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Random Planar Metrics

Itai Benjamini*

Abstract

A discussion regarding aspects of several quite different random planar metrics
and related topics is presented.

Mathematics Subject Classification (2010). Primary 05C80; Secondary 82B41.

Keywords. First passage Percolation, Quantum gravity, Hyperbolic geometry.

1. Introduction

In this note we will review some aspects of random planar geometry, starting
with random perturbation of the Euclidean metric. In the second section we
move on to stationary planar graphs, including unimodular random graphs,
distributional local limits and in particular the uniform infinite planar trian-
gulation and its scaling limit. The last section is about a non planar random
metric, the critical long range percolation, which arises as a discretization of
a Poisson process on the space of lines in the hyperbolic plane. Several open
problems are scattered throughout the paper. We only touch a small part of
this rather diverse and rich topic.

2. Euclidean Perturbed

One natural way to randomly perturb the Euclidean planar metric is that of first
passage percolation (FPP), see [25] for background. That is, consider the square
grid lattice, denoted Z2, and to each edge assign an i.i.d. random positive length.
There are other ways to randomly perturb the Euclidean metric and many
features are not expected to be model dependent. Large balls converge after
rescaling to a convex centrally symmetric shape, the boundary fluctuations are
conjectured to have a Tracy-Widom distribution. The variance of the distance

*Department of Mathematics, Weizmann Institute, Israel.
E-mail: itai.benjamini@weizmann.ac.il.
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from origin to (n,0) is conjectured to be of order n?/3. So far only an upper

bound of -1 was established, see [7]. It is still not known how stable is the
shortest path and its length to random perturbation as considered in noise
sensitivity theory, see [8, 21]. Also what are the most efficient algorithms to
find the shortest path or to estimate its length? When viewed as a random
electrical network it is conjectured that the variance of the resistance from the
origin to (n,0) is uniformly bounded, see [10].

Consider random lengths chosen as follows: 1 with probability p > 1/2 and
oo otherwise. Look at the convex hull of all vertices with distance less than n
to the origin (assuming the origin is in the infinite cluster). Simulations suggest
that as p N\, 1/2 the limiting shape converges to a Euclidean ball. This is
still open but heuristically supported by the conformal invariance of critical
Bernoulli percolation.

The structure of geodesic rays and two sided infinite geodesics in first pas-
sage percolation is still far from understood. Furstenberg asked in the 80’s
(following a talk by Kesten) to show that almost surely there are no two sided
infinite geodesics for natural FPP’s, e.g. exponential length on edges.

Héaggstrom and Pemantle introduced [22] competitions based on FPP, see
[18] for a survey. Here is a related problem. Start two independent simple ran-
dom walks on Z? walking with the same clock, with the one additional condi-
tion, the walkers are not allowed to step on vertices already visited by the other
walk, and otherwise chose uniformly among allowed vertices. Show that almost
surely, one walker will be trapped in a finite domain. Prove that this is not the
case in higher dimensions.

3. Unimodular Random Graphs, Uniform
Random Triangulations

There is a recent growing interest in graph limits, see e.g. [31] for a diversity
of viewpoints. In parallel the theory of random triangulations was developed
as a toy model of quantum gravity, initially by physicists. Angel and Schramm
[2, 3] constructed the uniform infinite planar triangulation (UIPT), a rooted
infinite unimodular random triangulation which is the limit (in the sense of
[11]) of finite random triangulations (the uniform measure on all non isomorphic
triangulations of the sphere of size n), a model that was studied extensively by
many (see e.g.[26]). Exponential of the Gaussian free field (GFF) provides a
model of random measure on the plane, see [19].

Therefore in the theory of random uniform planar graphs and triangulations
we encounter several view points and many missing links. The general theory
of unimodular random graphs [11, 1] is useful in deducing certain properties,
giving a notion of “stationary” graph in the spirit of stationary process. This is
a measure on graphs rooted at a directed edge which is invariant for rerooting
along a random walk path. This rather minimal assumption turned out to be
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a surprisingly strong generalization of Cayley graphs, or transitive unimodular
graphs. Conformal geometry is useful in the bounded degree set up. Enumer-
ation is useful when no restriction on the degree is given. See the recent work
[13] and references there, for the success of enumeration techniques. The key to
the success of enumeration is the spatial Markov property. It is of interest to
classify which other distributions on rooted infinite triangulations enjoys this
property? The links to the Gaussian free field is only a conjecture at the mo-
ment, and a method of constructing a conformal invariant random path metric
on the real plane from the Gaussian free field is still eluding. There are many
open problems in any of the models. Here are a few, for more in particular
regarding extensions unimodular planar triangulation’s other then the UIPT
or the UIPQ see [6]:

1. Angel and Schramm [3] conjectured that the UIPT is a.s.recurrent. At
what rate does the resistance grow? Note that the local limit of bounded
degree finite planar graphs is recurrent [11]. The degree distribution of
UIPT has an exponential tail. It is of interest to understand the structure
of large random triangulations conditioned on having degree smaller than
some fixed constant. Adapt the enumeration techniques to the bounded
degree set up. [6] subdiffusivity of the simple random walk on the UIPQ
was established with exponent 1/3 as upper bound on the displacement by
time n. Denote the SRW by X;. What is the true exponent 1/3 > « > 0
such that

sup dist(o, Xj) < n®?
0<k<n

Does oo = 1/4?

2. The UIPT is Liouville (no non constant bounded harmonic functions)
and any unmodular graph of subexponential asymptotic volume growth,
see [6]. Show that if G is planar, Liouville and unimodular then G is
recurrent?

3. View a large finite triangulation as an electrical network. Understanding
the effective resistance will make it possible to study the Gaussian free
field on the triangulation. The Laplacian spectrum and eigenfunctions
nodal domain and level sets are of interest, see [20] for background.

4. Show that if G is a distributional limit (in the sense of [11]) of finite
planar graphs then the critical probability for percolation on G satisfies
pe(G, site) > 1/2 a.s.and no percolation at the critical probability. This
last fact should hold for any unimodular planar graph.

5. Consider the n x n grid equipped with the Gaussian free field with no
boundary conditions. The exponential of the field gives a positive “length”
to each vertex. We get a random metric on the square grid. Let v;(n) be
the shortest path between the top corners and «2(n) the shortest path
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between the bottom corners. Show there is ¢ > 0, so that for any n,
P({v(n)N2(n) # 0}) > c. Identify the scaling limit of v1(n)? Estab-
lish and study the scaling limit of these metric spaces. How do geodesic
concentrate around a fixed height of the field? What is the dimension
of the geodesics? Since scaling limits of geodesics likely have Euclidean
dimension strictly bigger than one, it suggests that geodesics wind a ev-
ery scale and therefore “forget” the starting point. Thus likely the limit
is rotationally invariant and maybe close to Schramm’s SLE, curve, for
what k7

6. The following deterministic statement, just proved together with Panagi-
otis Papazoglou, might help clear up several aspects regarding the geome-
try of the random triangulation. G planar with polynomial volume growth
8, then there are arbitrarily large finite domains €, in G with boundary
of size at most |©2,|'/#? Does having such an isoperimetric upperbound
implies an upperbound on the exponent « in the displacement of SRW
from certain starting points and certain times (dist(o, X,) < n®)?

7. Adapt the enumeration techniques to the bounded degree set up. De-
vise an algorithm to sample uniformly a large finite triangulation, chosen
uniformly among planar maps of size n and degree at most d. Try to
formulate and/or prove something in higher dimensions, see [5].

The coming three subsections discuss the scaling limit of finite random
planar maps and harmonic measure for random walks on random triangulations.

3.1. Scaling limit of Planar maps. A planar map m is a proper
embedding of a planar graph into the two dimensional sphere S, seen up to
deformations. A quadrangulation is a rooted planar map such that all faces
have degree 4. For sake of simplicity we will only deal with these maps (see
universality results). Let m,, be a uniform variable on the set Q,, of quadran-
gulations with n faces and v,, be a vertex picked uniformly in m,,. The radius
of (my,v,) is
'n = 'UEVegli?g;(mn) dgr(vn, 'U)«

In their pionneer work, Chassaing and Schaeffer [17] showed that the rescaled
radii converge in law toward the radius r of the one-dimensional Integrated
Super Brownian Excursion (ISE),

aw) [(8) 4
n71/4rn (1—>) <9) T.

The key ingredient is a bijective encoding of rooted quadrangulations by labelled
trees due to Cori-Vauquelin and Schaeffer [33]. This was the first proof of the
physicist’s conjecture that the distance in a typical map of size n should behave
like n'/4. Nevertheless this convergence does not allow us to understand the
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whole metric structure of a large map. To do this, we should consider a map
endowed with its graph distance dg, as a metric space and ask for convergence
in the sense of Gromov-Hausdorff metric (see [15]). In other words, if m,, is
uniform on Q,, we wonder whether the following weak convergence for the
Gromov-Hausdorff metric occurs

(mn7n_1/4dgr) s (1o, doo), (3.1)

where (Mo, ds) is a random compact metric space. Unfortunately, the con-
vergence (3.1) is still unproved and constitutes the main open problem in this
area. Nevertheless, Le Gall has shown in [28] that (3.1) is true along sub-
sequences. Thus we are left with a family of random metric spaces called
Brownian maps which are precisely the limiting points of the the sequence
(mn, n~Y 4dgr) for the weak convergence of probability measures with respect
to Gromov-Hausdorff distance. One conjectures that there is no need to take
a subsequence, that is all Brownian maps have the same law. Still one can
establish properties shared by all Brownian maps e.g.

Theorem 3.1 ([28],[30]). Let (Moo, dso) be a Brownian map. Then
(a) Almost surely, the Hausdorff dimension of (Meo,dso) is 4.
(b) Almost surely, (Moo, doo) s homeomorphic to Ss.

In a recent work [29], Le Gall completely described the geodesics toward a
distinguished point and the description is independent of the Brownian map
considered. Here are some extensions and open problems:

1. Although we know that Brownian maps share numerous properties, they
do not seem sufficient to identify the law and thus prove (3.1). In a forth-
coming paper by Curien, Le Gall and Miermont, they show the conver-
gence (without taking any subsequence) of the so-called “Cactus” associ-
ated to m,,.

2. The law of mutual distances between p-points is sufficient to characterize
the law of a random metric space. For p = 2, the distance in any Brownian
map between two random independent points can be expressed in terms
of ISE. Recently the physicists Bouttier and Guitter [16] solved the case
p = 3. Unfortunately their techniques do not seem to extend to four
points.

3.2. QG and GFF. Let 7, be the set of all triangulations of the sphere
Se with n faces with no loops or multiple edges. We recall the well known circle
packing theorem (see Wikipedia, [23]):

Theorem 3.2. If T is a finite triangulation without loops or multiple edges
then there exists a circle packing P = (P.).cc in the sphere So such that the
contact graph of P is T. This packing is unique up to Mobius transformations.
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Recall that the group of Mdbius transformations z +— fzzis for a,b,c,d € C
with ad —bc # 0 can be identified with PSL2(C) and act transitively on triplets
(x,y,2) of Sg. The circle packing enables us to take a “nice” representation
of a triangulation T € T, nevertheless the non-uniqueness is somehow dis-
turbing because to fix a representation we can, for example, fix the images
of three vertices of a distinguished face of T'. This specification breaks all the
symmetry, because sizes of some circles are chosen arbitrarily. Here is how to

proceed:

Barycenter of a measure on S;. The action on Sy of an element
v € PSLy(C) can be continuously extended to By := {(x,y,2) € R? 22 + y? +
22 < 1} : this is the Poincaré-Beardon extension. We will keep the notation -y
for transformations By — Bs3. The action of PSLs(C) on B3 is now transitive on
points. The group of transformations that leave 0 fixed is precisely the group
SO»(R) of rotations of R3.

Theorem 3.3 (Douady-Earle). Let u be a measure on So such that #supp(u) >
2. Then we can associate to p a “barycenter” denoted by Bar(u) € Bs such that
for all v € PSLy(C) we have

Bar(y™ ') = y(Bar(u)).

We can now describe the renormalization of a circle packing. If P is a cir-
cle packing associated to a triangulation T' € T,,, we can consider the atomic
measure pup formed by the Dirac’s at centers of the spheres in P

1
up = ﬁ Z 0y

z centers of p

By transitivity there exists a conformal map v € PSLy(C) such that
Bar(y~!'up) = 0. The renormalized circle packing is by Definition (P), this
circle packing is unique up to rotation of SO3(R), we will denote it by Pp. This
constitutes a canonical discrete conformal structure for the triangulation.

Problems. If T, is a random variable uniform over the set 7,,, then the
variable up,. —is a random probability measure over Sy seen up to rotations of
SO3(R). By standard arguments there exist weak limits poo of WP, -

1. (Schramm [Talk about QG]) Determine coarse properties (invariant under
SO5(R)) of s, €.g. what is the dimension of the support? Start with
showing singularity.

2. Uniqueness (in law) of peo? In particular can we describe o in terms of
GFF? Is it exp((8/3)/2GFF), does KPZ hold? see [19].

3. The random measure o, can come together with do, a random distance
on Sy (in the spirit of [28]). Can you describe links between poo and deo?
Does one characterize the other? Is it a path metric space?
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3.3. Harmonic measure and recurrence. Our goal in this subsec-
tion is to remark that if a graph is recurrent then harmonic measure on bound-
aries of domains can not be very spread and supported uniformly on (too)
large sets. We have in mind random triangulations. We first discuss general
graphs.

Let G denote a bounded degree infinite graph. Fix a base vertex v and
denote by B(r) the ball of radius r centered at v, by dB(r) the boundary of
the ball, that is vertices with distance r from v. Denote by p, the harmonic
measure for simple random walk starting at v on dB(r).

Assume simple random walk (SRW) on G is recurrent. Further assume that
there are arbitrarily large excursions attaining the maximum distance once,
this happens in many natural examples but not always (e.g. consider the graph
obtained by starting with a ray and adding to the ray a full n levels binary
tree rooted at the vertex on the ray with distance n to the root, for all n). The
maximum of SRW excursion on Z is attained a tight number of times. It is
reasonable to believe that if each of the vertices in 0B(r) admit a neighbor in
OB(r + 1), then the same conclusion will hold.

Proposition 3.4. Under the stronger further assumption above, for infinitely

many r’s,
1
Z MT(U)Q > 1 2.
u€dB(r) rlog T

Note that for the uniform measure, Uy, on 0B(r), > ,con( Up(u)? =
0B(r)|~*.

Gady Kozma constructed a recurrent bounded degree planar graph (not a
triangulation) for which harmonic measure on any minimal cutsets outside B(r)
for any r is supported on a set of size at least %3, or even larger exponents.
The example is very “irregular”, it will be useful to come up with a natural
general condition that will guarantee a linear support.

Proof. What is the probability SRW will reach maximal distance r once, before
returning back to v? By summing all paths from v to dB(r) and back to v
visiting dB(r) and v once, we get that up to a constant depending on the

degree the answer is
>

uw€dB(r)

But by our assumptions then,

Z Z MT(U)QZOO'

T u€dB(r)
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Observe that the events “excursion to maximal distance n from the origin”
are independent for different n’s. O

We next consider planar triangulations. Rather than working in the context
of abstract graph it is natural to circle pack them and use conformal geometry.
Assume G is a bounded degree recurrent infinite planar triangulation. By He
and Schramm [23], G’ admits a circle packing in the whole Euclidean plane. Fix
a root for G.

Question: Is it the case that for arbitrarily large radii r, there are domains
containing a ball of radius r around the root, so that harmonic measure on the
domain boundary is supported on r!+°() circles?

By supported we mean 1—o0(1) of the measure is supported on the set. Here is
a possible approach: Consider a huge ball in the infinite recurrent triangulation.
Circle pack the infinite recurrent triangulation in the whole plane [23]. Look
at the Euclidean domain which is the image of this ball. Random walk on the
triangulation will be close to SRW on hexagonal packing inside this domain.
By the discrete adaptation of Makarov’s theorem [27, 32], harmonic measure
on the boundary circles will be supported on a linear number of hexagonal
circles. How can we see that no more original circles are needed for some of the
domains, using recurrence? Note that for hyperbolic triangulations this is not
the case.

It might be the case that this is not true for general triangulation but further
assuming unimodularity will do the job. In particular is it true for the UIPT?

4. Random Hyperbolic Lines

Following the Euclidean random graph and the conjecturally recurrent UIPT
we move on to the hyperbolic plane.

In [9] it was shown that a.s. the components of the complement of a Poisson
process on the space of hyperbolic geodesics in the hyperbolic plane are bounded
iff the intensity of the process is bigger or equal one, when the hyperbolic plane
is scaled to have —1 curvature. This sharp transition and rapid mining of the
geodesic flow suggests that when removing from a compact hyperbolic surface
the initial segment of a random geodesic, then the size of the largest component
of the complement drops in a sharp transition from order the size of the surface
to a logarithmic in the size of the surface. In the coming subsections we will
discuss two different direction inspired by this poisson process of hyperbolic
lines.

4.1. Vacant sets. Random geodesics on an hyperbolic surface mix rapidly,
this further suggests that the vacant set of non backtracking or even simple
walk path on a “well connected” graph will also admit a sharp percolation-like
transition. That is, the amount of randomness and independence in processes
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such as random walk on uniformly transient graphs are sufficient to create phase
transitions usually seen in the context of independent percolation or other spin
systems such as the random cluster, or Potts models. In [12] there are initial
results towards understanding this phenomena.

Let G,, be a sequence of finite transitive graphs |G, | — oo which are uni-
formly transient (that is, when viewing the edges as one Ohm conductors the
electric resistance between any pair of vertices in any of the G,,’s is uniformly
bounded).

Conjecture 4.1. Show that the size of the largest vacant component of simple
random walk on G, ’s drops from order |G,| to o(|Gy|) after less than C|Gy)|
steps, for some C < oo fized and in an interval of width o(|Gy]).

Note that the n?-Euclidean grid tori satisfies the assumption when d > 2.

The following conjecture which is still open, is relevant for this problem.
The probability to cover a graph by SRW in order size steps is exponentially
small. Formally, for any C' < oo there is ¢ < 1, so that for any graph G of size
n and no double edges, the probability Simple Random Walk covers G in Cn
steps is smaller than c”.

4.2. Long range percolation. Consider this Poisson line process (from
[9]) with intensity A on the upper half plane model for the hyperbolic plane.
For each pair x,y € Z, let there be an edge between x and y (independently for
different pairs) iff there is a line in the line process with one endpoint in [z, x+1]
and the other in [y, y + 1]. Then a calculation shows that the probability that
there is an edge between x and y is asymptotic to A\/|z — y|? as |z — y| — oo.
We just recovered the standard long range percolation model on Z with critical
exponent 2 (see [4]). The critical case of long range percolation is not well
understood. The fact that it is a discretization of the Mobius invariant process
hopefully will be useful and already indicates that the process is somewhat
natural.

Here is a direct formulation. Start with the one dimensional grid Z with the
nearest neighbor edges, add to it additional edges as follows. Between, ¢ and j
add an edge with probability 3|i — j| =2, independently for each pair. The main
open problem is how does the distance between 0 and n grow typically in this
random graph? The answer is believed to be of the form (nf(#)), where f is
strictly between 0 and 1 and is strictly monotone in 5. When —2 is replaced by
another exponent the answers are known, see [4, 14].

Acknowledgements. Thanks to Gady Kozma and Scott Sheffield for use-
ful discussions. Thanks to Nicolas Curien for composing the subsection on scal-
ing limits. Thanks to Nicolas Curien and Frederic Paulin for reconstructing
Oded’s suggestion in the subsection on quantum gravity and the GFF.
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Abstract

We describe a class of exactly solvable random growth models of one and two-
dimensional interfaces. The growth is local (distant parts of the interface grow
independently), it has a smoothing mechanism (fractal boundaries do not ap-
pear), and the speed of growth depends on the local slope of the interface.

The models enjoy a rich algebraic structure that is reflected through closed
determinantal formulas for the correlation functions. Large time asymptotic
analysis of such formulas reveals asymptotic features of the emerging interface
in different scales. Macroscopically, a deterministic limit shape phenomenon
can be observed. Fluctuations around the limit shape range from universal laws
of Random Matrix Theory to conformally invariant Gaussian processes in the
plane. On the microscopic (lattice) scale, certain universal determinantal ran-
dom point processes arise.
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1. Introduction

In recent years there has been a lot of progress in understanding large time
fluctuations of driven interacting particle systems on the one-dimensional lat-
tice. Evolution of such systems is commonly interpreted as random growth of
a one-dimensional interface, and if one views the time as an extra variable,
the evolution produces a random surface. In a different direction, substantial
progress has also been achieved in studying the asymptotics of random surfaces
arising from dimers on planar bipartite graphs.

Although random surfaces of these two kinds were shown to share cer-
tain asymptotic properties, also common to random matrix models, no direct
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Figure 2.1. The densely packed initial conditions.

connection between them was known. Our original motivation was to find such
a connection.

We were able to construct a class of two-dimensional random growth models
that in two different projections yield random surfaces of these two kinds (one
projection reduces the spatial dimension by one, the second projection is fixing
time). It became clear that studying such models of random surface growth
should be viewed as a subject on its own, and the goal of this note is to survey
its different faces. In Section 2 we define one model of random surface growth
and explain what is known about it. This model can be approached from several
different directions, and in Section 3 we show how different viewpoints naturally
lead to various generalizations of the original model.

2. A Two-dimensional Growth Model

Consider a continuous time Markov chain on the state space of interlacing
variables

S — {{x?}k:lm cz
m=

=1,...,n

n(n+
2

= |, <2l < :c’,f}, n=12.... (2.1)

As initial condition, we consider the fully-packed one, namely at time moment
t = 0 we have z}"(0) = k —m — 1 for all k, m, see Figure 2.1.

The particles evolve according to the following dynamics. Each of the par-
ticles z7* has an independent exponential clock of rate one, and when the z}"-
clock rings the particle attempts to jump to the right by one. If at that moment
= CC?71 — 1 then the jump is blocked. If that is not the case, we find the
largest ¢ > 1 such that a7 = foll = ... = fof:ll, and all ¢ particles
in this string jump to the right by one. A Java simulation of this dynamics
can be found at http://www-wt.iam.uni-bonn.de/"ferrari/animations/
AnisotropicKPZ.html . For any ¢t > 0 denote by M (™ (t) the resulting measure

on 8™ at time moment ¢.
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Figure 2.2. From particle configurations (left) to 3d visualization (right).

Informally speaking, the particles with smaller upper indices are heavier
than those with larger upper indices, so that the heavier particles block and
push the lighter ones in order for the interlacing conditions to be preserved.

Let us illustrate the dynamics using Figure 2.2, which shows a possible
configuration of particles obtained from our initial condition. If in this state
of the system the x3-clock rings, then particle 3 does not move, because it is
blocked by particle 7. If it is the x3-clock that rings, then particle #3 moves
to the right by one unit, but to keep the interlacing property satisfied, also
particles 3 and ] move by one unit at the same time.

Observe that S(") ¢ §(2) for py < ns, and the definition of the evolution
implies that M) (t) is a marginal of M(2)(t) for any ¢ > 0. Thus, we can
think of M(™)’s as marginals of the measure M = hglM(") onS = li;nS("). In
other words, M (t) are measures on the space S of infinite point configurations
{‘:Czl}kzl,...,m, m>1°

The Markov chain described above has different interpretations. Also, some
projections of the Markov chain to subsets of S(™ are Markovian.

1. The evolution of z1 is the one-dimensional Poisson process of rate one.

2. The set of left-most particles {z]"},,>1 evolves as a Markov chain on Z
known as the Totally Asymmetric Simple Exclusion Process (TASEP),
and the initial condition z7*(0) = —m is commonly referred to as step
initial condition. In this case, particle x¥ jumps to its right with unit
rate, provided the arrival site is empty (exclusion constraint).

3. The set of right-most particles {z},,>1 also evolves as a Markov chain
on Z that is sometimes called “long range TASEP”; it was also called
PushASEP in [6]. It is convenient to view {z]» + m},,>1 as particle lo-
cations in Z. Then, when the xz—clock rings, the particle zﬁ + k jumps
to its right and pushes by one unit the (maybe empty) block of particles
sitting next to it. If one disregards the particle labeling, one can think
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of particles as independently jumping to the next free site on their right
with unit rate.

4. For our initial condition, the evolution of each row {:B}c"}kzlw,m, m =
1,2,..., is also a Markov chain. It was called Charlier process in [30] be-
cause of its relation to the classical orthogonal Charlier polynomials. It
can be defined as Doob h-transform for m independent rate one Pois-
son processes with the harmonic function h equal to the Vandermonde
determinant.

5. Infinite point configurations {x}'} € S can be viewed as Gelfand-Tsetlin
schemes. Then M(t) is the “Fourier transform” of a suitable irreducible
character of the infinite-dimensional unitary group U(o0), see [16]. Inter-
estingly enough, increasing t corresponds to a deterministic flow on the
space of irreducible characters of U(c0).

6. Elements of & can also be viewed as lozenge tiling of a sector in the
plane. To see that one surrounds each particle location by a rhombus of
one type and draws edges through locations where there are no particles,
see Figure 2.2. Our initial condition corresponds to a perfectly regular
tiling, see Figure 2.1.

7. The random tiling defined by M(t) is the limit of the uniformly dis-
tributed lozenge tilings of hexagons with side lengths (a,b,c), when
a,b,c — oo so that ab/c — t, and we observe the hexagon tiling at
finite distances from the corner between sides of lengths a and b.

8. Finally, Figure 2.2 has a clear three-dimensional connotation. Given the
random configuration {z}(t)} € S at time moment ¢, define the random
height function

hZ(Z+%)XZ>OXR20—>Z20,

h(z,n,t) = #{k € {1,...,n}|z;(t) > z}. (22)

In terms of the tiling on Figure 2.2, the height function is defined at the
vertices of rhombi, and it counts the number of particles to the right from
a given vertex. (This definition differs by a simple linear function of (x,n)
from the standard definition of the height function for lozenge tilings, see
e.g. [26,27].) The initial condition corresponds to starting with perfectly
flat facets.

Thus, our Markov chain can be viewed as a random growth model of the sur-
face given by the plot of the height function. In terms of the stepped surface of
Figure 2.2, the evolution consists of removing all columns of (z, n, h)-dimensions
(1,%,1) that could be removed, independently with exponential waiting times
of rate one. For example, if 22 jumps to its right, then three consecutive cubes
(associated to x3,z3, x}) are removed.
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Clearly, in this dynamics the directions x and n do not play symmetric roles.
Indeed, this model belongs to the 2 + 1 anisotropic KPZ class of stochastic
growth models, see Section 2.4.

2.1. Determinantal formula. The first nontrivial result about the
Markov chain M(t) is the (partial) determinantal structure of the correlation
functions.

Theorem 2.1 (Theorem 1.1 of [7]). For any N =1,2,..., pick N triples
;= (mj,nj,tj) €7 X Li~q X RZO
such that t1 <ty <---<tn,ni1 >ng>--->ny. Then

P{For each j =1,...,N there exists a k;j,

1 <kj <nj such that xZJ’ (tj) = x;} = det [K(51, %j)]fj:l,

(2.3)
where

1 dw elti—tz)/w
K(xhnl?tl;x%n%h) - _% r wr2—z1+1 (1 _ w)’ﬂz*’nl
0

1 e/v (1 —w)m wn 1
= ¢ dw d 2.4
T iy 7{ “’fn Fenls (= 2y gt w—z Y

the contours Uy, I'1 are simple positively oriented closed paths that include the
poles 0 and 1, respectively, and no other poles (hence, they are disjoint).

Li(n1,t1)<(na,ta)]

The determinantal structure makes it possible to study the asymptotics.

2.2. Macroscopic scale, one-point fluctuations, and local
structure. In the large time limit, under hydrodynamic scaling our model
has a limit shape which we now describe, see Figure 2.3.

Since we consider heights at different times, we cannot use time as a large
parameter. Instead, we introduce a large parameter L and consider space and
time coordinates that are comparable to L. The limit shape consists of three
facets interpolated by a curved piece. To describe it, consider the set

D={(vn7) € R | (v —v7)* <v < (Vi+V7)*} (2.5)

It is exactly the set of triples (v,n,7) € ]R3>0 for which there exists a non-
degenerate triangle with side lengths (\/v, /7, /7). Denote by (7,7, 7,) the
angles of this triangle that are opposite to the corresponding sides.

The following result concerns the limit shape and the Gaussian fluctuations
in the curved region, living on a vIn L scale.



Growth of Random Surfaces 2193

] \ \\
oy .~.n [

d
] |h|'\I " ¥
r . ~|.\‘||:
||.¢..

\\.
' \I\ l..

l‘ﬂ

Figure 2.3. A configuration of the model with 100 levels (m = 1,...,100) at time
t = 25, using the same representation as in Figure 2.2.

Theorem 2.2 (Theorem 1.2 of [7]). For any (v,n,7) € D we have the moment
convergence of random variables

g AU =mL] + 5, [L], 7L) — ER((v = m)L] + 5, [nL], 7L)
L—oo In L/(272)

= N(0,1).
(2.6)

One also has an explicit formula for the limit shape:

lim [Eh([(’/ _ W)L] + %’ [nL]vTL)
L—oo L

=: h(v,n,7)

X o
_1 <_W Fn(r—m) 7 M) Cen
™

sin -

Theorem 2.2 describes the limit shape h of our growing surface, and the
domain D describes the points where this limit shape is curved. The logarithmic
fluctuations are essentially a consequence of the local asymptotic behavior being
governed by the discrete sine kernel (this local behavior occurs also in tiling
models [21,24,32]). Using the connection with the Charlier ensembles, see above,
the formula (2.7) for the limit shape can be read off the formulas of [2].

Using Theorem 2.1 it is not hard to verify that near every point of the
limit shape in the curved region, at any fixed time moment the random lozenge
tiling approaches the unique translation invariant measure My, r, , on lozenge
tilings of the plane with prescribed slope (see [18,27,29] and references therein
for discussions of these measures). The slope is exactly the slope of the tangent
plane to the limit shape. This implies in particular, that (7, /7, m, /7, 7, /7) are
the asymptotic proportions of lozenges of three different types in the neighbor-
hood of the point of the limit shape.
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One also computes the growth velocity (see (2.9) for the definition of )

oh _ l sin Ty Sinﬂ'n _ Im(Q(Vv 7, T)) (2 8)

or @ sinm, T

Since the right-hand side depends only on the slope of the tangent plane,
this suggests that it should be possible to extend the definition of our surface
evolution to the random surfaces distributed according to measures M, ., r.;
these measures have to remain invariant under evolution, and the speed of the
height growth should be given by the right-hand side of (2.8).

2.3. Complex structure and multi-point fluctuations. The
Gaussian Free Field. To describe the correlations of the fluctuations of

our random surface, we first need to introduce a complex structure on the limit
shape. Set H = {z € C|Im(z) > 0} and define the map Q : D — H by

|Q(V77777—)‘ = \/Wa I]- - Q(Vﬂ?ﬁ)\ = V/T' (29)

Observe that argQ) = 7, and arg(l — Q) = —m,,. The preimage of any Q € H
is a ray in D that consists of triples (v,n,7) with constant ratios (v : n : 7).
Denote this ray by Rq. One sees that Rq’s are also the level sets of the slope
of the tangent plane to the limit shape. Since h(av,an,ar) = ah(v,n, ) for
any a > 0, the height function grows linearly in time along each Rg. Note also
that the map 2 satisfies
o0 o0 o0
(1-9Q) o Q@n =50 (2.10)

and the first of these relations is the complex Burgers equation, cf. [28].

From Theorem 2.2 one might think that to get non-trivial correlations one
needs to consider (h — E (h))/vIn L. However, this is not true and the division
by vIn L is not needed. To state the precise result, denote by

1

G(z,w) = —Zln

(2.11)

z—w‘

Z—w

the Green function of the Laplace operator on H with Dirichlet boundary con-
ditions.

Theorem 2.3 (Theorem 1.3 of [7]). For any N = 1,2,..., let »; =
(v, mj,7;) € D be any distinct N triples such that

1 <7 < < T, m2=mn2 2 21N (2.12)
Denote

Hy(v,n,7) = v (M[(v = n)L] + 3, [nL], 7L) = EA([(v = n)L] + 5,[nL], 7L)
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and Q; = Q(v;,n;,7;). Then

N/2
. G(Q02i-1), V(24)), N is even,
LIEI;O[E (Hp(s¢1) - Hp(2n)) = gng ]1;[1 (Qo2-1), Lo27)
0, N is odd,

(2.14)

where the summation is taken over all fixed point free involutions o on
{1,...,N}.

The result of the theorem means that as L — oo, H.(Q71(2)) is a Gaussian
process with covariance given by G, i.e., it has correlation of the Gaussian Free
Field (GFF) on H. A few additional estimates allow one to prove that the
fluctuations indeed converge to GFF, see Section 5.5 of [7].

Conjecture 2.4. The statement of Theorem 2.3 holds without the assumption
(2.12), provided that Q-images of all the triples are pairwise distinct.

Theorem 2.3 and Conjecture 2.4 indicate that the fluctuations of the height
function along the rays Rq vary slower than in any other space-time direction.
This statement can be rephrased more generally: the height function has slower
fluctuations along the curves where the slope of the limit shape remains con-
stant. Or even more generally: the height function fluctuates slower along the
characteristics of the first order PDE (2.8) that governs the macroscopic growth
of the interface. This slow decorrelation phenomenon has been established for
several (1+1)-dimensional growth models in [20], [19].

2.4. Universality class. In the terminology of physics literature, see
e.g. [1], our Markov chain falls into the class of local growth models with relax-
ation and lateral growth, that are believed to be described, on the fluctuation
level, by the Kardar-Parisi-Zhang (KPZ) equation

Oth = Ah + Q(01h, Oyh) + space-time white noise, (2.15)

where (Q is a quadratic form. For our model, one easily computes that the
determinant of the Hessian of 0;:h, viewed as a function of the slope, is strictly
negative, which means that the form @ in our case has signature (—1, 1). In such
a situation the equation (2.15) is called anisotropic KPZ or AKPZ equation.

Using non-rigorous renormalization group analysis based on one-loop ex-
pansion, Wolf [35] predicted that large time fluctuations (the roughness) of the
growth models described by AKPZ equation should be similar to those of lin-
ear models described by the Edwards-Wilkinson equation (heat equation with
random term): d;h = Ah + white noise.

The above results can be viewed as the first rigorous analysis of a non-
equilibrium growth model in the AKPZ class. Indeed, Wolf’s prediction cor-
rectly identifies the logarithmic behavior of height fluctuations. However, it
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does not (at least explicitly) predict the appearance of the Gaussian Free Field,
and in particular the complete structure (map ) of the fluctuations described
above.

On the other hand, universality considerations imply that analogs of Theo-
rems 2.2 and 2.3, as well as possibly Conjecture 2.4, should hold in any AKPZ
growth model.

3. More General Random Growth Models

It turns out that the growth model from the previous section can be substan-
tially generalized from a variety of viewpoints.

Typically, these more general models would still lead to the partial determi-
nantal structure of the correlation functions, as in Section 2.1 above. However,
asymptotic analysis becomes more difficult.

On all three levels — macroscopically (hydrodynamic scale), microscopically
(lattice scale), and mesoscopically (fluctuation scale) — new phenomena may
appear. Below we describe a few general sources of new models together with
some of the new effects.

3.1. More general update rules. Here is a list of “simple” twists
that one could impose on the growth model discussed above. Note that in all
the situations, the interlacing condition is being preserved by the same “block-
push” mechanism as above.

1. Clearly, instead of making particles jump to the right, we could let them
jump to the left — there is an immediate symmetry that interchanges
the two directions. However, why not let particles jump both to the left
and to the right, with independent exponential clocks governing jumps in
different directions?

2. One can imagine that different particles might jump with different rates.
For example, one could assume that the jump rate of z}* is a function of
m.

3. Instead of using the continuous time, one could consider discrete time dy-
namics with each particle attempting a Bernoulli jump, or a geometrically
distributed jump, independently of the others.

As was shows in [7], neither of these modifications (nor any temporal se-
quence of them) destroys the determinantal structure of the correlation func-
tions, and this structure paves the way for the asymptotic analysis. In [5] such
analysis lead to a discovery of new type of critical behavior that may arise at
a tacnode singularity of the frozen boundary.
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3.2. Special functions and tiling models. It was mentioned in the
previous section that Charlier classical orthogonal polynomials' can be used to
analyze measures M(t). The Charlier polynomials lie at the bottom of the so-
called Askey scheme — the hierarchy of classical orthogonal polynomials of
hypergeometric type. Thus, it is natural to ask if more general hypergeometric
orthogonal polynomials correspond to meaningful growth models/interlacing
particle systems.

One answer to this question was given in [14,15]. Let us describe the static
(one-time) distributions that arise.

For any integers a, b, c > 1 consider a hexagon with sides a, b, ¢, a, b, c drawn
on the regular triangular lattice. Denote by Q,xpx the set of all tilings of this
hexagon by rhombi obtained by gluing two of the neighboring elementary tri-
angles together (such rhombi are called lozenges). Lozenge tilings of a hexagon
can be identified with 3D Young diagrams (equivalently, boxed plane partitions)
or with stepped surfaces.

We consider probability distributions on €,xpx. of the following form. Fix
one of the three lozenge types, and to any T € Q,xpxc assign the weight equal
to the product of weights of lozenges of the chosen type in 7. The weight of
one lozenge, in its turn, is equal to (¢’ — 1/(¢¢?), where ¢ and q are (generally
speaking, complex) parameters, and j is a linear function on the plane that
is constant along the long diagonals of the lozenges of chosen type. There are
three different ways to restrict { and ¢ to suitable regions of the complex plane
to make the resulting measure on ,xpx. positive. Degenerations include the
uniform measure on ,xpx. and the measure with weights qVOl, where Vol is
the volume of the corresponding plane partition.

In [14, 15], we constructed discrete time Markov chains, quite similar
to the growth model described in the previous section, that map mea-
sures on Qqxpxc from this class to similar ones on Qg (p+1)x(c51)- Since
Qaxbxo 1s a singleton, this provided, in particular, an exact sampling al-
gorithm for these measures. Its computer implementation can be found
at http://www.math.caltech.edu/papers/Borodin- Gorin-Rains.exe. A
gallery of pictures can be found in Section 9 of [15].

The key property that allowed us to access these measures was that they are
closely related to the g-Racah hypergeometric orthogonal polynomials (that lie
at the top of the ¢-Askey scheme). We were able to compute the limit shapes
in certain limit regimes and prove the microscopic convergence of the measures
to the ergodic translation invariant Gibbs measures on lozenge tilings of the
plane (they were already mentioned in Section 2.2).

3.3. Symmetric functions and skew plane partitions. The
story about Q,xpxc suggests that it may be possible to do similar things to
lozenge tilings with more complex boundary conditions. This is indeed the

IThe orthogonality set is {0,1,2,...} and the weight function is w(zx) = t* /!
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case, and in order to describe a result it is more convenient to use the language
of plane partitions.

Fix two natural numbers A and B. For a Young diagram 7= C B4, set
7 = B4/n. A (skew) plane partition IT with support 7 is a filling of all boxes
of T by nonnegative integers II; ; (we assume that II, ; is located in the ith row
and jth column of BA) such that II; ; > II; ;41 and II; ; > II; 14 ; for all values
of 4, j. The volume of the plane partition II is defined as

VOl(H) = Z Hi7j-
2

In [4] we constructed Markov chains (similar to the one described in Sec-
tion 2) that incrementally grow the support of skew plane partitions and map
measures ¢”% to similar ones. This produces, in particular, an exact sampling
algorithm for ¢¥ °!-distributed skew plane partitions with an arbitrary back wall
.

As was shown in [32,33], ¢V °!-distributed skew plane partitions form a spe-
cial case of a much more general class of probability measures on sequences of
partitions called the Schur processes. As the name suggests, they are defined in
terms of Schur symmetric functions. The construction of [4] applies to the gen-
eral Schur processes as well and has at least one other application, cf. Section
3.5 below.

3.4. Random growth in 141 dimensions. As was mentioned
above, the restriction of the 241 dimensional growth model of the previous
section to the row of left-most particles yields the Totally Asymmetric Simple
Exclusion Process (TASEP). This is one of the basic models of the 1-dimensional
growth that has been extensively studied.

It is known that on the macroscopic scale, the particle density of the TASEP
evolves deterministically according to the nonviscid Burgers equation. There-
fore, one natural question is to study the fluctuation properties which show
rather interesting features.

For simplicity, let us restrict ourselves to deterministic initial conditions.
The densely packed initial condition for the 2+1 dimensional model of the
previous section induces the so-called step initial condition for TASEP, when
the mth particle starts off —m, m > 1. Historically, this was the first initial
condition for which the fluctuations were understood. Johansson [23] showed
that asymptotic fluctuations of the position of a given particle are governed
by the so-called GUE (Gaussian Unitary Ensemble) Tracy-Widom distribution
F,2. This is the asymptotic distribution of the largest eigenvalue of the Gaus-
sian Hermitian random matrices in the limit of large matrix dimension. In a
later work [25], he showed the convergence of multi-particle fluctuations to the

2The correct scaling of the fluctuations had been predicted more than 10 years earlier by
physicists via the KPZ equation.
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so-called Airy, process, that also arises from the evolution of GUE random
matrices via the Dyson Brownian motion.

While for a few years this result remained very surprising, from the (2+1)-
dimensional point of view the appearance of random matrices is very clear:
Particles {z}"'}, with fixed m form a random matrix type object — the m-
point orthogonal polynomial ensemble with the Charlier weight. In the large
time limit, the Charlier polynomials converge to the Hermite polynomials, and
the distribution of {«}*}}"_; converges to that for the eigenvalues of the m-point
GUE.

In a series of papers [8-13], we have used the (241)-dimensional perspective
to analyze the fluctuation structure in a variety of situations. In particular,

1. The so-called flat initial condition for TASEP, long range TASEP, and
polynuclear growth model (PNG) in (1+1)-dimensions. An example of
the flat initial condition for TASEP is when initially every second site
(or every third site) is occupied by a particle. The one-particle asymp-
totic fluctuations are given by GOE Tracy-Widom distribution F, multi-
particle fluctuations are given by the Airy; process.

2. Half-flat initial condition for TASEP, when every second site on the neg-
ative semiaxis is occupied, all other sites are free. A nontrivial transition
from Airy; to Airys processes occurs.

3. Half-flat initial condition with a slow first particle induces a shock —
macroscopic discontinuity of the particle density. The fluctuation picture
near the shock was obtained. When the speed of the first particle is equal
to speed of the flow in the completely flat case, one suddenly obtains a
matrix analog of P. Lévy’s theorem on the maximum of the Brownian
motion [10].

Despite obvious successes, there is still a lot to be understood. Physical
universality arguments predict that Airy; and Airy, processes should arise for
virtually any deterministic initial conditions. At this moment we cannot even
show that for a periodic initial condition of the form ...xx000xx000xx000. .. A
further investigation of the shock phenomenon is under way. What we have
considered is the t1/% — t1/2 shock — the fluctuations on the left of shock have
magnitude ¢'/3, while on the right the fluctuations scale as t'/2. It is very
interesting to look into ¢!/3 — ¢1/3 shocks as nothing is known about them. In
particular, it is unclear if the shocks persist on the mesoscopic level.

In a different direction, even though the (2+1)-dimensional perspective
turned out to be very useful for TASEP (Sasamoto [34] has to be credited
for the idea), for many TASEP initial conditions (e.g., flat ones) the measure
on the corresponding system of interlacing particles is not positive. In particu-
lar, the relation of TASEP to GOE (not GUE!) random matrices remains highly
mysterious, especially since numerical experiments indicate that Airy; process
does not arise from the GOE via the Dyson Brownian motion [3].
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3.5. Representation Theory. As was mentioned above, the measures
M(t) from the previous section can be viewed as Fourier transforms of cer-
tain characters (called Plancherel characters) of the infinite-dimensional uni-
tary group U(oo). It would natural to try to extend the construction to other
families of characters of U(oo), as well as to inductive limits of other classical
Lie groups (or, more generally, Riemannian symmetric spaces of classical type).

In the first direction, in [4] we have employed the general construction for
the Schur processes mentioned in Section 3.3 to produce Markov chains on
infinite Gelfand-Tsetlin schemes that represent deterministic flows on the space
of extreme characters of the infinite-dimensional unitary group.

In the second direction, in [17] we considered the case of the Plancherel char-
acters of the infinite-dimensional orthogonal group O(co). Similarly to U(oo)
case, one also obtains Markov dynamics on an interlacing particle system that
can be viewed as a stepped surface or a lozenge tiling of a suitable domain.
The difference is that this system has a reflecting wall; a Java simulation can
be found at http://www.math.caltech.edu/papers/Orth Planch.html.

We proved the determinantal structure of the correlation functions, com-
puted the limit shape, and analyzed the local asymptotic behavior near the
wall. This lead to three different determinantal processes; one arises through
antisymmetric Gaussian Hermitian random matrices [22], while two others are
new. All three are likely to be universal (i.e. arising from many models with
suitable symmetries).

A much more challenging problem is to do similar things for all the Rieman-
nian symmetric spaces of BC-type in one strike, cf. [31]. This will likely lead to
a particle system with a generic reflection/absorbtion condition at the wall.

In yet another direction, representation theoretic background naturally leads
to a very intriguing set of questions. What we have been doing so far lies in
the realm of “commutative” probability. In other words, the representations
have been restricted to a maximal commutative subalgebra of a suitable group
algebra, and then the asymptotics has been studied. It is entirely possible that
one can do similar things with a larger (non-commutative) subalgebra and it is
very intriguing to see how much deeper we will be able to go.
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Abstract

We present a unified approach to limiting spectral distribution (LSD) of pat-
terned matrices via the moment method. We demonstrate relatively short proofs
for the LSD of common matrices and provide insight into the nature of different
LSD and their interrelations. The method is flexible enough to be applicable to
matrices with appropriate dependent entries, banded matrices, and matrices of
the form A, = %XX’ where X is a p X n matrix with real entries and p — oo
with n = n(p) — oo and p/n — y with 0 <y < oco.

This approach raises interesting questions about the class of patterns for
which LSD exists and the nature of the possible limits. In many cases the LSD
are not known in any explicit forms and so deriving probabilistic properties of
the limit are also interesting issues.
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1. Introduction

Consider a sequence of patterned matrices with random entries. Examples in-
clude Wigner, sample variance covariance, Toeplitz and Hankel matrices. Find-
ing the asymptotic properties of the spectrum as the dimension increases has
been a major focus of research. We concentrate on such real symmetric matrices
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and provide an overview of a unified moment approach in deriving their limiting
spectral distribution (LSD). After developing a unified framework, we present
selective sketches of proofs for a few of these matrices. We also discuss exten-
sions to situations where the entries come from a dependent sequence or the
matrix is of the form X X', thus generalizing the sample variance covariance
matrix. Finally we discuss in brief a few other matrices as well as methods for
deriving the LSD.

2. Moment Method

Suppose {Y,} is a sequence of real valued random variables. Suppose that
there exists some (nonrandom) sequence {3, } such that E[Y,] — 3, for every
positive integer h where {8} satisfies Carleman’s condition:

oo

—1/2h _
Z Bop "™ = 0.
h=1

Then there exists a distribution function F' such that for all A

Br = /a:hdF(x) and Y, converges to F' in distribution.

As an illustration suppose {x;} are i.i.d. random variables with mean zero and
variance one and all moments finite. Let Y,, = n’1/2(x1 + a9+ ..+ xy).
By using binomial expansion and taking term by term expectation and then
using elementary order calculations, E[Y;2**1] — 0 and E[Y,?¥] — 22,5;!. Using
Stirling’s approximation it can be easily checked that {82 = ;k—kk',} satisfies
Carleman’s condition. Since P is the 2k-th moment of the standard Normal
distribution, Y, 2 N(0,1).

This idea has traditionally been used for establishing the LSD for example
of the Wigner and the sample variance covariance matrices. There the trace
formula replaces the binomial expansion. However, the calculation/estimation
of the leading term and the bounding of the lower order terms lead to combi-
natorial issues which usually have been addressed on a case by case basis.

3. Limiting Spectral Distribution and Moments

For any random n x n matrix A,, if A1, Ag,..., A\, are all its eigenvalues, then
its empirical spectral distribution function (ESD) is given by

FAr(z, y) =n~t ZI{Re)\i <z, Im\ <y}

i=1

The expected spectral distribution function of A, is defined as E[F4=(-)]. The
limiting spectral distribution (LSD) of a sequence {A,}, as n — oo, is the
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weak limit of the sequence {F4n} if it exists, either almost surely (a.s.) or
in probability. We shall deal with only real symmetric matrices and hence all
eigenvalues are real. The h-th moment of the ESD of A, has the following nice
form:

h-th moment of the ESD of A, = Z A= ftr (AM) = Bi(A,) (say).

The following easy Lemma links convergence of moments and LSD. Consider
the following conditions:

(M1) For every h > 1, E[Br(Apn)] — Bp and {8} satisfies Carleman’s condition.

(M2) Var[Br(Ay)] — 0 for every h > 1.
(M4) 3 E[Bn(An) — E(Bn(An))]* < oo for every h > 1.

Lemma 1. If (M1) and (M2) hold then {F4»} converges in probability to F
determined by {Br}. If further (M4) holds then this convergence is a.s.

4. A Unified Approach

The sequence of variables which is used to construct the matrix will be called
the input sequence. It shall be of the form {z;;¢ > 0} or {x;;; ¢,7 > 1}.

4.1. Link function. Let Z be the set of all integers and let Z, denote
the set of all nonnegative integers. Let L, : {1,2,...n}> = Z% n > 1 be a
sequence of functions such that L, 11(4,5) = L, (4,j) whenever 1 <4,j <n. We
shall write L,, = L and call it the link function and by abuse of notation we
write Z% as the common domain of {L,}. The matrices we consider will be of
the form ((2(; ;))). Here are some well known matrices and their link functions:

(i) Wigner matrix Wi L 72 — 7* where L(i, j) = (min(¢, j), max(i, j)).

11 T12 13 ... Ti(n-1) Tin

(s) Ti2 X222 T23 ... T2(n—1) L2n
W, =

Tin T2n T3n .- T(n—1)n TLnn

(ii) Symmetric Toeplitz matrix 7. L Z% — 7 where L(i, j) = |i — j|.

o T1 xTo cer Tp—2 Tp-—1
Z1 Zo Z1 cee Ip—3 Tp-2
TT(LS) — T2 T1 To - Tp—a Tp-3

Tpn—-1 Tp-2 Tp-3 --- Z1 Zo
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(i) Symmetric Hankel matrix HY.

X2 T3
3 T4
HG) — T4 Ts5

n

Tn+1  Tp42

L:7Z2 — Z where L(i,j) =i+ j.

T4 ce Tn Tn+1
Ts5 s Tn+1 Tn42
T6 . Tpn42 Tn+3
Tn+3 .- Tan-1 T2on

(iv) Reverse Circulant RY. L: 7% — 7 where L(i,j) = (i + j) mod n.

T2 I3
T3 T4
Rgf) — | T4 x5
Tl T2

f o () 1.
(v) Symmetric circulant Cy,”. L : Z2

g X1
1 o
cl) = | T2 ™
1 T2

Ty ... i) I
5 ... Ty xTo
e --.- ZTo I3
r3 ... Tp-1 Xo

— Z where L(i,j) =n/2—|n/2 —|i — j||.

o ... X9 T1
ry ... X3 X2
rg ... X2 I3
xr3 ... X1 X9

(vi) Doubly symmetric Hankel matrix DH,,. The symmetric circulant is also
a “doubly symmetric” Toeplitz matrix. The doubly symmetric Hankel matrix
DH,, with link function L(¢,j) =n/2 — |n/2 — (i + j) mod n|, 0 <4,j <nis

[ o x
r1 X2
T2 I3
DH, =
T2 X1
L r1 Xo

(vii) Palindromic matrices PT,, and

X9 ... Ts To T1 ]
r3 ... T2 X1 X
Xq ... 1 Xy X1
o ... X5 T4 I3
1 ... Ty T3 X2

PH,,. For these symmetric matrices the

first row is a palindrome. PT,, is given below and PH,, is defined similarly.

To X1

r1 o

T2 X1
PT, =

Tl T2

ZTo X1

o ... X2 T1 Xo
rT ... X3 T2 X1
o ... X4 T3 X2
r3 ... X1 Top X1
T2 ... X2 X1 X
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(viii) Sample variance covariance matrix: often called the S matrix, is defined
as
A,(W) = n_1WpWZ’) where W, = ((z45))1<i<p,1<j<n- (1)

It is convenient in this case to think of the link function as a pair, given by:
L1,12:7% x 73 — 77, L1(i,5) = (i,7), L2(i,j) = (§,4).

(ix) Taking a cue from (viii) one may consider XX’ where X is a suitable
nonsymmetric matrix.

All the link functions above possess Property B given below with f(x) = .
Unless otherwise specified we shall assume that f(z) = z. The general form
for f is needed to deal with matrices with dependent entries.

Property B: Let f : Z% — Z. Then (L, f) is said to satisfy Property B if

A(L,f)y=supsup sup #{l:1<1<mn, f(|L(k,])—t]) =0} <oco. (2)

n tezd 1<k<n

4.2. Scaling. Assume that {x;} have mean zero and variance 1. Let F),

denote the ESD of TT(LS) and let X,, be the corresponding random variable.
Then

1 — 1
Br, (X,) = — > Xim = - Te(T(*)) =29 and E[Ep (X,)] =0,
=1

Br (X3 = L3, = Lo ()
i=1

1
= —[nxg +2(n—1)af +...+222_,]] and E[Eg,(X2)] =n.
n
Hence it is appropriate to consider n~!/ 2T,(Ls). The same holds for all matrices
except X X', for which the issue is more complicated.

4.3. Trace formula and circuits. Let A, = ((a(; ;)))- Then the h-th

1/2 4

moment of I "4n is given by

l Tr (An> h = %}1/2 Z QL (i1 ,i2) AL (42,83) " " AL(in—1,in) PL(in i1)-
" v K 1<y igyeenyin<n
(3)
Circuit: = : {0,1,2,--- ,h} — {1,2,--- ,n} with 7(0) = w(h) is called a
circuit of length /(7)) := h. The dependence of a circuit on h and n will be
suppressed. Clearly (M1), (M2) and (M4) may be written in terms of circuits.
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For example,

h
(M1) E[gu(n24,)] = BETr (42) ] = 7 Lo civeuit BXr = B

where

Xr = ZL((0),n(1)LL(x(1),7(2)) """ TL(x(h—2),m(h—1))TL(r(h—1),m(h))-

Matched Circuits: For any 7, any L(n(i — 1),7(¢)) is an L-value. If an
L-value is repeated exactly e times we say that it has an edge of order
e (1 <e < h). If # has all e > 2 then it is called L-matched (in short
matched). For any nonmatched 7, E[X;] = 0 and hence only matched 7 are
relevant. If 7 has only order 2 edges then it is called pair matched.

To verify (M2) we need multiple circuits: k circuits w1, 7o, - , 7, are
jointly matched if each L-value occurs at least twice across all circuits. They
are cross matched if each circuit has at least one L-value which occurs in at
least one of the other circuits.

To deal with dependent inputs we need the following: a = is
(L, f)-matched if for each i, there is at least one j # 4 such that

f(]L(w(i — 1),7(i)) — L(x(j — 1),7r(j))y) — 0. The earlier L matching is
a special case with f(x) = z. The concepts of jointly matching and cross
matching can be similarly extended.

Equivalence of circuits: The following defines an equivalence relation be-
tween the circuits: m; and mo are equivalent if and only if

{L(m1(i—1),m1(8) = L(m1(j — 1), 71(5)) & L(m2(i —1),m2(i)) = L(m2(j —1),7(5)) }.

4.4. Words. Any equivalence class induces a partition of {1,2,--- ,h}. To
any partition we associate a word w of length [(w) = h of letters where the
first occurrence of each letter is in alphabetical order. For example if h = 5
then the partition {{1,3,5},{2,4}} is represented by the word ababa.

The class II(w): let w[i] denote the i-th entry of w. The equivalence class
corresponding to w will be denoted by

M(w) = {m: wli] = wlj] & L(r(i = 1),7(i)) = L(x(j — 1), 7(5))}-

The number of partition blocks corresponding to w will be denoted by |w|. If
7 € II(w), then clearly, #{L(mw(i — 1),7(i)) : 1 <i < h} = |w|.

The above notions carry over to words. For instance ababa is matched.
The word abcadbaa is nonmatched with edges of order 1, 2 and 4 and the
corresponding partition is {{1,4,7,8},{2,6}, {3}, {5}}.
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For technical reasons it becomes easier to deal with a class bigger than II.
Let

I (w) = {m : wli] = wlj] = L(x(i = 1),7()) = L(7(j — 1), 7(5))}-

4.5. Reduction to bounded case. We first show that in general, it
is enough to work with input sequences which are uniformly bounded. The
proof of the following lemma is available in Bose and Sen (2008)[21].

Assumption I {z;,z;;} are independent and uniformly bounded with mean
zero and variance 1.

Assumption IT {z;,x;;} are i.i.d. with mean zero and variance 1.

Let {A,} be a sequence of n x n random matrices with link function L.
Let

kn=#{Ln(i,5):1<4,5<n}, an= mgx#{(i,j) :Ln(i,j) =k, 1 <14, j<n}.

Lemma 2. Suppose k,, — oo and k,a,, = O(n?). If {F”_1/2A"} converges to
a nonrandom F a.s. when the input sequence satisfies Assumption I. Then the
same limit holds if it satisfies Assumption II.

4.6. Only pair matched words contribute. From the discussion
in Section 4.3 it is enough to consider matched circuits. The next lemma shows
that we can further restrict attention to pair matched words. Its proof is easy
and is available in Bose and Sen (2008)[21].

Let Nj, 3+ be the number of (L, f) matched circuits on {1,2,...,n} of length
h with at least one edge of order > 3.

Lemma 3. (a) If (L, f) satisfies Property B then there is a constant C such
that
Np s+ < CnlPHD21 and as n — oo, n*(1+h/2)Nh’3+ — 0. (4)

(b) Suppose {A,} is a sequence of n X n random matrices with input sequence
{z;} satisfying Assumption I and (L, f) with f(x) = x satisfying Property B.

Then
1 A \"
ity N il
n (ﬁ)

and if h =2k then Y lim #H‘[*(w) —H(w)| =0 (6)

n

if his odd, lim E[8,(n"Y?A,)] = limE =0 (5)

w has only
order 2 edges
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and provided the limit in the right side below exists,

. _ . 1

lim B[ B2, (n VA =D lim -~ [ (w)]. (7)
w has only
order 2 edges

Define, for each fixed matched word w of length 2k with |w| = k,

o1 oL
p(w) = 117{11 mlﬂ(w)\ = hTan WIH (w)] (8)

whenever the limit exists. This limit will be positive and finite only if the number
of elements in the set is of exact order n**1. In that case Lemma 3 implies that
the limiting (2k)-th moment is

Bk = > p(w).

w:lw|=k, (w)=2k

The next Lemma verifies (M4). Its proof is easy and is available in Bose and
Sen (2008)[21]. Let Qp, 4 be the number of quadruples of circuits (7, 72, 73, 74)
of length h which are jointly matched and cross matched with respect to (L, f).

Lemma 4. (a) If (L, f) obeys Property B, Qna < Kn?"*2 for some constant
K.

(b) If {A,} is a sequence of n X n random matrices with the input sequence
{z;} satisfying Assumption I and (L, f) with f(x) = = satisfying Property B
then the following holds. As a consequence (M4) holds.

4
lTr ﬂ h—ElTr ﬂ "

4.7. Vertex, generating vertex and Carleman’s condition.
Any m(i) is a vertex. It is generating if either ¢« = 0 or wli] is the first
occurrence of a letter. For example if w = abbcab then 7(0), (1), 7(2),7(4) are
generating. By Property B a circuit is completely determined, up to finitely
many choices, by its generating vertices. The number of generating vertices is
|w| + 1 and hence |IT*(w)| = O(nl*I*1). The following result is due to Bose
and Sen (2008)[21].

E =0(n?). (9)

Theorem 4.1. Let {A, = ((z1(i5)))i =1} with the input sequence satisfying

Assumption I and (L, f) satisfying Property B with f(x) = x. Then {F"fl/QA"}

is tight a.s. Any subsequential limit G satisfies, for all nonnegative integers k,
k

(i) Bar+1(G) = 0 and (i) B2 (G) < % Hence G is sub Gaussian. The

(nonrandom) LSD exists for {n="/2A,} iff for every h, a.s.,

lim B, (n~'/? A,) = By, (say). (10)

In particular {8y} automatically satisfies Carleman’s condition.
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5. The LSD for Some Specific Matrices

To derive any LSD it is enough to obtain (10) or (8). It turns out that

for C,(LS), PT,, PH, and DH,, p(w) = 1 for all w. For other matrices only
certain words contribute in the limit. Properties of p(w) for different matrices is
given in Tables 1 and 2. Two special type of words which arise are the following:

Symmetric and Catalan words: A pair matched word is symmetric if each
letter occurs once each in an odd and an even position. A pair matched word is
Catalan if sequentially deleting all double letters leads to the empty word. For
example abcebdda is a Catalan word whereas abab is not. The following result
gives the count of these words. The proof of the first part of (a) is also available
in Chapter 2 of Anderson, Guionnet and Zeitouni (2009)[3] and Bose and Sen
(2008)[21].

Lemma 5. (a) The number of Catalan words and symmetric words of length
: (2k)! |
2k are respectively, T D and k!.

(b) Let My= #{ Catalan words of length 2k with (t + 1) even generating
vertices and (k —t) odd generating vertices}. Then

" k—1\> [(k=1\[k—-1 1 (k\ (k-1

bk = ( t ) (t+1) (t—l) B t+1<t>< t )

Proof. (a) For any Catalan word mark the first and second occurrences of
a letter by +1 and —1 respectively. For example abba and abccbdda are
represented respectively by (1,1,—1,—1) and (1,1,1,—1,—1,1,—1,—1). This
provides a bijection between the Catalan words of length 2k and sequences
{wi}1<i<ok satisfying: each v = £1, S = Zé‘:1 u; >0V I>1and Sy =0.
By reflection principle, the total number of such paths is easily seen to be

(k(filf;:k, We omit the details. The proof of the second part is trivial.

(b) We know from part (a) that,
#{Catalan words of length 2k} = # {{w; }1<i<2 : w = £1, Sy >0, So, = 0}.

Note that the conditions {S; > 0 and Sor = 0} imply u; = 1 and ugx = —1.
Define

Neq:=#{l:u =1, l even} and N, _1 := #{l : v; = —1, [ odd}.
Clearly, Ne,1 <k —1and N, _; <k — 1. Define

Co = {{w}: Saw-—1=1, Ne1=1t, Nop_1=t},
C; = {{w}: Sy <O0forsomel, Sop_1 =1, Neqg=1t, No_1 =t},
Cy {{w}: Sok—1=-3, Ne1=t—1, N,_1=t+1}.
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Then it is easy to see that

k—1\> k—1\ (k-1
#o = (1) mawea= (7)) (050)
My = #{{ug} Sy >0V0land Sop—1 =1, Nei=t, No—1 = t}
#Co — #C1.
Now we will show #C; = #Cs. Note that for {u;} € Cq, there exist [ such that
S;—1 = —1. Similarly for {u;} € Cs, there exist [ such that S;_; = —1. Let
i, = sup{l: S;_1 =-1, {w} € Ci},
lo = sup{l: S;_1 =-1, {w} e Cs}.

Then

Uy, = Ul +1 = 1 and Uy, = Uly41 = —1.

Now define a map f : C; — Cy as follows: f({w;}) = {u]} where
w=w V1#Il, L +1and u, = —wuy,, up = —ug 41
Similarly define g : Co — C7 as g({w;}) = {u]} where
uy = V1#Ilplo+1and uy, = —uy,, up, g = —Up41.
It is easy see that f and g are injective. Hence #C7 = #C5. Therefore
k—1\* (k—-1\[(k-1
M = #Cy — #C1 = #Cy — #Cs = - .
P e (e ()
O

We now provide brief sketches of the steps verifying the existence of the
limit (8) for different matrices.

5.1. Wigner matrix: the semicircular law. The semi-circular
law Ly arises as the LSD of n_l/QWnS). It has the density function
VA= if]s| <2,
pw(s) = (11)
0 otherwise.

All its odd moments are zero. The even moments are given by

52k(£w)=/ s pw (s)ds = (2k):

L kl(k+ 1) (12)

Wigner (1958)[47] assumed the entries {x;} to be i.i.d. real Gaussian and es-

tablished the convergence of E[F 7171/2“9('5)()] to the semi-circular law (11).
Subsequent improvements and extensions can be found in Grenander (1963,
pages 179 and 209)[26], Arnold (1967)[2] and Bai (1999)[6].
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Theorem 5.1. Let W,SS) be the n x n Wigner matriz with the entries {xij :
1< i1§ J, J§ = 1} satisfying Assumption I or II. Then with probability one,
{F" / Wal converges weakly to the semicircular law Ly, given in (11).

Proof. By Lemma 3, Lemma 5 and Theorem 4.1, it is enough to show that for
pair matched word w,

1
itk

[IT*(w)| — 1 or 0 according as w is or is not a Catalan word.  (13)

Note that if 7 € II*(w),w[i] = w[j] = L(x(i —1),7(3)) = L(x(j — 1), 7(5)).
Then

(w(j — 1), n(j)) (constraint C1) or
(m(j), m(j — 1)) (constraint C2).

(w(i = 1), =(z)) = {
For any matched word w, there are k such constraints. Since each constraint
is either C'1 or C2, there are at most 2* choices in all. Let X be a typical choice
of k constraints and II} (w) be the subset of II*(w) corresponding to A and so,

IT*(w) = | JT;(w), a disjoint union. (14)
A

Fix w and X. For m € IIj(w), consider the graph with vertices
7w(0),m(1),--- ,7(2k). The edge set is defined as follows:

(i) if w[i] = wlj] yields constraint C1, connect (w(i—1),7(j—1)) and (7 (7), 7(j)).
(ii) if w(i] = w[j] yields constraint C2, connect (w(i —1),7(j)) and (7 (), 7(j —

(iii) connect (m(0),7(2k)), ensuring that 7 is indeed a circuit.

So, the graph has a total of (2k+ 1) edges. These may include loops and double
edges. By abuse of notation, 7(7) thus denotes both, a vertex and its numerical
value. One shows by an easy argument that the graph has (k + 1) connected
components if and only if w is Catalan and all constraints are C2. See Bose
and Sen (2008)[21] for details. Denote by Ag the case when all constraints are
C2. Note that

5, (w) | = . (15)

If w is Catalan and not all constraints are C'2, or, w is not Catalan and A is
arbitrary, then the corresponding graph has at most k connected components
and hence |y, I} (w)| < 2Fn¥ implying

1 *
W' UHA;H\O (w)| — 0. (16)

Now (13) follows by combining (14), (15) and (16), and the proof is complete.
O



2214 Arup Bose, Rajat Subhra Hazra, and Koushik Saha

Remark 1. Robustness of the semicircle law:

(i) For the Wigner matriz, A(L, f) = 1 with f(z) = z and o, = 2. The
following can be proved using the approach described here: If A, is symmetric
where L satisfies A(L, f) = 1 with f(z) = x and o, = O(1) and the input
sequence satisfies Assumption I or II, then Fr A converges a.s. to the
semicircle law. This and other related results on the Wigner matrix may be

found in Bannerjee (2010) [4].

(i) Consider Wigner matrices with the input random wvariables having possibly
different variances which repeat periodically modulo some integer m,,. Then
the LSD turns out to be a scaled semicircular distribution. The details are
available in Sen (2010) [43].

(ii) Anderson and Zeitouni (2006)[1] considers an n x n symmetric random
matriz with on-or-above-diagonal terms of the form ﬁf(%, 1) where &5 are
zero mean unit variance i.i.d. random variables with all moments bounded and f
is a continuous function on [0,1]? such that fol f?(x,y)dy = 1. They show that
the empirical distribution of eigenvalues converges weakly to the semi-circular

law.
5.2. Toeplitz and Hankel matrices.

5.2.1. Standard Toeplitz and Hankel. Their LSD were established by
Bryc, Dembo and Jiang (2006)[22] and Hammond and Miller (2005)[28].

Theorem 5.2. If {x;} satisfies Assumption I or II then a.s., {F’fl/zTés)} and
{F”fl/QHfbs)} converge to symmetric distributions, L and Ly respectively.

L7, Ly have unbounded support. Their moments may be expressed as volumes
of certain subsets of hypercubes. Obtaining further properties of the LSD is an
open problem.

Proof of Theorem 5.2. We sketch the main steps in the proof for the Toeplitz

matrix. Since the L-function satisfies Property B with f(z) = z, it is enough to

obtain lim —7|II*(w)|. From Bryc, Dembo and Jiang (2006)[22], this limit is
n—oo

equal to limy,—, e — [I1**(w)], where
I (w) = {7 : wli] = w[j] = 7(i = 1) = 7(i) + 7(j — 1) — 7 (j) = 0}.

Let v; = w(i)/n and U, ={0,1/n,2/n,...,(n—1)/n}. The number of elements
in II**(w) then equals

#{(Uo,vl,--- ,V2k) 1 V0 = Vak, v; € Un and v;_1 —v;+vj_1 —vj = 0if wi] = w[j]}.
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Let S = {0} U {min(4,j) : w[i] = w[j],i # j} be the set of all indices cor-
responding to the generating vertices of word w and clearly, |S| = k + 1.
If {v;} satisfy k equations then each v; is a unique linear combination of
{v;} where j € S and j < 4. Denoting {v; : i € S} by vg, we write
v; = L¥(vs) Vi = 0,1,---,2k. Note that these linear functions {LI} also
depend on the word w. Clearly, LT (vg) = v; if i € S and also summing the k
equations would imply LT (vs) = vg. So

[T (w)| = #{vs : L] (vs) € U,, forall i=0,1,---,n}. (17)

Since —t |II** (w)| is nothing but the (k+ 1) dimensional Riemann sum for the
function 1(0 < LT (vs) < 1, Vi ¢ SU{2k}) over [0, 1]F+1,

li L
11m
n—oo nltk

T ()] = /0 /0 10 < LT(vg) < 1, Vi ¢ SU{2k})dvs == pr(w)

k+1
(18)

and ﬁQk(['T) = Z w matched, pT(w)
l(w)=2k,|lw|=k

Similarly Bor(Lr) =) w matched, Pr(w), where py(w) is given by
l(w)=2k,|w|=k

/0 /0 10 < LH(vs) <1, Vi¢g SU{2k}) I(vo = L (vs))dvs.  (19)

k+1
O

5.2.2. Balanced Toeplitz and Hankel matrices. Excluding the diagonal,
each variable in the Wigner matrix appears equal number of times (twice). The
Toeplitz and Hankel matrices do not have this property and it seems natural
to consider the following balanced versions, first considered by Sen (2006)[42].
For proof of the next theorem see Basak and Bose (2009)[12]. Let

Tn—1 Tn

Z1 Z2 Zx3 ZLn
V1 V2 V3 n—1 vn
Z2 x3 x4 Ty Tntl
V2 V3 V4 Vn n—1
Z3 K2y 5 Tntl Tnt2
BH, =| V3 Vi V5 n—1 n-2
T Tnt1 Tn42 Tan—2 ZT2n—1
n n—1 n—2 " V2 V1
Zo_ T T2 Tn—2 Ty —1
N n—1 /n—2 V2 a
1 xo x1 Tn—3 Tp—2
vn—1 vn vn—1 V3 V2
T2 T xQ Tn—4 Tn—3
BT, = n—2 n—1 vn vz V3
Tn—1 Tn—2 Tn—3 1

5
S
S
B
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Theorem 5.3. If {x;} satisfies Assumption I or II then {FPT»} {FBH~}
converge a.s. to symmetric distributions having unbounded support and finite
moments.

5.3. The reverse circulant and the palindromic matrices.

Bose and Mitra (2002)[18] studied the LSD of n=1/2R{) under finiteness of
the third moment. Massey, Miller and Sinsheimer (2007)[34] established the
Gaussian limit for 7 /*PTn and F» /*PHa_ The following result may be
proved using arguments similar but simpler than those given earlier for the
Wigner and Toeplitz matrices. See Bose and Sen (2008)[21] for details. Let Lg

be the distribution with density and moments
fr(z) = |z|exp(—2?), —00 < = < 00, Bars1(Lr) =0 and Bor(Lr) = k! k> 0.

Theorem 5.4. If {x;} satisfies Assumption I or II, then a.s., {F”71/2R§f>}
converges to Lr and {F"fl/zA"} for A,, = PT,, 07(15)7 PH,, and DH,,, converge
to the standard Gaussian distribution.

Proof. First consider R%S). It is enough to show that
(i) If w is pair matched and not symmetric then limy,_, oo —r [II* (w)| = 0.

(ii) If w is symmetric then for every choice of the generating vertices there is
exactly one choice for the nongenerating vertices.

Proof (i) Since w is pair matched let {(is,js),1 < s < k} be such that
wliy] = wlji], Js, 1 < s < k is in ascending order and j = 2k. We use the nota-

tion from the proof of Theorem 5.2. So, [II*(w)| =32, _(,, 1., viye(-1.0.1}"

#{(Uoﬂ)l,"' JVak) 1 Vo = Vo, ¥ € Uy, and vi,_1 + v, —vj,_1 — vj, = Vs

s

Observe that v; = L (vg) + agy),i ¢ S for some integer agy). As in the Hankel
case, we easily reach the following equality (compare with (19)):

limp,— 0 nkilﬂ [ (w)| =

1 1
Z/ / 10 < LF (vs)+a™ < 1, Vi ¢ SU{2k}) T(vo = L2 (vs)+a$)dus.
v 0 0
k+1

For the integral to be non zero, we must have vy = L& (vg) + aél,;).

Let t; = v;—1 + v;. From the definition of IT*(w), vor = v + Z’;Zl as(t;, —
tj, — v,) for some {a;}. We choose them as follows: Let oy, = 1. Having fixed
Qly Q—1, - -, Qs+1, We choose ay as follows: (a) if js + 1 € {iy,, jm} for some
m > s, then set oy = +ay, according as js + 1 equals i, or j,,, (b) if there
is no such m, choose g arbitrarily. By this choice of {as}, vor = wvor +
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k k
S as(ti, —tj, —vs) = LE (vs) + aél,;). Hence vor + Y oy as(ti, — t5.) +
ag;) —vg = 0 and thus coefficient of each v; in the left side has to be zero

including the constant term. This implies that w is symmetric, proving (i).

(ii) First fix the generating vertices. Then we determine the nongenerating
vertices from left to right. Consider L(w(i — 1), 7(7)) = L(n(j — 1), 7(j)) where
i < jand m(i —1),7(i) and w(j — 1) have been determined. We rewrite it as

m(j) mod n =72 where Z = (L(w(i—1),7(¢)) —7w(j —1)) mod n € {0,1,...,n}.

This determines 7(j) uniquely, since 1 < 7(j) < n. Continuing, we obtain the
whole circuit uniquely and the result is proved for {n_l/ 2R£f)}.

For other matrices, similar arguments show that (ii) holds for all pair-
matched words. We omit the details. This completes the proof. O

Remark 2. In a recent paper, Jackson, Miller and Pham (2010) [29] studied
the situation when there is more than one palindrome in the first row of a
symmetric Toeplitz matriz and used method of moments to show that under
certain moment assumptions, the limiting spectral distribution exists and has
an unbounded support.

Table 1. Words and moments for symmetric X.

MATRIX | w Cat. nqgtsbggt" Other w Bak or LSD
c® 1 1 1 GHLN(0,1)
PT» 1 1 1 ditto
PH, 1 1 1 ditto
DH,, 1 1 1 ditto
Ry 1 1 0 K, Lr
) 1 0<pr(w) <1 0 <pr(w) <1 | gl < Bax < 28
HY) 1 | 0<pa(w)=prw) <1 0 ey < Bk < B!
E |
wi 1 0 0 e Lw

5.4. X X'’ matrices.

5.4.1. Sample covariance matrix. For historical information on the LSD
of S = A,(W), see Bai and Yin (1988)[9], Marcenko, and Pastur (1967)[33],
Grenander and Silverstein (1977)[27], Wachter (1978)[46], Jonsson (1982)[30],
Yin and Krishnaiah (1985)[49], Yin (1986)[48] and Bai and Zhou (2008)[7].
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We first describe the Marcenko-Pastur law denoted by Laspy: it has a pos-
itive mass 1 — i at the origin if y > 1. Elsewhere it has a density:

271'1.'1cy (bix)(‘x*a) lfa§x§b7

pupy(T) = (20)
0 otherwise

where a = a(y) = (1 — /y)* and b = b(y) = (1 + /9)*.
Moments of Lrp, are (see Bai (1999)[6] or Bai and Silverstein (2006)[8]):

k-1
Br(Larpy) = Z t—i—% (i) (k; 1)yt’ k> 1.

t=0

Theorem 5.5. (a) Suppose {x;;} satisfy Assumption I or II and p — oo. If
p/n —y € (0,00), then {FA»MW)} converges to Lyrpy a.s..

(b) Suppose {z;;} satisfy Assumption I or they are i.i.d. with mean 0, variance

1 and bounded fourth moment. If p — oo and p/n — 0 then {F\/%(AP(W)_I”)}
converges to Ly a.s. where I, is the identity matriz of order p.

Proof. (a) We apply mutas mutandis the proof given for the Wigner matrix.

Br(S) = p_ln_k Z LL1(7(0),7(1))PL2(7(1),7(2))LL1(7(2),m(3)) " LL2(w(2k—1),7(2k))*

A circuit 7 now has the non uniform range 1 < 7(2m) <p, 1 <7(2m+1) <n.
It is said to be matched if it is matched within the same Li, i = 1, 2 or across.
For any w, let TI(w) be the possibly larger class of circuits with the range
1 < 7(i) < max(p,n), 1 <i < 2k. Likewise define IT*(w).

Lemma 3 remains valid in the present case. See Bose and Sen (2008)[21].
Hence only the pair matched circuits potentially contribute and we need to
calculate

| 1 . I ()
h,ﬁnz > %E[%l(w(oxw(l))'“mm(w(zkfl)m(zk))} = lim ) nkp
w rell(w) w: lma[tc};ed,
wl|=

We need ezxactly (k+1) generating vertices (hence k nongenerating vertices) for
a contribution. There is an obvious similarity between the matching restrictions
here and the ones we encountered for the Wigner link function. Note that
Li(w(i — 1),7(3)) = L2(n(j — 1),w(j)) for ¢ # j implies a C2 constraint. On
the other hand, Lt(n(i — 1), 7(4)) = Lt(n(j — 1),7(j)), t = 1 or 2, yields a C1
constraint. However, unlike the Wigner matrix, w[i] = w[j] implies exactly one
of the constraints is satisfied (C1 if ¢ and j have same parity and C2 otherwise).
Hence there is a unique \ (depending on w) such that IT* (w) = IT5 (w).
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As before, let Ao be the index when all constraints in I} (w) are C2. Let
ﬁ/’f\(w) denote the class II} (w) but where 1 < 7(7) < max(p,n), i =0,1,...2k.
If w is not Catalan then it is easy to see that A # \o. Hence it follows that

n~Fp~ I (w)] < Clmax(p,n)]~ V| | 113 (w)| — 0.
Ao

For any 0 < ¢ < k — 1, if w is Catalan with (¢ 4+ 1) generating even vertices
(with range p) and (k — t) generating odd vertices (with range n) then

Jim n™FpTHII (w)] = lim n” T () =yt
Hence lim E[S(5)] = f;ol M, y" and the result follows from Lemma 5 (b).

(b) For ease of presentation, we assume that the input sequence satisfies As-
sumption I. The proof when it is i.i.d. with finite fourth moment requires an
appropriate truncation lemma and is available in Bai (1999)[6]. We sketch
briefly how the Wigner link function and hence the semicircle law appears.
The details can be found in Bose and Sen (2008)[21] Theorem 5. Note that

E[ﬁk(\/%(Ap(W) —I)] = W > E[X], where X is equal to

(xW(O),ﬁ(l)xw(Q),ﬂ(l) —5n(0),n(2)) e (a:-rr(Qk'—Q),7r(2k—1)'r7r(2k),ﬂ'(2k—1)_57r(2k—2),7r(2k)),

with 6;; = I{i = j}. Now B[X,] = 0 if (x(2i),7(2i — 1)) or (x(2i),7(2i + 1))
occurs only once in the product and if for some j, the value of w(2;541) does not
occur at least twice among 7 (1), 7(3),...,m(2k —1). Define a graph G = (V, E)
with V = V1UV2 and V1 = {7T(2]),0 S j S k} and V2 = {’/T(Z]—l),]. S] S k}
Let E = {(w(2]),7(21 + 1)), (w(2l + 2),7(20 + 1)) : 0 <] < k — 1} (multiple
edges count as one). Fix a matching (out of finitely many choices) among the
even vertices and one among the odd vertices, such that E[X ] # 0. There are
at most p!V1In!V2l corresponding circuits. So the contribution of that term is

VilpIVal k/2—|Va|
p"iin B p
0 <pk/2+1nk:/2> =0 ((n) ) : (21)

If k is odd then |V2| < k/2 and since p/n — 0, (21) immediately implies that
E[8r(Ap)] = 0.

If k = 2m, we look for m which produce nontrivial contribution. From (21), we
must have |V| = 2m + 1, |E| = 2m, |V2| = m and |Vi| = m + 1. Observe that:

(i) |Vo| = m implies a pair partition of odd vertices. Denote it by a word w
of length k. So, m(2i — 1) = n(25 — 1) iff w[i] = wlj].

(ii) Each pair in E must occur exactly twice.
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(iii) If (w(20), w(20+1)) = (7w(2142), m(20+1)) or equivalently 7(2]) = 7(2]+2),
then E[X ] = 0. So, consecutive even vertices cannot be equal.

(iv) Note that (ii) and (iii) together imply that E[X,] = 1. Suppose
wli] = wlj] i.e. (2 — 1) = w(2j — 1) (22)

and they are different from the rest of the odd vertices. If we fixed w,
then independent of w, there are exactly Ni(n) =n(n—1)...(n—m+1)
choices of odd vertices satisfying the pairing imposed by w.

Consider the four pairs of vertices from E, (7(2i—2), 7(2i—1)), (7(24), 7(2i—
1), (7(2 - 2),w(2j — 1)) and ((27), 7(2j — 1)).

By (22) and (i), they have to be matched in pairs among themselves. Also,
(#it) rules out the possibility that the first pair is matched with the second and
the third is matched with the fourth. So the other two combinations are the
only possibilities. It is easy to verify that this is the same as saying that

L(m(2i = 2),7(2i)) = L(w(2) — 2), 7(27)) (23)

where L is the Wigner link function. Let 7*(i) = 7(2¢). Equation (23) implies
that 7* is a matched circuit of length k. Let II*(w)= all circuits 7* satisfying
Wigner link function. Then lim ﬁﬂ’[*(wﬂ = 1 or 0 according as w is or is
not Catalan. Hence, the following equalities hold and (M1) is established.

: : 1 X
BB (A)] =l — 3 M) (w)
’ ’ w:matched, |w|=m

— lim — S ) = 2!

p pmtl (m+1)!m!”

w:matched, |w|=m
O

Remark 3. Simulated eigenvalue distribution of the sample autocovariance
matriz and a close cousin of it were given in Sen (2006)[42]. The former is
matriz but with a dependent input sequence. Assuming that {x;} satisfies As-
sumption II, Basak (2009)[10] showed that the LSD exists, and Basak, Bose
and Sen (2010)[14] showed that the LSD exists when x; = Z?:o a;j€e—; with
{e:} satisfying Assumption II. They also showed that the modified matriz
r, = n‘l((Z?zl TTyy(i—j|))ij=1,....n Which is not nonnegative definite also
has an LSD.

5.4.2. X X’ matrices with Toeplitz, Hankel and reverse circulant
structures. Let L, : {1,2,...,p} x {1,2,...,n=n(p)} — Z be a sequence of
link functions. Define the following generalization of the S matrix:

Ap(X) = (1/n)X X', where X = ((z,(i,j)))1<i<p, 1<j<n-
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In particular, consider the following choices for X:

(Asymmetric) Toeplitz T = ((zi—;))pxn-

(Asymmetric) Hankel H with (4, j)th entry ;4 ; if i > j and 2_(; ;) if i < j.
)

(Asymmetric) reverse circulant R with L(i,5) = (i + j) mod n for i < j and
—[(@ + j) mod n] for ¢ > j.

(Asymmetric) circulant C' where L(4,j) = (n — i + j) mod n.

Also let H,ES) and RZ(,S) be the p X n rectangular versions of Hf,s) and Rgf).

Assumption ITII. {z;} are independent with mean zero and variance 1.
Further, X\ > 1 is such that p = O(n'/*) and sup, E(|z;|*ATY/N+) < 0o for
some § > 0.

For a proof of the following theorem see Bose, Gangopadhyay and Sen
(2009)[20].

Theorem 5.6. (a) If Assumption I or II holds and 2 — y € (0,00), then
{FA)Y ) where X is T, H, R or C, converge in distribution a.s. to
nonrandom distributions which do not depend on the distribution of {x;}.

(b) If Assumption III holds, p — oo and p/n — 0, then FVEAO-I) Lo
a.s. for X equal to T, H, R, C, HI(,S) or Rés).

5.5. Band matrices. If the top right corner and the bottom left corner
elements of a matrix are zeroes, we call it a band matrix. The amount of
banding may change with the dimension of the matrix and may alter the LSD
drastically. See for example Popescu (2009)[41]. In this section we discuss the
Toeplitz, Hankel and circulant band matrices. Similar band matrices have been
considered by Kargin (2009)[31] and Liu and Wang (2009)[32]. Proofs of the
next two theorems are available in Basak and Bose (2009)[11]. Let {m,} be a
sequence of integers. For simplicity we write m for m,,. Consider the following
assumptions.

Assumption I* {xz;} are independent with mean 0 and variance 1 and satisfy
(i) sup E[|x;|**°] < oo for some § > 0,
(ii) For all large ¢, limn =2 Y  E[|z;|*I(|z;| > t)] = 0.

Assumption IV {m,} - oo and lim m,/n=a < oo .
n—oo

Assumption V3 m,? < co. (Holds trivially when « # 0).

n=1
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Table 2. Words and moments for X X' matrices.

MATRIX w Cat. Other w Br and LSD

p/n—0

Vi = 1)

_ . k)!
(S =n"1W,W)) 1 (Cat. in p) 0 %, Lw

Vi Ap(X) ~ 1)
(X=T, H, R, C) Lt

p/n —y # 0,00

k—1

1 k\ /k—1
S =n"tW,W, 1 0 — tL
— S O e,
Ap(X)
(X=T,H,Rp,Cp) different, but universal

(i) Type I banding. For any A,,, the Type I band matrix A% is the matrix
A, with input {z;1(i < m) +0I(i > m)}.

Let N(0,2) denote a normal random variable with mean zero and variance
2. Let = denote weak convergence of probability measures.

Theorem 5.7. Suppose Assumption IV holds and one of the following holds:
(A) Assumption I, (B) Assumption II or (C) Assumption I*(i), (ii). Then in
probability,

(a) If my, < n/2 then ™A = N(0,2) for A= C°, DH}, PT} and PH}.
(b) ]fmn S n then Fm;1/2R£f>b = £R-

(C) ]f My S 2n then Fm:bl/szzS)b

degenerate distribution at zero.

= H} which is symmetric and HY is the

1/2T7(s)b

(d) If m,, <n then F"n = T2 which is symmetric and To® = N(0,2).

If Assumption V holds, the convergence are a.s. in cases (A) and (B).

(ii) Type II banding. The Type II band version HZ of H' is defined with the
input sequence {z;I(|i —n| < m)+0I([i—n| > m)}. The Type II band versions
RB of RY and T B of T\ are defined with the input sequence {z I({i <



Patterned Random Matrices and Method of Moments 2223

m}U{i >n—m})+0I(m <i<n—m)}. Type II banding does not yield
any nontrivial situations for symmetric, doubly symmetric and palindromic
matrices.

Theorem 5.8. Suppose Assumption IV holds and any one of the following
holds: (A) Assumption I, (B) Assumption II or (C) Assumption I*(i), (ii).
Then in probability,

-1/2RB

(a) If my, <nj2 then FZmn) N

(b) If myp, < n then Fema)THT HB which is symmetric and HP = Lg.

(c) If my, < n/2 then Fma'PTY = T3 which is symmetric and T2 = N(0,2).

If Assumption V holds, the convergence are a.s. in cases (A) and (B).

5.6. Matrices with dependent entries. Let 2; = eje;41 - €491
where {¢;} are i.i.d. To deal with this kind of dependence between {z;}, we
extend the concept of matching.

Matched circuits: Let L be a link function. Let M™ = ((m; ;)) be the d x h
matrix where m; ; = L(w(j — 1), 7(j)) +¢ — 1. We say that 7 is d-matched if
every element of M7™ appears at least twice. This notion is extended to d-joint
matching and d-cross matching in the obvious way. Note the following facts:

1. No two entries belonging to the same column of M™ can be equal.

2. If some entry in the j;-th column of M™ is equal to some entry in its jo-th
column then |L(7(j1 — 1), 7(j1)) — L(7w(j2 — 1), 7(42))| < d — 1.

Let N }%Jr: Number of d-matched circuits of length h with at least one entry

of M™ repeated at least thrice, and let Q,]ﬂ: Number of circuits (1, w2, 73, 74)
of length h which are jointly d-matched and jointly d-cross matched. The fol-
lowing lemma was proved in Bose and Sen (2008)[21].

Lemma 5.9. Suppose (L, f) with f(x) = x satisfies Property B.
(a) There are constants Ch.q and Ky, q such that

NM . < Chanl D2 and QM < Ky qn® 2., (24)

(b) Suppose T = €r€4q1 - - - €4q—1 where {€;} satisfies Assumption I. Let A, q =
((xr(i,5)))nxn where (L, f) satisfies Property B with f(x) = x. Then for every
h

() ()] o

As a consequence (M4) holds too.

E
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Lemma 5.10. Fach d-matched circuit m with only pair matchings is also pair-
matched w.r.t. L and vice versa. Hence if (w) = h is odd then no d-matched
circuit ™ can be pair-matched.

Detailed proof of the following theorem is given in Bose and Sen (2008)[21].

Theorem 5.11. Let x; = €641 - - €44.q—1 where {€;} satisfies Assumption I.
Let Ang = ((Tri,5)))nxn where (L, f) satisfies Property B with f(x) = x. If

LSD of {F"_l/QA"vd'} exists a.s. for d = 1, then the same LSD holds a.s. for
d>2.

Sketch of proof of Theorem 5.11. Let F,, 4 denote the ESD of n_1/2An’d.
Lemma 5.9 and 5.10 imply that for every h,d,

Br(Fn,a) — E[Br(Fn,q)] — 0 almost surely.

On the other hand

E[Bh(Fp.a)] = %E[Tr(n*/QAn,d)h} = ﬁ > E[X.]

1
T nlth/2 Z E[Xr]
~ d-matched

h
where X = Hi:l €L(m(i—1),7(i)) EL(7(i—1),m(3))+1 """ €L(m(i—1),m(i))+d—1"

Lemma 5.9(a) and Lemma 5.10 imply that if & is odd then lim E[5,(F,, 4)] =
0, and hence for every d, lim 8, (F), 4) = 0 a.s..

Now suppose h = 2k is even. Let II(w) be as defined in Section 4 for ordinary
L-matching. From Theorem 4.1, a.s.,

lim n~(F+1) Z I(w) = lim Bor (Y2 A, 1) = lim E[Bor (n "2 A,,.1)].
w:|w|=k
On the other hand, Lemma 5.9 and Lemma 5.10 imply that for all d
lim n~(F+1) Z II(w) = Um E[Bak (Fq)] = lim Bog(F,4), almost surely.
w:|w|=k

O

Here is another result in a dependent situation. For proof see Bose and Sen
(2008)[21].
Theorem 5.12. Let z; = z;io aje—j with {a;} satisfying 3, |a;| < oo and
{ei} satisfying Assumption I and 3, ja? < oco. Then with the input sequence

{z}, {F"fl/zTr(Ls)} and {F"fl/sz(LS)} converge weakly to nonrandom symmetric
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probability measures T, and H, respectively. These LSD do not depend on the
distribution of €;. The (2k)-th moment of T, and H, are given by

Bor(Ta) = Aok for(Lr) and Porx(Ha) = Az for (L)

where Lt and Ly are as in  Theorem 5.2 and Ag =

[eS) k 2
S(% o)
d=0 “mq,...,m;>0: j=1
Zlfm,;:d

6. Moment Method Applied to Other Matrices

6.1. Mod |np]| link functions. Recall that the Hankel and reverse
circulant link functions are respectively, L(i,j) = ¢ + j and L(i,5) = i+ j
mod n. Define a class of link functions {L, : p € (0,2]}, where L,(i,j) =i+ j
mod [np]. Then the previous two link functions are special cases. Some results
on the LSD with ii.d. inputs and link function L, have been established by
Basak and Bose (2010)[13]. In particular, when p = -1 for some integer m, the
LSD is (1—p)dp+pv/mR, where dy is the degenerate distribution at 0 and R has
distribution Lg. Similar extensions were also obtained for mod |[np] versions
of Toeplitz and symmetric circulant link functions.

6.2. Tridiagonal matrices. Let A, be the tridiagonal random matrix

dy bpy O 0 ... 0 0
bpg dy1 byo O ... 0 0
0 bpo dys byg ... 0 0

A, = .
0 0 0 ... by dy b
0 0 0 ... 0 b d |

Popescu (2009)[41] used the trace formula and the moment method to obtain
many interesting limit distributions. He assumed that the sequence {d;,b;} is
independent, moments of d,, are bounded uniformly in n and, E[(b,/n%)*] —
my for every k, as n — oo. Let X,, = A, /n® and tr denotes the normalized
trace i.e., tr(I) = 1. He showed that E[tr(X¥)] — Lj for some {L;} which
can be expressed in terms of {m;}. Moreover, if X; ,, are several independent
matrices then the joint moments E[tr(Xfll_n . an)] converge and the limits
can be expressed in terms of the corresponding {m, }. For example, if « = 1/2
and my = 1 for all k, then the Ly, k > 1 are moments of the semicircle law. For
other values of «, { L} determines probability distributions whose densities are
available in explicit forms.
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6.3. Block Matrices. Oraby (2007)[37] discussed the a.s. limiting spec-
tral distributions of some block random matrices. Under the strong assumption
that the ESD of the blocks themselves converge a.s. to some limiting spectral
distribution, an easy consequence from the theory of polynomials is the a.s.
limiting behavior of the spectrum of the block matrix. The proof of the main
theorem involves the method of moments.

Let By, be a block matrix with Hermitian structure of order & (fixed) with blocks
formed by independent Wigner matrices of size n. Oraby (2007)[38] showed that
its LSD exists and depends only on the structure of the block matrix. When the
block structure is circulant, the LSD is a weighted sum of two semicircle laws.
In particular, the LSD of a Wigner matrix with k-weakly dependent entries
need not be the semicircle law. Bannerjee (2010)[4] considered the case where
By, is symmetric and derived an explicit formula for the moments in terms of

the link function L of Bj. In particular, only Catalan words contribute and the
support of the LSD lies within [—2\/A(L, ), 2\/A(L, )] with f(x) = z.

7. Some Other Methods and Matrices

7.1. Normal approximation and the k circulant matrix. For
the circulant matrix, apart from conjugacy, the eigenvalues are asymptoti-
cally normal and asymptotically independent. LSD proofs can be developed
by appropriate usage of normal approximation methods. See for example, Bose
and Mitra (2002)[18] (reverse circulant and symmetric circulant) and Meckes
(2009)[35]. Recently Bose, Mitra and Sen (2008)[19] and Bose, Hazra and Saha
(2009)[17] used normal approximation to establish LSD for some specific type
of k-circulant matrices with independent and dependent inputs respectively.

7.2. Stieltjes transform and the Wigner and sample covari-
ance matrices. Stieltjes transform plays an important role in the study of
spectral distribution. For any probability distribution G on the real line, its
Stieltjes transform s¢ is defined on {z: u + iv,v # 0} as

salz) = /OO L Gan).

e T — 2
If A has real eigenvalues \;, 1 < i < n, then the Stieltjes transform of the ESD
of Ais
(2) L - any
SA\Z) = — = — —Zz .

A n Ni—2zZ n

Let {A,} be a sequence of random matrices with real eigenvalues and let the
corresponding sequence of Stieltjes transform be {m,,}. If m,, — m in some suit-
able manner, where m is a Stieltjes transform, then the LSD of the sequence
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{A,} is the unique probability on the real line whose Stieltjes transform is the
function m. It is shown that {m,, } satisfies some (approximate) recursion equa-
tion. Solving the limiting form of this equation identifies the Stieltjes transform
of the LSD. See Bai (1999)[6] for this approach in deriving the LSD for the
Wigner and the S matrices and in studying the rate of convergence. Inciden-
tally, no Stieltjes transform based proof is available for the Toeplitz and the
Hankel matrices.

7.2.1. Wigner matrix with heavy tailed input. Consider the Wigner ma-
trix W7(LS) with i.i.d. entries belonging to domain of attraction of an a-stable
law with « € (0,2). Ben Arous and Guionnet (2006)[16] prove that with an ap-
propriate slowly varying function I(-), {E[F(l(”)”l/a)flww(é)}} converges to some
law ., which depends only on «. This law is symmetric, heavy-tailed, and is
absolutely continuous with respect to the Lebesgue measure, except possibly
on a compact set of capacity zero. Some similar results for the S matrix and
band matrices can be found in Belinschi, Dembo and Guionnet (2009)[15].

7.2.2. I.I.D. Matrix and the Circular Law. Let A,, be the n x n random
matrix with mean 0 and variance 1 i.i.d. complex entries. Then {F”il/z“‘”}
converges a.s., to the uniform distribution on the unit disk (called the circular
law). This was first established for Gaussian entries by Mehta (1967)[36]. Girko
(1984)[23] suggested a method of proof for the general case. Bai (1997)[5] con-
sidered smooth densities and bounded sixth moment of the entries and showed
the result to be true. Gotze and Tikhomirov (2007)[24] showed the result for
subgaussian entries and the moment conditions were further relaxed by Pan and
Zhou (2010)[39], Gotze and Tikhomirov (2007)[25] and Tao and Vu (2008)[44].
The result in its final form was derived by Tao, Vu and Krishnapur (2009)[45].
The moment method fails for this matrix as all the moments of the circular
distribution are zero and they do not determine the distribution uniquely. The
Stieltjes transform method was used to show that the ESD converges. The laws
of the singular value distribution of n='/2A4,, — zI for complex z also played a
crucial role in determining the convergence of the ESD.

8. Discussion

(i) We have seen that under the boundedness property of the link function,
convergence of the moments is a necessary and sufficient condition for the
LSD to exist. Moreover, subsequential limits exist. It is not known if suitable
restrictions on the link function guarantees the existence of limits of moments.

(ii) Similarly, given a specific subclass of words, can an appropriate (bounded)
link function be devised for which the LSD contribution comes only from these
words?
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(iii) Under what conditions on the link does the LSD have bounded or un-
bounded support? Bannerjee (2010)[4] has shown that if Property B is satisfied

with f(z) = # and a,, = o(n), then only the Catalan words contribute to the
moments and the support of the LSD is a subset of [-21/A(L, f), 2v/A(L, f)].

(iv) We have used the moment method only for real symmetric matrices. Using
the moment method for nonsymmetric matrices or for matrices with complex
entries does not appear to be convenient. However, more thought on this is
needed.

(v) The d-matching helped us to address linear dependence. One can also
think of extending the results to input sequences which admit other types of
dependence, for example for martingale differences.

(vi) Recall that for the S matrix, there is a positive mass equal to 1 — y~*
when p/n — y > 1. It is evident from simulations that a similar phenomenon
exists for general X X’ matrices. See Bose, Sen and Gangopadhyay (2009)[20].
However, detailed information on the quantum of mass at zero and the gap
between 0 and the next point in the support of the LSD is not known.
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Abstract

We outline a proof, by a rigorous renormalisation group method, that the critical
two-point function for continuous-time weakly self-avoiding walk on Z¢ decays
as |2/~ in the critical dimension d = 4, and also for all d > 4.
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1. Introduction

We prove |z|~(472) decay for the critical two-point function of the continuous-
time weakly self-avoiding walk in dimensions d > 4. This is a summary of the
ideas and the steps in the proof. The details are provided in [12]. The proof is
based on a rigorous renormalisation group argument. For the case d > 4, this
provides an approach completely different from the lace expansion methods of
[18, 19]. But our main contribution is that our method applies also in the case
of the critical dimension d = 4, where lace expansion methods do not apply.
Renormalisation group methods have been applied previously to study
weakly self-avoiding walk on a 4-dimensional hierarchical lattice. The
continuous-time version of the model has been studied in the series of papers
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[4, 16, 8, 9]; see [5] for a review. More recently, a completely different renor-
malisation group approach to the discrete-time weakly self-avoiding walk on a
4-dimensional hierarchical lattice has been developed in [20].

The |2z|~(4=2 decay for the two-point function for a continuum 4-
dimensional Edwards model, with a smoothed delta function, has been proved
in [24]; unlike our model, this is not a model of walks taking nearest neighbour
steps in the lattice, but it is expected to be in the same universality class as our
model. The relation between our model and the Edwards model is discussed
n [26]. A big step towards an understanding of the behaviour in dimension
d =4 — e is taken in [27] (their model is formulated on a lattice in dimension 3
but it mimics the behaviour of the nearest-neighbour model in dimension 4 —¢).

Our renormalisation group method is a greatly extended and generalised
form of work in [4, 8, 9] for the hierarchical lattice and [13, 14, 3, 11] for
continuum quantum field theory. Details will appear in [12]. Our method is
based on an exact functional integral representation of the two-point function
of the continuous-time self-avoiding walk as the two-point function of a quantum
field theory containing both bosonic and fermionic fields. Such representations
have been recently summarised in [10].

1.1. Background. A self-avoiding walk on the simple cubic lattice Z¢ is
an njective map
w:{0,1,...,n} — 24 (1)

such that for all 4, w(i) and w(i + 1) are nearest neighbours in Z¢. We call n
the number of steps. The main result of this article will actually be a statement
about about random maps X : [0,7] — Z%, but to explain the background we
start with self-avoiding walk.

. o— b -

Figure 1. An 8 step self-avoiding walk on Z¢, d = 2.

Let S, be the set of all self-avoiding walks with n steps and with w(0) = 0.
Let ¢, be the number of elements in S,. By declaring that all w in &,, have
equal probability 1/¢, we make S,, into a probability space with expectation
E,,. The subscript n reminds us that the probability space depends on n. In the
sequel “model” means a choice of probability space and law.
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This model arose in statistical mechanics. It is, for example, a natural model
when one is interested in the conformation of linear polymer molecules. There
is another natural model called the true or myopic self-avoiding walk. Unlike
our model, true self-avoiding walk is a stochastic process which at each step
looks at its neighbours and chooses uniformly from those visited least often in
the past. Recent progress on this model is reported in [23].

The key problem is to determine the growth in n of the mean-square dis-

placement,
Enlw(n)]® = ¢ Y w(n (2)
weS,

where |w(n)] is the Euclidean norm of w(n) as an element of Z?. More precisely,
we want to prove the existence of v such that

nlggo nizy]En|w(n)|2 € (0,00), (3)
and we want to calculate v. We will call this the v problem.

As explained in [26, page 16], there is an easier version of this problem that
we will call the Abelian v problem, because proving the existence of v after
solving the Abelian problem is a Tauberian problem. Let & = J,, S, and let
n(w) =n for w € S,,. For z > 0 we define the two-point function

(l‘) = Z Zn(w)]lw(n(w)):z- (4)

weS

P = Z 2w (n(w))|P = Z G (z)|z|P. (5)

weS zeZd

Let

The Abelian version of the v problem is to determine the growth of y/x(? /x(©)
as z T zq, where z. is the common radius of convergence of the power series
in this ratio. If v exists then it equals the Abelian v. In dimensions d > 5,
according to the following theorem, v = 1/2.

Theorem 1.1. [21, 22] For d > 5, there are positive constants A, D, c, e such
that

e = AL+ O], (6)
Ep|w(n)|* = D[l +O(n™°)], (7)
and the rescaled self-avoiding walk converges weakly to Brownian motion:

L‘)(\/L%j) = By. (8)

Also [18], as |z| — oo,
G (@) = cla| P+ 0|2 7). (9)
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The limit in (8) is called a scaling limit. The identification of scaling limits
for dimensions d = 2, 3,4 is the grand goal, but the v problem is a key inter-
mediate objective because n~"w(|nt|) is the candidate sequence for the scaling
limit.

If we set up the probability space without imposing the injective condition
in the definition of w, then the mean-square displacement is exactly n, be-
cause then the law for w is that of simple random walk. According to Donsker’s
Theorem, the scaling limit of simple random walk, with D = 1, is also Brow-
nian motion. Thus, in dimensions d > 5 self-avoiding walk and simple random
walk have the same scaling limit. When different models have the same scaling
limit, we say the models are in the same universality class. One of the goals of
mathematical statistical mechanics is to classify universality classes.

Theorem 1.1 will not hold with v = 1/2 for dimensions four and less. There
is a conjecture going back to [2] that, for d = 4,

en ~ Ap(logn)/*, E,|w(n)|? ~ Dn(logn)'/4. (10)

This and the next paragraph motivates our interest in four dimensions.

In dimension d = 3, nothing is known rigorously about the v problem. The
existence of v is not proved. It is not known that self-avoiding walk moves away
from the origin faster than simple random walk, E,,|w(n)[? > n, nor is it known
that self-avoiding walk is slower than ballistic, E,|w(n)/n|?> — 0. In dimension
d = 2, there is the same basic lack of control as in d = 3, but the good news
is that there is a candidate for the scaling limit, which tells us that if v exists
it should be equal to 3/4. In [25], the process known as SLEg /3 is identified as
the scaling limit of self-avoiding walk subject to the unproven hypothesis that
the scaling limit exists and is conformally invariant.

SLE is a breakthrough discovery because it is provides a comprehensive list
of possible scaling limits in d = 2. It has separated off the issues of existence of
limits and universality and made it possible to study candidate limits without
first having proved they are limits. On the other hand, theoretical physicists
have a profound calculus called the Renormalisation Group (RG) that naturally
explains when different models are in the same universality class and that can
also prove the existence of limits. We will follow this path. RG, in the form
that we will develop, was largely invented by Ken Wilson [28, 30, 29]. RG
as a rigorous tool originated with [1, 15]. Later developments are reviewed
in [6]. The hierarchical lattices mentioned earlier have special properties that
greatly simplify RG. The n(logn)*/* growth of (10) has been shown to hold for
continuous-time weakly self-avoiding walk on a four dimensional hierarchical
lattice in [4, 8, 9]. Very recently, the corresponding Abelian v problem has been
solved in [20] for a discrete-time model on the hierarchical lattice.

1.2. Continuous-time weakly self-avoiding walk and the
main result. We now describe a probability law on a space of maps
X : [0,7] — Z% We use the word “time” for the parameter ¢ € [0,7], but
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as for the discrete-time case there is a different space and law for each T'. It is
not a stochastic process which reveals more about itself as “time” advances, so
it is better to think of the interval [0, 7] as a continuous parametrisation of a
path in Z¢.

Fix a dimension d > 4. Let X be the continuous-time simple random walk
on Z? with Exp(1) holding times and right-continuous sample paths. In other
words, the walk takes its nearest neighbour steps at the events of a rate-1
Poisson process. Let P, and E, be the probability law and the expectation for
this process started in X (0) = a. The local time at = up to time T is given by

T
L.’L’,T = / ]lX(s)::r dS, (11)
0

and we can measure the amount of self-intersection experienced by X up to
time T by

T T
I(O,T)z/ dsy dsolx(s;)=X(s2)

0 0
T T
= dsl/ dso Z Ix(s))=2lx(sp)=2 = Z Li,T' (12)
0 0

€7 zEZ

Then, for g > 0, e=97(%T) is our substitute for the indicator function supported
on self-avoiding X. For g > 0, we define a new probability law

Pya(A) = Eo(e7 910D 14) /By (e791OT) (13)

on measurable subsets A of the set of all maps X : [0, 7] — Z¢ with X (0) = a.
For this model there is a v problem!, but only the Abelian v problem for Z? is
currently within the reach of the methods of this paper.

The continuous-time weakly self-avoiding walk two-point function is defined
by

Gy(a,b) = / Eo(e91OD g oy _y)e v TdT, (14)
0

where v is a parameter (possibly negative) which is chosen in such a way that
the integral converges. For p > 0 define

XP W)= Gyulab)lb—al. (15)
bezd
By subadditivity, cf. [26], there exists v, = v.(g) such that XE(JO)(Z/> < oo if and
only if v > v.. We call this v, the critical value of v. Our main result is the
following theorem.

Isolved on the hierarchical lattice for g small in [4, 8, 9]
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Theorem 1.2. Let d > 4. There exists gmax > 0 such that for each g € [0, gmax]
there exists cqg > 0 such that as |a — b] — oo,

Cg

Gg,l/c(g) (a, b) = m (1 + 0(1)) . (16)

This is the analogue of (9) in Theorem 1.1, but now including dimension
d = 4. There are no log corrections. Log corrections are only expected in the
singular behaviour of X_E,”)(u) as v | v, for p > 0. The case g = 0 is a standard
fact about simple random walk; our proof is given for case g > 0.

2. Finite Volume Approximation

In this section we describe the first step in our proof, which is to approximate
the infinite volume Z% by finite volume, namely a discrete torus.

We do not make explicit the dependence on g, which is fixed and positive.
Let R > 3 be an integer, and let A = Z%/RZ? denote the discrete torus of side
R. For a,b € A, let

Gan(a,b) = / Ean (agl(O)TmX(T):b) evTdT, (17)
0

where E, p denotes the continuous-time simple random walk on A, started
from a. The following theorem shows that it is possible to study the critical
two-point function in the double limit in which first A T Z¢ and then v | v..
We will follow this route, focusing our analysis on the subcritical finite volume
model with sufficient uniformity to take the limits.

Theorem 2.1. Letd > 1 and v > v.. Then

G, (a,b) = lim lim Gy, (a,b). 18
(a,0) = lim lim, G,.(a,b) (18)

3. Integral Representation

The next step in the proof is to represent the two-point function in finite volume
by an integral that we will approximate by a Gaussian integral.

Recall that A denotes a discrete torus in Z%. Given ¢ € C* and writing
p = (pz), z € A, we write dp, and dp, for the differentials, we fix a choice of
the square root v/27i, and we set

1

_77 = 7d_r
Ve = ot

! d
NGT

Define the differential forms

To = 0uPu + Vs APy (z €A, (20)
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and

S (P B0)s + (- AP+ A (AD)s + (~A) AT:), (21)

TAz =

where A is the lattice Laplacian on A defined by Ap, =3-, 11 (py — ¥a),
and A is the standard wedge product. From now on, for differential forms u, v,
we will abbreviate by writing uv = u A v. In particular ¢;v, = —1,1, and
likewise 1), anticommutes with v, and with t,. The proof of the following
proposition is given in [4, 9]; see also [10] for a self-contained proof.

Proposition 3.1. Given g > 0, let v be such that Gy ,(a,b) is finite. Then

GA7V(a’7 b) = /A ¢ ZmEA(TAw—FgTzJ'_DTm)@a(pb (22)
C

The definition of an integral such as the right-hand side of (22) is as follows:
1. Expand the entire integrand in a power series about its degree-zero part
(this is a finite sum due to the anti-commutativity of the wedge product,

and the order of factors in the resulting products is immaterial due to the
even degree), e.g.,

e = ettt = vente (1= Ldpg,). (29)
21

In general, any function of the differentials is defined by its formal power
series about its degree-zero part.

2. Keep only terms with one factor dy, and one dp, for each x € A, write
Yz = Uz + 10y, Pp = U, — 10, and similarly for the differentials.

3. Rearrange the differentials to [ ],y du,dv,, using the anti-commutativity
of the wedge product.

4. Finally, perform the Lebesgue integral over R2IA!,

This is explained in more detail in [10]. These integrals have the remarkable
self-normalisation property that

/e_ Yaen(@eTaatbarideoTs) 1, a; > 0,0, >0,c, eRiz e (24)

Self-contained proofs of this, and of generalisations, can be found in [10]. The
variables ¢, and the forms 1, are called fields.
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4. Quadratic or Gaussian Approximation

The integral representation of Proposition 3.1 opens a natural route for ap-
proximation by non-interacting walk with different parameters. To do this we
split the exponent 7a , + g72 + v7, in (22) into a part which is quadratic
in the variables ¢ and a remainder. When the remainder is ignored the rest
of the integral becomes Gaussian and the Gaussian integral represents a non-
interacting walk. It is important not to assume that the best approximation is
the quadratic terms 7a , 4+ v7,. We even want to allow 7ao to be divided up.
To see what a different coefficient in front of 74 means we make the change of
variable @, +— /1 + zgp., with zg > —1. This gives

GA,,,(a,b) _ (1 + ZO)/ e e ((1+ZO)TA,z+g(1+z0)27—f+l/(1+zo)m)@awb’ (25)
cA

where the Jacobian is contained in the transformation of 1, . Then, for any
m? > 0, simple algebra allows us to rewrite this as

Gau(ah) = (L4 z0) [ S0 Tolhig g, (26)
where
S(A) = Z (Tae +mry), (27)
xEA
Vo(A) = Z (9077 + vo7e + 2072 2), (28)
zEA
go = (1+ 20)%g, vo = (1 + 2)ve, m? = (1+ 20)(V — ve), (29)

and v, was defined below (15). The two-point function G, (a,b) in (26) does
not depend on (29, m?) so, in the next theorem, these are free parameters that
do not get fixed until Section 12. In view of Theorem 2.1 and Proposition 3.1,
to prove Theorem 1.2 it suffices to prove the following theorem.

Theorem 4.1. Let d > 4. There exists gmax > 0 such that for each g € [0, gmax]
there exist ¢(g) > 0 such that as |a — b| — oo,

lim lim (1 —5(8)-Vo(A) 5 - & 1 1)) . 30
tn B 0-+0) [« oo = [z (o) 60

To prove Theorem 4.1, we study the integral on the left-hand side via a
renormalisation group analysis, without making further direct reference to its
connection with self-avoiding walks. In order to calculate this integral we define,
for o € C,

Vo(A) = Vo(A) + 0pa + 000 (31)
and use 5 9
/ SN TNy = — / oSN~ Vo(A) (32)
cA o 05 |, Jea

We will call o an external field.
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5. Forms and Test Functions

In this section we introduce notation for handling the differential forms that
appear in Theorem 4.1. We will write form in place of “differential forms” from
now on. We focus on dimension d = 4, but leave d in various formulas since 4
can also appear for other reasons.

5.1. The space N . A form is a polynomial in 1, ¢ with coefficients that
are functions of (p,0) € C* x C.

Given o € C we define 01 = 0 and o3 = ¢ so that o can be identified with
a function o : {1,2} — C. Similarly, let Ay = A x {1,2} so that given ¢ € C*
we have the function on z = (s,4) € Ay defined by

bo = {% r=h (33)

Ps 1 =2.

Since ¢ and ¢ are in one to one correspondence and since we are only interested
in functions on A, that arise from some ¢ we write ¢ € CA.

Forms are elements of the algebra A/ whose generators are the degree one
forms (1,7, * € A) subject to the relations that all generators mutually
anticommute. For x = (s,1) € Ag, we write

o s =1,
wz—{&s i o (34)

Then we introduce the space A* = U2 5A3 of all sequences in Ay with finitely
many terms so that every monomial in v can be written in the form, for some

y €AY,
o = 1 ifg=0 (35)
Yy oy, g > 1.

The ¢ = 0 term in A* is a set consisting of a single element called the “empty
sequence”, which by definition has length zero. Given a sequence y € A*, ¢ =
q(y) is the length of the sequence and y! = ¢(y)!. Every element of A/ has the
form

1
F=F(¢0)= Y i Fu(@ 0y, (36)
yeEA*
Given z = (21,...,2p) € AL and z = (z1,..., 2.) € {1,2}", we write
oP or
Foy,2(¢,0) Fy(¢,0). (37)

= O, -0, 0, -+ 00,
For X C A, we define N'(X), which is a subspace of N, by

N(X)={F e N : F,, =0if any component of z,y is not in X}. (38)
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For example 7, € N ({z}) and 7o , € N(X) where X = {y: |y — x| < 1}.

By introducing
1 ifq=20
o = o (39)
¢y1"'¢yq ifg>1,

we write the formal Taylor expansion of F'(¢ + £) in powers of £ and o as

Y P60 ()

xlylz!
z,yeEA*,z€{1,2}*

Functions f : A* x A* x {1,2}* — C are called test functions. We define a
pairing between elements of A/ and the set of test functions as follows: for a
test function f, for ¢ € C*, let

(F, o = Z LF%%Z((@ 0)fay,2- (41)

Imeil
z,yeEA* z€{1,2}* ryz
For example, let F' = ¢ and F' = g + (k- Vip)g. Then

<F7f>0:fk> <F/af>0:f0+(k'vf)07 (42)

and more generally when ¢ = 0 the effect of the pairing is to replace fields by
the test function.

5.2. Local polynomials and localisation. For a function f: A —
C and e a unit vector in Z? we define the finite difference derivative (Vof), =
f(z+e)— f(x). Repeated differences such as (V.V. f), are called derivatives.

A local monomial is a product of finitely many fields and derivatives of fields
such as M = 1) V.. Using this example to introduce a general notation, given
x € Alet M, = 9,10,(Vep)s, and given X C A let M(X) = > wex M. Local
polynomials are finite sums of local monomials with constant coefficients.

An important example of a local polynomial is

V=g’ +vr+ 2TA + ALap + Alyop + (¢/2) (14 + 1p)50, (43)

which extends the local polynomial of (31) by the addition of the 6o term. The
indicator function 1, : A — {0,1} equals 1 when evaluated on a and is zero
otherwise. The parameters (g, v, z, A, ¢) are called coupling constants.

FEuclidean symmetry: The lattice Z¢ has automorphisms E : Z¢ — Z%. An
example for d = 1 is Ex = 1 — x. By letting an automorphism E act on the
spatial labels on fields, ¢, — ¢g;, E induces an action, E : N — N. A local
polynomial P is Euclidean invariant if automorphisms of Z? that fix z also fix
P,.. For example, ¥1)V @ is not Euclidean invariant because there is a reflection
that changes @, 1. into ¢, so that (Ve@), — (V_e@)s. On the other hand,
the term 7 in (43) is a Euclidean invariant local monomial.
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Gauge invariance: A local polynomial is gauge invariant if it is invariant
under the gauge flow: (o,¢) — (e, e ). Thus V of (43) is gauge invariant.
Supersymmetry: There is an antiderivation @) : N'— A characterised by

Qpy = tq, Qi//x = —Pux, Q@x = 1/3337 Q@[;x = Pg- (44)

An element of F € N is said to be supersymmetric if QF = 0. The terms
T,7A, T2 in V are supersymmetric local monomials. The forms 5¢, 0@, 50 are
gauge invariant, but not supersymmetric. It is straightforward to check that Q2
generates the gauge flow. Therefore supersymmetry implies gauge invariance.
Further details can be found in [10].

The pairing (41) defines F' € N as a linear function, f — (F, f)g, on test
functions. The subscript means that we set ¢ = 0. Let II be a set of test
functions. Two elements F; and Fy of N are equivalent when they define the
same linear function on I1. We say they are separated if they are not equivalent.

Example 1. Let II be the set of test functions that are linear in their A
arguments. Fix a point k € Z9. Let F = ¢y, and let F' = g + (k- Vi)o. Then
F and F’ are equivalent because a linear test function f(x) = a + b -z cannot
separate them, since by (42),

(F.fy=a+b-k=(F'f). (45)

To avoid confusion let us emphasise that two different contexts for “polynomial”
are in use: a test functions can be a polynomial in x € A, while local polynomials
are polynomial in fields.

The choice for II in this example is not the one we want. The details in the
definition given below are less important than the objective of the definition,
which is that IT should be a minimal space of test functions that separates the
terms in (43).

We define II to be the set of test functions f(x,y, z) that are polynomial in
the A arguments of (x,y) € A* x A* with restrictions on degree listed below.
For f € II, as a polynomial in the x,y components in A:

1. The restriction of f to (z,y,z) with r(z) = 0 has total degree at most
d —p()[¢] — q(y)[0]; f(z,y,2) = 0 when d — p(z)[¢] - ¢(y)[¢] < 0. Here

(0] = (d - 2)/2. (46)
For dimension d = 4, [¢] = 1.

2. The restriction of f to (x,y, z) with r(z) = € {1, 2} has total degree at
most r — p(x) — q(y); f(z,y,2) =0if r — p(x) —q(y) <0 or r > 2.
Let V be the vector space of gauge invariant local polynomials that are separated
by II and, for X C A, let V(X) = {P(X) : P € V}. The following proposition
associates to any form F € N an equivalent local polynomial in V(X) [12].
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Proposition 5.1. For nonempty X C Z@ there exists a linear map Locx :
N = V(X) such that

(a’) <L700XFaf>0:<Faf>0 fOTfEH7FEN7 (47)

(b) E(T%XF) = Locgx(EF) for automorphisms E : 7% -7 FeN,
(48)

(¢) Locx:oLocx = Locx: for X, X' C A. (49)

Let Vg C V be the subspace generated by monomials that are not divisible
by o or &, and let Vo C V be the subspace generated by monomials that are
divisible by ¢ or 6. Then V = Vg & Vo, and on this direct sum we define

Locx = Locx @ Locxna, (50)

where Locgy is interpreted as zero. Symmetry considerations for the integral
representation (22) restrict the domain of Loc in our applications so that its
range reduces to polynomials of the form V as in (43).

6. Gaussian Integration

6.1. The super-expectation. For a A x A matrix A, we define

Sa) = D7 (eday@e + Yuluyly ). (51)

z,yeA

When A = m? — A this is the same as S(A) which was defined in (27). Let C
be a positive-definite A x A matrix. Then A = C~! exists. We introduce the
notation

IECF:/ e SN (52)
(CA

for F' a form in N. The integral is defined as described under Proposition 3.1.
We call C' the covariance because Ec¢o¢d, = Cup. More generally, if F is a
form of degree zero, i.e., a function of ¢, then EcF is a standard Gaussian
expectation for a complex valued random variable ¢ with covariance C' [10].

We define a space N'* in the same way as N is defined, but with ¢ doubled
to (¢, &) so that (¢,v) doubles to the pair (¢,), (&,1) with n = (2mi)~1/2d¢.
The external field o is not doubled. We define 6 : N' — A by

OF) 6,6 = 3 iw LW+ ). (53)

yEN*

We write EcOF for the element of A obtained when the integral over C* in E¢
applies only to (£,7). In the general case where F' is a form this is not standard
probability theory, because EcOF takes values in N. To keep this in mind we
call this a super-expectation. The variables and forms (£,7) that are integrated
out are called fluctuation fields.
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6.2. Finite-range decomposition of covariance. Suppose C and
Cj, j=1,..., N, are positive-definite A x A matrices such that

C=> C; (54)

Let C" = Zi\;z Cp. Then, as in the standard theory of Gaussian random vari-
ables, the E- expectation can be performed progressively:

EcF =Eoiio, F = Ecr (Ec, 0F). (55)

For further details, see [12].

From now on we work with C' = (m?—A)~1, where A is the finite difference
Laplacian on the periodic lattice A. Given any sufficiently large dyadic integer
L, there exists a decomposition C' = E;\Ll C; such that C; is positive-definite
and _

Cila,y) =0 if |o—y| > L1)2. (56)

This is called the finite range property. The existence of such a decomposition
is established in [7] for the case where A is replaced by Z?. In [6, Lecture 2] it
is briefly explained how the decomposition for the periodic A case is obtained
from the Z? case, for A a torus of side LY. To accommodate this restriction on
the side of A the infinite volume limit in Theorem 4.1 is taken with a sequence
of tori with sides LV, N € N.

We conclude this section with an informal discussion of scaling estimates
that guide the proof. Equation (55) says that F', which depends on a field with
covariance C', can be replaced by E¢, 0 F, which depends on a field characterised
by the covariance C’. Repeating this operation j times will replace F' by a new
F that depends on a field at scale j characterised by the covariance Zg:jﬂ Ch.
According to estimates in [7], this sum is dominated by the first term which
satisfies

|V§‘V50j+1($,y)| < const L~ 2el=lelii=I8lJ (57)

where the symbol [¢], which is called the dimension of the field, was defined
in (46). The typical field at scale j behaves like “half a covariance,” and in
particular the standard deviation of ¢, is ~ L~7[¢]. Furthermore, the estimate
on derivatives in (57) says that typical fields at scale j are roughly constant
over distances of order L7.

We can now explain why the terms in V as defined by (43) play a pre-
eminent role. For a cube B of side L7, which contains L% points,

Z @?,x ~~ [(d=ple))i (58)
rEB

In the case of d = 4, for which [¢] = 1, this scales down when p > 4 and ¢? is
said to be irrelevant. The power p = 4 neither decays nor grows, and is called
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marginal. Powers p < 4 grow with the scale, and are called relevant. Since the
derivatives in (57) provide powers of L, the monomial ¢(—A)@ is marginal.
Thus 7, 7a, 72 are the supersymmetric marginal and relevant monomials.

6.3. Progressive integration. To prove Theorem 4.1 using (32) we
have to calculate
e=SW=Vo(d) _ e Yold), (59)
(CA
where Vj is given by (31). This Vj equals V' as defined in (43), with (g, v, 2, A, q)
replaced by (go, 10, 20, Ao, qo) With

qo = 07 )\() =1. (60)

Sections 6.1 and 6.2 have taught us that we can evaluate Ece™"0(») by the
following iteration: let

Zo = e Vo), (61)
Inductively define Z;, j =0,..., N, by
Zjy1 = Ec,;,,07;. (62)
Then
]Eceivo(A) =ZN. (63)

Therefore the proof of Theorem 4.1 now depends on the analysis of the sequence
Zj. Our proof will depend on showing that the Z; simplify as j increases. In
fact, in the next section we will see that they become more Gaussian, in the
sense that the g72 term becomes smaller. The index j will be called a scale.

7. Perturbation Theory and Flow Equations
In this section we start to prove that Z; becomes more Gaussian as j increases.
To do this we adapt to our particular setting a perturbative calculation of the

kind that appears in [30].
For X C A and V as defined in (43), define

Lix(V)=e V(14 iw;(V, X)), (64)

W;(V,X) = (1 - Locx ) Fy, (V(X), V(A)) (65)

w; =Y C (66)

Fuy (VIX), V() = 30 = (DRV(X))ul (DEVIA)), X C A\ {a,b}; (67)
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the latter sum truncates at n = 4 due to our quartic interaction. The symbols
Dpg and Dy, denotes right and left differentiation with respect to fields. The
“left /right” is to specify signs, but this and the precise definition are not of
immediate importance, so we just give an example. If X contains a or b there is
an additional combinatorial factor of 2 multiplying terms in F,, (V(X), V(A \
X)) that are linear in ,5.

Example 2. For V = ¢¢ and X = {x}, (DRV(X))wj (DV(A)) equals
{ZyeA (1/19510] (:ZZ y)z/;y + Q;Z_}:ij (1', y)z/)y) n=1 (68)
- ZyEA (x ) n=2.

When j = 0, [; x(V) = eV because wy = 0. Therefore we can choose
the coupling constants to make it equal to Zy. Furthermore, I; x (V') has the
martingale-like property exhibited in Proposition 7.1, which says that integrat-
ing out the fluctuation field £;4; is approximately the same as changing the
coupling constants in V' to new coupling constants called (gpt, Vpt, Zpts Apts dpt)-
The formulas for the new coupling constants are called perturbative flow equa-
tions.

Proposition 7.1. As a formal power series in (g,v, z, A, q),
B, Lia(V) = Liyia(Ver) mod (g,7,2,X,9)%, (69)

where

Vot = th(V) (70)

has the same form (43) as V', with (g,v, z, A, q) replaced by

Gpt = 9 — Cgg” + 17", (71)

Upt = Vi + ryj, (72)

Zpt = 2 4+ 12 VT (73)

Ape = [ 14D (rwj51(0,y) — vw;(0,)) | A, (74)
yeEA

pt = ¢ + 2 Cjy1(a,b), (75)

where ¢y > 0, v = v +29C;41(0,0), and ry , L¥rPt ’I‘ptj are computable

I/j’ z
umformly bounded homogeneous polynomials of degree 2 in (g,v, z). There are

g> terms in 7" , but they are summable in j and therefore do not overpower

2
Cq9”.
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The 8 function. The right hand side of (71) is known as the 8 function.
The simpler recursion obtained by setting rf,’fj = 0, namely

Gi+1=0; — CgG5 9o = 9o: (76)
creates a sequence g; that tends to zero like j=' as j — oco. The sequence
Z; becomes more Gaussian due to the famous observation, known as infra-
red asymptotic freedom, that (76) controls the behaviour of the more complex
recursion of Proposition 7.1 and drives the 72 term to zero.

8. The Renormalisation Group Map

The problem with the second order perturbative calculation in Section 7 is that
the error is not only of order 3 in the coupling constants, but it also fails to
be uniform in the volume A. The remedy is not to work with I; 5, but with
[I5ca 1j,B where B is a cube and the allowed cubes pave A. The idea is that
by choosing the side of B to be bigger than the range of Cj,;, we can take
advantage of independence of cubes that do not touch to more or less use our
perturbation theory with A replaced by individual cubes. This idea requires a
systematic organisation which we describe in this section.

8.1. Scales and the circle product. Let L > 3 be an integer. Let
R=L", and let A = Z¢/(RZ?).

Definition 1. (a) Blocks. For each j = 0,1,..., N, the torus A is paved in a
natural way by LV~7 disjoint d-dimensional cubes of side L7. The cube that
contains the origin has the form (for L odd)

{xeA:|x§;(Lj—1)}, (77)

and all the other cubes are translates of this one by vectors in L/Z9. We call
these cubes j-blocks, or blocks for short, and denote the set of j-blocks by
Bj = B;(A).

(b) Polymers. A union of j-blocks is called a polymer or j-polymer, and the set
of j-polymers is denoted P; = P;(A). The size |X|; of X € P; is the number
of j-blocks in X.

(c) Connectivity. A subset X C A is said to be connected if for any two points
Za,xp € X there exists a path (z;,i =0,1,...n) € X with ||z;11 — ]| = 1,
ro = x, and z, = xp. According to this definition, a polymer can be de-
composed into connected components; we write C(X) for the set of con-
nected components of X. We say that two polymers X,Y do not touch if
min{||z -yl :x € X,y €Y} > 1.
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(d) Small sets. A polymer X € P; is said to be a small set if | X|; < 2¢ and X
is connected. Let S; be the set of all small sets in P;.

(e) Small set neighbourhood. For X C A let

X* = U v (78)

YES;: XNY #£2

The polymers of Definition 1 have nothing to do with long chain molecules.
This concept has a long history in statistical mechanics going back to the im-
portant paper [17].

Proposition 8.1. Suppose that X,..., X, € Pjt1 do not touch each other
and let F;(X;) € N(X;). The expectation Ec, , has the factorisation property:

Ec,,, H Fi(X;) = H Ec,,, Fi(X;). (79)
=1 m=1

Proof. Gaussian random variables are independent if and only if the off-
diagonal part of their covariance matrix vanishes. This generalises to our
forms setting, and so the proposition follows from the finite range property
of Oj+1. O

Given forms F, G defined on Pj, let

(FoG)(A) = > F(X)G(A\X). (80)

XEPj

This defines an associative product, which is also commutative provided F and
G both have even degree.

8.2. The renormalisation group map. Recall that we have defined
I; x (V) in (64). Given a yet-to-be-constructed sequence Vj, for X € P;, let

Lix)= I Lis(v)). (81)

BeB;

We have defined Vg in (31). Let Ko(X) = 1 x—g. Then the Zy defined in (61)
is also given by
Zo = Io(A) = (Io o Ko)(A), (82)

because Iy 4 (A) = e Vo) gince wy = 0.

Definition 2. We say that K : P; — N has the component factorisation
property if

Kx) = [ KO (83)

Yec(x)
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Suppose, inductively, that we have constructed (V;, K;) where K; : P; — N
is such that

(1) Z; = (I o Kj)(A),
(#4) K; has the component factorisation property, (84)
(iii) For X € P;, K;(X) € N(X*).

Our objective is to define (Vj41, Kj4+1), where K41 : Pj41 — N has the same
properties at scale j + 1. Then the action of E¢;, 6 on Z; has been expressed
as the map:

Vi, K5) = Vi, Kja)- (85)

This map will be constructed next. We call it the renormalisation group map.
Unlike Z; — E6Z; it is not linear, so this looks like a poor trade, but in fact
it is a good trade because the data (V}, K;) is local, unlike creatures such as
exp(—V;(A)) in Z;. The component factorisation property and Proposition 8.1
allow us to work with K; on the domain of all connected sets in P;. We can
prove that K;(X) is very small when the number of blocks in X is large; in
fact, only the restriction of K; to the small sets S; plays an important role.

9. The Inductive Step: Construction of Vj

In accordance with the program set out in Section 8.2 we describe how V;;
is constructed, given (V}, K;). Our definition of Vj; will be shown to have an
additional property that there is an associated K1, which, as a function of
K, is contractive in norms described in Section 10.

Recall that the set S of small sets was given in Definition 1. For B € B; not
containing a,b define V;,; to be the local interaction determined by:

Vi(B)=Vi(B)+Tocs S =oL(Y) (),

vesyon Y (86)
Vi1 = Voe(V)),

where Vy,, = V4 (V) with generic argument V' is defined in (70). Recalling the
discussion of “relevant terms” just after (58), in (86) V,41 has been defined
so that relevant and marginal terms inside K; are absorbed into V;;; in such
a manner that they will not contribute to K;;q. If B contains a or b the
combinatorial factor ﬁ is modified for terms in LocpK; which are divisible
by o or &.

We have completed the V' part of the inductive construction of the sequence
(V;, Kj). Before discussing the K induction we have to define some norms so
that we can state the contractive property.
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10. Norms for K

Let h; > 0 and s; > 0. For a test function f as defined in Section 5.2 we
introduce a norm

||f||q>] = sup sup b;P*qﬁjerjlah ‘vafm,y,z|o (87)
z,y€eN*,z€{1,2}* |a]| <3

Multiple derivatives up to order 3 on each argument are specified by the multi-
index «. The gradient V represents the finite-difference gradient, and the supre-
mum is taken componentwise over both the forward and backward gradients.
A test function f is required to have the property that f,, . = 0 whenever
the sequence x has length p > 9 or the sequence z has length r > 2; there is
no restriction on the length of y. By the definition of the norm, test functions
satisfy

IV faoel < 0T IST L0 f g, (88)

We discuss the choice of 5; in Section 12 when it first plays a role, and here we
focus on h;. An important choice is

hj — g] — EOL—j[¢]’ (89)

for a given fy. The L~7? is there because unit norm test functions of one
variable should obey the same estimates as a typical field, and test functions
of more than one variable should obey the estimates that a product of typical
fields obeys.

Recall the pairing defined in (41) and, for ' € A" and ¢ € C*, let

[Fllz,, = sup [(F,g)el. (90)

a:llglle, <1

The following proposition provides properties of this seminorm that are well
adapted to the control of K.

Proposition 10.1. Let F, Fy, F» € N. The T;, norm obeys the product property
|FL Bz, < 1Pz, , I F2 ., (91)

and, if £y is chosen large enough, the integration property
HECJ‘HF"T@;(W) < ]Ecj+1||F||T¢+§J(2bj)' (92)

For further details, see [12]. The second conclusion shows that the norm
controls the forms when a fluctuation field is integrated out: on the right hand
side the norm is a zero degree form, and hence the expectation is a standard
Gaussian expectation.

The most important case of the T, seminorm is the case ¢ = 0, but knowing
that [|[K(X)||z, < oo cannot tell us whether K (X) is integrable. For this we
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must limit the growth of K(X) as ¢ — oo, and the resolution of this issue will
be obtained using Definition 3 below.

Our intuitive picture of K;(X), where X € P;, is that it is dominated by a
local version of the remainder (g,v, z, A, ¢)® in (69). To estimate such remain-
ders we must, in particular, estimate I; x which contains exp(—g; >, c x [¢z|*)-
By (57) the typical field ¢ at scale j is roughly constant on scale L7, and X
contains O(L’?) points. Therefore this factor looks like exp(—g; L% |p|*). This

—1/47 —jd/4

is a function of ¢/h; with h; ~ 9; , which in four dimensions can be

rewritten as gj_l/ *L=919] because [¢] = 1. We want to prove that g; decays in
the same way as does g; in (76), and with this in mind we replace g; by the
known sequence g;. This leads us to our second choice

b = hy = kog; /LI,

where the constant kg is determined so that exp(—V;(B)) will, uniformly in j,
have a Ty(h;) norm close to one.

In the previous discussion we made the assumption that the typical ¢ at
scale j is roughly constant on scales L. Our norm recognises this; it is a
weighted L., norm, where the weight permits growth as fields become atypical.
The weight is called a large field regulator and is defined next.

Consider a test function f that is an ersatz field ¢, namely a complex-valued
function f = f, for z € A. For X C A, we write f € TI(X) if f restricted to X
is a polynomial of degree three or less. We define a seminorm on ¢ = (¢, @) by

||¢||&>,-(X) = inf{llp — flle; ;) : [ € LX)} (93)
note that we are setting h; = ¢; in the above equation.

Definition 3. Let j € Ny, X € P;, and ¢ € C?. The large-field requlator is
given by

Gix.0) = [ eplldli s (94)

BeB; (X)
where B* is the small set neighbourhood of B defined in (78). For each X € P;,

we define a seminorm on N(X*) as follows. For K(X) € N(X*), we define
HK(X)Héth to be the best constant C' in

HK(X)HT@J(hj) < Céj(X’ ¢)7 (95)

where we have made explicit in the notation the fact that the norm on the left
hand side is based on the choice h; = h;.
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11. The Inductive Step Completed: Existence of
Kjt

We have already specified V41 in (86). Now we complete the inductive step by
constructing K ;11 such that (84) holds. The following theorem is at the heart
of our method [12]. It provides K1 and says that we can continue to prolong
the sequence (V}, K;) for as long as the coupling constants (g;, 7}, z;) remain
small. Moreover, in this prolongation, the 7y norm of K1 remains third order
in the coupling constants and is therefore much smaller than the perturbative
(K-independent) part of Vj4q.
For a > 0, set f;(a, @) =0, and define

fila,X)=3+a(X[; -2%);, X eP;with X #a. (96)

Note that f;j(a,X) = 3 when X € §;, but that f;(a, X) is larger than 3 and
increases with the size of |X|; if X¢S;. We fix a to have a sufficiently small
positive value.

The following theorem is proved for two different choices of the norm pairs
|- 1l; and || - ||;41, in (97) and (98), and for two corresponding choices of the
small parameter €57, as follows:

. _—1/4y

o 1l = 1+ g,y with oy = Ko L7390, and ||« 41 = |- s, s
with hjy = kogj»_:l/4L*(j+1)[¢]. The small parameter €57 is proportional
to g;/4.

b || . H] = ” . HTO7Z]' with éj = EOL_j[d)]’ and ” : Hj+1 = ” : ||T0,Zj+1' The small

parameter €57 is proportional to g;.

Define a cone C = {(g;,v;, 2j)|g > 0, [v| V|z| < bg, g;j < ¢(b, L)}. The constant
b is determined in Section 12, and ¢(b, L) is a function of b, L constructed in
the proof of the next theorem.

Theorem 11.1. Let (g;,v;,2;) € C. Let a be sufficiently small, and let M be
any (large) positive constant that is independent of d, L. There is a constant cpy,
(depending on d, L) such that the following holds. Suppose that K; : P; — N;
has properties (84) and satisfies

|1 E (X)) < Mcpteg(a’x), X € Pj connected, (97)

Then, if L is sufficiently large (depending on M), there exists Kji1 @ Pji1 —
N1 with properties (84) at scale j +1 and

| K1 (U)]j41 < 2cpte§}“(a’U), U € Pj41 connected. (98)
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12. Decay of the Two-point Function

Finally, we combine the machinery we have developed, to outline the proof
of Theorem 4.1. As we have already noted, Theorem 1.2 is a consequence of
Theorem 4.1.

We must study the coupling constant flow. The linear map Locg : N — V
is bounded in Tj norm [12], so according to the inductive assumption (97) on
the Ty norm of K, the coupling constants in V; of (86) are small (third order)
adjustments to the coupling constants in V. Theorem 11.1 ensures that this
smallness is preserved as the scale advances.

We first consider the case (Ao, go) = (0,0). In this case, ()\;,¢;) = (0,0) for
all j. The definition of Vj 1 in (86) then gives rise to a non-perturbative version
of the flow equations of Proposition 7.1, in which the effect of K is now taken
into account. When V; — V; 1 is expressed as

(95:v5,25) = (gj41,Vj+1, Zj+1) (99)

we find that

gj+1 =95 — ng? + 79
Vit1 = Vj —+ 290j+1(03 0) + Tv,js
Zj+1 = 25 + Tz 5,

Kj =71 ;(95,v, 25, Kj),

where the r’s now depend also on Kj;, and where we have added the map
T 1 (95, V5,25, Kj) = K41 defined by Theorem 11.1. Furthermore, we prove
that the r’s are Lipschitz functions of (g;,v;,2;, K;), where K belongs to a
Banach space normed by a combination of the norms in Section 11. These are
the properties needed to prove that K only causes a small deformation of the
perturbative flow V — V.

The main theorem now reduces to an exercise in dynamical systems. We
prove that with a suitable choice of the constant b defining the cone C' there is a
Lipschitz stable manifold of initial conditions (zq, vo) = h(m?2, go) for which the
sequence (V;, K;), j =0,..., N, has alimit as N — oo and m? | 0. We call this
the global trajectory. For m? = 0, the global trajectory tends to the fixed point
(V,K) = (0,0). In particular, g; — 0, which is infra-red asymptotic freedom.
Referring to (29), we have four unknown parameters go, v, z0, m? related by
three equations, and now there is a fourth equation (zq, o) = h(m?, go). By
the implicit function theorem we solve for the unknowns as functions of (g,v).
As v | ve(g), m? | 0 and vice-versa.

Now we consider the flow for (), ¢;). According to (60), Ao = 1 and gy = 0.
Using (50), we prove that the terms rg ;,7, ;,7. ; do not depend on \;,g; and
thus the coupling constants g, v, z have no dependence on A, g. From (86) we
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find
Ajr1= |1+ Z (V10410 y) — vjw;(0,9)) | Aj +7aj, (104)
yeEA
Gt =q + X Cjia(a,b) + 74, (105)

where 7y j, 74, are corrections that include contributions from Kj.

Recall that S; was defined in Definition 1. Let s, be the first scale j such
that there exists a polymer in S; that contains {a,b}. The correction r, ; is
zero for all scales j < s, according to (50) and the definition of V in (86)
there can be no o0& contribution from K; until the first scale where there is a
set X € §; that covers {a,b}. Also, by the finite range property, C;11(a,b) =0
for j < $q.p. Thus (105) gives

N
N = Z (A Cjralab) +rq;5) - (106)

j:5a,b

At scale N, A is a single block in By, so by the definition of the circle product,
Zn is simply given by

Zn = (In o Kn)(A) = IN(A) + Kn(A). (107)

The final renormalisation group map is the action of Ec,, not Ec, 0. This
means that the fields ¢, ¥ are to be set to zero in Iy, Ky, and only dependence
on ¢ remains. By (64) we compute two o derivatives of Iy and find

02 92K (A)
- % OZN = gN — I(a-o-7 where Ka— = W . . (108)

The 5o derivative is a coefficient in the pairing (41), and the Ty norm bounds
this pairing, so Theorem 11.1 gives

Kool < |Kll7y, 55" < O(g93)s3"- (109)
We are able to prove Theorem 11.1 with

s; =50l 0, A~ O(LI"5), (110)

j/\sa,b
where sq is a constant, so that, when N > s, 3,
|Kso| < O(g%) LN 5e8) = O(g|a — b]?). (111)

This tends to zero as N — oo.
By a similar estimate we can control the 7y ;, rq; terms in (104), (106).
These contain o derivatives of the K; terms in (86). The conclusion is that
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Moo = limy o0 Axy and ¢ = limy_ oo gy exist and are bounded away from
ZEro.

By (32), the left hand side of (30) is given by

lim (1 I —SMToM g, 0 = lim (1 o 112
lim (1 + 2) lim, L€ Pap = lim (1+ 20)q (112)
From (104) and (106) we find that
. 2
r}zlg?o Qoo ™~ /\oo Z Cj+1(a7b)7 (113)
J=sab
where m? = 0 in Cj11, and ~ means that the ratio of the left hand side

and the right hand side tends to one as a — b — oo. Next, we use the finite
range property to restore the scales j < sq 3 to the sum, which then becomes
the complete finite range decomposition for the infinite volume simple random
walk two-point function (—A)~(a,b),

11%10 Goo ~ N2 (—=A) " (a, D). (114)

The right hand side of (114), and hence of (112), is thus asymptotic to a
multiple of |a —b|=2 as |a — b| — oo, as desired, since the inverse Laplacian has
this behaviour.
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Abstract

In this paper we describe two large deviation principles for the empirical process
of words cut out from a random sequence of letters according to a random re-
newal process: one where the letters are frozen (“quenched”) and one where the
letters are not frozen (“annealed”). We apply these large deviation principles
to five classes of interacting stochastic systems: interacting diffusions, coupled
branching processes, and three examples of a polymer chain in a random en-
vironment. In particular, we show how these large deviation principles can be
used to derive variational formulas for the critical curves that are associated
with the phase transitions occurring in these systems, and how these varia-
tional formulas can in turn be used to prove the existence of certain intermediate
phases.
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1. Large Deviation Principles

In Section 1 we describe two large deviation principles that were derived in
Birkner, Greven and den Hollander [3]. In Sections 2-4 we apply these large
deviation principles to five classes of interacting stochastic systems that exhibit
a phase transition. In Section 5 we argue why these applications open up a new
window of research, with a variational view, and we make a few closing remarks.
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1.1. Letters, words and sentences. Let E be a Polish space (e.g.
E = 7% d > 1, with the lattice norm or E = R with the Euclidean norm).
Think of E as an alphabet, i.e., a set of letters. Let E = UnenE™ be the set of
finite words drawn from FE, which can be metrised to become a Polish space.

For v a probability measure on E, let X = (Xj)ren, (with Ng = NU {0})
be ii.d. with law v. For p a probability measure on N, let 7 = (7;);en be i.i.d.
with law p. Assume that X and 7 are independent and write Pr to denote their
joint law.

Given X and 7, define Y = (Y(9),cy by putting

To=0 and T;=T;, 1+7, i€N, (1.1)

and _
VO = (Xp, X1, 42, X1m1), €N (1.2)

In words, Y is the infinite sequence of words cut out from the infinite sequence
of letters X according to the renewal times 7 (see Fig. 1). Clearly, under the
law Pr, Y is i.i.d. with law q®N on EN the set of infinite sentences, where the

marginal law g, , on Eis given by

Qp,u((wh R ,xn)) =pn)v(xzy) ---v(z,), neN z,...,z, € E. (1.3)

Figure 1. Cutting words out from a sequence of letters according to renewal times.

The reverse operation of cutting words out from a sequence of letters is
glueing words together into a sequence of letters. Formally, this is done by
defining a concatenation map x from EN to EN. This map induces in a natural
way a map k& from P(EY) to P(EY), the sets of probability measures on EN
and EN (endowed with the topology of weak convergence). The concatenation
g$y o k71 of ¢ equals v®N, as is evident from (1.3).

Note that in the above set-up three objects can be freely chosen: E (alpha-
bet), v (letter law) and p (word length law). In what follows we will assume
that p has infinite support and satisfies

logp(n) _

I
oS0 logn

- for some « € [1,00). (1.4)

1.2. Annealed LDP. Let PV (EY) be the set of probability measures
on EN that are invariant under the left-shift 6 acting on EN. For N € N, let
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(Y y(N)per he the periodic extension of the N-tuple (YD, ..., Y(M) ¢
EN to an element of EN, and define

N-1
1 inv/ 70
RN = N Z 5§i(y(1),‘.,,Y(N))per S P (EN) (15)
1=0

This is the empirical process of N-tuples of words in Y. The following large
deviation principle (LDP) is standard (see e.g. Dembo and Zeitouni [14], Corol-
laries 6.5.15 and 6.5.17). Let

HQ| a2 = Jim h(Qu, |G, ) el (16)

be the specific relative entropy of Q w.r.t. qfflﬁ. Here, Fy = o(YD, ... [ Y(V))
is the sigma-algebra generated by the first NV words, Q) #, 18 the restriction of
Q to Fn, and h(- | -) denotes relative entropy.

Theorem 1.1. [Annealed LDP] The family of probability distributions
Pr(Ry € -), N € N, satisfies the LDP on P™(EY) with rate N and with
rate function I*™: P (EN) — [0, 00] given by

"(Q) = H(Q | 3. (L.7)

The rate function I*™ is lower semi-continuous, has compact level sets, has a
unique zero at Q = qfﬁ', and is affine.

NI"™H@Q) a5 N — o0.

Informally, Theorem 1.1 says that Pr(Ry ~ Q) ~ e~
1.3. Quenched LDP. To formulate the quenched analogue of Theo-
rem 1.1, which is the main result in Birkner, Greven and den Hollander [3], we
need some further notation. Let P (EY) be the set of probability measures
on EN that are invariant under the left-shift § acting on EN. For Q € PinV(EN )
such that mg = Eg[m1] < oo (where Eg denotes expectation under the law @
and 7p is the length of the first word), define

T1—1

> 5m<y>(')] e Pv(EM). (1.8)
k=0

1
Vo() = %EQ

Think of Wq as the shift-invariant version of Qox~! obtained after randomising
the location of the origin. This randomisation is necessary because a shift-
invariant ) in general does not (!) give rise to a shift-invariant Q o x~1.

Fortr € N, let []ox: E — [Elyy = U, E™ denote the word length truncation

map defined by

y=(T1,...,2n) = [Yltr = (&1, ..., Tnatr), neN z,...,x, € E, (1.9)
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i.e., [yl is the word of length < tr obtained from the word y by dropping all
the letters with label > tr. This map induces in a natural way a map from EN

to [E]N, and from P™(EN) to P¥([E]Y). Note that if Q € Pv(EY), then
[Q]sr is an element of the set

Pinv,ﬁn(EN) _ {Q c ’Pi“"(E‘N): mqg < OO} (1'10)

Theorem 1.2. [Quenched LDP] For v®N-q.s. all X, the family of reg-
ular conditional probability distributions Pr(Ry € - | X), N € N, satis-
fies the LDP on PinV(EN) with rate N and with deterministic rate function
[ave; pinv(ENY 5 [0, 00] given by

e Iﬁn(Q)’ ZfQ c fpinv,ﬁn(EN),
e { trh_{noo I'"([Qlwr), otherwise, (1.11)
where
Iﬁn(Q):H(Q|QE§)+(O¢—1)mQH(\I/Q |V®N), (1.12)

The rate function 19¢ is lower semi-continuous, has compact level sets, has a
. _ ®N .
unique zero at Q = qy,, and is affine.

Informally, Theorem 1.2 says that Pr(Ry ~ Q | X) ~ e~ N""(@) as N - oo
for v®N-a.s. all X.

Note from (1.7) and (1.11-1.12) that I9"® equals I*™" plus an additional
term that quantifies the deviation of W, the randomised concatenation of @),
from the reference law v®N of the letter sequence. This term, which also depends
on the exponent « in (1.4), is explicit when mg < oo, but requires a truncation
approximation when mg = oo. Further note that if o = 1, then the additional
term vanishes and "¢ = [3"".

2. Collision Local Time of Two Random Walks

In this section we apply Theorems 1.1-1.2 to study the collision local time
of two random walks. The results are taken from Birkner, Greven and den
Hollander [4]. In Section 3 we will use the outcome of this section to describe
phase transitions in two interacting stochastic systems: interacting diffusions
and coupled branching processes.

Let S = (Sk)ren, and S’ = (S}, )ken, be two independent random walks on
7%, d > 1, both starting at the origin and with an irreducible, symmetric and
transient transition kernel p(-,-). Write p™ for the n-th convolution power of p.
Suppose that

1 2n
lim log p™(0,0) =—a for some « € [1,00). (2.1)
n—o0 logn
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space

NIKAASNATTIIOC A

time

Figure 2. Two random walks that build up collision local time.

Write P to denote the joint law of S, S’. Let
V=V(S,8)=) ls,-s;) (2.2)
keN

be the collision local time of S, S’ (see Fig. 2), which satisfies P(V < c0) =1
because p(+,-) is transient. Define

71 = sup{zZl:E[zV|S]<oo S-as.}, (2.3)

29 = sup{zzle[zV}<oo}. (2.4)

(The lower indices indicate the number of random walks being averaged over.)
]

Note that, by the tail triviality of S, the range of z-values for which E[z" | S
converges is S-a.s. constant.

As shown in [4], Theorems 1.1-1.2 can be applied with the following choice
of F, v and p:

E= Zdv I/(I) = p(O,CL‘), p(n) = pQLn/QJ (0, 0)/[2(_;(07 0) — 1]7 (2'5)

where G(0,0) = 3, o, »*"(0,0) is the Green function at the origin associated
with p?(-,-), the transition kernel of S — S’. The following theorem provides
variational formulas for z; and z5. This theorem requires additional assumptions

on p(-,-):

Z | ]|1°p(0,2) < oo for some & > 0,

€74

n 2|n/2]
liminf log[p™(0, Sy)/p (0,0)]

n— 00 log n

inf E [log[p" (0, 5,)/p*"/#(0,0)]] > —o0.

>0 S —a.s., (2.6)

As shown in [4], the last two assumptions hold for a large class of random
walks, including those that are in the domain of attraction of a normal law,
respectively, a symmetric stable law. They potentially hold in full generality
under a mild regularity condition on p(-,-). !

!The symmetry of p(-,-) implies that p?™(0,0) > 0 for all n € No and p"(0,z)/
p2l7/21(0,0) < 1 for all n € Ny and z € Z¢,



A Key Large Deviation Principle 2263

Theorem 2.1. Assume (2.1) and (2.6). Then z; = 1+e™™, 20 = 1+ e
with

r = su | (mQ)(dy) log f(y) — I™(Q) b € R, (2.7)
erinvIEiEN) {/Zd y) g J\y }

ro = su N(ﬂ'lQ)(d ) lo f( ) _ Iann(Q) e R, (28)
erinvr()iﬂ) {./Zd y) log /'y }

wheI/e m @ is the projection of Q@ onto iﬁ} i.e., the law of the first word, and
f:7Z% —1]0,00) is given by

f(z1,...,20)) = ﬁp”(O,xl 44y, neN, z,...,z, €Z (2.9)
Remark: Since P(V = k) = (1 — F)F*, k € Ny, with F = P(3k € N: S =
S}.), an easy computation gives zo = 1/F. Since F' = 1—[1/G(0,0)], we therefore
have zo = G(0,0)/[G(0,0) — 1]. This simple formula reflects itself in the fact
that the variational formula in (2.8) can be solved explicitly (see [4]). However,
unlike for zs, no closed form expression is known for z1, because the variational
formula in (2.7) cannot be solved explicitly.

Because 19"¢ > ™" we have r; < ro, and hence z2 < z;. The following
corollary gives conditions under which strict inequality holds or not. Its proof
in [4] relies on a comparison of the two variational formulas in (2.7-2.8).

Corollary 2.2. Assume (2.1) and (2.6).
(a) If p(-,-) is strongly transient, i.e., > np™(0,0) < 0o, then zo < 2.
(b) If « =1, then z; = zs.

Analogous results hold when we turn the discrete-time random walks S and
S’ into continuous-time random walks S = (S;);>0 and S’ = (S})¢>0 by allowing
them to make steps at rate 1, while keeping the same transition kernel p(-,-).
Then the collision local time becomes

V= /0 1{§t:§£}dt' (2.10)

For the analogous quantities z; and 2z, variational formulas like in Theorem 2.1
can be derived, and a result similar to Corollary 2.2 holds:

Corollary 2.3. Assume (2.1) and (2.6).
(a) If p(-,-) is strongly transient, then Zy < Z1.
(b) If « =1, then z1 = 2.

An easy computation gives log 22 = 2/G/(0,0), where G(0,0) = >_ - p"(0,0)
is the Green function at the origin associated with p(-,-). There is again no
closed form expression for zj.
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Recent progress on extending the gaps in Corollaries 2.2(a) and 2.3(a) to
transient random walks that are not strongly transient (like simple random
walk in d = 3,4) can be found in Birkner and Sun [5], [6], and in Berger and
Toninelli [1]. These papers require assumptions on the tail of p(0,-) and use
fractional moment estimates rather than variational formulas.

3. Two Applications Without Disorder

3.1. Interacting diffusions. Consider the following system of coupled
stochastic differential equations:

dX, () = 3 play)[X, () — Xo(0)] dt + VaXo (02 dW,(t), 2%t >0.
y€eZ?
(3.1)

Here, p(-,-) is a random walk transition kernel on Z?, ¢ € (0, 00) is a diffusion
constant, and W = (W (t));>o with W(t) = {Wy(t)}reza is a collection of
independent standard Brownian motions on R. The initial condition is chosen
such that {X,(0)},ecza is a shift-invariant and shift-ergodic random field taking
values in [0, o) with a positive and finite mean (the evolution in (3.1) preserves
the mean).

It was shown in Greven and den Hollander [19] that if p(-,-) is irreducible,
symmetric and transient, then there exist 0 < ¢ < ¢« < oo such that the
system in (3.1) locally dies out when ¢ > ¢., but converges to a non-trivial
equilibrium when ¢ < g, and this equilibrium has an infinite second moment
when ¢ > ¢ and a finite second moment when ¢ < ¢o. It was conjectured in
[19] that g2 < ¢.. Since it was shown in [19] that

g« > log 21, q2 = log z3, (3.2)

Corollary 2.3(a) settles this conjecture when p(-, ) satisfies (2.1) and (2.6) and
is strongly transient.

3.2. Coupled branching processes. Consider a spatial population
model on Z% evolving as follows:

(1) Each individual migrates at rate 1 according to p(:,-).

(2) Each individual gives birth to a new individual at the same site at rate g.
(3) Each individual dies at rate ¢(1 — r).

(4) All individuals at the same site die simultaneously at rate gr.

(3.3)

Here, p(-, ) is a random walk transition kernel on Z¢, ¢ € (0, 00) is a birth-death
rate, and r € [0,1] is a coupling parameter. The case r = 0 corresponds to a
critical branching random walk, for which the average number of individuals
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per site is preserved. The case r > 0 is challenging because the individuals
descending from different ancestors are no longer independent.

For the case r = 0, the following dichotomy holds (where for simplicity we
restrict to an irreducible and symmetric p(-,-)): if the initial configuration is
drawn from a shift-invariant and shift-ergodic random field taking values in
Ny with a positive and finite mean, then the system in (3.3) locally dies out
when p(+, -) is recurrent, but converges to a non-trivial equilibrium when p(-, -) is
transient, both irrespective of the value of ¢. In the latter case, the equilibrium
has the same mean as the initial distribution and has all moments finite.

For the case r > 0, the situation is more subtle. It was shown in Greven [17],
[18] that there exist 0 < 7 < r, < 1 such that the system in (3.3) locally dies
out when r > r,, but converges to a non-trivial equilibrium when r < r,, and
this equilibrium has an infinite second moment when r > ro and a finite second
moment when r < 7. It was conjectured in [18] that ro < r,. Since it was
shown in [18] that

re > 1A (¢ log?y), ry = 1A (¢ ' log ), (3.4)

Corollary 2.3(a) settles this conjecture when p(-, ) satisfies (2.1) and (2.6) and
is strongly transient, and ¢ > log Z3 = 2/G(0,0).

4. Three Applications with Disorder

4.1. A polymer in a random potential.

Path measure. Let S = (S;)ren, be a random walk on Z?, d > 1, starting
at the origin and with transition kernel p(-,-). Write P to denote the law of
S. Let w = {w(k,z): k € No, z € Z%} be an ii.d. field of R-valued non-
degenerate random variables with marginal law pg, playing the role of a random
environment. Write P = (,uo)®[N°XZd] to denote the law of w. Assume that

M) =E(9) <00  VAeR (4.1)
For fixed w and n € N, define

dPﬁ,W 1 B - .
d}la ((Sk)izo) = 7B € HE (k)=o)

(4.2)

with
HE ((Sk)i—) ——ﬁz (k, Si), (4.3)

i.e., P%% is the Gibbs measure on the set of paths of length n € N associated
with the Hamiltonian HZ«. Here, 3 € [0,00) plays the role of environment
strength (or “inverse temperature”), while Z2¢ is the normalising partition
sum. In this model, w represents a space-time medium of “random charges”
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Figure 3. A directed polymer sampling random charges in a halfplane.

with which a directed polymer, described by the space-time path (k, Sk)}_, is
interacting (see Fig. 3).

Weak vs. strong disorder. Let x,(w) = Z2% e 108 MPB) ' ¢ Ny. Tt is well
known that x(w) = (xn(w))nen, is a non-negative martingale with respect to
the family of sigma-algebras F,, = o(w(k,z), 0 < k < n,x € Z%), n € Nj.
Hence lim;, 00 Xn (W) = Xoo(w) > 0 w-a.s., with P(xeo(w) = 0) = 0 or 1. This
leads to two phases:

W={B€[0,00): Xoo(w)>0w—a.s.}, w

S={B€[0,0): Xeo(w) =0w —a.s.}, (44)
which are referred to as the weak disorder phase and the strong disorder phase,
respectively. It was shown in Comets and Yoshida [13] that there is a unique
critical value 8, € [0, 00| (depending on d, p(+, ) and ) such that weak disorder
holds for 0 < 8 < B, and strong disorder holds for 5 > .. Moreover, in the
weak disorder phase the paths have a Gaussian scaling limit under the Gibbs
measure, while this is not the case in the strong disorder phase. In the strong
disorder phase the path tends to localise around the highest values of w in a
narrow space-time tube.

Suppose that p(-,-) is irreducible, symmetric and transient. Abbreviate
A(B) =log M(25) — 2log M (/3). Bolthausen [9] observed that

E [xn(w)?] = E [emﬁ) vn} with Vi, = 1(s,_s1), (4.5)
k=1

where S and S’ are two independent random walks with transition kernel p(-, -),
and concluded that y(w) is L?-bounded if and only if 8 < 32 with 8 € (0, 0]
the unique solution of

A(B2) = log 29 (4.6)

(with B2 = co whenever A(oo) < log z3). Since

P(Xoo(w) > 0) > Elxoc (@)*/E[xec(w)?],  Elxeo(@)] = xow) =1, (4.7)
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it follows that § < (2 implies weak disorder, i.e., 5, > (2. By a stochastic
representation of the size-biased law of y, (w), it was shown in Birkner [2] that
in fact weak disorder holds if 3 < 8; with 8; € (0, 00] the unique solution of

A(p1) = log 21, (4.8)

i.e., B > (1. Since B — A(p) is strictly increasing for any non-degenerate pyg
satisfying (4.1), it follows from (4.6-4.8) and Corollary 2.2(a) that 8; > B2
when p(-,-) satisfies (2.1) and (2.6) and is strongly transient, provided pg is
such that $s < oo. In that case the weak disorder phase contains a subphase
for which y(w) is not L?-bounded. This disproves a conjecture of Monthus and
Garel [21], who argued that 8y = S,.

For further details, see den Hollander [20], Chapter 12. Main contributions in
the mathematical literature towards understanding the two phases have come
from M. Birkner, E. Bolthausen, A. Camanes, P. Carmona, F. Comets, B.
Derrida, M.R. Evans, Y. Hu, J.Z. Imbrie, O. Mejane, M. Petermann, M.S.T.
Piza, T. Shiga, Ya.G. Sinai, T. Spencer, V. Vargas and N. Yoshida.

4.2. A polymer pinned at an interface.

Path measure. Let S = (S;)ren, be a recurrent Markov chain on a countable

state space starting at a marked point 0. Write P to denote the law of S. Let

K denote the law of the first return time of S to 0, which is assumed to satisfy
log K (n)

lim ————— = —a for some « € [1,00). (4.9)
n—oo  logn

Let w = (wk)ken, be an i.i.d. sequence of R-valued non-degenerate random
variables with marginal law g, again playing the role of a random environment.
Write P = M?NO to denote the law of w. Assume that

M) =E(eM™) <o  VYAER. (4.10)

Without loss of generality we take: E(wp) = 0, E(w3) = 1.
For fixed w and n € N, define, in analogy with (4.2-4.3),

dpf,h,w n 1 _HgBhw (Sk)?
dP ((Sk)k:O) = Zﬁ7h’w € " ( k k:o) (411)
with N
HPM((Sk)iz1) = = > (Bwk — h) (s, —o}, (4.12)
k=1

where 8 € [0, 00) again plays the role of environment strength, and h € [0, c0)
the role of environment bias. This models a directed polymer interacting with

“random charges” at an interface (see Fig. 4). A key example is when S is

simple random walk on Z, which corresponds to the case o = %
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The quenched free energy per monomer f9¢(5,h) = lim, %log ZBhw ig

constant w-a.s. (a property called self-averaging), and has two phases

£={(8,h): f(8.h) > 0},
D= {(B.h): [I°(5,h) =0},

which are referred to as the localised phase and the delocalised phase. These two
phases are the result of a competition between entropy and energy: by staying
close to the interface the polymer looses entropy, but at the same time it gains
energy because it can more easily pick up large charges at the interface. The
lower bound comes from the strategy where the path spends all its time above
the interface, i.e., Sy, > 0 for 1 < k < n. Indeed, in that case HZ"«((Sy)r_,) =
0, and since log[}, ., K(m)] ~ —(a — 1)logn as n — oo, the cost of this
strategy under P is negligible on an exponential scale.

(4.13)

Figure 4. A directed polymer sampling random charges at an interface.
The associated quenched critical curve is
hdv(B) = inf{h: fI¢(B,h) =0}, S €]0,00). (4.14)

Both f9"¢ and h2"¢ are unknown. However, their annealed counterparts

FB ) = Tim LlogB(ZEM),  RE(B) = inf{h: [(5,h) =0},
(4.15)

can be computed explicitly, because they correspond to the degenerate case
where wy,, = (1/8)log M (), k € Ng. In particular, h2"(3) = log M(8). Since
fave < famn it follows that AZ"C < p27M,

Disorder relevance vs. irrelevance. For a given choice of K, uy and 3, the
disorder is said to be relevant when h3"¢(5) < h2™™(f) and irrelevant when
hdue(B) = h2™(B). Various papers have appeared in the literature contain-
ing various conditions under which relevant disorder, respectively, irrelevant
disorder occurs, based on a variety of different estimation techniques. Main
contributions in the mathematical literature have come from K. Alexander, B.
Derrida, G. Giacomin, H. Lacoin, V. Sidoravicius, F.L. Toninelli and N. Zy-
gouras. For overviews, see Giacomin [16], Chapter 5, and den Hollander [20],
Chapter 11.

In work in progress with D. Cheliotis [12] a different view is taken. Namely,
with the help of Theorems 1.1-1.2 for the choice

E=R, v=ypy, p=K, (4.16)
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the following variational formulas are derived for A3"® and h3"".

Theorem 4.1. For all 8 € [0,00),
he"*(B) = sup[BR(Q) — I1"(Q)],

QecC

(4.17)
he™(B) = sup[BR(Q) — I*™(Q)],
QeC
where
C= {Q € P (R /Rm (m1.10)(dz) < oo}, B(Q) = /Rm(m,lcg)(dx),
(4.18)

with m11Q the projection of Q onto R, i.e., the law of the first letter of the first
word.

h h?nn (5)
hgue (6)
US> 7

Figure 5. Critical curves for the pinned polymer

It is shown in [12] that a comparison of the two variational formulas in
Theorem 4.1 yields the following necessary and sufficient condition for disorder
relevance.

Corollary 4.2. For every 3 € [0,00),
he*(B) <he™(B) = I1%°(Qp) > I"™(Qp), (4.19)

where Qg = q%&g s the unique mazimiser of the annealed variational formula
in (4.17), given by

ar (21, xn)) = K(n) pg(xr) - ps(an), neN z1,...,z, €R, (4.20)

with pg the law obtained from g by tilting:

dug(xz) = PP dpg(z), zeR. 4.21
@) = 3137 < o) (421)
As shown in [12], an immediate consequence of the variational characterisa-

tion in Corollary 4.2 is that there is a unique critical inverse temperature (see
Fig. 5).
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Corollary 4.3. For all ug and K there exists a B. = Bc(po, K) € [0,00] such

that
ue = hgnn(ﬁ) Zfﬂ S [Ovﬂc]a
he™*(8) { < hE(8) if B (Bor00). (4.22)

Moreover, necessary and sufficient conditions on ug and K can be derived under
which 8. =0, B. € (0,00), respectively, 5. = oo, providing a full classification
of disorder relevance.

4.3. A copolymer near a selective interface.

Path measure. Let S be a recurrent random walk on Z. Keep (4.9-4.11), but
change the Hamiltonian in (4.12) to

n

HEM ((S1)fmr) = ~B' (@ + h)sign(Si). (1.23)
k=1

This model was introduced in Garel, Huse, Leibler and Orland [15]. For the spe-
cial case where po = %(5_1 +041), it models a copolymer consisting of a random
concatenation of hydrophobic and hydrophilic monomers (representated by w),
living in the vicinity of a linear interface that separates oil (above the interface)
and water (below the interface) as solvents. The polymer is modelled as a two-
dimensional directed path (k, Sk)ren,- The Hamiltonian in (4.23) is such that
hydrophobic monomers in oil (wy = 41, Sx > 0) and hydrophilic monomers
in water (wp = —1, Sy < 0) receive a negative energy, while the other two
combinations receive a positive energy.

The quenched free energy per monomer, f4%¢(8,h) = lim, %log ZBhw
w-a.s., again has two phases (see Fig. 6)

L=A{(B,h): g*(B,h) >0},
D:{(/Bv h) que(ﬂ’h) :0}7

where g4¢(8,h) = f9*¢(8,h) — Sh. These two phases are again the result of
a competition between entropy and energy: by staying close to the interface
the copolymer looses entropy, but it gains energy because it can more easily
switch between the two sides of the interface in an attempt to place as many
monomers as possible in their preferred solvent. The lower bound again comes
from the strategy where the path spends all its time above the interface, i.e.,
Sk > 0 for 1 < k < n. Indeed, in that case sign(Sg) = +1 for 1 < k < n,
resulting in H2 " ((Sk)1_,) = —Bhn[l + o(1)] w-a.s. as n — oo by the strong
law of large numbers for w. Since log[}~, -, K(m)] ~ —(a—1)logn as n — oo,
the cost of this strategy under P is again negligible on an exponential scale.
The associated quenched critical curve is

i (4.24)
L g

e (B) = inf{h: g9°(8,h) =0}, B €[0,00). (4.25)
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B

Figure 6. Quenched critical curve for the copolymer.

Both g9"¢ and hZ"¢ are unknown. Their annealed counterparts g*"* (53, h) and
hann(B) = inf{h: ¢g**(B,h) = 0} can again be computed explicitly.

The copolymer model is much harder than the pinning model described in
Section 4.2, because the disorder w is felt not just at the interface but along
the entire polymer chain. The following bounds are known:

(28) 'log M (28) < h®e(8) < h2™(8) = (28) 'log M(28) V5 > 0.
(4.26)

The upper bound was proved in Bolthausen and den Hollander [10], and comes
from the observation that fa"¢ < f#"". The lower bound was proved in Bod-
ineau and Giacomin [7], and comes from strategies where the copolymer dips be-
low the interface (into the water) during rare stretches in w where the empirical
density is sufficiently biased downwards (i.e., where the polymer is sufficiently
hydrophilic).

Main contributions in the mathematical literature towards understanding
the two phases have come from M. Biskup, T. Bodineau, E. Bolthausen, F.
Caravenna, G. Giacomin, M. Gubinelli, F. den Hollander, H. Lacoin, N. Madras,
E. Orlandini, A. Rechnitzer, Ya.G. Sinai, C. Soteros, C. Tesi, F.L. Toninelli,
S.G. Whittington and L. Zambotti. For overviews, see Giacomin [16], Chapters
6-8, and den Hollander [20], Chapter 9.

Strict bounds. Toninelli [22] proved that the upper bound in (4.26) is strict for
1o with unbounded support and large 8. This was later extended by Bodineau,
Giacomin, Lacoin and Toninelli [8] to arbitrary ug and 8. The latter paper also
proves that the lower bound in (4.26) is strict for small 3. The proofs are based
on fractional moment estimates of the partition sum and on finding appropriate
localisation strategies.

In work in progress with E. Bolthausen [11], Theorems 1.1-1.2 are used,
for the same choice as in (4.16), to obtain the following characterisation of the
critical curves.

Theorem 4.4. For every € [0, 00),

h=hPe(8) e SUe(3,h) =0, (4.27)
h=h(8) = S(8h) =0, (4.28)
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with
SW(B,h) = sup [P a(Q) — 11(Q)], (4.29)
QePinvfin(RN)
S*(B,h) = sup  [Ppn(Q) — I"(Q)], (4.30)
QePinv.fin(RN)
where

5 n(Q) = /@m@(dy) logdpn(y),  Gpnly) =% (142 r=29000)
(4.31)
with T(y) and o(y) the length, respectively, the sum of the letters in the word y.

The variational formulas in Theorem 4.4 are more involved than those in The-
orem 4.1 for the pinning model. The annealed variational formula in (4.30) can
again be solved explicitly, the quenched variational formula in (4.29) cannot.

In [11] the strict upper bound in (4.26), which was proved in [8], is deduced
from Theorem 4.4 via a criterion analogous to Corollary 4.2.

Corollary 4.5. h3"¢(8) < h2"™(8) for all po and B > 0.

We are presently trying to prove that also the lower bound in (4.26) holds in
full generality.

Weak interaction limit. A point of heated debate has been the slope of the
quenched critical curve at 5 =0,

: 1 que

lim & A2 (8) = K. (4.32)
which is believed to be universal, i.e., to only depend on « and to be robust
against small perturbations of the interaction Hamiltonian in (4.23). The ex-
istence of the limit was proved in Bolthausen and den Hollander [10]. The
bounds in (4.26) imply that K. € [a~!, 1], and various claims were made in
the literature arguing in favor of K. = a~!, respectively, K. = 1. In Bod-
ineau, Giacomin, Lacoin and Toninelli [8] it is shown that K. € (a~!,1) under
some additional assumptions on the excursion length distribution K (-) satisfy-
ing (4.9). We are presently trying to extend this result to arbitrary K(-) with
the help of a space-time continuous version of the large deviation principles in
Theorems 1.1-1.2.

5. Closing Remarks
The large deviation principles in Theorems 1.1-1.2 are a powerful new tool to

analyse the large space-time behaviour of interacting stochastic systems based
on excursions of random walks and Markov chains. Indeed, they open up a
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window with a variational view, since they lead to explicit variational formulas
for the critical curves that are associated with the phase transitions occurring in
these systems. They are flexible, but at the same time technically demanding.

A key open problem is to find a good formula for 79¢(Q) when mg = oo

(recall (1.11-1.12)), e.g. when @ is Gibbsian.
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Time and Chance Happeneth to
Them all: Mutation, Selection
and Recombination

Steven N. Evans*

Abstract

Many multi-cellular organisms exhibit remarkably similar patterns of aging and
mortality. Because this phenomenon appears to arise from the complex inter-
action of many genes, it has been a challenge to explain it quantitatively as a
response to natural selection. We survey attempts by the author and his col-
laborators to build a framework for understanding how mutation, selection and
recombination acting on many genes combine to shape the distribution of geno-
types in a large population. A genotype drawn at random from the population
at a given time is described by a Poisson random measure on the space of loci
and its distribution is characterized by the associated intensity measure. The
intensity measures evolve according to a continuous-time measure-valued dy-
namical system. We present general results on the existence and uniqueness of
this dynamical system and how it arises as a limit of discrete generation systems.
We also discuss existence of equilibria.
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1. Introduction

One of the main goals of mathematical population genetics is to satisfactorily
model the biological mechanisms of mutation, selection and recombination and
understand how they interact over time to change the distribution of genotypes
(and hence phenotypic traits) in a population.
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Many traits are believed to result from complex, non-additive interac-
tions between large numbers of mildly deleterious alleles that are simulta-
neously being slowly forced out of the population by natural selection and
reintroduced by recurring mutations. For example, the Medawar—Williams—
Hamilton [Med52, Wil57, Ham66] explanation of the evolution of aging in-
vokes this mechanism (see, also, [Cha94, Cha01l] and the introductory discus-
sions in [SEW05, ESW06, WES08, WSE10] — excellent references for mathe-
matical population genetics in general and its role in evolutionary theory are
[Biir00, Ewe04]).

As noted in [Hol95, FK00], a quantitative understanding of the how pat-
terns of senescence and mortality have evolved requires a tractable quantitative
description of the changes wrought through time by the competing pressures
of mutation and selection acting on an ensemble of interconnected genes. Some
attempts that have been made in this direction are amenable to analysis, but
they are, as observed in the review [PC98], too stylized and simplistic. Other
approaches, particularly [BT91, KJB02], are flexible enough to accommodate
essentially arbitrary mechanisms of selection, mating, linkage, mutation and
phenotypic effects, and hence are extremely useful for doing numerical compu-
tations; but they incorporate too much explicit detail to be usable for theoretical
investigations.

This paper is an overview of research over the last several years by the author
and his collaborators, Aubrey Clayton, David Steinsaltz and Ken Wachter, to
develop a framework that occupies the middle ground between perspectives that
are too synoptic and ones that are overly burdened with specifics. This work
began in [SEW05] and has been continued in [ESW06, WES08, CE09, WSE10].
When detailed proofs are not given, they can, unless otherwise noted, be found
in [ESWO06].

2. Ingredients
The key assumptions behind our model are:
e the population is infinite,
e the genome may consist of infinitely many (even uncountably many) loci,
e cach individual has two parents,
e mating is random,

e the genotype of an individual is a random mosaic of the genotypes of its
parents produced by the process of recombination,

e an individual has one copy of each gene rather than copies from each of
its two parents (individuals are haploid),
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e starting with an ancestral wild type mutant alleles only accumulate down
any lineage (there is no back-mutation),

e fitness is calculated for individuals rather than for mating pairs,
e a genotype becomes less fit when it accumulates additional mutant alleles,
e recombination acts on a faster time scale than mutation or selection.

A consequence of these assumptions is that if we denote by M the collection
of loci in the portion of the genome that is of interest to us, then the genotype
of an individual may be identified with the collection of loci at which mutant
alleles are present. We allow M to be quite general (in particular, we do not
necessarily think of it M a finite collection of physical DNA base positions or a
finite collection of genes) and it is mathematically convenient to assume that M
is an arbitrary complete, separable metric space. A genotype is then an element
of the space G of integer—valued finite Borel measures on M: the genotype
> Om,, where 6, is the unit point mass at the locus m € M, has mutations
away from the ancestral wild type at loci mi, ma, . ... The wild genotype is thus
the null measure.

A further consequence of the assumptions is that the composition of the
population at some time ¢ is completely described by a probability measure
P, on G, where P;(G) for some subset G C G represents the proportion of
individuals in the population at time ¢ that have genotypes belonging to G.

Fitnesses of genotypes are defined via a selective cost function S : G — R.
The difference S(g’) — S(¢g”) for ¢’,¢"” € G is the difference in the rate of sub-
population growth between the sub-population of individuals with genotype g”
and the sub-population of individuals with genotype ¢’. We make the normal-
izing assumption S(0) = 0 and suppose that

S(g+h)>S(h), g¢g,heg, (2.1)

to reflect assumption that genotypes with more accumulated mutations are less
fit.

Example 2.1. Selective cost functions of the following form are relevant to
the study of aging and mortality.

Suppose that the space of loci M is general. Write £, (g) for the probability
that an individual with genotype g € G lives beyond age x € R;. At age z,
the corresponding cumulative hazard and hazard function are thus —log¢,(g)
and d/dx(—log /. (g)), respectively. Assume that the infinitesimal rate that an
individual at age € Ry has offspring is f(x), independently of the individual’s
genotype, where f : Ry — R, is bounded. For individuals with genotype g, the
size of the next generation relative to the current one is thus [ f ()¢, (g) dz.
The corresponding selective cost of genotype g is thus

S(g) = / " ) £0(0) do — / ” (@) o (g) d. (2.2)
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Assume further that there is a constant background hazard A and that an
ancestral mutation at locus m € M contributes an increment 6(m,z) to the
hazard function at age x so that

i) = (<xo = [ oma)glam)). (23

Observe that the resulting cost function S has the monotonicity property
(2.1). Moreover, S is bounded

sup S(g) < oo (2.4)
g€eg
and concave in the sense that
S(g+h+k)—S(g+h) <S(g+k)—S(g) for all g,h, k € G; (2.5)

that is, the marginal cost of an additional mutation decreases as more mutations
are added to the genotype.

We are most interested in a continuous time model, but in order to justify the
form of such a model we first consider a setting with discrete, non-overlapping
generations. We imagine that in going from one generation to the next, the
population is transformed successively by the effects of selection, mutation and
recombination. Recall that the population at any time corresponds to a proba-
bility measure on the genotype space G and so the actions of these mechanisms
are each described by a map from G to itself.

The effect of selection in one generation transforms a probability measure P
to &P, where S P[F], the integral of a bounded measurable function F' against
GP, is given by

Jge SWF(g) P(dg)  PleSF]
Joe 5@ P(dg) — Ple=S]

GP[F] == (2.6)

We assume that new mutations from the ancestral type appear in some sub-
set A of the locus space M at rate v(A), where v is a finite measure on M. Thus,
the additional load of mutations appearing in one generation is distributed as a
Poisson random measure on M with intensity measure v. Denoting such a ran-
dom measure by X”, the action of mutation transforms a probability measure
P to MP, where

MPIF] := /g]E[F(g + X")] P(dg). (2.7)

A recombination event takes two genotypes ¢’,g” € G from the population
and replaces the genotype ¢’ by the genotype g defined by g(A) := ¢'(ANR) +
9" (AN R?), where the “segregating set” R C M for the recombination event is
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chosen according to a probability measure R on the set B(M) of Borel subsets
of M and R¢ denotes the complement of R. We may suppose without loss of
generality that R is symmetric in the sense that

R(A) = R({R € B(M) : R € A}). (2.8)

According to our assumption of random mating, the action of recombination
transforms a probability measure P to RP, where

Z)f{PF /B(M) // ﬂR —|—g ( ﬂRc))P(dg/) P(dg”) R(dR). (2.9)

To make the definition of R rigorous we need an appropriate theory of random
Borel sets, but this is provided by [Ken74].

Thus, if the population in generation 0 is described by the probability mea-
sure Py, then the population in generation & is described by (RIMNG)* P,.

Observe that the operators G* and 9% are of the same form as & and M
with S and v replaced by kS and kv, respectively.

The operator R* is also easy to understand. Let Ry, ..., Rj be independent
identically distributed random subsets of M with common distribution R. Con-
struct the random partition {A;,..., Ay} of M that consists of the non-empty
sets of the form Ry N--- N Ry, where R; is either R; or RS (so that L < 2F).
Then,

L
REP[F] =E / F > gi(-nA)) | PP*(dg)| . (2.10)
gK j=1

Observe that if P is the distribution of a Poisson random measure, then
MEP = P. Moreover, it is reasonable for suitable more general P that if the
shuffling together of genotypes induced by the recombination mechanism is
suitably thorough, then SR* P should converge in some sense as k — oo to the
distribution of a Poisson random measure with intensity measure pP. Of course,
this won’t hold for all probability measures P; in particular, it fails if uP is
diffuse but P puts positive mass on the set of elements of G with atoms of size
greater than one.

Unfortunately, the operators &, 91 and R do not commute, and so the above
observations do not translate into a similarly simple description of (RIMNGS)E.

We now incorporate our assumption that recombination acts on a faster time
scale than mutation and selection by considering a sequence of models indexed
by the positive integers in which the recombination operator stays fixed but
in the n'" model the mutation intensity measure v is replaced by v/n and the
selective cost S is replaced by S/n. Denote the corresponding selection and
mutation operators by 2, and &,,.
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Note for any probability measure P on G that

/g </M F(g+0m) F(g)u(dm)) P(dg) (2.11)

lim n(9M,P[F]— P[F]) =

n—oo

nd
) lim n(GnP[F]fP[F}) = P[S] P[F] — P|S - F]. (2.12)

n— oo
for suitable functions F'. In particular, if we consider a linear F' of the form
F(g) == [, ¢(m)g(dm) for some function ¢ : M — R, so that P[F] = uP[y],
where P is the intensity measure associated with P, then

lim n(p, Ply] — pPle]) = /M w(m)v(dm). (2.13)

n—oo

Similarly, if P is the distribution of a Poisson random measure, then

n— oo

lim (8, Ple] — 1Ple]) = PIS|uPle = [ PIS(+6,)}e(m) P (am)

. /M (PIS(- + 8m)] — P[S]) @(m) puP(dm),
(2.14)

where we have used Campbell’s theorem, which says that if 7 is a finite measure
on M, then

E [G(X™)X™[y]] = /ME[G%X” + b)) () (dm) (2.15)

for a Poisson random measure X7 with intensity m and bounded Borel functions
G:G — R and ¢ : M — R. Note also, that if P is the distribution of Poisson
random measure, then the same is true of M, P and RP, whereas &, P is
typically not be Poisson unless S(g + h) = S(g) + S(h) for g,h € G.

Given these observations, it appears reasonable that if Py is the distribution
of a Poisson random measure on M, then for ¢ > 0 the probability measure
(‘ﬁimnGn)L"tJ Py should converge in a suitable sense to a probability measure
P, that is also the distribution of a Poisson random measure. Moreover, if we
write p; := pP; for the the intensity measure of P; (so that p; is a finite measure
on the space M of loci), then (p;);>0 should satisfy an evolution equation that
we may write informally as

%pt(dm) =v(dm) —E[S(X? + ) — S(X?)] pe(dm). (2.16)

3. Rigorous Definition of the Model

In this section we give a precise meaning to the somewhat heuristic equation
(2.16) that describes the evolution of the family (P;);>o of distributions of
Poisson random measures on M via a dynamical system for the associated
intensity measures p, = pbP;.
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Definition 3.1. Denote by H the space of finite signed Borel measures on M.
Let H* be the subset of H consisting of non-negative measures.

Definition 3.2. Given a metric space (E, d), let Lip be the space of functions
f+ E — R such that

+Supx; < 0. (3.1)

||f|\Lip¢:SgP|f(x) vty d(z,y)

Define the Wasserstein norm ||-||was on the space of finite signed Borel measures
on (E,d) by

17l was := sup {|7[f]] : [|fllLip < 1} (3.2)

We note that there is a huge literature on the metric induced by the
Wasserstein norm and related metrics on spaces of measures (see, for exam-

ple, [EK86, Rac91, RR98, AGS05, Vil03, Vil0g)).
Definition 3.3. Define F : M x HT — R, by

Fr(m) :=E[S(X™ 4 0,n) — S(X™)] for m € M and 7 € H*, (3.3)
and define the non-linear operator D : H+ — H* by setting

d(Dm)
dm

(m) = Fr(m). (3.4)

Formally, a solution to (2.16) is an H*-valued function p that is continuous
with respect to the metric induced by the Wasserstein norm and satisfies

t
pt = po+tv— / Dpgds (3.5)
0

for all t > 0.

Equation (3.5) involves the integration of a measure-valued function, and
such an integral can have a number of different meanings (see, for example,
[DUT7T7]). We require only the following notion: If n : Ry — H is a a Borel
function, then for ¢ > 0 the integral Z, = fot 7s ds is the element of H satisfying

t
Zi(A) = / ns(A) ds for every Borel A C M. (3.6)
0

This integral certainly exists (and is unique) if the function 7 is continuous in
the Wasserstein metric.
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Example 3.4. Note that if # € H ™, then, in the notation of Example 2.1,

E[(,(X™)] = exp (—Ax _ /M (1-e00mo) w(dm)) (3.7)

by a standard fact about the Laplace functional of a Poisson random measure,
and hence for the selective cost function of Example 2.1

F.(m') = /000 (1 — e_e(m,’x)) f(z)

X exp ()\I 7/ (1 o 670(m11’1)> ﬂ,(dm//)) dx
M

(3.8)

for m’ € M.

Theorem 3.5. Fiz a mutation measure v € HY and a selective cost S : G —
R4 that, along with the standing conditions

e 5(0)=0,

e S(g) <S(g+h) forall g,h €g,
also satisfies the Lipschitz condition

e for some constant K, ’S(g) - S(h)’ < KHg — h”Was’ forall g,h € G.
Then, equation (3.5) has a unique solution for any po € H™.

The proof of Theorem 3.5 is via a reasonably standard fixed point argument.
The definition of the non-linear operator D must be appropriately extended to
all of H so that the extension inherits a suitable Lipschitz property from the
Lipschitz property of S, and it must be shown that solutions produced by the
fixed point argument, which a priori take values in H, actually take values in
HT.

Note that the demographic selective cost of Example 2.1 satisfies the Lips-
chitz condition of the theorem under mild conditions on the function 6.

The following result, which can be proved using the arguments in Section 2 of
[CE09], shows that if pg is absolutely continuous with respect to v with bounded
Radon-Nikodym derivative, then the integral equation (3.5) may be thought
of as a (possibly uncountable) system of one-dimensional ordinary differential
equations.

Corollary 3.6. Suppose in addition to the assumptions of Theorem 3.5 that
po is absolutely continuous with respect to v with a bounded Radon-Nikodym
derivative. Then, p; is absolutely continuous with respect to v for allt > 0 and
there is a non-negative Borel function (t,m) — x¢(m) on Ry x M such that
the function m — x¢(m) is a Radon-Nikodym derivative of p; with respect to v
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for allt > 0, and for v-a.e. m € M the function t — x;(m) is differentiable
with
&(m) = 1= Fy, (m)ai(m).

4. Convergence of the Discrete Generation
Model

Recall that recombination is defined in terms of a probability measure R on the
space of Borel subsets of M that describes the distribution of the random set
of loci that comes from one of the two parents in a mating. Recall, moreover,
that for (2.16) to be a limit of a sequence of discrete generation models it is
intuitively necessary for the resultant shuffling of genotypes to be thorough
enough to break up the dependence between loci introduced by selection. The
following condition is useful in quantifying how successful recombination is at
performing this task.

Definition 4.1. Given a (symmetric) recombination measure R and A € HT,
we say that the pair (R, \) is shattering if there is a positive constant « such
that for any Borel set A C M,

MA) < 20 / MANRAA N RY) R(dR). (4.1)

Note that if A is a probability measure, then the right-hand side of (4.1) is,
without the constant «, the probability that two random loci drawn indepen-
dently according to A are both in the subset A and receive their contents from
different parents.

It can be shown that if the pair (R, uP) is shattering for some probability
measure P on G and there is a constant 8 such that

/ 9(A)1 10052y P(dg) < BuP(A)? (4.2)

for all Borel sets A C M, then )* P converges to the distribution of a Poisson
random measure with intensity puP as k — oo. Such a result may be thought
of as a generalization of classical Poisson convergence results such as [LCG60].

To get a feeling for Definition 4.1, suppose that M is equipped with a metric
d, that X is a probability measure, and for some constant ¢ > 0

p(r) == inf{R{R:m’' € R, m" € R°} : m/,m" € M, §(m',m") > r}

> csup{A\{m"” e M :6(m',m") <r}:m’ € M} =: co(r). (4:3)

for all 7 € Ry ; that is, loosely speaking, the probability two loci inherit their
contents from different parents dominates a multiple of the A mass of a ball
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with radius the distance between the two loci. By a change of variables,

/)\(AQR)A(ADRC)R(dR //R{R m' € R, m" € R°} \(dm”) A(dm)

> / / p(8(m’, ")) A(dm"") Adm')
> / / 1{5(m’,m") < o™ (W(A) }p(S(m', m™)) A(dm") Adm)
A(A

A(A)Q,

(4.4)

and so (R, ) is shattering with constant o = ¢~ 1.

Definition 4.2. Given m € H™, denote by IL; the probability measure on G
that is the distribution of a Poisson random measure with intensity measure 7.
That is, IT; is the distribution of the random measure X ™.

Theorem 4.3. Let (pt)i>o0 be the measure-valued dynamical system of (3.5)
whose existence is guaranteed by Theorem 8.5. Suppose in addition to the hy-
potheses of Theorem 3.5 that the selective cost S is bounded, the pair (R,v)
(respectively, (R, po)) consisting of the recombination measure and the muta-
tion intensity measure (respectively, the recombination measure and the initial
intensity measure) is shattering, and the initial measure Py is Poisson (with
intensity po). Then, for each T > 0,

Km sup HH (RN, ., WJPOH

n—00 0<¢<T me

The proof of Theorem 4.3 is quite long and complex. The first step involves
establishing the following analogous result in which the recombination operator
R that “partially Poissonizes” a probability measure on G is replaced by the
“complete Poissonization operator” B that transforms a probability measure
P on G into ‘PP :=1I,p. That is, PP is the distribution of a Poisson random
measure with the same intensity measure puP as P.

Proposition 4.4. Suppose that the hypotheses of Theorem 4.3 hold. Then, for
each T >0,
lim sup ant — (PM,, 6, POHW =

n—=00 0 << T
Because Proposition 4.4 involves a comparison of two Poisson distributions,
it suffices to consider the associated intensity measures and establish for each
T > 0 that
lim sup_ s — p(PM,S,) " Pyl|wwas = 0. (4.5)

n—oo 0<t<
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However, it can be shown using (2.12) and (2.11) that there are constants a, b, c
which do not depend on n or T such that

m a m
[0(m+1)/n — HBM, S5 )" Pollas < o = H(BMaGn) 1Pyl was

bT' + ¢
+ 2
n

(4.6)

for 0 < m < T'n. We note that (4.5) may be thought of as a shadowing theorem
about the convergence of a discrete-time dynamical system to an ODE, but
standard results in that area (see, for example, [CKP95]) do not seem to apply.

The most difficult part of the proof involves estimating the Wasserstein dis-
tance between (RM,,S,,)" Py and (PM,,S,)™" Fy. Both probability measures
are absolutely continuous with respect to 9" Py, and so it suffices to estimate
the LY(OMM™Py) distance between their Radon-Nikodym derivatives. The key
idea in accomplishing this is to replace the original genotype space G by the
richer space

G =GUug?U---, (4.7)

where L denotes disjoint union. An element of G? records the mutations from
the ancestral wild type that appear in each of i consecutive generations and a
probability measure @ on G* may be thought of as the distribution of a finite
sequence (Yp, ..., Ys) of random measures. Each of the operators B, R, M,,, S,
lift in a natural way to this richer setting, and the labeling of mutations by
generations makes it easier to keep track of how successive applications of the
analogues of WM, G,, and PM,, S, alter the composition of the population.

5. Equilibria in General

We assume throughout this section that the assumptions of Theorem 3.5 hold.

Definition 5.1. An equilibrium for the dynamical system (3.5) is a measure
p« € H' such that v = F,_-p,. That is, p, is absolutely continuous with respect
to v with Radon-Nikodym derivative satisfying

dp.
Fy, v

=1 v-ae. (5.1)

Of course, if p, is an equilibrium for (3.5) and py = p«, then p; = p, for all
t>0.

The zero measure is clearly an equilibrium for (3.5) when v = 0. Note
also that Fy(m) is S(0,,) for any 7 € HT when S is additive (that is,
S(g+ h) = S(g) + S(h) for all g,h € G), and so p.(dm) := S(6n) L p(dm)
is an equilibrium for such a selective cost provided the measure p, belongs to
HT; that is, provided [, S(6,,) "' p(dm) < co. For any selective cost, Fy(m)
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is approximately S(d,,) when the total mass of 7 is small, and hence it is
reasonable that (3.5) should have an equilibrium when the total mass of v is
sufficiently small.

In order to state such a result, we define a family of dynamical systems
indexed by u € R4 by

t
pﬁ“) = pgu) + tur — / Dp™ds. (5.2)
0

That is, we replace the mutation measure v in equation (3.5) by the multiple
uv.

Theorem 5.2. Suppose the selective cost of a monzero genotype is bounded
below. That is,

inf{S(6,,) :me M} =inf{S(g): g€ G, g+# 0} > 0.

Then, there exists U > 0 such that there is an equilibrium for the equation (5.2)
for all w € [0,U]. That is, there exist measures p( W e HT, 0<u<U, such
that

F) ~p(“) = uv.

The crux of the proof is to observe that if the measures piu) ceHT,0<u<

U, exist with corresponding Radon-Nikodym derivatives p(*) and v, then the
equilibrium condition is F,w) (m)p™ (m) = u, where we adopt the convention
Fyw = F,u), and if we differentiate both sides of this equality with respect to
u we get the relation

dp(w) dp™)
[/ Ko (") S () (i) | 1) 4 By (') 2= (') = 1,
U

du
(5.3)

K(m',m") :=E [S(X” G Bt ) — S(XT 4 ) — S(XT 4 6yr) + S(X”)}
(5.4)

for 7 € HT and m’,m” € M. It therefore suffices to check that the ODE (5.3)
with the boundary condition p(®) = 0 has a solution for u € [0, U].

Theorem 5.2 gives one approach to producing equilibria. Another, more
obvious, approach is to start the dynamical system (3.5) with some initial con-
ditions pg and hope that p; converges to a limit p, € H™, in which case p, is
an equilibrium — of course, the existence of such limits is the primary reason
for being interested in equilibria. If we can show that ¢ — p; is non-decreasing
in the usual partial order on H* for a particular value of pg, then a limit exists
provided that sup,~q p+(M) < co. The following result establishes such a mono-
tonicity property for concave selective costs such as the demographic selective
cost of Example 2.1.
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Theorem 5.3. Suppose that the selective cost S is concave. If po > 0 (re-
spectively, < 0), then the solution of equation (3.5) guaranteed by Theorem 3.5
satisfies ps < py (resp. ps > pi) for all 0 < s <t < o0.

It follows from Theorem 5.3 that if S is concave and py = 0, so that
po = v > 0, then ¢ — p, is non-decreasing. Therefore, in this case either
limy_y 00 pe (M) = 00 or limy_se0 pr = ps € HT exists and is an equilibrium. The
following comparison result shows that the latter occurs if and only if there is
some equilibrium p,,, in which case p, < p... In particular, if there are any
equilibria in the concave case, then there is a well-defined minimal equilibrium.

Theorem 5.4. Consider two selective cost functions S’ and S” that satisfy
the conditions of Theorem 5.3. Let p' and p” be the corresponding solutions of
(3.5). Suppose that S'(g + 6pm) — S'(g) > 5" (g + 0m) —S"(g) for all g € G and
m € M and that pf, < pjj. Then, p;, < pi for all t > 0.

It can be shown for a concave selective cost that the equilibria pfku) cHT,
0 < u < U, for the dynamical systems (5.2) produced by the ODE technique
in the proof Theorem 5.2 are minimal.

We note that Theorem 5.3 and Theorem 5.4 are very useful for establishing
conditions under which equilibria are stable and attractive in appropriate senses.
We refer the reader to [ESWO06] for several results in this direction.

6. Equilibria for Demographic Selective Costs

As we remarked in Example 2.1, the demographic selective cost is concave,
and so the general results of Section 5 for concave costs apply. However, we
can obtain more refined results by finding another selective cost for which we
can compute an equilibrium explicitly and then using using Theorem 5.4 to
compare the two dynamical systems.

Consider the selective cost

5t =1-exp (= [ atmgtam)) (6.1)

for some o : M — R,. For this cost,

Fulint) = (1= expl—o) exp (= [ 1= exp(-a(m)n(an)) . (62

and hence a measure p, € HT is an equilibrium if and only if

%(m/) _ exp ([ 1—exp(—o(m")) V(dm”)). (6.3)
dv 1 —exp(—o(m’))
Therefore, an equilibrium exists if and only if
1
——v(d A4
| ety v <= (04
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and there is a constant ¢ > 0 such that
B exp(c) Sdm) — | exol—o(m exp(c) v(dm

o= | Tty )~ [ oot = S s
= exp(c) v(M),

in which case the equilibrium p, is given by

dp* (m/) _ exp(c) _ c (66)

dv ~ 1—exp(—a(m)) v(M)(1—exp(—a(m)))’

Such a constant exists if and only if

V(M) < supzexp(—z) =e L. (6.7)
x>0

Now, for the demographic selective cost of Example 2.1,

S0+ 6m) —S@) = [ (1- e ) fa)
g+ ’ /0 ( ) (6.8)

X exp (—Ax _ /M o(m” ) g(dm”)> da.

Suppose that sup,, , 0(m,r) < oo and inf,, inf,cp 0(m,x) > 0 for some set
B C R, such that fB fzdx > 0. Then, for some constant £ > 0 and function
7: M — R such that

1
/M e ) <. (6.9)

we have
(-4 8,0) = S(0) = €11~ expl=rlmNexp (~ [ 7 glam)) (610
M
for all m’ € M. It follows from our observations above, Theorem 5.3 and
Theorem 5.4 that an equilibrium exists provided v(M) < e~ 1¢.

Conversely, if we simply assume that sup,, , O(m,xz) < oo, then there are
constants v and ¢

S(g+ 6m) — S(g) < C[1 —exp(—v(m’))] exp (— /M v(m”) g(dm”)) . (6.11)

Hence, there is no equilibrium when either

1
/M T exp(—o(m)) v(dm) = oo (6.12)

or v (M) > e (.
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7. Step Profiles and Demographic Selective
Costs

Recall the demographic selective cost function of Example 2.1. Take M = R,
and 6(m,x) = n(m)1{x > m}; that is, we imagine that each mutation imposes
a single hazard increment at some age of onset and we “index” mutations by
their age of onset. It follows from (3.8) that

F.(m') = (1 — e_"(m/)> /mO/O f(z)

X exp </\117 - / (1 - e*"(m”)) ﬂ(dm")) dz.
0

Suppose that the mutation intensity measure v has a density ¢ against Lebesgue
measure and that p is an equilibrium intensity measure with density r against
Lebesgue measure.

We can observe the distribution of lifetimes in an equilibrium population
and this distribution is determined uniquely by its hazard

(7.1)

h(z) = liigP{fm(X” € (z,x+€) | XP >ux}/e

= L logE[L. (X)

= (e [T (1= ) sy am) =2k (12 ) r(o)

(7.2)

The equilibrium condition for p is thus

q(z) = {(1677@ / y exp( /yh()dz>dy}r(x)
[ (L)

A remarkable conclusion from (7.3) is that the equilibrium hazard h is de-
termined by the background hazard A and the mutation intensity g. Varying
the quantity n(m) that gives the hazard increment introduced by a mutation
with effect having age of onset m does not alter the equilibrium hazard. Rather,
the density 7 changes so that h(m) = A+ (1 —e~"70"™))r(m) stays constant. This
outcome is reminiscent of Haldane’s principle [Hal37], which says for models
that may be though of as linear approximations of the one considered here that
the effect size n(m) and the equilibrium density r(m) should be such that the
product n(m)r(m) is constant. The fact that (1 — e=""))r(m) ~ n(m)r(m)
when 7(m) is close to zero reflects that fact that the model considered here is,
in some sense, close to its linear approximation in this regime.

(7.3)
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It follows from (7.3) that

d 1 d gz
hiz) = ——1 — — 7.4
() = =55 o ( F@) dz h(z) -\ )’ (74)
and hence the hazard h is the solution of a non-linear second-order ODE.
It is more convenient to study the function

rw)i= [ s ew (- [ ) a (75)

from which A can be recovered. If we set

L:=-ToT!, (7.6)
then 1" 1 f/ 1
T"oT™ 1 o™

and the equilibrium equation (7.3) becomes

_goT7 (1) [T () . qoT™H(r) f'oT ()

PO=rom=0) for T 1 Feri)

A (7.8)

Suppose, for example, that ¢ and f are constants, say ¢ and f, on some
finite interval [a, B8] and zero elsewhere. We find that

L(1) = A + qlog(t) + C (7.9)
for some constant C provided 7 € [T'(«), T(8)], and so
AT (x) + qlog(T(x)) + C = LoT(x) = —T'(z) = fE[(,(X?)] (7.10)

for € [a, 5]. Now T(z) — 0 as x — (3, and so the left-hand side of (7.10)
is negative for x sufficiently close to [, whereas the right-hand side is always
non-negative. It follows that the equilibrium p does not exist in this case. This
conclusion is also obvious from the observation that

S(g+dm) —S(9) = (1 —~ e‘"(m’)) /ﬂ fexp (—Ax - /j n(m”) g(dm”)> dzx

< (B-m)f,
(7.11)

and so F,(m) < (8 —m)f. However, the equilibrium condition g = F,(m)r(m)
for m € [a, ] shows that ff r(m) dm = oo, and so p does not exist.

It is interesting to note that a linearization of this model was proposed in
[Cha94] as an explanation of the phenomenon observed for many species that
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the age-specific mortality has the celebrated Gompertz-Makeham form, which is
equivalent to the equilibrium hazard h being of the form h(z) = A+ exp(a+bx)
for suitable constants a and b. It thus appears that the simplification introduced
by a linear approximation leads to misleading conclusions.

The arguments above for the non-existence of equilibria are extended to
considerably more general selection costs and patterns of fertility and mutation
in [WESO08].

8. Polynomial Selective Costs

Suppose in this section that the selective cost S is polynomial, in the sense that

N
S@ =3 [ autm)g®(dm) (31)
n=1

for some positive integer N, where for each n the Borel function a,, : M™ — R,
is permutation-invariant (that is, a,(7m) = a,(m) for all permutations 7) and
has the property that a,(m) = 0 if there exist ¢ # j with m; = m;. Further-
more, assume that each function a,, is bounded. The number n!a, (my,...,m,)
represents the interactive effect of the n different mutations my,...,m, over
and above that of any subset of them, and this additional effect is independent
of the order in which the mutations are written. Note that this selective cost is
not concave unless a,, = 0 for n > 2.

Theorem 8.1. Suppose that inf{a;(m) : m € M} > 0. Then the system (3.5)
has a unique equilibrium p, € HT.

This result is established in [CE09]. We sketch the proof and refer the reader
to [CEQ9] for the missing details.
Note that

N
Fy(m) = E[S(X™ +6,) — (X7 =Y n / an (m, m) 7201 (dm)
= Jme-v
(8.2)
for m € HT by standard moment computations for Poisson random measures
(see, for example, [DVJ88, Kal02].
It follows from the the equilibrium condition (5.1) that if an equilibrium p.
exists, then it has Radon-Nikodym derivative z, with respect v that satisfies

Iz, = z,, where

(n—1)

— S ®(n—1)
Dy(m) = [Zn [ aememytm) om0 v )| (83

for a non-negative Borel function y : M — R.
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Set A := (inf{a;(m) : m € M})~1. Note that if 0 < y(m) < A for v-a.e.
m € M, then B <Ty(m) < A for v-a.e. m € M, where

-1

Z / an(m,m)A"=D =D (gm) | (8.4)
(n— 1)

Therefore, I' maps the convex set
R:={ye LY(M,v): B<y(m)< A} (8.5)

into itself, and it suffices to show that I' has a unique fixed point in this set.
It can be shown that if we regard L>°(M,v) as the dual of L'(M,v), then
the map I' is weak*-continuous on the convex weak*-compact set R, and so
the existence of at least one fixed point follows from the Schauder-Tychonoff
Theorem (that is, the infinite-dimensional analogue of the Brower Fixed Point
Theorem).
Suppose now that there are two fixed points in R. Then,

Z /<n o’ m)z(my) - 2(my_1) 2(m) v®" = (dm)
- (8.6)
Z //\/l(" 1) (m, m)y(ma) - - y(mn—1) y(m) V®(”_1)(dm).
Therefore,
Z ) (ml)x(mn—ﬁx(m)
/ " U (8.7)

y(ml) Yy (man— 1)y(m) =1 (1m) =
g <I(m1) (mn 1)1'( ) 1) (d ) 0

for v-a.e. m € M. Setting L, (m,m) :=
d(m) = log (y(m)/x(m)), we obtain

o0 [ bt (e i _3) )
(n— 1)
(8.8)

n(m,m)z(my) -+ x(my,—1)x(m) and

Observe that d(m) is bounded since x and y are in R. Thus, putting
65(m1)+~~+5(mn_1)+6(m) -1

d(m1) + -+ 6(mp_1) +6(m)’

N (m,m) := L, (m,m) (8.9)

we get

Z / (e 1) m) (6(my) + - + 8(mp_1) + 6(m)) v~V (dm) = 0
(8.10)
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for v-a.e. m € M. Note that the function 7, is non-negative, since §(mq)+---+
§(my—1) + 0(m) and ed(m)++3(ma—1)+6(m) _ 1 have the same sign. Also, 7,
is permutation invariant and takes the value 0 whenever two of the coordinates
of m are equal.

Integrating the left-hand side of (8.10) against the function § gives

0_/ Z /(n 1) )
><(5(m1) s 8(ma—1) + 6(m)) v® Y (dm)s(m) v(dm)

N
==§Zn/°"mxmh.u,maoxmo%~-~+&m%4>+6wm»

P (8.11)
X 8(mp)v®" (dmy, . .. ,dm,)
N n
=303 [ ) @m) £ )
n=1k=1"M"
x &6(my) v®" (dmy, ..., dm,),
by the symmetry of n,.
Therefore,
N
0= Z/ (11, ) [6(m1) + -+ 8(ma)]2 vE(dma, ..., dimn).
n:l n
(8.12)
In particular,
0 :/ m(m)é(m)? v(dm) (8.13)
M

Since inf{a;(m) : m € M} > 0, it follows that 7;(m) > 0 for all m € M, and
hence §(m) = 0 for v-a.e. m € M, contradicting the assumption that = # y.

The preceding argument for uniqueness of the fixed point follows that used
in Theorem 3.1 of [CFO05] to establish a criterion for the uniqueness of equilibria
in the finite dimensional mass-action kinetics systems of differential equations
that arise in the study of continuous flow stirred tank reactors.

It is shown in [CE09] that the function V' : L¥(M,v) — RU{+oo} defined
by

Viz):=— /M log(xz(m)) v(dm)
N
+ an(m)z(my)---z(m,) v*"(dm)
nz_;/ n

is bounded below and V' is a Lyapunov function in the sense that if (z;)i>0 =
(CZU Ji>o with zg € L3°(M,v) is the system of Radon-Nikodym derivatives

(8.14)



2294 Steven N. Evans

guaranteed by Corollary 3.6, then

1
x¢(m)

%V(m(t)) = - /M(l - F,, (m)xt(m))2 v(dm) < 0. (8.15)

It follows by fairly standard arguments that x; converges as t — oo to z, := dp.

dv
in L>°(M,v) for any value of zg = %%.
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Abstract

Empirical and theoretical studies have implicated habitat coarseness and co-
evolution as factors in driving the degree of specialization of mutualists and
pathogens. We review recent advances in the development of a framework for
host-symbiont interactions that considers both local and stochastic interactions
in a spatially explicit habitat. These kinds of interactions result in models with
large numbers of parameters due to the large number of potential interactions,
making complete analysis difficult. Rigorous analysis of special cases is possi-
ble. We also point to the importance of combining experimental and theoretical
studies to identify relevant parameter combinations.
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1. Introduction

Naturalists in the 18th and first half of the 19th century started to catalogue the
bewildering diversity of the natural world according to the system developed
by Linnaeus. Darwin’s work on pollination (1859, 1862) initiated a new line of
research, namely that of species interaction. This quickly led to the realization
that not only are there different kinds of interactions, such as predation, par-
asitism, mutualism, or competition, but also that the degree of specialization
varies tremendously.

In parasitic, or pathogenic, interactions, the host is harmed and the para-
site, or pathogen, benefits. In mutualistic interactions, both the host and the
mutualist benefit. We will refer to mutualistic and pathogenic interactions col-
lectively as symbiotic interactions.
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Species interactions affect specialization through coevolutionary processes
and are far from static. Not only can the kinds of interactions change along the
mutualism-parasitism continuum depending on the ecological context (Thomp-
son 1988; Bronstein 1994; Herre et al. 1999; Hernandez 1998; Johnson et al.
2003), there is evidence that the degree of specialization can both increase and
decrease along phylogenetic lineages. It appears though that specialization is
the much more common lifestyle. Furthermore, as Thompson (1994, p. 122)
pointed out, “[e]xtreme specialization extends to commensals and mutualistic
symbionts that live on a single host individual (Thompson 1982), but it is in
parasites that the pattern is most evident.”

The degree of specialization is also influenced by habitat heterogeneity and
coarseness. Optimal foraging theory and habitat selection theory have given
insights into the evolution of specialization (Rosenzweig 1987a). Rosenzweig
(1981) and Pimm and Rosenzweig (1981) developed a theoretical framework,
known as the isoleg theory, that makes predictions about when species should
show preferences for specific habitat types or be opportunistic based on other
competitors and their own densities.

Brown (1990) expanded the work by Rosenzweig to predict the outcome
of competition of specialist and generalist competitors in a heterogeneous en-
vironment using evolutionary game theory. He found that depending on the
cost of habitat selection and fitness of the competitors, up to two competitors
can share a habitat composed of two habitat types. When habitat selection
is costly, a single generalist dominates, whereas when habitat selection is free,
two specialist species dominate, each specialized on its respective habitat. When
habitat availability is asymmetric or the specialist has higher fitness than the
generalist, both the specialist and generalist can coexist, with the generalist
exploiting the habitat that is underused by the specialist. Cost of habitat se-
lection is closely related to coarseness of habitat, namely habitat selection in a
fine-grained habitat tends to be more costly than in a coarse-grained habitat
due to an increase in travel time. Since the models are non-spatial, habitat
heterogeneity or coarseness is modeled indirectly. Brown (1990) incorporated
coarseness of habitat indirectly through varying patch encounter rates. His re-
sults demonstrate that the coarseness of the habitat affects the evolutionary
trajectory. Namely, selective forces are strongly stabilizing towards a single
generalist strategy when the habitat is fine-grained; whereas if the habitat is
coarse-grained and thus selection is relatively cost free, selection is disruptive
and results in specialist strategies. It must be noted that a species’ perception
of habitat coarseness depends on its dispersal ability. A species that disperses
only over small spatial ranges may perceive a habitat as coarse-grained, whereas
a species that disperses over large spatial ranges may perceive the same habitat
as fine-grained.

Habitat selection can promote coexistence of competitors (Levin 1974, Yo-
dzis 1978, Hastings 1980), and has been implicated as a factor that increases the
probability or rate of allopatric speciation. For instance, Thorpe (1945) based
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on Peterson (1932) concluded that microlepidoptera genera that are mono or
oligophagous are more species rich than polyphagous ones (see Rosenzweig
1987b). Vrba (1980), studying ungulates in Africa, came to a similar conclu-
sion.

Observations in natural systems combined with spatially implicit, math-
ematical models thus allow us to conclude that both habitat coarseness and
coevolution affect specialization: specialists are more likely to be associated
with coarse-grained habitats, and extreme specialization is more likely to be
found in parasitic interactions, implying that parasitic interactions are more
likely to be found in coarse-grained habitats.

Factors that drive the dynamics in natural systems are difficult to tease
apart, and models play an important role in studying the consequences of dif-
ferent factors in isolation. Species interactions are characterized by local inter-
actions and chance encounters. Both factors are missing from the spatially im-
plicit, mathematical models that were introduced by ecologists and evolutionary
biologists to advance the theory of consequences of habitat heterogeneity and
coevolution. Models have been introduced by mathematical ecologists to include
explicit space and stochasticity to study the effects on ecological communities.
These models range from minimal assumptions on the type of interactions,
such as the neutral model advanced by Hubbell (2001), to large-scale, statisti-
cal models that rely on stochastic interactions and spatial heterogeneity, such
as the macroecological models by Brown (1995) and Maurer (1999). A compre-
hensive theory of the consequences of host-symbiont interactions, however, has
been hampered by the complexity of models. In particular, deterministic and
spatially implicit models quickly lead to large systems of differential equations
even if only a moderate number of hosts and symbionts are involved.

To advance the theory of host-symbiont interactions that takes into account
both local and stochastic interactions, we pursued two main venues. To inves-
tigate the consequences of local and stochastic interactions between hosts and
their symbionts, we developed an experimental system supported by a simu-
lation model (Kerr et al. 2006). The experimental system of a bacterial host
(E. coli) and its viral pathogen (T4) allowed us to study the effect of migra-
tion patterns on the evolution of this host-pathogen system. To understand
the consequences of multiple hosts and symbionts interacting in a spatial en-
vironment, we introduced two mathematical models (Lanchier and Neuhauser
2006a, 2006b, 2010). These mathematical models idealized host-symbiont inter-
actions and were amenable to mathematically rigorous treatment. In the first
mathematical model, the static host model, the host population is fixed and we
investigated how habitat coarseness affects the competitiveness of generalists
versus specialists. In the second mathematical model, the dynamic host model,
the host population changes dynamically, and we studied how feedback between
hosts and their symbionts affects habitat coarseness.

In the static host model, the spatial pattern of the hosts is fixed and arranged
in a checkerboard pattern. The size of the patches in relation to the dispersal
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ranges of the symbionts determines whether the symbionts percieve the habitat
as coarse-grained or fine-grained. The results of this investigation confirmed
the previous observations that generalist symbionts are more competitive in
fine-grained habitats and specialist symbionts are more competitive in coarse-
grained habitats. In this model, we cannot distinguish between mutualistic or
pathogenic interactions.

In the dynamic host model, we can distinguish between mutualists and
pathogens. The dynamic host model allows us to study how the feedback be-
tween hosts and symbionts shapes the spatial patterns. While generalist sym-
bionts do not affect qualitatively the spatial patterns of hosts, they tend to
change the time scale of pattern formation, with pathogens speeding up spatial
aggregation of the hosts. Specialist symbionts can profoundly alter the spa-
tial patterns of hosts. Simulations indicate the pathogens promote coexistence,
whereas mutualists lead to a coarse-grained habitat.

We will first describe the mathematical models and present some of the
rigorous results from Lanchier and Neuhauser (2006a, 2006b, and 2010) inter-
spersed with conjectures that warrant further investigations. We will conclude
with a description of the experimental system to argue about the importance
of combining theoretical investigations with experimental work.

2. Mathematical Models

As mentioned in the Introduction, we will describe two closely related, spatially
explicit, stochastic models, one in which the host population is static (static
host model), and the other in which hosts evolve dynamically in response to
interactions with their symbionts (dynamic host model). The spatial models
are continuous time Markov processes that evolve on the d-dimensional integer
lattice Z%. We denote the configuration at time ¢ by {& : = € Z?%} where
&(x) = (i,7),i=1,2,...,Ny and j = 0,1,2,..., No, means that site x € Z¢ is
occupied by a host of type i, which is one of N; hosts, and a symbiont of type
j, which is one of Ny symbionts if 7 > 1 or not occupied by a symbiont if j = 0.

Each site is assigned a host type at time 0, which remains the same for all
t > 0 in the static host model, but may change in the dynamic host model. The
infection dynamics are the same in both models. We define two neighborhood
sets, one for the dispersal of the symbiont (N2), and the other for the dispersal
of the host (N7). If for = € Z%, we set ||z|| = sup,_ o4 ||, then

Ni={zecZ':0<|lz]| <R}, i=12

A healthy host of type i, ¢ € {1,2,..., N1} and denoted by (7,0), at location x
becomes infected by a symbiont of type j, j € {1,2,..., Na} at rate ¢;; times the
number of hosts in the neighborhood x + N3 that are infected with symbiont j:

(1,0) = (4,7) at rate Cij Z le{ﬁ(z) =(,7)}

z€x+N2 =1
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The recovery dynamics of infected hosts depend on the dynamics of the
host population. In the static-host model, recovery is spontaneous. That is, for
1<i<Nyand1<j< N,

(4,7) = (4,0) at rate 1

We consider two types of dynamic-host models. One where the symbiotic
relationship affects fertility, called the fertility model; the other affects viability,
called the viability model. In the fertility model, recovery is by replacement with
healthy offspring of neighboring hosts. The fertility of an infected host may be
higher (respectively, lower) than that of an uninfected host, in which case the
symbiont is called a mutualist (respectively, pathogen). If & (z) = (4, ), then

N2
(i,4) = (k,0)  at rate ST wI{ez) = (k, 1)}

z€x+N7 1=0

where we assume 79 = 1. The parameters v, | = 1,2,..., Ny, determine
whether an interaction is mutualistic (y; > 1) or pathogenic (0 <y < 1).

In the viability model, individuals die at a rate that depends on who they
are associated with and are replaced with healthy offspring of neighboring hosts
upon death. The death rate of an infected host may be lower (respectively,
higher) than that of an uninfected host, in which case the symbiont is called a
mutualist (respectively, pathogen). If & (x) = (7,J), then

N3
(i,5) = (k,0)  atrate & Y Y I{&(z) = (k1)}

z€x+N1 1=0

where we assume 6y = 1. The parameters ¢;, j = 1,2,..., Ny, determine
whether an interaction is mutualistic (0 < §; < 1) or pathogenic (d; > 1).

3. Results

3.1. Static Host Model. If the dispersal range is much larger than the
spatial scale of the host patches, the dynamics of spatially explicit, stochastic
models can be well approximated by a system of ordinary differential equations,
which are called mean-field models (Durrett and Levin 1994). This corresponds
to a fine-grained habitat. If the dispersal range is comparable to the spatial scale
of the host patches, the dynamics of the spatially explicit, stochastic model can
no longer be approximated by systems of differential equations. Instead, the
full stochastic model must be analyzed.

We begin with the static host model and consider the case of two spe-
cialist symbionts and one generalist symbiont on two hosts. Since we cannot
distinguish betweem mutualists and pathogens in this model, we refer to them
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collectively as consumers. We assume that a fraction p of the habitat is occu-
pied by host 1 and a fraction 1-p by host 2. In the fine-grained habitat, p is a
parameter; in the coarse-grained habitat, we will consider the case where the
habitat is a checkerboard of the two host types (for p = 1/2, see Lanchier and
Neuhauser, 2006a).

Since there are two host types, 1 and 2, and three symbionts, two of which
are specialists and the third one is a generalist, we set ¢11 = co2 = a > 0,
C13 = C23 = 5 > 0, and C12 = C91 = 0.

3.1.1. Mean-field Model. To define the dynamics in the fine-grained habitat
we rescale the parameters, namely
o B

a=-— and b= ——

2| INz|

We denote by v;; the fraction of host of type 4 that is occupied by a symbiont
of type j; the fraction of unoccupied hosts of type ¢ is denoted by w;. The
mean-field equations are given by (Lanchier and Neuhauser 2006a)

dl/11 +

— = v auiv
at 11 111

d

% = —log + auglo2

dv

=B — —v13 + but (r13 + v23)
dt

dv

—= —va3 + bug (13 + 123)
dt

It follows that
Uy =p—rVi1 — Vi3 and ug =1—p—rvo3 — o3

Furthermore, 13 is positive if and only if o3 is positive. We can therefore
describe the possible equilibria in terms of presence or absence of the three
competitors: generalist (G), specialist 1 (S7), and specialist 2 (S2). There are
eight qualitatively different equilibria, namely the eight possible combinations of
presence and absence of the three species. We will use the short-hand notation
(G, S51,52) to describe the equilibria, with “0” denoting the absence of the
respective species. We refer to equilibria in which only one species is present as
monoculture equilibria. The equilibrium in which all species are absent is the
trivial equilibrium, denoted by (0, 0, 0).

The monoculture equilibria are v1; = p — 1/a, v92 = 1 — p — 1/a, and
v13+ 103 = 1 —1/b, respectively. Hence, a necessary condition for the generalist
to persist is b > 1. Each of the specialists requires a > 1 for survivial. In
addition, there is a minimum habitat requirement for each of the specialists
in the absence of the other species. Namely, for specialist 1 to survive when
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specialist 2 and the generalist are absent, the fraction p of habitat 1 must
exceed 1/a. (The behavior of specialist 2 is symmetric, i.e., 1 — p must exceed
1/a.)

It follows that if b < 1 and 1 < a < 2, specialist 2 can persist if 0 <
p < 1 —1/a, and specialist 1 can persist if 1/a < p < 1. Since the generalist
cannot persist, the trivial equilibrium is the only possible equilibrium when
1-1/a<p<1/a.

The behavior of this model when b > 1 can be summarized as follows: If
a < b, then (G,0,0) is the only locally stable equilibrium. If ¢ > 2b, then
the specialists outcompete the generalist. For p small (respectively, p large),
(0,0, 53) (respectively, (0,571,0)) is the only locally stable equilibrium. For in-
termediate values of p, the locally stable equilibrium is a coexistence equilibrium
of specialists 1 and 2, (0,51, .52). Note that in the case of monoculture equilib-
ria, the generalist cannot invade since there is not enough space available for it
to persist. In this case, only one habitat type is occupied. When b < a < 20b, as
p decreases from 1 to 0, the locally stable equilibria change from (0,.57,0) to
(G,S51,0), (G,0,0), (G,0,S52), and (0,0,55). We find that for each parameter
combination satisfying b < a < 2b, there is only one locally stable equilibrium,
and all but the (G, S1,S2) equilibria are possible.

3.1.2. Spatially Explicit Model. Lanchier and Neuhauser (2006a) analyzed
the static host model when two hosts lived on an alternating pattern of boxes
on the d-dimensional integer lattice where each box is a translate of the box
Hy = [-L,L)% To mimic specialist and generalist interactions, we stipulate
that boxes centered at Lz = (Lxy, Lxa, . .., Lxg) with 1 + 22+ - -+ x4 is even
(respectively, odd) are occupied by hosts of type 1 (respectively, 2). Specialists
of type 1 live on hosts of type 1; specialists of type 2 live on hosts of type 2;
and generalists of type 3 can live on either host. Recall the R is the radius of
the neighborhood N5.

We denote by A, the critical value of the contact process. We found that
if L and Ry are fixed, 8 > A; and 8 > «, then if initially the generalists
have positive density, the generalists win. In a coarse-grained habitat, however,
specialists need only be marginally better to outcompete generalists. Assuming
that R is fixed, we found that in two or more dimensions, when « > A, and
« > [, then, provided that initially both 1’s and 2’s have positive densities,
the two specialists can coexist and outcompete the generalist when L is large
enough. As a corollary, under the same conditions on the parameters, if initially
there is one specialist and one generalist and both have positive densities, the
specialist and the generalist coexist since they are able to divide up the habitat
in the same way as the two specialists, thus rendering the generalist effectively
as a specialist.

3.1.3. Comparison. To compare the behavior of the static-host model in
fine-grained and the coarse-grained habitats, we see that although competitive-
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ness decreases with specialization, specialists are more competitive in a coarse-
grained than in a fine-grained habitat. These results are consistent with the
findings of Brown (1990). Furthermore, if we denote by «. the smallest value
of the infection rate of the specialist so that the specialist will outcompete a
generalist (of course assuming that the habitat is such that the specialist in the
absence of the generalist will survive), then the critical value will approach g
in a coarse-grained habitat as the length of the habitat patches increases, but
is equal to 26 in the fine-grained habitat.

3.2. Dynamic Host Model. Before we discuss the behavior of the
model that includes both hosts and symbionts, let’s assume that symbionts
are absent. The resulting spatial stochastic model is then known as the voter
model (Clifford and Sudbury 1973; Holley and Liggett 1975). The voter model
is the simplest of all multi-species models. Its non-spatial version is equivalent
to the Wright-Fisher model (Fisher 1930; Wright 1931), which does not allow
for coexistence of multiple types if all types have the same dynamics, i.e., the
neutral model, and mutations are absent.

In the voter model, each site is always occupied by one of the host types.
The name of the model, voter model, comes from interpreting the dynamics as
adopting opinions: at rate 1, an individual at site x chooses a neighbor at ran-
dom and adopts his opinion. (Equivalently, at rate 1, an individual at x chooses
a neighbor at random and imposes her opinion on that site.) The long-term
behavior of this model exhibits a dichotomy, depending on the spatial dimen-
sion. In one or two spatial dimension, the model exhibits clustering, whereas
in three or higher dimensions, coexistence is possible. (By clustering we mean
that if any two sites are picked, the probability that these sites are occupied
by different host types goes to 0 as time tends to infinity. This probability is
positive when coexistence occurs.) The reason for this dichotomy in behavior
lies in the fact that one and two dimensional, symmetric random walks are
recurrent, that is, with probability 1, if starting at 0, the random walk will
return to 0, whereas in three and higher dimensions, these random walks are
transient and so there is a positive probability the random walk will never
return to 0. Random walks enter into this discussion because the ancestral pro-
cess (called dual process) of a particle in the voter model performs a random
walk.

The dynamic host model allows us to distinguish between mutualist and
pathogens. The feedback between the symbionts and the hosts has the potential
to affect the spatial organization of the host in the presence of mutualists, and
our interest will focus on whether symbionts qualitatively change the spatial
organization of the host population.

3.2.1. Mean-field Model. In Lanchier and Neuhauser (2006b), the mean
field model for the fertility model was analyzed under the assumption that the
number of hosts and symbionts are the same and that for all hosts ¢;; = « and
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cij = B for i # j and o > f3, i.e., we assume some degree of specialization.
Furthermore, v; was assumed not to depend on j for j > 1. A similar analysis
can be carried out for the viability model where we assume that J; does not
depend on j when j > 1. Numerical simulations indicate that for either the
fertility or the viability model coexistence of multiple symbionts only occurs
when the symbionts are pathogens.

3.2.2. Spatially Explicit Model. The dynamic-host fertility and viability
models were investigated in Lanchier and Neuhauser (2006b, 2010). The quali-
tative behavior of the two models is the same-they appear like time-changes of
each other (although the time change is non-trivial in the sense that there is
no simple function that relates the two processes).

Rigorous results are available primarily for the viability model when either
the symbionts are generalists or when the symbionts are specialist mutualists.
There are some limited rigorous results available for other cases. We begin
with stating results for the viability model when the mutualists are generalists.
Generalist interactions result when the infection rate c;; does not depend on
the host type 7. That is, we assume ¢;; = «;. We assume that J; is positive.
We find (Lanchier and Neuhauser 2010) that in d < 2, clustering of hosts
occurs, that is, for any initial configuration, the probability that two sites will
be occupied by different hosts goes to 0 as time goes to infinity. In d > 3,
coexistence is possible. (This result was proved when dispersal was only among
nearest neighbors but the proof can easily be extended to the neighborhoods
considered here.) This is the same behavior as in the voter model (Clifford
and Sudbury 1973; Holley and Liggett 1975). The reason is the same. In both
the voter model and in our more complex host-symbiont model, we can follow
the ancestry of each individual backwards in time. In both cases, the paths of
ancestry perform random walks. When two different paths of ancestry collide,
they coalesce, implying that the two starting sites will be of the same type.
Since random walks are recurrent in d > 2 and transient in d > 3, the results
follow. The random walk of the ancestry of a host individual is quite a bit more
complicated in the case of the host-symbiont model. However, in the viability
case, the dynamics of the symbiont can be treated separately from the dynamics
of the host, in the sense that we can first run the symbiont dynamics forward
in time to determine which sites will be infected. Because the death rate of an
individual in the viability model only depends on whether it is infected or not
but not on its neighborhood, we can then follow the ancestry of an individual
host backwards in time on this graph where the times of infection are noted.
This argument breaks down in the fertility model where an individual host
dies if it is replaced by a birth of a neighboring host. A further analysis of
the viability model on a complete graph indicates that ancestral paths coalesce
faster when the symbiont is a pathogen than when it is a mutualist. This is
confirmed in simulations in d = 2 where pathogens cause the hosts to cluster
more quickly than mutualists.
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Rigorous results for specialist interactions are available for the viability
model when the specialist is a mutualist and nearest-neighbor dispersal is as-
sumed. In this case, we were able to show that if host 1 is infected with a
specialist mutualist 1 and host 2 is never infected (i.e., 11 > 0,c¢12 = 0 and
no other symbionts are present), then starting from Bernoulli measure with
a positive density of associated hosts of type 1, eventually all sites will be of
host type 1 and the mutualist 1 will have positive density provided c;; is large
enough. This result can be extended to multiple symbionts and we were able
to show that if there is a preferred specialist mutualist, say mutualist 1 (i.e.,
91 < min{dg, d2,...,dn,), then starting from a Bernoulli measure with a pos-
itive density of infected hosts of type 1, eventually all sites will be occupied
by host 1 and only mutualist 1 will survive provided its infection rate is large
enough.

When the symbiont is a pathogen, we only have rigorous results in the one-
dimensional, nearest neighbor case, which we conjecture behaves differently
from more general neighborhoods or higher dimensions. In the general case,
we conjecture that a specialist pathogen cannot survive and the system will
eventually reduce to a host-only model in which hosts behave like a voter model.

3.2.3. Comparison. Simulations show that the feedback between hosts and
their symbionts in the dynamic model can significantly alter the spatial patterns
when the symbionts are specialists. When the interaction is mutualistic, the
spatially explicit and stochastic dynamic-host model shows clustering that is
very similar to the behavior of the voter model, whereas when the interaction
is pathogenic, coexistence is possible (just as in the mean-field model).

The models we introduced above can mimic a wide variety of interactions.
We have studied symmetric interactions. Durrett and Lanchier (2008) inves-
tigated the dynamic host model when the birth rates of unassociated hosts
differ. They studied the system under long-range dispersal with two hosts, one
of which may be associated with a symbiont. They identified cases when a host
with a specialist pathogen can coexist with a second species, and conjectured
that coexistence of two pathogens is possible but coexistence of a specialist
mutualist with a second species is not.

4. Experiments

Mathematical models allow investigations of a wide range of parameters. While
rigorous analysis may be difficult, simulations can at least yield conjectures
that may lead to a fairly complete picture of the behavior of the model un-
der investigation. However, such analysis does not provide insights into which
combinations of parameters are realized in nature and are thus relevant for eco-
logical studies. To link mathematical models to natural systems is often quite
difficult due to the inherent complexity. Natural systems are complex webs of
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interaction, few of which are well enough understood to relate a subset of inter-
actions to a mathematical model. An alternative is provided by experimental
laboratory systems that are composed of relatively simple communities and
where the environment and species interactions can be tightly controlled.

Kerr at al. 2006 developed one such system that pointed to the importance
of including evolutionary aspects into ecological models. We demonstrated ex-
perimentally that the pattern of migration (local versus global) affected the
evolution of a viral pathogen (T4) that infected a bacterial host (E. coli). The
environment mimicked a two-dimensional integer lattice and consisted of two
microtitre plates, each with 96 wells that were filled with a nutrient solution
in which the bacterial host could live. A high-throughput liquid-handling robot
was programmed to execute a migration scheme where content from one well
was transferred to a different well. In addition to the bacterial host, we intro-
duced a pathogen that was able to live on the host. Different migration patterns
resulted in different outcomes. Specifically, we found that when migration was
only among neighboring wells, so-called “prudent” pathogens were selected,
whereas when migration occurred randomly across the entire microtitre habi-
tat, so-called “rapacious” pathogens were selected. The two pathogens differed
in their competitiveness and productivity, namely the prudent pathogen was
less competitive but more productive than the rapacious pathogen. The differ-
ent migration schemes revealed a trade-off that restricts the parameter space
to a feasible subset.

The experiment was accompanied by a stochastic simulation model that
was parameterized by the experiment and mimicked the essential features of
the experiment. The first model only included a single pathogen for both mi-
gration schemes and resulted in predictions that were not consistent with the
experiment. A careful study of the host and the pathogen revealed that dif-
ferent strains of the virus evolved under the two different migration schemes.
Once the different types were incorporated in the model, the model predictions
agreed with the experimental outcome.

Such insights can only be gained from experiments and point towards the
importance of mathematicians collaborating with biologists if mathematical
models aim to have an impact on gaining an increased understanding of bio-
logical systems.
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1. KPZ and Asymmetric Exclusion

We report on some progress on the behaviour of the Kardar-Parisi-Zhang equa-
tion (KPZ), .
Oh = —3(0;h)* + 102h + W (1)

where W (¢, z) is Gaussian space-time white noise,

E[W(t,2)W(s,y)] = do(t — 5)do(y — ). (2)

Like many stochastic partial differential equations, it was introduced in the
hope that it would reflect the behaviour of a large class of discrete models,
but also lead to some simplifications. In reality, the well-posedness became
a stumbling block, and the recent advances have actually come through an
improved understanding of one particular discretization, the asymmetric simple
exclusion process (ASEP). Since the behaviour is also easier to understand in
the discrete model, we start there.

ASEP is a continuous time Markov process on the discrete lattice Z with
state space {0,1}%: n(z) = 1 if there is a particle at € Z and n(z) = 0 if there
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is no particle at x. Each particle has an independent alarm clock which rings
at exponentially distributed times, with rate one. When the alarm goes off the
particle flips a biased coin to decide which way to jump. With probability p it
chooses to attempt a jump one step to the right and with probability ¢ =1—p
it chooses to attempt a jump one step to the left. However, the jump is achieved
only if there is no particle in the way; otherwise, the jump is suppressed. We
will always assume that p < ¢ so that the model is really asymmetric.

Besides the straighforwardness of its description, ASEP enjoys several con-
venient special properties: There is a simple family of invariant measures, the
Bernoulli product measures, parametrized by o € [0, 1]: If one chooses initially
n(0,z), x € Z to be independent, with P(n(0,z) =1) = p=1— P(n(0,z) =0)
then one will see exactly the same distribution at a later time. One can also
describe a special second class particle with a different rule than the others: It
jumps to unoccupied sites as the others do, but if a particle wants to jump to
where the second class particle is, the two particles exchange positions. If one
watches the resulting process without distinguishing the second class particle
from the others, it is the simple exclusion process with one extra particle. On
the other hand, if one watches the resulting process without distinguishing the
second class particle from a hole, it is the simple exclusion process without the
extra particle.

The process of occupation variables (¢, z) can be thought of as a discretiza-
tion of the stochastic Burgers equation,

By = —10,(u?) + 10%u + O, W (3)
formally satisfied by the derivative
u = 0zh 4)

of (1). The invariant measure is supposed to be white noise. The object which
is a discretization of KPZ itself is the associated height function,

2N (1) + D 0<y<a Nt y), x>0,
h(t,z) = { 2N (t), z =0, (5)

2N(t) - Z;p<y§0 f](t7 y)a T < 07

where 7(z) = 2n(x) — 1 and N(t) = {# of particles which crossed 1 — 0} — {#
of particles which crossed 0 — 1} up to time ¢. This just means that the
height function takes a jump up wherever there is a particle, and a jump down
wherever there is a hole. If we linearly interpolate the function h(x), then a
configuration of particles 01 is represented by a V in the height function, and a
configuration 10 is represented by a A, and the entire dynamics (including the
N(t)), is that A’s become V’s at rate p and V’s become A’s at rate g.

We will be interested in two special initial conditions for the process. The
corner growth model corresponds to having initially sites {0, 1,2, ...} occupied
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and sites {...,—2,—1} unoccupied. The initial height function is |z| and as
we watch, the corner starts to fill in as a little random parabola, still keeping
h(t,z) = |z| for large x. At time ¢ the particle initially at m will be at x(¢t,m)
and the height function can be read off from

ht,z) >2m -z <& x(t,m) <z (6)

On the other hand, if we start ASEP in equilibrium, by which we will alway
mean here with the Bernoulli product measure with density 1/2, then, modulo
a global height shift, the height function will be at each time ¢ a symmetric
random walk in x. For different ¢, the walks are not independent of each other.

The equilibrium initial data corresponds in the continuum to starting KPZ
(1) with a two-sided Brownian motion; h(0,z) = B(x). At a later time, one
expects to see, besides the global height shift, a new, but not independent two-
sided Brownian motion. Note that even if we start with a smooth initial data,
what we expect to see at a small positive time is a version of the initial data
which looks locally like a Brownian motion, and herein lies the problem of well-
posedness for KPZ: The non-linear term (9,h)? is clearly divergent since h as a
function of x is supposed to have non-trivial quadratic variation. Naturally, one
expects that an appropriate Wick ordering of the non-linearity can lead to well
defined solutions, however, numerous attempts have led only to non-physical
answers [9].

The correct interpretation is that of L. Bertini and G. Giacomin [8] where
h is simply defined through the Hopf-Cole transformation

ht,z) < —log Z(t, x) (7)

where Z(t,z) is the well-defined [34] solution of the stochastic heat equation,
0Z = 1022 — ZW. (8)

The key fact is that (8) is well-posed [34]. It is not known how to show directly
that h defined through (7) satisfies (1), or, for that matter what it would mean
to be a solution of (1), so all our results will really be about (8). What is
known [8], is that the solution of (1) with the noise smoothed out in space,
converges to (7) as the smoothing is removed, after a subtraction of a large
global height shift. Note that one expects in such problems to have to make
such shifts in the reference frame in order to observe the universal nontrivial
fluctuation behaviour.

A large class of one dimension random growth models are governed by (1)
and we have chosen to concentrate on ASEP here only because its tractability
has led to progress. Another special model which is to some extent solvable is
the polynuclear growth model [22]. A model which is simple to describe and
intriguing to watch on a computer, but not particularly tractable, is ballistic
aggregation. Here one has a stack of particles n(x) € {0,1,2,...} at each x € Z.
Each site now has an independent exponential alarmclock, rate one, and when
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the alarm rings the stack at z is increased to max{n(z — 1),n(z) + 1,n(z +
1)}. Unlike ASEP, the nonlinearity is not already quadratic, and the invariant
measures are not well understood. The idea in the derivation of (1) is that if one
writes very roughly F(Vh) for the net macroscopic effect of the nonlinearity,
and expands F(Vh) = FO + FOVh + 1 FR)(Vh)? + - the first two terms
can be absorbed in global shifts, and generically the quadratic term gives the
main nontrivial macroscopic effect.

2. Directed Random Polymers

The problem of directed random polymers is closely related to (1). The free
energy of the discrete random polymer is

fg(n,z) =log Ey 0 [e_ﬁ 2y W(Ebi) (9)

where W (i, j) are independent identically distributed random variables, and
E is the expectation over a nearest neighbour random walk b; starting at x
and conditioned to hit 0 at time n. Note that the directed polymer (9) also
makes sense in higher dimensions. In d > 3 there is a phase transition, with
standard Gaussian behaviour in the weak coupling regime 0 < § < 8. < oo [17].
This has led to a lot of work in probability (see [10] for a survey). Above S,
we are in the poorly understood strong coupling regime, where the main effect
is that the probability in (9) is concentrated or localized on favorite paths. In
dimensions d = 1 and 2 the two sources of randomness, the random path, and
the random environment, are strongly coupled for all g, ie. 5. = 0.

In one dimension, there is an associated continuum model. Let

Fs(t,z) = log E, o {:exp: {—5 /Ot W(s,b(s))ds}] (10)

where E, o is the expectation over the Brownian bridge b(t) with 5(0) = x and
b(t) = 0. Fg(t, x) is the free energy of the continuum directed random polymer.
The Wick ordered exponential just means that one must order the times in the
series expansion, ie. the expectation in (10) is defined by

o0

> (=B / / Pevootn (T1, o )W (dtyday) - - W (dtndzy,),
0<t1 < <t, <t JR™

n=0
(11)
where py, . 4, (%1,...,2,) are the transition probabilities of the bridge and
W (dtdx) refer to Wiener integrals with respect to the space-time white noise.
In fact, if we let

—x?/2t

V27t

e

Zp(t, ) = exp{Fg(t, z)} (12)
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then Z3(t, x) satisfies

01 Zs = 302Z5 — BZsW. (13)
with delta function initial data
Z3(0,z) = 0o (). (14)

To see this, note that (8) is really shorthand for the integral equation

712/2t (z—y)?/2(t— s)
Zs(t,x) = / / YW (dy,ds).  (15)

\/271' \/27rt—s

Iterating the integral equation, we arrive at (11).
It is not hard to see that at the continuum level we can rescale

Zs(t, ) "= B2 Z(B, fPx) (16)

so there it is enough to consider g = 1.

3. The t'/3 Law

We now turn to some of the physical predictions. The most important one is
that the fluctuations at time ¢ are supposed to be of nonstandard order ¢!/3.
This was originally predicted for (8) by the dynamic renormalization group [13],
and later for the equivalent (1) by [21]. For ASEP it was predicted by mode
coupling [33], and for directed polymers by [16].

About ten years ago, there was sudden, significant progress on two models,
the totally asymmetric simple exclusion process (TASEP) where ¢ = 1,p =
0, and the related polynuclear growth model, where one has determinental
formulas [27]. Very precise results showed that the fluctuations are in some
cases related to the universal distributions of eigenvalues of random matrices,
and fit into various universality classes depending only on the type of initial
data. For the corner growth initial conditions K. Johansson [18] (see also [4],
[22],[19],[7]) proved for TASEP that

—h(t,t*x) ~ e(t) + 13 (((2) — 42?) (17)

where ((x) is the Airy, process. In particular, it is stationary in « and has as its
one-dimensional marginals the GUE Tracy-Widom distribution, i.e., the limit-
ing distribution of the scaled and centered largest eigenvalue in the Gaussian
unitary ensemble. The cumulative distribution function is

Foup(s) = e 17 W0 Wy — qet(T — K ) 2 (5 00 - (18)

Here u is the unique solution of Painleve II equation, u” = (y+ 2u?)u satisfying
u(y) ~ Ai(y) as y — o0, and Ka; is the operator with kernel

Kai(w,y) = / " () Ai(z + v)Ai(y + v)do (19)

— 00
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where Ai(z) is the Airy function and o(v) = 1 if v > 0 and 0 if v < 0 [29].
TASEP can also be mapped into a version of the discrete random polymer
corresponding to 8 = oo, with geometrically distributed W (i, 5) [18].

In equilibrium (p = 1/2), P. Ferrari and H. Spohn [12] proved that the
space-time correlation functions of TASEP satisfy

n{% e E[H (et e 12)7(0,0)] =t~ 3® (2t 2/?) (20)

for a special universal ® (see [12] for the very complicated formula). The limit
process was studied in [3].

These computations represented genuine breakthroughs, but their applica-
bility was restricted to a few models where there is a determinental structure.
The main goal now is to prove that these behaviours are universal, ie. find
proofs that work for a broad class of models. At a more modest level, one can
hope to show that (17) and (20) extend to ASEP or KPZ/Stochastic Burgers
itself. In terms of the directed random polymer, the universality conjecture is
that

f5(n,n?3x) ~ agn + ban'/>¢(x) (21)

where ag,bg are non-universal and {(z) is as above in (17). Of course one has
to assume some reasonable decay on the tails of the common distribution of
the W (i, j)’s.

4. Weakly Asymmetric Limit of Simple
Exclusion

There are various scaling regimes for ASEP. Consider the process on €Z with
scaling parameter 0 < ¢ << 1. If one fixes the asymmetry and starts from a
slowly varying initial profile, with 7(0, ) independent with E[7)(0, z)] = «(0, x),
x € €Z, then at a later time e 't, the density profile of 7 will have evolved
according to the inviscid Burgers equation,

Opu = — 30, (u?). (22)

The initial fluctuations are transported along the characteristic lines. On the
other hand, one can let the asymmetry depend on ¢ as € N\, 0. If one takes
p=1(1—-¢), ¢ = 1(1+¢) then one has to wait until time e~2¢, and one sees
the viscous Burgers equation,

Oyu = 7%8x(u2) + %(ﬁu. (23)

The fluctuations associated to (23) are Gaussian, because the process has been
steered too close to the symmetric case.
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In order to understand the intermediate scaling at which there are non-
trivial fluctuations we use the stochastic Burgers (3) as a proxy for its dis-
cretization ASEP, and rescale it in equilibrium,

uc(t,x) = e ule “t,e ) (24)

with the e~ ! corresponding to our rescaled lattice. To preserve the invariant
white noise, we have to have o = 1/2. The stochastic Burgers equation (3)
becomes

Oyue = — 17320, (u2) + 167 F202u, 42 0, W. (25)

A first guess is to take @ = 3/2. The viscous and noise terms together
represent a small Ornstein-Uhlenbeck perturbation, and the process appears to
go to the renormalization fixed point d;u = —19,(u?). Whatever this limit is
— and we do not understand it — it is not the inviscid limit € N\, 0 of Jyu. =
—19,(u?) + 1e0%u. since the latter does not preserve the initial white noise,
as can be easily checked from the Lax-Oleinik formula for the solution. It is
interesting to note that appropriate dispersive perturbations, such as dyu. =
—109,(u?) + Led2u., do preserve white noise [23].

A more moderate approach is to take o = 2, and rescale the nonlinearity by
£1/2 to compensate. KPZ/Stochastic Burgers is invariant under this rescaling,
and hence one can anticipate an invariance principle under which it is the limit
of processes like ASEP. Since the size of the nonlinearity is roughly ¢ — p, it
corresponds to taking

p=11-e?)  g=11+?). (26)

This is the weakly asymmetric limit.
J. Gértner [14] discovered that there is an exact discrete Hopf-Cole trans-
formation for ASEP. Let

p=tlog(q/p), v=+/pg, A=p+q—2ypg, (27)

and
z(t,x) = Aexp{—ph(t,z) + At}. (28)

Then .
Oz = vAZ + 2V (29)

where A is the lattice Laplacian Af(z) = +{f(z+1)—2f(z)+ f(z—1)}, and W
refers to the derivative of certain jump martingales, which should be thought
of as a messy version of space-time white noise.

Now we can make the connection between the discrete model and the con-
tinuum equations precise. Consider ASEP with the weak asymmetry (26). Cor-
responding to this process we have a z.(¢, ) as in (28). Observe it at time =2t

and on space scale ¢!, so that rescaled

ze(t,x) = 2o (7%t e ). (30)
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Assume that A and the initial data are chosen so that
ze(0,2) = Z(0,x) (31)

in the sense of convergence in distribution.

The first result, due to L. Bertini and G. Giacomin [8], is for initial data not
far from equilibrium. Take A = 1 and assume that for each p = 2,4, ... there
is C'= C(p) < oo such that

E[2P(0,2)] < CeCll, (32)

In the equilibrium situation log z. (0, z) will be roughly Gaussian mean 0 and
variance |z|, in which case we have (32). So (32) is a way of saying that the
initial data scales diffusively. Under these conditions, it is proved in [8] that

ze(t,x) = Z(t, ) (33)

in the sense of distributional convergence of stochastic processes, where Z(t, )
is the solution of the stochastic heat equation (8) with initial data Z(0, x).

The corner growth model does not satisfy (32) and the scaling is different.
Since initially h(z) = |x| one has to take

A=g1/? (34)
and one ends up with delta function initial data,
Z(0,z) = do(). (35)

It is shown in [1] that the method of [8] can be extended to prove that (33)
holds in this case as well.

5. KPZ/Stochastic Burgers in Equilibrium: The
Method of Second Class Particles

The space-time correlation functions of the occupation variable for ASEP in
equilibrium turn out to be equal to both the transition probabilities of the
second class particle y(¢) and the discrete Laplacian of the variance of the
height function [22]. After the weakly asymmetric rescaling, the identity for
T € €Z reads

E.[uc(t,z)us(0,0)] = e ' P.(y:(t) = 2) = A Var.(h.(t,x)) (36)

where F., P., Var. refer to the expectation, probability, and variance with
respect to the weakly asymmetric process, ie. with p, ¢ as in (26), A.f(x) =
3€ 2 (flz+e) = 2f(z) + f(z —¢)), and

ue(t,w) = V(e e ) ye(t) = ey(e?). (37)
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M. Baldzs,T. Seppildinen and the author [6] then showed that for each
1 <m < 3, there is a C = C(m) < oo such that for all ¢ > 1,

C™HY3 < E[ly-(t)[™]Y/™ < Ct'/3. (38)

With some work we can pass to the limit € \, 0 to conclude that the correlation
functions of stochastic Burgers make sense, at least as a probability measure in
the space variable, and satisfies

Elu(t, 2)u(0,0)] = 10*Var(h(t,z)) (39)

and the bounds obtained from the limit of (38),

/m
C413 < (/|x|mE[u(t,x)u(0,0)]da:>l <ct'l? (40)

which identifies the correct order of fluctuations.

One also might guess that there is a limiting yo(¢) = lim.\oy.(t) whose
transition probabilities give the correlation functions E[u(t,2)u(0,0)]. yo(t)
would satisfy a stochastic differential equation,

dyo(t) = u(t,yo(t))dt + db (41)

where b is yet another Brownian motion. For each ¢, u(t,x) is a white noise
in z. So yo(¢) is a kind of dynamical version of the Sinai diffusion. Note that
(41) does not really make sense: The field u(t, z) is just too wild, and yo(¢) will
not even be absolutely continuous with respect to b(¢). But it does give a hint
that many of the miracles of ASEP are actually inherited by KPZ/Stochastic
Burgers, if only one could get the calculus right.

We now give a brief hint at the proof of the key estimate (38). It is adapted
from earlier work of [5], which in turn goes back to [11].

The main problem is to estimate the probability of an event like

Ao = {y(t) < "2y}

in the weakly asymmetric simple exclusion process. We couple two copies of the
process, one with density 1 with another with density 1 — e~ 1/6¢=1/3y in such
a way that all the extra particles in the first copy are second class particles. Let
Curr . be the net current of second class particles crossing the space-time line
between (0,0) and (t, —'/3t%/3). Let

AL = {Curry. > V01132,

Then one can show that because of the ordering, P(A:) ~ P(A.). The expec-
tation of this current can be computed without much difficulty: E[Curr, ] ~
1e'/6¢1/3y2 The key point is that there is a general fact [5] which relates the
variance of the current back to the first moment of the second class particle,

Var(Currt_rg) = CEHX(t) + 51/3t2/3|],



Weakly Asymmetric Exclusion and KPZ 2319

This means that we can use Chebyshev’s inequality to estimate

Var(Curry.) ., E[|x(t) +e'/3¢%/3]]

__1/3,2/3 _
Ply(t) < —e/"t%°y} < 0(51/6t1/3y2)2 (el/611/3y2)2 7

which miraculously gives (38).

The reason we can only get moments m < 3 is the y* in the last denominator,
which cannot be improved with these methods. It should be emphasized that
many things are happening on the same scale t'/3 in this problem, and the
second class particle method is not necessarily identifying the exact source of
the anomalous fluctuations.

Using related ideas, T. Seppélainen [28] has recently shown that for the
polymer where the W (4, j) have log-Gamma distribution, for 1 < p < 3/2

E[|f1(n,0) —cn|f] < C’np/?’,

which again identifies the correct order, but with fewer moments.

6. Tracy-Widom Formula for ASEP

C. Tracy and H. Widom [30], [31] discovered a formula for the probability
distribution of the position at time ¢ of the mth particle in the corner growth
model. Let vy =¢g —p and 7 = p/q.

P(x(y 't,m) <x) = /5 ;ﬂ H(l — pr¥)det(I + pJemap)i2r,) (42)
o k=0

where S+ is a circle centered at zero of radius between 7 and 1, and where the
kernel of the determinant is given by

Sl ¢/
T ) = [ epUmalQ) = Aumatf P g, ()
I n'(¢—mn)
The variables n and 1’ are on a circle I';, centered at zero and of radius between
7 and 1, and the ( integral is on a circle I's centered at zero and of radius
between 1 and 71, and

o0 k
f(l/*a Z) = Z 1_7-77%316’ At,m,x(C) =T IOg(l - C) + % +mlog (.

k=—o0

(44)

There are also formulas for other initial data and for transition probabilities.
However, they are extremely unwieldy, involving large numbers of contour inte-
grations. Although the formula (42)-(44) looks pretty complicated, it is actually
simple enough to start asymptotic analysis. In particular, in [32], Tracy and
Widom used the method of steepest descent on (42) to prove that (17) holds
for ASEP, in the sense of one dimensional marginals.
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7. The Crossover Distributions

From the weakly asymmetric limit, we learn that the distribution functions of
F(t,z) = F1(t,z) from (10),

the crossover distributions, can be obtained from the limit

Fy(s) = lim P.(x(y't,m) < z),
e\0
where v = ¢ —p = ¢'/2 and
2
m = e~ 1/? (s + log V2t + log(e~/%/2) + ;) +t/4+2/2. (46)

The limit was computed independently by T. Sasamoto and H. Spohn [24] and
by G. Amir, I. Corwin, and the author [1] using the method of steepest descent
on the Tracy-Widom formula (43). There are however serious new complications
because the poles of the function f from (44) are becoming dense about the
saddle point (see [1]).

The exact formula for the distribution functions F}; reads

Fis) =1 /_ G fla—r)dr (47)

where G(r) = e=¢ " is the Gumbel distribution and

f(r)y =233 det(I — Ko, )tr (I — Ko,) "'Pai) (48)

L2(21/3t=1/3p,00) *

The operators are defined through their kernels: Pa;(x,y) = Ai(x)Ai(y) and

Ko, (z,y) = / 5o(v) Ai(x +v)Aily + v)dv + 224G oy (m ; y) (49)

— 00
where
. B 1 1
O't('U) - 1 _6_271/3t1/3v - 9—1/341/3y,” (50)
is a smooth non-decreasing function with lim,\,_o&:(v) = 0 and

limy\ o0 6¢(v) = 1. Go(z) is a Hilbert transform of the product of Airy func-
tions, which can be partially computed,

1 > _ . 3 a? -
Ga(aj)zm/o 13 Uzsm(mf—!—%—?—i—z)d&

The formula can be variously interpreted as giving an exact formula for the one
point distributions of the stochastic heat equation (8) with delta initial data,
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KPZ with narrow wedge initial conditions, or the distribution of the continuum
random polymer free energy.
It is not hard to check from the formula that

Jim F,(t/35) = Faug(2'/3s) (51)

and from the series (11) that

s —r2/2
lim Fy (2~ 1271/ 441/4g) = ¢ dr 52
N0 t( ) e m ( )

Thus the family of distributions crosses over from Gaussian behaviour for small
time, to GUE Tracy-Widom for large time.

For each ¢, F(t, z) is a stationary process in x with one dimensional distribu-
tions given by the crossover formula. As ¢ \, 0, one can obtain the full process
level limit: It just comes from the first term (the Gaussian term) in the chaos
expansion (11). A natural conjecture is that as t * oo, t~'/3F(t, x), converges
to the process Airy,(x).

Formula (49) is naturally compared to the determinental forumla (18) for
Feug. In [1], there is also a version of the crossover formula generalizing the
Painleve II representation for Fgy g, reminiscent of inverse scattering theory:

det(I — Ko,)r2(r00) = €~ [ (z—r)Vi(z)da (53)

where V;(x) satisfies both

Vi(z) :/ 51 (v)gy(@)dv + 22120, Ha(w) and  Lav,gy = vg,  (54)

where ¢,(z) ~ Ai(v + ) as © — oo, Ly = % — x — V is the Stark operator,
and Hq? is the Hilbert transform in v of ¢2.

At this point we review what has been accomplished. Actually, all that we
have done is show is that one more model, KPZ itself, belongs to the KPZ
universality class. Despite the appearance of generality, KPZ is really no more
fundamental than ASEP. So now KPZ and the continuum directed polymer
(10) are added to the short list of models (TASEP, polynuclear growth, ASEP)
for which one is able to rigorous establish some of the behaviour one expects
to be universal. For generic models like ballistic aggregation one can still say
essentially nothing.

8. The Intermediate Coupling Regime for
Random Polymers

On the other hand, for the discrete polymers (9) we can say something universal
[2]. Here there is also a weakly asymmetric limit. Setting n ~ =2 we take as
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1/4

asymmetry n~ /% ~ /2. In other words we consider

fg,-1/4(n,z) =log By ¢ wi7m Tz WEb)] (55)
Assume the common distribution of the W (%, j) has bounded moment generat-
ing function so that the discrete polymer makes sense and, for normalization,
mean zero and variance one. Then it is not hard to check that as n " oo,
fon-1/a(n, ) — cgn'/? converges in distribution to that of Fg(t,z) given by
(10). This is proved by expanding the exponential on the left hand side of (55)
and showing that the discrete chaos expansion converges term by term to the

continuous chaos expansion (11). Hence we can show for any such distribution
on the W (i, j),

lim P(fg,-1/4(n,z) — can'/? < s) = Fpa(s) (56)
n oo
So there is a region intermediate between the weak coupling (8 = 0) and the
strong coupling (8 > 0) regimes where we can universally observe rigorously
the transition in behaviour from Gaussian to Fgyp fluctuations, given by the
crossover distributions (47). In particular, for any reasonable distribution of
W (i, j) we have the following weak version of universality,
Jim lim P(B 3 (ts,-1/4(n, ) — cgn'/?) < 5) = Foup(s).  (57)

Soon oo

Acknowledgement

The author would like to take this opportunity to acknowledge the very sub-
stantial contributions of T. Alberts, G. Amir, M. Balazs, I. Corwin, K. Khanin
and T. Seppéldinen to the research described in this report. Additional thanks
to T. Alberts, I. Corwin and K. Khanin for critical reading of the manuscript.

References

[1] G. Amir, I. Corwin, J. Quastel, Probability Distribution of the Free En-
ergy of the Continuum Directed Random Polymer in 1 4+ 1 dimensions, 2010,
arXiv:1003.0443v2.

[2] T. Alberts, K. Khanin, J. Quastel, The Intermediate Disorder Regime for
Directed Polymers in Dimension 1 + 1, 2010, arXiv:1003.1885

[3] J. Baik, P.L. Ferrari, S. Peche, Limit process of stationary TASEP near the
characteristic line.2009, arXiv:0907.0226

[4] J. Baik,, E. Rains, Limiting distributions for a polynuclear growth model with
external sources. J. Statist. Phys. 100 523-541, 2000.

[5] M. Baldzs, T. Seppaldinen. Order of current variance and diffusivity in the asym-
metric simple exclusion processmath/0608400, to appear in Ann. Math.



Weakly Asymmetric Exclusion and KPZ 2323

[6]
7]
8]
[9]

[10]

[11]

[12]

[13]
[14]

[15]

M. Balézs, J. Quastel, T. Seppéldinen. Scaling exponent for the Hopf-Cole solu-
tion of KPZ/stochastic Burgers. arXiv:0909.4816v1

A. Borodin and P.L. Ferrari. Large time asymptotics of growth models on space-
like paths I: PushASEP. Electron. J Probab., 13:1380-1418, 2008.

L. Bertini, G. Giacomin. Stochastic Burgers and KPZ equations from particle
systems. Comm. Math. Phys. 183:571-607, 1997.

T. Chan, Scaling limits of Wick ordered KPZ equation, Comm. Math. Phys.
209:671-690,2000.

F. Comets, T. Shiga, N. Yoshida Probabilistic analysis of directed polymers in
a random environment: a review. Stochastic analysis on large scale interacting
systems, 115-142, Adv. Stud. Pure Math., 39, Math. Soc. Japan, Tokyo, 2004.

E. Cator, P. Groeneboom. Second class particles and cube root asymptotics for

Hammersleys process. Ann. Probab., 34, 2006.

P.L. Ferrari, H. Spohn Scaling limit for the space-time covariance of the station-
ary totally asymmetric simple exclusion process. Comm. Math. Phys. 265, 1-44
2006.

D. Forster, D. R. Nelson, and M. J. Stephen, Large-distance and long-time prop-
erties of a randomly stirred fluid Phys. Rev. A 16, 732 (1977).

J. Gartner, Convergence towards Burgers equation and propagation of chaos for
weakly asymmetric exclusion process. Stoch. Proc. Appl.27:233-260, 1988.

T. Halpin-Healy and Y.-C. Zhang, Kinetic roughening phenomena, stochastic
growth, directed polymers and all that, Physics Reports 254:215-414,1995.

D.A. Huse and C.L. Henley, Pinning and Roughening of Domain Walls in Ising
Systems Due to Random Impurities, Phys. Rev. Lett. 54:2708-2711,1985.

J.Z. Imbrie and T. Spencer, Diffusion of directed polymers in a random environ-
ment, J. Statist. Phys. 52:609-626,1988.

K. Johansson, Shape fluctuations and random matrices. Comm. Math. Phys.,
209:437-476, 2000.

K. Johansson. Discrete polynuclear growth and determinantal processes. Comm.
Math. Phys., 242:277-329, 2003.

J. Krug and H. Spohn. Kinetic roughening of growing surfaces. In C. Godreche
(Ed.), Solids far from equilibrium pp. 117130. Cambridge University Press. 1992.

K. Kardar, G. Parisi, Y.Z. Zhang. Dynamic scaling of growing interfaces. Phys.
Rev. Lett. 56:889-892, 1986.

M. Prahofer and H. Spohn. Scale invariance of the PNG droplet and the Airy
process. J. Stat. Phys., 108:1071-1106, 2002.

J. Quastel, B. Valké, KdV preserves white noise. Comm. Math. Phys. 277;707—
714, 2008.

T. Sasamoto, H. Spohn. FEzact height distributions for the KPZ equation with
narrow wedge initial condition. arXiv:1002.1879,

T. Sasamoto, H. Spohn. Universality of the one-dimensional KPZ equation.
arXiv:1002.1883,



2324 Jeremy Quastel

[26]
[27]
[28]
[29]
[30]
[31]
32]
[33]

[34]

T. Sasamoto, H. Spohn. The crossover regime for the weakly asymmetric simple
exclusion process. arXiv:1002.1873.

G.M. Schiitz Ezact solution of the master equation for the asymmetric exclusion
process. J. Stat. Physics 88 (1997), 427445.

T. Seppéldinen. Scaling for a one-dimensional directed polymer with boundary
conditions. arXiv:0911.2446

C. Tracy and H. Widom. Level-spacing distributions and the Airy kernel. Comm.
Math. Phys., 159:151-174, 1994.

C. Tracy and H. Widom. Integral formulas for the asymmetric simple exclusion
process. Comm. Math. Phys., 279:815-844, 2008.

C. Tracy and H. Widom. A Fredholm determinant representation in ASEP. J.
Stat. Phys., 132:291-300, 2008.

C. Tracy and H. Widom. Asymptotics in ASEP with step initial condition.
Comm. Math. Phys., 290:129-154, 2009.

H. van Beijeren, R. Kutner, H, Spohn. Excess noise for driven diffusive systems.
Phys. Rev. Lett. 54:2026-2029, 1985.

J. Walsh. An introduction to stochastic partial differential equations. In: Ecole
d’Ete de Probabilites de Saint Flour XIV, Lecture Notes in Mathematics n. 1180.
Berlin: Springer, 1986.



Proceedings of the International Congress of Mathematicians
Hyderabad, India, 2010

Stein’s Method, Self-normalized Limit
Theory and Applications

Qi-Man Shao*

Abstract

Stein’s method is a powerful tool in estimating accuracy of various probability
approximations. It works for both independent and dependent random vari-
ables. It works for normal approximation and also for non-normal approxima-
tion. The method has been successfully applied to study the absolute error of
approximations and the relative error as well. In contrast to the classical limit
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1. Introduction

Let W := W, be a random variable of interest. Assume that the limiting
distribution of W), is standard normal. A natural question is the accuracy of
the approximation. There are mainly two approaches for estimating the er-
ror of the normal approximation. One approach is to study the absolute error
sup, |P(W < z)—®(z)| via Berry-Esseen type bounds, where ® is the standard
normal distribution function. Another approach is to estimate the relative error
of P(W > z) to 1 — ®(z) through the Chernoff large deviation or the Cramér
type moderate deviation. In this paper we mainly focus on two types of W:
W satisfies a general framework of Stein’s identity, and W is a self-normalized
sum or a Studentized statistic.

When W is a standardized sum of independent random variables, Berry-
Esseen bounds, Chernoff large deviations, and Cramér moderate deviations are
extensively studied under certain moment conditions which are also necessary
for these results. A standard approach to these classical results is Fourier meth-
ods and/or conjugate methods. However, these methods are much more difficult
to apply for W under dependence structure. In a paper in the Proceedings of the
Sixth Berkeley Symposium, Stein (1972) introduced a totally different method
to determine the accuracy of the normal approximation to the distribution of
a sum of dependent random variables satisfying a mixing condition. Since then
many developments have taken place, both in extending the method beyond
normal approximation and in applying the method to problems in other areas.
The first focus in this paper is on the latest development on Stein’s method
especially when W satisfies a general framework of Stein identity. Staring with
a brief introduction of Stein’s method, Section 2 will be devoted to normal ap-
proximation for smooth functions and Berry-Esseen bounds, Cramér type mod-
erate deviations, non-normal approximation via exchangeable pairs approach,
and a randomized exponential concentration inequality.

In contrast to the standardized sums, it is now well-understood that self-
normalized sums usually preserve much better properties and self-normalized
limit theorems (namely, limit theorems for self-normalized sums) require no
moment assumptions or much less moment assumptions than the classical limit
theorems do. The second focus in this paper is on the latest development on
self-normalized limit theory. Section 3 will summarize results on a general self-
normalized moderate deviation, the self-normalized saddlepoint approximation
without any moment assumption, Cramér type moderate deviations for maxi-
mum of self-normalized sums and for Studentized U-statistics. Applications to
the false discovery rate in simultaneous tests will be discussed in Section 4.

2. Stein’s Method

The classical approach to the central limit theorem and the accuracy of approx-
imations for independent random variables relied heavily on Fourier methods.
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Without independence, however, Fourier methods are much more difficult to ap-
ply, and bounds for the accuracy of approximations become even more difficult
to find. It was Charles Stein in 1972 who introduced a startling technique, now
known simply as Stein’s method, for normal approximation. The method works
not only for independent random variables but also for dependent variables. It
can also give bounds for accuracy of approximations. Extensive applications of
Stein’s method to obtain uniform and non-uniform Berry-Esseen-type bounds
for independent and dependent random variables can be found in, for example,
Diaconis (1977), Baldi, Rinott and Stein (1989), Barbour (1990), Dembo and
Rinott (1996), Goldstein and Reinert (1997), Chen and Shao (2001, 2004, 2007),
Chatterjee (2008), and Nourdin and Peccati (2009). Stein’s ideas have been ap-
plied to many other probability approximations, notably to Poisson, Poisson
process, compound Poisson and binomial approximations. Stein’s method has
also found diverse applications in a wide range of fields, see for example, Arra-
tia, Goldstein and Gordon (1990), Barbour, Holst and Janson (1992), and Chen
(1993). Expositions of Stein’s method and its applications in normal and other
distributional approximations can be found in Diaconis and Holmes (2004),
Barbour and Chen (2005) and Chen, Goldstein and Shao (2010). In this sec-
tion starting with a brief introduction to Stein’s method, we summarize some
latest developments in this area.

2.1. Stein’s equation. Let Z be a standard normally distributed ran-
dom variable and let Cpqy be the set of continuous and piecewise continuously
differentiable functions f: R — R with E|f’(Z)| < co. Stein’s method rests on
the following characterization.

Lemma 2.1. Let W be a real valued random variable. Then W has a standard
normal distribution if and only if

Ef'(W) = E{W (W)}, (2.1)
for all f € Cpq.

The proof of necessity is essentially a direct consequence of integration by
parts. For the sufficiency, let f(w) := f.(w) denote the solution of the equation

fw) —wf(w) =I(w < z) - 2(2), (2.2)
where z is a fixed number. It is easy to see that f, is given by

e 2 (w)[1 — ®(2)]  ifw < z,
fa(w) = (2.3)
e 20 (2)[1 — D(w)]  ifw >z

and that f, is a bounded continuous and piecewise continuously differentiable
function. Moreover, f, has the following properties (see, e.g., Chen and Shao
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(2005)): for all real w, v and v,

0 < f.(w) < min(v/2r/4,1/|2|), (2.4)
and
|fL(w)] <1, [fi(w) = fi(v)] < 1. (2.5)

Equation (2.2) is a particular case of the more general Stein equation
f'(w) —wf(w) = h(w) — E(Z), (2.6)

to be solved for f given a real valued measurable function h with E|h(Z)] < co.
Similarly to (2.3), the solution f = f, is given by

Folw) = w2 / (@) — BR(Z))e 12 da

= —ev'/2 / [h(z) — EW(Z))e” /2 da. (2.7)
If h is bounded, then
[fnll < V@ /2([R() = ER(Z)]| < 2[R, (2.8)
and
If5ll < 202() = ER(Z)| < 4][R]), (2.9)
where || - || denotes the sup-norm. If h is absolutely continuous, then
Lfull < 20871, IR < IRV AR < 21181 (2.10)

2.2. Normal approximation for smooth functions and
Berry-Esseen bounds. Let W := W, be the random variable of in-
terest. Our goal is to estimate Eh(W) — Eh(Z). By (2.6), it is equivalent to
estimate E f; (W)—EW f, (W), which is often much easier to deal with than the
original one. When W is the standardized sum of independent random variables
or locally dependent random variables, the Stein method has been successfully
applied to prove the uniform and non-uniform Berry-Esseen bounds (Chen and
Shao, 2001, 2004). Here we focus on Berry-Esseen bounds for general W. Follow-
ing Chen, Goldstein and Shao (2010), W is said to satisfy a general framework
of Stein’s identity if there exist a random function K (¢) and a random variable
R such that

EW (W) = E/OO POV + )R @)dt + ERF(W) (2.11)
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for all absolutely continuous functions f for which expectations exist. The fol-
lowing theorem provides the normal approximation for smooth functions.

Theorem 2.1. Let h be absolutely continuous with ||h'|] < co and F any o-
algebra containing o(W). If (2.11) holds, then

|ER(W) — Eh(Z)| < |W||(E|1 — K| + 2E(K>) + 2E|R|), (2.12)

where

K =FE {/ f((t)dt|}'} and Ky = / [tK (t)|dt. (2.13)
Proof. Let f3, be the Stein solution in (2.6). Then, by (2.11)

EW(W) — Eh(Z)

W)~ [ TRV R ()t~ B{RA(W))
Ef,(W)(1 — K1) — E{Rfy(W)}

48 [ {0V) = 07 + 1R (.

By the basic properties of the Stein solution (2.10) and the mean value theorem,
we have

[EfW)(1 = K1) < IWIEL = K, [E{Rfa(W)}] < 2|I1|| E|R|

and
]E / {fé(W)—fé(W+t)}f?(t)dt‘<E | 2 leola = 2w B

This proves (2.12). O

Chen et al (2010) give four different approaches to construct K in (2.11). In
particular, for the exchangeable pairs approach (Stein (1986)), one constructs
W' such that (W, W’) is exchangeable. Suppose that there exist a constant A
(0 < A < 1) and a random variable R such that

E(W —W' | W) =AW — R). (2.14)

Then for all f
E{W =W)(f(W)+ f(W'))} =0
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provided the expectation exists. This gives

EW(V) = S B{W — W) = fW)} + B(RFOV))

E/OC FW + )R B dt + B(RFOV)) (2.15)

for all absolutely continuous functions f for which expectations exist, where
K(t) = %A(I(fA <t<0)—I(0<t< —A)) and A = W — W’. Therefore
with A .

K1 = B(A?|F)/(2)), K2 =[AP/(4)) (2.16)
Theorem 2.1 leads to

Theorem 2.2. Let h be absolutely continuous with ||h'|] < oo and F any o-
algebra containing o(W), and let (W,W') be an exchangeable pair satisfying
(2.14). Then

|ER(W) — ER(Z)| < ||W'||(E|L - Ki|+ E|AP/(2)) + 2E|R|). (2.17)

From the L, bound one can derive a Berry-Esseen bound, as highlighted
below

1/2
sgp |[PW <z)—®(2)] <2 (U?}Fil |[ER(W) — Eh(Z)|> . (2.18)

However, the Berry-Esseen bound in (2.18) is usually not sharp.
When K(t) in (2.11) has a bounded support, Chen et al. (2010) give the
following Berry-Esseen bound under the framework of (2.11).

Theorem 2.3. Let W be any random variable and let f, be the solution of the
Stein equation (2.2) for z € R. Suppose that there exist random variables Ry
and K(t) > 0,t € R, and constants § and d1 mot depending on z, such that
|E(Ry)| < 01 and

EW (W) = E/|t<5 POV + DR (1) dt + B(R)). (2.19)

Then

sup |P(W < z) — ®(2)| < 6(L1+ E|WK,|) + 2.7E[1 — Ki| + 61, (2.20)
z€R

where K1 = E(f|t\<50 K(t)dﬂW). In particular, if W, W' are mean zero, vari-
ance 1 exchangeable random variables satisfying (2.14) for some 0 < A <1 and
some random variable R, and if |A| < § for some constant §, then

sup [P(W < z) — ®(2)| < 8(1.1 + E|WK,|) + 2.TE[1 — K| + E|R|, (2.21)

where Ky = E(A2|W)/(2)) and A=W — W',
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Open Question 1. Let (W, W’) be an exchangeable pair satisfying (2.14). Is
it true or under what additional assumptions

sup |[P(W < z) — ®(2)| < A(E|1 — K| + E|A]?/A + E|R)|)
for a universal constant A?

2.3. Cramér type moderate deviations. Moderate deviations date
back to Cramér (1938) who obtained expansions for tail probabilities for sums of
independent random variables about the normal distribution. For i.i.d. random
variables X1, -+, X, with EX; = 0 and Var(X;) = 02 such that BetolXil'? <
oo for some tg > 0, Cramér’s result implies that

P(W, > )/(1 - ®(z)) — 1

uniformly in 0 < z < o(n'/%) as n — co, where W,, = (X1 + --- + X,,)/(cy/n).
For random variable W satisfying (2.19), Chen, Fang and Shao (2009) apply
Stein’s method to obtain the following Cramér type moderate deviation result.

Theorem 2.4. Assume that there exist a non-negative random function K(t),
a random variable R and a constant § such that

EWfW)=E F'(W + K (t)dt + E(Rf(W)) (2.22)
=

for all absolutely continuous function f for which the expectation of either side
exists. Put K1 = E( flt|<5 K(t)dt | W) Suppose that there exist constants 81, 02
and 0 > 1 such that

|K1 =1 < 6,1+ W?), |[E(R| W)| < 8(1+|W]), and Ky < 0.  (2.23)

Then

PW >
1(—<Nx:§) =14+01)(0(1+2)0+ (1 +2")01 + (1 + 2%)5,) (2.24)
for 0 <2 <0 'min(6— /3, 61_1/4,62_1/3), where O(1) denotes a quantity whose
absolute value is bounded by a universal constant.

Applying Theorem 2.4, Chen et al. (2009) established optimal Cramér type
moderate deviations for the combinatorial central limit theorem, the anti-voter
model on a complete graph, the binary expansion of a random integer, and the
Curie-Weiss model. It is noted that Raic (2007) also used Stein’s method to
obtain moderate deviation results for dependent random variables. However,
the dependence structure considered by him is related to local dependence and
is of a different nature from assumption (2.22).



2332 Qi-Man Shao

2.4. Non-normal approximation via exchangeable pairs ap-
proach. Let W := W, be the random variable of interest. Since the exact
distribution of W is not available for most cases, it is natural to seek the
asymptotic distribution of W with a Berry-Esseen type error. Let (W, W’) be
an exchangeable pair satisfying

E(W —W'|W) =g(W)+r(W), (2.25)

where g(W) is a dominated term while r(WW) is a negligible term. When
gW) = AW, and E(W' — W)?|W)/(2\) — 1 in probability, Theorem 2.2
shows that the limiting distribution of W is normal under certain regularity
conditions. Following the idea of the Stein’s method of exchangeable pairs for
normal approximation, Chatterjee and Shao (2008) are able to identify the
limiting distribution of W and obtain the rate of convergence for general g. Let

G(t):/o g(s)ds and p(t) = cre”0G®), (2.26)

where ¢o > 0 is a constant and ¢; = 1/ [ e %(®dt is the normalizing
constant so that p(t) is a density function. Let Y be a random variable with
the probability density function p. Assume that

(H1) g¢(¢) is non-decreasing, and g(t) > 0 for ¢t > 0 and g(t) < 0 for t < 0;
(H2) there exists ¢z < oo such that for all x,
min (1/e1,1/|eog(@)]) (2] + 3/c1) max(L, colg' ()]) < ca.

Let A =W — W’. Next result shows that W converges to Y in distribution as
long as co E(A%|W) satisfies a law of large numbers.

Theorem 2.5. Let h be absolutely continuous with ||h'|] < oo. If (H1) and
(H2) are satisfied, then
|[ER(W) — Eh(Y)| (2.27)
(L+ ) [|P]]
1

{E|1 — (co/2) B(A2W)| + coc1 E|APP + cOE\r(W)|}.

When A is bounded, Theorem 2.6 below gives a Berry-Esseen type inequal-
ity.
Theorem 2.6. Assume that |W — W’| < 4, where § is a constant. Then
P(W < 2) - P(Y < 2)
2(1 + 2¢1)
C1
tco(1+c1 4 1/¢1)83Elcog(W)| + coc1c26% /2

2
ey (14 262)5/2 + %E\r(wn. (2.28)
1

E1 — (co/2)E(A?|W)|
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The constant ¢y could be chosen so that ¢y ~ 2/E(A?). As an applica-
tion, Chatterjee and Shao (2008) obtain a Berry-Esseen type bound of order
1/4/n in the non-central limit theorem for the magnetization in the Curie-Weiss
ferromagnet at the critical temperature.

Open Question 2. It would be interesting to see if a Cramér type moderate
deviation holds for W satisfying (2.25) under conditions of Theorem 2.6.

2.5. Randomized concentration inequalities. Concentration in-
equality approach is one of the powerful techniques for normal approximation
by Stein’s method. By developing uniform and non-uniform concentration in-
equalities, Chen and Shao (2001, 2004, 2007) obtain optimal uniform and non-
uniform Berry-Essen bounds for independent random variables, for dependent
random variables under local dependence, and for non-linear statistics. Here we
develop an exponential type randomized concentration inequality.

Let &;,1 < i < n be independent random variables with zero means and fi-
nite second moments. Let W = >"""_, &, and A, Ay, Ay be measurable functions

Theorem 2.7. Assume that there exist ¢y > co > 0,0 > 0 such that

Y B <a (2.29)
i=1
and B
> EBl&| min(s, [€1/2) > co. (2.30)
i=1
Then for A >0
E6>\(W+A)I(A1 <W+A<A) (2.31)
2
< (Ee2AWHA)y1/2 G
a ( ¢ ) P 166152
26A5
+=— JENTEOW (A, — Ay +26)
2

- (4) (4) % i
123 BT AD g (A - AP+ A2 - AP))
i=1

+57 ElA - AD min(lg], |A — AD )3+ A(Ag — Ay

i=1

+ 2§)) max (eMW"'A), e’\(W(i)JrA(i))) }

for any measurable functions A“%A@,A? such that & is independent of
W@, ADAD ALY where WO =W — ¢,
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Concentration inequality (2.31) will make it possible to obtain Cramér type
moderate deviations for self-normalized sums and for Studentized statistics.
Details will be given in a forthcoming paper.

Proof of Theorem 2.7. First, we assume

C2

Ap <Ay and AP <A (2.32)
and show that

EAWHA A <W + A < Ay) (2.33)

2

< (EePNWHA)1/2 )

s (e Ve |~ g0 2
26A5
+ EAWTAIW|(|Ay — Ay] + 20)

+ Z FEA W +A®)

i=1

&l(1A; — AP+ Ay — AT

+Y ElA = AW min(|&], [A = AD)E+ A Ag - A

i=1

+ 2§)) max (e)‘(W+A), e)‘(W(i)+Am)) } .

For the general case, let A} = min(A,As), A3 = max(Aq, Ay), A;(i) =
min(A, AP, ALD = max(AP, AL?Y). Then (2.31) follows from (2.33) by
noting that |A5 — AJ| = |As — Ay,

EAWHRA A <W + A < Ag) < BEAWHTAIAT <W 4+ A < A})
and

A7 - ATD 4+ 145 - A3
= |min(Ar, Ay) — min(AP, AT + | max(Ar, Ag) — max(AY) ALY
< 2|A; = AP 4218, — A

To prove (2.33) under (2.32), for a < b define

0 for w < a -9,
fap(w) = e (w —a + 6) for a—d<w<b+§, (2.34)
eM(b—a+20) for w>b+d.
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Then
EWfAl,AQ(W + A)
= Y EG(fan0,(W+A) = fa, 8, (W +A0))
i=1
- z; E&i(fa1,0:(WO + AY) — L)y (W + AW))
1=
= hth (2.35)

by using the assumption that E¢; = 0 and that & and (W@, A®) Agi), A;i))

are independent. Clearly,

| fap(w) = fay s (w)] < X(Ja — ar] + |b— br)

for all w, a < b and a; < b;. We have

n
L] < ZE@’\(WU)"'A(”)
i=1

El(1A1 — AP+ Ay — AP)).

To estimate I, write f = fa, a,. Noting that

0 < f/(w) < e (1+ XAy — Ay +20)),

we have
Ei(fay.00(W 4 A) = fa, 0, (WD 4 A0
0
= fi/ FOW + A+ t)dt
—&i+AD—A
. 0
— ar(a-a%<ial) [ £V + A+ byt
—&+AG) —A
. 0
+&I(|A - A(l)‘ > |€7‘/2)/ f/(WJr A+ t)dt
—&i+AG) —A
> A=AV <l [ Fov a0k
—1A = AW min(|&], |A = AP+ A(Ag — Ay + 25))
max (e/\(W+A)7 e)x(W(i)-i-A(i)))’
where

(2.36)

Kt)=&I{—&+AD A<t <0} —I{0<t < =& +AD — A,
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It is easy to see that when |A — A®| < |&|/2, & and I{— §1+A -
0} —IH{0 <t < -&E+A () — A} have the same sign, hence, K;(t)

Ag
>0 a

CLl/\

moreover K;(t) > K;(t), where

Therefore

Ki(t) = &(I{~&/2 <t <0} —I{0 <t < —=£/2}) > 0

I > I3 — > E|A = AP min(&],]A — AP (1 + MAy - A, (2.37)

i=1

+25)) max (e/\(W-&-A)’ eA(W(i)J,_A(i))),

where

I3 =

By the fact

ZEI\A A()|<|§|/2/ F'W 4+ A+ ) K;(t)dt.
=1

that f/ > 0 and f'(w) > e for A; — 6 <w < Ay + 6,

r1a-a0 < el [~ Fv+ s+ ok o

\Y]

I{|A -

\Y]

{|A -

Y

(A

Y]

I(A,

I{|A -

AD| < g I/Q}/ I(A S W+ A< Do) f/(W+ A+ H)K;()dt
AD[<1&]/23 (A1 S W + A < M) WA= [ F(pyat
lt]<é
AD<1&1/2H (A1 S W + A < Ag) MW HA=D 16 min (5, |&]/2)
<W +A < AW HA=00n — [{|A = AD| > || /2} AV HA=Dy,

—2[A — AW |min(|&], |A — AD)ATHFAZ), (2.38)

where 7; =

|€;] min(d, |€;]/2). Hence

I3y > I, -2 E|A = AD|min(|g], [A — AW HA=0) (2.39)

i=1
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and

I = BAWHAI[A <W+A<A)Y
i=1

(02/2)E€/\(W+A 5 (A <W+A<A2 (Zn1202/2>

Y

v

(c2/2) {Ee’\(W+A‘5)I(A1 <W+A<AY)

)

Y

(c2/2) § BWHATII(AL < W + A< Ay)

1/2
sy (i (£ <o)

Note that 7;,1 < ¢ < n are independent non-negative random variables, by
(2.29), and (2.30) and the exponential inequality (cf. Theorem 2.19 in [28])

- (c2/2)?
Vi i 2 o~ .2
(Syreen) < o (5305
(c2/2)* _ c
eXp( 2e02 )~ TP\ T8ee? )
It > (c2/2) {EeMW*MU(Al <W+A<AY)

_ 3
(B WHA=1/2 gy (— 16;52) } . (2.40)

IA

IN

Thus

Clearly, |f| < e*”(Ay — Ay + 26) and hence
EW fa, 0,(W + A) < ESWHR V| (Ay — Ay + 20). (2.41)
This proves (2.33) by (2.35), (2.36), (2.38), (2.39), (2.40) and (2.41).

3. Self-normalized Limit Theory

Let X, X7, Xo, -+ be independent and identically distributed (i.i.d.) random

variables. Put . .
Sy, = ZXi and V2 = ZXZQ (3.1)
i=1

=1
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The standardized sum usually means (S,, — a,)/b,, where a,, and b,, are non-
random sequences, while the self-normalized sum refers to S, /V;,. It is well-
known that moment conditions or other related conditions are necessary and
sufficient for many classical limit theorems for standardized sums. However, it
is now well-understood that the limit theorems for self-normalized sums usually
require much less moment assumptions than those for their classical analogues.
For example, the classical Chernoff (1952) large deviation

S 1/n
lim P (" > x) = inf e " Ee!X
n—00 n t>0

holds for x > E(X) if EeX < oo for some t; > 0, while the self-normalized
large deviation (Shao (1997)) holds without any moment assumptions

1/n
lim P (Sn > xnl/zvn) = sup inf EetbX—a(X?+5%)/2) (3.2)

n—o0 b>0 t>0

for x > 0 if E(X) =0 or EX? = co; a Cramér type moderate deviation (Shao
(1999))
P(S, >z V,)

lim —— =" —1
oo 1— d(x)

holds uniformly for z € [0, o(n'/%)) provided that EX = 0 and E|X|*> < oo,
while a finite moment generating condition of \/m is necessary for a similar
result in relation to the standard sum S,//Var(S,) (Linnik (1962), see also
Petrov (1975)).

Past two decades have witnessed significant achievements on the self-
normalized limit theory. Active development began in the 1990s with the sem-
inal work of Griffin and Kuelbs (1989) on laws of the iterated logarithm for
self-normalized sums of i.i.d. variables belonging to the domain of attraction
of a normal or stable law. Subsequently, Bentkus and Gotze (1996) derived
a Berry—Esseen bound for Student’s t-statistic, and Giné, Gotze and Mason
(1997) proved that the ¢-statistic has a limiting standard normal distribution if
and only if X is in the domain of attraction of a normal law. Moreover, Csorgo,
Szyszkowicz and Wang (2003) proved a self-normalized version of the weak in-
variance principle under the same necessary and sufficient condition. Jing, Shao
and Zhou (2004) derived saddlepoint approximations for Student’s ¢-statistic
with no moment assumptions. Bercu, Gassiat and Rio (2002) obtained large
and moderate deviation results for self-normalized empirical processes. Self-
normalized sums of independent but non-identically distributed X; have been
considered by Bentkus, Bloznelis and Gotze (1996), Wang and Jing (1999),
Jing, Shao and Wang (2003). We refer to Lai and Shao (2007) for a comprehen-
sive survey on this topic and de la Pena, Lai and Shao (2009) for systematical
treatments on the theory and applications of self-normalization.
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In this section, we summarize some latest developments on self-normalized
limit theorems including the self-normalized saddlepoint approximation with-
out any moment assumptions, a universal self-normalized moderate deviation,
Cramér type moderate deviations for the maximum of self-normalized sums
and for Studentized U-statistics. Throughout this section let X, X7, X5, -+ be
a sequence of i.i.d. random variables unless otherwise specified. Put

Sy = zn:Xi, V2= zn:XE.
i=1 i=1

3.1. Self-normalized saddlepoint approximations. Let

X =1/nY"" | X; be the sample mean of {X;,1 < i < n}. Large deviation
result provides an exponential rate of convergence for tail probability. However,
a more fine-tuned approximation can be offered by saddlepoint approximations.
Daniels (1954) showed that the density function of X satisfies

n 1/2
fx(@) = e mrr=sl) <(7)> (1+0(n1),

2w’

where £(t) = In Ee'X and 7 is the saddlepoint satisfying #'(7) = x. Lugannani
and Rice (1980) obtained the tail probability of X:

P(X > z)=1-2(vnw) + ‘Z’(\\?Zm) (1 - % +0(n1)) :

a
where #'(7) = z, = {2[rx'(7) — k(7)]}/?sign{7}, @ = 7[x"(7)]'/?, ® and
¢ denote the standard normal distribution function and density function, re-
spectively. So, the error incurred by the saddlepoint approximation is O(n=1)
as against the more usual O(n~'/?) associated with the normal approxima-
tion. Another desirable feature of saddlepoint approximation is that the ap-
proximation is quite satisfactory even when the sample size n is small. The
book by Jensen (1995) gives a detailed account of saddlepoint approximations
and related techniques. However, a finite moment generating function is an
essential requirement for saddlepoint expansions. Daniels and Young (1991)
derived saddlepoint approximations for the tail probability of the Student t-
statistic under the assumption that the moment generating function of X2
exists. Note that (3.2) holds without any moment assumption. It is natural to
ask whether the saddlepoint approximation is still valid without any moment
condition for the t statistic or equivalently, for the self-normalized sum S,,/V,.
Jing, Shao and Zhou (2004) give an affirmative answer to this question. Let
K(s,t) = In EesX X7,

0?K (s,t)
0s2

0%K (s,t 0%K (s,t
, Kia(s,t) = ﬁ,Kzz(Syt) = %

Ku(s:t) = D50t
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For 0 < x < 1, let £y and ag be solutions ¢ and a to the equations

EXet(—2aX/x2+X2) EXQet(—2aX/x2+X2) a2
Fet(—2ax/22+X%) Y T pot(—2aX/221X?) | g2

It is proved in [42] that to < 0. Put §¢ = —QaOfo/IQ and define

Ao(l‘) = Spap + 1?0&%/332 — K(§0,7§0),
A(z) = 2io/x? + (1,2a0/2%) A7 (1,200 /22),

where ) R
A K11(§07§0) K12(80,t0)
50,10 '

K12( ) K22(<§0;{0)

Theorem 3.1. Assume EX =0 or EX? = co and that
/ / |Ee”X+“‘X2 ["dsdt < oo (3.3)

for somer > 1. Then for0 <z <1

P(S,/Vy > zvn) =1—®(vVnw) — W\/%w) (i} — % + O(n_1)> . (34)

where w = \/2Ao(z), and v = (—1y/2)"/?23/%a5 " (det A)/2 A, (2)1/2.

Open Question 3. Without assuming condition (3.3), does (3.4) hold with an
error of O(n=Y/2) instead of O(n=")? that is,

o(vnw) (1 1 —1/2
> —1- _elvnw) f 2 .
P(S,/Vy > 2y/n) =1 — ®(v/nw) Jn o +O0(n™ %) (3.5)
for fited 0 < z < 12 Assume that a, | 0 and an/n — 0. Does (3.5) hold
uniformly for a, <z <1/27?

3.2. A universal self-normalized moderate deviation. In
Shao (1997) a self-normalized large deviation result without any moment as-
sumptions (see (3.2)). It is also shown there that the tail probability of S,,/V,
is Gaussian-like when X is in the domain of attraction of the normal law and
is sub-Gaussian-like when X is in the domain of attraction of a stable law. In
particular, when X is symmetric and in the domain of attraction of a stable
law of order o (0 < @ < 2),

In P(Sy/ Vi > @) ~ —27 Ba (3.6)
for any z,, — oo satisfying x,, = o(y/n), where j, is the solution of

/°° 2 — exp(2z — 2%/8) — exp(—2z — 22/3)
0

povs dzr = 0.




Stein’s Method, Self-normalized Limit Theory and Applications 2341

Motivated by (3.2) and (3.6), Jing, Shao and Zhou (2008) establish a uni-
versal self-normalized moderate deviation for X in the centered Feller class.
Let Cy denote the support of X, that is,

Cs={z:P(Xe(x—e€x+¢€) >0, for any e > 0}.

We denote the number of elements in Cy by Card(C;) and define Card(Cy) = oo
if Cy does not contain a finite number of elements. The random variable X is
said to satisfy condition (H1) if

(H1)  CsnRY #0 and CsNR™ #0, where RT ={z:2>0},R™ ={z: 2 <0}
and satisfy condition (H2) if
(H2) EX =0 or EX? = oco.

We say X € Fy (0 <6 < o00) if

aQ{P(|X| >a)+a YEXI(|X| < a)|}
lim sup

msu TR <8 —0. (3.7)

X is in the centered Feller class if X € Fy for some 0 < 6 < .

Theorem 3.2. Assume that X satisfies conditions (H1) and (H2). Also as-
sume that X is in the centered Feller class. Then

In P(S,/Vn > @) ~ —n\(z2 /n)

for any sequence {x,,n > 1} with ©, — oo and x, = o(y/n) as n — oo,
where N(x) = infy>qsup,sq (tz — In Eexp {t(2bX — b*°X?)}). If, in addition,
Card(Cs) > 3, then

In P >
lim - (Sn/‘z/:” — xn) - 7t07
n—00 Tz

where tg = lim,_, g+ tz, and (tz,b,) satisfy the following saddlepoint equations

Eb(2X — bX?)exp {tb(2X —bX?)} = azFexp {th(2X —bX?)},
E(X —bX?)exp {tb(2X —bX?)} = 0.
It is also proved that tq is a positive and finite number. Theorem 3.2 together

with the subsequence method is ready to give the following law of the iterated
logarithm.

Theorem 3.3. Assume that (H1) , (H2) and (3.7) are satisfied. Then

. 1
lim sup — a.s.

Sn
n—oo Vpy/loglogn B Vito
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3.3. Self-normalized Cramér type moderate deviations for
the maximum of sums. Let X, X;, Xs, - be ii.d. random variables
with E(X) = 0 and 02 = Var(X) < co. Assume E|X|?>™" < oo for 0 < r < 1.
Shao (1999) proves the following self-normalized Cramér moderate deviation:

P(S’n >z Vn)

e L (3.8)

holds uniformly for z € [0, o(nr/ (4+2T)); Furthermore, Jing, Shao and Wang
(2003) give a rate of convergence:

P(Sn > an)
1—®(x)

1+ 2)2 B|XPr
nr/2o-2+r

— 1+ 00! (3.9)

for 0 < o < n'/U+2) g /(B X 2171/ (247) where O(1) is bounded by an absolute
constant. Similarly to the central limit theorem, it is known that for > 0

P <1r§nka§Xn Sk > xaﬁ) —2(1—®(x))

and

P > 2(1 — o(x)).
(s 56 > a¥4 ) = 201 - #(0)
In view of (3.8), it is natural to ask whether a similar result holds for the
maximum of the self-normalized sums maxj<g<y Sk/Vs. Hu, Shao and Wang
(2009) was the first to prove that if EX* < oo, then

. P(maxjcpen Sk > V)
lim == =

n—oo 1— (I)(x)

uniformly for z € [0, o(n'/%)). Liu, Shao and Wang (2010) recently prove that
the moment condition can be reduced to a finite third moment, an optimal
assumption. More specifically, they show that

Theorem 3.4. Let 0 < r < 1. Assume that EX =0 and E|X|**" < 0co. Then

P n Sk > Vn
i (maxi<p<n Sk > 2 V,,) —9 (3.10)
=00 1—®(x)

uniformly in 0 < x < o(n"/(4+21)),

A similar result to (3.10) also holds for independent random variables under
some regular conditions. In view of (3.9) and (3.10), we make the following
conjectures.
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Conjecture 1. Assume EX =0 and E|X|**" < oo for 0 <r < 1. Then

P( maxi<g<n Sk >z Vn)
1—®(x)

14 $)2+TE|X|2+T

nr/202+r

— 24 0(1)"

for 0 < a < /G206 /(B X247V G+ where O(1) is bounded by an absolute
constant.

It is known that 4
S|/ V,, = U
22, 19kl V= O

where U has the probability density function

4 S (—1)k
f(x)ZEZQ(kJr)l

k=0

exp(—72(2k +1)%/(82?)). (3.11)

It would be interesting to study the moderate deviation for maxi<x<n |Sk|/Va.

Conjecture 2. Assume that EX =0 and E|X|?>T" < oo for 0 <r < 1. Then

P(maxi<p<n |Sk| > 2V},)
P(U > )

=1+ 0(1)

uniformly in x € [O,o(n’"/(4+2"))), where U has the probability density function
f given in (3.11).

Note that (cf. Lemma 1.6.1 in [24])
4 7 /(82%)
PU<z)~—e "/%) as . —0.
™
It would be also interesting to see if a self-normalized small deviation holds.

Open Question 4. Assume that E|X|3 < co. What is the smallest possible
sequence {an} with ay, | 0 such that

P(maxi<p<n |Sk| < 2V},)
P(U <x)

=1+o0(1)

uniformly in x € (an,1)?

3.4. Studentized U-statistics. Let X, X, Xs,...,X, be iid. ran-
dom variables, and let h(x1,x2) be a real-valued symmetric Borel measurable
function. Assume that § = FEh(X7,X2). An unbiased estimator of # is the
Hoeffding (1948) U-statistic

Un(;l>1 3 AL X))

1<i<j<n
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The U-statistic elegantly and usefully generalizes the notion of a sample mean.
Typical examples include (i) sample mean: h(z1,22) = (21 + x2); (ii) sample
variance: h(z1,x2) = &(x1 — x2)? (i) Gini’s mean difference: h(z1,z2) =
|x1 — 22]; (iv) one-sample Wilcoxon’s statistic: h(z1, z2) = I(z1 + 22 < 0). The
non-degenerate U-statistic shares many limiting properties with the sample
mean. For example, if Eh?(X1,X3) < oo and 0% = Var(g(X1)) > 0, where

g(z) = Eh(z, X), (3.12)
then the central limit theorem holds, i.e.,

sup | P <;{T?(Un —-0) < x) —®&(x)] — 0. (3.13)
A systematic presentation of the theory of U-statistics was given in Koroljuk
and Borovskikh (1994). We refer the study on uniform Berry-Esseen bound for
U-statistics to Alberink and Bentkus (2001, 2002), Wang and Weber (2006)
and the references there. One can also refer to Borovskich and Weber (2003)
for moderate deviations. However, since o is typically unknown, it is necessary
to estimate oy first and then substitute it in (3.13). Therefore, what is used
in practice is actually the following studentized U-statistic (see, e.g., Arvesen
(1969))

T, =v/nU, —0)/R, , (3.14)

where

: 1 ¢
(¢ —Un)® with ¢ = e JZ; h(X;, X;).
i

One can refer to Wang, Jing and Zhao (2000) on uniform Berry-Esseen bound
for studentized U-statistics.

When h(z1,22) = (x1 + 22)/2, T}, is reduced to the Student t-statistic
(w.l.o.g., assuming ¢ = 0):

Sn
tn = 5
Sn\/ﬁ

where s, = (=25 Y0 (X; — S0 /n)?) '/2 is the sample standard deviation. Note

n—1

that the Student t-statistic is closely related to the self-normalized sum S,,/V,,
via the following identities

and
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Therefore, all results for the self-normalized sum S, /V,, can be converted to
the Student t-statistic t,,. In particular, the Cramér type moderate deviations
(3.8) and (3.9) remain valid for ¢,. Thus, it is natural to ask whether similar
results hold for general studentized U-statistics. Lai, Shao and Wang (2009)
recently show that the studentized U-statistics share similar properties like the
student t-statistic does when the kernel satisfies

hZ(Il,l‘g) S Co[Uf + 92($1) + g2($2)] (315)

for some ¢y > 0. This condition is satisfied by the typical examples of U-
statistics listed at the beginning of this subsection.

Theorem 3.5. Assume 0 < 0% = FEg*(X1) < oo and that (3.15) holds for
some co > 0. Then, for any x, with x,, — oo and , = o(n'/?),

In P(T,, > ) ~ —a2/2.
If in addition E|g(X1)|® < oo, then

P(T, > x) B
Taa) = e (3.16)

holds uniformly in x € [0,0(n'/9)).
Open Question 5. Does Theorem 8.5 hold without assuming condition (3.15) ¢

Open Question 6. Lai, Shao and Wang (2009) provide a rate of convergence
for (3.16), but the rate seems not optimal. Is a similar result to (3.9) valid?

Hopefully, the concentration inequality in Theorem 2.7 can be applied to
answer the open question above and study Cramér type moderate deviations
for Studentized statistics in general. Details will be discussed in a forthcoming

paper.

4. Applications

Self-normalization arises naturally in statistics as many statistics may involve
some unknown nuisance parameters which need to be estimated from the
data. Studentized statistics are typical cases of self-normalization. Since self-
normalized limit theorems usually require much less moment assumptions, they
provides much wider applicability and also theoretical basis for various proce-
dures commonly used in statistical inference. The self-normalized limit theorems
as well as the self-normalization technique have been successfully applied to var-
ious statistical problems such as Bahadur slope (He and Shao (1996)), change
point analysis (Horvath and Shao (1996)), and the performance of Monte Carlo
methods for estimating ratios of normalizing constants (Chen and Shao (1997)).
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In this section, we focus on recent applications to the false discovery rate (FDR)
in simultaneous tests.
Following Benjamini and Hochberg (1995), consider the problem of testing

simultaneously m null hypotheses Hy, Hs, ..., H,,, of which mg are true. R is

the number of hypotheses rejected. The table below summarizes the test results
Declared Declared Total
non-significant significant

True null hypotheses U v mo

Non-true null hypotheses T S m — my

Total m— R R m

The FDR is defined by E(V/R). Assume P-values are p1,pa, ..., pm. Let piy <
P2) <+ < pem) be the ordered p-values, and denote by H ;) the null hypothesis
corresponding to p(;). Let 0 < 6 <1 and define

k=max{i: py <if/m}.

The celebrated Benjamini and Hochberg (1995) method shows that the FDR is
controlled at level 0 if all H ;) are rejected for i = 1,2,...,k and if the tests are
independent. However, the P-values are usually unknown in practice and need
to be estimated. To control the FDR at level 6 based on estimated P-values, the
accuracy of the estimators should be of order o(1/m). Fan, Hall and Yao (2007)
show that if the normal distribution or the t-distribution is used for estimating
the P-values for tests based on Student’s t-statistic with sample size n, the level
of the simultaneous test is accurate provided log(m) = o(n'/?). The argument
in [32] (see also Korosok and Ma (2007)) leads to the following result.

Theorem 4.1. Let T,,; be the test statistic for H;. Assume that the true P-
value is p; = P(T,,; > t,,;) and that there exist an,; and functions f; such

that

filz

)
asn — 0o. If m < 0/(2maxi<i<m fi(an,i)), then the FDR is controlled at level
0 based on estimated P-values p; = fi(tn.:).

—1] =o(1)

max sup
1<i<m g<a,, ;

Now consider the problem of identifying periodically expressed genes in
microarray time series data. Let Y; , denote the observed expression level of
gene g at time ¢, 1 < g < m and 1 <t < n, where m is the number of genes.
Consider the following model of periodic gene expression

Yig = pg + Bg cos(wt + @) + €4 g,

where 8, > 0, w € (0,7), ¢ € (—m, 7|, pg is the mean expression level. For
each g, €14, -+ ,€n,g are i.i.d. noise sequence with mean zero. We wish to test
the null hypothesis Hy 4 : B, = 0 against the alternative hypothesis H; 4 :
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By # 0. If Hy 4 is rejected, then gene g is identified with a periodic pattern in
its expression. Let ¢ = [(n — 1)/2] and set

n
E Yk; geik}wj
k=1

where wy = 2mj/n, 1 < j < q. Define the g-statistic

2
I (wy) =

1
n )

max; <j<q I (@)

frg = —logq .
gt ;1':1 I7(Lg) (w;)
Liu and Shao (2010) show that under Hy g,
P >
(fn,g — y) — 1 (41)

1 — exp(—exp(—y))

holds uniformly in y € [~logg, o(n'/?)) provided Es‘fg < 00. Therefore, the
FDR based on the estimated p-values can be controlled at level 6 as long as
m = exp(o(n'/?)).
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Abstract

Least squares with ¢;-penalty, also known as the Lasso [23], refers to the mini-
mization problem

. , a2
B = arg min {|[Y = XB2/n + ABh}

where Y € R" is a given n-vector, and X is a given (n X p)-matrix. Moreover,
A > 0 is a tuning parameter, larger values inducing more regularization. Of
special interest is the high-dimensional case, which is the case where p > n. The
Lasso is a very useful tool for obtaining good predictions X2 of the regression
function, i.e., of mean f° := EY of Y when X is given. In literature, this is
formalized in terms of an oracle inequality, which says that the Lasso predicts
almost as well as the ¢p-penalized approximation of f°. We will discuss the
conditions for such a result, and extend it to general loss functions. For the
selection of variables however, the Lasso needs very strong conditions on the
Gram matrix X7 X /n. These can be avoided by applying a two-stage procedure.
We will show this for the adaptive Lasso. Finally, we discuss a modification that
takes into account a group structure in the variables, where both the number
of groups as well as the group sizes are large.
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1. Introduction

Estimation with ¢;-penalty, also known as the Lasso [23], is a popular tool
for prediction, estimation and variable selection in high-dimensional regression
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problems. It is frequently used in the linear model
Y =X[+e,

where Y is an n-vector of observations, X = (Xy,...,X,) is the (n x p)-design
matrix and e is a noise vector. For the case of least squares error loss, the Lasso
is then .

Bi= argérel]i]@{llY—Xﬁlli/ner\llﬁlll}a (1)

where A > 0 is a tuning parameter.
A vector [ is called sparse if it has only a few non-zero entries. Oracle
inequalities are results of the form: with high probability

IX(8 = Bo)[13/n < constant x Ao, (2)

where [ is the unknown true regression coefficient, or some sparse approxima-
tion thereof, and sg is the sparsity index, i.e., the number of non-zero coefficients
of 50.

The terminology oracle inequality is based on the idea of mimicking an oracle
that knows beforehand which coefficients 3y are non-zero. Indeed, suppose that
EY = Xp3y, and that the noise ¢ = Y — X3y has independent components
with variance 2. Let Sy := {j : Bj0 # 0}, say So = {1,...,80} is the set
of indices of the first s¢ variables. Let X(Sy) := {Xi,...,Xs,} be the design
matrix containing these first sy variables, and let 83(Sp) be the sy non-zero
entries of y. Suppose that X(Sp) has full rank s¢ (sg < n). If Sy were known,
we can apply the least squares least squares estimator based on the variables
in SO

-1
B(so) = (X (SX(50)) XT(0)Y.
From standard least squares theory, we have

E||X(S0) (B(S0) — Bo(S0)) |5 = o%s0.

Under general conditions, the prediction error of the Lasso behaves as if it
knew Sy, e.g., for i.i.d. centered Gaussian errors with variance o2, the inequality
(2) holds with large probability, with A\? up to a logarithmic factor log p, of order
a?/n.

In fact, what we will show in Section 2, is an oracle inequality of the form
(2), where (g is not necessarily the “true” 3, but may be a sparse approximation
of the truth. The “optimal” sparse approximation will be called the oracle. To
make the distinction, we denote the truth (if there is any) as Sirue, and the
oracle by Boracle- As we will see, Boracle Will be at least as sparse as Siruth, and
is possibly much sparser.

Apart from oracle inequalities, one may also consider estimation results,
which are bounds on the ¢, error 18 — Bollq, for some 1 < ¢ < oo. Variable
selection refers to estimating the support Sy of Sy.
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From a numerical point of view, the Lasso is attractive as it is easy to
compute and the £1-penalty ensures that a number of the estimated coefficients
,é’j are exactly zero. Its active set S = {j: Bj # 0} will generally contain less
than n variables, even when originally dealing with p > n variables. In theory
however, there is in general no guarantee that S coincides with Sy. Indeed,
this would be too good to be true, because then we would have a very accurate
procedure that in addition can correctly asses its own accuracy. This is somehow
in contradiction with statistical uncertainty principles.

What is so special about the ¢;-penalty? The theoretically ideal penalty
(at least, in the linear model) for sparse situations is actually the £p-penalty
MBS, where [| B[ := >2%_, 8,1° = #{B; # 0}. But with this, the minimization
problem is computationally intractable. The ¢;-penalty has the advantage of
being convex. Minimization with ¢;-penalty can be done using e.g. interior
point methods or path-following algorithms. Convexity is important from the
computational point of view (as well as from the theoretical point of view
as soon as we leave the linear model context). For theoretical analysis, it is
important that the ¢;-penalty satisfies the triangle inequality

18+ Bllx < 18111 + 1181,

and is separable:
1Bllx = 1Bslx + [1Bse 1,

for any S C {1,...,p}. Here Bg denotes the vector § with the entries in S¢ set
to zero, and s = B — Bs has the entries in S set to zero. Note for example
that among the /4-penalties A[| 3¢ (or A|[B|l4, ¢ > 1), the £1-penalty is the only
one which unites these three properties.

There has been an explosion of papers on the topic. The theoretical proper-
ties - and limitations - of the standard Lasso are by now quite well understood.
We mention some of the key papers. Consistency was obtained in [9]. Its pre-
diction error and estimation error is derived in [12], [13] and [1], where also the
so-called restricted eigenvalue conditions are introduced. The slightly weaker
compatibility condition is given in [25]. In [8] an alternative to the Lasso is in-
troduced, which is called the Dantzig selector. The papers [3], [4] and [5] also
present oracle and estimation bounds, and treat incoherence assumptions.

Variable selection with the Lasso is studied in [21] and [32], [16] presents
conditions for convergence sup-norm, and [31] for convergence in £,, 1 < g < oo.
Modifications of the Lasso procedure have also been developed, for example,
the group Lasso [30], the fused Lasso [24], and the elastic net [34]. Moreover,
two-stage procedures have been proposed and studied, such as the adaptive
Lasso [33, 10], and the relaxed Lasso [20]. Extension to density estimation is in
[6], and to generalized-linear models in [15] (for the case of orthonormal design)
and [26].

The present paper puts some of our theoretical results in a single framework.
This will reveal the common aspects of various versions of the Lasso (and some
links with decoding). We will mainly refer to own work, but stress here that
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this work in turn builds upon results and ideas from literature. In Section 2, we
present an oracle inequality in the context of the linear model. This is extended
to general convex loss in Section 3. Section 4 discusses the restricted eigenvalue
condition and the related compatibility condition. We turn to estimation results
and variable selection in Section 5. First, we give a bound for the /s-error
(Subsection 5.1). We then show in Subsection 5.2 that the Lasso needs strong
conditions for correctly estimating the support set of the coefficients. We show
in Subsection 5.3 that the adaptive Lasso has a limited number of false positive
selections but may have less good prediction error than the Lasso. In Section
6, we consider an extension, where the variables are divided into groups, with
within each group a certain ordering of the coefficients. We provide an oracle
inequality involving sparsity in the number of groups. Section 7 concludes.

2. An Oracle Inequality in the Linear Model

In this section, we present a version of the oracle inequality, which is along the
lines of results in [25].
Suppose that the observations Y are of the form

Y =f0+¢,
where f9 is some unknown vector in R™, and € is a noise vector. Let X =
{X4y,...,X,} be the design matrix. We assume that X is normalized, i.e., that
G, =1, VY17,
where {G; ;} are the diagonal elements of the Gram matrix
3= XTX/n = (6;4).

The empirical correlation between the noise € and the j-th variable X; is con-
trolled by introducing the set

T(\) = { max 4|’ X;|/n < )\}.

1<5<p

The tuning parameter A is to be chosen in such a way that the probability of
T(A) is large.
For any index set S C {1,...,p}, and any 8 € RP, we let

Bis=pl{jeS}t i=1,...,p.

We sometimes identify Sg € RP with the vector in R/l containing only the
entries in S.
We write the projection of f° on the space spanned by the variables {X,}jes
as
fg := Xb° := arg min —£9)2.
s g min [1f ~ €3
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When p > n, the Gram matrix S is obviously singular: it has at least p —n
eigenvalues equal to zero. We do however need some kind of compatibility of
norms, namely the ¢1-norm ||8gl||; should be compatible with||X3||2. Observe
that | Xp3/n = 57E6.

Definition compatibility condition Let L > 0 be a given constant and S be
an indez set. We say that the (L, S)-compatibility condition holds if

|S187E8

2 .
com (La S) =M e
P 182

Bsells < L|ﬁs||1} > 0.

Section 4 will briefly discuss this condition.

Theorem 2.1. Let f = XB, where B is the Lasso estimator defined in (1).
Then on T (X), and for all S, it holds that

(0?8
RN MY

comp

If = £2113/n+ M8 = bsll < 7llfs — £°113/n +

The constants in the above theorem can be refined. We have chosen some
explicit values for definiteness. Moreover, the idea is to apply the result to sets
S with ¢eomp(6,5) not too small (say bounded from below by a constant not
depending on n or p, if possible).

Assuming that fO := X Buue is linear, the above theorem tells us that

r A 7>\ 2Sruc
1F = 212 /n+ A3 = Busnells < (z)”"

, 4
comp(67 Strue) ( )

where Sgue := {j © Bjtrue # 0}. This is an inequality of the form (2), with
By taken to be SBirue. We admit that the constant ¢fomp(6, Strue) 1s hiding in
the unspecified “constant” of (2). The improvement which replaces Birue by a

sparse approximation is based on the oracle set

. 7225
Soraclc (= arg msln{”fs — fOHg/TL + (W}, (5)

and the oracle predictor

foraclc = meacle = Xﬂoraclcv

where
.— Sor
ﬁoracle 1= poracle,

By the above theorem

" ~ [ 2 Sorace
1F = £12/m 4+ AlLB — Boractelln < 7l forace — £2/m + -2 Soractel
comp(67 Soracle)
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which is a - possibly substantial - improvement of (4). We think of this oracle as
the ¢y-penalized sparse approximation of the truth. Nevertheless, the constant
®comp (6, Soracle) can still be quite small and spoil this interpretation.

We end this section with a simple bound for the probability of the set 7T(A)
for the case of normally distributed errors. It is clear that appropriate proba-
bility inequalities can also be derived for other distributions. A good common
practice is not to rely on distributional assumptions, and to choose the tuning
parameter A\ using cross-validation.

Lemma 2.1. Suppose that € is N(0,02I)-distributed. Then we have for all

x>0, and for
\ e o /296—}—2logp7
n

]P(T()\)) > 1 — 2exp[—a].

3. An Oracle Inequality for General Convex
Loss

As in [25, 26] one can extend the framework for squared error loss with fixed
design to the following scenario. Consider data {Z;}! ; C Z, where Z is some
measurable space. We denote, for a function g : Z — R, the empirical average
by

Pog:= Zg(zi)/n,

and the theoretical mean by
Pg:= Z]Eg(ZZ)/n
i=1

Thus, P, is the “empirical” measure, that puts mass 1/n at each observation
Z; (i=1,...,n), and P is the “theoretical” measure.

Let F be a (rich) parameter space of real-valued functions on Z, and, for
each f € F, py : Z — R be a loss function. We assume that the map f — p;
is convex. For example, in a density estimation problem, one can consider the
loss

pr() = —F() + log / of dy,

where p is a given dominating measure. In a regression setup, one has (for
i = 1,...,n) response variables Y; € J C R and co-variables X; € X i.e.,
Z; = (X;,Y;). The parameter f is a regression function. Examples are quadratic

loss
pr(y) = (y— F())?,
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or logistic loss
pr(-y) = —yf() +log(L + exp[f(-)]),

etc.

The empirical risk, and theoretical risk, at f, is defined as P,ps, and Ppy,
respectively. We furthermore define the target - or truth - as the minimizer of
the theoretical risk

0 .
;= argmin Pp .
f gmin Poy

Consider a linear subspace
P
Fi= {fﬁ(') = Bii(): Be RP} CF.
j=1

Here, {9, }?21 is a collection of functions on Z, often referred to as the dictio-
nary. The Lasso is

B = argmin{Papy, + AlBI1}. (®

We write f = fB.
For f € F, the excess risk is

E(f) = P(ps — pyo).

Note that by definition, £(f) > 0 for all f € F.

Before presenting an oracle result of the same spirit as for the linear model,
we need three definitions, and in additional some further notation. Let the
parameter space F := (F, || - ||) be a normed space. Recall the notation

Bis=pB{jeS} j=1,...,p

Our first definition is as in the previous section, but now with a general
norm || - ||.

Definition compatibility condition We say that the (L, S)-compatibility
condition is met if

. S 2
2 (L,S):=min {"”fﬁ”  Bselh < Lllﬂsll} >0,
e

Definition margin condition Let Fiycy C F be some “local neighborhood” of
9. We say that the margin condition holds with strictly convex function G, if
for all f € Fioeal, we have

E(f) = G(If = 171D
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Definition convex conjugate Let G be a strictly convex function on [0, 00),
with G(0) = 0. The convex conjugate H of G is defined as

H(v) = Sllltp {wv —G(u)}, v>0.

The best approximation of f° using only the variables in S is

fs := fps := arg min E(f).

f:fﬁs

The function fg plays here the same role as the projection fg of the previous
section.
For H being the convex conjugate of the function G appearing in the margin

condition, set
4AX/|S|
2e(N,S) =3E(fg) +2H | ———- | . 7
(A, ) = 3&(fs) (@m“&$> 7)

For any M > 0, we let Z;(S) be given by

Zy(S) = sup

(P — P)(pss — pis)
B: 1B=b3 |1 <M

. (8)

Theorem 3.1. Suppose that S is an index set for which fg € Fiocar for all
18 —b%l1 < M(X,S), where M(X,S) := (), S)/(16)\). Then on the set

T()\,S) = {ZM(/\,S)(S) S )\M(A,S)/8},

we have R A
E(S)+AIB =151 < 4e(N, 9).

The typical case is the case of quadratic margin function G, say G(u) =
u?/2. Then also the convex conjugate H(v) = v?/2 is quadratic. This shows
that Theorem 3.1 is in fact an extension of Theorem 2.1, albeit that the con-
stants do not carry over exactly (the latter due to human inconsistencies). We
furthermore remark that - in contrast to the £y-penalty - the £1-penalty adapts
to the margin behavior. In other words, having left the framework of a linear
model, the ¢;-penalty exhibits an important theoretical advantage.

One may object that by assuming one is on the set 7 (A, S), Theorem 3.1 ne-
glects all difficulties coming from the random nature of our statistical problem.
However, contraction and concentration inequalities actually make it possible
to derive bounds for the probability of T (), S) in a rather elegant way. Indeed,
in the case of Lipschitz loss, one may invoke the contraction inequality of [14],
which gives the following lemma.

Lemma 3.1. Suppose that f — py is Lipschitz:

s —pfl <1f = fl.
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Then one has

where
n
>\n01§e =E (fgjaé(p Zgle(zz)/n ) 3
and where 1, ...,&, is a Rademacher sequence independent of Z1,...,Z,.

Concentration inequalities [17, 18, 2], which say that Z,;(S) is with large
probability concentrated near its expectation, will then allow one to show that
for appropriate A, the set T (A, S) has large probability.

4. Compatibility and Restricted Eigenvalues
Let Q be a probability measure on Z, and for 8 € RP, let fz = Z;’:l Bivy,

where {;}/_, C L2(Q) is a given dictionary. Write the Gram matrix as

5 = /w%d@, i (..o t).

Moreover, let || - || be the Lo(Q)-norm induced by the inner product

(.4) = [ £Fa0.

Note thus that
I f51? = BT=8.
Definition compatibility and restricted eigenvalue Let L > 0 be a given

constant and S be an index set. We say that the (3, L, S)-compatibility condi-
tion holds if

1S|I| f]?
Bs3

is strictly positive. We say that the (X, L,S)-restricted eigenvalue condition
holds if the restricted eigenvalue

: ||Bse

(bgornp(Z?L?S) = mln{ 1< L|BS||1}

1 £5?
18sll3

(5, L, S) = min{ : ||ﬁsc||1<L||Bs|1}

1s strictly positive.
The compatibility condition was introduced in [25], and the restricted eigen-
value condition in [1]. It is clear that

¢2RE(EaL7‘S) S ¢2 (EVL’S)

comp
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On the other hand, results involving the set Siye, for the fo-error ||5A*5truc Il2 of
the Lasso rely on ¢rg(2, L, Sirue) rather than ¢eomp (X, L, Strue) (and improved
results, involving the oracle set Soracle, in fact depend on the so-called adaptive
restricted eigenvalue ¢adap(X, L, Soracle), see Subsection 5.1).

It is easy to see that

¢2RE(27 La S) S Arznin(S)a

where A2, (S) is the smallest eigenvalue of the Gram matrix corresponding to
the variables in S, i.e.,

A2 (S) ‘— min ||fBS||2

T BslE
Conversely, denoting the canonical correlation by
9(5) .= sup ‘(fﬁsvfb’g)l ’
8 sl fegl

one has the following bound.

Lemma 4.1. Suppose that 0(S) < 1. Then

Lemma 4.1 does not exploit the fact that in the definition of the restricted
eigenvalue, we restrict the coefficients 5 to ||Bse||1 < L||Bs|l1- Using this re-
striction, the restricted eigenvalue condition can for instance be derived from
the restricted isometry property introduced in [7]. The latter paper studies the
exact recovery of the true coefficients Seye of fO := fz,..., using the linear
program

Bup := argmin {[|B]|y = |Ifs — £l = 0} (9)

The restrictions on the coefficients also allows one to derive bounds for re-
stricted eigenvalues based on those computed with respect to an approximating
(potentially non-singular) matrix. For two symmetric (p x p)-matrices Xy and
31, we define

120 — L1lloo := | Jnax Yo,k — Y15k

The following lemma is proved in [28].

Lemma 4.2. We have

¢comp(217L75) Z ¢c0111p(207L; S) - (L + 1) V ||EO - Z1||oo|S‘

Similarly,

#rE(X1,L,S) > ¢re(Z0, L, S) — (L +1)y/[[X0 — X1l S]-
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5. Estimation and Variable Selection

We present results for the linear model only.

5.1. Estimation. Consider the model
Y =1+

For estimation in /5 of the coefficients, we introduce the adaptive restricted
eigenvalue. For a given S, our adaptive restricted eigenvalue conditions are
stronger than in [1], but the result we give is also stronger, as we consider
Soraclc C Struc instead of Struc-

Definition adaptive restricted eigenvalue We say that the (L,S)-
adaptive restricted eigenvalue condition holds if

X513
nlBs3

zmgaswmm{ |wym§L¢wn&m}>o

Thus,
¢§dap(L’S) < ¢%{E(Las) < ¢30mp(L’ S)

In addition, we consider supersets N of S, with size (1 + constant) x |S|.
For definiteness, we take the constant to be equal to 1. The minimal adaptive
restricted eigenvalue is

Gadap (L, S,2]S|) := min{@agap(L,N) : N DS, |[N|=2|S|}.
Lemma 5.1. Let 3 be the Lasso given in (1). Let
- T~ . <
T(A): {1??§p4|6 X;|/n < )\}.

Then on T(A), and for Boracle := b5 and foracle = fs
given in (5), we have

with Soracle

oracle 7

HB - Boracle”Q S

7A 2 Sorace
||forac1e*f0||§/n+ 5 ( ) | 1 | }

10
A \Y4 ISoracle| { adap(67 Soraclew 2|SOracle|)

This lemma was obtained in [29].

5.2. Variable selection. We now show that the Lasso is not very good
in variable selection, unless rather strong conditions on the Gram matrix are
met. To simplify the exposition, we assume in this subsection that there is
no noise. We let {¢);}/_, be a given dictionary in L2(Q), with Gram matrix
Y = [¢T9dQ = (0j). Furthermore, for an index set S, we consider the
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submatrices

E1,1(8) = (0jk)jeswes, X2,2(5) = (0)k)j¢s ks
and

¥2,1(8) = (o)) jgs kes: L1,2(5) = (0jk)jes kgs-
We let, as before, A2 (S) be the smallest eigenvalue of ¥ 1(9).

The noiseless Lasso is
ﬁLasso = argmﬁln{”fg - f0||2 + /\”6"1} .

Here,
0 _
f = f Btrues
is assumed to be linear, with a sparse vector of coefficients Si;ue. Our aim is to

estimate Sirue := {J : Bjtrue # 0} using the Lasso Stasso = {j : BjLasso # 0}
The irrepresentable condition can be found in [32]. We use a slightly
modified version.

Definition
Part 1 We say that the irrepresentable condition is met for the set S, if for all
vectors s € RIS! satisfying ||7s||oe < 1, we have

22,1 ($)211(8)7sllo0 < 1. (10)

Part 2 Moreover, for a fited 7s € RISI with ||7s||sc < 1, the weak irrepre-
sentable condition holds for Tg, if

122,1(8)271(8)7sloo < 1.

Part 3 Finally, for some 0 < 8 < 1, the #-uniform irrepresentable condition is
met for the set S, if

max ||2271(S)21_i(5)7'3”00 S 0.
Imslleo<1 ’

The next theorem summarizes some results of [28].

Theorem 5.1.
Part 1 Suppose the irrepresentable condition is met for Sirue. Then Spasso C
Strue-

Part 2 Conversely, suppose that Stasso C Strue, and that

Baruel > A sup |57 1 (Sirue) e lloo /2
1

7S¢ ruelloe <

Then the weak irrepresentable condition holds for the sign-vector

Ttrue ‘= Sign ( (5true)struc ) .
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Part 3 Suppose that for some 6 < 1/L, the 8-uniform irrepresentable condition
is met for S. Then the compatibility condition holds with ¢*(3,L,S) > (1 —
LO)2A2. (S).

min

One may also verify that the irrepresentable condition implies exact recov-
ery:

ﬁLP = ﬁtruca

where Srp is given in (9).

5.3. The adaptive Lasso. The adaptive Lasso introduced by [33] is

p
Badap = argmﬁi’n{HY— XBH%/TL“V‘)\init)\adapZ A|B]‘ } (11)

j=1 |ﬁj,init‘

Here, Bmit is the one-stage Lasso defined in (1), with initial tuning parameter
A = Ainis, and Aadap > 0 is the tuning parameter for the second stage. Note
that when | ﬁ] mlt| =0, we exclude variable ] in the second stage.
We write flmt = Xﬁlmt and fmdap = Xﬂmdap7 with active sets St 1= {j:
met # 0} and Sadap ={y: ﬂj,adap # 0}, respectively.
Let
mlt = ||X61mt - fOH /7’L

be the prediction error of the initial Lasso, and and, for ¢ > 1,
5(1 = ||5init - Boracle”q

be its £4-error. Denote the prediction error of the adaptive Lasso as

6adap - ||XBadap - fo”%/n

The next theorem was obtained in [29]. The first two parts actually repeat
the statements of Theorem 2.1 and Lemma 5.1, albeit that we everywhere invoke
the smaller minimal adaptive restricted eigenvalue @adap(6, Soracte; 2|Soracle|)
instead of @comp (6, Soracte), Which is not necessary for the bounds on anit and
61. This is only to simplify the exposition.

Theorem 5.2. Consider the oracle set Sy := Soracle given in (5), with cardi-
nality so := |Soracle|- Let ¢o = Gadap(6, S0, 250). Let

T()\init) = {fgjaé( 4|6 X |/TL < Almt}
Then on T (Ainit), the following statements hold.
1) There exists a bound 6,50 = O(Xinity/So0/¢0) such that

init

N upper
Oinit < Opyp -
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2) For q € {1,2,00}, there exists bounds §yPP*" satisfying
577 = O(Ninies0/95), 05777 = O(Niniey/50/95),

5;1))1391” = O(Ainit\/%/¢g)’
such that N
0g < 047", q € {1,2,00}.

3) Let 65°°" and 8PP be such bounds, satisfying §2PPe" > 6,°P" /. /50, and
5577 = O(Minitn/50/03). Let |Boracte|f e be the trimmed harmonic mean

-1

Suppose that

1
|Boracle |}21arm = Z 7|2
n , 12
Nl -

18; o] >25upPer |ﬁj,oracle
j,oracle oo
R
adap 2
n 2 b5

where S = {j 1 |Bjoracte| > 40%PPeT}. Then
2
R 1 A2
(Sgdap = O( + HHSSO)a
2 oy

n
)‘iQnit S0 1 )
(Z% |ﬁoracle ‘ﬁarm

The value (12) for the tuning parameter seems complicated, but it generally
means we take it in such a way that the the adaptive Lasso has its prediction
error optimized. The message of the theorem is that when using cross-validation
for choosing the tuning parameters, the adaptive Lasso will - when the minimal
adaptive restricted eigenvalues are under control - have O(sg) false positives,
and possibly less, e.g., when the trimmed harmonic mean of the oracle coef-
ficients is large. As far as we know, the cross-validated initial Lasso can have
O(s0) false positives only when strong conditions on the Gram matrix 3 are
met, for instance the condition that the maximal eigenvalue of 3 is O(1) (and
in that case the adaptive Lasso wins again by having O(,/5¢) false positives).
On the other hand, the prediction error of the adaptive Lasso is possibly less
good than that of the initial Lasso.

fS(t]hres - fO

2 2 2
)‘initso ) |BOT3C1€ |harm

fs(t)hres - fO

and

[Suap\So] = O (

6. The Lasso with Within Group Structure

Finally, we study a procedure for regression with group structure. The co-
variables are divided into p given groups. The parameters within a group are
assumed to either all zero, or all non-zero.
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We consider the linear model
Y =Xg+e

As before, € is a vector of noise, which, for definiteness, we assume to be N (0, I)-
distributed. Furthermore, X a now an (n x M)-matrix of co-variables. There
are p groups of co-variables, each of size T (i.e., M = pT'), where both p and T
can be large. We rewrite the model as

P
Y = Z Xjﬂj =+ €,
j=1
where X; = {X;;}; is an (n x T)-matrix and 3; = (851, -, B57r)" is a

vector in R”. To simplify the exposition, we consider the case where T' < n and
where the Gram matrix within groups is normalized, i.e., X;—,FXJ- /n =1 for all
j. The number of groups p can be very large. The group Lasso was introduced
by [30]. With large T (say T' = n), the standard group Lasso will generally not
have good prediction properties, even when p is small (say p = 1). Therefore,
one needs to impose a certain structure within groups. Such an approach has
been considered by [19], [22], and [11].

We present results from [27], which are similar to those in [19]. We assume
that for all j, there is an ordering in the variables of group j: the larger ¢,
the less important variable X ; is likely to be. Given positive weights {w;}~,
(which we for simplicity assume to be the same for all groups j), satisfying
0 <w; <--- < wp, we express the structure in group j as the weighted sum

T
IW B3 := Y wibi,, B; €RP.

t=1

The structured group Lasso estimator is defined as

p p
Bsar = arggepor § 1Y = XB[3/n+ AD _[1Bill2 +Au D IWBjll2 ¢, (13)

j=1 j=1

where A and p are tuning parameters. The idea here is that the variables X ;
with ¢ large are thought of as being less important. For example X ; could to
the t** resolution level in a Fourier expansion, or the ¢*" order interaction term
for categorical variables, etc.

Let

1
R2(t) ::ZE’ t=1,...,T.

s>t S

Let Ty € {1,...,T} be the smallest value such that

Ty > R(Typ)v/n.
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Take Ty = T if such a value does not exist. We call Ty the hidden truncation
level. The faster the w; increase, the smaller Ty will be, and the more structure
we have within groups. The choice of T} is in a sense inspired by a bias-variance
trade-off.

We will throughout take the tuning parameters A and wp such that A >

VTo/n and Ay > Ty /n.

Let, for x > 0,
W = vR(x) = (22 + 21og(pT)),

4z + 41o, 4z + 4lo,
& =8 =1+, 2Lt =,
Ty Ty

Define the set

and

7o { s Vil < 0 e €/ <63,

Here, VT =e’'X;/+/n, and 52 ZtTolVft, j=1,...,p
Deﬁne
3= X"X/n,

and write

18113 := 87E8.

When M = pT is larger than n, it is clear that S is singular. To deal with this,
we will (as in Lemma 4.2) approximate ¥ by a matrix ¥, which potentially is
non-singular. We let X; be the (T' x T')-submatrix of ¥ corresponding to the

variables in the j*" group (as f]j = I, we typically take ¥; = I as well), and

we write
18113 == BT, 185115, = B8] 2385, 5=1,...,p

We invoke the notation

pen; () =AY [IB;ll2, peny(B) := A Y [WB]l2,
J J

and

pen(f) := pen; (5) + peny(f).

For an index set S C {1,...,p}, we let

Bj,Szﬂjl{j 65}7 ]:177]9

(recall that f; is now a T-vector).
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Definition The structured group Lasso (X, L, S)-compatibility condition holds
if

2 o ISIIAIE
Oruc (X, L, S) := min 5 peny (Bse) + peny(8) < Lpen, (Bs)

(> es 1B5lls;)

18 strictly positive.
Let

-
struc(273a S) 2

By considering only sets S € S(X), we actually put a bound on the sparsity
we allow, i.e., we cannot handle very non-sparse problems very well. Mathemat-
ically, it is allowed to take ¥ = 3, having S (f]) being every set S with strictly
positive qﬁsmw(i 3,5). The reason we generalize to approximating matrices ¥
is that this helps to check the structured group Lasso (X, L, .S)-compatibility
condition.

Theorem 6.1. Let

Y =f0+e¢
where € is N(0, I)-distributed. We have P(T) > 1 — 3exp|[—z|. Consider the
structured group Lasso Bsar given in (13), and define fsar, := XBsaL- Assume

A Z SfON/To/n, )\,u Z SUOT()/?’L.
On T, we have for all S € S(X) and all Bs,

o : o2y (V28]
[fsaL—=f7ll5/n+pen(Bsirac—Bs) < 4 fos —Fll2/n+ 557 o
struc(27 37 S)
In other words, the structured group Lasso mimics an oracle that selects
groups of variables in a sparse way. Note that the tuning parameter A is now
generally of larger order than in the standard Lasso setup (1). This is the
price to pay for having large groups. As an extreme case, one may consider the
situation with weights w; = 1 for all t. Then Ty = T, and the oracle bound is
up to log p-factors the same as the one obtained by the standard Lasso.

+8peny (Bs).

7. Conclusion

The Lasso is an effective method for obtaining oracle optimal prediction error
or excess risk. For variable selection, the adaptive Lasso or other two-stage
procedures can be applied, generally leading to less false positives at the price
of reduced predictive power (or a larger number of false negatives). A priori
structure in the variables can be dealt with by using a group Lasso, possibly
with an additional within group penalty.

Future work concerns modifications that try to cope with large correlations
between variables. Moreover, it will be of interest to go beyond generalized
linear modeling.
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Bayesian Regularization

Aad van der Vaart*

Abstract

We consider the recovery of a curve or surface from noisy data by a nonpara-
metric Bayesian method. This entails modelling the surface as a realization of a
“prior” stochastic process, and viewing the data as arising by measuring this re-
alization with error. The conditional distribution of the process given the data,
given by Bayes’ rule and called “posterior”, next serves as the basis of all further
inference. As a particular example of priors we consider Gaussian processes. A
nonparametric Bayesian method can be called successful if the posterior distri-
bution concentrates most of its mass near the surface that produced the data.
Unlike in classical “parametric” Bayesian inference the quality of the Bayesian
reconstruction turns out to depend on the choice of the prior. For instance, it
depends on the fine properties of the sample paths of a Gaussian process prior,
with good results obtained only if these match the properties of the true surface.
The Bayesian solution to overcome the problem that these fine properties are
typically unknown is to put additional priors on hyperparameters. For instance,
sample paths of a Gaussian process prior are rescaled by a random amount. This
leads to mixture priors, to which Bayes’ rule can be applied as before. We show
that this leads to minimax precision in several examples: adapting to unknown
smoothness or sparsity. We also present abstract results on hierarchical priors.

Mathematics Subject Classification (2010). Primary 62H30, 62-07; Secondary
65005, 68T05.

Keywords. Posterior distribution, nonparametric Bayes, Gaussian process prior, re-
) ) b
gression, classification, density estimation, rate of contraction, adaptation, sparsity.

1. Introduction

The last decades have seen a growing interest in Bayesian methods for recover-
ing curves, surfaces or other high-dimensional objects from noisy measurements.

*Dept. Mathematics, VU University Amsterdam, De Boelelaan 1081, Amsterdam, The
Netherlands. E-mail: aad@few.vu.nl.
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Figure 1. Observations in a regression problem. Three realizations from a Gaussian
process prior (left panel) and 10 from the posterior distribution (right panel). The
true regression curve and the posterior mean are indicated in the right panel. The
Bayesian updating is successful: the realizations from the posterior are much closer
to the truth than those from the prior.

The object 6 is modelled as a realization from some prior probability distribu-
tion II, and the observed data X is viewed as drawn from a probability density
x +— pp(x) that depends on the realization of 6. The posterior distribution of
the “parameter” 6 is then given by Bayes’ rule as

dII(0] X) o po(X) dII(6).

Any question that is expressible in the parameter can in principle be an-
swered by querying this distribution. Practical implementation of this Bayesian
paradigm is nontrivial if the parameter space is infinite-dimensional, but has
been made possible by modern computing. For instance, MCMC methods allow
to generate a Markov chain 6,,05,...,0p with the posterior as its stationary
distribution, and questions can be answered by simple averaging procedures.
In particular, if the 6 are functions, then the average B~! Zf;l 0; gives an
approximation to the mean of the posterior distribution, of a precision that is
controlled by the number B of simulated values. Estimates of the spread of the
posterior distribution can similarly be obtained.

In this paper we are concerned not with computational issues, but with the
quality of the posterior distribution itself. To investigate this we put ourselves
in a non-Bayesian framework, where it is assumed that the data X are gen-
erated according to the density pg, determined by a fixed parameter 6y, and
view the posterior distribution as just a random measure on the parameter
space. The Bayesian procedure is considered accurate if this random measure
concentrates its mass near the parameter 6. We wish this to be true for many
0o simultaneously, preferably uniformly in 6y belonging to a class of test mod-
els. For instance, a set of surfaces known to have a certain number of bounded
derivatives.

Except in very special cases this question can be investigated only in an
asymptotic setting. We consider data X" depending on an index n (for in-
stance sample size) and study the resulting sequence of posterior distributions
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Figure 2. Realizations of a fractional Brownian Motion with Hurst index 0.8 (top
panel) and 0.2 (bottom panel). The fine properties of the sample paths determine the
accuracy of a Bayesian reconstruction using these priors.

dIL, (0] X™) as n — oo. In a setting where the informativeness of the data in-
creases indefinitely with n, we desire that this sequence contracts to the Dirac
measure at 6y, meaning complete recovery “in the limit”. Given a metric struc-
ture d on the parameter space, we can more precisely measure the rate of
contraction. We say that this is at least g, if, for any sequence of constants
Mn — 00,

11, (9: d(0,0p) < Mye,| X") — 1.

The convergence can be in mean, or in the almost sure sense. Thus the posterior
distribution puts almost all its mass on balls of radius of the order ¢,, around
0o.

In classical finite-dimensional problems, with 6 a vector in Euclidean space
and n the sample size, the rate of contraction €, is typically n~ /2, relative to for
instance the Hellinger distance, for any prior with full support. For smoothly
parameterized models the Bernstein-von Mises theorem also shows that the
posterior asymptotically resembles a normal distribution centered at the max-
imum likelihood estimator 6, and with scale equal to 1 /n times the Fisher
information:

Hnn(a € |X™) - N(én(X"),n_llg)H 0.

The prior distribution does not appear in this approximation and is said to
“wash out” as n — oo. In nonparametric problems this is very different. First
there are many priors which do not lead to contraction of the posterior at all.
Second many natural priors yield a rate of contraction that depends on the
combination of the prior and the true parameter. The positive news is that a
good match between prior and 6y may lead to an optimal rate of contraction,
equal to the minimax rate for a problem.
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In practice such “good matches” may not be easy to achieve. It is never
trivial to have a proper intuitive understanding of a prior probability distri-
bution on an infinite-dimensional set. Furthermore, and more importantly, one
does not know the fine properties of the true parameter 6y. Figures 2 and 3
illustrate these points. The Hurst index of fractional Brownian has a strong
influence on the appearance of the sample paths of this process, but it is not
clear what influence this difference has on estimating a particular true function
0o. Whereas the visible appearance of the two priors in Figure 2 is different, it is
almost impossible to distinguish between the sample paths in the three bottom
panels of Figure 3, which are realizations of one, two and three times integrated
Brownian motion. All these priors lead to different rates of contraction for a
given 6.

The elegant solution to the dilemma of prior choice (a classical point of
criticism to Bayesian methods) is to work with many priors at the same time.
We start with a collection of priors Il,, indexed by some parameter « in an
index set A, which is assumed to contain at least one appropriate prior for each
possible truth 6y. Next we combine these priors by putting a prior distribution,
a hyper prior, on the index a. If A is countable and the hyper prior is denoted
by (Aa:« € A), then this this just leads to the overall prior

= ZAQHQ.

Inference, using Bayes’ rule, proceeds as before. The hope is that the data will
automatically “use” the priors II, that are appropriate for 6y, and produce a
posterior that contracts at an optimal rate, given that at least one of the priors
II, would produce this rate if used on its own.

This automatic adaptation of the posterior distribution sounds too good to
be true. Obviously, it depends strongly on the weights (A\y: € A) and the
prior distributions II,,. Because the latter often possess very different “dimen-
sionalities”, finding appropriate weights can be delicate. However, quite natural
schemes turn out to do the job, although sometimes a logarithmic factor is lost.
In this paper we first consider adaptation to the regularity of a surface 6, us-
ing Gaussian process priors, next consider adaptation to sparsity, and finally
present an abstract result. We present theorems without proofs; these can be
found in the papers [10], [2] and [4]. These papers also give references to the
considerable literature on adaptation by non-Bayesian methods.

2. Gaussian Process Priors

Imagine estimating a curve or surface w: T'— R on some domain 7', for instance
a regression or density function, by modelling this apriori as the sample path
of a Gaussian process W = (W;:t € T), and next letting Bayes’ rule do the
work and come up with the resulting posterior distribution. There is a great
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Figure 3. Realizations of 0, 1, 2 or 3 times integrated Brownian Motion. The fine
properties of the sample paths determine the accuracy of a Bayesian reconstruction
using these priors.

variety of Gaussian processes that can be employed. If we restrict to centered
processes, then each is characterized by its covariance function

(s,t) > cov(W,, Wy).

Because there are so many different covariance functions, Gaussian process
priors have gained some popularity (see e.g. [1]).

Often more insight in the prior modelling can be gained from visualizing
the sample paths of the process. There are very rough processes, like Brownian
motion, but also infinitely smooth ones. Not surprisingly the regularity of the
prior influences the posterior. Perhaps it is surprising that this influence does
not disappear if the informativeness of the observations increases indefinitely:
the prior does not wash out. This influence concerns the regularity of the sample
paths of the posterior, but more importantly the concentration of the posterior
near the true curve.

We measure this by the rate of contraction of the posterior distribution.
For Gaussian priors this depends on two quantities (see [7]). First a Gaussian
distribution has a certain concentration near its mean, measured in a small ball
probability. For instance, for uniform balls in the one-dimensional case this is
the probability that the process remains within bands at heights +¢, for small
¢ of course (see Figure 4). More generally, if the Gaussian variable W takes
its values in a Banach space, the exponent of the small ball probability can be
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Figure 4. The small ball probability of Brownian Motion relative to the uniform norm
is the probability that a Brownian sample path remains between bands at heights —¢
and €. (The depicted realization does not and hence does not contribute to the small
ball probability at this ¢.)

defined as
do(e) = —logP(|W]| <¢).

If the small ball probability is small (the exponent ¢q increases rapidly as ¢ | 0),
then the rate of contraction of the posterior will be small as well. In fact, if the
norm || - || matches up with the statistical setting (see later for examples), then
the rate of contraction &,, is not faster than the solution to

®o (sn) ~ 77'5127,'

This is not necessarily bad, as the true curve may be intrinsically hard to
estimate. However, the small ball probability is a property of the prior only,
not of the true curve, and hence is one property through which the prior may
express itself in the posterior. For instance, Brownian motion has small ball
exponent (1/£)? and hence will never give contraction rates faster than n=1/4,
Its small ball probabilities are small, because its sample paths rarely stay close
to zero.

The second quantity that determines the rate of contraction is the position
of the true curve relative to the prior. Clearly if it is outside the support of the
prior, then the posterior will not even be consistent. A position inside the sup-
port can be quantified by its position relative to the reproducing kernel Hilbert
space (RKHS) of the prior. (See [9] for an introduction to RKHS appropriate
to prior distributions.) Being inside the RKHS gives the fastest rate, but other
positions give some rate, which can be computed from the RKHS-norm. If wy
is the true surface and || - || denotes the RKHS-norm, then the crucial quantity
is

Suo (€)= o(e) + inf Al
lh—woll<e
Under general conditions it can be shown ([7, 8]) that the rate of contraction
is e, if
Do (en) < ne%.



2376 Aad van der Vaart

Small ball probabilities and RKHSs are somewhat complicated objects, but
there is big literature that permits obtaining contraction rates for many exam-
ples.

Unless one is a true Bayesian, and believes strongly in the fine properties
of the prior, the dependence of the contraction rate on the prior is not good
news. It is possible to alleviate this dependence by combining priors. We shall
study this here for adapting to unknown smoothness of a surface wg. In this
case an elegant way of combining Gaussian priors is to rescale the sample paths
of a given process. Running a process for a longer time and mapping its time
domain to a shorter interval creates more variability (see Figure 5), whereas
rescaling time in the other direction smoothes the sample paths. The scaling
variable can be viewed as a bandwidth, and the obvious Bayesian approach is
to choose this from a prior.

We shall illustrate with one such a construction. It employs a fixed prior
distribution, constructed by rescaling a smooth Gaussian random field. For
definitenss we use the squared exponential process combined with an inverse
Gamma bandwidth. The squared exponential process is the centered Gaussian
process W = (W;:t € R?) with covariance function, for ||- || the Euclidean norm
on R%,

cov(W,, W) = exp(—||t — s/|*). (1)

The Gaussian field W is well known to have a version with analytic sample
paths ¢ — W;. To make it suitable as a prior for surfaces that are less smooth,
we rescale the sample paths by an independent random variable A distributed
as the dth root of a Gamma variable. As a prior distribution for a function on
the domain [0, 1]¢ we consider the law of the process

(Wag:t € [0,1]%).

The inverse 1/A of the variable A can be viewed as a bandwidth parameter.
For large A the prior sample path ¢ — Wy, is obtained by shrinking the long
sample path ¢t — W, indexed by t € [0, A]? to the unit cube [0,1]¢. Thus it
employs “more randomness” and becomes suitable as a prior model for less
regular functions if A is large (cf. [8]).

We measure the quality of the recovery of a surface wy using this prior
by studying the rate of contraction of the corresponding posterior for surfaces
wo belonging to two scales of test models. First the scale of Holder spaces
C?[0,1]? consists of functions w:[0,1]¢ — R that have partial derivatives up
to order v > 0. For noninteger « it is understood, as usual, that the partial
derivatives of order |a| are Lipshitz of order o — |a]. Second we consider a
scale of infinitely smooth functions. Let A”"(R?) be the space of functions
f:R% — R with Fourier transform f satisfying fe'Y“)‘”T\ﬂQ()\) d\ < oo. These
functions are infinitely often differentiable and “increasingly smooth” as v or r
increase; they extend to functions that are analytic on a strip in C? containing
R? if » = 1 and to entire functions if r > 1.
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Figure 5. A realization of the squared exponential processes and its rescaling to the
unit interval.

Typical minimax rates, relative to metrics that depend on the statistical
setting, for these scales are n~®/(2a+d) if y) belongs to the Holder space of
order o, and n~'/2(logn)” if it belongs to AY7"(R%), for the logarithmic ex-
ponent x depending on 7 and increasing to (d + 1)/2 as r T co. Thus higher
precision is possible for smoother surfaces wg, with the precision approaching
the parametric precision n~!/2 as the regularity increases.

Of course, it is necessary to describe how the data X™ relates to the surface
wp. Rather than describing this in abstract terms, we give three examples:
density estimation, regression, and classification.

Example 2.1 (Density estimation). A sample path of a Gaussian process is not
a suitable model for a probability density. We transform it by exponentiation
and renormalization, and as a prior distribution II for a probability density
fo0:[0,1]¢ — R on the unit cube we use the distribution of

eWatr

t— f[o_’l]d eWas dg”

We assume that the data X" consists of a random sample X1,...,X,, from
a continuous, positive density fy on the unit cube [0,1]¢ C R? and measure
the rate of contraction of the posterior distribution by the Hellinger distance,
the Lo-distance between root-densities. To link to the preceding discussion on
estimating a function wg, we represent the true density as fo = e*°.

Example 2.2 (Fized design regression). A sample path of a Gaussian process
can be used without transformation as a prior for a regression function. We
consider data X™ consisting of independent variables X7, ..., X, satisfying the
regression relation X; = wq(t;) + €;, for independent N (0, 03)-distributed error
variables ¢; and known elements t1,...,t, of the unit cube [0, 1]d. The law of
the random field (Wa:t € [0,1]%) is used as a prior for wo. If the standard
deviation o of the errors is unknown, we endow it with a prior distribution as
well, which we assume to be supported on a given interval [a,b] C (0, 00) that
contains og, with a Lebesgue density that is bounded away from zero. The rate
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of contraction is measured by the empirical Ly-norm, with square

n

lwll? = 0=t w?(ta),

i=1
the Lo-norm corresponding to the empirical distribution of the design points.

Example 2.3 (Classification). In the classification problem the data X™ con-
sists of a random sample (Y1,A1),...,(Yn,A,), where Y; takes values in the
unit cube [0, 1]¢ and A; takes values in the set {0, 1}. The statistical problem is
to estimate the binary regression function rg given by ro(y) = P(A; = 1|Y; =
y). Because this function has range (0,1), we transform a Gaussian process
prior through a link function ¥:R — (0,1), which we take to be the logistic
or the normal distribution function. Thus, as a prior II on ry we use the law
of the process (\IJ(WAt)zt € [0, 1]d). The rate of contraction is measured by
the Lo(G)-norm relative to the marginal distribution G of Y7 applied to the
binary regression functions. We link up to the preceding discussion by setting
wo = \1171(7’0).

The rates of contraction for the three examples are the same, where we
define wy = log fo, wo = wo and wg = ¥~1(rg) in the three examples, and use
the metrics as indicated.

Theorem 2.1. For every of the three examples:

o If wy € C[0,1]? for some o > 0, then the posterior contracts at rate
nfa/(2a+d)(logn)(4a+d)/(4a+2d)‘

o Ifwy is the restriction of a function in A" (R?), then the posterior con-
tracts at rate n=/?(logn)* if r > 2 and n=/?(log n) 14/ ) if p < 2,

The theorem shows that the posterior distribution contracts at the minimax
rate times a logarithmic factor, both in the Holder and infinitely smooth scales.
The remarkable fact is that near minimaxity is obtained in the Holder scale
for any o > 0, even though the prior is fixed and does not refer to any of the
individual spaces. Moreover, if the true surface happens to be infinitely smooth,
then the posterior automatically produces a near parametric rate, without fur-
ther work.

This adaptation is caused by the random rescaling of the squared exponen-
tial process. The latter process has analytic sample paths, and (apparently) can
be roughened sufficiently by shrinkage (Figure 5). The effect of the rescaling
can be seen by considering the rate of contraction without it. If the variable A
would be replaced by a constant, then typical elements wg of each Holder class
are recovered by the posterior at no faster rate than (logn)~", where the power
v increases with a, but the rate becomes never polynomial in n ([11]). Thus
modelling a surface that is a-smooth, but not infinitely smooth, by a prior that
is infinitely smooth leads to desastrous results.
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The logarithmic factors in the rate are a bit disappointing. The theorem
presents only an upper bound on the rates of contraction. However, we conjec-
ture that a logaritmic factor is necessary for the present prior, even for the case
of Holder spaces, although the power (4o + d)/(4a + 2d) may not be optimal.
Such a loss of logarithmic factor is not characteristic of the Bayesian approach,
as other priors can avoid it. As the loss is modest, in practice a simple prior of
the type considered here may be preferable.

3. Sparsity
Suppose that we observe a random vector X" = (Xy,...,X,) in R" such that
Xi:91'+€1‘, z':l,...,n, (2)

for independent standard normal random variables ; and an unknown vector of
means 0 = (01, ...,0,). We are interested in the estimation of § when the vector
is thought to be sparse. This problem is of interest on its own, for instance as
a model for high-throughput experiments when many variables are measured
simultaneously with noise. Applied with the 6; equal to the coefficients of an
expansion of a curve or surface in a basis, the model is also related to curve
estimation.

Sparsity can be made precise in various ways. We take it here to mean that
only few coordinates of § are nonzero. For 6y = (6o.1,...,00,) the parameter
vector that actually produces the data, set

Pon =H#(1 <i<n:by,; #0).

We assume that po, < n, and wish to estimate the parameter accurately
relative to the Euclidean norm on R™. If the set of nonzero parameters were
known a-priori, then the model would effectively be pg ,-dimensional, and the
parameter vector could be estimated with mean square error of the order py .
It turns out that not knowing the sparse set of coordinates needs to incur only
to a logarithmic loss, resulting in minimax rates of the order py , log(n/pon)
(see [5]). The Gaussianity of the perturbations ¢; is essential for this, as it
causes coordinates X; with zero mean to be close to zero.

Besides the set of nonzero parameters, we assume the number py ,, of nonzero
parameters to be unknown. A Bayesian approach starts by putting a prior m,
on this number, which is next extended to a full prior on the set of all possible
sequences 0 = (61,...,0,) in R™. Precisely, a prior II,, on R" is constructed in
three steps

(P1) A dimension p is chosen according to a prior probability measure 7, on
{0,1,2,...,n}.

(P2) Given p a subset S C {0,1,...,n} of size |S| = p is chosen at random.
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(P3) Given (p,S) the coordinates of the vector 8 = (0;:9 € S) are chosen
independently from a given Lebesgue density g on R (if p > 1) and the
remaining coordinates fgc are set equal to 0.

Next Bayes’ rule yields the posterior distribution B — IL,(B| X™), the condi-
tional distribution of 8 given X" if the conditional distribution of X given @ is
taken equal to the normal distribution N, (6, ). The probability of a Borel set
B C R™ under the posterior distribution can be decomposed as

pz:m(p)(n) > /9 0:) [ [ ¢(X:) gs(0s) T a0

\S\ =p SO)EBzes i¢s i€s
Zm(p)(”) Z/H¢ i —0) [ o(X:) 9s(0s) [] do:
p=1 |S|=p~ €S i¢S €S

Here (fg,0) is the vector in R™ formed by adding coordinates 8; = 0 to s =
(0;:1 € S), at the positions left open by S C {1,...,n}.

This formidable object is a random probability distribution on R™, which
we study under the assumption that the vector X" = (Xi,...,X,) is dis-
tributed according to a multivariate normal distribution with mean vector 6
and covariance matrix the identity.

The statistical problem of recovering 6y from X" is equivariant in 6y, and
hence the location of 6y in R™ should not play a role in its recovery rate.
However, a Bayesian procedure (with proper priors) necessarily favours certain
regions of the parameter space. Depending on the choice of priors in (P3) this
may lead to a shrinkage effect, yielding suboptimal behaviour for true param-
eters 6y that are far from the origin. This can be prevented by choosing priors
with sufficiently heavy tails, for instance a product of Laplace densities. More
generally, we assume that g has the form e” for h: R — R satisfying

|h(z) —h(y)| S1+|z—yl, Vz,yeR. (3)

This covers densities e” with a uniformly Lipshitz function h:R — R, such
as Laplace and ¢-densities. It also covers densities of the form e~ !*I" for some
€ (0, 1]. However, the Gaussian density is excluded.
If the true parameter 6, is sparse, then one would hope that the posterior
distribution concentrates on sparse vectors as well. The following theorem shows
that this is true as soon as the priors 7, decrease exponentially.

Theorem 3.1. If there exist constants ¢ < 1 and p,, — 0o such that m,(p) <
cmn(p—1) for every p > D, and the density in (P3) has finite second moment
and is of the form g = e for h satisfying (3), then, for a sufficiently large
constant C,

IL, (0: #(1 < i < n:6; #0) > pon + CP,| X™) 5 0.
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The theorem applies for instance to the geometric and Poisson distributions
m, (truncated to {0,1,...,n}), with p,, ~ 1. It shows that in these cases the
posterior distribution will concentrate on the union of subspaces of dimension
of the order the true number pg ,, of nonzero coordinates. The following theorem
shows that these priors also yield good concentration of the posterior near the
true parameter.

Theorem 3.2. Let m, and the density in (P3) satisfy the conditions of
the preceding theorem. If r, — oo is a sequence of numbers with r2 >
Cpo,n log(n/pon) V log(l/ﬁn(Cpom)) for a sufficiently large constant C, then

I, (6: 10 — 00| > r,| X™) 5 0.

For the truncated geometric and Poisson distributions m,, the square rate
of contraction r, can be seen to be of the order pg ,log(n/pon). Thus these
priors are minimax optimal.

4. An Abstract Theorem

In this final section we present a general result on Bayesian regularization,
formulated in the spirit of the general result on rates of contraction in [3].
We suppose that the data consists of a random sample Xq,...,X, from a
density pg relative to some given dominating measure y on a given measurable
space (X, A). Given a countable collection of sets of densities Py, o, indexed
by a parameter a € A,, each provided with a prior distribution II, o, and
a prior distribution A\, = (A a:x € A,) on A,, we consider the posterior
distribution relative to the prior that first chooses « according to A,, and next
p according to 1I, . for the chosen . Thus the overall prior is the mixture
1L, = Zae A, An,olly o, and the corresponding posterior distribution is

J5 Il p(X;) dIL, (p)

sz (X dH (p)

ZaeAn )‘n,a PEPn o pEB H?:lp(Xi) dHn’a(p)
ZaeAn An,a PEPn H?:lp(Xi) dIl,, o (p)

To ensure that this expression is well defined, we assume that each collection
P« of densities is equipped with a o-field such that the maps (x,p) — p(x)
are jointly measurable.

We aim at a result of the following type. For a given py there exists a
“best” model P, g, that gives a posterior rate of contraction ¢, g, if it would
be combined with the prior II,, g, . The hierachical Bayesian procedure would
adapt to the set of models if the posterior distributions (4) contract at the
rate e, g, for this pg. We want this to be true for any py in some model Py, 4.
Obviously the weights A,, play a crucial role for this.

I, (B|X1,...,X,) =

(4)
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Figure 6. The covering number is the minimal number of balls of a certain radius
needed to cover the model.

The result is formulated in terms of neighbourhoods of py within P, . of
Kullback-Leibler and Hellinger types, given by

Po
Cn,a(g) = {p S Pn,a: h(pap()) < 5} . (5)

2
Bpa(e) = {p € Pr.o: —Pylog P <2 P, <log 5) < 52} ,
0

Here h(p,q) = ||\/P — +/4l|2 is the Hellinger distance between the p-densities p
and ¢, the Lo(u)-norm between their roots.

For 3, a given element of A,,, thought to be the index of a best model for
a given fixed true density py, we split the index set in the indices that give a
faster or slower rate: for a fixed constant H > 1,

Anzpi={ac Aned < He,
An7<6n: = {a S Anlﬁi,a > Hé\ivﬁn}'

Even though we do not assume that A,, is ordered, we shall write o 2 §,, and
a < Bp if a belongs to the sets A, >3 or A, <p,, respectively. The set A, >3,
contains f,, and hence is never empty, but the set A, <3, can be empty (if 5,
is the “smallest” possible index). In the latter case conditions involving a < 3,
are understood to be automatically satisfied.

As in [3] we make assumptions on the complexity of the models and on the
concentration of the priors. The complexity is measured by covering numbers.
The e-covering numbers of a metric space (P, d) are denoted by N(g,P,d), and
are defined as the minimal numbers of balls of radius € needed to cover P (see
Figure 6).

The complexity bound takes the form: for some constants F,,

sup logN(g, Ch.a(2¢), h) < E.ne? a€ Ay (6)

n,o
€2En,a

This inequality may actually be read as a definition of a rate €, , which could
be set equal to the smallest value that satisfies the inequality. This definition
has its roots in the work of Lucien le Cam and has nothing to do with Bayesian
methods. Essentially ¢, o corresponds to the maximal precision of estimation
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that can be obtained for the model P, by any statistical method, Bayesian or
non-Bayesian. More complex models have larger covering numbers and therefore
larger rates €, q.

The conditions on the priors involve comparisons of the prior masses of balls
of various sizes in various models. These conditions are split in conditions on
the models that are smaller or bigger than the best model: for given constants
s Ly HL T,

)\n7a (Cn - zgn 2 ) eLiZHEi’a? a < Bna 1 Z Ia (7)
An,ﬁn n.6n (Bn.g, (€n Bn))

C
/\TL#X e o2 ZE”’BTL ) < Hn, aeLl nsn B « Z ﬁna T > 1. (8)
Ao g, (Bn.g, (€n.6,))

A final condition requires that the prior mass in a ball of radius €, in a big
model (i.e. small «) is significantly smaller than in a small model: for some
constants I, B,

)\n,a Hn,a (On,a(IBgn,oe))
wesmies Anpn Mng, (Bng,(ens,))

= 0(@72"571 Bn ) . (9)

Theorem 4.1. Assume there exist positive constants B, Ey, L, H > 1,1 > 2
such that (6), (7), (8) and (9) hold, and, constants E and E such that
E > sup,ea,.a>s, Easi,a/siﬁn and E > sup,ca, .a<p, Pa (with E = 0 if
An,<ﬁn = (Z));

B>+vVH, B%/9>(HE)VE+1, BI*1/9-2L)> 3.

Furthermore, assume that Y 4 \/Tina < exp(nsiﬂn). If B, € A,, for every
n and satisfies neiﬁ" — 00, then the posterior distribution (4) satisfies

I, (0 hlp,p0) = TB 20,6, X0+, X)) 50

In many situations relatively crude bounds on the prior mass bounds (7), (8)
and (9) are sufficient. In particular, the following lower bound is often useful:
for a positive constant F,

I, 5, (Bn’gn (En’gn)) > exp[—Fm—:i’ﬁn]. (10)

This correspond to the “crude” prior mass condition of [3]. Combined with the
trivial bound 1 on the probabilities II,, o (C) in (7) and (8), we see that these
conditions hold (for sufficiently large I) if, for all « € A,

Ana (e

2
< lin ae” En,(xvsn,[in).
= ,

An, B
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This appears to be a mild requirement. On the other hand, the similarly adapted
version of condition (9) still requires that

Z Ana . (C’n,a(IBEn,a)) _ O(e—(F+2)nai,an).

Q€A < By (TP

Such a condition may be satisfied because the prior probabilities
11, o (Cn)a (IBema)) are very small. For instance, a reverse bound of the type
(10) for « instead of 8,, would yield this type of bound for fairly general model
weights Ay, «, since €, > He, g, for o < B,. Alternatively, the condition
could be forced by choice of the model weights A, o, for general priors II,, 4.
For instance, weights of the type

)\n,a X U exp[—C’nEi’a}

satisfy all conditions. In [6] they are applied to several examples of interest.
Note that they strongly downweight big models (with large e, ) relative to
small models.

The posterior distribution (4) can be viewed as a mixture of the posterior
distributions on the various models, with the weights given by the posterior
distribution of the model index. Our second result shows that models that are
“bigger” than the optimal model asymptotically have vanishing zero posterior
mass and hence zero weight in this mixture.

Theorem 4.2. Under the conditions of Theorem 4.1,

Hn(a S An,<ﬂn‘X17 co 7X'IL) E) 0,
Hn(a S An,ZBn: h(po,'Pn,a) > IB(—:n,gn‘Xl, s ,Xn) f) 0.

The first assertion of the theorem is pleasing. It can be interpreted in the
sense that the models that are bigger than the model P, g, that contains the
true distribution eventually receive negligible posterior weight. The second as-
sertion makes a similar claim about the smaller models, but it is restricted to
the smaller models that keep a certain distance to the true distribution. Such a
restriction appears not unnatural, as the posterior looks at the data through the
likelihood and hence will judge a model by its approximation properties rather
than its parametrization. That big models with similarly good approximation
properties are not favoured is caused by the fact that (under our conditions)
the prior mass on the big models is more spread out, yielding relatively little
prior mass near good approximants within the big models.
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Abstract

We discuss the enumeration theory for flags in Eulerian partially ordered sets,
emphasizing the two main geometric and algebraic examples, face posets of con-
vex polytopes and regular C'W-spheres, and Bruhat intervals in Coxeter groups.
We review the two algebraic approaches to flag enumeration — one essentially
as a quotient of the algebra of noncommutative symmetric functions and the
other as a subalgebra of the algebra of quasisymmetric functions — and their
relation via duality of Hopf algebras. One result is a direct expression for the
Kazhdan-Lusztig polynomial of a Bruhat interval in terms of a new invariant,
the complete cd-index. Finally, we summarize the theory of combinatorial Hopf
algebras, which gives a unifying framework for the quasisymmetric generating
functions developed here.
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1. Introduction: Face Enumeration in Convex
Polytopes
We begin with an introduction to the enumeration of faces in convex polytopes.

For a d-dimensional convex polytope @, let f; = f;(Q) be the number of -
dimensional faces of Q). Thus f; is the number of vertices, f; the number of
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edges, ..., fq—1 the number of facets (or defining inequalities) of Q. The f-
vector of () is the vector

F(Q) = (fo, f1,- -y fa1).

The central problem of this area is to determine when a vector of nonneg-
ative integers f = (fo, f1,-.-, fa—1) is f(Q) for some d-polytope @. The case
d =2is clear (fo = f1 > 3); d = 3 was settled by Steinitz in 1906 [54]. The
cases d = 4 and higher remain open except for special classes of polytopes.

1.1. Simplicial polytopes. A polytope is simplicial if all faces are sim-
plices, for example, if its vertices are in general position. Their duals are the
simple polytopes, which include polytopes with facets in general position. If @
and Q* are dual d-dimensional polytopes, then their f-vectors are related by
fi(Q) = fa—1-:(Qx). The f-vectors of simplicial (and, consequently, simple)
polytopes have been completely determined.

The h-vector (hog, ..., hq) of a simplicial d-polytope is defined by the poly-

nomial relation
d d

S hatT =" fig(x— 1) (1)
=0

i=0
The h-vector and the f-vector of a polytope mutually determine each other via
the formulas

i - L fd—
h; = 1) .- nd fi1= . . hjv
j;)( E <Z_])f Lo e jz_:o<l—9)

for 0 < i < d, so characterizing f-vectors of simplicial polytopes is equiva-
lent to characterizing their h-vectors. This is done in the so-called g-theorem,
conjectured by McMullen [42] and proved by Billera and Lee [17, 18] (for
the sufficiency of the conditions) and Stanley [47] (for their necessity). Given
(ho, .-, ha), define gg := ho and g; := h; — h;j_y for 1 <i < |2].

Theorem 1.1 (g-theorem). (hg,hi,...,hq) € Z91 is the h-vector of a simpli-
cial convex d-polytope if and only if

1.1.1. h; = hq_y, for all i,

1.1.2. go=1,9,>0, for 1 <i<|[%], and

1.1.3. g1 < g fori>1.

The relations in (1.1.1) are known as the Dehn-Sommerville equations and
date to the early 20" century. The nonnegativity relations (1.1.2) are known as
the generalized lower bound conditions. These plus the inequalities (1.1.3) are
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known as the Macaulay conditions. The quantity gi@> is computed by expressing
g; canonically as the sum of a sequence of binomial coefficients and altering
them by adding 1 to the top and bottom of each. See [18] for details.

Conditions (1.1.2) and (1.1.3) characterize sequences of natural numbers
that count monomials in an order ideal of monomials (a set of monomials closed
under the division order). They are similar to, but are not quite the same as, the
conditions of Kruskal and Katona for f-vectors of general simplicial complexes,
but with g; in place of f;. Equivalently, (1.1.2) and (1.1.3) say the g¢;’s form
the Hilbert function of some graded algebra. The necessity proof of Stanley [47]
proceeds by producing a commutative ring with this Hilbert function. See, for
example, [11] for complete definitions and references.

1.2. Counting flags in polytopes. For general convex polytopes, the
situation for f-vectors is much less satisfactory. In particular, the only equation
they all satisfy is the Euler relation

fo—fitfo—rtfir=1-(-1%

Already in d = 4, we do not know all linear inequalities on f-vectors, and at
this point, there is little hope of giving an analog to the Macaulay conditions.

A possible solution is to try to solve a harder problem: count not faces,
but chains of faces. For a d-dimensional polytope @) and a set S of possible
dimensions, define fs(Q) to be the number of chains of faces of @ having
dimensions prescribed by the set S. The function

S f5(Q)

is called the flag f-vector of Q. It was first studied by Stanley in the context of
balanced simplicial complexes, a natural extension of order complexes of graded
posets [46].

The flag f-vector of a polytope includes the ordinary f-vector, by counting
chains of one element: (fg : [S| = 1). It also has a straightforwardly defined
flag h-vector that turns out to be a finely graded Hilbert function. Most impor-
tant for an algebraic approach to flag f-vectors, they satisfy an analog of the
Dehn-Sommerville equations, which cut their dimension down to the Fibonacci
numbers, compared to | %] for f-vectors of simplicial polytopes.

In what follows, we discuss the development of the theory of flag vectors of
polytopes, and where it has led. We thank Margaret Bayer, Satil Blanco and
Stephanie van Willigenburg for reading and offering corrections on earlier drafts

of this paper.

2. Eulerian Posets and the cd-index

The best setting in which to study the flag f-vector of a d-polytope @ is that of
its lattice of faces P = F(Q), an Eulerian graded poset of rank d+ 1. We define
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the cd-index and g-polynomials for Eulerian posets and discuss inequalities on
these for polytopes and certain spherical subdivisions.

2.1. Flag enumeration in graded posets. A graded poset is a
poset P with elements 0 and 1 such that 0 <x< 1 for all z € P and with rank
function p : P — N so that for each « € P, p(z) is the length k of any maximal
chain 0 = 29 < 1 < --- < ¥ = 2. The rank of P is p(P) := p(1).

The flag f-vector of a graded poset P of rank n + 1 is the function S +—
fs = fs(P), where for S = {i1,...,ix} C [n] :={1,...,n},

fsz‘{y1<y2<--~<yk‘yjepap(yj):ij}"

Included is the case S = (J, where usually fy = 1, although later we will let fy
be unspecified.

To begin to understand flag f-vectors of convex polytopes, it might be
helpful first to be able to determine all flag f-vectors of graded posets, or
at least determine all linear inequalities satisfied by flag f-vectors of graded
posets. The former is an analog of the Kruskal-Katona conditions on f-vectors
of simplicial complexes and remains open. The latter are analogs of the Dehn-
Sommerville and generalized lower bound relations for graded posets. They are
completely determined.

First, it is easy to determine that there are no linear equations that hold
for the flag f-vectors of all graded posets [19, Proposition 1.1]. For inequalities,
the situation is more interesting. For example, for graded posets of rank 4, it
can be shown that the inequality

Jasy — fry + froy — fizyp =20

always holds [15, Example 3].
More generally, a subset of the form {i,i 4+ 1,...,i+ k} € [n] is called an
interval. For an antichain of intervals Z C 2I"), define the blocking family

bZ)={SCn] | SNI#0,VIET}.

Theorem 2.1 ([15]). A linear form Y gc(, as fs satisfies 3 g as fs(P) = 0
for all graded posets P of rank n+1 if and only if for all antichains of intervals

T c 2,
Z ag > 0.
Seb[z]

Corollary. The closed convexr cone generated by all flag f-vectors of graded
posets is polyhedral and has the (Catalan many) extreme rays ez = ZSeb[I] €s,

where {es | S C [n]} are the unit vectors in R?".
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Example 1. We consider the case of graded posets of rank 3. The flag f-vector
in this case is the vector f = (fp, f{1}, f{2}, f1,23), and there are 5 extreme rays
corresponding to 5 antichains of intervals.

T | 0 {12}y 1423y {{1}} {{2}}
ez | (LL,L,1) (0,1,1,1) (0,0,0,1) (0,1,0,1) (0,0,1,1)

2.2. Eulerian posets and the cd-index. A graded poset P is said
to be Fulerian if for all x <y € P,

M(% y) — (_1)p(y)—p(:c)

where p is the Mobius function of P. Equivalently, P is Eulerian if for each
subinterval [z,y] C P, the number of elements of even rank is equal to number
of elements of odd rank. Face posets of polytopes and spheres are Eulerian.

Again, two natural problems arise, to determine all flag f-vectors of Eulerian
posets or, at least, to determine all linear inequalities satisfied by flag f-vectors
of Eulerian posets. Here, all the linear equations are known. There are 2™ flag
numbers fg, S C [n], for graded posets of rank n+ 1. For Eulerian posets, these
are not independent evaluations. In fact, for Eulerian posets, only Fibonacci
many fg are linearly independent.

We consider the first few cases. Note that we consider f; to be variable,
which will be important later for several reasons.

n = 0: fy is the only flag number.
n = 1: fp, fr1y are the relevant flag numbers, but f1y = 2fy (Euler relation).

n = 2: fo, fr1y, froy, f1,2y are all the flag numbers, but fri3 = fi2; (Euler
relation) and f{172} = 2f{2}.

n = 3: fo, fr1y, freys fi3ys frieys fiusys fe,sy, fii,2,3) are the flag numbers,
but fay — froy + fizy = 2fp (Euler relation), fri2y = 2fiay, frosy =
2f(y, frisy = fro3y and frio3y = 2f(3y- Only fo, friy and froy are
independent.

n =4 Only f@, f{1}7 f{g}, f{3}, f{l,S} are independent.

Thus the first few dimensions of the linear space spanned by all flag numbers
of Eulerian posets of rank n + 1 are 1, 1, 2, 3 and 5. The relevant relations for
P are all derived from Euler relations in P and in intervals [z, y] of P. Details
of these equations will appear later.

There is much less known about inequalities for flag numbers of Eulerian
posets. The cones of all flag vectors are known for Eulerian posets through rank
6. The best references for this are [8, 9].



2394 Louis J. Billera

For S C [n] let the flag h-vector be defined by

hg = Z (_1)‘S|_|T|fT-

TCS

For noncommuting indeterminates a and b let ug = ujus - - - u,, be defined by

w bifie S
Y laifig¢ S

Let ¢ = a+ b and d = ab + ba. Then for Eulerian posets, the generating
function

Up=> hs(P)us (2)
S

is always a polynomial in ¢ and d; this polynomial ®p(c,d) is called the cd-
index of P. This invariant was first explicitly defined by Bayer and Klapper in
[6], following an unpublished suggestion of J. Fine.

Example 2. Let P = B3, the Boolean algebra of rank 3, i.e., the poset of
all subsets of a 3-element set ordered by inclusion. We have fy =1, fr13 = 3,
f{g} = 37 and f{l’g} =6 so hq) = 1, h{l} = 2, h{g} = 2, h{l}g} =1, and

Up = aa-+2ba+ 2ab+ bb
(a+b)? + (ab + ba)
= c2+d=93p

Another invariant for Eulerian posets that implicitly enumerates flags is the
following extension of the h-vector and associated g-vector defined in §1.1. This
definition, originally due to MacPherson in the context of convex polytopes and
their associated toric varieties, was given in the context of Eulerian posets by
Stanley in [48]. For an Eulerian poset P of rank n + 1 > 0, we define two
polynomials f(P,z),g(P,z) € Z[z] recursively as follows. If n + 1 = 0, then
f(Pyx)=g(P,z)=1.1fn+1>0, then

fPay=3" g(0.yla)(@—1)" "W (3)
yeP\{1}

If f(P,z) =i, k;x' has been defined, then we define
g(P,x) = ko + (k1 — ko) T+ -+ + (“L%J - KL%J,l) zl3] (4)

For an Eulerian poset P, the vector (ho, ..., hn) = (Kn, ..., k1, Ko) is what is
sometimes called the toric h-vector of P. When P is the face poset of a simplicial
polytope (or any simplicial complex), this toric h-vector coincides with the usual
simplicial h-vector defined in (1). Since for Eulerian P, h; = hy,_; (see [48] or



Flags in Polytopes, Eulerian Posets and Coxeter Groups 2395

[51, Theorem 3.14.9]), our definition of g(P,x) agrees with the usual notion of
the simplicial g-vector.

That the toric h and g-vectors are functions of the flag f-vector was first
noted by Bayer [3]. Formulas expressing these in terms of the flag f-vector (for
general graded posets) and the cd-index (for Eulerian posets) are given in [7].
We note that in [7], this distinction between ; and h; is not made, so their
formulas for h; are, in reality, for h,_; (which equals h; in the Eulerian case).

2.3. Inequalities for flags in polytopes and spheres. There
are by now many inequalities known to hold for the g-polynomial and the cd-
index of convex polytopes and more general spheres. These all give inequalities
on the flag f-vectors of these objects. We summarize most of these here.

e Among all n-dimensional polytopes, the g-polynomial is termwise mini-
mized on the n-simplex A,. Since always gy = 1, this is equivalent to saying
that g; > 0 for ¢ > 1 (the generalized lower bound theorem). This was proved
by Stanley in [47] and [48] for simplicial and then all rational polytopes using
the cohomology of toric varieties, and extended to all polytopes by Karu [37],
by means of the theory of combinatorial intersection cohomology. See [21] or
[53] for a discussion of this combinatorial cohomology theory.

e For polytopes and, in fact, for all Cohen-Macaulay graded posets (so for
face posets of balls and spheres), hg > 0 (Stanley, [46]).

o If we write ®p = ) [w]p w over cd-words w, then [w]p > 0 for polytopes
(more generally for S-shellable CTW-spheres; Stanley [49]).

e Among all n-dimensional zonotopes, the cd-index is termwise minimized
on the n-cube C,,. Equivalently, among all decompositions of the (n— 1)-sphere
induced by central hyperplane arrangements in R™, the cd-index is termwise
minimized by the n-dimensional crosspolytope (Billera, Ehrenborg and Readdy

[14]).
e Among all n-dimensional polytopes, the cd-index is termwise minimized
on the n-simplex A,, (Billera and Ehrenborg [13]).

e If ) is a polytope, then termwise as polynomials

9(Q) = g(F) - g(Q/F)

for any any face F' C @, where Q/F is any polytope whose face lattice is the
interval [F,Q]. This was shown by Braden and MacPherson [22] for rational
polytopes using cohomology of toric varieties. Again, it follows for all polytopes
by combinatorial intersection cohomology; see [21] for a discussion of this.

e For any polytope @ and face F' C @), we have termwise as cd-polynomials,
C- (I)F . (I)Q/F
(I)Q Z CDF -C- @Q/F
(PF . (I)Q/F - C,
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where ®q, ®p, ®g/p are the cd-indices of (the face lattices of) @, F, P/F, re-
spectively (Billera and Ehrenborg [13]).

e For a polytope @, let [w]g denote the coefficient of the cd-word w in the
cd-index of Q. Then for all cd-words v and v

fudulg > [uc®vlg

(Ehrenborg [31]).

e If @ is an n-dimensional polytope with v vertices, then for any S,
(a) fs(Q) < fs(C(v,m)),
(b) hs(Q) < hs(C(v,n)) and
(c) ®q < Pe(um)s

where C(v,n) is the cyclic n-polytope with v vertices, i.e., the convex hull of v
points on the moment curve (¢,¢2,...,¢"). This is known as the Upper Bound
Theorem. The first inequality for the case [S| = 1 was proved by McMullen [41]
by proving the first two inequalities for all simplicial polytopes in this case. The
latter result was extended to all triangulated spheres by Stanley [45]. The first
inequality for general S was observed by Bayer and Billera [4]. In full generality,
this result is due to Billera and Ehrenborg [13].

e For P a Gorenstein® poset (i.e., one that is both Eulerian and Cohen-
Macaulay), ®p > 0. Gorenstein* posets include all face-posets of regular CW-
spheres. This result was conjectured by Stanley in [49] and proved by Karu
[38, 39].

e For P a Gorenstein* lattice of rank n + 1, ®p is bounded below termwise
by the cd-index of the n-dimensional simplex. This generalizes the result of
Billera-Ehrenborg for cd-indices of n-dimensional polytopes. This result was
also conjectured by Stanley [50] and was proved by Ehrenborg and Karu [32].

There is one outstanding conjecture of Stanley in this area that remains
open. What follows is Conjecture 4.2(d) in [48]. The second part is Conjecture
4.3 in [50]. Tt covers, in particular, g-polynomials of all triangulated spheres.
(That the h-polynomial of a triangulated sphere is nonnegative is a consequence
of the Cohen-Macaulayness of its face ring [45].)

Conjecture 1 ([48]). For P a Gorenstein® lattice, the g-polynomial, and so
the h-polynomial, is nonnegative.

We should note here that there is no guarantee in any of these cases that
there are only finitely many irredundant linear inequalities, although in none
of these cases have more than finitely many been found. In a related instance,
however, Nyman [43] has found that for rank 3 geometric lattices, countably
many linear inequalities are necessary to describe their flag f-vectors.
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3. Algebraic Approaches to Counting Flags

In this section, we will consider two different algebras that arise in the study of
flag f-vectors of graded posets. In the end, we will see that these algebras are,
in fact, directly related to each other via duality of Hopf algebras. Especially
interesting is how each one handles the case of Eulerian posets.

3.1. The convolution product and derived inequalities. We
will write fé"), S C [n — 1], when counting chains in a poset of rank n, and we
consider fé")(') to be an operator on posets of rank n. Alternatively, we can
define fén)(P) = 0 when the rank of P is not n.
Given fén) and f;m), S Cn—1],T C[m—1] and P a poset of rank n +m,
define
1@y = 30 1) £ (1),

z€P : p(x)=n

It is easy to see that f(" m) = féﬁ{r;n})u(T+n) where T+n := {z+n |z € T}.
For example, fg% {(g)} f{1 5.4} and féQ) * (3) f(5)

This convolution product was first Con51dered by Kalai [36], who used it
to produce new flag vector inequalities for polytopes from known ones. It is
immediate, that this works as well for graded posets or for Eulerian posets (in
fact, for any class of posets closed under taking intervals).

Proposition 3.1 ([36]). If the linear forms G1 = > ag fén) and Gy =

> Bs f(m) satsify G1(P1) > 0 and Go(P2) > 0 for all polytopes (respectively,
graded posets, Eulerian posets) Py and Py of ranksn and m, then G1xGo(P) >0
for all polytopes (graded posets, Eulerian posets) P of rank n + m.

Example 3. Polygons have at least 3 vertices, so f{1} -3 féB) > 0 for all

polygons. (Note that rank is one more than dimension, so ffg) counts vertices.)
s (3) (3) 1 _ (4)

(£ =387) 10 = 1ty 313} 2 0
for all 3-polytopes (i.e., the number of vertices in 2-faces is at least three times
the number of 2-faces).

Most of the inequalities described earlier are of the form

— Zas fén)(P >

and so can be convolved to give further inequalities. As an example we consider
the coefficients of the cd-index. Let w = ¢"*dc™2dc"® - --c"dc™»*+* be a cd-
word, and define myg,...,m, by mg = 1 and m; = m;—1 + n; + 2. Then the
coefficient of w in the cd-index is given by

[U)] _ Z (_1)(m17i1)+(m2*i2)+“'+(mp*7;p) k{iﬂz-“ip}? (5)

1y
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where the sum is over all p-tuples (i1, 2, ...,1%,) such that m;_; <i; <m; —2
and
ks =y (=2)I¥17171 fp.
TCS

Using (5), we can see the cd-indices for Eulerian posets of ranks 1-5 are

(3) (3)

(3)
fo C2+< y ~2f )
4) 3
() 24" et (1) — £ )ed
f(5) 4+<f 2f(5)) 2 (f(5) o f(S))cdc—&— (f( f + f(5) o 2f(5)>c2d
{1} 0 {2} {1} {3} {2} {1} 0
(5) (5) (5)
(0 275 200 4,
so, for example, we know from the nonnegativity of the cd-index that
(5) (5) (5)
f{1 3) 2f{3} — Qf{ +4f;7 >0

for all 4-dimensional convex polytopes.

We remark here that Stenson [56] has shown that the set of inequalities on
polytopes derived by convolution from the nonnegativity of the g; and the set
derived from the fact that [w] is bounded below by its value on the simplex do
not imply each other.

3.2. Relations on flag numbers and the enumeration alge-
bra. Eulerian posets of rank d, as well as polytopes of dimension d — 1, satisfy
the Euler relations

d d d — d d
By = I A £y =+ G+ G =0

Since by Proposition 3.1, the convolution product preserves equalities, we can
convolve the trivially nonnegative forms fék) with Euler relations to get rela-
tions for posets of higher ranks of the form

1875 (7 =103 + 16} =+ GOy + CUARY) i =00 (6)

These are enough to generate all linear relations on flag f-vectors on poly-
topes.

Theorem 3.2 ([5]). All linear relations on the féd) for polytopes, and so for
FEulerian posets, are derived from those coming from the Euler relations as in

(6).
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The equations in [5] are identical to those in equation (6), although they
originally were expressed without the use of the convolution. The proof there
that these are all the equations consists of producing Fibonacci many polytopes
whose flag f-vectors span. These can be made for each dimension by considering
repeated operations of forming pyramids P and prisms B starting with an edge,
never taking two B’s in a row. The number of words of length d — 1 in P and
B, with no repeated B, is a Fibonacci number. A simpler algebraic proof that
flag f-vectors of polytopes span that does not give a specific basis is given in
[14], where it is shown also that zonotopes will suffice. See also [36] for another
basis.

There is a simple algebraic way of capturing the notion of convolution prod-
uct and relations on flag numbers in Eulerian posets. Let

A:@<yl7y2a"'>:AO@AI@AQ"'

be the free associative Q-algebra on noncommuting y;, graded by deg(y;) = i.
Here
Ay = spang{ Yi,Yi, - Vi, | 01 +i2 + - +ip =0}

We say 8 = (B1,...,0k) is a composition of integer n > 0 (written S = n)
if each 8; > 0 and || := 81 + - - - + B = n. There is a simple bijection between
compositions of n + 1 and subsets of [n] := {1,...,n} given by

B= B, 0k) En+1=S(B) :={B1,61+ P2,.... 081+ 4 Br_1} C [n]
and
S={i1,...,ig_1} C[n]— B(S) :=(i1,i2 —i1,i3 —i2,...,n+1—ip_1) En+1.

We will freely move between indexing by compositions and the associated sub-
sets in the rest of this paper.
Via the association of y; and fék) and so of

yp =yp, s B=(Bu.. B En+1 and 550 =5, S Cnl,
multiplication in A can be seen to be the analog of Kalai’s convolution of flag

f-vectors, in which

(n) (m) _ p(ntm)
s *lr —f5u{n}u(T+n)'

Example 4. With this association fﬁ)} = y1 y2 and so

fﬁ% * fg’)} =NY2Y91Y2 = f{(?))?,A}'

In general, we get an association between elements G € A,, and expressions
of the form ZSC[n—l] asfén). Multiplying a form G in this algebra by y; on the
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right (left) corresponds to summing G evaluated on all faces (or links of faces)
of corank (rank) i.
For k > 1 define in Ay, the form

k

Xe = 3 (D' = > (1) ",

i+i=k i=0

the k" Euler relation, where we take 70 = 1 and fék) = ng) = fék). Thus in
A47

X4 = Yous — Y1y + Yoy — ysy1 + yayo = 2f3") — ff)} + f{(gi - fg)}
the Euler relation for posets of rank 4. By Theorem 3.2, the 2-sided ideal
Ie=(xx:k>1)CA
is the space of all relations on Eulerian posets. We define
Ag = A/,

and think of A¢ as the algebra of functionals on Eulerian posets. It turns out
that it too is a free associative algebra, the algebra of odd jumps.

Theorem 3.3 ([19]). There is an isomorphism of graded algebras,

AE = Q<y1ay3ay57 cee >7

and so dimg(Ag), is the nt" Fibonacci number.

3.3. Quasisymmetric function of a graded poset. Note that
the algebras A and Ag discussed in the last section were noncommutative. We
can also associate a pair of commutative algebras to the flag vectors of graded
and Eulerian posets.

Let QSym C Q[[z1,x2,...]] be the algebra of all quasisymmetric functions

QSym := QSymo & QSym & - --

where
QSym,, = spang{Mpz | 8= (B1,....B) En}
and
Mg = Z x*ilmizxf:
11 <ig<-<i

Here My = 1 so QSymy = Q; otherwise k& > 0, each 5; > 0, and 81 + --- +
Br = n. Alternatively, QSym consists of all bounded degree power series in
Q[[z1,x2,...]] such that for all 8 = n, the coefficient of xfllwiz . ~xf: is the
B2

b2 ..

same as that of 7'z xfk whenever 71 < -+ < ip.
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For example, (1,2,1) =4 and M 21y = Zi1<i2<13 x}lezx}3. We can index
also by subsets. For S C [n], define

MS = Mén+l) = M,B(S)7
so, for example, if S = {1,3} C [3] then 8(S) = (1,2,1) = 4 and
My = M{Yyy, = Mo 2,).

This basis {Mg | 8 = n,n > 0} is known as the monomial basis for QSym.

We note that quasisymmetric functions arise naturally as weight enumera-
tors of P-partitions of labeled posets [34]. In this context, a more natural basis
arises as weight enumerators of labeled chains,

Lg = Z M.
TDS

Here S C T C [n] and S is the descent set of the labeling. This is known as the
fundamental basis for QSym. See [52, §7.19] for further discussion.

We summarize here the basics of the use of quasisymmetric functions in the
theory of flag f-vectors of graded posets and, in particular, Eulerian posets.
For a finite graded poset P, with rank function p(-), we define the formal power
series

D SR TP

0=uo< - <up—_1<up=1

where the sum is over all finite multichains in P whose last two elements are
distinet and p(x,y) = p(y) — p(x). See [30] for general properties of F'(P). In
particular, we have the following.

Proposition 3.4. For a graded poset P,

3.4.1. F(P) € QSym, in fact F(P) € QSym,, where n = p(P),

3.4.2. F(Pl X Pg) = F(Pl) F(PQ),

3.4.3. F(P) =3, faMs =3, haLa, where fo and hy are the flag f

and flag h-vectors, respectively, of P.

We define next an interesting subalgebra of QQSym that turns out to be

related to Eulerian posets. For a cd-word w of degree n,
w = c"dc"d---c"*dc™,

where degc =1 and degd = 2, let

Ty ={{i1 — 1,1 },{io — Lo}, ..., {ix — 1,45} },
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where i; = deg(c"'dc™d---c™d). Note that Z,, consists of disjoint intervals
in [n], all of size 2. These and more general even antichains of intervals have
been related to extremes of the cone of Eulerian flag vectors in [8, 9].

The peak algebra 11 is defined to be the subalgebra of QSym generated by
the peak quasisymmetric functions

Ou= > Mg, ®)
TEb[Ty)

where w is any cd-word (including empty cd-word 1, for which Z; = 0). Note
that if degw = n, then deg ©,, = n + 1; there are Fibonacci many ©,, of each
degree.

The peak algebra was first defined by Stembridge [55], where peak quasisym-
metric functions arise naturally as weight enumerators of enriched P-partitions
of labeled posets.

A subset S C [n] is sparse if 1 ¢ Sand i € S = i —1 ¢ S. We can associate
a sparse subset S, C [n] to a cd-word of degree n by associating

w=c"dc"d---c"*dc™ and S, = {i1,i2,...,i} C [n],

where i; = deg(c™dc"d - --c"d). Stembridge considers the basis for II to be
labeled by sets S of the form S,,. In this context, his basis Og arises as weight
enumerators of labeled chains, where S is the peak set of the labeling. (A peak
is a descent preceded by an ascent.)

3.4. Peak functions and Eulerian posets. The main result for
our purposes with respect to the sublagebra II is due to Bergeron, Mykytiuk,
Sottile and van Willigenburg [10].

Theorem 3.5. If P is an Eulerian poset, then F(P) € II.

The proof of Theorem 3.5 depends on connections between the enumeration
algebra Q(yi1,y2,...) and the algebra of quasisymmetric functions QSym as
well as between the quotient A¢ and the subalgebra II of peak functions. Now
the algebras IT and Ag both have Hilbert series given by the Fibonacci sequence,
although they are surely not isomorphic: II is commutative, A¢ is not. The
connection comes via duality of Hopf algebras. We summarize this briefly here.

Let B be a graded algebra. The product on the algebra B can be viewed as
a homogeneous linear map

B®B—B, a®b+—a-b

A coalgebra C has instead a coproduct C — C' ® C, as well as a counit, an
analog of the unit in an algebra. A Hopf algebra H has both product and
coproduct (plus unit and counit), as well as a map S : H — H known as the
antipode. (In the case of graded Hopf algebras, the antipode is uniquely specified
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by the product and coproduct; see, e.g. [30, Lemma 2.1] or the Appendix in
[10].) In the dual vector space H* to a Hopf algebra H, the adjoint of the
product on H

H*®@ H* «+— H*
gives a coproduct on H*, and the adjoint of the coproduct on H

H*+— H* @ H*

gives a product on H*, making H* a Hopf algebra as well. H* is the dual Hopf
algebra to H.!

The four algebras we have discussed are all graded Hopf algebras, with the
coproducts defined below. In [33], the integral Hopf algebra NC = Z(y1, y2, . . - )
(called there the noncommutative symmetric functions) was shown to be dual
to the Hopf algebra of quasisymmetric functions with integral coefficients, with
coproducts

AMg)= > Mg, ® Mp,
B=PB1-B2
for QSym and
Ayr) = Z Yi @ Yj-
i+j=k

for NC. So, for example,
A (Mg,1,1)) = 1® Mg,1,1) + Mz) © M1,1)+Ma,1) ® M1y + Mz 11y © 1

and A(ys) =1 ®ys + y1 @ y1 + y2 ® 1, where, as before, we take yo = 1.
In [10], these coproducts on QSym and A, respectively, are shown to extend
to coproducts on IT and Ag, and they proved [10, Theorem 5.4]:

Theorem 3.6 ([10]). These coproducts make II and Ag into a dual pair of
Hopf algebras.

Theorem 3.5 follows directly from this: For any graded poset P, the qua-
sisymmetric function F(P) = ) ¢ fs(P)Mg defines a functional A — Q, de-
fined by > g asfs — > gasfs(P), in A* = QSym. Theorem 3.6 implies that
11 is the kernel of the restriction of this functional to functionals on the ideal I¢.
By the definition of I¢, any Eulerian P has an F'(P) in this kernel, so F'(P) € 1L

This leads immediately to the following question: For an Eulerian poset P,
what is the representation of F/(P) in terms of the basis of peak functions {O,,}
for II? Equivalently, what is the dual basis in A¢ to the basis {©,,}? This was
answered in [16].

n reality, we are considering the graded dual H* = ®H 5 of the graded Hopf algebra
H = @®H; [2]. All products and coproducts we describe will be homogeneous maps.
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Theorem 3.7 ([16]). If P is any Fulerian poset, then

F(P) = ZW% [w]P @wa

w

where the [w]p are the coefficients of the cd-index of P and |w|q is the number
of d’s in w.

Corollary. The elements
1

Slwlatt [w] € Ae

form a dual basis to the basis ©,, in II.

Since, in terms of the theory of P-partitions, the subalgebra II and the
basis {©,,} arise naturally when considering the algebra QSym, one sees that
the cd-index is a natural, in fact, inescapable, invariant in the context of flag
enumeration in Eulerian posets. We see in the next section how these ideas lead
to an interesting new invariant in the theory of Bruhat intervals on Coxeter
groups.

4. Bruhat Intervals in Coxeter Groups

A Coxeter group is a group W generated by a finite set S with the relations
s? = e for all s € S (e is the identity of W) and otherwise only relations of the
form

(Ssl)m(s,s') =e,

for s # s’ € S with m(s,s’) = m(s’,s) > 2. There are many examples of
such groups, including the symmetry groups of regular polytopes (and so the
symmetric groups) and the finite reflection groups. See [35] and [20] for general
background, especially the latter for the combinatorial theory of Coxeter groups
discussed here.

Given a Coxeter system (W,S) (the set of generators is a critical compo-
nent), each v € W can be written v = s189--- s with s; € S. If k£ is minimal
among all such expressions for v, then sy55 - - - s is called a reduced expression
for v and k = I(v) is called the length of v.

The Bruhat order on (W,S) is a partial order on the set W, defined as
follows. If v = s185 - - - sy, is a reduced expression for v, then u < v for u € W if
some (reduced) expression for u is a subword u = 8;,8;, <+ S, 11 < i3 < -+ <
ig, of v.

It was shown by Verma [57] that for each uw < v € W the Bruhat interval
[u,v] is an Eulerian poset of rank I(u,v) := l(v) — l(u). Thus, as an Eulerian
poset, the interval [u,v] has a cd-index. This was first studied in any detail
by Reading [44], who showed that there were no equations other than those
described in Theorem 3.2 that held for the flag vectors of all Bruhat intervals.
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Here we extend the cd-index of a Bruhat interval to the complete cd-index,
a nonhomogeneous cd-polynomial of degree [(u,v) — 1 that includes enough
information to compute important invariants for the interval, including its R-
polynomial and its Kazhdan-Lusztig polynomial. The remainder of this section
represents mostly joint work with Francesco Brenti [12].

4.1. R-polynomial and Kazhdan-Lusztig polynomial. Let
H(W) be the Hecke algebra associated to W, i.e. the free Z[q, ¢ ']-module
having the set {7, | v € W} as a basis and multiplication such that for all
veWandse S

TT — Tos, if l(vs) > 1(v)
UTET qTus + (g — DTy, if l(vs) < 1(v).

Note that were we to set ¢ = 1, then this would give precisely the integral group
ring of W. H (W) is an associative algebra having T, as unity, in which each T,
is invertible. For v € W,

(Tv—1)71 = qil(v) Z(fl)l(u’v) Ry (q) T,

u<v

where R, ,(q) € Z[q].

The polynomials R, , are called the R-polynomials of W. For u,v € W,
u < v, deg(Ry) = l(u,v) and R, ,(¢q) = 1. It is customary to set R, ,(q) =
if u<w.

The Kazhdan-Lusztig polynomial P, , of a Bruhat interval [u,v] is defined
by the following theorem. A proof can be found in [35, §9-11] of an equivalent
statement. The version here is [20, Theorem 5.1.4].

Theorem 4.1. There is a unique family of polynomials { Py ,(q) }u.vew C Z[q],
such that, for all u,v € W,

4.1.1. P,,(q) =0 ifu L v;
4.1.2. Puu(q) =1;

4.1.3. deg(P,(q)) < [l(“’g)_lJ, if u <wv, and

4.1.4. 1
ql(uﬂ’) Puﬂ, (q> = Z Ru,z(‘]) Pz,v(Q)a

u<z<v

ifu<w.

The main conjectures in this area are that for all Coxeter systems (W, .5)
and all Bruhat intervals [u,v] in W, the Kazhdan-Lusztig polynomial P, , is
nonngegative, and depends only on the poset [u, v], and not on the underlying
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group. The first conjecture is known to hold, for example, for all finite Coxeter
groups and the second for all lower intervals, that is, intervals where u = e,
the identity element of W [24]. Both conjectures are known to hold when the
interval [u,v] is a lattice?. See the discussion pp. 161-162 and 171-172 of [20]
for references.

4.2. The complete quasisymmetric function of a Bruhat
interval and the complete cd-index. While the R-polynomial of
a Bruhat interval may have negative terms, there is an associated polynomial
that has nonnegative coefficients with a direct combinatorial interpretation.
The following is [20, Proposition 5.3.1].

Proposition 4.2. For u < v € W, there exists a (necessarily unique) polyno-
mial Ry, (q) € N[g] such that

L(u,v) ~ 1 _1
Ru,v(q):q 2 Ru,v (q2 —q 2)-

For a Bruhat interval [u,v], we use the E—polynomials to define a nonho-
mogeneous analog of the quasisymmetric function F'(P) of a graded poset. For
Bruhat interval [u,v], the complete quasisymmetric function is defined by

ﬁ(u, ’U) = Z Eumul (xl)éulﬂm (.%‘2) e .Euk—lyuk (xk) (9)

u=ug < Sup -1 <uR=v

Again, the sum is over all finite multichains in [u,v] whose last two ele-
ments are distinct. It is straightforward to show that F' is multiplicative [12,

Proposition 2.6], that is, for Bruhat intervals [u;,v;], F([ui,v1] X [ug,v2]) =

F(Ul,’l)l) F(UQ,UQ).3

To give an analog of Proposition 3.4 for ﬁ(u,v)7 we need to define the
Bruhat graph of the interval [u,v]. Let T = {wsw™! | w € W, s € S} be the set
of all conjugates of the generators in W. Elements of T" are called reflections,
while elements of S are called simple reflections.

We define the Bruhat graph of a Coxeter system (W, .S) to be the directed
graph B(W, S) obtained by taking W as vertex set and putting a directed edge
from x to y if and only if 271y € T and I(x) < I(y). We can consider the edge
(z,y) of B(W,S) to be labeled by the reflection t = 2~ 1y.

The Bruhat graph of an interval [u, v] is the subgraph of B(W,S) induced
by the elements in [u,v]; it contains the Hasse diagram of the poset (directed

2This follows since in this case Py . (q) = g([u,v]*,q), which depends only on the poset
[u,v] (see Remark 1 in §4.2 and Remark 2 in §4.3). By an unpublished result of Dyer, lattice
Bruhat intervals are face posets of polytopes, so nonnegativity follows from the generalized
lower bound theorem for polytopes.

3In fact both F and F are maps of Hopf algebras (sce [30, Proposition 4.4] and [12, Remark
2.8]). This will also be a consequence of the results discussed in §5.
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in increasing Bruhat order) as a spanning subgraph. The Bruhat graph was
first defined by Dyer [28], who showed the graph (not including the labeling)
to depend only on the isomorphism class of the poset [u,v] and not on the
underlying group.

A reflection subgroup of W is any subgroup W’ of W generated by a subset of
T. For w € W, define N(w) := {t € T : [(tw) < l(w)}. Reflection subgroups W’
are Coxeter groups, with simple reflections 8" = {t' € T : N(t') N W' = {t'} }
[26, 27]. See also [35, §8.2]. A reflection subgroup (W', S") is said to be dihedral
if |57 = 2.

A total ordering <7 on the set of all reflections T in (W, S) is called a reflec-
tion ordering if it satisfies the following: For any dihedral reflection subgroup
(W', 5", where S” = {a,b}, either a <7 aba <7 ababa < --- <p babab <
bab <7 b or b <p bab <p babab <p --- <p ababa <r aba <7 a. The existence
of reflection orderings for any Coxeter system was shown by Dyer in [29].

Example 5. The symmetric group W = S, is a Coxeter group (often de-
noted A,_1) with Coxeter generators given by the adjacent transpositions
s;i=( t4+1),i=1,...,n—1. Here, reflections are all transpositions (i j), and
lexicographic order is a reflection order. Thus in Sy, (12) <7 (13) <7 (14) <r
(23) <7 (24) <7 (34).

Given a reflection ordering on the interval [u,v], directed u-v paths in its
Bruhat graph are labeled by reflections, and so they have a well-defined descent
set in this ordering. For a = k, k < n+ 1 = Il(u,v), we denote by b, = by (u,v)
the number of paths of length k having descent set S = S(«). Further, define

Ca(uav) = Z bﬂ(ua U)
{BEn|a=8}

where < denotes refinement of compositions (parts of 5 are sums of succesive
parts of ). Using the quantities b, and c¢,, we can express the complete qua-

sisymmetric function F(u,v) in terms of the fundamental and monomial bases
for QSym.

Proposition 4.3 ([12]). F(u,v) =), ca(u,v) Mgy =" ba(u,v) Ly

Thus we see that cq(u,v) and by (u,v) are analogs of the flag f- and flag h-
numbers. Note that it is possible that the quantities ¢, (u,v) can be greater
than 1 for « | k, k < l(u,v), that is, there can be more than one rising Bruhat
path of less than maximum length.

Since the Bruhat order on [u,v] is always Eulerian, we know F'([u,v]) € II,
but usually F(u,v) # F([u,v]). In [23, Theorem 8.4], Brenti showed that the
coefficients ¢, (u,v) satisfy the equations (6), and so by [16, Proposition 1.3],
we can conclude
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Theorem 4.4. For any Bruhat interval [u,v], F(u,v) € I, in fact

F(ua U) € Hl(u,v) @ Hl(u,v)72 D Hl(u,'u)74 SPRRR

The last assertion follows since the b, (u, v) count directed paths from u to
v of length |a| in the Bruhat graph B(W, S), and all of these must have length
k = l(u,v)(mod 2). This is true since for any reflection ¢, I(wt) — l(w) is odd,
and so the length of every Bruhat path has the same parity.

Since F'(u,v) € II, we can express it in terms of the peak basis ©,,. We
define the complete cd-index of the Bruhat interval [u, v]

(Af’u,v = Z[w]u,v w

w

by the unique expression

Flu,0) = Y [l Lw|1+®4 ,

w

where the sum is over all cd-words w with deg(w) = l(u,v) — 1,1(u,v) —3,....

In [29], Dyer shows that the polynomial Rw,(q) enumerates rising paths in
the Bruhat graph of [u,v], i.e., the coefficient of ¢* is the number of paths of
length k& with empty descent set (see [29, Corollary 3.4] or [20, Theorem 5.3.4]).
In [29, §4], he also shows that the reflection labeling of the Bruhat graph gives
an EL-labeling on the maximal length Bruhat paths in [u,v]. Together, they
imply that the leading term of Euﬂ,(q) is 1, since, in particular, an F L-labeling
will always have a unique rising path.
Remark 1. One consequence of this is that ¢, (u,v) = fo([u,v]) when a =
I(u,v) and so F(u,v) = F([u,v]) + lower terms. Thus the top-degree terms of
®,., (i-e., those of degree I(u,v) — 1) constitute the ordinary cd-index of the
underlying poset [u,v], i.e., &)u,v = @y, + lower terms. If [u,v] is a lattice,
then E)u,v = ¢’[u,v]-4

By Dyer’s E L-labeling (or by the earlier C'L-labeling of Bjorner and Wachs;
see [20, Corollary 2.7.6]), the poset [u, v] is Gorenstein*, so by the result of Karu,
®y,»] > 0. The following is Conjecture 6.1 in [12].

Conjecture 2 ([12]). For all Bruhat intervals [u,v], CTDW, > 0.

We can easily see that all the pure ¢ coefficients [¢*~1], , = by (u,v) > 0,
where (k) is the composition with one part. Since b(;) counts the rising paths
of length k, we get the following [12, Corollary 2.10].

41t is a consequence of an unpublished result of Dyer that &)uﬂ, = @[y if and only if
[u,v] is a lattice.
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Proposition 4.5. For u < v, Euw(q) =q @uyv(q, 0).

There is some evidence for Conjecture 2; see [12, §6], where one consequence
is proved. Further, if d,,;,, is the least degree of a term in &Ju’v, it is known that
if dypin < 2 or if [c?min] = 1, then [w],, > 0 if degw = dpin.”

In [44], Reading also showed that for lower intervals [e, v], ®[. ] is termwise
less than or equal to the cd index of the Boolean algebra B;(, of rank [(v). We
conjecture that this also bounds the complete cd-index of lower intervals, in
the following sense.

Conjecture 3. For all lower Bruhat intervals [e,v], @ ,(1,1) < ®g,, (1, 1).

4.3. Kazhdan-Lusztig polynomial and the complete cd-
index. We note here that if we were only interested in the complete cd-index
of the interval [u,v], it could have been defined directly by means of a nonho-
mogeneous ab polynomial \Tluyv defined analogously to (2), using the quantities
b, in place of hg (see [12, Proposition 2.9]). However, the form of the qua-
sisymmetric function &)u,v given in Proposition 4.3 leads directly to a way of
expressing the Kazhdan-Lusztig polynomial P, , in terms of the coefficients of
the complete cd-index.

We first consider a family of polynomials By (q). We call these ballot polyno-
mials, since the coefficient of ¢* in By (q) is the number of ways k ballots can be
cast so that the losing candidate receives ¢ votes, while the winning candidate
is never behind. Define

Lk/2] ‘
k+1—2i (k+1\ ,
By (q) = E il ( . )Q- (10)
1=0

The constant term of By(q) is always 1 and, when k is even, the lead term is a
Catalan number.

For n > 0 define the dihedral poset D,, of rank n + 1 to be a graded poset
with two elements at each rank 1 < ¢ < n where z < y if p(x) < p(y). Since
each interval in a dihedral poset is dihedral, it is easy to see that D,, is Eulerian
for each n > 0, and it is an easy calculation to see that ®p = c”. D,, is the
underlying Bruhat poset of a dihedral group of order 2n+ 2, and it follows from
discussion following [20, Proposition 5.1.8] that Pp, = 1. It is straightforward
to verify that ‘iDn =c- 6,3"71 + ‘5,3"72, with <FIv>DD =1 and ‘5,31 = ¢, and so
dp, = ZJLZ{)QJ (g:g;)c”*QJ. In fact ®,.,(c,d) = B, (c,0) if and only if [u,v]
is dihedral.® As for the g-polynomial of D, the following is [48, Proposition
2.5].

Proposition 4.6. The g-polynomial of the dihedral poset D,, is the alternating
ballot polynomial B, (—q).

5These are results that will appear in the forthcoming Cornell Ph.D. Thesis of S.A. Blanco.
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In [20, Theorem 5.5.7], an expression is given for P, ,, u < v, in terms of the
bo (u,v) and universal polynomials T, that enumerate an implicitly defined set
of lattice paths. By expressing this in terms of the complete cd-index of [u,v],
the resulting paths are now explicit, and we can get an expression for P, , in
terms of only the coefficients [w],, , of the complete cd index (57“) and shifts of
the alternating ballot polynomials By (—q).

A cd-word w is said to be even if it is a word in ¢? and d. For an even cd-

word w = c™dc"d---dc"*, let Cy = C,,, /2 -+ Cy, /2, where C; = 2¢1+1 (Zijl),
the i'" Catalan number. Finally, let |w| := degw and |w|q be the number of

d’s in w. The following is [12, Theorem 4.1].
Theorem 4.7. For any Bruhat interval [u,v] of rank l(u,v) =n+1,

2l
Pum(q) = Z @ ql Bn72i(_q)
=0

where

a; = ai(ua 'U) = [Cn_%]u,v + Z (_1)%+‘w|d de [Cn_%dw]u,w (11)

dw even

Note that the coefficient a;(u,v) of ¢'B,,_2;(—q) in this expression for P, ,
depends only on cd-words beginning with ¢”~2 that are otherwise even. The
expression for P, ,(¢) = po + p1g+ --- in terms of the a;(u,v) can be inverted
to give

J . .
Z n—j—i
" i—o(n2j )p "

for j=0,...,|n/2]. Thus if P,,(q) > 0 then a;(u,v) >0 fori=0,...,|n/2].
The conjectured nonnegativity of P, , leads to the following, which is [25, Con-
jecture 6.6] as well as [12, Conjecture 4.11].

Conjecture 4. For each Bruhat interval [u, v] of rank I(u,v) = n+1, a;(u,v) >
0fori=0,1,...,|n/2].

Remark 2. We note that if we restrict the [w], , in (11) to those of degree n
only, then we get the formula of Bayer and Ehrenborg [7, Theorem 4.2] for the
g-polynomial of the dual poset [u, v]*. Thus the difference P, ., (q) — g([u, v]*, q)
is a function of the lower-degree cd-coefficients only (and their only function in
this expression). Example 4.6 of [12] gives a pair of rank 6 Bruhat intervals in
W = S5 having the same cd-index but unequal Kazhdan-Lusztig polynomials,
and thus unequal complete cd-indices.

Finally, we point out that as far as combinatorial invariance is concerned,
P, v, a;(u,v) and [w],,, are all equivalent. We say that an invariant of Bruhat
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intervals is combinatorially invariant if its value on a Bruhat interval [u,v]
depends only on the isomorphism type of the poset [u, v].

Proposition 4.8. The following are equivalent for all Cozeter systems (W, S).

4.8.1 For allu<veW, P,, is combinatorially invariant.

4.8.2 Forallu<veW andi=0,..., {%J , a;(u,v) is combinatori-

ally invariant.

4.8.3 For allu < v € W, and all cd-words of degree n,n — 2,..., where
n=1(u,v) — 1, [W]y is combinatorially invariant.

The equivalence of 4.8.1 and 4.8.3 is discussed in [12, Remark 4.13].

5. Epilog: Combinatorial Hopf Algebras

There is a general enumeration theory that explains the existence of the qua-
sisymmetric functions such as F(P) and F(u,v) as well as many other qua-
sisymmetric generating functions that arise in combinatorial theory. Originally
formulated by Aguiar in [1] in the context of infinitesimal Hopf algebras, it
was later expanded by Aguiar, Bergeron and Sottile and reformulated for Hopf
algebras [2]. We summarize this theory and a more recent extension below.

Let H = Hy® Hy @® Hy @ --- be a graded connected Hopf algebra (say,
over Q). This means Hy = Q and the product and coproduct are homogeneous
maps. A character of H is an algebra morphism ¢ : H — Q, and the pair (H, ()
is called a combinatorial Hopf algebra. A morphism f : (H',{') — (H,() of
combinatorial Hopf algebras is a morphism of graded Hopf algebras f : H' — H
such that (' = (o f.

Example 6. Let P be the Q-vector space with basis consisting of all isomor-
phism classes of graded posets. We define a product on P by Py - Py := P X Py,
the Cartesian product of posets, and coproduct by A(P) = EIGP[G, ez, 1].
The unit element of P is the poset 1 with one element 0= T, and the counit is
€(P) = 0p1. See, for example, [30]. If we take ¢ to be the usual zeta function
for posets, defined by ((P) = 1 for all posets P, the pair (P,() is called the
combinatorial Hopf algebra of posets [2].

The Hopf algebra QQSym becomes a combinatorial Hopf algebra with the
canonical character (g defined by (o(M,) =1if a = (n),n >0, (o(M,) =0
otherwise. The main result [2, Theorem 4.1] is that the combinatorial Hopf
algebra (QSym, (o) is a terminal object in the category of combinatorial Hopf
algebras, that is, for any combinatorial Hopf algebra (H, (), there is a unique
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morphism F : (H,(y) — (QSym, (o). For (H,(y) = (P,¢) from Example 6,
the morphism F' is the one given in (7).

Further, each combinatorial Hopf algebra (H, (g ) has a special subalgebra
IIg, called the odd subalgebra, and the morphism F' satisfies F(Ilg) C IIgsym
[2, Proposition 6.1]. Now IIggyn, = II, the peak algebra with basis given in
(8), and IIp contains the subalgebra of all Eulerian posets. Together, this gives
another proof of Theorem 3.5.

The author and Aguiar are currently working to extend the theory of com-
binatorial Hopf algebras to the case of nonhomogeneous polynomial characters.
One outcome is an alternate definition of the complete quasisymmetric function
F defined in (9) and a new proof of Theorem 4.4.
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Abstract

How can we understand the origins of highly symmetrical objects? One way
is to characterize them as the solutions of natural optimization problems from
discrete geometry or physics. In this paper, we explore how to prove that ex-
ceptional objects, such as regular polytopes or the Fg root system, are optimal
solutions to packing and potential energy minimization problems.

Mathematics Subject Classification (2010). Primary 05B40, 52C17; Secondary
11H31.

Keywords. Symmetry, potential energy minimization, sphere packing, Fs, Leech
lattice, regular polytopes, universal optimality.

1. Introduction

1.1. Genetics of the regular figures. Symmetry is all around us,
both in the physical world and in mathematics. Of course, only a few of the
many possible symmetries are ever actually realized, but we see more of them
than we seemingly have any right to expect: symmetry is by its very nature
delicate, and easily disturbed by perturbations. It is no great surprise to see
carefully designed, symmetrical artifacts, but it is remarkable that nature can
ever produce similar effects robustly, for example in snowflakes. Any occurrence
of symmetry not deliberately imposed demands an explanation.

Laszlo Fejes Toth proposed to seek the origins of symmetry in optimization
problems. He referred to the genetics of the regular figures, in which “regular
arrangements are generated from unarranged, chaotic sets by the ordering effect
of an economy principle, in the widest sense of the word” [28]. It is not enough

*Microsoft Research New England, One Memorial Drive, Cambridge, MA 02142, USA.
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simply to classify the possible symmetries; we must go further and identify the
circumstances in which they arise naturally.

Over the last century mathematicians have made enormous progress in iden-
tifying possible symmetry groups. We have classified the simple Lie algebras and
finite simple groups, and although there is much left to learn about group the-
ory and representation theory, our collective knowledge is both extensive and
broadly applicable. Unfortunately, our understanding of the genetics of the reg-
ular figures lags behind. Much is known, but far more remains to be discovered,
and many natural questions seem totally intractable.

Optimization provides a framework for this problem. How much symmetry
and order should we expect in the solution of an optimization problem? It is
natural to guess that the solutions of a highly symmetric problem will inherit the
symmetry of the problem, but that is not always the case. For a toy example,
consider the Steiner tree problem for a square, i.e., how to connect all four
vertices of a square to each other via curves with minimal total length. The most
obvious guess connects the vertices by an X, which displays all the symmetries of
the square, but it is suboptimal. Instead, in the optimal solutions the branches
meet in threes at 120° angles (this is a two-dimensional analogue of the behavior
of soap films):

Note that the symmetry of the square is broken in each individual solution, but
of course the set of both solutions retains the full symmetry group.

It is tempting to use symmetry to help solve problems, or at least to guess
the answers, but as the Steiner tree example shows, this approach can be mis-
leading. One of the most famous mistaken cases was the Kelvin conjecture on
how to divide three-dimensional space into infinitely many equal volumes with
minimal surface area between them, to create a foam of soap bubbles. In 1887
Kelvin conjectured a simple, symmetrical solution, obtained by deforming a
tiling of space with truncated octahedra. (The deformation slightly curves the
hexagonal facets into monkey saddles, so that the foam has the appropriate di-
hedral angles.) Kelvin’s conjecture stood unchallenged for more than a century,
but in 1994 Weaire and Phelan found a superior solution with two irregular
types of bubbles! [54]. This shows the danger of relying too much on symme-
try: sometimes it is a crucial clue as to the true optimum, but sometimes it
leads in the wrong direction.

ITheir foam structure was the inspiration for the Beijing National Aquatics Center, used
in the 2008 Olympics.
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In many cases the symmetries that are broken are as interesting as the sym-
metries that are preserved. For example, crystals preserve some of the transla-
tional symmetries of space, but they dramatically break rotational symmetry, as
well as most translational symmetries. This symmetry breaking is remarkable,
because it entails long-range coordination: somehow widely separated pieces of
the crystal nevertheless align perfectly with each other. A complete theory of
crystal formation must therefore deal with how this coordination could come
about. Here, however, we will focus on optimization problems and their solu-
tions, rather than on the physical or algorithmic processes that might lead to
these solutions.

1.2. Exceptional symmetry: Eg and the Leech lattice. Cer-
tain mathematical objects, such as the icosahedron, have always fascinated
mathematicians with their elegance and symmetry. These objects stand out
as extraordinary and have inspired much deep mathematics (see, for exam-
ple, Felix Klein’s Lectures on the Icosahedron [34]). They are the sorts of ob-
jects one hopes to characterize and understand via the genetics of the regular
figures.

These objects are often exceptional cases in classification theorems. In many
different branches of mathematics, highly structured or symmetric objects can
be classified into several regular, predictable families together with a handful
of exceptions, such as the exceptional Lie algebras or sporadic finite simple
groups. For most applications, the infinite families play the leading role, and
one might be tempted to dismiss the exceptional cases as aberrations of limited
importance, specific to individual problems. Instead, although they are indeed
peculiar, the exceptional cases are not merely isolated examples, but rather
recurring themes throughout mathematics, with the same exceptions occur-
ring in seemingly unrelated problems. This phenomenon has not yet been fully
understood, although much is known about particular cases.

For example, ADF classifications (i.e., simply-laced Dynkin diagrams) occur
in many different mathematical areas, including finite subgroups of the rotation
group SO(3), representations of quivers of finite type, certain singularities of
algebraic hypersurfaces, and simple critical points of multivariate functions.
In each case, there are two infinite families, denoted A, and D, and three
exceptions Fg, F7, and FEg, with each type naturally described by a certain
Dynkin diagram. See [31] for a survey. This means Eg, for example, has a
definite meaning in each of these problems. For example, among rotation groups
it corresponds to the icosahedral group, and among simple critical points of
functions from R™ to R it corresponds to the behavior of 23 +x5+23+23+ - 422
at the origin.

In this survey, we focus primarily on two exceptional structures, namely
the Eg root lattice in R® and the Leech lattice in R?**. These objects bring
together numerous mathematical topics, including sphere packings, finite simple
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groups, combinatorial and spherical designs, error-correcting codes, lattices and
quadratic forms, mathematical physics, harmonic analysis, and even hyperbolic
and Lorentzian geometry. They are far too rich and well connected to do justice
to here; see [24] for a much longer account as well as numerous references. Here,
we will examine how to characterize Fg and the Leech lattice, as well as some
of their relatives, by optimization problems. These objects are special because
they solve not just a single problem, but rather a broad range of problems.
This level of breadth and robustness helps explain the widespread occurrences
of these structures within mathematics. At the same time, it highlights the
importance of understanding which problems have extraordinarily symmetric
solutions and which do not.

1.3. Energy minimization. Much of physics is based on the idea of
energy minimization, which will play a crucial role in this article. In many
systems energy dissipates through forces such as friction, or more generally
through heat exchange with the environment. Exact energy minimization will
occur only at zero temperature; at positive temperature, a system in contact
with a heat bath (a vast reservoir at a constant temperature, and with effectively
infinite heat capacity) will equilibrate to the temperature of the heat bath, and
its energy will fluctuate randomly, with its expected value increasing as the
temperature increases.

One can describe the behavior of such a system mathematically using Gibbs
measures, which are certain probability distributions on its states. For simplic-
ity, imagine a system with n different states numbered 1 through n, where state
i has energy E;. For each possible expected value F for energy, the correspond-
ing Gibbs measure is the maximal entropy probability measure constrained to
have expected energy E. In other words, it assigns probability p; to state i so
that the entropy > ., —p; logp; is maximized subject to > ., p;F; = E. (For
the motivation behind the definition of entropy, see [33].)

A Lagrange multiplier argument shows that when min; F; < E < max; F;,
the probability p; must equal e=#: / 2?21 e PFi for some constant (3, where
B is chosen so that the expected energy equals E. In physics terms, 3 is pro-
portional to the reciprocal of temperature, and only nonnegative values of
are relevant (because energy is usually not bounded above, as it is in this toy
model). As the temperature tends to infinity, 8 tends to zero and the system
will be equidistributed among all states. As the temperature tends to zero, 3
tends to infinity, and the system will remain in its ground states, i.e., those with
the lowest possible energy.

In this article, we will focus on systems of point particles interacting via a
pair potential function. In other words, the energy of the system is the sum over
all pairs of particles of some function depending only on the relative position
of the pair (typically the distance between them). For example, in classical
electrostatics, it is common to study identical charged particles interacting via
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the Coulomb potential, i.e., with potential energy 1/r for a pair of particles at
distance r.

Many other mathematical problems can be recast in this form, even some-
times in ways that are not immediately apparent. For a beautiful although
tangential example, consider the distribution of eigenvalues for a random n x n
unitary matrix, chosen with respect to the Haar measure on U(n). These eigen-
values are unit complex numbers z1, ..., z,, and the Weyl integral formula says
that the induced probability measure on them has density proportional to

I 1z-=P?

1<i<j<n

(see [27]). If we define the logarithmic potential —log |z; — z;| between z; and
zj, then this measure is the Gibbs measure with 8 = 2 for n particles on
the unit circle. The logarithmic potential is natural because it is a harmonic
function on the plane (much as the Coulomb potential = — 1/|z| is harmonic in
three dimensions). Thus, the eigenvalues of a random unitary matrix repel each
other through harmonic interactions, and the Weyl integral formula specifies
the temperature 1/8.

In the following survey, we will focus on the case of zero temperature. In
the real world, all systems have positive temperature, which raises important
questions about dynamics and phase transitions. However, for the purposes of
understanding the role of symmetry, zero temperature is a crucial case.

1.4. Packing and information theory. The prototypical packing
problem is sphere packing: how can one arrange non-overlapping, congruent
balls in Euclidean space to fill as large a fraction of space as possible? The
fraction of space filled is the density. Of course, it must be defined by a limiting
process, by looking at the fraction of a large ball or cube that can be covered.

Packing problems fit naturally into the energy minimization framework via
hard-core potentials, which are potentials that are infinite up to a certain radius
r and zero at or beyond it. In other words, there is an infinite energy penalty for
points that are too close together, but otherwise there is no effect. Under such
a potential function, a collection of particles has finite energy if and only if the
particles are positioned at the centers of non-overlapping balls of radius r/2.
Note that every packing (not just the densest) minimizes energy, but knowing
the minimal energy for all densities solves the packing problem.

From this perspective, one can formulate questions that are even deeper
than densest packing questions. For example, at any fixed density, one can ask
for a random packing at that density (i.e., a sample from the Gibbs measure at
zero temperature). For which densities is there long-range order, i.e., nontrivial
correlations between distant particles? In two or three dimensions, the densest
packings are crystalline, and there appears to be considerable order even below
the maximal density, with a phase transition between order and disorder as the
density decreases. (See [41] and the references cited therein for more details.)
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It is far from clear what happens in high dimensions, and the densest packings
might be disordered [51].

Packings of less than maximal density are of great importance for modeling
granular materials, because most such materials will be somewhat loose. The
fact that long-range order seemingly persists over a range of densities means
it can potentially be observed in the real world, where even under high pres-
sure no packing is ever truly perfect. (Of course, for realistic models there
are many other important refinements, such as variation in particle sizes and
shapes.)

In addition to being models for granular materials, packings play an impor-
tant role in information theory, as error-correcting codes for noisy communica-
tion channels. Suppose, for a simplified example, that we wish to communicate
by radio. We can measure the signal strength at n different frequencies and
represent it as an m-dimensional vector. Note that n may be quite large, so
high-dimensional packings are especially important here. The power required
to transmit a signal x € R will be proportional to |z|?, so we must restrict
our attention to signals that lie within a ball of radius r centered at the origin,
where r depends on the power level of our transmitter.

If we transmit a signal, then the received signal will be slightly perturbed
due to noise. We can measure the noise level of the channel by e, so that
when z is transmitted, with high probability the received signal 2’ will satisfy
|x — 2’| < e. In other words, if the open balls of radius € about signals x and y
do not overlap, then with high probability the received signals =’ and 3’ cannot
be confused.

To ensure error-free communication, we will rely on a restricted vocabulary
of possible signals that cannot be confused with each other (i.e., an error-
correcting code). That means they must be the centers of non-overlapping balls
of radius e. For efficient communication, we wish to maximize the number of
signals available for use, i.e., the number of such balls whose centers lie within
a ball of radius r. In the limit as /e tends to infinity, that is the sphere packing
problem.

1.5. Outline. The remainder of the paper is organized as follows. Sec-
tions 2 and 3 survey packing and energy minimization problems in more depth.
Sections 4 and 5 outline the proofs that certain exceptional objects solve these
problems. Finally, Section 6 offers areas for future investigation.

2. Packings and Codes

2.1. Sphere packing in low and high dimensions. One can
study the sphere packing problem in any dimension. In R! it is trivial, be-
cause the line can be completely covered with intervals. In R?, it is easy to
guess that a hexagonal arrangement of circles is optimal, with each circle tan-
gent to six others, but giving a rigorous proof of optimality is not completely



2422 Henry Cohn

Figure 1. Two layers in a three-dimensional sphere packing, one denoted by shaded
circles and the other by unshaded circles. Notice that the unshaded layer sits above
half of the holes in the shaded layer.

straightforward and was first achieved in 1892 by Thue [50] (see [29] for a
short, modern proof). In R3, the usual way oranges are stacked in grocery
stores is optimal, but the proof is extraordinarily difficult. Hales completed a
proof in 1998, with a lengthy combination of human reasoning and computer
calculations [30]. One conceptual difficulty is that the solution is not at all
unique in R3. In a technical sense, it is not unique in any dimension (even
up to isometries), because density is a global property that is unchanged by,
for example, removing a ball. However, in three dimensions there is a much
deeper sort of non-uniqueness. One can form an optimal packing by stacking
hexagonal layers, with each layer nestled into the gaps in the layer beneath it.
As shown in Figure 1, the holes in a hexagonal lattice consist of two trans-
lates of the original lattice, and the next layer will sit above one of these two
translates. For each layer, a binary choice must be made, and there are uncount-
ably many ways to make these choices. (Each will be isometric to countably
many others, but there remain uncountably many geometrically distinct pack-
ings, with many different symmetry groups.) All these packings are equally
dense and perfectly natural. See [22] for a discussion of this issue in higher
dimensions.

In four or more dimensions, no sharp density bounds are known. Instead,
we merely have upper and lower bounds, which differ by a substantial factor.
For example, in R3¢, the best upper bound known is more than 58 times the
density of the best packing known [16]. This factor grows exponentially with
the dimension: the best lower bound known is a constant times n2~" in R" (see
[7] and [52]), while the upper bound is (1.514724... 4 o(1))~™ (see [32]).

It may be surprising that these densities are so low. One way to think about
it is in terms of volume growth in high dimensions. An e-neighborhood of a ball
in R™ has volume (1 + &)™ times that of the ball, so when n is large, there is
far more volume near the surface of the ball than actually inside it. In low-
dimensional sphere packings, most volume is contained within the balls, with
a narrow fringe of gaps between them. In high-dimensional packings, the gaps
occupy far more volume.
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It is easy to prove a lower bound of 27" for the sphere packing density in
R™. In fact, this lower bound holds for every saturated packing (i.e., one in
which there is no room for any additional spheres):

Lemma 2.1. FEvery saturated sphere packing in R™ has density at least 27".

Proof. Suppose the packing uses spheres of radius r. No point in space can
be distance 2r or further from the nearest sphere center, since otherwise there
would be room to center another sphere of radius r at that point. This means
we can cover space completely by doubling the radius of each sphere. Doubling
the radius multiplies the volume by 2", and hence multiplies the density by at
most 2" (in fact, exactly 2™ if we count overlaps with multiplicity). Because
the enlarged spheres cover all of space, the original spheres must cover at least
a 27" fraction. O

This argument sounds highly constructive (simply add more spheres to a
packing until it becomes saturated), and indeed it is constructive in the logical
sense. However, in practice it offers almost no insight into what dense packings
look like, because it is difficult even to tell whether a high-dimensional packing
is saturated.

In fact, it is completely unclear how to construct dense packings in high
dimensions. One might expect the sphere packing problem to have a simple,
uniform solution that would work in all dimensions. Instead, each dimension has
its own charming idiosyncrasies, as we will see in Section 2.2. There is little hope
of a systematic solution to the sphere packing problem in all dimensions. Even
achieving density 27" through a simple, explicit construction is an unsolved
problem.

2.2. Lattices and periodic packings. The simplest sorts of packings
are lattice packings. Recall that a lattice in R™ is the integral span of a basis
(i.e., it is a grid, possibly skewed). To form a sphere packing, one can center
a sphere at each lattice point. The radius should be half the minimal distance
between lattice points, so that the nearest spheres are tangent to each other.

There is no reason to expect that lattice packings should be the densest
sphere packings, and they are probably not optimal in sufficiently high dimen-
sions (for example, ten dimensions). However, lattices are very likely optimal
in R™ for n <9 and for some higher values of n (including 12, 16, and 24). See
[24] for more details about lattices and packings in general.

For n < 8 and n = 24, the lattice packing problem has been solved in
R™. In fact, the densest lattices are unique in these dimensions (up to scaling
and isometries), although that may not be true in every dimension, such as
n = 25. For n < 8, the optimal lattices are all root lattices, the famous lattices
that arise in Lie theory and are classified by Dynkin diagrams. Specifically, the
densest lattices are Ay (the integer lattice), A (the hexagonal lattice), As (the
face-centered cubic lattice, which is also isomorphic to Ds), D4, Ds, Eg, E7,
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and Fg. For n = 24, the Leech lattice is an optimal lattice packing; the proof
will be discussed in Section 5.

The D, lattices are particularly simple, because they are formed by a
checkerboard construction as a sublattice of index 2 in Z™:

Dy =A{(z1,...,2,) €Z" i1+ -+ + 2, =0 (mod 2)}.

To see why D,, is not optimal in high dimensions, consider the holes in D,,,
i.e., the points in space that are local maxima for distance from the lattice. The
integral points with odd coordinate sum are obvious candidates, and they are
indeed holes, at distance 1 from D,,. However, there’s a slightly more subtle
case, namely the point (1/2,1/2,...,1/2) and its translates by D,,. These points

are at distance
2 2
1 1
JG) o (3) = v

from D,,. When n = 8, this distance becomes v/2, which is equal to the minimal
distance between points in Dg. That means these deep holes have become large
enough that additional spheres can be placed in them. Doing so yields the Fg
root lattice, whose density is twice that of Ds. (The Eg and E7 lattices are
certain cross sections of Eg.)

The Eg and Leech lattices stand out among lattice packings, because all
the spheres fit beautifully into place in a remarkably dense and symmetric way.
There is no doubt that they are optimal packings in general, not just among
lattices. Harmonic analysis ought to provide a proof, but as we will see in
Section 5, a full proof has been elusive.

Periodic packings form a broader class of packings than lattice packings.
A lattice can be viewed as the vertices of a tiling of space with parallelotopes
(fundamental domains for the action by translation), but there’s no reason to
center spheres only at the vertices. More generally, one can place them in the
interior, or elsewhere on the boundary, and then repeat them periodically; such
a packing is called a periodic packing. Equivalently, the sphere centers in a
periodic packing form the union of finitely many translates of a lattice.

The Eg packing, as defined above, is clearly periodic (the union of two
translates of Dg). It is not quite as obvious that it is actually a lattice, but that
is easy to check. The Leech lattice in R?* can be defined by a similar, but more
elaborate, construction involving filling in the holes in a lattice constructed
using the binary Golay code (see [38] and Section 4.4 in Chapter 4 of [24]).

Philosophically, the construction of Eg given above is somewhat odd, be-
cause Fg itself is extraordinarily symmetrical, but the construction is not. In-
stead, it builds Fg in two pieces. This situation is actually quite common when
constructing a highly symmetric object. By neglecting part of the symmetry
group, one can decompose the object into simpler pieces, which can each be un-
derstood separately. However, eventually one must exhibit the extra symmetry.
The symmetry group of Eg is generated by the reflections in the hyperplanes
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orthogonal to the minimal vectors of Eg, and one can check that it acts tran-
sitively on those minimal vectors.

It is not known whether periodic packings achieve the maximal packing
density in every dimension. However, they always come arbitrarily close: given
any dense packing, one can take a large, cubical piece of it and repeat that piece
periodically. To avoid overlaps, it may be necessary to remove some spheres near
the boundary, but if the cube is large enough, then the resulting decrease in
density will be small.

By contrast, it is not even known whether there exist saturated lattice pack-
ings in high dimensions. If not, then lattices cannot achieve more than half the
maximal density, because one can double the density of a non-saturated lattice
by filling in a hole together with all its translates by lattice vectors. It seems
highly unlikely that there are saturated lattices in high dimensions, because a
lattice is specified by a quadratic number of parameters, while there is an ex-
ponential volume of space in which holes could appear, so there are not enough
degrees of freedom to control all the possible holes. However, this argument
presumably cannot be made rigorous.

Despite all the reasons to think lattices are not the best sphere packings in
high dimensions, the best asymptotic lower bounds known for sphere packing
density use lattices. Ball’s bound 2(n — 1)27" in R™ holds for lattice packings
[7], and Vance’s bound, which improves it by an asymptotic factor of 3/e when
n is a multiple of four, uses not just lattices, but lattices that are modules over
a maximal order in the quaternions [52]. Imposing algebraic structure may rule
out the densest possible packings, but it makes up for that by offering powerful
tools for analysis and proof.

2.3. Packing problems in other spaces. Packing problems are in-
teresting in many metric spaces. The simplest situation is when the ambient
space is compact, in which case the packing will involve only finitely many
balls. The packing problem can then be formulated in terms of two different
optimization problems for a finite subset of the metric space:

1. What is the largest possible minimal distance between N points?

2. What is the largest possible size of a subset whose minimal distance is at
least r?

The first fixes the number of balls and maximizes their size, while the second
fixes the radius r/2 of the balls and maximizes the number. In Euclidean space,
if we interpret the number of points as the number of points per unit volume,
then both problems are the same by scaling invariance, but that does not hold
in compact spaces. The two problems are equivalent, however, in the sense that
a complete answer to one (for all values of r or N) yields a complete answer to
the other.

Packing problems arise naturally in many compact metric spaces, includ-
ing spheres, projective spaces, Grassmannians [23, 4], and the Hamming cube
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{0,1}" (under Hamming distance, so packings are binary error-correcting
codes). For a simplified example, suppose one wishes to treat a spherical tumor
by beaming radiation at it. One would like to use multiple beams approaching
it from different angles, so as to minimize radiation exposure outside of the tu-
mor, and the problem of maximizing the angle between the beams is a packing
problem in RP2.

Packing problems are also important in non-compact spaces, but aside from
Euclidean space we will not deal with them in this article, because defining
density becomes much more subtle. See, for example, the foundational work by
Bowen and Radin on defining packing density in hyperbolic space [11].

Packings on the surface of a sphere are known as spherical codes. Specifically,
an optimal spherical code is an arrangement of points on a sphere that max-
imizes the minimal distance among configurations of its size. Spherical codes
can be used as error-correcting codes (for example, in the toy model of radio
transmission from Section 1.4, they are codes for a constant-power transmitter),
and they also provide an elegant way to help characterize the many interesting
spherical configurations that arise throughout mathematics.

One of the most attractive special cases of packing on a sphere is the kissing
problem. How many non-overlapping unit balls can all be tangent to a central
unit ball? The points of tangency on the central ball form a spherical code with
minimal angle at least 60°, and any such code yields a kissing configuration.

In R?, the kissing number is clearly six, but the answer is already not obvious
in R3. The twelve vertices of an icosahedron work, but the tangent balls do not
touch each other and can slide around. It turns out that there is no room for a
thirteenth ball, but that was first proved only in 1953 by Schiitte and van der
Waerden [47].

In R* Musin [42] showed that the kissing number is 24, but the answer
is not known in R® (it appears to be 40). In fact, the only higher dimensions
for which the kissing problem has been solved are 8 and 24, independently by
Levenshtein [39] and by Odlyzko and Sloane [43]. The kissing numbers are 240
in R® and 196560 in R?*. Furthermore, these kissing configurations are unique
up to isometries [9].

The kissing number of 240 is achieved by the Eg root lattice through its
240 minimal vectors. Specifically, there are (g) - 22 = 112 permutations of
(£1,41,0,...,0) and 27 = 128 vectors of the form (41/2,...,+1/2) with an
even number of minus signs. Thus, Eg is not only the densest lattice packing
in R®, but it also has the highest possible kissing number. Similarly, the Leech
lattice in R?4 achieves the kissing number of 196560.

In general, however, there is no reason to believe that the densest packings
will also have the highest kissing numbers. The packing density is a global
property, while the kissing number is purely local and might be maximized in
a way that cannot be extended to a dense packing. That appears to happen
in many dimensions [24]. Instead of being typical, compatibility between the
optimal local and global structures is a remarkable occurrence.
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Figure 2. Energy minimization on an actual (approximate) sphere: tiny, electrically
charged PMMA beads collecting on the interface between water and cyclohexyl bro-
mide. [Courtesy of W. Irvine and P. M. Chaikin, New York University]

3. The Thomson Problem and Universal
Optimality

3.1. Physics on surfaces. The Thomson problem [49, p. 255] asks for
the minimal-energy configuration of N classical electrons confined to the unit
sphere S2. In other words, the particles interact via the Coulomb potential
1/r at Euclidean distance r. This model was originally intended to describe
atoms, before quantum mechanics or even the discovery of the nucleus. Thom-
son hoped it would explain the periodic table. Of course, subsequent discov-
eries have shown that it is a woefully inadequate atomic model, but it re-
mains of substantial scientific interest, and its variants describe many real-world
systems.

For example, imagine mixing together two immiscible liquids, such as oil
and water. The oil will break up into tiny droplets, evenly dispersed within
the water, but they will rapidly coalesce and the oil will separate from the
water. Cooks have long known that one can prevent this separation by using
emulsifiers. One type of emulsion is a Pickering emulsion, in which tiny parti-
cles collect on the boundaries of oil droplets, which prevents coalescence (the
particles bounce off each other).

More generally, colloidal particles often adsorb to the interface between two
different liquids. See, for example, Figure 2, which shows charged particles made
of polymethyl methacrylate (i.e., plexiglas) in a mixture of water and cyclohexyl
bromide. Notice that the particles on the surface of the droplet have spread out
into a fairly regular arrangement due to their mutual repulsion, and they are
repelling the remaining particles away from the surface.
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These particles are microscopic, yet large enough that they can accurately
be described using classical physics. Thus, the generalized Thomson problem is
an appropriate model. See [12] for more details on these sorts of materials.

Consider the case of particles on the unit sphere in R™. Given a finite subset
C C S"1 and a potential function f: (0,4] — R, define the potential energy by

B =5 X Flle—uP).

z,yeC
TFY

For each positive integer N and each f, we seek an N-element subset C ¢ 7!
that minimizes E;(C) compared to all other choices of C with |C| = N. The
use of squared distance instead of distance is not standard in physics, but it
will prove mathematically convenient. The function f is defined only on (0, 4]
because no squared distance larger than 4 can occur on the unit sphere.

Typically f will be decreasing (so the force is repulsive) and convex. In
fact, the most natural potential functions to use are the completely monotonic
functions, i.e., smooth functions satisfying (—1)*f(*) > 0 for all integers k >
0. For example, inverse power laws r — 1/r® (with s > 0) are completely
monotonic.

3.2. Varying the potential function. Aswe vary the potential func-
tion f above, how do the optimal configurations change? From the physics
perspective, this question appears silly, because the potential is typically deter-
mined by fundamental physics. However, from a mathematical perspective it is
a critical question, because it places the individual optimization problems into
a richer context.

As we vary the potential function, the optimal configurations will vary in
some family. This family may not be connected, because the optimum may
abruptly jump as the potential function passes some threshold, and different
components may have different dimensions [15]. Nevertheless, we can use the
local dimension of the family as a crude measure of the complexity of an opti-
mum: we compute the dimension of the space of perturbed configurations that
minimize energy for perturbations of the potential function. Call this dimension
the parameter count of the configuration.

Figure 3 (taken from [8]) shows the parameter counts for the configurations
minimizing Coulomb energy on S? with 2 through 64 points. The figure is
doubly conjectural: in almost all of these cases, no proof is known that the
supposed optima are truly optimal or that the parameter counts are correct.
However, the experimental evidence leaves little doubt.

One can see from Figure 3 that the parameter counts vary wildly. For ex-
ample, for 43 points there are 21 parameters, while for 44 points there is only
1. This suggests that the 44-point optimizer will be substantially simpler and
more understandable, and indeed it is (see [8]).
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Figure 3. Parameter counts for conjectural Coulomb-energy minimizers on S?. For
comparison, the white circles show the dimension of the space of all configurations.

3.3. Universal optimality. When one varies the potential function, the
simplest case is when the optimal configuration never varies. Call a configura-
tion universally optimal if it minimizes energy for all completely monotonic
potential functions.

A universal optimum is automatically an optimal spherical code: for the
potential function f(r) = 1/r® with s large, the energy is asymptotically deter-
mined by the minimal distance, and minimizing energy requires maximizing the
minimal distance. However, optimal spherical codes are rarely universally opti-
mal. For every number of points in every dimension, there exists some optimal
code, but universal optima appear to be far less common.

In S', there is an N-point universal optimum for each N, namely the ver-
tices of a regular N-gon. In S?, the situation is more complicated. Aside from
degenerate cases with three or fewer points, there are only three universal op-
tima, namely the vertices of a regular tetrahedron, octahedron, or icosahedron
[17]. The cube and dodecahedron are not even optimal, let alone universally
optimal, since one can lower energy by rotating a facet.

The first case for which there is no universal optimum is five points in S2.
There are two natural configurations: a triangular bipyramid, with an equilat-
eral triangle on the equator together with the north and south poles, and a
square pyramid, with its top at the north pole and its base slightly below the
equator. This second family depends on one parameter, the height of the pyra-
mid. The triangular bipyramid is known to minimize energy for several inverse
power laws [48], but it is not even a local minimum when they are sufficiently
steep, in which case square pyramids seem to become optimal.

Conjecture 3.1. For every completely monotonic potential function, either the
triangular bipyramid or a square pyramid minimizes energy among five-point
configurations in S2.
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Table 1. The known N-point universal optima in S™ .

n N Description

n N<n+1 regular simplex

n 2n regular cross polytope

2 N regular N-gon

3 12 regular icosahedron

4 120 regular 600-cell

) 16 hemicube

6 27 Schléfli graph

7 56 28 equiangular lines

8 240 Es root system

21 112 isotropic subspaces

21 162 strongly regular graph

22 100 Higman-Sims graph

22 275 McLaughlin graph

22 891 isotropic subspaces

23 552 276 equiangular lines

23 4600 iterated kissing configuration

24 196560 Leech lattice minimal vectors
q(@®+1)/(g+1) | (¢g+1)(¢®>+1) | isotropic subspaces (g is a prime power)

For n > 4, the universal optima in S"~! have not been completely classified.
Table 1 shows a list of the known cases (proved in [17]). Each of them is a
fascinating mathematical object. For example, the 27 points in S° correspond
to the 27 lines on a cubic surface.

The first five lines in the table list the regular polytopes with simplicial
facets. The next four lines list the Eg root system and certain semiregular
polytopes obtained as cross sections. The next eight lines list the minimal vec-
tors of the Leech lattice and certain cross sections. If this were the complete
list, it would feel reasonable, but the last line is perplexing. It describes another
infinite sequence of universal optima, constructed from geometries over F, in
[13] and recognized as optimal codes in [40]. How many more such cases remain
to be constructed?

Another puzzling aspect of Table 1 is the gap between 8 and 21 dimensions.
Are there really no universal optima in these dimensions, aside from the sim-
plices and cross polytopes? Or do we simply lack the imagination needed to
discover them? Extensive computer searches [8] suggest that the table is closer
to complete than one might expect, but probably not complete. Specifically,
there are a 40-point configuration in S and a 64-point configuration in S'3
that appear to be universally optimal, but these are the only conjectural cases
that have been located.

Almost all of the results tabulated in Table 1 can be deduced from the
following theorem. It generalizes a theorem of Levenshtein [40], which says that
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these configurations are all optimal codes. The one known case not covered by
the theorem is the regular 600-cell, which requires a different argument [17].

To state the theorem, we will need two definitions. A spherical k-design in
S"~1is a finite subset D of the sphere such that for every polynomial p: R” — R
of total degree at most k, the average of p over D equals its average over the
entire sphere. Spherical k-designs can be thought of as sets giving quadrature
rules (i.e., numerical integration schemes) that are exact for polynomials of
degree up to k. An m-distance set is a set for which m distances occur between
distinct points.

Theorem 3.2 (Cohn and Kumar [17]). Every m-distance set that is a spherical
(2m — 1)-design is universally optimal.

The proof of this theorem uses linear programming bounds, which are de-
veloped in the next section.

4. Proof Techniques: Linear Programming
Bounds

4.1. Constraints on the pair correlation function. In this sec-
tion, we will discuss techniques for proving lower bounds on potential energy.
In particular, we will develop linear programming bounds and briefly explain
how they are used to prove Theorem 3.2.

They are called “linear programming bounds” because linear programming
can be used to optimize them, but no knowledge of linear programming is re-
quired to understand how the bounds work. They were originally developed by
Delsarte for discrete problems in coding theory [25], extended to continuous
packing problems in [26, 32], and adapted for potential energy minimization
by Yudin and his collaborators [55, 35, 36, 1, 2]. In this section, we will fo-
cus on spherical configurations, although the techniques work in much greater
generality.

Given a finite subset C of S"~!, define its distance distribution by

At = H(xay) S CQ : <$7y> = t}|a

where (-,-) denotes the inner product in R™. In physics terms, A is the pair
correlation function; it measures how often each pairwise distance occurs (the
inner product is a natural way to gauge distance on the sphere). Linear pro-
gramming bounds are based on proving certain linear inequalities involving the
numbers A;. These inequalities are crucial because the potential energy can be
expressed in terms of the distance distribution A by

B0 =1 Y fle-u)= Y L1824, (41)

2
z,y€C —1<t<1
T#y
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since |z — y|> = 2 — 2(z,y). (Although (4.1) sums over uncountably many
values of ¢, only finitely many of the summands are nonzero.) Energy is a
linear function of A, and the linear programming bound is the minimum of this
function subject to the linear constraints on A, which makes it the solution to
a linear programming problem in infinitely many variables.

To begin, there are several obvious constraints on the distance distribution.
Let N = |C|. Then A; > O for all ¢, Ay = Ofor [t| > 1, Ay = N,and >, A; = N2,

The power of linear programming bounds comes from less obvious con-
straints. For example, ), Ast > 0. To see why, notice that

2
Zl‘ > 0.

z€eC

ZAtt: Z <x,y> =

z,yeC

More generally, there is an infinite sequence of polynomials (independent of C,
but depending on the dimension n) P, Pi*, Py, ..., with deg P]' = k, such that
for each k,

> APE(t) > 0. (4.2)

(In fact, we can take Py'(t) = 1, P(t) = t, and P3(t) = t> — 1/n.) This
inequality is nontrivial, because these polynomials are frequently negative. For
example, Py, looks like this:

The polynomials P} are called ultraspherical polynomials, and they are char-
acterized by orthogonality on the interval [—1, 1] with respect to the measure
(1 —#2)("=3)/2 dt. In other words, for i # 7,

1
/ Pr(t)PrMt) (1 —2)"=3)/2 dt = .

-1

This relationship determines the polynomials up to scaling, as the Gram-
Schmidt orthogonalization of the monomials 1,¢,t2,... with respect to this
inner product. The sign of the scaling constant is determined by FP;*(1) > 0,
and the magnitude of the constant is irrelevant for (4.2).

In fact, these polynomials have a far stronger property than just (4.2): they
are positive-definite kernels. That is, for any N and any points z1,...,xy €

S7~1 the N x N matrix (Pl?«xi’xj»)lgi,jgN is positive semidefinite. This
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implies (4.2) because the sum of the entries of a positive-semidefinite matrix
is nonnegative. Schoenberg [45] proved that every continuous positive-definite
kernel on S™~! must be a nonnegative linear combination of ultraspherical
polynomials.

4.2. Zonal spherical harmonics. As an illustration of the role of rep-
resentation theory, in this section we will derive the ultraspherical polynomials
as zonal spherical harmonics and verify that they satisfy (4.2). The reader who
is willing to take that on faith can skip the derivation.

The orthogonal group O(n) acts on S™~! by isometries, and hence L? (S”_l)
is a unitary representation of O(n). To begin, we will decompose this represen-
tation into irreducibles. Let P) be the subspace of functions on S”~! defined
by polynomials on R™ of total degree at most k. We have Py C P; C ---,
and each Py, is a finite-dimensional representation of O(n), with (J, P dense
in L? (S”’l). To convert this filtration into a direct sum decomposition, let
Vo = Py and define V}, to be the orthogonal complement of Vo Vi - P Vi1
within Py (with respect to the usual inner product on L? (S"_l)). Then Vj is
still preserved by O(n), and the entire space breaks up as

(5" =P
k>0
(The hat indicates the completion of the algebraic direct sum.) The functions
in V}, are known as spherical harmonics of degree k, because Vj is an eigenspace
of the spherical Laplacian, but we will not need that characterization of them.
For each z € S"7!, evaluating at = defines a linear map f + f(x) on V.
Thus, there exists a unique vector vy ; € Vi, such that for all f € Vj,

f(@) = (f,vr.2),

where (-, -) denotes the inner product on V;, from L?(S"~!). The map @ +— vy, 5
is called a reproducing kernel.
For each T € O(n) and f € Vi,

<f7 Uk:,Tw> = f(T.Z') = (T_lf)(x) = <T_1f7 Uk,x> = <f> TUk,a:)-

Thus, Tk 5 = Vg, 15, Dy the uniqueness of vy 7. It follows that vy, , is invariant

under the stabilizer of « in O(n). In other words, it is invariant under rotations

about the axis through £z, so it is effectively a function of only one variable,

the inner product with z. Such a function is called a zonal spherical harmonic.
We can define P} by

Ulc,z(y) = P;?((.’L‘,y))

These polynomials certainly satisfy (4.2), because

Z P£(<I,y>) = Z 'Uk,x(y) = Z <Uk,:cvvk,y> =

z,yeC z,yeC z,yeC

2
>0,

§ Vk,x

zeC
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and in fact they are positive-definite kernels because (P£(<xi’xj>))1gi,j§N is
the Gram matrix of the vectors vy, 4,.

The functions v 4, v1 4, .. . are in orthogonal subspaces, and hence the poly-
nomials P, P{’,... must be orthogonal with respect to the measure on [—1, 1]
obtained by projecting the surface measure of S*~! onto the axis from —z to
x. The following simple calculation shows that the measure is proportional to
(1 —2)("=3)/2 4t. Consider the spherical shell defined by

1<a? 4+ 422 <1l4e
If we set x1 = t, then the remaining coordinates satisfy
-t <254 +22 <1 -t +¢,

and the volume is proportional to (1 — 2 4 &)("=D/2 — (1 — 2)(»=1/2_Tf we
divide by e to normalize, then as ¢ — 0 we find that the density of the surface
measure with z; = t is proportional to (1 — t2)("=3)/2 as desired.

The degree of P! is at most k, and because vy, is orthogonal to Pj_1, the
degree can be less than k only if P’ is identically zero. That cannot be the
case (for n > 1), since otherwise evaluating at & would be identically zero. If it
were, then it would follow from Ty , = vy 7, that evaluating at each point is
identically zero, and thus that Vj is trivial. However, Py # Px_1, and hence Vj
is nontrivial.

Thus, the polynomials P;* defined above have degree k, satisfy (4.2), and
have the desired orthogonality relationship.

4.3. Linear programming bounds. Let C ¢ S"~! be a finite subset
and let A be its distance distribution. To make use of the linear constraints on
A discussed in Section 4.1, we will use the dual linear program. In other words,
we will take linear combinations of the constraints so as to obtain a lower bound
on energy.

We introduce new real variables ay and (; specifying which linear combi-
nation to take. Suppose we add ag times ), A, = N2, oy, times

Z AP (t) 2 0
—1<t<1

(with a, > 0 for k£ > 1), and §; times the constraint A; > 0 (with 8; > 0 for
—1 <t < 1). We find that

Z A Zakp,f(t) + Z AiBr > agN?,
—1<i<1 k —1<t<1
using the normalization Pg(t) = 1. Define h(t) = >, ap P} (t). Then
Z A¢(h(t) + B) = agN? — h(1)N,

—1<t<1
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because A; = N. If we choose ay and f; so that h(t) + 8; = f(2 — 2t)/2 for
—1 <t < 1, then the energy will be bounded below by agN? —h(1)N, by (4.1).

The equation A(t) + B; = f(2 — 2t)/2 just means that h(t) < f(2 —2t)/2
(because we have assumed only that 5, > 0). Thus, we have proved the following
bound:

Theorem 4.1 (Yudin [55]). Suppose h(t) =Y, apP(t) satisfies oy > 0 for
k>0 and h(t) < f(2—2t)/2 for =1 < t < 1. Then for every finite subset
cc s,

Ef(C) = aolC|* — h(1)[C].

To prove Theorem 3.2, one can optimize the choice of the auxiliary function
h in Theorem 4.1. Suppose C is an m-distance set and a spherical (2m — 1)-
design, and f is completely monotonic. In the proof of Theorem 4.1, equality
holds if and only if h(t) = f(2 — 2t)/2 for every inner product ¢ < 1 that
occurs between points in C and >, ¢ Pi'({z,y)) = 0 whenever oy > 0 and
k > 0. The latter equation automatically holds for 1 < k£ < 2m — 1 because
C is a (2m — 1)-design. Let h be the unique polynomial of degree at most
2m — 1 that agrees with f(2 — 2t)/2 to order 2 at each of the m inner products
between distinct points in C, so that h satisfies the other condition for equality.
The inequality h(t) < f(2 — 2t)/2 follows easily from a remainder theorem
for Hermite interpolation (using the complete monotonicity of f). The most
technical part of the proof is the verification that the coefficients oy of h are
nonnegative. For any single configuration, it can be checked directly; for the
general case, see [17].

4.4. Semidefinite programming bounds. Semidefinite program-
ming bounds, introduced by Schrijver [46] and generalized by Bachoc and Val-
lentin [5], extend the idea of linear programming bounds by looking at triple
(or even higher) correlation functions, rather than just pair correlations. Lin-
ear constraints are naturally replaced with semidefinite constraints, and the
resulting bounds can be optimized by semidefinite programming.

This method is a far-reaching generalization of linear programming bounds,
and it has led to several sharp bounds that could not be obtained previously
[6, 21]. However, the improvement in the bounds when going from pairs to
triples is often small, while the computational price is high. One of the most
interesting conceptual questions in this area is the trade-off between higher
correlations and improved bounds. When studying N-point configurations in
S™~1 using k-point correlation bounds, how large does k need to be to prove
a sharp bound? Clearly k¥ = N would suffice, and for the cases covered by
Theorem 3.2 it is enough to take k = 2. Aside from a handful of cases in
which k& = 3 works, almost nothing is known in between. (Cases with k > 4
seem too difficult to handle computationally.) This question is connected more
generally to the strength of LP and SDP hierarchies for relaxations of NP-hard
combinatorial optimization problems [37].
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It is also related to a conjecture of Torquato and Stillinger [51], who pro-
pose that for packings that are disordered (in a certain technical sense), in
sufficiently high dimensions the two-point constraints are not only necessary
but also sufficient for the existence of a packing with a given pair correlation
function. They show that this conjecture would lead to packings of density
(1.715527...4 0(1))~™ in R", by exhibiting the corresponding pair correlation
functions. The problem of finding a hypothetical pair correlation function that
maximizes the packing density, subject to the two-point constraints, is dual to
the problem of optimizing the linear programming bounds.

5. Euclidean Space

5.1. Linear programming bounds in Euclidean space. Linear
programming bounds can also be applied to packing and energy minimization
problems in Euclidean space, with Fourier analysis taking the role played by the
ultraspherical polynomials in the spherical case. In this section, we will focus
primarily on packing, before commenting on energy minimization at the end.
The theory is formally analogous to that in compact spaces, but the resulting
optimization problems are quite a bit deeper and more subtle, and the most
exciting applications of the theory remain conjectures.
We will normalize the Fourier transform of an L' function f: R® — R by

f&y= [ f@)em ) da.

Rn

(In this section, f will not denote a potential function.) The fundamental tech-
nical tool is the Poisson summation formula for a lattice A, which holds for all
Schwartz functions (i.e., smooth functions all of whose derivatives are rapidly

decreasing):
> f@)= vol( R”/A PI0)

zEA tEA*

Here, vol(R™/A) is the volume of a fundamental parallelotope, and A* is the
dual lattice defined by

A" ={teR": (t,z) € Z for all x € A}.

Given any basis of A, the dual basis with respect to (-, ) is a basis of A*.

Theorem 5.1 (Cohn and Elkies [16]). Let f: R™ — R be a Schwartz function
such that f(0) # 0. If f(x) < 0 for |x| > 1 and f(t) > 0 for all t, then the
sphere packing density in R™ is at most

w2 f(0)

= .

21(n/2)! (0
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Of course, (n/2)! means I'(n/2 + 1) when n is odd. The restriction to
Schwartz functions can be replaced with milder assumptions [16, 17].

The hypotheses and conclusion of Theorem 5.1 are invariant under rotation
about the origin, so without loss of generality we can symmetrize f and assume
it is a radial function. Thus, optimizing the bound in Theorem 5.1 amounts to
optimizing the choice of a function of one (radial) variable.

It is not hard to prove Theorem 5.1 for the special case of lattice packings.
Suppose A is a lattice, and rescale so we can assume the minimal vector length
is 1 (i.e., the packing uses balls of radius 1/2). The density is the volume of
a sphere of radius 1/2, which is 77/2/(2"(n/2)!), times the number of spheres
occurring per unit volume in space. The latter factor is 1/ vol(R™/A), because
there is one sphere for each fundamental cell of the lattice, and hence the density
equals

/2 1
2n(n/2)! vol(R™/A)°

Now we apply Poisson summation to see that

Zf Vol R”/A Zf

€A tEA*

The left side is bounded above by f(0), because all the other terms come from
|z] > 1 and are thus nonpositive by assumption. The right side is bounded

below by f(0)/ vol(R™/A), because all the other terms are nonnegative. Thus,

~

0)
102 Ry

which is equivalent to the density bound in Theorem 5.1.

The proof in the general case is completely analogous. It suffices to prove
the bound for all periodic packings (because they come arbitrarily close to
the maximal density), and one can apply a version of Poisson summation for
summing over translates of a lattice. See [16] for the details, as well as for an
explanation of the analogy between these linear programming bounds and those
for compact spaces.

5.2. Apparent optimality of Eg and the Leech lattice. The-
orem 5.1 does not explain how to choose the function f, and for n > 1 the
optimal choice of f is unknown. However, one can use numerical methods to
optimize the density bound, for example by choosing f(z) to be e~ml71” times
a polynomial in |x|? (so that the Fourier transform can be easily computed)
and then optimizing the choice of the polynomial. For 4 < n < 36, the results
were collected in Table 3 of [16], and in each case the bound is the best one
known, but they are typically nowhere near sharp. For example, when n = 36,
the upper bound is roughly 58.2 times the best packing density known. That
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was an improvement on the previous bound, which was off by a factor of 89.7,
but the gap remains enormous.
However, for n = 2, 8, or 24, Theorem 5.1 appears to be sharp:

Conjecture 5.2 (Cohn and Elkies [16]). For n = 2, 8, or 24, there exists a
function f that proves a sharp bound in Theorem 5.1 (for the hexagonal, Eg,
or Leech lattice, respectively).

The strongest numerical evidence comes from [18]: for n = 24 the bound is
sharp to within a factor of 1+ 1.65 - 1073Y. Similar accuracy can be obtained
for n = 8 or n = 2, although only 107'® was reported in [18]. Of course, for
n = 2 the sphere packing problem has already been solved, but Conjecture 5.2
is open.

This apparent sharpness is analogous to the sharpness of the linear pro-
gramming bounds for the kissing number in R?, R®, and R?%. In that problem,
it would have sufficed to prove any bound less than the answer plus one, be-
cause the kissing number must be an integer, but the bounds in fact turn out
to be exact integers. In the case of the sphere packing problem, the analogous
exactness is needed (because packing density is not quantized), and fortunately
it appears to be true.

Examining the proof of Theorem 5.1 gives simple conditions for when the
bound can be sharp for a lattice A, analogous to the conditions for Theorem 4.1:
J must vanish at each nonzero point in A and f must vanish at each nonzero
point in A*. In fact, the same must be true for all rotations of A, so f and f
must vanish at these radii (even if they are not radial functions). Unfortunately,
it seems difficult to control the behavior of f and fsimultaneously.

For the special case of lattices, however, it is possible to complete a proof.

Theorem 5.3 (Cohn and Kumar [18]). The Leech lattice is the unique densest
lattice in R?*, up to scaling and isometries.

The proof uses Theorem 5.1 to show that no sphere packing in R?* can
be more than slightly denser than the Leech lattice, and that every lattice
as dense as the Leech lattice must be very close to it. However, the Leech
lattice is a locally optimal packing among lattices, and the bounds can be made
close enough to complete the proof. This approach also yields a new proof of
optimality and uniqueness for Eg (previously shown in [10] and [53]).

One noteworthy hint regarding the optimal functions f in R® and R?* is an
observation of Cohn and Miller [20] about the Taylor series coefficients of f. It
is more convenient to use the rescaled function g(x) = f(z/r), where r = /2
when n = 8 and 7 = 2 when n = 24. Then ¢(0) = g(0), and without loss of
generality let this value be 1. Assuming ¢ is radial, we can view g and g as
functions of one variable and ask for their Taylor series coefficients. Only even
exponents occur by radial symmetry, so the first nontrivial terms are quadratic.
Cohn and Miller noticed that the quadratic coefficients appear to be rational
numbers, as shown in Table 2. The quartic terms seem more subtle, and it is
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Table 2. Approximate Taylor series coefficients of g and g about 0.

n function  order coeflicient conjecture
8 g 2 —2.7000000000000000000000000. . . —27/10

8 g 2 —1.5000000000000000000000000. . . —3/2

24 g 2 2.6276556776556776556776556 . . . 14347/5460
24 g 2 1.3141025641025641025641025. . . 205/156

8 g 4 4.2167501240968298210999141 . .. ?

8 g 4 —1.2397969070295980026220772. . . ?

24 g 4 3.8619903167183007758184168.. .. ?

24 g 4 0.7376727789015322303799539.. . . ?

not clear whether they are rational as well. If they are, then their denominators
are probably much larger.

More generally, one can study not just the sphere packing problem, but
also potential energy minimization in Euclidean space. The total energy of a
periodic configuration will be infinite, because each distance occurs infinitely
many times, but one can instead try to minimize the average energy per particle.
Some of the densest packings minimize more general forms of energy, but others
do not, and simulations lead to many intriguing structures [19].

Cohn and Kumar [17] proved linear programming bounds for energy and
made a conjecture analogous to Conjecture 5.2:

Conjecture 5.4 (Cohn and Kumar [17]). For n = 2, 8, or 24, the linear
programming bounds for potential energy minimization in R™ are sharp for
every completely monotonic potential function (for the hexagonal, Eg, or Leech
lattice, respectively).

This universal optimality would be a dramatic strengthening of mere opti-
mality as packings. It is not even known in the two-dimensional case.

6. Future Prospects

The most pressing question raised by this work is how to prove that the hexago-
nal lattice, Fs, and the Leech lattice are universally optimal in Euclidean space.
Linear programming bounds reduce this problem to finding certain auxiliary
functions of one variable, and the optimal functions can even be computed to
high precision, but so far there is no proof that they truly exist.

More generally, can we classify the universal optima in a given space? No
proof is known even that the list of examples in S is complete, although it very
likely is. Each of the known universal optima is such a remarkable mathematical
object that a classification would be highly desirable: if there are any others
out there, we ought to find them.
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One noteworthy case is equiangular line configurations in complex space.
Do there exist n? unit vectors z1,...,z,2 € C" such that for i # j, [(z;, z;)|?
is independent of ¢ and j (in which case one can show it must be 1/(n + 1))?
In other words, the complex lines through these vectors are equidistant under
the Fubini-Study metric in CP"~!. Zauner [56] conjectured that the answer is
yes for all n, and substantial numerical evidence supports that conjecture [44],
but only finitely many cases have been proved. A collection of n? vectors with
this property gives an n2-point universal optimum in CP"~!, by Theorem 8.2
in [17]. This case is particularly unusual, because normally the difficulty is in
proving optimality for a configuration that has already been constructed, rather
than constructing one that has already been proved optimal (should it exist).

These equiangular line configurations are in fact closely analogous to
Hadamard matrices. They can be characterized as exactly the simplices in
CP"~! that are projective 2-designs (where a simplex is simply a set of points
for which all pairwise distances are equal). Similarly, Hadamard designs, which
are an equivalent variant of Hadamard matrices [3], are symmetric block 2-
designs that are simplices under the Hamming distance between blocks. The
existence of Hadamard matrices of all orders divisible by four is a famous un-
solved problem in combinatorics, and perhaps the problem of n? equiangular
lines in C™ will be equally difficult.

These two problems are finely balanced between order and disorder. Any
Hadamard matrix or equiangular line configuration must have considerable
structure, but in practice they frequently seem to have just enough structure to
be tantalizing, without enough to guarantee a clear construction. This contrasts
with many of the most symmetrical mathematical objects, which are character-
ized by their symmetry groups: once you know the full group and the stabilizer
of a point, it is often not hard to deduce the structure of the complete object.
That seems not to be possible in either of these two problems, and it stands as
a challenge to find techniques that can circumvent this difficulty.

In conclusion, packing and energy minimization problems exhibit greatly
varying degrees of symmetry and order in their solutions. In certain cases,
the solutions are extraordinary mathematical objects such as Fg or the Leech
lattice. Sometimes this can be proved, and sometimes it comes down to simply
stated yet elusive conjectures. In other cases, the solutions may contain defects
or involve unexpectedly complicated structures. Numerical experiments suggest
that this is the default behavior, but it is difficult to predict exactly when or
how it will occur. Finally, in rare cases there appears to be order of an unusually
subtle type, as in the complex equiangular line problem, and this type of order
remains a mystery.

Acknowledgments

I am grateful to James Bernhard, Tom Brennan, Tzu-Yi Chen, Donald Cohn,
Noam Elkies, Abhinav Kumar, Achill Schiirmann, Sal Torquato, Frank Val-



Order and Disorder in Energy Minimization 2441

lentin, Stephanie Vance, Jeechul Woo, and especially Nadia Heninger for their
valuable feedback on this paper.

References

1]
2]

N. N. Andreev, An extremal property of the icosahedron, East J. Approx. 2
(1996), 459-462.

N. N. Andreev, Location of points on a sphere with minimal energy, Proc. Steklov
Inst. Math. 219 (1997), 20-24.

E. F. Assmus, Jr. and J. D. Key, Designs and Their Codes, Cambridge Tracts in
Mathematics 103, Cambridge University Press, Cambridge, 1992.

C. Bachoc, Linear programming bounds for codes in Grassmannian spaces, IEEE
Trans. Inform. Theory 52 (2006), 2111-2125.

C. Bachoc and F. Vallentin, New upper bounds for kissing numbers from semidef-
inite programming, J. Amer. Math. Soc. 21 (2008), 909-924.

C. Bachoc and F. Vallentin, Optimality and uniqueness of the (4,10,1/6) spher-
ical code, J. Combin. Theory Ser. A 116 (2009), 195-204.

K. Ball, A lower bound for the optimal density of lattice packings, Internat. Math.
Res. Notices 1992, 217-221.

B. Ballinger, G. Blekherman, H. Cohn, N. Giansiracusa, E. Kelly, and
A. Schiirmann, Ezperimental study of energy-minimizing point configurations on
spheres, Experiment. Math. 18 (2009), 257-283.

E. Bannai and N. J. A. Sloane, Uniqueness of certain spherical codes, Canad. J.
Math. 33 (1981), 437-449.

H. F. Blichfeldt, The minimum values of positive quadratic forms in siz, seven
and eight variables, Math. Z. 39 (1935), 1-15.

L. Bowen and C. Radin, Densest packing of equal spheres in hyperbolic space,
Discrete Comput. Geom. 29 (2003), 23-39.

M. Bowick and L. Giomi, Two-dimensional matter: order, curvature and defects,
Advances in Physics 58 (2009), 449-563.

P. J. Cameron, J. M. Goethals, and J. J. Seidel, Strongly regular graphs having
strongly regular subconstituents, J. Algebra 55 (1978), 257-280.

H. Cohn, New upper bounds on sphere packings II, Geom. Topol. 6 (2002), 329—
353.

H. Cohn, J. H. Conway, N. D. Elkies, and A. Kumar, The D4 root system is not
universally optimal, Experiment. Math. 16 (2007), 313-320.

H. Cohn and N. D. Elkies, New upper bounds on sphere packings I, Ann. of Math.
157 (2003), 689-714.

H. Cohn and A. Kumar, Universally optimal distribution of points on spheres, J.
Amer. Math. Soc. 20 (2007), 99-148.

H. Cohn and A. Kumar, Optimality and uniqueness of the Leech lattice among
lattices, Ann. of Math. 170 (2009), 1003-1050.



2442 Henry Cohn

[19]

[20]

H. Cohn, A. Kumar, and A. Schiirmann, Ground states and formal duality rela-
tions in the Gaussian core model, Phys. Rev. E 80 (2009), 061116:1-7.

H. Cohn and S. D. Miller, Some conjectures on optimal auxiliary functions for
sphere packing, preprint, 2010.

H. Cohn and J. Woo, Three-point bounds for energy minimization, preprint, 2010.

J. H. Conway and N. J. A. Sloane, What are all the best sphere packings in low
dimensions?, Discrete Comput. Geom. 13 (1995), 383-403.

J. H. Conway, R. H. Hardin, and N. J. A. Sloane, Packing lines, planes, etc.:
packings in Grassmannian spaces, Experiment. Math. 5 (1996), 139-159.

J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, third
edition, Grundlehren der Mathematischen Wissenschaften 290, Springer, New
York, 1999.

P. Delsarte, Bounds for unrestricted codes, by linear programming, Philips Res.
Rep. 27 (1972), 272-289.

P. Delsarte, J. M. Goethals, and J. J. Seidel, Spherical codes and designs, Geom.
Dedicata 6 (1977), 363-388.

F. J. Dyson, A Brownian-motion model for the eigenvalues of a random matriz,
J. Math. Phys. 3 (1962), 1191-1198.

L. Fejes Téth, Regular Figures, Pergamon Press, Macmillan, New York, 1964.

T. C. Hales, Cannonballs and honeycombs, Notices Amer. Math. Soc. 47 (2000),
440-449.

T. C. Hales, A proof of the Kepler conjecture, Ann. of Math. 162 (2005), 1065—
1185.

M. Hazewinkel, W. Hesselink, D. Siersma, and F. D. Veldkamp, The ubiquity of
Cozeter-Dynkin diagrams (an introduction to the A~D—E problem), Nieuw Arch.
Wisk. 25 (1977), 257-307.

G. A. Kabatiansky and V. I. Levenshtein, Bounds for packings on a sphere and
in space, Probl. Inf. Transm. 14 (1978), 1-17.

A. 1. Khinchin, Mathematical Foundations of Information Theory, Dover Publi-
cations, Inc., New York, 1957.

F. Klein, Lectures on the Icosahedron and the Solution of Equations of the Fifth
Degree, second edition, Dover Publications, Inc., New York, 1956.

A. V. Kolushov and V. A. Yudin, On the Korkin-Zolotarev construction, Discrete
Math. Appl. 4 (1994), 143-146.

A. V. Kolushov and V. A. Yudin, Extremal dispositions of points on the sphere,
Anal. Math. 23 (1997), 25-34.

M. Laurent, A comparison of the Sherali-Adams, Lovdsz-Schrijver, and Lasserre
relazations for 0-1 programming, Math. Oper. Res. 28 (2003), 470-496.

J. Leech, Notes on sphere packings, Canad. J. Math. 19 (1967), 251-267.

V. L. Levenshtein, On bounds for packings in n-dimensional Fuclidean space,
Soviet Math. Dokl. 20 (1979), 417-421.



Order and Disorder in Energy Minimization 2443

[40]

[41]

[54]
[55]

[56]

V. I. Levenshtein, Designs as mazimum codes in polynomial metric spaces, Acta
Appl. Math. 29 (1992), 1-82.

H. Léwen, Fun with hard spheres, in Statistical Physics and Spatial Statistics
(Wuppertal, 1999), 295-331, Lecture Notes in Phys. 554, Springer, New York,
2000.

O. Musin, The kissing number in four dimensions, Ann. of Math. 168 (2008),
1-32.

A. M. Odlyzko and N. J. A. Sloane, New bounds on the number of unit spheres
that can touch a unit sphere in n dimensions, J. Combin. Theory Ser. A 26
(1979), 210-214.

J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves, Symmetric infor-
mationally complete quantum measurements, J. Math. Phys. 45 (2004), 2171—
2180.

I. J. Schoenberg, Positive definite functions on spheres, Duke Math. J. 9 (1942),
96-107.

A. Schrijver, New code upper bounds from the Terwilliger algebra and semidefinite
programming, IEEE Trans. Inform. Theory 51 (2005), 2859-2866.

K. Schiitte and B. L. van der Waerden, Das Problem der dreizehn Kugeln, Math.
Ann. 125 (1953), 325-334.

R. E. Schwartz, The 5 electron case of Thomson’s problem, preprint, 2010,
arXiv:1001.3702.

J. J. Thomson, On the structure of the atom, Phil. Mag. 7 (1904), 237-265.

A. Thue, Om nogle geometrisk-taltheoretiske Theoremer, Forhandlingerne ved de
Skandinaviske Naturforskeres 14 (1892), 352-353.

S. Torquato and F. Stillinger, New conjectural lower bounds on the optimal den-
sity of sphere packings, Experiment. Math. 15 (2006), 307-331.

S. Vance, Lattices and sphere packings in Fuclidean space, Ph.D. dissertation,
University of Washington, 2009.

N. M. Vetcinkin, Uniqueness of classes of positive quadratic forms on which values
of the Hermite constant are attained for 6 < n < 8, Proc. Steklov Inst. Math.
152 (1982), 37-95.

D. Weaire and R. Phelan, A counterezample to Kelvin’s conjecture on minimal
surfaces, Phil. Mag. Lett. 69 (1994), 107-110.

V. A. Yudin, Minimum potential energy of a point system of charges, Discrete
Math. Appl. 3 (1993), 75-81.

G. Zauner, Quantendesigns: Grundzige einer nichtkommutativen Designtheorie,
Ph.D. dissertation, Universitat Wien, 1999.



Proceedings of the International Congress of Mathematicians
Hyderabad, India, 2010

Hurwitz Numbers: On the Edge
Between Combinatorics and
Geometry

Sergei K. Lando*

Abstract

Hurwitz numbers were introduced by A. Hurwitz in the end of the nineteenth
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1. Hurwitz Numbers

Since their introduction by A. Hurwitz in the end of the 19*" century [23, 24],
the numbers experienced attraction of prominent mathematicians, like H. Weyl,
as well as long periods of neglect. During these periods, the efforts of A. Med-
nykh (see e.g., [39]) were rare attempts to improve our understanding of their
nature. The situation changed dramatically in the beginning of 1990’s, when the
reviving of interest has been strongly supported by demands from mathemati-
cal physics, group theory, and algebraic geometry simultaneously. The present
paper is devoted to a description of the progress made in the last couple of
decades. This progress is a result of joint efforts of many people all over the
world.

Acknowledgements. In the process of working on Hurwitz numbers,
discussions (both personal and by correspondence) with B. Dubrovin, B. Ey-
nard, C. Faber, I. Goulden, D. Jackson, A. Kokotov, D. Korotkin, J.-H. Kwak,
K. Liu, A. Okounkov, N. Orantin, A. Mednykh, R. Pandharipande, S. Natanzon,
S. Shadrin, V. Shramchenko, R. Vakil, H. Xu, A. Zvonkin were of great use. I
am especially grateful to my coauthors T. Ekedahl, V. Goryunov, M. Kazarian,
M. Shapiro, A. Vainshtein, and D. Zvonkine for sharing with me the pleasure of
understanding this fascinating subject. I would also like to thank M. Kazarian
and A. Zvonkin for careful proofreading and valuable suggestions.

In this section we give the definition of Hurwitz numbers and discuss some
of their combinatorial aspects.

1.1. Simple and general Hurwitz numbers. Let Sy denote the
symmetric group consisting of permutations of N elements {1,2,..., N}. Any
permutation o € Sy can be represented as a product of transpositions, and
there are many such representations. For a given m, we are interested in enu-
meration of m-tuples of transpositions 7y,...,7, whose product is a given
permutation o,

O=Nmo- 0.

The following statements are clear:

e the number of such representations depends on the cyclic type of the
permutation o rather than on the permutation itself;

e there is a minimal number My, = Mpin(o) for which such a representa-
tion exists, and this minimal number is N —c(o), where ¢(o) is the number
of cycles in o. Indeed, the minimal number of transpositions whose prod-
uct is a cycle of length [ is [ — 1;

e all values of m for which the number of representations is nonzero have
the same parity, which coincides with the parity of the permutation o.
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Now we are ready to give a precise definition of a simple Hurwitz number.

[e]
m;p

Definition 1. Let u be a partition, u - |u|. The simple Hurwitz number h
is defined as

o 1
hm;p, = w ’{(nl,...,nm),ni S CQ(SM)\nm o---om € CM(SM)}’.

Here C5(S),|) denotes the set of all transpositions in S),|, and Cy,(S),) is the
set of all permutations of cyclic type u F |u| in S}, so that, in particular,
Ca(S)u)) = Clini-201(S)u)). The connected simple Hurwitz number hy,,, is de-
fined in a similar way, but we take into account only m-tuples of transpositions
such that the subgroup (71,...,7m) € S, they generate acts transitively on
the set {1,...,|ul}

The terminology has a topological origin and will be explained later. Below,
we denote partitions in one of the two equivalent ways: either as a sequence
of decreasing parts, u = (u1, fi2,...), where py > ps > ..., with only finitely
many nonzero parts, or in the multiplicative form 1¥12¥2 ... where k; denotes
the multiplicity of the part ¢ in the partition, all but finitely many multiplicities
being 0 (and the corresponding parts omitted in the notation).

In slightly different terms, Hurwitz numbers enumerate ordered factoriza-
tions of permutations of given cyclic type into transpositions, while connected
Hurwitz numbers enumerate those factorizations that are transitive.

Hurwitz numbers are not necessarily integers. This is true even for the
simplest case,

1 1
Lot =l =5 1=2.
More generally, for a tuple pq, ..., i, of partitions of IV, one can consider

general Hurwitz numbers enumerating representations of the identity permuta-
tion as the product of the form o, o--- o0y, where each permutation o; has the
cyclic type ui, 1 < i < m. (For simple Hurwitz numbers, all the permutations
but one are transpositions, and the last permutation is o', whose cyclic type
coincides with that of ). The general Hurwitz number is defined as the number
of m-tuples of permutations o1, ...,0,, of given cyclic types whose product is
the identity permutation, divided by N!. Connected Hurwitz numbers are de-
fined similarly, but with the restriction that the subgroup (o1,...,0,) C Sy
generated by the permutations o; must act transitively. We do not introduce
notation for general Hurwitz numbers, since we are not going to use them in
our survey.

It is also worth mentioning other kinds of Hurwitz numbers, like real Hurwitz
numbers (see e.g., [1]) or tropical Hurwitz numbers [5], but we are not going to
discuss them in detail.

1.2. Topological interpretation. Hurwitz numbers naturally arise in
the enumeration problem for ramified coverings of the 2-sphere. Below, a surface
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means an oriented two-dimensional manifold. A continuous mapping 8 : EF; —
E5 of two surfaces is called a covering if it is an orientation preserving local
homeomorphism, that is, for each point ¢t € F, there is a disk neighborhood
U = U(t) C E; such that its total preimage 3~1(U) C E; is a disjoint union of
disks, and the restriction of 5 to each of these disks is an orientation preserving
homeomorphism. If F, is connected, then the number of disks in the preimage
of any disk neighborhood U is the same whatever is the point ¢, and this number
(which may well be infinite) is called the degree of the covering.

From the point of view of topology, a smooth projective complex curve is
a compact surface. Every nonconstant holomorphic mapping 8 : Fy — FE5 of
two complex curves Eq, Ey is a ramified covering, meaning that it becomes a
covering after puncturing Fs at finitely many points and F; at their preimages
under 3. Locally, at a neighborhood of each point in F;, a ramified covering
looks like z — z*, for an appropriate choice of complex local coordinates in the
source and the target. For all but finitely many points in F;, the value of k
is 1, and it is greater than 1 for some preimages of the punctures. It is called
the degree of the preimage.

For any point ¢ € FEs, the sum of the degrees of all its preimages is the
same, and it is called the degree of the ramified covering. In other words, the
degrees of the preimages of any point form a partition of the degree of the
covering. For a ramified covering of degree N, all partitions different from 1%
constitute the ramification type of the covering. We say that a ramification
point in the target surface Fs is non-degenerate if the corresponding partition
is 1V=221 that is, if there is one preimage of degree 2, and N — 2 preimages at
which the mapping is unramified. Otherwise, the ramification point is said to
be degenerate. Below, we shall consider finite ramified coverings of the 2-sphere
52 by compact oriented two-dimensional surfaces.

Consider the ramified covering z ++ 2z* of the unit disk by the unit disk.
As a nonzero point in the target disk goes around 0 and returns to its initial
position, its k preimages experience a cyclic permutation of length k. This
property allows one to associate to a ramified covering of the sphere a tuple of
permutations.

Let B : E — S? be aramified covering of degree N, and let ¢y, ..., t,, € S be
all its points of ramification. Pick a point ¢ € S? distinct from all ¢; and connect
it with the points ¢; by smooth nonintersecting segments, whose cyclic order at ¢
coincides with the numbering. Now make each segment into a narrow path ~;
around the ramification point in the positive direction. Then the path ~; induces
a permutation o; of the fiber 371(¢). The cyclic type of the permutation o;
coincides with the partition given by the degrees of the preimages in 371(t;),
and the product o,,0- - -00y is the identity permutation of the fiber 371(¢), since
the concatentation of the paths 7,, o--- o~y is contractible in the punctured
sphere SZ\ {t1,...,tm}

The m-tuple of permutations of the fiber determines the covering uniquely,
up to a homeomorphism of the domain. By numbering the preimages 371(t)
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of the generic point from 1 to N, we can make each permutation o; into a
permutation of the set {1,2,..., N}. Since there are N! possible numberings, we
conclude that Hurwitz numbers enumerate ramified coverings of the 2-sphere,
with prescribed ramification types. The covering surface is connected if and
only if the subgroup of Sy generated by the permutations o; acts transitively
on the fiber 371(¢), which justifies the definition of connected Hurwitz numbers.

Let £ — S? be a ramified covering. The Riemann-Hurwitz formula allows
one to recover the Euler characteristic x(FE) of the covering surface E from the
ramification type. We shall use this formula only for the case of simple Hurwitz
numbers, where it acquires the form

X(E) = N +c(p) —m.

Here p is a partition of N = |u|, ¢(u) is the number of parts in the partition,
and m is the number of transpositions. If the covering surface is connected, then
its Euler characteristic is x(E) = 2 — 2g, where ¢ is the genus of the surface.
Hence the number m of points of simple ramification can be considered as a
substitute for the genus of the covering surface.

1.3. Cut-and-join equation of Goulden and Jackson. Collect
the simple Hurwitz numbers into two generating functions:

> m
(3
H(u;p1,pa,-..) = Y Zhi’wpmpw-.ﬁ; (1)
m=1 p ’
) u
H(u;p17p27"') = Z th,;p,pulpuz Wa (2)
m=1 pu :

where in each case p runs over the set of all partitions of all numbers. These
generating functions depend on infinitely many variables and are formal: we do
not put any convergence requirements on them.

A very general combinatorial construction relating connected and discon-
nected objects justifies the following relationship between these two generating
functions:

We have H® = exp(H).

This assertion allows one to translate statements about simple Hurwitz num-
bers into statements about connected simple Hurwitz numbers and vice versa.

The following result explains many properties of the Hurwitz numbers.

Theorem 1.1 (cut-and-join equation, [14]). The generating function H® for
simple Hurwitz numbers satisfies the following partial differential equation:

P 2 N\ .
7:722 z+]plpja +jpz+ja o H°. (3)
J

n=1i+j=n
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Before explaining why the statement is true, let us note that the cut-and-join
equation provides an explicit formula for the generating function H°. Expand
it in a power series in u,

(oo}
H®(u;p1,p2,...) = Z Hfm)(pl,pg,...)w.
m=0 :

Then the cut-and-join equation can be rewritten as the recurrence

2

0 0
m+1) Z Z ( +-7 plp]a + jpl+]a Op >Hm) AH(m)

n=1i+j=n

Note that the differential operator A on the right is well known in mathematical
physics under the name of Calogero-Moser operator. Starting with H (00) =eP1,
we immediately obtain the first few terms of the expansion:

H°(u: —ePr (1 1 u 2 12 u2
(uap17p27"')_e +§p2i+ p1+§p2+p3 5"' .

The application of the operator A to the function H(m) always produces
finitely many nonzero terms, although the operator itself contains infinitely
many of them. The reason is that the function H; , has the form e times a
polynomial in pq,..., p;m, and its derivatives over each p;, with k > m vanish.

Now let us explain why the cut-and-join equation is true. It describes what
happens if one of the transpositions in the decomposition of a given permutation
is glued with the distinguished permutation, that is, we replace the representa-
tion

O ="NmONm-10"-"0T11
by the representation

NMmO0 =MNm-19--:0M
(here we make use of the fact that 1?2, is the identity permutation). Decreasing
of the number of transpositions on the right by one reflects the derivation with
respect to u on the left of the cut-and-join equation (3), since this procedure
diminishes the degree of u by 1.

Multiplication by a transposition 7, can affect the permutation ¢ in one of
the two different ways: either 7, exchanges two elements belonging to the same
cycle of o, or the elements it exchanges belong to distinct cycles. In the first
case, a cycle in ¢ is split into two cycles the sum of whose lengths coincides with
the length of the initial one. In the second case, conversely, two cycles are glued
into a single cycle of length equal to the sum of the lengths of the two. Each of
the two summands on the right of the cut-and-join equation is in charge of the
corresponding possibility. The coeflicients reflect the number of ways to choose
two elements to be transposed by 7,,: for each of the i + j elements in a cycle
of length i + j an appropriate pair can be chosen in a unique way (if we fix the
cyclic order), while in two cycles, of length ¢ and j, respectively, there are ij
choices for a pair whose transposition glues them together.
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1.4. Certain formulas for rational Hurwitz numbers. Hur-
witz numbers are said to be rational if the number of transpositions in the
decomposition is the minimal possible one. The terminology comes from the
fact that these numbers enumerate ramified coverings of the sphere by the
sphere, that is, rational functions. Thus, rational Hurwitz numbers are, in a
sense, the simplest species of Hurwitz numbers, and there are a number of
explicit formulas for them.

The first such formula is the one due to Hurwitz (1891), for rational con-
nected simple Hurwitz numbers.

Theorem 1.2 ([23]). We have

(\u|+n ool n-3
h|u|+n—2;u |Aut H z

where i = (1, ..., n) @8 a partition of |p] = p1 + -+ + pin, and |[Aut(p)| is
the order of the automorphism group of the partition (for p = 1% .. NF¥  we
have |[Aut(u)| = k1!. .. kn!).

Here |u| + n — 2 is the minimal number of transpositions (generating a
permutation group acting transitively) in a product that can produce a permu-
tation of cyclic type p. In fact, Hurwitz did not publish the proof of his formula
stating that it is too long for a journal paper. The formula was rediscovered
n [14], after the problem has been revived in quantum chromodynamics mod-
els [7, 22]. A reconstruction of Hurwitz’s presumable proof is given in [50]. The
ELSV formula, see below, provides an alternative geometric proof [10].

Another instance of formulas for rational Hurwitz numbers is the following

Theorem 1.3 ([14]). The number of factorizations of a cyclic permutation

in Sy into a product of permutations of cyclic types v1,...,Vpm, v; = N, is
ym-1lew) =Dt (e(vy) — 1)t
Aut()] T TAut()]

where c(v) denotes the number of parts in a partition v.

The proof in [14] is purely combinatorial. Once again, the geometric proof
was given in [34].

The formula due to Bousquet-Mélou and Schaeffer enumerates decomposi-
tions of a given permutation into a product of a given number of permutations,
whatever are their types. It reads as follows.

Theorem 1.4 ([4]). Denote by G, (m) the number of m-tuples of permutations
whose product is a permutation of cyclic type u, divided by N, u+= N. We have

- ((m —1)N —1)! mp — 1\
Gﬂ(m)_m((mnNc(u)Jr?)!l:[( i )u“

where c¢(u) is the number of parts in .
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The original proof got a simplification in [19]. Similarly to the previous two
formulas, this one also must have a geometric proof, which is still lacking.

2. Integrable Hierarchies for Hurwitz Numbers

The Kadomtsev—Petviashvili (below, KP, for brevity) hierarchy is a completely
integrable system of partial differential equations playing an important role in
mathematical physics. The main goal of the present section is to discuss the
following statement.

Theorem 2.1. The generating function H(u;p1,ps,...) for connected simple
Hurwitz numbers is a 1-parameter family of solutions to the KP hierarchy.

In this form the theorem was first stated in [27], but it is implicitly con-
tained in Okounkov’s paper [41]. In fact, Okounkov proves a slightly more
complicated theorem stating that the generating function for double Hurwitz
numbers (those, enumerating ramified coverings of the sphere with two points
of degenerate ramification) produces a solution to the Toda lattice integrable
hierarchy, which was previously conjectured by R. Pandharipande [46].

The theorem above has numerous applications, both on combinatorial and
geometric side. In particular, it produces nontrivial recurrence relations on Hur-
witz numbers, which mix numbers of different genera.

A general theory of KP equations, due to Sato, interprets solutions to these
equations as semi-infinite planes, that is, points in the semi-infinite Grassman-
nian. We present a brief overlook of Sato’s construction. Proving that a given
function is a solution, is thus reduced to identification of the semi-infinite plane
corresponding to this function. There is no need, in particular, to know the
explicit form of the equations. We make such an identification for the func-
tion H (u;p1,p2,...) from a purely combinatorial point of view, without refer-
ences to their geometric nature.

2.1. Grassmannian embeddings and Pliicker equations.
Consider the Grassmannian G(2,4) of vector 2-planes in the 4-space V = C*.
Any 2-plane in V can be represented by the wedge product 5, A B2 of any pair
81, B2 of linearly independent vectors in the plane. This wedge product is well
defined up to a constant factor; it determines the 2-plane uniquely and thus
defines an embedding of G(2,4) into the projectivization of the wedge square
of V, G(2,4) — PA?V. An immediate generalization of this construction pro-
duces an embedding of any Grassmannian G(k, n) of k-planes in n-space V into
the projectivization PAFV .

The Pliicker equations are the equations of the image of this embedding.
Note that the dimension of G(k,n) is k(n — k), while the dimension of PA*V
is (Z) —1, whence, generally speaking, the image of the embedding does not coin-
cide with the whole projectivized wedge product PA*V . For example, the image
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of the embedding of G(2,4) into PA?V is a hypersurface in the 5-dimensional
projective space.

Let us find the equation of this hypersurface. Pick a basis e, ez, e3,e4 in V.
Then A?V is endowed with the natural basis 8;; = e; Aej, 1 <i < j <4, and
the corresponding natural coordinate system y;;. The image of the embedding
of the Grassmannian consists of decomposable vectors. By definition of the
wedge product, for a pair of vectors (a1, as,as,as), (b1,ba,bs,by), the image of
the plane spanned by these two vectors has the projective coordinates

a; b

= al—bj — ajbi.
a;j bj

Yij =

An immediate calculation shows that these coordinates satisfy the homogeneous
equation
Y12Y34 — Y13Y24 + Y14Yy23 = 0,

and this is the Pliicker equation of the image.

For general values of n and k, the Pliicker equations still are quadratic
equations. In other words, the ideal in the ring of polynomials consisting of
polynomials vanishing on the image of the Pliicker embedding is generated by
quadratic polynomials.

2.2. Space of Laurent series. Take for the space V the infinite di-
mensional vector space of formal Laurent series in one variable. Elements
of this space have the form c_;z7% + c_py127 %1 + .... The powers z*,
k=..,-2,—-1,0,1,2,... form the standard basis in V. By definition, the
semi-infinite wedge product A%V is the vector space freely spanned by the
vectors

m m m ;
Uy =2 " PANZTENZTRAN L mp <mg <mg<..., m; = [ — 1,

where p is a partition, pu = (u1, g2, pi3, ... ), 1 > p2 > pu3 > ..., and all but
finitely many parts are 0. In particular, m; = —i for all ¢ large enough.
The vacuum vector

Vg =2z 'AZEAZTIA L
corresponds to the empty partition. Similarly, we have
V11 = 22727 2A2 T3 ,  Ugl = 2PAZT2AZTIALLL , V2 = Onz7IAZT3AL L ,
and so on.

2.3. The boson-fermion correspondence. Numbering basis vec-
tors in the semi-infinite wedge product A%V (the space of fermions) by parti-
tions establishes a natural vector space isomorphism (the boson-fermion corre-
spondence) between this space and the vector space of power series in infinitely
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many variables p1, pa, ... (the space of bosons). This isomorphism takes a basis
vector v, to the Schur polynomial s, = s,(p1,p2,...). The latter is a quasiho-
mogeneous polynomial, of degree |u|, in the variables p;, with the degree of p;
set to be 7.

The Schur polynomial corresponding to a one-part partition is defined by
the expansion

22 23
50+ 812+ 8927 +532° + 542t - = PP AP
and for a general partition k it is given by the determinant
5 = det. [lsn,—yail|- (4)

The indices 4, j here run over the set {1,2,...,n} for n large enough, and since
ki = 0 for ¢ sufficiently large, the determinant, hence s, is independent of n.
Here are a few first Schur polynomials:

1 1
so =1, S11 = p1, Sg1 = 5(1’% + p2), 831 = g(p:{’ + 3p1p2 + 2p3),

1 1 1
S12 = 5(17% —p2), Sp1g1 = g(pi’ —p3), 813 = g(pi’ — 3p1p2 + 2p3).

2.4. Semi-infinite Grassmannian and the KP equations.
The semi-infinite Grassmannian G(%,00) consists of decomposable vectors
in PATV, that is, of vectors of the form

B1(z) A Ba(2) AB3(2) A ...,

where each f3; is a Laurent power series in z and, for i large enough, the leading
term in the expansion of 3; is z7%:

Bi(z) = 2T ez T T T 4L

Definition 2. The Hirota equations are the Pliicker equations of the embed-
ding of the semi-infinite Grassmannian in the projectivized semi-infinite wedge
product PA% V. Solutions to the Hirota equations (that is, semi-infinite planes)
are called 7-functions for the KP hierarchy.

As polynomial equations for the coefficients of the expansions of 7-functions,
the Hirota equations can be treated as partial differential equations for the func-
tions themselves. Being Pliicker equations, the Hirota equations are quadratic
in 7.

Definition 3. The form the Hirota equations take for the logarithms of 7-
functions under the boson-fermion correspondence is called the Kadomtsev—
Petviashuvili, or KP, equations.
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In other words, any solution to the KP equations can be obtained as the
result of the following procedure:

e take a semi-infinite plane 51(2) A B2(z) A... in V;

e by expanding, rewrite the corresponding point in the semi-infinite Grass-
mannian as a linear combination of the basis vectors v, and normalize so
as the coefficient of vy becomes 1;

e replace in this linear combination each vector v, by the correspond-
ing Schur polynomial s, (p1,pa,...), which produces a series in infinitely
many variables p1,pa,...;

e take the logarithm of the resulting series.

An infinite sequence of homogeneous generators can be chosen for the KP
equations, involving derivatives over extending sets of variables. For example,
the first KP equation for an unknown function W = W (py, po, . .. ) looks like

PW _ PW. 1w 1ot

op3 ~ Opops 2\ Op? 12 op}
it contains derivatives only over p1, ps2,p3, and is homogeneous, in a natural
( y g
sense).

2.5. Action of the diagonal matrices. Linear transformations of
the vector space V' of Laurent polynomials induce linear transformations of
the semi-infinite wedge product A% V. Since linear transformations of V take
planes in V' to planes, the induced transformations preserve the embedded
Grassmannian. In this section we consider the action of those transformations
that can be represented by diagonal matrices in the basis {z¥} in V, k € Z: these
are the only transformations we need in the study of simple Hurwitz numbers.
By obvious reasons, the induced action on A=V, written in the basis v,,, also
is diagonal.

Example 2.2. Consider the linear transformation V' — V which multiplies z~*

by a constant a preserving all the other basis vectors. Clearly, the action of this
transformation on A%V, written in the basis v,, multiplies by a each basis
vector containing z~! in its decomposition (vy,v;2, and so on), and preserves
all other basis vectors (vi1,v91, and so on). The requirement that z~! enters
the decomposition of a vector v, means that the partition x contains a part
ki such that k; — i = —1. Note that any partition can have at most one such
part, since the parts x; follow in a decreasing order, while the sequence i grows
strictly.

An important consequence of this example is that the eigenvalue of the
action on A%V of a diagonal matrix on V corresponding to the eigenvector v,
depends symmetrically on the differences k; — i. In other words, it belongs to
the ring of so-called shifted symmetric functions.
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Definition 4. A function on partitions k = (k1, ke, ...) is said to be shifted
symemitric if it is symmetric under permutations of the shifted parts «; — 1.

Let us stress once again that the parts k1, k2,... of the partition x go in
the nonincreasing order, k1 > kg > ..., and all but finitely many of them are 0.
The definition of a shifted symmetric function bases heavily on this order.

The space of shifted-symmetric functions depending on infinitely many vari-
ables is the projective limit ' of the spaces I'y of shifted symmetric functions
depending on k variables. (In [42], the algebra I' is denoted by A*. We use a
different notation in order to prevent confusion with the wedge products and
the Hodge bundle below). The limit is taken with respect to the projections
I'p+1 — 'y, obtained by setting the last argument equal to 0. All complex-valued
shifted symmetric functions form an algebra. This algebra was introduced and
thoroughly studied in [30]. The reason for introducing it is that the characters
of certain natural elements in the centers of group algebras of symmetric groups
are shifted symmetric.

Now, we have a naturally defined action on ATV of any diagonal matrix
2 ap2F, a, # 0, with finitely many entries a, with negative indices different
from 1. Indeed, were there infinitely many such coefficients, in order to compute
the action of the corresponding matrix on a basis vector, say vy, we would have
to compute the product of infinitely many entries. Fortunately, the action on
the projectivized space PAZ V| which is the main subject of our interest, can be
extended to the action of diagonal matrices with infinitely many entries aj, with
negative indices different from 1: since we are interested in the action on the
projectivized space, only the ratio of the eigenvalues of the basis eigenvectors
matters, and this ratio is well defined for an arbitrary diagonal matrix.

Indeed, any two basis vectors vy, v, € ATV have a common tail: their de-
compositions are different in the beginning, but coincide after some position,

. . . . . a —1...Q K
say K. Hence the ratio of the corresponding eignevalues is just a’”iia’”‘l(
11—

That is, we must define the action of a diagonal matrix on ATV in a way
that preserves this ratio of eigenvalues. Thus the result depends only on the
eigenvalue of the vacuum vector vy, which can be chosen arbitrarily. The most
natural normalization is to choose this eigenvalue to be 1. This yields the fol-
lowing induced action on A% V of a diagonal matrix (ax) on V:

(oo} a .
Uy H B ) v,
a_;

i=1

The product in the brackets is well defined, since all but finitely many fac-
tors are 1. The action of the torus of diagonal matrices on the projectivized
seminifinite external product of V is just the inductive limit of the actions of
the tori Tk consisting of diagonal matrices with diagonal entries a; equal to 1
fori=—(K+1),—(K+2),....

Since the action of the infinite dimensional torus €., (C*); on the projec-
tivized semi-infinite wedge product is well defined, it also defines an action of
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the corresponding Lie algebra. The latter action also is diagonal, and a diago-
nal matrix (a;);ez (with not necessarily nonzero entries) belonging to the Lie
algebra acts on a basis vector v,, by

oo

Ve > Z(aﬁj_j—oz_j) Ve

j=1

2.6. Symmetric group representations. In this section, we prove
Theorem 2.1 stating that the generating series H(u;pi,p2,...) for simple Hur-
witz numbers is a solution to the KP hierarchy for each value of the parameter u.
This statement is true for u = 0, since H(0;p1, ps,...) = p1. For general value
of u, the statement follows from the fact that exp(H) is an integral curve of a
vector field in PAZ V tangent to the semi-infinite Grassmannian. This vector
field is induced by a linear transformation V' — V', which is diagonal in the
standard basis z*. Namely, this is the transformation z* s (k — %)22’“.

Let C[Sn] be the N!-dimensional group algebra of the symmetric group.
For each partition x of N, denote by C,, € C[Sy] the sum of all permutations
in Sy having the cyclic type k. We will use a special notation C; for the class
C~ of the unit permutation, which is the unit of the algebra C[Sx], and C5 for
the sum C;~-291 of all transpositions. For any x, the element Cy is a central
element in C[Sy]. These elements span the center of C[Sn].

The simple Hurwitz numbers have the following natural interpretation as
connection coefficients in symmetric groups. Take the mth power C3" of the
class Cy € C[Sn] and expand it as a linear combination of the basis classes.
Then the coefficient of C,, in this expansion is equal to the number of ways to
represent a given permutation of cyclic type u as a product of m transpositions.

In other words,
C
Cy' =N hy,, —,
N (on

where |C},| is the number of elements in the corresponding conjugacy class.

Example 2.3. For N = 3 and m = 4, we have
C§ =270, + 27C3,

whence 5. o7
hzsl == h4;31 = 7 = 9
; 6
(Let us explain how the coefficient 27 of the class Cy in the above formula is
obtained. Each of the 27 products of three transpositions in Ss is a transposi-
tion. Taking for the fourth transposition one of the two transpositions different
from the product we obtain 54 cyclic permutations, that is, the element Cs,

which is the sum of the two cyclic permutations, taken with multiplicity 27).



Hurwitz Numbers 2457

It is convenient to interpret the above relation by assigning the monomial
|Culpy = |CulpuiDys - - to the element C,,. This correspondence provides an
isomorphism between the center of C[Sy] and the vector space of weighted
homogeneous polynomials of degree N in the variables pi,ps,.... Under this
isomorphism, we have

Cy' = N> by Dy
puEN

Therefore,

m
Z Z him, upﬂi
m=0 p-N
In order to compute the action of the element C5 and that of its exponent,
we observe that an element of C[Sy] is central iff it acts as a scalar on any
irreducible representation. In particular, the central elements x,, € C[Sx] which
act with the trace 1 in the irreducible representation V), and trivially in all other
representations form yet another basis in the center of C[Sy]. The elements Cs
and e“2", being central, act diagonally in this basis:

Cy: Xp fZ(:u)Xm Cau Xp = efQ('u)uXu

with f given by
1 21\
zZ((“z i) - (5) )

Under the isomorphism above, the element x, is taken exactly to the corre-
sponding Schur function by (yet another) its definition. The equivalence of the
two definitions of the Schur function is a standard fact known as the Frobenius
theorem; the proof can be found, for example, in [47]. Expanding the function
H°(0;p1,...) = eP in the basis of Schur polynomials,

eP1 — z:s’u(l,()?()7 - )s“(p),
m

we obtain finally

Ho(u;plap% < ) = ZSH(].,O,O, s )S#(p)eﬁ(u)u'

This explicit formula for simple Hurwitz numbers goes back to Burnside.
Similarly to formulas in Sec. 1.3 it also can be used for computation of particular
simple Hurwitz numbers. Note that the above isomorphism between the center
of C[Sn] and the space of degree N polynomials in the variables p; takes the
multiplication by Cy to the cut-and-join (or Calogero—Moser) operator A of
Sec. 1.3. We conclude that the cut-and-join operator is diagonal in the basis of
Schur polynomials. The specific form of the eigenvalue function fo shows that
this diagonal operator is induced by the diagonal operator 2% + (k — 1/2)22*
on the space V' of Laurent polynomials. This proves Theorem 2.1.
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2.7. Application: enumeration of maps and hypermaps. In-
formally, a map is a graph drawn on a two-dimensional surface in such a way
that its edges do not intersect and self-intersect and its complement is a dis-
joint union of discs (faces). Maps are studied by topological graph theory, see
e.g. [34]. Enumeration of maps of various kinds is a classical problem, nowa-
days finding numerous applications in quantum field theory. In this section we
explain how the study of Hurwitz numbers helps to make enumeration results
for maps more precise.

From the point of view of the present paper, the most convenient definition
of a map is that in terms of permutation groups.

Definition 5. Pick a finite set D. Then a map with the set of half-edges D
on an oriented surface is a triple of permutations «, p,o of D possessing the
following properties:

e « is an involution without fixed points;
e the product pao is the identity permuation.

The group G = («, ¢, o) of permutations of D generated by the permutations
a, ¢, o is called the cartographic group of the map. A map is said to be connected
if its cartographic group acts on the set D transitively.

For a graph drawn on an oriented surface, D is the set of half-edges, or flags,
the permutation a exchanges the ends of each edge, ¢ rotates the half-edges
along the faces in the positive direction, and o rotates the half-edges around
the vertices in the positive direction. Obviously, « is an involution without fixed
points, and it is easy to check that the product of these three permutations is
indeed the identity permutation. A map is connected iff the underlying surface
is.

The number of edges in a map is half the number of elements in D or, which
is the same, the number of cycles in the permutation «. The number of vertices
in a map is the number of cycles in o, and the degrees of the vertices are the
lengths of the cycles. Similarly, the number of faces is the number of cycles in ¢,
and the degrees of the faces are the lengths of the cycles.

The notion of hypermap is a generalization of that of map. In the definition
of a hypermap, we get rid of the assumption that « is an involution without
fixed points, thus reestablishing the symmetry between the three permutations.

It is clear now that enumeration of maps or hypermaps of various kinds can
be reduced to enumeration of triples of permutations possessing certain specific
properties, and enumerative methods described above can be applied.

Denote by R,(Qn’m) the number of rooted connected maps with n edges,
m faces, and the degrees of the vertices given by the partition x of 2n.

Methods close to those in the proof of Theorem 2.1 give the following state-
ment.
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Theorem 2.4 ([16]). The generating series

(n,m)
R(w,z;p1,p2, ... ) = Y Z%pnw%”,

n,m>1kF2n

(where, for a given partition k = (k1,K2,K3,...), Dx denotes the monomial
D = PryPrsPrs - - - ) 1S a 2-parameter family of solutions to the KP-hierarchy.

The series R in the theorem can be specialized to include only cubic maps —
those whose all vertex degrees are 3. By duality, this is the same as enumerating
rooted triangulations of arbitrary genus. The KP equations then can be reduced
to produce recurrence relations for the number of rooted triangulations.

Denote the number of rooted triangulations of a genus g surface with 2n
faces by T'(n, g). Then the recurrence relation has the following form. Introduce
notation

S:{(n,g)EZXZ| n > —1, Ogggn}.

Theorem 2.5 ([16]). We have

1

T(n.g) = 3n + 2

t(n,g),

where t(n, g) is defined by the quadratic recurrence

~ 4(3n+2) . )

Hn,g) = =22 (n(3n = 2t(n — 2,9 1) + Dt WG

for (n,g) € S\ {(—1,0),(0,0)}, where the summation is carried over (i,h) € S,
(j,k) € Swithi+j=n—2 and h+ k = g, subject to the initial conditions

1

t(flvo) = 57 t(nvg) =0 for (nag) ¢ S.

The recurrence relation of the theorem allowed Bender, Gao and Richmond
to solve a long-standing problem of finding the exact formula for the constant
factor in the leading term in the asymptotics of the number of rooted triangu-
lations, as the number of triangles tends to infinity.

Theorem 2.6 ([3]). The number of rooted triangulations of a genus g surface
with 2n faces has the asymptotics

T(n,g) ~ 3 x 69~1/2t n>=1/2(12/3)" a5 n — oo;
here the constant ty has the form

N AT

s =5 ety 06
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where [x]) denotes the rising factorial x(z+1) ... (x+k—1), and the constant u,
is defined by the initial condition uqy = 1/10 and the quadratic recurrence rela-
tion

=Ug_1 + —————————UpUg_}, fOT g > 2,
g— 1 Z Rl R2 g, ) g f g

where
[1/5]4 [4/5]g-1
Ri(g,h 1/5 Ry(g,h) = -55—1[4/5]g—h-1-
1(97 ) [1/5] [ / ]g hs 2(97 ) [4/5]h71[ / ]g h—1
The first few values of the constant t, are
2 1 7

1 = ty =

24 4320 /7

This constant enters many other asymptotics as well.

3. Intersection Theory on Moduli Spaces of
Complex Curves

The importance of Hurwitz numbers in modern research is mainly due to their
connections with the geometry of the moduli space of curves. These connections
go back to the work of A. Hurwitz in the end of the 19" century, and found
numerous remarkable instances in the last decade.

3.1. The ELSV formula. Let M., denote the moduli space of stable
genus g complex curves with n pairwise distinct marked points. This is the
Delinge-Mumford compactification [8] of the moduli space My, of stable non-
singular genus g curves with n marked points. The stability condition means
that the group of automorphisms of the curve preserving the marked points is
finite. For smooth curves, this is equivalent to the following numerical restric-
tions: either g > 2, or g = 1,n > 1, or ¢ = 0,n > 3. The only singularities
of the singular curves are transversal double self-intersections (nodes), and the
marked points are not allowed to coincide with the nodes. Both M., and M.,
are smooth complex orbifolds of dimension 3g — 3 + n.

The natural “forgetting morphism” Mg.,,41 — Mg, extends to a forget-
ting morphism of the compactifications, Mg;n-u — ﬂg;w The composition of
forgetting morphisms forgets more than one marked point.

To the 7 th marked point, the line bundle £; over Mgm is associated; the
fiber of this bundle is the cotangent line to the curve at the point. Let 1; denote
the first Chern class of £;, ¢; = ¢1(£;) € H*(My.,), i = 1,...,n. The Hodge
bundle A over ﬂgm is the pull-back, under the forgetting morphism, of the
rank g vector bundle over ﬂg;o whose fiber is the vector space of holomorphic
1-forms over the curve. (For g = 1, the space Mg;o must be replaced by ﬂg;l,
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and for g = 0, the Hodge bundle is of rank zero). The characteristic classes of
the Hodge bundle are denoted by c¢(A) =1+ X1 + -+ Xy, N € H*(M.,,).

A formula due to Ekedahl, Lando, Shapiro, and Vainshtein, now standardly
referred to as the FLSV-formula, expresses simple Hurwitz numbers in terms
of intersection indices of the above characteristic classes over the moduli spaces
of stable curves:

oom! Kt c(AY)
i = |[Aut (k)| };[1 kil /Mgm (1= rK1¢1) ... (1 — kpthp)’ 5)

where k is a partition of K = |k|, K = (k1,...,kn), m =29 — 2+ K + n is the
number of transpositions, and ¢(AY) =1— Xy + Xy —--- £ ), is the total Chern
class of the dual Hodge bundle. This formula, together with a brief description
of the idea of the proof, has been announced in [9] (with an erroneous sign in the
numerator of the integrand). A complete proof was given in [10], and meanwhile
another proof appeared in [21]. A special case of (5), that for k = 1", has been
simultaneously and independently discovered in [13].

The formula is understood in the following way: after expanding the de-
nominator as a power series in the classes v;, select the monomials of de-
gree dim M., = 3g — 3 + n in the product and integrate them against the
fundamental class of M,.,. The result will be a rational number.

The ELSV formula generalizes, to higher genera, Hurwitz’s formula (see
Theorem 1.2) valid for g = 0. In its own turn, it admits a generalization known
as the Marino—Vafa formula conjectured in [38] and proved in [37].

In spite of the geometric nature of the ELSV formula, it produces immediate
combinatorial consequences. An example is given by the following result, which
has been conjectured in [17].

Theorem 3.1 ([10]). For given g,n, the number

|Aut(s)| 1o #i!
o= L e
i=1

is a symmetric polynomial in k;, of degree 3g — 3 + n, with the least monomial
degree being 29 — 3 + n.

Although the statement is purely combinatorial, no direct proof of it is
known. Double Hurwitz numbers demonstrate a similar behavior. Namely, they
are piecewise polynomial [18, 49].

3.2. Linear Hodge integrals as coefficients of a solution to

KP. The right-hand side of the ELSV formula is a linear combination of the
intersection numbers of the form

. _ oL m
Z‘];mlﬁ'“)mn = /7 )\g I 1O
Mgin
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Expressions of this kind are called linear Hodge integrals, meaning that they
include the Chern classes A; of the Hodge bundle, which enter the monomial
linearly. Note that the data (j;mg,...,m,) determine the genus g uniquely
according to the dimension count 3¢9 —3 +n = j +my + -+ - + m,,. Similarly
to the case of Hurwitz numbers, one can organize the linear Hodge integrals in
the generating function

L(uv q1,492, - - - ) = Z(_l)jéjwnl,...,mnu2jQ7n1 v ldmy,, (6)
Jt

known as the enriched Gromov—Witten potential of a point [17].

In a recent paper, M. Kazarian has shown that this generating function can
be easily transformed into a solution of the KP hierarchy. Namely, denote by
G(u;p1,pa, - ..) the result of the following substitution to the series L:

qgo = D1,

@1 = upi+2ups + ps,

Q@ = u4p1 + 6u3p2 + 12u2p3 + 10up4 + 3ps,

g3 = uSpy + 14ups + 61u*ps + 124upy + 131u?ps + T0ups + 15p7,

Here the polynomials on the right-hand side are given by the recurrence

0
qk+1 = Z m(u2pm + 2upm41 +pm+2)w%~

m>1 m

Theorem 3.2 ([26]). The function G(u;p1,pe,...) is a solution to the KP
hierarchy (identically in u).

The proof of the theorem uses the ELSV formula (5) and the fact that the
generating series for the simple Hurwitz numbers is a solution to KP (Theo-
rem 2.1). Note that in the present case, the infinitesimal transformation of the
space V of Laurent series corresponding to the solution in question is no longer
diagonal. Instead, it is three-diagonal.

3.3. Witten’s conjecture. The celebrated Witten conjecture [51] con-
cerns computation of the intersection indices of the -classes over the moduli
spaces of curves. Namely, denote

<Tm1'~~7_mn>:/7 /(binl"‘ :“{)"7

Mgin

where the genus g can be computed from the dimensional count dim ﬂgm =
3g—3+4+n =mq+---+m,. Collect these intersection indices into the generating
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series in infinitely many variables ¢;,

3 th ot
n:

1
= S+ *to + *tl + *totz + *totl +

F(to,...)

—ta + *tl + t0t1t2

24 1 TG0 4R T oy 6 1152 72
bl 2y tt+—tt+ﬂtt+1tt+1tt+
Fglots T glot + gytolz + mrggtats + 5o tila + Tr-otols

Witten’s conjecture states that
The function F' satisfies the KdV hierarchy of partial differential equations.
In particular, its second derivative U = 0?F /0ty is a solution to the KdV
equation,
oU oUu 10U
S =Use+ @
oty Oty 12 0t

The KdV equation (7) can be considered as a recurrence relation allowing
one to compute the intersection indices of the i-classes for arbitrary genus
recursively from their values for ¢ = 0 and g = 1, which are known since
Witten’s pioneering work [51].

Since its appearance in 1991, the conjecture has got several proofs, includ-
ing those due to Kontsevich [32], Okounkov and Pandharipande [43], Mirza-
khani [40], Kazarian and Lando [27], Kim and Liu [31].

Witten’s conjecture is an immediate consequence [26] of Theorem 3.2. In-
deed, the solutions of the KdV hierarchy are exactly those solutions of KP that
depend only on variables with odd indices. After setting v = 0 in G, one obtains
a power series in variables ps;_1 with odd indices, which is therefore a solution to
the KdV hierarchy. The coefficients of this series are £o.m, ....mn = (Tmy - - - T, )-
It turns into F' after rescaling po; 11 = t;/(2¢ — 1)!!. In contrast to most of the
other proofs, this one guarantees the whole KdV hierarchy for F, while usu-
ally one obtains only the first KdV equation and needs the additional string
equation to generate the hierarchy.

4. Further Developments and Perspectives

The variety of Hurwitz numbers is not exhausted by simple and double Hur-
witz numbers. Other species include general Hurwitz numbers, enumerating
factorizations into permutations of arbitrary cyclic type, not necessarily trans-
positions, and r-Hurwitz numbers, where transpositions are replaced by certain
“completed r-cycles”. In all cases, Hurwitz numbers remain closely related to
the geometry of moduli spaces, and both are far from being well understood.
In this section we describe briefly possible directions of further research.

4.1. Completed cycles. The center of the group algebra C[Sy] of the
symmetric group Sy is generated by the classes Cy(Sn), where  is a partition
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of N. The class C,(Sy) is the sum of all permutations with the cyclic type k.
For example, Cn-291(Sy) is the sum of all transpositions in Sy .

It is convenient, however, to introduce certain classes in the centers of group
algebras for all symmetric groups simultaneously. Let x be a partition. For an
arbitrary integer IV, choose |x| elements out of {1,..., N} and consider in C[Sy/]
the sum of all permutations of these |x| elements, of cyclic type «, all the other
N — |k elements being fixed. Denote by Cj. the element in the center of C[Sy]
which is the sum of all such permutations, for all <|]Z |) choices of the || elements
out of N. (If || > N, then C,, = 0 € C[Sy]; if || = N, then C,, = C,(Sn)).

For example, the class 5’11 can be understood as the sum of identity per-
mutations, with a distinguished element in each permutation. In other words,
the class Cq1 is the same as the class NCy = NCy~(Sy). Similarly, the class
5’12 coincides with the class W@@: there are (];7) = N(Nf_l) ways to pick
two elements in the identity permutation.

The classes C; have the following advantage when compared to the classes
C.(Sn): the products of the classes Cy; can be expressed as universal linear
combinations of these classes, which are independent of the order N of the
symmetric group. For example, the equation

621612 = 521 + 251121 + 51221

is valid in the center of the group algebra C[Sx] of any symmetric group Sy,
for arbitrary N.

Universality means that there is a natural inclusion of the center of C[Sy]
into that of C[Syy1] for any N. Tending N to infinity, we obtain a universal
center of the group algebra, which can be identified with the infinite dimensional
vector space freely spanned by the elements Cj, for arbitrary partitions x. This
space also is endowed with an algebra structure.

This algebra is isomorphic to the algebra I' of shifted symmetric functions
defined in Sec. 2.5. As a vector space, the latter algebra is spanned by the
functions f. indexed by partitions and defined as follows. A central element
Cx € C[S),,] acts on the irreducible representation V,, of the symmetric group by
multiplication by a scalar; by definition, we set f,(u) to be equal to this scalar.
The Frobenius characteristic mapping éﬁ — f. establishes an isomorphism
between the two algebras.

4.2. r-Hurwitz numbers and generalized Witten’s conjec-
ture. Simple Hurwitz numbers count decompositions of a given permutation
into a product of transpositions. It is a natural idea to generalize them by re-
placing transpositions by permutations in other specific classes. For example,
why not consider 3-cycles C37 However, such a straightforward approach fails.
Namely, enumerative formulas for decompositions of a given permutation into
a product of 3-cycles lose elegance, when compared to that for Hurwitz num-
bers, and their relationship with both mathematical physics and geometry is
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broken. The same is true for r-cycles for any r > 3. Fortunately, consistency
can be restored by replacing r-cycles C,. with certain linear combinations of the
classes C, for certain partitions .

Definition 6 ([44]). The completed r-cycle C., is the preimage under the Frobe-
nius characteristic mapping of the r th power function

(m,m,...)Hig((m_ui)r_ (i_z))

We have explained the reasons why the r th power function must be of
such a form in Sec. 2.5 (we use a normalization differing from that in [44] by a
constant).

Let us give formulas for few first completed cycles among which we know
that the completed 2-cycle simply coincides with the ordinary 2-cycle:

61 = 611

62 = 621

— ~ ~ 1 ~
03 == C31 + 012 —|— ECN
— ~ ~ 5~
Cy = Cpn+2C19 + 1021.

These formulas explain the origin of the term “completed cycle”: the expansion
of a class éa as a linear combination of the classes C,, starts with the class of
the r-cycle C,1, and then terms of smaller order follow. Explicit formulas for
the coefficients on the right of the expressions for all completed cycles can be
found in [44].

Now we can define the generalized Hurwitz numbers.

Definition 7. The simple r-Hurwitz number for an integer m ~ N and a
partition p is the normalized coefficient of C), in the m th power of the com-
pleted r-cycle,
Cul i~ 1
W = S Gl @
The simple r-Hurwitz numbers are collected into the generating function

m

7)o = r)o u
H®(uspy,pa,...) = Z Zhﬁn?#pmpm e
m=0 pu :

and its logarithm H ) (u; p1, pa,...) = log H")°(u;p1,pa,...) is the generating
function for connected simple r-Hurwitz numbers.

The definition of the r-Hurwitz numbers and explanation in Sec. 2.5 imme-
diately imply

Theorem 4.1. The function H(T)(u;pl,pg, ...) 1s a one-parameter family of
solutions to the KP hierarchy of partial differential equations.



2466 Sergei K. Lando

Indeed, this one-parameter family is induced by the infinitesimal diagonal
transformation of the vector space V of Laurent polynomials taking the vec-
tor z* to %(kz— %)Tzk, k=...,-2,-1,0,1,2,....

A similar theorem is valid for generating functions defined by any finite
linear combination of completed cycles. In this case the eigenvalues %(k — %)T

are replaced by an appropriate polynomial in k, which can be arbitrary.

The relationship of r-Hurwitz numbers defined by means of the completed
cycles to the geometry of moduli spaces of (r — 1)-spin structures on algebraic
curves is less clear at the moment, and this question is a subject of further
investigation.

D. Zvonkine conjectured (private communication) that the simple r-Hurwitz
numbers can be expressed in terms of the geometry of moduli spaces of (r —1)-
spin structures on algebraic curves by an r-analogue of the ELSV-formula.
Such a formula could lead, at least in principle, to an alternative proof of the
generalized Witten conjecture [51], concerning intersection indices of -classes
on the moduli spaces of so-called r-spin curves. At the moment, only one proof
of the conjecture is known, see [12], and it proceeds in a very different way.

4.3. Geometry of Hurwitz spaces and universal character-
istic classes. The Hurwitz numbers are related to the geometry of moduli
spaces of curves through the geometry of Hurwitz spaces. The latter are moduli
spaces of meromorphic functions on complex curves. Without giving precise def-
initions, we just explain the main features of the picture. Each Hurwitz space is
fibered over the corresponding moduli space of curves — the fibration proceeds
by forgetting the function, and this forgetting mapping relates the geometry
of the two spaces in question. In a sense, Hurwitz spaces (and, more generally,
spaces of stable mappings) are more natural than moduli spaces of curves.

Each Hurwitz space is also stratified according to the degeneration of the
functions. A stratum is formed by the locus of functions with prescribed singu-
larities. On the other hand, the action of the multiplicative group C* of nonzero
complex numbers on the target curve CP! is lifted to the Hurwitz spaces. A
Hurwitz number (either simple or a more general one) can be computed as the
degree of the closure of the corresponding stratum with respect to the above
action. This argument votes for the study of the stratification of Hurwitz spaces.

In the simplest case of polynomials, such a study has been carried out in [35].
In [2, 36, 28, 29], a more general case of rational functions is treated. The study
applies methods of global singularity theory started by R. Thom and extended
recently by M. Kazarian to the case of multisingularities (see, e.g. [32]). These
methods produce universal expressions for the locus of prescribed singularities
of an arbitrary generic mapping of two complex manifolds in terms of the
characteristic classes of the mapping. When applied to the Hurwitz spaces, these
methods yield expressions for the loci of functions with prescribed singularities,
which lead to explicit formulas for the corresponding Hurwitz numbers.
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The classical Thom approach, as well as its generalization by Kazarian, is
applicable to the case of mappings with isolated singularities only. For spaces
of stable mappings, this requirement proves to be too restrictive, since they
inevitably contain mappings with nonisolated singularities, namely, those con-
tracting certain irreducible components of the curve to a single point in the
target space. Sample computations show, however, that main results can be
extended to the nonisolated case as well. The corresponding construction is not
elaborated yet in the desired generality.
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1. Introduction: Two Problems in Lie Theory

Let g be a simple complex Lie algebra of type A, D, or E. We denote by G a
simply-connected complex algebraic group with Lie algebra g, by N a maximal
unipotent subgroup of G, by n its Lie algebra. In [47], Lusztig has introduced
the semicanonical basis S of the enveloping algebra U(n) of n. Using the duality
between U (n) and the coordinate ring C[N] of N, one obtains a new basis S* of
C[N] which we call the dual semicanonical basis [22]. This basis has remarkable
properties. For example there is a natural way of realizing every irreducible
finite-dimensional representation of g as a subspace L()) of C[N], and S* is
compatible with this infinite system of subspaces, that is, S* N L()) is a basis
of L(\) for every .

The definition of the semicanonical basis is geometric (see below §5). A pri-
ori, to describe an element of $* one needs to compute the Euler characteristics
of certain complex algebraic varieties. Here is a simple example in type As. Let
V =V,&V, ® V3 be a four-dimensional graded vector space with V; = Cey,
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Vo = Ceg @ Ces, and V3 = Cey. There is an element ¢x of S* attached to the
nilpotent endomorphism X of V' given by

X€1=62, )(622)(63:07 X€4:€3.

Let Fx be the variety of complete flags I} C Fs C Fj of subspaces of V| which
are graded (i.e. F; = @;(V; N F;) (1 < ¢ < 3)) and X-stable (i.e. XF; C F;).
The calculation of ¢px amounts to computing the Euler characteristics of the
connected components of Fx. In this case there are four components, two points
and two projective lines, so these Euler numbers are 1,1, 2,2. Unfortunately,
such a direct geometric computation looks rather hopeless in general.

Problem 1.1. Find a combinatorial algorithm for calculating S*.

To formulate the second problem we need more notation. Let Lg = g ®
Clt,t~] be the loop algebra of g, and let U,(Lg) denote the quantum analogue
of its enveloping algebra, introduced by Drinfeld and Jimbo. Here we assume
that ¢ € C* is not a root of unity. The finite-dimensional irreducible repre-
sentations of U, (Lg) are of special importance because their tensor products
give rise to trigonometric R-matrices, that is, to trigonometric solutions of the
quantum Yang-Baxter equation with spectral parameters [38]. The question
arises whether the tensor product of two given irreducible representations is
again irreducible. Equivalently, one can ask whether a given irreducible can be
factored into a tensor product of representations of strictly smaller dimensions.

For instance, if g = sly and V,, is its (n + 1)-dimensional irreducible repre-
sentation, the loop algebra Lsly acts on V,, by

(z @ tF)(v) = 2Fav, (xe€sly, keZ, veV,).

Here z € C* is a fixed number called the evaluation parameter. Jimbo [37] has
introduced a simple Uy (Lsl;)-module W, ., which can be seen as a g-analogue of
this evaluation representation. Chari and Pressley [7] have proved that W,, , ®
Wi,y is an irreducible Uy (Lslz)-module if and only if

n—m z

q " & {qi(”+m+2_2k) |0<k< min(n,m)}.
In the other direction, they showed that every simple object in the category
mod Uy (Lsly) of (type 1) finite-dimensional U, (Lsly)-modules can be written
as a tensor product of modules of the form W), ., for some n; and z;. Thus
the modules W,, , can be regarded as the prime simple objects in the tensor
category mod U, (Lsly).

Similarly, for general g one would like to ask

Problem 1.2. Find the prime simple objects of mod U,(Lg), and describe the
prime tensor factorization of the simple objects.

Both problems are quite hard, and we can only offer partial solutions. An in-
teresting feature is that, in both situations, cluster algebras provide the natural
combinatorial framework to work with.
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2. Cluster Algebras

Cluster algebras were invented by Fomin and Zelevinsky [16] as an abstraction
of certain combinatorial structures which they had previously discovered while
studying total positivity in semisimple algebraic groups. A nice introduction
[14] to these ideas is given in these proceedings, with many references to the
growing literature on the subject.

A cluster algebra is a commutative ring with a distinguished set of genera-
tors and a particular type of relations. Although there can be infinitely many
generators and relations, they are all obtained from a finite number of them by
means of an inductive procedure called mutation.

Let us recall the definition.! We start with the field of rational functions
F =Q(z1,...,2,). A seed in Fisapair ¥ = (y,Q), wherey = (y1,...,yn) is a
free generating set of F, and @ is a quiver (i.e. an oriented graph) with vertices
labelled by {1,...,n}. We assume that @ has neither loops nor 2-cycles. For
k =1,...,n, one defines a new seed ui(X) as follows. First puy(y;) = y; for
i # k, and

Hi*}k Yi + Hk*}j Yj (1)
Yk ’

where the first (resp. second) product is over all arrows of @ with target (resp.
source) k. Next ux(Q) is obtained from @ by

ok (yr) =

(a) adding a new arrow ¢ — j for every existing pair of arrows i — k and
k—j;

(b) reversing the orientation of every arrow with target or source equal to k;
(c) erasing every pair of opposite arrows possibly created by (a).

It is easy to check that ug(X) is a seed, and py (ur (X)) = X. The mutation class
C(XY) is the set of all seeds obtained from ¥ by a finite sequence of mutations
tx. One can think of the elements of C(X) as the vertices of an n-regular tree
in which every edge stands for a mutation. If ¥’ = ((y1,...,y,), Q') is a seed in
C(X), then the subset {y],...,y, } is called a cluster, and its elements are called
cluster variables. Now, Fomin and Zelevinsky define the cluster algebra Ax, as
the subring of F generated by all cluster variables. Some important elements of
As are the cluster monomials, i.e. monomials in the cluster variables supported
on a single cluster.

For instance, if n = 2 and ¥ = ((21,22),Q), where @ is the quiver with
a arrows from 1 to 2, then Ay is the subring of Q(x1,x2) generated by the
rational functions xj defined recursively by

Tp41Tk—1 = 1+, (k€ Z). (2)

I For simplicity we only consider a particular subclass of cluster algebras: the antisymmetric
cluster algebras of geometric type. This is sufficient for our purpose.
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The clusters of Ay are the subsets {x, zx+1}, and the cluster monomials are
the special elements of the form

zhal (k€ Z, l,meN).
It turns out that when a = 1, there are only five different clusters and cluster
variables, namely

1+ zo 1+z1 + 22 1+

x =x x = x = xT = Z = .
5k+1 1, 5k+2 25 5k+3 1 ) S5k+4 122 ) 5k T2

For a > 2 though, the sequence () is no longer periodic and Ay, has infinitely
many cluster variables.
The first deep results of this theory shown by Fomin and Zelevinsky are:

Theorem 2.1 ([16],[17]). (i) Ewery cluster variable of As, is a Laurent poly-
nomial with coefficients in Z in the cluster variables of any single fized
cluster.

(ii) Asx has finitely many clusters if and only if the mutation class C(X) con-
tains a seed whose quiver is an orientation of a Dynkin diagram of type
A, D, E.

One important open problem [16] is to prove that the coefficients of the Lau-
rent polynomials in (i) are always positive. In §9 below, we give a (conjectural)
representation-theoretical explanation of this positivity for a certain class of
cluster algebras. More positivity results, based on combinatorial or geometric
descriptions of these coefficients, have been obtained by Musiker, Schiffler and
Williams [48], and by Nakajima [52].

3. The Cluster Structure of C[N]

To attack Problem 1.1 we adopt the following strategy. We endow C[N] with
the structure of a cluster algebra.? Then we show that all cluster monomials
belong to &*, and therefore we obtain a large family of elements of S* which
can be calculated by the combinatorial algorithm of mutation.

In [2, §2.6] explicit initial seeds for a cluster algebra structure in the coordi-
nate ring of the big cell of the base affine space G/N were described. A simple
modification yields initial seeds for C[N] (see [24]).

For instance, if G = SLy and N is the subgroup of upper unitriangular
matrices, one of these seeds is

((D1,2, D13, D12,23, D14, D12,34, D123234), Q),

2Here we mean that C[N] = C ®z A for some cluster algebra A contained in C[N].
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where @ is the triangular quiver:

1

2—>3
4 5 6
Here, by Dy ; we mean the regular function on /N which associates to a matrix
its minor with row-set I and column-set J. Moreover, the variables

Ty = D1,4, Ts5 = D12,34, Te = D123,234

are frozen, i.e. they cannot be mutated, and therefore they belong to every
cluster. Using Theorem 2.1, it is easy to prove that this cluster algebra has
finitely many clusters, namely 14 clusters and 12 cluster variables if we count
the 3 frozen ones.

In general however, that is, for groups G other than SL, with n < 5, the
cluster structure of C[N] has infinitely many cluster variables. To relate the
cluster monomials to S* we have to bring the preprojective algebra into the
picture.

4. The Preprojective Algebra

Let @ denote the quiver obtained from the Dynkin diagram of g by replacing
every edge by a pair (a,a*) of opposite arrows. Consider the element

p= Z(aa* —a*a)

of the path algebra CQ of @, where the sum is over all pairs of opposite ar-
rows. Following [29, 53], we define the preprojective algebra A as the quotient
of CQ by the two-sided ideal generated by p. This is a finite-dimensional self-
injective algebra, with infinitely many isomorphism classes of indecomposable
modules, except if g has type A,, with n < 4. It is remarkable that these few
exceptional cases coincide precisely with the cases when C[N] has finitely many
cluster variables. Moreover, it is a nice exercise to verify that the number of
indecomposable A-modules is then equal to the number of cluster variables.

This suggests a close relationship in general between A and C[N]. To de-
scribe it we start with Lusztig’s Lagrangian construction of the enveloping
algebra U(n) [46, 47]. This is a realization of U(n) as an algebra of C-valued
constructible functions over the varieties of representations of A.

To be more precise, we need to introduce more notation. Let S; (1 <4 <n)
be the one-dimensional A-modules attached to the vertices i of Q. Given a
sequence i = (i1,...,4q) and a A-module X of dimension d, we introduce the
variety Fx ; of flags of submodules

f=0=FRCcFC--CF;=X)
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such that Fy/F,_1 = S;, for k =1,...,d. This is a projective variety. Denote
by Ag the variety of A-modules X with a given dimension vector d = (d;),
where )" d; = d. Consider the constructible function x; on Aq given by

Xi(X) = x(Fx.i)

where x denotes the Euler-Poincaré characteristic. Let Mg be the C-vector
space spanned by the functions y; for all possible sequences i of length d, and

let
M= P Ma.

deNn

Lusztig has endowed M with an associative multiplication which formally re-
sembles a convolution product, and he has shown that, if we denote by e; the
Chevalley generators of n, there is an algebra isomorphism U (n) = M mapping
the product e;, - - - e;, to x; for every i = (i1,...,%q).

Now, following [22, 23], we dualize the picture. Every X € mod A determines
a linear form dx on M given by

ox(f) = f(X),  (feM).

Using the isomorphisms M* ~ U(n)* ~ C[N], the form Jx corresponds to an
element px of C[N], and we have thus attached to every object X in mod A a
polynomial function ¢x on N.

For example, if g is of type A3, and if we denote by P; the projective cover
of S; in mod A, one has

wp, = Di123234, @p, = Di234, @p, = D14.

More generally, the functions ¢x corresponding to the 12 indecomposable A-
modules are the 12 cluster variables of C[N].

Via the correspondence X +— @x the ring C[N] can be regarded as a kind of
Hall algebra of the category mod A. Indeed the multiplication of C[N] encodes
extensions in mod A, as shown by the following crucial result. Before stating it,
we recall that mod A possesses a remar