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VORTICES IN GINZBURG-LANDAU EQUATIONS

FABRICE BETHUEL

ABSTRACT. GL models were first introduced by V.Ginzburg and
L.Landau around 1950 in order to describe superconductivity. Similar
models appeared soon after for various phenomena: Bose condensation,
superfluidity, non linear optics. A common property of these models is
the major role of topological defects, termed in our context vortices.

In a joint book with H.Brezis and F.Helein, we considered a simple model
situation, involving a bounded domain € in R2?, and maps v from Q to
R?. The Ginzburg-Landau functional, then writes

1 1
B0) =5 [ V0P + g [ -2

Here € is a parameter describing some characteristic lenght. We are
interested in the study of stationary maps for that energy, when € is
small (and in the limit € goes to zero). For such map the potential forces
|v] to be close to 1 and v will be almost S!-valued. However at some
point |v| may have to vanish, introducing defects of topological nature,
the vortices. An important issue is then to determine the nature and
location of these vortices.

We will also discuss recent advances in more physical models like super-
conductivity, superfluidity, as well as for the dynamics: as previously the
emphasis is on the behavior of the vortices.

1991 Mathematics Subject Classification: 35J20, 35J55, 35Q99, 35Q55,
35B98

Keywords and Phrases: Ginzburg-Landau equations, superconductivity,
vorticity, evolution equations

1 INTRODUCTION

Ginzburg-Landau functionals were introduced around 1950 by V.Ginzburg and
L.Landau in order to model energy states of superconducting materials and their
phase transitions. Related functionals appeared soon therafter in various fields
as superfluidity, Bose condensation, nonlinear optics, fluid mechanics and parti-
cle physics. A common feature of these models is that they involve non convex

DOCUMENTA MATHEMATICA - EXTRA VOLUME ICM 1998 - III - 11-19



12 FABRICE BETHUEL

potentials, which allow the existence of topological defects for stationary states:
here we will mainly focus on two-dimensional situations, where theses defects are
often termed vortices. In recent years, very importants efforts have been devoted
to their study from a mathematical point of view: we will try here to survey parts
of these works.

We begin with a simple model, which was studied extensively, in particular
in a joint book with H.Brezis and F.Helein [BBH]. Consider a smooth bounded
domain in R? (for instance a disk), and complex valued functions v on § (i.e maps
v from Q to R?). The simplest possible Ginzburg-Landau functional then takes
the form, for these functions

1 1
B) =5 [ 9o+ 55 [ @12,

Here € is a parameter describing some characteristic lenght and we will mainly be
interested in the case € is small and in the limit € tends to zero. The potential
V(v) = € 2(1 — |[v|?) forces |v|, for critical maps for E. to be close to 1 and
therefore, stationnary (or low energy) maps will be almost S!-valued. However,
at some points |v| may have to vanish, introducing “defects”.

To have a well-posed mathematical problem, we prescribe next Dirichlet
boundary conditions: let g be a smooth map from 9Q to S!, and prescribe v
to be equal to g on 9. Therefore we introduce the Sobolev space

1(0. P2y — 1O R2) o —
Hy(QR°) ={ve H (R"),v=gondQ}.

It is then easy to verify that E. is a C°° functional on H, gl, and that its critical
points verify the Ginzburg-Landau equation

1
Av = 6—20(1 —|v*)onQ, v=gondQ. (1)

Standard elliptic estimate show that, any solution to (1) is smooth, that

[v] <1lon (maximum principle), (2)
Vo] < ¢ on ) for C, some constant depending on g, (3)
€
1
] / (1—1|v/*)?> <C, providedQis starshaped. (4)
€ Ja

Since E. is strictly positive, one easily verifies that it achieves its infimum k. on
H gl and hence (1) possesses minimizing solutions (not necessarily unique). We will
denote u, these solutions.

2 ASYMPTOTIC ANALYSIS OF MINIMISERS

The winding number d of g ( as map from 9 to S!) is crucial in this analysis,
forcing, when d # 0, vortices to appear.

DOCUMENTA MATHEMATICA - EXTRA VOLUME ICM 1998 - III - 11-19



VORTICES IN GINZBURG-LANDAU EQUATIONS 13

2.1 THE CASE d = 0.

In this case, there exists 1) from 9 to R such that g = expiy). Next let ¢, be the
solution of Ay, = 0 on 2, v, =1 on N and consider u, = expip,. Clearly u, is

Sl-valued, so that
1 1
Bw) =3 [ Vuf =3 [ VP
Q Q

is bounded independently on €. Hence k. remains bounded as ¢ — 0. It is that
easy to show that u, — u, in H'. Finally in [BBH2] we carried out more refined
asymptotics, in particular

us — ul|Le < Ce?.

2.2 THE CASE d # 0.

We may assume, for instance d > 0. In this case there are no maps in H, gl which
are S'-valued (the fact that there are no continuous S'-valued maps reduces
to standard degree theory). In particular k. — +oo, and we are facing a
singular limit. Since u, is smooth, the topology of the boundary data forces u.
to vanish somewhere in Q. The points where u. vanishes play an important role:
the Dirichlet energy will concentrate in there neighborhood, accounting for the

divergence of k.. In [BBH], we established

THEOREM 1 i) There exists a constant C > 0 depending only on g such that
|ke — md|loge|]| < C, V0 <e<1. (5)

i1) The map u. has exactly d zeroes, provided e is sufficiently small (these result
relies on a work by P.Baumann, N.Carlson and D.Philips [BCP] ) .
i) There exists exactly d points a1, az,- -, aq in Q such that up to a subsequence

, €n — 0,
d

Ue, — Uk, ON any compact subset of O\ U{ai} ,
i=1
where

d

z—a;

Uy = H “expiy (¢ being a harmonic function).
=1 |Z — i

In particular, the winding number around each singularity is +1.
iv) The configuration a; is not arbitrary, but minimizes on QI\A (where A
denotes the diagonal) a renormalized energy which has the form

Wy(ar, -, aq) =m Z log |a; — a;| + boundary conditions. (6)
i#]
v) The energy has the expansion, as e — 0

ke = md|loge| + Wy(a1,- - -, aqa) + dyo + o(1)

where yg is some absolute constant.
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14 FABRICE BETHUEL

REMARKS 1) Theorem 1 was established in [BBH] under the additional as-
sumption that (2 is starshaped. This assumption was removed by M.Struwe [Str]
(see also Del Pino-Felmer [DF]).

2) Similar results have been obtained by André and Shafrir, when the potential
depends also on z, [AS], in [BR] for the abelian Higgs models, and in [HJS] for a
self-dual model.

3) Hardt and Lin have studied in [HL] a different singular limit problem, with the
same renormalized energy.

4) A three dimensional analog was studied by Riviere in [R].

3 ASYMPTOTICS FOR NON MINIMIZING SOLUTION

A similar analysis can be carried out for solution which are not necessarily mini-
mizing. Assume (2 is starshaped. Then, we have, [BBH], for v, solution to (1):

THEOREM 2 i) There exists some constant C > 0, such that, for 0 <e <1
E(ve) < C(|loge| +1).

1i) there exists a subsequence €, | points a1,---,a; and l integer dy,---,d; such
that

l di

Z—a; ) , )

Ve, —F Uy = H (|z al,|> exp iy, where ¢ is harmonic.
i=1 '

ii1) The configuration (a;, d;) is critical for the renormalized energy.

Note that an important difference between minimizing and non-minimizing solu-
tions is that, for the later one, the multiplicity of vortices has not to be +1, and
the vortices of opposite degree might coexist.

4 THE EXISTENCE PROBLEM

In view of Theorem 2, a natural question is to determine whether non-minimizing
solutions do really exist, and if one is able to prescribe the multiplicity of the
vortices. We begin with an elementary example.

4.1 AN EXAMPLE:

Take @ = D? and g(6) = expidf (here (r, §) denote polar coordinate). In view of
the symmetries, one can find a solution v(r, 8) of the form v4(r, 8) = f4(r) exp idf,
where f; verifies the ODE

« / 1
S —d2f+6—27"2f(1—f2) =0, f(0)=0, f(1)=1.
Computing the energy of these solutions, one sees that they are of order md?|loge|:
hence, if |d| > 2, and e is sufficiently small they are non minimizing. [In the case
= 1, v is minimizing thanks to results by P. Mironescu [Mi] and Pacard and

Riviere [PaR] |.
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VORTICES IN GINZBURG-LANDAU EQUATIONS 15

Actually, for large d, there are much more solutions. Indeed, the Morse Index
of the solution v, is of order |d|?, for large d ( see [AB1], [BeH]). Therefore, using
symmetries and the index theory of Faddell and Rabinowitz [FR] (a Lyusternik-
Schnirelmann theory in the presence of compact group actions), one obtains the
existence of at least pio|d|? orbits of solutions, for large d, where i is some positive
constant (the orbit of a solution v is the set {exp(—ida)v(expiaz), « € [0, 27[ }).

4.2 VARIATIONAL METHODS

A complete Morse theory for (1) has yet to be constructed. In view of (6), one
might expect that the level sets for E. are related to the level sets of W, on
¥ =04\ A, and hence that the topologie of ¥ might yield solution for (1). This
idea was introduced in [AB1], and then extended by Zhou and Zhou [ZZ]: they
proved that (1) has at least |d|+ 1 distinct solutions, for sufficiently small e. They
are using crucially the fact that the cuplenght of ¥ is (at least), |d| — 1, a result
due to V. Arnold [Ar].

We conjecture actually that the number of solutions is much higher. In order
to find solutions with vortices of higher multiplicity, one has also to take into
account vortices of opposite charges and also the fact that they might annihilate.
For that reason, 29\ A is no longer the good model, and one has to turn to spaces
as studied by D.Mc. Duff [McD].

REMARK: Another construction of (stable) solutions has been introduced in
[Lil].

5 SUPERCONDUCTIVITY

We turn now to the original model for superconductivity, as introduced by
Ginzburg and Landau. Here () represents a superconducting sample, h, denotes
the external applied magnetic field. The functional to minimize is now

1 1
F.(u,A) = §/Q|VAu|2+|dA—hez|2+4—€2/Q(l—|u|2)2.

Here A = Ajdzy + Asdx, is a connection accounting for electromagnetic effects,
and u represents a condensated wave function for Cooper pairs of electrons, the
carrier of superconductivity. In the above renormalized units, |u|? represents the
density of Cooper pairs, so that if |u| ~ 0 the sample is in the normal state, whereas
if |u| ~ 1 the material is in the superconducting state. We will see that for certain
applied fields h.,, the two states may coexist in the same sample (phase transition
of second order). This model leads therefore to many interesting mathematical
questions, often related to physical experiments.

5.1 NON SIMPLY CONNECTED DOMAINS

In this case, permanent currents have been observed, even when h., = 0. Jimbo,
Morita and Zhai [JMZ], Rubinstein and Sternberg [RS] and Almeida [All] have
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16 FABRICE BETHUEL

related this fact to the existence of configurations minimizing the energy in a
topological sector. The threshold energy between different sectors is established
in [Al2] and corresponds precisely to the energy of a vortex.

When the external field is non zero interesting phenomena occur (the Little-
Parks effect), which have been studied in particular by Berger and Rubinstein

([BgR)).

5.2 CRITICAL FIELDS

Suppose € is small, and let €2 be an arbitrary domain. For he, = 0, the minimizing
solution is clearly (up to a gauge transformation) u = 1, A = 0. It is observed
that, until h., reaches a critical field H,,, the minimizing solution has no vortex
(called a Meissner solution). For h., > H.,, vortices appear, and their number
increases with h.,. Finally, for h., > H.,, another critical field, superconductivity
dissapears, and the minimizing solution is u = 0.

Stable solutions near H,., have been thoroughly investigated by S. Serfaty [S1,
S2]. In particular the location of the vortices is determined, and it is proved that
many branches of solutions corresponding to various numbers of vortices, coexist
at the same time. For larger fields, homogenized equations for the vortex distribu-
tion have been proposed and studied (see for instance Chapman, Rubinstein and
Schatzman [CRS]).

Finally very precise estimates have been obtained in the one dimensional case
by C. Bolley and B. Helffer (see[BoH)]), for different critical fields and values of e.

6 EVOLUTION EQUATIONS

Various evolution equations corresponding to the Ginzburg-Landau system have
been studied. For the heat-flow equation related to (1), Lin [Li2] has shown that
the vortices evolve according to the gradient flow of the renormalised energy (see
also [JS]), in a suitable renormalized unit of time. The Schrédinger equation
(termed also Gross-Pitaevskii equation)
U

% — Autu(l— [ul?) (7)
is of special importance, since it appears as a model for superfluids, Bose condensa-
tion, nonlinear optics. It is also related to fluid mechanics, because if u = pexpi(p,
then V¢ can be interpretated as the velocity in a compressible Euler equation, p?
being the density (with a suitable choice for the pressure).

The dynamics of vortices (on bounded domains) was derived by Colliander
and Jerrard [CJ], as the simplectic gradient for the renormalized energy (see also
[LX]).

When the domain is R?, Ovchinnikov and Sigal [0S1] have shown that when
the initial data has two vortices of the same sign (and hence infinite GL en-
ergy), radiation takes place and the vortices repulse. The existence and behavior
of travelling waves solutions to (7) has been widely considered in the physical
litterature (see for instance Jones, Putterman and Roberts [JPR|, Pismen and

DOCUMENTA MATHEMATICA - EXTRA VOLUME ICM 1998 - III - 11-19



VORTICES IN GINZBURG-LANDAU EQUATIONS 17

Nepomnyashchy [PN], Josserand and Pomeau [P]). This solutions have the forme

u(z,t) =

U(z1 — ct, x3) where U is a function on R?. For 0 < ¢ < 2, non con-

stant finite energy solutions exists (rigourous proofs are provided in [BS1], [BS2]).
When c is small, these solution possess two vortices with degrees +1 and —1, the
distance separating the vortices is proportional to the inverse of the speed c¢. The
limiting speed /2 represents the speed of sound (see [0S2], also for the role of
Cherenkov radiation). Stability of these travelling waves has been studied in the
physical literature: mathematical proofs are still to be provided as well as for the
three dimensional case (vortex rings).
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PHENOMENA OF COMPENSATION AND HESTIMATES

FOR PARTIAL DIFFERENTIAL EQUATIONS

FRrREDERIC HELEIN

ABSTRACT. Quantities like the Jacobian determinant of a mapping play
an important role in several partial differential equations in Physics and
Geometry. The algebraic structure of such nonlinearities allow to improve
slightly the integrability or the regularity of these quantities, sometimes
in a crucial way. Focused on the instance of %g—z — g—;%, where a and
b € H'(R?), we review some results obtained on that quantity for 30
years and applications to partial differential equations arising in Geome-
try, in particular concerning the conformal parametrisations of constant
mean curvature surfaces and the harmonic mappingss between Rieman-

nian manifolds.

1991 Mathematics Subject Classification: 35, 43, 49, 53
Keywords and Phrases: Compensation phenomena, Harmonic maps

For 30 years, many remarkable properties concerning some nonlinear quan-
tities like Jacobian determinants of mappings or the scalar product of a diver-
gencefree vector field by the gradient of a function has been observed and used.
One instance is the continuity with respect to the weak convergence in L2. The
basic example is the following : if ax — a weakly and by, — b weakly in H'(R™),
then {ag,br}tap = %% — %gg{; converges to {a,b}sg in the distribution
sense. The discovery and the study of such properties is the subject of the theory
of compensated compactness of F. Murat and L. Tartar [Mu], which became a
powerful tool in the theory of homogeneisation and the study of quasiconvex
functionals. These technics has been recently enlarged, after R. Di Perna, by P.
Gérard [Gé] and L. Tartar [Ta2] independentely in a microlocal context.

We want to tell here a story parallel to compensated compactness’ one.

1 H-SURFACES

It began with the study of surfaces of constant mean curvature H in the Eu-
clidean space R3. Let D? be the unit disk in the plane R2?. A local conformal
parametrisation X € H!(D? R?) satisfies

. ,0X 0X 12 o3
AX =2H 5 < 9y weakly in H™(D*,R?), (1)
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where V' x W is the standard vectorial product in R?. H. Wente proved that each
weak solution of (1) is smooth (C*°) [W1]. The crucial step of his proof this to
prove that a solution of (1) is continuous. It relies on the particular structure of
the right-hand side of (1). For instance, the first component :

Ax!— 95 <8X2 0X3  9X? 8X3)

or Oy B oy Ox

is a Jacobian determinant. Later in the the beginning of the eighties, in papers
from H. Wente [W2] and H. Brezis, J.-M. Coron [BrC], it became clear that the
main point in Wente’s proof relies on the following. Let a,b € H'(D? R) and
¢ € L*(D?,R) be a weak solution of

_ . 0adb  0adb >
—A¢p = {a,b}:= 9r0y 9y oz on D @)
¢ = 0 on 0D2.

Then ¢ is actually in H'(D?) N C%(D?) and we have the following : there exist
some positive constants Co, and Cs such that

¢l < Coolldal|L2[]db]| 2, 3)

|ldgl|z> < Cal|dal|z2||db]| 2. (4)

Both estimations are not true in general if we replace the right hand side of (2)
by an arbitrary bilinear function of ¢ and b : we would then only obtain that
¢ € WP N L9 with 1 < p < 2and 1< g < co. Here the algebraic structure of
{a, b} is very important and allows us to do many manipulations such as

0 0b 0 ob
ot =5 (o55) - 5 (032
- the basic trick in the proof.

REMARK Estimates (3) and (4) lead to other inequalities, similar to the isoperi-
metric inequality in R3, see [BrC].

2 ESTIMATES IN REFINED SPACES

In the beginning of the eighties, L. Tartar observed other nice properties on {a, b}
in the framework of fluid dynamics [Tal]. And in 1989, S. Miiller showed that if
u is any function in W™ (R™ R™) such that det(du) is nonnegative a.e. , then,
det(du)log(1 + det(du)) € L*(R™), which improves slightly the naive observation
that det(du) € L*(R™) [Mii]. We say that det(du) is in L'logL!(R™). The proof
of that fact relies also on the use of the isoperimetric inequality in R™. Notice
that if m = 2 and u = (a,b), then det(du) is just {a,b}.

A few time later, R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes proved
actually that if u is any function in WH™(R™,R™), then det(du) belongs to the
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generalized Hardy space H'(R™) [CLMS]. It includes S. Miiller’s result, for it
was known that any nonnegative function in #!(R™) is in L'logL!(R™). These
authors obtained similar results: for instance, if B € L%(R™,R™) is a divergence
free vector field and V € H'(R™, R), then

VV.B € H'(R™), (5)
the exact analog of the “div-curl lemma” of F. Murat and L. Tartar [Mu].

To make sense it is worth to say what is the generalized Hardy space (see
[St]). Several definition coexists. One is the following. Let f € L*(R™), define

f@)=sw| [ f-po) e,
t>0 | JR™

where ¢ € C2°(R™) is a function such that [, f¢ = 1. Then

HIR™) = {f € L'R™)/f* € L'(R™)}.

We endow this space with the norm

U ller = 1Ay + 11F ] e

Notice that, through as theorem of C. Fefferman and E. Stein, BMO(R™) is
the dual space of H!(R™) ([F], [FSt]). The main property of H!(R™) is that there
exists many linear operators (like the Riesz transform) which are continuous on
LP spaces for 1 < p < 0o, but not on L'. But these operators are continuous on

HL(R™).

3 APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS IN GEOMETRY

Many applications of these properties have been obtained in the theory of har-
monic maps.

HARMONIC MAPS INTO A SPHERE
A first example is my result on the regularity of weakly harmonic maps between
a two dimensional domain {2 and the two-sphere S C R* [H1]. These are maps
u€ HY(Q,5?%) = {ve H' (Q,R?)/|v]| =1 a.e. } which are weak solutions of

Au + uldu|?* = 0, weakly in H'(Q,R?). (6)
Here, no Jacobian determinant appears at first glance and the knowledge that
u|du|? € L' is unuseful. The point is to use another equivalent form of the equation

which is the conservation law
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0 ou 0 ou 3
%<ux%>+a—y< 8y> =0, weakly in H'(Q,R?). (7)

This relation was already observed and used independentely by several authors
([Che], [Sh], [KRS]). Assume without loss of generality that € is simply connected.
We can “integrate” this equation and we deduce that 3B € H'(Q, R?) such that

0B y ou

9T ux

Oz 0

0B . % (8)
oy X e

Now, using the fact that |u|?> = 1 a.e., which implies that (u, 8w> = (u, g”;) =0,

we can rewrite (6) as

) ,0u Ou ,0u Ou
—Aut = (e e T gy 5y
Ou out Ou ;Ou out Ou

= (Wi —u

oz eIk 8:1:>+< Ay a_y’3_y>

We recognize in the last expression components of u X a 2 and u x §¢ ‘9“ . Thus, using

(8),

— Au' = —{u?, B¥} — {B7 u*}, 9)

for any (i, j, k) which is a circular permutation of (1,2,3). Now equation (9) is
similar to (1) and allows us to prove continuity of u using Wente’s estimate. The
smoothness of u follows from the classical elliptic theory.

This result generalizes in a straightforward way if we replace the target man-
ifold S? by a sphere of arbitrary dimension or a homogeneous manifold, once one
realized that the conservation law (7) is a consequence of the symmetries of S2,
using Noether’s theorem (see [H2]).

This result has also been extended to to the case where the domain €2 is also
of higher dimension by L. C. Evans [E]. He proved that, if ) is an open subset of
R™ is a weakly stationary map into a sphere, then u is smooth in Q \ S, where
S is a closed subset whose Hausdorff measure of dimension m — 2 vanishes - a
weakly stationary map is a weakly harmonic map satisfying the extra condition
that [, |d(uo ¢¢)* = [, |du|® + o(t), for all smooth family of diffeomorphisms ¢,
acting on 2, such that ¢¢ is the identity mapping.

Evans’ proof relies on the same arguments, plus the following: the extra
condition leads to a monotonicity formula which provides an estimate in BMO.
On the other hand, equations like (9) gives estimates in Hardy spaces, through
the results of [CLMS)]. These estimates complete exactly because of the duality
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between H! and BMO.

REMARK It is possible to avoid to use the difficult duality result about H' and
BMO by direct estimates obtained by S. Chanillo [Cha]. Even more recently,
more direct proofs without using that duality has been constructed by P. Hajlasz,
P. Strzelecki [HS] and A. Chang, L. Wang, P. Yang [CWY].

HARMONIC MAPS INTO ARBITRARY MANIFOLDS

It has been possible to extend the previous results for weakly harmonic maps into
arbitrary manifolds A/. The difficulty is that in general N is not symmetric and
we cannot apply Noether’s theorem to construct conservation laws. In dimension
2, I did prove that weakly harmonic maps on a surface, into an arbitrary smooth
compact manifold without boundary is smooth, generalizing the preceeding results
for spheres [H3]. After, F. Bethuel generalized Evans’ result to weakly stationary
maps into arbitrary manifolds [Be].

Let A be a smooth compact Riemannian manifold without boundary. Thanks
to the Nash-Moser theorem, we can assume that N is isometrically embedded in
RN. We define H*(Q,N) to be the set of functions u in H(Q,RY) such that
u € N a.e. Then weakly harmonic maps v € H*(2, N) are the solutions in the
distribution sense of the system

Au+ A(u)(du, du) =0, (10)

where A(u)(.,.) is the second fundamental form of the embedding of A/ in RY. Tt is
a bilinear form on the tangent space to A at u, with values in the normal subspace
to M at u. Such maps are critical points of the restriction of the functional

E(u):/g|du|2dx

on HY(Q,N). In proving regularity results, the point is to exploit the Euler-
Lagrange equation with suitable test-functions, which in some sense are able to
measure, to calibrate the possible wild behaviour of a given weak solution. One
instance of wild behaviour we have in mind is like the map (z,y) — (cos(log(r)),
sin(log(r)),0), from R? to S?, where 7 = y/22 + y? : it is harmonic on R?\ {0} and
its image turns along a great circle faster and faster as (z,y) goes to 0. One would
like to prove that such a singularity (or something which looks asymptotically
like that) does not exists (it actually has an infinite energy). So how to measure
such a wild winding ? If A is S?, we just take the test function u x ¢, where
¢ € H'NL* (2, R3) and we recover the trick given by Noether’s theorem in writing
the equation as the conservation law (7). In other cases, we need to construct test
functions doing the same job, namely calibrating the possible winding of w. This
obtained by using an orthonormal frame on A, moving along v in the “more
parallel way”. This last requirement means that, although it is not possible in
general to construct a covariantly parallel moving frame, it is possible to minimize
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the covariant derivative of that moving frame along u. The good news are that
the obstruction for constructing a covariantly parallel moving frame along u is the
curvature of N or more precisely the pull-back of the curvature two-form by wu.
But this pull-back is just a combination of two-order minors of the kind {a, b}, in
the Hardy space! This is done by the following construction.

We start with a given smooth orthonormal moving frame é(m) =
(€1, ...,€n)(m) defined globally on N (m being here a point on N), a smooth sec-
tion of the bundle F of orthonormal tangent frames over A. In many cases, such a
section does not exists globally, because of topological obstructions. Nevertheless,
it is possible to reduce ourself to such a situation, through some geometrical
argument. Then, for any map u € H'(Q, ), we consider the composed moving
frame € o u, a section of the pull-back bundle u*F, together with all the gauge
transformations of éou, i.e. for all R € H(£2, SO(n)), we consider the new frame
efi(z) = éou(z).R(2) for a.e. 2 € Q, or

We choose among all e®’s those who minimize the functional

F(eR) ._/ En: [<8€§ eR>2+<86§ 6R>2]d.’£d
= o, oz P dy b Y.
We call a Coulomb moving frame such a frame. It satisfies the Euler-Lagrange
equation

o ,0el 4 0 ,0eE o

a

%<W?eb>+a_y<a—y7eb>:07 (11)

another conservation law. This equation can be used as (7): some manipulations
shows that 3A¢ € H'(Q) such that

DA ekt

R TR
AL oel .
ay = _< ax 7eb >7

and that AA? is a sum of Jacobian determinants of the type {a,b}. Namely AA%
times the volume form on € is the pull-back by u of a closed two-form on N related
to the curvature form. This improves slightly the regularity of ef*. In particular,

2 . : del R dey R :
we deduce that the L® connection coefficients (Z2-,e;*) and ( T2 € ) are in fact
in the Lorentz space L(*1), a slight refinement of the usual L? space (actually it is
the dual space to L(>°°) known as weak L?) (see [StW], [Hu], [BL]). Notice that
the above construction did not use at all the hypothesis that u is weakly harmonic.
Now, if we assume that u is weakly harmonic, we will work with the pro-

jection of equation (10) on the Coulomb moving frame. We hence get a first
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order, Cauchy-Riemann system %"; =>, wgab, where the a®’s are complex
numbers representing the derivatives of u and the w;'’s are also complex numbers
representing connection coefficients. The preliminary work on the Coulomb
moving frame ensures us that the w{’s are in L), instead of L2. This is enough
to prove that u is locally Lipschitz and then that w is smooth.

The regularity theorem of F. Bethuel combines in a delicate way these
arguments and Evans’ ones. For more details on all of that, see [Be] and [H4].

CONFORMAL PARAMETRISATIONS OF SURFACES

In her thesis, T. Toro, proved the surprising (and difficult) result that the graph of
amap ¢ in H?(Q,R), where 2 is an open subset of R, is a Lipschitz submanifold,
i.e. that there exists local bilipschitz parametrisations of the graph of ¢. Actually
she proved the more general result that this is true for any surface ¥ whose mean
curvature is a L? function on ¥ [Tor]. Then, a simpler approach has been found
by S. Miiller and V. Svérak [MiiS]. They proved that if ¥ is a surface whose mean
curvature function belongs to L?(¥), then a conformal parametrisation of ¥ is a
bilipschitz function. Their result follows from the observation that, for a local
conformal parametrisation X : D? — X, if we denote (e1,ez) an orthonormal
frame such that dX = ef(e1dx + eady), then

Af = u*Q, (12)

where (2 is the curvature two-form on 3. Thus Af looks like a Jacobian determi-
nant {a, b} and the Wente estimate, or the Coifman, Lions, Meyer, Semmes results
implies boundedness of f in L*, meaning that X is Lipschitz.

4 THE BEST CONSTANTS
Going back to Wente’s result on the disk D?, it is natural to generalize this in-
equality to arbitrary two-dimensional domain 2 in the plane, or on a Riemannian
surface (M, g) and to look for the best constants in (3) and (4). If

— Ay ={a,b} on M, (13)

we call

Coo(M, g) = inf{osc(é)/¢ is a solution of (13),
where (a7 b) € Hl(M’R2)7 ||da’||%2 + ||db||%2 = 2}’

C2(M, g) = inf{||d¢||22/¢ is a solution of (13),
where (a,b) € H'(M,R?),||da||2, + ||db||2. = 2}.
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A priori, Coo(M,g) and C2(M,g) should depend on M and on the metric g.
A first observation is that (13) is invariant under conformal transformations of
(M, g). Thus Coo(M, g) and C2(M, g) depend only on the conformal structure of
(M, g). Moreover, F. Bethuel and J.-M. Ghidaglia proved that these constants
were bounded by a universal one [BeG]|

Recently the precise evaluation of these constants were completed by S.
Baraket and P. Topping for Coo(M,g) [Ba], [Top] and by Y. Ge for C2(M,g)
[Ge]. We have that

i COO(M79) = %? fOI‘ a’n (Mag>

e C3(M,g) = /1= if OM is non empty and C2(M,g) = /5= if OM is
empty.

Both result relies on the optimal isoperimetric inequality (on the plane for Co (€2)
and in R3 for Co(12)).

BACK TO THE BEGINNING

The search for the optimal constant C2(M, g) leads to a variational prob-
lem very similar to the search for the optimal constant in Sobolev embedding of
HY(R™) in L=%s (R™). First this problem is invariant under conformal transfor-
mations. Moreover critical points of the functional ||d¢||. under the constraint
that ||dal|2. + ||db||7. = 2, satisfies the following Euler-Lagrange equation: there
exists a Lagrange multiplier A € (0, 00) such that

Va
U = Vb
A@

is a weak solution of

3u@

Au=2—
b 8:cx8y’

the equation of conformal parametrisations of constant mean curvature surfaces
(see [H4], [Ge]). Hence we are led to another variational formulation of that
geometrical problem. Y. Ge obtained several existence results on this problem, by
constructing minimizing and non-minimizing solutions [Ge].
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VISCOSITY SOLUTIONS

OF BLLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

ROBERT R. JENSEN

ABSTRACT. In my talk and its associated paper I shall discuss some re-
cent results connected with the uniqueness of viscosity solutions of non-
linear elliptic and parabolic partial differential equations. By now, most
researchers in partial differential equations are familiar with the definition
of viscosity solution, introduced by M. G. Crandall and P. L. Lions in their
seminal paper, “Condition d’unicité pour les solutions generalisées des
équations de Hamilton-Jacobi du premier order,” C. R. Acad. Sci. Paris
292 (1981), 183-186. Initially, the application of this definition was
restricted to nonlinear first order partial differential equations—i.e.,
Hamilton-Jacobi-Bellman equations—and it was shown that viscosity so-
lutions satisfy a maximum principle, implying uniqueness. In 1988 an
extended definition of viscosity solution was applied to second order par-
tial differential equations, establishing a maximum principle for these
solutions and a corresponding uniqueness result. In the following years
numerous researchers obtained maximum principles for viscosity solutions
under weaker and weaker hypotheses. However, in all of these papers it
was necessary to assume some minimal modulus of spatial continuity in
the nonlinear operator, depending on the regularity of the solution, and
to assume either uniform ellipticity or strong monotonicity in the case
of elliptic operators. The results I shall discuss are related to attempts
to weaken these assumptions on the partial differential operators—e.g.,
operators with only measurable spatial regularity, and operators with
degenerate ellipticity.

1991 Mathematics Subject Classification: 35, 49, 60
Keywords and Phrases: nonlinear, elliptic, partial differential equations,
viscosity solution, stochastic process

1 VISCOSITY SOLUTIONS: A BRIEF HISTORY

Although the history of viscosity solutions begins in 1981/83, depending on your
individual bias, an important precursor is found in the work of S. N. Kruzkov.
In fact, it’s noted in [12] that, “analogies with S. N. Krukov’s theory of scalar
conservation laws ([29]) provided guidance for the notion [of viscosity solutions]
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and its presentation.” In this context one should also mention L. C. Evans [16],
which developed techniques that serendipitously anticipated the introduction of
viscosity solutions.

M. G. Crandall and P. L. Lions announced the discovery of viscosity solu-
tions in 1981 ([10]). Complete proofs and details were presented shortly after this
in their landmark paper [11]. However, the definition of viscosity solution used
in this paper bears little resemblance to any of those we now employ. It is in
M. G. Crandall, L. C. Evans and P. L. Lions [9] where we first see a systematic
use of one of the now familiar definitions of viscosity solutions. P. L. Lions was
quick to grasp the potential in extending the notion of viscosity solutions to more
general PDEs—[10] and [11] only deal with first order Hamilton-Jacobi-Bellman
equations. His papers, [30] and [31], are the first attempts to extend the first order
results of [11] to second order equations. Using stochastic control theory, he was
able to prove a maximum principle for viscosity solutions of convex (or concave)
nonlinear second order Hamilton-Jacobi equations.

It was five years later that methods were developed which extended the theory
of viscosity solutions to fully nonlinear second order elliptic PDEs. In the first of
these papers R. Jensen [24] proved a maximum principle for Lipschitz viscosity
solutions to the fully nonlinear second order elliptic PDE on a bounded domain
QCR"

F(u,Du,D*u)=0 in Q (1)

Next, in a short note R. Jensen, P. .L. Lions, and P. E. Souganidis [28] removed
the hypothesis of Lipschitz continuity from the viscosity solution. At about the
same time, using the ideas in [24], N. Trudinger proved C1© regularity for viscosity
solutions of uniformly elliptic problems ([35]), and a maximum principle for such
solutions ([36]). Then H. Ishii [20] made an important contribution by removing
the assumption of spatial independence in the PDE. I.e., the maximum principle
could now be applied to viscosity solutions of

F(x,u,Du,D*u) =0 in Q (2)

Finally, in concurrently developed papers H. Ishii and P. L. Lions [22], and
R. Jensen [25] significantly extended [20] giving very general (and in [25], a rather
complicated technical) conditions under which a maximum principle holds for vis-
cosity solutions of (2). In particular, suppose the functions F'(z, ¢, p, M) appearing
in (2) is given by the formula

s By By | By By _ BBy
F(x,t,p, M) = min {r;leaéc {a“ (z)aly (@)msj + b7 (2)p; — "7 (z)t — h (x)}
®3)

where M = (my;), p = (p1,...,pn) and summation is implicit over the indices
i,7, and . Then we have from [25]

COROLLARY 5.11. Let F be the function defined by (3) and assume {(a?}(z))}
are uniformly Lipschitz continuous in €, {(bf v (x))} are uniformly Lipschitz con-
tinuous in Q, and {(c?7(x))} and {(h"7(x))} are equicontinuous in Q. Ifu is a
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viscosity subsolution of (2), v is a viscosity supersolution of (2), and
F(z,t,p, M) — F(x,s,q,N) < max {Kitrace(M — N), Ko(s — t)} + Ks|p—q| (4)

then

sup(u —v)" < sup(u —v)" (5)
Q a0

We also have two other corollaries from [25] which demonstrate the link between
the spatial dependence of F' and the regularity of the viscosity solution.

COROLLARY 5.14. Let F be the function defined by (3) and assume { (a2} (x
are uniformly Hélder continuous with exponent v(> 1/2) in Q, {(bm(ac))}

uniformly Hélder continuous with exponent 2y — 1 in Q, and {(067(96))} and

{(rP(z))} are equicontinuous in Q. If u is a viscosity subsolution of (2), v is
a viscosity supersolution of (2), either u or v is Holder continuous with exponent
a>2— 2y, and (4) holds, then

sup(u —v)" < sup(u —v)" (6)
Q 09

COROLLARY 5.16. Let F be the function defined by (3) and assume {(a?}(z))}
are uniformly Hélder continuous with exponent v(< 1/2) in Q, {(bfv( ))} are

equicontinuous in 0, and {(c’V(x))} and {(hP7(z))} are also equicontinuous in

Q. Ifu is a viscosity subsolution of (2), v is a viscosity supersolution of (2), either
u or v is in CH*(Q) for some o > 111277, and (4) holds, then

sup(u — v)" < sup(u —v)" (7)
Q 09

While the preceding results are not sharp, they do indicate how the assumption
of greater regularity of the viscosity solution allows us to reduce the regularity in
the spatial dependence of F' necessary to prove a maximum principle. Specifically,
in conjunction with regularity results about the gradient (e.g., [35]), one obtains
a fairly general maximum principle (compare [36]).

It was also during this period that L. Caffarelli’s famous paper [3] on in-
terior a priori estimates for viscosity solutions appeared. It was in this paper
that Caffarelli extended the classical W2P, C%® andC?%® interior estimates, us-
ing the Aleksandov-Bakelman-Pucci maximum principle, the Calderon-Zygmund
decomposition lemma, and an extremely clever application of the Krylov-Safonov
Harnack inequality. By eschewing the traditional approach used for linear PDEs—
singular integral operator theory—he obtains results which are powerful enough
to apply to fully nonlinear uniformly elliptic operators.
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2 VISCOSITY SOLUTIONS: RECENT RESULTS

The two most exciting (or depressing, depending on your point of view) recent
results are a pair of counterexamples due to N. Nadirashvili. The first ([32]), is
an example of nonuniqueness for linear uniformly elliptic PDEs with bounded,
measurable coefficients. I.e., consider the equation

n 2
3 ayy(a) U _ t@) wm QcCR

;05
irj=1 Owidz,

uloa(z) = g()

(®)

If (aij(x)) are bounded, measurable and uniformly elliptic, f is bounded and
measurable, and g is bounded and continuous we may define a solution of (8)
as a limit of solutions of

n k
3 k() Out f(z) in QCR"

;0 ;
irj=1 Oridz,

uFloq (@) = g(z)

9)

where {(afj (z))} are smooth and converge almost everywhere to (a;;(z)). The se-
quence {uk} is equicontinuous due to Krylov’s Holder continuity estimates. Hence,
the sequence has accumulation points. We may view these accumulation points as
“g0od” solutions of (8). If there is only one accumulation point no matter what
approximating sequence we use, then (in some sense) the “good” solution of (8) is
unique.

Under certain conditions it is possible to prove that “good” solutions of (8) are
unique. For example, M. C. Cerutti, L. Escauriaza, and E. B. Fabes [6] prove this
if the set of discontinuities of (a;;(z)) is countable with at most one accumulation
point. M. Safonov [34] proves uniqueness if the set of discontinuities of (a;;(z)) has
sufficiently small Hausdorff dimension. In this connection R. Jensen [27] defines a
measure theoretic notion of viscosity solution and proves that viscosity solutions
and “good” solutions are equivalent. A continuous function v € C(Q) is a viscosity
subsolution of (8) if for any ¢ € C?(Q) such that (u—¢)(z) > (u—¢)(y) for all y €
Q and for all p > 0

+

n 2
lim sup in /B( : Z a;j(y) (33381-8(;; () + n5ij> —fly)| dy>0 (10)

e—0 €

4,j=1

it’s a viscosity supersolution if for any ¢ € C?(Q) such that (u — ¢)(z) < (u —
@) (y) for all y € Q and for all n > 0

n 2
lim sup in Z a;j(y) <aZ;;j (z) — n&g) —fy)| dy>0 (11)

e—0 € B(z,¢)

4,j=1

and it’s a viscosity solution if it’s both a subsolution and a supersolution. It’s
relatively easy to see that a “good” solution is always a viscosity solution. Amaz-
ingly, it’s also possible to show that if u is a viscosity solution of (8), then there is
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a sequence of coefficients { (af;(x))} converging to (a;;(z)) such that the solutions
{uF} of (9) converge to u.

It follows that viscosity solutions is the “right” or “natural” space to work in
when studying solutions of (8). The counterexample of [32] shows that multiple
viscosity solutions of (8) do can exist. L.e., viscosity solutions of (8) are not unique.
Still, [27] has some interesting consequences. For example, suppose (a;;(x)) are
continuous. Then we know from the general theory of linear PDEs that there is a
solution w € W2P(Q) N C(Q) for any p > n. Such solutions are unique and stable.
It now follows from [27] that if u is a viscosity solution of (8), then u = w. Thus,
if (a;;(x)) are continuous, then viscosity solutions of (8) are in W2P(Q). In a pair
of papers related to [27], [5] and [8], L. Caffarelli, , M. G. Crandall, M. Kocan,
P. Soravia, and A. Swigch examine the notion of a LP-viscosity solutions. In the

context of (8) a function u € W2P(Q) for p > n/2 is a LP-viscosity subsolution of
(8) if for any ¢ € W;29(Q2) such that ¢ > p and (u—@)(y) has a local max at y = z
then

n 82¢
li ” T — > 12
ess i sup ”2221 ai;(y) Pz, (y)—fly) p =0 (12)

it’s a LP-viscosity supersolution if for any ¢ € Wfocq(Q) such that ¢ > p and
(u — ¢)(y) has a local min at y = z then

L. - 0%¢
| _ <
ess llirggf 321 aij(y) 92:01; (y)—fly) p <0 (13)

and it’s a LP-viscosity solution if it’s both a subsolution and a supersolution. The
authors prove a variety of interesting results concerning such solutions. In par-
ticular they they show that that such solutions are twice differentiable almost
everywhere, they examine the relationship between various definitions of viscosity
solutions (in the measurable context), and they extend and generalize the results
in [27]. One of the tools in their analysis is the interesting paper of L. Escau-
riaza ([15]), which extends the classical Aleksandrov-Bakelman-Pucci maximum
principle.

Nadirashvili’s second counterexample, [33], shows that there is a smooth func-
tion F such that the solution of (2) is not C?. This is important because this result
shows that the C? regularity theory—the Schauder estimates—of linear PDEs
doesn’t hold for fully nonlinear PDEs, underscoring the importance of the theory
of viscosity solutions to elliptic PDEs. Applications of viscosity solutions to de-
generate elliptic and parabolice PDEs also underscore their importance. One of
the more widely known applications has been to the problem of motion by mean
curvature. The idea of embedding the hypersurface as a level set of some initial
value and evolving the initial data by the appropriate degenerate parabolic PDE
goes back to L. C. Evans and J. Spruck [19], and Y. G. Chen, Y. Giga, and S. Goto
[7]. Showing that the level set’s evolution was independent of the particular initial
data used, they were able to prove existence and uniqueness results for the motion
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by mean curvature problem. These results have been expanded on and generalized
in L. C. Evans [18], and H. Ishii, and P. E. Souganidis [23].

In a different vein R. Jensen [26] studied a highly nonlinear degenerate ellip-
tic PDE in the context of L°° minimization and the limit of the p-Laplacian as
p goes to infinity. Recently this operator has also been connected to the Monge-
Kantorovich problem of optimal transport, and (I have been told) to image pro-
cessing. The problem studied in [26] is to find the “best” Lipschitz extension into
Q of the boundary data g(z). This is reduced to the problem of existence and
uniqueness of the nonlinear PDE

Ou

3% sz 0%u - . n
Z |Du| |Du|( )axiaxj =0 in QCR (14)
ulan( ) =9(x)

It is easy to see that (14) is both degenerate elliptic and singular at Du(x) = 0.
Never the less, it was shown that viscosity solutions of (14) exist and also satisty a
maximum principle. Hence, they are unique. Furthermore, for this problem there
are also counterexamples to the existence of classical solutions. In fact, the best
regularity for this problem appears to be C1'®, but a proof of this remains open.
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MINIMAL REGULARITY SOLUTIONS

OF NONLINEAR WAVE EQUATIONS

HANS LINDBLAD

ABSTRACT.

Inspired by the need to understand the complex systems of non-linear wave
equations which arise in physics, there has recently been much interest in
proving existence and uniqueness for solutions of nonlinear wave equations
with low regularity initial data.

We give counterexamples to local existence with low regularity data for the
typical nonlinear wave equations. In the semi-linear case these are sharp, in
the sense that with slightly more regularity one can prove local existence.

We also present join work with Georgiev and Sogge proving global existence
for a certain class of semi-linear wave equation. This result was a conjec-
ture of Strauss following an initial result of Fritz John. We develop weighted
Strichartz estimates whose proof uses techniques from harmonic analysis tak-
ing into account the symmetries of the wave equation.

1991 Mathematics Subject Classification: 35L70
Keywords and Phrases: Non-linear wave equations, hyperbolic equations,
local existence, low regularity solutions, Strichartz estimates

INTRODUCTION.

Recently there has been much interest in proving existence and uniqueness of
solutions of nonlinear wave equations with low regularity initial data. One reason
is that many equations from physics can be written as a system of nonlinear wave
equations with a conserved energy norm. If one can prove local existence and
uniqueness assuming only that the energy norm of initial data is bounded then
global existence and uniqueness follow. Therefore it is interesting to find the
minimal amount of regularity of the initial data needed to ensure local existence
for the typical nonlinear wave equations.

We give counterexamples to local existence with low regularity data for the
typical nonlinear wave equations. In the semi-linear case the counterexamples are
sharp, in the sense that with slightly more regularity one can prove local existence.
It is natural to look for existence in Sobolev spaces, since the Sobolev norms are
more or less the only norms that are preserved for a linear wave equation. The
counterexamples involve constructing a solution that develops a singularity along
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a characteristic for all positive times. In the quasi-linear case it also involves con-
trolling the geometry of the characteristic set. The norm is initially bounded but
becomes infinite for all positive times, contradicting the existence of a solution in
the Sobolev space. The counterexamples are half a derivative more regular than
what is predicted by a scaling argument. The scaling argument use the fact that
the equations are invariant under a scaling to obtain a sequence of solutions for
which initial data is bounded in an appropriate Sobolev norm. The counterexam-
ples were not widely expected since for several nonlinear wave equations one does
obtain local existence down to the regularity predicted by scaling.

On the other hand, the classical local existence theorems for nonlinear wave
equations are not sharp in the semi-linear case. These results were proved us-
ing just the energy inequality and Sobolev’s embedding theorem. Recently they
were improved using space-time estimates for Fourier integral operators known as
Strichartz’ estimates, and generalizations of these. There are many recent results in
this field, for example work by Klainerman-Machedon[13-15], Lindblad-Sogge[24],
Grillakis[6] Ponce-Sideris[26] and Tataru. In particular, Klainerman-Machedon
proved that for equations satisfying the ‘null condition’, one can go down to the
regularity predicted by the scaling argument mentioned above. In joint work with
Sogge[24] we prove local existence with minimal regularity for a simple class of
model semi-linear wave equations. There are related results for KdV and nonlinear
Schrédinger equations, for example in work by Bourgain and Kenig-Ponce-Vega.

Whereas the techniques of harmonic analysis were essential in improving the
local existence results, the Strichartz estimates are not the best possible global
estimates since they do not catch the right decay as time tends to infinity if the
initial data has compact support. The classical method introduced by Klainerman
[11,12] to prove global existence for small initial data is to use the energy method
with the vector fields coming from the invariances of the equation. However, this
method requires much regularity of initial data and also the energy method alone
does not give optimal estimates for the solution since it is an estimate for deriva-
tives. We will present joint work with Georgiev and Sogge giving better global
estimates using techniques from harmonic analysis taking into account the invari-
ances or symmetries of the wave equation. We obtain estimates with mixed norms
in the angular and spherical variables, with Sogge[24], and weighted Strichartz’
estimates with Georgiev and Sogge[4]. Using these new estimates we prove that
a certain class of semi-linear wave equations have global existence in all space
dimensions. This was a conjecture by Strauss, following an initial result by John.

1. COUNTEREXAMPLES TO LOCAL EXISTENCE.

We study quasi-linear wave equations and ask how regular the initial data must
be to ensure that a local solution exists. We present counterexamples to local
existence for typical model equations. Greater detail of the construction can be
found in Lindblad [20-23]. In the semi-linear case the counter examples are sharp
in the sense that for initial data with slightly more regularity a local solution exists.
This was shown recently in Klainerman-Machedon [13-15], Ponce-Sideris[26] and
Lindblad-Sogge[24] using space time estimates know as Strichartz’ estimates and
refinements of these. However for quasi-linear equations it is still unknown what
the optimal result is; there is a gap between the counterexamples and a recent
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improvement on the existence result by Tataru[42] and Bahouri-Chemin][1].
Consider the Cauchy problem for a quasi-linear wave equation:

Ou = G(u, v, u"), (t,z) € Sy =10,T) x R™,

u(O,x) = f($)7 ut(0>$) = g(l‘),
where G is a smooth function which vanishes to second order at the origin and
is linear in the third variable u”. (Here 0 =07 — >, 82.) Let H” denote the

homogeneous Sobolev space with norm || f|| 7, = || |D«|” f|| L2 where |D,| = V/—-A,
and set

(1.1)

_ 2 2
(1.2) Ju(t, )| = / (Do ue(t, 2)|” + | Do "ult, 2)|") da.
We want to find the smallest possible v such that
(1.3) (f.9) € HY(R") x H'"(R"),
(1.4) supp f Usupp g C {z;|z|] < 2}

implies that we have a local distributional solution of (1.1) for some T' > 0, satis-
fying

(1.5) (u, Bpu) € Cy([0,T); HY(R™) x HY1(R™)).

To avoid certain peculiarities concerning non-uniqueness we also require that u
is a proper solution:

Definition 1.1. We say that u is a proper solution of (1.1) if it is a distributional
solution and if in addition w is the weak limit of a sequence of smooth solutions
ue to (1.1) with data (. * f, ¢ * g), where ¢ (z) = ¢(z/e)e™™ for some function
¢ satisfying ¢ € Cg°, [¢pdx = 1.

Even if one has smooth data and hence a smooth solution there might still be
another distributional solution which satisfies initial data in the space given by
the norm (1.2). In fact, u(t,z) = 2H(t — |z|)/t satisfies Ou = u® in the sense of
distribution theory. If v < 1/2 then ||u(t,-)||y — 0 when ¢ — 0 by homogeneity.
Since u(t,xz) = 0 is another solution with the same data it follows that we have
non-uniqueness in the class (1.5) if v < 1/2. Definition 1.1 picks out the smooth
solution if there is one.

Our main theorem is the following:

THEOREM 1.2. Consider the problem in 3 space dimensions, n = 3, with
Uu = (Dl u)Dkilu7 D= (aﬂh _at)’
u(O,:r) = f(m)v ut(O,x) = g($)7

where 0 <1 <k—1<2,1=0,1. Let vy = k. Then there are data (f,g) satisfying
(1.3)-(1.4), with || f|| 7~ + |9 grv—1 arbitrarily small, such that (1.6) does not have
any proper solution satisfying (1.5) in St = [0,T) x R® for any T > 0.

(1.6)

Remark 1.3. Tt follows from the proof of the theorem above that the problem is
ill-posed if v = k. In fact there exists a sequence of data f.,g. € C3°({x;|z| < 1})
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with || fo|| g+ + |92l grv—1 — 0 such that if T is the largest number such that (1.6)
has a solution u. € C*([0,T:) x R3), we have that either T. — 0 or else there are
numbers t. — 0 with 0 < ¢, < T; such that ||u.(t.,-)|, — co. It also follows from
the proof of the Theorem that either there is no distributional solution satisfying
(1.5) with v = k or else we have non-uniqueness of solutions in (1.5).

Remark 1.4. By a simple scaling argument one gets a counterexample to well-
posedness, but it has lower regularity than our counterexamples:

4
(1.7) ~y<k+T

Indeed, if w is a solution of (1.6) which blows up when ¢t = T then u.(t,z) =
eF=2u(t/e,z/e) is a solution of the same equation with lifespan 7. = €T and
l|ue(0, )|y = eF=2t7/2=7||u(0, )|l — O if ~y satisfies (1.7). By contrast, our coun-
terexamples are designed to concentrate in one direction, close to a characteristic.
It appears that our construction has a natural generalization to any number of
space dimensions n, with the initial data lying in H v,

(1.8) v<k+ T3

Remark 1.5. In Klainerman-Machedon[13,15] it was proved that for semi-linear
wave equations satisfying the “null condition” one can in fact get local existence
for data having the regularity (1.7) predicted by the scaling argument.

Now, there is a unique way to write (1.6) in the form

(1.9) Zgjk )0y ; 0z, u = F(u, Du)

7,k=0

where zo = ¢ and ¢7*(u) are symmetric. In the semi-linear case g7 = m/*, where
m* is given by (1.10). We now define the notion of a domain of dependence.

Definition 1.6. Assume that Q@ C R, x R?® is an open set equipped with a
Lorentzian metric g;, € C(€2) such that inverse g’* satisfies

3 00 : .
4 4 mP =1 m¥Y=-1,7>0
(1.10) Z lg’F —m7*| < 1/2, where { . o J .
o mi* =0, if j#k

Then 2 is said to be a domain of dependence for the metric g;; if for every compact
subset K C  there exists a smooth function ¢(z) such that the open set H =
{(t,z); t < ¢(x)} satisfies

(1.11) H C Q, KCH

and OH is Space—like ie.

(112) Z gjk t,x) )Nk( ) 0, if t= (b(.CE), N(.CE) = (1,—Vm¢(l‘)).
7,k=0

Since a solution u to (1.6) gives rise to a unique metric g;; we say that € is a
domain of dependence for the solution w if it is a domain of dependence for g;x.
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LEMMA 1.7. There is an open set @ C Ry x R? and a solution u € C*®(Q2) of
(1.6) such that Q is a domain of dependence and writing

(113) Q= {.CE; (t,l‘) € Q}7
we have that 0 is smooth,
(1.14) / (02, — o)k ult, :1:))2 dr =00, t>0, and
Q
(1.15) Z / (aﬂu(t, :1:))2dx < oo, when t=0, where
|BI<k 2

B=(Bo, ., B3) and &° = 8% [zl - - - 8% 9x*. Purthermore in the quasi-linear
case, k — 1 =2, the norms || D'ul| L (q) can be chosen to be arbitrarily small.

Proof of Theorem 1.2. By Lemmas 1.7 we get a solution @ in a domain of depen-
dence ) with initial data u(0,x) € H*(Qp) and u;(0,2) € H*1(Qp). We can
extend these to f € H*¥(R3) and g € H*"1(R?), see Stein[36]. If there exist a
proper solution u of (1.6) in Sy = [0,7T] x R® with these data, it follows from
Definition 1.1 and Lemma 1.8 that u is equal to @ in S N, contradicting (1.5).

LEMMA 1.8. Suppose u € C®(Q) is a solution to (1.6) where Q is a domain of
dependence. In the quasi-linear case, k—1 =2, assume also that || D'ul| (o) < 4.
Suppose also that u. € C°°(St), where St = [0,T) x R, and u. are solutions
of (1.6) with data (fc,ge) where fo — f and g — g in C°(Ky) for all compact
subsets of Ko of Qo = {z;(0,z) € Q}. Then u. — u in QN Sy.

It is essential that €2 is a domain of dependence for Lemma 1.8 to be true; one
needs exactly the condition (1.12) in order to be able to use the energy method.

Let us now briefly describe how to construct the solution u and the domain of
dependence 2 in Lemma 1.7. First we find a solution w; (¢, z1) for the correspond-
ing equation in one space dimension, (1.16), which develops a certain singularity
along a non time like curve x1 = p(t), with £(0) = 0. The initial data (1.17)-(1.18)
has a singularity when z; = 0 and because of blow-up for the nonlinear equations,
the singularity that develops for ¢ > 0 is stronger than the singularity of data.
Then u(t,z) = ui(t,x1) is a solution of (1.6) in the set {(¢,z); x1 > wu(t)}. The
singularity of data is however too strong for the integral in (1.15) over this set to
be finite when ¢ = 0. Therefore we will construct a smaller domain of dependence,
Q, satisfying (1.20), such that the curve z; = u(t), z2 = x3 = 0, still lies on 9.

One can find rather explicit solution formulas for the one dimensional equations;

(116) (81»1 +8t)(8w1 - 8t)u1(t, Jil) + (81=1 - 8t)lu1(t, $1)(8m1 - Bt)kflul(t, .161) =0.
By choosing particular initial data

u1(0,21) = x"(z1), Ou1(0,21) = 0, ifk=0,1=0,
(1.17) w(0,21) = —x'(x),  Bpua(0,21) = x"(x1) + X' (21)?, ifk=1,1=0,
u1(0,21) = 0, Aur (0,21) = —x B9 (), if k>2,
x1
(1.18) where x(z1) = / —ellog|s/4[|“ds, 0<a<1/2,e>0
0

we get a solution
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(1.19)  wy € C°(QY), where Q' = {(t,z1);u(t) <z; <2—t} CRy xR

for some function u(t) with p(0) = 0, such that Q! is a domain of dependence
and such that uq(¢,21) has a singularity along x1 = u(¢). One sees this from
the solution formulas which can be found in Lindblad[22,23]. Essentially what is
happening is that the initial data (1.17)-(1.18) has a singularity when z; = 0. For
the linear equation, uy — Uy, = 0, the singularity would just have propagated
along a characteristic, however the nonlinearity causes the solution to increase
and this strengthens the singularity for ¢ > 0. (This is the same phenomena that
causes blow-up for smooth initial data.)

Define Q C R, x R? to be the largest domain of dependence for the metric
obtained from the solution u(¢,z) = ui(¢,x1) (see (1.9)), such that

(1.20) QcCO'xR? Q= {z;(0,z) € Q} = By = {=; |z — (1,0,0)| < 1}.

(It follows from Definition 1.6 that the union and intersection of a finite number

of domains of dependence is a domain of dependence so indeed a maximal domain

exists.) It follows that u(t, ) = u1(t, z1) is a solution of (1.6) in Q satisfying (1.17)

in Q. The initial data (1.17)-(1.18) was chosen so that (1.15) just is finite if t = 0
Let Q; be as in (1.13) and

(1.21)  Si(z1) = {(z2,73) € R%; (21,29, 23) € U}, ar(r1) = / dxo dxs.
St(w1)

With this notation the integral in (1.14) becomes

2—t
(1.22) /(t) an(@1) ((Bnr — 0P ur(t, 1)) day.

The proof that this integral is infinite consists of estimating the two factors in the
integrand from below, close to 21 = pu(¢).

In the semi-linear case the metric g/* is just m7* so Q! is a domain of dependence
if and only if 4/(¢) > 1 and it follows that @ = Q' x RZNA, where A = {(¢,z); |z —
(1,0,0)| +t < 1}. Hence for z; > p(t); Si(x1) = {(z2,23); (x1 — 1)? + 23 + 22 <
(1—1)2} so then a¢(w1) = m(2—t—x1)(x1 —t). Also, the specific solution formulas
are relatively simple. In particular if K — [ = [ = 1 then its easy to verify that
(1.23) (O, — Op)ua(t, 1) = M’ u1(0,2) =0

! 14t/ (z1 — t)
satisfies (1.16)-(1.17) when 1 + ¢x/(x1 — ¢t) > 0. Since x'(0+) = —oco and x” > 0
it follows that there is a function wu(t), with u/(¢) > 1 and w(0) = 0, such that
1+tx' (x1 —t) =0, when 1 = p(t). Hence 1 + tx/(z1 —t) < C(t)(z1 — p(t)) so
1/2 1/2 (z1 —
2 X1 t) diIJl
(1.24) / ag(x1)((0z, — Op)ua(t,x1))” dxg > / = 0.
oy 20 (e VA= ] Cape - aop

However, in the quasi-linear case, estimating a:(x1) from below requires a de-

tailed analysis of the characteristic set 92 for the operator (1.25), see Lindblad[23].

3
(1.25) 07 = 02, = V(0s, — 0)*, where V = (0, — 0;)'us.
=1
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2. GLOBAL EXISTENCE

We will present sharp global existence theorems in all dimensions for small-
amplitude wave equations with power-type nonlinearities. For a given “power”
p > 1, we shall consider nonlinear terms F}, satisfying

(2.1) | (0/0u)! Fy(u) } < CjlufP~i, j=0,1.

The model case, of course, is F,(u) = [ulP. If RI™ = R, x R", and if f,g €
C§°(R™) are fixed, we shall consider Cauchy problems of the form

Ou = Fy(w), (t,o) € RL™
{ u(07 ZIJ) = Ef($)7 (9,5’&(0, ZIJ) = 6g($)7
where 00 = 92/0t> — A,. Our goal is to find, for a given n, the range of powers
for which one always has a global weak solution of (2.2) if € > 0 is small enough.

In 1979, John [9] showed that for n = 3, (2.2) has global solutions if p > 1+4+/2
and € > 0 is small. He also showed that when p < 1++/2 and F,(u) = |u|? there is
blow-up for most small initial data, see also [17]. It was shown later by Schaeffer
[28] that there is blowup also for p = 1+ +/2. After Johns work, Strauss made the
conjecture in [38] that when n > 2, global solutions of (2.2) should always exist if
€ is small and p is greater than a critical power p. that satisfy
(23) (n - l)pg - (TL + l)pc —-2= 07 Dc > 1.

This conjecture was shortly verified when n = 2 by Glassey [5]. John’s blowup
results were then extended by Sideris [30], showing that for all n there can be
blowup for arbitrarily small data if p < p.. In the other direction, Zhou [43]
showed that when n = 4, in which case p. = 2, there is always global existence for
small data if p > p.. This result was extended to dimensions n < 8 in Lindblad
and Sogge [25]. Here it was also shown that, under the assumption of spherical
symmetry, for arbitrary n > 3 global solutions of (2.2) exist if p > p. and ¢ is small
enough. For odd spatial dimensions, the last result was obtained independently
by Kubo [16]. The conjecture was finally proved in all dimensions by Georgiev-
Lindblad-Sogge[4]. Here we will present that argument.

We shall prove Strauss conjecture using certain “weighted Strichartz estimates”
for the solution of the linear inhomogeneous wave equation

Dw(t,z) = F(t,z), (¢t )R
This idea was initiated by Georgiev [3]. We remark that we only have to consider
powers smaller than the conformal power peons = (n + 3)/(n — 1) since it was
already known that there is global existence for larger powers. See, e.g., [24].
Let us, however, first recall the inequality for (2.6), that John [9] used;

It = |2)P 2wl oo 15y < Cpllt?(t 2P~ D F| oo g1,

(2.2)

(2.6)

if F(t,z)=0,t—|z|<1, and 14+Vv2<p<3.
Unfortunately, no such pointwise estimate can hold in higher dimensions due to
the fact that fundamental solutions for [J are no longer measures when n > 4.
Despite this, it turns out that certain estimates involving simpler weights which
are invariant under Lorentz rotations (when R = 0 ) hold;
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THEOREM 2.1. Suppose that n > 2 and that w solves the linear inhomogeneous
wave equation (2.6) where F(¢t,z) =0 if || >t+ R—1, R>0. Then

@) (¢t + B — Ja2) T 0l gy < Car (¢ + B — [a2) Fl gy ooy
provided that 2 < ¢ < 2(n+1)/(n—1) and
(2.8) M <n(l/2—-1/q)—1/2, and v2 > 1/q.

One should see (2.7) as a weighted version of Strichartz [39,40] estimate;
(2.9) Hw”L2(n+1)/("—1)(Rf’") < CHF||L2<n+1>/(n+3)(Ri+")-

If one interpolates between this inequality and (2.7), one finds that the latter
holds for a larger range of weights (see also our remarks for the radial case below).
However, for the sake of simplicity, we have only stated the ones that we will use.

Let us now give the simple argument showing how our inequalities imply the
proof of Strauss conjecture. Let u_; = 0, and for m = 0,1,2,3,... let u,, be
defined recursively by requiring

{ Oupm = Fp(tm-1)
um(0,2) = ef(2), drum(0,2) = eg(x),

where f,g € C§°(R™) vanishing outside the ball of radius R — 1 centered at the
origin are fixed. Then if p. < p < (n+ 3)/(n — 1), we can find ~ satisfying

(2.10) I/plp+1) <y <((n—1p—(n+1))/2(p+1).
Set
(2.11) Am =|l((t+R)* - IfEIQ)”umHLw(ngn)-

Because of the support assumptions on the data, domain of dependence con-
siderations imply that w,,, and hence Fj,(u,,), must vanish if || >t+ R—1. It
is also standard that the solution ug of the free wave equation ug = 0 with the
above data satisfies ug = O(g(1 +t)~(»~V/2(1 + |t — |z||)~(»~1)/2). Using this one
finds that Ay = Cpe < co. It follows from (2.10) that

(2.12) v<n(l/2-1/q)=1/2, and py>1/q, if g=p+1,
so if we apply (2.7) to the equation O(um, — uo) = Fp(um—1) we therefore obtain

1((t + R)* — [a]*) s | s
<+ R)* = [a*) uoll zo+r + CLlI((t + R)* = &) [um-1[l| w1/
= [((t + R)* = [a*) w0l o + Coll (¢ + R)? — |2]*) Vum 1] 11
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ie. Ay < Ag+C1 AP . From this we can inductively deduce that A,, < 2A4,, for
all m, if Ag = Cpye is so small that C1(240)P < Ap. Similarly, we can get bounds
for differences showing that {u,,} is a Cauchy sequence in the space associated
with the norm (2.11), so the limit exists and satisfies (2.2).

The proof of Theorem 2.1 uses a decomposition into regions, where the weights
(t> — |z|?) are essentially constant, together with the invariance of the norms
and the equation under Lorentz transformations. In each case we get the desired
estimate by using analytic interpolation, Stein[35], between an L' — L° and an
L? — L? estimate with weights, for the Fourier integral operators associated with
the wave equation. See [4] for the complete proof and further references. In [4]
we also prove a stronger scale invariant weighted Strichartz estimate under the
assumption of radial symmetry. This assumption was later removed by Tataru[41]

THEOREM 2.2. Let n be odd and assume that F is spherically symmetric and
supported in the forward light cone {(t,z) € R™ : |z| < t}. Then if w solves
(2.6) and if2 < g <2(n+1)/(n—1)

(213) (8 = |2) " wl| pagreny < Cyl(# = |2 Fll posa-n) greny,
(R™) (R™™)
if B<1/q, a+pB+y=2/q where v=(n—-1)(1/2-1/q).
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FOURIER ANALYSIS OF NULL FORMS

AND NON-LINEAR WAVE HQUATIONS

M. MACHEDON

ABSTRACT. The non-linear terms of many equations, including Wave Maps
and Yang-Mills have a special, “null”, structure. In joint work with Sergiu
Klainerman, T use techniques of Fourier Analysis, such as generalizations
and refinements of the restriction theorem applied to null forms to study
the optimal Sobolev space in which such non-linear wave equations are well
posed.
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The following notation will be used: repeated indices are summed, z%,0 < a <n
are the coordinates t,z°,1 < i < n, V, are the usual derivatives, and indeces are
raised or lowered according to the Minkowski metric —1,1,---,1 (i. e. raising or

lowering the 0 index changes sign).

Wave maps are functions ¢ : R**! — M from Minkowski space R"*! to a Rie-
mannian manifold M with metric g which arise as critical points of the Lagrangian

(1) /. (Fa0.v%),

The Euler-Lagrange equations of the above, written in coordiantes on M are

(2) 06" +Tji(8) (Vad’, V26*) = 0
where F; . are the Christoffel symbols. We see the first null form

Qo(¢,¥) = VagV*Y

arising as part of the non-linear term. There is more going on than one can read
off from (2). In the special case of M = S¥~1 C R¥ the equation (2) can also be
written as

(3) 06 + ¢(Vas - V8) = 0
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with constraint |¢| = 1. Take dot product with ¢;. Because of the constraint, the
non-linear term drops out and we get conservation of energy, just as for the linear
wave equation. In the special case of n = 2, it is still an open question whether
the Cauchy problem (2) is well posed globally in time. Related to that is the
question whether (2) is well posed locally in time for small data in H'. Because
of conservation of energy, such a result would prove global in time regularity for
solutions of (2) with smooth data with small energy. There is a lot of evidence
that using both the null condition and the geometric condition used in (3) the
wave map equation should be well posed locally in time for Cauchy data in H"/2.
There has been a lot of work in recent years on this question. We currently have
the result for H™/?%¢ see [K-M 4], [K-S], [G] . These results use only the null
condition, and such a result fails by half a derivative for equations not satisfying
the null condition, see [L]. Also, the sharp H™/? result cannot be true for general
equations of the type (2), without using geometric information about the target
manifold, as the example of geodesic solutions shows: Let v(¢) be a geodesic on
M which blows up in finite time, and let 1 be a solution of the homogeneous wave
equations (Y = 0 with H"/? data. Now, ¢ = ~(3) is a solution of (2). Since the
supremum of ¢ can become large, ¢ can blow up instantly.

The definitive result on equations of the type (2) which does not take the
geometric condition into account is well posedness in the Besov space Bi’/lz, due
to Daniel Tataru [T2]. For related applications of the geometric condition see
[F-M-S], [Sh].

The Yang-Mills equations are non-linear analogues of the Maxwell equations.
Let G be one of the classical compact Lie groups, and g its Lie algebra. The
unknown is a connection potential A, : R — g, such that the corresponding
covariant derivative Do, = 0, + [Aq, | satisfies

D°Fop5=0

where the curvature F, g = [Dq, Dg]

Here we have gauge freedom: if A, is a solution, and O is a G-valued function,
then OA,O~! — 9,007 is also a solution. Thus we may impose an additional
gauge condition on A,. We choose the Coulomb gauge : 0°A; = 0. Then we have

OA; = —2[A;,0;Ai] + [A;,0:A5] + - - -

together with an elliptic equation for Ag. The dots turn out to be less important
terms. We will now identify the null forms in the right hand side. They will
involve Q;; (¢, ¢) = V0V ¢ — V,;6V;9. In fact using the divergence condition on
A to express it as curlB, the first term is of the type Q;;(B, A). Similarly, the curl
of the second term is of the type Q;;(A, A), which is all the information we need
since the divergence of the whole right hand side is 0. Thus a simplified model for
Yang-Mills is

(4) 04 = Qi((—A) 24, A) + (—A)1/2Qi;(A, A)
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The indeces of A are not important, and have been supressed.

The Yang-Mills equations in 3+1 dimensions are sub-critical. There is a con-
served energy, and our local existence result implies that the time of existence of
a smooth solution depends only on the energy of the initial data (and the solution
stays as smooth as it started in this interval). The argument is complicated by
gauge dependance, and the fact that energy differs form the H' norm by a lower
order term, see [K-M3]. The global existence result was already known, due to
Eardley and Moncrief [E-M]. However, our new techniques also give global exis-
tence in the energy space. It was shown by M. Keel [Ke], along the same lines,
that there is global regularity for Yang-Mills coupled with a critical power Higgs
field. This is a new global existence result, accessible only through our new local
estimates.

In 4+1 dimensions, Yang-Mills are critical, and it was shown by Klainerman
and Tataru that they are well posed in H'T¢ [K-T]. See also [K-M8] for a related
result.

Following is a summary of the main estimates used in the above proofs.
Recall the classical Strichartz inequality gives the (optimal) estimate for a so-
lution of O¢ =0

1(V9)?[|amsy < C(I6(0, M Far2(mazy + 16:0, ) 122 (m2))

However, for a null form we have

1Q(8; D)l 2ra) < C (160, )l srs/acme) + [66(0, )| /4wy )

The proof is based on writing the L2 norm of the quadratic form as the L2 norm
of a convolution of measures supported on the light cone, on the Fourier transform
side. The symbol of the null form kills the worst singularity in the convolution.
This has been generalized to the variable coefficient case by C. Sogge [So]. Some
ideas in the proof were also used in [Sc-So.

Using this type of estimate one can prove that (2) is well posed in H®™+1/2
which is already non-trivial, is only true for equations satisfying some kind of null
condition (for n=2, 3), but is not optimal. Also, the same techniques give local
existence for finite energy data for Yang-Mills in 3+1 dimensions.

To get to the optimal result, that the Wave Map equation (2) is well posed in
H"/?*¢ we have to make extensive use of the spaces H, s used by Bourgain for
KdV [B]; see also [Be]:

[6llss = llww’ ¢llz2(arae)

where w (7,€) = 1+|7|+|¢], w_ (7, €) = 14||7|—|€]|, and ¢ denotes the space-time
Fourier transform. Also, let D4 be the operator with symbol wy. There are two
advantages in working with these spaces. Functions in Hy s with 6 > 1/2 satisfy
the same Strichartz-Pecher estimates that solutions of [l¢ = 0 with H® Cauchy
data would.
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In 3+1 dimensions, for instance,

(5a) Bl oo (dtyL2(dz) < Cll@llo,s

is the energy estimate, and all estimates obtained by interpolating it with the
(false) end-point result

(5b) |6l L2 (aty Lo (dz) < Cll@ll1,6

are true.
Also, the argument is simplified if one also notices that, for 6 < 1/2 and p
defined by % = % -0,

(5¢) 9l Le(atyL2(az) < Cliollo,s
See [T1] for a general treatment of these spaces.

The second advantage of the spaces H*? is that the solution to (¢ = F with
Cauchy data fy, f1 satisfies

Ix(®)¢lls,5 < 0<||F|s—1,5—1 + Il follz + ||f1||Hs1>

where x is a smooth cut-off function in time. In order to solve O¢ = Q(¢, ¢) for
small time it suffices to solve the integral equation

©) ¢:xw(W*Q+WMﬁ+@WwQ

W is the fundamental solution of [J. This idea also goes back to Bourgain. See
also [K-P-V].

In order to show that the equation (2) is well posed in H*, for s > 3/2, in 3+1
dimensions, it suffices to prove an inequality of the form

(7) 1Qo(¢, ¥)lls—1,6-1 < Cliglls s[5,

where § > 1/2
The symbol of the null form Q) is

1
P-gen=g (02— el =7 16— X+ o)

Using this, the left hand side of (4) is dominated by the sum of terms, a typical
one being
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ID2 (D3 DY ?¢)(DY )|

Estimate this norm by duality, integrating against F' € L?:

/ DY (D3 DY )(DY*¥))F

— [ (05D D F

The first term is in L2, the second one in H, 12,5 and the third one in Hp 1.
Thus, it suffices to show Hp 16 Hs_1/2,5 C L?. This is true, and follows from (5
a, b, ¢). In fact, for there exist p close to oo, ¢ > 2, close to 2, % + % = % such
that the first term is in LP(dt)L?(dx) and the second one in L4(dt)L>(dz). The
original argument of [K-M4] used convolutions of measures.

An problem related to Yang-Mills, worked out in [K-M6], to show that the
model

(8) O¢ = Qi;(0,9)

is well posed in H3/2%¢ in 3+1 dimensions.

The analogue of (7) is not true. There is an estimate for the symbol |£ x 7| <
1€ 2 || 2 €+ 2 (w- (1, €) +w— (A, n) +w_ (T+\, E+1)/2, but after distributing
derivatives as above one has to bound a troublesome term

ID= 2 (D2 DY?¢) (D3 9))| 12

By duality, this would correspond to an estimate

D=(=1/2) <H0,1/2 : H0,1/2> crL?

(s > 3/2). This is false, the counterexample is an adaptation of an old construction
due to A. Knapp. There are other useful estimates along these lines which are true,
and which are needed for (4), (8), see [K-M5], [K-T]. In 3+1 dimensions the (barely
false) end-point estimates are are

(9a) D~1/? <Hl/4,6 : H1/4,5> C L?
and
(9b) D! <H1/2’5 . H1/2,5> C LY(dt)L°°(dx)
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Back to (5), we are foced to make stronger assumptions on our norms. A
simplification of the original argument in [K-M6], used in [K-T], is to require,
(modulo an €) that, in addition to ¢ € H, 1 /2, ¢ should also satisfy

. 7 ~1/2 ~1/2 =
[l = inf{|| Fl| 11 gty (an)» |(DY>DY @) < |E[} < o0

These norms are constructed so that we recover (7)

(7°) 1Qij (0, %)]ls—1,6—1 < C(||¢]

ss 00 (Il

o8 T [9lls)

and it turns out also

1D D= Qi (6, )lv < C(llglls.s + 1811) (Ills.s + [11].)

These types of modified norms also work for the model Yang-Mills problem
(4), to prove well posedness in H'¢ in 4 + 1 dimensions. To prove the necessary
estimates one must use the analogues of 9a, 9b in 4 + 1 dimensions.
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BLrow-ur PHENOMENA FOR CRITICAL

NONLINEAR SCHRODINGER AND ZAKHAROV EQUATIONS
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ABSTRACT. In this paper, we review qualitative properties of solutions
of critical nonlinear Schrodinger and Zakharov equations which develop
a singularity in finite time.
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I. The Problem

We are interested in the formation of singularities in time, in Hamiltonian systems
of infinite dimension, and with infinite speed of propagation. A prototype is the
nonlinear Schréodinger equation

iut

u(0)

for (x,t) € RN x [0,T) and u=0 at infinity. This equation appears in various
situations in physics (plasma physics, nonlinear optics,...see [20] for example).

Because of its importance in physics, we are interested in the case where p — 1 =
4/N and N = 2. We will consider

—Au — |ufP~tu,
Uo,

(1)

iup = —Au — |u|%u (2)

Equation (1) has Galilean, scaling, and translation invariances. In the case
p= % + 1, the nonlinear equation has the same structure as the linear equation:
it has one more invariance (the conformal invariance): if u(t) is a solution of

2
(2) then v(t) = tl\%e”‘ﬂ u(1,%) is also a solution of (2). Thus, there are
three invariants of the motion in this case: the mass |u|r2, the energy E(u) =
5 [ g [Vul?de — # Jpn |u|¥+2dz, and the energy of v, E(v).

A more refined physical model is also considered: the Zakharov equation
(nonlinear Schrédinger equation coupled with the wave equation). Because of the
coupling, all invariances disappear. The system is

uy = —Au+ nu,
ng = -V v, (3)
zve = —V(n+u?),

2
€o
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where (z,t) € R? x [0,T).

We note formally that if ¢ = 400, system (3) reduces to equation (2) in dimension
two. There are two invariants: |u|z2, and H(u,n,v) = [|Vu|?dz + [ n|u|?dz +
3 [ nPde + 5o [|oPde

The first natural question concerns the local wellposedness of the equations

in time. The natural spaces for this equation are spaces where the conserved
quantities are defined. For the Schrodinger equation, H' local wellposedness has
been proved in [10], [11], [14]. The use of Strichartz estimates (of space-time
nature, where the role of space and time are similar) leads to the result in L? in
[8] (L? is optimal in some sense, see [2]). This space will play a crucial role in the
analysis below. See [4],[5] in the periodic case.
For the system (3), the coupling between the two equations creates several diffi-
culties. In energy space, that is (u,n,n;) € Hi=H' x L? x L?, the local wellposed-
ness was proved in [3],[9]. The problem to be solved in the analogue of L? for the
Schrédinger equation is still open (an intermediate space was found in [9]).

The problem we are interested in concerns the description of solutions of
equations (2),(3) which develop a singularity in finite time (or blow up in finite
time). That is, solutions such that in the time dynamics, the nonlinear terms play
an important role. This question is important from the physical point of view.
Indeed, equations (2) or (3) appear as simplifications of more complex models. In
particular, one hopes that the simplification is relevant for regular solutions, and
that close to the singularity, the neglected terms will play a role . Blow up in
finite time means that the regular regime where the approximation is carried out
is unstable in time, and close to singularity, a transitory regime appears. From
the description of this transitory regime, one can hope to find the new dynamics
relevant from the physical point of view. In particular, a crucial question, after
the existence of singularity in finite time, is to describe how this singulary forms.

For equation (2), there are two elementary results about existence of blow-up
solutions.

On one hand, in 1972 Zakharov derived in [33] (see also [13],[28]) a Pohozaev type
identity for the nonlinear Schrédinger equation: let ug € ¥ where ¥ = H! N
{zug € L?}; then for all t, u(t) € ¥ and

d2
- / (o2 uf2dz = 16 (uo). (4)

It follows that if E(ug) < 0 then u(t) blows up in finite time. Note that the power
appearing in (2) is the smallest power such that blow-up occurs in H!.

On the other hand, the elliptic theory established in the 80’s ([1],[31],[17], [30])
yields the existence of one explicit solution of (2), periodic in time and of the form
P(t,z) = e*Q(x), where Q is the unique positive solution (up to translation) of
the equation

u=Au+ |u|¥u, (5)
whose L? norm is characterized by the Gagliardo-Niremberg inequality
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2
1 4 1 [ |v2dz\ ™
Yo e HY, —— 2z < —/ Vol2de | S . 6
Ue 7%+2/|’U|N $—2 | U| € fQde ()
From the conformal invariance, we have that
1 iy lel? T
= e itim bl
St,2) = mpe TR (t) (7)

is a blow-up solution of equation (2). This is in some sense the only explicit
blow-up solution for the critical Schrodinger equation.

Until the 90’s, no rigorous results on blow-up were known for the Zakharov
equation.

II. Results for Nonlinear Critical Schrodinger Equations.

I1.1 Characterization of the minimal blow-up solution.

The first task is to define a notion of smallness such that ug small implies no
blow-up. In the case ug € H'!, energy conservation and (6) yield that if |ug|z> <
|Q|Lz2, the solution is globally defined. Moreover, we note that the blow-up solution
S(t) is such that |S(t)|]r2 = |Q|r2. The natural question is to characterize all
minimal blow-up solutions in L? of equation (2).

a) The result.

We have the following theorem

THEOREM 1 ([25]),([26])
Let ug € HY. Assume that |u(t)|2 = |Q|r2 and that u(t) blows up in finite
time. Then, up to invariance of equation (2),

u(t) = S(t). (8)

That is, there are xo € RN, 1 € RN T € R, § € R, and w € R such that

N
. 02 lz—aq|2 2 —
u(t) = = R T ) )<t—LT> Q ((xt_ixjoj)w - $1> . 9)

Let us give some idea of the proof. Various arguments in the proof will apply in
other contexts, giving qualitative information about blow-up solutions. Consider
a blow-up solution of minimal mass u(t), and denote by T its blow-up time.

- Localization results on the singularity. Using rough variational estimates,
we show that there exist g, 0, Z such that as t — T, u(t) ~ ewﬁ% Q((x — 2)p)
in H'. Then from refined geometrical estimates around @, there are p(t), 0(t),
(t) such that u(t) — e®®p(t) ¥ Q((z — x(t))p(t)) is bounded in H!. In particular,
lu(t,z + z(t))]* = |Q|2205=0 as t — T. In the radial case, a different approach
can be used to show that for all radial blow-up solutions the behavior outside the
origin is mild.

- Local virial identities. Using time variation of [ ¥(a)|u(t, z)|>dz, where 1
is a localized function, we then show that u(t) and ug decay at infinity. That is,
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u(t) € ¥ and |z||u(t,z)| can be controlled in L? at infinity, uniformly in time.
Moreover, it is shown that the singularity point z(t) has a limit as t— T (for
example the origin).

- Conclusion using the minimality condition. Let us consider the polynomial
in time of degree two p(t) = [ |z|?|u(t, 2)|*dz. From the previous steps, p(T') = 0.
Using the minimality condition, we show that p’(T) = 0. By explicit calculation,
we check that the energy of a transformation of the initial data wug is zero with
an L? norm equal to |Q|z2, which is the variational characterization of Q up to
invariance of the elliptic equation. This concludes the proof.

b) Application to asymptotic behavior for globally defined solutions [26].

The conformal invariance and the nonblow-up result of Theorem 1 yield a
decay result in time for solutions defined for all time. Indeed, the nonlinear term
can be seen as a perturbation localized in time for the linear Cauchy problem, for
initial data such that ug € ¥ and |ug|rz < |Q|r2, except for the two solutions P(t)
and S(t) (and the ones related via the invariances). More precisely, as t — +oo,
the nonlinear solution behaves as a solution of the linear Schrédinger equation
(scattering theory can be carried out: u(t,z) ~ U(t)us as t — +oo, where U(t)
is the free semigroup).

Note that the set of initial data such that this behavior occurs is open, which
implies the following: for all ug different from P(¢) and S(t) such that |ug|r2 =
|Q|L2, there is a ball in L? such that if the initial data is inside the ball, the
solution does not blow up. It is optimal since the virial identity yields that for all
e>0,if up = (1+¢€)S(—1) or (1 + ¢)P(—1) then the solution blows up in finite
time.

11.2 Qualitative properties of blow-up solutions

a) Concentration results in L.

In this subsection, we show that the blow-up phenomena may be observed in L?
and do not depend on the space where the Cauchy theory is applied. Let us assume
first that up € H', then from [22], [12], we have

- Concentration in L*: there are z(t) and p(t) — +oo such that

Hminf [u(f)| L2 (le—a(t)| <pt)-1) = QL2 (10)

- asymptotic compactness in L?: for any sequence t, — T there is a subse-
quence t,, and an H € H' with |H|z> > |Q|z> such that in H' — weak

pi u(tn, (x — 20)pn) — H. (11)

We do not know if H or |H|z2 depends on the sequence (except for some partial
results in the radial case).

Let us now assume that ug € L?, and N = 1,2; energy arguments no longer
apply in this case. Nevertheless, in [6], [27], refinement of Strichartz’ Inequality
(implying that the Cauchy problem can be solved in X O L?), harmonic analysis
techniques, and the use of the conformal invariance allow us to obtain concentra-
tion in L? and asymptotic compactness properties in L? up to the invariance of
the equation. That is, there is an ag > 0 such that for a subsequence t,, and an
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H € L? with |H|z2 > ap, there are parameters a,, by, Tn, pn, Where p, — +00,
such that in L? — weak
‘2

eianz—an |z

N

pi2 U(tn, (x — zn)pn) — H. (12)
Note, from the invariance of the equation, the solution with initial data
eieatiblz” .5 H((z — d)c) can be written in terms of the solution with initial data
H.
It is an open problem to prove ag = |Q|z2 -

b) Construction of blow-up solutions from S(t).

Here we describe constructions of solutions which behave like S(t) at the blow-
up point. Another problem will be to construct if possible other types of blow-up

solutions (with for example a different blow-up rate, see [18],[19]). Let x1,..., 2,
be given points of RY. In [21], a blow-up solution is constructed such that the blow-
up set is exactly the points z1,...,z, and as t—T, u(t) ~ Ewi%S(t, (x — z;)w;)

in L?, where the w; are sufficiently large.

In the case N = 2, for u* very regular such that 0%u*(0) = 0 for |a| < ag, in
[7] the existence of a solution u(t) is proved such that u(t) ~ S(t,z) + u*(z) in L?
at the blow-up. An open problem is to reduce ag to 1 or 2.

¢) Giving a sense to the equation after blow-up. [26]

We are interested in giving a sense to the equation after the blow-up time.
We consider the case of a minimal blow-up solution, that is, after renormalization
u(t) = S(t,x) for t < 0.
Let € > 0, and set

uc(t,z) = (1 —€)S(—1,z) + O(?) in X.

We have that |ue|r2 < |Q|rz2, thus u.(t) is defined for all time. The question is
what happens in the limit as e — 0 after the blow-up time (for ¢ > 0). Using
the characterization of the minimal blow-up solution and a family of auxiliary
variational problems in ¥, we have the following result:

THEOREM 2 ([26]) There is a 6(¢) € R continuous in € such that

ue(t) — S(t)in H*  for t<0
(a0~ |QRadam0
e () = SW) mH for t>0

We then prove that as e — 0, the omega-limit set of ¢?(¢) is S1. From this result,
the omega limit set of u. is {ug | § € S'}, where

ug(t) = S(t) for t < 0 and ug(t) = e S(t) for t > 0.

In particular, we first show that the singularity is unstable in time.
In addition, from the blow-up, the physical phenomenon loses its deterministic
character (but just up to one parameter in S'). In addition, this result seems
in some sense independent of the approximation. Therefore, the physics (which
is not understood close to the singularity) has in some sense no influence on the
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behavior of the solution after the blow-up, at least in the case of the minimal
blow-up solution.

II1. Results for the Zakharov System.

III.1 No blow-up under smallness conditions

As in the case of the critical Schrédinger equation, for initial data

(ug,mo,v0) in Hy, if |uglrz < |@Q|r2 , then there is no blow-up. Moerover for
any blow-up solution, as t goes to the blow-up time, u(t) concentrates in L? to a
magnitude of at least |Q|r2 (see (11)).

At the critical mass level, |ug|rz = |Q|r2 , there is still a periodic solution
(and the family it generates) given by
P(t) = (u(t),n(t), v(t)) = (P(t), ~Q*,0). (13)

Using the coupling between the equations, one can prove ([12]) that there are no
blow-up solutions of (3) such that

|uolL2 = |@ L (14)

II1.2 Ezistence of a family of explicit blow-up solutions ([12]).
In fact the family of blow-up solutions of type S, for w > 0

Su(t,z) = w? S(tw?, zw) (15)

does not disappear. From bifurcation type arguments at w = 400 and index
theory, we construct an explicit family of blow-up solutions of equation (3) of
structure similar to that of S(¢) (where n and |u|? are of the same order): for all
w >0,

W, _iw? = rw, w? Tw
(1l (o) = (D F R ENE)), o)
where (P, N,,) are radial solutions of the following equation, where r = |z|
P+ NP =AP, .
Az (28N +6r2 + 6N) — AN = AP, (a7

Note that when w = +o00 (17) reduces to (5). It is then proved that {|P,|z2} =
(|Q|r2, +00) , which has several consequences:

- There are no minimal blow-up solutions in L? for the Zakharov equation.
Indeed, for all € > 0, there is a blow-up solution such that |ug|r2 = |@|L2 + € and
there are no blow-up solutions such that |ug|z2 < |Q|z2. The situation is different
from the Schrodinger equation.

- Any ¢ > |Q|r2 can be a concentration mass: there is a blow-up solution such
that at the blow-up, |u(t, z)[?> — ¢dr—0.

- Using these explicit solutions as w becomes large, we are able to prove that
the periodic solution P(t) is unstable in the following sense: in all neighborhoods
of it, there is a blow-up solution.
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II1.3 Ezistence of a large class of blow-up solutions [24].

As for the critical Schrodinger equation, a natural question to ask is, For
Hamiltonians Hy < 0, does the solution blow-up? (which will produce a large
class of blow-up solutions). No Pohozaev identity was known until recently. In
[24], the following identity was derived

& Lo
L IM(t) = 2H (o, mo,vo) + c()_2/|v| dz, (18)

where
/|ac| |u|2dac—|— — n(z.v)dzdt. (19)
R2x[0,t]

Note that if ¢ = +oo then relation (19) reduces to (4). The nature of the ob-
struction to global existence is slightly different from that in equation (2). Indeed,
n [23], it is shown that for any blow-up solution, M (t) — —oo as t goes to the
blow-up time. Nevertheless, by localization techniques, it is proved in the radial
case that if Hy < 0, then the solution blows up in finite time or infinite time (and
is concentrated in L? at the blow-up).

As a corollary, all periodic solutions of type (u,n) = (e*W(z), —W?) where
W is a solution of (5) are unstable since H (e W (z), —W?20) =0

II1.4 Toward the structural stability of S [23].

Let us measure the blow-up rate by the H' norm |Vu(t)|p2. An important
problem is to understand the type of rates at the blow-up time and their stability.
For equation (2), the blow-up of S (that is of the minimal blow-up solution) is ‘Tl|
We expect that minimality is related to stabililty. It seems not to be the case; in
[18], [19] a blow-up rate of the type %

Nevertheless, we show the following result for the Zakharov equation (relating
minimality to structural stability). Consider any blow-up solution of (3) (with any
finite ¢y), then

is observed numerically.

[Vu(t)|r2 = (20)

|t|
We note that this lower bound is optimal since the solution (u.,n,) blows

up with this rate. Therefore, if we consider the refined equation from the physical
1
|Logllog|t||®

n disappears (even if ¢y is
t|2

point of view, the solution with blow-up rate
very large).

In [29], the same blow-up rate that was observed for S is seen, and seems nu-
merically stable. It is an open problem to prove that all blow-up solutions of the
Zakharov equation blow up with the same rate as S (the upper bound remains to
be proved).
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ON NONLINEAR DISPERSIVE EQUATIONS

GUSTAVO PONCE

INTRODUCTION: Ishall describe some of the recent developments in the application
of harmonic analysis to non-linear dispersive equations. In recent years this subject
has generated an intense activity and many new results have been proved. My
contribution to this field has been made in collaboration with Carlos E. Kenig
and Luis Vega. Their scientific inspiration, which has been so rewarding for me,
is surpassed only by the warmth of their friendship.

We shall be concerned with the initial value problem (IVP) for nonlinear dis-
persive equations of the form

( { Ou=1P(Vy)u+ F(u), teR, =zeR"
1)

u(z,0) = up(x),

where P(D) is the constant coefficient operator defined by its real symbol P(i&)
and F(-) represents the nonlinearity.

We shall concentrate our attention in the following two problems:

PrROBLEM A: The problem of the minimal regularity of the data wg which
guarantees that the IVP (1) is well-posed.

PRrROBLEM B: The existence and uniqueness for the IVP (1) for some dispersive
models for which classical approaches do not apply.

Let us first consider PROBLEM A. Our notion of well-posedness includes exis-
tence, uniqueness, persistence, i.e. if ug € X function space then the corresponding
solution describes a continuous curve in X', and lastly continuous dependence of
the solution upon the data. Thus, solutions of (1) induce a dynamical system on
X by generating a continuous flow, see [Kt].

We use classical the Sobolev spaces X = H*(R") = (1 — A)~*/2L*(R"), s € R
to measure the regularity of the data.

To illustrate our arguments we consider the IVP for the generalized Korteweg-de
Vries (gKdV) equation

1) {@u—k@i’u—kukaﬂcu:o, t,zxeR, keZT,
1.1

u(z,0) = up(x).
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For k = 1 (KdV) the equation in (1.1) was derived by Korteweg-de Vries as a
model for long waves propagating in a channel. Later, the cases k = 1,2 were
found to be relevant in several physical situations. Also they have been studied
because of their relation to inverse scattering theory and to algebraic geometry
(see [Mi| and references therein).

Local well-posedness results imply global ones via the conservation laws

oo o0

(1.2) I(u) = /u2(x,t)dac, Is(u) = /((8Iu)2 — cpuft?)(z, t)dx,

— 00 — 00

satisfied by solutions of (1.1), (for k = 1,2 there are infinitely many I;’s, see [Mi]).
Concerning the local well-posedness of the IVP (1.1) our first result is the
following.

THEOREM 1.1 ([KePoVe3]).
The IVP (1.1) is locally well-posed in H*(R) if

k=1 and s> 3/4,

k=2 and s>1/4,
(1.3)

k=3 and s>1/12,

k>4 and s> (k—2)/4k.—

Observe that if u(-) solves the equation in (1.1) then wy(x,t) = A\¥/*u(A\z, A\3t)
is also a solution with data uy(x,0) = A2/ Fug(\z) and

(1.4) |DEuxll2 = exs—(k=4)/2k

Thus, for s = (k — 4)/2k the above norm is independent of A. The result in
Theorem 1.1 for k > 4 correspond to the scaling value in (1.4) and has been shown
to be optimal, see [KePoVe3] and [BKPSV]. Theorem 1.1 and the conservation
laws in (1.2) imply the global well-posedness of (1.1) with ug € H*(R), s > 1 and
k =1,2,3. For k >4 the existence of global solution for data ug € H*(R) of
arbitrary size is unknown.

To explain our result with more details we choose the case kK = 2, i.e. the
modified Korteweg-de Vries (mKdV) equation.

THEOREM 1.2 ([KePoVe3]).
Let k = 2. Then for any ug € H'/*(R) there exist

(1.5) T = c||Dy/*uoll5*,
and a unique strong solution u(t) of the IVP (1.1) satisfying
(1.6) we C([-T,T] : HY*(R)),
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and
(1.7) D3/ Opullpeorz + lullpans < oo.

Moreover, the map data — solution, from H'Y/*(R) into the class defined by
(1.6)—(1.7) is locally Lipschitz.

In addition, if ug € H* (R) with s' > s, then the above results hold with s'
instead of s in the same time interval [-T,T).-

The properties (1.6)—(1.7) guarantee the uniqueness of the solution and that
the nonlinear term is well defined, i.e. it is at least a distribution.

In [Ka], T. Kato established the existence of a global weak solution for the IVP
(1.1) with k =1,2,3 and data ug € L?(R?). In [GiTs], Ginibre-Tsutsumi showed
that if (1 + |z|)%/%ug € L?(R) then IVP (1.1) with k = 2 has a unique solution.
Since the operator I' = x — 3td2? commutes with the linear part of the equation in
(1.1) one sees that Theorem 1.2 and the result in [GiTs] complement each other.
Also the estimate of the life span of the local solution in (1.5) agrees with that
given by the scaling argument in (1.4).

The proof of Theorem 1.2 is based on the following two sharp linear estimates,
in which we introduced the notation

oo

(18) Utu(e) = [ 95 (e)de.
In [KeRu], Kenig-Ruiz proved that
- 1/4
(19) [ sw Wltas | < clpi
[7171]

and that both indexes in (1.8), i.e. 4, 1/4 are optimal. In [KePoVel], we showed
that there exists ¢ > 0 such that for any =z € R

1/2

(1.10) / 0.0 (Bwol2dt | = clfvol]a.

This is a sharp version of the local smoothing effects first established by T. Kato
[Ka] for solutions of the KdV equation, see also [KuFr].

In [Bol], J. Bourgain showed that the IVP for the KdV (k = 1 in (1.1)) is
locally (consequently globally) well-posed in L2. His proof relies on the use of the
spaces X5 p, i.e. the completion of S(R?) respect to the norm

(1.11) I1Flx,., = 11+ 7 = €)° (1 + [€)* F (& T 22 (g2).-
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These spaces were introduced by M. Beals [Be] in his study of propagation of
singularities for solutions to semi-linear wave equations, and have been success-
fully used in several related works. In [KIMa] and subsequent works, Klainerman-
Machedon used them to study the minimal regularity problem on the data for
systems of nonlinear wave equations with nonlinearities satisfying a special struc-
ture.

In [KePoVed], we proved that the IVP for the KdV equation (k =1 in (1.1)) is
locally well-posed in H*(R), s > —3/4.

THEOREM 1.3 ([KePoVed]).

Let s € (—3/4,0]. Then there exists b € (1/2,1) such that for any ug € H*(R)
there exist T = T(|luol|lg=) > 0 (with T'(p) — oo when p — 0) and a unique
solution u(t) of the IVP (1.1) in the time interval [—T,T) satisfying

(1.12) we C([-T,T] : H*(R)),
(1.13) U € Xop € L% (R : LE(R)),
and

(1.14) 0:(u®) € Xgp1, Ou€ Xy 3p-1.

Moreover, the map data — solution from H*(R) into the class defined by (1.12)-
(1.14) is locally Lipschitz.

In addition, if ug € H* (R) with s' > s, then the above results hold with s'
instead of s in the same time interval [-T,T).-

The method of proof of Theorem 1.3 is based on bilinear estimates involving the
spaces X, and elementary techniques. These techniques were motivated by the
work of C. Fefferman [Fe| for the L*(R?) estimate for the Bochner-Riesz operator.

In [KePoVe4], we also established that for the case of the mKdV (k = 2 in (1.1))
the argument based on multilinear estimates and the use of X, ;-spaces does not
improve our result in Theorem 1.2.

The gap between the KdV result (s > —3/4) and that for the mKdV (s > 1/4)
is somehow consistent with the Miura transformation, i.e. if v solves the mKdV
equation then u = c1v? 4 c20,v solves the KdV equation.

The method of proof in [KePoVe3], [Bol],[KePoVed], is based on the contraction
principle which combined with the Implicit Function Theorem shows that the map
data — solution is smooth.

In [Bo2], J. Bourgain proved that if one requires the map data — solution be
smooth (C? suffices) then our results for the KdV (s > —3/4) in [KePove4] and
for the mKdV (s > 1/4) in [KePoVe3] are optimal. In particular, it follows that
these results cannot be improved by using only an iteration argument.

Regarding the global well-posedness of the IVP for the KdV and mKdV equa-
tions we have the following recent results. In [FoLiPo|, Fonseca-Linares-Ponce
showed that the IVP for the mKdV equation is globally well-posed (although not
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necessarily globally bounded) in H*(R), s € (3/5,1). In [CoSt], Colliander-
Staffilani proved the IVP for the KdV equation is globally well-posed (although
not necessarily globally bounded) in H?*(R), s € (—3/20,0). The proofs combine
ideas in [Bo3] and Theorems 1.2-1.3 described above.

PrOBLEM B.
We begin by considering the IVP for nonlinear Schrédinger equations of the form

(2.1) { Ou = iLu + P(u, Vyu,u, V1), teR, z e R",

u(z,0) = up(z),

where L is a non-degenerate constant coefficient, second order operator

(2.2) L=) 02 -) 92, forsome ke{l,.,n},

J<k J>k
and P :C2?"*2 — C, is a polynomial of the form

(2.3) P(2) = P(z1,. 20n42) = Y @az%, o >2.

lo<la|<d
When a special form of the nonlinear term P is assumed, for example,
(2.4) DaxjuP, are real for j =1,..,n,

standard energy estimates provide the desired result. In this case, the dispersive
part of the equation, the operator L, does not play any role. Another technique
used to overcome the “loss of derivatives” introduced by the nonlinear term is to
present the problem in a suitable analytic function spaces, see [SiTal, [Hy].

In [KePoVe2|, we proved that (2.1) is locally well-posed for “small” data, in
H#(R™), for s large enough, when ly > 3 in (2.3), and in a weighted version of
it, if lp =2 in (2.3). This result applies to the general form of £ in (2.2). The
main idea is to use in the integral equation version of the IVP (2.1)

t
(2.5) u(t) = e“ug —|—/ =L Py, Vu,w, Va)(t)dt,
0
and the following estimates,

T

(2) |||D1/2e”£u0|||T = suZp (/ / |D1/26“5£uo|2dacdt)1/2 < cllugl|2,
pez™ Jo Qu

(2.6) Co

(44) |||Vz/0 e LR ||r < cll|Fll,

where {Q.}.cz~ is a family cubes of side one with disjoint interiors covering R™,
and D = (—A)Y2.

DOCUMENTA MATHEMATICA - EXTRA VOoLUME ICM 1998 - III - 67-76



72 GUSTAVO PONCE

The local smoothing effect in (i) was proven by Constantin-Saut [CnSa], Sjolin
[Sj], and Vega [Ve]. We proved the inhomogeneous version (ii) in [KePoVe2].

It is essential the gain of one derivative in (2.6) (ii). This allows to use the
contraction principle in (2.5) and avoid the “loss of derivatives”. However, the
[l - ||| norm forces the use of its dual

@7 G = 1G] @0y = Y // Ga, )2 dadt) /2.

HEL™

This factor cannot be made small by taking T small, except if G(¢) is small at
t = 0. It is here where the restriction on the size of the data appears.

In [HyOz], for the one dimensional case n = 1, Hayashi-Ozawa removed the
smallness assumption on the size of the data in [KePoVe2]. They used a change
of variable to obtain an equivalent system with a nonlinear term independent of
Oz u, which can be treated by the standard energy method.

In [Ch], for the elliptic case £ = A, H. Chihara removed the size restriction on
the data in any dimension. The change of variable in this case involves pseudo-
differential operators 1.d.0’s. A main step in his proof is a diagonalization method
in which the assumption on the ellipticity of £ is essential.

In [KePoVe5|, we removed the size restriction for the general form of the oper-
ator £ in (2.1).

THEOREM 2.1 ([KePoVe5]). There exist s = s(n; P) >0, and m = m(n; P) > 0,
such that for any uo € H*(R™) N L2(R™ : |z|*™dx) the IVP (2.1) has a unique
solution u(-) defined in the time interval [0,T) satisfying that

(2.8)  weC([0,T]: H*R™) NL*R" : |z[*"dz)), and |||J*T?ul||7 < .

If s’ > s, then the above results hold, with s instead of s, in the same time
interval [0,T].

Moreover, the map data — solution from H*(R™) N L*(R"™ : |x|*™dx) into the
class in (2.8) is locally continuous.-

Our argument of proof uses the Calderén-Vaillancourt class [CaVal]. This was
suggested by the work of J. Takeuchi [Tk]. In order to extend the argument
in [KePoVe2] to prove Theorem 2.1, we need to show that, under appropriate as-
sumptions on the smoothness and decay of the coefficients bk g = = (b1, bkm), k=
1,2, j = 1,.,n, the IVP for the linear Schrédinger equation with variable coeffi-
cient lower order terms

(2.9) { 0w =iLv + by(x) - Vv + ba(z) - VU + F(z,t), t€R, x €R”,
' v(z,0) = vy € H¥(R™),

has a unique solution v € C([0,T]: H*(R™)) such that

(2.10) P lo@)l|zz= + (1175720l < e(br; ba; T) (ol s + [117° 72 F ||

)
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Equations of the form described in (2.1) with £ non-elliptic arise in several
situations. For example, in the study of water wave problems, Davey-Stewartson
[DS], and Zakharov-Shulman [ZaSc| systems, in ferromagnetism, Ishimori system
[Ic], as higher dimension completely integrable model, see [AbHa].

Consider the Davey-Stewartson (DS) system

i0pu + ¢,02u + O2u = ¢, [ul*u + c,ud,p,
(2.11) 02+ ¢, 2 = O, Jul,
u(z,y,0) = uo(z,y),

where u = u(x,y,t) is a complex-valued function, ¢ = ¢(z,y,t) is a real-valued
function, (when (c,,¢,,¢,,¢,) = (—1,1,-2,1) or (1,—1,2, —1) the system in (1.1)
is known in inverse scattering as the DSI and DSII respectively).

In the case ¢3 < 0, ¢y < 0, (i.e. the equation in (1.6) is essentially not semi-
linear, and the dispersive operator is non elliptic) the only available existence
results are for analytic data, Hayashi-Saut [HySa], or “small” data, Linares-Ponce
[LiPo]. For other results for the DS system we refer to [GhSa], [HySa], [LiPo] and
references therein.

The IVP for the Ishimori system can be written as

iOpu+ 02u F Opu = W + ib(0zpOyu — Oy pdyu),
. Ozu 0yU—0,u Oyu
(2.12) 8%(,0:&8550 =43 I GERTIE) R

U(l‘,y,O) = U()(Jf,y).

The (—,+) case was studied by A. Souyer [So]. The case (+,—) in (2.11) was
first studied by Hayashi-Saut [HySa] in a class of analytic functions which allowed
them to obtain local and global existence for small analytic data. In [Hy2], N.
Hayashi removed the analyticity assumptions in [HySa] by establishing the local
existence and uniqueness of solutions of the IVP (2.12), for the case (+, —), with
small data ug in the weighted Sobolev space H*(R?) N L?((x? + y?)*dzdy).

In a forthcoming article [KePoVe6] we remove the smallness assumption in
[Hy2]. In particular, we prove the local existence and uniqueness of solutions of
the IVP (2.12) with (+, —) sign for data of arbitrary size in a weighted Sobolev
space. Several problems have to be overcome to extend our approach in [KePoVe5)
to this case. First, we have to deal with operators which are .d.o. only in one
variable. In particular, to establish the local smoothing effects described in (2.6)
we shall need the operator valued version of the sharp Garding inequality. Another
difficulty of our approach is that for the linearized system associated to (2.12) the
coefficients of the first order terms do not decay in both variables. One has terms
of the form a(x,y)0,u where the coefficient a(-) is a smooth function with decay
only in the z-variable. However, a careful analysis, consistent with Mizohata’s
condition in [Mz], shows that this one variable decay suffices.
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0. INTRODUCTION

Inverse boundary problems are a class of problems in which one seeks to deter-
mine the internal properties of a medium by performing measurements along the
boundary of the medium. These inverse problems arise in many important physi-
cal situations, ranging from geophysics to medical imaging to the non-destructive
evaluation of materials.

The appropriate mathematical model of the physical situation is usually given
by a partial differential equation (or a system of such equations) inside the medium.
The boundary measurements are then encoded in a certain boundary map. The
inverse boundary problem is to determine the coeflicients of the partial differential
equation inside the medium from knowledge of the boundary map.

In this paper we will survey part of the significant progress which has been
made in the last twenty years in this area. Many of the advances have been a
consequence of the construction of complex geometrical optics solutions for the
class of partial differential equations under consideration. The prototypical ex-
ample of an inverse boundary problem is the inverse conductivity problem, also
called electrical impedance tomography, first proposed by A. P. Calderén [7]. In
this case the boundary map is the voltage to current map; that is, the map assigns
to a voltage potential on the boundary of a medium the corresponding induced
current flux at the boundary of the medium. The inverse problem is to recover
the electrical conductivity of the medium from the boundary map.
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We will also discuss in this paper other examples of inverse boundary prob-
lems, including examples associated to the Schrodinger equation in the presence
of a magnetic field, Maxwell’s equations and the Lamé system of elasticity. The
unifying theme of the paper is the role of complex geometrical optics solutions in
inverse boundary value problems and our selection of problems reflects this choice.
We list a series of basic open problems in the field. For an account of the close con-
nection between inverse boundary value problems and inverse scattering problems
at a fixed energy see [40]. Another important omission is the discussion of inverse
boundary value problems for hyperbolic equations, in particular the Boundary
Control Method. See the review paper [4] for more details.

1. THE INVERSE CONDUCTIVITY PROBLEM FOR AN ISOTROPIC CONDUCTIVITY

Let  C R™ be a bounded domain with smooth boundary (many of the results are
valid for Lipschitz boundaries). We denote by v the conductivity of €, which we
assume is in L () and strictly positive. The potential u in Q with voltage f on
0f) satisfies

(1.1) Lyu=div(yVu) =01in Q; ulpo = f.
The voltage to current map, or Dirichlet to Neumann map (DN), is defined by

(12 a0 = (v50)

where u is the solution of (1.1), and v denotes the unit outer normal to 9.
The inverse problem is to determine v knowing A.,. More precisely we want to
study properties of the map

)
o0

(1.3) Yp——

Note that A, : H 2(0Q) — H~2(89) is bounded. We can divide this problem
into several parts.
a) Injectivity of A (identifiability).
b) Continuity of A and its inverse if it exists (stability).
c) What is the range of A? (characterization problem).
d) Formula to recover 7 from A, (reconstruction).

) Give a numerical algorithm to find an approximation. of the conductivity given
a finite number of voltage and current measurements at the boundary (numer-
ical reconstruction).

In this section we outline the proof of the following identifiability result proven
in [36].

1.1 THEOREM. Letn > 3. Let y1,72 € C?(Q) be strictly positive functions in Q
such that A, = A,. Then v1 = ¥ in L.

@

Sketch of the proof. Using Green’s thorem it is easy to prove that
(14) Q) = /Q~y|vu|2dx - /89 A (f)fdS,
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where u is the solution of (1.1). In other words Q.(f) is the quadratic form
associated to the selfadjoint linear map A, (f), i.e., to know A,(f) or Q- (f) for
all f € Hz(99Q) is equivalent. Q~(f) measures the energy needed to maintain the
potential f at the boundary.

Formula (1.4) suggests that instead of prescribing voltage measurements at the
boundary to determine the conductivity in the interior, we find solutions of the
equation (1.1). This is the point of view of Calderén [7] in his analysis of the
linearized problem at a constant conductivity.

To find these solutions we first reduce the problem to studying the Schrodinger
equation at zero energy. Let v € C?(Q2) be a positive function. We have

1 1 Aﬁ
1.5 2Ly 2u= (A —q)u, q=——.
(1.5) VT 2Lyy ( ) Ve

For any g € L>°(2) we can define the set of Cauchy data
Ju 1 )
Co={(f,9); f=ula,g= $|Q,U € H*(Q) solution of (1.1)}

If 0 is not a Dirichlet eigenvalue of A — g then Cj is the graph of a map which is,
by definition, the DN map. Theorem 1.1 follows from Theorem 1.2 and the fact
that A, determines both v at the boundary and the normal derivative of v at the
boundary (see [15], [37]).

1.2 THEOREM. Assume g; € L°(Q),i=1,2 and Cy, = Cy,. Then ¢1 = ¢o.

Sketch of the proof of Theorem 1.2. The key result is the construction of complex
geometrical optics solutions to the Schrodinger equation. This was motivated by
Calderén’s analysis of the linearized problem at a constant conductivity [7].

0.
0

1.1 LEMMA. Let ¢ € L®(R™) with compact support. Let p € C™ with p-p =
) >

Let —1 < 6§ < 0. Then if |p| > C(8)supzern|(1 + |z|*)q(z)| for some C(§
there exists a unique solution of (A — q)u = 0 in R™ of the form

(1.6) u=e""(14¢q(x,p))

with g (-, p) € LE(R™). Moreover [%q (-, p)l| L2y goes to 0 as |p| goes to infinity.

)

A more precise estimate is proven in [36]. (Here L2(R™) denotes the weighted L*
space with norm ||f||%§(Rn) =[(1+ |x|2)5|f(x)|2d:r.)

Let ¢; € L*™(Q) as in the statement of Theorem (1.2). We define ¢; = 0 in
R™—Q. Let p;,4 = 1,2 as in Lemma (1.1) with p; = n+i(k+1), p2 = —n+i(k—1)
with 7, k,1 € R" satisfying (n,k) = (k,1) = (n,1) =0, [|n|*> = |k|?> + |I|* and
lI| > R;, with R; sufficiently large so that Lemma 1.1 is valid for ¢;,4 = 1,2 (here
we use n > 3). We take

(17) Ui = ew'pi(l + qu' (x7pi))7 1=1,2.

The next important ingredient is the following identity which follows easily from
Green’s theorem.
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1.2 LEMMA. Let ¢; € L>®(Q) ,i=1,2 and Cyy, = Cy,. Then

(1.8) /Q((h —q2)uruz =0

for every solution u; € HY(Q) of (A — g;)u; = 0 in R™.

Now we plug (1.7) into (1.8). Taking the limit as |I| — oo, we easily conclude that
the Fourier transform of ¢; and g5 coincide.
In order to construct ¢, as in (1.6) we solve the equation

(1.9) Aphy = q(1+v,) with A, f = e “PA(e™ P f).

We note that the characteristic variety of A, is a codimension two real submani-
fold. We can construct an inverse A, that satisfies the following estimate proven
for n > 3 in [36] and for n = 2 in [35].

_ C
(1.10) AT 5416 < Tl

with —1 < ¢ < 0, C is a positive constant, and || ||s+1,s denotes the operator norm.

Using the complex geometrical optics solutions of Lemma 1.1 Alessandrini
proved stability estimates for the map (1.3). A reconstruction method using these
solutions was proposed in [19], [25]. We remark that the construction of the solu-
tions (1.6) is in the whole of R”. Complex geometrical solutions in compact sets
have been constructed in [8], [10].

Theorem 1.1 extends to non-linear conductivities [29]. Theorem 1.2 extends
to the non-linear Schrédinger equation under some additional assumptions on the
potential [14]. These results use a linearization procedure due to Isakov [11].

MAXWELL’S EQUATIONS.

One obtains the conductivity equation (1.1) if one neglects the time variation of
the electromagnetic field in Maxwell’s equations. We now describe the boundary
map in this case.

Let Q C R? be a bounded domain with smooth boundary. The electromagnetic
field (E, H) satisfies the frequency domain Maxwell’s equation which are given by

(1.11) rot E = iwpH, rotH = (—iwe+o0)E in Q

where w > 0 is the time-harmonic frequency of the field, € > 0 denotes the electrical
permittivity, © > 0 the magnetic permeability, and o > 0 the conductivity. We
assume that all the functions are smooth. The boundary map is given by

Aayu,g(w) A\ E|aQ — VA H|aQ

where E, H satisfies (1.11). A global identifiability result was proven in this case in
[26]. The proof was simplified in [27], where the problem is reduced to constructing
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geometrical optics solutions for a Schrédinger equation with ¢ an 8 x 8 matrix.
Lemma 1.1 applies also in this case.

OPEN PROBLEM 1. How much smoothness should one assume on the conductivity
for Theorem 1.1 to be valid? R. Brown extended Theorem 1.1 to conductivities in
C %+€(ﬁ), with € any positive number. The natural conjecture is that the theorem
holds for Lipschitz conductivities since unique continuation is valid in this case.
There are no known counterexamples for rough conductivites. Kohn and Vogelius
proved identifiability for piecewise real-analytic conductivities [16]. In [12] the case
of a conductivity having a jump discontinuity across the boundary of a subdomain
is considered.

OPEN PROBLEM 2. Is Theorem 1.1 valid if we measure the DN map only on part
of the boundary?

OPEN PROBLEM 3. Is it possible to characterize the boundary values of the com-
plex geometrical optics solutions (1.6)? This might have implications in the char-
acterization and reconstruction problem.

OPEN PROBLEM 4. Is it possible to develop the reconstruction method based on
the complex geometrical optics solutions into a convergent numerical algorithm?

OPEN PROBLEM 5. (The anisotropic case.) Conductivities may depend also on
direction. Muscle tissue in the human body is an example. In this case the conduc-
tivity is represented by a positive definite matrix. It seems like a difficult problem
to find complex geometric optics solutions in the anisotropic case. Moreover, it
is not true that the DN map in this case determines uniquely the conductivity.
See [38] for a discussion of the obstruction to identifiability in this case. The
case of real analytic conductivities was considered in [17]. The case of quasilinear
real-analytic anisotropic conductivities is discussed in [31]. For further results see
[38].

2. THE TWO DIMENSIONAL CASE

Nachman proved in [20] that, in the two dimensional case, one can uniquely
determine conductivities in W2P?(Q) for some p > 1 from A,. An essential part
of Nachman’s argument is the construction of the complex geometrical optics so-
lutions (1.6) for all complex frequencies p € C2, p- p = 0, for potentials of the
form (1.5). Then he applies the d-method in inverse scattering, pioneered in one
dimension by Beals and Coifman [2] and extended to higher dimensions by sev-
eral authors (see [25] for further discussions and applications of the & method).
The analog of Theorem 1.2 is open, in two dimensions, for a general potential
g € L>*(Q)). We outline a different approach to [20] that allows less regular con-
ductivities.

THE INVERSE CONDUCTIVITY PROBLEM.

We describe here an extension of Nachman’s result to W?(), p > 2, conduc-
tivities by Brown and the author [6]. We follow an earlier approach of Beals and
Coifman [3], who studied scattering for a first order system whose principal part

is50
0 o)
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2.1 THEOREM. Letn = 2. Lety € WP(Q),p > 2, v strictly positive. Assume
Ay =A,,. Then v =2 in Q.

We first reduce the conductivity equation to a first order system. We define the
scalar potential ¢ and matrix potential ) by

_ 1 _ (0 ¢
(2.1) 1= 30logy, Q—(a 0).

We let D be the operator

(2.2) D= @ g).

An easy calculation shows that if u satisfies the conductivity equation div(yVu) =
0, then

(2.3) 1)(5)-49(2)::0 with <Z>::7%<gz>.

In [6] matrix solutions of (2.3) are constructed which have the form

eizk 0
(24) w=me) (g )

where z = x1 + iz2, k € C, with m — 1 as |z| — oo in a sense to be described
below. To construct m we solve the integral equation

(2.5) m— D, 'Qm =1

where, for a matrix-valued function A,

i(zk+zk)
DyA = E'DEyA;  EpA= A%+ AT AT Ag(2) = (e ’ > :

0 efi(szrEE)

Here A% denotes the diagonal part of A and A°f the antidiagonal part.
The next result gives the solvability of (2.5) in an appropriate space.

2.1 LEMMA. Let Q € LP(R?),p > 2, and compactly supported. Assume that Q is a
hermitian matriz. Choose r so that Il—j—i—% > % and then (8 so that Br > 2. Then the
operator (I — D,;lQ) is tnvertible in L” 5. Moreover the inverse is differentiable
in k in the strong operator topology. Here Lj; denotes a weighted L" space.

Lemma 2.1 implies the existence of solutions of the form (2.4) with m —1 €
L” 5(R?) with 8,7 as in Lemma 2.1. The next step, following the & method,
consists in relating %m(z, k) and scattering data that in turn is determined from
the DN map. For more details see [6].
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Problem 5 has been solved in the anisotropic case in two dimensions for suf-

ficiently smooth conductivities. By using isothermal coordinates, one can reduce
the anisotropic case to the isotropic case, and therefore construct complex geo-
metrical optics solutions in this case (see [34].) The case of quasilinear anisotropic
conductivities is considered in [31].
OPEN PROBLEM 6: THE POTENTIAL CASE. Problems 1-4 are also open for the
inverse conductivity problem in two dimensions. As we mentioned at the beginning
of this section, the analog of Theorem 1.2 is unknown at present for a general
potential ¢ € L*°(Q). By Nachman’s result it is true for potentials of the form g =
% with u € W2P(Q),u > 0 for some p, p > 1. Sun and Uhlmann proved generic
uniqueness for pairs of potentials in [32]. The semilinear case, under additional
assumptions on the potential, was considered in [13]. In [33] it is shown that one
can determine the singularities of an L*° potential from its Cauchy data.

3. FIRST ORDER PERTURBATIONS OF THE LAPLACIAN

There are several inverse boundary value problems associated to first order per-
turbations of the Laplacian. We consider briefly here an inverse boundary value
problem associated to the Lamé system in elasticity theory.

We first discuss how to construct complex geometrical optics solutions for any
scalar first order perturbation of the Laplacian.

Let Ly = A+ N(z,D) with N(x,D) a first order differential operator in R™
with smooth coefficients with compact support. We attempt to construct solutions
u, of Lyu, = 0 of the form u, = e*”m,. The equation for m(z, p) is M,m, =
(A, + N,)m, =0 where N,f =e *PN(e*”f) and A, as in (1.9).

The difficulty in finding m,, is that the operator A;lN » contain terms that don’t
decay in |p| in any reasonable norm. We get around this difficulty by conjugating
the operator A, + N, to an operator that behaves like a zeroeth order pertur-
bation of A,. This idea is motivated by formula (1.5). To do this we consider
pseudodifferential operators depending on a complex parameter [28]. For these
operators the variable p behaves like the variable £. More precisely, we define
Z={peC”—0;p-p=0} and A € L™(R", Z) if we can write

~

Af(z) = /e“m’g)ap(:r,f) (€)de,  f e CP(R™), where a, € S™(R", Z),i.e.

sup 1050 ap(2,€)| < Ca,pic (L + 1€ + o)™ P VE cC R™

We have that A, € L?(R", Z), N, € L'(R", Z). The key result proved in [21] is
that one can conjugate A, + N, to A, + C,, with C, € L°(R™, Z).

3.1 LEMMA. Let K CC R™ be a compact subset. Let M,(x, D) be as defined above.
Then there exist A,, B, € L°(R™, Z) such that

(3.1) M,A,=B,(A,+C,),
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where C, € L°(R",Z). Moreover ¢A,¢ and ¢B,¢ are invertible on L*(K) for
large |p| for all ¢ € C§°(R™) with ¢ =1 on K.

Now it is easy to construct many solutions [, of (A,+C,)l, = 0 in any compact
set since the operator ¢C,¢ is bounded on L?(R™), with operator norm indepen-
dent of |p| being a pseudodifferential operator of order zero depending on the
parameter p (see [28] for more details on thiese operators.) Therefore, by the in-
tertwining property (3.1), m, = A,l, is a solution of M,m, = 0. The construction
of A,, B, is quite explicit.

In the paper [23], building on early work of Sun [30], these complex geometrical
optics solutions were used to prove a global identifiability result for an inverse
boundary value problem associated to the Schrédinger equation in the presence
of smooth magnetic potential and electric potential. C. Tolmasky reduced the
regularity needed in [39] to just one derivative for the magnetic potential, and a
bounded electric potential, by using non-smooth symbols depending on the com-
plex parameter p. The paper [18] also uses these solutions to prove a global iden-
tifiability result for Maxwell’s equations in chiral media by reducing this case to a
first order system perturbation of the Laplacian.

AN INVERSE BOUNDARY VALUE PROBLEM FOR THE ELASTICITY SYSTEM.

An inverse boundary value problem arising in the mechanics of materials is
to determine the elastic parameters of a medium by making displacement and
traction measurements at the boundary of the medium. We describe briefly below
the boundary map in this case.

Let 2 C R™ be a bounded open set with smooth boundary. We consider (2
as an elastic, isotropic, inhomogeneous medium with Lamé parameters A, u. The
generalized Hooke’s law states that under the assumption of no body forces acting
on (), the displacement u satisfies

"9 0 . .
(3.2) (Lu); = (Lypu); = Z a—ij'ijkla—mluk =0inQ, i=1,...,n,
J,k,l=1
U|aQ =f
where
(3.3) Cijkt = N0ij0r + p(0idij + 0:d5) (1 <14,5,k,1 < n),

with d;; the Kronecker delta and (Lu); denotes the i-th component of Lu.
C = (Cijm) is the elastic tensor. The boundary value problem (3.2) has a
unique solution under the strong convexity condition x> 0,n\ + 2 > 0 in Q.
The Dirichlet to Neumann map is defined in this case by

. ou
(3.4) (Axu(f))i = Z vCijkl =, i=1,..,n
a:L‘l 90
Lk, 1=1
where v = (11, ... , v, is the unit outer normal to 9Q and w is the solution of (3.2).

Physically the DN map sends the displacement at the boundary to the traction at
the boundary. The following global identifiability result was proven in [21].
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3.1 THEOREM. Let n > 3. Let (A, ;) € C®(Q) x C=(Q),i = 1,2 satisfy the
strong convexity condition (8.3). Assume Ay, u) = A(g,u)- Then (A1, p1) =
()\2,#2) in Q.

The proof of Theorem 3.1 follows the general outline of the proof of Theorem
1.2. Namely, one proves an identity similar to (1.8) by using Green’s theorem.
Second, one reduces the elasticity system to a first order system (a more direct
way to do this was given in [9]). Now one constructs geometrical optics solutions
for the elasticity system using Lemma 3.1, which also applies to the first order
system under consideration. The details of this outline can be found in [21].
OPEN PROBLEM 7. The analog of problems 1-5 are also open for the elasticity
system. The analog of Theorem 2.1 is not known for the elasticity system in two
dimensions. It is known that one can uniquely identify from the DN map Lamé
parameters close to constant (see [22].) The methods of section 2 might be useful
to prove a global identifiability result in this case.
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SCATTERING T'HEORY: SOME OLD AND NEw PROBLEMS

D. YAFAEV

ABSTRACT. Scattering theory is, roughly speaking, perturbation the-
ory of self-adjoint operators on the (absolutely) continuous spectrum.
It has its origin in mathematical problems of quantum mechanics and
is intimately related to the theory of partial differential equations.
Some recently solved problems, such as asymptotic completeness for the
Schrédinger operator with long-range and multiparticle potentials, as well
as open problems, are discussed. We construct also potentials for which
asymptotic completeness is violated. This corresponds to a new class of
asymptotic solutions of the time-dependent Schrodinger equation. Spe-
cial attention is paid to the properties of the scattering matrix, which is
the main observable of the theory.

1991 Mathematics Subject Classification: Primary 35J10, 47A75; Sec-
ondary 81U20

Keywords and Phrases: wave operators, asymptotic completeness, the N-
particle Schrodinger operator, new channels of scattering, the scattering
matrix

1. BaAsIC NOTIONS. Let Hy and H be self-adjoint operators on Hilbert spaces
Ho and H, respectively. Let Péac) be the orthogonal projection on the absolutely
continuous subspace ’H(“C)(HO) of Hy and J : Hy — H be a bounded operator.
The main problem of mathematical scattering theory (see e.g. [23] or [31]) is to
show the existence of the strong limits

W* =W=*(H,Ho; J) = s — lim exp(iHt)J exp(—iHot)P{*, (1)

known as the wave operators. If the limits (1) exist, then the wave operators
enjoy the intertwining property HW* = W* Hy, so their ranges are contained in
#H(@®)(H). In the most important case Ho = H, J = Id, the limit (1) is isometric
and is denoted W*(H, Hy). The operator W*(H, Hy) is said to be complete if its
range coincides with (%) (H). This is equivalent to the existence of W=+ (Hy, H).
In terms of the operators (1) the scattering operator is defined by S = (W*)*W .
It commutes with Hy and hence reduces to multiplication by the operator-function
S(A), known as the scattering matrix, in a representation of Hy which is diagonal
for Hy.

In scattering theory there are two essentially different approaches. One of
them, the trace-class method, makes no assumptions about the “unperturbed”
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operator Hy. Its basic result is the Kato-Rosenblum theorem (and its extension due
to M. Birman and D. Pearson), which guarantees the existence of W*(H, Hy; J) if
the perturbation V' = HJ—JHj belongs to the trace class. According to the Weyl-
von Neumann-Kuroda theorem this condition cannot be relaxed in the framework
of operator ideals even in the case J = Id. The second, smooth, method relies
on a certain regularity of the perturbation in the spectral representation of the
operator Hy. There are different ways to understand regularity. For example, in
the Friedrichs model [8] V is an integral operator with smooth kernel. Another
possibility is to assume that V' = K*K, where K is H-smooth (in the sense of
T. Kato which, roughly speaking, means that the function ||K exp(—Ht)f||? is
integrable on R uniformly for ||f|| < 1) and Ky is Hyp-smooth.

The assumptions of trace-class and smooth scattering theory are quite differ-
ent. Thus it would be desirable to develop a theory unifying the trace-class and
smooth approaches. Of course this problem admits different interpretations, but
it becomes unambiguously posed in the context of applications, especially to dif-
ferential operators. Suppose that H = L2(R?), Hy = —A+Vy(z), H = Hy+V ()
where Vp and V are real bounded functions and V(x) = O(|z|*) as |z] — .
Trace-class theory shows that the wave operators W=+ (H, Hy) exist (and are com-
plete) if V5 is an arbitrary bounded function and p > d. Smooth theory requires
an explicit spectral analysis of the operator Hy, which is possible for special 1
only (the simplest case Vy = 0) but imposes the less stringent assumption p > 1
on the perturbation V. This raises

PROBLEM 1 Let d > 1. Do the wave operators W*(H, Hy) exist for arbitrary
Vo € Loo(RY) and V satisfying the bound V (x) = O(|z|~*), assuming only that
p>17

In the event of a positive solution of Problem 1, wave operators would be
automatically complete under its assumptions. We conjecture, on the contrary,
that Problem 1 has a negative solution. Moreover, we expect that the absolutely
continuous part of the spectrum is no longer stable in the situation under consid-
eration.

2. THE MULTIPARTICLE SCHRODINGER OPERATOR. One of the important prob-
lems of scattering theory is the description of the asymptotic behaviour of N
interacting quantum particles for large times. The complete classification of all
possible asymptotics (channels of scattering) is called asymptotic completeness.
Let us recall the definition of generalized N-particle Hamiltonians introduced by
S. Agmon. Consider the self-adjoint Schrédinger operator H = —A + V(z) on
the Hilbert space H = Lo(R?). Suppose that some finite number aq of subspaces
X of X := R? are given and let z*, x, be the orthogonal projections of z € X
on X and X, = X © X, respectively. We assume that V(z) = 3 00, V¥ (z%),
where V@ is a real function of the variable z satisfying the short-range condition

V@) <CA+ [z~ p>1. (2)
Many intermediary results are valid also for long-range pair potentials satisfying

V@) + A+ [2%) [VV (@) < O+ [2%])77,  p>0. (3)
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The two-particle Hamiltonian H is recovered if ag = 1 and X' = X. The three-
particle problem is distinguished from the general situation by the condition that
XoNXg = {0} for a # B. Clearly, V*(z®) tends to zero as |z| — oo outside of
any conical neighbourhood of X, but V*(z%) is constant on planes parallel to X,,.
Due to this property the structure of the spectrum of H is much more complicated
than in the two-particle case.

Let us consider linear sums X* = X + X2 + ... + X% of the subspaces
X% . Without loss of generality, one can suppose that X coincides with one of
the X We denote by X the set of all subspaces X with X° := {0} € X
included in it but X excluded. Let z* and x, be the orthogonal projections of
x € X on the subspaces X and X, = X & X, respectively. The index a (or b)
labels all subspaces X* € X and, in the multiparticle terminology, a parametrizes
decompositions of an N-particle system into noninteracting clusters; z® is the set
of “internal” coordinates of all clusters, while z, describes the relative motion of
clusters.

For each a define an auxiliary operator H, = —A + V* with a potential
Ve =3 xacxa V", which does not depend on z,. In the representation Lo(X) =
L2(X,) ® Lo(X*), H, = —A,, @ I + 1 ® H*, where H* = —Aga + V*. The
operator H® corresponds to the Hamiltonian of clusters with their centers-of-mass
fixed at the origin, —A,, is the kinetic energy of the center-of-mass motion of
these clusters, and H, describes an N-particle system with interactions between
different clusters neglected. Eigenvalues of the operators H* are called thresholds
for the Hamiltonian H. We denote by T the set of all thresholds and eigenvalues
of the Hamiltonian H. Let P® be the orthogonal projection in La(X?) on the
subspace spanned by all eigenvectors of H*. Then P, = I ® P* commutes with
the operator H,. Set also Hy = —A, Py = I. The basic result of scattering theory
for N-particle Schrédinger operators is the following

THEOREM 2 Let assumption (2) hold. Then the wave operators Wt = W*(H, H,;
P,) exist and are isometric on the ranges R(P,) of projections P,. The subspaces
R(WZF) are mutually orthogonal, and scattering is asymptotically complete:

P rWE) =1, 1) =1l (H).

The spectral theory of multiparticle Hamiltonians starts with the following
basic result (see [19], [22]). It is formulated in terms of the auxiliary operator
A = > (z;D; + Djz;), Dj = —id;, j = 1,...,d. In what follows E(A) is the
spectral projection of the operator H corresponding to a Borel set A C R and @
is the operator of multiplication by (z2 + 1)/2.

THEOREM 3 Let each pair potential V* be a sum of two functions satisfying as-
sumptions (2) and (3), respectively. Then eigenvalues of H may accumulate only
at the thresholds of H, so the “exceptional” set Y is closed and countable. Fur-
thermore, for every A € R\ T there exists a small interval Ay > X\ such that the
Mourre estimate for the commutator holds, i.e.,

i([H, Alu,u) > cllul|®>, c=cx>0, uc E(ANH. (4)
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Finally, for any compact interval A such that ANY = () and any r > 1/2, the
operator Q~"E(A) is H-smooth (the limiting absorption principle). In particular,
the operator H does not have singularly continuous spectrum.

In the case N = 2 the limiting absorption principle suffices for construction of
scattering theory but, for V > 2, one needs additional analytical information cor-
responding in some sense to the critical case r = 1/2. However, the operator Q12
is definitely not H-smooth even in the free case H = —A. Hence we construct
differential operators which improve the fall-off of functions (exp(—iHt)f)(z) for
large t and x. Denote by (-,-) the scalar product in the space C?. Let V, = V,,
be the gradient in the variable z, and let V1,

(Vau)(z) = (Vau)(@) = za| ~*((Var)(2), 2a)2a,

be its orthogonal projection in X, on the plane orthogonal to the vector x,. Let
T, be a closed cone in R? such that T', N X, = {0} if X, ¢ X;. Let x(T,) denote
its characteristic function. Our main analytical result is the following:

THEOREM 4 Suppose that the assumptions of Theorem 3 hold. Then for any a,
the operator G = x(T2)Q~Y2VLEE(A) is H-smooth.

In particular, for the free region I'y, where all potentials V* are vanishing,
the operator x(To)Q '/2V+E(A) is H-smooth. By analogy with the radiation
conditions in the two-particle case (see e.g. [24]), we refer to the estimates of
Theorem 4 as radiation estimates.

Our proof of Theorem 4 hinges on the commutator method. To that end, we
construct a first-order differential operator M = " (m;D;+D;m;), m; = Om/0x;,
such that, for any a, the commutator [H, M| satisfies the estimate

Z[H7 M] > CIG:Ga - C2Q72T7 r> 1/27 C1,C2 > 07 (5)

locally (that is, sandwiched by E(A)). Here the “generating” function m is real,
smooth and homogeneous of degree 1 for |z| > 1. It is completely determined by
the geometry of the problem, that is by the collection of subspaces X“. Roughly
speaking, we set m(z) = pq|zq| in a neighbourhood of every subspace X, with
neighbourhoods of all subspaces X, 7 X, removed from it. In particular, m(z) =
|z| in a free region where all potentials are vanishing. It is important that m(x)
is a convex function, which implies that i[Ho, M] > 0 (up to an error O(|z|~3)).
The arguments of [18] show that H-smoothness of the operator G, is a direct
consequence of estimate (5) and of the limiting absorption principle.

For the proof of asymptotic completeness we first consider auxiliary wave

operators
W (H, Hy; M*Eq(A)), W= (Ha, H; M®E(A)), (6)

where the “identifications” M® are again first-order differential operators with
suitably chosen “generating” functions m®. It is important that m?(z) equals zero
in some conical neighbourhood of every X, such that X, ¢ X,. Hence coefficients
of the operator (V — V*)M? vanish as O(|z|~?), p > 1, at infinity. The analysis
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of the commutator [H,, M*] relies on Theorem 4. This shows that the “effective
perturbation” HM® — M®H, can be factorized into a product K*K, where K is
H-smooth and K, is H,-smooth (locally), which implies the existence of the wave
operators (6). The final step of the proof is to choose functions m® in such a way
that >, m® = m and to verify that the range of the operator W*(H, H; ME(A))
coincides with the subspace E(A)H. This is again a consequence of the Mourre
estimate (4).

In the three-particle case Theorem 2 was first obtained, under some additional
assumptions, by L. Faddeev [7] (see also [10], [27]), who used a set of equations
he derived for the resolvent of H. The optimal formulation in the three particle
case is due to V. Enss [5]. The approach to asymptotic completeness relying on
the Mourre estimate goes back to I. Sigal and A. Soffer [25]. Our proof given
in [32] is closer to that of G. M. Graf [11]. In contrast to [11] we fit N-particle
scattering theory into the standard framework of the smooth perturbation theory.
Its advantage is that it admits two equivalent formulations: time-dependent as
discussed above, and stationary, where unitary groups are replaced by resolvents.
This allows us [33, 34] to obtain stationary formulas for the basic objects of the
theory: wave operators, scattering matrix, etc. The approaches of [7] and of
[25, 11, 32] are quite different and at the moment there is no bridge between them.

There are several Hamiltonians similar to the N-particle Schrédinger operator
H for which the methods of [11] or [32] can be tried.

PROBLEM 5 Develop scattering theory for the discrete version of H (the Heisen-
berg model) acting in the space La(Z?). The same question is meaningful for the
generalization of H = Hy +V where Hy = —> A, k=1,..., N, is replaced by

a more general differential operator, say, by > (—A)?.

Radiation estimates similar to those of Theorem 4 are crucial also for different
proofs due to S. Agmon, T. Ikebe, H. Kitada, Y. Saito (see e.g. [12] and also
[14, 37]) of asymptotic completeness for the two-particle Schrédinger operator
with a long-range potential and for scattering on unbounded obstacles [3, 13].
Actually, only the case of the Dirichlet boundary condition was considered in
[3, 13]. Therefore the following question naturally arises:

PROBLEM 6 Develop scattering theory for the operator H = —A in the comple-
ment of an unbounded domain Q (for example, of a paraboloid) with Neumann or
more general boundary conditions on €.

3. LONG-RANGE PAIR POTENTIALS. If H is the two-particle Schrodinger operator
with a short-range potential V(z) = O(|z|~*), p > 1, then, by the definition of
the wave operator, for any f* € Ly(R%) and f* = W*(H, Hy) f°,

(exp(—th)fi)(x) = exp(i®(z, t))(?it)_d/sz(x/(%)) +o(l), t—+oo, (7)

where ®o(x,t) = 22(4t)"L, fO is the Fourier transform of f° and o(1) denotes a
function whose norm tends to zero as t — +oo. For long-range potentials satisfying
the condition

|D*V ()] < C(1+ |z))~7 I, p>0, Vs, (8)
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the relation (7) can be used for the definition of the modified wave operator W= :
fO — f*. (Actually, many results in the long-range case remain valid if (8) is
satisfied for |x| < 2 only but we shall not dwell upon this.) In this case however
the phase function ®(z,t) = ®y(z,t) depends on a potential V and is constructed
as an approximate solution of the corresponding eikonal equation. It follows from
asymptotic completeness that relation (7) is fulfilled for every f € H(@¢). The
asymptotics (7) shows that, for f € 72, the solution (exp(—iHt)f)(z) “lives”
in the region where |z| ~ [t].

Similarly, in the N-particle short-range case, for any f0 € Ly(X,) and fai,k =
W (@* @ f2),

(exp(—iHt) f53)(x) = $**(2%) exp(i®ai (20, 1)) (2it) %/ fO(za / (20)) +0(1), (9)

where d, = dim X, ®, x(7q,t) = 22(4t) ! — A»*¢. Theorem 2 implies that every
f € #(%°) is an orthogonal sum of vectors f;tk satisfying (9). For N-particle sys-
tems with long-range pair potentials V' the result is almost the same if condition
(8) with some p > /3 — 1 is fulfilled for all functions V(z®). In this case again
every f € H(%9 is an orthogonal sum of vectors f;tk satisfying (9) with suitable
functions ®, k(z4,t). This result (asymptotic comﬁleteness) was obtained by V.
Enss [6] for N = 3 and extended by J. Dereziniski [4] (his method is different from
[6] and uses some ideas of I. Sigal and A. Soffer) to an arbitrary number of particles
(see also [26]).

4. NEW CHANNELS OF SCATTERING. It turns out that for some three- (and N-)
particle systems with pair potentials satisfying (8) for p < 1/2, there exist channels
of scattering different from (9). We rely on the following general construction
[35, 36]. Suppose that RY = X; @ X!, dim X; = dy, dim X! = d', d; + d' = d,
but we do not make any special assumptions about a potential V (z) = V (x1,z).
Let us introduce the operator H!(z1) = —A,1 + V(x1,2!) acting on the space
Ly(X1). Suppose that H!(z;) has a negative eigenvalue A\(z1), and denote by
(z1,2') a corresponding normalized eigenfunction. In interesting situations the
function \(z1) tends to zero slower than |z1|~!. Let us consider it as an “effective”
potential energy and associate to the long-range potential A(x1) the phase function
® = ®,. We prove, under some assumptions, that for every g € Lo(X7) there exists
an element f* € H(%°) such that

(exp(—iHt) fF)(z) = Y (x1, 1) exp(i®(z1, t))(?it)_dl/Qg(:rl/(Zt)) +o(1) (10)

as t — Fo00. The mapping § — f* (§ is the inverse Fourier transform of g) defines
the new wave operator W*. Tt is isometric on La(X1), and HW* = WE(—A,,).
The ranges of W¥ and of W= are orthogonal if both of these wave operators ex-
ist. The existence of solutions of the time-dependent Schrédinger equation with
asymptotics (10) requires rather special assumptions which are naturally formu-
lated in terms of eigenfunctions (1, x!). Typically the asymptotic behaviour of
(z1,2') as A(z1) — 0 has a certain self-similarity:

Y(ar,zt) = |z 778 20| |7at) + o(1) (11)
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for some ¥ € Ly(X') and 0 > 0. We prove the asymptotics (10) if (11) is
fulfilled for o < 1/2. On the other hand, simple examples show that (11) for
o > 1/2 does not ensure existence of solutions with the asymptotics (10). It is
important that 1(z1,2') can be chosen as an approzimate solution of the equation
H' (z1)¢(21) — Ma1)d(z1) = 0.

Let us first give an example of a two-body long-range potential (see [36], for
more general classes) for which the completeness of the modified wave operator is
violated. Let

Ve, z') = —v(<z >T+ <zt >0 pe(0,1), ¢e(0,2), v>0, (12)

where we use the notation < y >= (1 + |y|?)!/2. The function (12) is infinitely
differentiable and V(z) = O(|z|~”) as |z] — oo. The bound (8) is fulfilled for
arbitrary x off any conical neighbourhood of the planes X; and X!. This suffices
for the existence of the modified wave operator W*. If ¢ = 2, then V(z1,2') is a
radial function, so W= is complete.

THEOREM 7 Let a potential V' be defined by (12) where 1 —p < q¢ < 2(1 — p).
Let A be any eigenvalue and ¥ be a corresponding eigenfunction of the operator
K = —A, +vpg~ |zt in the space La(X1). Define the function v (z1,z') and
the “potential” \(x1) by the equations

Y(z1,2h) = |21 7720 (|21 72),  Ax1) = —v|z1| 7P + Al |72, (13)

where 0 = (p+q)(2+ q)~' and set ® = ®. Then the wave operator W exists
and the subspaces ROVT), R(W®) are orthogonal.

Let us now consider the Schrédinger operator, which describes three one-
dimensional particles with one of three pair interactions equal to zero. The fol-
lowing result was obtained in [35].

THEOREM 8 Let V(x) = V(z!) + V2(a! — 21) where d* = dy = 1. Suppose that
V1 >0 is a bounded function, V1(z') =0 for z* > 0 and V*(z!) = v1|2!|™", v1 >
0, r € (0,2), for large negative z*. Suppose that a bounded function V? satisfies
for some p € (0,1/2) and vy > 0 one of the two following conditions: 1° V?2(z?) =
—va|@?| 7P for large positive z%; 2° V2(2?) = va|x?|=P for large negative z2. Let
A be any eigenvalue and ¥ a corresponding eigenfunction of the equation —V" +
|va|px ¥ = AW for z1 >0, ¥(0) = 0, extended by 0 to z* < 0. Define the function
(w1, x') and the “potential” \(z1) by the equations (13), where o = (p + 1)/3
and v = —vg, 1 < 0 in the case 1°, v = vy, 1 > 0 in the case 2°. Put & = &,
Then the wave operator W* defined by equality (10) exists for any g € La(Rz) in
the first case and for any g € L2(Ry) in the second case. Moreover, the subspaces
ROW*), ROW{) and ROWS), a = 1,2, are orthogonal.

We emphasize that for f € R(W?) the solution u(t) = exp(—iHt)f of the
Schrédinger equation “lives” for large |¢| in the region where 21 ~ —[¢| in the case
19 or 1 ~ [t| in the case 20 and x! ~ |t|° for 0 € (1/3,1/2). Such solutions
describe a physical process where a pair of particles (say, the first and the second)
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interacting by the potential V! are relatively close to one another and the third
particle is far away. This pair is bound by a potential depending on the position of
the third particle, but this bound state is evanescent as |t| — oo. Thus solutions
u(t) for f € R(W*) are intermediary between those for f € R(W§) and f €

There is however a gap between the cases when asymptotic completeness holds
and when it is violated. Hence the following questions arise.

PROBLEM 9 Is the scattering asymptotically complete when p € [1/2,+/3—1)? The
same question for all p < /3 — 1 if particles are, say, three-dimensional.

Note that, under some additional assumptions, asymptotic completeness for
all p > 1/2 was checked in [28, 9]. In the cases when new channels are constructed
one can expect that all possible asymptotics of the time-dependent Schrodinger
equation have either the form (9) or (10). In a somewhat similar situation a result
of such type was established in [30]. Thus, we formulate

PROBLEM 10 To prove (for example, under the assumptions of Theorems T and 8)
generalized asymptotic completeness, that is, that the ranges of all wave operators
constructed exhaust H(*)(H).

5. THE SCATTERING MATRIX. For the two-particle Schrodinger operator H =
—A + V(z) in the space La(R?), the scattering matrix S(\), A > 0, is a unitary
operator on the space Lo(S¢~1). If V is a short-range potential, then the operator
S(X\) — Id is compact so the spectrum of S = S()) consists of eigenvalues p: =
exp(+ifF), £0F > 0, lying on the unit circle T and accumulating only at the
point 1. Moreover, the asymptotics of the scattering phases 6 is determined by
the asymptotics of the potential V(z) at infinity and is given by the Weyl type
formula. The following assertion was established in [2].

THEOREM 11 Let V(z) = v(z|z|™Y)|z|=" + o(|z|7*), p > 1, v € C®(S¥71), as
|z| — 0o. Then 70X () — Qi asn — oo, where v = (p—1)(d — 1)~ and Q4 is
some explicit functional of v and p, .

The situation is drastically different for long-range potentials. Note that in
this case modified wave operators can be defined [14, 15] by equality (1) where
J1 is a suitable pseudo-differential operator. It depends on the sign of ¢t. The
existence and completeness of the operators Wy (H, Hy; Jy) follow immediately
from Theorem 4, which fits the long-range scattering into the theory of smooth
perturbations. In the long-range case, S(\) — Id is no longer compact. More-
over, its spectrum covers the whole unit circle. For simplicity we give the precise
formulation only for the case p > 1/2 (see [37], for details).

THEOREM 12 Let condition (8) with p > 1/2 hold. Suppose that the function

V(w,b):/oo (V) - Vb +w)dr, [wo]=1, (@b =0,  (14)

— 00
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satisfies the condition |V (wy, t,bo)| — 0o for some point wy, by and some sequence
t, — 00. Then for all A > 0 the spectrum of the scattering matriz S(\) covers the
unit circle.

Our study of the scattering matrix relies on its stationary representation (in
terms of the resolvent). First, using the so called microlocal or propagation esti-
mates [20, 17, 16], we show that, up to an integral operator with C'°°-kernel, S
can be considered as a pseudo-differential operator with explicit principal symbol

s(w,b;x):exp(n*lxlﬁww,xl/%)), wl =1, (w,b)=0. (15)

If p < 1, this is an oscillating function as |b| — oo, which implies Theorem 12. Note
that in the short-range case the principal symbol of S equals 1 which corresponds to
the Dirac-function in its kernel. In the long-range case this singularity disappears.

The kernel s(w,w’) of S (the scattering amplitude) is [1, 15] a C°°-function off
the diagonal. Its diagonal singularity is given by the Fourier transform of the sym-
bol (15). It turns out [37] that for an asymptotically homogeneous function V' (z) of
order —p, p < 1, the kernel s is a sum of a finite number of terms s; = w; exp(iy);),
where the moduli wj(w,w’) and the phases ¢;(w,w’) are asymptotically homoge-
neous functions, as w—w’ — 0, of orders —(d—1)(1+p71)/2 < —d+1land 1—p~1,
respectively. Thus S is more singular than the singular integral operator. In the
case p = 1, the modulus w = |s| is asymptotically homogeneous of order —d + 1,
and the phase 9 of s has a logarithmic singularity on the diagonal.

In the N-particle case results on the structure of the scattering matrix S are
scarce. Let us mention the one by R. Newton [21] (see also [29], for an elementary
proof), which asserts that in the 3-particle case, S = SngSgg, where S, is the
scattering matrix for the Hamiltonian with only one pair interaction V* and the
operator S — Id is compact. We conclude with

PROBLEM 13 Eztend the above result to an arbitrary N.
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1 INTRODUCTION

The purpose of this paper is to attract attention to the subject of statistical dis-
tribution of deterministic sequences. In quantum chaos problems they can be the
eigenvalues of a quantum mechanical problem, in number theory the natural choice
is the imaginary parts of non-trivial zeros of zeta functions, etc.

The important point that makes this field interesting is the observation that
statistical distributions of completely different sequences are, to a large extent,
universal depending only on very robust properties of the system considered. The
origin of such universal laws remains unclear.

In the fifties Wigner and later Dyson (see articles in [1] and the review [2]),
based on a physical idea that ‘complicated’ means ‘random’, have proposed to
consider the Hamiltonian of heavy nuclei as a random matrix taken from a certain
ensemble characterized only by symmetry properties. The duality: ‘Hamiltonian
+— random matrix’ has been proved very useful [3], [4] and stimulated the de-
velopment of random matrix theory [5]. Later it was understood that the same
idea can also be applied to low-dimensional quantum systems and the accepted
conjectures are: (i) local statistical behaviour of energy levels of classically inte-
grable systems is close to the Poisson distribution [7], (ii) energy levels of classically
chaotic systems are distributed as eigenvalues of random matrices from the stan-
dard random matrix ensembles [6]. One of these ensembles (Gaussian Unitary
Ensemble (GUE)) seems to describe the local spectral distribution of non-trivial
zeros of zeta functions of number theory [8]-[11].

The volume of numerical evidences in the favor of these conjectures is im-
pressive (see e.g. [3], [9], [4]) but the full mathematical proof even in the simplest
cases is still lacking.

In this paper we shall discuss a straightforward method to attack this problem
based on trace formulae.
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2 TRACE FORMULAE

The Gutzwiller trace formula [12] states that the density of eigenvalues for a quan-
tum system can be written as a sum of a smooth (d) term and an oscillating part

(osc) ZZAPJL eXp nS ( )) +c.c., (1)

ppo n=1

given by a sum over primitive periodic orbits and their repetitions. Here S}, is the
classical action calculated along one of such orbits,

T,

Ay, =
P 9wk | Det( M2

LT
1)|1/2 exp( 2”:“;0)

M, is the monodromy matrix around the orbit, T}, is its period, and p, is the
Maslov index. For the motion on constant negative curvature surfaces generated
by discrete groups this formula coincides with the Selberg trace formula but for
generic systems it represents only the first term of a formal expansion on the
Planck constant.

Similar expresion exists also for the Riemann zeta function. For the density
of nontrivial Riemann zeros (assuming s, = % +iE,)

d(osc

suH

i ) cos(E logn), (2)

where A(n) = logp, if n is a power of a prime p, and A(n) = 0 otherwise.

3 CORRELATION FUNCTIONS

The n-point correlation function of energy levels is defined as the probability of
having n levels at prescribed positions

Rn(Gl, €2,... ,Gn) =< d(E + 61)d(E + 62) . d(E + €n> >, (3)
where the brackets < ... > denote the smoothing over an energy window

<1(B) >= [ $(B)o(E - BYE, (4)

with an appropriate weighting function o(E) centered near zero.
In particular, the 2-point correlation function has the form

Rofer,e) =@+ Y Apmdy, 0, < exp(5 (1S, (B) —naSp, (B))) >
Pi,nq
x exp(§ (M Ty, (E)er —naTy, (B)ez)) + c.c. (5)

The terms with the sum of actions are assumed to be washed out by the smoothing
procedure.
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4 DIAGONAL APPROXIMATION

Berry in [13] proposed to estimate the above sum by taking into account only
terms with exactly the same actions which leads to the following expression for
the two-point correlation form factor (the Fourier transform of Rs)

K9 (1) = 213" [ A0 25(t — nT(E)) + c.c., (©6)

p,n

where the sum is taken over all periodic orbits with exactly the same action.
Using the Ruelle-Bowen-Sinai measure on periodic orbits (called in physical
literature the Hannay-Ozorio de Almeida sum rule [14]) one finds that for ergodic

systems
K9 (1) = g (7)
o’
where ¢ is the mean multiplicity of periodic orbits. For generic systems without
time reversal invariance g = 1 and for systems with time reversal invariance g = 2
and this result coincides with the small-¢ behaviour of form factor of classical
ensembles.

Unfortunately, K (%29)(t) grows with ¢ but the exact form factor for systems
without spectral degeneracies should tend to d when t — oco. This contradiction
clearly indicates that the diagonal approximation cannot be correct for all values
of t and more complicated tools are needed to obtain the full form factor.

5 DBEYOND THE DIAGONAL APPROXIMATION

We begin to discuss the calculation of off-diagonal terms on the example of the
Riemann zeta function where more information is available and then we shall
generalize the method to dynamical systems.

The connected two-point correlation function of the Riemann zeros is

R2(€1,€2 — Z < eiElog(nl/n2)+i(el logni—es logna) > fe.c. (8)
47 n1me nlng

The diagonal terms correspond to n; = ns and

0?

dia
Rg 9) (6) - 4 ) 8 9.2

log([¢(1 +ie)P@(**9) (e)), 9)

where € = €; — €2 and the function @(diag)(e) is given by a convergent sum over
prime numbers

3(d1a9) (¢) = exp(— Z Z mZpm eimlosre 4 cc)). (10)

p m=1

When € — 0, Ra(e) — —(2m2€?)~! which agrees with the smooth GUE result.
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The term exp(iE log(ny/n2)) oscillates quickly if ny is not close to ng. De-
noting n; = ng + h and expanding smooth functions on h one gets

o h ) )
R( ff 4 — Z TL+ ) zE(h/n)Jrzelogn > e (11)
s

The main problem is clearly seen here. The function F(n,h) = A(n)A(n + h)
changes irregularly as it is nonzero only when both n and n+ h are powers of prime
numbers. Fortunately, the dominant contribution to the two-point correlation
function comes from the mean value of this function

a(h) = lim —ZA A(n + h), (12)

N—oco N

and its explicit expression follows from the famous Hardy-Littlewood conjecture

[15]
_ —2milh N(Q) 2
am = 3 e (B0 13)

(p,q)=1

where the sum is taken over all coprime integers ¢ and p < ¢, u(n) and ¥ (n) are
the Mobius and the Euler functions respectively.
Using this expression for a(h) and performing the sum over all h one obtains

o 1 - Tide g (o
Ré ff)(e) _ W|C(1+Z€)|2€2 de g ( ff)(€)+c,c,7 (14)

where function ®(°//)(e) is given by a convergent product over primes

a1 (e) = T[(1 - 7(327__77;)2 ). (15)

In the limit of small e, R{*/)(e) — (e2mide 4 ¢=2mide) /(27¢)? which corresponds
exactly to the GUE result.

The above calculations demonstrate how one can compute the two-point cor-
relation function through the knowledge of pair-correlation function of periodic
orbits. For the Riemann case one can prove under the same conjectures! that all
n-point correlation functions of Riemann zeros tend to the corresponding GUE
results [16].

The interesting consequence of the above formula is the expression for the
two-point form factor

K@) = 4_71r2 ( z): <%) (%)5(:& —2rd — logl—z), (16)
p,q)=1

which means that the off-diagonal two-point form factor is a sum over §-functions
in special points equal the Heisenberg time (T = 27d) plus a difference of periods

IReally only a smoothed version of the Hardy-Littlewood conjecture is needed.
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of two pseudo-orbits (linear combinations of periodic orbits). This set is dense but
the largest peaks correspond to the shortest pseudo-orbits. Similarly the two-point
diagonal form factor is the sum of § functions at the positions of periodic orbits

) 1 log?
K(dzag) (t) _ 4_7-(2 Z pgmp(s(t — mlng) (17)
p,m

The smooth values corresponding to the random matrix predictions appear only
after a smoothing of these functions over a suitable interval of ¢.

6 ARITHMETICAL SYSTEMS

Similar behavior has been observed in a completely different model, namely for
the distribution of eigenvalues of the Laplace—Beltrami operator for the modular
domain [17]. It was shown that in this model the two-point correlation form factor
can be written in the following form

K(t)zﬂle >

(p,q)=1

2

a 5(t — tpq), (18)

where
S(p,p;q)

¢ leq(]‘ —w=?)’

The product is taken over all prime divisors of ¢ and S(p, p; q) is the Kloosterman
sum

2 kq
tp,q = Elnﬂ'_p, and ,B(p,q) =

c—1
S(n,m;c) = Z exp(27i(nd +md~1')/c).

d=1
This model belongs to the so-called arithmetical models corresponding to the mo-
tion on constant negative curvature surfaces generated by arithmetic groups. For
all these models due to the exponential multiplicities of periodic orbits one expects
[18] that the spectral statistics will tend to the Poisson distribution though from a
classical point of view all these models are the best known examples of classically
chaotic motion. Using the above expression one can prove this statement for the
modular group.

7 CONSTRUCTION OF THE DENSITY OF STATES FROM FINITE NUMBER OF PE-
RIODIC ORBITS

The main difficulty in using trace formulae is their divergent character. The di-
agonal approximation consists, in some sense, on computing the density of states
from a sum over a finite number of periodic orbits but this sum cannot produce
d-function singularities. There exists an artificial method [19] which permits to
avoid this difficulty. Its main ingredient is the Riemann-Siegel form of the zeta
function )

C(1/2 —iE) = zp(E) + >N E) 22 (E), (19)
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where instead of the correct Riemann-Siegel expansion one uses a truncated prod-
uct over periodic orbits

a(B)= [ (-p 248
log p<T

The density of zeros for function (19) takes the form

Dr(E) = dr(E) 3 (1) (—Z%(E))k, (20)

k=—o0

where dr(F) is the density of state truncated at logp < T'. B B
Assuming that T is of the order of the Heisenberg time, Ty = 2nd, and d — oo
after some algebra we get

zp(E +€1)zr(E +€2)

R(Off) , — CZQGQTM'JE <
2 (€1 €2) zr(E + €1)z0(E + €2)

> +c.c. (21)

The last step consists in performing the energy average of this expression. As
logarithms of primes are not commensurable, the energy average of any smooth
function of exp(iElog p;) equals its phase average

27 27 ” " Mdd)J
< f>= R =, 22
fom [ [ e 115 (22

This is essentially equivalent to the random phase approximation, or to the ergodic
theorem for quasi-periodic functions with non-commensurable periods, or to the
strict diagonal approximation.

For the Riemann zeta function the total contribution equals

Ry (e) = C? exp(2mide)|¢(1 + i€) 2D D (e) + c.c. | (23)

where

_ ie)2
270 () = [0 - 7((12) _pl))Q ) (24)

€ =¢€ —¢€, and C = J]_[p(l — 1/p). All products in these expressions include
prime numbers up to Inp = T. The first two products converge when T' — oo and
only the last one requires a regularization. But our parameter 7" has not yet been
fixed. Let us choose it in such a way that

- 1
ord ] (1- 2—)) =1. (25)

p

The same factor appears in the statistical approach to prime numbers (see dis-
cussion in [15]) and can be considered as a renormalisation of formally divergent
sums. After this renormalization we get exactly the same formula (14) as has been
derived in the previous section using the Hardy-Littlewood conjecture about the
pairwise distribution of prime numbers.
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8 OFF-DIAGONAL TERMS FOR DYNAMICAL SYSTEMS

For 2-dimensional dynamical systems the only difference with the Riemann case
is that the truncated zeta function zr(E) contains now an infinite product over m

¢iSp(B) /h—impiy /2

zr(E) = H H (1- W% (26)

T, <T m=0

where A, is the largest eigenvalue of the monodromy matrix.

The simplest and most natural assumption is that in generic systems with-
out time-reversal invariance periodic orbits up to period T are linearly non-
commensurable (as primes). Under this conjecture after some algebra we obtain
that when 7' — oo

_ g2mide ~1y ()2 Zy(ie) ?
Ra(€) = — 517" Zalie)] 1;[ < Rp > Z,0) +c.c. (27)
and
-~ (@9)7
< R, >= " 28
? z_;) a2’ @8)
where (a;¢9) = (1 —a)(1—aq)...(1—ag" '), a=e""r, g =AJ', y=|A)| te™

and 7, = lye/k. Zu(s) is a classical zeta function, Zy(s) = []
Zp(s) =1 — €™ [|Ap].
The maximum period 7T is determined from the condition

ord [[ 2,(0) = — (29)

1
M
Loor o]

where + is the residue of Z.(s) at s =0 (Z(s) — /s when s — 0). As above this
renormalization fixes T to be of the order of Ty and ensures that, when € — 0,
Ry (€) tends to the GUE result.

9 RANDOM MATRIX UNIVERSALITY

There exists another method of semiclassical calculation of off-diagonal part of
correlation functions which demonstrates that if such formulae exist they coincide
with the above obtained expressions.

According to the naive trace formula the density of states is

d(E) = d(E) + n(E), (30)

where cZ(E) is the truncated density of states computed from a set of short-period
orbits with period T, < T (now we shall assume that T < Tgx) and n(E) is

(unknown) part of the density constructed from high-period orbits.
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Let us try now to construct a random matrix ensemble which has the mean
density of eigenvalues exactly equals d(E). In principle, the necessary potential
can be computed from the Dyson equation

/@dt ~ Ly (31)

z—1 2
But the explicit form of this potential is irrelevant as under quite general conditions
the resulting distribution does not depend on the explicit form of this function
(provided it corresponds to the so-called definite momentum problem [21]) and all
correlation functions depend only on the kernel Ky (z,y) which in the bulk of the
spectrum in the limit N — oo tends to

sinm(N(z) — N(y))

K(z,y) = , 32
() = S (32)
where N(z) = [* d(z')dz’ is the mean staircase function.
Hence, the two-point correlation function will take the form
-2 N7 N7
- ~ N(E —NE
Ra(er, ) =< d(E + e)d(E + &) - S TN EFe) = N(E+e)) g9

m2(e1 — €3)2

As cZ(E) is known it is possible to perform the smoothing over the appropriate
energy window. Using the same transformations as above one can show that
under the assumption 7" < Ty the dependence of T' will disappear and one gets
the same formulae as above.

10 CONCLUSION

The heuristic arguments presented in this paper demonstrate how, in principle,
the existence of the trace formula and certain natural conjectures about the dis-
tribution of periodic orbits (or primes) combine together to produce universal
local statistics. In particular, for systems without the time-reversal invariance
the assumption that low-period orbits are non-commensurable leads to the GUE
statistics (at least for 2-point correlation function). The close relation between
diagonal (9) and off-diagonal (14) terms (first observed for disordered systems in
[22]) suggests the existence of a certain unified principle. The best candidate for
it is the ‘unitarity’ property of the trace formula, namely, that the distribution of
periodic orbits should be such that the corresponding eigenvalues will be real. In
some sense certain long-period orbits are connected to the short ones and the in-
vestigation of this connection may clarify the origin of universal spectral statistics.
The interesting question is what conjectures about periodic orbits are necessary
to obtain correlation functions for systems with time-reversal invariance where
almost all periodic orbits appear in pairs with exactly the same action.
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SCALING ALGEBRAS

IN LocAL RELATIVISTIC QUANTUM PHYSICS

DETLEV BUCHHOLZ

ABSTRACT. The novel method of scaling algebras allows one to compute
and classify the short distance (scaling) limit of any local relativistic
C*—dynamical system and to determine its symmetry structure. The
approach is based on an adaptation of ideas from renormalization group
theory to the C*—algebraic setting.

Local relativistic quantum physics [1] in a pseudo-Riemannian spacetime manifold
(M, g) can conveniently be described by C*~dynamical systems (A, ), where A
is a C*—algebra, describing the physical observables in M, and « a representa-
tion of the isometry group of (M, g) by automorphisms of A. The principle of
Einstein causality is implemented in this setting by specifying a net (pre-cosheaf)
of subalgebras of A which are labelled by the open, relatively compact regions
OcCM,
0 — A(0),

such that algebras corresponding to causally disjoint regions commute with each
other. A theory is fixed by specifying a dynamical system which is subject to these
constraints.

In high energy physics the structure of the observables in very small spacetime
regions O (at “small spacetime scales”) is of great interest. It can be explored with
the help of scaling algebras which have been introduced in [2] by adopting ideas
from the theory of the renormalization group. We outline this method for the case
where (M, g) is d-dimensional Minkowski space R9, equipped with its standard
Lorentzian metric. The corresponding isometry group is the Poincaré group 731
whose elements (A, z) are composed of Lorentz transformations and spacetime
translations.

For the analysis of the short distance properties of a theory one first pro-
ceeds from the given net and automorphisms (A, ) at spacetime scale A = 1 (in
appropriate units) to the corresponding nets (AO‘), ao‘)) describing the theory at
arbitrary scale A € Ry. This is accomplished by setting for given A

0 — AN(0) = AN0), o) = ap -
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The latter nets are in general not isomorphic to each other for different values of
A, so they are to be regarded as different theories.

In addition one needs a way of comparing observables at different scales. To
this end one considers certain specific functions A of the scaling parameter whose
values A, are, for given ), regarded as observables in the theory (AO‘), ao‘)). With
this idea in mind one is led to the following construction.

Consider the C*-algebra L*(A) of functions A : Ry ~—— A for which the
algebraic operations are pointwise defined and which have finite norm ||A|| =

sup, ||A, ||. The Poincaré group 771 acts on L°(A) by automorphisms o,  which

A,
are given by

(ay . (A), = (4,).

We restrict attention to the subalgebra of L°°(A) on which these automorphisms
act strongly continuously. Moreover, we introduce a local net structure on this
subalgebra by setting

O A0)={A: A, € AV(0), AeR,}.

The scaling algebra A is then defined as the inductive limit of the local algebras
A(O). It is easily checked that (A, o) is again a local C*~dynamical system which
is completely fixed by the given net.

The physical states in the underlying theory are described by a folium of
positive linear and nomalized functionals w € A* which are locally normal with
respect to each other [1]. Their structure at small spacetime scales can be analyzed
with the help of the scaling algebra as follows. Given w, one defines its lift to the
scaling algebra at scale A € R by setting

ﬂ}fé) = w(éx)? é € A
If ), denotes the GNS-representation of A induced by w ,, one considers the net
O+ A(O)/kerm,, go‘),

where ker means “kernel” and g(’\) is the induced action of the Poincaré transfor-
mations o on this quotient. It is important to notice that this net is isomorphic
to the underlying theory (A™) a(M) at scale A. This insight leads to the follow-
ing canonical definition of the scaling limit of the theory: One first considers the
limit(s) of the net of states {w, } x\\,0. By standard compactness arguments, this
net has always a non-empty set {w,} of limit points. The following facts about
these limit states have been established in [2]:

PROPOSITION 1. The set {20} does not depend on the chosen physical state w.

PROPOSITION 2. Each w, is a vacuum state on (A, a), ie. a ground state with
respect to the time evolution which is invariant under Poincaré transformations.
Moreover, in d > 2 dimensional Minkowski space theories these vacua are pure
states.
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Denoting the GNS-representation corresponding to given w, by (EO, ﬂo) one
then defines in complete analogy to the case A > 0 the net

0 — A9 = A0)/kerm,, o® =a®

which is to be interpreted as scaling limit of the underlying theory. The various
steps in this construction can be summarized in the diagram

(A, a) — (.AO‘), ao‘)) — (A, o) — {(A(O), a(o))}.

It is now possible to classify the scaling limits as follows [2].

CLASSIFICATION: Let (A, o) be a net with properties specified above. There are
the following mutually exclusive possibilities for the structure of the scaling limit
theory induced by the corresponding scaling limit states {go}.

1. The nets (A©®, a(9) are all isomorphic to the trivial net (C-1,id) (classical
scaling limit)

2. The nets (A©, a(9)) are all isomorphic and the algebras A are non-
abelian (quantum scaling limit)

3. Not all of the nets (A©, a(?)) are isomorphic (degenerate scaling limit)

Theories with a quantum scaling limit are of primary physical interest. For
this class there holds the following statement on the enhancement of symmetries
at small scales [2].

ProposiTION 3. The scaling limit nets (A(O), a(o)) of theories with a quantum
scaling limit admit an automorphic action of the scaling transformations R .

Simple examples in this class are nets generated by non—interacting quantum
fields in d = 3 and 4 dimensions [3]. For a discussion of the other cases see [4].

The fact that the scaling limit theories (A, a(?)) exhibit all features of local
nets of observable algebras allows one to apply standard methods for their analysis
and physical interpretation. For the determination of the symmetries appearing
in the scaling limit one can rely in the case of d > 2 dimensional Minkowski space
on the Doplicher—Roberts reconstruction theorem [5]. The necessary prerequisite
for its application is the following result established in [2].

ProposiTION 4. If a local net complies with the special condition of duality
(modular covariance) of Bisognano and Wichmann, the same holds true for its
scaling limit.

By the results of Doplicher and Roberts [5] one can then recover from the
outer local endomorphisms of the scaling limit net (A, a(%)) a compact group
G whose irreducible representations are in one—to—one correspondence to the set
of physical states which appear in the scaling limit and carry a localizable charge.
Moreover, there exists an extension of the scaling limit net to a field net (F (), a(o))
on which G(9) acts by automorphisms and which implements the action of the local
endomorphisms. The vacuum representation of this field net describes the charged
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physical states and can be used to analyse their detailed properties. In particular
one can determine from it the particle content of the scaling limit theory, which
corresponds to the set of non—trivial irreducible representations of the Poincaré
group 731 appearing in the vacuum sector of (F(©), (%)),

Of special interest is the comparison of the particle and symmetry content of
the underlying theory and of its scaling limit [6]. Depending on the theory, there
may be particles at finite scales which disappear in the scaling limit, particles
which survive in this limit and particles which only come into existence at very
small scales. These possibilities correspond exactly to the features of the various
particle like structures which are observed in high energy collision experiments.
Intuitive physical notions, such as quark, gluon, colour symmetry and confinement
thus acquire an unambiguous mathematical meaning in the present setting [6].

The extension of the short distance analysis to local nets on spacetimes (M, g)
with a large isometry group, such as de Sitter space, is straightforward. For theo-
ries on spacetimes with small isometry groups it is however less clear how to define
corresponding scaling algebras which consist of sufficiently regular elements. An
interesting proposal to solve this problem has been made by Verch [7]. In this
approach the resulting scaling limits turn out to be local C*-dynamical systems
in the (Minkowskian) fibers of the tangent bundle of (M, g). For a further classi-
fication of these theories it would be of interest to analyze the transport between
the corresponding dynamical systems in the various fibers which is induced by the
underlying dynamics. This “quantum connection” should also contain relevant
information on the presence of local gauge symmetries in the underlying theory.
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FINITE-SIZE SCALING IN PERCOLATION

J. T. CHAYES

ABSTRACT. This work is a detailed study of the phase transition in per-
colation, in particular of the question of finite-size scaling: Namely, how
does the critical transition behavior emerge from the behavior of large, fi-
nite systems? Our results rigorously locate the proper window in which to
do critical computation and establish features of the phase transition. This
work is a finite-dimensional analogue of classic work on the critical regime of
the random graph model of Erdés and Rényi.
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1. INTRODUCTION

This paper gives an overview and discussion of some recent results of Borgs,
Chayes, Kesten and Spencer [BCKS2] on finite-size scaling and incipient infinite
clusters in percolation.

We consider bond percolation in a finite subset A of the hypercubic lattice
7. Nearest-neighbor bonds in A are occupied with probability p and vacant with
probability 1 — p, independently of each other. Let p. denote the bond percola-
tion threshold in Z¢, namely the value of p above which there exists an infinite
connected cluster of occupied bonds. As a function of the size of the box A, we
determine the scaling window about p. in which the system behaves critically. For
our purposes, criticality is characterized by the behavior of the distribution of sizes
of the largest clusters in the box. We show how these clusters can be identified with
the so-called incipient infinite cluster—the cluster of infinite expected size which
appears at p.. It turns out that these results can be established axiomatically from
hypotheses which are mathematical expressions of the purported scaling behavior
in critical percolation. Moreover, these hypotheses can be explicitly verified in
two dimensions. In this brief overview, I will omit all details of the proofs of the
[BCKS2] results, focusing instead on the motivation, the hypotheses and a few of
the implications of these results. The reader is referred to [BCKS1] and [BCKS2]
for more details and for related results which are not included here. Some of the
discussion here closely parallels that of [CPS].
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2. THE MOTIVATION
The motivation for the [BCKS2] work was threefold.

The Random Graph Model
The original motivation for this work was to obtain an analogue of known results
on the so-called random graph model of Erdés and Rényi ([ER1], [ER2]; see also
[B2]). The random graph model is simply the percolation model on the complete
graph, i.e., it is a model on a graph of N sites in which each site is connected to
each other site independently with uniform probability p(N). Physicists would call
this a mean-field percolation model. It turns out that the model has particularly
interesting behavior if p(IN) scales like p(N) &~ ¢/N with ¢ = ©(1). Here, as usual,
f = ©(N%) means that there are nonzero, finite constants ¢; and cg, of equal sign,
such that ¢ N® < f < o N
Let W denote the random variable representing the size of the i*? largest clus-
ter in the system. Erdos and Renyi showed that the model has a phase transition
at ¢ = 1 characterized by the behavior of W) It turns out that, with probability
one,
O(logN) if ec<1
w = O(N3) if c=1
O(N) if e¢>1.

Moreover, for ¢ > 1, W) /N — (c) > 0, while for ¢ = 1, W) has a nontrivial
distribution (i.e., W) /N?/3 — constant), again with probability one. The smaller
clusters have the same behavior as the largest for ¢ < 1, but different behavior
for ¢ > 1: For i > 1, W® = ©(logN) for all ¢ # 1, while at ¢ = 1, W® =
O(N?/3). The ©(N) cluster for ¢ > 1 is clearly the analogue of the infinite cluster
in percolation on finite-dimensional graphs; here it is called the giant component.
As we will see, the ©(log N) clusters are analogues of finite clusters in ordinary
percolation. The ©(N?/3) clusters will turn out to be the analogues of the so-
called incipient infinite cluster in percolation. The work on the regime ¢ # 1
appeared already in the original papers of Erdos and Rényi ([ER1], [ER2]); the
correct behavior for ¢ = 1 was derived many years later by Bollobés [B1].

In the past decade, there has been a great deal of work and remarkable progress
on the random graph model. Much of this work culminated in the combinatoric
tour de force of Janson, Knuth, Luczak and Pittel [JKLP]. Using remarkably
detailed calculations, it was shown that shown that the correct parameterization
of the critical regime is \

1

in the sense that if limy . |A\y| < 0o, then W) = ©(N?/3) for all i, and fur-
thermore each W) has a nontrivial distribution (which was actually calculated
in [JKLP]). On the other hand, if limy ,ooAy = —oo, then W® /WM — 1
with probability one, whereas if imy_,ooAy = 400, then W /W1 — 0 and
w /N 2/3 s 400 with probability one. The largest component in the regime
with Ay — +o0 is called the dominant component. As we will see, it has an
analogue in ordinary percolation.
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The initial motivation for the [BCKS2] work was to find a finite-dimensional
analogue of the above results. To this end, we considered d-dimensional percolation
in a box of linear size n, and hence volume N = n?. We asked how the size of the
largest cluster in the box behaves as a function of n for p < p., p = p. and p > p.
Also, we asked whether there is a window p(n) about p. such that the system has
a nontrivial cluster size distribution within the window.

Finite-Size Scaling

The considerations of the previous paragraph lead us immediately to the ques-
tion of finite-size scaling (FSS). Phase transitions cannot occur in finite volumes,
since all relevant functions are polynomials and thus analytic; nonanalyticities only
emerge in the infinite-volume limit. What quantities should we study to see the
phase transition emerge as we go to larger and larger volumes?

Before the [BCKS2] work, this question had been addressed rigorously only in
systems with first-order transitions—transitions at which the correlation length
and order parameter are discontinuous ([BK], [BI]). Finite-size scaling at second-
order transitions is more subtle due to the fact that the order parameter vanishes
at the critical point. For example, in percolation it is believed that the infinite
cluster density vanishes at p.. However, physicists routinely talk about an incipient
infinite cluster at p.. This brings us to our third motivation.

The Incipient Infinite Cluster

At p., there is no infinite cluster with probability one, but the expected size
of the cluster of the origin is infinite. Physicists call this finite object of infinite
expected size, the incipient infinite cluster (IIC).

In the mid-1980’s there were two attempts to construct rigorously an object that
could be identified as an incipient infinite cluster. Kesten [K] proposed to look at
the conditional measure in which the origin is connected to the boundary of a box
centered at the origin, by a path of occupied bonds: PJ'(-) = Pp(- | 0 <+ 8[—n, n]%).
Here, as usual, P,(+) is product measure at bond density p. Observe that, at p = p.,
as n — oo, PIZ‘(-) becomes mutually singular with respect to the unconditioned
measure P,(-). Nevertheless, Kesten found that

lim P} (-) = lim P,(- |0 <> o0).

n—oo  Pe P\(Pe

Moreover, Kesten studied properties of the infinite object so constructed and found
that it has a nontrivial fractal dimension which agrees with the fractal dimension
of the physicists’ incipient infinite cluster.

Another proposal was made by Chayes, Chayes and Durrett [CCD]. They modi-
fied the standard measure in a different manner than Kesten, replacing the uniform
p by an inhomogeneous p(b) which varies with the distance of the bond b from the
origin:

b) = pe + S —
P ¢ T dist(0, b)C
The idea was to enhance the density just enough to obtain a nontrivial infinite
object. [CCD] found that when ¢ = 1/v, where v is the so-called correlation length

DOCUMENTA MATHEMATICA - EXTRA VoLUuME ICM 1998 - III - 113—-122



116 J. T. CHAYES

exponent, the measure P,) has some properties reminiscent of the physicists’
incipient infinite cluster.

In the work to be discussed here, [BCKS2] propose yet a third rigorous incipient
cluster—namely the largest cluster in a box. This is, in fact, exactly the definition
that numerical physicists use in simulations. Moreover, it will turn out to be closely
related to the IICs constructed by Kesten and Chayes, Chayes and Durrett. Like
the IIC of [K], the largest cluster in a box will have a fractal dimension which
agrees with that of the physicists’ IIC. Also, the [BCKS2] proofs rely heavily on
technical estimates from the IIC construction of [K]. More interestingly, the form
of the scaling window p(n) for the [BCKS2] problem will turn out to be precisely
the form of the enhanced density used to construct the IIC of [CCD].

3. DEFINITIONS AND PRELIMINARIES

We briefly review some standard definitions and notation for percolation on Z4
(see e.g., [CPS]). Let C(x) denote the occupied cluster of the site z € Z4, and let
|C(z)| denote its size. The order parameter is the infinite cluster density

Poo(p) = P(|C(0)] = 00),
and the standard susceptibility is the expected finite cluster size
X™(p) = Ep(IC(0)],|C(0)] # o0).

Here, as usual, E, denotes expectation with respect to P,. The finite cluster
point-to-point connectivity function is

Tz, y;p) = Pp(Cz) = C(y),|C(2)| < o0),

The exponential rate of decay of this connectivity defines the correlation length

£(p): .
1/¢(p) = — lim — log 71(0, ; p)

where the limit is taken with x along a coordinate axis. Another point-to-point
connectivity, which for p > p. behaves much like 7", is

(2, y3p) = Pp(|C(2)| = 00,|C(y)| = 00) — P%,(p)-

Notice that

X(p) = ™0, 2;p).
xT
Similarly, we can define another susceptibility,
X (p) = Y70, 2;p).
x
Another connectivity function is the point-to-box connectivity function
T (p) = Pp(3z € 8[—n,n]¢ s.t. C(0) = C(xz)).
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We also introduce the quantity
s(n) = (2n)" ma(pe) -

It will turn out that s(n) represents the size of the largest critical clusters on scale
n. Finally, the cluster size distribution is described by

P>5(p) = Bp(IC(0)] = 5).

We next recall the definitions of some of the standard power laws expected to
characterize the scaling behavior of relevant quantities in percolation, noting that
the existence of these power laws has not yet been rigorously established in low
dimensions. We define F(p) = |p — pc|* to mean lim,_,,_ log F(p)/log|p — p.| =
«, and implicitly assume that the approach is identical from above and below
threshold, unless noted otherwise. Similarly, we use the notation F'(n) ~ n® to
mean lim,,_,o log G(n)/logn = a. The power laws of relevance to us are

Poo(p) = |p—pl®, p> pe,

X (p) ~ p—pel 7,
£(p) = |p—pel ™,
Psy(pe) ~s7/°

and
7rn(pc) ~n e,

Note that the last relation implies
s(n) ~ ns with dg=d—1/p.

Here we use the notation dy to indicate that the power law of s(n) characterizes
the fractal dimension of the incipient infinite cluster.

For rigorous work, it is often convenient to replace the correlation length by
the finite-size scaling correlation length, Lo(p), introduced in [CCF]. Define the
rectangle crossing probability: Ry ar(p) = Pp{ 3 occupied bond crossing of [0, L] x
[0,M]--- x[0,M] in the 1-direction} . Observing that, for p < p., R sr(p) — 0
as L — oo, we define

Lo(p) = Lo(p,e) =min{L > 1| R 31(p) <€} if p<pe.

It can be shown [CCF] that the scaling behavior of Ly (p, €) is essentially the same
as that of the standard correlation length £(p): for 0 < e < a(d), there exist
constants ¢; = ¢1(d), ca = ¢a(d, €) < 0o such that

1 < 1 < c1log Lo(p, €) + c2

Lo(p,e) — &(p) — Lo(p,e) —1

p<Pc-
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Hereafter we will assume that € < a(d); we usually suppress the e-dependence
in our notation. For p > p., [BCKS2] define Lo(p,€) in terms of finite-cluster
crossings in an annulus; the reader is referred to [BCKS2] for precise definitions
and properties of the resulting length. Another important quantity in the high-
density phase of percolation is the surface tension o(p); see [ACCFR] for the precise
definition. By analogy with the definition of a finite-size scaling correlation length
below threshold, [BCKS2] define a finite-size scaling inverse surface tension as

Ao(p) = Ao(p,e) =min{L¥ ' > 1| Rp3p(p) >1—¢} if p>p..
Again, see [BCKS2] for properties of Ag(p).

4. THE SCALING AXIOMS AND THE RESULTS

The [BCKS2] results are established under a set of axioms which we can explicitly
verify in two dimensions and which we expect to be true whenever the dimension
does not exceed the upper critical dimension d. (presumably d. = 6). We call
these axioms the Scaling Azioms since they are characterizations of the scaling
behaviors implicitly assumed in the physics literature. In this section, we will
review the axioms and a few of the results from [BCKS2]. Much of this treatment
is taken almost verbatim from a preliminary version of [BCKS2] and [CPS].

The Scaling Azioms

Several of the axioms involve the length scales Lo(p) and Ao (p), and therefore
implicitly involve the constant e. [BCKS2] assume that the axioms are true for all
€ < €g, where €9 = €9(d) depends on a so-called rescaling lemma.

The axioms are written in terms of the equivalence symbol <. Here F(p) =< G(p)
means that C1F(p) < G(p) < CoF(p) where C; > 0 and Cy < oo are constants
which do not depend on n or p, as long as p is uniformly bounded away from zero
or one, but which may depend on the constants €, € or z appearing explicitly or
implicitly in the axioms. The [BCKS2] scaling axioms are

(I Lo(p) » 00 asplpc
(IT) For 0 < €< €y, z > 1 and p > p.,
Ao(p) = L§~H(p) < Lg ' (p, & @);
(III) There are constants Dy > 0, Dy < oo such that
Dy < 7 (p)/mn(pe) < Do if n < Lo(p);
(IV) There are constants D3 > 0, p; > 2/d, such that
ﬂ-kn(pc)/wn(pc) Z D3k‘71/p17 n, k 2 17
(V) There exists a constant Dy such that for p > p.,
X (p) < DaL(p)], () (pc) and X (p) < D4Li(p)77, () (Pe);
(VI) For p > p.,
TLo(p) (Pe) = Poo(P);
(VII) There exist constants D5, Dg < 0o such that for p < p. and k > 1,
Pxpos(Lo(p)) (P) = Dse™ P Po g1, (P)-
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Let us briefly discuss the interpretation of the axioms. The first tells us that
the approach to p. is critical—i.e., continuous or second-order—from above p..
Axiom (II) is the assumption of equivalence of length scales above p.: The second
part of it asserts the equivalence of the finite-size scaling lengths at various values
of £ > 1 and € € (0,€9). The first part of it, i.e. Ag(p) =< Lg_l(p), is called
Widom scaling. It is equivalent to a hyperscaling relation the surface tension and
correlation length exponents.

The third axiom formalizes a central element of the conventional scaling wisdom.
Scaling theory asserts that whenever the system is viewed on length scales smaller
than the correlation length, it behaves as it does at threshold. Axiom (III) asserts
that this is the case for the connectivity function w(p). Axiom (IV) implies that the
connectivity function m,(p) has a bound of power law behavior at threshold. Of
course, scaling theory assumes a pure power law with exponent —1/p. Axioms (V)
and (VI) imply hyperscaling and scaling relations among the critical exponents.
In terms of exponents, (V) is equivalent to the hyperscaling relation dv = 23 + v,
while (VI) is equivalent to the scaling relation v/p = 8. Finally, Axiom (VII) gives
a bound on the exponential decay rate of the cluster size distribution below p..

THEOREM 0 ([BCKS2]). The Scaling Azioms (I)-(VII) hold in dimension d = 2.

The proof of this theorem is technically quite complicated. It involves essentially
the most complicated constructions which have been done for two-dimensional
percolation.

A Few Results

In order to state the [BCKS2] results, we need to define a scaling window in
which the system behaves critically, i.e. an analogue of the function p(NN) in the
random graph problem. For us, this is described by the function

T To( if p<pe
g(p,n) = 0 ifp=np.
LOVEP) if p > pe.

It will turn out that a sequence of systems with density p, behaves critically,
subcritically, or supercritically— as far as size of large clusters is concerned— in
finite boxes if, as n — 00, g(pn,n) remains bounded, tends to —oo, or tends to
00, respectively. If this is the case, we say that the sequence of systems is inside,
below or above the scaling window, respectively.

We again use the symbol =<, this time for two sequences a, and b, of real
numbers . We write a,, < by, if 0 < liminf,, o0 an /by, < limsup,,_, . an /by < 00.

Our first theorem characterizes the scaling window in terms of the ezxpectation
of the largest cluster sizes.

THEOREM 1 ([BCKS2]). Suppose that Azioms (I)-(VII) hold.

i) If {pn} is inside the scaling window, i.e., if limsup,,_, . |g(pn,n)| < o0, and
1 € N, then .
E,, (W)} < s(n).
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ii) If {pn} is below the scaling window, i.e., g(pp,n) — —oo, then

(1) n
pn{ An} ( 0(p )) g [0( n)

iii) If {pn} is above the scaling window, i.e., g(pn,n) — 0o, then

Epn{ngl)}
— = =1 as n— oo,
|An|P00(pn)

and ©
Epn{WA }
——n = 0 as n — 00.
|An|POO(pn)

Assuming the existence of critical exponents and monotonicity of various quan-
tities, Theorem 1 says that the scaling window is of the form

(&
pn:pcima

that inside the window
WO xntr, W xpds,
while above the window

W ~ ndPoo ,
WO nds 5 0o,

w® /w0,

and below the window
w® /ndr -0

where, in fact,
W ~ ¢4 logn/¢.

The above results hold in expectation.

[BCKS2] also prove analogues of statements (i)—(iii) of the theorem for conver-
gence in probability, rather than in expectation. Furthermore, within the scaling
window, we get results on the distribution of cluster sizes which show that the dis-
tribution does not go to a delta function. This is to be contrasted with the behavior
above the window, where the cluster size distribution approaches its expectation,
with probability one. All of these additional results require some delicate second
moment estimates. The reader is referred to [BCKS2| for precise statements of
these results and for their proofs.

One final result is worth mentioning, since it is used in the proofs of the other
results and is of interest in its own right. It concerns the number of clusters on
scales m < n. Before stating the result, it should be noted that, due to statement
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(i) of Theorem 1, the “incipient infinite cluster” inside the scaling window is not
unique, in the sense that Wf) is of the same scale as ngl) This should be con-

trasted with the behavior of W / WAl) above the scaling window (see statement
(iii)), a remnant of the unlqueness of the infinite cluster above p.. The next theo-
rem relates the non-uniqueness of the “incipient infinite cluster” inside the scaling
window to the property of scale invariance at p.. Basically, it says that the number
of clusters of scale m in a system of scale n is a function only of the ratio n/m.
How can this hold on all scales m? The only way it can be true is if the system has
a fractal-like structure with smaller clusters inside holes in larger clusters. The
theorem concerns the number Ny (s1, s2) of clusters with size between s; and ss.

THEOREM 2 ([BCKS2]). Assume that Azioms (I)-(IV) are valid. Let {p,} lie
inside the scaling window. Then there exist strictly positive, finite constants o1,
o2, C1 and Cy (all depending on the sequence {pn}) such that

er(2) < By (ot sty < 052

provided m and k are strictly positive integers with k > o1 and oom < n.

5. INTERPRETATION OF THE RESULTS

How can we understand the form of the window? As explained earlier, the system is
expected to behave critically whenever the length scale is less than the correlation
length. Indeed, this is the content of Axiom (IIT). But the boundary of this region
is given by
na SR Apopl . i ppet

where 5\, A are constants. This is of course precisely the content of Theorem 1.

What would these results say if we attempted to apply them in the case of
random graph model (to which they of course do not rigorously apply)? Let us
use the hyperscaling relation dv = v + 23 and the observation that the volume N
of our system is just n?, to rewrite the window in the form

)\ C
pn=pet o =pe (14 o) = e (1% 57m) = 2e (1% Frasy) -

Similarly, let us use the hyperscaling relation ds/d = §/(1 + §) to rewrite the size
of the largest cluster as

W(l) ~ ndf ~ Ndf/d ~ N5/(1+5).

Noting that the random graph model is a mean-field model, we expect (and in fact
it can be verified) that vy =1, § =1 and § = 2. Using also p. = 1/N, we have a

window of the form
1 c

p(N) = 5+ s
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and within that window
W ~ N2/3,

just the values obtained in the combinatoric calculations on the random graph
model.

The results also have implications for finite-size scaling. Indeed, the form of the
window tells us precisely how to locate the critical point, i.e. it tells us the correct
region about p. in which to do critical calculations. Similarly, W) ~ N2/3 tells
us how to extrapolate the scaling of clusters in the critical regime.

Finally, the results tell us that we may use the largest cluster in the box as a
candidate for the incipient infinite cluster. Within the window, it is not unique, in
the sense that there are many clusters of this scale. However, outside the window
(even including a region where p is not uniformly greater than p. as n — o0),
there is a unique cluster of largest scale. This is the analogue of what is called the
dominant component in the random graph problem.
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the semi-flow of evolution, on the development structures due to insta-
bilities, and on large time behaviors.

1991 Mathematics Subject Classification: 35K, 58F, 76E, T6R.
Keywords and Phrases: Amplitude equations, renormalization group, at-
tractors, e-entropy.

I. INTRODUCTION.

Extended dynamical systems deal with the time evolutions of systems where the
spatial extension is important. One of the remarkable achievement of the theory
of dynamical systems was the proof that if one considers a system in a bounded
domain (for example a two dimensional incompressible fluid), then the global at-
tracting set is a compact set with finite dimensional Hausdorff dimension although
the phase space of the system is infinite dimensional (see [R.], [T.] etc.). It turns
out however that the dimension of the attractor grows with the spatial extension
of the system, and attractors of large dimension are not very easy to analyze at
the present time. Also the theory of dynamical systems does not provide easily
information about the spatial structure of the solutions.

This is not so important for small spatial extension where this spatial structure
is rather simple. However systems with large spatial extension develop interesting
spatial structures. One of the most common of these structures are the waves on
a sea excited by a gentle wind (see [M.] for a discussion of the present status of
knowledge of this major phenomenon). As a simple criteria we will say that a
system is extended if the spatial size of the system is much larger than the typical
size of the structures. As will be explained below, in many interesting situations
the scale of the structures is well defined. For example, even during the wildest
storms, the wavelength of the waves is much smaller than the size of the sea (even
of some large lakes).

Note that for spatially extended systems defined in large but bounded spatial
domains, all the large time information about spatial structures should be available
from the study of the attractor(s), invariant measures etc. The problem is that it
is not easy at all to extract spatial information out of the non linear structure of
the dynamics in phase space. This is why Physicists have been looking for a long
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time for a direct approach which emphasizes the search for structures and their
evolution.

There are other difficulties with large systems which are of more technical
nature. When one tries to use bifurcation theory for example, one is lead to
study the spectrum of the linearized time evolution around a stationary solution.
When the spatial extension of the system becomes large, the spectrum although
discrete (in a bounded domain) becomes very dense. In general this implies that
bifurcation theory gives results only on a very small range of parameters. This has
also unpleasant experimental consequences since a small variation of the parameter
near criticality can result in a large number of eigenvalues becoming unstable.

Physicists have dealt with these difficulties since a long time. By analogy
with Statistical Mechanics, one may hope that if a system has a large spatial
extension, its behavior may be well approximated by the behavior of a system
with infinite extension (the so called thermodynamic limit). Of course one may
expect corrections from far away boundaries.

This assumption has an important technical consequence. When studying
the spectrum of the linearized evolution in bounded domains one should use some
adequate basis of functions (Fourier series etc.). In unbounded domains, at least
for operators with constant coefficients, the spectra is easily obtained using Fourier
transform which is a much more convenient tool. A lot of important results have
been obtained this way by Physicists (see for example [Ch.]). In fact one could
remark that whenever Fourier transform is used in a Physical problem to deal with
spatial dependence, an assumption of infinite spatial extension has been made.

Note that contrary to the case of spatially finite systems, extended systems
lead in general to continuous spectrum for the linearized evolution. Another diffi-
culty, almost never mentioned in the Physics literature is the nature of phase space
of extended systems. Since spectral theory will be an important tool, one would
imagine working in a phase space which is for example a Sobolev space. Several
interesting works have been done in that direction. However this is not the phase
space one would like to use. For example, such a space does not contain waves.
Therefore more natural and interesting phase spaces should be like L.

The rest of this paper is organized as follows. In section 2 we will present
some results on the global existence of the time evolution in extended domains. In
section 3 we will discuss the instabilities of homogeneous solutions and see how they
can lead to the appearance of structures at well defined scales. Finally in section
4 we will present some results dealing with questions of large time asymptotic.

II. GLOBAL EXISTENCE OF THE SEMI-FLOW.

The first mathematical question with extended systems is the problem of global
existence of the semi flow of time evolution. As mentioned in the introduction, one
of the difficulty is that we want to deal with a rather large phase space containing in
particular wave-like solutions which do not tend to zero at infinity. Several results
have been obtained in the case of Sobolev phase spaces, however the methods do
not seem to apply to the phase spaces which are required for the general Physical
applications. Very few results are available for only bounded initial conditions, and
we will briefly describe some of these results. As in the case of dynamical systems,
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it is convenient to work with some simplified models which exhibit the essential
phenomena without the complexity of the real equations. One such model is the
so called Swift-Hohenberg equation. This equation gives the time evolution of a
real field u(¢,z) and is given in one space dimension by

Ou=nu—(1+ 3723)2u —u?, (SH)

where 7 is a real parameter. This equation was derived by Swift and Hohenberg
as a model for the onset of convection [S.H.].

Another popular model whose importance will become clearer below is the
so called complex Ginzburg-Landau equation. This equation describes the time
evolution of a complex field A(¢, z) and is given by

KA = (1+ia)AA+A— (1+iB)AlAP, (CGL)

where a and (§ are two real parameters.

The basic problem is to prove that these equations have (nice) solutions for
all time if we start with an initial condition which is only bounded (and somewhat
regular). The case of the Ginzburg-Landau equation was treated first in [C.E.1] in
dimension one and generalized in [C.1] and [G.V.]. Regularity of the solution was
obtained in [C.3] and [T.B.]. We summarize the results in the following theorem.

THEOREM II.1 ([C.1],[C.3]). In dimension one and two, for any complex valued
function Ay of the space variable x, bounded and uniformly continuous, there is a
unique solution A of the (CGL) equation with initial condition Ay. This function
A is for all times bounded and uniformly continuous. Moreover, there is a positive
constant T = T'(Ao, o, 8), and two positive constants C = C(a, 8) and h = h(«, 3)
such that for any t > T, the function A(t, -) extends to a function analytic in the
strip |Sz| < h and satistying

sup |A(t,2)| <C.

|Sz|<h

In other words, the dynamics contracts the large fields to a universal invariant
ball, and moreover regularity develops. In the case of dimension three and higher,
estimates are presently only available for a restricted range of parameters, we refer
to the original publications for more details. A similar result holds for the Swift-
Hohenberg equation. The case of reaction-diffusion equations may prove more
difficult to deal with, see [C.X.].

As mentioned above, in order to prove such a result one has to use techniques
which are rather different from the case of bounded domains. Theorem II.1 has
been proven using a local energy estimate. We only indicate the basic starting
point. Note that the local (in time) existence and boundedness of the solution
follows easily from the usual techniques using the contraction mapping principle.
The main goal is therefore to obtain some global a-priori estimate.

Let ¢ be a regular function tending to zero sufficiently fast at infinity. For
example

1
O T
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where d is the dimension. The idea is to probe the size of a bounded function by
looking at the L? norm of this function multiplied by some translate of ¢. This is
reminiscent of the so called amalgam spaces.

The basic quantity to estimate is the number

I(t) = sup I(t, zo)

Zo

where

I(t,x0) = / |A(t, 2)|? p(x — z0) dz .

After some simple algebra and integration by parts, one gets easily
d 2
EI(t’%) < K- [ |A@t, o) o(x —x0)de = K — I(t,x0) .

where K is some constant which depends only on ¢ and the coefficients o and .
This differential inequality tells us that after some time the quantity I(¢,zq) will
settle forever below 2K . Note also that the time it takes to reach this situation can
be bounded above by a quantity which depends only on ||Ag||L~ (and of course on
the coefficients « and 8 of the equation). The rest of the proof is based on similar
but more involved estimates. We refer the reader to the original papers for more
details.

III. INSTABILITIES AND STRUCTURES.

As mentioned above, instability in extended systems leads very often to the de-
velopment of structures with a well defined wave length. We will illustrate this
phenomenon on the one dimensional Swift-Hohenberg equation (S.H.). We first ob-
serve that for any value of the parameter 7, the homogeneous function u(t,z) =0
is a stationary solution. If we linearize the evolution around this solution, we get
the equation

o =nv— (1+02)%v,

which describes the linear time evolution of small perturbations of the homo-
geneous solution. This equation can be explicitly solved by taking the Fourier
transform in . One gets

8y (t, k) = w(n, k)i(t, k) (ITL.1)

where
wn, k) =n— (1 —k*? (IT1.2) .

It is then easy to see that if 7 < 0, the solution tends to zero (w < 0), whereas if
1 > 0 some Fourier modes are exponentially amplified (w > 0 for k near +1). As
mentioned above, one should be careful with the interpretation of this result in
direct space since we want to work in a phase space of functions which do not decay
at infinity and whose Fourier transforms are in general distributions. Nevertheless
this trivial analysis will give the right intuition. It is indeed possible to prove that
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for the complete non-linear (S.H.) equation and n < 0, bounded initial conditions
relax to zero.

The case n > 0 is of course more interesting and reminiscent of bifurcation
theory. Recall that the main idea of bifurcation theory is that in phase space, the
dominant part of the bifurcated branch is along the subspace of the linear problem
which becomes unstable. The amplitude in that direction(s) varying slowly. For
n > 0 small, we have in the (SH) equation two bands of modes of width O(n'/?)
around +1 which are unstable. All other modes are linearly damped. This follows
easily from (III.1) and (II1.2). By analogy with standard bifurcation theory, one
may expect that the coefficient in the unstable directions will vary slowly in space
and time. This is indeed what can be proven.

THEOREM III.1. There are positive numbers R, ng, C1, ---, Cy such that if n €
10, m0[, if uo(z) is a real bounded uniformly continuous function such that ||ug|| L= <
R, there is a positive number Ty = T} (ug,n) such that for any t > Ty, the solution
u of (S.H.) with initial condition ug satisfies

lu(t, |z~ < Cin*/?.

Moreover, for any t > Ty, there is a solution B(s,y) of the real Ginzburg-Landau
equation
9.B=0;B+ B — B|B|? (G.L.)

such that for any t < 7 <t + Con~tlogn~! we have
lu(r, -) = B(7, )|l < Can'/>+C

where .
B(r,z) = 3722 B(n(t — t),nY%x/2) + c.c.

This result is similar to what can be obtained in bifurcation theory using nor-
mal forms. It says that the function reconstructed from the normal form (here the
(G.L.) equation) reproduces well the true evolution during a large time. However,
as for normal forms, we cannot expect this to be true forever since small errors
due to truncation of the normal form are likely to be amplified by the unstable
dynamics.

The idea of amplitude equation is rather old, and we refer to [C.H.] for refer-
ences. Several versions of the above result (or similar ones) have been published
in [C.E.1], [v.H.], [K.M.S.], [S.]. The original idea of shadowing of trajectories is
due to Eckhaus [E.]. A new proof using a dynamical renormalization group was
given in [C.2] for the case of discrete evolution equations. The renormalization
group method has several advantages. First of all it provides a systematic and
rigorous approach to multi-scale analysis. It also provides a proof of the above
theorem in one step. In the above formulation, it was convenient to separate the
initial contraction regime from the subsequent shadowing result. It turns out in
the proof that they are different manifestations of the same renormalization effect.
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Also one gets some information on the initial contraction phase. The fact that
the size of the initial condition R can be chosen independent of 7 is important
and in a sense is optimal since one cannot expect the result to hold for initial
conditions of size much larger than unity without further hypothesis since the dy-
namics may well have another fixed point of order one (although for the particular
case of the (S.H.) equation one can prove global attraction). Last but not least,
renormalization group produces universal results. This is a nice substitute for
the generic arguments of finite dimensional bifurcation theory. This explains why
the Ginzburg-Landau equation appears so often in the study of instabilities of ex-
tended systems. It turns out that the associated fixed point of the renormalization
group is the equation
9.B=0;B - B|BJ?,

which is invariant by the rescaling s — L?s, y — Ly, B — LB. The relevant
unstable manifold parameterized by a real number o is the (unnormalized) G.L.
equation

9sB = 0B+ 0B — B|B|*.

We refer to [B.K.1] and [C.2] for more details and references on the renormalization
group ideas and to [A.] page 212 for a general program.

IV. LARGE TIME BEHAVIOR.

For dissipative systems in bounded domains, various notions of attractors have
been introduced. One tries to describe in the phase space an invariant set which
captures all the asymptotic dynamics. Various results have been proven about
the compactness and finite Hausdorff dimension of such objects. For extended
systems we cannot hope for such results and the definition of the global attracting
set has to be modified due to the lack of compactness. Mielke and Schneider [M.S.]
following an idea of Feireisl have proposed to define a global attracting set using
two different topologies. One is a global topology (of the type L), the other one
is a local topology where one recovers compactness. We give below a variant of
their result for the (CGL) equation (for other equations see [M.S.]).

THEOREM 1V.1. For the (CGL) equation in dimension 1 and 2, there is a set A
of functions analytic in a strip of width h around the real space and satisfying
sup |A] <C,

|Sz|<h

where h and C' are as in Theorem II.1 and such that

1) Ais closed in L,

2) A is invariant by space translations,

3) A s invariant by the semi flow (S;) of evolution of the (CGL) equation (namely

Si(A) = A for any t > 0),

4) A is compact in L*°(Q) for any cube Q,

5) A attracts any bounded set of L*°, namely if B is a bounded set in L*°, the
L distance between Si(B) and A tends to zero when t tends to infinity.

We refer to [M.S.] for the proof. We mention however that although 4) is
trivial from the analyticity of the functions in 4, this compactness property is
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crucial in the proof of 3) and 5) together with the fact that the L norm of a
function on the whole line is obtained by taking the sup of the L°° norms of the
function on the translates of a fixed cube.

Once the global attractor of a dynamical system has been identified, one can
try to give some geometrical description of this object. As mentioned before,
for systems in bounded domains one tries to prove that the attractor has finite
Hausdorff dimension. A natural question for extended domains is whether there is
a good notion of dimension per unit volume of space. In this direction, Ghidaglia
and Heron [G.H.] have given for the (CGL) equation in finite domain an upper
bound on the Hausdorff dimension of the attractor which is proportional to the
length of the domain in space dimension one and proportional to the surface in
space dimension two. However contrary to the case of statistical mechanics, it is
not clear at this moment whether a sub-additive result holds for the dimension.
The main difficulty is to connect the dimension of attractors for the union of two
domains.

We have recently considered this question with J.-P. Eckmann from another
point of view related to signal analysis. For simplicity I will only discuss one
dimensional systems although the results are true in any dimension. We start
directly with the system in an unbounded domain, but we observe it in a finite
window, for example the interval [— L, L]. This is quite natural in view of the above
definition of attractor. Note however that since the functions on the attractor A
are analytic they will be seen in any interval. This implies that the dimension of
A in L*°([—L, L]) is infinite. Kolmogorov and Tikhomirov have studied a similar
situation for some spaces of analytic functions [K.T.]. They have defined following
Shannon the e-entropy per unit length H, as follows. Let B be a subset of L>(R).
For a fixed € > 0 one defines Ny (¢) as the smallest number of balls of radius at
most € (in L>°([—L, L])) needed to cover B. The e entropy per unit length of B is
defined by

H.(B) = lim 227V2()

L—oo L ’

provided the limit exists. One is then interested at the behavior of this quantity
when € tends to zero. Note the exchange of limits with respect to the usual
definition of dimension. For the attractor A, if one fixes L and let € tends to zero,
one gets an infinite dimension. In other words, for a fixed precision e, if the size of
the window is too small, one gets the impression of an object of infinite dimension.
As the result below indicates, there is however a cross-over length which depends
on the precision € beyond which one sees a finite dimension per unit length (at
this fixed precision). Kolmogorov and Tikhomirov in [K.T.] proved the following
estimates.
For the set £,(C) of entire functions satisfying

|£(2)] < Ce”I?

one has 5
o
H(E,(0) ~ = logy(1/¢)

where ~ means that the ratio of the two quantities tend to 1 when € tends to zero.
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For the set S,(C) of functions analytic in a strip of width h around the real
axis and satisfying
sup |f(2)| <C

|S2|<h

one has )
H (Sp(0)) = ﬁ(logz(l/e))2 :

We refer to [K.T.] for the proof of these two statements.

From the previous result on the analyticity of the functions in .4 one would
expect a growth of the e-entropy proportional to (loge)?. It turns out that there
is in a sense far less functions in A, and in the sense of e-entropy we have indeed
a finite dimension per unit length.

THEOREM [C.E.4]. There is a number ¢ = ¢(a, ) > 1 such that for the (CGL)
in dimension 1 and 2 we have

c tlog,(1/€) < H.(A) < clogy(1/e) .

Note that some functions belonging to A are known which are not entire.
We have also obtained recently with J.-P. Eckmann a proof of existence of the
topological entropy per unit volume. Moreover this quantity can also be obtained
from a discrete sampling of the solutions (see [C.E.5]).

V. CONCLUSIONS.

Extended systems occur naturally in many natural questions. They appear in
Physics, Chemistry, Biology, Ecology and other sciences as soon as the spatial
extension of the system becomes important. We refer to [C.H.] [B.N.] and [Mu.]
for some examples.

From the mathematical point of view there are many open problems. The
understanding of the evolution of structures and the occurrence of spatio temporal
chaos are the most challenging. There are very few results in these area where even
numerical simulations are difficult to perform. As in the case of finite dimensional
dynamical systems, there are two main trends of research up to now.

In the first one, one tries to understand the spatial structure of the solutions.
This is quite natural near the onset of instability of the homogeneous state, where
the structures play a dominant role. We refer to [B.N.] for a review of this ap-
proach. Even near onset there are important questions which are not understood.
For example in dimension 2 or larger, the amplitude should be a distribution on
the unit circle and up to now a global derivation of an amplitude equation has
not been performed. The analysis has only been achieved under various symmetry
assumptions which strongly restrict the solutions, although these solutions with
symmetries are the ones which appear in experiments. In a different perspective,
particular solutions with interesting physical meaning have been constructed (see
for example [C.E.3] for more details).
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The second trend of research is more of statistical nature and is concerned
with asymptotic time evolution. The existence of interesting invariant measures
is still an open problem. Beyond numerical simulations some analogies have been
drawn in the spatio temporal intermittency transition with directed percolation
(see [B.P.V.] for a review). Even in the case where there is no spatio temporal
chaos, the asymptotic state may be non trivial as in the phase ordering kinetics
problem (see [B.] where consequences of scaling hypothesis are developed). We
mention however that in the problem of coupled lattice maps, interesting invariant
measures have been constructed ([B.K.2] and references therein).

Finally I refer to the conclusion of Bowman and Newell in their RPM Collo-
quia [B.N.] for a statement on the future of this field.
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THE MATHEMATICS OF FIVEBRANES
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ABSTRACT.

Fivebranes are non-perturbative objects in string theory that general-
ize two-dimensional conformal field theory and relate such diverse sub-
jects as moduli spaces of vector bundles on surfaces, automorphic forms,
elliptic genera, the geometry of Calabi-Yau threefolds, and generalized
Kac-Moody algebras.

1991 Mathematics Subject Classification: 81T30
Keywords and Phrases: quantum field theory, elliptic genera, automor-
phic forms

1 INTRODUCTION

This joint session of the sections Mathematical Physics and Algebraic Geometry
celebrates a historic period of more than two decades of remarkably fruitful inter-
actions between physics and mathematics. The ‘unreasonable effectiveness’, depth
and universality of quantum field theory ideas in mathematics continue to amaze,
with applications not only to algebraic geometry, but also to topology, global anal-
ysis, representation theory, and many more fields. The impact of string theory has
been particularly striking, leading to such wonderful developments as mirror sym-
metry, quantum cohomology, Gromov-Witten theory, invariants of three-manifolds
and knots, all of which were discussed at length at previous Congresses.

Many of these developments find their origin in two-dimensional conformal
field theory (CFT) or, in physical terms, in the first-quantized, perturbative for-
mulation of string theory. This is essentially the study of sigma models or maps
of Riemann surfaces ¥ into a space-time manifold X. Through the path-integral
over all such maps a CFT determines a partition function Z; on the moduli space
M, of genus g Riemann surfaces. String amplitudes are functions Z(X), with A
the string coupling constant, that have asymptotic series of the form

Z() ~ 3 A2 /M Z,. (1)
920 g

But string theory is more than a theory of Riemann surfaces. Recently it
has become possible to go beyond perturbation theory through conceptual break-
throughs such as string duality [23] and D-branes [19]. Duality transformations
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can interchange the string coupling A with the much better understood geometric
moduli of the target space X. D-Branes are higher-dimensional extended objects
that give rise to special cycles Y C X on which the Riemann surface can end,
effectively leading to a relative form of string theory.

One of the most important properties of branes is that they can have multi-
plicities. If k branes coincide a non-abelian U (k) gauge symmetry appears. Their
‘world-volumes’ carry Yang-Mills-like quantum field theories that are the analogues
of the two-dimensional CF'T on the string world-sheet. The geometric realization
as special cycles (related to the theory of calibrations) has proven to be a powerful
tool to analyze the physics of these field theories. The mathematical implications
are just starting to be explored and hint at an intricate generalization of the CFT
program to higher dimensions.

This lecture is a review of work done on one of these non-perturbative objects,
the fivebrane, over the past years in collaboration with Erik Verlinde, Herman
Verlinde and Gregory Moore [4, 5, 8, 7]. I thank them for very enjoyable and
inspiring discussions.

2 FIVEBRANES

One of the richest and enigmatic objects in non-perturbative string theory is the so-
called fivebrane, that can be considered as a six-dimensional cycle Y in space-time.
Dimension six is special since, just as in two dimensions, the Hodge star satisfies
x2 = —1 and one can define chiral or ‘holomorphic’ theories. The analogue of a free
chiral field theory is a 2-form ‘connection’ B with a self-dual curvature H that is
locally given as H = dB but that can have a ‘first Chern class’ [H/2n] € H3(Y,Z).
(Technically it is a Deligne cohomology class, and instead of a line bundle with
connection it describes a 2-gerbe on Y.) A system of k coinciding fivebranes is
described by a 6-dimensional conformal field theory, that is morally a U(k) non-
abelian 2-form theory. Such a theory is not known to exist at the classical level of
field equations, so probably only makes sense as a quantum field theory.

One theme that we will not further explore here is that (at least for &k = 1) the
fivebrane partition function Zy can be obtained by quantizing the intermediate
Jacobian of Y, very much in analogy with the construction of conformal blocks
by geometric quantization of the Jacobian or moduli space of vector bundles of
a Riemann surface [24]. This leads to interesting relations with the geometry of
moduli spaces of Calabi-Yau three-folds and topological string theory. In fact there
is even a seven-dimensional analogue of Chern-Simons theory at play.

The fivebrane theory is best understood on manifolds of the product form
Y = X x T?, with X a 4-manifold. In the limit where the volume of the two-torus
goes to zero, it gives a U(k) Yang-Mills theory as studied in [21]. In that case
the partition function computes the Euler number of the moduli space of U(k)
instantons on X. In the k = 1 case this relation follows from the decomposition
of the 3-form

H=F  ANdz+F_Ndz (2)

with Fp (anti)-self-dual 2-forms on X. In this way holomorphic fields on T
are coupled to self-dual instantons on X. The obvious action of SL(2,Z) on T?
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translates in a deep quantum symmetry (S-duality) of the 4-dimensional Yang-
Mills theory.

Actually, the full fivebrane theory is much richer than a 6-dimensional CFT.
It is believed to be a six-dimensional string theory that does not contain gravity
and that reduces to the CFT in the infinite-volume limit. We understand very
little about this new class of string theories, other than that they can be described
in certain limits as sigma models on instanton moduli space [20, 7, 1, 25]. As we
will see, this partial description is good enough to compute certain topological
indices, where only so-called BPS states contribute.

3 CONFORMAL FIELD THEORY AND MODULAR FORMS

One of the striking properties of conformal field theory is the natural explanation
it offers for the modular properties of the characters of certain infinite-dimensional
Lie algebras such as affine Kac-Moody algebras. At the hart of this explanation—
and in fact of much of the applications of quantum field theory to mathematics—
lies the equivalence between the Hamiltonian and Lagrangian formulation of quan-
tum mechanics [22]. For the moment we consider a holomorphic or chiral CFT.

In the Hamiltonian formulation the partition function on an elliptic curve T2
with modulus 7 is given by a trace over the Hilbert space H obtained by quanti-
zation on S! x R. For a sigma model with target space X, this Hilbert space will
typically consist of L2-functions on the loop space £LX. It forms a representation
of the algebra of quantum observables and is Z-graded by the momentum operator
P that generates the rotations of S'. For a chiral theory P equals the holomorphic
Hamiltonian Ly = z0,. The character of the representation is then defined as

Z(r) = Tr, g7 (3)

with ¢ = €2™7 and c the central charge of the Virasoro algebra. The claim is that
this character is always a suitable modular form for SL(2,Z), i.e., it transforms
covariantly under linear fractional transformations of the modulus 7.

In the Lagrangian formulation Z(7) is computed from the path-integral over
maps from T2 into X. The torus T? is obtained by gluing the two ends of the
cylinder S x R, which is the geometric equivalent of taking the trace.

1-©

Modularity is therefore built in from the start, since SL(2,7Z) is the ‘classical’
automorphism group of the torus 72
The simplest example of a CFT consists of ¢ free chiral scalar fields z : ¥ —
V = R Ignoring the zero-modes, the chiral operator algebra is then given by
an infinite-dimensional Heisenberg algebra that is represented on the graded Fock
space
My =) Sy V. (4)

n>0
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Here we use a standard notation for formal sums of (graded) symmetric products

SV= "NV, SV =veN/sy. (5)
N>0

The partition function is then evaluated as

Z(r)y=q = [J1-¢") " =nlg)* (6)

n>0

and is indeed a modular form of SL(2,7Z) of weight —c/2 (with multipliers if ¢ # 0
mod 24.) The ‘automorphic correction’ g~ ¢/?* is interpreted as a regularized sum
of zero-point energies that naturally appear in canonical quantization.

4 STRING THEORIES AND AUTOMORPHIC FORMS

The partition function of a string theory on a manifold Y will have automorphic
properties under a larger symmetry group that reflects the ‘stringy’ geometry of Y.
For example, if we choose Y = X x S! xR, with X compact and simply-connected,
quantization will lead to a Hilbert space ‘H with a natural Z @ Z gradation. Apart
from the momentum P we now also have a winding number W that labels the
components of the loop space LY. Thus we can define a two-parameter character

Z(o,7) = T, (0"e"), (7)

2mio 2miT

withp =e ,q = e“™7_ with both ¢, 7 in the upper half-plane H. We claim that
Z(o,T) is typically the character of a generalized Kac-Moody algebra [2] and an
automorphic form for the arithmetic group SO(2,2;7Z).

The automorphic properties of such characters become evident by changing
again to a Lagrangian point of view and computing the partition function on the
compact manifold X x T2. The T-duality or ‘stringy’ symmetry group of T? is

SO(2,2;Z) & PSL(2,7) x PSL(2,Z) x Zs, (8)

where the two PSL(2,Z) factors act on (o, 7) by separate fractional linear trans-
formations and the mirror map Zs interchanges the complex structure 7 with the
complexified Kéhler class ¢ € H2(T?,C). This group appears because a string
moving on T2 has both a winding number w € A = H{(T?;Z) and a momentum
vector p € A*. The 4-vector k = (w, p) takes value in the even, self-dual Narain
lattice T%2 = A @ A* of signature (2,2) with quadratic form k%> = 2w - p and
automorphism group SO(2,2;7).

In the particular example we will discuss in detail in the next sections, where
the manifold X is a Calabi-Yau space, there will be an extra Z-valued quantum
number and the Narain lattice will be enlarged to a signature (3,2) lattice. Cor-
respondingly, the automorphic group will be given by SO(3,2,Z) = Sp(4,Z).
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5 QUANTUM MECHANICS ON THE HILBERT SCHEME

As we sketched in the introduction, in an appropriate gauge the quantization of
fivebranes is equivalent to the sigma model (or quantum cohomology) of the moduli
space of instantons. More precisely, quantization on the six-manifold X x S! x R,
gives a graded Hilbert space

Hy, = @ PN Hn, 9)

N>0

where H n is the Hilbert space of the two-dimensional supersymmetric sigma model
on the moduli space of U(k) instantons of instanton number N on X. If X is an
algebraic complex surface, one can instead consider the moduli space of stable
vector bundles of rank k£ and cho = N. This moduli space can be compactified by
considering all torsion-free coherent sheaves up to equivalence. In the rank one case
it coincides with the Hilbert scheme of points on X. This is a smooth resolution of
the symmetric product SVX. (We note that for the important Calabi-Yau cases
of a K3 or abelian surface the moduli spaces are all expected to be hyper-Kéhler
deformations of SVEX )

The simplest type of partition function will correspond to the Witten index.
For this computation it turns out we can replace the Hilbert scheme by the more
tractable orbifold SVX. For a smooth manifold M the Witten index computes the
superdimension of the graded space of ground states or harmonic forms, which is
isomorphic to H*(M), and therefore equals the Euler number x(M).

For an orbifold M /G the appropriate generalization is the orbifold Euler num-
ber. If we denote the fixed point locus of g € G as M9 and centralizer subgroups
as Cy, this is defined as a sum over the conjugacy classes [g]

Xorb(M/G) = Z Xtop(Mg/Cg)' (10)

lg]

For the case of the symmetric product SVX this expression can be straightfor-
wardly computed, as we will see in the next section, and one finds

THEOREM 1 [13] — The orbifold Euler numbers of the symmetric products
SNX are given by the generating function

Xm“b(SpX) = H(l _pn)_X(X)'
n>0

Quite remarkable, if we write p = €277, the formal sum of Euler numbers is
(almost) a modular form for SL(2,Z) of weight x(X)/2. This is in accordance
with the interpretation as a partition function on X x T2 and the S-duality of the
corresponding Yang-Mills theory on X [21].

A much deeper result of Gottsche tells us that the same result holds for the
Hilbert scheme [9]. In fact, in both cases one can also compute the full cohomology
and express it as the Fock space, generated by an infinite series of copies of H*(X)
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shifted in degree [10]

H*(SpX) = (X) Spr H* 2" 2(X). (11)

n>0

Comparing with (4) we conclude that the Hilbert space of ground states of the
fivebrane is the Fock space of a chiral CFT. This does not come as a surprise
given the remarks in the introduction. One can also derive the action of the
corresponding Heisenberg algebra using correspondences on the Hilbert scheme
[16].

6 THE ELLIPTIC GENUS

We now turn from particles to strings. To compute the fivebrane string partition
function on X x T2, we will have to study the two-dimensional supersymmetric
sigma model on the moduli space of instantons on X. Instead of the full partition
function we will compute again a topological index — the elliptic genus. Let us
briefly recall its definition.

For the moment let X be a general complex manifold of dimension d. Phys-
ically, the elliptic genus is defined as the partition function of the corresponding
N = 2 supersymmetric sigma model on a torus with modulus 7 [15]

X(Xiq,y) = Tr, ((~)F+FryPrgho=t), (12)

2miT 2miz

with ¢ = €277, y = €2™% 2 a point on T?. Here H is the Hilbert space obtained
by quantizing the loop space £X (formally the space of half-infinite dimensional
differential forms). The Fermi numbers F7, r represent (up to an infinite shift
that is naturally regularized) the bidegrees of the Dolbeault differential forms
representing the states. The elliptic genus counts the number of string states with
Lo = 0. In terms of topological sigma models, these states are the cohomology
classes of the right-moving BRST operator Qr. In fact, if we work modulo Qg,
the CFT gives a cohomological vertex operator algebra.

Mathematically, the elliptic genus can be understood as the S'-equivariant
Hirzebruch x,-genus of the loop space of X. If X is Calabi-Yau the elliptic genus
has nice modular properties under SL(2,7Z). It is a weak Jacobi form of weight zero
and index d/2 (possibly with multipliers). The coefficients in its Fourier expansion

X(Xiq,y) = > e(m,)g™y (13)
m>0, £

are integers and can be interpreted as indices of twisted Dirac operators on X.
For a K3 surface one finds the unique (up to scalars) Jacobi form of weight zero
and index one, that can expressed in elementary theta-functions as

X(K3;q,y) =2°- Y 92(27)/05(0;7). (14)

even «
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7 ELLIPTIC GENERA OF SYMMETRIC PRODUCTS

We now want to compute the elliptic genus of the moduli spaces of vector bundles,
in particular of the Hilbert scheme. Again, we first turn to the much simpler
symmetric product orbifold SVX.

The Hilbert space of a two-dimensional sigma model on any orbifold M/G
decomposes in sectors labeled by the conjugacy classes [g] of G, since L(M/G) has
disconnected components of twisted loops satisfying

z(oc+2m) =g - z(0), geGq. (15)

In the case of the symmetric product orbifold X~/Sy these twisted sectors have
an elegant interpretation [8]. The conjugacy classes of the symmetric group Sy
are labeled by partitions of NV,

lg] = () (n), D mi=N, (16)

where (n;) denotes an elementary cycle of length n;. A loop on SVX satisfying
this twisted boundary condition can therefore be visualized as

(n,)

(n)

Sl

As is clear from this picture, one loop on S™VX is not necessarily describing N
loops on X, but instead can describe s < N loops of length nq,...,ns. By length
n we understand that the loop only closes after n periods. Equivalently, the action
of the canonical circle action is rescaled by a factor 1/n.

In this way we obtain a ‘gas’ of strings labeled by the additional quantum
number n. The Hilbert space of the formal sum 5, X can therefore be written as

H(SpX) = Q) SprHan(X). (17)

n>0

Here H,,(X) is the Hilbert space obtained by quantizing a single string of length
n. It is isomorphic to the subspace P = 0 (mod n) of the single string Hilbert
space H(X). From this result one derives

THEOREM 2 [8] — Let X be a Calabi-Yau manifold, then the orbifold elliptic
genera of the symmetric products SVX are given by the generating function

Xorb(SpX; q, y) = H (1 - pnqmy2>—c(n'm,2)'
n>0,m>0,¢
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In the limit ¢ — 0 the elliptic genus reduces to the Euler number and we
obtain the results from §5. Only the constant loops survive and, since twisted
loops then localize to fixed point sets, we recover the orbifold Euler character
prescription and Theorem 1.

8 AUTOMORPHIC FORMS AND GENERALIZED KAC-MOODY ALGEBRAS

The fivebrane string partition function is obtained from the above elliptic genus
by including certain ‘automorphic corrections’ and is closely related to an expres-
sion of the type studied extensively by Borcherds [3] with the infinite product
representation’

o(o,7,2) =p*g"ye ] (-prgmyt)rmh (18)
(n,m,£)>0

For general Calabi-Yau space X it can be shown, using the path-integral repre-
sentation, that the product ® is an automorphic form of weight ¢(0,0)/2 for the
group SO(3,2,Z) for a suitable quadratic form of signature (3,2) [12, 14, 18].

In the important case of a K3 surface ® is the square of a famous cusp form
of Sp(4,7Z) = S0O(3,2,Z) of weight 10,

o(o,m,2)=2""2 [ 0[e)(Q)? (19)

even o

the product of all even theta-functions on a genus-two surface ¥ with period matrix
Q:(" j) detTm Q > 0. (20)

Note that ® is the 12-th power of the holomorphic determinant of the scalar
Laplacian on X, just as n?* is on an elliptic curve. The quantum mechanics limit
o — 400 can be seen as the degeneration of ¥ into a elliptic curve.

In the work of Gritsenko and Nikulin [11] it is shown that ® has an interpreta-
tion as the denominator of a generalized Kac-Moody algebra. This GKM algebra
is constructed out of the cohomological vertex algebra of X similar as in the work
of Borcherds. This algebra of BPS states is induced by the string interaction, and
should also have an algebraic reformulation in terms of correspondences as in [12].

9 STRING INTERACTIONS

Usually in quantum field theory one first quantizes a single particle on a space X
and obtains a Hilbert space H = L?(X). Second quantization then corresponds
to taking the free symmetric algebra €, SNH. Here we effective reversed the
order of the two operations: we considered quantum mechanics on the ‘second-
quantized’ manifold SVX. (Note that the two operations do not commute.) In this

1Here the positivity condition means: n,m > 0, and £ > 0 if n = m = 0. The ‘Weyl vector’
(a,b,c) is defined by a = b = x(X)/24, and ¢ = —i >0 1£lc(0,2).
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framework it is possible to introduce interactions by deforming the manifold SVX,
for example by considering the Hilbert scheme or the instanton moduli space. It
is interesting to note that there is another deformation possible.

To be concrete, let X be again a K3 surface. Then SVX or Hile(X ) is an
Calabi-Yau of complex dimension 2N. Its moduli space is unobstructed and 21
dimensional — the usual 20 moduli of the K3 surface plus one extra modulus.
This follows essentially from

RBLSNX) = ABY(X) + hOO(X). (21)

The extra cohomology class is dual to the small diagonal, where two points coin-
cide, and the corresponding modulus controls the blow-up of this Zs singularity.
Physically it is represented by a Zy twist field that has a beautiful interpretation,
that mirrors a construction for the 10-dimensional superstring [6] — it describes
the joining and splitting of strings. Therefore the extra modulus can be interpreted
as the string coupling constant X [7, 25].

The geometric picture is the following. Consider the sigma model with target
space SVX on the world-sheet P!. A map P! — SVX can be interpreted as a map
of the N-fold unramified cover of P! into X. If we include the deformation X the
partition function has an expansion

ZO\) ~ > A" Zy, (22)

n>0

where Z,, is obtained by integrating over maps with n simple branch points. In
this way higher genus surfaces appear as non-trivial N-fold branched covers of P*.
The string coupling has been given a geometric interpretation as a modulus of the
Calabi-Yau SVX.

It is interesting to note that this deformation has an alternative interpreta-
tion in terms of the moduli space of instantons, at least on R*. The deformed
manifold with A # 0 can be considered as the moduli space of instantons on a
non-commutative version of R* [17].
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ON THE PROBLEM OF STABILITY

FOR NEAR TO INTEGRABLE HAMILTONIAN SYSTEMS

ANTONIO GIORGILLI

ABSTRACT. Some recent applications and extensions of Nekhoroshev’s
theory on exponential stability are presented. Applications to physical
systems concern on the one hand realistic evaluations of the regions where
exponential stability is effective, and, on the other hand, the relaxation
time for resonant states in large, possibly infinite systems. Extensions
of the theory concern the phenomenon of superexponential stability of
orbits in the neigbourhood of invariant KAM tori.
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70F15, 7T0HO05, 70K20

Keywords and Phrases: Perturbation theory, Nekhoroshev theory, expo-
nential stability.

1. OVERVIEW

According to Poincaré ([26], tome I, chapt. I, § 13) the general problem of dynamics
is the investigation of a canonical system of differential equations with Hamiltonian

(1) H(p,q,¢) = h(p) +cf(p,q;¢) ,

where (p,q) € G x T™ are action—angle variables, G C R™ is open, ¢ is a small
parameter and n is the number of degrees of freedom. The functions h and f are
assumed to be analytic in all arguments; in particular the perturbation f(p,q,¢)
can be expanded in power series of € in a neighbourhood of € = 0. Many physical
systems may be described by a Hamiltonian of the form above; the most celebrated
one is the planetary system with its natural and (which is of interest now) artificial
bodies.

My aim here is to illustrate some results concerning the stability of such
systems. The word “stability” is used here in a wide sense, which includes a
considerable weakening of the traditional concept investigated, e.g., by Lyapounov.
I will pay particular attention to quantities that remain almost constant for a time
that increases faster than any inverse power of € as € — 0. Following Littlewood,
I will refer to stability estimates of this kind as exponential stability.

It is well known that for ¢ = 0 the unperturbed system h(p) is trivially
integrable, since the orbits lie on invariant tori parameterized by the actions p,
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and the flow is typically quasiperiodic with frequencies w(p) = ‘g—z. It has been
proven by Poincaré that for € # 0 the system is generically non—integrable (see [26],
chapt. V). This is due to the existence of resonances among the frequencies, i.e.,
relations of the form (k,w(p)) =0 with 0 # k € Z™.

It was only after the year 1954 that a significant advance of our knowledge
was made with the celebrated theorem of Kolmogorov!*®, Arnold™™ and Moser!?3].
They proved the existence of a set of invariant tori of large relative measure, thus
assuring stability in probabilistic sense. Almost at the same time, Moser??l and
Littlewood!['?![2%] introduced the methods leading to exponential stability. Several
years later a general formulation was given by Nekhoroshev, who proved that the
action variables p remain almost invariant for a time that increases exponentially
with the inverse of the perturbation e; more precisely, one has

(2) |p(t) — p(0)| < Be® for |t| <T. exp((e«/e)%)

for some constants B, T, €., a <1 and b < 1 (see [24], [25], [3], [4], [21], [14]).

My purpose here is to report on some progress made during the last decade. I
will address in particular the following points: (a) the actual relevance of exponen-
tial stability for physical systems; (b) the extension of the concept of exponential
stability to systems with a very large number of degrees of freedom, and possibly to
infinite systems; (c) some relations between KAM and Nekhoroshev’s theory, and
in particular a stronger stability result that I will call superexponential stability.

Both KAM theorem and Nekhoroshev’s theorem apply provided the size € of
the perturbation is smaller than a critical value, €, say. On the other hand, the
problem of finding realistic estimates for the critical value e, is generally a very
hard one: the analytical estimates available are useless for a practical application
to a physical model, and only in a few, very particular models realistic results have
been obtained. One such case concerns the stability of the Lagrangian point L4 of
the restricted problem of three bodies in the Sun—Jupiter case. I discuss in sect. 2
how realistic estimates may be obtained by complementing the analytical scheme
with explicit calculation of perturbation series.

For systems with a large number of degrees of freedom one is confronted with
the problem that all estimates seem to indicate that Nekhoroshev’s theorem looses
significance for n — oo because the constants T, €. and a tend to zero. As a typ-
ical example let us consider a system of identical diatomic molecules moving on a
segment and interacting via a short range analytic potential; this may be consid-
ered as a one—dimensional model of a gas, the main simplification being that the
rotational degrees of freedom of the molecules are not taken into account. The
model admits a natural splitting into two subsystems, i.e., the translational mo-
tions and the internal vibrations of the molecules, with a coupling due to collisions.
According to the equipartition principle, every degree of freedom would get the
same average energy. However, it was already suggested by Boltzmann that this
should be true only if one considers time averages over a sufficiently long time
(relaxation time). Boltzmann’s suggestion was that such a time would increase
with the frequency of the internal vibrations, becoming of the order of days or
centuries (see [9]); a few years later Jeans suggested that the relaxation time could
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increase exponentially with the frequency, possibly becoming of the order of bil-
lions of years (see [17]). I discuss in sect. 3 how far the suggestion of Boltzmann
and Jeans may be dynamically justified if one relinquishes the request that all
actions be constant, and pays attention only to the transfer of energy between the
two subsystems. For a discussion of the relevance of the exponential stability in
statistical mechanics see [7] and [10] and the references therein.

Finally, it is interesting from the theoretical viewpoint to investigate the be-
haviour of the orbits in the neighbourhood of an invariant KAM torus. I discuss
this point in sect. 4 by illustrating how KAM theorem may be obtained by using
Nekhoroshev’s theorem as a basic iteration step. As a straightforward consequence
one gets the result that in most of the phase space the orbits are stable for a time
that is much longer than the exponential time predicted by Nekhoroshev. Indeed,
the exponential time in (2) is replaced by exp(exp(1/0)), where o is the distance
from an invariant KAM torus. This is what I call superexponential stability.

2. THE TRIANGULAR LAGRANGIAN EQUILIBRIA

It is known that in a neighbourhood of an elliptic equilibrium the Hamiltonian
may be given the form

Q0 H,y) =5 > e (o +9) + 3 Hi(w0)
=1 5>2

where w € R™ is the vector of the harmonic frequencies and H; is a homogeneous
polynomial of degree s in the canonical variables (x,3) € R?*. The stability of
the equilibrium z = y = 0 for the system (3) is a trivial matter if all frequencies
w have the same sign, e.g., they are all positive. For, in this case the classical
Lyapounov’s theory applies since the Hamiltonian has a minimum at the origin.
This simple argument does not apply if the frequencies do not vanish but have
different signs.

The stability over long times has been investigated by Birkhoff using the
method of normal form going back to Poincaré (see [26], tome II, chapt. IX, § 125).
Assuming that there are no resonance relations among the frequencies w, via a near
the identity canonical transformation (z,y) — (z/,y’) the Hamiltonian is given the
normal form up to a finite order r > 2

ks 1 - T ks
(4) HO ! ) = 5 3wt + 200) + ROy
=1

where p; = (2 ?+y'7)/2 are the new actions, Z(") is at least quadratic in p’ and the
unnormalized remainder R(") is a power series starting with terms of degree r + 1
in 2/,y’. If we forget the remainder then the system is integrable and the motion
is quasiperiodic on invariant tori, since Z(") depends only on the new actions.
Birkhoff’s remark was that the normalized Hamiltonian H(") is convergent in a
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neighbourhood of the origin, e.g., in some polydisk of radius ¢ (that may depend
on r) and center at the origin, i.e.,

(5) Ag:{(m,y)ERZ" : ,/x?+y§<g} .

Hence, the size of the remainder may be estimated by C,.o" !, with some constant
C, that Birkhoff did not try to evaluate. He concluded that the dynamics given
by the integrable part of the Hamiltonian is a good approximation of the true
dynamics up to a time of order O(p~"); on this remark he based his theory of
complete stability (see [8], chapt. IV, § 2 and § 4).

It was pointed out by Poincaré that the series produced by perturbation
expansions have an asymptotic character (see [26], tome II, chapt. VIII). Now
this fact lies at the basis of the exponential stability. Indeed the constant C, is
expected to grow at least as O(r!), so that the size of the remainder is O(rlo" ).
Having fixed g (i.e., the domain of the initial data) one chooses r ~ 1/p, and by a
straightforward use of Stirling’s formula one gets |R| = O(exp(—1/0)). By working
out the analytical estimates one gets for the unperturbed actions p; = (aclz + ylz) /2
the following bound (see [13] or [12]):

THEOREM: Let the frequencies w satisfy the diophantine condition
(6) |(k,w)| >~[k|"" for0#keZ™ .
Then there exists a o, such that for all orbits satistying (x(0),y(0)) € A, one has

Ip(t) — p(0)| = O(®) for [t| < T = O(exp(1/0"/ D)) .

For a practical application the problem is that the estimated value of g, may
be ridiculously small. A better evaluation may be obtained by explicitly calculating
all series involved in the normalization process up to some (not too low) order.
This just requires some elementary algebra on computer.

The Hamiltonian is expanded in power series as in (3) up to some order r,
and then is given a normal form at the same order. The explicit transformation of
coordinates and the new action variables p’ as functions of the old coordinates can
be constructed, too. Moreover, in a polydisk A, we may evaluate the quantity

D(e,r)= suwp [|= sup [{p,RI}[;
(z',y')EAQ (w/ry/ EAQ

to this end, the expression of the lowest order term of the remainder R(") may
be used. Having fixed a polydisk A,, containing the initial data we conclude
that the orbit can not escape from a polydisk A,, with an arbitrary ¢ > g, for
|t| < T(QO7 0, T)7 where

2 2
_ 0~ 0
(7) T(Q()?Q’ T) - 2D(Q, T‘) .
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This produces an estimate depending on the arbitrary quantities o and r. Let
0o and r be fixed; then, in view of D(o,r) ~ C,o"*!, the function (g, 0,r),
considered as function of ¢ only, has a maximum for some value p,.. This looks
quite odd, because one would expect 7 to be an increasing function of 9. However,
recall that (7) is just an estimate; looking for the maximum means only that we
are trying to do the best use of our poor estimate. Let us now keep gy constant,
and calculate 7(gg, 0r,7) for increasing values of r = 1,2,..., with g, as above.
Since C, is expected to grow quite fast with r we expect to find a maximum of
7(00, or,7) for some optimal value rope. Thus, we are authorized to conclude that
for every go we can explicitly evaluate the positive constants o(0o) = or,,, and
T(00) = 7(00, 0(00), Topt) Such that an orbit with initial point in the polydisk A,,
will not escape from A, for |t| < T(go).

In order to show that the method above may be effective let me consider
the triangular Lagrangian point L4 of the restricted problem of three bodies, with
particular reference to the Sun—Jupiter case. In the planar case the frequencies are
w1 ~ 0.99676 and wy ~ —0.80464 x 10~ !; hence the standard Lyapounov theory
does not apply.

The procedure above has been worked out by expanding all functions in power
series up to order 35. One may look in particular for a value of gy such that T'(gg)
is the estimated age of the universe. The result is that gg is roughly 0.127 times
the distance Ly4—Jupiter; this is certainly a realistic result. A comparison with
the known Trojan asteroids shows that four of them are inside the region which
assures stability for the age of the universe (see [16] for a complete report).

3. ON THE CONJECTURE OF BOLTZMANN AND JEANS

Let us consider a canonical system with analytic Hamiltonian

(8) H(p,z, 7€) = h(p,x) + ho,(m,€) + f(p, 2, m,€) ,

where

1

ho(m, ) =5 > (v +wigt) . (m.€) €RY
=1

is the Hamiltonian of a system of harmonic oscillators, iz(p, x) is the Hamiltonian of
a generic n—dimensional system, and f(p, z, 7, £) a coupling term which is assumed
to be of order ¢, and so to vanish for £ = 0.

This model was suggested by the numerical study of the system of diatomic
molecules mentioned in sect. 1 (see [5] and [6]). In that case h(p, z) represents the
translational degrees of freedom, and h,, (7, §) describes the internal vibrations of
the molecules. Since the molecules are identical, all frequencies coincide.

The identification of a perturbation parameter in the system (8) goes as fol-
lows. Write w = AQ with large A and € of the same order of the inverse of a
typical time scale of the constrained system (for example the characteristic time
for the collision of two molecules, which is non zero if the interaction potential is
regular); then transform the variables according to m = 7'v/AQ and ¢ = £ /V/AQ,
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and assume the total energy of the subsystem h,, to be finite, so that the variables
(7, €") turn out to be confined in a disk of size 1/v/A. Then the Hamiltonian may
be given the form, omitting primes,

H(p,z,m,6,X) = hip,) + Aha(m,€) + 3 fa(p, 2,7, €)

ha(m, &) = 5 30 (af + &)
=1

(here, a straightforward computation would give A=*/2 in front of f, but f itself
turns out to be of order A"/2, since it vanishes for £ = 0). Here too the main
technical tool is the reduction of the Hamiltonian to a normal form. Precisely,
via a near to identity canonical transformation (p,z,m, &) — (p/,2',7',&’') the
Hamiltonian is given the form

Hl(p/7 x/? ﬂ-/? 5’7 A) = )\hﬂ(ﬂ-/7 SI) + ]/:L(pl7 x/) + Z(pl7 xl? 7'('/7 gl? )\) + R(pl7 xl? 7'('/7 gl? )\) )

where Z is in normal form in the sense that {hg, Z} = 0. Thus hq is an approxi-
mate first integral. The normalization process is performed until the remainder is
exponentially small in the parameter 1/X. This requires an optimal choice of the
number of normalization steps, as in the case of the elliptic equilibrium.

THEOREM: Assume that all frequencies w are equal. Then there are positive
constants T, and A, such that for every A > A\, one has

|ha(m,&) — ha(x', )| = OA7?) ;
Iha(t) — ha(0)| = OA™Y) for || < T exp (Ai) .

*

9)

The remarkable fact is that the exponent a that appears in the general form (2)
of the exponential estimate is 1, no matter of the number n of degrees of freedom.
This removes the worst dependence on n, and is in complete agreement with the
numerical calculations in [5].

In the case of the diatomic gas there is still a dependence on n in the constants
T, and )., which turn out to be O(1/n?) (the number of two-body interaction
terms in the perturbation). Such a dependence could hardly be removed on a
purely dynamical basis, because the possibility that all molecules collide together
at all times may not be excluded. This is clearly unrealistic. A complete proof
of the conjecture of Boltzmann and Jeans could perhaps be obtained by comple-
menting the dynamical theory with statistical considerations.

The result above has been extended to further situations, including the case
of infinite systems. As an example, consider a modification of the celebrated
nonlinear chain of Fermi, Pasta and Ulam!'!] in which the equal masses are replaced
by alternating heavy and light masses. It is known that the spectrum splits into
two well separated branches, called the acoustical and the optical one. Moreover
the optical frequencies are very close to each other. The whole system may thus
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be considered as composed of two separate subsystems, and the subsystem h,, of
the optical frequencies may still be considered as a system of oscillators with the
same frequency: the small difference can consistently be considered as part of the
perturbation. In this case it has been proven that the exponential estimate applies
also to the case of an infinite chain, provided the total energy is sufficiently small
(see [2]). Strictly speaking, this is not enough for the application to the problem of
equipartition of energy in statistical mechanics, since in that case one is interested
in initial data with fixed specific energy. However, the discrepancy is still due to
the fact that we are working on a purely dynamical basis. For, the possibility
that the whole energy of the optical subsystem remains concentrated on a single
oscillator for a long time is not excluded. Here too one should include statistical
considerations.

4. SUPEREXPONENTIAL STABILITY

Let us go back to considering the Hamiltonian (1). I will need to consider the
action variables in a domain G, = Upeg By(p), where p is a positive parameter,
G C R" is open, and B,(p) denotes the open ball of radius ¢ and center p. The
phase space is D = G, x T".

If the unperturbed Hamiltonian h(p) is non degenerate, then the construction
of the normal form for the Hamiltonian can not be performed globally on the action
domain G,. For, the small denominators (k,w(p)) (with k£ € Z™ and w(p) = 2—2)
may generically vanish in a set of points that is dense in G,. This fact lies at
the basis of Poincaré’s proof of nonexistence of uniform first integrals (see [26],
chapt. V).

The way out of this problem is based on: (a) a Fourier cutoff of the perturba-
tion, i.e., only a finite number of Fourier modes is considered during the process of
normalizing the Hamiltonian, and (b) the construction of the normal form in local
nonresonance domains where the small denominators are far enough from zero.
The burden of constructing the nonresonance domains is taken by the so called
geometric part of the proof of Nekhoroshev’s theorem: basically, the original do-
main G, is covered by subdomains corresponding to known resonances of different
multiplicity 0,1, ...,n, where multiplicity zero corresponds to the region free from
resonances. The domains so constructed are open because only a finite number of
resonances is taken into account; this is a consequence of the Fourier cutoff. The
normal form is local to each domain, and depends on the resonances that appear
on it. Nekhoroshev’s theorem on exponential stability follows by proving that ev-
ery orbit is confined inside a local nonresonance domain for an exponentially long
time.

The result that I'm going to illustrate is based on iteration of Nekhoroshev’s
theorem. Let me first state the result. Let ¢’ be the canonical flow generated by
the Hamiltonian (1). A n—dimensional torus 7 will be said to be (1, T')—stable in
case one has dist(p'P,T) < n for all |t| < T and for every P € T. The formal
statement is the following
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THEOREM: Consider the Hamiltonian (1), and assume that the unperturbed
Hamiltonian h(p) is convex. Then there exists €* > 0 such that for all ¢ < €*
the following statement holds true: there is a sequence {’D(T)}T>O of subsets of

D, with D©) = D, and two sequences {,} ~, and {o.},, of positive numbers
satisfying a a
eo=¢c, & =O0(exp(—1/,-1)),

1/4
w=0, or=0@E""),

such that for every r > 0 one has:
(i) D+t ¢ D) ;
(i) D) is a set of n—dimensional tori diffeomorphic to QE(,:) x T";
(iii) Vol(DU+1)) > (1 — O(2)) Vol(D™) for some positive a < 1;
(iv) D) = . D" is a set of invariant tori for the flow ¢*, and moreover one
has Vol(D(*)) > (1 — O(£2)) Vol(D©) ;
(v) for every pi™) € G(") the torus p(™) x T™ € D) is (0r11,1/ers1)-stable;
(vi) for every point p(") € G(") there exists an invariant torus T C B, (p") x T™.

Let me illustrate the main points of the proof (for a complete proof see [15]).
A careful reading of the geometric part of Nekhoroshev’s theorem allows one to
extract the following information: there exists a subset D! of phase space charac-
terized by absence of resonances of order smaller than O(1/¢); such a domain is the
union of open balls of positive radius g, and its complement has measure O(g'/4).
Moreover, in this subset one may introduce new action—angle variables, (p’, ¢') say,
which give the Hamiltonian the original form (1), but with a perturbation of size
e1 = O(exp(—1/e)).

Nekhoroshev’s theorem can be applied again to the new Hamiltonian in the
open domain P, thus allowing one to construct a second nonresonant domain
D®@) characterized by absence of resonances of order smaller than O(1/e;) =
O(exp(—1/e)). Such a procedure can be iterated infinitely many times, and this
gives the sequence D" of subdomains of phase space, the existence of which is
stated in the theorem. Nekhoroshev’s stability estimates hold in every such do-
main, with stability times exponentially increasing at every step.

The sequence D) of domains converges to a set D(°°) of invariant tori. This
part of the proof is just an adaptation of Arnold’s proof of KAM theorem and the
set of invariant tori so obtained is similar to Arnold’s one.

Let me finally explain how superexponential stability arises. Properties (v)
and (vi) imply that every (o"*!,1/e,1)-stable torus is g,.—close to an invariant
torus. In view of the form of the sequences g, and €, given in the statement of
our theorem one has

ery1 = O(1/exp(1/e;)) = O(1/ exp(exp(1/e,;-1))) = O(1/ exp(exp(1/0;))) -

In view of this remark we may say that in the neighbourhood of an invariant
torus the natural perturbation parameter is the distance o from the torus, and
the diffusion speed is bounded by a superexponential of the inverse of the distance
from an invariant torus.
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STABILITY OF MATTER

IN CLASSICAL AND QUANTIZED FIELDS

GIAN MICHELE GRAF

ABSTRACT. In recent years considerable activity was directed to the issue
of stability in the case of matter interacting with an electromagnetic field.
We shall review the results which have been established by various groups, in
different settings: relativistic or non-relativistic matter, classical or quantized
electromagnetic fields. Common to all of them is the fact that electrons
interact with the field both through their charges and the magnetic moments
associated to their spin. Stability of non-relativistic matter in presence of
magnetic fields requires that Za? (where Z is the largest nuclear charge in
the system) as well as the fine structure constant « itself, do not exceed
some critical value. If one imposes an ultraviolet cutoff to the field, as it
occurs in unrenormalized quantum electrodynamics, then stability no longer
implies a bound on o, Za?. An important tool is given by Lieb-Thirring type
inequalities for the sum of the eigenvalues of a one—particle Pauli operator
with an arbitrary inhomogeneous magnetic field.

1991 Mathematics Subject Classification: 81-02
Keywords and Phrases: Stability of matter

INTRODUCTION

Ordinary matter consists of molecules and atoms which are largely empty inside.
Yet matter does not shrink. A related — and more fundamental — aspect of
stability is the fact that the energy per particle is bounded below, independently
of the number of particles. This is what is usually referred to as stability of
matter. It should be stressed that it goes well beyond the stability of individual
atoms. Basic thermodynamic properties such as extensivity (e.g., two moles of
water occupy with good approximation twice the volume occupied by a single
mole) also depend on this property. These topics are reviewed in [19, 20].
Stability of matter could not hold without quantum mechanics and, in par-
ticular, without the uncertainty principle, but the Pauli principle and screening
properties of the interaction (Coulomb) potential are equally important (see [34]
for the consequences of tampering with these tenets). The first instance where
stability was established, by Dyson and Lenard [9], is non-relativistic matter con-
sisting of N electrons which move in the field of M nuclei having fixed but arbi-
trary positions. We denote by ¢; = —1, resp. ¢; = Z, the charge of an electron
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(i=1,...,N), resp. of anucleus (i = N+1,..., N+ M). According to the Pauli
principle a (pure) state of the N electrons is given by a normalized wave function

N
ve \L*R?C?) (1)

=1

in the N-fold antisymmetric tensor product of the single particle Hilbert space
L2(R3,C?). Here, C? accounts for the spin of the electron, whose role is however
unessential so far. The Hamiltonian is, in appropriate units,

N
H=> ti+Ve, (2)
i=1
where the kinetic energy of a single electron is t = p?, p = —iV and the index i

refers to the variables of the i-th electron. The Coulomb potential V is

%495
V.=
Z |z — $J|

1<j

THEOREM 1. There is a constant C(Z) independent of the position of the nuclei,
such that
H>-C2Z)(N+M). 3)

Subsequently, Lieb and Thirring [27] obtained a much better constant C(Z)
which is of order unity for Z ~ 1. They also provided a simpler proof, thereby
linking (3) to stability of Thomas-Fermi theory. (See however [17] for a short proof
closer in spirit to [9]).

In recent years considerable activity was directed to the issue of stability in
the case of matter interacting with an electromagnetic field, which brings the
model closer to physical reality. Results have been established by various groups,
in different settings: relativistic or non-relativistic matter, classical or quantized
electromagnetic fields.

STABILITY AND INSTABILITY IN CLASSICAL MAGNETIC FIELDS

To begin with, consider the addition of a classical, external magnetic field B = VA
A. There, stability — uniformly in the magnetic vector potential A — persists [1,
7] if the field is included through minimal substitution, i.e., for t = D?, D = p+ A.
This follows by means of the diamagnetic inequality. To actually describe matter
in magnetic fields one must however also add the interaction of the electrons with
the field through their spins or, more precisely, through the associated magnetic
moments. The corresponding kinetic energy is

t:D2+%B~a,
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where o = (01,02, 03) are the Pauli matrices and g is known as the gyromagnetic
factor. Its physical value is g = 2, as long as radiative corrections from quantum
electrodynamics are neglected. Stability (3) extends straightforwardly to any g <
2, while for g > 2 the Hamiltonian is not even bounded below. In the critical case
g = 2, to which we shall henceforth restrict, the kinetic energy may be written as

t=D*+B-c=p*, P=D-o.

Dynamical spins confer new aspects to the issue of stability. A first indication of
this is the following: Whereas the equation Dt = 0 admits (by the uncertainty
principle) only 1 = 0 as a solution in L?(R3,C?), there exist [30] field config-
urations A such that ;Dw = 0 has non-trivial solutions called zero-modes. This
effectively invalidates the uncertainty principle and, as a result, stability as defined
above. To see this, just consider the case N = M = 1 with Hamiltonian

Ha=1% - Zlz|™".

By scaling both the field and its zero-mode,

Ax(@) =ATTA@z/N), alm) = A2/ (4)
we obtain J)4,¥x = 0 and
(Ux, Hayon) = —ZX 71, |z| 1) , (5)

which can be made arbitrarily large and negative by letting A — 0.
However, a proper formulation of stability should incorporate the field energy

1 2 13
H = R /B(w) d°z (6)
into the Hamiltonian:

N
H=Y ti+Ve+Hes. (7)
i=1
Here a > 0 is the fine structure constant. The physical value of this dimensionless
parameter is a = e%/hic 2 1/137. Note that under (4) the magnetic field scales as
By (z) = A72B(z/)\), so that H¢ scales as A1, just as the Coulomb energy (5).
Thus already from the case N = M = 1 one sees that stability for (7) may hold
only if Za? is sufficiently small. Another necessary condition is that « itself be
small enough. To see the latter, consider N = 1 and M large. As above, let the
electron be in a zero-mode of a fixed field A. Distribute the many nuclei according
to some limiting density, e.g., uniformly over a ball. The repulsion energy between
the nuclei is < C1(ZM)?, and the attraction of the electron < —Cy(ZM), with
C1, C5 > 0 independent of Z, M. By minimizing the sum of the two bounds we
obtain (¢, Vo) < —C3/4C, for ZM = C5/2C;. Thus,

1
8ma?

2
(¥, Hy) < —40—021 + /B($)2d3:z: <0
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for a large enough. Since both the Coulomb and the field energy scale the same
way, the expectation value of the Hamiltonian can in fact be made arbitrarily large
and negative. The above two conditions are in fact sufficient for stability:

THEOREM 2. The Hamiltonian (7) is stable, i.e.,
H>-C(N+M),

provided o and Za? are small enough.

The theorem was first established by Fefferman [12], for Z = 1. Soon there-
after, Lieb, Loss, and Solovej [23] found a simpler proof which furthermore ensures
stability at physical values of the parameters Z, o and produces a realistic lower
bound —C' on the energy per particle. An additional improvement of Lieb, Sieden-
top and Solovej [24, 25] and Loss [29] yields the following sufficient condition for
stability:

gz +2.791922/3 +1.2987 < 0.2153a 2 . (8)

In particular, for « = 1/137 stability holds if Z < 2264. Precursors of Theorem 2
are found in [16, 21], where the cases N =1 and M =1, resp. N=1or M =1,
were proved.

Let us present the proof of Theorem 2 given in [25], but for brevity we shall
not keep track of best constants. The stability of (7) is brought into relation with
stability of an apparently unrelated Hamiltonian H,.), namely that of relativistic
matter without dynamical spins. It is defined by (2), but with ¢t = a~!|D|. The
corresponding stability result was proven in [8, 15, 28, 22].

THEOREM 3.
Hrel Z 0 ) (9)

if a and Za are sufficiently small.

Note that Hye can be uniformly bounded below only if it is non-negative, since
both its terms scale as A~!. Explicitly, stability is assured [22] if the Lh.s. of
(8) does not exceed a~*. On the other hand, H,e is unbounded below [18] if
Zao>2/m.

The other ingredients of the proof of Theorem 2 are:

e The Birman-Koplienko-Solomyak inequality [3]: For any operators A, B > 0,

tr(A — B)y < tr(A> — B})Y/? | (10)

where sy = max(s,0), provided the operator on the r.h.s. is trace class.
e The Lieb-Thirring estimate [27):

tr(—h)] < Lv/v(x)'ﬁgd%: (11)

for v > 0 and any Schrédinger operator h = D?—v on L(R3) with v = v(z) > 0.
The Lh.s. can be written as ), |ex|”, where e, < 0 are the negative eigenvalues
of h.
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Let us denote by & the fine structure constant in H,e, to avoid confusion. Using
(9), the first two terms in (7), Hy, = Zfil p? + Ve, can be estimated as

Hin = Z(l])z —a 'D)); > —tr(a D] — 2/3|42)|)+ — 3N,
i=1

for any 3 > 0. Here we used J)? > 23|]P| — 3? and the Pauli principle. Now (10)
can be used to bound the trace (setting 46% = 262) as

attr(D? —2p*))? =a M tr(-D? - 2B-0)/* <2a 'Ly /4B(:1:)2d3x ,
where, in the last step, we used —B - o < |B| and (11). Summing up, one obtains

1 8Ly

1
H = H, Hm>< ) B(x)?d®z — =& %N,
£+ 2 (5ra2 z / (z)*d’x 50
showing that stability holds for a® < a&/(647Ly 5).
Finally, Lieb, Siedentop and Solovej [24, 25] considered relativistic matter with
dynamical spins. The appropriate kinetic energy is given by the Dirac operator

t=D-a+ Om

acting on L?(R3, C*), where m > 0 is the mass and o = (a1, a2, a3), 3 are the
Dirac matrices. Except for this modification, the many-body Hamiltonian Hpiyac
is still given by (7). Clearly Hpjrac, just as t, is unbounded below, but the proper
interpretation, going in essence back to Dirac, is ‘to fill the Fermi sea’ for ¢. In
other words, one should only consider expectation values for Hpj.ac in states

N
ve Aby,
i=1

where h C L2(R3,C%) is the positive spectral subspace for t.

THEOREM 4.
(\IJ7 HDirac\Ij) Z 0

(uniformly also in m > 0), provided o and Za are small enough.
For oo = 1/137 stability holds up to Z < 56. The proof is related to the one
sketched above.

STABILITY AND INSTABILITY IN QUANTIZED ELECTROMAGNETIC FIELDS

We shall consider only the case of non-relativistic matter. The model is formally
still defined by the Hamiltonian (7), but with the following changes. First, the
Hilbert space now is H = Hmy, ® F, where H,, is the Hilbert space (1) for matter
and F, the Hilbert space for the field, is the bosonic Fock space over L2(R3, C2).
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Here, C? accounts for the helicity of the photon. Second, the ultraviolet-cutoff
electromagnetic vector potential in the Coulomb gauge is given by

1/2 .
Ap(x) = A_(z)+A_(x)", A_(zx)= C;T - k723 an(k)ea(k)e*dk
= A=+

where A < oo is the cutoff. For each k, the direction of propagation k = k/|k| and
the polarizations ey (k) € C3 are orthonormal. The operators ay(k)* and ay (k)
are creation and annihilation operators on F and satisfy canonical commutation
relations

[a)\(k‘)#, a,\/(k/)#] =0 s [a)\(k‘),ax(k/)*] = 5))\/5(k - k‘l) .
The vacuum state Q € F, (,Q)

k € R3. The kinetic energy in (7), ¢
Finally, the quantum field energy is

/Ikl Z ax(k)*ax(k)d*k . (12)

1, s distinguished by ax(k)Q2 = 0, for all
= I)?, is now defined with D = p + Ax(z).

This completes the definition of the Hamiltonian, which we denote by Hj. To
see how (12) relates to the previous definition (6), we introduce the (tranverse)
electric field E(x) = —i[Hgs, Aa(z)] and the magnetic field B(z) = (V A Ap)(x).
Then,

1
Hy = gy [ @ + B e (13)
8ma
where : ... : denotes Wick ordering; explicitly, : B(z)? := B(z)? — (2, B(z)?Q),

and analogously for E(x)2. In contrast to (6), the integrand of (13) may also take
negative (expectation) values.

Let us remark that the model represents, apart from the cutoff needed to make
it well-defined, a physically correct description of the coupled system consisting
of matter and field, since the Hamiltonian yields the correct equations of motion.
The spectral theory of a similar model is discussed in [2].

The stability of Theorem 2 carries over to this situation [6, 5], but not with the
same explicit bounds.

THEOREM 5. For any A > 0,
HA Z —C(Oé, Z? A)(N + M) ) (14)

for small enough o, Za, with C(a, Z, ) = const -Zmax(Z,a''*N) and Z = Z+1.
Actually, the ultraviolet cutoff prevents the instability explained before Theo-

rem 2. As a result, the restriction to small values of «, Za® may be dropped, as

shown by Fefferman [13] and Fefferman, Frohlich and Graf [14]:

THEOREM 5’. For any «a, Z, A, the estimate (14) holds with C(«a, Z, A) = const -

Z(14 B°log B)(B72Z + A) with f = Za® + 1.
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This fact is not of direct physical significance, however. Rather, one should
consider a renormalized Hamiltonian

N
HA,ren = ZmX1¢12 + ch + qu - /J’AN ) (15)
=1

where the mass mj and the chemical potential up are to be chosen so that the
energy of a one electron state with small total momentum p is p?. It appears
conceivable that stability for (15) holds uniformly in A, for small enough a, Za?.

The proof of Theorem 5 can be reduced to stability statements for matter in
classical, external fields [12, 4], but with a different expression for the field energy
H_ ¢ than before. For reasons related to the vacuum energy subtraction mentioned
above, the classical field energy (6) should be replaced by

1
Hy = B(z)*d? 1
= oo | Bl (16)

where the integration is now restricted to a small neighborhood U of the nuclei.
A similar expression [13, 5], involving also the field gradient, occurs in the proof
of Theorem 5’.

MAGNETIC LIEB-THIRRING TYPE INEQUALITIES

An issue of related, but also independent interest is found in Lieb-Thirring in-
equalities corresponding to (11) for Pauli, rather than Schrédinger, Hamiltonians,
ie., for h = ¢2 — v on L2(R3,C?). (We shall focus on v = 1, corresponding to the
sum of the negative eigenvalues of h). The first such estimate, by Lieb, Solovej
and Yngvason [26] applies to constant magnetic fields B(x) = B.

THEOREM 6. For constant fields,
Z lex| < a5/v(m)5/2d3x+b5|B| /v(:c)3/2d3x, (17)
k

for any 0 < § < 1, with as = 0.311952 and bs = 0.2123(1 — §) L.

The second term represents the contribution of the lowest Landau level, i.e., of
the lowest (degenerate) eigenvalue of ;Z)z, whereas the higher levels are accounted
for by the familiar first term. Note that a generalization to arbitrary non-constant
fields cannot be obtained by just pulling |B(z)| in (17) under the integral sign.
Such a bound would be too small (for small v), since, due to the possible existence
of zero-modes 1) = 0, the bound has to be at least (¢, v¥)).

Estimates for non-constant fields are due to Erdés [10], followed by [23, 32, 33,
4, 5, 31]. Some of them are useful in proofs of stability of matter. In this context
we mention the bound of Lieb, Loss and Solovej [23]:

THEOREM 7.
e a U$5/2 S.TE .CE23£E I UJJ43$ e
Slerl <as [ e[ Bras) " (fuwtea) T a9
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for any 0 < § < 1, with a5 = 0.06540~" and bs = 0.1005 6 5/8(1 — §)~3/5.

One may be tempted to believe that the second term could be replaced by
[ |B(z)]*/?v(z) d*z, which would imply (18) by Hélder’s inequality. It turns out
— essentially by arguments of Erdds [10] — that this is not true: The interplay
between the field B(z) and the potential v(z) is not strictly local. It is however
possible to define an effective scalar field b(z) > 0 which allows for a semi-local
version of (18). This is of interest in connection with the definition (16) and is the
content of the following result of Bugliaro et al. [4]:

THEOREM 8.

ler| < C [ v(x)?2d3z +C" [ b(z)*?v(z)d>x (19)
Slezc f /

b(z)?d3z < C | B(z)*d*z . (20)
/ /

In particular, the two estimates together imply (18), except for the constants.
The construction of b(x) can be explained as follows. The interplay between the
field B and V takes place on a length scale r(z) which depends on B itself (see
below), and b(x)? is the average of B(y)? over that length scale:

o = [ r@) (L) B

with appropriate decay of ¢(z) > 0 as |z| — co. To determine r(z), note that in
the constant field case it is proportional to |B |*1/ 2, the radius of a Landau orbit
in the lowest Landau level. In the general case, it is determined self-consistently
as 7(z) = b(z)~/2. A different definition of b(z) due to Sobolev [32, 33], which
motivated the one just presented, also implies (19), but not (20).

Yet another generalization of (17) aims at estimating the contributions of the
field gradient V ® B = (0;Bj)i j=1,2,3.- This was done by Erdés and Solovej [11]
and, under somewhat different conditions, by Bugliaro, Fefferman and Graf [5].
To this end a length scale I(z) is introduced which is related to V ® B in a similar
way as r(zx) is related to B.

THEOREM 9.

~

Se <0 [VE@PAWE B+ 0" [V P (P + B,

where B(x) is the average of |B(y)| over a ball of radius l(z) centered at x, and
P(x) =1(z)"(r(z) " +1(z)71).
By the variational principle, this estimate implies a bound on the density n(z) =
>, ()] of orthonormal zero-modes t; of ). The bound is
n(z) < C"P(a)'*(P(x) + B(x)

and, as it should, it vanishes in the case of a homogeneous magnetic field.
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ROGERS-RAMANUJAN IDENTITIES:

A CENTURY OF PROGRESS FROM MATHEMATICS TO PHYSICS

ALEXANDER BERKOVICH AND BARRY M. McCoy

ABSTRACT. In this talk we present the discoveries made in the theory of
Rogers-Ramanujan identities in the last five years which have been made
because of the interchange of ideas between mathematics and physics.
We find that not only does every minimal representation M (p,p’) of the
Virasoro algebra lead to a Rogers-Ramanujan identity but that different
coset constructions lead to different identities. These coset constructions
are related to the different integrable perturbations of the conformal field
theory. We focus here in particular on the Rogers-Ramanujan identities
of the M (p,p’) models for the perturbations ¢1 3, ¢21, ¢1.2 and ¢1 5.

1991 Mathematics Subject Classification: 11P57, 82A68
Keywords and Phrases: Rogers-Ramanujan identities, lattice models of
statistical mechanics, conformal field theory, affine Lie algebras

1 INTRODUCTION

In 1894 L.J. Rogers [1] proved the following identities for a = 0, 1 between infinite
series and products valid for |g| < 1

qn(n+a) B ﬁ 1
o (q>n oot (1 _ q5n—1—a)(1 _ q5n—4+a)

1 = n(10n+1+2a) (5n+2—a)(2n+1) &

D Z q ) with ( 1;[ (1—¢’)

For about the first 85 years after their discovery interest in these identities and

their generalizations was confined to mathematicians and many ingenious proofs

and relations with combinatorics, basic hypergeometric functions and Lie algebras

were discovered by MacMahon, Rogers, Schur, Ramanujan, Watson, Bailey, Slater,

Gordon, Gollnitz, Andrews, Bressoud, Lepowsky and Wilson and by 1980 there

were over 130 isolated identities and several infinite families of identities known.
The entry of these identities into physics occurred in the early ’80’s when

Baxter [2], Andrews, Baxter and Forrester [3, 4], and the Kyoto group [5] encoun-

tered (1) and various generalizations in the computation of order parameters of
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certain lattice models of statistical mechanics. A further glimpse of the relation to
physics is seen in the development of conformal field theory by Belavin, Polyakov
and Zamolodchikov [6] and the form of computation of characters of representa-
tions of Virasoro algebra by Kac [7], Feigin and Fuchs [8] and Rocha-Caridi [9].
The occurrence of (1) in this context led Kac [10] to suggest that “every modular
invariant representation of Vir should produce a Rogers-Ramanujan type identity.”
The full relation, however, between physics and Rogers-Ramanujan identities
is far more extensive than might be supposed from these first indications. Starting
in 1993 the authors [11]-[17] have fused the physical insight of solvable lattice
models in statistical mechanics with the classical work of the first 85 years and
the recent developments in conformal field theory to greatly enlarge the theory
of Rogers-Ramanujan identities. In this talk we will summarize the results of
this work and present some of the current results. Our point of view will be
dictated by our background in statistical mechanics but we will try to indicate
where alternative viewpoints exist. Hopefully in this way some of the inevitable
language barriers between physicists and mathematicians can be overcome.

2 WHAT IS A ROGERS-RAMANUJAN IDENTITY?

The work of the last 5 years originating in physics problems has provided a new
framework and point of view in the study of Rogers-Ramanujan identities. The
emphasis is not the same as in the earlier mathematical investigations and thus it
is worthwhile to discuss generalities before the presentation of detailed results.

2.1 SUMS INSTEAD OF PRODUCTS

The equation (1) is the equality of three objects; an infinite sum involving (¢)n,
an infinite product, and a second sum with (¢)s in the denominator. For the first
85 years since (1) was proved it was the equality of the first infinite series with
the infinite product which was called the Rogers-Ramanujan identity. The second
sum while present in the intermediate steps of the proofs was always eliminated
in favor of the product by use of the triple or pentuple product formula. The first
important insight that was recognized when Rogers-Ramanujan identities arose in
physics is that, contrary to this long history, it is not the product but rather the
second sum on the right which arises in the statistical mechanical and conformal
field theory applications. Indeed by now it is true that in most cases where we
have generalizations of the identities between the two sums a product form is not
known. Consequently by Rogers-Ramanujan identity we will mean the equality of
the sums without further reference to possible product forms.

2.2 POLYNOMIALS INSTEAD OF INFINITE SERIES

The second insight which is also present in the very first papers on the connection
of Rogers-Ramanujan identities with physics [2, 3, 4] is the fact that the physics
will often lead to polynomial identities (with an order depending on an integer L)
which yield infinite series identities as L — co. The polynomial generalization of
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(1) is the identity first proven in 1970 [18]

F.(L,q) = Ba(L,q) (2)
where
s L—n—a
Fu(L,q) =) ¢ " { . ] (3)
n=0
and

oo

Ba(L, q) _ Z (_l)nqn(5n+l+2a)/2 |:|_l(L _én B a,)J:| (4)
2

n=—oo

where |z] denotes the integer part of z and the Gaussian polynomials (g-binomial
coefficients) are defined for integer m,n by

(Dn
[n] = { @Dml@nm 0SMET (5)
m 0 otherwise.

The identity (1) is obtained by using lim, o [)] = 1/(q)m It is generalizations
of the polynomial identity (2) which we will call a Rogers-Ramanujan identity.

2.3 THE GENERALIZATIONS OF Fy(L,q)

All known generalizations of F,(L,q) can be written in terms of the following
function [12]

f: Z quBmf—Am H |: m+ ) (6)

restrictions

where m,u and A are n dimensional vectors and B is an n X n dimensional
matrix and the sum is over all values of the variables m,, possibly subject to some
restrictions (such as being even or odd). In many cases the g-binomials are defined
by (5) but there do occur cases in which an extended definition

[m + n] _ { % for m > 0, n integers (7)
m otherwise
which allows n to be negative needs to be used.

The function (6) has the interpretation as the partition function for a collec-
tion of n differerent species of free massless (right moving) fermions with a linear
energy momentum relation e(P;*), = vP;* where the momenta are quantized in
units of 27 /M and are chosen from the sets

Pf € {Pinm), Piy(m) + 20, P (m) + 37 Pl(m)}  (8)

with the Fermi exclusion rule P}* # P for j #k and all a = 1,2,---,n

Pin(m )=%[((B—1) M)y — Ag +1] and P2 — —po 4 202 Ay (g)

min max min M 2
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a < = 00. The F, (L, q) of (3) is regained
in the very special case of n =1, B =2, u = 2L — 2a and %A = —a. Because of
the Fermi exclusion rule we call these sums which generalize F, (L, ¢) Fermi forms.
The generalization which the selection rule (8) makes over the usual exclusion rule

of fermions is of great physical importance in the physics of the fractional quantum
Hall effect [19].

where if some u, = oo the corresponding P&

2.4 THE GENERALIZATIONS OF B, (L,q)

The first polynomial found which generalizes B,(L,q) is Bﬁ?s’p /)(L,a,b; q) given
by(3, 4]

e / / L ; s/ L
Z (qj(jpp +rp’—sp) |:L+ab :| _ q(JP-H')(JP +s) |:Lab :|> . (10)

j=—00 2 - jpl 2 - jpl

with L +a — b even. When L — oo this polynomial reduces to

tim BE)(L,abig) = Yo (U ) gurnGr ) )

L—oo (q>oo oo

which is (multiplied by qA(r?s’pl)*C/ 24) the well known character [8, 9] of the minimal

model M (p, p’) of the Virasoro algebra with central charge ¢ = 1—6(p—p’)?/pp’ and
conformal dimension Asﬁ;p/) =[(rp —sp)? —(p—p)?/4pp’ 1<r<p-1,1<
s < p’ —1). In the method of Feigin and Fuchs [8] this formula is obtained by
modding out null vectors from the Fock space of one free boson. For this reason
we call generalizations of B,(L, ¢) bosonic forms.

When p =2,p' = 5,7 =1 and s = 2 — a the character (11) is identical with
the righthand side of (1). This is the original inspiration for the belief that there
is a connection between conformal field theory and Rogers-Ramanujan identities.

Moreover we note that the relation between the exclusion rules (8) with the
character formula (11) provided by Rogers-Ramanujan identities explains why
conformal field theory and related Kac-Moody algebra [20] methods have been
successfully applied to the fractional quantum Hall effect. In particular the Rogers-
Ramanujan identities of [21] guarantee that starting from the U(1) Kac-Moody
algebra description of edge states in the fractional quantum hall effect [20] there
must be corresponding description in terms of fermionic quasiparticles.

But unlike the generalizations of F,(L, q) there are other quite distinct gen-
eralizations of B, (L, q) which have been found to occur. One of the more widely
studied uses, instead of g-binomials (5), the g-trinomials of Andrews and Baxter

[22]
<j>p =3 glra-n) : @)z (12)

2 =0 Q)j(Q)jJrA(Q)szij

and replaces (10) by either Bﬁ}s)(p’p/)(L, a,b; q) given by

00 I 0 I 0
Z qj(pp'jJrrp'fsp) < > _ q(jp+r)(jp'+s) < >
2pj+a—>/, 2pj+a+b/,

j=—o0

s (13)
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which appear in the computation of the order parameters of the dilute A models
[23], or Bﬁ?s)(p’p )(L, a, b; q) given by

0 0 0
Z qj(pp’j+rp’—5p) < L > _ q(jp+r)(jp’+5) < L >
pj+a—> 9 pj+a+bd 9

j=—00

. (14)

and thus we see

These g-trinomials have the property that limy_, . (fx)(z) = (qio
that although the polynomials Bﬁ}s)(p’p/)(L, a,b; q) and B,(«,s,-)(p’p/)(L7 a, b; q) are not
the same as B,(fs’p )(L,a,b; q) all three polynomials have the the same L — oo
limit (11). Further generalizations to g-multinomials have also been investigated
[24, 25, 26, 27].

2.5 PROOF BY L-DIFFERENCE EQUATIONS

The polynomial Roger-Ramanujan identities which generalize (2) are proven by
demonstrating that the generalizations of F,(L,q) and B,(L,q) each satisfy the
same difference equation in the variable L and are explicitly identical for suitably
small values of L. Thus (2) is proven by demonstrating [18] that both F,, (L, ¢) and
B, (L, q) satisty

h(L,q) = h(L —1,q) + ¢“*h(L — 2,q) forL >a+2 (15)

and that they are identical for L = a,a + 1. We refer to such equations as L-
difference equations.

For the Fermi forms (6) the L-difference equations are derived by the general
technique of telescopic expansions [13] which uses the two recursion relations for
g-binomial coefficients (5)

1 R e i P B
m m—1 m m—1 m
which hold for all positive integers m,n or the identical recursion relations for
generalized g-binomial coefficients (7) which hold for all integer m, n without re-
striction.

For the Bose form (10) which involves g-binomials the recursion relation (16)

is sufficient to derive an L-difference equation but for the Bose forms (13) and (14)
which involve g-trinomials we need not only the trinomial recursion relations such

as
\' . /L-1\" L/L-1\" [L-1\°
_ o L- 17
(1), = (3, Gn), G, o
but also so-called “tautological” equations such as

I 1_ v 1_ I 0_ il L \° )
a-1), % \a+1), \4a-1), ¥ \u+1),

which reduce to trivialities when ¢ = 1. These “tautological” identities are what
make the results involving g-trinomials more intricate to prove.
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3 RESULTS FOR MINIMAL MODELS M (p,p’)

The irreducible representations M (p,p’) with central charge less than one are
parameterized by two relatively prime integers p and p’ and the characters are given
by (11). Thus the suggestion of Kac [10] can by taken to mean that each bosonic
form of the character has a fermionic form. We have recently proven [14, 15] that
such identities do indeed exist, even generalized to polynomial identities, for all p
and p’.

But there is much more to the theory than this. The minimal models M (p, p’)
can be realized in terms of the coset construction of fractional level [28, 29]

AW AW . /
(4 )11X( 1) withm:—/p —2o0r — /p
(AN) P —p P —p

—2. (19)

However, these constructions are not unique and as an example we note that the
model M (3,4) in addition to the coset (19) with m = 1 has the representation

(Eél))l X (Eél))l/(Eél))g. It may thus be asked whether or not the Rogers Ra-
manujan identity is a unique property of the model M (p,p’) or is it a property of
the several different coset constructions. For the M (3,4) it is known that just as
there are two coset constructions so there are two very different fermionic repre-
sentations of the characters. For example

oo m? [ 8

3,4 k) nC_'n 1

W= = Y st (20)
m=0 q>m ni,---,ng=0 j=1 (q>3

Thus it is natural to extend the suggestion of Kac to the conjecture that to ev-
ery coset construction of conformal field theory there exists a Rogers-Ramanujan
polynomial identity.

Physically there are even more reasons to make such a conjecture. Conformal
field theories represent integrable massless systems. But it is not needed for a
system to be massless for it to be integrable and it is known [30] that the opera-
tors ¢1.3, ¢2.1,¢1,5 and ¢1 2 provide integrable massive perturbations of M (p,p’)
whenever they are relevant. Each of these massive models has a fermionic quasi-
particle spectrum which is a basis of states in the Hilbert space. As a basis this
is independent of mass and thus still is a basis in the massless limit. We identity
these quasi-particles with the fermionic representations (6). But the different mas-
sive perturbations will in general have a differerent number of quasi-particles and
thus each integrable perturbation is expected to give a different fermionic form and
hence a different Rogers-Ramanujan identity. However, even though at the level
of the field theory these characters are the same at the level of finite statistical
mechanical models the polynomials will be different. Thus we expect that each
coset will lead to a different polynomial identity.

In the remainder of this section we will summarize how much of this conjecture
has been proven.
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3.1 THE PERTURBATION ¢ 3

The integrable perturbation ¢ 3 corresponds to the coset (19) and the bosonic
polynomial is the original B (L, a,b; q) (10) of [3, 4].

For the unitary case M (p,p + 1) the Rogers-Ramanujan identities were first
proven in [13]. Here the matrix B is 3 the Cartan matrix of 4, 5

1 1 1 .
k= §CAP_2|j,k =0jk — 505 k+1 — 505k-1 1< jk<p—2 (21)

B; 2 2

and u; = Ld;1 for r = s = 1 The general case of arbitrary p and p’ is treated
in [14, 15] and here B is a “fractional” generalization of a Cartan matrix which
is obtained from the analysis of Bethe’s Ansatz equations of the XXZ spin chain
of Takahashi and Suzuki [31]. There are families of r, s for which the vector A is
known but results for all cases have not been explicitly written down although an
algorithm exists which allows the identity for any r, s to be found. For p’ =p+1
only the conventional binomial coefficients (5) are needed and the Fermi form
consists of a single term of the form (6). However, for general values of p’ the
modified binomials (7) arise and in addition there are many values of r, s where
the Fermi form consists of a linear combination of terms of the form (6). It is
essentially the existence of these linear combinations which makes the complete
set of results difficult to explicitly write down.

3.2 THE PERTURBATIONS ¢2 1 AND ¢1 5

Rogers-Ramanujan identities for the character with the minimal conformal dimen-
sion for the integrable perturbations ¢2 1 and ¢; 5 have recently been obtained [16]
for models M (p,p’) by means of the recently discovered [17] trinomial analogue
of Bailey’s lemma and some computer tested conjectures. For the unitary case
M(p,p + 1) we have just completed the proof of the identities for all values of r
and s. When 2p > p’ the perturbation ¢, 1 is relevant and the bosonic form B
of (13) appears in the identities. We also have identities for % <p< % where the
perturbation ¢ 5 is relevant and the bosonic form B(?) of (14) is used.
For the unitary case M (p,p + 1) the matrix B is of dimension p — 1 where

1 .
Bjx = 504, .lik 254,k <p—2
B0,0 B]_,]_ = 17 BO,2 B _BZ,O — 1/2 B1,2 _ BZ,I — _1/2 (22)

and zero otherwise and u; = 2L4; ¢ for r = s = 1. This matrix differs significantly
from the p — 2 dimensional matrix (21) in that it is not symmetric.

The matrices B are also known [16] for the nonunitary cases p’ # p + 1.
However, in many of these nonunitary cases a new phenomena arises not seen
in the ¢, 3 perturbations, namely that there can be several different fermionic
representations (with different dimensions of the B matrix) of the same bosonic
polynomial.
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3.3 THE PERTURBATION ¢ 2

The final case of integrable perturbations is ¢1 2 but this case is not nearly so well
understood. For the three very special unitary cases of cases M (3,4), M (4,5) and
M (6,7) Rogers-Ramanujan identities are known [11, 32] where the B matrices
are twice the inverse of the Cartan matrix of Eg, F; and FEg respectively and
the bosonic form is obtained from (13) with the replacement p — p 4+ 1 in the
g-trinomials. Beyond these nothing further seems to be known.

4 HOW MANY IDENTITIES?

We demonstrated in [14, 15] that every M (p, p’) yields a set of Rogers-Ramanujan
identities. But we also found that there are more than one identity for each
M (p,p'). The question then arises of how many fermionic representations there
are for the characters of each model M (p,p’) The answer to this is not known
and the scope of the problem is perhaps most vividly shown by considering the
three state Potts model M (5,6) where in addition to the identities for the ¢9 1
perturbation discussed above there is another set of identities which are a special
case of the “parafermionic” identities first found by Lepowsky and Primc [33] in
1985 where the matrix B is twice the inverse Cartan matrix of A and in the limit
L — o0, u — oo. This perturbation is also for the ¢, perturbation but has two
quasi-particles instead of the four quasi-particles of (22). One may speculate that
this has something to do with the difference between A and D modular invariants,
but the actual explanation and interpretation of this fact is not known nor is it
known if such extra representations exist for other models. If this is part of the
explanation then we must enlarge the conjecture of sec. 3 to account for the
possible modular invariants. But even this suggestion will not give an explanation
for all of the various identities found for the nonunitary ¢, 1 perturbations in [16].
The full range of Rogers-Ramanujan identities is by no means yet understood and
it is anticipated that both in the mathematics and in the physics there is much
still left to be discovered.
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METASTABILITY AND THE ISING MODEL

ROBERTO H. SCHONMANN

ABSTRACT. We present recent results on a classical non-equilibrium statis-
tical mechanics problem, in the context of a well-studied idealized interact-
ing particle system, called kinetic Ising model. The problem concerns the
speed and the patterns of relaxation of statistical mechanical systems in the
proximity of the phase-transition region, and is related to the problem of
understanding the metastable behavior of systems in such regions.

1991 Mathematics Subject Classification: 60K35 82B27

Keywords and Phrases: kinetic Ising model, stochastic Ising model, Glauber
dynamics, metastability, relaxation, nucleation, droplet growth, Wulff shape,
large deviations, asymptotic expansion

It is well known that a ferromagnetic material which is in equilibrium under a
negative external magnetic field relaxes to equilibrium very slowly after the mag-
netic field is switched to a small positive value. A detailed mathematical analysis
of such a phenomenon can only be performed on simplified models. It is widely
accepted that an appropriate model for this and many other purposes is a kinetic
Ising model: a Markov process which endows the traditional Ising model with a
particular stochastic dynamics. On each vertex of an infinite lattice Z¢, we have
variables (called spins) which take the values —1 or +1. The system evolves in
continuous time as a Markov process which is time-reversible and has as invariant
measures the classical Gibbs measures of statistical mechanics. When the tem-
perature parameter, T', appearing in the definition of the model is small enough,
there is a phase transition which takes place when the external field parameter,
h, changes sign (this corresponds to the change from a negative to a positive ori-
entation of most spins). The question then arises of how the system relaxes to
equilibrium when /& is small and positive, and the system is initially in an equilib-
rium distribution corresponding to a small negative value of h.

Simulations have shown that the relaxation mechanism is driven by the behavior
of the clusters (droplets) of +1-spins which form initially in the sea of —1-spins.
While small droplets tend to shrink and disappear, large ones tend to grow and
are responsible for the relaxation. This phenomenon has long been understood on
non-rigorous heuristic grounds, and can be used to predict for instance the order
of magnitude, as h N\, 0, of the relaxation time for the process. The prediction
is that the relaxation time grows as exp(Ah9~1), where ) is a constant which
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can be computed. The value of A is, in particular, related to the equilibrium
surface tension of the Ising model through the Wulff construction, which solves a
variational problem.

In this note we will overview rigorous results of the type described above and
also some important extensions. A thorough review of metastability, even in the
context of the kinetic Ising models, is far beyond the scope of this note. Here
we will limit ourselves to the main results in the papers [Schl] and [SS], which
concern metastability in the vicinity of the phase transition region. A great deal
of recent progress on metastability of the kinetic Ising models stems from the
fact that these models also display metastable behavior away from this region, at
low enough temperature. For a detailed discussion of relations between the various
manifestations of metastability of kinetic Ising models we refer the reader to [Sch2],
where further reference to the literature can also be found. More recent progress in
this direction is contained in [Nev], [BC], [DS], [CO], [CL] and references therein.
For a paper which reports on extensive numerical studies directly related to the
mathematical work reviewed here, we refer the reader to [RTMS].

The precise definition of the kinetic Ising models is lengthy and somewhat
technical. It can be found, e.g., in [Schl] and [SS]. For the purpose of this note it
is best to just give a somewhat intuitive description. At each site of the lattice Z¢
there is a variable (spin) which can take the value —1 or +1. The configuration on
the complete lattice is then an element of the space Q = {—1, —i—l}Zd. The system
evolves in time, with spins flipping back and forth, at rates which depend on the
state of nearby spins. The system as a whole is a Markov process with state space
Q. The interaction among spins is driven by an energy function (Hamiltonian)
formally defined on 2 by

Hp(o) = 3 Z o(z)o(y) — 5 Zo(x)7
T,y n.n. T
where “z,y n.n.” means that x and y are nearest neighbors in Z¢, i.e., they are
separated by Euclidean distance 1, A € R is the external field and o € € is a
generic configuration.
Formally, Gibbs distributions are defined as probability distributions u over €2,

i (~H,(0)/T)
exXpl\—aplo

uio) = Normalization ’
where T' = 1/8 > 0 is the temperature. When h # 0 or T > T, = T.(d) it is
known that there is a unique Gibbs distribution, which then describes the system
in equilibrium and will be denoted by prn. In d = 1, T, = 0, but for d > 2,
T. > 0. The segment {{0} x (0,T¢)} of the phase diagram h x T corresponds
then to the phase-transition region. For these values of the parameters there
are multiple Gibbs distributions; one of them corresponds to a limit of Gibbs
distributions under A < 0 (resp. h > 0) as h 70 (resp. h N\, 0), and is called the
(—)-phase (resp. the (4)-phase), represented by pr — (resp. pr,+). Expectations
with respect to Gibbs measures will be denoted in the standard fashion

(fyrn = /fdMT,h-
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Of particular interest is the magnetization m(T,h) = (o(0))r,,. Away from the
phase-transition region, m(7T,-) is analytic. It is nevertheless believed that for
T < T, this function has no analytic continuation from h < 0 to h > 0. This
result has been proved indeed for low enough T in [Isa].

The time evolution which defines the kinetic Ising model as a Markov process
on {2 is given by a generator L of the form given next. Intuitively, when the
configuration is o, the spin at each site = € Z¢ is flipping at a rate c(x, 7).

(LHE) = 3 ez, 0)(f(o") — f(o).
€74

Here f : 2 — R is supposed to be a local observable, i.e., to depend only on the
spin at finitely many sites of the lattice, 0% is the configuration obtained from o
by flipping the spin at the site z, and ¢(z, o) is called the rate of flip of the spin
at the site  when the system is in the state o. The rates ¢(x, o) are supposed to
satisfy certain conditions, the main one of them being called detailed balance or
reversibility, and formally given by

u(o)e(z, o) = p(o®)c(z,0%).
This assures that the Gibbs distributions are invariant for the process. Other
conditions are that the rates are invariant under translations of the lattice, are of
finite range of dependency, are monotone in the configuration and external field,
and are uniformly bounded above and below when T is fixed and |h| is small.
Several choices can be made for the rates, satisfying all this conditions. To give a
few examples, we introduce

Ath(O') = Hh(O'z> — Hh(O').

Common choices of rates are:
Example 1) Metropolis Dynamics

cr.n(z,0) = exp(—B(AHy(o)) 1),
where (a)™ = max{a, 0} is the positive part of a.
Example 2) Heat Bath Dynamics

1
1+ exp(BA.Hp (o))

crp(z,0) =

Example 3)
crp(z,0) =exp <—§Ath(U)> .

If in the kinetic Ising model the initial configuration is selected at random
according to a probability measure v, then the resulting process is denoted by
(0% h.4)t>0. When v is concentrated on the configuration with all spins —1, we
will denote this process by (o7,,.;)t>0. The probability measure on the space of
trajectories of the process will be denoted by P, and the corresponding expectation
by E.

The following is the main result of [Sch1].
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THEOREM 1. For each dimension d > 2 there is Ty > 0 such that for every
temperature T € (0,Tp) the following happens. There are constants 0 < A\ (T) <
A2(T) < oo such that if we let h N\, 0 and t — oo together, then for every local
observable f

i) E(f(ogpy) = (f)m— if limsuphdtlogt < Ay(T).

i) B(f (07 y)) = (F)r+ 4 liminf 24 logt > Ao(T).

Explicit estimates on the values of A\1(T) and A\o(T") were also given in [Schl].
The theorem above was conjectured by Aizenman and Lebowitz in [AL], where
they proved a similar result for certain deterministic cellular automata evolving
from initial random configurations selected according to translation invariant prod-
uct measures. Actually they conjectured the stronger result, which states that also
A(T) = X (T) =: A(T).

Theorem 1 was greatly improved in [SS] in the case in which d = 2. In particular
in this paper the conjecture by Aizenman and Lebowitz was fully vindicated in
this case. A somewhat simplified and partial statement of the main result in [SS]
is as follows.

THEOREM 2. Suppose d = 2 and T < T.. There is a constant A\, = A.(T) such
that for every probability distribution v = pr s, b’ <0, the following happens.

i) If 0 < A < A, then for each n € {1,2,...} and for each local observable f,

n—1 ; )
E (f (U’.ll/",h;exp(k/h))) = Z l% A

- k7 + O(h™)
=0 7"

for b > 0, where O(h™) is a function of f and h which satisfies
lim supj~ o [O(R™)|/h"™ < oco.

i) If A > A, then for any finite positive C there is a finite positive C1 such that
for every local observable f,

‘E (f (U’III‘,h;exp(A/h))) - <f>T,h‘ < Cy |flleo exp <_%>7

for all h > 0.

The value of A.(T) can be written in terms of other quantities which are re-
lated to the equilibrium distributions of the Ising model. This expression and its
meaning, which are of great relevance, will be presented later in the paper. Next
we compare Theorems 1 and 2 and explain some of their content.

Three of the ways in which Theorem 2 improves on Theorem 1 when d = 2
are: 1) There is a single constant A, separating the regimes (i) and (ii). 2) The
temperature is now only required to be below T.. 3) The initial distribution is
much more general than in Theorem 1, where it was supposed to be concentrated
on the configuration with all spins down. It is natural indeed to start from an
equilibrium state at a small negative h, change it to a small positive h and observe
the evolution of the system afterwards.
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To illustrate and clarify the main way in which Theorem 2 improves further the
statement in Theorem 1, let us take the local observable given by f(o) = o(0) and
n = 2. We have then, when 0 < A < A,

E (O-’III’,h;exp(A/h) (0)) =-m"+ Xh + O(h2)7

when h > 0. Here

h=0_

<§> Z {o(0)o(x))r,—- — (c(0))7,—(o(x))7,— },

T€Z?

is the susceptibility at h = 0_. This means that when h > 0 is small the function
—m* 4+ xh is a better approximation to E (a; hiexp(A /h)(O)) than the constant

function identical to —m* = (f)r —. This function —m* 4 xh is the smooth linear
continuation into the region h > 0 of the function which to h < 0 associates
the equilibrium expectation (f)r . Similar interpretations can be given for larger
values of n and arbitrary f. In this sense Theorem 2 shows that the dynamics gives
meaning to arbitrarily smooth metastable continuations of the distributions pr p,
h < 0, into the region h > 0, inspite of the absence of an analytic continuation.
In the Physics literature (see, e.g., [BM]), one sometimes relates the metastable
relaxation of a system to the presence of a “plateau” in the graph corresponding to

the time evolution of a quantity of the type of E ( f (a:‘;, h;t) ) Of course, strictly

speaking there is no “plateau”, and generically the slope of such a function is never
0. Still, from the experimental point of view a rough “plateau” can be seen and

described as follows. In a relatively short time E ( f (o:”p, h;t>) seems to converge to

a value close to (f)r,—; after this, one sees an apparent flatness in the relaxation
curve over a period of time which may be quite long compared with the time
needed to first approach this value. But eventually the relaxation curve starts to
deviate from this almost constant value and move towards the true asymptotic
limit, close to (f)r,+. The experimentally almost flat portion of the relaxation
curve is referred to as a “plateau”. Theorem 2 can be seen to some extent as
giving some precise meaning to such a “plateau”, and we discuss now two ways in
which this can be done. First note that if 0 < A" < X’ < A, then from Part (i) of
the Theorem we have

E (f (U’III’,h;exp()\’/h)>) —E (f (U;yh;exp(k”/h)>) — 0,

faster than any power of h. Observe that we are considering times which are
of different order of magnitudes, when h is small, and still we are observing a
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nearly constant & ( f (o:”p, h;t>). For a second way in which Theorem 2 can be seen

as expressing the presence of a “plateau”, we can think of plotting E ( f (0%7 h;t))

versus log(t), rather than versus ¢. This is somewhat the natural graph to consider,
if one is interested in the order of magnitude of the relaxation time. If the log(¢)-
axis is drawn in the proper scale, amounting to replacing it with hlog(¢), then,
when h is small, Theorem 2 tells us that the graph should be close to that of a step
function which jumps at the point A., from the value (f)r _ to the value (f)r .

The relation between the constant A.(7T) and some quantities related to the
equilibrium Ising model can best be explained by presenting an heuristic reasoning
which lies behind Theorems 1 and 2. The heuristics is presented next in the case
d = 2. For more on this heuristics including a different way of approaching it and
some of its history see [RTMS].

The first ingredient of the heuristics is the idea of looking at an individual
droplet of the stable phase (roughly the (+)-phase, since h is small) in a back-
ground given by the metastable phase (roughly the (—)-phase). Let S be the shape
of that droplet, which a priori can be arbitrary. Say that [? is the volume (i.e., the
number of sites) of the droplet, and let us find an expression for the free-energy
of such a droplet. This free-energy may be seen as coming from two main contri-
butions. There should be a bulk term, proportional to {2. This term should be
obtained by multiplying {2 by the difference in free-energy per site between the
(+)-phase and the (—)-phase in the presence of a small magnetic field A > 0. This
difference in the free-energy per site of the two phases should come only from the
term in the Hamiltonian which couples the spins to the external field and should
therefore be given by 2m*h/2 = m*h. The other relevant contribution to the
free-energy of the droplet should come from its surface, where there is an interface
between the (4)-phase and the (—)-phase. This contribution is proportional to
the length of the interface, which is of the order of I. It should be multiplied
by a constant wg which depends on the shape of the droplet. This constant wg
represents the excess free-energy per unit of length integrated over the surface of
the droplet when its scale is changed so that its volume becomes 1. Adding the
pieces, we obtain for the free-energy of the droplet the expression

®s(l) = —m*hi* + wsl.

The two terms in this expression become of the same order of magnitude, in case [
is of the order of 1/h. Therefore, it is natural to write [ = b/h, with a new variable
b > 0. This yields
as(b/n) = B0,
where
¢s(b) = —m*b% + wsb.

This very simple function takes the value 0 at b = 0, grows with b on the interval
[0, BS,], where BS = BS(T) = %, reaching its absolute maximum ¢g(BS) =

2m*?

(ws)® _ g8 (T) = AS at the end of this interval. Then it decreases with b on the

4m*
semi-infinite interval [BS, 00), converging to —oo as b — oo.
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Metastability is then “understood” from the fact that systems in contact with
a heat bath move towards lowering their free-energy, so that the presence of a
free-energy barrier which needs to be overcome in order to create a large droplet
of the stable phase with any shape keeps the system close to the metastable phase.
Subcritical droplets are constantly being created by thermal fluctuations, in the
metastable phase, but they tend to shrink, as dictated by the free-energy land-
scape. On the other hand, once a supercritical droplets is created due to a larger
fluctuation, it will grow and drive the system to the stable phase, possibly colliding
and coalescing in its growth with other supercritical droplets created elsewhere.
As a function of h, the linear size of a critical droplet, BS/h, blows up as h \, 0.
One can then, in a somewhat circular, but heuristically-meaningful way, say that
the macroscopic free-energy of droplets is indeed a relevant object of consideration.
One can also hope then that sharp theorems could be conjectured and possibly
proven regarding the asymptotic behavior of quantities of interest in the limit
h N\, 0.

Regarding the shape of the droplet, the height of this barrier is minimized by
minimizing the value of the constant wg. It is a fact (see [DKS]) that indeed one
can introduce a well defined surface tension function between the (+)-phase and
the (—)-phase, and that it produces a single convex shape S which minimizes wg.
This shape is called the Wulff shape. We will simplify the notation by omitting
the subscript S when it is the Wulff shape. In particular,

w w
B.=—, A= .
2m* 4m*

Based on the expression above for the free-energy barrier, one predicts the rate
of creation of supercritical droplets with center at a given place to be exp (_—5‘4)

In what follows now we write d instead of 2, to make the role of the dimension
clear in the geometric argument which comes next. We are concerned with an
infinite system, and we are observing it through a local function f, which depends,
say, on the spins in a finite set Supp(f). For us the system will have relaxed to
equilibrium when Supp(f) is covered by a big droplet of the plus-phase, which
appeared spontaneously somewhere and then grew, as discussed above. We want
to estimate how long we have to wait for the probability of such an event to be
large. If we suppose that the radius of supercritical droplets grows with a speed
v, then we can see that the region in space-time where a droplet which covers
Supp(f) at time ¢ could have appeared is, roughly speaking, a cone with vertex
in Supp(f) and which has as base the set of points which have time-coordinate 0
and are at most at distance tv from Supp(f). The volume of such a cone is of the
order of (vt)?t. The order of magnitude of the relaxation time, t.., before which
the region Supp(f) is unlikely to have been covered by a large droplet and after
which the region Supp(f) is likely to have been covered by such an object can now
be obtained by solving the equation

(Utrel)dtrel €xp <_%) =1
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This gives us

trel = p~4/(d+1) exp (%) .

In order to use this relation to predict the way in which the relaxation time scales
with h, one needs to figure out the way in which v scales with h. If we suppose,
for instance, that v does not scale with h, or at least that if it goes to 0, as h \, 0,
it does it so slowly that

(1) }ILI{% h?tlogv = 0,

then we can predict that
t e pA e Ac
rel = €X Ty . | T & =¥ |
R AT P\ %

yoo B4 pw*  _ puw?
T d+1 (d+1)4mr 12m*

where

(2)

The heuristics above may seem extremely crude. Potentially the interaction
between droplets could spoil the whole picture and lead to a much faster decay.
In the opposite direction, even if the droplet picture makes sense, their speed of
growth could be so slow that (1) could fail an therefore the relaxation time would
be much larger than predicted above.

One of the major contributions of [SS] is to prove that indeed A. in Theorem
2 is given by (2). This means that close to the phase transition region the time
evolution can be well described in first approximation by the highly simplified
droplet dynamics.

Acknowledgements: It is a pleasure to thank Senya Shlosman for the collabo-
ration in [SS] and other related projects. This work was supported by the N.S.F.
grant DMS-9703814.
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SprAcE OF LocAL FiELDS IN INTEGRABLE FIELD THEORY

AND DEFORMED ABELIAN DIFFERENTIALS

FEODOR A. SMIRNOV?!

ABSTRACT. In this talk | consider the space of local operators in integrable
field theory. This space allows two different descriptions. The firgshei is
due to conformal field theory which provides a universal picture of looabp
erties in quantum field theory. The second arises from counting sadution
form factors equations. Considering the example of the restrictedGardon
model | show that these two very different descriptions give the sané.rés
explain that the formulae for the form factors are given in terms of rdedol
hyper-elliptic integrals. The properties of these integrals, inigdar the de-
formed Riemann bilinear relation, are important for describing the sphce o
local operators.

1 QUANTUM FIELD THEORY IN TWO DIMENSIONS.

Consider a massive relativistic quantum field theory (QFT) in two edisional
Minkowski spaceM?. Forxz = (zo,71) € M? we putz? = z3 — 22. Let us
take for simplicity the case when there is only one stable particle o mafm the
spectrum. To this particle we associate the creation-annihilation opetéi®), a(5)

where the rapidity parameterizes the energy-momentum of partig}¢3) = m cosh 3,

p1(B8) = msinh 8. The only non-vanishing commutator is

[a(B1),a"(B2)] = 6(B1 — B2)

The space of states of the theory is the Fock space created by the action oftamarbi
finite number of operators*(3) on the vacuumo0) which is annihilated by(3). We
denote this space b),,. The action of the operators of energy and momeninn H,
is defined byP,|0) = 0, [P, a*(8)] = pu(8)a*(5).

In local QFT there exist local operata® (z) = eF»21x0;(0)e~*F+2x acting in the
spaceH,, and satisfying

[0;(2),0;(z")) =0  for (x—2")? <0

Obviously, these local operators create a linear space which will be dengptéf].b
The Lehmann-Symanzik-Zimmerman axiomatic requires the existenceocitecial lo-
cal operators. One of them is the symmetric energy-momentum t@isosuch that
9, T, = 0andP, = [ T,o(x)dz:. The other one is the interpolating fieldz) weakly

IMembre du CNRS
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approaching, whem, — +o0, the free "out” and "in” fields constructed via the creation-
annihilation operators,,;(3), aout (8) , o, (8), ain(B). Itis required that they are uni-
tary equivalent.a,.:(3) = Sai,(3)S~! with the unitary operato§ (S-matrix) which
leaves invariant the vacuum and one particle state, and commute£witiVe identify
the original operatod(3) with a;,(3).

This axiomatic has an obvious generalization to the case when the partidgtgdras
nal (isotopic) degrees of freedom, and to the case of fermionic statistien generalized
statistic, the latter case is also possible in two dimensions.

Let us consider in some details the space of local operatgrd he general philos-
ophy teaches us that in order to understand the structure of this spakastweconsider
the ultra-violet (short-distance) limit of the original QFT. At leaguitively this idea is
quite natural. The ultra-violet limit of massive QFT is described byegtain confor-
mal field theory (CFT). The spaces of local operators of two theories mustidej and,
since the CFT in two dimensions allows in many cases a complete sojlifjome get a
description of "universality classes” of two-dimensional QFT.

In the conformal case the theory essentially splits into two chiral sgctehich
means that any operat6X(z) can be rewritten a®~ (z_)O* (24 ) wherezy = z¢ + 24
are light-cone coordinates. The space of local operators in CFT is desuritexdhs of
two Virasoro algebras with generatat$ satisfying

nsfn
[‘C'Tin? ﬁriL] = (m - n)ﬁrﬂr:L—i-n +c 5mﬁnT

where the central chargeis an important characteristic of the theory. These Virasoro
algebras act on the spate which happens to be organized as follows. There are primary
fields ¢,, satisfying

LEGn=0,n<0, LEbn=N20nom

whereA,, is the scaling dimension of primary field. Differentlocal operators atainbd
by acting withﬁfn on the primary fields. So, the one has

Ho=EPW,, oW,

whereW,, is a Verma module of the Virasoro algebra.
In this talk | shall consider a particular example of CFT witk: 1. The coupling
constant which we use is related toas follows

Considering the coupling constant in generic position we haveitelfijnrmany primary
fields¢,, , m > 0 with scaling dimensiona,,, = —% + % (% + 1)¢. We shall concen-
trate on one chirality considering only one Virasoro algebra with ggoes(,, = L., .
The Verma modul&V,,, has a singular vector on level + 1. The irreducible representa-
tion of the Virasoro algebra is obtained by factorizing over the Vernbamadule created
over this singular vector. The vectors from this submodule are calleittvactors”. It
must be emphasized that the process of factorizing over the null-vectotisehdgnam-
ical meaning of imposing the equations of motion. The latter statementecatearly
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understood in the classical limgt— 0 when the chiral CFT gives the classical Korteweg-
de-Vris (KdV) hierarchy with second Poisson structure. The space of tpedators
turns into the space of functions on the phase space of KdV. It isrso2] that the
null-vectors in that case provide all the equations of motion of the Kigrarchy.

Let us return to massive QFT. Consider a local oper@ar) and define

fo(Br,-+;Bn) = (0] O(0) a”(B1) - - - a™(8n)[0)

wheref; < --- < 3,. To other ranges gf’s the functionfy is continued analytically.
The functionf is called form factor. The matrix elements of a local operator between
two arbitrary states o, can be obtained by certain analytical continuation of the form
factors due to crossing symmetry. The dependenaegam be taken into account trivially
because the matrix element is taken between the eigen-states of the energyumnament
Thus the form factors define the local operator completely. On the othdrtharset of
form factors define a pairing between the spakgsand,,.

2 INTEGRABLE FIELD THEORY.

The problem of finding the form factors of local operators for any mas@#T looks
rather hopeless. However, in the special case of integrable field theditkis problem
can be solved. In IFT the scattering is factorizable which means that evergruatt
process is reduced to two-particle scattering [3]. The two-particle S8xm@&ts; — G2)
depends analytically on the difference of rapidities. As it has been alreadihear-
ticle can carry internal degrees of freedom lying in finite-dimensionabsotspace. In
that caseS(5; — (32) is an operator acting in the tensor product of the isotopic spaces
attached to the particles scattered. The S-matrix must satisfy certain regotesgrtne
most important of which being the Yang-Baxter equation [4].

Consider now the form factors. The first examples of exact form faatolfsT are
given in [5]. | gave a complete solution of the problem in a seriesapfeps (partly in
collaboration with A.N. Kirillov) summarized in the monograph [6]the particles have
internal degrees of freedom the form factor takes values in the tensorgbiafdsotopic
spaces. Itis convenient to consider the form factors as row-vectors. Thactwem the
right by the operators lik&(3; — ;) (which act non-trivially only in the tensor product of
i-th andj-th spaces). It has been shown that for the opeK@ttwr be local it is necessary
and sulfficient that the following requirements are satisfied [6]:

1. AnavyTICITY. The form factorfo (81, - - , 8n) is @ meromorphic function of all its
arguments in the finite part of the complex plane.
2. SYMMETRY.

fo(Br, -+ Bis Big1- -+, Bn)S(Bi — Bit1) = fo(Br,- - Bix1,Bi- -+, Bn) (1)

3. ToTAL EUCLIDEAN ROTATION.

f(’)(/Bla e 7ﬂn—laﬁn + 27771) == f@(ﬂn;ﬂl;' c 7ﬂn—l) (2)

3. ANNIHILATION POLE. In the absence of bound states there are no other singularities
in variableg,, in the strip0 < Imf,, < 27 but simple poles at the points, = §; + mi.
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The residue at the one of then®{ = 3,1 + =) is given below, other residues can be
obtained from the symmetry property.

271 resfo(ﬂl, e ﬂn—la ﬂn) =
=fo(Bi,  Bn-2) @ cn-1,n I = S(Brn-1—P51) - S(Bn-1— Pn-2)) (3)

wherec,,_1,,, is a certain vector from the tensor producteth and(n — 1)-th isotopic
spaces which is canonically related to the S-matrix.

Two comments are in order here. First, clearly the IFT is completely defindueby
S-matrix in agreement with the general idea of Heisenberg. Second, the#pasen
one-to-one correspondence with the space of solutions of the sy$temaar equations
(1, 2, 3). So, we have to establish the relation of this descriptidine one given by CFT.

Let me consider my favorite example of IFT which is the restricted Soedon
model (RSG)[7]. | will not give the traditional Lagrangian definitiof the model, instead
| shall present the S-matrix which, as it has been said, defines the IFT ceipplEbe
particles in RSG are two-component (soliton-antisoliton), soStmeatrix is an operator
acting inC? ® C? as follows

_B B =~
S(8) = S0(8) (€ Rlg) e R(@)™") (4)
wheres = 51 — (2, £ is a coupling constang () is certain c-number multiplier which
is not very relevant for our goals. The matiiXq) is the R-matrix of the quantum group
Uyq(sl2) [8] with ¢ = exp(%) acting in the tensor product of two-dimensional represen-
tations:

R(g) = ¢t ®7"+D) (I +(qF —¢ %ot ® a*) ,

whereo®, o+ are Pauli matrices. Finaly?(q) = PR(q), whereP is the operator of
permutation. The S-matrix (4) gives the famous Sine-Gordon (S@gix found by
Zamolodchikov [9].

The RSG modelis a sector of SG model. Let us consider the isotopic spapesas
of two-dimensional representations of the quantum group. The Sxni}iis written in
a manifestlyU, (slz)-invariant form. If one introduces the action @f (sl2) in the space
of particles of the SG model, restriction to RSG corresponds to coimsipgy,(slz)-
invariant subspace. This restriction looks at the first glance as a kireahatie, but it
has important dynamical consequences. The spicef RSG corresponds W, (sls)-
invariant solutions of the equations (1, 2, 3). From certain physicedideration we know
that this space must coincide with the space of operators of CFTawithl — ﬁ
defined above.

One remark should be made. | have said that particles in two dimensiofial QF
can have generalized statistics which means that their interpolating fieldeaselocal
(some phases appear in the commutation relations on the space-like ntdnv#hat
case the equations (1, 2, 3) are satisfied for the operators which arelpddaai, but
also mutually local with the interpolating fields, otherwise someanmodification is
needed. This is the situation which takes place in RSG model: solitompaereles with
generalized statistics. Only the primary fields,, and their Virasoro descendents are
mutually local with the interpolating fields of solitons. For simjtyy we shall take for
‘H, of RSG the space span by these “truely local” operators.
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3 DEFORMED HYPER-ELLIPTIC DIFFERENTIALS.

The formulae for the form factors of the RSG model are given in termdefdérmed
hyper-elliptic integrals. Let me explain what these integrals aresidena hyper-elliptic
Riemann surface of genus- 1 defined by the equatiart = p(a) with p(a) = H;Zl(a—
b;). Take the abelian differentials regular everywhere except at the twasgping over
the pointa = oo, and having no simple poles. Up to exact forms there2are- 2 such
differentials, everyone of them is written in the form

w= Ha) da (5)

p(a)

with some polynomial(a). Introduce the intersection form

W1 0 Wy = Z res (w1Qs)
a=0o0

whered? = w. The basis of dual differentials can be constructed as follows. Consider
the anti-symmetric polynomial of two variables:

c(a1,a2) = p(al)a% (M) - ‘/Ma% (M)

a1 — a2 az — ai

For any decomposition of this polynomial of the form
n—1
c(ar,az) = Y _(ri(a1)si(as) —rs(az)si(a1))
i=1

the differentials;; and¢; defined by using; ands; respectively in equation (5) are dual:

nion; =0,(o¢ =0,n0¢ =70;
Consider the canonical homology basis with a-cyelesnd b-cycles3;. The Riemann

bilinear relation (as A. Nakayashiki pointed out to me, the hyper-dlligase was found
by Weierstrass) says that the matrix of periods

= (ke F)

belongs to the symplectic grouip(2n — 2).

Now | am going to describe a deformation of these abelian differentialshnibi
needed for the description of RSG form factors. Obviously only tepsmduct of even
number of two-dimensional representations can haWg(als)-invariant subspace. So,
we have only form factors with even number of particles with rapidjties- - , 82,,. Let
us introduce the notatiorly = exp(%), B; = exp(p;). Consider two polynomials
l(a) andL(A) which can depend respectively bpandB; as parameters. We define the
following pairing for these polynomials [10]:

[ee]

(0, L) = / ®(a)l(a)L(A)da (6)

— 00
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wherea = exp(%), A = exp(a). The function®(«) satisfies the equations

p(ag)®(a + 2mi) = ¢*p(a)®(a), pla) = [J(a—b;)
P(~AQ)®(a +if) = QP(A)®(a), PA) =]JA+B;) ()

whereQ = €. We require tha®(«) is regular for0 < Ima < =, that it behaves agA
whena — —oo, and that it has the following asymptotics when- +oo:

o(a) ~ f(a)F(A),
fla)=a DA+ ea ), F(A) =ATCrD (14> CrATF)

k>0 k>0

where the coefficients,, Ci can be found using (7). These requirements fix the function
®(«) completely, the explicit formula is available, but we shall not neethe following
functionals are defined for arbitrary polynomi&(s) andL(A):

rl = res,—oo(a *l(a)f(a)), RL =resa—o.(A ' L(A)F(A)) (8)

What is the relation between the pairifig L) and the hyper-elliptic integrals? Take the
limit when ¢ — oo keepingp; finite. In RSG model this is the strong coupling limit. In
this limit the integral (6) goes asymptotically to the period of diféerential defined by
l(a) (5) over a cycle which is fixed by the polynomia{ A). Thus we have a deformation
of hyper-elliptic integrals in which the differentials and the cycleteem much more
symmetric way than they do classically. We shall é¢adind L respectively g-form and
g-cycle. The striking feature of this deformation is that it preservethalimportant
properties of classical hyper-elliptic integrals. Let me explain thiatp

After appropriate regularization [6], the pairifig L) can be defined for every pair
of polynomials! and L satisfyingrl = 0, RL = 0. However, only a finite number of
them give really different results because it can be shown that the valbe aftegral
does not change if we add t@r L polynomials of the form

d[h](a) = a™" (p(a)h(a) — p(ag~')h(ag?))
D[H](A) = A™' (P(A)H(A) — P(AQ)H(—A)) (9)

where the polynomials andH are arbitrary. The first polynomial from (9) can be consid-
ered as an exact g-form and the second one as a g-boundary. Itis easy to sexlthat m
(9) we have2n — 2 g-forms andn — 2 g-cycles, so, the dimensions of cohomologies and
homologies do not change after the deformation.

Consider now two anti-symmetric polynomials:

o1, as) = pla1) B plarg™") _
’ ai(arg —az) ai(a1g~t —az)
~ plag) plazg!)
az(azq —a1)  az(azqt —ai)
ClAr, A2) = o (2 (PUANP(A) — P(-A)P(-A2) +
+ (P(—A1)P(A2) _P(Al)P(_AQ))) (10)
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Suppose that modulo exact g-forms and g-boundaries we have the desitoms:

(a1, az) = 2 (ri(ar)si(az) — ri(az)si(ar))
n—1

C(A1, Ag) = ) (Ri(A1)Si(A2) — Ri(A2)Si(Ar))
=1

then the following deformed Riemann bilinear relation holds [10].
PROPOSITION. The matrix

belongs to the symplectic grodp(2n — 2).

4 EXACT FORM FACTORS AND SPACE OF OPERATORS.

The quantum group invariance means thatxheparticle form factors in the RSG model
belong toU,,(sl2)-invariant subspace of the tensor prod(€t)®?". The dimension of
this invariant subspace equdfs') — (,>",). There is a nice coincidence of dimensions

(27?) - (nQ—n1) = (2:—_12) - (27?—_32)

where the RHS gives the dimension(af— 1)-th fundamental irreducible representation
of Sp(2n — 2) (explicitly described later). This representation is naturally relateteo t
construction of the previous section.

Consider the spadg, of anti-symmetric polynomials of variablesay, - - - , a. We
can define the following operators acting between diffebgnt
1. The operator acting frombh;, to b1 by applying the “residue” (8) to one argument,
obviouslyr? = 0.
2. For everyh € bh; (a polynomial of one variable) define the operaddk] acting from
hr—1 to by, by

k

(d[h]lkfl)(alv T 7ak) = Z(_l)id[h](ai) lkfl(alv T 7@7 T 7ak)

3. The operatoe acts frombh;_» to b by

k
(cli—2)(ar, - yar) = S (1) el a5) leaar,-+ @+ @5+ sax)
1<J

Denote bka the following subspace dj:

/b\k = Ker(r |hk—>bk+1)/ @ Im(d[h] |bk—1—>hk)

hebhy
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The spaceEk is finite-dimensional of dimensio(?",f). The action of the operatercan
be restricted to the spacks. We denote by? the subspace:

bg = Hk/lm(c |Ek—2ﬁak)

which is isomorphic ta5p(2n — 2)-irreducible submodule of maximal dimension in the
space of anti-symmetric tensors of rankiVe are interested in the biggest possibfg: ;.

The construction of form factors starts by describing a certain lineardgphism:

()i = bp s (11)
of which we shall not need the explicit form. Using this isomorphise identify every
e € (C?)22" with a polynomial[e],_; € h%_;.

Consider now the spaces, of anti-symmetric polynomial& (A, --- , Ax). The
action of operator®, D[H], C is defined in exactly the same way as the actiom,of
d[h], c using the formulae (8) and (9). Fdr, € $, and forl,,_; € h°_, define the
pairing:

%) [e%s) n—1
<ln_1, Ln> = / dOLl cee / dOLn_l H @(al)
—o0 —o0 i=1

X lnfl(alp"' 7an71)(RLn)(A17"' 7An) (12)

The requirement,_; € b _, together with the existence of g-boundaries and of
deformed Riemann bilinear relation leads to the following remarkable capseg. For
arbitraryH € 91, L,—1 € Hp—1andL,,_s € H,,_2

D[H]Ln_l >~ 0, CLn_Q ~0 (13)

whereL,, ~ 0 means that for such,, the integrals (12) vanish for ady_; € 2 _,.

The form factors must satisfy three equations (1), (2), (3). Cendicst the equa-
tions (1) and (2) only. Obviously, one can multiply any solutiéthese two equations by
a quasi-constant, i.€mi-periodic symmetric function of; which is the same as sym-
metric Laurent polynomial oB3;. We have
PROPSSITION. To everyL, € $, corresponds a solution to (1), (2) belonging to
()22

an (ﬁl? U 7ﬂ2n) = Zanfl[e]a Ln>e

€
where the sum is taken over a basi§@f)22". These solutions span a vector space over
the ring of quasiconstants, and the only possible linear deparedefisolutions arises
from relations (13).

Let me appeal to the strong coupling limit for explaining the meaninitpie con-
struction. In this limit the equations (1), (2) turn into certamelar differential equations.
These linear differential equations are solved in terms of hyper-eliiptégrals §; are
the branch points) and, naturally, different solutions are countedfteyeht cycles. So,
it is not a wonder that after the deformation the solutions are countdd, which have
the meaning of deformed cycles as explained above.
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With every local operata® we identify an infinite tower of polynomials[O],, such
that

f@(ﬂla"' 7ﬁn) = an[O](ﬂla"' 7ﬂ2n)

The polynomialsL,,[O] must be related for different in order to satisfy the remaining
equation (3). We have

ProposITION. The form factorsfo (81, - ,8,) satisfy (3) if and only if the anti-
symmetric polynomials,,[O](As, - - - , A,,), which are at the same time symmetric Lau-
rent polynomials of the parameteB, - - - , Bs,,, satisfy the recurrence relations:
n—1 ,
La[O)(Av, -+ s An|Bu,-++  Bea)lp, =, = (-1 [](4] - B3,)
i=1 j;éi
X Lna[O)(A1, -+ Aj, -+ Ap| By, Ban_) modH - B3,)) (14)

i.e. the difference between LHS and RHS is divisibl§$y\? — B3,) as polynomial of
Aj.

Recall that the equation (3) concerns the residue at the pole= (2,1 + 7i
which corresponds t®;,, = —Bs,_1 andbs, = ¢bs,_1. In the strong coupling limit
the branch point$s,, andb,,,_; approach each other, so, we arrive at a singularity of
the moduli space. Thus the geometrical analogy of our construction islasgo With
every2n-particle space we associate the moduli space of hyper-elliptic curestevtier
moduli space is embedded into the upper one as its singularity. Eqatpgives a rule
for embedding of deformed homologies.

The solution to the relation (14) which describes the primary figld is

Lul¢om)(A1,--+ , Aa|Br, -+, Bay) = [[(A2 — AH ] A2 [ B; ™

1<j

One can multiplyL,, (¢2.,) by the polynomials

Li1(B)=> B*',  Jy(AB)=> AF - ZB?’“

which does not spoil the relation (14). It corresponds to the actiarpefatorsZy;
and 7z, in the spacé, for example L, [J2xO](A|B) = Jar(A|B)L,[O](A|B). | put
forward the following

ConNJECTURE. The space of operators span By., 1 - - - Zox, 172k, - - - Jok, P2m CO-
incides with the Verma module of Virasoro algebra generated over tiheapy field.

Let me say a few words about the meaning of this construction. In RS@Imo
there is an infinite number of local integrals of motibym_1 which can be written in the
form Ix—1 = [ ho(z)dz, with some local densities,, (x). For any local operata®
we define an operatdfyy, 10 = [Iar—1, O] which is also local. The operat@hy_1
acting on#, is the same as before because the eigen-valiig,0f on 2n-particle state
equalsly,_1(B). The operatorg/z;, describe certain transverse to the integrals of motion
coordinates.
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The Verma module of Virasoro algebra is span by the ved@(s - - Li, ¢2n,. The
operatorL, defines the grading in this space such that the degre®, afqualsk. It
can be shown that the degreesZef_; and >, with respect to the same grading equal
respectively2k — 1 and2k. So, the characters of the two graded spaces coincide which
makes the above conjecture very plausible. There are other argumentsun dbis
conjecture which | cannot explain here.

There is a crucial check for the above conjecture. It has been said that the Verma
module of the Virasoro algebra is reducible: there is a submodulalbfrectors which
corresponds to the equations of motion of the model. The questidmether it is possible
to find these null-vectors describing the spatein terms ofZy;,_; and J2x? This can
be done because certain local operators vanishes due to the relationsqd)yen, the
number of these operators is exactly the same as the number of nulls/iectioe Verma
module [2]. | think that this statement which links together two veffietent descriptions
of the spacé, is a good point to finish this talk.

ACkNOWLEDGEMENT. | would like to thank O. Babelon and D. Bernard for fruitful
collaboration and for help in preparing this talk.
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INCOMPRESSIBLE NAVIER-STOKES EQUATION

AND BOLTZMANN EQUATION
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ABSTRACT. We review recent work on derivations of the Euler, incom-
pressible Navier-Stokes and Boltzmann equations from scaling limits of
microscopic dynamics.
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I. INTRODUCTION

Macroscopic equations such as the Euler equations, Navier-Stokes equations or
Boltzmann equation are usually derived through a continuum formulation of con-
servation of mass and momentum or in the last case, by idealizing the collision
process. But, they also have a more fundamental origin in the microscopic equa-
tions of Newton or Schrodinger. The main question is whether this assertion can
be put on a firm mathematical foundation and whether macroscopic concepts such
as the viscosity, the nonlinearity, and the dissipation of the entropy can be un-
derstood microscopically. There are other important questions about many-body
dynamics such as fluctuations, time-dependent correlations and behavior of tagged
particles which are naturally formulated only on the microscopic level, but due to
the restriction of the length of this review, we shall address only the first question
here.

In statistical physics, continuum quantities such as density, velocity, and en-
ergy have microscopic versions which assume their macroscopic, deterministic val-
ues through the law of large numbers. Therefore, in order the equations describing
the evolution of the macroscopic quantities to be exact, certain limits have to be
taken, with suitably chosen scalings of space, time, and other macroscopic param-
eters of the systems. So the first step in the derivation of such equations is a choice
of scaling. Denote coordinates by lower case letters (z,t) in the microscopic scale;
by capital letters (X,T") in the macroscopic scale. We put the system in a cube of

* Partially supported by U. S. National Science Foundation grants 9703752
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size L in d-dimensional space with periodic boundary condition and we will usually
assume d = 3. Denote the particles by (z1,-,2n,v1, -+, vn) with the density
(in the microscopic unit, i.e., number of particles per microscopic unit volume)
p = N/L? Let ¢ be the ratio between the microscopic unit and the macroscopic
unit (say, € ~ 1078). There are typically three choices of scalings:

Grad p=¢e,(X,T):= (ze,te) Lisi finite

Euler p=1,(X,T):= (ze,te) » = «© ISIOH? c et (1.1)
o 5 per particle Ly

Diffusive p = 1, (X, T) := (ze, te”) €

The Euler and diffusive limits will be referred to as hydrodynamic limits. The
typical number of collisions is finite for the Grad limit; infinite in the hydrody-
namic limits. Hence the Grad limit is the closest to free motion without collisions.
Essentially due to this feature, O. Lanford [12] proved the convergence of the hard
core billiards to the Boltzmann equation in the Grad limit in short time based on
the BBGKY hierarchy. Lanford’s work, though restrictive in many ways, remains
the only rigorous result on the scaling limits of many-body Hamiltonian systems
with no unproven assumptions.

II. EULER EQUATIONS

At present there is no rigorous derivation of Euler equations from Hamiltonian
mechanics. Unlike the Grad limit, the Euler limit involves an infinite number
of collisions and the typical behavior is governed by the stationary (equilibrium,
invariant) states, which are assumed to be Gibbs in the famous Boltzmann Hy-
pothesis. More precisely:

BoLTZMANN HYPOTHESIS : The invariant (stationary) measures of many body
classical dynamics are Gibbs ~ e P, In particular, the typical velocity distribu-
tions of different particles are uncorrelated (Weak Boltzmann Hypothesis).

The Boltzmann Hypothesis is strictly speaking incorrect because there are
singular invariant measures. We believe that these singular invariant measures can
be removed by regularity assumption such as finite specific entropy, i.e., entropy
per microscopic unit volume is finite. The following theorem is a joint work with
S. Olla and S. Varadhan [15].

THEOREM. Assume the weak Boltzmann Hypothesis holds for invariant measures
with finite specific entropy. Suppose the Euler equation has a smooth solution in
[0,T]. Then the empirical density, velocity. and energy converge to the solution
of the Euler equations in [0,T] with probability one.

Recall that classical dynamics are characterized by a Hamiltonian

1 N
nLv)=35 Z [vall® + Z V(za — zp) (2.1)

a<fB<N

with V' a two-body potential and the Liouville equation
3th,t(lI?1,'",irN’Ula“'aUN)ZE*fN,t (2-2)
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where fy ¢ is the density (w.r.t. the standard Lebesgue measure) of the system at
time ¢t and the Liouville operator is given by

oOH 0 OH 0
=L= Z[@vaﬁxa_%%}

with the adjoint taken w.r.t. the standard Lebesgue measure.
For a given configuration w = (z1,--,ZnN,v1, -+, vN) the empirical density
and velocity (which rigorously speaking are measures) are defined by

A 12
pew - 6 _Ema )
Ve (X 15 §(X — exq)vq,

where 0 is the standard delta functlon on Euclidean space. We shall say
Pe,w(T/e)(X) has a density p(X,T) if for any test function J on the unit torus,

/J(sx)pw(T/s)(X)dX N1 ZJ ez4(T/c)) —>/ p(X,T)dX

a=1

as ¢ — 0. Similarly for the velocity,

1ZJ e2a(T/€)) va(T/¢) —>/ ) (X, T)dX.

To obtain the Euler equation, we differentiate the velocity

N
% J(X)p(X, T)o(X,T)dX ~ 5_1%N_1 > J(eza)va
N
=—(2N) ! ;g—u(wa)a - +
N Lo — I Lo — T
=—(2N)"' > VJ(exa) R . 5. (vv) (%) 4 (2.3)
a=1 Ba

MICRO CURRENT

(the micro current appearing here is only a main term for illustration of the idea).
Recall the Euler equations:

dp _
E—FV(pv)—O
d(pv)

i [v®@v+P]=0
d(dpe) +Vipev—vP]=0
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Here the pressure P is a function of density, velocity and energy and is determined
by the equation of state from the equilibrium Gibbs measure. So in order to obtain
the Euler equations we need to show that

MICRO CURRENT — MACRO CURRENT (= P(pe o, Ve 0, €c,w)) (2.4)

in the limit € — 0. This equality is understood in the sense of law of large numbers
w.r.t. the density of the systems fx; at time ¢, i.e.,

N1 / fN,t(w)) iVJ(Exa)

<[ w L(VV) <w> = Ppeos Do )| )dw 0
B
(2.5)
where dw = dx1dvy - - - dxydoy.

The density fn, satisfies the Liouville equation (2.2). At the present time
we have essentially no estimate on this equation and the required identity has not
been proved. To appreciate the difficulties, we list a few comments on the Liouville
equation:

o It conserves LP norm and positivity (thus fx can be considered as a probability
density) but LP norm is not useful since || fn ||,~ e“" which is a huge number.
e There is no elliptic theory for classical dynamics.

e The BBGKY method works only for perturbation of free dynamics and thus is
only useful for the Grad limit for which p ~ ¢.

Instead of approaching it via elliptic estimates or LP theory, a useful way to
establish (2.5) is to consider the ergodic property of the Hamiltonian systems. The
key observation, due to Morrey [14], is that (2.5) holds if we replace fy . by any
Gibbs measure (with Hamiltonian H (2.1)), or more generally, if “locally” fn .
is a Gibbs measure of the Hamiltonian H. If we can prove that “locally” fn: is
a equilibrium measure with finite specific entropy, we have proved (2.5) provided
that we assume the Boltzmann Hypothesis. So the proof of Theorem 2.1 consists
of two main ingredients: 1. Prove that the weak Boltzmann hypothesis implies
the Boltzmann hypothesis. 2. Clarify the precise meaning of the word “locally”
and eliminate the possibility of meso-scale fluctuation. The method we used for 2
is the relative entropy method.

Recall that for any two probability densities the relative entropy is defined by

S(flg) = / Flog(f/g)dw

Suppose f; is a solution of the Liouville equation and 1) is any density. Then

9S(filth) = / LU L — 0 }dw (2.6)

This identity can be checked easily from the Liouville equation. It also has a
version for Markov processes:

BuS(fulthe) = —D(filiby) + / FAOT L — O }dw 27)
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where D(f|v) is the Dirichlet form of f w.r.t. ¢ and is nonnegative [21, 15]. Now
recall the entropy inequality (or the Jensen inequality) which states that for any
function W,

/dewSS(ﬂ@[J)—i—log/wexp(W) dw

Thus from (2.6),

S (Filite) < S(fulthe) +log / Goexp { Ut L5 — B4 ) dw

If we have

N1 log/wt exp{ ;' [L* =0t }dw — 0 (2.8)

then the relative entropy can be controlled on the relevant time scale and this will
imply the estimate (2.5) and thus the Euler equations. Note that the left hand side
of (2.8) is independent of f; so the remaining argument in [15] can be summarized
as showing that (2.8) holds iff ¢; is a local Gibbs state with density, velocity and
energy chosen according to the Euler equations (Note: As it is, (2.8) is incorrect;
some arguments using ergodicity of the Hamiltonian dynamics are also needed).
This is essentially a dynamical variational approach because we solve the problem
by guessing a good trial function which in this case is the local Gibbs state.

III THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

The Navier-Stokes equations are the next order corrections to the Euler equations.
In order to derive them one needs to show that

MICRO CURRENT — MACRO CURRENT + vV, o, + 0(¢) (3.1)

where the currents are given by (2.3) and (2.4) and v is the viscosity. Since there
is an € appearing in the viscosity term, (3.1) is in a sense the next order correction
to the Boltzmann hypothesis! From the expression for the micro current in (2.3),
it is hard to even imagine how the viscosity correction arises. This difficulty was
recognized decades ago by Dobrushin, Lebowitz, and Spohn, among others. Recent
work [20, 7, 8, 13] has given us a good understanding of the nature of (3.1), though
a rigorous proof from the Hamiltonian dynamics is still very far off.

The equation for the leading order terms of (3.1) is (2.4) and it holds w.r.t.
Gibbs measures in the sense of law of large numbers. The difficulty to justify (2.4)
rigorously for Hamiltonian dynamics (i.e. (2.5)) is to prove that the solutions
to the Liouville equation are locally stationary and all stationary measures are
Gibbs. On the other hand, one can check easily that (3.1) is incorrect w.r.t any
Gibbs measures with Hamiltonian H. Indeed, (3.1) is a “dynamical identity”. It
can be interpreted physically via the linear response theory or the Green-Kubo
formula (see [17] for an account). A more mathematical interpretation is through
the fluctuation-dissipation equation which we now explain.

Roughly speaking, the fluctuation-dissipation equation states that

MICRO CURRENT — MACRO CURRENT + vV, +€Lg + 0(¢) (3.2)
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for some function g(w), where £ is the Liouville operator. In other words, (3.1) is
correct only up to a quotient of the image of the Liouville operator. The image of
the Liouville operator is understood as fluctuation, negligible in the relevant scale
after time average: for any bounded function g

 [s [ fonte) o)) do =22 [l — o) o) do ~

and is thus negligible to the first order in €, the relevant scale.
It is difficult to work on “next order correction” and thus we turn to the
incompressible Navier-Stokes (INS) equations

p)
a—?-l—u-Vu:—Vp—i—VVVu, Vou=0. (3.3)

The INS equations are invariant under the incompressible scaling,

r—ex, t—e*t, u—e lu, p—elp, (3.4)

under which (3.2) becomes
MICRO CURRENT — MACRO CURRENT + vV, + Lg (3.5)

Notice that both the viscosity and the function g are unknown and (3.5) determines
both. We interpret (3.5) as a decomposition of the space of microscopic currents
into a direct sum of the space of macroscopic currents, the gradient of the velocity
representing the dissipation and the image of the Liouville operator representing
the fluctuation.

Equation (3.5) is extremely difficult to solve as it requires inversion of the
Liouville operator. A class of more manageable stochastic lattice gas models were
introduced in a joint work with R. Esposito and R. Marra [8]. Even for these,
(3.5) requires the inversion of a nonsymmetric operator in infinite dimensions
with a complex interaction. If the generator £ is symmetric, i.e., the dynamics
is reversible, (3.5) can be solved by formulating the problem in an appropriate
space so that it reduces to inverting a self-adjoint operator. This formulation, due
to S. Varadhan [20], is already quite sophisticated since the terms appearing in
(3.5) do not live in a natural space. On the other hand, in order to obtain the
INS equations, the dynamics has to retain essential features of the Hamiltonian
dynamics; this forces us into nonzero drifts and therefore nonreversibility. The
invertibility in the nonsymmetric case is very subtle [13]. Dimension comes into
play, and we believe that (3.5) has no solution at all for dimension d < 2.

In the models of [8] particles have velocities in a chosen finite set and at each
site of the lattice at most one particle of each velocity is allowed. The dynamics
consists of two parts: Random walks and binary collisions between particles. The
random walk part of the dynamics requires only that particles with velocity v
should have the mean drift v. The binary collisions conserve momentum. Note
that conservation of energy is not important here because the INS equations are
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equations of velocity alone. The combined dynamics should have good ergodic
properties and also restore rotational symmetry in the limit. The restoration of
the rotational symmetry is not trivial because the lattice structure breaks the
symmetry. Sets of velocities and dynamics satisfying all the requirements can be
found in [8].

The main result in [8] states that (3.5) has a solution (in a suitable sense) for
d > 3 and if the INS equations have a strong solution up to a fixed time 7" then
the rescaled empirical velocity densities (measures)

Ve w(X) 1= 47! Z 0(X —ex) Zvn(:z:, v) (3.6)

converges to that solution. Here n(x,v) € {0,1} is the number of particles of
velocity v at site . Notice the blowup of the velocity by e~! in accordance with
the scaling (3.4).

The assumption that the INS equations have a strong solutions has a long his-
tory in their derivation from more basic models. Derivations of the INS equations
from the Boltzmann equation go back already a century to Chapman, Enskog and
Hilbert, and were made rigorous in the seventies [4,5]. However the removal of the
smoothness assumption has not been so easy. A program [3] of deriving the weak
(Leray) solutions from the DiPerna-Lions solutions of the Boltzmann equation re-
mains far from complete, due to a lack of good estimates. Though it was believed
that the analysis of particle systems would be even more difficult because they are
essentially infinite dimensional, in a joint work with J. Quastel [16] we have been
able to remove this obstacle.

THEOREM 3.1. Let P. be the distributions of the empirical momentum densities
(3.6). Then P. are precompact (as a set of probability measures with respect to a
suitable topology) and any weak limit is supported entirely on weak solutions of
the INS equations satisfying the energy inequality.

Theorem 3.1 is proven only for d = 3. The restriction d < 3 is for technical
reasons; the restriction d > 3, however, is intrinsic. Since the macroscopic velocity
is defined through the law of large numbers in statistical physics, it inherits a small
fluctuation from the central limit theorem, which is of order €%/2. When we blow
up the velocity by e ! in the incompressible limit (3.6), this term becomes of order
one or larger for dimensions d < 2 and thus the macroscopic velocity is not well
defined in this limit. Note that this argument applies to any dynamics including
the Hamiltonian dynamics.

Though (3.5) determines the viscosity, it is important to have an indepen-
dent characterization, traditionally expressed as a time integral of current-current
correlation functions, which up to constants is given by:

v= / ( MICRO CURRENT (t = 0); MICRO CURRENT (t = s) ) ds (3.7)

0
where < 7 g> = < f g> — < f ><g> is the correlation function and the expectation is
w.r.t. lattice gas dynamics starting from equilibrium. This is called the Green-

Kubo formula and is proved rigorously in [13, 8] for d > 3. For dimension d < 2,
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the Green-Kubo formula (3.7) diverges, (3.5) has no solution, and the time scaling
is faster than diffusive. We are thus forced to conclude that the two dimensional
INS equations cannot be obtained as the incompressible limit of any microscopic
dynamics.

A large deviation principle was also given in [16]. One main step in [16]
is a proof of the energy estimate for the INS equations directly from the lattice
gas dynamics by implimenting a renormalizatin group analysis. The techincally
most demanding points, the large field problems in the standard field theory and
the large fluctuation here, are controlled by the entropy method [10] and and the
logarithmic Sobolev inequality [22]. The entropy method is an infinite dimensional
version of the energy method in PDE; the logarithmic Sobolev inequality plays the
role of the usual Sobolev inequalities.

IV QuANTUM DYNAMICS

Most problems concerning classical or stochastic dynamics have corresponding
quantum versions. They are however often too difficult to study. The classical
or stochastic dynamics are governed by the evolution of a probability density;
the quantum dynamics by a complex wave function. Although both dynamics are
linear, the physics in the quantum case is given by the square of the wave function,
breaking the superposition law. Furthermore, the evolution of a wave function is
determined by its phase which is very hard to control. We mention here a result
on the quantum Lorentz gases [6] to give some flavor of quantum dynamics.
Classical Lorentz gases model a classical particle in an environment of fixed
scatterers distributed randomly (or periodically). The question is the time evo-
lution of this particle for a typical configuration of the scatterers. Denote by
w = (zq), =1, -+, N, the configuration of scatterers in a cube of width L. We
are interested in the Grad limit (1.1) with ¢ = N/L? denoting the density of the
scatterers. The typical number of collisions is now of the order tp ~ 1. It was
proved in [9,19, 1] that its time evolution converges to a linear Boltzmann equation

OrFr(X,V)+V -VxFr(X,V)= /O’(U, V) [Fr(X,U) - Fpr(X, V)] dU, (4.1)

where F' is the phase space density and o(U, V) is the scattering cross section.
The quantum Lorentz gases can be obtained by simply replacing the classical

dynamics by the quantum dynamics. More precisely, let Vj(z) be a fixed “nice”

function. The Schrodinger equation governing the quantum particle is given by

10y = Hn 1Y,  Ye=—0 = Yo, (4.2)

where the Hamiltonian is given by
N
Hyp=H:=-A2+V,, Vi)=Y Volx—za) (4.3)
a=1

The classical phase space density of a wave function 1 is defined through the
Wigner transform:

Wy (x,v) := /1/)(:1: + 2/2)(x — 2/2)e™?dz.
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The scaling is the same as in the classical case,
Wi(X,V) = Wy (X/e, V). (4.4)

Notice that the velocity is not rescaled. The Wigner transform typically has no
definite sign, and the associated Husimi function or coherent states are needed to
define a positive density, but we will not go into these details here.

Let 1%, ; be the solution to the Schrédinger equation (4.2), (4.3) with initial
data 1f. Suppose that the initial data is of the following form

U(@) = ¥ 2h(em)eier,

for some smooth functions h so that as ¢ — 0 the rescaled Wigner transform
Wi (X,V)dXdV converges weakly to |h(X)|>6(V — ug)dXdV =: Fo(X,V)dXdV
as probability measures on R??. Then in dimension d = 3 and for V; small enough
(so that there is no bound state) our main result with L. Erdés [6] is that for any
T>0,

EW,. - W(X,V)dXdV — Fr(X,V)dXdV

weakly as € — 0 and Fp(X,V) satisfies the linear Boltzmann equation (3.6) with
initial data Fo(X,V) and effective collision kernel o given by the quantum scat-
tering operator of the potential Vj.

A simple example illustrates the difference between the classical and the quan-
tum dynamics. Suppose that the particle in a Lorentz gas has one collision. Clas-
sically we simply choose a scatterer and the particle collides with it. In quantum
mechanics, we have from the Duhamel formula

t
wt — e—itHwO _ e—itHowO _ Z/ e—i(t—s)Ho Ve—ingwO ds + -
0

where V,, is the potential given in (4.3) and Hy = —A/2. The one collision term is
the second term on the right hand side which, for simplicity, we write as Zi\;l Vi o
Notice that instead of collision with a scatterer in classical dynamics, it is now a
sum of collisions with all scatterers! Since we have to square the wave function
to get physical quantities, we need to show that the overlaps (or interference) of
off-diagonal terms

< 1pt,on wt,ﬁ >

are very small. Stationary phase methods show they are small, but the number of
the off-diagonal terms is much larger than that of diagonal terms. The analysis of
this competition is very simple in this first term but very complicated in higher
order terms. It nevertheless can be carried out rigorously to all orders [18, 11].
However such results are restricted to the weak coupling limit (a semiclassical
limit) and short time. Instead we renormalize the perturbation theory so that we
can consider the Grad limit to obtain the quantum scattering kernel. Furthermore,
we truncate the Duhammel formula and estimate the error terms to remove the
short-time restriction and thus we obtain results global in time [6].
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STOCHASTIC COALESCENCE

Davip J. Aupous!

ABSTRACT. Consider N particles, which merge into clusters accord-
ing to the rule: a cluster of size x and a cluster of size y merge at
(stochastic) rate K(z,y)/N, where K is a specified rate kernel. This
Marcus-Lushnikov model of coalescence, and the underlying determinis-
tic approximation provided by the Smoluchowski coagulation equations,
have an extensive scientific literature. A recent reformulation is the gen-
eral stochastic coalescent, whose state space is the infinite-dimensional
simplex (the state x = (z;,7 > 1) represents unit mass split into clusters
of masses z;), and which evolves by clusters of masses z; and x; coa-
lescing at rate K(z;, ;). Existing mathematical literature (Kingman’s
coalescent, component sizes in random graphs, fragmentation of random
trees) implicitly studies certain special cases. Recent work has uncovered
deeper constructions of special cases of the stochastic coalescent in terms
of Brownian-type processes. Rigorous study of general kernels has only
just begun, and many challenging open problems remain.

1991 Mathematics Subject Classification: 60J25, 60K35

Keywords and Phrases: continuum tree, entrance boundary, fragmenta-
tion, gelation, random graph, random tree, Smoluchowski coagulation
equation.

1 INTRODUCTION

Our topic centers around two closely related models. The Marcus-Lushnikov pro-
cess is the following finite-state continuous-time Markov process [17, 16].

Fix an integer N > 1 and a rate kernel K(x,y) > 0. Imagine N particles,
originally separate, which merge into clusters according to the rule

each pair of clusters, sizes {m;, m;} say, coalesces into one cluster

of size m; + m; at rate K(m;, m;)/N.

The general stochastic coalescent [10] is the continuous-time Markov process whose
state space is the infinite-dimensional simplex A = {x = (x;) : ; > 0,>, x; = 1},

IResearch supported by N.S.F. Grant DMS96-22859
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where we imagine a state x as a fragmentation of unit mass into clusters of masses
x;, and the process evolves according to the rule

each pair of clusters, masses {x;, z;} say, coalesces into one cluster

of mass x; + x; at rate K (z;, x;).

Provided the rate kernel K is homogeneous with some exponent y

we see that the Marcus-Lushnikov process is a special case of the general stochastic
coalescent, by taking each particle to have mass 1/N and rescaling time.

There is a large literature in various science disciplines (e.g. physical chem-
istry [9]) on deterministic equations (see section 3) for coalescence. A lengthy
survey of deterministic and stochastic models appears in [2]. In particular, there
are three special cases which are now well understood: K(z,y) = 1 (Kingman’s
coalescent), K(z,y) = = + y (the additive coalescent), K(z,y) = zy (the multi-
plicative coalescent). The next five sections focus on five open problems, whose
discussion will illustrate some of the known results.

2 THE FELLER PROPERTY OF THE GENERAL STOCHASTIC COALESCENT

In making precise the verbal description of the general stochastic coalescent, one
would like to prove it is a Markov process with some regularity properties, specif-
ically the Feller property that the distribution at time ¢ be weakly continuous as
a function of the initial state. Intuitively, this should be true under very weak
assumptions, e.g. that K(z,y) is continuous and strictly positive. But a proof
is elusive. Evans and Pitman [10] give a proof under stronger assumptions of
Lipschitz continuity.

3 DETERMINISTIC LIMITS

Studying t — oo time asymptotics in these models isn’t interesting: the mass all
coalesces into a single cluster. Our remaining problems concern different sorts of
asymptotics. In the Marcus-Lushnikov process write ML) (z, ¢) for the (random)
number of mass-z clusters at time t. One expects a weak law of large numbers,
saying that as N — oo

N ML) (z,t) =P n(z,t), 2>1,t>0 (2)

where the deterministic limit n(z, t) is the solution of the Smoluchowski coagulation
equation

dn(e,t) = 13" K,z — wn(y, (e — u,0) — n(e,t) S K(w.wn(w1)  (3)
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with n(z,0) = 1(z—1). It is these equations which have been studied most inten-
sively in the scientific community [9]. From the verbal description of the model
we expect solutions to have the property that mass density is preserved:

my(t) = an(ac,t) =1Vt (4)

This is true [23] under the assumption
Kz+y) =010+z+vy) (5)

but in general there might be a phase transition called gelation: 3T, < 0o such
that
ml(t) =1,t< Tgel; ml(t) <1, t> Tgel'

The physical interpretation of gelation is that after the critical time, a strictly pos-
itive proportion of mass lies in infinite-mass clusters, the gel. Exact conditions on
K for gelation or non-gelation are another open problem, but let us return to the
question of proving (2), which provides conceptual justification for the determinis-
tic approximation. Proving (2) for ¢ < Tyl is closely related to proving uniqueness
of solutions of (3) up to Tye. While this is not difficult under assumption (5), the
gelling case seems intrinsically much harder, in that the natural techniques one
tries to use would prove regularity of solutions for all time, whereas by definition
a gelling kernel has solutions with a certain non-regularity property. Jeon [13] and
Norris [18] contain the latest results on such questions.

4 THE EMERGING GIANT CLUSTER FOR A GELLING KERNEL

The study of component sizes in the classical random graph process [7] is essentially
the same as the study of the Marcus-Lushnikov process with K(z,y) = zy. It
has long been known that Tye = 1 and that the N — oo behavior around the
critical point is as follows. For large A, at time 1 — A/N'/? the largest cluster
has size 6N?/3 for some small §, and there are many clusters of similar size; at
time 1 + A/Nl/3 the largest cluster has size DN?/3 for some large D, and the
second-largest cluster has size §N2/3. In other words, a distinguished giant cluster
emerges over the time interval 1+ O(N~'/3) and it has size ©(N?/3). See [15] for
an exhaustive analysis. Rescaling size and time near the critical point leads to a
limit process, the standard multiplicative coalescent [1], which is the K (x,y) = zy
case of the general multiplicative coalescent, except that one has to enlarge the
state space to the Iy space {x = (z;) : @; > 0,>,2? < oco}. Remarkably, the
marginal distribution of the standard multiplicative coalescent at a fixed time can
be expressed in terms of excursion-lengths of a certain inhomogeneous reflecting
Brownian motion.

No other gelling kernel is understood, so it is a matter of speculation to what
extent this behavior holds for general gelling kernels. Heuristic arguments of van
Dongen [21] suggest that for exponent 1 < v < 2 there should be an emerging
giant cluster of size N2/(1*7) but the only rigorous theory is some weak results in
[3].
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5 SELF-SIMILARITY AND ENTRANCE BOUNDARY

Consider a non-gelling kernel K which is homogeneous with some exponent v < 1.
It is natural [11] to seek a solution of the Smoluchowski coagulation equation which
is asymptotically self-similar (also called self-preserving or scaling), in the sense
that, as t — oo,

n(z,t) = s 2(t)(¢(z/s(t)) + o(1)) uniformly in (6)

where (z) > 0 satisfies [~ 21)(z) dz = 1. As at (4), we want the mean density
J zn(z,t) dz to be constant in time, which explains the s~2 term in (6). Of course,
the interpretation of (6) is that cluster mass scales with time as s(t). Moreover
one expects

s(t) o tﬁ» —co <y <1 s(t) e for some w, v = 1.

Outside the special cases, little is known, though under extra conditions it is
probably not hard to prove a “tightness” condition weaker than existence of a
self-similar limit (cf. [8] for this result in a slightly different model). For the
Marcus-Lushnikov process, this question relates to the time period when typical
clusters have size o(N) but not O(1). Reformulating in terms of the stochastic
coalescent, we are interested in the time period when typical clusters have mass
o(1). When v < 1 one expects there to be a unique version of the stochastic
coalescent on 0 < ¢t < oo such that the maximum cluster size — 0 as ¢ — 0, and
that in this version the empirical distribution of cluster sizes tends (as ¢t — 0, and
after rescaling by s(t)) to the self-similar distribution . In Markov chain jargon,
this is a question about the entrance boundary, and is easy to verify ([2] section
4.2) in the case K(x,y) = 1. Establishing it more generally seems difficult.

Paradoxically, the two other special cases (kernels zy and z+y) seem atypical,
in that they have rich entrance boundaries, i.e. there are many different ways to
start the process with all the mass in infinitesimally small clusters. See [4, 6] for
detailed studies.

6 CONNECTIONS WITH d-DIMENSIONAL MODELS

Our models are “mean-field”, in that they do not track positions and velocities of
particles in d-dimensional space. This does not mean the models are completely
divorced from physical reality. Rather, the details of the physical process under
study are used to calculate the form of the rate kernel K (z,y). Perhaps the most
interesting case to a probabilist is the original 1916 setting of Smoluchowski [22],
who considered particles diffusing under thermal noise, i.e. performing physical
Brownian motion in three dimensions, and coalescing upon contact. In this case
the appropriate kernel in the mean-field model turns out to be

K(a,y) = (@ + 533 4 y7100),

The second term reflects the faster diffusion of smaller particles, the first term
reflects their smaller cross-section and hence smaller chance of touching. It is nat-
ural to conjecture that, in the full model of spherical masses diffusing by Brownian
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motion in 3 dimensions and coalescing upon contact (and relaxing to spheres), as
time goes to infinity the distribution approximates a Poisson spatial distribution
with rescaled mass distribution following the law ¢ at (6) predicted by the mean
field theory. This has apparently never been studied rigorously, though a less
realistic model is treated by Lang and Nguyen [14].

7 THE STANDARD ADDITIVE COALESCENT

Lest talking about open problems makes it seem little is known, let me end by
mentioning a positive result. Cayley’s formula says there are NV~2 trees on N
labeled vertices. Pick such a tree T, at random. To the edges e of T, attach
independent exponential(1) r.v.’s &. Write F(t) for the forest obtained from T
by retaining only the edges e with & < ¢t. Write Y(N)(t) for the vector of sizes
of the trees comprising F(t). It can be shown that (Y(N)(¢);0 < t < oo) is the
Marcus-Lushnikov process associated with the additive kernel K(z,y) = = + y.
This construction was apparently first explicitly given by Pitman [20], although
various formulas associated with it had previously been developed in combinatorics
[19, 24] and statistical physics [12]. What is remarkable is that one can take
N — oo limits in this construction. The (rescaled) limit of the discrete tree is
the continuum random tree (CRT); the analog of cutting edges is placing marks
according to a Poisson process of intensity e~ along the skeleton of the CRT.
Cutting the mass-1 CRT at these marks splits it into subtrees of finite mass;
write X(¢) for the vector of masses of these subtrees at time ¢. Then (as we
expect by analogy with the discrete case above) the process (X(t), —co < t < 00)
evolves as the stochastic coalescent for K (x,y) = x+y. This process, the standard
additive coalescent, is studied in detail in [5]. The CRT itself can be constructed
from Brownian excursion, so ultimately the construction of the standard additive
coalescent uses only Brownian and Poisson ingredients.

Acknowledgements. This project owes much to joint work and ongoing dis-
cussions with Jim Pitman, Steve Evans and Vlada Limic.
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STATE SPACE COLLAPSE FOR QUEUEING NETWORKS

MAURY BRAMSON*

ABSTRACT. The diffusive limits of queueing networks, known as heavy
traffic limits, are a topic of continuing interest. An important ingredient
in such work is the demonstration of state space collapse, which says
that, in the limit, the process must live on an appropriate subspace. In
[Wi98b], conditions are given under which state space collapse suffices
for heavy traffic limits. Here, we discuss how state space collapse can be
reduced to the problem of showing stability for the fluid model which is
the deterministic analog of the queueing networks under consideration.
We discuss specific cases, such as first-in first-out (FIFO) networks of
Kelly type and certain static priority networks.

1991 Mathematics Subject Classification: Primary 60K25.

1 INTRODUCTION

Queueing networks constitute a general family of stochastic processes. In such
models, one envisions “customers”, such as people, products or some task to be
performed, as being lined up at the different queues, or stations, of a network.
When service of a customer at a station is completed, the customer moves to
another station or leaves the network. Customers are also assumed to enter the
network at various stations. This behavior will, in general, be random, with ran-
dom variables corresponding to the choice of the next station when service at
a station is completed, to the service times at stations, and to the interarrival
times for customers entering the network. The evolution of such a network can be
formulated as a continuous time Markov process. Two basic topics for queueing
networks concern (1) obtaining criteria for when this Markov process is positive
recurrent and (2) deciding when a sequence of networks, under diffusive scaling,
converges to a reflecting Brownian motion. The criteria, in the two cases, are
related. In this survey, we discuss both topics, with emphasis on the latter.

In many situations, it is important to permit more than one type of behavior
for customers at a given station. (For example, patients at the receptionist’s
desk of a doctor’s office will follow different rules, depending on whether they are
checking in or out.) To allow for this, one distinguishes between different classes
or buffers at a station; customers in the same class are subject to the same random
rules for service and routing to the next class. A queueing network is single class
if only one class is assigned to each station; otherwise, it is multiclass. One can

*The author was supported in part by the National Science Foundation.

DOCUMENTA MATHEMATICA - EXTRA VOLUME ICM 1998 - IIT - 213-222



214 MAURY BRAMSON

also classify a queueing network based on whether or not it allows feedback, that is,
output from a station can eventually become part of its input. This will occur, for
example, when customers repeatedly visit a station along some preassigned route.
Not surprisingly, answers for (1) and (2) above will be easiest to obtain for single
class networks without feedback, and most difficult for multiclass networks with
feedback.

The limits in (2), which are referred to as heavy traffic limits (HTL), have
been investigated over the past three decades. Presently, HTL theory remains
incomplete for multiclass networks. An important concept in this context is state
space collapse (SSC). When SSC holds, customers in the different classes at a
station occur (asymptotically) in fixed proportions. Such behavior enables one to
generalize HTL results from single class networks to multiclass networks. This is
done in [Wi98a). It is also shown there that SSC follows from a somewhat weaker
concept, multiplicative state space collapse (MSSC). This work is summarized in
the article [Wi98b] in this volume.

Here, we discuss certain settings where one can demonstrate MSSC. These
include well-known families of networks, such as first-in first-out networks of Kelly
type. More generally, sufficient conditions for MSSC are given by the convergence
of the solutions of fluid model equations which are associated with the networks
in question. Such criteria hold, for example, for static priority networks.

The remainder of this article is organized as follows. In Section 2, we summa-
rize the basic notation and definitions for queueing networks. Section 3 discusses
the stability of queueing networks. Fluid models, the main tool for demonstrating
stability, are introduced here. Section 4 discusses heavy traffic limits. Empha-
sis there is placed on recent work, in [Br98, Wi98a|, which employs state space
collapse.

2 NOTATION AND DEFINITIONS

We make use here of concepts and notation employed in the article [Wi98b] in
this volume, which the reader should consult for more detail. The variable j,
j=1,...,J, will denote the stations of the network under consideration, and k,
k=1,...,K, will denote the classes of the network. We use C(j) for the set of
classes belonging to a station j, and s(k) for the station to which class & belongs.
At each station there is a single server. This server will always by non-idling, that
is, the server will remain busy as long as there are customers present at its station.

The triple (E(-),V(:), ®(-)) contains the random input of the network. The
random vector E(t) = {Ek(t), k = 1,..., K} denotes the number of external
arrivals by time ¢, ¢t > 0, and V(n) = {Vx(nx), k=1,...,K}, n= (ny,...,nk),
denotes the cumulative service times for the first n; customers in each class. The
random matrix ®(n), with rows ®*(ng), k = 1,..., K, denotes the cumulative
routing process after ny departures from each class k. As in [Wi98b], summands
of these quantities are assumed, in each case, to be independent and identically
distributed, with the different sequences also being independent of one another.
The triple (a, M, P) is the deterministic analog of (E(-),V(:),®(-)). The mean
vector « gives the external arrival rates at the different classes; the K x K diagonal
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matrix M has the mean service times my as its diagonal entries. The matrix
P = {Py, k,£ = 1,...,K} gives the probability of a customer being routed
from one class to another. In many interesting cases, the routing of the queueing
network will be deterministic, with all customers entering the system at the same
class, and moving along a given route, until they exit from the system. Such
networks are referred to as re-entrant lines.

We will consider here only open networks, that is, networks for which the
matrix

QY I-P)y ' '=I4+P+(P)+... (2.1)

is finite. (“’” denotes the transpose.) This means that customers at any class
are capable of ultimately leaving the network. To investigate these networks, one
employs the solutions Ay, £ =1,..., K, of the traffic equations

K

A =ap+ Z M Pre, (2.2)
k=1

or equivalently, in vector form, of A = a + P’A. (All vectors in this article are to
be interpreted as column vectors.) Solving (2.2), one obtains A = Qa. The term
A is the nominal arrival rate for class k; to avoid degeneracies, we assume that
A > 0 for all k. Employing m and A, one defines the traffic intensity p; for the
jth server as

pi= > MrAk, (2.3)

keC(j)

with p being the corresponding vector. The condition p; < 1, j = 1,...,J, is
required for each station, when nonempty, to serve customers, in the long run,
more rapidly than they enter the station. When this holds, the network is strictly
subcritical. When p; = 1 for each j, the network is referred to as being critical or
balanced.

Associated with each queueing network is a discipline, which specifies the
order in which customers receive service. We consider here only head-of-the-line
(HL) disciplines, where only the first customer in each class may receive service
at a given time. For multiclass networks, the proportion of service to be devoted
to each class needs to be specified. Examples of disciplines which we will discuss
are first-in first-out (FIFO), where the first customer at a station receives all of
the service irrespective of its class; head-of-the-line proportional processor sharing
(HLPPS), where the amount of service allocated to the first customer in each class
is proportional to the number of customers in that class, and static priority disci-
plines, where classes are assigned a strict ranking, and customers of higher ranked
classes are always served first. In the setting of re-entrant lines, examples of static
priority disciplines are first-buffer-first-served (FBFS) and last-buffer-first-served
(LBFS), where customers at the earlier, respectively latter, classes have priority.
When the queueing network is single class, and the service and interarrival times
are exponentially distributed, it is referred to as a Jackson network. When the re-
striction on the service and interarrival times is removed, it is called a generalized
Jackson network.
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Once a discipline has been given, the triple (E(-),V(:),®(-)) and the initial
data uniquely specify the evolution of a queueing network along each realization.
This defines an underlying Markov process. When this process is positive recur-
rent, the queueing network is said to be stable. Depending on the discipline, the
description of the state space can be a bit of a notational burden. We avoid such
details here.

3 STABILITY AND FLUID MODELS

A necessary condition for a queueing network to be stable is that it be strictly
subcritical. For a long while, it was generally believed that the condition is also
sufficient. This is now known to be false ([Br94], [LuKu91], [RySt92] and [Se94]).
It is possible for the flow of customers through a network to synchronize so that,
at a given time, customers are clustered at specific parts of the network. This
permits individual stations to be periodically “starved” for work, which reduces
their long-term efficiency. At the end of each additional cycle, the number of
customers in the network will then be, on the average, a multiple of the number
for the previous cycle, which produces geometric growth (as measured in cycles).

For many disciplines, however, a queueing network is stable whenever it is
strictly subcritical. Fluid models are the main tool for showing this. They allow
one, in essence, to replace a queueing network with its continuous deterministic
analog of mass flowing through the system. It is typically a considerably easier
problem to show stability in this deterministic setting. Under mild conditions
on the service and interarrival distributions, the stability of the original queueing
network will then follow.

The basic idea is to describe the evolution of a queueing network by a set of
equations. One then analyzes the solutions of the corresponding set of determin-
istic equations, where random quantities have been replaced by their means. One
needs to show that the “queue length” vector for such solutions is 0 after a fixed
time. It then follows that the queueing network is stable.

In order to describe the evolution of a queueing network, one employs random
vectors such as A(t), D(t), W(t), Y(¢t) and Z(t). The vector A(t) denotes the
number of arrivals by time ¢, D(t) denotes the number of departures, and Z(t) is
the number of customers at time t. These three quantities are all class vectors, with
components corresponding to the individual classes. The vectors W (¢) and Y (¢)
are both station vectors, with W (¢) being the immediate workload (the future time
required to serve customers currently at each station), and Y'(¢) is the cumulative
idletime. Typically, the choice of exactly which quantities one employs depends
on the particular setting. We will denote the corresponding n-tuple by X(¢); in
the above setting,

X(t) = (A(), D(t), W(t), Y (t), Z(t)). (3.1)

One connects these quantities together by queueing network equations, which
include

A(t) = E(t) + ) ®* (D (1)), (3.2)
k
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Z(t) = Z(0)+ A(t) — D(¢t), (3.3)
W () = CV(A(t) + Z(0)) — et + Y (t) (3.4)
| tem o) =0, =1, (35)

for t > 0. Here, e is the J-vector of all 1’s, and C'is the J x K matrix with Cj; =1
for k € C(j), and Cj; = 0 otherwise. An additional equation or two is required for
the discipline of the network. For instance, for the FIFO discipline, one employs

Di(t+W;(t)) = Z,(0) + Ax(t), k=1,...,K, (3.6)

for ¢t > 0.

For our purposes, the exact nature of the equations (3.2)—(3.6) is not too
important. One should think of there as being enough equations to determine the
evolution of the queueing network. These equations are used in conjunction with
their deterministic analogs, known as fluid model equations, which are obtained by
replacing (E(-),V (), ®(:)) by (o, M, P). The analogs of (3.2)—(3.6) are then given
by

A(t) = at + P'D(t), (3.7)
Z(t) = Z(0) + A(t) - D(t),
W(t) = CM(A(t) + Z(0)) — et + Y (¢), (3.9)
/OOO 1000y (W ()Y (5) =0, j=1,....7, (3.10)
Di(t+W;(t) = Zk(0) + Ak(t), k=1,...,K, (3.11)

for t > 0. (To distinguish the solutions of the fluid model equations, we employ
overbar notation for the variables in this context.) We also write X(¢) for the
analog of (3.1). Such solutions are referred to as fluid model solutions. We restrict
our attention to solutions with continuous and nonnegative components, where
A(t), D(t) and Y (t) are nondecreasing.

The solutions of the equations (3.2)—(3.6) and (3.7)—(3.11) are connected via
the fluid limits of X(t). These are the limits obtained by applying hydrodynamic
scaling to X(t), i.e., by scaling the weight of individual customers and time pro-
portionately. (We avoid the technical details here.) Fluid limits are solutions of
the fluid model equations; solution of the latter will give information about the
original queueing network. The fluid model is said to be stable if, for a given § > 0
and all solutions of the fluid model equations, Z(t) = 0 for t > 6|Z(0)|. (|-| denotes
the sum of the coordinates.) Since the solutions of a fluid model correspond to a
queueing network with the randomness removed, stability of the fluid model says
that, in essence, the total number of customers in the queueing network has a net
negative drift.

Using elementary properties of Markov processes on general state spaces, it
is shown in [Da95] that, under mild assumptions on the service and interarrival
times, a queueing network is stable whenever the corresponding fluid model is
stable. (Versions of these ideas were first employed in [RySt92].) This enables one
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to indirectly study a queueing network by means of the corresponding fluid model
equations. In particular, the distributions of the service and interarrival times do
not occur in this setting. This enables one, for example, to simply demonstrate
the stability of strictly subcritical generalized Jackson networks, whereas a direct
argument is quite tedious. The stability of strictly subcritical FIFO networks of
Kelly type is another application. (The latter condition means that m; = my
whenever s(k) = s(£).) In general, strictly subcritical FIFO networks which are
not of Kelly type need not be stable.

4 HEAVY TRAFFIC LIMITS

Some background

In the introduction, we briefly discussed heavy traffic limits. Here, we go into more
detail. The basic setup for HTLs consists of a sequence of queueing networks, with
the accompanying n-tuples X" (¢) and queueing network equations. One scales the
quantities W (t) and Z(t), setting W"(t) = W"(r2t)/r and Z"(t) = Z"(r2t)/r.
The goal is to show that

Wr()=W*(-) asr— oo, (4.1)

where W*(-) is a semimartingale reflecting Brownian motion (SRBM). The func-
tions W7 (-) take values in the space of J-dimensional right continuous functions
with left limits, which is equipped with the usual Skorokhod topology, and “="
denotes weak convergence.

SRBMs and related concepts are defined in [Wi98b]. Intuitively, the SRBM
W*(-) behaves like a Brownian motion in the interior of the orthant RY; its drift
and its covariance matrix are given by appropriate limits of the first two moments
of the summands of the triples (E"(:), V"(-),®"(-)), and by the discipline of the
networks. It is confined to R by pushing on the boundary in the directions given
by a reflection matrix R (also determined by the above quantities), according to
the local time spent there. In order for such a process W*(-) to exist, R needs to
be completely-S.

HTLs have been investigated over the past three decades; a summary of the
subject is given in [Wi96, Wi98b|. Implicit in the formulation of (4.1) is the as-
sumption that the states of the corresponding networks are, for large r, essentially
given by W7 (t) at time t. More detailed information about the system, such as
Z7(t), should not be necessary to study the evolution of the limit W*(¢). This
type of behavior is known as state space collapse. (The term was used in [Re84a];
related ideas go back to [Wh71].) For our purposes, the relevant variant is multi-
plicative state space collapse, that is

127 () —AAWT(')HT
max(||[Wr(-)||r,1)

— 0 in probability (4.2)

as 1 — oo. Here, A is an appropriate linear map from R’ to RX, which depends
on the service discipline; || - || is the uniform norm over [0, T7.
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HTLs as in (4.1) need not exist, even for standard disciplines such as FIFO.
It was shown in [DaNg94, DaWa93, Wh93| that this is the case for certain se-
quences of FIFO networks; the problem is related to the limiting reflection matrix
R not being completely-S. Another potential problem is the lack of MSSC. These
problems need to be faced when dealing with multiclass networks with feedback.
(When a network is single class, these problems do not arise, and HTLs exist
([Re84b])). This is also the case when the network is feedforward, that is, an or-
dering among the stations is possible so that customers at lower ranked stations
always go to higher numbered stations.) The general theory for multiclass net-
works is presently incomplete. Below, we summarize some recent work on the
subject which uses MSSC and the fluid model equations introduced in Section 3.

Reduction to fluid model equations

In [Wi98a, Br98], HTLs are demonstrated for certain families of multiclass net-
works. The reasoning employed there can be broken into three “modules”, which
are essentially independent. The first module, which is worked out in [Wi98a], uses
MSSC and the completely-S condition to derive HTLs. Solutions of the balanced
fluid model equations corresponding to the limiting triple (o, M, P), obtained from
(", M", P"), are employed in the second module. It is shown in [Br98], that MSSC
holds whenever such solutions have “nice” asymptotic behavior. The third module
consists of deriving the desired asymptotics for these solutions, and verifying that
R is completely-S. Both of these conditions, in the last step, are not trivial in
general. They are, though, substantial reductions from MSSC. In this subsection,
we discuss the appropriate framework for the second module. We also mention
some specific disciplines where the conditions in the third module can be verified.

In order to state our results for MSSC, we need to overcome some technical
difficulties. The specific discipline must be known in order to be able to write
down all of the relevant queueing network or fluid model equations, such as (3.6).
If one wishes to state results on MSSC at the general level of HL processes, it
is more convenient to instead work with cluster points. These are, in the setting
of MSSC, the analog of the fluid limits, which were mentioned briefly in Section
3. Rather than complicate matters, we restrict ourselves here to several more
concrete families where we can work directly with the corresponding fluid model
equations. Also, as in [Wi98b], we assume that Z"(0) = 0 for the sequences of
queueing networks under consideration, in order to simplify formulation of the
results.

Associated with a sequence of queueing networks are the triples
(E"(-),V"(-),®"(-)). We assume here that the corresponding means (", M", P")
satisty

o o, M - M, P "—P asr— oo, (4.3)

and that the limit (o, M, P) is balanced. One also needs a uniformity condition on
the second moments of the service and interarrival distributions for the sequence.
The latter conditions can be ensured, for example, by not allowing E"(-) or " (+) to
vary with r, and only allowing the components of V" (-) to vary by scalar multiples,
as is done in [Wi98b]. In order to obtain HTLs from MSSC, as in [Wi98a, Wi98b],
one will need to strengthen (4.3) so that r(p” —e) — v as r — oo, for some 7,
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also holds, although this is not needed for MSSC itself. (Rvy will be the drift of
the HTL.)

We first consider a sequence of queueing networks, with a fixed static priority
discipline. As mentioned above, we assume that Z"(0) = 0 for all ». We also
assume that (4.3) holds, that (o, M, P) is balanced, and that the second moment
conditions referred to above hold. Let Z(t) denote the queue length for solutions
of the corresponding fluid model equations for the specific discipline. We further
assume that for all solutions with |Z(0)| < 1,

|Z(t) — Z(c0)| < H(t) (4.4)

holds for a fixed function H(t), with H(t) — 0 as ¢ — oo, and for appropriate
Z(00) (depending on Z(0)) of the form

Z(00) = AW for some W € RY. (4.5)

It is shown in [Br98], that MSSC follows under these conditions. In [BrDa98],
(4.4)—(4.5) are verified for several disciplines, such as FBFS and LBFS. Since one
can also show that the R matrix is completely-S in both cases, the corresponding
HTLs follow. (HTLs for FBFS networks are also shown in [ChZh96].)

One can also obtain HTLs for sequences of FIFO networks of Kelly type
and HLPPS networks by investigating the corresponding fluid models. The basic
procedure is the same as above. In each case, one can, in fact, demonstrate
(4.4) with H(t) = Bie 52!, for appropriate B; and By > 0. MSSC therefore
follows. Since the R matrix will always be completely-S in both cases, (4.1) holds
for appropriate W*(¢t). The arguments for showing (4.4) for the two models are
related. One obtains an entropy function #(t) which converges exponentially fast
to 0; the states with entropy 0 will satisfy (4.5). The function for FIFO fluid
models of Kelly type is

t+W; (1) _
Hit) =Y / h (DL (r))dr- (4.6)
k t

Its asymptotic behavior is analyzed in [Br96] by employing the equations (3.7)—
(3.11).

So far, we have not identified the linear map A, which “lifts” R’ to RX.
For the above disciplines, this is easy to do, since AW, for W € Ri, will be
among the states that remain invariant under the evolution of the corresponding
fluid model. Clearly, for static priority disciplines, (AW); = 0 at all coordinates
except where k is the lowest ranked class at its station j = s(k), in which case
(AW), = W;/my. For FIFO networks, (AW), = A\Wj, where X is as in (2.2),
and for HLPPS networks,

Akmij

(AW = =——-L—.
ZZGC(j) )‘fm%

(4.7)

One can see why, in principle, MSSC should follow from the limiting behavior
of the fluid model solutions, as in (4.4)—(4.5), by comparing the evolution of the
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queue length vector Z(t) under hydrodynamic scaling with its behavior under dif-
fusive scaling. (Some poetic license is taken in phrasing the following steps.) Fluid

limits, which are solutions of the fluid model equations, arise from hydrodynamic

scaling. So, for large ¢, the components Z(t) of Z’"(t)déf'Zr(rt)/r, as r — 0o,

will be in the proportions prescribed by A. Recalling that Z"(t) = Z”(rt) /r, this
implies that Z’"(TT) =2z (rT}), as 7 — o0, collapses to the subspace given by A,
if T, is chosen so that rT,. — oo sufficiently slowly as 7 — co. (One needs the
growth of r7T;. to be slow enough to avoid the contribution of noise from random
fluctuations of Z"(r?T}.).) One is, moreover, entitled to restart the processes zZr (t)
at times 1 = 1,2, ..., with

L Zr(r(t + 1)) /7. (4.8)

Zr,i(t)
Chopping up the interval [0,72T], T > 0, from the original time scale into 7T
pieces, it suffices to analyze the fluid limits corresponding to each of these processes
in order to demonstrate MSSC. Under the second moment conditions on the service
and interarrival distributions that have already been made, the exceptional events
where any of these processes is ill behaved, and the desired collapse does not occur,
will have small probability for large r. Also, the assumption ZT(O) = 0 ensures
that Zr(t) remains close to 0 at small times. Therefore, for a typical realization,
Z"(t) collapses to the desired subspace for all ¢ € [0,7]. This reasoning (when
carefully carried out) will demonstrate MSSC.
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RANDOM AND DETERMINISTIC PERTURBATIONS

OF NONLINEAR OSCILLATORS

MARK I. FREIDLIN

ABSTRACT. Perturbations of Hamiltonian systems are considered. The
long-time behavior of such a perturbed system, even in the case of de-
terministic perturbations, is governed, in general, by a stochastic process
on a graph related to the Hamiltonian. We calculate the characteristics
of the process for systems with one degree of freedom and consider some
applications and generalizations.

1991 Mathematics Subject Classification: 60H10, 34F05, 35B20, 60J60
Keywords and Phrases: Random perturbations, Hamiltonian systems,
PDE’s with a small parameter

Consider an oscillator with one degree of freedom:
G+ fla) =0, q=q do=p (1)

Let F(q) = [y f(u)du be the potential and H(p,q) = % + F(q) be the Hamilton
function of the oscillator. One can rewrite (1) as the system:

0H | OH

8q’ qt = Pt 8p ()

pe=—f(a) =
We assume that the potential F(q) is a smooth generic function: f(q) = F'(q)
is assumed to be continuously differentiable, f(g) has a finite number of zeros,
|f(@)|+ f'(q)| # 0, and the values of F’(q) at different critical points are different.
Let also limg) . F'(q) = co. A typical example of H(p, q) and of the phase picture
is shown in Fig. 1.

Let C(z) = {z = (p,q) € R* : H(z) = z} be the z-level set of H(z). Since
H(z) is generic, C(z) consists of a finite number n = n(z) of connected compo-
nents. Let I' be the graph homeomorphic to the set of all connected components
of the level sets of H(z) provided with the natural topology (see Fig. 1b). The
vertices O1, ..., Op, of T' correspond to the critical points of H(z). Let I, ...,
I, be the edges of the graph. A vertex Oy, € I is called exterior if Oy belongs just
to one edge. The other vertices are called interior (vertices Oz and Oy in Fig. 1Db).
Each interior vertex belongs to 3 edges. We write I; ~ Oy if Oy is one of the
ends of I;. The value of the Hamiltonian H and the number of an edge k£ define a
point of I', so that the pairs (H, k) form a global coordinate system on I'. Define
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Figure 1.

a metric p( -, - ) onI'' If y; = (Hi,k) and y2 = (Ha, k) are points of the same
edge I, C T, we put p(y1,y2) = |Ha — Hi|. The distance between any y, yo € T’
is defined as the length of the path connecting y; and ys. Such a path is unique
since I is a tree.

Consider the map Y : R? = I, Y(z) = (H(z),k(z)) € T, where k(z) is
the number of the edge Iy C I' containing the point of I' corresponding to
the component C(H (z)) containing z € R?. Let Ci(z) = Y *(z,k), (z,k) € T
Note that H(x), as well as k(x), are first integrals of system (2): H(p:,qr) =
éH(po,qo), k:(pt,qt)ék(po,qo). If H(p,q) has more than one minimum, then
these first integrals are independent.

The Lebesgue measure in R? is invariant with respect to the flow X; = (p, q¢)-
If z is not a critical value of H(x), then Cy(z) consists of one periodic trajectory.
The normalized invariant density of the flow X; on Ck(z) with respect to the
length element d¢ on C(z) is

(Tk(z)}VH(x)D*l, € Cu(2),

where

al
Ti(2) = j{ |VH($)}

Cr(z)

is the period of the revolution along Cj(z).
Consider now the perturbed system:

@ + f(qf) = eB(q;, qf) + Veo(gs, q) o Wr. (3)
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PERTURBATIONS OF OSCILLATORS 225

Here W, is the Wiener process in R!, functions 3(p, q) and o(p,q) are supposed
to be bounded and continuously differentiable, 0 < o(p,q), 0 < € < 1. The
stochasitc term o(g¢,¢7) o W; in (3) is understood in the Stratanovich sense. The
deterministic part of the perturbation £4(q, ¢) is a kind of friction. A typical and
interesting example is § = —q.

Equations (3) can be written as the system

p; = — () +eBf, ¢) + Vea (v, q;) o Wi; @
4 = pi-

The pair (p§,qf) = X§ forms a Markov diffusion process in R?. The generator
A of X for a smooth function g(p, q), (p,q) € R?, coincides with the differential
operator
b3 - 1@+ + 5o (Pwagl).
We are interested in the behavior of the process X; for 0 < ¢ < 1. On any finite
time interval [0, T], one can write down an expansion of X§ in the powers of /¢, if
f(q@), B(p,q) and o(p, q) are smooth enough. But, actually, the long time behavior
of X7 is, as a rule, of interest. The finite time interval expansion does not help on
time intervals of order e 71, € | 0, when the perturbations become essential.

A typical example of a problem of interest is the exit problem. Let G be
a bounded domain in R2?. The most interesting case is when G is bounded by
trajectories of the non-perturbed system. In Fig. 1, the boundary of the domain
G consists of four components 0G1, G2, 0Gs, 0G4. Each of them is a periodic
trajectory of system (2). Let y = Y(G) C T and 9; = Y (9G;), i = 1,2,3,4. Let
7¢ = min{t : X7 ¢ G} be the exit time from G. It is not difficult to check that
¢ ~elase | 0. Let ¢(z), z € OG, be continuous. Calculation of E,7° = u®(z),
P{r¢ <t} =u(t,z), Ex(XE) = v°(x), where E, and P, mean the expectation
and the probability for solutions of (4) starting at = = (p, ¢) € R?, are of interest.
Of course, since X{ = (p§, ¢f) is a diffusion process governed by the operator L¢,
one can write down a boundary problem for each of those functions u®(x), u®(¢, x),
ve(x). Say, u®(x) is the solution of the problem:

L) = e — 105 m>%ﬁ-a(ﬁm@@3 5

Leg(p,q) =

Op 2 dp Op

=-1, (pg e G, u(p, q)| 5 = O-
But even numerical solution of problem (5), because of degeneration of the equa-
tion and smallness of € > 0, is not simple, and the asymptotic approach is the

most, appropriate.
Since 7¢ ~ £71, to deal with finite time intervals as e | 0, we rescale the time.

Put Xs Xf/a, 7¢ = e7¢. Then Xf = (p5, ¢5) is the solution of the system
2 1., . e~ e~ =
pi = —f(@) + BE, @) + o (5, G) o W
. ©)
e Lo
q Ept
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226 MARK I. FREIDLIN

Here Wf is a new Wiener process. We will omit the tilde in the Wiener process.
One can single out the fast and the slow components in the process Xf The

fast component is, basically, the motion along the non-perturbed trajectory. In a

vicinity of a periodic trajectory Ck(z), the fast motion, asymptotically as € | 0,

-1
can be characterized by the invariant density (Tk(z)|VH (x)}) , ¢ € Cy(2).

Taking into account that H(z) and k(x) are first integrals of the non-
perturbed system, the slow motion can be described by the projection Y (X7) =
(H(X{), k(X)) of X{ on T. If we are interested in the asymptotics of u®(z) =
e 1E,7¢ ase | 0, then it is sufficient to study just the slow component Y,F = Y (X?)
as ¢ } 0 since 7° = min{t : Y7 € v}, v = Y(G). Therefore, the slow component is,
in a sense, the most important for long-time behavior of the process X7, 0 < e <« 1.
Note, however, that if we are interested in v¢(z) = E,1(XE.) and ¢ (z) is not a
constant on one of the components of G, then the fast component is involved in
the behavior of v*(z) as € | 0 (compare with [F-W 2] Theorem 2.3 and the remark
afterward).

Thus, the problem of long-time behavior of X7 as € | 0, to some extent, can
be reduced to the asymptotic behavior of the process Y = Y (X?) on the graph
T'ase ] 0.

We prove (see [F-Web 1]) that the process Y7, 0 < ¢t < T, for any T' < o0
converge weakly as € | 0 in the space of continuous functions [0,7] — I to a
continuous Markov process Y; on I'. A complete description of all continuous
Markov processes on a graph is given in [F-W 1,2]. A continuous Markov process
YionI' = {h,...,I,;01,...,0,} is determined by a family of second order
elliptic (maybe, generalized) operators Lq, ..., Ly, governing the process inside
the edges, and by gluing conditions at the vertices.

To calculate the operator Ly governing the limiting process Y; inside I, C T,
apply the Ito formula to H(X{) = H (55, §5):

(%) - 1) = [ S22 <X§>dws+§ [ o (XE)%H

The stochastic integral in (7) is taken in Ito sense. Before H (XSE) changes a
little, the trajectory X € makes (for 0 < € < 1) many rotations along the periodic
trajectory of the non-perturbed system. Therefore, the second, the third, and the
fourth terms in the right-hand side of (7) are equivalent respectively to

t 7{ o?(z)H)),(x) de t 7{ o?(x), H)(x) dl
2T(H(x)) VH(z)| ' 2T(H(z)) IVH()]
Cr(H(z)) Ci(H(x))
t B(x) H (x) de
Cr(H(z))

To average the stochastic integral in (7), note that because of the selfsimilarity
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PERTURBATIONS OF OSCILLATORS 227
properties of the Wiener process, this integral is equal to
JE— t ~ ~ 2
W ([ ) as)
0

where W, is an appropriate Wiener process. Using this representation, one can
check that the stochastic integral is equivalent to

— t o?(z)(H! (z))* dt
W —— 7{ L , I<extkl
Ty(H (z)) |VH ()]
Ci(H())
Using the divergence theorem, we have:
o2 (x)(HI’, (x))%de 9 /
= H/ = A
§ we T ] C@m@)e )

Ci(z) Gi(z)

where Gj(z) is the domain in R? bounded by C(z), z € R!. It is easy to check

that
dAw(z) _ / l(o%));ff;(x)+o?<x>H;,;,<x>] »

dz |VH(x)|
Cr(z)

Combining all these facts, we conclude from (7) that, starting at a point of
I C T, until the first exit from Iy, the limiting process Y; is governed by the

operator
1 d d 1 d
Ly = L)L)+ — B2
M 9T (2) dz < +(2) dz> + Ty(2) k(2) dz’

By(z) = % /6|(VH /5

Cr(z)

where

In particular, if the perturbation is just the white noise (o(z) =1, 8(x) = 0),
then the limiting process in Iy is governed by the operator

L= g5t (s00).

where Si(z) is the area of the domain Gy(z) C R? bounded by Cj(z2); Sj(2) =
T (z) is the period of rotation along Cy(z).

To calculate the gluing conditions at the vertices, assume for a moment that
B(z) = 0. Then the Lebesgue measure A in the plane is invariant for X¢ for
any € > 0. Therefore, the projection u(s) = A(Y~1(s)), s C T, of the Lebesgue
measure on I', defined by the mapping Y : R? — T, is invariant for the processes
YF = Y(X'f) on I' for any € > 0. Thus, the measure p(s), s C I, is invariant for
the limiting process Y; on I'. It turns out that among the diffusion processes on I'
governed by operators Ly, inside the edges I, C I', there exists just one process for
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228 MARK I. FREIDLIN

which the invariant measure coincides with p(s). This allows one to calculate the
gluing conditions in the case G(z) = 0. One can check that the exterior vertices are
inaccessible for the limit process Y;, and therefore, no additional gluing conditions
should be imposed there. The interior vertices are accessible in a finite time inspite
of the degeneration of the diffusion coefficients at the vertices.

To describe the gluing conditions at an interior vertex Oy, note that Y ~1(Oy,)
is a oo-shaped curve v shown in Fig. 2. The curve « consists of the trajectories
Y1, Y2, and of the equilibrium point Oy, of the non-perturbed system. Let G; and
G4 be the domains bounded by 7, and 72, respectively. Let I, C I' be the edge
corresponding to the trajectories surrounding v (like the trajectory ¢ in Fig. 2);

lko

[ol

Figure 2.

I, C T corresponds to periodic trajectories inside y; which are close to 71, and
I, C T corresponds to trajectories inside s close to v2; Ix,, Ik,, Ik, ~ Ok. Put

) OH (p, .
Bri = / 9 (52, )220 gy, 21,2, o = B + o
dp Op

i

Then a bounded and continuous on I" function u(y), y € T', which is smooth inside
the edges, belongs to the domain of definition of the generator A of the limiting
process Y; on I if the function Liu(z, k), (z,k) € T, is continuous on I', and at
any interior vertex O € '

Br1D1u(Ox) + BraD2u(Ok) = BroDou(Oy),

where D; is the operator of differentiation in z along Iy, ¢ = 0,1, 2. The operators
L, together with the gluing conditions at the vertices define the limiting process
Y; on I' in a unique way.

Now, if B(p,q) # 0 in the perturbation term, one can check, using the
Cameron-Martin-Girsanov formula, that the gluing conditions are the same as
for B(p,q) = 0.

To complete the proof, one should also check that the family of processes
Y7 = Y(X§), 0 <t < T, is tight in the weak topology and that the limiting
process is a Markov one. The tightness follows, roughly speaking, from the at
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PERTURBATIONS OF OSCILLATORS 229

most linear growth of the coefficients in (7). The Markov property can be proved
using some a priori bounds for the operator L¢ (see [F-Webl]).

This result allows one to calculate in an explicit form the main terms as
¢ | 0 of many interesting characteristics of the process X; ([F-Webl]). A slight
generalization of these results allows one to consider also perturbations of the
nonlinear pendulum defined by the equation §; + sing; = 0, ([F-Web2]).

Suppose now that we have just deterministic perturbations: o(z) = 0 in
equation (6). Let, for brevity, the Hamiltonian have just one saddle point, so that
the phase picture for the non-perturbed system is as in Fig. 3a, and let b},(p, q) <0,
(p,q) € R% The perturbations lead to the picture in Fig. 3b: the perturbed system

Y

(b)
Figure 3.

has a saddle point in a point O} which is close to Og; the equilibrium points Oy,
O3 will be replaced by asymptotically stable points O}, Of%, which are close to
01, and Oj;, respectively, when 0 < ¢ < 1. Two separatrices I and II enter
O),. They divide the exterior £ of the co-shaped curve connected with O3 in two
ribbons. One of these ribbons consists of points attracted to O}; another ribbon is
attracted to Of (see Fig. 3b). The width of each of these ribbons is of order ¢ as
€ } 0. When € becomes smaller, they are moving closer and closer to the co-shaped
curve. Therefore, any point = € £ alternatively belongs to a ribbon attracted to
either O} or to Of as € | 0. This means that the perturbed trajectory X¢ starting
at z € £, is attracted alternatively to O] or O5 when ¢ | 0.

The slow motion of the perturbed system in this case is again the projection
on the graph I related to H(z): Yy = Y/(X},_). The averaging procedure shows

that the limiting slow motion Y is a deterministic motion inside each of the edges
of the graph I':

1
o Tk (Zt)

?L’t Bk(zt), Yt = (Zt,k') c Ik, k= 1,2,3. (8)
If we start from a point 2 with a large enough H(z), and By(z) < 0 if (z, k) is not
a vertex, then the deterministic trajectory hits the vertex Oy corresponding to the
saddle point of H(z) in a finite time. After that, the trajectory of the limiting slow
motion goes to one of the two edges attached to Oz along which H is decreasing.
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To which of these two edges the trajectory goes depends on the initial point in a
very sensitive way. One can show that the measure of the set of initial points from
a neighborhood U of a point z, U C &, attracted to Oy (to Os) is proportional to
J By(x) dx ( f B,(z) dx) as € | 0, where G and G are the left and the right part
G1

of the set in R2 bounded by the co-shaped curve. This was briefly mentioned in
[A]. The proof is available in [B-F]. If the graph corresponding to H (z) has a more
complicated structure and the “friction” B(p, q) is allowed to change the sign, the
situation can be more complicated: the limiting slow motion can “remember more
of its past” (see [B-F]).

There is another way to regularize the problem: Instead of random pertur-
bation of the initial point, one can add a random perturbation to the equation.
Let o(p,q) in (6) be replaced by 1/k&(p,q), where £ > 0 is a small parameter.
Let X'f "™ be the solution of (6) with such a replacement. Consider the double
limit of the slow component Y* = Y(X;"), 0 < t < T: first as ¢ | 0 for a
fixed k > 0, and then as x | 0. The first limit gives us the diffusion process Y,”*
on I', which was described above. Now we consider the limiting behavior of V¥,
0<t<T,asr | 0. As it is proved in [B-F], this limit (in the sense of weak
convergence) exists, independent of the perturbations (of the choice of functions
a(p,q)) and coincides with the process Y; desribed above: Inside the edges it is
a deterministic motion governed by (8), and it branches at each interior vertex
Oy, to one of the edges attached to Oy, along which H is decreasing, with certain
probabilities which are expressed through H(x) and 8(x) in a way similar to that
descried above. The behavior of the limiting slow component after touching an
interior vertex Oy is independent now of the past (see [B-F]). The independence
of the process Y, of the characteristics of the random perturbations, as well as
the fact that the limiting process is the same as occurs if the initial conditions
are perturbed, shows that the “randomness” of the limiting slow component is an
intrinsic property of the Hamiltonian system and its deterministic perturbations.
The random perturbation here is just a way of regularization.

The perturbations in equations (6) are included just in one component. There-
fore, the corresponding differential operator e "' L¢ is degenerate. This leads to
certain additional difficulties in the proof of Markov property for the limiting pro-
cess. One can consider non-degenerate perturbations and replace the oscillator by
an arbitrary Hamiltonian system with one degree of freedom:

thévH(XgHg( (X5 oW, Xf=zecR2 9)

Here W, is the Wiener process in R2, 3(z) is a smooth bounded vector field in R?,
and o(z) is a 2 X 2 matrix with smooth bounded entries, det o(z) # 0. The Hamil-
tonian function H(z) is assumed to be smooth, generic, and lim|,|_,o H(x) = co.

Let T' = {I,...,1,;O1,...,0n} be the graph corresponding to H(z) and
Y(z) = (H(z), k(z)) be the corresponding mapping R? — I'. Then one can prove
[F-W2,3] that the slow component of the process Xf , which is Y(Xf), 0<t<T,
converges weakly as € | 0 to a diffusion process Y; on I'. The process Y; is governed
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PERTURBATIONS OF OSCILLATORS 231

inside I, k € {1,...,n}, by the operator

1 d d 1 d dl
L’“:mu)%(“(z)@+T<z>3‘“(z)ﬁ’ )= e

Cr(z)
Ai(z) = /div (a(z)VH(z)) dz, a(z) =o(z)o*(z), Bi(z)= /div B(z) dx.
Gr(z) Gr(2)
(10)
Here Cx(z) = Y 71(2,k), Gi(2) is the domain in R? bounded by Cx(2), (2,k) €

'\{01,...,0n}.

To define the process Y; for all ¢ > 0, we should add the gluing conditions
at the vertices. The gluing conditions are defined by he domain of definition D,
of the generator 2 of the process Y;: a continuous and smooth inside the edges
function f(g), y € T, belongs to Dy, if Ly f(z,k), y = (2,k) € T, is continuous on
I" and at any interior vertex Oy € T’

3
ZiﬁkiDif(Ok> =0, (11)
i=1
where fr; = lim(, )0, Ak, (2); Tkys Tryy Ipy ~ Og; the “+7 (“=7) sign in front
of By; is taken if H grows (decreases) as the point approaches Oy, along I,, i €
{1,2,3}, (see [F-W2,3]).
This result allows one to calculate in a rather explicit form the main term as
€ | 0 of the solution of the following Dirichlet problem:

%div (a(z)Vu (z))+eB(x) - Vus (z)+ VH(z)-Vu (z) = 0,2 € G, u€($)|vc = (z).

Here G C R? is as in Fig. 1, v(z) is a continuous function on dG.
It follows from [F-W2,3] that lim u®(z) = v(H(z), k(z)), where v(z, k) is the
solution of the Dirichlet problem in vy =Y (G) C T
LkU(Z, k) =0, (Z7 k) €y \ {017 EN) Om}?”(ak) = Ek? ke {17 27374}7

satisfying the gluing conditions described above. Here 0, = Y(0Gk), k = 1,2, 3,4,
8’}/ = (817 827 837 84)7

—1

_ a(x)VH(z) - VH(z) Y(z)(a(z)VH(z) - VH(z))
we| ) ) o V() o
G, G,
ke {1,2,3,4).

The Dirichlet problem in v can be solved explicitly.

Consider now the case of pure deterministic perturbations: o(z) = 0 in (9).
Let for brevity By(z), defined in (10), be negative if (z,k) is not an exterior vertex.
This, in particular, implies that the perturbed system is not Hamiltonian. We can
again “regularize” the problem adding small random perturbations to the initial
conditions or to the equation and then consider the double limit [B-F].
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To consider perturbations of the equation, replace the matrix o(z) in (8) by
VEo(z), k> 0. Let X" be the solution of equation (8). Consider the projection
Y" =Y(X7") of X7 on T. Then, for each & > 0, the processes Y, 0 <t < T,
converge weakly as € | 0 to the process Y;* on I', which was described above. Let
now £ | 0. One can check that processes Y;*, 0 < t < T, converge weakly to a
process Y; = (2, k) on T as | 0. Inside any edge I, C T, the process Y; is
deterministic motion governed by equation (8) with By (z) defined in (10). If Y,
touches an interior vertex Oy € I, it leaves O}, without any delay along one of the
edges Iy, , I, ~ Oy, along which H is decreasing, with probabilities Py, Pjo;

P — | Bk, (O

- |Bk1(0k>| n |Bk2(0k)|, |Bkz(0k)} = lim }Bkz(’z)}7 i= 1727

(Z,k:i)*)ok

independently of the past [B-F].
A special case of this problem when a(z) is the unit matrix was studied in
(W]

If we consider the perturbations of the form
X;® = VH(XD®) +eB(X7%) + Verds,

where (; is a stationary process with strong enough mixing properties, and the
process (; is not degenerate in a certain sense, then, because of a central-limit-
theorem type result, we can expect the same process Y; as the limit of Y(Xf/g) as
first € | 0 and then & | 0.

These results can be applied to some non-linear problems for second order
elliptic and parabolic equations. Consider, for example, reaction-diffusion in a
stationary incompressible fluid in R?2:

€

W = %AuE—FVH(:I:)-Vu—Ff(uE), t>0, zecR?* u0,2)=g(x)>0.

(12)
Here H(z) is the stream function of a stationary flow. We assume that H(z) is
generic and lim,| o H (z) = oco. The initial function is assumed to be continuous.
Let for brevity g(x) has a compact support. Let T’ be the graph related to H(x)
and Y (z) : R? — T be the corresponding mapping. If f(u) = 0, it follows from
the results formulated in this paper [FW2], that u®(t/e,z) — v(¢,Y (z)), where
v(t,y) is the solution of a Cauchy problem on [0,00) x I" with appropriate gluing
conditions at the vertices.

But if the reaction term f(u) is included in the equation, one should use a
different time scale. Let, for instance, f(u) = c(u)u is of Kolmogorov-Petrovskii-
Piskunov type: c(u) > 0 for u < 1, c(u) < 0 for uw > 1, and ¢(0) = max,>¢ c(u).
Then lim, o u®(t/+/€,z) = w(t,Y(z)), where w(t,y), t > 0, y = (2,k) € [, is a
step function with the values 0 and 1. To describe the set, where w(¢,y) is equal
to 1, introduce a Riemannian metric p on I' corresponding to the form

dal
d52 = K(Z;dz27 Tk(z> = % W’ Ak(z) e / AH dzx.
Cr(z) Gr(z)
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Note that this form has singularities at the vertices, but those singularities are
integrable. Let v = Y (suppg) C I'. Then, w(t,y) =1 on the set

{y el:py,y) <t 20(0)}, t>0,

and w(t,y) = 0 outside of the closure of this set. This is a result of an interplay
between the averaging and the large deviations for process Xf/ .» Where X7 is the
process in R? governed by the linear part of the operator in the right-hand side
of (12).

Applications of the ideas discussed in this paper to small viscosity asymptotics
for the stationary Navier-Stokes equations one can find in [F2].

Applications to an optimal stabilization problem are available in [D-F].

I will briefly consider now some generalizations. First, consider a Hamiltonian
system on a two-dimensional torus. A generic Hamiltonian system on a 2-torus
has the following structure: it has a finite number of loops such that inside those
loops, trajectories behave like in a part of R2. The exterior £ of the union of
the loops is one ergodic class so that the trajectories of the system are dense in
E (see references in [F1]). Therefore, the graph I' related to this system has a
special vertex Oy which corresponds to the whole set £. Consider now small white
noise perturbations of the system. The Lebesgue measure on the torus is invariant
for the perturbed process and the projection of this measure on I' is invariant for
the slow component. This implies that the limiting slow component spends at
Op € T a positive time proportional to the relative area of £. Therefore the gluing
conditions at Og are a little different from the conditions at other vertices or form
conditions considered above (see [F-W1], [F1]).

Perturbations of certain Hamiltonian systems on 2-torus may lead also to
processes on graphs with loops, but not just trees as in the case of systems in R2.

Finally, we consider briefly perturbations of Hamiltonian systems with many
degrees of freedom:

X: =VH(X?) + VeW, + eB8(X7),

XE = R2n _ . (13)
()—x6 7x—(p17"'7pn7q17"'7Qn)'

Here W; is the 2n-dimensional Wiener process. ((z) is a smooth vector field
in R?", 0 < ¢ < 1. If n > 1, the non-perturbed system may have additional
smooth first integrals: Hy(z) = H(x), Ha(x), ..., He(z). Let C(2) = {x € R*":
Hy(z) = 21,...,Hy(z) = 2}, 2 = (21,...,2) € RE If the non-perturbed system
X9 has a unique “smooth” invariant measure on each C(z), z € R’ then the
slow component can be described by the evolution of the first integrals. In an
appropriate time scale, the slow component converges to a diffusion process Yz,
0 <t < T. The diffusion and drift coefficients of Y; can be calculated using
the standard averaging procedure. We have such an example when considering a
system of independent oscillators with one degree of freedom

Xi(t) = VHR(X{(1)) + eBe(X5 (2), - .., X5 (1) + VeorWi(1),

(14)
rr = (pr,qx) €ER?, k=1,...,n,
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with Hg(p,q) = arp? + brg® and ag, by > 0, k € {1,...,n}, such that the fre-
quencies of the oscillators are incommensurable. Here Wj(t) are independent
two-dimensional Wiener processes, o, are non-degenerate 2 x 2 matrices, 8, € R2.
But, in general, if Hj are not quadratic forms, the frequences are changing with
the energy and resonances appear. This problem, in the case of deterministic per-
turbations, was studied by many authors (see [AKN]). The approaches used in the
deterministic case allow one to obtain some results on stochastic perturbations as
well.

Let Hy(z), z € R?, k=1,...,n, be generic and lim |, Hi(z) = co. Let Ty
be the graph related to Hy(z) and Y) : R? — T, be the corresponding mapping.
The slow component Y of the process (X{(t),...,X5(t)) = X{ is defined as
the process Y7 = (Y1(X§(t/€)),...,Ya(XE(t/e))), on B = Ty x Ty x ++- x [y,
Under some mild additional conditions, the processes Y,°, 0 <t < T', converge as
e | 0 weakly to a process Y; on =. Inside the n-dimensional pieces of =, where
>y }VH;C (wk)| # 0, the process Y; is described by the averaging procedure. To
define the gluing conditions, assume, first, that Gx(z) = 0, K = 1,...,n. Then
the process X§ is just a collection of n independent processes X§(t), each with
one degree of freedom. The slow component Y3 (X¢(t/€)) of Xi converges, as we
already know, to a process Yy (¢) on I'y, with the gluing conditions described above.
Thus, we know what is the limiting slow component for X in the case fx(z) =0,
k € {1,...,n}. Using the Cameron-Martin-Girsanov formula, one can check that,
if Bx(z) £ 0 are bounded and matrices oy, are non-degenerate, than the gluing
conditions will be, in a sense, the same. This allows to give a complete description
of the limiting slow component for X§ as a diffusion process on = [F-W4].

Similar to the case of one degree of freedom, this result enable us to show
that, under some additional conditions, the long-time behavior of deterministic
systems close to Hamiltonian has a stochastic nature. Consider weakly coupled
oscillators with one degree of freedom:

Xli(t) = ka(Xli(t)) + 551@ (Xla(t)v cee 7X2(t))7

15
X,(0) =2, €R?* kec{l,....,n}, 0<e<l. (15)

The slow motion for this system is the projection of X¢(¢) = (X{(t),...,X5(t))
onE:YF=Y(X f/a). As in the one-degree-of-freedom case, the processes Y;* does
not converge as € | 0. But one can regularize the problem, adding small noise to
the equation: Replace oy in (14) by /kok, and let X" be the solution of (14)
after this change. The processes Y,”" = Y(Xf/’:), 0 <t<T, converge as € | 0, for
a fixed k > 0, to a diffusion process Y;* on =, under some additional conditions.
Then one can check that the processes Y;*, 0 < t < T, converge as x | 0 to a
process Y; on =. The process Y; is deterministic inside the n-dimensional pieces of
= and has some stochastic behavior on the edges. The process Y; is independent
of the choice of matrices oy, so that it is determined by the intrinsic properties of
system (15), but not by the random perturbations.
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BAYESIAN DENSITY ESTIMATION

JAayaNTA K. GHOSH

ABSTRACT. This is a brief exposition of posterior consistency issues in
Bayesian nonparametrics especially in the context of Bayesian Density
estimation,
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1 INTRODUCTION

We describe popular methods of Bayesian density estimation and explore sufficient
conditions for the posterior given data to converge to a true underlying distribution
Py as the data size increases. One of the advantages of Bayesian density estimates
is that,unlike classical frequentist methods,choice of the right amount of smoothing
is not such a serious problem.

Section 2 provides a general background to infinite dimensional problems of
inference such as Bayesian nonparametrics, semiparametrics and density estima-
tion. Bayesian nonparametrics has been around for about twenty five years but the
other two areas,specially the last, is of more recent vintage. Section 3 indicates in
broad terms why different tools are needed for these three different problems and
then Section 4 focuses on our main problem of interest ,namely,positive posterior
consistency results for Bayesian density estimation.

2 BACKGROUND

Let X1, X5,..., X, beiid. random variables with unknown common probability
measure P on (R, B), where R is the real line and B the Borel o— field. Typically P
lies in some given set of probability measures P. In Bayesian analysis, a statistician
puts a probability measure IT on P equipped with a suitable o— field Bp and
assumes that the unknown P is distributed over P according to II and, given P,
X1, Xs,...,X, are i.i.d. with common distribution P. This completely specifies
the joint distribution of the random P and the random Xs. Hence, in principle
one can calculate the conditional probability II(B| X7, Xs,...,X,) of P lying in
some subset B. This is the posterior in distinction with II(B) which is the prior
probability of B. Consistency of posterior to be defined below is a sort of partial
validation of this method of analysis. We now define posterior consistency at
Py. Suppose unknown to the Bayesian statistician,X;, Xo,..., X, are i.i.d. ~ Py,
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where Py is a given element of P and not random. Suppose that P is also equipped
with a topology and the topology and Bp are compatible in the sense that the
neighborhoods B of P, are Bp measurable.

DEFINITION: II(. | X7, X3,...,X,,) is consistent at P, if for all neighborhoods
B of Py, as n — o0,

H(B|X1,X2,...,Xn) —1a.s PO

This property depends on both IT and Fy. It would be desirable to have this
property at various Py’s that seem plausible to the Bayesian who is using this
posterior.

An old result of Doob shows that such a property holds for all but a w—null
set of Py’s. Unfortunately, this result is too weak to settle whether consistency
holds for a particular Py. It is well known that this property holds for a wide class
of priors and all Py’s if P is finite dimensional,e.g., when P is the set of all normal
distributions N(u,0?) with mean p and variance o2, —oo < u < 00,02 > 0. In
contrast the answer is usually no when P is infinite dimensional as in density
estimation.

There are three broad classes of infinite dimensional problems —(fully) non-
parametric inference like making inference about an unknown distribution func-
tion, a semiparametric problem like estimating the point of symmetry of an un-
known symmetrical distribution function, and density estimation. The set P is
different for these three cases. In the first case,which is classical, P is the class
of all probability measures on (R, B). In the third case and, in fact also in the
second, we work instead with the set of probability measures P on (R, B) which
have a density f with respect to the Lebesgue measure. In the first two problems
the set P is equipped with the weak topology and the natural tools are the use
of tail free priors or a theorem of Schwartz(1965). In the third case the natural
topology is that induced by the L; or the Hellinger metric. The natural tool is a
new theorem that makes use of the notion of metric entropy or packing numbers
for the space of densities in addition to one of Schwartz’s conditions.

3 NOTATIONS AND OTHER TECHNICALITIES

3.1 NONPARAMETRICS

We start with the nonparametric problem. Let P be the class of all probability
measures on (R, B); P be equipped with the weak topology and Bp the corre-
sponding Borel o— field. Equivalently, Bp is the smallest o— field which makes
the evaluation maps P — P(A) measurable for each A in B.

The most popular prior on (P,Bp) is the Dirichlet process due to Fergu-
son(1973,1974). It is specified by its finite dimensional distributions as follows.
Let a be a finite non zero measure on (R, B). Let Ay, As, ..., Ay form a measur-
able partition. Then P(A;), P(As3),..., P(A) have a finite dimensional Dirichlet
distribution with parameters a(A4;1), a(Az),...,a(4r). fa(A;) > 0,i=1,2,...,k
then this distribution has a density with respect (k—1) dimensional Lebesgue mea-
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sure that has the form

k

k
H 0<pi,y pi=1
Hl i 1 1

If kK = 2, one gets the beta distribution. Integrating out p; one gets

E(P(A;)) = a(4i)/a(R) = a(A;). 1)

It can be shown that the posterior given X1, Xs,..., X, is again a Dirichlet with
a+ >} 0x,, in place of o, where d, is the point mass at X;. Using this fact and
(1), one gets immediately,

E(P(A)X1, Xa, ..., Xn) = %am) + ﬁ (% Z&Xi(A)> 2)

which is a convex combination of the prior guess @(A) and the frequentist
nonparametric maximum likelihood estimate P,(A) = L 3" dx,(A). The weights
reflect the Bayesian’s confidence in prior guess. One can elicit or choose a(.) and
a(R) — and hence «(.)— from these considerations.

We denote the Dirichlet process by D,,.

ProposiTiOoN. If IT is D, and B is a weak neighborhood of true Py, then
II1(B|X1,X2,...,Xn) = 1 as. (Py), i.e., posterior consistency holds for all Py.

At the heart of this fact is the property of being tailfree,vide Ferguson(1974),
which allows one to reduce an infinite dimensional problem to a finite dimensional
problem and invoke posterior consistency for the latter. This idea as well as the
introduction of Dirichlet for another infinite dimensional problem goes back to
Freedman(1963).

3.2 SEMIPARAMETRICS

We start with a famous example of Diaconis and Freedman(1986). Suppose we
wish to make inference about 6 and Py(.) = P(. — 0) where 6 is real and P(.) is
symmetric around zero. To put a prior distribution for Py one first chooses a P’
using a D, symmetrizes P’ to get P and independently chooses 6. Diaconis and
Freedman(1986) show that the posterior for § need not be consistent in the weak
topology.

Various people have observed that semiparametrics should involve probability
measures with densities but the Dirichlet assigns probability one to the set of
discrete measures. However choosing priors on densities is not enough.

Ghosal, Ghosh and Ramamoorthi(1998) have pointed out that one may argue
that the Diaconis—Freedman counter example occurs because of the breakdown of
the tailfree property. They show that posterior consistency can be proved provided
a condition used by Schwartz(1965) holds. Priors for which posterior consistency
holds are exhibited in Ghosal, Ghosh and Ramamoorthi(1998).

The version of Schwartz’s(1965) theorem one has to use for this purpose is
given below. We now work with P = the set of probability measures P having a
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density f with respect to Lebesgue measure. For two such probability measures
Py, P, with densities f1, fo the Kullback—Leibler number K (P, P») is defined as
Jg filog dz.

K (P, P,) is always > 0 and may be co. It is not a metric but measures
the divergence between P; and P> with the extreme tail of the density playing an
important role.

THEOREM 1 Suppose Py belongs to the Kullback—Leibler support of Il i.e., for
all § >0,
I{K(Py),P)<d}>0 (3)

Then 11 (B| X1, Xa, ..., X,) = 1 a.s. (Py), for all weak neighborhoods B of P,.

As Ghosal, Ghosh and Ramamoorthi(1998) show property(3)—unlike the tail-
free property — continues to hold even with the addition of a finite dimensional
parameter.

For later reference as well as completeness we record Schwartz’s(1965) theorem
in its original form and an extension due to Barron(1988,1998).

THEOREM 2 Let II be a prior on P, and Py € B. Assume the following
conditions:

1. II(K(Py, P) < &) >0 for all § > 0;

2. There exists a uniformly consistent sequence of tests for testing Hy : P = Py
vs. Hy : P € B°, i.e., there exists a sequence of tests ¢n(X1, Xa, ..., X,)
such that as n — oo,

Ep,¢n(X1, X2,...,Xpn) = 0 and P'Hg Eppn(X1,Xo,...,Xn) = 1.
e

Then II(B| X1, X32,...,Xn)— 1 a.s. Po.

THEOREM 3 ((BARRON(1988,1998))) Let II be a prior on P, and Py be in
P and B be a neighborhood of Py. Assume that II(K (Py, P) < 8) > 0 for all e > 0.
Then the following are equivalent.

1. There exists a By such that

Po{II(B°| X1, Xs,...,X,) > e " infinitely often} = 0;

2. There exist subsets V,, W, of P, positive numbers c1,cs, 31,2 and a se-
quence of tests {¢n (X1, Xa,...,X,)} such that
(a) B¢ =V, UW,,
(b) II(W,,) < Cre "1,

(c) Po{dn(X1,X2,...,X,) > 0 infinitely often} =0 and
infpev, Epgn > 1 — coe P2,
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4 DENSITY ESTIMATION

4.1 DIRICHLET MIXTURE OF NORMALS

We illustrate with what seems to be currently the most popular and successful
Bayesian method, first proposed by Lo(1984) and implemented in the early nineties
via Markov Chain Monte Carlo(1994) by Escobar, Mueller and West (94).

Choose a random P’ ~ D,. Since P’ is discrete, as observed before,form a
convolution with a normal density N(0,h). Let P = P’ « N(0, h).

Since the smoothness of P depends on h and one does not know how much
smoothness is right, put a prior(usually, inverse gamma)on h also. This completes
the specification of a prior,which is often called a Dirichlet mixture of normal. It
turns out that for MCMC to be feasible one needs « also to be normal. Simula-
tions and heuristic calculations show that one can improve the rate of convergence
by adding a location and scale parameter to a and by putting a prior on these
parameters also. The following discussion can handle these refinements as well as
general nonnormal ce. However for the normal «,one can supplement the discussion
below with non trivial heuristic argument that throws light on how convergence
takes place. For lack of space the heuristic argument will not be given.

4.2 POSTERIOR CONSISTENCY FOR GENERAL PRIORS

The basic theorem is the following which improves on an earlier result of Bar-
ron,Schervish and Wasserman(1997).

Let Py C P. For 6 > 0, the L1 — metric entropy of Py, denoted by J(d, Py) is
log a(d), where a(d) is the minimum over all k such that there exist Py, P, -, Py
in P with P, C UF{P : |P — Pi|j; < 6}.

THEOREM 4 (GHOSAL,GHOSH AND RAMAMOORTHI) Let II be a prior on P.
If Py € P and II(K(Py, P) < €) > 0 for all e > 0. If for each € > 0 there is a

0 <e€cp,e0>0,0< % and also Py, such that
1. I(PE) < Cre~™1 for large n
2. J(6,Pn) <np
then II(B| X1, X2, ..., Xn)— 1 a.s.Pyn for all Li-neighborhoods B of Py.

The proof of this theorem is based on the result of Barron recorded in Section
3. The first assumption is the condition assumed in Theorem 1 in Section 3 while
the two remaining assumptions take care of conditions(2) and (3) of Barron’s
Theorem.

4.3 APPLICATION TO DIRICHLET MIXTURE OF NORMALS

One has to have two sets of tools to verify the two conditions in Theorem 4. The
set or sieve P, for verifying the condition is: fix a § and [ as in the theorem then

P, = {P:P’*N(o,h);P’[—\/ﬁ,\/ﬁ] >1-6,h> C(f/’ﬁﬁ)}
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Various sufficient conditions which entail application of Theorem 4 are given
in Ghosal, Ghosh and Ramamoorthi(97. For example if Py is smooth unimodal
with finite Shannon entropy and compact support, like the uniform on [a, b] then
Py belongs to the Kullback—Leibler support of the prior. For unbounded support
the tails of Py and & have to be compatible in a certain way.

4.4 CONCLUDING REMARKS

Theorem 4 can also be used to study posterior consistency for Gaussian process
priors and Bayesian histograms (Barron(1988,1998) and Ghosh and Ramamoor-
thi(1998)).

One may also ask whether the Bayes estimate F(P|X1, Xs,...,X,) is con-
sistent. It is easy to show that posterior consistency in the weak topology or the
topology induced by L; norm implies Bayes consistency.

One may also ask questions about rates of convergence and non-informative
or default priors which attain a minimax rate of convergence for the posterior or
Bayes estimates. This issue is currently under investigation by Ghosal,Ghosh and
van der Vaart and by Wassserman and Shen.

A final important remark. In recent work Barron(1998) shows if we focus on
the cumulative Kullback-Leibler predictive loss (also called the entropy loss) an
elegant consistency theory can be built up using only Kullback-Leibler support.
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LATTICE POINT PROBLEMS
AND THE CENTRAL LIMIT THEOREM

IN EUCLIDEAN SPACES

F. GOorze!

ABSTRACT. A number of problems in probability and statistics lead to ques-
tions about the actual error in the asymptotic approximation of nonlinear
functions of the observations. Recently new methods have emerged which
provide optimal bounds for statistics of quadratic type. These tools are
adaptions of methods which provide sharp bounds in some high dimensional
lattice point remainder problems and solve some problems concerning the
distribution of values of quadratic forms.
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1. INTRODUCTION.

Let Xq,..., X, denote independent and identically distributed random vectors in
R d>1.

EXAMPLE 1.1 Assume that X; takes values in the finite set {—1,1}¢ C R? with
equal probability 27¢. Write

Sp=n"Y2(X1+...+ X,).

By the Central Limit Theorem (CLT) the sequence of random vectors S, con-
verges in distribution to a multivariate Gaussian distribution with mean zero and
identity covariance matrix. Let |m|? = (m, m) denote the d-dimensional Euclidean
norm and scalar-product. A number of statistical problems require to determine
asymptotic approximations for the distribution of test statistics of type

T, = |Sn|?.

It is well known that the distribution function (d.f.) P {7}, < v} converges to the
x2distribution function with d degrees of freedom, say x(v), for all v € R. In
order to measure the error of this approximation we shall use the Kolmogorov
distance and would like to determine the optimal exponents o > 0 such that for a
constant ¢ > 0 independent of n

(1.1) dn =sup |P{T,, < v} — x(v)| <en™.
v>0

IResearch supported by the SFB 343, ’Diskrete Strukturen in der Mathematik’, Bielefeld.
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Here T, < v means that the sum /n .S, is contained in a ball B, = {|z| < \/vn}.
General estimates in the multivariate CLT (Sazonov [Sa], Bhattacharya and
Rao [BR]) established the rate o = 1/2 uniformly in the class of convex sets.
Hence for balls and ellipsoids the achievable rate « should be at least 1/2.
In Example 1.1 the sum S,, takes values in a lattice. By the local limit theorem
its discrete density may be approximated by a Gaussian density such that
omoy _ . 1 |m|?
P{S, = %}— en(m)(1+0(n7Y)), en(m) = )i exp{ ~ o }
Hence bounds in (1.1) can be derived from estimates of

sup|  >o wa(m) —x(v)|.

v me an VAL

Since the weights ¢, (m) are ’smoothly’ depending on m, the problem might be
further reduced to the case of constant weights, which leads to a problem about
counting the lattice points in B,,. In this way Esseen [E] and Yarnold [Y] have
proved

THEOREM 1.2.

(1.2) P{T, < v} — x(v) = exp{~v/2} A(Bun) + O(n7").

Here A(A) denotes the relative lattice point remainder given by
__volz A—volA

(1.3) A(A) = ol A ,

with volz A and vol A denoting the number of points of the standard lattice Z% in
A and the volume of A respectively.

The relation (1.2) obviously establishes for Example 1.1 an equivalence between
bounds in the lattice point remainder problem for ellipsoids and bounds of type
(1.1) in the multivariate CLT. Indeed, Landau [L1] and Esseen [E] proved

A(B,) = (’)(s*d/(d“)) resp. 6, =0 (n*d/(d“)),

Note though that Esseen’s bound holds for balls and arbitrary i.i.d. random vec-
tors X; with finite fourth moment and identity covariance operator, where an
equivalence of type (1.2) is not known.

Example 1.1 provides as well lower bounds for the error. Notice that nT),
assumes integer values in the interval [—dn, dn]. Distributing probability 1 among
these values there exists an integer j such that

P{T,=jn"'} >ent, c=1/(2d+1).

Comparing the piecewise constant function v — P{T,, < v} with the smooth
limit v +— x(v), we find the lower bound 6, > en~!. Hence the rates o in (1.1)
are restricted to 1/2 < a < 1.

This lecture is organized as follows. Section 2 contains results in the CLT
for quadratic statistics in Euclidean spaces. Corresponding results in lattice point
problems are described in section 3. Section 4 contains applications to distributions
of values of positive definite and indefinite forms. Finally, in Section 5 we describe
inequalities for trigonometric sums which are essential for these results.

A major part of the results in this lecture represents joint work with V. Bentkus.
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2. APPROXIMATIONS IN THE CLT FOR QUADRATIC STATISTICS.

The CLT in FEuclidean Spaces. Let X, X1, X5,... be a sequence of i.i.d. random
vectors taking values in the d-dimensional Euclidean space R¢ including the case
d = oo of infinite dimensional real Hilbert spaces. We assume that X has mean zero
and | X| has a finite second moment. Then the sums S,, converge weakly to a mean
zero Gaussian random vector, say G, with covariance equal to the covariance of X.
Assume that G is not concentrated on a proper subspace of R%. Let ) denote a
bounded linear operator on R%. Consider the quadratic form Q[z] = (Qz,z) and
assume that @ is non-degenerated, that is ker @ = {0}.

The distribution of the quadratic form Q[G] is determined by its distribution
function, say x(v), and may be represented up to a shift as the distribution of a
finite (resp. infinite) weighted sum of squares of i.i.d. standard Gaussian variables.

Rates of approximation in (1.1) in the CLT for T,, = Q[S,] have been inten-
sively studied especially in the infinite dimensional case in view of applications to
non parametric goodness-of-fit statistics based on empirical distributions. Unfor-
tunately the techniques of multivariate Fourier inversion of earlier results like that
of Esseen [E] cannot be applied here. Several approaches have been developed for
this problem.

A probabilistic approach is based on the Skorohod embedding resp. the KMT—
method and provided bounds of order o = 1/4, Kiefer [Ki], resp. O(n~'/?logn),
Csorgo [Cs]. An analytic approach is based on a Weyl type inequality for charac-
teristic functions, see (5.4). Using this technique, rates « = 1 — ¢ for any ¢ > 0
have been proved in (1.1), see [G1] and for refinements Bentkus and Zalesskii [BZ]
and Nagaev and Chebotarev [NC]. Moreover, using methods like (5.4) the approx-
imation x(v) may be refined by asymptotic expansions in (1.1) up to an error of
order O(n=*/2+¢) for polynomials of S,, of degree k > 2, see[G3].

Results providing optimal bounds of order @ = 1 are based on techniques used
in related bounds for the corresponding lattice point problems. For diagonal qua-
dratic forms and vectors X with independent coordinates the rate a = 1 was
proved for d > 5 in [BG1]. Here the additive structure of Q[z] allows to apply
a discretization of type (5.5) and a version of the Hardy-Littlewood method of
analytic number theory.

New tools described in (5.5)—(5.6) lead to the following result.

THEOREM 2.1. [BG2]. Let EX =0 and 34 = E|X|* < co. Assume that d > 9
ord =o00. Then

(2.4) sup | P{QISa] < v} - P{QIG] <v}[=0(n7").

The constant in this bound depends on (34, the eigenvalues of Q@ and the covariance
operator of G only.

REMARK 2.2.
1) For d = 8 the bound O(n~' In’ n) holds with some & > 0.

2) Similar results like (2.4) hold for Q[z—a] involving an arbitrary center a € R%.
Here the approximation by the limit d.f. P {Q[G —a] < v} needs to be improved

1/2

by a further expansion term, say n~'/#x;(v;a), which vanishes for a = 0.
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3) For dimensions d > 9 including the case d = oo uniform bounds in (2.4),
for @ = Id say, depend on moments of X and on lower bounds for a finite number,
say m, of the largest eigenvalues of the covariance operator of X. For such bounds
the minimal number m < d of eigenvalues needed has recently been determined to
be m = 12, see [GU]J.

These results can be extended as follows.

U-Statistics. Let X, X1,...,X, be ii.d. random variables taking values in an
arbitrary measurable space (X, B) and let g : X — R, h : X? — R denote real-
valued measurable functions. Assume that h(x,y) = h(y,z), for all z,y € X and
E h(z,X) = 0 for almost all z € X. Consider the so called degenerated U-statistic

1
(2:5) Tn = n Zl§i<j<n h(Xi, X;) \/_ Zl<z<n Xi),

and write 3, = E |g(X) }8 and v, = E | h(X1,X5) |S. Assuming that 75 is positive
and 33 + o is finite, the U-statistic T}, converges to a weighted y?-type distri-
bution, say x. Using a further expansion term, say xi, the problem is to derive
explicit estimates for the error

(2:6) 6 = sup [P{T, < v} —x(v) =0~ 2xa (v)]

Rates of order 6, = o(n~'/2) have been proved by Korolyuk and Borovskich [KB].
Moreover, for degenerated U-statistics of any degree k > 2 asymptotic approxi-
mations have been established up to errors 8, = O(n~*/2%¢) in [G2].

Using similar techniques as in Theorem 2.1 the following explicit bound with
optimal rate a = 1 holds.

THEOREM 2.3. [BG4]. Let q; denote the eigenvalues (ordered by decreasing ab-
solute value) of the Hilbert-Schmidt operator induced on L*(X) by the kernel h.
Write vs,, = E (E (| (X1, X2)|"| X2))" and 0% := 2. If q13 # 0,

C /B B2 3 2,2 co
(2.7) on < ;(——i—;—i—?—i— ), where C’gexp{m}.

o4 o4

REMARK 2.4. 1) In cases where the expansion term x; vanishes the condition
g9 7 0 suffices to prove a similar bound.

2) The result can be extended to von Mises statistics, i.e. statistics including
diagonal terms h(Xj;, X;) := d(X;), where d(X) has mean zero. This allows to
consider as well statistics like T}, := |S,, — al?.

It is likely that improvements in lattice point approximation problems (see the
Conjecture in Section 3) allow to prove error bounds of order O(n~!) in Theorems
2.1 and 2.3 for dimensions 5 < d < 8 as well.

3. LATTICE POINT PROBLEMS.
For a symmetric positive definite matrix @ consider the quadratic form
Q[z] = (Qz,x) on R? and the corresponding ellipsoid

E, ::{xeRd:Q[x]gs}, for s > 0.
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Special Ellipsoids. Using similar arguments as for d,, in Section 1 a correspond-
ing lower bound can be shown for the lattice point remainder A(E;) (for @ = Id),
namely

(3.1) A(E) =Q(s™1), d>1.

For balls of dimensions 2 < d < 4, the lattice point remainder A(E,) admits
sharper lower bounds, e.g.

Q(s3/4log!%s), d=2, Qs 'log'?s), d=3, and Q(s 'loglogs), d =4,
due to Hardy [Ha|, Szegd [Sz] and Walfisz [W2] respectively. The upper bound
(3.2) AE)=0(s"Y, d>5

has been shown in a number of special cases. It holds for ellipsoids which are
rational, that is the matrix @ is a multiple of a matrix with rational coefficients.
Otherwise @ is called irrational. This result is due to Landau [L2] and Walfisz [W1]
and depends on the rational coefficients in a non uniform way. For a detailed
discussion see the monograph by Walfisz [W2].

For diagonal forms Q[z] = 2?21 gjx3 with arbitrary ¢; > 0, (3.2) is due to
Jarnik [J1]. Moreover, if @ is irrational, Jarnik and Walfisz [JW] have shown that
the bound

(3.3) A(E,) =o(sY), d>5

holds and is best possible for general irrational numbers g;.

General Ellipsoids. For this class Landau [L1] obtained A(Es) = O(s~ ) with
A =1/(d+1) for d > 1, using Dirichlet series methods. His result has been ex-
tended by Hlawka [H]] to convex bodies with smooth boundary and strictly pos-
itive Gaussian curvature, and improved to O(s~!*}), with some A = A\(d) > 0,
A < 1/(d+ 1), by Kritzel and Nowak [KN1, KN2].

Assume without loss of generality that the smallest eigenvalue of @ is 1 and
denote the largest eigenvalue by q. Hence ¢ > 1. The following results provide
optimal uniform bounds of type (3.2) resp. (3.3) for general ellipsoids.

THEOREM 3.1. [BG3, BG5]. There is a constant ¢ > 0 depending on d only and
a function p(s) € [0,2], depending on Q, see (5.2), such that for all s > 1

(3.5) sup A(E, +a) < cq? 371(54‘ +p(s)), ford > 9,
a€Rd
def 1 d—1
where X = o [ 5 ]—1, and

lim p(s) =0 if and only if Q is irrational.

§—00

If d = 8 the bound sup,cpa A(Es + a) < cq®s~1In? (s + 1) still holds.

The error for generic forms Q[z] should be much smaller than for rational forms,
which can be seen by the following heuristic argument. Let C(m) denote the
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cube of side length 1 centered at a lattice point m € Z? and let I, denote the
indicator function of Es. Define &, as function of a randomly chosen @ as &, =
Is(m)— fC(m) Is(z) dz. Then || < 1 and we may assume that the &,, have mean
zero. Let D, denote the set of lattice points m such that C(m) intersects OFE;.
Note that &, = 0 for m &€ Ds. Then

(3.4) A(E) volEs= > &n= > &m.

meZd meD;

Since E; has diameter proportional to r = /s, the sum in (3.4) extends over
O(r?=1) nonzero summands only. If the random variables &, are approximately
independent the CLT implies for r — oo with probability tending to 1 that
(3.4) is smaller than r(¢~D/2logr. Hence one would expect that A(E,) =
O(s~(@+1/4]og s). Indeed, Jarnik [J2] proved for d > 4 an upper bound of or-
der O(s~4/4*¢) for Lebesgue almost all diagonal forms. For generic forms Lan-
dau [L3] established A(FE,) = Q(s~(@+*1)/4). The results described so far suggest
the following hypothesis about worst and generic case errors.

CONJECTURE. For any € > 0 the relative lattice point remainder is of order

A(Es4a) = O(s™ 1), d>5, for all Q and aq,
=o(s7), d>5, for irrational Q,
= O(s~ (@ D/a+e, d>2, for Lebesgue almost all Q and a.

4. DISTRIBUTION OF VALUES OF QUADRATIC FORMS.

Positive Definite Forms. For fixed § > 0 consider the shells F.15 \ Es =
{z € R*: s <Qz] < s+ d}. Theorem 3.1 implies

COROLLARY 4.1. For d > 9 and irrational Q we have

. VOlz(E5+6 \ Es )
4.1 im — 5
( ) sl>nolo VO](E5+5 \ Es)

This result may be applied as well to shrinking intervals of size § = 6(s) — 0
as s tends to infinity. The quantity vol(Ess \ Es) measures the number of values
of a positive quadratic form in an interval (s, s+9], counting these values according
to their multiplicities.

Let s and n(s) denote successive elements of the ordered set Q[Z?] of values
of Q[m]. Davenport and Lewis [DL] conjectured that the distance between succes-
sive values, that is n(s) — s, converges to zero as s tends to infinity for irrational
quadratic forms Q[z] and dimensions d > 5. They proved in [DL] that there ex-
ists a dimension dy such that for all d > dy and any given € > 0 and any lattice
point m with sufficiently large norm |m| there exist another lattice point m € Z%
such that |Q[m +m] — Q[m]| < e. This does not rule out the possibility of ar-
bitrary large gaps between possible clusters of values Q[m], m € Z%. This result
has been improved by Cook and Raghavan [CR], providing the bound dy < 995.
Corollary 4.1 now solves this problem for d > 9.

Define the maximal gap between the values Q[m — a], m € Z? in the inter-
val [7,00) as d(7;Q, a) = sup,>, (n(s) — ). Then (4.1) implies

=1
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COROLLARY 4.2. [BG5]. Assume that d > 9 and that Q[x] is positive definite.
If Q is irrational then sup,cpa d(7;Q,a) — 0, as T — oo.

Indefinite Forms and the Oppenheim conjecture. Assume that @ is irra-
tional and indefinite. Consider the infimum value of Q[m] for nonzero lattice
points m € Z¢4

M(Q)zinf{|@[m]|: m # 0, mEZd}.

Oppenheim [O1] conjectured that M (Q) = 0, for d > 5 and irrational indefinite Q,
and has shown that this implies that the set Q[Z¢] is dense in R for d > 3, see [02].
This conjecture has been proved, e.g. for diagonal forms and d > 5 by Davenport
and Heilbronn [DH] and for general forms and d > 21 by Davenport [Da]. For
a review, see Margulis [Mar2]. It has been finally established for all dimensions
d > 3 by Margulis [Marl].

Let C, denote a d—dimensional cube of side length /s and center 0. The
results of Theorem 3.1 are a consequence of more general asymptotic expansion
of us{Q[z] < B} in powers of s~1 for certain 'smooth’ distributions s on Z? with
support in Cy, see [BG5, Theorem 2.1]. For indefinite forms this result yields the
following refinement of Oppenheim’s conjecture for dimensions d > 9.

For a sufficiently small positive constant, say ¢y = co(d), let d(s) denote the
maximal gap in the finite set of values Q[m] such that —cgs < Q[m] < ¢ps and
m € Cs/cg NZ<. Then

THEOREM 4.3. [BG5|. For d > 9 the mazimal gap satisfies
d(s) <q ¢*¥? (s +p(s)) for s > ¢yt V2,

with p(s) < 2 defined in (5.2) and X given in Theorem 3.1.

The quantitative version of Oppenheim’s conjecture by Dani and Margulis [DM]
describes the uniformity of the distribution of the set of values Q[Z? N C;] for
star-shaped sets like the cubes Cs introduced above. For a fixed interval [, 5] let
Va5 denote the set of x € R? such that Q[z] € [, 8]. Eskin, Margulis and Mozes
proved the following result using ergodic theory for unipotent groups.

THEOREM 4.4. [EMM)]. For any irrational indefinite form Q of signature (p,q)
with g > 3,

Volz(Va,B ﬂC’s)

(4'3) vol(Va’B OCS)

=1+ o0(1), as s — oo.

In particular (4.3) holds for all indefinite irrational forms with d > 5.

Using expansion results for arbitrary forms, the error term in this convergence
result can be explicitly estimated for d > 9, see [BG5, Theorem 2.6].

5. INEQUALITIES FOR CHARACTERISTIC FUNCTIONS AND TRIGONOMETRIC
SuMs.

In order to prove the results of Sections 2—4, characteristic functions of Q[S,] and
weighted trigonometric sums, say f(t), are used. In the latter case the weights are

DOCUMENTA MATHEMATICA - EXTRA VoLUME ICM 1998 - III - 245-255



252 F. GOTZE

given by a uniform distribution on the lattice points in the cube Css smoothed
at the boundary of Cys by convolutions with uniform distributions on some suf-
ficiently small cubes, retaining constant weights in the center part Cs C Cas. A
simplified version of these weighted trigonometric sums, used in the explicit bounds
of Theorems 3.1 and 4.3, is defined as follows. Let

(5.1) ©q(t;8) = ‘(volz 05)73 > exp{itQzy + z2 + 3 —a]}).
z;€24NC,

Note that ¢4 (t; s) is normalized so that |@q(¢;5)| < ¢a(0;s) = 1. Define

'y(s,T) = sup sup  pa(t;s).
a Sil/QStST

It can be shown that lim,_, . 'y(s, T) = 0 iff Q is irrational. Finally, given d > 9
and € with 0 < ¢ < k := 1 — 8/d, the characteristic p(s) of Theorem 3.1 and 4.3 is
given by

(5.2) p(s) = jnf (T1+9(s,7)" " T7).

The connections between the probability resp. counting problems and f(t) are
made by means of Fourier inversion inequalities based on Beuerling type functions,
see Prawitz [Pr], which bound 4, resp. |A(E;)| by

1

(5.3) J1f@®) —g(t)ltldt+f11(|f(t)| + lg(®)]) dt.

-1

Here g(t) is the continuous approximation to f(¢) replacing the distribution of S,
by a Gaussian distribution resp. the counting measure by the Lebesgue measure.

In the CLT the following version of Weyl’s [We] difference scheme for sums of
R?-valued, independent random vectors, say U, V (with identical distribution) and
Z,W is used. Let X denote an independent copy of X and let X = X — X be its
symmetrization. The inequality

(5.4) |E expfit QU+ V + 2+ W]} [* < E exp{2it (QU, 2)},

now reduces the estimation of f(¢) in (5.3) to bounds of order O(n~17¢) for con-
ditional linear forms, but in a restricted domain |¢| < n™¢ only. This leads to rates
a=1—¢in (1.1), see[G1].

In order bound the integral (5.3) by O(n~1), this Weyl step is followed by a
discretization step for positive definite functions H : R — R. For even n = 21
and binomial weights p,(k) = (,",)/2", bounds like

(5.5) EH(Sn)S%ZE(ZPn(k)H(kWWXj))»

J=1 |kI<l
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reduce the support of X to Z¢ and replace characteristic functions of S, by
weighted trigonometric sums.

Finally, for general ), the desired bounds for weighted trigonometric sums,
say f(t), of type (5.1), are based on the following ’correlation’ bound

(5.6) | fO)f(t+e)| < cq ((es)_d/2+sd/2) forall t€ R and & > 0.

For ¢ = 0 we have f(t) = 1 and (5.6) becomes a ’double large sieve’ estimate
for distributions on the lattice, see e.g. Bombieri and Iwaniec [BI]. The inequality
(5.6) implies for ¢t < ¢1 with 0 <& < |f(to)], |f(t1)| <246 that either

|t() — t1| S >\r = 61674/(1871 or |t() — t1| Z K = 62574/11.

Thus either the arguments ¢y and ¢;, where the trigonometric sums are of the same
(large) order d, nearly coincide or their distance has to be ’large’ (dependent on
§ and d). Hence the set of arguments ¢, where f(¢) assumes values in an interval
[6,26] like As = {t > v : § < |f(t)] < 26} with v := s7%/? may be roughly
described as a set of intervals of size at most d, separated by ’gaps’ of size at
least x. This allows to estimate part of (5.3) approximately as

1
/ |— < 26/\ _151_8/d10g5,
As

with some L such that Lk < 1. The sum of these parts for § = 27!, I € N is now
of order O(s™!), provided that d > 8, which explains the dimensional restriction
of this method.
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APPLICATIONS OF

INTENTIONALLY BIASED BOOTSTRAP METHODS

PETER HALL AND BRETT PRESNELL

ABSTRACT. A class of weighted-bootstrap techniques, called biased-
bootstrap methods, is proposed. It is motivated by the need to adjust
more conventional, uniform-bootstrap methods in a surgical way, so as
to alter some of their features while leaving others unchanged. Depend-
ing on the nature of the adjustment, the biased bootstrap can be used
to reduce bias, or reduce variance, or render some characteristic equal
to a predetermined quantity. More specifically, applications of bootstrap
methods include hypothesis testing, variance stabilisation, both density
estimation and nonparametric regression under constraints, ‘robustifica-
tion’ of general statistical procedures, sensitivity analysis, generalised
method of moments, shrinkage, and many more.
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1. UNIFORM AND WEIGHTED BOOTSTRAP METHODS

For centuries the sample mean has been recognised as an_estimator of the pop-
ulation mean — or in contemporary notation, X = [z dF(z) is an estimator of
p = [ xdF(z), where F denotes the empirical distribution function computed us-
ing a sample drawn from a distribution F'. The idea that the sample median is an
estimator of the population median is implicit in work of Galton about 120 years
ago. Thus, the notion that a parameter may be regarded as a functional of a dis-
tribution function, and estimated by the same functional of the standard empirical
distribution, is a rather old one, even though it was perhaps only recognised as a
general principle relatively recently.

Efron’s (1979) classic paper on the bootstrap vaulted statistical science for-
ward from these simple ideas. Efron saw that when substituting the true F' by an
estimator F', the notion of a ‘parameter’ could be interpreted much more widely
than ever before. It could include endpoints of confidence intervals or critical
points of hypothesis tests, as well as error rates of discrimination rules. It could
encompass tuning parameters in a wide variety of estimation procedures (even the
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nominal levels of intervals or tests can be regarded as tuning parameters), and
much more.

Another key ingredient of the methods discussed by Efron (1979) was recogni-
tion that in cases where the functional of ' could not be computed directly, it could
be approximated to arbitrary accuracy by Monte Carlo methods. This differed in
important respects from several earlier approaches to ‘resampling’, as the idea of
sampling from the sample has come to be known. In particular, neither Maha-
lanobis’ notion of ‘interpenetrating samples’, nor Hartigan’s (1969) ‘subsampling’
approach, directly involve drawing a resample of the same size as the original sam-
ple by sampling with replacement. The methods of Simon (1969, Chapters 23-25)
are closer in this respect to the contemporary bootstrap. R

The combination of these two ideas — the substitution or ‘plug in F” rule,
and the notion that Monte Carlo methods can be used to surmount computational
obstacles — has been little short of revolutionary. When Monte Carlo simulation is
employed to compute a standard bootstrap estimator, one samples independently
and uniformly from a data set X = {X;,...,X,}, producing a resample X* =
{X7,..., X5} with the property that

P(X;=X;|X)=n"", 1<ij<n. (1.1)

Standard bootstrap methods may be loosely defined as techniques that approxi-
mate the relationship between the sample and the population by that between the
resample X'* and the sample X.

The generality of the standard uniform bootstrap may be increased in a num-
ber of ways, for example by allowing the resampled values X} to be exchangeable,
rather than simply independent, conditional on X (see e.g. Mason and Newton,
1992); or by retaining the independence but replacing the sampling weight n~! at
(1.1) by pj, say. In the latter case we shall use a dagger instead of the familiar
asterisk notation, so that there will be no ambiguity about the procedure we are
discussing:

P(X] =X;|X)=p;, 1<ij<n, (1.2)

where > ;P = 1. This ‘weighted bootstrap’ procedure has been discussed exten-
sively (see e.g. Barbe and Bertail, 1995), usually as a theoretical generalisation
of the uniform bootstrap, pointing to a multitude of different modes of behaviour
that may be achieved through relatively minor modification of the basic resampling
idea.

2. BIASED BOOTSTRAP METHODS

In ‘standard’ settings, where the appropriate way of applying the bootstrap is rel-
atively clear, the uniform bootstrap offers an unambiguous approach to inference.
Therein lies part of its attraction — there are no tuning parameters to be selected,
for example. However, the lack of ambiguity can also be a drawback. In particular,
the rigidity of the conventional bootstrap algorithm makes it relatively difficult to
modify uniform-bootstrap methods so as to include constraints on the parameter
space. The weighted bootstrap offers a way around this difficulty, by providing an

DOCUMENTA MATHEMATICA - EXTRA VoLUME ICM 1998 - III - 257-266



BIASED BOOTSTRAP 259

opportunity for ‘biasing’ bootstrap estimators so as to fulfill constraints. More-
over, we may interpret the notion of a ‘constraint’ in a very broad sense, like that
of a ‘parameter’. Nevertheless, an unambiguous approach to choosing the weights
p; is required. Biased-bootstrap methods provide a solution to that problem.

The biased bootstrap requires two inputs from the experimenter: the distance
measure, and the constraints. The first is generic to a wide range of problems, and
will be discussed from that viewpoint in section 3. The second is problem-specific,
and will be introduced through nine examples in section 4. A general form of
the biased bootstrap is to choose the weights p; so as to minimise distance from
the distribution at (1.2) to that at (1.1), subject to the constraints being satisfied
(Hall and Presnell, 1998a).

Details of some of the examples in section 4 may be found in Hall and Pres-
nell (1998a,b,c) and Hall, Presnell and Turlach (1998). Examples not treated in
section 4 include hypothesis testing, bagging (bootstrap aggregation), shrinkage,
and applications involving time series data. The latter may be handled by either
modelling the time series as a process with independent disturbances, and applying
the biased bootstrap to those; or by using a biased form of the block bootstrap.

Section 5 will consider potential computational issues. Aids to computation
include estimating equations, protected Newton-Raphson algorithms, and approx-
imate, sequential linearisation. It will be clear that, using such techniques, biased-
bootstrap methods are definitely computationally feasible.

3. DISTANCE MEASURES

For the sake of brevity we shall confine attention to a class of distance measures,
the power divergence distances, introduced by Cressie and Read (1984) and Read
and Cressie (1988). A wider range has been treated by Corcoran (1998) in the
context of Bartlett adjustment of empirical likelihood. See also Baggerley (1998).

Let p = (p1,...,pn). For simplicity we assume throughout that ", p; = 1 and
each p; > 0, although in some cases (e.g. power divergence with index p = 2) the
case where negative p;’s are allowed has computational advantages. Given p # 0
or 1, we may measure the distance between the uniform-bootstrap distribution,
punit = (n71,...,n71), and the biased-bootstrap distribution (with weight p; at
data value X;) by

Do) = 1o (1= )} {n - ) (i

i=1

This quantity is always nonnegative, and vanishes only when p = pyyi¢. For p = %,
D,(p) is proportional to Hellinger distance. Letting p — 0 we obtain

Do(p) = — Z log (np;) ,

which equals half Owen’s (1988) empirical log-likelihood ratio. Similarly, D; may
be defined by a limiting argument; it is proportional to the Kullback—Leibler diver-
gence between p and pyunir (whereas Dg(p) is proportional to the Kullback—Leibler
divergence between pyyir and p).
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In constructing a biased-bootstrap estimator we would select a value of p,
and then compute p = (p1,...,P,) from the sample X = {X1,...,X,} so as to
minimise D,(p), subject to the desired constraints being satisfied. If the parameter
value that we wished to estimate was expressible as §(F'), then its biased-bootstrap
estimator would equal O(ﬁﬁ), where ﬁp denotes the distribution function of the
discrete dis‘gibution that has mass p; at data value X; for 1 < i < n. Usually the
value of 6(F;) will not be computable directly, but it may always be calculated
by Monte Carlo methods, resampling from & according to the scheme that places
weight p; on X;.

In some instances, for example outlier reduction (section 4.7), there are ad-
vantages to using p # 0, since Do(p) becomes infinite whenever some p; = 0. By
way of comparison, Hellinger distance (for example) allows one or more values of
p; to shrink to zero without imposing more than a finite penalty. However, in
most other applications we have found that there is little to be gained — and
sometimes, something to be lost (see sections 4.1 and 4.2) — by using a value of
p other than p = 0.

4. EXAMPLES

4.1. Empirical likelihood. The method of empirical likelihood, or EL, was in-
troduced by Owen (1988, 1990). See also Efron (1981). It may be viewed as a
special case of the biased bootstrap in which the constraint is H(ﬁp) = 61, where
ﬁp denotes the distribution function of the weighted bootstrap distribution with
weights p;, and 60, is a candidate value for 6. It is based on the value p = p(6;) of
p that minimises D,(p) subject to O(ﬁp) = 0;.

One EL approach to constructing an a-level confidence interval for the true
value of 0 is to take t, to be the upper a-level quantile of the chi-squared distri-
bution for which the number of degrees of freedom equals the rank of the limiting
covariance matrix of the uniform-bootstrap estimator, 6(F,, . ); and to let the
interval be the set of ;’s such that D,;{H(ﬁﬁ(gl))} < to. Under regularity con-
ditions that represent only a minor modification of those of Hall and La Scala
(1990), this interval may be shown to have asymptotic coverage equal to 1 — «,
no matter what the value of p. Using methods of DiCiccio, Hall and Romano
(1991) it may be shown that this generalised form of EL is Bartlett-correctable
if and only if p = 0. (Strictly speaking, the term ‘likelihood’ is appropriate for
describing these generalised EL techniques only if p = 0.) See Baggerley (1998)
and Corcoran (1998).

4.2. Variance stabilisation. Here we wish to choose, by empirical means, a transfor-
mation § which, when applied to a (scalar) parameter estimator é, will implicitly
correct for scale. Our method is a biased-bootstrap version of a conventional-
bootstrap technique proposed by Tibshirani (1988). It has an advantage over the
latter approach in that it does not require selection of any smoothing parameters,
or any extrapolation. R

As in example 4.1, choose p to minimise D,(p) subject to 8(F,) = 6;. Let
Xt = {X;f ,.-., X!} denote a resample drawn by sampling from X using the
weighted bootstrap with weights p;, and let 6T denote the version of § computed
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from X' rather than X. Let 9(6;) = var(AT|X) be the biased-bootstrap estimator
of the variance of  when the true value of 0 is 6;. Write §(f) for the indefi-
nite integral of ©(#)~'/2, with the constant chosen arbitrarily. Using the uniform
bootstrap, compute the conditional distribution of §(8*) — §(6) and use it as an
approximation to the unconditional distribution of §(d) — §(6°), where 6° denotes
the true parameter value. This enables us to compute confidence intervals for
§(0°), from which we may calculate intervals for §° by back-transformation. It
may be shown that p = 0 is sufficient for the latter intervals to be second-order
accurate.

4.3. Density estimation under constraints. Here we consider kernel-type, biased-
bootstrap estimators of the form f,(z) = Y, p; K;(z), where K;(z) = h ' K{(z —
X;)/h}, K is a positive, symmetric kernel, and h is a bandwidth. (The tradi-
tional kernel estimator, in which each p; is replaced by n~!, may be regarded as a
uniform-bootstrap estimator of § = E{K,(z)}.) Constraining the j’th moment of
the distribution with density fp to equal the j’th sample moment is equivalent to
asking that ) . p; A; = a, where a denotes the sample moment,

LI
k=0

(j/2) represents the integer part of j/2, and r, = [ y* K(y)dy. Moreover, stip-
ulating that the ¢’th quantile of the distribution with density fp equal the ¢’'th
sample quantile (éq, say) produces a constraint of the same form, this time with
A; = L{(£,— X;)/h} (where L denotes the distribution function corresponding to
the density K) and a = q. Constraining the interquartile range for f to equal its
sample value amounts to the obvious linear form in constraints on the 25% and
75% quantiles. See also Chen (1997).
The constraint that entropy equals ¢, say, has the form

- ; n [ K log{épj Kia) | do 1.

Reducing entropy increases ‘peakedness’ and reduces spurious bumps in the tails.
Combining this observation with the fact that increasing the bandwidth also tends
to reduce the number of modes, while decreasing peakedness, we may develop an
implicit algorithm (as distinct from the explicit method suggested in section 4.5)
for computing a density estimator subject to the constraint of unimodality.

4.4. Correcting Nadaraya-Watson estimator for bias. Suppose data pairs (X;,Y;)
are generated by the model Y; = g(X;) + ¢;, where g is the smooth function that
we wish to estimate, the design points X; are random variables with density f,
and the errors €; have zero mean. Then the Nadaraya—Watson estimator of g may
be defined by § =7/ f, where F(z) =n~'Y, K;(z)Y; and f(z) =n"'Y, Ki(z).

The performance of g is generally inferior to that of local-linear estimators,
owing to problems of bias. In particular, g is biased for linear functions. To
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overcome this difficulty we may use the biased bootstrap to constrain the estimator
to be unbiased when g is linear, by insisting that . pi(z) (z — X;) K;(x) = 0.
Thus, p = (p1,...,pn) is now a function of location, x. The resulting estimator is

() = {Z po K@ v}/ Z P Ki(o) |

It achieves the same minimax efficiency bounds as local-linear smoothing (see e.g.
Fan, 1993), and enjoys positivity properties that the latter approach does not.

4.5. Unimodality and monotonicity. Define a continuous density f to be strongly
unimodal if there exist points —oco < #1 < z2 < oo such that (i) f is convex
on (—oo,z1) and on (x2,00), and (ii) f is concave on (x1,z2). In principle we
may constrain fp to be a strongly unimodal density estimator, by arguing as
follows: (a) for fixed z; and x2, choose p = pg,4, to minimise D,(p) subject to
fz’,’(x) = >, pi K'(x) being positive on (—oco,x1) and on (z2,00), and negative on
(x1,22); (b) choose 1, z2 to minimise D, (ps,,) over all possible choices satisfying
(a). However, the probability that this is possible does not necessarily converge
to 1 as n — oo, even if the true f is strongly unimodal and considerable latitude
is allowed for choice of bandwidth.

On the other hand, a weaker form of unimodality may be successfully imposed.
There, we argue as follows: («) select a candidate —oo < xg < oo for the mode
of fp, and choose p = p,, to minimise D,(p) subject to F(z0) = 0, f"(x0) < 0,
and to any point  # xy for which f’(z) = 0 being a point of inflexion of f,; and
(B) choose z to minimise D,(pg,) over all possible choices satisfying (a). There
is also a version of this method in the context of nonparametric regression, where
‘unimodality’ of a regression mean is defined in the obvious way.

Likewise, we may use biased-bootstrap methods to impose monotonicity of a
function estimator in either the density or regression cases. Confining attention to
local-linear estimators for nonparametric regression, we would proceed as follows.
Let (X;,Y;), for 1 < i < n, denote a sample of independent and identically dis-
tributed data pairs. If (X;,Y;) is accorded weight p; then the local-linear estimator
of g(x) = E(Y|X = z) equals a, where (d, b) denotes the pair (a, b) that minimises

Z{Yi —a—b(X; —z)}2p; Ki(z).

The biased-bootstrap local-linear estimator is g, = (S2To — S17%1)/(S2S0 — S3),
where

n

Si(z) = Z (Xi —a)f pi Ki(x), Tj(x) = Yi(Xi—a) p; Ki(x).

=1 =1

Suppose we wish to constrain g,(x) to have derivative not less than a given value
t, for all x in some interval Z. It may be shown that, if the true regression mean
g satisfies ¢’ > t on Z then, with probability tending to 1 as n — oo, and for a
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wide range of choices of bandwidth, the biased-bootstrap constrained-minimisation
problem has a solution, and that the solution has bias and variance of the same
order as those of the unconstrained local-linear smoother.

4.6. Bias reduction without violating sign. Let 6 = Q(ﬁpunif) (possibly vector-
valued) denote the uniform-bootstrap estimator of §(F), based on data X =
{X1,...,X,}. Suppose we wish to estimate )9 = 1 (6p), where 6y is the true
value of 6 and 1 is a known smooth function. The uniform-bootstrap estimator is
P = ¥(6 ) but is generally biased. The standard uniform-bootstrap bias-reduced
estimator is ¢ = 24¢) — E{)(8*)|X}, where 6* denotes the uniform-bootstrap ver-
sion of @. However, this approach does not necessarily respect the sign of the
function 1. For example, when v(u) = u?, and 6 is a population mean and 6y = 0,
the probability that 1; < 0 converges to 0.68.

A sign-respecting, biased-bootstrap approach to bias reduction may be defined
as follows. Let @' denote the version of 8 computed from a resample drawn by
sampling at random from & according to the weighted empirical distribution F A
biased-bootstrap approximation to the bias of w(é) is B(p) = Ep{w(ém/’\’} - w(é),
where F,, denotes expectation with respect to ﬁp. Choose p = p to minimise D, (p)
subject to B(p) =0, Y, p; = 1 and each p; > 0. Then, our biased-bootstrap, bias-
reduced, sign-respecting estimator of v is V= 1/}(éﬁ), where ép = O(ﬁp).

It may be shown that, not only does 12)\ overcome the sign problem, in cases
where the probability that ¢) has the wrong sign does not converge to 0, v is closer
(on average) than ¥ to 1.

4.7. “Trimming’ or ‘winsorising.” Let 6, = o(F, ») denote the biased-bootstrap
estimator of § = 0(F), and let v(p, X') be a measure of the concentration of the
biased-bootstrap distribution with respect to ép. For example, in the case of a
scalar sample X, and when our interest is in location estimation, we might define

’Y(p7 X) = Z Di (Xz - Xp)Qk )

i=1

where k > 1 is an integer and X,, = X, (k) minimises Y, p;(X; —z)?* with respect
to z. (Taking k = 1 we see that y(p, X)) is the variance of the biased-bootstrap
distribution.) Put 5 = v(punit, X ), being the version of the concentration measure
in the case of the uniform bootstrap. Given 0 < t <74 we may calibrate the level of
concentration by choosing p = p(t) to minimise D,(p) subject to y(p, X) =t. As
t decreases, the biased-bootstrap distribution ﬁp(t) becomes more concentrated.

To avoid the result of calibration being heavily influenced by tail weight of
the sampling distribution, we suggest ‘inverting’ the calibration so that it is on
D,(p) rather than (p, X). That is, given £ > 0 we propose choosing ¢t = t¢ such
that D,{p(t)} = &, and defining p(§) = p(t¢). In order for this approach to be
practicable we require D,{p(t)} to be a monotone increasing function of ¢, which
can be verified in many cases.

With this modification it may be shown that, in the case 0 < p < 1, the biased
bootstrap provides a remarkably effective device for reducing the effects of outlying
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data values. For example, in the context of univariate location estimation the
estimator has a smooth, redescending influence curve, and a breakdown point that
may be be located at any desired value € € (0, ) simply by ‘trimming’ to a known
distance (depending only on €) from the empirical distribution. The estimator
has an affine-equivariant multivariate form, and has versions for regression and
nonparametric regression.

4.8. Sensitivity analysis. The ideas suggested in section 4.7 may be used to develop
new, empirical methods for describing influence and sensitivity. For example, one
may vary t by an infinitesimal amount, starting at ¢t = 7, and rank the data values
X in decreasing order of the amount by which this variation produces a decrease
in the respective values of p;. This may be regarded as ranking data values in
terms of their influence on concentration, according to the chosen concentration
measure. It produces an outlier diagnostic.

An alternative approach is to apply the biased bootstrap with 6 equal to a
candidate value, 7 say, for the parameter, and consider the values of (9/061) p;(61)
evaluated at the uniform-bootstrap estimator 6 = e(ﬁunif). (Of course, the signs
of the derivatives convey important information about the nature of sensitivity.)
Still another approach is to examine leave-one-out empirical-likelihood ratios com-
puted at biased-bootstrap estimators. These influence diagnostics have potential
advantages over traditional techniques; for example, they may be applied to quite
arbitrary estimators and parameters.

4.9. Generalised method of moments. The generalised method of moments, or
GMM, can provide substantial improvements over the naive method of moments,
by reducing the variance of estimators. Versions of the biased bootstrap have
already been successfully applied to GMM; see for example Brown and Newey
(1995) and Imbens, Johnson and Spady (1998). However, those applications re-
quire equations defining the estimators to be of full rank, and the methods can
perform poorly when one or more of those equations is (approximately) redun-
dant. Indeed, one may show by example that in such cases, the rate of conver-
gence of GMM estimators can be as slow as n~ /4 (where n is sample size), rather
than the n~'/2 achieved using a much simpler method without a weight matrix
in the least-squares step; and that this rate is not improved by iterating GMM.
Biased-bootstrap methods can be used to identify redundancy and accommodate it
adaptively. The approach involves choosing the weight matrix to minimise a non-
asymptotic estimator of mean squared error, and thereby calibrating the standard
GMM method so as to obtain nearly-optimal performance. The biased bootstrap
is employed to enforce an empirical version of the method-of-moments constraint
when defining the mean squared error estimator.

5. COMPUTATIONAL ISSUES

By way of notation, let us say that a constraint on p is linear if it may be written in
the form )", p; A; = a, which we denote by (L), where A; and a depend only on the
data, not on p, and may be vectors. (If they were vectors of length v then we would,
in effect, be imposing v separate linear constraints.) Examples of linear constraints
include those encountered in in the context of constraining moments and quantiles
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in section 4.3. Particularly for linear constraints, methods described by Owen
(1990) and Qin and Lawless (1995), based on estimating equations, generally lead
to numerically stable procedures.

It may be shown after a little algebra that under constraint (L), and when
the distance function is D, for some p # 1, the resulting p;’s are given by p; =
pi(N) = (Mo + AT A4;)1/(=P) where ) is a scalar, ); is a column vector of length v,
and A = (Ag, A\1). (The Xy term comes from incorporating the additional condition
>, pi = 1. We have not, at this stage, included the constraints p; > 0, which in
any event hold automatically when —1 < p < 2.) When p = 1 we have instead
p; = exp(Ao + AT A;); and for any given p, the value of ) is defined by substituting
back into (L). Thus, the dimension of the problem has been reduced from n to
v + 1, which remains fixed as n increases. If in addition p = 0 then it may be
shown that \g = n — Af'a, and so dimension reduces further, to v.

In highly nonlinear problems, where these dimension reduction arguments do
not apply, it may be necessary to compute the p;’s directly as the solution to an
(n — 1)-dimensional optimisation problem. For example, we have found that for
moderate n a protected Newton-Raphson algorithm performs well in the problem
of enforcing unimodality through constraints on entropy. Other approaches, such
as the linearisation methods of Wood, Do and Broom (1996), may also be useful
in nonlinear problems.

REFERENCES

Baggerley, K. A. (1998). Empirical likelihood as a goodness of fit measure.
Biometrika, to appear.

Barbe, P. and Bertail, P. (1995). The Weighted Bootstrap. Springer, Berlin.

Brown, B. W. and Newey, W. K. (1995). Bootstrapping for GMM. Manuscript.

Chen, S. X. (1997). Empirical likelihood-based kernel density estimation. Austral.
J. Statist. 39, 47-56.

Corcoran, S. A. (1998). Bartlett adjustment of empirical discrepancy statistics.
Biometrika, to appear.

Cressie, N. A. C. and Read, T. R. C. (1984). Multinomial goodness-of-fit tests. J.
Roy. Statist. Soc. Ser. B 46, 440—-464.

DiCiccio, T. J., Hall, P. and Romano, J. P. (1991). Empirical likelihood is Bartlett-
correctable. Ann. Statist. 19, 1053-1061.

Efron, B. (1979). Bootstrap methods: another look at the jackknife. Ann. Statist.
7, 1-26.

Efron, B. (1981). Nonparametric standard errors and confidence intervals. (With
Discussion.) Canad. J. Statist. 36, 369-401.

Fan, J. (1993). Local linear regression smoothers and their minimax efficiencies.
Ann. Statist. 21, 196-216.

Hall, P. and La Scala, B. (1990). Methodology and algorithms of empirical likeli-
hood. Internat. Statist. Rev. 58 109-127.

Hall, P. and Presnell, B. (1998a). Intentionally-biased bootstrap methods. J. Roy.
Statist. Soc. Ser. B, to appear.

DOCUMENTA MATHEMATICA - EXTRA VoLUME ICM 1998 - III - 257-266



266 PETER HALL AND BRETT PRESNELL

Hall, P. and Presnell, B. (1998b). Density estimation under constraints.
Manuscript.

Hall, P. and Presnell, B. (1998c). Biased bootstrap methods for reducing the effects
of contamination. Manuscript.

Hall, P., Presnell, B. and Turlach, B. (1998). Reducing bias without prejudicing
sign. Manuscript.

Hartigan, J. A. (1969). Using subsample values as typical values. J. Amer. Statist.
Assoc. 64, 1303-1317.

Imbens, G. W., Johnson, P. and Spady, R. H. (1998). Information theoretic ap-
proaches to inference in moment condition models. Econometrica 66,
333-358.

Mason, D. M. and Newton, M. A. (1992). A rank statistic approach to the consis-
tency of a general bootstrap. Ann. Statist. 20, 1611-1624.

Owen, A. B. (1988). Empirical likelihood ratio confidence intervals for a single
functional. Biometrika 75, 237-249.

Owen, A. B. (1990). Empirical likelihood ratio confidence regions. Ann. Statist.
18, 90-120.

Qin, J. and Lawless, J. (1995). Estimating equations, empirical likelihood and
constraints on parameters. Canad. J. Statist. 23, 145-159.

Read, T. R. C. and Cressie, N. A. C. (1988). Goodness-of-Fit Statistics for Discrete
Multivariate Data. Springer, New York.

Simon, J. L. (1969). Basic Research Methods in Social Science. Random House,
New York.

Tibshirani, R. (1988). Variance stabilization and the bootstrap. Biometrika 75,
433-444.

Wood, A. T. A., Do, K.-A., and Broom, B. M. (1996). Sequential linearization
of empirical likelihood constraints with application to U-statistics. J.
Computat. Graph. Statist. 5, 365—385.

Peter Hall Brett Presnell

Centre for Mathematics and its Centre for Mathematics and its
Applications Applications

Australian National University Australian National University
Canberra, ACT 0200 Canberra, ACT 0200

Australia Australia
peter.hall@anu.edu.au brett.presnell@anu.edu.au

DOCUMENTA MATHEMATICA - EXTRA VoLUME ICM 1998 - III - 257—-266



Doc. MATH. J. DMV 267

ORACLE INEQUALITIES

AND NONPARAMETRIC FUNCTION ESTIMATION

JAIN M. JOHNSTONE

ABSTRACT. In non-parametric function estimation, partial prior infor-
mation about the unknown function is often expressed by a family of
models or estimators, among which a choice must be made. Oracle in-
equalities bound the mean squared error of a given estimator in terms of
the (unknowable) best possible choice of model for the unknown function.
This survey concentrates on three examples: the James Stein estimator,
soft thresholding, and complexity penalized least squares and as illustra-
tions, we describe some consequences for adaptive estimation.

1991 Mathematics Subject Classification: 62G07, 62G20, 62C20
Keywords and Phrases: adaptive estimation, complexity penalty, James-
Stein estimator, minimax estimation, thresholding, unconditional basis,
wavelet shrinkage

1 INTRODUCTION

Statistical theory aims in part to articulate when and why certain applied methods
of data analysis succeed. With emergence of large, often instrumentally acquired
datasets, recent decades have seen a focus on “nonparametric” models in which the
number of model parameters grows with the size of available data. Here we focus
on the estimation (or “recovery” or “denoising”) of functions observed in additive
noise and describe some relatively simple inequalities that encode information on
the effect of sparse representation on the quality of estimation.

A common caricature is to posit observed data y € R™ with structure
y = p + ez. Here p is an unknown function which one desires to “estimate”
or “recover”, and z € R" is a vector of standard Gaussian noise of known scale €.
When expressed in terms of coefficients in an orthonormal basis {1;, I € Z,}, the
model becomes

Yr = ur +€zr Iel,. (1)

Here z; are independent Gaussian noises of mean zero and variance one. This
sequence form of the “Gaussian white noise model”, whether finite as here, or
infinite, as in Section 1.1 below, is the conceptually and technically simplest model
of nonparametric estimation. Extensions to correlated noise and indirect data
y = K+ ez are possible, but not covered here.
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EXAMPLES 1. (a) The equispaced, fized design in which yy = f(t7) + ozy, with f
an unknown function defined on [0,1] and t; = I/n, I =1,...n.

(b) An initial segment of the continuous Gaussian white noise model. Suppose
that W, is a standard Brownian motion (or sheet) and that one observes dY; =
f(t)dt + edW, for t € D, a compact set in R If d = 1 and D = [0,1], this
may be interpreted as Y; = fg f(s)ds + €W, for 0 < ¢t < 1. Take inner products
with elements {¢r,I € I} of a complete orthonormal basis for L,[0,1] and set
yr = (¥r,dY), 0r = (1, f) and z; = (b5, dW). This gives an infinite sequence
version of (1), to be used in Section 1.1 below. To recover precisely (1), consider
an initial segment of cardinality n of the index set Z. A discrete orthogonal
wavelet transform of model (i) yields an approximation to this initial segment
(after calibrating e = on=1/2, cf. [10]).

(¢) Redundant regression. Suppose that there are given vectors (or signals)
Z1,...Tp € R", and that it is thought useful, for reaons of parsimony, interpretabil-
ity or otherwise, to represent p in terms a few of the z;. Collecting z; as columns
of a “design matrix” X = [z1---z,], one obtains the standard, homoscedastic
Gaussian linear regression model y = X3 + ez. In traditional parametric regres-
sion analysis, it is supposed that p < n and that p € span{z;}. However, we
specifically consider two “non-parametric” cases: a) p = n and z; orthogonal (i.e.
equivalent to (1)), and b) p > n and not orthogonal - here the z; might be a class
of basic signals from a (possibly highly) redundant dictionary D and we seek a
parsimonious representation of p in terms of as few elements of D as possible.

ASSESSING ERROR. An estimator ji = [i(y) is a function of observed data y: we
wish to quantify and compare the quality of estimation as fi varies. Simplest to
work with is mean squared error (MSE):

relis ) = Byl =l = [ |- Pty - ). 2)

Here ¢.(z) denotes the probability density function of ez. The notation r.(f, 1),
mnemonic for “risk”, hints at the possible and frequently desirable use of more
general error norms || — u|| or loss functions L(ji, p).

The error i — p is usually decomposed into a zero-mean stochastic component
fi — E,fi and a deterministic component, the bias, E,fi — p. For quadratic error
measures, these components are uncorrelated, so that the MSE is the sum of
variance and squared bias terms. In particular, for a linear estimator fir(y) = Ly,

rfiin, p) = e*tr LL' + |Lp — p?. (3)

The quality of approximation of u by the operator L is thus balanced against the
complexity of L, as measured by the variance term, which for example becomes
€2m in the case of orthogonal projection onto a subspace of dimension m. Already
visible here is the important role that approximation theory plays in analysing
the deterministic component of error. For non-linear estimators that, implicitly or
explicitly, involve a choice among linear estimators, the analysis of the stochastic

term is facilitated by the concentration of measure phenomenon (Section 4).
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MODELS AND ESTIMATORS. A model is a subset M of the full parameter space
R™. A family of models {M,,a € A} is one device commonly used to represent
imperfect and partial information about the unknown pu. Often there is a natu-
ral estimator fi, associated with each model and in this paper we simplistically
conflate choice of model with choice of the associated estimator.

EXAMPLES 2. (a) Spheres and linear shrinkage. For positive a, let M, be the
sphere |u| = a: this might correspond to prior information about the signal-
to-noise ratio. Natural corresponding estimators are given by linear shrinkage:
fio. = vy where v = () is obtained by minimizing the MSE in (3), namely
ny? + (1 —v)?|u|?, on M, to obtain the Wiener filter v(a) = a?/(n+a?) € (0,1).

(b) Subspaces and projections. In the regression setting of Example 1(c) above,
to each subset J C {1,...,p} of the full variable list is associated a linear model
M = span {z;,j € J}. The corresponding estimators are orthogonal projections
Py on Mj: these are the least squares estimators on the assumption that p € M.

IDEAL Risk Given a family A of models (or corresponding estimators), and for a
given unknown pu, the best attainable MSE is given by the ideal risk

Re(p, A) = inf R(fia, 1)
Thus, in example (a), the ideal linear shrinkage risk is
Re(p, LS) = ne®|uf?/(ne® + |u?)). (4)

OUTLINE OF PAPER. Of course, p is not known, and without access to an oracle
who divulges the best «, the ideal risk is not attainable by an estimator depending
on the data y alone. Nevertheless, it acts as a useful benchmark, and we seek
estimators that in an appropriate sense optimally mimick the ideal risk. Such
estimators turn out to be non-linear, and in particular, not members of the family
[1e.. For three settings and estimators, oracle inequalities are presented in Theorems
3, 5 and 8 — we emphasize that the inequalities are non-asymptotic and uniform
in character, holding for all n, e and for all y € R™.

Corresponding lower bounds (although asymptotic in n) show that without
some restriction on, or further information about u, the inequalities cannot be
improved, and thus represent in some sense the necessary “price” for searching
over a class of models/estimators of a given size.

Oracle inequalities are neither the beginning nor the end of a theory, but
when available, are informative tools. For example, Theorems 3, 5 and 8 may
also be used to derive asymptotic (i.e. low noise €) results within a framework of
adaptive minimax estimation: this class of applications is considered in a connected
sequence of “illustrations” in the continuous Gaussian white noise model, which
we now introduce.

1.1 ILLUSTRATION: ASYMPTOTIC MINIMAX ESTIMATION.

The continuous Gaussian white noise model is that of Example 1(b). Because
of Parseval’s inequality fol(f — f)? =301 — 01)*> = ||6 — 6|2, estimation error
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can equally well be measured in the sequence domain. To evaluate estimators, we
use the minimax principle - although inherently conservative and not universally
accepted, we find that it leads to clear structures and informative results. Thus,
estimators are assessed by their worst case risk over a given ©. The minimaz
risk measures the best attainable such maximum risk, within a class £ of esti-
mators: Re(0,¢€) = infs . supycg r<(,6). The symbols £ = N, L, D, ... refer to
specific estimator classes: all non-linear, all linear, all threshold rules etc. Finally,
estimator 6 is called asymptotically £E— minimaz if

suprc(6,0) = Re(©,¢€)(1 + o(1)), €—0.
0cO

In order to describe a flexible and scientifically meaningful class of parameter
spaces ©, we employ a dyadic sequence notation, in which I = (j, k), with j =
0,1,... and k = 1,...,2%. The primary motivation comes from orthonormal bases
of wavelets {11}, which, under suitable regularity and decay conditions on the
wavelets, and with suitable modifications to handle intervals, form unconditional
bases for many function spaces of interest ([22, 15, 3]). Thus their norms may
be characterized in terms of conditions on |f;| . For example, let x; denote the
indicator function of the interval [(k —1)277,k277]: the sequence of (quasi-)norms
I laps deﬁnedfor0<a<oo,0<p§ooby

1
lolE,, = / 3261272, a=a+t1/2,

I

are equivalent, (for p > 1 and «a € N) to the traditional Sobolev norms || f||5. =
P

fol |f(@) P | £|P. In the Hilbertian case p = 2, these take the simpler form

I61[2.2 =Y 2716, 1017 =D 1051
k

j=0

As parameter spaces, we thus use norm balls: O, ,(C) = {(01) : ||8]lap < C},
which are analogs of size restrictions on derivatives, but measured in L, norms.
In practice, the values of («, p, C') will not be known, and rather than seeking
a minimax estimator for a single such ©,,(C), we look for estimates with an
adaptive minimaxity property. Thus, suppose that a scale of spaces S = {0,(C) :
v € V,C > 0} is given, where v is an order parameter, such as («a, p) above, and
C a scale parameter. Then 6 is adaptively £—minimaz if (i) the definition of 6 is
independent of (v,C), and (ii) 6 is asymptotically £—minimax for all (v, C).

2 LINEAR SHRINKAGE AND ORTHOGONAL INVARIANCE

A celebrated result in parametric statistics, due to Stein [24], is the inadmissibility
of the maximum likelihood estimator i°(y) = y in model (1) as soon as n > 3.
Indeed, [17] showed that adaptive linear shrinkage

A7 (y) = (1 =A)+y, ¥ = (n—2)e/lyl%,
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is everywhere better than fi°, in the sense that for all 4 € R™, r. (2”5, u) <
re(i° p) = ne®. Here a; = max(a,0). The result was and remains surprising
because it can seem counterintuitive that combining data from statistically com-
pletely independent problems, represented by each coordinate in (1), leads to bet-
ter MSE properties.

A simple proof was later given by Stein [25], using his unbiased estimate of
risk to show that 47 (y) = (1 — 4)y, necessarily worse than 1’5 satisfies

r(p’%, 1) = Bu{n — (n = 2)*y| 7%} < n. ()

(where, for simplicity, ¢ = 1 here.) Using in (5) the fact that the distribution of
ly|*> can be represented as the mixture of central chi-squared distributions x2_,p
with P distributed as a Poisson variate with mean |u|?/2, and applying Jensen’s
inequality, one obtains our first oracle inequality.

THEOREM 3 ([7]). In model (1), suppose n > 3. For all ; € R™,

) —2)é|u|?
BlS — p? < 9¢2 4 (=2l
|N /~L| < 2€” + (TL — 2)62 + |/1*|2 (6)
In view of (4), this implies
TE(/A‘JSJra ) < 2¢% + Re(p, LS). (7)

Thus, the classical James-Stein estimator comes within an additive penalty of 2¢2

of mimicking the ideal linear shrinkage estimator. This performance is impressive

when calibrated against the minimax risk Ry (R",¢), in this problem ne?.
However it should be noted that this inequality is orthogonally invariant, and

makes no use of the particular basis in which the unknown signal p is represented.

2.1 ILLUSTRATION: LEVELWISE SHRINKAGE IN THE DYADIC SEQUENCE MODEL.

In the dyadic sequence model of Section 1.1, group coefficients by level j : y; =
(y;5)2_,. Form a levelwise James Stein estimator 6575 by applying James-Stein
shrinkage to y;: éjLJS = 75+ (y;), at least for levels j below a cutoff J = log, €2,
above which 6775 simply estimates zero. [Recall the calibration n = ¢~ of Ex-
ample 1(b).] The MSE of the %75 may then also be represented levelwise:

E|0%S — 0> = 3" BI0"5* () - 0,7+ Y 10512
j<J(e) J>J(e)

The oracle inequality (7) may be applied to each level j in the first sum, while the
geometric weights 2% used to define O, 2 imply that the second sum is negligible
for small e. For the scale of Hilbert spaces Sy = {0©4,2(C) : > 0,C > 0} :

THEOREM 4 ([7]). 6575 is adaptively minimaz over S,.
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This recovers and extends a notable result of Efroimovich & Pinsker [14],
originally formulated in the Fourier basis. In fact, one verifies relatively easily that
6 is adaptively minimax among linear estimates (from the ideal linear shrinkage
risk) and then appeals to the celebrated theorem of Pinsker [23]), which shows that
for the ellipsoids occurring in Sa, linear minimax rules are actually asymptotically
minimax among all non-linear estimates.

This levelwise application of an oracle inequality is shows how the dyadic se-
quence model allows a “lifting” of results from a symmetric and “parametric” set-
ting (an exchangeable multivariate normal law at each level) to a non-parametric,
infinite-dimensional model. Other examples of this type may be found in [7, 9].

3 ORTHOGONAL REGRESSION AND THRESHOLDING

To this point, we have considered only orthogonally invariant estimators. However,
a basic principle is that sparsity of representation of a signal in a given basis leads
to better estimation, and to exploit such sparsity, non-linear estimators are needed.

Thus, assume the orthonormal basis leading to coefficients (1) is chosen so
that {u;} contains few large coefficients, although of course it is not known in
advance which among the co-ordinates are important.

In this orthogonal regression setting, the least squares subset selection estima-
tors have a simple co-ordinatewise representation: the j—th component of ji;(y)
equals y; if 7 € J and 0 otherwise. Thus, the least squares estimators have the
form of diagonal projections (DP below). The mean squared error of fi; is then
the sum of terms which measure either variance or bias:

r(fg,p) =Y €+ p3
JjeJ JgJ

The ideal risk for among all such diagonal projection estimators can therefore be
found by minimizing termwise:

Re(u, DP) = 1nfr (fog, p Zuj A€

To quantify sparsity, order the squared magnitudes of the components of W via
,u?l) > ué) . > u( ) and define compression numbers c Z,D] ,u(k) The
number of large coefﬁ(:lents is measured by N(e) = #{j : |/Jj| > €}, and we have

_ 2 2
Re(p, DP) = € N(€) + c(e),

which shows an intimate connection between ideal risk and the compressibility of
the signal in this basis.

Various forms of thresholding estimator can be introduced: here we consider
soft thresholding:

237 (y) = sgny;) ;] — N+

The key points are that the estimator acts co-ordinatewise and that there is a
threshold zone [—A, \] in which the data is interpreted as noise and “discarded”.
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THEOREM 5 ([6]). If A = v/2logn, then for all u € R™,
TE(ﬂSTaN) < (2logn+ 1)[62 + Re(p, DP)]. (8)

Since the logarithmic penalty is of small order relative to n, the result shows
that sparsity, as measured by ideal risk, implies good estimation. The bound is
valid for all sample sizes and all p. There has been much work on the choice of
threshold A - the choice given here is attractive for its conservatism: since for
independent and identically distributed N(0,1) variates z;, P(maxi<j<n |2;| >
Vv2logn) — 0, it follows that P(2°T = 0|u = 0) — 1. For more on these issues
and numerical examples, see [11]. Smaller choices of A, even depending on the
data y, lead to better mean squared error in exchange for less conservatism [7].
Natural extensions of Theorems 5 and 6 to correlated noise exist [19]

OPTIMALITY. Absent extra restrictions on p, the factor 2logn is optimal:

THEOREM 6 ([6]). Asn — oo,

inf sup r(ft, )

—_— > (21 1 1)).
i pern €2+R5(M,DP) —( Ogn)( +0( ))

The lower bound arises from the difficulty of distinguishing rare true signal
components from the also infrequent extremes of the white Gaussian noise z;.
Indeed, suppose € = 1 and that the values p; are drawn independently from a
two point prior distribution with masses of probability 1 — §,, at 0 and J,, at fi,.
Choosing 6, = logn/n and fi, ~ (2logd; *)'/2, it turns out that the posterior
distribution of u;, having observed even a value of y; > [i,, is still concentrated
on0: P(p=0ly=fn+2) ~ 1, for z large and fixed, as n — oo. Hence, with
probability d,, the estimator is forced to make an error of order ji2 ~ 2logn.

3.1 ILLUSTRATION: THRESHOLDING IN THE DYADIC SEQUENCE MODEL.

Return to the dyadic sequence model, and apply soft thresholding at A =
€v/2loge=2 to the first n = e~ 2 coefficients. In other words, é}r(y) = ns7 (Y1, \)
for all I with j < J(e). Applying the thresholding oracle inequality (8) to the first
n co-ordinates,

re(07,0) < c-loge ?- [ + Re(6, DP)| + > |0,/ (9)
J=J(e)

In contrast with the scale Sy of Section 2.1, consider now a broader scale of Sobolev-
type parameter spaces: S = {04 ,(C) : @ > 1/p—1/2,p > 0,C > 0}. For such
spaces there is a bound relating ideal to minimax risk. First, the geometric weights
in the definition imply ([12]) that for © = ©,,,(C) and on setting r = 2a/(2a+1),

Re(©,DP) :=supR.(0,DP) = supZ@% A€ < e, 022,
S )

Second, the minimax risk over © is minorized by that over any inscribed hyper-
cube of dimension m and side length € : Rx(0,€) > come?. Optimizing over the
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dimension m and combining with the previous display, we obtain the basic ideal
to minimaz risk inequality:

Re(©,DP) < ¢, C21 M < ¢ Rn(O, ). (10)

In combination with the oracle inequality and negligibility of the tail sum in
(9), this yields an adaptive near-minimaxity property for thresholding:

THEOREM 7. For all ©,,(C) € S,

sup re(éT, 0) < cq,p - log e 2 - RN(©q,(C),€).
Oa,p(C)

The term near-minimaxity refers to the logarithmic term in the upper bound,
which is negligible with respect to the algebraic rate €2". In fact, this logarithmic
term can also be removed by a lower, data-dependent choice of threshold [7, 18].

Important here is that in contrast to the linear adaptivity of Theorem 4, this
result applies for all p > 0, and in particular for p < 2. These latter spaces
contain spatially inhomogeneous functions with localized discontinuities or other
singularities. The ability of an estimator to adapt to such functions is in practice
more important than the attractive, but limited adaptation of the levelwise James-
Stein estimator, and its cousins, the spatially homogeneous kernel methods, even
with bandwidth selected from data. This is discussed further in [11].

4 REDUNDANT DICTIONARIES & COMPLEXITY PENALIZED MODEL SELECTION

In seeking a sparse representation for a signal, one may build build rich dictionaries
D = {z1,...,xp} in various ways: for example by combining many orthonormal
bases (as in libraries of wavelet and cosine packets, [4]), or by considering redun-
dant discretizations of continuously parametrized families, or by allowing products
(interactions) of many simple elements, such as B-splines with knots at individual
data locations (e.g. [16]). In all these cases, the dictionary size p greatly exceeds
that data size n, and estimation methods will have to allow for the effects of
searching over such a vast domain (in principle, 2P models).

Recalling Examples 1(c) and 2(b), the data may be represented in the form
y = X0 + ez, where we now assume that span(X) = R™. Thus, the models of
interest correspond to subsets J C {1,...,p}, My =span {z; : j € J}, and i =
Pjy, orthogonal projection on M ;. The risk of individual projection estimators is
given by (3), so the ideal risk of subset selection from dictionary D becomes

Re(p, SS(D)) = m}nre(ﬂJ,u) = mJin | — Pyu|? + e*rank(Py).

To obtain an estimator that mimicks ideal risk, we use the penalized least
squares principle. This balances the fit of the estimate, which in the absence of
any penalty could be made arbitrarily close to the data, against some measure of
complexity of the estimate:

fip = argming|y — fi|*> + €2 P(ji).
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In the orthonormal basis setting, fip can be evaluated explicitly when the penalty
P has an additive form: for example, P(u) = ¢ p? implies linear shrinkage,
P(p) = 22" |u;| implies soft thresholding, and P(u) = A2 " I{u; # 0} implies
fpi(y) = yil{ly:| > A}, or hard thresholding. For the redundant linear model
y = X+ ez, we generalize the third case by setting

P) = NN(), N =min{lJ] =3 B},
jeJ
The resulting penalized least squares estimator may expressed in terms of the
residual sums of squares RSS; = |y — fi.7|? of the possible models:

min |y — i|2 + NN () = mJin RSS; + \2e’rank(Py).
m

Hence we call this the Complexity Penalized Residual Sum of Squares (CPRSS)
estimate. Certain choices of the factor A lead to well known estimators: A\? =
2 (AIC), logp (BIC), 2logn (RIC) (For details and references see [8]).

THEOREM 8 ( [8]). Let ¢ > 1,8 >0 and A = A\, = ([l + /2(1 + B)log(p + 1)].
Then for all n,p > n,and p € R™,

re(ficprss, i) < Lp[(2 + 'Yp)€2 + Re(p, SS(D))], (11)
where L, = (1 — (’1)’1)\2, and v, =v(p,8) = 0 as p — .

The penalty factor /\12, is slightly larger than 2logp, where p is the cardinality
of the dictionary. We emphasize that the result holds for all u,n and p > n, and
in particular the inequality depends only on p, not n! Building on the remarkable
[1], Birgé & Massart are conducting a thorough study of penalties P(u) for which
such oracle inequalities and improvements hold. While the constant L, in (11) is
certainly not optimal, there is a lower bound similar to Theorem 6:

THEOREM 9 ( [8]). For each fized r € N, there exists a sequence of dictionaries
D,, with p(n) = |D,| < n" such that as n — oo,

inf sup Bljs — pl”
i pern € + Re(p, SS(D))
ROLE OF CONCENTRATION INEQUALITIES. The stochastic part of the proof
of Theorem 8 depends on an early example (due to Cirelson-Ibragimov-Sudakov [2,

21]) of what are now in probability called concentration (or deviation) inequalities.
Suppose f : R™ — R is Lipschitz with || f||zip = L. If Z ~ N,(0,1), then

P{f(2) > Ef(Z) + t} < exp{—t*/2L7}.
The key points are the Gaussian tail behaviour of f(Z) and the fact that it does
not depend on dimension n - hence the dimension-free aspect of Theorem 8. This

inequality can then be applied to all projections onto model subsets of cardinality
|J| = ¢, and then summed over ¢. Thus, since f(z) = ||Psz| has ||f||Lip = 1, and

since Ef(Z) < /¢, we have, on setting t = 1/2((1 + 3)log p,

P{sup ||Psz|| > Vi +t} < @p“l*ﬁ) <
|J|=¢

> [2logp(n)](1 + o(1)].

1
ptoe”
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4.1 TLLUSTRATION: MINIMAXITY FOR NON-STANDARD FUNCTION CLASSES

The penalized least squares formalism can be applied in situations where no un-
conditional basis exists. To give a simple example, consider again the model
dY; = fdt + edW;, where now t € [0,1]2, and the horizon model for edges in im-
ages, studied earlier by, for example, Korostelev and Tsybakov [20]. It is supposed
that f takes only the values 0 and 1, and further that the boundary is such that
f(t1,t2) = I{t2 < 0(t1)}. The boundary, or horizon, is supposed to be Holder con-
tinuous: more specifically, we say that f € HOLDER,(B) if ||| + |07 || < B,
where r € N, 3=s—7 € (0,1] and ||g|g = sup |g(t) — g@)|/|t = '|°. ... ]

Dictionaries and minimaz risk. While D is often conceptually infinite, in
practice one must work with a family of finite subdictionaries D, with cardinality
m(e) being at most a polynomial function of €=2 : m(e) < Bre2%2. [8] defines a
notion of universal dictionary for a scale S = {F,(C)}of functionclasses, which
has as consequence the same type of ideal to minimax risk inequality as used in
the orthobasis case (compare (10)): for all ,(C') C S and € < (v, C), there exists
r = r(v) such that

Re(F,(C),De) < K,C* '™ < K/, Ry (F,(C),¢).

This may then be combined with the oracle inequality of Theorem 8 to obtain
adaptive near-minimaxity.

Thus, in the horizon example, we start with a continuum trapezoid dictionary,
parametrized by v = (a,b,c,d), representing a function taking value 1 on the
trapezoid in [0, 1]> with abscissae a < b and corresponding ordinates c,d. Thus
Drrap = {Ty : v € [0,1]*,b > a}. To obtain finite subdictionaries, discretize the
unit interval into Iy = {i/N : 0 < i < N} and set Dy = {T; : v € I3 x I3}
Choose N(€) = €2, and set D, = Dp(e)- It can be verified [8] that Dryqp is
universal for S = {HOLDER4(B) : 0 < s < 2,0 < B}, with v = s/2,C = B'/2.

COROLLARY 10 ([8]). On HOLDER4(B), for 0 < s < 2, and setting r = s/(s+1),

V“e(foPRs& f) < co-logye - BITEN.

A key remark is that this adaptively (near minimax) rate of convergence is
better than the rate attainable using a two dimensional tensor product wavelet
basis when s > 1.

Nevertheless, a serious practical defect of Theorem 8 is the combinatorial
search implicit in the definition of icprss. The development of fast algorithms
suitable for specific cases is an active direction of current research [5, 13].
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ABSTRACT. We present some recent developments concerning the ge-
nealogy of branching processes, and their applications to superprocesses.
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1 DISCRETE AND CONTINUOUS GENEALOGICAL TREES

(1.1) Galton-Watson processes and trees. A Galton-Watson branching process
describes the evolution in discrete time of a population where each individual gives
rise, independently of the others, to a random number of children distributed to a
given offspring distribution. To be specific, consider an integer k£ > 0 representing
the initial population, and a probability distribution v on the set N of nonnegative
integers. The corresponding Galton-Watson process is the Markov chain (N,,,n >
0) in N such that, conditionally on N,,,

o 0

where Uy, Us, ... are independent and distributed according to v.

It is obvious that the genealogy of such a branching process can be described
by k discrete trees. Take k = 1 for simplicity. Then the genealogical tree of the
population is defined in the obvious way as a random subset 7 of (J;~ (N*)",
where N* = {1,2,3,...} and (N*)? = {0} by convention (cf Fig.1 for an example).
Here () labels the ancestor of the population and, for instance, (3,2) corresponds
to the second child of the third child of the ancestor.

Throughout this article, we will concentrate on the critical or subcritical case
wherem = 377 jv(j) < 1 and we also exclude the (trivial) case where v/({1}) = 1.
Then the population becomes extinct in finite time and so the tree 7T is a.s. finite.

(1.2) Continuous-state branching processes. Continuous-state branching pro-
cesses (in short, CSBP’s) are the continuous analogues of Galton-Watson pro-
cesses. Formally, a CSBP is a Markov process Y in R; whose transition ker-
nels (Pi(z,dy);t > 0,z € R,) satisfy the additivity or branching property
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Pz +2',-) = Py(x,-) * P(z,-). Lamperti [15] has shown that these processes
are exactly the scaling limits of Galton-Watson processes. Start from a sequence
N™ of Galton-Watson processes with initial values k,, and offspring distributions
vy, depending on n. Suppose that there exists a sequence of constants a,, T co such
that 1

Jim (aNﬁlﬂ,t >0) = (Y;,t > 0) (1)
in the sense of weak convergence of the finite-dimensional marginals. Then the
limiting process Y must be a CSBP, and conversely any CSBP can be obtained in
this way.

The distribution of a CSBP can be described analytically as follows. Here
again, we restrict our attention to the critical or subcritical situation where
JyPi(z,dy) < x. Then, the Laplace functional of the kernels P;(x,dy) must
be of the form [ P;(z,dy) e *¥ = exp(—zu())), and the function u;(\) solves the
ordinary differential equation

P — ) s )=, 2
with a function ¢ of the type
Y(u) = au + Bu? + / w(dr) (e™™ =1+ ru), 3)
(0,00)

where a, 3 > 0 and 7 is a o-finite measure on (0, 0o) such that [(rAr?)w(dr) < oco.
Conversely, for any choice of a function 1 of the type (3), there exists an associated
CSBP, which we will call the -CSBP.

The case when 9(u) = Bu? (quadratic branching mechanism) is of special
importance. The associated process is called the Feller diffusion. It occurs as the
limit in (1) when v, = v has mean 1 and finite variance, and k, = An, a, = n.

In contrast with the discrete setting, it is no longer straightforward to define
the genealogical structure of a CSBP. At an informal level, one would like to answer
questions of the following type. Suppose that we divide the population at time ¢
in two parts, say green individuals and red individuals. Then which part of the
population at time ¢+ s does consist of descendants of green individuals, resp. red
individuals ? This should be answered in a consistent way when s and ¢ vary.

(1.3) The quadratic branching case. It has been known for some time that the
genealogical structure of the Feller diffusion can be coded by excursions of linear
Brownian motion. To explain this coding, we will recall a result of Aldous [1].

Start from an offspring distribution » on N with mean 1 and finite variance.
Consider the Galton-Watson tree with offspring distribution v, conditioned to
have exactly n edges (some mild assumption on v is needed here so that this
conditioning makes sense). Then, provided we rescale each edge by the factor
1/4/n, this conditioned tree, denoted by 7, converges in distribution as n — oo
to the so-called Continuum Random Tree (CRT).

To give a precise meaning to the last statement, we need to say what the
CRT is and to explain the meaning of the convergence. The easiest definition of
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the CRT is via the coding by a continuous function. Let e = (e(s),s > 0) be a
continuous function from R, into Ry with compact support and let ¢ denote the
supremum of the support of e. We can then think of this function as coding a
“continuous tree” through the following prescriptions:

e Each s € [0, 0] labels a vertex of the tree at generation e(s).

e The vertex s is an ancestor of the vertex s’ if e(s) = inf,¢[; s e(r). (In general,
the quantity inf,.c[s -, e(r) is the generation of the last common ancestor to
s and s'.)

e The distance on the tree is d(s,s’) = e(s) + e(s’) — 2inf,¢[; o e(r), and we
identify s and s’ if d(s,s’) = 0.

According to these definitions, the set of ancestors (line of ancestors) of a given
vertex s is isometric to the segment [0, e(s)]. The lines of ancestors of two vertices
s and s’ have a common part corresponding to the segment [0, inf, ¢, o e(r)].
More generally, for any finite set s1, ..., s of vertices, we can make sense of the
reduced tree consisting of the lines of ancestors of s1,...,sx (see [1] and [17] for
more details).

The CRT is the (random) continuous tree that corresponds in the previ-
ous coding to the case when the function e is a normalized Brownian excursion
(positive Brownian excursion conditioned to have duration 1). Furthermore, the
convergence of discrete trees towards the CRT should be understood as follows.
Consider for each conditioned tree 7(,), the contour process of the tree (cf Fig.1).
Provided that we rescale space by the factor 1/+/n and space by the factor 1/(2n),
the contour process of 7(,,) converges in distribution towards the normalized Brow-
nian excursion.

121 122
11\ 12] 13
1 2
0
Galton-Watson tree contour process height process

Figure 1
To summarize the previous considerations, we can say that the genealogical struc-

ture of the Feller diffusion (1(u) = Su?) is coded by excursions of linear Brownian
motion. This fact has appeared in different forms in many articles relating random
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walks or linear Brownian motion to branching processes (see in particular Harris
[14], Dwass [9], Neveu-Pitman [22], etc.). It is also implicit in the Brownian snake
construction of quadratic superprocesses [16], to which we will come back later.

In the next section, we will address the question of extending the previous
coding to a general branching mechanism 1.

2 CODING THE GENEALOGY OF CONTINUOUS-STATE BRANCHING PROCESSES

(2.1) The discrete coding. Consider a sequence 71, Tz, . .. of independent v-Galton-
Watson trees. Write o for the number of vertices (or individuals) in the tree Tg.
Then suppose that we enumerate the vertices of the trees 71, 72, .. . in lexicograph-
ical order: We write Ty, = {Uoy 4 top_1sUor+top_141s---sUoy+tor—1} Where
Uyt top_1sUor+-ton_141s- - Yoy +-+op—1 are the vertices of the tree Ty listed
in lexicographical order.

Then for every n > 0, let H,, be the length (or generation) of the vertex uy,.
The (random) process (Hy,,n > 0) is called the discrete height process (cf Fig.1
for an example with one tree). It is a variant of the contour process that was
mentioned previously. It is easy to see that the data of the sequence (Hy,,n > 0)
completely determines the sequence of trees and in this sense provides a coding of
the trees. The interest of this coding comes from the following elementary lemma.

LEMMA 2.1 There exists a random walk (Sp,n > 0) on Z, with initial value So = 0
and jump distribution p(k) = v(k+1) for k= —-1,0,1,2,..., such that, for every
n >0,
H, =Card{j € {0,1,...,n—1},S8; = inf Si}. (4)
j<k<n

Note that the random walk S is “left-continuous” in the sense that its negative
jumps are of size —1 only. This lemma is taken from [19]. Closely related discrete
constructions can be found in Borovkov-Vatutin [3] and Bennies-Kersting [2].

(2.2) The continuous height process. The previous lemma gives an explicit formula
for the height process coding a sequence of Galton-Watson trees in terms of a
random walk. Following [19], we will explain how this formula can be generalized
to the continuous setting, thus yielding a coding of the genealogy of a CSBP in
terms of a Lévy process with no negative jump (the continuous analogue of the
left-continuous random walk 5.

We start from a Lévy process X with no negative jump. We assume that
Xo = 0 and that that X does not drift to +co. Then the law of X is characterized
by its “Laplace transform” Elexp(—AX;)] = exp(t¢(N\)) (for A > 0), where the
possible functions ¢ are exactly of the type (3), with the same assumptions on
a, and 7. We assume in addition that 8 > 0 or [rr(dr) = oo (or both these
properties). This is equivalent to assuming that the paths of X are of infinite
variation. (A simpler parallel theory can be developed in the finite variation case.)
An important special case is the stable case ¥(A\) = A2, 0 < b < 1.

Our first aim is to give a continuous analogue of the discrete formula (4).
For every fixed t > 0, we let X®) = (th),O < s < t) be the time-reversed

process Xs(t) = X — X(4_s)—, and Ms(t) = Sup,<, X,Et) be the associated maximum
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process. Note that (th),O <s<t) @ (X,,0 < s <t). The process M®) — X*)

is a Markov process in R, and under our assumptions 0 is a regular point for this
Markov process. This enables us to set the following definition.

DEFINITION 2.2 For every t > 0, let H; denote the local time at level 0 and at
time t of the process M® — X The process (Hy,t > 0) is called the 1-height
Process.

A few comments are in order here. First, one needs to specify the normaliza-
tion of local time. This can be achieved via the following approximation

t
Ht = P — 31_1)1(1)% ) ds 1{Ms(t)_X§t)<s}.

Secondly, we have defined H; for every fixed ¢, and the measurability properties

of the process (Hy,t > 0) are not obvious. One can in a canonical way construct

a lower-semicontinuous modification of the process (Hy,t > 0) (see [19]).

In one special case, namely when 3 > 0, one can give a much simpler formula
for Hy: If I} = inf{X,;s < r < t}, we have H; = 8~ 'm({I};0 < s < t}), where m
denotes Lebesgue measure on R (from this formula one immediately sees that H
has continuous paths when 3 > 0). In the quadratic case 1¥(\) = BA? (X is then
a linear Brownian motion), we get that H; = 87 1(X; — I?) is a reflected linear
Brownian motion, which agrees with the considerations in (1.3).

We now (informally) claim that H codes the genealogy of a )-CSBP “starting
with an infinite mass”. This should be understood in the sense of the coding
of continuous trees via functions as explained previously. (Our present setting
is slightly more general because the process H does not always have continuous
sample paths.) Analogously to the discrete case, we get the genealogy of a -CSBP
starting at p > 0 by stopping H at T, = inf{t > 0, X; = —p}.

In what follows, we will give several statements that provide a rigorous justifi-
cation of the previous informal claim. We first state a “Ray-Knight theorem” that
formalizes the naive idea that the number of visits of H at a level a corresponds
to the population of the tree at that level.

THEOREM 2.3 [19] For every a > 0, the formula
t

a M 1
Lt =P - gl_rg(l) g . ds 1{a<H3<a+5}

defines a continuous increasing process (L¢,t > 0). If T, = inf{t > 0, X; = —p},
the process (L%p, a > 0) is a Y-CSBP started at p.

When v(u) = Bu?, Theorem 2.3 reduces to a classical Ray-Knight theorem
for Brownian local times. In general, Theorem 2.3 can be applied to study the
sample path continuity of H.

THEOREM 2.4 [19] The process H has a continuous modification if and only if
= % < 00.
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This condition holds in particular when 8 > 0 and in the stable case.

(2.3) From discrete trees to continuous trees. Our next result shows that if a
sequence of rescaled Galton-Watson processes converges to a 1-CSBP, the cor-
responding discrete height processes, suitably rescaled, also converge to the con-
tinuous height process H. This is analogous to Aldous’ result in the quadratic
branching case and proves in some sense that whenever rescaled Galton-Watson
processes converge, their genealogical structure also converges to that of the lim-
iting CSBP.

We consider a sequence (1,) of offspring distributions and a sequence (a,,)
of positive numbers with lima,, = oo. For every n let N™ be a Galton-Watson
process with offspring distribution v, and initial value N§ = [ay].

THEOREM 2.5 [19],[7] Suppose that the convergence (1) holds and that'Y is a -
CSBP. For everyn > 1, let H™ be the discrete height process associated with a
sequence of independent vy, -Galton- Watson trees. Then,

1
lim (=Hf,, .t > 0) = (Hy,t > 0) (5)

n—r oo

in the sense of weak convergence of finite-dimensional marginals.

The last convergence can be shown to hold in a functional sense, provided
that some regularity conditions are satisfied (Duquesne [7]). This reinforcement is
important in various applications to invariance principles for functionals of Galton-
Watson trees. For instance, one may want to look at the limiting behavior of the
reduced tree that consists only of the ancestors of individuals alive at time p. The
point is that this reduced tree can be written as an (almost) continuous functional
of the discrete height process. Thus the (reinforced) convergence (5) allows one to
pass to the limit and to obtain a limiting tree that is a simple functional of the
height process H (see [7]).

3 SUPERPROCESSES

(3.1) The snake construction. Roughly speaking, superprocesses are obtained by
combining a continuous branching mechanism with a Markovian spatial motion.
To give a formal definition, consider a function 1 of the type (3) and a Borel
right Markov process (&,¢ > 0;1,,x € F) with values in a Polish space E. Let
M (E) stand for the space of finite measures in E. The (&, 1)-superprocess is the
Markov process Z with values in My(E) whose transition kernels are determined
as follows. For every 0 < s < t and every bounded continuous function g on FE,
Elexp —<Zt,g> | Zs] = exp(—<ZS,vt_s>), where (vi(x),t > 0,z € E) is the unique
nonnegative solution of the integral equation

ule) + 10 ([ t s 0{ui-.(6)) ) =T al60) (6)

(Compare with (2).) When ¢ is a diffusion process with generator L, (6) is the
ov

integral form of the partial differential equation 57 = Lv — 9 (v), vo = g. In the
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special case when ¢ is Brownian motion in R? and ¢(u) = Bu?, Z is called super-
Brownian motion (see Perkins [23] for a discussion of super-Brownian motion and
related processes).

We will now use our approach to the genealogy of the ¥-CSBP to give a
construction of the (&, 1)-superprocess. The idea is to use the height process H
to construct in a Markovian way the individual spatial motions of the “particles”
of the superprocess. To simplify the presentation, we assume that the condition
of Theorem 2.4 holds, so that H has continuous sample paths.

Let us fix a starting point z € E. Conditionally on (Hs,s > 0), we define
a path-valued (time-inhomogeneous) Markov process (W, s > 0) whose law is
characterized by the following properties:

e For every s > 0, W, = (Ws(t),0 <t < Hy) is a finite cadlag path in F started
at  and defined on the time interval [0, H,].

oIf s < s', Wy (t) = Wi(t) for every t < m(s,s’) := inf[, ,) H,, and, conditionally
on Ws(m(s,s')), Ws(m(s,s')+1t),0 <t < Hy —mf(s,s')) is independent of
W, and distributed according to the law of € started at Wy (m(s, s)).

Informally, W is a path of € started at  with length H;. When H; decreases,
the path erases itself and when H, increases the path extends itself by following
the law of the spatial motion £. To summarize the previous properties, we will say
that W is the snake driven by H with spatial motion ¢ (and initial point z).

The connection with superprocesses is contained in the next theorem, which
is essentially the main result of [20]. Recall the definition of L in Theorem 2.3.

THEOREM 3.1 For every a > 0, let Z, be the random measure on E defined by

TP
(Zarg) = / 4,12 g(Wi(a)).

Then (Zg,a > 0) is a (§,1)-superprocess started at pd,.

To keep track of the dependence on the initial point x, we will use the notation
P, for the probability under which W is defined.

(3.2) The Brownian snake and partial differential equations. We now concentrate
on the quadratic case 1(u) = Bu? and take 3 = 1/2 for definiteness. As pointed
out previously, the process H is then a (scaled) reflected linear Brownian motion
and in particular is Markovian. As a consequence, the process (W, s > 0), which is
now called the Brownian snake, is (time-homogeneous) Markov and indeed verifies
the strong Markov property. This plays a crucial role in the applications that are
outlined below.

From now on, we suppose that ¢ is Brownian motion in R?. An easy ap-
plication of the Kolmogorov criterion shows that W has a modification that is
continuous with respect to the uniform topology on stopped (continuous) paths.

Our goal is to give some applications of the snake construction to connections
between superprocesses and partial differential equations. These connections have
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been investigated by Dynkin in a series of important papers (see in particular [10],
[11]). The Brownian snake turns out to be a useful tool in the quadratic branching
case. The key to the connections with partial differential equations is the next
theorem, which reformulates in terms of the Brownian snake a result of Dynkin
[10] valid for superprocesses with a more general branching mechanism. We let D
be a domain in R? and for every path w, we denote by 7(w) = inf{t > 0,w(t) ¢ D}
the first exit time of D by w (with the convention inf ) = c0).

THEOREM 3.2 Let x € D. The limit

L1
(Z2P,9) =lim ~ | dslrwy<n, <rw.)+ey9(Ws(T(Ws)))
e=0¢ Jy
exists Py-a.s. for every continuous function on 0D, and defines a random mea-
sure ZP on D called the exit measure from D. If D is regular (in the classical
potential-theoretic sense) and g is continuous and nonnegative on 0D, the formula

u(z) = —logE,(exp—(Z", g)) z €D (7)

defines the unique nonnegative solution of the equation Au = u? in D with bound-
ary value ujgp = g.

A nice feature of the probabilistic representation formula (7) is that it can be
used to produce many other solutions via suitable passages to the limit. In the
setting of our next result, a generalized form of this representation holds for any
nonnegative solution.

We denote by RP the random set {W(t);0 < s < T, < 7(W) A Hg}.

THEOREM 3.3 [18] Let D be a domain of class C? in R%. Then, for every z € D,
P, a.s., the random measure ZP has a continuous density zp(y),y € 0D with
respect to Lebesgue measure on OD. Furthermore, the formula

u(x) = — IOgEgE (1{RDQK:®} exp —<’y, ZD>), xeD (8)

gives a one-to-one correspondence between nonnegative solutions of Au = u? in D
and pairs (K, ), where K is a closed subset of 0D and v is a Radon measure on
OD\K.

In the representation of Theorem 3.3, both K and = can be determined an-
alytically in terms of the boundary behavior of u: K is the set of points in 0D
where u blows up like the inverse of the squared distance to the boundary, and ~
corresponds to the usual trace of u on 0D\ K.

The analytic part of Theorem 3.3 has been extended by Marcus and Véron [21]
to the equation Au = uP, p > 1 in a smooth domain of R?, provided that d < z—ﬂ.

. s 41 .
(see also Dynkin and Kuznetsov [12],[13]). In the supercritical case d > L=, things

become more complicated: One can still define the trace of a general nonnegative
solution as a pair (K,~), but a solution is in general not uniquely determined by
its trace, and not all pairs (K, ) are admissible traces (see [21], [13]). Recently,
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Dynkin and Kuznetsov [13] have proposed a finer definition of the trace that might
lead to a one-to-one correspondence even in the supercritical case.

A remarkable feature of the connections between superprocesses or snakes
and semilinear partial differential equations is the fact that almost all important
probabilistic questions correspond to basic analytic problems, and conversely. We
will give a last example involving on one hand a Wiener-type test for the Brownian
snake and on the other hand solutions with boundary blow-up. We use the notation
c2,2 for the Sobolev capacity associated with the Sobolev space W22,

THEOREM 3.4 [6] Let D be a domain in R%. The following statements are equiv-
alent.

(i) There exists a nonnegative solution of Au = u? in D that blows up everywhere
at the boundary.

(ii) Let T = inf{s > 0,W;(t) ¢ D for some t € (0,H,]}. Then P,(T'=0) =1
for every y € 0D.

(i) d < 3, or d > 4 and for every y € 0D,

Z 2=, (DN {2z e R, 27" < |z —y| < 27"} = 0.

n=1
4  STATISTICAL MECHANICS AND INTERACTING PARTICLE SYSTEMS

(4.1) Lattice trees. A lattice tree with n bonds is a connected subgraph of Z? with
n edges in which there are no loops.

We are interested in a limit theorem that gives information on the typical
shape of a lattice tree when n is large. To this end, let @, (dw) be the uniform
probability measure on the set of all lattice trees with n bonds that contain the
origin of Z%. For every tree w, let X,,(w) be the probability measure on R? obtained
by putting mass 17 to each vertex of the rescaled tree cn™'/4w. Here ¢ > 0 is a
positive constant.

Provided that the dimension d is large enough, Derbez and Slade [5] proved
that the limiting behavior of the law of X, under @,, involves a random measure
which is closely related to Aldous’ CRT. To define this random measure, consider
the snake W driven by a normalized Brownian excursion (e(s),0 < s < 1), assum-
ing again that the spatial motion is Brownian motion in R? (and the initial point
is 0). Then the formula

1
(T f) = /0 ds F(W,(e(s))

defines a random measure in R? sometimes called Integrated Super-Brownian
Excursion (ISE).

THEOREM 4.1 [5] For d sufficiently large and for a suitable choice of the constant
¢ =c(d) > 0, the law of X,, under @Q,, converges weakly to the law of T.
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It is expected that the result holds when d > 8 (which is the condition needed to
ensure that the topological support of Z is a tree). This is true [5] if one considers
“spread-out” trees rather than nearest-neighbor trees. A recent work of Hara and
Slade indicates that ISE also appears as a scaling limit of the incipient infinite
percolation cluster at the critical temperature, again in high dimensions (d > 6).

(4.2) Interacting particle systems. A number of recent papers explore the connec-
tions between the theory of superprocesses and some of the most classical interact-
ing particle systems. Durrett and Perkins [8] show that the asymptotic behavior of
the contact process in Z% can be successfully analysed in terms of super-Brownian
motion. Here we will concentrate on the classical voter model and follow a work in
preparation in collaboration with M. Bramson and T. Cox. Closely related results
can be found in a forthcoming article by Cox, Durrett and Perkins.

At each site of Z? sits an individual who can have two possible opinions, say 0
or 1. At rate 1 each individual forgets his opinion and gets a new one by choosing
uniformly at random one of his nearest neighbors and taking his opinion. Suppose
that at the initial time all individuals have type 0, except for the individual at the
origin who has type 1. For every t > 0, let U; denote the set of individuals who
have type 1 at time ¢, and let U; be the random measure

U= 6,

reU:

Then P{U, # 0] = P[U, # 0] tends to 0 as ¢ — oo, and the rate of this convergence
is known [4]. One may then ask about the limiting behavior of U; conditionally
on {U; # 0}.

The answer to this question can be formulated in terms of the snake W driven
by a Brownian excursion conditioned to hit level 1, with spatial motion given by
(d=1/2 times) a standard Brownian motion in R?. We have the following result in
dimension d > 3 (an analogous result holds for d = 2).

THEOREM 4.2 The law of t~1U; conditionally on {U; # 0} converges as t — oo
to the law of cqH, where cq > 0 and the random measure H is defined by

()= [ dz v,

where LY is as previously the local time of the excursion at level 1 and at time s.

To interpret this last theorem, one may say, for the voter model as well as
for the (long-range) contact process [8], that the limiting behavior of the process
depends on a pseudo-branching structure, which asymptotically comes close to the
genealogical structure of the Feller diffusion.
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GENETIC LINKAGE ANALYSIS: AN IRREGULAR

STATISTICAL PROBLEM

DAVID SIEGMUND

ABSTRACT. Linkage analysis, which has the goal of locating genes as-
sociated with particular traits in plants or animals (especially inherited
diseases in humans), leads to a class of “irregular” statistical problems.
These problems are discussed with reference to an idealized model, which
serves as a point of departure for more realistic versions of the problem.
Some general results, adapted from recent research into “change-point”
problems, are presented; and more specific problems arising out of the
underlying genetics are discussed.

1991 Mathematics Subject Classification: 62M40, 92D10
Keywords and Phrases: gene mapping, linkage analysis, change point,
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1. INTRODUCTION. The goal of gene mapping, or linkage analysis, is to locate
genes that affect particular traits, especially genes that affect human susceptibility
to particular diseases and also genes that affect productivity of agriculturally im-
portant species. An artificially simplified, but illuminating genetic model leads to
the following class of statistical problems. Observations are available on a doubly
indexed set of random variables Z(c,iA), where ¢ = 1,---,23 indexes the set of
human chromosomes of genetic lengths £, and 1A, 0 <A < /. are the locations of
markers spaced at intermarker distance A along each chromosome. For different
values of ¢ the random variables are independent. For each fixed ¢, Z(c,t) is a
stationary Gaussian process in t, which satisfies

Var[Z(c,t)] =1, Cov[Z(c,s),Z(c,t)] = R(t — s). (1)
A case of particular interest is R(t) = exp(—0|t|). For most or perhaps all values

of
E[Z(c,t)] = 0 for all ¢, (2)

while for some ¢/, 0 <7 < £ and £ >0
EIZ(¢,1)] = €R(t 7). 3)

The values of ¢/, 7, and £ are all unknown. Thus the data consist of a large number
of zero mean Gaussian processes observed at equally spaced “time” points. A small
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number of these processes are superimposed on a mean value function defining a
“peak” of an unknown height £ at an unknown location 7, and having a known
shape R. The statistical problems are to decide which chromosomes, if any, harbor
such a location 7 and estimate the location by a confidence region. These problems
are “irregular” for two reasons: (i) the parameter 7 is not identifiable when the
nuisance parameter £ = 0; the log likelihood function, which is proportional to
Z(c,T), is not a smooth function of the parameter 7, even if we are able to make
continuous observations in ¢.

The purpose of this paper is (a) to explain briefly the genetic background
of the preceding problems as they relate to mapping human disease genes, (b)
propose a framework for their solutions that is useful as a point of departure for
discussing more realistic versions of the problems, and (c) describe some alternative
models designed to capture the complicating features arising in practice. Special
consideration is given to the issue of multiple comparisons that arises through
examining the large number of variables Z(c,4A) in searching for the relatively
few values of ¢/, t where the expected value is substantially different from 0, and
to estimation of 7 by confidence regions. Some of these problems can be understood
in terms of recent literature on “change-point” problems, to which they are closely
related.

2. GENETIC BACKGROUND. Given two related individuals, at a given locus in
the genome two alleles are said to be identical by descent if they are inherited
from a common ancestor. For example, a pair of half siblings can inherit zero
or one allele identical by descent from their common parent, and according to
Mendel’s laws each of these possibilities has probability 1/2. Genes on different
chromosomes segregate independently, while genes on the same chromosome tend
to be inherited from the same parental chromosome, and are said to be linked.
More precisely, if two half siblings share an allele identical by descent at locus t,
they will share an allele identical by descent at a locus on a different chromosome
with probability 1/2 and at a locus s on the same chromosome with a probability
(1—¢) € (1/2,1). This probability is a decreasing function of the distance between
s and t.

A pair of siblings can inherit zero or one allele identical by descent from their
mother and similarly from their father, hence 0, 1, or 2 overall. For some purposes
a single sib pair can be regarded as two independent half sib pairs, but in general
siblings require a more complicated analysis. For ease of exposition, we consider
only the much simpler case of half siblings.

The basic logic of linkage analysis is that if two relatives, e.g., half siblings
or siblings, share an inherited trait, e.g., a disease, that is relatively rare in the
population, it is likely that they share an allele predisposing them to the trait
that has been inherited identical by descent. Thus the probability of identity by
descent for an affected relative pair at a marker locus close to a trait locus is
greater than the value given by Mendel’s laws (1/2 in the case of half siblings).
Our problem is to scan the genome of a sample of affected relatives in search of
regions where the identity by descent exceeds the expected proportion by more
than can be explained as a chance fluctuation.
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A mathematical model for a pair of half siblings is as follows. Let X; be 1
or 0 according as the half siblings are or are not identical by descent at locus ¢
(on a chromosome ¢, which henceforth is suppressed in the notation). Then for a
random pair of half siblings,

P{X;=1}=P{X;=0}=1/2 (4)
for all ¢; and for loci s and ¢ on the same chromosome
P{X,=1X; =1} = P{X; =0|X; =0} =1—¢. (5)

Assume that 7 denotes a genetic locus predisposing to inheritance of the trait (and
that there is no other trait locus on the given chromosome). Then for two half
siblings sharing a trait in common,

P{X,=1}=(1+a)/2>1/2, (6)

while the conditional probability (5) continues to hold for loci s, ¢ on the same side
of 7. In particular by taking t = 7 in (5) we obtain P{X, = 1} = [1+«(1—2¢)]/2.
The value of ¢ in terms of the parameters s and ¢ depends on the model used for
the genetic process of recombination. According to the commonly used model
suggested by Haldane in 1919,

¢ = [1 —exp(=p|t —s])]/2, (7)

and more generally
¢~ pBlt—sl/2as|t—s| —0. (8)

The value of 3 is determined by the relation of the relative pair. For half siblings
it is 0.04 when the units of genetic distance along a chromosome are centimor-
gans (cM). (One cM is defined as the distance for which the expected number
of crossovers per meiosis is 0.01. The average length of a human chromosome is
roughly 140 cM. See Suzuki et al. for a more thorough discussion.)

Assuming now that one observes identity by descent data for N independent
half sibling pairs at marker loci, denoted iA, equally spaced at intermarker distance
A throughout the genome, we form the statistics

Zin = N7V28N 2X], —1], (11)

where the summation is over all half sibling pairs. It is possible starting from (11)
to address the basic questions of Section 1 (cf. Feingold, 1993, Tu and Siegmund,
1998). A somewhat simpler and more complete analysis is possible if we introduce
an additional approximation. It follows from the central limit theorem that as
N — oo and o — 0 in such a way that N'/2a — £ > 0 the process Z;a defined
in (11) converges in distribution to a process, which by (4)-(7) has the properties
described in (1) - (3). By an abuse of notation we continue to denote this new
process by Z;a. Thus we return to the problems already formulated in Section 1.
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3. GENOME WIDE FALSE POSITIVE ERROR RATE. If ¢A in (11) is equal to 7, it
follows from (6) that (11) is the score statistic for testing whether oo = 0; it is also
the likelihood ratio statistic in the approximating Gaussian model. Since usually
7 is unknown, to test for linkage somewhere on the genome we use

max max Z;A. (12)
(& K3
To evaluate approximately the false positive error rate, i.e., the probability under
the hypothesis of no linkage throughout the entire genome that (12) exceeds a
threshold b, we assume that b — oo and A — 0, in such a way that bA'/2
converges to a positive constant. Then for a genome wide search

P{méa.xmiax Zin > b} ~1- exp{—c[1 - @(b)} - ﬂngo(b)y(b{wA}l/Q)}. (13)

Here ® and ¢ are the standard normal distribution function and density function,
respectively, C is the number of chromosomes and L = X ¢, is the total length
of the genome in cM. The function v, which arises in the fluctuation theory of
random walks developed by Spitzer in the 1950’s, is defined by

v(z) = 222 exp[—28n "1 ®(—zn'/?/2)). (14)

For small z it is easily evaluated via the relation v(x) = exp(—pz) + o(z?), where
p = —C(1/2)/(2r)*/? ~ 0.583, while the series in (14) converges very rapidly for
large x. For a numerical example, for markers every A = 1 ¢cM and a human
genome of 23 chromosomes of average length 140 cM the threshold b = 3.91 gives
a false positive error rate equal to the conventional 0.05. The approximation
(13) was given by Feingold, Brown and Siegmund (1993), as an application of the
method of Woodroofe (1976).

4. PoOwegR. To obtain an approximation to the power that we detect a disease
locus on a correct chromosome (for simplicity we assume there is at most one on
any given chromosome), we first suppose that the disease locus 7 is itself a marker
locus. We then have the approximation

P{max Zga > b 1= 06— &) +9(b - &) [20/6 —v* /(b +€)?],  (15)

where v = V(b{2ﬂA}1/2), as defined above. The first term in (15) is simply

the probability that the process exceeds the threshold b at the disease locus. A
disease locus between marker loci needs a similar but more complicated argument
involving the (correlated) process Z;a at the two flanking markers. The resulting
approximation requires a one dimensional numerical integration for its numerical
evaluation.

For the 1 cM intermarker distance and threshold b = 3.91 considered in the
preceding section, and a disease locus midway between two markers a noncentrality
parameter of £ = 5.03 is needed to achieve power of 0.9 to detect the disease locus.
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For a given value of the genetic parameter «, this can be converted to a sample
size requirement by virtue of the relation £ = N'/2q.

5. CONFIDENCE REGIONS. A confidence region can be used to identify a chromo-
somal region in which to concentrate the search for the exact location of a disease
gene. We discuss here two methods that are motivated by the recent literature
on “change-point” problems, which have essentially the same structure. These
methods are (i) support regions and (ii) Bayesian credible sets. (See Siegmund,
1989, for a review of the change-point literature). Note that as a consequence
of the irregularity of this problem, the maximum likelihood estimator of 7 is not
normally distributed, so it is not correct to use the maximum likelihood estimator
plus or minus two estimated standard errors as an approximate 95% confidence
interval.

We assume that a disease gene has been correctly identified to lie on a partic-
ular chromosome, which contains no other disease gene. For simplicity we assume
that the locus 7 is exactly a marker locus. Since many investigators type addi-
tional markers in the proximity of an apparent disease gene, this latter assumption
is often approximately true in practice.

The traditional genetic technique for estimating the location of a disease gene
is a support region, which for our purposes can be defined as follows. Given ¢ > 0,
a support region contains all loci jA such that

ZJZA > max Z2\ —c. (16)

Within the framework of the approximate Gaussian model, this is equivalent to
the standard statistical technique of inverting the likelihood ratio test that jA
is the disease locus, to obtain a confidence region. If the problem were regular,
which in this case would require that Z; be twice continuously differentiable in t,
the probability of (16) would be given approximately by a x? distribution with
one degree of freedom; but that approximation is not correct here. By methods
similar to those used to obtain (13) one can approximate the probability of (16)
and show that (16) yields an approximate confidence region for the disease locus
(Feingold, Brown and Siegmund, 1993, Lander and Kruglyak, 1995, Dupuis and
Siegmund, 1998).

Because of the local linear decay near 7 displayed in (3), the inequality (16)
will be satisfied at all loci within a distance from 7 of roughly ¢/23£2. Since £ is
proportional to N/2, the expected size of the support region is proportional to
N~1. This stands in contrast to regular problems, where the likelihood function
decays quadratically, and the size of a confidence region is proportional to N /2.
It may be shown by more detailed analysis that a value ¢ ~ 4.5 corresponds
roughly to a 90% confidence interval when A =1 and 8 = 0.04. Then for £ ~ 5,
the value indicated above that one needs to detect linkage with power about 0.9,
the expected size of a support region is about 5 c¢cM. Since this corresponds to
about 5 x 108, base pairs, one still needs additional information, invariably of a
qualitatively different kind, to locate the gene with precision at the base pair level.

In his study of the closely related change-point problem, Cobb (1978) ob-
served that if £ were known, the problem of estimation of 7 would have essentially
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the same structure as estimation of a location parameter. Hence Fisher’s (1934)
suggestion for estimating a location parameter, to use the conditional distribution
of the maximum likelihood estimator given the ancillary statistic, in our case the
local rate of decay of the likelihood function, is very attractive. Moreover, this
suggestion has minimal computational requirements, since it can be effected by a
formal Bayesian credible region based on a uniform prior distribution for 7. To
accommodate unknown &, one can introduce a prior distribution for £ or use the
profile likelihood function obtained by maximization with respect to & for each
fixed 7.

Dupuis and Siegmund (1998) have compared these two methods and find that
they are roughly comparable, although the former is more robust under a variety
of conditions.

6. MurriLocus MODELS. There are many additional problems that require a
more detailed understanding of the underlying genetics than we have presented so
far. In this section we discuss traits involving more than one gene, while in the
next we very briefly point out several additional problems.

While some inherited human diseases are governed by a single gene, most of
the more common ones having a genetic component, e.g., diabetes, breast cancer,
Alzheimer’s disease, are known or thought to involve multiple genes. Conceptually
the simplest of these are heterogeneous traits, where susceptibility increases by
virtue of a mutant allele at any one of several loci. It is, of course, possible that
the genome scan defined above would identify several disease loci, even though
there is no particular effort to do so. Typically a much larger sample size would
be required than for a single gene trait having a comparable degree of heritability,
since the evidence for linkage is divided among the different disease loci.

Three methods have been suggested to deal with heterogeneous traits: (i)
simultaneous search, (ii) conditional search and (iii) homogenization. In simulta-
neous search, suggested originally by Lander and Botstein (1986), one hypothesizes
a specific number, say two, trait loci and searches over combinations of putatitve
loci to identify both simultaneously. Because there is a much larger number of
multiple comparisons, a suitable threshold under the conditions assumed above
would increase from the neighborhood of 4 to about 5 (in searching for two loci).
Conditional search, which is appropriate after some trait loci have already been
identified, involves stratification of the sample according to the identity by descent
status at the (estimated) location of the already discovered loci in order to increase
precision in searching for additional trait loci. See Dupuis, Brown and Siegmund
(1995) for a theoretical analysis of these two methods. An interesting application
of conditional search is contained in Morahan et al. (1996), who identified a gene
on chromosome two for insulin dependent diabetes by conditioning on the identity
by descent status of their sample of sib pairs at the HLA locus on chromosome 6,
which had been implicated in several earlier studies.

A third approach to alleviate the problem of heterogeneity is to develop a
narrow definition of the disease, in order to make the disease more homogeneous.
In some cases this definition can be achieved statistically. A notable success was
the identification of the breast cancer gene BRCA1 by defining the trait to be

DOCUMENTA MATHEMATICA - EXTRA VoLuME ICM 1998 - III - 291-300



GENETIC LINKAGE ANALYSIS 297

early onset breast cancer. A recent attempt in the same direction involved a
search for a gene contributing to noninsulin dependent diabetes (Mahtani et al.,
1996). After failing to find evidence of linkage in the complete study group, the
pedigrees in the study were identified with their average level of a quantitative
covariate thought to be associated with the trait. The analysis was repeated with
only those pedigrees in the most extreme 25% of the distribution of this covariate,
then the most extreme 50%, then the most extreme 75%. The genome scan in the
most extreme 25% turned up a value that would have been marginally significant
at the 0.05 level if the phenotype had been defined a priori, but now there is
the second dimension of multiple comparisons (i.e., the search over levels of the
covariate) to account for.

A suitable model to analyze this two dimensional search within the Gaussian
framework introduced above is as follows. Let Z(¢, k) for k = 1,---, m be indepen-
dent identically distributed Gaussian processes in ¢ as defined in Section 1. Here
k denotes levels of the covariate and for convenience is assumed to involve equal
quantiles of its distribution. Then let

S(t,k) = k~Y/28k_ Z(t,1).

Linkage is detected if
max maxmaxS(jA k) >b (17)
1<k<m ¢ j
for a suitable threshold b. Using the method of Siegmund (1988), which generalizes
Woodroofe (1976) to multidimensional time, one finds under the hypothesis of no
linkage that the probability of (17) is approximately

1-— exp(—ﬂLV[b(Q/BA)l/Q]b3¢(b> /oo

bm—1/2

z () dx). (18)

For the threshold b = 3.91 appropriate for the simple scan of Section 1 when A =1,
we find when m = 4 that (18) is about 0.15. To obtain a false positive rate of
0.05, one must increase the threshold to b = 4.2. Some rough calculations, which
should be more carefully analyzed, indicate that if the covariate is effective in
“homogenizing” the original sample, one can sometimes achieve substantial gains
in power after allowing for the increase in threshold.

In the paper of Mahtani et al. (1996) there was the additional problem that
the study design required pedigrees to have at least three affecteds and employed
a statistic whose distribution under the hypothesis of no linkage is skewed to the
right. (See (iii) in Section 7 below.) As a consequence the p-value of their result
was about 0.24 after one adjusts for skewness in addition to the two dimensional
search.

7. ADDITIONAL PROBLEMS. Linkage analysis involves a large number of problems
in addition to those discussed above. A few that have been the subject of recent
research follow.

(i) The identity by descent data that form the basis of our previous discussion
are intrinsically incomplete and require complicated algorithms to process. For
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example, for a given relative pair a particular marker may be “informative,” so
that we can observe the identity by descent status at that marker, or it may be
“uninformative.” Intermediate possibilities also exist. Since by (5) identity by
descent status is correlated at nearby markers, it may be possible to infer that
status at an uninformative marker from the status at nearby informative markers.
For example, for half siblings it follows from (6) that the likelihood function (for
the case of completely informative markers, when the trait locus 7 is itself a marker
locus) equals

Y, (14 ) (1—a)t =,

Let G denote the observed genotypes of all individuals at all markers, and let
Py denote probability under the hypothesis of no linkage. Then the likelihood
function (relative to Py) when some of the X7 may not be observable is

Y, Bol(1+a)X7 (1 — )t X7 |G = T | [1 + a(2Y7 — 1), (19)

where Y7 = Eo[XJ|G]. Kruglyak et al. (1996) use hidden Markov chains to cal-
culate the required conditional expectations. Their algorithm works best for a
possibly large number of small pedigrees. Additional techniques are required for
studies involving large pedigrees, which can make the required calculations ex-
tremely onerous (cf. Thompson, 1994). By differentiating (19) one sees that the
score statistic for testing a = 0 is

7, = 5,[¥7 — 1/2/[8, Var(¥)] V2,

which reduces to (11) in the case of complete data. Since 7 is unknown, we
use max, max; Z;a to search the genome for evidence of linkage. By studying
the correlation function of Z;a, Teng and Siegmund (1998) show under certain
conditions that a threshold b appropriate for the case of completely informative
markers studied above is approximately correct for Zin as well. They also study
the effect of incompletely informative markers on the power to detect linkage.
These problems are difficult, and pose a number of impediments to a completely
satisfactory solution.

(ii) Many traits are defined by quantitative measurement rather than a yes/no
dichotomy. Understanding the genetic basis of quantitative traits is also of interest
in experimental genetics, e.g., for agriculturally important species or for animal
models of human diseases. At the level of abstraction provided by Gaussian ap-
proximations one finds that linkage analysis of quantitative traits in humans and in
experimental genetics has much in common with the problems discussed above, but
many details are quite different—particularly when one considers various breeding
designs available in experimental genetics (cf. Lander and Botstein, 1989; Dupuis
and Siegmund, 1998).

(iii) The normal approximation suggested in Section 1 is adequate for the
simple case of half siblings discussed there, because under the hypothesis of no
linkage (11) is symmetrically distributed. In general, particularly when pedigrees
contain more than two affecteds or distant affected relatives, the statistic is not
symmetrically distributed and the normal approximation can be very poor. For
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example, for first cousins the probability of identity by descent at an arbitrary
locus is 1/4, so the statistic corresponding to (11) has a distribution skewed to the
right; and the approximation (13) is anti-conservative. While it is possible to give
approximations based directly on (11) or its analogue in more complex cases, these
approximations can be onerous to evaluate numerically. A simple modification of
(13) is given by Tu and Siegmund (1998). Let 7 be the third moment of Z; under
the hypothesis of no linkage and 6 = [—1+ (1+2by/N*/2)1/2] /~. Then for a single
chromosome of genetic length ¢

P Zin > b
{ max, Zia = b}

~ [1-2(b)] exp(y0* /6N/?) +v8eb[2m(1446)]~1/2 exp[-N6*(1+276/3) /2], (20)

where v = v[b(23A)'/?]. Note that 6 ~ b/N'/? as either N — oo or v — 0, and
then (20) reduces to (13). An application of the analogous extension of (18) was
described at the end of Section 6.
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BROWNIAN MOTION AND RANDOM OBSTACLES

ALAIN-SOL SZNITMAN

ABSTRACT. The investigation of Brownian motion and random obstacles
exhibits a rich phenomenology and displays paradigms which appear in
several other areas of random media. We provide here a brief survey of
some recent developments.

1991 Mathematics Subject Classification: 60K40, 82D30

0. INTRODUCTION

Much effort has been devoted to the investigation of random media over the last
two decades. This field offers a broad selectio n of surprising effects and represents
a mathematical challenge. The above applies in particular to the topic of Brownian
motio n and random obstacles, which has given rise to new ideas, results and
techniques. We shall now explain what the subject is abo ut.

A common example of random obstacles are the soft Poissonian potentials:

(0.1) V(z,w) = Z W(z —;), z € R,

i
where w = >, d,, is a typical cloud configuration for the Poisson measure IP
with constant intensity v > 0, and W (-) is a bounded measurable nonnegative
function, compactly supported and not a.e. equal to 0. Of central i nterest is the

investigation of the interaction of Brownian motion with the random obstacles.
Several path measures of interest arise in this context, for instance

- Brownian motion in a Poissonian potential, described by:
1 t

(0.2) Qtw = T exp{ — / V(Zs,w)ds} Py, (quenched measure),
t,w 0

with w a IP-typical cloud configuration, Z. the canonical d-dimensional Brownian
motion, Py the Wiener measure, S; . the normalizing constant,

1 t
(0.3) Q= < exp{ - / V(Zs,w)ds} Py ® P, (annealed measure) ,
t 0

with S; the normalizing constant,
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- Brownian crossings in a Poissonian potential, described by:

xT,w

R 2 00 H(z)
(0.4) P’\7 = % exp{ - /o A+ V(ZS,w))ds} Py,

(quenched measure) ,

with w as in (0.2), A > 0, z € R, H(z) the entrance time of Z. in the unit ball
around z, e(0, z,w) the normalizing constant,

.. 1{H H(@)
oz =W o - [0 vEwisg o,
' éx(x) 0
(annealed measure),

with €, (z) the normalizing constant.

Trapping problems provide natural interpretations for these path measures.
In this light, V(z,w) can be viewed as the random rate of absorption at location
for a particle diffusing in the environment w. Thus (0.2), (0.3) govern the so-calle
d quenched and annealed behaviors of a particle conditioned to survive absorption
up to a (long) time ¢, whereas (0.4), (0.5) govern the quenched and annealed
behaviors of a particle conditioned to perform a (long) crossing without being
absorbed. Ther e are other physical interpretations, and for instance (0.2) also
comes as a model of “flux lines in dirty-high-temperature su perconductors”, cf.
Section 4.6.3 of Krug [13], or Krug-Halpin Healy [14]. In this case ¢ represents
the transvers al thickness of a material with “columnar defects”, rather than time.
Discrete analogues of the above path measures also aris e in the literature, see for
instance Bolthausen [3], Khanin et al. [12]. It may be helpful to mention that
quenched measures describe the evolution in a IP-typical environment of a particle
starting at the origin, whereas for the annealed m easures the IP-integration should
be viewed as the result of an ergodic average over the starting point of the particle.
It i s a recurrent theme of random media that quenched and annealed behaviors
can be substantially different.

I. NORMALIZING CONSTANTS FOR (0.2), (0.3)

Analyzing the principal asymptotic behavior of normalizing constants is a first
step in the understanding of the path measures attached to Brownian motion in
a Poissonian potential.

With the help of the Feynman-Kac formula, the normalizing constants Sy .,
and S} can respectively be expressed as:

(1.1) St,w = Uu(tao) and S; = ]E[Uw(t» 0)] )

where u,,(t, z) is the bounded solution of

(1.2) { Ot
' u, (0, z)

Au, — Vu,, ,

Ll SIS

DOCUMENTA MATHEMATICA - EXTRA VOLUME ICM 1998 - IIT - 301-310



BROWNIAN MOTION AND RANDOM OBSTACLES 303

Their principal asymptotic behaviors as t — oo, are governed by:

(1.3) P-as., S, =exp{—c(d,v)t(logt)">¢(1+0(1))},

(1.4) Sy = exp{—a(d,v)t7 (1 +o(1))} .

The constants ¢ and ¢ are “explicit”, and independent of the specific choice of W ()
n (0.1). If A\(U) and |U]| respectively denote the principal Dirichlet eigenvalue of
—3 A'in U and the volume of U, one has:

(15)  e(d,v) = A(B(0, Ry)), with Roz(m)” * Whereas
ddv) = inf {v]U]+NU)} =v|B B(0, Ro)| + A(B(0, Ry)), with
(1.6) - A(B(0,1))\ ==
Fo = (d |B(0, 1)|) '

The annealed asymptotics (1.4) goes back to Donsker-Varadhan [5], where it was
obtained as an application of large deviati on theory for occupation times of Brow-
nian motion on a torus. Both asymptotics have also been derived through the
analysis of p rincipal Dirichlet eigenvalues of —% A+ V(-,w) in large boxes, and
the method of enlargement of obstacl es, cf. [24], [33], [36]. Sharper versions of
(1.3), (1.4) can also be found in [36].

Intuitively for the quenched asymptotics, the contribution in the Feynman-
Kac formula

(1.7) St = Eo {exp{ - /Ot V(Zs,w)dsH

of Brownian paths going to some obstacle-free ball of radius of order Ry(log t)l/ d,
typically occurring within distance slightly less than ¢ from the origin, and staying
there up to time ¢, has the principal asymptotic behavior (1.3). On the other hand
for the annealed asymptotics, the contribution in the representation

(1.8) Si =B ® o[ exp { - /Ot V(Z,,w)s}]

of largely deviant environments, for which an obstacle-free ball of radius of order
Ro {72 contains the origin, and of Brownian trajectories, which stay in the ball up
to time ¢, has the principal behavior (1.4). Of course, under standing whether and
up to what point these heuristics truly govern the quenched and annealed path
measures (0.2), (0.3) is qui te another matter. As it turns out, the loose concept
of pockets of low local principal Dirichlet eigenvalue for —% A+ V(,,w), plays
an important role in the analysis of (0.2), (0.3). The predominance of atypical
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“pocket s of abnormally low eigenvalues” locally describing a system is a recurrent
paradigm of random media, which for instance shows up in models of intermittency,
cf. Gértner-Molchanov [8], [9], Molchanov [17], in random walks in random envi
ronment, cf. [4], [19], [20], [35], or in stochastic dynamics of spin systems with
random interactions, cf. [16] and references therein.

II. PINNING EFFECT AND CONFINEMENT PROPERTY

The large ¢t behavior of the quenched path measure Q. is governed by a “com-
petition” between the various “pockets o f low local eigenvalues”, resulting in a
pinning effect: the path tends to get attracted to near minima of a certain random
va riational problem. The discussion of the real pinning effect would go beyond
the scope of this expository article, and we restr ict here to a simplified version.
We refer to [32] or [36] for the “real story”. We denote by A, (U) the principal
D irichlet eigenvalue of —% A + V(,w) in U, and for sufficiently small x > 0,

consider the random function on IR%.

(2.1) Fy(z,w) = ag(z) + tA,(B(z, Ry)) ,

with R; = exp{(logt)! =X}, a “small scale” growing slower than any positive power
of t, and ay(+) a certain deterministic norm, the so-called quenched 0-th Lyapunov
coefficient, see Section IV below, (the role of ag(-) is somewhat cosmetic in the
simplified pinning effect we discuss here). Minimizing F}(-,w) induces a competitio
n between distance to the origin and occurrence of pockets of low local eigenvalues.
One can show, cf. [32], [36], that

(2.2) P-a.s., inf Fy(-,w) ~ ¢(d,v) t(logt) %%, as t — oo,
with ¢(d,v) as in (1.5). Defining a skeleton of near minima of Fy(-,w) via
1

Vd

it can be shown that this set “lies almost at distance ¢t” from the origin. The
(simplified) pinning effect asserts that

23) Lovo = {‘T € —= %", Fy(z,w) < inf Fy(-,w) + t(logt) X"},

THEOREM: For small x > 0,

(2.4) P-a.s., tli)m Q1u(C) =1, where
(2.5) C = {Z comes before time t within distance 1 of some x € Ly, from

which it then does not move further away than R; up to time t} .

As a by-product of the proof one also has the refinement of (1.3):
(2.6) P-a.s., log St + inf F;(-,w) = o(t(log t)ﬂ(f%) .

The true pinning effect is substantially sharper but involves certain random scales
which would take too long to introduce here . In particular in the one-dimensional
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case it can be shown that for € > 0, with P x Q) -probability ten ding to 1 as
t — oo, Z. gets pinned within time et in scale t(logt)™® within an interva 1 of
length 2(log t)*T¢, cf. [32], [36].

Loosely speaking, in the quenched situation the particle “goes the extra mile”
to find an adequate pocket of low local eigenv alue. The annealed situation is quite
different and favours a “good location” for the starting point of the path which

then t ends to remain “confined” there. For instance in the case of hard obstacles,
i.e. for the path measure

(2.7) Qi =P R[-|T>t],

with T the entrance time of Z in the obstacle set |J, z; + K, w =) . 05, and K
a fixed nonpola r compact set, one has the confinement property:

THEOREM: For any d > 1,

(2.8) Hm Q] sup |Zu| < 2t773 (Ro+€(t)] =1,
t—o0 0<u<t

with Ry as in (1.6), and €(t) a suitable function tending to 0, when t tends to co.

Thus the path “typically lives in scale 72 under Q:”. The result is consider-
ably harder to prove when d > 2. The two-dimensional case goes back to [26]. The
case of dimension d > 3 was proved by Povel [21], who used a recent version of the
method of enlargement of obstacles (cf. next section), and certain isoperimetric
controls of R.R. Hall [?], which play the role of the Bonnesen’s inequality in the
two-dimensional proof. In fact in the two-dimensional case, it was proved in [26]
that

THEOREM: (d=2)

There ezists a measurable map Dy(w), B(0,tY/* (Ro + €(t)))-valued,
such that with Q¢-probability tending to 1, ast — oo, Zjg 4 is
included in B(Dy,t'/4(Ro + €(t))) and no obstacle fall in

B(Dy, tY/4(Ry — €(t))) .

(2.10)

In the case of the simple random walk on Z?, Bolthausen proved in [3] a version of
this result using a refined version of D onsker-Varadhan’s large deviation principles.
It is also possible to obtain further information on the “spherical clearing” w here
the process lives, cf. Schmock [23], when d = 1, [26], when d = 2, and [21], when
d> 3:

Ast — oo, t*ﬁZv (a2 converges in law under Q;, to the

mixture with weight ¢(z)/ [ of the laws of Brownian motion
starting from 0 conditioned not to exit B(z, éo), with v the
principal Dirichlet eigenfunction of —% A in B(0, EO) .

(2.11)
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III. THE METHOD OF ENLARGEMENT OF OBSTACLES

As mentioned above, in many questions related to Brownian motion in a Poissonian
potential, the analysis of local principal Dir ichlet eigenvalues of —% A+V(,w)
plays in important role. Indeed these numbers control in a very qu antitative
fashion the decay properties of the Dirichlet-Schrédinger semigroup. This is illus-
trated by the estimat e:

(3.1) sup E, [exp{ - /t V(Zs,w)ds}, Ty > t} < (14 O (DY) e O
z 0

with ¢ a merely dimension dependent constant and Ty the exit time of Z. from
U, cf. [36]. The method of enlargement o f obstacles in particular provides an
efficient way of deriving uniform controls on the numbers A, (U) close to 0 (i .e.
the bottom of the spectrum of —1 A + V(-,w) in R%), as U and w vary. The
rough idea is to remodel the region V' > 0, and construct a coarse grained picture
with lower combinatorial complexity than the original clo ud configuration, which
for probabilistic purpose is simpler to analyze, but still has principal eigenvalues
close to the origi nal objects. This remodeling of the region V' > 0 brings into
play a trichotomy of R In a first region, true obstacles a re quickly sensed by
Brownian motion, and obstacles can be “enlarged” by imposing Dirichlet condition
on this set. A second r egion where obstacles are insufficiently present and where
enlargement of obstacles could possibly influence eigenvalues is sho wn to have
little volume and thus little effect on probabilistic estimates. The third and last
region receives no point of the cloud. In a sense, this parallels the trichotomy
associated to any compact set K by considering the set of regular points of K, the
set of irregular points of K and the complement of K.

Specifically after scaling the problem so that e represents the size of the true
obstacles, 1 the size of the pocket s of interest in the scaled cloud configurations
(still denoted by w), one constructs a density set D( o) where obstacles are en-
larged and a bad set Be(w) where obstacles are untouched, so that:

i) De(w), Be(w), RN\ (De(w) U Be(w)) ; partition R?,

ii) no point of w falls in R*\(D,(w) U B (w)),

3.2
(3.2) iii) for each box C of size 1, the maps w — C' N D(w) and

w — C N B.(w) have range of cardinality smaller then 267%,
with 8 € (0,1) a fixed number.

Denoting by Vi(-,w) = >, e 2 W(=2) the scaled potential, the construct ion can
be done so that for a suitable a € (0,/3), Brownian motion, when starting on
D.(w), strongly feels the obstacles before moving at distance e*:

THEOREM Ag: (pointwise absorption estimate). There exists po > 0, such that

H.o
lim e—P° sup E, [exp{ —/ Ve(Zs,w dsH <1, wuth
(33> €—0 w,x€wverlineDe(w) 0 ( )

Hee =inf{s >0, |Zs; — Zo| > €*},
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and on the other hand the bad set has small volume:

THEOREM B: (volume estimate)

(3.4) 3k >0, lim sup e |B(w)nC| < 1.
€0 RIpTSIZE C' BOX OF SIZE 1,w

The construction of the trichotomy (3.3) i) relies on a type of quantitative Wiener
test involving a series of capacities of a skeleton of the true obstacles at scales
intermediate between € and €. In a sense (3.4), (3.5) parallels the Wiener test
characterization of regular points of a compact set and the Kellog-Evans theorem
on the smallness of the set of ir regular points of a compact set. As an application
of the pointwise absorption estimates (3.3) one can in particular obtain eig envalue
estimates:

THEOREM A: (eigenvalue estimate)
(3.5)

Jp >0, VM >0, liII(l) € ? sup (Apsilon,(U\D(w)) AM — XS (U)AM) =0,
€E—> u.),U

with XS, (0) = principal Dirichlet eigenvalue of —% A + V(-,w) in O.

In other words this shows that in the asymptotic regime, provided XS, (U) has
value of order unit, an addition al Dirichlet condition on D, (w) does not essentially
increase the principal eigenvalue.

The method of enlargement of obstacles has numerous applications to the
quenched and annealed situation, cf. [36]. The method e asily applies to non-
Poissonian obstacles (uniformity of controls in w is very handy), cf. [28], to shrink-
ing obstacles, cf. [25], see also [2], to confidence intervals on principal eigenvalues,
cf. [33], see also [39]. A version of the method in the discrete setting can be found
in Antal [1]. Recently L. Erdos applied in [6] a version of the method to the study
o f the Lifschitz tail effect for the density of states of the magnetic Schrodinger
operator with Poissonian obstacles.

IV. LYAPUNOV NORMS

The technique of Lyapunov norms has been very helpful in the investigation of
“off-diagonal” properties of the path measures (0.2), (0.3), in particular in the
derivation of large deviation principles governing the location of Z;. The Lyapunov
norms describe the principal exponential decay of the normalizing constants in
(0.4), (0.5). In a one-dimensional setting, in the co ntext of wave propagation in
random media, they can be traced back to the work of Gértner and Freidlin, cf.
Chapter 7 of Frei dlin [7].

At the heart of the method lies the fact that the functions ey (z,y,w) satisfy
an almost supermultiplicative property and still contain much information about
Brownian motion in a Poissonian potential. An important role is played by certain
sha pe theorems (analogous to shape theorems of first passage percolation, cf.
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Kesten [11]), which construct two families of norms on R?, 8x(-) < ax(-), A >0,
the annealed and quenched Lyapunov coeffici ents:

(4.1) P-as. for M >0, lim sup — |—logex(0,z,w)—ax(z) =0,
=00 goa<m |l

1
(42) for M >0, lim sup —
v=00 ga<M |7l

| — log tog(IE[ex (0, z,w)]) — Ba(z)| = 0.
These shape theorems are quite robust and one can replace in (4.1), (4.2),
ex(0,z,w) by the A-Green function ¢, (0, z,w), or ex(z,0,w), or exp{—dx(0,z,w)},
with dy certain natural random distance functions (in general nongeodesic) con-
structed with the ey, cf. [36]. The Lyapunov coefficients enter several large d
eviation theorems, cf. [29], [30], [31], as well as the random variational problem of
the pinning effect. For instance when arphi(t) — oo,

P-a.s. under Qy ., Z;/¢(t) satisfies a large deviation principle
at rate o(t), with rate function:

(4.3) i) ao(x), if p(t) = t(logt)=2/4, cf. [31],

i) ao(x), if t(logt) =24 << ¢ << t, cf. [29),

iii) I(z) =sup (ax(z) — N), if o(t) =t¢, cf. [29].
A>0

Similar results hold under the annealed measure )¢, when d > 2, with ta%2 in place
of t(logt)~?/¢ and Bx(-) in place of a(-), (the one-dimensional case is singular,
cf. Povel [22]). In the discrete setting (4.3) iii) has been proved by Zerner in [40].
In fact the above strategy also applies in the context of random walks in random
environments, cf. Zerner [41]. This is especially interesting since there are few
mathematical results on this model.

The understanding of crossing Brownian motion in a Poissonian potential, see
(0.4), (0.5), is so far rather primitive. However recently for rotationally invariant
truncated Poissonian potentials, Wiithrich has been able to relate in [37], the
fluctuatio n properties of —logex(0,z,w) to transversal fluctuations of the path
under the path measure (0.4). In a slightly d ifferent situation (“point to line”
model), he was also able to obtain a result about the superdiffusive nature of
transversa 1 fluctuations, cf. [38]. This is qualitatively similar to what happens in
first passage percolation, cf. Licea-Newman-Piza [15], Newman-Piza [18].
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WITHIN AND BEYOND THE REACH

OF BROWNIAN INNOVATION

BoORIs TSIRELSON

ABSTRACT. Given a system whose time evolution is random, we often
try to describe it as a deterministic system under independent random
influences. Doing so, we reduce complicated statistical correlations to
a complicated but deterministic mechanism, and a stochastic but un-
correlated noise. That is the idea of innovation. The corresponding
mathematics is surprisingly interesting.

1991 Mathematics Subject Classification: 60G07; 60H10, 60J65.
Keywords and Phrases: innovation, filtration, cosiness, noise.

1. THE NAME OF THE GAME

An innovation is a real-time transformation of a noise into a given random process.

Out of the four terms, only one, “random process”, is standard. The notion
of a real-time transformation was introduced repeatedly, and used under various
names: “lifting” (of a filtered probability space) [19, (7.1-7.3)], “Hypothese (#)”
[7, Sect. 2.4], “extension” (of a filtered probability space) [22, Chap. 2, Def. 7.1],
[8, Def. 6.1], with no name [44, 17.3.1(a)], [2, Lemma 7(c)], “morphism” (from one
filtration to another) [33, Def. 1.1], “immersion” (of one filtration into another) [4],
“orthogonal factor” (of a reverse filtration) [15, Sect. 2]. My favorite “real-time
transformation” appeared in [33].

A noise in the discrete-time framework amounts to an independent sequence
(of random variables or o-fields), or a product (of a sequence of probability spaces).
For continuous time, the classical white noise is a special case of a noise as defined
in [34, Def. 1.1]; see also “factored probability spaces” [13], “measure factoriza-
tions” [36, Def. 1.2], and “product measures” (on a factorized Borel space) [36,
Def. 2.4].

Innovation processes are well-known in filtering theory (see [5, Sect. 8]). A far-
reaching generalization is the “innovation” introduced here. In the discrete-time
framework, innovation appeared as “standard extension” (of a reverse filtration)
[8, p. 885], “generating parametrization” [28, Sect. 2|, [26, Def. 2.1], “substandard
representation” [15, Sect. 2]. My favorite “innovation” appeared in [26].

2. TRIVIAL CASES

Let u be a probability measure on a space X. (Usually X = R or R™, but it
may be a finite set, a complete separable metric space, a standard Borel space.)
Every such p can be represented as the image of the Lebesgue measure U(0,1)
under a measurable map f : (0,1) — X. Let U be a random variable distributed
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uniformly on (0, 1) (in symbols U ~ U(0, 1)), then f(U) ~ u. Of course, p does not
determine f uniquely; f(g(U)) ~ u for all measure preserving ¢ : (0,1) — (0,1).
So, every X-valued random variable Y is distributed like some X = f(U).

Consider a discrete time random process Y = (Y;)ier, assuming for now that
T is finite, T = {1,...,n}; thus Y is just n random variables Y7,...,Y,, and its
distribution is a measure u on X™. Let Uy, ..., U, be independent ¢/(0, 1) random
variables. Choose f1 : (0,1) — X such that f;(Uy) is distributed like Y;. For
each y; € X consider the conditional distribution of Y3 given that Y1 = y; (I
omit trivial reservations) and choose fa(-,y1) accordingly. Introduce X; = f1(U1),
X2 = fo(Ua, X1), then the pair (X1, X5) is distributed like (Y7,Y3). Continuing
the process, we get functions fi,..., f, and random variables X;,..., X, such
that

X1 = f1(Uh), Xo = fo(Us, X1), ...y Xo = fu(Up, X1, ..., X1),

2.1
@1) (X1,...,X,) is distributed like (Y7,...,Y},,).

That is the innovation: at a time ¢ € T" the process X takes on a value X; produced
by a deterministic mechanism f; out of two sources: the past (Xi,...,X¢—1)
of the process, and the current value U; of a noise. Note that each U, is used
only once (formulas like Xy = f2(Uz, U1, X1) are disallowed), and Uy, ...,U, are
independent. The uniform distribution of U, is only conventional; in Sect. 4 we
prefer the normal distribution. Note also the large choice available on each stage
when constructing fi,..., fn.

Example. Let (Y;)ter be a process with independent increments, having as-
sumed that X = R or another group. We may choose an innovation of the form

(22) Xt = gt(Ut) + Xt,1 .

The simple form (2.2) seems to be decidedly preferable to (2.1) for such processes,
which is a delusion, to be refuted in Sect. 3.

The distribution of X = (X3,...,X,,) is the given p. Consider, however, the
joint distribution of X and U. We have

(2.3) E(o(X1,...,Xn) |UL,...,Us) =E (o(X1,... Xn) | X1,... X4)

for all t =1,...,n and all bounded Borel functions ¢ : X™ — R. Forecasting the
future of the process X, we want to know the past of X only, and not the past of
U. In other words, (X;y1,...,X,) and (Ui, ..., U;) are conditionally independent,
given (Xq,...,X;). *

Consider the o-field Fx (t) generated by X7, ..., X; clearly, Fx(t) C Fu(¢)
for all ¢, that is, Fx < Fu, where Fx = (Fx(t))¢er is the filtration generated by
X. Writing (2.3) in the form E (¢ | Fy(t) ) = E (& | Fx(t)) for Fx (n)-measurable
¢, note that E (£ | Fx(t)) is the general form of an Fx-martingale; so,

(2.4) M(Fx) C M(Fv),

* Though, (2.1) stipulates more: (X¢11,Ust1, ..., Xn,Uy) and (Uy,...,U) are
conditionally independent, given (X7, ..., X}).
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where M(F) is the set of all F-martingales. Relation (2.4) implies Fx < Fy, and
is much stronger; try Xo = fa(Usz, Uy, X1) instead of fo(Usz, X1) and you’ll find
(2.4) violated but Fx < Fy is still valid.

The following definition is formulated in terms of processes, but only their
distributions are relevant. Still, T'={1,...,n}.

2.6 DEFINITION. A real-time transformation of a random process V = (V1,..., V)
into another process W = (Wq,...,W,,) is a two-component process (V',W') =
((V{,W{),...,(V;,,W})) such that V' is distributed like V, W' is like W,
and for each ¢ = 1,...,n, W/ is equal to a function of V{,...,V/, and two
vectors (V{,...,V/) and (W/,,,...,W,) are conditionally independent given
(Wi,...,W)).

Reformulations via (2.3), (2.4) and generalizations for infinite T" are left to the
reader. Nothing new emerges for an infinite increasing sequence of time moments,
teT=N=1{1,2,3,...}. Still, an innovation is constructed step-by-step: fi, then
f2, and so on ad infinitum. The same holds for every countable ordinal number,
that is, every countable linearly ordered set T that contains no infinite strictly
decreasing sequences.

3. DECREASING SEQUENCES ARE HIGHLY NON-TRIVIAL

The following two examples show an astonishing phenomenon: some information
appears magically, from thin air; see [25, p. 156], [43, p. 136], [10] and references
therein.

The first example: X; = +1 for t € Z are i.i.d. equiprobable random signs,
U; = X;/X;—1; then U, are i.i.d. equiprobable random signs, also. Thus, X is both
a process with independent values, and a process with independent increments
in the multiplicative group {—1,+1}. The equality X; = U;X;_1 should be an
innovation of the process X by the noise U. However, it is not; X contains more
information than U, since U determines X only up to an overall sign. The missing
information should be a kind of initial value, X_.,; however, any function of the
germ (tail) of X at —oo is either constant almost sure, or nonmeasurable, which
is the well-known tail triviality.

The second example is the “eternal” (stationary) Brownian motion in a circle
(or any other compact Lie group). Let (B(t))sec[o,00) Pe the standard Brownian
motion in R, and « a random variable, uniform on (0,1) and independent of
(B(t))te[0,00)- Consider the complex-valued process X (t) = exp (2mio + iB(t)).
The process (X (t))ie[0,00) is stationary. Therefore, it has a unique (in distribution)
extension (X (t))teR, the eternal motion. Multiplicative increments Uy = X;/X;—1
for t € Z should innovate the process (X (t))¢cz. However, they do not, for the
same reason as in the first example: they stay invariant under transformations of
the form (X(t))teR — (ei‘f’X(t))teR.

About notation: ergodic people, being more light-hearted toward the time
arrow than probabilists, prefer (X7, X}, ...), where X] = X 1, X} =X »,..., to
(...,X_2,X_1). Accordingly, dependence on the past turns into dependence on
larger indices t [8], [16], [28], [26], [15]. I adhere to the probabilistic school, [44],
[4], [9], [10], choosing T' = (-N) = {..., -2, —1}.
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Every process Y = (Y;)ier is distributed like some process X satisfy-
ing X¢ = fi(Up; X¢—1,X¢—2,...) for some Borel functions f; and independent
U;. It follows that M(Fx) C M(Fx,u), but we need M(Fx) C M(Fy).
The two-component process (U, X) is a real-time transformation of U into X
if and only if Fx < Fy. Chaining fi, fio1,..., fs+1 we get fs; such that
Xt = fs1(Uty...,Usy1; X5, Xs—1,...). However, we need f_o such that X, =
feoo,t(Us, U1, ...). That is possible if and only if the influence of X, X,_1,...
on fs1(Us,...,Usq1; X5, Xs-1,...) disappears in the limit s — —oo. Tail trivi-
ality is necessary but not sufficient. Both examples shown above are tail trivial,
and satisfy Xy = U;...Usy1Xs. Given U, the influence of X, on X; is strong,
irrespective of s. Thus, the equality X; = U; X;_; fails to give an innovation.

Despite the strong influence of X, on X, these X,, X; are (statistically)
independent in the first example, and asymptotically independent (for s — —o0) in
the second example. The strong dependence characterizes the specific way of using
U; (namely, X; = U;X;_1), that is, the parametrization (f;)ier rather than the
process X itself. Is there a better parametrization for the same process? For the
first example, the answer is evidently positive. Here, the conditional distribution
of X;, given the past, does not depend on the past. The parametrization X; =
U;X;_1 is bad because it introduces an unnecessary dependence on the past. A
good parametrization is simply X; = Uy, which surely is an innovation. For the
second example, restricted to ¢ € Z, the conditional distribution of X, given the
past, depends on X;_;. However, such distributions (corresponding to different
values of X;_1) overlap. A good parametrization uses the overlap for reducing
dependence on the past. In continuous time, an innovation for the eternal motion
is constructed [10] by inventing a coupling for processes differing in remote past.
They are forced to coalesce, which never happens under the bad parametrization
X: = Ui X;—1 of the form (2.2). That is the refutation of the delusion mentioned
after (2.2).

Is there an innovation for an arbitrary tail-trivial process (X¢)ie(—ny? The
answer is negative, which fact is “highly non-trivial and remarkable” [26], “deep
and surprising” [15]. The first example, admitting no innovation, was discovered
in the context of ergodic theory [37]. There are more examples of ergodic flavor
[38], [29], [39], [28], [21], and of probabilistic flavor [8], [17], [14], [26], [4], [9]. The
example of [8], furthered in [17], [14], [26], [4], is strikingly close to the sequence
of i.i.d. equiprobable random signs; namely, the product measure is replaced with
an equivalent (that is, mutually absolutely continuous) measure.

Some criteria for existence of an innovation, outlined in [37], [39], are elab-
orated in [15]. There, “substandardness” is our “existence of innovation”, while
“product type” is stronger, stipulating that U, is a function of Xy, X;_1,... In such
a case one says that U, is exactly the new information furnished by X at ¢ (though
it depends on the chosen innovation). “Substandardness” implies “product type”
provided that the conditional distribution of X; given the past, is nonatomic [15].

4. COSINESS

Cosiness is a useful necessary condition for existence of an innovation. (Is it also
sufficient? I do not know.) Cosiness emerged in [33, Def. 2.4] for continuous time
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and in [4, Sect. 4] for discrete time, the latter with a reservation that “there is a
whole range of possible variations” of the definition; one of the variations follows.
Still, T'= (—N) = {..., —2,—1}, and processes are X-valued.

4.1 DEFINITION. A random process (X;)ier is cosy, if for each € > 0 and each
bounded Borel function ¢ : X7 — R there exists a two-component random process
(Y, Z) = (Y4, Zt))ser such that

(a) ((v,Z),Y) and ((Y,Z), Z) are real-time transformations of (Y, Z) into X;
(b) Elp(Y) — ¢(2)| <&

(c) there exists § € (0, 1) such that for all bounded Borel functions ¢, x : X7 — R,

(E[(Y)x(2)])*° < (Elp(Y)P°) (BIx(2)~°) .

Some comments. Condition (a) implies that each of the two processes Y, Z is
distributed like X; thus, (Y, Z) is a joining of two copies of X, possessing the “real
time” property M(Y) C M(Y, Z), M(Z) C M(Y, Z) (recall (2.4)). Condition (b)
means that Y, Z are close, since ¢ may be one-one. Condition (c¢) means that Y, Z
are “independent a little”, since it is always satisfied for § = 0 and equivalent to
independence of Y, Z for § = 1.

4.2 THEOREM. [4, Lemma 6 and Corollary 3] A non-cosy process admits no
imnovation.

The idea of a proof. Assume that X has an innovation; X is distributed
like YV, Y; = fooo,t(Ut, U1, ...), U = (Up)er being a sequence of independent
N(0,1) random variables. (This time we prefer the normal distribution N(0,1)
to U(0,1).) Take another sequence V = (V;)er of independent N(0,1) random
variables such that U,V are independent. Introduce W; = U;cose + V;sine,
and let Z, = f_oo (Wi, Wi—1,...).* Condition (c) follows from the celebrated
hypercontractivity theorem (pioneered by Nelson, see [24, Sect. 3])!

The first example of a non-cosy process in discrete time is given in [4, Th. 1];
it appears that the method of [8] produces non-cosy processes. It is interesting
to know, whether “ergodic” examples [37], [38], [29], [39], [28], [21] are also non-
cosy, or not. Another non-cosy discrete-time filtration [9] is the restriction of a
continuous-time filtration to a discrete set on the time axis.

5. APPLICATIONS TO CONTINUOUS TIME

An X-valued process (Xi)ier, T = (—N) = {..., =2, —1}, generates its filtration
Fx = (Fx(t))ter. The family (Fx(2t)):er is also a filtration; it is generated by
the X2-valued process (Y;)ier, Y = (X2t_1, X2¢). If X admits an innovation, then
the amalgamated process Y also does. The same applies for any infinite subset
Ty C T. If X is tail-trivial and T} is sparse enough, then Y admits an innovation,
see [15, Th. 1.18] and references therein.

A continuous process (X¢)¢c(o,00) generates its filtration Fx = (.TX (1)) tei0,00)-
Choosing a sequence (tx)re(—n), t € [0,00), tr—1 < tx, infty, = 0, we get a

* Which is anticipated in [23].

DOCUMENTA MATHEMATICA - EXTRA VoLuME ICM 1998 - III - 311-320



316 B. TSIRELSON

discrete-time filtration (}" X(tk)) ke(—N), generated by the amalgamated process
(Ye)ke(=n), Yo = (Xt)telty_r .- If Y admits no innovation, then X also admits
no innovation, for any reasonable definition of continuous-time innovations. Some
continuous-time problems are solved in that way.

The effect of “information from thin air” (see Sect. 3) can be reproduced by
the stochastic differential equation

(51) dX; =dB;+v (t7 (Xs)se[O,t] ) dt

with a bounded drift v, if v is chosen properly. Then (5.1) fails to innovate X,
which means that the equation has no strong solution. That is the “celebrated
and mysterious” [25, V.3.18, p. 155] example, constructed in [32] and investigated
in [5], [30], [43], [23], [10]. The eternal Brownian motion in a circle, mentioned in
Sect. 3, can be obtained from X by a real-time transformation and a deterministic
time change that maps [0, c0) onto R [10]. The same process X is a strong solution
of the stochastic differential equation

(5.2) aX, = (t, (Xo)seon ) dBe+v (4 (Xo)sepon ) dt

for some o(...) = £1 [10] (see also [16]). Once again, a clever parametrization is
better than the straightforward parametrization.

One of the processes admitting no innovation, mentioned in Sect. 3, leads to
a more ingenious drift v in (5.1); the corresponding (continuous) process X has
no innovation, which means that it cannot be the strong solution of any equation
of the form (5.2) [8]; see also [17], [14], [26], [4]. The drift is not bounded, but I
believe that it can be made bounded. “Dreadfully complicated, their construction
is almost as incredible as the existence result itself” [4]. Is it really a compli-
cated construction? In fact, the drift is not constructed “by hands”, it is chosen
at random. It is a random drift; here “random” is interpreted like the second
“random” in the phrase “random walk in a random environment”. Thus, it is a
typical drift in the same sense as a nowhere differentiable Brownian sample path
is a typical function. Few parameters are adjusted by authors, such as order of
magnitude, and depth of dependence on the past, both depending on time in a
simple prescribed way.

There exists a pure martingale admitting no innovation [9].

6. FROM STOCHASTIC ANALYSIS TO STOCHASTIC TOPOLOGY

Some continuous-time phenomena have no (evident) discrete-time counterpart.
For example, Brownian motion cannot be transformed in real time into a Pois-
son process. A non-Gaussian stable process cannot be transformed into Brownian
motion. The m-dimensional Brownian motion can be transformed into the n-
dimensional Brownian motion if and only if m > n, which may be treated as the
starting point of stochastic topology, the theory of filtration invariants of random
processes.* A diffusion process with smooth nondegenerate coefficients in an n-
dimensional smooth manifold is equivalent to the n-dimensional Brownian motion

* A useful classification claimed in [27, Th. 7] appeared to be not exhaustive
[8, Sect. 6].
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in the sense that their filtrations are isomorphic; in other words, the two processes
can be connected by an invertible real-time transformation. What happens in pres-
ence of singularities of the topology or the coefficients? Few results are available;
they are based on stochastic analysis (It6 formula, local times, ...). All negative
results are based on continuous-time cosiness [33, Def. 2.4]. Brownian motion of
finite or countable dimension is cosy [33, Lemma 2.5]. A cosy process cannot be
transformed in real time to a non-cosy process [33, Lemma 2.6]. Therefore, all
non-cosy processes are beyond the reach of Brownian innovation.

Two well-known diffusion processes in R are singular at the origin (z = 0, not
t = 0 as in Sect. 5). The skew Brownian motion (see [20]) has a singular drift at 0,
and is equivalent to the usual Brownian motion [20]. The sticky Brownian motion
(see [41]) is slowed down at 0; its filtration is non-cosy [42].

Consider n rays (say, on the plane) with a single common point, the origin.
There is a natural diffusion process Z,, on the union of the rays; Zs is the usual
Brownian motion, Z; is the reflecting Brownian motion; Z3, Zy, ... are so-called
Walsh’s Brownian motions [40], [3]. Such processes arise when considering small
random perturbations of Hamiltonian dynamical systems [18] and some other top-
ics [40], [3]. Processes Z; and Z; are equivalent (Lévy, Skorokhod). Nevertheless,
Walsh’s Brownian motions are non-cosy [33, Th. 4.13] (see also [11], [2]), which
solves Problem 2 of [3].

Interestingly, stochastic topology can be of help to the classical (non-
stochastic) analysis. Consider three non-intersecting domains in R™. If they
are smoothly bounded, then points of trilateral contact are evidently rare among
boundary points. It was conjectured for irregular domains, that the infimum of
the three corresponding harmonic measures must vanish [6, Sect. 6], [12, Problem
a]. In terms of the Martin boundary: its natural projection to the topological
boundary is at most 2 to 1 almost everywhere. However, the best result of clas-
sical analysis is “at most 10 to 17 [6]. The final result “2 to 1”7 is achieved via
stochastic topology [33, Th. 7.4]. A challenge for classical analysis!

So, some characteristic of R™ (or any smooth manifold) as a harmonic space,
is equal to 2 irrespective of dimension, but exceeds 2 in presence of branching
points. The nameless characteristic has its counterpart in stochastic topology,
named splitting multiplicity. Introduced in [3, Def. 4.2], it was hibernating till
the birth of cosiness. Every cosy process is of splitting multiplicity 2 (or 1, if
it is degenerate) [2], while Walsh’s Brownian motion Z,, n > 2, is of splitting
multiplicity n [2]. Splitting multiplicity is invariant under measure changes and
time changes [2], while cosiness is not [4], [9].

7. WHITE NOISE VERSUS BLACK NOISES

In discrete time we have no choice of noises for innovation; a noise is a sequence
of independent random variables, each having a non-atomic distribution. In con-
tinuous time, the classical theory of processes with independent increments tells
us that in general, a noise consists of a Gaussian component (a finite or count-
able collection of independent white noises) and a Poissonian component. The
latter is useless for innovating diffusion processes. The former can innovate only

DOCUMENTA MATHEMATICA - EXTRA VoLuME ICM 1998 - III - 311-320



318 B. TSIRELSON

cosy processes. Thus, Walsh’s Brownian motion is beyond the reach of classical
innovation.

We may turn to Brownian motions (defined as continuous processes with sta-
tionary independent increments) on more general groups. In that aspect, finite-
dimensional Lie groups are equivalent to R™. The Polish group of all unitary
operators on the (separable) Hilbert space, equipped with the strong operator
topology, is equivalent to (the additive group of) the Hilbert space [34, Th. 1.6].
(Interestingly, the proof involves continuous tensor products and continuous quan-
tum measurements.) A commutative Polish group cannot give more [34, Th. 1.8].

The system of coalescing independent one-dimensional Brownian motions [1],
[31, Sect. 2], is a limiting case of a coalescing stochastic flow. The system generates
a two-parametric family of o-fields (Fs +)s<: that shares with the white noise the
following property:

(7.1) Frs ® Fsr = Fr whenever r < s <t;

that is, F,, and F,; are independent and, taken together, generate F, ;. Never-
theless, (Fs,t)s<t supports no white noise (nor a Poisson process); it means that
there is no Brownian motion (Bt)te[O,oo) such that B; — B, is F, ;-measurable for
all intervals (s,t) C [0,00) [35]. Thus, (Fs)s<: is a black noise as defined in [34,
Sect. 1]. It is predictable [34, Def. 1.12] in the sense that its filtration (Fo,t):c[0,00)
supports only continuous martingales. In fact, the filtration is Brownian! There-
fore, that black noise still cannot innovate Walsh’s Brownian motion.

One more example of a black noise is available [36, Sect. 5]. Does it generate
a cosy filtration? I do not know.

7.2 PROBLEM. Can a predictable noise (see [34, Defs. 1.1, 1.12]) generate a non-
cosy filtration?

If the answer is positive, another problem follows.

7.3 PROBLEM. Can Walsh’s Brownian motion be innovated by some predictable
noise?

7.4 PROBLEM. Can a noise generate a cosy but non-Brownian filtration?*
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REFLECTING DIFFUSIONS AND QUEUEING NETWORKS

R. J. WiLLiaMs!

1 INTRODUCTION

Queueing models are of interest for analyzing congestion and delay in complex
processing networks such as those occurring in computer systems, telecommuni-
cations and manufacturing (see e.g., [BG92, Ya94]). Many of these networks can
process more than one class of job at a given station (so-called multiclass net-
works) and/or have complex feedback structures. Generally such models cannot
be analyzed exactly and it is natural to seek more tractable approximations. In
connection with this, certain diffusion processes known as semimartingale reflect-
ing Brownian motions (SRBMs) [RW88] have been proposed as approximations
for heavily loaded queueing networks (see e.g., [Ha88, HN93]), and there is now a
substantial theory for these diffusions (see the survey in [Wi95]). However, limit
theorems justifying their role as approximations have only been proved for some
networks (see the overview in [Wi96]). Indeed, since a surprising example of Dai
and Wang [DWa93] it has been known that these approximations are not always
valid for multiclass networks with feedback. A challenging open problem has been
that of establishing general conditions under which SRBM approximations for
open multiclass queueing networks are valid. Recent progress on this problem and
related work is summarized here.

The paper is organized as follows. In §2, the existence and uniqueness theory
for SRBMs is described, including an oscillation inequality [Wi97a] which is critical
to establishing tightness of normalized queueing network processes. In §3, the
model used here for an open multiclass queueing network is defined. In §4, the
main theorem is stated which gives general sufficient conditions for a heavy traffic
limit theorem, which justifies approximating an open multiclass queueing network
by a SRBM [Wi97b]. One of the key conditions involves something called “state
space collapse”. Bramson has recently given sufficient conditions for this to hold
(see [Br97b] and his article [Br98] in this volume). New heavy traffic limit theorems
for two interesting collections of networks are obtained by combining the above
results. The paper concludes with some open problems in §5.

2 SEMIMARTINGALE REFLECTING BROWNIAN MOTIONS

DEFINITION OF A SRBM Let J be a positive integer, ]Ri ={z € R’ : T; >
0 for j =1,...,J}, B denote the o-algebra of Borel subsets of ]RJJF, v be a probabil-
ity measure on (]Ri, B), 0 be a constant vector in R’, I be a J x J non-degenerate
covariance matrix, and R be a J x J matrix.

IResearch supported in part by the U.S. National Science Foundation.
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DEFINITION 2.1 A semimartingale reflecting Brownian motion (SRBM) associ-
ated with the data (0,1, R,v) is a J-dimensional process W defined on some filtered
probability space (Q, F, {F:}, P) such that

W =X+RY (1)

where W, X, Y are {F:}-adapted processes such that W has continuous paths in
Bi, X is a J-dimensional Brownian motion with drift vector 6, covariance matriz
T, initial distribution v, and {X(t) — X (0) — 0t,F;,t > 0} is a martingale, and
Y is a J-dimensional process such that for each j € {1,...,J}, Y;(0) =0, Y;
is continuous and non-decreasing, and [, 1(g,00)(W;(s))dY;(s) = 0, i.e., Y; can
increase only when Wj is zero.

Intuitively, such a SRBM behaves in the interior of the orthant Ri like a
Brownian motion with initial distribution v, constant drift § and covariance
matrix I'; and it is confined to ]Ri by “pushing” at the boundary, where for
j=1,...,J, the allowed direction of push on the relative interior of the boundary
face F; = {z € R : x; = 0} is given by the j® column of the matrix R. At
an intersection of faces, the allowed directions of “push” are given by the con-
vex combinations of the push directions associated with the faces meeting there.
For historical reasons, stemming from an alternative construction of the driftless
process in one-dimension, the “pushing” at the boundary is called instantaneous
reflection. However, it is more accurate to think of this action as deflection or
regulation rather than some type of mirror reflection. The process Y is called the
“pushing process” associated with W and it is related to the local time of W on
the boundary. Since the state space for a SRBM is not smooth and the directions
of reflection may be discontinuous at the non-smooth parts of the boundary, the
general theory for diffusions with smooth boundary conditions [SV71] does not
apply to SRBMs and one must develop a theory from first principles.

The above definition of a SRBM is in the spirit of weak solutions of stochastic
equations. In particular, one is free to choose the filtered probability space and
processes W, X, Y such that the above properties hold. Here the focus is on such
weak solutions, since necessary and sufficient conditions for their existence and
uniqueness are known, whereas only sufficient conditions are known for strong so-
lutions. Furthermore, there are multiclass queueing networks (see the example due
to Dai, Wang and Wang in Appendix A of [Wi97b]) whose SRBM approximants
are not covered by the extant strong solution theory.

EXISTENCE AND UNIQUENESS FOR SRBMs It is straightforward to see that a
necessary condition for the existence of a SRBM associated with (6,T, R,v) for
each probability measure v on (]RJJF,B) is the following: at each point on the
boundary of ]Ri there is a positive linear combination of the “push” directions
that can be used there which points into the interior of ]Ri. This geometric
description can be expressed succinctly as the following algebraic condition: the
matrix R is completely-S if for each principal submatrix R of R there is a vector
Z > 0 such that RZ > 0. (Here inequalities are to be interpreted componentwise
and a principal submatrix of R is obtained by deleting all rows and columns of R
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with indices in some strict (possibly empty) subset of {1,...,J}.) In fact, R being
completely-S is also sufficient for the existence and uniqueness in law of a SRBM.
The following result is proved for v = §, (the unit mass at x € ]Ri) in [TW93]
and is easily extended to all v [Wi97a).

THEOREM 2.1 Suppose that R is completely-S. There exists a SRBM associated
with (0,1, R,v) and it is unique in law. Furthermore, the laws induced on the space
of continuous paths in Ri by the SRBMs associated with (0,T', R, d,), x € S, define
a Feller continuous strong Markov process.

OSCILLATION INEQUALITY Solutions of a deterministic Skorokhod problem
have been used to obtain strong constructions of SRBMs in some cases [Dul91,
HRR&1]. While this Skorokhod problem will not have unique solutions for general
completely-S matrices R [BEK91, Ma92], an oscillation inequality for a perturbed
form of this problem can be used to establish tightness for suitable approxima-
tions to a SRBM. Indeed, this inequality can be used to show existence of a SRBM
(using deflected random walk approximations having small inward jumps at the
boundary) and the form obtained by restricting to continuous paths z(-) and set-
ting € = 0 is used in the proof of uniqueness in law of a SRBM [TW93]. (This
“continuous” case of the oscillation inequality first appeared in [BEK91].)

In the following statement of the oscillation inequality, for any 0 < ¢; < tg <
00, D([t1,t2],R”) denotes the set of functions = : [t1,t2] — R’ that are right
continuous on [t1,t2) and have finite left limits on (¢1,%2] and Osc(z, [t1,t2]) =
sup{|z(t) — z(s)| : t1 < s <t < to} for any x € D([t1,t2],R”), where |a| =
maxy_, |a;| for any a € R’.

THEOREM 2.2 [Wi97a] Assume that R is completely-S. Suppose that € > 0, 0 <
t) <ty < oo and w,x,y € D([tl,tg],BJ) are such that

(1) w(t) ==x(t) + Ry(t) € Bi for all t € [t1,1t2],

(11) for each j € {1,...,J}, y;j(t1) > 0, y; is non-decreasing, and
Jits 1) Lesoo) (w35 (5))dy;(s) = 0.

Then there is a constant C > 0, depending only on R, such that
Osc(y, [t1,t2]) + Osc(w, [t1,t2]) < C(Osc(z, [t1,12]) + €). (2)

This oscillation inequality plays a key role in establishing tightness of normalized
queueing network processes approximating SRBMs (cf. §4).

OTHER RESULTS AND EXTENSIONS For further discussion of SRBMs, includ-
ing weak versus strong solutions, conditions for recurrence, and characterization
of stationary distributions, see the survey article [Wi95] and references therein.
Semimartingale reflecting Brownian motions in convex polyhedrons (in contrast
to the orthant) can arise as approximations to closed and capacitated queueing
networks. The reader is referred to [DWi95] for sufficient conditions for the ex-
istence and uniqueness of such processes and to [DD97] for a related oscillation
inequality and heavy traffic limit theorem. Semimartingale reflecting Brownian
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motions in polyhedrons also arise in other applications, e.g., in economic models
of monetary exchange [FL98]. Reflecting Brownian motions (RBMs) that are not
semimartingales have also been proposed as approximations to some particular
queueing network models (see e.g., [DuR98b, KL93]). However, the theory of exis-
tence and uniqueness for these non-semimartingale RBMs is not as complete as for
SRBMs, being restricted to the two-dimensional case [VW85] or to RBMs whose
geometric data is a limit of that for SRBMs [DuR98a].

3 OPEN MULTICLASS QUEUEING NETWORK MODEL

In an open queueing network, jobs arrive from outside the system, visit a finite
number of stations where they receive service, and then exit the network. The
model for an open multiclass queueing network used here is a generalization of one
with a first-in-first-out (FIFO) service discipline considered in [HN93]. To simplify
the exposition, attention is restricted to networks that are initially empty. For a
more complete specification of the model, including a treatment of networks that
are initially non-empty, see [Wi97b]. The model description is broken down into
assumptions concerning the network structure, primitive stochastic processes (for
exogenous arrivals, service times and routing), and the service discipline.

NETWORK STRUCTURE The model has a fixed set {1,...,J} of stations with a
single reliable server at each. At any given time, each job in the network belongs
to one of a finite set L = {1,..., K} of job classes. Each class is associated with

exactly one station (where the class is to receive service). The deterministic many-
to-one function mapping classes to stations is specified by a J x K constituency
matrix C' where Cj;, = 1 if class k is served at station j and Cj; = 0 otherwise. At
a given station, jobs of different classes may be distinguished by features such as
the distributions of their service times, their routing characteristics, or their order
of service. Upon completing service in a class, a job changes class in Markovian
fashion. Each station serves at least one class and has an infinite buffer for storing
jobs awaiting service there.

STOCHASTIC PRIMITIVES The primitive stochastic processes for the model
are (E,V,®) where F is a K-dimensional external arrival process, V is a K-
dimensional cumulative service time process, ® = (®!,®2,...,®¥) and ®* is a
K-dimensional routing process for class k € K. More precisely, for each k and
t > 0, Ej(t) represents the number of exogenous arrivals to class k up to time
t. It is assumed that Ej # 0 for at least one k and for each such k, Ej is a
renewal process derived from a sequence of positive i.i.d. interarrival times having
finite mean and variance. For each class k and integer n > 0, Vi(n) = >, vi (i)
where {v(2)}$2, is a sequence of i.i.d. positive random variables with finite mean
and variance, and v (i) is interpreted as the service time for the i*! job that ar-
rives to class k. To describe the Markovian routing, let eq,...,ex denote the
non-negative unit basis vectors parallel to the K coordinate axes in R* and
let ey be the K-dimensional zero vector. For each class k and integer n > 0,
ok (n) = Y1 | ¢*(i) where {¢*(i)}$2, is a sequence of i.i.d. random vectors tak-
ing values in {eg, e1, ..., ex} with P(¢*(i) = e;) = Pu, k,1 € K, and P is a strictly
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substochastic K x K matrix. The interpretation of the routing vector ¢* (i) is that
the i*® job to depart from class k is routed next to class [ if ¢*(i) = ¢, and it
leaves the network if ¢* (i) = eg. The strict substochasticity of P ensures that jobs
eventually leave the network. The processes E1,...,Ex,Vi,..., Vi, ®1, ... &K
are assumed to be mutually independent.

SERVICE DISCIPLINE It remains to specify the order in which jobs are served
at each station, i.e., the service discipline. Attention is confined to HL (head-
of-the-line) service disciplines (cf. [Br97a, Wi97b]). (Other disciplines such as
last-in-first-out or general processor sharing are also of interest, but the heavy
traffic theory for networks with these disciplines is much less developed.) Firstly,
an HL discipline is non-idling in the sense that a server is never idle when there are
jobs waiting to be served at its station. In addition, jobs in each class are served
on a first-in-first-out basis, i.e., service for each class is concentrated on the job
at the head-of-the-line for that class. Each class receives a proportion (possibly
zero) of the associated server’s time, where this proportion may be random but
is kept constant between changes in the arrival or departure processes, and these
proportions depend in a measurable way on the “state” of the queueing network at
the time of the last such change. (The “state” description includes such quantities
as queue lengths, remaining service times of jobs at a station, amounts of time
that jobs have been waiting in their current class, and the amount of time until
the next exogenous arrival to each class cf. [Wi97b].) Common service disciplines
included in the HL framework are FIFO (regardless of their class designation, jobs
at a station are served in the order in which they arrived there), static priorities
(classes at a station are ranked and jobs of a higher ranking class are always served
before those of a lower ranking class), and HLPPS (head-of-the-line proportional
processor sharing: each class at a station receives service in proportion to the
number of jobs that are present in that class).

DESCRIPTIVE PROCESSES AND MODEL EQUATIONS Let A,D be the K-
dimensional processes such that Ag(t) denotes the number of arrivals to, and
Dy (t) denotes the number of departures from, class k up to time ¢. The processes
that are used to measure performance are a K-dimensional queue length process
Z, a J-dimensional workload process W and a J-dimensional cumulative idletime
process Y. For each class k, station j and time ¢, Zj(¢t) denotes the number of
class k jobs that are in queue or being served at time ¢ (the letter Z is mnemonic
for the German Zahl or number), W;(t) denotes the amount of work for server j
(measured in units of remaining service time) that is embodied in those jobs that
are at station j at time ¢, Yj(t) denotes the total amount of time that server j has
been idle up to time ¢.
The descriptive processes (A, D, W,Y, Z) satisfy the following equations:

A(t) = E(t)+®(D(t), Z(t)=A@l)—D(t), W(t)=CV(A({t))—et+Y(t). (3)

Here e is the J-dimensional vector of all ones and the k' component of ®(D(t))
is to be read as Yie, ®% (D;(t)) and the k™ component of V(A(t)) is to be read
as Vi (Ag(t)). The equation for A indicates that the Ag(t) arrivals to class k up to
time ¢ consist of Ey(t) exogenous arrivals plus Z{il ®! (D,(t)) arrivals obtained by
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feedback of some of the departures that have occurred up to time t. The equation
for the workload process W expresses the fact that ), - Cjx Vi (Ag(t)) units of
work have arrived for server j in [0,¢] and that this has been depleted by the
amount of time ¢t — Y;(t) that server j has been active in [0,t]. The fact that an
HL discipline is non-idling implies that [~ 1(g,00)(W;(s))dY;(s) = 0 for all j.

\%

®
E 4 @ b

@

FIGURE 1: SCHEMATIC FOR AN OPEN MULTICLASS QUEUEING NETWORK

Note that the equations (3) do not give a complete description of the behavior
of the queueing network. In particular one must add additional equations to pro-
vide information about the service discipline. For example, for the FIFO discipline
one can add the relations: Dy(t + W;(t)) = Ax(t), for each class k and associated
server j. Equations for other HL service disciplines will not be given here, since
for the statement of the main theorem (Theorem 4.1), only a distillation of the
service discipline is needed in the form of a K x J matrix A. Since this matrix is
related to the heavy traffic behavior of networks, discussion of it is deferred to the
next section.

HeEAvY TRAFFIC The following notation is used in describing the notion of heavy
traffic. Let o denote the K-dimensional long run average arrival rate vector for the
exogenous arrival process E and let M denote the K x K diagonal matrix whose
diagonal entries are the mean service times my for the classes k € . Let X\ be the
unique solution of the “traffic low” equation A = a + P'), i.e., A= (I — P')"la.
Here ’ denotes transpose. (To avoid degeneracies, it is assumed that Ay > 0
for each k.) Define p = CMA. The quantity Ay is called the arrival rate for
class k and p; is called the traffic intensity parameter for station j. These are
nominally the long run average rate at which jobs arrive to class k and the long
run fraction of time that server j is busy, respectively. For single class networks,
these nominal quantities represent actual long run quantities (provided p; <1 for
all j). However, since the appearance of counterexamples in the early 1990s (see
e.g., [LK91, RS91]), it has been known that this interpretation is not always valid
for multiclass networks. Indeed, the question of whether these nominal quantities
actually correspond to long run quantities is related to the stability properties of
the queueing network. Rather than digressing to discuss this further here, the
reader is referred to the articles on stability in [KW95], the references therein,
and the article [Br98]. Here A and p are simply regarded as useful parameters.
Networks that are (nominally) heavily loaded or in heavy traffic are those in which
p; is close to one for each j. Such networks are the focus of attention in the next
section.
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4  SUFFICIENT CONDITIONS FOR A HEAVY TRAFFIC LIMIT THEOREM

A SEQUENCE OF NETWORKS Mathematically, to justify the approximation of a
given heavily loaded open multiclass queueing network by a SRBM, we regard the
network as being a member of a sequence of networks in which the traffic intensity
vector p converges to e. Here, to simplify the exposition, the sequence is chosen so
that only the distributions of the service times vary along the sequence where this
variation is parametrized by the mean service times. (A more complex setup can
be considered, allowing for more general variation of the distributions of all of the
stochastic primitives along the sequence [Wi97b]. Although this implies a certain
robustness of the approximation to small perturbations in the distributions of the
stochastic primitives, for the purpose of stating a limit theorem that justifies the
approximation of a fixed heavily loaded network, only the simpler setup described
here is needed.)

Thus, we consider a sequence of networks indexed by 7, which tends to in-
finity through a strictly increasing sequence of positive numbers. Each network
in the sequence has the same basic structure as described in the previous sec-
tion. Furthermore, J, K, C, E, ® and the service discipline do not vary with r, and
vk (i) = miug(i) where m} is the mean service time for class k in the r'" network
and uy(7) is a random variable independent of r that has mean one and finite
variance. (To avoid degeneracies, it is assumed that uy(¢) has positive variance
for each class k. This assumption implies that the covariance matrix for the pro-
posed SRBM approximant is non-degenerate. For other ways in which this can
be achieved, see §5 of [Wi97b].) In the sequel, the superscript r is attached to all
quantities that may depend on 7.

Now assume the following heavy traffic conditions: as r — oo, mj, = my, €
(0,00) for each k € K, such that 4" = r(p” — e) — v € R’. Define the diffusion
scaled workload, cumulative idletime and queue length processes:

W7 (t) =W (r2t)/r,  YT(@t) =Y () )r,  ZT(t)=Z"(r*t)/r.  (4)

The purpose of a heavy traffic limit theorem is to justify approximating
(W, Y", Z") in distribution using a SRBM.

STATE SPACE COLLAPSE A key feature of prior limit theorems in the multiclass
setting [Wh71, Pe91, Re88] has been a phenomenon called state space collapse,
which states that the diffusion scaled queue length process for each class k can be
approximately recovered as a multiple of the associated station’s diffusion scaled
workload process. Here a slightly weaker notion called multiplicative state space
collapse is used. This form suffices for our purposes and seems more amenable to
verification (cf. [Br97bl]). Here || f(*)||l7 = supg<i<p |f(t)] for any vector valued
function f defined on [0,T]. (The notion of state space collapse is defined by
omitting the denominator in (5) below.)

DEFINITION 4.1 Multiplicative state space collapse holds if there is a K x J matriz
A such that for each T > 0,

127() = AW ()l
W)l v

— 0 in probability as r — oo, (5)
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where a V b = max(a, b) for any two real numbers a,b.

Based on extant limit theorems, some conjectured forms of A for various service
disciplines are described in [Wi97b]. In fact, one can show (see Appendix B in
[Wi97b]) that a necessary condition for {(W7, Z")} to be C-tight under the FIFO
service discipline is that (multiplicative) state space collapse holds with A = AC’
where A is the K x K diagonal matrix with the entries of A on its diagonal.

SUFFICIENT CONDITIONS FOR A HEAVY TRAFFIC LIMIT THEOREM The main
content of the following theorem is that for a sequence of open multiclass queueing
networks as described above (with a general HL service discipline), multiplicative
state space collapse plus the natural condition that the reflection matrix R for the
purported SRBM approximant is well defined and completely-S, is sufficient for a
heavy traffic limit theorem to hold. Here = denotes convergence in distribution of
processes taking values in the space of paths that are right continuous with finite
left limits, where this space is endowed with the usual Skorokhod topology.

THEOREM 4.1 [Wi97b] Suppose that multiplicative state space collapse holds and
that the inverse matriz R = (CM (I —P')"1A)~! exists and is completely-S. Then

(W™, Y7, 2") = (W*,Y*, Z*) asr — oo, (6)

where W* is a SRBM with data (Rv,T, R, d0) and associated pushing process Y*,
and Z* = AW™*. The covariance matriz T is a known quantity determined from C
and the means and covariances of the stochastic primitives [Wi97b], and §y denotes
the unit mass at the origin in Bi.

The proof of this theorem proceeds by showing tightness of the sequence
{(Wr,Y",Z")} and uniqueness in law of any weak limit point. For the tight-
ness, multiplicative state space collapse is combined with the oscillation inequality
of Theorem 2.2. For the uniqueness of any weak limit point (W, YT ZT), one
needs to show that W' is a SRBM with associated pushing process Y. In par-
ticular, the martingale property in the definition of a SRBM needs to be verified
for Xt = W' — RYT. This involves establishing a multiparameter stopping time
property which is where the precise definition of a HL service discipline (including
its measurable dependence on the “state”) comes into play.

NEw HEAvy TRAFFIC LIMIT THEOREMS In a companion work to [Wi97b],
Bramson [Br97b] (see also [Br98]) has given sufficient conditions for multiplicative
state space collapse to hold. These conditions are in terms of the behavior of a
balanced fluid model (a law of large numbers approximation for the sequence of
heavily loaded queueing networks). In particular, using these conditions and his
prior work on the fluid model behavior for FIFO Kelly type and HLPPS networks,
Bramson [Br97b] has shown that multiplicative state space collapse holds for these
two collections of networks. The qualifier “Kelly type” means that my depends
only on the station j at which class k is served, i.e., the limiting mean service
times are station-dependent, not class-dependent, quantities. In addition, it is
known [DH93, Wi97b] that R is well defined and completely-S for these networks.
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Combining the above results yields new heavy traffic limit theorems for these two
collections of networks. In particular, the FIFO Kelly type network introduced
by Dai, Wang and Wang (see Appendix A in [Wi97b]) can be approximated by
a SRBM. This is particularly interesting since the continuous mapping (strong
solution) approach used in most prior limit theorems cannot be applied to that
example.

In independent work, Chen and Zhang [CZ97] have established a heavy traffic
limit theorem for FIFO networks in which G = CM (I — P')~1P’AC’ has spectral
radius less than one. Although they do not use Theorem 4.1, they implicitly verify
the conditions of that theorem for their case and avoid a continuous mapping
argument in a similar manner to that in [Wi97b].

5 OPEN PROBLEMS

The results in [Br97b, Wi97b| reduce the problem of establishing heavy traffic
limit theorems for open multiclass queueing networks with a HL service discipline
to that of establishing multiplicative state space collapse through the study of
balanced fluid models over long intervals of time and to verifying that the reflec-
tion matrix R is well defined and completely-S. A compelling open problem is to
identify new collections of networks that satisfy these conditions. In particular, it
is natural to consider networks with static priority service disciplines (see the ar-
ticle [Br98] by Bramson for recent work in this direction). Another area for future
investigation is heavy traffic behavior of networks with non-HL disciplines such as
last-in-first-out and general processor sharing. Finally, the focus here has been on
performance analysis for heavily loaded networks with a fixed structure. In some
applications one may be able to vary such quantities as the service discipline or
routing in a dynamic manner with the objective of optimizing some measure of
performance. Again such problems frequently cannot be analyzed exactly and one
may seek approximate models. An approach using approximate diffusion models
has been advocated by some authors (see e.g., [HW89, KL93, Ku95]), but many
open problems remain concerning justification and interpretation of such approx-
imations in general.
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HEREDITARY PROPERTIES OF GRAPHS:
AsymMPTOTIC ENUMERATION, GLOBAL STRUCTURE,

AND COLOURING
BELA BOLLOBAS

1991 Mathematics Subject Classification: Primary: 05C, 05D; secondary:
51M16, 60E15

1. INTRODUCTION. In this paper we shall discuss recent developments concerning
hereditary graph properties. In particular, we shall study the growth of the number
of graphs with a given hereditary property; the structure of a ‘typical’ graph with
the property; and the P-chromatic number of a random graph G, , for a fixed
hereditary property P.

A graph property P is a union of isomorphism classes of finite graphs. To avoid
trivialities, we shall always assume that our properties contain infinitely many non-
isomorphic graphs, but that for some n do not contain all graphs of order n. Here
are some simple examples of graph properties: (i) all triangle-free graphs without
8-cycles, (ii) all graphs of chromatic number at most k, (iii) all graphs containing
no induced quadrilaterals, (iv) all regular bipartite graphs, (v) all Hamiltonian
graphs.

Rather than considering general properties, we frequently study hereditary
properties. A property P is hereditary if it is closed under taking induced sub-
graphs. In other words, P is hereditary if G € P implies that G — x € P for every
vertex z of G.

An important subclass of hereditary properties is the class of monotone prop-
erties, those that are closed under taking subgraphs. Thus P is monotone if G € P
implies that G — x € P for every vertex = of G and G — e € P for every edge e
of G. Note that properties (i) and (ii) are monotone, (iii) is hereditary but not
monotone, and properties (iv) and (v) are not hereditary.

The most natural way of measuring the size of a property is to take the
number of elements in its finite sections. Given a property P, write P" for the set
of graphs in P with vertex set [n] = {1,...,n}. Then (|P"|)52, is, in an obvious
sense, a measure of P.

For a monotone property P there is another natural measure: the sequence
(e(P™))o,, where e(P™) is the maximal size (number of edges) of a graph in P™.
For a general property P, the sequence (e(P™))5° ; may have little significance, so
we have to turn to a natural extension of it. A pregraph is a triple G = (v, E , N ),
where V is a finite set, the set of vertices, and E and N are disjoint subsets of
V@ the set of unordered pairs of vertices; E is the set of edges and N is the
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set of non-edges of G. A graph G = (V,E) extends G if E ¢ E ¢ V) \ N.
The size e(G) of a pregraph is [V® \ (E U N)|: the number of choices we have
when extending G to a graph. We say that a pregraph G belongs to P™ if every
graph extending G belongs to P™. Then another natural measure of the size of
a property P is the sequence (e, (P))52,, where e, (P) is the maximal size of a
pregraph in P™.

It is natural to identify a graph G = (V, E) with the pregraph G = (V,0, V()\
E); with this identification we find that e¢(G) = ¢(G). Hence, for a monotone
property P, the two definitions give the same value: in other words, e(P") =
en(P).

Scheinerman and Zito [28] were the first to study the rate of growth of |P"| for
a hereditary property. They discovered that, crudely, [P™| behaves in one of the
following five ways: (i) for n large enough, |P"| = 1 or 2, (ii) it grows polynomially:
for some positive integer k, a;n® < |P"| < agn® for some a1, ay > 0, (iii) it grows
exponentially: aal < |P"| < a¥ for some a > 0 and 1 < a1 < ag, (iv) it grows
factorially: an®™ < |P"| < n®2" for some a > 0 and 0 < a1 < ag, (v) it grows
superfactorially: |P™| > n®" for every a > 0 and n large enough.

Here we are interested in properties whose rate of growth is not far from
maximal. To measure the rate of growth of such a property P, we replace the
sequence (|P™])52; by the sequence (cy,)22;, where |[P"| = 9¢+(3). Since 1 <
[P < 2(3), we have 0 < ¢, < 1.

We call ¢, the logarithmic density of P™, and ¢ = lim, _,~ ¢, the asymptotic
logarithmic density of P provided the limit exists.

Similarly, the (normalized) size of P™ is dy,, 0 < d,, < 1, defined by e,(P) =
0.(3).

The asymptotzc size of P is d = lim,, .o d,,, provided this limit exists. Since
every pregraph G extends to 2¢(¢ %) graphs, we have ¢, > d, for every property.
Hence if P is a property with asymptotic logarithmic density ¢ and asymptotic size
d, then ¢ > d. We shall see later that every hereditary property has an asymptotic
logarithmic density ¢ and an asymptotic size d and, in fact, they are equal.

2. MONOTONE PROPERTIES. One of the main aims of classical extremal graph the-
ory is the study of the sequence (e, (P))52; for various monotone graph properties.
Frequently, a monotone property is given by a family F of forbidden subgraphs.
For a family F = {F}, Fs,...} of finite graphs, let Mon(F) be the collection of
all graphs containing no F; as a subgraph. Clearly every monotone property is of
the form Mon(F) for some family F of forbidden subgraphs, but one is especially
interested in monotone families defined by small families of forbidden subgraphs.
If there is only one forbidden subgraph F' then we have a principal monotone
property and we write Mon(F') instead of Mon({F'}).

It has been known for over fifty years that every monotone graph property
has an asymptotic size. In particular, a weak form of Turdn’s theorem [31] states
that d(Mon(K,41)) =1 — % for every r > 1. The fundamental theorem of Erdés
and Stone [15] extends this result to d(Mon(K,41(t))) = 1 — % for all ,t > 1.
Here, as usual, K,, denotes a complete graph of order n and K, (t) denotes the
complete r-partite graph in which each part has ¢ vertices. An equivalent form of
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the Erdds-Stone theorem is that if F is any family of forbidden subgraphs then
d(Mon(F)) =1— 1, where r = min{x(F) —1: F € F} and x(F) is the chromatic
number of F'.

Rather more effort is needed to prove that every monotone property has an
asymptotic density. Using the method of Kleitman and Rothschild [18], Erdés,
Kleitman and Rothschild [12] proved that ¢(Mon(K;11)) =1 — 2. This result was
extended by Erdés, Frankl and Rodl [11], who proved that ¢(Mon(F)) =1 — 1
for every graph F, where r = x(F) — 1. The proof of this result implies that
¢(Mon(F)) = 1— 1 for every family F, where r is, as before, one smaller than the
minimal chromatic number of a graph in F. In particular, ¢(P) = d(P) for every
monotone family.

The structure of K, 1-free graphs was investigated in great detail by Kolaitis,
Prémel and Rothschild [19]. Among other results, they proved that Mon(K,41)
is well approximated by the smaller property N, of graphs of chromatic number
at most 7: not only do we have the crude result that ¢(Mon(K,+1)) = ¢(N,.), but
also

[Mon(Kr41)"| /N = 1+ O(n™")

for all £ > 0. Furthermore, a first-order labelled 0 — 1 law holds for the class of
K, 1-free graphs.

Before leaving monotone properties, let us note that the following somewhat
surprising fact is an immediate consequence of the description of ¢(P) = d(P) for
a monotone property. If P; and P2 are monotone properties, and P = P; N Pa,
then

¢(P) = min{c(P1),c(P2)}. (1)

Thus the intersection of two monotone properties is about as large as the smaller
of the two properties!

3. VOLUMES OF PROJECTIONS AND ASYMPTOTIC ENUMERATION. The existence
of the asymptotic logarithmic density of a hereditary property is closely related to
a family of inequalities involving volumes of projections of bodies. Our next aim
is to describe this relationship.

A body in R" is a compact convex subset of R™ that is the closure of its
interior. Let vy, ..., v, be the standard basis of R = lin{vy, ..., v,}. For a subset
A of [n], write K4 for the orthogonal projection of a body K onto lin{v; : j € A},
and |K 4| for the |A|-dimensional volume of K 4. In particular, |K| = [K,| is the
volume of K. With 8(K) = (|Ka|: A C [n]) = (|Ka|)acin) € RP™ = R?", the
map K — B(K) can be considered to be a measure of the size of the boundary of
K.

We are interested in the best possible isoperimetric inequalities involving the
boundary vector 8(K) and the volume |K|. In other words, we would like to know
for which vectors (z4) € R?" with r[p) = 1 is there a body K C R" of volume 1
such that |Ka| < x4 for all A C [n]. The following boz theorem we proved with
Thomason [6] gives a surprisingly simple answer to this question. A boz B in R"
is a body of the form B = H?:l I, where each I; is an interval.

THEOREM 1. For every body K C R"™, there is a bor B C R"™ such that
|B| = |K| and |Ba| < |K | for every A C [n].
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An immediate consequence of the box theorem is the uniform cover inequal-
ity below, extending the Loomis-Whitney inequality [20]. A sequence (4;); of
subsets of [n] is a k-uniform cover of [n] if every element of [n] belongs to precisely
k of the sets Ay,..., Ap. Now, if (A;)", is a k-uniform cover of [n], and K is a
body in R™ then Theorem 1 implies that

[K[F < T 1Kl (2)

i=1

In fact, in [6] the box theorem is deduced from the uniform cover inequality
(1) by a simple compactness argument. Since the original proof, several other
deductions have been suggested: Ball noted that separation theorems, and Kahn
and Meshulam pointed out that properties of submodular functions, can be used
to deduce the box theorem from inequality (2).

The box theorem easily implies that, as first proved by Alekseev [1], every
hereditary property of graphs has an asymptotic logarithmic density.

THEOREM 2.Let P be a hereditary property of graphs. Then 1 = ¢1(P) >
c2(P) > -+ ; in particular, the asymptotic logarithmic density c(P) =
limy, 00 €0 (P) exists.

s}

It is easily seen that the arguments above apply to hereditary properties o
r-uniform hypergraphs as well, mutatis mutandis.

4. ASYMPTOTIC ENUMERATION AND GLOBAL STRUCTURE. Given a family F =
{F1, F,, ...}, of finite graphs, let Her(F) be the collection of all graphs that contain
no F; as an induced subgraph. Clearly, every hereditary property is of the form
Her(F) for some family F of forbidden subgraphs. Theorem 2 tells us that every
hereditary property P = Her(F) has an asymptotic logarithmic density ¢(P), but
gives no indication as to how one could determine ¢(P) from F. In fact, Promel
and Steger [22], [23], [24], [25] gave such a description for a principal hereditary
property, i.e., for one with a single forbidden induced subgraph. They also gave
approximations of principal hereditary properties by rather simple (non-principal)
hereditary properties. With Thomason [7] we extended these results to general
hereditary properties.

Before we can describe these results, we have to introduce some definitions.
An (r,s)-colouring of a graph G = (V, E) is a partition of the vertex set into
r classes such that the first s classes induce complete graphs, and the remaining
r— s classes induce empty subgraphs. (Needless to say, empty classes are allowed.)
Thus an (r,0)-colouring of a graph is precisely a standard r-colouring. We write
P,.s for the collection of all (r, s)-colourable graphs; clearly, P, s is a hereditary
property for all 0 < s <r, r > 1. For example, P ; is the collection of all complete
graphs, and P ¢ is the collection of all empty graphs. The colouring number r(P)
of a property P is

r(P) = max{r : P, s C P for some s}.
Note that if P = Her(F) then

r(P) = max{r : for some s <r, no F € F is (r, s)-colourable}.
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If P = Mon(F) then r(P) is exactly as before:
r(P) =min{x(F) —1: F € F} =max{r: no F € F is (r,0)-colourable}.

The colouring number gives us a lower bound for ¢, and d,. Indeed, let
0 < s < r be such that r = 7(P) and P, C P, and let G = ([n],E‘, N) be the
pregraph obtained as follows. Partition [n] into r classes as equal as possible in
size, [n] = V4 U ... UV,, say, and let E consist of all edges within a class V; for
0 <% < s. Since P, s C P, every extension of G belongs to P. Consequently,

cn(P) > dn(P) > e(é)/@) >1- %

As shown in [7], ¢(P) and d(P) exist for every hereditary property, and these
inequalities are essentially best possible.

THEOREM 3. If P is any hereditary property then

where r(P) is the colouring number of P.

The proof of this theorem is based on the three pillars of extremal graph
theory: the theorems of Ramsey [26], Erdés and Stone [15], and Szemerédi [30].
One needs only the very simple case of Ramsey’s theorem that the diagonal graph
Ramsey function is finite: R(k) < oo for every k. On the other hand, one needs
a slight extension of the Erdds-Stone theorem: for all r,¢ > 1 and € > 0 there are
d > 0 and ny € N such that if F and G are graphs with V(F) = V(G) = [n],
n > ng, e(F) < n? and

€611 +9(y).

then G contains an F-avoiding K,11(t). Here we say that a graph H avoids F if
no edge of F' joins two vertices of H.

The most important ingredient of the proof of Theorem 3 is Szemerédi’s
uniformity lemma [30]. Given a graph G = (V| E), and subsets A, B,C V, the

density d(A, B) is defined as

e(4,B)

d(A,B) = =27
)= a8

where e(A4, B) is the number of A-B edges. A pair (A, B) is (e, §)-uniform if
|[d(A’,B") —d(A,B)| <€

whenever A’ C A, B’ C B, |A’| > 6|A| and |B’| > §|B].

Szemerédi’s uniformity lemma states that for all €,§,n7 > 0 there is an M =
M (e, 8,m) such that the vertex set of every graph G can be partitioned into at most
M sets Uy, ..., U, of sizes differing by at most 1, such that at least (1 — n)m? of
the (ordered) pairs (U;, U;) are (¢, d)-uniform.
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The fewer sets Uy, Us, ... we can take the more powerful the result is; unfor-
tunately when € = § = 7, all we know about M (e, €, €) is that it is at most a tower
of 2s of height proportional to e ®. As the proof of this bound seemed rather
‘wasteful’, for many years there had been some hope that this enormous bound
could be reduced greatly. It was a great surprise when recently Gowers [17] proved
the difficult result that K(e,d,n) can not be less than of tower type in 1/4, even
when € and 7 are kept large.

Szemerédi’s uniformity lemma implies that every graph satisfying certain
global conditions contains appropriate induced subgraphs; this is precisely how
the lemma was used in the proof of Theorem 3.

The descriptions of the asymptotic logarithmic density and asymptotic size of
a hereditary property provided by Theorem 3 imply that hereditary properties are
much more complex than monotone ones. In particular, the simple relationship (1)
fails for hereditary properties. For example, if P; = Her(K4), P2 = Her(Cr)
and P = Py NPy = Her{K4,C7}, then r(P1) = r(P2) = 3 but 7(P) = 2: the
intersection of two hereditary properties can be much smaller than either of them.

In fact, the intersection of two large hereditary properties need not even be a
property in our sense: it may contain only finitely many non-isomorphic graphs.
For example, if » > 1 then each of P, and P, , has colouring number r, so that
c(Pro) =c(Pry) =1— %, but P, NPy, consists of graphs G with x(G) < r and
x(G) < r. In particular, |G| < r? for every G € P.o N\ Py, 50 Pro N P, indeed
consists only of finitely many non-isomorphic graphs.

5. COLOURING RANDOM GRAPHS G, 1,2 with hereditary properties. The random
graph G, p, is a graph with vertex set [n], whose edges are selected independently,
with probability p. The probability space of these graphs is G(n,p). In particular,

G(n,1/2) is the space of all 2(3) graphs on [n] with the uniform distribution.
One of the main questions left open by Erdés and Rényi when, almost forty
years ago, they founded the theory of random graphs ([13], [14]; see also [5]) was
the behaviour of the chromatic number of a random graph. Over 25 years later,
first Shamir and Spencer [29] proved that the chromatic number of G, , is highly
concentrated, and then it was shown [3] that if 0 < p < 1is fixedand g=1—p
then
3)

for almost every Gy ,. Substantial extensions of this result were proved by
Buczak [21], Frieze and Luczak [16], and Alon and Krivelevich [2]. All these
results use various martingale inequalities (see [4]).

For a property P, a P-colouring of a graph G = (V, E) is a partition V = V; U
..UV} of the vertex set such that every class V; induces a P-graph: G[V;] € P,i =
1,...,k. The P-chromatic number xp(G) of a graph G is the minimal number
of classes in a P-colouring of G. Thus xp, ,(G) = x(G) and xp, ,(G) = x(G).
Scheinerman [27] was the first to study the P-chromatic number of random graphs.
He noted that if P is a hereditary property then either P19 C P or P11 C P so
xP(G) < max{x(G), x(G)}. From this it follows that xp(Gyp) = O(nlogn) for
every fixed 0 < p < 1 and hereditary property P, and it is easily seen that, in fact,

xP(Gnp) = O(nlogn).

X(Gnp) = (1+ 0@))@
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With Thomason [8] we proved an analogue of (3) for a general hereditary
property, but only in the case p = 3.
THEOREM 4. Let P be a non-trivial hereditary property of graphs, with colour-

ing number r = r(P). Then

n

XP(Ga1/2) = (5 +0(1))

logy n
for almost every Gy, 1/2-

In fact, this result follows rather easily from (3) and from the facts that
¢(P) = 1—1 and that P, , C P for some s,0 < s < r. More precisely, ¢(P) =1-1
implies that xp(Gp,1/2) is unlikely to be much smaller than n/(2rlog, n), and
Pr.s C P implies that xp(Gy, 1/2) is unlikely to be much larger than n/(2rlog, n).

6. COLOURING RANDOM GRAPHS G, WITH HEREDITARY PROPERTIES. The ac-
cepted wisdom in the theory of random graphs is that whatever can be proved
for the space G(n,p) with p = 1/2 can be proved for G(n,p) with any fixed p,
0 < p < 1. This conventional wisdom is contradicted by the problem of determin-
ing xp(Gnp)! As we saw in Theorem 4, it is easy to determine xp (G, p) in the
uniform case p = 1/2. However, for p # 1/2 not only does the proof collapse, but
we are faced with a genuinely more complicated phenomenon, so that much more
effort is needed to overcome the difficulties.

A lower bound for xp(Gy,p) is easily obtained from the following result, which
is a consequence of the box theorem.

THEOREM 5. Let P be a hereditary graph property, let 0 < p < 1 and let

k
the constants ey ,(P) be defined by P(Grp, € P) = 2=ex0(P)(2) | Then ekp(P)
increases with k. In particular, ey ,(P) tends to a limit ep(P) as k — oo. Fur-

thermore, ep,(P) > 0 if P is non-trivial, i.e., if not every graph has P.

Theorem 5 implies that, for e > 0, the expected number of induced subgraphs
of order k in a random graph G, , having property P is o(1) for k > (2/e, +
€) logy, m, and tends to infinity for k& < (2/e, — €)log, n. Consequently,

XP(Grnp) 2 (ep +0(1))n/(21logy n) (4)

almost surely.

It was conjectured in [8] that (4) is in fact an equality, as claimed by Theorem 4
for p = 1/2. Now, the proof of Theorem 4 is based on the fact that for p = 1/2
the constant e,(P) has a simple interpretation in terms of the values (r,s) for
which P, C P. However, for p # 1/2 this is no longer true: e,(P) cannot be
characterized solely in terms of these values (r, s). For example, let P’ = Py be
the property of being bipartite, and let P” be the property of being 3-colourable,
with two of the colour classes spanning complete bipartite graphs. Then P’ and
P contain P10 and P2, and no other P, ;. Nevertheless, e,(P’) # e,(P") for
p>1/2.

In spite of these difficulties, with Thomason [9] we proved the conjecture
above.
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THEOREM 6. Let P be a hereditary graph property and let 0 < p < 1. Let
ep = ep(P) be the constant defined in Theorem 5. Then

XP(Gnp) = (ep + 0(1))n/(2logy n)
almost surely.

The proof of Theorem 6 makes use of Szemerédi’s uniformity lemma, mar-
tingale inequalities and, above all, a careful study of the structure of a general
hereditary property. The product H'yef‘ ‘P, of hereditary properties P, v € I, is
the class of graphs G with vertex sets (J, . V5 such that G[V,] € P, for every
~v € I'. A hereditary property is irreducible if it is not the product of two other
hereditary properties. It is easily shown that every hereditary property is the prod-
uct of a finite collection of irreducible hereditary properties. Also, if P = Hvel“ P,
then

ep(P)*l = Zep(P'vrl'

yel’

Next, one can show that if Theorem 6 holds for each of the properties
P1,..., Pk, then it holds for Hle P; as well. Consequently, it suffices to prove
Theorem 6 for irreducible properties.

In fact, the heart of the proof is the assertion that Theorem 6 holds for every
‘typed’ property P = P(7). A type is a labelled graph, each of whose vertices
and edges is coloured black or white. Given a type 7, the property P(7) consists
of those graphs G for which V(G) has a partition |J;cy(,) V2 such that G[V] is
complete or empty according as t is black or white, and moreover, if the edge tu is
in 7 then G[V;, V] is a complete or empty bipartite graph according as the edge tu
is black or white. The proof of the fact that Theorem 6 holds for typed properties
P(7) is based on a careful analysis of the maximal number of induced edge-disjoint
subgraphs of a given order having property P — after much work enough can be
deduced so that martingale inequalities can be applied.

7. Open problems. Numerous open problems remain. Concerning graphs,
all the discussion above is about rather ‘rich’ properties P, namely those with
¢(P) > 0. The case ¢(P) = 0 is not understood nearly as well.

Although we know that ¢(P) = d(P) for every hereditary property, this is far
from being the entire story. We always have

1P| = 200(3) > 2en(P) = 9dn(3),

but it would be good to decide whether ¢, = (1 4 o(1))d,, holds as well.

More importantly, we know very little about hypergraphs. The quantities
cn(P) and d,(P) are easily defined for r-graphs, and ¢,(P) > d,(P) for every
n. Also, the box theorem implies that c,(P) — ¢(P), and one can show that
d,,(P) — d(P), but we do not know whether we always have ¢(P) = d(P). Nothing
of importance is know about the P-chromatic number of r-graphs: we do not even

know the asymptotic P-chromatic number of random r-graphs Gg:;, for p=1/2.
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APPLICATIONS OF RELAXED SUBMODULARITY

ANDRAS FRANK

ABSTRACT. Combinatorial optimization problems often give rise to set-
functions which satisfy the sub- or supermodular inequality only for cer-
tain pairs of subsets. Here we discuss connectivity problems and show
how results on relaxed submodular functions help in solving them.

1991 Mathematics Subject Classification: 90C27, 05C40
Keywords and Phrases: combinatorial optimization, submodular func-
tions, connectivity of graphs

1. INTRODUCTION

Let V be a finite set and b : 29 — R U {co} and p : 2° — R U {-c} two
set-functions. The submodular and the supermodular inequality, respectively, for
subsets X,Y C V are, as follows:

b(X) +b(Y) > b(X NY) +b(X UY), (1.1b)

p(X) +p(Y) <p(XNY) +p(XUY). (1.1p)

Function b [respectively, p] is called fully submodularif (1.1b) [ fully supermodular if
(1.1p)] holds for every two subsets X, Y C V. (When equality holds everywhere, we
speak of a modular function.) We call a function semimodular if it is submodular
or supermodular.

Semimodular functions proved to be extremely powerful in combinatorial op-
timization. One intuitive explanation for this is that submodular functions may
be considered as discrete counterparts of convex functions. For example, L. Lovész
[L83] observed that a (natural) linear extension of an arbitrary set-function h to
a real function on RK is convex if and only if h is submodular. Another occur-
rence of this relationship is the discrete separation theorem [F82] asserting that
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The paper was completed while the author visited the Department of Math-
ematics, EPFL, Lausanne, June 1998.
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if an integer-valued supermodular function p is dominated by an integer-valued
submodular function b, then there is an integer-valued (!) modular function m
for which p < m < b. Recently, this kind of analogy has been developed system-
atically by K. Murota [M96] into a theory relating convex analysis and discrete
optimization.

In applications, however, often the submodular inequality is not fulfilled by
every pair of sets. Accordingly, several frameworks concerning semimodular func-
tions have been introduced, analyzed, and applied. One fundamental property of
these models is total dual integrality (TDI-ness) which ensured applicability to
weighted optimization problems, as well. (See [Schrijver, 1984], for an account.)
For example, C. Lucchesi and D. Younger [LY78] proved a min-max formula for
the minimum number of edges of a directed graph whose contraction results in
a strongly connected digraph. J. Edmonds and R. Giles [EGT76], by introducing
submodular flows, found an extension to a minimum cost version. Based on this
ground, a polynomial time algorithm was developed in [F81] to actually find the
cheapest edge set.

There have been optimization problems, however, where the minimum car-
dinality case was nicely treatable while the min-cost version was NP-complete.
For example, making a digraph strongly connected by adding new edges is such
a problem [Eswaran and Tarjan, 1976]. This type of connectivity augmentation
problems gave rise recently to a new class of results concerning relaxed semimod-
ular functions.

In this paper we outline the new frameworks, exhibit recent developments
concerning submodular flows, and show applications to problems from the area of
graph connectivity.

The following forms of relaxed semimodularity will be used. Let S and T' be
two subsets of a groundset V and b a set-function. b is intersecting submodular if
(1.1b) holds whenever XNY # ). bis crossing submodular if (1.1b) holds whenever
XNY #Pand V — (XUY) # . Intersecting and crossing supermodular funtions
are defined analogously but for supermodularity we need further relaxations. Let
p be a non-negative set-function. p is ST-crossing supermodular if (1.1p) holds
whenever p(X) > 0,p(Y) > 0, XNYNT # 0 and S — (XUY) # 0. pis
T-intersecting supermodular if (1.1p) holds whenever p(X) > 0,p(Y) > 0, X N
YNT # 0. pis skew supermodular if p(X) + p(Y) < max(p(X NY) + p(X U
Y),p(X -Y)+p(Y — X)) whenever p(X) > 0,p(Y) > 0. We call a set-function p
symmetric if p(X) = p(V — X) for every X C V. Throughout we will assume that
the occurring set-functions are integer-valued.

2. CONNECTIVITY PROBLEMS

In a graph or digraph G, A(u,v) (respectively, x(u,v)) denotes the maximum
number of edge-disjoint (openly disjoint) paths from u to v. A(u,v) is called the
local edge-connectivity from u to v while the minimum of these A-values (k-values)
is the edge-connectivity (node-connectivity) of G. A digraph is k-edge- (node-)
connected from root s if X\(s,v) > k (k(s,v) > k) for every v € V.
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The problems we consider can be cast in the following general form: Create
an (optimal) graph (or digraph, or hypergraph) satisfying some connectivity prop-
erties. Sometimes we are interested only in the existence of the requested object,
other times finding an optimal object is also important. A connectivity property
typically means that bounds are imposed on the number of edges (nodes) in cuts.
”Creating” means that certain specified operations are allowed. We will consider
the following operations: Given a graph or digraph, take a subgraph, take a su-
pergraph (that is, augment the graph), orient the undirected edges, reorient some
of the directed edges.

The travelling salesman problem, for example, is a special case, as it requires
finding a minimum cost 2-edge-connected subgraph of n edges. Another special
case is the Steiner-tree problem which seeks for cheapest subgraphs containing at
least one edge from each cut separating a specified set T" of terminal nodes. These
well-known NP-complete problems are special cases of several other connectivity
problems. On the positive side, the problem of finding a minimum cost subdigraph
of a digraph that contains k edge-disjoint paths from s to ¢ is a special min-cost
flow problem and hence it is solvable in polynomial time. Here we consider other
connectivity problems having a good characterization and/or a polynomial-time
solution algorithm. Some of them are, as follows.

SUBGRAPH PROBLEMS

S1. Given a graph and a stable set S, find a (minimum cost) spanning tree
satisfying upper and lower bound requirements for its degree of the nodes in S.
S2. Given a digraph with a root s, find a cheapest subgraph which is k-edge-
(node-) connected from s.

SUPERGRAPH (=AUGMENTATION) PROBLEMS

A1l. Given a digraph, add a cheapest subset of new edges to get a k rooted
edge-connected digraph.

A2. Given a digraph, add a minimum number of new edges to get a k-edge-
(node-) connected digraph.

A3. Given a digraph and two subsets S and T of nodes, add a minimum number
of new edges from S to T to get a digraph with A(s,t) > k (resp., £(s,t) > k)
whenever s € S,t € T.

A4. Given a hypergraph, add a minimum number of edges to obtain a k-edge-
connected hypergraph.

ORIENTATION PROBLEMS

O1. Given a graph, orient the edges to get a digraph which is k-edge-connected
from a root s and l-edge-connected to s. (When k = [, the digraph is just k-edge-
connected).

0O2. Given a mixed graph, orient its undirected edges so as to obtain a k-edge-
connected digraph.

0O3. Given a digraph with edge-costs, reorient a cheapest subset of edges to get a
k-edge-connected digraph.
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Problem S1 is a matroid intersection problem and therefore Edmonds’ [E79]
intersection theorem and algorithm apply. A solution to Problem S2 requires
submodular flows, the topic of Section 3. Problem A1l may be formulated as a
special case of S2; but the other augmentation problems need different techniques,
to be discussed in Sections 4 and 5. All the orientation problems will be handled
with the help of submodular flows.

3. SUBMODULAR FLOWS

Let V be a ground-set and b an integer-valued set-function with 5(#) = 0. Associate
with b a polyhedron B(b) := {z € RV : z(V) = b(V),z(A) < b(A) for every
A C V}. When b is fully submodular, B(b) is called a base-polyhedron (0-base-
polyhedron in case b(V) = 0). For convenience, the empty set is also considered
a base-polyhedron. It follows from the work of J. Edmonds [E70] that a non-
empty base-polyhedron uniquely determines its defining fully submodular function.
Moreover, the intersection of two base-polyhedra is integral (a version of Edmonds’
polymatroid intersection theorem). Therefore it is important that weaker functions
may also define base-polyhedra. For example, L. Lovasz [L83] proved that if b is
intersecting submodular, then B := B(b) is a base-polyhedron which is non-empty
ifand only if b(V') > >, b(V;) holds for every partition {V1,...,V;} of V. Moreover,
the unique fully submodular function defining B is b*(Z) := min(}, b(Z;) : {Z:}
a partition of Z). S. Fujishige [Fu84] extended this result to crossing submodular
functions. He showed that B(b) is a base-polyhedron if b is crossing submodular.
Moreover, B := B(b) is non-empty (assuming b(V') = 0) if and only if >, b(Z;) > 0
and Y, b(V — Z;) > 0 for every partition {Z1,...,Z;} of V.

What is the unique fully submodular function defining B, provided B is non-
empty? We need the following notion of tree-composition of sets. The tree-
composition of the ground-set V is either a partition of V or a co-partition of
V (the complements of a partition of V.) Let A be a proper non-empty subset
of V. Let {A1,...,Ar} (k > 1) be a partition of A and {Bi,...,B;} (I > 1) a
partition of B :=V — A. Let U :={a1,...,ax,b1,...,b;} be a set of new elements
and define ¢(v) := a; if v € A; and := b; if v € Bj. Let F be a directed tree
defined on U so that every edge is of form b;a;. For every edge e of the tree, F'—e¢
has two components, among which F, denotes the one entered by e. Now a tree-
composition of A is a family of subsets of V given in form {¢~!(F.): e € E(F)}.
(A tree-composition has at most |[V| — 1 members.)

THEOREM 3.1 [F96] Let b be a crossing submodular function for which b(V) =0
and B := B(b) is non-empty. Then the unique fully submodular function b*
defining B is given by b*(Z) = min(b(F) : F a tree-composition of Z).

Submodular flows provide a general and powerful framework for combinatorial
optimization problems. Let G = (v, E) be a directed graph. Let f : E — ZU{—o0}
and g : E > ZU {+o0} be such that f < g. For a function z : E = R let
0:(A) :== > (z(e) : e enters A) and 0,(A) := > (z(e) : e leaves A). Let \,(4) :=
0:(A) — 6.(A). Note that A, is modular, that is, A.(4) = > c4(X:(v)) and
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therefore we may consider )\, as a function on V. Furthermore, let b E 2V -
Z U {oo} be a crossing submodular function with (V) =0. Wecall 2: E - R a
submodular flow (with respect to b) if

Az(A) < b(A) for every A C V. (3.1a)
Submodular flow z is feasible if
f<z<g. (3.1b)

Submodular flows were introduced and investigated by J. Edmonds and R. Giles
[EG77]. Their fundamental result asserts that the linear system (3.1) is totally
dual integral, that is, the dual linear programming problem to max(cz : z satisfies
(3.1)) has an integer-valued optimal solution for every integer-valued ¢ for which
the optimum exists. It follows that the primal polyhedron is also integral (i.e.,
every face contains an integer point) if b, f, g are integer-valued.

This result implies for example (a min-cost extension of) a theorem of C.
Lucchesi and D. Younger asserting that a digraph (with no cut-edge) can be made
strongly connected by reorienting at most 7 edges if and only if there are no
k + 1 disjoint directed cuts. Another direct consequence of the integrality of the
submodular flow polyhedron is the (weak form of an) orientation theorem of C.
Nash-Williams [N60] asserting that a 2k-edge-connected undirected graph always
has a k-edge-connected orientation.

In applications, we often need criteria for feasibility which are easy to handle.
An easy relationship between submodular flows and base-polyhedra enables us to
formulate such a result. Namely, z is a submodular flow if and only if A, belongs
to the base-polyhedron B(b). The following was proved in [F82]. Where b is fully
submodular, there exists an integer-valued feasible submodular flow if and only if
0f(A) — 64(A) < b(A) holds for every A C V. (Note that, in the special case of
b = 0, we obtain Hoffman’s circulation feasibility theorem.) When this result is
combined with Theorem 3.1, one obtains the following:

THEOREM 3.2 Let b be (A) an intersecting or (B) a crossing submodular function.
There exists an integer-valued feasible submodular flow if and only if

07(4) = 44(4) <b(A) (3-2)

holds for every A C V' and for every partition A of A in case (A) and for every
tree-composition A of A in case (B).

The partition-type condition for (A) is easier to handle than the one including
tree-compositions. Although there are important cases where tree-compositions
cannot be avoided, in the next two special cases partition-type conditions turn
out to be sufficient. As a generalization of Case (A) in Theorem 3.2, one has the
following.

THEOREM 3.3 Suppose that b is crossing submodular (with b(V') = 0) which, in
addition, satisfies (1.1b) when X UY =V, X NY # 0, and dy—¢(X,Y) > 0 hold.
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There exists an integer-valued feasible submodular flow if and only if (3.2) holds
for every A C 'V and for every partition A of A.

The other special case requires both partitions and co-partitions, but not
tree-compositions.

THEOREM 3.4 Suppose that b is crossing submodular (with b(V') = 0) satisfying
04(B) — d¢(B) > b(B) for every B C V. (3.3)

There exists an integer-valued feasible submodular flow if and only if J(R) > 0 for
every partition and co-partition R of V.

ORIENTATIONS

Connectivity orientation problems are strongly related to submodular flows.
Let G = (V,E) be an undirected graph and h : 2 — Z U {—oc0} a crossing
G-supermodular set-function with A(V) = h(f) = 0, (that is, h(X) + A(Y) <
M(XNY)+h(XUY)+de(X,Y) where dg(X,Y’) denotes the number of edges
between X —Y and Y — X). The connectivity orientation problem consists of
finding an orientation of G' so that the in-degree function gz of the resulting

digraph G = (v, E) satisfies:
05(X) > h(X) for every X C V. (3.4)

Let us choose an arbitrary orientation G, = (V, E,) of G whose in-degree
function is denoted by g, := 0G, - G, will serve as a reference orientation to

specify other orientations G of G. Define b(X) := 0,(X) — h(X). Any other
orientation of G will be defined by a vector z : E — {0,1} so that z(a) = 0 means
that we leave a alone while z(a) = 1 means that we reverse the orientation of a.
The revised orientation of G defined this way satisfies (3.4) if and only if o, (X) —
02(X) 4 64(X) > h(X) for every X C V. Equivalently, p,(X) — 0,(X) < b(X).
Clearly, the submodularity of b and the G-supermodularity of h are equivalent
and hence there is a one-to-one correspondence between the good orientations of
G and the 0 — 1-valued submodular flows. Since h > 0 if and only if (3.3) holds
for f =0,9 =1, Theorem 3.4 implies:

THEOREM 3.5 [F80] Suppose that h is non-negative and crossing G-supermodular.
There exists an orientation of G satisfying (3.4) if and only if both eq(P) >
> h(P;) and eq(P) > >, h(V — P;) hold for every partition P= {Py,...,P,} of
V. If, in addition, h is symmetric, then it suffices to require dg(X) > 2h(X) for
every X C V.

When h(X) =k for ) C X C V, we obtain Nash-Williams’ weak orientation
theorem. The following generalization, answering Problem O1, is also a conse-
quence of Theorem 3.5: A graph G has an orientation which is k-edge-connected
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from s and l-edge-connected to s (where k > 1) if and only if eq(P) > k|P|+1—k
holds for every partition P of V.

Using the same bridge between orientations and submodular flows, one can
derive from Theorem 3.3 the following.

THEOREM 3.6 Suppose that h is crossing G-supermodular and that h satisfies
h(A) + h(B) < h(AN B) + dg(A, B) whenever AUB = V,ANB # 0 and
da(A,B) > 0. Then G has an orientation satisfying (3.4) if and only if eq(P) >
>~; h(P;) holds for every sub-partition P of V.

This result can be used to derive a (generalization) of a recent orientation
theorem of Nash-Williams [N95] on the existence of a strongly connected orienta-
tion of a mixed graph that satisfies lower bound requirements on the in-degrees of
nodes.

Problem O2 gives rise to crossing G-supermodular functions for which tree-
compositions are needed. Let A be a tree-composition of a subset A C V and
let 7 = uv be an edge of G. Let ey, (A) denote the number of sets in A entered
by the directed edge with tail v and head u. Let e;(A) := max(ey,(A), euy(A))
and eq(A) := >, pe;(A). The quantity e;(A) indicates the (maximally) possible
contribution of an edge j = uv to the sum ) ;(05(X) : X € A) for any orientation G
of G. Hence eg(.A) measures the total of these contributions and therefore, for any
orientation G of @ satisfying (3.4), one has Yoxea M X) <Y vea06(X) <eq(A).

THEOREM 3.7 Let h be a crossing G-supermodular function. G has an orientation
G satisfying (3.4) if and only if ) | . 4 h(X) < eg(A) holds for every subset A C V/
and for every tree-composition A of A.

Let M = (V,E + A) be a mixed graph and let h(X) := k — 0x(X) for § C
X C V. By applying Theorem 3.7 to this G and h, one obtains a characterization
of mixed graphs having a k-edge-connected orientation, the problem O2.

ROOTED CONNECTIVITY

Let G = (V,E) be a digraph with a special root node s and non-empty
terminal set T C V — s so that no edge of G enters s. Let p be a non-negative,
T-intersecting supermodular function. Let g : E — Z; U {oo} be a non-negative
upper bound on the edges of G. We assume that g4(Z) > p(Z) for every subset
Z CV where 04(Z) := > (g(e) : e € E, e enters Z).

THEOREM 3.8(a) The linear system {0,(Z) > p(Z) forevery Z C V,0 < z < g} is
totally dual integral. (b) The polyhedron defined by this system is a submodular
flow polyhedron.

For the special case T'=V — s, part (a) was proved in [F79] while part (b) in
[Schrijver, 1984]. The edge-version of problem S2 could be solved via this special

case. It is not difficult to observe that the proofs extend easily to the more general
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case. The main advantage of this extension is that, beyond handling the edge-
version of problem S2, the node-version can also be settled by using the standard
node-splitting technique.

To conclude the section, we remark that there is a polynomial time algo-
rithm to solve minimum cost submodular flow problems hence all the connectivity
problems above admit polynomial time solution algorithms.

4. COVERING ST-CROSSING SUPERMODULAR FUNCTIONS BY DIGRAPHS

We say that a digraph G = (V| E) covers a set-function p if there are at least p(X)
edges entering every subset X C V. How many edges are needed to cover p?

THEOREM 4.1 [F94] Let p be a crossing supermodular function and v a positive
integer. There exists a digraph G = (V, E) of at most 7y edges covering p if and
only if Y(p(X): X € P) <~y and Y (p(V —X) : X € P) <~ hold for every
subpartition P of V.

This result can be extended, as follows. Let S and T be two subsets of a
ground-set V. Two subsets X,Y are called ST -independent if X NY NT = () or
SCXUY.

THEOREM 4.2 [FJ95] Let p: 2V — Z, be an ST-crossing supermodular function
and v a positive integer. There exists a digraph G = (V, E) that covers p, has
at most v edges, and each edge has its tail in S and its head in T if and only
if Y (p(X) : X € P) <« holds for every family P of pairwise ST-independent
subsets of V.

When § =T = V, an ST-independent family consists of pairwise disjoint
sets or of pairwise co-disjoint sets. (Two sets are co-disjoint if their complement is
disjoint). Hence Theorem 4.1 is indeed a special case of Theorem 4.2. Theorem 4.1
may be applied to solve an extension of the edge-connectivity version of problem
A2. Let D = (V, E) be a directed graph and T a subset of nodes. We say that D
is k-edge-connected in T if A(u,v) > k for every pair of nodes u,v € T

THEOREM 4.3 It is possible to make digraph D k-edge-connected in T' by adding
at most v new edges connecting elements of T if and only if >, (k — op(X;)) <~
and ) ,(k — 6p(X;)) < v holds for every family F = {X1,..., X} of subsets V
for which ) € X; N'T C T and F|T is a sub-partition of T.

We say that D is k-edge-connected from S to T if there are k edge-disjoint
paths from every node of S to every node of T. (When S = T we are back at
k-edge-connectivity in T.) Theorem 4.2 gives rise to the following solution to
problem A3:

THEOREM 4.4 A digraph D = (V, E) can be made k-edge-connected from S to
T by adding at most v new edges with tails in S and heads in T if and only
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if 3°;(k — o(X;)) < v holds for every choice of an (S, T)-independent family of
subsets X; CV where TNX,; #0,5 — X; # 0 for each X;.

There is a constructive proof of Theorem 4.1 which gives rise to a strongly
polynomial algorithm to find an optimal augmentation in Theorem 4.3. The proof
of Theorem 4.2 is not constructive and no combinatorial polynomial algorithm is
known to construct the optimal augmentation of Theorem 4.4. It is a major open
problem of the field to find one.

Another consequence of Theorem 4.2 concerns the node-connectivity version
of problem A2. Given a digraph D = (V, E), we say that a pair of disjoint,
nonempty subsets X,Y of V is a one-way pair if there is no edges from X to Y.
The deficiency pges(X,Y) of a one-way pair is defined by k — [V — (X UY')|. Two
one-way pairs (X,Y) and (A, B) are called independent if XNA =0 or YNB = (.

THEOREM 4.5 A digraph D = (V| E) can be made k-node-connected by adding at
most v new edges if and only if Y (pier(X,Y) : (X,Y) € F) < v holds for every
family F of pairwise independent one-way pairs.

Are these results related to the ones mentioned in the previous section? One
fundamental difference is that, while submodular flows are appropriate to handle
min-cost problems, here the minimum-cost versions include NP-complete prob-
lems. For example, finding a minimum cost strongly connected augmentation of
a digraph is NP-complete. However, for node-induced cost functions the node-
connectivity augmentation problem turns out to be tractable. A node-induced
cost of a directed edge wv is defined by c(uv) := ct(u) + ¢p(v) where ¢; and ¢,
are two cost-functions on the node set V. The better behaviour of node-induced
cost-functions is based on the fact that the in-degree vectors of k-connected aug-
mentations with v edges span a base-polyhedron.

We conclude this section by briefly remarking that Theorem 4.2 has a surpris-
ing consequence in combinatorial geometry; a theorem of E. Gyéri [Gy84] asserting
that every vertically convex rectilinear polygon R (bounded by horizontal and ver-
tical segments) in the plane can be covered by v rectangles belonging to R if and
only if R does not contain more than - pairwise independent points (where two
points are called independent if they cannot be covered by one rectangle (with
horizontal and vertical sides).

5. COVERING CROSSING AND SKEW SUPERMODULAR FUNCTIONS BY GRAPHS

Let p be a non-negative, symmetric, crossing supermodular function. An undi-
rected graph is said to cover p if every cut [ X,V — X] contains at least p(X) edges.
What is the minimum number of edges covering p?

For a partition P of V, the sum > (p(X) : X € P)/2 is clearly a lower bound.
However, even the best such bound can be strictly smaller than the true minimum:
when p(X) =1 for 0 € X C V and p(0) = p(V) = 0, the minimum is |[V| —1
while the best partition bound is |V|/2. Hence we need a new parameter, called
the dimension of p. A partition F := {Vi,...,V,} of V with h > 4 is said to be
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p-full if p(UF") > 1 for every sub-partition 7', C F' C F, and F has a member
V; with p(V;) = 1. We call the maximum size of a p-full partition the dimension
of p and denote it by dim(p). It can easily be seen that any graph covering p must
have at least dim(p) — 1 edges. The content of the next result is that the minimum
in question is equal to the larger of the two lower bounds.

THEOREM 5.1 [BF96] Let p : 2V — Z, be a symmetric, crossing supermodular
function and v a positive integer. There exists an undirected graph G = (V, E)
with at most v edges covering p if and only if > (p(X) : X € P) < 2v holds for
every partition P of V and dim(p) — 1 < 7.

It is an important open problem to extend this theorem to skew-supermodular
functions. For even-valued functions p (that is, when p(X) is even for every subset
X)) this was done by Z. Szigeti. The advantage of even supermodular functions
is that their dimension does not play any role. To capture the difference, observe
that if p; is identically 1 on non-empty proper sutsets of V', then a tree will be
the smallest graph covering p;, that is, the minimum number of edges is n — 1. If
p2 = 2pj, then we do not need twice as many edges to cover py. Just one more
edge will do as a circuit of n edges cover every cut at least twice.

THEOREM 5.2 [Sz95] Let p : 2¥ — Z, be a symmetric, even-valued, skew-
supermodular function and 7 a positive integer. There exists a graph G = (V, E)
with at most vy edges covering p if and only if > (p(X) : X € P) < 2v holds for
every partition P of V.

As a consequence of Theorem 5.1 we exhibit a result concerning hypergraph
connectivity augmentation. Given a hypergraph H' = (V, A’), asubset ) C C C V
is called a component of H' if dg/(C) = 0 and dg(X) > 0 for every § C X C C.
(dp (X)) denotes the number of hyperedges of H’ intersecting both X and V — X.)
For a subset T' C V, we let ¢p(H') denote the number of components of H’
having a non-empty intersection with T'. H' is said to be k-edge-connected in T if
dp(X) > k for every subset ) C X C V separating 7. When T' = V we say that
H' is k-edge-connected.

THEOREM 5.3 Let H = (V, A) a hypergraph, T a specified subset of V, and ~
a positive integer. H = (V, A) can be made k-edge-connected in T' by adding at
most vy new graph-edges if and only if Y (k — dg(X) : X € P) < 2y for every
sub-partition P of V separating T and cp(H') — 1 < v for every hypergraph
H' = (V, A’) arising from H by leaving out k — 1 hyperedges. If these conditions
hold, the new edges can be chosen so as to connect elements of T'.

This result is a solution to problem A4. It extends an earlier theorem of J.
Bang-Jensen and B. Jackson [BJ95] where T' = V', which, in turn, generalizes an
even earlier result of T. Watanabe and A. Nakamura [WN87] when the starting
hypergraph H is itself a graph. The latter result was generalized in another direc-
tion in [F92] where, instead of global k-edge-connectivity, specified demands r(u, v)
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were required for the augmented local edge-connectivities between every pair of
nodes u and v. Since such a problem gives rise to skew-supermodular functions,
Theorem 5.1 cannot be applied. However, if half-capacity edges are also allowed in
the augmentation, then Theorem 5.2 can be applied. That is, one can find a graph
G of minimum number of edges so that adding the edges of G with half-capacity to
the starting hypergraph, the local edge-connectivities of the increased hypergraph
attain a prescribed value r(u,v) for every pair {u,v} of nodes.
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ORDONNER LE GROUPE SYMETRIQUE:

PourqQuol UTILISER L'ALGEBRE DE [WAHORI-HECKE ?

ALAIN LAscoux(*)

ABSTRACT. The Bruhat order on the symmetric group is defined by
means of subwords of reduced decompositions of permutations as prod-
ucts of simple transpositions. Ehresmann gave a different description by
considering any permutation as a chain of sets and comparing component-
wise the chains. A third method reduces the Bruhat order to the inclusion
order on sets, by associating to any permutation a set of bigrassmannian
permutations. This amounts to embed the symmetric group into a lat-
tice which is distributive. The last manner to understand the Bruhat
order is to use a distinguished linear basis of the Iwahori-Hecke algebra
of the symmetric group, and this involves computing polynomials due to
Kazhdan & Lusztig; we explicit these polynomials in the case of vexillary
permutations.

1991 Mathematics Subject Classification: 05E10, 20C30
Keywords and Phrases: Symmetric group, Bruhat Order, Kazhdan-
Lusztig Polynomials

1. ORDRE PAR LES SOUS-MOTS En tant que groupe de Coxeter, le groupe
symétrique &(n) est engendré par les transpositions simples oy, 4 = 1...n — 1,
qui vérifient les relations de tresse

0;0i;4+10; = 04107041 et 005 = 04504 , |Z —j| >1 (11)

ainsi que 07 = 1.

Une décomposition réduite d’'une permutation g est un mot w#" =
0;0; -+ -0y, dont le produit, de longueur minimale, est égal & p (cette longueur
est dite longueur £(u) de p). Par définition (cf. [Hu]), 'ordre de Bruhat est ordre
induit par les sous-mots :

"

v<p o 3wt =y, w ot réduit , Je, ..., € € {0,1},v = of 05/ o (1.2)

Soit o une transposition simple telle que £(uo) > ¢(p). Alors on ala “propriété
d’échange” :
1, ] =AUBet |1, uo] = AUBUBo (1.3)

(*) C.N.R.S.

DOCUMENTA MATHEMATICA - EXTRA VoLUuME ICM 1998 - III - 355—-364



356 ALAIN LASCOUX

ou[l, ul:={redn),v<u}, A={v:v<pwvo<u}et B:=][1,pul\ A
On définit, sur lalgebre du groupe symétrique &(n), des opérateurs de

réordonnement 7y, ..., m,_1, notés a droite
i + pos sty < it
S Ty L
(n) > p { 0 autrement

Il est aisé de voir que pour toute décomposition réduite de u, I'image de 1 par
un produit de 7; est la somme des éléments de Vintervalle [1, y] :

w=0;0;--op réduit = lmm;---m = Zuéu v (1.4)

Deux décompositions réduites de la méme permutation vont donner en général
des ensembles de sous-mots différents et donc ces ensembles ne sont pas des in-
variants de la permutation.

Une autre maniére que (1.4) de corriger cette non-canonicité est de pondérer
les sous-mots. Etant données n variables x1, ..., x,, on définit, a la suite de Yang
[Ya],[Ch], une base linéaire Y,,, u € &(n), de lalgebre du groupe symétrique a
coeflicients rationnels en les z;, par

1

Lpivr — Lp;

Upo;) > Up) = Yo, =Y, (0 + ). (1.5)

Toute décomposition réduite w " de u fournit une factorisation de Y,,, dont
le développement est une somme impliquant tous les sous-mots de w**. On vérifie
de plus que le coefficient de v dans Y, est non nul ssi v < p.

En fait, les coefficients sont des spécialisations de polynémes en deux ensem-
bles de variables ([LLT2], [F-K]). On peut les obtenir en définissant des opérateurs
sur Panneau des polyndmes vérifiant les relations de tresse [L-S4], [L-S5]. Ces
opérateurs fournissent & leur tour des bases distinguées de ’anneau des polynémes
en tant que module libre sur ’anneau des polynémes symétriques [BGG] et 'ordre
de Bruhat joue un role essentiel [L-S3] (les programmes sont disponibles comme
librairie Maple [Ve]). On trouvera dans [L-P] 'étude analogue de 'anneau des
polynomes comme module libre sur ’anneau des polyndémes symétriques en les
carrés des variables, qui correspond aux groupes hyperoctahedraux.

2. ORDRE PAR PROJECTION Il existe un ordre naturel sur les sous-ensembles de

{1,...,n}:
u,v C{1,..., n}, u <v< 3 une injection croissante de u dans v

Cet ordre permet de définir les tableauxr de Young comme étant les chaines crois-
santes d’ensembles d’entiers.

Ehresmann [Eh] induit & partir de cet ordre sur les ensembles, un ordre sur les
cellules de Schubert de la variété de drapeaux pour le groupe linéaire (lesquelles
sont en bijection avec les permutations) :

vneSn),v<pu < Vi:1<i<n, {vi,...,vi} <{p1,..., i} (2.1)
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On peut disposer les ensembles {yuq,..., p;} dans un tableau, dit clef de la
permutation, dont ils sont les colonnes (décroissantes). Alors deux permutations
sont comparables ssi leurs clefs le sont, composante a composante. De fait, on
vérifie aisément par récurrence sur la longueur que 'ordre d’Ehresmann coincide
avec l'ordre de Bruhat.

La restriction p — {p1,..., 4;} peut s’interpréter comme la projection de
S(n) sur 6(n)/6(i) x &(n — 1), ou 6(i) x &(n — 1) est le sous-groupe de Young
engendré par o1,..., 0j—1, Oit1,--., On—1. On peut identifier les éléments de

S(n)/6(i) x 6(n—1) aux permutations v (dites grassmanniennes) : y1 < -+ < ;3
Yit1 <+ -+ < Yn, ayant une descente en i. La restriction de I'ordre de Bruhat a ces
derniéres est

<Y & m <A % <

Deodhar [De] a étendu a tous les groupes de Coxeter W la définition de l'ordre
de Bruhat par relévement de Pordre sur les W/P, P parabolique. Proctor [Pr] a
généralisé aux types B, C, D la construction des clefs.

3. ORDRE PAR SOUS-ENSEMBLES Au lieu de considérer toutes les projections
S(n) — 6(i) x &(n—1i),i=1,..., n—1, on peut associer & toute permutation u
Pensemble G(u) des permutations grassmanniennes + telles que v < p. Le critere
(2.1) se formule alors

vp & Gv)CG(p) (3.1)

Cette définition n’est pas invariante par I'involution p — p~1, contrairement

a lordre de Bruhat. Pour corriger cette disymétrie, on définit les permutations
bigrassmanniennes comme étant les permutations qui sont grassmanniennes, ainsi
que leurs inverses. En d’autres termes

B bigrassmannienne < 3li, 3l : L(op) < L(p), L(po;) < £(w)

(i est dit recul de 3, et j descente).
Soit B(u) ’ensemble des permutations bigrassmanniennes [ telles que 8 < p.
Le critére (3.1) est équivalent a

v<p & B(v) CB(u) (32)

En fait, on peut montrer que I’ensemble des bigrassmanniennes est optimal pour
obtenir l'ordre de Bruhat par inclusion. Plus précisément, soit C C S(n). Pour
que le morphisme &(n) — 2¢ : 4 — C N [1, u] soit un morphisme d’ordre injectif,
il faut et il suffit que C contienne I’ensemble des bigrassmanniennes (cf. [L-S6]).

Pour les groupes de Coxeter finis, on trouvera dans [G-K] la détermination du
sous-ensemble optimal codant I'ordre. Les élements de la “base de ’ordre” sont
caractérisés par la propriété :

[ appartient a la base ssi il existe un élément p du groupe tel que (3 soit
minimum dans le complémentaire de Uintervalle [1, u) .

La méme construction peut étre étendue aux groupes de Coxeter affines (pour
une description plus classique, voir [B-B] dans le cas du type A et [Er] plus
généralement).
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Toute permutation bigrassmannienne dans G(n) est une permutation du type
[1,...,a,a+14¢c,...,a+b+ca+1,...,a+c,a+b+c+1,...,a+b+c+d]et
donc définie par un vecteur [[a,b,c,d]] € N*, a,d >0,b,c>1,a+b+c+d=n.

La restriction de l'ordre de Bruhat aux bigrassmanniennes est

[la,b,c,d)] < [[a,V,,d]| & a>d,d>d;b<V, c< . (3.3)
Une permutation p est supérieure & une bigrassmannienne 5 = [[a, b, ¢, d]] ssi
Pensemble {1, ..., fia4b} contient au moins b valeurs > a + c.

Le treillis engendré par les bigrassmanniennes (en tant que sup-irréductibles;
de maniére équivalente, on prend l’ensemble des unions quelconques de B(u))
est dit treillis enveloppant du groupe symétrique, ou complétion de Mac Neille
[Bi]. Les éléments de ce treillis sont par définition en correspondance bijective
avec les antichaines de bigrassmanniennes. Par exemple, pour &(4), il y a 10
bigrassmanniennes et 42 antichaines, donc 42-24=18 éléments du treillis qui ne
sont pas des permutations, ’ordre sur les bigrasmanniennes étant :

0,3,1,0] [[0,2,2,0]] [o,1,3,0]]

%\

(1,2,1,0]] [[1,1,2,0]] [[0,2,1,1]] [[0,1,2,1]]

\X\/X/

(2,1,1,0] [[1,1,1,1]] [[0,1,1,2]]

Les éléments du treillis enveloppant peuvent aussi étre identifiés aux supre-
mums (composante & composante) d’une famille quelconque de clefs. Ces supre-
mums sont des tableaux ayant des propriétés supplémentaires de croissances di-
agonales, que l'on appelle triangles monotones, et qui sont en bijection avec les
matrices & signe alternant (alternating sign matrices), cf. [M-R-R], [An], [Zei].

Ainsi le supremum des Dbigrassmanniennes [[1,2,1,0]], [[1,1,2,0]],
[[0,2,1,1]], [[0,1,2,1]] se représente par

00 1 0 3 4 4 4 3334 1 4 4 4
0 1 -1 1 2 3 3 2 2 3 1 3 3
1 -1 1 0% 1 95U 1 2 1 2
01 0 0 1 1 1

et c’est de plus le supremum des deux permutations [3,2,1,4] et [1,4,3,2] dont
nous avons donné les clefs a droite.

La lecture par colonnes, de gauche a droite, des tableaux ou des matrices
donne la méme suite d’ensembles : 1 ou -1 en ligne ¢ signifie que la lettre ¢ apparait
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ou disparait. Ainsi la matrice ci-dessus se lit : ” 3 apparait; 2 et 4 apparalssent,
3 disparait; 1 et 3 apparaissent, 2 disparait; 2 revient enfin”.

On montre en outre que le treillis enveloppant du groupe symétrique est dis-
tributif [L-S6]. En d’autres termes, pour toute bigrassmannienne 3, il existe une
permutation 7 telle que &(n) est I'union disjointe des deux intervalles [1, 7] et
[, w], ol w est 1’élément maximum de &(n). Par exemple, une permutation de
G(4) est soit au dessus de 5 = [1,4,2,3] = [[1, 1, 2,0]], soit en dessous de [3, 2,4, 1].

Codant chaque permutation par B(u), ou par le vecteur booléen [vg(u)]ges :
vg(p) = 1 ou 0 selon que 8 < p ou non, on dispose ainsi d’un outil purement
algébrique de calcul sur les intervalles pour ’ordre de Bruhat.

4. ALGEBRE DE HECKE Au lieu d’énumérer, on peut se proposer au contraire de
chercher & caractériser la fonction génératrice 3, ,(—¢)* ™~ v des éléments
de l'intervalle [1, p]. B

L’algebre appropriée est cette fois-ci I’algebre de Iwahori-Hecke H,, du groupe
symétrique G(n), définie comme ’algebre, & coeflicients dans Z[q, 1/4|, engendrée
par les Ty, ..., T,,_1 satisfaisant les relations de tresse

TiTi Ty = Ty TiTi et TiT; =TT, |i—j] > 1 (4.2)
ainsi que la relation de Hecke
(Ti —)(Ti +1/q) =0, i=1,...,n—1. (4.3)

Une base linéaire de H,, consiste en les {T},, un € &(n)}, définies par produits
réduits de T;. Sur H,,, on a une involution T, — (T,-1)~ !, ¢ — 1/q. Soit L le
sous-module @ ,ce(n)Z[q]T), et 0 la projection £ — L/qL. Kazhdan & Lusztig (cf.
[KL1], [Lu]) ont montré que pour chaque p € &(n), il existe un élément unique
¢y € L qui soit invariant par I'involution et tel que 6(c,) = 6(T},). Les élements

Cu, 1 € &(n) constituent donc une base linéaire de H,, et 'on a de plus

= ()" P, ()T, , (4.4)

v<p

les P, ,, étant des polynomes a coeflicients entiers positifs, dits Polynémes de Kazh-
dan € Lusztig , qui interviennent dans de nombreuses théories [KL2], [Br].

Il est clair que {1,7} — g} est la base de Kazhdan & Lusztig de Ha. Plus
généralement, posons ¢; :=T; — q.

Tout produit ¢, ¢; est invariant par I'involution, a pour terme dominant 7},,
si l(po;) > £(p), et peut donc étre considéré comme une approximation de c¢,q, .
On obtient c,,, en soustrayant récursivement les multiples appropriés des ¢, pour
les v tels que le coefficient de T, comporte un terme constant.

Par exemple, co31-¢1 = (¢ + 1)To13+T321 — qT51,2 — q¢To 31+ ¢*Ti 32 —
(@®+q@)Ti23 et czo1 = casic1 —c21,3 = T321 —qT312 — qTo 31 + ¢*Th 32 +
*T312 — ¢T3

Cette récurrence élémentaire peut difficilement étre mise en oeuvre des
n > 8 et il faut donc trouver des méthodes plus économiques qui n’imposent
pas d’énumérer les éléments d’un intervalle.
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En fait, pour tout i tel que ¢(puo;) < €(u), alors P, ,, = Py, u, Vv € &(n),
et donc, comme l'indiquent [KL1], les polynémes P, ,, sont constants dans toute
double classe G(I)\&(n)/S(J), ou &(I),S&(J) sont deux sous-groupes de Young
déterminés par p (S(I) est le sous groupe engendré par les o, i recul, et S(J) est
engendré par les descentes).

L’invariance par rapport a deux sous-groupes de Young permet d’utiliser des
propriétés de factorisation.

Soit w=[n,...,1],et pour 1 <i<j<n,wli,jl=[1,...,i—1,4,...,4, 5+
1,...,n]; posons pour tout entier positif [r] := (¢" — ¢ ")/(¢ — ¢ !). Alors
[DKLLST]

v n—1 2 1
Cw = Z (_q)é(W) “ )TIJ = Cy1,n—1] (Tnfl - &Tl]) e (T2 - %)(TI - %)
ved(n)
1 n—1
=T — ) Ty — fomp) Colzm) (4.5)

PROPOSITION  Soit u € &(n); soient k 'entier tel que up, = n et v € &(n — 1)
obtenue par effacement de n dans u (v est notée p\n).
Sin=puk > pry1 > - > Un, alors

n—k

Cu = Cu\n (Tnfl - &Tk]) T (Tk+1 [2]) (Tk [1]) (4-6)
Preuve L’élément de droite a pour terme dominant T),, et est invariant par
I'involution. ~ Par ailleurs, cypn—1)(Th-1 — %)---(Tl — %) = Cukn] =

Colesn—1] Ty = T n 1)+ -+ (=) * T ne1y+ (—q)"F), somme sur toutes
les transpositions de n avec i, ¢ > k. Le produit se développe en une somme ol
I'on retrouve comme coefficients les polynomes de Kazhdan-Lusztig pour v; il est
donc bien égal a ¢, []

La proposition précédente, combinée aux involutions p + pu~! et p > wuw,

permet de factoriser totalement certains c,,. En particulier, une permutation s est
dite non singuliére si u ou p~! a la propriété qu’il existe k : pr = n > ppr1 >
- > fin, et p\n est non singuliere ([1] € &(1) est décrétée non singuliere).
n—k
Dans le premier cas, ¢;, = ¢\ pn(Th-1— [‘;_k] Yoo (T — [1]) Dans le deuxieme,
1 n—k
Cu = (Tk — m) e (Tn—l — ﬂLTk]) C[,ufl\n]*l'
COROLLAIRE Si u est une permutation non singuliere, alors c, =
ZU<#(—q)é(“)*é(”) T, et ¢, factorise en un produit de facteurs (T; — %)
Le polynéme de Poincaré de lintervalle [1, ] s’obtient, 4 une puissance de q preés,
en spécialisant T; — —1/q dans chaque facteur.
Par exemple, u = [4,1,6,5,3,2] est non singuliere; écrivant k, &k, k™t pour
T, — T, —

%, EZ—;], T, — %] respectivement, on obtient la suite d’égalités

C312 = 21 — C4132 = 23+(21) — C41532 = (23+21)4+3 — C416532 — (23+214+3)5++4+3

et le polynome de Poincaré de I'intervalle [1, u], en la variable ¢2, est égal &
¢’ 2 212l 5 2] oo 57 21 = (1 + )2 (L +¢° + ") (L + ¢ +q" +¢°)
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Par contre, c461532 = 416532 C2, mais le polynéme de Poincaré de I'intervalle
[123456, 461532] ne s’obtient pas en spécialisant T; en —1/g, car [4,6,1,5,3,2] est
singuliere.

La factorisation du polynéme de Poincaré, dans le cas non singulier, est due a
Carrell et Peterson [Cal. La caractérisation des variétés de Schubert non singuliéres
est donnée par Lakshmibai et Seshadri [La-Se].

La densité du nombre de permutations non singulieres tend vers 0 lorsque n
tend vers linfini. En fait, [La-Sa] ont montré que
PROPOSITION Dans &(4), seules [3,4,1,2] et [4, 2, 3, 1] sont singuliéres et u € &(n)
est non-singuliére ssi I'image de p par toute projection G(n) — &(4) est différente
de ces deux permutations.

En d’autres termes, il y a deux types élémentaires de singularités. Dans ce qui
suit, nous montrons que les constructions du paragraphe 3 permettent d’expliciter
les polynémes P, ,, pour toutes les permutations évitant le motif [3,4,1,2] (i.e.
celles qui n’ont jamais [3,4, 1, 2] comme image par projection).

Il est commode de changer les conventions, et de noter, pour p,v € &(n),
Pu(v)(@) = Pow,uw(1/4%).

Lorsque p est bigrassmannienne, alors la variété de Schubert correspondante

est dite déterminantale, et la géométrie, ou le calcul direct, montrent que les
polynémes P, (v) sont des polynoémes de Gauss. Plus précisément,
LEMME Soit u = [[a, b, ¢, d]] une bigrassmannienne, et 3° := [[a—i,b+1i, c+i,d—i]],
si 0 < i < min(a,d), 3" := oo sinon. Soit k = min(b,c). Pour tout v > u, il existe
un unique i, dit niveau par rapport a p = (3°, tel que v > 3" et v # 3", et alors
P,w)=["T]=0-¢")-(1-¢")/(1-q)---(1-g).

Les polynomes de Gauss correspondent a des arbres linéaires, mais plus
généralement, il est facile d’associer a toute permutation grassmanienne 7 un
arbre ainsi qu’il est expliqué en [L-S2]. Soit en effet ¢ la descente de 7; alors
(v1 — 1,72 — 2,...,79; — i) est une partition A\ (croissante), et la lecture de la
frontiere nord-est du diagramme de Ferrers de A donne un mot en a,b (a= pas
vertical, b = pas horizonal), dont on extrait un sous-mot maximal de lettres ap-
pariées par couples successifs ba (cette opération est utilisée pour définir une action
du groupe symétrique sur les mots [L-S1], ainsi qu’en théorie des graphes cristallins
[K-NJ, [LLT1]).

Ainsi, pour v = [1,2,7,12,15,16,17,3,4,5,6,8,9,10,11,13,14], on a A =
(0,0,4,8,10,10,10). La frontiere se lit a?b*ab*ab®a®. Disposant ce mot planaire-
ment de sorte a faire apparaitre les appariements dans les horizontales, les lettres
non appariées (& éliminer) étant dans la ligne supérieure

a a b b b b b

b a b a b a

sous—mot b a bba b b a a a

Ce dernier mot (bab?ab®a®) est le parcours d’un arbre I' (b = s’éloigner de
la racine, @ = s’en rapprocher). Soient i, ..., o, les branches terminales de T
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L’arbre T' définit une fonction fr : N” — N[g] comme suit : un étiquetage E de
T" est un morphisme croissant de I’ensemble des arétes de I' dans N et son poids
p(E) est la somme des étiquettes. Alors (voir un exemple a la fin)

foli,..i) = Y P, (4.7)

Eeg(h,...,ir)
somme sur toutes les étiquetages de I' tels que les étiquettes de aq, ..., a, soient
majorées respectivement par i1, ...,4,. Le résultat essentiel de [L-S2] est

PROPOSITION Soient 7 une permutation grassmannienne, I' Iarbre associé et r
son nombre de branches terminales. Alors pour toute permutation v, il existe des
entiers i1, ..., i, tels que

PV(V) = fr(il,..., 7;7«) . (48)

Zelevinsky [Zel] a donné une désingularisation explicite des variétés de Schu-
bert indicées par des permutations grassmanniennes, qui reléve la construction
combinatoire précédente.

Le code d’une permutation u € &(n) est le vecteur [cy, ..., ¢,] € N™ tel que
c;i = card({ J>i,py < ,ul}) Réordonnant le code en une partition, on peut donc
associer & toute permutation u un arbre I'(iz), comme on I’a fait plus haut.

Le théoréme suivant ([La]) montre que cet arbre continue & fournir tous les
polynomes de Kazhdan & Lusztig dans le cas ou p est vezillaire, i.e. lorsqu’aucune
projection de p dans S(4) n’est égale & [2,1,4, 3].

THEOREME Soient p une permutation vexillaire, I' I'arbre associé et 31,..., 3,
les bigrassmanniennes maximales dans [1, u]. Alors pour tout v > p, le polynéme
de Kazhdan & Lusztig est égal a

P,(v) = fr(it,..., i), (4.9)

ou i1,..., i, sont les niveaux respectifs de v par rapport a (1, ..., Br.
En fait, dans le cas d'une permutation vexillaire, pour tout r-uple i1,. .., i,
tel que B}, ..., Bir # oo, le supremum ¢! de B}, ..., 3% (calculé dans le treillis en-

veloppant) est une permutation, d’aprés [L-S6]. Sous les hypothéses du théoréme,
on a alors P,(v) = P,(¢1).

Par exemple, u = [1,5,6,2,7,3,4,8,9] a pour code [033020000], qui se
réordonne en la partition [...,0,2,3,3]. La frontiere de cette derniére se
lit (---aa)bbabaa(bb---) et le mot réduit bbabaa est le parcours de larbre

J,. Il vy a deux bigrassmanniennes maximales en dessous de u, qui sont

[175»672»374»778»9] = [[172,373]] = et [1,275’677’374»879] = [[2’372’3]] = [s.
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Le supremum de 3{ et 85 est (% = 32 = [5,6,7,8,9,1,2,3,4]. Toute per-
mutation v au dessus de cette derniere va donner le méme polynome P, ((1?) =
fr(1,2) =1+ 2q + 2¢® + 2¢3 + ¢*, fourni par 'énumération

= ;%.3.
=>
=
=
=
=
=
=
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We survey some mathematically interesting notions, techniques, and results that
emerged in the field of computational geometry in recent years.

Computational geometry is a branch of theoretical computer science which
constituted sometimes around the year 1980. It considers the design of efficient
algorithms for computing with geometric objects in the Euclidean space R?. The
objects are simple, like points, lines, spheres, etc., but there are many of them.
The space dimension d is usually considered constant—many problems are studied
mainly in the plane or in R3. As for general references, there is one fresh handbook
[20] and another one pending [31]. A recent introductory textbook is [16]. Some
mathematical spinoffs are nicely treated in [29)].

Although this field mainly emphasizes algorithms, it has many fine purely
mathematical results. I have selected a few of them for this overview quite subjec-
tively (with many other, perhaps even nicer things omitted). Since they include
the ideas of many researchers (my results being a tiny part only), it is not possible
to give explicit credits to all of the contributors and to always refer to original
sources (rather than surveys) in the limited space.

COMBINATORIAL COMPLEXITY OF ARRANGEMENTS

The arrangement of a finite set of lines in the plane is a partition of the plane
into cells of dimension 0, 1, and 2. The O-cells (vertices) are the intersections of
the lines, the 1-cells (edges) are the portions of the lines between vertices, and
the 2-cells are the open convex polygons left after removing the lines from the
plane. More generally, for a collection H = {hy,ha,...,h,} of sets in R%, the
arrangement of H is a decomposition of R¢ into connected cells, where each cell
is a connected component of the set of points lying in all of the sets h; with ¢ € T
and in no h; with j & I, for some index set I C {1,2,...,n}. In computational
geometry, the most general sets considered in the role of the h;’s are usually the
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so-called surface patches, which means (d — 1)-dimensional closed semialgebraic
sets defined by Boolean combinations of polynomial inequalities; moreover, both
the number of inequalities and the degree of the polynomials are bounded by some
constant.

Arrangements, especially arrangements of hyperplanes, have been investigated
for a long time from various points of view. In the direction of research reflected,
e.g., by the recent book [28], one is mainly interested in topological and alge-
braic properties of the whole arrangement. Computational geometers have mostly
studied different aspects, primarily asymptotic bounds on the combinatorial com-
plexity of various parts of arrangements,' and while the number n of sets in H
is considered large, d is fixed (and small). Some important problems also lead
to considering arrangements of less “regular” objects than hyperplanes, such as
segments in the plane, triangles in space, or even pieces of complicated algebraic
surfaces in R%. Two thorough and up-to-date surveys by Agarwal and Sharir in
[31] complement our sketchy exposition here and in the next section.

The total complexity, i.e. the total number of cells, of an arrangement is quite
well understood. Exact formulas are known for hyperplane arrangements, and
fairly precise estimates exist for arrangements of surface patches (rough bounds
for surface patches come from old papers in real-algebraic geometry by Petrov and
Oleinik, Milnor, and Thom, and there are some recent refinements, such as [7]).
The complexity is always at most O(n?).2 More challenging problems concern the
complexity of certain portions of the arrangements; some of them are schematically
illustrated in Fig. 1.

The zone of a set X C R4 in an arrangement consists of the cells intersecting
X. For hyperplane arrangements, the complexity of the zone of any hyperplane is
O(n?~1) [17]. The zone of a low-degree algebraic surface, or of an arbitrary convex
surface, in a hyperplane arrangement has at most O(n?~!logn) complexity [5].

The level k in a hyperplane arrangement consists of the (d — 1)-dimensional
cells, i.e. edges in the case of lines in R2, with exactly k of the hyperplanes below
them (where the z4-axis is considered vertical, say). The maximum complexity of
the k-level is a tantalizing open problem even for lines in the plane; we refer to
the paper by Welzl in this volume for more information.

Next, we discuss the lower envelope of an arrangement. Informally, this is the
part of the arrangement that can be seen by an observer sitting at (0,0,...,0, —c0).
The lower envelope in an arrangement of hyperplanes is the surface of a convex
polyhedron with at most n facets, whose maximum complexity, of the order nl%/2!,
is known precisely (since McMullen’s paper in 1970). This bound is trivial in
the plane, but already for planar arrangements of segments, the lower envelope
question is hard.

If we number the segments 1 through n and write down the numbers of the seg-
ments as they are encountered along the lower envelope from left to right, we get a

1If X is a set of cells in an arrangement, the (combinatorial) complexity of X is the number
of cells of the arrangement that are contained in the closure of X. Typically, this complexity is
asymptotically dominated by the number of vertices of the arrangement in the closure of X.

2Here and in the sequel, the constants hidden in the O(.) and (.) notations generally depend
on d, and, in some cases, on other parameters declared fixed. For instance, here the constant
also depends on the degree and formula size of the surface patches forming the arrangement.
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Figure 1: A bestiary of planar arrangement problems

sequence a1asas . . . G, for which the following conditions hold: a; € {1,2,...,n},
a; # a;4+1, and there is no (not necessarily contiguous) subsequence of the form
ababa, where a # b. Any finite sequence satisfying these conditions is called a
Davenport-Schinzel sequence (or DS-sequence for short) of order 3 over the sym-
bols 1,2,...,n. For DS-sequences of order s, the forbidden pattern is abab ... with
s+2 letters. Such sequences are obtained, e.g., from lower envelopes of z-monotone
curves (i.e. graphs of univariate functions), such that any two of the curves inter-
sect in at most s points (a typical example are graphs of degree-s polynomials).
Davenport and Schinzel started investigating As(n), the maximum possible length
of a DS-sequence of order s over n symbols, in 1965. Fairly precise estimates
(asymptotically tight for many s’s) were proved by Sharir, Hart, Agarwal, and
Shor in the late 1980s (see [33] for an account). The results are remarkable: while
A1(n) and Aa(n) are easily seen to be linear, for any fixed s > 3, A\;(n)/n grows to
infinity with n — oo, but incredibly slowly. For example, A3(n) is asymptotically
bounded by constant multiples of na(n) from both above and below, where a(n) is
the inverse of the Ackermann function.® For all practical purposes, for each fixed

3If we define a hierarchy of functions by fi(n) = 2n and fry1(n) = fr o fx oo fr(2)
((n — 1)-fold composition), then the Ackermann function of n is A(n) = fn(n), and a(n) =
min{k > 1: A(k) > n}. For example, A(4) is an exponential tower of 2s of height 216.
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s > 3, As(n) behaves like a linear function, but it is nonlinear in a very subtle
manner, and hence any proofs of the correct bounds must be quite complicated.

The maximum complexity of the lower envelope for segments is at most
Az(n) = O(na(n)), and a construction by Wiernik and Sharir, later simplified
by Shor, provides an arrangement of segments with lower envelope of complex-
ity Q(na(n)). Thus, similar to DS-sequences, lower envelopes of segments are no
laughing matter.

Before proceeding with the discussion of lower envelopes, we mention recent
developments in generalized DS-sequences. In the original definition, the forbidden
pattern ababa . .. is made of two letters. Klazar, Valtr, and Adamec studied forbid-
den patterns consisting of more letters, such as abecbaabe (for a forbidden pattern
with & distinct letters, an analogue of the condition a; # a;11 for DS-sequences is
that any k consecutive symbols in the sequences be all distinct). They proved that
for any fixed forbidden pattern, the maximum length of a sequence in n symbols
is near-linear in n, and they characterized numerous cases where a linear bound
holds (see e.g. [22, 23]). One forbidden pattern of the latter type is abededcbabede
(or analogous with more letters); this result was used by Valtr [35] for solving in-
teresting problems concerning geometric graphs. A geometric graph is a drawing
of a graph in the plane with edges drawn as straight segments (possibly crossing);
they have recently been studied by Pach, Katchalski, Last, Karolyi, Téth, and
others.

The main result for lower envelopes in higher dimensions is quite recent, due
to Sharir and Halperin [21, 32]. For an arrangement of surface patches in R9,
with some mild additional technical assumptions, they prove lower envelope com-
plexity bound of O(n?~'*¢) for any fixed ¢ > 0, which is nearly tight (there is
an Q(n"la(n)) lower bound). As a sample of techniques in the area, we demon-
strate this proof in the planar case. This is a ridiculous setting, since here much
better results are obtained via DS-sequences, but the higher-dimensional case is
too complicated to fit here.

So let us consider a set H of n z-monotone curves (such as in Fig. 1 bottom
left), any two intersecting in at most s points (s fixed). Moreover, assume for
convenience that no 3 curves have a common intersection. Let L = L(H) be the
set of vertices on the lower envelope and let f(n) denote the maximum possible
cardinality of L in this situation. We aim at proving f(n) = O(n!*e).

First, let £ be an auxiliary parameter, 2 < k < %, let L<F be the set of
vertices in the arrangement of H at level smaller than k (i.e. with fewer than k
curves below them), and let f<F(n) be the maximum possible cardinality of L<F.
Lemma. f<*(n) = O(k*f(|n/k])).

Here is a beautiful probabilistic argument of Clarkson and Shor [15]. Suppose
that f<F(n) is attained for H, set » = [n/k|, and let R C H be an r-element
subset of H picked uniformly at random. First, we lower-bound the expected size
of L(R). Consider a vertex v € L<F(H) at a level j < k. Such a v appears in
L(R) iff both the curves defining v fall in R and none of the j curves below v does,
and so Prob[v € L(R)] = (*.%,7)/("). Calculation shows that this probability
is Q(k~2), and so the expected size of L(R) is Q(k~2f<*(n)). At the same time,
|IL(R)| < f(r) for all R, and the lemma follows by comparing these two bounds.
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Next, we partition the set L = L(H) into subsets Ly, ..., Ly, with L; consist-
ing of the vertices of L that are the ith leftmost intersections of their two curves.
Divide L<* similarly, and let f;(n) and f;~¥(n) be the corresponding maximum
possible cardinalities.

The strategy of the proof is “there shouldn’t better be any vertices on the
lower envelope, and if there are, someone is going to pay for it”. To find out who
pays for a vertex v € L;, we start walking from v to the left along the curve h
passing through v and not being on the lower envelope on the left of v. We charge
every vertex encountered k% units, where k; is an integer parameter (to be fixed
later). If k; vertices are encountered without returning to the lower envelope or
escaping to —oo then the charging is complete. Otherwise, if we end up at —oo,
we charge 1 to the curve h itself. Finally, if we are back at the lower envelope
without having passed at least k; vertices then, crucially, we must have crossed
the second curve i’ defining the vertex v again, at a vertex v’ € L%, and this v/
pays 1 for v. A picture illustrates these three cases of charging:

= T, o oa Y

v h

If we do this charging for all vertices v € L, then, altogether, each curve was
charged at most 1 and each vertex of L<F was charged at most k%, except possibly
for vertices of L ¥, which could each be charged 1 extra. Since at least 1 unit
was paid for each vertex of L;, we obtain f;(n) <n+ k%f<ki (n) + £% (n).

By substituting for f<* and f~% the bound from the lemma, we arrive at the
system of inequalities f;(n) < n+O(kif(In/ki]) + k2 fi1(In/ki])), i =1,2,...,s
(where we put fo = 0), and we also have f < f; 4+ --- + fs. If one sets k; = n®
with 0 < g1 € g9 € -+ € €5 K €, a not too difficult calculation shows that
f(n) = O(n'*¢) as claimed. O

Bounding the maximum complexity of a single cell is usually considerably
more demanding than the lower envelope question, mainly because a cell can have
a complicated topology (cells in hyperplane arrangements, no more complicated
than the lower envelope, are a honorable exception). In the plane, these obstacles
are not too formidable, and by a reduction to DS-sequences, it can be shown that
the single-cell complexity for segments is O(na(n)), and for pieces of algebraic
curves it can be bounded by some Ag(n), with s depending on the maximum
degree of the curves. In R3, a general near-tight bound of O(n?*¢) was proved
n [21]. Some more special results are known for all d, such as an O(n% !logn)
bound for a single cell in an arrangement of (d — 1)-dimensional simplices in R [6].
Very recently, Basu proved, in an unpublished manuscript, that the sum of the
Betti numbers (i.e. “topological complexity”) of a single cell in an arrangement of
surface patches in R? is O(n%~1). This might be helpful in getting good bounds
on the combinatorial complexity too.

Concerning the union of “fat” objects (Fig. 1 bottom right), let us consider
n convex sets in the plane, and let us ask what is the combinatorial complexity
of the complement of their union. To get a meaningful problem, we assume that

DOCUMENTA MATHEMATICA - EXTRA VOLUME ICM 1998 - III - 365-375



370 JIRf MATOUSEK

the boundaries of any two sets intersect in at most s points for some fixed s > 4
(s = 2 is easy). Long and skinny sets can form a grid pattern and have union
complexity about n?, but if we also require that the sets be “fat” (the ratio of
the circumradius and inradius is bounded by some constant K), then a recent
result of Efrat and Sharir [18] shows that the union complexity is near-linear,
at most O(n'*¢), with the constant of proportionality depending on s, K, & ([26]
gives a simpler and more precise bound for fat triangles). Various extensions to
non-convex cases or to higher dimensions seem easy to conjecture but quite hard
to prove.

There are still many open problems in the above-discussed areas, but what
seems to be needed most at the moment is a simplification and streamlining, since
building up on the existing proofs is getting more and more cumbersome.

Here is an annoying open problem concerning arrangements of n algebraic
surfaces in R%. If the degrees of the surfaces are bounded, the complexity of
the arrangement is O(n?). But the cells can be combinatorially very complicated,
while for many applications, one needs to work with cells definable by constant-size
formulas, the so-called Tarski cells (curved analogues of simplices, so to speak).
Can each of the cells of the arrangement be subdivided into Tarski cells, in such a
way that altogether O(n?) Tarski cells result? The best known upper bound for
d > 3 is a bit larger than O(n?¢—3) [11].

MULTIPLE CELLS, INCIDENCES, CUTTINGS

Besides a single cell, also the total complexity of several cells in an arrangement
has been studied, and this has interesting connections to some old combinatorial-
geometric problems. Let us consider some m 2-cells in a planar arrangement of
n lines (call them marked cells), and let us denote the maximum possible total
number of vertices of these cells by K(n,m). While K(n,1) = n, K(n,m) is
considerably smaller than mn for large m.

To get a nontrivial upper bound on K (n,m), we define a bipartite graph with
the lines and the marked cells as vertices and with edges connecting each cell to
the lines forming its sides. There cannot be 5 lines simultaneously connected to
the same two cells, and the K&vari-Sés-Turdn theorem in extremal graph theory
implies that there are O(my/n + n) edges; thus K(n,m) = O(m+/n +n). In
particular, K(n,+/n) = O(n), (this is a result of Canham from 1969), which is
obviously tight. But the bound is not tight for n = m, say, and the right bound is
K(n,m) = O(n?3m?/3 + n 4+ m). This was proved by Clarkson et al. [14], using
a general technique that emerged in previous work on geometric algorithms. We
give the proof for m = n. The basic idea is this: since the bound we already have
is good if there are many more lines than points, we subdivide the problem with n
lines and n points into smaller subproblems, most of them with many more lines
than points. The device for this subdivision is the so-called %—cutting.

For a parameter » > 1 and a set L of n lines in the plane, a %—cuttz’ng for
L is a finite set of triangles* with disjoint interiors covering the plane, such that

4Where unbounded triangles are admitted too, i.e. a triangle means an intersection of 3
halfplanes here.
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the interior of each triangle is intersected by no more than 7 lines of L. A basic
existence result says that for any L and r, a %—cutting exists consisting of O(r?)
triangles (note that the bound is independent of n). Three proofs are known: a
very elementary one [24], and two probabilistic ones which generalize to higher
dimensions [12, 10].

For bounding K(n,n), let L be the n considered lines, set r = n'/3, and
consider a i-cutting {Ay,...,A.} for L, ¢ = O(r?). Let L; C L be the set of
lines intersecting the interior of A; and suppose that there are m; marked cells
completely contained in A;. The total complexity of these marked cells, over all
A, is at most Y7 | K(|L;|,m;) < 30, O(miy/nfr + 2) = O(n®?r=1/2 + nr),
using the above-derived bound for K(n,m) and Y m; < n. It remains to account
for the marked cells intersecting boundaries of some of the A;’s. But each vertex
of such a marked cell lies in the zone of a side of some A; in the arrangement of
L;, and the total complexity of these zones is at most 3> "7, O(|L;|) = O(nr).
Altogether we get K (n,n) = O(n*/?). O

An easy consequence of the bound K(n,m) = O(n*3m?/® + m + n) is the
same (and also tight) bound for the maximum number of incidences between n
lines and m points in the plane. This bound for incidences was proved earlier by
Szemerédi and Trotter, and the new proof via 1-cuttings [14] was a considerable
simplification. A still much simpler proof was found later by Székely [34] via
geometric graphs, but so far his technique seems mainly applicable for problems
in the plane, while with %—cuttings, various higher-dimensional problems can be
handled too (see, e.g., [14, 29] or a survey by Agarwal and Sharir in [31] for more
results and references).

The perhaps most challenging related problem is Erdds’ question on unit
distances: given n points in the plane, what is the maximum possible number of
pairs of points at distance 1?7 By drawing a unit circle around each point, the
question can be reduced to the maximum number of incidences between n points
and n unit circles. Both Székely’s technique and the one with %—cuttings yield the
same O(n*/3) bound as for line-point incidences, but while for lines this is tight,
the best known lower bound for unit circles is only slightly superlinear. To decrease
the upper bound for the unit-distance problem, a radically new approach seems
to be needed, because the n*/3 bound is tight for pseudocircles, i.e. collections
of Jordan curves that combinatorially behave “like unit circles”, and none of the
known methods can take advantage of “true circularity” of the unit circles.

In this connection, a recent result of Elekés and Rényai [19] should be men-
tioned. They characterized bivariate polynomials and rational functions that at-
tain only O(n) distinct values on X x Y for some n-element sets X, Y C R. As
a special case, they settled a conjecture of Purdy: if u and v are lines and P C u
and @ C v are n-point sets such that the distance |p — ¢| attains only O(n) dis-
tinct values for p € P and g € @, then u and v must be parallel or perpendicular
(provided n is large enough). The proof is in part algebraic and it strongly uses
the “straightness” of the lines u and wv.
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RANGE SEARCHING, PARTITIONS, HEILBRONN’S PROBLEM

Let us consider the following algorithmic problem. Given an n-point set P C R?,
we want to build some data structure for storing information about P, in such
a way that if we get a stripe o (bounded by two parallel lines) as a query, the
number of points of P lying in ¢ can be determined quickly, hopefully much faster
than by examining all points of P. Moreover, we insist that the space occupied by
the data structure is at most proportional to n.

Questions of this type, the so-called range searching problems, have been
studied quite intensively and in a much more general form—in higher dimensions,
with different query shapes, with more space allowed, etc. (there is a survey by
Agarwal in [20], and another survey is [25]). But many interesting aspects can
be demonstrated on the particular problem formulated above. In this case, it is
possible to answer the query in O(y/n) time, and with some restriction on the type
of algorithm used, this is asymptotically optimal. Ironically, while the known data
structures for this problem are not very useful in practice, the underlying theory
involves some of the nicest mathematics in computational geometry.

At first sight (and probably at many subsequent sights too), it is not clear how
to achieve any sublinear query time. Willard discovered in 1981 that the following
type of geometric construction can be used: given the point set P, partition the
plane into some number r of regions, each containing roughly 7 points of P, in
such a way that no line intersects more than x of these regions, where x should
be considerably smaller than . How can this help with a query? We store the
number of points in each of the regions. Given a query stripe o, the boundary of
o intersects at most 2x regions. These must be further examined, but each of the
other regions can be processed in unit time using the stored point counts. The
actual algorithms are more complicated but this is the basic idea.

Finding an optimal construction of such a partition took a long time. (Look-
ing for good partitions stimulated, for instance, research in equipartitioning masses
by hyperplanes—see e.g. [30]—although other approaches were used in the sub-
sequent development.) One of the most important steps was the following result,
essentially invented by Welzl, with a slight improvement in [13]: any 2n-point
set in the plane can be divided into pairs of points in such a way that any line
crosses only O(y/n) of the segments connecting the pairs. One almost wouldn’t
believe that after thousands of years of geometry, it is still possible to discover
such pretty theorems about points in the plane. This was later generalized to
a partition of an n-point set into r parts of size roughly 7, with any line cross-
ing O(y/r) parts only (see [25]). Both these results are asymptotically optimal.
The research in range searching also initiated a fruitful theory related to the so-
called Vapnik-Chervonenkis dimension of set systems, with applications, e.g., in
discrepancy theory; this is surveyed in [27].

Lower bounds for range searching were proved mainly by Chazelle; a key paper
is [9]. In the proof, some integral-geometric considerations appear, and, interest-
ingly, the lower bounds are related to a generalization of Heilbronn’s problem from
discrete geometry. For an n-point set P C [0,1]? and 3 < k < n, let ax(P) denote
the minimum area of the convex hull of a k-point subset of P. Heilbronn’s problem
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asks for determining a3(P), and although the answer is unknown, it is known that
a3(P) is of much smaller order than L (which is what one might perhaps expect at
first). In Chazelle’s proof, one needs a set P with ax(P) = Q(£) for all k € [ko,n],
with ko as small as possible. He achieves this with ky =~ logn, and this causes
the presence of an logn factor in the range-searching lower bound in R?® which
probably shouldn’t be there. From Heilbronn’s problem, we know that ky = 3
is impossible to reach, but perhaps it might be possible to decrease kg to some-
thing smaller than logn, which would improve the range-searching bound. For a
more recent progress in range-searching lower bounds, and some nice geometric
problems, see [8].

Many other areas and results would deserve to be mentioned, such as the
developments related to linear programming algorithms (see the survey [1]) which
also led to a nice purely mathematical application by Amenta [3] (a short proof of a
Helly-type result), or the story of weak e-nets, born in computational geometry and
later used by Alon and Kleitman [2] in their solution of the long-open Hadwiger-
Debrunner problem in convex geometry, or an interesting question of algebraic-
topological nature arising in motion planning of multiple robots [4]. But it’s really
time to finish.
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NETS, (t,5)-SEQUENCES, AND ALGEBRAIC CURVES

OVER FINITE FIELDS WITH MANY RATIONAL POINTS
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ABSTRACT. The current status of the theory of (¢, m, s)-nets and (¢, s)-
sequences is presented in a brief form, with some emphasis on the con-
nections with algebraic geometry. Closely related work on constructions
of algebraic curves over finite fields with many rational points and on
improving the Gilbert-Varshamov bound in algebraic coding theory is
discussed as well.
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Keywords and Phrases: quasirandom points, orthogonal arrays, alge-
braic curves over finite fields, rational points, algebraic-geometry codes,
Gilbert-Varshamov bound.

1. INTRODUCTION AND BASIC CONCEPTS
Nets and (¢, s)-sequences are finite point sets, respectively infinite sequences, sat-
isfying strong uniformity properties with regard to their distribution in the s-
dimensional unit cube I°* = [0,1]°. The general theory of these combinatorial
objects was first developed in [12]. They have attracted a lot of interest in sci-
entific computing in recent years because of their role as quasirandom points in
quasi-Monte Carlo methods, e.g. for numerical integration over I°® (see [14] for
the details). They also offer a great appeal for theoretical studies in view of the
many links with other areas such as classical combinatorial designs, coding theory,
algebra, number theory, and algebraic geometry. To set the stage, we first review
some basic definitions.

DEFINITION 1. For a given dimension s > 1 and integers b > 2 and 0 <t < m,
a (t,m,s)-net in base b is a point set P consisting of b points in I® such that
every subinterval J of I*® of the form

S
J = [Jlaib=%, (a; + 1)b~%)
i=1
with integers d; > 0 and 0 < a; < b% for 1 < i < s and with Vol(J) = b=™
contains exactly b® points of P.
For integers b > 2 and m > 1 and a point x € I®, we obtain [X|p.,» € I°
by truncating a b-adic expansion of each coordinate of x after m terms. Here
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expansions with almost all digits equal to b — 1 are allowed — thus, the truncation
operates on the expansions of the coordinates of x and not on x itself. The
following definition of a (¢, s)-sequence is the slightly generalized version described
in [20], [21] (see [14, Chapter 4] for the original narrower definition). We assume
prescribed b-adic expansions on which the truncations operate.

DEFINITION 2. For a given dimension s > 1 and integers b > 2 and ¢t > 0, a
sequence Xo, X1, ... of points in I® is a (¢, s)-sequence in base b if for all integers
k> 0 and m > ¢ the points [X,]p,m with k0™ <n < (k+1)b™ form a (t,m, s)-net
in base b.

The following useful principle shows that if we can construct a (¢, s)-sequence,
then we can construct infinitely many nets in dimension s+ 1 (see [12, Section 5],
[20, Section 6]).

LEMMA 1. If there exists a (t, s)-sequence in base b, then for every integer
m >t there exists a (t,m,s + 1)-net in base b.

The aim in the construction of (¢,m, s)-nets and (¢, s)-sequences in base b is
to make the quality parameter ¢ as small as possible if the other parameters are
fixed. Most of the known constructions of nets and (¢, s)-sequences are based on
the digital method which was introduced in [12, Section 6]. For the sake of brevity,
we just sketch the digital method for constructing (¢, m, s)-nets in base b. Select a
commutative ring R with identity and of finite order b > 2. For given m > 1 and
s > 1 choose a system

C:{c;i)ERm:lﬁiﬁs,lgjgm}.

Now we get the jth b-adic digits of the ith coordinates of the points of the (¢, m, s)-
net by forming the inner product of cy) with all elements of R™ and then iden-
tifying elements of R with b-adic digits. The value of the quality parameter ¢
depends on the choice of C. The resulting net is called a digital (t,m, s)-net in
base b (or constructed over R if we want to emphasize R). Similarly, we speak of
a digital (t,s)-sequence in base b (or constructed over R if we want to emphasize
R). There is a “digital” analog of Lemma 1, i.e., a digital (¢, s)-sequence yields
infinitely many digital nets in dimension s + 1 (see [20, Section 2]). For practical
purposes it suffices to consider the digital method in the special case where the
ring R is a finite field F, of prime-power order ¢. Digital nets and (¢, s)-sequences
in an arbitrary base b can be obtained by using rings R that are direct products
of finite fields (see [14, Chapter 4], [20, Section 5]).

In this paper we give a brief review of the state-of-the-art in the area of
(t,m, s)-nets and (¢, s)-sequences, with some emphasis on the connections with
algebraic geometry. Section 2 discusses links with classical combinatorial objects
such as MOLS and orthogonal arrays. Constructions of nets and (¢, s)-sequences,
e.g. by methods using algebraic curves over finite fields, are presented in Section 3.
This leads to the discussion of algebraic curves over finite fields with many rational
points in Section 4. As a by-product we obtain the applications to algebraic coding
theory in Section 5, such as improvements on the Gilbert-Varshamov bound. For
various aspects, more detailed expository accounts can be found in [14, Chapter
4, [21], [25), [32]
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2. CONNECTIONS WITH COMBINATORIAL DESIGNS

The fact that there are close links between nets and combinatorial designs was
noticed already in [12, Section 5]. For instance, it was shown there that for s > 2
the existence of a (0, 2, s)-net in base b is equivalent to the existence of s —2 MOLS
of order b. Later it was proved by Mullen and Whittle [11] that for s > 2 and any
t > 0, the existence of a (¢, + 2, s)-net in base b is equivalent to the existence
of a certain set of mutually orthogonal hypercubes of order b. In the language of
orthogonal arrays, there is the result in [15] that there exists a (¢,t + 2, s)-net in
base b if and only if there exists an orthogonal array OA(b'2 s,b,2) of index b'.

Lawrence [6] and Mullen and Schmid [10] independently established a com-
binatorial equivalence between arbitrary (¢, m, s)-nets in base b and suitable com-
binatorial designs. Depending on the language that is used, these designs can be
generalized orthogonal arrays, ordered orthogonal arrays, or strongly orthogonal
hypercubes. The proofs of all these combinatorial results are constructive.

These connections with combinatorial designs imply obstructions to the exis-
tence of (t,m, s)-nets for m > t+ 2 (nets exist trivially for m —¢ = 0,1). Consider
e.g. the following simple argument: if there exists a (0, m, s)-net in base b for some
m > 2, then there exists a (0,2, s)-net in base b, hence there are s — 2 MOLS of
order b, and so we must have s < b+ 1. A more general argument of this type,
combined with bounds for the appropriate combinatorial designs, leads to upper
bounds on s in terms of b, m, and ¢, under the assumption that there exists a
(t,m, s)-net in base b with m > t + 2. A description of this method, together
with tables of bounds, can be found in [2]. More recently, this approach was fur-
ther refined by Martin and Stinson [7], [8] and improved bounds were obtained.
In view of Lemma 1, combinatorial obstructions to the existence of (¢, m, s)-nets
yield combinatorial obstructions to the existence of (¢, s)-sequences, such as the
following bound from [21].

THEOREM 1. Given b > 2 and s > 1, a (t, s)-sequence in base b can exist only
if
(b—1)s+b+1

5 .

3. CONSTRUCTIONS OF NETS AND (¢, $)-SEQUENCES

The number of known construction methods for nets and (¢, s)-sequences is already
quite large and ideas from various areas are employed. The combinatorial approach
to the construction of nets uses the equivalences between (¢, m, s)-nets and suitable
combinatorial designs mentioned in Section 2 and techniques of constructing such
combinatorial designs. Surveys of combinatorial methods for the construction of
nets are given in [2], [9]. Other important methods for the construction of nets
are based on coding theory. This approach goes back to an observation in [12,
Section 7] that there is a connection between the digital method over a finite field
F, and the construction of parity-check matrices for good linear codes over Fy.
This connection is conveniently formalized through the notion of a (d, m, s)-system

over F, introduced in [32], which is a system {a@ eF:1<i<s,1<5< m}

t>s 1
- —1lo
—_ b

j
of vectors such that for any integers dy,...,ds > 0 with Z‘;l d; = d the a;i), 1<
j <d;,1 <i <s, are linearly independent over F,. Finding a digital (¢, m, s)-
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net constructed over F, is then equivalent to finding a (d,m, s)-system over F,
with d = m — t. The surveys [2], [9] report on coding-theory methods for the
construction of nets and new methods of this type can be found in [32].

Standard constructions of digital (¢, s)-sequences in base b are due to Sobol’
[38] for b = 2 and any s, to Faure [3] for prime bases b > s, and to Niederreiter [13]
for any b and any s. Generalizations of these sequences are described in Tezuka
[39, Chapter 6]. As a by-product, these constructions yield digital (¢,m, s+ 1)-nets
in base b.

An important recent development is the use of algebraic curves over finite
fields (or, equivalently, of global function fields) for the construction of (%, s)-
sequences. The basic idea goes back to Niederreiter [16], [17]. At present, four
different construction principles using algebraic curves are available and they all
rely on the digital method over F,. We refer to [18], [20], [21], [44] for the detailed
description of these constructions and to [25], [32] for further discussions. Three
of the methods, and indeed the most effective ones, are based on algebraic curves
over Fy, with many F,-rational points (or, equivalently, on global function fields
with many rational places). Given ¢ and a dimension s > 1, the typical procedure
is to choose a smooth, projective, absolutely irreducible algebraic curve C over
F, containing at least s + 1 F,-rational points, say P, Pi,...,Ps. The point
P;,1 < i < s, is used to produce the data that are needed in the digital method
(i.e., certain elements of F;) for generating the ith coordinates of the points of
the (t, s)-sequence. These elements of F, are obtained by expansions on the curve
C in local coordinates at Po,. The methods in [20] and [44] yield digital (¢, s)-
sequences constructed over F, with ¢ being the genus of C. If we optimize these
constructions, we arrive in a natural way at the following important quantity from
algebraic geometry over F, and at the subsequent theorem in [20].

DEFINITION 3. For given g > 0 and ¢, let Ny(g) be the maximum number
of F,-rational points that a smooth, projective, absolutely irreducible algebraic
curve over F; of genus g can have.

THEOREM 2. For every q and s there exists a digital (Vg(s), s)-sequence con-
structed over F 4, where Vy(s) is the least value of g such that Ny(g) > s+ 1.

The behavior of V;(s) as s — co can be obtained from class field towers and
the asymptotic theory of N,(g) (see Section 5). As stated in Section 1, we can also
pass from prime-power bases ¢ to arbitrary bases b in the digital method. Finally,
this leads to the following bound (see [20, Section 5]), which in view of Theorem
1 is best possible as far as the order of magnitude in s is concerned.

THEOREM 3. For every b > 2 and s > 1 there exists a digital (t, s)-sequence
in base b with

t <
~ logqu
where ¢ > 0 is an absolute constant and q1 is the least prime power in the factor-
ization of b into pairwise coprime prime powers.
4. ALGEBRAIC CURVES WITH MANY RATIONAL POINTS
The constructions of (¢, s)-sequences in Section 3 based on algebraic curves over
F, lead to the requirement of finding good lower bounds for the number Ny(g)
in Definition 3, or in other words to the problem of constructing algebraic curves

s+ 1,

DOCUMENTA MATHEMATICA - EXTRA VOLUME ICM 1998 - III - 377-386



NETS AND ALGEBRAIC CURVES 381

over F, of given genus g with many F,-rational points. This problem is also of
great importance in the theory of algebraic-geometry codes (see Section 5). Recent
surveys of this problem, also in the equivalent language of global function fields,
are given in Garcia and Stichtenoth [4], Niederreiter and Xing [26], [30], and van
der Geer and van der Vlugt [42].

A well-known technique for establishing the existence of various algebraic
curves over F, with many F,-rational points is due to Serre [37] and uses methods
of class field theory. This approach was continued by Auer [1] and Lauter [5].
Usually, the curves obtained by this technique are not in an explicit form. On
the other hand, constructions in the function field setting that work with Artin-
Schreier and Kummer extensions and with subfields of cyclotomic function fields
yield explicit generators and defining equations. Such constructions can be found
e.g. in [19], [21], [26], [46] for ¢ = 2, in [22], [27] for ¢ = 3, in [22], [23] for ¢ = 4,
in [22], [24], [35] for ¢ = 5, in [29] for ¢ = 8,16, and in [32] for ¢ = 9,27. Explicit
constructions inspired by techniques from coding theory were introduced by van
der Geer and van der Vlugt [41] (see also the survey [42]).

In the function field setting, a powerful technique of obtaining global func-
tion fields with many rational places is based on Hilbert class fields. The aim is
to construct unramified abelian extensions of a given global function field F' in
which certain selected rational places of F' split completely. This method works
particularly well if the divisor class number of F' is large relative to the genus of
F. Applications of this method can be found in [22], [24], [26], [27], [29], [30], [35],
[46]. A more general approach, which contains both cyclotomic function fields and
Hilbert class fields as special cases, uses the theory of narrow ray class extensions
obtained from Drinfeld modules of rank 1 and was introduced in [45]. This method
allows great flexibility and produces a large number of families of global function
fields with many rational places. We refer to [23], [24], [26], [27], [29], [30], [31],
[35], [46] for further results and examples with this method.

Table 1 contains all bounds for N,(g) available to the author for ¢ =
2,3,4,5,8,9,16,27 and 1 < g < 50 (for g = 0 we trivially have Ny(0) = ¢+ 1). In
each entry of the table, the first number is a lower bound for N,(g) and the second
an upper bound for N,(g). If only one number is given, then this is the exact value
of N,(g). A program for calculating upper bounds for Ny(g), which is based on
Weil’s explicit formula for the number of F-rational points in terms of the zeta
function and on the trigonometric polynomials of Oesterlé, was kindly supplied by
Jean-Pierre Serre. The lower bounds in Table 1 are obtained by combining [32,
Table 3] with new data in [1], [35]. We refer also to the tables of van der Geer and
van der Vlugt [43] which represent the most recent result of an ongoing project to
update bounds for N,(g) periodically.

5. APPLICATIONS TO CODING THEORY
There is an asymptotic theory of Ny (g) which has significant applications to alge-
braic coding theory. The basic quantity here is

Ny(9)
P

A(g) = limsup,_,
For values of ¢ for which A(q) is larger than a known comparison function, Goppa’s
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construction of algebraic-geometry codes leads to improvements on the classical
Gilbert-Varshamov bound for the existence of good linear codes over F.

Let U, be the set of ordered pairs (4, R) € [0,1]? for which there exists a
sequence of linear codes over Fy of increasing lengths such that § is the limit of
the relative minimum distances and R the limit of the information rates. It is
known that for some continuous function «, on [0, 1] we have

Ug={(,R): 0 < R <qy(d),0<d <1},

where a4 (0) =1 and a4(6) =0 for 6 € [(¢g—1)/g¢,1]. The function aq is unknown,
and it is an important issue in algebraic coding theory to obtain good lower bounds
for oy on the interval (0, (¢ — 1)/q). The Gilbert-Varshamov bound says that

aq(0) > Rav(g,0) :=1—Hy(d) for0<éd<(¢—1)/q,

where H, is the g-ary entropy function. Algebraic-geometry codes lead to the
bound 1

aq(6) > Rag(g,6) =1 A9 0 for0<d<1.
By showing that A(g) > ¢'/2 — 1 if q is a square, Tsfasman, Vladut, and Zink [40]
proved that Rac(q,0) > Rav(g,90) if ¢ is a sufficiently large square and ¢ belongs
to a suitable subinterval of [0, 1].

For nonsquares ¢ only weaker lower bounds for A(q) are known. Serre [37]
showed that A(q) is at least of the order of magnitude loggq, and an alternative
proof and an effective version of this result were recently given in [33]. In many
cases the following result in [28] yields a considerable improvement: if ¢ = p® with
a prime p and an odd integer e > 3, then A(q) is at least of the order of magnitude
¢/ (%) where k is the least prime factor of e. Further discussions and refinements
of this result can be found in [30], [33]. As a consequence we get the following
theorem in [28] which improves on the Gilbert-Varshamov bound for sufficiently
large composite nonsquares g.

THEOREM 4. Let m > 3 be an odd integer and let r be a prime power with
r > 100m? for odd r and r > 576m? for even r. Then there exists an open interval
(01,02) C (0,1) containing (r™ —1)/(2r™ — 1) such that

Rag(r™,8) > Rav(r™,08) for allé € (d1,02).

In connection with lower bounds for A(q) we mention that there is a method of
Perret [36] for obtaining such lower bounds which depends, however, on a conjec-
ture that would provide a sufficient condition for the infinitude of certain ramified
class field towers. It was recently shown in [34] by a counterexample that this
conjecture is wrong. Therefore, the lower bounds for A(g) in Perret [36, Section
III] remain unproved.
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Table 1: Bounds for N,y(g)

9\q 2 3 1 5 8 9 16 27
1 5 7 9 10 14 16 25 38
2 6 8 10 12 18 20 33 48
3 7 10 14 16 24 28 38 58
4 8 12 15 18 25-29 30 45-47 64-68
5 9 | 12-14 | 17-18 | 20-22 29-32 32-36 49-55 55-78
6 10 | 14-15 20 | 21-25 33-36 35-40 65 76-88
7 10 | 16-17 | 21-22 | 22-27 33-39 39-43 63-70 64-98
8 11 | 15-18 | 21-24 | 22-29 34-43 38-47 61-76 92-108
9 12 19 26 | 26-32 45-47 40-51 72-81 82-118

10 13 | 19-21 | 27-28 | 27-34 38-50 54-55 81-87 91-128
11 14 | 20-22 | 26-30 | 32-36 48-54 55-59 80-92 96-138
12 | 14-15 | 22-24 | 29-31 | 30-38 49-57 55-63 68-97 | 109-148
13 15 | 24-25 33 | 36-40 50-61 60-66 97-103 | 136-156
14 | 15-16 | 24-26 | 32-35 | 39-43 65 56-70 97-108 84-164
15 17 28 | 33-37 | 35-45 54-68 64-74 | 98-113 | 136-171
16 | 17-18 | 27-29 | 36-38 | 40-47 56-71 74-78 93-118 | 136-178
17 | 17-18 | 24-30 40 | 42-49 61-74 56-82 96-124 | 128-185
18 | 18-19 | 26-31 | 41-42 | 32-51 65-77 46-85 | 113-129 94-192
19 20 | 27-32 | 37-43 | 45-54 58-80 84-88 | 121-134 | 126-199
20 | 19-21 | 30-34 | 37-45 | 30-56 68-83 48-91 | 121-140 | 133-207
21 21 | 32-35 | 41-47 | 50-58 72-86 82-95 | 129-145 | 163-214
22 | 21-22 | 28-36 | 40-48 | 51-60 66-89 78-98 | 129-150 | 112-221
23 | 22-23 | 26-37 | 41-50 | 55-62 68-92 92-101 | 126-155 | 114-228
24 | 20-23 | 28-38 | 42-52 | 46-64 66-95 91-104 | 129-161 | 166-235
25 24 | 36-40 | 51-53 | 52-66 66-97 | 64-108 | 144-166 | 196-242
26 | 24-25 | 36-41 55 | 45-68 72-100 | 110-111 | 150-171 | 108-249
27 | 22-25 | 39-42 | 49-56 | 52-70 96-103 60-114 | 145-176 | 114-256
28 | 25-26 | 37-43 | 51-58 | 54-71 97-106 | 105-117 | 136-181 | 108-263
29 | 25-27 | 42-44 | 49-60 | 56-73 97-109 | 104-120 | 161-187 | 114-270
30 | 25-27 | 34-46 | 53-61 | 58-75 80-112 60-123 | 161-192 | 117-277
31 | 27-28 | 40-47 | 60-63 | 72-77 72-115 84-127 | 150-197 | 114-284
32 | 26-29 | 38-48 | 57-65 | 62-79 72-118 81-130 | 132-202 | 126-291
33 | 28-29 | 37-49 | 65-66 | 64-81 92-121 78-133 | 193-207 | 220-298
34 | 27-30 | 44-50 | 57-68 | 76-83 80-124 | 111-136 | 156-213 | 135-305
35 | 29-31 | 47-51 | 58-69 | 68-85 | 106-127 84-139 | 144-218 | 126-312
36 | 30-31 | 46-52 | 64-71 | 64-87 | 105-130 | 110-142 | 185-223 | 244-319
37 | 29-32 | 48-54 | 66-72 | 72-89 | 121-132 | 120-145 | 208-228 | 162-326
38 | 28-33 | 36-55 | 56-74 | 78-91 | 129-135 | 105-149 | 193-233 | 144-333
39 33 | 46-56 | 65-75 | 76-93 | 117-138 84-152 | 160-239 | 271-340
40 | 32-34 | 54-57 | 75-77 | 65-94 | 100-141 90-155 | 162-244 | 244-346
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9\q 2 3 1 5 8 9 16 27

41 | 33-35 | 50-58 | 65-78 | 80-96 | 112-144 | 84-158 | 216-249 | 153-353
42 | 33-35 | 39-59 | 66-80 | 60-98 | 129-147 | 90-161 | 209-254 | 280-360
43 | 33-36 | 55-60 | 72-81 | 84-100 | 100-150 | 120-164 | 226-259 | 196-367
44 | 33-37 | 42-61 | 68-83 | 60-102 | 129-153 | 90-167 | 162-264 | 153-374
45 | 32-37 | 48-62 | 80-84 | 88-104 | 144-156 | 112-170 | 242-268 | 171-381
46 | 34-38 | 55-63 | 81-86 | 75-106 | 129-158 | 138-173 | 243-273 | 162-388
47 | 36-38 | 47-65 | 73-87 | 92-108 | 120-161 | 154-177 | 176-277 | 174-395
48 | 34-39 | 55-66 | 77-89 | 82-110 | 126-164 | 163-180 | 184-282 | 325-402
49 | 36-40 | 63-67 | 81-90 | 96-111 | 130-167 | 168-183 | 192-286 | 268-409
50 40 | 56-68 | 91-92 | 70-113 | 130-170 | 182-186 | 225-291 | 180-416
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ABSTRACT. A brief report on recent work on the sphere-packing problem.
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1 INTRODUCTION

The sphere packing problem has its roots in geometry and number theory (it is
part of Hilbert’s 18th problem), but is also a fundamental question in information
theory. The connection is via the sampling theorem. As Shannon observes in his
classic 1948 paper [37] (which ushered in the age of digital communication), if f is a
signal of bandwidth W hertz, with almost all its energy concentrated in an interval
of T secs, then f is accurately represented by a vector of 2WT samples, which
may be regarded as the coordinates of a single point in R™, n = 2WT. Nearly
equal signals are represented by neighboring points, so to keep the signals distinct,
Shannon represents them by n-dimensional ‘billiard balls’, and is therefore led to
ask: what is the best way to pack ‘billiard balls’ in n dimensions?

This talk will report on a few selected developments that have taken place
since the appearance of Rogers’ 1964 book on the subject, proceeding upwards in
dimension from 2 to 128. The reader is referred to [16] (especially the third edition,
which has 800 references covering 1988-1998) for further information, definitions
and references. See also the lattice data-base [31].

2 DIMENSION 2

The best packing in dimension 2 is the familiar ‘hexagonal lattice’ packing of
circles, each touching six others. The centers are the points of the root lattice As.
The density A of this packing is the fraction of the plane occupied by the spheres:
7/v/12 = 0.9069 . . ..

In general we wish to find A,,, the highest possible density of a packing of equal
nonoverlapping spheres in R", or A%L), the highest density of any packing in which
the centers form a lattice. It is known (Fejes Téth, 1940) that Ag = AéL) =7/V12.
An n-dimensional lattice A of determinant d and minimal nonzero squared length
(or norm) p has packing radius p = \/z/2 and density A = V;,p"/v/det A, where
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Vi, = /2 /(n/2)! is the volume of a unit sphere. The center density of a packing
isd=A/V,.

We are also interested in packing points on a sphere, and especially in the
‘kissing number problem’: find 7, (resp. T7(LL)), the maximal number of spheres
that can touch an equal sphere in R™ (resp. in any lattice in R™). It is trivial that
M =.

T2 = Ty

3 DIMENSION 3

In spite of much recent work ([20], [21]) Ag is still unknown; nor is A,, known in any
dimension above 2. It is conjectured that Az = 7/+/18 = 0.74048 . . ., as in the face-
centered cubic (f.c.c.) lattice A3. Muder [28] has shown that Az < 0.773055.. ..
It is worth mentioning, however, that there are packings of congruent ellipsoids
with density considerably greater than 7/v/18 [3].
In two dimensions the hexagonal lattice is (a) the densest lattice packing,

(b) the least dense lattice covering, and (c) is geometrically similar to its dual
lattice. There is a little-known three-dimensional lattice that is similar to its dual,
and, among all lattices with this property, is both the densest packing and the
least dense covering. This is the m.c.c. (or mean-centered cuboidal) lattice [11]
with Gram matrix

L1V 1

= 1 1+v2 1-V2
2l 1 1-v2 1442

In a sense this lattice is the geometric mean of the f.c.c. lattice and its dual
the body-centered cubic (b.c.c.) lattice. Consider the lattice generated by the
vectors (+u, £v,0) and (0, £u, +v) for real numbers v and v. If the ratio u/v is
respectively 1, 21/2 or 21/4 we obtain the f.c.c., b.c.c. and m.c.c. lattices. The
m.c.c. lattice also recently arose in a different context, as the lattice corresponding
to the period matrix of the hyperelliptic Riemann surface w? = 2% — 1

4 DIMENSIONS 4-8

Table 1 summarizes what is presently known about the sphere packing and kissing
number problems in dimensions < 24. Entries enclosed inside a solid line are
known to be optimal, those inside a dashed line optimal among lattices.

The large box in the ‘density’ column refers to Blichfeldt’s 1935 result that
the root lattices Z ~ Ay, As, A3 ~ D3, Dy, D5, Eg, E7, Eg achieve A%L) forn < 8.
It is remarkable that more than 60 years later AéL) is still unknown.

The large box in the right-hand column refers to Watson’s 1963 result that
the kissing numbers of the above lattices, together with that of the laminated
lattice Ag, achieve 5 for n < 9. Odlyzko and I [16, Ch. 13] and independently
Levenshtein determined 73 and 7o4. The packings achieving these two bounds are
unique [16, Ch. 14].
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Dim. Densest packing Highest kissing number
1 i Z~ M i i 2 i

2 | Az =~ Ay l 6|

3 | A3 ~D3~A; |12 |

4 | Dy~ Ay i 24

5 i D5 ~ As ! i 40 i

6 1 Ee ~ Ag 1 L 72

7 | E7 ~ A7 1 | 126 !

8 By~ As | \[240]

9 Ag | 272 1(306 from P,)

=Y
o
-
s
(=}
—~
s
(=]
(e}
N—

33 (500 from PlOb)
756 (840 from P12a>
BW16 >~ A16 4320

Leech ~ Aoy 196560

[Eny
N

=

[\

,_.
N o

Table 1: Densest packings and highest kissing numbers known in low dimensions.
(Parenthesized entries are nonlattice arrangements that are better than any known
lattice.)

THE ‘Low DIMENSIONAL LATTICES’ PROJECT Some years ago Conway and I
noticed that there were several places in the literature where the results could
be simplified if they were described in terms of lattices rather than quadratic
forms. (It seems clearer to say ‘the lattice Fg’ rather than ‘the quadratic form
223 + 223 + 43 + 423 + 2022 + 1222 + 422 + 223 + 231 w9 + 22073 + 67374 + 107475 +
6x5x6 + 22627 + 2x7xs’.) This led to a series of papers [7], [10], [13].

Integral lattices of determinant d = 1 (‘unimodular’ lattices) have been classi-
fied in dimensions < 25, dimensions 24, 25 being due to Borcherds. In [16, Ch. 15]
and [7, (I)] we extended this to d < 25 for various ranges of dimension.

[7, (II)] is based on the work of Dade, Plesken, Pohst and others, and describes
the lattices associated with the maximal irreducible subgroups of GL(n,Z) for
n=1,...,9,11,13,17,19,23. Nebe, and Nebe and Plesken (see [29], [32]) have
recently completed the enumeration of the maximal finite irreducible subgroups of
GL(n,Q) for n < 31, together with the associated lattices.

[7, (IV)] gives an improved version of the mass formula for lattices, and [7, (V)]
studies when an n-dimensional integral lattice can be represented as a sublattice
of Z™ for some m > n, or failing that, by a sublattice of s~1/2Z™ for some integer
s. [10] describes the Voronoi and Delaunay cells of all the root lattices and their
duals, and [7, (VI), (VIII)] discusses how the Voronoi cell of a 3- or 4-dimensional
lattice changes as the lattice is continuously varied.

[7, (VII)] determines the ‘coordination sequences’ of various lattices. Consider
Es, for example, and let S(k) denote the number of lattice points that are k steps
from the origin, where a step is a move to an adjacent sphere (S(1) is the kissing
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number). Then > 72 S(k)z* = f(z)/(1 — z)®, where f(z) = 1+ 232z + 722822 +
...+ 8. Thus the coordination sequence for Eg begins 1, 240, 9120, .... For other
examples see [39]

PERFECT LATTICES One possible approach to the determination of the densest
lattices in dimensions 7 to 9 is via Voronoi’s theorem that the density of A is a
local maximum if and only if A is perfect and eutactic [27].

In 1975 Stacey, extending the work of several earlier authors, published a list
of 33 perfect lattices in dimension 7. Unfortunately one of the 33 was omitted
from her papers and her dissertation. In [7, (III)] we reconstructed the missing
lattice and ‘beautified’ all 33, computing their automorphism groups, etc. In 1991
Jaquet-Chiffelle [22] completed this work by showing that this is indeed the full
list of perfect lattices in R7. This provides another proof that E; is the densest
lattice in dimension 7.

Martinet, Bergé and their students are presently attempting to classify the
eight-dimensional perfect lattices, and it appears that there will be roughly 10000
of them. Whether this approach can be used to determine AgL) remains to be
seen!

5 DIMENSION 9. LAMINATED LATTICES

There is a simple construction, the ‘laminating’ or ‘greedy’ construction, that
produces many of the densest lattices in dimensions up to 26. Let A; denote the
even integers in R!, and define the n-dimensional laminated lattices A,, recursively
by: consider all lattices of minimal norm 4 that contain some A, _; as a sublattice,
and select those of greatest density. It had been known since the 1940’s that
this produces the densest lattices known for n < 10. In [6] we determined all
inequivalent laminated lattices for n < 25, and found the density of A,, for n < 48
(Fig. 1). A key result needed for this was the determination of the covering radius
of the Leech lattice and the enumeration of the deep holes in that lattice [16,
Ch. 23].

WHAT ARE ALL THE BEST SPHERE PACKINGS IN LOW DIMENSIONS? In [13] we
describe what may be all the best packings in dimensions n < 10, where ‘best’
means both having the highest density and not permitting any local improvement.
In particular, we conjecture that A%L) =