t1, ) -a=a, (t1, 1) -b=nnb.

(tl,tz)-Bh={
Let G=C* x C* x G.

Remark 3 When the graph does not contain a cycle, the action of a factor C* of
C* x C*, lifted to the double cover, can be move to an action through C* — G.
Therefore we only have an action of C* x G essentially in this case.

The results in the previous subsections hold in the equivariant category: we re-
place the homology H,(X) by the equivariant homology Hf’ (X). For the derived
category D(X) of complexes of constructible sheaves, we use their equivariant ver-
sion Dg(X), considered in [2, 10].

The following observations are obvious, but useful. Top degree components of Z
give a base for both Hiop(Z) and Htf);’p(Z ). Therefore we have a natural isomorphism

Hiop(Z3) = Hi (Z3).
The corresponding statement for the right hand side of Lemma 4 is
HomD(mg*)(pgi*ngm, JT!C CE)J?C*) = HomDG(mg*) (pyi*T[!Cgﬁ, 7'L'!(C CS;RC*)'

This is also true as pi*mCop, n!(c*CfmC* are G-equivariant perverse sheaves. (See
[10, 1.16(a)].)

In particular, ¢ € Htop*(Zg) defines the coproduct A, for the equivariant version
A Hf’ (Z) — Hf’ (Z©). Also to check the coassociativity of the coproduct, we
only need to check the condition in Proposition 4 for the non-equivariant homology.
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Remark 4 In a wider framework of a holomorphic symplectic manifold with torus
action satisfying certain conditions, Maulik and Okounkov [12] give a ‘canonical’
element c. It is called the stable envelop. It is defined first on the analog of Z< for the
quiver varieties with generic complex parameters (deformations of 91, omC"), and
then as the limit when parameters go to 0. It satisfies (7a), (7b) and the condition in
Proposition 4. Therefore their stable envelop together with the construction in this
section gives a canonical coproduct, satisfying the coassociativity.

5 Tensor Product Multiplicities

In this section, we give the formula of tensor product multiplicities with respect to
the coproduct A, in terms of I C sheaves.

5.1 Decomposition of the Direct Image Sheaf

We give the decomposition of m(Cox) in this subsection. For this purpose, we in-
troduce a refinement of the stratification (2). We do not need to worry about the first
factor zm{fg (VO, w) as it cannot be decomposed further. On the other hand the sec-
ond factor Miy(v — v°, 0) parametrizes isomorphism classes of semisimple modules
M of the preprojective algebra corresponding to the quiver. They decompose into
direct sum of simple modules as

on on on
M=M"eM, @ ---dMy".

Dimension vectors of all simple modules have been classified by Crawley-Boevey
[6, Th. 1.2]. (In fact, he also classifies pairs (v0, w) with imffg(vo, w) £ .) Let
81, 62, ..., 8N be such vectors which are < v. They are all positive roots satisfying
certain conditions. For example, for a quiver of type ADE, they are simple roots.
For a quiver of affine type ADE, they are simple roots and the positive generator §
of imaginary roots. For a Jordan quiver, it is the vector 1 € Z = Z'.

We then have

Mo(v—v°,0) = S MFES1,0) x S2MGE(S2,0) x -+ x S™VME (S, 0),

with v0 + 118, + - + nydy = v. Here sm{fg (8k, 0) parametrizes simple modules
with dimension vector d, or equivalently points in 9%y (8x, 0) whose stabilizers are
nonzero scalars times the identity. Its symmetric power S Dﬁgeg (8, 0) parametrizes
semisimple modules

Ml@’”l @Mz@mz D---

such that M|, M3, ... are distinct simple modules with dimension §; and the total
number of simple factors is ng.
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The symmetric power S$"* Qﬁgeg (6x, 0) decomposes further according to multi-
plicities m1, ma, .... As we may assume m| > my > - -- , they define partition Ay of
ng. Let us denote by Sy, smgeg (8k, 0) the space parametrizing semisimple modules
having multiplicities Ax.

Thus we have

Mo = || 5= (V0. w) x Mo(d) (17)
with V04 |A1]81 + - - - + |An |8 = v, where

Mo(A) 8, MEES1, 0) x S, MEE(5,0) x -+ x Sy MEE(S, 0).
This is nothing but the decomposition given in [13, 6.5], [14, 3.27].
This stratification has a simple form when the quiver is of type ADE. Each §; is
a simple root «;, and E)ﬁgeg (8k, 0) is a one point given by the simple module S;. The
symmetric product S" E)J?Beg (6k, 0) is also a one point S[.EB "k and hence we do not
need to consider the partition A;. Thus we can safely forget factors S, Dﬁgeg(Sk, 0)
and get

My = |_| My © (VO, w),

with v <.

For the affine case §y is either simple root or §, as we mentioned above. If §; is a
simple root, we can forget the factor S"* E)ﬁgeg (8%, 0) asinthe ADE cases. If §; =4,
then E)ﬁroeg (8, 0) is C? for the Jordan quiver or C2\ {0}/I" for the affine quiver corre-
sponding to a finite subgroup I" C SU(2) via the McKay correspondence. Therefore
we have

Mo = || M5 (v0. w) x (S,C? or 5, (C*\ {0})/T). (18)

Return back to a general quiver. We denote each stratum in (17) by 9t(v%; &)
for brevity. Here A = (A1, ..., Ay). For a simple local system p on this stratum, we
consider the corresponding /C sheaf

1C(Mo(v'; 1), p).

Then the decomposition theorem for a semismall projective morphism [3] implies a
canonical direct sum decomposition

mCox = @D 1C(Mo(v; 1), p) ® Hiop(Mi )y (19)

Here x,0., is a point in the stratum Mo(vY: 1) and DT(XVO_A =g (xy0.,) as before.
Then HtOp(fmxvo.l) o denotes the isotypic component of p in the homology group
Hiop (imxvolx) of the fiber with respect to the monodromy action.

This decomposition determines representations of the convolution algebra
Hiop(Z) = Endp o) (mCon) (see [5, §8.9]):
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Theorem 2 (1) {Hyop (Smxvo.x )p} is the set of isomorphism classes of simple modules

of Hiop(Z).
(2) We have

Hiop(Z) = @D End(Hiop (M) p)-

When the quiver is of type ADE, it was proved that only trivial local systems on
strata appear [16, §15] in the direct summand of mCqy, and hence we have

m(Con) = €D 1C (Mo (v0, W) ® Hiop(M ),

where we remove the local system p from the notation for the /C sheaves.

For a quiver of general type, the argument used in [16, §15] implies that the
simple local system p is trivial on the factor sm{fg(vo, w), i.e., all simple modules
Mi, My, ... are of the form S;. In general, the author does not know what kind of
local system p can appear on these factors. But we can show that only trivial local
system appears for an affine quiver:

Lemma 7 Suppose that the quiver is of affine type. Then

(o) = EP 1C(Mo(v0, W) B (Cg ey 07 Cs o) ® HiopMg )

vo A

Proof By the argument in [16, §15], it is enough to assume v? = 0 and hence
sm{fg (v°, w) is a single point. Then a point in the stratum Xy0.; s a point in S, C? or
SA(((C2 \ {0})/I"), and hence is written as mx1 + max> + - - -, where x1, x are dis-
tinct points in C? or (C?\ {0})/I". Then the fiber mva is the product of punctual

Quot schemes parametrizing quotients Q of the trivial rank r sheaf Og over C?
such that Q is supported at 0 and the length is m;. Here r is given by (w, ¢), where
c is the central element of the affine Lie algebra or w itself for the Jordan quiver.
This follows from the alternative description of quiver varieties of affine types, ex-
plained in [18]. (Remark: In [18, §4], it was written that the fiber is the product of
punctual Hilbert schemes, but it is wrong.) It is known that top degree part Hop of
a punctual Quot scheme is 1-dimensional (see [15, Ex. 5.15]). Therefore the mon-
odromy action is trivial. Moreover S; (C2) and S5 (C2/I") only have finite quotient
singularities, and hence are rationally smooth. Therefore the intersection complexes
are constant sheaves, shifted by dimensions. O

5.2 A Description of Hyop(Zz)

As in Theorem 2 we have a natural isomorphism

Hiop(Z5) = (D Hom(Hiop(MT, ), Hiop(Tu;1 1)) (20)

vivZ A
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from Lemma 4 and the above decomposition.
. . . . . *
Thus ¢ € Hyop(Zz) is determined by its convolution action pr(imf ) —
Hiop(Ty) for x = xy1 y2.; in each stratum. Then the converse of Proposition 2 is
clear.

5.3 Tensor Product Multiplicities in Terms of I C Sheaves

As in the previous subsection, we also refine the stratification in Lemma 1 as
9)?0* = I_limgeg(vl, Wl) x Dﬁgeg(vz, w2) x Mo(R),
where
Mo(h) = S5, M= (61, 0) x Sp, MEE(82,0) x -+ x Sy M= (B, 0)

as before. For a simple local system p on i)ﬁ(r)eg vl wh) x szfg (v, w?) x My(A),
we consider the corresponding I C sheaf. We then have

nfc*Cmc* @ 1C (M e (v, wh) x omy® (Vz, w2) x Mo(A), p)

® HtOP(mx vl v2; A)p

C*

where x1 vz 5 1s a point in the stratum Z)ﬁreg v, wh) x zmreg (v w2) x Mo (L). Then
Hmp(imx ) o 1s a simple module of Htop(Z "), and any simple module is iso-

morphic to a module of this form as before
By A. in (10) we consider Hmp(sm

X I 2
Hiop(Z) is semisimple, it decomposes into a dlrect sum of Hgp (mevol) o With var-

)p as a module over Hiop(Z). Since

ious v*, 1/, p’. Let us define the ‘tensor product multiplicity’ by

= [Hiop (M, , ), Hiop My )] 1)
These multiplicity has a geometric description:

e . VO, p/
Theorem 3 The multiplicity n_, 2

p iS equal to

[pi*1C (Mo (VO 1), p') = 1C(ME(vE, wh) x M (v2, w?) x Mo(d), p)].

Recall that pi*IC(Mo(v'; 1), p) is a direct sum of IC(Dﬁreg(v wl) x
imreg(v wz) x Mo(L), p’) with various v, v W, o’ by Lemma 3. The right
hand side of the above formula denote the decomposmon multiplicity.

This formula is a direct consequence of decompositions of mCon, JT, Cmc* and
the identification of A, with Ad(c) pii* in (15). (See also [22, Th. 5.1].)
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Remark 5 For a quiver of type ADE, we do not have data A, p, A/, o', and multiplic-
ities n:? 12 1s nothing but the usual tensor product multiplicity of finite dimensional
represer{tations of the Lie algebra g of type ADE [22, Th. 5.1].

In general, the author does not know how to understand the behavior of
IC (Emo(vo; L), p) under pyi*. For affine types, only constant sheaves CWHF) ap-
pear in 7,Coy, and local systems on Dﬁgeg(vl ,wh) x im{fg(vz, w?) x S3(C2\{0}/T)
can be determined. It should be possible to determine multiplicities from the tensor
product multiplicity for the affine Lie algebra. But it is yet to be clarified.

5.4 Fixed Point Version

Let a be a semisimple element in the Lie algebra of G. Then it defines a homomor-
phism

pa: HE(pt) — C.

Let A be the smallest torus whose Lie algebra contains a. Let Z4 be the fixed point
set. Then we have a homomorphism

re: HS(Z) ® Hz oy C— H.(z*)

as the composite of the pull back and the multiplication of 1 ® p,(e(N )L, where
N is the normal bundle of 94 in 91, and e(N) is its A-equivariant Euler class. (See
[5, §5.11].) Then r, is an algebra isomorphism. Similarly we have

ra: HZ(2%) ®nzpn €~ H*((ZC*)A)‘
We then have a specialized coproduct
Ac: Ho(Z%) > H.((25)Y).

Those convolution algebras can be studied in terms of perverse sheaves appearing
whose shifts appear in direct summand in ﬂACmA, (n(c )!A(C(mc*) 4, where 74,

()4 are restrictions of 7 and 7€ to A-fixed point sets M4 and (MEHA. See
[5, §8.6] for detail.

The tensor product multiplicities with respect to the specialized A, are described
by the functor p!A(i A)y* where p4, i4 are restrictions of p and i to A-fixed point
sets. Since the result is almost the same as Theorem 3, we omit the detail. The differ-
ence is that the algebra is not semisimple in general, and multiplicities are consid-
ered in the Grothendieck group of the category of modules of convolution algebras.
In geometric side, perverse sheaves are not preserved by the functor p!A(i 4)*_ They
are sent to direct sums of shifts of perverse sheaves in general.

As we mentioned in the introduction, the target of A, in (10) is H, (Z€"), which

is larger than the tensor product of the corresponding algebra for w!, w? in general.
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This is because of the existence of the third factor in Lemma 1(1). To avoid this, we
assume that generators tr(Byy Bhy_, - By : Vo) = Vity) = Vo)) have non-
trivial weights with respect to A. Then the A-fixed point set in the third factor
Mo (v — v, 0) is automatically trivial, and hence we have

z9)'= || z('wh) xz(v W

vli4vi=v

This assumption is rather mild and satisfied for example if the compositions of A —
G with the projections G — C* to the first and second factor of G both have positive
weights. This condition occurs when we study modules of Y (g) for example, as both
are identities in that case.
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Derivatives of Schur, Tau and Sigma Functions
on Abel-Jacobi Images

Atsushi Nakayashiki and Keijiro Yori

Abstract We study derivatives of Schur and tau functions from the view point of the
Abel-Jacobi map. We apply the results to establish several properties of derivatives
of the sigma function of an (n, s) curve. As byproducts we have an expression of
the prime form in terms of derivatives of the sigma function and addition formulae
which generalize those of Onishi for hyperelliptic sigma functions.

1 Introduction

The Riemann’s theta function of an algebraic curve X of genus g can be considered,
through the Abel-Jacobi map, as a multivalued multiplicative analytic function on
X¢&. The Riemann’s vanishing theorem tells that the theta function shifted by the
Riemann’s constant vanishes identically on X¢~!. However it is possible to find
certain derivatives of the theta function such that they become multivalued multi-
plicative analytic functions on X4~!. Onishi [13] found such derivatives explicitly in
the case of hyperelliptic curves. The extension of the results to the curve y" = f(x)
is given in [9]. These explicit derivatives of the theta function are used to construct
certain addition formulae in [13]. The aim of this paper is to generalize and clarify
the structure of the results on derivatives and addition formulae in [13] by studying
Schur and tau functions.

We consider a certain plane algebraic curve X, called an (n, s) curve [2], which
contains curves y" = f(x) as a special case. As in [13] we study sigma functions
[1, 11] rather than Riemann’s theta function since it is simpler to describe deriva-
tives. Sigma functions can be expressed by the tau function of the KP-hierarchy
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[4, 5, 12]. The expansion of the tau function with respect to Schur functions is
known very explicitly due to Sato’s theory of universal Grassmann manifold (UGM)
[14, 15]. In the case corresponding to the sigma function of an (n, s) curve the ex-
pansion of the tau function begins from the Schur function s, (#) corresponding to
the partition A determined from the gap sequence at co of X. Notice that Schur
functions themselves can be considered as a special case of tau functions [3].

For a theta function solution of the KP-hierarchy the image of the Abel-Jacobi
map of a point on a Riemann surface is transformed, in the tau function, to the vector
of the form

[21="(z,2%/2,2°/3,...), (1)

where z being a local coordinate at a base point. Being motivated by this we con-
sider, in general, the map z > [z] as an analogue of the Abel-Jacobi map for Schur
and tau functions. For the Schur function corresponding to an (n, s) curve a similar
map is considered in [2] as the rational limit of the Abel-Jacobi map.

The Schur function s, (¢), t = (t1, 2, ...), corresponding to a partition A =
(A1, ..., Ap) is the polynomial in #1, #2, . . . defined by

00 00
sy(t) = det(p)‘ifﬂrj(t))lgi,jgl’ eXp(Zt[ki> = Zpi (t)ki.
i=1 i=1

We firstly study, for each k satisfying k < g, the condition under which a derivative

33 ([z1]+ -+ + [zx]), (2)

vanishes identically, where, for a« = (a1, a2, ...), 8% denote 8?183 ... and 9; =
a/0t;. A sufficient condition can easily be found. Let us define the weight of o by
wta = Z?il iaj and set Ny x = Ak41 + --- + A;. Then the derivative (2) vanishes,
if wta < N, k.

Concerning to derivatives such that (2) does not vanish identically we have found
two kinds of « satisfying wta = N, . One is & = (N «, 0,0, ...) for which the
following recursive relation holds:

. , k-1
3\, (Z[Zi]) = hk gk, <Z[zi])zk" +0( ). 3

/
C
i=1 Ak=1 i=1

where c;’ « 18 a certain constant (Theorem 4).

The other kind of derivatives exist only for A corresponding to a gap sequence.
A gap sequence of genus g is a sequence of positive integers wy < --- < wg such
that its complement in the set of non-negative integers Zx is a semi-group. To each
gap sequence a partition A = (A1, ..., Ag) is associated by

A= (wg,...,w2,w)—(g—1,...,1,0).
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Let wi‘ < w’2k < --- be the complement of {w;} in Zx¢. For each k the number mj
and the sequence aﬁ.k), 1 < j < my, are defined by

my = ji{i|w;‘ <g —k},
(aik), e a,(,fk)) = (Wg—k, Wg—k—1y -+ Wgk—my41) — (wT, e wmk).

Then Z;’i 1 aj.k) = N, and the following relation is valid:

k
aaik) ce 811,(152 Sy (Z[Zz])
i=1

k—1

= :I:aafkfl) e 8{1’(5]:1)& (Z[Zﬂ)sz + O(szH). 4)

i=1

These derivatives generalize those of [9, 13]. Our construction here clarifies the
condition under which extensions of derivatives in [13] exist.

The tau function corresponding to a point of the cell UGM* of UGM specified
by a partition A has the expansion of the form

T() =500+ Y Eusu(0), )

A<up

We show that the vanishing property and the Eqgs. (3), (4) for Schur functions hold
without any change if Schur functions are replaced by tau functions. To this end
we need to study derivatives of Schur functions s, (¢) corresponding to partitions
satisfying A < u simultaneously. For example we have to study properties of “aj.k)-

derivatives” of s, () where a;k) are determined from A.

In the case corresponding to (n, s) curves all the properties of tau functions es-
tablished in this way are transplanted to sigma functions without much difficulty
using the relation of the sigma function with the tau function.

For applications to addition formulae we need to study derivatives of Schur func-

tions not only at [z1] + - - - + [zx] but at [z1] — [z2]. In this case we have

BlNk’lsx([zﬂ - [Zz]) =(-D! ;—Aaf\,kylsl([zl])zlzil + O(ZIZ)’ ©)
21

where N)/»,l =Xy+---+ A —[1+1 and ¢, is the constant given in Theorem 2. It can
be proved using the rational analogue of the Riemann’s vanishing theorem for Schur
functions [2]. Again (6) and related properties are valid for tau and sigma functions
without any change. As a corollary we obtain the expression of the prime form
[6, 10, 11] in terms of a certain derivative of the sigma function and consequently
closed addition formulae for sigma functions. Here “closed” means “without using
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prime form”. The simplest example of the addition formula in the case of an (n, s)
curve X : y" —x% =) Ajjx'y/ =0,is

N Nj
3o (p2+ p1)du o (p2 — p1)

N, N,
By 0 (P1))? By 0 (p2))?
where p; € X is identified with its Abel-Jacobi image, x; = x(p;) and A is the parti-

tion corresponding to the gap sequence at co of X. It generalizes the famous addition
formula for Weierstrass’ sigma function

=(=Dfar(c) ) e at—x), (D)

o(uy +uz)o(uy —uz)
o (u1)?o (uz)?

=p (u2) — p u1),

since (x;, yi) = (9 (u;), ' (u;)), i =1, 2, are two points on y? =4x3—gox — g3 and
the right hand side can be written as x, — x;. The formulae in [13] for hyperelliptic
sigma functions are recovered if we use “a % _derivatives” instead of u1-derivative
(see the remark after Corollary 10).

The present paper is organized as follows. In section two properties of derivatives
of Schur functions are studied. The notion of gap sequence and the sequence ai(k)
are introduced. We lift the properties of Schur function in section two to functions
satisfying similar expansion to the tau functions of the KP-hierarchy in Sect. 3. In
Sect. 4 the properties on derivatives of the sigma function are proved using the sigma
function expression of the tau function. The expression of the prime form in terms
of a derivative of the sigma function of an (n, s) curve is given in Sect. 5. Addition
formulae for sigma functions are proved.

2 Schur Function

A sequence of non-negative integers A = (Aq, ..., A;) satisfying A > --- > A; is

called a partition. The number of non-zero elements in X is called the length of A

and is denoted by /(A). We identify A with partitions which are obtained from X by

adding arbitrary number of 0’s, i.e. (A1, ..., A;,0,...,0). Weset |A| =X+ -+ A;.
Lett = (t1,1,13,...) and p, (¢) the polynomial in # defined by

exp (Z tnk") =Y pa(OK". (8)
n=1 n=0

We set p,(t) =0forn <O0.
For a partition A = (A1, ..., A;) Schur functions s, (¢) and S (x) are defined by

sx(1) = det(pa,—i+j (1) o ;<1
det(x} ) 1< < ®

1_[1'<j(xi —Xj)

Si(x) =
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The function ) (x) is a symmetric polynomial of xy, ..., x; which is homogeneous
of degree |A|.
We introduce the symbol [x] by

[]_’ x2 53
x]= x,2,3,...,

which is an analogue of Abel-Jacobi map in the theory of Schur functions. With this
symbol, s, (f) and S (x) are related by

S (Z[M]) = 5,(x),
i=1

for n > [(A). From this relation we have

Proposition 1 Let L = (A1, ..., A;) be a partition of length |. Then

(@) $2.(Timt [0 = 5621y i i Dy + 001,
(ll) Ifk < l, SK(Z;{:I[X[]) =0.

Proof (i) It immediately follows from the definition of S (x).

(i1) We have
k k
S (Z[m]) =5, (Z[x,-] +[0]+ -+ [01>.
i=1 i=1
The right hand side is zero by (i) since A; > 1. d

Let G° be a subset of the set of non-negative integers Z=(. We assume that G¢ is
a semi-group, that is, it is closed under addition and contains 0. Set G = Zxo\G°.

Definition 1 Let g be a positive integer. G is called a gap sequence of genus g, if
G = g. Elements of G and G¢ are called gaps and non-gaps respectively.

For a gap sequence of genus g enumerate elements of G and G° respectively as
W) <wy <--- < Wg,
gk * *
O=w| <w; <wy <---.

Then w; = 1. For, otherwise G contains 1 and G = Zx¢ which is impossible due
to g > 1. With this notation in mind we sometimes use (w1, ..., w,) to denote a gap
sequence instead of {wy, ..., wg}.

Example 1 Let (n,s) be a pair of relatively prime integers such that n,s > 2. We
set

G = {in+ js|i, j > 0}.
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Then G is a gap sequence of genus g = 1/2(n — 1)(s — 1) [2]. We call G the gap
sequence of type (7, s). It is characterized by the condition that G€ is generated by
two elements.

Example 2 Let G ={1,2,3,7} and G° = Z>¢\G. Then G is a gap sequence of
genus four. In this case G€ is generated by 4, 5, 6. Therefore G is not of type (n, s)
for any (n, s).

In this way the gap sequences are classified by the minimum number of genera-
tors of G°.
For a gap sequence {wi, ..., wg} we associate a partition A by

A=(wg,...,w)—(g—1,...,1,0).

A special property of the partition determined from a gap sequence is the follow-
ing.

Proposition 2 If A is determined from a gap sequence (w1, ..., wy), then s, (t) does
not depend on t;, i ¢ {wy, ..., wg}.

In order to prove the proposition we introduce some notation.
For a partition A = (A1, ..., A;) we associate a strictly decreasing sequence of
numbers w; by

@1y W) =G0, A+ A —1,1—2,...,0).

By this correspondence the set of partitions of length at most / bijectively corre-
sponds to the set of strictly decreasing sequence non-negative integers wq > - -- >
w; > 0.

For (wq, ..., w;) we set

(wi, ..., wy) = (W, ..., wy).

The introduction of the notation w; is for the sake of simplicity in proofs and that of
w; is for the sake of being consistent with the notation of gap sequence.

For integers i, ..., i; define the symbol [iy, ..., i;] as the determinant of the / x /
matrix whose j-th row is

(~ R pi_/—l(t)v Pij (t))

We write [iy, ..., ;](¢) if it is necessary to write explicitly the dependence on ¢.

By the definition, [i, ..., ;] is skew symmetric in the numbers iy, ...,7; and
becomes zero if two numbers coincide or some number is negative.

With this notation

$.(t) =[wy, ..., wy].
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Differentiating (8) by #; we have

0ipn() = pu—i(t), 0 =3,

Therefore we have
I
disa () =Z[w1,...,wj —i, ..., W)
j=1
Proof of Proposition 2 We have to show, fori > 2,
I
aw;fsk(z):ZDj =0, Dj=[ws...,w;—w} ..., wi]. (10)
j=I

If wj — w} <0, obviously D; = 0. Suppose that w; — w} > 0. Let G =
{wi,...,wg}. Then w; — w} € G. For, if w; — w} € G then w; € G° + w} C G¢
which is absurd. Thus w; — w} = wy for some k. Notice that w} > 1 and k # j,
since i > 2. Therefore D; = 0 because two rows coincide. Consequently (10) is
proved. d

Definition 2 Let G be a gap sequence of genus g. For 0 <k < g — 1 we define a
e . k) .
positive integer my and a sequence of integers a;” ', 1 <i < my by

mi = tfilw} < g —k},
(aik), e a,(,]l‘k)) = (Wg—k» Wg—k—1+-- - Wg—kemt1) — (W, ..o wpy ).
Example 3 For the gap sequence of type (2,2g + 1) we have
(wi,wy,...,wg) =(1,3,...,2¢ — 1), (wT,w;‘,wg‘,...):(0,2,4,...).
Then

g = 8{i[2i —2 < g — k) = [w}

2
(@ a), . )=(g—2k—1,26—2k—572¢—2k—9,...).

This sequence recovers the rule for derivatives in [13].

For a partition A = (A1, ..., A;) and a number k such that 0 <k <[ — 1 we set
Njk =XM1+ + AL an
Lemma 1 (i) afk) > ... >a,(,f2 > 1.
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(i) Each ai(k) belongs to G.
(iii) Let X\ be the partition determined from G then

my
S =

i=1

Proof (i) Notice that (wg—, Wg—g—1, ...) is strictly decreasing and (w7, w3, ...) is
increasing. Therefore {ai(k)} is strictly decreasing. Since G and G¢ are complement
to each other we have

{0, 1,...,g—k—1}:{wf,...,wfnk}I_I{wl,...,wg_k_mk}. (12)
Then, by the definition of the number my,

%k * *
Wy <-<w, <g—k=w, . <--,

(13)
W) < <Wgfomy <&~ kS Wy o1 < - <Wgp <---.
In particular a\X) = w —w* >1
p mg = We—k—mp+1 = Wy = 1.
ii) Suppose that a'® e G¢. Since G€ is a semi-group we have
pp 5 group
k
We—f—jt+1 = a;- ) + wf; e G°,
which is absurd. Thus a§k> eq.
(iii) By (12) we have
my g—k my
(k) *
Y= ¥ w-Yu
i=1 i=g—k—my+1 i=1
g—k g—k—1 g—k—my
= Z w; — i— w;
i=g—k—my+1 i=1 i=1
g—k g—k—1 g
Y we Y i= Y
i=1 i=1 i=k+1 O

For o = (a1, @2, ...) with finite number of non-zero components we define the
weight of o and the symbol 9% by

o
wia =Y io;, % =0]1957---.
i=1

The weight of 9¢ is defined to be the weight of «.
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Proposition 3 Let . = (A1, ..., ;) be a partitionand 0 <k <l —1.Ifwta < Nj
we have

% s <i[x,-]) =0.
i=1
For k =0 the right hand side should be understood as 9%s) (0).
Proof Notice that 9%s, (¢) is a linear combination of determinants of the form
[wy —r1,...,wp—r1], ri+---+r=wta. (14)

If (14) is not zero, w; — r; are all non-negative and different. Thus there exists a
permutation (i1, ..., ;) of (1,...,[) such that

Wi, — 1y > > w;; —r; > 0.
Let w be the partition corresponding to this strictly decreasing sequence. Then
su(t) =[wi —rip, ..., wi — 1.
Ifl(n) >k, SIL(Z;C:I [x;]) = 0 by (ii) of Proposition 1.

We prove that [(i1) < k is impossible if wta < N, . Suppose that /(1) < k. Then
w= (L1, 1k, 0,...,0) and

ll—)il_ril:()? wilfl_ril,lzl, cees wik+1_rik+1=l—k—l.
Therefore

ry=wi, ri, =W, — 1, .. ry, =wi,, —(—k=1),
and we have

ri1+"'+rik+1Zwi1+"'+wik+1_(1+2+"'+l_k_1)
> Byttt — (L4 24+l —k—1).

On the other hand

rp+-Frp, <nt-o+rp=wta

<M1+t N
=Wk +--F+w—A+24+---+1—-k—1),

which is a contradiction. Thus Proposition 3 is proved. g
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Theorem 1 Let . = (A1, ..., Ag) be the partition determined from a gap sequence

of genus g,0 <k < g and a;-k) the associated sequence of numbers for k # g.We set
St.r0 iz L)) = Lfor k=0 and 3, -3, =1 fork=.
(i) We have

k k
CHCRES 3(1’(752 S1 (Z[xi]) = CkS(hpye b)) (Z[Xi]),
i=1 i=1

where ¢ = 1, k £ g is given by the sign of the permutation

w* w¥  we_j— LW
— 1 my 8 my
C" Sgn(g—k—l g—k—2 ... .. 1 0)’
and cg = 1.
(ii) Let = (u1, . .., g) be a partition such that ju; = A; fork+1 <i < g. Then

where cy, is the same as in (1).

Remark I For the gap sequence of type (7, s) it can be checked that the derivative

determined from the sequence aﬁ.k) is the same as that found in [9]. In that case (i)
of Theorem 1 is proved in that paper.

Lemma 2 Let A = (Ay,...,A;) be a partition, 0 <k <l —1and ry,...,r non-
negative integers. Suppose that the following conditions:

I
> ri=Nuk, (15)
i=1

k
[y —rl,...,zz),—r,](Z[x,-]) +0. (16)
i=1

Then

(i) We haver; =0 for1 <i <k.

(i1) The sequence (Wk4+1 — Fk+1,-..,W; — r1) is a permutation of (I — k —
1,...,1,0).

(iii) We have

where ¢ = £1.
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Proof By the assumption (16) there exists a permutation (iy,...,i;) of (1,...,1)
and a partition = (i1, ..., ;) such that

Wi, — 71 > >w;; —ri; >0,
S/L(t):[wil _rila'--va)ij _ril]v

and /() < k as in the proof of Proposition 3. In particular p; =0 for i > k + 1
which means

Wy, —ri; =0, ..., Wi, —ri, =l—k—1
By a similar calculation to that in the proof of Proposition 3 we have
Figyt +"~+ri1:a’ikH+"'+11)i,—(1+2+“'+l—k—1)
> Wi+ w =24+ k= 1), (17)
and
i oy S

=Akt1+ A
=W+ tw -0 +24--+1—k-1), (18)

where we use (15). Therefore every inequalities in (17) and (18) are equalities.
Thenry =---=ry; =0by (18) and (ix41, ...,i;) is a permutation of (k+1,...,1)
by (17). It, then, implies that (i, ..., ;) is a permutation of (1, ..., k).

Since

(IZ),'] —Vi],...,lf)il —r,-,):(zi)il,...,ﬂ)ik,zi),-H] _rik+1""’wil —I‘,'[)
and it is strictly decreasing, (i1, ...,ix) = (1,...,k). Thus
[wi, —riy,...,wy; —ryl=[wyr, ..., wg, I —k—1,...,1,0]. (19)
0
Lemma 3 For a positive integer m and a set of integers iy, ..., iy we have
li1,..sig,m—1,...,1,0l=[i; —m, ..., iy —m].

Proof Expand the determinant at m + k-th row, m + k — 1-th row, ..., until kK + 1-st
row successively and get the result. g

Applying the lemma to (19) we have

(@i, —Fiyseeos Wiy — 1] = [01 = A= K), ..., 0 — (L= K)]
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=S0,..0 @)-

Since (i1, ..., ;) is a permutation of (1,...,1),
(Wi =71, .., W =] =£80,,..0) ().
Proof of Theorem 1 In this proof we fix k and denote a;k) simply by a;. Recall that

53 (1) =[wg, ..., wi].

We compute the value of 9, "'8amk sy att=1% =[x 14+ [x].
Step 1. We first consider the term for which the row labeled by wg i —1) is
differentiated by 9,, for 1 <i < my. Itis of the form

A= [wg, ey wg_k+1, wg_k —Aaly ..., wg,k,(mkfl) — Ay wg_k_mk, ey w1].
By the definition of a;
We—k—(i—1) — di = W} .
Therefore
A= [wg, ey We k1, WY, ey w;k, We—k—mps - -+ u)l].
Using (12) we have
A=cilwg,...,we_py1,8—k—1,...,1,0]
= CkS(ny,.hp) ().

Step 2. We prove that the terms differentiated in a different way from that in
Step 1 are zero at t =t ®).

By Lemma 1(iii) and Lemma 2(i) the term is zero at t*) if some row correspond-
ing to w;, g —k + 1 <i < g, is differentiated. Therefore, for non-zero terms, only
the last g — k rows are differentiated.

So let us consider a term for which only some of last g — k rows are differentiated.
Notice that a term is zero if some row is differentiated more than once. In fact some
row corresponding to w; with g —k —my + 1 < j < g — k is not differentiated
in this case. By (13) w; > g — k. Consequently it is impossible for the sequence
(Wg—g, ..., wi) to be a permutation of (g —k —1,...,1,0). Then this term is zero
at t%© by Lemma 2(ii).

As a consequence of the above argument we know that a term is zero if some
row labeled by w; with g —k —my + 1 < j < g — k is not differentiated. So let us
consider a term for which each row corresponding to w; with g —k —my +1 <
J < g — k is differentiated exactly once. We assume that the row corresponding
wg—k—(i—1) is differentiated by 9, for 1 <i < j with some j < my and Ba_/. differ-
entiates the row corresponding to w,__(;'—1) for some ;" with j < j’. We have

k *
Wek —Al =W[, ..., Wgk—(j-2) ~dj—1=Wj_,
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and
Wy—k—(j'—1) = aj = Wg—k—(j'—1) = (Wg—k—(j—1) — W)
= w; — (Wg—k—(j—1) = Wg—k—(j—1)) < W]. (20)
If wg_x—(j7—1) — a; belongs to G¢, we have
We—k—(j'—1) —4aj € {w]", o w;f_l},

by (20). Thus the term is zero since two rows coincide.
Suppose that wg_;_(j7—1) — a;j belongs to G. Then

We k—(ji—1) —aj €{W1, ..., Wgfmy},

since w;f < g —k and (13). In this case the term in consideration is zero since again
two rows coincide. Thus (i) of Theorem 1 is proved.

Step 3. We prove (ii) of Theorem 1. Let w;, > ... > w)] be the strictly decreasing
sequence corresponding to u, that is,

(w;,...,w/l)=(/1,1,...,/1,g)+(g—1,...,1,0).
By assumption w; = w; for 1 <i < g — k. Define wlf*,i >0 by
{wili = 0} = Z0\[w}},
0=w/1*<w’2*<--~
Then w; = wl/.>|< for 1 <i <my, since
{wi‘,...,w,’jlk}I_I{wi,...,w;,_k_mk} = {w]",...,w;‘nk}I_I{wl,...,wg,k,mk}
—{0,1,...,g—k—1).

As a consequence the arguments in step 1 and step 2 are valid without any change
if w;, w¥ are replaced by w!, w" respectively. O

Next we study properties of Schur functions with respect to #; derivative.

Theorem 2 Let A = (A1, ..., A;) be a partition, (wy, ..., w;) the corresponding
strictly decreasing sequence and 0 < k <1. Then

k
NM(S;\ <Z[xi]> = CA SO A) (Z[xz )

i=1 i=1

where

, NA k!
Cx,k_ l_[(w] w;).
l

—1 w! i<j



442 A. Nakayashiki and K. Yori

Proof We have

s () =[wy, ..., wil.
By Leibniz’s rule
N, Ny x!
O tem= Y ——lw =, wi =l 1)
rile--rg!
ri4-+r=Ny k

By Lemma 2, if [w; — 7y, ..., w; —rl](t(k))yéOthenri =0forl—k+1<i<l,
(wi—k, ..., w1 —ry) is a permutation of ( —k —1,...,1,0) and

_ _ (k) _ wl—k e e wl —rl
[w; —rp, ..., wy rl](t )_Sgn<l—k—1 1 0 )
In this case we can write

wi—ri=o(—1), 1<i<l-—k,

for some o of an element of the symmetric group S;_; which actson {0, 1,...,] —
k — 1}. We define 1/n! =0 for n < O for the sake of convenience. Then

N
9 Ms)h(t(k)) = AL KS(h o) (t(k))’
where
Ny k!
Ay k= sgno - .
Z (wy —o(O)!---(w—g —o(l —k—1))!

eS|k

‘We have

Ay k < 1 >
= det T INY
Ny ! (wi =G = 1< j<—x

=k j-2
=Hw—i!det(1_[(w,- —m)) B (23)
i=1 m=0 1<i,j<l—k

(22)

where we set ]_[fn_:zo(w[ —m) =1 for j = 1. Notice that the rule 1/n! =0 for n <
0 is taken into account in rewriting (22) to (23), since, if w; — (j — 1) < O then

j—2
[T, Zo(wi —m)=0.
Let us set

j-2
D:det(l_[(w,- —m)) .
1<i,j<l—k

m=0
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Expanding ]—[L_:z()(w,- —m) in w; we easily have

-k
D= det(wi]_l)lgi,jil—k = l—[(wj —w;),

i<j
and consequently

I—k
A L2 (wj —wi)

N ! 125 wi! O

In order to study addition formulae of sigma functions we need to study proper-
ties of Schur functions at t = [x{] — [x3].

For a partition A = (A1, ..., A;) let ' = (), ..., )»;/) be the conjugate of A, i.e.
Ap={jlr; > i}

Theorem 3 Let A = (A1, ..., A1) be a partition of length I, ' = (M|, ..., 1;) and
=3 =1, A —1). Then

l/

v p
S ([x] - Z[)ﬁ]) = (—I)N“s):/ (Z[xi]) l—[(x —xj).
i=1 Jj=1

i=1

Proof This theorem is essentially proved in the proof of Theorem 5.5 in [2]. In [2]

A is assumed to be the partition corresponding to the gap sequence of type (n, s). In

that case A = A and the assertion in this theorem is not stated. Here we give a proof

since it is a key theorem for applications to addition formulae. For the notational

simplicity we prove the assertion by interchanging A and A’. All facts and notation

concerning Schur and symmetric functions used in this proof can be found in [8].
Let e; = ei(x1, ..., x;) be the elementary symmetric function:

[Te+x)=> e (24)
i=1 i=0

They satisfy the relation

ei(x1, ..., xm) =€ (X1, ..., Xpu—1) + Xmei—1(X1, ..., X—1)- (25)
In general, for a partition & = (1, ..., Um), the following equation holds:
S//./(xla'H:xm):det(eui7i+j)1§i,j§m' (26)

Let a; be the column vector defined by

t
A ="(En;—14j»Chr—24js-++sCh—Itj)

where e, = ¢, (x, x1,...,x]).
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By (25), (26) we have

s (] + x4+ 4 [al) = S (e, xi, . ..ox)

= det(ey,; —i+j)1<i,j<l

=det(a; + xag,ap +xay,...,a;_1 +xa;)
!
= Zx-’ det(ag, ... »A5-1,8j41, . .., Q)
j=0
—x - (=x)
=det<1 . ( x)). Q7)
ao al e a;
Let p, = Zf: , xX be the power sum symmetric function, w, @ and ¢ the auto-
morphisms of the ring of symmetric polynomials in x1, ..., x; defined by
o(pr) =(=1)"p,, L(pr) =—pr, w=100. (28)

Notice that @ is, in terms of x j» the map sending x; to —x; for I < j </. Then
I I
% ([x] - Z[xi]) = (—I)M'w(w ([—x] + Z[xd)). (29)
i=1 i=1
It can be checked by computing the right hand side using (28) and the relation

Su(=x1s ooy —Xm) = (=DMHS, (x1, ..., xm).
Let h; = h;(x1, ..., x;) be the complete symmetric function:

1
Mo - =

Then w(e;) = h; and
a)(aj):t(h,\l_lﬂ,...,h,\l_lﬂ). (30)

By (27) and (29) we have

sw([x]—[xl]—--~—[xl])=<—1)'“det( ! oo ! ) 31)

w(a) w(a) --- w(a)

Using the relation,

k
Z(—l)/’ejhk_,:O, k=1, (32)
j=0
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we have

k
Z(—l)jeja)(al_j) —o. (33)

j=0

By (24), (30), (31), (33) we obtain

1 1
Sy ([x] - Z[xﬂ) = (D" det(w (@), ... 0@-1) [ [ —x))

j=1

I
= (=DM det(hy, —1—iv ) 1=ij=i H(x —Xj).
j=1

Then the theorem follows from
S(m ,,,,, Mm)(xlvw-vxm)=det(hm7i+j)]§i,j§m- O

Corollary 1 Let A = (A1, ..., N;) be a partition of length . Then s, ([x1] — [x2]) is
not identically zero if and only if A; = 1 for 2 <i <I, that is, A is a hook.

Proof Setting x; =0 for 2 <i <!’ in Theorem 3 we have

su(lx] = [x1]) = (=DMt (e 1)a' ' = xp). (34)

Thus s, ([x] — [x1]) # 0 is equivalent to so([x1]) # 0. The latter is equivalent to

the condition that the length of A’ is one. It means that A’ = (], 1”=1) which is
equivalent to that X is a hook. U

Theorem 4 Let . = (A1, ..., A;) be a partition of length I, (wy, ..., w1) the corre-
sponding sequence and N; | = Z§=2 A=+ 1.

@ Ifn<Nj

asx([x1] = [x2]) = 0.

(i) We have

!

alNl’lsx([Xl] = [x2l) = easga ) (bl = [e2]),

where

C) = 1_[( w; w,- .

=1, 1\
1_[ 1(’_ 't<]
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(iii) Let ;o = (i1, ..., uy) be a partition of length I’ > I such that pu; = A; for
2<i<land pui=1fori>1.Then

/

N
3 s ([l = [x2l) = cas,, -y (1] = [x2]).
(iv) Form,n > 1 we have

_(1)n1mlnl

A 1n-1y ([x1] — [x2]) (x1 = x2).

Proof Notice that

I
015, (1) = Z[wl, cowi— 1, wyl
i=1
In the right hand side [wy, ..., w; — 1,..., w1] ## 0 if and only if all its components

are different. In terms of the diagram of A, 915, () is a sum of s, (¢) with u being
the diagram obtained from A by removing one box. For example

0152,2,1)(1) =s52,1,1) (1) +52,2)(1).

(i) Notice that N 1 is a number of boxes on second to /-th rows of the diagram
of A which are on the right of the first column. Thus if n < N/{ | it is impossible to
get the hook diagram by removing n boxes from A. Then the assertion of (i) follows
from Corollary 1.

(ii) There is only one hook diagram in diagrams obtained from A by remov-
ing N)/»,l boxes. It is u := (A1, '™ 1). Let us compute the coefficient ¢ of 5, (¢) in

N/
0, *1s,(t). Consider Eq. (21) with N;_x being replaced by Ni’l. In the right hand
side, s,,(¢) appears only as a term such that r; =0 and (w;—1 —r;—1,..., w1 — 1)
is a permutation of (I — 1,...,2,1). Let us write, for 1 <i <[ — 1,

wi—riza(i), 06517].
Then by a similar calculation to that in the proof of Theorem 2 we have
=Ly

¢ _ v o -
N){,l! _oeSl_l (wi—o () (w1 —o( = D) ]‘[ﬁ;}(wi -1 ‘

N/
(iii) Similarly to the proof of (ii) the only Schur function appearing in 9, M s (1)
which does not vanish at ¢ = [x1] — [x2] is 5, (¢), v = (u1, 11/’1). Let us compute
N/
the coefficient ¢’ of 5, () in 9; " s,,(1).
Let (wl/,, ..., w}) be the strictly decreasing sequence corresponding to /. Then
N, N;
RO E Y —[wl,— rr e wh =] (35)

, N Vl
’"l+'“+rl’=N~A,1
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In the right hand side [w;, — Ve, w/1 — r1] is proportional to s,(¢) if and only
if ; =0fori=10"ori</!"—1,and (w),_, — rl/_l,...,wl’,_lH —ry_iy1) is a
permutation of (I’ — 1,1/ = 2,...,1' =+ 1). Let us write

w,—ri=0o(@), I'-l+1<i<l'—1, 0c€8_i.

Then
c/ _ sgno
NS ey —o =T D)y —o (U= D)

/ /
A lrriicicjer Wy —wy)

=—7 . (36)
M) ) =1 +1— 1)

Let us rewrite ¢’ in terms of Aj. By assumption p; = A; for 2 <i <[ which
implies

Wi =pppr—i +i— 1=t +i—1, I'—I+1<i<l'—1.
Substitute it into (36) and get
N/

¢ = i —rj+j—1),
T, 0 +l—1—z) ZJ:LI

which equals to c;.
(iv) Set A = (m, 1"~1) in (34). Then, using s ([x]) = x", we get the assertion of
@iv). O

3 t-Function

In this section we lift the properties of Schur functions which have been proved in
the previous section to t-functions.

Let < be the partial order on the set of partitions defined as follows. For two
partitions A = (Ag, ..., A7), u = (U1, ..., uy), A < wif and only if A; < u; for all i.

For a partition A = (A1, ..., A;) we consider a function t(¢) given as a series of
the form
T() =53 () + Y Eusu(0), 37)
A<pt
where &, € C.

Example Let X be a compact Riemann surface of genus g > 1, ps, a point of X,
wy < --- < wg the gap sequence at po, and z a local coordinate at ps,. Embed
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the affine ring of X\{poo} into Sato’s universal Grassmann manifold (UGM) as in
the paper [12]. Then the tau function corresponding to this point of UGM has the

expansion of the form (37).

Proposition 4 Let . = (A1, ..., A;) a partition, t(t) be a function of the form (37)
and 0 <k <l — 1. Then, if wta < Nj

k
3%t (Z[xﬂ) =0.
i=1

Proof For p = (u1, ..., uy) satisfying A < p we have

I T
wta < Z A < Z .

i=k+1 i=k+1
Thus
k
Wm<2}m)=a
i=1
by Proposition 3. The assertion of the proposition follows from (37). g

For a function 7(¢) of the form (37) and 1 <k <1 let 7 (1) be the function
defined by

t ) =50,.00O + Y EuSGuy.n O,
"

where the sum in the right hand side is over all partitions u = (i1, . .., ;) such that
A <pand p; = A for k+1<i <. In particular T (X%_ [x;]) = 1 (5 [ ]).
We set 1@ (r) = 1.

Theorem S Let A = (A1, ..., Ag) be the partition determined from a gap sequence
of genus g, T(t) a function of the form (37).

(1) We have, for0 <k < g,

k k
8a§k) e 3a$z T (Z[xl]) = ck‘l:(k) <Z[x,]> s
i=1 i=1

where ¢y is the same as in Theorem 1.
(i) We have, for k > 1,

k k—1
® (Z[x,-]) =¢%=D (Z[x,-])x,i‘" + O(x,i"‘ﬂ).
i=1

i=1
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Proof Let w = (w1, ..., u;) be a partition of length / such that A < . Then ! > g
and

Wt(aaik) -0 (k))—Za(k) Z A < Z Wi (38)
i=k+1 i=k+1

If the inequality in the right hand side is not an equality,
k

B0+ D, (Z[m) =0, (39)

i=1
by Proposition 3. Therefore, if the left hand side of (39) does not vanish, / = g and

g g

TR N
i=k+1 i=k+1

Since A; < u; for any i, it implies u; = X; for k + 1 <i < g. For such u we have,
by Theorem 1,

k k
8a5k) te 3‘1,(5]: Su (Z[xz]) = CkS(fa1,ees k) (Z[x1]>
i=1 i=1
The assertion (i) follows from this.
(i1) The assertion easily follows from (i) of Proposition 1 and the definition of
*)
(). O

Combining (i) and (ii) of Theorem 5 we have

Corollary 2 Under the same assumption as in Theorem 5 we have, for 1 <k < g,

3a:k) -0 ,(,PT(Z[X’ ) = —3 (k H---0 = 1)1’(2[)6, ) Ak+1).

Mk—1
Corresponding to Theorem 2 we have

Theorem 6 Let A = (A1, ..., A;) be a partition of length 1, T(t) a function of the
form (37),0 <k <I. Then

k
S (Z[x, ) =c, v (Z[xl'])
i=1

where c; ¢ 1S the same as in Theorem 2.
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Proof The theorem can be proved in a similar manner to Theorem 5 using Theo-
rem 2. 0

Corollary 3 Under the same assumption as in Theorem 6 we have, for 1 <k <1,

k
NAkT(Z[M]) — C,A, ka 1 (Z[xl )xk +0 Ak+l)
i=1

Ak—1

In order to state the properties for 7(¢) corresponding to Theorem 4 let us intro-
duce one more function t(¢) associated with 7(¢) by

T () =50, 1-1) () + D Eusgy, 1) (), (40)
"

where the sum in the right hand side is over all partitions & = (u1, ..., uy) of length
U > I satisfying A < u, u; =A; for2 <i <land u; =1 fori > 1.

Theorem 7 Let .. = (A1, ..., A;) be a partition of length | and T (t) a function of the
form (37).

) Ifn < N;\,l
Nt(lxi]—[x2]) =
(i) We have

ale"r([m] —[x2]) = cara(Ix1] = [x2]),

where c;, is the same as in Theorem 4.
(iii) We have

o (lx1] = [x2]) = (=DM~ T e g — o) (40,

where - - - part is a series in X1, Xp containing only terms proportional to xixé
withi 4+ j > 0.
(iv) We have the expansion

o ([x1] = [x2l) = (=D e O (e )b + 0 ().

Proof (i) By (i) of Theorem 4 we have af’sx ([x1] — [x2]) =0.
Suppose that A < p and = (1, ..., uy) is of length I’. Then, I’ > [ and

n<ZA —(l—l)<2m+ Z(ul—l)—a—l)—Zm

i=l+1

Thus 07s, ([x1] — [x2]) = 0 by Theorem 4(i) and the assertion (i) is proved.
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(ii) By (ii) of Theorem 4 we have
alN*’1 t(lx1] — [x2]) = easg, -1y ([x1] — [x2]) + Zéuafv“su([xl] —[x2]). (41)

"
Let us compute the second term in the right hand side of (41).

N/
Suppose that & > A, t = (i1, ..., uy) is of length I” and 9, “sﬂ([xl] — [x2]) #
0. In such a case, similarly to the proof of Theorem 4(ii), it can be shown that u
should be of the form = (1, A2, ..., Az, 1°7%). Then

/

81NMSM (x1] = [x2]) = cks(m,l’/*l)([xl] ~[xl),

by (iii) of Theorem 4. Thus the right hand side of (41) becomes c) 2 ([x1] — [x2]).
(iii) This is a direct consequence of Theorem 4(iv).
(iv) Substituting t = [x1] — [x2] in 72(¢) we have, by (iv) of Theorem 4,

o ([x1] = [x2])

= (DT o =)+ ) E =D T T T )
=(-D! (xi‘l + qux{”)xé_l + 0(xé), (42)
0

where the sum in p in the right hand side is over all partitions p of the form p =
(m1, A2, ..., A7) with w1 > A1. Then the term in the bracket in the right hand side
of (42) is 7™ ([x1]). Thus (iv) is proved. O

4 o-Function

In this section we deduce properties of sigma functions from those of tau functions
established in the previous section. To this end we briefly recall the definitions and
properties of sigma functions.

Let (n, s) be a pair of relatively prime integers satisfying 2 <n < s and X the
compact Riemann surface corresponding to the algebraic curve defined by

[ =0,  fa,n=y"-x"— Y ax'yl (43)

ni+sj<ns

We assume that the affine curve (43) is nonsingular. Then the genus of X is g =
1/2(n — 1)(s — 1). The Riemann surface X is called an (n, s) curve [2]. It has a
point oo over the point x = co.

For a meromorphic function F on X we denote by ords, F the order of a pole at
o0. The variables x and y can be considered as meromorphic functions on X which
satisfy

ordeox = n1, ordeoy =S.



452 A. Nakayashiki and K. Yori

Let ¢;, i > 1, be monomials of x and y satisfying the conditions

{gili =1} ={x'y/]i =0,n> j >0},

(44)
ordeo@; < ordeoi+1, i>1.
For example ¢; =1, g2 = x.
The gap sequence wy < --- < wg at 0o of X is defined by
{wi} =Z=0\{ordoopili = 1}.
It becomes a gap sequence of type (n, s) defined in of Example 1 in Sect. 2.
A basis of holomorphic one forms on X is given by
_id
duy, =2 i< (45)
Sy
Let z be the local coordinate at oo such that
1 1
Then we have
duy, =2 (14 0(2))dz. (47)

We fix an algebraic fundamental form @(p;, p2) on X [11] and decompose it as

8
B(p1. p2) =dp, 2(p1. p2) + Y duw, (p1)dri(p2).
i=1
where

-1 ,
Y MEEE Y =)

(x1 —x2) fy(x1, y1)

o0 o0
Z amwm:| =Zamwm.
—+ m=0

m=—0o0

2(p1, p2) = dxy,

Then dr; automatically becomes a differential of the second kind whose only sin-
gularity is oo and {du,,, dr;} is a symplectic basis of H'(X,C) [11].

We take a symplectic basis of the homology group H;(X, Z) and define period
matrices w;, n;, i = 1,2 by

2a)1=</ duw,.), 20)2:(/ duwi>,

o ﬁj

—27’]1 = (/ dr,'), —27]2 = (/ dri>.
o] Bj
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The normalized period matrix 7 is given by t = a)l_la)z.

Let /8’ + 18", §’,8” € R® be the Riemann’s constant with respect to the choice
(e, Bi}, 00), 8§ =1(8',8"”) and O[8](z, T) the Riemann’s theta function with the
characteristic 8. The sigma function for these data is defined in [1] (see also [11]).

Definition 3 The sigma function o (#), u = ’(uwl sy Uapy) of an (n, s) curve X is
defined by

_ | 1
o(u) = Cexp S umey u 0181(Rw) ™ u, ),
where C is a certain constant.

Let A = (A1, ..., Ag) be the partition corresponding to the gap sequence at oo of
X. Then the constant C is specified by the condition that the expansion of o (u) at
the origin is of the form

o (u) = 5Oty =uy, T+

where - - - part is a series in u,,, only containing terms proportional to []ujy;, with
> ajw; > Al

For m; € Z8, i = 1, 2, the sigma function obeys the following transformation
rule:

2
U<u +22wimi)
i=1
2 2
= (—1) mmarm =) exp(zz'wmn(u + Zwim,))a(u). (48)

i=1 i=1

Let A be the affine ring of X\{oo}. As a vector space {¢;|i > 1} is a basis of A.
We embed A into UGM using the local coordinate z as in [12]. Then the tau function
7(¢) of the KP-hierarchy corresponding to this point of UGM has the form

T() =500+ Y Eusu(0),
r<p

It can be expressed in terms of the sigma function as

T(1) =exp <— D citi+ %5@))0(30, (49)

i=1

where g (t) =Y qijtitj, B = (bij)i<i<g,1<; a certain g x oo matrix satisfying the
condition

~_Jo if j < wy,
b’]_{l if j = w;, (50)
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and ¢;, g; i, bij are certain constants [12],! [4, 5]. The constant ¢; are irrelevant to c
in Theorem 1 and is not used in other parts of this paper.

In this section 0; is used for 9/9¢; as in the previous section and 9, is used for
a/0u;.

A point p € X is identified with its Abel-Jacobi image | O’; du, where du =
t(duw1 e duwg). By the definition of the matrix B, for p € X, the following equa-
tion is valid:

Blz(p)]=p. (51)

where z(p) is the value of the local coordinate z at p and

[z(»]="[z(p). 2(p)?/2....]

as before.
Corresponding to Proposition 4 we have

Theorem 8 Let 0 <k <g— 1.If Y% | ajw; < Ny i then

k
o 0o (Z ,,,.> 0,
i=1
for p1,...,pr € X.
Remark 2 In the case of the curve y" = f(x) Theorem 8 is proved in [9].
Lemmad4 LetO<k <g—1.Ifwta < Ny«
%0 (Bt)|;—;00 =0,
where t® = Zle[zi], zi=z(p))and p1, ..., pr € X.
Proof The assertion easily follows from (49) and Proposition 4. 0

Proof of Theorem 8 We introduce the lexicographical order on Zio comparing from
the right. Namely define (o, ..., ag) < (B1, ..., Bg) if there exists 1 <i < g such

that og = ﬂg, v 0ip] = Biv1 and o < B;.
We prove
P g
oft ol o(Br®) =0, Y fiws < Nik, (52)
i=1
by induction on the order of (81, ..., B,).

In the defining equation of ¢; in [12] ¢; should be corrected to ¢; /.
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The case (B1,...,8;) =(0,...,0) is obvious by Lemma 4.

Take (B1,...,Bg) > (0, ..., 0) such that Zle Biw; < Ny . Suppose that (52) is
valid for any (B}, ..., By) satisfying (B}, ..., By) < (B1, ..., Bg) and Y8 Blwi <
Ny k.

Notice that o (Bt) is a composition of o (1) with

Wy, =t + »_ bijtj, 1<i<g. (53)
w; <j
By the chain rule,
w, = 8uw Zblw, Uy + (54)
I<i

Let j be the maximum number such that §; # 0. Then
oft ..ol o(B1)

Bj
= 01 (Quy,, + b1, 0P -(auwj + szw,au,,,l) o (B1)

I<j
=ofiofz -0l o B+, (55)
where - - - part contains terms of the form
g
i o (BN, Y yiwi < Nigk, (1,0, %) < (Bl -, B)-

i=1

At 1 = t® the left hand side of (55) vanishes by Lemma 4 and - - - part in the right
hand side of (55) vanishes by the assumption of induction. Thus (52) is proved. [

Corresponding to Theorem 5 and Corollary 2 we have

Corollary 4 Let 1 <k <gand p1,..., px € X. Then

(1) We have

k
8ua§k> : u (k) <ZP1) —CkS()q ..... Ak)(Zlv cee 7Zk) +--,

i=1

where - - - part is a series in z; containing only terms proportional to ]_L ¥
with Zi:l o > Zi:l Ai.



456 A. Nakayashiki and K. Yori
(i1) The following expansion is valid:

aua(k) : u (k) <Z pl) - (k*l) Lt (k 1) <Z pl)Zk
1

mk 1

+0(z ““).

Proof By Theorem 8 and (54) we have

aaik) T aar(nk,io—(Bt)h:t(k) = au“ik) ' u (k) (Z pl) (56)

mk

Let us write (49) as o (Bt) = e(t) 7 (t) with
= 1
e(t) = eXP(;&U - EZI\(Z))
=
By Proposition 4 and Corollary 2 we have
3(1;,() . aaff;f o (Bt)|;—;k
k k
=& (1" ))aa§“ o 3(1%2,0( ))
:ck__llcks(t(k))aa(kfl) -0 - 1)‘E(t(k_ ) + O( AkH)
lle 1

= yekd g -3 000 (BDl - vzt + 0. (57)

Then the assertion (ii) follows from (56) and the assertion (i) follows from the sec-
ond line of (57), Theorem 5(i) and the definition of t® (¢). O

The following corollary can similarly be proved using Theorem 6 and Corol-
lary 3.

Corollary 5 Let 1 <k <gand p1,..., px € X. Then
(i) We have

N
)Lk <2p1>_clk50\1 )L]‘)(Z],...,Zk)ﬁ—...’

i=1

where - -+ part is a series in z; containing only terms proportional to ]_L ¥
with Zi:l o > Zi:l Ai.
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(i1) The following expansion holds:

c k—1
(o) = (S o)

A.k 1 i=1

Corresponding to Theorem 7 we have
Theorem 9 (i) Ifn < N 1 we have, for p1, p» € X,
9,,0(p1—p2)=0

(i) The following expansion with respect to z; = z(p;), i = 1,2 is valid:

3:?‘10(171 —p) =D (i) e — )1+ ),

where - - - part is a series in z1, zo which contains only terms proportional to lez
with i 4+ j > 0.
(iii) We have

N/ Cyn N -
"o (p1 = p2) = (=D 20 o () 4 0(25).
Al
Proof (i) Notice that
3"o (Bt) = 0! o' (BI) (58)

for any m. Differentiating o (Bt) = ¢(¢)t () and using (58) and (i) of Theorem 7 we
have the assertion.
(i) We have, by (i), (ii), (iii) of Theorem 7,
Nia N
O/ o(p1r—p2) = 31 T o (BY)|t=[z11-[z]
N/

=e([z1] — [z21)0; "'t ([z1] — [22])
= c.e([z1] — [z2]) 2([21] — [22])

= (=D (21225 (@1 —22) (1 +---).

(iii) In the computation in (ii) we have
cxé([z1] — [z2]) 2 ([21] — [22])
= (¢ e (¢l ) ez = [z20)) e ([11) 5 + O (<)
1 le

= (=1 en(c) ) 0 o (BOlepen2d T + 0(2),

by Theorem 7(i), (ii), (iv) and Theorem 6. Then the assertion follows from (58). [
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5 Addition Formulae

Let E(p1, p2) be the prime fqrm [6, 10] of an (n,s) curve X. In [11] we have
introduced the prime function E(p1, p2) by

2
~ 1 [p2 [P
E(pl,pz)=—E(p1,pz)| |‘/duwg(pi)eXp<§/ "dun o 1/ dU>- (59)
i=1 P1 P

1

Notice that E (p1, p2) isnota (—1/2, —1/2) form but a multi-valued analytic func-
tion on X and thus it has a sense to talk about the transformation rule if p; goes
around a cycle of X.

The prime function has the following properties.

(i) E(p2. p1) =—E(p1. pa). )
(i) As a function of p1, the zero divisor of E(p1, p2) is p2» + (g — 1)o0.
(iii) Letm; ="(mj1, ..., mig) € Z8.1If ps goes round the cycle y = Y% | (my;e; +
m2i i), E(p1. p2) transforms as

. P2 -
E(pl,ypz>=T(m1,m2/ du)E(pl,pz), 60)
)4

1
with
2 2
T (mi, maju) = (= 1) "m0 m=5m2) GXP<2Z’(mmi)<u + me)).
i=1 i=1
(iv) At (o0, 00), E(pl, p>) has the expansion of the form
E(p1, p2) = (122)* (a1 —Zz)(l + ) CijZ'ﬁé)v (61)
i+j>1
where z; = z(p;).

The specialization E (00, p) of E( P1, p2) is defined by
—E(p1. p2) = E(00, p2)f ' + 0(2f). (62)

It has the following properties corresponding to (iii) and (iv) above.

(iii)’ Under the same notation as in (iii) for E( P1, p2) we have

E(0o, ¥p2) =T(m1,m2

23 .
/ du)E(oo, P2)- (63)

]

(v) E(oo,p2)=2z5+ 0.
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The following theorem gives the expression of the prime function in terms of a
derivative of the sigma function.

Theorem 10 Let A = (A1, ..., Ag) be the partition corresponding to the gap se-
quence at oo of an (n, s) curve X . Then

~ 1 _1.N!
E(p1, p2) = (=1 e 19, o (p1 — pa).

Lemma 5 Under the same notation as in (60) we have

PN N
du |d," o (p1 — p2).
P

Proof Notice that yp> = p> + 2w1m1 + 2wpymy and

Ny _
Oy, o(p1—yp2)=T|m1,my

2
o <u — ZZa)imi> =T(—my, —my|u)o (u). (64)
i=1

N/
Applying 9, l'\’l to (64) and setting u = p1 — p2, we get, by Theorem 9(i) we have

2
N/
3u1A'IU(P1 —p2—2 E wi”"i)
i=1

(65)
LPRWE
=T\ —mi,—m du |9, o(p1 — p2).
P2
Then the assertion follows from T (—m, —my|u) = T (my, ma| — u). O
Proof of Theorem 10 Notice that
N, N
)" o (—u) = =8y, o (u), (66)
since o (—u) = (—D)*lo (u) [11]and Nj | = |A] —2g + 1.
Consider the function
35?'1(7(171 — p2)
Fipi.pp)=——=—""""—. (67)

E(p1, p2)

It is symmetric in p; and ps by (66), (i) of properties of E(p1, p») and is a meromor-
phic function on X x X by Lemma 5. Fix p; near co. As a function of py F(p1, p2)
has no singularity by Theorem 8, Theorem 9(ii) and the property (ii) of E( P1, P2)-
Therefore it does not depend on p». It means that, for some non-empty open neigh-
borhood U of oo, F(p1, p2) does not depend on pp on U x X. Since F(p1, p2) is
symmetric, it is a constant on U x U. Thus it is a constant on X x X because it is
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meromorphic. The constant can be determined by comparing the expansion using
Theorem 9(ii) and the property (iv) of E(p1, p2). Il

Corollary 6 For p € X we have
= —1,N
E(00, p)=c} 1 3o (p).

Proof Compare the expansion in the equation of Theorem 10 using (iii) of Theo-
rem 9. .

Remark 3 In the case of hyperelliptic curves the prime function can be given us-
ing the derivative determined from the sequence aj.z) . This is because p; — p» can
be written as a sum pj + p5 where *denoting the hyperelliptic involution. Such
expression is given in [7].

The following theorem had been proved in [11].

Theorem 11 ([11]) Forn > gand p; € X, 1 <i <n,

= [T/, E(co, pi)"
o pi|="—"r——=———det(vi(pj)), . i<y
(; ) Hi<jE(Pi1pj) ( / )I_J_

By comparing the top term of the series expansion in z(p,), using Theorem 2
and Corollary 5, beginning from n = g successively in the equation of this theorem
we get

Corollary 7 Forn < g we have

n n » n
Ny / Hi:] E( 7pi)
oo (S pi ) = A=t 22 P e (g (p)) - e

| (Zl "

Combining Theorem 10 and Corollaries 6 and 7 we have the following addition
formulae for sigma functions.
Corollary 8 (i) Forn > gand p; € X, 1 <i <n,

!

N
o (i P 1izj 8u o (pj — pi)
N,
H?:l(auﬁla(l?i))”

= b)u,n det(@i (pj))lii’jS,p

with

1 1 inm—1 —n?
by = (= 1y 200Dyt
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(i) Forn<g

Non N;
Ay "o (X0, pi)l_[i<j 3u1MU(Pj — pi)
N
[T, @ o (p))"

= b)\,n det(go,- (Pj))liiﬁjgn,

with
1 _1y snm-1 _
byn = (=280 D20 (g )T
Similarly, using Theorem 11, Theorem 1 and Corollary 4, we have

Corollary 9 Forn < g and p; € X, 1 <i <n, we have

_ i Eo pi)"

" - det(i (P))) < i<p-
H?<jE(Pi,pj) I<i,j<n

n
gy Ou @ > pi

1 mn i—1
Corollary 10 Forn < g and p; € X, 1 <i <n, we have

N/
8ua§n> "'auag)a(Z?:l P Tlic; w0 (pj — pi)

[T, a' o (p))"

= bg\,n det(wi(pj))lsi,jgn’

with

1 1 inm=1 —
bi’nz(—l)zg”(” l)cf (C;,l) ey

N/
In the case of hyperelliptic curves 8M]“ o (pj — pi) can be replaced by a constant

multiple of “aj.z)-derivative” as remarked before (Remark after Corollary 6). Then
Corollaries 8, 10 recovers the formulae in [13].
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Padé Interpolation for Elliptic Painlevé Equation

Masatoshi Noumi, Satoshi Tsujimoto, and Yasuhiko Yamada

Abstract An interpolation problem related to the elliptic Painlevé equation is for-
mulated and solved. A simple form of the elliptic Painlevé equation and the Lax pair
are obtained. Explicit determinant formulae of special solutions are also given.

1 Introduction

There exists a close connection between the Painlevé equations and the Padé ap-
proximations (e.g. [6, 19]). An interesting feature of the Padé approach to Painlevé
equation is that we can obtain Painlevé equations, its Lax formalism and special
solutions simultaneously once we set up a suitable Padé problem. This method is
applicable also for discrete cases and it gave a hint for a Lax pair [20] for the elliptic
difference Painlevé equation [14].

In this paper, we analyze the elliptic Painlevé equation, its Lax pair and special
solutions, by using the Padé approach. In particular, we study the discrete deforma-
tion along one special direction.! As a result, we obtain a remarkably simple form of
the elliptic Painlevé equation (39), (40) and its Lax pair (46), (14) or (15), together
with their explicit special solutions given by Egs. (36), (57) and (70).

This paper is organized as follows. In Sect. 2, we set up the interpolation problem.
In Sect. 3, we derive two fundamental contiguity relations satisfied by the interpolat-
ing functions. In Sect. 4, we show that the variables f, g appearing in the contiguity

I'Though all the directions are equivalent due to the Biicklund transformations, there exists one
special direction in the formulation on P! x P! for which the equation takes a simple form like
QRT system [11]. Jimbo-Sakai’s g-Painlevé six equation [3] is a typical example of such beauti-
ful equations. For various g-difference cases, the Lax formalisms for such direction were studied
in [21].
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relations satisfy the elliptic Painlevé equation. Interpretation of the contiguity rela-
tions as the Lax pair for elliptic Painlevé equation is given in Sect. 5. In Sect. 6,
explicit determinant formulae for the interpolation problem are given. Derivation
of the Painlevé equation (39), (40) based on affine Weyl group action is given in
Appendix.

2 The Interpolation Problem
In this section, we will set up an interpolation problem which we study in this paper.
Notations Let p, g be two base variables satisfying constraints |p|, |g] < 1. We

denote by ¥, (x) the Jacobi theta function with base p:

o0

9 p(x) = ]_[(1 —xp)(1—x"1p'™h), 9p(px) =0, (x71) = —x 710, (x). (1)
i=0

The elliptic Gamma function [13] and Pochhammer symbol are defined as

0]

rep.o =]

i,j=0

( _x—lpi+1q,/+l)
(1—xp'q/)

2

—1
I(g*x;p.q) 3 ;
z?(x)zizllﬂ q'x),
PR Twpa) g rla'%)

where the last equality holds for s € Zx(. We shall use the standard convention

I'(xi,...,xe;p,q) =T (x5 p,q) - T'(xe5 p,q), 3

ﬂp(xh e Xg)s = ﬁp(xl)s e ﬁp(xl)s-

Padé Problem Letm,n € Z>o, and letay, ..., as, k be complex parameters with
a constraint:

6
[Jai=F. (4)
i=1

In this paper we consider the following interpolation problem:

_Vig™)

Sugmy C=0heoNEmEn. )

s

specified by the following data:
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e The interpolated sequence Y is given by

al

6
9p(ai)s re aipa
o=v(g) =[] 229 y= H E ; Y ©

e The interpolating functions U (x), V (x) are defined as

n m

U)=Y wigi(x), V() =) vixi), (7)

i=0 i=0
with basis

T TLY @ 9o g Po(G >

; = q a4x
¢l(x) Y(x) 9 (qazx azx)z 19 (d4, ) s
3
Y (x) Op (e )i Oplar, )i
Xi(¥) = ——— = :
TélTa3 Y(x) 1917( ' dar x)l p( <, a3)l

where Ty, : f(a) — f(qa).
The coefficients u;, v; are determined by Eq. (5) which is a system of linear

homogeneous equations. We normalize them as ug = 1.

Remark on the Choice of the Bases ¢; (x), x;(x) The problem we are consider-
ing is a version of PPZ scheme (interpolation with prescribed poles and zeros) [22].
Note that

Ur) = Jnom), Uden<x)=ﬂp(“—2,i),

Uden (x) q"x axx
Ve () ' 9
num (X aj
V(x)= 22V, =9, —.
) Vden (x) (%) p( X qmalx>

where Upym(x), Uden(x) (resp. Vium(x), Vigen(x)) are theta functions of order
2n (resp. 2m). Furthermore, the functions x™ Upym(x), x" Vaum(x), x™Ugen(x),
X" Vgen(x) (and hence U (x), V (x), ¢; (x), x;i(x) also) are “symmetric”: F(k/qx) =
F(x). We will fix the denominator Ugep (resp. Vgen) as above in order to specify the
prescribed zeros (resp. poles). For the numerator Upyy, (resp. Vium), contrarily, one
may take any basis of theta functions as far as they have the same order, same quasi
p-periodicity, and same symmetry under x <> qu as Ugen (resp. Vgen). In this sense,
the choice of the basis ¢;, x; in Eq. (8) is not so essential for general argument,
however, we will see that it is convenient for explicit expression of the functions
U(x), V(x) in Sect. 6.
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Parameters of the Elliptic Painlevé Equation The elliptic Painlevé equation is
specified by a generic configuration of 8 points on P! x P'. We parametrize them

as (fx (&), g«(&i))i=1,...8, where

p(x ’ c4x)
Op(2 ’

x’ch

1’( ’ sz)

Sfelx) = 29 (

) 8x(x) = (10)

x’clx

and ¢; are parameters independent of x. The functions fi(x), g«(x) satisfy f.(x) =
N *(';—1), g«(x) = g*(';—z), and they give a parametrization of an elliptic curve of de-
gree (2, 2).2 We define functions F r(x) and G4(x) as

Cl Ki Cc2 Ki
F =l9 . _7} R R
1) p(x c1x> p(x ng>
) c4 K2
Gg(x)—ﬂp(_ ;)g_l9 (;764—)6)

Note that Fr(x) =04 f = fi(x) and G4(x) =0 & g = g+(x).
In this paper, the Painlevé equation appears with the following parameters

k? k k a
(K]aKQ.) = (k5 _)9 (El’ . "ES) = (_7 kqm+n7 —ma _’2;’a37a47a57a6>'
ai q aiq™ q
(12)

(1)

Note that « K2 = qé&) - - - &g due to the constraint (4).

3 Contiguity Relations

Here, we will derive two fundamental contiguity relations’ satisfied by the functions
V(x), Y(x)U (x).

Special Direction 7' of Deformation  For any quantity (or function) F* depending

on variables k,ay,...,a¢,m,n, ..., we denote by F = T(F) its parameter shift
along a special direction 7':

T:(k,ai,...,a6,m,n) <kq,ﬂ,az,am,...,ag,q,m—i—l,n—1>. (13)
q

This special direction is chosen so that T : (k1, k2, &) — (K14, K2q3, &iq) and the
corresponding elliptic Painlevé equation will take a simple form.

2The choice of parameters c, ..., ¢4 (and over all normalization of f,(x), g«(x)) is related to the
fractional linear transformations on P! x P!,
3Since the contiguity relations (14), (15) are similar to the linear relations of the Ryj chains [17], it

may be possible to derive them as a reduction of three discrete-time non-autonomous Toda chain
by using the method in [18].
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Proposition 1 The functions y(x) = V(x), Y (x)U (x) satisfy the following contigu-
ity relations:

Gela) ey 9y GeWITimi % (X%)y@)

2: yx) = a ¢
I’(alx qx) (X’X)

_ CoFr)p , 4 kg
oFr(x) (xz o alx)_( y=0, 14

kqgx k kg I a \_
Ls: Gg< a )ﬁp(q—x ;)y(x)—Gg(x)ﬁ ( q2x>)’(qx)

C1Fr(gx)d, (—)
o a

aix’ gx

y(x) =0, 15)

where Co, C1, f, g are some constants w.r.t. x.

V(x)
Y (x)U (x)

Di(x) = det[y(x),yG)],

Dy (x) :=det[y(gx), y(x)],

Proof We puty(x) = [ ] and define the Casorati determinants D; as

3 (16)
D3 (x) :=det[y(x), y(x)],
_ X
Dy(x) == det[y(x),)'(g)].
Then the desired contiguity relations are obtained from the identity
_ X
Di(x)y(x) — Da(x)y(x) + D3(X)y<—> =0,
q 17)
D4(gx)y(x) — D3(x)y(gx) — D2(x)y(x) =0,
by using the formulae for D; given in the next Lemma 1. g
Lemma 1 The determinants (16) take the following form:
Pp (5. 4 DIFr ()
Di(x) =NX)Y(x)c pk A
ﬁp gx’ xal)l_[l lﬁ (XS)
Oyt s ma) Fr(q)
Dy(x) = N ()Y (x)e—— L5 0% na (18)

ax0p(3, S [T 9, ()



468 M. Noumi et al.

Gg(x)
k k. kg a

Plgx’ xay’ xay;’ qx

D3(x) =J\f(x)Y(x)c/0

9p(L, )Gy (k) 9,

. / x’ x ap

D4(x)_N(x)Y(x)cﬁ (L &k k ko H )
Plgx’ gx’ xay’ xap’ xa;’ gx’ i=1 p

where

ﬁp(qm+nx1 q%)m—&-n+1
Uden (x) Vden (x)

Nx)= (19)

Proof The functions U (x), V(x) and, due to the constraint (4), the function Y (x)
are elliptic (p-periodic) functions in x. Hence the ratios 11)/(%) are also elliptic. They
are of order 2m + 2n + (small corrections) and have sequences of zeros and poles

represented as P(ﬁ’ q%)m+n+1 and Ugen Vgen modulo corrections at the bound-

aries of the sequence. Then we can compute the ratios ?,"((;)), and each of them are

determined up to 2 unknown constants. In the computation, the following relations
are useful (they are derived by a straightforward computation)

6 k
Y (gx) Op(Gqx)
G(x):= =[] g, 20)
ERE) 1_[ 7,(2)
Y@ PG ap ﬂ’al) O (%)
K = , 21
T T Pp(as s 45 ik zl_!””(‘”) e
2
N(i) — ﬂ/\/(x), (22)
qx k

and

g ¢"k @k k a
N(CIX) 4 ( x 7 x’qMaix’ axx’ q"x

kogmar ko gk apy”
N(x) ﬁ ( N+1x gx’ x ’apx’ axx’ x)

(23)

e Computation of Dj(x), Dy(x): First, we count the degree of the elliptic function

D) _ 1y (i) _v(f)um. 24)
Y(x) G(E) q q
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Substituting
UG) _ Unn(@) P55 5 Unam ()
q Uden(g) ﬁp(ﬂ,i—z) Uden(x)
(25)
v(f) _ Vnum(g) p(q Tir ) Vaum(3)
q Vden(é) 0 (alx’ ”;al) Vden(x)
we have
D) 1 9, (1)
Y(x) Uden(x) Vigen (x) ﬁl’(ale)
(q”x) 6 ﬁp(a—l) X
X m = Vaum (x)Un m(_)
i 9p(L5) 11 9Ly ™ g
9 (Ggrs) x
_%Unum(x)vnum<_> . (26)
Op () a

The function D;(x)/Y (x) is p-periodic function of order 2m + 2n + 6 with denom-

inator
(L) m np 6 k
Plaix qai q
bt et ST () () T (35)

Next, we study the zeros. When x and ;ﬁ are both in the Padé interpolation grid

(e for x =1,¢71, ..., g~ N*1), it follows obviously that Dj(x) = 0. Noting the
symmetry properties

U(i) =U(x) v(£> —V@) G<i> )
gx) 7 gx) 7 gx) GG’

we have
D (%) x x Di(x)
X —_Gl=lUx)VI=)-U \% =—-G 29
1706 (q) 0 <q) (q) ) ( )Y() 9

Then it follows that Di(x) =0 at x = k, kq, ...,qu’l and furthermore, due
to the relation y(x) = y(%) for x2 =k, we have D;(x) =0 at x2 =k (ie. x =

+Vk, +./kp). As aresult, the function X (x) defined by

9,(%, 1,9

D) =N Y ()~ EERE X (x) (30)
P qx xal)l—l 119 (
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is a theta function of degree 2 such that X (%) =X (%) = )jc—zX (x), hence it can be

written as X (x) = ¢Fy(x) by suitable constants ¢, f. D; is easily obtained since
Dy (x) = Di(gx).

e Computation of D3(x), Da(x): First we note a relation between D3(x) and D4 (x).
Using U(q%) =U(x), U(f) = U (x) and similar relations for V (x) we have

()
Y5 - \gx qx gx qx qx

— k \—
=Ux)V(gx) — K(—>U(61X)V(X)
qx

k

= o) {Y(X)U(X)V( 0y T ")V(")}

Yo G T

— G )D4(qx) (31)
Y(qx)

K k
where we have used the relation G( o = = K(gx) at the last step.

Let us compute D3(x). Substituting the relation

ﬁ(x): Unum (%) -9 ( k ap )Unum(x)

Uden(x) arx’ q"x ) Ugenx)”’
_ - (32)
V(x) — @(x) 4 (q’"a1x) Vium (x)
Vden (x) 3 (q_x a]_x al_x) Vien(x)
into
D) _ Ux)V(x) = K@)Ux)V(x), (33)
Y(x)
we have
D3(x) 1 1
Y (x) Uden(x)vden(x) ﬁp al_x al_x Z—)lc
X {ﬂp< 6512 ’ 5 AR a_6>vnum(x)Unum(x)
q"x x X
( > Vium (%) Unum (x) } (34)

Hence, Y( ) is of degree 2m + 2n + 3.
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D3(x) has zeros at x = l,q_l, .. .,q_N and x =k, gk, . ..,qN_lk, where the

latter zeros follow from those of D4(x) through Eq. (31). Hence, we obtain

1
D3(x) = N ()Y (0) = Z(0), (35)

ar
PN\gx’ xay’ xa|’ qx

where Z(x) is a theta function of degree 2 such as Z( )=Z(— K2 )= “‘x Z(x),

ajx
namely Z(x) = ¢ Gg(x) for some ¢’ and g as desued Dy(x) is derlved by the
relation (31). O

Corollary 1 For any pairi, j € {3,4,5, 6} we have

ala) Frla) _ Ula)Viai/q) Blai) Gelai) _ U(a)V (a;) (36)
alaj) Frlaj) Uaj)V(aj/q)’ B(aj) Gglaj) U(aj)V(a;)
where
9K, 4, a
a(x) =N(x) rhr o)
<0G @ ml)n -1 (XS) 37
1
BE) =N —— Y
Op(gx> %ar xar g
Proof By the definition of D1, D3, we have for x =a; (i =3,4,5,6)
T ~gap @ (5) ~vev(§) =vev(()
= Vx)ul-)-Ux)V| - )=-Ux)V[ -,
Y(x)  G(x/q) q q q
(38)
Dy(x) _ -
=V@X)UKX)—Kx)UXx)Vx)=Ux)V(x).
Y(x)
Then, from the first and the third equation of (18), one has Eq. (36). O

The formulae (36) are convenient in order to obtain f, g from U (x), V (x).

4 Elliptic Painlevé Equation

In this section, we study the Eqs. (14), (15) for generic variables f, g apart from the
Padé problem, and prove that the variables f, g satisfy the elliptic Painlevé equation.

Theorem 1 If the Egs. (14), (15) are compatible, then the variables f, g and f,g
should be related by

FroFrqn) o 0p(h)
Frany ppay i 9p(cEa)

. for g =g«(x), (39)
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and

. Jor [ = fi(gx). (40)

G4 (x)G4(qx) ﬁ 9,(5)

Gg<’<qx>c (k) (g

Proof From equations L_2|x_>qx (14) and L3 (15) we have

G445 [T 1%(%% x):mn?‘”9 (ﬁ)vm

P(alx qx) 7y 2x’x) (41)

Go (Yo, (£ 2 500 = 6,000, (£, 42 Vg,
8\ q P\ gx” aix 8 P\x" q2x

for f = fi(gx), hence we have Eq. (40).
For g = g.(x), we have from Egs. (14), (15) that

G () Ty 9p (%) _ CoFr @y (h, 4, b,

qx’ ayx

y(x),
P(alx qx)
o “2)
kgx k kg \_ ClFf(qx)ﬂp(—)
Gol — 0| — — Jyx) = y(x),
al gx apx x0 (alx qx
hence
kx kqx \ o £ ko k
o o (o) e () = rrom@an (. 5a). -
where w = CoCy. The Eq. (43) holds also by replacing x — akl—zx since g«(x) =
g*(akl—x). Taking a ratio Eq. (43) with Eq. (43)|x%£ we have Eq. (39). O

apx

The next Lemma 2 shows that the relations (39), (40) are equivalent to the time
evolution equation for the elliptic Painlevé.*

Lemma 2 The solution f of Eq. (39) is a rational function of (f,g) of degree
(1,4), which is characterized by the following conditions: (i) its numerator and

denominator have 8 zeros at f = fu(§). g = g.(€). (i) if f = fulu). g = g4(u)
(u #E&) then f = f*(%). Similarly, by Eq. (40), g is uniquely given as a rational

function of (f, g) of degree (4, 1), satisfying the conditions (') it has 8 points of

4Since the elliptic Painlevé equation [14] is rather complicated, its concise expressions have been
pursued by several authors (e.g. [8—10]). The system (39), (40) is supposed to be the simplest one.
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indeterminacy at [ = 1), g =g:&), () if f = fulqu), g = g«(u) (u #§)
then § = 2o (™) = g« (4).

ap

Proof Written in the form

__ k* xa Pxa\ vy . (&
o) (P )
i=1 i=1

x&a;

the Eq. (39) is quasi p-periodic in x of degree (apparently) 12 with symmetry under
X < akl—zx Since it is divisible by a factor & 1’((411(7)’ it is effectively of degree 8. Then
the solution f of this equation takes the form

— AX)f+BXx)
= (45)
Cx)f+ D(x)
where the coefficients A(x), ..., D(x) are x <> %—symmetric p-periodic functions

of degree 8, namely polynomials of g = g,(x) of degree 4. Hence f is a rational
function of (f, g) of degree (1, 4). The conditions (i), (ii) are obvious by the form
of Eq. (39). The structure of the solution g = g(f, g) of the Eq. (40) is similar. [J

Remark on the Geometric Characterization of the Solutions f, g As a con-
sequence of the above results, the variables f, g obtained from the Padé problem
give special solutions of the elliptic Painlevé equation. Since they are (Béacklund
transformations of) the terminating hypergeometric solution [4, 5], they have the
following geometric characterization. Let C; be a curve of degree (2n,2n + 1)
passing through the 8 points (fx(&;), g« (Si))lg:l in Egs. (10), (12) with multiplicity
n(lg) +(0,1,1,0,0,0,0,0). Similarly, let C, be a curve of degree (2m +2,2m + 1)
passing through the 8 points with multiplicity m(1%) +(0,1,0,1,1,1,1,1). C; and
C; are unique rational curves. Except for the assigned 8 points, there exists unique
unassigned intersection point (f, g) € C1 N Cy which is the solution.

5 Lax Formalism

In this section, we prove that the elliptic Painlevé equation (39), (40) are sufficient
for the compatibility of Eqgs. (14), (15).

Solving ¥(x) and y(gx) from eqgs. L2, L2|y—4» and plugging them into L3, one
has the following difference equation (Fig. 1):



474 M. Noumi et al.

Fig. 1 Lax equations L
() ¥(a) ¥(ga)
Lo L3
y(3) y(z) y(qz)
Ly

8 sl
p(ule q%)l_[,- 10p (%)y<x>+ qvp(L, qx)l_[z 179( )

Li: - y(qx)
! Ff(x)ﬁp(xz,‘;l,x) q Ff(qx)ﬁp( 2,20 2x aqu) n
{wFf(qx)ﬂp(q%) ng(qX)l_[, 119 (qxs,)
xzcg(x>Gg<"Z—"> Fr(@x)Go("E)0p ()
G kx 29 51
F/(X)Gg(x)ﬁp(x_z)

The pairs of equations {L1, L»}, {L1, L3} and {L,, L3} are equivalent with each
other.

The above expression L (46) contains variables f, g, ?, w. We will rewrite and
characterize it in terms of f, g only. This characterization is a key of the proof of
the compatibility. To do this, we first note the following

Lemma 3 The factor w satisfying the relation (43) is explicitly given by (f, g) as

_ C?den(f» g)

, 47
o(f, 8) 0

where f4on(f.8) is a polynomial of degree (1,4) defined as the denominator of
the rational function f = f(f, g), and ¢(f,g) is the defining polynomial of the
degree (2,2) curve parametrized by f(x), g«(x), and C is a constant independent

of .8, x

Proof The relation (43) follows from Eq. (47) by using

) Fp ()

lomgin =C' L0 “9)
o o L ErESTT 0,5 "
(fdenf*num(qx)_fnumf*den(qx))|g=g*(x)_ g*den(x)4 ’ (49)
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where C’, C” are constants, gxge, (x) = 9, (2

T c% x) is the denominator of g, (x),

and Slmllaﬂy f*den(x) =17 (x s le) f*num(x) (x s sz) O

Lemma 4 In terms of variables f, g, the Eq. (46) is represented as a polynomial
equation Li(f, g) =0 of degree (3,2) characterized® by the following vanishing
conditions at: (1) 10 points (f(u), g«(u)) whereu = &, gx and %, (2) 2 more points
(f, g) such as

) Ge(@) PG go) & P
= Jxx), B =, 50
F=50 5w =y | H ewen (50)
and
yigx) Gea) _ ol ) & P (e
= Jx ) ! . 51
f = f«(gx) y(x) Gglgx) 0 (qx X) E ﬂp(j—;) (51

Proof Due to the Eq. (43), the residue of L at the apparent pole g = g, (x) vanishes.
Replacing x with Lx in Eq. (43) and using the relations F f(%) = ’;{—ZF £(x) and

Gg(akl—i) = “”‘ Gg(x), we have

8
k
qszg(x)Gg(qx)l_[ﬁp<

e qéix) = wFf(qx)Ff(qx)ﬁp(ﬁ’ W)’ (52)

hence, the residue of L at g = g*(kaq—x) = g*(qix) also vanishes. From these vanish-

ing of residues and the Eq. (47), the L.H.S of Eq. (46) turns out to be a polynomial in
(f, g) of degree (3, 2), after multiplying by F(x)F(gx)¢. Check of the vanishing
conditions (1), (2) are easy. O

In a similar way, solving y( ), y(x) form L3, L3|y_ /4 and substituting them
into Ly, one has

L':

(4 B T 25D 9, (K, ﬁ‘;l)l‘[l 105/
———y(gx) + N
P(qu_x m) Fyr(gx) qv (—2,; q—x)F (x) q

{wﬁ(z)Fﬂx) G [Tz P55
¥2Gy(0)Gg(5)) qﬁpg—Z)Ff(x)Gg(’;—f)
G (M T 9y (%) }_( :
_ it x) =
9p () Fr(qx)Ge(x)

(53)

SThis geometric characterization of the difference equation L; is essentially the same as that
in [20].
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By the similar analysis as L1, we have the following

Lemma 5 In terms of variables f, g, the Eq. (53) is represented as a polynomial
equation L (f,g) =0 of degree (3,2) characterized by the following vanishing
conditions at: (1) 10 points (fy(qu), g«(u)) where u = &, ;—‘ and qu' (2) 2 more
points (f, g) such as

?(x) Gg(i) 4 (alx x)

f=fi(x), = 54
=70 S@G,d = 0,0 5 (54)
and
< TN y(qx) Gg(x) P(alx qx)
= fu , — = . 55
f=fulgr) 50 5o = 0y (55)
Proof In terms of (f, g), the gauge factor w (47) is written as
///fden(f g) (56)

o(f.9

where fyen(f, g) is the denominator of the rational function f = f(f,g), and
©(f,g) is the defining polynomial of the curve parametrized by f,(gx), g«(x),
and C"” is a constant. Then the proof of the Lemma is the same as the proof of the
Lemma 4. g

Proposition 2 The Eq. (53) expressed in terms of (f, g) is equivalent with the trans-
formation T (L) = L of Eq. (46).

Proof This fact is a consequence of Lemmas 2, 4 and 5. The geometric proof in the

g-difference case [21] is also available here (see Lemmas 4.2-4.6 in [21]). O

6 Determinant Formulae

In this section, we present explicit determinant formulae for the solutions U (x),
V (x) of the interpolation problem (5).
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Theorem 2 Interpolating rational functions U (x), V (x) have the following deter-
minant expressions:

U U
m0,0 mO,n
U (x) = const. : - : ,
mU e mU
n—1,0 n—1,n
do(x) -+ Pu(x)
(57
mV e mV
0,0 0,m
V (x) = const. : - : ,
mV Y
m—1,0 m—1,m
x0(x) Am (X)
where
U —1,. —N _N—i-1 —j j j
mi=nVulg kg™, q" " "la1,q ar, q'a3, q’ as, as, ag; q),

J__ -

ook ok ok ok k 58)
vV _ -1y, —N _—j % _N—-i—1" ! ;
ml]—IZVII(q k’q ,q a]aq a27 a35qa4aa5aa6vq)1

and ,+5Vyta (n+3 Ens2 in convention of [4]) is the very-well poised, balanced ellip-
tic hypergeometric series [1, 15, 16]

00 25y N
Uy (nog™) ﬁp (uj)s
sVira(uoi U, ... up32) = b S (59)
e " ;0 9, (10) g 9, (quo/u))s
Proof In general, the solution of interpolation problem
Vixg) =Y, U(xg), s=0,...,N (60)
is written by the following determinants:
xo(xo) -+ xm(x0)  Yogo(xo) -+ Yogn(xo)
vey=| : SRS PR ()
xoxn) oo xmGxn)  Yngo(xn) oo Ynén(xn)
0 e 0 do(x) o Pa(x)
and
xo(x0) -+ xm(x0)  Yogo(xo) -+ Yogn(xo)
Vx)= . . . (62)
xoxn) o Xxm(xn)  Yngo(xn) o Ynéa(xn)
xo(x) oo Xm(x) 0 aE 0
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We apply these formulae for Y;, ¢; (x), x;i (x) given by (6), (8) and x; = g~—*. Note
that ¢; (x5), xi(xs) can be written as

ko k . .
1}p(5’ av q 16127 qla4)s

Oi(x5) = - - ,
19p(a2,a4,ql£,q_’£)s )
) —ik ik
plar, a3, g7 2-.q" ;2)s
Xi(xs) = k

k - — .
ﬁp(aa aa qlalv q la3)s

To rewrite the determinant in Eq. (61), we use the multiplication by a matrix
LipV.
L:|:( if)i =01:| (64)

9,(q% k) Op(q kg gN T an, K glas, K,

Op(q~k) 9,(q, gV, g NHHE 4y, g7 X a3);

a3

from the left, where

Lij= q’. (65)

For the last n + 1 columns, we have

N
Y LisYe¢i(x) =12Vi(g kg™ ¢V ar. g ar.q'as. g au. as. as: q)
s=0

=m. (66)

For the first m + 1 columns, we have

N

_ _ i k. -k
> Lisz(xs)=10V9<q kig™,q" " layq ’a—l,q’aa,qjg;q) (67)
s=0

Using the Frenkel-Turaev summation formula (i - --us = qu(z), us=q ") [2, 15,
16]:

quo  quo  quo
Ve (l/l ‘u Us: _ ﬂp(quo, ujup’ uju3’ upu3 )I’l (68)
10Voluo, U1, ..., U5,4 —19 (M qug qug _quo ) H
PN up’ upy’ uz ’ ujupuz’n
the expression (67) can be evaluated as
—N+i+j+1 —N+1_k j—iay
l?p(k,q s q a1a3’q a3)N (69)
~N+j+1 L ik —N+i+1 Ky °
Oplg= T g™ g5 ) an.q ar)N

and it vanishes for 0 <i 4 j < N. Hence, we obtain the formula for U (x) in (57)
by Laplace expansion. The case for function V (x) is similar. g
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Theorem 2 supplies also formulae for special solutions f, g of the elliptic
Painlevé equation through Eq. (36). Moreover we have

Lemma 6 Fori, j €{3,4,5,6}, the ratios in Eq. (36) have following simple form

U@) T, T @) Viai/q) T Ty (@) 0)
U@j)  ¢;Ty,' Ta; (V) Vaj/q) c;TalTajl(rV)’
where TV _det(m )" 10 and tV _det(m )l ]—0’
vt (07" 55 @n(@3, Dn (@ @nlg" A @)
c3=gq
(e Dn (L2, (g™ 8 g2), (g B ),
(@™ g nl@s, @ (7 Dnai, Dn
4= —7 70 , ci = 70 , ([(=5,6),
(a2a4’ )n(an In (aza J])n(g%])n
(x, v =12 Ly »(xv') and
(€55 €y €55 ¢6) = (€4, €3, €5, €6 (- e (o, o ek k. k).
(12 al ﬂ4 (l} HS (16
Proof Since ¢;(as) =60 (i >0), we have
Ulas) U
const. :det(mt /+1)1 —O_ T T ( ) (71)

Using the symmetry of U (x) in parameters as, ..., ag, the first relation of Eq. (70)
follows. The second relation is similar. O

The determinant expressions for the special solutions have been known for vari-
ous (discrete) Painlevé equations (see [7, 12] for example). Our method using Padé
interpolation gives a simple and direct way to obtain them.

Acknowledgements This work was partially supported by JSPS Grant-in-aid for Scientific Re-
search (KAKENHI) 21340036, 22540224 and 19104002.
Appendix: Affine Weyl Group Actions

Here we give a derivation of the Painlevé equation (39), (40) from the affine Weyl
group actions [9, 21].
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Define multiplicative transformations s;;, ¢, w;j, vij (1 <i # j < 8) acting on
variables i1, ho,uy, ..., ug as

sij ={ui < uj}, ¢ ={h1 < ha},
I hihs ho ho
i = = S U, U — g,
Hij 1 oy i u; J u; (72)
{ h1h2 h1 hl}
Vij = /’l2|—> y Up—> —, Uj=> — .
uiu u; u;

These actions generate the affine Weyl group of type Eél) with the following simple
reflections:

512
| (73)
C— 12 — 8§23 — 8§34 — -+ — §78.

We extend the actions bi-rationally on variables ( f, g). The nontrivial actions are as
follows:

=g c@=f wiH=Ff  vi@=8 (74)

where, f = f; ; and g = g;; are rational functions in (f, g) defined by

S _ (= f)e—g)  E=vile) (=) =f) oo
F—wij(fn  (F—f—g)  &—vijg) (@—g)f—f)
(fi, &) = (fulus), g(u;)), and
(2, b p(2, 22y
folry= BT g (= TR (76)
’ 4 ( 4 dlz) ) ﬂp( dlz)

as in Eq. (10). As a rational function of (f, g), f is characterized by the following
properties: (i) it is of degree (1, 1) with indeterminate points (f;, g;), (f}, g;), (i) it

dz hihy
maps generic points on the elliptic curve (£, (z2), g«(z)) to e - ’dz,fl“h'; 2. Using this
dlzuiuj
geometric characterization, we have
{f (’“Z)} 9 (‘2’, Z) FrG - -
Mij or g = 8x(2),
U Fr@ | o,k iy Frz)

u;z’ ujz
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where the functions F(z) (and G (z)) are defined in a similar way as Eq. (11)

dy  hy d h
~7: g 219 s T _1-9 )
1@ p( z dm)f p( b4 dzz>

di h dy h 78
1 n2 2 hy
o2 2o o(2:22)
5@ pzdlzg P\ 27 dyz
Let us consider the following compositions [9]
¥ = S12/412534/434556 456578 1178 T =rcrc. (79)
Their actions on variables (h;, u;) are given by
ha
r(hy) = vhy, r(h2) = ha, ruj) =—,
Ui (80)

T(h)=qhv,  Th)=q 'hav®,  T(u)=uv,

where v=gha/h1, g = h}h3/(u, ---ug). From Eq. (77) and r (1) = % the evo-
lution T (f) =rcrc(f) =r(f) is determined as

Fro) TEDGE) 5,4

= , forg=g.(2). 81
Frs) TF@ Hﬁp(%) o8 =8 ®h
Similarly, since ¢cTc = T~!, T~!(g) is determined by
THG(4E) B 9,
Ge (@) WoCR?) _ p(7) for f = fi(2). (82)

Go (i) TG ) ‘gﬁp(ﬂ),

Uiz

By a re-scaling of variables (h;, u;,d;) = (ki A2, &, ci)) with A = (h?h;l)zlt, we

have Fr(z) = Fr(3), T(Fy)(z) = T(Ff)(%f) and so on, since T (L) = Z—fk. Then

the above equations take the form (39), (40), by putting z = Ax.
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Non-commutative Harmonic Oscillators

Hiroyuki Ochiai

Abstract This is a survey on the non-commutative harmonic oscillator, which is
a generalization of usual (scalar) harmonic oscillators to the system introduced by
Parmeggiani and Wakayama. With the definitions and the basic properties, we sum-
marize the positivity of several related operators with sl, interpretations. We also
mention some unsolved questions, in order to clarify the current status of the prob-
lems and expected further development.

1 Introduction

A non-commutative harmonic oscillator Q is the Weyl quantization of a matrix-
valued quadratic forms in (x, £). This is a generalization of the usual (scalar) har-
monic oscillator to the system introduced by A. Parmeggiani and M. Wakayama [21].
The adjective “non-commutative” originates from the two kinds of non-commuta-
tivity: one comes from the system, the other is due to the Weyl quantization. The
main concern to this system has been devoted to the spectral problems, especially,
the explicit determination of eigenvalues and eigenstates for the discrete spectrum,
and their generating function, so called, spectral zeta functions.

In this paper, we deal with the case the system of ordinary differential op-
erators of the system size two, following the original work by Parmeggiani and
Wakayama [20]. (We note that little is known in the case that the size of the system
is greater than two.) The operator Q is defined by

A(=82 4+ x%)/2+ B(xdyx +1/2), (1)
where x € R, 0y =d/dx, A, B are real constant matrices of size two, A is sym-

metric, and B is skew-symmetric; AT = A, BT = —B. This operator Q is densely
defined on the space L*(R, C?) of C>-valued square integrable functions on the real
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line R. This is the Weyl quantization of
A(E% +x%) + V/—1Bx, )

which is a positive definite hermitian matrix if the constant matrix A + /—1B is
positive definite. In such a case, the system Q is positive elliptic, unbounded, self-
adjoint. So it has only a discrete spectrum with finite multiplicities: 0 < A1 < Ay <
-+ (= 4+00). In considering the spectral problem, there is no harm by the orthogo-
nal change of coordinates of C2, so we may assume that A is a real diagonal matrix.
Since we have assumed the system size is two, the matrix B is a constant multiple
of the standard one [ ¥ 01 ]-

Remark 1 In the case that the size is greater than two, the orbit decomposition of
the simultaneous action of the orthogonal group on the pair of symmetric and skew-
symmetric matrices is considered by [2], and it shows that the representatives of
isomorphism classes are rather complicated in general.

We continue the case that the system size is two. This means that the system Q
is
L(=02+x%)  —(xd+3) } 3)

QZQa,ﬂ=|: x8+% g(_a)%_i_xZ)

where «, 8 € R are the parameters specifying the operator Q.

In the case o = B, the system Q, , is unitarily equivalent to the scalar oper-
ator ((8)% + (@ — Dx?) /2)I>, where I, is the identity matrix of size two. Hence
the corresponding spectral problem is solved for Q. For example, if o > 1, then
the spectrum is of the form ~/a? — 1(N + 1/2) with a non-negative integer N, and
the eigenfunction is written in terms of Hermite functions. If & = 1, then the set
of spectra is the real half line {* > 0}, and if 0 < @ < 1, then the set of spectra is
the whole real line R. This unitary equivalence is first obtained in [21, 22] by us-
ing the oscillator representation @ of sly (see Sect. 2), and is later obtained from
the Malliavin calculus [26]. Both approaches use the unitary operators involving the
function eV~ %" = cos(x2) & ~/—1 sin(x2), which is highly oscillating as x — #00.
This suggests the difficulty of the naive numerical computation of eigenfunctions.
The general case o # § is considered to be the perturbation of the ‘diagonal case’
« = B. From this point of view, Parmeggiani ([19, 20]) gives some “clustering the-
orems” for the spectrum.

If o and g is large enough, then the system Q is also considered to be the pertur-
bation of the two split scalar harmonic oscillators. To be more precise, let us write

b _|Ve/B 0 ] o o _Lfo -1
=0un=| VT | CEene |V easn @

For a fixed ratio «/ 8 and taking the limit 1/,/af — 0, the system goes to the direct
sum of two independent harmonic oscillators; («/ ﬂ)il/ 2(—8)% + x2) /2. Since the
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perturbation term is bounded with respect to the elliptic first term, we can apply
Rellich’s theory to obtain a qualitative property [18, 20].

Apart from these special cases of parameters, the spectrum does not seem to have
a simple behavior, such as an arithmetic progression as in the harmonic oscillators.
A numerical verification [13] with an accuracy supports this observation. In order
to describe the whole structure of the spectra, we need some ‘new’ functions.

In what follows in this paper, we always assume that the system is elliptic, that is,
the positivity assumption A + +/—1B > 0 is now translated as &, 8 > 0 and a8 > 1.

Remark 2 Contrary to the case of > 1, nothing is known for ¢ < 1, except that it
seems that Parmeggiani has recently proved that the system Q has only the contin-
uous spectrum in the case o = 1.

2 Inequalities

If the scalar symbol is non-negative, then its Weyl quantization gives a positive
operator. However, this is not true for a system. A counter example is given by
Hormander [4]

2 _
Q:[ X \/_l(x8x+l/2)i|. 5)

—/=1(xd; +1/2) -2

The symbol of Q is positive semi-definite, while the system Q is not positive, i.e.,
there exists an u € L?(R) ® C? such that (Qu, u) < 0.
We may recall the oscillator representation z of sly. Let

10 01 [0 o
e L N R

be the standard basis of the three-dimensional simple Lie algebra slh(R) = {A €
M(2,R) | tr A =0}. The Lie bracket [A, B] = AB — BA is given as

[H. xt]=2x* [H.X]=-2X", [x'. X |]=H. (7)
We recall (e.g., [S]) the representation @ of sl realized in Weyl algebra Cl[x, 9, ]
by
w(H)=xd +1/2, (X)) =x%/2, 5 (X") = —82/2. (8)
Then the operator Q in (5) is unitarily equivalent to

|:2w(X+) w(H) }zw[z)ﬁ H }

—w(H) 2o(X7) —-H 2X- ©)

The last matrix is considered to be an element in M (2, U(sly)), where U (sly) de-
notes the universal enveloping algebra of sl,. This matrix has the following relation
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with the Capelli matrix:

2X+ H 0 1 _5 Ein En B I 0 (10)
—H 2X~ 1 0| E>y Exn o I}
where Ej; is the matrix unit, and / is the identity matrix, living in gl, = M (2, R).
The column determinant
Ey Ep
det 11
y [EZI Exn+1 ] (i

of the Capelli matrix with an appropriate shift in the diagonal gives a central element
of U(gly). By Schur’s lemma, we know every central element acts by a scalar on
each irreducible representation, and its scalar has been determined for the Capelli
elements, not only for the size two but for general matrix size. We may pose a
question: can we diagonalize the Capelli matrix rather than Capelli element (= its
determinant)? This question may have a relation with the spectral problem of non-
commutative harmonic oscillators.

The non-commutative harmonic oscillator Q in (1) is expressed in terms of sy,
or rather gl, ® sl by

ARw(XT+ X )+Bw(H)=(1®w)(A®(XT+X")+B®H), (12)

where ¢ is a natural representation of gl, on C>. We have not yet found an inti-
mate relation between Capelli elements and non-commutative harmonic oscillators.
However, both operators share the two kinds of non-commutativity (in the sense
of [21]), the matrix system as well as Weyl quantization and the Lie algebraic sym-
metry. Note that the positivity of the operator is related to the estimate of the lowest
eigenvalues. This is rather different a question than analyzing all the eigenvalues.
In the case of non-commutative harmonic oscillators, [18] and [20] give some esti-
mates of the lowest eigenvalues, and it still requires an improvement.
The positivity of another operator
|:a1x2 — a3 —(xd+ 1/2)}
0= * 2 2 (13)
x0+1/2 azx~ — as0;

with real parameters ap, az, a3, and a4 is considered in [23]. The answer is given
as follows; there exists a real-valued real analytic function @ (s, s2) such that
@ (ayaq, araz) > 0 if and only if Q is positive. Although this function @ is ex-
plicitly defined by the determinant of the matrix of infinite size, the nature of the
function @ is still unclear. For example, we do not know whether this function @
arises elsewhere. Note that the operator (13) is written in terms of sl, as

[(1) _0]:|w(H)+|:281 223]w(X+)+|:282 224:|w(X_), (14)

orast® w on gl, ® sly, again.
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A system of partial differential operators related with the non-commutative har-
monic oscillator has been considered prior by [1], in the occasion to give a counter
example of the Fefferman-Phong inequality for systems.

3 Special Values of Spectral Zeta Functions

Although we can not write up each spectrum, its generating function is proved to be
manageable. The spectral zeta function, denoted by ¢ (s), is defined by

o) =) A" (15)
n=1

The general property, such as an absolute convergence on the right half plane, the
analytic continuation to whole s-plane has been established in [6, 7]. They also give
an expression of the special value {p(2) by using the confluent Heun function, and
later it is simplified in [16] as

3 (@ + B)? a—p 13 1)\
) =3 e Dap (1+a+ﬂ zFl(Z’Z’l’ 1—a,3> > (16)

where > F7 is the Gauss hypergeometric function. In these special exponents, the
Gauss hypergeometric function reduces to the complete elliptic integral. This en-
ables us to give a connection with the modular forms [11]. This argument can be
generalized for a general special values ¢ (s) at positive integers s > 2 as in [9, 10].
The related series arising in the Taylor expansion of such hypergeometric-like func-
tions are examined also in [8, 12].

4 Real Picture Versus Complex Picture

The description of the spectrum, which is the main concern for the positive non-
commutative harmonic oscillators, is first given in [22] by the infinite continued
fractions, and later in [14] by the monodromy representations and the connection
coefficients of the Heun differential equations. The former has a real nature, while
the latter has a complex one. These two approaches have their own advantage: taking
a truncation of the infinite continued fraction, we obtain an approximation of each
eigenvalues. This enables us to give, e.g., the estimate of the lowest eigenvalues. By
the connection coefficients or monodromy in the complex domain, such an estimate
is rather difficult. On the other hand, the description of spectra and the eigenfunc-
tions in terms of the monodromy of the Heun equation, e.g., enables us to control
the multiplicity of the spectrum. We will explain this feature in more detail.

Heun equation is the second order ordinary differential equation on the complex
projective line with four regular singular points [3]. It has one accessory parameter,
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by definition, a parameter undetermined by the local exponents. The dependence
of the monodromy, the global behavior of the analytic continuation of any holo-
morphic solution at a regular point, on the accessory parameter is believed to be a
‘difficult function’. In a special case, apart from Heun, this dependence is controlled
by the Painlevé equation, which is sufficiently non-trivial. In representation theory
of finite-dimensional Lie groups and Lie algebras, special functions such as hy-
pergeometric functions, Beta integral, Gamma functions often arises, in the case of
non-commutative harmonic oscillators we have in [14] and encounter with the Fuch-
sian ordinary differential equation on the complex line with an accessory parameter.
Recently, another example is obtained in a different context [17] in the restriction of
Heckman-Opdam hypergeometric function to the one-dimensional singular locus.
In our case, Heun’s operator is of the form:

H

2 — — — —
d +<1 n n +n+(3/2))+ (3/2)nz—q a7

~dz z +z—1 z—ap 2z=D@E—aB)’

where n corresponds to the eigenvalues of Q with some normalization, and the
accessory parameter ¢ is explicitly written as a rational function in «, § and n. The
Riemann scheme of this operator H is

w=0 1 af o0
0 0 0 3/2 ¢. (18)
n n+l1l —n—-(1/2) -—n

Note that in the case n € R is an integer or a half integer, the differences of expo-
nents at four singular points consist of exactly two integers and two half integers
(= integer + 1/2). If all the four differences are half integers [25] or integers [24]
simultaneously, then there is an integral expression of a solution of such a Heun
equation, but we have not yet obtained such a concise expression in our case (18).
We call a function u € L2(R) ® C? even if u(—x) = u(x) and odd if u(—x) =
—u(x). Since the operator Q preserves the parity, an eigenfunction is a sum of the
even and odd eigenfunctions. In the complex picture we use the different ordinary
differential operators H’s corresponding to the even/odd cases. One of the corollar-
ies of the main theorem in [15] is that the following four conditions are equivalent:

(1) The multiplicity of odd eigenfunction of Q with the (normalized) spectrum n
is greater than 1.
(i) The Heun equation H has a two-dimensional holomorphic solution on the disk
containing 0 and 1.
(iii) The Heun equation H has a non-zero rational solution.
(iv) The Heun equation H has a solution of the form /z — a8 x (a non-zero ratio-
nal function).

Moreover, (i) to (iv) occur only for n € Z~-¢, and in the cases (iii) and (iv), we
can specify by n the locations and the possible orders of poles for such rational
functions. This means that the condition (iii) to (iv) are a finite condition.
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We note that we have not yet established the equivalence for even eigenfunctions,
because the corresponding result in [14] requires the inhomogenous Heun equation,
while the odd case corresponds to the homogeneous Heun equation. It should be
improved.

In our complex picture, even eigenfunctions and odd eigenfunctions correspond
to the different Fuchsian equations, so that the interaction between even and odd
eigenfunctions is not controlled well. Is there any intimate relation between these
two Fuchsian equations?
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The Inversion Formula of Polylogarithms
and the Riemann-Hilbert Problem

Shu Oi and Kimio Ueno

Abstract In this article, we set up a method of reconstructing the polylogarithms
Lix (z) from zeta values ¢ (k) via the Riemann-Hilbert problem. This is referred to
as “a recursive Riemann-Hilbert problem of additive type.” Moreover, we suggest a
framework of interpreting the connection problem of the Knizhnik-Zamolodchikov
equation of one variable as a Riemann-Hilbert problem.

1 Introduction

Polylogarithms Li (z) (k > 2) satisfy the inversion formula

S (=Diloglz .
Lix(2) + ) ————Lit—j(@) +Lio,1,..1(1 = 2) = ¢ (k).
], ——

j=1 k=2

Applying the Riemann-Hilbert problem of additive type (alternatively, Plemelj-
Birkhoff decomposition) [1, 2, 4] to this inversion formula, we show that Lix(z) can
be reconstructed from boundary values ¢ (k). We prove this by using the Riemann-
Hilbert problem recursively so that we refer to this method as a recursive Riemann-
Hilbert problem of additive type.

As a generalization of this method, we can reconstruct multiple polylogarithms
Lig,, ..., (z) from multiple zeta values ¢ (ky, ..., k). This is nothing but interpreting
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the connection relation [3]
L) =LY () Pxz

between the fundamental solutions of the Knizhnik-Zamolodchikov equation of one
variable (KZ equation, for short)

dG (X() X1 )
(2 G
dz Z -z

as a Riemann-Hilbert problem. Here @k is Drinfel’d associator and L(z) (resp.
LD (2)) is the fundamental solution of KZ equation normalized at z = 0 (resp. z =
1). We have completely solved this problem and a preprint is now in preparation.

2 The Inversion Formula of Polylogarithms

For positive integers k, polylogarithms Lix (z) are introduced as follows: First we set
Lij(z) = —log(1 — z). In the domain D = C\ {z = x|1 < x}, Lij(z) has a branch
such that Li; (0) = 1 (the principal value of Lij (z)). Starting from the principal value
of Lij (z), we introduce Li (z), which are holomorphic on D, recursively by

mezﬁq”jmm k=2) (1

where the integral contour is assumed to be in D. Then Li;(z) has a Taylor expan-
sion

o Zn
Li = —
@) =) )
n=1
on |z| < 1. We obtain, for k > 2,
lim  Lig(z) = ¢(k), (3)
z—1,zeD
where ¢ (k) is the Riemann zeta value ¢ (k) = 220:1 nlk

From (1), we have differential recursive relations:

dL'() : dL'() | (k=2) “4)
—Li = — — L1 = — .
dz Y7 -z dz " ¢ Z -

By virtue of (1), Lix(z) is analytically continued to a many-valued analytic func-
tion on P! \ {0, 1, co}. However, in this article, we will use the notation Li(z) as
the principal value stated previously.

We also define multiple polylogarithms Liz 1, 1(z) (k > 2) as

,,,,,

2 (=1)*110 k—1 1—¢
Liy..1(z) = =D ¢ -

L o (k—1)! t
k=2

S
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Fig. 1 The domains D), D)

By using these relations and (3), one can obtain easily the inversion formula of
polylogarithms.

Proposition 1 (the inversion formula of polylogarithms) For k > 2, the following
functional relation holds.

i 1)logl 2
Lix(z) + E — Lig—j(z) +Liz 1. 1(1 —2) = (k). (6)
]_ N———

j=1 k2

Proof Differentiating the left hand side of the equation (6), we have

1
—DJlog/z . .
(le(z) Z ) =8 £ lej(z)+le,1,.,‘,1(1—z))=0
k=2

Therefore the left hand side of (6) is a constant. Taking the limit of the left hand side
of (6) as z € D tends to 1 and using (3), we see that the constant is equal to ¢ (k). [

The branch of Lip ;. 1(1 — z) on the domain D’ = C\ {z = x|x < 0} is deter-

.....

k=2
mined from the principal value of log z.

3 The Recursive Riemann-Hilbert Problem of Additive Type

Let D™, D) (Fig. 1) be domains of C defined by
D(+)={z=x+yi|x< 1,—0c0o<y<o0}CD,
D(*)z{z=x+yi|0<x,—oo<y<oo}CD’.

The following theorem says that polylogarithms Lix(z) are characterized by the
inversion formula.
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Theorem 1 Put f1(+) (z) =Li1 (). For k > 2, we assume that fk(i) (z) are holomor-
phic functions on D™ satisfying the functional relation

f(+)()+2(1)1$f(+)()+f,f (D=t (zeDPNDO), )
j=1

the asymptotic conditions
4B -0 D&® 8
L@ (z—>o00,z€ ), (8)

and the normalization condition
£ o =0. )
Then we have

@=Lk, @=L 1(1-2) (k=2).
——

k=2

Proof We prove the theorem by induction on k > 2. For the case k = 2, the proof can
be done in the same manner as the case k > 2 from the definition of f; ) (2). Sowe
assume that f,.(+)(z) =Li;(z) and f/.( )(z) =Lip,  1(1—z)for2 <j<k—1.Now
. ;
j—2
we show that £ (z) = Lix(2), £ (z) = Lio,1,..1(1 — ). From the assumption,
——

k=2

the Eq. (7) becomes

(4, 5 (D7 loglz )
K@+ g L@+ T @ =), (10)

j=1

Differentiating this equation, we have

k—1
1Y log/
(fk‘“( )+Z()]—ng J@+ £ )(z>>

j=1
k—2 i N
d . 1 (=) log/ 'z (—1)/ log/ z Lix—j1(2)
=— A N ST
dsz (Z)+;< G- —j(z) + il .
1 (=Dk-11 k=2 —Dk-11 k—1 1
1(=1)"""log ZLi](Z)-‘r( )" log" 2
z (k —2)! (k —1)! 1—z

d (_
+d—zf,f )(2)
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Lic-1(2) 1 (—DFTlogt! 2
Z

+ 4o
1—z k —1)! dz’* ’

d .+
= d_Zf k () —
Thus we obtain

Lig-1z) 1 (=DF'log™'z d
=Ti=: a—n e @ db

d
d_ka(-F) (Z) _

on z € D™ N D) Here, the left hand side of (11) is holomorphic on D) and the
right hand side of (11) is holomorphic on D). Therefore the both sides of (11) are
entire functions. Using the asymptotic condition (8) and

Lij— logk—!
—koe) ZI(Z) -0 (z—) 00,7 € D(H), 1g_zz

-0 (z— o00,ze D7),

we have that both sides of (11) are 0 by virtue of Liouville’s theorem. Therefore we
have

* Lig— .
100 = [ =L@ + o,

_ < 1 (—1)k_110gk_1z . _

(=) =)
- — dz = 1— ,

fr @) / - D) z=Lip1 1(1-2)+¢;

,(:r), c,(c_) are integral constants. From the normalization condition (9), it is

clear that c,(f) is equal to 0. Finally, substituting fk<+) (z) and fk(f)(z) in (7), we

obtain

where ¢

k=1 .
— 1/ log/ B
Liv@+ Y TR @ Liny o~ e =ct). (12)
J: ~——

j=1 k-2
Comparing the inversion formula (6), we have ¢{™) = 0. This concludes the proof. [J

The Eq. (10) is interpreted as the decomposition of the holomorphic function

k—1 P
—1)/ 1og’
yo S log 2 )J.,"g * Lie_; (2)

=1

~

onze DM N D) toasum of a function £ (z), which is holomorphic on D™,

and a function fk(_) (z), which is holomorphic on D). This decomposition is noth-
ing but a Riemann-Hilbert problem of additive type. The theorem says that poly-
logarithms Lig(z) can be constructed from the boundary value ¢ (k) by applying
this Riemann-Hilbert problem recursively. In this sense, we call (7) the recursive
Riemann-Hilbert problem of additive type.
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Some Remarks on the Quantum Hall Effect

Vincent Pasquier

Abstract This review is destinated to an integrable systems community and at-
tempts to motivate the Quantum Hall Effect as a possible field of application. We
review some of its aspects using a microscopic (wave function) point of view, and
we describe it as an incompressible quantum fluid droplet deforming under external
perturbations. In particular, we discuss some well known open and closed geome-
tries. We attempt to relate the Q.H.E. hydrodynamics to the Calogero-Sutherland
model and Benjamin Ono equation from the bulk and boundary point of view. Fi-
nally, as an illustration, we discuss the so called non dissipative viscosity.

1 Introduction

These notes were written at the occasion of a celebration in honor of Professor
Michio Jimbo.

They are intended for nonspecialists, the aim being to indicate a few research
directions. I gather a few topics in the Quantum Hall Effect (Q.H.E.) (see [16, 30]
for comprehensive reviews), limiting myself to the microscopic approach via wave
functions and concentrating on how the system adjusts to geometric deformations.

I review the well known bulk [37] edge correspondence from that point of view.
One way to connect the bulk aspects of the Q.H.E. described by a topologically
protected ground state and the edge state physic is by probing the bulk with out-
side perturbations. This can be effectively modeled by a boundary conformal field
theory restricted to the outside region and the bulk is represented by an appropri-
ate edge state [11, 37]. I limit myself to characterize the bulk by a Laughlin wave
function [24] and attempt to motivate the Calogero-Sutherland model [35] as a tool
to describe the edge. Since is not possible relate the dynamics of the Calogero-
Sutherland model to the Quantum Hall interactions, I try to bypass this difficulty by
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establishing a relation through the area preserving diffeomorphisms. The arguments
I give for this relation are not rigorous and should be understood as an advocacy
rather than a scientific justification.

I also consider wave functions on surfaces without edge such as the torus or the
sphere and recover the ground state and its quasihole excitations on the torus as
eigenstates of a modified Calogero Sutherland model.

Finally, I discuss the non dissipative viscosity [4, 32, 33, 36] which arose interest
recently and is related to the way the system reacts to an adiabatic deformation.

The content of the following sections can be briefly described as follows. The
second part reviews the correspondence between bulk and edge. The third part is
devoted to study the relations of the Hall effect with the Calogero-Sutherland model.
The fourth part studies the Hall effect on surfaces without boundaries such as the
sphere or the torus. Finally, the last part is devoted to make some remarks on the
viscosity.

Most of the material presented is motivated by a collaboration with Benoit Esti-
enne, Raoul Santachiara and Didina Serban. I also wish to thank Michel Bergere,
Jerome Dubail, Gregoire Misguich and J. Shiraishi for sharing their insights with
me.

2 Bulk and Edge

To illustrate the emergence of the edge physics, let us consider the problem of eval-
uating the norm of a Laughlin wave function.

We recall that in the symmetric gauge, the Lowest Landau Level (LLL) wave
functions are holomorphic polynomials in the variable z times a non holomorphic

exponential factor e~ 22°°. [ is the magnetic length proportional to the inverse mag-
netic field /2 = h/eB. The fractional quantum Hall effect wave functions we shall
consider here are obtained as a linear combination of multi-particle Lowest Landau
Level wave functions. The constraint of incompressibility is put by hand by requir-
ing certain vanishing conditions and one looks for wave functions with the minimal
degree in z; compatible with the vanishing conditions. This minimal degree condi-
tion can easily be understood as follows: Imagine the particles are confined in a disc

shaped box of radius R. since 7"e 21LZZZ is mostly concentrated on a circle of radius
J/nl, the degree is bounded by (R/[)?, and we are interested in putting as many
particles as we can inside the box.

We can also use coherent states localized on patches of area 27/%. The repul-
sive interactions induce a hard core repulsion between these patches. We shall see
that each particle occupies a extended area 27r/%/v so that the maximal density is
v/2m1?. The quantity v, called the filling fraction turns out to be a rational (in all the
experimental known situations) and is the most important parameter characterizing
the properties of a Hall state.

One requires that the Laughlin wave function vanishes as (z; — z;)" at short
distance and so v = 1/m. For N, particles, it is obtained by raising to the power m
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the Slater determinant (antisymmetrized product) of LL L orbitals 1 1<k<N,
(we omit the nonholomorphic factor which can be incorporated in the definition of
the measure):

Ne
Ym(z) =[G —z))" ()
i<j
Note that m must be an integer for the wave function to be polynomial.
Its squared norm is therefore given by:

/Hdzz ¢ 1_[|z, — z;|*" ()

i<j

It can be interpreted as the partition function of a Coulomb gas at an inverse tem-
perature m. The electrostatic charges located at z;, 1 <i < N, repel each other with
a logarithmic potential. The partition function is obtained by integrating over the
positions of the charges, e ¥ with E given by:

E(zj)=—2 Z log |zi — z,|+22 %%

i<j=1

/a’zzp(z)/d wp(w)loglz —w|+ — | d*20(2)zz2  (3)

2mi?
where p(z) is the density of charges.

In the saddle point approximation, Z,, ~ e "0, with E( the minimum of the
energy. The minimization consists in canceling the electric field at the position of
the charges:

1 2 1

2m12z—/d w,o(w)z_—w_O 4)
Differentiating with respect to Z using 9:z~' = 78%(z), we obtain a constant density
inside the domain occupied by the charges: p = 1/2wmi?. By rotational invariance
the boundary of the domain must be a disc with a radius such that the integrated
density is the total number of particles No: R? = 2mN,I>.!

Notice that the generic m # 1 case can be brought back to m = 1 by rescaling
Pom = p1/m,z = /mz; in (3), (4). So, semi-classically, the effect of m is simply to
rescale by m the area without changing the shape.

We expect the physical properties of the system to be independent of the mag-
netic length / provided we keep the radius of the disc fixed. In other words, we are
interested in the large N, limit, keeping />N, fixed (Some physical effects may de-
pend on N though, we expect they can be apprehended in a 1/N expansion). In the

I The reader can verify that to the leading order in 1/N,, the energy is given by N62(3/4 —1/2logm)
[15].
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following, we set [> = 1/2N, N being the magnetic flux through the disc and let
N — oo keeping N, /N = v fixed.

Consider now the partition function (2) in presence of a perturbation. Let us add
a quadrupole to the background potential:

Ne
sy L2452
Zn(t) = / HdzZieiN(Z’z"Fz(Zi +z7)) l_[ |zi _Zj|2m (5)
i=1 i<

This partition function was computed exactly for m = 1 in [15] with orthogonal
polynomials (in Sect. 5 these polynomials will be described explicitly). Here, in
order to illustrate the emergence of the edge physics we look at it from a semi-
classical point of view and limit ourselves to # < 1.

Let us see how the quadrupole modifies the shape of the boundary. The change of
shape can be modeled by a surface density proportional to the normal displacement.
The electrostatic potential induced by this surface density must have the correct be-
havior tz% /4 + h.c. at infinity and vanish at the boundary |z| = 1, (the normalization
is such that the potential between 2 unit charges at z, w is log |z — w|, so, there is
an additional factor 1/2 with respect to (5)). This fully determines it to be twice
the real part of ¢ (z) = 1/4(z> — 1/z%). The change of radius is then equal to the
normal electric field at the boundary: zd,¢ (z) = f cos(20). To this approximation, it
approaches the exact result, an ellipse [15] (we rederive this result in the Appendix)
such that the ratio of its large axis over the small axis is 1 + 2¢ + 0(r?). ;0 (2)
having no simple poles inside the disc, the area is not modified by this deformation.
Notice that this ellipse does not coincide with an equipotential of the background
potential of (5) for which the ratio of the large over the small axis is 1 4 7.

Following [37], let us now consider the partition function (2) in presence of L
external sources:

Zl’%l _ 1 ot d2 ,—ZiZiN L . 24k . 12m 6
=1 [ e [Tz - w [Tk - 2 ©)
i k=1 i<j

If all external charges g equal m,up to a global normalization, we are considering
the diagonal part of the L-particles density matrix of a system of N + L particles.
Setting gx = m fixes the position of one of the particles at z = vy and so, m is
the charge of the particles at positions zi. Setting gx = 1 creates a quasi-hole of
fractional charge 1/m.

To go beyond the semi-classical result we consider the case m = 1 with all exter-
nal charges gx equal to one. The correlation can be obtained exactly using orthogo-
nal polynomial techniques [8, 26] with the following outcome. Define the kernel:

N
Ky, y)=) (E0/hp (7)

p=0
with i, =n!/N". The correlator (6) is given by:

Z_lL_ hn...hnyL—1
Zy Jlic;wi —vp @i — 7))

|KN+1—1 (0, vp)| (8)
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In the case where the charges are located outside the droplet, |v;| > 1, the series
(7) is dominated by the large powers of p and can be expanded in 1/N powers:

et 11
Ky(x,y) = I (xy—l_ﬁ(xy—lf—i_'”) 9

So, to the leading order, the partition functions is given by:

Hmmfh_m (10)

i=1 U])

To this order, it coincides with the Dyson gas correlator obtained by substituting in
(6): du(z) = d?z e N — du(z) = dO and integrating over the boundary of the
disc.

By fusion, integer charges g; can be deduced from this case, and the power —1
in each factor of the product must be replaced by —¢;g;. Since this result coincides
with the saddle point approximation, we can deduce from (3) the leading order in
1/N for m generic in (6) by multiplying the energy by the effective inverse temper-
ature E — mE and rescaling the charges g; — ¢q;/m:

4i4;

L 2 - m
Zn T T](1- = (an
Zm 1_),' vj

i i,j

Here R? = m is the square radius of charged disc when the filling fraction is 1/m.

At the leading order we can approximate the Hall system by a perfect conductor
interacting with the outside charges through its boundary only.” This suggests a
connection between the Quantum Hall effect and boundary CFT which is further
explored in [11].

2Setting R = 1, one can present the second factor in (11) as the expectation value of a product of
Vertex operators:

N

L
m

oIl T )

7, wz) 1] o) 0
=<1—[eq,ﬂ¢+(ﬁ;‘>l—[€q,-¢7(vn> (12)
k l

In the second line, ¢+ (z) are the positive and negative modes of the field ¢ (z) = Zn#() 7"kdp, /n.
It is obtained by substituting »; Zf‘ = pi into the first line. To obtain the correlation, we use
the commutation relations [pg, p/] = k/mék4; to eliminate the modes py, k < 0,k > 0 which
respectively annihilate the left and right vacuum.
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3 Calogero-Sutherland Hamiltonian

An immediate consequence of what precedes is that if we use the boundary limit
(leading 1/N behavior) of the measure (2) to define a scalar product on symmetric
polynomials by:

N
.01 =T] [ dute [Tl - P P0G (13)
i i<j

and use the partition order of the basis m; to construct an orthogonal basis by a
Gram-Schmidt procedure, we recover the Jack polynomials J)} ™ in the large N
limit.?

Another way to see the Jack polynomials emerge is to obtain the Laughlin wave
function as an eigenstate of a Calogero-Sutherland (C.S.) Hamiltonian [9, 22]. Set-
ting m = B (real not necessarily integer) it is easy to verify that:

2iZ;

(Z(aaz,-)z—zﬂ(ﬂ— ny —~5 —Eo>¢f,s<z,~>=o (15)
i i<j

(zi —zj)

with Eg = B2N(N — 1)(2N — 1)/6.
This Hamiltonian acts on factorized wave functions m(z;)¥g(z;) with m(z;) a
polynomial. Its energy eigenvalues are given by Z;V:_Ol ka. with

kj=8j+ AN (16)

where A1 > Ay --- > Ay is a partition. The important property is that although in-
dividually k; can take any integer values, collectively they are constrained to be
separated by at least .

At this point, we are not in position to assert that the Calogero-Sutherland Hamil-
tonian (15) can be regarded as an effective Hamiltonian representing the Coulomb
interaction in the fractional QHE. Nevertheless, the collective behavior of the mo-
menta described above is completely analogous to the vanishing conditions obeyed
by the quantum Hall effect wave functions. For this reason mainly we argue that the
Calogero-Sutherland model may be a good tool to study the fractional Hall effect.

3 Alternatively, we could have defined our scalar product by:

N
(P, 0) =l_[</dM(Zi)>P(Zi)Q(Zi) (14
1
restricted to polynomials vanishing as (z — w)™ when 2 variables approach each other. Such poly-
nomials are known to generate an ideal of the Jack polynomials J—2/m=1)(7.y and it is clear that
J)j /m Ili- j (zi —zj)™ is an ordered orthonormal basis of this ideal.

Other Q.H.E. wave functions (so called Rezayi-Read wave functions related to parafermions)
are obtained by requiring that the polynomial vanishes as (z — w)™ when k + 1 particle ap-
proach each other. Such polynomials are known to generate an ideal of the Jack polynomials
J—&+D/m=1 7.y [14], 1 do not know of a description of their norm in the limit of large N.
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To see this property, it is convenient to conjugate it (with the energy term sub-
stracted) by Wg(z;) to obtain its action on the prefactor:

2
yén
HP = (29,)* +2B)  ——d, = Do +2NBDo,1, (17
, —~ 7 —2j
i i#]j
where D1 = Y, z;9;, is the angular momentum which commutes with H# and

Dy > can be diagonalized in each sector of angular momentum. Consider the follow-
. . . . . A'IT )"G . .
ing basis indexed by partitions my =) z,"' ...zy", where the sum is restricted

to distinct permutations o of A; [25]. In this basis, (Do 1 = |A|), there is a partial
order on partitions for which Dy » is triangular [35]. Its eigenvalues are the diagonal
matrix elements given by ), Ax(Ax — 28k) and the corresponding eigenvectors are
proportional to the Jack polynomials: J%(z;) with e = 1/8.4

In (17), it is convenient to expand H in powers of 1/N so that the coefficient in
the expansion depend on the partition A and are independent of N.

One remarkable property of the Calogero-Sutherland model is that there exists an
infinite set of commuting quantities E, with eigenvalues Z;VZ_I k?, with k; given
by (16). The N coefficient of these conserved quantities denoted Dy, are a § # 1
deformation of the generators ) _; (z; ;)N of the W, algebra [21 1.5 The deformation
of W related to the Calogero-Sutherland model has been pursued by Shiraishi and
his collaborators [5, 6], see also [34] for a more mathematical approach. I have
borrowed from this last paper the notation of the generators D,, , which can be
thought as the quantization of 7 (z9,)".

At this point, we make a digression to interpret 8 as a Luttiger parameter. For
a free field compactified on a circle of radius 2w with the action % f |0p|%dz, g
is called the Luttinger parameter and has a deep physical meaning. Its partition
function on a cylinder with aspect ratio 7 is due to the classical contribution of
harmonic periodic fields times the quantum fluctuations: Z, = 171_ﬁ Zn’m qA'”"éA;hm
with g = ¢™" and A, = g(n +m/g)*/4, A, ,, = g(n —m/g)*/4. One can com-
pare this spectrum with the Calogero spectrum, if one identifies the winding number
n with the number N of particles and the momentum m with the current Zi z;0;. To
match the macroscopic dispersion relations around the Fermi momentum &y = Nf

4Mathematicians use the inverse convention as physicists & = 1/8, and the Jack polynomials
eigenstates of 7P are denoted J '/ (z;).

SLet us give a qualitative explanation of why we expect the Wy, algebra (also called Girvin-
Macdonald-Plazman algebra in this context) to arise in the QHE [10, 17]. If we couple the system
to an external probe V(x), in degenerate perturbation theory, one needs to project this poten-
tial into the LLL. Denoting the lowest Landau level orbitals u, 1 < o < dy (dy the dimension
of the LLL Hilbert space), the effect of this projection is to convert the potential into a matrix:
V(x) = Vyg = (a|VIB) = fﬁa (x)ug(x)V(x). In this way, by an appropriate choice of V’s, we
generate the space of dy x dy matrices acting inside the LLL which we view as the Lie algebra
is gl(dy). The W4, algebra occurs as the limit of g/(dy) when we let N tend to infinity. So for
example, in the symmetric gauge, we can take the V = z"z" m, n > 0 which after integrating (2)
by part become (2/29,)"z".



504 V. Pasquier

when we modify the particle number and the current with the linearized free field
classical contribution (8, ,, o n 4+ m/g), the comparison with (16) imposes to iden-
tify g with g.

We can allow the area (equivalently the degree of the polynomial) to increase
while keeping the number of particles fixed. This is realized by placing voids where
vanishing condition are imposed to the wave function compatible with its polyno-
mial nature. As we saw above, it can be achieved by inserting a fractional 1/8
charges at positions x; l equivalently, by multiplying ¥z by the kernel:

M N
Kz =] [0 —xiz0 (18)
i=li=1
The kernel K obeys the duality equation:
HP @) + PP (DK (x,2) =0, (19)
enabling to separate the variables:
K@) =Y MJF@IE @) (20)
A

with A, A" two conjugated partitions and A contained in a rectangle with N rows
M columns. Therefore, the quasi-hole dynamics decouples from the particles and is
governed by a 1/8 C.S. Hamiltonian.

Let us rewrite (17) in the collective variables coordinates introduced above. We
set Y_; z¥ = pr, k = 1, then [2, 5, 20]:

DO,I = Z pnnapn

n>1 21
Dor=(1-p8) annnapn + Z pn+lnapnlap[ + Bpipn(n +l)ap[+n D
n>1 n,l>1
If we introduce the potential ¢ with y = z9;¢(z) and ¢(z) = po + Nlog(z) +
Y 2" pn/n, (p—y defined by: p_, = ﬁ’lz’"apn for n > 0), and the zero mode pg
is conjugated to N, e N = (N + 1)e”0. The conserved quantities can be expressed
in terms of the electric field y(z) = z9,¢(z)

_#A 2.
E—Z/dG.y.

5 _ a2 g1—1 1,
HP=p=[ do: 5 yH(Bey)+§y:

(22)

z=¢"% and H(Z") = e(n)7" /i is the Hilbert transform. The normal order symbol
means that d,, sits at the right of p; for k,[ > 0.

This Hamiltonian is hermitian for p,” = B~ 'nd D> najn = Bpn, SO ¢ is antiher-
mitian ¢ = —¢. Moreover, it obeys a duality relation reflecting (19):

HE (pu, 1) + BHE ™ (—Bpu, —B~'nd,,) =0 (23)
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It can be diagonalized in each angular momentum sector |A| and its eigenvectors
are the Jack polynomials J{* expressed in the p,, basis.

In particular, if we take one quasihole M = 1, the kernel K (x, z;) is identified
with vertex operator creating a hole: V (x, 1) = e~ %+ )]0) [5]. The coefficient of x*
displaces the k outer orbitals by one unit, and therefore create a quasihole of charge
—p~! inside the sea. By duality, the coefficients of the expansion of ¢#%+*)|0) are
eigenstates of charge 1.

In the classical limit 8 — oo and in the flat limit where sums over n are replaced
by integrals over k, the classical Hamiltonian is:

He = / Dbyt Lyax 24)
2 3
H (%) = e(k)e'*™ /i being the Hilbert transform. This Hamiltonian was introduced
by Benjamin and Ono (B.O.) [7, 29] to describe the dynamics of waves in deep
water. From what preceeds, it should also describe the dynamics of the edge defor-
mations (NI playing the role of the depth).® Namely, we expect the field y(0) to
describe the fluctuations of the disc boundary, or if we conformally map the disc
to the lower half plane, the fluctuations about y(x) = 0 (see [1] for a more com-
plete discussion and possible generalizations. Recently P. Wiegmann [38] has given
arguments to justify the occurrence of this equation in the Hall effect context).
The Poisson bracket of the field y is given by:

{yx),y(x")} ==8"(x —x') (25)

from which we obtain the dynamics it satisfies:

)'7 - zyyx + nyx =0 (26)

This equation can be interpreted as an Euler equation (y + v(y)yx = —py), with a
speed v(y) varying linearly with the density y through v(y) = Vo — 2y where Vj can
be eliminated by a Galilean transformation (x — x + Vpt, v(y) — v(y) — Vp). The
pressure term Hy, is nonlocal (without the Hilbert transform, the corresponding
term in (24) would be a pure derivative). It is the normal derivative of a harmonic
function in the lower half plane equal to y at the boundary.

The (imaginary) potential ¢ (x) = —i fx y(u)du satisfies ip = y2 — Hy,. If we
forget about the Hilbert transform, denoting ¢+ the projection of ¢ on its positive or
negative Fourier modes, the hole vertex operator Vi (x,t) = 9+ satisfies the free

equation: V=i V,x which has the Galilean solution: V. = ¢! (k1 ).

6In [12], we extended these observations to bulk wave functions described by a correlation function
of ¢12 of the Ising conformal field theory which describes the Pfaffian state [27] vanishing when
three particles approach the same point [18]. The primary fields ¢»; (xx) represents the quasipar-
ticle [28]. Both the particle and the quasiparticle fields need to be dressed by a bosonic vertex
operator in order to make them mutually local (Their OPE needs to be regular instead of the square
root singularity of ¢12.¢21). The kernel K is then given a correlator of dressed ¢12(z;), ¢21(xk)
fields and is also a solution of (19) giving rise to a rank two generalization of the Benjamin Ono
Hamiltonian also appearing in [3].
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A stationary real solution is given by:

x —vt —2i/v

=log ———— 27
¢ g x—vt+2i/v @7)
The Lorentzian shape of this soliton should be contrasted with the exponential tail
of the KdV soliton which occurs for the local dispersion p = —yy.

Let us attempt to make a connection to the edge excitations in the Hall effect.
Approach a unit charge at distance v~! from the boundary y = 0. Together with its
mirror image, it creates a dipole moment 2v~! and the induced potential is equal
to (27) at t = 0. Since the electric attraction between the charge and its image is v,
assuming there is a constant magnetic field of unit strength, the dipole must move at
speed v for the electromagnetic repulsion to compensate the attraction in agreement
with (27).

4 On the Sphere and on the Torus

It can be useful to consider Quantum Hall wave functions on surfaces without
boundary such as the sphere (C P') or the torus.

4.1 Sphere

We place N magnetic fluxes at the center of the unit sphere, and construct our wave
functions as a product of LLL orbitals.

The sphere is a Kihler manifold with metric pdzdz /7 with u = 1/(1 +z7)%. We
consider the line bundle (L, &), h being the fiber metric with curvature equal to the
area form: u = —9,09zlog(h), h =1/(1 + zZ).

Putting N fluxes amounts to raise L to the power N. In this way, we get an
inner product on holomorphic sections of LY (the LLL wave functions) which are
polynomials of degree N:

(wly')= f v (28)
) w4z
An orthonormal basis is given by the orbitals:
1 N\ ,
1ﬂn—N—_I_1<n)Z, 0<n=<N (29)

As for the plane, the Laughlin wave function is obtained by raising the Slater de-
terminant of the N 4 1 LLL orbitals to the power m. On the other hand, the partition
function at inverse temperature m of a Coulomb gas of N, particles interacting with
an electrostatic potential equal to the logarithm of the cord distance is given by:

N,
9 dzzi 2m
i=1 "

i<j
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To identify this partition function with the squared norm of the Laughlin wave func-
tion, we must have m(N, — 1) = N.

The shift S (S = m for the Laughlin wave function) relates the magnetic flux to
the number of particles through the formula:

Ne
—=N+S (€20
1

It can be thought as the residual area left when the sphere is maximally occupied.
Recently, it has been recognized as an important quantity [33], related to the Hall
viscosity [4] see Sect. 5.

In the simple case m = 1, the wave function is the antisymmetrized product of
the LLL orbitals and the shift relates the dimension of the LLL Hilbert space N, =
dim HO(C P!, T") to the flux through the sphere. This relation also results from the
expansion of the density in powers of 1/N:

_ R
p(z,z)=N+5 (32)

where R = 2 is the curvature of the sphere, and in that case the shift coincides with
the first Chern number of (L, &). For a Hall effect defined on a Riemann surfaces,
(32) has an obvious generalization, and it should be possible to give S defined by
(31) a more local characterization.

Taking a product of two wave functions amounts to construct a composite particle
by fusionning the particles of each wave function. The inverse filling fraction has
the interpretation of the charge (amount of area carried by a particle) and half the
shift is the spin. Under composition, these quantities add up. So, taking the product
of wave functions, the shift and the inverse filling fraction behave additively:

v ) = v ) + vl ()
SWr2) = S(r1) + S(¥2)

(33)

4.2 Cylinder and Torus

The cylinder is parametrized by z =x 4+ ty,witht =11 +i1, 77 > 0,0 <x <2m.
The metric is (dx + tdy)(dx + Tdy). From it, we obtain the Hamiltonian with N
fluxes per unit area (measured with dx A dy):

H= gijninj = |r|271f + 71}2, — T1(T Ty + TyTTy) (34)

where (in the Landau gauge) 7, = —idy + Ny, my = —idy and g is the in-
verse metric matrix. The LLL eigenfunctions on the infinite cylinder periodic in
x — x + 2w are defined for k integer. They factorize into a nonholomorphic part

independent of k equal to e’ 5y (the square of which defines the fiber metric 2V),
and a holomorphic part:

k2 .
Yi(e) = o ok (35)
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We construct a basis of N LLL wave functions 0 < ky < N —1onthetorusy =y-+1
by summing v over k = kg modulo N:

2.
wko(z)z Z elszvelkZ (36)
k=ko[N]

The torus Hilbert space is characterized by the quasi-periodicity conditions:
V(z+2m) =9 ()
Y+ =e NNy ()

Multi-particle states are obtained as linear combinations of a products of LLL
single particle wave functions. The Laughlin wave functions with filling fraction
1/m are the multi-particle states with the maximal number of variables which vanish
as (z; — z;)™ at short distance. For N a multiple of m, N =mN, (S =01in (31) as
expected) this space is m dimensional. An exact expression can be given [19]:

N, N,
W (2i) = F(Zz,-) []o1Gi—zp" (38)
i=1

i<j

(37

where,

)= Y. (—)HIgren (39)

nez+1/2
with g = ¢’ It obeys the quasi-periodicity conditions:
01(z+2m) = —061(2)
O1(z+1)=—q e T01(2)

F belongs to the m dimensional space of sections characterized by the quasi-
periodicity conditions:

F(z+2nm) = (—)N""F(z)
F(z+1) = (—)N e M2 M3 F(z)

(40)

(41)

Let us see that as in the case of the plane, the wave function can be set as the
solution of a Hamiltonian. The m = 1 case is instructive and shows that it a the
solution of a modified Calogero-Sutherland Hamiltonian. From (36), we see that all
Y are solutions of the same heat equation: (Ngd/dq +d/dz>)y (z) = 0. Therefore,
their exterior product is a solution of the modified Hamiltonian:

(Nqaq +> ag)wl (@) =0 (42)

Clearly, the C.S. must be modified by a derivative with respect to t. Introducing the
periodic potential with a double pole at the origin:

V(z) = —82logh) (2) (43)
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one can show that ¥, is an eigenstate of Pg(z;) =0:

HP = —NBqo, — > 2 +BB-DD V(i —z)) (44)
i i#]
The modified Hamiltonian (44) was considered in [13, 23], and the fact that ¥,

is an eigenstate of (44) essentially results from the following identity [23]: Define
¢ (z) = 9, logb;(z), then:

q0q01(z3 — 1)

2 — —
¢ (21 —22)9p(z22 —23) + 0 —22)

+cycl=3c (45)
Using the heat equation —g 9,6 (z) = 8?91 (z) (which follows from (39)), one is led
to show that

(621 —22) + b (22 — 23)B (25 — 21))
+(¢'(z1 — 22) + ¢’ (22 — 23) + ¢/ (23 — 21)) = 3c. (46)

Both terms of the sum (46) are doubly periodic in z; and have a residue re-
spectively equal to £1 at the double poles z; = z2,z3. ¢ being odd, there are
no single poles, so, the sum must be a constant and ¢ is the z coefficient of ¢:
c=—1/1242%5 ¢ /(1 — ™).

Observe that the factor F does not change the argument because it obeys the heat
equation, but is crucial to insure that the wave function obeys the proper quasiperi-
odicity conditions.

Remarkably, as in the case of the plane, quasihole excitations can be also recast
as solutions of the C.S. Hamiltonian. The identity similar to (19) [23]:

(HP @)+ BHP ' (x))K (x,2) = Ex uK (x, 2) @7)

with the kernel now given by:

N, M ) Ne M
Kx,o=[[0G—zpf[[oca - [[[JO1o—zp)  @8)

i<j k<l i=1k=1

5 Some Remarks on Viscosity

Let us briefly review some recent results the viscosity mostly following [4, 32, 33,
36] which relates a purely geometric aspect, the Berry curvature, to the Coulomb
partition function (2) when it is reinterpreted as the norm of a Laughlin wave func-
tion.

The viscosity tensor expresses the linear response of the stress tensor to a defor-
mation of the substrate parametrized by its moduli. For example, the Q.H.E. ground
state torus wave function ¥, (z;) is also a holomorphic section of a line bundle on
the moduli space (H*/SL,(Z)) parametrized by 7. According to Avron Seiler and
Zograff, the (non dissipative) viscosity is related to the Berry curvature:
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u=—0;0zlogZ,dt AdT. (49)

In the m = 1 case, ¥ is the exterior product of LLL sections (37) which are
normalized with (o N)!/4, where 7, = Im(7) is the area of the torus. Therefore, the
area dependence is Z1 1:2N e/ 2, and u = N, /2, times the curvature of the upper half
plane H+.

For m # 1 it turns out that u remains unchanged. The argument can be sum-
marized as follow, keeping the area fixed N, — N, = N,/m, and from (38) Z,, x

mN. /2
T, ¢ =Z.

Geometrically, we can think of the wave function bundle over the torus moduli
space as closely related to the bundle SLy(R) — H' = SLy(R)/SO(2) raised to the
power mN, /2. Each particle takes a phase ¢!?”*/ under the SO(2) rotation which
gives to m /2 the interpretation of a spin. In general, Read argues [32] that u scales
as N,S/2 where S is the shift, which gives the shift S the status of a spin which
characterizes a Hall state.

To confirm the universality of this result, let us repeat the argument for the droplet
and verify that the same conclusions apply to an open system. We deform the com-
plex structure z — x = z — ¢Z and consider the Lagrangian:

L=|z—1z)7 —i(zz —z2) (50)

Let us see that the Q.H.E. droplet ground state wave function ¥ (z;) is a holomorphic
section over the Poincaré t-disc. In terms of deformed oscillators:

a=a—ta", at=at —1ta (51

where a = 0z + z, at = —09, + z, the Hamiltonian is a harmonic oscillator:

1
= mdid; (52)

The undeformed oscillators b = 3, + z, bT = —9; + z commute with a;, a,Jr . From
the ground state annihilated by a, and b:

.(p — e—ZZ-HZz (53)

one generates the lowest Landau orbitals by acting with 5™ . Remarkably, after fac-
torizing v, they are polynomials in the orthogonal variables x = z — 7 generated
from 1 (the oth orbital) by the action of:

+ t
BT =x+ 3 Ox. (54)
In this way, we obtain a basis of orthogonal polynomials for the measure
caii2af 2
2.2 _ 2,\',\‘+tx2_+tx2 d X
d“z = -7 55
VI"d"z=e a— (55)

which are given by Hermite polynomials, thus, recovering the result of [15].
Following [15], we can use a saddle point approximation to estimate the shape

of the Landau orbitals. The outcome is that the droplet shape equation is not mod-

ified in the z variable and given by: |z|> = N, /2. It corresponds to an ellipse in the
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orthogonal variables x, x. For the sake of completeness, we derive this result in the
Appendix.

To obtain the curvature, we observe that the LLL orbitals are holomorphic in ¢,
the square of their norm is n!Z; where Z; is the 0" orbital square norm. So, the total
curvature is N times the contribution of each orbital. We have:

Z = / a2z = Zoy 1 —if (56)

From which we deduce that the Berry curvature is N, /2 times the curvature of the
Poincaré t-disc.

The argument can be generalized to a Laughlin wave function if we assume that
the deformed wave function is given by [[;_;(xi — x;)" []; ¥(z;) which is the
lowest degree polynomial in x; vanishing as € when two variables approach each
other. Its square norm coincides with the Coulomb plasma at temperature 1/m in
presence of a quadrupole field at infinity. Although quite natural, this form of the
wave function has been questioned recently [31].

Appendix: Shape of the Droplet

Let us obtain the shape of the droplet with a potential given by (55) using orthogonal
polynomials. Here we take ¢ to be real: t = tanh(u). Making the rescaling:

y = cosh(p)x (57)
the measure (55) simplifies to:
OIHE RN g2y (58)
and the creation operator (54) becomes:
bt =y+ady
b=9,

with & = sinh(2u) /4. The LLL orbitals obey b b, = nir,. In the WKB approxi-
mation, setting v, = el pdy , one obtains for p:

(59)

ap* +yp—n=0 (60)

Putting
y =2+/na sinh ¢ 61)

2_2¢
the admissible solution is given by p = /njae~?, ¢, = "@~"72),
The square norm of the orbitals becomes:

/e—zyy+z(_v2+yz)+2nm(¢—e = 'y ©2)
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Setting e = u, e~% = v, one obtains the saddle point equations:

u—ut+v/t—rv =0
v—v ' u/t—tu =0

with the solution uv =1, or |e~?|%> = tanh(u).
From (61), the orbital maxima lie on the curves:

ya(0) = \/g(e_“ cos(0) + ¢/ sin(9)) (63)

So, the droplet has a constant density and is bounded by the domain delimited by

YN,-
Since y = cosh(u)z — sinh(u)z, in the z variables, the boundary is given by

|z] = /N /2.
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Ordinary Differential Equations on Rational
Elliptic Surfaces

Hidetaka Sakai

Abstract Corresponding to Oguiso-Shioda’s classification of rational elliptic sur-
faces, we give 2nd order algebraic ordinary differential equations which can be
solved by elliptic functions, in the form of the Hamiltonian system. There is a cri-
terion for determining the types of rational elliptic surfaces from given biquadratic
Hamiltonian systems. We also discuss about Béacklund transformations which is dif-
ferent type from transformations that appear in a study of the Painlevé equations.

1 Introduction

The Painlevé equations were found by P. Painlevé and his coworkers through an
effort to classify 2nd order algebraic ordinary differential equations of normal form
with the Painlevé property (see [1, 11]). We say that the equation has the Painlevé
property if it does not have movable singular points except poles. Their way of clas-
sification is as follows: In the first place, make a list of 50 equations possessing the
Painlevé property by doing away with equations which has movable branch points;
in the second place, remove equations which can be solved by quadrature in terms
of elementary functions, or can be solved by using elliptic functions, or solutions
of linear differential equations; then, there remain only new equations called the
Painlevé equations.

In their list of 50 equations, there are many equations whose solutions can be
expressed in the terms of elliptic functions, and the form of the equations looks
like that of the Painlevé equations. Many of them can be obtained as autonomous
limit from the Painlevé equations. On the other hand we know a correspondence
between the Painlevé equations and some kind of rational surfaces. When we use
the terminology, these equations in the Painlevé-Gambier’s list, whose solutions
are expressed by the term of elliptic functions, are found to correspond to rational
elliptic surfaces.
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For example, the 8th equation in Gambier’s paper [1] is written as

2
% =2y + By +7,
and it is an autonomous limit of the second Painlevé equation. This equation corre-
sponds to the 43rd rational elliptic surface in the list of Oguiso-Shioda [6], except
some particular parameters.

In the classification of Painlevé and Gambier the terminology of algebraic geom-
etry is not used and they depend on the specific expression of differential equations
for the classification. However a simple transformation of dependent variable make
a change of the appearance of the equations, so an application of geometric point
of view to a classification would be preferable. In fact a classifications of the six
classical Painlevé equations was rewritten into a classification consist of eight types
of Painlevé equations in the light of geometry. In this paper we shall give ordinary
differential equations with the Painlevé property, whose solutions can be expressed
by the terms of elliptic functions, in the form of the Hamiltonian system, on the
basis of Oguiso-Shioda’s classification of rational elliptic surfaces.

These ordinary differential equations with the Painlevé property, possessing el-
liptic functions solutions, did not spur wide interest of many researchers, since they
can be solved simply by very well known functions. However, as in the paper of
K. Kajiwara et al. [2], the Hamiltonian functions of the Painlevé equations are writ-
ten in the terms of the elliptic curves which appear as fibers there, it shows that the
terminology of rational elliptic surfaces is effective also for a study of the Painlevé
equations. Besides, rational elliptic surfaces is richer in diversity than spaces of
initial conditions for the Painlevé equations, and we can also see the intriguing phe-
nomena about different types of Bicklund transformations which do not appear in
the case of the Painlevé equations.

The text is organized as follows: In the next section we will see a correspondence
between rational elliptic surfaces and 9 points configurations, including infinitely
near points, in P2, or 8 points configurations in P! x P!. To give such a points-
configuration is the same thing as to give a rational elliptic surface. This section is a
review on a result in the paper [13], which we need in this article. In the third section
we construct Hamiltonian systems on the rational elliptic surfaces on the basis of
these data. In the fourth section we will consider a normal form of Hamiltonian
systems, using biquadratic forms. While we study a construction of equations from
the data of surfaces in the previous section, in this section we will start from the
normal forms of Hamiltonian and determine which type of a surface corresponds to
the Hamiltonian inversely. As the biquadratic forms are expressed by 3 x 3 matrices,
we will see a classification in the terms of 3 x 3 matrices. In the fifth section we see
cases of plural singular fibers in detail, by taking Dgl) as an example. In the sixth
section we will see a kind of Backlund transformations which change the types of
the normal form of the Hamiltonians. These types of Bicklund transformations do
not appear in a study of the Painlevé equations.
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2 Review on Construction of Rational Elliptic Surfaces

K. Oguiso and T. Shioda classified rational elliptic surfaces in the paper [6]. In the
wake of the classification by Oguiso and Shioda, we treat only rational elliptic sur-
faces which admit a section in this paper. On the other hand, each rational elliptic
surface can be constructed by 9 points blowing-ups from P2. Hence to give a con-
figuration of 9 points modulo the action of PGL3, including the case of infinitely
near points, is the same thing as to give a rational elliptic surface. We would like to
give such data of configuration for each elliptic surface in this section.

In fact we already have such data for more general surfaces, which we call gen-
eralized Halphen surfaces, in a previous paper [13]. Only a specialization of param-
eters is enough to get information about all of rational elliptic surfaces.

However description of generalized Halphen surfaces is based on one fixed anti-
canonical divisor. Therefore we need to fix one fiber among elliptic curves or its
degenerations as a ruling divisor. Any rational elliptic surface has at least one sin-
gular fiber, so we fix one of singular fibers as a ruling divisor. When there are more
than one singular fibers, we have different blowing-down structures depending on
the choice of the ruling divisor.

A classification of singular fibers for elliptic surfaces are given by K. Ko-
daira [3, 4]. The list of singular fibers which appear on rational elliptic surfaces
is as follows:

M (D [, (D% D% [ (D DD g0 gD
Ay, AU AP Al AP Al p0 . b | EY, EYY Eg
L, b, .1y | 11, 111, 1V [ If, ... Iy [IV¥ 1II*, 1

The symbols in the lower row are Kodaira’s original symbols, and the upper sym-
bols denote Dynkin diagrams corresponding to the intersection form of the singular
fiber. We will use the symbols of Dynkin diagrams mainly.

Here we pay attention to the fact that we have two different realizations of singu-
lar fibers of type Agl). The Picard lattice of a rational elliptic surface is isomorphic
to Lorentzian lattice of rank 10, and the orthogonal complement of each irreducible
components of the singular fiber of type Agl), become a sublattice in the Picard
lattice. We denote it as A;l) when a generator of the sublattice has —8 as self-

intersection, and we denote it as Agl)/ when a generator has —2 as self-intersection.

Remark 1 We consider only one singular fiber above, but when we consider the list
of Oguiso-Shioda’s classification of rational elliptic surfaces, there are 5 cases that
have two different embedding into the Picard lattice:

AP, Az @ AP?, As D Ay, AP, A7.

A?“ corresponds to 13th and 14th surfaces; A3 @ A?z corresponds to 21st and 22nd

surfaces; A5 @ A1 corresponds to 28th and 29th surfaces; A;ez corresponds to 35th
and 36th surfaces; A7 corresponds to 44th and 45th surfaces.
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What it comes down to is that, for a given rational elliptic surface, we can con-
struct a blowing-down to P? when we fix a ruling divisor, and then we obtain 9 points
configuration possibly including infinitely near points. To give such a 9 points con-
figuration in P? is the same thing as to give a rational elliptic surface, and we can
use data of configurations already obtained in the previous paper [13].

Here we consider a blowing-down to P2, but we also consider a blowing-down
to P! x P! except Eél) type surface. It would be better because we can express
an elliptic curve by a biquadratic form and then we can use calculation of 3 x 3
matrices. We will give data of 9 points configuration in P> which is same as in the
paper [13] and data of 8 points configuration in P! x P! below. Both of them may
include infinitely near points.

1. the case of Eél) type singular fiber

We give data of 9 points configuration, which include infinitely near points, in
P2 as follows:

pi 2 (0:1:0) < py i (x/y,2/x)=(0,0) < p3 : (x/y,yz/x*) = (0,0)

2 2 3
X yz x y(yz—x7)
< P4 <;’_x3>:(0’ 1) < ps5: (;77)64 ):(0,0)

2.2 3 3/.,2 3

x y*(yz—x7) x y(yz—x7)

<~ pe : <—,—5)=(0,0) <~ p7: (—,76 =(0,0)
y x y X

)

y x8

. (x y(y*z — x7)
«~pg |-
= (0, 1).

y x7

x y(*(y*z —x) —sx’)
):(O,s) < poy (_ )

Here an arrow means that the right hand side is infinitely near, namely, the point of
the right hand side is in the exceptional divisor obtained by blowing-up of the left
hand side. In this case, p; is the only point in P? and the others are infinitely near
points. We take x, y, z as a coordinate of P?, and infinitely near points are expressed
by coordinate of blowing-up.

The data give a rational elliptic surface if and only if A = 0. When A # 0, we get
a space of initial conditions of the first Painlevé equation. There remains an action
of PGL3 as

(x:y:z;k;s)N(vzx:v3y:z;vsk;v4s)e]P’zx(Cz, veC*=C\ {0},

so we can normalize s as 0 or 1. When s = 0, there remains symmetry of v € C*.
When s = 1, there remains symmetry of v € {1, —1, ~/—1, —+/—1}. When a rational
elliptic surface has a singular fiber of type E él), then it is isomorphic to the surface
obtained by blowing-up from P? with the data s = 0 or the surface with the data
s=1.

The case of E él) is the only one exception. We cannot blow down these surfaces
to P! x P!
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(1)
2. E;

We give data of 9 points configuration, which include infinitely near points, in
IP? as follows:

p1:(0:1:0) < py: (x/y,2/x) =(0,0) < p3 : (x/y,yz/x*) =(0,0)

2 2 3
x ¥z x y(yz—x7)
<~ pP6 . (;, x3>:(0, 1) <~ p7 - (;,T) :(0,0)

<§ YO Pz =) + sx5)>
y x©

X 2( 2Z—X3)
“<ps: (—,yy—5>=(o,—s) “po:
= (0’ _ao)a

y X
ps 2 (0:0:1), ps 2 (O:ap:1).

Here pi, p4, and ps are points in P2, and the others are infinitely near points.
The condition to be a rational elliptic surface is A = ag + a1 = 0. There remains
an action of PGL3 as

(x:y:z;al,ao;s)fv(vzx : v3y:z; v3a1,v3a0; vzs) e P? x(C3, veCX,

so we can normalize s as 0 or 1. When s = 0, there remains symmetry of v € C*.
When s = 1, there remains symmetry of v € {1, —1}.
We give a 8 points blowing-up from P! x P!:

2
Pi: (f,8)=(0c0,00) < P> : (1/f, f/8) =(0,0) < P3 : =(1<(J;ilég)

— Py (11, f(fP+8)/g) =(0,0) < Ps = (1/f, £2(f*+5)/g) = (0,s)
«— Ps i (1/f, £(FH(f2+g) —sg)/g) = (0, a0),
P;: (f,g)=(00,0) < P : (1/f, f&) = (0, —a).

Here we take a coordinate as (f, g) € P! x P!, and correspondence with the previous
construction is given by (f, g) = (y/x, —x/z2).

M
3. E,

Data of 9 points configuration, which include infinitely near points, in P? are
given as follows:

pi o (0:1:0) < py i (x/y,2/x)=(0,0) < p7 : (x/y,yz/x*) =(0,1)

x y(yz—x?) X y(yyz—x?) —sx?)
<_p8:<_’7z)=(0,s) < po: \y’ e
= (0, —ag +5?),

y X
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p4 2 (0:0:1), ps:(O:ap:1), p3:(1:0:0) < pe : =(Z(/(;C7i)c/13

The surface is rational elliptic surface if and only if A =ag + a; + a2 =0, and
there remains an action of PGL3 as

(x:y:z;ai;s)N(vx:vzy:z; vzai;vs)eIP’zx(C4, veCX,

so we can normalize s as 0 or 1. When s = 0, there remains symmetry of v € C*.
Furthermore we give a 8 points blowing-up from P! x P!:

Py 2 (f,8)=(00,00) <P, :(1/g,8/f)=(0,1)

Py (1geste— P1f) = 00 < py : /8 EERE= NN

= (O, —ap + sz),
Ps 2 (f,8)=1(00,0) < Ps : (1/f, fg) = (0, —a2),
P72 (f,89)=(0,00) < P : (1/g, fg)=(0,ap).

Here we put (f, g)(= (x/z, y/x)) € P! x P!

()
4. D}

Data of 9 points configuration, which include infinitely near points, in P? are
given as follows:

p1:(0:1:0) < py: (x/y,2/x) =(0,0) < p3 : (x/y, yz/x*) =(0,0)

2 2 3
X Yz x y(y“z—sx’)
< pg N <;, _x_3) = (O,S) < p9 . (;, 74> = (O, —)\.S),

X

pa: (0:0:1) < ps (X,f)=<o,0> < ps : (X,%)=<0,1>
zy <y
)
< pr: <X7z(zx : y )>:(070).
< y

The condition that the surface is a rational elliptic surface is A = 0, and there
remains an action of PGL3 as

(x:y:z;k;s)N(x:vy:vzz;vk;v4s)eIszCx(CX, veCX,

so we can normalize s = 1, and symmetry of v € {1, —1,+/—1, —4/—1} still re-
mains.

Putting (f, g)(= (x/z, y/x)) € P! x P!, we give a blowing-up from P! x P!:

Py (f,8)=(00,00) <P : (1/g,8/f)=1(0,0)
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<~ Py (1/g,8%/f)=0,5) < Py : (1/g,8(g* = sf)/f) = (0, —hrs),
Ps : (f,g)=1(0,00) < Ps : (fg.1/g)=(0,0)
Py (fe.1/(f8)) =0, 1) < Pg = (fg. (1 — £g2)/(f%&%)) = (0,0).

(1
5. D

Data of 9 points configuration, which include infinitely near points, in P? are
given as follows:

1:(0:1:0) < pa: (x/y,2/x)=(0,0) < p3 : (x/y,yz/x*)=(0,0)
o3
(_pg : (f’ﬁ) (O S) (_p . ('x y(yz—4s-x))=(0’ _aos)’
y x3 y X
4 (0:0:1) < pe : (x/z, y/x 0,0,
5:(0:1:1) < p7: (

> (0, ar).

The surface is a rational elliptic surface if and only if A = ag + a; = 0. Since an
action of PGL3

(x:y:z;ai;s)w(x:vy:vz;vai;v3s) eP?xC?xC*, veC~®
remains, we can normalize s as 1. There remains symmetry of v € {1, w, a)z}, where
*+w+1=0.

Putting (f, g)(= ((yz)/x2, —x/z)) € P! x P!, we give a blowing-up from P! x
P!

P (f,8)=(0,00) < P> : (f,1/(f8))=(0,0)

<~ P5: (1/(f9), f28) = (0,—s) < Ps : (1/(f2), fa(f2g +5)) = (0, —aps),
Ps : (f,g)=(00,0) < Ps : (g,1/(f2)) = (0,0)

1/ 1
<~ P (2.1/(fg)) =0, 1) < Pg : <g,§<ﬁ—l>>=(0,a1).

&)
6. D

Data of 9 points configuration, which include infinitely near points, in P2 are
given as follows:

1 (0:1:0) < po (f,5>=(0,1) “—ps: (f,y(z )>=(0,0)
y X y x2

x y2(z—x) (f,Y(yz(Z—x)—sx3)>
<P\ T3 =(0,s) < po : \y ]
S = (0.5(b1 — ao)).
41 (0:0:1), ps:(0:ar:1), pe:(1:0:0), p7:(1:b1:0).
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The surface is a rational elliptic surface if and only if A = ag + a; = bg + b1 =0.
Since an action of PGL3

(x:y:z;ai,bi;s)N(x:vy:z;va,-,vb,-;vzs)EP2XC4XCX, v eC*

remains, we can normalize s as 1. There remains symmetry of v € {1, —1}.
Putting (f, g)(= (y(i—;x), )€ P! x P!, We give data of a blowing-up from
P! x Pl

P (f,8)=(0,00) < Py : (f,1/(fg))=1(0,0)

. 2 C(1/(f9). fa(f?e —s))
< P35 (1/(f8). f78) =(0.5) < Py : = (0.5(b1 — an)).

Ps : (f,g)=(00,0) < Ps : (1/f, fg) = (0,ay),
Py (f.g)=(00,—1) < Py : (1/f, f(g+1)=(0,by).

()
7. D§

Data of 9 points configuration, which include infinitely near points, in P2 are
given as follows:

pr:(0:1:0) < py <5,5)=(O,1) < pg: (f,y(zzx)>=(o,s)
y X y

X

)
<_p9:<f’Y(y(z x3) SX)>=(O,S(S—CZ())),
y X
p3:(l:ax:1), ps:(0:0:1), ps: @0:ar:l),
pe : (1:0:0), p7:(1:a3:0).

The condition that the surface is a rational elliptic surface is A = ag+aj +a2 =0,
and there remains an action of PGL3 as

(x:y:ziaiss)~ (x:vy:z;va;;vs) P> x C* x C*, veCX,

so we can normalize s as 1.
Furthermore we give data of blowing-up form P! x P!

Pi: (f.8)=(0,00) < P : (1/g, fg)=(0,ay),

Py : (f.g)=(1,00) < Py: (1/g.(f —Dg)=(0,a3),

Ps : (f.g)=(00,0) < Ps : (1/f. fg)=(0,—ay),

Pr: (f,g)=(00,—s) < Py : (1/f. f(g+s))=(0,5—ap).

Here we put (f, ¢)(= (. y(’;—;Z))) e P! x PL.
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(€]
8.D,

Data of 9 points configuration, which include infinitely near points, in P? are
given as follows:

p1:(0:1:0) < pg : (x/y,z/x):(O,s/(s—l))

<~ pg : (;, W) = (0, sag/(s — 1)),

pr:d:—ax:1), p3:({d:—a;—az:1), pg:©0:0:1),
ps i (0:az:1), pe:(1:0:0), p7:(1:a4:0).

The condition that the surface is a rational elliptic surface is A = ap + a1 +2a> +
az + a4 = 0, and there remains an action of PGL3 as

(x:y:z;ai;s)N(x:vy:z;vai;s)eIP’zXCSx((C\{O,l}), veC*.

Putting (f, g)(= (z/(z — x), y/x)) € P! x P!, we give data of blowing-up from
P! x P

Pl : (fvg):(()’())v P2 : (Osa4)7 P3 : (OO, —a2), P4 : (oov_al_az)v

Ps i (1,00) < Py : (1/g.8(f = 1)) =(0.a3),

P7 : (s,00) < Pg : (l/g,g(f—s))z(O,sao).

(1%
9. A

Data of 9 points configuration, which include infinitely near points, in P? are
given as follows:
pr:(1:0:1), pr:(A:i—=ax:1), p3:(A:—ax—a;:l),
ps : (0:0:1), ps:@O:ac:1), pe: (O:ap+as:1),
p7: (1:a3:0), pg:(l:az4+as:0), po: (1:a34+as+as:0).

The surface is a rational elliptic surface if and only if A = ap + a1 + 2a2 + 3a3z +
4a4 4 a5 + 2a¢ = 0, and there remains an action of PGL3 as
(x:y:z;a)~ (x:vy:z;va) eP>xC’, veCX.

Putting (f, g)(= (y/x,y/(z — x))) € P! x P!, we can also construct the surface
by a blowing-up from P! x P!

Py :(0,0), P: (a3, —a3), P3: (a3+a4,—az—as),

Py : (a3 +as+as,—az—as—as), Ps:(—az,0), Ps: (—a1—a0),

Py : (0,a6), Pg : (0,a6+ao).
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10. A%

Data of 9 points configuration, which include infinitely near points, in P? are
given as follows:

p1: (1:0:ax+a7), p2: (A:0:a1+4+a +ay),

p3: (1:0:ag+ar+ax+ay), ps:(—az:l:a3), ps: (0:1:0),
D6 - (a3:1:a§), p7: (az+as:1: (a3 ~|—a4)2),

ps : (a3 +a4+a5:1:(a3+a4+a5)2),

po (a3+a4+a5+a6:1:(a3+a4+a5+a6)2).

The surface is a rational elliptic surface if and only if A = ag 4 2a; + 3az + 4a3 +
3a4 + 2as + ag + 2a7 = 0, and there remains an action of PGL3 as

()c:y:z;a,~)~(wc:y:1)2z;vcz,~)e]P>2 X(CS, veC*.
(1)
11. A,

Data of 9 points configuration, which include infinitely near points, in P? are
given as follows:

pi i (ci:2:¢)), (=1,...,9),

—2a1 —az +ag ay —ap +ag ay +2ax + ag
L=, =, 3=,
3 3 3
c4 = c3 + as, C5 =c4 + a4, c6 = C5 +as, c7 = C6 + ae,
cg =c7+ay, c9 =cg + agp.

The surface is a rational elliptic surface if and only if A = ag + 2a; + 4a; + 6a3 +
Sa4 + 4as + 3ag + 2a7 + 3ag = 0, and there remains an action of PGL3 as

(oyiza)~ (vxiyivizve) ePrx 0, veCx.
()
12. A

Data of 9 points configuration, which include infinitely near points, in P? are
given as follows:

pr: (1:0:0) < po: (z/x,y/2) =(0,0) < pg : (z/x,xy/zz)=(0,—1),
p3: (0:0:1) < pa: (v/z,x/y) =(0,0) < ps : (v/z,2x/y*) = (0, —1),
p7:(0:1:0) < pg @ (x/y,z2/x)=(0,0) < po : (x/y,yz/x?) =(0,—1).

Here pi, p3, and p7 are points in P? and the others are infinitely near points.
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There remains an action of PGL3 as
(x:y:z)N(x:vy:vzz)eIP’z, =1

Putting P! x P!, we give data of 8 points configuration, which include infinitely
near points, in P! x P!:

Py (fig)=(00,00) < Py : (1/f, f/8) =(0,-1),

Py (f.9)=(0.00) < Py : (fg.1/g)=(0.0) « Ps : (ffi’ll/(;i)

Ps : (f.8)=(00,0) « Py : (1/f, fg) = (0,0) « Py : (21/(10‘ f ZS?

Here Py, P3, and P are points in P! x P!, and the others are infinitely near points.
13. A%

Data of 9 points configuration, which include infinitely near points, in P? are
given as follows:

pi i (0:0:1) < p3: (x/2,y/2)=(0,0) < ps : (y/x.x*/yz)=(0,1),
P2 (1:0:0) < pg : (z/x,y/2)=(0,a1),  pa: (0:1:1),
p7 1 (0:1:0) < pg : (x/y,2/x) =(0,0) < po : (x/y,yz/x*) = (0, ap).

The surface is a rational elliptic surface if and only if ¢ = apa; = 1, and there
remains symmetry:

(x:y:z)~(vx:y:z)eP2, 2 =1.

The surface is also constructed by 8 blowing-up from P! x P! by using the data
of configuration:

P (f,8)=(0,0) < P> : (f,g/f)=(,1),

P3 i (f,8)=1(00,0) < Py : (1/f, fg)=(0,ay),

Ps : (f,8)=(0,00) < Ps : (fg,1/g)=(1,0),

P71 (f,8) =(00,00) < Pg : (g/f.1/8) = (ao,0).
Here we put (f, g)(= (£, %)) e P! x P!

(1)
14. A§

We give data of 9 points configuration, which include infinitely near points, in
P2 as follows:

p1 2 (1:0:1), p2:(1:0:0) < pg : (z/x,y/2)=(0,1),
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p3 1 (0:0:1) < ps: (v/2,x/¥)=(0,0) < ps : (v/z,2x/y*) = (0, ap).
p7:(0:1:0) < pg @ (x/y,2/x) =(0,0) < pg : (x/y,yz/x*) = (0,ar).

The condition that the surface is a rational elliptic surface is ¢ = apa; = 1.
Putting (f, g)(= (f, %)) e P! x P!, we give data of 8 points configuration in
P! x P!:

Py (f,9)=(1,0), Py (f,8)=1(00,0) < P3 : (1/f, fg)=(0,1),

P ()= 0,00 < Ps (e 1/8) = 0.0) < ps : & VUED)

P7 : (f,8) =(00,00) < Pg : (g/f, 1/g) =(a1,0).

M
15. A

We give data of 9 points configuration, which include infinitely near points, in
P2 as follows:

p1:(1:0:1), P2 (1:0:0) <= pg : (z/x,y/2) =(0,a1),
p3 1 (0:0:1) <= ps : (y/z,x/y) =(0,a0/b), pa s (0:1:1),

(x/y,yz/x?)

Pr:0:1:0) < py ¢ (x/y.2/0)=(0,0) < po T

The condition that the surface is a rational elliptic surface is ¢ = apa; = 1.
Putting (f, g)(= (f, %)) e P! x P!, we give data of 8 points configuration in
P! x P!:
P (f,9)=(1,0), Py i (f,8)=1(00,0) < P53 : (1/f, fg)=(0,a1),
Py 2 (f,8)=1(0,b/ap), Ps: (f,g)=(0,00) < P : (fg,1/g)=(1,0),
P7 : (f,8) =(00,00) < Pg : (g/f,1/g) =(=b,0).

M
16. A§

We give data of 9 points configuration, which include infinitely near points, in
P2 as follows:

pr:(1:0:1), pr:(a1:0:0), ps:0:1:1), pe: (1:—ar:0),
p3:(0:0:1) < ps: (y/z,x/y)=(0,b1/az),

(x/y,yz/x?)

pr: 0:1:0) < pg 0 (x/3,2/x)= 0,00 <po = T 5

The surface is a rational elliptic surface if and only if ¢ = boby = 1.
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The surface is also constructed by 8 points blowing-up from P! x P! by using
data of configuration:

P (f,e)=(1,0), Py : (f,8)=1(a1,0), P; : (f,8) =(0,a2/by),
Py: (f,g)=(00,—az), Ps:(f,g)=(0,00) < Ps: (fg,1/g)=(1,0),
P7 : (f,8) =(00,00) < Py : (g/f,1/8) =(—=bo/ay,0).

Here we put (f, g)(= (£, 1)) e P! x P!

(M
17. A

We give data of 9 points configuration, which include infinitely near points, in
P2 as follows:

p1: (1:0:1), p2 o (a2:0:1), p3 : (arap:0:1),
ps s (0:1:1), ps : (0:1:a4), pe - (1:—az:0),

(x/y, yz/x?)

p7 2 (0:1:0) <= pg : (x/y,z/x)=1(0,0) < pg : = (0, ap/an).

The surface is a rational elliptic surface if and only if ¢ = apajarazas = 1.
The surface is also constructed by 8 points blowing-up from P! x P! by using
data of configuration:

Py : (f.8)=(a2,0), Py : (f,8) = (a1a2,0), Py : (f.8)=(1,00),
Pyt (f,8)=(0,1), Ps : (f,8)=1(0,1/a4), Ps : (f,8) = (00, a3),
P; . (f,8) =(00,00) < Pg : (g/f, 1/g) =(—ao/az,0).

Here we put (f, g)(= (3, —3%)) € P! x P!

18. AV

We give data of 9 points configuration, which include infinitely near points, in
P2 as follows:

pr: (1:0:1), p2 : (az:0:1), p3 : (a1az2:0:1),
pa i (0:1:1), ps 2 (0:1:as), pe : (1:—a3:0),
p7 : (1:—azaq:0), psg 2 (0:1:0) < pg : (x/y,z/x) = (0, ap).

The surface is a rational elliptic surface if and only if ¢ = aoala%a§a4a5 =1
X

Putting (f, 8)(= (3, =) € P! x P!, we give data of 8 points configuration
in P! x P

P (f,8) =(a2,0), P>: (a1a2,0), P3:(1,00), Py : (1/ag,0o0),
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Ps : (0,1), Ps : (0,1/as), P7 : (00, a3), Pg : (00,azay).

Here we need no infinitely near points.
19. A"

Data of 9 points configuration, which include infinitely near points, in P? are
given as follows:

p1: (1:0:1), P2 (a:0:1), p3 : (aray:0:1),
ps i (0:1:1), ps - (0:1:ay), pe : (0:1:aqas),
p7 . (1:—a3:0), ps . (1:—azae:0), po : (1:—apazag:0).

The surface is a rational elliptic surface if and only if ¢ = aoalagagaﬁamé =1.

Putting (f, §)(= (5%, 5%) € P! x P!, we can also construct the surface by a

blowing-up from P! x P!:
P (f,8)=1/az,0), Py : (1/(a1a2),0), P31 (0,a4),
Py 1 (0, asas), Ps : (1, 1), Ps : (a3,1/a3),
Py (a3a6, 1/(a3a6)), Pg : (a0a3a6, 1/(a0a3a6)).

20. AV

Data of 9 points configuration, which include infinitely near points, in P? are
given as follows:

p1 : (aza7:0:1), p2 - (aaza7:0:1), p3 : (aparaza7 :0: 1),
pa (/a3 :1/a7:1), ps (1:1:1), po : (a3 :a3:1),
p7 (a%ai:a3a4 : 1), ps (a%afa% Tazaqds 1),

(2,22 2, .
Py - (a3a4a5a6 T azasasag - 1).
The surface is a rational elliptic surface if and only if

()
21. A

Data of 9 points configuration, which include infinitely near points, in P? are
given as follows:

1 1 2cosc; .
pi : — — g~ 3 1), GG=1,...,9),

sin“¢; 3 sin” ¢;
—2a1 —ap +ag ay—ap+ag a) + 2as + ag
cl=— 7, )=, 3=,
3 3 3
¢4 =c3 + as, c5 =c4 + a4, c6 = c5 + as, c7 = ¢6 + as,

cg =c7+ar, c9 =cg + agp.
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The surface is a rational elliptic surface if and only if A = ag + 2a; + 4a; + 6a3 +
S5a4 + 4as + 3aeg + 2a7 + 3ag =0.

3 Ordinary Differential Equations on Rational Elliptic Surfaces

When a rational elliptic surface and its blowing-down are given, we obtain a pencil
of cubic curves in P? or a pencil of biquadratic forms on P! x P'. We see these
pencils here. We follow a method which is treated in a paper of Kajiwara-Masuda-
Noumi-Ohta-Yamada [2], although their interest is mainly put on Painlevé’s cases.
Here the 62nd surface in the list of Oguiso-Shioda, which has a singular fiber of
type E D is taken as an example, and we see the calculation with it in detail.
In general, a cubic curve in P? is written as

F = pox® + p1y® + m22® + pax?y + pax?z + pusy®z + pey x + urz’x + psz’y
+ poxyz =0,

and it makes a 9 dimensional space modulo constant multiplication. It is enough to
determine one dimensional pencil by putting the condition that curves pass through
all of nine points. But, in this case, we must consider infinitely near points as well.
The 9th point pg is expressed as (x/y, y(y*(y*z — x3) — sx7)/x®) = (0, 1), (we
can take s as 0 or 1). Taking an inhomogeneous coordinate (x/y, z/y), the point
po is written as z/y = € + se’ + 1ed by setting x/y = €. Substituting this into F,
consider the condition that the terms of degree less than 9 in € vanish, namely,

F(e, 1,63 +s€e’ +)»68) = 0(69).

This has not only solution F = /Lzz3 =: up Fy but another solution F = ,uo()c3 —
y?z + s7%2x) =: 1o F1 when A = 0. Combining two of them, we find a pencil F =
w2 Fo + o F1. Here the condition A = 0 is a condition for an elliptic surface.

The function which returns the value (1 : o) € P! for each points in the rational
elliptic surface gives an elliptic fibration. When we put H = —F/Fp and (f, g) =
(x/z,y/z), then

H=g>—f*—sf,

and the pencil is written as {H +u =0; p e P'}.
The rational 2-form which has a pole only at the singular fiber Fy = z3 =0 is
determined up to constant, and is written as

_xdyANdz+ydzNdx +zdx Ndy
= 7

w =dg Adf.
We can construct an algebraic Hamiltonian system which preserves the fibration as
follows:

o o
al TP e T TP e
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Here p is an arbitrary rational function in H, and the system is the Hamiltonian
system with the Hamiltonian f p(H)dH.

Similar calculation is applicable for the other cases. All cases except E él) have a
blowing-down to P! x P!, so H is written as a ratio of two biquadratic forms.

For E;l), Eél), Dgl), Dél), Dgl), we can take Fy = f02g(2) as an image of the ruling
singular fiber, when we take a coordinate ( fy : f1: go : g1) in P! x P'. Then, setting
(f.8) = (f1/f0.81/80) and  =dg A df, and

f2
H=(g%g. M| f |.
1
we can construct a similar system
df— (H)EJH d (H)E)H
il TP e @t T TP e

by using a 3 x 3 matrix M. With respect to each surfaces defined in the previous
section, the matrix M can be written as follows:

0 0 1 0 1 0
M=Mg=|1 0 5], Mg,=|—-1 —s —ai |,
0 a O 0 —-a
1 0 O 1 1 0
Mp, =10 a -1], Mp,=10 —ai—by —s|,
0 = 0 0 —a 0
1 s 0
Mp,=| -1 —(a1+a3+s) sa
0 aq 0

Here we can take s as O or 1 for E;l),Eél), and we can take s as 1 for
bV p{", p{".
For Dél) and Dil), the image of the ruling singular fiber is Fp = fj fi g%, and

w= %dg ANdf =dg Ad(log f). So log f and g are canonical coordinates. When
we write the system in a rational form,

Lrmpansl Lo i
a’ TP 0 aitT P of
and H is expressed as
1 2 2 D 2 /
H=——(g7.8180,8)M | fifo|=(g% g 1)M| 1

fofigg 12 1/f
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Here the matrix M is

0O 1 0
M=Mp,=| 0 0 0],
—-s 0 -1
1 —1—5 s
Mp, = ai +2ar —a1 —2a>+ (s — Daz +as say
ar(ay + ap) 0 0

We can take s as 1 for Dél). For thl), s is an element in C \ {0, 1}. We can’t nor-
malize s, but we can multiply all a; by v € C* without changing surfaces.

As a matter of course, if we do not stick to biquadratic form, we can write them
as usual rational Hamiltonian systems.

For Dél), putting f=1/f8=—fg, the symplectic form is written as w = dg A
d f , and the system is a usual Hamiltonian system with H = f 252 — f —s/ f .

For Dil), putting ¢ = g/f, the symplectic form is written as w = dg Adf, and the
system is a usual Hamiltonian system with a polynomial Hamiltonian H = f(f —
D(f —9)g> +{(a1 +2a2)(f — D f +az(s = 1) f +ass(f — D}g +aza +ar) f-
These are not biquadratic forms by using 3 x 3 matrices.

Remark 2 In a paper of Kajiwara-Masuda-Noumi-Ohta-Yamada [2], it is found that
the Painlevé equations can be obtained as non-autonomous systems by taking s as
an independent variable.

Although, in the case of Dil) and Dél), the Painlevé equations are not written
by using matrices of size 3 usually, we can write them as algebraic ODE’s by using
matrices of size 3, following a manner which we saw here.

The Painlevé equations correspond to 8 Dynkin diagrams of types D‘(‘l) s Dél),

and Eél), Egl), Eél), and we saw analogous cases of rational elliptic surfaces so
far. These systems on elliptic surfaces are obtained as an autonomous limit of the
Painlevé equations. The correspondence between the Painlevé equations and the
Dynkin are given as follows:

Dil) Dgl) Dél) D§1) Dél) Eél) E;l) Eél)
Pyt | Pv | Pm(De) | Pu(D7) | Pm(Dg) | Piv | Pu Py

These systems on elliptic surfaces can be constructed for A types also, differently
from the Painlevé’s cases. Of A types, for types Agl), Agl), Agl), A(ﬁl), Agl), Agl)/,
and Aél), the image of the ruling singular fiber can be taken as Fy = fj f18081, when
we consider a blowing-down to P! x P!

A symplectic form is written as @ = #dg Adf =d(logg) A (log f), and the
system 18

d OH d OH
Ef=p(H)fg£, Zg=—p(H)fgﬁ,
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and H is expressed as

1 f
H= <g, 1, —)M 1
8 1
f
The matrix M is parameterized as follow:
010 0 —ap O
M=Msy=|1 0 0], My,=|11 0 0],
0 0 1 0 -1 1
1 0 0 1/b 0
My, = —ao 0 1 1 0 -1/b],
1 0 0 —d] aq
Mas=| ao 0 —bl/az :
1/a; —1—(1/ay) 1
0 1 -1
Ma, = | ao/ar 0 1+ (1/aa) |
—apaz/ay apaz + (1/axaq) —1/ay4
apas —(1 +ap)as as
My, = | —(1 +as)apazas 0 —1—as
1/(a1a3) —(1+an/a1a 1

For remaining A;l)*, Ail)*, A(()l)** and A;l), A(ll), A(()l)*, the expression is a little
bit complicated. As the ruling divisor Fj, we can take

A(zl)* : Fo = fogo(fof1 + 8o81),
A(ll)* 1 Fo = (f180 + fog1 — 2rfogo) (/180 + fog1),
A(()l)** : Fo=(f180 — fog)* — 8r*(fofigh + figogt) + 16r f3 g,

Agl) 1 Fo = fogo(f1g1 — fogo), Agl) tFo=(fi1g1 — szogo)(flgl — fogo),
1
1
A(())*:Fo=f12g3+f02gf—< >fof1gog1+(r ——> 380

for each types of surfaces (cf. [5]). Here r is a suitable number except 1 or O.
Symplectic form is given as w = f(’Tﬁ"dg Adf.
We don’t go into detail in the all cases, but, for Agl)*, the symplectic form is

written as w = dg A dlog(f + g). Putting F = f + g, the system is expressed as

dF _ et g0l
a7 og  dr " aF"
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by using
| (F—g)?°
2
H:F(g & )M | F—g
1

For Agl), the symplectic form is @ = dlogg A dlog(fg — 1), and when we put
F = fg — 1, the system is

dF _  iyrgH € _ _nrgl
ai " gag’ a P 89F
with
] (F —1)?/g?
2
H=—(g"e )M| (F-DJ/g

1

4 Canonical Forms of Biquadratic Hamiltonians

In the previous section we constructed a Hamiltonian system based on data of a
rational elliptic surface. In this section we start from a Hamiltonian system and we
tell the type of the surface associated to the system.

We concentrate on two types of Hamiltonian systems. The first one is biquadratic
Hamiltonian and the biquadratic form is expressed as

f2
H:(gz,g, I)M f
1

by using 3 x 3 matrix M. The system is

df— (H)aH d (H)BH
ail TP T TP
For the second one we put
| f
H=<87 7_)M f
8 1
f
by using 3 x 3 matrix M, and the system is given as
d oH d oH
—f=pH)fg—, —g=—pH)fg—.
o/ =rH)fe 02 778=r( )fgaf

In this article we call the former a polynomial Hamiltonian system, and the latter a
logarithmic Hamiltonian system.
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In the previous section we gave a system on an elliptic surface which has a singu-
lar fiber of type E§l), Eél), Dgl), Dél), Dgl), respectively, and it was the polynomial
type. A system on a surface of Aél), A;D/, Agl), Aél), ... Agl) was given in the form
of logarithmic type. To tell a conclusion of this section in advance, all of biquadratic
polynomial and logarithmic Hamiltonian systems in this sense coincide with one of
these systems. Furthermore we give a classification of such systems.

We see the polynomial case first. Here the matrix M is not arbitrary. If M has
all 0 in the first column or in the first row, then H 4 p = 0 does not give an elliptic
curve. Neither does it, when a1 = a2 = a1 = 0. We do away with these cases.

There are the transformation ( f, g) — (g, f), and affine transformations ( f, g) —
(f +a, g+ b), and they don’t change the type of systems. We see how they act on
the matrix M.

The interchange of dependent variables makes the matrix M transposed. The
affine transformations act on M as follows:

1 00 1
M— |20 1 0|M|O
2 b 1 0

Putting M = (m; ;); j=1,2,3, the classification is described as follows:

miama; =0, (mi2, ma1) # (0,0) — EV

1
miamo; #0 — Eé )

mip=0—

m11 # 0 — We can make m3 = m3; = 0 by affine transformation.
mip=my =0— D;l)

- miayma1 =0, (mi2, ma1) #(0,0) - Dél)

miama1 #0 — Dé”.

Here we omitted the case that m1; = m> = my; = 0 because of elliptic curves’
absence. Hence this completes the classification.

When m 11 # 0, we can use solutions a, b to a’myy +amyy +mi3=0, b2my; +
bmy1 + m31 = 0 for an affine transformation in order to make m3 = m3; = 0.

In the next place we consider the logarithmic case. There are transformations of
dependent variables (f, g) — (g, f), (f, &) — (1/f,g),and (f, g) — (f,1/g), and
they don’t change the type of the systems.

Now we introduce notation. To express an entry of a matrix, * is an element of
C\ {0}, and empty means that this entry is occupied by an arbitrary element of C.
Then biquadratic forms, from Agl) to Agl), are given as

* 0 0 0 *
Aél) 10 x|, Agl)/: * * |, A;l) o %
0 0 0 0 0
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¥ % 0 * *
Aél) * x|, Agl): * x|,

0 x O 0 x O

* * ¥k
AL i) A

* % 0 * %

Inversely, it is found that the biquadratic forms with these matrices correspond to
these surfaces with suitable parameters.

If the matrix has all O in the 1st or 3rd column or row, then curves in the pencil
does not give elliptic curves. The matrix with m; = m2 = m3; = 0 does not give
elliptic curves, too. Hence there remain only 7 types of matrices:

* * * % 0 * 0 0 * x 0
0 0], 0 0], 0 * |, * 01,
0 % O 0 * = 0 * =x 0 *x =%
* * 0 * = * *
0 * |, * * |, 0
0 % O * x 0 0 *x =
These all can be reduced to the systems of A(l), ey Agl) by simple transforma-

tions of dependent variables.

Remark 3 We take two of them as examples. We reduce 4th matrix to the matrix of
Aél). It is enough to put F' = fg:

1 a b 0 F/g 1 0 b O F
(g, 1, —) c d 0 1 = (g, 1, —) a d h 1
8 0 e h g/F 8 c e O 1/F

The next example is a transformation which change the 1st matrix into the matrix
of Agl)/. For the biquadratic form

1 a b c f
H+M=<g, ,—> 0 w O L,
§/\0 a4 o) \1/f

we take & as a solution to o> — bt +ac = 0, and H can be written as H = g f+
D(% +a) + 4. Putting G = g(5 + %), F = fG, we get
H="rycy+d %]
= — C —_ —_—
o F c G
and this is the system of type Agl)/.
We can reduce the others to known systems similarly.
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Classification is given as follows:

*x 0 0 0 % O * * * % 0
AV o o« AV« x| ~|0  o]~l0 0],
0 %« O 0 % O 0 % O 0 % =%
* 0 0 * 0 0
A;l)' * x| ~10 3
0 x 0 0 *x =x*
* 0 * *x 0 *
Aél): * | ~ | % 0O1~10 * 1,
0 %« 0 0 % =x 0 % O
* * 0 *x =x* * *
Agl): * |~ * x| ~10 ,
0 % 0 * % 0 0 *x =x*
b * * y * %k
( (
Ay * |, Ay
* *x 0 * %

S Oguiso-Shioda’s Classification

We fixed one singular fiber as a ruling fiber so far for a study of dynamical systems
on rational elliptic surfaces. We have 21 types of singular fibers, if we count two
types for A;l). But there are 74 types of surfaces in the classification of Oguiso-
Shioda ([6]). This is because a surface may have more than one singular fiber.

In Sect. 3 we constructed Hamilton systems on each surfaces. What we studied
there includes the cases of plural singular fibers. In this section we see cases of
plural singular fibers in detail, by taking Dgl) as an example.

When we fix the fiber of type Dél) as the ruling fiber, the type of the surface is
one of 16th, 30th, 50th, 52th, or 72th surface in the list of Oguiso-Shioda. Reducible
singular fibers of each surfaces are described as

T=Ds, Ds®&A, Ds®Ay, Ds®A®?  DsoAs,

when we use Oguiso-Shioda’s notation. Irreducible singular fibers of types A(()l)*,

A(()l)** may appear, but we don’t consider about them. K. Oguiso and T. Shioda
didn’t use them for their classification.

Our aim is to determine the type of the surface at each value of the parameters.
The matrix for type D;l) is
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If the condition a; = 0 (axazag # 0), or ay = 0 (azapa; #0), or az =0 (apaaz #
0), or ag = —a; — az — a3 =0 (ajazaz # 0) holds, a fiber of type Agl) exists and
the surface is 30th (7' = D5 @ Ay).

For the 30th surfaces, we see a calculation of singular fibers. In the pencil {H =
w; w € P}, the fiber becomes type Agl) when the fiber is reducible. The curve H +
u=g>f>—g*f+gf>—(ar+a3+ 1)gf +aig + ar f + u can be factorized as

f(&2f—g*+gf —(@+Dg+a), ifa; =0 (aazap#0), =0,

ggf*—gf +fP—(a+az+1)f+ap), if a=0 (azapar #0),
n=0,
(f = )(&*f +gf —a1g+az), ifaz=0 (aparaz #0), u = —az,

g+ D(gfP—gf +arf +a1), ifap=ar—a—a3=0,
(mazaz #0), u=a,

H+p=

at each parameterizations, and they are the singular fibers of type Agl) .

The 50th surface (T = Ds @ Aj) appears when the parameters hold that a; =
ay =0 (azap # 0), or that ap = a3 =0 (ajag # 0), or that ag = a; = 0 (aza3 # 0).
The singular fibers of type Ag) are calculated as follows:

gf(gf—g+f—az—1), ifar=a=0 (azap#0),u=0,
H4+p=q8(f-DEf+f—a), ifax=a3=0 (apa; #0),u=0,
g+ Dfgf—g+a), ifap =a; =0 (azaz #0), u =0.

The 52th surface (T = Ds & A?z) appears at a; = a3z =0 (a2ap #0), or ap =
ap=0 (a1a3 #0), or ap = a3 =0 (ajaz # 0). We can see the singular fiber of type
A(ll) as

e {f(ng—g2+fg—g+az), if 1 =0,
(f=DEf+ fe+a),  ifp=—a,

when the parameters hold that a; = az = 0 (azag # 0). The singular fiber is

{g(gf2—gf+f2—f+a1), if =0,

(g+D(gf*—gf +ar), if u=ai,

when a; = ag = 0 (ajasz # 0). The singular fiber is

o _{(g+1)(gf2—gf+azf+a1), if = ai,
(f =D f+ef—aig+a), if p=—a,

when az =ag =0 (a1az #0).
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The 72nd surface (T = D5 & A3) appears at a; = a» = a3 = ap = 0, and the
singular fiber of type Agl) is expressed by

H+upu=gf(g+D(f-1)

with u =0.

For the 30th, 50th, 52nd, and 72nd surfaces we can take the other singular fiber
as the ruling fiber. For example we can take the singular fiber of type Aél) for the
72nd surface. In this case the correspondence between two coordinates gives us a
transformation of our systems. We will see this later in the next section.

6 Bicklund Transformations

We treat only birational transformations as Bicklund transformations here. In a
study of the Painlevé equations we know non-birational algebraic transformations
called folding transformations at particular parameters. We have a classification of
such transformations [15]. Although we are also able to consider such transforma-
tions for systems on rational elliptic surfaces, we concentrate on a study of birational
transformations.

The systems on rational elliptic surfaces have Bicklund transformations which
is similar to these for the Painlevé equations. As is well known in a study of the
Painlevé equations, the birational Bécklund transformations are written in terms of
affine Weyl groups symmetries. Let’s see an example. In the case that the surface
has a singular fiber of type E;]), the symmetry is written as affine Weyl group of

type Ail) which is generated by transformations
o1
sp:(f, g o) > f+g,g; —ap |,

7w (f, g an) e (—f,—g — f2 =i —an),
(S()Zﬂosl 07'[).

When the parameter « is 0, then the surface is the 65th type in the Oguiso-
Shioda’s list. In that case a singular fiber of type Agl) appear as well as E;l), and
the transformation s; becomes the identity.

We can use such data of the Painlevé equations for the rational elliptic surfaces
(see [7-10, 13]).

Among these elements of Weyl group, a translation can be calculated as an auto-
morphism of the surface. For the example above, s1 o 7 is a translation. These coin-
cide with well known discrete integrable systems called QRT mappings ([12, 14]).

Remark 4 QRT mapping is defined as follows:

ur(f) —ua(fg
ur(f) —usz(f)g’

- 7o u® —vdshf
(8 — @)
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where
u f? f? v g g
u | =M | f | xMy| f |, v | ="M, g XtM() g
us 1 1 v3 1 1

In order to make it suit our story, it is enough to set Mo as the 3 x 3 matrix which
define the ruling fiber, and put M| = M. Here the mapping (f, g) — (f, &) leaves
the curve

f2
(&% g )Mo+uM | f | =0
1

invariant. Namely, the value of H = —(g2, g, DM (f2, £, 1)/((g%, g, Mo " (f2,
£, 1)) is also invariant. The proof is not difficult (see Appendix A of [12]).

This mapping is a Backlund transformation of our system, because it is a canoni-
cal transformation, that is, ® = w. Here w = dg A df/((g%, g, DMo'(f2, f, 1)). To
prove this, we need the following calculation:

(v — v3/)° I r:
vy — V3 o - o
W20 @ e o | 7|+ (@2 a )Mo |
viv3 — v
2 1 1
1 i (v1 —v2f)? 2
_ =2 = o o 2 r
=—— (&% )Mo | [ i —vaHw2—v3f) |+ (vivs—v3) | £
1 5 Vi f?
= 72@ , 8, I)M() v | (v3, —2v2,v1) | f | =0,
V13 — U2 v3 1

and so on. Using these, we get

_ VU3 — v% dg ndf
w= 2 7
(v2 —v3f) /-
8%, 8. DMy | f
1
dg ndf dg ANdf
&% g DMy | f (g%, 8. DMy | f
1 1

On the other hand, when the surface has more than one singular fiber, we can
construct a transformation which change the types of systems in the list. Such a
transformation does not appear in the case of the Painlevé equations.
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Let’s look at an example of this kind of transformations. We see the surface of
Oguiso-Shioda’s 72nd type, which has singular fibers of type Dél) and of type Aél).

If we set a singular fiber of type Dgl) as the ruling fiber, then biquadratic form, in
general, is given by the matrix

1 -1 0
M=|1 —(a+az+1) a1 |, a;+ax+a3=0.
0 a 0

When a; = a; = a3 =0, then a singular fiber of type Agl) also appears. Setting
H=(f% f,9)M' (g%, g, 1) = fg(f — 1)(g+ 1), the pencil {H = p; € P!} has
the fiber of type Dgl) at u = oo, and the fiber of type Agl) at u = 0. Our system can

be given as
df oH dg oH
— =p(H)— — =—p(H)—, H= -1 1
o p( )ag, 7 p( )af’ fe(f =g+ D),

when we set the fiber of type Dél) as the ruling.

Our aim is to obtain a birational transformation which changes the form of the
system from type Dgl) into type Agl). The transformation of the independent vari-
ables is given by (F,G) = (%, gT'H). The Hamiltonian becomes H = 1 /H =
(1—=F)>(1 — G)*/(FG), that is,

-~ N1 2 1\ (F
H:(G,l,—) -2 4 —2ff1],
G\t 2 1) \4L

and this is a 3 x 3 matrix of type Agl). The differential system is written as

dF N(ﬁ)FGaﬁ dG SUFG
ar P oG° ar P

i = pa iy
aF’ o =p .
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On the Spectral Gap of the Kac Walk and Other
Binary Collision Processes on d-Dimensional
Lattice

Makiko Sasada

Abstract We give a lower bound on the spectral gap for a class of binary collision
processes. In ALEA Lat. Am. J. Probab. Math. Stat. 4, 205-222 (2008), Caputo
showed that, for a class of binary collision processes given by simple averages on
the complete graph, the analysis of the spectral gap of an N-component system is
reduced to that of the same system for N = 3. In this paper, we give a comparison
technique to reduce the analysis of the spectral gap of binary collision processes
given by simple averages on d-dimensional lattice to that on the complete graph.
We also give a comparison technique to reduce the analysis of the spectral gap of
binary collision processes which are not given by simple averages to that given by
simple averages. Combining them with Caputo’s result, we give a new and elemen-
tary method to obtain spectral gap estimates. The method applies to a number of
binary collision processes on the complete graph and also on d-dimensional lat-
tice, including a class of energy exchange models which was recently introduced in
arXiv:1109.2356, and zero-range processes.

1 Introduction

A sharp lower bound on the spectral gap of the process is essential to prove the
hydrodynamic limit (cf. [8]). What is needed is that the gap, for the process confined
to cubes of linear size N, shrinks at a rate N 2. Up to constants, this is the best
possible lower bound for a wide class of models discussed in the context of the
study of the hydrodynamic limit.

Most of the techniques used to obtain the required lower bound rely on special
features of the model, or a recursive approach due to Lu and Yau [10]. Recently, Ca-
puto introduced a new and elementary method to obtain a lower bound on the spec-
tral gap for some general class of binary collision processes which are reversible
with respect to a family of product measures in [3]. In this paper, we extend his
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result in two ways. One way is that though in [3] only the process on the com-
plete graph was considered, we consider the process on d-dimensional lattice where
the interactions occur between nearest neighbor sites. We give a general method to
compare the spectral gap of the local version on d-dimensional lattice and the orig-
inal process on the complete graph. Secondly, we study a wider class of processes
than the class studied in [3] and give a simple comparison technique between their
spectral gaps. We emphasize that our technique can be applied to a wide class of
processes which are reversible with respect to a family of product measures, and it
allows to obtain the lower bound of the spectral gap easily. However, it is not nec-
essarily sharp, so if the estimate given by our method is not enough sharp, then we
need to try to use other techniques.

Following Caputo [3], we first consider the following energy conserving binary
collision model introduced by M. Kac in [7], called Kac walk. Let v = vy, denote
the uniform probability measure on the N — 1 dimensional sphere of the radius /w

N
SN o) = {neRN;Zn?=w},

i=1

and consider the v-reversible Markov process on SV ~!(w) with infinitesimal gener-
ator given by

Lfm =5y Z D; i f(n)

i,j=1

where

1 [7 ij
Dijf(n) == f [f (Rg'n) = fn]do

-7

and Rg’ ,i # j is a clockwise rotation of angle 6 in the plane (n;, n;). As a conven-
tion, we take Rj =1d.

This Kac walk represents a system of N particles in one dimension evolving
under a random collision mechanism. The state of the system is given by specifying
the N velocities 11, n2, ..., nn. The random collision mechanism under which the
state evolves is that at random times, a “pair collision” take place in such a way
that the total energy ZlN= , n? is conserved. Under the above dynamics, after the
particles i and j collide, the distribution of the velocities (n;, ;) becomes uniform
on the plane (n;, ;).

Note that —£* is a non-negative, bounded self-adjoint operator on L?(v). Any
constant is an eigenfunction with eigenvalue 0 and the spectral gap A* = A*(N, w)
is defined as

(N, o) :=in{%€;)ﬁ‘ v(f) =0, feLz(v)} (1)
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where v(f) stands for the expectation f fdv. We define A*(N) = inf,~o A* (N, ).
For the Kac walk, by change of variables, it is easy to see that A*(N) = A*(N, w)
for all w > 0.
In [4], Carlen, Carvalho and Loss computed the exact value of A*(N) for ev-
ery N:
N+2

KN = Nz )

Caputo gave a simplified method to show this. Recall Theorem 1.1 in [3].

Theorem 1 (Caputo) For N >3,

3)

SN (2% 2y 1
A¥(N) = (30*(3) 1)(1 N)+N.

In particular, (2) follows from (3) with A*(3) = %

Now, we introduce the local version of the Kac walk. Fix d € N and let Ay the
d-dimensional cube of linear size N : Ay ={1,2,..., N}d. The local version of
the Kac walk is the v = vz | .» = Vya ,-Teversible Markov process on SHANI= ()
with infinitesimal generator given by

1
Ll fm=5 3. > Deyf )
rea nyfyAllN=1

where ||x — y|| = Zflzl |x; — vi|. We define the spectral gap A*!°(N, w) by (1)
with —L£* replaced by —L*xloc and A*"”C(N) :=inf,~¢ k*’loc(N, w). Itis also easy
to see that A*/°¢(N) = A*1°¢(N, @) for all w > 0.

We give a comparison theorem for A*/°¢(N) and A*(N).

Theorem 2

)L*,loc N) >
V) = 96d N2

In particular, since \*(|An|) > }Tfor all N =2 by (2),

()

*,loc 1

M 384dN?’ ©)

In the proof, we use the invariance of v under the exchange of coordinates repeat-
edly, and the idea of “moving particle lemma” which was developed for the study of
the spectral gap of interacting particle systems with discrete spins (cf. [12]). Gener-
ally, it is not easy to show the estimate corresponding to “moving particle lemma”
for the systems with continuous spins. However, for the generator of the form (4),
we show that the estimate can be established. A proof of Theorem 2 is given in the
next subsection.
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Next, we consider a generalization of Kac walk introduced in [4] by Carlen et al.
Let p(6) be a probability density on the circle, i.e.

/ @) =1.

Consider a v = vy ,-reversible Markov process on § N=1(w) with infinitesimal gen-
erator given by

L 0)deo.

=55 ”ZI [ &g - rnloe)

We define the spectral gap A(N, w) by (1) with —L* replaced by —£L and A(N) :=
inf,~0 A(N, w). For this generalization, A(N) = A(N, w) holds for any @ > 0 again,
since £ commutes with the unitary change of scale from § N=T(») to SN 1 ("), for
any w, ' > 0. Indeed, vy . is the image of vy ., under the map T : n — @ and

if f7(n) = f(Tn), then
VN,a)(fT(_‘C)fT) = VN,w’(f(_E)f) (6)

holds. Note that, to guarantee A(N) > 0, we need some more assumptions on p.
We introduce the local version of this generalized Kac walk described by the
infinitesimal generator

=5 Y Y / — fn]p©)d0

xeAy yeAn
lx—yl=1

and define the spectral gap Alo¢(N, w) and A¢(N), which satisfying Aloc(N) =
)J""(N , w) for all ® > 0, in the same manner as before. In [4], under the assumption
that p(0) is continuous and p(0) > 0, it is shown that

N+2
MN)EMZ)W’ N=>2. @)

Under their assumption on p(6), it is also proved that A(2) > O and therefore
A(N) > 0.

Our next result shows that the proof of (7) can be somewhat simplified, and we
also have a lower bound on A/¢(N). Note that since we only assume that p(0) is a
probability density on the circle, A(2) is not necessarily positive.

Theorem 3
AMN) > 20 (2)1*F(N), AoC(NY > 20 (2)A ¢ (N).

In particular, with (2), we have (7) and with (5), we have

ALC(NY > A(2) ———.
(N) = ()192dN2
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In the next result, we also give an upper bound of A(N) and Alo¢(N). Denote the
supremum of the spectral of —L for N =2 by «:

K = sup sup
w>0

{ V2,0(f(=£) f)
2.0 (f%)

w(f)=0, fe Lz(vz,a»}.

Theorem 4
AN) < 2k 05(N), AoC(NY < 2k 01 ().

In particular, since k < 1, we have A(N) < 2A*(N) and A% (N) < 23%!¢(N).

The key of the proofs of the above comparison theorems is the fact that
v((Dy,j f )2) is the expectation of the variance of f with respect to v(:|F; ;) where
Fi j is the sigma algebra generated by the coordinates {nx; k # 7, j}, and there-
fore this variance can be estimated by the term of A(2) or « and the corresponding
Dirichlet form. Proofs of Theorem 3 and Theorem 4 are given in the Sect. 1.2.

In Sect. 2, we shall show that variants of the same methods can be used to obtain
spectral gap estimates for several models sharing some of the features of the Kac
walk or the generalization of Kac walk. In Sec. 3, we give two examples of such
processes.

1.1 Proof of Theorem 2

We first introduce operators E; ; appearing in the definition of £* and 7; ; which
represents the exchange of the velocity of particles i and j:

1 [7 y
Eijf(m) =~ / F(RFn)do,  mijf(n)= f(mijn)
—TT
where
me ifk#i, j,
(i jme=1n; ifk=i,
n  ifk=j.

As a convention, we take 7r; ;7 = 1. Note that E; ; is a projection which coincides
with v-conditional expectation given o -algebra JF; ; generated by variables {n;; k #
i, j}. Inother words, E; ; f = v(f|F;, ) is an average of f on the (»;, ;) plane with
respect to v. Therefore, we regard this model as a binary collision process given by
simple averages. Note that, by the definition D; ; = E; ; —Id.

To compare the Dirichlet form with respect to the long range operators with that
of the local operators, we first prepare preliminary lemmas.
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Lemma 1 Forany x,y and z € Ay satisfying y # z,
V((Dxy )?) <6v((rezf = 1)) +30((Dzy 1))

forall feL?*(v).

Proof If x =y, then v((Dy y f )?) = 0, so the inequality obviously holds. On the
other hand, if x # y and y # z, then for any n,

Exyf() =mx(Ezy(me: ) = (Ezy(Te2 ) (a2
Therefore, by Schwarz’s inequality and change of variables, we have
2((Dry )?) = v((Exoy f — 1) = 0({(Ezy e ) (i) — F))
= V({(Ezy (e )) (1) = (Ezy ()
+(Eoy Y0 = f) + f) = fzm)))
< 30({(Ezy (re2 ) ) — (Ezy YD) +30((D2y )?)
+3v((e o f = £)P).

Finally, since v({(Ey(mx, ) () — (Ez,yf)(n)}z) =v({E;y(TTx o f — f)}z) =
V(E; y(y . f — f)z) =v((my, f — f)z), we complete the proof. Il

Lemma 2 Forany x,y € Ay,
V(e f = ) <40 ((Dry 1))
Proof Since Ey y f(n) = Ex y f (rx,yn), by Schwarz’s inequality, we have

V((fo,yf_f)z)ZV((ﬂx,yf_Ex,yf+Ex,yf_f)2) §4V((Dx,yf)2)-
O

Proof of Theorem 2 For each pair x,y € Ay (x # y), choose a canonical path
I'(x,y)=(x=2z0,21,..-,2Zn(x,y) =) Where n(x,y) € Nand ||z; — z; ]| =1 for
0 <i <n(x,y) — 1 by moving first in the first coordinate direction, then in the
second coordinate direction, and so on. Then, by Lemma 1, we have

V((DxJ'f)z) = 61}((7Txvzn(x.y)—l f - f)z) + 3‘}((D2n(x,y)—l,yf)2)' (8)

On the other hand, since

T, Zney)—1 — 20,21 © 21,22 © " O T0z,(0 y)—=3:Zn(xsy)—2 © T Zn(x,y)—2:2n(x,y)—1

O Tz (x,y)=3+2nx,y)—2 O ° " O 21,22 © Tz0,21 >
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by Schwarz’s inequality

n(x,y)—2

V(e [ — ) 40 y) D (G f — ). ©)

i=0

Therefore, combining the inequalities (8), (9) and Lemma 2, we have

n(x,y)=1

V((Dey ?) <96n(x.y) Y v((Dzyzp 1))

i=0

Then, by the construction of canonical paths,

VL)) = —— 3 w((Dey )

IAle’yeAN
n(x,y)—1
96dN— Yo > (D )
xyeAN i=0
<96dN* Y v((Dyyf)*) =96dN>v(f (L") f).
X, YEAN O
lx—yl=1

Remark 1 The key ideas of the proof of Theorem 2, Lemmas 1 and 2 were exactly
same as the ideas presented in Sect. 2.5 of [1].

1.2 Proof of Theorem 3 and Theorem 4

We define an operator L on Lz(m,w) as

‘l s T
Loftn= { / [7(RIZn) — F()]p(©@)do + f

—7T -7

[£(R3'n) - f (n)]p(@)de}

WhereneRZ.FoerlneRN,1§i<j§Nandf:RN—>R,deﬁnef,;’j:
R?2 - R as

f,;"j(P,tI) = MM, i Py ikl oo Mjm15 G5 Nk ds -+ o5 TIN)-

Then, we can rewrite the Markov generator as follows:

1
LI =Y Lijf0)

i<j
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where £; ; f(n) = (Eof,;’j)(m, 1;). Note that fé’j does not depend on #; and 7;.
Then, we have

v(f(=Lipf) =v(f! in)d((—Lo) £ ) i)
= (v 22 (fy ) (=L0) f77)). (10)

Note that for N =2, L = %Eo. Therefore, by definition, we have for any w > 0 and
g€ L*(n,0),

22,0 ({g = 120@)) < V20(2(=L0)g) < 2120 (g — v2.0(2))).

Since

V({557 = v (5)))
=v({f - Ei;j ),

P P 2
V(VZ,anrnﬁ ({7’ - V2,4 (A1)

we have
202v((D; ; £)?) < v(f(—Lip)f) <2kv((D;j £)?).
Finally, it follows that

2.2 (f(—L7) £) <v(F(=L)f) < 2v(f(-L7) )

and therefore 24 (2)A*(N) < A(N) < 2kA*(N). In the same way, 2A(2)A*/¢(N) <
Aoc(NY < 2k a*1°¢(N)) is shown.

Now, it remains to show that ¥ < 1. This follows from this simple inequality
obtained by Schwarz’s inequality:

ww</ UX%%ﬂ—fmﬂ%pwy+m—myw)

-7

oo | —

no(f(=L)f) =

=

V20 </ [£(RY*n)* + F2](p(®) + p(—9))d6’>

-7

E

= V2,w(f2)-

We use only here the assumption that p(6) is a probability density on the circle.

2 General Setting

The general setting can be described as follows. We consider a product space
2 = X" where X, the single component space is a measurable space equipped with
a probability measure . On §2, we consider the product measure " . Elements of
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£2 will be denoted by n = (11, 2, ..., nn). Next, we take a measurable function
&: X — R™, for a given m > 1, and we define the probability measure v = vy ,, on
2 as u conditioned on the event

N
2Nw= {n €2;) Em) =w},

i=1

where w € @y is a given parameter and Oy := {Zf-vzl EMmi)ine XN} We interpret
the constraint on £2y ,, as a conservation law.

In all the examples considered below there are no difficulties in defining the
conditional probability v, therefore we do not attempt here at a justification of this
setting in full generality but rather refer to the examples for full rigor. As pointed
out in [3], the crucial property of v is that, for any set of indices A, conditioned on
the o -algebra F4 generated by variables n;,i ¢ A, v becomes the p-product law
over n;, j € A, conditioned on the event

DoEmp)=w—) EMm).

jeA i¢A

‘We introduce some notations in analogy_ v_vith the last section. For N >3, n e X N,
l1<i<j<Nand f: X" — R, define f;/ : X> - R as

f,i’j(p,Q) =fMLm2, Wil Py Nidls ooy Mjm15G, Njt1s o> IN)-

For each w € @, fix a well defined (possibly unbounded, with dense domain de-
noted by D(Lp)) nonnegative self-adjoint operator Lo = L{ defined on Lz(vg,w)
satisfying Lo f =0 if f is a constant function. We are interested in the process on
£2n ., described by the infinitesimal generator

1
Lrm=5> Liif) (11)

i<j

where L; ; f(n) = (Eof,;’J)(m, nj)= (E(f)(ﬂi)+§(77j) ,;’J)(m, 1;). In all the examples
considered below there are no difficulties to see that for each w € @y there exits
a dense subset of L?(vy.,) denoted by D(L) such that for all f € D(L), Lf €
L%(vy ) is well defined, and f;/ € D(Lo) forall i < j and n € 2y,,. Moreover,
by the construction, £ is nonnegative self-adjoint operator on D(L). As before, we
refer to the examples for fully rigorous formulations.

We also define the local version of the dynamics on £2 4, ., defined by

LFy= Y LeyfO)

X,yEAN
lx—yl=1

where Ly, () = (Lo f;*) (0. ny). Here f;” is defined in the same way as £/,
and the sum runs over all unordered pairs x, y € Ay satisfying ||x — y|| = 1.
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The spectral gap A(N, w) (resp. Alo¢ (N, w)) is defined by (1) with L%(v) replaced
by D(L) (resp. D(L!°¢)), and —L* replaced by —L (resp. —£'°). As a convention,
we may set A(N, w) = +oo if w is such that the measure v becomes a Dirac delta.
This convention shall apply also for AoC(N, w), A*(N, w) and A*°(N, w) where
the last two terms will be defined below.

To obtain lower and upper bounds on A(N, w) and Aloc(N | w), we consider a
binary collision process given by simple averages, which was introduced by Caputo
in [3]. This process is described by the infinitesimal generator

1
£ = 3 {vlf1Fs) - f} (12)

b

where the sum runs over all (]g) unordered pairs b = {i, j} and v[f|Fp] is the
v-conditional expectation of f given the variables nx, k ¢ b. Setting, as before,
D; j = Dp =v[-|Fp] —1d. As usual, we refer to the examples for fully rigorous for-
mulations. As in the last section, we also consider the local version of the process
described by the infinitesimal generator

Ly =Y Diyf(n (13)

X,yEAN
lx=yl=1

where ||x — y| = Zfl: 1 |x; — yil. Note that in all the examples considered below,
it is easy to check that D(L*) = D(L*!¢) = L?(v). The spectral gap A*(N, w) is
defined by (1) and A*°°(N, w) is defined by (1) with —L* replaced by —L£*/¢.

Remark 2 L* can be seen as a special case of £ in the form (11) with L f =
VZ,w(f) - f for f € LZ(VZ,LU)'

First, we show a comparison theorem between AR (N @) and (N, w).

Theorem 5 Forany N >2 and w € Oy,

VBN, w) > 96dN2)\*(|AN|, ).
In particular,
Iivgfz wiergN AN, w) >0 (14)
implies
inf inf NZAS(N, w) > 0. (15)

szwe@)mm

Proof We repeat the proof of Theorem 2. Indeed we only used the property that
the generators £* and £*°° are described in the forms (12), (13) with the special
operators D; ;. 0
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Now, we give a comparison theorem between A(N, w) (resp. AIUC(N ,w)) and
AN, w) (resp. A1 (N, w)). Define A(2) = inf,c@, A(2, w) and « as

K = Sup Sup
wé@z

{ V,0(f(=£)f)

el =0, [ D(c)}

where L is the generator for N = 2, namely %Eo. Here, as a convention, we may

set sup{%wz,w(f) =0, f €eD(L)} = —o0 if w is such that the measure

v becomes a Dirac delta.

Theorem 6 Forany N >2 and w € Oy,

22N (N, ) < AN, ®) < 2kA*(N, w), (16)
2AQASC(N, w) < AN, w) < 2k 1N, w). (17)

In particular, if A(2) > 0, then (14) implies

inf inf A(N,w) >0 (18)
N>2weBy
and inf inf NZA°(N,w) > 0. (19)

N22a)€@|AN|
On the other hand, if k < 0o, then (18) implies (14), (15) and (19).

Proof We repeat the steps of the proofs of Theorem 3 and 4 to show (16) and (17).
Indeed, this is a simple consequence of (10) with £(n;) + &(n7;) in place of 77,-2 + n?,
and the fact that £ = £ for N = 2, which always hold under our general setting.
Note that since we assume that Lo f = O for any constant f, we have for any w € ©®;
and g € L% (12,0),

12.0(8(=L£0)8) = 12.0({g = v2.0(@) }(—Lo){g — 12.0(2)}).

and therefore,

22120 ({2 = 12.0(@)}7) < v2.0(2(—L0)g) < 26v2.0({g — v2.0(2)}).

The latter part of the theorem follows from Theorem 5 and the former part of the
theorem immediately, noting that (18) implies A(2) > 0. O

Remark 3 There exist many of models with the spectral gap satisfying A(2, w) > 0
for all w € ®,, but L(2) = 0. For these models, it is clear that the required lower
bound (18) or (19) does not hold. For these models, we should give the estimate of
A(N, w) not only in terms of N but also in w (cf. [12, 13]).
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Remark 4 By definition, A*(2, w) = 1 for all w except for w such that 1*(2, w) =
A(2, w) = +o00. Therefore, for N = 2, (16) states that the following trivial relation
holds:

A2) < A2, w) <k.

Theorem 7 Assume A*(3) :=inf,eco, A" (3, w) > % and A(2) > 0. Then, (14), (15),
(18) and (19) hold.

Proof Caputo proved in [3] that for N > 2 and w € Oy,

2 1

AN, 0)=>BA*B)—-1)[1-—= —

Vo= (@@ - )(1- 3 ) +
holds. Therefore, A*(3) > % implies (14) holds, and therefore (15) also holds by
Theorem 5. Then, since we assume A(2) > 0, (18) and (19) also hold by Theo-
rem 6. =

Remark 5 Whether the condition A*(3) > % (or (14)) holds or not depends only on
the triplet (X, &, u). Namely the analysis of the spectral gap of the process described
by the infinitesimal generator of the form (11) is reduced to the analysis of the
property of the triplet, that is, the state space, the conservation law and the reversible
measure, and the spectral gap of the same system for N = 2.

Remark 6 1t is known that A*(3) > % is not the necessary condition for (14). In-
deed, Caputo showed in [3] that A*(4) := inf,cpm A*(4, ) > % and A*(3) > 0 also
implies (14).

3 Examples
3.1 Kac Walk

The model discussed in the introduction can be seen as a special case of our general
setting, so that Theorem 2, Theorem 3 and Theorem 4 become special cases of
Theorem 5 and Theorem 6, respectively. Here X = R, &(5)) = > (with m = 1) and
w is the centered Gaussian measure with variance v > 0. The choice of v does not
influence the determination of vy .. As shown in [3], this model satisfies 1*(3) > %
and therefore (14) holds.

3.2 Energy Exchange Model

Here we consider a special class of the energy exchange models introduced in [6] by
Grigo et al. We refer [6] for background and motivation on the model. Let X =R,
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&) =n (with m = 1), and p be the Gamma distribution with a shape parameter
y > 0 and a scale parameter 1, i.e.

dm=n1" 4
pldn) =n""" ——=dn.

I'(y)
Note that the choice of the scale parameter does not influence the determination of
V.. We consider a Markov process defined by its infinitesimal generator £/°°, and
L given by

1
Lfm=d Lijfo.  LCFm= 37 Leyf)
i<j X, yEAN
lx—yli=1

where £ f(m) = (Lo fe Y1), Loy £ = (Lo fiy ") 0762 1)),

Lo fm) =A@, n2) /[O | P, ma.de)[ f(Tam) — F ()]

Here, A : Ri — R, is a continuous function and P (11, 12, da) is a probability
measure on [0, 1], which depends continuously on (11, n2) € Ri. The maps Ty
model the energy exchange between two sites, and are defined by

Tan=n+ [an — (1 —a)n]ler — e2]

where ¢; denotes the i-th unit vector of R2. In words, the associated Markov process
given by £/°¢ with d = 1 goes as follows: Consider the one-dimensional lattice
{1,2,..., N}. To every site i of this lattice we associate an energy n; € X = R;..
The collection of all the energies is denoted by n = (1,...,ny) € X N To each
nearest neighbor pair of the lattice we associate an independent exponential clock
with a rate A that depends on the energies of this pair 7;, n;4+1. As soon as one
of the N — 1 clocks rings, say for the pair (i,i 4+ 1), then a number 0 <o <1 is
drawn according to a distribution P, that only depends on the two energies 7;, 0j+1.
Then, the updated configuration of the energies is such that the new energy at site
i is a(n; + ni+1), the new energy at site i + 1 is (1 — @)(n; + ni+1), and all other
energies remain unchanged.

To guarantee the reversibility of the process with respect to /v (or V), we
assume the following:

Assumption 1 The rate function A and the transition kernel P are of the form

n
A1, m) = As(m +772)Ar< )
n—+n2
(20)

mmmm=%’“ﬂﬁ
n+n2
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Moreover, As(0)A(B) >0forallo >0and 0 < 8 < 1, SUPg_g<1 A (B) < o0,
and the Markov chain on [0, 1] with transition kernel P (8, da) has a unique invari-
ant distribution p(-) given by

1 "' 2y)
Ir'(y)?

where Z is the normalizing constant, and p is a reversible measure for the Markov
chain generated by P.

_ 1
pdp)=dp[p—p)]” Ar(B)

Remark 7 Grigo et al. pointed in [6] that the representation (20) naturally occurs in
models originating from mechanical systems.

Under Assumption 1, Grigo et al. showed in [6] that £ (resp. £¢) is reversible
with respect to the product measure "V (resp. 14V ). Therefore, we define the spec-
tral gap A(N, w) of £ and Alo¢ (N, w) of £!°¢ for each w > 0 as before.

Theorem 8 Ifinf,.g Ag(c) > 0, then

inf inf A(N,w) >0 and inf inf N2A'°(N, w) > 0.
N>2 w>0 N>2w>0

To prove the theorem, we first study the spectral gap for the generator £* and
L£*1°¢ which are the special case of the above model given by

re ~
A =1, AB =1, P*(ﬂ,da)=—FEyJ;§ (a1 — o))" der

By definition, we can easily check that

1 loc
L= Dijfen. L=} Deyf,
i<j x,yEAN
lx—yll=1
and, by the unitary change of scale from 2y ,, to 2y 1, we have

AN, w) = A*(N, 1) :== L*(N), AN, @) = A5 (N, 1) i= 519 (N).

To obtain the exact value of A*(N) for N > 2, we recall Theorem 1.1 in [3]:

Ny = @) - 1) (1- )4 2 21
(V) = ( ()—)( _ﬁ)+ﬁ’ 21

Moreover, if there exists ¥ : X — R such that the function

3
. nz) =Y vm)

i=1
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satisfies, for N =3, L* f3 = —A*(3) f3 + const., regardless of the value of Z?:l ni
(although the constant may depend on this value), then (21) can be turned into an
identity for each N > 2.

Next, we apply the method introduced by Carlen, et al. in [4] to solve the 3-
dimensional problem. This approach was already used in [3] to show that A*(N) =

MELify =1.

Theorem 9 For any y >0,

yN+1

Y= Ne T

(22)

Proof As same way in Examples 2.2 in [3], we observe that when N = 3, then
L* 4+ 1 coincides with the average operator P introduced in [4]. Therefore we can
apply the general analysis of Sect. 2 in [4]. The outcome is that

1
A*(3) = gmin{2+u1,2—2,u2} (23)

where the parameters (11 and p, are given by

1 =igfv(¢<m)¢(nz)), B = Szpv(qﬁ(m)fb(nz))

with ¢ chosen among all functions ¢ : X — R satisfying v(¢(n1)?) = 1 and
v(¢ (1)) = 0. Here v stands for v;, but we have removed the subscripts for
simplicity. One checks that the parameters p1, 2 do not depend on w. Write
K¢ (&) =vigp(m)In1 = ¢],¢ > 0. This defines a self-adjoint Markov operator on
L2(vy), where v is the marginal on n; of v. In particular, the spectrum Sp(K)
of K contains 1 (with eigen space given by the constants). Then w|, uy are, re-
spectively, the smallest and the largest value in Sp(K) \ {1}, as we see by writ-
ing v(¢ (1) (1m2)) = v[d(n1)Ke(n1)]. This is now a one-dimensional problem and
W1, 12 can be computed as follows. To fix ideas we use the value w = 1 for the
conservation law 7y + 172 + n3. In this case vy is the law on [0, 1] with density
%n?’” (1 —n)?~1. Moreover,

Ir'Q2y)

Koo = o a =y

I—m
/0 o) {m(1 —m —nz)}y_ldnz'

In particular, ¢ (n) =n — % is an eigenfunction of /I with eigenvalue — % Moreover,

IC preserves the degree of polynomials so that if Q, denotes the space of all poly-
nomials of degree d < n we have XQ, C Q,. By induction we see that for each
n > 1 the polynomial {" + g,—1(¢), for a suitable g,—| € Q,—1, is an eigenfunction

: ; _ I'2y)I(nty) s : 2
with eigenvalue u, = (—1)”W, and it is orthogonal to Q,_1 in L~(vy).

Since the union of Q,,n > 1, is dense in L2(v1) this shows that there is a complete
orthonormal set of eigenfunctions ¢,, where ¢, is a polynomial of degree n with
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eigenvalue w, and Sp(K) = {,,n =0, 1, ...}. Therefore we can take | = —% and

Wy = 2(}+’2’y) in the formula (23) and we conclude that A*(3) > 3(1%32);)

To end the proof, we take f = n% + n% + n% and, using v[n%mz] = 2(%5)/)(772 —
1)2, we compute
143y

BT TE=27)

f(n) + const.

Thus, 1*(3) = % Clearly, the unitary change of scale does not alter the form
of the eigenfunction so that (22) follows. Il

Remark 8 The consequence of Theorem 9 was shown in [5] with a different proof.

Remark 9 By Theorem 2.12 in [6], for d = 1, A*/°°(N) > 2}/% sinz(NLH) holds.
However, to estimate the spectral gap with degenerate rate function, namely the case
where inf, g Ag(0) = 0, we need to estimate the spectral gap on the complete graph
(see [13]).

Proof of Theorem 8 By Theorem 6, we only need to show that A(2) =
inf,~ 0 A(2, ®) > 0. By the assumption, for N =2,

v(f(=L)f)
m 2 m
= A, Ay Tyn) — P ,d .
on((55) [,V - sl (S )

Therefore, by the unitary change of scale from §2; ,, to £25,1, we have

2wy =295 00,
As(1)
Then, by our assumption, A(2, 1) > 0 and therefore A(2) > 0. O

3.3 Zero-Range Processes

The class of zero-range processes is one of the well-studied interacting particle sys-
tems (cf. [8]). Though the process is of gradient type, the lower bound estimate of
the spectral gap itself has been considered as an interesting problem and studied by
several people ([2, 9, 11]). Here, we take X = N U {0}, £() = n, and consider a
partition function Z(-) on R by

k

o
7 — e
=2 2(Dg2) ... g(k)

k>0



Spectral Gap of Binary Collision Processes 559

where g : N — R, is a positive function. Let «* denote the radius of convergence
of Z:

a* =sup{a € Ry; Z(a) < o0}

In order to avoid degeneracy, we assume that the partition function Z diverges at the
boundary of its domain of definition:

lim Z(a) = oo.
ata*

For 0 <« < a*, let py be the probability measure on X given by

1 ak

(N =k) = ——
Pe1 =0 = ) !

where g(k)! = g(1)g(2)...g(k). Note that the choice of 0 < & < o™ does not influ-
ence the determination of v = vy .

First, we consider L* defined by (12) and study the value of A*(3). Following the
same argument of the computation of 1*(3) in Example 3.2, we can show that

1
A3) = gmin{2 + 11,2 = 20}

where the parameters (41, uy are, respectively, the smallest and the largest value in
{Sp(y)\{1};n e N} and IC), = (ICE;?)) is the n x n matrix given by

1 i—1 1 —1
gn—=lgli—1-(n—j)! (Zl=0 g(l)!g(i—l—l)!)

o ifi>n—j

n

,Cij =
0 ifi <n-—j.

By the Perron-Frobenius theorem, 1 > —1. Therefore, uy < % is a sufficient con-
dition for A*(3) > % In [14], the set {Sp(K,)) \ {1}; n € N} is completely determined
for the cases where g(k) =1 for all k € N or g(k) = k for all k € N. In the former
case, oy = % and in the latter case wy = %. It concludes that A*(3) > % for both
cases and therefore (14) and (15) hold.

Next, we consider the generator of zero-range processes defined by

1
Lfm=5D Lijfn, L= 3 Leyf)

i<j X, YEAN
lx—yl=1

where £; j (1) = (Lo fyY0i, 1)), Loy £ = (Lo fiy ") 0162 1y),

Lofmi,m)=gmD{fm—1Lm+1)— fi.m)}
+em{fm+1.m—1)— fn.m)}.
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As a convention, we take g(0) = 0. To apply Theorem 7, we need to study A(2) =
inf,en., A(2, w). For the choice g(k) =1 for all k € N, it is known that A(2) = 0.
On the other hand, a sufficient condition for A(2) > 0 was given in [9] as follows:

Proposition 1 Assume that the following two conditions are satisfied:

®
(i)

supy |g(k + 1) — g (k)| < oo,
There exists kg € N and C > 0 such that g(k) — g(j) > C forall k > j + k.

Then, we have L(2) > 0.

Theorem 10 Assume that the two conditions in Proposition 1 are satisfied, and
12 < %. Then, (18) and (19) hold.

Proof By the above argument, we can apply Theorem 7 straightforwardly. g
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A Restricted Sum Formula for a g-Analogue
of Multiple Zeta Values

Yoshihiro Takeyama

Abstract We prove a new linear relation for a g-analogue of multiple zeta values.
It is a g-extension of the restricted sum formula obtained by Eie, Liaw and Ong for
multiple zeta values.

1 Introduction

Let o = (o, ..., o) be a multi-index of positive integers. We call the values r and
Y i_ ;i depth and weight of «, respectively. If a1 > 2, we say that « is admissible.
For an admissible index (v, ..., «,), multiple zeta value (MZV) is defined by

oy, ... 0) = Z 1

o] o
my'---my
my>-->m;>0

Let Iy(r,n) be the set of admissible indices of depth r and weight n. In [3], Eie,
Liaw and Ong proved the following relation called a restricted sum formula:

> ot(an a1 = > (Br+n—=b—1,p,...,Bat1),

aely(b,n) Belp(a+1,a+b+1)

(D

where @ > 0,b > 1,n > b + 1 and 1¢ is an abbreviation of the subsequence
(1,...,1) of length a. It is a generalization of the sum formula proved in [4, 9],
which is the equality (1) with a = 0.

In this paper we prove a g-analogue of the restricted sum formula. Let 0 < g < 1.
For an admissible index o = («1,...,®;), a g-analogue of multiple zeta value
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(gMZV) [1, 5, 10] is defined by

q(alfl)ml‘l’""”(ar*l)mr

;'q(al,.--yar) = Z [m]or - [m, ] ’

my>-->m;>0

where [n] is the g-integer [n] := (1 — ¢")/(1 — g). In the limit ¢ — 1, gMZV
converges to MZV. The main theorem of this article claims that gMZV’s also satisfy
the restricted sum formula:

Theorem 1 For any integers a > 0,b > 1 and n > b + 1, it holds that

Z §q(a1,...,ab,1“): Z LqBr+n—>b—1,p6,...,Bat+1).

aely(b,n) Bely(a+1,a+b+1)

2)

Setting a = 0 we recover the sum formula for gMZV obtained by Bradley [2].
In [7] Okuda and the author proved a g-analogue of Ohno-Zagier’s relation for
MZV’s [6]. It claims that the sum of gMZV’s of fixed depth, weight and height, the
number of elements «; grater than 1, is written as a polynomial of the values &, (1)
(n € Z>2) with rational coefficients. The left hand side of (2) is a similar sum, which
contains only the gMZV’s with a tail 1¢.

The strategy to prove Theorem 1 is similar to that of the proof for MZV’s. How-
ever we should overcome some new difficulties. In the calculation of the g-analogue
case, some additional terms are of the form Z;’O: 1 qk” / [n]* (k € Z>1). In the limit
of ¢ — 1, it becomes a harmonic sum Y_ 1/n*, but it is presumably beyond the class
of g-series described by gMZV’s. To control such terms we make use of algebraic
formulation of multiple harmonic series given in Sect. 2.2. We introduce a noncom-
mutative polynomial algebra 0 which is an extension of the algebra used in the proof
of a g-analogue of Kawashima’s relation for MZV [8]. Then the proof of Theorem 1
is reduced to an algebraic calculation in 9 as will be seen in Sect. 2.3. We proceed
the algebraic computation in Sect. 2.4 and finish the proof of Theorem 1.

Throughout this article we assume that 0 < g < 1. We denote the set of multi-
indices of positive integers, including non-admissible ones, of depth » and weight n
by I(r,n).

2 Proof

2.1 Summation over Indices

Forb>1,n>2and M € Z>, define

b (aj—Dym;

Kpn(M) = Z Z Hq[mT

acly(b,n)ymy>my>-->mp_1>mp=M j=1



Restricted Sum Formula for gMZV 563
Since «; > 2, the infinite sum in the right hand side is convergent. Note that

Kin(M)=q"= DM /M)
For positive integers £, 8, M and N (N > M), we set

ki—M

¢
q 1
fe(N, M) := Z 1—[ ’
N=ky>ky>--->k¢>M [kl - M] =2 [k] — M]

(B—Dm; L m;
Z q q"i
gg,/g(M) = [ml]ﬂ

M=m\zmy=--zm;>1

- [m;]
We set f¢(N, M) =0unless N > M. Note that g1 g(M) = K1 g(M).

Lemmal For M >1,b>1andn > 2, it holds that

b—1 00
Kpn(M)=gpnbpi1(M) =Y > Kp_sns(N) fo(N, M),
s=1 N=M+1

Proof For k > 2 and m > my, it holds that

q(ﬂl—l)'nl-l-(ﬁz—l)'nz
Z [m11P1[my]P2

Bel (2,k)
(- (50 )/ 5
[m1][m2] \\ [m1] [m2] [m1]  [ma2]
q(k72)m2 1 q(k72)m1 qmlﬂnz

Tl my—mal [ R Imy —ma]

Using the above formula repeatedly we get

qml q(ﬂ/ l)m]
Kp.n(M) = ) il Z 1_[ 1P
my>-->mp_1>mp=M Bel(b,n =1 J
gm (" 1 gn=b="Dms
B Z _[mq] U (mj—mpl ) [mp]"—?
mi>-->mp_1>mp=M j=1

b—1 00

_Z Z Kp—sn—smp_) fs(mp—g, M).

s=1mp_y=M+1
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The first term of the right hand side above is rewritten as follows. Setting m; =
i+ +lp+M(@G=1,...,b—1), wehave

qml b-1 1 q(n—b—l)mb
Z [m1] ]1_[ j [mp]"=>

my>-->mp_1>mp=M =1 [m] —my]
_ q(”*bfl)M 0 q€1+-'-+lb71+M 1:[ 1
(M=t €1+ + by + ML+ + L]
Lreenlp1=1 Jj=1

Now take the sum with respect to €1, £, ..., £,_1 successively using the equality

i q +m B Z( q€+n q£+m ) qm—n _ qm n mZ" ql—i-n

o [Z+m][£+n] — E+n] [+m]/)[m—n] [m—n] — [€+ n]
which holds for any m > n. Then we obtain g ,—p+1(M). Il

Lemma 1 implies the following proposition, which can be proved by induction
on b:

Proposition 1 For positive integers r, £ and N1 > --- > N, > M, set

r—1
hre(N1 - Ny M) =y <Hfc_,(Nj,ij)fC,(Nr,M). 3)

cel(r,l) \j=1

Then

Kb,n (M) = gb,n—b+1(M)

b—1 ¢
+X 3D Y gen bt (ND hre(Ny, -, Ny, M)
=1r=1 N1>Ny>-->N.>M

4)

forb>1,n>2and M > 1.

Multiply Kp, ,(M) by the harmonic sum

) H )

m
M>mi>-->my>0 j= l[ J]

and take the sum over all M > 1. Then we get the left hand side of (2). In order to
carry out the same calculation for the right hand side of (4), we prepare an algebraic
formulation for multiple harmonic sums.
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2.2 Algebraic Structure of Multiple Harmonic Sums

Denote by 0 the non-commutative polynomial algebra over Z freely generated by
the set of alphabets S = {zx};2 | U {&k};2 . For a positive integer m, set
(k—1ym o (m) o= qkm |

‘ [m]¥

Forawordw=uy---u, €0(r>1,u; € S) and M € Z>, set

9"
[m]k °

Jy (m) =

Ap(M):= " Y Ty (mp) - Ty, (mp),
M>my>--->m;>0
AL(M):= Y Ty my) e Ty, (my).

M>mi>-->m,>1

We extend the maps w — A, (M) and w — A} (M) to the Z-module homomor-
phisms A(M), A*(M) :9 — R by Aj(M) =1, A](M) =1 and Z-linearity. Note
that AZ? (M) is equal to the harmonic sum (5). If w is contained in the Z-linear
span of monomials z;, ---z;, withij > 2, A, (M) becomes a linear combination of
gMZV’s in the limit M — oo.

Denote by 0¢ the Z-subalgebra of 0 generated by {& ]2 . Define a Z-bilinear
map p : 0¢ x 0 — 0 inductively by p(1, w) = w(w €0), p(v, 1) =v(v € 9¢) and

pErv, zew) =& p (v, Zgw) + zep Erv, w) + Zkpep (v, W),
pExv, Egw) =&k p (v, Zew) + & (v, W) + koo (v, W)

for v € 0z and w € 0.

Proposition 2 For v € 0¢,w € 0 and M > 1, we have A,(M)A,(M) =
Ap(v,w)(M)~

Proof 1t is enough to consider the case where v and w are words. If v=1orw =1,
it is trivial. From the definition of A(M), it holds that

gkm g=bn
Aga(M) =) DA, Az (M) = > A ©)
M>m>0 M>n>0
Hence we find
AEkU(M)Azgw(M)
km q(ﬂ—l)n

:( Z + Z + Z )gnTWAv(m)Aw(n)

M>m>n>0 M>n>m>0 M>m=n>0
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k —1)n
= T Ay (M)A (m) + Y —— Ag (1) Ay (n)
M>m>0[ ] M>n>0 []
q(k+£ Hm
+ > T Avm Aw(m)
M>m>0

and a similar formula for Ag , (M)Ag,, (M). Now the proposition follows from the
induction on the sum of length of v and w. 0

For k > 1, we define a Z-linear map & o - : 0¢ — 0¢ inductively by £ 01 =0 and
&k o (§¢v) = &yov for v € 0. Now consider the Z-linear map d : 0z — ¢ defined
by d(1) =1 and d (§;v) = &xd (v) + &k o d(v) (v € Dg).

Proposition 3 For any v € 0¢ and M > 1, it holds that A (M) = Agw)(M).

Proof From the definition of A(M) and A*(M) we have

km
* " . q
At ,(M)= > T AL+ ). > DAV 1) = A uson (M),

M>m>0 M>m>0
To show the second formula, divide the sum A,(m + 1) into the two parts with
m1 =m and m; < m. Combining the two formulas above, we obtain the proposition
by induction on length of v. g

2.3 Algebraic Formulation of the Main Theorem

To calculate the right hand side of (4) multiplied by the harmonic sum (5), we need
the following formula:

Lemma2 Forny > --->ng > ng41 > 0, set
”1 g1

plny,... ngngp) = H (7)

[nl _ns+1] 5[ _ns+1]

Lets > 1,v=2z1 or &1, and N and M be positive integers such that N > M. Then
it holds that

Yoo P ng g )Ty

N>ni>->ng 1 >M

= > Tok)plka, ... ks, ksy1s M)
N>ki>->ksyp1>M

s k [it]

q 1

+ > T ]<]"[ 7 ]>P(kz+2,---,ks+1;M),
=1 Noki>omkep =M "0

where p(J; M) = 1.
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Proof Here we prove the lemma in the case of v = z;. The proof for v = &; is
similar. Using

1 1 < 1 N q"m)
n1 —ngiillng] [l \In1 —nsp1l  [ns1l)’
1 1 " 1 ,
(" ) G=2.....5).

[n; —ngilinss]  m\[nj —ngi1l | M5y

we find that

pni, ..., ng ngp1)Jy(ngi)

s (=80 (Il
q . 1
— § R | | — p(ni+1,...,ns;ns+l)~
= [n1] > [n;]

= j=

Now take the sum of the both hand sides over N > n| > --- > ns11 > M. In the

right hand side, change the variables ny, ..., ng41 to ki, ..., kg4 by setting n, = k;
A=t=<i+),n=kip1—kipo+kp1 (F2 =<t <s)andngy1 =kit1—kiro+M.
Then we get the desired formula. 0

Let 01 be the Z-subalgebra of d generated by z; and &;. Motivated by Lemma 2
we introduce the Z-module homomorphism ¢; : 91 — 01 (s € Z>p) defined in the
following way. Determine ¢, (w) for a word w € 9; inductively on s and length of
w by g =id, oy (1) =&12 7' (s> 1) and

oo(ziw) =219s(W) +£1 Y o), eEw) =& e i(w),

i=1 i=0

and extend it by Z-linearity.
Proposition 4 For w € 01 and any positive integers s, s’, £, B and N, we have

Y AWM (ML M) AWM = Y fr (N M) A,y (M),

N>M;>M»>0 N>M=>0
> g p (M) fs(My, Ma)Ay(M2) = Y ge.p(M) Ag, () (M).
Mi>M>0 M=>0

®)

Proof Here we prove the first formula (8). The proof for the second is similar. It
suffices to consider the case where w = uy---u, (r > 1,u; € S) is a word. The left
hand side of (8) is equal to

Zfs’(N, M) p(My, ki, ..o kg1 Mz)l_[fu,- (m;),

i=1
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where p is defined by (7) and the sum is over M1, k; (1 <i <s—1), My, m; (1 <
i <r) with the condition N > M| > k| > --- > k1 > M) >m| > --- >m, >
0. Changing the variables (ki, ..., ks—1, M2) to (ny,...,ns) by ki = My —n1 +
niy1(1<i<s—1)and My = M| — n| + m, we obtain

Y SN M) par . ongim) [ g (ma).

i=1

where the sum is over N > M| >ny > --- > ng > my > --- > m, > 0. From
Lemma 2 and the definition of ¢;, we see by induction on r that it is equal to the
right hand side of (8). Il

We define the Z-linear maps @, : 91 — 01 (£ > 0) by @ :=1id and

@, —Z( D> e e,
cel(r,?)
and Z; : 91 — 0 (s > 0) by

Z(w) —Zp <De(uJ))

Proposition 5 For any integersa > 0,b > 1 andn > b + 1, we have

b-1 q(n—s—l)M
Yo gl 1) =)0 i Az ™). ©)
aely(b,n) s=0 M >0

Proof Using Proposition 4 repeatedly, we have

> 8o (NDhpe(N1, ... Ny, M)A o (M)
Ni>Npy>->N,>M>0

Z Z 8b.m(M) Ay, .., ) (M),

cel(r,l) M>0

where h, ¢ is defined by (3). Hence Proposition 1 implies that

D gl 1) = Kpm(M)Aa(M)

aely(b,m) M=>0
b—1

=Y "> gbtambr1(M)Ag, o (M).

£=0 M>0
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Substituting
Jj—1 g ti—t=OM
g M) =2 =t A M)
=0
we get the desired formula from Propositions 2 and 3. g

As we will see in the next subsection, the elements Z(z{) (s,a > 0) belong to
the subalgebra of 0 generated only by {zx}72; (see Propositions 6 and 8 below).
Thus the right hand side of (9) will turn out to be a linear combination of gMZV’s.

2.4 Proof of the Main Theorem

First we give a proof of Theorem 1 with @ = 0, that is, the sum formula for gMZV’s.
To this aim we prepare a recurrence relation of d (¢ f ) (k = 0).

Lemma 3 Letk > 1. Then

~

51 ZZ gcl"'cr'

r=1cel(rk)

Proof We prove the lemma by induction on k. The case of k = 1 is trivial. Let k > 2.
From the definition of d and the hypothesis of induction we see that

k—1 k—1
dE)=dE &) =6) Y scl---sc,mo(Z > ss)

r=1cel(rk—1) r=1cel(rk—1)

k k—1 k
ZZ Z Ecl"‘gcr"‘z Z Ecl"'fc,-zz Z ch"fcw

r=2 cel(rk) r=1 cel(rk) r=1cel(rk)
cp=1 c1>2
This completes the proof. O

Corollary 1 For k > 1 it holds that

k
1) =D &d(Ef ). (10)
a=1

The sum formula for gMZV’s follows from the following proposition.

Proposition 6 Z;(1) =850 (s > 0).
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Proof Using &, = — Zﬁ:l OaPr—q (£ > 1), we find that @,(1) = (—51)’3 £ =0
by induction on £. Thus the proposition is reduced to the proof of

D (=D)'o(d(E7). &) =6s0.
=0

Let us prove it by induction on s. Denote the left hand side above by Ty. It is trivial
that To = 1. Let s > 1. Divide T into the three parts

s—1
=d(E) + 2D (). 6) + (D'

Rewrite the second part by using (10) and the definition of p and d. Then we get

s—2
Za{j( Dip(d(E77).&]) = Y _(=Deip(d(5]7"77). &)
a=1 =1 =0
s—1
= Earils—a1. (11)

From (—1)°§] = —(—1)“151,0(d(59), éffl), which is the summand of the second
term of (11) with £ =s — 1, and

Zgap ’i:])"'éfva

a=1

we obtain
s—1 s—1
T = ZSaTs—a + %_s - ngs—l - ZSa—i—lTs—a—L
a=1 a=1
Therefore the induction hypothesis T, = 64,0 (@ < s) implies that 7y = 0. Il

From Proposition 5 with a = 0 and Proposition 6, we see that

D gl )= 2

aely(b,n) M=>0

(n—1)M

[(M]"

A1 (M) =¢4(n).

Thus we get Theorem 1 in the case of a = 0. To complete the proof of Theorem 1,
we should calculate Z;(z{) for a > 1. For that purpose we prepare several lemmas.

Lemma 4 For £ >0 and w € 01, it holds that

14
Be(ziw) =) (=6 1@ (w). (12)

J=0
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Proof For non-negative integers a and n, set 19 , = 8, 0 and

Nani= Y. &12f £z (@=1).

cel(a,n)

Then it holds that

s
s (Ef1w) =Y (Mas—t + Nat 151210 (W),
t=0

where 1441,—1 :=0, fora > 0,5 > 0 and w € 9. Using this formula we prove (12)
by induction on £. The case of £ =0 is trivial. Let £ > 1. The induction hypothesis
and the relation @y = — Zf;:l 0aDy—q imply that

£—=1€—j a
e(ziw) =Y DY (e-a—jiat + Nea—jt1a—r-1)210 (D (w)).

j=0a=1t=0

Divide the sum into the two parts with t = 0 and 7 > 1, and take the sum with respect
to a. Then we obtain

-1 l=j
Z (=8e—j0+ (=D ne—j0)z190(@j (w)) — ZCSZ—j—t,OZI(Pt(q)j(w))
j:() =1

Since n¢—j0 = éf_j, ¢o =1id and — Zf;é) e jPj = @y, itis equal to the right hand
side of (12). ' O

Lemma 5 Fork >0 and w € 0y, it holds that

k
Y o(d(E ), & ziw) szp ) w). (13)
£=0

Proof Denote the left hand side and the right hand side of (13) by L and Ry,
respectively. The equality (13) holds when k = 0 because Lo = p(1, z1w) = zjw =
z1p(1, w) = Ry. Hereafter we assume that k > 1.

Divide Ly into the three parts

k—1
Li=p(d(£f), ziw) + Z(—l)ep(d(élk_l), Efziw) + (=DFEfzw. (14)
=1

Let us rewrite the first part. Substitute (10) into d (€ f‘ ). From the definition of p we
see that the first part is equal to

k

D (Eap(d (&) 21w) + 210 (Ead (§177), w) + 2a19(d (§]77), w)).

a=1
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Note that the first term of the summand with a = k is equal to &z w = & Lo. Apply
(10) again to the second term, and we see that the first part of the right hand side
of (14) is equal to

k—1
&Lo+ Y &ap(d(E ™). z1w) + Ri. (15)

a=1

We proceed the same calculation for the second part of (14). Here we decompose
Ele w =& ~Ef7121w and use (10). As a result we get

k—1k—a
DO (=D Eap(d(E ), e ziw) Zsumk a1
a=1 (=1
—Z(—l)ém g7 Eaw). (16)

Note that the third part of (14) is equal to

—(=D g p(d(g)), €5 ziw), (17)

which is the summand of the third term of (16) with £ = k — 1. Hence the three parts
(15), (16) and (17) add up to

k-1 k-1
ELo+ Y Ealia+Ri—Y &ar1Li—a1 — &1 L1 = Ri.
a=1 a=1
This completes the proof. O

Now we can prove the key formula to calculate Z,(z{) fora > 1:
Proposition 7 Let w € 9y and s > 0. Then Zs(ziw) =Y y_o 2e+1Zs—e(w).
Proof Using (12) we have

s I
Zy@iw) =Y > (=D p(d(E). &z w)).

£=0 j=0

Because of Lemma 5 it is equal to

s s—J s
ZZZ€+IP £ - Z) ¢j(w))=Zzz+1Zs—1(w)-
j=0¢=0 =0
This completes the proof. g

Combining Proposition 6 and Proposition 7, we obtain the following formula:
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Proposition 8 For s >0 and a > 1, it holds that

ZS(Z?) = Z Lyr Ly

yel(a,s+a)

At last let us prove Theorem 1 in the case of a > 1. From Proposition 5 and
Proposition 8, it holds that

b—1
Z gq(al,...,ab,la)zz Z Cgn—s—=1,y1,....a)-

aely(b,n) s=0yel(a,s+a)
Set B1 = b + 1 — 5. The right hand side becomes

b+1

Z Z LgBr+n—b—1,y1,....%)

B1=2vyel(a,a+b+1-p1)

= > GBitn—b—1,p ..., Bus1).

Bely(a+1,a+b+1)

This completes the proof of Theorem 1.
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A Trinity of the Borcherds & -Function

Ken-Ichi Yoshikawa

Abstract We discuss a trinity, i.e., three distinct expressions, of the Borcherds
@-function on the analogy of the trinity of the Dedekind n-function.

1 Introduction—A Trinity of Dedekind n-Function

The Dedekind n-function is the holomorphic function on the complex upper half-
plane $) defined as the infinite product

n( :=q">*](1-¢"),

n>0

where g 1= e?™iT Tt is classical that 17(1)24 is a modular form for SL;(Z) of weight
12 vanishing at +i oo and this property characterizes the Dedekind n-function up to
a constant.

Let us recall the trinity of the Dedekind n-function. Besides the definition as
above, the Dedekind n-function admits at least two other distinct expressions, one
analytic and the other algebro-geometric. Precisely speaking, we consider the Pe-
tersson norm

[n@] = &) *|n)|

rather than the Dedekind n-function itself.
Let us explain an analytic counterpart of the Dedekind n-function. For t € §), let
E; be the elliptic curve defined by

E. =C/Z+7Z,
which is equipped with the flat Kéhler metric of normalized volume 1

gr:=dz®dz/3T.
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The Laplacian of (E, g;) is the differential operator defined as

- L NaE N 92
=== =+
T T g2z 4 \ax2 T 92

The set of eigenvalues of [ is given by {m?|mt + ”|2/ST}(m,n)ezZ and hence the
spectral zeta function of [J; is defined as

RT4 s
Ge(s):= Y <7n2|mf+n|2>‘
(m,n)#(0,0)

It is classical that ¢ (s) converges absolutely when 9is > 1 and extends to a mero-
morphic function on C. Moreover, ¢ (s) is holomorphic at s = 0. The value

det*[0; :=exp(—¢;(0))

is called the (regularized) determinant of [J; on the analogy of the identity for finite
dimensional, non-degenerate, Hermitian matrices

d _
logdet H =——| TrH".
ds s=0
By Ray-Singer [29], the classical Kronecker limit formula can be stated as follows
in this setting:
Theorem 1 The following equality holds
4
det*0; =4|n(0)|".

Let us explain an algebro-geometric counterpart of the Dedekind n-function. Let
M, »(K) be the set of m x n-matrices with entries in K C C. Recall that every
elliptic curve is expressed as the complete intersection of two quadrics of P>

E [x] € P*: fl(x)—allxl+a12x2+a13x3+g14x4_0
a=1lx
f2(x) = anix} + anxj + axi 4+ axxi =0

where A = (a;;) = (a1, a2,a3,a4) € M 4(C).For Ae M 4(C)and 1 <i < j <4,
we define

A,‘j (A) :=det(a;, aj).

Since the value ||7(7)| depends only on the isomorphism class of the elliptic curve
E., it makes sense to set ||n(E7)|| := |In(7)]|l.

Theorem 2 With the same notation as above, the following equality holds

2—1 6
28||7;(EA)||24= 1_[ |Aij(A)|2,< e B aA/\&A>.
A

I<i<j<4
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Here ay € HO(EA, .Q}EA) is defined as the residue of f1, f2, i.e.,
oA = E'EA,

where & is a meromorphic 1-form on P3 satisfying the equation
4
dfi ndfa A E = (=1)"xidxy Adxioy Adxi1 Adxs.
i=1

For A = (a;;) € M> 4(C), one can associate another elliptic curve
Ca={(x.y) € C%; y? =4(anx +az)(@nx +axn)(a3x +ax)(aisx + ax)}.

Namely, C4 is the double covering of P! with 4 branch points (a1 : —az1), (a2 :
—an), (a13 : —az3), (a1a : —aza). If a;; =0 and ajp = 1, then Cy4 is an elliptic
curve expressed by the Weierstrass equation. It is not difficult to see C4 = E 4 and

—1 [ dx dx\°
Pnen)*= 1 |Ai,»(A>|2-(F —’CA_’C>.

l<i<j<d4 272 Jey vy
(We shall study an analogue of E 4 and C4 for K3 surfaces later.)

Theorem 2 is easily verified when E 4 is the projective embedding of E; by the
linear system |4@]|. In this situation, the equations of E4 are the linear relations
between the theta functions 6, ,(z, t) (a,b € {0, %}). General case of Theorem 2
follows from this special case by the invariance of the expression in Theorem 2
under the action of GL,(C) x (C*)*. See [16] for the details.

In this survey, we explain a generalization of the trinity of the Dedekind n-
function as above to that of the Borcherds @-function. For this, we make the fol-
lowing replacements:

e elliptic curves = Enriques surfaces
e determinant of Laplacian = analytic torsion
® [[1<i<j<4Aij(A) = resultant of three quadratic forms in three variables

For the analytic aspect of the Borcherds @-function, our explanation is based on
[34, 36], while for the algebro-geometric aspect of the Borcherds @-function, our
explanation is based on [16]. In this survey, we will not give proofs. We refer the
reader to these papers for the details.

2 Borcherds @ -Function

In this section, we recall the Borcherds @-function.
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2.1 Domains of Type IV and Its Realization as a Tube Domain

A free Z-module of finite rank equipped with a non-degenerate, integral, symmetric
bilinear form is called a lattice. The automorphism group of a lattice L is denoted
by O(L).Foralattice L= (Z", (-,-)1) and k € Q, we set L(k) := (Z", k{(-,-)1). We
define U := (Z2, (?(1))). There exists a unique positive-definite, even, unimodular
lattice of rank 8, up to an isometry. This lattice is denoted by Eg.

Let A be a lattice of signature (2,5~ ). We define an open manifold §24 of di-
mension b~ as

24 :={[Z1eP(ARC); (Z,Z)4 =0, (Z,Z) 4 > 0}.

Then £2 4 is the set of maximal positive-definite subspaces of A ® R and is isomor-
phic to SO2,b7)/SO(2) x SO(b™). Hence each connected component of §£24 is
isomorphic to a symmetric bounded domain of type IV of dimension ™.

Assume that there exists k € Z~( and a lattice of signature (1, b~ — 1) such that
A=T(k) @ L. Let {e,f} be a basis of U(k) with 2 =2 =0, e - f=k. We set
v:=ec Uk) and v :=f/k € U(k)". Then we have an isomorphism of complex
manifolds L ® R+ iCp = 24 given by the map

<Zv Z)L

L®R+iCLaz—>Z=[v— v’+z]eQA.

Here Cr :={x € L®R; (x, x); > 0} is the positive cone of L. Since L is Lorentzian
and hence C; consists of two connected components, we choose one of them,
say Czr. Write .Qj{ for the component of £24 corresponding to L ® R + iCZL.

Then we have the decomposition 2,4 = .Qj{ I .QX The subgroup of O(A)

preserving the connected components 27, .Q_/J{ is denoted by O1(A). Clearly,
[O(A): 0T (A)]=2.

2.2 Automorphic Forms over Domains of Type IV

Let us recall the notion of automorphic forms over .QX There are several mutually
equivalent definitions.

2.2.1 Automorphic Form as a Multicanonical Form on SZX

Let £ be the tautological line bundle on £27:

L:= OP(A®C)(_1)|QX C .QX X (A®C).
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The natural action of O (A) on .QX x (A ® C) induces the OT(A)-action on L.

A holomorphic section f € H(27, £¥) is called an automorphic form for I' C
O™ (A) of weight k with character x if

fD=xvf(2)

forall Z € .Qj{ and y € I', where x : I’ — C* is a finite character.

2.2.2 Automorphic Form as a Homogeneous Function on the Cone over fl;"'

Let C ot be the cone over .QX obtained from £ by contracting the zero section.
Then a holomorphic function F € O(C Q/T) is called an automorphic form on .QX
for I' C O (A) of weight k with character x if

Fly@©)=x0FE©), FQ)=rFF©

forall ¢ GCQX, y €I’ and 1 € C*.

2.2.3 Automorphic Form as a Function on SZX

Let £ € A ® R be such that (£, £) > 0. Observe that

U@(Z) =

. Zent
(¢, z) A

is a nowhere vanishing holomorphic section of L. Via the assignment f +— f /oé‘,
we can define automorphic forms as follows: A holomorphic function F(Z) €
(’)(.Qj{) is an automorphic form for I" of weight k with character y if forall Z .QX
andy €I,

F(yZ)= CEZI A
(V)—XUU<<&Z>) (2).

The choice of ¢ corresponds to the choice of a hyperplane at infinity of P(A ® C).

2.2.4 Automorphic Form as a Functionon L @ R + iC'L"

We have the OF(A)-action on the tube domain L ® R + iCiIr via the identification
.Qj" =L®R+ iCZr. Write J (y, y) for the Jacobian determinant of y € O (A) C
Aut(LQR+1 CL+). By the relation between the canonical line bundle of .QX and L,
there is a holomorphic function j (y, z) with

J(y,2)8mea = J(y, 7).
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A holomorphic function F(z) e O(L @R +i C;) is an automorphic form for I" of
weight k with character x if forallze L@ R+ in andy e,

Fly -0=x»)Jjy, 2" F@).

2.3 Borcherds ®-Function

Define the Enriques lattice A as
A:=UUQ) & Eg(-2).

Then A is an even lattice of signature (2, 10). We define the discriminant divisor of
24 by

'DA = Z dj',

deA/£l,d2=-2

where d-:={[Z] € 27; (d, Z) = 0}. Define {c(n)} by the generating series:

Y e g" =n(0) " n2o)*nEn) 78
neZ

2.3.1 Borcherds @-Function at the Level 1 Cusp

Let v be a primitive isotropic vector of U C A and set L1 := v+ /v =U(2) ® Eg(2).
Then L @ R+iC; =2}

Definition 1 The Borcherds @-function is the formal Fourier series on the tube
domain L1 @ R+ CZ defined as

1 — emith2) )c(xzm

w0= [l \i5ems
AeL1NC, \{0)

2.3.2 Borcherds @-Function at the Level 2 Cusp

Let v be a primitive isotropic vector of U(2) C A and set L, = vi/vE U Eg(2).
Then L, @ R+iC} =2}
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Definition 2 The Borcherds @-function is the formal Fourier series on the tube
domain L) ® R+ C; defined as

(p2(z) = 2Se2ni(p,z) 1_[ (1 _ eZm’(k,z))(*1)<p7’3/’k)c(12/2),
AEL)y, (A,p)>00rLeNp

where p = ((0, 1),0), o’ = ((1,0),0) € L.

Theorem 3 (Borcherds [8, 9]) For j = 1,2, the formal Fourier series ®;(z) as
above converges absolutely for z € L; @ R+ i CZj with Iz > 0 and extends to an

automorphic formon L @ R+i CZ/_ for O"(A) of weight 4. Regarded as holomor-

phic functions on .Q/J{, one has the equality up to a constant of modulus 1
D =Py,
In what follows, we write @ (z) for @1 (z) and ®,(z).

Definition 3 The Petersson norm of @ is the C*° function on L JOR+I Czrj defined
as

2 ~ o 2
[2@]" =3z, 3% |2, ).
Since the Petersson norm ||®@(z)| is OF(A)-invariant, we regard ||®(z)| as a

function on the orthogonal modular variety .Q/J{ /OT(A).
By [9, Th. 13.3], log ||®|| is defined as the finite part of the divergent integral:

dxdy
y:

—4log|@(Z)| — 8(I"' (1) +log(27)) =Pf/ F(1)-Ox(t,2)y
SLy(Z)\$)

where F(t) is a certain vector-valued elliptic modular form for Mp>(Z) (cf. [36,
Def. 7.6] with A = A) and O/ (t, Z) is the Siegel theta function [9] of the Enriques
lattice A. Then the expressions @1(z) and ®,(z) are obtained by computing the
above integral at the level 1 cusp and the level 2 cusp, respectively. For the necessity
of the constant 2% in ®,(z), see [9, Th. 13.3 (5)] and [36, Eq. (7.9)].

Remark I One can rewrite the expression of @ (z) using the dual lattice of A. Set
L :=U@®Eg(—1). Since the dual lattice of A is givenby AV =U@® L(1/2), we get

AYQ)=UQ)® L.
Then the Borcherds @-function can be expressed as a functionon L ® R+ i CZL
. (12
s [ (LS 5 N, 210
L4202 Q20 2)¥

2€LNC;\{0) 2€LNC;, A2=0, primitive
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This identity is known as the denominator identity for the fake monster superalge-
bra. See [9, Example 13.7] and [30] for more details about the denominator identity
for the fake monster superalgebra. See [7, 8] for the Fourier expansion of @;(z).

3 Enriques Surfaces and Their Moduli Space

In this section, we recall Enriques surfaces.

3.1 K3 Surfaces

A compact connected complex surface X is a K3 surface if
H'(X,0x) =0, Q%= 0.

It is known that the diffeomorphism type underlying a K3 surface is unique. In
particular, the second integral cohomology group of a K 3 surface equipped with the
cup-product pairing is isometric to the K 3-lattice

L3 :=UUdUdEg(—1) @ Eg(—1).

For a K 3 surface X, an isometry of lattices o : H*(X,Z) = Lgs is called a marking.

Let X be a K3 surface and let «: H?(X,Z) = Lg3 be a marking. Since [2}2(
is trivial, there exists a unique nowhere vanishing holomorphic 2-form 1 on X, up
to a non-zero constant. By the Hodge decomposition, we get the natural inclusion
H(X, 2%) C H*(X,Z) ® C, so that the line Cn € P(H?(X, C)) is uniquely de-
termined by X. The period of (X, «) is defined as the point of P(ILx3 ® C) corre-
sponding to Cn via the marking «:

o (X, a):= [a(n)] € 2Lys-
Here we define 2, = {[Z] € P(Lx3 ® C); (Z,Z) =0, (Z, Z) > 0} as before.

Notice that [a(n)] € £21,, by the Riemann-Hodge bilinear relations f xnAn=0
and [ ¥ 1 AT > 0. For K3 surfaces and their moduli space, see [1] for more details.

3.2 Enriques Surfaces

A compact connected complex surface Y is an Enriques surface if

H'(Y,0y) =0, @320y, (2})=0y.
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It is known that the universal covering of an Enriques surface is a K3 surface and
an Enriques surface is obtained as the quotient of its universal covering by a fixed-
point-free involution. Notice that a single K3 surface can cover many distinct En-
riques surfaces (cf. [25-28] and Subsect. 5.3 below).

Let Y be an Enriques surface and let Y — Y be the universal covering. Let
t: Y — Y be the non-trivial covering transformation of Y > Y. Write H 2(17, 7).
and H 2(? , Z)_ for the invariant and anti-invariant subspaces of H 2(? , 1)) with re-
spect to the t-action, respectively. Let I : Lx3 — LLg3 be the involution defined as

I(a,b,c,x,y):=(b,a,—c,y,x), a,b,celU, x,yecEg(—1).
By [13, 14], there exists a marking o : Hz(?, Z) = LLg3 such that
aolfoa =1

Let (Lg3)+ and (Lg3)— be the invariant and anti-invariant subspaces of L g3 with
respect to the [-action, respectively. Then we have isometries of lattices

a(H*(Y,Z)1) = (Lg3)+ ZUQ) @ Es(-2),  «(H(Y,2)-) = (Lg3)- = A.

Since Y has no non-zero holomorphic 2-forms, we get HO(? 92) C Hz(? 7)_®

C. Hence w(Y a) € 24 if o is a marking as above. The perlod of an Enriques
surface Y = ¥ /¢ is defined as the period of its universal covering Y, ie.,

oY) :=[o,a)]e2f/0T(4),

where « is aNmarking satisfying o o (* oa ' =T and [w (17, «)] denotes the O (A)-
orbit of @ (Y, o). It is known that the isomorphism class of an Enriques surface is
classified by its period:

Theorem 4 (Horikawa [13, 14]) There exists a coarse moduli space of Enriques
surfaces, denoted by M. The period mapping induces an isomorphism between the

analytic spaces
27\ Dy

In what follows, we identify M with (.Qj" \D4)/OF(A) by the map = . We refer
the reader to [1] for more details about Enriques surfaces and their moduli space. By
Theorem 4, the period mapping for Enriques surfaces omit the discriminant locus.
The Borcherds @-function characterize exactly the discriminant locus Dy .

Theorem 5 (Borcherds [8]) The Borcherds @ -function vanishes exactly on Dy of
order 1. In particular, @ is a nowhere vanishing holomorphic section of the Hodge
line bundle on M.
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Since the line bundle of automorphic forms on an arithmetic quotient of a sym-
metric bounded domain is an ample line bundle by Baily-Borel, the moduli space of
Enriques surfaces is quasi-affine by Theorem 5 [8]. In fact, the quasi-affinity of the
moduli space holds for wider classes of K3 surfaces with involution. See [36].

4 Analytic Torsion and Borcherds @ -Function: An Analytic
Counterpart

The notion of holomorphic analytic torsion was introduced by Ray-Singer [29] in
their works extending the classical notion of torsion in algebraic topology to certain
analytic settings; they extended the construction of torsion of finite-dimensional
acyclic complex to the setting of de Rham or Dolbeault complex, in which they
replaced the usual finite-dimensional determinant of the combinatorial Laplacian
to the regularized determinant of the Hodge-Kodaira Laplacian. In this section, we
explain the construction of the Borcherds @-function via analytic torsion.

4.1 Analytic Torsion

Let (M, h"M) be a compact connected Kéhler manifold. Let 0, = (3 + 8%)? be
the Hodge-Kodaira Laplacian acting on (0, g)-forms on M. Since M is compact,
the Hilbert space of square integrable (0, g)-forms on M splits into the direct
sum Lg,‘,q = @AEU(D({) E(x,0,), where o (L;) C Rxg is the spectrum of [, and
E(A,,) is the eigenspace of [, with respect to the eigenvalue A. Then E (A, ],)
is of finite-dimensional. The zeta function of [, is defined as

Ls):= > A dmE®X.O,).
)»ecr(EI,,)\{O}

By the Weyl law of the asymptotic distribution of the eigenvalues of U, ¢, (s) con-
verges absolutely for s € C with Js > dim M. From the existence of the asymptotic
expansion of the trace of the heat operator e~ Us as t — 0, it follows that ¢, (s) ex-
tends to a meromorphic function on C and that ¢, (s) is holomorphic at s = 0. After
Ray-Singer [29], we make the following

Definition 4 The analytic torsion of (M, h7™) is the real number defined as

(M, h™M) = exp|:— Z(—l)qq {4(0)].

q=0

When dim M = 1, (M)~ is exactly the determinant of Laplacian appearing in
the formula for || (7)]|. After Theorem 1, it is natural to expect that the determinant
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of Laplacian or analytic torsion may produce a nice function on the moduli space.
This is the main topic of this section.

One natural direction of such a generalization seems to be the study of the deter-
minant of Laplacian for compact Riemann surfaces of higher genus g > 1. Among
numbers of studies of the determinant of Laplacian for hyperbolic Riemann surfaces
of genus g > 1, it is Zograf [37] and Mclntyre-Takhtajan [24] who obtained a holo-
morphic function with infinite product expression on the Schottky space by using
the determinant of Laplacian. On the other hand, Kokotov-Korotkin [17] considered
the determinant of Laplacian with respect to the flar (but degenerate) Kéhler metric
o ® w, where w is an Abelian differential on a compact Riemann surface of genus
g > 1. They proved that, as a function on the moduli space of pairs (C, w), with
C being a marked Riemann surfaces of genus g > 1 and w being an Abelian dif-
ferential on C, the determinant of Laplacian is expressed by using some classical
quantities like prime forms, theta function and periods. Hence there are two different
generalizations of Theorem 1 in higher genus g > 1.

Another direction of generalization is the study of analytic torsion for higher
dimensional varieties. (For several reasons, in higher dimensions, analytic torsion
seems to be more appropriate than a single determinant of Laplacian in consider-
ing a generalization of Theorem 1.) Among those varieties, we are interested in
Enriques surfaces, since they can be regarded as one of the natural generalizations
of elliptic curves in dimension 2. For other directions of generalization, we refer to
[11, 33], where analytic torsion produces the Siegel modular form characterizing the
Andreotti-Mayer locus and the section of certain line bundle on the moduli space of
Calabi-Yau threefolds characterizing the discriminant locus.

4.2 Borcherds ®-Function as the Analytic Torsion of Enriques
Surface

As in the case of elliptic curves, we choose some special Kéhler metric to construct
an invariant of an Enriques surface. Since c1(Y)r = 0 for an Enriques surface Y,
there exists by Yau [31] a unique Ricci-flat Kihler form in each Kéhler class on Y.
In contrast to elliptic curves, the condition of Ricci-flatness with normalized volume
1 does not determine a unique Kéhler form on Y, because the space of Kéhler classes
on Y has real dimension 10. Even though, we get the following:

Theorem 6 ([34]) Let Y be an Enriques surface and let y be a Ricci-flat Kdhler
metric on Y with normalized volume 1. Then the analytic torsion T(Y, y) is indepen-
dent of the choice of such a Kdhler metric y. In particular, T(Y, y) is an invariant
of Y.

After Theorem 6, we may write 7(Y) for 7(Y, y). Then the analytic torsion gives
rise to the function on the moduli space of Enriques surfaces

T: Ms[Y]—= 1Y) eR.
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Recall that the Petersson norm of the Borcherds @-function ||@] is OT(A)-
invariant~ and hence it descends to a function on M. We write ||@(Y)]| for
P (@ (Y,)).

Theorem 7 ([34]) There exists an absolute constant C # 0 such that for every En-
riques surface Y , the following equality holds

r(v)=clew)| ",

The proofs of Theorems 6 and 7 are based on the curvature formula for (equivari-
ant) Quillen metrics [4-6, 19] and the immersion formula for (equivariant) Quillen
metrics [2, 3]. We compare the 39 of log 7 and log ||®| as currents on the Baily-
Borel compactification of .Q;‘" /O7T(A). For this, the curvature formula and the im-
mersion formula for (equivariant) Quillen metrics play crucial roles. We refer the
reader to [34] for the details of the proofs of Theorems 6 and 7.

As in the case of elliptic curves, we get an analytic expression of the Borcherds
@ -function by using analytic torsion. In fact, we can extend this result to arbitrary
K3 surfaces with anti-symplectic involution. Namely, for a K3 surface X equipped
with an involution ¢: X — X acting non-trivially on H 0(X , .Q)z(), we can construct
an invariant tj7 (X, t) by using the equivariant analytic torsion of (X, ¢), the analytic
torsion of the fixed-point-set of ¢ and a certain Bott-Chern secondary class. Here M
refers to the isometry class of the invariant sublattice of H?(X,Z) with respect to
the t-action, which determines the topological type of t. When M =U(2) HEg(—2),
we get the analytic torsion of Enriques surface 7 as above. It is worth remarking that
we can construct the invariant t)s (X, ¢) without assuming the existence of Ricci-flat
Kihler metrics on X. After fixing M, i.e., the topological type of the involution,
the invariant 77 (X, ) gives rise to a function on the moduli space of K3 surfaces
with involution, which is again a certain arithmetic quotient of a symmetric bounded
domain of type IV, with the discriminant divisor removed. As before in Theorem 7,
the resulting function tjs is the Petersson norm of an automorphic form on the
moduli space of K 3 surfaces with involution. It is remarkable that the corresponding
automorphic form on the moduli space of K 3 surfaces with involution thus obtained,
is very often expressed as the product of a certain Borcherds lift and Igusa’s Siegel
modular form. We refer the reader to [34, 36] for more details about the analytic
torsion invariant 75, of K3 surfaces with involution.

S Resultants and Borcherds € -Function: An Algebraic Counter
Part

In this section, we explain an algebro-geometric counterpart of the Borcherds @-
function.



A Trinity of the Borcherds @-Function 587

5.1 (2,2,2)-Model of an Enriques Surface

Let

f1(x), g1(x), hi(x) € Clx1, x2, x3], f2(x), g2(x), ha(x) € Clxy, x5, x¢]

be homogeneous polynomials of degree 2. We define f, g,h € C[x1, x2, x3, x4,
X5, X6] by

fx) = filx) + f2(x), 8(x) :=g1(x) + g2(x), h(x) := h1(x) 4+ ha(x)

and the corresponding surface X ¢ 5y by

X(r.gm = {Ix] €P’; f(x) = g(x) = h(x) =0}.

If the quadratic forms fi, g1, h1, f2, g2, ho are generic enough, then Xy, p)
equipped with the line bundle Ops(1) is a K3 surface of degree 8 by the adjunc-
tion formula. Let ¢ be the involution on C® defined as

t(x1, x2, X3, X4, X5, X¢) := (X1, X2, X3, —X4, —X5, —X¢).

The involution on P3 induced by ¢ is again denoted by the same symbol ¢. Since the
set of fixed points of the t-action on P? is the disjoint union of two projective planes
P :={x; =x2 =x3 =0} and P, := {x4 = x5 = xg = 0}, we see that Xéf’g’h), the
set of fixed points of the t-action on X6 ), is given by

X .o = Xfgm N PO (X(f,6,m N P2).

For three quadratic forms in three variables g (x, v, z), g2(x, ¥, 2), g3(x, y, 2), let
R(q1, q2, q3) be the resultant of g1, g2, g3. Then R(q1, g2, g3) is the polynomial of
degree 12 of the coefficients of g, g2, g3 characterizing the existence of common
intersection points of the three conics of P? defined by ¢ =0, g» =0 and g3 = 0.
Namely,

R1.q2.943)=0 <= {(x:y:20ePq=q=q3=0}#0.

If gi (x, y, 2) = aj1x* + ainy® + aisz> + aiaxy + aisxz + aieyz, then R(q1. g2, g3) is
expressed as an explicit integral linear combination of the polynomials of the form

L1, J2, 3llk1, ko, k31ll, bp, I3][my, mo, m3],

where

arj,  Alj, A4ij
Ut 2, 3li=lazj, a2, a2 j;].
as,.j  asj, a3

See [15, p. 215 Table 1] for an explicit formula for R(q1, g2, g3).
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If the quadrics f1, g1, 1, f2, g2, ho are generic enough, then we may assume
that R(f1, g1, h1)R(f2, &2, h2) # 0, so that ¢ has no fixed points on X ¢ ») in that
case. Hence, if R(f1, g1, h1)R(f2, g2, h2) #0and X (s, ) is smooth, then

Yifem :=X(rgm/t

is an Enriques surface. Let us see that a generic Enriques surface is constructed in
this manner.
Assume that R(f1, g1, h1)R(f2, g2, h2) # 0 and that X (7,¢ 1) is smooth. For sim-

plicity, set Xo 1= X(/.¢.n. Let S 1= Gr3(Sym2C®) = Gr3(C(?)) be the Grassmann
variety of 3-dimensional subspaces in the vector space of quadratic forms in the
variables x1, ..., x¢. Then § is equipped with the t-action induced from the one on
C® and with the PGL(C®)-action induced from the standard GL(C®)-action on C°.
By choosing fi, g1, k1, f>, g2, ha generic enough, we may assume that s[(C®) is a
subspace of the tangent space of S at the point Span{f, g, h} € S.

For s € S, we define X, := {[x] € P>; q(x) =0(Vq € s)}. Then we get a flat
family 7: X — § with 7~ 1s) = X,. Write [Xo] € S for Span{f, g,h} € S. We
get a flat deformation 7 : (X, Xo) — (S, [Xo]) of K3 surfaces of degree 8. Since
¢ preserves Xo and hence (([Xo]) = [Xo], we get a subfamily 7 : (X|s, ¢, Xo) —
(S, [Xo)) of K3 surfaces with involution, where S* := {s € S; ((s) = s} is the fixed-
point-set of the t-action on S. Since ¢ has no fixed points on X by assumption and
since the set of fixed points of the (-action on X is a closed subset of X, we see that
¢ has no fixed points on X; if s € §* is sufficiently close to [Xo]. We define Y :=
(X|s)/t and Yo := Xo/t. Let p: Y — S be the projection induced from 7 : X — S.
Since ¢ has no fixed points on X;, Y, is an Enriques surface for s € S sufficiently
close to [Xg]. Hence p: (Y, Yo) — (S, [Xo]) is a flat deformation of Yj.

Let px,: TixgS — H'(Xo,Ox,) and py,: Tix,S* — H'(Yo,Oy,) be the
Kodaira-Spencer maps of the deformations 7 : (X, Xo) — (S, [Xo]) and p: (Y, Yp)
— (8%, [Xol), respectively. Let (Tx,1S)+ and Hl(Xo, ©®x,)+ be the invariant sub-
spaces of Tix,S and H 1(Xo, © x,) With respect to the (-action, respectively. Since
px, commutes with the i-action, we set (pxo)+ = Pxol(Txy9)+ * T1x019)+ =
H'(Xo, Ox,)+. Since (px,)+ can be identified with py, under the identifications
(Tixo1)+ = Tixe)S" and H' (X0, Ox,)+ = H' (Yo, Oy,), we get

ker py, = ker(pox,)+ = sI(C®) Nker(t, — 1) = s1(C?) @ sl(CP) @ C=C".

Here the second equality follows from the equality ker px, = s[(C®), which is a con-
sequence of the fact that X; = X as polarized K3 surfaces of degree 8 if and only
if s and s’ lie on the same PGL(C6)—0rbit. (We can also see the equality ker px, =
5[(C?) as follows. Set L := Ops (1)|x,. We consider the semiuniversal deformation
q: (X, L), (X0, Ly)) = (Def(Xo, Lo), [Xo]) of the polarized K3 surface (Xo, Lo)
of degree 8. Since Ly is very ample on X¢, we may assume that £ is very ample on
X; for t € Def(Xo, Lo). Since deg L|x, = 8, the image of the projective embedding
PiLix, |t X — P> must be a (2, 2, 2)-complete intersection. Namely, (¥;, Llx,) is
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isomorphic to (X, Ops(1)) for some s € S. Hence the deformation germ of polar-
ized K3 surfaces m: (X, Xo) — (S, [Xo]) is complete, which implies the equality
dimker px, = dim S — dimDef(Xo, £o) =35 = dims[(C6). This, together with the
inclusion 5[(C6) C ker px,, yields the equality ker px, = 5[(C6).)

Since dim §* = 27 and dimker py, = 17, we get dimImpy, =27 - 17 =10 =
dim H' (Y, Oy, ). Hence the Kodaira-Spencer map py, is surjective and the family
p: (Y, Yy) — (S, [Xo]) is complete.

Set U :={s € §*; Sing X; = X} = @}. Then U is a Zariski open subset of S*. For
s €U, Yy = X/t is an Enriques surface. Let w: U 25 — w (X,/t) € M be the
period mapping for the family of Enriques surfaces p: Y|y — U. By the Borel-
Kobayashi-Ochiai extension theorem, @ extends to a rational map from S* to the
Baily-Borel compactification of .QX /07T (A). By the completeness of the deforma-
tion germ p: (Y, Yo) — (S%, [Xo]), the image of @ contains a dense Zariski open
subset of M, say U. If Y is an Enriques surface with @ (Y) e U, then Y = Y(r ¢ i)
for some quadratic forms F, G, H.

5.2 An Algebraic Expression of Borcherds ®-Function

Since we have a nice projective model of Enriques surfaces of degree 4, it is natural
to expect that the Borcherds @-function may admit an algebraic expression analo-
gous to the one for the Dedekind n-function associated to the plane cubic model or
the (2, 2)-complete intersection model. In fact, this is the case.

Theorem 8 ([16]) Let Y (s ¢ n) be the (2,2,2)-model of an Enriques surface de-
fined by the quadric polynomials f = f1 + f», ¢ =81+ g, h=h1 + hy €
C[x1, x2, x3, X4, X5, X6]. Then the following equality holds

) 4
HCD(Y(f,g,h))HZ = \R(fl,gl,hl)R(fz,gz,h2)|(F/X Q(f,g.h) /\a(f,g,h)) .

(f.8.h)

Here af.q.1) € HO(X(f,g,h), 02 ) is defined as the residue of f, g, h, i.e.,

X(s.gm
Af.g.h) = E X
where & is a meromorphic 2-form on P° satisfying the equation

6
df ndgAndh AN E =Z(—1)ix,-dx1 Ao Adxi—i Adxizr A - Adxe.
i=1

We remark that a weaker version of this result was obtained by Maillot-Roessler
[20] under a certain arithmeticity assumption on X, ). In their formula, the con-
tribution from the resultants is understood as the contribution from the bad primes
with respect to the reductions of X(f,¢,n). When f, g, h are defined over the ring
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of integers of a number field K, Theorem 8§ implies that the Borcherds @-function
detects the degenerations of ¢ over Spec(Okg), since R(f1, g1, h1)R(f2, g2, h2) €p
for a prime ideal p € Spec(Oy) if and only if ¢ has non-empty fixed points on the
reduction X .4 ) (O /p). This picture of the Borcherds @-function is quite analo-
gous to the corresponding picture of the Dedekind n-function: For an elliptic curve
E = {y? =4x3 — gox — g3} over K, ||n||?* is identified with the discriminant of E up
to the L2-norm of dx/y. Hence the algebraic part of ||n| detects the degenerations
of E over Spec(Ok). See [10] for more explanation of this view point.

The proof of Theorem 8 shall be given in [16]. The strategy is as follows. We
compare the 3 of the both hand sides as currents on S. Then it turns out that they
satisfy the same 93-equation of currents on S. For this, we use Theorem 7 and a
formula for the asymptotic behavior of equivariant analytic torsion for degenerating
family of algebraic manifolds [35]. In this way, we get the desired equality, up to
an absolute constant. To fix the absolute constant, we compare the behavior of the
both hand sides for certain explicit 2-parameter family of Enriques surfaces, whose
universal coverings are Kummer surfaces of product type.

In fact, Theorem 8 holds even if Yy, 1) has at most rational double points by the
continuity of the both hand sides at those points of S* corresponding to Enriques sur-
faces with rational double points. This continuity is a consequence of the existence
of simultaneous resolution of 2-dimensional rational double points.

By Theorem 8, we get a Thomae type formula for the Borcherds @-function.

Corollary 1 ([16]) Let v,V € HZ(X(f,g,h), Z) be anti-t-invariant, primitive,
isotropic vectors with (v,v') =1 and let vV € Hy(X(f,6.n), L) be the Poincaré dual
of v. Under the identification of lattices (Zv + Zv')* = U(Q2) @ Eg(—2) =: L, the
vector

a — (o, VIV — {a, V)V

2(f.gh) vV = @) eLQR+iCl

is regarded as the period of Y(y,q.n). Then, by a suitable choice of the 2-cocycles
{v,V'}, one has

2 8
¢(Z(f,g,h),v,v/)2:R(fl»gl»hl)R(fZ,thZ)(P/ a(f,g,h)) .
VV

When X (f,¢.p is birational to a Kummer surface of product type, the 2-cycle v
can be given explicitly. See [16] for the details.
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5.3 A 4-Parameter Family of Enriques Surfaces Associated to
M3,6(C)

For a non-zero 3 x 6-complex matrix A € M3 (C), we define

() =anxi +ainxi + aizxi + awxi +aisx? + ajexi =0
Xa:=1[x]e P5; glx) = a21x12 + a22x22 + a23x§ + a24xf + a25x52 + a26x62 =0

h(x) = a31x12 + a32x§ + a33x§ + a34xf + a35x§ + a36xé =0
For A= (ay,...,a6) e M(3,6;C) andi < j < k, we define
Ajjr(A) = det(a;, a;, ag).

A matrix A € M (3, 6; C) is said to be non-degenerate if ]_[,.<j<k A;jk(A) # 0. Then,
for a non-degenerate A € M3 6(C), X4 is a K3 surface. We write a4 for oy p).
As an immediate consequence of Theorem 8, we get the following:

Corollary 2 ([16]) Let A € M3,6(C) be non-degenerate. For a partition of 6 letters
{1,2,3,4,5,6}

-
(” )::{i,j,k}U{l,m,n}:{1,2,3,4,5,6},
Imn

define an involution ijky On P> by

Imn

L [f.ik)(xi,xj,xk,xz,xm,xn) = (Xi, Xj, Xk, —X[, —Xm, —Xp).
mn

Then t (i

Imn

) is a free involution on X 4 called a switch such that
2 4 4f 2 _\*
[ @ Xase D7 = |AipA[ | Amn (D] = | aanda) .
Imn T Xa

By Corollary 2 , if A € M3,6(K) with K C C, then for any partitions (ijk) and

-/ '/k/ lmn
l
([,’1]1,”/), one has

. 2
1P XA/t D™ A (A A (A)
1®(Xa /2 e I 1 (A F A (A~

U'm'n’

Since [Aijx(A)* Amn (A /1 Ajr i (A Ay (A)[* 5 1 for all pairs of parti-
tions (/%) (l"/,é /,/;//) for generic non-degenerate A, we conclude that all of the 10
Enriques surfaces X 4/ L(iky are mutually distinct for a generic choice of A.

Imn
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6 Theta Function and Borcherds @ -Function

In this section, we explain a relation between the Borcherds @ -function and Fre-
itag’s theta function.

6.1 The Matsumoto-Sasaki-Yoshida Model

Recall that, for A € M3 4(C), we could associate two distinct models E 4 and C4 of
an elliptic curve. By a similar construction, we can associate another K 3 surface to
A € M3 ,6(C) as follows. For A € M3 6(C), define a K3 surface

6
Zpyi=1((x1:x2:x3),y) € Op2 (3); y* = H(aum +azixz +azixz) ¢,
i=1

which is identified with its minimal resolution. Then Z 4 is (the minimal resolution
of) the double covering of P2, whose branch divisor is the union of 6 lines in general
position aj;x1 + azixp +azx3 =0 (i =1,...,6). The period mapping and its in-
verse for the family of K3 surfaces Z4 over a certain open subset of M3 ¢(C) were
worked out by Matsumoto-Sasaki-Yoshida [23] and Matsumoto [21].

We define a holomorphic 2-form n4 on Z4 by

. x1dxy Adxz — xodx) Adxs + x3dx; Adx;
y .

na:

By Matsumoto-Sasaki-Yoshida [23], there are 6 independent transcendental 2-
cycles {yij}1<i<j<4 on Z4 and 16 independent algebraic 2-cycles on Z4, which
form a basis of Hy(Z 4, Q).

Following Matsumoto-Sasaki-Yoshida [23], define the period of Z 4 as the matrix

_ m3(A)—~Tn4(A)
. 1 n14(A) e 7
ma(A) \ BT @ 4
where
nij(A) 5=f nA.
Yij

By a suitable choice of the cycles {y;j}1<i<j<4, one has
R4 eD:={T € M25(C); (T —'T)/2i >0},

where D is isomorphic to a symmetric bounded domain of type IV of dimension 4.
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6.2 Theta Function on D

Write e(x) :=exp(2wix).

Definition 5 For 2 e Dand a, b € Z[i]z, define the Freitag theta function as

ZZ [l v (i) (o) (7))

Following [32], we identify the characteristic ( ) with the partition (” ) by the
rule:

() =G5 (62 (o) Go) () Go) Go) G 67 (o) (o)
4 S I S N S
() (138) G36) Gaa) (23) (G3e) (ag) (a9) (338) (39) (239

Under this identification, we define

ljk)(-Q) = a b (.Q)

Imn T T+

and its Petersson norm by

2 -2

”@(l?,;’;)m)u := det ? |© (i) @
Theorem 9 ([16]) For a non-degenerate A = (A1, A2) € M36(C) with Ay, Ay €
M3(C), define
. -1 -1

AY = ("ATTATY).

Then

[@are gl =€ gzl

The proof of Theorem 9 shall be given in [16]. We use Matsumoto-Terasoma’s
Thomae type formula [22] to rewrite the right hand side of Theorem 9. Comparing
this with Theorem 8, we get the result. See [16] for the details. We remark that, after
Freitag-Salvati-Manni [12, Th. 5.6], Theorem 9 is not very surprising, because they
proved that the Borcherds @-function itself is expressed as a linear combination of
certain additive Borcherds lifts.
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6.3 The Case of Jacobian Kummer Surfaces

For A = (A1, ..., xe) € CO with A; # Aj (i # J), define a genus 2 curve C), by the
affine equation

6
C, = {(x,y)ecz; y2=1_[(x —M)}«

i=1
Define holomorphic differentials w; and w; on Cj, by

dx xdx
w] = —, w) (= —.
y y

Let {A1, Az, By, B2} be a certain symplectic basis of H{(C;, Z) and set

T, = (/Bl w1 fBzwl)_l <fA1 o1 [y, wl) €6,

fBl w2 ./Bz w3 fAla)Z fAz w2

Then the Kummer surface K (C,) of the Jacobian variety Jac(C,) is expressed as
follows:

1 1 1 1 1 1

K(Cy) = X4, A=1X1 X2 A3 A4 A5 Ae | € M36(C).
2 2 2 2 2 2
A Ay A3 AL A5 Ag

By Theorem 9, we get the following.

Corollary 3 ([16]) If the partition (°1") corresponds to the characteristic (a, b),
then

[@(K(© /10y | = @tST2 by ) (T Oy ey ey (T

Here 0, 5(T), a, B € {0, 1/2}2, is the Riemann theta constant
1 Ty 1z
Oup(T):=) e St OT mte) +m+a)B|, Te6.
neZ?

Recall that Igusa’s Siegel modular form As is defined as the product of all even
theta constants

As(T) =[] Oup(T). Te6,.

(o, B) even

For a genus 2 curve C with period T € G, its Petersson norm
2 2
|As(C)|” := (detIT)*| As(T)|

is independent of the choice of a symplectic basis of H{(C, Z). Hence ||As(C)|| is
an invariant of C. Form Corollary 3, it follows the following:
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Corollary 4 ([16]) The Igusa cusp form As is the average of @ with respect to the
10 switches, i.e.,

[Tle®@)/egm | =lasc)]’.
i)

7 Some Problems

Problem 1 For elliptic curves, two distinct models E4 and C,4 yield distinct
algebro-geometric expressions of ||n]|. For projective models of Enriques sur-
faces distinct from the (2, 2, 2)-complete intersection of P, find the corresponding
algebro-geometric expressions of ||@]|.

Problem 2 On a generic Jacobian Kummer surface, there exists 31 conjugacy
classes of free involutions ([25, 28]), which split into three families:

e 10 switches,
e 15 Hutchinson-Gdpel involutions,
e 6 Hutchinson-Weber involutions.

Recall that, as the average of the Borcherds @-function by 10 switches, we get
Igusa’s Siegel modular form As. Determine the Siegel modular form constructed as
the average of the Borcherds @-function by the 15 Hutchinson-Gopel involutions
(resp. 6 Hutchinson-Weber involutions).

Problem 3 As mentioned in Sect. 4.2, there exists an analytic torsion invariant Ty
for K 3 surfaces with involution [34], which is often expressed as the Petersson norm
of the tensor product of an explicit Borcherds lift and Igusa’s Siegel modular form
[36]. After Theorem 8, it is an interesting problem to find an algebro-geometric
expression of tys for general M.

Problem 4 (The inverse of the period mapping for Enriques surfaces) For elliptic
curves, the inverse of the period mapping was constructed by Jacobi by using theta
constants. We ask the same problem for the (2, 2,2)-model of Enriques surfaces:
For1<i < j<3and4 <k <! <6, find a system of automorphic forms

1 2 1 2 1 2
0 (2). o 2. 8P D). BT D). v @), v (@)

on 21 for (a finite index subgroup of) O (A) such that

YZ = XZ/La L(x)=(~x17~x27~x3’_'x47—x5’_'x6)
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is the Enriques surface whose period is the given by Z € .QX Here

1 2
Di<i<j<3 ai(jl)(z)xixj + D a<k<i=6 oz,g,;(Z)kaI =0
5.
Xz={x1eP’ 3 i i ﬂ,%)(z)xixj + Y gekai=6 Bl (Z)xex =0
1 2
Dizicj<3 Vi(j " Zyxixj + Laci e Vi (Z)x0x1 =0

Kondo6 [18] and Freitag-Salvati-Manni [12] constructed certain (birational) projec-
tive embeddings of the moduli space of Enriques surfaces with some level structure.
Are the system of automorphic forms appearing in their embeddings regarded as

the

set of coefficients of the defining equations of appropriately polarized Enriques

surfaces?

Acknowledgements The author is partially supported by JSPS Grants-in-Aid (B) 23340017, (A)
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Sum Rule for the Eight-Vertex Model
on Its Combinatorial Line

Paul Zinn-Justin

Abstract We investigate the conjectured ground state eigenvector of the 8-vertex
model inhomogeneous transfer matrix on its combinatorial line, i.e., at n = /3,
where it acquires a particularly simple form. We compute the partition function of
the model on an infinite cylinder with certain restrictions on the inhomogeneities,
and taking the homogeneous limit, we obtain an expression for the squared norm
of the ground state of the XYZ spin chain as a solution of a differential recurrence
relation.

1 Introduction

The purpose of this article is to investigate the inhomogeneous eight-vertex model on
a particular one-dimensional family of the globally defined parameters of the model,
namely, with the conventions of Baxter [2], when 1 = 7r/3. More precisely, we study
a certain eigenvector (conjecturally, the ground state eigenvector in an appropriate
range of parameters) of the transfer matrix of this model with periodic boundary
conditions and an odd number of sites. Ultimately, the goal is to compare with some
observations and conjectures [6, 28] made for the homogeneous eight-vertex model
and the closely related XYZ spin chain, but the introduction of inhomogeneities
(spectral parameters) turns out to be quite useful, as was previously found for the
six-vertex model [12, 14, 29], a special case of the eight-vertex model.

In this section we briefly describe the model and some conjectured properties at
n = /3. The rest of this paper is devoted to showing how some of these properties
arise from specializing formulae for the inhomogeneous model. The main object of
study will be the “partition function” of the model on an infinite cylinder (equiva-
lently, a quadratic functional of the ground state eigenvector), for which we derive an
inhomogeneous sum rule (with a certain restriction on the inhomogeneities, which
we call “half-specialization”) and a detailed discussion of its homogeneous limit.
Note that this paper is not meant to be fully mathematically rigorous; firstly, it is
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based on a conjecture (Conj. 1) which we hope to prove in future work [35]. Sec-
ondly, some calculations involving theta and elliptic functions are skipped; though
they are in principle elementary, they can be quite tedious.

It should be noted that a special case of the eight-vertex model on its combina-
torial line, namely the six-vertex model at A = —1/2, is much better understood
[1, 14, 26, 29, 32], and in this case many formulae of this work are already known
and proved; we provide in Appendix A the connection to earlier work by taking the
limit to the six-vertex point.

1.1 Inhomogeneous Eight-Vertex Transfer Matrix

The eight-vertex model is a two-dimensional statistical lattice model defined on the
square lattice by the assignment of arrows to each edge of the lattice, according to
eight possible local configurations around a vertex:

a b c d

They are given Boltzmann weights denoted by a, b, ¢, d which are parameterized as
follows:

a(x) =04(2n, p*)9a(x, p>) 01 (x + 20, p*)
b(x) =94 (21, p2) 01 (x, p?)Pa(x + 21, p°) "
c(x) = 01 (2n, p*)da(x, p*)da(x + 21, p?)
d(x) = 01(2n, p*) 91 (x, p?) 01 (x +2n, p?)

where x is the spectral parameter and p = ¢”7, Imt > 0, is the elliptic nome.
The weights have period 27 and pseudo-period 27 7, i.e., they are multiplied by a
common factor when x is replaced with x + 27 7.

Ordering the edge states as (1, }) and (—, <), these weights can be encoded
into the R-matrix

a(x) 0 0 dx)
0 b(x) c(x) 0
0 c(x) bx) 0

d(x) 0 0 alx)

R(x) =
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We shall also need in what follows the R-matrix defined as

a(x) 0 0 dx)
0 c(x) bx) 0
0 bx) ckx) 0

d(x) 0 0 a(x)

R(x) =PR(x) =

where P permutes factors of the tensor product.
The Boltzmann weights satisfy the Yang—Baxter equation and unitarity equation;
in terms of R, these are expressed as

Riit1 () Rit1,i+2(x + VRii100) = Rig1,i420) Riip1 (6 + V) Rig1i12(x) (2)
and
Rx)R(—x) =r(x)r(—x)1 3)

where r(x) = 94(0; p*)91 (x — 2 p*)Da(x — 215 p?).

We consider here the model in size L with periodic boundary conditions in the
horizontal direction, i.e., with the geometry of a cylinder of width L. The state of
the L vertical edges at same height on the cylinder are encoded by a sequence in
{1, L}E. The transfer matrix is a 2L x 2L matrix, or equivalently an operator on
(C?)®L with its standard basis indexed by {1, |}©, describing the transition from
one row of vertical edges to the next; the fully inhomogeneous transfer matrix has
the formal expression

Ty (ulxy, ..., x1) =Trg Ro1(x1 — u)Rop(x2 —u) ... Rop (x, —u)

where we use the following convention: the indices of operators R (and all other
local operators) are the spaces on which they act in the tensor product (C?)®L,
u,xi,...,xy are spectral parameters of the model. The system has rotational in-
variance in the sense that shifting cyclically sites in the tensor product and spectral
parameters leaves T invariant. In what follows, all indices in {1, ..., L} must be
understood modulo L.

Finally we need Pauli matrices o*”-%, which are local operators acting on one
site; we give alternate names to two of them. The flip operator (o* Pauli matrix)

is F = ((1) (1)) and the spin operator (¢* Pauli matrix) is 0 = ((1) 701 ) Finally 0¥ =
(%) Denote F, =[], F;.

The transfer matrix 77, is invariant by reversal of all spins, i.e., [T, Fix] =0.

1.2 Combinatorial Line

In all the rest of this paper, we assume that L is an odd number, L =2n + 1, and
that n = /3. This second condition is what we call “combinatorial line”, because
of the occurrence of integer numbers in the ground state, as we shall see below. The
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value n = 7 /3 was first noticed to have special significance by Baxter [3]; the im-
portance of odd L was emphasized by Stroganov [31]. More recently, Razumov and
Stroganov [28] and Bazhanov and Mangazeev [4-6] studied the model with such
conditions. It is also known [4, 17] that n = 7 /3 corresponds to a supersymmetric
point for the XYZ spin chain.

Although the work [28] is mostly concerned with the homogeneous limit (see
below), the following conjecture is made there (translated into our present conven-
tions): the transfer matrix 77, (u|x1, ..., xp) possesses the eigenvalue

L

to(ulxr, .. ox) = [ J(aGi —w) + bxi —w))

i=1

In fact, this eigenvalue is found to be doubly degenerate; in [5, 6, 28], this degen-
eracy is lifted by fixing the parity of the number of 1 in the eigenvector. Here we
find it more convenient to choose a different convention, which is to diagonalize
simultaneously F.

Note the identities at n = 7 /3:

r(x) = 94(0, p*) 1 (x + 1. p?)0a(x +n, p*) = ax) + b(x)

1.3 Homogeneous Limit

If we assume that all x; are equal (homogeneous situation), then the transfer matrix
T; commutes with the XYZ Hamiltonian, which can be written as

L
1
Hp = D) Z(Jmix"ixﬂ + J30iy‘7iy+1 + JZUiZGiZJrl)
i=1

The numbering of the coupling constants will be explained later. The value n = /3
implies that up to normalization, the three coupling constants can be expressed in
terms of a single quantity, which we choose to be

(= (z‘h(n; pz))2
9a(n; p?)
If we choose t purely imaginary, then as p goes from O to 1, ¢ goes from O to 1.
The coupling constants are given up to overall normalization by

1 1

J:— = — J _—
2 1+§ 4

J =
3 ¢

The XXZ Hamiltonian (corresponding to the six-vertex transfer matrix), is the case

¢ =0 (or p =0). This case was already studied in detail, as mentioned in the intro-

duction.

1
2
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Another special case is ¢ — 1 (or p — 1), for which after rescaling the weights,
Jo = J3 =0, so the model becomes the Ising model, but with a 0*o* interac-
tion. The ground state becomes of course trivial; some details are provided in Ap-
pendix B.

The simple eigenvalue of the eight-vertex transfer matrix translates into a simple
eigenvalue of the Hamiltonian Hy, namely

L
E| = —5(J2+J3+J4)

It is conjectured to be the ground state eigenvalue of Hy .

Many remarkable observations were made on the corresponding eigenvector, ¥
in [6, 28]. Its entries can be chosen to be polynomials in ¢, and the form of some
of these polynomials was conjectured. We shall not discuss these conjectures here.
The values at ¢ = 0 (XXZ model) of these polynomials were calculated in [29].

In both [6, 28], the squared norm of ¥ was introduced:

=3 v, “)
ae{t 4}t

where the normalization of the components is chosen so that they are coprime poly-

nomials in ¢, and WL;T R S \L(g =0) = 1. An expression for |lI/L|2 was con-

S————
n ntl

jectured in [6] in terms of certain polynomials, themselves defined by differential
recurrence relations which are special cases of certain Biacklund transformations for
Painlevé VI. Since the formulae are rather complicated, we shall not write them out
here and derive our own (similar) formulae by specializing inhomogeneous expres-
sions.

The main result of this paper is the factorization of this squared norm into four
factors, as summarized in Sect. 4.1, which are all determined by differential bilinear
recurrence relations which are given explicitly in Appendix D.

2 Properties of the Ground State Eigenvector

We consider once again the eigenvector equation in size L =2n + 1

TL(u|x17"'7xL)WL(x17 ""xL):tL(ulx]7"'7xL)lpL(xl7"'7xL) (Sa)
FWr(xi,....xp) =" (x1,...,x1) (5b)
for the inhomogeneous eight-vertex transfer matrix, where we recall that 77 (u|xq,

cxn) =15 i — w), r(x) = a(x) + b(x) = 940, p?)91(x + 0, pP)Palx +
n, p2). The choice of eigenvalue of F, will turn out convenient in what follows.
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2.1 Pseudo-periodicity

Based on extensive study of the ground state entries by computer for small sizes
L =3,5,7, the following conjecture seems valid:

Conjecture 1 The -eigenvector equations (5a), (5b) possess a solution
v (x1,...,x1) whose entries are theta functions of degree L — 1 = 2n and nome
p? in each variable x; (generically non zero and without common factor); i.e., they

are holomorphic functions with pseudo-periodicity property:

V(oo x +2mtT,..) :p_4”zl-2" l_[ z;]lI/L(...,xi,...) (62)
J (i)
V(o xi+m,. )= l_[ale/L(...,xi,...) (6b)
J ()
where the ... mean unspecified variables x1, x», etc, p = 7T and 7; = e 2N
i=1,...,L.

(Note that the factor [ D z;l is to be expected since ¥;, only depends on

differences of spectral parameters. The factor p~*" can be absorbed in a redefinition

of ¥y, but is convenient. The factor [] j(i) 0 1s again expected from the properties
of the R-matrix by shift of ; it could be absorbed in a simultaneous redefinition of
the R-matrix and of ¥7.)

Similar properties have been observed and (in some cases) proved for models
based on trigonometric or rational solutions of the Yang—Baxter equation at special
points of their parameter space [7, 9—13, 29, 37, 38], except the entries are ordinary
polynomials of prescribed degree (the main difficulty being to prove this degree). In
particular, in the limit { — 0, ¥, reduces to the eigenvector of the inhomogeneous
six-vertex transfer matrix whose existence and uniqueness was proved rigorously in
[29] and references therein. Therefore, if such a solution of (5a), (5b) exists, it is
necessarily unique (for generic p) up to normalization. In principle this normaliza-
tion might contain a non-trivial function of the x;, which is why we added to the
conjecture the fact that the entries have no common factor. So there remains only an
arbitrary constant in the normalization of ¥, which will be fixed later.

2.2 Exchange Relation

As a direct application of the Yang—Baxter equation, we have the following inter-
twining relation:

Tp(ul...,xig1,Xiy o R i1 (i1 —xi) = Ry i1 (i1 —x) T (ul .oy X, Xign, - 0)

(N



Sum Rule for the Eight-Vertex Model at n = 7 /3 605

(see Lemma 1 of [12] for the same formula in a similar setting, and its graphical

proof).
Now apply ¥r (x1, ..., x1) to Eq. (7) and use the eigenvalue equation (5a):

Tr@lxr, - oy Xig 1 Xis oo s XL Ry i1 (i1 — X)WL( ooy Xis Xig1s - - 2)
=t (ulxt, ., XL Ry i1 (Kip1 — Xx)WL( ooy Xis Xig 15 - - -)
tr (u|x1, ..., xr) being invariant by permutation of x;, x;+1, and F, commuting with

R; i+1, we conclude by the uniqueness of the solution of (5a), (5b) that

Riiv1 (i1 —x)¥L o X, Xign, .- ) =ri(xn, oo, xp)WL G, X1, X, ..

where r; is some scalar function which is a ratio of theta functions, but cannot have
a non-trivial denominator because it would be a common factor of the ¥,, which
would contradict Conj. 1; so it is a theta function of degree 2 in x;, x;+| (and zero
in all others, hence a constant) with given pseudo-periodicity property; by applying
the identity twice and using unitarity equation (3), we find r; (x;, xj +1)7i (Xi+1, Xi) =
r(x; — xj+1)r (xi+1 — x;). The only theta function which divides the right hand side
and has the same pseudo-periodicity properties as r;(x;, Xj+1) 1S 7 (xj+1 — X;); SO
ri(xi, xi41) = £r(xj+1 — x;). The simplest way to fix the sign is to use the { — 0
limit where it is known [29] that the correct sign is 4. By continuity in ¢, we have
in the end r; (x;, xj+1) = r(xj+1 — X;), so that

Ié,-,i+1(xi+1 — x,-)lI/L(. ey Xiy Xji41y - ) = r(xH_l —x,')lI/L(. ey Xigls Xiy oo ) (8)

2.3 Spin Flip

Next, note that weights a(x) and b(x) (resp. c(x) and d(x)) are exchanged by shift
of x by wt. More precisely, we have the following identity:

Ro1(x +m7) = —p~'2F1 Ro1 (x) Fy
where z = =2 and Fj is the operator that flips the second spin (of course the same
would be true with Fj replaced with Fp, since the R matrix commutes with Fo Fy).

Applying this to the transfer matrix, we find:

To(.oxi+7t,.. )F=—p 'z KT (... xi,...) 9)

where we recall that F; flips spin i.
As in the previous section, apply ¥z (x1, ..., xr) to Eq. (9) and use the eigenvalue
equation (5a):

1

(.., xi+nwt, . )OFYL(.., Xiy..)=—p zitp(| ..., xi, .. )F;WL(... X4, ...)
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We have t;(u|...,x; +nt,...)= —p_lzitL(u| ..., Xi,...), as should be, and F,
and F; commute, so we conclude as before that

FYr(..,xi,..)=filxt,...,xp)¥(....x;i + 77, ...) (10)

where f;(x1,...,xr) is a scalar function with the following properties: it is a ratio
of theta functions, but cannot have a non-trivial denominator because it would be a
common factor of the ¥,, which would contradict Conj. 1; so it is a holomorphic
function, with pseudo-periodicity properties determined by shifting one of the x; by
7, T in Eq. (10) and comparing with (6a), (6b); we find

fit.,xi4+m,..)=fi(...,xi,...)
fiGooxj+m . )==fi(...xj,...) jFi
fit o oxi+2mt, . )=p* i xis )

filoo, xj 4217, ) =p 2 fi X)) JFi

This fixes it to be f;(xq,...,x1) = cePM Y i X | By rotational invariance, the
constant c is independent of i. Iterating Eq. (10) resultsin fi (..., x;,...) fi(...,x; +
nT,..) = p4"e4"ix"_Zi 2y i , which imposes that ¢ = p”. In order to fix the
sign, we use the invariance by shift of all the spectral parameters and the fact that
F.Wp, = (—1)"¥; with F, =[], F; to conclude that ¢ p~LE=D/2 = (~1)" and
therefore ¢ = (—p)".

We finally obtain:

FWi(.. . xi,..)=(=p)r @™ jen%ip, (. xi+xt,..) (1)

2.4 Wheel Condition and Recurrence Relations

We are now interested in the situation where two successive spectral parameters
have difference 2. In this paragraph, we denote to simplify ;" = Ty (u|...,x,x +
2n,..)and T, =Tp(u|...,x +2n,x,...) where the two specialized spectral pa-
rameters are at sites i, i + 1. Applying the intertwining relation (7) with x; = x +2n,
Xi+1 = x, we find:

T Riis1(=20) = Rijr1 (=2 T,
A direct calculation shows that R(—2n) = 2942, p2)01 (21, p*)94(0, p?) P where
00 00

P is the projector P = %(1 -P)= % (8 _11 _11 g) . Therefore the equality above says

00 00
that TL+ leaves Im P; ;1 stable (and that restricted to that subspace it is equal to the

. . —. + —
projection of T} : T} [P,y = Piiv1T] lmpiyy)-
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0
We shall need to check this explicitly. Set s = [1]) — |[{1) = <11> to be a

generator of the image of projector P, and compute Ro ;(x)Ro,i+1(x + 21)sii+1,
e.g.,

(—=1Ro,i (X)Ro,i+1(x +2n)si it1]<) = + + + + +

R D

N 0 S
AR

= (d(@)a(x +2n) — b(x)d(x +2n)) L)
+ (a(x)c(x +2n) — c(x)b(x +2n))|11)

(=1Ro,i () Ro,i+1(x +2n)sii11l—) = + + + + +

tTo

0 UG O
IR

= (a()b(x 4+ 2n) — c(x)c(x +2n) 1)
+ (d(x)d(x +2n) — b(x)a(x +2n)) | 1)
=r(x +6n)r(x +2n)s;it+1

and similarly with all arrows reversed. Thus, Ro ; (x)Ro i+1(x + 2n)s; i+1 =r(x +
6n)r(x +2n)s; i+1 ® lo, and therefore, after shift of x — x —u, and use of n =7 /3
to get rid of the 67, we find

T lmpy gy =1 —u)r(x +2n —u)Tr— 12)

where it is understood that 77, _» acts only on sites distinct from i,7 + 1.
Now apply ¥, o (with parameters x; except x;, x;+1) tensor s;;4+1 and use
eigenvector equation (5a):

THWr_o(. ) ®siip1 =r(x —uw)r(x +20 —witp—o@l|.. )Wr_2(...) ® i i+1

By definition, 77 (u|...,x,x +2n,...)=r(x —w)r(x +2n —u)ty—2(u|...). Also,
from Eq. (5b), FiWr—2 ® siit1 = (=1)" WL 2) @ (=siit1) = (—1)"VL 2 ®
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si i+1. By uniqueness of the solution of (5a), (5b), we conclude that

lI/L(. ey X, X +127], .. ) = Ip,'(x; .. .)lI/L_z(. . ) ®S,',,'+1 (13)
i i+

where, by the same kind of argument as in previous sections, ¥; is a theta function
of its arguments of degree 1 in the x;, j # 1,7 + 1 and of degree 4n in x.

In order to fix the function v;, we shall need the so-called wheel condition van-
ishing relation. Let us first consider a special case of it: suppose three successive
spectral parameters x;, x; 11, X;+2 are of the form x, x 4+ 25, x +4n. Then according
to Eq. (13) applied at (i,i + 1) and (i + 1,7 + 2),

Pi,i+ll1’L(~~-,x7x+27I,x+47)’-~-)=73i+1,i+2WL(--~,X,X+2U»x+477,~--)
=—-Ur(...,x,x+2n,x+4n,...)

But the action of the symmetric group S3 on C?> ® C?> ® C? does not possess the
sign representation as a sub-representation; therefore

Ur(o..,x,x+2n,x+4n,...)=0

Now assume all other parameters x;, j #i,i + 1,i + 2, are generic; then according
to Eq. (3), ﬁ(xj —xp) (j#£i,i+1,i4+2,k=1i,i+1,i42)is an invertible operator.
Applying repeatedly the exchange relation (8) to the equality above, we conclude
that

Ur(ooo,x, oo, x+2n,...,x+4n,...)=0 (14)

where the location of the three arguments is now arbitrary, as long as the cyclic order
is respected. This is the general wheel condition (the equality is true for generic x;,
therefore for all x;).

Finally, using pseudo-periodicity relations (6a), (6b), as well as flip relation (11),
we conclude that the wheel condition vanishing relation (14) is valid provided the
triplet of spectral parameters forms a wheel x, x 4+ 25, x + 41 modulo 7, wt (not
just 2 7! a crucial technical point which will be used repeatedly below).

We can now come back to our recurrence relation (13). On the left hand
side, we notice that as soon as one of the x;, j #1i,i + 1, is equal to x — 2
(mod 7w, wt), a wheel is formed and ¥ vanishes. Therefore ; (x;...) contains
factors [ [ ;1) 1 (x =20 —xj; p?)P4(x —2n —x;; p?); moreover these exhaust
its degree, and noting that these factors can also be written up to a multiplicative
constant as v (x — 2n — x;; p), we can rewrite Eq. (13)

Wr(xx 2, =cst [ iGr—2n—x;: p¥Lal.) @siip1 (19)
i i+l it

More explicitly, it means that
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lI’L;oq,...,OtL |Xi+1:x,-+2n
_ { 0 Qi =y

The constant remains undetermined at this stage, since we have not fixed the nor-
malization of ¥, yet.

A similar recurrence relation can be written for x;11 = x; + 2n + wt (the non-
zero result occurring when o; = «;41), but we shall not need it.

3 Partition Function

In the rest of this paper, we denote 9 (x) := ¥ (x; p) and V¢ (x) := (x; p), k =
2,3, 4. Since the contents of this section are not expected to generalize outside n =
/3, we shall use 3n =0 (mod ) to replace 2n with —n whenever possible.

3.1 Definition

We now introduce a quantity that naturally generalizes the squared norm of the XYZ
ground state (Eq. (4)) to the inhomogeneous case:

Zr(xr, .o oxp) =(Wr(=xi, ..., —xp)|¥L(x1, ..., xL))

where we have used the (real) scalar product: (@|@') =" it P @)
Z1(x1,...,xr) has the following interpretation: it is the “partition function” of
the inhomogeneous eight-vertex model on an infinite cylinder. Indeed, assuming that
we are in a regime of parameters where ¥y is associated to the largest eigenvalue
of the transfer matrix, ¥ (x1,...,xr) corresponds to the partition function on a
half-infinite cylinder (pointing upwards) with given arrows at the boundary at the
bottom. A vertical mirror symmetry of the eight vertices correspond in the weights
(1) to x = —2n — x and a change of sign of the weights a and b, the latter being
irrelevant with periodic boundary conditions. So the partition function of the other
half-infinite cylinder (pointing downwards) is ¥ (—x1, ..., —xr) (¥ only depends
on the differences of its arguments so the —2n term is irrelevant). We mean partition
function in the following sense: a one-point correlation function will be expressed

as (0) = %Za,ﬂem,w Vio(=x1,..., —x0)O0q g¥r.p(x1, ..., XL).
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3.2 Pseudo-periodicity

According to its definition and (6b), Z is invariant by x; — x; 4+ 7 for any given i.
Furthermore,

Zi(...,x;+mt,...)= Z (II/L(...,—xi —wT, . )WL, X +JT‘L’,...)>
ae{t,|}F
= (—p) P TTOHL e iy (L —x, | F
(—p) e Y @0 S By (., x, . .) by Eq. (1)
= p—ZnZiZn 1_[ z;lzL(. e Xiyaa)
J D)

where it is reminded that z; = e 2%
We reach the conclusion that Z; is a theta function of degree 2n and nome p (as
opposed to p? for ¥y ) in each variable x;.

3.3 Symmetry

Giveni =1,..., L — 1, we can use the exchange relation (8) and unitarity relation
(3) to write

Zp(X1, ooy Xig 1, Xiy oo, XL)
:(lI/L(—xl,..., —Xi41, —Xis ey —xL)\lI/L(xl,...,xiH,xi,...,xL))

Riiv1(xi — Xit1)
= <—‘PL(—X1, ooy =Xy = Xigly ey —XL)
r(x; — Xit1)

R“ 1WXi1 — X;
‘MWL(JCI,--~,xi,xi+1,~~-»XL)
r(Xi+1 — X;)
Riiv1(xi — Xit1)
= (WL (=X1, .0y —Xiy —Xig], ..o, —XL) | ————
r(x; — Xxit1)
Bt (it — xo
MWL(XL---,xi,xi+1,---,xL))
r(Xiy1 — x;)
=Zp(x1,...,x1)

where in the intermediate step we also used the fact that the R matrix is self-adjoint.
We conclude from this calculation that Zj is a symmetric function of its arguments.
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3.4 Recurrence Relation

The recurrence relation (15) for ¥y, implies one for Z; :

Zi(...,x,x+2n)

=(WL(..,x,x +2)¥L(..., —x, —x —21))
L-2

o [ [0 —2n—xi) (WL 2(.) @ sLo1 LIWL(.... —x, —x — 21))
i=1
L-2

o [ [0 —2n—x) (WL 2(.) ®sL_1.LIPLo1 LWL, —x, —x —2))
i=1
L-2

o [ [0 —2n—xi){WL2(.) ® L1 LIWL(.... —x — 20, —x))
i=1
by Eq. ) withxy_1 = —x,x, = —x — 27
L-2

o [T 9 =20 —xp)d ((=x —2n) — 20 — (=x))

i=1
(Wro(xi,...,x22) @sL_1,L1WL—2(—xX1, ..., —XL2) ®SL_1.L)

L-2
o [[ 92 —2n—x)Zi2(..)

i=1

where o« means equal up to a multiplicative constant. At this stage, we fix the nor-
malization of ¥y, in such a way that this constant disappears in the recurrence for-
mula for Z; , which becomes:

L-2
Zi(.oxxt+n=[]9P@—n—x)ZLa(..) (16)

i=1

where we have also shifted x — x + n and used 37 =0 (mod ).

Combined with the symmetry in its arguments, the recurrence relation (16) satis-
fied by Z; means that we can express its specialization at x; =xp £ n,...,x, £
in terms of Zy_>. So we possess 4n values of Z; as a function of x1; since it is a
theta function of degree 2n, these relations are more than enough to determine Zy
inductively (say, by Lagrange interpolation).
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3.5 Half-specialization

At the moment, we do not know how to solve in a closed form the recurrence relation
above. However, note that we have twice as many recurrence relations as needed to
determine Zy . This suggests to “half-specialize” Z in such a way that the number
of recurrence relations now matches the degree.

Explicitly, assume x; 4, = —x;, i = 1,...,n, and x; = 0. After such a special-
ization, Z is an even function of xy, ..., x,, and it has a double zero at x; = +£n,
i =1,...,n. Let us check the latter statement carefully. Since Z; is a symmetric

function of its arguments, let us assume that we order them as x, 0, —x ... (where x
is one of the x;) and that we send x to —2n (which is equal to n modulo ). Then
it is clear that ¥y (x, 0, —x, ...) forms a wheel and therefore Z; (x, 0, —x, ...) van-
ishes. However, ¥ (—x, 0, x, ...) does not vanish, so that to show that the zero is
double, we need to go further. Write

a
EZL(-xv 07 —X,.. ')I)C=—27’]

a
——¥(=21,0,x,...)

0
:<—lI/L(x,O, 2n,...) ™

0x

x=-2n x=2n

¥ (21,0, —2n, .. .)> 17)

Now apply recurrence relation (15) to ¥ (x,0,2n,...); we find that it is propor-
tional to some vector at sites j # 2, 3 tensor s2 3, and therefore the same its true of
its derivative w.r.t. x (one can be more explicit using x = —2n but we shall not need
it). Similarly, ¥ (=27, 0, x, ...) and its derivative w.r.t. x are equal to s1 2 tensor
some vector at other sites.

On the other hand, applying the exchange relation (8) to ¥z, (2n,0, —2n) ati =1
implies that P 2% (21,0, —2n,...) o« ¥ (0,2n, —2n,...) = 0 since a wheel is
formed. Similarly, the exchange relation at i =2 implies that P> 3¥1 (27,0, —2n,
...)=0.

We conclude that the expression (17) is zero by inserting P» 3 (resp. P 2) in the
first (resp. second) term. Therefore, taking into account evenness, we can write

n
Zr(x1s e X = X1 =20, 0) = [ [ 9200 — )92 (i + )X (xr ..o x) (18)

i=1

where X, (x1, ..., x,) has the following properties, as a direct consequence of the
corresponding properties for Zj :

e X, is a symmetric function of its arguments, and an even theta function of degree
2(2n — 1) in each.
e It satisfies the recurrence relations:
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Xl x, x +1) = 9> ()@ (x + 1)
n—2

< [T9* @ —n—x)0* G —n+x)Xu2(..) (19)
i=1

Xn(o. ) = 1,2( Hﬁk(mxn 1G.) k=234 (20)
i=1
_U0(2x) _ 1 _ D30y __
where ¢(x) = S5 = (200030 04(x), k = =57 = D) P31 Ta(n)
and iy =1, k3 = kg = =021 (v = e_Z”i/3/ﬁ) are pseudo-periodicity con-

stants where B34 are representatives of the three solutions of 28, +n =0
(mod &, wt) excluding n, namely, o =nw/2+n, fp3=nw/2+nt/2+ 1, fa =
nt/2+7.

We now have at our disposal the specializations x| = +x; £7n, £, i =2,...,n
k=2,3,4, thatis 4(n — 1) + 6 =2(2n + 1). An even theta function of degree
2(2n — 1) being determined by 2 x 2n values, we have enough recurrence relations
to determine X,,.

3.6 Solution as Pfaffians

We first introduce the function:

2 192(’7)

Ar(x,y) = 52(0)

= (93(x + MV3(x — MVZ () + Va(x + MValx — NVZ(3))

which has the following properties:

e It is symmetric function of x, y, and is an even theta function of degree 2 in each.
o It satisfies the following recurrence relations:

Ax(x, x + 1) = —1?93(x) 03 (x + 1) 94 (x)Da(x + 1) 1)
Ax(x, Br) = v 3ot (x) k=34 (22)

Next we claim the following: define

. h(xi, x;)
Ap(X1y e Xy) = ]_[ YT T Pf M, (23)

I<i<j<n

where

h(x,y) =9 +x =)0 +x+ )0 —x —y)d(n—x+y)
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and M, is a skew-symmetric 2m x 2m matrix, m = [n/2], given by

and

Also define

Then:

f(x;,x;) nevenori,j<2m

-1 nodd,i =2m, j <2m
My)ij = 1 nodd, j =2m,i <2m
0 nodd,i =j=2m
O (x — )0 (x 4+ y)Ax(x, y)
fx, y) =

h(x, y)

Bn(-xlv-"v-xn):An-i-l(xls ~'-1xn7132)

P. Zinn-Justin

(24)

(25)

(26)

e A, (resp. B,) is a symmetric function of its arguments, and an even theta function
of degree 2(n — 1) (resp. 2n) in each.
e They satisfy the recurrence relations:

Anooyx, x4 1) = —v203(x)03(x 4+ n)Oa(x)Da(x + 1)

n—2

< [[920c = n—x)0*(x = n+ x)Au2(..)

i=1

27)

B(..., X, x + 1) = =003 ()07 (x + 2m)03(x)93(x + )P4 (x)Da(x + 1)

Anl...

B,(...

An..

B,(...

n—2

< [T9° = n—x)0%(x —n+x)Bua(...)

i=1
, ,32) =B,_1(...)

n—1

B2 = —v 3o [ [ 95 D A1 ()

i=1

LB = "2 (v () T

n—1

< [[98 A1) k=34

i=1

LB = V") (v () 52

n—1

< [[98@)Ba1(.) k=34
i=1

where conventionally Ag = Bo = 1.

O AO)

(28)

(29)

(30)

€)Y

(32)
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Let us show for example (27) for n = 2m even. Assume that xp,,—1 = x ap-
proaches xp, + n = x’. Then the matrix element (M;)2,—1,2, develops a pole:
(Mp)am—1.2m x 1/(x — x’); and the other entries (Mp);j (i < j) remaining finite,
the only relevant contributions to the Pfaffian are those pairing 2m — 1 and 2m, so
we immediately have

n—2
AyCoox x4 = 1_[
i=1
X Ap(x,x +m)Ap—2(...)

h(x;, x)h(x;, x + 1)
O =)0 (x; —x =P (xi + )0 (x; +x+1)

where we have cancelled all factors in common to A, and A, _».

Now the remarkable phenomenon (using in a crucial way n = w/3) is that there
are compensations in the product, which simplifies to ]_[:':_12 B2 (x —n —x)0%(x —
n + x;). Finally, we use Eq. (21) for A; to reproduce the remaining prefactors on
the r.h.s. of Eq. (27).

The other equations follow from similar reasonings.

Finally, we find that A, B,, satisfies all the recurrence relations of X, or more
precisely,

Xn (1o x) = (—0262) AR (ers L x)Ba (X X)

3.7 Further Factorization as Determinants

Consider the following elliptic version of Tsuchiya’s determinant [23, 34]: (see a
similar determinant in [18])

H2m(-x15 -'-sxm;xm+lv-~7x2m)

B [T 12 s Wi, x)) dot 1 33)
[T 1<i<j<m PG —x))0(x;i+xj) 1<ism  h(x;, x;)
m+1<j<2m

or
m+1<i<j<2m

Conventionally, Hy = 1. Note that Hy = 1 as well.

The expression of Hy,, has the disadvantage that it is only (apparently) symmetric
in the variables {x{, ..., x,} and {x;,+1, ..., X2, }; in fact we show in Appendix C
that thanks to n = 7 /3, it is indeed symmetric in all variables. In terms of each, it is
an even theta function of degree 2(m — 1).

It is not hard to see that H»,, satisfies the following recurrence relation:

Hop(oooyxs oo, x4+ n) = 1_[ P(x —n—xi)0x —n+xi)Hyp—2(..;...)
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and the same if one exchanges x and x + 1. These are the usual recurrence rela-
tions satisfied by such determinants, as in the classical case of the Izergin—Korepin
determinant [19-21], and similarly to the Pfaffians of Sect. 3.6; the reasoning to de-
rive Eq. (34) is identical—a pole develops in one of the entries of the determinant,
reducing it to a determinant one size smaller.

Now consider the function

A/zm(xls ey X2m)

=H2m(xly s Xms Xm41, - 7x2m)H2m+2(xla cees Xms ﬂ3;xm+ls s X2ms ﬂ4)

A/, is an even theta function of its arguments, of degree 2(2m — 1), and using
Eq. (34), it satisfies the same recurrence relation (27) as Ay, for say x; = £x; 7,
j=m+1,...,2m. Thus the function is known at 2 x 2m values of x;, which
determines it uniquely. Combined with A}, = A> = 1, we conclude by induction
that A}, = Aj,.

Similar arguments can be made for Ay, and B,,. Together, we find

Aoy (x1, ..., xom) = Hop (x1, .o, Xx2m)Homg2 (X1, - ., X2m, B3, Ba)  (35)

Ao 1 (X1, ..y X2m—1) = Hom (X1, ..., X2m—1, B3)Hom (X1, ..., X2m—1, B4) (36)

Bom(x1, ..., xom) = Homq2(x1, ..., X2m, B2, B3)
X Hom42 (X1, -« oy X2m, B2, B4) (37)
Bom—1(x1, ... xom—1) = Hom (x1, ..., Xom—1, B2)
X Homi2(x1, .oy Xom—1, B2, B3, B4) (38)

These are the only 8 possible specializations at B 34, corresponding to subsets
of {82, B3, B4}, since applying any such specialization twice amounts to the shift
n—n—2.

3.8 Alternative Determinant Formula

Here we follow the same general method as in [33] (see also Appendix B of [12]).
Define

(x )_1?(2x)19(2y)
Y|

g(x, ) is an odd elliptic function of x and y. One further observes that for all x, y,
gx,y)+gx+n,y)+gkx+2n,y)=0

and similarly for y. Therefore, det; ; g(x;, x;), as a function of any of its arguments,
satisfies the same three-term relation. Now define
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Som (X1, -+ -5 Xom)
= [I oGi—xp J[ 9i+xpHum@r ... xm)
I<i<j<2m 1<i<j<2m
2
= [I TIPGi—xj+kmoci+a+kn  det  gix))
I<i<j<m k=0 mt1s)<am

of
m+1<i<j<2m

Since the prefactor is invariant by x; — x; + n for any i, we have the same three-
term relation for Sy;,,. In summary:

e Sy, is a skew-symmetric function of its arguments x;, and an odd theta function
of degree 6m in each.
o [t satisfies

Som e Xs o )+ Som s x 47,0 ) +Som (s x +21,..) =0

The space of odd theta functions of degree 6m is of dimension 3m, a possible
basis being

sk(x) = ezikxl%(krrr + 6mx, p6m) —e_Zikxz%(knr —6mx, p6m) 0<k=<3m-—1

sk (x) satisfies the relation s (x) + sx(x + n) + sk (x + 2n) =0 iff £k # 0 (mod 3).
The sequence (1,2,4,5,...,3m —2,3m — 1) = (ky, ..., ka;) is of cardinality 2m,
which is the number of variables of Sj,,, so we conclude that S, is proportional to
the “Slater determinant”

Som(x1, ..o xom) ¢ det i (xi) (39
i 1,....2m

.....

We shall not need the proportionality constant, only that it is nonzero (for generic p).

3.9 Uniformization

Although the formulae above are simple to derive, they are a bit too cumbersome
to be used, especially in the homogeneous limit. Since all functions we consider are
theta functions of definite parity, there is a rational uniformization, and we use from
now on the following parameterization:

13 92 (x)

_ _ 2
w@ == e e
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In terms of the original Boltzmann weights (1), we have (1 — ;2)w(x) =

(@@—n)+b(x—n))*
a(x—mb(x—n) *
Note the special values

1 1 1
wih) =—2 =D w(ﬁ3)=m =2  w(fy)= T =J4

which explains the labelling we have chosen for the coupling constants J; 3 4.
This parameterization has the advantage that the wheel condition becomes simple

to express: three spectral parameters form a “wheel” +x, &(x + 1), £(x + 2n) iff
the corresponding variables w, w’, w” satisfy

ot 4w 3
1-2¢2
(40)
ww/w// _ 1
1-2¢2

and therefore, two parameters form a “2-string” £x, =(x + n) iff the corresponding
variables w, w’ satisfy h(w, w’) =0, where

h(w, w')=1- 3+ ww + (1 - *)ww'(w+w') (41)

This formula allows to rewrite the recurrence formulae in this new parameteriza-
tion, but due to the fact that it is quadratic in w and w’, the result is somewhat
cumbersome and we shall not write it explicitly.

We also redefine the functions by dividing them by a “reference” even theta func-
tion of degree 2 to the appropriate power, here ¥ (x — n)¥ (x + 1), and absorbing
some constants in the normalization. That is, we define

A (w( ) w( )) An(x1, ..., xn)
n X1)yeeny Xn =dy 7 —
: [T, @ G — )P (i + m)y"!
Bn(xlv"'v-xn)

B, e n)) = by
(wx1), ..., w(xy)) [T, @ (i — )P (i + )y

where a, and b,, are constants which are implicitly defined by the expressions below,
and whose explicit expression we shall not need.
In particular,

1+¢?
1—¢?

Az(w, w’) =ww — (w + w/) +

and if we define

, (w—wHAr(w, w)
flow) ===
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which is such that f(w(x), w(y)) = —¢q/./pf(x, y), then we have:

h(w;, wj)

Anwr,.ow) =[] Pt M, (42)

Wi — W
l<i<j<n ' J

where M), is identical to M,,, except entries f(x;,x;) are replaced with entries
f(w;, wj); and

Bl’l(wl’"'5wn)=A}’l+l(w19"‘7wn7‘]2)

as well as
Xp(wi, ..o, wy) =2" A, (wi, .., w) By (wi, ..., wy)

where the numerical coefficient has been adjusted so that in the rational limit, the
normalization of X,, coincides with the one discussed in Sect. 1.3.

A further advantage of this new normalization is that A,, and B,, are polynomials
inwy, ..., w, and also of ¢, up to a conventional denominator in powers of 1 — ¢2
which we have added for convenience.

Similarly, we can define

[T H?im—i—l h(w;, wj)

e —
[T 1<i<jem (Wi—wj) 1<ism  h(w;, w))
m+1<j<2m

H2m(wl7 sy w2m) =
or
m+1<i<j<2m

and then the relations (35)—(38) expressing A, B in terms of H remain the same;
more compactly, one can write:

X,()=2""" J] Huepsi(... 9
SC{J2,J3,J4}

|S|=n (mod 2)
There are various alternative formulae, for example
m 2m
[T T2 h(wi, w)) A (wi, wj)

[T 1<icjsm (wi—wj) 1<ism  h(w;, w))
or m+1<j<2m

Hypo(wi, ..., wom, J3, J4) =
m+1<i<j<2m

Finally, the transformations

(=t (-

generate the group of permutations of the three coupling constants J;, J3, J4. Via
the uniformization w(x) = we (x), this translates into the symmetry of permutations
of non-trivial solutions of 2x + n = 0. The function A(w, w’) = h¢(w, w’) itself
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possesses this symmetry, in the sense that

—1 -1
he(w,w') =hog(w,w) e (w,w') =heise-n (gTw CTw/>

which is consistent with w¢ (83,4) = w_(B84,3) and

;-1
Wie+3)/c-1)(2) =—1/2= I
¢—1 -1
We+3)/c-1)(B3) = S
1-¢ ¢-1
we+3)/¢-n(B) = — = ==

4 Homogeneous Limit of the Partition Function

4.1 Summary

The homogeneous limit is obtained by setting all spectral parameters equal; in the
half-specialized partition function X,,, this is achieved by sending all x; to zero.
In this section, we use the following notation: we omit parameters that are set to
zero, e.g., Hyy, = Hyy (0, ..., 0). This is unambiguous because the total number of
——

2m
variables is given in subscript. Here are some values of Hy,, form =0, 1, 2, 3:

Hyp=1, 1, 3422 26 +29¢2 +8¢c* +¢6

2" V()= 1, T+2, 14349922 +13¢4 + ¢©

Hyn(3)= 1, 24¢4¢%, 114 12¢ 421224+ 1083
17¢4 4285 +¢6

Hyu(Jy)= 1, 2—¢+¢% 11—12¢ +21¢% - 1023
+7¢4 =205 +¢6

2" VHy(Ja, J3) = 1, 542042 66+ 63 48172+ 3023
+12¢% 323 4-¢6

2"V (D, Jy) = 1, 5—=20+¢% 66—63¢+81¢% —3073
+12§.4_3§5+§-6
Hyw(J3, J) = 1, 1422, 3+9¢24+30%+¢°

2=V, (Jay I3, Ja) = 34¢2, 21439¢% 4 3¢4 +¢°
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We recognize the reciprocal polynomials of those occurring in Conjecture E of
[6]: the correspondence of notations is that for m > 1, Hs,, = g“’”(’"’l)qm_l(l/ 0),
Hyu(J3) = ¢ Vp, 1(1/¢), 2" 'Hyu(a, Ja) = " Vp_,(1/0),
o=l (Jo, J3, Ja) = ;'"(’"—l)q_m(l/g). All other sequences can be obtained by
permutations of the {J>, J3, J4}, and can therefore be obtained by iterating the trans-
formations { — —¢ and { — gf?, as explained at the end of last section. All the
properties listed in Conjecture E of [6] can thus be checked on the Hy,,.

If we recombine the Hy,, in pairs to form A, and B,,, we recognize the reciprocal
polynomials of the s, of [6]: (see their Appendix A)

A =2 g, (1/¢2) n=>0 3)
By = (2/3)" 2LV A (1/6%) nz0 (44)
from which we conclude
Xy =2"" Ay By =2(4/3)" " Vs, (1/6%) 51 (1/¢7)

which coincides with the expression given in Conjecture 1 of [6] up to the factor of
two (which is due to our slightly different way of lifting the two-fold degeneracy:
F.1 = (—1)"y effectively duplicates every entry of ¥ compared to [6]).

See also Appendix A for an explanation of the constant terms of the various
polynomials above.

In the rest of this section, it is convenient to denote & = 1 — ¢2. We shall show
that the various polynomials above satisfy (differential) recurrence relations.

4.2 Linear Relations

We first derive certain linear relations satisfied by Hp,, (w1, ..., way, ). We shall need
them to relate the various derivatives of H»,, at w; = 0.
Define
Doy (Wi, ooy Wi Wit 1, ..., W2p) = det g(w;, wj) (45)
1<i<m
m+1<j<2m

with g(u,v) = m; we recall that A(u,v) =1 4+ uv(a(u + v+ 1) — 4). In other
words,

m 2m
[T T2 h(wi, w))
[T 1<i<jem (Wi —wj)
or

m+1<i<j<2m

Hyp(wy, ..., woy) = Doy (Wi, ..oy Wiy Wi 1y -+ 5 W2n)

(46)
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Also define

Sam(wi, ., wa) = [ i —wj)Hom(wi, ..., wam) (47)

1<i<j<2m

4.2.1 A First Order Differential/Divided Difference Equation

We start from the following identity, which can be checked directly:

o), g, v) + p(v)dyg(u, v)
+2(1 — )8+ @) g (u, v) + (07 (1) + 0 (v)) g, v) + (8 + 8y)g(u, v) =0

where p(u) = (142u)(4 —6u+ua +u?0), 0 (1) = 5u(e —4+4au), 9, is the usual
partial derivative %, and §,, is the divided difference operator: §,¢ (u) = M
for any function ¢ (u).

Then, one can easily prove starting from (45) (for example by writing D, as a
sum over permutations and grouping together the summands for values of the index
connected by the permutation)

2m
(Z(p(wi)aw,- + 0 (wi) +8uw;) +2(1 —a)(8 + a)Ba)

i=1

X Do (W1, ooy, Wi W15 -+ W2p) =0 (48)

In principle, by using relation (46), one can reformulate this identity in terms of
H»,,,, but the result is not particularly illuminating and we shall not need it.

4.2.2 A Second Order Differential Equation

Starting from the differential equation satisfied by 3, namely, (% +4p %)15‘3 (x; p)
=0, we find

32 3
— +24mp— |5 = kzvk
ax2 ap '

According to Eq. (39), this implies that

2m 82 P
D 5 +24mp— |Sam(x1, . xom) = mSam(x1, .. Xom)  (49)
= 0x; ap

where ¢, is m(6m* — 1) plus some p-dependent constant related to the normaliza-
tion of Sy,
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After switching to our rational parameterization and from p to «, we find the
following equation for Sy;,;:

2m
(Z(VZ(wi)a,'z +y1(w)d; + yo(w;)) + 24ma(l — o) (8 + oz)(%)

i=1
X Som(wi, ..., wam) =0 (50
where the coefficients are entirely determined except the constant term of yg(w).

The latter is determined by the large w = (wy, ..., wa,) expansion: from (45)—(47)
one easily derives

2m
S2m(w17"'1w2m):am(m71)l_[w;n71 1_[ (wi _w]) (1 +O(w73))
i=1 1<i<j<2m

and expanding (50) up to second subleading order fixes the constant. We find the
rather unpleasant expressions:

yo(w) = 18a*(m — 1)(3m — 2)w? + 6a(a — 4)(3m — 2)(4m — 3w
+ 64m? — 12a°m + 96am — 192m + 80 + 5o — 40«
+ 10a>m? — 20am?

yi(w) = —36a*(m — Hw> — 6a(a — 4)(10m — 9w
+6(3a® — 24 — 4o’m + 12am — 32m + 48)w — 360

Y2 (w) = 6w(aw — 4)(a +aw? + 2qw — 4w)

4.2.3 Homogeneous Limit

We now take the homogeneous limit in two steps: we first send wq, ..., w;,, to u
and wy41,..., w2, to v and then expand around u,v = 0. H,,,, being a sym-
metric function of wy, ..., wy,, only has one independent first derivative (resp.
two independent second derivatives), which with our specialization correspond to
L Hom = = Hop (tesp. -2 Ho = 55 Hoy and 5 Hop).

Taking this limit in Eqgs. (48) and (50) is a rather tedious procedure which we
shall not describe in detail. Expanding to first non-trivial order these equations pro-
duces the same result, namely the first equation below. This equation is a first order
differential equation, and so we can differentiate it once w.r.t. o, resulting in a sec-
ond order equation (second equation below). Expanding to the next order Egs. (48)
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and (50) produces two distinct second order differential equations. Finally, we find:

0 0 0 0 2(4m + 1)
2m X
0 0 (1 —)@+8) 2(4m + 1) 0
2m x m(m? —m+ 1)
2@m+1) 4m 0 l-—a)(@+8) x(Q2+a)
@m?+m—2) —2ax 0 0 mQ2m + 1)
x 20 m(4m + 1) x (o — 4)2
m*(m — 1) 2
— d
n(l—a)@+8) " 4w 3?)—UHzm
(+2m*m—1) , 3.2 Hom
Cmat 14y Mm=D T
a2 2m
0 mm—1) || & 4, =0 6D
x(4—a) 81483(1 2m
2 a0 Hom
—(m—1m ﬁH
0 x(2m + 1) da 1 72m
H2m

xa(oe —4)

There are 4 relations for seven derivatives, so they can all be expressed in terms
of derivatives w.r.t. o only.

A similar reasoning can be made when all variables are specialized to 0 except
one, or two, or three, are specialized to a subset of {J>, J3, J4}. The result is given
in Appendix D.

4.3 Bilinear Recurrence Relations

‘We now show how to derive differential bilinear recurrence relations for H,,, and
its variants. In fact these relations were mentioned, but not written explicitly, in
paragraph 3 of [6].

Similarly to the previous paragraph, we first consider the quantity

1 i+J
Hzm(u,...,u,v,...,v):g(u,v)fm2 det ——g(u,v)
—_— —— 0<i,j<m—1\i!j! ou'dv/
m m
A standard application of the Jacobi—Desnanot identity (see [22] for the simpler
case of the Izergin—Korepin determinant) to the determinant in the right hand side
produces the Toda lattice equation:

2 2

0
log Hop (U, ..., v,...) = — log g(u, v)
dudv

2 dudv
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Hym+ny(u, ..., v, .. ) Hgu—1y(u, ..., v,...)
g, v)2Hyy(u,...,v,...)?

+

The left hand side involves first and second derivative of Hy,, (u, ..., v,...), which
at u = v = 0 can be reexpressed in terms of derivatives w.r.t. & thanks to Eq. (51).
The result is:

2
CoHam+1)Ham—1) = C1 How Hyy, — Co(Hy,,)” + C3How Hy,, + C4Hy,  (52)
where all derivatives are w.r.t. o, and

Co = 4a(dm — 1)(4m + 1)*(4m + 3)

Ci =4 — 1)2a(a +8)2(@m + 1)?

Cr =4(a — 1)%a(a + 8)*(4m — 1)(4m + 3)

C3 =2(a — 1)(a + 8)(® + 28a + 24a*m? + 304am* — 256m* + 200’ m
+208am — 192m — 32)

Cy = 6% — 24a + 4’ m* — 10080 >m* 4 3408am™ + 512m™* — 4o m?
— 984a’m> 4 4032am> — 128m> + o> m?* — 142> m? 4 1028am>
—320m? — &’m + 28 m — 4dam — 64m

Note that contrary to Eq. (51), Eq. (52) is a closed relation allowing to compute
inductively the Hy,, as polynomials of & = 1 — ¢2.

A similar computation produces differential recurrence relations of the same
form for the other factors of X,. The coefficients are given in Appendix D. To-
gether, they allow to compute the full squared norm X,, inductively.

5 Conclusion and Prospects

In this paper, we have considered the inhomogeneous eight-vertex model with peri-
odic boundary conditions in odd size and crossing parameter n = /3. We have pro-
vided a basic setup for the computation of the fully inhomogeneous generalization
of the ground state eigenvector of the XYZ spin chain, and then went on to compute
the partition function on an infinite cylinder, which generalizes the squared norm of
the ground state eigenvector, when the spectral parameters are “half-specialized”,
i.e., form pairs x, —x. We have provided a variety of explicit expressions for this
partition function in terms of Pfaffians and determinants. Interestingly, one can then
obtain self-contained expressions in the homogeneous limit for the squared norm,
without any more reference to the inhomogeneous case, by allowing differentiation
w.r.t. the variable parameterizing the line n = /3 (elliptic nome, or ¢). These ex-
pressions take the form of bilinear differential recurrence relations (cf. Eq. (52)).
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In order to derive such differential relations, we have used certain differential
(and divided difference) relations satisfied by the inhomogeneous partition function.
In fact, we have strictly limited ourselves to the relations that were needed for our
purposes, but it seems that this is only the tip of the iceberg: one should investigate
in more detail the structure of the set of such equations. It would be interesting to
understand the role of the full symmetry of arguments of the Izergin—Korepin type
determinant (33).

Note that we have not been able to obtain an expression for the fully inhomoge-
neous partition function, but if we compare to the work of Rosengren for the §VSOS
model [30] there is also no simple expression for the fully inhomogeneous partition
function. Inversely, it would be interesting to see if the “half-specialization” trick
helps in this context. More generally, as noted in [6], there are many ressemblances
between the work [30] and our present setup, which should be clarified.

Another connection which should be more thoroughly explored is with the su-
persymmetric models of lattice fermions of [16, 17].

It is clear that the present methods should allow to compute more quantities such
as individual entries of the ground state, or certain correlation functions (see the
recent work [8] in the XXZ setting).

Some more directions which should be explored are: the relation to the quantum
Knizhnik—Zamolodchikov—Bernard (g KZB) equation and to the g KZB heat equa-
tion [15], which should be the right framework for part of Sect. 2, especially in view
of a generalization to arbitrary n; the connection to nonsymmetric elliptic Macdon-
ald polynomials; the use of matrix model techniques to analyze the determinants of
Izergin—Korepin type found here, as in [36]; and the meaning of the connection to
the Painlevé VI equation, which is emphasized in [5, 6].

Finally, it would be interesting to find a combinatorial interpretation for the (pos-
itive integer) entries of the polynomials of Sect. 4.1, beyond their value at { = 0.

Acknowledgements P.Z.J.is supported in part by ERC grant 278124 “LIC”. P.Z.J. would like to
thank R. Weston for his help in the framework of a parallel project, V. Bazhanov and Mangazeev
for useful conversations, H. Rosengren for explaining his work [30] as well as further unpublished
work, and P. Di Francesco for discussions. Part of this work was performed during the author’s
stay at MSRI, Berkeley.

Appendix A: The { — 0 Trigonometric Limit

The trigonometric limit is obtained by sending ¢ to 0. The Boltzmann weights (1)
of the eight-vertex model turn into those of the six-vertex (the weight d go to zero).
In this limit the results of this paper should be closely related to the computations
of [14]. Note that the “quadratic” sum rule considered here was actually not com-
puted in [14]—instead the quantity Za v, (z1,...,2 L)2 was used there. However,
the same argument of degeneracy of the scalar product allows to conclude that

Zr(xi, ..., xp)=3" <Z lI/a(xl,...,xL)) (Z Wy (—x1, ..., —xL)>
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—n? — _
=3 " SYL(Z19~~-9ZL)SYL(Z115"'7le) (53)

where s, is the Schur function associated to partition A, and Y; = ([(L —
i)/2])i=1....- In the homogeneous limit,

sy (1. 1) =30 1)/21—[ GG —D!
! CPLCT RV
and together we have Z; = Agr (L), where Agr(L) =1, 3,25,588... is the num-
ber of Half-Turn Symmetric Alternating Sign Matrices [23, 27].
The half-specialization of Sect. 3.5 produces the following factorization:

n

—1 -1 -1
sy, (Lzi,2) v 2ns 2 )=H(1+Zi+zi )XY @10y Z0) XYy (R -y 20y @)
i=1

(54
where x; is the symplectic character, defined by:
( . det( Aj+n—j+1 Z[—)Lj—n-ﬁ—j—l)
X021, 2n) = Tt )
n det(zn j+1 — 7 n+j 1)
and w = ¢"/3; this formula can be proved by induction, or can be seen as a byprod-

uct of this paper, as we now show.
In the limit ¢ — 0, the parameterization w is related to the multiplicative spectral
parameter z by w = (z — 1)2/(1 4+ z + z?); this way we find

9> + 27 + 27U + 27/ + 72277
(I+z+2)2(1+2 +2%)?

h(z,z') =

The denominator factors out of Pfaffians and determinants.

A.l1 Pfaffians

We now recognize the Pfaffian A, (Eq. (42)) in even size:

Ao (W1, ..., Wom)
3’"1—[ l_[ 327 +ziz) +z§)(1+zl‘z;+zi2z§)
= Zi
A U+ U4z 42— ) - ziz))

1<i<j<2m

(zi —z;)(1 = zizj)
@ +zizj +2) (A +zizj +2727)

x Pf

which up to some prefactors is exactly the Pfaffian given in [11] (Eq. (3.27)) for the
square of the partition function Zy sy of U-turn symmetric ASMs of [23]. The
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latter is known to coincide with xy,, (z1,...,z2,) [25] and so we reproduce the
first factor of the Lh.s. of Eq. (54). More precisely, we find Ay, (wq, ..., way) =
32m? ]_[12;"1 14z + Zfl )~ XY (215 - - -, zam)?. The odd case can be reduced to

the even case by sending one of the z; to zero (something which did not make sense
in the elliptic setting), so that for both parities we have

n
A, ..o wy) = 3D 4z 427 ™ oy e z)?

i=1
or in terms of the original quantities,
Al’l(-xl LA xn) = 3_2|_”/2J L(n_l)/ZJ XYn (Zl LA Zn)2

The second factor is simply obtained by noting that w = J, = —1/2 corresponds
t0z=w=e""3, s0

n
By(wy, ..., wy) = 2_,132["/24_“ Lnt1)/2] 1—[(1 +zi + Zi_l)_nXYn-H 215+, 2ns w)Z

i=1

or B (x1, ..., x,) =37 220Dl 5y (21, ..., 24, ®)?. Finally,

L1tz
ZFH(%) X,
i=1

n

2 _1\2
=3 1_[(1+Zi+zi D, @1 e 20 XY @1 e 20 @)
i=1

which is consistent with Egs. (53) and (54).

A.2 Determinants

Similarly, the determinants simplify as { — 0. Noting that w = J3 and w = J4 both
correspond to z = 0, we conclude that there are only two distinct determinants for
each parity; Tsuchiya’s determinant [23, 34] is known to be equal at a cubic root of
unity to the symplectic character introduced above [25]

[T 1<i<m. (zl-2 +zizj +z?)(1 +2z2izj +Z,-ZZ§)

m+1<j<2m

[T 1<i<j<m, (zj =2z —ziz))
m+1<i<j<2m

1
x  det
1sizm, (27 +ziz) +z§)(1 +2ziz; + zfz?)

m+1<j<2m
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= XYZm (Zla L ] sz)
and then we have:

2m
- i\ —ml
Hy (Wi, wo) = 3" DT (1 4z +27) ™"
i=1
X X¥om (215 -5 22m)
2m—1 .
Hom(wi, ... wam—1, J) =3"""D [T (1 +2 +27)"
i=1
X XV (215 -+ 22m—1, )
2m—1
m(m—1) T —1\—m+1
Hop (w1, .., wom—1, J3/4) =3 [TO+z+z")

i=1

X X¥ou1 215+ 22m—1)
2m
Honsa (Wi wom, Ja, Jaa) = 3027 T (12 7)™
i=1
X XY2m+1 (Z17 L] szv a))
2m

Homyo(wi, ..., wopm, J3, Ja) = 3”‘(’”“)1_[(1 +zi+z )"
i=1

X XYom (z1, ..., 22m)

2m—1
Homio (Wi, ..., Wam—1, Jo, J3, Jy) = 3" HD H (I+zi+zH)™"

i=1

X XY (215« o3 22m—1, @)

A.3 More Determinants

The expression (39) of Sy, as a Slater determinant reduces to the numerator of our
definition of the symplectic character xy,, (since kj = Yo;mq1—j +2m — j +1,
j=1,...,2m)

ki —k;
SZm(Zly-u,ZZm):' ) det (Z‘j -z '/)
L,

The differential equation (49) reduces to

2m 9 2
Z<Zi8_z-> Som (21, -y zam) = m(6m* — 1)Som (21, .. ., 22m)
1

i=1
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A.4 Homogeneous Limit

Finally, AY/> = Hy, =37 Vyy (1,...,1)=1,1,3,26,646.. . is the number
of Vertically Symmetric Alternating Sign Matrices of size 2m + 1 (also, the number
of Off-diagonally Symmetric Alternating Sign Matrices of size 2m, and the number
of Descending Plane Partitions of size m which are symmetric w.r.t. all reflections,
i.e., Cyclically Symmetric Transpose Complement Plane Partitions of a hexagon of
size (m + 1) x (m — 1) with a triangular hole cut out), while Aé{fﬁl = Hy (J3/4) =
3’(’"’1)2)(1/2,"71 (1,...,1)=1,2,11,170... is the number of Cyclically Symmetric
Transpose Complement Plane Partitions of size m (also, the number of VSASMs of
size (2m — 1) x (2m + 1) with a defect on the m™ row, the symmetry line). Note
that the square of the number of VSASMs also appears in the observations of [28].
The sequence of numbers

2" By = 2" Hyp (J2, J3ya) =37 Dy, (1, 1, 0) =1,5,66,2431 ...

appears as one of the factors of the enumeration of UUASMs in [23]. The last se-
quence,

2" (Bym—1/3)"2 = Hyp (J) =37 Dy (1, 1,w) = 1,7, 143,8398, ...

is the number of ASMs of order 2m + 1 divided by the number of VSASMs of size
2m + 1.

As mentioned before, the last two cases, namely Hy,(J3,J4), and
Hy,, (J2, J3, Ja), are related to Hy,, and Hy, (J2) by multiplication by powers of
3 and 2.

Appendix B: The ¢ — 1 Limit

Besides the ¢ — O limit, there is another trigonometric limit, namely { — 1 or
a — 0. It is expected to be somewhat trivial since the corresponding Hamiltonian
is the Ising Hamiltonian with interaction 6*¢o*. Indeed, we find that the building
block H»,, of the partition function becomes:

[T 1<ism (1 —4wiw))

m+1<j<2m
Hyp (i, ..., wom)le=1 = et —————
[T 1<i<jem (wi—wj;) 1=<ism 1—4ww;
or m+1<j<2m

m+1<i<j<2m

— 2m(m—1)

This formula is valid as long as the w; stay finite as { — 1. One special case is if
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one w; is equal to J4 = 1/(1 — ¢). Then we find instead
IRtV
Hom (Wi, ..o, wom—1, Ja)le=1 =271

so that
Xp(...) =2n D+l
This is compatible with a constant value of ¥,, = 2n(=D/2 gince Xo, =

2n+1y,2
2 lI/Zm,ot‘

Appendix C: Proof of Symmetry of H,,

The symmetry of Hy,,, defined by (33) can be seen as a particular case of a general
result, which can be formulated as follows: (see also Thm. 4.2 in [24])

Proposition Let ¢1, ¢y be two functions (with values in C) such that

) ¢(x,y)=—¢(y,x),
(i) @(x1,x2)P(x3,x4) — P (x1,x3)P (x2, x4) + @ (x1,x4)P(x2,x3) = 0 for ¢ =
o1, 2.

Then, in the domain of the (x;)1<i<om such that ¢2(x;, x;) #0 forall 1 <i, j <2m,

det iy (SHERN))
. P ¢2(xlvxj)
j=m+1,..., 2m

Agp (X1, .00, Xom) =
[T 1<i<j<m &2(xi,x))
or
m+1<i<j<2m
is symmetric in all arguments {x1, ..., Xom}.

Actually it is well-known that functions that satisfy (i) and (ii) are 2 x 2 de-
terminants |a(x) a(y)
b(x) b(y)

generality write ¢; (x1, x2) = ¢; (x1) — @i (x2), i = 1, 2. The proposition then follows

from the following representation (characteristic of Toda chain tau functions): start-

. Sr1(x)—d1(xj) 1 dy .
ing from &55-5,) = m7 e G=mo—aGn @1 () where C s any contour

that surrounds once counterclockwise the ¢2(x;), j =1,...,2m, and expanding
the determinant in A,,, we get

, so that, removing symmetric factors, one may without loss of

A2m(x17 e 7x2m)

1 m
= iy ﬁm Edyi¢1(yi)
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.....

m
Jj=L...m

S S . 1
( yi—$2(x;) ) detj :’;_}_1 - sz ( yi—pa(x) )

) [licicjem(@2(xi) = 02(x) [Tng1<icjcom (P2(xi) — d2(x))

H15i<j5m()’i - yj)2

i [Tavoron
m\ @iy Jem i TP T2 G = 62(x)))

which is explicitly symmetric in the x;.

The application to Hy,, consists in writing ¢ (x, y) =h(x, )9 (x — y)d(x + y),
P1(x,y) = (x — y)?(x + y) and checking that they satisfy (i) and (ii), so that
Hy, (x1, ..., X0m) = H1§i</~§2m h(x;, x;) Ao (x1, ..., x2m). It is slightly easier to
apply it to Ha,, i.e., after the change of variables from x to w, since we then have the
more explicit expressions ¢1(w) = w, pa(w) =w/(1+ 3+ Hw? — (1 - Hwd).

Note that other identities following from integrability of the Toda chain, for ex-
ample the Hankel determinant form

A (X1, -+ - Xom) = det(si+ )i, j=0,..m—1

P2 (xi)*
Hj(;éi)(¢2(xi) — ¢2(x))

2m

o1 (x;).

Sk =

i=1

They also provide an alternative derivation of Eq. (39) (“first quantized” form of the
tau function).

Appendix D: Differential Equations

We provide here analogues of Eqgs. (51) and (52) when Hy,, (that is, the function
H,,, with all arguments set to zero) is replaced with H»,, (S), S C {J2, J3, J4} (again,
with all other arguments set to zero). Because of the permutation symmetry w.r.t.
{J2, J3, J4}, we only need to provide one formula for each possible cardinality of S.
When taking derivatives w.r.t. u or v, the convention is that the arguments that are
specialized to J», J3, J4 are among the u’s.

After transposition (for display purposes), Eq. (51) is of the form

dudv du? da? duda ou o

=0

92 92 92 92 B] B]
Hyyn, — Hom, — How, ——How, — Howm, — Hop, Hoy | P
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For H,,, itself, the matrix P is

633

0 0 22m + 1)
0 0 4m
0 —2m(a — 1)(x + 8) 0
0 —2(—4m — 1) —2m(a — 1)(a +8)
2(4m + 1) 0 m(m?* —m+ 1) (a +2)
—2mx m2(m — 1) (e +2) 0
(@ —1)( +8) —m(4a + 14)
2
(’::(a 41_)’2”) (m — Dym? —(m — Dym?(a — 4)
2(4m? +m —2)u
—2m(4m + N«
0
0
mQ2m + 1)(« — 4)?
0
—(m — Dm?>Q2m + 1) (a — 4
For Hy,, (J>):
0 0
0 0
0 —2(m — (e — D(a + 8)
0 —2(1 — 4m)
2(4m — 1) 0
—2(m —1)x (m—1)x
(@ —D(a+8) (am?+2m?—am—4m — 4o — 12)
m—1)2x
(a5n+2n)1 _2) (m = 1)%m
202m+1) 2(4m? —5m — Do
dm —2m4m — )«
0 0
—2m(e — D(a +8) 0
m3 (o +2) mQ2m — 1)a?
—m(m —1)(a +4) —16m%(a —2)
0 0
—(m — Dmx —(m — Dm%ax
(am —4m + 4) Qam —8m — a + 8)
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For Hy;, (J3, J4):

(== ]

0
2(4m — 3)
—2(m —2)x
(@ —1)(ax+8)
(m —2)ymx
(am +2m — a)

For Hyy, (J2, J3, J4):

S O O

0
2(4m —5)
—2(m —3)x
(¢ — D(x+3)
m—=3)(m—1)m
X(a+2)

As to Eq. (52):

P. Zinn-Justin

0
0
=2(m —2)( — )(« + 3)
2(4m —3)
0
(m—2)x
(am? +2m? —am — 4a — 14)

(m—2)y(m —1)m

202m +1) 2(4m? — 11m + 4)a
dm —2m(4m — 3)«a
0 0
—2m(a — 1) (o +8) 0
m(o +2)(m? + 1) mQ2m — 1)a?
—am? —16m@m — 1) (o — 2)
0 0
—(m —2)ymx —(m —=2)(m — max

(am —4m — ) QRoam — 8m — a)

0
0
—2(m —3)(a — D(ax +38)
2(4m — 5)
0
m(m — 1)(m — 3)(a +2)
—(m —3)(4a + 14)

(m—3)(m — Dm

202m+1) 2(m — 1)(4m — 13)a
4m —2m(4m — S)«x
0 0
—2m(x — 1)(x + 8) 0
mm?* —m+D@+2) m@m—3)(a—4)>2
0 0

—(m —=3)m*Q2m —3)

—(m = 3)ym?*(a —4) (@ — d)a

2
CoHom+1)Ham—1) = C1 Hom Hyy — C2(H3,, )" + C3 Hom H3,, + CaHz,,
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The coefficients for Hy,, are:

Co = 4a(dm — 1)(dm + 1)>(4m + 3)

Ci =2(a — D2a(a +8)2@m + 1)?

Cr =4(a — 1)%a(a + 8)*(4m — 1)(4m + 3)

C3 = (@ — D)(a + 8)(* + 28 + 240’ m? + 304am* — 256m* + 20a*m
+208am — 192m — 32)

Cy = 6% — 24a + 4’ m* — 10080’ m* 4 3408am™ + 512m* — 4o’ m>
— 984a°m> 4 4032am> — 128m> + a®*m? — 142a*m® + 1028am>
—320m? — o> m + 28a>m — 44am — 64m

For Hy,,(J>):

Co = 4a(dm — 3)@dm — 1)>(4m + 1)

Cyr=204m - D*(=1+a)a@+a)

Cy =4(4m = 3)(1 +4m)(—1 + &)’ (8 + )’

C3 = (=1 + )8 + o) (64m — 256m* — 4o — 96mar + 304m* e + a* — dma?
+24m?a?)

Cy = —128m + 768m? — 1152m> + 512m* — 360 + 336ma — 204m>«
—2784m>« + 3408m*a + 18 — 126ma® — 6m*a® 4 1032m>a?

—1008m*a? — ma® + 9m2a® — 12m3a® + 4m*o®
For Hy;, (J3, J4):

Co = 4a(4m — 5)(4m — 3)*(4m — 1)

Ci=24m —3)2 (-1 +a)’a@+a)’

Co =4(4m — 5)(4m — 1) (=1 + a)?a (8 + a)?

C3 = (=1 + )8+ a)(—192 + 448m — 256m*> + 204a — 512ma + 304m>a
+21a? — 44ma® + 24m*a?)

Cy4 = 384m? — 896m> + 512m* 4 7200 — 5208ma + 11892m>a — 10848m>«
+ 3408m*a — 90a® + 1074ma’ — 2958m>a® + 3000m>a* — 1008m*a®

+ 3ma’ — 3m?a’ — 4m3a’ + dm*a’
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For Hoy, (J2, J3, J4):

Co = 4a(4m — T)(4m — 5)*(4m — 3)

Ci=204m—5)>%(—1+a)a@+a)’

Cy = —4(4m — T)(4m — 3) (=1 + 0)’a (8 + a)?

C3 = (—1 + )8 + o) (—480 + 704m — 256m* + 5400 — 816ma + 304m>a
+450% — 68ma® + 24m*a?)

Cyq = —960m + 2368m? — 1920m> + 512m™* + 8400a — 27740ma + 33572m’a
— 17664m>a + 3408m*a — 210002 + 7240ma® — 9142m>a® + 5016m>a”

—1008m*a? — 5ma® + 13m2a’® — 12m3a® + 4m*a?
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